
Yoram Moses (Ed.)

 123

29th International Symposium, DISC 2015
Tokyo, Japan, October 7–9, 2015
Proceedings

Distributed
ComputingLN

CS
 9

36
3

AR
Co

SS

Lecture Notes in Computer Science 9363

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK
Josef Kittler, UK
John C. Mitchell, USA
Bernhard Steffen, Germany
Demetri Terzopoulos, USA
Gerhard Weikum, Germany

Takeo Kanade, USA
Jon M. Kleinberg, USA
Friedemann Mattern, Switzerland
Moni Naor, Israel
C. Pandu Rangan, India
Doug Tygar, USA

Advanced Research in Computing and Software Science

Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany

Benjamin C. Pierce, University of Pennsylvania, USA

Bernhard Steffen, University of Dortmund, Germany

Deng Xiaotie, City University of Hong Kong

Jeannette M.Wing, Microsoft Research, Redmond, WA, USA

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Yoram Moses (Ed.)

Distributed
Computing
29th International Symposium, DISC 2015
Tokyo, Japan, October 7–9, 2015
Proceedings

123

Editor
Yoram Moses
Technion
Haifa
Israel

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-662-48652-8 ISBN 978-3-662-48653-5 (eBook)
DOI 10.1007/978-3-662-48653-5

Library of Congress Control Number: 2015952037

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

Springer Heidelberg New York Dordrecht London
© Springer-Verlag Berlin Heidelberg 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer-Verlag GmbH Berlin Heidelberg is part of Springer Science+Business Media
(www.springer.com)

Preface

DISC, the International Symposium on Distributed Computing, is an international
forum on the theory, design, analysis, implementation, and application of distributed
systems and networks. DISC is organized in cooperation with the European Associa-
tion for Theoretical Computer Science (EATCS).

This volume contains the papers presented at DISC 2015, the 29th International
Symposium on Distributed Computing, held during October 7–9, 2015, in Tokyo,
Japan. The volume also includes the citation for the 2015 Edsger W. Dijkstra Prize in
Distributed Computing, jointly sponsored by DISC and PODC (the ACM Symposium
on Principles of Distributed Computing), which was presented at DISC 2015 in Tokyo
to Michael Ben-Or and Michael Rabin, for initiating the field of fault-tolerant ran-
domized distributed algorithms.

In total, 136 regular papers and seven brief announcements were submitted. The
Program Committee selected 42 contributions out of the 136 submissions for regular
presentations at the symposium. Each presentation was accompanied by a paper of up
to 15 pages in this volume. Every submission was read and evaluated by at least three
members of the Program Committee (PC). The committee was assisted by close to 100
external reviewers. This year preliminary reviews were sent to the authors for rebuttals
that were used to inform the PC discussions. Following a two-week discussion period,
the PC held a physical meeting in San Sebastian, Spain, on July 19, 2015, with some
of the PC members participating electronically. Final consultations were held during
the PODC conference, and notifications were sent out as PODC 2015 came to a close.
Revised and expanded versions of several selected papers will be considered for
publication in a special issue of the journal Distributed Computing. Some of the regular
submissions that were rejected, but generated substantial interest among the members
of the PC, were invited to be published as brief announcements. In total, 14 brief
announcements appeared at DISC 2015. Each of the two-page brief announcements
summarizes ongoing work or recent results, and it can be expected that these results
will appear as full papers in later conferences or journals. Authors of additional papers
were invited to present posters at the conference. Eight posters were presented at a
special poster session during the conference. A list of the poster titles and authors
appears at the end of this volume.

The Best Paper Award for DISC 2015 was presented to Rati Gelashvili for his paper
“On the Optimal Space Complexity of Consensus for Anonymous Processes.” The
Best Student Paper was presented to Yuezhou Lv for his paper “Local Information in
Influence Networks” together with Thomas Moscibroda.

The program featured two keynote talks, one presented by Thomas Moscibroda of
Microsoft Research, Beijing, and the other by Michael Ben-Or of the Hebrew
University (a co-recipient of the 2015 Dijkstra award). An abstract of the first invited
lecture is included in these proceedings. Two workshops were co-located with the
DISC symposium this year: the Workshop on Distributed Robotic Swarms (WRDS),

organized by Paola Flocchini, Fukuhito Ooshita, and Yukiko Yamauchi, and the 4th
Workshop on Advances on Distributed Graph Algorithms (ADGA) chaired by Keren
Censor Hillel. WRDS was held on October 5 and ADGA on October 6. Two tutorials
were presented on October 6: “Communication Complexity in Distributed Comput-
ing,” by Rotem Oshman, and “Distributed Fault-Tolerant Runtime Verification” by
Borzoo Bonakdarpour, Pierre Fraigniaud and Sergio Rajsbaum.

I wish to thank the many contributors to DISC 2015: The authors of the submitted
papers, the PC members, who performed a huge and difficult job, the keynote speakers
Thomas Moscibroda and Michael Ben-Or, the conference general chairs and local
organizers led by the general chairs Toshimitsu Masuzawa and Koichi Wada for the
great effort they put in, the publicity chairs Chen Avin and Tal Mizrahi, student
fellowship chair Alessia Milani, the workshop organizers and tutorial speakers, the
Steering Committee for its guidance, and especially the chair of the DISC Steering
Committee Antonio Fernandez Anta.

August 2015 Yoram Moses

VI Preface

Organization

DISC, the International Symposium on Distributed Computing, is an annual forum for
presentation of research on all aspects of distributed computing. It is organized in
cooperation with the European Association for Theoretical Computer Science
(EATCS). The symposium was established in 1985 as a biannual International
Workshop on Distributed Algorithms on Graphs (WDAG). The scope was soon
extended to cover all aspects of distributed algorithms and WDAG came to stand for
International Workshop on Distributed AlGorithms, becoming an annual symposium in
1989. To reflect the expansion of its area of interest, the name was changed to DISC
(International Symposium on Distributed Computing) in 1998, opening the symposium
to all aspects of distributed computing. The aim of DISC is to reflect the exciting and
rapid developments in this field.

Program Committee Chair

Yoram Moses Technion, Israel

Program Committee

Marcos K. Aguilera VMware Research Group, USA
Dan Alistarh Microsoft Research, UK
Lorenzo Alvisi University of Texas, Austin, USA
Francois Bonnet JAIST, Japan
Armando Castañeda UNAM, Mexico
Gregory Chockler Royal Holloway, University of London, UK
Xavier Defago JAIST, Japan
Danny Dolev The Hebrew University, Israel
Michael Elkin Ben Gurion University, Israel
Nate Foster Cornell University, USA
Pierre Fraigniaud CNRS and University of Paris Diderot, France
Juan Garay Yahoo Labs, USA
Cyril Gavoille Bordeaux University, France
Maurice Herlihy Brown University, USA
Taisuke Izumi Nagoya Institute of Technology, Japan
Prasad Jayanti Dartmouth College, USA
Amos Korman CNRS and University of Paris Diderot, France
Petr Kuznetsov Telecom ParisTech, France
Zvi Lotker Ben-Gurion University, Israel
Nancy Lynch MIT, USA
Maged Michael IBM Research, USA
Adam Morrison Technion, Israel
Achour Mostefaoui University of Nantes, France

Danupon Nanongkai KTH, Sweden
Rotem Oshman Tel Aviv University, Israel
Noam Rinetzky Tel Aviv University, Israel
Ulrich Schmid Vienna University of Technology, Austria
Yukiko Yamauchi Kyushu University, Japan
Haifeng Yu National University of Singapore, Singapore
Moti Yung Google, USA

Steering Committee

Yehuda Afek Tel Aviv University, Israel
Marcos K. Aguilera VMware Research Group, USA
Keren Censor-Hillel Technion, Israel
Shlomi Dolev Ben-Gurion University, Israel
Antonio Fernandez Anta

(Chair)
Inst. IMDEA Networks

Fabian Kuhn University of Freiburg, Germany
Yoram Moses Technion, Israel
Achour Mostefaoui University of Nantes, France

Local Arrangements

Chen Avin (Publicity) Ben-Gurion University, Israel
Sayaka Kamei Hiroshima University, Japan
Yoshiaki Katayama Nagoya Institute of Technology, Japan
Yoshifumi Manabe Kogakuin University, Japan
Toshimitsu Masuzawa

(General Chair)
Osaka University, Japan

Alessia Milani (Student
Fellowships)

LaBRI, Bordeaux, France

Tal Mizrahi (Publicity) Technion, Israel
Fukuhito Ooshita Nara Institute of Science and Technology, Japan
Yuichi Sudo NTT Corporation, Japan
Koichi Wada (General

Chair)
Hosei University, Japan

Additional Reviewers

Manuel Alcantara
Ei Ando
Maya Arbel
James Aspnes
Hagit Attiya
Evangelos Bampas

Leonid Barenboim
Edward Bortnikov
Zohir Bouzid
Elette Boyle
Viveck Cadambe
Keren Censor-Hillel

Shiri Chechik
Sandro Coretti
Roberto Cortiñas
Bruno Courcelle
Artur Czumaj
Shantanu Das

VIII Organization

Sebastian Daum
Oksana Denysyuk
Aleksandar Dragojevic
Moez Draief
Faith Ellen
Matthias Függer
Leszek Gasieniec
Tingjian Ge
Rati Gelashvili
Konstantinos Georgiou
Mohsen Ghaffari
George Giakkoupis
Alexey Gotsman
Vassos Hadzilacos
Sandeep Hans
Danny Hendler
Kirsten Hildrum
Stephan Holzer
Swen Jacobs
Tomasz Jurdzinski
Christoph Lenzen
Mohsen Lesani
Sayaka Kamei
Yoshiaki Katayama
Shuji Kijima
Aniket Kate
Kishore Kothapalli

Fabian Kuhn
Alptekin Küpçü
Arnaud Labourel
Ori Lahav
Anissa Lamani
William Leiserson
Christoph Lenzen
Sidi Ahmed Mahmoudi
Toshimitsu Masuzawa
Alex Matveev
Moti Medina
Tal Mizrahi
Cameron Musco
Junya Nakamura
Emanuele Natale
Brahim Neggazi
Thomas Nowak
Fukuhito Ooshita
Oded Padon
Konstantinos Panagiotou
Gopal Pandurangan
Merav Parter
Francesco Pasquale
Boaz Patt-Shamir
Ami Paz
Paolo Penna
Matthieu Perrin

Dimitrios Prountzos
Tsvetomira Radeva
Sergio Rajsbaum
Peter Robinson
Liam Roditty
Alexander Spiegelman
Srikanth Sastry
Thomas Sauerwald
Stefan Schmid
Johannes Schneider
Ilya Sergey
Alexander Shraer
Manfred Schwarz
Mark Silberstein
Andreas Steininger
Hsin-Hao Su
Moshe Sulamy
He Sun
Yael Tauman Kalai
Jara Uitto
Viktor Vafeiadis
Marko Vukolic
Koichi Wada
Josef Widder
Kyrill Winkler

Organization IX

Sponsoring Organizations

European Association
for

Theoretical Computer Science

Osaka University

DISC 2015 acknowledges the use of the EasyChair system for handling submissions,
managing the review process, and compiling these proceedings.

X Organization

Awards and Keynote Lecture

The 2015 Edsger W. Dijkstra Prize
in Distributed Computing

The E.W. Dijkstra Prize Committee decided to grant the 2015 Edsger W. Dijkstra Prize
in Distributed Computing jointly to the following two papers:

• “Another Advantage of Free Choice: Completely Asynchronous Agreement Pro-
tocols,” by Michael Ben-Or, published in the Proceedings of the Second ACM
PODC conference, 1983.

• “Randomized Byzantine Generals,” by Michael O. Rabin, published in the Pro-
ceedings of the 24th IEEE FOCS conference, 1983.

The prize is awarded for outstanding papers on the principles of distributed computing,
whose significance and impact on the theory and/or practice of distributed computing
have been evident for at least a decade. In these seminal papers, published in close
succession in 1983, Michael Ben-Or and Michael O. Rabin started the field of
fault-tolerant randomized distributed algorithms. In 1983, randomized algorithms, still
in their infancy, were starting to make headway in sequential algorithms and complexity
theory. The role of randomization at that time was to improve the complexity of solving
certain problems. It was shown that problems, such as primality testing, that were
deterministically solvable with a given time or space complexity, could be solved in less
time or space by allowing the algorithm to make random choices. Ben-Or and Rabin
were the first to use randomness to solve to a problem, consensus in an asynchronous
distributed system subject to failures, which had provably no deterministic solution. In
other words, they were addressing a computability question and not a complexity one,
and the answer was far from obvious. Underlying both algorithms is the notion of a
shared coin, i.e., a mechanism that enables separate processes to make a common
random choice. Ben-Or’s solution is fully distributed and relies on no assumptions, but
requires a potentially exponential series of independent coin tosses to implement a
shared coin. Rabin’s solution uses cryptographic techniques to implement the shared
coin in constant time. Ben-Or and Rabin’s algorithms opened the way to a large body of
work on randomized distributed algorithms in asynchronous systems, not only on
consensus, but also on both theoretical problems, such as renaming, leader election, and
snapshots, as well as applied topics, such as dynamic load balancing, work distribution,
contention reduction, and coordination in concurrent data structures.

The E.W. Dijkstra Prize is sponsored jointly by the ACM Symposium on Principles
of Distributed Computing (PODC) and the EATCS Symposium on Distributed Com-
puting (DISC). The prize is presented annually, with the presentation taking place
alternately at PODC and DISC. This year the prize was presented at DISC, in Tokyo,
Japan, on October 8, 2015.

Dijkstra Prize Committee 2015:

James Aspnes Yale
Pierre Fraigniaud University of Paris Diderot
Rachid Guerraoui EPFL
Nancy Lynch MIT
Yoram Moses Technion
Paul Spirakis University of Liverpool and CTI, Chair

XIV The 2015 Edsger W. Dijkstra Prize in Distributed Computing

The 2015 Doctoral Dissertation Award
in Distributed Computing

The Doctoral Dissertation Award Committee awarded the Doctoral Dissertation Award
in Distributed Computing 2015 to Dr. Leonid Barenboim. Dr. Barenboim completed
his thesis on “Efficient Network Utilization in Locality-Sensitive Distributed Algo-
rithms,” in December 2013 under the supervision of Prof. Michael Elkin at Ben-Gurion
University. Leonid’s dissertation considers the LOCAL model, a distributed message
passing model in which in t time units, every node can learn the complete network
topology up to distance t from it. In this model, the challenge is to compute some
global property of the network graph in significantly less time than it takes to propagate
full information in the graph, that is, in time significantly less than the size or the
diameter of the graph. This classic model captures the essence of graph locality issues
in distributed network algorithms, and received much attention in the literature.

The dissertation studies several fundamental problems in this setting, including
vertex coloring, edge coloring, maximal independent set, and network decomposition.
For all of these problems, novel solutions are devised that significantly improve the
best previously known results. In particular, it provides a substantial improvement to
the problem of distributed coloring, one of the key problems to study symmetry
breaking in networks. The dissertation addresses a challenge that has been open over
two decades. In particular, it reduces the number of colors achieved in deterministic
logarithmic coloring time from quadratic to essentially linear. It also demonstrates the
first constant-time locality-sensitive solution for an NP-complete problem. These and
other results advance our knowledge in nontrivial ways. The results are deep, techni-
cally challenging, and innovative.

The award is sponsored jointly by the ACM Symposium on Principles of Dis-
tributed Computing (PODC) and the EATCS Symposium on Distributed Computing
(DISC). This award is presented annually, with the presentation taking place alternately
at PODC and DISC. In 2015 it was presented at PODC, in Donostia/San Sebastián,
Spain, July 21–23, 2015.

Distributed Computing Doctoral Dissertation Award Committee 2015:

Shlomi Dolev Ben-Gurion University
Fabian Kuhn University of Freiburg
Dahlia Malkhi (Chair) VMware Research
Philipp Woelfel University of Calgary

DISC 2015 Invited Lecture:
System Algorithms for the Cloud and Big Data

Thomas Moscibroda

Microsoft Research, Beijing, China

Cloud computing and big data are two industry-transforming paradigms that are
changing the field of computing. Algorithms play a crucial role in both of these areas.
Resource allocation, scheduling, and update algorithms are among the most important
ingredients that determine how cost-efficiently and reliably cloud offerings can be
operated; aggregation and query optimization algorithms largely determine how effi-
ciently big data can be processed; complex distributed and parallel algorithms are used
to achieve fault-tolerance and scalability. In all these (and many more) examples,
advances in computing are relying on highly sophisticated algorithms and optimiza-
tions. At the same time, these algorithms rarely operate in environments that are
“clean” and abstract, with easy-to-capture models and optimization functions. Instead,
these system algorithms are typically characterized by a highly complex interplay
between system design, underlying hardware features, and algorithms. In this talk, I
discuss two examples of our recent system algorithmic work and show how the
algorithms under discussion have impacted Microsoft’s production systems, and how
in turn the algorithm design has been impacted by the specific needs and constraints
of these systems.

Global public cloud providers such as Amazon, Microsoft, or Google invest bil-
lions of dollars every year into their cloud infrastructure. Given the scale of these
investments, it may be surprising that the actual utilization of many infrastructure
resources is often low. At any point in time, the cumulative amount of entire data
centers full of resources is wasted. I will discuss how different resource allocation
algorithms in Azure address some of these inefficiencies, resulting in major reductions
of operating costs.

Large-scale data-intensive computation has become an indispensable part of
industrial cloud computing, and building appropriate system support and algorithms for
efficiently analyzing massive amounts of data has become a key focus, both in industry
and in the research community. For example, data volume within Microsoft nearly
doubles every year and there are thousands of business-critical data analytics jobs
running on hundreds of thousands of machines every day. Yet, while the amount of
data and the number of production pipeline jobs grow exponentially, the number of
machines cannot grow equally fast, resulting in new fundamental bottlenecks.
IO-efficiency for data processing is one such bottleneck because data IO typically
constitutes a significant fraction of the total query latency. In the second part of the talk,
I discuss some of our algorithmic efforts to improve IO-efficiency of big data
processing.

Contents

On the Computational Complexity of MapReduce. 1
Benjamin Fish, Jeremy Kun, Ádám D. Lelkes, Lev Reyzin,
and György Turán

Efficient Counting with Optimal Resilience . 16
Christoph Lenzen and Joel Rybicki

The Computational Power of Beeps. 31
Seth Gilbert and Calvin Newport

Byzantine Fireflies . 47
Rachid Guerraoui and Alexandre Maurer

Wait-Freedom is Harder Than Lock-Freedom Under Strong Linearizability. . . . 60
Oksana Denysyuk and Philipp Woelfel

Simulating a Shared Register in an Asynchronous System that Never Stops
Changing (Extended Abstract) . 75

Hagit Attiya, Hyun Chul Chung, Faith Ellen, Saptaparni Kumar,
and Jennifer L. Welch

Plane Formation by Synchronous Mobile Robots in the Three Dimensional
Euclidean Space . 92

Yukiko Yamauchi, Taichi Uehara, Shuji Kijima,
and Masafumi Yamashita

Anonymous Graph Exploration with Binoculars . 107
Jérémie Chalopin, Emmanuel Godard, and Antoine Naudin

Limit Behavior of the Multi-agent Rotor-Router System. 123
Jérémie Chalopin, Shantanu Das, Paweł Gawrychowski,
Adrian Kosowski, Arnaud Labourel, and Przemysław Uznański

Elastic Configuration Maintenance via a Parsimonious Speculating
Snapshot Solution . 140

Eli Gafni and Dahlia Malkhi

SmartMerge: A New Approach to Reconfiguration for Atomic Storage 154
Leander Jehl, Roman Vitenberg, and Hein Meling

Towards Automatic Lock Removal for Scalable Synchronization 170
Maya Arbel, Guy Golan-Gueta, Eshcar Hillel, and Idit Keidar

http://dx.doi.org/10.1007/978-3-662-48653-5_1
http://dx.doi.org/10.1007/978-3-662-48653-5_2
http://dx.doi.org/10.1007/978-3-662-48653-5_3
http://dx.doi.org/10.1007/978-3-662-48653-5_4
http://dx.doi.org/10.1007/978-3-662-48653-5_5
http://dx.doi.org/10.1007/978-3-662-48653-5_6
http://dx.doi.org/10.1007/978-3-662-48653-5_6
http://dx.doi.org/10.1007/978-3-662-48653-5_7
http://dx.doi.org/10.1007/978-3-662-48653-5_7
http://dx.doi.org/10.1007/978-3-662-48653-5_8
http://dx.doi.org/10.1007/978-3-662-48653-5_9
http://dx.doi.org/10.1007/978-3-662-48653-5_10
http://dx.doi.org/10.1007/978-3-662-48653-5_10
http://dx.doi.org/10.1007/978-3-662-48653-5_11
http://dx.doi.org/10.1007/978-3-662-48653-5_12

Inherent Limitations of Hybrid Transactional Memory 185
Dan Alistarh, Justin Kopinsky, Petr Kuznetsov, Srivatsan Ravi,
and Nir Shavit

Why Non-blocking Operations Should Be Selfish . 200
Joel Gibson and Vincent Gramoli

Hybrid Transactional Memory Revisited . 215
Wenjia Ruan and Michael Spear

Grasping the Gap Between Blocking and Non-Blocking Transactional
Memories. 232

Petr Kuznetsov and Srivatsan Ravi

Fast Consensus for Voting on General Expander Graphs 248
Colin Cooper, Robert Elsässer, Tomasz Radzik, Nicolás Rivera,
and Takeharu Shiraga

Randomness vs. Time in Anonymous Networks . 263
Jochen Seidel, Jara Uitto, and Roger Wattenhofer

Fast Byzantine Leader Election in Dynamic Networks 276
John Augustine, Gopal Pandurangan, and Peter Robinson

Local Information in Influence Networks . 292
Yuezhou Lv and Thomas Moscibroda

Amalgamated Lock-Elision. 309
Yehuda Afek, Alexander Matveev, Oscar R. Moll, and Nir Shavit

Transactional Interference-Less Balanced Tree . 325
Ahmed Hassan, Roberto Palmieri, and Binoy Ravindran

Analyzing the Performance of Lock-Free Data Structures: A Conflict-Based
Model . 341

Aras Atalar, Paul Renaud-Goud, and Philippas Tsigas

A Constructive Approach for Proving Data Structures’ Linearizability 356
Kfir Lev-Ari, Gregory Chockler, and Idit Keidar

Modular Verification of Concurrency-Aware Linearizability 371
Nir Hemed, Noam Rinetzky, and Viktor Vafeiadis

Transaction Chopping for Parallel Snapshot Isolation. 388
Andrea Cerone, Alexey Gotsman, and Hongseok Yang

Computing in Additive Networks with Bounded-Information Codes 405
Keren Censor-Hillel, Erez Kantor, Nancy Lynch, and Merav Parter

XVIII Contents

http://dx.doi.org/10.1007/978-3-662-48653-5_13
http://dx.doi.org/10.1007/978-3-662-48653-5_14
http://dx.doi.org/10.1007/978-3-662-48653-5_15
http://dx.doi.org/10.1007/978-3-662-48653-5_16
http://dx.doi.org/10.1007/978-3-662-48653-5_16
http://dx.doi.org/10.1007/978-3-662-48653-5_17
http://dx.doi.org/10.1007/978-3-662-48653-5_18
http://dx.doi.org/10.1007/978-3-662-48653-5_19
http://dx.doi.org/10.1007/978-3-662-48653-5_20
http://dx.doi.org/10.1007/978-3-662-48653-5_21
http://dx.doi.org/10.1007/978-3-662-48653-5_22
http://dx.doi.org/10.1007/978-3-662-48653-5_23
http://dx.doi.org/10.1007/978-3-662-48653-5_23
http://dx.doi.org/10.1007/978-3-662-48653-5_24
http://dx.doi.org/10.1007/978-3-662-48653-5_25
http://dx.doi.org/10.1007/978-3-662-48653-5_26
http://dx.doi.org/10.1007/978-3-662-48653-5_27

Specifying Concurrent Problems: Beyond Linearizability and up to Tasks
(Extended Abstract) . 420

Armando Castañeda, Sergio Rajsbaum, and Michel Raynal

From Geometric Semantics to Asynchronous Computability 436
Éric Goubault, Samuel Mimram, and Christine Tasson

On the Optimal Space Complexity of Consensus for Anonymous Processes . . . 452
Rati Gelashvili

Compressing Communication in Distributed Protocols 467
Yael Tauman Kalai and Ilan Komargodski

Privacy-Conscious Information Diffusion in Social Networks 480
George Giakkoupis, Rachid Guerraoui, Arnaud Jégou,
Anne-Marie Kermarrec, and Nupur Mittal

Fair Distributed Computation of Reactive Functions 497
Juan Garay, Björn Tackmann, and Vassilis Zikas

Smoothed Analysis of Dynamic Networks . 513
Michael Dinitz, Jeremy Fineman, Seth Gilbert, and Calvin Newport

Fault Tolerant Reachability for Directed Graphs . 528
Surender Baswana, Keerti Choudhary, and Liam Roditty

Locally Optimal Load Balancing. 544
Laurent Feuilloley, Juho Hirvonen, and Jukka Suomela

Distributed Large Independent Sets in One Round
on Bounded-Independence Graphs. 559

Magnús M. Halldórsson and Christian Konrad

Tight Bounds for MIS in Multichannel Radio Networks. 573
Sebastian Daum and Fabian Kuhn

Nonuniform SINR+Voroni Diagrams Are Effectively Uniform 588
Erez Kantor, Zvi Lotker, Merav Parter, and David Peleg

Stable Leader Election in Population Protocols Requires Linear Time 602
David Doty and David Soloveichik

Hardware Transactions in Nonvolatile Memory. 617
Hillel Avni, Eliezer Levy, and Avi Mendelson

Space-Optimal Counting in Population Protocols. 631
Joffroy Beauquier, Janna Burman, Simon Clavière, and Devan Sohier

Contents XIX

http://dx.doi.org/10.1007/978-3-662-48653-5_28
http://dx.doi.org/10.1007/978-3-662-48653-5_28
http://dx.doi.org/10.1007/978-3-662-48653-5_29
http://dx.doi.org/10.1007/978-3-662-48653-5_30
http://dx.doi.org/10.1007/978-3-662-48653-5_31
http://dx.doi.org/10.1007/978-3-662-48653-5_32
http://dx.doi.org/10.1007/978-3-662-48653-5_33
http://dx.doi.org/10.1007/978-3-662-48653-5_34
http://dx.doi.org/10.1007/978-3-662-48653-5_35
http://dx.doi.org/10.1007/978-3-662-48653-5_36
http://dx.doi.org/10.1007/978-3-662-48653-5_37
http://dx.doi.org/10.1007/978-3-662-48653-5_37
http://dx.doi.org/10.1007/978-3-662-48653-5_38
http://dx.doi.org/10.1007/978-3-662-48653-5_39
http://dx.doi.org/10.1007/978-3-662-48653-5_40
http://dx.doi.org/10.1007/978-3-662-48653-5_41
http://dx.doi.org/10.1007/978-3-662-48653-5_42

Brief Announcement: On the Voting Time of the Deterministic Majority
Process . 647

Dominik Kaaser, Frederik Mallmann-Trenn, and Emanuele Natale

Brief Announcement: Rumor Spreading with Bounded In-Degree 649
Sebastian Daum, Fabian Kuhn, and Yannic Maus

Brief Announcement: On the Power of One Bit in Graph Exploration
Without Backtracking . 651

Artur Menc, Dominik Pająk, and Przemysław Uznański

Brief Announcement: Uniform Information Exchange in Multi-channel
Wireless Ad Hoc Networks . 653

Li Ning, Dongxiao Yu, Yong Zhang, Yuexuan Wang, Francis C.M. Lau,
and Shengzhong Feng

Brief Announcement: Self-stabilizing Virtual Synchrony 655
Shlomi Dolev, Chryssis Georgiou, Ioannis Marcoullis,
and Elad M. Schiller

Brief Announcement: Distributed Task Allocation in Ant Colonies 657
Anna Dornhaus, Nancy Lynch, Tsvetomira Radeva, and Hsin-Hao Su

Brief Announcement: A Concurrency-Optimal List-Based Set. 659
Vincent Gramoli, Petr Kuznetsov, Srivatsan Ravi, and Di Shang

Brief Announcement: HTM-Assisted Combining. 661
Alex Kogan and Yossi Lev

Brief Announcement: Left-Right - A Concurrency Control Technique
with Wait-Free Population Oblivious Reads . 663

Pedro Ramalhete and Andreia Correia

Brief Announcement: Tight Space Bounds for Memoryless Anonymous
Consensus . 665

Leqi Zhu

Brief Announcement: On the Uncontended Complexity of Anonymous
Consensus . 667

Claire Capdevielle, Colette Johnen, Petr Kuznetsov, and Alessia Milani

Brief Announcement: Anonymous Obstruction-free ðn; kÞ - Set Agreement
with n� kþ 1 Atomic Read/Write Registers . 669

Zohir Bouzid, Michel Raynal, and Pierre Sutra

Brief Announcement: Faster Data Structures in Transactional Memory
Using Three Paths. 671

Trevor Brown

XX Contents

http://dx.doi.org/10.1007/978-3-662-48653-5
http://dx.doi.org/10.1007/978-3-662-48653-5
http://dx.doi.org/10.1007/978-3-662-48653-5
http://dx.doi.org/10.1007/978-3-662-48653-5
http://dx.doi.org/10.1007/978-3-662-48653-5
http://dx.doi.org/10.1007/978-3-662-48653-5
http://dx.doi.org/10.1007/978-3-662-48653-5
http://dx.doi.org/10.1007/978-3-662-48653-5
http://dx.doi.org/10.1007/978-3-662-48653-5
http://dx.doi.org/10.1007/978-3-662-48653-5
http://dx.doi.org/10.1007/978-3-662-48653-5
http://dx.doi.org/10.1007/978-3-662-48653-5
http://dx.doi.org/10.1007/978-3-662-48653-5
http://dx.doi.org/10.1007/978-3-662-48653-5
http://dx.doi.org/10.1007/978-3-662-48653-5
http://dx.doi.org/10.1007/978-3-662-48653-5
http://dx.doi.org/10.1007/978-3-662-48653-5
http://dx.doi.org/10.1007/978-3-662-48653-5
http://dx.doi.org/10.1007/978-3-662-48653-5
http://dx.doi.org/10.1007/978-3-662-48653-5
http://dx.doi.org/10.1007/978-3-662-48653-5
http://dx.doi.org/10.1007/978-3-662-48653-5
http://dx.doi.org/10.1007/978-3-662-48653-5

Brief Announcement: Space Bounds for Reliable Multi-Writer Data Store:
Inherent Cost of Read/Write Primitives . 673

Gregory Chockler, Dan Dobre, Alexander Shraer,
and Alexander Spiegelman

DISC 2015 Special Poster Session List . 675

Author Index . 677

Contents XXI

http://dx.doi.org/10.1007/978-3-662-48653-5
http://dx.doi.org/10.1007/978-3-662-48653-5
http://dx.doi.org/10.1007/978-3-662-48653-5

On the Computational Complexity of
MapReduce

Benjamin Fish1, Jeremy Kun1(B), Ádám D. Lelkes1, Lev Reyzin1,
and György Turán1,2

1 Department of Mathematics, Statistics, and Computer Science,
University of Illinois at Chicago, Chicago, IL 60607, USA

{bfish3,jkun2,alelke2,lreyzin,gyt}@uic.edu
2 MTA-SZTE Research Group on Artificial Intelligence, Szeged, Hungary

Abstract. In this paper we study the MapReduce Class (MRC) defined
by Karloff et al., which is a formal complexity-theoretic model of MapRe-
duce. We show that constant-round MRC computations can decide
regular languages and simulate sublogarithmic space-bounded Turing
machines. In addition, we prove hierarchy theorems for MRC under cer-
tain complexity-theoretic assumptions. These theorems show that suf-
ficiently increasing the number of rounds or the amount of time per
processor strictly increases the computational power of MRC. Our work
lays the foundation for further analysis relating MapReduce to estab-
lished complexity classes. Our results also hold for Valiant’s BSP model
of parallel computation and the MPC model of Beame et al.

1 Introduction

MapReduce is a programming model originally developed to separate algorithm
design from the engineering challenges of massively distributed computing. A
programmer can separately implement a “map” function and a “reduce” func-
tion that satisfy certain constraints, and the underlying MapReduce technol-
ogy handles all the communication, load balancing, fault tolerance, and scaling.
MapReduce frameworks and their variants have been successfully deployed in
industry by Google [4], Yahoo! [18], and many others.

MapReduce offers a unique and novel model of parallel computation because
it alternates parallel and sequential steps, and imposes sharp constraints on
communication and random access to the data. This distinguishes MapReduce
from classical theoretical models of parallel computation and this, along with its
popoularity in industry, is a strong motivation to study the theoretical power
of MapReduce. From a theoretical standpoint we ask how MapReduce relates
to established complexity classes. From a practical standpoint we ask which
problems can be efficiently modeled using MapReduce and which cannot.

In 2010 Karloff et al. [12] initiated a principled theoretical study of MapRe-
duce, providing the definition of the complexity class MRC and comparing it
with the classical PRAM models of parallel computing. But to our knowledge,
c© Springer-Verlag Berlin Heidelberg 2015
Y. Moses (Ed.): DISC 2015, LNCS 9363, pp. 1–15, 2015.
DOI: 10.1007/978-3-662-48653-5 1

2 B. Fish et al.

since this initial paper, almost all of the work on MapReduce has focused on
algorithmic issues.

Complexity theory studies the classes of problems defined by resource bounds
on different models of computation in which they are solved. A central goal of
complexity theory is to understand the relationships between different models,
i.e. to see if the problems solvable with bounded resources on one computational
model can be solved with a related resource bound on a different model. In this
paper we prove a result that establishes a connection between MapReduce and
space-bounded computation on classical Turing machines. Another traditional
question asked by complexity theory is whether increasing the resource bound on
a certain computational resource strictly increases the set of solvable problems.
Such so-called hierarchy theorems exist for time and space on deterministic and
non-deterministic Turing machines, among other settings. In this paper we prove
conditional hierarchy theorems for MapReduce rounds and time.

First we lay a more precise theoretical foundation for studying MapReduce
computations (Section 3). In particular, we observe that Karloff et al.’s defi-
nitions are non-uniform, allowing the complexity class to contain undecidable
languages. We reformulate the definition of [12] to make a uniform model and
to more finely track the parameters involved (Section 3.2). In addition, we point
out that our results hold for other important models of parallel computations,
including Valiant’s Bulk-Synchronous Processing (BSP) model [20] and the Mas-
sively Parallel Communication (MPC) model of Beame et al [2]. (Section 3.3). We
then prove two main theorems: SPACE(o(log n)) has constant-round MapReduce
computations (Section 4) and, conditioned on a version of the Exponential Time
Hypothesis, there are strict hierarchies within MRC. In particular, sufficiently
increasing time or number of rounds increases the power of MRC (Section 5).

Our sub-logarithmic space result is achieved by a direct simulation, using a
two-round protocol that localizes state-to-state transitions to the section of the
input being simulated, combining the sections in the second round. It is a major
open problem whether undirected graph connectivity (a canonical logarithmic-
space problem) has a constant-round MapReduce algorithm, and our result is the
most general that can be proven without a breakthrough on graph connectivity.
Our hierarchy theorem involves proving a conditional time hierarchy within lin-
ear space achieved by a padding argument, along with proving a time-and-space
upper and lower bounds on simulating MRC machines within P. To the best of
our knowledge our hierarchy theorem is the first of its kind. We conclude with
a discussion and open questions raised by our work (Section 6).

2 Background and Previous Work

2.1 MapReduce

The MapReduce protocol can be roughly described as follows. The input data is
given as a list of key-value pairs, and over a series of rounds two things happen per
round: a “mapper” is applied to each key-value pair independently (in parallel),
and then for each distinct key a “reducer” is applied to all corresponding values

On the Computational Complexity of MapReduce 3

for a group of keys. The canonical example is counting word frequencies with
a two-round MapReduce protocol. The inputs are (index, word) pairs, the first
mapper maps (k, v) �→ (v, k), and the first reducer computes the sum of the word
frequencies for the given key. In the second round the mapper sends all data to
a single processor via (k, nk) �→ (1, (k, nk)), and the second processor formats
the output appropriately.

One of the primary challenges in MapReduce is data locality. MapReduce was
designed for processing massive data sets, so MapReduce programs require that
every reducer only has access to a substantially sublinear portion of the input,
and the strict modularization prohibits reducers from communicating within
a round. All communication happens indirectly through mappers, which are
limited in power by the independence requirement. Finally, it’s understood in
practice that a critical quantity to optimize for is the number of rounds [12], so
algorithms which cannot avoid a large number of rounds are considered inefficient
and unsuitable for MapReduce.

There are a number of MapReduce-like models in the literature, including
the MRC model of Karloff et al. [12], the “mud” algorithms of Feldman et al. [6],
Valiant’s BSP model [20], the MPC model of Beame et al. [2], and extensions or
generalizations of these, e.g. [8]. The MRC class of Karloff et al. is the closest
to existing MapReduce computations, and is also among the most restrictive in
terms of how it handles communication and tracks the computational power of
individual processors. In their influential paper [12], Karloff et al. display the
algorithmic power of MRC, and prove that MapReduce algorithms can simulate
CREW PRAMs which use subquadratic total memory and processors. It is worth
noting that the work of Karloff et al. did not include comparisons to the standard
(non-parallel) complexity classes, which is the aim of the present work.

Since [12], there has been extensive work in developing efficient algorithms in
MapReduce-like frameworks. For example, Kumar et al. [13] analyze a sampling
technique allowing them to translate sequential greedy algorithms into log-round
MapReduce algorithms with a small loss of quality. Farahat et al. [5] investigate
the potential for sparsifying distributed data using random projections. Kamara
and Raykova [11] develop a homomorphic encryption scheme for MapReduce.
And much work has been done on graph problems such as connectivity, match-
ings, sorting, and searching [8]. Chu et al. [3] demonstrate the potential to express
any statistical-query learning algorithm in MapReduce. Finally, Sarma et al. [16]
explore the relationship between communication costs and the degree to which
a computation is parallel in one-round MapReduce problems. Many of these
papers pose general upper and lower bounds on MapReduce computations as an
open problem, and to the best of our knowledge our results are the first to do
so with classical complexity classes.

The study of MapReduce has resulted in a wealth of new and novel algorithms,
many of which run faster than their counterparts in classical PRAM models. As
such, a more detailed study of the theoretical power of MapReduce is warranted.
Our paper contributes to this by establishing a more precise definition of the

4 B. Fish et al.

MapReduce complexity class, proving that it contains sublogarithmic determinis-
tic space, and showing the existence of certain kinds of hierarchies.

2.2 Complexity

From a complexity-theory viewpoint, MapReduce is unique in that it combines
bounds on time, space and communication. Each of these bounds would be very
weak on its own: the total time available to processors is polynomial; the total
space and communication are slightly less than quadratic. In particular, even
though arranging the communication between processors is one of the most dif-
ficult parts of designing MapReduce algorithms, classical results from communi-
cation complexity do not apply since the total communication available is more
than linear. These innocent-looking bounds lead to serious restrictions when
combined, as demonstrated by the fact that it is unknown whether constant-
round MRC machines can decide graph connectivity (the best known result
achieves a logarithmic number of rounds with high probability [12]), although it
is solvable using only logarithmic space on a deterministic Turing machine.

We relate the MRC model to more classical complexity classes by studying
simultaneous time-space bounds. TISP(T (n), S(n)) are the problems that can
be decided by a Turing machine which on inputs of length n takes at most
O(T (n)) time and uses at most O(S(n)) space. Note that in general it is believed
that TISP(T (n), S(n)) �= TIME(T (n)) ∩ SPACE(S(n)). The complexity class
TISP is studied in the context of time-space tradeoffs (see, for example, [7,22]).
Unfortunately much less is known about TISP than about TIME or SPACE; for
example there is no known time hierarchy theorem for fixed space. The existence
of such a hierarchy is mentioned as an open problem in the monograph of Wagner
and Wechsung [21].

To prove the results about TISP that imply the existence of a hierarchy in
MRC, we use the Exponential Time Hypothesis (ETH) introduced by Impagli-
azzo, Paturi, and Zane [9,10], which conjectures that 3-SAT is not in TIME(2cn)
for some c > 0. This hypothesis and its strong version have been used to prove
conditional lower bounds for specific hard problems like vertex cover, and for
algorithms in the context of fixed parameter tractability (see, e.g., the survey of
Lokshtanov, Marx and Saurabh [14]). The first open problem mentioned in [14]
is to relate ETH to some other known complexity theoretic hypotheses.

We show in Lemma 1 that ETH implies directly a time-space trade-off state-
ment involving time-space complexity classes. This statement is not a well-known
complexity theoretic hypothesis, although it is related to the existence of a time
hierarchy with a fixed space bound. In fact, as detailed in Section 5, a hypothesis
weaker than ETH is sufficient for the lemma. The relative strengths of ETH, the
weaker hypothesis, and the statement of the lemma seem to be unknown.

3 Models

In this section we introduce the model we will use in this paper, a uniform version
of Karloff’s MapReduce Class (MRC), and contrast MRC to other models of

On the Computational Complexity of MapReduce 5

parallel computation, such as Valiant’s Bulk-Synchronous Parallel (BSP) model,
for which our results also hold.

3.1 MapReduce and MRC

The central piece of data in MRC is the key-value pair, which we denote by
a pair of strings 〈k, v〉, where k is the key and v is the value. An input to an
MRC machine is a list of key-value pairs 〈ki, vi〉N

i=1 with a total size of n =
∑N

i=1 |ki| + |vi|. The definitions in this subsection are adapted from [12].

Definition 1. A mapper μ is a Turing machine1 which accepts as input a single
key-value pair 〈k, v〉 and produces a list of key-value pairs 〈k′

1, v
′
1〉, . . . , 〈k′

s, v
′
s〉.

Definition 2. A reducer ρ is a Turing machine which accepts as input a key k
and a list of values 〈v1, . . . , vm〉, and produces as output the same key and a new
list of values 〈v′

1, . . . , v
′
M 〉.

Definition 3. For a decision problem, an input string x ∈ {0, 1}∗ to an MRC
machine is the list of pairs 〈i, xi〉n

i=1 describing the index and value of each bit.
We will denote by 〈x〉 the list 〈i, xi〉.

An MRC machine operates in rounds. In each round, a set of mappers running
in parallel first process all the key-value pairs. Then the pairs are partitioned (by
a mechanism called “shuffle and sort” that is not considered part of the runtime
of an MRC machine) so that each reducer only receives key-value pairs for a
single key. Then the reducers process their data in parallel, and the results are
merged to form the list of key-value pairs for the next round. More formally:

Definition 4. An R-round MRC machine is an alternating list of mappers and
reducers M = (μ1, ρ1, . . . , μR, ρR). The execution of the machine is as follows.
For each r = 1, . . . , R:

1. Let Ur−1 be the list of key-value pairs generated by round r − 1 (or the input
pairs when r = 1). Apply μr to each key-value pair of Ur−1 to get the multiset
Vr =

⋃
〈k,v〉∈Ur−1

μr(k, v).
2. Shuffle-and-sort groups the values by key. Call each of the pieces Vk,r =

{k, (vk,1, . . . , vk,sk
)}.

3. Assign a different copy of reducer ρr to each Vk,r (run in parallel) and set
Ur =

⋃
k ρr(Vk,r).

The output is the final set of key-value pairs. For decision problems, we define
M to accept 〈x〉 if in the final round UR = ∅. Equivalently we may give each
reducer a special accept state and say the machine accepts if at any time any
reducer enters the accept state. We say M decides a language L if it accepts 〈x〉
if and only if x ∈ L.
1 The definitions of [12] were for RAMs. However, because we wish to relate MapRe-

duce to classical complexity classes, we reformulate the definitions here in terms of
Turing machines.

6 B. Fish et al.

The central caveat that makes MRC an interesting class is that the reducers
have space constraints that are sublinear in the size of the input string. In
other words, no sequential computation may happen that has random access
to the entire input. Thinking of the reducers as processors, cooperation between
reducers is obtained not by message passing or shared memory, but rather across
rounds in which there is a global communication step.

In the MRC model we use in this paper, we require that every mapper
and reducer arise as separate runs of the same Turing machine M . Our Tur-
ing machine M(m, r, n, y) will accept as input the current round number r, a bit
m denoting whether to run the r-th map or reduce function, the total input size
n, and the corresponding input y. Equivalently, we can imagine a list of mappers
and reducers in each round μ1, ρ1, μ2, ρ2, . . . , where the descriptions of the μi, ρi

are computable in polynomial time in |i|.
Definition 5 (Uniform Deterministic MRC). A language L is said to be in
MRC[f(n), g(n)] if there is a constant 0 < c < 1, an O(nc)-space and O(g(n))-
time Turing machine M(m, r, n, y), and an R = O(f(n)), such that for all x ∈
{0, 1}n, the following holds.

1. Letting μr = M(1, r, n,−), ρr = M(0, r, n,−), the MRC machine MR =
(μ1, ρ1, . . . , μR, ρR) accepts x if and only if x ∈ L.

2. Each μr outputs O(nc) distinct keys.

This definition closely hews to practical MapReduce computations: f(n) rep-
resents the number of times global communication has to be performed, g(n)
represents the time each processor gets, and sublinear space bounds in terms of
n = |x| ensure that the size of the data on each processor is smaller than the
full input.

Remark 1. By M(1, r, n,−), we mean that the tape of M is initialized by the
string 〈1, r, n〉. In particular, this prohibits an MRC algorithm from having 2Ω(n)

rounds; the space constraints would prohibit it from storing the round number.

Remark 2. Note that a polynomial time Turing machine with sufficient time
can trivially simulate a uniform MRC machine. All that is required is for the
machine to perform the key grouping manually, and run the MRC machine as
a subroutine. As such, MRC[poly(n),poly(n)] ⊆ P . We give a more precise
computation of the amount of overhead required in the proof of Lemma 2.

Definition 6. Define by MRCi the union of uniform MRC classes

MRCi =
⋃

k∈N

MRC[logi(n), nk].

So in particular MRC0 =
⋃

k∈N
MRC[1, nk].

On the Computational Complexity of MapReduce 7

3.2 Nonuniformity

A complexity class is generally called uniform if the descriptions of the machines
solving problems in it do not depend on the input length. Classical complex-
ity classes defined by Turing machines with resource bounds, such as P, NP,
and SPACE(log(n)), are uniform. On the other hand, circuit complexity classes
are naturally nonuniform since a fixed Boolean circuit can only accept inputs
of a single length. There is ambiguity about the uniformity of MRC as defined
in [12]. Since we wish to relate the MRC model to classical complexity classes
such as P and SPACE(log(n)), making sure that the model is uniform is crucial.
Indeed, innocuous-seeming changes to the definitions above introduce nonuni-
formity (and in particular this is true of the original MRC definition in [12]). In
the appendix we show that the nonuniform MRC model defined in [12] allows
MRC machines to solve undecidable problems in a logarithmic number of rounds,
including the halting problem. We introduced our uniform version of MRC above
to rule out such pathological behavior.

3.3 Other Models of Parallel Computation

Several other models of parallel computation have been introduced, including
the BSP model of Valiant [20] and the MPC model of Beame et. al. [2]. The
main difference between BSP and MapReduce is that in the BSP models the
key-value pairs and the shuffling steps needed to redistribute them are replaced
with point-to-point messages. Similarly to [12], in Valiant’s paper [20] there is
also ambiguity about the uniformity of the model. In this paper, when we refer
to BSP we mean a uniform deterministic version of the model. We give the exact
definition in the appendix.

Goodrich et al. [8] and Pace [15] showed that MapReduce computations can
be simulated in the BSP model and vice versa, with only a constant blow-up
in the computational resources needed. This implies that our theorems about
MapReduce automatically apply to BSP.

Similarly, the MPC model uses point-to-point messages and Beame et. al.’s
paper [2] does not discuss the uniformity of the model. The main distinguishing
charateristic of the MPC model is that it introduces the number of processors
p as an explicit paramter. Setting p = O(nc), our results will also hold in this
model.

There are other variants of these models, including the model that
Andoni et. al. [1] uses, which follows the MPC model but also introduces the
additional constraint that total space used across each round must be no more
than O(n). It is straightforward to check that the proofs of our results never
use more than O(n) space, implying that our results hold even under this more
restrictive model.

4 Space Complexity Classes in MRC0

In this section we prove that small space classes are contained in constant-round
MRC. Again, the results in this section also hold for other similar models of

8 B. Fish et al.

parallel computation, including the BSP model and the MPC model. First, we
prove that the class REGULAR of regular languages is in MRC0. It is well
known that SPACE(O(1)) = REGULAR [17], and so this result can be viewed
as a warm-up to the theorem that SPACE(o(log n)) ⊆ MRC0. Indeed, both
proofs share the same flavor, which we sketch before proceeding to the details.

We wish to show that any given DFA can be simulated by an MRC0 machine.
The simulation works as follows: in the first round each parallel processor receives
a contiguous portion of the input string and constructs a state transition function
using the data of the globally known DFA. Though only the processor with the
beginning of the string knows the true state of the machine during its portion
of the input, all processors can still compute the entire table of state-to-state
transitions for the given portion of input. In the second round, one processor
collects the transition tables and chains together the computations, and this
step requires only the first bit of input and the list of tables.

We can count up the space and time requirements to prove the following
theorem.

Theorem 1. REGULAR � MRC0

Proof. Let L be a regular language and D a deterministic finite automaton
recognizing L. Define the first mapper so that the jth processor has the bits
from j

√
n to (j + 1)

√
n. This means we have K = O(

√
n) processors in the

first round. Because the description of D is independent of the size of the input
string, we also assume each processor has access to the relevant set of states S
and the transition function t : S × {0, 1} → S.

We now define ρ1. Fix a processor j and call its portion of the input y. The
processor constructs a table Tj of size at most |S|2 = O(1) by simulating D
on y starting from all possible states and recording the state at the end of the
simulation. It then passes Tj and the first bit of y to the single processor in the
second round.

In the second round the sole processor has K tables Tj and the first bit
x1 of the input string x (among others but these are ignored). Treating Tj as
a function, this processor computes q = TK(. . . T2(T1(x1))) and accepts if and
only if q is an accepting state. This requires O(

√
n) space and time and proves

containment. To show this is strict, inspect the prototypical problem of deciding
whether the majority of bits in the input are 1’s.

Remark 3. While the definition of MRC0 inclues languages with time complexity
O(nk) for all k ≥ 0, our Theorem 1 is more efficient than the definition implies:
we show that regular languages can be computed in MRC0 in time and space
O(

√
n), with the option of a tradeoff between time nε and space n1−ε.

One specific application of this result is that for any given regular expression,
a two-round MapReduce computation can decide if a string matches that regular
expression, even if the string is so long that any one machine can only store nε

bits of it.

On the Computational Complexity of MapReduce 9

We now move on to prove SPACE(o(log n)) ⊆ MRC0. It is worth noting that
this is a strictly stronger statement than Theorem 1. That is, REGULAR =
SPACE(O(1)) � SPACE(o(log n)). Several non-trivial examples of languages
that witness the strictness of this containment are given in [19].

The proof is very similar to the proof of Theorem 1: Instead of the processors
computing the entire table of state-to-state transitions of a DFA, the processors
now compute the entire table of all transitions possible among the configurations
of the work tape of a Turing machine that uses o(log n) space.

Theorem 2. SPACE(o(log n)) ⊆ MRC0.

Proof. Let L be a language in SPACE(o(log n)) and T a Turing machine recog-
nizing L in polynomial time and o(log(n)) space, with a read/write work tape
W . Define the first mapper so that the jth processor has the bits from j

√
n to

(j + 1)
√

n. Let C be the set of all possible configurations of W and let S be the
states of T . Since the size of S is independent of the input, we can assume that
each processor has the transition function of T stored on it.

Now we define ρ1 as follows: Each processor j constructs the graph of a
function Tj : C × {L,R} × S → C × {L,R} × S, which simulates T when the
read head starts on either the left or right side of the jth

√
n bits of the input

and W is in some configuration from C. It outputs whether the read head leaves
the y portion of the read tape on the left side, the right side, or else accepts or
rejects. To compute the graph of Tj , processor j simulates T using its transition
function, which takes polynomial time.

Next we show that the graph of Tj can be stored on processor j by showing it
can be stored in O(

√
n) space. Since W is by assumption size o(log n), each entry

of the table is o(log n), so there are 2o(log n) possible configurations for the tape
symbols. There are also o(log n) possible positions for the read/write head, and a
constant number of states T could be in. Hence |C| = 2o(log n)o(log n) = o(n1/3).
Then processor j can store the graph of Tj as a table of size O(n1/3).

The second map function μ2 sends each Tj (there are
√

n of them) to a
single processor. Each is size O(n1/3), and there are

√
n of them, so a single

processor can store all the tables. Using these tables, the final reduce function
can now simulate T from starting state to either the accept or reject state by
computing q = T ∗

k (. . . T ∗
2 (T ∗

1 (∅, L, initial))) for some k, where ∅ denotes the
initial configuration of T , initial is the initial state of T , and q is either in the
accept or reject state. Note T ∗

j is the modification of Tj such that if Tj(x) outputs
L, then T ∗

j (x) outputs R and vice versa. This is necessary because if the read
head leaves the jth

√
n bits to the right, it enters the j + 1th

√
n bits from the

left, and vice versa. Finally, the reducer accepts if and only if q is in an accept
state.

This algorithm successfully simulates T , which decides L, and only takes a
constant number of rounds, proving containment.

10 B. Fish et al.

5 Hierarchy Theorems

In this section we prove two main results (Theorems 3 and 4) about hierarchies
within MRC relating to increases in time and rounds. They imply that allowing
MRC machines sufficiently more time or rounds strictly increases the computing
power of the machines. The first theorem states that for all α, β there are prob-
lems L �∈ MRC[nα, nβ] which can be decided by constant time MRC machines
when given enough extra rounds.

Theorem 3. Suppose the ETH holds with constant c. Then for every α, β ∈ N

there exists a γ = O(α + β) such that

MRC[nγ , 1] �⊆ MRC[nα, nβ].

The second theorem is analogous for time, and says that there are problems
L �∈ MRC[nα, nβ] that can be decided by a one round MRC machine given
enough extra time.

Theorem 4. Suppose the ETH holds with constant c. Then for every α, β ∈ N

there exists a γ = O(α + β) such that

MRC[1, nγ] �⊆ MRC[nα, nβ].

As both of these theorems depend on the ETH, we first prove a complexity-
theoretic lemma that uses the ETH to give a time-hierarchy within linear space
TISP. Recall that TISP is the complexity class defined by simultaneous time
and space bounds. The lemma can also be described as a time-space tradeoff.
For some b > a we prove the existence of a language that can be decided by
a Turing machine with simultaneous O(nb) time and linear space, but cannot
be decided by a Turing machine in time O(na) even without any space restric-
tions. It is widely believed such languages exist for exponential time classes (for
example, TQBF, the language of true quantified Boolean formulas, is a linear
space language which is PSPACE-complete). We ask whether such tradeoffs can
be extended to polynomial time classes, and this lemma shows that indeed this
is the case.

Lemma 1. Suppose that the ETH holds with constant c. Then for any positive
integer a there exists a positive integer b > a such that

TIME(na) � TISP(nb, n).

Proof. By the ETH, 3-SAT ∈ TISP(2n, n) \ TIME(2cn). Let b := a
c � + 2, δ :=

1
2 (1b + c

a). Pad 3-SAT with 2δn zeros and call this language L, i.e. let L :=
{x02

δ|x| | x ∈ 3-SAT}. Let N := n+2δn. Then L ∈ TISP(N b, N) since N b > 2n.
On the other hand, assume for contradiction that L ∈ TIME(Na). Then, since
Na < 2cn, it follows that 3-SAT ∈ TIME(2cn), contradicting the ETH.

On the Computational Complexity of MapReduce 11

There are a few interesting complexity-theoretic remarks about the above
proof. First, the starting language does not need to be 3-SAT, as the only
assumption we needed was its hypothesized time lower bound. We could relax
the assumption to the hypothesis that there exists a c > 0 such that TQBF, the
PSPACE-complete language of true quantified Boolean formulas, requires 2cn

time, or further still to the following complexity hypothesis.

Conjecture 1. There exist c′, c satisfying 0 < c′ < c < 1 such that
TISP(2n, 2c′n) \ TIME(2cn) �= ∅.

Second, since TISP(na, n) ⊆ TIME(na), this conditionally proves the exis-
tence of a hierarchy within TISP(poly(n), n). We note that finding time hierar-
chies in fixed-space complexity classes was posed as an open question by [21],
and so removing the hypothesis or replacing it with a weaker one is an interesting
open problem.

Using this lemma we can prove Theorems 3 and 4. The proof of Theorem 3
depends on the following lemma.

Lemma 2. For every α, β ∈ N the following holds:

TISP(nα, n) ⊆ MRC[nα, 1] ⊆ MRC[nα, nβ] ⊆ TISP(nα+β+2, n2).

Proof. The first inequality follows from a simulation argument similar to the
proof of Theorem 2. The MRC machine will simulate the TISP(nα, n) machine
by making one step per round, with the tape (including the possible extra space
needed on the work tape) distributed among the processors. The position of the
tape is passed between the processors from round to round. It takes constant
time to simulate one step of the TISP(nα, n) machine, thus in nα rounds we can
simulate all steps. Also, since the machine uses only linear space, the simula-
tion can be done with O(

√
n) processors using O(

√
n) space each. The second

inequality is trivial.
The third inequality is proven as follows. Let T (n) = nα+β+2. We first

show that any language in MRC[nα, nβ] can be simulated in time O(T (n)), i.e.
MRC[nα, nβ] ⊆ TIME(T (n)). The r-th round is simulated by applying μr to each
key-value pair in sequence, shuffle-and-sorting the new key-value pairs, and then
applying ρr to each appropriate group of key-value pairs sequentially. Indeed,
M(m, r, n,−) can be simulated naturally by keeping track of m and r, and adding
n to the tape at the beginning of the simulation. Each application of μr takes
O(nβ) time, for a total of O(nβ+1) time. Since each mapper outputs no more than
O(nc) keys, and each mapper and reducer is in SPACE(O(nc)), there are no more
than O(n2) keys to sort. Then shuffle-and-sorting takes O(n2 log n) time, and the
applications of ρr also take O(nβ+1) time. So a round takes O(nβ+1 + n2 log n)
time. Note that keeping track of m,r, and n takes no more than the above time.
So over O(nα) rounds, the simulation takes O(nα+β+1+nα+2 log(n)) = O(T (n))
time.

Now we prove Theorem 3.

12 B. Fish et al.

Proof. By Lemma 1, there is a language L in TISP(nγ , n) \ TIME(nα+β+2)
for some γ. By Lemma 2, L ∈ MRC[nγ , 1]. On the other hand, because L �∈
TIME(nα+β+2) and MRC[nα, nβ] ⊆ TIME(nα+β+2), we can conclude that L �∈
MRC[nα, nβ].

Next, we prove Theorem 4 using a padding argument.

Proof. Let T (n) = nα+β+2 as in Lemma 2. By Lemma 1, there is a γ such that
TISP(nγ , n)\TIME(T (n2)) is nonempty. Let L be a language from this set. Pad
L with n2 zeros, and call this new language L′, i.e. let L′ = {x0|x|2 | x ∈ L}. Let
N = n + n2. There is an MRC[1, Nγ] algorithm to decide L′: the first mapper
discards all the key-value pairs except those in the first n, and sends all remaining
pairs to a single reducer. The space consumed by all pairs is O(n) = O(

√
N).

This reducer decides L, which is possible since L ∈ TISP(nγ , n). We now claim
L′ is not in MRC[Nα, Nβ]. If it were, then L′ would be in TIME(T (N)). A
Turing machine that decides L′ in T (N) time can be modified to decide L in
T (N) time: pad the input string with n2 ones and use the decider for L′. This
shows L is in TIME(T (n2)), a contradiction.

We conclude by noting explicitly that Theorems 3, 4 give proper hierarchies
within MRC, and that proving certain stronger hierarchies imply the separation
of L and P.

Corollary 1. Suppose the ETH. For every α, β there exist μ > α and ν > β
such that

MRC[nα, nβ] � MRC[nμ, nβ]

and
MRC[nα, nβ] � MRC[nα, nν].

Proof. By Theorem 4, there is some μ > α such that MRC[nμ, 1] �⊆ MRC[nα, nβ].
It is immediate that MRC[nα, nβ] ⊆ MRC[nμ, nβ] and also that MRC[nμ, 1] ⊆
MRC[nμ, nβ]. So MRC[nα, nβ] �= MRC[nμ, nβ]. The proof of the second claim is
similar.

Corollary 2. If MRC[poly(n), 1] � MRC[poly(n),poly(n)], then it follows that
SPACE(log(n)) �= P.

Proof.

SPACE(log(n)) ⊆ TISP(poly(n), log n) ⊆ TISP(poly(n), n) ⊆ MRC[poly(n), 1]
⊆ MRC[poly(n),poly(n)] ⊆ P.

The first containment is well known, the third follows from Lemma 2, and
the rest are trivial.

Corollary 2 is interesting because if any of the containments in the proof
are shown to be proper, then SPACE(log(n)) �= P. Moreover, if we provide
MRC with a polynomial number of rounds, Corollary 2 says that determining
whether time provides substantially more power is at least as hard as separating
SPACE(log(n)) from P. On the other hand, it does not rule out the possibility
that MRC[poly(n),poly(n)] = P, or even that MRC[poly(n), 1] = P.

On the Computational Complexity of MapReduce 13

6 Discussion and Open Problems

In this paper we established the first general connections between MapReduce
and classical complexity classes, and showed the conditional existence of a hier-
archy within MapReduce. Our results also apply to variants of MapReduce, most
notably Valiant’s BSP model.

Our work suggests some natural open problems. How does MapReduce relate
to other complexity classes, such as the circuit class uniform AC0? Can one
improve the bounds from Corollary 1 or remove the dependence on Hypothesis 1?
Does Lemma 1 imply Hypothesis 1? Can one give explicit hierarchies for space
or time alone, e.g. MRC[nα,poly(n)] � MRC[nμ,poly(n)]?

We also ask whether MRC[poly(n),poly(n)] = P. In other words, if a problem
has an efficient solution, does it have one with using data locality? A negative
answer implies SPACE(log(n)) �= P which is a major open problem in complexity
theory, and a positive answer would likely provide new and valuable algorithmic
insights. Finally, while we have focused on the relationship between rounds and
time, there are also implicit parameters for the amount of (sublinear) space
per processor, and the (sublinear) number of processors per round. A natural
complexity question is to ask what the relationship between all four parameters
are.

Acknowledgments. We thank Howard Karloff and Benjamin Moseley for helpful
discussions.

References

1. Andoni, A., Nikolov, A., Onak, K., Yaroslavtsev, G.: Parallel algorithms for geo-
metric graph problems. In: STOC, pp. 574–583 (2014)

2. Beame, P., Koutris, P., Suciu, D.: Communication steps for parallel query process-
ing. In: PODS, pp. 273–284 (2013)

3. Chu, C.-T., Kim, S.K., Lin, Y.-A., Yu, Y., Bradski, G.R., Ng, A.Y., Olukotun, K.:
Map-reduce for machine learning on multicore. In: NIPS, pp. 281–288 (2006)

4. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

5. Farahat, A.K., Elgohary, A., Ghodsi, A., Kamel, M.S.: Distributed column subset
selection on mapreduce. In: ICDM, pp. 171–180 (2013)

6. Feldman, J., Muthukrishnan, S., Sidiropoulos, A., Stein, C., Svitkina, Z.: On dis-
tributing symmetric streaming computations. ACM Transactions on Algorithms,
6(4) (2010)

7. Fortnow, L.: Time-space tradeoffs for satisfiability. J. Comput. Syst. Sci. 60(2),
337–353 (2000)

8. Goodrich, M.T., Sitchinava, N., Zhang, Q.: Sorting, searching, and simulation in
the mapreduce framework. In: Asano, T., Nakano, S., Okamoto, Y., Watanabe, O.
(eds.) ISAAC 2011. LNCS, vol. 7074, pp. 374–383. Springer, Heidelberg (2011)

9. Impagliazzo, R., Paturi, R.: The complexity of k-sat. In: 2012 IEEE 27th Confer-
ence on Computational Complexity, p. 237 (1999)

10. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential
complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)

14 B. Fish et al.

11. Kamara, S., Raykova, M.: Parallel homomorphic encryption. In: Financial Cryp-
tography Workshops, pp. 213–225 (2013)

12. Karloff, H., Suri, S., Vassilvitskii, S.: A model of computation for mapreduce.
In: SODA 2010, pp. 938–948. Society for Industrial and Applied Mathematics,
Philadelphia (2010)

13. Kumar, R., Moseley, B., Vassilvitskii, S., Vattani, A.: Fast greedy algorithms in
mapreduce and streaming. In: SPAA 2013, pp. 1–10. ACM, New York (2013)

14. Lokshtanov, D., Marx, D., Saurabh, S.: Lower bounds based on the exponential
time hypothesis. Bulletin of the EATCS 105, 41–72 (2011)

15. Pace, M.F.: BSP vs mapreduce. In: Proceedings of the International Conference
on Computational Science, ICCS 2012, Omaha, Nebraska, USA, June 4–6, 2012,
pp. 246–255 (2012)

16. Sarma, A.D., Afrati, F.N., Salihoglu, S., Ullman, J.D.: Upper and lower bounds
on the cost of a map-reduce computation. In: PVLDB 2013, pp. 277–288. VLDB
Endowment (2013)

17. Shepherdson, J.C.: The reduction of two-way automata to one-way automata. IBM
J. Res. Dev. 3(2), 198–200 (1959)

18. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The hadoop distributed file sys-
tem. In: Khatib, M.G., He, X., Factor, M. (eds.) MSST, pp. 1–10. IEEE Computer
Society (2010)

19. Szepietowski, A.: Turing machines with sublogarithmic space. Ernst Schering
Research Foundation Workshops. Springer (1994)

20. Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33(8),
103–111 (1990)

21. Wagner, K., Wechsung, G.: Computational Complexity. Mathematics and its
Applications. Springer (1986)

22. Williams, R.: Time-space tradeoffs for counting NP solutions modulo integers.
Computational Complexity 17(2), 179–219 (2008)

Appendix

A Nonuniform MRC

In this section we show that the original MRC definition of [12] allows MRC
machines to decide undecidable languages. This definition required a polylog-
arithmic number of rounds, and also allowed completely different MapReduce
machines for different input sizes. For simplicity’s sake, we will allow a linear
number of rounds, and use our notation MRC[f(n), g(n)] to denote an MRC
machine that operates in O(f(n)) rounds and each processor gets O(g(n)) time
per round. In particular, we show that nonuniform MRC[n,

√
n] accepts all unary

languages, i.e. languages of the form L ⊆ {1n | n ∈ N}.

Lemma 3. Let L be a unary language. Then L is in nonuniform MRC[n,
√

n].

Proof. We define the mappers and reducers as follows. Let μ1 distribute the
input as contiguous blocks of

√
n bits, ρ1 compute the length of its input, μ2

send the counts to a single processor, and ρ2 add up the counts, i.e. find n = |x|

On the Computational Complexity of MapReduce 15

where x is the input. Now the input data is reduced to one key-value pair 〈�, n〉.
Then let ρi for i ≥ 3 be the reducer that on input 〈�, i − 3〉 accepts if and only
if 1i−3 ∈ L and otherwise outputs the input. Let μi for i ≥ 3 send the input
to a single processor. Then ρn+3 will accept iff x is in L. Note that ρ1, ρ2 take
O(

√
n) time, and all other mappers and reducers take O(1) time. All mappers

and reducers are also in SPACE(
√

n).

In particular, Lemma 3 implies that nonuniform MRC[n,
√

n] contains the
unary version of the halting problem. A more careful analysis shows all unary
languages are even in MRC[log n,

√
n], by having ρi+3 check 2i strings for mem-

bership in L.

B Uniform BSP

We define the BSP model of Valiant [20] similarly to MRC, where essentially
key-value pairs are replaced with point-to-point messages.

A BSP machine with p processors is a list (M1, . . . , Mp) of p Turing machines
which on any input, output a list ((j1, y1), (j2, y2), . . . , (jm, ym)) of messages to
be sent to other processors in the next round. Specifically, message yk is sent to
prcessor jk. A BSP machine operates in rounds as follows. In the first round the
input is partitioned into equal-sized pieces x1,0, . . . , xp,0 and distributed arbi-
trarily to the processors. Then for rounds r = 1, . . . , R,

1. Each processor i takes xi,r as input and computes some number si of mes-
sages Mi(xi,r) = {(ji,k, yi,k) : k = 1, . . . , si}.

2. Set xi,r+1 to be the set of all messages sent to i (as with MRC’s shuffle-and-
sort, this is not considered part of processor i’s runtime).

We say the machine accepts a string x if any machine accepts at any point
before round R finishes. We now define uniform deterministic BSP analogously
to MRC.

Definition 7 (Uniform Deterministic BSP). A language L is said to be
in BSP[f(n), g(n)] if there is a constant 0 < c < 1, an O(nc)-space and
O(g(n))-time Turing machine M(p, y), and an R = O(f(n)), such that for
all x ∈ {0, 1}n, the following holds: letting Mi = M(i,−), the BSP machine
M = (M1,M2, . . . , Mnc) accepts x in R rounds if and only if x ∈ L.

Remark 4. As with MRC, we count the size and number of each message as part
of the space bound of the machine generating/receiving the messages. Differing
slightly from Valiant, we do not provide persistent memory for each processor.
Instead we assume that on processor i, any memory cell not containing a message
will form a message whose destination is i. This is without loss of generality since
we are not concerned with the cost of sending individual messages.

Efficient Counting with Optimal Resilience

Christoph Lenzen1 and Joel Rybicki1,2(B)

1 Max Planck Institute for Informatics, Saarbrücken, Germany
clenzen@mpi-inf.mpg.de

2 Helsinki Institute for Information Technology HIIT,
Department of Computer Science, Aalto University, Espoo, Finland

joel.rybicki@aalto.fi

Abstract. In the synchronous c-counting problem, we are given a syn-
chronous system of n nodes, where up to f of the nodes may be Byzan-
tine, that is, have arbitrary faulty behaviour. The task is to have all of
the correct nodes count modulo c in unison in a self-stabilising manner:
regardless of the initial state of the system and the faulty nodes’ behav-
ior, eventually rounds are consistently labelled by a counter modulo c at
all correct nodes.

We provide a deterministic solution with resilience f < n/3 that sta-
bilises in O(f) rounds and every correct node broadcasts O(log2 f) bits
per round. We build and improve on a recent result offering stabilisa-
tion time O(f) and communication complexity O(log2 f/ log log f) but
with sub-optimal resilience f = n1−o(1) (PODC 2015). Our new algo-
rithm has optimal resilience, asymptotically optimal stabilisation time,
and low communication complexity. Finally, we modify the algorithm to
guarantee that after stabilisation very little communication occurs. In
particular, for optimal resilience and polynomial counter size c = nO(1),
the algorithm broadcasts only O(1) bits per node every Θ(n) rounds
without affecting the other properties of the algorithm; communication-
wise this is asymptotically optimal.

1 Introduction

In this work, we seek to minimize the amount of communication required for fast
self-stabilising, Byzantine fault-tolerant solutions to the synchronous counting
problem. We are given a complete communication network on n nodes with
arbitrary initial states. There are up to f faulty nodes that may behave in an
arbitrary manner. The task is to synchronise the correct nodes so that they will
count rounds modulo c in agreement. For example, the following is a possible
execution for n = 4 nodes, f = 1 faulty node, and counting modulo c = 4; the
execution stabilises after T = 4 rounds:

3

*

0

2

1

*

2

0

1

*

0

2

3

*

0

2

2

*

2

2

3

*

3

3

0

*

0

0

1

*

1

1

Counting

Node 1

Node 2

Node 3

(faulty)

Stabilisation

Node 4

c© Springer-Verlag Berlin Heidelberg 2015
Y. Moses (Ed.): DISC 2015, LNCS 9363, pp. 16–30, 2015.
DOI: 10.1007/978-3-662-48653-5 2

Efficient Counting with Optimal Resilience 17

In the severe fault-model considered in this work, synchronous counting is an
important service for establishing the classic synchronous abstraction: even if a
common clock signal is available, local counters may become inconsistent due to
transient faults; these in turn induce arbitrary states, which is addressed by the
self-stabilisation paradigm. Many, if not most, synchronous algorithms require
synchronous round counters to operate correctly.

Synchronous counting is a coordination primitive that can be used e.g. in
large integrated circuits to synchronise subsystems to easily implement mutual
exclusion and time division multiple access in a fault-tolerant manner. Note
that in this context, it is natural to assume that a synchronous clock signal
is available, but the clocking system usually does not provide explicit round
numbers. Solving synchronous counting thus yields highly dependable round
counters for subcircuits.

If we neglect communication, counting and consensus are essentially equiv-
alent [3–5]. In particular, many lower bounds on (binary) consensus directly
apply to the counting problem [6,9,13]. However, the known generic reduction
of counting to consensus incurs a factor-f overhead in space and message size.
In recent work [12], we presented an approach that reduces the number of bits
nodes broadcast in each round to O(log2 f/ log log f + log c) at the expense of
reduced resilience of f = n1−o(1). In this paper, we improve on the technique to
achieve optimal resilience with O(log2 f +log c) bits broadcast by each node per
round.

1.1 Contributions

In this work, we take the following approach. In order to devise communication-
efficient algorithms, we first design space-efficient algorithms, that is, algorithms
in which each node stores only a few bits between consecutive rounds. This comes
with additional advantages:

– Local computations will (typically) be simple.
– Communication becomes simple, as one can afford to broadcast the entire

state.
– This reduces the complexity of implementations.
– In turn, it becomes easier to use reliable components for an implementation,

increasing the overall reliability of the system.

The key challenge that needs to be overcome in constructing space-efficient
(and fast) solutions to counting appears to be a chicken-and-egg problem: given
that the correct nodes agree on a counter, they can jointly run a (single) instance
of synchronous consensus; given that they can run consensus, they can agree on
a counter. In [12], this obstacle is navigated by making the statement more
precise: given that the correct nodes agree on a counter for a while, they can run
consensus. This is used to facilitate agreement on the output counter, in a way
which maintains agreement even if the unreliable counters used for stabilisation
fail later on.

18 C. Lenzen and J. Rybicki

The task of constructing counters that “work” only once in a while is easier;
in particular, it does not require to solve consensus in the process. The drawback
of the recursive solution in [12] is that, in order to be time-efficient, it sacrifices
resilience. Our main contribution is to provide an improved construction that
preserves optimal resilience.

Theorem 1. For any integers c, n > 1 and f < n/3, there exists an f-resilient
synchronous c-counter that runs on n nodes, stabilises in O(f) rounds, and
requires O(log2 f + log c) bits to encode the state of a node.

The main hurdle that needs to be taken in order to arrive at this result when
building on the techniques of [12] is the following. In both approaches, the nodes
are partitioned into blocks, each of which runs a counter of smaller resilience; the
construction proceeds inductively on increasing values of f , so such a counter
exists by the induction hypothesis. In [12], it is assumed that a majority of these
blocks contains sufficiently few faulty nodes for the counter to be operational,
causing the relative resilience to deteriorate with each level of recursion in the
construction. To achieve optimal resilience, we must drop this assumption, in
turn necessitating novel ideas on how to establish a joint counter that is once
in a while counting correctly at all non-faulty nodes. We show how to obtain
such a counter based on simple local consistency checks, timeouts, and threshold
voting.

Last but not least, we show how to reduce the number of bits broadcast
after stabilisation to log c/ log κ + O(1) per node and κ rounds for an essentially
unconstrained choice of κ, at the expense of additively increasing the stabilisa-
tion time by O(κ). In particular, for the special case of optimal resilience and
polynomial counter size, we obtain the following result.

Corollary 1. For any n > 1 and c = nO(1) that is an integer multiple of n,
there exists a synchronous c-counter that runs on n nodes, has optimal resilience
f = �(n − 1)/3�, stabilises in O(n) rounds, requires O(log2 n) bits to encode
the state of a node, and for which after stabilisation correct nodes broadcast
(asymptotically optimal) O(1) bits every Θ(n) rounds.

1.2 Prior Work

In terms of lower bounds, several impossibility results for consensus directly yield
bounds for the counting problem as well [3]: counting cannot be solved in the
presence of at least n/3 Byzantine failures [13] and any deterministic algorithm
needs to run for at least f rounds [9] and communicate Ω(nf) bits to stabilise [6].

In contrast, there exist several algorithms to the synchronous counting prob-
lem, albeit these solutions exhibit different trade-offs in terms of resilience, sta-
bilisation time, space and/or communication complexity, or whether a source of
random bits is required. For a brief summary, see Table 1.

Designing space-efficient randomised algorithms for synchronous counting is
fairly straightforward [3,7,8]: for example, the nodes can simply choose random
states until a clear majority of nodes has the same state, after which they start

Efficient Counting with Optimal Resilience 19

Table 1. Summary of counting algorithms for the case c = 2. For randomised algo-
rithms, we list the expected stabilisation time. The solution from [10] relies on a shared
coin. “(*)” indicates that details vary, but all known shared coins with large resilience
require large states and messages.

resilience stabilisation time state bits deterministic ref.

f < n/3 (*) O(1) nO(1) (*) no [1]
f < n/3 O(f) O(f log f) yes [4]

f < n/3 22(n−f) 2 no [7,8]

f < n/3 min{22f+2 + 1, 2O(f2/n)} 1 no [3]
f = 1, n ≥ 4 7 2 yes [3]

f = n1−o(1) O(f) O(log2 f/ log log f) yes [12]

f < n/3 O(f) O(log2 f) yes here

to follow the majority. Likewise, given a shared coin, one can quickly reach agree-
ment by defaulting to the coin whenever no clear majority is observed [1]; alas,
existing shared coins are highly inefficient in terms of communication. Designing
quickly stabilising algorithms that are both communication- and space-efficient
has turned out to be a challenging task [3–5], and it remains open to what extent
randomisation can help in designing such algorithms.

In the case of deterministic algorithms, algorithm synthesis has been used
for computer-aided design of optimal algorithms with resilience f = 1, but the
approach does not scale due to the extremely fast-growing space of possible
algorithms [3]. In general, many fast-stabilising algorithms build on a connection
between Byzantine consensus and synchronous counting, but require a large
number of states per node [4] due to, e.g., running a large number of consensus
instances in parallel. In [12], the approach outlined earlier was leveraged to ensure
that each node participates in only O(log f/ log log f) instances of consensus,
resulting in small state and communication complexity, but reducing resilience
to f = n1−o(1).

As a side note, the recursive construction presented in this work bears simi-
larity to the recursive variant of the phase king algorithm [2], for which the goal
of the recursion was also to control the communication complexity (reducing it
from Θ(n3) to Θ(n2) for optimal resilience). In retrospect, the structural similar-
ity is striking; one may think of our algorithm as a generalization of the approach
to the case where there is no initial agreement on round numbers. The initial
lack of consistent round labels is what causes a roughly factor n larger commu-
nication complexity in our case, which then can be removed after stabilisation
leveraging consistent counters.

1.3 Structure of the Article

In the next section, we provide formal descriptions of the model and the problem,
and introduce some notation. In Section 3, we prove the main technical result on

20 C. Lenzen and J. Rybicki

optimal resilience boosting and infer Theorem 1. In Section 4, we describe how to
reduce the amount of bits communicated after stabilisation. Finally, in Section 5,
we discuss how randomisation can help in further reducing the communication
complexity and conclude the paper.

2 Preliminaries

In this section, we define the model of computation and the counting problem.

Model of Computation. We consider a fully-connected synchronous message-
passing network. That is, our distributed system consists of a network of n
nodes, where each node is a state machine and has communication links to
all other nodes in the network. All nodes have a unique identifier from the set
[n] = {0, 1, . . . , n−1}. The computation proceeds in synchronous communication
rounds. In each round, all processors perform the following in a lock-step fashion:
(1) broadcast their current state to all nodes, (2) receive messages from all nodes,
and (3) update their local state. We assume that the initial state of each node is
arbitrary and there are up to f Byzantine nodes. A Byzantine node may have
arbitrary behaviour, that is, it can deviate from the protocol in any manner. In
particular, the Byzantine nodes can collude together in an adversarial manner
and a single Byzantine node can send different messages to different correct
nodes.

Algorithms and Executions. Formally, we define an algorithm as a tuple A =
〈X, g, p〉, where X is the set of all states any node can have, g : [n] × Xn → X is
the state transition function, and p : [n] × X → [c] is the output function. That
is, at each round when node v receives a vector x = 〈x0, . . . , xn−1〉 of messages,
node v updates it state to g(v,x) and outputs p(v, xv). As we consider c-counting
algorithms, the set of output values is the set set [c] of counter values. Note that
the tuples passed to g are ordered according to the node identifiers, i.e., nodes
can identify the sender of a message (this is frequently referred to as source
authentication).

For any set of F ⊆ [n] of faulty nodes, we define a projection πF that maps
any state vector x ∈ Xn to a configuration πF (x) = e, where ev = ∗ if v ∈ F
and ev = xv otherwise. That is, the values given by Byzantine nodes are ignored
and a configuration consists of only the states of correct nodes. A configuration
d is reachable from configuration e if for every correct node v /∈ F there exists
some x ∈ Xn satisfying πF (x) = e and g(v,x) = dv. Essentially, this means
that when the system is in configuration e, the Byzantine nodes can send node
v messages so that it decides to switch to state dv. An execution of an algorithm
A is an infinite sequence of configurations ξ = 〈e0, e1 . . . , 〉 where configuration
er+1 is reachable from configuration er.

Synchronous Counters. We say that an execution ξ = 〈e0, e1 . . . , 〉 of algorithm
A stabilises in time T if there is some x ∈ [c] such that for every correct node
v /∈ F it holds that

p(v, eT+r,v) = r − x mod c for all r ≥ 0,

Efficient Counting with Optimal Resilience 21

where eT+r,v is the state of node v on round T + r.
An algorithm A is said to be a synchronous c-counter with resilience f that

stabilises in time T , if for every F ⊆ [n], |F| ≤ f , all executions of algorithm A
stabilise within T rounds. In this case, we say that the stabilisation time T (A)
of A is the minimal such T that all executions of A stabilise in T rounds. The
state complexity of A is S(A) = �log |X|, that is, the number of bits required
to encode the state of a node between subsequent rounds. For brevity, we will
often refer to A(n, f, c) as the family of synchronous c-counters over n nodes
with resilience f . For example, A ∈ A(4, 1, 2) denotes a synchronous 2-counter
over 4 nodes tolerating one failure.

3 Optimal Resilience Boosting

In this section, we show how to use existing synchronous counters to construct
new counters in larger networks with higher resilience. The construction is simi-
lar in spirit to the one given in [12], but somewhat simpler and allows for optimal
resilience boosting. We first state the boosting theorem together with a general
overview of the approach, then provide our novel construction, and subsequently
discuss how to stabilise the output counters using the unreliable “helper” coun-
ters. Finally, we prove the main result.

3.1 The Road Map

The high-level idea of the resilience boosting method is as follows. We first
start with counters that have a low resilience and use these to construct a new
“weaker” counter that has a higher resilience but only needs to behave correctly
once in a while for sufficiently long. Once such a weak counter exists, it can be
used to provide consistent round numbers for long enough to execute a single
instance of a high-resilience consensus protocol. This can be used to reach agree-
ment on the output counter. Once we can boost resilience in the above manner,
we can recursively apply this approach to get the desired resilience.

We now focus on a single recursion step of the resilience boosting. As in [12],
the basic idea is to use multiple counters that run in parallel to perform a leader
election process that is guaranteed to consider each of the counters as leader
eventually. Eventually, a stabilised and correctly behaving counter is elected as
a leader for some time and can be used to clock the consensus protocol.

The approach in [12] is inefficient in the sense that using many parallel coun-
ters scales poorly in terms of how fast the process operates, which in turn results
in large stabilisation times. On the other hand, using only a small number of
parallel counters yields poor resilience. Here, we introduce an approach that
can—and in fact, must—operate with two counters only, resulting in optimal
resilience and fast stabilisation. The key idea is that by running only two coun-
ters in parallel, we can utilise all the nodes for filtering out “bad counter values”
for both counters and have the nodes carefully choose which counter to follow
(and for how long).

22 C. Lenzen and J. Rybicki

In each application of the resilience boosting, each of the two counters is run
by roughly half of the nodes. For f = 0, these counters are trivial: all nodes
simply reproduce a local counter of a designated leader node. For f > 0, we
assume that reliable counters for all f ′ < f already exist, and combine an f0-
resilient and an f1-resilient counter with f0, f1 < f so that f0 + f1 + 1 = f .
This implies that, no matter which nodes are faulty, one of the two counters will
eventually stabilise.

Our first goal is to construct a τ -counter that counts correctly only once in
a while; τ will roughly be the running time of the consensus protocol we will
execute later on. In order to do this, we take two counting algorithms Ai, i ∈
{0, 1} with different counter ranges. We will have these two counters alternatively
point to a “leader counter” for τ = Θ(f) rounds, simply by dividing the counters
by τ , rounding down, and taking the result modulo 2. However, to ensure that
each Ai is eventually considered the leader for τ rounds by both counters, we let
the pointer generated by A1 switch between leaders by factor 2 slower than the
one of A0.

Obviously, employing this approach naively is not good enough: since f >
max{f1, f2}, it may happen that either A0 or A1 never stabilises. However, we
are satisfied if nodes behave as if following an operational counter for τ rounds.
To this end, we apply for each node v executing Ai the trivial consistency check
whether the local output variable of Ai increases by 1 in each round. If not, it
will switch to using A1−i as reference for a sufficient number, in this case Θ(τ),
of rounds to ensure that both v and the nodes executing A1−i will consider A1−i

as the leader for sufficiently long.
This almost cuts it—except that two nodes w �= v executing Ai may have a

different opinion on the output variable for Ai, as there are more than fi faulty
nodes executing Ai. This final hurdle is passed by enlisting the help of all nodes
for a majority vote on what the current output of Ai actually is. Essentially,
here we use threshold voting, which in each round r at each node yields either
a globally unique counter value ci(r) for Ai or ⊥, indicating that Ai is not
operating correctly. This entails that, eventually,

– There are unique values ci(r) that increase by 1 in each round and are
considered to be the current counter value of Ai by all nodes executing Ai

that are not currently relying on the counter of A1−i.
– If a node executing Ai defaults to the counter of A1−i, there are fewer than

f1−i faulty nodes executing A1−i.
– Hence, all correct nodes consider Ai with fewer than fi faults for τ rounds

as the leader.

We leverage this last property to execute the phase king algorithm [2] in the
same way as in [12] to stabilise the output counters.

We remark that the stabilisation time on each level is the maximum of that
for the used counters plus O(f); by choosing f1 ≈ f2 ≈ f/2, we can thus ensure
an overall stabilisation time of O(f), irrespectively of the number of recursion
levels. Formally, we prove the following theorem:

Efficient Counting with Optimal Resilience 23

Theorem 2. Let c, n > 1 and f < n/3. Define n0 = �n/2�, n1 = �n/2,
f0 = �(f −1)/2�, f1 = �(f −1)/2, and τ = 3(f +2). If for i ∈ {0, 1} there exist
synchronous counters Ai ∈ A(ni, fi, ci) such that ci = 3i · 2τ , then there exists
a synchronous c-counter B ∈ (n, f, c) such that

– T (B) = max{T (A0), T (A1)} + O(f), and
– S(B) = max{S(A0), S(A1)} + O(log f + log c).

We fix the notation of this theorem for the remainder of this section, as it
is dedicated to its proof. Moreover, for notational convenience we abbreviate
T = max{T (A0), T (A1)} and S = max{S(A0), S(A1)}.

3.2 Agreeing on a Common Counter (Once in a While)

In this part, we construct a counter that will eventually count consistently at
all nodes for τ rounds. The τ -counter then will be used as a common clock for
executing the phase king algorithm.

First, we partition V = V0∪V1 such that V0∩V1 = ∅, |V0| = n0 and |V1| = n1.
We often refer to the set Vi as block i. For both i ∈ {0, 1}, the nodes in set Vi

execute the algorithm Ai. In case block i has more than fi faults, we call the
block i faulty. Otherwise, we say that block i is correct. By construction, at
least one of the blocks is correct. Hence, there is a correct block i for which Ai

stabilises within T rounds, i.e., nodes in block i output a consistent ci-counter
in rounds r ≥ T .

Lemma 1. For some i ∈ {0, 1}, block i is correct.

Proof. By choice of fi, we have f = f0 + f1 + 1. Hence, at least one of the sets
Vi will contain at most fi faults.

Next, we apply the typical threshold voting mechanism employed by most
Byzantine tolerant algorithms in order to filter out differing views of counter
values that are believed to be consistent. This is achieved by broadcasting can-
didate counter values and applying a threshold of n − f as a consistency check,
which guarantees that only one candidate value (besides the fallback value ⊥
indicating an inconsistency) can remain. This is applied for each block concur-
rently, and all nodes participate in the process, so we can be certain that fewer
than one third of the voters are faulty.

In addition to passing this voting step, we require that the counters also have
behaved consistently over a sufficient number of rounds; this is verified by the
obvious mechanism of testing whether the counter increases by 1 each round and
counting the number of rounds since the last inconsistency was detected.

In the following, nodes frequently examine a set of values, one broadcast by
each node, and determine majority values. Note that Byzantine nodes may send
different values to different nodes, that is it may happen that correct nodes output
different values from such a vote. We refer to a strong majority as at least n −
f nodes supporting the same value, which is then called the majority value. If a

24 C. Lenzen and J. Rybicki

…

* *

!!!

m0(v, r + 1) m1(v, r + 1)

c0(v, r)

v

M1(v, r + 2)

(1) Majority votes on
 both counters

(2) Threshold votes and
 consistency checks

(3) Choose a consistent
 counter

Block 0 Block 1

… w

Fig. 1. Forming an opinion. The white block depicts nodes in the set V0 running the
c0-counter, and the gray block the set V1 running the c1-counter. The white and gray
filled arrows indicate the messages output by the white or gray block, respectively. The
crosses denote Byzantine nodes with arbitrary output. In the above scenario, the white
block is faulty and node v observes that the c0-counter behaves inconsistently, hence
it chooses to use the majority output of block 1; node w in the same block still relies
on the c0-counter, as it appears consistent from the perspective of node w.

node does not see a strong majority, it outputs the symbol ⊥ instead. Clearly, this
procedure is well-defined for f < n/2.

We will refer to this procedure as a majority vote, and slightly abuse notation
by saying “majority vote” when, precisely, we should talk of “the output of the
majority vote at node v”. Since we require that f < n/3, the following standard
argument shows that for each vote, there is a unique value such that each node
either outputs this value or ⊥.

Lemma 2. If v, w ∈ V \F both observe a strong majority, they output the same
majority value.

Proof. Fix any set A of n − f correct nodes. As correct nodes broadcast the
same value to each node, v and w observing strong majorities for different values
would require that for each value A contains n−2f supporting it. However, this
is impossible since 2(n − 2f) = n − f + (n − 3f) > n − f = |A|.

We now put this principle to use. We introduce the following local variables
for each node v ∈ V , block i ∈ {0, 1}, and round r:

– mi(v, r) stores the most frequent counter value in block i in round r, which
is determined from the broadcasted output variables of Ai with ties broken
arbitrarily,

– Mi(v, r) stores the majority vote on mi(v, r − 1),
– wi(v, r) is a cooldown counter which is reset to 2c1 whenever the node per-

ceives “the” counter of block i behaving inconsistently, that is, Mi(v, r) �=
Mi(v, r − 1) + 1 mod ci. Note that this test will automatically fail if either
value is ⊥. Otherwise, if the counter behaves consistently, wi(v, r) =
max{wi(v, r − 1) − 1, 0}.

Figure 1 illustrates how the values of the mi and Mi are determined. Clearly,
these variables can be updated based on the local values from the previous round

Efficient Counting with Optimal Resilience 25

and the states broadcasted at the beginning of the current round. This requires
nodes to store O(log ci) = O(log f) bits.

Furthermore, we define the following derived variables for each v ∈ V , i ∈
{0, 1}, and round r:

– di(v, r) = Mi(v, r) if wi(v, r) = 0, otherwise di(v, r) = ⊥,
– �i(v, r) = �di(v, r)/(3iτ)� if di(v, r) �= ⊥, otherwise �i(v, r) = ⊥,
– for v ∈ Vi, �(v, r) = �i(v, r) if �i(v, r) �= ⊥, otherwise �(v, r) = �1−i(v, r), and
– d(v, r) = d�(v,r)(v, r) mod τ if �(v, r) �= ⊥, otherwise d(v, r) = 0.

These can be computed locally, without storing or communicating additional
values. The variable �(v, r) indicates the block that node v currently considers
leader.

We now verify that �i(v, r) has the desired properties. To this end, we analyse
di(v, r). We start with a lemma showing that eventually a correct block’s counter
will be consistently observed by all correct nodes.

Lemma 3. Suppose block i ∈ {0, 1} is correct. Then for all v, w ∈ V \ F ,
and rounds r ≥ R = T + O(f) it holds that di(v, r) = di(w, r) and di(v, r) =
di(v, r − 1) + 1 mod ci.

Proof. Within T (Ai) rounds, Ai stabilises. Moreover, any Byzantine tolerant
counter must satisfy that fi < ni/3, implying that mi(v, r + 1) = mi(v, r) +
1 mod ci for all r ≥ T (Ai). Consequently, Mi(v, r +1) = Mi(v, r)+ 1 mod ci for
all r ≥ T (Ai) + 1. Therefore, wi(v, r) cannot be reset in rounds r ≥ T (Ai) + 2,
yielding that wi(v, r) = 0 for all r ≥ T (Ai) + 2 + 2c1 = T + O(f). The claim
follows from the definition of variable di(v, r).

The following lemma states that if a correct node v does not detect an error
in a block’s counter, then this means that any other correct node considering the
block’s counter correct in any of the last 2c1 rounds computed a counter value
for that block consistent with the one of v.

Lemma 4. Suppose for i ∈ {0, 1}, v ∈ V \ F , and r ≥ 2c1 = O(f) it holds that
di(v, r) �= ⊥. Then for each w ∈ V \ F and each r′ ∈ {r − 2c1 + 1, . . . , r} either
di(w, r′) = di(v, r) − (r − r′) mod ci or di(w, r′) = ⊥.

Proof. Suppose di(w, r′) �= ⊥. Thus, di(w, r′) = Mi(w, r′) �= ⊥. By Lemma 2,
either Mi(v, r′) = ⊥ or Mi(v, r′) = Mi(w, r′). However, Mi(v, r′) = ⊥ would
imply that wi(v, r′) = 2c1 and thus

wi(v, r) ≥ wi(v, r′) + r − r′ = 2c1 + r − r′ > 0,

contradicting the assumption that di(v, r) �= ⊥. Thus, Mi(v, r′) = Mi(w, r′) =
di(w, r′). More generally, we get from r − r′ < 2c1 and wi(v, r) = 0 that
wi(v, r′′) �= 2c1 for all r′′ ∈ {r′, . . . , r}. Therefore, we have that Mi(v, r′′ + 1) =
Mi(v, r′′) + 1 mod c for all r′′ ∈ {r′, . . . , r − 1}, implying

di(v, r) = Mi(v, r) = Mi(v, r′) + r − r′ = di(w, r′) + r − r′,

proving the claim of the lemma.

26 C. Lenzen and J. Rybicki

The above properties allow us to prove a key lemma: within T +O(f) rounds,
there will be τ consecutive rounds during which the variable �i(v, r) points to
the same correct block for all correct nodes.

Lemma 5. Let R be as in Lemma 3. There is a round r ≤ R+O(f) = T +O(f)
and a correct block i so that for all v ∈ V \ F and r′ ∈ {r, . . . , r + τ − 1} it holds
that �(v, r′) = i.

Proof. By Lemma 1, there exists a correct block i. Thus by Lemma 3, variable
di(v, r) counts correctly during rounds r ≥ R. If there is no round r ∈ {R, . . . , R+
ci −1} such that some v ∈ V \F has �1−i(v, r) �= ⊥, then �(v, r) = �i(v, r) for all
such v and r and the claim of the lemma holds true by the definition of �i(v, r)
and the fact that di(v, r) counts correctly and consistently.

Hence, assume that r0 ∈ {R, . . . , R+ci −1} is minimal with the property that
there is some v ∈ V \ F so that �1−i(v, r0) �= ⊥. Therefore, d1−i(v, r0) �= ⊥ and,
by Lemma 4, this implies for all w ∈ V \ F and all r ∈ {r0, . . . , r0 + 2c1 − 1} that
either d1−i(w, r) = ⊥ or d1−i(w, r) = d1−i(v, r0) + r − r0. In other words, there is
a “virtual counter” that equals d1−i(v, r0) in round r0 so that during {r0, . . . , r0 +
2c1 − 1} correct nodes’ d1−i variable either equals this counter or ⊥.

Consequently, it remains to show that both �i and the variable �1−i derived
from this virtual counter equal i for τ consecutive rounds during the interval
{r0, . . . , r0 + 2c1 − 1}, as then �(v, r) = i for v ∈ V \ F and such a round r.
Clearly, the c1-counter consecutively counts from 0 to c1 −1 at least once during
rounds {r0, . . . , r0+2c1−1}. Recalling that c1 = 6τ , we see that �1(v, r) = i for all
v ∈ V \F with �1(v, r) �= ⊥ for 3τ consecutive rounds during {r0, . . . , r0+2c1−1}.
As c0 = 2τ , we have that �0(v, r) = i for all v ∈ V \ F with �0(v, r) �= ⊥ for
τ consecutive rounds during this subinterval. As argued earlier, �0(v, r) �= ⊥
or �1(v, r) �= ⊥ and hence �(v, r) = i for each such node and round. Because
r0 + 2c1 − 1 < R + 3c1 = T + O(f), this completes the proof.

Using the above lemma, we get a counter where all nodes eventually count
correctly and consistently modulo τ for at least τ rounds.

Corollary 2. There is a round r = T + O(f) so that (1) for all v, w ∈ V \ F it
holds that d(v, r) = d(w, r) and (2) for all v ∈ V \F and r′ ∈ {r+1, . . . , r+τ −1}
we have d(v, r′) = d(v, r′ − 1) + 1 mod τ .

Proof. By Lemma 5, there is a round r = T + O(f) and a correct block i such
that for all v ∈ V \ F we have �(v, r′) = i for all r′ ∈ {r, . . . , r + τ − 1}.
Moreover, r is sufficiently large to apply Lemma 3 to di(v, r′) = d(v, r′) for
r′ ∈ {r + 1, . . . , r + τ − 1}, yielding the claim.

3.3 Reaching Consensus

For every node v ∈ V , let a(v, r) denote the output variable of the synchronous
c-counting algorithm B we are constructing. Similarly as in a prior work [12], we
now apply the phase king consensus algorithm [2] to get all nodes in the network
agree on the output value of the c-counter. The phase king algorithm has the
following properties:

Efficient Counting with Optimal Resilience 27

– the algorithm tolerates f < n/3 Byzantine failures,
– the running time of the algorithm is O(f) rounds and it uses O(log c) bits

of state,
– if node v is correct, then agreement is reached if all correct nodes execute

rounds 3v, 3v + 1, and 3v + 2 consecutively,
– once agreement is reached, then agreement persists even when nodes execute

different rounds.

More formally, we have the following lemma:

Lemma 6 (Adapted from [12]). Let v ∈ [f + 2] be a correct node and r ≥ 0.

– If all correct nodes execute the instructions 3v+k of the phase king algorithm
during round r + k for all k ∈ {0, 1, 2}, then for any r′ > r + 2, we have
a(u, r′) = a(w, r′) and a(u, r′ + 1) = a(u, r′) + 1 mod c for all u,w ∈ V \ F .

– If a(u, r′) = a(w, r′) for all u,w ∈ V \ F , then a(u, r′ + 1) = a(w, r′ + 1) =
a(w, r′) + 1 mod c no matter which (even if different) instructions nodes u
and w execute on round r′.

3.4 Proofs of Theorems 1 and 2

We are now ready to prove our main results of this section.

Theorem 2. Let c, n > 1 and f < n/3. Define n0 = �n/2�, n1 = �n/2,
f0 = �(f −1)/2�, f1 = �(f −1)/2, and τ = 3(f +2). If for i ∈ {0, 1} there exist
synchronous counters Ai ∈ A(ni, fi, ci) such that ci = 3i · 2τ , then there exists
a synchronous c-counter B ∈ (n, f, c) such that

– T (B) = max{T (A0), T (A1)} + O(f), and
– S(B) = max{S(A0), S(A1)} + O(log f + log c).

Proof. First, we apply the construction underlying Corollary 2. Then we have
every node v ∈ V in each round r execute the instructions for round d(v, r) of the
phase king algorithm discussed in the previous paragraph. It remains to show
that this yields a correct algorithm B with stabilisation time T (B) = T + O(f)
and space complexity S(B) = S + O(log f + log c), where T = max{T (Ai)} and
S = max{S(Ai)}.

By Corollary 2, there exists a round r = T + O(f) so that the variables
d(v, r) behave as a consistent τ -counter during rounds {r, . . . , r + τ − 1} for all
v ∈ V \ F . As there are at most f faulty nodes, there exist at least two correct
nodes v ∈ [f +2]. Since τ = 3(f +2), for at least one correct node v ∈ [f +2]\F ,
there is a round r ≤ rv ≤ r + τ − 3 such that d(w, rv + k) = 3v + k for all
w ∈ V \ F and k ∈ {0, 1, 2}. By Lemma 6, it follows that the output variables
a(w, r′) count correctly and consistently for all r′ ≥ rv +3 and w ∈ V \F . Thus,
the algorithm stabilises in rv + 3 ≤ r + τ = r + O(f) = T + O(f) rounds.

The bound for the space complexity follows from the facts that, at each node,
we need (a) at most S bits to store the state of Ai, (b) O(log τ) = O(log f) bits
to store the auxilary variables underlying Corollary 2, (c) O(log τ) = O(log f)
bits for the helper variables underlying Lemma 6 [12], and (d) �log c bits to
store the output variable a(v, r).

28 C. Lenzen and J. Rybicki

Theorem 1. For any integers c, n > 1 and f < n/3, there exists an f-resilient
synchronous c-counter that runs on n nodes, stabilises in O(f) rounds, and
requires O(log2 f + log c) bits to encode the state of a node.

Proof. We show the claim by induction on f . The induction hypothesis is that
for all f > f ′ ≥ 0, c > 1, and n > 3f ′, we can construct B ∈ A(f ′, n, c) with

T (B) = 1 + αf ′
�log f ′�∑

k=0

(1/2)k and S(B) = β(log2 f ′ + log c),

where α and β are sufficienlty large constants and for f ′ = 0 the sum is empty,
that is, T (B) = 1. As

∑∞
k=0(1/2)k = 2, this will prove the theorem. Note that

for f ≥ 0 it is sufficient to show the claim for n(f) = 3f + 1, as we can easily
generalise to any n > n(f) by running B on the first n(f) nodes and letting
the remaining nodes follow the majority counter value among the n(f) nodes
executing the algorithm; this increases the stabilisation time by one round and
induces no memory overhead.

For the base case, observe that a 0-tolerant c-counter of n(0) = 1 node
is trivially given by the node having a local counter. It stabilises in 0 rounds
and requires �log c state bits. As pointed out above, this implies a 0-tolerant
c-counter for any n with stabilisation time 1 and �log c bits of state.

For the inductive step to f , we apply Theorem 2. For i ∈ {0, 1}, we have that
fi ≤ f/2, ni > 3fi, and ci = O(f). This implies by the induction hypothesis
that there are Ai(ni, fi, ci) with

T (Ai) = 1 +
αf

2

�log f/2�∑

k=0

(
1
2

)k

+ O(f) = 1 + αf

�log f�∑

k=0

(
1
2

)k

,

where in the last step we use that α is sufficiently large, and

S(B) = β

(

log2
f

2
+ log

f

2

)

+ O(log f + log c) = β
(
log2 f + log c

)
,

where we exploit that β is sufficiently large. Hence, the induction step succeeds.

4 Less Communication After Stabilisation

We now sketch how to reduce the number of bits broadcast by a node after
stabilisation; see [11] for the complete construction. The techniques we use are
very similar to the ones we used for deriving Theorem 1. Essentially, we devise a
“silencing wrapper” for algorithms given by Theorem 1. Let A be such a counting
algorithm. The high-level idea and the key ingredients are the following:

– The goal is that nodes eventually become happy : they assume stabilisation
has occured and check for counter consistency only every κ rounds (as self-
stabilising algorithms always need to verify their output).

Efficient Counting with Optimal Resilience 29

– Happy nodes do not execute the underlying algorithm A to avoid the
involved communication. This necessitates a fall-back stabilisation mecha-
nism covering the case that a subset of the correct nodes is happy, but does
not detect a problem.

– Using a cooldown counter with similar effects as shown in Lemma 4, we
enforce that all happy nodes output consistent counters.

– We override the phase king instruction of A if at least n − 2f ≥ f + 1 nodes
(claim to be) happy and propose a counter value x. Instead nodes adjust
their counter output accordingly to match x. If there is no strong majority
of happy nodes a supporting counter value, either all nodes become unhappy
or all correct nodes reach agreement and start counting correctly.

– If all correct nodes are unhappy, they execute A “as is” reaching agreement
eventually.

– The agreed-upon counters are used to make all nodes concurrently switch
their state to being happy (once the cooldown counters have expired), in a
way that does not interfere with the above stabilisation process.

The final observation is that happy nodes can communicate their counter
values very efficiently in a manner that self-stabilises within κ rounds. As their
counter increases by 1 modulo c in every round (or they become unhappy), they
can use κ rounds to encode a counter value; the recipient simply counts locally
in the meantime.

5 Discussion

We presented a deterministic counting algorithm that has low state and com-
munication complexity, optimal resilience, and asymptotically optimal stabilisa-
tion time. In addition, we gave a variant of the algorithm that communicates
extremely little once stabilisation is achieved. In [12], we consider the so-called
pulling model, in which nodes request messages from others instead of broadcast-
ing a message to everyone, and use randomisation to reduce the amount of bits
communicated (in contrast to broadcasting) by each correct node to logO(1) n
per round. We remark that this approach can also applied to the solution given
in this work.

From our point of view, the most thrilling open question is whether similar
ideas can be applied to randomised consensus routines in order to achieve sub-
linear stabilisation time with high resilience and small communication overhead.
Another point of note is that this general type of recursion, which we essentially
extended from its use for synchronous consensus [2] (where the clock is implicitly
given by the synchronous start), might also prove useful for deriving improved
pulse synchronisation [4] algorithms. Interestingly, no reduction from consensus
to pulse synchronisation is known, so there is hope for efficient deterministic
algorithms that stabilise in sublinear time.

Acknowledgments. We thank anonymous reviewers for helpful feedback and Jukka
Suomela for discussions and comments.

30 C. Lenzen and J. Rybicki

References

1. Ben-Or, M., Dolev, D., Hoch, E.N.: Fast self-stabilizing Byzantine tolerant digital
clock synchronization. In: Proc. 27th Annual ACM Symposium on Principles of
Distributed Computing (PODC 2008), pp. 385–394. ACM Press (2008). doi:10.
1145/1400751.1400802

2. Berman, P., Garay, J.A., Perry, K.J.: Towards optimal distributed consensus. In:
Proc. 30th Annual Symposium on Foundations of Computer Science (FOCS 1989).
pp. 410–415. IEEE (1989). doi:10.1109/SFCS.1989.63511

3. Dolev, D., Heljanko, K., Järvisalo, M., Korhonen, J.H., Lenzen, C., Rybicki,
J., Suomela, J., Wieringa, S.: Synchronous counting andcomputational algorithm
design (2015). http://arxiv.org/abs/1304.5719v2

4. Dolev, D., Hoch, E.N.: On self-stabilizing synchronous actions despite Byzantine
attacks. In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 193–207. Springer,
Heidelberg (2007)

5. Dolev, D., Korhonen, J.H., Lenzen, C., Rybicki, J., Suomela, J.: Synchronous
counting and computational algorithm design. In: Higashino, T., Katayama, Y.,
Masuzawa, T., Potop-Butucaru, M., Yamashita, M. (eds.) SSS 2013. LNCS,
vol. 8255, pp. 237–250. Springer, Heidelberg (2013)

6. Dolev, D., Reischuk, R.: Bounds on information exchange for Byzantine agreement.
Journal of the ACM 32(1), 191–204 (1985). doi:10.1145/2455.214112

7. Dolev, S.: Self-Stabilization. The MIT Press, Cambridge (2000)
8. Dolev, S., Welch, J.L.: Self-stabilizing clock synchronization in the presence of

Byzantine faults. Journal of the ACM 51(5), 780–799 (2004). doi:10.1145/1017460.
1017463

9. Fischer, M.J., Lynch, N.A.: A lower bound for the time to assure interactive
consistency. Information Processing Letters 14(4), 183–186 (1982). doi:10.1016/
0020-0190(82)90033-3

10. Hoch, E.N., Dolev, D., Daliot, A.: Self-stabilizing Byzantine digital clock syn-
chronization. In: Datta, A.K., Gradinariu, M. (eds.) SSS 2006. LNCS, vol. 4280,
pp. 350–362. Springer, Heidelberg (2006)

11. Lenzen, C., Rybicki, J.: Efficient counting with optimal resilience (2015).
http://arxiv.org/abs/1508.02535

12. Lenzen, C., Rybicki, J., Suomela, J.: Towards optimal synchronous counting. In:
Proc. 34th Annual ACM Symposium on Principles of Distributed Computing
(PODC 2015), pp. 441–450. ACM Press (2015). doi:10.1145/2767386.2767423

13. Pease, M.C., Shostak, R.E., Lamport, L.: Reaching agreement in the presence of
faults. Journal of the ACM 27(2), 228–234 (1980). doi:10.1145/322186.322188

http://dx.doi.org/10.1145/1400751.1400802
http://dx.doi.org/10.1145/1400751.1400802
http://dx.doi.org/10.1109/SFCS.1989.63511
http://arxiv.org/abs/http://arxiv.org/abs/1304.5719v2
http://dx.doi.org/10.1145/2455.214112
http://dx.doi.org/10.1145/1017460.1017463
http://dx.doi.org/10.1145/1017460.1017463
http://dx.doi.org/10.1016/0020-0190(82)90033-3
http://dx.doi.org/10.1016/0020-0190(82)90033-3
http://arxiv.org/abs/http://arxiv.org/abs/1508.02535
http://dx.doi.org/10.1145/2767386.2767423
http://dx.doi.org/10.1145/322186.322188

The Computational Power of Beeps

Seth Gilbert1 and Calvin Newport2(B)

1 National University of Singapore, Singapore, Singapore
seth.gilbert@comp.nus.edu.sg

2 Georgetown University, Washington, D.C, USA
cnewport@cs.georgetown.edu

Abstract. We study the quantity of computational resources (state
machine states and/or probabilistic transition precision) needed to solve
specific problems in a single hop network where nodes communicate using
only beeps. We begin by focusing on randomized leader election. We
prove a lower bound on the states required to solve this problem with
a given error bound, probability precision, and (when relevant) network
size lower bound. We then show the bound tight with a matching upper
bound. Noting that our optimal upper bound is slow, we describe two
faster algorithms that trade some state optimality to gain efficiency. We
then turn our attention to more general classes of problems by proving
that once you have enough states to solve leader election with a given
error bound, you have (within constant factors) enough states to simu-
late correctly, with this same error bound, a logspace TM with a constant
number of unary input tapes: allowing you to solve a large and expressive
set of problems. These results identify a key simplicity threshold beyond
which useful distributed computation is possible in the beeping model.

1 Introduction

The beeping model of network communication [1–3,10,14,20] assumes a collec-
tion of computational nodes, connected in a network, that interact by beeping
in synchronous rounds. If a node decides to beep in a given round, it receives
no feedback from the channel. On the other hand, if a node decides to listen, it
is able to differentiate between the following two cases: (1) no neighbor in the
network topology beeped in this round, and (2) one or more neighbors beeped.

Existing work on this model provide two motivations. The first concerns
digital communication networks (e.g., [10,12]). Standard network communica-
tion (in which nodes interact using error-corrected packets containing many bits
of information) requires substantial time, energy, and computational overhead
(at multiple stack layers) to handle the necessary packet encoding, modulation,
demodulation, and decoding. Beeps, on the other hand, provide an abstraction
capturing the simplest possible communication primitive: a detectable burst of

S. Gilbert—Supported in part by NUS FRC T1-251RES1404.
C. Newport—Supported in part by NSF grant CCF 1320279.

c© Springer-Verlag Berlin Heidelberg 2015
Y. Moses (Ed.): DISC 2015, LNCS 9363, pp. 31–46, 2015.
DOI: 10.1007/978-3-662-48653-5 3

32 S. Gilbert and C. Newport

energy. In theory, beep layers could be implemented using a fraction of the com-
plexity required by standard packet communication, establishing the possibility
of micro-network stacks for settings where high speed and low cost are crucial.
The second motivation for the beeping model concerns a connection to biolog-
ical systems (e.g., [3,19,20]). Network communication in nature is often quite
simple; e.g., noticing a flash of light from nearby fireflies or detecting a chemical
marker diffused by nearby cells. Therefore, understanding how to achieve dis-
tributed coordination using such basic primitives can provide insight into how
such coordination arises in nature (see [19] for a recent survey of this approach).

A Key Question. As detailed below, existing work on the beeping model seeks
to solve useful problems as efficiently as possible in this primitive network set-
ting. In this paper, by contrast, we focus on solving useful problems as simply
as possible (e.g., as measured by factors such as the size of the algorithm’s
state machine representation), asking the key question: is it possible to solve
problems with both simple communication and simple algorithms? Notice, the
answer is not a priori obvious. It might be the case, for example, that complexity
is conserved, so that simplifying the communication model requires more com-
plex algorithms. Or it might be the case that simple algorithms coordinating
with beeps are sufficient for even complex tasks. Given the above motivations
for studying beeps, answering this question is crucial, as it will help us probe
the feasibility of useful networked systems—whether constructed by engineers
or evolution—that are truly simple in both their communication methods and
control logic.

Our Answers. Consider a collection of n nodes connected in a single hop topology
(i.e., the network graph is a clique). We model the randomized process executing
on each node as a probabilistic state machine. The two parameters describing the
complexity of these algorithms are: (1) an upper bound on the number of states
(indicated by integer s ≥ 1); and (2) an upper bound on the precision of the
probabilistic transitions (indicated by integer q ≥ 2, where we allow probabilistic
transitions to be labeled with probability 0, 1, or any value in the interval [1q , 1−
1
q]). We ask how large these values must grow to solve specific problems. Our
motivating premise is that smaller values imply simpler algorithms. (Notice, by
considering both s and q, we can capture the trade-off between memory and
probabilistic precision, a question of standalone interest; c.f., [16]).

We begin by considering leader election, a fundamental primitive in dis-
tributed systems. We prove that for a given error bound ε ∈ [0, 1/2] and prob-
abilistic precision q, any algorithm that solves leader election with probability
1− ε requires s = Ω(logq (1/ε)) states. Given a lower bound Ñ on the size of the
network, this lower bound reduces to s = Ω(logq (1/ε)/Ñ) states. Thus, the more
nodes in the network, the fewer states each node needs to solve the problem.

This lower bound leverages a reduction argument. We begin by defining and
lower bounding a helper problem called (1, k)-loneliness detection, which requires
an algorithm to differentiate between n = 1 and n ≥ k (but has no requirements

The Computational Power of Beeps 33

for intermediate network sizes). This bound uses an indistinguishability argu-
ment regarding how nodes move through a specified state sequence. We then
show how to transform a solution to leader election for size lower bound Ñ , to
solve (1, Ñ)-loneliness detection—allowing our loneliness bound to carry over to
leader election.

We then turn our attention to leader election upper bounds. We begin by
proving our lower bound tight by showing, for every network size lower bound
Ñ ≥ 1, how to solve leader election with s = O(logq (1/ε)/Ñ) states. The key
idea behind this algorithm is to have nodes work together to implement a dis-
tributed timer. The more nodes in the network, the longer the distributed timer
runs, and the longer the distributed timer runs, the higher the probability that
we succeed at leader election. In this way, increasing the network size reduces
the states required to hit a specific error bound. A shortcoming of this new algo-
rithm, however, is that its expected running time is exponential in the network
size. With this mind, we then describe two faster algorithms (their time is poly-
logarithmic in the relevant parameters) that require only the minimum precision
of q = 2. The cost for their efficiency, however, is a loss of state optimality in
some circumstances.

The first algorithm requires s = O(log (1/ε)) states and solves leader elec-
tion with probability at least 1 − ε, for any network size n. It terminates in
O(log (n + 1/ε) log (1/ε)) rounds, with probability at least 1 − ε. The key idea
behind this algorithm is to test a potentially successful election by having the
potential leader(s) broadcast with probability 1/2 for log (1/ε) rounds, looking
for evidence of company. It is straightforward to see that a single such test fails
with probability no more than (1/2)log (1/ε) = ε. The problem, however, is that
as the network size grows, the number of such tests performed also increases,
making it more likely that one fails. We neutralize this problem in our analysis
by showing that the test failure probabilities fall away as a geometric series in
the test count—bounding the cumulative error sum as the network grows.

The second algorithm requires only s = O(1) states, and yet, for every net-
work size n, it solves leader election with high probability in n when run in
a network of that size. It requires only O(log2 n) rounds, with high probability.
The key idea driving this algorithm is to harness the large amount of total states
in the network to implement a distributed timer that requires Θ(log n) time to
countdown to 0, when executed among n nodes. This duration is sufficient for
the nodes to safely reduce contention down to a single leader.

After studying leader election, we turn our attention to more general classes
of distributed decision problems. Leveraging our leader election algorithms as
a key primitive, we show how to simulate a logspace decider Turing Machine
(TM) with a constant number of unary inputs (all defined with respect to the
network size n). Perhaps surprisingly, this algorithm requires only O(log (1/ε))
states to complete the simulation with probability 1− ε, and only O(1) states to
achieve high probability in n. (Notice that this is not enough states for an indi-
vidual node to store even a single pointer to the tape of the simulated machine.)
Our simulation uses the same general strategy first highlighted in the study of

34 S. Gilbert and C. Newport

population protocols [4]: simulate a counter machine with a constant number
of counters that hold values from 0 to O(n), and then apply a transformation
due to Minsky [17] to simulate a logspace TM with this machine. Due to the
differences between the beeping and population protocol models, however, our
counter machine simulation strategies are distinct from [4].

Implications. The results summarized above establish that the log (1/ε) state
threshold for leader election with bounded error is (in some sense) a fundamental
simplicity threshold for solving useful problems with beeps. It is striking that if
you have slightly less than this much memory, even the basic symmetry breaking
task of leader election is impossible, but if you instead have slightly more, then
suddenly you can solve large classes of complicated problems (i.e., everything
solvable by a logspace TM). If you are satisfied with high probability solutions
(which is often the case), then this treshhold reduces even more all the way down
to O(1). Given these results, we tentatively claim a positive answer to the key
question posed above: complexity is not destiny; you can solve hard problems
simply in simple network models.

Before proceeding into the technical details of our paper, we will first take
the time to place both our model and our results in the context of the several
different areas of relevant related work. Among other questions, we want to
understand the relationship of our bounds to existing beep results, and how the
beeping model compares and contrasts to similar settings.

Comparison to Existing Beep Results. The algorithmic study of beeping net-
works began with Degesys et al. [12], who introduced a continuous variant of
the beeping model, inspired by the pulse-coupled oscillator framework. They
studied biologically inspired strategies for solving a desynchronization problem.
Follow-up work generalized the results to multihop networks [11,18]. Cornejo
and Kuhn [10] introduced the discrete (i.e., round-based) beeping model stud-
ied in this paper. They motivated this model by noting the continuous model
in [11,12,18] was unrealistic and yielded trivial solutions to desynchronization,
they then demonstrated how to solve desynchronization without these assump-
tions. Around this same time, Afek et al. [3] described a maximal independent set
(MIS) algorithm in a strong version of the discrete beeping model. They argued
that something like this algorithm might play a role in the proper distribution of
sensory organ precursor cells in fruit fly nervous system development. Follow-up
work [1,2,20] removed some of the stronger assumptions of [3] and improved
the time complexity. In recent work, Förster et al. [14] considered deterministic
leader election in a multihop beeping network.

To place this paper in this context of the existing work on the beeping model,
it is important to note that the above-cited papers focus primarily on two goals:
minimizing time complexity and minimizing information provided to nodes (e.g.,
network size, max degree, global round counter). They do not, however, place
restrictions on the amount of states used by their algorithms. Accordingly, these
existing results require either: the ability to store values as large as Θ(n) [1–3,
10,20], or uniques ids [14] (which in our framework would require a machine with

The Computational Power of Beeps 35

n different initial states, or equivalently, n different machines). In this paper, we
prove that the algorithmic complexity threshold for solving many useful problems
is actually much lower: O(1) states are sufficient for high probability results
and O(log (1/ε)) states are sufficient for fixed error bound results.1 We argue
the direction pursued in this paper (how complex must algorithms become to
solve useful problems with beeps) complements the direction pursued in existing
papers (how fast can algorithms solve useful problems with beeps). Answers to
both types of queries is necessary to continue to understand the important topic
of coordination in constrained network environments.

Comparison to the Radio Network Model. The standard radio network model
allows nodes to send large messages, but assumes concurrent transmissions lead
to message loss (that may or may not be detectable). The key difference between
the radio network model and the beeping model is that in the former you can
recognize the case where exactly one node broadcast (e.g., because you receive
a message). This capability, which the beeping model does not offer (a single
beeper looks like multiple beepers), is powerful. It allows, for example, algorithms
that can solve leader election with deterministic safety using only a constant
amount of state, when run in network of size at least 2. If you assume receiver
collision detection, these solutions require only polylogarithmic expected time.2

These results violate our lower bounds for leader election with beeps (where
the state size grows toward infinity as you drive the error bound toward 0)—
indicating that the communication limitations in the beeping model matter from
a computability perspective.

Comparison to the Stone Age Computing Model. It is also important to place our
results in the context of other simplified communication/computation models.
Consider, for example, the stone age distributed computing model introduced
by Emek and Wattenhofer [13]. This model assumes state machines of constant
size connected in a network and executing asynchronously. The machines com-
municate with a constant-size message alphabet and when transitioning can
distinguish between having received 0, 1, or ≥ b messages of each type, for some
constant parameter b ≥ 1. For b = 1, this model is essentially an asynchronous
version of the beeping model. To this end, nodes in our model can simulate nodes
in the stone age model with b = 1 indefinitely using a constant number of states.

1 Notice, direct comparisons between many of these results is complicated by the vari-
ety of possible assumptions; e.g., synchronous versus asynchronous starts, multihop
versus single hop, small versus large probability precision.

2 For example: divide rounds into pairs of even and odd rounds. In even rounds, nodes
broadcast a simple message with constant probability. If a node ever succeeds in
broadcasting alone, all other nodes become heralds. They stop competing in even
rounds and begin competing in odd rounds. When the winner (who is now the only
non-herald in the network) eventually hears a message in an odd round, it elects
itself leader. If we assume collision detection, we can reduce contention fast in the
even rounds with basic knockout protocols; e.g., if you choose to listen and detect a
collision you are knocked out and just wait to become a herald.

36 S. Gilbert and C. Newport

For b > 1, however, any such simulation likely becomes impossible in the beeping
model with a constant number of states. As noted in our discussion of the radio
network model, the ability to safely recognize the case of exactly one message
being sent provides extra power beyond what is achievable (without error) using
only beeps.

Comparison to the Population Protocol Model. Another relevant simplified
communication/computation setting is the well-studied population protocol
model [4–9]. This model describes nodes as state machines of constant size that
interact in a pairwise manner—transforming both states asymmetrically. In the
basic version of the model, a fair scheduler chooses pairs to interact. A version in
which the scheduler is randomized adds more power. There are similarities in the
goals pursued by the beeping and population protocol models: both seek (among
other things) to understand the limits of limited state in distributed computa-
tion. The core difference between the two settings is the role of the algorithm in
communication scheduling. In the beeping model, algorithms must reduce con-
tention and schedule communication on their own. In the population protocol
model the scheduler ensures fair and reliable interactions. Imagine, for example,
a continuous leader election problem where every node has a leader bit, and the
problem requires in an infinite execution that: (1) every node sets leader to 1 an
infinite number of times; and (2) there is never a time at which two nodes both
have leader set to 1. This problem is trivial in the population protocol: simply
pass a leader token around the network. In the beeping model, by contrast, it
is impossible as it essentially requires nodes to solve leader election correctly
an infinite number of times—a feat which would require an unachievable error
bound of 0. It follows that in some respects these two models are studying the
impact of limited state on different aspects of distributed computation.

2 Model

We model a collection of n probabilistic computational agents (i.e., “nodes”) that
are connected in a single hop network and communicate using a unary primitive;
i.e., beeps. They execute in synchronous rounds in which each node can either
beep or receive. Receiving nodes can distinguish between the following two cases:
(1) no node beeped; (2) one or more nodes beeped. We characterize these agents
by s (a bound on the number of states in their state machine), and q (a bound
on the precision allowed in probabilistic transitions, with larger values enabling
more accurate transition probabilities). In more detail:

Node Definition. We specify the algorithm executing on each node as a proba-
bilistic state machine M = (Qr, Qb, qs, δ⊥, δ�), where: Qr and Qb are two dis-
joint sets of states corresponding to receiving and beeping, respectively; qs is
the start state; and δ⊥ and δ� are the probabilistic transition functions3 for the
cases where the node detects silence and where the node beeps/detects a beep,
3 Transition functions map the current state to a distribution over states to enter next.

The Computational Power of Beeps 37

respectively. Some problems have all nodes execute the same state machine,
while others include multiple machine types, each corresponding to a different
initial value.

Executions. Executions proceed in synchronous rounds with all nodes in their
machine’s start state. At the beginning of round r, for a node u running a
machine (Qr, Qb, qs, δ⊥, δ�), if its current state qu is in Qb, then u emits a beep,
otherwise it receives. If at least one node beeps in r, then all nodes either beep or
detect a beep in this round. Therefore, each node u applies the transition function
δ� to its current state qu and selects its next state according to the distribution
δ�(qu). If no node beeps in r, then each node u applies the transition function
δ⊥, selecting its next state from the distribution, δ⊥(qu).

Parameters. We parameterize state machines with two values. The first, indi-
cated by s ≥ 1, is an upper bound on the number of states allowed (i.e.,
|Qr| + |Qb| ≤ s). The second, indicated by q ≥ 2, bounds the precision of the
probabilistic transitions allowed by the δ functions. In more detail, for a given q,
the probabilities assigned to states by distributions in the range of δ must either
be 0, 1, or in the interval, [1q , 1 − 1

q]. For the minimum value of q = 2, proba-
bilistic transitions can occur only with probability 1/2. As q increases, smaller
probabilities, as well as probabilities closer to 1, become possible. Finally, we
parameterize an execution with n—the number of nodes in the network.

3 Leader Election

The first computational task we consider is leader election: eventually, one node
designates itself leader. An algorithm state machine that solves leader election
must include a final leader state q� that is terminal (once a node enters the state,
it never leaves). Entering this state indicates a node has elected itself leader. For
a given error bound ε ∈ [0, 1/2], we say an algorithm solves leader election with
respect to ε if when executed in a network of any size, it satisfies the following two
properties: (1) liveness: with probability 1, at least one node eventually enters
the leader state; and (2) safety: with probability at least 1 − ε, there is never
more than 1 node in the leader state. We also consider algorithms for leader
election that are designed for networks of some minimal size Ñ . In this case, the
algorithm must guarantee liveness in every execution, but it needs to guarantee
safety only if the network size n is at least Ñ . Our goal is to develop algorithms
that use a minimum number of states to solve leader election for a given error
bound ε, probability precision q, and, when relevant, network size minimum Ñ .

Roadmap. In Section 3.1, we present a lower bound for leader election. In
Section 3.2, we present a universal algorithm template, followed by three specific
instantiations in Sections 3.3, 3.4, and 3.5. Due to space constraints, proofs are
deferred to the full version of this extended abstract [15].

38 S. Gilbert and C. Newport

3.1 Leader Election Lower Bound

Here we analyze the number of states required to solve leader election given a
fixed ε, q, and network size lower bound Ñ . Our main result establishes that the
number of states, s, must be in Ω(� logq (1/ε)

˜N
�).

To prove this result, we begin by defining and bounding a helper problem
called (1, k)-loneliness detection, which requires an algorithm to safely distin-
guish between n = 1 and n ≥ k. The bound leverages a probabilistic indistin-
guishability argument concerning a short execution of the state machine in both
the n = 1 and n = k cases. We then show that loneliness detection captures a core
challenge of leader election by demonstrating how to transform a leader election
algorithm that works for n ≥ Ñ into a solution to (1, Ñ)-loneliness detection.
The bound for the latter then carries over to leader election by reduction.

(1, k)-Loneliness Detection. The (1, k)-loneliness detection problem is defined
for some integer k > 1 and error bound ε. It assumes all nodes run the same
state machine with two special terminal final states that we label qa (indicating
“I am alone”) and qc (indicating “I am in a crowd”). The liveness property of
this problem requires that with probability 1, every node eventually enters a
final state. The safety property requires that with probability at least 1 − ε, the
following holds: if n = 1, then the single node in the system eventually enters qa;
and if n ≥ k then all nodes eventually enter qc. Crucial to this problem definition
is that we do not place any restrictions on the final states nodes enter for the
case where 1 < n < k.

The following bound shows that it becomes easier to break symmetry, i.e.,
easier to solve loneliness detection, as the threshold for detecting a crowd grows.
Put another way: a big crowd is easier to detect than a small crowd.

Lemma 1. Fix some integer k > 1. Let L be an algorithm that solves (1, k)-
loneliness detection with error bound ε and probability precision q using s states.
It follows that s = Ω(logq (1/ε)

k).

Reducing Loneliness Detection to Leader Election. We now leverage the above
result on (1, k)-loneliness detection to prove a lower bound for leader election
under the guarantee that the network size n ≥ Ñ . The proof proceeds by reduc-
tion: we show how to transform such a leader election solution into a loneliness
detection algorithm of similar state size.

Theorem 1. Fix some network size lower bound Ñ ≥ 1. Let A be an algorithm
that solves leader election with error bound ε and probability precision q using s

states in any network where n ≥ Ñ . It follows that s ∈ Ω(logq (1/ε)

˜N
).

The Computational Power of Beeps 39

3.2 The Universal Leader Election Algorithm

Algorithm 1. Universal Leader Election
1: active ← 1
2: ko ← 1
3: q̂ ← min{q, (1/ε)}
4: done ← [Term. Subroutine](active, ko)
5: ko ← 0
6:
7: while (not done) do
8:

� Returns 0 with prob 1/q̂, else 1
9: participate ← random bit(1/q̂)

10: chan ← �
11:

� Knock Out Logic
12: if active ∧ participate then
13: beep()
14: else
15: chan ← recv()
16: end if
17: if active ∧ not participate then
18: if chan = � then
19: active ← 0
20: ko ← 1
21: end if
22: end if
23:

� Termination Detection Logic
24: if chan = ⊥ then
25: done ← [Term. Subroutine](active, ko)
26: ko ← 0
27: end if
28: end while
29:

� Become Leader if Still Active
30: if active then
31: leader ← 1
32: else
33: leader ← 0
34: end if
35: return(leader)

We now turn our attention to leader
election upper bounds. The three
results that follow adopt a tem-
plate/subroutine approach. In more
detail, Figure 3.1 describes what
we call the universal leader election
algorithm. This algorithm, in turn,
makes calls to a “termination sub-
routine.” Different versions of this
subroutine can be plugged into the
universal algorithm, yielding differ-
ent guarantees. Notice, this univer-
sal algorithm is parameterized with
probability precision q and error
bound ε, which it uses to define the
useful parameter q̂ = min{q, (1/ε)}.
This algorithm (as well as one of our
termination subroutines) uses 1/q̂,
not 1/q, as its smallest transition
probability (intuitively, there is lit-
tle advantage in using a probability
too much smaller than the bound ε).

The basic operation of the algo-
rithm is simple. Every node is ini-
tially active. Until the termination
subroutine determines that it is time
to stop, nodes repeatedly execute
the knockout loop (lines 7–25). In
each iteration of the loop, each
active node beeps with probability
1 − 1/q̂ and listens otherwise. If a
node ever hears a beep, it is knocked
out, setting ko = true and active =
false. In any silent iteration where
no node beeps, they execute the termination subroutine to decide whether to
stop. Once termination is reached, any node that remains active becomes the
leader.

Termination Subroutines. The goal of the termination subroutine is to decide
whether leader election has been solved: it returns true if there is a leader and
false otherwise. The termination subroutine is called simultaneously by all the
nodes in the system, and it is passed two parameters: the value of active, which
indicates whether or not the calling node is still contending to become leader,
and ko, which indicates whether or not it has been knocked out in the main

40 S. Gilbert and C. Newport

loop since the last call to the subroutine. We fix R = 4 logq̂(max(n, 1/ε)): a
parameter, which as we will later elaborate, captures a bound on the calls to the
subroutine needed before likely termination. We consider the following properties
of a termination detection routine, defined with respect to ε and R:

1. Agreement : Every node always returns the same value.
2. Safety : Over the first R invocations, the probability that it returns true in

any invocation with more than 1 active node is at most ε/2.
3. Eventual Termination: If it is called infinitely often with only one active

node, then eventually (with probability 1), it returns true.
4. Fast Termination: If it is called with only one active node, and with at least

one node where ko = true, then it returns true.

Universal Leader Election Analysis. We now observe that the universal leader
election algorithm is correct when combined with a termination subroutine that
satisfies the relevant properties from above. To do so, we first determine how
many rounds it takes until there is only one active node, and hence one possible
leader. We say that an iteration of the knockout loop (lines 7–25) is silent if
no node beeps during it. (Notice that the termination routine is only executed
in silent iterations of the knockout loop.) We first bound how long it takes to
reduce the number of active nodes:

Lemma 2. Given probability ε ≤ 1/2 and parameter R = 4 logq̂(max(n, 1/ε)):
after R silent iterations of the knockout loop (lines 7–25), there remains exactly
one active node, with probability at least 1 − ε/2.

Let T be a termination subroutine that satisfies Agreement and Eventual
Termination. In addition, assume that T satisfies safety in networks of size at
least Ñ . We can now show that the universal leader election algorithm is correct
with termination subroutine T :

Theorem 2. If termination subroutine T uses s states and precision q, then
the universal algorithm solves leader election with error ε, s + O(1) states, and
q precision (guaranteeing safety only in networks of size n ≥ Ñ).

While the preceding theorem can be used to show the feasibility of solving
leader election, it does not bound the performance. For that, we rely on termi-
nation subroutines that ensure fast termination:

Theorem 3. If termination subroutine T satisfies Fast Termination instead of
Eventual Termination, and if it uses s states and q precision, and if it runs
in time t, then the universal algorithm solves leader election with error ε with
s + O(1) states and q precision (guaranteeing safety only in networks of size
≥ Ñ). Furthermore, it terminates in O(t logq̂(n + 1/ε)) rounds, with probability
at least 1 − ε.

The Computational Power of Beeps 41

3.3 Optimal Leader Election

Here we define a termination subroutine that, when combined with the universal
leader election algorithm, matches our lower bound from Theorem 1. In more
detail, fix an error bound ε and probability precision q. Fix some lower bound
Ñ ≥ 1 on the network size. We describe a termination detection subroutine
that we call StateOptimal(Ñ) that requires O(� logq (1/ε)

˜N
�) states, and guarantees

Agreement, Termination, and Safety in any network of size n ≥ Ñ .
There are two important points relevant to this leader election strategy. First,

for Ñ = 1, it provides a general solution that works in every size network.
Second, the state requirements for this algorithm are asymptotically optimal
according to Theorem 1. As will be clear from its definition below, the cost of
this optimality is inefficiency (its expected time increases exponentially with n).
We will subsequently identify a pair of more efficient solutions that gain efficiency
at the cost of some optimality under some conditions.

The StateOptimal(Ñ) Termination Detection Subroutine. The StateOptimal(Ñ)
subroutine, unlike the other subroutines we will consider, ignores the active
and ko parameters. Instead, it runs simple distributed coin flip logic among all
nodes. In more detail, recall from the definition of the universal algorithm that
q̂ = min{q, (1/ε)}. The subroutine consists of δ = � c logq̂ (1/ε)

˜N
� rounds, defined

for some constant c ≥ 1 we will bound in the analysis. In each round, each node
beeps with probability 1 − 1/q̂. At the end of the δ rounds, each node returns 1
if all δ rounds were silent, otherwise it returns 0.

Analysis. It is straightforward to determine that all nodes return the same value
from this subroutine (i.e., if any node beeps or detects a beep, all nodes will
return 0). It is also straightforward to verify that implementing this subroutine
for a given δ requires Θ(δ) = Θ(� logq̂ (1/ε)

˜N
�) = Θ(� logq (1/ε)

˜N
�) states (we can

replace the q̂ with q in the final step because once q gets beyond size 1/ε, the
function stabilizes at 1). Eventual termination is also easy to verify, as every call
to the subroutine has a probability strictly greater than 0 of terminating.

To show safety, we observe that the routine returns true only if all n nodes
are silent for all δ rounds. The probability of this happening is exponentially
small in (δn) and hence it is not hard to show that every R invocations, the
probability that the subroutine returns true in any invocation with more than
one active node is at most ε/2.

Lemma 3 (Safety). Over the first R invocations, the probability that the sub-
routine returns true in any invocation with more than 1 active node is at
most ε/2.

Combined with Theorem 2, this yields the following conclusion:

Theorem 4. For any network size lower bound Ñ , error parameter ε
and precision q, the universal leader election algorithm combined with the

42 S. Gilbert and C. Newport

StateOptimal(Ñ) subroutine, solves leader election with respect to these param-
eters when run in a network of size n ≥ Ñ , and requires only s = Θ(� logq (1/ε)

˜N
�)

states.

3.4 Fast Leader Election with Sub-Optimal State

The leader election algorithm from Section 3.3 can solve the problem with the
optimal number of states for any combination of system parameters. It achieves
this feat, however, at the expense of time: it is straightforward to determine
that this algorithm requires time exponential in the network size. Here we con-
sider a termination subroutine that trades state optimality for a solution that
is fast (polylogarthmic in 1/ε rounds) and simple to define (it uses the minimal
probabilistic precision of q = 2). Furthermore, its definition is independent of
the network size n, yet it still works for every possible n. For the purpose of
this section, we assume that q = q̂ = 2. As we show below, this subroutine
uses Θ(log (1/ε)) states. This is suboptimal when high precision (i.e., larger q)
is available, and when there is a lower bound Ñ on the size of the network.

The Fixed Error Termination Detection Subroutine. This termination subrou-
tine consists of a fixed schedule of �log (2/ε)�+2 rounds. During the first round,
any node that calls the subroutine with parameter ko equal to 1 beeps while
all other nodes receive. If no node beeps, then the subroutine is aborted and all
nodes return false.

Assume this does not occur, i.e., at least one node beeps in the first round. For
each of the �log (2/ε)� rounds that follow, every node with parameter active = 1,
will flip a fair two-sided coin. If it comes up heads, it will beep, otherwise it
will receive. Each node with active = 1 will start these rounds with a flag solo
initialized to 1. If such a node ever detects a beep during a round that it receives,
it will reset solo to 0 (as it just gained evidence that it is not alone).

The final round is used to determine if anyone detected a non-solo execution.
To do so, every node with active = 1 and solo = 0 beeps. If no node beeps in
this final round, then all nodes return true. Otherwise, all nodes return false.

Analysis. We proceed as before, observing that all nodes return the same value
from this subroutine since all observe the same channel activity in the first and
last rounds. It is also straightforward to verify that implementing this subroutine
requires O(log (1/ε)) states to count the rounds and record solo. Fast termination
follows directly from a case analysis of the algorithm.

Lemma 4 (Fast Termination). If the Fixed Error subroutine is called with
only 1 active node and with at least 1 node where ko = true, then it returns true.

Safety requires a little more care, showing that the failure probabilities over
R invocations can be bounded by ε/2, since the error probability depends on the
number of active nodes.

The Computational Power of Beeps 43

Lemma 5 (Safety). Over the first R invocations of the subroutine, the proba-
bility that it returns true in any invocation with more than one active node is at
most ε/2.

Combined with Theorem 3, these properties yield the following conclusion:

Theorem 5. For error parameter ε, the universal leader election algorithm com-
bined with the Fixed Error subroutine, solves leader election with respect to ε in
every size network, using only s = Θ(log (1/ε)) states and q = 2. With probability
at least 1 − ε, it terminates in O(log (n + 1/ε) log (1/ε)) rounds.

3.5 Fast Leader Election with O(1) States and High Probability

The final termination detection subroutine we consider requires only a constant
number of states, and when executed in a network of size n, for any n > 1, it
solves leader election with high probability in n. At first glance, this result may
seem to violate the lower bound from Section 3.1, which notes that the state
requirement grows with a log (1/ε) factor as ε decreases. The question is why a
constant number of states is sufficient here even though this term grows with n.
The answer lies in the fact that ε is here a function of n, such that for any fixed
n, it is true that Ñ ≥ n, and therefore the Ñ factor in the denominator of our
lower bound swamps the growth of the log n factor in the numerator.

The Constant State Termination Detection Subroutine. The subroutine here is
identical to the Fixed Error subroutine, except the length of subroutine is not
fixed in advance (no node has enough states to count beyond a constant num-
ber of rounds—which is not enough for our purposes). Instead, we dynamically
adapt the length of the subroutine to a sufficiently large function of n using a
distributed counting strategy.

In more detail, during the first round, any node that called the subroutine
with parameter ko equal to 1 beeps while all other nodes receive. If no node
beeps, then subroutine is aborted and all nodes will return value false (as is
true for Fixed Error). Assuming the subroutine has not aborted, the nodes then
proceed as follows: We partition rounds into even and odd pairs. During the
odd numbered rounds, we proceed as in Fixed Error: every node with parameter
active = 1, flips a fair coin; if it comes up heads, it will beep, otherwise it
will receive; each node with active = 1 will start these rounds with a flag solo
initialized to 1; if such a node ever detects a beep during a round that it receives,
it will reset solo to 0 (as it just gained evidence that it is not alone).

During the even rounds, the nodes run a repeated knockout protocol for
O(1) iterations, for some fixed constant bounded in the analysis. In more detail,
each node (regardless of whether or not it has active equal to true) begins the
subroutine with a flag attack = 1 and a counter count = 0. In each even round,
each node with attack = 1 flips a fair coin and beeps if it comes up heads;
otherwise it listens. Any node that listens in an even round and hears a beep
sets attack = 0. If there is an even round in which no node beeps, then all nodes

44 S. Gilbert and C. Newport

increment count and reset attack = 1. This continues until count grows larger
than the fixed constant mentioned above, When this occurs, all nodes move to
the final round, which is identical to the final round in Fixed Error. That is:
every node with active = 1 and solo = 0 beeps. If no node beeps in this final
round, then all nodes return true. Otherwise, all nodes return false.

Analysis. The Liveness and Fast Termination properties follow from the same
arguments used in our analysis of Fixed Error. The main difficulty in analyz-
ing this subroutine is proving Safety. To do so, we first bound how long the
subroutine is likely to run on any given invocation:

Lemma 6. For any constant c, there exists a c′ > c and a constant bound for
count, such that the main body of the subroutine runs for at least c log(n) rounds
but no more than c′ log n rounds, with high probability.

Lemma 7 (Safety). Over the first R invocations of the subroutine, the proba-
bility that it returns true in any invocation with more than one active node is at
most 1/nc, for a constant c we can grow with our constant bound on count.

We can then show that the subroutine guarantees safety. Combined with the
Theorem 3, these properties yields the following conclusion:

Theorem 6. For any network size n, the universal leader election algorithm
combined with the Constant State termination detection subroutine, solves leader
election with high probability in n using s = O(1) states and q = 2. Also with
high probability in n, it terminates in O(log2 n) rounds.

4 Solving General Distributed Decision Problems

In this section, we use a combination of our fast leader election algorithms as
a key primitive in constructing an algorithm that simulates a logspace (in n)
decider Turing Machine (TM) with a constant number of unary input tapes (of
size O(n) each). The simulation has error probability at most ε, requires only
the minimum probabilistic precision (q = 2), and uses s = O(log (1/ε)) states. If
high probability in n is sufficient, then the state size can be reduced to s = O(1).
In other words, once you have enough states to solve leader election, you can
also solve a large class of expressive problems. Formally:

Theorem 7. For any problem solvable by a logspace TM with a constant number
of unary input tapes, there exist constants c, d ≥ 1, such that for any error proba-
bility ε ∈ [0, 1/2] and network size n ≥ 1, we can solve the problem in the beeping
model in a network of size n with probability at least 1 − ε using s = c log (1/ε)
states, precision q = 2, and an expected running time of O(nd log2 (n + 1/ε))
rounds. For high probability correctness, s = O(1) states are sufficient.

The Computational Power of Beeps 45

Our strategy follows the outline originally identified in [4], where it was used
to simulate a TM using a population protocol in the randomized interaction
model. We first simulate a simple counter machine with a constant number of
counters that can take values of size O(n). We then apply a classical computabil-
ity result due to Minsky [17] which shows how to simulate a logspace TM (with
unary input tapes) using a counter machine of this type. The counter machine
simulation in the beeping model, combined with Minsky’s TM simulation, yields
a TM simulation in the beeping model. See the full version of this extended
abstract [15] for the details of our simulation, its analysis, and a discussion of
its implications.

References

1. Afek, Y., Alon, N., Bar-Joseph, Z., Cornejo, A., Haeupler, B., Kuhn, F.: Beeping a
maximal independent set. In: Peleg, D. (ed.) Distributed Computing. LNCS, vol.
6950, pp. 32–50. Springer, Heidelberg (2011)

2. Afek, Y., Alon, N., Bar-Joseph, Z., Cornejo, A., Haeupler, B., Kuhn, F.: Beeping
a maximal independent set. Distributed Computing 26(4), 195–208 (2013)

3. Afek, Y., Alon, N., Barad, O., Hornstein, E., Barkai, N., Bar-Joseph, Z.: A biolog-
ical solution to a fundamental distributed computing problem. Science 331(6014),
183–185 (2011)

4. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in
networks of passively mobile finite-state sensors. Distributed Computing 18(4),
235–253 (2006)

5. Angluin, D., Aspnes, J., Eisenstat, D.: Stably computable predicates are semilin-
ear. In: Proceedings of the Symposium on Principles of Distributed Computing
(PODC), pp. 292–299 (2006)

6. Angluin, D., Aspnes, J., Eisenstat, D.: Fast computation by population protocols
with a leader. Distributed Computing 21(3), 183–199 (2008)

7. Angluin, D., Aspnes, J., Eisenstat, D.: A simple population protocol for fast robust
approximate majority. Distributed Computing 21(2), 87–102 (2008)

8. Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The computational power of
population protocols. Distributed Computing 20(4), 279–304 (2007)

9. Chatzigiannakis, I., Spirakis, P.G.: The dynamics of probabilistic population proto-
cols. In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 498–499. Springer,
Heidelberg (2008)

10. Cornejo, A., Kuhn, F.: Deploying wireless networks with beeps. In: Lynch, N.A.,
Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 148–162. Springer,
Heidelberg (2010)

11. Degesys, J., Nagpal, R.: Towards desynchronization of multi-hop topologies. In:
Proceedings of the International Conference on Self-Adaptive and Self-Organizing
Systems (SASO 2008) (2008)

12. Degesys, J., Rose, I., Patel, A., Nagpal, R.: Desync: self-organizing desynchroniza-
tion and tdma on wireless sensor networks. In: Proceedings of the International
Conference on Information Processing in Sensor Networks (2007)

13. Emek, Y., Wattenhofer, R.: Stone age distributed computing. In: Proceedings of
the Symposium on Principles of Distributed Computing (PODC) (2013)

46 S. Gilbert and C. Newport

14. Förster, K.-T., Seidel, J., Wattenhofer, R.: Deterministic leader election in multi-
hop beeping networks - (extended abstract). In: Kuhn, F. (ed.) DISC 2014. LNCS,
vol. 8784, pp. 212–226. Springer, Heidelberg (2014)

15. Gilbert, S., Newport, C.: The computational power of beeps. Full version avail-
able online at. http://people.cs.georgetown.edu/∼cnewport/pubs/Beeps-Full.pdf
(arXiv)

16. Lenzen, C., Lynch, N., Newport, C., Radeva, T.: Trade-offs between selection com-
plexity and performance when searching the plane without communication. In:
Proceedings of the Symposium on Principles of Distributed Computing (PODC)
(2014)

17. Minsky, M.L.: Computation: finite and infinite machines. Prentice-Hall (1967)
18. Motskin, A., Roughgarden, T., Skraba, P., Guibas, L.J.: Lightweight coloring

and desynchronization for networks. In: Proceedings of the of the Conference on
Computer Communication (INFOCOM) (2009)

19. Navlakha, S., Bar-Joseph, Z.: Distributed information processing in biological and
computational systems. Communications of the ACM 58(1), 94–102 (2014)

20. Scott, A., Jeavons, P., Xu, L.: Feedback from nature: an optimal distributed algo-
rithm for maximal independent set selection. In: Proceedings of the Symposium
on Principles of Distributed Computing (PODC) (2013)

http://people.cs.georgetown.edu/~cnewport/pubs/Beeps-Full.pdf

Byzantine Fireflies

Rachid Guerraoui and Alexandre Maurer(B)

EPFL, Lausanne, Switzerland
{rachid.guerraoui,alexandre.maurer}@epfl.ch

Abstract. This paper addresses the problem of synchronous beeping,
as addressed by swarms of fireflies. We present Byzantine-resilient algo-
rithms ensuring that the correct processes eventually beep synchronously
despite a subset of nodes beeping asynchronously. We assume that
n > 2f (n is the number of processes and f is the number of Byzantine
processes) and that the initial state of the processes can be arbitrary
(self-stabilization). We distinguish the cases where the beeping period is
known, unknown or approximately known. We also consider the situation
where the processes can produce light continuously.

1 Introduction

Biologically inspired algorithms have become increasingly popular in the last
decades [21]. This field is motivated by fascinating emerging phenomena in
nature: swarms of simple individuals (cells [15], ants [3], cuckoos [7], bats [13],
. . .) that seem to achieve a very consistent and regular behavior without cen-
tralized control and with very limited communications. It is appealing to design
distributed algorithms reproducing their behavior with minimal communication
assumptions.

One of these phenomena is the synchronization of fireflies [18,19]. Fireflies are
insect that can produce flashes of light at night. They can do so synchronously
and with a regular period. Our interest here is to recreate this phenomena in
the field of distributed computing.

At first sight, this problem has similarities with the problem of clock syn-
chronization [4,8,9], which can also be declined for wireless ad hoc networks
[16] and simultaneous-action synchronization problems [20]. These problems are
however typically studied in message passing systems: the processes can identify
each other and send semantically rich messages with timestamps. Such strong
communication assumptions do not seem to be available in a fireflies swarm. In
this paper, we therefore consider minimal communication primitives.

The fireflies synchronization problem has first been studied from a mathe-
matical point of view [12,14]: the individuals are represented as dynamical oscil-
lators, and the problem is modeled as a system of differential equations. Another
model, more related to the field of distributed computing, proposed in [2,11,17],
involves processes that can produce discrete beeps at arbitrary moments, and
must eventually beep synchronously.

c© Springer-Verlag Berlin Heidelberg 2015
Y. Moses (Ed.): DISC 2015, LNCS 9363, pp. 47–59, 2015.
DOI: 10.1007/978-3-662-48653-5 4

48 R. Guerraoui and A. Maurer

Solutions to these problems [2,11,17] use averaging methods to achieve syn-
chronous beeping. These solutions are efficient, but are also very sensitive to
incorrect processes, which can easily move forward the mean value. Therefore, if
there is no limit on the frequency of malicious beeps, one single incorrect process
is sufficient to prevent synchronization.

In this paper, we consider that some fireflies may have an incorrect behavior:
they can be broken, dead, ill, or trying to eat each other [1]. Our motivation is
the intuition that a biological system should be inherently resilient to such mal-
functions. We thus consider the problem of synchronous beeping in the presence
of malicious (Byzantine) processes. A first solution relaxes the requirement to
“beeping in a bounded interval” [5]. However, we would like to preserve perfect
synchronous beeping here. In order to tolerate malicious beeps, our strategy is
not based on averaging methods, but on the number of simultaneous beeps and
the delay between two groups of beeps.

Our Contribution. We consider a system where each process can produce dis-
crete and anonymous beeps (flashes of light). Each process can “see” all beeps,
and count the number of beeps produced at a given instant. The processes can
however not distinguish the authors of the beeps, and no other communication
is allowed between the processes. We consider the most general failure model:
Byzantine failures [10], where the failing processes have a totally arbitrary behav-
ior. Among the n processes, at most f are Byzantine. We assume that n > 2f
(we show that this condition is necessary in Section 3).

We consider the context of self-stabilization [6]: the initial state is arbitrary
– that is, each process has initially memorized an arbitrary sequence of beeps.
This assumption encompasses any chaotic sequence of events occurring before
the synchronization (for instance, some processes can join and leave the system,
which is usually the case in swarms of insects). Then, we show how to achieve
synchronous beeping: all correct processes beep simultaneously and with the
same period, whatever the behavior of Byzantine processes may be.

We present the model and the problem in Section 2, and show that the
condition n > 2f is necessary in Section 3. Then, we present four algorithms for
this problem:

– We first give two algorithms for the cases where the desired beeping period
is known (Section 4) and unknown (Section 5).

– Then, we give an algorithm for the case where each process has an approx-
imate knowledge of the desired period (Section 6), which may be the case
of insects. Thus, the correct processes must agree on a same period, and
this period must be in the range of the desired one. This problem is more
difficult, as correct processes are disorganized while Byzantine processes are
perfectly coordinated. In this part, we relax the self-stabilization property
(we give an impossibility result) and assume that n > 3f .

– Finally, we consider an alternative model where processes can produce light
continuously. We give an algorithm with approximate period knowledge that
does not relax the two aforementioned properties (Section 7).

Byzantine Fireflies 49

These solutions show that synchronous beeping is feasible even in the pres-
ence of adversaries with an unbounded power. They could be adapted for clock
synchronization with minimal communication assumptions.

2 Model and Problem

In this section, we state the distributed system model and the problem.

Communication Model. We consider a distributed system of n processes and a
continuous time domain. A process can beep at any time t. A beep is discrete,
and is entirely described by its time position t (we will revisit this assumption
in Section 7). No other communication than beeping is available, and the beeps
are anonymous.

For any time t, let S(t) be a multiset containing the time of each previous
beep (∀t′ ∈ S(t), t′ < t). If m processes beep simultaneously at time t′, then t′

appears m times in S(t) (for instance, if S(t) = {t1, t2, t2, t2, t3} with t1 < t2 <
t3, 3 processes beep simultaneously at time t2). For S(t) = {t1, t2, t3, . . . }, let
S′(t) = {t − t1, t − t2, t − t3, . . . }.

For any time t, each process knows the set S′(t). In other words, each process
only knows the position of the previous beeps relatively to the current time: there
is no common time origin (otherwise, the problem would be trivial and would not
correspond to swarms of fireflies). The processes can count the beeps at a given
instant, but cannot distinguish the authors of the beeps. We do not consider
any memory restriction that would prevent the processes from knowing S′(t)
entirely. No other form of memory (such as internal variables) is available.

We denote by m(t) the number of processes beeping at time t. The beeps
are strictly discrete: there exists no time interval [t1, t2] with t1 < t2 such that,
∀t ∈ [t1, t2], m(t) �= 0. Therefore, there must always be a time interval between
two successive and non-simultaneous beeps.

Correct and Byzantine Processes. At most f processes are Byzantine, and may
exhibit an arbitrary behavior. The other processes are correct, and follow the
algorithm assigned to them. We assume that n > 2f . All correct processes follow
the same algorithm.

Self-stabilization. Our objective is to achieve synchronization despite any arbi-
trary initial state. Therefore, we assume the previous model encompasses such
an arbitrary initial state.

Let t0 be a given time, unkown to the correct processes. We assume that,
before t0, each correct process has memorized an arbitrary sequence of beeps
(which may be different for each process). Then, starting from t0, all correct
processes register the same beeps.

More precisely, for any process p, let A(p) = {t1, t2, t3, . . . } be an arbi-
trary set with repetition such that, ∀t ∈ A(p), t < t0. A(p) represents the
arbitrary sequence of beeps memorized by p before t0. For any time t, let

50 R. Guerraoui and A. Maurer

A′(p, t) = {t − t1, t − t2, t − t3, . . . }. Then, we now assume that for any time
t, p knows S′(t) ∪ A′(p, t).

An algorithm ensuring a given property in such a context (the initial state is
arbitrary) is self-stabilizing [6]. In particular, it can represent the fact that some
processes join and leave the system arbitrarily before t0.

Problem. Let T be any time period. We say that the processes achieve syn-
chronous beeping at time t if, starting from time t, all correct processes beep
and only beep at time t, t + T , t + 2T , t + 3T , . . .

3 Lower Bound

Is this section, we show that it is necessary to have a strict majority of correct
processes (n > 2f) to solve the problem.

Theorem 1. An algorithm can only ensure synchronous beeping if n > 2f .

Proof. Suppose the opposite: there exists an algorithm ensuring synchronous
beeping with n ≤ 2f . In particular, let us suppose that n = 2f .

We first show that for any initial state, there exists a time period T ′ and a
time t1 such that, ∀t ≥ t1, the behavior of the correct processes at time t (that
is, their decision to beep or not) only depends of the time interval]t − T ′, t[.
Suppose the opposite. Then, there exists an initial state such that ∀t ≥ t0, there
exists t′ ≥ t such that two correct processes do not have the same behavior at
time t′. Therefore, at time t′, at least one correct process beeps and at least
one correct process does not beep. Thus, as synchronous beeping requires all
correct processes to have the same behavior after a time t ≥ t0, we do not have
synchronous beeping: contradiction. Thus, there exists such a time t1 and such
a time period T ′.

Let t, t + T, t + 2T . . . be the times of synchronous beeping. Let us suppose
that the Byzantine processes beep at times t+T/2, t+3T/2, t+5T/2 . . . Let i be
an integer such that iT > T ′ and t + iT ≥ t1. As we have synchronous beeping,
all correct processes must beep at time t + (i + 1)T . As f processes beep a time
t, t + T/2, t + T, t + 3T/2 . . . , the interval]t′ − T ′, t′[contains exactly the same
beeps for t′ = t + (i + 1)T and for t′ = t + (i + 1)T + T/2. Thus, all correct
processes also beep at time t + (i + 1)T + T/2, and we do not have synchronous
beeping: contradiction.

4 Known Beeping Period

In this section, we assume that all correct processes know the same time period
T . We give an algorithm ensuring synchronous beeping in this setting.

Byzantine Fireflies 51

4.1 Algorithm (Known Period Synchronous Beeping - KPSB)

A correct process beeps at time t if at least one of the two following conditions
is true:

1. ∀t′ ∈]t − T, t[, m(t′) = 0
2. (m(t − T) �= 0) ∧ (∀t′ ∈]t − T, t[,m(t′) ≤ f)

4.2 Informal Description

The KPSB algorithm performs in three steps:

– If no process beeps, then eventually, some correct process beeps (condition
1 of the algorithm).

– Then, T time units after a beep, all correct processes beep (condition 2 of
the algorithm).

– Finally, when at least f + 1 processes beep at the same time, the correct
processes wait T time units and beep (condition 2 of the algorithm). Then,
we have synchronous beeping.

4.3 Correctness Proof

Lemma 1. There exists t ≥ t0 such that m(t) �= 0.

Proof. Suppose the opposite: ∀t ≥ t0, m(t) = 0. Then, according to condition 1
of the algorithm, a correct process eventually beeps: contradiction.

Lemma 2. There exists t ≥ t0 such that m(t) > f .

Proof. Suppose the opposite: ∀t ≥ t0,m(t) ≤ f . According to Lemma 1, there
exists a time t′ ≥ t0 such that m(t′) �= 0. Then, according to condition 2 of
the algorithm, all correct processes beep at time t′ + T , and m(t′ + T) > f :
contradiction. Thus, the result.

Theorem 2. Algorithm KPSB ensures synchronous beeping.

Proof. According to Lemma 2, there exists a time t such that m(t) > f . Then,
according to condition 2 of the algorithm, no correct process can beep in]t+T [.

Suppose that a correct process p does not beep at time t + T . Consider the
point of view of p. Then, according to condition 2 of the algorithm, there exists
t′ ∈]t, t+T [such that m(t′) > f . Thus, as no correct process beeps in]t+T [, at
least f + 1 Byzantine processes beep at time t′: contradiction. Thus, all correct
processes beep a time t + T , and m(t + T) > f .

Therefore, by induction, we achieve synchronous beeping at time t + T .

52 R. Guerraoui and A. Maurer

5 Unknown Beeping Period

We now assume that no common time period is initially known to the processes.
We thus give an algorithm where the correct processes achieve synchronous beep-
ing after agreeing on a same period. Note that, as the processes do no have any
common time metric, this can represent the case where the processes have a
different perception of time.

5.1 Preliminaries

The algorithm makes use of the following predicates.
Let t be any time, let t1 < t, and let t2 < t1. We define the following

predicates:

– C1(t, t1, t2) ≡ (m(t1) > f) ∧ (m(t2) > f) ∧ (∀t′ ∈]t2, t1[∪]t1, t[,m(t′) ≤ f)
– C2(t, t1, t2) ≡ (m(t1) �= 0) ∧ (m(t2) �= 0)

For any time t and ∀i ∈ {1, 2}, we also define the following predicates:

– nowi(t): there exists t1 < t and t2 < t1 such that Ci(t, t1, t2) is true and
t − t1 = t1 − t2

– waiti(t): there exists t1 < t and t2 < t1 such that Ci(t, t1, t2) is true and
t − t1 < t1 − t2

5.2 Algorithm (Unknown Period Synchronous Beeping - UPSB)

Let p be a correct process. Let T (p) be a totally arbitrary time period known
by p.

Process p beeps if one of the following conditions is satisfied:

1. now1(t)
2. ¬wait1(t) ∧ now2(t)
3. ¬wait1(t) ∧ ¬wait2(t) ∧ (∀t′ ∈]t − T (p), t[,m(t′) = 0)

5.3 Informal Description

The UPSB algorithm performs in three steps:

– If no process beeps, then eventually, some correct process beeps (condition
3 of the algorithm).

– If two processes beep with a time interval T , then all correct processes beep T
time units after the second beep (condition 2 of the algorithm). This ensures
that at least f + 1 processes beep at the same time.

– If at least f + 1 processes beep at two different times, then all correct pro-
cesses beep with the same time interval (condition 1 of the algorithm). Thus,
we have synchronous beeping.

To avoid collisions between the conditions, we define the algorithm such
that condition 1 has priority over condition 2, and condition 2 has priority over
condition 3. This is ensured by the conditions waiti and nowi.

Byzantine Fireflies 53

5.4 Correctness Proof

Lemma 3. Let t ≥ t0. There exists t′ ≥ t such that m(t) �= 0.

Proof. Suppose the opposite: ∀t′ > t,m(t) = 0.
Consider the point of view of a given process p.

– If there exists t1 < t and t2 < t1 such that C1(t, t1, t2) is true and t − t1 ≤
t1 − t2, then according to condition 1 of the algorithm, p beeps at time
t′ = 2t1 − t2 ≥ t.

– Otherwise, if there exists t1 < t and t2 < t1 such that C2(t, t1, t2) is true and
t − t1 ≤ t1 − t2, then according to condition 2 of the algorithm, p beeps at
time t′ = 2t1 − t2 ≥ t.

– Otherwise, according to condition 3 of the algorithm, p beeps at time t′ ∈
[t, t + T (p)].

Therefore, in all cases, p beeps at a time t′ ≥ t: contradiction. Thus, the
result.

Lemma 4. Let t ≥ t0. There exists t′ ≥ t such that m(t) > f .

Proof. Suppose the opposite: ∀t′ ≥ t,m(t) ≤ f .
Consider the point of view of a given correct process p. If there exists t1 < t

and t2 < t1 such that C1(t, t1, t2) is true, then ∀t′ > 2t1 − t2, now1(t′) is false.
Otherwise, ∀t′ ≥ t, now1(t′) is false. Thus, there exists a date t3(p) ≥ t such
that, ∀t′ ≥ t3(p), now1(t′) and now2(t′) are false. Let t3 be such that, for any
correct process p, t3 ≥ t3(p).

According to Lemma 3, there exists t4 ≥ t3 and t5 > t4 such that m(t4) �= 0
and m(t5) �= 0. Thus, at time t′ = 2t5 − t4, now3(t′) is true. As t5 > t4 ≥ t0, for
all correct processes, condition 2 of the algorithm is satisfied at time t′. Thus, all
correct processes beep at time t′, and m(t′) > f : contradiction. Thus, the result.

Theorem 3. Algorithm UPSB ensures synchronous beeping.

Proof. According to Lemma 4, there exists t ≥ t0 and t1 > t such that m(t) > f
and m(t1) > f . Let t2 be the earliest time such that t2 > t and m(t2) > f . Let
T = t2 − t.

According to the algorithm, no correct process can beep a time t′ ∈]t, t + T [.
Thus, as there is at most f Byzantine processes, ∀t′ ∈]t, t + T [, m(t) ≤ f . Thus,
as t ≥ 0, for all correct processes, condition 1 of the algorithm is satisfied at
time t + T . Thus, all correct process beep at time t, and m(t) > f .

Therefore, by induction, we achieve synchronous beeping at date t, with a
period T .

54 R. Guerraoui and A. Maurer

6 Average Beeping Period

In the two previous sections, we gave an algorithm for the case where a same
period T is initially known to all correct processes, and then one for the case
where this period is unknown, and where the correct processes must agree on
the same period. However, this can be any period.

We now consider the case where the correct processes have an approximate
knowledge of a desired period T0, and must agree on a period close to T0. This is
a more difficult problem, as correct processes are disorganized while Byzantine
processes keep their perfect coordination capabilities.

For these reasons, we consider a more restrictive setting than the previous
section. We now assume that n > 3f , and that no process beeps before a time
t0. This second assumption is justified in Section 6.1.

We assume that each correct process knows a time period T (p) which is in a
certain interval around T0: T (p) ∈ [T0, (1+ ε)T0], with ε ∈]0, 1[. The parameter ε
can be as small as we want, and represents the precision of the knowledge of the
period. We give an algorithm that ensures synchronous beeping with a period
T ∈ [(1 − ε)T0, (1 + ε)T0].

6.1 Lower Bound

First, let us justify the removal of the self-stabilizing property for this part.
We show that, if we require self-stabilization, no algorithm can ensure that the
beeping period is in the desired interval.

Theorem 4. There is no self-stabilizing algorithm ensuring synchronous beep-
ing with a period T ∈ [(1 − ε)T0, (1 + ε)T0].

Proof. Suppose the opposite. Then, for a given initial state, there exists T ′ and
t1 such as described in Theorem 1.

Let t be a time where we have synchronous beeping with a period T . Let i
be such that iT ≥ T ′. Then, all correct processes beep at time t2 = t + (i + 1)T .
Let p be a correct process and let T1 = T (p).

Now, let q be a correct process, and suppose that the content of the interval
]t2 − T ′, t2[is the initial state for q. Then, if T (q) = T1, q beeps at times t0,
t0 + T1, t0 + 2T1 . . .

Let us show that there exists T2 > T1 such that, if T (q) = T2, q does not
beep at all times t0, t0+T1, t0+2T1 . . . Suppose the opposite. Then, the beeping
period T1 is independent of T (q), and it is impossible to ensure that T1 ∈ [(1 −
ε)T0, (1+ε)T0]: contradiction. Let T2 be the smallest period having this property,
and let T3 = T2/(1 + ε).

Now, let us consider the two following situations:

1. For one correct process q, T (q) = T3. For each other correct process p, T (p) =
T2. One Byzantine process b acts like a correct process with T (b) = T2.

2. For each correct process p, T (p) = T2. One Byzantine process b acts like a
correct process with T (b) = T3.

Byzantine Fireflies 55

In situation 2, as the algorithm ensures synchronous beeping, all correct pro-
cesses beep at date t0, t0 + T1, t0 + 2T1 . . . Thus, as the two situations are indis-
tinguishable for the correct processes, each correct process p such that T (p) = T2

beeps at the same times. However, there exists a time t′ such that all correct
processes but q beep. As the behavior of q at a given time t only depends of
the time interval]t − T ′, t[, the same situation repeats each T ′ time units, and
q never beeps synchronously with other correct processes. Thus, we do not have
synchronous beeping: contradiction.

6.2 Preliminaries

Our algorithm uses the following function g as well as several predicates.
Let T and T ′ be two time periods. Let k ∈ Z be the largest rational integer

such that T (1 + ε)k ≤ T ′. Then, let g(T, T ′) = T (1 + ε)k.

Let t be any time, let t1 < t, and let t2 < t1. We define the following
predicates:

– C1(t, t1, t2) ≡ (m(t1) > f) ∧ (m(t2) > f) ∧ (∀t′ ∈]t2, t1[∪]t1, t[,m(t′) ≤
f) ∧ (∃t′ < t2,m(t′)

– C2(t, t1, t2) ≡ (m(t1) > f) ∧ (m(t2) �= 0) ∧ (∀t′ ∈]t2, t1[,m(t′) = 0) ∧ (∀t′ ∈
]t1, t[,m(t′) ≤ f)

– C3(t, t1, t2) ≡ (m(t1) �= 0) ∧ (m(t2) �= 0)

Then, for any time t and ∀i ∈ {1, 3}, we consider the following predicates:

– nowi(t): there exists t1 < t and t2 < t1 such that Ci(t, t1, t2) is true and
t − t1 = t1 − t2

– waiti(t): there exists t1 < t and t2 < t1 such that Ci(t, t1, t2) is true and
t − t1 < t1 − t2

At last, we add the two following predicates:

– now(t, T): there exists t1 < t and t2 < t1 such that C2(t, t1, t2) is true and
t − t1 = g(t1 − t2, T).

– wait(t, T): there exists t1 < t and t2 < t1 such that C2(t, t1, t2) is true and
t − t1 < g(t1 − t2, T).

6.3 Algorithm (Average Period Synchronous Beeping - APSB)

A correct process p beeps if one of the following conditions is satisfied:

1. now′
1(t)

2. ¬wait′1(t) ∧ now(t, T (p))
3. ¬wait′1(t) ∧ ¬wait(t, T (p)) ∧ now3(t)
4. ¬wait′1(t) ∧ ¬wait(t, T (p)) ∧ ¬wait3(t) ∧ (∀t′ ∈]t − T (p), t[,m(t′) = 0)

56 R. Guerraoui and A. Maurer

6.4 Informal Description

The main difficulty is that the correct processes are disorganized. For instance,
if each process p beeps T (p) time units after a given beep, the correct processes
may never beep at the same time.

To overcome this difficulty, we use a function g(T, T ′) that uses any time
measure T to split the periods T (p) in two groups (see Lemma 5). The two
possible output periods are in the interval [(1 − ε)T0, (1 + ε)T0] (see Lemma 6).
Thus, as n > 3f , a majority of correct processes beep with the same period,
which is in the desired interval.

The formalism is similar to the previous algorithm. The principle is as follows:

– Condition 4 of the algorithm ensures that a process always eventually beeps.
– Condition 3 ensures that all correct processes eventually beep at the same

time.
– Condition 2 computes the aforementioned principle.
– Condition 1 reproduces the same time period and ensures synchronous

beeping.

6.5 Correctness Proof

Lemma 5. For a given T > 0, let G(T) =
⋃

T ′∈[T0,(1+ε)T0]
g(T, T ′). Then,

|G(T)| ≤ 2.

Proof. Let k ∈ Z be the largest relative integer such that T (1 + ε)k ≤ T0. Thus,
g(T, T0) = T (1 + ε)k and T0 < T (1 + ε)k+1. Therefore, (1 + ε)T0 < T (1 + ε)k+2

and g(T, (1 + ε)T0) ≤ T (1 + ε)k+1. Then, either G(T) = {T (1 + ε)k} or G(T) =
{T (1 + ε)k, T (1 + ε)k+1)}, and |G(T)| ≤ 2.

Lemma 6. ∀T > 0 and ∀T ′ ∈ [T0, (1 + ε)T0], g(T, T ′) ∈ [(1 − ε)T0, (1 + ε)T0].

Proof. Let k be largest relative integer such that T (1 + ε)k ≤ T0. Then, T0 <
T (1 + ε)k+1 = g(T, T0)(1 + ε). As (1 − ε)(1 + ε) = 1 − ε2 < 1, 1 − ε < 1/(1 + ε),
and g(T, T0) > T0/(1 + ε) > (1 − ε)T0. Thus, g(T, T ′) ≥ (1 − ε)T0. Besides, as
g(T, T ′) ≤ T ′, g(T, T ′) ≤ (1 + ε)T0. Thus, the result.

Lemma 7. There exists t ≥ t0 such that m(t) �= 0.

Proof. Suppose the opposite: ∀t ≥ t0, m(t) = 0. Let p be a correct process.
Then, according to condition 4 of the algorithm, p beeps at time t0 + T (p):
contradiction. Thus, the result.

Lemma 8. There exists t ≥ t0 and t′ < t such that m(t) > f and m(t′) �= 0.

Proof. Suppose the opposite: there exists no such t and t′. According to
Lemma 7, there exists a time t1 such that m(t1) �= 0. Let t1 be the earliest
date such that m(t1) �= 0. According to Lemma 7, there exists t′ ≥ t0 such
that t′ > t1 and m(t′) �= 0. Then, according to condition 3 of the algorithm, all
correct processes beep at time 2t′ − t1, and m(2t′ − t1) > f : contradiction. Thus,
the result.

Byzantine Fireflies 57

Theorem 5. Algorithm APSB ensures synchronous beeping with a period T ∈
[(1 − ε)T0, (1 + ε)T0].

Proof. Let t be the earliest time such as described in Lemma 8. Let t′ be the
latest time such that t′ < t and m(t′) �= 0. According to condition 2 of the
algorithm, each correct process p beeps at time t + g(t − t′, T (p)).

According to Lemma 5 and Lemma 6, there are only two possible value T1

and T2 of g(t−t′, T (p)), and {T1, T2} ∈ [(1−ε)T0, (1+ε)T0]. Let P1 (resp. P2) be
the set of correct processes beeping at time t+T1(p) (resp. t+T2(p)). As n > 3f ,
then either |P1| > f or |P2| > f . Thus, there exists t1 ∈ {t + T1(p), t + T2(p)}
such that m(t1) > f . Let t1 be the earliest time such that t1 > t and m(t1) > f .

Let us show that T = t1 − t ∈ [(1 − ε)T0, (1 + ε)T0]. Suppose the opposite.
Then, according to condition 2 of the algorithm, no correct process beeps at time
t1. Thus, at least f + 1 Byzantine nodes beep at time t1: contradiction.

Then, according to condition 1 of the algorithm, all correct processes beep
at time t1 + T , and no correct process beeps in the time interval]t1, t1 + T [.
Therefore, by induction, we have synchronous beeping at time t1 with a period
T ∈ [(1 − ε)T0, (1 + ε)T0].

7 Synchronous Lighting

In the previous sections, we assumed that the processes could produce discrete
beeps. In this section, we assume that a process p can continuously increase
and decrease a luminosity variable l(p). We define an alternative but similar
problem (synchronous lighting) and give an algorithm for the case where the
desired period is approximately known. In this section, n > 2f .

Each correct process p knows a time period T (p) ∈ [T0, (1 + ε)T0], and holds
a variable l(p) ∈ [0, 1]. l(p) is a continuous function of time. We assume that the
time to increase (resp. decrease) l(p) from 0 to 1 (resp. 1 to 0) is at most εT0.
Let P be the set of processes. Let L(t) be the value of Σp∈P l(p) at time t.

7.1 Problem

We say that the processes achieve synchronous lighting at time t1 if there exists
t2, t3, t4 . . . such that:

1. Each time ti corresponds to a peak of luminosity: ∀i ∈ {1, 2, 3, . . . }, L(ti) ≥
n − f .

2. The delay between two consecutive times ti is approximately equal to T0:
∀i ∈ {1, 2, 3, . . . }, ti+1 − ti ∈ [T0, (1 + 2ε)T0].

3. The correct processes only produce light around times ti: for a given correct
process p, if l(p) �= 0 at time t, then there exists i ∈ {1, 2, 3, . . . } such that
|t − ti| ≤ 2εT0.

58 R. Guerraoui and A. Maurer

7.2 Algorithm (Average Period Synchronous Lighting - APSL)

Each correct process p has the following behavior:

– If there exists t′ ∈]t − T (p), t[such that L(t′) ≥ n − f , decrease l(p).
– Otherwise, increase l(p).

7.3 Correctness Proof

Lemma 9. There exists t ≥ t0 such that L(t) ≥ n − f .

Proof. Suppose the opposite: ∀t ≥ t0, L(t) < n − f . Let p be a correct process.
Then, according to the algorithm, starting from time t0 + T (p), l(p) increases.
Therefore, at time t0 + (1 + 2ε)T0, for each correct process p, l(p) = 1. Thus,
L(t0 + (1 + 2ε)T0) ≥ n − f : contradiction. Thus, the result.

Theorem 6. Algorithm APSL ensures synchronous lighting.

Proof. According to Lemma 9, there exists t ≥ t0 such that L(t) ≥ n − f .
Therefore, according to the algorithm, starting from time t, each correct process
p decreases l(p). Therefore, at time t + εT0, for each correct process p, l(p) = 0.
Then, as there are at most f Byzantine processes, ∀t′ ∈]t + εT0, t + T0[, L(t′) ≤
f ≤ n − f .

Now, let us show that there exists t1 ∈ [t + T0, t + (1 + 2ε)T0] such that
L(t1) ≥ n−f . Suppose the opposite. Let p be a correct process. Then, according
to the algorithm, starting from time t + T (p), l(p) increases. Therefore, at time
t+(1+2ε)T0, for each correct process p, l(p) = 1. Thus, L(t+(1+2ε)T0) ≥ n−f :
contradiction.

Then, L(t1) ≥ n − f , t1 − t ∈ [T0, (1 + 2ε)T0] and for each correct process p,
if t′ ∈]t + εT0, t + T0[, l(p) = 0 at time t′. Thus, if l(p) �= 0 at time t′ ∈ [t, t1],
then either |t′ − t| ≤ 2εT0 or |t′ − t1| ≤ 2εT0.

Therefore, by induction, we have synchronous lighting at time t.

8 Conclusion

We considered the problem of synchronous beeping. We assumed the presence of
Byzantine processes that can beep as often as they want. We gave synchroniza-
tion algorithms for the cases where the period is known, unknown and approxi-
mately known. We also considered an alternative continuous model.

An open question is the tightness of the condition n > 3f for the average
beeping knowledge. Also, many extensions could be made on the communication
graph and the communication delays.

Acknowledgement. This work has been supported in part by the European ERC
Grant 339539 - AOC.

Byzantine Fireflies 59

References

1. Facts about fireflies. http://www.firefly.org/facts-about-fireflies.html
2. Alistarh, D., Cornejo, A., Ghaffari, M., Lynch, N.: Firefly synchronization with

asynchronous wake-up. In: Workshop on Biological Distributed Algorithms (BDA
2014)

3. Cornejo, A., Dornhaus, A., Lynch, N., Nagpal, R.: Task allocation in ant colonies.
In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 46–60. Springer, Heidelberg
(2014)

4. Cristian, F.: Probabilistic clock synchronization. Distributed Computing 3,
146–158 (1989)

5. Daliot, A., Dolev, D., Parnas, H.: Self-stabilizing pulse synchronization inspired
by biological pacemaker networks. In: Huang, S.-T., Herman, T. (eds.) SSS 2003.
LNCS, vol. 2704, pp. 32–48. Springer, Heidelberg (2003)

6. Dolev, S.: Self-Stabilization. MIT Press (2000)
7. Gandomi, A.H., Yang, X.-S., Alavi, A.H.: Cuckoo search algorithm: a meta-

heuristic approach to solve structural optimization problems. Engineering with
Computers 29, 17–35 (2013)

8. Kopetz, H.: Clock synchronization in distributed real-time systems. IEEE Trans-
actions on Computers C–36, 933–940 (1987)

9. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM 21, 558–565 (1978)

10. Lamport, L., Shostak, R.E., Pease, M.C.: The byzantine generals problem. ACM
Trans. Program. Lang. Syst. 4(3), 382–401 (1982)

11. Lucarelli, D., Wang, I.-J.: Decentralized synchronization protocols with nearest
neighbor communication. In: SenSys, pp. 62–68 (2004)

12. Mirollo, R.E., Strogatz, S.H.: Synchronization of pulse-coupled biological oscilla-
tors. SIAM J. Appl. Math. 50, 1645–1662 (1990)

13. Nakamura, R.Y.M., Pereira, L.A.M., Costa, K.A., Rodrigues, D., Papa, J.P.,
Yang, X.-S.: BBA: a binary bat algorithm for feature selection. In: 25th
Conference on Graphics, Patterns and Images (SIBGRAPI 2012) (2012)

14. Peskin, C.S.: Mathematical aspects of heart physiology (1973)
15. Reid, C., MacDonald, H., Latty, T., Mann, R., Garnier, S.: Cellular decision-

making: how an amoeboid organism solves the two-armed bandit problem. In:
Workshop on Biological Distributed Algorithms (BDA 2014) (2014)

16. Römer, K.: Time synchronization in ad hoc networks. In: Proceedings of the 2nd
ACM International Symposium on Mobile ad hoc Networking and Computing,
pp. 173–182 (2001)

17. Simeone, O., Spagnolini, U., Bar-Ness, Y., Strogatz, S.: Distributed synchroniza-
tion in wireless networks. IEEE Signal Processing Magazine 25(5), 81–97 (2008)

18. Smith, H.M.: Synchronous flashing of fireflies. Science 82(2120), 151–152 (1935)
19. Strogatz, S.H.: Sync: The emerging science of spontaneous order, 1st edn.

Hyperion
20. Weyns, D., Holvoet, T.: Regional Synchronization for simultaneous actions in

situated multi-agent systems. In: Mař́ık, V., Müller, J.P., Pěchouček, M. (eds.)
CEEMAS 2003. LNCS (LNAI), vol. 2691, pp. 497–510. Springer, Heidelberg
(2003)

21. Yang, X.-S., Cui, Z., Xiao, R., Gandomi, A.H., Karamanoglu, M.: Swarm Intelli-
gence and Bio-Inspired Computation, Theory and Applications. Elsevier Insights
(2013)

http://www.firefly.org/facts-about-fireflies.html

Wait-Freedom is Harder Than Lock-Freedom
Under Strong Linearizability

Oksana Denysyuk(B) and Philipp Woelfel

Department of Computer Science, University of Calgary, Calgary, Canada
{oksana.denysyuk,woelfel}@ucalgary.ca

Abstract. In randomized algorithms, replacing atomic shared objects
with linearizable [1] implementations may affect probability distributions
over outcomes [2]. To avoid this problem in the adaptive adversary model,
it is necessary and sufficient that implemented objects satisfy strong lin-
earizability [2]. In this paper we study the existence of strongly lineariz-
able implementations from multi-writer registers. We prove the impossi-
bility of wait-free strongly linearizable implementations for a number of
standard objects, including snapshots, counters, and max-registers, all
of which have wait-free linearizable implementations. To do so, we intro-
duce a new notion of group valency that is useful to analyze (strongly
linearizable) implementations from registers. Furthermore, we show that
many objects, including snapshots, do have lock-free strongly linearizable
implementations. These results separate lock-freedom from wait-freedom
under strong linearizability.

1 Introduction

Linearizability [1] is the gold standard for correctness conditions of concurrent
shared memory algorithms. The main reason for its attractiveness is that replac-
ing atomic objects in a deterministic shared memory algorithm with linearizable
ones preserves the worst-case behaviour of the algorithm. This simplifies pro-
gramming concurrent code significantly, as it allows programmers to assume that
the implemented linearizable operations get completed in a single atomic step.
Unfortunately, linearizability has anomalies that can cause undesirable effects
when used with randomized algorithms [2]: probability distributions over out-
comes of an algorithm that uses atomic objects can differ significantly from those
of the same algorithm using linearizable objects. As a result, algorithm designers
cannot analyze running times or error probabilities of their algorithms under the
assumption that linearizable operations complete in a single step.

To address this problem, strong linearizability [2] has been introduced.
Roughly, strong linearizability requires operations to be linearized based on past
and present behavior rather than the future. In a system where processes are
scheduled by a strong adaptive adversary (i.e., the future schedule may depend
on all past random decisions made by processes), this requirement preserves
probability distributions over outcomes of algorithms, if atomic objects are

c© Springer-Verlag Berlin Heidelberg 2015
Y. Moses (Ed.): DISC 2015, LNCS 9363, pp. 60–74, 2015.
DOI: 10.1007/978-3-662-48653-5 5

Wait-Freedom is Harder Than Lock-Freedom Under Strong Linearizability 61

replaced with strongly linearizable ones (see Section 2 for details). Moreover,
strong linearizability is necessary to achieve this behaviour [2].

Unfortunately, little is known about whether and how strongly linearizable
objects can be implemented. Clearly, using only registers, it is impossible to
obtain wait-free or lock-free implementations of any type with consensus number
two or greater [3] under linearizability. This implies a fortiori impossibilities
under strong linearizability.

Many useful shared memory primitives, such as snapshots or counters, have
wait-free linearizable implementations even from single-writer registers. Prior to
our work it was unclear, however, whether those primitives have also wait-free
strongly linearizable implementations. For systems providing only single-writer
atomic registers,Helmi,Higham, andWoelfel [4] already showed thatmany objects
have nowait-free strongly linearizable implementations, even though they have lin-
earizable ones. In particular, under the stronger correctness condition multi-writer
registers cannot be implemented from single-writer ones. But their proof technique
does not apply to systems that readily provide atomic multi-writer registers. We
present new proof techniques that yield the following result.

Theorem 1. There are no deterministic strongly linearizable wait-free imple-
mentations of snapshots, counters, or max-registers for three or more processes,
from multi-writer registers.

We also show that, perhaps surprisingly, these types do have lock-free strongly
linearizable implementations.

Theorem 2. There exist deterministic strongly linearizable lock-free implemen-
tations of (general) counters, snapshots, and logical clock objects for any number
of processes, from multi-writer registers.

Theorems 1 and 2 provide a separation between these two progress conditions
under strong linearizability. In fact, to our knowledge, this is the first result to
show a separation of wait-free and lock-free implementations for natural types
such as snapshots and counters. Prior work [5] claims a separation between
wait-freedom and lock-freedom under linearizability for an ad hoc object called
“iterated approximate agreement”.

To prove Theorem 1, we show that a monotonic counter does not have a
wait-free strongly linearizable implementation from registers (even though it has
a wait-free linearizable implementation [6]). By reduction, this implies the other
impossibilities stated in Theorem 1. To facilitate the proof, we introduce two
new concepts, group valency and supervalency, which generalize the traditional
notion of valency used in the FLP impossibility result for consensus [7,8]. (In
a consensus algorithm, all participating processes have to agree on one of their
input values.) In the consensus impossibility proof, a history H is multivalent if
it has two different extensions, in which different values are output. Intuitively,
that means that the decision has not been determined at the end of H. To show
our result, we extend the notion of valency in two ways.

First, we consider the ability of a set G of processes to linearize the operation
op of another process p �∈ G. Roughly, v is in the G-valency of op, if processes

62 O. Denysyuk and P. Woelfel

in G executing alone can linearize op, causing op to return v. This is closely
tied to the notion of helping in wait-free implementations, where one or more
processes help another process to complete op. In the impossibility proof for
strongly linearizable monotonic counters, we apply the notion of group valency
to a group G of processes that repeatedly increment the counter while another
process p �∈ G wishes to execute op to read the counter. Using group valency,
we show that if processes in G try to help p, they end up causing p to execute
forever, thus violating wait-freedom.

Second, we introduce the notion of supervalent histories. In the traditional
FLP proof, a multivalent (or bivalent) history is one in which the consensus
output is undetermined (so both decisions of 0 or 1 are possible). We extend
this notion to a history in which, not only the outcome of some operation op by
p �∈ GF is undetermined, but processes in G can execute an unbounded number
of steps alone without fixing the outcome of op (i.e., without linearizing op). This
is called a G-supervalent history. Intuitively, in executing an unbounded number
of steps, processes in G can influence the future return value of op to be any
of an unbounded number of possibilities (e.g., as processes in G increment the
counter, the future return value of the operation op that reads the counter can
be arbitrarily high). We show that a supervalent history may remain supervalent
forever, so that op can never return the correct value of the counter. The notion of
supervalent histories is more powerful than the notion of multivalent histories for
our impossibility result: we found algorithms for which it is impossible to show
that a multivalent history can remain multivalent as op continues to execute.

Theorem 2 identifies several common primitives that have lock-free strongly
linearizable implementations from registers. To prove this, we first define a class
of versioned types, which are types that maintain a monotonic version number
that increases for each update operation. Many objects of the standard types
(snapshots, max-registers, counters, logical clocks) can be easily extended into
objects of a versioned type by incorporating a counter as the version number.
Moreover, many lock-free linearizable implementations of those types have the
additional property that update operations consist of a single atomic step. We
then transform such linearizable implementations into strongly linearizable lock-
free ones. This transformation uses a simple generalization of a max-register,
which admits a strongly linearizable lock-free implementation [4].

2 Preliminaries

We consider the standard shared memory model, where n asynchronous pro-
cesses with distinct IDs in {0, . . . , n−1} communicate by accessing shared atomic
multi-reader multi-writer registers. Each register R has initially value χ, and sup-
ports operations R.read(), which returns the value of R, and R.write(), where
R.write(x) changes the value of R to x and returns nothing.

Atomicity and Linearizability. A type specifies operations, and the outcome of
those operations in any sequential execution. An object is obtained by imple-
menting the operations of type, by providing algorithms for them. A process p

Wait-Freedom is Harder Than Lock-Freedom Under Strong Linearizability 63

executes an operation op by executing the steps of the algorithm beginning with
an invocation step and ending with a response step. Other processes can be tak-
ing steps during the interval in which p is executing the method for o and these
steps may interleave. This sequence of steps that results as processes execute
their program is called a history. We restrict our attention to histories that can
arise in an execution. Consider an object O and the histories that can arise as
processes execute operations on O. A method of O is atomic, if it consists of a
single shared memory step1. In this case, we may assume that the invocation
and response step of the method occur at the same time as the shared memory
step. An object is atomic, if all its methods are, and the histories that can arise
by processes executing operations on such an object are sequential.

The behaviour of a type is given by its sequential specification, which is a
set of sequential histories that are allowed to arise from atomic objects of that
type. An implemented history on O arises when the operations on O may be
non-atomic. The interpretation of an implemented history H, denoted Γ (H),
is formed by removing from H all the steps of every method call except the
invocation and response steps. Let H be an implemented history arising from
an execution of operations on O. Operation op completes in H if H contains
the invocation and response of op. Cmp(H) denotes the set of operations that
complete in H. Operation op is pending in H if H contains the invocation but
not the response of op. For implemented operations op1 and op2, op1 happens-
before op2 in H, denoted op1≺op2, if the response of op1 precedes the invocation
of op2 in H. Interpreted history H is linearizable if, for some subset S of pending
operations in H, there is a sequential history Hseq that contains each operation in
Cmp(H)∪S exactly once, is in the sequential specification of O, and preserves ≺.
Such Hseq is linearization of H. An implementation of O is linearizable if every
history that can arise from the implementation is linearizable. The property
that makes linearizability attractive is the following: If A is a deterministic
algorithm that uses objects of some type T , then for every history H that can
arise from A, the linearization of Γ (H) can arise from the same algorithm using
atomic objects of type T instead. But linearizability may not preserve probability
distributions over outcomes, if A is a randomized algorithm. Thus, linearizable
implementations are less suitable to accurately analyze the expected running
times or error probabilities of randomized algorithms.

Strong Linearizability. In a randomized algorithm, processes can use local coin
flips to decide which steps to execute in their program. The type and object of
an operation may influence the speed with which an operation is executed, so
the order in which processes take steps is indirectly influenced by their random
decisions. Adversary models are used to capture that influence. One of the most
common adversaries is the strong adaptive one. Informally, the strong adaptive
adversary can look at the entire past execution, including the result of all coin
flips made by processes, to decide which process will take the next step.

1 Sometimes, however, in literature atomicity is defined to be the same as linearizabi-
lity [9].

64 O. Denysyuk and P. Woelfel

Let close(H) denote the prefix closure of a set of histories in H. That is,
G∈close(H) if and only if there is a sequence S of invocation and response steps
such that G ◦ S∈H. (Operation ◦ denotes concatenation.) A function f that
maps a set H of histories to a set H′ of histories, is prefix preserving, if for any
two histories G,H∈H, where G is a prefix of H, f(G) is a prefix of f(H).

Definition 3. [2]A set of histories H is strongly linearizable if there exists a
function f mapping histories in close(H) to sequential histories, such that for
any H ∈ close(H), f(H) is a linearization of the interpreted history Γ (H), and
f is prefix preserving. A function satisfying these properties is called a strong
linearization function for H.

Intuitively, strong linearizability requires that the linearization points of method
calls are determined as the history is created. As soon as a step is taken, whether
or not a particular method is linearized at that step is uniquely determined by
the history up to this step; it cannot be influenced by future steps.

We say an object is strongly linearizable, if the set of histories that can
be obtained by executions of operations on that object is strongly linearizable.
Golab et al. [2] showed that strongly linearizable objects can serve the same
purpose for randomized algorithms under a strong adaptive adversary model,
as linearizable objects do for deterministic algorithms: Consider a randomized
algorithms A and an adversary Z. For an infinite vector c = (c1, c2, . . .) over
{0, 1}, let HZ,A,c be the unique history obtained if algorithm A is scheduled by
adversary Z, and the sequence of coin flips of HZ,A,c is a prefix of c (or equals c
if the history is infinite). Now suppose A is a randomized algorithm using atomic
objects of some type, and A′ is obtained by replacing those atomic objects with
strongly linearizable ones of the same type. Golab et al. proved that for every
strong adversary Z ′ there exists a strong adversary Z, such that for every coin
flip vector c, Γ (HZ,A,c) and Γ (HZ′,A′,c) have a common linearization. Moreover,
strong linearizability is necessary for this: If for some adversary Z ′ there exists an
adversary Z such that Γ (HZ,A,c) and Γ (HZ′,A′,c) have a common linearization
for every coin flip vector c, then the set of all histories Γ (HZ′,A′,c) obtained from
all possible coin flip vectors c is strongly linearizable. Hence, atomic objects can
be replaced with implemented ones without changing the probability distribution
over linearizations only, if the set of possible histories that can be obtained from
any possible strong adversary is strongly linearizable.

Thus, strong linearizability is the correctness condition of choice for random-
ized algorithm against the strong adaptive adversary.

Configurations, Schedules, and Progress Conditions. A configuration C of a sys-
tem with n processes and m registers is a tuple (s1, . . . , sn, v1, . . . , vm), which
denotes that process pi, 1 ≤ 1 ≤ n, is in state si, and register rj , 1 ≤ j ≤ m, has
value vj . The initial configuration is denoted by C0. We usually assume with-
out mentioning it explicitly that histories are obtained by processes taking steps
starting in C0.

A schedule σ is a (possibly infinite) sequence of process indices. Let C be a
configuration resulting from execution of a finite history H. H�σ denotes a his-

Wait-Freedom is Harder Than Lock-Freedom Under Strong Linearizability 65

tory resulting from executing a sequence of steps in σ beginning in configuration
C and moving through successive configurations one at a time. At each step,
next process p indicated in σ takes the next step in its deterministic program.
If σ is a sequence of length one, we say σ=p. If σ and π are finite schedules then
σπ denotes the concatenation of σ and π. Let P be a set of processes, and σ a
schedule. We say σ is P -only if only indices of processes in P appear in σ.

Configurations C1=(s1, . . . , sn, r1, . . . , rm) and C2=(s′
1, . . . , s

′
n, r′

1, . . . , r
′
m)

are indistinguishable to process pi, denoted C1
pi∼ C2, if si=s′

i and rj=r′
j for

1≤j≤m. If S is a set of processes, and C1
p∼ C2 for every process p ∈ S, then

we write C1
S∼ C2; if S={1, . . . , n} is the set of all processes, we simply write

C1 ∼ C2. If C1
p∼ C2, then for any S-only schedule σ, configurations resulting

from execution of σ from C1 and C2 are indistinguishable to every process in S.
Two histories H1 and H2 are indistinguishable, denoted H1 ∼ H2, if H1 and H2

generate indistinguishable configurations.
An implementation is lock-free if, for any history H and every infinite sched-

ule σ, there exists a process p with a pending operation op in H, and p takes
infinitely many steps in σ, then op completes in a finite number of steps in his-
tory H�σ. An implementation is wait-free [7] if, in any history, any process with
a pending operation completes in a finite number of steps, regardless of the steps
taken by other processes.

Some Common Types. We refer to the types monotonic counters, (general)
counters, max-registers, and snapshots, as defined below: A monotonic counter
has two operations, increment() and read(), where increment() increases the
counter value by one, and read() returns the counter value. A (general) counter
is defined similarly, but the increment() operations takes an argument, x, and
increases the value of the counter by x. A max-register has two operations,
maxWrite(v) and read(), such that read() returns the largest value written by
any preceding maxWrite operation. A snapshot object stores n segments, one
for each process. It supports two operations, update(v) and scan(). Operation
update(v), when executed by process i, changes the value of the i-th segment to
v, and scan() returns a vector of n elements containing the n segments.

3 Impossibilities

We show that there is no strongly linearizable wait-free implementation of a
monotonic counter from registers. Assume by contradiction that there exists
such an implementation. We will consider an execution with three processes: r,
w0, and w1. We call r the reader and wi the writers. Initially, r starts executing
read(), while w0 and w1 start executing increment(). If process w0 or w1 finishes
executing increment(), it invokes the operation again and again in an infinite
loop. We will construct an infinite fair schedule, i.e., a schedule in which every
process takes infinitely many steps, such that r never finishes its read(). This
contradicts the assumption that the implementation is wait-free.

66 O. Denysyuk and P. Woelfel

3.1 Group Valency and Super Valency

We now define the notions total valency and group valency. In the definitions,
op denotes an operation, S a set of processes, and H a finite history.

Definition 4 (Total Valency). The total valency of H (w.r.t. op) is the set
of values ν such that, for some finite schedule σ, op returns ν in history H�σ.

In the proofs, op is a fixed operation so we often omit references to it. To prove
the impossibility, it will be critical to consider the possible values the reader may
return if it gets linearized by the writers. To facilitate this we define the notion
of group-valency.

Definition 5 (Group Valency). The S-valency of H (with respect to op) is
the set of values ν for which there exists an S-only schedule σ, such that in
f(H�σ) op returns ν.

Some histories have the property that all sufficiently long S-only schedules will
linerize op, even if op is not an operation by a process in S. These are called
S-closed. Histories that are not S-closed are called S-supervalent.

Definition 6 (Super Valency). We say that H is S-closed (w.r.t. op) if there
exists an integer K ≥ 0 such that, for every S-only schedule σ of length at least
K, op appears in f(H�σ). We say that H is S-supervalent (w.r.t. op) if H is
not S-closed, that is, for every K, there is an S-only schedule σ of length at least
K such that op does not appear in f(H�σ).

The above definitions immediately imply the following:

Observation 7. (1) If H is S-closed then the S-valency of H is not empty.
(2) All S-only extensions of an S-closed history are S-closed. (3) From an S-
supervalent history H, there exists an S-only non-empty schedule σ such that
H�σ is also S-supervalent. (4) For any finite schedule σ, the S-valency of H�σ
is contained in the S-valency of H.

3.2 Impossibility Proof

In the proof we analyze the possible outputs of the read() operation using the
concepts of group valency and supervalency when the group is the set of writers.
Specifically, we fix op to be the read() operation of r, and we fix S to be the set
of both writers {w0, w1}. For a finite history H, we denote by V (H) the total
valency of H (w.r.t. op), and we denote by W(H) the S-valency of H (w.r.t.
op). Because S is the set of writers, we often use the terms writers-valency,
writers-supervalent, and writers-closed to refer to the concepts of S-valency,
S-supervalent, and S-closed defined above, respectively.

By the standard argument we obtain the following.

Lemma 8. Consider some valid histories H and H ′:

Wait-Freedom is Harder Than Lock-Freedom Under Strong Linearizability 67

(a) If H is writers-supervalent then read() is not in f(H).
(b) If |W(H)| ≥ 2 then read() is not in f(H).
(c) If H ∼ H ′ then V (H) = V (H ′) and W(H) = W(H ′).
(d) If H is writers-closed and H

wi,r∼ H ′, for some i∈{0, 1}, then
W(H)∩W(H ′)�=∅.
In the following lemma we show that if history H is writers-closed and

|W(H)| ≥ 2, then there exists a step by a writer wi such that |W(H�wi)| ≥ 2.

Lemma 9. If H is writers-closed and |W(H)| ≥ 2, then for some i∈{0, 1},
H�wi is writers-closed and |W(H�wi)| ≥ 2.

Proof. By Lemma 8(b), since |W(H)| ≥ 2, read is not in f(H). Suppose H is
writers-closed. From Observation 7, for all writers-only schedules σ, H�σ is also
writers-closed. By contradiction, suppose that for all i ∈ {0, 1}, |W(H�wi)| ≤
1. By Observation 7, W(H�wi) is not empty. Thus, W(H�w0) = {x0} and
W(H�w1) = {x1} for two distinct x0, x1 ∈ W(H).

Case 1. For some i∈{0, 1}, wi is poised to read in H. Then H�wi
r,w1−i∼ H

and so H�wiw1−i
r,w1−i∼ H�w1−i. However, W(H�wiw1−i) ⊆ W(H�wi) and

W(H�w1−i) ∩ W(H�wi) = ∅, and so W(H�w1−i) ∩ W(H�wiw1−i) = ∅. This
contradicts Lemma 8(d).
Case 2. Both writers are poised to write to different registers. Then H�w0w1 ∼
H�w1w0. Since W(H�w0) ∩ W(H�w1) = ∅, W(H�w0w1) ∩ W(H�w1w0) = ∅.
This contradicts Lemma 8(d).
Case 3. Both writers are poised to write to the same register. Then H�w0w1

r,w1∼
H�w1. Since W(H�w0) ∩ W(H�w1) = ∅, W(H�w0w1) ∩ W(H�w1) = ∅. This
contradicts Lemma 8(d). �

The above lemma implies that the writers-valency of writers-closed histories
contains only one value.

Lemma 10. If history H is writers-closed, then |W(H)| = 1.

In the following we show that, from a writers-supervalent history H, no
writers-only schedules can linearize the read operation, i.e. W(H) = ∅. To proof
is by contradiction, assuming that W(H) contains an element x. In the following
lemma, we first show that if such a writers-supervalent history H exists, then we
can extend that history to a history H ′, so that the writers-valencies obtained
by a single step of w0 respectively w1 are distinct.

Lemma 11. If there exists a writers-supervalent history H such that x ∈ W(H),
then there is a finite writers-only schedule σ and an index j ∈ {0, 1}, such that

(a) H�σwj is writers-supervalent and x �∈ W(H�σwj); and
(b) H�σw1−j is writers-closed and W(H�σw1−j) = {x}.
In particular, W(H�σwj) ∩ W(H�σw1−j) = ∅.

68 O. Denysyuk and P. Woelfel

Proof. Let σ be a longest possible writers-only schedule such that for each prefix
σ′′ of σ, history H�σ′′ is writers-supervalent and x ∈ W(H�σ′′).

First we prove that σ is finite. Suppose it is not. Then in H�σ at least one of
the writers takes infinitely many steps. By wait-freedom that writer completes
infinitely many increment operations in H�σ. Let σ′ be some finite prefix of σ
such that H�σ′ contains at least x+1 complete increment operations. By the
construction of σ, H�σ′ is writers-supervalent and x ∈ W(H�σ′). From writers-
supervalency it follows that the read cannot appear in f(H�σ′), while on the
other hand this linearization contains at least x+1 increment operations. Since
f is prefix preserving, if the read appears in f(H�σ′λ) for any schedule λ, then
it must be preceded by at least x+1 increment operations, and thus return a
value of at least x+1. Hence, x �∈ W(H�σ′), contradicting the construction of σ.

We conclude that σ is finite. In particular, for every writer wi, i∈{0, 1},
either H�σwi is writers-closed or x/∈W(H�σ). According to Observation 7, the
extensions H�σw0 and H�σw1 cannot be both writers-closed. Hence, there is
an index j∈{0, 1} such that H�σwj is writers-supervalent and H�σw1−j is
writers-closed. Since H�σwj is writers-supervalent, we know from the defini-
tion of σ that x/∈W(H�σwj). But since x∈W(H�σ)=W(Hσw0)∪W(H�σw1),
it must be in W(H�σw1−j). Because H�σw1−j is writers-closed, we obtain
from Lemma 10 that W(H�σw1−j)={x}. Hence, (a)-(b) are satisfied, and thus
W(H�σwj)∩W(H�σw1−j)=∅. �

Lemma 12. If history H is writers-supervalent, then W(H) = ∅.
Proof. Suppose that H is writers-supervalent and assume by contradiction that
there exists some value ν ∈ W(H). By Lemma 8(a), read is not in f(H). By
Lemma 11, there is an extension H ′ of H and an index i∈{0, 1} such that

H ′�w1−i is writers-closed and W(H ′�w1−i) ∩ W(H ′�wi) = ∅. (1)

Let R1−i and Ri be the registers that w1−i and wi are poised to access in H ′.

Case 1. There is an index j∈{0, 1} such that in H ′, wj is poised to read
Rj . Then H ′�wj

r,w1−j∼ H ′ and so H ′�wjw1−j
r,w1−j∼ H ′�w1−j . Now, either

H ′�wjw1−j or H ′�w1−j is writers-closed (depending on whether j=i or
j=1−i). Thus, by Lemma 8(d), W(H ′�wjw1−j)∩W(H ′�w1−j)�=∅. This contra-
dicts Eq. (1).
Case 2. w0 is poised to write to R0 in H ′, w1 is poised to write to R1 and
R0 �=R1. Then H ′�w0w1∼H ′�w1w0. Also, either H ′�w0w1 or H ′�w1w0 is writers-
closed. By Lemma 8(d), W(H ′�w0w1)∩W(H ′�w1w0) �= ∅, contradicting Eq. (1).
Case 3. w0 is poised to write to R0 in H ′, w1 is poised to write to R1

and R0=R1. Then H ′�w0w1
r,w1∼ H ′�w1. Now, either H ′�w0w1 or H ′�w1

is writers-closed (depending on whether i=1 or i=0). By Lemma 8(d),
W(H ′�w0w1)∩W(H ′�w1)�=∅. This contradicts Eq. (1).

In all cases the assumption that ν∈W(H) is contradicted. Hence, W(H)=∅. �

Wait-Freedom is Harder Than Lock-Freedom Under Strong Linearizability 69

Lemma 13. Let H be a writers-supervalent history and S ⊆ {w1, w2}. Then:

(a) For any integer y and any infinite S-only schedule γ, there is a prefix γ′ of γ
such that for every schedule λ, either W(H�γ′λ)=∅ or min(W(H�γ′λ))>y.

(b) If x ∈ W(H�r), then there exists a finite S-only schedule σ, such that x ∈
W(H�σr) and x �∈ W(H�σwir) for any wi ∈ S.

Proof. We first prove Part (a). In H�γ at least one of the writers executes
infinitely many steps, and thus by wait-freedom infinitely many increment oper-
ations. Hence, there is a finite prefix γ′ of γ such that in H�γ′ at least y+1
increment operations complete. By Lemma 12, W(H) = ∅, and since γ′ is
writers-only, the read does not linearize in H�γ′. I.e., f(H�γ′) does not contain
a read, while it contains at least y+1 increment operations. Since f is prefix-
preserving it follows that if the read appears in f(H�γ′λ) for any schedule λ,
then it is preceded by at least y+1 increment operations and thus returns a
value of at least y+1. Hence, either W(H�γ′λ) = ∅ or min W(H�γ′λ) ≥ y+1.

For Part (b), we let σ be a longest possible S-only schedule with x∈W(H�σr).
From Part (a) (with λ=r) we obtain that σ is finite. Hence, by construction
x∈W(H�σr) and x�∈W(H�σwir) for any wi∈S. This completes the proof. �

Below we state and prove our main lemma. It says that from any writers-
supervalent history H we can construct a finite schedule σ, which includes at
least one step by r, such that H�σ is writers-supervalent.

Lemma 14. If a history H is writers-supervalent, then there exists a finite
writers-only schedule σ, such that H�σr is also writers-supervalent.

Proof. Let H be a writers-supervalent history. For the purpose of a contradiction,
we suppose that for every finite writers-only schedule σ, W(H�σr) is writers-
closed. By Lemma 10, for every such σ, |W(H�σr)|=1.

By Lemma 13 (b) there exists a writers-only schedule yielding an extension
H ′ of H such that W(H ′�r) = {x}, and x �∈ W(H ′�w0r) ∪ W(H ′�w1r). By
our assumption H ′�wir is writers-closed for any i∈{0, 1}, and by Lemma 10,
|W(H ′�wir)| = 1. Thus, there exist values y0, y1 such that

∀i∈{0, 1} : W(H ′�wir) = {yi} �= {x} = W(H ′�r). (2)

In particular, for any schedule λ, by W(H ′�rλ) ⊆ W(H ′�r), we have

∀i∈{0, 1} : W(H ′�wir) ∩ W(H ′�rλ) = ∅. (3)

We look at the steps that the processes are poised to take in H ′. Let R0,
R1, and R2 be registers accessed by w0, w1, and r respectively. Recall that by
assumption all extensions H ′ ◦ H ′′ of H ′ are writer-closed provided that r takes
a step in H ′′.

Case 1. There is an index i∈{0, 1} such that in H ′ process wi is poised to
read Ri. Then, H ′�r

r,w1−i∼ H ′�wir, and thus by Lemma 8(d), W(H ′�r) ∩
W(H ′�wir) �= ∅. This contradicts (3).

70 O. Denysyuk and P. Woelfel

Case 2. Both w0 and w1 are poised to write in H ′:
Case 2.1. There is an index i∈{0, 1} such that Ri �= R2. This means that
H ′�wir∼H ′�rwi and thus by Lemma 8(d), W(H ′�wir) ∩ W(H ′�rwi)�=∅, which
contradicts (3).
Case 2.2. All three processes access the same register. I.e., there exists register
R such that for any i ∈ {0, 1, 2}, R = Ri.
Case 2.2.1. r is poised to write in H ′. Then, H ′�w0rw1 ∼ H ′�rw0w1 and thus
by Lemma 8(d), W(H ′�w0rw1) ∩ W(H ′�rw0w1) �= ∅. This contradicts (3).
Case 2.2.2. r is poised to read in H ′. We will construct two indistinguishable
histories, in which r outputs different values. This establishes a contradiction.
Recall that by our assumption, for any writers-only schedule σ, H ′σr is writers-
closed and thus by Lemma 10, |W(H ′σr)|=1. Then according to Lemma 13 (a),
there is a w1-solo schedule wk1

1 of length k1 such that for any schedule λ,
the unique value in W(H ′�wk1

1 λr) is larger than y0. Let z be the value in
W(H ′�wk1

1 r). Applying Lemma 13 (b), we obtain a w1-solo schedule wk2
1 of

length k2 such that for k=k1+k2 we have z∈W(H ′�wk
1r) and z �∈W(H ′�wk+1

1 r).
In particular,

W(H ′�wk
1r) ∩ W(H ′�wk+1

1 r) = ∅. (4)

We now consider the histories
H1 = H ′�wk

1w0rw1 and H2 = H ′�w0rw
k+1
1 .

Recall that by the construction above, for any schedule λ, the unique value in
W(H ′�wk1

1 λr) is larger than y0. In particular, this is true for λ=wk2
1 w0, and

thus W(H ′�wk
1w0r}=W(H1)={z′}, for some integer z′>y0. On the other hand,

by (2), W(H ′ · w0r)={y0}, and thus W(H2)={y0}. Therefore, W(H1)�=W(H2).
We now show that H1∼H2. This contradicts Lemma 8(d) according to which

W(H1)=W(H2).
First, observe that all processes take equally many steps after H ′. By the

assumption of Case 2, the first step by each process w0 and w1 following H ′ is
a write to R, while the first step by r is a read of R. Hence, in both histories in
their single steps following H ′, process w0 writes some value ν to R and process
r reads that value ν.

Observe that w1 is poised to write to R in H ′�wk
1 . Otherwise, the steps w1 and

r would be commutative and thus H ′�wk+1
1 r

r,w1∼ H ′�wk
1rw1. Then Lemma 8(d)

would imply W(H ′�wk+1
1 r)∩W(H ′�wk

1rw1)�=∅, which contradicts (4). Since the
first step by w1 is also a write to R, in both histories following H ′, in each single
step process w1 either writes to R, it reads from R what itself has written to R,
or it accesses a register other than R. In any of those cases, w1 cannot distinguish
between H1 and H2. Thus, we conclude that H1∼H2.

Hence, the assumption that from a writers-supervalent history, all finite
schedules {w0, w1}∗r lead to writers-closed histories, leads to contradictions in
all cases. This completes the proof of the lemma. �

Lemma 15. Any history H, in which r has taken no steps, is writers-
supervalent.

Wait-Freedom is Harder Than Lock-Freedom Under Strong Linearizability 71

Proof. For the purpose of a contradiction assume that H is writers-closed. By
Lemma10 there is an integer x ≥ 0 such that W(H) = {x}. Then there is a
writers-only schedule γ such that f(H�γ) contains a read operation that returns
x. By wait-freedom, there is a w0-only schedule σ such that in H�γσ process
w0 completes at least x+1 increment operations. Again by wait-freedom, for a
long enough r-only schedule λ, the read operation returns in history H�γσλ. In
that history, the read is invoked after at least x+1 increment operations com-
pleted, so in f(H�γσλ) the read also appears only after at least x+1 increment
operations. But then f(H�γσ), where the read appears after only x increment
operations, cannot be a prefix of f(H�γσλ), contradicting the prefix-preserving
property of f . �

Theorem 16. There is no (deterministic) strongly linearizable wait-free imple-
mentation of a monotonic counter for three processes, from registers.

Proof. Suppose by contradiction that there exists such a wait-free strongly lin-
earizable implementation of a counter. Consider an algorithm, where processes
w0 and w1 execute repeated increment operations in an infinite loop and process
r executes a single read operation.

We prove by induction that for any integer k ≥ 0 there is a writers-
supervalent history H0 ◦ H1 . . . ◦ Hk in which r takes at least k steps. We let H0

be the empty history. By Lemma 15, H0 is writers-supervalent. Now suppose
we constructed a writers-supervalent history H0 ◦ . . . ◦ Hk in which r takes at
least k steps. By Lemma 14, there is a schedule σ such that r∈σ and history
H0 ◦ . . .◦Hk ◦Hk+1:=H0 ◦ . . .◦Hk�σ is also writers-supervalent. In that history r
takes at least k+1 steps, and the inductive hypothesis follows. Since H0 ◦ . . .◦Hk

is writers-supervalent, the read is pending in this history, as it does not appear
in f(H0 ◦ . . .◦Hk). Hence, there exists a history in which r takes infinitely many
steps but never finishes its read operation. This contradicts wait-freedom. �

Strong linearizability is a composable property [2]. Hence, if there is a
strongly linearizable implementation of a type T from atomic base objects of
types in a set B, then T also has a strongly linearizable implementation from
strongly linearizable objects of types in B. Strongly linearizable monotonic coun-
ters can be implemented from atomic (and thus from strongly linearizable) snap-
shot objects and general counters. Thus, Theorem 1 for snapshots and general
counters follows from Theorem 16.

Now suppose there is a wait-free strongly linearizable max-register R. In
Section 4, we give an algorithm that uses a linearizable object V of a type T from
a certain class of types together with R, and yields a strongly linearizable object
Vstrong of type T . The algorithm itself is wait-free, so if V and R are wait-free,
then so is Vstrong. We can apply this algorithm, using for V a standard wait-
free implementation of a monotonic counter with atomic increment operations.
Using that we obtain a wait-free strongly linearizable monotonic counter Vstrong,
contradicting Theorem 16. As a consequence, the assumption that there is a wait-
free strongly linearizable max-register R is wrong. This completes the proof of
Theorem 1.

72 O. Denysyuk and P. Woelfel

4 Lock-Free Implementations

We now explain how to obtain several lock-free strongly linearizable objects from
atomic multi-writer registers. These objects include monotonic counters, snap-
shot objects, general counters, and logical clocks. We first define the notion of
a versioned object, which is an object that increases a version number when-
ever it changes the state of the object. We give several examples of linearizable
lock-free versioned objects including counters and snapshot objects. All those
implementations have in common that update operations are atomic, and only
the read operations are non-atomic. Then, we show how to transform any lock-
free linearizable versioned object with atomic update operations into a lock-free
strongly linearizable object of the same type. This transformation yields many
lock-free strongly linearizable implementations from multi-writer registers.

Versioned Objects. Many objects are easy to augment with version numbers that
increase with every successful update operation. In the following we define such
versioned variants of those types formally.

We consider a class T of types that support two operations, read() and
update(v). The sequential specification of each type in the class is uniquely
defined by the state space Q of the sequential object of that type, its initial
state, q0, and two functions, f and g. For the following discussion, the initial
state, q0, is not relevant, so we ignore it, and denote such a type as TQ,f,g.
A read() operation on the sequential object does not change the state of the
object, but returns f(q), where q is its current state. The operation update(v)
changes the state of the object from its current state, s, to g(s), and does not
return anything. It is easy to see that snapshots, counters, and max-registers
are all types in T . For example, the monotonic counter is the type TQ,f,g with
Q = N ∪ {0}, f(x) = x, and g(x) = x + 1.

Let TQ,f,g be some type in T . A type TQ′,f ′,g′ is called a versioned variant
of type T , if Q′ = Q × N, f ′(x, v) = (f(x), v), and g′(x, v) = (g(x), v′), where
v′ > v. I.e., the versioned variant of type T stores exactly the same information
as T in addition to a version number, v. That version number gets returned
by read operations, and increased with every update operation. For example, a
versioned variant of the monotonic counter is the type TQ′,f ′,g′ , where Q′=N×N,
f(x, x)=(x, x), and g(x)=(x+1, x+1).

It is easy to obtain linearizable versioned variants of some popular types,
including snapshots, by embedding in each object an internal counter that gets
incremented atomcially with each update operation. The lock-free linearizable
snapshot implementation by [6] has the property that update operations are
atomic. Hence, for the versioned variants of all types mentioned above, in par-
ticular snapshots, (general) counters and logical clocks, we obtain lock-free lin-
earizable implementations from registers, with atomic update operations.

Making Linearizable Versioned Objects Strongly Linearizable. We show that any
lock-free linearizable implementation of a versioned object can be transformed
into a lock-free strongly linearizable one, provided that update operations of the

Wait-Freedom is Harder Than Lock-Freedom Under Strong Linearizability 73

versioned object are atomic. For that we use the lock-free strongly linearizable
max-register implementation of Helmi et al. [4]. We augment the integer value
stored in a max-register with some additional information.

An augmented max-register stores a pair (x, y), where x ∈ N ∪ {0}, and y
is from some arbitrary domain D. It supports the operations maxRead() and
maxWrite(x, y). If the state of the object is (x, y), then a maxRead() returns
(x, y), and maxWrite(x′, y′) changes the object’s state to (x′, y′) provided that
x′ > x. Otherwise, the object’s state remains unchanged.

Existing linearizable max-register implementations from registers (e.g., [10])
can be easily transformed into linearizable augmented max-register objects. This
is also true for the lock-free strongly linearizable max-register implementation
of Helmi et al. [4].

We now give an implementation of an object Vstrong of type T ∈ T , from an
implementation V of a versioned variant of T and an augmented max-register R.
Object Vstrong is strongly linearizable, provided that R is strongly linearizable,
V is linearizable, and the update operations of V are atomic.

The idea is simple: to execute Vstrong.update(x), a process first updates V
using V.update(x), and then reads V to obtain the pair (y, vno), where vno is
the current version number of the object. Finally, it max-writes the pair (vno, y)
into the augmented max-register R. To read object Vstrong, a process simply
returns the augmented value read from the max-register R.

Lemma 17. If R is strongly linearizable, V is linearizable, and operations
V.update are atomic, then Vstrong is strongly linearizable.

The implementation of Vstrong uses only wait-free code in addition to the
operations on V and R. Hence, if V and R are lock-free, then so is Vstrong. As
mentioned, there exists a lock-free implementation of augmented max-registers.
Thus, we obtain the following theorem, which immediately implies Theorem 2.

Theorem 18. Let T be a type in T , and T ′ a versioned variant of T . If T ′ has
a lock-free linearizable implemenation with atomic update operations, then T ′

also has a lock-free strongly linearizable implementation.

5 Discussion

In this paper, we proved that several important types, such as snapshots, coun-
ters, and max-registers, have lock-free, but not wait-free, strongly linearizable
implementations from registers. The negative results show that in a system with
atomic registers, strong linearizability is significantly harder to obtain than lin-
earizability.

On the other hand, recall that strong linearizability is necessary to preserve
probability distributions when replacing atomic objects with implemented ones
in randomized algorithms scheduled by a strong adaptive adversary [2]. There-
fore, it remains an important task to find ways of implementing synchronization
primitives that are robust for randomized algorithms. This can be achieved, for
example, by using stronger base objects, such as compare-and-swap. However,

74 O. Denysyuk and P. Woelfel

care needs to be taken to ensure that the system that provides those base objects
(e.g., the hardware) ensures that they are at least strongly linearizable. Another
way could be to use randomized wait-free implementations of objects. Note that
strong linearizability has been defined only for deterministic objects (whereas
the algorithms that use those objects can be randomized). Additional work is
needed to formalize an equivalent notion for randomized objects.

Acknowledgments. This research was undertaken, in part, thanks to funding from
the Canada Research Chairs program and from the Discovery Grants program of the
Natural Sciences and Engineering Research Council of Canada (NSERC).

We thank Hagit Attiya for the useful discussion on wait-freedom versus lock-freedom.

References

1. Herlihy, M.P., Wing, J.M.: Linearizability: A correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12, 463–492 (1990)

2. Golab, W., Higham, L., Woelfel, P.: Linearizable implementations do not suffice
for randomized distributed computation. In: Proceedings of the Forty-third Annual
ACM Symposium on Theory of Computing, STOC 2011, pp. 373–382. ACM, New
York (2011)

3. Herlihy, M.: Wait-free synchronization. ACM Trans. Program. Lang. Syst. 13,
124–149 (1991)

4. Helmi, M., Higham, L., Woelfel, P.: Strongly linearizable implementations: possibil-
ities and impossibilities. In: Proceedings of the 2012 ACM Symposium on Principles
of Distributed Computing, PODC 2012, pp. 385–394. ACM, New York (2012)

5. Herlihy, M.: Impossibility results for asynchronous pram (extended abstract). In:
Proceedings of the Third Annual ACM Symposium on Parallel Algorithms and
Architectures, SPAA 1991, pp. 327–336. ACM, New York (1991)

6. Afek, Y., Dolev, D., Attiya, H., Gafni, E., Merritt, M., Shavit, N.: Atomic snap-
shots of shared memory. In: Proceedings of the Ninth Annual ACM Symposium
on Principles of Distributed Computing, PODC 1990, pp. 1–13. ACM, New York
(1990)

7. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. J. ACM 32, 374–382 (1985)

8. Loui, M.C., Abu-Amara, H.H.: Memory requirements for agreement among unre-
liable asynchronous processes. Advances in Computing Research, 163–183 (1987)

9. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Publishers Inc.,
San Francisco (1996)

10. Aspnes, J., Attiya, H., Censor, K.: Max registers, counters, and monotone cir-
cuits. In: Proceedings of the 28th ACM Symposium on Principles of Distributed
Computing, PODC 2009, pp. 36–45. ACM, New York (2009)

Simulating a Shared Register
in an Asynchronous System
that Never Stops Changing

(Extended Abstract)

Hagit Attiya1(B), Hyun Chul Chung2,4, Faith Ellen3,
Saptaparni Kumar2, and Jennifer L. Welch2

1 Department of Computer Science, Technion, Haifa, Israel
hagit@cs.technion.ac.il

2 Department of Computer Science and Engineering,
Texas A&M University, College Station, TX, USA

hcchung76@gmail.com, saptaparni@tamu.edu, welch@cse.tamu.edu
3 Department of Computer Science, University of Toronto, Toronto, Canada

faith@cs.toronto.edu
4 Epoch Labs, Inc., Austin, TX, USA

Abstract. Simulating a shared register can mask the intricacies of
designing algorithms for asynchronous message-passing systems subject
to crash failures, since it allows them to run algorithms designed for
the simpler shared-memory model. The simulation replicates the value
of the register in multiple servers and requires readers and writers to
communicate with a majority of servers. The success of this approach
for static systems, where the set of nodes (readers, writers, and servers)
is fixed, has motivated several similar simulations for dynamic systems,
where nodes may enter and leave. However, all existing simulations need
to assume that the system eventually stops changing for a long enough
period or that the system size is fixed.

This paper presents the first simulation of an atomic read/write reg-
ister in a crash-prone asynchronous system that can change size and
withstand nodes continually entering and leaving. The simulation allows
the system to keep changing, provided that the number of nodes entering
and leaving during a fixed time interval is at most a constant fraction of
the current system size.

1 Introduction

Simulating a shared read/write register can mask the intricacies of designing
algorithms for asynchronous message-passing systems subject to crash failures,
since it allows them to run algorithms designed for the simpler shared-memory
model. The ABD simulation [5] replicates the value of the register in server nodes.
It assumes that a majority of the server nodes do not fail. Consider the simplified
case of a single writer and a single reader. To write the value v, the writer sends
c© Springer-Verlag Berlin Heidelberg 2015
Y. Moses (Ed.): DISC 2015, LNCS 9363, pp. 75–91, 2015.
DOI: 10.1007/978-3-662-48653-5 6

76 H. Attiya et al.

v, tagged with a sequence number, to all servers and waits for acknowledgements
from a majority of them. Similarly, to read, the reader contacts all servers, waits
to receive values from a majority of them and then, returns the value with the
highest sequence number. This approach can be extended to the case of multiple
writers and multiple readers by having each operation consist of a read phase,
used by a writer to determine its sequence number and used by a reader to obtain
the return value, followed by a write phase, used by a writer to disseminate the
value (and sequence number) and used by a reader to announce the sequence
number of the value it is about to return [16].

The success of this approach for static systems, where the set of readers, writ-
ers, and servers is fixed, has motivated several similar simulations for dynamic
systems, where nodes may enter and leave, a phenomenon called churn. (See [21]
for a survey.) However, existing simulations rely either on the assumption that
churn eventually stops for a long enough period (e.g., [2,7]) or on the assumption
that the system size never changes (e.g., [6]).

In this paper, we take a different approach: we allow churn to continue for-
ever, while still ensuring that read and write operations complete and nodes can
join the system. Our churn model puts an upper bound on the number of nodes
that can enter or leave during any time interval of a certain length. The upper
bound is a constant fraction of the number of nodes that are present in the
system at the beginning of the time interval. So, as the system size grows, the
allowable number of changes to its composition grows as well. Similarly, as the
system size shrinks, the allowable number of changes shrinks.

The time interval with respect to which the churn is bounded is set as the
maximum message delay. We assume an unknown upper bound D on the delay
of any message (between nonfaulty nodes). Our churn model is that, in any time
interval of length D, the number of nodes that can enter or leave in the interval
is at most a constant fraction α of the number of nodes in the system at the
beginning of the interval. It is important to note that we set no lower bound
on the delay of messages, so consensus cannot be solved in this model even in
the static case with no nodes entering or leaving but the possibility of one node
crashing.

We believe ours is a reasonable churn model. For instance, if each node has
the same probability of leaving in a time interval, then the number of leaves
is expected to be a fixed fraction of the total number of nodes. (See [15] for a
discussion of churn behavior in practice.)

Our algorithm, called CCReg (for Continuous Churn Register), combines
the simple static algorithm for multiple readers and multiple writers outlined
above with a joining protocol and careful estimations of the number of nodes from
which responses should be received for joining, reading, and writing. In order to
join, a newly entered node announces its entry and waits to receive sufficiently
many acknowledgements. Then it joins as a participating node and announces
that it has done so. A node leaves the system by announcing its departure. Each
node maintains a set of changes to the composition of the system, based on the
announcements of nodes entering, joining and leaving. This information is also

Simulating a Shared Register in an Asynchronous System 77

propagated through appropriate echo messages and by having each node append
its changes set to its messages that echo enter announcements.

A joining node calculates the number of acknowledgements it needs as a
fraction (depending on α) of the number of nodes it believes are in the system
when it first receives an acknowledgement from a node that has already joined.
Then it subtracts f , the maximum number of crashes. This number must be large
enough to ensure that at least one acknowledgement is from a node p that has
been in the system sufficiently long, so that p has up-to-date information. This
ensures that information about the system composition is propagated properly.
The number of necessary acknowledgements must also be small enough to ensure
that the node will eventually receive enough of them.

Each reader and writer keeps track of the number of servers that have joined,
but not left. We call these members. The read and write phases of operations wait
for responses from a fixed fraction of the servers believed to be members, plus
f/2. As in the joining protocol, this number of responses must be small enough
so that termination is guaranteed. To prove CCReg is linearizable, we consider
two cases: If a read occurs close to a write, then we must ensure that the sets
of servers contacted by the two operations are intersecting. This is analogous to
the situation in the static, majority algorithm. If operations are farther apart in
time, then, as in the join protocol, we ensure that information about writes to
the register is propagated properly.

Our churn model has the pleasing property that it is algorithm-independent:
It only refers to nodes that enter or leave and ignores whether they complete
the join protocol.

Related Work: A simple simulation of a single-writer, multi-reader register
in a static network was presented in [5]. It was followed by extensions that, for
example, reduce complexity [4,10,13,14], support multiple writers [16], or tol-
erate Byzantine failures [1,3,18,20]. To optimize load and resilience, the simple
majority quorums used in these papers can be replaced by other, more compli-
cated, quorum systems (e.g., [19,24]).

RAMBO [17] was the first simulation of a multi-writer, multi-reader register
in a dynamic system, where nodes may enter and leave. It includes a dedicated
reconfiguration module for handling configuration changes and for installing a
new quorum system. This module relies on eventually-terminating consensus.
As long as the consensus does not terminate, the protocol communicates with
quorums from a possibly large number of different configurations. This assump-
tion is also made in other variants of RAMBO (e.g., [8,9,11,12]). These papers
assume that churn eventually stops.

DynaStore [2] simulates a multi-writer, multi-reader register in a dynamic
system, by reconfiguring the servers without using consensus. Dynastore and its
variant [22] also assume that churn eventually stops.

One simulation whose model has a similar flavor to ours is [6], in that at most
a fixed fraction of nodes enter and leave periodically and there is an unknown
upper bound on message delay. However, in their model, the system size is
assumed to be constant (and known to the nodes), i.e., the number of nodes

78 H. Attiya et al.

entering is the same as the number of nodes leaving at each point in time. Our
model is more general, as we do not require that the system size is always the
same. Instead, in our model, the system can grow, shrink, or alternately grow
and shrink.

Baldoni et al. [6] also prove that it is impossible to simulate a register when
there is no upper bound on message delay. Their proof works by considering
scenarios in which at least half of the nodes fail or leave. Then they invoke the
lower bound in [5], which shows that simulating a register is impossible unless
fewer than half the nodes are faulty. Their proof can be adapted to hold when
there is an unknown upper bound, D, on message delay and half the nodes can
be replaced during any time interval of length D, provided that nodes are not
required to announce when they leave. This means that leaves are essentially
the same as crashes.

In the same vein, the discrepancy between our result and those in [23] and a
footnote in [2] claiming that a finite number of changes is necessary for liveness
can be attributed to differences in the churn models. An important difference
between our simulation and those in [2,17] is that they ensure safety even when
their churn and synchrony assumptions are violated, whereas ours does not when
the churn is very large. One of the contributions of this paper is to point out that
by making different, yet still reasonable, assumptions on churn it is possible to
get a solution with different, yet still reasonable, properties and, in particular,
to overcome the prior constraint that churn must stop to ensure liveness. That
is, we are suggesting a different point in the solution space.

2 Model

We consider an asynchronous message-passing system, with nodes running client
(reader or writer) and server threads. Each node runs exactly one server thread,
at most one reader thread, and at most one a writer thread. Nodes can enter
and leave the system during an execution. A node that leaves the system cannot
re-enter the system. (This restriction is easy to remove by giving a new name to
a node that wants to re-enter.) We assume that at most f ≥ 0 nodes can crash
during an execution.

We say that a node is present at time t if it has entered but has not left by
time t and we let N(t) denote the number of servers whose nodes are present at
time t. We assume that there are always at least Nmin servers whose nodes are
present in the system, i.e., at all times t, N(t) ≥ Nmin.

Nodes communicate through a broadcast service that provides a mechanism
to send the same message to all nodes in the system. If a server wants to send
a message to one of the clients, it can do so by broadcasting the message and
indicating that it should be ignored by the other clients. A message that is
broadcast by a node p at time t is guaranteed to arrive at each node q �= p within
D units of time, provided that q is present throughout the interval [t, t+D]. If q
is present for some but not all of [t, t+D], then q might or might not receive the
message. Nodes that enter after time t+D do not (directly) receive the message.

Simulating a Shared Register in an Asynchronous System 79

All messages broadcast by p are received by q in the order in which p sent them.
In addition to the maximum transmission delay, D includes the maximum time
for handling the message at both the sender and the receiver. There is no lower
bound on the actual length of time it takes for a message to be transmitted, nor
on the amount of time to perform local computation at a node, i.e., they could
take an arbitrarily small amount of time.

Nodes do not have clocks, so they cannot determine the current time nor
directly measure how much time has elapsed since some event. They also do
not know the value of D. The system is essentially asynchronous as there is
no bound on the ratio between the fastest and slowest messages. In fact, any
problem that can be solved in our model can be solved in the same model, but
without the upper bound, D, on message delivery time. To see why, consider
any execution in an asynchronous message passing model. Suppose that step i
of this execution occurs at time 1 − 2−i. Then every message that is received by
a process is received within time D = 1. Moreover, if, in the original execution,
messages are received along a link in the order they were sent, then the same is
true in this timed execution. Hence, consensus cannot be solved in our model.

We assume the set of nodes that are present does not change too quickly: For
all times t, at most α ·N(t) nodes enter or leave during the interval [t, t+D]. We
call α the churn rate and we assume that the value of α is known to all nodes.

Let S0 denote the set of nodes that are present initially, i.e. at time 0, |S0| =
N(0).

3 The CCReg Algorithm

The algorithm combines a mechanism for tracking the composition of the system,
with a simple algorithm, very similar to [16], for reading and writing the register.

In order to track the composition of the system (Algorithm 1), each node
p maintains a set of events, Changesp, concerning the nodes that have entered
the system. When a node q enters, it adds enter(q) to Changesq and broadcasts
an enter message requesting information about prior events. When a node p
finds out that q has entered the system, either by receiving this message or by
learning indirectly from another node, it adds enter(q) to Changesp. When q has
received sufficiently many messages in response to its request, it knows relatively
accurate information about prior events and the value of the register. (Setting
the bound on the number of messages that should be received is a key challenge
in the algorithm.) When this happens, q adds join(q) to Changesq, sets its
is joinedq flag to true, and broadcasts a message saying that it has joined. We
say that q joins when this broadcast is sent. When p finds out that q has joined,
either by receiving this message or by learning indirectly from another node, it
adds join(q) to Changesp. When q leaves, it simply broadcasts a leave message.
When p finds out that q has left the system, either by receiving this message or
by learning indirectly from another node, it adds leave(q) to Changesp.

When a node p receives an enter message from a node q, it responds with
an enter-echo message containing Changesp, its current estimate of the register

80 H. Attiya et al.

Algorithm 1. CCReg—Common code, for node p.
Local Variables:
is joined // Boolean to check if p has joined the system; initially false
join counter // for counting the number of enter-echo messages received by p;
initially 0
join bound // if non-zero, the number of enter-echo messages p should receive
before joining; initially 0
Changes // set of enter(·)’s, leave(·)’s, and join(·)’s known by p; initially
{enter(q), join(q) | q ∈ S0} if p ∈ S0, and ∅, otherwise
val // latest register value known to p; initially ⊥
seq // sequence number of latest value known to p; combined with next variable
to make a unique timestamp for the write; initially 0
id // id of node that wrote latest value known to p; initially ⊥

Derived Variable:
Present = {q | enter(q) ∈ Changes ∧ leave(q) �∈ Changes}

When p enters the system:
1: bcast 〈“enter”, p〉
2: Add enter(p) to Changes

When 〈“enter”, q〉 is received:
3: add enter(q) to Changes
4: bcast 〈“enter-echo”, Changes,

(val, seq, id), is joined, q〉

When 〈“enter-echo”, C, (v, s, i), j, q〉
is received:

5: if (s, i) > (seq, id) then

6: (val, seq, id) := (v, s, i)

7: Changes := Changes ∪ C

8: if ¬is joined ∧ (p = q) then
9: if (j = true)∧(join bound = 0) then

10: join bound := γ · |Present| − f
11: join counter++

12: if join counter≥join bound>0 then

13: is joined := true
14: add join(p) to Changes
15: bcast 〈“joined”, p〉

When 〈“joined”, q〉 is received:
16: add join(q) to Changes

17: add enter(q) to Changes
18: bcast 〈“joined-echo”, q〉

When 〈“joined-echo”, q〉 is
received:

19: add join(q) to Changes
20: add enter(q) to Changes

When p leaves the system:
21: bcast 〈“leave”, p〉

When 〈“leave”, q〉 is received:

22: add leave(q) to Changes
23: bcast 〈“leave-echo”, q〉

When 〈“leave-echo”, q〉 is received:
24: add leave(q) to Changes

value (together with its timestamp), is joinedp (indicating whether p has joined
yet), and q. When q receives an enter-echo in response (i.e., that ends with q),
it increments its join-counter. The first time q receives such an enter-echo from
a joined node, it computes join bound, the number of enter-echo messages it
needs in response before it can join.

Simulating a Shared Register in an Asynchronous System 81

Once a node has joined, its reader and writer threads can handle read and
write operations. A node is a member at time t if it has joined but not left by
time t.

Initially, Changesp = {enter(q), join(q) | q ∈ S0}, if p ∈ S0, and ∅ other-
wise. A node p also maintains the set Presentp = {q | enter(q) ∈ Changesp ∧
leave(q) �∈ Changesp} of nodes that p thinks are present, i.e., nodes that have
entered, but have not left, as far as p knows.

The server, reader and writer threads at the node share the variable Changes
as well as its derived variable Present.

The client thread treats read and write operations in a similar manner (Algo-
rithm 2). Both operations start with a read phase, used to obtain the current
value of the register, using a query message, followed by a write phase, using
an update message. A read operations just broadcasts the value it is about to
return, keeping its sequence number. As in [5], write-back is needed to ensure
linearizability of read operations. A write operation broadcasts the new value it
wishes to write, with a sequence number one larger than the largest sequence
number it has seen. Both the read phase and the read phase wait to receive
sufficiently many response messages. (Again, setting the bound on the number
of messages that should be received is a key challenge in the algorithm.)

A client p maintains a sequence number, tag, which it increments at the
beginning of each read phase. This is used to identify responses with the right
read or write phase.

The server thread is simple (Algorithm 3). The server maintains the latest
value of the register it knows about. When it receives an update message with
a newer value for the register, it updates the current value. (Note that (seq, id)
pairs are compared lexicographically.) When it receives a query, it responds with
the current value.

The correctness of CCReg relies on the following relations between the
parameters:

f/(1 − α)3 < Nmin (A)

3f/2(1 − α)2

(1 − α)3/(1 + α)2 − β
≤ Nmin (B)

[(1 + γ)(1 − α)3 − (1 + α)3]Nmin ≥ 2f (C)

(1 − α)3/(1 + α)3 ≥ γ (D)

(1 + α)5 − 1
(1 − α)4

< β (E)

(1 + 6α + 2α3)/(2 − 2α + α2) < β (F)

These assumptions hold for α = 0.04 and Nmin = 10f , when taking β = 0.65
and γ = 0.5. Taking a smaller churn rate α = 0.02 reduces the minimal size to
Nmin = 5f , with β = 0.58 and γ = 0.56. Note that for both these values of α,

−1/ log2(1 − α) ≥ 4 (G)

82 H. Attiya et al.

Algorithm 2. CCReg—Client code, for node p.
Local Variables:
rw value // temporary storage for the written value or the return value
tag // used to uniquely identify read and write phases of an operation; initially 0
quorum size // stores the quorum size for a read or write phase; initially 0
heard from // the number of responses/acks received for a read/write phase;
initially 0
rp pending // Boolean indicating whether a read phase is in progress; initially
false
wp pending // Boolean indicating whether a write phase is in progress; initially
false
read pending // Boolean indicating whether a read is in progress; initially false
write pending // Boolean indicating whether a write is in progress; initially false

When READ is invoked:

30: read pending := true

31: call BeginReadPhase()

When WRITE(v) is invoked:
32: write pending := true

33: rw value := v

34: call BeginReadPhase()

Procedure BeginReadPhase()
35: tag++

36: bcast 〈“query”, tag, p〉
37: quorum size := β|Members| + f/2

38: heard from := 0

39: rp pending := true

When 〈“response”, (v, s, i), rt〉
is received:

40: if rp pending ∧ (rt = tag) then

41: if (s, i) > (seq, id) then

42: (val, seq, id) := (v, s, i)
43: heard from++

44: if heard from ≥ quorum size then

45: rp pending := false

46: call BeginWritePhase((val, seq, id))

Procedure BeginWritePhase((v, s, i))
47: if write pending then

48: seq++

49: bcast 〈“update”, (rw value, seq, p),
tag, p〉

50: if read pending then

51: rw value := v

52: bcast 〈“update”, (v, s, i), tag, p〉
53: quorum size := β|Members| + f/2

54: heard from := 0
55: wp pending := true

When 〈“ack”, wt〉 is received:
56: if wp pending ∧ (wt = tag) then

57: heard from++
58: if heard from ≥ quorum size then

59: wp pending := false

60: if read pending then
61: read pending := false

62: RETURN rw value

63: if write pending then
64: write pending := false

65: ACK

4 Correctness Proof

Consider any execution. We begin by putting bounds on the number of nodes
that enter and leave during an interval of time and the number of nodes that
are present at the end of the interval, as compared to the number present at the
beginning. Extra work is required in the proof of Lemma 2 as the calculation of
the maximum number of nodes that leave during an interval is complicated by

Simulating a Shared Register in an Asynchronous System 83

Algorithm 3. CCReg—Server code, for node p.

When 〈“update”, (v, s, i), wt, q〉
is received:

70: if (s, i) > (seq, id) then
71: (val, seq, id) := (v, s, i)
72: if is joined then
73: send 〈“ack”, wt〉 to

(write-phase invoker) q
74: bcast 〈“update-echo”, (val, seq, id)〉

When 〈“query”, rt, q〉 is received:
75: if is joined then
76: send 〈“response”, (val, seq, id), rt〉 to

(read-phase invoker) q
When 〈“update-echo”, (v, s, i)〉

is received:
77: if (s, i) > (seq, id) then
78: (val, seq, id) := (v, s, i)

the possibility of nodes entering during an interval and thus allowing additional
nodes to leave.

Lemma 1. For all i ∈ N and all t ≥ 0, at most ((1 + α)i − 1)N(t) nodes enter
during (t, t + Di] and (1 − α)iN(t) ≤ N(t + Di) ≤ (1 + α)iN(t).

Lemma 2. For all nonegative integers i ≤ −1/ log2(1 − α) and all t ≥ 0, at
most (1 − (1 − α)i)N(t) nodes leave during (t, t + Di].

We say that a node is active at time t if it has entered by time t, but has not
left or crashed by time t. The next lemma shows that some node remains active
throughout any interval of length 3D.

Lemma 3. For every t > 0, at least one node is active throughout [max{0, t −
2D}, t + D].

We define SysInfoI = {enter(q) | teq ∈ I}∪{join(q) | tjq ∈ I}∪{leave(q) | t�q ∈
I} to be the set of all enter, join, and leave events that occur during time interval
I. In particular, SysInfo[0,0] = {enter(q) | q ∈ S0}∪{join(q) | q ∈ S0}. The next
observation holds since a node p that is active throughout [tep, t+D] will directly
receive all enter, joined, and leave messages broadcast during [tep, t] within D
time.

Observation 1. For every node p and all times t ≥ tep, if p is active at time
t + D, then SysInfo[t

e
p,t] ⊆ Changest+D

p .

Together with the assumption that SysInfo[0,0] ⊆ Changes0p for all p ∈ S0, we
get:

Observation 2. For every node p ∈ S0, if p is active at time t ≥ 0, then
SysInfo[0,max{0,t−D}] ⊆ Changestp.

The purpose of Lemmas 4, 5, and 6 is to show that information about nodes
entering, joining, and leaving is propagated properly, via the Changes sets.

84 H. Attiya et al.

Lemma 4. Suppose a node p �∈ S0 receives an enter-echo message at time t′′

from a node q that sent it at time t′ in response to an enter message from p. If
p is active at time t + 2D and q is active throughout [max{0, t′ − 2D}, t + D],
where max{0, t′′ − 2D} ≤ t ≤ tep, then SysInfo(max{0,t′−2D},t] ⊆ Changest+2D

p .

Proof. Consider any node r that enters, joins, or leaves at time t̂, where
max{0, t′−2D} < t̂ ≤ t. If q receives the message about this change from r before
the enter message from p, then the change is in Changest

′′
p ⊆ Changest+2D

p . Oth-
erwise, q receives the message from r after the enter message from p and sends
an echo message in response by time t̂ + D. Since p receives this message from
q by time t̂ + 2D ≤ t + 2D, it follows that the change is in Changest+2D

p . Thus,
SysInfo(max{0,t′−2D},t] ⊆ Changest+2D

p .
�
Lemma 5. For every node p, if p is active at time t ≥ tep + 2D, then
SysInfo[0,t−D] ⊆ Changestp.

Lemma 6. For every node p �∈ S0, if p joins at time tjp and is active at time
t ≥ tjp, then SysInfo[0,max{0,t−2D}] ⊆ Changestp.

Proof. Let p �∈ S0 be a node that joins at time tjp ≤ t and suppose the claim
holds for all nodes that join before p. If t ≥ tep + 2D, then the claim follows by
Lemma 5. So, assume that t < tep + 2D.

Before p joins, it receives an enter-echo message from a joined node in
response to its enter message. Suppose p first receives such an enter-echo message
at time t′′ and this enter-echo was sent by q at time t′. Then tep ≤ t′ ≤ t′′ ≤ tjp.
Since q joined prior to p and is active at time t′ ≥ tjq, SysInfo

[0,max{0,t′−2D}] ⊆
Changest

′
q ⊆ Changest

′′
p ⊆ Changestp. If t ≤ 2D then max{0, t− 2D} = 0 and the

claim is true. So, assume that t > 2D.
Let S be the set of nodes present at time max{0, t′ − 2D}, so |S| =

N(max{0, t′ −2D}). By Lemma 2 and Assumption (G), at most (1−(1−α)3)|S|
nodes leave during (max{0, t′ − 2D}, t′ + D]. Since t′′ ≤ t′ + D, it follows that
|Presentt′′

p | ≥ |S| − (1 − (1 − α)3)|S| = (1 − α)3|S|. Hence, p waits until it has
received at least γ|Presentt′′

p | − f ≥ γ(1 − α)3|S| − f enter-echo messages before
joining.

By Lemma 1, the number of nodes that enter during (max{0, t′ −2D}, t′ +D]
is at most ((1+α)3 − 1)|S|. The number of nodes that leave during this interval
is at most (1− (1−α)3)|S| and at most f nodes crash. Note that p enters during
[max{0, t′ − 2D}, t′ +D], but does not receive an enter-echo message from itself.
Hence, the number enter-echo messages p receives before joining from nodes that
were active throughout [max{0, t′ − 2D}, t′ + D] is at least

γ(1 − α)3|S| − f − [((1 + α)3 − 1)|S| + (1 − (1 − α)3)|S| + f − 1]

= [(1 + γ)(1 − α)3 − (1 + α)3]|S| − 2f + 1

Simulating a Shared Register in an Asynchronous System 85

This is at least 1, since γ = (1−α)3/(1+α)3 and f ≤ |S|[(1−α)6 +(1−α)3(1+
α)3 − (1 + α)6]/2(1 + α)3. (By Assumption (C).)

Hence p receives an enter-echo message by time tjp from a node q′ that is
active throughout [max{0, t′ − 2D}, t′ + D] ⊇ [max{0, t′ − 2D}, t − D].

Since max{0, t′′ − 2D} ≤ t − 2D ≤ tep ≤ t′ < tep + D, Lemma 4 implies
that SysInfo[max{0,t′−2D},t−2D] ⊆ Changestp. However, SysInfo[0,max{0,t′−2D}] ⊆
Changestp, and hence, SysInfo[0,max{0,t−2D}] ⊆ Changestp.
�

Next we prove that every node that remains active sufficiently long after it
enters succeeds in joining.

Theorem 1. Every node p �∈ S0 that is active at time tep + 2D joins by time
tep + 2D.

Proof. Let p �∈ S0 be a node that enters at time tep and is active at time tep +2D.
Suppose the claim is true for all nodes that enter before p.

By Lemma 3, there is a node q that is active throughout [max{tep−2D, 0}, tep+
D]. If q ∈ S0, then q joins at time 0. If not, then teq < tep, so, by the induction
hypothesis, q joins by teq + 2D < tep. Since q is active at time tep + D, it receives
the enter message from p during [tep, t

e
p + D] and sends an enter-echo message in

response. Since p is active at time tep + 2D, it receives the enter-echo message
from q by time tep+2D. Hence, by time tep+2D, p received at least one enter-echo
message from a joined node in response to its enter message.

Suppose the first enter-echo message p received from a joined node in response
to its enter message was sent by node q′ at time t′ and received by p at time t′′.
By Lemma 6, SysInfo[0,max{0,t′−2D}] ⊆ Changest

′
q′ ⊆ Changest

′′
p .

Let S be the set of nodes present at time max{0, t′−2D}. Then, by Lemma 1,
N(t′ −D) ≤ (1+α)|S| and N(t′) ≤ (1+α)2|S|. Since t′′ ≤ t′ +D, it follows from
the churn assumption that at most α(1+(1+α)+(1+α)2)|S| nodes entered during
(t′ − 2D, t′′]. Thus, |Presentt′′

p | ≤ (1+α(1+ (1+α)+ (1+α)2))|S| = (1+α)3|S|
and join boundp ≤ γ(1 + α)3|S| − f .

By Lemma 2 and Assumption (G), at most (1 − (1 − α)3)|S| nodes leave
during (max{0, t′ − 2D}, t′ + D]. Since tep ≤ t′ ≤ tep + D and at most f nodes
crash, at least (1 − α)3|S| − f nodes in S were active throughout [tep, t

e
p + D]

and, hence, sent enter-echo messages in response to p’s enter message. By time
tep + 2D, p receives all these enter-echo messages. Since (1 − α)3 ≥ γ(1 + α)3

(Assumption (D)), node p joins by time tep + 2D.
�
We now proceed to show that all read and write operations terminate. The

key is to show that the number of responses for which an operation waits is small
enough so that it is guaranteed to receive at least that many.

Since enter(q) is added to Changesp whenever join(q) is, we get:

Observation 3. For every time t ≥ 0 and every node p that is active at time t,
Memberstp ⊆ Presenttp.

86 H. Attiya et al.

Lemma 7 relates the number of nodes present in the system 2D time in the
past to the value of a node’s current estimate of the number of nodes present.
Lemma 8 relates the number of nodes present in the system 4D time in the
past to the value of a node’s current estimate of the number of nodes that are
members. These are useful for showing that a node’s calculated quorum size is
close to reality.

Lemma 7. For every node p and every time t ≥ tjp at which p is active,

(1 − α)2 · N(max{0, t − 2D}) ≤ |Presenttp| ≤ (1 + α)2 · N(max{0, t − 2D}).

Lemma 8. For every node p and every time t ≥ tjp at which p is active,

(1 − α)4 · N(max{0, t − 4D}) ≤ |Memberstp| ≤ (1 + α)4 · N(max{0, t − 4D}).

The next lemma shows a lower bound on the number of nodes that will reply
to an operation’s query or update message.

Lemma 9. If node p is active at time t ≥ tjp, then the number of nodes that

join by time t and are still active at time t + D is at least (1−α)3

(1+α)2 |Presenttp| − f .

Theorem 2. Every read or write operation completes if invoked by a node that
remains active for 4D time.

Proof. Each operation consists of a read phase and a write phase. Thus, if both
the read and write phases of an operation terminate, then the operation itself
terminates. We show that each phase terminates within 2D time, provided the
client remains active for 4D time.

Consider a phase of an operation by client p that starts at time t. Every node
that joins by time t and is still active at time t + D receives p’s query or update
message and replies with a response or ack message by time t+D. By Lemma 9,
there are at least (1−α)3

(1+α)2 |Presenttp| − f such nodes.
From Lemma 7 and Assumption (B),

|Presenttp| ≥ (1 − α)2N(max{0, t − 2D}) ≥ (1 − α)2Nmin

≥ 3f/2
(1 − α)3/(1 + α)2 − β

,

so

|Presenttp|
(

(1 − α)3

(1 + α)2
− β

)

≥ 3f

2
.

Hence, by Observation 3,

(1 − α)3

(1 + α)2
|Presenttp| − f ≥ β|Presenttp| + f/2

≥ β|Memberstp| + f/2 = quorum sizet
p.

Thus, by time t + 2D, p receives sufficiently many response or ack messages to
complete the phase.
�

Simulating a Shared Register in an Asynchronous System 87

Now we prove linearizability of the CCReg algorithm.
A write operation w by node p consists of a read phase followed by a write

phase. Let tw denote the time at the beginning of its write phase. At time tw,
node p broadcasts an update message (on Line 49 or Line 52 of Algorithm 2)
containing a triple (v, s, i), where value(w) = v is the value written by w and
ts(w) = (s, i) = (seqtw

p , idtw
p) is the timestamp of w.

For any node p, let tst
p = (seqt

p, id
t
p) denote the timestamp of node p at

time t. Note that timestamps are created by write operations (on Line 48 of
Algorithm 2) and are sent via enter-echo, update, and update-echo messages.
Initially, ts0p = (0,⊥) for all nodes p. For any read or write operation o by node
p, the timestamp of its read phase is tsrp(o) = tst

p, where t is the time at the end
of its read phase (i.e., when the conditional in Line 44 of Algorithm 2 is true).
The timestamp of its write phase is tswp(o) = tst

p, where t is the time at the
beginning of its write phase (i.e., when it broadcasts on Line 49 or Line 52 of
Algorithm 2). Note that ts(w) = tswp(w) for every write operation w. Likewise,
ts(r) = tsrp(r) is the timestamp of a read operation r.

The next series of lemmas (10 through 13) show that information about
writes propagates properly throughout the system, and is analogous to previous
results relating to the propagation of information about nodes entering, joining,
and leaving (Observation 2 and Lemmas 4 through 6).

Lemma 10. If o is an operation whose write phase starts at tw, node p is active
at time t ≥ tw + D, and tep ≤ tw, then tst

p ≥ tswp(o).

Lemma 11. Suppose a node p �∈ S0 receives an enter-echo message at time t′′

from a node q that sends it at time t′ in response to an enter message from
p. If o is an operation whose write phase starts at tw, p is active at time t ≥
max{t′′, tw + 2D}, and q is active throughout [tw, tw + D], then tst

p ≥ tswp(o).

Lemma 12. If o is an operation whose write phase starts at tw and node p is
active at time t ≥ max{tep + 2D, tw + D}, then tst

p ≥ tswp(o).

Lemma 13. If o is an operation whose write phase starts at tw, node p �∈ S0

joins at time tjp, and p is active at time t ≥ max{tjp, tw+2D}, then tst
p ≥ tswp(o).

Theorem 3. CCReg ensures linearizability.

Proof. Given an execution, we order all the read and write operations in the
execution that perform Line 49 or 52 as follows. First, order the write opera-
tions in order of their timestamps. Note that all write operations have different
timestamps, since each write operation by node p has a timestamp with second
component p and first component larger than any timestamp p has previously
seen. Then insert each read operation immediately following the write operation
with the same timestamp. Break ties among read operations by their start times.
By construction, this total order is legal. It remains to show that if op1 finishes
before op2 starts, then the construction orders op1 before op2.

88 H. Attiya et al.

Since each operation consists of a read phase followed by a write phase, it
suffices to show that tswp(op1) ≤ tsrp(op2). For convenience, we will refer to
tswp(op1) as τw and tsrp(op2) as τr.

Let w denote the write phase of op1 and let r denote the read phase of op2.
Let p1 be the node that invokes op1 and let p2 be the node that invokes op2.
Let tw be the start time of w and tr be the start time of r. Then tw < tr. Let
Qw be the set of nodes that p1 hears from during w (i.e. that sent messages
causing p1 to increment heard from on Line 57 of Algorithm 2) and Qr be the
set of nodes that p2 hears from during r (i.e. that sent messages causing p2 to
increment heard from on Line 43 of Algorithm 2). Let Pw and Mw be the sizes
of the Present and Members sets of p1 at time tw, and Pr and Mr be the sizes
of the Present and Members sets of p2 at time tr.

Case 1: tr > tw + 2D.
We start by showing there exists a node q in Qr such that tjq ≤ max{0, tr −

2D}. Each node in Qr receives and responds to r’s query, so it joins by time
tr + D. By Theorem 1, the number of nodes that can join in (tr − 2D, tr + D]
is at most the number of nodes that can enter in (max{0, tr − 4D}, tr + D]. By
Lemma 1, the number of nodes that can enter in (max{0, tr − 4D}, tr + D] is at
most ((1 + α)5 − 1) · N(max{0, tr − 4D}). By Lemma 8, N(max{0, t − 4D}) ≤
Mr/(1 − α)4. From the code, |Qr| ≥ βMr + f/2, which is larger than βMr. By
Assumption (E), it follows that βMr > Mr((1 + α)5 − 1)/(1 − α)4, which is at
most the number of nodes that can enter in (max{0, tr −4D}, tr +D]. Thus |Qr|
is larger than the number of nodes that join in (max{0, tr − 2D}, tr + D].

Suppose q receives r’s query message at time t′ ≥ tr. If q ∈ S0, then tjq = 0
and, by Lemma 10, tst′

q ≥ τw. So, suppose q �∈ S0. Then 0 < tjq ≤ tr − 2D < t′.
Since tw + 2D < tr ≤ t′, Lemma 13 implies that tst′

q ≥ τw. Thus, q responds
to r’s query message with a timestamp at least as large as τw and, as a result,
τr ≥ τw.

Case 2: tr ≤ tw + 2D.
Let J be the set of nodes that could reply to r’s query. Then J = {p | tjp < tr

and p is active at time tr} ∪ {p | tr ≤ tjp ≤ tr + D}. By Theorem 1, all nodes
that are present at time max{0, tr − 2D} join by time tr if they remain active.
Therefore all nodes in J are either active at time max{0, tr −2D} or enter during
(max{0, tr − 2D}, tr + D] and, by Lemma 1, |J | ≤ N(max{0, tr − 2D}) + ((1 +
α)3 − 1)N(max{0, tr − 2D}) = (1 + α)3N(max{0, tr − 2D}).

Let K = {p | tjp ≤ tr, p is active at tr + D, and tstr
p ≥ τw}. Note that

K contains all the nodes in Qw that do not leave or fail during [tw, tr + D] ⊆
[max{0, tr − 2D}, tr + D]. By Lemma 2 and Assumption (G), at most (1 − (1 −
α)3)N(max{0, tr−2D}) nodes leave during this interval and at most f fail. From
the code, |Qr| ≥ βMr + f/2 and, by Lemma 8, Mr ≥ (1 − α)4N(max{0, tr −
4D}). Similarly, |Qw| ≥ β(1 − α)4N(max{0, tw − 4D}) + f/2. Therefore, |K| ≥
(β(1 − α)4N(max{0, tw − 4D}) + f

2) − (1 − (1 − α)3)N(max{0, tr − 2D}) −
f . Since tw < tr ≤ tw + 2D, Lemma 1 implies that N(max{0, tw − 4D}) ≥

Simulating a Shared Register in an Asynchronous System 89

(1 − α)−2N(max{0, tr − 4D}). Also by Lemma 1, N(max{0, tr − 4D}) ≥ (1 −
α)−2N(max{0, tr − 2D}).

By Assumption (F), β > (1 + 6α + 2α3)/(2 − 2α + α2). Hence

|Qr| + |K| ≥ β(1 − α)4N(max{0, tr − 4D})

+ β(1 − α)4(1 − α)−2N(max{0, tr − 4D})

− (1 − (1 − α)3)N(max{0, tr − 2D})

= β(1 − α)2(2 − 2α + α2)N(max{0, tr − 4D})

− (3α − 3α2 + α3)N(max{0, tr − 2D})

≥ β(2 − 2α + α2)N(max{0, tr − 2D})

− (3α − 3α2 + α3)N(max{0, tr − 2D}).

Thus |Qr| + |K| > [(1 + 6α + 2α3) − (3α − 3α2 + α3)]N(max{0, tr − 2D})

= [1 + 3α + 3α2 + α3]N(max{0, tr − 2D})

= (1 + α)3N(max{0, tr − 2D})
≥ |J |.

This implies that K and Qr intersect, since K,Qr ⊆ J . For each node p in the
intersection, tsp ≥ τw when p sends its response to r and, thus, τr ≥ τw.
�

5 Discussion

We have shown how to simulate an atomic read/write register in a crash-prone
asynchronous system where nodes can enter and leave, as long as the number of
nodes entering and leaving during each time interval of length D is at most a
constant fraction of the current system size.

It would be nice to improve the constants for the churn rate and the maximum
fraction of faulty nodes, perhaps with a tighter analysis. Proving lower bounds
or tradeoffs on these parameters is an interesting avenue for future work. In
fact, it might be possible to completely avoid the bound α on the churn rate, by
spreading out the handling of node joins and leaves: To ensure a minimal num-
ber of nonfaulty nodes, a node might need to obtain permission before leaving,
similarly to joins. This will also mean that the algorithm will maintain safety
even when the churn bound is exceeded.

CCReg sends increasingly large Changes sets. The amount of information
communicated might be reduced by sending only recent events, or by removing
very old events. Another interesting research direction is to extend CCReg to
tolerate more severe kinds of failures.

Acknowledgments. This work is supported by the Israel Science Foundation (grants
1227/10 and 1749/14), by Yad HaNadiv foundation, by the Natural Science and
Engineering Research Council of Canada, and by the US National Science Founda-
tion grant 0964696.

90 H. Attiya et al.

References

1. Abraham, I., Chockler, G., Keidar, I., Malkhi, D.: Byzantine disk paxos: optimal
resilience with Byzantine shared memory. Dist. Comp. 18(5), 387–408 (2006)

2. Aguilera, M.K., Keidar, I., Malkhi, D., Shraer, A.: Dynamic atomic storage without
consensus. J. ACM 58(2), 7 (2011)

3. Aiyer, A.S., Alvisi, L., Bazzi, R.A.: Bounded wait-free implementation of opti-
mally resilient byzantine storage without (unproven) cryptographic assumptions.
In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 7–19. Springer, Heidelberg
(2007)

4. Attiya, H.: Efficient and robust sharing of memory in message-passing systems. J.
Alg. 34(1), 109–127 (2000)

5. Attiya, H., Bar-Noy, A., Dolev, D.: Sharing memory robustly in message-passing
systems. J. ACM 42(1), 124–142 (1995)

6. Baldoni, R., Bonomi, S., Kermarrec, A.M., Raynal, M.: Implementing a register in
a dynamic distributed system. In: IEEE International Conference on Distributed
Computing Systems, pp. 639–647 (2009)

7. Baldoni, R., Bonomi, S., Raynal, M.: Implementing a regular register in an eventu-
ally synchronous distributed system prone to continuous churn. IEEE Transactions
on Parallel and Distributed Systems 23(1), 102–109 (2012)

8. Beal, J., Gilbert, S.: RamboNodes for the metropolitan ad hoc network. In: Work-
shop on Dependability in Wireless Ad Hoc Networks and Sensor Networks (2003)

9. Chockler, G., Gilbert, S., Gramoli, V., Musial, P.M., Shvartsman, A.A.: Recon-
figurable distributed storage for dynamic networks. J. Par. Dist. Comp. 69(1),
100–116 (2009)

10. Dutta, P., Guerraoui, R., Levy, R.R., Chakraborty, A.: How fast can a distributed
atomic read be? In: Proceedings of the 23rd Annual ACM Symposium on Principles
of Distributed Computing, pp. 236–245 (2004)

11. Georgiou, C., Musial, P.M., Shvartsman, A.A.: Long-lived RAMBO: Trading
knowledge for communication. Theo. Comp. Sci. 383(1), 59–85 (2007)

12. Gilbert, S., Lynch, N.A., Shvartsman, A.A.: Rambo: A robust, reconfigurable
atomic memory service for dynamic networks. Dist. Comp. 23(4), 225–272 (2010)

13. Guerraoui, R., Levy, R.: Robust emulations of shared memory in a crash-recovery
model. In: Proceedings of the International Conference on Distributed Computing
Systems, pp. 400–407 (2004)

14. Guerraoui, R., Vukolić, M.: Refined quorum systems. In: Proceedings of the 26th
Annual ACM Symposium on Principles of Distributed Computing, pp. 119–128
(2007)

15. Ko, S.Y., Hoque, I., Gupta, I.: Using tractable and realistic churn models to analyze
quiescence behavior of distributed protocols. In: IEEE Symposium on Reliable
Distributed Systems, pp. 259–268 (2008)

16. Lynch, N.A., Shvartsman, A.A.: Robust emulation of shared memory using
dynamic quorum-acknowledged broadcasts. In: Proceedings of the 27th Interna-
tional Symposium on Fault-Tolerant Computing, pp. 272–281 (1997)

17. Lynch, N.A., Shvartsman, A.A.: Rambo: A reconfigurable atomic memory service
for dynamic networks. In: Proceedings of the 16th International Conference on
Distributed Computing, pp. 173–190 (2002)

18. Malkhi, D., Reiter, M.K.: Byzantine quorum systems. Dist. Comp. 11(4), 203–213
(1998)

Simulating a Shared Register in an Asynchronous System 91

19. Malkhi, D., Reiter, M.K., Wool, A., Wright, R.N.: Probabilistic quorum systems.
Information and Computation 170(2), 184–206 (2001)

20. Martin, J.P., Alvisi, L., Dahlin, M.: Minimal byzantine storage. In: Proceedings of
the 16th International Conference on Distributed Computing, pp. 311–325 (2002)

21. Musial, P., Nicolaou, N., Shvartsman, A.A.: Implementing distributed shared mem-
ory for dynamic networks. Commun. ACM 57(6), 88–98 (2014)

22. Shraer, A., Martin, J.P., Malkhi, D., Keidar, I.: Data-centric reconfiguration with
network-attached disks. In: Proceedings of the 4th International Workshop on
Large Scale Distributed Systems and Middleware, pp. 22–26 (2010)

23. Spiegelman, A., Keidar, I.: On liveness of dynamic storage. CoRR abs/1507.07086
(July 2015). http://arxiv.org/abs/1507.07086

24. Vukolic, M.: Quorum Systems: With Applications to Storage and Consensus.
Synthesis Lectures on Distributed Computing Theory, Morgan & Claypool Pub-
lishers (2012)

http://arxiv.org/abs/http://arxiv.org/abs/1507.07086

Plane Formation by Synchronous Mobile Robots
in the Three Dimensional Euclidean Space

Yukiko Yamauchi(B), Taichi Uehara, Shuji Kijima, and Masafumi Yamashita

Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
yamauchi@inf.kyushu-u.ac.jp

Abstract. Creating a swarm of mobile computing entities frequently
called robots, agents or sensor nodes, with self-organization ability is
a contemporary challenge in distributed computing. Motivated by this,
this paper investigates the plane formation problem that requires a swarm
of robots moving in the three dimensional Euclidean space to reside in
a common plane. The robots are fully synchronous and endowed with
visual perception. But they have neither identifiers, access to the global
coordinate system, any means of explicit communication with each other,
nor memory of past. Though there are plenty of results on the agreement
problem for robots in the two dimensional plane, for example, the point
formation problem, the pattern formation problem, and so on, this is the
first result for robots in the three dimensional space. This paper presents
a necessary and sufficient condition to solve the plane formation problem.
An implication of the result is somewhat counter-intuitive: The robots
cannot form a plane from most of the semi-regular polyhedra, while they
can from every regular polyhedron (except a regular icosahedron), which
consists of the same regular polygon faces and the robots on its vertices
are “more” symmetric than semi-regular polyhedra.

Keywords: Mobile robots in the three dimensional space · Plane
formation · Rotation group · Symmetry breaking

1 Introduction

Self-organization in a swarm of mobile computing entities frequently called
robots, agents or sensor nodes, has gained much attention as sensing and con-
trolling devices are developed and become cheaper. It is expected that mobile
robot systems perform patrolling, sensing, and exploring in a harsh environment
such as disaster area, deep sea, and space. For robots moving in the three dimen-
sional Euclidean space (3D-space), we investigate the plane formation problem,
which is a fundamental self-organization problem that requires robots to occupy
distinct positions on a common plane from initial positions, mainly motivated

This work was supported by a Grant-in-Aid for Scientific Research on Innovative
Areas “Molecular Robotics” (No. No. 24104003 and No. 15H00821) of The Ministry
of Education, Culture, Sports, Science, and Technology, Japan.

c© Springer-Verlag Berlin Heidelberg 2015
Y. Moses (Ed.): DISC 2015, LNCS 9363, pp. 92–106, 2015.
DOI: 10.1007/978-3-662-48653-5 7

Plane Formation by Synchronous Mobile Robots 93

by an obvious observation: Robots on a plane would be easier to control than
those deployed in 3D-space.

In this paper, a mobile robot system consists of autonomous robots that move
in 3D-space and cooperate with each other to accomplish their tasks without
any central control. A robot is represented by a point in 3D-space and repeats
executing the “Look-Compute-Move” cycle, during which, it observes, in Look
phase, the positions of all robots by taking a snapshot, which we call a local
observation in this paper, computes the next position based only on the snapshot
just taken and using a given deterministic algorithm in Compute phase, and
moves to the next position in Move phase. This definition of Look-Compute-
Move cycle implies that it has full vision, i.e., the vision is unrestricted, the
algorithm is oblivious, i.e., it does not depend on a snapshot of the past, and
the move is an atomic action, i.e., each robot does not stop en route to the next
position and we do not care which route it takes. A robot has no access to the
global x-y-z coordinate system, and all actions are done in terms of its local
x-y-z coordinate system. We assume that it has chirality, which means that it
has the sense of clockwise and counter-clockwise directions. In particular, we
assume that local coordinate systems are right-handed.

The robots can see each other, but do not have direct communication capa-
bilities; communication among robots must take place solely by moving and
observing robots’ positions, tolerating possible inconsistency among the local
coordinate systems. The robots are anonymous; they have no unique identifiers
and are indistinguishable by their looks, and execute the same algorithm. Finally,
they are fully-synchronous (FSYNC); they all start the i-th Look-Compute-Move
cycle simultaneously, and synchronously execute each of its Look, Compute and
Move phases.

The purpose of this paper is to show a necessary and sufficient condition for
the solvability of the plane formation problem. The line formation problem in
the two dimensional Euclidean space (2D-space or plane) is the counter-part of
the plane formation problem in 3D-space, and is unsolvable from an initial con-
figuration P (i.e., positions of the robots), if P is a regular polygon, intuitively
because anonymous robots forming a regular polygon cannot break symmetry
among themselves, and lines they propose are also symmetric, so that they can-
not agree on one line from them [9]. Hence symmetry breaking among robots
would play a crucial role in our study on the plane formation in 3D-space, too.

The pattern formation problem requires robots to form a target pattern from
an initial configuration, and our plane formation problem is a subproblem of the
pattern formation problem in 3D-space. To investigate the pattern formation
problem in 2D-space, which contains the line formation problem as a subproblem,
Suzuki and Yamashita [9] used the concept of symmetricity to measure the degree
of symmetry of a configuration consisting of the robots’ positions on the plane.1

Let P be a configuration of robots on a plane, where we regard the configuration
as a set of points. Then its symmetricity ρ(P) is the order of the cyclic group of P ,

1 The symmetricity was originally introduced in [10] for anonymous networks to inves-
tigate the solvability of some agreement problems.

94 Y. Yamauchi et al.

where its rotation center o is the center of the smallest enclosing circle of P , if o �∈
P . That is, its rotational symmetry is ρ(P) and ρ(P) is the number of angles such
that rotating P by θ (θ ∈ [0, 2π)) around o produces P itself, which intuitively
means that the ρ(P) robots forming a regular ρ(P)-gon in P may not be able
to break symmetry among themselves. However, when o ∈ P , the symmetricity
ρ(P) is defined to be 1, independently of its rotational symmetry. This is the
crucial difference between the rotational symmetry and the symmetricity, and
reflects the fact that the robot at o can break the symmetry in P by leaving
o. Then the following result has been obtained [7,9,11]: A target pattern F is
formable from an initial configuration P , if and only if ρ(P) divides ρ(F).

In order to investigate the plane formation problem in 3D-space, we measure
the symmetry of a configuration in 3D-space with the rotation group of the
configuration. In 3D-space, rotation groups with finite order are classified into
the cyclic groups, the dihedral groups, the tetrahedral group, the octahedral
group, and the icosahedral group. The cyclic groups and the dihedral groups are
said to be two-dimensional (2D), in the sense that the plane formation problem
is obviously solvable, since there is a single rotation axis or a single principal
rotation axis, and all robots can agree on a plane perpendicular to the single
(or principal) axis and containing the center of the smallest enclosing ball of
themselves. Then FSYNC robots can easily solve the plane formation problem
by moving onto the agreed plane.

The other three rotation groups are defined by the rotations of corresponding
regular polyhedra, and these rotation groups are called polyhedral groups. A reg-
ular polyhedron consists of regular polygon faces and has vertex-transitivity, that
is, there are rotations that replace any two vertices with keeping the polyhedron
unchanged as a whole. For example, we can rotate a cube around any axis contain-
ing two opposite vertices, any axis containing the centers of opposite faces, and
any axis containing the midpoints of opposite edges. For each regular polyhedron,
rotations applicable to the polyhedron form a group, and, in this way, the three
rotation groups, i.e., the tetrahedral group, the octahedral group and the icosahe-
dral group, are defined. We call them three-dimensional (3D) rotation groups.

When a configuration has a 3D rotation group, the robots are not on any
plane. In addition, the vertex-transitivity among the robots may allow corre-
sponding robots to have an identical local observation, and the robots may result
in an infinite execution, where they keep symmetric movements and never agree
on a plane. A vertex-transitive set of points is in general obtained by specify-
ing a seed point and a set of symmetry operations, which consists of rotations
around an axis, reflections for a mirror plane (bilateral symmetry), reflections for
a point (central inversion), and rotation-reflections [2]. However, it is sufficient
to consider vertex-transitive set of points constructed from transformations that
preserve the center of the smallest enclosing ball of robots, and keep Euclidean
distance and handedness, in other words, direct congruent transformations, since
otherwise, the robots have chirality and can break the symmetry. Such symme-
try operations consist of rotations around some axes. (See e.g., [1,2] for more
detail.)

Plane Formation by Synchronous Mobile Robots 95

Let P and γ(P) be a set of points in 3D-space and its rotation group, respec-
tively. Then the points (i.e., the robots) are partitioned into vertex-transitive
subsets by the group action of γ(P). Hence, for each subset, the robots in it may
have the same local observation. We call this decomposition γ(P)-decomposition
of P . The goal of this paper is to show the following theorem:

Theorem 1. Let P and {P1, P2, . . . , Pm} be an initial configuration and the
γ(P)-decomposition of P , respectively. Then oblivious FSYNC robots can form
a plane from P if and only if (i) γ(P) is a 2D rotation group, or (ii) γ(P) is a
3D rotation group and there exists a subset Pi such that |Pi| �∈ {12, 24, 60}.
Theorem 1 implies the following, which is somewhat counter-intuitive: The plane
formation problem is solvable, even if P is a regular polyhedron (except a regular
icosahedron), i.e., even if the robots initially occupy the vertices of such regular
polyhedron, while it is unsolvable for most of the semi-regular polyhedra.

We can rephrase this theorem as follows: Oblivious FSYNC robots can-
not form a plane from P if and only if γ(P) is a 3D rotation group and
|Pi| ∈ {12, 24, 60} for each Pi. The impossibility proof is by a construction based
on the decomposition of the robots. Obviously 12, 24, and 60 are the orders of
3D rotation groups, and when the cardinality of a vertex-transitive set of points
is in {12, 24, 60}, the corresponding rotation group enables “symmetric” local
coordinate systems that imposes an infinite execution, where the robots’ posi-
tions keep the axes of the rotation group. We will show this fact by constructing
the worst-case local coordinate systems.

For the possibility proof, we present a plane formation algorithm that breaks
regular polyhedra for solvable cases. In the 2D-space, the symmetricity of a
configuration is defined to be 1 when a robot is on the rotation axis of the cyclic
group, because the robot on the center can break the symmetry by leaving the
center. In the same way, a rotation axis of a 3D rotation group disappears when a
robot on it leaves the axis. Fortunately, there is always a robot on a rotation axis,
if the cardinality of a vertex-transitive robots is not in {12, 24, 60} and we can use
it to reduce the number of rotation axes. Although there are multiple rotation
axes in a 3D rotation group, the proposed algorithm transforms a configuration
whose rotation group is a 3D rotation group into another configuration whose
rotation group is a 2D rotation group, by reducing the number of rotation axes.

Related Works. We roughly review some of works on robots in 2D-space, since
there is few research on robots in 3D-space, although an autonomous mobile
robot system in 2D-space has been extensively investigated (see e.g., [3–7,9,11]).
Besides fully synchronous (FSYNC) robots, there are two other types of robots,
semi-synchronous (SSYNC) and asynchronous (ASYNC) robots. The robots are
SSYNC if some robots do not start the i-th Look-Compute-Move cycle for some
i, but all of those who have started the cycle synchronously execute their Look,
Compute and Move phases [9], and they are ASYNC if no assumptions are made
on the execution of Look-Compute-Move cycles [5]. The book by Flocchini et
al. [4] contains almost all results on ASYNC robots up to year 2012.

96 Y. Yamauchi et al.

As for the pattern formation problem in 2D-space, which includes the line
formation problem as a subproblem, the solvable cases are determined for each
of the FSYNC, SSYNC and ASYNC models [7,9,11], which are summarized as
follows: (1) For non-oblivious FSYNC robots, a pattern F is formable from an
initial configuration P if and only if ρ(P) divides ρ(F). (2) Pattern F is formable
from P by oblivious ASYNC robots if F is formable from P by non-oblivious
FSYNC robots, except for F being a point of multiplicity 2.

This exceptional case is called the rendezvous problem. Indeed, it is trivial
for two FSYNC robots, but is unsolvable for two SSYNC (and hence ASYNC)
robots [9]. Therefore it is a bit surprising to observe that the point formation
problem for more than two robots is solvable even for ASYNC robots. The result
first appeared in [9] for SSYNC robots and then is extended for ASYNC robots
in [3]. As a matter of fact, except the existence of the rendezvous problem, the
point formation problem (for more than two robots) is the easiest problem in
that it is solvable from any initial configuration P , since ρ(F) = n when F is a
point of multiplicity n, and ρ(P) is always a divisor of n by the definition of the
symmetricity, where n is the number of robots.

The other easiest case is a regular n-gon (frequently called the circle forma-
tion problem), since ρ(F) = n. A circle is formable from any initial configuration,
like the point formation problem for more than two robots. Recently the circle
formation problem for n robots (n �= 4) is solved without chirality [6].

Organization. After explaining the model in Section 2, we introduce the rota-
tion group of points in 3D-space and show some properties of vertex-transitive set
of points in Section 3. In Section 4, we then prove Theorem 1. Finally, Section 5
concludes this paper by giving some concluding remarks. Because of the page
limitation, we omit detailed proofs. Please see the full version [12].

2 Robot Model

Let R = {r1, r2, . . . , rn} be a set of n anonymous robots represented by points in
3D-space. We use the index just for description. Without loss of generality, we
can assume n ≥ 4, since all robots are already on a plane when n ≤ 3. By Z0 we
denote the global x-y-z coordinate system. Let pi(t) ∈ R

3 be the position of ri at
time t in Z0, where R is the set of real numbers. A configuration of R at time t is
denoted by P (t) = {p1(t), p2(t), . . . , pn(t)}. We assume that the robots initially
occupy distinct positions, i.e., pi(0) �= pj(0) for all 1 ≤ i < j ≤ n. In general,
P (t) can be a multiset, but it is always a set throughout this paper since the
proposed algorithm avoids any multiplicity.2 The robots have no access to Z0.
Instead, each robot ri has a local x-y-z coordinate system Zi, where the origin

2 It is impossible to break up multiple oblivious FSYNC robots (with the same local
coordinate system) on a single position as long as they execute the same algorithm,
and thus our algorithm avoids any multiplicity. However, we need to take into account
any algorithm that may lead R to a configuration with multiplicities, when proving
the impossibility result by reduction to the absurd.

Plane Formation by Synchronous Mobile Robots 97

is always its current location and the direction of x-y-z axes and unit distance
are arbitrary. However, we assume that Z0 and all Zi are right-handed. By Zi(p)
we denote the coordinate of a point p in Zi.

We investigate fully synchronous (FSYNC) robots in this paper. They all
start the t-th Look-Compute-Move cycle simultaneously, and synchronously exe-
cute each of its Look, Compute and Move phases. We specifically assume without
loss of generality that the (t + 1)-th Look-Compute-Move cycle starts at time t
and finishes before time t+1. At time t, ri (and all other robots simultaneously)
looks and obtains a set Zi(P (t)) = {Zi(p1(t)), Zi(p2(t)), . . . , Zi(pn(t))}.3 We call
Zi(P (t)) the local observation of ri at t. Next, ri computes its next position using
an algorithm ψ, which is common to all robots. Formally, ψ is a total function
from P3

n to R
3, where P3

n = (R3)n is the set of all configurations (which may
contain multiplicities). Finally, ri moves to ψ(Zi(P (t))) in Zi before time t + 1.
An infinite sequence of configurations E : P (0), P (1), . . . is called an execution
from an initial configuration P (0). Observe that the execution E is uniquely
determined, once initial configuration P (0), local coordinate systems Zi at time
0, and algorithm ψ are fixed.

We say that an algorithm ψ forms a plane from an initial configuration P (0),
if, regardless of the choice of initial local coordinate systems Zi of ri ∈ R, the
execution P (0), P (1), . . . eventually reaches a configuration Pf that satisfies the
following three conditions:

(a) Pf is contained in a plane,
(b) |Pf | = n, i.e., all robots occupy distinct positions, and
(c) Once the system reaches Pf , the robots do not move anymore.

3 Symmetry in 3D-Space

In 3D-space, we consider the smallest enclosing ball and the convex hull of the
positions of robots, i.e., robots are vertices of a convex polyhedron. We do not
care for non-convex polyhedra. A uniform polyhedron is a polyhedron consisting
of regular polygons and all its vertices are congruent. The family of uniform
polyhedra contains the regular polyhedra (Platonic solids) and the semi-regular
polyhedra (Archimedean solids). Any uniform polyhedron is vertex-transitive,
i.e., for any pair of vertices of the polyhedron, there exists a symmetry operation
that moves one vertex to the other with keeping the the polyhedron as a whole.

In general, symmetry operations on a polyhedron consists of rotations around
an axis, reflections for a mirror plane (bilateral symmetry), reflections for a point
(central inversion), and rotation-reflections [2]. But as briefly argued in Section 1,
since all local coordinate systems are right-handed, it is sufficient to consider only
direct congruent transformations, and those keeping the center are rotations
around some axes that contains the center. We thus concentrate on rotation
groups with finite order.

3 Since Zi changes whenever ri moves, notation Zi(t) is more rigid, but we omit
parameter t to simplify its notation.

98 Y. Yamauchi et al.

(a) (b) (c) (d) (e) (f) (g)

Fig. 1. Rotation groups: (a) the cyclic group C4, (b) the dihedral group D5, (c) the
tetrahedral group T , (d)(e) the octahedral group O, and (f)(g) the icosahedral group
I. Figures show only one axis for each fold of axes.

Table 1. Rotation groups T, O and I, and their elements.

Rotation group 2-fold axes 3-fold axes 4-fold axes 5-fold axes Order

T 3 8 - - 12
O 6 8 9 - 24
I 15 20 - 24 60

A rotation axis is a k-fold axis if the rotation around it is 2π/k, 4π/k, . . . , 2π.
There are five kinds of rotation groups of finite order [1,2]: The cyclic group
Ck consists of the single k-fold rotation axis (k ≥ 1), the dihedral group D�

consists of the single �-fold principal axis and � 2-fold axes (� ≥ 2) perpendicular
to the principal axis. The remaining three groups, the tetrahedral group T , the
octahedral group O, and the icosahedral group I are called polyhedral groups,
because they are defined by the rotations of corresponding polyhedra (Figure 1).
Table 1 shows for each of the rotation groups T , O, and I, the number of elements
around its k-fold rotation axes (k ∈ {2, 3, 4, 5}).

In the group theory, we do not distinguish the principal axes of D2 from the
other two 2-fold axes. Consider a sphenoid consisting of 4 congruent isosceles
triangles (Figure 2). Rotation operations on such a sphenoid are those of D2,
however we can recognize, for example, the vertical 2-fold axis from the oth-
ers by their lengths (between the midpoints connecting). The family of sets of
points on which only D2 can act are lines, rectangles, such sphenoids, and their
compositions. Actually, we can easily show that a set of points to which D2 can
act but we cannot distinguish the principal axis have four 3-fold rotation axes,
thus T can also act on the set. Hence, the sets of points to which only D2 can
act have the principal axis. Later we will show that the robots can form a plane
if they can recognize a single rotation axis or a principal axis. Based on this, we
say that the cyclic groups and the dihedral groups are two-dimensional (2D),
while the polyhedral groups are three-dimensional (3D) since polyhedral groups
cannot act on a set of points on a plane.

Let S = {Ck,D�, T,O, I |k = 1, 2, . . . , and � = 2, 3, . . .} be the set of rotation
groups, where C1 is the rotation group with order 1; its unique element is the
identity element (i.e., 1-fold rotation). When G′ is a subgroup of G (G,G′ ∈ S),
we denote it by G′ � G. If G′ is a proper subgroup of G (i.e., G �= G′), we denote

Plane Formation by Synchronous Mobile Robots 99

Fig. 2. A sphenoid consisting of 4 congruent isosceles triangles. Its rotation group is
D2. Since the vertices are not placed equidistant positions from the three axes, we can
distinguish an axis as the principal axis from the others.

it by G′ ≺ G. For example, we have D2 ≺ T , T ≺ O, I, and if G ∈ S has a k-fold
rotation axis, Ck′ � G if k′ divides k.

For any P ∈ P3
n, by B(P) and b(P), we denote the smallest enclosing ball

of P and its center, respectively. We now define the rotation group of a set of
points in 3D-space. For a set of points P ∈ P3

n, the rotation group that acts
on P and no proper supergroup of it acts on P is uniquely determined. We call
such group the rotation group of P and denote it by γ(P). Hence, even when the
points of P are on one plane, its rotation group is chosen from cyclic groups and
dihedral groups. For example, the rotation group of four points forming a square
is D4.4 It is worth noting that each robot ri can obviously calculate γ(P) from
P (more specifically, from its local observation Zi(P)), by checking all rotation
axes that keep P unchanged.

A point on the sphere of a ball is said to be on the ball, and we assume that
the interior or the exterior of a ball does not include its sphere. For a set of
points P , when all points of P are on B(P), we say P is spherical. We say that
a set of points P is vertex-transitive regarding a rotation group G, if (i) for any
two points p, q ∈ P , g ∗ p = q for some g ∈ G, and (ii) g ∗ p ∈ P for all g ∈ G
and p ∈ P , where ∗ denotes the group action. Note that a vertex-transitive set
of points is always spherical.

Given a set of points P , γ(P) determines the arrangement of its rotation axes.
We thus use the name of a rotation group and the arrangement of rotation axes
interchangeably. We define an embedding of a rotation group to another rotation
group. For two groups G,G′ ∈ S, an embedding of G to G′ is an embedding of
each rotation axis of G to one of the rotation axes of G′ so that any k-fold axis
of G overlaps a k′-fold axis of G′ satisfying k|k′ with keeping the arrangement of
the axes of G, where a|b denotes that a divides b. For example, we can embed T
to O, and T to I, but cannot embed O to I. In fact, group G can be embedded
to an arrangement of group G′ if G � G′.

4 This is the major difference between the rotation group of robots in 3D-space and
the symmetricity of robots on 2D-plane. In our context, existing works assume that
robots agree on the “top” direction against the plane where robots resides and their
symmetricity is chosen from cyclic groups [7,9,11].

100 Y. Yamauchi et al.

Theorem 2. Let P ∈ P3
n be any initial configuration. Then P can be decom-

posed into subsets {P1, P2, . . . , Pm} in such a way that each Pi is vertex-transitive
regarding γ(P). Furthermore, the robots can agree on a total ordering among the
subsets.

Proof. (Sketch.) For any point p ∈ P , let Orb(p) = {g ∗ p ∈ P : g ∈ γ(P)} be
the orbit of the group action of γ(P) through p. By definition Orb(p) is vertex-
transitive regarding γ(P). Let {Orb(p) : p ∈ P} = {P1, P2, . . . , Pm} be its orbit
space. Then {P1, P2, . . . , Pm} is obviously a partition which satisfies the first
part of the statement. Such a decomposition is unique as a matter of fact.

Then, we can show that there exists a translation of a local observation of a
robot to a “local view” that satisfies the following two properties:

1. All robots in Pi have the same local view for i = 1, 2, . . . , m.
2. Any two robots, one in Pi and the other in Pj , have different local views, for

all i �= j.

We will show the idea of the translation. Let L(P) be the largest empty ball that
is centered at b(P), contains no point of P in its interior, and contains at least
one point of P on its sphere. Intuitively, the local view of ri ∈ R is constructed by
considering L(P) as the earth and line pib(P) as the earth’s axis, where pi is the
position of ri. Then, the positions of each robot is represented by its amplitude,
longitude, and latitude. This local view does not depend on any local coordinate
systems, and each robot can compute the local view of other robots. Then, the
robots can agree on the total ordering of the subsets. 	

We call {P1, P2, . . . , Pm} the γ(P)-decomposition of P . The robots can agree
on the decomposition and the ordering of the subsets, and each robot can recog-
nize which subset it resides. In the following, we assume that {P1, P2, . . . , Pm}
is ordered in this ordering, thus P1 is on L(P) and Pm is on B(P).

We go on to the analysis of the structure of a set of points that is vertex-
transitive regarding a 3D rotation group. Any vertex-transitive (spherical) set
of points P is specified by a rotation group G and a seed point s as the orbit
Orb(s) of the group action of G through s. Not necessarily |G| = |Orb(s)| holds.
For any p ∈ P , we call μ(p) = |{g ∈ G : g ∗ p = p}| the multiplicity of p.5 We
of course count the identity element of G for μ(p), and μ(p) ≥ 1 holds for all
p ∈ P . We can show that the multiplicity of p ∈ P is identical, and μ(p) > 1
when it is on the μ(p)-fold rotation axis of G.

For a set of points P ∈ P3
n and its γ(P)-decomposition {P1, P2, . . . , Pm}, if

γ(P) is a 3D rotation group, each Pi is one of the polyhedra shown in Table 2.

4 Proof of Theorem 1

This section proves Theorem 1. In Subsection 4.1, we show the necessity of The-
orem 1 by showing that any algorithm for oblivious FSYNC robots cannot form
5 The word “multiplicity” is also used for a multiset. Here, the multiplicity of a point

p is the size of the stabilizer of G respect to p [8]. Readers can identify the meaning
clearly from the context.

Plane Formation by Synchronous Mobile Robots 101

Table 2. Vertex-transitive sets of points generated by 3D rotation groups: rotation
group, order, multiplicity, and cardinality.

Rotation group Order Multiplicity Cardinality Polyhedron

3 4 Regular tetrahedron
T 12 2 6 Regular octahedron

1 12 Infinitely many polyhedra

O 24

4 6 Regular octahedron
3 8 Cube
2 12 Cuboctahedron
1 24 Infinitely many polyhedra

I 60

5 12 Regular icosahedron
3 20 Regular dodecahedron
2 30 Icosidodecahedron
1 60 Infinitely many polyhedra

a plane if an initial configuration does not satisfy the condition in Theorem 1.
In Subsection 4.2, we show the sufficiency by presenting a plane formation algo-
rithm for oblivious FSYNC robots.

4.1 Necessity

Provided |P | ∈ {12, 24, 60}, we first show that when a set of points P is a vertex-
transitive set of points regarding a 3D rotation group, there is an arrangement
of local coordinate systems of robots forming P such that the execution from P
keeps a 3D rotation group forever, no matter which algorithm they obey.

Lemma 1. Assume n = |R| ∈ {12, 24, 60}. Then the plane formation problem
is unsolvable from an initial configuration P (0) for oblivious FSYNC robots, if
P (0) is a vertex-transitive set of points regarding a 3D rotation group.

Proof. (Sketch.) The idea of the proof is to show that we can construct local
coordinate systems in P (0) that keep the rotation axes of group G forever in the
execution of any algorithm, where G is given as follows:

G =

⎧
⎨

⎩

T if n = 12,
O if n = 24,
I if n = 60.

We construct a set of symmetric local coordinate systems based on the fact
that P (0) is vertex-transitive regarding G. If G = γ(P (0)), this property clearly
holds. The only case where G �= γ(P (0)) is when G = T and γ(P (0)) ∈ {O, I},
but we can show that there exists an embedding of T to γ(P (0)) such that no
robot is on the rotation axes of T . With the fact that |P (0)| = |T |, P (0) is
vertex-transitive regarding T .

Let P (0) = {p1, p2, . . . , pn} where pi is the position of ri ∈ R. We fix a local
coordinate system Z1 arbitrarily for r1 ∈ R, that is fixed by the origin, the

102 Y. Yamauchi et al.

positions of (1, 0, 0), (0, 1, 0), and (0, 0, 1) of Z1 in Z0. Then, because for each
ri ∈ R there exists a distinct element gi ∈ G such that pi = gi ∗p1, we obtain the
local coordinate system of ri by applying gi to Z1. The local coordinate systems
of the robots are symmetric regarding G, local observations of the robots are
identical, and the output of the algorithm that the robots execute are identical
at the robots, i.e., the destination of robots are symmetric regarding G. After
the movement, the positions and local coordinate systems of the robots are still
symmetric regarding G. Let P (1) be this new configuration. In the same way, in
P (1), the next destinations are symmetric regarding G. In this way, robots repeat
symmetric movement regarding G forever and any configuration that appears in
the execution keeps G. 	

From Lemma 1, the plane formation problem is unsolvable from each of
the semi-regular polyhedra except an icosidodecahedron consisting of 30 robots.
Some of the minimum unsolvable instances are a regular icosahedron, a truncated
tetrahedron, and a cuboctahedron, each of which consists of 12 robots.

When an initial configuration P is not vertex-transitive, we obtain the fol-
lowing theorem by applying Lemma 1 to each of the subsets of the γ(P)-
decomposition of P .

Theorem 3. Let P and {P1, P2, . . . , Pm} be an initial configuration and the
γ(P)-decomposition of P , respectively. Then the plane formation problem is
unsolvable from P for oblivious FSYNC robots, if γ(P) is a 3D rotation group,
and |Pi| ∈ {12, 24, 60} for i = 1, 2, . . . ,m.

4.2 Sufficiency

This subsection proves the following theorem by showing a plane formation algo-
rithm for oblivious FSYNC robots.

Theorem 4. Let P and {P1, P2, . . . , Pm} be an initial configuration and the
γ(P)-decomposition of P , respectively. Then oblivious FSYNC robots can form
a plane from P if either (i) γ(P) is a 2D rotation group, or (ii) γ(P) is a 3D
rotation group and there exists a subset Pi such that |Pi| �∈ {12, 24, 60}.

A very rough idea behind the plane formation algorithm is the following:
Let P (0) and {P1, P2, . . . , Pm} be an initial configuration and the γ(P (0))-
decomposition of P (0).

If γ(P (0)) is a 2D rotation group, since there is a single rotation axis or
a principal axis, which is obviously recognizable by the robots, they can agree
on the plane perpendicular to this axis and containing b(P (0)), and indeed the
robots can select distinct landing points on the plane.

Suppose otherwise that γ(P (0)) is a 3D rotation group. Then there is a sub-
set Pi such that |Pi| �∈ {12, 24, 60}. That is, |Pi| < |γ(P (0))| (γ(P (0)) = γ(Pi)),
and all robots in Pi are on some rotation axes of γ(P (0)). The proposed sym-
metry breaking algorithm moves the robots of Pi so that none of them will be
on any rotation axes of γ(P (0)). This move cannot maintain γ(P (0)), otherwise

Plane Formation by Synchronous Mobile Robots 103

Fig. 3. Two robots on a plane do not agree on the clockwise direction even when they
have chirality.

these robots form a vertex-transitive set of points with multiplicity one regard-
ing γ(P (0)), thus |Pi| = |γ(P (0))| which is a contradiction. Specifically, such Pi

forms a regular tetrahedron, a cube, a regular octahedron, a regular dodecahe-
dron, or an icosidodecahedron from Table 2. Our symmetry breaking algorithm
breaks the symmetry of these (semi-)regular polyhedral configurations, and as a
result configuration P (1) yields such that γ(P (1)) is a 2D rotation group.

In the following, we assume that b(P (0)) �∈ P (0) because the robots trivially
can translate a configuration P (0) with b(P (0)) ∈ P (0) to another configuration
P (1) with γ(P (1)) = C1 by the robot on b(P (0)) leaving the center.

The proposed plane formation algorithm consists of three phases. The first
phase selects Ps with the smallest index among the subsets whose size is not in
{12, 24, 60}, and shrinks Ps so that it becomes the innermost subset in the next
configuration P (1), i.e., only the robots that formed Ps is on L(P (1)) and these
robots form the same (semi-)regular polyhedron as Ps. This phase is necessary
to keep the center of the smallest enclosing circle of robots.

The second phase breaks the (semi-)regular polyhedron formed by the robots
on L(P (1)) and configuration P (2) yields whose rotation group γ(P (2)) is a 2D
rotation group. We call this phase “go-to-center” phase. Intuitively, this phase
makes the robots on L(P (1)) select an adjacent face of polyhedron that they
form and approach the center, but stop ε before the center. We will show that
the destinations of robots do not have any 3D rotation group, and the robots
succeeds in breaking their symmetry.

Finally, in the third phase, the robots agree on the plane F perpendicular
to the single rotation axis (or the principal axis) and containing b(P (2)). Then,
they land distinct positions of F . Each robot selects the foot of the perpendicular
line from its current position to F as its destination. Let P ′′

1 , P ′′
2 , . . . , P ′′

�
be the

γ(P (2))-decomposition of P (2). For each P ′′
i , at most two robots select the same

destination, however, these robots can easily select new different destinations.
Because all local coordinate systems are right-handed, if the negative z-axis of
the two robots points to F , the clockwise directions (e.g., rotation from the posi-
tive y-axis to positive x-axis) of the two robots are different (Figure 3). By using
this property and b(P (2)) as a reference point, the two robots select different
points on a small circle centered at their common foot as their destinations.

Because of the page restriction, we focus on the second phase. The proposed
symmetry breaking algorithm is shown in Algorithm 4.1.

104 Y. Yamauchi et al.

Algorithm 4.1 Symmetry breaking algorithm for robot ri ∈ R

Notation
P : Current configuration with γ(P) ∈ {T, O, I} observed in Zi.
{P1, P2, . . . , Pm}: γ(P)-decomposition of P where |P1| �∈ {12, 24, 60}.
ε: An arbitrarily small distance compared to the distance between any two
centers of the faces of P1 and determined by using the radius of B(P).
pi: Current position of ri (i.e., the origin).

Algorithm
If pi ∈ P1 then

If P1 forms an icosidodecahedron then
Select an adjacent regular pentagon face.
Destination d is the point ε before the center of the face
on the line from pi to the center.

Else
// P1 forms a regular tetrahedron, a regular octahedron,
// a cube or a regular dodecahedron.
Select an adjacent face of the regular polyhedron.
Destination d is the point ε before the center of the face
on the line from pi to the center.

Endif
Move to d.

Endif

Lemma 2. Let P be a configuration such that γ(P) is 3D rotation group and
|P1| �∈ {12, 24, 60} where {P1, P2, . . . , Pm} is the γ(P)-decomposition of P . Then
the robots execute Algorithm 4.1 at P and suppose that a configuration P ′ yields
as the result. Then γ(P ′) is a 2D rotation group.

Proof. (Sketch.) Let {P1, P2, . . . , Pm} be the γ(P)-decomposition of P . Because
of the assumption, we have |P1| �∈ {12, 24, 60}. Thus, P1 is either a regular
tetrahedron, a regular octahedron, a cube, a regular dodecahedron or an icosi-
dodecahedron by Table 2.

In Algorithm 4.1, only the robots in P1 move. Each robot p ∈ P1 selects
a face F of P1 incident on p, and moves to d which is at distance ε from the
center c(F) of F on line segment pc(F), with a restriction that p needs to select
a regular pentagon if P1 is an icosidodecahedron. Note that ε is common to all
robots in P1. Then, letting D be the set of points consisting of the candidates
for d (for p ∈ P1), D forms one of the polyhedra shown in Figure 4. Specifi-
cally, Figure 4(a) illustrates an ε-cantellated tetrahedron, which corresponds to
the candidate set D when P1 is a regular tetrahedron. Figure 4(b) illustrates
an ε-cantellated cube, which corresponds to the candidate set D when P1 is a
regular octahedron. Figure 4(c) illustrates an ε-cantellated octahedron, which
corresponds to the candidate set D when P1 is a cube. Figure 4(d) illustrates
an ε-cantellated icosahedron, which corresponds to the candidate set D when
P1 is a regular dodecahedron. Finally, Figure 4(e) illustrates an ε-truncated

Plane Formation by Synchronous Mobile Robots 105

(a) (b) (c)

(d) (e)

Fig. 4. Candidate set D. White circles are the points of D. (a) ε-cantellated tetrahe-
dron, (b) ε-cantellated cube, (c) ε-cantellated octahedron, (d) ε-cantellated icosahedron,
and (e) ε-truncated icosahedron.

icosahedron, which corresponds to the candidate set D when P1 is an icosido-
decahedron. We would like to emphasize the difference between ε-cantellated
icosahedron and an ε-truncated icosahedron.

Let S ⊂ D be any set such that |S| = |P1|. Then it is sufficient to show that
γ(S) is a 2D rotation group. To derive a contradiction, suppose that there is an
S such that γ(S) is a 3D rotation group. We first claim b(S) = b(D), otherwise
γ(S) is a 2D rotation group because the intersection of two balls is either a point,
a circle, or a ball. For each of the polyhedra that P1 can be, we can show that
γ(S) is a 2D rotation group for each of the five cases by contradiction.

First, when P1 forms a regular tetrahedron, D is an ε-cantellated tetrahedron
(Figure 4(a)). If γ(S) is a 3D rotation group, S must be a regular tetrahedron,
since |S| = |P1| = 4. Since S is a regular tetrahedron, one point should be
selected from the four faces of P1. Then we can show the non-existence of a
desirable S by checking, for each candidates for S in an exhaustive way, its
inconsistency.

Second, when P1 forms a regular octahedron, D is an ε-cantellated cube
(Figure 4(b)). If γ(S) is a 3D rotation group, because |S| = 6, S must be a
regular octahedron, since otherwise S was the union of a regular tetrahedron
and a 2-set, and γ(S) would be a 2D rotation group. Obviously S cannot be a
regular octahedron, since D is an ε-cantellated cube and all vertices are around
vertices of a cube.

106 Y. Yamauchi et al.

The above two cases show the two basic techniques that we use for the
remaining three cases. When P1 forms a cube, a regular dodecahedron, or an
icosidodecahedron, S must contain either a regular tetrahedron, a regular octa-
hedron or a cube as a subset. However, we can show that D does not contain
any of these regular polyhedra and we conclude that γ(S) is a 2D rotation group
for any |P1|-subset of D, which implies that γ(P ′) is a 2D rotation group. 	

Finally, as already mentioned, from a configuration P ′, robots can agree on
a common plane and land distinct points on it if γ(P ′) is 2D rotation group.
Consequently, we obtain Theorem 4.

5 Conclusion

In this paper, we have investigated the plane formation problem for anonymous
oblivious FSYNC robots in 3D-space. To analyze it, we have used the rotation
group of a set of points in 3D-space, and presented a necessary and sufficient
condition for the plane formation problem. Since real systems work in a 3D-
space, many natural problems would arise from practical applications.

References

1. Coxeter, H.S.M.: Regular polytopes. Dover Publications (1973)
2. Cromwell, P.: Polyhedra. University Press (1997)
3. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by

mobile robots: gathering. SIAM J. Comput. 41(4), 829–879 (2012)
4. Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by oblivious mobile

robots. Morgan & Claypool (2012)
5. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Arbitrary pattern formation

by asynchronous, anonymous, oblivious robots. Theor. Comput. Sci. 407, 412–447
(2008)

6. Flocchini, P., Prencipe, G., Santoro, N., Viglietta, G.: Distributed computing by
mobile robots: solving the uniform circle formation problem. In: Aguilera, M.K.,
Querzoni, L., Shapiro, M. (eds.) OPODIS 2014. LNCS, vol. 8878, pp. 217–232.
Springer, Heidelberg (2014)

7. Fujinaga, N., Yamauchi, Y., Ono, H., Kijima, S., Yamashita, M.: Pattern formation
by oblivious asynchronous mobile robots. SIAM J. Comput. 44(3), 740–785 (2015)

8. Rotman, J.J.: An introduction to the theory of groups, 4th edn. Springer-Verlag
New York, Inc. (1994)

9. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: Formation of
geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)

10. Yamashita, M., Kameda, T.: Computing on anonymous networks: Part I-
Characterizing the solvable cases. IEEE Trans. Parallel Distrib. Syst. 7(1), 69–89
(1996)

11. Yamashita, M., Suzuki, I.: Characterizing geometric patterns formable by oblivious
anonymous mobile robots. Theor. Comput. Sci. 411, 2433–2453 (2010)

12. Yamauchi, Y., Uehara, T., Kijima, S., Yamashita, M.: Plane formation by
synchronous mobile robots in the three dimensional Euclidean space (2015).
arXiv:1505.04546

http://arxiv.org/abs/1505.04546

Anonymous Graph Exploration with Binoculars

Jérémie Chalopin, Emmanuel Godard(B), and Antoine Naudin

LIF, Université Aix-Marseille and CNRS, Marseille, France
emmanuel.godard@lif.univ-mrs.fr

Abstract. We investigate the exploration of networks by a mobile agent.
It is long known that, without global information about the graph, it is
not possible to make the agent halts after the exploration except if the
graph is a tree. We therefore endow the agent with binoculars, a sensing
device that can show the local structure of the environment at a constant
distance of the agent current location.

We show that, with binoculars, it is possible to explore and halt
in a large class of non-tree networks. We give a complete characteriza-
tion of the class of networks that can be explored using binoculars using
standard notions of discrete topology. This class is much larger than the
class of trees: it contains in particular chordal graphs, plane triangula-
tions and triangulations of the projective plane. Our characterization is
constructive, we present an Exploration algorithm that is universal; this
algorithm explores any network explorable with binoculars, and never
halts in non-explorable networks.

1 Introduction

Mobile agents are computational units that can progress autonomously from
place to place within an environment, interacting with the environment at each
node that it is located on. Such software robots (sometimes called bots, or agents)
are already prevalent in the Internet, and are used for performing a variety of
tasks such as collecting information or negotiating a business deal. More gen-
erally, when the data is physically dispersed, it can be sometimes beneficial to
move the computation to the data, instead of moving all the data to the entity
performing the computation. The paradigm of mobile agent computing / dis-
tributed robotics is based on this idea. As underlined in [8], the use of mobile
agents has been advocated for numerous reasons such as robustness against net-
work disruptions, improving the latency and reducing network load, providing
more autonomy and reducing the design complexity, and so on (see e.g. [17]).

For many distributed problems with mobile agents, exploring, that is visit-
ing every location of the whole environment, is an important prerequisite. In
its thorough exposition about Exploration by mobile agents [8], Das presents
numerous variations of the problem. In particular, it can be noted that, given
some global information about the environment (like its size or a bound on the

This work was partially supported by ANR project MACARON (anr-13-js02-
0002).

c© Springer-Verlag Berlin Heidelberg 2015
Y. Moses (Ed.): DISC 2015, LNCS 9363, pp. 107–122, 2015.
DOI: 10.1007/978-3-662-48653-5 8

108 J. Chalopin et al.

diameter), it is always possible to explore, even in environments where there
is no local information that enables to know, arriving on a node, whether it
has already been visited (e.g. anonymous networks). If no global information is
given to the agent, then the only way to perform a network traversal is to use a
unlimited traversal (e.g. with a classical BFS or Universal Exploration Sequences
[1,15,19] with increasing parameters). This infinite process is sometimes called
Perpetual Exploration when the agent visits infinitely many times every node.
Perpetual Exploration has application mainly to security and safety when the
mobile agents are a way to regularly check that the environment is safe. But it
is important to note that in the case where no global information is available, it
is impossible to always detect when the Exploration has been completed. This
is problematic when one would like to use the Exploration algorithm composed
with another distributed algorithm.

In this note, we focus on Exploration with termination. It is known that in
general anonymous networks, the only topology that enables to stop after the
exploration is the tree-topology. From standard covering and lifting techniques,
it is possible to see that exploring with termination a (small) cycle would lead
to halt before a complete exploration in huge cycles. Would it be possible to
explore, with full stop, non-tree topologies without global information? We show
here that it is possible to explore a larger set of topologies while only providing
the agent with some local information.

The information that is provided can be informally described as giving binoc-
ulars to the agent. This constant range sensor enables the agent to see the rela-
tionship between its neighbours. Using binoculars is a quite natural enhancement
for mobile robots. In some sense, we are trading some a priori global information
(that might be difficult to maintain efficiently) for some local information that
the agent can autonomously and dynamically acquire. We give here a complete
characterization of which networks can be explored with binoculars.

2 Exploration with Binoculars

2.1 The Model

Mobile Agents. We use a standard model of mobile agents.A mobile agent is
a computational unit evolving in an undirected simple graph G = (V,E) from
vertex to vertex along the edges. A vertex can have some labels attached to
it. There is no global guarantee on the labels, in particular vertices have no
identity (anonymous/homonymous setting), i.e., local labels are not guaranteed
to be unique. The vertices are endowed with a port numbering function available
to the agent in order to let it navigate within the graph. Let v be a vertex, we
denote by δv : V → N, the injective port numbering function giving a locally
unique identifier to the different adjacent nodes of v. We denote by δv(w) the port
number of v leading to the vertex w, i.e., corresponding to the edge vw at v. We
denote by (G, δ) the graph G endowed with a port numbering δ = {δv}v∈V (G).

When exploring a network, we would like to achieve it for any port numbering.
So we consider the set of every graph endowed with a port numbering function,

Anonymous Graph Exploration with Binoculars 109

called Gδ. By abuse of notation, since the port numbering is usually fixed, we
denote by G a graph (G, δ) ∈ Gδ.

The behaviour of an agent is cyclic: it obtains local information (local label
and port numbers), computes some values, and moves to its next location accord-
ing to its previous computation. We also assume that the agent can backtrack,
that is the agent knows via which port number it accessed its current loca-
tion. We do not assume that the starting point of the agent (that is called the
homebase) is marked. All nodes are a priori indistinguishable except from the
degree and the label. We assume that the mobile agent is a Turing machine
(with unbounded local memory). Moreover we assume that an agent accesses its
memory and computes instructions instantaneously. An execution ρ of an algo-
rithm A for a mobile agent is composed by a (possibly infinite) sequence of edge
traversals (or moves) by the agent. The length |ρ| of an execution ρ is the total
number of moves. The complexity measure we are interested in is the number of
moves performed by the agent during the execution of the algorithm.

Binoculars. Our agent can use “binoculars” of range 1, that is, it can “see”
the graph (with the labels and the port numbers) that is induced by its current
location and the adjacent nodes. In order to reuse standard techniques and
algorithms, we will actually assume that the nodes of the graph we are exploring
are labelled by these induced balls. It is straightforward to see that in a graph
with such a binoculars labelling of the nodes, an agent with binoculars has the
same computational power as an agent without binoculars (the “binoculars”
primitive gives only access to more information, it does not enable more moves).

2.2 The Exploration Problem

We consider the Exploration Problem with Binoculars for a mobile agent. An
algorithm A is an Exploration algorithm if for any graph G = (V,E) with
binoculars labelling, for any port numbering δG, starting from any arbitrary
vertex v0 ∈ V ,

– either the agent visits every vertex at least once and terminates;
– either the agent never halts.1

In other words, if the agent halts, then we know that every vertex has been
visited. The intuition in this definition is to model the absence of global knowl-
edge while maintaining safety of composition. Since we have no access to global
information, we might not be able to visit every node on some networks, but,
in this case, we do not allow the algorithm to appear as correct by terminating.
This allows to safely compose an Exploration algorithm with another algorithm
without additional global information.

We say that a graph G is explorable if there exists an Exploration algorithm
that halts on G starting from any point. An algorithm A explores F if it is an
1 A seemingly stronger definition could require that the agent performs perpetual

exploration in this case. It is easy to see that this is actually equivalent for com-
putability considerations since it is always possible to compose in parallel (see below)
a perpetual BFS to any never halting algorithm.

110 J. Chalopin et al.

Exploration algorithm such that for all G ∈ F , A explores and halts. (Note that
since A is an Exploration algorithm, for any G /∈ F , A either never halts, or A
explores G.)

In the context of distributed computability, a very natural question is to
characterize the maximal sets of explorable networks. It is not immediate that
there is a maximum set of explorable networks. Indeed, it could be possible that
two graphs are explorable, but not explorable with the same algorithm. However,
we note that explorability is monotone. That is if F1 and F2 are both explorable
then F1 ∪ F2 is also explorable. Consider A1 that explores F1 and A2 that
explores F2 then the parallel composition of both algorithms (the agent performs
one step of A1 then backtracks to perform one step of A2 then backtracks, etc
. . . ; and when one of A1 or A2 terminates, the composed algorithm terminates)
explores F1∪F2 since these two algorithms guarantee to have always explored the
full graph when they terminate on any network. So there is actually a maximum
set of explorable graphs.

2.3 Our Results

We give here a complete characterization of which networks can be explored with
binoculars. We first give a necessary condition for a graph to be explorable with
binoculars using the standard lifting technique. Using the same technique, we
give a lower bound on the move complexity to explore a given explorable graph.
Then we show that the Exploration problem admits a universal algorithm, that
is, there exists an algorithm that halts after visiting all vertices on all explorable
graphs. This algorithm, together with the necessary condition, proves that the
explorable graphs are exactly the graphs whose clique complexes admit a finite
universal cover (these are standard notions of discrete topology, see Section 3).
This class is larger than the class of tree networks that are explorable without
binoculars. It contains graphs whose clique complex is simply connected (like
chordal graphs or planar triangulations), but also triangulations of the projective
plane. Finally, we show that the move complexity of any universal exploration
algorithm cannot be upper bounded by any computable function of the size of
the network.

Related Works. To the best of our knowledge, using binoculars has never been
considered for mobile agent on graphs. In the classical “Look-Compute-Move”
model [16, Chap.5.6], vision is usually global and only coordination problems,
like Rendezvous or Gathering, have been considered, even when the vision is
limited to the immediate neighbourhood (e.g. in [10]). When the agent can only
see the label and the degree of its current location, it is well-known that any
Exploration algorithm can only halts on trees and a standard DFS algorithm
enables to explore any tree in O(n) moves. Gasieniec et al. [2] show that an
agent can explore any tree and stop on its starting position using only O(log n)
bit of memory matching a lower bound proved in [9]. For general anonymous
graphs, Exploration with halt has mostly been investigated assuming some global
bounds are known, in the goal of optimizing the move complexity. It can be

Anonymous Graph Exploration with Binoculars 111

done in O(Δn) moves using a DFS traversal while knowing the size n when the
maximum degree is Δ. This can be reduced to O(n3Δ2 log n) using Universal
Exploration Sequences [1,15] that are sequences of port numbers that an agent
can follow and be assured to visit any vertex of any graph of size at most n and
maximum degree at most Δ. Reingold [19] showed that universal exploration
sequences can be constructed in logarithmic space.

Trading global knowledge for structural local information by designing spe-
cific port numberings, or specific node labels that enable easy or fast exploration
of anonymous graphs have been proposed in [7,11,14]. Note that using binoculars
is a local information that can be locally maintained contrary to the schemes
proposed by these papers where the local labels are dependent of the full graph
structure. See also [8] for a detailed discussion about Exploration using other
mobile agent models (with pebbles for examples).

3 Definitions and Notations

3.1 Graphs

We always assume simple and connected graphs. Let G be a graph, we denote
V (G) (resp. E(G)) the set of vertices (resp. edges). If two vertices u, v ∈ V (G)
are adjacent in G, the edge between u and v is denoted by uv.

A path p of length k in a graph G is a sequence of vertices (v0, . . . , vk) such
that vivi+1 ∈ E(G) for every 0 ≤ i < k. A path is simple if for any i �= j, vi �= vj .
A cycle c of length k is a path (v0, . . . , vk) such that v0 = vk. A cycle (v0, . . . , vk)
is simple if it is the empty path (i.e., k = 0) or if the path (v0, . . . , vk−1) is simple.
A loop c of length k is a sequence of vertices (v0, . . . , vk) such that v0 = vk and
vi = vi+1 or vivi+1 ∈ E(G), for every 0 ≤ i < k; the length of a loop is denoted
by |c|. On a graph endowed with a port numbering, a path p = (v0, . . . , vk) is
labelled by λ(p) = (δv0(v1), δv1(v2), . . . , δvk−1(vk)).

The distance between two vertices v and v′ in a graph G is denoted by
dG(v, v′). It is the length of a shortest path between v and v′ in G. Let NG(v, k)
be the set of vertices at distance at most k from v in G. We denote by NG(v),
the vertices at distance at most 1 from v. We define BG(v, k) to be the subgraph
of G induced by the set of vertices NG(v, k).

Binoculars labelling. In the following, we always assume that every vertex v of
G has a label ν(v) corresponding to the binoculars labelling of v. This binoculars
label ν(v) is a graph isomorphic to BG(v, 1) with its port numbering.

Coverings. We now present the formal definition of graph homomorphisms that
capture the relation between graphs that locally look the same in our model. A
map ϕ : V (G) → V (H) from a graph G to a graph H is a homomorphism from
G to H if for every edge uv ∈ E(G), ϕ(u)ϕ(v) ∈ E(H). A homomorphism ϕ
from G to H is a graph covering if for every v ∈ V (G), ϕ|NG(v) is a bijection
between NG(v) and NH(ϕ(v)).

112 J. Chalopin et al.

These standard definitions extend naturally to labelled graphs: for any func-
tions label defined on V (G) and label′ defined on V (H) and for any port num-
berings δ of G and δ′ of H, ϕ : V (G) → V (H) is a homomorphism (resp. a graph
covering) from (G, δ, label) to (H, δ′, label′) if ϕ : G → H is a homomorphism
(resp. a graph covering) such that label′(ϕ(u)) = label(u) for every u ∈ V (G)
and δu(v) = δ′

ϕ(u)(ϕ(v)) for every edge uv ∈ E(G).

3.2 Simplicial Complexes

Definitions in this section are standard notions from discrete topology [18]. Given
a set V , a simplex s of dimension n ∈ N is a subset of V of size n+1. A simplicial
complex K is a collection of simplices such that for every simplex s ∈ K, s′ ⊆ s
implies s′ ∈ K. A simplicial complex K is k-dimensional if the largest dimension
of a simplex of K is k.

A graph G can be seen as a 1-dimensional simplicial complex where V (G) is
the set of 0-dimensional simplices and E(G) is the set of 1-dimensional simplices.

Given a simplicial complex K, the 0-dimensional simplices of K are the
vertices of K and the 1-dimensional simplices of K are the edges of K. For a
simplicial complex K, we denote by V (K) (resp. E(K)) the set of vertices (resp.
of edges) of K, and the 1-skeleton of K is the graph G(K) = (V (K), E(K)).
A simplicial complex is said to be connected if its 1-skeleton is connected. We
consider only connected complexes.

The star St(v,K) of a vertex v in a simplicial complex K is the subcom-
plex defined by taking the collection of simplices of K containing v and their
subsimplices.

It also possible to have a notion of covering for simplicial complexes. A sim-
plicial map ϕ : K → K ′ is a map ϕ : V (K) → V (K ′) such that for any simplex
s = {v1, . . . , vk} in K, ϕ(s) = {ϕ(v1), . . . , ϕ(vk)} is a simplex in K ′.

Definition 1. A simplicial map ϕ : K → K ′ is a simplicial covering if for every
vertex v ∈ V (K), ϕ|St(v,K) is a bijection between St(v,K) and St(ϕ(v),K ′).

Examples of simplicial coverings are presented at the end of this section.For
any simplicial complex K, the following proposition shows that there always
exists a “maximal” cover of K that is called the universal cover of K.

Proposition 1 (Universal Cover). For any simplicial complex K, there exists
a possibly infinite complex (unique up to isomorphism) denoted K̂ and a sim-
plicial covering μ : K̂ → K such that, for any complex K ′, for any simplicial
covering ϕ : K ′ → K, there exists a simplicial covering γ : K̂ → K ′ and
ϕ ◦ γ = μ.

Given a graph G = (V,E), the clique complex of G, denoted K(G) is the
simplicial complex formed by the cliques of G. Note that for any graph G, the
1-skeleton of K(G) is G. Examples of simplicial coverings and clique complexes
are presented in Figure 1.

Anonymous Graph Exploration with Binoculars 113

ϕ ϕ′

U H G

Fig. 1. K(H) is a (simplicial) cover of K(G). K(U) is an infinite graph that is a sim-
plicial cover of both K(H) and K(G).

Given two graphs G,G′, a map ϕ : V (G) → V (G′) is a simplicial map from
K(G) to K(G′) if and only if for each edge uv ∈ E(G), either ϕ(u) = ϕ(v) or
ϕ(u)ϕ(v) ∈ E(G′). Note that if ϕ : K(G) → K(G′) is a simplicial covering, then
ϕ is also a graph covering from G to G′. Note however that the converse does not
hold. Indeed, let C3 and C6 be two cycles of respective lengths 3 and 6. There
is a graph covering from C6 to C3 but there is no simplicial covering from C6

to C3 since every vertex of K(C3) belongs to a 2-dimensional simplex while no
vertex of K(C6) does.

However, when we consider graphs labelled with their binoculars labelling,
the two notions are equivalent. Note that in the previous example with C6 and
C3, there is no graph covering from C6 to C3 that preserves the binoculars labels.

Proposition 2. Let G and H be two graphs labelled with their binoculars
labelling and consider a homomorphism ϕ : G → H. The map ϕ is a graph
covering from G to H if and only if ϕ is a simplicial covering from K(G) to
K(H).

From standard distributed computability results [3,4,5,20], it is known that
the structure of graph coverings explains what can be computed or not. So in
order to investigate the structure induced by coverings of graphs with binoculars
labelling, we will investigate the structure of simplicial coverings of simplicial
complexes.

In the following, we will only consider simplicial coverings, and for sake of
simplicity, we will name them “coverings”.

Homotopy. We say that two loops c = (v0, v1, . . . , vi−1, vi, vi+1, . . . , vk) and
c′ = (v0, v1, . . . , vi−1, vi+1, . . . , vk) in a complex K are related by an elementary
homotopy if one of the following conditions holds: vi = vi+1, vi−1 = vi+1, or
vi−1vivi+1 is a triangle of K (i.e., vi−1vi+1 is an edge of K when K is a clique
complex).

Note that being related by an elementary homotopy is a reflexive relation
(we can either increase or decrease the length of the loop). We say that two
loops c and c′ are homotopic equivalent if there is a sequence of loops c1, . . . , ck

such that c1 = c, ck = c′, and for every 1 ≤ i < k, ci is related to ci+1 by an
elementary homotopy. A loop is k-contractible (for k ∈ N) if it can be reduced

114 J. Chalopin et al.

to a vertex by a sequence of k elementary homotopies. A loop is contractible if
there exists k ∈ N such that it is k-contractible.

Remark that the number of elementary homotopies required to contract a
loop is not necessarily monotone nor bounded by the number of vertices in the
graph. For instance, you might have to enlarge a cycle before contracting it
(think about the top cycle of a “sockwind-like surface”).

Simple Connectivity. A simply connected complex is a complex where every
loop can be reduced to a vertex by a sequence of elementary homotopies. These
complexes have lots of interesting combinatorial and topological properties.

Proposition 3 ([18]). Let K be a connected complex, then K is isomorphic to
its universal cover K̂ if and only if it is simply connected.

In fact, in order to check the simple connectivity of a simplex K, it is enough
to check that all its simple cycles are contractible. The proof is straightforward.

Proposition 4. A complex K is simply connected if and only if every simple
cycle is contractible.

Complexes with Finite Universal Cover. We define FC = {G | the univer-
sal cover of K(G) is finite } and IC = {G | G is finite and the universal cover of
K(G) is infinite }. Note that FC admits one interesting sub-class SC = {G | G
is finite and K(G) is simply connected}.

4 First Impossibility Result and Lower Bound

First, in Lemma 1, we propose a Lifting Lemma for coverings of clique complexes.
This lemma shows that every execution on a graph G can be lifted up to every
graph G′ such that K(G′) is a cover of K(G), and in particular, to the 1-skeleton
Ĝ of the universal cover of K(G).

Consider an algorithm A and an execution of A performed by a mobile agent
with binoculars starting on a vertex v in a network G. For any i ∈ N, we
denote respectively the position of the agent and its state (i.e., the content of its
memory) at step i by posi(A, G, v) and memi(A, G, v). By standard techniques
([3,4,5,20]), we have the following lemma.

Lemma 1 (Lifting Lemma). Consider two graphs G and G′ such that there
exists a covering ϕ : K(G′) → K(G). For any algorithm A and for any ver-
tices v ∈ V (G) and v′ ∈ V (G′) such that ϕ(v′) = v, for any step i ∈ N,
memi(A, G′, v′) = memi(A, G, v) and ϕ(posi(A, G′, v′)) = posi(A, G, v).

Using the Lifting Lemma above, we are now able to prove a first result about
explorable graphs and the move complexity of their exploration.

Proposition 5. Any explorable graph G belongs to FC, and any Exploration
algorithm exploring G performs at least |V (Ĝ)| − 1 moves, where Ĝ is the
1-skeleton of the universal cover of the clique complex K(G).

Anonymous Graph Exploration with Binoculars 115

Proof. Suppose it is not the case and assume there exists an exploration algo-
rithm A that explores a graph G ∈ IC when it starts from a vertex v0 ∈ V (G).
Let r be the number of steps performed by A on G when it starts on v0.

Let Ĝ be the 1-skeleton of the universal cover of K(G). Consider a covering
ϕ : K(Ĝ) → K(G) and consider a vertex v̂0 ∈ V (Ĝ) such that ϕ(v̂0) = v0.
By Lemma 1, when executed on Ĝ, A stops after r steps. Consider the graph
H = B

̂G(v̂0, r + 1). Since G ∈ IC, Ĝ is infinite and |V (H)| > r + 1. When
executed on H starting in v̂0, A behaves as in Ĝ during at least r steps since
the r first moves can only depend of BH(v̂, r) = B

̂G(v̂, r). Consequently A stops
after r steps when executed on H starting in v̂0. Since |V (H)| > r + 1, A stops
before it has visited all nodes of H and thus A is not an Exploration algorithm,
a contradiction.

The move complexity bound is obtained from the Lifting Lemma applied to
any covering ϕ : K(Ĝ) → K(G). Assume we have an Exploration algorithm A
halting on G at some step q. If |V (Ĝ)| > q + 1 then A halts on Ĝ and has not
visited all vertices of Ĝ since at most one vertex can be visited in a step (plus
the homebase). A contradiction.

Note that this is the same lifting technique that shows that, without binoc-
ulars, tree networks are the only explorable networks without global knowledge.

5 Exploration of FC
We propose in this section an Exploration algorithm for the family FC in order
to prove that this family is the maximum set of explorable networks.

The goal of Algorithm 1 is to visit, in a BFS fashion, a ball centered on the
homebase of the agent until the radius of the ball is sufficiently large to ensure
that G is explored. Once such a radius is reached, the agent stops. To detect
when the radius is sufficiently large, we use the view of the homebase (more
details below) to search for a simply connected graph which locally looks like
the explored ball.

The view of a vertex is a standard notion in anonymous networks [4,20].
The view of a vertex v in a labelled graph (G, label) is a possibly infinite tree
composed by paths starting from v in G. From [20], the view TG(v) of a vertex
v in G is the labelled rooted tree built recursively as follows. The root of TG(v),
denoted by x0, corresponds to v and is labelled by label(x0) = label(v). For every
vertex vi adjacent to v, we add a node xi in V (TG(v)) with label(xi) = label(vi)
and we add an edge x0x1 in E(TG(v)) with δx0(xi) = δv(vi) and δxi

(x0) = δvi
(v).

To finish the construction, every node xi adjacent to x0 is identified with the root
of the tree TG(vi). We denote by TG(v, k), the view TG(v) truncated at depth k.
If the context permits it, we denote it by T (v, k). Given an integer k ∈ N, we
define an equivalence relation on vertices using the views truncated at depth k:
v ∼k w if TG(v, k) = TG(w, k).

Note that in the following, we will consider the case where for each node v,
label(v) is equal to ν(v), the graph that is obtained using binoculars from v.

116 J. Chalopin et al.

Algorithm 1. FC-Exploration algorithm

k := 0;
repeat

Increment k ;
Compute T (v0, 2k);
Find a complex H (if it exists) such that:

– |V (H)| < k, and
– ∃ṽ0 ∈ V (H) such that ṽ0 ∼2k v0, and
– every simple cycle of K(H) is k-contractible;

until H is defined ;
Stop the exploration;

5.1 Presentation of the Algorithm

Consider a graph G and let v0 ∈ V (G) be the homebase of the agent in G. Let k
be an integer initialized to 1. Algorithm 1 is divided in phases. At the beginning
of a phase, the agent follows all paths of length at most 2k originating from v0
in order to compute the view T (v0, 2k) of v0.

At the end of the phase, the agent backtracks to its homebase, and enumer-
ates all graphs of size at most k until it finds a graph H such that all simple
cycles of K(H) are k-contractible and such that there exists a vertex ṽ0 ∈ V (H)
that has the same view at distance 2k as v0, i.e., TH(ṽ0, 2k) = TG(v0, 2k).

If such an H exists then the algorithm stops. Otherwise, k is incremented
and the agent starts another phase.

Deciding the k-contractibility of a given cycle is computable (by considering
all possible sequences of elementary homotopies of length at most k). Since the
total number of simple cycles of a graph is finite, Algorithm 1 can be implemented
on a Turing machine.

5.2 Correction of the Algorithm

In order to prove the correction of this algorithm, we prove that when the first
graph H satisfying every condition of Algorithm 1 is found, then K(H) is actually
the universal cover of K(G) (Corollary 1). Intuitively, this is because it is not
possible to find a simply connected complex that looks locally the same as a
strict subpart of another complex.

Remember that given a path p in a complex G, λ(p) denotes the sequence
of outgoing port numbers followed by p in G. We denote by destG(v0, λ(p)),
the vertex in G reached by the path starting in v0 and labelled by λ(p).
We show (Proposition 6) that if we fix a vertex ṽ0 ∈ V (H) such that ṽ0 ∼2k v0,
we can define unambiguously a map ϕ from V (H) to V (G) as follows: for any
ũ ∈ V (H), let p be any path from ṽ0 to ũ in H and let u = ϕ(ũ) be the vertex
reached from v0 in G by the path labelled by λ(p).

Anonymous Graph Exploration with Binoculars 117

Proposition 6. Consider a graph G such that Algorithm 1 stops on G when it
starts in v0. Let k ∈ N and let H be the graph computed by the algorithm before
it stops. Consider any vertex ṽ0 ∈ V (H) such that v0 ∼2k ṽ0.

For any vertex ũ ∈ V (H), for any two paths q̃, q̃′ from ṽ0 to ũ in H,
destG(v0, λ(q̃)) = destG(v0, λ(q̃′)).

The proof is rather technical and involves careful inductions inside the space
of homotopies. It is omitted here for lack of space, the complete proof is presented
in the full version [6]. Showing that ϕ is a covering, we get the following corollary.

Corollary 1. Consider a graph G such that Algorithm 1 stops on G when it
starts in v0 ∈ V (G) and let H be the graph computed by the algorithm before it
stops. The clique complex K(H) is the universal cover of K(G).

Proof. By the definition of Algorithm 1, the complex K(H) is simply connected.
Consequently, we just have to show that K(H) is a cover of K(G).

Consider any vertex ṽ0 ∈ V (H) such that v0 ∼2k ṽ0. For any vertex ũ ∈
V (H), consider any path p̃ũ from ṽ0 to ũ and let ϕ(ũ) = destG(v0, λ(p̃ũ)).
From Proposition 6, ϕ(ũ) is independent from our choice of p̃ũ. Since v0 ∼2k ṽ0
and since |V (H)| ≤ k, for any ũ ∈ V (H), ν(ϕ(ũ)) = ν(ũ). Consequently, for
any ũ ∈ V (H) and for any neighbour w̃ ∈ NH(ũ), there exists a unique w ∈
NG(ϕ(ũ)) such that λ(ũ, w̃) = λ(ϕ(ũ), w). Conversely, for any w ∈ NG(ϕ(ũ)),
there exists a unique w̃ ∈ NH(ũ) such that λ(ũ, w̃) = λ(ϕ(ũ), w). In both cases,
let p̃w̃ = p̃ũ · (ũ, w̃); this is a path from ṽ0 to w̃. From Proposition 6, ϕ(w̃) =
destG(v0, λ(p̃w̃)) = destG(u, λ(ũ, w̃)) = w. Consequently, ϕ is a graph covering
from H to G, and by definition of H, ϕ also preserves the binoculars labelling.
Therefore, the complex K(H) is a cover of the complex K(G).

To finish to prove that Algorithm 1 is an Exploration algorithm for FC, we
remark that, when considering connected complexes (or graphs), coverings are
always surjective. Consequently, G has been explored when the algorithm stops.

Theorem 1. Algorithm 1 is an Exploration algorithm for FC.
Proof. From Corollary 1, we know that if Algorithm 1 stops, then the clique
complex K(H) of the graph H computed by the algorithm is a cover of K(G).
Moreover, since |V (G)| ≤ |V (H)| ≤ k and since the agent has constructed
TG(v, 2k), it has visited all vertices of G.

We just have to prove that Algorithm 1 always halts on any graph G ∈ FC.
Consider any graph G ∈ FC and let Ĝ be the 1-skeleton of the universal cover
of K(G). Since G ∈ FC, Ĝ is finite and there exists k′ ∈ N such that every
simple cycle of Ĝ is k′-contractible. Let k = max(|V (Ĝ)|, k′). At phase k, since
K(Ĝ) is the universal cover of K(G), there exists ṽ0 ∈ V (Ĝ) such that TG(v0) =
T
̂G(ṽ0). Consequently, TG(v0, 2k) = T

̂G(ṽ0, 2k), |V (Ĝ)| ≤ k, and every simple
cycle of K(Ĝ) is k-contractible. Therefore, at iteration k, the halting condition
of Algorithm 1 is satisfied.

From Proposition 5 and Theorem 1 above, we get the following corollary.

Corollary 2. The family FC is the maximum set of Explorable networks.

118 J. Chalopin et al.

6 Complexity of the Exploration Problem

In the previous section, we did not provide any bound on the number of moves
performed by an agent executing our universal exploration algorithm. In this
section, we study the complexity of the problem and we show that there does
not exist any exploration algorithm for all graphs in FC such that one can bound
the number of moves performed by the agent by a computable function.

The first reason that such a bound cannot exist is rather simple: if the 1-
skeleton Ĝ of the universal cover of the clique complex of G is finite, then by
Lemma 1, when executed on G, any exploration algorithm has to perform at
least |V (Ĝ)| − 1 steps before it halts. In other words, one can only hope to
bound the number of moves performed by an exploration algorithm on a graph
G by a function of the size of Ĝ.

However, in the following theorem, we show that even if we consider only
graphs with simply connected clique complexes (i.e., they are isomorphic to
their universal covers), there is no Exploration algorithm for this class of graph
such that one can bound its complexity by a computable function. Our proof
relies on a result of Haken [12] that show that it is undecidable to detect whether
a finite simplicial complex is simply connected or not.

Theorem 2. Consider any algorithm A that explores every finite graph G ∈ SC.
For any computable function t : N → N, there exists a graph G ∈ SC such that
when executed on G, A executes strictly more than t(|V (G)|) steps.

Proof. Suppose this is not true and consider an algorithm A and a computable
function t : N → N such that for any graph G ∈ SC, A visits all the vertices of
G and stops in at most t(|V (G)|) steps. We show that in this case, it is possible
to algorithmically decide whether the clique complex of any given graph G is
simply connected or not. However, this problem is undecidable [12] and thus we
get a contradiction2.

Algorithm 2 is an algorithm that takes as an input a graph G and then
simulates A on G for t(|V (G)|) steps. If A does not stop within these t(|V (G)|)
steps, then by our assumption on A, we know that G /∈ SC and the algorithm
returns no. If A stops within these t(|V (G)|) steps, then we check whether
there exists a graph H such that |V (G)| < |V (H)| ≤ t(|V (G)|) and such that
the clique complex K(H) is a cover of K(G). If such an H exists, then G /∈ SC
and the algorithms returns no. If we do not find such an H, the algorithm returns
yes.

In order to show Algorithm 2 decides simple connectivity, it is sufficient to
show that when the algorithm returns yes on a graph G, the clique complex
K(G) is simply connected. Suppose it is not the case and let Ĝ be the 1-skeleton
of the universal cover of the clique complex K(G). Consider a covering ϕ from

2 Note that the original result of Haken [12] does not assume that the simplicial com-
plexes are clique complexes. However, for any simplicial complex K, the barycentric
subdivision K′ of K is a clique complex that is simply connected if and only if K is
simply connected (see [13]).

Anonymous Graph Exploration with Binoculars 119

Algorithm 2. An algorithm to check simple connectivity
Input: a graph G

Simulate A starting from an arbitrary starting vertex v0 during t(|V (G)|) steps ;
if A halts within t(|V (G)|) steps then

if there exists a graph H such that |V (G)| < |V (H)| ≤ t(|V (G)|) and such
that the clique complex K(H) is a cover of the clique complex K(G) then

return no; // K(G) is not simply connected
else

return yes; // K(G) is simply connected

else return no; // K(G) is not simply connected;

K(Ĝ) to K(G) and let v̂0 ∈ V (Ĝ) be any vertex such that ϕ(v̂0) = v0. By
Lemma 1, when executed on Ĝ starting in v̂0, A stops after at most t(|V (G)|)
steps.

If Ĝ is finite, then Ĝ ∈ SC and by our assumption on A, when executed
on Ĝ, A must explore all vertices of Ĝ before it halts. Consequently, K(Ĝ) is
a covering of K(G) with at most t(|V (G)|) vertices. Since K(G) is not simply
connected, necessarily |V (G)| < |V (Ĝ)| and in this case, the algorithm returns
no and we are done.

Assume now that Ĝ is infinite. Let r = t(|V (G)|) and let B = B
̂G(v̂0, r). Note

that when A is executed on Ĝ starting in v̂0, any node visited by A belongs to
B. Given two vertices, û, v̂ ∈ V (Ĝ), we say that û ≡B v̂ if there exists a path
from û to v̂ in Ĝ \ B. It is easy to see that ≡B is an equivalence relation, and
that every vertex of B is the only vertex in its equivalence class. For a vertex
û ∈ V (Ĝ), we denote its equivalence class by [û]. Let H be the graph defined by
V (H) = {[û] | û ∈ V (Ĝ)} and E(H) = {[û][v̂] | ∃û′ ∈ [û], v̂′ ∈ [v̂], û′v̂′ ∈ E(Ĝ)}.

We now show that the clique complex K(H) is simply connected. Let ϕ :
V (Ĝ) → V (H) be the map defined by ϕ(û) = [û]. By the definition of H, for
any edge ûv̂ ∈ E(Ĝ), either [û] = [v̂], or [û][v̂] ∈ E(H). Consequently, ϕ is a
simplicial map. Consider a loop c0 = (u1, u2, . . . , up) in H. By the definition
of H, there exists a loop ĉ0 = (û1,1, . . . , û1,�1 , û2,1, . . . , û2,�2 , . . . , ûp,1, . . . , ûp,�p)
in G such that for each 1 ≤ i ≤ p and each 1 ≤ j ≤ 	i, ϕ(ûi,j) = ui. Note
that ϕ(ĉ0) = (ϕ(û1,1) = u1, . . . , ϕ(û1,�1) = u1, ϕ(û2,1) = u2, . . . , ϕ(û2,�2) =
u2, . . . , ϕ(ûp,1) = up, . . . , ϕ(ûp,�p) = up) is homotopic to c0.

Since K(Ĝ) is simply connected, ĉ0 is contractible and thus there exists a
sequence ĉ0, ĉ1, . . . , ĉp such that |ĉp| = 1 and there is an elementary homotopy
between ĉi−1 and ĉi for every 1 ≤ i ≤ p. Since ϕ is a simplicial map, for every 1 ≤
i ≤ p, there is an elementary homotopy between ϕ(ĉi−1) and ϕ(ĉi). Consequently,
ϕ(ĉ0) is contractible and thus c0 is also a contractible loop of H. Therefore, H
is simply connected.

Since G is finite, the degree of every vertex of Ĝ is bounded by |V (G)| and
consequently, the number of equivalence classes for the relation ≡B is finite.
Consequently, the graph H is finite and thus H ∈ SC. Moreover, since for every

120 J. Chalopin et al.

û ∈ B, [û] = {û}, the ball BH([v̂0], r) is isomorphic to B. Consequently, when
A is executed on H starting in [v̂0], A stops after at most r steps before it has
visited all vertices of H, contradicting our assumption on A.

7 Conclusion

Enhancing a mobile agent with binoculars, we have shown that, even without any
global information it is possible to explore and halt in the class of graphs whose
clique complex have a finite universal cover. This class is maximal and is the
counterpart of tree networks in the classical case without binoculars. Note that,
contrary to the classical case, where the detection of unvisited nodes is somehow
trivial (any node that is visited while not backtracking is new, and the end of
discovery of new nodes is immediate at leaves), here we had to introduced tools
from discrete topology in order to be able to detect when it is no more possible
to encounter “new” nodes.

The class where we are able to explore is fairly large and has been proved
maximal when using binoculars of range 1. When considering binoculars of
range k, clique complexes are no longer the right tool to use, but we believe
we can obtain a similar characterization of explorable graphs by considering
other cell complexes associated with the graph. Note that for triangle-free net-
works, enhancing the agent with binoculars of range 1 does not change the class
of explorable networks. More generally, from the proof techniques in Section 4,
it can also be shown that providing only local information (e.g. using binoculars
of range k) cannot be enough to explore all graphs (e.g. graphs with large girth).

While providing binoculars is a natural enhancement, it appears here that
explorability increases at the cost of a huge increase in complexity: the number of
moves, as a function of the size of the graph, increase faster that any computable
function. This cannot be expected to be reduced for all explorable graphs for
fundamental Turing computability reasons. But preliminary results show that
it is possible to explore with binoculars with a linear move complexity in a
class that is way larger that the tree networks. So the fact that the full class
of explorable networks is not explorable efficiently should not hide the fact that
the improvement is real for large classes of graphs. One of the interesting open
problem is to describe the class of networks for which explorability is increased
while still having reasonable move complexity, like networks that are explorable
in linear time.

Note that our Exploration algorithm can actually compute the universal
cover of the graph, and therefore yields a Map Construction algorithm if we
know that the underlying graph has a simply connected clique complex. How-
ever, note that there is no algorithm that can construct the map for all graphs
of FC. Indeed, there exist graphs in FC that are not simply connected (e.g. tri-
angulations of the projective plane) and by the Lifting Lemma, they are indistin-
guishable from their universal cover. Note that without binoculars, the class of
trees is not only the class of graphs that are explorable without information, but
also the class of graphs where we can reconstruct the map without information.

Anonymous Graph Exploration with Binoculars 121

Here, adding binoculars, not only enables to explore more networks but also give
a model with a richer computability structure : some problems (like Exploration
and Map Construction) are no longer equivalent.

References

1. Aleliunas, R., Karp, R.M., Lipton, R., Lovász, L., Rackoff, C.: Random walks,
universal traversal sequences, and the complexity of maze problems. In: FOCS
1979, pp. 218–223 (1979)

2. Ambühl, C., G ↪asieniec, L., Pelc, A., Radzik, T., Zhang, X.: Tree exploration with
logarithmic memory. ACM Transactions on Algorithms 7(2), 17:1–17:21 (2011)

3. Angluin, D.: Local and global properties in networks of processors. In: STOC 1980,
pp. 82–93 (1980)

4. Boldi, P., Vigna, S.: An effective characterization of computability in anonymous
networks. In: Welch, J.L. (ed.) DISC 2001. LNCS, vol. 2180, pp. 33–47. Springer,
Heidelberg (2001)

5. Chalopin, J., Godard, E., Métivier, Y.: Election in partially anonymous networks
with arbitrary knowledge in message passing systems. Distributed Computing
25(4), 297–311 (2012)

6. Chalopin, J., Godard, E., Naudin, A.: Anonymous graph exploration with binocu-
lars. Tech. rep. (2015). http://arxiv.org/abs/1505.00599

7. Cohen, R., Fraigniaud, P., Ilcinkas, D., Korman, A., Peleg, D.: Label-guided graph
exploration by a finite automaton. In: Caires, L., Italiano, G.F., Monteiro, L.,
Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 335–346.
Springer, Heidelberg (2005)

8. Das, S.: Mobile agents in distributed computing: Network exploration. Bulletin of
the EATCS 109, 54–69 (2013)

9. Diks, K., Fraigniaud, P., Kranakis, E., Pelc, A.: Tree exploration with little mem-
ory. J. Algorithms 51(1), 38–63 (2004)

10. Guilbault, S., Pelc, A.: Gathering asynchronous oblivious agents with local vision
in regular bipartite graphs. Theor. Comput. Sci. 509, 86–96 (2013)

11. G ↪asieniec, L., Radzik, T.: Memory efficient anonymous graph exploration. In:
Broersma, H., Erlebach, T., Friedetzky, T., Paulusma, D. (eds.) WG 2008. LNCS,
vol. 5344, pp. 14–29. Springer, Heidelberg (2008)

12. Haken, W.: Connections between topological and group theoretical decision
problems. In: Word Problems Decision Problems and the Burnside Problem in
Group Theory, Studies in Logic and the Foundations of Mathematics, vol. 71, pp.
427–441. North-Holland (1973)

13. Hatcher, A.: Algebraic topology. Cambridge University Press (2002)
14. Ilcinkas, D.: Setting port numbers for fast graph exploration. Theor. Comput. Sci.

401(1–3), 236–242 (2008)
15. Koucký, M.: Universal traversal sequences with backtracking. J. Comput. Syst. Sci.

65(4), 717–726 (2002)
16. Kranakis, E., Krizanc, D., Markou, E.: The Mobile Agent Rendezvous Problem in

the Ring. Synthesis lectures on distributed computing theory. Morgan & Claypool
Publishers (2010)

17. Lange, D.B., Oshima, M.: Seven good reasons for mobile agents. Commun. ACM
42(3), 88–89 (1999)

http://arxiv.org/abs/http://arxiv.org/abs/1505.00599

122 J. Chalopin et al.

18. Lyndon, R., Schupp, P.: Combinatorial Group Theory. Ergebnisse der Mathematik
und ihrer Grenzgebiete. Springer-Verlag (1977)

19. Reingold, O.: Undirected connectivity in log-space. J. ACM 55(4) (2008)
20. Yamashita, M., Kameda, T.: Computing on anonymous networks: Part I - Charac-

terizing the solvable cases. IEEE Trans. Parallel Distrib. Syst. 7(1), 69–89 (1996)

Limit Behavior of the Multi-agent Rotor-Router
System

Jérémie Chalopin1, Shantanu Das1, Pawe�l Gawrychowski2, Adrian Kosowski3,
Arnaud Labourel1, and Przemys�law Uznański4(B)

1 LIF, CNRS and Aix-Marseille University, Marseille, France
2 Institute of Informatics, University of Warsaw, Warsaw, Poland
3 Inria Paris and LIAFA, Paris Diderot University, Paris, France

4 Department of Computer Science, Helsinki Institute for Information Technology
HIIT, Aalto University, Espoo, Finland

przemyslaw.uznanski@aalto.fi

Abstract. The rotor-router model, also called the Propp machine, was
introduced as a deterministic alternative to the random walk. In this
model, a group of identical tokens are initially placed at nodes of the
graph. Each node maintains a cyclic ordering of the outgoing arcs, and
during consecutive turns the tokens are propagated along arcs chosen
according to this ordering in round-robin fashion. The behavior of the
model is fully deterministic. Yanovski et al. (2003) proved that a single
rotor-router walk on any graph with m edges and diameter D stabilizes
to a traversal of an Eulerian circuit on the set of all 2m directed arcs
on the edge set of the graph, and that such periodic behaviour of the
system is achieved after an initial transient phase of at most 2mD steps.

The case of multiple parallel rotor-routers was studied experimen-
tally, leading Yanovski et al. to the experimental observation that a sys-
tem of k > 1 parallel walks also stabilizes with a period of length at
most 2m steps. In this work we disprove this observation, showing that
the period of parallel rotor-router walks can in fact, be superpolynomial
in the size of graph. On the positive side, we provide a characterization
of the periodic behavior of parallel router walks, in terms of a structural
property of stable states called a subcycle decomposition. This property
provides us the tools to efficiently detect whether a given system configu-
ration corresponds to the transient or to the limit behavior of the system.
Moreover, we provide polynomial upper bounds of O(m4D2 +mD log k)
and O(m5k2) on the number of steps it takes for the system to stabilize.
Thus, we are able to predict any future behavior of the system using an
algorithm that takes polynomial time and space. In addition, we show
that there exists a separation between the stabilization time of the single-
walk and multiple-walk rotor-router systems, and that for some graphs
the latter can be asymptotically larger even for the case of k = 2 walks.

Research supported by the ANR projects DISPLEXITY (ANR-11-BS02-0014) and
MACARON (ANR-13-JS02-0002). Part of the work was done while PU was affiliated
with LIF, CNRS and Aix-Marseille University, supported by the Labex Archiméde
and by the ANR project MACARON. A full version of the paper is available online
at http://arxiv.org/abs/1407.3200.

c© Springer-Verlag Berlin Heidelberg 2015
Y. Moses (Ed.): DISC 2015, LNCS 9363, pp. 123–139, 2015.
DOI: 10.1007/978-3-662-48653-5 9

http://arxiv.org/abs/1407.3200

124 J. Chalopin et al.

1 Introduction

Dynamical processes occurring in nature provide inspiration for simple, yet pow-
erful distributed algorithms. For example, the heat equation, which describes
real-world processes such as heat and particle diffusion, also proves useful when
designing schemes for load-balancing and token rearrangement in a discrete
graph scenario. In the diffusive model of load-balancing on a network, each node
of the network is initially endowed with a certain load value, and in each step it
distributes a fixed proportion of its load evenly among its neighbors. Given that
such a balancing operation is performed for load which is infinitely divisible (so-
called continuous diffusion), in the long term the distribution of load converges
on a degree-regular network to uniform over all nodes. When load is composed
of indivisible unit tokens, the continuous diffusion process is no longer practica-
ble. It is, however, possible to design randomized schemes in which the expected
value of load of each node at each moment of time corresponds precisely to the
value of its load in the corresponding continuous diffusion process. This may be
achieved, for instance, by allowing each token of load to follow an independent
random walk on the network, as well as by applying more refined techniques
admitting stronger concentration of the load distribution, cf. [19]. Such meth-
ods are stochastic in their very nature, and it is natural to ask whether there
exist deterministic methods which mimic this type of stochastic load balancing
behavior? The answer is affirmative, with the natural candidate process being
the so-called rotor-router model.

Formally, the rotor-router mechanism is represented by an undirected anony-
mous graph G = (V,E). Initially, a set of identical tokens is released on vertices
of the graph. At discrete, synchronous steps, the tokens are propagated according
to the deterministic round robin rule, where after sending each token, the pointer
is advanced to the next exit port in the fixed cyclic ordering. Such a mechanism
has been proposed as a viable alternative to stochastic and random-walk-based
processes in the context of load balancing problems [5,7,9], exploration of graphs
[1,8,10,12,15], and stabilization of distributed processes [3,6,17,22].

The resemblance between the rotor-router token distribution mechanism and
stochastic balancing processes based on continuous diffusion is at least twofold,
in that: (1) the number of tokens on each node for the rotor-router process
has a bounded discrepancy with respect to that in the continuous diffusion pro-
cess [5,20], and (2) when performing time-averaging of load over sufficiently long
time intervals, the observed load averages for all nodes in the rotor-router pro-
cess converge precisely to their corresponding value for the continuous diffusion
process.

By contrast to time-averaged load, for any fixed moment of time, the deter-
ministic rotor-router process and the stochastic approaches exhibit important
differences. A stochastic load balancing process based on tokens following ran-
dom walks leads the system towards a “heat death” stochastic state, which is
completely independent of the starting configuration. For a rotor-router system,
the number of possible configurations is finite, hence, after a transient initial
phase, the process must stabilize to a cyclic sequence of states which will be

Limit Behavior of the Multi-agent Rotor-Router System 125

repeated ever after. Natural questions arise, concerning the eventual structural
behavior observed in this limit cycle of the rotor-router system, the length of the
limit cycle, and the duration of the stabilization phase leading to it. So far, the
only known answer concerned the case when only a single token is operating in
the entire system. Yanovski et al. [22] showed that such a single token stabilizes
within a polynomial number of steps to periodic behavior, in which it performs
a traversal of some Eulerian cycle on the directed version of the network graph.

In this work, we provide a complete structural characterization of the limit
behavior of the rotor-router for an arbitrary number k > 1 of tokens. The
obtained characterization shows that the rotor-router mechanism provides a way
of self-organizing tokens, initially spread out arbitrarily over a graph, into bal-
anced groups, each of which follows a well-defined walk in some part of the
network graph. The practical implications of our result may be seen as twofold.
On the one hand, when viewing the rotor-router as a load-balancing process, we
obtain a better understanding of its limit behavior. On the other hand, when
considering each of the tokens as a walker in the graph, we show that the rotor-
router may prove to be a viable strategy for perpetual graph exploration, with
possible applications in so-called network patrolling problems.

1.1 Related Work

Load Balancing. The rotor-router mechanism of token distribution has been
considered in problems of balancing workload among network nodes for specific
network topologies. In this context, each token is considered as a unit-length task
to be performed by one of the processors in a network of computers. Cooper and
Spencer [7] studied load balancing with parallel rotor walks in d-dimensional grid
graphs and showed a constant bound on the discrepancy between the number of
tokens at a given node v in the rotor-router model and the expected number of
tokens at v in the random-walk model. The structural properties of the distribu-
tion of tokens for a rotor-router system on the 2-dimensional grid were considered
by Doerr and Friedrich [9]. Akbari and Berenbrink [2] proved an upper bound
of O(log3/2 n) on the load-balancing discrepancy for hypercubes, and for tori of
constant dimensions, they showed that the discrepancy is bounded by a con-
stant. For general d-regular graphs, a bound of O(d log n/μ) on the discrepancy
of the rotor-router mechanism with respect to continuous diffusion follows from
the general framework of [18], where μ is the eigenvalue gap of the graph, under
the assumption that a sufficient number of self-loops are present at each node of
the graph. This discrepancy bound has recently been improved to O(d

√
log n/μ)

in [5].

Graph Exploration. The rotor-router mechanism has also been studied in
the context of graph exploration, sometimes under the name of Edge Ant
Walks [21,22], and in the context of traversing a maze and marking edges
with pebbles, e.g. in [6]. Cover times of rotor-router systems have been investi-
gated by Wagner et al. [21] who showed that starting from an arbitrary initial

126 J. Chalopin et al.

configuration1, a single token following the rotor-router rule explores all nodes
of a graph on n nodes and m edges within O(nm) steps. Later, Bhatt et al. [6]
showed that after at most O(nm) steps, the token continues to move periodi-
cally along an Eulerian cycle of the (directed symmetric version of the) graph.
Yanovski et al. [22] and Bampas et al. [3] studied the stabilization time and
showed that the token starts circulating in the Eulerian cycle within Θ(mD)
steps, in the worst case, for a graph of diameter D. Studies of the rotor router
system for specific classes of graphs were performed in [11]. While all these stud-
ies were restricted to static graphs, Bampas et al. [4] considered the time required
for the rotor-router to stabilize to a new Eulerian cycle after an edge is added
or removed from the graph.

Studies of the parallel (i.e., multiple token) rotor-router were performed by
Yanovski et al. [22] and Klasing et al. [14], and the speedup of the system due
to parallelization was considered for both worst-case and best-case scenarios. In
[8], Dereniowski et al. establish bounds on the minimum and maximum possible
cover time for a worst-case initialization of a k-rotor-router system in a graph
G with m edges and diameter D, as Ω(mD/k) and O(mD/ log k) respectively.
In [15], Kosowski and Pajak provided a more detailed analysis of the speedup
for specific classes of graphs, providing tight bounds of cover-time speed-up for
all values of k for degree-restricted expanders, random graphs, and constant-
dimensional tori. For hypercubes, they resolve the question precisely, except for
values of k much larger than n.

1.2 Our Results

In this work we provide a structural characterization of the limit behavior of
the rotor-router model with multiple tokens. Yanovski et al. [22] experimentally
observed that the rotor-router system enters a short sequence of states (of length
at most 2m), which repeats cyclically ever after. We start this work by disproving
this observation. In fact, we display an example of a starting configuration which
admits a limit cycle with a period of superpolynomial length (exp(Ω(

√
n log n)))

with respect to the size of the graph. Our example is similar to the construction
presented by Kiwi et al. [13] to prove the existence of super-polynomial periods
for chip firing games on graphs (although the rules of chip firing games are only
very loosely related to those of the rotor-router).

By contrast, it turns out the fact that the rotor-router admits long limit cycles
does not signify that the limit behavior of the rotor-router should be perceived
as a “disordered” discrete dynamical system. The long period in our counterex-
ample comes from the system being composed from many smaller parts, each
of which exhibits a small (but different) period length. We show that for any
limit sequence of states in the rotor-router model, the graph can be partitioned
into arc-disjoint directed Eulerian cycles, with each token in the limit periodi-
cally traversing arcs of one particular cycle. We name such behavior a subcycle

1 A configuration is defined by: the cyclic order of outgoing arcs, the initial pointers
at the nodes, and the current location of the token.

Limit Behavior of the Multi-agent Rotor-Router System 127

decomposition, the exact properties of which are described in Section 3. To com-
plement the lower bound, we provide an upper bound of exp(O(

√
m log m)) on

the period of parallel rotor walks in its limit behavior. This upper bound asymp-
totically almost matches the lower bound from our example.

There are several consequences of our structural characterization of the limit
behavior of the rotor-router. First, we show that it is possible to determine
efficiently whether the system has already stabilized (i.e., reached a configuration
that will repeat itself) or not. This detection is based on the analysis of the
properties of stable states, that is, of how the tokens arriving at a node are
distributed into groups leaving on different outgoing arcs. The main point of
this analysis is the observation that the cumulative number of tokens entering a
vertex v (over the time period {t, (t+1), . . . , (t+Δt)}) is equal to the cumulative
number of tokens leaving vertex v (over time {(t + 1), (t + 2), . . . , (t + Δt + 1)}),
for arbitrary Δt.

Next, by defining an appropriate potential of a system and showing its mono-
tonicity, we can give a polynomial bound on a number of steps necessary for a
system with an arbitrary initialization to reach a periodic configuration. We pro-
vide an upper bound of O(m4D2 +mD log k), together with examples of graphs
with initial configuration having just 2 tokens that require Ω(m2 log n) steps.
This analysis is presented in Section 4. The obtained polynomial upper bound
means that the rotor-router is an efficient means of self-organizing tokens so as
to perform a periodic traversal of the edges of the graph.

Finally, Section 5 is dedicated to showing how the previous results can be
applied in a constructive way with regard to efficient simulation of a rotor-router
system. We show how the properties of subcycle decomposition can be applied
to provide a way to preprocess any starting configuration in a way that makes it
possible to answer queries of certain type in a polynomial time. This shows that
a structural characterization of the rotor-router system is not only important as
a theoretical tool for understanding the limit behavior of the system, but also as
a practical tool for solving certain problems related to the rotor-router system.

As a complementary result, we show for the single-token rotor-router how
to efficiently compute the Eulerian traversal cycle on which the token would be
locked-in, faster than by running the process directly. A naive simulation would
take O(mD) time, but by using the structural properties of a single token walk
together with application of efficient data structures we show how to preprocess
the input graph in time O(n + m) such that we can answer queries about token
position at any given time T , in O(log log m) time per query.

2 Model and Preliminaries

Let G = (V,E) be an undirected connected graph with n nodes, m edges and
diameter D. Let k be the number of tokens. The digraph �G = (V, �E) is the
directed version of G created by replacing every edge (u, v) with two directed
arcs �uv and �vu. We will refer to the undirected links in graph G as edges and
to the directed links in the graph �G as arcs. Given a vertex v, we will denote its

128 J. Chalopin et al.

set of incoming arcs by in(v) and outgoing arcs by out(v). Each vertex v of G is
equipped with a fixed ordering of all its outgoing arcs ρv = (e1, e2, . . . , edeg(v)).

The precise definition of the rotor-router model on the system (�G, (ρv)v∈V)
is as follows:
A state at the current time step t is a tuple: St = ((pointerv)v∈V , (tokensv)v∈V),
where pointerv is an arc outgoing from node v, which is referred to as the current
port pointer at node v, and tokensv is the number of tokens at any given node.
For an arc �(vu), let next �(vu) denote the arc after the arc �(vu) in the cyclic order
ρv. During each step, each node v distributes in round-robin fashion all of its
tokens, using the following algorithm:

While there is a token at node v, do

1. Send token to pointerv,
2. Set pointerv = next(pointerv).

Note that during a single time step all tokens at a node v are sent out and at
exactly the next time step all those tokens arrive at their respective destination
nodes.

For a given state St, we say that it is stable iff there exists t′ > t such that
St′ = St. The stabilization time of state S0, denoted ts, is the smallest value
such that Sts is stable. We call the periodicity of state S0 the smallest tp > 0
such that Sts = Sts+tp .

Throughout the paper, we denote multisets using {{}} notation, while for
integer ranges, we write [a .. b] def= {a, a + 1, . . . , b}, [a .. b) def= {a, a + 1, . . . , b − 1}.

3 Periodicity of the Rotor-Router System

We begin with the observation that knowledge of the first ts + tp states of the
system, that is S0, . . . ,Sts+tp−1, gives us full knowledge of any future state for
arbitrarily large time t ≥ ts: St = Sts+((t−ts) mod tp).

So as to be able to efficiently predict the future evolution of any rotor-router
state, it would be useful to put a polynomial bound on tp and ts (with respect
to n,m and k). If k = 1, due to results from Yanovski et al. [22] , we know that
tp = 2m and ts = O(mD). For arbitrary k, Yanovski et al. [22] experimentally
observed that tp ≤ 2m for any graph G regardless of the initial state. However,
the following negative result disproves their observation and shows that the
periodicity cannot be polynomially bounded for parallel rotor-routers.

Theorem 1. There exists a family of graphs and initial states, with k = 2m
tokens, having the periodicity tp = 2Ω(

√
n log n).

Proof. We will construct such a family of graphs Gr for any sufficiently large
integer r, and an appropriate initial configuration of tokens. First consider a
balloon graph Gx consisting of a cycle of x > 3 vertices {v0, v1, . . . vx−1} and
an additional vertex vx (called the base vertex) that is joined by an edge to
vertex vx−1 of the cycle (see Figure 1(a)). Let the initial token distribution at

Limit Behavior of the Multi-agent Rotor-Router System 129

vertices (v0, . . . , vx) be (1, 2, 2, . . . 2, 4, 1). Further let the exit pointers at vertex
vi, 0 ≤ i ≤ x − 2 be oriented towards vi−1 mod x (in the counter-clockwise
direction, in the figure), while at the vertex vx−1 the exit pointer is oriented
towards v0 (i.e. in the opposite direction). At the base vertex vx there is only
one outgoing arc and so, the exit pointer at vx will always point towards this
arc.

Observe that for a vertex of out-degree two, the exit pointer remains
unchanged if an even number of tokens exit this vertex in the current round,
while the exit pointer is rotated if an odd number of tokens exit in the current
round.

We will now analyze the movement of tokens along the arcs of the graph in
each round. During the first round, the number of tokens moving on the arcs
(v0, v1), (v1, v2), . . . (vx−1, v0) of the cycle in the clockwise direction is given
by the sequence S0 = (0, 1, 1, . . . , 1, 2). During the same round, the number of
tokens moving on the arcs in the counter-clockwise direction on the cycle is given
by (1, 1, . . . 1). On the branch edge (vx−1, vx) there is exactly one token moving
in each direction.

During the second round, the number of tokens moving on the arcs (v0, v1),
(v1, v2), . . . (vx−1, v0) of the cycle (in the clockwise direction) is given by the
sequence S1=(1, 1, . . . , 1, 2, 0) which is a cyclic rotation of the sequence S0. The
number of tokens moving on the arcs in the counter-clockwise direction on the
cycle is still given by (1, 1, . . . 1). Again, the branch edge (vx−1, vx) has exactly
one token moving in each direction.

Continuing with the above analysis, it is easy to see that in subsequent
rounds, the number of tokens moving on the arcs of the cycle (in the clock-
wise direction) is given by cyclic rotations of S0, i.e., by the sequences
(1, . . . , 1, 2, 0, 1), (1, . . . , 1, 2, 0, 1, 1), (1, . . . , 1, 2, 0, 1, 1, 1) and so on. The num-
ber of tokens moving along the cycle in the counterclockwise direction is always
one token per arc of the cycle. On the branch edge (v0, vx) there is exactly one
token moving in each direction in each round. Since the length of the sequence
S0 is |S0| = x, after every x steps the configuration of tokens moving on the
arcs of the cycle is the same. In other words, the periodicity of this rotor-router
system is x. Notice that the graph Gx has x + 1 vertices and 2(x + 1) arcs, and
there are exactly 2(x + 1) tokens in the system.

We will now construct the family of graphs Gr. For any given r, let
p1, p2, . . . pr be the first r prime numbers starting from p1 = 3. We take r bal-
loon graphs of sizes (1 + p1), (1 + p2), . . . , (1 + pr) respectively and join them by
merging all the base vertices into one vertex, with arbitrary port ordering (see
Figure 1(b)). In each balloon graph we place the tokens as before, such that the
merged base vertex now contains r tokens. During each step, r tokens will exit
the base vertex through the r outgoing arcs and r other tokens will enter the
base vertex through the r incoming arcs. Thus, irrespective of the initial state of
the exit pointer at the base vertex, the system will behave in the same manner.
The behavior of the system in the distinct balloons would be independent of
each other and for each balloon of size (1 + pi) the configuration of the balloon

130 J. Chalopin et al.

v0

v1 v2

vx

vx−1

4

1

2 2

2

1

p1

p2 pr

(a) (b)

v3

Fig. 1. (a) The balloon graph and the initial token distribution. (b) The family of
graphs Gr consisting of r balloons.

would repeat itself in exactly pi steps as before. Thus, the global state of the
system would repeat in lcm(p1, . . . pr) =

∏r
i=1 pi steps. Note that the size of the

graph, Gr, is given by n = 1 +
∑r

i=1 pi = Θ(r2 log r). In general, for any given
integer n, we can construct a similar example graph by partitioning the n − 1
vertices into balloons of appropriate sizes joined to the nth vertex, such that the
period of the system is equal to the Landau function [16] g(n−1) = 2Ω(

√
n log n).

We remark that a similar result exists for parallel chip-firing games [13].
We now present an upper bound on the periodicity of k parallel rotor walks,

for arbitrary values of k. First, we will show that even though a stable state can
exhibit very long (super-polynomial) periodicity, the underlying graph G can
be partitioned into parts, such that each part separately exhibits small (linear)
periodicity.

We will use calligraphic large letters (e.g. L : �E ∪ V → Z) to denote token
distributions. Thus:

– Lt(v) (load of node v) is number of tokens located at node v in time step t,
– Lt(e) (load of arc e) is number of tokens sent out on arc e at time step t.

Thus, although tokens cannot be located on edges in our model, we can view
the tokens in vertex as located already on the outgoing ports that they will be
distributed to.

We will use specifically Lt to denote token distribution associated with state
St. (It is important to note, that it is possible for two states to satisfy ∀eLt(e) =
Lt′(e) and yet St �= St′ , as we also require that pointers be in the same positions
in identical states.)

We begin with a series of observations on the token distribution process in a
rotor-router system.

Observation 1. Since every token is pushed onto some outgoing arc, we have:∑
e∈out(v) Lt(e) = Lt(v);

∑
e∈in(v) Lt(e) = Lt+1(v).

Limit Behavior of the Multi-agent Rotor-Router System 131

We also generalize token distribution into the cumulative token distribution.
Given two time steps t1 ≤ t2, we define Ct2

t1

def=
∑

t∈[t1 .. t2)
Lt, in particular, for a

vertex v and arc e:

Ct2
t1 (v) def=

∑

t∈[t1 .. t2)

Lt(v), Ct2
t1 (e) def=

∑

t∈[t1 .. t2)

Lt(e).

Consequently, a natural generalization of Observation 1 from load to cumu-
lative load is as follow:

Observation 2.
∑

e∈out(v) Ct2
t1 (e) = Ct2

t1 (v);
∑

e∈in(v) Ct2
t1 (e) = Ct2+1

t1+1(v).

The next observation follows from the fact that rotor-router distributes
tokens in a round-robin fashion among all outgoing arcs of a vertex:

Observation 3. ∀e1,e2∈out(v)|Ct2
t1 (e1) − Ct2

t1 (e2)| ≤ 1.

Since arbitrarily large discrepancies (between two incoming edges) of incom-
ing number of tokens are smoothed discretely, we can see the process of token
propagation as a load-balancing scheme.

We now define the concept of potential of a token distribution system, which
will be helpful to derive the necessary and sufficient conditions for a system state
to be stable.

Definition 1. Given a token distribution A over edges, we define its potential
as: Φ(A) def=

∑
e∈ �E (A(e))2 .

We also introduce a shorthand notation for the i-th potential of a given rotor-
router state St as: Φi(St)

def= Φ(Ct+i
t) =

∑
e∈ �E

(Ct+i
t (e)

)2
.

Note that Φ1 ≡ Φ. It is important to note that while arbitrary convex function
can be used in the potential definition, usage of quadratic function will prove
advantageous when analyzing the speed of convergence to a stable state, not
only its properties.

The following folklore lemma provides us with a characterization of the min-
imum of the potential sums.

Lemma 1. Over all partitions of integer S into d integers, the partition
{{
S

d �, . . . ,
S
d �, �S

d , . . . , �S
d }} uniquely minimizes the value of sum of squares

of elements.

Lemma 2. For arbitrary i and t, the i-th potential is non-increasing: Φi(St+1) ≤
Φi(St).

Proof. To prove the lemma we have to observe how the round-robin property of
the rotor-router acts locally on the groups of tokens (cumulative over the time
interval [t, t + i)). From Observation 2 we know, that:

∑

e∈out(v)

Ct+i+1
t+1 (e) = Ct+i+1

t+1 (v) =
∑

e∈in(v)

Ct+i
t (e).

132 J. Chalopin et al.

However, from Observation 3 and Lemma 1 we get that the multiset of values
over outgoing arcs minimizes the sum of squares. Thus:

∑

e∈out(v)

(Ct+i+1
t+1 (e))2 ≤

∑

e∈in(v)

(Ct+i
t (e))2,

which leads to:

Φi(St+1) =
∑

v

∑

e∈out(v)

(Ct+i+1
t+1 (e))2 ≤

∑

v

∑

e∈in(v)

(Ct+i
t (e))2 = Φi(St).

Observe that Lemma 2 implies that if the system is stable, all of the potentials
are preserved at every (future) time step. This observation is powerful enough to
derive strong characterization of stable states (see Theorem 2, equivalence of (i)
and (ii)). However, in order to be able to reason about bounds on stabilization
time, we need a more powerful notion of being able to characterize even the
temporary regularities in token trajectories (for not necessarily stable states).

Definition 2. We say that a state ST admits a Δt-step subcycle decomposition,
if in every vertex v we can define a one-to-one mapping between incoming and
outgoing arcs of v Mv : in(v) → out(v), such that:

∀e∈in(v)∀t∈[T .. T+Δt)Lt(e) = Lt+1(Mv(e)). (1)

The subcycle decomposition has the following equivalent interpretation. We par-
tition �E = �E1∪. . .∪ �Ec, such that each �Ei induces a strongly-connected subgraph
of G, and for each �Ei there exists an Eulerian cycle covering it such that each
token traversing arcs of �Ei follows this particular Eulerian cycle during time
steps T, T + 1, . . . , T + Δt − 1.

Observe that the mapping M in Definition 2 does not need to be necessarily
unique. We will call any such mapping M a valid mapping with respect to Δt
subcycle decomposition if (1) holds for it.

The following lemma gives a series of equivalent characterizations of subcycle
decomposition, connecting the existence of such a decomposition during any time
interval with lack of potential drop during the time interval, as well as a load-
balancing discrepancy criterion over all shorter sub-intervals of time.

Lemma 3. The following statements are equivalent:

(i) ST admits a Δt-step subcycle decomposition,
(ii) ∀v∀t,t′:[t .. t′)⊆[T .. T+Δt), {{Ct′

t (e)}}e∈in(v) = {{Ct′+1
t+1 (e)}}e∈out(v) (multisets of

cumulative loads are preserved locally),
(iii) ∀t,t′:[t .. t′)⊆[T .. T+Δt){{Ct′

t (e)}}e∈ �E = {{Ct′+1
t+1 (e)}}e∈ �E (multisets of cumula-

tive loads are preserved globally),
(iv) ∀0≤i≤ΔtΦi(ST) = Φi(ST+1) = . . . = Φi(ST+Δt−i+1) (potential is constant),
(v) ∀v∀e1,e2∈in(v)∀t,t′:[t .. t′)⊆[T .. T+Δt)|Ct′

t (e1) − Ct′
t (e2)| ≤ 1 (incoming discrep-

ancy is at most one).

Limit Behavior of the Multi-agent Rotor-Router System 133

For a fixed value of Δt = 1, Lemma 3 captures the property that as long
as Φ(ST) remains constant, the loads on edges are only permuted between any
two consecutive timesteps. Coupled with Lemma 2 it immediately implies afore-
mentioned property. Unfortunately, this property is not strong enough for our
purposes. However, for arbitrary values of Δt, we can still employ the notion of
higher order potentials ΦΔt (as defined previously), and observe the load bal-
ancing properties from Observation 2. The fact that stable state, by Lemma 2
and Lemma 3 admits load balancing properties even when collapsing multiple
timesteps into a single frame, is our lever which will be used to derive strong
properties of such states in the rest of this section.

Definition 3. We say that a state St admits a ∞-subcycle decomposition if it
admits i-steps subcycle decomposition for arbitrarily large i.

Now we proceed to obtain a more algorithmic characterization of stable
states. First, we show that if we do not experience a potential drop during
2m2 time steps, then the rotor-router system has reached its limit configuration.

Theorem 2. The following conditions are equivalent:

(i) ST is stable,
(ii) ST admits a ∞-subcycle decomposition,
(iii) ST admits a (2m2)-subcycle decomposition.

As a direct consequence of the proof of Theorem 2, we have:

Corollary 1. For a stable state ST , any mapping between incoming and out-
going arcs of v denoted Mv : in(v) → out(v) that is valid with respect to 2m2-
subcycle decomposition, is also valid with respect to ∞-subcycle decomposition.

We are now ready to provide a stronger characterization of a stable state in
Theorem 3 (compared to Theorem 2), based on refined analysis of the potential
behavior.

Theorem 3. State ST is stable iff:
∑3m

i=1 Φi(ST) =
∑3m

i=1 Φi(ST+2m2).

Finally, we provide an upper bound on the length of the period for any rotor-
router state. It is interesting to see that the upper bound is not far from the
period of the example graph given in Theorem 1.

Theorem 4. For any stable state ST , the period length of the limit cycle is
bounded by tp = O(exp(

√
(m log m))).

Proof. Observe, that any arc in G can be part of exactly one cycle in any given
subcycle decomposition. As the period length of any stable state is upperbounded
by the least common multiple of the length of the cycles, we get the desired upper
bound as the value of the Landau’s function on the total number of arcs in G.

134 J. Chalopin et al.

4 Stabilization Time of the Rotor-Router System

In this section we provide upper and lower bounds on the stabilization time
of parallel rotor-router systems. Since the values of potentials are discrete and
non-increasing, in Theorem 3 we have a very powerful tool to reason about
the stabilization of a state — if the sum of potentials remains unchanged for
more than 3m time steps, the system has reached a stable state. Thus, we can
naively bound each of the potentials by O((mk)2), and so also bound the sum
of potentials by O(m · (mk)2). This gives the following corollary.

Corollary 2. For any initial state S0, there exists T = O(m5k2) such that ST

is stable.

We will now show how to obtain an even stronger bound (in terms of depen-
dence on k), but for this we need a refined upper bound on initial potential.
To achieve this, we need to treat the rotor-router system as a load balancing
process.

Round-Fair Processes. As we intend to provide bounds on the values of the i-th
potential for rotor-router process (given sufficiently long initialization time), we
need to analyze the behavior of the cumulative rotor-router processes, i.e., for
a fixed Δt, to observe how the distribution of tokens Ct+Δt

t evolves with time.
Thus, in the following, we will use the broader concept of round-fair processes
denoted by W, as introduced in [18]. Specifically, we will call an algorithm
strictly fair if, in every step, the number of tokens that are sent out over any
two edges incident to a node differs by at most one.

Definition 4. A process of token distribution (denoted by W) is round-fair, if:

∀e∈out(v)Wt(e) ∈
{⌊ Wt(v)

deg(v)

⌋

,

⌈ Wt(v)
deg(v)

⌉}

(2)

and no tokens are left in nodes: Wt(v) =
∑

e∈out(v) Wt(e).

We observe that any rotor-router process is round-fair. Also, by Observations 1,
2 and 3, for any fixed Δt, cumulative rotor-router in the sense of Wt = Ct+Δt

t is
also round-fair.

The round-fairness condition can be strengthened into algorithms which are
cumulatively fair. We will call an algorithm cumulatively fair if for every inter-
val of consecutive time steps, the total number of tokens sent out by a node
differs by at most a small constant for any two adjacent edges. It is easy to see
that cumulative fair algorithms under the constraint that every token is propa-
gated, are performing the rotor-router distribution (and vice versa, rotor-router
distribution is cumulative fair with every token propagated).

In the rest of this section, in order to simplify notation, we will assume that
G is not bipartite. For the full formulation of subsequent definitions and lemmas,
we refer the reader to the full version of the paper.

Limit Behavior of the Multi-agent Rotor-Router System 135

Definition 5. A sequence of arcs e1, e2, . . . , ep is called an alternating path
(of length p − 1), if either every pair of arcs e2i, e2i+1 shares starting vertex and
every pair of arcs e2i−1, e2i shares ending vertex, or vice-versa: every pair of arcs
e2i, e2i+1 shares ending vertex and every pair of arcs e2i−1, e2i shares starting
vertex.

Definition 6. We define the notion of distance between two arcs e, e′, denoted
by d(e, e′), as a length of shortest alternating path having e and e′ as first and
last arcs.

In other words, a distance can be treated as a transitive closure of a relation
where we define any pair of arcs sharing starting or ending vertex as at distance
one.

Lemma 4. For any two arcs e, e′ in non-bipartite graph G: d(e, e′) ≤ 4D + 1
moreover there exists an alternating path connecting e and e′ containing at most
2D pairs of arcs sharing ending vertices and at most 2D+1 pairs of arcs sharing
starting vertices.

Now we will proceed to analyze the behavior of the potential defined as in
Definition 1, with respect to a round-fair processes.

Recall that Φ(Wt)
def=

∑
e∈ �E (Wt(e))

2
. We will denote the smallest value of

the potential achieved by distribution of tokens that preserves sums of loads over
load balancing sets of arcs (ignoring the restriction that loads are integers) by:

B(Wt)
def= 2m ·

(

avg
e∈ �E

Wt(e)

)2

, (3)

For non-bipartite graphs, (3) reduces to the following form: B(Wt) = k2

2m =
const. The following lemma follows directly from the convexity of quadratic
functions.

Lemma 5. Φ(Wt) ≥ B(Wt).

Definition 7. We say that a configuration of tokens Wt in non-bipartite graph
G has discrepancy over arcs equal to maxe,e′∈ �E(Wt(e) − Wt(e′)).

The next observation follows directly from (2).

Observation 4. The discrepancy over arcs is non-increasing in time, that is:

max
e,e′∈ �E

(Wt(e) − Wt(e′)) ≥ max
e,e′∈ �E

(Wt+1(e) − Wt+1(e′)).

We also put the following bound on the potential drop with respect to the
discrepancy of number of tokens over arcs.

Lemma 6. Consider a timestep t such that Wt has discrepancy over arcs x >

4D + 1. Then: Φ(Wt) − Φ(Wt+1) ≥ (x−4D−1)(x−1)
4D .

136 J. Chalopin et al.

Lemma 7. If Wt has discrepancy x, then Φ(Wt) ≤ B(W0) + 1
2mx2.

Theorem 5. If T ≥ 16mD ln k, then WT has discrepancy over arcs at most
10D.

Proof. Observe that for discrepancies x ≥ 10D we have, by Lemma 6:

Φ(Wt) − Φ(Wt+1) ≥ (x − 4D − 1)(x − 1)
4D

≥ x2

16D
.

However, by Lemma 7: x2 ≥ 2 (Φ(Wt)−B(W0))
m . Thus:

Φ(Wt+1) − B(W0) ≤ (Φ(Wt) − B(W0))
(

1 − 1
8mD

)

.

Let us assume that after T ≥ 16mD ln k steps the discrepancy is larger than
10D. Since Φ(W0) − B(W0) ≤ Φ(W0) ≤ k2, we have:

Φ(WT) − B(W0) ≤ k2 ·
(

1 − 1
8mD

)16mD ln k

< k2(1/e)2 ln k = 1,

implying that Φ(WT) = �B(W0), which implies that Φ(WT) minimizes poten-
tial among integer load distribution. Thus WT has discrepancy at most 1, a
contradiction.

We are now ready to prove our main result on the time of stabilization of
any rotor-router initial state.

Theorem 6. For any initial state S0, there exists T = O(m4D2 + mD log k)
such that ST is stable.

Proof. Let t0 = �16mD ln(3km). We observe that the cumulative rotor-router
process (taken over Δt rounds) is round-fair, with the number of tokens equal
to Δt · k. For t ≥ t0, Δt ≤ 3m, by Theorem 5 the token distribution of Ct+Δt

t

has discrepancy over arcs at most 10D, thus: B(CΔt
0) ≤ ΦΔt(St) = Φ(Ct+Δt

t)
(7)

≤
B(CΔt

0) + 50mD2. We next obtain:

3m∑

i=1

B(Ci
0) ≤

3m∑

i=1

Φi(St) ≤ 150m2D2 +
3m∑

i=1

B(Ci
0). (4)

Let T > 300m4D2 + �16mD ln(3km). Let us assume that ST is not stable.
Thus, for all t ∈ [t0 .. T],

∑3m
i=1 Φi(St) − ∑3m

i=1 Φi(St+2m2) ≥ 1, and in particular:
∑3m

i=1 Φi(St0) − ∑3m
i=1 Φi(ST) ≥

⌈
(T−t0)
2m2

⌉
> 150m2D2, which contradicts with

(4).

We now give a lower bound on the stabilization time of parallel rotor-router
walks.

Theorem 7. For any N,M > 0, N ≤ M ≤ N2, there exists an initialization of
the rotor router system in some graph with Θ(N) nodes and Θ(M) edges such
that the stabilization time is Ω(M2 log N).

Limit Behavior of the Multi-agent Rotor-Router System 137

5 Simulation of the Rotor-Router

In this section, we answer the question of how to efficiently query for the state
of a parallel rotor-router system after a given number of steps. The result below
is for an arbitrary number of tokens (k ≥ 1). For a single token (k = 1) rotor-
router mechanism we provide a faster simulation algorithm in the full version of
the paper.

Theorem 8. We can preprocess any S0, in polynomial time and space (with
respect to n,m, log k) so that we can answer queries of state Sτ or queries of
Cτ
0 (e) (the total number of visits until time step τ) both in time O(n + m).

Proof. Our first step is to find T such that ST is stable. By Theorem 6 it is enough
to take any T > 300m4D2 + �16mD ln(3km). We compute and maintain states
S0,S1, . . . ,ST , thus answering any queries of Sτ with τ < T in O(n + m) time.
We store preprocessed Cτ

0 (e) for any τ ∈ [0 .. T].
By Corollary 1, we can find any valid ∞-subcycle decomposition of ST in

polynomial time. By the properties of the subcycle decomposition, we can then
find the values of ST+τ (e) by finding e′ being shifted by τ along the cycle e
belongs to. In a similar fashion we find CT+τ

T (e) for each arc e, giving us CT+τ
T (v)

for each vertex v, thus we know the new pointer location for v. Each cycle can
be preprocessed with prefix sums such that queries of this type can be answered
in O(1) time, thus giving O(n + m) time for full ST+τ query.

We can preprocess each cycle with prefix sums, thus giving us the access to
Cτ

T (e) for τ ∈ [T ..∞). By adding the value of CT
0 (e) we get desired Cτ

0 (e).

6 Conclusion

The rotor-router process has, in previous work, been identified as an efficient
deterministic technique for a number of distributed graph processes, such as
graph exploration and load balancing. In these settings, it rivals or outperforms
the random walk, in some cases (such as parallel exploration of graphs) pro-
viding provable guarantees on performance, the counterparts of which need yet
to be shown for the random walk. In this paper, we provide a complete char-
acterization of the long-term behavior of the rotor-router, showing an inherent
order in the limit state to which the system rapidly converges. This provides
us with a better understanding of, e.g., the long-term load balancing properties
of rotor-router-based algorithms, while at the same time opening the area for
completely new applications. For instance, in view of our work, the rotor-router
becomes a natural candidate for a self-organizing locally coordinated algorithm
for the team patrolling problem — a task in which the goal is to periodically and
regularly traverse all edges of the graph with k agents. This topic, and related
questions, such as bounding the maximum distance between tokens on their
respective Eulerian cycles in the limit state of the rotor-router, are deserving of
future attention.

138 J. Chalopin et al.

References

1. Afek, Y., Gafni, E.: Distributed algorithms for unidirectional networks. SIAM J.
Comput. 23(6), 1152–1178 (1994)

2. Akbari, H., Berenbrink, P.: Parallel rotor walks on finite graphs and applications
in discrete load balancing. In: SPAA, pp. 186–195. ACM (2013)

3. Bampas, E., G ↪asieniec, L., Hanusse, N., Ilcinkas, D., Klasing, R., Kosowski, A.:
Euler tour lock-in problem in the rotor-router model. In: Keidar, I. (ed.) DISC
2009. LNCS, vol. 5805, pp. 423–435. Springer, Heidelberg (2009)

4. Bampas, E., G ↪asieniec, L., Klasing, R., Kosowski, A., Radzik, T.: Robustness of
the rotor-router mechanism. In: Abdelzaher, T., Raynal, M., Santoro, N. (eds.)
OPODIS 2009. LNCS, vol. 5923, pp. 345–358. Springer, Heidelberg (2009)

5. Berenbrink, P., Klasing, R., Kosowski, A., Mallmann-Trenn, F., Uznański, P.:
Improved analysis of deterministic load-balancing schemes. In: PODC, pp. 301–310
(2015)

6. Bhatt, S.N., Even, S., Greenberg, D.S., Tayar, R.: Traversing directed eulerian
mazes. J. Graph Algorithms Appl. 6(2), 157–173 (2002)

7. Cooper, J.N., Spencer, J.: Simulating a random walk with constant error. Combi-
natorics, Probability & Computing 15(6), 815–822 (2006)

8. Dereniowski, D., Kosowski, A., Paj ↪ak, D., Uznański, P.: Bounds on the cover time
of parallel rotor walks. In: STACS. LIPIcs, vol. 25, pp. 263–275 (2014)

9. Doerr, B., Friedrich, T.: Deterministic random walks on the two-dimensional grid.
Combinatorics, Probability & Computing 18(1–2), 123–144 (2009)

10. Fraenkel, A.S.: Economic traversal of labyrinths. Mathematics Magazine 43,
125–130 (1970)

11. Friedrich, T., Sauerwald, T.: The cover time of deterministic random walks. In:
Thai, M.T., Sahni, S. (eds.) COCOON 2010. LNCS, vol. 6196, pp. 130–139.
Springer, Heidelberg (2010)

12. G ↪asieniec, L., Radzik, T.: Memory efficient anonymous graph exploration. In:
Broersma, H., Erlebach, T., Friedetzky, T., Paulusma, D. (eds.) WG 2008. LNCS,
vol. 5344, pp. 14–29. Springer, Heidelberg (2008)

13. Kiwi, M., Ndoundam, R., Tchuente, M., Goles, E.: No polynomial bound for the
period of the parallel chip firing game on graphs. Theoretical Computer Science
136, 527–532 (1994)

14. Klasing, R., Kosowski, A., Paj ↪ak, D., Sauerwald, T.: The multi-agent rotor-router
on the ring: a deterministic alternative to parallel random walks. In: PODC,
pp. 365–374 (2013)

15. Kosowski, A., Paj ↪ak, D.: Does adding more agents make a difference? A case study
of cover time for the rotor-router. In: Esparza, J., Fraigniaud, P., Husfeldt, T.,
Koutsoupias, E. (eds.) ICALP 2014, Part II. LNCS, vol. 8573, pp. 544–555.
Springer, Heidelberg (2014)

16. Landau, E.: Uber die maximalordnung der permutationen gegebenen grades. Arch.
Math. Phys. 5, 92–103 (1903)

17. Priezzhev, V., Dhar, D., Dhar, A., Krishnamurthy, S.: Eulerian walkers as a model
of self-organized criticality. Phys. Rev. Lett. 77(25), 5079–5082 (1996)

18. Rabani, Y., Sinclair, A., Wanka, R.: Local divergence of Markov chains and the
analysis of iterative load-balancing schemes. In: FOCS, pp. 694–703, November
1998

19. Sauerwald, T., Sun, H.: Tight bounds for randomized load balancing on arbitrary
network topologies. In: FOCS, pp. 341–350 (2012)

Limit Behavior of the Multi-agent Rotor-Router System 139

20. Shiraga, T., Yamauchi, Y., Kijima, S., Yamashita, M.: L∞-discrepancy analysis
of polynomial-time deterministic samplers emulating rapidly mixing chains. In:
Cai, Z., Zelikovsky, A., Bourgeois, A. (eds.) COCOON 2014. LNCS, vol. 8591,
pp. 25–36. Springer, Heidelberg (2014)

21. Wagner, I.A., Lindenbaum, M., Bruckstein, A.M.: Distributed covering by ant-
robots using evaporating traces. IEEE Trans. Robotics and Automation 15,
918–933 (1999)

22. Yanovski, V., Wagner, I.A., Bruckstein, A.M.: A distributed ant algorithm for
efficiently patrolling a network. Algorithmica 37(3), 165–186 (2003)

Elastic Configuration Maintenance
via a Parsimonious Speculating

Snapshot Solution

Eli Gafni1(B) and Dahlia Malkhi2

1 UCLA, Los Angles, USA
eli@cs.ucla.edu

2 VMware Research, Palo Alto, USA
dmalkhi@vmware.com

1 Introduction

In order to provide dynamic reconfiguration of a distributed service, we extract
a fundamental new task SpSn. This new task facilitates a consensus-free coor-
dination among clients on incorporating changes to the set of servers they all
access, and through which they negotiate the changes. The danger is of course
that when transitioning from one configuration to the other, the system might
break up isolating the clients into several groups that cannot communicate with
each other.

SpSn. We start with a formal definition of the new task in a generic from. A
processor pi invokes the task with input Ii, and returns a pair (Qi, Yi), where
for some contextual value-space U , Ii, Qi ⊆ U , and Yi ⊆ 2U , and such that:

1. Qi ⊆ ∪j∈players Ij , where players ⊆ clients is the set of participating clients,
Ii ⊆ Qi, and the Qj ’s returned are related by containment, and

2. For all i, j if Qj ⊆ Qi, then Qj ∈ Yi.

Since the outputs are snapshots of the inputs, as well as a “speculation”
of any output that earlier processors might have obtained, we name the task
Speculating Snapshot, in short SpSn.

In our context the input for the task per client is a configuration change
proposal from a set P = {+s,−s}s∈servers

1.

Parsimonious Solution to SpSn. A possible solution to SpSn is for Q to be a
snapshot of the inputs, and for Y to be the power-set of Q, i.e. the set of all
subset of Q. However, this is inefficient in the number of configurations which
clients observe in our use of SpSn to affect a configuration change. We later show
why existing solutions to the dynamic configuration problem contain a solution
to SpSn, and how the complexity of a reconfiguration scheme is related to the
various solutions to SpSn. Here, we will be concerned with the most parsimonious
solution in terms of the cardinality of Yi. If we solve SpSn by consensus on a
1 We assume that each server is added and removed at most once, so to be re-
introduced into the system it bears a new identity.

c© Springer-Verlag Berlin Heidelberg 2015
Y. Moses (Ed.): DISC 2015, LNCS 9363, pp. 140–153, 2015.
DOI: 10.1007/978-3-662-48653-5 10

Elastic Configuration Maintenance 141

total order of configuration-changes, we can get Yi to be precisely the number of
previously output snapshots. The number of configurations here is linear in the
number of proposals. However, the worst-case cost here is an infinite execution,
as mandated by the FLP impossibility theorem [5].

We want to be as parsimonious as consensus-based solutions without relying
on consensus. Briefly, a parsimonious solution to SpSn wait-free SWMR Read-
Write is to go through a sequence of phases. Each phase is built around a two-step
protocol which posts a proposal and collects all other proposals. In the second
step, if the first collect was uniform, a processor marks it as a commit proposal.
This structure borrows from the Commit-Adopt building block of Gafni [6]. At
the end of the second step, if a commit value is unanimous, processor pi returns it
as Qi. Otherwise, it accumulates all commit values in Yi and continues to another
phase. The body of the paper contains a precise description of this solution.

Wheras so far, we expressed the solution in a shared-memory model, it may
be implemented distributed and fault tolerant using the Read-Write register
emulation due to Attiya et al. [3]. In the body of the paper, we first describe our
solution to SpSn using shared registers for abstraction (Section 3). This requires
pre-allocating registers per client, hence the solution is not adaptive. We then
“open” the shared register emulation and derive an adaptive solution (Section 4).

The Dynamic Reconfiguration Problem. We now discuss how we use the above
solution SpSn in solving the Dynamic Reconfiguration problem. In this problem
there is an initial configuration of servers known to all clients. We say that
clients are initially subscribed to this initial configuration. In a one-shot Dynamic
Reconfiguration problem, every client process in a subset players ⊆ clients
proposes one configuration-change from P . (We will later discuss the long-lived
Dynamic Reconfiguration problem.) The goal is for all players to eventually
subscribe to a common, final configuration encompassing all the proposals. Recall
that a set of proposals uniquely defines a set of servers, hence we focus on
converging on the set of proposals.

It should be understood that although there is no a priori bound on the
number of steps taken until convergence, any solution must, at some point, allow
a client to subscribe to a new configuration. However, this may not necessarily be
a final subscription, because the set players is not a priori known, and proposals
may continue arriving. Hence, even after it subscribes to a new configuration, a
client must continue observing other proposals written into its latest subscribed
configuration, and potentially subscribe to a newer configurations. Our problem
definition mandates that after all proposals have arrived, all players, provided
they take enough steps, will subscribe to a final configuration that will not
change. The clients themselves may not know that this is the final configuration
(namely, the set players of participating clients is unknown to clients).

We now return to discuss long-lived Dynamic Reconfiguration. In this prob-
lem, clients, over time, are not restricted to request just one change. We can
reduce Dynamic Reconfiguration into the problem of one shot by conceptualiz-
ing a new change request by a client as a new client. Obviously, that new virtual
client can start at the configuration that the old virtual client ended.

142 E. Gafni and D. Malkhi

If clients were able to access the initial configuration forever, the Dynamic
Reconfiguration problem would not be hard to solve. Clients would simply
repeatedly collect proposals written to the initial configuration and output their
union. In our problem, once a client subscribes to some configuration S, it
‘expires’ previous configurations in the following sense: Every configuration S′,
where S′ ⊆ S, may stop receiving new change proposals. (How they might
“know” that they expired is of no concern here.) This is what makes the prob-
lem useful: Clients better not diverge into disjoint configurations, because there
would be no way for them to find out about each other and converge back.

Having stated the problem, we can easily see how to solve it using SpSn. Every
client participates in implementing SpSn using the set of servers in the initial con-
figuration. The client provides its input proposal to SpSn. While solving SpSn in
the initial configuration it accumulates sets into its Y . These sets might have been
subscribed to by other processors. Hence it now solves SpSn in each one of them.
There are two ways to do it, one akin to depth first, and one to breadth first. We
comment on the latter in the conclusions. In the former, the client solves SpSn in
each of the speculated configurations in its Y set, one by one. The output from one
SpSn is the input to the next. It does this until its input to SpSn is the same as the
output from it. Only then it subscribes to that configuration.

Garbage Collection. We intentionally formulated our dynamic problem without
modeling failures, focusing only on the necessary ingredients to guarantee that
information can be passed from one configuration to the next. As a practical mat-
ter, it is worth noting that since we expire old configurations, we may garbage col-
lect their resources and not have to rely on their availability. What will a client do if
it cannot perform SpSn in a configuration S which it is subscribed to? We stipulate
that the client can be notified by an auxiliary mechanism that a new configuration
subscription caused S to expire. Note that this is a very weak assumption, it only
provides a client with eventual expiration notification on a configuration S which
it already subscribed to. Relying on an external ‘oracle’ notifications after old con-
figurations are garbage collected is inherent in dynamic systems, see e.g., [2,9].

Application. We demonstrate a use-case of consensus-free Dynamic Reconfigura-
tion, a dynamically reconfigurable store. A single-register store is built by inter-
jecting reads and writes of the register during Dynamic Reconfiguration, and
likewise observing configuration information during normal Read/Write opera-
tion. During reconfiguration, a client reads the register within every configuration
in Y and writes it into to the output configuration S. Within a Write operation,
a client starts at the latest subscribed configuration and performs write–then–
SpSn. It repeats this for every speculated configuration in Y . A Read starts
with the latest subscribed configuration, calls SpSn and then iterates within
every configuration in Y doing SpSn–then-read. Correctness intuitively stems
from the fact that in every configuration in which a Write is performed, either
a Read observes the value, or the written value is first copied to a newer config-
uration. Section 6 contains a brief description of dynamic store algorithm and a
correctness sketch.

Elastic Configuration Maintenance 143

Organization. The remainder of the paper is organized as follows. We com-
ment on related works in Section 1.1. A formal execution model is provided
in Section 2. The solution is laid out in two parts. First, in Section 3 we solve
SpSn Read-Write. Then we provide a distributed SpSn protocol in Section 4.
We use SpSn as building block to solve the Dynamic Reconfiguration problem
in Section 5. We briefly outline the design of an elastic Read-Write store utilizing
SpSn in Section 6. We conclude and discuss future work in Section 7.

1.1 Related Work

Much of our modularity owes to two prior celebrated results, the Read-Write
register emulation of Attiyah, Bar-Noy and Dolev (ABD) [3], and the Commit-
Adopt protocol of Gafni et al. [6].

Our story begins with the ABD emulation which provides an atomic Read-
Write service over a fixed collection of 2F + 1 servers, F of which may become
unavailable. In a nutshell, the emulation is built of two communication phases.
One is used for querying about the currently stored value and its timestamp.
The second one is used for updating the stored value and its timestamp. Each
phase employs a majority-exchange, guaranteeing intersection with past phases
in at least one server. Our SpSn emulation is first presented using Read-Write
registers within each configuration as building block for modularity. We then
leverage the ABD fault-tolerant emulation within each fixed configuration to
derive a message-passing protocol.

To make the ABD emulation elastic, the pioneering work of RAMBO inte-
grated a configuration consensus service to facilitate reconfiguration; the first
RAMBO works operated the configuration service separately from the emula-
tion [7,9], and later, it became intertwined with the register emulation itself [4].
That work opened the formal treatment and definition of elastic problems.

SpSn identifies the crux of a reconfiguration task which is embedded in such
elastic solutions. Indeed, a degenerate form of SpSn occurs in any dynamic
system which employs consensus for configuration such as RAMBO [9]. Here,
every client is handed a global sequence of configurations. Each prefix of the
sequence could be reduced to an SpSn output by “speculating” every prefix of
the sequence. Consensus-based reconfiguration is parsimonious in the number of
configuration-changes, but relies on the strength of consensus. Our interest is in
consensus-less elasticity.

The most relevant prior work is DynaStore [2,11], a previously known
consensus-free dynamic store. The complexity of DynaStore’s SpSn is an expo-
nential number of configurations. This can be easily seen as follows. A client in
DynaStore starts with the last known configuration and participates in imple-
menting with the servers in this configuration a new primitive named Weak
Snapshot. Weak Snapshot returns to every client a collection of proposals, with
one common proposal included in all collections, which are otherwise other-
wise unconstrained. With n proposals, there are 2(n−1) possible such collections,
which DynaStore clients traverse in order to converge on a final configuration.

144 E. Gafni and D. Malkhi

There are other differences between SpSn and DynaStore along several dimen-
sions.

– Relying on the strong foundations of atomic Read-Write registers and
Commit-Adopt, we provide a fairly succinct and modular solution, which
is described in less than 20 LOC. Although elegance is an elusive property,
we feel that a deductive re-visit is warranted given the importance of the
DynaStore contribution.

– DynaStore provides reconfigurable atomic Read-Write storage. We provide
a modular approach which separates reconfiguration as a building block by
itself.

More generally, dynamic storage is a fundamental service which received
tremendous attention in both theory and practice, beyond the scope we can
cover here. We refer the reader to two recent surveys which may shed light into
this arena: A tutorial on foundations is given in [1], and a more broad survey
which covers both theory and practice is provided in [10].

2 Problem Model

The introduction already introduces the participants: A set clients of client-
processes and a set servers of server-processes, and a subset players ⊆ clients
participating in solving the SpSn tasks and in Dynamic Reconfiguration. We
proceed to formally indicate the execution paradigm and the interaction model
among participants.

We consider two coordination models. In one, processes use shared atomic
single-writer multi-reader (SWMR) Read-Write registers. Each register r pro-
vides two operations, r.read and r.write. Each process may invoke one operation
on any register and wait for it to return. There is no a priori bound on opera-
tion execution times nor on processing speeds of processes. That is, the system
is asynchronous. An execution may interleave operations by different clients on
registers. For every execution, there exists an equivalent sequential execution in
which read and write operations return the same results as the real execution,
and furthermore, the sequential execution respects real-time ordering between
non-overlapping operations in the real execution. That is, every execution is
linearizable. For a formal treatment of atomic registers, executions, execution
equivalence and linearizability, we refer the reader to the classic literature [12].

Our second coordination model uses messages for communication between
client-processes and server-processes. There is no a priori bound on message
transfer times between clients, but it is guaranteed that message origins are
authentic and that messages between live processes arrive in tact. That is, the
system employs the standard asynchronous message-passing model [12].

Configurations. A configuration is expressed in one of two interchangeable forms.
One is simply as a subset S ⊆ servers. The other is as a change-set S ⊆
{+s,−s}s∈servers. The latter form reduces to a subset by subtracting all the
servers s included in −s form, from those in +s form.

Elastic Configuration Maintenance 145

Availability and Garbage Collection. In order to capture system elasticity, we
model configurations as being either Active or Expired. In the shared-memory
model, an Active configuration provides clients with access to atomic Read-Write
registers belonging to the configuration. When a client tries to write a register
of an expired configuration, the environment throws an exception indicating
that the configuration is expired, and provides the cause of its expiration. In
the message-passing model, an Active configuration has a majority of servers
available and responsive to client messages. An Expired configuration in the
message-passing model is the same as a shared-memory one, and notifies clients
that attempt to access it about its expiration through an exception.

The set of Active configurations is determined as follows. Initially, the system
starts with an a priori fixed Active configuration C0. Whenever SpSn returns Y
to some client, every configuration C ∈ Y becomes Active.

At any moment, every participating client has a single configuration which
it is subscribed to. Clients start by default subscribed to C0. During an execu-
tion, a client may adopt a configuration and subscribe to it. This may occur an
unbounded number of times. If a client crashes, we proforma regard it as if the
client remains subscribed to the last configuration is was subscribed to before
the crash; this has no effect on our problem specification or solution.

To allow garbage collection, when a client subscribes to a configuration S,
the subscription to S causes every configuration S′ such that S′ ⊆ S to become
Expired.

3 SpSn Read-Write Solution

This section provides a solution for the SpSn problem defined in the Introduction.
The procedure C.SpSn(Ii) in Algorithm 1 captures the actions of a client-process
pi whose input is Ii.

The solution builds around a two-step protocol which is repeatedly invoked.
The protocol bears similarity to the Commit-Adopt procedure of Gafni [6]. For
each client pi and for each internal phase counter k = 1, 2, ..., the implementation
uses two SWMR shared atomic registers, Ii(k, 1) and Ii(k, 2). In phase k, at the
first step, a client pi first writes its proposal to Ii(k, 1) and then collects all
written Ij(k, 1) values. If all the values it observes are identical, in the second
step it writes to Ii(k, 2) a commit-proposal (with a commit-bit set) with this
value. Otherwise, it proposes as non-commit a union of all values it observed in
the first step. It then collects all written Ij(k, 2) values. Every commit-proposal
is kept in Yi.

If any non-commit proposal Ij(k, 2) was collected, then another phase is
started. In the next phase, the initial proposal is the union of all the Ij(k, 2)
values. Otherwise, if all the Ij(k, 2) values are commit proposals (a fortiori, they
are all identical), then SpSn returns this value as Qi, along with the set Yi. At
this point, Yi contains all commit values which were accumulated in preceding
phases.

146 E. Gafni and D. Malkhi

We remind that the formulation of SpSn in shared-memory is for pedagog-
ical purposes. Section 4 gives a message passing implementation which is also
adaptive and does not require prior knowledge of the client-set.

Algorithm 1. C.SpSn protocol at process pi
1: local variables:
2: proposal, collect, commit, w
3: Yi, initially ∅
4:
5: procedure C.SpSn(Ii)
6:
7: proposal ← Ii
8: for k = 1, 2, 3, ... do
9: � first phase
10: commit ← true, collect ← ∅
11: Ii(k, 1).write(proposal)
12: for every client pj do
13: w ← Ij(k, 1).read
14: if w �= ∅ and w �= proposal then
15: collect ← collect ∪ w, commit ← false
16: � second phase
17: Ii(k, 2).write(〈commit, collect〉)
18: for every client pj do
19: 〈w.commit, w.set〉 ← Ij(k, 2).read
20: if w.commit �= true then
21: commit ← false
22: if w.commit == true then
23: Yi ← Yi ∪ w.set
24: proposal ← proposal ∪ w.set
25:
26: if commit == true then
27: return proposal, Yi

Correctness of SpSn RW Solution

Lemma 1. In each phase k of the SpSn procedure, if any two commit values
are written to Ii(k, 2), Ij(k, 2) (i.e., both have the commit bit set), then they are
the same. Furthermore, the value must be the first value whose write in the first
step of phase k has completed.

Proof. Fix some k, and let pf be the client whose write into If (k, 1) is the first to
complete. Let pi be any client writing a commit value to Ii(k, 2). Therefore, the
collect of all Ij(k, 1) by pi returned identical values. Furthermore, by assumption,
pi’s read of If (k, 1) must have returned the value written by pf . Therefore, pi’s
unanimous collect value must be If (k, 1), and the lemma is proved.

Elastic Configuration Maintenance 147

Lemma 2. Procedure SpSn in Algorithm 1 maintains the properties listed under
the SpSn problem definition in the Introduction.

Proof. Property 1 of SpSn in the Introduction has two components, Validity and
Containment. The Validity property that Ii ⊆ Qi immediately follows from the
fact that a process pi first writes its own proposal into Ii(k, 1) and then collects
all Ij(k, 1).

To prove Containment, note that by Lemma 1, every phase inside SpSn has
a unique commit value (if any). Denote the phase k commit-value by Ck. By
Lemma 1, every collect of Ij(k, 1) in phase k must see Ck. Consequently, all
values proposed in all higher phases must contain Ck. It follows that for k′ > k,
if there exist a commit value Ck′ at phase k′, then Ck′ ⊇ Ck, and Containment
follows.

We now prove property 2, the Speculation component of SpSn. We consider
two clients pi and pi′ , and assume that pi returns at phase k from SpSn with
return value Qi, and pi′ returns Qi′ at a higher phase k′ > k. By Containment,
Qi ⊆ Qi′ . We want to prove that Qi ∈ Yi′ . Indeed, at the second step of phase
k, both pi and pi′ collect the first value whose write into Ij(k, 2) completed.
By assumption, pi collects only the (commit,Qi) value, hence, pi′ must see this
commit-value and insert it to Yi′ as needed.

Complexity of SpSn RW Solution

Our implementation of SpSn guarantees a return value Y with a linear number
of configurations. This stems from the fact that only commit configurations are
inserted into Y , and by Lemma 2, these configurations are related by contain-
ment, hence at most linear in the size of the set of proposals.

In terms of the number of primitive operations, C.SpSn() contains multiple
rounds of write-collect. More specifically, within a single invocation of C.SpSn(),
the number of phases may be n, where n is the number of proposals. The number
of individual write/read operations is O(m ∗ n), where m is the number of par-
ticipating processes. In the message-passing implementation below (Section 4),
the factor m is absorbed into the size of messages.

4 SpSn Message-Passing Solution

There exists a straight-forward message-passing emulation of the C.SpSn RW
solution above (Algorithm 1): Use an ABD SWMR emulation [3] by the servers-
set C per each abstract register Ii(k, step). Naively implemented, every write to
each SWMR register incurs one exchange between the single-writer, the client
pi, and servers in C, and every read incurs two exchanges. Each phase in the
RW solution performs two steps, each does one write and m reads. Hence, the
naive message-passing emulation takes 2× (2m+1) majority-exchanges with C.

If we “open” the ABD emulation, we can easily see that there is no reason
to iterate through the m registers one at a time. Instead, we can utilize two

148 E. Gafni and D. Malkhi

exchanges to bulk-read all registers. The message size will be proportional to the
actual number of participants, which is m at worst, but in any real execution
it may be much smaller than m. We can further optimize and coalesce some
exchanges from different SpSn steps. Specifically, as evident from the proof of
Lemma 1, it suffices for the registers to maintain regular semantics [8], not
necessarily atomic. Therefore, we can omit the second exchange, the ‘write-
back’, from read operations. The SpSn message-passing protocol resulting from
all these improvements is depicted in Algorithm 2. It has a total of four exchanges
between a client pi and servers in C. More importantly, this protocol is adaptive,
i.e., it removes the requirement to a priori know m.

With respect to correctness, because this message passing protocol simply
“opens” the high-level shared-object abstractions, its correctness follows directly
from the correctness of Algorithm 1.

5 Dynamic Reconfiguration Using SpSn

In this section, we use SpSn to manage configuration changes, which are
expressed as a set of changes.

The core of procedure Propose(Ii) is very simple: Client process pi invokes it
with input Ii. It starts at the latest subscribed configuration. Propose() invokes
SpSn, adopts the new configuration change Qi, and repeats in every speculated
configuration Yi. This continues until the proposed configuration is the same as
the output from SpSn. Then the client subscribes to it.

The only issue that somewhat compounds the treatment is a possible expi-
ration of configurations. There are two ways in which a client may learn that its
configuration subscription has been expired. The first is if an attempted SpSn
fails. Recall that in our probem model (Section 2), we model this case as an
exception raised during execution, indicating as cause a subscription of a new
configuration that affected the expiration (line 4, Algorithm 3).

The second way is when a client pi encounters a proposal by a client pj which
started Propose() with a newer configuration subscription. We model this case
by annotating each proposal Ii at the beginning of Propose (line 8, Algorithm 3)
with the starting configuration subscription, and denote it Ii.start. If pi ever
collects a proposal Ij whose Ij .start indicates a later configuration subscription
than Ii.start, then pi starts over at Ij .start.

Correctness of Dynamic Reconfiguration Protocol

The key insight driving the Dynamic Reconfiguration solution to convergence is
that every configuration C has a unique successor that is guaranteed to appear
in the output of every C.SpSn. We name the configuration seed, and define it
formally as follows. Define seed(C) as the commit configuration Ij(k, 2) returned
from C.SpSn as Qj , whose phase k is the lowest for all returned Qj . Inductively,
define seed1(C) := seed(C), and seed(i+1)(C) := seed(seedi(C)). Intuitively, all
that matters are seed configurations, since clients cannot skip them. The rest are

Elastic Configuration Maintenance 149

Algorithm 2. C.SpSn message-passing protocol for client pi and server q ∈ C

1: server q ∈ C local variables:
2: I(process, phase, step) → value, relation-map, initially empty
3:
4: client pi local variables:
5: proposal, collect, commit, w
6: Yi, initially ∅
7:
8: procedure SpSn(Ii)
9: client pi:
10: � initialization
11: proposal ← Ii
12: for k = 1, 2, 3, ... do
13: � first phase
14: commit ← true, collect ← ∅
15: send (C, write, pi, k, 1, proposal) to all servers in C
16: wait for acknowledgments from a majority of C
17: send (C, read, pi, k, 1) to all servers in C
18: for each reply w do
19: if w �= ∅ and w �= proposal then
20: collect ← collect ∪ w, commit ← false
21:

� second phase
22: send (C, write, pi, k, 2, 〈commit, collect〉) to all servers in C
23: wait for acknowledgments from a majority of C
24: send (C, read, pi, k, 2) to all servers in C
25: for each reply 〈w.commit, w.set〉 do
26: if w.commit �= true then
27: commit ← false
28: if w.commit == true then
29: Yi ← Yi ∪ w.set
30: proposal ← proposal ∪ w.set
31:
32: if commit == true then
33: return proposal, Yi
34:
35: server q, on receipt of (C, write, pj , k, step, value):
36: insert a relation (pi, k, step) → value into I
37: send back acknowledgment to pj

38:
39: server, on receipt of (C, read, pj , k, step):
40: send back all non-empty (·, k, step) values of I
41:

mere inefficiencies, namely, speculated configurations traversed unnecessarily by
clients due to the lack of consensus. This is the price of asynchrony.

150 E. Gafni and D. Malkhi

Algorithm 3. Reconfiguration protocol at client pi
1: local variables:
2: speculated, done, proposal
3:
4: on exception “current configuration subscription expired by new configuration C”:
5: subscribe to C and start Propose over
6:
7: procedure Propose(Ii)
8: Ii.start ← current configuration subscription
9: speculated ← {Ii.start}, done ← ∅, proposal ← Ii
10: for U ∈ speculated \ done), in increasing containment order do
11: (Qi, Yi) ← U.SpSn(proposal)
12: done ← done ∪ {U}
13: proposal ← Qi

14: if maxIj∈proposal Ij .start is later than current subscription then

15: subscribe to maxIj∈proposal Ij .start and start Propose over
16: speculated ← speculated ∪ Yi

17: subscribe to proposal and return it

Theorem 1. If every live client pi proposes one change in Propose(Ii), and then
forever invokes Propose with an empty change, then eventually there is a time
at which all living clients subscribe to the same configuration.

Proof. Let U be a seed-configuration, and let pi invoke U.SpSn inside Propose()
and return (Qi, Yi). It follows immediately from property 2 of SpSn (see Introduc-
tion) that seed(U) ∈ Yi. Therefore, pi invokes SpSn in seed(U), and inductively
in every seedi(U). Once new proposals cease to arrive, then starting from any
seed configuration a client is subscribed to, the client will traverse all the seed
configurations to the end of the succession.

Complexity of Dynamic Reconfiguration Solution

The number of speculated configurations in Yi output from C.SpSn to all clients
is linear in the number of proposals, since they are related by Containment.
Things are not so simple when we consider the Yj sets returned by SpSn’s
in different configurations. Invoking SpSn in two different configurations, say
C.SpSn and C ′.SpSn, might return C.Yj and C ′.Yj containing items which are
not related by containment. However, by negation, for every pair of speculations
which are not related by containment, one must contain an input injected in
a later subscription than the other. Hence, when a client encounters the later
speculation (say D), it causes the client to subscribe to D and restart Propose in
it. Therefore, the configurations actually traversed by clients (not the total ones
ever held inside speculated) are ordered by containment. It follows that clients
traverse in total a linear number of configurations in the number of different
proposed changed.

Elastic Configuration Maintenance 151

6 Application: Read-Write Store

In this section we outline the design of a dynamic service, an elastic Read-
Write store, built using Dynamic Reconfiguration. This service emulates a sin-
gle, atomic multiple-writer multi-reader (MWMR) Read-Write register in our
dynamic execution model. That is, in a dynamic store, our set client of client
processes access a shared store service through the set servers of servers. The
availability of servers for responding to Write and Read requests is governed by
the client subscriptions to configurations. As in the Dynamic Reconfiguration
problem, Propose() requests may occur independently and concurrently with
Read and Write requests. The solution consists of three components:

– Inside Propose(), following every U.SpSn a client needs to read the value
stored at configuration U . At the end of Propose, the client writes the latest
value with its original timestamp to the final configuration before it sub-
scribes to it.

– To write a new value, a client first writes it into its current subscription
configuration, and then invokes an empty Propose() in order to transfer the
value into any new configuration subscription.

– To read the latest value, a client first invokes an empty Propose() and then
returns the value it finishes with.

We now give the key insight for correctness. The key idea is that writing
new information into subscription-configurations is done write-then-SpSn, while
information gets transferred from one seed-configuration to the next by doing
SpSn-then-read in each configuration. Consider a client pi traversing through
configuration C. If there is any write done in C, either the writer finished before
the read, hence the read will see it. Or the writer’s SpSn starts after the the
reader’s SpSn, hence see any reconfiguration proposal by the client. Finally, for
any client not traversing through configuration C, there must exist some client
which transferred information from C to a later configuration.

7 Conclusions

The germination of this paper is instructive. Being deeply invested in the idea
that “behind any non-trivial distributed question there is a simple task,” we
asked ourselves what is the simple task behind the question in [2,11]. We identi-
fied the task Speculating Snapshots (SpSn), and showed how previous solutions
to the problem of reconfiguration solved the task, how we can solve the task
in various models, and how to build a dynamic reconfiguration around it. Our
parsimonious solution to the SpSn task in read-write wait-free drives a reconfig-
uration scheme linear in the number of intermediate configurations used, which
is optimal. The number of operations may be subject to further optimization, in
particular, using a BFS-like intermingling of SpSn’s; this is left open for future
work.

152 E. Gafni and D. Malkhi

The problem tackled in this paper is fundamental to the dynamic nature of
distributed systems. In distributed, mission critical settings, it is reasonable to
assume that these dynamic changes occur slowly and allow to carefully migrate
information in a changing system. This is the model assumed here. We already
showed utility with a straw-man dynamic store design, and we envision that
other dynamic services can be built equally easily.

More generally, in our solution to Speculating Snapshots (SpSn), we intro-
duced a slight modification of Commit-Adopt. We expect that this new technique
may become useful in other contexts.

Our work leaves open the question of operation complexity. Likewise, quanti-
fying the relationship between real world scenarios and our slowly-changing fault
model may be an interesting, practical challenge. Finally, we hope to employ this
approach (identifying what is the task behind a problem) in other problems, as
this experience shows promise.

Acknowledgments. We are thankful to Idit Keidar, Leslie Lamport and Alex Speigel-
man for helpful discussions. Part of this work was done when the first author visited
MIT supported by National Science Foundation: CCF-1217921,CCF-1301926, and U.S.
Department of Energy: DE-SC0008923.

References

1. Aguilera, M., Keidar, I., Martin, J.-P., Shraer, A.: Reconfiguring replicated atomic
storage: A tutorial. Bulletin of the EATCS 102, 84–108 (2010)

2. Aguilera, M.K., Keidar, I., Malkhi, D., Shraer, A.: Dynamic atomic storage without
consensus. J. ACM 58(2), 7:1–7:32 (2011)

3. Attiya, H., Bar-Noy, A., Dolev, D.: Sharing memory robustly in message-passing
systems. J. ACM 42(1), 124–142 (1995)

4. Chockler, G., Gilbert, S., Gramoli, V., Musial, P.M., Shvartsman, A.A.: Recon-
figurable distributed storage for dynamic networks. J. Parallel Distrib. Comput.
69(1), 100–116 (2009)

5. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. J. ACM 32(2), 374–382 (1985)

6. Gafni, E.: Round-by-round fault detectors (extended abstract): unifying synchrony
and asynchrony. In: Proceedings of the Seventeenth Annual ACM Symposium on
Principles of Distributed Computing. PODC 1998, pp. 143–152. ACM, New York
(1998)

7. Gilbert, S., Lynch, N., Shvartsman, A.: RAMBO II: Rapidly reconfigurable atomic
memory for dynamic networks. In: Proceedings of International Conference on
Dependable Systems and Networks, pp. 259–268 (2003)

8. Lamport, L.: How to make a multiprocessor computer that correctly executes mul-
tiprocess programs. IEEE Trans. Comput. 28(9), 690–691 (1979)

9. Lynch, N.A., Shvartsman, A.A.: RAMBO: a reconfigurable atomic memory service
for dynamic networks. In: Proceedings of the 16th International Conference on
Distributed Computing. DISC 2002, pp. 173–190. Springer-Verlag, London (2002)

Elastic Configuration Maintenance 153

10. Musial, P., Nicolaou, N., Shvartsman, A.A.: Implementing distributed shared mem-
ory for dynamic networks. Commun. ACM 57(6), 88–98 (2014)

11. Shraer, A., Martin, J.-P., Malkhi, D., Keidar, I.: Data-centric reconfiguration with
network-attached disks. In: Proceedings of the 4th International Workshop on
Large Scale Distributed Systems and Middleware. LADIS 2010, pp. 22–26. ACM,
New York (2010)

12. Welch, J.L., Attiya, H.: Distributed Computing: Fundamentals, Simulations and
Advanced Topics. McGraw-Hill Inc., Hightstown (1998)

SmartMerge: A New Approach to
Reconfiguration for Atomic Storage

Leander Jehl1(B), Roman Vitenberg2, and Hein Meling1

1 Department of Electrical Engineering and Computer Science,
University of Stavanger, Stavanger, Norway

leander.jehl@uis.no
2 Department of Informatics, University of Oslo, Oslo, Norway

Abstract. In this paper, we study reconfiguration mechanisms for
atomic storage systems. We observe that the state of the art approach
for reconfiguration in an asynchronous environment has several disadvan-
tages compared to the classical consensus-based approach, which requires
eventual synchrony. For example, an unfortunate combination of remove
operations may lead to a configuration with too few or even no pro-
cesses. We present SmartMerge, a novel approach that provides most of
the benefits of consensus-based reconfiguration, yet can be implemented
in a fully asynchronous system. SmartMerge utilizes a merge function to
aptly combine concurrently issued changes to both the set of processes
and the quorum system of the storage. The approach is general and can
use any suitable function.

In addition to the expressive reconfiguration policies enabled by
SmartMerge, our atomic storage also has improved efficiency: Every
reconfiguration imposes only a constant overhead on concurrent read
and write operations.

Keywords: Atomic storage · Reconfiguration · Asynchronous system

1 Introduction

In the age of cloud computing, an abundance of compute resources with different
capabilities are available at data centers across the globe. These data centers
deploy a variety of services replicated for fault-tolerance. It is typical for the
administrators of the data center to update both the composition of machines
in the data center and the composition of replicas running a service, because
of the need to regularly upgrade the machines, replace failed components, and
accommodate for changes in the service load. Such reconfiguration operations
are rather frequent in practice as evident, e.g., from the traces of a Google data
center [1].

One of the main challenges of supporting reconfiguration is to ensure consis-
tency when multiple users submit concurrent requests. A monitoring component
can be tracking software and hardware failures, upgrades, and load of queries and
updates to the replicas. Acting upon this information, it may be issuing requests
c© Springer-Verlag Berlin Heidelberg 2015
Y. Moses (Ed.): DISC 2015, LNCS 9363, pp. 154–169, 2015.
DOI: 10.1007/978-3-662-48653-5 11

SmartMerge: A New Approach to Reconfiguration for Atomic Storage 155

autonomously, without human intervention [2]. It is envisioned that many such
components may be deployed in a large-scale data center at the same time, which
may result in multiple concurrent uncoordinated and even conflicting requests
for reconfiguration.

The traditional approach to resolve this situation is to use consensus to choose
one of the proposed configurations, see e.g. [3]. The proposal for a new configu-
ration in this scheme would include a desired set of replicas along with a quorum
system to use. The main disadvantage of this consensus-based approach is that
its liveness is impossible to guarantee in asynchronous systems characteristic of
large-scale data centers.

In order to address this issue, an alternative conceptual approach proposed
in the DynaStore system [4] is to provide the users with an interface to request
incremental additions or removal of processes. In case of commutative concurrent
requests, the system directly combines the changes instead of choosing just one
of them. Furthermore, since changes commute, they do not need to be ordered.
This allows the approach to be implemented in a fully asynchronous system,
without relying on eventual synchrony or leader election to solve consensus.
Henceforward we refer to this conceptual approach as DirectCombine.

Another advantage of DirectCombine over the consensus-based approach is
that non-conflicting changes can be proposed concurrently. For example, two
changes, one removing replica a and one replacing replica b with e, can be issued
concurrently by different processes and are both realized in the resulting config-
uration. Using the consensus-based approach, only one of these requests would
be chosen and applied.

However, the fact that all proposed changes are applied can also lead to prob-
lems. If two proposed reconfigurations are trying to remove a different replica
each, applying both removals may incidentally result in a configuration with a
small number of replicas and thus, low fault-tolerance. In the extreme case, a
combination of several removals may result in an empty configuration, in which
no further operations can be performed.

It might be preferable for a system to abort the reconfiguration process than
to switch to such a configuration. In general, configurations with too few or too
many processes, or with an unfavorable distribution of processes across data cen-
ters can be unacceptable in practice, because of low fault tolerance, high network
latencies, or administrative restrictions. Using the consensus-based approach,
the system can only be reconfigured to an unacceptable configuration, if such a
configuration was proposed. Thus it is easy to avoid these configurations.

Another disadvantage of the automatic combination of different reconfigura-
tion requests in DirectCombine is the need to autonomously recompute the quo-
rum system on the fly. While such dynamic computation is simple for majority
quorums, it may not be feasible in the general case or in real-world situations.
In heterogeneous systems spanning over multiple data centers and a complex
network topology, quorum systems may have topology-induced structure. Fur-
thermore, adjusting weights and the balance between read and write quorums

156 L. Jehl et al.

Table 1. Comparison of reconfiguration approaches

Avoids
unacceptable
configurations?

Can combine
multiple
proposals?

Can easily
switch
quorum system?

Asynchronous
system

Consensus-based yes no yes no
DirectCombine no yes no yes
SmartMerge yes yes yes yes

can be the key to meeting service level agreements under dynamic load patterns.
It is therefore undesirable to limit these systems to majority quorums.
In this paper we present a novel approach called SmartMerge. In the core of the
approach lies a SmartMerge function that intelligently combines different, con-
currently issued reconfiguration requests. The approach based on such a function
has several advantages:

Generalized interface for the reconfiguration operation, that instead of
just adding and removing one specific process can operate with rules and
policies to change the number of replicas, add several replicas as a group, set
weights or priorities to individual potential replicas, or introduce any cor-
relation between replicas. Such policies allow the SmartMerge function to
produce meaningful resulting configurations in the case of concurrent diver-
gent requests, or to configure the set of replicas automatically in presence of
failures.

Easy switching between different quorum systems: For example, a repli-
cation scheme can employ write-all read-one quorums, to minimize the
latency of parallel reads, while switching to majority quorums before
upgrades are performed, or whenever failures and temporary outages are
expected.

Definition and avoidance of unacceptable configurations as part of the
policy: In the simplest case, it is possible to define the minimum number of
replicas and maintain it across all reconfigurations and failures.

Similarly to DirectCombine, SmartMerge can be implemented in an asyn-
chronous system. We summarize the pros and cons of the three approaches in
Table 1.

The SmartMerge function can be tailored to the specifics of the service,
replication scheme, data center and its topology, and many additional factors.
We show a concrete example of such a function in Section 2, in order to illustrate
the aforementioned features of the approach.

We apply our approach to reconfiguration of atomic storage. Atomic stor-
age is a key problem in distributed systems that can be implemented in an
asynchronous system [5]. Both the consensus-based approach [3] and Direct-
Combine [4] have been applied to this problem.

The main contribution of this work is that we show how SmartMerge can be
implemented for atomic storage in an asynchronous system. This is done in a

SmartMerge: A New Approach to Reconfiguration for Atomic Storage 157

generic way parametrized by an externally defined SmartMerge function, such
as the one presented in Section 2.

The key idea behind our implementation is as follows: Under the assumption
that the SmartMerge function is commutative, associative, and idempotent, it
induces a lattice of all possible reconfiguration requests. If finitely manyconcur-
rent requests are proposed, we ensure that eventually every process will adopt
the merge (i.e., a lattice join) of all these competing requests as its configuration.

To implement wait-free reads and writes, these operations cannot wait until
a reconfiguration has completed. A common solution to this problem is to read
from or write to the old, the new and all possible intermediate configurations,
while reconfigurations are ongoing. However, before reaching the lattice element
that is the join of all concurrent requests, the service can intermediately adopt
a join of any subset of these requests. The number of such joins in the lattice
is exponential with the number of competing requests. To avoid contacting pro-
cesses in all these configurations during read and write operations, we submit
proposed requests to lattice agreement, which returns elements from a totally
ordered subset of the lattice, including the greatest element. We use only ele-
ments, that were returned by lattice agreement as intermediate configurations.
The number of different configurations returned by lattice agreement during an
execution is at most the number of changes proposed during this execution,
making it feasible to read from or write to all intermediate configurations. Addi-
tionally, if one of these configurations is adopted by the service, operations need
no longer read from or write to elements smaller than this configuration.

To read a value from the register while changes are applied to the configura-
tion, we read the register values stored in all configurations returned by lattice
agreement and return the most recent one. Similarly, to write a value, we write
to all these configurations. Read and write operations do not participate in lat-
tice agreement, but only contact processes in configurations returned by lattice
agreement. We show that in an execution where at most r changes are proposed,
all read and write operations cumulatively contact processes in at most r + 1
different configurations. A single read or write operation contacts the processes
in any configuration at most twice. This gives a bound on the latency of read
and write operations that is the same as for the consensus-based approach in [3],
but a significant improvement compared to DynaStore [4].

2 System Model

We assume a possibly infinite set of processes Π, communicating via asyn-
chronous channels. Each process p ∈ Π has a unique identifier p.id.

Processes can fail at any time during an execution by stopping to take any
actions. We assume that messages are not corrupted and that, if two processes
do not fail during an execution, all messages sent between these processes are
eventually delivered.

Not all processes in Π need to be known a priori. We therefore maintain a
finite set of available processes A ⊂ Π. Newly discovered processes are added to

158 L. Jehl et al.

A by a reconfiguration operation. We also maintain a set Arm which contains
processes that are no longer available and have been removed from A. If two
processes disagree whether p is available, they can use Arm to determine if
one process missed to add p or the other missed out on removing p. Thus two
processes using A1,A1

rm and A2,A2
rm respectively, can combine their knowledge

and both switch to using A = (A1\A2
rm) ∪ (A2\A1

rm) and Arm = A1
rm ∪ A2

rm

instead. While it is impossible to distinguish a faulty process from a slow process
in an asynchronous system, recent works have proposed failure detectors that
reliably detect all [6] or at least some failures [7], without relying on timing
assumptions. The possibility to remove processes from A allows our service to
be used together with a reliable, unreliable or no failure detector.

Only a subset P ⊂ A of the available processes is actually running the service.
These are organized in a service configuration. A service configuration c is a tuple
(Pc,WQc,RQc), where Pc ⊂ Π is a finite set of processes, and WQc and RQc

are collections of subsets of Pc, called read and write quorums, such that any
read quorum from RQc intersects with every write quorum from WQc. We write
C for the domain of all such configurations.

Given the set A of available processes, the choice of a service configuration is
determined by a policy. We model such a policy as a tuple (srvConf(), info), where
srvConf is a function Pf (Π) → C that maps any finite subset of Π to a service
configuration. info is auxiliary information describing how the policy is combined
with other policies. We write PL for the set of all policies (srvConf(), info) that
can appear in an execution.

A reconfiguration can both add and remove available processes and propose
a new policy. We say that a reconfiguration proposes a Blueprint for a service
configuration. We express a Blueprint as a tuple (A,Arm,policy), with finite
sets A,Arm ⊂ Π and policy ∈ PL. We write R for all such tuples. Applying
policy.srvConf(A) results in a service configuration that includes only available
processes and satisfies the rules expressed by policy. We say that a Blueprint
r = (A,Arm,policy) determines the service configuration c = policy.srvConf(A).

Lattice and Order of Blueprints. For SmartMerge, we require that the system
manager provides a commutative, associative and idempotent function, join, to
merge policies. These properties are quite intuitive in practice, as it can be seen
in the example later in this section. We merge Blueprints by combining A and
Arm as described above and use join to combine the policies. Collectively, this
defines a function merge(R,R) → R that combines Blueprints. We assume an
initial element rI ∈ R, such that ∀r ∈ R : merge(r, rI) = r holds.

Since join is commutative, associative and idempotent, these properties also
hold for merge. A set R, together with the merge function, thus is an algebraic
semi-lattice [8]. Again, due to these properties we can write merge({r1, r2, ...})
instead of merge(r1,merge(r2, ...)).

This lattice (R,merge) is bounded by the initial element rI . In the remainder
of this work, we simply write lattice instead of bounded semi-lattice. Due to its
properties, merge defines a partial ordering � on R by the relation ∀r1, r2 ∈ R :
r1 � r2 ⇔ merge(r1, r2) = r2. We write r1 � r2 for (r1 � r2 ∧ r1
= r2) and say

SmartMerge: A New Approach to Reconfiguration for Atomic Storage 159

that r2 is a greater Blueprint (as lattice element) than r1 and that r1 is a smaller
Blueprint. We write r1
� r2 for the negation of r1 � r2. Note that r1
� r2 is not
equivalent to r2 � r1, since � is only a partial order.

The properties of merge imply that for any r1, r2 ∈ R, r1 � merge(r1, r2)
holds. A process can test whether r1 � r2 holds by comparing r2 and
merge(r1, r2). In our algorithm in Section 4, we use this to compute the minimal
or maximal element in a set of comparable Blueprints.

Lattice Agreement Service GLA. As mentioned in the introduction, if reconfig-
urations propose different Blueprints we want to reconfigure to the merge of all
proposed Blueprints. We use an external generalized lattice agreement service
(GLA) for this. GLA offers an operation la-propose(r), that takes a Blueprint
r ∈ R as argument and returns another Blueprint r′, such that the following
properties hold. These properties imply that the merge of all input values is
among the returned values.

Validity. A returned value is the merge of inputs to la-propose operations.
Monotonicity. An operation la-propose(r) returns r′ such that r � r′.
Comparability. Any two values returned by la-propose are comparable with

respect to �.

GLA can be easily implemented using the algorithm specified in [9]. In gen-
eralized lattice agreement on a lattice (R,merge,�), processes can receive values
vi ∈ R from clients. The processes then learn a sequence of values w0 � w1 � ...
such that validity and comparability hold for learned values. Further, if a value
vi is received at a correct process, every correct process eventually learns a value
wj , such that vi � wj holds. The la-propose(r) operation can be easily imple-
mented by sending r to all processes running generalized lattice agreement and
returning some value r′ learned by any of these processes, for which r � r′ holds.
The complexity of the algorithm, as presented in [9] adapts to the number of
values actually proposed. Thus, if la-propose is invoked only r times during an
execution, every invocation will return after at most O(r) steps.

Some works using the consensus-based approach assume an external config-
uration manager that receives reconfiguration requests and chooses a sequence
of configurations (e.g. [3]). Different from these works our GLA can be imple-
mented in an asynchronous system and does not need consensus. However GLA
only returns comparable elements without sequence numbers. Thus, if r and r′

have been returned by two la-propose invocations to process p, and r � r′ holds,
it is impossible for p to determine if some other value r̂ for which r � r̂ � r′

holds, has been returned by another la-propose invocation to a different pro-
cess. We show in this paper that the weaker guarantees of GLA are still sufficient
to implement a reconfigurable atomic register.

Example. We now give a more detailed example of a merge function, that illus-
trates the use of policies, easy switching between different quorum systems, and
avoidance of unacceptable configurations, which are defined as configurations

160 L. Jehl et al.

Table 2. Rules for building a configuration, supported by our example

Rule Effect Rule Effect

addMan(p) mark p as mandatory setSize(n) specify desired size n for P
remMan(p) mark p as optional majority() use majority quorums

waro() use write-all-read-one quorums

with fewer than k processes. In this example, policies are determined by a set of
rules, shown in Table 2. One reconfiguration can change several of these rules.

We can use addMan(p) to mark a specific process p as mandatory element
of P. Similarly, we can specify a process p as optional using remMan(p). Once
marked as optional, a process can no longer be marked as mandatory. The reason
for this is explained in Section 3. Additionally, we can specify a desired size for
P using setSize(n). If the number of mandatory processes is fewer than the
desired size, the policy function adds additional processes from A. Finally we
can use majority() and waro() to specify whether the quorum system should
use majority or write-all-read-one (WARO) quorums. For WARO quorums we
simply set WQc = {Pc} and RQc = {{p}|p ∈ Pc}. For majority quorums
any subset containing at least a majority of the processes in Pc forms a write
quorum (WQ), while any subset containing at least half the processes is a read
quorum (RQ). When the size or quorum system is changed, using setSize(n), or
majority() and waro(), the policy info has to specify an epoch number that is
used in the combination function.

When combining policies, we differentiate between processes explicitly
marked as optional, and unmarked processes. Combining two policies, a pro-
cess explicitly marked as optional in one of the policies retains this marking.
Processes marked as mandatory in one of the policies and not explicitly marked
as optional remain mandatory. When two policies include different setSize rules
or specify different quorum systems we adopt the size and quorum system from
the policy with the higher epoch number. If epoch numbers are equal, we choose
the larger size and majority quorums, if present, since these choices provide
higher fault tolerance.

Using the rules from this example, |P| ≥ k holds as long as setSize(n) with
n < k is invoked and there are at least k processes available.

3 Problem: Atomic Storage Using Smart Merge

In this section we specify our reconfigurable multi-reader multi-writer atomic
register. We assume a set of possible register values V, and a lattice of Blueprints
(R,�,merge) with minimal element rI . We provide three operations, read,
write and reconf . A read() operation returns either a value v ∈ V or ⊥ /∈ V.
A write(v) operation takes an input v ∈ V.

We require that read and write operations are linearizable [10], and that
in a sequential execution, every read returns the value of the last write, or ⊥
if no write occurred before the read. This is the standard safety property of

SmartMerge: A New Approach to Reconfiguration for Atomic Storage 161

atomic registers. The liveness of read and write depends on the reconfigurations
invoked. A reconfiguration changes which processes may fail, but also which
processes should invoke operations. We therefore discuss the reconf operation,
before presenting a common liveness property for all operations.

A reconf(r) operation proposes a Blueprint r ∈ R, and returns a value r′ ∈ R
that determines the service configuration of the register. We say that a Blueprint
r is chosen before time t in an execution, if r was returned by a reconf operation
before t in that execution. We say that rI is chosen by an implicit reconf oper-
ation, at the beginning of any execution. The following safety properties govern
which values may be chosen. These properties and other concepts introduced in
this section are defined in the context of a single execution:

Validity. A chosen value r′ is the merge of input values to reconf operations.
Monotonicity. If r′ is chosen by reconf(r), then r � r′ holds.
Comparability. Any two chosen values are comparable, with respect to �.
Stability. If r was chosen before the invocation of reconf, which returns r′, then

r � r′ holds.

Validity, monotonicity and comparability are standard requirements for values
returned from a lattice (e.g. in lattice agreement [9], [11]). However, to our knowl-
edge we are the first to require these properties in the context of reconfiguration.
Validity ensures that no arbitrary value is chosen. Monotonicity implies that r′

is the merge of r with another Blueprint, e.g. r′ = merge(r, r′). This implies that
rules introduced in r are also applied in r′. For example, a process mandatory
in r will also be mandatory in r′, unless it was explicitly removed by another
reconf operation.

Our goal is for our service to eventually use a single service configuration.
This can be accomplished since comparability implies that at any time t, there
exists a Blueprint among those chosen before t, that is maximal with respect to
�. We call this the current Blueprint at time t, and the service configuration,
determined by this Blueprint is called the current configuration.

To change the current Blueprint, a reconf operation has to choose a
Blueprint that is a greater lattice element than all previously chosen Blueprints.
Thus the service can only replace r1 with r2 if r1 � r2 holds. It is therefore not
possible to add a process to A after it has been removed, since it will be listed
in Arm. Similarly for our example above, adding addMan(p) after remMan(p)
will not result in any changes. In practice however, a process can be re-added
with a different identifier.

Stability allows us to use the reconf operation to read the current Blueprint.
In our example in Section 2, this can be used to determine the current epoch
number. Stability also implies that a new Blueprint will always be merged with
a previously chosen Blueprint. Thus, the input to a reconf operation does not
need to specify all desired rules and available processes. It is enough to include
all new rules and processes relative to some previously chosen Blueprint.

We now specify which processes need to be correct to guarantee liveness.
We say that a process is correct at time t, if it did not fail before t. A service

162 L. Jehl et al.

configuration is available at time t, if there exists a read and write quorum of this
service configuration, such that all processes in these quorums are correct at t. We
require that the current configuration is available. To allow state transfer during
a reconfiguration, we also require that the service configurations of any new
Blueprints are available. This is a common requirement for reconfigurations [3].
For SmartMerge, we define that r is a candidate Blueprint at time t, if it is a
possible return value for some outstanding reconf operation at time t, and it is
greater than the current Blueprint (cur � r). A service configuration determined
by a candidate Blueprint, is called a candidate configuration.

We only require liveness for operations invoked by a process currently running
the register. These processes are called active: A process p is active if it is
correct at all times and after some time t, p ∈ Pcur always hold for the current
configuration cur. This definition is similar to [4]. We could also include a larger
set of clients, which can invoke operations, similar to [3] or [12]. This adds no
significant challenges to the problem and we omit it due to space constraints.

The following property summarizes under which conditions an operation is
required to return:

Liveness. Suppose that only finitely many reconf operations are invoked during
an execution, and at any time the current and all candidate configurations
are available. Then a read, write or reconf operation, invoked by an active
process will return.

It was established in [13] that even a regular register is impossible to implement,
if the configuration changes infinitely often. Thus, we assume that only finitely
many reconfigurations are invoked.

Once cur
� r holds for a Blueprint r and the current Blueprint cur, then r
can no longer become the new current Blueprint. Thus r can be discarded. We
say that r is outdated. According to the definition of the current Blueprint, r is
outdated, when some reconf operation returned r′, such that r′
� r holds. A
process can easily test the condition r′
� r by computing merge(r′, r)
= r.

According to liveness, a process p can stop once it can no longer become
part of the current configuration. In our example, this is the case once p ∈ Arm

holds for the current Blueprint.
To our knowledge we are the first to propose a scheme that determines which

Blueprints are outdated and which processes can stop, based on return values of
reconfigurations. RAMBO [3] uses a garbage collection mechanism to find out-
dated configurations. Thus it potentially takes longer to detect outdated config-
urations. Furthermore, it is not possible to determine which configurations are
outdated, based on return values of reconfiguration operations. The specification
of DynaStore [4] does not use configurations, thus no outdated configurations
or Blueprints are defined. Instead, a process can stop as soon as its removal is
proposed. To guarantee liveness DynaStore has to restrict the number of con-
current removals. This poses a significant restriction on reconfigurations, e.g. it
disallows concurrent replacement of all processes with new ones.

SmartMerge: A New Approach to Reconfiguration for Atomic Storage 163

4 Algorithm: Atomic Storage Using Smart Merge

We now present our implementation of a reconfigurable atomic register. The
implementation consists of a support for reconf operations (Algorithm 2) and
two functions get and set (Algorithm 3) that access the state of the register.
Algorithm 2 and Algorithm 3 internally use a configuration object to contact
the processes and access the state stored in a service configuration. We present
the implementation of a configuration object in Algorithm 1. The set and get
functions mask concurrent reconfigurations, so that we can use them to imple-
ment regular or atomic registers, using standard algorithms designed for a single
configuration (e.g. [5], [14]). For completeness, we show an implementation of
such atomic reads and writes in Algorithm 4.

The highlights and new techniques of our implementation include the use of
the lattice agreement abstraction in Algorithm 2 and handling of the returned
values. It makes the algorithm significantly more efficient, since the use of gen-
eralized lattice agreement reduces the number of configurations that have to
be processed. Furthermore, we implement set and get without relying on a
sequence of chosen configurations, using only the weaker guarantees provided by
GLA. Finally, in our implementation, the removal of outdated Blueprints and
their configuration objects is gracefully and efficiently integrated with concurrent
operations.

Our reconfigurable register relies on a configuration object C (Algorithm 1),
which includes the service configuration c, the register state S, and a set next ⊂
R. A register state S ∈ V ×T is a pair, consisting of a register value v ∈ V ∪{⊥}
and a timestamp ts = (n, id) ∈ T . A timestamp consists of a sequence number
n ∈ N and a process identifier id. Timestamps are ordered lexicographically.
next holds a set of Blueprints whose purpose we explain below.

The configuration object C also abstracts communication between the pro-
cesses in Pc through a set of regular registers. For every process p ∈ Pc, C
contains registers p.S and p.next with the state of p’s local variables. Only pi

can write to pi.S and pi.next, but they can be read by all processes in Pc. To
read the register state of C, a process invokes C.readS(), which reads all registers
p.S : p ∈ Pc and returns the state with the highest timestamp. To read the set
of next Blueprints, a process reads all registers p.next and returns the union
of these values. Finally, we use reliable broadcast (rb), to notify members of a
new configuration when it becomes the current configuration. If some process
completes C.rb.broadcast(m), and a quorum of processes in Pc do not fail, all
correct processes in Pc will eventually invoke C.rb.deliver(m).

Regular registers and reliable broadcast can be implemented using textbook
algorithms [15], designed for an asynchronous message passing system with a
known finite set of processes and a fixed quorum system. Our configuration object
encapsulates the processes and quorums of a static configuration, which forms
the system on which these algorithms operate. To use a different configuration,
we create a new object. If a configuration becomes outdated, its processes might
stop and the static algorithms that operate on this configuration might never
return. We therefore abort any method in an outdated configuration.

164 L. Jehl et al.

Algorithm 1. Configuration object C at process pi

1: State :
2: c : (Pc,RQc,WQc) {Service configuration}
3: S : (S.v, S.ts) ← s0 {Register state S ∈ V × T , s0 = (⊥,pi.id)}
4: next ← ∅ {Next Blueprints, next ⊂ R}
5: Communication Abstractions:
6: Regular SWMR registers
7: for each p ∈ Pc : p.S : (S.v, S.ts) {storing S ∈ V × T , initially s0}
8: for each p ∈ Pc : p.next {storing next ⊂ R, initially ∅}
9: rb {Reliable broadcast}

10: readS()
11: for p ∈ Pc

12: sp ← p.S.read()
13: t ← max{sp.ts|p ∈ Pc}
14: return sp: s.t. p ∈ Pc ∧ sp.ts = t

15: writeNext(target) {invoked by pi}
16: next ← next ∪ {target}
17: pi.next.write(next)

18: readNext()
19: for p ∈ Pc do
20: Cp ← p.next.read()
21: return

⋃{Cp|p ∈ Pc}
22: writeS(s) {invoked by pi}
23: if s.ts > S.ts then
24: pi.S.write(s)
25: S ← s

In our algorithm, we use the la-propose primitive specified in Section 2. We
say that a value returned by la-propose is learned. Every process maintains a
set L, that contains the current and some candidate Blueprints (Algorithm 2).
All elements in L were learned from la-propose. Comparability for la-propose
implies that L is totally ordered by �. For every Blueprint r ∈ L, we also store
a configuration object C[r] determined by r. C[r] is created or deleted, when
r is added or removed from L. C[r] can also be created, when it is accessed
remotely though its communication abstractions. However, accesses to objects,
that belong to outdated Blueprints are ignored.

We now discuss the reconf operation shown in Algorithm 2. The operation
starts by passing the Blueprint rr to la-propose. We add the value learned from
la-propose to L. Since L is totally ordered by �, we can choose the maximum
in L, as target blueprint for our reconfiguration. To ensure that other processes
know that target was learned, we write target to all configurations that were
created using elements of L (Line 11). We also read the register state in all these
configurations to collect an up-to-date state (Line 12). On Line 14 we invoke
C[fr].readNext(), to find other learned Blueprints and add them to L. Since we
assign elements from L to fr in order (Line 16), and C[fr].readNext() only returns
Blueprints larger than fr, these new Blueprints will be processed later.

Validity and comparability already hold for target on Line 6. To ensure sta-
bility, we replace target with a larger learned value on Line 8, if possible. After
processing all elements from L, we transfer the register state with the highest
timestamp, that was read, to C[target] (Line 18).

Before returning, and thus choosing target, we broadcast a 〈Chosen, target〉
message to all processes in C[target].Pc using the reliable broadcast (Line 19).

SmartMerge: A New Approach to Reconfiguration for Atomic Storage 165

The processing of a 〈Chosen, target〉 message is shown in Algorithm 5. We
ignore a Chosen message for a Blueprint smaller than cur. If 〈Chosen, target〉
was sent, some process completed state transfer to target. We can therefore
remove all elements smaller than target from L. Finally, if target was returned
by a reconf operation, smaller Blueprints r � target are outdated, according
to our definition in Section 3. Thus C[r] might no longer be available. In this
case, it may become impossible to read from or write to the registers in C[r].
We therefore abort all current and future methods on C[r]. On abort, the write
methods writeNext, writeS and rb.broadcast simply return, while readNext and
readS return the default values (∅ and s0).

We next present our set and get functions used to read and write the register
state (value, timestamp) from the current configuration. They are shown in
Algorithm 3. set writes a register state to all configuration objects C[r] that were
created using r ∈ L, while get reads the register state in all these configurations,
and returns the one with the highest timestamp. Note that when using writeS(s),
the register state is only overwritten if its timestamp is smaller than s.ts. set
and get also invoke readNext to add new learned values to L.

Algorithm 4 shows a possible implementation of atomic reads and writes
using set and get. Note that on Line 7, we create a unique timestamp by increas-
ing the sequence number returned by get, and adding the writer’s identifier pi.id.

Discussion. We say that a Blueprint r is used in an operation if the operation
invokes methods on C[r]. To analyze the overhead concurrent reconf operations
impose on read and write operations, we first establish the maximum number
of Blueprints and configuration objects used in one operation. An operation only
uses Blueprints from L, which only holds the initial element rI and values learned
from GLA (Algorithm 2, Lines 6, 7). In an execution with r reconf operations,
at most r different values are learned. Thus all operations use at most r + 1
different Blueprints.

In DynaStore [4], the only other reconfigurable atomic register using a purely
asynchronous system, a single operation may have to contact processes in many
different configurations. Reconfigurations in DynaStore do not invoke lattice
agreement. Instead a configuration uses a weak snapshot object to store the set
of next configurations next. Without lattice agreement, non-comparable values
can be written to next. Therefore a process in DynaStore adopts the merge of
all configurations, returned by readNext as new target configuration. If three
reconfigurations, with target configurations cx, cy and cz are started concur-
rently, they can all be written to rI .next. A concurrent read operation might
not only have to contact cx, merge(cx, cy) and merge(cx, cy, cz), but also cy and
cz. Additionally, read operations in DynaStore also write to next. Thus, a read
operation concurrent with the three reconfigurations above might read {cx, cz}
from rI .next, and thus write cxz = merge(cx, cz) to cx.next. This creates another
configuration that other read operations have to contact. If 2r−1−r read opera-
tions and r reconfigurations are invoked concurrently, each by a different process,
one of these reads might have to contact as many as 2r−1 + r configurations.

166 L. Jehl et al.

We now analyze the number of communication steps for read and write
operations. Note that, the different registers that read in a readS or readNext
method, can be read concurrently (see Algorithm 1). It is even possible to
perform the methods C[gt].readS and C[gt].readNext on Lines 4 and 6 of

Algorithm 2. Register Reconfiguration
1: State :
2: L ← {rI} {Ordered set of learned, not outdated Blueprints}
3: ∀r ∈ L : C[r] = CO(c : r.policy.srvConf(r.A)) {Conf. object, determined by r}
4: cur ← rI {Current Blueprint}
5: reconf(r)
6: target ← la-propose(r) {See Section 2}
7: L ← L ∪ {target}
8: fr ← cur ; s ← s0
9: repeat

10: target ← max(L) {Maximum wrt.
; target for reconfiguration}
11: C[fr].writeNext(target) {Record: target was learned}
12: sr ← C[fr].readS()
13: if s.ts < sr.ts then s ← sr {Remember most up-to-date register state}
14: L ← L ∪ C[fr].readNext() {Check for learned Blueprints}
15: if ∃r ∈ L : fr
 r then
16: fr ← min({r ∈ L|fr
 r}) {Minimum wrt.
}
17: else break
18: C[target].writeS(s) {Transfer state to target}
19: C[target].rb.broadcast(〈Chosen, target〉) {Inform about new configuration}
20: return target

Algorithm 3. Get and Set Register State
1: get()
2: gt ← cur ; s ← s0
3: repeat
4: sr ← C[gt].readS()
5: if s.ts < sr.ts then s ← sr
6: L ← L ∪ C[gt].readNext()
7: if ∃r ∈ L : gt
 r then
8: gt ← min({r ∈ L|gt � r})
9: else return s

10: set(s) {s a (timestamp,value) pair}
11: st ← cur
12: repeat
13: C[st].writeS(s)
14: L ← L ∪ C[st].readNext()
15: if ∃r ∈ L : st
 r then
16: st ← min({r ∈ L|st � r})
17: else return

Algorithm 4. Atomic read/write at pi

1: read()
2: s ← get()
3: set(s)
4: return

s.v

5: write(v)
6: (v′, t′) ← get()
7: t ← (t′.n+1,pi.id)
8: s ← (v, t)
9: set(s)

Algorithm 5. Processing 〈Chosen〉
1: on C.rb.deliver(〈Chosen, target〉)

with cur � target
2: L ← L ∪ {target}
3: cur ← target
4: for r ∈ L : r � target do
5: abort any method on C[r]
6: L ← L\{r}

SmartMerge: A New Approach to Reconfiguration for Atomic Storage 167

Algorithm 3 concurrently, reading p.S and p.next at the same time. Thus a get
function only requires one communication step per used Blueprint. Similarly, we
can perform the methods C[st].writeS and C[st].readNext invoked in the set
function concurrently. Since both set and get use at most r + 1 Blueprints, a
read or write operation requires at most 2r + 2 communication steps. This
bound is the same as for the consensus-based approach in RAMBO [3].

5 Related Work

Previous work on reconfiguration of registers mainly use either the consensus-
based approach or DirectCombine, as introduced in Section 1. Early work [16,
17] assumed reconfigurations were issued by a single process. Thus avoiding
the problem of concurrent reconfigurations, but failure of this process prevents
further reconfigurations.

Several works use the consensus-based approach to handle concurrent recon-
figurations. They either implement consensus [18,19], or assume an external,
replicated configuration manager [3], [20]. All these systems establish a sequence
of configurations. Since consensus is impossible in the face of asynchrony [21],
these systems require additional assumptions, such as a failure detector or even-
tual synchrony. To guarantee liveness they assume, as we do, that an old config-
uration remains available until a newer configuration has started.

In [22] a group communication system is used to implement reconfiguration
of an atomic register. This approach is similar to the consensus-based approach.

To our knowledge, DirectCombine has only been used in a few systems
[4], [12,13]. These systems do not establish a sequence of configurations. Instead,
processes can be added to or removed from the service at any time. To guaran-
tee liveness they assume that only a bounded fraction of processes is removed
concurrently [4], [12], or during a specific time interval [13]. Different from our
work, [13] assumes an infinite sequence of reconfigurations. They also show this
is impossible in an asynchronous system.

A replicated state machine (RSM) [23] is a general approach to replicate
a service. An RSM can be used to implement atomic storage, where read and
write operations are chosen using consensus. Consensus-based reconfiguration of
an RSM was proposed in both [23,24] and has also been deployed in production
systems [25]. In our previous work, we showed that an RSM can be reconfigured
without relying on consensus [26]. In retrospect this work can be viewed as an
application of SmartMerge. It uses a trivial combination function, that always
chooses the configuration with the highest timestamp.

6 Conclusion

We presented an atomic register that uses a novel approach to combine concur-
rently issued reconfigurations in an asynchronous system. Our approach allows
reconfigurations to specify a policy, that determines how to form a service con-
figuration from the available processes. Different policies are aptly combined by
a merge function.

168 L. Jehl et al.

References

1. Reiss, C., Tumanov, A., Ganger, G.R., Katz, R.H., Kozuch, M.A.: Heterogeneity
and dynamicity of clouds at scale: Google trace analysis. In: SOCC (2012)

2. Ardekani, M.S., Terry, D.B.: A self-configurable geo-replicated cloud storage sys-
tem. In: OSDI (2014)

3. Gilbert, S., Lynch, N.A., Shvartsman, A.A.: Rambo: a robust, reconfigurable
atomic memory service for dynamic networks. Distr. Comp. 23(4) (2010)

4. Aguilera, M.K., Keidar, I., Malkhi, D., Shraer, A.: Dynamic atomic storage without
consensus. J. ACM 58(2), 7 (2011)

5. Attiya, H., Bar-Noy, A., Dolev, D.: Sharing memory robustly in message-passing
systems. J. ACM 42(1), 124–142 (1995)

6. Leners, J.B., Wu, H., Hung, W.L., Aguilera, M.K., Walfish, M.: Detecting failures
in distributed systems with the falcon spy network. In: SOSP (2011)

7. Leners, J.B., Gupta, T., Aguilera, M.K., Walfish, M.: Improving availability in
distributed systems with failure informers. In: OSDI (2013)

8. Vickers, S.: Topology Via Logic. Cambridge University Press (1989)
9. Faleiro, J.M., Rajamani, S., Rajan, K., Ramalingam, G., Vaswani, K.: Generalized

lattice agreement. In: PODC (2012)
10. Herlihy, M.P., Wing, J.M.: Linearizability: A correctness condition for concurrent

objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)
11. Attiya, H., Herlihy, M., Rachman, O.: Atomic snapshots using lattice agreement.

Distrib. Comput. 8(3), 121–132 (1995)
12. Shraer, A., Martin, J.P., Malkhi, D., Keidar, I.: Data-centric reconfiguration with

network-attached disks. In: LADIS (2010)
13. Baldoni, R., Bonomi, S., Kermarrec, A.M., Raynal, M.: Implementing a register in

a dynamic distributed system. In: ICDCS (2009)
14. Shao, C., Pierce, E., Welch, J.L.: Multi-writer consistency conditions for shared

memory objects. In: Fich, F.E. (ed.) DISC 2003. LNCS, vol. 2848, pp. 106–120.
Springer, Heidelberg (2003)

15. Cachin, C., Guerraoui, R., Rodrigues, L.: Introduction to Reliable and Secure
Distributed Programming, 2nd edn. Springer Publishing Company (2011)

16. Lynch, N.A., Shvartsman, A.A.: Robust emulation of shared memory using
dynamic quorum-acknowledged broadcasts. In: FTCS (1997)

17. Englert, B., Shvartsman, A.A.: Graceful quorum reconfiguration in a robust emu-
lation of shared memory. In: ICDCS (2000)

18. Rodrigues, R., Liskov, B., Chen, K., Liskov, M., Schultz, D.: Automatic reconfig-
uration for large-scale reliable storage systems. IEEE Trans. Dependable Secur.
Comput. 9(2), 145–158 (2012)

19. Chockler, G., Gilbert, S., Gramoli, V., Musial, P.M., Shvartsman, A.A.: Recon-
figurable distributed storage for dynamic networks. Journal of Parallel and Dis-
tributed Computing 69(1), 100–116 (2009)

20. Martin, J.P., Alvisi, L.: A framework for dynamic byzantine storage. In: DSN
(2004)

21. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. J. ACM 32(2), 374–382 (1985)

22. De Prisco, R., Fekete, A., Lynch, N.A., Shvartsman, A.: A dynamic primary con-
figuration group communication service. In: Jayanti, P. (ed.) DISC 1999. LNCS,
vol. 1693, pp. 64–78. Springer, Heidelberg (1999)

SmartMerge: A New Approach to Reconfiguration for Atomic Storage 169

23. Schneider, F.B.: Implementing fault-tolerant services using the state machine app-
roach: A tutorial. ACM Comput. Surv. 22(4), 299–319 (1990)

24. Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. 16(2), 133–169
(1998)

25. Shraer, A., Reed, B., Malkhi, D., Junqueira, F.: Dynamic reconfiguration of
primary/backup clusters. In: USENIX ATC (2012)

26. Jehl, L., Meling, H.: Asynchronous reconfiguration for paxos state achines. In:
ICDCN (2014)

Towards Automatic Lock Removal
for Scalable Synchronization

Maya Arbel1,2, Guy Golan-Gueta1, Eshcar Hillel1(B), and Idit Keidar1,2

1 Yahoo Labs, Haifa, Israel
mayaarl@cs.technion.ac.il, {ggolan,eshcar}@yahoo-inc.com,

idish@ee.technion.ac.il
2 The Technion, Haifa, Israel

Abstract. We present a code transformation for concurrent data struc-
tures, which increases their scalability without sacrificing correctness.
Our transformation takes lock-based code and replaces some of the lock-
ing steps therein with optimistic synchronization in order to reduce con-
tention. The main idea is to have each operation perform an optimistic
traversal of the data structure as long as no shared memory locations are
updated, and then proceed with pessimistic code. The transformed code
inherits essential properties of the original one, including linearizability,
serializability, and deadlock freedom.

Our work complements existing pessimistic transformations that make
sequential code thread-safe by adding locks. In essence, we provide a
way to optimize such transformations by reducing synchronization bot-
tlenecks (for example, locking the root of a tree). The resulting code
scales well and significantly outperforms pessimistic approaches. We fur-
ther compare our synthesized code to state-of-the-art data structures
implemented by experts. We find that its performance is comparable to
that achieved by the custom-tailored implementations. Our work thus
shows the promise that automated approaches bear for overcoming the
difficulty involved in manually hand-crafting concurrent data structures.

1 Introduction

The steady increase in the number of cores in today’s computers is driving
software developers to allow more and more parallelism. An important focal
point for such efforts is scaling the concurrency of shared data structures, which
are often a principal friction point among threads. Many recent works have been
dedicated to developing scalable concurrent data structures (e.g., [5,8,10–12,15,
20,22,25,32,38,40]), some of which are widely used in real-world systems [44].

Each of these projects generally focuses on a single data structure (e.g., a
binary search tree [11] or a queue [38]) and manually optimizes its implementa-
tion. These data structures are developed by concurrency experts, typically PhDs
or PhD candidates, and proving their correctness is painstaking; for example,

Maya Arbel is supported in part by the Technion Hasso Platner Institute (HPI)
Research School.

c© Springer-Verlag Berlin Heidelberg 2015
Y. Moses (Ed.): DISC 2015, LNCS 9363, pp. 170–184, 2015.
DOI: 10.1007/978-3-662-48653-5 12

Towards Automatic Lock Removal for Scalable Synchronization 171

the proofs of [10,22] are 31 and 20 pages long, respectively. The rationale behind
dedicating so much effort to one data structure is that it is generic and can be
used by many applications. Nevertheless, systems often use data structures in
unique ways that necessitate changing or extending their code (e.g., [2,3,43,46]),
in which cases custom-tailored implementations may not meet the requirements.
Here, we propose an approach to facilitate this labor-intensive process, making
scalable synchronization more readily available.

Specifically, we present in Section 2 an algorithm for a source-to-source code
transformation that takes a lock-based concurrent data structure implementa-
tion as its input and generates more scalable code for the same data structure
via judicious use of optimism. Our approach combines optimism and pessimism
in a practical way. Like some previous hand-crafted solutions [31], we exploit
the common access pattern in data structure operations, (e.g., tree insertion or
deletion), which typically begin by traversing the data structure (to the inser-
tion or deletion point), and then perform local updates at that location. Our
solution replaces locks in the initial read-only traversal with optimistic synchro-
nization, and performs updates using the original lock-based code. It may thus
be seen as a form of software lock elision for read-only prefixes of operations
(transactions). Combining optimism and pessimism allows us to achieve “the
best of both worlds” – while the optimistic traversal increases concurrency and
eliminates bottlenecks, the use of pessimistic updates saves the overhead associ-
ated with speculative or deferred shared memory updates, (as occurs in software
transactional memory (STM) [30]).

In the full version of the paper [9] we show that our transformation pre-
serves the external behavior (e.g., linearizability, serializability, and deadlock-
freedom) of the original lock-based code; Moreover, our transformation preserves
disjoint access parallelism [34], (the property that threads that access disjoint
data objects do not contend on low level shared memory locations), as it refrains
from introducing a shared global clock (as some STM systems do [45]) or other
sources of contention.

One important use case for our transformation is to apply it in conjunc-
tion with automatic lock-based parallelization mechanisms [26,36]. The latter
instrument sequential code and add fine-grained locks that ensure its safety in
concurrent executions. Our evaluation shows that, by themselves, solutions of
this sort may scale poorly. This is due to synchronization bottlenecks, e.g., the
root of a tree, which is locked by all operations. By subsequently applying our
transformation, one can optimize the lock-based code they produce, yielding an
end-to-end approach to scalable parallelization of sequential code.

In Section 3 we evaluate our transformation by generating an unbalanced
search tree and a treap (randomized balanced search tree). We synthesize these
data structures from sequential implementations by applying first the algorithm
of [26] (domination locking) to create lock-based code, and then our transfor-
mation. We evaluate the scalability of the resulting code in a range of workload
scenarios on a 32-core machine. In all cases, the lock-based implementations
do not scale – their throughput remains flat as the number of running threads

172 M. Arbel et al.

increases. In contrast, the code generated by our transformation is scalable, and
its throughput continues to grow with the number of threads. We further use
the Synchrobench framework [27] to compare our synthesized code to data struc-
tures that were recently hand-crafted by experts in the field [1,11,15,20,22], as
well as a state-of-the-art STM [45]. Our results show that the implementations
we have generated perform comparably to custom-tailored solutions.

The advantage of our approach is in its generic nature, which allows us to
parallelize existing code without requiring experts to perform manual optimiza-
tions. Other generic approaches we are familiar with are domination locking [26]
and STM [45], both of which perform worse than our transformed code in our
experiments. Further discussion of related work appears in Section 4.

To conclude, this paper demonstrates that generic synchronization, based on
a careful combination of optimism and pessimism, is a promising approach for
bringing legacy code to emerging computer architectures. While this paper illus-
trates the method for tree data structures, we believe that the general direction
is more broadly applicable, and maybe used with a variety of locking schemes,
such as two phase locking. Section 5 concludes the paper and touches on some
directions for future work.

2 Transformation

We present an algorithm for a source-to-source transformation, whose goal is to
optimize the code of a given data structure implemented using lock-based con-
currency control. In Section 2.1, we detail our assumptions about the given code
and the locks it uses. Section 2.2 overviews our general approach to combining
optimism and pessimism, while Section 2.3 details how the code is instrumented.

2.1 Lock-Based Data Structures

A data structure defines a set of operations that may be invoked by clients of
the data structure, potentially concurrently. Operations have parameters and
local (private) variables. The operations interact via shared memory variables,
which are also called shared objects. Each shared object supports atomic read
(load) and write (store) instructions. More formal definitions appear in the full
version [9].

In addition, each shared object is associated with a lock, which can be unique
to the object or common to several (or even all) objects. The object supports
atomic lock and unlock instructions. Locks are exclusive (i.e., a lock can be held
by at most one thread at a time), and blocking. We assume that in the given
code every (read or write) access by an operation to a shared object is performed
when the executing thread holds the lock associated with that object.

The given code only uses the lock and unlock instructions, while the trans-
formed code can apply in addition atomic non-blocking tryLock and isLocked-
ByAnother instructions: tryLock returns false if the lock is currently held by
another thread, otherwise it acquires the lock and returns true; isLockedByAn-
other returns true if and only if the lock is currently held by another thread.

Towards Automatic Lock Removal for Scalable Synchronization 173

2.2 Combining Optimism and Pessimism

Optimistic concurrency control is a form of synchronization, which accesses
shared variables without using locks in the hope that they will not be modified
by others before the end of the operation (or more generally, the transaction).
To verify the latter, optimistic concurrency control relies on validation, which is
typically implemented using version numbers. If validation fails, the operation
restarts. Optimistic execution of update operations requires either performing
roll-back (reverting variables to their old values) upon validation failure, or defer-
ring writes to commit time; both approaches induce significant overhead [13]. We
therefore refrain from speculative shared memory updates.

The main idea behind our approach is to judiciously use optimistic synchro-
nization only as long as an operation does not update shared state; we use a
standard approach based on version numbers to allow validation of optimistic
reads. Once an operation writes to shared memory, we revert to pessimistic
(lock-based) synchronization. In other words, we rely on validation in order to
render redundant locks that would have been acquired and freed before the first
update. This scheme is particularly suitable for data structures, since the com-
mon behavior of their operations is to first traverse the data structure, and then
perform modifications. Since the read only prefix has no side effects we can sand-
box it by catching exceptions and infinite loops, and defer validation to the end
of the traversal.

Conceptually, our approach thus divides an operation into three phases: an
optimistic read-only phase, a pessimistic update phase and a validation phase
that conjoins them. The read-only phase traverses the data structure without
taking any locks, while maintaining in thread-local variables sufficient informa-
tion to later ensure the correctness of the traversal. The read phase is invisible
to other threads, as it updates no shared variables. The update phase uses the
original pessimistic (lock-based) synchronization, with the addition of updating
version numbers. The validation phase bridges between the optimistic and pes-
simistic ones. It first locks the objects for which a lock would have been held
at this point by the original locking code, and then validates the correctness of
the read-only phase. This allows the update phase to run as if an execution of
the original pessimistic synchronization took place. If the validation fails, the
operation restarts. In order to avoid livelock, we set a threshold on the number
of restarts. If the threshold is exceeded, the code falls back on pessimistic exe-
cution. We show below that it is safe to do so, since our semi-optimistic code is
compatible with the fully pessimistic one.

Phase Transition. In many cases, the transition from the read-only phase to the
update phase occurs at a statically-defined code location. For example, many
data structure operations begin with a read-only traversal to locate the key of
interest, and when it is found, proceed to execute code that modifies the data
structure. This is the case in all the examples we consider in Section 3 below.

More generally, it is possible to switch from the optimistic read-only execution
(via the validation phase) to pessimistic execution at any point before the first

174 M. Arbel et al.

update. Moreover, the phase transition point can be determined dynamically at
run time.

One possible way to dynamically track the execution mode is using a flag
opt, initialized to true, indicating the optimistic phase. Every shared memory
update operation is then instrumented with code that checks opt, and if it is
true, executes the validation phase followed by setting opt to false and continuing
the execution from the same location.

2.3 Transforming the Code Phases

We now describe how we synthesize the code for each of the phases. We first
describe the regular three-phase flow, and then continue with describing the
exceptional cases.

Normal Flow. We illustrate the transformation for a simple code snippet that
adds a new element as the third node in a linked list. Each node is associated with
a lock. The original and transformed code are provided in Figure 1. The latter
uses the tracking and validation functions in Figures 2 and 3, resp. For clarity
of exposition, we present a statically instrumented version, without tracking the
phases using opt.

Our transformation instruments each lock with an additional field version.
We assume each object supports getVersion and incVersion instruction to read
and increment the version number of the lock associated with the object. We
invoke incVersion when holding the lock, and are therefore are not concerned
about contention. Note that each lock has its own version, i.e., version numbers
of different locks are independent of each other.

Read-Only Phase. In this phase the executing thread is invisible to other threads,
i.e., avoids contention on shared memory both in terms of writing and in terms of
locking. During this phase, our synchronization maintains two thread-local multi-
sets: lockedSet and readSet. The lockedSet tracks the objects that were supposed
to be locked by the original synchronization. The readSet tracks versions of all
objects read by the operation, in order to allow us to later validate that the
operation has observed a consistent view of shared memory.

At the beginning of the read-only phase, we insert code that initializes locked-
Set and readSet to be empty (see lines 2-3 of Figure 1b). Throughout the read-
only phase, (i.e., when opt is true with dynamic phase transitions), we replace
every lock and unlock instruction with the corresponding code in Table 1. A
lock instruction on object o is replaced with code that tracks the object and the
version of its lock in lockedSet and readSet (see Figure 2). An unlock instruction
on object o is replaced with code that removes o from lockedSet (see lines 2-13
of Figure 1b).

In Figure 2 (lines 5-6), we use an eager validation scheme1: If the object
already exists in readSet, we check that the current version of its lock is equal

1 Eager validation is not required for correctness.

Towards Automatic Lock Removal for Scalable Synchronization 175

1: FUNCTION addThird(List
list, Node new)
---------- � read-only phase

2:
3:
4: list.lock()
5: Node prev = list.head
6: prev.lock()
7: list.unlock()
8: Node succ = prev.next
9: succ.lock()
10: prev.unlock()
11: prev = succ
12: succ = succ.next
13: succ.lock()

14:
15:
16:
17:
18:
19:
20:
21:

---------- � update phase
22: prev.next = new
23: new.lock()
24: new.next = succ
25:
26: prev.unlock()
27:
28: new.unlock()
29:
30: succ.unlock()

(a) Code with original locking

1: FUNCTION addThird(List list,
Node new)
---------- � read-only phase

2: lockedSet.init()
3: readSet.init()
4: if !track(list) then goto 1
5: Node prev = list.head
6: if !track(prev) then goto 1
7: lockedSet.remove(list)
8: Node succ = prev.next
9: if !track(succ) then goto 1
10: lockedSet.remove(prev)
11: prev = succ
12: succ = succ.next
13: if !track(succ) then goto 1

---------- � validation phase
14: read fence
15: for all obj in lockedSet do
16: if !obj.tryLock() then
17: unlockAll()
18: goto 1
19: if !validateReadSet() then
20: unlockAll()
21: goto 1

---------- � update phase
22: prev.next = new
23: new.lock()
24: new.next = succ
25: prev.incVersion
26: prev.unlock()
27: new.incVersion
28: new.unlock()
29: succ.incVersion
30: succ.unlock()

(b) The code produced by our transformation

Fig. 1. Code transformation example. The synchronization code is in bold.

1: FUNCTION track(obj)
2: lockedSet.add(obj)
3: long ver = obj.getVersion()
4: readSet.add(〈obj,ver〉)
5: if 〈obj,v〉 ∈readSet and v!=ver then return false

6: if obj.isLockedByAnother() then return false

7: return true

Fig. 2. In read-only phase, locking is replaced by tracking locks and read objects’
versions.

176 M. Arbel et al.

1: FUNCTION validateReadSet()
2: for all 〈obj,ver〉 in readSet do
3: if obj.isLockedByAnother() then
4: return false � validation failed (locked object)

5: if obj.getVersion() != ver then
6: return false � validation failed (different version)

7: retrun true � validation succeed

Fig. 3. Read set validation: verify that objects are unlocked and their versions are
unchanged.

Table 1. Transformation for read-only phase: each locking instruction (left column)
is replaced with the corresponding code on the right; S denotes the beginning of the
operation.

Original code Transformed Code
x.lock() if !track(x) then goto S

x.unlock() lockedSet.remove(x)

to the version in readSet ; and if the versions are different the operation restarts
(line 5). Similarly, it is checked to be unlocked, and the operation restarts if it
is locked (line 6).

Although it only accesses thread-local data structures, lock tracking induces
a certain overhead due to the need to search a lock in the lockedSet in order
to unlock it. (In our experiments presented below, in large data structures, this
overhead slows operations down by up to 40%). We suggest some optimizations
to mitigate this cost. First, we observe that the lockedSet does not need to
be tracked in read-only operations, which a compiler can easily detect. We can
further avoid this overhead in update operations in certain cases by relying on the
structure of the transformed code. For example, if the lock-based code is created
from sequential code using domination locking [26], then at any given time in
the read phase, it holds locks on a well-defined set of objects – the ones currently
pointed by the operation’s local variables. When applying our transformation to
code generated by this scheme, we can optimize it to remove lock-tracking, and
instead populate the lockedSet with the appropriate locks immediately before
executing the validation phase.

Validation Phase. The code of the validation phase is invoked between the read-
only phase and the update phase (lines 14-21 of Figure 1b). It locks the objects
that are left in lockedSet and validates the objects in readSet. To avoid deadlocks,
the locks are acquired using a tryLock instruction. If any tryLock fails, the code
unlocks all previously acquired locks and restarts from the beginning (lines 15-18).

The function validateReadSet in Figure 3 verifies that the objects in the read
set have not been updated. The function checks that each object in the read
set is not locked by another thread, and that the current version of the lock

Towards Automatic Lock Removal for Scalable Synchronization 177

associated with the object matches the version saved in the readSet. This check
guarantees that the object was not locked from the time it was read until the
time it was validated. Since operations write only to locked objects, it follows
that the object was not changed. This readSet validation can be viewed as a
double collect [4] of all objects accessed by the read-only phase. The operation
is restarted if the validation fails (lines 19-21).

We assume that, following standard practice in lock implementations, the
function isLockedByAnother imposes a memory fence (barrier). This ensures
that the lock and version are read during track before the object’s value is read
optimistically during the read-only phase. To ensure that the second read of the
lock and version, during the validation phase, succeeds the optimistic read of
the object’s value, we precede the validation phase with a memory fence as well
(line 14). Note that it suffices to impose a read fence (sometimes called acquire or
load fence) prior to the validation as well as during isLockedByAnother, because
this part of the code does not include writes to shared memory.

Update Phase. In this phase our transformation preserves the original locking
while maintaining the versions of the objects, i.e., the version of an object o is
incremented every time o is unlocked. Here, (i.e., in case opt is false with dynamic
phase transitions), before each unlock instruction x.unlock() we insert the
code x.incVersion() . An example is shown in lines 22-30 of Figure 1b.

Exceptions from Regular Flow. The read phase does not validate past reads
during its executions (other than when re-reading the same variable). As a result,
it may observe an inconsistent state of shared memory, which may lead to infi-
nite loops or spurious exceptions (as explained, e.g., in [30]). We avoid such
infinite loops using a timeout. If the timeout expires before the read-only phase
completes, read set validation takes place (via the function validateReadSet). If
the validation fails, the operation is restarted. This is realized by inserting code
that examines the timeout in every loop iteration in the original code. Similarly,
we avoid spurious exceptions by catching all exceptions and performing valida-
tion. Here too, if the validation fails, the operation is restarted. Otherwise, the
exception is handled as in the original code.

Our sandboxing relies on properties of managed languages like Java or C#:

1. We can identify all instructions that may update shared memory and end
the read phase before they occur.

2. The ability to capture all exits from a block via the try-finally mechanism
ensures that we never exit the read phase without performing validation.

3. The code is not self-modifying and hence the tracking and validation code
is executed as intended.

4. The speculative execution does not alter the references to the thread-local
variables we introduce (readSet, lockedSet) since they are constant references
to well-typed objects.
Hence, our tracking and validation code executes correctly.

178 M. Arbel et al.

While recent work [17] has shown that differing validation to the end of a
transaction can be unsafe, this problem does not occur in our solution. The key
problem shown there is that access to the object on which the conflict is checked
(namely the lock) is deferred until after other unchecked shared accesses, which
could potentially be inconsistent and cause the lock not to be accessed. In our
case, on the other hand, all accesses to shared data are recorded for validation
purposes. If an object that should be accessed (like the lock in the lock elision
case) is not accessed because of earlier conflicts, these earlier conflicts will be
detected and the transaction will abort.

Note that, using our transformation, the shared state at the end of the val-
idation phase is identical to the state that would have been reached had the
code been executed pessimistically from the outset. Hence, the three-phase ver-
sion of the code is compatible with the instrumented pessimistic version. This
means that if the optimistic phase is unsuccessful for any reason, we can always
fall back on the pessimistic version. Moreover, we can switch from optimistic
to pessimistic synchronization at any point during the read phase. We use this
property in two ways. First, we avoid livelocks by limiting the number of restarts
due to conflicts: The validation phase tracks the number of restarts in a thread-
local variable. If this number exceeds a certain threshold, we perform the entire
operation optimistically.

Second, this property offers the optimistic implementation the liberty of fail-
ing spuriously, even in the absence of conflicts, because it can always fall back on
the safe pessimistic version of the code. One can take advantage of this liberty,
and implement the readSet using a constant size array. In case the array becomes
full, the optimistic version cannot proceed, but there is no need to start the oper-
ation anew. Instead, one can immediately perform the validation phase, which,
if successful, switches to a pessimistic modus operandi, after having acquired all
the needed locks.

3 Evaluation

We evaluate the performance of our approach on search trees supporting insert,
delete, and get operations. We compare the throughput of our approach to fully
pessimistic solutions applying fine-grain locking, solutions based on software
transactional memory, and hand-crafted state-of-the-art data structure imple-
mentations.

Methodology. We use the micro-benchmark suite Synchrobench [27], configured
as follows. Each experiment consists of 5 trials. A trial is a five second run
in which each thread continuously executes randomly chosen operations drawn
from the workload distribution, with keys selected uniformly at random from the
range [0, 2·106]. Each trial is preceded by initiating a new data structure with 106

keys and a warm-up of five seconds. Our graphs present the average throughput
over all trials. We consider three representative workloads distributions: a read-
only workload comprised of 100% lookup operations, a write-dominated workload

Towards Automatic Lock Removal for Scalable Synchronization 179

consisting of insert and delete operations (50% each), and a mixed workload with
50% lookups, 25% inserts, and 25% deletes.

Platform. All implementations are in Java. We ran the experiments on a ded-
icated machine with four Intel Xeon E5-4650 processors, each with 8 cores, for
a total of 32 threads (with hyper-threading disabled). We used Ubuntu 12.04.4
LTS and Java Runtime Environment (build 1.7.0 51-b13) using the 64-Bit Server
VM (build 24.51-b03, mixed mode).

Implementations. We start from textbook sequential implementations of an
unbalanced internal binary tree and a treap [7]. We next synthesize concurrent
lock-based code by (manually) applying the domination locking technique [26] to
the sequential data structures. The resulting algorithms are denoted Lock-Tree
and Lock-Treap. Then, we manually apply our lock-removal transformation to
the reference implementations by following the algorithm line-by-line (requiring
no understanding of the base code) to get our semi-optimistic versions of the
code, which we call LR-Tree and LR-Treap, respectively. Note that this solution
does not track the lockedSet for read-only operations and does not use eager
validation of version numbers. Finally, we apply the optimization described in
Section 2.3, which eliminates explicit tracking of the lockedSet in update oper-
ations, and instead locks all objects the thread holds a pointer to in the vali-
dation phase; this optimization is applicable since our parallel implementation
is synthesized using domination locking. The resulting algorithms are denoted
Opt-LR-Tree and Opt-LR-Treap.

For the competition, we parallelize the sequential implementations also using
Deuce [24], a Java implementation of TL2 [18]. The resulting algorithms are
denoted STM-Tree and STM-Treap. We further compare our implementations
to their hand-crafted state-of-the-art counterparts listed in Table 2.

Table 2. Hand-crafted state-of-the-art data structures. The code of LO-Tree was pro-
vided by the authors, all other implementations provided by Synchrobench.

Unbalanced Balanced

LO-Tree Locked-based [20] LO-AVL Lock-based relaxed AVL [20]
LF-Tree Lock-free [22] Snap-Tree Lock-based relaxed AVL [11]

CF-Tree Contention-friendly tree [15]
Skiplist Java lock-free skiplist

We also measured the performance of global lock-based implementations. In
all workloads, the results were identical or inferior to those achieved by pes-
simistic fine-grain locking. We hence omitted these results to avoid obscuring
the presentation.

Results. Figures 4 and 5 show the throughput of unbalanced and balanced data
structures, resp. We see that our semi-optimistic solution, both optimized and

180 M. Arbel et al.

unoptimized, is far superior to the fully-pessimistic automated approach; it suc-
cessfully overcomes the bottlenecks associated with lock contention in Lock-Tree
and Lock-Treap.

Our approach also outperforms STM by 1.5x to 2.5x. The additional overhead
of STM most likely stems from two reasons: deferring writes to commit time,
and using a global clock to ensure a consistent view of the read set. The latter
is done in order to satisfy opacity [29], which we avoid by “sandboxing”. In our
experiments, the code never incurred a spurious exception or timeout due to
inconsistent reads, and so the sandboxing was not associated with a performance
penalty.

Our solution comes close to custom-tailored implementations, and the opti-
mized version is even superior to some of them. The throughput of our read-only
operations is up to 1.5x lower than that achieved by the best-in-class. By profil-
ing the code, we learned that the bulk of this overhead stems from the need to
track all read objects, which is inherent to our transformation. This is in contrast
with the hand-crafted implementations, which have small overhead on reads that
complete without any retries. In workloads that include update operations, our
solution is up to 2.2x slower. This stems from tracking read and locked sets and
not from retries as the percentage of retries is less than 1%.

1 4 8 16 32

0

5

10

m
il
li
o
n
o
p
s/
se
c

write-dominated

1 4 8 16 32

0

5

10

mixed workload

1 4 8 16 32

0

5

10

15

read-only

LR-Tree LO-Tree LF-Tree

STM-Tree Lock-Tree Opt-LR-Tree

Fig. 4. Throughput of unbalanced data structures.

4 Related Work

Concurrent Data Structures. Many sophisticated concurrent data structures
(e.g., [5,8,10–12,15,20,22,25,32,38,40]) were developed and used in concurrent
software systems [44]. Implementing efficient synchronization for such data struc-
tures is considered a challenging and error-prone task [19,35,44]. As a result,
concurrent data structures are manually implemented by concurrency experts.
This paper shows that (in some cases) an automatic algorithm can produce
synchronization that is comparable to synchronization implemented by experts.

Towards Automatic Lock Removal for Scalable Synchronization 181

1 4 8 16 32

0

5

10

15

m
il
li
o
n
o
p
s/
se
c

write-dominated

1 4 8 16 32

0

5

10

15

mixed workload

1 4 8 16 32

0

10

20

read-only

LR-Treap LO-AVL Snap-Tree CF-Tree

Java-Skiplist STM-Treap Lock-Treap Opt-LR-Treap

Fig. 5. Throughput of balanced data structures.

Lock Inference Algorithms. There has been a lot of work on automatically infer-
ring locks for transactions. Most algorithms in the literature infer locks that
follow the two-phase locking protocol [14,16,23,28,33,36]. Our approach can
potentially be used to optimize the synchronization produced by these algo-
rithms. For example, for algorithms that employ a two-phase variant in which all
locks are acquired at the beginning of a transaction (e.g., [14,28]), our approach
may be used to defer the locking (e.g., to just before the first write operation)
and even to eliminate some of the locking steps. We demonstrate the benefit
of combining our transformation with such algorithms by using the domination
locking protocol [26] to produce efficient concurrency control for dynamic data
structures.

Transactional Memory. Transactional memory approaches (TMs) dynamically
resolve inconsistencies and deadlocks by rolling back partially completed trans-
actions. Unfortunately, in spite of a lot of effort and many TM implementations
(see [30]), existing TMs have not been widely adopted due to various concerns [13,
21,37], including high runtime overhead, poor performance and limited ability to
handle irreversible operations. Modern concurrent programs and data structures
are typically based on hand-crafted synchronization, rather than on a TM app-
roach [44].

Lock Elision. Our transformation is inspired by the idea of sequential locks [37]
and the approach presented in [39], which replace locks with optimistic con-
currency control in read-only transactions. But in contrast to these works, we
handle read-only prefixes of transactions (operations) that do update the shared
memory. In fact, as shown in Section 3, our approach is best suited for update-
dominated workloads. Moreover, using these approaches for a highly-contended
data structure (as in Section 3) is likely to provide limited performance, because
each update transaction causes many read-only transactions to abort.

182 M. Arbel et al.

Other works have proposed using transactional memory in order to elide locks
from arbitrary critical sections, and fall back on lock-based execution in cases
of aborts (e.g., [6,41,42]). In contrast to our approach, however, lock elision
does not combine speculative and non-speculative execution within the same
transaction.

5 Discussion

The development of scalable concurrent programs today heavily relies on custom-
tailored implementations, which require painstaking correctness proofs. In this
paper, we have shown a relatively simple transformation that can facilitate this
labor-intensive process, and thus make scalable synchronization more readily
available. The input for our transformation is a conventional lock-based concur-
rent program, which may be either constructed manually or synthesized from
sequential code. Our source-to-source transformation then makes judicious use
of optimism in order to eliminate principal concurrency bottlenecks in the given
program and improve its scalability.

We have illustrated our method for unbalanced and balanced search trees.
The transformed code performed significantly better than the original lock-based
one, and scaled comparably to hand-crafted implementations that had taken
considerably more effort to produce. In these examples, we have applied our
transformation manually. An interesting direction for future work would be to
create a tool that automatically applies our transformation at compile time.

Our approach makes use of a common pattern in data structures, where an
operation typically begins with a long read-only traversal, followed by a handful
of (usually local) modifications. A promising direction for future work is to try
and exploit similar patterns in order to parallelize or remove locks in other
types of code (not data structures), for example, programs that rely on two-
phase locking. Furthermore, for programs that follow different patterns, other
combinations of optimism and pessimism may prove effective.

Finally, there still remains a gap between the performance achievable by
manually optimized solutions and what we could achieve automatically. Our
algorithm induces inherent overhead for tracking all operations in the read-only
phase for later verification. In specific data structures, these checks might be
redundant, but it is difficult to detect this automatically. We believe that it
may well be possible to bridge the remaining performance gap using computer-
assisted optimizations. For example, a programmer may provide hints regarding
certain invariants that are always preserved in the code, in order to eliminate
the need for tracking some values for later validation.

References

1. Concurrentskiplistmap from java.util.concurrent. http://docs.oracle.com/javase/
7/docs/api/java/util/concurrent/ConcurrentSkipListMap.html

http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ConcurrentSkipListMap.html
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ConcurrentSkipListMap.html

Towards Automatic Lock Removal for Scalable Synchronization 183

2. A fast and lightweight key/value database library by google. http://code.google.
com/p/leveldb

3. jmonkeyengine: a 3d game engine for java developers. http://jmonkeyengine.org/
4. Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.: Atomic snap-

shots of shared memory. J. ACM 40(4), 873–890 (1993)
5. Afek, Y., Kaplan, H., Korenfeld, B., Morrison, A., Tarjan, R.E.: CBTree: a prac-

tical concurrent self-adjusting search tree. In: Aguilera, M.K. (ed.) DISC 2012.
LNCS, vol. 7611, pp. 1–15. Springer, Heidelberg (2012)

6. Afek, Y., Levy, A., Morrison, A.: Software-improved hardware lock elision. In:
PODC (2014)

7. Aragon, C.R., Seidel, R.: Randomized search trees. In: FOCS, pp. 540–545 (1989)
8. Arbel, M., Attiya, H.: Concurrent updates with RCU: search tree as an example.

In: PODC, pp. 196–205 (2014)
9. Arbel, M., Golan-Gueta, G., Hillel, E., Keidar, I.: Towards automatic lock removal

for scalable synchronization (full version). https://labs.yahoo.com/publications/
8476/towards-automatic-lock-removal-scalable-synchronization-full-version

10. Braginsky, A., Petrank, E.: A lock-free B+tree. In: SPAA, pp. 58–67 (2012)
11. Bronson, N.G., Casper, J., Chafi, H., Olukotun, K.: A practical concurrent binary

search tree. In: PPOPP, pp. 257–268 (2010)
12. Brown, T., Ellen, F., Ruppert, E.: A general technique for non-blocking trees. In:

PPoPP, pp. 329–342 (2014)
13. Cascaval, C., Blundell, C., Michael, M., Cain, H.W., Wu, P., Chiras, S.,

Chatterjee, S.: Software transactional memory: Why is it only a research toy?
Queue 6(5), 46–58 (2008)

14. Cherem, S., Chilimbi, T., Gulwani, S.: Inferring locks for atomic sections. In:
PLDI (2008)

15. Crain, T., Gramoli, V., Raynal, M.: A contention-friendly binary search tree.
In: Wolf, F., Mohr, B., an Mey, D. (eds.) Euro-Par 2013. LNCS, vol. 8097,
pp. 229–240. Springer, Heidelberg (2013)

16. Cunningham, D., Gudka, K., Eisenbach, S.: Keep off the grass: locking the right
path for atomicity. In: Hendren, L. (ed.) CC 2008. LNCS, vol. 4959, pp. 276–290.
Springer, Heidelberg (2008)

17. Dice, D., Harris, T.L., Kogan, A., Lev, Y., Moir, M.: Hardware extensions to
make lazy subscription safe (2014). CoRR, abs/1407.6968

18. Dice, D., Shalev, O., Shavit, N.: Transactional locking II. In: Dolev, S. (ed.) DISC
2006. LNCS, vol. 4167, pp. 194–208. Springer, Heidelberg (2006)

19. Doherty, S., Detlefs, D.L., Groves, L., Flood, C.H., Luchangco, V., Martin, P.A.,
Moir, M., Shavit, N., Steele Jr, G.L.: Dcas is not a silver bullet for nonblocking
algorithm design. In: SPAA (2004)

20. Drachsler, D., Vechev, M.T., Yahav, E.: Practical concurrent binary search trees
via logical ordering. In: PPoPP, pp. 343–356 (2014)

21. Duffy, J.: A (brief) retrospective on transactional memory (2010). http://
joeduffyblog.com/2010/01/03/a-brief-retrospective-on-transactional-memory

22. Ellen, F., Fatourou, P., Ruppert, E., van Breugel, F.: Non-blocking binary search
trees. In: PODC, pp. 131–140 (2010)

23. Emmi, M., Fischer, J.S., Jhala, R., Majumdar, R.: Lock allocation. In: POPL,
pp. 291–296 (2007)

24. Felber, G.K., Shavit, P.N.: Deuce: noninvasive concurrency with a Java STM. In:
MULTIPROG (2010)

25. Fraser, K.: Practical lock-freedom. Ph.D thesis, University of Cambridge (2004)

http://code.google.com/p/leveldb
http://code.google.com/p/leveldb
http://jmonkeyengine.org/
https://labs.yahoo.com/publications/8476/towards-automatic-lock-removal- scalable-synchronization-full-version
https://labs.yahoo.com/publications/8476/towards-automatic-lock-removal- scalable-synchronization-full-version
http://joeduffyblog.com/2010/01/03/a-brief-retrospective-on-transactional-memory
http://joeduffyblog.com/2010/01/03/a-brief-retrospective-on-transactional-memory

184 M. Arbel et al.

26. Golan-Gueta, G., Bronson, N.G., Aiken, A., Ramalingam, G., Sagiv, M.,
Yahav, E.: Automatic fine-grain locking using shape properties. In: OOPSLA,
pp. 225–242 (2011)

27. Gramoli, V.: More than you ever wanted to know about synchronization: syn-
chrobench, measuring the impact of the synchronization on concurrent algorithms.
In: PPoPP (2015)

28. Gudka, K., Harris, T., Eisenbach, S.: Lock inference in the presence of large
libraries. In: Noble, J. (ed.) ECOOP 2012. LNCS, vol. 7313, pp. 308–332. Springer,
Heidelberg (2012)

29. Guerraoui, R., Kapalka, M.: On the correctness of transactional memory. In:
PPOPP, pp. 175–184 (2008)

30. Harris, T., Larus, J., Rajwar, R.: Transactional memory, 2nd edn.
Synthesis Lectures on Computer Architecture, vol. 5(1) (2010)

31. Heller, S., Herlihy, M., Luchangco, V., Moir, M., Scherer III, W.N., Shavit, N.:
A lazy concurrent list-based set algorithm. In: Anderson, J.H., Prencipe, G.,
Wattenhofer, R. (eds.) OPODIS 2005. LNCS, vol. 3974, pp. 3–16. Springer,
Heidelberg (2006)

32. Herlihy, M., Lev, Y., Luchangco, V., Shavit, N.: A simple optimistic skiplist
algorithm. In: Prencipe, G., Zaks, S. (eds.) SIROCCO 2007. LNCS, vol. 4474,
pp. 124–138. Springer, Heidelberg (2007)

33. Hicks, M., Foster, J.S., Prattikakis, P.: Lock inference for atomic sections. In:
Proceedings of the First ACM SIGPLAN Workshop on Languages Compilers,
and Hardware Support for Transactional Computing, June 2006

34. Israeli, A., Rappoport, L.: Disjoint-access-parallel implementations of strong
shared memory primitives. In: PODC, pp. 151–160 (1994)

35. Jin, G., Zhang, W., Deng, D., Liblit, B., Lu, S.: Automated concurrency-bug
fixing. In: OSDI (2012)

36. McCloskey, B., Zhou, F., Gay, D., Brewer, E.: Autolocker: synchronization infer-
ence for atomic sections. In: POPL, pp. 346–358 (2006)

37. McKenney, P.E.: Is parallel programming hard, and if so, what can you do about
it?. Linux Technology Center. IBM Beaverton, August 2012

38. Michael, M.M., Scott, M.L.: Simple, fast, and practical non-blocking and blocking
concurrent queue algorithms. In: PODC (1996)

39. Nakaike, T., Michael, M.M.: Lock elision for read-only critical sections in java.
In: PLDI, pp. 269–278 (2010)

40. Natarajan, A., Mittal, N.: Fast concurrent lock-free binary search trees. In:
PPoPP, pp. 317–328 (2014)

41. Rajwar, R., Goodman, J.R.: Transactional lock-free execution of lock-based pro-
grams. SIGOPS Oper. Syst. Rev. 36(5), 5–17 (2002)

42. Roy, A., Hand, S., Harris, T.: A runtime system for software lock elision. In:
EuroSys (2009)

43. Shacham, O.: Verifying Atomicity of Composed Concurrent Operations. Ph.D
thesis, Tel Aviv University (2012)

44. Shacham, O., Bronson, N., Aiken, A., Sagiv, M., Vechev, M., Yahav, E.: Testing
atomicity of composed concurrent operations. In: OOPSLA (2011)

45. Shalev, O., Shavit, N.: Predictive log-synchronization. In: Berbers, Y.,
Zwaenepoel, W. (eds.) EuroSys, pp. 305–315. ACM (2006)

46. Zyulkyarov, F., Gajinov, V., Unsal, O.S., Cristal, A., Ayguadé, E., Harris, T.,
Valero, M.: Atomic quake: using transactional memory in an interactive multi-
player game server. In: ACM Sigplan Notices, vol. 44, pp. 25–34. ACM (2009)

Inherent Limitations of Hybrid
Transactional Memory

Dan Alistarh1, Justin Kopinsky2, Petr Kuznetsov3, Srivatsan Ravi4(B),
and Nir Shavit2,5

1 Microsoft Research, Cambridge, UK
2 Massachuseets University of Technology, Cambridge, USA

3 Télécom ParisTech, Paris, France
4 TU Berlin, Berlin, Germany

Srivatsan.ravi@inet.tu-berlin.de
5 Tel Aviv University, Tel Aviv, Israel

Abstract. Several Hybrid Transactional Memory (HyTM) schemes have
recently been proposed to complement the fast, but best-effort nature of
Hardware Transactional Memory (HTM) with a slow, reliable software
backup. However, the costs of providing concurrency between hardware
and software transactions in HyTM are still not well understood.

In this paper, we propose a general model for HyTM implementa-
tions, which captures the ability of hardware transactions to buffer mem-
ory accesses. The model allows us to formally quantify and analyze the
amount of overhead (instrumentation) caused by the potential presence of
software transactions. We prove that (1) it is impossible to build a strictly
serializable HyTM implementation that has both uninstrumented reads
and writes, even for very weak progress guarantees, and (2) the instrumen-
tation cost incurred by a hardware transaction in any progressive opaque
HyTM is linear in the size of the transaction’s data set. We further describe
two implementations which exhibit optimal instrumentation costs for two
different progress conditions. In sum, this paper proposes the first formal
HyTM model and captures for the first time the trade-off between the
degree of hardware-software TM concurrency and the amount of instru-
mentation overhead.

1 Introduction

Hybrid Transactional Memory. Since its introduction by Herlihy and Moss [17],
Transactional Memory (TM) has been a tool with tremendous promise. It is
therefore not surprising that the recently introduced Hardware Transactional
Memory (HTM) implementations [1,21,22] have been eagerly anticipated and
scrutinized by the community.

P. Kuznetsov—The author is supported by the Agence Nationale de la Recherche,
ANR-14-CE35-0010-01, project DISCMAT.
N. Shavit—Support is gratefully acknowledged from the National Science Founda-
tion under grants CCF-1217921, CCF-1301926, and IIS-1447786, the Department of
Energy under grant ER26116/DE-SC0008923, and the Oracle and Intel corporations.

c© Springer-Verlag Berlin Heidelberg 2015
Y. Moses (Ed.): DISC 2015, LNCS 9363, pp. 185–199, 2015.
DOI: 10.1007/978-3-662-48653-5 13

186 D. Alistarh et al.

Early experience with programming HTM, e.g. [3,11,12], paints an inter-
esting picture: if used carefully, HTM can significantly speed up and simplify
concurrent implementations. At the same time, it is not without its limitations:
since HTMs are usually implemented on top of the cache coherence mechanism,
hardware transactions have inherent capacity constraints on the number of dis-
tinct memory locations that can be accessed inside a single transaction. More-
over, all current proposals are best-effort, as they may abort under imprecisely
specified conditions. In brief, the programmer should not solely rely on HTMs.

Several Hybrid Transactional Memory (HyTM) schemes [9,10,18,19] have
been proposed to complement the fast, but best-effort nature of HTM with a
slow, reliable software transactional memory (STM) backup. These proposals
have explored a wide range of trade-offs between the overhead on hardware
transactions, concurrent execution of hardware and software, and the provided
progress guarantees.

Early HyTM proposals [10,18] share interesting features. First, transactions
that do not conflict on the data items they access are expected to run concur-
rently, regardless of their type (software or hardware). This property is referred
to as progressiveness [14] and is believed to allow for higher parallelism. Second,
hardware transactions usually employ code instrumentation techniques. Intu-
itively, instrumentation is used by hardware transactions to detect concurrency
scenarios and abort in the case of data conflicts.

Reducing instrumentation in the frequently executed hardware fast-path is
key to efficiency. In particular, recent work by Riegel et al. [24] surveys a series
of techniques to reduce instrumentation. Despite considerable algorithmic work
on HyTM, there is currently no formal basis for specifying and understanding
the cost of building HyTMs with non-trivial concurrency. In particular, what are
the inherent instrumentation costs of building a HyTM? What are the trade-offs
between these costs and the ability of the HyTM system to run software and
hardware transactions in parallel?

Modelling HyTM. To address these questions, we propose the first model for
hybrid TM systems which formally captures the notion of cached accesses pro-
vided by hardware transactions, and defines instrumentation costs in a precise,
quantifiable way.

Specifically, we model a hardware transaction as a series of memory accesses
that operate on locally cached copies of the memory locations, followed by a
cache-commit operation. In case a concurrent (hardware or software) transac-
tion performs a (read-write or write-write) conflicting access to a cached base
object, the cached copy is invalidated and the hardware transaction aborts. Thus,
detecting contention on memory locations is provided “automatically” to code
running inside hardware transactions.

Further, we notice that a HyTM implementation imposes a logical partitioning
of shared memory into data and metadata locations. Intuitively, metadata is used
by transactions to exchange information about contention and conflicts, while
data locations only store the values of data items read and updated within trans-
actions. Recent experimental evidence [20] suggests that the overhead imposed by

Inherent Limitations of Hybrid Transactional Memory 187

accessing metadata, and in particular code to detect concurrent software transac-
tions, is a significant performance bottleneck. Therefore, we quantify instrumen-
tation cost by measuring the number of accesses to metadata memory locations
which transactions perform. Our framework captures all known HyTM proposals
which combine HTMs with an STM fallback [9,10,18,19,23].

The Cost of Concurrency. We then explore the implications of our model. The
first, immediate application is an impossibility result showing that instrumenta-
tion is necessary in a HyTM implementation, even if we only provide sequential
progress, i.e., if a transaction is only guaranteed to commit if it runs in isolation.

The second application concerns the instrumentation overhead of progressive
HyTM schemes, which constitutes our main technical contribution. We prove
that any progressive HyTM, satisfying reasonable livenesss guarantees, must, in
certain executions, force read-only transactions to access a linear (in the size of
their data sets) number of metadata memory locations, even in the absence of
contention.

Our proof technique is interesting in its own right. Inductively, we start
with a sequential execution in which a “large” set Sm of read-only hardware
transactions, each accessing m distinct data items and m distinct metadata
memory locations, run after an execution Em. We then construct execution
Em+1, an extension of Em, which forces at least half of the transactions in
Sm to access a new metadata base object when reading a new (m + 1)th data
item, running after Em+1. The technical challenge, and the key departure from
prior work on STM lower bounds, e.g. [7,13,14], is that hardware transactions
practically possess “automatic” conflict detection, aborting on contention. This
is in contrast to STMs, which must take steps to detect contention on memory
locations.

This linear lower bound is tight. We match it with an algorithm which,
additionally, allows for uninstrumented writes, invisible reads and is provably
opaque [14]. To the best of our knowledge, this is the first formal proof of cor-
rectness of a HyTM algorithm.

Low-Instrumentation HyTM. Our main lower bound result shows that there
are high inherent instrumentation costs to progressive HyTM designs [10,18].
Interestingly, some recent HyTM schemes [9,19,20,24] sacrifice progressiveness
for constant instrumentation cost (i.e., not depending on the size of the data set).
Instead, only sequential progress is ensured. (Despite this fact, these schemes
perform well due to the limited instrumentation in hardware transactions.)

We extend these schemes to provide an upper bound for non-progressive low-
instrumentation HyTMs. We present a HyTM with invisible reads and uninstru-
mented hardware writes which guarantees that a hardware transaction accesses
at most one metadata object in the course of its execution. Software transactions
are mutually progressive, while hardware transactions are guaranteed to commit
only if they do not run concurrently with an updating software transaction. This
algorithm shows that, by abandoning progressiveness, the instrumentation costs
of HyTM can be reduced to the bare minimum required by our first impossibility

188 D. Alistarh et al.

result. In other words, the cost of avoiding the linear instrumentation lower bound
is that hardware transactions may be aborted by non-conflicting software ones.

Roadmap. Section 2 introduces the basic TM model and definitions. Section 3
presents our first contribution: a formal model for HyTM implementations.
Section 4 formally defines instrumentation and proves the impossibility of imple-
menting uninstrumented HyTMs. Section 5 establishes a linear lower bound
on metadata accesses for progressive HyTMs while Section 6 describes our
instrumentation-optimal opaque HyTM implementations. Section 7 presents the
related work and Section 8 concludes the paper. The tech report contains the
formal proofs of the lower bounds, algorithm pseudo-code and their correctness
proofs [4].

2 Preliminaries

Transactional Memory (TM). A transaction is a sequence of transactional
operations (or t-operations), reads and writes, performed on a set of transac-
tional objects (t-objects). A TM implementation provides a set of concurrent
processes with deterministic algorithms that implement reads and writes on t-
objects using a set of base objects. More precisely, for each transaction Tk, a TM
implementation must support the following t-operations: readk(X), where X is
a t-object, that returns a value in a domain V or a special value Ak /∈ V (abort),
writek(X, v), for a value v ∈ V , that returns ok or Ak, and tryC k that returns
Ck /∈ V (commit) or Ak.

Configurations and Executions. A configuration of a TM implementation
specifies the state of each base object and each process. In the initial configura-
tion, each base object has its initial value and each process is in its initial state.
An event (or step) of a transaction invoked by some process is an invocation
of a t-operation, a response of a t-operation, or an atomic primitive operation
applied to base object along with its response. An execution fragment is a (finite
or infinite) sequence of events E = e1, e2, An execution of a TM implemen-
tation M is an execution fragment where, informally, each event respects the
specification of base objects and the algorithms specified by M. In the next
section, we define precisely how base objects should behave in a hybrid model
combining direct memory accesses with cached accesses (hardware transactions).

The read set (resp., the write set) of a transaction Tk in an execution
E,enoted RsetE(Tk) (and resp. WsetE(Tk)), is the set of t-objects that Tk

attempts to read (and resp. write) by issuing a t-read (and resp. t-write) invo-
cation in E (for brevity, we sometimes omit the subscript E from the notation).
The data set of Tk is Dset(Tk) = Rset(Tk) ∪ Wset(Tk). Tk is called read-only if
Wset(Tk) = ∅; write-only if Rset(Tk) = ∅ and updating if Wset(Tk) �= ∅.

For any finite execution E and execution fragment E′, E · E′ denotes the
concatenation of E and E′ and we say that E ·E′ is an extension of E. For every
transaction identifier k, E|k denotes the subsequence of E restricted to events

Inherent Limitations of Hybrid Transactional Memory 189

of transaction Tk. If E|k is non-empty, we say that Tk participates in E, and let
txns(E) denote the set of transactions that participate in E. Two executions E
and E′ are indistinguishable to a set T of transactions, if for each transaction
Tk ∈ T , E|k = E′|k.

Complete and Incomplete Transactions. A transaction Tk ∈ txns(E) is
complete in E if E|k ends with a response event. The execution E is complete if
all transactions in txns(E) are complete in E. A transaction Tk ∈ txns(E) is t-
complete if E|k ends with Ak or Ck; otherwise, Tk is t-incomplete. Tk is committed
(resp. aborted) in E if the last event of Tk is Ck (resp. Ak). The execution E is
t-complete if all transactions in txns(E) are t-complete. A configuration C after
an execution E is quiescent (resp. t-quiescent) if every transaction Tk ∈ txns(E)
is complete (resp. t-complete) in E.

Contention. We assume that base objects are accessed with read-modify-write
(rmw) primitives. A rmw primitive 〈g, h〉 applied to a base object atomically
updates the value of the object with a new value, which is a function g(v) of the
old value v, and returns a response h(v). A rmw primitive event on a base object
is trivial if, in any configuration, its application does not change the state of the
object. Otherwise, it is called nontrivial.

Events e and e′ of an execution E contend on a base object b if they are
both primitives on b in E and at least one of them is nontrivial. In a configu-
ration C after an execution E, every incomplete transaction T has exactly one
enabled event in C, which is the next event T will perform according to the TM
implementation. We say that a transaction T is poised to apply an event e after
E if e is the next enabled event for T in E. We say that transactions T and
T ′ concurrently contend on b in E if they are each poised to apply contending
events on b after E. We say that an execution fragment E is step contention-free
for t-operation opk if the events of E|opk are contiguous in E. An execution
fragment E is step contention-free for Tk if the events of E|k are contiguous in
E, and E is step contention-free if E is step contention-free for all transactions
that participate in E.

TM Correctness. A history exported by an execution fragment E is the subse-
quence of E consisting of only the invocation and response events of t-operations.
Let HE denote the history exported by an execution E. Two histories H and
H ′ are equivalent if txns(H) = txns(H ′) and for every transaction Tk ∈ txns(H),
H|k = H ′|k. For any two transactions Tk, Tm ∈ txns(E), we say that Tk precedes
Tm in the real-time order of E (Tk ≺RT

E Tm) if Tk is t-complete in E and the
last event of Tk precedes the first event of Tm in E. If neither Tk precedes Tm

nor Tm precedes Tk in real-time order, then Tk and Tm are concurrent in E. An
execution E is sequential if every invocation of a t-operation is either the last
event in HE or is immediately followed by a matching response. An execution
E is t-sequential if there are no concurrent transactions in E.

Informally, a t-sequential history S is legal if every t-read of a t-object returns
the latest written value of this t-object in S. A history H is opaque if there exists

190 D. Alistarh et al.

a legal t-sequential history S equivalent to H such that S respects the real-time
order of transactions in H [14].

3 Hybrid Transactional Memory (HyTM)

Direct Accesses and Cached Accesses. We now describe the execution
model of a Hybrid Transactional Memory (HyTM) implementation. In our
HyTM model, every base object can be accessed with two kinds of primitives,
direct and cached.

In a direct access, the rmw primitive operates on the memory state: the direct-
access event atomically reads the value of the object in the shared memory and,
if necessary, modifies it.

In a cached access performed by a process i, the rmw primitive operates on
the cached state recorded in process i’s tracking set τi. One can think of τi as
the L1 cache of process i. A hardware transaction is a series of cached rmw
primitives performed on τi followed by a cache-commit primitive.

More precisely, τi is a set of triples (b, v,m) where b is a base object identifier,
v is a value, and m ∈ {shared , exclusive} is an access mode. The triple (b, v,m)
is added to the tracking set when i performs a cached rmw access of b, where m
is set to exclusive if the access is nontrivial, and to shared otherwise. We assume
that there exists some constant TS (representing the size of the L1 cache) such
that the condition |τi| ≤ TS must always hold; this condition will be enforced
by our model. A base object b is present in τi with mode m if ∃v, (b, v,m) ∈ τi.

A trivial (resp. nontrivial) cached primitive 〈g, h〉 applied to b by process i
first checks the condition |τi| = TS and if so, it sets τi = ∅ and immediately
returns ⊥ (we call this event a capacity abort). We assume that TS is large
enough so that no transaction with data set of size 1 can incur a capacity abort.
If the transaction does not incur a capacity abort, the process checks whether b is
present in exclusive (resp. any) mode in τj for any j �= i. If so, τi is set to ∅ and the
primitive returns ⊥. Otherwise, the triple (b, v, shared) (resp. (b, g(v), exclusive))
is added to τi, where v is the most recent cached value of b in τi (in case b was
previously accessed by i within the current hardware transaction) or the value
of b in the current memory configuration, and finally h(v) is returned.

A tracking set can be invalidated by a concurrent process: if, in a configura-
tion C where (b, v, exclusive) ∈ τi (resp. (b, v, shared) ∈ τi), a process j �= i
applies any primitive (resp. any nontrivial primitive) to b, then τi becomes
invalid and any subsequent cached primitive invoked by i sets τi to ∅ and returns
⊥. We refer to this event as a tracking set abort.

Finally, the cache-commit primitive issued by process i with a valid τi does
the following: for each base object b such that (b, v, exclusive) ∈ τi, the value of
b in C is updated to v. Finally, τi is set to ∅ and the primitive returns commit.

Note that HTM may also abort spuriously, or because of unsupported oper-
ations [22]. The first cause can be modelled probabilistically in the above frame-
work, which would not however significantly affect our claims and proofs, except

Inherent Limitations of Hybrid Transactional Memory 191

Fast-Path

(access of b)

T2 A2

T1

E

(b, v, exclusive) ∈ τ2 after E

(a) τ2 is invalidated by
(fast-path or slow-path)
transaction T1’s access of
base object b

Fast-Path

(write to b)

T2 A2

T1T1

E

(b, v, shared) ∈ τ2 after E

(b) τ2 is invalidated by
(fast-path or slow-path)
transaction T1’s write to
base object b

Fig. 1. Tracking set aborts in fast-path transactions

for a more cumbersome presentation. Also, our lower bounds are based exclu-
sively on executions containing t-reads and t-writes. Therefore, in the following,
we only consider tracking set and capacity aborts.

Slow-Path and Fast-Path Transactions. In the following, we partition
HyTM transactions into fast-path transactions and slow-path transactions. Prac-
tically, two separate algorithms (fast-path one and slow-path one) are provided
for each t-operation.

A slow-path transaction models a regular software transaction. An event of
a slow-path transaction is either an invocation or response of a t-operation, or
a rmw primitive on a base object.

A fast-path transaction essentially encapsulates a hardware transaction. An
event of a fast-path transaction is either an invocation or response of a t-
operation, a cached primitive on a base object, or a cache-commit : t-read and t-
write are only allowed to contain cached primitives, and tryC consists of invoking
cache-commit. Furthermore, we assume that a fast-path transaction Tk returns
Ak as soon an underlying cached primitive or cache-commit returns ⊥. Figure 1
depicts such a scenario illustrating a tracking set abort: fast-path transaction T2

executed by process p2 accesses a base object b in shared (and resp. exclusive)
mode and it is added to its tracking set τ2. Immediately after the access of b
by T2, a concurrent transaction T1 applies a nontrivial primitive to b (and resp.
accesses b). Thus, the tracking of p2 is invalidated and T2 must be aborted in
any extension of this execution.

We provide two key observations on this model regarding the interactions
of non-committed fast path transactions with other transactions. Let E be any
execution of a HyTM implementation M in which a fast-path transaction Tk

is either t-incomplete or aborted. Then the sequence of events E′ derived by
removing all events of E|k from E is an execution M. Moreover:

Observation 1. To every slow-path transaction Tm ∈ txns(E), E is indistin-
guishable from E′.

192 D. Alistarh et al.

Observation 2. If a fast-path transaction Tm ∈ txns(E) \ {Tk} does not incur
a tracking set abort in E, then E is indistinguishable to Tm from E′.

Intuitively, these observations say that fast-path transactions which are not yet
committed are invisible to slow-path transactions, and can communicate with
other fast-path transactions only by incurring their tracking-set aborts.

4 HyTM Instrumentation

Now we define the notion of code instrumentation in fast-path transactions.
An execution E of a HyTM M appears t-sequential to a transaction Tk ∈

txns(E) if there exists an execution E′ of M such that: (i) txns(E′) ⊆ txns(E) \
{Tk} and the configuration after E′ is t-quiescent, (ii) every transaction Tm ∈
txns(E) that precedes Tk in real-time order is included in E′ such that E|m =
E′|m, (iii) for every transaction Tm ∈ txns(E′), RsetE′(Tm) ⊆ RsetE(Tm) and
WsetE′(Tm) ⊆ WsetE(Tm), and (iv) E′ · E|k is an execution of M.

Definition 1 (Data and metadata base objects). Let X be the set of t-
objects operated by a HyTM implementation M. Now we partition the set of
base objects used by M into a set D of data objects and a set M of metadata
objects (D ∩ M = ∅). We further partition D into sets DX associated with each
t-object X ∈ X : D =

⋃

X∈X
DX , for all X �= Y in X , DX ∩ DY = ∅, such that:

1. In every execution E, each fast-path transaction Tk ∈ txns(E) only accesses
base objects in

⋃

X∈DSet(Tk)

DX or M.

2. Let E ·ρ and E ·E′ ·ρ′ be two t-complete executions, such that E and E ·E′ are
t-complete, ρ and ρ′ are complete executions of a transaction Tk /∈ txns(E ·
E′), Hρ = Hρ′ , and ∀Tm ∈ txns(E′), Dset(Tm) ∩ Dset(Tk) = ∅. Then the
states of the base objects

⋃

X∈DSet(Tk)

DX in the configuration after E · ρ and

E · E′ · ρ′ are the same.
3. Let execution E appear t-sequential to a transaction Tk and let the enabled

event e of Tk after E be a primitive on a base object b ∈ D. Then, unless e
returns ⊥, E · e also appears t-sequential to Tk.

Intuitively, the first condition says that a transaction is only allowed to access
data objects based on its data set. The second condition says that transactions
with disjoint data sets can communicate only via metadata objects. Finally, the
last condition means that base objects in D may only contain the “values” of
t-objects, and cannot be used to detect concurrent transactions. Note that our
results will lower bound the number of metadata objects that must be accessed
under particular assumptions, thus from a cost perspective, D should be made
as large as possible.

All HyTM proposals we aware of, such as HybridNOrec [9,23], PhTM [19]
and others [10,18], conform to our definition of instrumentation in fast-path
transactions. For instance, HybridNOrec [9,23] employs a distinct base object in

Inherent Limitations of Hybrid Transactional Memory 193

D for each t-object and a global sequence lock as the metadata that is accessed
by fast-path transactions to detect concurrency with slow-path transactions.
Similarly, the HyTM implementation by Damron et al. [10] also associates a
distinct base object in D for each t-object and additionally, a transaction header
and ownership record as metadata base objects.

Definition 2 (Uninstrumented HyTMs). A HyTM implementation M pro-
vides uninstrumented writes (resp. reads) if in every execution E of M, for every
write-only (resp. read-only) fast-path transaction Tk, all primitives in E|k are
performed on base objects in D. A HyTM is uninstrumented if both its reads and
writes are uninstrumented.

Observation 3. Consider any execution E of a HyTM implementation M
which provides uninstrumented reads (resp. writes). For any fast-path read-only
(resp. write-only) transaction Tk �∈ txns(E), that runs step-contention free after
E, the execution E appears t-sequential to Tk.

Impossibility of Uninstrumented HyTMs. We can now show that any
strictly serializable HyTM must be instrumented, even under a very weak
liveness and progress assumptions of sequential TM-liveness and sequential
TM-progress. sequential TM-liveness Sequential TM-liveness guarantees that t-
operations running in the absence of concurrent transactions return in a finite
number of its steps. Sequential TM-progress stipulates that a transaction can
only be aborted only if it is concurrent with another transaction. Note that
sequential TM-liveness and TM-progress allow a transaction not running t-
sequentially to abort or block indefinitely.

Theorem 1. There does not exist a strictly serializable uninstrumented HyTM
implementation that ensures sequential TM-progress and TM-liveness.

Due to space constraints, we defer the proof the technical report [4], and provide
an outline below. Suppose by contradiction that such a HyTM exists and let
E be a t-sequential execution of it in which a slow-path transaction T0 reads
t-object Z (returning the initial value), then writes a new value nv to t-objects
X and Y , and commits. Since the HyTM is uninstrumented, Observation 3
implies that a fast-path transaction running step contention-free cannot detect
the presence of a concurrent transaction and, by sequential TM-liveness and
TM-progress, the transaction must eventually commit. Thus, there exists E′, the
longest prefix of E that cannot be extended with the t-complete step-contention-
free execution neither of a fast-path transaction Tx reading X and returning nv
nor of a fast-path transaction Ty reading Y and returning nv. Without loss of
generality, suppose that if T0 takes one more step e after E′, then Ty running
step contention-free after E · e would find the new value in Y .

Next, we show the following execution exists: starting from E′, a fast-path
Tz writes a new value to Z and commits, then a fast-path Tx reads the old value
of X and commits, then T0 takes one more step (setting Y to the new value),
and a fast-path Ty reads the new value of Y .

194 D. Alistarh et al.

However, such an execution is not strictly serializable. Indeed, as the value
written by T0 is returned by transaction Ty, T0 must be committed and precede
Ty in any serialization. Since Tx returns the initial value of X, Tx must precede
T0. Since T0 reads the initial value of Z, T0 must precede Tz, implying a cycle,
which creates the contradiction.

5 Linear Instrumentation Lower Bound

In this section, we focus on a natural progress condition called progressive-
ness [14] by which a transaction can only abort under read-write or write-write
conflict with a concurrent transaction:

Definition 3 (Progressiveness). Transactions Ti and Tj conflict in an execu-
tion E on a t-object X if X ∈ Dset(Ti)∩Dset(Tj) and X ∈ Wset(Ti)∪Wset(Tj).
A HyTM implementation M is fast-path (resp. slow-path) progressive if in
every execution E of M and for every fast-path (and resp. slow-path) transac-
tion Ti that aborts in E, either Ai is a capacity abort or Ti conflicts with some
transaction Tj that is concurrent to Ti in E. We say M is progressive if it is
both fast-path and slow-path progressive.

We first prove the following auxiliary lemma concerning progressive HyTMs. It
shows that a fast path transaction in a progressive HyTM can contend on a
base object only with a conflicting transaction. Intuitively, the proof is based
on the observation that, if two non-conflicting transactions, of which one is fast-
path, concurrently contend on a base object in some execution, the fast-path
transaction may incur a tracking set abort. However, this contradicts the fact
that in a progressive HyTM, a transaction may be aborted only due to a conflict.

Lemma 1. Let M be any fast-path progressive HyTM implementation. Let E ·
E1 ·E2 be an execution of M where E1 (and resp. E2) is the step contention-free
execution fragment of transaction T1 �∈ txns(E) (and resp. T2 �∈ txns(E)), T1

(and resp. T2) does not conflict with any transaction in E · E1 · E2, and at least
one of T1 or T2 is a fast-path transaction. Then, T1 and T2 do not contend on
any base object in E · E1 · E2.

We then notice that Lemma 1 can be extended to prove the following key auxil-
iary result. If a t-operation of a fast-path transaction does not access any meta-
data base object, then the process executing the transaction cannot distinguish
two executions that each export identical histories, i.e., the process cannot tell
the difference by only looking at the invocation and responses of the t-operations.

After establishing these auxiliary lemmas, we are ready to prove our main
result. We show that read-only fast-path transactions in a progressive opaque
HyTM providing obstruction-free (OF) TM-liveness (every t-operation running
step contention-free returns in a finite number of its own steps) may have to
access a linear (in the size of their data sets) number of distinct metadata mem-
ory locations, even in the absence of concurrency. The complete proof can be

Inherent Limitations of Hybrid Transactional Memory 195

found in the technical report [4]; here, we provide a high-level overview of the
technique.

Theorem 2. Let M be any progressive, opaque HyTM implementation that
provides OF TM-liveness. For every m ∈ N, there exists an execution E in
which some fast-path read-only transaction Tk ∈ txns(E) satisfies either (1)
Dset(Tk) ≤ m and Tk incurs a capacity abort in E or (2) Dset(Tk) = m and Tk

accesses Ω(m) distinct metadata base objects in E.

Proof (Outline). Let κ be the smallest integer such that some fast-path transac-
tion running step contention-free after a t-complete execution performs κ t-reads
and incurs a capacity abort. In other words, if a fast-path transaction reads less
than κ t-objects, it cannot incur a capacity abort.

We prove that, for all m ≤ κ−1, there exists a t-complete execution Em and
a set Sm (|Sm| = 2κ−m) of read-only fast-path transactions such that (1) each
transaction in Sm reads m t-objects, (2) the data sets of any two transactions
in Sm are disjoint, (3) in the step contention-free execution of any transaction
in Sm extending Em, every t-read accesses at least one distinct metadata base
object.

By induction, we assume that the induction statement holds for all m < κ−1
(the base case m = 0 is trivial) and build Em+1 and Sm+1 satisfying the above
condition. Pick any two transactions from the set Sm. We construct E′

m, a t-
complete extension of Em by the execution of a slow-path transaction writing to
two distinct t-objects X and Y , such that the two picked transactions, running
step contention-free after that, cannot distinguish Em and E′

m.
Next, we let each of the transactions read one of the two t-objects X and

Y . Specifically, we construct the execution E′
m as follows. We first extend Em

with the t-incomplete execution of a slow-path transaction writing to X and Y
such that this extension cannot be further extended with the step contention-
free executions of either of the picked fast-path transactions performing their m
t-reads, followed by the (m + 1)th t-read of X or Y that returns the respective
“new value.”

We show that at least one of the two transactions must access a new metadata
base object in this (m + 1)th t-read when running step contention-free after this
slow-path transaction. Otherwise, the resulting execution would not be opaque.
Indeed, without accessing a new metadata base object, such an execution appears
t-sequential to the fast-path transactions. This allows us to construct the t-
complete execution E′

m such that at least one of the fast-path transactions,
running step contention-free after this execution is poised to access a distinct
new metadata base object during the (m + 1)th t-read.

By repeating this argument for each pair of transactions, we derive that
there exists Em+1, a t-complete extension of Em, such that at least half of
the transactions in Sm must access a new distinct metadata base object in its
(m+1)th t-read when it runs t-sequentially after Em+1. Intuitively, we construct
Em+1 by “gluing” all these executions E′

m together, which is possible thanks
to Lemma 1 and its extensions. These transactions constitute Sm+1 ⊂ Sm,
|Sm+1| = |Sm|/2 = 2κ−(m+1).

196 D. Alistarh et al.

6 Instrumentation-Optimal HyTM Algorithms

In this section, we describe two “instrumentation-optimal” progressive HyTMs.
We show that these implementations are provably opaque in our HyTM model
where a fast-path transaction is not “visible” to a concurrent (slow-path or fast-
path) transaction until it has committed (Observations 1 and 2).

A Linear Upper Bound on Instrumentation. We prove that the lower
bound in Theorem 2 is tight by describing a progressive opaque HyTM imple-
mentation that provides wait-free TM-liveness (every t-operation returns in a
finite number of its steps) and uses invisible reads (read-only transactions do
not apply any nontrivial primitives). The algorithm works as follows.
(Base objects) For every t-object Xj , our implementation maintains a base object
vj ∈ D that stores the value of Xj and a metadata base object rj , which is a
lock bit that stores 0 or 1.
(Fast-path transactions) For a fast-path transaction Tk, the readk(Xj) implemen-
tation first reads rj to check if Xj is locked by a concurrent updating transaction.
If so, it returns Ak, else it returns the value of Xj . Updating fast-path transac-
tions use uninstrumented writes: write(Xj , v) simply stores the cached state of
Xj along with its value v and if the cache has not been invalidated, updates the
shared memory during tryCk by invoking the commit-cache primitive.
(Slow-path transactions) Any readk(Xj) invoked by a slow-path transaction first
reads the value of the object from vj , checks if rj is set and then performs value-
based validation on its entire read set to check if any of them have been modified.
If either of these conditions is true, the transaction returns Ak. Otherwise, it
returns the value of Xj . A read-only transaction simply returns Ck during the
tryCommit. An updating slow-path transaction Tk attempts to obtain exclusive
write access to its entire write set by performing compare-and-set (cas) primitive
that checks if the value of rj , for each Xj ∈ Wset(Tk), is not 1 and, if so, replaces
it with 1. If all the locks on the write set were acquired successfully, Tk checks if
any t-object in Rset(Tk) is concurrently being updated by another transaction
and Tk is aborted if so. Otherwise, Tk attempts to write the values of the t-
objects via cas operations. If any cas on the individual base objects fails, there
must be a concurrent fast-path writer, and so Tk rolls back the state of the base
objects that were updated, releases locks on its write set and returns Ak.

Theorem 3. There exists an opaque HyTM implementation that provides unin-
strumented writes, invisible reads, progressiveness and wait-free TM-liveness
such that in its every execution E, every read-only fast-path transaction T ∈
txns(E) accesses O(|Rset(T)|) distinct metadata base objects.

Providing Partial Concurrency at Low Cost. Allowing fast-path trans-
actions to run concurrently in HyTM results in an instrumentation cost that is
proportional to the read-set size of a fast-path transaction. But can we run some
transactions concurrently with constant instrumentation cost, while still keeping
invisible reads?

Inherent Limitations of Hybrid Transactional Memory 197

We describe a slow-path progressive opaque HyTM with invisible reads and
wait-free TM-liveness. To fast-path transactions, it only provides sequential TM-
progress (they are only guaranteed to commit in the absence of concurrency),
but in return the algorithm is only using a single metadata base object Count
that is read once by a fast-path transaction and accessed twice with a fetch-and-
add primitive by an updating slow-path transaction. Thus, the instrumentation
cost of the algorithm is constant.

Intuitively, Count allows fast-path transactions to detect the existence of
concurrent updating slow-path transactions. Each time an updating slow-path
updating transaction tries to commit, it increments Count and once all writes
to data base objects are completed (this part of the algorithm is identical to
the implementation above) or the transaction is aborted, it decrements Count .
Therefore, Count �= 0 means that at least one slow-path updating transaction is
incomplete. A fast-path transaction simply checks if Count �= 0 in the beginning
and aborts if so, otherwise, its code is identical to the one above. Note that
this way, any update of Count automatically causes a tracking set abort of any
incomplete fast-path transaction.

7 Related Work

The term instrumentation was originally used in the context of HyTMs
[9,19,23] to indicate the overhead a hardware transaction induces in order to
detect pending software transactions. The impossibility of designing HyTMs
without any code instrumentation was informally suggested in [9]. We prove this
formally in this paper.

In [6], Attiya and Hillel considered the instrumentation cost of privatization,
i.e., allowing transactions to isolate data items by making them private to a pro-
cess so that no other process is allowed to modify the privatized item. The model
we consider is fundamentally different, in that we model hardware transactions
at the level of cache coherence, and do not consider non-transactional accesses.
The proof techniques we employ are also different.

Uninstrumented HTMs may be viewed as being disjoint-access parallel
(DAP) [7]. As such, some of the techniques used in the proof of Theorem 1
extend those used in [7,13,14]. However, proving lower bounds on the instru-
mentation costs of the HyTM fast-path is challenging, since such t-operations
can automatically abort due to any contending concurrent step.

Circa 2005, several papers introduced HyTM implementations [5,10,18] that
integrated HTMs with variants of DSTM [16]. These implementations provide
nontrivial concurrency between hardware and software transactions (progres-
siveness), by imposing instrumentation on hardware transactions: every t-read
operation incurs at least one extra access to a metadata base object. Our Theo-
rem 2 shows that this overhead is unavoidable. Of note, write operations of these
HyTMs are also instrumented, but our result shows that it is not necessary. Ref-
erences [15,23] provide detailed overviews on HyTM implementations.

198 D. Alistarh et al.

8 Concluding Remarks

We have introduced an analytical model for HyTM that captures the notion of
cached accesses as performed by hardware transactions. We then derived lower
and upper bounds in this model that capture the inherent tradeoff between
the degree of concurrency between hardware and software transactions, and the
metadata-access overhead introduced on the hardware.

To precisely characterize the costs incurred by hardware transactions, we
made a distinction between the set of memory locations which store the data
values of the t-objects, and the locations that store the metadata information.
To the best of our knowledge, all known HyTM proposals, such as HybridNOrec
[9,23], PhTM [19] and others [10,18] avoid co-locating the data and metadata
within a single base object.

Recent work has investigated alternatives to the STM fallback, such as sand-
boxing [2,8] and the use of both direct and cached accesses within the same hard-
ware transaction to reduce instrumentation overhead [23,24]. Another recent
approach proposed reduced hardware transactions [20], where a part of the slow-
path is executed using a short fast-path transaction, which allows to partially
eliminate instrumentation from the hardware fast-path. We plan to extend our
model to incorporate such schemes in future work.

Our HyTM model is a natural extension of previous frameworks developed
for STM, and has the advantage of being relatively simple. We hope that our
model and techniques will enable more research on the limitations and power of
HyTM systems, and that our results will prove useful for practitioners.

References

1. Advanced Synchronization Facility Proposed Architectural Specification, March
2009. http://developer.amd.com/wordpress/media/2013/09/45432-ASF Spec 2.1.
pdf

2. Afek, Y., Levy, A., Morrison, A.: Software-improved hardware lock elision. In:
PODC. ACM (2014)

3. Alistarh, D., Eugster, P., Herlihy, M., Matveev, A., Shavit, N.: Stacktrack: an
automated transactional approach to concurrent memory reclamation. In: Pro-
ceedings of the Ninth European Conference on Computer Systems. EuroSys 2014,
pp. 25:1–25:14. ACM, New York (2014)

4. Alistarh, D., Kopinsky, J., Kuznetsov, P., Ravi, S., Shavit, N.: Inherent
limitations of hybrid transactional memory (2014). CoRR, abs/1405.5689.
http://arxiv.org/abs/1405.5689

5. Ananian, C.S., Asanovic, K., Kuszmaul, B.C., Leiserson, C.E., Lie, S.: Unbounded
transactional memory. In: Proceedings of the 11th International Symposium
on High-Performance Computer Architecture. HPCA 2005, pp. 316–327. IEEE
Computer Society, Washington (2005)

6. Attiya, H., Hillel, E.: The cost of privatization in software transactional memory.
IEEE Trans. Computers 62(12), 2531–2543 (2013)

7. Attiya, H., Hillel, E., Milani, A.: Inherent limitations on disjoint-access parallel
implementations of transactional memory. Theory of Computing Systems 49(4),
698–719 (2011)

http://developer.amd.com/wordpress/media/2013/09/45432-ASF_Spec_2.1.pdf
http://developer.amd.com/wordpress/media/2013/09/45432-ASF_Spec_2.1.pdf
http://arxiv.org/abs/1405.5689

Inherent Limitations of Hybrid Transactional Memory 199

8. Calciu, I., Shpeisman, T., Pokam, G., Herlihy, M.: Improved single global lock fall-
back for best-effort hardware transactional memory. In: Transact 2014 Workshop.
ACM (2014)

9. Dalessandro, L., Carouge, F., White, S., Lev, Y., Moir, M., Scott, M.L.,
Spear, M.F.: Hybrid NOrec: a case study in the effectiveness of best effort hard-
ware transactional memory. In: Gupta, R., Mowry, T.C. (eds.) ASPLOS, pp. 39–52.
ACM (2011)

10. Damron, P., Fedorova, A., Lev, Y., Luchangco, V., Moir, M., Nussbaum, D.: Hybrid
transactional memory. SIGPLAN Not. 41(11), 336–346 (2006)

11. Dice, D., Lev, Y., Moir, M., Nussbaum, D.: Early experience with a commer-
cial hardware transactional memory implementation. In: Proceedings of the 14th
International Conference on Architectural Support for Programming Languages
and Operating Systems. ASPLOS XIV, pp. 157–168. ACM, New York (2009)

12. Dragojević, A., Herlihy, M., Lev, Y., Moir, M.: On the power of hardware
transactional memory to simplify memory management. In: Proceedings of the
30th Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed
Computing. PODC 2011, pp. 99–108. ACM, New York (2011)

13. Guerraoui, R., Kapalka, M.: On obstruction-free transactions. In: Proceedings of
the Twentieth Annual Symposium on Parallelism in Algorithms and Architectures.
SPAA 2008, pp. 304–313. ACM, New York (2008)

14. Guerraoui, R., Kapalka, M.: Principles of Transactional Memory. Synthesis
Lectures on Distributed Computing Theory. Morgan and Claypool (2010)

15. Harris, T., Larus, J.R., Rajwar, R.: Transactional Memory, 2nd edn. Synthesis
Lectures on Computer Architecture. Morgan & Claypool Publishers (2010)

16. Herlihy, M., Luchangco, V., Moir, M., Scherer III, W.N.: Software transac-
tional memory for dynamic-sized data structures. In: Proceedings of the Twenty-
Second Annual Symposium on Principles of Distributed Computing. PODC 2003,
pp. 92–101. ACM, New York (2003)

17. Herlihy, M., Moss, J.E.B.: Transactional memory: architectural support for lock-
free data structures. In: ISCA, pp. 289–300 (1993)

18. Kumar, S., Chu, M., Hughes, C.J., Kundu, P., Nguyen, A.: Hybrid transactional
memory. In: Proceedings of the Eleventh ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming. PPoPP 2006, pp. 209–220. ACM, New York
(2006)

19. Lev, Y., Moir, M., Nussbaum, D.: Phtm: phased transactional memory. In: Work-
shop on Transactional Computing (Transact) (2007). http://research.sun.com/
scalable/pubs/TRANSACT2007PhTM.pdf

20. Matveev, A., Shavit, N.: Reduced hardware transactions: a new approach to hybrid
transactional memory. In: Proceedings of the 25th ACM Symposium on Parallelism
in Algorithms and Architectures, pp. 11–22. ACM (2013)

21. Ohmacht, M.: Memory Speculation of the Blue Gene/Q Compute Chip (2011).
http://wands.cse.lehigh.edu/IBM BQC PACT2011.ppt

22. Reinders, J.: (2012). http://software.intel.com/en-us/blogs/2012/02/07/
transactional-synchronization-in-haswell/

23. Riegel, T.: Software Transactional Memory Building Blocks (2013)
24. Riegel, T., Marlier, P., Nowack, M., Felber, P., Fetzer, C.: Optimizing hybrid trans-

actional memory: the importance of nonspeculative operations. In: Proceedings
of the 23rd ACM Symposium on Parallelism in Algorithms and Architectures,
pp. 53–64. ACM (2011)

http://research.sun.com/scalable/pubs/TRANSACT2007PhTM.pdf
http://research.sun.com/scalable/pubs/TRANSACT2007PhTM.pdf
http://wands.cse.lehigh.edu/IBM_BQC_PACT2011.ppt
http://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell/
http://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell/
http://www.qucosa.de/fileadmin/data/qucosa/documents/11559/Riegel_Diss_final.pdf

Why Non-blocking Operations
Should be Selfish

Joel Gibson1 and Vincent Gramoli1,2(B)

1 University of Sydney, Sydney, Australia
2 NICTA, Sydney, Australia

jgib4447@uni.sydney.edu.au, vincent.gramoli@sydney.edu.au

Abstract. Non-blocking data structures are often analysed by giving
an upper amortised running time bound in terms of the size of the data
structure and a measure of contention. The two most commonly used
measures are the point contention cP , the maximum number of processes
active at any one time during an operation, and the interval contention
cI , the number of operations overlapping with a given operation. In this
paper, we show that when summed across every operation in an exe-
cution, the interval contention cI is within a factor of 2 of the point
contention cP . Our proof relies on properties of interval graphs where at
least one simplicial vertex exists, and uses it to construct a lower bound
on the overall point contention. We show that this bound is tight.

This result contradicts the folklore belief that point contention leads
to a tighter bound on complexity in an amortised context, and provides
some theoretical grounds for recent observations that using less helping
in non-blocking data structures can lead to better performance. We also
propose a linked list algorithm based on Fomitchev and Ruppert’s algo-
rithm but with selfish operations: read-only operations that do not help
others but rather execute wait-free. The higher performance of our app-
roach compared to the original list confirms that reducing helping can
increase performance, with the same asymptotic amortised complexity.

Keywords: Helping · Lock-freedom · Wait-freedom · Point con-
tention · Process contention · Interval contention · Overlapping-interval
contention

1 Introduction

Non-blocking algorithms guarantee that some process completes an operation in
every sufficiently long execution1. They are appealing because they (i) do not
suffer from the preemption imposed by the scheduler, and (ii) do not require
the high cost of helping needed by common wait-free algorithms to make all
operations complete in a finite number of steps [2]. As an example, existing
non-blocking data structures that make use exclusively of compare-and-swaps

1 Note that non-blocking is sometimes used to refer to a larger class of progress
conditions, instead we use the less general definition from [1].

c© Springer-Verlag Berlin Heidelberg 2015
Y. Moses (Ed.): DISC 2015, LNCS 9363, pp. 200–214, 2015.
DOI: 10.1007/978-3-662-48653-5 14

Why Non-blocking Operations Should be Selfish 201

(CASes) for synchronisation have recently been shown to outperform other
state-of-the-art data structures [3]. A non-blocking update typically reads a
memory location, then takes steps before executing a CAS that compares the
previously seen value to the current value. A difference in these values indicates
an inconsistency due to a concurrent modification: the CAS fails and the steps
are typically re-executed. In a lock-free algorithm the step complexity (i.e., the
worst-case number of steps taken in an execution) of a single operation cannot
be bounded because it can fail and retry arbitrarily many times. Instead we con-
sider the step complexity across every operation in the execution, usually stated
as the amortised cost of an operation in terms of the size of the data structure
and some contention parameter c.

Two notions of contention have attracted lots of interest in the recent
years [4–8]. First, the interval contention cI is the number of operations over-
lapping with a given operation. An amortised bound on the step complexity in
terms of the interval contention is relatively easy to obtain by making operations
charge each other for steps that would usually be unnecessary in a sequential
execution. Provided an operation charges any other overlapping operation a con-
stant amount and at most a constant number of times, this leads naturally to
an amortised additive O(cI) term. Unfortunately, the interval contention of an
operation can be arbitrarily large in a system involving as few as two processes.
Second, the point contention cP is the maximum number of processes active at
any time during the operation [4]. An amortised bound on the step complexity in
terms of point contention is usually harder to achieve, for example the proofs in
[5,8] rely on reasoning about the relative ordering of individual CAS steps inside
operations. Some authors [6,7] have provided modifications of their algorithms
which perform extra helping so that they can tighten what would otherwise be
a bound in terms of the interval contention to a bound in terms of the point
contention. Since the point contention is bounded above by the maximum num-
ber of concurrent processes, it appears to be a tighter and more realistic bound
than the interval contention.

In this paper, we show that when summed across every operation in an
execution, cI is within a factor of 2 of cP . Our proof relies on properties of interval
graphs where the point (resp. interval) contention of an operation op is the size
of one of the largest cliques containing op (resp. op’s degree + 1). The presence of
at least one special vertex called simplicial, in any interval graph, allows us then
to construct a lower bound on the overall point contention. In other words, we
show that point contention and interval contention are interchangeable additive
factors of the amortised complexity of concurrent algorithms. We show that this
bound is tight, in the sense that given any 0 < ε < 1/2, there are executions in
which the ratio of the overall interval contention to the overall point contention
is arbitrarily close to 2− ε. Finally, we also compare these contention definitions
to two other definitions, the original interval contention definition [9] that we
call process contention, and the overlapping-interval contention [6]. We believe
our result to be important as it shows that point contention does not give a
tighter amortised complexity bound than interval contention.

202 J. Gibson and V. Gramoli

Our result challenges a popular belief that increasing the amount of helping
done by operations can reduce the asymptotic step complexity of data structures.
For example, in [6], the amortised complexity of a skip list operation is given as
O(cI), as an inconsistency caused by an update may be encountered by every
traversal concurrent with that update, and so the update may be charged O(cI)
times. The authors argue that by making the traversals perform extra helping so
as to resolve this inconsistency, the update will be charged at most O(cP) times.
So it seems that by introducing more helping into the algorithm, an additive
term of O(cI) can be reduced to O(cP). The authors of [7] argue similarly for
their lock-free binary search tree.

To illustrate how helping seemingly reduces the cost due to contention, con-
sider the execution of an algorithm depicted in Figure 1 representing the inter-
vals of seven operations, A, B, C, D, E, F , G, where time increases from left to
right. Operation A updates shared data, as indicated by the vertical bar. Before
operation A completes, other operations observe a transient inconsistent state
produced by A that incurs a cost. We say that operations, whose interval over-
laps A’s interval, charge A for the cost of observing this inconsistency. Since the
inconsistency was introduced by A, and must be resolved for A to finish, at most
cI operations can charge A for this. If, however, the first operation that observes
this inconsistency, namely B, helps the update by resolving it, then subsequent
operations E, F , G will no longer observe this inconsistency. As long as every
operation eagerly attempts to remove this inconsistency, at most cP operations
can charge A for observing the inconsistency. Since cP ≤ cI for each operation,
up until now it was believed to lead to a tighter bound on complexity, even in
an amortised context.

By contrast, extra helping could intuitively lower the performance of a data
structure, especially by forcing an operation, which would otherwise be read-

incons cost time

A

B

C

D

E
F

G

(a) Interval contention without extra
help

help

A

B

C

D

E
F

G

resolution

(b) Point contention with extra help

Fig. 1. It was recently noted [6,7] that if an update A creates a transient inconsistent
state, incons, that is encountered by concurrent traversals B,C,D,E, F,G then mak-
ing the other operations help another when encountering an inconsistency can reduce
the interval contention O(cI) to the point contention O(cP) by simply resolving the
inconsistency as early as the first operation, say B, encounters the inconsistency

Why Non-blocking Operations Should be Selfish 203

only, to write. Such a behaviour was recently observed on the Harris’ list-based
set [10] and led researchers to prevent read-only operations from writing: they
implemented what they called an “optimised” variant of Harris’ with a contains
operation that traverses logically deleted nodes without physically unlinking
them. The authors compared these two implementations on up to 40 hardware
threads and observed that their optimised version increases performance. Former
implementation variants of Harris’ algorithm also suggested the appeal of a wait-
free contains [11,12].

In the light of our result, we designed a new non-blocking list-based set
algorithm based on Fomitchev and Ruppert’s [5], but with a wait-free contains
operation which performs no writes. Their original list has amortised complexity
O(n + cP) per operation, whereas the modification is easily seen as O(n + cI),
which our result tells us is equivalent. We implemented Fomitchev and Ruppert’s
linked list in C. We compared the performance of our linked list against the
performance of Fomitchev and Ruppert’s linked list on a 64-core machine with
various sizes and update ratios. The results show that our linked list is more
efficient in all tested settings than Fomitchev and Ruppert’s. While we do not
claim that helping is always detrimental to the performance, these results confirm
empirically that limiting helping can lead to better performance, at no increase
of the amortised cost of an operation.

To conclude, we believe our result is not only insightful for theoreticians but
also for practitioners. First, an amoritised complexity with an additive O(cI)
term is equivalent to having an O(cP) term instead, without the burden of
modifying the algorithm or complicating the analysis required to measure the
point contention. Second, as modern chip multiprocessors offer more and more
cores, it is likely that enough processes (or threads) accessing a concurrent data
structures can proceed without being preempted by the operating system. In
this case, it seems that an implementation with selfish operations, which are
wait-free read-only operations that do not help other operations, could lead to
higher performance, simply because (i) read-only operations would avoid writ-
ing, hence limiting cache invalidations and (ii) update operations would fix any
inconsistency they introduce without being arbitrarily delayed via preemption.
Our result gives theoretical grounds to support favouring selfish operations over
helpful operations when all that distinguishes them is an additive O(cP) or O(cI)
term.

In Section 2 we define existing contention measures and explain how to reason
about them in terms of interval graphs. In Section 3, we show that in any finite
execution the overall point contention cannot be twice as large as the point
contention and that this bound is tight, and briefly show related results for the
process contention and the overlapping-interval contention. In Section 4 we show
empirically that replacing a helpful contains operation by a selfish one increases
the performance of Fomitchev and Ruppert’s linked list. We list directions to
explore new contention metrics in Section 5. We present the related work in
Section 6 and we conclude in Section 7.

204 J. Gibson and V. Gramoli

2 Preliminaries

Let a finite execution α involving P processes be a finite set O of operations with
two mappings I and π. I : O → R×R maps operations to compact real intervals,
and π : O → {1, . . . , P} maps operations to the processes that executed them.
If for two operations op, op′ ∈ O we have I(op) ∩ I(op′) �= ∅, we say that op
and op′ overlap. Furthermore, I should be injective2, and the execution should
be well-formed : any two operations mapping to the same process should not
overlap. Figure 2 shows an example of a finite execution.

A B

C D E F

G H

Fig. 2. An example execution involving 3 processes and 8 operations. The point con-
tentions of A, C, D, and G are 3, while E, B, H, and F are 2. The process contention
of E is 2, and of B is 3. The interval contentions of A, B, and C are 5, 4, and 3
respectively. The overlapping-interval contention of E is 5.

Definition 1. In a finite execution α = (O, P, I, π), the point contention cP ,
process contention cK , interval contention cI , and overlapping-interval con-
tention cOI are functions O → Z+ defined by:

cP (op) = max
x∈I(op)

|{op′ ∈ O : x ∈ I(op′)}|

cK(op) = |{π(op′) : op′ ∈ O ∧ op′ overlaps op}|
cI(op) = |{op′ ∈ O : op′ overlaps op}|

cOI(op) = max
op′∈O

op′ overlaps op

cI(op′)

Proposition 1. For any operation op, 1 ≤ cP (op) ≤ cK(op) ≤ cI(op) ≤
cOI(op), and cK(op) ≤ P .

Proof. Let S = {op′ ∈ O : op′ overlaps op}, and for any x ∈ I(op), let Sx =
{op′ ∈ O : x ∈ I(op′)}. The definitions of contention for the operation op now
become:

cP (op) = max
x∈I(op)

|Sx| cI(op) = |S|

cK(op) = |π(S)| cOI(op) = max
op′∈S

cI(op′)

2 This is not restrictive: any finite execution in which two intervals are identical may
be perturbed slightly such that they are not, without affecting contention.

Why Non-blocking Operations Should be Selfish 205

By these characterisations we find cOI(op) ≥ cI(op) because op ∈ S, and
cI(op) ≥ cK(op) because a set is at least as large as its image under a map.
Note that since the execution is well-formed, |Sx| = |π(Sx)|, and since we have
Sx ⊆ S for all x ∈ I, it follows that cP (op) ≤ cK(op). Finally, all of these bounds
are tight by considering an execution containing one operation and one process.

All that is needed to calculate cI and cOI is information about which pairs
of operations overlap. In fact, this is the case for cP as well. Hence a natural
setting to analyse these measures of contention is an interval graph, which retains
the information of which operations overlap, while hiding the complications of
processes and exact points in time. First we introduce some terminology.

Any graphs G = (V,E) considered here are finite, undirected, and without
multiple edges or loops. V denotes the vertex set and E denotes the edge set. For
any vertex subset U ⊆ V , G[U] = (U,E ∩(U ×U)) is called the subgraph induced
by U . A vertex subset U ⊆ V forms a clique if the subgraph G[U] is complete.
For any vertex v, its neighbourhood N(v) consists of all vertices incident to v. A
vertex v is called simplicial if the subgraph induced by its neighbours and itself
G[{v} ∪ N(v)] is complete.

Definition 2. The interval graph of a finite set of real intervals S is the graph
with vertex set S, with an edge between two intervals I, J ∈ S if I �= J and
I ∩ J �= ∅.

C

A

G

D E

B

H

F

Fig. 3. The interval graph corresponding to the execution in Figure 2. The vertices
C, D, H and F are simplicial in this graph.

Definition 3. A perfect elimination order is an ordering {vi}n
i=1 of vertices in

a graph such that for all 1 ≤ i ≤ n, vi is simplicial in G[v1, . . . , vi].

Interval graphs belong to a larger class of graphs called chordal graphs, which
are graphs in which any cycle of length 4 or more always contains a chord, an
edge connecting two non-adjacent vertices of the cycle. It is a well-known fact
that chordal graphs are characterised completely by the existence of a perfect
elimination order. In the case of interval graphs the existence of such an order
is easy to see, and so a short proof is given below.

206 J. Gibson and V. Gramoli

Lemma 1. Every interval graph on n vertices admits a perfect elimination
order.

Proof. The case for n = 1 is clear. We proceed by induction: assume that the
claim holds for interval graphs with n−1 vertices. Take the vertex v correspond-
ing to the interval with earliest finishing time: this vertex is simplicial since the
finishing time intersects every interval which overlaps v. We already have a per-
fect elimination order {vi}n−1

i=1 of G − v by assumption, and so setting vn = v
gives a perfect elimination order {vi}n

i=1 of G.

Finally, in the interval graph of an execution, the point contention of an
interval is equal to the size of the largest clique containing the vertex corre-
sponding to that interval. This can be seen by considering the mapping R → 2O,
x �→ {op ∈ O | x ∈ I(op)} which maps points to the operations active at that
point in time: it will always map a point to an empty set, or a maximal clique.
For this reason we consider the following lemma, which will allow us to put a
lower bound on the overall point contention in terms of the number of vertices
n and the number of edges m.

Lemma 2. In an interval graph G, let M(v) be the size of a maximum clique
containing the vertex v. Then

∑
v∈V M(v) ≥ n + m.

Proof. Take a perfect elimination order {vi}n
i=1 of the vertices of G, and define

Gi = G[v1, . . . , vi]. This gives a family of graphs Gn, . . . , G1, such that Gn = G,
G1 is a single vertex, and Gj = Gj+1 − vj+1 for all 1 ≤ j < n. Let di be the
degree of vi in Gi. Since vi is simplicial in Gi, {vi} ∪ N(vi) forms a clique in Gi

and hence also in G, so 1 + di ≤ M(vi). Finally, note that di is the number of
edges removed when removing vi from Gi, so

∑n
i=1 di = m. So

∑
v∈V M(v) ≥∑n

i=1(1 + di) = n + m.

3 Equivalence of Amortised Measures of Contention

For any finite execution α, let cP (α) =
∑

op∈O cP (op), and likewise for the other
measures of contention.

Theorem 1. In any finite execution α, cP (α) ≤ cI(α) < 2cP (α).

Proof. Form the interval graph using the intervals I(op) for each op ∈ α. By
the definitions of contention given in Section 2, we can see that the interval
contention of a single operation op is cI(op) = 1 + deg op, where deg denotes
the degree of the operation’s interval in the interval graph. Summing across all
operations, cI(α) = n+2m, where n is the number of vertices and m the number
of edges in the interval graph. As discussed previously, the point contention
cP (op) is the size of the largest clique containing op in the interval graph. So by
Lemma 2 we have n + m ≤ cP (α).

Putting these together with the inequality in Proposition 1, we find that

n + m ≤ cP (α) ≤ cI(α) ≤ n + 2m

Why Non-blocking Operations Should be Selfish 207

and so by taking the ratio of cI(α) to cP (α),

1 ≤ cI(α)
cP (α)

≤ n + 2m

n + m
= 1 +

m

n + m
< 2

Although this fact alone tells us that in amortised terms, cP = Θ(cI) and so
the point contention and interval contention are equivalent, it is interesting to
examine what a “worst-case” execution is. Intuitively, we want to keep the point
contention small, while making intervals overlap as many times as possible. Such
a construction is given in the proof of Theorem 2 and illustrated in Figure 4,
and shows that the bound given above is tight.

Theorem 2. For any 0 < ε < 1/2, there exists a family of executions {αn}n≥1

where each αn has n operations and εn processes, such that

lim
n→∞

cI(αn)
cP (αn)

= 2 − ε.

Proof. Let αn be an execution containing n operations labelled opi for 0 ≤ i < n,
and let 1 ≤ k ≤ n/2. We define the mappings π(opi) = i (mod k) and I(opi) =
[i, i + k − 1

2] for all 0 ≤ i < n. It is easy to check that at the start or end point
of each operation there are k operations active at that point in time and so
cP (op) ≥ k for all operations. Since there are only k processes, cP (op) = k for
all operations, so cP (αn) = nk.

By the length and placement of operations, for every operation op the set
of operations intersecting its left endpoint is disjoint to the set of operations
intersecting its right endpoint, and the union of these is every operation con-
current with op. Hence every operation but the first k − 1 and the last k − 1
operations have interval contention 2k − 1. The first operation has interval con-
tention k, the next k + 1, and so on until the kth operation has interval con-
tention 2k − 1, and similarly for the last k operations. By overcounting the
interval contention overall and subtracting off the start and end defecits, we
find that cI(αn) = n(2k − 1) − 2(0 + 1 + . . . + (k − 1)) = 2nk − n − k(k − 1).
Letting k = εn and taking the ratio of interval to point contention, we get
cI(αn)/cP (αn) = 2 − ε − 1−ε

εn .

Fig. 4. An example worst-case construction with n = 9 and k = 3.

Finally, Theorem 1 and Proposition 1 give the chain of inequalities cP (α) ≤
cK(α) ≤ cI(α) < 2cP (α) and so the process contention is also amortised equiv-
alent to the point contention. The overlapping-interval contention, on the other

208 J. Gibson and V. Gramoli

hand, cannot be bounded within a constant factor of the point contention. Con-
sider an execution of two processes, where the first process has one long-running
operation, and the second process runs n − 1 short operations, all of which
execute inside the interval of the long-running operation. In this execution α,
we have cP (op) = 2 and cOI(op) = n for every operation, so cP (α) = 2n and
cOI(α) = n2.

4 Evaluation of the Selfish Linked List

A key application of Theorem 1 is that algorithms which had very strict helping
requirements in order to attain a O(cP) amortised additive complexity term may
be able to be modified to have weaker helping requirements, without any change
in asymptotic complexity. It has been observed in practice [10] that having wait-
free read-only operations on concurrent data structures often gives an increase
in performance, regardless of asymptotic complexity. Here we modify an existing
non-blocking linked-list algorithm by Fomitchev and Ruppert [5] to have a wait-
free contains operation and show that the resulting algorithm, namely the Selfish
linked list, gives better performance.

4.1 The Selfish Linked List Algorithm

First, we recall Fomitchev and Ruppert’s construction of the list. Each node
stores three fields: a key field, indicating the value represented by that node
in the set, a backlink field, used when traversal is interrupted by a concurrent
modification, and a successor field. The successor field stores a right pointer to
the next node in the list and two booleans flag and mark. The list contains two
dummy head and tail nodes, with keys −∞ and ∞ respectively.

When a node is to be deleted, its predecessor’s flag bit is set, indicating that
the predecessor’s successor field may not be modified until the node has been
removed. Following this, the node’s mark bit is set, indicating its successor field
may not be modified from now on, and the node’s backlink field is set to point to
the predecessor. Finally, the predecessor’s successor field is modified to remove
the flag bit and swing the right pointer over the node being deleted.

Every operation in the algorithm performs eager helping: as soon as a traver-
sal encounters a node with a mark set, it attempts to help remove that node from
the list. Removes and inserts which encounter nodes with flag bits set must help
the concurrent remove operation to physically remove those nodes. In addition,
any attempts to flag nodes may have to backtrack through chains of backlinks
in order to reach nodes which are not logically deleted. The existence of the
backlinks means that nodes do not ever have to restart from the beginning of
the list and is key to an amortised O(n + cP) time per operation.

Our modification is very similar to the modification of the Harris list pre-
sented in [11,12] to replace the contains operation, which would usually attempt
to help remove marked nodes from the list, with a read-only operation which
makes a single pass through the list. The pseudocode of the contains operation is

Why Non-blocking Operations Should be Selfish 209

Algorithm 1. The wait-free Contains operation
1: procedure Contains(k)
2: current ← head
3: marked ← false
4: while current.key < k do
5: succ ← current.succ
6: marked ← succ.mark
7: current ← succ.right
8: end while
9: return (current.key = k) ∧ (marked = false)

10: end procedure

depicted in Algorithm 1. The operation is linearisable and wait-free, and replaces
the original lock-free contains operation: all other operations of the list remain
as in the original. Since the operations in the original list had an amortised com-
plexity of O(n + cP) and we change only the read-only operation, we conclude
our new list has an amortised complexity of O(n + cI) for each operation: in
the presence of only updates, the complexity is O(n + cP) as originally shown
by Fomitchev and Ruppert, and introducing contains operations means that at
most cI more is billed to each concurrent update by a contains operation that
traverses a logically deleted node. We implemented both the original algorithm
and our modification in C and we did not include any memory reclamation tech-
nique. Implementing a memory reclamation technique is not straightforward and
can substantially impact performance [13].

4.2 Experimental Evaluation

We performed the experiment with Synchrobench [3] on a 4 socket AMD Opteron
6378 2.4 GHz 16 cores (64 cores in total) machine running Fedora Linux 18. GCC
4.9.2 was used to compile the C code. The benchmarking program initialises
the data structures with N elements randomly selected from {1, . . . , 2N}, and
spawns from 1 to 78 threads. Each test runs for 10 seconds. Each thread chooses
of the three operations contains, insert, or remove based on the update ratio.
In the data shown here, the update ratio is always 10%, meaning that 10% of
operations are contains operations, 45% are insert, and 45% are remove. Each
datapoint shown is an average of 20 runs, and the error bars are the sample
standard deviation of those runs.

As shown in Figure 5, the list with our modification has much higher through-
put than the original algorithm, especially in the small case of a 128 element
list, where there is a 20% throughput improvement. We conclude that limiting
helping can increase performance in concurrent data structures, and our result in
Theorem 1 gives a guarantee that our new O(n+ cI) algorithm is asympotically
equivalent to the old O(n + cP) algorithm.

210 J. Gibson and V. Gramoli

4
6
8

10
12
14
16
18
20

0 10 20 30 40 50 60 70 80
0
2
4
6
8

10
12
14
16

0 10 20 30 40 50 60 70 80

4
5
6
7
8
9

10
11
12
13
14
15

0 10 20 30 40 50 60 70 80
0

2

4

6

8

10

12

0 10 20 30 40 50 60 70 80

T
h
ro

u
g
h
p
u
t

(1
0
6

o
p
s/

se
c)

Threads

128 Elements at 10% update

original
waitfree

Threads

512 Elements at 10% update

original
waitfree

T
h
ro

u
g
h
p
u
t

(1
0
6

o
p
s/

se
c)

Threads

128 Elements at 20% update

original
waitfree

Threads

512 Elements at 20% update

original
waitfree

Fig. 5. A comparison of Fomitchev and Ruppert’s original algorithm to our modi-
fied version with a wait-free contains implementation. Both algorithms have the same
asymptotic worst-case complexity. Each datapoint shown is an average of 20 runs of
10 seconds each. The vertical bars represent the sample standard deviation.

5 Towards a More Refined Notion of Contention

As discussed previously, there has been a view that by introducing more helping
into an algorithm, the amortised step complexity can be “tightened” from an
additive term of O(cI) to O(cP). By Theorem 1, we know these two quantities
to be amortised equivalent, so clearly this cannot be distinguished by the point
or interval contention. However, this does not rule out the existence of a more
refined measure of contention that does separate these cases.

Consider an execution of one long-running process Q and m short-running
processes P1, . . . , Pm. Suppose we have a structure featuring logical deletions,
and the first step in a removal is to mark a node logically deleted. The long-
running process Q marks an element as logically deleted before being suspended
for a long time, while the short-running processes repeatedly access the data

Why Non-blocking Operations Should be Selfish 211

Q

P1 P2 P3 P4 P5 Pm

Fig. 6. Suppose Q causes an inconsistency in the data structure and then gets sus-
pended for a long time. If every operation performs eager helping, an inconsistency
caused by Q will only be observed once. If no operations perform helping, it will be
observed m times.

structure. This is illustrated in Figure 6. If the short running processes Pi per-
form no helping to try to physically remove the node, each will spend extra time
traversing a node not present in the set, and incur a constant cost. The total
cost of these extra steps is Θ(m). On the other hand, if every operation eagerly
tries to help finish any partially completed delete operation it comes across, the
first short operation P1 will suffer this (constant) cost, and the rest will traverse
with no extra cost. So without helping, there are Θ(m) extra steps that need to
be carried out, and with helping there is only O(1).

The current measures we have of contention, the point and interval con-
tention, will not separate these cases. Some finer measure of contention is needed
to capture this case and show when helping can really benefit an algorithm in an
asymptotic sense. We believe that some of the theory developed here could be
useful in determining and analysing a new measure of contention that separates
these two cases.

6 Related Work

For more than two decades, contention has been known to be an important
complexity factor of concurrent algorithms [14]. This observation motivated
the definitions of various contention measures: hot-spot contention [14], pro-
cess contention (originally called interval contention) [9], interval and point
contentions [4], step contention [15] and overlapping-interval contention [6]. An
overview of some of these properties was given in [16].

To diminish contention several techniques were adopted. Adaptive algo-
rithms [4] were designed to implement applications that could adapt to the point
contention during the execution of an operation. Contention-sensitive data struc-
tures [17] propose to reduce the cost of lock-based data structures in the absence
of contention.

A pragmatic way of reducing contention in data structures is to split oper-
ations into abstract updates and structural updates. The speculation-friendly
binary search tree was the first algorithm to generalize this decoupling by
both keeping logically deleted nodes and relaxing the balance constraints [18].

212 J. Gibson and V. Gramoli

The contention-friendly binary search tree adopts the same decoupling but syn-
chronises with locks rather than transactional memory [19]. A non-blocking chro-
matic tree exploits this decoupling up to a constant number k of violations hence
upper-bounding the imbalance at time t by k + c where the contention c repre-
sents the number of updates in progress at time t [20]. Finally, this decoupling
was used to implement efficient non-blocking skip lists that do not suffer tradi-
tional contention hotspots [21,22].

Many linked list algorithms have been proposed over the last two decades [5,
11,23–25]. Although potentially very efficient, lock-based linked lists [11,25] gen-
erally do not perform as well as non-blocking ones [5,24] when the number of
processes exceeds the number of available computing resources. This is typically
due to the contention induced on locks. Non-blocking linked lists are thus par-
ticularly interesting. Harris’ linked list [24] is still one of the fastest [3] but its
cost per operation can be Ω(ncP) in some execution. Fomitchev and Ruppert
provide a linked list with an amortized complexity of O(n+cP) per operation [5].
Our Selfish list, of asymptotically equivalent complexity O(n+ cI), shows better
performance.

Both wait-free and non-blocking properties guarantee progress regardless of
the way the operating system schedules threads [26]. Our algorithm is non-
blocking but not wait-free as it guarantees wait-freedom only of the contains
operation. Recent results showed that under a stochastic scheduler, some non-
blocking algorithms, also called single CAS universal, are wait-free with proba-
bility 1 [27], however, our algorithm does not fall in this category. There exist
both methodologies [28] and simulation techniques [29] to obtain wait-freedom
with a slight performance loss: one can run a lock-free fast path and start a
wait-free slow path if the fast path was unsuccessful.

7 Conclusion

When summed across every operation in an execution, the point contention
cannot be twice larger than interval contention. Our proof is interesting in its
own right as it draws a natural relation between the theory of contention and
the theory of interval graphs, where the point contention of an operation is its
degree plus one in the graph and the interval contention is the size of one of the
largest cliques the operation belongs to in the graph.

The execution α of several non-blocking data structure algorithms [5–8] is
known to have an asymptotic amortised complexity with an additive contention
term of either cI(α) or cP (α). Our result shows that these terms are equivalent,
hence contradicting the folklore knowledge that operations should necessarily
help each other to achieve a tighter complexity bound even in an amortised
context.

We evaluated the performance of a non-blocking list and a new variant of
it that consists of the same algorithm but with a selfish contains operation.
Their complexities O(n + cP) and O(n + cI), respectively, are known now to
be equivalent. Our results on a 64-core machine show that selfishness increases

Why Non-blocking Operations Should be Selfish 213

performance in all settings we tested, confirming the practical relevance of our
bound.

We believe that our result will be useful to simplify the analysis of non-
blocking data structures in terms of amortised complexity as deriving the com-
plexity based on interval contention seems easier than point contention. As part
of future work, we would like to analyse existing algorithms in the light of our
new result.

Availability. The source code used in this paper is available in Synchrobench:
https://sites.google.com/site/synchrobench.

Acknowledgments. NICTA is funded by the Australian Government through the
Department of Communications and the Australian Research Council through the ICT
Centre of Excellence Program.

References

1. Herlihy, M.: Wait-free synchronization. ACM Trans. Program. Lang. Syst. 13(1),
124–149 (1991)

2. Censor-Hillel, K., Petrank, E., Timnat, S.: Help! In: PODC, pp. 241–250 (2015)
3. Gramoli, V.: More than you ever wanted to know about synchronization: Syn-

chrobench, measuring the impact of the synchronization on concurrent algorithms.
In: PPoPP, pp. 1–10 (2015)

4. Attiya, H., Fouren, A.: Algorithms adapting to point contention. J. ACM 50(4),
444–468 (2003)

5. Fomitchev, M., Ruppert, E.: Lock-free linked lists and skip lists. In: PODC,
pp. 50–59 (2004)

6. Oshman, R., Shavit, N.: The SkipTrie: low-depth concurrent search without rebal-
ancing. In: PODC, pp. 23–32 (2013)

7. Chatterjee, B., Nguyen, N., Tsigas, P.: Efficient lock-free binary search trees. In:
PODC, pp. 322–331 (2014)

8. Ellen, F., Fatourou, P., Helga, J., Ruppert, E.: The amortized complexity of non-
blocking binary search trees. In: PODC, pp. 332–340 (2014)

9. Afek, Y., Stupp, G., Touitou, D.: Long lived adaptive splitter and applications.
Distributed Computing 15(2), 67–86 (2002)

10. David, T., Guerraoui, R., Trigonakis, V.: Asynchronized concurrency: the secret
to scaling concurrent search data structures. In: ASPLOS, pp. 631–644 (2015)

11. Heller, S., Herlihy, M.P., Luchangco, V., Moir, M., Scherer III, W.N., Shavit,
N.N.: A lazy concurrent list-based set algorithm. In: Anderson, J.H., Prencipe, G.,
Wattenhofer, R. (eds.) OPODIS 2005. LNCS, vol. 3974, pp. 3–16. Springer,
Heidelberg (2006)

12. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kauf-
mann Publishers Inc., San Francisco (2008)

13. Michael, M.M.: High performance dynamic lock-free hash tables and list-based
sets. In: SPAA, pp. 73–82 (2002)

14. Dwork, C., Herlihy, M., Waarts, O.: Contention in shared memory algorithms. J.
ACM 44(6), 779–805 (1997)

https://sites.google.com/site/synchrobench

214 J. Gibson and V. Gramoli

15. Attiya, H., Guerraoui, R., Kouznetsov, P.: Computing with reads and writes
in the absence of step contention. In: Fraigniaud, P. (ed.) DISC 2005. LNCS,
vol. 3724, pp. 122–136. Springer, Heidelberg (2005)

16. Hendler, D.: Non-blocking algorithms. In: Encyclopedia of Parallel Computing.
Springer, pp. 1321–1329 (2011)

17. Taubenfeld, G.: Contention-sensitive data structures and algorithms. In: Keidar, I.
(ed.) DISC 2009. LNCS, vol. 5805, pp. 157–171. Springer, Heidelberg (2009)

18. Crain, T., Gramoli, V., Raynal, M.: A speculation-friendly binary search tree. In:
PPoPP, pp. 161–170 (2012)

19. Crain, T., Gramoli, V., Raynal, M.: A contention-friendly binary search tree. In:
Wolf, F., Mohr, B., an Mey, D. (eds.) Euro-Par 2013. LNCS, vol. 8097, pp. 229–240.
Springer, Heidelberg (2013)

20. Brown, T., Ellen, F., Ruppert, E.: A general technique for non-blocking trees. In:
PPoPP, pp. 329–342 (2014)

21. Crain, T., Gramoli, V., Raynal, M.: No hot spot non-blocking skip list. In: ICDCS,
pp. 196–205 (2013)

22. Dick, I., Fekete, A., Gramoli, V.: Logarithmic data structures for multicores. Tech-
nical Report 697, University of Sydney (2014)

23. Valois, J.D.: Lock-free linked lists using compare-and-swap. In: PODC,
pp. 214–222 (1995)

24. Harris, T.L.: A pragmatic implementation of non-blocking linked-lists. In:
Welch, J.L. (ed.) DISC 2001. LNCS, vol. 2180, pp. 300–314. Springer,
Heidelberg (2001)

25. Gramoli, V., Kuznetsov, P., Ravi, S., Shang, D.: Brief announcement: a
concurrency-optimal list-based set. In: DISC. LNCS (2015)

26. Herlihy, M., Shavit, N.: On the nature of progress. In: Fernàndez Anta, A.,
Lipari, G., Roy, M. (eds.) OPODIS 2011. LNCS, vol. 7109, pp. 313–328. Springer,
Heidelberg (2011)

27. Alistarh, D., Censor-Hillel, K., Shavit, N.: Are lock-free concurrent algorithms
practically wait-free? In: STOC, pp. 714–723 (2014)

28. Kogan, A., Petrank, E.: A methodology for creating fast wait-free data structures.
In: PPoPP, pp. 141–150 (2012)

29. Timnat, S., Petrank, E.: A practical wait-free simulation for lock-free data struc-
tures. In: PPoPP, pp. 357–368 (2014)

Hybrid Transactional Memory Revisited

Wenjia Ruan and Michael Spear(B)

Department of Computer Science and Engineering,
Lehigh University, Bethlehem, USA
{wer210,spear}@cse.lehigh.edu

Abstract. Hybrid Transactional Memory (TM) uses available hardware
TM resources to execute language-level transactions, and falls back to
a software TM implementation for those transactions that cannot com-
plete in hardware. Ideally, a hybrid TM would allow hardware and soft-
ware transactions to run concurrently, but would not waste hardware
TM resources on coordination between the two classes of transactions.
In addition, it should scale well, incur little latency, offer strong safety
guarantees, and provide some degree of fairness.

We introduce a new hybrid TM algorithm, “Hybrid Cohorts”, in
which hardware transactions do not modify global metadata, and soft-
ware transactions have extremely low per-access overhead. The tradeoff
is that hardware transactions cannot commit while software transactions
are in flight. Evaluation on an 8-thread Intel Haswell CPU shows compet-
itive performance with the current state-of-the-art. Furthermore, it does
so while providing acceptable levels of fairness and safety, and offering
opportunities for hardware acceleration.

1 Introduction

Since the time when Hybrid Transactional Memory (TM) was first proposed [6],
hardware TM (HTM) support has become available in microprocessors from
IBM [11,21] and Intel [10]. These HTM systems are “best effort”, meaning
that they do not guarantee that they will successfully commit any transac-
tion attempt. Failure may arise for many reasons, to include conflicts with other
transactions, memory footprints that exceed the HTM capacity, system calls,
and timer interrupts. The goal of Hybrid TM (HyTM) is to exploit best-effort
HTM whenever possible, and fall back to software TM (STM) when a transac-
tion cannot complete in hardware [6]. This approach promises to scale well and
incur low latency when most transactions complete in hardware, with worst-case
overhead and scalability comparable to the underlying STM.

The traditional approach to implementing HyTM is to begin with an STM,
and try to accelerate it using HTM. Early STM algorithms required interac-
tion with per-location metadata, and hybrid versions of these algorithms wasted
limited hardware capacity on this metadata [6,12,16]. Worse yet, false shar-
ing of cache lines that held metadata could result in additional HTM aborts,
and increased fallback to the STM path. The use of NOrec STM [5] as a
baseline enabled HyTM algorithms to avoid per-access overheads. In NOrec-
based HyTM [4,14,16], a sequence lock serializes the commit of the STM, and
c© Springer-Verlag Berlin Heidelberg 2015
Y. Moses (Ed.): DISC 2015, LNCS 9363, pp. 215–231, 2015.
DOI: 10.1007/978-3-662-48653-5 15

216 W. Ruan and M. Spear

all conflicts are detected by comparing the values read by transactions. How-
ever, NOrec-based HyTM algorithms suffer from a scalability bottleneck, since
hardware transactions must read, and often write, the sequence lock. Aborts
from these accesses could be avoided if the hardware allowed nontransactional
accesses [4], but the accesses themselves are necessary. Furthermore, if these
accesses are delayed until the end of the transaction [2,3], the TM ceases to pro-
vide the minimum safety requirement of opacity [9], and it can admit erroneous
behavior [7]. However, “eager subscription” to the metadata for coordinating
hardware and software transactions causes all hardware transactions to abort
on any software commit.

The most recent innovation in HyTM is to add hardware acceleration to
the STM path, as in Reduced Hardware NOrec (RHNOrec) [14]. The resulting
“reduced transaction” technique transforms certain software transactions into
hardware transactions, thereby avoiding fallback to a slow STM. The current
state of the art achieves performance comparable to Hybrid NOrec, but does
not require nontransactional loads.

A common assumption among HyTM algorithms is that STM and HTM
transactions should coexist at any time, with neither favored over the other. In
contrast, PhaseTM [13], required all transactions to use same mode, whether
HTM, STM, or serialized on a single lock. Mode switches were expensive, but
in return the HTM mode had no overhead for interacting with STM. The most
popular HyTM in practice today is a PhaseTM that switches between HTM
mode and a single global lock [24]. If we accept that HTM capacities are more
likely to increase than to decrease, then we may assume that STM fall-back will
grow increasingly rare. However, as core counts rise, fall-back to a single lock
becomes increasingly untenable. These observations motivate our approach. We
seek to make the common case (HTM) as fast as possible, by avoiding interaction
with (unlikely) concurrent software transactions. When a software transaction is
needed, we want it to finish as quickly as possible, to limit its impact on current
and future hardware transactions. We also require the HyTM to be opaque.

The innovation we propose is to prioritize software transactions while they
are running, by augmenting the Cohorts algorithm [18]. In Cohorts, transac-
tions block at their commit point, until such time as all threads are either (a)
ready to commit a transaction, or (b) not executing a transaction. This allows
software transactions to avoid any high-latency global metadata accesses during
execution. In Hybrid Cohorts (HyCo), we prevent hardware transactions from
committing when software transactions are in-flight. We also apply the reduced
transaction technique to the Cohorts commit phase, which prevents blocking and
eliminates a bottleneck from Cohorts STM. The net effect is an opaque HyTM
that scales well and avoids bottlenecks for hardware transactions.

The remainder of this paper is organized as follows. In Section 2, we discuss
the overall approach of the Hybrid Cohorts algorithm, with a focus on the state
machine that governs transaction behavior. Section 3 presents the pseudocode
for one implementation of the state machine, which aims to limit the impact on
transactions that use HTM resources throughout their execution. In Section 4, we

Hybrid Transactional Memory Revisited 217

present the results of performance experiments. Section 5 concludes and discusses
future research directions.

2 The Hybrid Cohorts Approach

HyTM algorithms that descend from NOrec share two key properties: First,
the opacity of each software transaction (STx) is preserved by requiring every
hardware transaction (HTx) increment a global counter on hardware transaction
commit; the counter is checked by every STx on every read of shared data. (Note
that the increment may be elided if it can be proven that no STx exist.) Second,
to prevent an HTx from observing inconsistent state, it must not perform reads
or commit during the interval when an STx is committing its writes. In Hybrid
NOrec, the second property was kept performant via a set of per-thread counters,
or via special instrumentation on every load by an HTx.1 In RHNOrec, the
overhead of second property is avoided by executing the suffix of all but the
largest STx (the interval between its first write through the completion of their
commit) as a hardware transaction.

HyCo takes a different approach to these challenges. First, to ensure the opac-
ity of STx, HTx are not allowed to commit whenever any STx is between its
begin and commit points. In the absence of nontransactional loads, this necessi-
tates that HTx abort if they reach their commit point and then observe an active
STx. However, it also means that HTx do not need to modify shared variables at
commit time in order to notify concurrent STx of the need to validate. Second, to
ensure that HTx do not observe inconsistent state, the commit-time validation
and writeback of STx is first attempted as a “reduced” hardware transaction. If
the reduced transaction cannot commit, the STx waits until all concurrent HTx
complete, and then performs serialized writeback. Note that by also blocking
STx commits when there are concurrent in-flight STx, validation by in-flight
STx is no longer necessary: during any STx execution, memory is immutable.
Less instrumentation is required within STx, which reduces STx execution time
and should limit the impact of HTx blocking or aborting at their commit point
due to concurrent STx execution.

To make the behavior of transactions in HyCo more clear, Figure 1 presents
a state machine to describe the behavior of transactions. There are 6 states:

– No STx (NS): This is the default state of the system. In this state, HTx may
begin, commit, and abort.

– One Serial Transaction (S): Only one transaction is running, and it cannot
be aborted. This allows a transaction to perform I/O [20,23].

– STx Active (SA): At least one STx has started but has not yet reached its
commit point. No transaction is allowed to commit changes to shared state.

– STx Commit Pending (CP): A proper, nonempty subset of STx have reached
their commit points. No transaction is allowed to commit changes to shared

1 This instrumentation requires nontransactional loads from within the transaction,
which are not supported by TSX.

218 W. Ruan and M. Spear

S

Last writer STx
ready to commit
& no read-only
STx remain

CP

Writer STx ready to commit /
Read-only STx commit /

HTx begin* /
HTx abort*SA

HTx or STx begin /
Read-only STx commit /

HTx abort

HC

STx HTM commit /
STx abort /

HTx begin* /
HTx commit* /

HTx abort*

SC
STx slow commit /

STx slow abort

NSNS

SA

/

CP

HC

STxTT

H
H

SC

mit
 y

STxTT remain

Fig. 1. State transitions of the Hybrid Cohorts algorithm.

state. To prevent extended blocking of ready-to-commit STx, new STx may
not begin.

– STx Hardware Commit (HC): All STx have reached their commit point, and
are attempting to commit via reduced hardware transactions. STx cannot
begin, since shared memory may be changed.

– STx Software Commit (SC): A proper, nonempty subset of STx cannot com-
mit via reduced hardware transactions, and are in the process of committing
sequentially. No new transactions may begin.
State transitions are triggered by the following transaction events. With the

exception of HTx Abort, these events occur on the boundaries of transactions:

– HTx Begin: A thread attempts to begin a transaction in HTx mode.
– HTx Commit: An HTx commits its changes to shared memory.
– HTx Abort: An HTx fails due to conflicts with other transactions.
– Serial Begin: A thread begins a serial transaction.
– Serial Commit: A serial transaction commits.
– STx Begin: A thread attempts to begin a transaction in STx mode.
– STx Commit (read-only): When an STx reaches its commit point, if it deter-

mines that it is read-only, it does not need to block in order to commit, since
its commit cannot affect concurrent STx.

– STx Ready to Commit: An STx reaches its commit point, and is not read-
only.

– STx Abort: An STx, during its commit operation, validates and determines
that it conflicts with a committed transaction.

– STx HC Commit: An STx commits using a reduced hardware transaction.

Hybrid Transactional Memory Revisited 219

– STx HC Fail: An STx cannot commit via a reduced hardware transaction
(e.g., because it has accessed too many locations).

– STx Slow Commit: An STx commits via the serialized commit protocol.

In Figure 1, the lack of a label on an arc indicates that a transaction behavior
is either impossible or not allowed. For example, an HTx is not allowed to commit
in the SA or CP states, and it is not possible for an STx to abort in these states.
Labels marked with an asterisk(∗) are optional, and provide more opportunities
for HTx to make progress. The order in which transactions are scheduled in the
HC and SC modes can be governed by arbitrary contention management policies.
For this discussion, we assume that the contention manager randomly chooses
the order in which transactions attempt to commit in SC, and transactions
attempt to commit immediately upon transition to HC.

Following Dalessandro et al. [4], the underlying STM uses value-based vali-
dation. STx do not update memory directly, but instead buffer their writes in a
private log, and then replay them at commit time. These decisions ensure that
HTx do not observe uncommitted state during their execution, and need not
check per-location metadata on each load and store. The only global metadata
for HyCo is related to the state machine, and it is only accessed at transaction
boundaries. This results in a constant amount of global metadata, and a constant
overhead for HTx to access that metadata.

Section 3 discusses mechanisms for achieving those transitions that are not
obvious. For example, the transition from NS to S can be achieved by either
(a) forcibly aborting any in-flight hardware transactions, or (b) setting a flag
to prevent subsequent HTx and STx from beginning, and then waiting for the
system to be in the NS state with no HTx running. Our goal is to achieve
each transition without causing HTx conflicts on state machine metadata. As
an example, an HTx can start as long as the system is not in S or SC state, but
it need not know the exact system state until it reaches its commit point. If the
state changes during HTx execution (e.g., from NS to SA, or even from HC to
NS), the HTx should not immediately abort. At commit time, the HTx should
be able to quickly check the precise state, and then self abort if necessary (e.g.,
if the state is CP).

HyCo provides opacity [9] for STx by ensuring that when an STx is in-flight,
no concurrent HTx or STx may perform an operation that modifies locations
that have been, or may be, read by the in-flight STx. A concurrent STx may
reach its commit point, but may not transition to the HC or SC state, and since
its writes are buffered, it cannot modify memory. (Note that a read-only STx may
commit during this time, but by definition it does not modify shared memory.)
Thus no concurrent STx can perform an operation that changes the memory
visible to the in-flight STx. Similarly, a concurrent HTx may not transition from
SA to HC, where it can complete its transaction. In this case, the HTM provides
write buffering for the not-yet-committed HTx.

When the underlying HTM is opaque, Dalessandro et al. established that
in a lazy HyTM, an HTx transaction can only experience an opacity violation
if it overlaps with an STx commit [4]. Specifically, the STx might perform a

220 W. Ruan and M. Spear

Listing 1. Hybrid Cohorts metadata. Global variables are clustered accord-
ing to whether they assist in (a) coordinating all transactions, (b) coordi-
nating HTx transactions, or (c) coordinating STx transactions.

Thread Variable Type:
tx state : Enum{NO, S, HW, SW} // state of thread’s transaction
writes : Map<addr,val> // write set if this transaction is in STx mode
reads : Set<addr,val> // read set if this transaction is in STx mode
my order : Integer // commit order if STx in SC mode
cp : Checkpoint // checkpoint of thread state, for STx aborts

Global Variables:
threads : Set<Thread> // For reaching each thread’s per-thread variables

started : Integer // Count of current active STx transactions
ser kill : Boolean // Allow a Serial transaction to force immediate HTx aborts
stx kill : Boolean // Allow an STx in SC mode to force immediate HTx aborts
stx comm : Boolean // Indicate that all STx are ready to commit

cpending : Integer // Count of STx that are in the CP state
order : Integer // Counter to order STx in SC mode
time : Integer // Second counter for STx in SC mode
serial : Boolean // Token for transitions to Serial mode

partial write-back concurrent with the HTx, so that the HTx reads some of
the STx’s committed state, but not all of it. A sufficient condition is to prevent
incomplete STx write-back from being visible to an HTx execution. In HyCo, this
is achieved by (a) forbidding an STx from reaching the SC state until there are
no concurrent HTx, and (b) attempting to commit STx in a reduced hardware
transaction. In the HC state, the reduced transaction validates and performs
write-back; consequently the STx cannot expose its partial state: the entire set
of updates becomes visible when the hardware transaction commits.

HyCo supports a variety of approaches to ensuring fairness and progress. A
few properties are relatively obvious: Any transaction can be guaranteed to com-
plete if it executes in Serial mode, every read-only transaction will complete on
its first attempt in STx mode, and an STx will not abort unless some other HTx
or STx commits. Our implementation exposes two knobs for tuning progress.
The first is a count of the number of HTx aborts before falling back to STx
mode. The second is a count of the number of STx aborts before falling back
to Serial mode. When combined with optional contention management at the
beginning of the HC and SC states, there is ample opportunity to ensure that the
most advantageous transactions are given priority. Additional scheduling deci-
sions can be made when transitioning out of the CP state (i.e., by allowing a
high priority transaction to abort all HTx, transition directly to SC, and commit
first).

3 Implementation

The primary challenge in implementing HyCo is to achieve a low-latency imple-
mentation of the state machine from Figure 1. Our solution employs the meta-
data in Listing 1 to split the state machine into three parts. First, there is a list

Hybrid Transactional Memory Revisited 221

Algorithm 1. The HyCo Algorithm. The parameter to xbegin (overridden
by xabort) indicates the location to jump to when a hardware transaction
aborts.

function TxBeginHTx()

1 tx state ← HW // Announce active HTx

2 xbegin(5)

// Detect Serial and SC modes

3 if ser kill ∨ stx kill then xabort(5)

4 return

// Unannounce, wait if Serial or SC mode

5 tx state ← NO

6 while ser kill ∨ stx kill do spin

// Execute as STx or switch to Serial?

7 if switch mode() then return

8 goto line 1

function TxCommitHTx()

// Commit if all STx in HC mode or no STx

1 if stx comm ∨ started = 0 then

2 xend

3 tx state ← NO

4 return

// Cannot commit: SA or CP mode

5 xabort(TxBeginHTx() line 5)

function TxBeginSTx()

1 cp ← make checkpoint()

// Increment started only if NS or SA mode

2 while serial ∨ cpending > 0 do spin

3 atomic incr(started)

// Double-check NS or SA mode

4 if cpending > 0 ∨ serial then

5 atomic decr(started)

6 goto line 2

7 tx state ← SW

// Lazy cleanup of STx-HC flag

8 if stx comm then stx comm ← false

function TxBeginSerial()

// Acquire serial lock, wait for STx to finish

1 while ¬cas(serial, false, true) do spin

2 tx state ← S

3 while started > 0 do spin

// Optional: allow HTx to complete

4 for tx ∈ {threads − this thread} do

5 wait until(tx.tx state = NO)

6 ser kill ← true // Abort remaining HTx

function TxCommitSerial()

// Re-enable HTx, then release serial lock

1 ser kill ← false

2 serial ← false

3 tx state ← NO

function TxRead(addr)

// Serial and HTM fast-path

1 if tx state ∈ {S,HW} then return ∗addr
// Handle read-after-write

2 if addr ∈ writes then return writes[addr]

// Read the value, and log it for commit-time

validation

3 v ← ∗addr
4 reads ← reads ∪ {〈addr, v〉}
5 return v

function TxWrite(addr, val)

// Serial and HTM fast-path

1 if tx state ∈ {S,HW} then *addr = val

// Buffer the write until commit time

2 else writes ← writes ∪ {〈addr, v〉}
function TxCommitSTx()

// Read-only fast path

1 if writes = ∅ then

2 atomic decr(started)

3 reads ← ∅
4 return

// Wait until all STx ready to commit

5 atomic incr(cpending)

6 while cpending < started do spin

// Move to HC mode, commit STx via HTM

7 if ¬stx comm then stx comm ← true;

8 xbegin(18)

9 if reads.validate() then

10 writes.redo()

11 xend

12 atomic decr(started)

13 atomic decr(cpending)

14 reads ← writes ← ∅
15 tx state ← NO

16 return

17 else xabort(37)

// Serialized commit

18 my order ← atomic incr(order)

// Lead thread waits for HC to end

19 if order = 0 then

20 while order < started do spin

// Optional: allow HTx to complete

21 for tx ∈ {threads − this thread} do

22 wait until(tx.tx state
= HW)

23 stx kill ← true // Abort remaining HTx

// Other threads wait their turn

24 else while time
= my order do spin

// Writeback only if validation succeeds

25 if reads.validate() then writes.redo()

26 else failed ← true

27 time ← time + 1 // Let next STx commit

// Last thread moves metadata back to NS

28 old ← atomic decr(started)

29 if old = 1 then

30 stx kill ← false

31 time ← order ← 0

32 atomic decr(cpending);

33 tx state ← NO

34 reads ← writes ← ∅
35 if failed then cp.restore()

36 else return

// Reachable only on HC validation failure

37 atomic decr(started);

38 atomic decr(cpending);

39 reads ← writes ← ∅
40 tx state ← NO

41 cp.restore()

222 W. Ruan and M. Spear

of Thread objects, through which per-thread states for non-transactional (NO),
Serial, HTM, and STM modes can be discerned. Second, we use an Integer and
three Booleans to control when HTx can begin, and when they must immediately
abort. Finally, three Integers and one Boolean are used to manage the states of
STx and Serial transactions. The code in Algorithm 1 uses these variables in
flag-based and Dekker-style coordination.

The default system state is NS, in which HTx may begin and commit. Depart-
ing from this state requires an STx or Serial transaction to begin. To keep over-
heads low for HTx, we subscribe to the ser kill flag when an HTx begins. After
becoming serial, but before accessing shared memory, a Serial transaction sets
this flag to immediately abort all HTx. By optionally using the threads set first
(TxBeginSerial lines 4-5), we can opt to prioritize running HTx over new Serial
transactions.

Since HTx can execute concurrently with STx, we do not repeat this behavior
when STx begin. Instead, we must ensure that HTx do not commit when either
(a) STx are between their begin and end, or (b) STx are performing serial
commit. The stx kill flag expresses condition (b). To handle condition (a), we use
the started and cpending counters. When they are equal, every STx transaction
has reached its commit point, and is trying to commit using HTM. In this case,
HTx can commit, since the HTM will mediate conflicts. However, if they differ,
then the HTx must abort.

STx are expected to be less frequent than HTx, and also to be longer-running.
Thus we tolerate some contention over metadata, since it reduces the number
of locations that HTx must check. Specifically, we use the started counter to
track the number of STx that are not yet committed, and cpending to track
the number of STx that have reached their commit point. The order and time
counters are used only for SC commits, to enforce one-at-a-time commit of large
STx. To maximize HTx concurrency with STx, we do not eagerly inform HTx
of transitions between NS, SA, CP, and HC. Instead, we use the stx comm flag,
which indicates that STx have moved to HC state. This reduces the frequency
of reads of the started and cpending counters by HTx. To avoid additional
synchronization on STx commit, we defer resetting stx comm to TxBeginSTx.
Doing so is immaterial to HTx behavior, since HTx can progress in full from
both the NS and HC modes.

The additional transition to SC for serialized commit of STx is expected
to be rarest. We employ the same technique as Serial transactions, where a flag
(stx kill) is coupled with a traversal of the threads set (TxCommitSTx lines 21-22)
to allow HTx to complete before serial STx. A final complication is that, for the
sake of fairness, we do not allow new STx to begin once any STx is ready to
commit writes. This necessitates care in TxBeginSTx, since we must double-check
cpending after incrementing started.

Serial transactions are least common, justifying more overhead whenever one
begins. After acquiring the serial token, a transaction will wait for all active
STx and HTx to complete. Setting the serial flag first effectively prevents new
STx. After allowing some HTx to complete, it sets ser kill to prevent additional

Hybrid Transactional Memory Revisited 223

HTx, at which point it can begin. Both flags are cleared when the transaction
completes.

For completeness, Algorithm 1 also presents the read and write instrumen-
tation for the HyCo algorithm. Per-access instrumentation is minimal, entail-
ing neither metadata access nor memory fences. This is because (a) memory is
immutable during STx execution, (b) Serial transactions execute in the absence
of concurrency, and (c) HTx conflicts are mediated through the HTM, not
through metadata.

4 Evaluation

We now evaluate the performance of HyCo using microbenchmarks, the STAMP
benchmarks [15,17] and Memcached [19]. Experiments were conducted on a
machine with single-chip 3.40GHz Intel Core i7-4770 with 4 cores / 8 threads,
running Ubuntu Linux 13.04, kernel 3.8.0-21, and a 4.9 GCC compiler with O3
and m64 flags. Results are the average of 5 trials. We compare the following TM
implementations:

– STM Eager is the default STM provided with GCC. It is based on write-
through TinySTM [8], using per-location ownership records, undo logging,
encounter-time locking, and read set validation. The algorithm is opaque,
and uses commit-time quiescence [22] to achieve privatization safety.

– STM Lazy is a commit-time locking version of STM Eager. Writes are
stored in a redo log, implemented as a hash table of 64-byte blocks. Own-
ership records are acquired at commit time. STM Lazy exposes overheads
related to redo logs.

– HTM is the default HTM implementation provided with GCC. It is a
PhaseTM that falls back to serial mode after two consecutive HTM aborts.
HTM 20 does not fall back to serial until 20 consecutive aborts.

– HyNOrec is the “P-counter” version of Hybrid NOrec, which does not
require nontransactional loads [4]. For Memcached, we also report the
“2-counter” version.

– HyNOrec RH is the most recent reduced hardware Hybrid NOrec imple-
mentation [14]. We did not apply complier static analysis to reduce the
instrumentation of read-only hardware transactions, for fair comparison with
other TM implementations, which could all benefit from such analysis.
In the interest of fairness, we observe the following differences among systems:

– Privatization: STM Eager and STM Lazy require quiescence-based priva-
tization, whereas the HTM and hybrid algorithms do not. This can result in
better scalability at high thread counts for hybrids, since they do not require
blocking at commit time.

– Mode Switching: The Serial modes of our HyTMs are achieved via spin
waiting, whereas the GCC-based algorithms use a more heavyweight blocking
mechanism.

– Un-instrumented HTM Loads and Stores: GCC creates two code paths
for transactions: an STM path, in which loads and stores of shared memory
are instrumented, and an HTM path in which they are not. HyNOrec RH
and HyCo HTx benefit from this lower-latency code path.

224 W. Ruan and M. Spear

We set HyCo thresholds as follows: An HTx transaction will switch to STx
mode after 20 failed attempts to commit. An STx transaction will switch from
committing in HC mode to committing in SC mode after 2 failed attempts.
Fall-back to Serial mode occurs after 5 failed commit-time validations by an
STx transaction. We also present HyCo-Turbo, which eagerly transitions STx
to a mode where they run in isolation and perform all updates in-place. An STx
can invoke turbo mode by a) confirming it is the only STx, (b) blocking new
STx from starting, and (c) aborting all concurrent HTx. A turbo mode STx
effectively executes as a Serial transaction.

4.1 Microbenchmark Performance

Figure 2 presents four red-black tree microbenchmarks. The experiments differ
in terms of the range of keys present in the tree and the ratio of lookups to inserts
and removes (inserts and removes are always performed in equal amount). All
trees are pre-populated to 50% full. At one thread, HTM and HyCo performance
are identical, and uniformly better than STM. This is expected, since most trans-
actions are small enough to complete without exceeding hardware capacity. As
we increase the thread count, and contention increases, we see a significant shift:
the rapid fall-back to serial mode hurts HTM, both because it is too early, and
because it limits concurrency. Even HTM 20, our version of the GCC HTM that
retries 20 times before falling back to serial mode, cannot keep up with HyCo:
the opportunity cost of serialization, even after 20 failed attempts, is simply too
high. This is especially true for the highest contention configuration (8-bit keys,
33% lookup), where HTM 20 performance degrades beyond 4 threads.

Eager and Lazy STM scale well, and their use of validation affords for fewer
aborts than HTM. However, latency is high: they incur a function call on every
load and store, and Lazy pays even more due to accesses to the write log on
many loads (these costs are only incurred in HyCo’s STx mode). Furthermore,
STM scales worse than HyCo, due to the overhead of quiescence, and the cost
to support irrevocability via mode switching.

To gain a better understanding of the importance of HyTM versus PhaseTM,
we measured the frequency of each type of commit for the HyCo execution of
the benchmarks. While the majority of transactions can commit using HTM
(NS state), up to 9% of HTx commit in HC mode. Thus while fallback to serial
(for GCC) or STx (for HyCo) is rare, the impact on concurrent HTx can be
significant. In HTM and HTM 20, every fallback to STx becomes a fallback to
Serial, and all concurrency is lost.

4.2 STAMP Performance

STAMP performance is shown in Figure 3. Unlike microbenchmark experiments,
STAMP performance is shown as total time. The expectation is that more
threads will result in a decreased execution time. We do not report Bayes per-
formance, since it exhibits nondeterministic behavior. We also note that since
Labyrinth was rewritten to match the Draft C++ TM Specification [17], it shows

Hybrid Transactional Memory Revisited 225

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 1 2 3 4 5 6 7 8T
hr

ou
gh

pu
t (

tr
an

sa
ct

io
ns

 /
se

co
nd

)

Threads

STM_Eager
STM_Lazy

HTM
HTM_20
HyNOrec

HyNOrec-RH
HyCo

HyCo-Turbo

(a) 20-bit keys and 80% lookup ratio

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1 2 3 4 5 6 7 8T
hr

ou
gh

pu
t (

tr
an

sa
ct

io
ns

 /
se

co
nd

)

Threads

(b) 20-bit keys and 33% lookup ratio

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 4e+07

 4.5e+07

 5e+07

 1 2 3 4 5 6 7 8T
hr

ou
gh

pu
t (

tr
an

sa
ct

io
ns

 /
se

co
nd

)

Threads

(c) 8-bit keys and 80% lookup ratio

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 1 2 3 4 5 6 7 8T
hr

ou
gh

pu
t (

tr
an

sa
ct

io
ns

 /
se

co
nd

)

Threads

(d) 8-bit keys and 33% lookup ratio

Fig. 2. Red/black tree microbenchmarks

little variation among algorithms because transactions no longer comprise a sig-
nificant portion of execution time.

Among the remaining 8 benchmark configurations, we see two trends emerge.
First, on workloads with high contention, such as KMeans and Vacation, HTM
performs best at one thread, but its performance degrades as the thread count
increases, due to its reliance on serialization to ensure progress after repeated
aborts. In contrast, HyCo manages to maintain its performance as contention
increases, by falling back to STx. This trend peters out to some degree at 8
threads for Vacation-HC, due hardware multithreading effects: with four cores
and 8 hardware threads, transaction write capacities are effectively halved at
8 threads. The low-contention variants of KMeans and Vacation show that as
contention decreases, HTM is able to perform on-par with HyCo, but HyCo
remains a superior choice overall. The same is true for SSCA2, where small
transactions run bottleneck-free in HyCo and HTM.

The second trend is shown by Genome, Intruder, and Yada, where HyCo
incurs higher latency than HTM in order to interact with its write set. Recall
that for STx transactions, HyCo must perform a lookup on each read, and must
buffer its writes in a manner compatible with lookup. This necessitates a more

226 W. Ruan and M. Spear

 0

 5

 10

 15

 20

 25

 30

 35

 1 2 3 4 5 6 7 8

T
im

e
(s

ec
on

ds
)

Threads

(a) Genome

 0

 10

 20

 30

 40

 50

 60

 1 2 3 4 5 6 7 8

T
im

e
(s

ec
on

ds
)

Threads

(b) Intruder

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 1 2 3 4 5 6 7 8

T
im

e
(s

ec
on

ds
)

Threads

STM_Eager
STM_Lazy

HTM
HyNOrec

HyNOrec-RH
HyCo

HyCo-Turbo

(c) Labyrinth

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

 1 2 3 4 5 6 7 8

T
im

e
(s

ec
on

ds
)

Threads

(d) KMeans (high contention)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 3 4 5 6 7 8

T
im

e
(s

ec
on

ds
)

Threads

(e) KMeans (low contention)

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 1 2 3 4 5 6 7 8

T
im

e
(s

ec
on

ds
)

Threads

(f) SSCA2

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1 2 3 4 5 6 7 8

T
im

e
(s

ec
on

ds
)

Threads

(g) Vacation (high contention)

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 1 2 3 4 5 6 7 8

T
im

e
(s

ec
on

ds
)

Threads

(h) Vacation (low contention)

 0

 0.5

 1

 1.5

 2

 2.5

 1 2 3 4 5 6 7 8

T
im

e
(s

ec
on

ds
)

Threads

(i) Yada

Fig. 3. STAMP performance

complex data structure (hash of blocks with masks) than the undo log used by
eager STM and the HTM fall-back. Consequently, we see that STM Lazy is a
constant factor slower than STM Eager, and that HyCo similarly incurs higher
overhead. The problem is most extreme in Yada, where HTx abort late in their
execution, fall back to STx, and then incur write set overhead. Similarly, in
Genome and Intruder, the frequency of lookups creates overhead.

On this last point, we conducted experiments with two different write set
implementations: a hash table and an unbalanced BST. These tests showed that
the data structure itself was not the slowdown. Rather, the cost came from
manipulating bit masks in order to handle the case where a byte is accessed as
part of multiple accesses of varying granularity (e.g., the byte is written, and
then the enclosing word is read). These costs are shared by all of our Hybrid
TM implementations.

4.3 Memcached Performance

Lastly, we evaluate all TM implementations on memcached. We followed the
experiment configuration of Ruan et.al [19]. The configuration results in a num-

Hybrid Transactional Memory Revisited 227

Fig. 4. Memcached Performance

Table 1. Frequency of each type of commit for Memcached at different client counts
with HyCo-Turbo. Values were reported by a randomly chosen thread.

Client Count NS HTx:HC STx:RO STx:HC STx:SC STx:Turbo Serial

2 7.48M 65 0 85 10 4.4k 0

8 5.44M 544.3K 0 195.7k 72.2k 295.9k 0

Client Count STx aborts in HC/SC mode Time spent spinning in TxBegin

2 3.04% 1.55%

8 42.64% 25.97%

ber of operations proportional to the number of threads: flat curves indicate
perfect scaling, higher values represent slowdown. The results are presented in
Figure 4. Note that the number of transactions per thread is not constant, due
to the use of transactions to read shared memory when spin waiting.

Memcached presents a number of interesting behaviors. First, we observed
that Hybrid NOrec with P counters, where P is the number of threads, performed
worse than the two-counter version. In our prior experiments, P-counter was
superior. Second, HTM and HyCo performance were close, and HyNOrec-RH
performed best at 8 threads. This was the first instance in which HyCo did not
match or outperform HyNOrec-RH. Table 1 provides more detail. The data was
collected by sampling one thread’s behavior during a multithreaded execution.

228 W. Ruan and M. Spear

The top half shows that at high thread counts, a larger number of transactions
execute as STx, and that they also cause more HTx to commit in the HC mode.
We also see that the HyCo “turbo mode” optimization is valuable, accounting
for more than 5% of commits.

The bottom half of the table shows that some overhead is a direct consequence
of the HyCo design. At 8 threads, almost half of STx abort at commit time.
These aborts imply wasted work: if STx could detect conflicts earlier, they might
not spend as much time on attempts that ultimately failed. Furthermore, a
quarter of execution time for the sampled transactions was spent waiting to
start transactions. This time was due to both STx that could not start while
other STx were in HC, SC, or turbo modes, and HTx that could not start due
to STx in SC or turbo modes.

There are a number of solutions to these problems. First, as HTM capaci-
ties increase, these problems will naturally diminish as more transactions run
as HTx. Second, it is likely that the knobs controlling turbo mode require more
intelligence, and perhaps ought to adapt to the thread count and workload.
Third, there is clearly an opportunity for advanced transaction scheduling and
contention management. When so much time is already spent waiting at trans-
action begin, techniques such as [1] and [25] should not introduce latency. We
leave further exploration of this topic as future work.

5 Conclusions and Future Work

This paper presented the Hybrid Cohorts (HyCo) algorithm. HyCo prioritizes
software-mode transactions over hardware-mode transactions, and then employs
HTM resources to accelerate the commit phase of software transactions. Hard-
ware transactions do not write to global metadata, and in-flight software trans-
actions do not even read global metadata. Performance is on par with the current
state-of-the-art, RHNOrec.

HyCo and RHNOrec represent distinct points in the HyTM design space.
Both are informed by Riegel et al. [16] and Dalessandro et al. [4]: they use
value-based validation to avoid wasting HTM capacity on per-location metadata,
and they avoid serialization when transactions cannot complete in HTM. HyCo
adapts the “reduced hardware transaction” innovation from RHNOrec: rather
than execute the postfix of transactions in HTM, HyCo commits (validation and
writeback) via HTM. Another significant difference is how the algorithms handle
the worst case: in HyCo, many transactions can run in the slowest mode simulta-
neously, but they must validate; in RHNOrec, one transaction can use the slowest
mode at a time, but fewer transactions require the slowest mode. Additionally,
when a slow transaction runs, HyCo can still allow hardware transactions to
commit, whereas RHNOrec does not. HyCo also appears to offer more opportu-
nity for contention management, though we did not evaluate that possibility in
this paper.

Which algorithm is “better” is likely to depend on how HTM evolves. Clearly,
both systems can benefit from increased HTM capacity, which will allow more

Hybrid Transactional Memory Revisited 229

transactions to execute fully in hardware. As multi-chip HTM becomes more
prevalent, HyCo may benefit more: RHNOrec inherits NOrec’s requirement that
some committing writers increment a global shared counter, which is known to
scale poorly on multi-chip machines; HyCo has no such bottleneck. Another
open question is how nontransactional loads might improve the algorithms:
HyCo could employ nontransactional reads to allow hardware transactions to
spin, rather than abort, when software transactions block their commit. No such
opportunity is apparent for RHNOrec.

Unfortunately, we cannot draw stronger conclusions without better TM
benchmarks. On microbenchmarks, and on STAMP, RHNOrec and HyCo per-
form similarly despite significant differences in design (especially in the fall-back
path). On the only realistic workload available, Memcached, RHNOrec performs
better at high core counts, where symmetric multithreading reduces HTM capac-
ity. We are hopeful that as more programmers use TM, there will be new oppor-
tunities to contrast HyTM implementations and draw conclusions about what
costs are most important to avoid.

Acknowledgments. We thank our reviewers, and the TRANSACT community, for
their excellent advice. This material is based upon work supported by the National
Science Foundation under Grants CAREER-1253362 and CCF-1218530. Any opinions,
findings, and conclusions or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the National Science Foundation.

References

1. Attiya, H., Epstein, L., Shachnai, H., Tamir, T.: Transactional contention manage-
ment as a non-clairvoyant scheduling problem. In: Proceedings of the 25th ACM
Symposium on Principles of Distributed Computing, Denver, CO, August 2006

2. Calciu, I., Gottschlich, J., Shpeisman, T., Pokam, G., Herlihy, M.: Invyswell: A
hybrid transactional memory for haswell’s restricted transactional memory. In:
Proceedings of the 23rd International Conference on Parallel Architectures and
Compilation Techniques, Edmonton, AB, Canada, August 2014

3. Calciu, I., Shpeisman, T., Pokam, G., Herlihy, M.: Improved single global lock
fallback for best-effort hardware transactional memory. In: Proceedings of the
9th ACM SIGPLAN Workshop on Transactional Computing, Salt Lake City, UT,
March 2014

4. Dalessandro, L., Carouge, F., White, S., Lev, Y., Moir, M., Scott, M., Spear,
M.: Hybrid NOrec: A case study in the effectiveness of best effort hardware
transactional memory. In: Proceedings of the 16th International Conference
on Architectural Support for Programming Languages and Operating Systems
Newport Beach, CA, March 2011

5. Dalessandro, L., Spear, M., Scott, M.L.: NOrec: streamlining stm by abolishing
ownership records. In: Proceedings of the 15th ACM Symposium on Principles
and Practice of Parallel Programming, Bangalore, India, January 2010

6. Damron, P., Fedorova, A., Lev, Y., Luchangco, V., Moir, M., Nussbaum, D.:
Hybrid transactional memory. In: Proceedings of the 12th International Conference
on Architectural Support for Programming Languages and Operating Systems,
San Jose, CA, October 2006

230 W. Ruan and M. Spear

7. Dice, D., Harris, T., Kogan, A., Lev, Y., Moir, M.: Pitfalls of lazy subscription. In:
Proceedings of the 6th Workshop on the Theory of Transactional Memory, Paris,
France, July 2014

8. Felber, P., Fetzer, C., Riegel, T.: dynamic performance tuning of word-based soft-
ware transactional memory. In: Proceedings of the 13th ACM Symposium on Prin-
ciples and Practice of Parallel Programming, Salt Lake City, UT, February 2008

9. Guerraoui, R., Kapalka, M.: on the correctness of transactional memory. In: Pro-
ceedings of the 13th ACM Symposium on Principles and Practice of Parallel
Programming, Salt Lake City, UT, February 2008

10. Intel Corporation. Intel Architecture Instruction Set Extensions Programming
(Chapter 8: Transactional Synchronization Extensions), February 2012

11. Jacobi, C., Slegel, T., Greiner, D.: Transactional memory architecture and imple-
mentation for IBM system Z. In: Proceedings of the 45th International Symposium
On Microarchitecture, Vancouver, BC, Canada, December 2012

12. Kumar, S., Chu, M., Hughes, C.J., Kundu, P., Nguyen, A.: Hybrid transactional
memory. In: Proceedings of the 11th ACM Symposium on Principles and Practice
of Parallel Programming, New York, NY, March 2006

13. Lev, Y., Moir, M., Nussbaum, D.: PhTM: Phased transactional memory. In: Pro-
ceedings of the 2nd ACM SIGPLAN Workshop on Transactional Computing,
Portland, OR, August 2007

14. Matveev, A., Shavit, N.: Reduced hardware NOrec: A safe and scalable hybrid
transactional memory. In: Proceedings of the 20th International Conference
on Architectural Support for Programming Languages and Operating Systems,
Istanbul, Turkey, March 2015

15. Minh, C.C., Chung, J., Kozyrakis, C., Olukotun, K.: STAMP: Stanford transac-
tional applications for multi-processing. In: Proceedings of the IEEE International
Symposium on Workload Characterization, Seattle, WA, September 2008

16. Riegel, T., Marlier, P., Nowack, M., Felber, P., Fetzer, C.: Optimizing hybrid trans-
actional memory: the importance of nonspeculative operations. In: Proceedings of
the 23rd ACM Symposium on Parallelism in Algorithms and Architectures, June
2011

17. Ruan, W., Liu, Y., Spear, M.: STAMP need not be considered harmful. In: Pro-
ceedings of the 9th ACM SIGPLAN Workshop on Transactional Computing, Salt
Lake City, UT, March 2014

18. Ruan, W., Liu, Y., Wang, C., Spear, M.: On the platform specificity of stm instru-
mentation mechanisms. In: Proceedings of the 2013 International Symposium on
Code Generation and Optimization, Shenzhen, China, February 2013

19. Ruan, W., Vyas, T., Liu, Y., Spear, M.: Transactionalizing legacy code: an experi-
ence report using GCC and memcached. In: Proceedings of the 19th International
Conference on Architectural Support for Programming Languages and Operating
Systems, Salt Lake City, UT, March 2014

20. Spear, M., Silverman, M., Dalessandro, L., Michael, M.M., Scott, M.L.: Implement-
ing and exploiting inevitability in software transactional memory. In: Proceedings
of the 37th International Conference on Parallel Processing, Portland, OR, Septem-
ber 2008

21. Wang, A., Gaudet, M., Wu, P., Amaral, J.N., Ohmacht, M., Barton, C., Silvera, R.,
Michael, M.: Evaluation of blue gene/q hardware support for transactional memo-
ries. In: Proceedings of the 21st International Conference on Parallel Architectures
and Compilation Techniques, Minneapolis, MN, September 2012

Hybrid Transactional Memory Revisited 231

22. Wang, C., Chen, W.-Y., Wu, Y., Saha, B., Adl-Tabatabai, A.-R.: Code generation
and optimization for transactional memory constructs in an unmanaged language.
In: Proceedings of the 2007 International Symposium on Code Generation and
Optimization, San Jose, CA, March 2007

23. Welc, A., Saha, B., Adl-Tabatabai, A.-R.: Irrevocable transactions and their appli-
cations. In: Proceedings of the 20th ACM Symposium on Parallelism in Algorithms
and Architectures, Munich, Germany, June 2008

24. Yoo, R., Hughes, C., Lai, K., Rajwar, R.: Performance evaluation of intel transac-
tional synchronization extensions for high performance computing. In: Proceedings
of the International Conference for High Performance Computing, Networking,
Storage and Analysis, Denver, CO, November 2013

25. Yoo, R., Lee, H.-H.: adaptive transaction scheduling for transactional memory
systems. In: Proceedings of the 20th ACM Symposium on Parallelism in Algorithms
and Architectures, Munich, Germany, June 2008

Grasping the Gap Between Blocking
and Non-Blocking Transactional Memories

Petr Kuznetsov1 and Srivatsan Ravi2(B)

1 Télécom ParisTech, Paris, France
petr.kuznetsov@telecom-paristech.fr

2 TU Berlin, Berlin, Germany
srivatsan.ravi@inet.tu-berlin.de

Abstract. Transactional memory (TM) is an inherently optimistic
synchronization abstraction: it allows concurrent processes to execute
sequences of shared-data accesses (transactions) speculatively, with an
option of aborting them in the future. Early TM designs avoided using
locks and relied on non-blocking synchronization to ensure obstruction-
freedom: a transaction that encounters no step contention is not allowed
to abort. However, it was later observed that obstruction-free TMs per-
form poorly and, as a result, state-of-the-art TM implementations are
nowadays blocking, allowing aborts because of data conflicts rather than
step contention.

In this paper, we explain this shift in the TM practice theoreti-
cally, via complexity bounds. We prove a few important lower bounds
on obstruction-free TMs. Then we present a lock-based TM implemen-
tation that beats all of these lower bounds. In sum, our results exhibit
a considerable complexity gap between non-blocking and blocking TM
implementations.

1 Introduction

Transactional memory (TM) allows concurrent processes to organize sequences
of operations on shared data items into transactions. A transaction may commit,
in which case its updates of data items “take effect” or it may abort, in which
case no data item is modified. Typically, it is required that all committed trans-
actions appear to execute sequentially, respecting the timing of non-overlapping
transactions (strict serializability).

As a synchronization abstraction, TM came as an alternative to conven-
tional lock-based synchronization, and it therefore appears natural that early
TM implementations [12,18,23,26], i.e., algorithms for implementing operations
on data items using shared base objects, avoided using locks. Instead, early TM
designs relied on non-blocking (sometimes also called lock-free) synchroniza-
tion, where a prematurely halted transaction cannot prevent all other trans-
actions from committing. Possibly the weakest non-blocking progress condition

P. Kuznetsov—The author is supported by the Agence Nationale de la Recherche,
ANR-14-CE35-0010-01, project DISCMAT.

c© Springer-Verlag Berlin Heidelberg 2015
Y. Moses (Ed.): DISC 2015, LNCS 9363, pp. 232–247, 2015.
DOI: 10.1007/978-3-662-48653-5 16

Grasping the Gap Between Blocking and Non-Blocking TMs 233

is obstruction-freedom [17,19] stipulating that every transaction running in the
absence of step contention, i.e., not encountering steps of concurrent transac-
tions, must commit.

In 2005, Ennals [11] argued that obstruction-free TMs inherently yield poor
performance, because they require transactions to forcefully abort each other.
Ennals further described a lock-based TM implementation [10] that he claimed
to outperform DSTM [18], the most referenced obstruction-free TM implemen-
tation at the time. Inspired by [11], more recent lock-based TMs, such as TL [7],
TL2 [6] and NOrec [5], demonstrate better performance than obstruction-free
TMs on most workloads. These TMs typically ensure progressiveness: a trans-
action may be aborted only if it encounters a read-write or a write-write conflict
on a data item with a concurrent transaction [14].

There is a considerable amount of empirical evidence on the performance gap
between non-blocking (obstruction-free) and blocking (progressive) TM imple-
mentations but, to the best of our knowledge, no analytical result explains it.
Complexity lower and upper bounds presented in this paper provide such an
explanation.

Lower Bounds for Non-blocking TMs. Our first result focuses on strictly
serializable TM implementations that satisfy two important properties: weak
disjoint-access-parallelism (weak DAP) and read invisibility. Informally, weak
DAP [4] is believed to improve TM performance by ensuring that two transactions
concurrently contend on the same base object only if their data sets are connected
in the conflict graph, capturing data-set overlaps among all concurrent transac-
tions [4]. The requirement of invisible reads [3,8], believed to be important for
most commonly observed read-dominated workloads, ensures that a transaction
cannot reveal any information about its read set to other transactions.

There exist weak DAP lock-based TM implementations that use invisible
reads [7,10]. In contrast, we establish that it is impossible to implement an
obstruction-free TM that provides both weak DAP and read invisibility. Indeed,
DSTM [18] and FSTM [12] are weak DAP, but use visible reads for aborting
pending writing transactions.

We then derive lower bounds on the stall complexity [9] of obstruction-free
TM implementations. Intuitively, the metric captures the fact that the time
a process might have to spend before it applies a primitive on a base object
can be proportional to the number of processes that try to update the object
concurrently. We show that a read operation in an n-process obstruction-free
TM implementation may incur Ω(n) stalls.

Finally, we prove that any read-write (RW) DAP opaque obstruction-free
TM implementation has an execution in which a read-only transaction incurs
Ω(n) non-overlapping RAWs or AWARs. Intuitively, RAW (read-after-write) or
AWAR (atomic-write-after-read) patterns [2] capture the amount of “expensive
synchronization”, i.e., the number of costly conditional primitives or memory
barriers [24] incurred by the implementation. The metric appears to be more
practically relevant than simple step complexity, as it accounts for expensive
cache-coherence operations or conditional instructions. RW DAP, a restriction

234 P. Kuznetsov and S. Ravi

Obstruction-free Progressive LP (Sec. 4)

strict DAP No [13] Yes

invisible reads+weak DAP No (Sec. 3.1) Yes

stall complexity of reads Ω(n) (Sec. 3.2) O(1)

RAW/AWAR complexity Ω(n) (Sec. 3.3) O(1)

read-write base objects, wait-free termination No [15] Yes

Fig. 1. Complexity gap between blocking and non-blocking TMs; n is the number of
processes

of weak DAP, defines the conflict graph based on the write-set overlaps among
concurrent transactions and is satisfied by several popular obstruction-free imple-
mentations [12,18,26]. For this lower bound, probably the most interesting and
technically challenging, we assume opacity [15], a restriction of strict serializ-
ability that ensures safety of incomplete and aborted transactions.

An Upper Bound for Blocking TMs. We describe a progressive opaque
TM implementation that uses invisible reads and beats all the lower bounds we
established for obstruction-free TMs.

Our implementation, denoted LP , (1) uses only read-write base objects
and ensures that every transactional operation terminates in a wait-free man-
ner, (2) ensures strict DAP [15] (a restriction of RW DAP), (3) has invisible
reads, (4) performs O(1) non-overlapping RAWs/AWARs per transaction, and
(5) incurs O(1) memory stalls per read operation. In contrast, from prior work
and our lower bounds we know that (i) no OF TM that provides wait-free trans-
actional operations can be implemented using only read-write base objects [15];
(ii) no OF TM can provide strict DAP [13]; (iii) no weak DAP OF TM has
invisible reads (Section 3.1) and (iv) no OF TM ensures a constant number
of stalls incurred by a read operation (Section 3.2). Finally, (v) no RW DAP
opaque OF TM has constant RAW/AWAR complexity (Section 3.3). Thus, (iv)
and (v) exhibit a linear separation between blocking and non-blocking TMs w.r.t
expensive synchronization and memory stall complexity, respectively.

Our results are summarized and put in perspective in Figure 1. Altogether,
we grasp a considerable complexity gap between blocking and non-blocking TM
implementations, justifying theoretically the shift in TM practice we observed
during the past decade.

Overcoming our lower bounds for obstruction-free TMs individually is com-
paratively easy. Say, TL [7] combines strict DAP with invisible reads, but it is
not read-write, and it does not provide constant RAW/AWAR and stall com-
plexities.

Coming out with a single algorithm that beats all these lower bounds is
quite nontrivial. Our algorithm LP incurs the cost of incremental validation,
i.e., checking that the current read set has not changed per every new read
operation. This is, however, unavoidable for invisible read algorithms [15,21],
and is, in fact, believed to yield better performance in practice than “visible”

Grasping the Gap Between Blocking and Non-Blocking TMs 235

reads [5,7,10], and we show that it enables constant stall and RAW/AWAR
complexity.

Roadmap. Sections 2 defines our model and the classes of TMs considered in
this paper. Section 3 contains lower bounds for obstruction-free TMs. Section 4
describes our progressive TM implementation LP . Sections 5 and 6 present
related work and concluding remarks respectively. Due to space constraints,
formal proofs are delegated to the technical report [22].

2 TM Model and Properties

TM Interface. Transactional memory (in short, TM) allows a set of data items
(called t-objects) to be accessed via atomic transactions. A transaction Tk may
contain the following t-operations: readk(X) returns a value in some domain V
(denoted readk(X) → v) or a special value Ak /∈ V (abort); writek(X, v), for a
value v ∈ V , returns ok or Ak; tryCk returns Ck /∈ V (commit) or Ak.

TM Implementations. We consider an asynchronous shared-memory system
in which a set of n processes, communicate by applying primitives on shared
base objects. We assume that processes issue transactions sequentially, i.e., a
process starts a new transaction only after its previous transaction has com-
pleted (committed or aborted). A TM implementation provides processes with
algorithms for implementing readk, writek and tryCk() of a transaction Tk by
applying primitives from a set of shared base objects, each of which is assigned an
initial value. A primitive is a generic read-modify-write (rmw) procedure applied
to a base object [9,16]. It is characterized by a pair of functions 〈g, h〉: given the
current state of the base object, g is an update function that computes its state
after the primitive is applied, while h is a response function that specifies the
outcome of the primitive returned to the process. A rmw primitive is trivial if it
never changes the value of the base object to which it is applied. Otherwise, it
is nontrivial.

Executions and Configurations. An event of a transaction Tk (sometimes
we say a step of Tk) is a rmw primitive 〈g, h〉 applied by Tk to a base object b
along with its response r (we call it a rmw event and write (b, 〈g, h〉, r, k)), or
the invocation or the response of a t-operation performed by Tk.

A configuration (of a TM implementation) specifies the value of each base
object and the state of each process. The initial configuration is the configuration
in which all base objects have their initial values and all processes are in their
initial states.

An execution fragment is a (finite or infinite) sequence of events. An execution
of a TM implementation M is an execution fragment where, starting from the
initial configuration, each event is issued according to M and each response of
a RMW event (b, 〈g, h〉, r, k) matches the state of b resulting from the preceding
events. If an execution can be represented as E · E′ (concatenation of execution
fragments E and E′), then we say that E·E′ is an extension of E or E′ extends E.

236 P. Kuznetsov and S. Ravi

Let E be an execution fragment. For a transaction Tk (and resp. process pk),
E|k denotes the subsequence of E restricted to events of Tk (and resp. pk). If
E|k is non-empty, we say that Tk (resp. pk) participates in E, else we say E is
Tk-free (resp. pk-free). Two executions E and E′ are indistinguishable to a set T
of transactions, if for each transaction Tk ∈ T , E|k = E′|k. A TM history is the
subsequence of an execution consisting of the invocation and response events of
t-operations. Two histories H and H ′ are equivalent if txns(H) = txns(H ′) and
for every transaction Tk ∈ txns(H), H|k = H ′|k.

The read set (resp., the write set) of a transaction Tk in an execution
E, denoted RsetE(Tk) (and resp. WsetE(Tk)), is the set of t-objects that Tk

attempts to read (and resp. write) by issuing a t-read (and resp. t-write) invo-
cation in E (for brevity, we sometimes omit the subscript E from the notation).
The data set of Tk is Dset(Tk) = Rset(Tk) ∪ Wset(Tk). Tk is called read-only if
Wset(Tk) = ∅; write-only if Rset(Tk) = ∅ and updating if Wset(Tk) �= ∅. Note
that we consider the conventional dynamic TM model: the data set of a trans-
action is identifiable only by the set of t-objects the transaction has invoked a
read or write in the given execution.

Orders on Transactions. Let txns(E) denote the set of transactions that par-
ticipate in E. An execution E is sequential if every invocation of a t-operation is
either the last event in the history H exported by E or is immediately followed
by a matching response. We assume that executions are well-formed, i.e., for
all Tk, E|k begins with the invocation of a t-operation, is sequential and has
no events after Ak or Ck. A transaction Tk ∈ txns(E) is complete in E if E|k
ends with a response event. The execution E is complete if all transactions in
txns(E) are complete in E. A transaction Tk ∈ txns(E) is t-complete if E|k ends
with Ak or Ck; otherwise, Tk is t-incomplete. Tk is committed (resp., aborted) in
E if the last event of Tk is Ck (resp., Ak). The execution E is t-complete if all
transactions in txns(E) are t-complete.

For transactions {Tk, Tm} ∈ txns(E), we say that Tk precedes Tm in the real-
time order of E, denoted Tk ≺RT

E Tm, if Tk is t-complete in E and the last event
of Tk precedes the first event of Tm in E. If neither Tk ≺RT

E Tm nor Tm ≺RT
E Tk,

then Tk and Tm are concurrent in E. An execution E is t-sequential if there are
no concurrent transactions in E.

Contention. If a transaction T is incomplete in an execution E, it has exactly
one enabled event, which is the next event the transaction will perform according
to the TM implementation. Events e and e′ of an execution E contend on a base
object b if they are both events on b in E and at least one of them is nontrivial
(the event is trivial (resp., nontrivial) if it is the application of a trivial (resp.,
nontrivial) primitive).

We say that T is poised to apply an event e after E if e is the next enabled
event for T in E. We say that transactions T and T ′ concurrently contend on b
in E if they are poised to apply contending events on b after E.

We say that an execution fragment E is step contention-free for t-operation
opk if the events of E|opk are contiguous in E. We say that an execution fragment
E is step contention-free for Tk if the events of E|k are contiguous in E. We say

Grasping the Gap Between Blocking and Non-Blocking TMs 237

that E is step contention-free if E is step contention-free for all transactions that
participate in E.

TM-correctness. Informally, a t-sequential history S is legal if every t-read of
a t-object returns the latest written value of this t-object in S. A history H is
opaque if there exists a legal t-sequential history S equivalent to H such that S
respects the real-time order of transactions in H [15]. A weaker condition called
strict serializability ensures opacity only with respect to committed transactions.

TM-liveness. We say that a TM implementation M provides obstruction-free
(OF) TM-liveness if for every finite execution E of M , and every transaction
Tk that applies the invocation of a t-operation opk immediately after E, the
finite step contention-free extension for opk contains a matching response. A
TM implementation M provides wait-free TM-liveness if in every execution of
M , every t-operation returns a matching response in a finite number of its steps.

TM-progress. Progress for TMs specifies the conditions under which a trans-
action is allowed to abort. We say that a TM implementation M provides
obstruction-free (OF) TM-progress if for every execution E of M , if any trans-
action Tk ∈ txns(E) returns Ak in E, then E is not step contention-free for Tk.

We say that transactions Ti, Tj conflict in an execution E on a t-object
X if Ti and Tj are concurrent in E and X ∈ Dset(Ti) ∩ Dset(Tj), and X ∈
Wset(Ti)∪Wset(Tj). A TM implementation M provides progressive TM-progress
(or progressiveness) if for every execution E of M and every transaction Ti ∈
txns(E) that returns Ai in E, there exists prefix E′ of E and a transaction
Tk ∈ txns(E′) such that Tk and Ti conflict in E.

Read Invisibility. Informally, in a TM using invisible reads, a transaction can-
not reveal any information about its read set to other transactions. Thus, given
an execution E and some transaction Tk with a non-empty read set, transactions
other than Tk cannot distinguish E from an execution in which Tk’s read set is
empty. This prevents TMs from applying nontrivial primitives during t-read
operations and from announcing read sets of transactions during tryCommit.
Most popular TM implementations like TL2 [6] and NOrec [5] satisfy this prop-
erty (the formal definition can be found in the technical report [22]).

Disjoint-Access Parallelism (DAP). A TM implementation M is strictly
disjoint-access parallel (strict DAP) if, for all executions E of M , and for all
transactions Ti and Tj that participate in E, Ti and Tj contend on a base object
in E only if Dset(Ti) ∩ Dset(Tj) �= ∅ [15].

We now describe two relaxations of strict DAP. For the definitions, we intro-
duce the notion of a conflict graph which captures the dependency relation among
t-objects accessed by transactions.

We denote by τE(Ti, Tj), the set of transactions (Ti and Tj included) that
are concurrent to at least one of Ti and Tj in an execution E.

Let G(Ti, Tj , E) be an undirected graph whose vertex
set is

⋃

T∈τE(Ti,Tj)

Dset(T) and there is an edge between t-objects X and Y iff

there exists T ∈ τE(Ti, Tj) such that {X,Y } ∈ Dset(T). We say that Ti and Tj

238 P. Kuznetsov and S. Ravi

are disjoint-access in E if there is no path between a t-object in Dset(Ti) and a
t-object in Dset(Tj) in G(Ti, Tj , E) [4,25].

Let G̃(Ti, Tj , E) be a subgraph of G(Ti, Tj , E) where t-objects X and Y are
connected with an edge iff there exists T ∈ τE(Ti, Tj) such that {X,Y } ∈
Wset(T). Respectively, Ti and Tj are read-write disjoint-access in E if there is
no path between a t-object in Dset(Ti) and a t-object in Dset(Tj) in G̃(Ti, Tj , E).

A TM implementation M is read-write disjoint-access parallel (RW DAP)
(and resp. weak DAP) if, for all executions E of M , transactions Ti and Tj

contend (and resp. concurrently contend) on the same base object in E only
if Ti and Tj are not read-write disjoint-access (and resp. disjoint-access) in E
or there exists a t-object X ∈ Dset(Ti) ∩ Dset(Tj). The technical report [22]
provides further details and examples on the DAP definitions.

3 Lower Bounds for Obstruction-Free TMs

Let OF denote the class of TMs that provide OF TM-progress and OF TM-
liveness. In Section 3.1, we show that no strict serializable TM in OF can be
weak DAP and have invisible reads. In Section 3.2, we determine stall complexity
bounds for strict serializable TMs in OF , and in Section 3.3, we present a linear
(in n) lower bound on the RAW/AWAR complexity for RW DAP opaque TMs
in OF .

3.1 Impossibility of Invisible Reads

In this section, we prove that it is impossible to derive TM implementations in
OF that combine weak DAP and invisible reads. The formal proof is given in
the technical report [22], we present an intuition below.

Theorem 1. There does not exist a weak DAP strictly serializable TM imple-
mentation in OF that uses invisible reads.

Proof (Outline). Suppose, by contradiction, that such a TM implementation M
exists. Consider an execution E of M in which a transaction T0 performs a t-read
of t-object Z (returning the initial value v), writes nv (new value) to t-object
X, and commits. Let E′ denote the longest prefix of E that cannot be extended
with the t-complete step contention-free execution of any transaction that reads
nv in X and commits.

Thus if T0 takes one more step after E′, then the resulting execution E′ ·e can
be extended with the t-complete step contention-free execution of a transaction
T1 that reads nv in X and commits (Figure 2a).

Since M uses invisible reads, the following execution exists: E′ can be
extended with the t-complete step contention-free execution of a transaction
T2 that reads the initial value v in X and commits, followed by the step e of
T0 after which transaction T1 running step contention-free reads nv in X and
commits (Figure 2b). Moreover, this execution is indistinguishable to T1 and T2

from an execution in which the read set of T0 is empty. Thus, we can modify this

Grasping the Gap Between Blocking and Non-Blocking TMs 239

R0(Z) → v W0(X,nv) tryC0 (event of T0)

e
R1(X) → nv

new value
T0 T1

(a) T1 must read the base object updated in e and return
the new value nv of X

R0(Z) → v W0(X,nv) tryC0 R2(X) → v

initial value

(event of T0)

e
R1(X) → nv

new value
T0 T2 T1

(b) T1 returns new value of X since T2 is invisible

R0(Z) → v W0(X,nv) tryC0 R2(X) → v

initial value

(event of T0)

e
R1(X) → nv

new value

W3(Z, nv)

write new value
T0 T3 T2 T1

(c) By weak DAP and invisible reads, T1 and T2 do not observe the presence of T3

Fig. 2. Executions describing the proof sketch of Theorem 1; execution in 2c is not
strictly serializable

execution by inserting the step contention-free execution of a committed trans-
action T3 that writes a new value to Z after E′, but preceding T2 in real-time
order. Intuitively, by weak DAP, transactions T1 and T2 cannot distinguish this
execution from the original one in which T3 does not participate.

Thus, we can show that the following execution exists: E′ is extended with
the t-complete step contention-free execution of T3 that writes nv to Z and
commits, followed by the t-complete step contention-free execution of T2 that
reads the initial value v in X and commits, followed by the step e of T0, after
which T1 reads nv in X and commits (Figure 2c).

This execution is, however, not strictly serializable: T0 must appear in any
serialization (T1 reads a value written by T0). Transaction T2 must precede T0,
since the t-read of X by T2 returns the initial value of X. To respect real-
time order, T3 must precede T2. Finally, T0 must precede T3 since the t-read
of Z returns the initial value of Z. The cycle T0 → T3 → T2 → T0 implies a
contradiction.

3.2 Stall Complexity

We prove a linear (in n) lower bound for strictly serializable TM implementations
in OF on the total number of memory stalls incurred by a single t-read operation.

Let E = α ·e1 · · · em ·e ·β be an execution of M , where α and β are execution
fragments, e is a primitive applied by a process p on a base object b within
a t-operation op, and e1 · · · em is a maximal sequence of m ≥ 1 consecutive
nontrivial events by distinct processes other than p that access b. Then, we say
that op incurs m memory stalls in E on account of e. The number of memory
stalls incurred by op in E is the sum of memory stalls incurred by all events of
op in E [1,9].

240 P. Kuznetsov and S. Ravi

Theorem 2. Every strictly serializable TM implementation M ∈ OF has an
execution in which some t-read operation incurs Ω(n) stalls.

We give an intuitive sketch below, but the full proof can be found in [22]. Induc-
tively, for each k ≤ n − 1, we construct a specific k-stall execution [9] in which
some t-read operation by a process p incurs k stalls. In the k-stall execution, k
processes are partitioned into disjoint subsets S1, . . . , Si. The execution can be
represented as α · σ1 · · · σi; α is p-free, where in each σj , j = 1, . . . , i, p first runs
by itself, then each process in Sj applies a nontrivial event on a base object bj ,
and then p applies an event on bj . Moreover, p does not detect step contention in
this execution and, thus, must return a non-abort value in its t-read and commit
in the solo extension of it. Additionally, it is guaranteed that in any extension
of α by the processes other than {p} ∪ S1 ∪ S2 ∪ . . . ∪ Si, no nontrivial primitive
is applied on a base object accessed in σ1 · · · σi.

Assuming a k-stall execution α · σ1 · · · σi for process p executing a t-read
operation where k ≤ n − 2, we introduce a not previously used process execut-
ing an updating transaction immediately after α, so that the subsequent t-read
operation executed by p is “perturbed” (must return another value). This will
help us to construct a (k +k′)-stall execution α ·α′ ·σ1 · · · σi ·σi+1, where k′ > 0.
Thus, the TM has a (n − 1)-stall execution for some t-read operation.

3.3 RAW/AWAR Complexity

In this section, we characterize the complexity of implementations in OF by
measuring the amount of expensive synchronization patterns like RAW (read-
after-write) or AWAR (atomic-write-after-read) that read-only transactions may
need to perform.

A RAW pattern performed by a transaction Tk in an execution π is a pair of
its events e and e′, such that: (1) e is a write to a base object b by Tk, (2) e′ is a
subsequent read of a base object b′ �= b by Tk, and (3) no event on b by Tk takes
place between e and e′. In this paper, we are concerned only with non-overlapping
RAWs, i.e., the read performed by one RAW precedes the write performed by
the other RAW. An AWAR pattern e in an execution π · e is a nontrivial rmw
event on an object b which atomically returns the value of b (resulting after π)
and updates b with a new value, e.g., a successful compare-and-swap.

We prove that opaque, RW DAP TM implementations in OF have execu-
tions in which some read-only transaction performs a linear (in n) number of
non-overlapping RAWs or AWARs. Our result illustrates why individual t-read
operations of RW DAP obstruction-free TMs like DSTM [18] must forcefully
abort pending conflicting transactions using compare-and-swap in some execu-
tions.

Theorem 3. Every RW DAP opaque TM implementation M ∈ OF has an
execution E in which some read-only transaction T ∈ txns(E) performs Ω(n)
non-overlapping RAW/AWARs.

Grasping the Gap Between Blocking and Non-Blocking TMs 241

Proof (Outline). We first construct an execution of the form ρ̄1 · · · ρ̄m, where for
all j ∈ {1, . . . , m}; m = n − 3, ρ̄j denotes the t-complete step contention-free
execution of transaction Tj that reads the initial value v in a distinct t-object
Zj , writes a new value nv to a distinct t-object Xj and commits. Observe that
since any two transactions that participate in this execution are mutually read-
write disjoint-access, they cannot contend on the same base object and, thus,
the execution appears solo to each of them.

Let each of two new transactions Tn−1 and Tn perform m t-reads on objects
X1, . . . , Xm. For j ∈ {1, . . . , m}, we now define ρj to be the longest prefix of ρ̄j

such that ρ1 · · · ρj cannot be extended the complete step contention-free execu-
tion fragment of Tn−1 or Tn where the t-read of Xj returns nv. Let ej be the event
by Tj enabled after ρ1 · · · ρj . Let us count the number of indices j ∈ {1, . . . , m}
such that Tn−1 (resp., Tn) reads the new value nv in Xj when it runs after
ρ1 · · · ρj · ej . Without loss of generality, assume that Tn−1 has more such indices
j than Tn. We are going to show that, in the worst-case, Tn must perform
m

2 � non-overlapping RAW/AWARs in the course of performing m t-reads of
X1, . . . , Xm immediately after ρ1 · · · ρm.

Consider any j ∈ {1, . . . , m} such that Tn−1, when it runs step
contention-free after ρ1 · · · ρj · ej , reads nv in Xj . We claim that, in ρ1 · · · ρm

extended with the step contention-free execution of Tn performing j t-reads
readn(X1) · · · readn(Xj), the t-read of Xj must contain a RAW or an AWAR.

Suppose not. Then we are going to schedule a specific execution of Tj and
Tn−1 concurrently with readn(Xj) so that Tn cannot detect the concurrency.
By the definition of ρj and the fact that the TM is RW DAP, Tn, when it
runs step contention-free after ρ1 · · · ρm, must read v (the initial value) in Xj .
Then the following execution exists: ρ1 · · · ρm is extended with the t-complete
step contention-free execution of Tn−2 writing nv to Zj and committing, after
which Tn runs step contention-free and reads v in Xj . Since, by the assumption,
readn(Xj) contains no RAWs or AWARs, we show that we can run Tn−1 per-
forming j t-reads concurrently with the execution of readn(Xj) so that Tn and
Tn−1 are unaware of step contention and readn−1(Xj) still reads the value nv in
Xj .

To understand why this is possible, consider the following: we take the exe-
cution constructed above, but without the execution of readn(Xj), i.e, ρ1 · · · ρm

is extended with the step contention-free execution of committed transaction
Tn−2 writing nv to Zj , after which Tn runs step contention-free performing j −1
t-reads. This execution can be extended with the step ej by Tj , followed by the
step contention-free execution of transaction Tn−1 in which it reads nv in Xj .
Indeed, by RW DAP and the definition of ρj · ej , there exists such an execution.

Since readn(Xj) contains no RAWs or AWARs, we can reschedule the execu-
tion fragment ej followed by the execution of Tn−1 so that it is concurrent with
the execution of readn(Xj) and neither Tn nor Tn−1 see a difference. Therefore,
in this execution, readn(Xj) still returns v, while readn−1(Xj) returns nv.

However, the resulting execution is not opaque. In any serialization the fol-
lowing must hold. Since Tn−1 reads the value written by Tj in Xj , Tj must be

242 P. Kuznetsov and S. Ravi

committed. Since readn(Xj) returns the initial value v, Tn must precede Tj . The
committed transaction Tn−2, which writes a new value to Zj , must precede Tn

to respect the real-time order on transactions. However, Tj must precede Tn−2

since readj(Zj) returns the initial value and the implementation is opaque. The
cycle Tj → Tn−2 → Tn → Tj implies a contradiction.

Thus, we can show that transaction Tn must perform Ω(n) RAW/AWARs
during the execution of m t-reads immediately after ρ1 · · · ρm.

4 Upper Bound for Opaque Progressive TMs

In this section, we describe a progressive, opaque TM implementation LP (Algo-
rithm 1) that is not subject to any of the lower bounds we derived so far for
OF (cf. Figure 1). In our TM LP , every transaction performs at most a single
RAW, every t-read operation incurs O(1) memory stalls and maintains exactly
one version of every t-object in every execution. Moreover, the implementation
is strict DAP and uses only read-write base objects.

Base Objects. For every t-object Xj , LP maintains a base object vj that stores
the value of Xj . Additionally, for each Xj , we maintain a bit Lj , which if set,
indicates the presence of an updating transaction writing to Xj . Also, for every
process pi and t-object Xj , LP maintains a single-writer bit rij to which only
pi is allowed to write. Each of these base objects may be accessed only via read
and write primitives.

Read Operations. The implementation first reads the value of t-object Xj

from base object vj and then reads the bit Lj to detect contention with an
updating transaction. If Lj is set, the transaction is aborted; if not, read valida-
tion is performed on the entire read set. If the validation fails, the transaction is
aborted. Otherwise, the implementation returns the value of Xj . For a read-only
transaction Tk, tryCk simply returns the commit response.

Updating Transactions. The writek(X, v) implementation by process pi sim-
ply stores the value v locally, deferring the actual updates to tryCk. During tryCk,
process pi attempts to obtain exclusive write access to every Xj ∈ Wset(Tk).
This is realized through the single-writer bits, which ensure that no other trans-
action may write to base objects vj and Lj until Tk relinquishes its exclusive
write access to Wset(Tk). Specifically, process pi writes 1 to each rij , then checks
that no other process pt has written 1 to any rtj by executing a series of reads
(incurring a single RAW). If there exists such a process that concurrently con-
tends on write set of Tk, for each Xj ∈ Wset(Tk), pi writes 0 to rij and aborts Tk.
If successful in obtaining exclusive write access to Wset(Tk), pi sets the bit Lj for
each Xj in its write set. Implementation of tryCk now checks if any t-object in
its read set is concurrently contended by another transaction and then validates
its read set. If there is contention on the read set or validation fails (indicating
the presence of a conflicting transaction), the transaction is aborted. If not, pi

writes the values of the t-objects to shared memory and relinquishes exclusive

Grasping the Gap Between Blocking and Non-Blocking TMs 243

Algorithm 1 . Strict DAP progressive opaque TM implementation LP ; code
for Tk executed by process pi

1: Shared base objects:

2: vj , for each t-object Xj

allows reads and writes
3: rij , for every pi and t-object Xj

single-writer bit
allows reads and writes

4: Lj , for every t-object Xj

allows reads and writes

5: Local variables:

6: Rsetk,Wsetk for every Tk;
dictionaries storing {Xm, vm}

7: readk(Xj):

8: if Xj �∈ Rset(Tk) then
9: [ovj , kj] := read(vj)

10: Rset(Tk).add({Xj , [ovj , kj]})
11: if read(Lj) �= 0 then
12: Return Ak

13: if validate() then
14: Return Ak

15: Return ovj

16: else
17: [ovj ,⊥] := Rset(Tk).locate(Xj)
18: Return ovj

19: writek(Xj, v):

20: nvj := v
21: Wset(Tk).add({Xj})
22: Return ok

23: tryCk():

24: if |Wset(Tk)| = ∅ then
25: Return Ck

26: locked := acquire(Wset(Tk))
27: if ¬ locked then
28: Return Ak

29: if isAbortable() then
30: release(Wset(Tk))
31: Return Ak

// Exclusive write access to each vj

32: for all Xj ∈ Wset(Tk) do
33: write(vj , [nvj , k])
34: release(Wset(Tk))
35: Return Ck

36: Function: release(Q):

37: for all Xj ∈ Q do
38: write(Lj , 0)
39: for all Xj ∈ Q do
40: write(rij , 0)
41: Return ok

42: Function: acquire(Q):

43: for all Xj ∈ Q do
44: write(rij , 1)
45: if ∃Xj ∈ Q; t �= i : read(rtj) = 1 then

46: for all Xj ∈ Q do
47: write(rij , 0)
48: Return false

// Exclusive write access to each Lj

49: for all Xj ∈ Q do
50: write(Lj , 1)
51: Return true

52: Function: isAbortable() :

53: if ∃Xj ∈ Rset(Tk) : Xj �∈ Wset(Tk) ∧
read(Lj) �= 0 then

54: Return true
55: if validate() then
56: Return true
57: Return false

58: Function: validate() :

// Read validation

59: if ∃Xj ∈ Rset(Tk):[ovj , kj] �=
read(vj) then

60: Return true
61: Return false

244 P. Kuznetsov and S. Ravi

write access to each Xj ∈ Wset(Tk) by writing 0 to each of the base objects Lj

and rij .

Complexity. Read-only transactions do not apply any nontrivial primitives.
Any updating transaction performs at most a single RAW in the course of acquir-
ing exclusive write access to the transaction’s write set. Thus, every transaction
performs O(1) non-overlapping RAWs in any execution. However, just as state-
of-the-art progressive opaque TM implementations like TL [7] and NOrec [5]
that use invisible reads, LP must incur the inherent incremental validation cost
that is linear in the size of the read set [15,21].

Recall that a transaction may write to base objects vj and Lj only after
obtaining exclusive write access to t-object Xj , which in turn is realized via
single-writer base objects. Thus, no transaction performs a write to any base
object b immediately after a write to b by another transaction, i.e., every trans-
action incurs only O(1) memory stalls on account of any event it performs. The
readk(Xj) implementation reads base objects vj and Lj , followed by the valida-
tion phase in which it reads vk for each Xk in its current read set. Note that
if the first read in the validation phase incurs a stall, then readk(Xj) aborts. It
follows that each t-read incurs O(1) stalls in every execution.

Thus, we can prove the following theorem:

Theorem 4. Algorithm 1 describes a progressive, opaque and strict DAP TM
implementation LP that provides wait-free TM-liveness, uses invisible reads,
uses only read-write base objects, and for every execution E and transaction
Tk ∈ txns(E): (i) Tk performs at most a single RAW, and (ii) every t-read
operation performed by Tk incurs O(1) memory stalls in E.

5 Related Work

Attiya et al. [4] were the first to formally define DAP for TMs. They proved the
impossibility of implementing weak DAP strictly serializable TMs that use invis-
ible reads and guarantee that read-only transactions eventually commit, while
updating transactions are guaranteed to commit only when they run sequen-
tially [4]. This class is orthogonal to the class of obstruction-free TMs, as is the
proof technique used to establish the impossibility arguments (Section 3.1).

Perelman et al. [25] showed that mv-permissive weak DAP TMs cannot
be implemented. In mv-permissive TMs, only updating transactions may be
aborted, and only when they conflict with other updating transactions. In par-
ticular, read-only transactions cannot be aborted and updating transactions may
sometimes be aborted even in the absence of step contention, which makes the
impossibility result in [25] unrelated to ours (Section 3.1).

Guerraoui and Kapalka [15] proved that it is impossible to implement strict
DAP obstruction-free TMs. They also proved that a strict serializable TM that
provides OF TM-progress and wait-free TM-liveness cannot be implemented
using only read and write primitives. We show in Section 4 that progressive
TMs are not subject to either of these lower bounds.

Grasping the Gap Between Blocking and Non-Blocking TMs 245

Attiya et al. [2] proved that it is impossible to derive RAW/AWAR-free imple-
mentations of data types like stacks, queues and deadlock-free mutual exclusion.
The metric was previously used in [20] to measure the complexity of read-only
transactions in a strictly stronger (than OF) class of permissive TMs (assuming
wait-free TM-liveness) which ensure that a transaction may be aborted only if
committing it would violate opacity. This lower bound in [20] is unrelated to
Theorem 3 on RW DAP obstruction-free TMs. Detailed coverage on memory
fences and the RAW/AWAR metric can be found in [24].

To derive the linear lower bound on the memory stall complexity of
obstruction-free TMs (Section 3.2), we adopted the definition of a k-stall execu-
tion and certain proof steps from [1,9].

Our upper bound LP that theoretically demonstrates the advantages of
adapting TMs to data conflicts rather than step contention is inspired by the pro-
gressive TM of [20]. Complexity optimizations for progressive TMs like reducing
the cost of read-validation by slightly relaxing strict DAP, as achieved in TL2 [6],
can also be applied to LP .

The technical report [22] provides details on the DAP definitions as well as
opaque implementations in OF that satisfy weak and RW DAP. The definition
of invisible reads used in this paper is adopted from [3].

6 Concluding Remarks

As highlighted in [7,11], obstruction-free TMs require an indirection from the t-
object metadata in order to find the current version of the t-object. This suggests
that obstruction-free TMs must forcefully abort pending conflicting transactions
in order to return the correct t-object version. This observation inspires the
impossibility of invisible reads (Theorem 1). Typically, to detect the presence of a
conflicting transaction and abort it, the reading transaction must employ a RAW
or read-modify-write primitives like compare-and-swap, motivating the linear
lower bound on expensive synchronization (Theorem 3). Also, in obstruction-
free TMs, a transaction may not wait for a concurrent inactive transaction to
complete and, as a result, we may have an execution in which a transaction incurs
a distinct stall due to a transaction run by each other process (Theorem 2).
Intuitively, since transactions in progressive TMs may abort themselves in case
of conflicts, they can employ invisible reads and maintain constant stall and
RAW/AWAR complexities.

Some benefits of obstruction-free TMs, namely their ability to make progress
even if some transactions prematurely fail, are not provided by progressive TMs.
However, several papers [6,7,11] argued that lock-based TMs tend to outper-
form obstruction-free ones by allowing for simpler algorithms with lower over-
head, and their inherent progress issues may be resolved using timeouts and
contention-managers. This paper explains the empirically observed performance
gap between blocking and non-blocking TMs via a series of lower bounds on
obstruction-free TMs and a progressive TM algorithm that beats all of them.

246 P. Kuznetsov and S. Ravi

References

1. Attiya, H., Guerraoui, R., Hendler, D., Kuznetsov, P.: The complexity of
obstruction-free implementations. J. ACM 56(4) (2009)

2. Attiya, H., Guerraoui, R., Hendler, D., Kuznetsov, P., Michael, M., Vechev, M.:
Laws of order: Expensive synchronization in concurrent algorithms cannot be
eliminated. In: POPL, pp. 487–498 (2011)

3. Attiya, H., Hillel, E.: The cost of privatization in software transactional memory.
IEEE Trans. Computers 62(12), 2531–2543 (2013)

4. Attiya, H., Hillel, E., Milani, A.: Inherent limitations on disjoint-access parallel
implementations of transactional memory. Theory of Computing Systems 49(4),
698–719 (2011)

5. Dalessandro, L., Spear, M.F., Scott, M.L.: NOrec: streamlining STM by abolishing
ownership records. In: PPOPP, pp. 67–78 (2010)

6. Dice, D., Shalev, O., Shavit, N.N.: Transactional locking II. In: Dolev, S. (ed.)
DISC 2006. LNCS, vol. 4167, pp. 194–208. Springer, Heidelberg (2006)

7. Dice, D., Shavit, N.: What really makes transactions fast? In: Transact (2006)
8. Dice, D., Shavit, N.: TLRW: return of the read-write lock. In: SPAA, pp. 284–293

(2010)
9. Ellen, F., Hendler, D., Shavit, N.: On the inherent sequentiality of concurrent

objects. SIAM J. Comput. 41(3), 519–536 (2012)
10. Ennals, R.: The lightweight transaction library. http://sourceforge.net/projects/

libltx/files/
11. Ennals, R.: Software transactional memory should not be obstruction-free (2005)
12. Fraser, K.: Practical lock-freedom. Technical report, Cambridge University Com-

puter Laborotory (2003)
13. Guerraoui, R., Kapalka, M.: On obstruction-free transactions. In: Proceedings of

the Twentieth Annual Symposium on Parallelism in Algorithms and Architectures,
SPAA 2008, pp. 304–313. ACM, New York (2008)

14. Guerraoui, R., Kapalka, M.: The semantics of progress in lock-based transactional
memory. In: POPL, pp. 404–415 (2009)

15. Guerraoui, R., Kapalka, M.: Principles of transactional memory. In: Synthesis
Lectures on Distributed Computing Theory. Morgan and Claypool (2010)

16. Herlihy, M.: Wait-free synchronization. ACM Trans. Prog. Lang. Syst. 13(1),
123–149 (1991)

17. Herlihy, M., Luchangco, V., Moir, M.: Obstruction-free synchronization: double-
ended queues as an example. In: ICDCS, pp. 522–529 (2003)

18. Herlihy, M., Luchangco, V., Moir, M., Scherer III, W.N.: Software transactional
memory for dynamic-sized data structures. In: PODC, pp. 92–101 (2003)

19. Herlihy, M., Shavit, N.: On the nature of progress. In: Fernàndez Anta, A., Lipari,
G., Roy, M. (eds.) OPODIS 2011. LNCS, vol. 7109, pp. 313–328. Springer, Heidel-
berg (2011)

20. Kuznetsov, P., Ravi, S.: On the cost of concurrency in transactional memory. In:
Fernàndez Anta, A., Lipari, G., Roy, M. (eds.) OPODIS 2011. LNCS, vol. 7109,
pp. 112–127. Springer, Heidelberg (2011)

21. Kuznetsov, P., Ravi, S.: Progressive transactional memory in time and space.
In: Malyshkin, V. (ed.) PaCT 2015. LNCS, vol. 9251, pp. 410–425. Springer,
Heidelberg (2015)

22. Kuznetsov, P., Ravi, S.: Why transactional memory should not be obstruction-free
(2015). http://arxiv.org/abs/1502.02725

http://sourceforge.net/projects/libltx/files/
http://sourceforge.net/projects/libltx/files/
http://arxiv.org/abs/http://arxiv.org/abs/1502.02725

Grasping the Gap Between Blocking and Non-Blocking TMs 247

23. Marathe, V.J., Scherer III, W.N., Scott, M.L.: Adaptive software transactional
memory. In: Fraigniaud, P. (ed.) DISC 2005. LNCS, vol. 3724, pp. 354–368.
Springer, Heidelberg (2005)

24. McKenney, P.E.: Memory barriers: a hardware view for software hackers. Linux
Technology Center, IBM Beaverton, June 2010

25. Perelman, D., Fan, R., Keidar, I.: On maintaining multiple versions in STM. In:
PODC, pp. 16–25 (2010)

26. Tabba, F., Moir, M., Goodman, J.R., Hay, A.W., Wang, C.: Nztm: Nonblock-
ing zero-indirection transactional memory. In: SPAA 2009, pp. 204–213. ACM,
New York (2009)

Fast Consensus for Voting
on General Expander Graphs

Colin Cooper1, Robert Elsässer2, Tomasz Radzik1(B), Nicolás Rivera1,
and Takeharu Shiraga3

1 Department of Informatics, King’s College London, London, UK
{colin.cooper,tomasz.radzik,nicolas.rivera}@kcl.ac.uk

2 Department of Computer Sciences, University of Salzburg, Salzburg, Austria
elsa@cosy.sbg.ac.at

3 Theoretical Computer Science Group, Department of Informatics, Kyushu
University, Fukuoka, Japan

shiraga@tcslab.csce.kyushu-u.ac.jp

Abstract. Distributed voting is a fundamental topic in distributed com-
puting. In the standard model of pull voting, at each step every vertex
chooses a neighbour uniformly at random and adopts its opinion. The
voting is completed when all vertices hold the same opinion. In the sim-
plest case, each vertex initially holds one of two different opinions. This
partitions the vertices into arbitrary sets A and B. For many graphs,
including regular graphs and irrespective of their expansion properties,
if both A and B are sufficiently large sets, then pull voting requires Ω(n)
expected steps, where n is the number of vertices of the graph.

In this paper we consider a related class of voting processes based
on sampling two opinions. In the simplest case, every vertex v chooses
two random neighbours at each step. If both these neighbours have the
same opinion, then v adopts this opinion. Otherwise, v keeps its own
opinion. Let G be a connected graph with n vertices and m edges. Let
P be the transition matrix of a simple random walk on G with second
largest eigenvalue λ < 1/

√
2. We show that if the initial imbalance in

degree between the two opinions satisfies |d(A) − d(B)|/2m ≥ 2λ2, then
with high probability voting completes in O(log n) steps, and the opinion
with the larger initial degree wins.

The condition that λ < 1/
√

2 includes many classes of expanders,
for example random d-regular graphs where d ≥ 10. If however 1/

√
2 ≤

λ(P) ≤ 1 − ε for a constant ε > 0, or only a bound on the conductance
of the graph is known, the sampling process can be modified so that
voting still provably completes in O(log n) steps with high probability.
The modification uses two sampling based on probing to a fixed depth
O(1/ε) from any vertex.

In its most general form our voting process allows vertices to bias
their sampling of opinions among their neighbours to achieve a desired
outcome. This is done by allocating weights to edges.

This work was supported in part by EPSRC grant EP/M005038/1, “Randomized
algorithms for computer networks”. N. Rivera was supported by funding from Becas
CHILE.

c© Springer-Verlag Berlin Heidelberg 2015
Y. Moses (Ed.): DISC 2015, LNCS 9363, pp. 248–262, 2015.
DOI: 10.1007/978-3-662-48653-5 17

Fast Consensus for Voting on General Expander Graphs 249

1 Introduction

1.1 Background on Distributed Pull Voting

Distributed voting has applications in various fields including consensus and
leader election in large networks [3,14], serialisation of read-write in replicated
databases [13] and the analysis of social behaviour in game theory [11]. Voting
algorithms are usually simple, fault-tolerant, and easy to implement [14,16].

One simple form of distributed voting is pull voting. In the beginning each
vertex of a connected undirected graph has an initial opinion. The voting process
proceeds synchronously in discrete time steps called rounds. During each round,
each vertex independently contacts a random neighbour and adopts the opinion
of that neighbour.

In the two-opinion voter model, all vertices initially hold one of two opinions.
Hassin and Peleg [14] and Nakata et al. [20] considered the two-opinion voter
model and its application to consensus problems in distributed systems. Let
G = (V,E) be an undirected connected graph with n vertices and m edges. Let
the opinions be labeled 0 and 1, and let A be the set of vertices with opinion
0 and B the set of vertices with opinion 1; where A ∪ B = V . Let d(v) be the
degree of a vertex v and d(S) =

∑
v∈S d(v) the degree of a set S. Thus d(A)

is the initial degree of opinion 0 and d(A) + d(B) = 2m. We say that A wins
(equiv. opinion 0 wins), if all vertices eventually adopt the opinion held initially
by the set A. Let PA be the probability that opinion A wins the vote in the
two-opinion model. The central result of [14] and [20] is that

PA =
d(A)
2m

. (1)

Thus in the case of connected regular graphs, the probability that A wins is
proportional to the original size of A, irrespective of the graph structure.

Apart from the probability of winning the vote, another quantity of interest
is the time taken for voting to complete. The completion time T of a voting
process is the number of rounds needed for a single opinion to emerge. This
is normally measured in terms of its expectation ET . It is proven in [14] that
ET = O(n3 log n) for general graphs.

It was shown in [8] that the completion time on any connected graph G is
upper bounded with high probability (w.h.p.) by O(n/(ν(1 − λ)), where λ is
the second largest eigenvalue of the transition matrix of random walk on G and
ν = n

∑
v∈V d2(v)/(2m)2 indicates the regularity of G (1 ≤ ν ≤ n2/(2m), with

ν = 1 for regular graphs). Tighter bounds can be derived for some specific classes
of graphs. For example, it is proven in [7] that in the case of random d-regular
graphs, w.h.p. ET ∼ 2n(d − 1)/(d − 2). This means that two-opinion voting
(almost always) needs Θ(n) time to complete on random d-regular graphs.

Thus the performance of the two-opinion pull-voting seems unsatisfactory in
two ways. Firstly, it is reasonable to require that a clear majority opinion should
win with high probability. From (1), even if initially only a single vertex v holds
opinion A, then this opinion wins with probability PA = d(v)/2m. Secondly, the

250 C. Cooper et al.

expected completion time is Ω(n) on many classes of graphs, including regular
expanders and complete graphs. This seems a long time to wait to resolve a
dispute between two opinions in the context of distributed systems. A more
reasonable waiting time would depend on the graph diameter, which is O(log n)
for many classes of expanders.

To address these issues, we consider a modified version of pull voting in which
each vertex v randomly queries two neighbours at each step. On the basis of the
sample taken, vertex v revises its opinion as follows. If both neighbours have the
same opinion, the calling vertex v adopts this opinion. If the two opinions differ,
the calling vertex v retains its current opinion in this round. To distinguish this
process from the conventional pull voting, we refer to it as two-sample voting.
The aim of two-sample voting is to ensure that voting finishes quickly and the
initial majority wins. Two-sample voting is intrinsically attractive, as it seems
to mirror the way people behave. If you hear it twice it must be true.

1.2 Main Results

Two-sample voting is used in [9] to speed up time to consensus for pull vot-
ing on d-regular expander graphs. It was shown that synchronous two-sample-
voting completed in O(log n) time w.h.p. even under adversarial conditions, and
also that the initial majority opinion wins, provided sufficient initial imbalance
between the sizes of the two opinions. In related work, in a non-adversarial
context, Abdullah and Draief [1] obtained a O(logd logd n) bound for the major-
ity multi-sample-voting on d-regular graphs where at least five neighbours are
consulted (hence requiring d ≥ 5). They also proved that this bound is asymp-
totically best possible for a wide class of voting protocols. For the case of the
complete graph, Cruise and Ganesh [10] made a more general analysis of multi-
sample-voting strategies.

In this paper we extend the analysis of two-sample voting from [9] to gen-
eral (inhomogeneous) expander graphs, with no regularity restriction on the
vertex degrees, and prove that the speed of this protocol remains O(log n) (The-
orem 1). However, the property that the initial majority opinion wins is found
to be restricted to regular graphs. For inhomogeneous graphs, the party with
the largest initial degree wins, provided sufficient initial imbalance between the
degrees of the two opinions. As a special case, we get a stronger result for two
sample-voting on regular expander graphs than in [9] by significantly reducing
the required initial imbalance between the sizes of the two opinions.

Our analysis uses a different approach from previous work on two sample
voting. The main technical theorem (Theorem 3) is based on the connection
between the voting and the related random walk process. Using this theorem,
we can obtain results for a wide range of protocols in which vertices sample
neighbours at random according to predetermined edge weights. We refer to
this generalization of two-sample-voting as best-of-two voting, and reserve two-
sample-voting for the special case where neighbours are chosen uniformly at
random (equiv. the edges weights are uniform). We show that the speed of best-
of-two voting is O(log n) for general weighted expanders (Theorem 2).

Fast Consensus for Voting on General Expander Graphs 251

Additionally, we consider an extension of the best-of-two voting, which we
refer to as k-extended best-of-two voting. In this process in each round every
vertex v performs two independent k step random walks. If the vertices visited
by the walks at the k-th step have the same opinion, vertex v adopts this opinion;
otherwise v keeps its current opinion in this round. The case k = 1 is best-of-two
voting, and k ≥ 2 extends the model by allowing vertices to obtain opinions
beyond their immediate neighbourhood. Once again the protocol takes O(log n)
rounds for general expanders (Corollary 1). It will emerge that k-extended best-
of-two voting can be seen as best-of-two voting in a different weighted graph. A
major advantage is that by increasing the value of k, Corollary 1 can be applied
to graphs with poor expansion, which are not covered by Theorems 1 and 2.

Voting in Weighted Graphs. For an undirected connected weighted graph
G = (V,E), let w(u, v) denote the positive weight assigned to an edge (u, v) ∈ E.
We use N(v) for the set of neighbours of v and define w(v) =

∑
x∈N(v) w(v, x)

the weight of v, w(S) =
∑

u∈S w(u) the weight of a set S ⊆ V , and w(G) =∑
v∈V w(v) the (total) weight of the graph. Best-of-two voting is a synchronous

process in which during each step, every vertex v ∈ V independently queries two
neighbours u′ and u′′, not necessary distinct, which are chosen randomly using
the selection probabilities proportional to the edge weights. If u′ and u′′ have
at the beginning of the step the same opinion X, then at the end of this step v
also has opinion X. If u′ and u′′ have different opinions, then at the end of the
step v has the same opinion as it had at the beginning of this step. Using the
selection probabilities proportional to the edge weights means that v selects an
ordered pair of its neighbours 〈u′, u′′〉 (not necessarily distinct) with probability
P (v, u′)P (v, u′′), where P (v, u) = w(v, u)/w(v). The probability that a vertex v
in A moves to B at a given step is equal to

Pr(v chooses twice in B) =

⎛

⎝
∑

u∈B∩N(v)

w(v, u)
w(v)

⎞

⎠

2

=

⎛

⎝
∑

u∈B∩N(v)

P (v, u)

⎞

⎠

2

.

Two-sample voting can be viewed as the special case of best-of-two voting when
the edge weights are uniform: w(e) = 1 for each e ∈ E, w(v) = d(v), w(S) =
d(S), w(G) = 2m and P (v, u) = 1/d(v).

Observe that P is the transition matrix of a reversible random walk on G. We
assume that G is not bipartite so that this random walk is aperiodic and has a
well defined stationary distribution π: π(u) = w(u)/w(G). (For a bipartite graph
G = (V1 ∪ V2, E), the voting would never converge, if one opinion resided on V1

and the other on V2.) Conversely, if P is the transition matrix of a reversible
random walk on G with the stationary distribution π (that is, P (u, v) > 0 iff
(u, v) ∈ E,

∑
u∈N(v) P (v, u) = 1 for each v ∈ V , and π(u)P (u, v) = π(v)P (v, u)

for each (u, v) ∈ E), then we can associate positive edge weights w = (w(e), e ∈
E) with P so that the transition probabilities of P are proportional to these
weights (set w(u, v) = π(u)P (u, v) to have P (u, v) = w(v, u)/w(v)). For a set
S ⊆ V , we have π(S) =

∑
u∈S π(u) = w(S)/w(G), so π and w are the same mea-

sures of the subsets of vertices up to the scaling factor w(G). For the transition

252 C. Cooper et al.

matrix P of simple (uniform) random walk, which corresponds to two-sample
voting, π(v) = d(v)/(2m) for each v ∈ V , and π(S) = d(S)/(2m) for a subset
S ⊆ V .

Thus best-of-two voting can be defined equivalently either by specifying edge
weights or a transition matrix P of a reversible aperiodic random walk. The
transition matrix of simple (uniform) random walk gives two-sample voting. We
stress that we do not establish a relation between the best-of-two voting process
based on matrix P of selection probabilities and the random walk process based
on matrix P of transition probabilities other than that both processes use the
same matrix P (but for somewhat different purposes). Some properties of such
matrices, which have been developed largely in the context of analysing random
walks, turn out to be useful for studying the best-of-two voting.

Let the eigenvalues of matrix P be ordered in decreasing value 1 = λ1(P) >
λ2(P) ≥ · · · ≥ λn(P) > −1, and let λ = λ(P) = max(|λ2(P)|, |λn(P)|). An
expander graph G (or simply, an expander) is commonly defined as a graph
with λ(P) bounded away from 1, where P is the transition matrix of the simple
random walk G. Generalising this, a weighted expander is a weighted graph with
λ(P) bounded away from 1, where P is the transition matrix of the random walk
G with transition probabilities proportional to the edge weights (see, e.g. [2]).

In the formal statements of our results, ”with high probability” (w.h.p.)
means with probability at least 1 − 1/nα for some constant α. Before discussing
our results in their most general form, we give the findings for two-sample-voting,
and also some specific examples.

Theorem 1. (Two-sample Voting) Let G be a connected non-bipartite graph
with n vertices and m edges, let P be the transition matrix of a simple random
walk on G, and let ν = n

(∑
vV d2(v)

)
/(2m)2. Let A and B denote the sets of

vertices of G with initial opinions of the two types, and let ε0 = |d(A)−d(B)|/2m
denote the initial degree imbalance between these sets.

Provided λ = λ(P) ≤ 1/
√

2− δ for arbitrarily small constant δ > 0, ε0 ≥ 2λ2

and nε20/ν ≥ K log n for sufficiently large constant K, then
(a) w.h.p. two-sample voting is completed in O(log n) rounds and the winner is

the opinion with the larger initial degree;
(b) if λ = o(1) and nλξ/ν ≥ K log n, for arbitrarily small constant ξ > 0 and

sufficiently large constant K, then w.h.p. two-sample voting is completed in
O(log 1/ε0) + O(log log(1/λ)) + O(log1/λ n) rounds and the winner is the
opinion with the larger initial degree.

Examples of graphs with λ < 1/
√

2 include random d-regular graphs with
d ≥ 10. The analysis of two-sample-voting on such graphs given in [9] required
the initial imbalance between the opinions ε0 ≥ Kλ, for a large constant K, while
the above theorem requires a weaker bound ε0 ≥ max{2λ2, (K log n)/n} (as
ν = 1 for regular graphs). Examples of graphs with λ(P) = o(1) include random
d-regular graphs d → ∞, pseudo-regular graphs of high degree, random graphs
G(n, p) when np = Ω(log n), and Chung-Lu random graphs [4] satisfying certain
conditions on minimum, average and maximum degree. The Chung-Lu graphs

Fast Consensus for Voting on General Expander Graphs 253

include many classes of inhomogeneous random graphs with wide variation in
vertex degree. A more complete description of these classes of graphs, and proofs
or descriptions of the results are given in Section 4.

Theorem 2. (Best-of-two Voting) Let G = (V,E) be a connected non-
bipartite graph, let P be the transition matrix of a reversible random walk on
G with stationary distribution π, let w = (w(e), e ∈ E) be positive edge weights
associated with P , and let ν = ν(w) = n

(∑
v∈V w2(v)

)
/w2(G). Let A and B

denote the sets of vertices of G with initial opinions of the two types, and let
ε0 = |w(A)−w(B)|/w(G) denote the initial weight imbalance between these sets.

Provided λ = λ(P) ≤ 1/
√

2 − δ for an arbitrarily small constant δ, ε0 ≥ 2λ2

and nε20/ν ≥ K log n for a sufficiently large constant K, then
(a) w.h.p. best-of-two voting is completed in O(log n) rounds and the winner is

the opinion with the larger initial weight;
(b) if λ = o(1) and nλξ/ν ≥ K log n for arbitrarily small constant ξ > 0 and

sufficiently large constant K, then w.h.p. best-of-two voting is completed in
O(log 1/ε0) + O(log log(1/λ)) + O(log1/λ n) rounds and the winner is the
opinion with the larger initial weight.

Regarding the conditions of Theorems 1 and 2, we need the lower bound
on the initial imbalance of the opinions ε0 ≥ 2λ2 to show that in each step
the majority opinion is expected to increase. We need the additional bound
ε0 ≥ √

(Kν log n)/n (and the condition nλξ/ν ≥ K log n for the part (b) of the
theorems) to argue that this increase happens w.h.p.

The advantage of best-of-two voting is that by choosing neighbours in the
voting process based on assigning suitable weights to the edges we can tailor the
outcome to our needs. In the simplest case that all edges are weighted equally
we have the ordinary two-sample voting. The set with the largest initial degree
wins w.h.p. The weights w(u, v) = d(u)+ d(v) biass voting towards the opinions
of high degree vertices. The weights w(u, v) = max{1/d(u), 1/d(v)} biass voting
towards the opinions of low degree vertices. To completely remove the effect of
vertex degree on the voting process, we can use the following Metropolis process.
Let M = maxv∈V d(v) be the maximum degree of G. Let each edge of G have
weight one, and each vertex v introduce a self-loop of weight M − d(v). Then
π(v) = 1/n, so w(A)/w(B) = π(A)/π(B) = |A|/|B| and the majority wins.

Theorems 1 and 2 both require the upper bound 1/
√

2 on λ and the lower
bound 2λ2 on the initial imbalance of the two opinions. We introduce the k-
extended best-of-two voting, which can deal with cases when one or both of
these conditions are not satisfied. This voting is a synchronous process in which
during each round, every vertex v performs k steps of two independent weighted
random walks starting at v. If the two vertices visited at step k of these two
random walks have the same opinion, then vertex v adopts such opinion. This
voting can be viewed as the best-of-two voting which uses P k as the matrix
of the sampling probabilities, where P is the transition matrix of the weighted
random walk. Since P k is reversible and λ(P k) = (λ(P))k, Theorem 2 implies
the following corollary. Note that one round of the k-extended best-of-two voting

254 C. Cooper et al.

involves k random-walk steps. This is the price to pay, if λ is poor and/or the
initial imbalance of the two opinions is small.

Corollary 1. (Extended best-of-two voting) Assume the same conditions
as in Theorem 2 but λ = λ(P) ≥ 1/

√
2 or ε0 < 2λ2. Let an integer k ≥ 1 be

such that λk < 1/
√

2 − δ for an arbitrarily small constant δ and ε0 ≥ 2λ2. Then

(a) w.h.p. k-extended best-of-two voting is completed in O(log n) rounds and the
winner is the opinion with the larger edge weight;

(b) if λk = o(1) and nλξk/ν ≥ K log n, for arbitrarily small constant ξ > 0 and
sufficiently large constant K, then with high probability k-extended best-of-
two voting is completed in O(log 1/ε0)+O(log log(1/λ))+O(log1/λ n) rounds
and the winner is the opinion with the larger weight.

An example where Corollary 1 can be applied is preferential attachment
graphs generated by a scale-free process model in which each new vertex attaches
d edges to the existing graph. The endpoints of the edges are chosen proportional
to their current degree. For large d, k = 7 steps of random walks are enough for
the corollary to hold. The details are given in Section 4.

2 Expected Change in Weight after One Step of Voting

In this section we derive a lower bound on the expected increase in the weight of
the larger of the two sets A and B after one step of the voting process. The bound
is very general and requires only the following two assumptions. (i) Each vertex v
makes two choices at each step, and the choices are made independently among
the vertices u of the graph with a fixed probability P (v, u). (ii) The matrix P of
probabilities P (v, u) is the transition matrix of an irreducible aperiodic reversible
random walk, and thus has a unique stationary distribution π = (π(v), v ∈
V). We assume that there are always weights associated with the edges of the
underlying graph, as explained in the previous section.

As an example of our approach, consider the transition matrix of a simple
random walk. To make a transition from vertex v, the walk chooses a random
neigbour u ∈ N(v) with probability P (v, u) = 1/d(v). Using this transition
matrix P in the voting process corresponds to v choosing two neighbours uni-
formly at random with replacement. If v ∈ A and the chosen neighbours are in
B, then v changes its opinion to B. The degree d(B) of B and the stationary
probability (in the context of random walks) of B thus increase by d(v) and
π(v) = d(v)/2m, respectively.

Scaling the edge weights does not change the matrix P (hence does not
change the random walk or the voting processes), so in our analysis we can use
either the weights of sets w(S) or the ”normalised weights” π(S), whichever is
more convenient. Bearing this in mind, let for x ∈ A,

XB
x =

{
π(x), if x chooses twice in B,
0, otherwise. (2)

Fast Consensus for Voting on General Expander Graphs 255

Thus XB
x is the contribution of the vertex x ∈ A to the increase of the (nor-

malised) weight of B at the end of the step. Similarly, for x ∈ B define
XA

x = π(x), if x chooses twice in A, and zero otherwise. Adopting the nota-
tion P (x,B) =

∑
y∈B P (x, y), we have for x ∈ A,

E(XB
x) = π(x)Pr(XB

x = π(x)) = π(x)

⎛

⎝
∑

y∈B

P (x, y)

⎞

⎠

2

= π(x)(P (x,B))2.

Let XB
A =

∑
x∈A XB

x , and let R(A,B) = E(XB
A) be the expected increase of the

weight of B in the current step (which is equal to the expected decrease of the
weight of A) due to vertices moving from A to B. Then

R(A,B) = E(XB
A) =

∑

x∈A

E(XB
x) =

∑

x∈A

π(x)(P (x,B))2. (3)

Similarly, R(B,A) =
∑

x∈B π(x)(P (x,A))2 is the expected increase of the weight
of A due to vertices moving from B to A. If P is the transition matrix of simple
random walk on G, then (3) can be written as

R(A,B) =
∑

x∈A

d(x)
2m

⎛

⎝
∑

y∈B∩N(x)

1
d(x)

⎞

⎠

2

=
1

2m

∑

x∈A

(dB(x))2

d(x)
,

where dS(x) = |N(x) ∩ S|.
The next theorem and its corollary are the fundamental observations of this

paper. They give lower bounds on R(B,A) − R(A,B), which is the expected
increase of the weight of set A in the current step. We use the notation Q(A,B),
which can be viewed as the normalised weight of the cut between A and B:

Q(A,B) =
∑

x∈A

∑

y∈B

π(x)P (x, y) =
∑

x∈A

π(x)P (x,B). (4)

Note that for a reversible matrix P , π(x)P (x, y) = π(y)P (y, x) implies
Q(A,B) = Q(B,A), and from the point of view of edge weights,

Q(A,B) =
∑

x∈A

∑

y∈B∩N(x)

w(x, y)/w(G) =
w(A,B)
w(G)

.

The proof of Theorem 3 refers to the inner product 〈f, g〉π of two vectors f, g
of length n, defined by

〈f, g〉π =
∑

x∈V

π(x)f(x)g(x).

Let f1, f2, . . . , fn be (right) eigenvectors of P associated with the eigenvalues
1 = λ1 > λ2 ≥ · · · ≥ λn > −1. As we suppose P is reversible, we can assume

256 C. Cooper et al.

that the eigenvectors {fj}n
j=1 are orthonormal with respect to the inner product

〈·, ·〉π (see [17], Lemma 12.2); in particular, f1 = 1. Thus 〈fi, fj〉π = 0, if i �= j,
〈fi, fi〉π = 1 and for any h ∈ R

n,

h =
n∑

j=1

〈h, fj〉πfj , and P th =
n∑

j=1

λt
j〈h, fj〉πfj . (5)

Theorem 3. Let P be a reversible transition matrix on G with stationary dis-
tribution π, A ⊆ V , B = V \ A and let φ = Q(A,B)/π(B). Then

R(B,A) − R(A,B) ≥ π(B)
(
(1 − λ2)π(A) − 2φ(1 − φ)

)
. (6)

Since 0 < φ < 1, Theorem 3 gives immediately the following corollary.

Corollary 2. Let P be a reversible transition matrix on G with stationary dis-
tribution π, A ⊆ V and B = V \ A. Then

R(B,A) − R(A,B) ≥ π(B)
(
(1 − λ2)π(A) − 1/2

)
. (7)

Proof of Theorem 3. Let

g(x) =
{

π(A), if x ∈ B,
−π(B), if x ∈ A; (8)

The x-coordinate of the vector Pg is equal to

(Pg)(x) = P (x, .) · g =
∑

y∈V

P (x, y)g(y) =
∑

y∈A

P (x, y)g(y) +
∑

y∈B

P (x, y)g(y)

=
∑

y∈A

P (x, y)(−π(B)) +
∑

y∈B

P (x, y)π(A)

= −π(B)P (x,A) + π(A)P (x,B)
= π(A) − P (x,A) = P (x,B) − π(B). (9)

Using (9) in (10) and (3) and (4) in (11), we have

〈Pg, Pg〉π =
∑

x∈V

π(x)((Pg)(x))2 =
∑

x∈A

π(x)((Pg)(x))2 +
∑

x∈B

π(x)((Pg)(x))2

=
∑

x∈A

π(x)
(
P (x,B) − π(B)

)2

+
∑

x∈B

π(x)
(
π(A) − P (x,A)

)2

(10)

=
∑

x∈A

π(x)P (x,B)2 +
∑

x∈A

π(x)π(B)2 +
∑

x∈A

π(x)
(
−2P (x,B)π(B)

)

+
∑

x∈B

π(x)P (x,A)2 +
∑

x∈B

π(x)π(A)2 +
∑

x∈B

π(x)
(
−2P (x,A)π(A)

)

= R(A,B) + R(B,A) + π(A)π(B)
(
π(B) + π(A)

)

− 2Q(B,A)
(
π(B) + π(A)

)
(11)

= R(A,B) + R(B,A) + π(A)π(B) − 2Q(B,A). (12)

Fast Consensus for Voting on General Expander Graphs 257

Equation (12) is equivalent to:

R(B,A) − R(A,B) = π(A)π(B) − 〈Pg, Pg〉π − 2
(
Q(B,A) − R(B,A)

)
. (13)

We find that

Q(B,A) − R(B,A) =

=
∑

x∈B

π(x)P (x,A) −
∑

x∈B

π(x) (P (x,A))2

= π(B)
∑

x∈B

π(x)
π(B)

P (x,A)(1 − P (x,A))

≤ π(B)

(
∑

x∈B

π(x)
π(B)

P (x,A)

) (

1 −
∑

x∈B

π(x)
π(B)

P (x,A)

)

(14)

= π(B)
Q(B,A)

π(B)

(

1 − Q(B,A)
π(B

)

= π(B)φ(1 − φ), (15)

where (14) follows from the fact that the function z(z−1) is concave. The claimed
bound (6) follows from (13), (15) and the following result:

〈Pg, Pg〉π ≤ λ2π(A)π(B). (16)

To verify (16), check first that 〈Pg, Pg〉π = 〈P 2g, g〉π, using reversibility of P ,
and 〈g, g〉π = π(A)π(B), using the definition of g. Then using (5) and 〈g, f1〉π = 0
(since f1 = 1), derive 〈g, g〉π =

∑n
j=2〈g, fj〉2π and finally

〈P 2g, g〉π =
n∑

j=2

λ2
j 〈g, fj〉2π ≤ λ2

n∑

j=2

〈g, fj〉2π = λ2〈g, g〉π = λ2π(A)π(B).

�

The following known result generalizes the Expander Mixing Lemma for undi-
rected graphs to weighted graphs. While bound (7) given in Corollary 2 will be
sufficient in the proofs of part (a) of Theorems 1 and 2, the tighter bound (6)
given in Theorem 3 together with Lemma 1 will be needed to prove part (b).

Lemma 1. Let P be the transition matrix of the weighted random walk on a
connected undirected graph G = (V,E) with edge weights w = (w(e), e ∈ E),
and let λ = max(|λ2(P)|, |λn(P)|). Then

|w(A,B) − w(A)w(B)/w(G)| ≤ λ w(A)w(B)/w(G). (17)

3 Proof of Theorem 1

In this section we give the proof of Theorem 1. The proof of Theorem 2 is
very similar. Assume λ2 ≤ 1/2 − δ for small constant δ > 0, 2λ2 ≤ ε0 < 1

258 C. Cooper et al.

and ε20 ≥ (Kν log n)/n, for some large constant K. We first prove the part (a)
of Theorem 1. We assume that B is the minority set with the initial degree
d(B) = m(1 − ε0). The proof is in two phases. Phase I reduces d(B) to cm in
TI = O(log 1/ε0) steps, w.h.p., where c > 0 is an arbitrarily small constant. Then
Phase II reduces d(B) to zero in TII = O(log n) steps, w.h.p.

Proof of Theorem 1(a), Phase I. Let ΔAB be the increase in degree of the
vertices of A at a given step of the voting. Then by Corollary 2,

EΔAB = 2m(R(B,A) − R(A,B)) ≥ d(B)
(
(1 − λ2)d(A)/(2m) − 1/2

)
. (18)

Let ε = (d(A)−d(B))/2m. Thus d(A) = m(1+ε) and d(B) = m(1−ε) > cm. We
assume ε ≥ ε0 (by induction, the imbalance ε increases in each step in Phase I
w.h.p.). Thus ε ≥ 2λ2, which together with δ ≤ 1/2 − λ2 gives

EΔAB ≥ d(B)
2

(
(1 − λ2)(1 + ε) − 1

)
=

d(B)
2

(ε − λ2(1 + ε)) ≥ d(B)
εδ

2
. (19)

The following version of the Hoeffding Lemma can be found in e.g. [18]. Let
Xk, k = 1, ..., N be independent random variables, where for each k, ak ≤ Xk ≤
bk. Let X =

∑N
k=1 Xk and let μ = EX. Then for any t > 0

Pr(|X − μ| ≥ Nt) ≤ 2 exp

(

−2N2t2/

N∑

k=1

(bk − ak)2
)

. (20)

Let C be the vertices which have a neighbour in the other vote set, that is, the
wertices which have positive probability of changing their vote. Let AC = C ∩A
and BC = C ∩ B. We use (20) with N = |C| and take Xv, for v ∈ C, as the
signed degree of v based on (2). For v ∈ AC , Xv = −XB

v · 2m, which is either
−dB(v) or 0, and for v ∈ BC , Xv = XA

v · 2m, which is either dA(v) or 0. Thus∑
v∈C Xv = ΔAB and the sum

∑
v∈C(bv − av)2 in (20) is

∑

v∈C

(bv − av)2 =
∑

v∈AC

(dB(v))2 +
∑

v∈BC

(dA(v))2 ≤
∑

v∈V

d2(v) = (2m)2ν/n.

From (19), (20), d(B) ≥ cm and nε2/ν ≥ K log n, we find

Pr(ΔAB ≤ EΔAB/2) ≤ Pr(|ΔAB − EΔAB | ≥ EΔAB/2)

≤ 2 exp
(−2(EΔAB/2)2

(2m)2ν/n

)

≤ 2 exp
(

−n(d(B)εδ)2

32m2ν

)

≤ 2 exp
(

−nε2

ν

(cδ)2

32

)

≤ 1
nα

, (21)

for constant α = K(cδ)2/32.
Let B and B′ be the set of vertices with the B vote at the beginning of the

current and next step, respectively. If ΔAB ≥ EΔAB/2, then it follows from (19)
that the size of d(B′) is

d(B′) = d(B) − ΔAB ≤ d(B) − EΔAB/2 ≤ d(B)(1 − εδ/4). (22)

Fast Consensus for Voting on General Expander Graphs 259

Suppose firstly that ε ≤ 1/2, then in one step d(B) decreases w.h.p. from m(1−ε)
to at most m(1 − ε(1 + δ/8)). Starting from d(B0) = m(1 − ε0), after j steps
we have that d(Bj) ≤ m(1 − (1 + δ/4)jε0). On the other hand, if ε > 1/2, that
is, d(B) ≤ m/2, then (22) implies that d(B) reduces to size cm in a constant
number of steps. Thus after TI = O(log 1/ε0) steps, w.h.p. d(BTI) ≤ cm.

Proof of Theorem 1(a), Phase II. Let B and B′ denote the set of vertices
with the B vote at the beginning of the current and the next step, respectively.
At the end of Phase I, d(B) ≤ cm, so π(B) ≤ c/2 for some small constant
c > 0. Firstly, using (21), we observe that d(B) remains below cm w.h.p. for
polylogarithmic number of steps:

Pr(d(B′) ≥ cm | d(B) ≤ cm) ≤ Pr(d(B′) ≥ cm | d(B) = cm) ≤ 1
nα

. (23)

Using (19) (which, as (18), applies to A and B = V \ A of any sizes) and noting
that d(B) ≤ cm implies ε ≥ 1 − c ≥ 2/3, we have for any 0 ≤ q ≤ cm,

E(d(B′)|d(B) = q) ≤ (1 − δ/3)q. (24)

Let B0 be the B-set at the beginning of Phase II and let Bi be the B-set after
i steps. We assume that d(B0) ≤ cm, and generally 0 ≤ d(Bi) ≤ 2m, for each
i ≥ 1. We now bound E(d(Bi)), for i ≥ 1. Denoting Bi ≡ {d(Bi) ≤ cm}, for
i ≥ 0, we have

E(d(Bi)) ≤ E(d(Bi)|Bi−1) · Pr(Bi−1) + (2m) · Pr(¬Bi−1). (25)

Further,

E(d(Bi)|Bi−1) · Pr(Bi−1)

=
∑

0≤q≤cm

E(d(Bi)|d(Bi−1) = q) · Pr(d(Bi−1) = q|Bi−1) · Pr(Bi−1)

=
∑

0≤q≤cm

E(d(Bi)|d(Bi−1) = q) · Pr(d(Bi−1) = q)

≤
∑

0≤q≤cm

(1 − δ/3) · q · Pr(d(Bi−1) = q) ≤ (1 − δ/3)E(d(Bi−1), (26)

and, using (23),

Pr(¬Bi−1) ≤
i−1∑

j=1

Pr(Bj−1 and ¬Bj) ≤
i−1∑

j=1

Pr(¬Bj | Bj−1) ≤ i

nα
. (27)

Putting (26) and (27) in (25), we get

E(d(Bi)) ≤ (1 − δ/3)E(d(Bi−1) + 2mi/nα, and

E(d(Bi)) ≤ (1 − δ/3)i d(B0) + (3/δ)2mi/nα.

260 C. Cooper et al.

Thus for T = TII = (3/δ)(2 + α) ln n,

E(d(BT)) ≤ (1 − δ/3)T cm + (3/δ)2mT/nα ≤ 1/nα/2,

so

Pr(d(BT) = 0) = 1 − Pr(d(BT) ≥ 1) ≥ 1 − E(d(BT)) ≥ 1 − n−α/2.

This means that w.h.p. Phase II completes in T = TII = O(log n) steps and the
winner is vote A.

Proof of Theorem 1(b). For a simple random walk, all edges have weight
one, so in Lemma 1, w(A) and w(B) are d(A) and d(B), w(G) = 2m and
w(A,B) = d(A,B), the number of edges between sets A and B. Thus (17) gives
the following inequality for any sets A and B = V \ A.

∣
∣
∣
∣
d(A,B)
d(B)

− d(A)
2m

∣
∣
∣
∣ ≤ λ

d(A)
2m

. (28)

In Theorem 3, φ = Q(A,B)/π(B) = d(A,B)/d(B) and π(A) = d(A)/(2m),
so (28) implies that π(A)(1 − λ) ≤ φ ≤ π(A)(1 + λ). For this range of φ, if
π(A) ≥ 1/2, then φ(1−φ) in (6) is maximised at φ = π(A)(1−λ), so (6) implies

R(B,A) − R(A,B) ≥ π(B)π(A)(1 − λ)2(1 − 2π(B)).

Hence after one step, the set B is replaced by a set B′ of expected degree

E(d(B′) | d(B)) = d(B) − 2m(R(B,A) − R(A,B))

≤ d(B)
(
1 − (1 − π(B))(1 − λ)2(1 − 2π(B))

)

≤ d(B)(2λ + 3π(B)). (29)

In the analysis of Phase II, we use now the bound (29) on E(d(B′)|d(B)) instead
of the bound (24). We split Phase II into two parts. First d(B) keeps decreasing
from cm to λξ/4m. For this range of d(B), π(B) ≥ λ, so (29) implies that
E(π(B′)) ≤ 5(π(B))2. If π(B′) ≥ E(π(B′)) + (π(B))2, then ΔAB ≤ E(ΔAB) −
2m(π(B))2, so we have, in a similarly way as in (21) and using π(B) ≥ λξ/4/2
and the assumption that nλξ/ν ≥ K log n,

Pr
(
π(B′) ≥ 6(π(B))2

) ≤ Pr
(|ΔAB − EΔAB | ≥ 2m(π(B))2

)

≤ 2 exp
(−2(2m(π(B))2)2/((2m)2ν/n)

)

≤ 2 exp
(

−nλξ

8ν

)

≤ 1
nK/8

.

Thus w.h.p. in each step of the first part of Phase II, π(B′) ≥ 6(π(B))2, giving
O(log log(1/λ)) steps. Then d(B) decreases from λξ/4m to zero and for this part
of Phase II, (29) implies that d(B′) ≤ 5λξ/4d(B), leading to the O(log1/λ n)
bound on the number of rounds.

Fast Consensus for Voting on General Expander Graphs 261

4 Specific Examples and Notes on Eigenvalue Gaps

We give various examples of graphs which satisfy our theorems. In some cases,
additional work, not discussed here, is required to relate known results to the
second eigenvalue λ(P) of the transition matrix P .

Random Graphs G(n, p). From Coja-Oghlan [6], Theorem 1.2, if 2(1 +
o(1)) log n ≤ np ≤ 0.99n, then w.h.p. maxj≥2 |λj(P)| ≤ (1 + o(1)) 2√

np .

Chung-Lu Model. This model generalizes random graphs G(n, p) to the
space of random graphs G(w) where w is a sequence of positive weights
w = (w1, w2, ..., wn). Edges are included independently, and edge {i, j} has
probability pij = wiwj/ρ where ρ =

∑
i wi. There is a further constraint that

maxi w2
i < ρ to ensure pij ≤ 1. The average degree is w =

∑n
i=1 wi/n = ρ/n.

The expected degree of vertex i is wi, and the minimum expected degree
wmin = mini wi.

The following result is from [5], where ω is any slowly growing function.

max
j≥2

|λj(P)| ≤ (1 + o(1))
4√
w

+
ω log2 n

wmin
.

Thus provided wmin � ω log2
√

w, the generated graphs have small λ(P).

Pseudo-regular Graphs. Take a random d-regular graph G and add extra
edges, at most c at any vertex, where c ≤ εd for some small constant ε. This
gives λ(P) ≤ (3

√
d + 2c)/(d + c).

Metropolis Walks. Let G have degree bounded between d and M = (1 + a)d.
The transition matrix P̃ of the Metropolis process has transition probabilities
P̃ij = 1/M if {i, j} is an edge of G and loop probability P̃ii = 1 − d(i)/M . If P

is the transition matrix of a simple random walk on G, then |λk(P̃) − λk(P)| ≤
2a/(1 + a).

Preferential Attachment Model. The model Gm,t generates a preferential
attachment graph as follows. At any step t ≥ 1 a new vertex vt with m edges
is attached to the existing graph Gm,t−1. The edges from vt are attached to
existing vertices chosen with probability proportional to their degree. The fol-
lowing result is given in [19]. For any m ≥ 2, if positive constants a and c satisfy
c < 2(m − 1) − 4a − 1, then the conductance Φ of Gm,n satisfies

Pr(Φ ≤ a/(m + a)) = o(n−c).

Taking constants a and c such that 2c = 2(m − 1) − 4a − 1, we have w.h.p.

Φ ≥ 2m − 3 − 2c

6m − 3 − 2c
.

Choosing c small and using the relationship that λ2 ≤ 1 − Φ2/2, we have that
λ2(m) satisfies λ2(2) ≤ 199/200 and for m large λ2(m) < 19/20. In both cases,
two-sample voting cannot provably guarantee the outcome. If we use k-extended
best-of-two voting algorithm with k = 70 for the first case and k = 7 for the
second, then we obtain λk < 1/

√
2 and thus Corollary 1 applies.

262 C. Cooper et al.

References

1. Abdullah, M., Draief, M.: Consensus on the Initial Global Majority by Local Major-
ity Polling for a Class of Sparse Graphs (2013). http://www.arXiv.org

2. Bolla, M.: Beyond the Expanders. International Journal of Combinatorics 2011,
Article ID 787596, 11 (2011)

3. Brahma, S., Macharla, S., Pal, S.P., Singh, S.K.: Fair leader election by random-
ized voting. In: Ghosh, R.K., Mohanty, H. (eds.) ICDCIT 2004. LNCS, vol. 3347,
pp. 22–31. Springer, Heidelberg (2004)

4. Chung, F.R.K., Lu, L.: Connected components in random graphs with given
expected degree sequences. Annals of Combinatorics 6, 125–145 (2002)

5. Chung, F.R.K., Lu, L., Vu, V.: The spectra of random graphs with given expected
degrees. Internet Mathematics 1, 257–275 (2003)

6. Coja-Oghlan, A.: On the Laplacian Eigenvalues of Gn,p. Combinatorics, Probabil-
ity and Computing 16, 923–946 (2007)

7. Cooper, C., Frieze, A., Radzik, B.: Multiple Random Walks in Random Regular
Graphs. SIAM J. on Discrete Math. 23, 1738–1761 (2009)

8. Cooper, C., Elsässer, R., Ono, H., Radzik, T.: Coalescing Random Walks and
Voting on Connected Graphs. SIAM J. on Discrete Math. 27, 1748–1758 (2013)

9. Cooper, C., Elsässer, R., Radzik, T.: The power of two choices in distributed voting.
In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014,
Part II. LNCS, vol. 8573, pp. 435–446. Springer, Heidelberg (2014)

10. Cruise, J., Ganesh, A.: Probabilistic consensus via polling and majority rules.
Queueing Systems: Theory and Applications. 78, 99–120 (2014)

11. Deng, X., Papadimitriou, C.: On the Complexity of Cooperative Solution Concepts.
Mathematics of Operations Research 19, 257–266 (1994)

12. Friedman, J.: A proof of Alon’s second eigenvalue conjecture. In: STOC 2003: Proc.
35th Annual ACM Symposium on Theory of Computing, pp. 720–724 (2003)

13. Gifford, D.: Weighted voting for replicated data. In: SOSP 1979: Proceedings of
the 7th ACM Symposium on Operating Systems Principles, pp. 150–162 (1979)

14. Hassin, Y., Peleg, D.: Distributed probabilistic polling and applications to propor-
tionate agreement. Information & Computation 171, 248–268 (2001)

15. Horn, R.A., Johnson, C.R.: Matrix analysis. In: CUP (2006)
16. Johnson, B.: Design and Analysis of Fault Tolerant Digital Systems. Addison-

Wesley (1989)
17. Levine, D.A., Peres, Y., Wilmer, E.L.: Markov Chain and Mixing Times. American

Mathematical Society (2008)
18. McDiarmid, C.: On the method of bounded differences. In: Siemons, J. (ed.) Sur-

veys in Combinatorics, pp. 148–188. CUP (1989)
19. Mihail, M., Papadimitriou, C., Sabieri, A.: On certain connectivity properties of

the internet topology. In: Proceedings of Foundations of Computer Science, FOCS
2003, pp. 28–35 (2003)

20. Nakata, T., Imahayashi, H., Yamashita, M.: Probabilistic local majority voting
for the agreement problem on finite graphs. In: Asano, T., Imai, H., Lee, D.T.,
Nakano, S., Tokuyama, T. (eds.) COCOON 1999. LNCS, vol. 1627, pp. 330–338.
Springer, Heidelberg (1999)

http://www.arXiv.org

Randomness vs. Time in Anonymous Networks

Jochen Seidel(B), Jara Uitto, and Roger Wattenhofer

ETH Zurich, Zurich, Switzerland
{seidelj,juitto,wattenhofer}@ethz.ch

Abstract. In an anonymous network, symmetry breaking tasks can only
be solved if randomization is available. But how many random bits are
required to solve any such task? As it turns out, the answer to this ques-
tion depends on the desired runtime of the algorithm.

Since any randomized anonymous network algorithm can be decom-
posed into a randomized 2-hop coloring stage and a deterministic stage,
we tackle the question by focusing on the randomized stage. We establish
that for any reasonable target function f , there is a randomized 2-hop
coloring scheme running in O(f(n)) time. Our coloring scheme allows to
trade an increase in runtime by a factor of d for a decrease by the dth

root in the random bit complexity.
To show that the achieved trade-off is asymptotically optimal for

any choice of f , we establish a trade-off lower bound. Our bounds yield
that it is sufficient to consider the cases when f is between Ω(log∗ n)
and O(log log n). We obtain that for the two extreme cases, i.e., where
f ∈ Θ(log∗ n) and f ∈ Θ(log log n), the random bit complexity is Θ(d

√
n)

and Θ(log n), respectively, for any constant d. The trade-off achieved by
our scheme is asymptotically optimal for any f , i.e., reducing the runtime
must lead to an increase in the random bit complexity.

1 Introduction

We consider randomized algorithms running in a network of n communicating
nodes. The network is anonymous, as opposed to identified networks in which
nodes can be distinguished by their unique identifiers (IDs). The computational
power of deterministic anonymous network algorithms has been found to be
rather limited [31]. When nodes have access to random bits however, many
interesting tasks become solvable. But what is the amount of random bits, i.e.,
the random bit complexity, required to solve any such task?

Consider, for example, the fundamental symmetry breaking problem of graph
coloring, where the goal is to assign colors to nodes so that every two neighbors
get a different color. In a complete network, i.e., when every node is connected
to all other nodes, a unique color must be used for every node. Therefore, for
complete networks the answer is at least log n random bits. One result of our

Due to space constraints, in this extended abstract all proofs had to be omit-
ted. The full version of this paper is available at http://disco.ethz.ch/publications/
DISC2015-coloring.pdf.

c© Springer-Verlag Berlin Heidelberg 2015
Y. Moses (Ed.): DISC 2015, LNCS 9363, pp. 263–275, 2015.
DOI: 10.1007/978-3-662-48653-5 18

http://disco.ethz.ch/publications/DISC2015-coloring.pdf
http://disco.ethz.ch/publications/DISC2015-coloring.pdf

264 J. Seidel et al.

work is that in expectation Ω(log n) random bits are required even if every node
in the network has at most 3 neighbors. Moreover, we establish that O(log n)
random bits in expectation are also sufficient to solve all tasks in any network.

Alongside the random bit complexity, as a second efficiency measure, we con-
sider the runtime required to solve such tasks. Increasing the runtime allows one
to draw the random bits more carefully, thus reducing the number of unnec-
essarily drawn random bits. Conversely, it is true that drawing random bits
more generously enables faster runtime. We study how exactly the random bit
complexity relates to the runtime.

More precisely, we show that there is an efficiency trade-off between the run-
time and the random bit complexity required to solve any task. Our contribution
is to establish asymptotically tight lower and upper bounds on the achievable
trade-off. Those bounds imply that using more than O(log log n) rounds to solve
a task does not result in a better random bit complexity. Linial’s local symmetry
breaking lower bound, showing that one requires roughly log∗ n rounds [27] to
3-color a ring, already hints that the interesting cases occur when the asymp-
totic runtime is between log∗ n and log log n. In the respective extreme cases, i.e.,
when the runtime is log∗ n or log log n, our lower bound states that the random
bit complexity is Ω(d

√
n) and Ω(log n), correspondingly, where d is a constant

that depends on the runtime.
For the upper bound we devise a randomized scheme that produces suffi-

ciently many random bits for any anonymous network algorithm. To this end we
introduce the notion of a target function f which specifies the desired runtime of
our scheme, and consider the cases where f(n) is asymptotically between log∗ n
and log log n. The trade-off achieved by our scheme asymptotically matches the
lower bound with high probability1 and in expectation, also for all runtimes f
that lie between the two extremes.

Our scheme is uniform: The algorithm does not require any knowledge about
the network topology, such as its size or diameter. Note that this rules out the
trivial approach of drawing a unique identifier with O(log n) bits, which would
succeed with high probability. Being uniform, our scheme can be used to devise
new uniform algorithms for classic symmetry breaking problems by utilizing
existing deterministic algorithms. This is due to the fact that those algorithms
often assume IDs, but function correctly even if those IDs are only locally unique.
As one example, consider the deterministic coloring algorithm from [35] which
runs in O(log∗ n) time on graphs with bounded growth. By applying our scheme,
we obtain a uniform coloring algorithm for anonymous networks with the same
runtime. Our lower bounds imply that an O(log∗ n) runtime is the best possible.
This speed comes at the cost of a relatively high random bit complexity, which
is Θ(d

√
n). Note, however, that d is a freely selectable parameter of our scheme

(a constant) that is hidden in the big-O notation. If one is willing to sacrifice
the asymptotic runtime, on the other end of the spectrum, our approach allows
to solve the same task in O(log log n) time using as little as O(log n) random

1 We say an event occurs with high probability (w.h.p.) if it occurs with probability
1 − n−c for any constant c.

Randomness vs. Time in Anonymous Networks 265

bits. By tuning the f parameter, any trade-off between the two extremes can be
achieved.

So how can we possibly bound the random bit complexity for any computable
task? The answer to this complexity question can be based on a recent com-
putability result by Emek et al. [14], where they showed that a 2-hop coloring2

is necessary and sufficient to replace access to random bits in any anonymous
network algorithm. We therefore establish our upper bound by devising a 2-hop
coloring algorithm whose runtime and random bit complexity are tuneable by a
target function f and a constant d.

1.1 Related Work

The theory of distributed computability began with Angluin’s insight that leader
election is impossible in anonymous rings [3]. A similar impossibility argument
can be made for deterministic algorithms that solve local symmetry breaking
tasks, e.g., coloring or MIS, and literally hundreds of more impossibilities are
known [6]. In short, the computational power of deterministic anonymous net-
work algorithms is limited [31].

Under the assumption of uniform algorithms, the leader election impossibility
result from [3] extends to the case where randomization is available. In contrast
to that, when randomization is available, there are well known algorithms that
solve the local symmetry breaking problems coloring [27] and MIS [1,28] also in
anonymous networks. It is interesting to note that both randomized MIS algo-
rithms are used to construct completely derandomized (deterministic) variants
under the assumption that unique identifiers are available. How much random-
ization an anonymous network will ever need from a computability perspective
can be characterized in terms of a 2-hop coloring [15]. In this paper, based on
that observation, we tackle the complexity question, i.e., the random bits and
runtime necessary to obtain a 2-hop coloring. When unique IDs are available,
runtime and messages (size and quantity) can be traded, e.g., in MIS and color-
ing algorithms [22]. Focusing on anonymous algorithms, we trade runtime with
a fourth complexity measure, namely the random bit complexity. Also outside of
anonymous algorithms, randomization has many applications in distributed com-
puting (cf. [7]), e.g., in agreement [4,5], self stabilization [14], and non-uniform
leader election [1].

Still, one of the most basic tasks to solve in a distributed setting remains
coloring, and often coloring and MIS algorithms go hand in hand. As such, they
were studied thoroughly (please refer to [10] for an extensive overview), usually
aiming to use at most Δ + 1 (or at least some small function of Δ) many colors.
Perhaps surprisingly, when identifiers are available, deterministic coloring algo-
rithms are among the fastest. A recent series of results by Barenboim, Elkin,
and Kuhn [8,25,11] yields a Δ+1 coloring in O(Δ+log∗ n) runtime by utilizing
a new defective coloring technique. The picture is completed by the observation

2 A 2-hop coloring is a coloring of the network in which every node’s color is different
from the colors used by any other node within distance 2 (see Section 2).

266 J. Seidel et al.

that colors can be traded for runtime [9], i.e., one can get O(Δε + log∗ n) for
O(Δ) colors or O(log Δ · log∗ n) for O(Δ1+ε) colors. These deterministic color-
ing algorithms have in common that they need to assume IDs. Also randomized
algorithms (e.g. [35,34]) often assume IDs and are not uniform, i.e., they assume
knowledge about n or some other global network parameter. Relieving the algo-
rithm from that knowledge, we focus on achieving a good random bit complexity
instead of a low number of used colors, and refer to standard methods (e.g., the
deterministic approach in [19]) to reduce this number. On the other hand, the
O(log n) algorithms for MIS [1,28] and coloring [27] are uniform, and can be for-
mulated even in very restricted models [36]. We improve on the runtime at the
lowest possible price one needs to pay for that in terms of random bit complexity.

It is worth mentioning that in the context of self-stabilization [13], uniform
MIS and (2-hop) coloring protocols were studied also for anonymous networks.
For instance, [37] considers deterministic and randomized protocols that color
paths and rings, and later [21] obtain randomized protocols for MIS and coloring
in arbitrary networks. The recent work [12] presents a 2-hop coloring protocol for
graphs of bounded degree. In the self-stabilization context, the difficulty lies in
dealing with faults. The random bit complexity is of no concern in the protocols
mentioned above, and the runtime of [12] is necessarily much higher than in our
non-faulty environment.

Sequential probabilistic computability was pioneered by Gill [18], showing
that, e.g., ZPP = RP ∩ co-RP, and Rabin [33], who reduced certain proba-
bilistic automata to deterministic ones. Reducing the error probability using
few additional random bits was studied, e.g., for the classes RP ([23], cf. [38])
and BPP (e.g., [2]), and [26] relates BPP to the polynomial hierarchy. Deran-
domization [29] is closely related to extracting randomness from low entropy
sources [32,38]. The field of randomized computability and complexity is covered
in great detail in [30]. A distributed version of BPP, so called (p, q)-deciders, and
derandomization in this setting were studied in [16]. We characterize how many
random bits are necessary to solve any anonymous network task with probability
1 depending on the desired runtime.

A concept related to that of randomization is non-determinism. Study of
this concept’s distributed notion, where often IDs are assumed, was initiated
by Naor and Stockmeyer [31], who studied what could be checked by determin-
istic constant-time algorithms if some labeling (non-determinism) is known in
advance. Subsequently, the number of non-deterministic choices required to solve
decision problems in this distributed manner was investigated [24]. A hierarchy
of decidable problems depending on the necessary amount of non-determinism
arises [20], also when the network is anonymous. Recently, it was found that in
fact the combination of non-determinism with randomization allows distributed
algorithms to decide any language in constant time [17].

2 Preliminaries

We model the network as a simple, undirected graph G = (V,E), where V and
E denote the set of nodes and edges, respectively. The network size, i.e., the

Randomness vs. Time in Anonymous Networks 267

cardinality of V , is denoted by n. Furthermore, the exclusive neighborhood of a
node u ∈ V in G is the set Γ (u) = {v : (u, v) ∈ E}. Similarly, we denote by
Γ 2(u) = Γ (u) ∪v∈Γ (u) {w : w �= u, (v, w) ∈ E} the exclusive 2-hop neighborhood
of u. Note that throughout this paper, we assume that all logarithms are taken
to base 2.

Uniform Randomized Algorithms. We consider randomized algorithms that
always return a correct output and have finite expected runtime (Las Vegas
algorithms). Our algorithms run under the synchronous broadcast model, i.e.,
the execution of an algorithm can be divided into discrete rounds starting from
round 1. Furthermore, the execution of any round r + 1 for any node u begins
only when every other node has finished executing round r. Round r executed
by a node u is divided into 4 parts in the following manner.

1. Receive. Node u receives the messages sent by nodes in Γ (u) in round r−1.
2. Randomized Computation. Node u can perform arbitrary computations.

During the computation u can draw a finite amount of random bits. The
source of random bits for node u is independent from the source of random
bits for any other node v ∈ V , and for the sake of simplicity we assume that
each source is uniformly distributed.

3. Output. Node u can decide on an output value. An output is irrevocable,
i.e., once u has decided on an output value, it cannot be changed.

4. Send. Node u sends a finite length broadcast message to all nodes in Γ (u).

An algorithm A is called deterministic if A does not draw any random bits.
When all nodes in the network have decided on an output value we say that A
has terminated. We restrict ourselves to uniform algorithms, i.e., the nodes are
unaware of any network parameter, e.g., the network size n, nor do they have
unique identifiers (the network is anonymous).

We consider two complexity measures of an algorithm A. (1) The runtime
of A in some graph G is the number of rounds that are executed until all nodes
terminate, and (2) the random bit complexity of A is the maximum number of
random bits drawn by any node during the execution of A.

2-Hop Colorings. Throughout the paper, we study algorithms that aim to color
the input graph. For a graph G, a k-coloring is a function γ : V → {1, . . . k}
such that γ(v) �= γ(u) for any (u, v) ∈ E, where k is the number of colors. When
the number of colors is not of concern, γ is called simply a coloring. In other
words, the color of u is different from the color of all v ∈ Γ (u). This definition
naturally extends to multiple hops and in this paper, we are especially interested
in the 2-hop version of coloring, where γ(u) �= γ(w) for any u, v, w ∈ V such
that w �= u, (u, v) ∈ E and (v, w) ∈ E, i.e., the color of u is different from the
color of any node w ∈ Γ 2(u).

The Target Function f(n). A function f is called a target function if f is positive,
strictly increasing, and continuous. Note that the properties of a target function
f ensure that the inverse target function f−1(n) of f(n) is well-defined. For

268 J. Seidel et al.

easier readability, we denote the inverse function by gf (n) = f−1(n), or g(n) if
f is clear from the context.

The purpose of a target function is to capture the runtime of some determin-
istic algorithm A. The runtime f∗(n) of A is positive, but not necessarily strictly
increasing in the input size n, nor continuous. However, for any ξ > 0, there is
a target function f such that f∗(n) ≤ f(n) ≤ f∗(n) + ξ, i.e., f “captures” f∗ at
all integer values n ≥ 1.

3 Tailor-Made 2-Hop Coloring

Our technical contribution starts by presenting a 2-hop coloring algorithm, called
Tailor-2-Hop-Coloring, with a customizable runtime. Specifically, our algo-
rithm is parametrized by a target function f and two integers a > 2, d ≥ 2.
As discussed before, we assume that f(n) is between log∗ n and log log n
(see Section 4). Then, the algorithm finds a 2-hop coloring in 3d · f(n) rounds
in expectation and with probability 1 − n2−a.

The main difficulty is to choose how quickly random bits should be drawn,
without knowledge of n. From the discussion above we know that in some round
3d · f(n), we should have drawn at least Ω(log n) bits. If we draw the bits too
quickly, however, we might draw too many bits in the last round before the
algorithm finishes. To deal with that, we design our bit drawing function b(i) for
the target function f and the integer parameters a and d as follows. Let i be
some positive integer, and write i = dp + s with 0 ≤ s ≤ d − 1, i.e., p =
i/d�
and s = i (mod d). The bit drawing function for i is defined as

b(i) = b(dp + s) = a · �log g(p)(d−s)/d · �log g(p + 1)s/d .

We describe Tailor-2-Hop-Coloring from the perspective of node u ∈
V (please refer to Algorithm 1 for a pseudo-code description). The algorithm
progresses in phases p, starting from phase 1, and every phase consists of d
sub-phases, which in turn consist of 3 rounds each.

Node u maintains a variable x storing all random bits drawn in the course
of the execution. In the first sub-phase of each phase, u appends bits to x until
the length of x is b(dp). In the remaining d − 1 sub-phases s = 1, . . . , d − 1 of
phase p, by appending bits to x, the number of used random bits is increased
to b(dp + s). This process takes place in the first round of each sub-phase. After
drawing bits in round 1 of sub-phase i, u sends its (preliminary) color x to all
nodes v ∈ Γ (u).

In the beginning of the second round of sub-phase i, node u receives the
colors chosen by all nodes in Γ (u). The list consisting of u’s own color x and
all the received colors is then sent to all neighbors of u. In the beginning of the
third round of sub-phase i node u receives such a list from each neighbor. If x
occurs only once in each list, then u selects color x and terminates. Otherwise,
if x was used by multiple nodes, the process continues.

The idea behind Tailor-2-Hop-Coloring is as follows. In the first sub-
phase of each phase, every node u draws a random color x from the set

Randomness vs. Time in Anonymous Networks 269

Algorithm 1. Tailor-2-Hop-Coloring(f, a, d) as executed by node u.

Initialization:
g(n) ← f−1(n)
x ← ε � the empty bit string

Phase p = 1, 2, . . . :
For sub-phase s = 0, 1, 2, . . . , d − 1:

� Round 1 of sub-phase s:
Append random bits to x until |x| = b(pd + s)
Send x to all neighbors

� Round 2 of sub-phase s:
Receive x1, . . . , xδ from each non-terminated neighbor
v1, . . . , vδ ∈ Γ (u)
Send list 〈x, x1, . . . , xδ〉 to all neighbors

� Round 3 of sub-phase s:
Receive lists L1, . . . , Lδ from each neighbor
if x appears exactly once in every list then

Choose color x and terminate

{1, . . . , g(p)a}. Our choice of b ensures that the remaining sub-phases of phase p
are used to interpolate between g(p)a and g(p+1)a if the chosen colors are not a
valid 2-hop coloring. The interpolation is performed so that within each phase p,
the multiplicative increase in the number of random bits used in each sub-phase
is fixed. If, for instance, Tailor-2-Hop-Coloring is in the first sub-phase of
some phase p = �f(n), then the number of bits used by u is at least a log n.

Please note that in round 3 of each sub-phase, a node chooses a color only if
it does not violate the 2-hop coloring constraint. Thus, the output of Tailor-2-
Hop-Coloring is always a valid 2-hop coloring. The remainder of this section
is dedicated to establishing the following theorem.

Theorem 1. The runtime of Tailor-2-Hop-Coloring with high probability
and in expectation is O(f(n)) rounds. The random bit complexity of Tailor-

2-Hop-Coloring with high probability and in expectation is O(h(f(n)) · log n)
bits, where

h(i) = d

√
�log g(i + 1)

�log g(i) .

It will sometimes be convenient to express the bit drawing function in terms
of h:

b(pd + s) = b(dp) · h(p)s , for 0 ≤ s ≤ d, and (1)
b(pd + s + 1) = b(dp + s) · h(p) , for 0 ≤ s ≤ d . (2)

Consider the last phase p and sub-phase s for which b(pd + s) < a log n. In that
case, b(pd + s + 1) ≥ a log n bits are drawn in the next step. Thus, due to the

270 J. Seidel et al.

second expression, the essence of Theorem 1 is that Tailor-2-Hop-Coloring

“overshoots” the necessary a log n bits by at most a factor of h(p).
Recall that the target function f can be thought of as the runtime function

of any deterministic algorithm that relies on a 2-hop coloring. Before getting
into the details of the analysis, let us briefly put Theorem 1 into perspective
by considering the corner cases where f ∈ Θ(log log n) or f ∈ Θ(log∗ n). In the
former case h(f(n)) is in O(1), whereas in the latter case h(f(n)) is in O(d

√
n).

Thus, we obtain the following corollary from Theorem 1.

Corollary 1. Consider a target function f , and let R denote the random bit
complexity of Tailor-2-Hop-Coloring.
1. If f(n) ∈ Θ(log∗ n), then R is O(d

√
n · log n) ⊆ O(d−1

√
n) w.h.p. and in

expectation.
2. If f(n) ∈ Θ(log log n), then R is O(log n) w.h.p. and in expectation.

The analysis of Tailor-2-Hop-Coloring’s runtime and random bit com-
plexity are done separately. We first establish the high-probability results, begin-
ning with the runtime.

Lemma 1. Tailor-2-Hop-Coloring terminates after at most O(f(n))
rounds w.h.p.

We validate the claim by showing that all nodes terminate in phase f(n)
with probability 1 − n2−a. This is sufficient, since each phase consists of exactly
3d rounds. The next lemma ensures the desired high probability result for the
random bit complexity, and can be shown in a similar manner. However, this
time our analysis takes the exact sub-phase in which Tailor-2-Hop-Coloring

terminates (w.h.p.) into account.

Lemma 2. The random bit complexity of Tailor-2-Hop-Coloring is at most
h(f(n)) · a log n with high probability.

Next, we establish the results for the expected values.

Lemma 3. The runtime of Tailor-2-Hop-Coloring is at most O(f(n)) in
expectation.

Our proof of the above lemma again considers the phase in which Tailor-2-
Hop-Coloring terminates. The idea is to split the summation of the expected
value into two parts, namely before and including phase f(n), and after phase
f(n). Both terms can then be bounded individually.

Lemma 4. If f(n) is at least log∗ n, then the random bit complexity of Tailor-

2-Hop-Coloring is O(h(f(n)) · log n) in expectation.

The proof of Lemma 4, similar to that of Lemma 3, relies on carefully inspect-
ing the round in which Tailor-2-Hop-Coloring terminates. However, due to
the possibly large growth of g (which directly affects the growth of the bit draw-
ing function), the analysis requires more attention. Instead of considering only

Randomness vs. Time in Anonymous Networks 271

u

v

x1 x2

p1 p2

Fig. 1. A (u, v)-gadget of length i = 4, consisting of 2i nodes: The two special nodes u
and v, and the two paths p1 and p2 of length i−1 with endpoints x1 and x2, respectively.
Since the gadget is symmetric, symmetry between u and v can only be broken by their
individual random coin tosses.

the phase in which Tailor-2-Hop-Coloring terminates, we take the exact
step in that phase into account. This yields a division of the expected value into
5 (instead of the previous 2) terms. Bounding each term individually leads to
a rather lengthy proof. Theorem 1 is then established by combining Lemmas 1
to 4.

4 Trade-off Lower Bound

Our goal in this section is to show that the trade-off achieved by Tailor-2-Hop-

Coloring’s bit drawing function is asymptotically optimal. For this effort, it is
sufficient to study lower bounds for the 1-hop variant of the coloring problem,
since every 2-hop coloring is also a 1-hop coloring. More precisely, we are going
to establish the following:

Theorem 2. Let A be any randomized uniform anonymous coloring algorithm.
If the expected runtime of A is asymptotically smaller than that of Tailor-

2-Hop-Coloring, then A’s expected random bit complexity is asymptotically
larger than that of Tailor-2-Hop-Coloring.

The rough idea is that in order to break symmetry, the nodes have to draw
random bits according to some (possibly randomized) scheme. We distinguish
two cases: In the first case, A may try to break symmetry quickly by using
many random bits. We show that then, the expected random bit complexity
of A needs to be large. For the second case, where A prevents this behavior,
we show that the expected runtime of A is asymptotically as large as that of
Tailor-2-Hop-Coloring.

Our proof relies on a graph construction consisting of several so-called (u, v)-
gadgets. A (u, v)-gadget of length i (depicted in Figure 1) consists of 2i nodes,
namely two paths p1, p2 of length i−1 and two special nodes u and v, connected
by an edge. Furthermore, nodes u and v are connected to one endpoint of both
p1 and p2. The other endpoints of p1 and p2 are referred to as x1 and x2,
respectively. We obtain the graph G(m, i) utilized in our lower bound proofs by
connecting m (u, v)-gadgets of length i in a ring-like topology. This is done by

272 J. Seidel et al.

H1 H2

H3H4

Fig. 2. The graph G(4, 3), consisting of 4 (u, v)-gadgets H1, H2, H3, and H4, each of
length 3.

simply chaining the m gadgets together by their endpoint nodes x1 and x2—
please refer to Figure 2 for an illustration. We note that G(m, i) consists of 2im
nodes.

Consider, for example, the graph G = G(2k, 3) for some arbitrarily large k.
Since the graph G is symmetric from the perspective of each (u, v)-pair in any
of the gadgets, every such pair can break symmetry only by their individual
random coin tosses. Assume now for the sake of contradiction, that there is a
coloring algorithm A with an expected bit complexity β ∈ o(log n). In that case,
with arbitrarily large probability, at least one of the (u, v)-pairs tosses exactly
the same sequence of random bits. This contradicts the claim that β ∈ o(log n),
and thus we obtain the following result from our graph construction.

Corollary 2. Any coloring algorithm must have an expected random bit com-
plexity in Ω(log n).

In our effort to prove the trade-off lower bound we would like to have a better
grip than that on the random coin tosses made by the nodes. Specifically, for any
algorithm A and (u, v)-gadget H, we denote by BA(i,H) the random variable
taking on the maximum number of random bits drawn by nodes u and v in
H until and including round i. Whenever A is clear from the context, we omit
it in the notation and write B(i,H) instead. The following insight about those
random variables in the graph G(m, i) is based on the observation that the length
of the paths in the (u, v)-gadgets guarantee independence. We formally note this
in the following Lemma 5, which will be helpful in our proof of Theorem 2.

Lemma 5. Consider any algorithm A, and let H be a single (u, v)-gadget of
length i. Let m ≥ 2 be an integer, and denote by H1, . . . , Hm the m (u, v)-
gadgets in the graph G(m, i). For any j ≤ i, all the random variables B(j,Hk),
obtained from an execution of A in G(m, i), are independent and distributed like
B(j,H).

As noted before, the proof for Theorem 2 is divided into two parts, depending
on how A chooses to draw random bits (in expectation). For that, based on the

Randomness vs. Time in Anonymous Networks 273

bit drawing function b used by Tailor-2-Hop-Coloring (for fixed parameters
f, a, and d), we introduce a threshold for the number of random bits drawn by
some algorithm as follows.

Definition 1 (Drawing few/a lot of random bits). Fix a bit drawing func-
tion b, parametrized by a target function f and two constants a > 2 and d ≥ 2.
Let H be a (u, v)-gadget of length i, and let A be a randomized algorithm. We
say that A draws a lot of random bits if

∃i0∀i ≥ i0 E[B(i,H)] ≥ b(3i)/4 .

If A does not draw a lot of random bits, then we say that A draws few random
bits.

Due to Lemma 5, properties of single (u, v)-gadgets can be lifted to instances
of G(m, i). One such property we will use is encapsulated in the following tech-
nical lemma, which can be established using induction.

Lemma 6. Let A be any coloring algorithm. If A draws a lot of random bits,
then

∃i0∀i ≥ i0∃j ≤ i E[B(j,H)] ≤ b(i)/4, and E[B(j + 1,H)] ≥ b(i + 2)/4 ,

where H is a (u, v)-gadget of length i.

We now have the essential tools to prove Theorem 2, and first consider the
case where A draws a lot of random bits. In that case, for sure, the runtime of
A can be better than that of Tailor-2-Hop-Coloring. Imagine for example
a process that draws infinitely many random bits in the first round—one would
immediately obtain a 2-hop coloring within a single round with probability 1,
albeit at the cost of an infinite random bit complexity. The essential insight of
the following Lemma 7 is that no matter how “smartly” one tries to draw a lot
of random bits in hopes to get a better runtime, the expected bit complexity
will be asymptotically worse than that of Tailor-2-Hop-Coloring.

Lemma 7. Let A be any coloring algorithm. If A draws a lot of random bits,
then A’s expected random bit complexity is Ω(h(f(n))2 · log n).

In our proof, we carefully choose a gadget graph of a certain size. We then
utilize Lemma 5 to “copy” the property obtained from Lemma 6 for a single
(u, v)-gadget to all gadgets in the graph. Applying Markov’s inequality twice,
the choice of the gadget graph then allows us to derive the desired lower bound.
With the next lemma we consider the opposite case where A draws only few
random bits.

Lemma 8. Let A be any coloring algorithm. If A draws few random bits, then
the expected runtime of A is Ω(df(n)).

274 J. Seidel et al.

Our proof follows similar lines as that for Lemma 7. The key difference is
how the size of the gadget graph is chosen. We obtain the desired optimality
of Tailor-2-Hop-Coloring from Lemma 7 only if h(f(n))2 ∈ ω(h(f(n))). In
the case where f ∈ O(log log n), however, h(f(n)) is bounded from above by a
constant. It may thus appear that such an f is not covered by our lemmas.

To see that this is not an issue, observe that the constant 3 in the definition of
drawing a lot of random bits was chosen arbitrarily. In other words, when h(f(n))
is bounded by some constant ρ, one may replace 3 in the above definition with
ρ+ 3. This way, we obtain that the coloring algorithm A draws “ρ-few” random
bits. We can now apply the same reasoning as in the proof of Lemma 8 to obtain
that the runtime of A is in the same order as that of Tailor-2-Hop-Coloring.
This concludes our effort to establish Lemma Theorem 2.

References

1. Alon, N., Babai, L., Itai, A.: A fast and simple randomized parallel algorithm for
the maximal independent set problem. Journal of Algorithms 7, 567–583 (1986)

2. Andreev, A.E., Clementi, A.E.F., Rolim, J.D.P., Trevisan, L.: Weak random
sources, hitting sets, and BPP simulations. SIAM J. Comput. 28, 2103–2116
(1999)

3. Angluin, D.: Local and global properties in networks of processors (extended
abstract). In: STOC (1980)

4. Aspnes, J., Waarts, O.: Randomized consensus in expected o(n log2 n) operations
per processor. SIAM J. Comput. 25, 1024–1044 (1996)

5. Attiya, H., Censor, K.: Tight bounds for asynchronous randomized consensus. J.
ACM 55 (2008)

6. Attiya, H., Ellen, F.: Impossibility Results for Distributed Computing. Morgan
& Claypool Publishers (2014)

7. Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations and
Advanced Topics. John Wiley & Sons (2004)

8. Barenboim, L., Elkin, M.: Distributed (delta+1)-coloring in linear (in delta) time.
In: STOC (2009)

9. Barenboim, L., Elkin, M.: Deterministic distributed vertex coloring in polyloga-
rithmic time. J. ACM 58, 23 (2011)

10. Barenboim, L., Elkin, M.: Distributed Graph Coloring: Fundamentals and Recent
Developments. Morgan & Claypool Publishers (2013)

11. Barenboim, L., Elkin, M., Kuhn, F.: Distributed (delta+1)-coloring in linear (in
delta) time. SIAM J. Comput. 43, 72–95 (2014)

12. Blair, J.R.S., Manne, F.: An efficient self-stabilizing distance-2 coloring algorithm.
Theor. Comput. Sci. 444, 28–39 (2012)

13. Dolev, S.: Self-Stabilization. Mit Press (2000)
14. Dolev, S., Tzachar, N.: Randomization adaptive self-stabilization. Acta Inf. 47,

313–323 (2010)
15. Emek, Y., Pfister, C., Seidel, J., Wattenhofer, R.: Anonymous networks: random-

ization = 2-hop coloring. In: PODC (2014)
16. Fraigniaud, P., Göös, M., Korman, A., Parter, M., Peleg, D.: Randomized dis-

tributed decision. Distributed Computing 27(6), 419–434 (2014)
17. Fraigniaud, P., Korman, A., Peleg, D.: Towards a complexity theory for local

distributed computing. J. ACM 60, 35 (2013)

Randomness vs. Time in Anonymous Networks 275

18. Gill, J.: Computational complexity of probabilistic turing machines. SIAM J.
Comput. 6, 675–695 (1977)

19. Goldberg, A.V., Plotkin, S.A., Shannon, G.E.: Parallel symmetry-breaking in
sparse graphs. SIAM J. Discrete Math. 1, 434–446 (1988)

20. Göös, M., Suomela, J.: Locally checkable proofs. In: PODC (2011)
21. Gradinariu, M., Tixeuil, S.: Self-stabilizing vertex coloration and arbitrary graphs.

In: OPODIS (2000)
22. Schneider, J., Wattenhofer, R.: Trading bit, message, and time complexity of

distributed algorithms. In: Peleg, D. (ed.) Distributed Computing. LNCS, vol.
6950, pp. 51–65. Springer, Heidelberg (2011)

23. Karp, R., Pippenger, N., Sipser, M.: A time-randomness tradeoff. In: AMS Con-
ference on Probabilistic Computational Complexity (1985)

24. Korman, A., Kutten, S., Peleg, D.: Proof labeling schemes. In: PODC (2005)
25. Kuhn, F.: Weak graph colorings: distributed algorithms and applications. In:

SPAA (2009)
26. Lautemann, C.: BPP and the polynomial hierarchy. Inf. Process. Lett. 17,

215–217 (1983)
27. Linial, N.: Locality in Distributed Graph Algorithms. SIAM Journal on Comput-

ing (1992)
28. Luby, M.: A simple parallel algorithm for the maximal independent set problem.

In: STOC (1985)
29. Luby, M., Wigderson, A.: Pairwise independence and derandomization. Founda-

tions and Trends in Theoretical Computer Science 1 (2005)
30. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press

(1995)
31. Naor, M., Stockmeyer, L.: What can be computed locally? SIAM Journal on

Computing 24, 1259–1277 (1995)
32. Nisan, N., Ta-Shma, A.: Extracting randomness: A survey and new constructions.

J. Comput. Syst. Sci. 58, 148–173 (1999)
33. Rabin, M.O.: Probabilistic automata. Information and Control 6, 230–245 (1963)
34. Schneider, J., Elkin, M., Wattenhofer, R.: Symmetry breaking depending on the

chromatic number or the neighborhood growth. Theor. Comput. Sci. 509, 40–50
(2013)

35. Schneider, J., Wattenhofer, R.: A log-star distributed maximal independent set
algorithm for growth-bounded graphs. In: PODC (2008)

36. Scott, A., Jeavons, P., Xu, L.: Feedback from nature: an optimal distributed
algorithm for maximal independent set selection. In: PODC (2013)

37. Shukla, S.K., Rosenkrantz, D.J., Ravi, S.S.: Developing self-stabilizing coloring
algorithms via systematic randomization. In: Proceedings of the International
Workshop on Parallel Processing (1994)

38. Vadhan, S.P.: Pseudorandomness. Foundations and Trends in Theoretical Com-
puter Science 7, 1–336 (2012)

Fast Byzantine Leader Election
in Dynamic Networks

John Augustine1, Gopal Pandurangan2(B), and Peter Robinson3

1 Indian Institute of Technology Madras, Chennai, TN, India
2 Department of Computer Science, University of Houston, Houston, TX, USA

gopalpandurangan@gmail.com
3 Queen’s University Belfast, Belfast, UK

Abstract. We study the fundamental Byzantine leader election prob-
lem in dynamic networks where the topology can change from round
to round and nodes can also experience heavy churn (i.e., nodes can
join and leave the network continuously over time). We assume the full
information model where the Byzantine nodes have complete knowledge
about the entire state of the network at every round (including random
choices made by all the nodes), have unbounded computational power
and can deviate arbitrarily from the protocol. The churn is controlled by
an adversary that has complete knowledge and control over which nodes
join and leave and at what times and also may rewire the topology in
every round and has unlimited computational power, but is oblivious to
the random choices made by the algorithm.

Our main contribution is an O(log3 n) round algorithm that achieves
Byzantine leader election under the presence of up to O(n1/2−ε) Byzan-
tine nodes (for a small constant ε > 0) and a churn of up to
O(

√
n/ polylog(n)) nodes per round (where n is the stable network size).

The algorithm elects a leader with probability at least 1 − n−Ω(1) and
guarantees that it is an honest node with probability at least 1−n−Ω(1);
assuming the algorithm succeeds, the leader’s identity will be known to
a 1−o(1) fraction of the honest nodes. Our algorithm is fully-distributed,
lightweight, and is simple to implement. It is also scalable, as it runs in
polylogarithmic (in n) time and requires nodes to send and receive mes-
sages of only polylogarithmic size per round. To the best of our knowl-
edge, our algorithm is the first scalable solution for Byzantine leader
election in a dynamic network with a high rate of churn; our protocol
can also be used to solve Byzantine agreement in a straightforward way.
We also show how to implement an (almost-everywhere) public coin with
constant bias in a dynamic network with Byzantine nodes and provide
a mechanism for enabling honest nodes to store information reliably in
the network, which might be of independent interest.

John Augustine was supported by IIT Madras New Faculty Seed Grant, IIT Madras
Exploratory Research Project, and Indo-German Max Planck Center for Computer
Science (IMPECS).
Gopal Pandurangan was supported in part by NSF grant CCF-1527867.
Peter Robinson was partly supported by the European Community’s Seventh Frame-
work Programme (FP7/2007-2013) under the ASAP project, grant agreement no.
619706.

c© Springer-Verlag Berlin Heidelberg 2015
Y. Moses (Ed.): DISC 2015, LNCS 9363, pp. 276–291, 2015.
DOI: 10.1007/978-3-662-48653-5 19

Fast Byzantine Leader Election in Dynamic Networks 277

1 Introduction

Motivated by the need for robust and secure distributed computation in large-
scale (sparse) networks such as peer-to-peer (P2P) and overlay networks, we
study the fundamental Byzantine leader election problem in dynamic networks,
where a large number of nodes can join and leave the network continuously and
the topology can also change continuously. The Byzantine leader election prob-
lem in dynamic networks is challenging because the goal is to guarantee that an
honest (i.e., non-Byzantine) node is elected as a leader with probability at least
1−o(1) and whose identity is known to most honest nodes1 despite the adversarial
network dynamism and the presence of Byzantine nodes. Byzantine leader elec-
tion is related to another fundamental and central problem in distributed com-
puting, namely, Byzantine agreement. In fact, in our setting, Byzantine leader
election is a harder problem, since it can be used to solve almost-everywhere
Byzantine agreement in a straightforward way.

Byzantine agreement and leader election have been challenging problems even
in static networks. Indeed, until recently, almost all the work known in the litera-
ture (see e.g., [14,19,20,22,31]) have addressed the Byzantine almost-everywhere
agreement problem only in static networks. Unfortunately, these approaches fail
in dynamic networks where both nodes and edges can change by a large amount
in every round. For example, Upfal [31] showed how one can achieve almost-
everywhere agreement under up to a linear number — up to εn, for a sufficiently
small ε > 0 — of Byzantine faults in a bounded-degree expander network (n
is the network size). However, the algorithm requires knowledge of the global
topology, since at the start, nodes need to have this information hardcoded. The
work of King et al. [23] is important in the context of P2P networks, as it was the
first to study scalable (polylogarithmic communication and number of rounds)
algorithms for Byzantine leader election and agreement. However, as pointed out
by the authors, their algorithm works only for static networks. Similar to Upfal’s
algorithm, the nodes require hardcoded information on the network topology to
begin with and thus the algorithm does not work when the topology changes
(in particular, when the edges are also changing in every round). In fact, this
work ([23]) raised the open question of whether one can design Byzantine leader
election and agreement protocols that can work in highly dynamic networks with
a large churn rate.

The work of [4] was the first to study the Byzantine agreement problem
in a dynamic network with a large churn rate. However, this algorithm does
not directly solve the leader election problem, since the value that (most of) the
honest nodes agree may be a value that was generated by a Byzantine node; using
the agreement algorithm in a straightforward way does not give any guarantee
that an honest node will be elected as leader. Hence, a more involved approach
is needed for Byzantine leader election.

1 In sparse, bounded-degree networks, an adversary can always isolate some number
of honest nodes, hence “almost-everywhere” is the best one can hope for in such
networks (cf. [14]).

278 J. Augustine et al.

Our Main Result. We study Byzantine leader election in dynamic networks
where the topology can change from round to round and nodes can also experi-
ence heavy churn (i.e., nodes can join and leave the network continuously over
time). Our goal is to design a fast distributed algorithm (running in a small num-
ber of rounds) that guarantees, despite a relatively large number of Byzantine
nodes and high node churn, that an honest node is elected as leader and almost
all honest nodes know the identity of this leader.

Before we state our results, we briefly describe the key ingredients of our
model here. (Our model is described in detail in Section 1.1, it is similar to the
model considered in prior work, e.g., [4,5,6].) We consider a dynamic network as
a sparse bounded degree expander graph whose topology — both nodes and edges
— can change arbitrarily from round to round and is controlled by an adversary.
However, we assume that the total number of nodes in the network is stable.
Note that our model is quite general in the sense that we only assume that the
topology is an expander2 at every step; no other special properties are assumed.
Indeed, expanders have been used extensively to model dynamic P2P networks
in which the expander property is preserved under insertions and deletions of
nodes (e.g., [26,29]). Since we do not make assumptions on how the topology is
preserved, our model is applicable to all such expander-based networks. (We note
that various prior work on dynamic network models make similar assumptions
on preservation of topological properties — such as connectivity, expansion etc.
— at every step under dynamic edge insertions/deletions — cf. Section 1. The
issue of how such properties are preserved are abstracted away from the model,
which allows one to focus on the dynamism. Indeed, this abstraction has been a
feature of most dynamic models e.g., see the survey of [10].) Furthermore, our
results are applicable to dynamic network models with good expansion where
only edges change (and no churn) —such models have been studied extensively
in recent years (cf. Section 1).

The number of node changes per round is called the churn rate or churn
limit. We consider a churn rate of up to O(

√
n/polylog(n)), where n is the

stable network size. Furthermore, we assume that a large number of nodes can
be Byzantine. We allow up to O(n

1
2−ε) Byzantine nodes in any round, where

ε > 0 is a small constant. Byzantine nodes (who have unbounded computational
power) are “adaptive”, in the sense that they know the entire states of all nodes
at the beginning of every round and thus can take the current state of the
network into account when determining their next action. In each round, an
oblivious adversary chooses some O(

√
n/polylog(n)) nodes that are replaced by

new nodes. The oblivious adversary has complete control over what nodes join
and leave and at what time and also may rewire the edges in every round and
has unlimited computational power but is oblivious to the random choices of the
nodes. (Note that an adaptive churn adversary that knows the current state of
all the nodes is not very interesting in the context of leader election, since it can
churn out the leader as soon as it is elected.)
2 In principle, our results can potentially be extended to graphs with weaker expansion

guarantees as well; however the amount of churn and Byzantine nodes that can be
tolerated will be reduced correspondingly.

Fast Byzantine Leader Election in Dynamic Networks 279

Our main contribution is a randomized distributed algorithm that achieves
leader election with high probability3 even under a large number of Byzantine
nodes and continuous adversarial churn in a number of rounds that is polylog-
arithmic in n (where n is the stable network size). In particular, we show the
following theorem:

Theorem 1 (Main Theorem). Let ε > 0 be any fixed constant. Consider
a synchronous dynamic n-node (n is the stable network size) expander network
where up to O(n

1
2−ε) nodes are Byzantine (who can behave arbitrarily and who

have full knowledge of the current network state including past random choices
made by other nodes), and suppose that up to O(

√
n/ polylog(n)) nodes are sub-

jected to churn per round determined by an oblivious adversary. There exists an
algorithm that elects a leader with probability 1 − n−Ω(1) who is known by all
except o(n) nodes, and the leader is an honest node with probability 1 − n−Ω(1).
The algorithm runs in O(log3 n) rounds and uses messages of O(polylog(n)) size.

Our algorithm is the first-known, decentralized Byzantine leader election algo-
rithm in highly dynamic networks. Our algorithm is localized (does not require
any global topological knowledge), simple, and easy to implement. It can serve
as a building block for implementing other non-trivial distributed coordination
tasks in highly dynamic networks with churn.

Technical Overview. The main technical challenge that we have to overcome
is designing and analyzing distributed algorithms with the presence of Byzantine
nodes in networks where both nodes and edges can change by a large amount
continuously in each round. The same challenge was present in solving the Byzan-
tine agreement problem in such networks which was addressed in [4]. However,
this does not directly solve the leader election problem, since the value that (most
of) the honest nodes agree may be a value that was generated by a Byzantine
node; using the agreement algorithm in a straightforward way does not give any
guarantee that an honest node will be elected as leader. Hence, a more involved
approach is needed for Byzantine leader election. We outline key ingredients of
our approach here (Sections 2.1 and 2.2 give a more detailed overview).

While Byzantine agreement itself does not directly help, it can be used to
generate an almost-everywhere public coin, i.e., an almost fair public coin that
is known to most honest nodes. This is the first key ingredient. To the best of
our knowledge, we present the first solution to such an almost everywhere (AE)
common coin in a highly dynamic network.

Our protocol requires nodes to independently generate “lottery tickets” which
are bit strings of certain length. Essentially, a node that has the winning lottery
ticket becomes part of the small set of finalists from which a leader will be chosen
eventually. However, there is a problem in naively implementing this approach.
The Byzantine nodes, who know the current network state including random
choices of other nodes, can change location and might lie about their lottery
ticket number, thus claiming to be the winner. To overcome this, we implement

3 In this paper, with high probability refers to a probability of � 1 − n−Ω(1).

280 J. Augustine et al.

a verification mechanism that allows the honest nodes to check whether the
Byzantine nodes are lying. This mechanism is as follows. Once a node generates
its lottery ticket it “stores” it in about

√
n (randomly chosen) nodes (exceeding

the number of Byzantine nodes by an nε factor). To verify whether a node is
indeed the owner of the lottery ticket that it claims, honest nodes will check with
these

√
n nodes. This prevents a Byzantine node from falsely claiming a lottery

ticket that it did not generate in the first place. We show how such a storage
and verification mechanism can be implemented efficiently despite the presence
of Byzantine nodes in a dynamic network. The last ingredient of the protocol
is an efficient and fault-tolerant mechanism to disseminate the identity of the
leader to almost all the honest nodes.

We use random walks as the main tool for communication in our protocol.
Previously, flooding techniques proved useful in solving the agreement problem
under high churn but without Byzantine nodes [6]. In the presence of Byzantine
nodes, however, flooding is less useful as it enables Byzantine nodes to dissem-
inate lots of (corrupting) information along with those sent by honest nodes.
On the other hand, if honest nodes use random walks (which are lightweight
and local) in their information spreading protocol, the Byzantine nodes are no
longer able to congest the network without bound. This proves crucial for get-
ting a scalable protocol that uses only polylogarithmic message sizes per round
and finishes in polylogarithmic rounds. We use a key technical result on ran-
dom walks in a dynamic network with Byzantine nodes and adversarial churn
called the “dynamic random sampling theorem” (cf. Theorem 2) that shows mix-
ing properties of random walks (despite Byzantine nodes and large adversarial
churn) and enables us to communicate efficiently among honest nodes.

Our protocol can tolerate up to O(n
1
2−ε) Byzantine nodes (for a small con-

stant ε > 0) and up to O(
√

n/ polylog(n)) churn. This is essentially the best that
our protocol can handle for two reasons. Our storage and verification mechanism
needs to store each lottery ticket in about

√
n nodes, and to be scalable in terms

of the number of messages generated, it can handle only about
√

n nodes (each
such node generates a ticket, thus overall there will be about n polylog(n) mes-
sages — anything significantly more than this will cause much more congestion).
The second reason is that for solving Byzantine agreement, we use a majority
rule to progress towards agreement [12,4]. This majority rule algorithm works
as long as the number of Byzantine nodes are bounded by O(

√
n).

Related Work. There has been a lot of recent work on distributed agreement,
byzantine agreement, and fault-tolerant protocols in dynamic networks. We refer
to [17,6,4,3] and the references therein for details on these works. Here we restrict
ourselves to those works that are most closely related.

There has been significant work in designing peer-to-peer networks that are
provably robust to a large number of Byzantine faults [15,18,27,30]. These focus
only on robustly enabling storage and retrieval of data items. The problem of
achieving almost-everywhere agreement among nodes in P2P networks (modeled
as an expander graph) is considered by King et al. in [23] in the context of the
leader election problem; essentially, [23] is a sparse (expander) network implemen-

Fast Byzantine Leader Election in Dynamic Networks 281

tation of the full information protocol of [22]. More specifically, [23] assumes that
the adversary corrupts a constant fraction b < 1/3 of the processes that are under
its control throughout the run of the algorithm. The protocol of [23] guarantees
that with constant probability an uncorrupted leader will be elected and that a
1 − O(1

log n) fraction of the uncorrupted processes know this leader. We note that
the algorithm of [23] does not work for dynamic networks, in particular, when just
the edges are rewired from round to round (while still preserving expander topol-
ogy). In another recent work [21], the authors use a spectral technique to “blacklist”
malicious nodes leading to faster and more efficient Byzantine agreement in static
networks. The idea of blacklisting, unfortunately, won’t work in our dynamic net-
work model, since the adversary can change the identities of Byzantine nodes by
churning out old ones and introducing new ones (cf. Section 2).

The work of [6] addresses the agreement problem in a dynamic P2P network
under an adversarial churn model where the churn rates can be very large, up
to linear in the number of nodes in the network. (It also crucially makes use
of expander graphs.) This introduced the dynamic model with churn that is
used subsequently in other papers ([3,4]), including this paper. However, the
algorithms and techniques of [6] will not work under the presence of Byzantine
nodes; even one malicious node can foil their algorithms. The work of [3] pre-
sented storage and search algorithms for a highly dynamic network that can have
churn rate up to n/polylog n. However, these algorithms do not work in the pres-
ence of Byzantine nodes. The random walk approach to dynamic sampling was
introduced in this paper and subsequently extended to Byzantine nodes in [4].
[17] presents a solution for maintaining a clustering of the network where each
cluster contains more than two thirds honest nodes with high probability in a
setting where the size of the network can vary polynomially over time.

The work of [4] presents Byzantine almost-everywhere agreement algo-
rithms that can tolerate the same amount of churn as the present paper, i.e.,√

n/polylog n, but it works even under adaptive churn. For this algorithm,
only the “rewiring” adversary, which controls the edges between the adaptively
churned nodes, needs to be oblivious — this is needed for the random walk app-
roach to work. We use this algorithm as a key building block for implementing
our almost-everywhere common coin. [4] also presented an almost tight (up to
polylog n factor) lower bound of Ω(

√
n/ polylog n) for the amount of churn that

can be tolerated if one requires polylogarithmic round algorithms. This lower
bound crucially makes use of the adaptive nature of the churn adversary. It is
not clear if the same lower bound holds for the oblivious adversary as considered
in this paper.

Expander graphs and spectral properties have been applied extensively to
improve the network design and fault-tolerance in distributed computing (cf.
[31,14,9]). The work of [26] provides a distributed algorithm for maintaining an
expander in the presence of churn with high probability by using Hamiltonian
cycles.

In recent years, adversarial models for dynamic networks have been studied
extensively by [7,11,28,25] and others; see the recent survey of [10] and the refer-
ences therein. Unlike many early works on dynamic networks (e.g., [1,13,16,2,8])

282 J. Augustine et al.

these recent works do not assume that the network will eventually stabilize and
stop changing. On the other hand, we would prefer distributed algorithms to work
correctly even if the network is changing continuously over time (as assumed in our
paper). The works of [25,7,11] study a model in which the communication graph
can change completely from one round to another, with the only constraint being
that the network is connected at each round ([25] and [11] also consider a stronger
model where the constraint is that the network should be an expander or should
have some specific expansion in each round). The model has also been applied to
agreement problems in dynamic networks; various versions of coordinated consen-
sus (where all nodes must agree) have been considered in [25]. We note that the
model of [24] allows only edge changes from round to round while the nodes remain
fixed. The model considered here is more general than the model of [24], as it cap-
tures dynamic settings where edges change and nodes are subjected to churn. It
is impossible to solve Byzantine agreement when only assuming the (oblivious)
adversary of [24] that keeps the graph connected in each round; for example, a
Byzantine node placed at a bottleneck point of the network can forever prevent
any reasonable information flow between the two separated parts of the network.
For the case where the “edge adversary” of [24] adheres to our expansion and reg-
ularity assumption, we can apply our results to this model as well.

1.1 Computing Model and Problem Definition

We consider a synchronous dynamic network with Byzantine nodes represented
by a graph with a dynamically changing topology (both nodes and edges change)
whose nodes execute a distributed algorithm and whose edges represent connec-
tivity in the network. The computation is structured into synchronous rounds,
i.e., we assume that nodes run at the same processing speed (and have access
to a synchronized clock) and any message that is sent by some node u to its
neighbors in some round r � 1 will be received by the end of r. The dynamic
network is represented by a sequence of graphs G = (G0, G1, . . .) where each
Gr = (V r, Er). Nodes might be subjected to churn, which means that in each
round, up to C(n) nodes (C(n) ∈ O(

√
n/ logk n)) can be replaced by new nodes;

the constant k will be fixed in the analysis. We require that, for all r � 0,
|V r \ V r+1| = |V r+1 \ V r| � C(n). Furthermore, we allow the edges to change
from round to round, but we assume that each Gr is a d-regular expander graph
with constant spectral gap. The churn and the evolution of the edges are under
the control of an oblivious adversary who has to choose the entire sequence of
(G0, G1, . . .) in advance.

Up to B(n) ∈ O(nα/2) nodes can be Byzantine and deviate arbitrarily from
the given protocol, where α > 0 is a constant adhering to Equation(1) on Page
283. We say that a node u is honest if u is not a Byzantine node and use Vcorr to
denote the set of honest nodes in the network. Byzantine nodes are “adaptive”,
in the sense that they know the entire states of all nodes at the beginning of
every round and thus can take the current state of the computation into account
when determining their next action. This setting is commonly referred to as the
full information model. We consider the usual assumption that Byzantine nodes

Fast Byzantine Leader Election in Dynamic Networks 283

cannot fake their identity, i.e., if a Byzantine node w sends a message to nodes
u and v, then both u and v can identify w as the same sender of the message.
Note that this does not stop Byzantine nodes from forwarding fake messages
on behalf of other nodes as we do not assume any authentication service. We
assume, without loss of generality, that the adversary only subjects honest nodes
to churn, i.e., Byzantine nodes remain in the network permanently. (The analysis
of our algorithms can be extended easily to the case where Byzantine nodes are
subject to churn as well).

We assume that if a node u enters the network at some later round r, then u
knows the number of rounds that have passed since the start of the computation.
Any information about the network at large is only learned through the messages
that node u receives and u has no a priori knowledge about who its neighbors
will be in the future.

We now describe the sequence of events that occur in each round r � 1.
Firstly, we modify the network Gr−1 = (V r−1, Er−1) by subjecting up to C(n)
nodes to churn (yielding V r) and then changing the edge connectivity; recall
that these changes are predetermined by the oblivious adversary. At this point,
we emphasize that Byzantine nodes are always adaptive in the sense that they
can observe the current network state including all past random choices. After
the adversary has made its moves, the algorithm operates on the graph Gr =
(V r, Er) in round r. Each honest node u becomes aware of its current neighbors
in Gr, can perform local computation and is able to reliably exchange messages
with its neighbors according to the edges in Er.

As stated above, our algorithm tolerates O(nα/2) Byzantine nodes and churn
per round. Let c1 > 2 be any fixed constant. Our algorithm requires the following
condition on α:

α � −log(1 − 1/c1)/log c1 − 8 log log n/log n − 1/c21 (1)

We now present the formal definition of the Byzantine leader election problem.
Note that since we assume a dynamic network which is a sparse expander in each
round, we cannot hope to obtain an algorithm where every honest node eventually
knows the leader; for example, the adversary could simply keep churning out all
neighbors of a node u, effectively isolating u throughout the run. This motivates
us to consider the following “almost everywhere” variant of leader election:

Byzantine Leader Election (BLE). Suppose that there are B(n) Byzantine
nodes in the network. We say that an algorithm A solves Byzantine Leader
Election in T rounds if, in any run of A, there is exactly 1 node u� such that
(a) all honest nodes terminate in T rounds whp,
(b) all except B(n) + o(n) honest nodes accept u� as the leader, and
(c) node u� is honest with probability � 1 − B(n)

n − o(1).

2 The Byzantine Leader Election Algorithm

In this section we present an algorithm for electing a leader in the presence of
O(nα/2/polylog(n)) Byzantine nodes and churn. Before presenting the details

284 J. Augustine et al.

of our algorithm, we first discuss why more straightforward approaches do not
work: At a first glance, it appears as if we might be able to simply use the
Byzantine almost everywhere agreement (BAE) algorithm of [4] to elect a leader.
For example, running bitwise BAE agreement on the node ids will inevitably
yield almost everywhere agreement on some specific node id. (After agreeing on
the i-th bit v, we only consider nodes as candidates whose id has v as the i-th
bit.) This, however, is poised to fail, since the adversary will simply choose the
initial node ids in a way such that the BAE algorithm yields a decision on an id
of a Byzantine node.

An immediate but insufficient improvement of the above approach is to ini-
tially instruct each honest node to generate a random id, and then run bitwise
BAE agreement on these random ids to elect a leader. In this case, the obliv-
ious adversary, who has to choose the churn and the initial nodes in advance,
has no advantage in making an initial guess on the elected id. Byzantine nodes,
on the other hand, have full knowledge of the current network state including
past random choices in the full-information model. Thus, a Byzantine node u
that announces an initially chosen value idu, can adaptively lie about the actual
value of idu as soon as the outcome of the agreement algorithm becomes appar-
ent, and subsequently claim leadership. Of course, if the network topology was
static, the neighbors of u will notice that u has changed its initial value and
could simply inform the remaining network to blacklist u as being malicious. In
our model, however, the adversary has the power to rewire the topology over
time and to subject nodes to churn, possibly causing all initial neighbors of u
to be several hops away from u (or even churned out) during later rounds. This
makes it difficult for an honest node v to conclude whether u has deviated from
its initial choice, if u and v were not neighbors initially. In fact, any information
that v has learned about u while not being a neighbor of u was learned indirectly
via other nodes. As we neither assume an authentication service nor make any
assumptions on how Byzantine nodes are distributed in the network, an easy
indistinguishibility argument shows that v has no way of knowing if the learned
information was injected by other Byzantine nodes.

2.1 Preliminaries and Technical Tools

Random Walk Implementation. To ensure lightweight communication costs, our
algorithm relies on random walks as a means of communication. We now describe
a simple token-passing implementation of random walks in our model (cf. [3,4]):
When an honest node u initiates a random walk, it generates a token with its
id, a counter initialized to the length of the walk, and possibly attaches some
piece of information of O(log n) size. This token is then forwarded to a (current)
neighbor of u chosen uniformly at random, which in turn forwards the token and
so forth. The counter is decreased by 1 each time the token is forwarded, until it
reaches 0, which marks the final destination of this walk. Since Byzantine nodes
can deviate arbitrarily from this protocol, honest nodes only forward tokens
that are legit, which means that they adhere to above described data format.
Our algorithm requires nodes to initiate h log n random walks simultaneously,

Fast Byzantine Leader Election in Dynamic Networks 285

for a sufficiently large constant h. During the run of the algorithm, an honest
node u might receive a large number of tokens (possibly generated by Byzantine
nodes). More precisely, the random walks that arrive at a node u are placed
in a FIFO buffer according to the order of their arrival. To prevent Byzantine
nodes from congesting the entire network with fake tokens, node u forwards up
to h log n of the tokens from its buffer in each step. This ensures (whp) passage
of random walks that matter to us.

Our algorithm employs a technical result that shows almost uniform mixing
for most random walks in our dynamic network. Its proof relies on a combination
of several technical results and is related to Theorem 1 of [4]; we defer the details
to the full paper and will focus on the new aspects of our leader election algorithm
here. Intuitively speaking, Theorem 2 says that there is a large set Core of honest
nodes such that, after walking for Θ(log n) steps, tokens originating from these
nodes have probability of ≈ 1/n to be at any node in Core. It is important to
keep in mind that, since the size of Core is only guaranteed to be � n − o(n),
there is a nonzero probability for such a token to end up at nodes that are not
in Core; for example, by being forwarded to a Byzantine node.

Theorem 2 (Dynamic Random Sampling). Let T = Θ(log2 n) and con-
sider a dynamic n-node expander network G under an oblivious adversary, and
suppose that at most O(nα/2) nodes are Byzantine and at most O(

√
n/ logk n)

nodes are subjected to churn in each round, where k is a sufficiently large constant
and for any fixed constant α < 1. Then, there exists a set of honest nodes Core
of size � n−O(

√
n/ logk−6 n) such that, in every time interval [iT +1, (i+1)T]

for 0 � i � Θ(log n) the following hold:
1. A random walk token originating from a node in Core has probability in

[1n − 1
n3 , 1

n + 1
n3] to terminate at any particular node in Core.

2. At most O(
√

n/ logk−8 n) nodes in Core receive tokens that did not originate
in Core, and � n − O(

√
n/ logk−9 n) nodes in Core only receive tokens that

took all their steps among nodes in Core.

Byzantine Almost-Everywhere Agreement. The following BAE agreement algo-
rithm is given in [4]: Each honest node initially starts with an input bit (either 0
or 1) and instances of the random walk implementation by generating tokens that
contain its input bit. Once such an instance is complete (after Θ(log2 n) rounds),
each honest node tries to update its current input value with the majority value
of the triple consisting of its input value and 2 of its received tokens. In particu-
lar, it follows from the analysis in [4] that Θ(log n) repetitions suffice to converge
to almost-everywhere agreement among all except O(

√
n/ logk−6 n) nodes with

high probability.
The following result lower bounds the number of nodes that agree in all

instances when we run Θ(log n) instances of this BAE agreement algorithm in
parallel. (This is what we do when flipping the common coin in Phase 3 of our
algorithm for choosing the winning lottery ticket.)

Corollary 1 (Parallel BAE Agreement, Follows from [4]). Let T =
Θ(log3 n) and suppose that at most O(nα/2) nodes are Byzantine, while up to

286 J. Augustine et al.

O(
√

n/ logk n) nodes are subjected to churn in any round, for any constant α < 1.
Suppose that the honest nodes execute � � Θ(log n) parallel instances of the BAE
algorithm of [4]. Then, with high probability, there is a set Agr ⊆ ⋂

0�r�T V r of
honest nodes such that in each BAE agreement instance i (1 � i � �), all
nodes in Agr decide on a common bit bi within T = Θ(log3 n) rounds, and
|Agr| = n − O(

√
n/ logk−7 n).

Good and Bad Nodes. For convenience, we define Badr = V r \ (Agr ∪ Core);
that is, Badr is of size O(

√
n/ logk−7 n), contains all Byzantine nodes, and all

honest nodes that are in the network in round r and that are either not part of
our Core set given by Theorem 2 or decided wrongly in at least one of the parallel
BAE agreement algorithm instances. We also define the set Good = Agr ∩ Core.

2.2 A Byzantine Leader Election Algorithm

We now describe the details of our leader election algorithm and provide some
intuition for its correctness.

Phase 1. Determining Candidates: To keep the overall message complex-
ity per node polylogarithmic, we first subsample a set of candidates Cand, by
instructing each node to randomly choose to become a candidate with proba-
bility 8 log n/

√
n. Our algorithm heavily depends on the sampling capabilities

provided by Theorem 2. Recall that the churn and the changes of the commu-
nication links are chosen obliviously (cf. Section 1.1), while Byzantine nodes
can adapt their behavior by taking into account the current network state. Intu-
itively speaking, the following lemma shows that the Byzantine nodes have no
influence over which honest nodes end up in the set Core, as the Core set is solely
determined by the churn and the topology changes, both of which are chosen in
advance by the oblivious adversary (cf. Section 1.1):

Lemma 1 (Independence of Core). The membership of nodes in the set Core
(as defined in Theorem 2) is independent of the behaviour of the Byzantine nodes.

Observing that each node chooses to become a candidate uniformly at ran-
dom, it follows by a simple Chernoff bound that |Cand| � 4

√
n log n whp. Accord-

ing to Lemma 1, the number of candidates that are in Core cannot be biased by
the Byzantine nodes, but depend only on the churn and the topology changes,
which are chosen in advance by an oblivious adversary. This motivates us to
restrict ourselves to core candidates defined as CCand = Core ∩ Cand ∩ Agr,
which are the candidates that agree in all instances of the BAE agreement
algorithm (cf. Corollary 1) and are part of the Core set. From Corollary 1, it
follows that |Agr| � n − o(

√
n) and from Theorem 2 we know that |Core| �

n−O(
√

n/ logk−6 n) � n−o(
√

n). Therefore, the independence of Core from the
behaviour of Byzantine nodes implies the following:

Corollary 2 (Number of Agreeing Core Candidates). With high proba-
bility, we have |CCand| � 2

√
n log n.

Fast Byzantine Leader Election in Dynamic Networks 287

Phase 2. Obtaining and Storing Lottery Tickets: In this phase, we first
instruct the candidate nodes to participate in the “leader lottery” by generating
tickets. To this end, each candidate generates a lottery ticket represented as a
private random bit string of length � log n

2 log c1
	, where c1 > 0 is a constant depend-

ing on the bias of the “almost everywhere common coin” introduced in Phase 3.
Note that all Byzantine nodes can pretend to be candidates and can collude to
generate lottery tickets that maximize their chances. Next, we implement a stor-
age mechanism to ensure that this information persists in the network despite
the high churn rate and the dynamic topology changes.

Recall that we allow nodes to attach additional information onto their ran-
dom walk tokens that they generate. Therefore, when referring to some infor-
mation I communicated by a node v, we mean the additional information (of
size O(log n)) that v has piggybacked onto a random walk token message, as
described in the random walk implementation (cf. Section 2.1). We say that
node u has stored information I in the network, if u has generated I and there
exist at least Θ(

√
n log n) honest nodes that are witnesses regarding I. Keep in

mind that Byzantine nodes are omniscient regarding the current network state,
enabling them to claim to be witnesses for some arbitrary (possibly fake) infor-
mation.

Since we assume a sparse network with a dynamically changing topology
and only allow messages of polylogarithmic size, we cannot leverage techniques
commonly used in static networks; in particular, we cannot bind Byzantine nodes
to their initial choice by broadcasting this information to all nodes or requiring
neighbors to keep track of each other’s choices. Instead, we invoke a storage
mechanism, which allows us to keep track of the initial choice of Byzantine
nodes.

In more detail, we initiate the following branching process: When an (honest)
candidate u invokes store(z), for some ticket z, it generates a random walk of
sufficient length and piggybacks z onto the random walk token message. Suppose
that the walk has reached only honest nodes and terminated at some honest node
v. Node v in turn starts Θ(log n) new random walks, each of which contains z.
Each of these walks that reaches only honest nodes will in turn spawn Θ(log n)
new random walks and so forth; we repeat this branching process Θ(log n) times.
We can think of the branching process as creating a tree having Ω(

√
n log n) leafs.

Every honest node that corresponds to a leaf of this tree, locally stores z and
becomes a witness of ticket z of node u. In the following, we say that u plays
ticket z if z has been stored successfully.

Lemma 2. Suppose that all candidates execute Procedure store(I) in parallel.
Then, with high probability, each of the core candidate (i.e. set CCand ⊂ Good)
is able to play its tickets.

To ensure that nodes in Bad (which includes all Byzantine nodes) have a small
chance to guess the winning ticket, we upper bound the number of distinct tickets
that Byzantine nodes can play:

288 J. Augustine et al.

Lemma 3. Let I be the set of distinct tickets generated by nodes in Bad such
that each I ∈ I is stored in the network, i.e., I has Ω(

√
n log n) (fake or honest)

witnesses. Then |I| ∈ O(nα/2 log4 n).

Phase 3. Running the Lottery to Determine the Winning Ticket: While
we cannot directly use Byzantine almost everywhere (BAE) agreement to obtain
an honest leader with good probability, we will use the time-tested method
of employing such an BAE agreement algorithm as a subroutine to obtain an
almost-everywhere common coin (cf. Definition 1 below), which is one of the
tools used by our algorithm. The goal of this phase is to determine the finalists,
i.e., the nodes who generated the winning lottery ticket. To this end, we generate
the winning ticket by flipping an almost-everywhere common coin:

Definition 1 (Almost Everywhere (AE) Common Coin). Consider an
algorithm P where every honest node outputs a bit and let CommQ be the event
that all nodes in a set Q output the same bit value b. If there exist a constant
c1 � 2 and a set Q of size n − o(n) such that (A) P [CommQ] � 1 − n−Ω(1),
and (B) 1

c1
� P [b = 0 | CommQ] � 1 − 1

c1
, then we say that P implements an

almost everywhere common coin (AE common coin) on set Q and we say that
P has bias at most 1/2 − 1/c1.

We will now show that the BAE agreement algorithm given by Corollary 1 can
be modified to yield such an AE common coin.

Theorem 3 (AE Common Coin). Consider a synchronous dynamic n-node
expander network under the control of an oblivious adversary where up to B(n) =
O(nα/2) nodes are Byzantine, and suppose that up to C(n) = O(

√
n/ polylog(n))

nodes are subjected to churn per round. There exists a polylogarithmic messages
and time algorithm that implements an almost everywhere coin on a set of n −
O(B(n) + C(n)) nodes with a bias bounded by a constant c < 1/2.

The honest nodes jointly perform �log n/2 log c1	 flips of this AE common
coin to yield the winning ticket that will be known to almost all nodes.

Lemma 4. We partition the set of stored tickets into the set CoreTickets of
tickets generated by nodes in Good and the set BadTickets, which contains the
tickets played by (honest and Byzantine) nodes in Bad. Consider the winning
lottery ticket s yielded by the � log n

2 log c1
	 invocations of the AE common coin algo-

rithm. Then, it holds that (a) P [∀x ∈ BadTickets : x �= s] � 1 − n−Ω(1). (b)
P [∃y ∈ CoreTickets : y = s] � 1 − n−Ω(1).

Recalling that the bits of the winning ticket comprises exactly the common
decision values of the parallel BAE agreement instances, it follows that all nodes
in set Agr know the winning ticket. Thus, each u ∈ Agr knows whether it is itself
a winner (and thus becomes a finalist) or if it is among one of the Θ(

√
n log n)

witnesses of the finalist nodes. If so, u adds itself to the set of propagators Pv,
for finalist v.

Fast Byzantine Leader Election in Dynamic Networks 289

Phase 4. The Final Competition and Leader Election: In the final phase,
one of the finalists must be chosen as the leader despite the fact that Byzantine
nodes can behave like finalists and/or witnesses. In particular, we wish to reach
a consensus on the finalist f with the smallest id.

We subdivide Phase 4 into log n
2 log log n + Θ(1) sub-phases, each of O(log2 n)

rounds. Each honest node u samples O(log n) nodes per sub-phase via random
walks. During this sampling process, u tries to discover the finalist f with the
smallest id. Node u maintains a variable min-id initialised to ∞. During phase
4, the honest nodes will only pass O(log n) random walk tokens per time step.
At the start of each sub-phase, every honest node u initiates Θ(log n) random
walk tokens: if u is a witness for a ticket, then that ticket and the min-id value
are included in the token; the token is blank otherwise4. Each random walk
must take Θ(log n) random walk steps in order to mix; this can be achieved in
O(log2 n) rounds (cf. Theorem 2). At the end of the sub-phase, each node looks
at all the tokens that terminated on it and checks to see if v has an id smaller
than its current min-id and, if needed, updates min-id with the smaller id. We
now argue that at the end of log n

2 log log n + Θ(1) sampling sub-phases, n − o(n)
nodes will have their min-id set to f . This completes the proof of Theorem 1.

Lemma 5. Let Finalists be the set of all candidates in CCand that played the
winning ticket z and assume that z was stored among Ω(

√
n log n) honest wit-

nesses. Suppose that f ∈ Finalists is the node with the smallest id in Finalists.
Then, by the end of Phase 4, n−o(n) nodes accept f as the leader with probability
at least 1 − o(1).

3 Conclusion

In this paper, we take a step towards designing secure, robust, and scalable algo-
rithms for large-scale dynamic networks. We presented a scalable and lightweight
distributed protocol for the fundamental Byzantine leader election in dynamic
networks, tolerating near O(

√
n/polylog(n)) Byzantine nodes and churn per

round while using only polylogarithmic amount of messages per node. A key
open problem is to show a lower bound that is essentially tight with respect to
the amount of Byzantine nodes that can be tolerated, or show a leader election
algorithm that can tolerate significantly more Byzantine nodes and churn. The
latter might be possible, since we are dealing with an oblivious churn adversary
(unlike the adaptive churn adversary of [4]).

References

1. Afek, Y., Awerbuch, B., Gafni, E.: Applying static network protocols to dynamic
networks. In: FOCS 1987, pp. 358–370 (1987)

2. Afek, Y., Gafni, E., Rosen, A.: The slide mechanism with applications in dynamic
networks. In: ACM PODC, pp. 35–46 (1992)

4 The blank tokens cannot be discarded because they provide the congestion required
to ensure that the number of tokens injected by Byzantine nodes are kept in check.

290 J. Augustine et al.

3. Augustine, J., Molla, A.R., Morsy, E., Pandurangan, G., Robinson, P., Upfal, E.:
Storage and search in dynamic peer-to-peer networks. In: SPAA, pp. 53–62 (2013)

4. Augustine, J., Pandurangan, G., Robinson, P.: Fast byzantine agreement in
dynamic networks. In: PODC, pp. 74–83 (2013)

5. Augustine, J., Pandurangan, G., Robinson, P., Roche, S., Upfal, E.: Enabling effi-
cient and robust distributed computation in highly dynamic networks. In: FOCS
(to appear, 2015)

6. Augustine, J., Pandurangan, G., Robinson, P., Upfal, E.: Towards robust and effi-
cient computation in dynamic peer-to-peer networks. In: SODA, pp. 551–569 (2012)

7. Avin, C., Koucký, M., Lotker, Z.: How to explore a fast-changing world (cover time
of a simple random walk on evolving graphs). In: Aceto, L., Damg̊ard, I., Goldberg,
L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part
I. LNCS, vol. 5125, pp. 121–132. Springer, Heidelberg (2008)

8. Awerbuch, B., Patt-Shamir, B., Peleg, D., Saks, M.E.: Adapting to asynchronous
dynamic networks. In: STOC 1992, pp. 557–570 (1992)

9. Bagchi, A., Bhargava, A., Chaudhary, A., Eppstein, D., Scheideler, C.: The effect
of faults on network expansion. Theory Comput. Syst. 39(6), 903–928 (2006)

10. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs
and dynamic networks. CoRR, abs/1012.0009 (2010). Short version in ADHOC-
NOW 2011

11. Das Sarma, A., Molla, A.R., Pandurangan, G.: Fast distributed computation in
dynamic networks via random walks. In: Aguilera, M.K. (ed.) DISC 2012. LNCS,
vol. 7611, pp. 136–150. Springer, Heidelberg (2012)

12. Doerr, B., Goldberg, L.A., Minder, L., Sauerwald, T., Scheideler, C.: Stabilizing
consensus with the power of two choices. In: SPAA, pp. 149–158 (2011)

13. Dolev, S.: Self-stabilization. MIT Press, Cambridge (2000)
14. Dwork, C., Peleg, D., Pippenger, N., Upfal, E.: Fault tolerance in networks of

bounded degree. SIAM J. Comput. 17(5), 975–988 (1988)
15. Fiat, A., Saia, J.: Censorship resistant peer-to-peer content addressable networks.

In: SODA, pp. 94–103 (2002)
16. Gafni, E., Bertsekas, B.: Distributed algorithms for generating loop-free routes in

networks with frequently changing topology. IEEE Trans. Comm. 29(1), 11–18
(1981)

17. Guerraoui, R., Huc, F., Kermarrec, A.-M.: Highly dynamic distributed computing
with byzantine failures. In: PODC, pp. 176–183 (2013)

18. Hildrum, K., Kubiatowicz, J.D.: Asymptotically efficient approaches to fault-
tolerance in peer-to-peer networks. In: Fich, F.E. (ed.) DISC 2003. LNCS, vol.
2848, pp. 321–336. Springer, Heidelberg (2003)

19. Kapron, B.M., Kempe, D., King, V., Saia, J., Sanwalani, V.: Fast asynchronous
byzantine agreement and leader election with full information. ACM Transactions
on Algorithms 6(4) (2010)

20. King, V., Saia, J.: Breaking the O(n2) bit barrier: scalable Byzantine agreement
with an adaptive adversary. In: PODC, pp. 420–429 (2010)

21. King, V., Saia, J.: Faster agreement via a spectral method for detecting malicious
behavior. In: SODA, pp. 785–800 (2014)

22. King, V., Saia, J., Sanwalani, V., Vee, E.: Scalable leader election. In: SODA, pp.
990–999 (2006)

23. King, V., Saia, J., Sanwalani, V., Vee, E.: Towards secure and scalable computation
in peer-to-peer networks. In: FOCS, pp. 87–98 (2006)

24. Kuhn, F., Lynch, N., Oshman, R.: Distributed computation in dynamic networks.
In: ACM STOC, pp. 513–522 (2010)

Fast Byzantine Leader Election in Dynamic Networks 291

25. Kuhn, F., Oshman, R., Moses, Y.: Coordinated consensus in dynamic networks. In:
PODC, pp. 1–10 (2011)

26. Law, C., Siu, K.-Y.: Distributed construction of random expander networks. In:
Twenty-Second Annual Joint Conference of the IEEE Computer and Communica-
tions. INFOCOM 2003, vol. 3, pp. 2133–2143. IEEE Societies, March–April 2003

27. Naor, M., Wieder, U.: A simple fault tolerant distributed hash table. In: IPTPS,
pp. 88–97 (2003)

28. O’Dell, R., Wattenhofer, R.: Information dissemination in highly dynamic graphs.
In: DIALM-POMC, pp. 104–110 (2005)

29. Pandurangan, G., Raghavan, P., Upfal, E.: Building low-diameter p2p networks.
In: FOCS, pp. 492–499 (2001)

30. Scheideler, C.: How to spread adversarial nodes?: rotate! In: STOC, pp. 704–713
(2005)

31. Upfal, E.: Tolerating a linear number of faults in networks of bounded degree. Inf.
Comput. 115(2), 312–320 (1994)

Local Information in Influence Networks

Yuezhou Lv and Thomas Moscibroda(B)

Microsoft Research, Tsinghua University, Beijing, China
totolv@126.com, moscitho@microsoft.com

Abstract. We study how multi-hop information impacts convergence
in social influence networks. In influence networks, nodes have a choice
between two options A and B, and each node prefers to end up choosing
the option that a majority of its neighbors choose. We consider the case
of innovation adoption in which nodes can only change from A to B,
but not backwards. For this model, we ask the question, when is it safe
for a node to switch from A to B? If nodes have multi-hop information
about the network, rather than knowing only the state of their immediate
neighbors, the answer to this question becomes complex. The reason is
that a node needs to recursively reason about what its neighbors know,
and whether given their knowledge they will also upgrade to B.

In this paper, we assume that each node has complete knowledge
about its k-hop neighborhood, but does not know anything about the
network beyond k-hops. We study how different local decision algorithms
achieve different properties in terms of safety and conversion ratio (how
many nodes ultimately upgrade to B). We characterize the possible algo-
rithms by classifying them into a hierarchy of algorithms. Each class of
algorithms in this hierarchy is distinguished by a natural safety prop-
erty that it guarantees. For each class, we give an optimal algorithm in
terms of conversion ratio, and we show that each class is fully contained
in the class of lower safety level. Conversely, each lower-safety class can
achieve strictly higher conversion ratio than any algorithm in the safer
class. Thus, our hierarchy reveals a strict trade-off between safety and
conversion ratio. Finally, we show that each class of algorithms satisfies
two natural closure properties.

Keywords: Influence networks · Multi-hop information · Hierarchy of
algorithms · Distributed algorithms

1 Introduction

Influence networks in all their variants are important in the study of many
natural phenomena. In an influence network, each node is an agent and its action
in some round T , depends on the state of its neighbors. Influence network models

This work was supported in part by the National Basic Research Program of China
Grant 2011CBA00300, 2011CBA00301, the National Natural Science Foundation of
China Grant 61033001, 61361136003.

c© Springer-Verlag Berlin Heidelberg 2015
Y. Moses (Ed.): DISC 2015, LNCS 9363, pp. 292–308, 2015.
DOI: 10.1007/978-3-662-48653-5 20

Local Information in Influence Networks 293

have been used in the study of diffusion of innovation, social networks, belief
propagation, spring embedders, cellular automata, traffic networks, biological
cell systems, etc.

In studies on influence networks, it has been implicitly assumed that not only
does the utility of a node depend on the state of its neighbors, but – importantly
– that each node only knows the state of its immediate neighbors. That is, it is
assumed that nodes only have information about their neighborhood, or that
they do not make sophisticated use of any additional information about the
state of nodes outside their 1-hop neighborhood. However, having such additional
non-local information can be of critical importance both in terms of convergence
speed (i.e., how fast the system converges to its final equilibrium) as well as in
terms of convergence ratio (i.e., the overall utility or social welfare achieved by
the system in the equilibrium). Consider the following scenario, which we will
use as a baseline for our model in this paper: Assume that each node in a network
represents a participant that has a choice between staying with a current, older
operating system, or upgrading to a newer version of the operating system.
Some participants may be early adopters and decide to upgrade regardless of
the actions of its neighbors; while others may be wary of change and never want
to upgrade. For most participants, however, the utility is such that they will
upgrade if the majority of their neighbors also upgrade; and they will stay if the
majority of their neighbors stay.

The question is, for such a regular participant – when is it safe to upgrade to
the new operating system? If every node only knows its neighbors, (i.e., without
any knowledge about its neighbors’ neighbors), then it is possible that all nodes
will “wait” until a majority of its neighbors have decided to upgrade, and since
every node behaves in this same way, no node will ever upgrade. That is, the
system is stuck in a suboptimal configuration, simply due to the constraint of
having only local information. If, however, each node knows about the state of
nodes in its 2-hop or 3-hop neighborhood, then a node could compute locally
that it is safe to upgrade, because it can be sure that a majority of its neighbors
will ultimately benefit from upgrading, and thus they will upgrade. Thus, simply
by increasing the amount of local information, the entire system ends up in a
better global equilibrium.

To make the example concrete, suppose each node has two states original
and upgraded, and each node is better off by changing from original to
upgraded if and only if all its neighbors are upgraded. Consider a line with
5 nodes, x1, . . . , x5, in which x1 and x5 are upgraded while the others are origi-
nal. If each node has only 1-hop information, x2, x3, x4 will never upgrade. But,
if x3 has 2-hop information, x3 can upgrade first, because x2, x4 will then also
upgrade which finally makes x3 better off. The same happens in a system with
3 nodes that form a triangle. If every node knows that the three nodes form a
triangle, all of them can upgrade in one step. However, if the nodes do not know
whether their neighbors are mutually connected (they may have an independent
neighbor each), then none of the nodes will upgrade.

294 Y. Lv and T. Moscibroda

More generally, the study of how multi-hop information impacts the dynamics
and convergence of influence networks and leads to fascinating questions. These
questions are of the following nature: A node x would like to upgrade, but doing
so is only “safe” (i.e., guaranteed to lead to a higher utility), if its neighbors also
upgrade. However, in order for x to know whether its neighbors will upgrade,
it must determine whether it is “safe” for them to do so. Thus, the problem
is recursive: In order for x to determine whether it is “safe” for its neighbor y
to upgrade, it must determine what y knows about its neighbors, i.e., including
what y knows about what x knows about y, etc.

Thus, the extent to which a node knows more than simply its immediate
neighborhood fundamentally changes how the system behaves. In this paper,
we study how multi-hop local information impacts the convergence of influence
networks. We provide a theory of local decision algorithms based on an analysis
of the kind of decisions that nodes can safely take, if they are given multi-hop
information. Naturally, the answer to the question of “when is it safe to upgrade”
fundamentally depends on what each node assumes about the behavior of the
other nodes within its vicinity. In other words, whether an action is safe for a
node x depends i) on what x knows about its local neighborhood (and recursively
, what the nodes in x’s neighborhood know about their respective neighborhood,
etc), and ii) on the extent to which x can rely on the nodes in its vicinity to
behave rationally, trustworthily, conservatively, etc.

We show that these assumptions about the neighbors’ behavior imply a
natural hierarchy of safety-properties. Each stronger safety property ensures a
stronger guarantee that the node’s action will be the right choice in the equilib-
rium. Intriguingly, this hierarchy of safety properties also implies a hierarchy of
local decision algorithms, and every local decision algorithm can be categorized
into one of the classes of the hierarchy.

What is fascinating about this hierarchy of local decision algorithm is that
each of its classes is defined along a natural safety concept, satisfies closure
properties, and is strictly separated from both the next higher (=safer) class
and the next lower (=less safe) class. Specifically, we prove the following results:

– The class of algorithms Ci is a proper superset of every safer class Cj , i > j.
– For every class Ci, we derive the optimal algorithm OPT (Ci) among all local

decision algorithms contained in this class. Here, optimal is with regard to
the social welfare (conversion ratio) achieved in the final equilibrium.

– We prove that for every class Ci, its optimal algorithm OPT (Ci) can achieve
a strictly better conversion ratio than any local decision algorithm contained
in any safer class Cj , i > j. That is, each class in the hierarchy is strictly
more efficient in terms of conversion ratio. Thus, the hierarchy captures the
trade-off between safety and resulting social welfare.

– Finally, we prove that three of the classes (CByz, CRat, CPos) satisfy two natural
closure properties: i) subset-closure (every subset of an algorithm in the class
is included in the class), and ii) union-closure (the union of two algorithms in
the class is included in the class). For the fourth class, CPro, the properties do
not hold in general, but only for an important subclass of CPro.

Local Information in Influence Networks 295

In some classes of the hierarchy, the optimal algorithm is simple and natural,
while for others (e.g., CPro), the optimal algorithm exhibits a complicated recur-
sive structure that may be of independent interest.

1.1 Related Work

There is vast literature on graph-based problems in which a node’s decision
depends on its neighbors’ state, including famous examples such as the “game-of-
life” simulations [4]; the classic “democrats-vs-republicans” problem [21]; influ-
ence maximization problems [2] [8][9][10], or spread (diffusion) of innovation
problems[1][16][19]. The process of local majority voting in graphs, and its basic
properties has been reviewed in [14]. In economics, this class of problems can
be regarded generically as binary decisions with externalities [17]. It has been
widely used in sociology and economics[11][12][18][22]. Models in which nodes
can only change from “inactive” to “active” have been studied in [7][13][19][20].
The linear threshold model proposed in [8][9] is more closely related to ours. In
contrast, an alternative setting allows nodes to change states freely, leading to
problems such as stability, periodicity [5][6][15] or convergence time [3]. In all
these works, the information used by nodes for decision making is restricted to
the nodes’ immediate neighborhood, i.e., no multi-hop information.

2 Model and Definition

2.1 Influence Network Model

We model an Influence Network as a graph G = (V,E, Φ). Two nodes connected
by an edge are neighbors – their utility determines each other. A node x ∈ V is
in one of two possible states: the “original” state A or the “upgraded” state B. A
node has a type Φ(x): stubborn (unchangeable) or changeable. A stubborn node
always remains in state A. A changeable node can change to B. Once a node has
upgraded to B, it cannot switch back to A. A special case among the changeable
nodes are early-adopters, i.e., nodes that start in state B at the beginning. All
other (regular) changeable nodes start in state A and switch to B under certain
conditions as described below. We denote a changeable node initially in state A
as a regular node.

The network evolves over a series of rounds. We write γT (x), γT (S), and
γT (G) to denote the state of a node x, a set of nodes S, and the state of the
network G in round T . At the beginning, the network can include nodes in
both state A and B (early-adopters). The evolving process on network G is the
sequence of network states γ0(G), γ1(G), The network is in an equilibrium,
if there is no further change happening in the process, i.e., no node changes its
state.

Definition 1. A network G is in an equilibrium in round T iff γT (G) =
γT+1(G).

296 Y. Lv and T. Moscibroda

The next definition captures whether a regular node is stable, i.e., whether
it is satisfied with its current state. Let N(x) be the set of neighbors of x, and
NB

T (x) be the set of neighbors in state B. For a given threshold q ∈ [0, 1], if at
least a q-fraction of a node x’s neighbors are in state B, then x is stable if it is
also in state B, otherwise it is stable if it is in state A.

Definition 2. A regular node x is stable in round T if γT (x) = B and
|NB

T (x)|/|N(x)| ≥ q, or if γT (x) = A and |NB
T (x)|/|N(x)| < q.

2.2 k-Hop Influence Network and Local Decision Algorithm

In this paper, we extend the basic 1-hop influence network setting to a multi-
hop setting. In a k-hop influence network, each node has complete information
about the topology, and the state and type of all nodes up to a distance of k in
the network. Let Vk(x), Ek(x) be the set of nodes and edges within the k-hop
neighborhood of node x. The view of a node x is defined as follows:

Definition 3. In a k-hop network, the view Γ (x) of node x is a 4-tuple
Γ (x) = (Vk(x), Ek(x), Φ(Vk(x)), γ(Vk(x))).

Local Decision Algorithm: The only information available to a node is its
view. Therefore, the decision of whether a regular node upgrades from state A
to state B in a round T depends entirely on its current view. Therefore, we can
define a Local Decision Algorithm (or short, algorithm) as a mapping of a node’s
view to a binary decision, whether or not the node changes its state from A
to B. That is, an algorithm can be seen as defining for which views a regular
node decides to upgrade. With this in mind, we characterize a Local Decision
Algorithm as the set of views that lead the node to upgrade. That is, an algorithm
is equivalent to a set of views, called the Changing View Set SALG, which cause
a regular node x in state A to upgrade to state B. Thus, in this paper, we reason
about changing view sets when defining properties of algorithms.

Every node’s decisions are based on its Local Decision Algorithm. We denote
by Π = (S1, . . . , Sn) the set of algorithms of all regular nodes x1, . . . , xn. Let
Πxi

= Si, and Π−xi
= (S1, . . . , Si−1, Si+1, . . . , Sn). We use upper script to

indicate that every regular node executes the same algorithm, e.g., ΠALG =
(SALG, . . . , SALG). Since a process depends only on the initial state γ(G) and
the algorithms of each regular node, we can use the notation P [γ(G),Π] to
characterize a process.

We use the natural notion of social welfare to evaluate the performance of
algorithms: How many nodes end up upgrading to state B in the equilibrium.
We call this metric the conversion ratio |Ω|, where the conversion set Ω is the
set of all nodes in state B in the equilibrium. When comparing algorithms in
terms of their conversion ratio, we use the following three definitions.

Definition 4. An algorithm Sα is (strictly) more efficient than an algorithm Sβ

in some network setting γ(G) if in Pα[γ(G),ΠSα] and Pβ [γ(G),ΠSβ], it holds
that |ΩPα | ≥ |ΩPβ | (|ΩPα | > |ΩPβ |).

Local Information in Influence Networks 297

Definition 5. We define Sα � Sβ (Sα � Sβ) if Sα is more efficient than Sβ

in any network setting (and is strictly more efficient than Sβ in at least one
network setting).

Definition 6. S is optimal within a class of algorithms C, denoted S =
OPT (C), if S ∈ C and for any algorithm Sα ∈ C, it holds that S � Sα.

3 Hierarchy of Algorithms

In this section, we construct a hierarchy of local decision algorithms. In a k-
hop influence network, two key factors that determine a node’s decision making
are i) what it can assume about its neighbor’s behavior (i.e., its neighbors’
algorithms); and ii) how much “risk” the node is willing to take; how surely
the node expects to end up in a stable configuration in the equilibrium (i.e.,
a node’s safety guarantee). There is a fundamental tradeoff between these two
factors. The more likely a node upgrades to B based on a belief that some of its
neighbors will also upgrade to B in subsequent rounds, the more opportunity
the node itself has to take the plunge and upgrade itself, and thus the higher the
global conversion ratio will be. Consider two extreme local decision algorithms:
In the first algorithm, each regular node in G directly upgrades to B in the
very first round. This algorithm clearly leads to the highest possible conversion
ratio, but many nodes may end up being unstable in the equilibrium, i.e., they
upgrade even though they should not have. At the other extreme end of the
spectrum is the standard local 1-hop decision algorithm studied in the existing
literature: A node upgrades to B only if a q-fraction of its neighbors are B. This
algorithm guarantees stability for every node, but it is inefficient in terms of
conversion ratio. In many situations, few nodes will upgrade, even though all
nodes would collectively benefit from doing so. Our hierarchy of local decision
algorithms captures this trade-off, showing how different classes of algorithms
achieve different natural safety-properties and conversion ratios, depending on
the nodes’ beliefs about other nodes’ algorithms.

Since a local decision algorithm is equivalent to a set of changing views,
any property for an algorithm is entirely a function of its changing view set. The
first property we introduce defines the set of rational algorithms. A local decision
algorithm is rational if it lets a node upgrade when there are a sufficient number
of upgraded nodes in its 1-hop neighborhood. That is, an algorithm is rational if
it includes all views Γ (x) in its changing view set in which |NB(x)|/|N(x)| ≥ q
holds.

Definition 7 (Rational). An algorithm S is rational if Sr ⊆ S, where
Sr = {Γ (x)||NB(x)|/|N(x)| ≥ q holds in Γ (x)}.

Any natural algorithm should be rational as for a regular node, if a q-fraction of
its neighbors have upgraded to B, it is sure to be stable by also upgrading. We
call the set of all algorithms (including rational and non-rational) arbitrary. Our
hierarchy includes arbitrary algorithms, but for simplicity we often implicitly
assume algorithm to be rational unless we explicitly state that it is arbitrary.

298 Y. Lv and T. Moscibroda

Safety Properties: Local decision algorithms can be characterized according
to the safety guarantees they achieve. We define an algorithm to be safe if when
executing this algorithm, a node ends up being stable in the equilibrium. As
a weaker version of safety, we consider the concept of possible-safety. A local
decision algorithm is possible-safe if a node–when executing this algorithm–has
a chance to end up being stable in the equilibrium. Following these ideas, we
classify safety properties for local decision algorithms in sequence from safest to
least safe.

The highest level of safety guarantee is Byzantine-safety. An algorithm is
Byzantine-safe if in any network, when executing this algorithm, a node is guar-
anteed to end up being stable in the equilibrium, regardless of what arbitrary
algorithms the other nodes in the network run. While Byzantine-safe algorithms
ensure safety even in the presence of irrationally operating neighbors, nodes run-
ning a Byzantine-safe algorithm have few opportunities to upgrade to state B
and often get stuck unnecessarily in state A.

Definition 8 (Byzantine-safe). An algorithm S is Byzantine-safe if for any
γ(G), x ∈ G and arbitrary Π−x, in process P [γ(G), (Π−x,Πx = S)], x is stable
in the equilibrium.

The next lower degree of safety is called Rational-safety. It is defined similarly,
except that each node assumes that the other nodes in the network execute at
least a rational (instead of arbitrary) algorithm.

Definition 9 (Rational-safe). An algorithm S is rational-safe if for any γ(G),
x ∈ G and rational Π−x, in process P [γ(G), (Π−x,Πx = S)], x is stable in the
equilibrium.

The third level of safety is Protocol-safety. A node x executing a protocol-safe
local decision algorithm is guaranteed to end up being stable in the equilibrium,
under the assumption that all other nodes will execute the same algorithm as
x does. In other words, protocol-safety captures the safety guarantee we can
achieve if every node in the network follows a given distributed protocol designed
by some global algorithm designer, and every node faithfully executes this com-
mon protocol.

Definition 10 (Protocol-safe). An algorithm S is protocol-safe if for any
γ(G), x ∈ G, in process P [γ(G),ΠS], x is stable in the equilibrium.

Finally, the lowest level of safety is Possible-safety. If a node executes a
possible-safe algorithm, then there exists a set of specific algorithms for the
other nodes such that if each node executes this specific algorithm, every regular
node in the graph ends up being stable in the equilibrium. In other words, an
algorithm is possible-safe, if there at least exists a possibility that it leads to all
nodes becoming stable in the equilibrium. Another way to interpret possible-safe
local decision algorithms is that these are set of algorithms for ”optimists”. A
node will decide to upgrade, if there is a chance that upgrading will lead to a
stable outcome for everyone.

Local Information in Influence Networks 299

Definition 11 (Possible-safe). An algorithm S is possible-safe if for any
γ(G), x ∈ G, there exists a Π−x such that in process P [γ(G), (Π−x,Πx = S)],
each regular node is stable in the equilibrium.

Notice that the definition of Possible-safety rules out trivial algorithms such
as the algorithm in which every node always upgrades to B. Indeed, such an
algorithm is not possible-safe the neighbors of a node executing such algorithm
could all be stubborn.

Thus, we have four classes of algorithms, denoted by CByz, CRat, CPro, and
CPos, each of which corresponds to a particular safety-guarantee the algorithm
ensures. The following theorem shows that each class of algorithms is entirely
contained in the next lower class. A class contains all algorithms that are con-
tained in the next safer class.

Theorem 1. CByz ⊆ CRat ⊆ CPro ⊆ CPos.

We also study closure properties of the different classes. Specifically, a class
of algorithms is union-closed if the union of any two algorithms in such class is
included in it. A class of algorithms is subset-closed if the subset of any algorithm
in such class is included in the class.

Definition 12. A class of algorithms C is
1. union-closed if for any Sα, Sβ ∈ C, it holds that (Sα ∪ Sβ) ∈ C.
2. subset-closed if for any Sβ ∈ C and any Sα ⊆ Sβ, it holds that Sα ∈ C.

4 Algorithms

In the section, we study each class of algorithms. For each class, we derive an
algorithm that is optimal among all algorithms within this class. Also, for each
class, we verify whether it is subset- and union-closed. Finally, we compare the
optimal algorithm in each class in terms of its conversion ratio to all algorithms
in the next safer class. Our results imply that the hierarchy is “complete” in
the sense that the algorithms in each less safe hierarchy class are strictly more
efficient than the algorithms in the safer class.

4.1 Preliminaries

We begin with two concepts that are useful across all classes. The first one,
eligible, describes a set of nodes that can make each other stable by collectively
changing to B.

Definition 13. A set of nodes W is eligible if,
1. W is a non-empty set including only changeable nodes in state A;
2. when upgrading each node in W to state B, each node in W is stable.

Secondly, we derive an important structural characterization of algorithms. We
say an algorithm is INCREMENTAL if it is more efficient than any of its own
subsets.

Definition 14. Sβ is INCREMENTAL if Sβ � Sα for any Sα ⊆ Sβ.

300 Y. Lv and T. Moscibroda

Intuitively, we would assume that every algorithm is INCREMENTAL. Sur-
prisingly, it turns out that even rational algorithms may not be INCREMEN-
TAL, i.e., an algorithm with fewer changing views that are a proper subset
of another algorithm can be more efficient. As a simple example, consider a
line network consisting of 5 nodes, with k = 5 and q = 1. Consider two algo-
rithms Sα and Sβ . Both algorithms include all views in which all neighbors
are in state B (which is rational for q = 1), and in addition they contain a
set of additional changing views Γ 1(x), . . . , Γ 4(x) as shown in Figure 1. Let
Sα = Sr ∪ {Γ 1(x), Γ 2(x), Γ 3(x)} and Sβ = Sr ∪ {Γ 1(x), Γ 2(x), Γ 3(x), Γ 4(x)},
i.e., the two algorithms are identical except that Sβ includes one more changing
view Γ 4(x). However, in spite of this extra changing view, Sβ is actually strictly
worse than Sα on the 5-node chain. Assume that initially, only the left-most
node is in state B; the others are regular nodes in state A. It can be verified that
with Sα, all nodes will upgrade to B in the equilibrium; while with Sβ , Nodes
2 and 5 upgrade to B in the first round, but Nodes 3 and 4 are then stuck –
they have no chance to upgrade to B. Thus, even though Sβ is rational and a
strict superset of Sα, Sα is more efficient. Thus, the rational algorithm Sβ is not
INCREMENTAL.

Fig. 1. Views Γ 1(x), Γ 2(x), Γ 3(x), Γ 4(x).

The reason Sβ is not INCREMENTAL is that it violates a natural property
we call Augmentation-Completeness. For a view Γ (x), we say a view Γ ′(x) aug-
ments Γ (x) if Γ ′(x) is identical to Γ (x) except that i) some stubborn nodes in
Γ (x) are changeable nodes in Γ ′(x), and ii) some regular nodes in Γ (x) are in
state B in Γ ′(x). Clearly, it should always be easier for a node to upgrade to B
in a view Γ ′(x) that augments Γ (x) than in Γ (x). The augments relationship
thus implies a partial order of views in terms of the extent to which nodes are
willing to change. Denote by F+(.) a mapping from an algorithm S to the set
of all views that augment at least one view in S. I.e., for a set S and any view
Γ (x) ∈ S, F+(S) includes all views that augment Γ (x). Using this definition,
we can show that for two algorithms Sα and Sβ such that Sβ is a superset of
F+(Sα), it holds for any G and any initial state, the set of regular nodes changing
to state B in Pα is a subset of that in Pβ .

We say an algorithm S is Augmentation-Complete, AUG-COMPLETE, if for
any of its views Γ (x) ∈ S, S contains all the views that augment Γ (x). Formally,
S is AUG-COMPLETE if S = F+(S). Augmentation-Completeness is a powerful
tool that enables us to compare the efficiency among different algorithms, and

Local Information in Influence Networks 301

we will use it extensively when constructing the optimal protocol-safe algorithm.
With this definition, we can prove the following theorem.

Theorem 2. Any AUG-COMPLETE algorithm is INCREMENTAL.

4.2 Byzantine-Safe Algorithm

It is trivial to see that the only Byzantine-safe algorithm is the simple 1-hop algo-
rithm; nodes upgrade to B is a sufficient number of neighbors have upgraded
to B. It is the only algorithm that ensure stability even in the presence of irra-
tional neighbors. Since CByz contains only a single algorithm, the class is clearly
subset-closed and union-closed.

Theorem 3. CByz = {S1−hop}.

Algorithm 1. S1−hop

S1−hop := {Γ (x)||NB(x)|/|N(x)| ≥ q}.

4.3 Rational-Safe Algorithms

In this subsection, we devise an optimal rational-safe algorithm Sfore, called
foresee. Sfore works as follows: In order to check whether it should upgrade
given its current view, a node x temporarily “assumes” its state to be B, and
under this assumption repeatedly finds eligible nodes in its view and “upgrades”
these node to B. If the outcome of this local simulation is such that at least a
q-fraction of x’s neighbors are in state B, x upgrades to B. The key of Sfore is
that x assumes itself to be in state B at the outset.

Algorithm 2. Sfore

Given a view Γ (x). Set the state of x to B;
while There exists a node y ∈ Vk−1(x) such that {y} is eligible do

Set the state of y to B.

if |NB(x)|/|N(x)| ≥ q then
Γ (x) is a changing view. (i.e., add Γ (x) into Sfore)

Algorithm Sfore can be much more efficient than the 1-hop algorithm S1−hop.
Consider a graph G with only regular nodes and threshold q q < 1/dmax, where
dmax is the maximum degree of graph G. If each node uses S1−hop, no node
changes to B. In contrast, if every regular node uses Sfore, every node will assume
itself to be in state B and execute the while loop. For each of its neighbors y,
as q < 1

dmax
, it holds that NB(y)/N(y) = 1/N(y) > 1/dmax > q, i.e., y is

eligible and can upgrade to B. That is, x knows that each of its neighbors will
upgrade to B and it can safely upgrade itself. Therefore, with Sfore, all nodes
simultaneously upgrade to B in the very first round.

Studying Sfore, we find that each subset of Sfore is a rational-safe algorithm
and each rational-safe algorithm is a subset of Sfore.

302 Y. Lv and T. Moscibroda

Lemma 1. S ⊆ Sfore ⇐⇒ S ∈ CRat.

Thus, Sfore is the rational-safe algorithm with the maximum set of views
and it is the superset of each algorithm in CRat. Therefore, we can infer that
CRat is subset-closed and union-closed by definition. Furthermore, as Sfore is
AUG-COMPLETE (we can check any view in Sfore according to the definition
of AUG-COMPLETE), from Theorem 2, we can infer that Sfore is more efficient
than any of its subset. Therefore, Sfore is optimal within the class of rational-safe
algorithms.

Theorem 4. The class of rational-safe algorithms CRat is subset-closed and
union-closed. Furthermore, Sfore = OPT (CRat).

4.4 Protocol-Safe Algorithms

In many cases, Sfore is still very inefficient. Protocol-safe algorithms can be
more aggressive and efficient, because they can consider eligible sets rather than
only eligible individual nodes. We begin with a simple algorithm Strust, which is
intuitive but not optimal. Let D(W) be the diameter of a node set W in G. We
can easily infer that Strust is protocol-safe because it only considers eligible sets
W with diameter less than k − 1. The small diameter ensures that each node
in W can see W as an eligible set in its own view. Thus, each node in W can
simultaneously upgrade to B together.

Algorithm 3. Strust–Finding eligible sets in view Γ (x) with restricted diameter

Strust :=
{Γ (x)|∃W ⊆ Vk−1(x) such that W is eligible, D(W) ≤ k − 1 and x ∈ W}.

To see that Strust can be much more efficient than any rational-safe algorithm
including Sfore, consider a network with diameter less than k and threshold
q > 1/dmin (dmin is the minimum degree in G), e.g., a complete graph G and
q = 1. It is easy to see that if each node executes Sfore, no node changes to
B. On the other hand, if each node executes Strust, every node will find the
entire graph as an eligible set and thus all nodes simultaneously upgrade to B
in round 1.

However, Strust is not optimal. To see why Strust is not optimal, we show that
another protocol-safe algorithm S+

trust which is the union of Strust plus a special
changing view Γ ∗(x) is more efficient than Strust. Consider a 5-node chain of
regular nodes, and assume k = 3 and q = 0.1. In this example, Strust cannot find
any eligible set with diameter at most than 3, thus each regular node is stuck
in A. On the other hand, if the extra changing view Γ ∗(x) is the 5-node chain
of regular nodes, then the middle node can upgrade to B in Round 1; and all
other nodes will also upgrade in subsequent rounds. We now derive two optimal
protocol-safe algorithms - one non-constructive and one constructive with an
additional assumption.

Local Information in Influence Networks 303

Non-constructive Optimal Protocol-Safe Algorithm: We give an optimal
protocol-safe algorithm S∗. To describe S∗, we introduce a class of algorithms
C+

Pro = {S|S ∈ CPro and S is AUG-COMPLETE} with all AUG-COMPLETE
algorithms in CPro. Using the definition of C+

Pro, we define S∗ :=
⋃

S∈C+
P ro

S. We
show that S∗ is optimal within the class of protocol-safe algorithms.

Theorem 5. S∗ = OPT (CPro).

The proof is mainly based on three structural lemmas describing protocol-
safe algorithms. The first one states that C+

Pro is union-closed (Intriguingly, we
later show that CPro itself is not union-closed).

Lemma 2. C+
Pro is union closed.

Since S∗ is defined as a union of all algorithms in C+
Pro, from Lemma 2, we can

infer that S∗ ∈ C+
Pro. i.e., S∗ is protocol-safe and AUG-COMPLETE, and it is

trivial to see that S∗ is the superset of any algorithm in C+
Pro. Since we want

to show S∗ is optimal in CPro, we need to build a connection between CPro and
C+

Pro. In the following lemma, we find that for any protocol-safe algorithm S,
F+(S) ∈ C+

Pro.

Lemma 3. For any S ∈ CPro, F+(S) ∈ C+
Pro.

As S∗ is the superset of any algorithm in C+
Pro, from Lemma 3, we can get that

for any protocol-safe algorithm S, F+(S) is a subset of S∗. For any algorithm
S, it holds S ⊆ F+(S) (from the definition of F+(·)). We conclude in the next
lemma that any protocol-safe algorithm S is a subset of S∗. (Interestingly, the
reverse does not hold, i.e., there exists S ⊆ S∗ such that S
∈ CPro.)

Lemma 4. If S ∈ CPro, then S ⊆ S∗.

On the other hand, we know that S∗ is AUG-COMPLETE and every AUG-
COMPLETE algorithm is INCREMENTAL (Theorem 2). That is, S∗ is more
efficient than any subset of itself. We can infer that S∗ is optimal within the
class of protocol-safe algorithms.

Finally, we show that the class of protocol-safe algorithms is not union-closed
and subset-closed. It is different from the other three classes of the hierarchy.

Theorem 6. The class of protocol-safe algorithms CPro is not union-closed and
subset-closed.

Constructive Optimal Protocol-safe Algorithm: Algorithm S∗ is optimal,
but it is non-constructive and it is entirely unclear how to apply this algorithm in
a real network setting. In this section, we give a constructive optimal algorithm
SΔ. The algorithm is based on techniques similar to dynamic programming:
we inductively construct a maximal AUG-COMPLETE set of changing views
by enumeration in a systematic manner that additionally satisfy a so-called
UNIFORM constraint. To do so, a node checks all possible views, according to
the total number of nodes and the total number of regular nodes in each view
in an increasing order, and adds the valid ones into SΔ’s changing view set.
Ultimately, we can prove that SΔ is optimal, but only under the assumption

304 Y. Lv and T. Moscibroda

that S∗ satisfies the UNIFORM property. We conjecture that this is true, but
we do not currently have a formal proof. Therefore, we only claim the weaker
theorem that SΔ is optimal among all UNIFORM AUG-COMPLETE protocol-
safe algorithms.

4.5 Possible-Safe Algorithms
For the class of possible-safe algorithms, we show that Shope is optimal. The
algorithm includes the finding of an eligible set W .

Algorithm 4. Shope

Shope := {Γ (x)|∃W ⊆ Vk−1(x) such that W is eligible and x ∈ W}.

Again, we show that Shope can be much more efficient than an optimal
protocol-safe algorithm S∗. Specifically, consider a network of 5 nodes, four of
which form a square, and one node is in the middle linking to the other 4 nodes.
Suppose k = 2 and q = 1. With S∗, no node will upgrade. With Shope, the center
node will can see all four neighbors and it knows that the set of all neighbors
plus itself is eligible. Thus, the center node upgrades to B, which is more effi-
cient albeit unstable, because the corner nodes do not know the topology of the
opposite corner node and will remain in A.

An defining structural property of the class of possible-safe algorithms (and
Shope) is that each subset of Shope is a possible-safe algorithm and each possible-
safe algorithm is a subset of Shope.
Lemma 5. S ⊆ Shope ⇐⇒ S ∈ CPos.

Thus, Shope plays the same central role for CPos as Sfore played for CRat.
Indeed, the rest of the argument follows along the same lines. According to
Lemma 5, we know that Shope is the possible-safe algorithm with the maximum
set of views and it is the superset of each algorithm in CPos. Therefore, we can
infer that CPos is subset-closed and union-closed by definition. Furthermore, as
Shope is AUG-COMPLETE, from Theorem 2, we can infer that Shope is more
efficient than any of its subset. Therefore, we can conclude that Shope is optimal
within the class of possible-safe algorithms.
Theorem 7. The class of possible-safe algorithms CPos is subset-closed and
union-closed. Furthermore, Shope = OPT (CPos).

4.6 Putting Everything Together

Combining all the above results, we now show a strict order in terms of conver-
sion ratio among all the optimal algorithms in the four classes of local decision
algorithms. The optimal algorithm of a safer class is strictly less efficient than
the optimal algorithm in the less safe class. That is, the achievable safety guar-
antee of these algorithms precisely corresponds to their performance efficiency in
terms of conversion ratio: A beautiful finding. We construct a family of graphs
in which the respectively safer optimal algorithm will have fewer nodes upgrade
to B, than the respective less safe optimal algorithm.

Local Information in Influence Networks 305

Theorem 8. It holds OPT (CPos) � OPT (CPro) � OPT (CRat) � OPT (CByz),
for any k ≥ 2, q > 0.

Proof. We first show that the order of efficiency holds. As CByz ⊆ CRat ⊆ CPro ⊆
CPos (Theorem 1), we can infer that OPT (CPos) � OPT (CPro) � OPT (CRat) �
OPT (CByz). We know that S1−hop = OPT (CByz), Sfore = OPT (CRat), S∗ =
OPT (CPro) and Shope = OPT (CPos). Thus, it holds Shope � S∗ � Sfore �
S1−hop.

Next, we need to show that the strict order of efficiency holds for any k ≥
2, q > 0. In the following context, consider any k ≥ 2, q > 0.

To show that OPT (CRat) � OPT (CByz), we show Sfore � S1−hop. Consider
a graph G with 2 regular nodes connected. If each regular node executes S1−hop,
neither changes to state B. If each regular node executes Sfore, both change to
state B. Therefore, Sfore � S1−hop.

To show that OPT (CPro) � OPT (CRat), as S∗ � Strust, we only need to show
that Strust � Sfore. Consider a complete graph G with n regular nodes such that
(n − 1) > 1/q. If each regular node executes Sfore, no regular node changes to
state B. If each regular node executes Strust, each regular node changes to state
B. Therefore, Strust � Sfore.

To show that OPT (CPos) � OPT (CPro), we show that Shope � S∗. As we do
not know the explicit form of S∗, our idea is to construct a graph in which there
is one regular node x that can see all the nodes in the graph and only when all
nodes change to state B, all regular nodes are stable in the equilibrium; then
only x changes to state B by running Shope and other nodes will keep state A
since they cannot find an eligible set in their view. Moreover, if each regular
node executes S∗, since every regular node should be stable in the equilibrium,
we can infer that no regular node changes to B.

We build the construction step by step. Recall that we have shown in
Section 4.5 an example in which Shope is more efficient than S∗ for k = 2, q = 1.
Using a similar technique, we extend the case k = 2, q = 1 to the general case.
In the following example, we show that for any k ≥ 2 and q = 1, it holds that
Shope � S∗.

Suppose q = 1 and any k ≥ 2. Construct graph G = (V,E) as follows:
Construct 2k+2 chains, where the ith chain (i = 1, 2, ..., 2k+2) includes regular
nodes x1i, x2i, ..., x(k−1)i. In the ith chain, xji links to x(j+1)i (j = 1, 2, ..., k−2).
There is a regular node x00 linking to x11, x12, ..., x1(2k+2). For each i (i =
1, 2, ..., 2k + 1), x(k−1)i links to x(k−1)(i+1) and x(k−1)(2k+2) links to x(k−1)1. See
Figure 2. We call such G a “cage”.

In process P1, suppose each regular node in G executes S∗. As S∗ is protocol-
safe, we can infer that each node is stable in the equilibrium. As q = 1, we can
infer all nodes in the equilibrium in P1 are in the same state, namely either all
nodes are in state A or all nodes are in state B. Otherwise, a node in state
B that has any neighbor in state A is not stable. We then show by contra-
diction that in P1, all nodes are in state A. Suppose all nodes are in state B.
By symmetry, x(k−1)1, S(k−1)2, ..., S(k−1)(2k+2) should change to B in the same
round T ∗. Thus we know that in T ∗ − 1, nodes x(k−1)1, S(k−1)2, ..., S(k−1)(2k+2)

306 Y. Lv and T. Moscibroda

Fig. 2. The “Cage” Graph

are all in state A. Denote by Γ ∗(x(k−1)1) the view of x(k−1)1 in T ∗ − 1. We
can infer that Γ ∗(x(k−1)1) ∈ S∗. Consider another graph G′ that has the
same topology and type as G and the initial state of G′ is the same as G in
T ∗ − 1 except that x(k−1)(k+2) is a stubborn node. We still consider that each
node in G′ executes S∗. As x(k−1)1 cannot see the state or type of x(k−1)(k+2)

(due to k-hop information restriction), we can infer that the initial view of
x(k−1)1 in G′ is the same as Γ ∗(x(k−1)1) which means x(k−1)1 changes to
state B in round 1 in G′. Then in G′, we get that x(k−1)1 is in state B and
x(k−1)(k+2) is a stubborn node. It is easy to see that at least one regular node in
{x(k−1)1, x(k−1)2, ..., x(k−1)(k+1), x(k−1)(k+3), ..., x(k−1)(2k+2)} is not stable. This
contradicts our assumption that S∗ is protocol-safe. Therefore, we know that in
P1 in which each regular node executes S∗, each regular node is in A.

In process P2, suppose each regular node in G executes Shope. Denote by
S0 = {each view}. As x00 knows the whole graph G, the entire set of nodes V
is an eligible set. Therefore, according to the definition of Shope, x00 changes to
state B in round 1. We can see that at least one node in P2 changes to state B.
Thus, Shope is more efficient than S∗.

Using the “cage” graph, we can extend the specific threshold q to the general
case. Suppose q > 0 and each node has (k + 1)-hop information k ≥ 1. We
construct a “cage” graph G′′ like above and additionally link cij stubborn nodes
to xij (cij will be assigned in the following context). We can get the similar proof
of the general case in G′′ to that above in G with q = 1 by achieving the following
two rules: 1) only x00 can see the whole graph (This can be done since x00 in
G′ has (k + 1)-hop information with which it can see all the stubborn nodes
and each regular node can not see the whole graph.) and 2) all regular nodes
are stable in the equilibrium if and only if all of them are in state A or state
B. In order to achieve the second rule, for a regular node xij with bij regular
neighboring nodes, the following two equalities should hold, i) bij/(bij + cij) ≥ q
and ii) (bij − 1)/(bij + cij) < q. Rearranging these equations, we can derive

bij
1 − q

q
− 1

q
< cij ≤ bij

1 − q

q
.

Since 1/q > 1, we know that there must be an integer in the range (bij
1−q

q −
1
q , bij

1−q
q), and hence, Shope is more efficient than S∗ for any k ≥ 2, q > 0.

Local Information in Influence Networks 307

Thus, we have shown OPT (CPos) � OPT (CPro) � OPT (CRat) �
OPT (CByz).

Also, note again that CPro differs from CRat with regard to the union-closed and
subset-closed property (Thm 6 vs Thm 4). The reason for this difference is that
in a rational-safe algorithm, each node assumes every other node being rational,
where such assumption is static since all the rational algorithms are known in
advance. But in protocol-safe, it is no longer true. In contrast, for a protocol-safe
algorithm, it cannot do the same because a node needs to recursively consider
what its neighboring algorithm might do. The class of protocol-safe algorithm is
in this sense “dynamic”.

Local vs Global Decision Algorithms. All algorithms in this paper are local
decision algorithms based on k-hop of multi-hop information. This means that
all of these algorithms are non-optimal compared to a global optimal decision
algorithm that has complete information of the network. Thus, even the most
efficient of our local decision algorithms, Shope is not globally optimal. Indeed,
a globally optimal algorithm can be regarded as Shope with k being infinitely
large. To see that Shope with k-hop information can be suboptimal, consider a
ring network G with 2k + 2 regular nodes, and q > 0.5. With global view, all
nodes should upgrade to B, rendering all nodes stable. However, if each node
uses algorithm Shope with local view, no node upgrades to B.

5 Conclusion

In this paper, we have derived a hierarchy of local decision algorithms in a
basic influence network setting with multi-hop information. Giving nodes multi-
hop information renders the problem more complex since nodes now need to
reason about other nodes’ behaviors and views. We have shown that the classes
of algorithms that achieve different safety properties are strictly separated from
each other in terms of efficiency, thus capturing the underlying trade-off between
safety-guarantee and ability to “take action”. The hierarchy thus disentangles
and categorizes the questions raised by the typical recursive distributed problems
such as, “I will take action, if my neighbor takes action; and to determine whether
he will take action, I need to know whether my neighbor thinks I take action,
etc.” It is intriguing that such complicated recursive multi-hop patterns give
raise to a natural hierarchy of classes of local decision algorithms.

References

1. Arthur, W.B., Lane, D.A.: Information contagion. Structural Change and Eco-
nomic Dynamics 4(1), 81–104 (1993)

2. Chen, W., Wang, C., Wang, Y.: Scalable influence maximization for prevalent
viral marketing in large-scale social networks. In: Proceedings of the 16th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp. 1029–1038. ACM (2010)

308 Y. Lv and T. Moscibroda

3. Frischknecht, S., Keller, B., Wattenhofer, R.: Convergence in (Social) influence
networks. In: Afek, Y. (ed.) DISC 2013. LNCS, vol. 8205, pp. 433–446. Springer,
Heidelberg (2013)

4. Gardner, M.: Mathematical games: The fantastic combinations of john conways
new solitaire game life. Scientific American 223(4), 120–123 (1970)

5. Goles, E., Olivos, J.: Periodic behaviour of generalized threshold functions. Discrete
Mathematics 30(2), 187–189 (1980)

6. Goles, E., Tchuente, M.: Iterative behaviour of generalized majority functions.
Mathematical Social Sciences 4(3), 197–204 (1983)

7. Granovetter, M.: Threshold models of collective behavior. American Journal of
Sociology 83(6), 1420 (1978)

8. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through
a social network. In: Proceedings of the ninth ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pp. 137–146. ACM (2003)

9. Kempe, D., Kleinberg, J.M., Tardos, É.: Influential nodes in a diffusion model
for social networks. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C.,
Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1127–1138. Springer, Heidelberg
(2005)

10. Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., Glance, N.:
Cost-effective outbreak detection in networks. In: Proceedings of the 13th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp. 420–429. ACM (2007)

11. Macy, M.W.: Chains of cooperation: Threshold effects in collective action. Ameri-
can Sociological Review, pp. 730–747 (1991)

12. Macy, M.W., Willer, R.: From factors to actors: Computational sociology and
agent-based modeling. Annual review of sociology, pp. 143–166 (2002)

13. Morris, S.: Contagion. The Review of Economic Studies 67(1), 57–78 (2000)
14. Peleg, D.: Local majorities, coalitions and monopolies in graphs: a review. Theo-

retical Computer Science 282(2), 231–257 (2002)
15. Poljak, S., Sra, M.: On periodical behaviour in societies with symmetric influences.

Combinatorica 3(1), 119–121 (1983)
16. Rogers Everett, M.: Diffusion of innovations. New York (1995)
17. Schelling, T.C.: Hockey helmets, concealed weapons, and daylight saving: A study

of binary choices with externalities. Journal of Conflict Resolution, 381–428 (1973)
18. Schelling, T.C.: Micromotives and macrobehavior. WW Norton & Company (2006)
19. Valente, T.W.: Network models of the diffusion of innovations. Computational &

Mathematical Organization Theory 2(2), 163–164 (1996)
20. Wasserman, S.: Social network analysis: Methods and applications, vol. 8. Cam-

bridge University Press (1994)
21. Winkler, P.: Puzzled delightful graph theory. Communications of the ACM 51(8),

104–104 (2008)
22. Young, H.P.: Individual strategy and social structure: An evolutionary theory of

institutions. Princeton University Press (2001)

Amalgamated Lock-Elision

Yehuda Afek1, Alexander Matveev2(B), Oscar R. Moll2, and Nir Shavit3

1 Tel-Aviv University, Tel-aviv, Israel
afek@post.tau.ac.il

2 MIT, Cambridge, MA, USA
amatveev@csail.mit.edu, orm@mit.edu

3 MIT and Tel-Aviv University, Tel-aviv, Israel
shanir@csail.mit.edu

Abstract. Hardware lock-elision (HLE) introduces concurrency into
legacy lock-based code by optimistically executing critical sections in
a fast-path as hardware transactions. Its main limitation is that in case
of repeated aborts, it reverts to a fallback-path that acquires a serial
lock. This fallback-path lacks hardware-software concurrency, because
all fast-path hardware transactions abort and wait for the completion of
the fallback. Software lock elision has no such limitation, but the over-
heads incurred are simply too high.

We propose amalgamated lock-elision (ALE), a novel lock-elision algo-
rithm that provides hardware-software concurrency and efficiency: the
fallback-path executes concurrently with fast-path hardware transac-
tions, while the common-path fast-path reads incur no overheads and
proceed without any instrumentation. The key idea in ALE is to use
a sequence of fine-grained locks in the fallback-path to detect conflicts
with the fast-path, and at the same time reduce the costs of these locks
by executing the fallback-path as a series segments, where each segment
is a dynamic length short hardware transaction.

We implemented ALE into GCC and tested the new system on Intel
Haswell 16-way chip that provides hardware transactions. We bench-
marked linked-lists, hash-tables and red-black trees, as well as converting
KyotoCacheDB to use ALE in GCC, and all show that ALE significantly
outperforms HLE.

Keywords: Multicore · Hardware lock elision · Hardware transactional
memory · Algorithms

1 Introduction

Hardware lock-elision (HLE) [30] introduces concurrency into lock-based critical
sections by executing these sections in a fast-path as hardware transactions.
However, hardware transactions are best-effort in current Intel Haswell [31] and
IBM Power8 [8] processors, which means that they have no progress guarantee:
a hardware transaction may always fail due to a hardware-related reason such as
an L1 cache capacity limitation, an unsupported instruction, or a page protection
c© Springer-Verlag Berlin Heidelberg 2015
Y. Moses (Ed.): DISC 2015, LNCS 9363, pp. 309–324, 2015.
DOI: 10.1007/978-3-662-48653-5 21

310 Y. Afek et al.

or scheduler interrupt; in all such cases it may never commit [17]. Therefore, to
ensure progress in HLE, a critical section that repeatedly fails to commit in
the hardware fast-path, reverts to execute in a fallback-path that acquires the
original serial lock. This fallback-path is expensive because it aborts all current
fast-path hardware transactions and executes serially.

Recent work by Afek et al. [32] and Calciu et al. [24] introduced the lock-
removal (or lazy subscription) lock elision scheme. Lock-removal sacrifices safety
guarantees in favor of limited concurrency: the fast-path can execute concur-
rently with the fallback-path, however, the fast-path cannot commit as long as
there is a fallback in process, and can observe inconsistent memory states. These
inconsistent states can lead to executing illegal instructions or to memory cor-
ruption. It was claimed that HTM sandboxing significantly minimizes chances
of unsafe executions, since any inconsistent hardware transaction should simply
abort itself, and therefore, one can provide an efficient software-based compiler
and the necessary runtime support to detect and handle the unsafe cases that
“escape” the HTM sandboxing mechanism. Unfortunately, recent work by Dice
et al. [12] shows that this is not the case: there are new cases of unsafe execu-
tions, ones not identified in the original lock-removal HLE papers, and require
complex compiler and runtime support that would slow lock-removal HLE to a
point that eliminates the advantages of using it in the first place. Instead, Dice
et al. [12] propose new hardware extensions that can provide a fully safe HTM
sandboxing capability.

Roy, Hand, and Harris [2] proposed an all software implementation of HLE in
which transactions are executed speculatively in software, and when they fail, or
if they cannot be executed due to system calls, the system defaults to the orig-
inal lock. Their system instruments all object accesses, both memory reads and
writes, and employs a special kernel-based thread signaling mechanism. This soft-
ware based system provides better concurrency than HLE but introduces software-
software concurrency that complicates the required compiler and runtime
support and results in a slow scheme. As an example of a possible software concur-
rency complication, consider the execution shown in Figure 1(B), where thread P
removes a node from a linked-list, and thread Q concurrently reads the removed
node. In this case, thread P also modifies the removed node outside the critical
section, which results in a divide by zero exception in thread Q. In the original
code that uses a lock instead of atomic blocks (software transactions), this erro-
neous behavior is impossible. This problem is also known as privatization-safety
[1,2,10,25,28]. Fixing this problem in software is expensive, and Attiya et al. [6]
show that there is no way to avoid these costs. Afek, Matveev and Shavit [4] pro-
posed PLE, an all-software version of HLE for read-write locks that uses a fully
pessimistic STM, but still has software-software concurrency that results in using
the expensive quiescence mechanism [10,21,22]. A recent paper by Dice et al. [13]
proposes to integrate both hardware and software into an adaptive scheme, but
has a software mode that has software-software concurrency as well, and proposes
manual code modifications to avoid software costs.

Amalgamated Lock-Elision 311

Fig. 1. (A) An example of unsafe hardware-software concurrency in lock-removal HLE.
(B) An example of unsafe privatization due to software-software concurrency.

In this paper we propose amalgamated lock-elision (ALE), a novel lock-elision
algorithm that provides both hardware-software concurrency and efficiency: the
fallback-path executes concurrently with fast-path hardware transactions, while
the common-path fast-path reads incur no overheads and proceed without any
instrumentation. The problem is that instrumenting all reads and writes in hard-
ware simply makes it as slow as the software path, so why use hardware in the
first place. The key idea in ALE is to use a sequence of fine-grained locks in the
fallback-path to detect conflicts with the fast-path, and at the same time, reduce
the costs of these locks by executing the fallback-path as a series segments, where
each segment is a dynamic length short hardware transaction. Also, ALE forbids
software-software concurrency, so that there is no need for complex and expen-
sive software support that it would otherwise require. Instead, the focus in ALE
is on making hardware-software concurrency efficient.

The new ALE protocol combines several ideas. First, it uses a “mixed”
fallback-path that uses both software and hardware, in the style of [26,27],
to preserve full safety guarantees while the fallback-path executes concurrently
with fast-path hardware transactions. To understand the problem in doing so,
Figure 1(A) presents a simple unsafe scenario of lock-removal HLE [24,32], that
may occur when the fallback-path of Thread 2 executes concurrently with a
fast-path hardware transaction of Thread 1. As can be seen in the figure, first
the fallback updates X, and then the hardware transaction reads both X and
Y. But, since the fallback has not yet updated Y, the hardware transaction has
read a new X and an old Y relative to the fallback. As a result, at this point in
time, the hardware transaction executes on an inconsistent memory state and
may perform random operations that may corrupt memory or even crash the
system [12]. In ALE, the mixed fallback-path defers the writes to the commit,
and executes all of the writes in a “one shot” short hardware transaction, so
that intermediate states (some mix of old and new values) are never visible.

ALE combines the mixed fallback-path with fine-grained locks to provide con-
currency between fast-path hardware transactions and the fallback-path. More
specifically, a lock ownership array, in the style of [11,14,20,29], coordinates the

312 Y. Afek et al.

Fig. 2. (A) The mixed fallback-path of ALE uses fine-grained locks for conflict detec-
tion, and a write-buffer that defers actual writes to the commit, where all writes execute
in a short “one-shot” hardware transaction. (B) The fallback-path executes as a series
of segments, where each segment is a short hardware transaction that reduces the cost
of lock barriers it includes to one barrier (the HTM commit).

reads of the fallback-path with the writes of the fast-path. Figure 2(A) depicts
this coordination, where Thread 1 executes a fast-path hardware transaction and
Thread 2 a fallback-path. On start, both read X and Y, and the fallback-path
also locks the associated locks of X and Y. Then, the fast-path writes to X, but
before actually committing it first verifies that X is unlocked. In this way, the
fast-path cannot overwrite the fallback-path reads. In Figure 2(A), X is locked,
so the fast-path of Thread 1 detects this conflict and aborts. However, if there
were no real conflict, the fast-path would be able to commit concurrently.

Figure 2(A) also shows the use of a write-buffer in the fallback-path. The
write-buffer is necessary to delay the actual writes to the commit-phase, where
the ALE protocol will execute all of the writes as a “one shot” short hard-
ware transaction. In the unlikely case this short hardware transaction fails, ALE
acquires the critical section lock, that aborts all hardware transactions, and exe-
cutes the writeback as is (in software). Notice that this aspect of ALE is similar
to HLE, however, hardware transactions in ALE abort and block only for the
short duration of the writeback and not for the whole fallback-path execution.

The downside of having a lock for each read of the fallback-path is the expen-
sive memory barriers: a lock acquire must execute a memory barrier to become
visible immediately, which forces the processor to drain the store buffer on each
lock acquire, before proceeding to the next instruction. To overcome this over-
head, ALE elides most of the memory barriers of lock acquires, by executing the
fallback-path as a series of segments, where each segment executes as a short
hardware transaction. A lock acquire that executes inside a hardware transaction
does not need to become visible immediately, and therefore, does not require a
memory barrier. As a result, multiple lock acquires that execute in a hardware
segment, involve using only one barrier (instead of many) that executes as part

Amalgamated Lock-Elision 313

of the hardware commit. Figure 2(B) depicts this idea: on the left, the fallback-
path executes without segmentation, which involves executing a memory barrier
for each read, while on the right, the hardware segmentation allows to reduce
the number of barriers from the number of reads to the number of segments.

What if a hardware segment fails to commit? For this purpose, ALE imple-
ments a dynamic segmentation [5] policy that adjusts the length of each seg-
ment based on hardware aborts. In particular, the protocol counts the number
of reads and writes that execute in the hardware segment, and when this count
reaches a predefined limit, it commits the hardware segment and starts a new
one. The predefined limit is dynamic: it gets reduced on excessive aborts, and
gets increased on successive commits. In the extreme case, when a segment can-
not commit (unsupported instruction or some interrupt), it reverts to execute
in the standard software mode, where each read involves a memory barrier. It is
important to notice that subsequent segments may still commit in the hardware,
so the fallback is local for the specific segments that repeatedly fail.

We implemented ALE in GCC using the recent transactional memory support
[3] and tested it on an Intel Haswell 16-way chip. We executed micro-benchmarks
including linked-lists, hash-tables and red-black trees, which all show that ALE
is significantly more performant than HLE due to the additional concurrency it
provides. In addition, we tested ALE by converting KyotoCacheDB [18], a com-
mercially used database management library, from read-write locks to the GCC
based ALE. Our results are encouraging and show that the ALE implementation
is two times faster than an HLE one.

2 Amalgamated Lock-Elision

2.1 Algorithm Overview

The key challenge in the design of ALE is efficiency: it is hard to provide (1)
fallback-path that can execute concurrently with fast-path hardware transac-
tions and preserve (2) full safety guarantees. This is why researchers propose to
sacrifice safety [24,32] or introduce new hardware extensions [12]. In contrast,
ALE provides these properties on commodity multicore architectures of Intel
and IBM.

In a nutshell, the ALE protocol works as follows. The fallback mechanism
of ALE is similar to HLE: a critical section first starts as a fast-path hardware
transaction, and only when it fails multiple times to commit in the hardware, it
reverts to execute in the fallback-path.

Safe concurrency. ALE mixes fine-grained locks and short hardware transactions
in the fallback-path to detect all possible conflicts between fast-path hardware
transactions and the fallback-path. First, the fallback-path locks each read loca-
tion at encounter-time, while fast-path hardware transactions verify the locks of
locations they want to write at commit-time. In this way, the fast-path writes
detect fine-grained conflicts with the fallback-path reads. Second, the fallback-
path writes are buffered and delayed to the commit-phase, where they execute

314 Y. Afek et al.

in a “one shot” short hardware transaction. As a result, the hardware detects
all conflicts involving fallback-path writes. Put together, both techniques ensure
that all conflicts between fast-path hardware transactions and the fallback-path
are detected, which allows safe concurrency between the two. Notice, that in
the case when there is a conflict, the one that aborts is the fast-path and not
the fallback-path. Finally, ALE executes fallbacks one at a time, so there are no
possible fallback-to-fallback conflicts.

Efficiency. A lock acquire involves executing an expensive memory barrier, and
therefore, a fallback-path that involves many reads, will result in many lock
acquires that introduce an unacceptable performance penalty. To reduce locking
costs, the fallback-path executes as a series of segments, where each segment
executes as a short hardware transaction. All lock acquires that execute within
a single hardware segment become visible atomically when the hardware segment
commits, and therefore have no need to execute individual barriers. This allows
multiple lock acquires to share the cost of a single barrier (of the hardware
commit). Because hardware transactions may abort, ALE splits the fallback-
path dynamically: it adapts each segment length to the specific abort behavior of
the code, and falls back to execute the standard locking barriers of the segment,
when the segment repeatedly fails to commit.

Naturally, the benefit of ALE depends on the success ratio of the short hard-
ware transactions that execute in the fallback-path. In particular, a high success
ratio of the fallback-path writeback is necessary to avoid excessive fast-path
aborts. Our empirical results show that this is usually the case, because most
operations follow the 80:20 rule (80% reads and 20% writes [23]). In general,
other read-write distributions are possible, but we believe that our benchmarks
that present a set of popular data-structures and a real-world application are
encouraging. In addition, besides the writeback, the fallback-path segments may
repeatedly fail to commit in hardware. For example, a segment will always fail
when it will try to execute an unsupported instruction or encounter a page fault
interrupt. In our experiments, most of the segments succeed to adapt to the
specific code behaviors, and only in rare cases, segments must revert to software
and execute one barrier per lock.

2.2 Algorithm Details

Algorithm 1 and Algorithm 2 present the pseudo-code for ALE fast-path and
fallback-path: each critical section first tries to execute in the fast-path as a
hardware transaction, and when it repeatedly fails to commit it reverts to execute
in the fallback-path. The pseudo-code assumes an elision process for a critical
section that is protected by a lock named section-lock, and presents a simplified
version of the code that omits the code that handles nested locks and hardware
segmentation (similar to [5]).

Global Structures. The ALE protocol is based on the following global struc-
tures:

Amalgamated Lock-Elision 315

– locks-array : An ownership array, in the style of [11,29], that uses a hash
function to assign a 64bit lock for each memory location (all initially 0). In
our implementation we allocate an array with 219 locks and use a “striping”
hash function that maps each consecutive 28 bytes of memory to the same
lock.

– fallback-lock : A 64bit lock that is also used as a counter by the fallback-path
to lock locations. A zero value represents that there is no fallback executing
(initially 0).

– acquire-counter/release-counter : 64bit counters that the fallback-paths use
to execute one at a time (both initially 1).

In ALE all locks and counters only increase, except for the fallback-lock that
alternates between 0 and ever increasing number. This is why ALE uses 64bit
counters to avoid overflows.

Algorithm 1. ALE: fast-path

1: function fast path start(ctx)

2: ctx.lock-id-log ← ∅
3: while htm start() = htm-failed do

� Outside HTM

4: ... some fast-path retry policy ...

5: if no retry then

6: ... switch to fallback-path ...

� Inside HTM

7: if section-lock �= 0 then

8: htm abort()

9:
10: function fast path read(ctx, addr)

11: return load(addr) � Direct read

12:
13: function fast path write(ctx, addr, v)

14: lock-id ← hash(addr)

15: ctx.lock-id-log ∪ = {lock-id}
16: store(addr, v) � Direct write

17:
18: function fast path commit(ctx)

19: if ctx.lock-id-log = ∅ then

20: htm commit() � read-only

21: return

22: if fallback-lock = 0 then

23: htm commit() � no fallback

24: return

25: for id ∈ ctx.lock-id-log do

26: if lock-array[id] = fallback-lock then

27: htm abort() � conflict found

28: htm commit() � no conflicts

Fast-Path. Algorithm 1 presents the pseudo-code for the fast-path. On start,
it resets a local lock-id-log to an empty set, and then initiates a hardware trans-
action (lines 2 - 3). Then, inside the hardware, it first puts the section-lock into
hardware monitoring, by verifying that this lock is free (lines 7 - 8). This step pro-
vides the fallback-path with an ability to abort all hardware transactions (for
the case when the fallback writeback short hardware transaction fails). Next,
during the execution, the reads proceed directly without any instrumentation
(line 11), while the lock ids of writes are logged to the lock-id-log (lines 14 - 15).

316 Y. Afek et al.

Algorithm 2. ALE: fallback-path

1: function fallback start(ctx)

2: ctx.write-log ← ∅
3: acquire fallback lock(ctx)

4: htm segment start()

5: function fallback read(ctx, addr)

6: htm segment checkpoint()

7: if (addr, val) ∈ ctx.write-log then

8: return val

9: lock-id ← hash(addr)

10: lock-array[lock-id] ← fallback-lock

11: if htm active() then

12: return load(addr) � Elide barrier

13: else

14: memory barrier() � no HTM

15: return load(addr)

16: function fallback write(ctx, addr, v)

17: htm segment checkpoint()

18: ctx.write-log ∪ = {addr, v}

19: function fallback commit(ctx)

20: htm segment commit()

21: write back(ctx)

22: release all locks(ctx)

23: function write back(ctx)

24: while htm start() = htm-failed do

25: ... some write-back retry policy ...

26: if no retry then

27: section-lock ← 1 � aborts HTM

28: flush(ctx.write-log)

29: section-lock ← 0 � resumes HTM

30: return

31: flush(ctx.write-log)

32: htm commit()

33: function acquire fallback lock(ctx)

34: turn ← fetch&add(acquire-counter)

35: while release-counter �= turn do

36: spin-wait � wait for my turn

37: fallback-lock ← turn

38: memory barrier()

39: function release all locks(ctx)

40: fallback-lock ← 0 � releases all locks

41: fetch&add(release-counter)

On commit, if the fast-path transaction has been read-only or detects that there
is no fallback (lines 19 - 24), then it can simply commit. Otherwise, the fast-path
traverses each logged lock-id and verifies that it is free (lines 25 - 27). If some
lock is not free, then there is a conflict with a fallback read, and the fast-path
aborts, else the fast-path commits safely and concurrently.

Fallback-Path. Algorithm 2 presents the pseudo-code for the fallback-path. On
start, it resets a local write-log to an empty set, and then acquires the fallback-lock
(lines 2 - 3). Next, it initiates the process of hardware segmentation (line 4) that
elides the expensive per lock barriers. During the execution, both read and write
first execute the segmentation checkpoint function (lines 6 , 17), that controls the
dynamic split of hardware segments (increments a local counter of reads/writes
and splits the segment when it reaches a limit). Then, on write, it simply buffers
the write into the write-log (line 18), and on read, it first checks if the read
location is in the write-log (lines 7 - 8). If this is the case, then it returns the
value from the write-log, else it proceeds to locking the location and reading its
value from the memory (lines 9 - 15).

As can be seen in the read procedure, to lock a read location, the ALE writes
the fallback-lock into the lock, and only executes the actual barrier of the lock if
the current segment reverted to the software. Notice that only a single fallback
can execute at a time, and therefore, the fallback-lock is actually specific to the
fallback that currently executes. This allows a fast-path hardware transaction to

Amalgamated Lock-Elision 317

identify that a lock in the locks-array is taken, by checking that the lock value
equals to the current value of the fallback-lock. As a result, the fallback-path can
release all locks at once, by a single write that resets the fallback-lock. The next
fallback-path will use a subsequent value of the acquire-counter, and therefore,
all previous locks will not be seen as taken (lines 34 - 41).

The segmentation process of ALE is dynamic: it adjusts the length of each
segment based on hardware aborts it encounters. More specifically, it counts
the number of reads and writes in each segment checkpoint call, and when this
count reaches a predefined limit, then it initiates a split procedure: commits the
current segment and starts a new one. On start, the predefined limit is set to a
large value (100 shared accesses), and during the execution gets reduced by 1 on
a hardware abort, and gets increased by 1 on 4 successive hardware commits.
This simple algorithm could be tuned and made more adaptive.

The success ratio of segmentation also depends on the implementation of the
write-set buffer lookup function. If the lookup traverses the whole buffer on each
read, then potentially it may introduce excessive HTM capacity aborts into the
segments. To avoid this negative effect, ALE implements the write-set buffer as
a hash table with 64 buckets, and uses a bloom filter [7,11] to minimize lookups.

HTM Retry Policy. Our empirical evaluation shows that the HTM retry
policy is performance critical (also shown in [16,32]). We implement a simple
policy that we found to perform well. When a fast-path hardware transaction
fails, ALE checks the abort code, and if the IS RETRY flag is set, then it retries
the fast-path. Else, it reverts to the fallback-path. The limit of retries is set to
10. The short hardware transaction of the fallback-path gets retried in a similar
way, while the fallback-path hardware segments retry based on the adaptive
segmentation [5].

3 Performance Evaluation

We benchmarked using an Intel Core i7-5960X Haswell processor with 8-cores
and support for HyperThreading of two hardware threads per core. This chip
provides support for hardware transactions that can fit into the capacity of the
L1 cache. It is important to notice that the HyperThreading reduces the L1
cache capacity for HTM by a factor of 2, since it executes two hardware threads
on the same core (same L1 cache). As a result, in some benchmarks there is
a significant penalty above the limit of 8 threads, where the HyperThreading
executes and generates an increased amount of HTM capacity aborts.

The operating system is a Debian OS 3.14 x86 64 with GCC 4.8. We added
the new ALE scheme into GCC 4.8 that provides compiler and runtime support
for instrumenting shared reads and writes and generated two execution paths
(the fast-path and the fallback-path), as part of the GCC TM draft specification
for C++ [3]. Our results show that the malloc/free library provided with the
system is not scalable and imposes significant overheads and false aborts on
the HTM mechanism. As a result, we used the scalable tc-malloc [19] memory
allocator, which maintains local per thread pools.

318 Y. Afek et al.

We compared the following lock elision schemes:

1. HLE: This is the state-of-the-art hardware lock elision scheme of Rajwar
et al. [30], in which we also implement the advanced fallback mechanism
(as described in 2.2 and also noted in [16]). This scheme provides full safety
guarantees, but has no concurrency between fast-path hardware transactions
and the fallback-path. More specifically, a lock-based critical section starts in
the fast-path as a hardware transaction, and then immediately verifies that
the lock of this section is free. In this way, when the fast-path repeatedly
fails to commit, it reverts to execute in serial mode, in which it acquires the
section lock that triggers an abort of all fast-path hardware transactions.

2. HLE-SCM: This scheme combines HLE with software-assisted contention
management [32]: it introduces an auxiliary lock to serialize fast-path hard-
ware transactions that repeatedly abort due to conflicts. In this way, it
reduces unnecessary hardware conflicts under high contention, and increases
the success probability of the fast-path.

3. Unsafe-LR: The unsafe lock-removal (lazy subscription) lock elision scheme
[24,32] that provides improved concurrency: the fallback-path can proceed
concurrently with hardware transactions, however, hardware transactions
cannot commit as long as there is a concurrent fallback. This improves over
HLE, but unfortunately has no safety guarantees. As was shown in the work
by Dice et al. [12], lock-removal may result in reading inconsistent memory
states, executing illegal instructions, corrupting memory and more. However,
we still provide results for lock-removal, as a reference that shows the poten-
tial of making this scheme work by providing the new hardware extensions
proposed by Dice et al. [12].

4. ALE: Our new ALE scheme as described in Section 2 implemented into
GCC.

3.1 Micro-benchmarks

We executed a set of micro-benchmarks on a red-black tree, hash-table and
linked-list. The red-black tree is derived from the java.util.TreeMap implemen-
tation found in the Java 6.0 JDK. That implementation was written by Doug Lea
and Josh Bloch. In turn, parts of the Java TreeMap were derived from Cormen
et al. [9]. We implemented a standard linked-list, and use this list to implement
a hash table, that is simply an array of lists. In addition, we introduce node
padding to avoid false-sharing. We measured various padding lengths for small
and large data-structure sizes, and found out that the overall best padding size
is 16 longs (each long is 64bit).

All data-structures expose a key-value pair interface of put, delete, and get
operations. If the key is not present in the data structure, put will put a new
element describing the key-value pair. If the key is already present in the data
structure, put will simply insert the value associated with the existing key. The
get operation queries the value for a given key, returning an indication if the key
was present in the data structure. Finally, delete removes a key from the data

Amalgamated Lock-Elision 319

Fig. 3. Results for micro-benchmarks and Kyoto CacheDB

structure, returning an indication if the key was found to be present in the data
structure.

Our benchmark first populates each data-structure to a predefined initial-
size, and then executes put() and delete() with equal probability. For example, a
mutation ratio of 10%, means that there is 5% put() and 5% delete(). We choose
a random key for each operation from a key-range that is twice the size of the
initial-size, so that mutations will actually mutate the data-structure. We report
the average throughput of 3 runs, where each run executes for 10 seconds.

In top row of Figure 3, we present throughput results for a red-black tree with
1,000,000 nodes, and a hash-table with 262,144 nodes equally distributed over
8,192 buckets (approximately 32 nodes per bucket). We use a 20% mutation ratio
for both data-structures. In the next two rows, we present an execution analysis,
that reveals HTM (1) conflict, (2) capacity and (3) explicit abort ratios that

320 Y. Afek et al.

occur in the fast-path, and the (4) fallback ratio, the relative amount of opera-
tions that completed execution in the fallback-path. The next three rows use the
same format to present results for a linked-list with 100 nodes and 2% mutation
ratio, and Kyoto CacheDB (details in Section 3.3). In these benchmarks, HLE
and HLE-SCM exhibit similar performance so we plot only HLE.

As can be seen in Figure 3, ALE matches and significantly outperforms
HLE in micro-benchmarks: for 16 threads, ALE is approximately 5.5-7 times
faster than HLE for the red-black tree, hash-table and the linked-list. Notice
that Unsafe-LR also provides significant improvements over HLE. The result of
Unsafe-LR is interesting, and in some sense unexpected, since the concurrency
that Unsafe-LR provides is limited (hardware cannot commit when there is a
fallback). This shows that hardware extensions proposed by Dice et al. [12] (not
present in current processors) to make Unsafe-LR fully safe will be beneficial in
practice.

The main reason for the improvements of ALE is the full concurrency that
it provides between fast-path hardware transactions and the fallback-path. In
HLE, the fallback-path aborts all fast-path hardware transactions when it starts,
which is why HLE exhibits a large amount of HTM conflict aborts (as can be
seen in the HTM conflict abort ratio graphs). This is not the case in Unsafe-LR,
that allows the fallback-path to proceed concurrently with fast-path hardware
transactions. However, this concurrency is limited, because at commit-time fast-
path hardware transactions must explicitly abort if there is a concurrent fallback.
This generates a large amount of HTM explicit aborts (as can be seen in HTM
explicit abort ratio graphs). In contrast, in ALE both HTM conflict and explicit
abort ratios are very low (except for the linked list where the HTM conflicts
are a result of true contention). A side-effect of this is the reduced fallback-path
ratios in ALE, which allow ALE to provide better results.

We also measured the success ratios of short hardware transactions that ALE
uses in the fallback-path for segmentation and writeback. Our results show that
the writeback succeeds to commit as a short hardware transaction 90-95% of
the time. Also, the segmentation process works best for segment limits in the
range of 20-40 shared reads/writes (per segment), so it reduces the lock barrier
overheads by at least an order of magnitude.

3.2 Various Red-Black Tree Sizes

Figure 4 shows speedups of HLE, HLE-SCM, Unsafe-LR and ALE for 8 and 16
threads (from left to right) for various sizes of red-black tree. The baseline in
these executions is 1-thread HLE.

We can see that ALE and Unsafe-LR are significantly faster than HLE and
HLE-SCM for 16 threads. However, for 8 threads, these differences become
smaller since less operations revert to execute in the fallback-path. This means
that in order to see the advantages of ALE over HLE there should be a sufficient
amount of fallbacks.

Notice that HLE-SCM is only beneficial over the standard HLE for small
100 nodes red-black tree on 8 threads. HLE-SCM reduces conflicts by serializing

Amalgamated Lock-Elision 321

Fig. 4. Speedup results for 8 and 16 threads for various red-black tree sizes.

conflicting operations via an auxiliary lock, and since this case (of a small tree)
is highly contended, it helps to reduce unnecessary conflicts and improve the
overall performance.

3.3 KyotoCabinet

KyotoCabinet [18] is a suite of DBM data stores written in C++. In this
benchmark, we focused on the in-memory component of the suite, called Kyoto
CacheDB, that implements a bounded in-memory cache of key-value pairs where
both the keys and values are opaque byte arrays. Internally, Kyoto CacheDB
splits the database into slots, where each slot is a hash table of binary search
trees. As a result, for each key, it first hashes the key into a slot, and then hashes
again into a hash table of the slot. Next, it traverses the binary tree of the slot.
The database ensures that the tree is bounded in size, by evicting entries that
are least recently used (LRU policy). For synchronization, Kyoto CacheDB uses
a single coarse-grained read-write lock to start a database operation, and a per
slot mutex lock to access a specific slot.

We replaced all locks of Kyoto CacheDB with ALE. Since our implementa-
tion of ALE uses GCC TM, the transformation is automated by the GCC that
generates the necessary code paths and instrumentations. Our first comparisons
of ALE to the original Kyoto CacheDB showed that the original read-write lock
is a performance bottleneck, which concurs with the results of [13]. We also found
that Kyoto performs an excessive amount of explicit thread context switches due
to the specific implementation of reader-writer spin locks in the Linux pthreads
library. Therefore, we replaced the original read-write lock of Kyoto CacheDB
with an ingress-egress reader-writer lock implementation [14] that has no explicit
context-switches. To the best of our knowledge, the ingress-egress reader-writer
locks perform the best on Intel machines (ingress/enter counter and egress/exit
counter for read-lock/read-unlock) [4]. We note that one could use hierarchical
cohort-based reader-writer locks [15] in our benchmark to reduce the inter-thread
cache traffic in Kyoto. However, this would not have a significant effect since the
performance analysis reveals that the cache miss ratio is already low (4%-5%).

The benchmark for Kyoto CacheDB works in a similar way to our micro-
benchmarks: it fills the database to a fixed initial size, and then executes

322 Y. Afek et al.

gets/puts/deletes with random keys. Results are shown in Figure 3. We can see
that ALE is twice faster than HLE. Notice, that this is not the same improve-
ment like in the micro-benchmarks, where ALE was 5.5-7 times faster than HLE.
The reason for this difference can be seen in the analysis: the HTM abort ratios
are much lower for Kyoto CacheDB compared to the micro-benchmarks, which
also results in low fallback ratios (1-2%). As a result, the reduction in HTM
aborts that ALE provides is less dominant than in the micro-benchmarks, how-
ever, the ALE is still twice faster than HLE, and we believe that with increased
concurrency it will become even more faster. Notice that Unsafe-LR is similar
to ALE also due to low HTM aborts. However, in Unsafe-LR there is no safety
guarantees and the program may crash, while ALE provides full safety.

4 Conclusion

We proposed amalgamated lock-elision (ALE), a new lock-elision scheme that
provides concurrency between fast-path hardware transactions and the fallback-
path, while preserving full safety guarantees. The key idea is to split the fallback-
path into dynamic sections that fuse hardware and software with fine-grained
locks in a way that provides efficiency. Our empirical results show that ALE is
significantly faster than hardware lock elision (HLE) on both micro-benchmarks
and a real use-case application, the Kyoto CacheDB. We believe that our results
are encouraging, and show that hardware and software may be mixed in new
and unexpected ways that were not originally intended by hardware and software
designers.

Acknowledgments. We thank anonymous DISC referees for helpful and practical
suggestions. This helped us to improve the paper and speed-up the algorithm. This work
was supported by Israel Science Foundation under grant number 1386/11, National
Science Foundation under grants CCF-1217921, CCF-1301926, and IIS-1447786, the
Department of Energy under grant ER26116/DE-SC0008923, and the Intel Science
and Technology Center in Big Data, Oracle and Intel corporations.

References

1. Dice, D., Matveev, A., Shavit, N.: Implicit privatization using private transactions.
In: Transact 2010, Paris, France (2010)

2. Harris, T., Roy, A., Hand, S.: A runtime system for software lock elision. In:
Proceedings of the 4th ACM European conference on Computer systems, EuroSys
2009, pp. 261–274. ACM, New York (2009)

3. Adl-Tabatabai, A.-R., Shpeisman, T., Gottschlich, J.: Draft specification of trans-
actional language constructs for c++ (2012)

4. Afek, Y., Matveev, A., Shavit, N.: Pessimistic software lock-elision. In: Aguilera,
M.K. (ed.) DISC 2012. LNCS, vol. 7611, pp. 297–311. Springer, Heidelberg (2012)

5. Alistarh, D., Eugster, P., Herlihy, M., Matveev, A., Shavit, N.: Stacktrack: an
automated transactional approach to concurrent memory reclamation. In: Pro-
ceedings of the Ninth European Conference on Computer Systems, EuroSys 2014,
pp. 25:1–25:14. ACM, New York (2014)

Amalgamated Lock-Elision 323

6. Attiya, H., Hillel, E.: The cost of privatization. In: Lynch, N.A., Shvartsman, A.A.
(eds.) DISC 2010. LNCS, vol. 6343, pp. 35–49. Springer, Heidelberg (2010)

7. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13(7), 422–426 (1970)

8. Cain, H.W., Michael, M.M., Frey, B., May, C., Williams, D., Le, H.: Robust archi-
tectural support for transactional memory in the power architecture. SIGARCH
Comput. Archit. News 41(3), 225–236 (2013)

9. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, 2nd
edn. MIT Press, Cambridge (2001)

10. Desnoyers, M., Stern, A., McKenney, P., Walpole, J.: User-level implementations
of read-copy update. In: IEEE Transactions on Parallel and Distributed Systems
(2009)

11. Dice, D., Shalev, O., Shavit, N.N.: Transactional locking II. In: Dolev, S. (ed.)
DISC 2006. LNCS, vol. 4167, pp. 194–208. Springer, Heidelberg (2006)

12. Dice, D., Harris, T.L., Kogan, A., Lev, Y., Moir, M.: Hardware extensions to make
lazy subscription safe. CoRR, abs/1407.6968 (2014)

13. Dice, D., Kogan, A., Lev, Y., Merrifield, T., Moir, M.: Adaptive integration of hard-
ware and software lock elision techniques. In: Proceedings of the 26th ACM Sym-
posium on Parallelism in Algorithms and Architectures, SPAA 2014, pp. 188–197.
ACM, New York (2014)

14. Dice, D., Shavit, N.: Tlrw: return of the read-write lock. In Proceedings of the
Twenty-second Annual ACM Symposium on Parallelism in Algorithms and Archi-
tectures, SPAA 2010, pp. 284–293. ACM (2010)

15. Dice, D., Marathe, V.J., Shavit, N.: Lock cohorting: A general technique for design-
ing numa locks. ACM Trans. Parallel Comput. 1(2), 1–42 (2015)

16. Diegues, N., Romano, P.: Self-tuning intel transactional synchronization exten-
sions. In: 11th International Conference on Autonomic Computing (ICAC 2014),
pp. 209–219. USENIX Association, Philadelphia, June 2014

17. Diegues, N., Romano, P., Rodrigues, L.: Virtues and limitations of commodity
hardware transactional memory. In: Proceedings of the 23rd International Confer-
ence on Parallel Architectures and Compilation, PACT 2014, pp. 3–14, ACM, New
York (2014)

18. FAL Labs. Kyoto cabinet: A straightforward implementation of dbm (2011)
19. Google (2014). https://sites.google.com/site/tmforcplusplus
20. Harris, T., Fraser, K.: Language support for lightweight transactions. In:

Proceedings of the 18th ACM SIGPLAN conference on Object-oriented program-
ing, systems, languages, and applications, pp. 388–402. ACM Press (2003)

21. Harris, T., Fraser, K.: Concurrent programming without locks
22. Hart, T.E., McKenney, P.E., Brown, A.D., Walpole, J.: Performance of mem-

ory reclamation for lockless synchronization. J. Parallel Distrib. Comput. 67(12),
1270–1285 (2007)

23. Herlihy, M., Shavit, N.: The art of multiprocessor programming. Morgan Kaufmann
(2008)

24. Irina, C., Tatiana, S., Gilles, P., Maurice, H.: Improved single global lock fallback
for best-effort hardware transactional memory. In: Transact 2014 Workshop (2014)

25. Marathe, V., Spear, M., Scott, M.: Scalable techniques for transparent privatiza-
tion in software transactional memory. In: International Conference on Parallel
Processing, pp. 67–74 (2008)

26. Matveev, A., Shavit, N.: Reduced hardware transactions: a new approach to hybrid
transactional memory. In: SPAA, pp. 11–22 (2013)

https://sites.google.com/site/tmforcplusplus

324 Y. Afek et al.

27. Matveev, A., Shavit, N.: Reduced hardware norec: a safe and scalable hybrid trans-
actional memory. In: 20th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS 2015, Istanbul, Turkey.
ACM (2015)

28. Menon, V., Balensiefer, S., Shpeisman, T., Adl-Tabatabai, A.-R., Hudson, R.L.,
Saha, B., Welc, A.: Single global lock semantics in a weakly atomic STM. In:
Transact 2008 Workshop (2008)

29. Fetzer, C., Felber, P., Riegel, T.: Dynamic performance tuning of word-based soft-
ware transactional memory. In: Proceedings of the 13th ACM SIGPLAN Sympo-
sium on Principles and practice of parallel programming, PPoPP 2008, pp. 237–246.
ACM, New York (2008)

30. Rajwar, R., Goodman, J.: Speculative lock elision: enabling highly concurrent mul-
tithreaded execution. In: MICRO, pp. 294–305. ACM/IEEE (2001)

31. Web. Intel tsx (2012). http://software.intel.com/en-us/blogs/2012/02/07/
transactional-synchronization-in-haswell

32. Yehuda, A., Amir, L., Adam, M.: Software-improved hardware lock elision. In:
PODC 2014, Paris, France. ACM Press (2014)

http://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell
http://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell

Transactional Interference-Less Balanced Tree

Ahmed Hassan, Roberto Palmieri(B), and Binoy Ravindran

Virginia Tech, Blacksburg, VA, USA
robertop@vt.edu

Abstract. In this paper, we present TxCF-Tree, a balanced tree whose
design is optimized to support transactional accesses. The core optimiza-
tions of TxCF-Tree’s operations are: providing a traversal phase that
does not use any lock and/or speculation, and deferring the lock acqui-
sition or physical modification to the transaction’s commit phase; isolat-
ing the structural operations (such as re-balancing) in an interference-less
housekeeping thread; and minimizing the interference between structural
operations and the critical path of semantic operations (i.e., additions
and removals on the tree). We evaluated TxCF-Tree against the state-
of-the-art general methodologies for designing transactional trees and we
show that TxCF-Tree’s design pays off in most of workloads.

Keywords: Balanced trees · Transactional memory · Semantic synchro-
nization · Concurrent data structures

1 Introduction

With the growing adoption of multi-core processors, the design of efficient data
structures that allow concurrent accesses without sacrificing performance and
scalability becomes more critical than before. In the last decade, different designs
of the concurrent version of well-known data structures (e.g., lists, queues, hash
tables) have been proposed [20]. Balanced binary search trees, such as AVL and
Red-Black trees are data structures whose self-balancing guarantees an appealing
logarithmic-time complexity for their operations.

One of the main issues in balanced trees is the need for rotations, which are
complex housekeeping operations that re-balance the data structure to ensure
its logarithmic-time complexity. Although rotations complicate the design of
concurrent balanced trees, many solutions have already been proposed: some of
them are lock-based [2,3,5,8,9,12], while others are non-blocking [7,13,21,23].

One of the main limitations of concurrent data structures is that they do not
compose. For example, atomically inserting two elements in a tree is difficult: if
the method internally uses locks, issues like managing the dependency between
operations executed in the same transaction, and the deadlock that may occur
because of the chain of lock acquisitions, may arise. Similarly, composing non-
blocking operations is challenging because of the need to atomically modify
different places in the tree using only basic primitives, such as a CAS operation.
Lack of composability is a serious limitation of the current designs, especially for
c© Springer-Verlag Berlin Heidelberg 2015
Y. Moses (Ed.): DISC 2015, LNCS 9363, pp. 325–340, 2015.
DOI: 10.1007/978-3-662-48653-5 22

326 A. Hassan et al.

legacy systems, as it makes their integration with third-party software difficult.
In this paper we focus on composable (transactional) balanced trees.

Although the research has reached an advanced point in designing concurrent
trees, transactional trees have not reached this point yet. There are two practical
approaches, to the best of our knowledge, that enable transactional accesses on
a tree: 1) The first approach is Transactional Memory (TM) [19] which natively
allows composability as it speculates every memory access inside an atomic block;
2) The second approach is Transactional Boosting [18] (TB), which protects the
transactional access to a concurrent data structure with a set of semantic locks,
eagerly acquired before executing the operation on the concurrent data structure.
Both TM and TB have serious limitations when used for designing transactional
trees. Those limitations originate from the same reason: they are both generic,
and they do not consider the specific characteristics of balanced trees, which
instead are heavily investigated in literature. For example, TM considers every
step in the operation, including the rotations, as low-level memory reads/writes,
which clearly increases the number of false conflicts. On the other hand, TB
uses the underlying concurrent tree as a black-box, which prevents any further
customization, and may nullify the internal optimizations of the concurrent tree
due to the eagerly acquired semantic locks.

Recently, a third trend, which we name Optimistic Semantic Synchronization
(OSS), has emerged to overcome the limitations of the above approaches. Exam-
ples of this new approach include methodologies like [1,4,6,15,16,25]. We used
the word optimistic because all of these solutions share a fundamental optimism.
In fact, the common idea behind the aforementioned methodologies is to split
data structures’ operations into a traversal phase and a commit phase. A trans-
action optimistically executes the traversal phase without any locking and/or
speculation, and it defers the commit phase to the commit time of the enclos-
ing transaction. Unlike TM and TB, OSS only provides guidelines to design
transactional data structures, and it leaves all the development details to the
data structure designer, thus enabling the possibility of adding further (data
structure-specific) optimizations.

OSS is clearly less programmable than TM and TB, but it has the potential to
provide better performance and scalability, especially when applied to complex
data structures, like the case of balanced trees. Due to their high abstraction
level, none of the methodologies listed above discusses in detail how they can be
applied to balanced trees without nullifying the body of work related to highly
optimized concurrent (non-transactional) balanced trees.

Inspired by OSS, in this paper we present TxCF-Tree, the first balanced
tree that is accessible in a transactional, rather than just a concurrent, manner
without monitoring (speculating) the whole traversal path (like in TM) or nul-
lifying the benefits of the efficient concurrent designs (like in TB). TxCF-Tree
offers a set of design and low-level innovations, but roughly it can be seen as
the transactional version of the recently introduced Contention Friendly Tree
(CF-Tree) [9]. The main idea of CF-Tree is to decouple the structural operations
(e.g. rotations and physical deletions) from the semantic operations (e.g. queries,

Transactional Interference-Less Balanced Tree 327

logical removals, and insertions), and to execute those structural operations in
a dedicated helper thread. This separation makes the semantic operations (that
need to be transactional in TxCF-Tree) simple: each operation traverses the
tree non-speculatively (i.e., without instrumenting any accessed memory loca-
tion); then, if it is a write operation, it locks and modifies only one node. In
an abstract way, the TxCF-Tree’s semantic operations can be seen as composed
of a traversal and commit phases, which makes CF-Tree a good candidate for
being transactionally boosted using OSS.

In addition to the new transactional capabilities, TxCF-Tree claims one
major innovation with respect to CF-Tree, which is fundamental for target-
ing high performance in a transactional (not only concurrent) data structure.
Although CF-Tree decouples the structural operations, those operations are exe-
cuted in the helper thread with the same priority as the semantic operations,
and without any control on their interference. With TxCF-Tree, we make the
structural operations interference-less (when possible) with respect to seman-
tic operations. This property is highly desirable because structural operations
do not alter the abstract (or semantic) state of the tree, thus they should not
force any transaction to abort. To reduce this interference, one operation should
behave differently if it conflicts with a structural operation rather than with a
semantic operation.

TxCF-Tree uses two new terms, which help to identify those false-interleaving
cases and alleviate their effect: structural lock, which is a type of lock acquired
if the needed modifications on the node do not change its abstract (semantic)
state; and structural invalidation, which is a transactional invalidation raised
only because of a structural modification on the tree rather than having actual
conflicts at the abstract level. In TxCF-Tree, transactions do not abort if they
face structural locks or false-invalidations during the execution of their oper-
ations. We further reduce the interference of the helper thread by adopting a
simple heuristic to detect if the tree is almost balanced. If so, we increase the
back-off time between two helper thread’s iterations.

We assessed the effectiveness of TxCF-Tree1 through an evaluation study.
Our experiments show that TxCF-Tree performs better than the other transac-
tional approaches (TB and STM) in almost all of the cases.

2 Background

Optimistic Semantic Synchronization. We use the term Optimistic Seman-
tic Synchronization (OSS) to represent a set of recent methodologies that lever-
age the idea of dividing the transaction execution into phases and optimistically
executing some of them without any instrumentation (also called unmonitored
phases). In this section, we overview some of those approaches.

Optimistic Transactional Boosting (OTB) methodology [15,16] is the opti-
mistic version of TB. It lists three guidelines to convert any optimistic concur-
rent data structure into a transactional one. According to OTB’s first guideline,
1 The implementation of TxCF-Tree is available at www.hyflow.org.

www.hyflow.org.

328 A. Hassan et al.

every data structure’s operation is split into three phases: traversal, which is
executed without any instrumentation and/or locking until reaching the posi-
tion of interest in the data structure; validation, which checks the validity of
the unmonitored traversal’s outcome; and commit, which acquires the neces-
sary locks and performs the actual modifications. OTB provides transactional
capabilities by i) saving the outcome of the traversal phase into local semantic
read/write-sets to be used during the validation and commit phases; and ii)
deferring operation’s commit phase until the commit of the whole transaction.
The unmonitored traversal phase is the actual source of OTB’s performance
gains as it clearly reduces false conflicts. The second guideline of OTB discusses
the necessary and sufficient steps to make this transactional version semantically
opaque [14], which means that if the data structure is only accessed using its
defined APIs, then all of its operations are semantically consistent at any time of
the transaction execution, even though opacity may not be ensured at the mem-
ory level (e.g., due to the unmonitored traversal phase). The third guideline of
OTB is to optimize the data structure internally.

Consistency Oblivious Programming (COP) [1,4] splits the operations into
the same three phases as OTB (but under different names). We observe two
main differences between COP and OTB. First, COP is introduced mainly to
design concurrent data structures and it does not natively provide composability
unless changes are made at the hardware level [4]. Second, COP does not use
locks at commit. Instead, it enforces atomicity and isolation by executing both
the validation and commit phases using TM transactions.

Partitioned Transactions (ParT) [25] also uses the same trend of splitting the
operations into a traversal (called planning) phase and a commit (called update)
phase, but it gives more general guidelines than OTB. Specifically, ParT does
not restrict the planning phase to be a traversal of a data structure and it allows
this phase to be any generic block of code. Also, ParT does not obligate the
planning phase to be necessarily unmonitored, as in OTB and COP. Instead, it
allows both the planning and update phases to be transactions.

Transactional Predication (TP) [6] applies a similar methodology to the
aforementioned approaches. However, it solves the specific problem of boosting
concurrent sets and maps to be transactional.

Although TxCF-Tree complies with OSS, it is closer to OTB because it uses a
well-defined concurrent tree as a base for its design (which fits the terminology of
transactional boosting), and it follows the second guideline of OTB to guarantee
that the transaction execution is semantically opaque.

Contention Friendly Tree. Contention Friendly Tree (CF-Tree) [9] is an effi-
cient concurrent lock-based (internal) tree, which finds its main innovation on
decoupling the semantic operations (i.e., search, logical deletion, and insertion)
from the structural operations (i.e., rotation and physical deletion). The seman-
tic operations are eagerly executed in the original process, whereas the structural
operations are deferred to a helper thread. More in details:

Semantic Operations: each semantic operation starts by traversing the tree
until it reaches a node that matches the requested key or it reaches a leaf node

Transactional Interference-Less Balanced Tree 329

(indicating that the searched node does not exist). After that, a search opera-
tion returns immediately with the appropriate result without any locking. For a
deletion, if the node exists and it is not marked as deleted, the node is locked
and then the deleted flag is set (only a logical deletion), otherwise the operation
returns false. For a successful insertion, the deleted flag is cleared (if the node
already exists but marked as deleted) or a new node is created and linked to the
leaf node (if the node does not exist). An unsuccessful insertion simply returns
false. In all cases, each operation locks at most one node.

Rotations: re-balancing operations are isolated in a helper thread that scans
the tree seeking for any node that needs either a rotation or a physical removal.
Rotation in this case is relaxed, namely it uses local heights. Although other
threads may concurrently modify these heights (resulting in a temporarily unbal-
anced tree), past work has shown that a sequence of localized operations on the
tree eventually results in a strictly balanced tree [5,22]. A rotation locks: the
node to be rotated down; its parent node; and its left or right child (depending
on the type of rotation). Also, rotations are designed so that any concurrent
semantic operation can traverse the tree without any locking and/or instrumen-
tation. To achieve that, the rotated-down node is cloned and the cloned node is
linked to the tree instead of the original node.

Physical Deletion: The physical deletion is also decoupled and executed sep-
arately in the helper thread. In addition, a node’s deletion is relaxed by leaving
a “routing” node in the tree when the deleted node has two children (it is known
that deleting a node with two children requires modifying nodes that are far
away from each other, which complicates the operation). The physical deletion
is done as follows: both the deleted node and its parent are locked, then the
node’s left and right children links are modified to be pointing at its parent, and
finally the node is marked as physically removed. This way, concurrent semantic
operations can traverse the tree non-speculatively without being lost.

Among the concurrent trees presented in literature, we select CF-Tree as a
candidate to be transactionally boosted because it provides the following two
properties that fit the OSS principles. First, it uses a lock-based technique
for synchronizing the operations, which simplifies the applicability of the OSS
methodology. Second, CF-Tree is traversed without any locking and/or spec-
ulation, allowing the separation of an unmonitored traversal phase. Also, the
semantic operations (add, remove, and contains) are decoupled from the com-
plex structural operations (although they can interfere with each other), like
rotations and physical removals, allowing a simple commit phase.

3 Reducing the Interference of Structural Operations

Balanced trees store data according to a specific balanced topology so that their
operations can take advantage of the efficient logarithmic-time complexity. More
specifically, operations are split into two parts: a “semantic” part, which modifies
the abstract state of the tree, and a structural part, which maintains the efficient

330 A. Hassan et al.

organization of the tree. For example, consider the balanced tree in Figure 12.
The tree initially represents the abstract set {1, 2} (Figure 1(a)). If we want
to insert 3, we first create a new node and link it to the tree in the proper
place (Figure 1(b)). Subsequently, the tree is re-balanced because this insertion
unbalanced a part of it (Figure 1(c)). Semantically, we can observe the new
abstract set, {1, 2, 3}, right after the first step and before the re-balancing step.
However, without the re-balancing step, the tree structure itself may become
eventually skewed, and any traversal operation on the tree would take linear
time rather than logarithmic time.

(a) Initial state (b) Insert 3 (c) Rotate

Fig. 1. An insertion followed by a right rotation in a balanced tree.

Although the structural operations are important, like the aforementioned
rotations in our case, they represent the main source of conflicts when concur-
rent accesses on the tree occur. Two independent operations (like inserting two
nodes in two different parts of the tree) may conflict only because one of them
needs to re-balance the tree. This additional conflict generated by structural
operations can significantly slow down the performance of transactional data
structures more than their concurrent versions due to two reasons. First, in long
transactions, the time period between the tree traversal and the actual modifica-
tion during commit may be long enough to generate more conflicts because of the
concurrent re-balancing. Second, in transactional data structures, any conflict
can result in the abort and re-execution of the whole transaction, which possi-
bly includes several non-conflicting operations, unlike concurrent operations that
just re-traverse the tree if a conflict occurs.

Although CF-Tree decouples the structural operations in a dedicated helper
thread, which forms an important step towards shortening the critical path of
the processing (i.e., the semantic operations), it does not prevent the structural
operations running in the helper thread from interfering with the semantic oper-
ations and delaying/aborting them. To minimize such a interference, we propose
the following simple guideline (named G-Pr):
“Semantic operations should have higher priority than structural operations.”

This guideline allows semantic operations to proceed if a conflict with struc-
tural modifications occurs. Our rationale is that, delaying (or aborting) seman-
tic operations affects the performance, whereas delaying (or aborting) structural
operations only defers the step of optimizing the tree to the near future.

2 We assume that higher keys are in the left sub-tree to match CF-Tree’s design.

Transactional Interference-Less Balanced Tree 331

4 TxCF-Tree

In this section, we discuss how to boost CF-Tree to be transactional using the
OSS principles. The key additions of TxCF-Tree over CF-Tree are: i) supporting
transactional accesses; and ii) minimizing the interference between semantic and
structural operations. to simplify the presentation, we focus on the changes made
on CF-Tree to achieve those two goals, and we briefly mention the unchanged
parts whose details can be found in [9].

Each node in TxCF-Tree contains the same fields as CF-Tree: a key (with no
duplication allowed), two pointers to its left and right children, a boolean deleted
flag to indicate the logical state of the node, and an integer removed flag to
indicate the physical state of the node (a value from the following: NOT-REMOVED,
REMOVED, or REMOVED-BY-LEFT-ROTATION). The node structure in TxCF-Tree is
only different in the locking fields. In CF-Tree, each node contains only one lock
that is acquired by any operation modifying the node. In TxCF-Tree, each node
has two different locks: a semantic-lock, which is acquired by the operations
that modify its semantic state (either the deleted or the removed flag); and a
structural-lock, which is a acquired by the operations that modify the structure
of the tree without affecting the node itself (i.e. modifying the right or left
pointers). Each lock is associated with a lock-holder field that saves the ID of
the thread that currently holds the lock, which is important to avoid deadlocks.

TxCF-Tree implements a set interface with the semantic operations: add,
remove, and contains. Extending TxCF-Tree to have key-value pairs is simple,
but for clarity we assume that the value of the node is the same as its key.

4.1 Structural Operations

The helper thread repeatedly calls a recursive depth-first procedure to traverse
the entire tree. During this procedure, any unbalanced node is rotated and any
logically removed node is physically unlinked from the tree. To minimize the
interference of this housekeeping procedure, we use an adaptive back-off delay
after each traversal iteration. We use a simple hill-climbing mechanism that
increases (decreases) the back-off time if the number of housekeeping operations
in the current iteration is less (greater) than the most recent iteration. While
acknowledging the simplicity of the adopted heuristic, it showed effectiveness in
our evaluation study.

Physical Deletions. We start by summarizing how the helper thread in CF-
Tree physically deletes a node Nn (marked as deleted and at least one of its
children is null). First, both Nn and its parent Np are locked. Then, the node’s
left and right children fields are modified to point back to the parent (so that the
concurrent operations currently visiting Nn can still traverse the tree, without
experiencing any interruption) and then Nn is marked as REMOVED and unlinked
by changing Np child to be Nn’s child instead of Nn.

TxCF-Tree modifies this mechanism by providing less-interfering locking.
Specifically, we only acquire the structural-lock of Np because its semantic state

332 A. Hassan et al.

will not change. On the other hand, both the semantic-lock and the structural-
lock have to be acquired on Nn because Nn’s removed flag, which is part of
its semantic state, should be set as REMOVED. To further minimize the interfer-
ence, the locking mechanism uses only one CAS trial. If it fails, then the whole
structural operation is aborted and the helper thread resumes scanning the tree.

Rotations. In CF-Tree, a right rotation (without losing generality) locks three
nodes: the parent node Np, the node to be rotated down Nn, and its left child
Nl. Then, rotation is done by cloning Nn and linking the cloned node at the
tree instead of Nn (similar to physical deletion, this cloning protects operations
whose “unmonitored” traversal phase is concurrently visiting the same nodes.
More details are in [9]). Subsequently Nn is marked as REMOVED (in case of left-
rotation it is marked as REMOVED-BY-LEFT-ROTATION) and nodes are unlocked.

In TxCF-Tree, rotations also use a less intrusive locking mechanism. Both
Np and Nl acquire only the structural-lock because the rotated-down node Nn is
the only node that will change its semantic state (and thus needs to acquire the
semantic-lock). Also, we found that there is no need to lock the parent node (i.e.,
Np) at all. This is because the only change to Np is to make its left (or right) child
pointing to Nl rather than Nn. This means that Np’s child remains not null
before and after the rotation. Only the helper thread can change it to null in a
later operation by rotating the node down or physically deleting its children. On
the other hand, semantic operations only concern about reading/changing the
deleted flag of a node, if the searched node exists in the tree, or reading/changing
a (null) link of a node, if the searched node does not exist in the tree. Thus,
modifying the child link of Np cannot conflict with any concurrent semantic
operation, thus it is safe to make this modification without locking. Similarly,
if all the sub-trees of Nn and Nl are not null, then no structural locks are
acquired, and the only lock acquired is the semantic-lock on Nn.

4.2 Semantic Operations

According to OSS, each operation is divided into the traversal, validation, and
commit phases. We follow this division in our presentation.

Traversal. The tree is traversed by following the classical rules of the sequen-
tial binary search tree. Traversal ends if we reach the searched node or a null
pointer. To be able to execute the operation transactionally, the outcome of
the traversal phase is not immediately returned. Instead it is saved in a local
semantic read/write sets. Each entry of those sets consists of the following three
fields. Op-key : the searched key that needs to be inserted, removed, or looked
up. Node: the last node of the traversal phase. This node is either a node whose
key matches op-key (no matter if it is marked as deleted or not) or a node whose
right (left) child is null and its item is greater (less) than op-key. Op-type: an
integer that indicates the type of the operation (add, remove, or contains) and
its result (successful or unsuccessful).

Those fields are sufficient to verify (by the transaction validation) that the
result of the operation is not changed since the execution of the operation, and to

Transactional Interference-Less Balanced Tree 333

modify the tree at commit time. All the operations add an entry to the read-set,
but only successful add and remove operations add entries to the write-set.

Before traversal, the local write-set is scanned for detecting read-after-write
hazards. If the key exists in the write-set, the operation returns immediately
without traversing the shared tree. Moreover, if a successful add operation is
followed by a successful remove operation of the same item (or vice versa), they
locally eliminate each other, in order to save the useless access to the shared
tree. The elimination is done only on the write-set, and the entries are kept in
the read-set so that the eliminated operations are guaranteed to be consistent.

Validation. The second phase of TxCF-Tree’s operation is the validation phase.
To have a comprehensive presentation, we show first the validation procedure in
CF-Tree, and then we show how it is modified in TxCF-Tree.

Algorithm 1. Operation’s validation in CF-Tree.

1: procedure Validate(node, k)
2: if node.removed �= NOT-REMOVED then
3: return false
4: else if node.k = k then
5: return true
6: else if node.k > k then
7: next = node.right

8: else
9: next = node.left

10: if next = null then
11: return true
12: return false

13: end procedure

In Algorithm 1, the validation in CF-Tree succeeds if the node’s key is not
physically removed and either the node’s key matches the searched key (line 5)
or its child (right or left according to the key) is still null (line 11). Otherwise,
the validation fails (lines 3 and 12). This validation is used during add/remove
operations as follows (details are in [9]): each operation traverses the tree until
it reaches the involved node, then it locks and validates it (using Algorithm 1).
If the validation succeeds, the operation stops its traversal loop and starts the
actual insertion/deletion. If the validation fails, the node is unlocked and the
operation continues the traversal. In [9], it has been proven that continuing the
traversal is safe even if the node is physically deleted or rotated by the helper
thread, due to the mechanism used in the deletion/rotation, as discussed in
Section 4.1 (e.g., modifying the left and right links of the deleted node to be
pointing to its parent before unlinking it).

Algorithm 2. Example of semantic opacity.

1: @Atomic � initially the tree is empty
2: procedure T1

3: if tree.contains(x) = false then
4: if tree.contains(y) = true then
5: ... � hazardous action
6: end procedure

7: @Atomic
8: procedure T2

9: tree.add(x)
10: tree.add(y)
11: end procedure

In TxCF-Tree, this validation procedure is modified to achieve two goals.
The first goal regards the correctness: since TxCF-Tree is a transactional

334 A. Hassan et al.

tree, validation has also to ensure that the operation’s result is not changed until
transaction commits; otherwise, the transaction consistency is compromised. As
an example, in Algorithm 2 let us assume the following invariant: y exists in the
tree if and only if x also exists. If we use the same validation as Algorithm 1, T1
may execute line 3 first and return false. Then, let us assume that T2 is entirely
executed and committed. In this case, T1 should abort right after executing line
4 because it breaks the invariant. Aborting the doomed transaction T1 should
be immediate and it cannot be delayed until the commit phase because it may
go into an infinite loop or raise an exception (line 5). To prevent those cases,
all of the read-set’s entries have to be validated (using Algorithm 3 instead of
Algorithm 1) after each operation as well as during commit.

Algorithm 3. Operation’s validation in TxCF-Tree.

1: procedure Validate(read-set-entry)
2: if entry.op-type ∈ (unsuccessful add,
3: successful remove/contains) then
4: item-existed = true
5: else
6: item-existed = false
7: if entry.node.removed �=
8: NOT-REMOVED then
9: return STRUCTURALLY-INVALID

10: else if entry.node.k = entry.op-key then
11: if entry.node.deleted xor
12: item-existed then
13: return VALID

14: else
15: return SEMANTICALLY-INVALID
16: else if entry.node.k > entry.op-key then
17: next = node.right
18: else
19: next = node.left
20: if next = null then
21: if item-existed then
22: return SEMANTICALLY-INVALID
23: else
24: return VALID
25: return STRUCTURALLY-INVALID

26: end procedure

The Second Goal Regards Performance: if the node is physically removed
or its child becomes no longer null (which are the invalidation cases of CF-
Tree), that does not mean that the transaction is not consistent anymore. It
only means that the traversal phase has to continue and reach a new node to be
validated. It is worth noting that aborting the transaction in those cases does
not impact the tree’s correctness, while its performance will be affected. In fact,
this conservative approach increases the probability of structural operations’
interference. For this reason we distinguish between those types of invalidations
and the actual semantic invalidations, such as those depicted in Algorithm 2. The
modified version of the validation is shown in Algorithm 3. The cases covered in
CF-Tree are considered structural-invalidations (lines 9 and 25), and the actual
invalidation cases are considered semantic-invalidations (lines 15 and 22).

Algorithm 4 shows how to validate the read-set. For each entry, we firstly
check if the entry’s node is not locked (lines 4-9). In this step we exploit our
lock separation by checking only one of the two locks because each operation
validates either the deleted flag or the child link. Specifically, if the node’s key
matches op-key, node’s semantic-lock is checked, otherwise the structural-lock is
checked. Moreover, if the entry’s node is locked by the helper thread, we consider
it as unlocked because the helper thread cannot change the abstract state of the
tree. The only effect of the helper thread is to make the operation structurally
invalid, which can be detected in the next steps.

Transactional Interference-Less Balanced Tree 335

Algorithm 4. Read-set validation in TxCF-Tree.

1: procedure Validate-ReadSet(read-set)
2: for all entries in the read-set do
3: while true do
4: if entry.op-item = entry.node.item then
5: lock = semantic-lock
6: else
7: lock = struct-lock
8: if lockedNotByMeOrHelper(lock) then
9: return false

10: r = VALIDATE(entry)
11: if r = STRUCTURALLY-INVALID then
12: newNode = CONT-TRAVERSE(entry)

13: entry.node = newNode
14: write-entry = write-set.get(entry.op-key)
15: if write-entry �= null then
16: write-entry.node = newNode

17: else if r = SEMANTICALLY-INVALID
then

18: return false
19: else
20: break;

21: return true

22: end procedure

The next step is to validate the entry itself (line 10). If it is semantically-
invalidated, then the transaction aborts (line 18). If it is structurally-invalidated,
the traversal continues as in CF-Tree and the entry is updated with the new
node (lines 12-16), then the node is re-validated. If the operation is a successful
add/remove, the related write-set entry is also updated (line 16).

Commit. The commit phase (pseudo code in [17]) is similar to the classical two-
phase locking mechanism. The nodes in the read/write sets are locked and/or
validated first, then the tree is modified, and finally locks are released.

From the commit procedure of TxCF-Tree it is worth mention the following
points. The first point is how TxCF-Tree solves the issue of having two dependent
operations in the same transaction. For example, if two add operations are using
the same node (e.g. assume a transaction that adds both 3 and 4 to the tree shown
in Figure 1). The effect of the first operation (add 3) should be propagated to
the second one (add 4). To achieve that, the add operation uses the node in the
write-set only as a starting point and keeps traversing the tree from this node
until reaching the new node. Also, the operations lock the added nodes (3 and
4 in our case) before linking them to the tree. Those nodes are unlocked together
with the other nodes at the end of the commit phase. Any interleaving transaction
or structural operation running in the helper thread cannot force the transaction
to abort because all the involved nodes are already locked. Also, the other cases
of having dependent operations, such as adding (or removing) the same key twice
and adding a key and then removing it, are solved earlier during the operation
itself (as mentioned in the traversal phase).

The second point is how TxCF-Tree preserves the reduced interferences
between the structural and the semantic operations without hampering the two-
phase locking mechanism. The main issue in this regard is that structural inval-
idations may not abort the transaction. Thus, a transaction cannot lock the
nodes in the write-set and then validate the nodes in the read-set because, if
so, in case of a structural invalidation, the invalidated operation (which can be
a write operation) would continue traversing the tree and reach a new node
(which is not yet locked). To solve this problem, we use an inline validation of
the entries in the write-set. The write-set entries are both locked and validated

336 A. Hassan et al.

at the same time. If the write operation fails in its validation: 1) it unlocks the
node; 2) re-traverses the tree; 3) locks the new node; and 4) re-validates the
entry.

5 Correctness

In this section we briefly discuss the correctness of TxCF-Tree (a detailed proof
is in [17]). Since we use the OTB methodology to make CF-Tree transactional,
the operations of TxCF-Tree are serialized as described in [15]. The serialization
point of a read-write transaction is the point right after acquiring the locks and
before the (successful) validation during commit. For a read-only transaction, the
serialization point is the return of its last read operation. Both those points are
immediately followed by a validation procedure (Algorithm 4). If this validation
succeeds, then all the transaction operations are guaranteed to be consistent.

The correctness of the mechanisms used to achieve interference-less struc-
tural operations can be inferred as follows. i) Splitting locks into structural and
semantic locks does not affect correctness by any mean, because any two con-
flicting operations (e.g., two operations that attempt to delete the same node,
or two operations that attempt to insert new nodes on the same link) acquire
the same type of lock. ii) Structural invalidations are raised and handled in the
same way as CF-Tree (as we show in Algorithms 1 and 3). Since we use the same
approach for rotation and physical deletion (e.g., cloning the rotated down node
and linking the physically deleted node to its parent), re-traversing the tree after
a structural invalidation is guaranteed to be safe as in CF-Tree itself (see [9] for
the complete proof of validation in CF-Tree). iii) Semantic invalidations pre-
serve the consistency among the operations within the same transaction. Unlike
structural invalidations, in those cases, the whole transaction is aborted. iv)
The inline validation during commit does not affect the correctness (although it
violates two-phase locking) because every inline-validated node is locked before
being validated and cannot be invalidated anymore if the validation succeeds.
v) Validating the whole read-set after each operation and before committing
preserves consistency in the presence of concurrent structural operations. For
example, assuming the scenario where a structural operation physically removes
a node that is used by a running transaction T1, which can be followed by a
semantic operation (executed in another transaction T2) that adds this node in
a different place of the tree. Although this new addition will not be detected
by T1’s validation, the expected race condition will be solved because T1 will
detect during the validation (after the next operation or at commit) that the
removed flag of the node has been changed (line 8 in Algorithm 3) and will con-
tinue traversing the tree. At this point, T1 will reach the same new node as T2,
and they will be serialized independently from the structural operation.

6 Evaluation

In our experiments we compared the performance of TxCF-Tree with the per-
formance of TB and some STM approaches. Our implementation of TB uses

Transactional Interference-Less Balanced Tree 337

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60

1M
 o

ps
/s

ec

Number of threads

CFTree
TxCF-Tree

TB
STM

(a) 10K, 50%, 1 op

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50 60

1M
 o

ps
/s

ec

Number of threads

TxCF-Tree
BTxCF-Tree

TB
STM

(b) 1K, 10%

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50 60

1M
 o

ps
/s

ec

Number of threads

TxCF-Tree
BTxCF-Tree

TB
STM

(c) 10K, 10%

 0

 5

 10

 15

 0 10 20 30 40 50 60

1M
 o

ps
/s

ec

Number of threads

TxCF-Tree
BTxCF-Tree

TB
STM

(d) 100K, 10%

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60

1M
 o

ps
/s

ec

Number of threads

TxCF-Tree
BTxCF-Tree

TB
STM

(e) 1K, 50%

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60

1M
 o

ps
/s

ec

Number of threads

TxCF-Tree
BTxCF-Tree

TB
STM

(f) 10K, 50%

 0

 5

 10

 15

 0 10 20 30 40 50 60

1M
 o

ps
/s

ec

Number of threads

TxCF-Tree
BTxCF-Tree

TB
STM

(g) 100K, 50%

 0

 20

 40

 60

 80

 100

5 10 15 20 25

%
 o

f I
nt

er
fe

re
nc

e

Ops/transaction

True
False

(h) 10K, 50%

Fig. 2. Throughput with one operation (2(a)), and five operations (2(b)-2(g)) per trans-
action (labels indicate the size of the tree and the % of the add/remove operations).
Figure 2(h) shows the percentage of the two interference types using 32 threads.

CF-Tree as the underlying (black-box) tree, which makes a fair comparison.
Regarding STM, we tested three different algorithms: LSA [24]; TL2 [11]; and
NOrec [10], and, to make plots clear, we reported the best performance collected.

All experiments were conducted on a 64-core machine, which has 4 AMD
Opteron (TM) Processors, each with 16 cores running at 1.4 GHz, 32 GB of
RAM, and 16KB L1 data cache. Throughput is measured as the number of
semantic operations (not transactions) per second to have consistent data points.
However, since the benchmark executes 256 no-op instructions in between two
transactions, this may result in different throughput ranges for different sizes of
transactions. Each data point is the average of five runs.

In Figure 2(a) we show the results for a scenario that mimics the concurrent
(non-transactional) case (i.e., each transaction executes only one operation on
the tree). We leverage this plot to show the cost of adopting a transactional
solution over a pure concurrent tree. Clearly STM does not scale because it
“blindly” speculates on all the memory reads and writes. This poor scalability
of STM is confirmed in all the experiments we made. On the other hand, both
TB and TxCF-Tree scale better than STM and close to CF-Tree (TxCF-Tree is
slightly closer). This behavior shows an overhead that is affordable in case one
wants to use the TxCF-Tree library even for just handling the concurrency of
atomic semantic operations without transactions.

Figures 2(b)-2(g) show the transactional case, in which we deployed five
operations per transaction for different sizes of the tree (1K, 10K, and 100K) and
different read/write workloads (10% and 50% of add/remove operations). We
do not include CF-Tree because it only supports concurrent operations and thus
it cannot handle the execution of transactions. TxCF-Tree performs generally
better than TB. The gap between the two algorithms decreases when we increase

338 A. Hassan et al.

the percentage of the write operations. This is reasonable because the conflict
level becomes higher, and it best fits the more pessimistic approach (as TB).

Increasing the size of the tree also decreases the gap between TxCF-Tree and
TB. At first impression it appears counterintuitive because increasing the size
of the tree means generally decreasing the overall contention, which should be
better for optimistic approaches like TxCF-Tree. The actual reason is that, in the
case of very low contention, most of the transactions do not conflict with each
other and both algorithms linearly scale. Then, when the conflict probability
increases, the difference between the algorithms becomes visible. A comparison
between Figure 2(e) and Figure 2(g) (which differ only for the size of the tree)
confirms this claim. In Figure 2(e), both algorithms scale well up to 32 threads
because threads are almost non-conflicting, then TB starts to suffers from its
non-optimized design while TxCF-Tree keeps scaling. On the other hand, in
Figure 2(g) both algorithms scale until 60 threads because the tree is large.

Summarizing, analyzing the above results we can identify two points that
allow TxCF-Tree to outperform competitors: i) having an optimized unmoni-
tored traversal phase that reduces false conflicts, and ii) having optimized val-
idation/commit procedures that minimize the interferences between structural
and semantic operations. Both TB and TxCF-Tree gain performance by exploit-
ing the first point, in fact TB itself performs (up to an order of magnitude) better
than STM. However, only TxCF-Tree uses an optimized design for a balanced
tree data structure, and it makes its performance generally (much) better than
TB. In the aforementioned experiments we use two versions of TxCF-Tree, one
with the adaptive back-off time in between two helper thread iterations (named
BTxCF-Tree), and one without. The results show that this optimization fur-
ther enhances the performance, especially in the small tree (the cases of 10%
add/remove operations). This gain may increase with a more effective heuristic.

The last experiment we report regards the capability of TxCF-Tree to reduce
interferences with structural operations. Although breaking down TxCF-Tree’s
operations to measure this gain is not straightforward, we roughly estimated the
gain by quantifying two metrics: the true interferences count, which is simply
the actual transactional aborts count; and the false interferences count, which is
the count of the cases in which the transaction does not abort because the tree
is re-traversed instead or because the operations in TxCF-Tree acquire only one
(structural or semantic) lock. In Figure 2(h) the false-interferences are 25%-30%
of the total interferences for different sizes of the transactions.

7 Conclusions

We presented TxCF-Tree, the first interference-less transactional balanced tree.
Unlike the former general approaches, it uses an optimized conflict manage-
ment mechanism that reacts differently according to the type of the opera-
tion. Our experiments confirm that TxCF-Tree performs better than the general
approaches.

Transactional Interference-Less Balanced Tree 339

Acknowledgments. Authors would thank Vincent Gramoli and anonymous review-
ers for the invaluable comments. This work is partially supported by Air Force Office
of Scientific Research (AFOSR) under grant FA9550-14-1-0187.

References

1. Afek, Y., Avni, H., Shavit, N.: Towards consistency oblivious programming. In:
Fernàndez Anta, A., Lipari, G., Roy, M. (eds.) OPODIS 2011. LNCS, vol. 7109,
pp. 65–79. Springer, Heidelberg (2011)

2. Afek, Y., Kaplan, H., Korenfeld, B., Morrison, A., Tarjan, R.E.: The CB tree: a
practical concurrent self-adjusting search tree. DISC 27(6), 393–417 (2014)

3. Arbel, M., Attiya, H.: Concurrent updates with RCU: search tree as an example.
In: PODC, pp. 196–205 (2014)

4. Avni, H., Suissa-Peleg, A.: Brief announcement: cop composition using transaction
suspension in the compiler. In: DISC, pp. 550–552 (2014)

5. Bronson, N.G., Casper, J., Chafi, H., Olukotun, K.: A practical concurrent binary
search tree. In: PPoPP, pp. 257–268 (2010)

6. Bronson, N.G., Casper, J., Chafi, H., Olukotun, K.: Transactional predication:
high-performance concurrent sets and maps for STM. In: PODC, pp. 6–15 (2010)

7. Brown, T., Ellen, F., Ruppert, E.: A general technique for non-blocking trees. In:
PPoPP, pp. 329–342 (2014)

8. Crain, T., Gramoli, V., Raynal, M.: A speculation-friendly binary search tree. In:
PPoPP, pp. 161–170 (2012)

9. Crain, T., Gramoli, V., Raynal, M.: A contention-friendly binary search tree. In:
Wolf, F., Mohr, B., an Mey, D. (eds.) Euro-Par 2013. LNCS, vol. 8097, pp. 229–240.
Springer, Heidelberg (2013)

10. Dalessandro, L., Spear, M.F., Scott, M.L.: NOrec: streamlining STM by abolishing
ownership records. In: PPoPP, pp. 67–78 (2010)

11. Dice, D., Shalev, O., Shavit, N.N.: Transactional locking II. In: Dolev, S. (ed.)
DISC 2006. LNCS, vol. 4167, pp. 194–208. Springer, Heidelberg (2006)

12. Drachsler, D., Vechev, M.T., Yahav, E.: Practical concurrent binary search trees
via logical ordering. In: PPoPP, pp. 343–356 (2014)

13. Ellen, F., Fatourou, P., Ruppert, E., van Breugel, F.: Non-blocking binary search
trees. In: PODC, pp. 131–140 (2010)

14. Guerraoui, R., Kapalka, M.: On the correctness of transactional memory. In:
PPoPP, pp. 175–184 (2008)

15. Hassan, A., Palmieri, R., Ravindran, B.: On developing optimistic transactional
lazy set. In: Aguilera, M.K., Querzoni, L., Shapiro, M. (eds.) OPODIS 2014. LNCS,
vol. 8878, pp. 437–452. Springer, Heidelberg (2014)

16. Hassan, A., Palmieri, R., Ravindran, B.: Optimistic transactional boosting. In:
PPoPP, pp. 387–388 (2014)

17. Hassan, A., Palmieri, R., Ravindran, B.: Transactional interference-less balanced
tree. Technical report, ECE Dept., Virginia Tech, August 2015. www.hyflow.org/
pubs/disc15-hassan-TR.pdf

18. Herlihy, M., Koskinen, E.: Transactional boosting: a methodology for highly-
concurrent transactional objects. In: PPoPP, pp. 207–216 (2008)

19. Herlihy, M., Moss, J.E.B.: Transactional memory: architectural support for lock-
free data structures. In: ISCA, pp. 289–300 (1993)

20. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming, Revised Reprint.
Elsevier (2012)

www.hyflow.org/pubs/disc15-hassan-TR.pdf
www.hyflow.org/pubs/disc15-hassan-TR.pdf

340 A. Hassan et al.

21. Howley, S.V., Jones, J.: A non-blocking internal binary search tree. In: SPAA, pp.
161–171 (2012)

22. Larsen, K.S.: AVL trees with relaxed balance. In: IPPS, pp. 888–893 (1994)
23. Natarajan, A., Mittal, N.: Fast concurrent lock-free binary search trees. In: PPoPP,

pp. 317–328 (2014)
24. Riegel, T., Felber, P., Fetzer, C.: A lazy snapshot algorithm with eager validation.

In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 284–298. Springer, Heidelberg
(2006)

25. Xiang, L., Scott, M.L.: Software partitioning of hardware transactions. In: PPoPP,
pp. 76–86 (2015)

Analyzing the Performance of Lock-Free Data
Structures: A Conflict-Based Model

Aras Atalar(B), Paul Renaud-Goud, and Philippas Tsigas

Chalmers University of Technology, Gothenburg, Sweden
{aaras,goud,tsigas}@chalmers.se

Abstract. This paper considers the modeling and the analysis of the
performance of lock-free concurrent data structures that can be repre-
sented as linear combinations of fixed size retry loops.

Our main contribution is a new way of modeling and analyzing a
general class of lock-free algorithms, achieving predictions of throughput
that are close to what we observe in practice. We emphasize two kinds
of conflicts that shape the performance: (i) hardware conflicts, due to
concurrent calls to atomic primitives; (ii) logical conflicts, caused by
concurrent operations on the shared data structure.

We propose also a common framework that enables a fair compari-
son between lock-free implementations by covering the whole contention
domain, and comes with a method for calculating a good back-off strategy.

Our experimental results, based on a set of widely used concurrent
data structures and on abstract lock-free designs, show that our analysis
follows closely the actual code behavior.1

1 Introduction

Lock-free programming provides highly concurrent access to data and has been
increasing its footprint in industrial settings. Providing a modeling and an anal-
ysis framework capable of describing the practical performance of lock-free algo-
rithms is an essential, missing resource necessary to the parallel programming
and algorithmic research communities in their effort to build on previous intel-
lectual efforts. The definition of lock-freedom mainly guarantees that at least
one concurrent operation on the data structure finishes in a finite number of its
own steps, regardless of the state of the operations. On the individual operation
level, lock-freedom cannot guarantee that an operation will not starve.

The goal of this paper is to provide a way to model and analyze the practically
observed performance of lock-free data structures. In the literature, the common
performance measure of a lock-free data structure is the throughput, i.e. the
number of successful operations per unit of time. It is obtained while threads are
accessing the data structure according to an access pattern that interleaves local

1 The research leading to these results has received funding from the European Union
Seventh Framework Programme (FP7/2013-2016) under grant agreement 611183
(EXCESS Project, www.excess-project.eu).

c© Springer-Verlag Berlin Heidelberg 2015
Y. Moses (Ed.): DISC 2015, LNCS 9363, pp. 341–355, 2015.
DOI: 10.1007/978-3-662-48653-5 23

www.excess-project.eu

342 A. Atalar et al.

work between calls to consecutive operations on the data structure. Although
this access pattern to the data structure is significant, there is no consensus in
the literature on what access to be used when comparing two data structures. So,
the amount of local work (that we will refer as parallel work for the rest of the
paper) could be constant ([14,15]), uniformly distributed ([10], [7]), exponentially
distributed ([17], [8]), null ([12,13]), etc. More questionably, the average amount
is rarely scanned, which leads to a partial covering of the contention domain.

We propose here a common framework enabling a fair comparison between
lock-free data structures, while exhibiting the main phenomena that drive per-
formance, and particularly the contention, which leads to different kinds of con-
flicts. As this is the first step in this direction, we want to deeply analyze the core
of the problem, without impacting factors being diluted within a probabilistic
smoothing. Therefore, we choose a constant local work, hence constant access
rate to the data structures. In addition to the prediction of the data structure
performance, our model provides a good back-off strategy, that achieves the peak
performance of a lock-free algorithm.

Two kinds of conflict appear during the execution of a lock-free algorithm,
leading to additional work. Hardware conflicts occur when concurrent operations
call atomic primitives on the same memory location: these calls collide and con-
duct to stall time, that we name here expansion. Logical conflicts take place if
concurrent operations overlap: because of the lock-free nature of the algorithm,
several concurrent operations can run simultaneously, but usually only one retry
can logically succeed. We show that the additional work produced by the failures
is not necessarily harmful for the system-wise performance.

We then show how throughput can be computed by connecting these two key
factors in an iterative way. We start by estimating the expansion probabilistically,
and emulate the effect of stall time introduced by the hardware conflicts as extra
work added to each thread. Then we estimate the number of failed operations,
that in turn lead to additional extra work, by computing again the expansion on
a system setting where those two new amounts of work have been incorporated,
and reiterate the process; the convergence is ensured by a fixed-point search.

We consider the class of lock-free algorithms that can be modeled as a linear
composition of fixed size retry loops. This class covers numerous extensively used
lock-free designs such as stacks [16] (Pop, Push), queues [14] (Enqueue, Dequeue),
counters [7] (Increment, Decrement) and priority queues [13] (DeleteMin).

To evaluate the accuracy of our model and analysis framework, we per-
formed experiments both on synthetic tests, that capture a wide range of pos-
sible abstract algorithmic designs, and on several reference implementations of
extensively studied lock-free data structures. Our evaluation results reveal that
our model is able to capture the behavior of all the synthetic and real designs
for all different numbers of threads and sizes of parallel work (consequently also
contention). We also evaluate the use of our analysis as a tool for tuning the per-
formance of lock-free code by selecting the appropriate back-off strategy that will
maximize throughput by comparing our method against widely known back-off
policies, namely linear and exponential.

Analyzing the Performance of Lock-Free Data Structures 343

The rest of the paper is organized as follows. We discuss related work in
Section 2, then the problem is formally described in Section 3. We consider the
logical conflicts in the absence of hardware conflicts in Section 4. In Section 5, we
firstly show how to compute the expansion, then combine hardware and logical
conflicts to obtain the final throughput estimate. We describe the experimental
results in Section 6.

2 Related Work

Anderson et al. [3] evaluated the performance of lock-free objects in a single
processor real-time system by emphasizing the impact of retry loop interfer-
ence. Tasks can be preempted during the retry loop execution, which can lead
to interference, and consequently to an inflation in retry loop execution due
to retries. They obtained upper bounds for the number of interferences under
various scheduling schemes for periodic real-time tasks.

Intel [11] conducted an empirical study to illustrate performance and scalabil-
ity of locks. They showed that the critical section size, the time interval between
releasing and re-acquiring the lock (that is similar to our parallel section size)
and number of threads contending the lock are vital parameters.

Failed retries do not only lead to useless effort but also degrade the per-
formance of successful ones by contending the shared resources. Alemany et
al. [1] have pointed out this fact, that is in accordance with our two key fac-
tors, and, without trying to model it, have mitigated those effects by designing
non-blocking algorithms with operating system support.

Alistarh et al. [2] have studied the same class of lock-free structures that we
consider in this paper. The analysis is done in terms of scheduler steps, in a
system where only one thread can be scheduled (and can then run) at each step.
If compared with execution time, this is particularly appropriate to a system with
a single processor and several threads, or to a system where the instructions of
the threads cannot be done in parallel (e.g. multi-threaded program on a multi-
core processor with only read and write on the same cache line of the shared
memory). In our paper, the execution is evaluated in terms of processor cycles,
strongly related to the execution time. In addition, the “parallel work” and the
“critical work” can be done in parallel, and we only consider retry-loops with one
Read and one CAS, which are serialized. In addition, they bound the asymptotic
expected system latency (with a big O, when the number of threads tends to
infinity), while in our paper we estimate the throughput (close to the inverse of
system latency) for any number of threads.

3 Problem Statement

3.1 Running Program and Targeted Platform

In this paper, we aim at evaluating the throughput of a multi-threaded algorithm
that is based on the utilization of a shared lock-free data structure. Such a

344 A. Atalar et al.

Procedure. AbstractAlgorithm
1 Initialization();
2 while ! done do
3 Parallel Work();
4 while ! success do
5 current ← Read(AP);
6 new ← Critical Work(current);
7 success ← CAS(AP, current, new);

Fig. 1. Thread procedure

Read & cw
Previously

expanded CAS
Expansion

CAS

Fig. 2. Expansion

program can be abstracted by the Procedure AbstractAlgorithm (see Figure 1)
that represents the skeleton of the function which is called by each spawned
thread. It is decomposed in two main phases: the parallel section, represented
on line 3, and the retry loop, from line 4 to line 7. A retry starts at line 5 and
ends at line 7.

As for line 1, the function Initialization shall be seen as an abstraction
of the delay between the spawns of the threads, that is expected not to be null,
even when a barrier is used. We then consider that the threads begin at the
exact same time, but have different initialization times.

The parallel section is the part of the code where the thread does not access
the shared data structure; the work that is performed inside this parallel section
can possibly depend on the value that has been read from the data structure,
e.g. in the case of processing an element that has been dequeued from a FIFO
(First-In-First-Out) queue.

In each retry, a thread tries to modify the data structure, and does not exit
the retry loop until it has successfully modified the data structure. It does that
by firstly reading the access point AP of the data structure, then according to
the value that has been read, and possibly to other previous computations that
occurred in the past, the thread prepares the new desired value as an access
point of the data structure. Finally, it atomically tries to perform the change
through a call to the Compare-And-Swap (CAS) primitive. If it succeeds, i.e. if
the access point has not been changed by another thread between the first Read
and the CAS, then it goes to the next parallel section, otherwise it repeats the
process. The retry loop is composed of at least one retry, and we number the
retries starting from 0, since the first iteration of the retry loop is actually not
a retry, but a try.

The throughput of the lock-free algorithm, i.e. the number of successful data
structure operations per unit of time, that we denote by T , is impacted by several
parameters.

– Algorithm parameters: the amount of work inside a call to Parallel Work
(resp. Critical Work) denoted by pw (resp. cw).

– Platform parameters: Read and CAS latencies (rc and cc respectively), and
the number P of processing units (cores). We assume homogeneity for the
latencies, i.e. every thread experiences the same latency when accessing an
uncontended shared data, which is achieved in practice by pinning threads
to the same socket.

Analyzing the Performance of Lock-Free Data Structures 345

3.2 Examples and Issues

We first present two straightforward upper bounds on the throughput, and
describe the two kinds of conflict that keep the actual throughput away from
those upper bounds.

3.2.1 Immediate Upper Bounds
Trivially, the minimum amount of work rlw (-) in a given retry is rlw (-) = rc +
cw + cc, as we should pay at least the memory accesses and the critical work cw
in between.

Thread-wise: A given thread can at most perform one successful retry every
pw +rlw (-) units of time. In the best case, P threads can then lead to a through-
put of P/(pw + rlw (-)).

System-wise: By definition, two successful retries cannot overlap, hence we
have at most 1 successful retry every rlw (-) units of time.

Altogether, the throughput T is upper bounded by the minimum of 1/(rc +
cw + cc) and P/(pw + rc + cw + cc), i.e.

T ≤
{ 1

rc+cw+cc if pw ≤ (P − 1)(rc + cw + cc)
P

pw+rc+cw+cc otherwise. (1)

3.2.2 Conflicts

Logical conflicts: Equation 1 expresses the fact that when pw is small enough,
i.e. when pw ≤ (P − 1)rlw (-), we cannot expect that every thread performs
a successful retry every pw + rlw (-) units of time, since it is more than what
the retry loop can afford. As a result, some logical conflicts, hence unsuccessful
retries, will be inevitable, while the others, if any, are called wasted.

Figure 3 depicts an execution, where the black parts are the calls to
Initialization, the blue parts are the parallel sections, and the retries can
be either unsuccessful — in red — or successful — in green. After the initial
transient state, the execution contains actually, for each thread, one inevitable
unsuccessful retry, and one wasted retry, because there exists a set of initializa-
tion times that lead to a cyclic execution with a single failure per thread and
per period.

We can see on this example that a cyclic execution is reached after the tran-
sient behavior; actually, we show in Section 4 that, in the absence of hardware

Cycle

T0

T1

T2

T3

Fig. 3. Execution with one wasted retry, and one inevitable failure

346 A. Atalar et al.

conflicts, every execution will become periodic, if the initialization times are
spaced enough. In addition, we prove that the shortest period is such that, dur-
ing this period, every thread succeeds exactly once. This finally leads us to define
the additional failures as wasted, since we can directly link the throughput with
this number of wasted retries: a higher number of wasted retries implying a lower
throughput.

Hardware conflicts: The requirement of atomicity compels the ownership of the
data in an exclusive manner by the executing core. Therefore, overlapping parts
of atomic instructions are serialized by the hardware, leading to stalls in subse-
quently issued ones. For our target lock-free algorithm, these stalls that we refer
to as expansion become an important slowdown factor in case threads interfere
in the retry loop. As illustrated in Figure 2, the latency for CAS can expand and
cause remarkable decreases in throughput since the CAS of a successful thread
is then expanded by others; for this reason, the amount of work inside a retry is
not constant, but is, generally speaking, a function depending on the number of
threads that are inside the retry loop.

3.2.3 Process
We deal with the two kinds of conflicts separately and connect them together
through the fixed-point iterative convergence.

In Section 5.1, we compute the expansion in execution time of a retry, noted e,
by following a probabilistic approach. The estimation takes as input the expected
number of threads inside the retry loop at any time, and returns the expected
increase in the execution time of a retry due to the serialization of atomic prim-
itives.

In Section 4, we are given a program without hardware conflicts described by
the size of the parallel section pw (+) and the size of a retry rlw (+). We compute
upper and lower bounds on the throughput T , the number of wasted retries w,
and the average number of threads inside the retry loop Prl. Without loss of
generality, we can normalize those execution times by the execution time of a
retry, and define the parallel section size as pw (+) = q + r, where q is a non-
negative integer and r is such that 0 ≤ r < 1. This pair (together with the
number of threads P) constitutes the actual input of the estimation.

Finally, we combine those two outcomes in Section 5.2 by emulating expan-
sion through work not prone to hardware conflicts and obtain the full estimation
of the throughput.

4 Execution without Hardware Conflicts

We show in this section that, in the absence of hardware conflicts, the execution
becomes periodic, which eases the calculation of the throughput. We start by
defining some useful concepts: (f, P)-cyclic executions are special kind of periodic
executions such that within the shortest period, each thread performs exactly
f unsuccessful retries and 1 successful retry. The well-formed seed is a set of

Analyzing the Performance of Lock-Free Data Structures 347

events that allows us to detect an (f, P)-cyclic execution early, and the gaps
are a measure of the quality of the synchronization between threads. The idea
is to iteratively add threads into the game and show that the periodicity is
maintained. Theorem 1 establishes a fundamental relation between gaps and
well-formed seeds, while Theorem 2 proves the periodicity, relying on the disjoint
cases depicted on Figures 4a, 4b and 4c. We recall that the complete version of
the proofs can be found in [5], together with additional Lemmas. Finally, we
exhibit upper and lower bounds on throughput and number of failures, along
with the average number of threads inside the retry loop.

4.1 Setting

In preamble, note that the events are strictly ordered (according to their instant
of occurrence, with the thread id as a tie-breaker). As for correctness, i.e. to
decide for the success or the failure of a retry, we need instants of occurrence
for Read and CAS; we consider that the entrance (resp. exit) time of a retry is
the instant of occurrence of the Read (resp. CAS).

4.1.1 Notations and Definitions
We recall that P threads are executing the pseudo-code described in Proce-
dure AbstractAlgorithm, one retry is of unit-size, and the parallel section is of
size pw (+) = q+r, where q is a non-negative integer and r is such that 0 ≤ r < 1.
Considering a thread Tn which succeeds at time Sn; this thread completes a
whole retry in 1 unit of time, then executes the parallel section of size pw (+),
and attempts to perform again the operation every unit of time, until one of the
attempt is successful.

Definition 1. An execution with P threads is called (C,P)-cyclic execution if
and only if (i) the execution is periodic, i.e. at every time, every thread is in
the same state as one period before, (ii) the shortest period contains exactly one
successful attempt per thread, (iii) the shortest period is 1 + q + r + C.

Definition 2. Let S = (Ti, Si)i∈ 0,P−1 , where Ti are threads and Si ordered
times, i.e. such that S0 < · · · < SP−1. S is a seed if and only if for all i ∈
0, P − 1 , Ti does not succeed between S0 and Si, and starts a retry at Si.

We define f (S) as the smallest non-negative integer such that S0 + 1 + q +
r+f (S) > SP−1+1, i.e. f (S) = max (0, �SP−1 − S0 − q − r�). When S is clear
from the context, we denote f (S) by f .

Definition 3. S is a well-formed seed if and only if for each i ∈ 0, P − 1 , the
execution of thread Ti contains the following sequence: a successful retry starting
at Si, the parallel section, f unsuccessful retries, then a successful retry.

Those definitions are coupled through the two natural following properties:

Property 1. Given a (C,P)-cyclic execution, any seed S including P consecutive
successes is a well-formed seed, with f (S) = C.

348 A. Atalar et al.

Property 2. If there exists a well-formed seed in an execution, then after each
thread succeeded once, the execution coincides with an (f, P)-cyclic execution.

Together with the seed concept, we define the notion of gap. The general
idea of those gaps is that within an (f, P)-cyclic execution, the period is higher
than P × 1, which is the total execution time of all the successful retries within
the period. The difference between the period (that lasts 1 + q + r + f) and
P , reduced by r (so that we obtain an integer), is referred as lagging time in
the following. If the threads are numbered according to their order of success
(modulo P), as the time elapsed between the successes of two given consecutive
threads is constant (during the next period, this time will remain the same), this
lagging time can be seen in a circular manner: the threads are represented on a
circle whose length is the lagging time increased by r, and the length between
two consecutive threads is the time between the end of the successful retry of
the first thread and the start of the successful retry of the second one. More
formally, for all (n, k) ∈ 0, P − 1 2, we define the gap G

(k)
n between Tn and its

kth predecessor based on the gap with the first predecessor:
{

∀n ∈ 1, P − 1 ; G
(1)
n = Sn − Sn−1 − 1

G
(1)
0 = S0 + q + r + f − SP−1

,

which leads to the definition of higher order gaps: ∀n ∈ 0, P − 1 ;∀k >

0;G(k)
n =

∑n
j=n−k+1 G

(1)
j mod P .

For consistency, for all n ∈ 0, P − 1 , G(0)
n = 0.

Equally, the gaps can be obtained from the successes: for all k ∈ 1, P − 1 ,

G(k)
n =

{
Sn − Sn−k − k if n > k
Sn − SP+n−k + 1 + q + r + f − k otherwise (2)

Note that, in an (f, P)-cyclic execution, the lagging time is the sum of all
first order gaps, reduced by r.

4.2 Cyclic Executions

We only give the two main theorems used to show the existence of cyclic execu-
tions. The details can be found in the companion research report [5].

Theorem 1. Given a seed S = (Ti, Si)i∈ 0,P−1 , S is a well-formed seed if and

only if for all n ∈ 0, P − 1 , 0 ≤ G
(f)
n < 1.

Theorem 2. Assuming r �= 0, if a new thread is added to an (f, P − 1)-cyclic
execution, then all the threads will eventually form either an (f, P)-cyclic exe-
cution, or an (f + 1, P)-cyclic execution.

Proof. We decompose the Theorem into three Lemmas which we describe here
graphically:

Analyzing the Performance of Lock-Free Data Structures 349

– If all gaps of (f+1)th order are less than 1, then every existing thread will fail
once more, and the new steady-state is reached immediately. See Figure 4a.

– Otherwise:
• Either: everyone succeeds once, whereupon a new (f, P)-cyclic execution

is formed. See Figure 4b.
• Or: before everyone succeeds again, a new (f, P ′)-cyclic execution, where

P ′ ≤ P , is formed, which finally leads to an (f, P)-cyclic execution. See
Figure 4c. �	

(a) A new thread does not lead to a reordering
T0

T1

T2

(b) Reordering and immediate new seed
T0

T1

T2

T3

(c) Reordering and transient state

T0

T1

T2

T3

Fig. 4. Illustration of Theorem 2

4.3 Throughput Bounds

The periodicity offers an easy way to compute the expected number of threads
inside the retry loop, and to bound the number of failures and the throughput.

Lemma 1. In an (f, P)-cyclic execution, the throughput is T = P
q+r+1+f , and

the average number of threads in the retry loop Prl = P × f+1
q+r+f+1 .

Lemma 2. The number of failures is tighly bounded by f (-) ≤ f ≤ f (+), and
throughput by T (-) ≤ T ≤ T (+), where

f (-) =

{
P − q − 1 if q ≤ P − 1
0 otherwise

, T (-) =

{ P
P+r

if q ≤ P − 1
P

q+r+1
otherwise.

f (+) =

⌊
1

2

(
(P − 1 − q − r) +

√
(P − 1 − q − r)2 + 4P

)⌋

, T (+) =
P

q + r + 1 + f (+)
.

350 A. Atalar et al.

5 Expansion and Complete Throughput Estimation

5.1 Expansion

Interference of threads does not only lead to logical conflicts but also to hardware
conflicts which impact the performance significantly. We model the behavior of
the cache coherency protocols which determine the interaction of overlapping
Reads and CASs. By taking MESIF [9] as basis, we come up with the following
assumptions. When executing an atomic CAS, the core gets the cache line in
exclusive state and does not forward it to any other requesting core until the
instruction is retired. Therefore, requests stall for the release of the cache line
which implies serialization. On the other hand, ongoing Reads can overlap with
other operations. As a result, a CAS introduces expansion only to overlapping
Read and CAS operations that start after it, as illustrated in Figure 2.

Furthermore, we assume that Reads that are executed just after a CAS do not
experience expansion (as the thread already owns of the data), which takes effect
at the beginning of a retry following a failing attempt. Thus, read expansions
need only to be considered before the 0th retry. In this sense, read expansion can
be moved to parallel section and calculated in the same way as CAS expansion
is calculated.

To estimate expansion, we consider the delay that a thread can introduce,
provided that there is already a given number of threads in the retry loop. The
starting point of each CAS is a random variable which is distributed uniformly
within an expanded retry. The cost function d provides the amount of delay that
the additional thread introduces, depending on the point where the starting point
of its CAS hits. By using this cost function we can formulate the expansion
increase that each new thread introduces and derive the differential equation
below to calculate the expansion of a CAS.

Lemma 3. The expansion of a CAS operation is the solution of the following
system of equations:
⎧
⎪⎨

⎪⎩

e′ (Prl) = cc ×
cc
2 + e (Prl)

rc + cw + cc + e (Prl)
e
(
P

(0)
rl

)
= 0

,
where P

(0)
rl is the point where

expansion begins.

Proof. To prove the theorem, we compute e (Prl + h), where h ≤ 1, by assum-
ing that there are already Prl threads in the retry loop, and that a new
thread attempts to CAS during the retry, within a probability h: e (Prl + h) =

e (Prl) + h × ∫ rlw(+)

0
d(t)

rlw(+) dt . The complete proof appears in the companion
research report [5].

5.2 Throughput Estimate

It remains to combine hardware and logical conflicts in order to obtain the final
upper and lower bounds on throughput. We are given as an input the expected

Analyzing the Performance of Lock-Free Data Structures 351

number of threads Prl inside the retry loop. We firstly compute the expansion
accordingly, by solving numerically the differential equation of Lemma 3. As
explained in the previous subsection, we have pw (+) = pw + e, and rlw (+) =
rc+cw+e+cc. We can then compute q and r, that is the input set (together with
the total number of threads P) of the method described in Section 4. Assuming
that the initialization times of the threads are spaced enough, the execution will
superimpose an (f, P)-cyclic execution. Thanks to Lemma 1, we can compute
the average number of threads inside the retry loop, that we note by hf (Prl). A
posteriori, the solution is consistent if this average number of threads inside the
retry loop hf (Prl) is equal to the expected number of threads Prl that has been
given as an input.

Several (f, P)-cyclic executions belong to the domain of the possible outcomes,
butwe are interested in upper and lower bounds on the number of failures f .We can
compute them through Lemma 2, along with their corresponding throughput and
average number of threads inside the retry loop. We note by h(+)(Prl) and h(-)(Prl)
the average number of threads for the lowest number of failures and highest one,
respectively. Our aim is finally to find P

(-)
rl and P

(+)
rl , such that h(+)(P (+)

rl) = P
(+)
rl

and h(-)(P (-)
rl) = P

(-)
rl . If several solutions exist, then we want to keep the smallest,

since the retry loop stops to expand when a stable state is reached.
Note that we also need to provide the point where the expansion begins. It

begins when we start to have failures, while reducing the parallel section. Thus
this point is (2P −1)rlw (-) (resp. (P −1)rlw (-)) for the lower (resp. upper) bound
on the throughput.

Theorem 3. Let (xn) be the sequence defined recursively by x0 = 0 and xn+1 =
h(+)(xn). If pw ≥ rc + cw + cc, then P

(+)
rl = limn→+∞ xn.

Proof. In [5], we prove that h(+) is non-decreasing when pw ≥ rc + cw + cc, and
obtain the above theorem by applying the Theorem of Knaster-Tarski.

The same line of reasoning holds for h(-). We point out that when pw < rlw (-),
we scan the interval of solution, and have no guarantees about the fact that the
solution is the smallest one; still this corresponds to very extreme cases.

6 Experimental Evaluation

We validate our model and analysis framework through successive steps, from
synthetic tests, capturing a wide range of possible abstract algorithmic designs,
to several reference implementations of extensively studied lock-free data struc-
ture designs that include cases with non-constant parallel section and retry loop.
The complete results can be found in [5] and the numerical simulation code in [4].

6.1 Setting

We have conducted experiments on an Intel ccNUMA workstation system. The
system is composed of two sockets, that is equipped with Intel Xeon E5-2687W

352 A. Atalar et al.

v2 CPUs. In a socket, the ring interconnect provides L3 cache accesses and
core-to-core communication. Threads are pinned to a single socket to minimize
non-uniformity in Read and CAS latencies. Due to the bi-directionality of the
ring that interconnects L3 caches, uncontended latencies for intra-socket com-
munication between cores do not show significant variability. The methodology
in [6] is used to measure the CAS and Read latencies, while the work inside the
parallel section is implemented by a for-loop of Pause instructions.

In all figures, y-axis provides the throughput, while the parallel work is rep-
resented in x-axis in cycles. The graphs contain the high and low estimates (see
Section 4), corresponding to the lower and upper bound on the wasted retries,
respectively, and an additional curve that shows the average of them.

6.2 Synthetic Tests

For the evaluation of our model, we first create synthetic tests that emulate
different design patterns of lock-free data structures (value of cw) and different
application contexts (value of pw).

Generally speaking, in Figure 5, we observe two main behaviors: when pw
is high, the data structure is not contended, and threads can operate without
failure (unsuccessful retries). When pw is low, the data structure is contended,
and depending on the size of cw (that drives the expansion) a steep decrease in
throughput or just a roughly constant bound on the performance is observed.

An interesting fact is the waves appearing on the experimental curve, espe-
cially when the number of threads is low or the critical work big. This behavior
is originating because of the variation of r with the change of parallel work, a
fact that is captured by our analysis.

cw = 50, threads = 4 cw = 50, threads = 8

cw = 1600, threads = 4 cw = 1600, threads = 8

4000

6000

8000

10000

12000

4000

6000

8000

10000

12000

1000

1500

1000

1500

1000 2000 3000 0 2000 4000 6000

0 5000 10000 15000 20000 0 10000 20000 30000 40000
Parallel Work (cycles)

Th
ro

ug
hp

ut
 (o

ps
/m

se
c)

Case Low High Average Real

Fig. 5. Synthetic program

cw = 50, threads = 6

cw = 1500, threads = 6

4000

6000

8000

10000

12000

1000

1500

2000

0 1000 2000 3000 4000

0 10000 20000 30000
Parallel Work (cycles)

Th
ro

ug
hp

ut
 (o

ps
/m

se
c)

Case Low High Average Real

Fig. 6. Pop on stack

Analyzing the Performance of Lock-Free Data Structures 353

6.3 Treiber’s Stack

The lock-free stack by Treiber [16] is typically the first example that is used to
validate a freshly-built model on lock-free data structures. A Pop contains a retry
loop that first reads the top pointer and gets the next pointer of the element
to obtain the address of the second element in the stack, before attempting to
CAS with the address of the second element. The access to the next pointer of
the first element occurs between the Read and the CAS. Thus, it represents the
work in cw . By varying the number of elements that are popped at the same
time, and the cache misses implied by the reads, we vary the work in cw and
obtain the results depicted in Figure 6.

6.4 Discussion

In this subsection we discuss the adequacy of our model, specifically the cyclic
argument, to capture the behavior that we observe in practice. Figure 7 illus-
trates the frequency of occurrence of a given number of consecutive fails, together
with average fails per success values and the throughput values, normalized by
a constant factor so that they can be seen on the graph. In the background, the
frequency of occurrence of a given number of consecutive fails before success is
presented. As a remark, the frequency of 6+ fails is plotted together with 6. We
expect to see a frequency distribution concentrated around the average fails per
success value, within the bounds computed by our model.

While comparing the distribution of failures with the throughput, we could
conjecture that the bumps come from the fact that the failures spread out. How-
ever, our model captures correctly the throughput variations and thus strips
down the right impacting factor. The spread of the distribution of failures indi-
cates the violation of a stable cyclic execution (that takes place in our model),

cw = 4000, threads = 6

0

2

4

6

8

0 10000 20000 30000 40000
Parallel Work (cycles)

0.25 0.50 0.75
Consecutive Fail Frequency

Case Av. Fails per Success Model Average Normalized Throughput

Fig. 7. Consecutive Fails Frequency

cw = 225, threads = 8

3000

4000

5000

6000

7000

0 2500 5000 7500
Parallel Work (cycles)

Th
ro

ug
hp

ut
 (o

ps
/m

se
c)

Type Exponential Linear New None

Value 0 1 2 4 8 16 32

Fig. 8. Comparison of back-off schemes

354 A. Atalar et al.

but in these regions, r actually gets close to 0, as well as the minimum of all
gaps. The scattering in failures shows that, during the execution, a thread is
overtaken by another one. Still, as gaps are close to 0, the imaginary execution,
in which we switch the two thread IDs, would create almost the same perfor-
mance effect. This reasoning is strengthened by the fact that the actual average
number of failures follows the step behavior, predicted by our model. This shows
that even when the real execution is not cyclic and the distribution of failures
is not concentrated, our model that results in a cyclic execution remains a close
approximation of the actual execution.

6.5 Back-Off Tuning

Together with our analysis comes a natural back-off strategy: we estimate the
pw corresponding to the peak point of the average curve, and when the parallel
section is smaller than the corresponding pw , we add a back-off in the parallel
section, so that the new parallel section is at the peak point.

We have applied exponential, linear and our back-off strategy to the
Enqueue/Dequeue experiment specified in [5] (sequence of Enqueue and Dequeue
interleaved with parallel sections). Our back-off estimate provides good results
for both types of distribution. In Figure 8 (where the values of back-off are steps
of 115 cycles), the comparison is plotted for the Poisson distribution, which is
likely to be the worst for our back-off. Our back-off strategy is better than the
other, except for very small parallel sections, but the other back-off strategies
should be tuned for each value of pw .

7 Conclusion

In this paper, we have modeled and analyzed the performance of a general class
of lock-free algorithms, and have so been able to predict the throughput of such
algorithms, on actual system executions. The analysis rely on the estimation of
two impacting factors that lower the throughput: on the one hand, the expan-
sion, due to the serialization of the atomic primitives that take place in the retry
loops; on the other hand, the wasted retries, due to a non-optimal synchroniza-
tion between the running threads. We have derived methods to calculate those
parameters, along with the final throughput estimate, that is calculated from a
combination of these two previous parameters. As a side result of our work, this
accurate prediction enables the design of a back-off technique that performs bet-
ter than other well-known techniques, namely linear and exponential back-offs.

As a future work, we envision to enlarge the domain of validity of the model,
in order to cope with data structures whose operations do not have constant
retry loop, as well as the framework, so that it includes more various access
patterns. The fact that our results extend outside the model we consider allows
us to be optimistic on impacting factors introduced in this work. Finally, we also
foresee studying back-off techniques that would combine a back-off in the parallel
section (for lower contention) and in the retry loops (for higher robustness).

Analyzing the Performance of Lock-Free Data Structures 355

References

1. Alemany, J., Felten, E.W.: Performance issues in non-blocking synchronization
on shared-memory multiprocessors. In: Hutchinson, N.C. (ed.) Proceedings of the
ACM Symposium on Principles of Distributed Computing (PoDC), pp. 125–134.
ACM (1992)

2. Alistarh, D., Censor-Hillel, K., Shavit, N.: Are lock-free concurrent algorithms
practically wait-free? In: Shmoys, D.B. (ed.) Symposium on Theory of Computing
(STOC), pp. 714–723. ACM, June 2014

3. Anderson, J.H., Ramamurthy, S., Jeffay, K.: Real-time computing with lock-free
shared objects. ACM Transactions on Computer Systems (TOCS) 15(2), 134–165
(1997)

4. Atalar, A., Renaud-Goud, P.: Numerical simulation code. http://graal.ens-lyon.fr/
prenaud/disc15/

5. Atalar, A., Renaud-Goud, P., Tsigas, P.: Analyzing the performance of lock-free
data structures: A conflict-based model. Tech. Rep. 2014:15, Chalmers University
of Technology, January 2015. http://arxiv.org/abs/1508.03566

6. David, T., Guerraoui, R., Trigonakis, V.: Everything you always wanted to know
about synchronization but were afraid to ask. In: Kaminsky, M., Dahlin, M. (eds.)
Proceedings of the ACM Symposium on Operating Systems Principles (SOSP),
pp. 33–48. ACM, November 2013

7. Dice, D., Lev, Y., Moir, M.: Scalable statistics counters. In: Blelloch, G.E., Vöcking,
B. (eds.) Proceedings of the ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), pp. 43–52. ACM, July 2013

8. Dragicevic, K., Bauer, D.: A survey of concurrent priority queue algorithms. In:
Proceedings of the International Parallel and Distributed Processing Symposium
(IPDPS), pp. 1–6, April 2008

9. Goodman, J.R., Hum, H.H.J.: Mesif: A two-hop cache coherency protocol for point-
to-point interconnects. Tech. rep., University of Auckland, November 2009. http://
hdl.handle.net/2292/11594

10. Hendler, D., Shavit, N., Yerushalmi, L.: A scalable lock-free stack algorithm. Jour-
nal of Parallel and Distributed Computing (JPDC) 70(1), 1–12 (2010)

11. Intel: Lock scaling analysis on Intel R© Xeon R© processors. Tech. Rep. 328878–001,
Intel, April 2013

12. Kogan, A., Herlihy, M.: The future(s) of shared data structures. In: Halldórsson,
M.M., Dolev, S. (eds.) Proceedings of the ACM Symposium on Principles of Dis-
tributed Computing (PoDC), pp. 30–39. ACM, July 2014

13. Lindén, J., Jonsson, B.: A skiplist-based concurrent priority queue with minimal
memory contention. In: Baldoni, R., Nisse, N., van Steen, M. (eds.) OPODIS 2013.
LNCS, vol. 8304, pp. 206–220. Springer, Heidelberg (2013)

14. Michael, M.M., Scott, M.L.: Simple, fast, and practical non-blocking and blocking
concurrent queue algorithms. In: Burns, J.E., Moses, Y. (eds.) Proceedings of the
ACM Symposium on Principles of Distributed Computing (PoDC), pp. 267–275.
ACM, May 1996

15. Shavit, N., Lotan, I.: Skiplist-based concurrent priority queues. In: Proceedings
of the International Parallel and Distributed Processing Symposium (IPDPS), pp.
263–268, May 2000

16. Treiber, R.K.: Systems programming: Coping with parallelism. Thomas J. Watson
Research Center, International Business Machines Incorporated (1986)

17. Valois, J.D.: Implementing lock-free queues. In: Proceedings of International Con-
ference on Parallel and Distributed Systems (ICPADS), pp. 64–69, December 1994

http://graal.ens-lyon.fr/ prenaud/disc15/
http://graal.ens-lyon.fr/ prenaud/disc15/
http://arxiv.org/abs/http://arxiv.org/abs/1508.03566
http://hdl.handle.net/2292/11594
http://hdl.handle.net/2292/11594

A Constructive Approach for Proving Data
Structures’ Linearizability

Kfir Lev-Ari1(B), Gregory Chockler2, and Idit Keidar1

1 EE Department, Technion – Israel Institute of Technology, Haifa, Israel
kfirla@campus.technion.ac.il

2 CS Department, Royal Holloway University of London, Egham, UK

Abstract. We present a comprehensive methodology for proving cor-
rectness of concurrent data structures. We exemplify our methodology
by using it to give a roadmap for proving linearizability of the popular
Lazy List implementation of the concurrent set abstraction. Correctness
is based on our key theorem, which captures sufficient conditions for lin-
earizability. In contrast to prior work, our conditions are derived directly
from the properties of the data structure in sequential runs, without
requiring the linearization points to be explicitly identified.

1 Introduction

While writing an efficient concurrent data structure is challenging, proving its
correctness properties is usually even more challenging. Our goal is to simplify
the task of proving correctness. We present a methodology that offers algorithm
designers a constructive way to analyze their data structures, using the same
principles that were used to design them in the first place. It is a generic app-
proach for proving handcrafted concurrent data structures’ correctness, which
can be used for presenting intuitive proofs.

The methodology we present here generalizes our previous work on reads-
write concurrency [10], and deals also with concurrency among write operations
as well as with any number of update steps per operation (rather than a single
update step per operation as in [10]). To do so, we define the new notions of base
point preserving steps, commutative steps, and critical sequence. We demonstrate
the methodology by proving linearizability of Lazy List [8], as opposed to toy
examples in [10].

Our analysis consists of three stages. In the first stage we identify conditions,
called base conditions [10], which are derived entirely by analysis of sequential
behavior, i.e., we analyze the algorithm as if it is designed to implement the data
structure correctly only in sequential executions. These conditions link states of
the data structure with outcomes of operations running on the data structure

This work was partially supported by the Israeli Science Foundation (ISF), the
Intel Collaborative Research Institute for Computational Intelligence (ICRI-CI), by
a Royal Society International Exchanges Grant IE130802, and by the Randy L. and
Melvin R. Berlin Fellowship in the Cyber Security Research Program.

c© Springer-Verlag Berlin Heidelberg 2015
Y. Moses (Ed.): DISC 2015, LNCS 9363, pp. 356–370, 2015.
DOI: 10.1007/978-3-662-48653-5 24

A Constructive Approach for Proving Data Structures’ Linearizability 357

from these states. More precisely, base conditions tell us what needs to be sat-
isfied by a state of the data structure in order for a sequential execution to
reach a specific point in an operation from that state. For example, Lazy List’s
contains(31) operation returns true if 31 appears in the list. A possible base
condition for returning true is “there is an element that is reachable from the
head of the list and its value is 31”. Every state of Lazy List that satisfies this
base condition causes contains(31) to return true.

In the second stage of our analysis we prove the linearization of update
operations, (i.e., operations that might modify shared memory). We state two
conditions on update operations that together suffice for linearizability. The first
is commutativity of steps taken by concurrent updates. The idea here is that if
two operations’ writes to shared memory are interleaved, then these operations
must be independent. Such behavior is enforced by standard synchronization
approaches, e.g., two-phase locking. The second condition requires that some
state reached during the execution of the update operation satisfy base condi-
tions of all the update operation’s writes. For example, the update steps of an
add(7) operation in Lazy List depend on the predecessor and successor of 7 in
the list. Indeed, Lazy List’s add(7) operation writes to shared memory only after
locking these nodes, which prevent concurrent operations from changing the two
nodes that satisfy the base conditions of add(7)’s steps.

In the third stage we consider the relationship between update operations
and read-only operations. We first require each update operation to have at
most one point in which it changes the state of the data structure in a way that
“affects” read-only operations. We capture the meaning of “affecting” read-only
operations using base conditions. Intuitively, if an update operation has a point
in which it changes something that causes the state to satisfy a base condition of
a read-only operation, then we know that this point defines the outcome of the
read-only operation. For example, Lazy List’s remove(3) operation first marks
the node holding 3, and then detaches it from its predecessor. Since contains
treats marked nodes as deleted, the second update step does not affect contains.

In addition, we require that each read-only operation has a state in the course
of its execution that satisfies its base condition. In order to show that such a state
exists, we need to examine how the steps that we have identified in the update
operations affect the base conditions of the read-only operations. For example,
in Lazy List, contains(9) relies on the fact that if a node holding 9 is reachable
from the head of the list, then there was some concurrent state in which a node
holding 9 was part of the list. We need to make sure that the update operations
support this assumption.

The remainder of this paper is organized as follows: Section 2 provides for-
mal preliminaries. We formally present and illustrate the analysis approach in
Section 3. We state and prove our main theorem in Section 4. Then, we demon-
strate how base point analysis can be used as a roadmap for proving lineariz-
ability of Lazy List in Section 5. Section 6 concludes the paper.

358 K. Lev-Ari et al.

2 Preliminaries

We extend here the model and notions we defined in [10]. Generally speaking,
we consider a standard shared memory model [1] with one refinement, which is
differentiating between local and shared state, as needed for our discussion.

Each process performs a sequence of operations on shared data structures
implemented using a set X = {x1, x2, ...} of shared variables. The shared vari-
ables support atomic operations, such as read, write, CAS, etc. A data structure
implementation (algorithm) is defined as follows:

– A set S of shared states, some of which are initial, where s ∈ S is a mapping
assigning a value to each shared variable.

– A set of operations representing methods and their parameters (e.g., add(7)
is an operation). Each operation op is a state machine defined by: A set of
local states Lop, which are given as mappings l of values to local variables;
and a deterministic transition function τop(Lop × S) → Steps × Lop × S
where Steps are transition labels, such as invoke, return(v), a ← read(xi),
write(xi,v), CAS(xi,vold,vnew), etc.

Invoke and return steps interact with the application, while read and write
steps interact with the shared memory and are defined for every shared state.
In addition, the implementation may use synchronization primitives (locks, bar-
riers), which constrain the scheduling of ensuing steps, i.e., they restrict the
possible executions, as we shortly define.

For a transition τ(l, s) = 〈step, l′, s′〉, l determines the step. If step is an
invoke or return, then l′ is uniquely defined by l. Otherwise, l′ is defined by l
and potentially s. For invoke, return, read and synchronization steps, s = s′. If
any of the variables is assigned a different value in s than in s′, then the step is
called an update step.

A state consists of a local state l and a shared state s. We omit either the
shared or the local component of the state if its content is immaterial to the
discussion. A sequential execution of an operation from a shared state si ∈ S is
a sequence of transitions of the form:

⊥
si

, invoke,
l1
si

, step1,
l2

si+1
, step2, ... ,

lk
sj

, returnk,
⊥
sj

,

where ⊥ is the operation’s initial local sate and τ(lm, sn) = 〈stepm, lm+1, sn+1〉.
The first step is invoke and the last step is a return step.
A sequential execution of a data structure is a (finite or infinite) sequence μ:

μ =
⊥
s1

, O1,
⊥
s2

, O2, ... ,

where s1 ∈ S0 and every ⊥
sj

, Oj ,
⊥

sj+1
in μ is a sequential execution of some

operation. If μ is finite, it can end after an operation or during an operation.

A Constructive Approach for Proving Data Structures’ Linearizability 359

In the latter case, we say that the last operation is pending in μ. Note that in a
sequential execution there can be at most one pending operation.

A concurrent execution fragment of a data structure is a sequence of inter-
leaved states and steps of different operations, where each state consists of a set
of local states {li, ..., lj} and a shared state sk, where every li is a local state of
a pending operation, which is an operation that has not returned yet. A con-
current execution of a data structure is a concurrent execution fragment that
starts from an initial shared state and an empty set of local states. In order to
simplify the discussion of initialization, we assume that every execution begins
with a dummy (initializing) update operation that does not overlap any other
operation. A state s′ is reachable from a state s if there exists an execution frag-
ment that starts at s and ends at s′. A state is reachable if it is reachable from
an initial state.

An operation for which there exists an execution in which it perform update
steps is called update operation. Otherwise, it is called a read-only operation.

A data structure’s correctness in sequential executions is defined using a
sequential specification, which is a set of its allowed sequential executions. A
linearization of execution μ is a sequential execution μl, such that:

– Every operation that is not invoked in μ is not invoked in μl.
– Every operation that returns in μ returns also in μl and with the same return

value.
– μl belongs to the data structure’s sequential specification.
– The order between non-interleaved operations in μ and μl is identical.

A data structure is linearizable [9] if each of its executions has a linearization.

3 Base Point Analysis

In this section we present key definitions for analyzing and proving correctness
using what we call base point analysis. We illustrate the notions we define using
Lazy List [8], whose pseudo code appears in Algorithm 1.

We start by defining base conditions [10]. A base condition establishes some
link between the local state that an operation reaches and the shared variables
the operation has read before reaching this state. It is given as a predicate Φ
over shared variable assignments. Formally:

Definition 1 (Base Condition). Let l be a local state of an operation op.
A predicate Φ over shared variables is a base condition for l if every sequential
execution of op starting from a shared state s such that Φ(s) is true, reaches l.

For completeness, we define a base condition for stepi in an execution μ to be
a base condition of the local state that precedes stepi in μ. For example, consider
an execution of Lazy List’s contains(31) operation that returns true. A possible
base condition for that return step is φ : “there is an unmarked node in which
key = 31, and that node is reachable from the head of the list”. Every sequential

360 K. Lev-Ari et al.

� Φloc(s, n1, n2, e) : (Head
∗⇒ n1) ∧ (n1.next = n2) ∧ ¬n1.marked ∧

¬n2.marked ∧ (n1.val < e) ∧ (e ≤ n2.val)

1 Function contains(e)

2 c ← read(Head)
3 while read(c.val) < e

4 c ← read(c.next)

5 � Φc :(Head ∗⇒ c) ∧ (c.val ≥ e)

∧ (� ∃n:(Head
∗⇒ n) ∧

(e ≤ n.val < c.val))

6 if read(c.marked)∨read(c.val) �= e

7 � Φc∧(c.marked ∨c.val �= e)

8 return false

9 else

10 � Φc ∧ (c.val = e)

11 return true

12 Function add(e)

13 〈n1, n2〉 ← locate(e)

14 � Φloc(s, n1, n2, e)
15 if read(n2.val) �= e

16 � Φloc(s, n1, n2, e) ∧ (n2.val �= e)
17 write(n3, new Node(e, n2))
18 write(n1.next, n3)
19 unlock(n1)
20 unlock(n2)
21 return true

22 else

23 � Φloc(s, n1, n2, e) ∧ (n2.val = e)
24 unlock(n1)
25 unlock(n2)
26 return false

27 Function locate(e)

28 while true

29 n1 ← read(Head)
30 n2 ← read(n1.next)
31 while read(n2.val) < e

32 n1 ← n2

33 n2 ← read(n2.next)
34 lock(n1)
35 lock(n2)
36 if read(n1.marked) = false ∧
37 read(n2.marked) = false ∧
38 read(n1.next) = n2

39 return 〈n1, n2〉
40 else

41 unlock(n1, n2)

42 Function remove(e)

43 〈n1, n2〉 ← locate(e)

44 � Φloc(s, n1, n2, e)
45 if read(n2.val) = e

46 � Φloc(s, n1, n2, e) ∧ (n2.val = e)
47 write(n2.marked, true)
48 write(n1.next, n2.next)
49 unlock(n1)
50 unlock(n2)
51 return true

52 else

53 � Φloc(s, n1, n2, e) ∧ (n2.val �= e)
54 unlock(n1)
55 unlock(n2)
56 return false

Algorithm 1. Lazy List. Base conditions are listed as comments, using Φloc defined

above the functions.

execution of contains(31) from a shared state that satisfied φ reaches the same
return true step. Base conditions for all of Lazy List’s update and return steps
are annotated in Algorithm 1, and are discussed in detail in Section 5.1 below.

For a given base condition, the notion of base point [10] links the local state
that has base condition Φ to a shared state s where Φ(s) holds.

Definition 2 (Base Point). Let op be an operation in an execution μ, and let
Φt be a base condition for the local state at point t in μ. An execution prefix of
op in μ has a base point for point t with Φt, if there exists a shared state s in μ,
called a base point of t, such that Φt(s) holds.

A Constructive Approach for Proving Data Structures’ Linearizability 361

Note that together with Definition 1, the existence of a base point s for point
t implies that the step or local state at point t in operation op is reachable from
s in a sequential run of op starting from s. In Figure 1 we depict two states of
Lazy List: s1 is a base point for a return true step of contains(7), whereas s2 is
not.

Fig. 1. Two states of Lazy List (Algorithm 1): s1 is a base point for contains(7)’s
return true step, as it satisfies the base condition “there is a node that is reachable
from the head of the list, and its value is 7”. The shared state s2 is not a base point
of this step, since there is no sequential execution of contains(7) from s2 in which this
step is reached.

Let s0 and s1 be two shared states, and let s0, st, s1 be an execution frag-
ment. We call s0 the pre-state of step st, and s1 the post-state of st.

We now define base point preserving steps, which are steps under which base
conditions are invariant.

Definition 3 (Base Point Preserving Step). A step st is base point pre-
serving with respect to an operation op if for any update or return step b of op,
for any concurrently reachable pre-state of st, st’s pre-state is a base point of b
if and only if st’s post-state is a base point of b.

An example of a base point preserving step is illustrated in Figure 2. In
this example, the second write step in Lazy List’s remove operation is base
point preserving for contains. Intuitively, since contains treats marked nodes as
removed, the same return step is reached regardless whether the marked node is
detached from the list or reachable from the head of the list.

4 Linearizability Using Base Point Analysis

We use the notions introduced in Section 3 to define sufficient conditions for
linearizability. In Section 4.1 we define conditions for update operations, and in
Section 4.2 we define an additional condition on read-only operations, and show
that together, our conditions imply linearizability.

4.1 Update Operations

We begin by defining the commutativity of steps.

362 K. Lev-Ari et al.

Fig. 2. Operation remove(7) of Lazy List has two write steps. In the first, marked is
set to true. In the second, the next field of the node holding 3 is set to point to the
node holding 9. If a concurrent contains(7) operation sequentially executes from state
s1, it returns true. If we execute contains(7) from s′

1, i.e., after remove(7)’s first write,
contains sees that 7 is marked, and therefore returns false. If we execute contains from
state s2, after remove(7)’s second write, contains does not see B because it is no longer
reachable from the head of the list, and also returns false. The second write does not
affect the return step, since in both cases it returns false.

Definition 4 (Commutative Steps). Consider an execution μ of a data struc-
ture ds that includes the fragment a, s1, b, s2. We say that steps a and b commute
if a, s1, b, s2 in μ can be replaced with b, s′

1, a, s2, so that the resulting sequence
μ′ is a valid execution of ds.

We now observe that if two update steps commute, then their resulting shared
state is identical for any ordering of these steps along with interleaved read steps.

Observation 1. Let s0, a, s1, b, s2 be an execution fragment of two update steps
a and b that commute, then s2 is the final shared state in any execution fragment
that starts from s0 and consists of a, b and any number of read steps (for any
possible ordering of steps).

We are not interested in commutativity of all steps, but rather of “critical”
steps that modify shared memory or determine return values. This is captured
by the following notion:

Definition 5 (Critical Sequence). The critical sequence of an update oper-
ation op in execution μ is the subsequence of op’s steps from its first to its last
update step; if op takes no update steps in μ, then the critical sequence consists
solely of its last read.

For example, if in Lazy List op1 = add(2) and op2 = add(47) concurrently add
items in disjoint parts of the list, then all steps in op1’s critical sequence commute
with all those in op2’s critical sequence. The same is not true for list traversal
steps taken before the critical sequence, since op2 may or may not traverse a
node holding 2, depending on the interleaving of op1 and op2’s steps. In general,
Lazy List uses locks to ensure that the critical steps of two operations overlap

A Constructive Approach for Proving Data Structures’ Linearizability 363

only if these operations’ respective steps commute. This is our first condition for
linearizability of update operations.

Our second requirement from update operations is that each critical sequence
begin its execution from a base point of all the operation’s update and return
steps. Together, we have:

Definition 6 (Linearizable Update Operations). A data structure ds has
linearizable update operations if for every execution μ, for every update opera-
tion uoi ∈ μ:

1. ∀uoj ∈ μ, i 	= j, if the critical sequence of uoj interleaves with the critical
sequence of uoi in μ, then all of uoi’s steps in its critical sequence commute
with all of the steps in uoj ’s critical sequence, and all the update steps of
uoi and uoj are base point preserving for uoj and uoi respectively.

2. The pre-state of uoi’s critical sequence is a base point for all of uoi’s update
and return steps, and moreover, if uoi is complete in μ, then this state is not
a base point for any other possible update step of uoi.

To satisfy these conditions, before its critical sequence, an update operation
takes actions to guarantee that the pre-state of its first update will be a base
point for the operation’s update and return steps, as depicted in Figure 3. For
example, any algorithm that follows the two-phase locking protocol [2] satisfies
these conditions: operations perform concurrent modifications only if they gain
disjoint locks, which means that their steps commute. And in addition, once all
locks are obtained by an operation, the shared state is a base point for all of its
ensuing steps, i.e., for its critical sequence.

Fig. 3. The structure of update operations. The steps before the critical sequence
ensure that the pre-state of the first update step is a base point for all of the update
and return steps.

We now show that every execution that has linearizable update operations
and no read-only operations is linearizable.

Lemma 1. Let μ be an execution consisting of update operations of some data
structure that has linearizable update operations. Let μ′ be a sequential execution
of all the operations in μ starting from the same initial state as μ such that if
some operation op1’s critical sequence ends before the critical sequence of another
operation op2 begins in μ, then op1 precedes op2 in μ′. Then μ′ is a linearization
of μ.

364 K. Lev-Ari et al.

Proof. By construction, μ′ includes only invoke steps from μ, and every two
operations that are not interleaved in μ occur in the same order in μ and μ′. It
remains to show that every operation has the same return step in μ and μ′.

Denote by μ′
i the prefix of μ′ consisting of i operations, and by μi the subse-

quence of μ consisting of the steps of the same i operations. Denote by opi the
ith operation in μ′.

We prove by induction on i that μ′
i is a linearization of μi and both executions

end in the same final state. As noted above, for linearizability, it suffices to show
that all operations that return in both μ′

i and μi return the same value.
The first operation in both μ and μ′ is a dummy initialization, which returns

before all other operations are invoked. Hence, μ1 = μ′
1, and their final states

are identical.
Assume now that μ′

i is a linearization of μi and their final states are the
same. The critical sequence of opi+1 in μi+1 overlaps the critical sequences of
the last zero or more operations in μi. We need to show that (1) the execution
of opi+1 that overlaps these steps in μi+1 yields the same return value and the
same final state as a sequential execution of opi+1 from the final state of μi; and
(2) the return values of the operations that opi+1 is interleaved with in μi+1 are
unaffected by the addition of opi+1’s steps.

(1) By definition 6, the pre-state p of opi+1’s critical sequence in μi+1 is a
base point for opi+1’s update and return steps. Note that p occurs in μi+1 before
any update step of opi+1, and thus it also occurs in μi. Thus, the same p occurs
also in μi. All the update steps after p in μi+1 belong to operations that have
interleaved critical sequences with opi+1 in μi+1, and therefore by definition 6
their update steps are base point preserving for opi+1. These are the update
steps that occur after p in μi, and so the final state of μi is a base point for the
update and return steps that opi+1 takes in μi+1.

By the induction hypothesis, the last states of μi and μ′
i are identical, and

we conclude that opi+1 has the same update and return steps in μi+1 and μ′
i+1.

In addition, the final states of μi+1 and μ′
i+1 occur at the end of execution

fragments that consist of the same update steps, s.t. if two update steps have
different orders in μi+1 and in μ′

i+1 then they are commute. By Observation 1
we conclude that the last states of μi+1 and μ′

i+1 are identical.
(2) If an update step of opi+1 occurs in μi+1 before operation opj ’s return

step, then opi+1 has an interleaved critical sequence with opj . This means that
all of opi+1’s update steps are base point preserving for opj . Thus, the same
base points are reached before opj ’s critical sequences in μi and in μi+1. By
definition 6, opj takes the same update and return steps in μi and μi+1.
�

4.2 Read-Only Operations

We state two conditions that together ensure linearizability of read-only opera-
tions. First, each read-only operation ro should have a base point for its return
step, which can be either a post-state of some step of operation that is concur-
rent to ro, or the pre-state of ro’s invoke step. Second, update operations should
have at most one step that is not base point preserving for read-only operations.

A Constructive Approach for Proving Data Structures’ Linearizability 365

In Theorem 2 we present a sufficient condition for linearizability. Intuitively,
we want the linearizable update operations to satisfy two conditions: (1) the
read-only operations should see the update operations as a sequence of single
steps that mutate the shared state. To express this relation we use the base
point preserving property; and (2) the update operations should guarantee the
correctness of the returned values of the read-only operation, as expressed by
the return steps’ base conditions.

Theorem 2. Let ds be a data structure that has linearizable update operations.
If ds satisfies the following conditions, it is linearizable:

1. Every update operation of ds has at most one step that is not base point
preserving with respect to all read-only operations.

2. For every execution μ, for every complete read-only operation ro ∈ μ, there
exists in μ a shared state s between the pre-state of ro’s invoke step and
the pre-state of ro’s return step (both inclusive) that is a base-point for ro’s
return step.

Proof. For a given execution μ−, let μ be an execution that is identical to μ−

with the addition that all pending operations in μ− are allowed to complete.
Note that μ also has linearizable update operations. We now show that μ has a
linearization, and therefore μ− has a linearization.

We build a sequential execution μseq as follows:

1. μseq starts from the same shared state as μ.
2. We sequentially execute all the update operations that takes steps of their

critical sequence in μ in the order of their steps that are not base point
preserving for read-only operations, (or the last read step in case all steps
are base point preserving). We denote this sequence of steps by {ordi}. The
update operation that performs ordi in μ is denoted uoi.

3. Each read-only operation ro of μ is executed in μseq after an update operation
uoi such that the post-state of ordi in μ is a base point for ro, and is either
concurrent to ro or the latest step in {ordi} that precedes ro’s invoke step.
Such a step exists since (1) by our assumption, ro has a base point between
its invoke step’s pre-state and its return step’s pre-state; and (2) every step
that is not in {ordi} is base point preserving for ro.

4. The order in μseq between non-interleaved read-only operations that share
the same base point follows their order in μ. The order between interleaved
read-only operations that are executed in μseq from the same base point is
arbitrary.

Now, by Lemma 1, the sequence of update operations in μseq is a linearization
of the sequence of update operations in μ.

Therefore we only need to prove that the order between the read-only opera-
tions and other operations that are not interleaved in μ is identical in μseq and μ,
and that each read-only operation has the same return step in both executions.

We observe that:

366 K. Lev-Ari et al.

1. In μ and μseq the steps of {ordi} appear in the same order, and in both
executions each read-only operation is either executed after the same ordi
in both, or is executed concurrently to ordi in μ and immediately after uoi
in μseq.

2. Each shared state satisfies the same base conditions since the update steps
that appear in a different order in μ and μseq commute.

Therefore each post-state of ordi remains a base point in μseq for the same
read-only operations that it was in μ, and thus each read-only operation reaches
the same return step as in μ.

Assume towards contradiction that two read-only operations ro1 and ro2
have a different order in μ and μseq, and w.l.o.g. ro1 precedes ro2 in μ, and ro2
precedes ro1 in μseq.

Let uo1 be the update operation that precedes ro1 in μseq, and uo2 be the
update operation that precedes ro2 in μseq. uo2 	= uo1, otherwise ro1 and ro2
had the same base point and their execution order was identical to their order
in μ. Since ro2 precedes ro1 in μseq, we conclude that ord2 occurs before ord1 in
μ. ord1 takes place in μ as last as one step before uo1’s return step. Therefore
ord2 must appear somewhere before ro1’s return step. But ro1 precedes ro2 in
μ, meaning that ord2 is not the latest steps of ord that precedes ro2’s invoke
step, in contradiction.
�

5 Roadmap for Proving Linearizability

We now prove that Lazy List (Algorithm 1) satisfies the requirements of
Theorem 2, implying that it is linearizable. We demonstrate the three stages
of our roadmap for proofing linearizability using base point analysis.

5.1 Stage I: Base Conditions

We begin by identifying base conditions for the operations’ update and return
steps. The base conditions are annotated in comments in Algorithm 1. To do so,
we examine the possible sequential executions of each operation.

Add & Remove. Let Head
∗⇒ n denote that there is a set of shared variables

{Head, x1, ..., xk} such that Head.next = x1∧x1.next = x2∧...∧xk = n, i.e., that
there exists some path from the shared variable Head to n. Let Φloc(s, n1, n2, e)
be the predicate indicating that in the shared state s, the place of the key e in
the list is immediately after the node n1, and at or just before the node n2:

Φloc(s, n1, n2, e) : Head ∗⇒ n1 ∧n1.next = n2 ∧¬n1.marked ∧¬n2.marked ∧
n1.val < e ∧ e ≤ n2.val.

Observation 2. Φloc(s, n1, n2, e) is a base condition for the local state of add(e)
(remove(e)) after line 14 (resp., 44).

Now, Φloc(s, n1, n2, e) ∧ n2.val 	= e is a base condition for add ’s write
and return true steps and removes’s return false step. And a base condi-
tion for add ’s return false step and remove’s write and return true steps is
Φloc(s, n1, n2, e) ∧n2.val = e.

A Constructive Approach for Proving Data Structures’ Linearizability 367

Contains. First, we define the following predicate:
Φc : Head ∗⇒ c ∧ c.val ≥ e ∧ (∃ n : Head ∗⇒ n ∧ e ≤ n.val < c.val) .
In a shared state satisfying Φc, c is the node with the smallest value greater

than or equal to e in the list. The base condition for contains’s return true step
is Φc ∧ c.val = e, and the base condition for return false is the predicate Φc ∧
(c.marked ∨ c.val 	= e).

These predicates are base conditions since every sequential execution from a
shared state satisfying them reaches the same return step, i.e., if c is the node in
the list with the smallest value that is greater than or equal to e and is reachable
from the head of the list, then after traversing the list and reaching it, the return
step is determined according to its value.

5.2 Stage II: Linearizability of Update Operations

We next prove that Lazy List has linearizable update operations. Using Defini-
tion 6, it suffices to show the following: (1) each update operation has a base
point for its update and return steps, (2) each critical sequence commutes with
interleaved critical sequences, and (3) the update steps are base point preserving
for operations with interleaved critical sequences.

Base Points for Update and Return Steps

Proof Sketch. First we claim that in every execution of an add (remove) opera-
tion, line 10 (37, respectively), is a base point for all the operation’s update and
return steps.

Claim 1. Consider the shared state s immediately after line 14 (44) of an
execution of add(e) (remove(e)). Then Φ(s, n1, n2, e) is true.

Claim 1 can be proven by induction on the steps of an execution. Intu-
itively, the idea is to show by induction that the list is sorted, and that in each
add (remove) operation, locate locks the two nodes and verifies that they are
unmarked, and so no other operation can change them and they remain reach-
able from the head of the list and connected to each other. Formal proofs of this
claim were given in [11,13].

Based on Claim 1 and the observation that after line 14 (44) of an execu-
tion of add(e) (remove(e)) the value of n2.val persists until n2 is unlocked, we
conclude that the shared state after locate returns is a base point for update
operations’ update and return steps. Since the locked nodes cannot be modified
by concurrent operations, the pre-state of the first update step is also a base
point for the same steps. In case the update operation has no update steps, the
same holds for the last read step.

368 K. Lev-Ari et al.

Commutative and Base Point Preserving Steps

Proof Sketch. We now show that the steps of update operations that have inter-
leaved updates are commutative, and that the update steps are base point pre-
serving. Specifically, we examine the steps between the first update step and the
last one (or just the last read step in case of an update operation that does no
have update steps).

In order to add a key to the list, an update operation locks the predecessor
and successor of the new node. For removing a node from the list, the update
operation locks the node and it predecessor. This means that every update oper-
ation locks the nodes that it changes and the nodes that it relies upon before
it verifies its steps’ base point. Thus, update operations have concurrent critical
sequence only if they access different nodes. Therefore their steps commute, and
are base point preserving for one another.

5.3 Stage III: Linearizability of Read-Only Operations

The final stage in our proof is to show the conditions stated in Theorem 2 hold
for each read-only operation.

Single Non-Preserving Step per Update Operation. First we show that every
update operation of Lazy List has at most one step that is not base point pre-
serving for all read-only operations.

Proof Sketch. We only need to consider update steps, since every other step
in add and remove does not modify the shared memory, and therefore does not
affect any base condition of contains. There are two update steps in an operation.
In add, the first update step allocates a new (unreachable) node. Nodes that
are not reachable from the head of the list do not affect any base condition.
Therefore, only the second step, the one that changes the list, is not base point
preserving for contains.

In remove, the first update step marks the removed node, and the second
makes the node unreachable from the head of the list. Since marked nodes are
treated in every base condition of contains as if they are already detached from
the list, the second update step does not change the truth value of the base
condition of contains. More precisely, if we compare the second update step’s pre-
state to its post-state, they both satisfy the same base conditions of contains’s
return steps.

Concurrent Base Points. Last, we show that in every execution of contains, the
return step of contains has a base point, and that base point occurs between the
pre-state of contains’s invoke step and the pre-state of contains’s return step.

A Constructive Approach for Proving Data Structures’ Linearizability 369

Proof Sketch. When add inserts a new value to the list, it locks the predecessor
node n and the successor m, and verifies that n and m are not marked and that
n.next = m.

Since n or m cannot be removed as long as they are locked, and since nodes
are removed only when their predecessor is also locked, new nodes are not added
to detached parts of the list. This means that every node encountered during a
traversal of the list was reachable from the head at some point.

In addition, if add inserts a value e, it satisfies n.val < e < m.val, since n
and m are locked, and no value other than e is inserted between them before e
is added (this can be proven by induction on executions).

The execution of contains(e) reaches line 6 only after it traverses the list from
its head and reaches the first node c whose value v satisfies e ≤ v. Thus, there
is some concurrent shared state s that occurs after the invocation of contains(e)
in which c is unmarked and reachable from the head of the list. State s is a
base-point of contains(e)’s return step.

6 Discussion

We introduced a constructive methodology for proving correctness of concurrent
data structures and exemplified it with a popular data structure. Our method-
ology outlines a roadmap for proving correctness. While we have exemplified
its use for writing semi-formal proofs, we believe it can be used at any level of
formalism, from informal correctness arguments to formal verification. In partic-
ular, our framework has the potential to simplify the proof structure employed
by existing formal methodologies for proving linearizability [3–7,11,12], thus
making them more accessible to practitioners.

Currently, using our methodology involves manually identifying base condi-
tions, commuting steps, and base point preserving steps. It would be interesting
to create tools for suggesting a base condition for each local state, and identi-
fying the interesting steps in update operations using either static or dynamic
analysis.

Acknowledgments. We thank Naama Kraus, Noam Rinetzky and the anonymous
reviewers for helpful comments and suggestions.

References

1. Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations and
Advanced Topics. John Wiley & Sons (2004)

2. Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency Control and Recov-
ery in Database Systems. Addison-Wesley Longman Publishing Co., Inc., Boston
(1987)

3. Chockler, G.V., Lynch, N.A., Mitra, S., Tauber, J.: Proving atomicity: an asser-
tional approach. In: Fraigniaud, P. (ed.) DISC 2005. LNCS, vol. 3724, pp. 152–168.
Springer, Heidelberg (2005)

370 K. Lev-Ari et al.

4. Colvin, R., Groves, L., Luchangco, V., Moir, M.: Formal verification of a lazy
concurrent list-based set algorithm. In: Ball, T., Jones, R.B. (eds.) CAV 2006.
LNCS, vol. 4144, pp. 475–488. Springer, Heidelberg (2006)

5. Derrick, J., Schellhorn, G., Wehrheim, H.: Verifying linearisability with potential
linearisation points. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664,
pp. 323–337. Springer, Heidelberg (2011)

6. Dongol, B., Derrick, J.: Proving linearisability via coarse-grained abstraction
(2012). CoRR abs/1212.5116

7. Guerraoui, R., Vukolić, M.: A scalable and oblivious atomicity assertion. In: van
Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 52–66.
Springer, Heidelberg (2008)

8. Heller, S., Herlihy, M.P., Luchangco, V., Moir, M., Scherer III, W.N.,
Shavit, N.N.: A lazy concurrent list-based set algorithm. In: Anderson, J.H.,
Prencipe, G., Wattenhofer, R. (eds.) OPODIS 2005. LNCS, vol. 3974, pp. 3–16.
Springer, Heidelberg (2006)

9. Herlihy, M.P., Wing, J.M.: Linearizability: A correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)

10. Lev-Ari, K., Chockler, G., Keidar, I.: On correctness of data structures under reads-
write concurrency. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 273–287.
Springer, Heidelberg (2014)

11. O’Hearn, P.W., Rinetzky, N., Vechev, M.T., Yahav, E., Yorsh, G.: Verifying lin-
earizability with hindsight. In: Proceedings of the 29th ACM SIGACT-SIGOPS
Symposium on Principles of Distributed Computing, PODC 2010, pp. 85–94. ACM,
New York (2010)

12. Vafeiadis, V., Herlihy, M., Hoare, T., Shapiro, M.: Proving correctness of highly-
concurrent linearisable objects. In: Proceedings of the Eleventh ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP 2006,
pp. 129–136. ACM, New York (2006)

13. Vafeiadis, V., Herlihy, M., Hoare, T., Shapiro, M.: A safety proof of a lazy concur-
rent list-based set implementation. Tech. Rep. UCAM-CL-TR-659, University of
Cambridge, Computer Laboratory, January 2006

Modular Verification of Concurrency-Aware
Linearizability

Nir Hemed1, Noam Rinetzky1(B), and Viktor Vafeiadis2

1 Tel Aviv University, Tel Aviv, Israel
maon@cs.tau.ac.il

2 MPI-SWS, Kaiserslautern, Germany

Abstract. Linearizability is the de facto correctness condition for con-
current objects. Informally, linearizable objects provide the illusion that
each operation takes effect instantaneously at a unique point in time
between its invocation and response. Hence, by design, linearizability
cannot describe behaviors of concurrency-aware concurrent objects (CA-
objects), objects in which several overlapping operations “seem to take
effect simultaneously”. In this paper, we introduce concurrency-aware
linearizability (CAL), a generalized notion of linearizability which allows
to formally describe the behavior of CA-objects. Based on CAL, we
develop a thread- and procedure-modular verification technique for rea-
soning about CA-objects and their clients. Using our new technique, we
present the first proof of linearizability of the elimination stack of Hendler
et al. [10] in which the stack’s elimination subcomponent, which is a
general-purpose CA-object, is specified and verified independently of its
particular usage by the stack.

1 Introduction

Linearizability [12] is a property of the externally observable behavior of con-
current objects and is considered the de facto standard for specifying concur-
rent objects. Intuitively, a concurrent object is linearizable if in every execution
each operation seems to take effect instantaneously between its invocation and
response, and the resulting sequence of (seemingly instantaneous) operations
respects a given sequential specification. For certain concurrent objects, however,
it is impossible to provide a useful sequential specification: their behavior in the
presence of concurrent (overlapping) operations is, and should be, observably
different from their behavior in the sequential setting. We refer to such objects
as Concurrency-Aware Concurrent Objects (CA-objects). We show that the tra-
ditional notion of linearizability is not expressive enough to allow for describing
all the desired behaviors of certain important CA-objects without introducing
unacceptable ones, i.e., ones which their clients would find to be too lax.

Providing clear and precise specifications for concurrent objects is an impor-
tant goal and is a necessary step towards developing thread-modular composi-
tional verification techniques, i.e., ones which allow to reason about each thread

c© Springer-Verlag Berlin Heidelberg 2015
Y. Moses (Ed.): DISC 2015, LNCS 9363, pp. 371–387, 2015.
DOI: 10.1007/978-3-662-48653-5 25

372 N. Hemed et al.

separately (thread-modular verification) and to compose the proofs of concur-
rent objects from the proofs of their subcomponents (compositional verification).
Designing such techniques is challenging because they have to take into account
the possible interference by other threads on the shared subcomponents without
exposing the internal structure of the latter.

We continue to describe the notions of CA-objects and CA-linearizability via
examples. A prominent example of a CA-object is the exchanger object (see,
e.g., java.util. concurrent.Exchanger). Exchangers allow threads to pair up
and atomically swap elements so that either both threads manage to swap their
elements or none of them does. Although exchangers are widely used in practice
in genetic algorithms, pipeline designs, and implementations of thread pools and
highly concurrent data structures such as channels, queues, and stacks [10,21,
22,24], they do not have a formal specification, which precludes modular proofs
of their clients. This is perhaps not so surprising: exchangers are CA-objects,
and as we show, they cannot be given a useful sequential specification (see §3).
In order to specify CA-objects, we extend the notion of linearizability: we relax
the requirement that specifications should be sequential, and allow them to be
“concurrency-aware” as in the following informal exchanger specification.

{true} t1 : x = exchange(v1) || t2 : y = exchange(v2) {x = (true, v2) ∧ y = (true, v1)}
{true} t : x = exchange(v) {x = (false, v)}

where the notation t : r = exchange(v) indicates that exchange is invoked
by thread t. This specification says that two concurrent threads t1 and t2 can
succeed in exchanging their values but that a thread can also fail to find a partner
and return back its argument.

We next consider a client of the exchanger, the elimination stack of Hendler
et al. [10]. The elimination stack is comprised of a lock-free stack and an elimina-
tion module (an array of exchangers). It achieves high performance under high
workloads by allowing concurrent pairs of push and pop operations to eliminate
each other and thus reduce contention on the main stack. To verify the correct-
ness of the elimination stack, one needs to ensure that every push operation
can be eliminated by exactly one pop operation, and vice versa, and that the
paired operations agree on the effect of the successful exchange to the observable
behavior of the elimination stack as a whole. We present a reasoning technique
which allows to provide natural specifications for such intricate interactions, and
modularly verify their correct implementation. Intuitively, we instrument the pro-
gram with an auxiliary variable that logs the sets of “seemingly simultaneous”
operations on objects (CA-trace), e.g., pairs of matching successful exchange
operations and singletons of failed ones.

The contributions of this paper can be summarized as follows:
– We identify the class of concurrency-aware objects in which certain opera-

tions should “seem to take effect simultaneously” and provide formal means
to specify them using concurrency-aware linearizability (CAL), a generalized
notion of linearizability built on top of as restricted form of concurrent spec-
ifications.

Modular Verification of Concurrency-Aware Linearizability 373

– We present a simple and effective method for verifying CAL. The unique
aspects of our approach are: (i) The ability to treat a single atomic action as
a sequence of operations by different threads which must execute completely
and without interruptions, thus providing the illusion of simultaneity, and
(ii) Allowing CA-objects built over other CA-objects to define their CA-trace
as a function over the traces of their encapsulated objects, which makes
reasoning about clients straightforward.

– We present the first modular proof of linearizability of the elimination
stack [10] in which (i) the elimination subcomponent is verified indepen-
dently of its particular usage by the stack, and (ii) the stack is verified using
an implementation-independent concurrency-aware specification of the elim-
ination module.

2 Motivating Examples

In this section, we describe an implementation of an exchanger object, which we
use as our running example, and of one of its clients, an elimination stack. In [9],
we describe another client of the exchanger, a synchronous queue [22].

We assume an imperative programming language which allows to implement
concurrent objects using object-local variables, dynamically (heap) allocated
memory and a static (i.e., a priori fixed) number of concurrent subobjects. A pro-
gram is comprised of a parallel composition of sequential commands (threads),
where each thread has its own local variables. Threads share access to the dynam-
ically allocated memory and to a static number of concurrent objects. We assume
that concurrent objects follow a strict ownership discipline: (1) objects can be
manipulated only by invoking their methods; (2) subobjects contained in an
object o can be used only by o, the (unique) concurrent object that contains
them; and (3) there is a strict separation between the parts of the memory used
for the implementation of different objects. The operational semantics of our lan-
guage is standard and can be found in [9]. We denote the object-local variables
of an object o by Vars(o). For readability, we write our examples in a Java-like
syntax.

2.1 Exchanger

Figure 1 shows a simplified implementation of the (wait-free) exchanger object
in the java.util.concurrent library. A client thread uses the exchanger by
invoking the exchange method with a value that it offers to swap. The exchange
method attempts to find a partner thread and, if successful, instantaneously
exchanges the offered value with the one offered by the partner. It then returns
a pair (true,data), where data is the partner’s value of type int. If a partner
thread is not found, exchange returns (false,v), communicating to the client
that the operation has failed. In more detail, an exchange is performed using
Offer objects, consisting of the data offered for exchange and a hole pointer. A

374 N. Hemed et al.

1 class Offer {
2 thread id tid;
3 int data;
4 Offer hole;
5 Offer(thread id t, int d)
6 { tid = t; data = d; hole = null; }
7 }
8 class Exchanger {

9 private Offer g = null;
10 private Offer fail = new Offer(0,0);

11
{TE|tid = T

}

12 (bool,int) exchange(int v) {
13 Offer n = new Offer(tid,v);
14

{

A
}

15 if (CAS(g, null, n)){ // init

16
{

(TE|tid = T ∧ n �→ tid, v, null ∧ g = n) ∨ B(n.hole)
}

17 sleep(50);
18 if (CAS(n.hole, null, fail)) // pass

19
{TE|tid = T

}

20 return (false,v); // fail

21 else
{

B(n.hole)
}

22 return (true,n.hole.data);
23 }
24

{

A
}

25 Offer cur = g;
26

{

A ∧ (g = cur ∨ cur.hole �= null)
}

27 if (cur != null) {
28

{

A ∧ (g = cur ∨ cur.hole �= null) ∧ cur �= null ∧ ¬s
}

29 bool s = CAS(cur.hole, null, n); // xchg

30
{

(¬s ∧ A ∨ s ∧ B(cur)) ∧ cur �= null ∧ cur.hole �= null
}

31 CAS(g, cur, null); // clean

32 if (s)
{

B(cur)
}

33 return (true,cur.data);
34 }
35 return (false,v); // fail
36 }

37
{

(∃t′, v′. ret = (true, v′) ∧ TE|tid = T ·E.swap(tid, v, t′, v′))
∨ (ret = (false, v) ∧ TE|tid = T ·(E.{(tid, ex(v) � false, v)}))

}

38 }

Fig. 1. Implementation of the exchanger CA-object annotated with its proof outline.

successful swap occurs when the hole pointer in the Offer of one thread points
to the Offer of another thread, as depicted in Figure 1(d).

A thread can participate in a swap in two ways. The first way happens when
the thread finds that the value of g is null, as in the state depicted in Figure 1(a).
In this case, the thread attempts to set g to its Offer (line 15) resulting in a state
like the one shown in Figure 1(b). It then waits for a partner thread to match
with (line 17). Upon awakening, it checks whether it was paired with another
thread by executing a CAS on its own hole (line 18). If the CAS succeeds, then a
match did not occur, and setting the hole pointer to point to the fail sentinel
signals that the thread is no longer interested in the exchange. (The resulting
state is depicted in Figure 1(c).) A failed CAS means that another thread has
already matched the Offer and the exchange can complete successfully.

The second way happens when the thread finds at line 15 that g is not null. In
this case, the thread attempts to update the hole field of the Offer pointed to by
g from its initial null value to its own Offer (CAS at line 29). An additional CAS
(line 31) sets g back to null. By doing so, the thread helps to remove an already-
matched offer from the global pointer; hence, the CAS at line 31 is unconditional.
Moreover, this cleanup prevents having to wait for the thread that set g to its
offer; such a wait would compromise the wait-free property of the exchanger.

2.2 Elimination Stack

The elimination stack [10] is a scalable concurrent stack implemented using two
subobjects: a concurrent stack, S, which implements the internal stack data
structure, and an elimination layer, AR. The concurrent stack, S, exposes push()
and pop() methods that perform CAS operations to modify the top of the stack,
and fail if there is any contention on the head of the stack. The elimination layer,

Modular Verification of Concurrency-Aware Linearizability 375

1 class ElimArray {
2 Exchanger[] E = new Exchanger[K];
3 (bool, int) exchange(int data) {
4 int slot = random(0,K-1);
5 return E[slot].exchange(data);
6 } }

7 class Stack {
8 class Cell {int data; Cell next;}
9 Cell top = null;

10 bool push(int data) {
11 Cell h = top;
12 Cell n = new Cell(data, h);
13 return CAS(&top, h, n);
14 }

15 (bool, int) pop() {
16 Cell h = top;
17 if (h == null)
18 return (false, 0); // EMPTY
19 Cell n = h.next;
20 if (CAS(&top, h, n))
21 return (true, h.data);
22 else
23 return (false, 0);
24 } }

25 class EliminationStack {
26 final int POP_SENTINAL = INFINITY;
27 Stack S = new Stack();
28 ElimArray AR = new ElimArray();

29 bool push(int v) {
30 int d;
31 while(true) {
32 bool b = S.push(v);
33 if (b) return true;
34 (b,d) = AR.exchange(v);
35 if (d == POP_SENTINAL)
36 return true;
37 } }

38 (bool, int) pop() {
39 bool b;
40 int v;
41 while(true) {
42 (b,v) = S.pop();
43 if (b) return (true,v);
44 (b,v) = AR.exchange(POP_SENTINAL);
45 if (v != POP_SENTINAL)
46 return (true,v);
47 } }
48 }

Fig. 2. An implementation of the elimination stack of Hendler et al. [10].

AR, essentially acts as an exchanger object, but is implemented as an array of
exchangers to reduce contention.

Figure 2 shows a simplified version of the elimination stack. A pushing,
respectively, popping, thread first tries to perform its operation on the main
stack (lines 32 and 42). If it fails due to contention, it uses the elimination layer
to directly exchange a value with a concurrently executing thread: A pushing
thread invokes AR.exchange (line 34) with its input value as argument, and a
popping thread offers the special value POP SENTINAL (line 44). When push calls
AR.exchange, it randomly selects an array entry within the elimination array’s
range and attempts to exchange a value with another thread. The pushing thread
checks if the return value matches the POP SENTINAL. Symmetrically, a popping
thread that calls AR.exchange checks if the return value is not POP SENTINAL.
Note that the exchange operation might fail. This might happen either because
no exchange took place (the call to exchange returned (false, 0)) or because
the exchange was performed between two threads executing the same operation.
A thread deals with such a failure by simply retrying its operation.

3 Concurrency-Aware Linearizability (CAL)

Linearizability [12] relates (the observable behavior of) an implementation of
a concurrent object with a sequential specification. Both the implementation
and the specification are formalized as prefix-closed sets of histories. A history
H = ψ1ψ2 . . . is a sequence of method invocation (call) and response (return)
actions. Specifications are given using sequential histories, histories in which

376 N. Hemed et al.

(H1)
t1:

t2:

t3:

inv(3) res(4)

inv(4) res(3)

inv(7) res(⊥)

(H2)
t1:

t2:

t3:

inv(3) res(4)

inv(4) res(3)

inv(7)res(⊥)

(H3)

t1:

t2:

t3:

inv(3) res(4)

inv(4) res(3)

inv(7)res(⊥)

time

(P) exchg(3)
︸ ︷︷ ︸

t1

‖ exchg(4)
︸ ︷︷ ︸

t2

‖ exchg(7)
︸ ︷︷ ︸

t3

(SH)

(CAH)

(CH)

Fig. 3. A client program P together with a concurrent history (H1), a CA-history
(H2), and an undesired sequential history (H3). We also show schematic depictions of
a sequential history (SH), a CA-history (CAH), and an arbitrary concurrent history
(CH).

every response is immediately preceded by its matching invocation. Implemen-
tations, on the other hand, allow arbitrary interleaving of actions by different
threads, as long as the subsequence of actions of every thread is sequential.
Informally, a concurrent object OSC is linearizable with respect to a specifica-
tion OSA if every history H in OSC can be explained by a history S in OSA

that “looks similar” to H. The similarity is formalized by a real-time relation
H �RT S, which requires S to be a permutation of H preserving the per-thread
order of actions and the order of non-overlapping operations (execution of meth-
ods) on objects.

We claim that it is impossible to provide a useful sequential specification for
the exchanger. Figure 3 shows a program P which uses an exchanger object and
three histories, where an exchange(n) operation returning value n′ is depicted
using an interval bounded by an “inv(n)” and a “res(n′)” actions. Note that
histories H1 and H2 might occur when P executes, but H3 cannot. Histories H1

and H2 correspond to the case where threads t1 and t2 exchange items 3 and 4,
respectively, and t3 fails to pair up. History H3 is one possible sequential explana-
tion of H1. Using H3 to explain H1 raises the following problem: if H3 is allowed
by the specification then every prefix of H3 must be allowed as well. In particu-
lar, history H ′

3 in which only t1 performs its operation should be allowed. Note
that in H ′

3, a thread exchanges an item without finding a partner. Clearly, H ′
3 is

an undesired behavior. In fact, any sequential history that attempts to explain
H1 would allow for similar undesired behaviors. Indeed, sequential histories can
explain only executions in which all exchange operations fail. We conclude that
any sequential specification of the exchanger is either too restrictive or too loose.

Modular Verification of Concurrency-Aware Linearizability 377

3.1 A Formal Definition of Concurrency-Aware Linearizability

We now formalize the notion of concurrency-aware linearizability. We assume
infinite sets of object names o ∈ O, method names f ∈ F, and threads identifiers
t ∈ T.

Definition 1. An object action is either an invocation ψ = (t, inv o.f(n)) or
a response ψ = (t, res o.f � n). We denote the thread, object, and method of
ψ by tid(ψ) = t, oid(ψ) = o, and fid(ψ) = f , respectively.

Intuitively, an invocation ψ = (t, inv o.f(n)) means that thread t started
executing method f on object o passing n as a parameter, and a response
ψ = (t, res o.f ′ � n) means that the execution of method f ′ terminated with
a return value n.

Definition 2. A history H is a finite sequence of invocations and responses.
A history is sequential if it comprised of an alternation of invocations and
responses starting with an invocation. A history H is well-formed if for every
thread t, H|t is sequential, where H|t is the subsequence of H comprised of
actions of thread t. A history is complete if it is well-formed and every invo-
cation has a matching response. History Hc is a completion of a well-formed
history H if it is complete and can be obtained from H by (possibly) extending
H with some response actions and (possibly) removing some invocation actions.
We denote by complete(H) the set of all completions of H. An object system
is a prefix-closed set of well-formed histories.

Definition 3. The real-time order between actions of a well-formed history
H is an irreflexive partial order ≺H on (indices of) object actions: i ≺H j if
there exists i ≤ i′ < j′ ≤ j such that tid(Hi) = tid(Hi′), tid(Hj) = tid(Hj′),
Hi′ = (, res) and Hj′ = (, inv)).

Essentially, a history records the interaction between the the client program
and the object system. The interaction is recorded at the interface level of the
latter at the point where control passes from the program to the object system
and vice versa. Given two operations, the real-time order determines whether
one operation precedes the other or whether the two are concurrent, i.e., their
executions overlap.

Definition 4 (CA-traces). An operation of a concurrent object o, denoted
by (t, f(n) � n′), is a pair of an invocation (t, inv o.f(n)) and its matching
response(t, res o.f � n′). A concurrency-aware trace T is a sequence of CA-
elements where each CA-element is a pair o.S of an object o and a non-empty
set S of operations of o.

Roughly speaking, every CA-element represents a set of overlapping oper-
ations on one object and a CA-trace is a sequence of such sets. CA-
traces provide a uniform representation of complete histories where opera-
tions may only overlap in a pairwise manner. For example, the CA-element

378 N. Hemed et al.

o.{(t1, f1(n1) � r1), . . . , (tk, fk(nk) � rk)} represents, among others, the history
((t1, inv o.f1(n1))· . . . ·(tk, inv o.fk(nk))· (t1, res o.f1 � r1)· . . . ·(tk, res o.fk � rk)).

Given a CA-trace T , the projection of T to a thread t, denoted by T |t, is
the subsequence of CA-elements of T mentioning t. Note that the projection of
a trace T to thread t returns not only the operations of t but also all operations
of other threads that are concurrent with some operation of thread t. Similarly,
T |o denotes the subsequence of CA-elements of T mentioning o.

Let H be a complete history, and i and j indices of an invoke action
Hi = (t, inv o.f(n)) and of its matching response Hj = (t, res o.f �n′). The oper-
ation pertaining to Hi, denoted by OP(H, i), is (t, f(n) � n′). Let J ⊆ {1..H}
be a set of indices of actions in H which operate on the same object o, i.e.,
∀j ∈ J. oid(Hj) = o. The operation set corresponding to J in H, denoted by
OPSet(H,J), is o.{OP(H, j) | j ∈ J}.

Definition 5. A complete history H agrees with a CA-trace T , denoted by
H �CAL T , if there is a surjective function π : {i | 1 ≤ i ≤ |H| ∧ Hi =
(, inv)} → {1..|T |} such that

∀i, j. (i ≺H j =⇒ π(i) < π(j)) ∧ ∀k ∈ {1, · · · , |T |}. Tk = OPSet(H, {m | π(m) = k}) .

Intuitively, a complete history H agrees with a CA-trace T if every operation
in H appears in one CA-element of T , and vice versa. Furthermore, the real-
time order between the operations in H must be included in the order of the
CA-elements of T that they appear in (i.e., T must preserve the order of any
operations ordered according to H).

Formally, concurrency-aware linearizability of an object system is described
by relating each of its histories to a corresponding CA-trace:

Definition 6 (Concurrency-Aware Linearizability). We say that an object
system, OS, is concurrency-aware linearizable (CAL) with respect to a set
of CA-traces, T , if ∀H ∈ OS.∃Hc ∈ complete(H).∃T ∈ T . Hc �CAL T .

Thus, a CA-linearizable object is one that every interaction with it can be
“explained” by a CA-trace adhering to its specification.

Note. In [8], we formalized the notion of concurrency-aware linearizability in
terms of a relation between sets of histories. The novelty there was that the spec-
ification was comprised of concurrency-aware histories (CA-histories) instead
of sequential ones. Informally, a CA-history allows for operations of different
threads to overlap, as long as they overlap in a pairwise manner: An invoke
action can follow a response action only if the latter appears at the end a com-
plete history. As a result, a CA-histories can be seen as a sequence of sets of
concurrent operations where each set is an equivalence class with respect to the
real-time order. In this paper, we found that it is more convenient to work with
CA-traces, which provide an equivalent alternative presentation of complete CA-
histories that is insensitive to the order of actions of overlapping operations.

Modular Verification of Concurrency-Aware Linearizability 379

4 Specifying Concurrency-Aware Concurrent Objects

In this section, we gradually develop our approach for providing logical (sym-
bolic) specifications of CA-objects by applying it to the exchanger. An accu-
rate specification of the exchanger is one where every successful exchange corre-
sponds to the overlapping of exactly the two operations that participated in the
exchange, while an unsuccessful exchange, i.e., one that returns (false,), does
not overlap with any other operation. Formally, the specification of an exchanger
object E can be given as the set of CA-traces S1S2S3 · · · where each CA-element
Si is either

– E.{(t, ex(v)� true, v′), (t′, ex(v′)� true, v)} for some t, t′, v, v′ such that t �= t′

(which in the following we will abbreviate as E.swap(t, v, t′, v′)), or
– E.{(t, ex(v) � false, v)} for some thread t and value v.

This specification, however, has a very global nature and is therefore cumbersome
to use when reasoning about a particular exchange.

What we would like is a local way to specify CA-objects that is amenable to
logical (syntactic) treatment. Our idea is to specify the effect of individual oper-
ations using Hoare triples [13], as is common in the sequential setting. Indeed,
Herlihy and Wing [12] have also adopted this approach to describe the set of
histories in the sequential specification of linearizable concurrent objects. Can
we provide such a specification to the exchanger?

As a first attempt, consider the concurrent specification shown in §1. This
specification states that only two threads that execute exchange() concurrently
can match and successfully swap elements, while a thread that failed to find a
partner fails to swap.

This specification may appear intuitive, but it is difficult to give it a formal
meaning. The standard interpretation of Hoare triples is insufficient, because it
precludes thread-modular compositional reasoning. The most obvious problem
is that it is not possible to reason about the body of one thread in a sequen-
tial manner because the specification explicitly contains the parallel composition
operator. A second problem is that it is difficult to adapt the concurrent specifi-
cation of the exchange operations to an agreed asymmetric view in the context
in which it is used. For example, when verifying the elimination stack, we would
like to pretend that the exchange operation of the pushing thread happens right
before that of the popping thread. This would allow to correctly interpret the
simultaneous exchange operations as an elimination of a push(n) operation by
a pop() which returns n.

To overcome the first problem, we extend the specification with an auxiliary
variable TE recording the CA-trace witnessing that the exchanger is CAL. The
specification of the exchange operation says that if initially the recorded trace
was T , then after the exchange operation, it contains one more CA-element,
corresponding either to the successful exchange if exchange() returns true or
to the unsuccessful exchange otherwise.

{TE|tid = T} tid : ret = E.exchange(v){
(∃t′, v′. ret = (true, v′) ∧ TE|tid = T ·E.swap(tid, v, t′, v′) ∧ t′ �= tid)
∨ (ret = (false, v) ∧ TE|tid = T ·(E.{(tid, ex(v) � false, v)}))

}

380 N. Hemed et al.

Note that in the precondition and the postcondition, we do not describe the
contents of the entire trace, but rather only of its projection to the current
thread. We do so because there may be other exchanges running concurrently
to the specified exchange, which may also append CA-elements to the recorded
trace. To ensure that our specification is usable in a concurrent setting, we thus
ensure that the precondition and postcondition are stable under interference from
other threads, i.e., that concurrent operations cannot invalidate these assertions.

To address the second problem, we only need to perform a minor change. We
do not change the specification as such, only the understanding of the auxiliary
variable TE. Instead of having for each object one auxiliary variable that records
its CA-trace, we have one global auxiliary variable T that records the CA-traces
for all the objects, and define TE to be the view of T according to object E. Our
key idea is to let the exchanger module define TE as a function of T . For the
exchanger, we simply define TE to be the projection of T to the CA-elements of
the exchanger (i.e., TE = T |E).

Logging the Object Interaction Using an Auxiliary History Variable.
To specify and verify CAL, we instrument the program with an auxiliary variable
T that records the CA-trace that is equivalent to a given concurrent history. Our
idea is to add auxiliary assignments to the programs that append CA-elements
to T at the appropriate points.

Since multiple objects can manipulate T , the specification of an object o
should not directly mention o, but rather its view on T , which we denote as
To. A simple choice would be to define this view to be T |o, the projection of
the trace to the CA-elements of object o. While this works for objects that do
not depend on subobjects, it does not enable compositional verification of higher-
level objects. The reason is that the desired equivalent CA-trace of a higher-level
object is typically determined by the CA-traces of its subobjects. If, however,
we want to verify an object compositionally, we are not allowed to peek into the
implementations of its subobjects in order to add auxiliary assignments to T .

Instead, we require for each object o to provide a function Fo from the CA-
elements of its immediate subobjects to CA-traces containing only operations
for o. Given such a function Fo, we define its total extension F̂o as the function
that given an element a returns Fo(a) if this is defined or a otherwise. Note that
F̂o is idempotent and that for disjoint objects o and o′, F̂o ◦ F̂o′ = F̂o′ ◦ F̂o. Next,
we define Fo to recursively apply F̂oi for all objects oi encapsulated by o. This
is defined by induction on the object nesting depth. At each level, if o depends
on objects o1, . . . , on, we define Fo � F̂o ◦ (Fo1 ◦ . . . ◦ Fon). Again, because of
encapsulation, the order in which Fo1 to Fon are composed does not matter.
Finally, define To � Fo(T).

Encoding Interference and Cooperation Using Rely-Guarantee Con-
ditions. Next, since the exchange operations are concurrent, we cannot merely
give a sequential specification in Hoare logic, but instead use rely/guarantee
reasoning [15], a more expressive formalism that allows expressing concurrent

Modular Verification of Concurrency-Aware Linearizability 381

specifications. In rely/guarantee, each program C is specified not only by a
precondition P and a postcondition Q, but also by a rely condition R and a
guarantee condition G, which we have written as R,G � {P} C {Q}. These
rely/guarantee conditions are parameterized by thread identifiers and describe
the interaction between threads. For a thread t, the rely condition Rt records
the interference that t might incur from the other threads, while the guarantee
Gt records the effect t is allowed to have on other threads. Rely/guarantee gives
thread-modular reasoning as it exposes the interaction between threads without
referring to the code of other threads.

Internally, in the verification of the exchanger, these conditions will correlate
the concrete state manipulated by the algorithm and the recorded history. For
example, they require that when a thread successfully modifies the g.hole to
point to its own offer, it also logs in T a CA-element which records the successful
exchange (see §5).

From the client’s perspective, however, the internal definitions of Rtid and
Gtid are irrelevant. For them to be usable, however, they should adhere to a few
minimal constraints, which are common for any object o:

– For every two distinct threads t �= t′, we should have Gt ⇒ Rt′
. This is

the standard requirement in rely/guarantee reasoning ensuring that multiple
methods of o may be invoked in parallel.

– The methods of o may only modify the auxiliary history variable, T , the
parts of the memory used in its own representation, and (via method calls)
the state of its concurrent subobjects. Moreover, they may only append onto
T entries corresponding to o and its encapsulated objects, and pertaining
only to threads currently executing one of its methods. Formally, this is

Gt ⇒ (∃T. T =
↼−T ·T ∧ T = T |o = T |t ∧ ∀x /∈ {h} ∪Vars(o). x = ↼−x), where

we use the hook arrow notation to represent the value of a program variable
in prior state.

– The object o does not assume anything about the private state of other
objects, and allows them to extend the auxiliary history variable, T . For-
mally, we require that irrelevantt

o ⇒ Rt where irrelevant
t
o � ∃T. To =

↼−To ·T ∧ T |t = T |o = ε ∧ (∀x ∈ Vars(o). x = ↼−x).
Finally, since there are may be multiple threads running concurrently, the pre-
condition and postcondition of the exchange method, we take the projection of
TE to the thread of interest (i.e., TE|tid). As is standard in Hoare logic, we use
the logical variable T to record the initial value of TE|tid.

Stack Specification. The specification of the elimination stack as well as the
ordinary concurrent stack it contains is expressed in a similar style. Technically,
we say that a sequential history of stack operations is well-defined over an initial
stack, if executing the (successful) operations in order is possible and yields the
same results for the pop operations. A history is well-formed with respect to the
stack object, denoted WFS(H), if H|S is a sequential well-defined history over
the empty initial stack. The specifications for the stack methods f ∈ {push, pop}

382 N. Hemed et al.

are:

Rt, Gt � {WFS(TS)∧TS|t = H} t : r := S.f(n) {WFS(TS)∧TS|t = H·(S.{(t, f(n)�r)})}

The abstract value of a concurrent object, if needed (e.g., to determine the
result of a pop() operation), can be “computed” by replaying the logged actions.

5 Verifying the Exchanger and the Elimination Stack

In this section, we prove that the elimination stack is linearizable by verifying
each of objects—the exchanger, the elimination array, the central stack, and
the elimination stack—modularly. For space reasons, we only present the key
ingredients of the proof. The full proofs can be found in [9].

We start with the elimination array, whose correctness is the simplest to
demonstrate. The elimination array, AR, encapsulates an array of exchanger
objects E[0], . . . , E[K-1] and exposes the same specification as a single
exchanger. To verify that it conforms to its specification, we define the FAR func-
tion as FAR(E[i].S) � (AR.S), i.e., an exchange done by any of AR’s exchanger
subobjects is converted to look like an exchange on the elimination array. This
hides the implementation of the elimination array from its clients, in our case, the
elimination stack. To verify the implementation of the elimination array, we pick
the rely condition to be the conjunction of all the rely conditions of the encapsu-
lated objects, Rt

AR �
∧

i RE[i], and the guarantee condition to be the disjunction
of the corresponding guarantee conditions, Gt

AR �
∨

i G
t
E[i]. The postcondition of

AR.exchange follows directly from the postcondition of E[slot].exchange by
observing that hAR = FAR(hE[slot]).

Verifying that the central stack is a straightforward proof of linearizability,
and we omit it for brevity. Next, we consider the elimination stack assuming that
the central stack, S, and the elimination array, AR, satisfy their specifications.
Given our setup, this proof is also straightforward. The key step is to define the
function FES correctly:

FES((S.(t, push(n) � true))) � ((ES.(t, push(n) � true)))

FES((S.(t, pop() � true, n))) � ((ES.(t, pop() � true, n)))

FES

(

AR.

{
(t, ex(n) � true,∞),
(t′, ex(∞) � true, n)

})

� (ES.(t, push(n) � true)) ·
(ES.(t′, pop() � true, n)) provided n �= ∞

FES(S.) � ε FES(AR.) � ε

This function picks as linearization points the successful pushes and pops of S,
as well as a successful exchange where the exchanged values are ∞ and n �= ∞.
In the latter case, the push is linearized before the pop. All other operations are
ignored.

Modular Verification of Concurrency-Aware Linearizability 383

init
t � [∃n. ↼−g = null ∧ n.tid = t ∧ n.hole = null ∧ g = n]g

clean
t � [↼−g .hole �= null ∧ g′ = null]g

pass
t � [g

↼−−
.hole = null ∧ g.tid = t ∧ g.hole = fail]g.hole

xchg
t �
[
∃n �= fail . n.tid = t ∧ g

↼−−
.hole = null ∧ g.tid �= t ∧ g.hole = n ∧

T =
↼−T ·E.swap(g.tid, g.data, t, n.data)

]
g.hole,T

fail
t �
[
∃d. T =

↼−T ·(E.{(t, ex(d) � false, d)})
]

T
Gt

E � (initt ∨ clean
t ∨ pass

t ∨ xchg
t ∨ fail

t) Rt
E � (irrelevanttE ∨ ∃t′ �= t. Gt′

ex)

J � ∀t. g �= null ∧ g.hole = null =⇒ InE(g.tid)

A � TE|tid = T ∧ (g = null ∨ g.hole �= null ∨ g.tid �= tid) ∧ n �→ tid, p, null

B(k) � (k �= null ∧ k.tid �= tid ∧ TE|tid = T ·E.swap(tid, p, k.tid, k.data))

Fig. 4. Rely/guarantee conditions and assertions used for the exchanger proof.

5.1 Verifying the Exchanger

We move on to the verification of the exchanger, which is more challenging than
that of its clients. As the exchanger does not encapsulate other objects besides
memory cells, we take FE to be the completely undefined function, which means
that TE = T |E. The proof outline is shown in Figure 1. The proof uses two forms
of auxiliary state. First, we instrument the code with assignments to the history
variable, T , which appears in the specification of the exchanger. We instrument
the code with assignments to T at the successful CAS on line 29 and at the
return statements on line 35. (The exact assignments we add can be read from
the corresponding actions in Figure 4.) Second, we extend the Offer class with
an auxiliary field tid to record the identifier of the thread that allocated the
offer object. This field is used to ensure that the auxiliary assignment to T in
the xchg action records the correct thread identifiers.

Figure 4 defines the rely/guarantee conditions that are used in the proof.
Following the trend in modern program logics [5,26], the rely/guarantee condi-
tions are defined in terms of actions corresponding to the individual shared state
updates performed. Here, actions are parametrized by the thread t performing
the action. The first four actions describe the effects of the algorithm’s CAS
operations to the shared state, when they succeed. They modify g or g.hole and
in the case of xchg also the auxiliary history variable h. The fail action records
the auxiliary assignments to h for failed exchanges, while irr is a ‘frame’ action
allowing other objects to append their events to h. Discarding the effects to the
memory cells encapsulated by the exchanger (i.e., restricting attention to the
variable h), the actions match those in the exchanger specification.

Figure 4 also defines the global invariant J saying that g cannot contain an
unsatisfied offer of a thread not currently participating in the exchange, and two
assertions A and B that will be used in the proof outline. We write n �→ t, d,m
as an abbreviation for n.tid = t ∧ n.data = d ∧ n.hole = m. We note that J is
stable both under the rely and guarantee conditions and we implicitly assume it
to hold throughout execution.

384 N. Hemed et al.

We now proceed to the proof outline in Figure 1. Thanks to the encapsulated
nature of concurrent objects in our programming language, we may assume that
just before the start of the function ¬InE(tid) holds, i.e., that thread tid is
not executing a function of E. Hence, from invariant J , we can deduce that
g = null ∨ g.hole = null ∨ g.tid �= tid. Then after allocating the offer object,
we have the assertion A. The assertion states that the thread has not performed
its operation yet, which is implied by TE|tid = T , and that no other thread can
access the newly allocated offer.

If the initialization CAS succeeds at line 15, we know that g = n ∧ g.hole =
null ∧ TE|tid = T . This assertion, however, is not stable because another thread
can come along and modify g.hole, i.e., performs the xchg action. If this happens,
then it would have made n.hole non-null and extend the history appropriately
(i.e., B(n.hole) will hold). Therefore, at line 16, the disjunction of these two
assertions holds: Either an exchange has not happened, and then n.hole = null,
or that it was done by some other thread, and then B(b.hole) holds.

The CAS at line 18 checks which of the above cases hold: If it succeeds, it
means that waiting passively for a partner thread did not pan out. This failure,
indicated by the ability to set n.hole to fail , is manifested in the history by
extending it with the failed operation (action pass

t). If the CAS failed than the
wait did work out. Specifically, because a thread can modify the hole field of an
offer of anther thread only when it can justify it using the xchg action, which
implies that the partner thread has also logged the successful exchange in the
history variable.

Otherwise, if the initialization CAS fails, the algorithm reads g into the local
variable cur at line 25. After this, we cannot assert that g = cur because another
thread may have modified g in the meantime. For this to happen, however, we
know that cur.hole must be non-null; thus the disjunction g = cur∨g.hole �= null
is stable. Then, if cur is non-null, the algorithm performs a CAS at line 29 trying
to satisfy the exchange offer made by cur.tid. If the CAS succeeds, we know that
cur = g at the point that the CAS succeeded, and thus we can perform action
xchg and get the postcondition B(cur). Whether the CAS succeeds or not,
afterwards at line 30, we know that cur.hole �= null, which allows us to satisfy
the precondition of the clean action corresponding to the final CAS operation.

6 Related Work

Neiger [18] proposed set-linearlizability as a means to unify specification of
concurrent objects with task solutions. The main idea is to linearize concur-
rent operations against (a sequence of) sets of simultaneous operations. Neiger
showed that set-linearizability is expressive enough to provide a specification
for certain important tasks e.g., for Borowsky and Gafni’s immediate atomic
snapshot objects [2]. The notion of concurrency-aware lineraizabiity is simi-
lar to set-linearizability. Neiger, however, neither provides a formal definition
of set-linearizability nor a syntactic approach to define concurrent specifica-
tions. Also, Neiger does not provide a proof technique that takes advantage

Modular Verification of Concurrency-Aware Linearizability 385

of set-linearizability. In contrast, we develop a modualr proof the more general
specification. In contrast, we develop all a formal proof technique for verify-
ing concurrency-aware linearizability and employ it to produce the first com-
positional proof of a CA-object and of its client, namely the exchanger and
the elimination stack [10]. Castaneda et al. [3] showed that set-linearizability
cannot express certain tasks, e.g., write snapshot, and extended it to interval-
linearizability which allows for arbitrary concurrent specification.

Linearizability is shown to be equivalent to observational refinement [7]. The
equivalence was shown to hold even when the specification is not sequential.
Thus, a direct implication of their result is that concurrency-aware linearizability
also ensures observational refinement.

The idea of elimination was introduced in [24], where it was used to con-
struct pools and queues using trees. Example for other CA-linearizable concur-
rent objects can be found in [1,11,17,22].

Scherer et al. present a family of dual-data structures [14] which support
“operations that must wait for some other thread to establish a precondition”.
Linearizability of dual-data structures is established by explicitly specifying a
“request” and “follow-up” observable checkpoints within the object’s purview,
each with its own linearization point. Dual-data structures are in fact CA-objects.
We believe that using CA-histories to describe the behavior of dual data structure
would help streamline their specification as it would obviate the need to specify
two linearization points.

Vafeiadis [26] gives a thread modular proof for a variant of the HSY stack
using RGSep [26], an extension of separation logic [19] to reason about fine-
grained concurrency. His proof is not compositional as the reasoning about the
elimination module is coupled with the reasoning about the stack. In particular,
the elimination module is not given a context-independent specification. Dragoi
et al. [6] present a technique for automatically verifying linearizability for concur-
rent objects are where the linearization points may be is in the body of another
thread. Their technique rewrites the program to introduce combined methods
whose linearization points are easy to find. They verified the elimination stack
by introducing a new method push+pop, which simulates the elimination. As
a result, their proof is inherently non compositional. In contrast, we allow for
compositional proofs by (i) providing usage-context specifications for CA-object
objects, (ii) allowing clients to interpret operations that seem to happen in the
same point in time as an imaginary sequence of abstract operations, (iii) hiding
operations on subobjects from clients of their containing object.

Sergey et al. [23] present a framework for verifying linearizability of highly
concurrent data structures using time-stamped histories and subjective states,
and used it to verify Hendler et al.’s flat combining algorithm. Their approach
allows to hide the inter-thread interaction in the algorithm, but does not allow,
at least by its current instantiations, to verify CA-linearizability. Schellhorn et
al. [20] proved that backward simulation is complete for verification linearizabil-
ity; it would be interesting to see if their result extends to CAL.

386 N. Hemed et al.

A novel feature of our proof technique is that it allows to relate a single con-
crete atomic step done by one thread with a sequence of abstract steps done by
multiple threads. Our approach stands in contrast with the standard technique of
using atomicity abstraction [4,16,23,25], which allows to relate several concrete
atomic actions with a single abstract step executed by one thread.

Acknowledgments. This research was sponsored by the EC FP7 FET project
ADVENT (308830) and by Broadcom Foundation and Tel Aviv University Authen-
tication Initiative.

References

1. Afek, Y., Hakimi, M., Morrison, A.: Fast and scalable rendezvousing. Distributed
Computing 26(4), 243–269 (2013)

2. Borowsky, E., Gafni, E.: Immediate atomic snapshots and fast renaming. In:
Anderson, J., Toueg, S. (eds.) PODC (1993)

3. Castaneda, A., Rajsbaum, S., Raynal, M.: Specifying concurrent problems: beyond
linearizability and up to tasks. In: DISC (2015)

4. da Rocha Pinto, P., Dinsdale-Young, T., Gardner, P.: TaDA: a logic for time and
data abstraction. In: Jones, R. (ed.) ECOOP 2014. LNCS, vol. 8586, pp. 207–231.
Springer, Heidelberg (2014)

5. Dinsdale-Young, T., Dodds, M., Gardner, P., Parkinson, M.J., Vafeiadis, V.: Con-
current abstract predicates. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183,
pp. 504–528. Springer, Heidelberg (2010)

6. Drăgoi, C., Gupta, A., Henzinger, T.A.: Automatic linearizability proofs of con-
current objects with cooperating updates. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 174–190. Springer, Heidelberg (2013)

7. Filipovic, I., O’Hearn, P., Rinetzky, N., Yang, H.: Abstraction for concurrent
objects. Theor. Comput. Sci. 411(51–52) (2010)

8. Hemed, N., Rinetzky, N.: Brief announcement: concurrency-aware linearizability.
In: Halldórsson, M.M., Dolev, S. (eds.) PODC, pp. 209–211. ACM (2014)

9. Hemed, N., Rinetzky, N., Vafeiadis, V.: Modular verification of concurrency-aware
linearizability (2015). http://www.cs.tau.ac.il/nirh/disc15-ext.pdf

10. Hendler, D., Shavit, N., Yerushalmi, L.: A scalable lock-free stack algorithm. In:
SPAA (2004)

11. Hendler, D., Incze, I., Shavit, N., Tzafrir, M.: Scalable flat-combining based syn-
chronous queues. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS,
vol. 6343, pp. 79–93. Springer, Heidelberg (2010)

12. Herlihy, M., Wing, J.M.: Linearizability: A correctness condition for concurrent
objects. Trans. Program. Lang. Syst. 12(3), 463–492 (1990)

13. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969)

14. Scherer III, W.N., Scott, M.L.: Nonblocking concurrent data structures with con-
dition synchronization. In: Guerraoui, R. (ed.) DISC 2004. LNCS, vol. 3274,
pp. 174–187. Springer, Heidelberg (2004)

15. Jones, C.B.: Specification and design of (parallel) programs. In: IFIP Congress
(1983)

http://www.cs.tau.ac.il/ nirh/disc15-ext.pdf

Modular Verification of Concurrency-Aware Linearizability 387

16. Jung, R., Swasey, D., Sieczkowski, F., Svendsen, K., Turon, A., Birkedal, L.,
Dreyer, D.: Iris: monoids and invariants as an orthogonal basis for concurrent
reasoning. In: POPL (2015)

17. Moir, M., Nussbaum, D., Shalev, O., Shavit, N.: Using elimination to implement
scalable and lock-free fifo queues. In: SPAA, pp. 253–262. ACM (2005)

18. Neiger, G.: Set-linearizability. In: Anderson, J.H., Peleg, D., Borowsky, E. (eds.)
PODC 1994, pp. 396–396. ACM (1994)

19. O’Hearn, P.W., Reynolds, J.C., Yang, H.: Local reasoning about programs that
alter data structures. In: Fribourg, L. (ed.) CSL 2001 and EACSL 2001. LNCS,
vol. 2142, p. 1. Springer, Heidelberg (2001)

20. Schellhorn, G., Derrick, J., Wehrheim, H.: A sound and complete proof technique
for linearizability of concurrent data structures. ACM Trans. Comput. Logic 15(4)
(2014)

21. Scherer III, W.N., Lea, D., Scott, M.L.: A scalable elimination-based exchange
channel. SCOOL (2005)

22. Scherer III, W.N., Lea, D., Scott, M.L.: Scalable synchronous queues. In: Torrellas,
J., Chatterjee, S. (eds.) PPoPP 2006, pp. 147–156. ACM (2006)

23. Sergey, I., Nanevski, A., Banerjee, A.: Specifying and verifying concurrent algo-
rithms with histories and subjectivity. In: Vitek, J. (ed.) ESOP 2015. LNCS,
vol. 9032, pp. 333–358. Springer, Heidelberg (2015)

24. Shavit, N., Touitou, D.: Elimination trees and the construction of pools and stacks.
Theory Comput. Syst. 30(6), 645–670 (1997)

25. Svendsen, K., Birkedal, L.: Impredicative concurrent abstract predicates. In: Shao,
Z. (ed.) ESOP 2014 (ETAPS). LNCS, vol. 8410, pp. 149–168. Springer, Heidelberg
(2014)

26. Vafeiadis, V.: Modular fine-grained concurrency verification. Ph.D. thesis, Univer-
sity of Cambridge (2008)

Transaction Chopping for Parallel
Snapshot Isolation

Andrea Cerone1, Alexey Gotsman1(B), and Hongseok Yang2

1 IMDEA Software Institute, Madrid, Spain
{andrea.cerone,alexey.gotsman}@imdea.org

2 University of Oxford, Oxford, UK
Hongseok.Yang@cs.ox.ac.uk

Abstract. Modern Internet services often achieve scalability and avail-
ability by relying on large-scale distributed databases that provide
consistency models for transactions weaker than serialisability. We inves-
tigate the classical problem of transaction chopping for a promising con-
sistency model in this class—parallel snapshot isolation (PSI), which
weakens the classical snapshot isolation to allow more efficient large-
scale implementations. Namely, we propose a criterion for checking when
a set of transactions executing on PSI can be chopped into smaller pieces
without introducing new behaviours, thus improving efficiency. We find
that our criterion is more permissive than the existing one for chopping
serialisable transactions. To establish our criterion, we propose a novel
declarative specification of PSI that does not refer to implementation-
level concepts and, thus, allows reasoning about the behaviour of PSI
databases more easily. Our results contribute to building a theory of
consistency models for modern large-scale databases.

1 Introduction

Modern Internet services often achieve scalability and availability by relying on
databases that replicate data across a large number of nodes and/or a wide geo-
graphical span [18,22,25]. The database clients can execute transactions on the
data at any of the replicas, which communicate changes to each other using
message passing. Ideally, we want this distributed system to provide strong
guarantees about transaction processing, such as serialisability [9]. Unfortu-
nately, achieving this requires excessive synchronisation among replicas, which
increases latency and limits scalability [1,15]. For this reason, modern large-scale
databases often provide weaker consistency models that allow non-serialisable
behaviours, called anomalies. Recent years have seen a plethora of consistency
model proposals that make different trade-offs between consistency and per-
formance [6,7,20,22]. Unfortunately, whereas transactional consistency models
have been well-studied in the settings of smaller-scale databases [2,13,21] and
transactional memory [5,12,14,16], models for large-scale distributed databases
are poorly understood. In particular, we currently lack a rich theory that would
guide programmers in using such models correctly and efficiently.
c© Springer-Verlag Berlin Heidelberg 2015
Y. Moses (Ed.): DISC 2015, LNCS 9363, pp. 388–404, 2015.
DOI: 10.1007/978-3-662-48653-5 26

Transaction Chopping for Parallel Snapshot Isolation 389

(a) Original transactions.

txn lookup(acct) {

return acct.balance; }

txn transfer(acct1,acct2,amnt) {

acct1.balance -= amnt;

acct2.balance += amnt; }

(c) An additional transaction making
the chopping incorrect.

txn lookup2(acct1,acct2) {

return acct1.balance+acct2.balance }

(b) A chopping of transfer (lookup is
left as is).

txn withdraw(acct,amnt) {

acct.balance -= amnt; }

txn deposit(acct,amnt) {

acct.balance += amnt; }

chain transfer(acct1,acct2,amnt)

{ withdraw(acct1,amnt);

deposit(acct2,amnt); }

Fig. 1. Example of chopping transactions.

In this paper we make a step towards building such a theory by investigating
the classical problem of transaction chopping [21] for a promising consistency
model of parallel snapshot isolation (PSI) [22]. PSI weakens the classical snapshot
isolation (SI) [8] in a way that allows more efficient large-scale implementations.
Like in SI, a transaction in PSI reads values of objects in the database from
a snapshot taken at its start. Like SI, PSI precludes write conflicts: when two
concurrent transactions write to the same object, one of them must abort. A
PSI transaction initially commits at a single replica, after which its effects are
propagated asynchronously to other replicas. Unlike SI, PSI does not enforce a
global ordering on committed transactions: these are propagated between repli-
cas in causal order. This ensures that, if Alice posts a message that is seen by
Bob, and Bob posts a response, no user can see Bob’s response without also see-
ing Alice’s original post. However, causal propagation allows two clients to see
concurrent events as occurring in different orders: if Alice and Bob concurrently
post messages, then Carol may initially see Alice’s message, but not Bob’s, and
Dave may see Bob’s message, but not Alice’s.

A common guideline for programmers using relational databases and trans-
actional memory is to keep transactions as short as possible to maximise perfor-
mance; long transactions should be chopped into smaller pieces [3,21,24]. This
advice is also applicable to PSI databases: the longer a transaction, the higher
the chances that it will abort due to a write conflict. Unfortunately, the subtle
semantics of PSI makes it non-trivial to see when a transaction can be chopped
without introducing undesirable behaviours. In this paper, we determine condi-
tions that ensure this. In more detail, we assume that the code of all transactions
operating on the database is known. As a toy example, consider the transactions
in Figure 1(a), which allow looking up the balance of an account acct and trans-
ferring an amount amnt from an account acct1 to an account acct2 (with a
possibility of an overdraft). To improve the efficiency of transfer, we may chop
this transaction into a chain [25] of smaller transactions in Figure 1(b), which the

390 A. Cerone et al.

database will execute in the order given: a withdraw transaction on the account
acct1 and a deposit transaction on the account acct2. This chopping is correct
in that any client-observable behaviour of the resulting chains could be produced
by the original unchopped transactions. Intuitively, even though the chopping in
Figure 1(b) allows a database state where amnt is missing from both accounts,
a client cannot notice this, because it can only query the balance of a single
account. If we added the transaction lookup2 in Figure 1(c), which returns the
sum of the accounts acct1 and acct2, then the chopping of transfer would
become incorrect: by executing lookup2 a client could observe the state with
amnt missing from both accounts.

We propose a criterion that ensures the correctness of a given chopping of
transactions executing on PSI (§5). Our criterion is weaker than the existing
criterion for chopping serialisable transactions by Shasha et al. [21]: weaken-
ing consistency allows more flexibility in optimising transactions. Recent work
has shown that transactions arising in web applications can be chopped in a
way that drastically improves their performance when executed in serialisable
databases [19,25]. Our result enables bringing these benefits to databases pro-
viding PSI.

A challenge we have to deal with in proposing a criterion for transaction chop-
ping is that the specification of PSI [22] is given in a low-level operational way,
by an idealised algorithm formulated in terms of implementation-level concepts
(§2). This complicates reasoning about the behaviour of an application using a
PSI database and, in particular, the correctness of a transaction chopping. To
deal with this problem, we propose an alternative axiomatic specification of PSI
that defines the consistency model declaratively by a set of axioms constraining
client-visible events (§3). We prove that our axiomatic specification of PSI is
equivalent to the existing operational one (§4). The axiomatic specification is
instrumental in formulating and proving our transaction chopping criterion.

2 Operational Specification of PSI

We first present an operational specification of PSI, which is a simplification of
the one originally proposed in [22]. It is given as an idealised algorithm that
is formulated in terms of implementation-level concepts, such as replicas and
messages, but nevertheless abstracts from many of the features that a realistic
PSI implementation would have.

We consider a database storing objects Obj = {x, y, . . .}, which for simplicity
we assume to be integer-valued. Clients interact with the database by issuing
read and write operations on the objects, grouped into transactions. We
identify transactions by elements of TId = {t0, t1, . . .}. The database system
consists of a set of replicas, identified by RId = {r0, r1, . . .}, each maintaining
a copy of all objects. Replicas may fail by crashing.

All client operations within a given transaction are initially executed at a
single replica (though operations in different transactions can be executed at
different replicas). When a client terminates the transaction, the replica decides

Transaction Chopping for Parallel Snapshot Isolation 391

operation start: operation receive(l): operation abort:
requires Current[r] = ε requires Current[r] = ε requires
t := (unique identifier from TId) requires l = (t, start) · Current[r] =
Current[r] := (t, start) Committed[r] = Committed[r] · l (t, start) ·

Current[r] := ε

operation write(x, n): operation commit:
requires Current[r] = (t, start) · requires Current[r] = (t, start) ·
Current[r] := Current[r] · (t, write(x, n)) requires ¬∃x, r′, t′. ((t, write(x,)) ∈ Current[r]) ∧

(r �= r′) ∧ ((t′, write(x,)) ∈ Committed[r′]) ∧
operation read(x, n): ((t′, start) �∈ Committed[r])

requires Current[r] = (t, start) · send Current[r] to all other replicas
requires write(x, n) is the last write to x Committed[r] := Committed[r] · Current[r]

in Committed[r] · Current[r] or Current[r] := ε
there is no such write and n = 0

Fig. 2. Pseudocode of the idealised PSI algorithm at replica r.

whether to commit or abort it. To simplify the formal development, we assume
that every transaction eventually terminates. If the replica decides to commit a
transaction, it sends a message to all other replicas containing the transaction
log, which describes the updates done by the transaction. The replicas incorpo-
rate the updates into their state upon receiving the message. A transaction log
has the form (t, start) (t, write(x1, n1)) . . . (t, write(xk, nk)), which gives the
sequence of values ni ∈ N written to objects xi ∈ Obj by the transaction t ∈ TId;
the record (t, start) is added for convenience of future definitions. Transaction
logs are ranged over by l, and we denote their set by Log.

We assume that every replica executes transactions locally without interleav-
ing (this is a simplification in comparison to the original PSI specification [22]
that makes the algorithm cleaner). This assumption allows us to maintain the
state of a replica r in the algorithm by:

– Current[r] ∈ Log∪{ε}—the log of the (single) transaction currently executing
at r or an empty sequence ε, signifying that no transaction is currently
executing; and

– Committed[r] ∈ Log∗—the sequence of logs of transactions that committed
at r.

Initially Current[r] = Committed[r] = ε.
We give the pseudocode of the algorithm executing at a replica r in Figure 2.

This describes the effects of operations executed at the replica, which come
from the set

Op = {start, receive(l), write(x, n), read(x, n), abort, commit |
l ∈ Log, x ∈ Obj, n ∈ N}

and are ranged over by o. The execution of the operations is atomic and is
triggered by client requests or internal database events, such as messages arriving
to the replica. The requires clauses give conditions under which an operation

392 A. Cerone et al.

can be executed. For convenience of future definitions, operations do not return
values. Instead, the value fetched by a read is recorded as its parameter; as we
explain below, the requires clause for read(x, n) ensures that the operation may
only be executed when the value it fetches is indeed n. We use · for sequence
concatenation, ∈ to express that a given record belongs to a given sequence, and

for irrelevant expressions.
When a client starts a transaction at the replica r (operation start), the

database assigns it a unique identifier t and initialises Current[r] to signify that t
is in progress. Since we assume that the replica processes transactions serially, in
the idealised algorithm the transaction can start only if r is not already executing
a transaction, as expressed by the requires clause. The operation receive(l)
executes when the replica receives a message l with the log of some transaction
t, at which point it appends l to its log of committed transactions. A replica
can receive a message only when it is not executing a transaction. When a client
issues a write of n to an object x inside a transaction t, the corresponding record
(t, write(x, n)) is appended to the log of the current transaction (operation
write(x, n)). The requires clause ensures that a write operation can only be
called inside a transaction. A client can read n as the value of an object x
(operation read(x, n)) if it is the most recent value written to x at the replica
according to the log of committed transactions concatenated with the log of the
current one; if there is no such value, the client reads 0 (to simplify examples,
in the following we sometimes assume different initial values).

If the current transaction aborts (operation abort), the Current[r] log is reset
to be empty. Finally, if the current transaction commits (operation commit),
its log is sent to all other replicas, as well as added to the log of committed
transactions of the replica r. Crucially, as expressed by the second requires
clause of commit, the database may commit a transaction t only if it passes
the write-conflict detection check: there is no object x written by t that is
also written by a concurrent transaction t′, i.e., a transaction that has been
committed at another replica r′, but whose updates have not yet been received
by r. If this check fails, the only option left for the database is to abort t using
the operation abort.

In the algorithm we make certain assumptions about message delivery
between replicas. First, every message is delivered to every replica at most once.
Second, message delivery is causal: if a replica sends a message l2 after it sends or
receives a message l1, then every other replica will receive l2 only after it receives
or sends l1; in this case we say that the transaction generating l2 causally depends
on the one generating l1. This is illustrated by the execution of the algorithm
depicted in Figure 3: due to causal delivery, the transaction t3 that reads reply
from y is also guaranteed to read post from x.

The operational specification of PSI is given by all sets of client-database
interactions that can arise when executing the implementations of the oper-
ations in Figure 2 at each replica in the system. Due to the asynchronous
propagation of updates between replicas, the specification of PSI allows non-
serialisable behaviours, called anomalies. We introduce structures to describe

Transaction Chopping for Parallel Snapshot Isolation 393

start

write(x, post)

commit

t1

start

write(y, reply)

commit

t2

receive(l1) receive(l2)
start

read(y, reply)

t3

read(x, post)
commit

l1 = (t1, start) (t1, write(x, post))

l2 = (t2, start) (t2, write(x, reply))
r1

r2

Fig. 3. An example execution of the operational PSI specification.

client-database interactions allowed by PSI and discuss its anomalies while pre-
senting our declarative PSI specification, which is the subject of the next section.

3 Axiomatic Specification of PSI

Reasoning about PSI database behaviour using the operational specification may
get unwieldy. It requires us to keep track of low-level information about the sys-
tem state, such as the logs at all replicas and the set of messages in transit.
We then need to reason about how the system state is affected by a large num-
ber of possible interleavings of operations at different replicas. We now present
a specification of PSI that is more declarative than the operational one and,
in particular, does not refer to implementation-level details, such as message
exchanges between replicas. It thus makes it easier to establish results about
PSI, such as criteria for transaction chopping.

Our PSI specification is given by a set of histories, which describe all client-
database interactions that this consistency model allows. To simplify presenta-
tion, our specification does not constrain the behaviour of aborted or ongoing
transactions, so that histories only record operations inside committed transac-
tions. Our specification also assumes that the database interface allows a client
to group a finite number of transactions into a chain [25], which establishes
an ordering on the transactions, similarly to a session [23]. Chains are needed
for transaction chopping (§1) and can be implemented, e.g., by executing all
transactions from a chain at the same replica.

To define histories and similar structures, we need to introduce some set-
theoretic concepts. We assume a countably infinite set of events Event =
{e, f, g, . . .}. A relation R ⊆ E × E on a set E is a strict partial order if
it is transitive and irreflexive; it is an equivalence relation if it is reflexive,
transitive and symmetric. For an equivalence relation R ⊆ E ×E and e ∈ E, we
let [e]R = {f | (f, e) ∈ R} be the equivalence class of e. A total order is a
strict partial order such that for every two distinct elements e and f , the order
relates e to f or f to e. We write (e, f) ∈ R and e

R−→ f interchangeably.

Definition 1. A history is a tuple H = (E, op, co,∼), where:

– E ⊆ Event is a finite set of events, denoting reads and writes performed
inside committed transactions.

394 A. Cerone et al.

– op : E → {write(x, n), read(x, n) | x ∈ obj, n ∈ N} defines the operation
each event denotes.

– co ⊆ E ×E is the chain order, arranging events in the same chain into the
order in which a client submitted them to the database. We require that co
be a union of total orders defined on disjoint subsets of E, which correspond
to events in different chains.

– ∼ ⊆ E×E is an equivalence relation grouping events in the same transaction.
Since every transaction is performed by a single chain, we require that co
totally order events within each transaction, i.e., those from [e]∼ for each
e ∈ E. We also require that a transaction be contiguous in co:

∀e, f, g. e
co−→ f

co−→ g ∧ e ∼ g =⇒ e ∼ f ∼ g.

Let Hist be the set of all histories. We denote components of a history H as
in EH, and use the same notation for similar structures introduced in this paper.
Our specification of PSI is given as a particular set of histories allowed by this
consistency model. To define this set, we enrich histories with a happens-before
relation, capturing causal relationships between events. In terms of the opera-
tional PSI specification, an event e happens before an event f if the information
about e has been delivered to the replica performing f , and hence, can affect f ’s
behaviour. The resulting notion of an abstract execution is similar to those used
to specify weak shared-memory models [4].

Definition 2. An abstract execution is a pair A = (H, hb) of a history H
and the happens-before relation hb ⊆ E × E, which is a strict partial order.

For example, Figure 5(a) shows an abstract execution, which corresponds to
the execution of the operational specification in Figure 3 (as we formalise in
§4). Our PSI specification is defined by consistency axioms (Figure 4), which
constrain happens-before and other execution components and thereby describe
the guarantees that a PSI database provides about transaction processing. We
thus call this specification axiomatic.

Definition 3. An abstract execution A is valid if it satisfies the consistency
axioms in Figure 4. We denote the set of all valid executions by AbsPSI and let
the set of PSI histories be HistPSI = {H ∈ Hist | ∃hb. (H, hb) ∈ AbsPSI}.

The axiom (Reads) constrains the values fetched by a read using the happens-
before relation: a read e from an object x has to return the value written by a
hb-preceding write f on x that is most recent according to hb, i.e., not shadowed
by another write g to x. If there is no hb-preceding write to x, then the read
fetches the default value 0 (we sometimes use other values in examples). The
axiom (Chains) establishes a causal dependency between events in the same
chain (thus subsuming session guarantees [23]), and the transitivity of happens-
before required in Definition 2 ensures that the database respects causality. For
example, in the abstract execution in Figure 5(a), the chain order between the
two writes induces an hb edge according to (Chains). Then, since hb is transitive,
we must have an hb edge between the two operations on x and, hence, by (Reads),

Transaction Chopping for Parallel Snapshot Isolation 395

op(e) = read(x, n) =⇒ (∃f. op(f) = write(x, n) ∧ f
hb−→ e ∧ ¬∃g. f

hb−→ g
hb−→ e ∧

op(g) = write(x,)
) ∨ (n = 0 ∧ ¬∃f. f

hb−→ e ∧ op(f) = write(x,)
)

(Reads)

co ⊆ hb (Chains) {(e′, f ′) | e
hb−→ f ∧ e �∼ f ∧ e′ ∼ e ∧ f ∼ f ′} ⊆ hb (Atomic)

(e �= f ∧{op(e), op(f)} ⊆ {write(x, n) | n ∈ N}) =⇒ (e
hb−→ f ∨f

hb−→ e) (Wconflict)

Fig. 4. Consistency axioms of PSI, stated for an execution A = ((E, op, co, ∼), hb). All
free variables are universally quantified.

the read from x has to fetch post. There is no valid execution with a history where
the read from y fetches reply, but the read from x fetches the default value. The
operational specification ensures this because of causal message delivery.

The axiom (Atomic) ensures the atomic visibility of transactions: all writes
by a transaction become visible to other transactions together. It requires that,
if an event e happens before an event f in a different transaction, then all events
e′ in the transaction of e happen before all the events f ′ in the transaction of f .
For example, (Atomic) disallows the execution in Figure 5(b), which is a variant
of Figure 5(a) where the two writes are done in a single transaction and the
order of the reads is reversed.

The axiom (Wconflict) states that the happens-before relation is total over
write operations on a given object. Hence, the same object cannot be written by
concurrent transactions, whose events are not related by happens-before. This
disallows the lost update anomaly, illustrated by the execution in Figure 5(c).
This execution could arise from the code, also shown in the figure, that uses
transactions to make deposits into an account; in this case, one deposit is lost.
The execution violates (Wconflict): one of the transactions would have to hb-
precede the other and, hence, read 50 instead of 0 from x. In the operational
specification this anomaly is disallowed by the write-conflict detection, which
would allow only one of the two concurrent transactions to commit.

Despite PSI disallowing many anomalies, it is weaker than serialisability. In
particular, PSI allows the write skew anomaly, also allowed by the classical
snapshot isolation [8]. We illustrate how our consistency axioms capture this
by the valid execution in Figure 5(d), which could arise from the code also
shown in the figure. Here each transaction checks that the combined balance
of two accounts exceeds 100 and, if so, withdraws 100 from one of them. Both
transactions pass the checks and make the withdrawals from different accounts,
resulting in the combined balance going negative. The operational specification
allows this anomaly because the two transactions can be executed at different
replicas and allowed to commit by the write-conflict detection check.

PSI also allows so-called long fork anomaly in Figure 5(e) [22], which we
in fact already mentioned in §1. We have two concurrent transactions writing
to x and y, respectively. A third transaction sees the write to x, but not y, and
a fourth one sees the write to y, but not x. Thus, from the perspective of the

396 A. Cerone et al.

(a) Causality is preserved, the following is allowed: (b) Fractured reads: disallowed by (Atomic).

write(x, post) write(y, reply)

read(y, reply) read(x, post)

co, hb

co, hb

hb hb

write(x, post) write(y, reply)

read(x, post) read(y, empty)

co, hb

co, hb

hb

acct := acct + 50

acct := acct + 50

(c) Lost update:
disallowed by
(Wconflict).

read(acct, 0) write(acct, 50)

read(acct, 0) write(acct, 50)

read(acct, 50)

co, hb

co, hb

hb

hb

if (acct1 + acct2 > 100) acct1 := acct1 - 100

if (acct1 + acct2 > 100) acct2 := acct2 - 100

(d) Write skew:
allowed. Initially
acct1 = acct2 =
60

read(acct1, 60) read(acct2, 60) write(acct2,−40)

read(acct1, 60) read(acct2, 60) write(acct1,−40)

co, hb co, hb

co, hb co, hb

(e) Long fork:
allowed.

write(x, post1) read(y, empty) read(x, post1)hb co, hb

write(y, post2) read(x, empty) read(y, post2)hb co, hb

Fig. 5. Abstract executions illustrating PSI guarantees and anomalies. The boxes group
events into transactions. We omit the transitive consequences of the co and hb edges
shown.

latter two transactions, the two writes happen in different orders. It is easy to
check that this outcome is not serialisable; in fact, it is also disallowed by the
classical snapshot isolation. In the operational specification this anomaly can
happen when each transaction executes at a separate replica, and the messages
about the writes to x and y are delivered to the replicas executing the reading
transactions in different orders.

4 Equivalence of the Specifications

We now show that the operational (§2) and axiomatic specifications (§3) are
equivalent, i.e., the sets of histories they allow coincide. We start by introducing
a notion of concrete executions of the operational PSI specification and using
it to define the set of histories the specification allows. Concrete executions are
similar to abstract ones of Definition 2, but describe all operations occurring at
replicas as per Figure 2, including both client-visible and database-internal ones.
We use the set-theoretic notions introduced before Definition 1.

Transaction Chopping for Parallel Snapshot Isolation 397

Definition 4. A concrete execution is a tuple C = (E, op, repl, trans,≺),
where:

– E ⊆ Event is a finite set of events, denoting executions of operations in
Figure 2.

– op : E → Op defines which of the operations in Figure 2 a given event
denotes.

– repl : E → RId defines the replica on which the event occurs.
– trans : E → TId defines the transaction to which the event pertains.
– ≺ ⊆ E × E is a total order, called execution order, in which events take

place in the system.

The set ConcPSI of concrete executions that can be produced by the algo-
rithm in Figure 2 is defined as expected. Due to space constraints, we defer its
formal definition to [11, §C]. Informally, the definition considers the execution
of any sequence of operations in Figure 2 at arbitrary replicas, subject to the
requires clauses and the constraints on message delivery mentioned in §2; the
values of repl and trans are determined by the variables r and t in the code
of operations in Figure 2. For example, Figure 3 can be viewed as a graphical
depiction of a concrete execution from ConcPSI, with the execution order given
by the horizontal placement of events. For a C ∈ ConcPSI and e ∈ EC , we write
e �C t : o @ r if transC(e) = t, opC(e) = o and replC(e) = r.

Definition 5. The history of a concrete execution C is

history(C) = (EH, opH, coH,∼H), where
EH = {e ∈ EC | ∃f ∈ EC , t ∈ TId. (f �C t : commit @) ∧

((e �C t : write(,) @) ∨ (e �C t : read(,) @))};
opH = (the restriction of opC to EH);
coH = {(e, f) ∈ EH × EH | replC(e) = replC(f) ∧ e ≺C f}.

∼H = {(e, f) ∈ EH × EH | transC(e) = transC(f)};

For example, the concrete execution in Figure 3 has the history shown in
Figure 5(a). The history history(C) contains only the events describing reads
and writes by the committed transactions in C. To establish a correspondence
between the operational and axiomatic specifications, we assume that chains are
implemented by executing every one of them at a dedicated replica. Thus, we
define the chain order coH as the order of events on each replica according to ≺C .
This is, of course, an idealisation acceptable only in a specification. In a realistic
implementation, multiple chains would be multiplexed over a single replica, or
different transactions in a chain would be allowed to access different replicas [23].
We define the set of histories allowed by the operational PSI specification as
history(ConcPSI), where we use the expected lifting of history to sets of executions.
The following theorem (proved in [11, §D]) shows that this set coincides with
the one defined by the axiomatic specification (Definition 3).

Theorem 1. history(ConcPSI) = HistPSI.

398 A. Cerone et al.

5 Chopping PSI Transactions

In this section, we exploit the axiomatic specification of §3 to establish a cri-
terion for checking the correctness of a chopping [21] of transactions execut-
ing on PSI. Namely, we assume that we are given a set of chain programs
P = {P1, P2, . . .}, each defining the code of chains resulting from chopping
the code of a single transaction. We leave the precise syntax of the programs
unspecified, but assume that each Pi consists of ki program pieces, defining
the code of the transactions in the chain. For example, for given acct1, acct2
and amnt, Figure 1(b) defines a chain program resulting from chopping transfer
in Figure 1(a). For a given acct, we can also create a chain program consisting
of a single piece lookup(acct) in Figure 1(a). Let P1 consist of the programs for
lookup(acct1), lookup(acct2) and transfer(acct1,acct2,amnt), and P2 of
those for transfer(acct1,acct2,amnt) and lookup2(acct1,acct2).

Following Shasha et al. [21], we make certain assumptions about the way
clients execute chain programs. We assume that, if the transaction initiated by
a program piece aborts, it will be resubmitted repeatedly until it commits, and,
if a piece is aborted due to system failure, it will be restarted. We also assume
that the client does not abort transactions explicitly.

In general, executing the chains P may produce more client-observable
behaviours than if we executed every chain as a single PSI transaction. We
propose a condition for checking that no new behaviours can be produced. To
this end, we check that every valid abstract execution consisting of fine-grained
transactions produced by the chains P can be spliced into another valid execu-
tion that has the same operations as the original one, but where all operations
from each chain are executed inside a single coarse-grained transaction.

Definition 6. Consider a valid abstract execution A = ((E, op, co,∼), hb) ∈
AbsPSI and let ≈A = co∪ co−1 ∪{(e, e) | e ∈ E}. The execution A is spliceable
if there exists hb′ such that ((E, op, co,≈A), hb′) ∈ AbsPSI.

The definition groups fine-grained transactions in A, identified by ∼A, into
coarse-grained transactions, identified by ≈A, which consist of events in the
same chain.

We now establish the core technical result of this section—a criterion for
checking that an execution A is spliceable. From this dynamic criterion on exe-
cutions we then obtain a static criterion for the correctness of chopping trans-
action code, by checking that all executions produced by the chain programs P
are spliceable. We first need to define some auxiliary relations, derived from the
happens-before relation in an abstract execution [2,4].

Definition 7. Given A ∈ AbsPSI, we define the reads-from rfA, version-
order voA and anti-dependency adA relations on EA as follows:

Transaction Chopping for Parallel Snapshot Isolation 399

e
rfA−−→ f ⇐⇒ ∃x, n. e

hbA−−→ f ∧ opA(e) = write(x, n) ∧ opA(f) = read(x, n) ∧
¬∃g. e

hbA−−→ g
hbA−−→ f ∧ opA(g) = write(x,);

e
voA−−→ f ⇐⇒ ∃x. e

hbA−−→ f ∧ opA(e) = write(x,) ∧ opA(f) = write(x,);

e
adA−−→ f ⇐⇒ ∃x. opA(e) = read(x,) ∧ opA(f) = write(x,) ∧

((∃g. g
rfA−−→ e ∧ g

voA−−→ f) ∨ (¬∃g. g
rfA−−→ e)).

The reads-from relation determines the write e that a read f fetches its value
from (uniquely, due to the axiom (Wconflict)). The version order totally orders
all writes to a given object and corresponds to the order in which replicas find
out about them in the operational specification. The anti-dependency relation [2]
is more complicated. We have e

adA−−→ f if the read e fetches a value that is
overwritten by the write f according to voA (the initial value of an object is
overwritten by any write to this object).

Our criterion for checking that A is spliceable requires the absence of certain
cycles in a graph with nodes given by the fine-grained transactions in A and edges
generated using the above relations. The transactions are defined as equivalence
classes [e]∼ of events e ∈ EA (§3).

Definition 8. Given A ∈ AbsPSI, its dynamic chopping graph DCG(A) is
a directed graph whose set of nodes is {[e]∼A | e ∈ EA}, and we have an edge
([e]∼A , [f]∼A) if and only if [e]∼A �= [f]∼A and one of the following holds: e

coA−−→
f (a successor edge); f

coA−−→ e (a predecessor edge); e
adA \ ≈A−−−−−−→ f (an anti-

dependency edge); or e
(rfA ∪ voA) \ ≈A−−−−−−−−−−→ f (a dependency edge).

A conflict edge is one that is either a dependency or an anti-dependency. A
directed cycle in the dynamic chopping graph is critical if it does not contain two
occurrences of the same vertex, contains at most one anti-dependency edge, and
contains a fragment of three consecutive edges of the form “conflict, predecessor,
conflict”.

Theorem 2 (Dynamic Chopping Criterion). An execution A ∈ AbsPSI is
spliceable if its dynamic chopping graph DCG(A) does not have critical cycles.

We give a (non-trivial) proof of the theorem in [11, §E]. For example, the
execution in Figure 6 satisfies the criterion in Theorem 2 and, indeed, we obtain
a valid execution by grouping withdraw and deposit into a single transaction
and adding the dotted happens-before edges.

We now use Theorem 2 to derive a static criterion for checking the correctness
of code chopping given by P. As is standard [13,21], we formulate the criterion
in terms of the sets of objects read or written by program pieces. Namely, for
each chain program Pi ∈ P we assume a sequence

(Ri
1,W

i
1) (Ri

2,W
i
2) . . . (Ri

ki
,W i

ki
), (1)

of read and write sets Ri
j ,W

i
j ⊆ Obj, i.e., the sets of all objects that

can be, respectively, read and written by the j-th piece of Pi. For example,

400 A. Cerone et al.

withdraw(acct1, 50) deposit(acct2, 50)

lookup(acct1) lookup(acct2)

P

S

D

A

read(acct1, 50) write(acct1, 0) read(acct2, 0) write(acct2, 50)

read(acct1, 0) read(acct2, 0)

hb
co

hb
co

hb
co

rf, hb ad

hb
hb

Fig. 6. An execution produced by the programs P1 and its derived relations. Initially
acct1 = 50 and acct2 = 0. We omit the transitive consequences of the hb edges shown.
The dashed edges show the dynamic chopping graph, with S, P, A, D denoting edge
types. The dotted edges show additional happens-before edges that define a splicing of
the execution (Definition 6).

the transfer(acct1,acct2,amnt) chain in Figure 1(b) is associated with the
sequence ({acct1}, {acct1}) ({acct2}, {acct2}).

We consider a chopping defined by the programs P correct if all executions
that they produce are spliceable. To formalise this, we first define when an
execution can be produced by programs with read and write sets given by (1).
Due to space constraints, we give the definition only informally.

Definition 9. An abstract execution A conforms to a set of programs P, if
there is a one-to-one correspondence between every chain of transactions in A
and a chain program Pi ∈ P whose read and write sets (1) cover the sets of
objects read or written by the corresponding transactions in the chain.

For example, the execution in Figures 6 conforms to the programs P1. Due
to the assumptions about the way clients execute P that we made at the begin-
ning of this section, the definition requires that every chain in an execution A
conforming to P executes completely, and that all transactions in it commit.
Also, for simplicity (and following [21]), we assume that every chain in A results
from a distinct program in P.

Definition 10. Chain programs P are chopped correctly if every valid execu-
tion conforming to P is spliceable.

We check the correctness of P by defining an analogue of the dynamic chop-
ping graph from Definition 8 whose nodes are pieces of P, rather than transac-
tions in a given execution. Each piece is identified by a pair (i, j) of the number
of a chain Pi and the piece’s position in the chain.

Definition 11. Given chain programs P = {P1, P2, . . .} with read and write
sets (1), the static chopping graph SCG(P) is a directed graph whose set of
nodes is {(i, j) | i = 1..|P|, j = 1..ki}, and we have an edge ((i1, j1), (i2, j2)) if
and only if one of the following holds: i1 = i2 and j1 < j2 (a successor edge);

Transaction Chopping for Parallel Snapshot Isolation 401

S

P
D DA A

withdraw(acct1) deposit(acct2)

lookup(acct1) lookup(acct2)

S

P
D D

A A

withdraw(acct1) deposit(acct2)

lookup2(acct1, acct2)

(a) (b)

Fig. 7. Static chopping graphs for the programs (a) P1 and (b) P2.

i1 = i2 and j1 > j2 (a predecessor edge); i1 �= i2, and Ri1
j1

∩ W i2
j2

�= ∅ (an
anti-dependency edge); or i1 �= i2, and W i1

j1
∩(Ri2

j2
∪W i2

j2
) �= ∅ (a dependency

edge).

For example, Figures 7(a) and 7(b) show the static chopping graph for the
programs P1 and P2 respectively. There is a straightforward correspondence
between SCG(P) and DCG(A) for an execution A conforming to P: we have an
(anti-)dependency edge between two pieces in SCG(P) if there may exist a corre-
sponding edge in DCG(A) between two transactions resulting from executing the
pieces, as determined by the read and write sets. Using this correspondence, from
Theorem 2 we easily get a criterion for checking chopping correctness statically.

Corollary 1 (Static Chopping Criterion). P is chopped correctly if SCG(P)
does not contain any critical cycles.

The graph in Figure 7(a) satisfies the condition of the corollary, whereas the
one in Figure 7(b) does not. Hence, the corresponding chopping of transfer
is correct, but becomes incorrect if we add lookup2 (we provide an example
execution illustrating the latter case in [11, §A]).

The criterion in Corollary 1 is more permissive than the one for chopping seri-
alisable transactions previously proposed by Shasha et al. [21]. The latter does
not distinguish between dependency and anti-dependency edges (representing
them by a single type of a conflict edge) and between predecessor and succes-
sor edges (representing them by sibling edges). The criterion then requires the
absence of any cycles containing both a conflict and a sibling edge. We illustrate
the difference in Figure 8. The static chopping graph for the programs shown
in the figure does not have critical cycles, but has a cycle with both a conflict
and a sibling edge, and thus does not satisfy Shasha’s criterion. We also show an
execution produced by the programs: splicing the chains in it into single trans-
actions (denoted by the dashed boxes) yields the execution in Figure 5(e) with a
long fork anomaly. We provide a similar example for write skew (Figure 5(d)) in
[11, §A]. Thus, the chopping criterion for PSI can be more permissive than the
one for serialisability because of the anomalies allowed by the former consistency
model.

Finally, we note that Theorem 2 and Corollary 1 do not make any assump-
tions about the structure of transactions, such as their commutativity properties,

402 A. Cerone et al.

txn write1 { x := post1; } txn write2 { y := post2; }

chain read1 { txn { a := y }; txn { b := x }; return (a, b); }

chain read2 { txn { a := x }; txn { b := y }; return (a, b); }

write(x)

read(y)

read(x)

write(y)

read(x)

read(y)

S P S P

D D

D D

AA

AA

write(x, post1)

read(y, empty)

read(x, post1)

write(y, post2)

read(x, empty)

read(y, post2)

rf, hb

co, hb co−1

ad rf, hb

co, hb co−1

ad

Fig. 8. An illustration of the difference between the chopping criteria for PSI and
serialisability: programs, their static chopping graph and an example execution. The
variables a and b are local.

which may result in an excessive number of conflict edges in chopping graphs.
These results can be strengthened to eliminate conflict edges between transac-
tions whose effects commute, as done in [21,25].

6 Related Work

Our criterion for the correctness of chopping PSI transactions was inspired by the
criterion of Shasha et al. [21] for serialisable transactions. However, establishing
a criterion for PSI is much more difficult than for serialisability. Due to the
weakly consistent nature of PSI, reasoning about chopping correctness cannot
be reduced to reasoning about a total serialisation order of events and requires
considering intricate relationships between them, as Theorem 2 illustrates.

Our declarative specification of PSI uses a representation of executions more
complex than the one in notions of strong consistency, such as serialisability [9]
or linearizability [17]. This is motivated by the need to capture PSI anomalies.
In proposing our specification, we built on the axiomatic approach to speci-
fying consistency models, previously applied to eventual consistency [10] and
weak shared-memory models [4]. In comparison to prior work, we handle a more
sophisticated consistency model, including transactions with write-conflict detec-
tion. Our specification is also similar in spirit to the specifications of weak con-
sistency models of relational databases of Adya’s [2], which are based on the
relations in Definition 7. While PSI could be specified in Adya’s framework, we
found that the specification based on the happens-before relation (Definition 2)
results in simpler axioms and greatly eases proving the correspondence to the
operational specification (Theorem 1) and the chopping criterion (Theorem 2).

Transaction Chopping for Parallel Snapshot Isolation 403

Acknowledgements. We thank Hagit Attiya and Giovanni Bernardi for help-
ful discussions. This work was supported by EPSRC and an EU FET project
ADVENT.

References

1. Abadi, D.: Consistency tradeoffs in modern distributed database system design:
CAP is only part of the story. IEEE Computer 45(2) (2012)

2. Adya, A.: Weak consistency: A generalized theory and optimistic implementations
for distributed transactions: PhD thesis, MIT (1999)

3. Afek, Y., Avni, H., Shavit, N.: Towards consistency oblivious programming. In:
Fernàndez Anta, A., Lipari, G., Roy, M. (eds.) OPODIS 2011. LNCS, vol. 7109,
pp. 65–79. Springer, Heidelberg (2011)

4. Alglave, J.: A formal hierarchy of weak memory models. Formal Methods in System
Design 41(2) (2012)

5. Attiya, H., Gotsman, A., Hans, S., Rinetzky, N.: A programming language per-
spective on transactional memory consistency. In: PODC (2013)

6. Bailis, P., Davidson, A., Fekete, A., Ghodsi, A., Hellerstein, J.M., Stoica, I.: Highly
available transactions: virtues and limitations. In: VLDB (2014)

7. Bailis, P., Fekete, A., Ghodsi, A., Hellerstein, J.M., Stoica, I.: Scalable atomic
visibility with RAMP transactions. In: SIGMOD (2014)

8. Berenson, H., Bernstein, P., Gray, J., Melton, J., O’Neil, E., O’Neil, P.: A critique
of ANSI SQL isolation levels. In: SIGMOD (1995)

9. Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery
in Database Systems. Addison-Wesley (1987)

10. Burckhardt, S., Gotsman, A., Yang, H., Zawirski, M.: Replicated data types: spec-
ification, verification, optimality. In: POPL (2014)

11. Cerone, A., Gotsman, A., Yang, H.: Transaction chopping for parallel snapshot
isolation (extended version). http://software.imdea.org/∼gotsman/

12. Doherty, S., Groves, L., Luchangco, V., Moir, M.: Towards formally specifying and
verifying transactional memory. Formal Aspects of Computing 25(5) (2013)

13. Fekete, A., Liarokapis, D., O’Neil, E., O’Neil, P., Shasha, D.: Making snapshot
isolation serializable. ACM Trans. Database Syst. 30(2) (2005)

14. Felber, P., Gramoli, V., Guerraoui, R.: Elastic transactions. In: Keidar, I. (ed.)
DISC 2009. LNCS, vol. 5805, pp. 93–107. Springer, Heidelberg (2009)

15. Gilbert, S., Lynch, N.: Brewer’s conjecture and the feasibility of consistent, avail-
able, partition-tolerant web services. ACM SIGACT News 33(2) (2002)

16. Guerraoui, R., Kapalka, M.: On the correctness of transactional memory.
In: PPoPP (2008)

17. Herlihy, M.P., Wing, J.M.: Linearizability: A correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12(3) (1990)

18. Lakshman, A., Malik, P.: Cassandra: A decentralized structured storage system.
SIGOPS Oper. Syst. Rev. 44(2) (2010)

19. Mu, S., Cui, Y., Zhang, Y., Lloyd, W., Li, J.: Extracting more concurrency from
distributed transactions. In: OSDI (2014)

20. Ardekani, M.S., Sutra, P., Shapiro, M.: Non-monotonic snapshot isolation: scalable
and strong consistency for geo-replicated transactional systems. In: SRDS (2013)

21. Shasha, D., Llirbat, F., Simon, E., Valduriez, P.: Transaction chopping: Algorithms
and performance studies. ACM Trans. Database Syst. 20(3) (1995)

http://software.imdea.org/~gotsman/

404 A. Cerone et al.

22. Sovran, Y., Power, R., Aguilera, M.K., Li, J.: Transactional storage for geo-
replicated systems. In: SOSP (2011)

23. Terry, D.B., Demers, A.J., Petersen, K., Spreitzer, M., Theimer, M., Welch, B.W.:
Session guarantees for weakly consistent replicated data. In: PDIS (1994)

24. Xiang, L., Scott, M.L.: Software partitioning of hardware transactions. In: PPoPP
(2015)

25. Zhang, Y., Power, R., Zhou, S., Sovran, Y., Aguilera, M., Li, J.: Transaction
chains: achieving serializability with low latency in geo-distributed storage sys-
tems. In: SOSP (2013)

Computing in Additive Networks
with Bounded-Information Codes

Keren Censor-Hillel1, Erez Kantor2(B), Nancy Lynch2, and Merav Parter2

1 Department of Computer Science, Technion, 32000 Haifa, Israel
2 CSAIL, Massachusetts Institute of Technology, Cambridge, MA 01239, USA

erezk@csail.mit.edu

Abstract. This paper studies the theory of the additive wireless net-
work model, in which the received signal is abstracted as an addition
of the transmitted signals. Our central observation is that the crucial
challenge for computing in this model is not high contention, as assumed
previously, but rather guaranteeing a bounded amount of information
in each neighborhood per round, a property that we show is achievable
using a new random coding technique. Technically, we provide efficient
algorithms for fundamental distributed tasks in additive networks, such
as solving various symmetry breaking problems, approximating network
parameters, and solving an asymmetry revealing problem such as com-
puting a maximal input. The key method used is a novel random coding
technique that allows a node to successfully decode the received infor-
mation, as long as it does not contain too many distinct values. We then
design our algorithms to produce a limited amount of information in each
neighborhood in order to leverage our enriched toolbox for computing in
additive networks.

1 Introduction

The main challenge in wireless communication is the possibility of collisions,
occurring when two nearby stations transmit at the same time. In general, col-
lisions provide no information on the data, and in some cases may not even be
distinguishable from the case of no transmission at all. Indeed, the ability to
merely detect collisions (a.k.a., the collision detection model) gives additional
power to wireless networks, and separation results are known (e.g., [26]).

Traditional approaches for dealing with interference (e.g., FDMA, TDMA)
treat collisions as something that should be avoided or at least minimized [12,21,
23]. However, modern coding techniques suggest the ability to retrieve informa-
tion from collisions. These techniques significantly change the notion of collisions,

The first author is supported in part by the Israel Science Foundation (grant
1696/14). The last three authors are supported in a part by NSF Award Num-
bers CCF-1217506, CCF-AF-0937274, 0939370-CCF, and AFOSR Contract Num-
bers FA9550-14-1-0403 and FA9550-13-1-0042. Merav Parter is also supported by
Rothschild and Fulbright Fellowships.

c© Springer-Verlag Berlin Heidelberg 2015
Y. Moses (Ed.): DISC 2015, LNCS 9363, pp. 405–419, 2015.
DOI: 10.1007/978-3-662-48653-5 27

406 K. Censor-Hillel et al.

which now depends on the model or coding technique used. For example, in inter-
ference cancellation [2], the receivers may decode interfering signals that are suf-
ficiently strong and cancel them from the received signal in order to decode their
intended message. Hence, from this viewpoint, collision occurs only when neither
the desired signal nor the the interfering signal are relatively strong enough.

In this paper, we consider the additive network model, in which colliding
signals add up at the receiver and are hence informative in some cases. It has
been shown that such models approximate the capacity of networks with high
signal-to-noise ratio [3], and that they can be useful in these settings for various
coding techniques, such as ZigZag decoding [11,22], and bounded-contention
coding [6]. While in practice there are limitations for implementing such networks
to the full extent of the model, the above previous research shows the importance
of understanding the fundamental strength of models that allow the possibility
of extracting information out of collisions. In a recent theoretical work [6], the
problems of local and global broadcast have been addressed in additive networks,
under the assumption that the contention in the system is bounded.

The central observation of this paper is that in order to leverage the addi-
tive behavior of the system, what needs to be bounded is not necessarily the
contention, but rather the total amount of information a node has to process
at a given round. This observation allows us to extend the quantification of the
computational power of the additive network model in solving distributed tasks
way beyond local and global broadcast. Our key approach in this paper is not
to assume a bound on the initial number of pieces of information in the system,
but rather guarantee a bound on the number of distinct pieces of information in
a neighborhood of every vertex. We then use a new random coding technique,
which we refer to as Bounded-Information Codes (BIC), in order to extract the
information out of the received signals. This allows us to efficiently solve various
cornerstone distributed tasks.

1.1 Contributions and Methods

On the technical side, we provide efficient algorithms for fundamental symmetry
breaking tasks, such as leader election, and computing a BFS tree and a maximal
independent set (MIS), as well as algorithms for revealing asymmetry in the
inputs, such as computing the maximum. We also provide efficient algorithms
for approximating network parameters by a constant factor. Our key methods
are based on enriching the toolbox for computing in additive networks with
various primitives that leverage the additive behavior of received information
and our coding technique.

Main Techniques: The work in [6] introduced Bounded-Contention Codes (BCC)
as the main technique. BCC allows the decoding of the XOR of any collection
of at most a codewords, where a is the bound on the contention. As mentioned,
our key approach in this paper is not to assume a bound on the contention, but
rather to make sure that the amount of distinct information colliding at a node
at a given round is limited. Our main ingredient is augmenting the deterministic

Computing in Additive Networks with Bounded-Information Codes 407

BCC codes with randomization, resulting in Bounded-Information Codes. BIC
allows successful decoding of any transmission of n nodes sending at most O(a)
distinct values altogether, with high probability.

Randomization plays a key role in the presented scheme in two different
aspects. First, the drawback of the standard BCC code is that the transmission of
the same message by an even number of neighbors is cancelled out. By increasing
the message size by factor of O(log n) and using randomization, BIC codes add
random “noise” to the original BCC codeword so that the probability that two
BIC messages cause cancellation becomes negligible.

Another useful aspect of randomization is intimately related to the fact that
our information bounds are logarithmic in n. This allows for a win-win situation:
if the number of distinct pieces of information (in a given neighborhood) is small
(i.e., O(log n)), the decoding is successful thanks to the BIC codes. On the other
hand, if the number of distinct pieces of information is large (i.e., Ω(log n)), there
are sufficiently many transmitting vertices in the neighborhood which allows
one to obtain good concentration bounds by, e.g., using Chernoff bounds (for
example, in estimating various network parameters). It is noteworthy that our
estimation technique bares some similarity to the well-known decay strategy [4]
which is widely used in radio-networks. The key distinction between the long line
of works that apply this scheme and this paper is the dimension to which this
strategy in applied. Whereas so-far, the strategy was applied to the time axis
(e.g., in round i, vertex u transmits with probability 2−i), here it is applied to
the information (or message) axis (e.g., vertex u writes the specific information
in the i’th block of its message with probability 2−i). This highly improves the
time bounds compared to the basic radio model (i.e., the statistics are collected
over the multiple blocks of the message instead of over multiple slots).

An immediate application of BIC is a simple logarithmic simulation of algo-
rithms for networks that employ full-duplex radios (where a node can transmit
and receive concurrently) by nodes who have only half-duplex radios (where a
node either transmits or receives in a given round). This allows us to consider
algorithms for the stronger model of full-duplex radios and obtain a transla-
tion to half-duplex radios, and also allows us to compare our algorithms to a
message-passing setting. To make justice with such comparisons, we note that
a message-passing setting not only does not suffer from collisions, but also is in
some sense similar to having full duplex, as a node receives and sends information
in the same round.

Note that in the standard radio model, collision detection is not an integral
part of the model but rather an external capability that can be chosen to be
added. In BIC, collision detection is an integral part of the model, where collision
now refers to the situation where the number of distinct pieces of information
exceeds the allowed bound. To avoid confusion, the collision detection in the
context of BIC, is hereafter referred to as information-overflow detection. We
show that information-overflow can be detected while inspecting the received
codeword, without the need for any additional mechanisms.

408 K. Censor-Hillel et al.

Symmetry Breaking: The first type of algorithms we devise are for various sym-
metry breaking tasks. The main tool in this context is the select-level function,
SL, that outputs two random values according to a predefined distribution.
Every vertex v computes the SL function locally, without any communication.
The power of this function lies in its ability to assign random levels to nodes,
such that with high probability1 the maximal level contains at most a logarith-
mic number of nodes (i.e., below the information bound of the BIC code), and
the nodes in the maximal level have different values for their second random
variable.

The SL function allows us to elect a leader in O(D) rounds, w.h.p., where D
is the diameter of the network. The elected leader is the node with the maximal
pair of values chosen by the SL function. A by-product of this algorithm is a
2-approximation of the diameter, and the analysis is done over a BFS tree rooted
at the leader. We also show how to construct a BFS tree rooted at an arbitrary
given node in O(D) rounds, w.h.p, by employing both the SL function and BIC.

Apart from the above new algorithms, our framework allows relatively sim-
ple translations of known algorithms for solving various tasks in message passing
systems into additive networks. This includes Luby’s MIS algorithm [18], Schnei-
der and Wattenhofer’s coloring algorithm [24], and approximating the minimum
dominating set of Wattenhofer and Kuhn [15], improving significantly over the
known bounds for standard radio-model. We give a flavor of these translations
by providing the full MIS algorithm and analysis in [7], and sketch the results
for coloring and approximating the minimum dominating set.

Approximations: We design algorithms for approximating various network
parameters. We show how to compute a constant approximation of the degree of
a node, as well as a constant approximation of the size and diameter of the net-
work. (Our coding scheme only requires nodes to know a polynomial bound N on
the network size n.) Our algorithms naturally extend to solve the more general
tasks of local-sum and global-sum approximations2 that have been recently con-
sidered in [17]. Yet, the additive setting allows us to obtain much better bounds
than those of [17].

Asymmetry Revealing: In addition to the above symmetry breaking algorithms,
we show that additive networks also allow for fast solutions for tasks which
do not require symmetry breaking, but rather already begin with inputs whose
asymmetry needs to be revealed: we give an algorithm that computes the exact
maximal value of all inputs in the network in O(D·log n/ log log n) rounds, w.h.p.
(in contrast, a 2-approximation for the maximal value can be computed within
Θ(D) rounds). We obtain this because our coding scheme allows us to perform a
tournament at a high rate. For example, for single-hop networks, in each round

1 We use the term with high probability (w.h.p.) to denote a probability of at least
1 − 1/nc for a constant c ≥ 1.

2 These are generalizations of degree-approximation and network-size approximation,
respectively.

Computing in Additive Networks with Bounded-Information Codes 409

only a O(log n) fraction of the remaining competing vertices survive for the next
round.

In some sense, asymmetry revealing can be viewed as the counterpart of
symmetry breaking. Clearly, if we compute the maximal input in the system then
we can obtain a leader as a by-product. However, the opposite does not hold, and
indeed in our leader-election algorithm mentioned above we significantly exploit
the fact that the leader need not be predetermined, and use our new toolbox to
obtain a leader within only O(D) rounds.

1.2 Comparison with Related Work

First, we compare our results with previous theoretical work on the additive
network model. The work of [6] assumes a bound a on the contention in the
system, i.e., there are at most a initial inputs in total in the network. The
main method for obtaining global broadcast in the above work is random linear
network coding, which can be shown to allow an efficient flow of information in
the system. However, this is what requires the bound on the contention. Our
BIC coding method bares some technical similarity to the approach of random
linear network coding, but allows us to refrain from making assumptions on the
total information present in the network.

The aforementioned global broadcast algorithm requires O(D + a + log n)
rounds. While this algorithm can be used to solve many of the problems that
we address in this paper, such as electing a leader and computing the maximal
input, it would require O(n) rounds, as for these problems it holds that a can
be as large as the total number of nodes in the network. In comparison, our
O(D)-round leader election algorithm is optimal, and our O(D log n/ log log n)-
round algorithm for computing the maximal input is nearly-optimal, as O(D) is
a natural lower bound for both problems, even in the message-passing model.

It is important to mention that our algorithms use messages of size O(log3 n).
While a standard assumption might be that the message size is O(log n) bits,
this difference is far from rendering our results easy. In comparison, the global
broadcast algorithm of [6] requires a message size of O(a log n+�) bits for inputs
of size � and contention bounded by a. In our setting, we assume � fits the
message size (say, is logarithmic in n), but since a can be as large as n, such a
message size would be unacceptable. In addition, if we compare our results to
algorithms for the much less restricted message-passing setting, it is crucial to
note that even unbounded message sizes do not make distributed tasks trivial.
For example, it is possible to compute an MIS in general graphs in O(log n)
rounds even with messages of size O(1) [19], but the best known lower bound is
Ω(log Δ +

√
log n) even with unbounded messages [14]. Recently, Barenboim at

el. [5] showed a randomized MIS algorithm with O(log Δ · √log n) rounds using
unbounded messages.

In [7], we overview results that address the same tasks as this paper in the
standard radio network model and in the message-passing model. An additive
network can be viewed as lying somewhere in between these two models, as
it does suffer from collisions, but to a smaller extent. Nevertheless, while our

410 K. Censor-Hillel et al.

coding methods assist us in overcoming collisions, the additive network model
is still subject to the broadcast nature of the transmissions, and therefore it is
highly non-trivial to translate algorithms for the message-passing setting that
make use of the ability to send different messages on different links concurrently.
The related work overviewed in [7], include algorithms and lower bounds for
various problems in radio networks, such as the wake-up problem [9], MIS with
and without collision detection [20,26] or with multiple channels [8], leader elec-
tion [10], and approximation of local parameters [17], as well as MIS algorithms
for message passing systems [1,18,25] and lower bounds [14,16].

2 Background: Additive Networks and BCC

The Additive Network Model: A radio network consists of stations that can
transmit and receive information. We address a synchronous system, in which in
each round of communication each station can either transmit or listen to other
transmissions. This is called the half-duplex mode of operation. Mainly due to
theoretical interest, we also consider the full-duplex mode of operation which is
considered harder to implement. We follow the standard abstraction in which
stations are modeled as nodes of a graph G = (V,E), with edges connecting
nodes that can receive each other’s transmissions.

In the standard radio network model, a node v ∈ V receives a message
m in a given round if and only if in that round exactly one of its neighbors
transmits, and its transmitted message is m. In the half-duplex mode, it also
needs to hold that v is listening in that round, and not transmitting. If none of
v’s neighbors transmit then v hears silence, and if at least two of v’s neighbors
transmit simultaneously then a collision occurs at v. In both cases, v does not
receive any message.

Some networks allow for collision detection, where the effect at node v of
a collision is different from that of no message being transmitted, i.e., v can
distinguish a collision from silence (despite receiving no message in both). Other
networks operate without a collision detection mechanism, i.e., a node cannot
distinguish a collision from silence. It is known that the ability to detect collisions
has a significant impact on the computational power of the network [26].

In contrast, in this paper, we study the additive network model, in which a
collision of transmissions is not completely lost, but rather is modeled as receiv-
ing the XOR of the bit representation of all transmissions. More specifically, we
model a transmission of a message m by node v as a string of bits. A node v
that receives a collision of transmissions of messages {mu | u ∈ Γ (v)}, receives
their bitwise XOR, i.e., receives the message y =

⊕
u∈Γ (v) mu. Here Γ (v) is the

set of neighbors of v. Note that the above notation does not distinguish between
the case where a node u transmits to that where it does not, because we model
the string of a node that does not transmit as all-zero.

The network topology is unknown, and only a polynomial upper bound N =
nO(1) is known for the number of nodes n. Throughout, we assume that each
vertex v has a unique identifier idv in the range [1, . . . , nc] for some constant
c ≥ 1. The bandwidth is O(poly log n) bits per message.

Computing in Additive Networks with Bounded-Information Codes 411

Bounded-Contention Coding (BCC): Bounded-Contention Codes were intro-
duced in [6] for the purpose of obtaining fast local and global broadcast in
additive networks. Given parameters M and a, a BCC code is a set of M code-
words such that the XOR of any subset of size at most a is uniquely decodable.
As such, BCC codes can leverage situations where the number of initial messages
is bounded by some number a, and can be used (along with additional mecha-
nisms) for global broadcast in additive networks. Formally, Bounded-Contention
Codes are defined as follows.

Definition 1. An [M,m, a]-BCC-code is a set C ⊆ {0, 1}m of size |C| = M
such that for any two subsets S1, S2 ⊆ C (with S1 �= S2) of sizes |S1|, |S2| ≤ a it
holds that

⊕
S1 �= ⊕

S2.

Simple BCC codes can be constructed using the dual of linear codes. We refer the
reader to [6] for additional details and a construction of an [M,a log M,a]-BCC
code for given values of M and a.

3 New Tools

In this section we enrich the toolbox for computing in additive networks with
the following three techniques. The first is a method for encoding information
such that it can be successfully decoded not when the number of transmitters in
limited, but rather when the amount of distinct pieces of information is limited
(even if sent by multiple transmitters concurrently). The second technique is a
general simulation of any algorithm for full-duplex radios in a setting of half-
duplex radios within a logarithmic number of rounds. Finally, we show that we
can detect whether the number of distinct messages exceeds the given threshold.

Bounded-Information Codes (BIC). Using BCC and randomization allows one
to control the number of distinct pieces of information in the neighborhood.
Let G = (V,E) be an n-vertex network and assume that all the messages are
integers in the range [0, n]. We show that for a bandwidth of size O(log3 n),
one can use randomization and BCC codes to guarantee that every vertex v,
whose neighbors transmit O(log n) distinct messages (i.e., hence bounded pieces
of information) in a given round, can decode all messages correctly with high
probability (i.e., regardless of the number of transmitting neighbors).3 Let C
be an [n, log2 n, log n]-BCC code and x ∈ [0, n]. By the definition of C, the
codeword C(x) = [b1, . . . , bk] ∈ {0, 1}k contains k = O(log2 n) bits. Due to the
XOR operation, co-transmissions of the same value even number of times are
cancelled out. To prevent this, we use a randomized code, named hereafter as a
BIC code (or BIC for short) as defined next.

3 The definition of the BIC code can be given for any bound a on the number of
distinct values. Since we care for messages of polylogarithmic size, we provide the
definition for specific bound a = O(log n).

412 K. Censor-Hillel et al.

Definition 2. Let C be an [n, log2 n, log n]-BCC code. An [n, c log3 n, log n]-BIC
code for C is a random code CI defined as follows. The codeword CI(x) consists
of k′ = �c · log n	 blocks, for some constant c ≥ 4, each block is of size k =
O(log2 n) (the maximal length of a BCC codeword), and the i’th block contains
C(x) with probability 1/2 and the zero word otherwise, for every i ∈ {1, . . . , k′}.
In other words, for vertex v with value x, let m(v) = CI(x) be the message
containing the BIC codeword of x and let mi(v) denote the i’th block of v’s
message. Then, mi(v) = C(x) with probability 1/2 and mi(v) = 0k otherwise.
Let m′(v) =

⊕
u∈Γ (v) m(u) be the received message obtained by adding the BIC

codewords of v’s neighbors. Then the decoding is performed by using BCC to
decode each block m′

i(v) separately for every i ∈ {1, . . . , k′}, and taking a union
over all decoded blocks.

Lemma 1. Let V ′ ⊆ V be a set of transmitting vertices with values X ′ =⋃
v∈V ′ Val(v) where |X ′| = O(log n). For every v ∈ V ′, let CI

v be an [n, c ·
log3 n, log n]-BIC code, for constant c ≥ 4. Let m(v) be the CI

v codeword of
Val(v). Then, the decoding of

⊕
v∈V ′ m(v) is successful with probability at least

1 − 1/nc−1.

Proof. For every x ∈ X ′, let Vx = {v ∈ V ′ | Val(v) = x} be the set of
transmitting vertices in V ′ with the value x. For x ∈ X ′ and i ∈ {1, . . . , k′}, let
V i

x = {v ∈ Vx | mi(v) = C(x)} be the set of vertices v whose i’th block mi(v)
contains the codeword C(x). We say that block i is successful for value x ∈ X ′,
if |V i

x | is odd (hence, the messages of Vx are not cancelled out in this block).
Let Mi ⊆ X ′ be the set of values for which the i’th block is successful, and let
V ′

i contain one representative vertex with a value in Mi. We first claim that
with high probability, every value x ∈ X ′ has at least one successful block ix ∈
{1, . . . , k′}. We then show that the decoding of this ix’th block is successful. The
probability that the i’th block is successful for x is 1/2 for every i ∈ {1, . . . , k′}.
By the independence between blocks, the probability that x has no successful
block is at most 1/nc. By applying the union bound over all m ≤ n distinct
messages, we get that with probability at least 1 − 1/nc−1, every value x ∈ X
has at least one successful block ix in the message. Let m′ =

⊕
v∈V ′ m(v) be

the received message and let m′
i be the i’th block of the received message. It

then holds that m′
i =

⊕
v∈V ′ mi(v) =

⊕
v∈V ′

i
mi(v). To see this, observe that

the values with even parity in the i’th block are cancelled out and the XOR of
an odd number of messages with the same value C(x) is simply C(x). Since m′

i

corresponds to the XOR of |V ′
i | = O(log n) distinct messages, the claim follows

by the properties of the BCC code.
�
In our algorithms, the messages may contain several fields (mostly a constant)

each containing a value in [0, nc] for some constant c ≥ 1. To guarantee a proper
decoding on each field, the messages are required to be aligned correctly. For
example, a message containing � fields where the i’th field contains xi ∈ [0, n] is
split evenly into � blocks and all bits are initialized to zero. The BIC codeword
of xi, denoted by CI(xi), is written at the beginning of the i’th block. Hence,

Computing in Additive Networks with Bounded-Information Codes 413

when the messages are added up, all codewords of a given block are added up
separately. To avoid cumbersome notation, a multiple-field message is denoted
by concatenation of the BIC codewords of each field, e.g., the content of a two-
field message containing x1 and x2 is referred as CI(x1)◦CI(x2), where formally
the message is divided into two equi-length blocks and CI(x1) (resp., CI(x2)) is
written at the beginning of the first (resp., second) block.

From full-Duplex to Half-Duplex. The algorithms provided in this paper are
mostly concerned with the full-duplex setting. However, in the additive network
model, one can easily simulate a full-duplex protocol Pf by half-duplex protocol
Ph with a multiplicative overhead of O(log n) rounds with high probability, as
explain in more details in [7].

Information-Overflow Detection. In the standard radio model, a collision corre-
sponds to the scenario where multiple vertices transmit in the same round to a
given mutual neighbor. In an additive network, this may not be a problem, since
with BIC codes, the decoding is successful as long as there are O(log n) distinct
pieces of information in a given neighborhood. In this section, we describe a
scheme for detecting an event of information-overflow. Our scheme is adapted
from the contention estimation scheme of [6], designed for the setting of detect-
ing whether there are more than a certain number of initial messages throughout
the network. In our setting, the nodes generate values by themselves, and we will
later wish to use the fact that we can detect whether too many different values
were generated. The key observation within this context, is that using a BIC
code with a doubled information-limit allows one to detect failings with high
probability. To see this, assume an information bound K = c log n for constant
c ≥ 1 and consider an [n, 2K log n, 2K]-BCC code C. The BIC code CI based on
C supports 2K distinct messages. Throughout, because of space considerations,
some of the proofs are omitted. However, all the proofs are given in the full
version [7].

Lemma 2. With high probability, either it is detected that the number of distinct
values exceeds K, or each value w is decoded successfully.

4 Symmetry Breaking Tasks

In this section we show how to solve symmetry breaking tasks efficiently in addi-
tive networks. As a key example, we focus on the problem of leader election. In
[7], we consider additional tasks that involve symmetry breaking such as comput-
ing a BFS tree, computing an MIS and finding a proper vertex coloring. A key
ingredient in many of our algorithms is having the vertices choose random vari-
ables according to some carefully chosen probabilities, which, at a high level, are
used to reduce the amount of information that is sent throughout the network.
We refer to this as the SL (Select Level) function and describe it as follows.

The SL function does not require communication, and only produces two
local random values, an r-value and an z-value, that can be considered as
primary and secondary values for breaking the symmetry between thevertices.

414 K. Censor-Hillel et al.

The r-value is defined by letting r = j with probability of 2−j , and the z-value,
z, is sampled uniformly at random from the set {1, ..., 28r}.

Note that SL does not require the knowledge of the number of vertices n. We
next show that the maximum value of r(v) is concentrated around O(log n) and
that not to many vertices collide on the maximum value. Let jSL

max = max{r(v) |
v ∈ V } and SSL

max = {v ∈ V | r(v) = jSL
max}.

Lemma 3. With high probability, it holds that (a) jSL
max ≤ 3 log n + 1; (b)

|SSL
max| ≤ 2 log n; and (c) z(v) �= z(v′) for every v, v′ ∈ SSL

max.

Proof. Let Pv = P(r(v) ≥ 3 log n+1). Then, by definition, Pv =
∑∞

i=3 log n+1 2−i

= 1/n3. By applying the union bound over all vertices in S, we get that with
probability at least 1 − 1/n2, r(v) ≤ 3 log n + 1, for every v ∈ S, as needed for
Part (a). We now turn to bound the cardinality of SSL

max. The random choice of
r(v) can be viewed as a random process in which each vertex flips a coin with
probability 1/2 and proceeds as long as it gets “head”. The value of r(v) corre-
sponds to the first time when it gets a “tail”. We now claim that the probability
that |SSL

max| > 2 log n is very small. This holds since the probability that all of
2 log n coin flips are “tails” is exactly 2−2 log n which is less than the probabil-
ity that |SSL

max| > 2 log n and none of the vertices in SSL
max succeeded in getting

another head (and hence in having a larger r-value). Hence, the probability that
|SSL

max| ≤ 2 log n is at least 1 − 2−2 log n = 1 − 1/n2, as needed for Part (b).
Finally, consider Part (c). It is sufficient to show that the z-values (of vertices

of SSL
max) are sampled from a sufficient large range. Note that, the size of this

range is 28·jSL
max . We later show that jSL

max ≥ log n/2 with high probability. This
implies that the range size (of the z-values) is at least n4 with high probability.
Assume that jSL

max ≥ log n/2, then the probability that z(v) = z(v′), for any pair
v, v′ ∈ SSL

max is at most 1/n4. Applying the union bound over all pairs in SSL
max

gives the claim, since |SSL
max| ≤ n.

In the remaining, we show that indeed, jSL
max ≥ log n/2 with high probability.

For every v ∈ V , let xv be an indicator variable for the event that r(v) ≥ log n/2,
i.e., xv = 1, if r(v) ≥ log n/2 and xv = 0, otherwise. Let X =

∑
v∈V xv . Note

that, the probability that X ≥ 1 is the same as the probability that jSL
max ≥

log n/2. In addition, Pr[xv = 1] = 2−(log n/2)+1 ≥ 2− log n/2 and hence (by the
linearity of expectation) E[X] =

∑
v∈V Pr[xv = 1] =

√
n. By Chernoff bound,

the probability that X = 0 is exponentially small. Hence, X ≥ 1 and so jSL
max ≥

log n/2 with the high probability. Part (c) holds.
�

4.1 Leader Election
A Leader-Election protocol is a distributed algorithm run by any vertex such
that each node eventually decides whether it is a leader or not, subject to the
constraint that there is exactly one leader. Moreover, at the end of the algorithm
all vertices know the SL function values of the leader.

We first describe a two-round leader election protocol for single-hop net-
works. Let CI be an [N,O(log3 N), O(log N)]-BIC code sampled uniformly
at random from the distribution of all random codes that are based on

Computing in Additive Networks with Bounded-Information Codes 415

a particular [N,O(log2 N), O(log N)]-BCC code C (which is used by all vertices).
First, the vertices apply the SL function to compute r(v), z(v). To do that, in
the first communication round, every vertex v transmits CI(r(v)). Since with
high probability, by Lemma 3(a), jSL

max ≤ 2 log n, the information is bounded
and by Claim 2, each vertex can compute SSL

max w.h.p. In the second communi-
cation round, every vertex v with r(v) = jSL

max, transmits CI(z(v)). That is, in
the second phase only the vertices of SSL

max transmit the codeword of their z′s
value. Since by Lemma 3(b), with high probability, |SSL

max| = O(log n), and by
Claim 2 again, the z-values of all vertices in SSL

max are known to every vertex in
the network w.h.p. Finally, the leader is the vertex v∗ ∈ SSL

max with the largest
z-value, i.e., z(v∗) = maxv′∈SSL

max
z(v′). In [7], we consider the general case of

electing a leader in a network G with diameter D, and also show how it implies
a 2-approximation of the diameter as a byproduct.

5 Approximation Tasks: Degree Approximation

In this section we consider approximation tasks. As a key example, we focus on
the task of approximating the degree, i.e., each vertex v is required to compute
an approximation for its degree in the graph G. We refer the reader to [7] for
additional approximation schemes such as (1) an approximation for the network
size; (2) an approximation for the network diameter; and (3) a 2-approximation
for the maximum (or minimum).

We describe Algorithm AppDegree that computes with high probability a
constant approximation for the degree of the vertices within O(1) rounds. For
vertex v and graph G, let deg(v,G) = |Γ (v,G)| be the degree of v in G. When
the graph G is clear from the context, we may omit it and simply write deg(v).
Recall that we assume that each vertex v has a unique identifier idv in the range
of [1, . . . , nc] for some constant c ≥ 1.

The algorithm consists of two communication rounds (which can be unified
into a single round). The first round is devoted for computing the exact degree for
low-degree vertices v with degree deg(v) ≤ c · log n. The second round computes
a constant approximation for high-degree vertices v with deg(v) > c · log n. In
the first communication round, every vertex v uses a random instance CI

v of an
[N, c·log3 N, c·log N]-BIC code to encode its ID and transmits CI

v (idv) as part of
m1(v). In addition, the vertices use the Information-Overflow Detection scheme
of Section 3 to verify if their BIC decoding is successful (that is, the message
m1(v) consists of two fields, the first encodes the ID and the second is devoted for
overflow detection). Upon receiving m′

1(v) =
⊕

u∈Γ (v) m1(u), the vertex applies
BIC decoding to the first field of the message and applies Information-Overflow
Detection to the second field to verify the correctness of the decoding. Note that
by the properties of the BIC code, in this round, the low-degree vertices compute
their exact degree in G.

The second round aims at computing a constant factor approximation for
the remaining vertices with high-degree. Set a = 40 · log N and b = 2 log N .
Every vertex v sends an (a · b)-bit message m2(v) defined by a collection of
a random numbers in the range of {1, . . . , b} sampled independently by each

416 K. Censor-Hillel et al.

vertex v. Specifically, for every v and i ∈ {1, . . . , a}, ri(v) is sampled accord-
ing to the geometric distribution, letting ri(v) = j for j ∈ {1, . . . , b − 1} with
probability 2−j , and ri(v) = b with probability 2−b+1 (the remaining proba-
bility). For every i ∈ {1, . . . , a} and every j ∈ {1, . . . , b}, let xi,j(v) = 1 if
j < ri(v) and xi,j(v) = 0 otherwise. Let Xi(v) = xi,b(v) · · · xi,2(v) · xi,1(v)
and let m2(v) = X(v) = Xa(v) · · · X2(v) · X1(v) be the transmitted message
of v. Let Y (v) =

⊕
u∈Γ (v) X(u) be the received message of v. The decoding

is applied to each of the a blocks of Y (v) separately, i.e., treating Y (v) as
Y (v) = Ya(v) · · · Y2(v) · Y1(v), where Yi(v) = yi,b(v) · · · yi,2(v) · yi,1(v), such
that yi,j(v) =

⊕
u∈Γ (v) xi,j(u). For every j ∈ {1, ..., b} and every v ∈ V , define

SUM(j, v) =
∑a

i=1 yi,j(v). Finally, define j∗(v) = min{j | SUM(j, v) ≤ 0.2 · a},
if there exists an index j such that SUM(j, v) ≤ 0.2 · a (we later show that
such index do exists with high probability) and j∗(v) = 0, otherwise as a default
value. The approximation δ(v) is then given by 2j∗(v)−1. This completes the
description of the algorithm.

As mentioned earlier, the correctness for low-degree vertices follows immedi-
ately by the properties of the BIC code and the information-overflow detection
(Lemma 1 and Lemma 2). We then show that in the second round, for high-
degree vertices v, we have δ(v)/deg(v) = O(1), with high probability. We thus
have the following.

Theorem 1. There exists an O(1)-round algorithm that computes w.h.p. the
exact degree deg(v) for vertices with deg(v) = O(log n) and a constant approxi-
mation if deg(v) = Ω(log n).

6 Revealing Asymmetry – Distributed Tournament

Consider the setting where every vertex is given an input value (corresponding to
its rank, for example) and the goal is to find the vertex with the maximum value.
We will show that BCC codes with message size of O(log3 n) allow one to perform
many simultaneous competitions between Ω(log n) candidates, which result in a
tournament process of O(D · log n/ log log n) rounds for a network of diameter D.
Specifically, the fact that the BCC code provides successful decoding when there
are O(log2 n) concurrent transmitting neighbors, allows us to reduce the number
of competitors by a factor of Ω(log n) in every round, and hence the winner is
found within O(D · log n/ log log n) rounds. Because of space considerations, we
presenting here only the protocol for single-hop networks. The protocol for any
network of diameter D > 1, which requires some subtle modifications is presented
in the full version [7].

Single-Hop Network. Let V = {v1, . . . , vn} be the vertices of the network and
let X = {x1, . . . , xn}, where xi ∈ {1, . . . n2} for all i, be the set of integral inputs
such that vertex vi holds the input xi. Let max(X) = maxn

i=1 xi be the maximum
value in X. Note that by Section 5, a 2-approximation for the maximum can be
computed within a single round, w.h.p. The main contribution of this section is
the exact computation of the maximum value.

Computing in Additive Networks with Bounded-Information Codes 417

Theorem 2. The maximum value max(X) can be computed within O
(

log n
log log n

)

rounds, with high probability.

Algorithm CompMaxSH consists of O(log n/ log log n) communication rounds.
For simplicity, assume that the input values are distinct. This can be obtained
by appending to every input value �log n	 least significant bits corresponding
to the ID of the vertex. Let c ≥ 2 be an upper bound on the approximation
ratio of Algorithm ApproxNetSize and set τ = �c · log n/ log log n	. Initially, all
vertices are active. In round t = {1, . . . , τ}, let nt be a constant approximation
for the number of active vertices at the beginning of round t, and let C be an
[n1, 32c·log3 n1, 32c·log2 n1]-BCC code4. After computing nt, every active vertex
vj transmits C(xj) with probability pt = 4c · log2 n1/nt. If a vertex vi receives an
input xj > xi in round t, it becomes inactive. The final result max(vi) of every
vertex vi corresponds to the maximum input value xj it received throughout the
algorithm. This completes the description of the algorithm.

We now analyze the algorithm and begin with correctness. Let At be the
active vertex set at the beginning of round t. Note that Aτ ⊆ . . . ⊆ A1 = V . Let
vm be a vertex with maximum input, i.e., xm = max(X).

Lemma 4. For each round t ∈ {1, . . . , τ}, with high probability it holds that
|At| = O(n1/ logt−1 n1) and xm ∈ At.

Proof. The claim is shown by induction. For the base of the induction t = 1,
we have that A1 = V , and n1 ≤ c · n since by the properties of Algo-
rithm ApproxNetSize it holds that with high probability n1 ∈ [n/2, c · n] for
some constant c ≥ 2. Assume that the claim holds up to step t − 1 ≥ 1 and
consider step t. Order the values of the vertices in At−1 in increasing order of
their inputs and consider the subset Ht−1 ⊂ At−1 of the �|At−1|/ log n1	 vertices
with the highest input values in At−1. We first claim that with high probability,
at least one of the vertices in Ht−1 transmits in round t−1. Since every vertex in
At−1 transmits with probability of pt−1 = 4c log2 n1/nt−1 and nt−1 ≤ c · |At−1|,
in expectation there are at least 4 log n1 transmitting vertices in Ht−1 and hence,
by a Chernoff bound, w.h.p there is at least one transmitter in Ht−1.

We proceed by showing that the number of transmitting vertices in round
t − 1 is O(log2 n). In expectation, the number of transmitting vertices in At−1

is at most 8c · log2 n1, and hence by Chernoff bound, with high probability
there are less than 32c log2 n1 transmitters. By the properties of the BCC code,
all messages received in round t − 1 are decodable. This implies that all ver-
tices know the value of at least one vertex in Ht−1 and as a result all ver-
tices in V \ Ht−1 become inactive. In other words, At ⊆ Ht−1 and hence
nt ≤ |Ht−1| = |At−1|/ log n1 = O(n1/ logt n1), where the last equality holds
w.h.p by the induction assumption. Finally, by the induction assumption for
t − 1, vm ∈ At−1, since all messages were decoded successfully in round t − 1
w.h.p, it holds that vm remains in At as well. The claim follows.
�
4 This approximation for the size of the network can be obtained by applying Algo-

rithm ApproxNetSize or simply Algorithm AppDegree in the case of single-hop net-
works (where only the active vertices participate in these algorithms).

418 K. Censor-Hillel et al.

We thus have the following, which proves Theorem 2.

Lemma 5. With high probability max(vi) = max(X) for every vertex vi ∈ V .

7 Discussion

It is clear that computing in the additive network model should be doable faster
than in the standard radio network model. In this paper we quantify this intu-
ition, by providing efficient algorithms for various cornerstone distributed tasks.
Our work leaves open several important open questions for further research.
First, it is natural to ask whether our algorithms can be improved. Specifically,
most of our algorithms apply for the full-duplex model and translate into half-
duplex by paying an extra factor of O(log n). It would be interesting to obtain
better bounds for half-duplex radios without using the full-duplex protocol as a
black box. An additional axis that requires investigation is the multiple chan-
nels model. It would be interesting to study the tradeoff between running time,
message size and the number of channels. Note, that whereas most of our algo-
rithms are optimal for full-duplex radios (up to constant factors), some leave
room for improvements. For example, in the problem of computing the maxi-
mum input, we believe that some pipelining of the simulation of phases should
be able to give a round complexity of O(D + log n/ log log n), instead of the
current O(D · log n/ log log n). However, this is not immediate. Designing lower
bounds for this model is another important future goal. It seems that the prob-
lem of computing the maximum input in a single-hop network, should be a good
starting point, as we believe that this task requires Ω(log n/ log log n) rounds.
Another interesting future direction involves the implementation of an abstract
MAC layer over additive radio network model. Such an implementation was
provided recently [13] for the standard radio network model. Finally, we note
that all our algorithms are randomized, as opposed to the original definition of
BCC codes. Is randomization necessary? What is the computational power of
the additive network model without randomization?

References

1. Alon, N., Babai, L., Itai, A.: A fast and simple randomized parallel algorithm for
the maximal independent set problem. J. Algorithms 7(4), 567–583 (1986)

2. Andrews, J.: Interference cancellation for cellular systems: a contemporary. SIAM
Journal on Computing 12(1), 19–2 (2005)

3. Avestimehr, A.S., Diggavi, S.N., Tse, D.: Wireless network information flow: A
deterministic approach. IEEE Trans. on Info. Theory 57(4), 1872–1905 (2011)

4. Bar-Yehuda, R., Goldreichh, O., Itai, A.: On the time-complexity of broadcast
in multi-hop radio networks: An exponential gap between determinism and ran-
domization. J. of Compt. Syst. Sciences 45, 104–126 (1992)

5. Barenboim, L., Elkin, M., Pettie, S., Schneider, J.: The locality of distributed
symmetry breaking. In: FOCS, pp. 321–330 (2012)

Computing in Additive Networks with Bounded-Information Codes 419

6. Censor-Hillel, K., Haeupler, B., Lynch, N., Médard, M.: Bounded-contention cod-
ing for wireless networks in the high SNR regime. In: Aguilera, M.K. (ed.) DISC
2012. LNCS, vol. 7611, pp. 91–105. Springer, Heidelberg (2012)

7. Censor-Hillel, K., Kantor, E., Lynch, N.A., Parter, M.: Computing in additive
networks with bounded-information codes. arxiv.org/abs/1508.03660 (2015)

8. Daum, S., Ghaffari, M., Gilbert, S., Kuhn, F., Newport, C.: Maximal independent
sets in multichannel radio networks. In: PODC, pp. 335–344 (2013)

9. Farach-Colton, M., Fernandes, R.J., Mosteiro, M.A.: Lower bounds for clear trans-
missions in radio networks. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN
2006. LNCS, vol. 3887, pp. 447–454. Springer, Heidelberg (2006)

10. Ghaffari, M., Haeupler, B.: Near optimal leader election in multi-hop radio net-
works. In: SODA, pp. 748–766 (2013)

11. Gollakota, S., Katabi, D.: Zigzag decoding: combating hidden terminals in wireless
networks. In: SIGCOMM, pp. 159–170 (2008)

12. Gupta, P., Kumar, P.: The capacity of wireless networks. IEEE Trans. on Info.
Theory, 388–404 (2000)

13. Kuhn, F., Lynch, N., Newport, C.: The abstract MAC layer. Distributed
Computing 24, 187–206 (2011)

14. Kuhn, F., Moscibroda, T., Wattenhofer, R.: What cannot be computed locally!
In: Proc. PODC, pp. 300–309 (2004)

15. Kuhn, F., Wattenhofer, R.: Constant-time distributed dominating set approxi-
mation. Distributed Computing 17(4), 303–310 (2005)

16. Linial, N.: Locality in distributed graph algorithms. SIAM Journal on Computing
21(1), 193–201 (1992)

17. Liu, Z., Herlihy, M.: Approximate local sums and their applications in radio net-
works. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 243–257. Springer,
Heidelberg (2014)

18. Luby, M.: A simple parallel algorithm for the maximal independent set problem.
SIAM Journal on Computing 15, 1036–1053 (1986)

19. Métivier, Y., Robson, J., Saheb-Djahromi, N., Zemmari, A.: An optimal bit com-
plexity randomized distributed MIS algorithm. Distributed Computing 23(5–6),
331–340 (2011)

20. Moscibroda, T., Wattenhofer, R.: Maximal independent sets in radio networks.
In: PODC, pp. 148–157 (2005)

21. Ozgur, A., Leveque, O., Tse, D.: Hierarchical cooperation achieves optimal capac-
ity scaling in ad hoc networks. IEEE Trans. on Info. Theory, 3549–3572 (2007)

22. ParandehGheibi, A., Sundararajan, J.-K., Médard, M.: Collision helps - algebraic
collision recovery for wireless erasure networks. In: WiNC (2010)

23. Ramachandran, K.N., Belding-Royer, E.M., Almeroth, K.C., Buddhikot, M.M.:
Interference-aware channel assignment in multi-radio wireless mesh networks. In:
INFOCOM, pp. 1–12 (2006)

24. Schneider, J., Wattenhofer, R.: Coloring unstructured wireless multi-hop net-
works. In: PODC, pp. 210–219 (2009)

25. Schneider, J., Wattenhofer, R.: An optimal maximal independent set algorithm for
bounded-independence graphs. Distributed Computing 22(5–6), 349–361 (2010)

26. Schneider, J., Wattenhofer, R.: What is the use of collision detection (in Wireless
Networks)? In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343,
pp. 133–147. Springer, Heidelberg (2010)

Specifying Concurrent Problems:
Beyond Linearizability and up to Tasks

(Extended Abstract)

Armando Castañeda1, Sergio Rajsbaum1(B), and Michel Raynal2

1 Instituto de Matemáticas, UNAM, 04510 México D.F, México
{armando.castaneda,rajsbaum}@im.unam.mx

2 IUF & IRISA (Université de Rennes), 35042 Rennes, France
raynal@irisa.fr

Abstract. Tasks and objects are two predominant ways of specifying
distributed problems. A task specifies for each set of processes (which
may run concurrently) the valid outputs of the processes. An object spec-
ifies the outputs the object may produce when it is accessed sequentially.
Each one requires its own implementation notion, to tell when an exe-
cution satisfies the specification. For objects linearizability is commonly
used, while for tasks implementation notions are less explored.

Sequential specifications are very convenient, especially important
is the locality property of linearizability, which states that linearizable
objects compose for free into a linearizable object. However, most well-
known tasks have no sequential specification. Also, tasks have no clear
locality property.

The paper introduces the notion of interval-sequential object. The
corresponding implementation notion of interval-linearizability gener-
alizes linearizability. Interval-linearizability allows to specify any task.
However, there are sequential one-shot objects that cannot be expressed
as tasks, under the simplest interpretation of a task. The paper also shows
that a natural extension of the notion of a task is expressive enough to
specify any interval-sequential object.

Keywords: Concurrent object · Task · Linearizability · Sequential
specification

1 Introduction

Concurrent Objects. Distributed computer scientists excel at thinking con-
currently, and building large distributed programs that work under difficult
conditions where processes experience asynchrony and failures. Yet, they evade

Full version in http://arxiv.org/abs/1507.00073.
A. Castañeda—Partially supported by UNAM-PAPIIT.
S. Rajsbaum—Partially supported by LAISLA-CONACYT and UNAM-PAPIIT.
R. Raynal—Partially supported by the French ANR project DISPLEXITY, and the
Franco-German ANR project DISCMAT

c© Springer-Verlag Berlin Heidelberg 2015
Y. Moses (Ed.): DISC 2015, LNCS 9363, pp. 420–435, 2015.
DOI: 10.1007/978-3-662-48653-5 28

http://arxiv.org/abs/1507.00073

Specifying Concurrent Problems: Beyond Linearizability and up to Tasks 421

thinking about concurrent problem specifications. A central paradigm is that of
a shared object that processes may access concurrently [19,22], but the object
is specified in terms of a sequential specification, i.e., an automaton describing
the outputs the object produces only when it is accessed sequentially. Thus, a
concurrent algorithm seeks to emulate an allowed sequential behavior.

There are various ways of defining what it means for an algorithm to imple-
ment an object, namely, that it satisfies its sequential specification. One of the
most popular consistency conditions is linearizability [20]. An implementation is
linearizable if each of its executions is linearizable: intuitively, for each operation
call, it is possible to find a unique point in the interval of real-time defined by the
invocation and response of the operation, and these linearization points induce
a valid sequential execution. Linearizability is very popular to design compo-
nents of large systems because it is local, namely, one can consider linearizable
object implementations in isolation and compose them for free, without sacrific-
ing linearizability of the whole system [11]. Also, linearizability is a non-blocking
property, which means that a pending invocation (of a total operation) is never
required to wait for another pending invocation to complete.

Linearizability has various desirable properties, additionally to being local
and non-blocking: it allows talking about the state of an object, interactions
among operations is captured by side-effects on object states; documentation
size of an object is linear in the number of operations; new operations can be
added without changing descriptions of old operations. However, as we argue
here, linearizability is sometimes too restrictive. First, there are problems which
have no sequential specifications (more on this below). Second, some problems
are more naturally and succinctly defined in term of concurrent behaviors. Third,
as it is well known, the specification of a problem should be as general as possible,
to allow maximum flexibility to both programmers and program executions.

Distributed Tasks. Another predominant way of specifying a one-shot distributed
problem, especially in distributed computability, is through the notion of a task.
Several tasks have been intensively studied in distributed computability, lead-
ing to an understanding of their relative power [18], to the design of simula-
tions between models [5], and to the development of a deep connection between
distributed computing and topology [17]. Formally, a task is specified by an
input/output relation, defining for each set of processes that may run concur-
rently, and each assignment of inputs to the processes in the set, the valid outputs
of the processes. Implementation notions for tasks are less explored, and they are
not as elegant as linearizability. In practice, task and implementation are usually
described operationally, somewhat informally. One of the versions widely used
is that an algorithm implements a task if, in every execution where a set of pro-
cesses participate (run to completion, and the other crash from the beginning),
input and outputs satisfy the task specification.

Tasks and objects model in a very different way the concurrency that natu-
rally arises in distributed systems: while tasks explicitly state what might hap-
pen when a set of processes run concurrently, objects only specify what happens
when processes access the object sequentially.

422 A. Castañeda et al.

It is remarkable that these two approaches have largely remained indepen-
dent, while the main distributed computing paradigm, consensus, is central to
both. Neiger [21] noticed this and proposed a generalization of linearizability
called set-linearizability. He discussed that there are tasks, like immediate snap-
shot [4], with no natural specification as sequential objects. An object modeling
the immediate snapshot task is necessarily stronger than the immediate snap-
shot task, because such an object implements test-and-set. In contrast there are
read/write algorithms solving the immediate snapshot task and it is well-known
that there are no read/write linearizable implementations of test-and-set. There-
fore, Neiger proposed the notion of a set-sequential object, that allows a set of
processes to access an object simultaneously. Then, one can define an immediate
snapshot set-sequential object, and there are set-linearizable implementations.

Contributions. We propose the notion of an interval-sequential concurrent
object, a framework in which an object is specified by an automaton that
can express any concurrency pattern of overlapping invocations of operations,
that might occur in an execution (although one is not forced to describe all of
them). The automaton is a direct generalization of the automaton of a sequential
object, except that transitions are labeled with sets of invocations and responses,
allowing operations to span several consecutive transitions. The corresponding
implementation notion of interval-linearizability generalizes linearizability and
set-linearizability, and allows to associate states along the interval of execution
of an operation. While linearizing an execution requires finding linearization
points, in interval-linearizability one needs to identify a linearization interval for
each operation (the intervals might overlap). Remarkably, this general notion
remains local and non-blocking. We show that important tasks have no specifi-
cation neither as a sequential object nor as a set-sequential object, but they can
be naturally expressed as interval-sequential objects.

Fig. 1. Equivalence between refined
tasks and one-shot interval-sequential
objects.

Establishing the relationship between
tasks and (sequential, set-sequential and
interval-sequential) automaton-based spec-
ifications is subtle, because tasks admit
several natural interpretations. Interval-
linearizability is a framework that allows
to specify any task, however, there are
sequential one-shot objects that cannot
be expressed as tasks, under the simplest
interpretation of what it means to solve
a task. However, a natural extension of
the notion of solving a task, which we call refined tasks, has the same expres-
sive power to specify one-shot concurrent problems, hence strictly more than
sequential and set-sequential objects. See Figure 1. Interval-linearizability goes
beyond unifying sequentially specified objects and tasks, it sheds new light on
both of them. On the one hand, interval-sequential linearizability provides an
explicit operational semantics for a task (whose semantics, as we argue here, is
not well understood), gives a more precise implementation notion, and brings

Specifying Concurrent Problems: Beyond Linearizability and up to Tasks 423

a locality property to tasks. On the other hand, tasks provide a static speci-
fication for automaton-based formalisms such as sequential, set-sequential and
interval-sequential objects.

Finally, Shavit [24] summarizes beautifully the common knowledge state that
“it is infinitely easier and more intuitive for us humans to specify how abstract
data structures behave in a sequential setting.” We hope interval-linearizability
opens the possibility of facilitating reasoning about concurrent specifications,
when no sequential specifications are possible.

All proofs and additional examples can be found in [7].

Related Work. Neiger proposed unifying sequential objects and tasks, using set-
linearizability [21]. Later on, it was again observed that for some concurrent
objects it is impossible to provide a sequential specification, and concurrency-
aware linearizability was defined [16] (still, no locality properties were proved).
Set linearizability and concurrency-aware linearizability are closely related and
both are strictly less powerful than interval linearizability to model tasks. Trans-
forming the question of wait-free read/write solvability of a one-shot sequential
object, into the question of solvability of a task was suggested in [13]. The refined
tasks we propose here is reminiscent to the construction in [13] Linearizability
can be used in an operation that must wait for some other thread to establish
a precondition, by defining two linearization points, representing a request and
a follow-up [23]. These points are reminiscent of the interval used to define an
interval-linearization. Higher dimensional automata are used to model execution
of concurrent operations, and are the most expressive model among other com-
mon operations [14]. They can model transitions which consist of sets of oper-
ations, and hence are related to set-linearizability, but do not naturally model
interval-linearizability. There is work on partial order semantics of programs,
including more flexible notions of linearizability, relating two arbitrary sets of
histories [10], although no compositionality result is proved, and concurrent exe-
cutions are not explicitly studied. It is worth exploring this direction further, as
the properties hold for concurrent executions, and it establishes that lineariz-
ability implies observational refinement, which usually entails compositionality
(see, e.g., [15]).

2 Limitations of Linearizability and Set-Linearizability

Sometimes we work with objects with two operations, but that are intended to
be used as one. For instance, a snapshot object [1] has operations write() and
snapshot(). This object has a sequential specification and there are linearizable
read/write algorithms implementing it (see, e.g., [19,22]). But many times, a
snapshot object is used in a canonical way, namely, each time a process invokes
write(), immediately after it always invokes snapshot(). Indeed, one would like to
think of such an object as providing a single operation, write snapshot(), invoked
with a value x to be deposited in the object, and when the operation returns,
it gives back to the invoking process a snapshot of the contents of the object.

424 A. Castañeda et al.

It turns out that this write-snapshot object has neither a natural sequential nor
a set-sequential specification. However, it can be specified as a task and actually
is implementable from read/write registers.

As observed in [21], in a sequential specification of write-snapshot any of
its executions can be seen as if all invocations occurred one after the other, in
some order. Thus, always there is a first invocation, which must output the set
containing only its input value, and hence could solve test-and-set, contradict-
ing the fact that test-and-set cannot be implemented from read/write registers.
Neiger noted this problem in the context of the immediate snapshot task. He
proposed in [21] the idea that a specification should allow to express that sets
of operations that can be concurrent. He called this notion set-linearizability.
In set-linearizability, an execution accepted by a set-sequential automaton is a
sequence of non-empty sets with operations, and each set denotes operations
that are executed concurrently. While set-linearizability is sufficient to model
the immediate-snapshot task, it is not enough for specifying the write-snapshot
task, and most other tasks.

p

q

write snapshot(1) → {1, 2}

write snapshot(2) → {1, 2, 3}

write snapshot(3) → {1, 2, 3}
r

linearization points

Fig. 2. A write-snapshot execution
that is not set-linearizable.

In set-linearizability, in the execution
in Figure 2, one has to decide if the oper-
ation of q goes together with the one
of p or r. In either case, in the result-
ing execution a process seems to predict
a future operation. The problem is that
there are operations that are affected by
several operations that are not concur-
rent. This cannot be expressed as a set-
sequential execution. Hence, to succinctly
express this type of behavior, we need a
more flexible framework in which it is pos-
sible to express that an operation happens
in an interval of time that can be affected by several operations.

To deal with these problematic tasks, one is tempted to separate an operation
into two operations, set() and get(). The first communicates the input value of a
process, while the second produces an output value to a process. For instance, k-
set agreement is easily transformed into an object with a sequential specification,
by accessing it through set() to deposit a value into the object and get() to
obtain one of the values in the object. In fact, every task can be represented as
a sequential object by splitting the operation of the task in two operations.

Separating an operation into a proposal operation and a returning operation
has several problems (although it is useful in other contexts [23]). First, the
program is forced to produce two operations, and wait for two responses. There
is a consequent loss of clarity in the code of the program, in addition to a loss
in performance, incurred by a two-round trip delay. Also, the intended meaning
of linearization points is lost; an operation is now linearized at two linearization
points. Furthermore, the resulting object may be more powerful; a phenomenon
that has been observed several times in the context of iterated models e.g. [9].

Specifying Concurrent Problems: Beyond Linearizability and up to Tasks 425

Additional Examples of Problematic Tasks. Several tasks are problematic for
dealing with them through linearizability, and have no deterministic sequential
specifications. Some have been studied in the past, such as the following.

– adopt-commit [12] is useful to implement round-based protocols for set-
agreement and consensus. Given an input u to the object, the result is an
output of the form (commit, v) or (adopt, v), where commit/adopt is a deci-
sion that indicates whether the process should decide value v immediately
or adopt it as its preferred value in later rounds of the protocol.

– conflict detection [3] has been shown to be equivalent to the adopt-commit.
Roughly, if at least two different values are proposed concurrently at least
one process outputs true.

– safe-consensus [2], a weakening of consensus, where the agreement condi-
tion of consensus is retained, but the validity condition becomes: if the first
process to invoke it returns before any other process invokes it, then it out-
puts its input; otherwise the consensus output can be arbitrary, not even the
input of any process.

– immediate snapshot [4], which plays an important role in distributed com-
putability [17]. A process can write a value to the shared memory using this
operation, and gets back a snapshot of the shared memory, such that the
snapshot occurs immediately after the write.

– k-set agreement [8], where processes agree on at most k input values.
– Exchanger [16], is a Java object that serves as a synchronization point at

which threads can pair up and atomically swap elements.

3 Concurrent Objects

3.1 System Model

The presentation follows [6,20,22]. The system consists of n asynchronous
sequential processes, P = {p1, . . . , pn}, which communicate through a set of
concurrent objects, OBS. Given a set OP of operations offered by the objects
of the system to the processes P , let Inv be the set of all invocations to oper-
ations that can be issued by a process in a system, and Res be the set of all
responses to the invocations in Inv. There are functions: (1) id : Inv → P , (2)
Inv → OP , (3) Res → OP , (4) Res → Inv and (5) obj : OP → OBS, where
id(in) tells which process invoked in ∈ Inv, op(in) tells which operation was
invoked, op(r) tells which operation was responded, res(r) tells which invocation
corresponds to r ∈ Res, and obj(oper) indicates the object that offers operation
oper. There is an induced function id : Res → P defined by id(r) = id(res(r)).
Also, induced functions obj : Inv → OBS defined by obj(in) = obj(op(in)), and
obj : Res → OBS defined by obj(r) = obj(op(r)). The set of operations of an
object X, OP (X), consists of all operations oper, with obj(oper) = X. Similarly,
Inv(X) and Res(X) are resp. the set of invocations and responses of X.

A process is a deterministic automaton that interacts with the objects in
OBS. It produces a sequence of steps, where a step is an invocation of an object’s

426 A. Castañeda et al.

operation, or reacting to an object’s response (including local processing). Con-
sider the set of all operations OP of objects in OBS, and all the correspond-
ing possible invocations Inv and responses Res. A process p is an automaton
(Σ, ν, τ), with states Σ and functions ν, τ that describe the interaction of the
process with the objects. Often there is also a set of initial states Σ0 ⊆ Σ. Intu-
itively, if p is in state σ and ν(σ) = (op,X) then in its next step p will apply
operation op to object X. Based on its current state, X will return a response r
to p and will enter a new state, in accordance to its transition relation. Finally,
p will enter state τ(σ, r) as a result of the response it received from X.

A system consists of a set of processes, P , a set of objects OBS so that each
p ∈ P uses a subset of OBS, together with an initial state for each of the objects.

A configuration is a tuple consisting of the state
of each process and each object, and a configura-
tion is initial if each process and each object is in
an initial state. An execution of the system is mod-
eled by a sequence of events H arranged in a total
order Ĥ = (H,<H), where each event is an invo-
cation in ∈ Inv or a response r ∈ Res, that can be
produced following the process automata, interacting
with the objects. Namely, an execution starts, given any initial configuration,
by having any process invoke an operation, according to its transition relation.
In general, once a configuration is reached, the next event can be a response
from an object to an operation of a process or an invocation of an operation
by a process whose last invocation has been responded. Thus, an execution is
well-formed, in the sense that it consists of an interleaving of invocations and
responses to operations, where a processes invokes an operation only when its
last invocation has been responded.

3.2 The Notion of an Interval-Sequential Object

To generalize the usual notion of a sequential object e.g. [6,20] instead of con-
sidering sequences of invocations and responses, we consider sequences of sets of
invocations and responses. An invoking concurrency class C ⊆ 2Inv, is a non-
empty subset of Inv such that C contains at most one invocation by the same
process. A responding concurrency class C, C ⊆ 2Res, is defined similarly.

Interval-Sequential Execution. An interval-sequential execution h is an alter-
nating sequence of invoking and responding concurrency classes, starting in an
invoking class, h = I0, R0, I1, R1, . . . , Im, Rm, where the following conditions are
satisfied

1. For each Ii ∈ h, any two invocations in1, in2 ∈ Ii are by different processes,
id(in1) �= id(in2). Similarly, for Ri ∈ h if r1, r2 ∈ Ri then id(r1) �= id(r2),

2. Let r ∈ Ri for some Ri ∈ h. There is in ∈ Ij for some j ≤ i, such that
res(r) = in and there is no other in′ with id(in) = id(in′) and in′ ∈ Ij′ ,
j < j′ ≤ i.

Specifying Concurrent Problems: Beyond Linearizability and up to Tasks 427

It follows that an execution h consists of matching invocations and responses,
perhaps with some pending invocations with no response.

Interval-Sequential Object. An interval-sequential object X is a (not necessarily
finite) Mealy state machine (Q, 2Inv(X), 2Res(X), δ) whose output values R are
responding concurrency classes R of X, R ⊆ 2Res(X), are determined both by
its current state s ∈ Q and the current input I ∈ 2Inv(X), where I is an invoking
concurrency class of X. There is a set of initial states Q0 of X, Q0 ⊆ Q. The
transition relation δ ⊆ Q × 2inv(X) × 2Res(X) × Q specifies both, the output of
the automaton and its next state. If X is in state q and it receives as input a set
of invocations I, then, if (R, q′) ∈ δ(q, I), the meaning is that X may return the
non-empty set of responses R and move to state q′. We stress that always both
I and R are non-empty sets.

Interval-Sequential Execution of an Object. Consider an initial state q0 ∈ Q0 of
X and a sequence of inputs I0, I1, . . . Im. Then a sequence of outputs that X
may produce is R0, R1, . . . Rm, where (Ri, qi+1) ∈ δ(qi, Ii). Then the interval-
sequential execution of X starting in q0 is q0, I0, R0, q1, I1, R1, . . . , qm, Im, Rm.
However, we require that the object’s response at a state uniquely determines the
new state, i.e. we assume if δ(q, Ii) contains (Ri, qi+1) and (Ri, q

′
i+1) then qi+1 =

q′
i+1. Then we may denote the interval-sequential execution of X, starting in q0

by h = I0, R0, I1, R1, . . . , Im, Rm, because the sequence of states q0, q1, . . . , qm
is uniquely determined by q0, and by the sequences of inputs and responses.
When we omit mentioning q0 we assume there is some initial state in Q0 that
can produce h.

Note that X may be non-deterministic, in a given state qi with input Ii it may
move to more than one state and return more than one response. Sometimes it
is convenient to require that the object is total, meaning that, for every singleton
set I ∈ 2Inv and every state q in which the invocation inv in I is not pending,
there is an (R, q′) ∈ δ(q, I) in which there is a response to inv in R.

Our definition of interval-sequential execution is motivated by the fact that
we are interested in well-formed executions h = I0, R0, I1, R1, . . . , Im, Rm. Infor-
mally, the processes should behave well, in the sense that a process does not
invoke a new operation before its last invocation received a response. Also, the
object should behave well, in the sense that it should not return a response to
an operation that is not pending.

The interval-sequential specification of X, ISSpec(X), is the set of all its
interval-sequential executions.

Representation of Interval-Sequential Executions. In general, we will be think-
ing of an interval-sequential execution h as an alternating sequence of invok-
ing and responding concurrency classes starting with an invoking class, h =
I0, R0, I1, R1, . . . , Im, Rm. However, it is sometimes convenient to think of an
execution as a a total order Ŝ = (S,

S−→) on a subset S ⊆ CC(X), where
CC(X), is the set with all invoking and responding concurrency classes of X;
namely, h = I0

S−→ R0
S−→ I1

S−→ R1
S−→ · · · S−→ Im

S−→ Rm.

428 A. Castañeda et al.

In addition, the execution h = I0, R0, I1, R1, . . . , Im, Rm can be represented
by a table, with a column for each element in the sequence h, and a row for
each process. A member in ∈ Ij invoked by pk (resp. a response r ∈ Rj to pk)
is placed in the k’th row, at the 2j-th column (resp. 2j + 1-th column). Thus, a
transition of the automaton will correspond to two consecutive columns, Ij , Rj .
See Figure 3, and several more examples in the figures below.

Remark 1. Let X be an interval-sequential object. Suppose for all states q and
all I, if δ(q, I) = (R, q′), then |R| = |I|, and additionally each r ∈ R is a response
to one in ∈ I. Then X is a set-sequential object. If in addition, |I| = |R| = 1,
then X is a sequential object in the usual sense (see Figure 1).

3.3 An Example: The Validity Task

Consider an object X with a single operation validity(x), that can be invoked by
each process, with a proposed input parameter x, and a very simple specification:
an operation returns a value that has been proposed. This problem is easily
specified as a task. Indeed, many tasks include this property, such as consensus,
set-agreement, write-snapshot, etc. As an interval-sequential object, it is formally
specified by an automaton, where each state q is labeled with two values, q.vals is
the set of values that have been proposed so far, and q.pend is the set of processes
with pending invocations. The initial state q0 has q0.vals = ∅ and q0.pend = ∅.
If in is an invocation to the object, let val(in) be the proposed value, and if r
is a response from the object, let val(r) be the responded value. For a set of
invocations I (resp. responses R) vals(I) denotes the proposed values in I (resp.
vals(R)). The transition relation δ(q, I) contains all pairs (R, q′) such that:

– If r ∈ R then id(r) ∈ q.pend or there is an in ∈ I with id(in) = id(r),
– If r ∈ R then val(r) ∈ q.vals or there is an in ∈ I with val(in) = val(r),
– q′.vals = q.val ∪ vals(I) and q′.pend = (q.pend ∪ ids(I)) \ ids(R).

On the right of Figure 3 there is part of a validity object automaton. On the
left of Figure 3 it is illustrated an interval-sequential execution with the vertical
red double-dot lines: I0, R0, I1, R1, where I0 = {p.validity(1), q.validity(2)}, R0 =
{p.resp(2)}, I1 = {r.validity(3)}, R1 = {q.sfresp(3), r.resp(1)}.

The interval-linearizability consistency notion described in Section 4 will for-
mally define how a general execution (blue double-arrows in the figure) can be
represented by an interval-sequential execution (red double-dot lines), and hence
tell if it satisfies the validity object specification. Notice that the execution in
Figure 3 shows that the validity object has no specification neither as a sequential
nor as a set-sequential object.

4 Interval-Linearizability

Interval-Sequential Execution of the System. Consider a subset S ⊆ CC of
the concurrency classes of the objects OBS in the system and an interval-

Specifying Concurrent Problems: Beyond Linearizability and up to Tasks 429

Fig. 3. An execution of a validity object, and the corresponding part of its interval-
sequential automaton

sequential execution Ŝ = (S,
S−→), defining an alternating sequence of invok-

ing and responding concurrency classes, starting with an invoking class. For an
object X, the projection of Ŝ at X, Ŝ|X = (SX ,

SX−→), is defined as follows: (1) for
every C ∈ S with at least one invocation or response on X, SX contains a con-
currency class C ′, consisting of the (non-empty) subset of C of all invocations
or responses of X, and (2) for every C ′, C ′′ ∈ SX , C ′ SX−→ C ′′ if and only if there
are T ′, T ′′ ∈ S such that C ′ ⊆ T ′, C ′′ ⊆ T ′′ and T ′ S−→ T ′′.

We say that Ŝ = (S,
S−→) is an interval-sequential execution of the system

if Ŝ|X is an interval-sequential execution of X for every X ∈ OBS. That is,
if Ŝ|X ∈ ISSpec(X), the interval-sequential specification of X, for every X ∈
OBS. Let Ŝ = (S,

S−→) be an interval-sequential execution. For a process p, the

projection of Ŝ at p, Ŝ|p = (Sp,
Sp−→), is defined as follows: (1) for every C ∈ S

with an invocation or response by p, Sp contains contains a class C with the
invocation or response by p (there is at most one event by p in C), and (2) for

every a, b ∈ Sp, a
Sp−→ b if and only if there are T ′, T ′′ ∈ S such that a ∈ T ′,

b ∈ T ′′ and T ′ S−→ T ′′.

Interval-Linearizability. Recall that an execution of the system is a sequence
of invocations and responses (Section 3.1). An invocation in an execution E is
pending if it has no matching response, otherwise it is complete. An extension
of an execution E is obtained by appending zero or more responses to pending
invocations.

An operation call in E is a pair consisting of an invocation and its matching
response. Let comp(E) be the sequence obtained from E by removing its pend-
ing invocations. The order in which invocation and responses in E happened,
induces the following partial order: ÔP = (OP,

op−→) where OP is the set with all
operation calls in E, and for each pair op1, op2 ∈ OP , op1

op−→ op2 if and only if
term(op1) < init(op2) in E, namely, the response of op1 appears before the invo-

430 A. Castañeda et al.

cation of op2. Given two operation op1 and op2, op1 precedes op2 if op1
op−→ op2,

and they are concurrent if op1
op
� op2 and op2

op
� op1.

Consider an execution of the system E and its associated partial order ÔP =
(OP,

op−→), and let Ŝ = (S,
S−→) be an interval-sequential execution. We say that

an operation a ∈ OP appears in a concurrency class S′ ∈ S if its invocation or
response is in S′. Abusing notation, we write a ∈ S′. We say that S−→ respects
op−→, also written as

op−→⊆ S−→, if for every a, b ∈ OP such that a
op−→ b, for every

T ′, T ′′ ∈ S with a ∈ T ′ and b ∈ T ′′, it holds that T ′ S−→ T ′′.

Definition 1 (Interval-linearizability). An execution E is interval-
linearizable if there is an extension E of E and an interval-sequential execution
Ŝ = (S,

S−→) such that

1. for every process p, comp(E)|p = Ŝ|p,
2. for every object X, Ŝ|X ∈ ISS(X) and
3. S−→ respects

op−→, where ÔP = (OP,
op−→) is the partial order associated to

comp(E).

We say that Ŝ = (S,
S−→) is an interval-linearization of E.

Remark 2. When we restrict to interval-sequential executions in which for every
invocation there is a response to it in the very next concurrency class, then
interval-linearizability boils down to set-linearizability. If in addition we demand
that every concurrency class contains only one element, then we have lineariz-
ability. See Figure 1.

We can now complete the example of the validity object. In Figure 4 there
is an interval linearization of the execution in Figure 3.

init term init term
p validity(1) resp(2)
q validity(2) resp(3)
r validity(3) resp(1)

Fig. 4. An execution of a Validity object

Even though interval-linearizability is much more general than linearizability
it retains some of its benefits.

Theorem 1 (Locality of Interval-Linearizability). An execution E is
interval-linearizable if and only if E|X is interval-linearizable, for every object X.

Theorem 2 (Set-Linearizability is Non-Blocking). Let E be an interval-
linearizable execution in which there is a pending invocation inv(op) of a total
operation. Then, there is a response res(op) such that E · res(op) is interval-
linearizable.

Specifying Concurrent Problems: Beyond Linearizability and up to Tasks 431

5 Tasks and Interval-Sequential Objects

A task is a static way of specifying a one-shot concurrent problem, namely, a
problem with one operation that can be invoked only once by each process.
Here we study the relationship between tasks and the automata-based ways of
specifying a concurrent problem that we have been considering.

A task is usually specified informally, in the style of Section 2. E.g., for the
k-set agreement task one would say that each process proposes a value, and
decides a value, such that (validity) a decided value has been proposed, and
(agreement) at most k different values are decided.

Formally, a task (I,O,Δ) consists of an input complex I, an output complex
O, and an input/output relation Δ. Each complex consists of a set of simplexes, of
the form s = {(id1, x1), . . . , (idk, xk)}, and closed under containment. An input
(resp. output) simplex specifies an assignment of input (resp. output) values,
xi to process idi. A singleton simplex is a vertex. The relation Δ specifies for
each input simplex s ∈ I, a sub-complex Δ(s) ⊆ O, such that if s, s′ are two
simplexes in I with s′ ⊂ s, then Δ(s′) ⊂ Δ(s).

A task has only one operation, task(), which process idi may call with value
xi, if (idi, xi) is a vertex of I. The operation task(xi) may return yi to the
process, if (idi, yi) is a vertex of O. Let E be an execution where each process
calls task() once. Then, σE is the input simplex defined as follows: (idi, xi) is in
σE iff in E there is an invocation of task(xi) by process idi. The output simplex
τE is defined similarly: (idi, yi) is in τE iff there is a response yi to a process idi

in E. We say that E satisfies 〈I,O,Δ〉 if for every prefix E′ of E, it holds that
τE′ ∈ Δ(σE′). The prefix requirement prevents executions that globally seem
correct, but in a prefix a process predicts future invocations.1

From Tasks to Interval-Sequential Objects. A task is a very compact way of spec-
ifying a distributed problem that is capable of describing allowed behaviors for
certain concurrency patterns, and indeed it is hard to understand what exactly
is the problem being specified. The following theorem (with its proof) provides
an automata-based representation of a task, explaining which outputs may be
produced in each execution, as permitted by Δ.

Theorem 3. For every task T , there is an interval-sequential object OT such
that an execution E satisfies T if and only if it is interval-linearizable with respect
to OT .

To give an intuition of this theorem, consider the immediate snapshot task
for three processes in Figure 5 with two additional output simplexes, σ1 and σ2.
A simple case is the output simplex in the center of the output complex, where
the three processes output {p, q, r}. The case is simple because this simplex does
not intersect the boundary, hence, it can be produced as output only when all

1 This requirement has been implicitly considered in the past by stating that an algo-
rithm solves a task if any of its executions agree with the task specification.

432 A. Castañeda et al.

Fig. 5. Two special output simplexes σ1, σ2, and interval-linearizations of two execu-
tions with corresponding outputs

three operations are concurrent and then the corresponding interval-sequential
object models this simplex with a single interval-sequential execution in which
the three processes run concurrently. More interesting is the output simplex σ3,
where the processes also may run concurrently, but in addition, the same out-
puts may be returned in a fully sequential execution, because σ3 intersects both
the 0-dimensional (the corners) and the 1-dimensional boundary of the output
complex. In fact σ3 can also be produced if p, q are concurrent, and later comes
r, because 2 vertices of σ3 are in Δ(p, q) (such an execution is set-sequential).

Now, consider the two more awkward output simplexes σ1, σ2 in Δ(σ) added
to the immediate-snapshot output complex, where σ1 = {(p, {p, q}), (q, {p, q, r}),
(r, {p, r})}, and σ2 = {(p, {p, q, r}), (q, {q}), (r, {r})}. At the bottom of the
figure, two executions and their interval-linearizations are shown, though there
are more executions that are interval-linearizable and can produce σ1 and σ2.
Consider σ2. It has a face, {(q, {q})}, in Δ({q}), and another face, {(r, {r})} in
Δ({r}). This specifies a different behavior from the output simplex in the center,
that does not intersect with the boundary. Since {(q, {q})} ∈ Δ({q}), it is OK
for q to return {q} when it invokes and returns before the others invoke. But
also it is OK for q to return {q} when it invokes and runs concurrently with p
and r because {(q, {q})} ∈ Δ({p, q, r}). It similarly happens to r. Aditionally
since {(p, {p, q, r})} is not in the boundary, p can return {p, q, r} only if it runs
concurrently with the others. The main observation here is that the structure of
the mapping Δ encodes the interval-sequential executions that can produce the
outputs in a given output simplex. In the example, Δ precludes the possibility

Specifying Concurrent Problems: Beyond Linearizability and up to Tasks 433

that in a sequential execution the processes outputs the values in σ1, since Δ
specifies no process can decide without seeing anyone else.

From One-Shot Interval-Sequential Objects to Tasks. The converse of Theorem 3
is not true. Lemma 1 shows that even some sequential objects, such as one-shot
queues, cannot be represented as a task. Also, recall that there are tasks with
no set-sequential specification. Thus, both tasks and set-sequential objects are
interval-sequential objects, but they are incomparable.

Lemma 1. There is a sequential one-shot object O such that there is no task
TO, satisfying that an execution E is linearizable with respect to O if and only
if E satisfies TO (for every E).

While this version of tasks have strictly less expressive power than interval-
sequential one-shot objects, a slightly different version has the same power for
specifying distributed one-shot problems. Roughly, tasks cannot model interval-
sequential objects because they do not have a mechanism to encode the state of
an object. The extension below allows to model states.

In a refined task T = 〈I,O,Δ〉, I is defined as usual and each output
vertex of O has the form (idi.yi, σ′

i) where idi and yi are, as usual, the ID
of a process and an output value, and σ′

i is an input simplex called the set-
view of idi. The properties of Δ are maintained and in addition it satisfies
the following: for every σ ∈ I, for every (idi, yi, σ′

i) ∈ Δ(σ), it holds that
σ′
i ⊆ σ. An execution E satisfies a refined task T if for every prefix E′

of E, it holds that Δ(σE′) contains the simplex {(idi, yi, σi E′′) : (idi, yi) ∈
τE′ ∧ E′′ (which defines σiE′′) is the shortest prefix of E′ containing (idi, yi)}.

We stress that, for each input simplex σ, for each output vertex (idi, yi, σi) ∈
Δ(σ), σi is a way to model distinct output vertexes in Δ(σ) whose output val-
ues (in (idi, yi)) are the same, then a process that outputs that vertex does not
actually output σi. In fact, the set-view of a process idi corresponds to the set
of invocations that precede the response (idi, yi) to its invocation in a given
execution (intuitively, the invocations that a process “sees” while computing its
output value). Set-views are the tool to encode the state of an object. Also
observe that if E satisfies a refined task T , then the set-views behave like snap-
shots: (1) a process itself (formally, its invocation) appears in its set-view and
(2) all set-view are ordered by containment (since we assume E is well-formed).

Theorem 4. For every one-shot interval-sequential object O with a single total
operation, there is a refined task TO such that any execution E is interval-
linearizable with respect to O if and only if E satisfies TO.

Theorem 5. For every refined task T , there is an interval-sequential object OT

such that an execution E satisfies T if and only if it is interval-linearizable with
respect to OT .

434 A. Castañeda et al.

References

1. Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.: Atomic snapshots
of shared memory. Journal of the ACM 40(4), 873–890 (1993)

2. Afek, Y., Gafni, E., Lieber, O.: Tight group renaming on groups of size g is equiva-
lent to g-consensus. In: Keidar, I. (ed.) DISC 2009. LNCS, vol. 5805, pp. 111–126.
Springer, Heidelberg (2009)

3. Aspnes, J., Ellen, F.: Tight bounds for adopt-commit objects. Theory Computing
Systems 55(3), 451–474 (2014)

4. Borowsky, E., Gafni, E.: Immediate atomic snapshots and fast renaming. In: Proc.
12th ACM Symposium on Principles of Distributed Computing (PODC 1993).
ACM Press, pp. 41–51 (1993)

5. Borowsky, E., Gafni, E., Lynch, N., Rajsbaum, S.: The BG distributed simulation
algorithm. Distributed Computing 14(3), 127–146 (2001)

6. Chandra, T.D., Hadzilacos, V., Jayanti, P., Toueg, S.: Generalized irreducibility
of consensus and the equivalence of t-resilient and wait-free implementations of
consensus. SIAM Journal of Computing 34(2), 333–357 (2004)

7. Castañeda, A., Rajsbaum, S., Raynal, M.: Specifying Concurrent Problems:
Beyond Linearizability. http://arxiv.org/abs/1507.00073

8. Chaudhuri, S.: More choices allow more faults: set consensus problems in totally
asynchronous systems. Information and Computation 105(1), 132–158 (1993)

9. Conde, R., Rajsbaum, S.: The complexity gap between consensus and safe-
consensus. In: Halldórsson, M.M. (ed.) SIROCCO 2014. LNCS, vol. 8576,
pp. 68–82. Springer, Heidelberg (2014)

10. Filipović, I., O’Hearn, P., Rinetky, N., Yang, H.: Abstraction for concurrent objects.
Theoretical Computer Science 411(51–52), 4379–4398 (2010)

11. Friedman, R., Vitenberg, R., Chokler, G.: On the composability of consistency
conditions. Information Processing Letters 86(4), 169–176 (2003)

12. Gafni, E.: Round-by-round fault detectors: unifying synchrony and asynchrony.
In: Proc. 17th ACM Symposium on Principles of Distributed Computing (PODC
1998). ACM Press, pp. 143–152 (1998)

13. Gafni, E., Snapshot for time: the one-shot case. arXiv:1408.3432v1, p. 10 (2014)
14. van Glabbeek, R.J.: On the expressiveness of higher dimensional automata.

Theoretical Computer Science 356(3), 265–290 (2006)
15. Gotsman, A., Musuvathi, M., Yang, H.: Show no weakness: sequentially consis-

tent specifications of TSO libraries. In: Aguilera, M.K. (ed.) DISC 2012. LNCS,
vol. 7611, pp. 31–45. Springer, Heidelberg (2012)

16. Hemed, N., Rinetzky, N.: Brief announcement: concurrency-aware linearizability.
In: Proc. 33th ACM Symposium on Principles of Distributed Computing (PODC
2014), pp. 209–211. ACM Press (2014). Full version to appear in these proceedings

17. Herlihy, M., Kozlov, D., Rajsbaum, S.: Distributed computing through ombinato-
rial topology. Morgan Kaufmann (2014)

18. Herlihy, M., Rajsbaum, S., Raynal, M.: Power and limits of distributed computing
shared memory models. Theoretical Computer Science 509, 3–24 (2013)

19. Herlihy, M., Shavit, N.: The art of multiprocessor programming. Morgan Kaufmann
(2008)

20. Herlihy, M., Wing, J.: Linearizability: a correctness condition for concurrent
objects. ACM Transactions on Progr. Lang. and Systems 12(3), 463–492 (1990)

http://arxiv.org/abs/http://arxiv.org/abs/1507.00073
http://arxiv.org/abs/1408.3432v1

Specifying Concurrent Problems: Beyond Linearizability and up to Tasks 435

21. Neiger, G.: Set-linearizability. brief announcement. In: Proc. 13th ACM
Symposium on Principles of Distributed Computing (PODC 1994). ACM Press,
p. 396 (1994)

22. Raynal, M.: Concurrent programming: algorithms, principles, and foundations.
Springer (2013)

23. Scherer III, W.N., Scott, M.L.: Nonblocking concurrent data structures with con-
dition synchronization. In: Guerraoui, R. (ed.) DISC 2004. LNCS, vol. 3274,
pp. 174–187. Springer, Heidelberg (2004)

24. Shavit, N.: Data structures in the multicore age. Comm. ACM 54(3), 76–84 (2011)

From Geometric Semantics to Asynchronous
Computability

Éric Goubault1(B), Samuel Mimram1, and Christine Tasson2

1 LIX, École Polytechnique, Palaiseau, France
Eric.Goubault@polytechnique.edu

2 PPS, Université Paris 7, Paris, France

Abstract. We show that the protocol complex formalization of fault-
tolerant protocols can be directly derived from a suitable semantics of the
underlying synchronization and communication primitives, based on a
geometrization of the state space. By constructing a one-to-one relation-
ship between simplices of the protocol complex and dihomotopy classes of
dipaths in the latter semantics, we describe a connection between these
two geometric approaches : protocol complexes and directed algebraic
topology. This is exemplified on atomic snapshot, iterated snapshot and
layered immediate snapshot protocols, where a well-known combinatorial
structure, interval orders, plays a key role. We believe that this corre-
spondence between models will extend to proving impossibility results
for much more intricate fault-tolerant distributed architectures.

1 Introduction

Fault-tolerant distributed computing is concerned with designing algorithms,
and, when possible, solving so-called decision tasks on a given distributed archi-
tecture, in the presence of faults. The seminal result in this field was established
by Fisher, Lynch and Paterson in 1985, who proved the existence of a simple
task that cannot be solved in a message-passing system (or in shared memory
[27]) with at most one potential crash [11]. In particular, there is no way in such
a distributed system to solve the very fundamental consensus problem: each
processor starts with an initial value in local memory, typically an integer, and
should end up with a common value, which is one of the initial values.

Later on, Biran, Moran and Zaks developed a characterization of the decision
tasks that can be solved by a (simple) message-passing system in the presence of
one failure [3]. The argument uses a “similarity chain”, which can be seen as a
connectedness result of a representation of the space of all reachable states, called
the view complex [25] or the protocol complex [24]. Of course, this argument
turned out to be difficult to extend to models with more failures, as higher-
connectedness properties of the protocol complex matter in these cases. This
technical difficulty was first tackled, using homological considerations, by Herlihy
and Shavit [23] (and independently [5,31]): there are simple decision tasks, such
as k-set agreement, a weaker form of consensus, that cannot be solved for k < n in
the wait-free asynchronous model, i.e. shared-memory distributed protocols on n

c© Springer-Verlag Berlin Heidelberg 2015
Y. Moses (Ed.): DISC 2015, LNCS 9363, pp. 436–451, 2015.
DOI: 10.1007/978-3-662-48653-5 29

From Geometric Semantics to Asynchronous Computability 437

processors, with up to n−1 crash failures. Then, the full characterization of wait-
free asynchronous decision tasks with atomic reads and writes (or equivalently,
with atomic snapshots) was described by Herlihy and Shavit [24]: this relies
on the central notion of chromatic (or colored) simplicial complexes, and their
subdivisions. All these results stem from the contractibility of the “standard”
chromatic subdivision, which was completely formalized in [25,26] (and even
for iterated models [19]) and corresponds to the protocol complex of distributed
algorithms solving layered immediate snapshot protocols.

Over the years, the geometric approach to problems in fault-tolerant dis-
tributed computing has been very successful, see [22] for a fairly complete up-
to-date treatment. One potential limitation however is that for some intricate
models, it is extremely difficult to produce their corresponding protocol complex.
In this paper, we are exploring the links between the semantics of the synchro-
nization and communication primitives we are considering on a given distributed
architecture, and the protocol complex. The interest is that the semantics of
such synchronization primitives is much simpler to write down than the proto-
col complex, which is very error-prone to describe, as we will see in Section 3.2.
We advocate in this paper the calculation of protocol complexes directly from
the formal semantics of the underlying synchronization primitives.

The other aim of this article is to make the link between two geometric
theories of concurrent and distributed computations: one based on protocols
complexes, and the other, based on directed algebraic topology. Actually, the
semantics of concurrent and distributed systems can be given by topological
models, as pushed forward in a series of seminal papers in concurrency, in the
early 1990s. These papers have explored the use of precubical sets and Higher-
Dimensional Automata (which are labeled precubical sets equipped with a dis-
tinguished beginning vertex) [30,32], begun to suggest possible homology theo-
ries [17,18,6] and pushed the development of a specific homotopy theory, part of
a general directed algebraic topology [20]. On the practical side, directed topolog-
ical models have found applications to deadlock and unreachable state detection
[9], validation and static analysis [15,4,7], state-space reduction (as in e.g. model-
checking) [16], serializability and correctness of databases [21] (see also [14,10]
for a panorama of applications).

In order to instantiate this link, we will be considering the simple model of
shared-memory concurrent machines with crash failures, where processors com-
pute and communicate through shared locations, and where reads and writes are
supposed to be atomic. This model can also be presented [28] as atomic snap-
shot protocols [1,2], where processors are executing the following instructions:
scanning the entire shared memory (and copying it into their local memory),
computing in its local memory, and updating its “own value”, i.e. writing the
outcome of its computation in a specific location in global memory, assigned to
him only. The methodology we are describing here is by no means limited to this
simple model: we have provided in this paper a general framework that builds
protocol complexes from the semantics of communication primitives. However,
what is more difficult is determining the set of directed homotopy classes of
directed paths in this semantics. This is one of the reasons why we chose to

438 É. Goubault et al.

exemplify the method on a well-known and simple case in fault-tolerant dis-
tributed computing. In general, this step is by no means trivial, reinforcing the
need for formally deriving protocol complexes from semantics.The other reason
is that the reader will be more familiar with the model and the expected result,
and will be able to focus on the new technical (directed algebraic topological)
aspects of the paper.

Contents of the Paper and Main Contributions. Section 2.1 begins by
defining the standard semantics (or interleaving semantics) of atomic read/write
protocols, and more precisely of atomic snapshot protocols where read and write
primitives are replaced by update and (global) scan ones. In Section 2.2, we give
an alternative geometric semantics, which encodes also independence of actions,
as a form of homotopy in a geometric model. The very basics of directed algebraic
topology have been introduced for this purpose, but we refer the reader to [20,8]
for more details. Yet, for the wider picture, we prove the fact that (directed)
homotopy encodes commutation of actions, in the form of an equivalence between
the standard semantics and the geometric semantics. It is shown in Section 2.3,
Proposition 4 that two traces in the interleaving semantics modulo commutation
of actions induce dihomotopic (directed) paths in the geometric model. The
converse is shown in Section 2.3, Proposition 9, using the combinatorial notion of
interval order [12]. We then combine these results with the semantic equivalence
of Proposition 6, Section 2.3; this is the first main contribution of the paper.

In Section 3, we turn to the other geometric model of distributed systems:
protocol complexes. The second main contribution of the paper is developed in
Section 3.2: the protocol complex for atomic snapshot protocols (possibly iter-
ated) is derived from the geometric semantics of Section 2.2, through interval
orders. We specify this construction in Section 3.3 to the case of layered immedi-
ate snapshot which is generally studied by most authors, since it is much simpler
to study, and is enough to prove the classical impossibility theorems, as e.g. [23].
Our explicit description of the protocol complex in the latter case is the same
as the one of [19] (linked as well to the equivalent presentation of [25]), see
Theorem 19. Combined with the result of [19] it proves that the layered immedi-
ate snapshot protocols produce collapsible protocol complexes, for any number
of rounds. It then implies the asynchronous computability theorem of [23] all
the way from the semantics of the communication primitives.

2 Concurrent Semantics of Asynchronous Read/Write
Protocols

2.1 Interleaving Semantics of Atomic Read/Write Protocols

In atomic snapshot protocols, n processes communicate through shared memory
using two primitives: update and scan. Informally, the shared memory is parti-
tioned in n parts, each one corresponding to one of the n processes. The part of the
memory associated with process Pi, with i ∈ {0, . . . , n − 1}, is the one on which
process Pi can write, by calling update. This primitive writes onto that part of

From Geometric Semantics to Asynchronous Computability 439

memory, a value computed from the value stored in a local register of Pi. Note
that as the memory is partitioned, there are never any write conflicts on memory.
Conversely, all processes can read the entire memory through the scan primitive.
Note also that there are never any read conflicts on memory. Still, it is well known
that atomic snapshot protocols are equivalent [28] with respect to their expressive-
ness in terms of fault-tolerant decision tasks they can solve, to the protocols based
on atomic registers with atomic reads and writes. Generic snapshot protocols are
such that all processes loop, any number of times, on the three successive actions:
locally compute a decision value, update then scan. It is also known [23,24] that,
as far as fault-tolerant properties are concerned, an equivalent model of compu-
tation can be considered: the full-information protocol where, for each process,
decisions are only taken at the end of the protocol, i.e. after rounds of update
then scan, only remembering the history of communications.

Interleaving Semantics and Trace Equivalence. Formally, we consider a
fixed set V of values, together with two distinguished subsets I and O of input
and output values, the elements of V \ (I ∪ O) being called intermediate values,
and an element ⊥ ∈ I ∩ O standing for an unknown value. We suppose that
the sets of values and intermediate values are infinite countable, so that pairs
〈x, y〉 of values x, y ∈ V can be encoded as intermediate values, and similarly
for tuples. We suppose fixed a number n ∈ N of processes. We also write [n] as
a shortcut for the set {0, . . . , n − 1}, and Vn for the set of n-tuples of elements
of V, whose elements are called memories. Given v ∈ Vn and i ∈ [n], we write
vi for the i-th component of v. We write ⊥n for the memory l such that li = ⊥
for any u ∈ [n].

There are two families of memories, each one containing one memory cell for
each process Pi: the local memories l = (li)i∈[n] ∈ Vn, and the global (shared)
memory : m = (mi)i∈[n] ∈ Vn. A state of a program is a pair (l,m) ∈ Vn ×
Vn of such memories. Processes can communicate by performing actions which
consist in updating and scanning the global memory, using their local memory:
we denote by ui any update by the i-th process and si any of its scan. We write
Ai = {ui, si} and A =

⋃
i∈[n] Ai for the set of actions.

Formally, the effect of the actions on the state is defined by a protocol π
which consists of two families of functions πui

: V → V and πsi
: V × Vn → V

indexed by i ∈ [n] such that πsi
(x,m) = x for x ∈ O. Starting from a state

(l,m), the effect of actions is as follows: ui means “replace the contents of mi

by πui
(li)”, and si means “replace the contents of li by πsi

(li,m)”.
A protocol is full-information when πui

(x) = x for every x ∈ V, i.e. each
process fully discloses its local state in the global memory. A sequence of actions
T ∈ A∗ is called an interleaving trace, and we write �T �π(l,m) for the state reached
by the protocol π after executing the actions in T , starting from the state (l,m).
A sequence of actions T ∈ A∗ is well-bracketed or well-formed (giving some form
of generic protocol) when for every i ∈ [n] we have proji(T) ∈ (uisi)∗, where
proji : A∗ → A∗

i is the obvious projection which only keeps the letters in Ai in a
word over A. We denote by Aω the set of countably infinite sequences of actions;
such a sequence is well-bracketed when every finite prefix is.

440 É. Goubault et al.

It can be noticed that different interleaving traces may induce the same final
local view for any process. Indeed, if i 	= j, then ui and uj modify different parts
of the global memory, as we already noted informally, and thus uiuj and ujui

induce the same action on a given state. Similarly, si and sj change different
parts of the local memory, and thus sisj and sjsi induce the same action on a
given state. On the contrary, uisj and sjui may induce different traces as ui may
modify the global memory that is scanned by sj . We thus define an equivalence ≈
on interleaving traces, as the smallest congruence such that ujui ≈ uiuj and
sjsi ≈ sisj for every indices i and j. Therefore :

Proposition 1. The equivalence ≈ of traces induces an operational equivalence:
two equivalent interleaving traces starting from the same initial state lead to the
same final state.

This justifies that we consider traces up to equivalence in the following. We use
the usual notions on such operational semantics: execution traces, interleaving
traces will denote any finite sequences of actions ui and si in A∗, maximal
execution traces are traces that cannot be further extended. We also use the
classical notions of length and concatenation of execution traces.

Decision Tasks. We are going to consider the possibility of solving a particular
task with an asynchronous protocol. Formally, those tasks are specified as follows:

Definition 2. A wait-free task specification Θ is a relation Θ ⊆ In × On such
that for all (l, l′) ∈ Θ, i ∈ [n] s.t. li = ⊥, and x ∈ I, we also have (lxi , l′) ∈ Θ
where lxi is the memory obtained from l by replacing the i-th value by x. We
note dom Θ = {l ∈ In | ∃l′ ∈ On, (l, l′) ∈ Θ} for the domain of a wait-free task
specification Θ and codom Θ = {l′ ∈ On | ∃l ∈ In, (l, l′) ∈ Θ} for its codomain.

Notice that dom Θ induces a simplicial complex, with [n]× (I \{⊥}) as vertices,
and simplices are of the form {(i, x) ∈ [n] × V | li = x 	= ⊥}, for any l ∈ dom Θ.
This simplicial complex is called the input complex ; the output complex is defined
similarly from codom Θ. We say that a protocol π solves a task specification
Θ when for every l ∈ dom Θ, and well-bracketed infinite sequence of actions
T ∈ Aω, there exists a finite prefix T ′ of T such that (l, l′) ∈ Θ where l′ is the
local memory after executing T ′, i.e. (l′,m′) = �T ′�π(l,⊥n). It can be shown
[24] that, w.r.t. task solvability, we can assume that domΘ contains only the
memory l such that li = i, for all i, and its faces; for simplicity we will do so in
Section 3.

Of particular interest is the view protocol (sometimes identified with the full-
information protocol in the literature) π� such that π�

ui
(x) = x for x ∈ V, i.e. the

protocol is full-information, and π�
si

(x,m) = 〈x, 〈m〉〉 for x ∈ V and m ∈ Vn:
when reading the global memory, the protocol stores (an encoding of) the pair
constituted of its current local memory x and (an encoding as a value of) the
global memory m it has read. This is akin to the use of generic protocols in nor-
mal form [24], where protocols only exchange their full history of communication

From Geometric Semantics to Asynchronous Computability 441

for a fixed given number of rounds, and then apply a local decision function. It
can be shown that the view protocol is the “most general one” (i.e. initial in
a suitable category). Thus, we will be satisfied with describing the potential
sets of histories of communication between processes, without having to encode
the decision values: this is the basis of the geometric semantics of Section 2.2.
As a direct consequence, we recover the usual definition of the solvability of a
task as a simplicial map from some iterated protocol complex to the output
complex [24,22].

2.2 Directed Geometric Semantics

In this section, we give an alternative semantics to atomic snapshot protocols,
using a geometric encoding of the state space, together with a notion of “time
direction”. One of the most simple settings in which this can be performed is
the one of pospaces [29,13]: a pospace is a topological space X endowed with a
partial order ≤ such that the graph of the partial order is closed in X × X with
the product topology. The intuition is that, given two points x, y ∈ X such that
x ≤ y, y cannot be reached before x. The encoding, or semantics of a concurrent
or distributed protocol in terms of directed topological spaces of some sort can
be done in a more general manner [7,8]. Here, we simply define, directly, the
pospace that gives the semantics we are looking for. It is rather intuitive and we
will check this is correct with respect to the interleaving semantics, in Section 2.3.

Consider the pospace Xn
(r) below, indexed by the number n of processes and

the vector of number of rounds (r) = (r0, . . . , rn−1) (each ri ∈ N, with i ∈ [n],
is the number of times process Pi performs update followed by scan). Here, we
use a vector to represent the number of rounds : this is because we do not want
to treat only the layered immediate snapshot protocols, but more general atomic
snapshot protocols. We claim now that the geometric semantics of the generic
protocol, for n processes and (r) rounds, is represented by the pospace

Xn
(r) =

∏

i∈[n]

[0, ri] \
⋃

i,j∈[n],k∈[ri], l∈[rj]

Uk
i ∩ Sl

j (1)

endowed with the product topology and product order induced by Rn, where

– n, ri ∈ N and u, s are any reals such that 0 < u < s < 1 : u (resp. v) is
representing the local time at which an update (resp. scan) takes place in a
round, and their precise values will not matter,

– Uk
i =

{
x ∈ ∏

i∈[n][0, ri]
∣
∣
∣ xi = k + u

}
stands for the region where the i-th

process updates the global memory with its local memory for the k-th time,
– Sl

j =
{

x ∈ ∏
i∈[n][0, ri]

∣
∣
∣ xj = l + s

}
stands for the region where the j-th

process scans the global memory into its local memory for the l-th time.

442 É. Goubault et al.

U0 S0

U1

S1

U1
1 ∩ S1

0

U1
0 ∩ S1

1

t0

t1

(2)

t0

t1

t2

(3)

The meaning of (1) is that a state (x0, . . . , xn−1) ∈∏
i∈[n][0, ri], i.e. a state in which each process Pi

is at local time xi, is allowed except when it is
in Uk

i ∩ Sl
j (for i, j ∈ [n] and k ∈ [ri], l ∈ [rj]):

these forbidden states are precisely the states for
which there is a scan and update conflict. Namely,
states in Uk

i ∩ Sl
j are states for which process Pi

updates (for the k-th time) while process Pj scans
(for the l-th time), which is forbidden in the seman-
tics. Indeed, the memory has to serialize the accesses
since shared locations are concurrently read and
written, and either the scan operation will come
before the update one, or the contrary, but the two
operations cannot occur at the same time. This is
reflected in the geometric semantics by a hole in the state space, as pictured
on (2) for two processes with one round each, and in (4) for two processes with
several rounds each. Notice that the holes are depicted as squares instead of
points to improve the visibility on the diagram. In higher-dimensions, the holes
exhibit a complicated combinatorics.

For instance, for three processes, and one round each, as in (3) shows for-
bidden regions that intersect one another. What happens in dimension 3 is that
for all 3 pairs of processes (P ,Q), we have to produce a forbidden region which
has a projection, on the two axes corresponding to P and Q, similar to the one
on (2). Hence for all three pairs of processes, we have two cylinders with square
section punching entirely the set of global states of the system. Each of these 6
cylinders correspond to a pair (P ,Q) of processes, and a hole created either by a
scan of P and an update of Q, or a scan of Q and an update of P . Consider the
cylinder created by the conflict between the scan of P with the update of Q: it
intersects exactly two cylinders (parallel to the other axes), the one created by
the scan of the third processor R and the update of Q, and the one created by
the update of R and the scan of P , see (3).

2.3 Equivalence of the Standard and Geometric Semantics

In the geometric semantics of Section 2.2, we can define notions analogous to
equivalence of traces as for the standard interleaving semantics of Section 2.1
(Proposition 1). A dipath (or directed path) in a pospace (X,≤) is a continuous
map α : [0, 1] → X which is continuous and non decreasing when [0, 1] is endowed
with the order and topology induced by the real line. A dipath is the continuous
counterpart (as we will make clear later) of a trace in the interleaving semantics,
or an execution. A dipath α : [0, 1] → X is called inextendible, if there is no
dipath β : [0, 1] → X such that α([0, 1]) � β([0, 1]). This is the analogous, in
our geometric setting, to maximal execution traces. The concatenation of two
dipaths α, α′ : [0, 1] → X with compatible ends, i.e. α(1) = α′(0) is the dipath
α · α′ such that α · α′(x) is α(x) (resp. α′(2x − 1)) when x ≤ 0.5 (resp. x ≥ 0.5).

From Geometric Semantics to Asynchronous Computability 443

The continuous setting allows us to use the classical concepts of
(di)homotopy, which is the natural notion of equivalence between paths, and
to use some tools from algebraic topology to derive properties of proto-
cols (and more generally programs [14]). A dihomotopy is a continuous map

r1

r0

u1

s1

u1

s1

u0 s0 u0 s0 u0 s0 u0 s0

u0

u1

s0

u0

s0

u0

s0

u0

s0

s1

u1

s1

(4)

H : [0, 1] × [0, 1] →
X such that for all
t ∈ [0, 1], the map
H(−, t) is a dipath.
Two dipaths α, β such
that α(0) = β(0)
and α(1) = β(1) are
dihomotopic, if there
is a dihomotopy H :
[0, 1]× [0, 1] → X with
H(−, 0) = α and H(−, 1) = β. We denote by [α] the set of inextendible dipaths
dihomotopic to α and dPath(X) the set of dipaths up to dihomotopy. For
instance, two dipaths that are dihomotopic in the geometric semantics X2

(4,2)

can be pictured as in Figure (4).

From Equivalence Classes of Interleaving Traces to Dipaths Modulo
Dihomotopy. To any interleaving trace T with n processes and (r) rounds, we
associate a dipath αT in Xn

(r). This dipath accurately reflects the whole computa-
tion of T , e.g. if T ′ extends T , then αT ′ also extends αT . For example, the black
path of (4) is the dipath associated to the trace u0u1s0u0s1s0u1u0s0u0s1s0: the
points along it correspond to actions and the path consists of a linear interpola-
tion between those. The dipath αT is built by induction on the length of trace T :
when T is of length 0, αT is the constant dipath staying at the origin; when T is
the concatenation of a trace T1 with an action A, we concatenate the dipath αT1

and a dipath β which is defined according to the previous actions in T1 :

Lemma 3. There exists a (not necessarily inextendible) dipath αT in Xn
(r)

such that αT (0)i = 0, for every i ∈ [n], and satisfying the following. For
any i ∈ [n], if the last action of process i in T is its k-th update, then
αT (1)i ∈ {

k + u, k + u+s
2

}
. If it is its k-th scan, then αT (1)i ∈ {k + s, k + 1}.

If the last action in T is the k-th update of process i, then αT (1)i = k + u. If it
is the k-th scan of process i, then αT (1)i = k + s.

To a maximal interleaving trace T , we associate an inextendible dipath α′
T

by further extending αT to reach (ri)i∈[n], the end of all inextendible dipaths in
Xn

(r). Now,

Proposition 4. Two equivalent interleaving traces induce dihomotopic dipaths.

Equivalence Between Equivalence Classes of Interleaving Traces and
(Colored) Interval Orders. In order to prove that dipaths modulo dihomo-
topy are in bijection with interleaving traces modulo equivalence, we introduce

444 É. Goubault et al.

a combinatorial tool encoding the history of events observable on both an equiv-
alence class of interleaving traces, and a dihomotopy class of dipaths in our
continuous models.

Definition 5. Let (Ix)x∈X be a family of intervals on the real line (R,≤). This
family induces a poset (X,�), where ≺ is defined as x ≺ y if and only if for every
s ∈ Ix and t ∈ Iy we have s < t. Such a poset is called an interval order [12].
We denote as x‖y the independence relation.
An [n]-colored interval order is given by an interval order (X,�) and a labeling
function � : X → [n] such that two elements with the same label are comparable.
Then for any i ∈ [n], the restriction of the interval order to intervals labeled by
i is a total order. We denote as cIO(X) the set of colored interval orders on a
set X.

Proposition 6. There is a bijection between [n]-colored interval orders and
traces up to equivalence.

From Propositions 4 and 6, we can associate to any interval order a class of
dipaths modulo dihomotopy. Let i : cIO(Xn) → dPath(Xn

(r)) be mapping an
interval order to a dipath up to dihomotopy.

From Dipaths Modulo Dihomotopy to Equivalence Classes of Inter-
leaving Traces. As already mentioned, dipaths geometrically represent exe-
cution traces, keeping in mind that dipaths which can be deformed through
a continuous family of executions are operationally equivalent. This argument
can be made concrete for the asynchronous model we are working on, by giving
the explicit relation between dipaths and colored interval orders (Definition 5),
because of Proposition 6.

To any inextendible dipath α : [0, 1] → Xn
(r), we associate an interval order

�α on the set Xn
(r) = {(i, k) | i ∈ [n], k ∈ [ri]} through the interval collection for

i ∈ [n], I(i,k) = [uk
i , sk

i] colored by i where uk
i or sk

i respectively correspond to
the event “α enters an update or scan hyperplane”:

uk
i = inf

{
t ∈ [0, 1]

∣
∣ α(t)i ∈ Uk

i

}
, sk

i = inf
{
t ∈ [0, 1]

∣
∣ α(t)i ∈ Sk

i

}
.
(5)

For any i ∈ [n], the restriction of this order to the intervals labeled by i is a
total order. Indeed, dipaths α are non decreasing, u < s and α(uk

i)i = k + u,
α(sk

i)i = k + s, hence for all k ∈ [ri], uk
i < sk

i and if k 	= 0, sk−1
i < uk

i .

u0 s0

u1

s1

t0

t1

u0 s0

u1

s1

t0

t1

Let us give simple examples of this in dimension 2 and
3. In dimension 2, and for one round, consider the three
inextendible dipaths in X2

(1,1) pictured on the left (we are
not writing the round number as upper index since we
are considering here only one round). Those are represen-
tatives of the three dihomotopy classes of dipaths in this
pospace. The dipath α0, on the above figure, corresponds to
an execution in which process 1 does its update and scan
before process 0 even starts updating. Hence, the interval of

From Geometric Semantics to Asynchronous Computability 445

u0 s0

u1

s1

t0

t1 local times at which process 1 updates and scans is less than the
interval of local times at which process 0 updates and scans: this is
reflected by the corresponding interval order [u1, s1] ≺α0 [u0, s0].
The one on the figure below, αZ is symmetric: the corresponding
interval order is [u0, s0] ≺α2 [u1, s1]. The dipath on the middle cor-

responds to an execution in which the two processes are running synchronously,
updating at the same time, and scanning at the same time: the corresponding
interval order is [u0, s0]‖[u1, s1].

t0

t1

t2

In dimension 3, there are more dipaths that one can draw.
Consider, for instance, the synchronous execution of the three
processes (i.e. the pospace X3

(1,1,1)), shown on the right. It
corresponds to the interval order where the intervals [u0, s0],
[u1, s1] and [u2, s2] are not comparable. The path figured cor-
responds to a synchronous execution.

We then have the following simple facts first :

Lemma 7. Two inextendible dipaths α and β, which intersect the update and
scan hyperplanes in the same order, are dihomotopic.

We write α � β when the two dipaths are dihomotopic.

Proposition 8. A dipath α is dihomotopic to the dipath associated to the inter-
val order induced by α, that is, i ◦ r(α) � α.

This implies the following, among the main results of this article:

Proposition 9. Two dihomotopic inextendible dipaths on Xn
(r) induce the same

interval order.

Theorem 10. There is a bijective correspondence between traces up to equiv-
alence and dipaths up to dihomotopy over Xn

(r), that is, r : dPath(Xn
(r)) →

cIO(Xn) which maps a dipath up to dihomotopy to an interval order, satisfies
r ◦ i = idcIO(Xn).

3 Protocol Complexes, Derived from the Concurrent
Semantics

We will see that two executions modulo dihomotopy correspond to higher-
dimensional simplices in protocol complexes (Proposition 13). In the case of
update/scan protocols, these executions modulo dihomotopy are characterized
by the nice combinatorial notion of interval order, which makes the construction
of the protocol complex (Definition 17) from the geometric semantics immediate.

3.1 Protocol Complex

The protocol complex has been designed [24] to represent the possible reachable
states, at some given round, of the generic protocol in normal form, i.e. it is going

446 É. Goubault et al.

to encode all possible histories of communication between processes, and as we
will prove later on, all interleaving traces up to equivalence (or equivalently the
dipaths up to dihomotopy), by maximal simplices :

Definition 11. The protocol complex for atomic snapshot protocols is the
abstract simplicial complex constructed from the generic protocol in normal form,
and whose vertices are pairs (i, li) where i ∈ [n] represents the name of a process
and li its local memory, and whose maximal simplices are {(0, l0), . . . , (n, ln)}
where li is the local view by process i at the end of the execution represented by
this simplex.

Example 12. The local views in each vertex are determined by the operational
semantics of Section 2.1, as in the following example:

leading to the local view l = 〈〈0, 〈0, 1〉〉 , 〈1, 〈0, 1〉〉〉. Similarly, the trace u0s0u1s1
leads to the local view l = 〈〈0, 〈0,⊥〉〉 , 〈1, 〈0, 1〉〉〉, and there is a third potential
outcome of the computation, symmetric to this last case, in which process 1
updates and scans before process 0 does. Putting this together, according to
Definition 11, we get the protocol complex for one round and two processes [24]:

The encoding of the local states, i.e. vertices in the graph above, is as follows.
The identifier of the process whose local view is the number before the comma,
e.g. the state 0, (0⊥) above is the local view of processor 0. The group of numbers
or ⊥ within parentheses, e.g. (0⊥) in the state above, is a condensed notation
for the local state where l0 = 〈0, 〈0,⊥〉〉, see Section 2.1. Similarly, state 1, (01)
denotes the local view of processor 1, with local state such that l1 = 〈1, 〈0, 1〉〉.

3.2 Construction of the Protocol Complex from the Directed
Geometric Semantics

We can now link protocol complexes with interval orders, i.e. traces up to equiv-
alence or dipaths up to dihomotopy: a colored interval order represents indeed
an execution and we can deduce the local view of the i-th process by restricting
the interval order to the last scan of i. We encode local views restricting to the
full information generic protocol in normal form with initial local state li = i
for i ∈ [n] (this only changes the naming of local states, and not the structure
of the protocol complex).

Proposition 13. Let (Xn
(r),�) be an [n]-colored interval order. Then the local

memory of the i-th process at round k of its corresponding execution1. is given
1 In the full-information generic protocol in normal form, i.e. its view, see Proposition

6 and the following example.

From Geometric Semantics to Asynchronous Computability 447

by its restriction Vk
i to the k-th scan Sk

i of the i-th process, i.e.

Vk
i = {(j, l) | (i, k)‖(j, l) or (j, l) ≺ (i, k)}

meaning that it is the value of the local state li under the semantics of Section 2.1
for the interleaving path corresponding to the interval order Vk

i under the equiv-
alence of Proposition 6.

Example 14. Consider again the one round, two processes case. We have repre-
sented below the protocol complex already depicted in Example 12, and deco-
rated its maximal simplices, i.e. edges, with the corresponding dipaths modulo
dihomotopy above, and the corresponding interval order, below:

The local view of process 0 which is 0, (0⊥) comes from the restriction of the
interval order 0≺1, subscript of the leftmost edge in the graph above, to 0: an
interleaving trace corresponding to this interval order, under Proposition 6 is
u0s0 leading to local state (0⊥) on process 0. Similarly, 1, (01) corresponds to
the local state l1 = (01) for process 1, both for the restriction 0≺1 of 0≺1 to
V1
1 (corresponding to a trace u0s0u1s1, as in the trace superscript of the

edge on the left of the graph above) and for the restriction 0 1 of 0 1 to V1
1

(corresponding to a trace u0u1s0s1 for instance, as in the trace superscript
of the middle edge of the graph above).

We are now in a position to give a combinatorial description of the protocol
complex of Definition 11, using interval orders. We call the resulting equivalent
complex, the interval order complex :

Definition 15. The interval order complex is the simplicial complex whose

– vertices are ((i, k), V k
i) where i stands for the i-th process, k for the round

number and V k
i for an interval order such that for all (j, l) ∈ V k

i , either
(i, k)‖(j, l) or (j, l) ≺ (i, k),

– maximal simplices are {((0, r0), V r0
0), . . . , ((n, rn), V rn

n)} such that there is
an interval order (Xn

(r),≺) whose restriction to (i, ri) is V ri
i .

In that case we say that it is the interval order complex on (r) rounds and for
n + 1 processes.

Example 16. An example of interval order complex with the traces correspond-
ing to the execution for 2 processes, 2 rounds is depicted at Figure 1. Note that
this is not the classical iterated subdivision in three parts at each round, i.e. a
9 edges complex, that is depicted for atomic snapshot protocols [22]. This is
because we are considering more executions than the classical layered immediate
snapshot protocols [22]: we allow round 2 of process 0 to begin while process

1 is still in round 1 for instance. Consider the interval order
0 1

0 1
labeling the

448 É. Goubault et al.

0, ((0)((0)1)) 0, ((0(01))(01))
0 1

0 1

1, ((0(01))(01))

0, ((0))

0 1

0 1
1, ((0)((0)1))

0 1

0 1
0 1

0 1
0, ((0)1)

0 1

0 1
1, ((0)(01))

0 1

0 1
0, ((0)(01))

0 1

0 1
1, (0(01))

0 1

0 1

0 1

0 1

0, ((01)(01))

0 1

0 1

1, ((01)(01))

0 1

0 1

1, ((1)) 0, ((0(1))(1))
0 1

0 1
0 1

0 1

1, (0(1))
0 1

0 1

0, ((01)(1))
0 1

0 1

1, ((01)(1))
0 1

0 1

0, ((01)1)
0 1

0 1
0 1

0 1

1, ((0(1))(1)) 1, ((01)((01)1))

0 1

0 1
0, ((01)((01)1))

Fig. 1. Interval order complex, together with corresponding traces, of 2 processes, 2
rounds.

upper left edge of the protocol complex in Figure 1, where an arrow means

x ≺ y. As shown in the same figure, it corresponds to the execution pre-

cisely where process 0 is executing its 2 rounds before process 1 even starts its
first round. The local view of process 0 at (its) round 2 corresponds to the inter-

val order
0

0
, restriction of

0 1

0 1
to V(2,0)

0 . An interleaving trace corresponding to

this is e.g. u0s0u0s0, which, by the semantics of Section 2.1, leads to the local
state of process 0: 〈0, 〈0, 〈0,⊥〉〉⊥〉 written in condensed form as the upper left
local state 0, ((0)) in Figure 1.

In Figure 2, we show the interval order complex for 3 processes and 1 round.
Note again that we do not have exactly the same picture as in [22]: to the
13 triangles of [22], we have to add the 6 extra blue triangles that make the
complex not faithfully representable as a planar shape and which correspond to
non immediate snapshot executions. For instance, the upper left blue triangle is
labeled with the interval order where 0 is not comparable to both 1 and 2, and
2 is less than 1. An interleaving trace (up to equivalence) corresponding to this
interval order is given on the same figure: u0u2s2u1s1s0.

3.3 Particular Case of 1-Round Immediate Snapshot Protocols

We have not quite finished with describing the connections between directed alge-
braic topology and the protocol complex approach : the combinatorial descrip-
tion of the protocol complex in the case of layered immediate snapshot protocols
seems, at first glance, of a different nature than the one using interval order com-
plexes of Definition 15. We recall that an (layered, for multi-round protocols)
immediate snapshot protocol [22] is a protocol where the snapshot of a given pro-
cess comes “right after” its update, meaning that the allowed traces (within one
round), up to equivalence, should be, of the form ui1 . . . uiksi1 . . . sik . Of course,
there is some difference in that interval order complexes account for non neces-
sarily layered nor “immediate” protocols. It is the aim of this section to make
the connection between the subcomplex of interval order complexes describ-
ing layered immediate snapshot protocols, and the equivalent two definitions

From Geometric Semantics to Asynchronous Computability 449

0 : 0⊥⊥

1 : ⊥1⊥2 : ⊥⊥2

1 : 012

0 : 012

2 : 012

2 : 0⊥2

0 : 0⊥2

1 : ⊥12 2 : ⊥12

0 : 01⊥

1 : 01⊥

u0u1u2s0s1s2

0 1 2

u1u2s1s2u0s0
1 2

0

2 1 0u2s2
u1s1

u0s0
1 2 0

u1s1u2s2u0s0

0

1

2

u1s1u0u2s0s2

u0u2s0s2u1s1
0 2

1

2
0

1

u 2
s 2
u 0
s 0
u 1
s 1

0
2

1
u
0
s 0
u
2
s 2
u
1
s 1

0

2

1

u2s2u0u1s0s1

u0u1s0s1u2s2
0 1

2

0
1

2

u
1 s
1 u

0 s
0 u

2 s
2

0
1

2

u
0 s

0 u
1 s

1 u
2 s

2

1
0

2

u0s0u1u2s1s2

20

1

u0u2s0u1s1s2

21

0

u 1
u 2
s 1
u 0
s 0
s 2

12

0

u
1 u

2 s
2 u

0 s
0 s

1
01

2
u0u1s0u2s1s2

02

1

u
0 u

2 s
2 u

1 s
1 s

0

01

2

u 0
u 1
s 1
u 2
s 0
s 2

Fig. 2. Interval order complex with traces of 3 processes, 1 round.

of chromatic barycentric subdivision [25,19] that describe combinatorially the
protocol complex in that case.

The standard chromatic subdivision χ(Δ[n]) of the standard [n]-colored sim-
plicial complex Δ[n] is defined as follows (see [19], where an equivalence with the
Definition in [25] is also shown):

Definition 17. The standard chromatic subdivision χ(Δ[n]) of Δ[n] is the
[n]-colored simplicial complex whose vertices are pairs (V, i) with V ⊆ [n] and
i ∈ V and simplices are sets of the form σ = {(V0, i0), . . . , (Vd, id)} with d ≥ −1
(σ = ∅ when d = −1) which are

1. well-colored: for every k, l ∈ [d], ik = il implies k = l,
2. ordered: for every k, l ∈ [d], Vk ⊆ Vl or Vl ⊆ Vk,
3. transitive: for every k, l ∈ [d], il ∈ Vk implies Vl ⊆ Vk.

This complex is colored via the second projection: �(V, i) = i.

Remark 18. The transitivity (property 3) of Definition 17 is equivalent to looking
only at immediate snapshot executions. Observe the left upper blue triangle of
Figure 1, which is composed of vertices (0 : 012), (1 : 012) and (2 : 0⊥2)
(respectively meaning ({0, 1, 2} , 0), ({0, 1, 2} , 1) and ({0, 2} , 2) in the notations
of Definition 17). It does not correspond to a layered execution: it corresponds to
the equivalence class of traces u0u2s2u1s1s0. Transitivity does not hold either:
0 ∈ {0, 2} but {0, 1, 2} 	⊆ {0, 2}. This leads us to the last main result of our
article.

Theorem 19. Layered immediate snapshot executions correspond to the inter-
val orders such that: J ≺ K and I is not comparable with J implies I ≺ K. The

450 É. Goubault et al.

subcomplex of the interval order complex on one round, (Xn
(1,...,1),�), that con-

tains only immediate snapshot executions is isomorphic to the chromatic barycen-
tric subdivision of Definition 17.

4 Conclusion and Future Work

We have revealed strong connections between directed algebraic topology, with
its applications to semantics and validation of concurrent systems, and the pro-
tocol complex approach to fault-tolerant distributed systems. This has been
exemplified on the simple layered immediate snapshot model, but also on the
more complicated (non layered, non immediate) iterated snapshot model. This,
combined with the results of [26,19], entirely classifies geometrically the com-
putability of wait-free layered immediate snapshot protocols, directly from the
semantics of the update and scan primitives. We classified combinatorially, en
route, the potential schedules of executions (equivalently, the potential local
views of processes) as an interesting and well-known combinatorial structure:
interval orders.This is a first step towards a more ambitious program. Fault-
tolerant distributed models, whose protocol complex are more complex to guess
combinatorially, may be handled by going through the very same steps we went
through, starting with the geometric semantics of the communication primi-
tives, and classifying dipaths modulo dihomotopy. We shall apply this to atomic
read/write protocols with extra synchronization primitives such as test&set,
compare&swap and others. In the long run, we would like to derive impossi-
bility results directly by observing some obstructions in the semantics, in the
form of suitable directed algebraic topological invariants.

Acknowledgments. The first two authors were partially supported by by the aca-
demic chair “Complex Systems Engineering” of École polytechnique-ENSTA-Télécom-
Thalès-Dassault Aviation-DCNS-DGA-FX-Fondation ParisTech-FDO ENSTA. We
also gratefully acknowledge Maurice Herlihy, Sergio Rajsbaum and Dmitry Kozlov
for numerous discussions, and the referees for helping us improve this paper.

References

1. Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.: Atomic snapshots
of shared memory. J. ACM 40(4), September 1993

2. Anderson, J.H.: Composite registers. In: Conference on Principles of Distributed
Computing. ACM, New York (1993)

3. Biran, O., Moran, S., Zaks, S.: A combinatorial characterization of the distributed
tasks which are solvable in the presence of one faulty processor. In: PoDC. ACM
(1988)

4. Bonichon, R., Canet, G., Correnson, L., Goubault, E., Haucourt, E., Hirschowitz, M.,
Labbé,S.,Mimram,S.:Rigorousevidenceof freedomfromconcurrency faults in indus-
trial control software. In: Flammini, F., Bologna, S., Vittorini, V. (eds.) SAFECOMP
2011. LNCS, vol. 6894, pp. 85–98. Springer, Heidelberg (2011)

5. Borowsky, E., Gafni, E.: Generalized FLP impossibility result for t-resilient
synchronous computations. In: STOC (1993)

From Geometric Semantics to Asynchronous Computability 451

6. Dubut, J., Goubault, É., Goubault-Larrecq, J.: Natural homology. In:
Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015.
LNCS, vol. 9135, pp. 171–183. Springer, Heidelberg (2015)

7. Fajstrup, L., Goubault, É., Haucourt, E., Mimram, S., Raussen, M.: Trace spaces:
an efficient new technique for state-space reduction. In: Seidl, H. (ed.) Programming
Languages and Systems. LNCS, vol. 7211, pp. 274–294. Springer, Heidelberg (2012)

8. Fajstrup, L., Goubault, É., Haucourt, E., Mimram, S., Raussen, M.: Directed
Algebraic Topology and Concurrency. Springer (to be published) (2015)

9. Fajstrup, L., Goubault, É., Raußen, M.: Detecting deadlocks in concurrent sys-
tems. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466,
pp. 332–347. Springer, Heidelberg (1998)

10. Fajstrup, L., Raussen, M., Goubault, É.: Algebraic topology and concurrency. TCS
357(1) (2006)

11. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. Journal of the ACM (JACM) 32(2), 374–382 (1985)

12. Fishburn, P.C.: Intransitive indifference with unequal indifference intervals. Journal
of Mathematical Psychology 7(1), 144–149 (1970)

13. Gierz, G.: A Compendium of continuous lattices. Springer (1980)
14. Goubault, É.: Some geometric perspectives in concurrency theory. Homology,

Homotopy and Appl. (2003)
15. Goubault, É., Haucourt, E.: A practical application of geometric semantics to static

analysis of concurrent programs. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005.
LNCS, vol. 3653, pp. 503–517. Springer, Heidelberg (2005)

16. Goubault, É., Heindel, T., Mimram, S.: A geometric view of partial order reduction.
MFPS, Electr. Notes. Theor. Comput. Sci. 298, (2013)

17. Goubault, É., Jensen, T.P.: Homology of higher-dimensional. In: Cleaveland, W.R.
(ed.) CONCUR 1992. LNCS, vol. 630, pp. 254–268. Springer, Heidelberg (1992)

18. Goubault, É: The Geometry of Concurrency. Ph.D. dissertation, ENS (1995)
19. Goubault, É., Mimram, S., Tasson, C.: Iterated chromatic subdivisions are col-

lapsible. Applied Categorical Structures (2014)
20. Grandis, M.: Directed Algebraic Topology: Models of Non-Reversible Worlds. New

Mathematical Monographs, vol. 13. Cambridge University Press (2009)
21. Gunawardena, J.: Homotopy and concurrency. Bulletin of the EATCS 54, 184–193

(1994)
22. Herlihy, M., Kozlov, D., Rajsbaum, S.: Distributed Computing Through Combi-

natorial Topology. Elsevier (2014)
23. Herlihy, M., Shavit, N.: The asynchronous computability theorem for t-resilient

tasks. In: Proceedings of the Twenty-Fifth Annual ACM Aymposium on Theory
of Computing, pp. 111–120. ACM (1993)

24. Herlihy, M., Shavit, N.: The topological structure of asynchronous computability.
Journal of the ACM (JACM) 46(6), 858–923 (1999)

25. Kozlov, D.: Chromatic subdivision of a simplicial complex. Homology, Homotopy
and Appl. 14 (2012)

26. Kozlov, D.: Topology of the view complex. arXiv preprint arXiv:1311.7283 (2013)
27. Loui, M.C., Abu-Amara, H.H.: Memory requirements for agreement among unre-

liable asynchronous processes. Advances in Computing Research 4 (1987)
28. Lynch, N.A.: Distributed algorithms. Morgan Kaufmann (1996)
29. Nachbin, L.: Topology and order. Van Nostrand, Van Nostrand mathematical

studies (1965)
30. Pratt, V.: Modeling concurrency with geometry. In: POPL. ACM Press (1991)
31. Saks, M.E., Zaharoglou, F.: Wait-free k-set agreement is impossible: the topology

of public knowledge. In: STOC (1993)
32. van Glabbeek, R.: Bisimulation semantics for higher dimensional automata.

Technical report, Stanford (1991)

http://arxiv.org/abs/1311.7283

On the Optimal Space Complexity
of Consensus for Anonymous Processes

Rati Gelashvili(B)

MIT, Cambridge, USA
gelash@mit.edu

Abstract. The optimal space complexity of consensus in shared mem-
ory is a decades-old open problem. For a system of n processes, no algo-
rithm is known that uses a sublinear number of registers. However, the
best known lower bound due to Fich, Herlihy, and Shavit requires Ω(

√
n)

registers.
The special symmetric case of the problem where processes are anony-

mous (run the same algorithm) has also attracted attention. Even in
this case, the best lower and upper bounds are still Ω(

√
n) and O(n).

Moreover, Fich, Herlihy, and Shavit first proved their lower bound for
anonymous processes, and then extended it to the general case. As such,
resolving the anonymous case might be a significant step towards under-
standing and solving the general problem.

In this work, we show that in a system of anonymous processes, any
consensus algorithm satisfying nondeterministic solo termination has to
use Ω(n) read-write registers in some execution. This implies an Ω(n)
lower bound on the space complexity of deterministic obstruction-free
and randomized wait-free consensus, matching the upper bound and clos-
ing the symmetric case of the open problem.

1 Introduction

The celebrated Fischer, Lynch and Paterson (FLP) [FLP85] result proved that
fundamental synchronization tasks including consensus and test-and-set are not
solvable in a wait-free manner using read-write registers. However, the work of
Ben-Or [BO83] shows that it is possible to circumvent FLP and obtain efficient
distributed algorithms, if we relax the problem specification to allow probabilis-
tic termination. It is also possible to solve these tasks deterministically, but
obstruction-free instead of wait-free; it is known how to convert any determinis-
tic obstruction-free algorithm into a randomized wait-free algorithm against an
oblivious adversary (see [GHHW13]).

The space complexity of an algorithm is the maximum number of regis-
ters used in any execution. A lot of research has been dedicated to improv-
ing the upper and lower bounds on the space complexity for canonical tasks.
For test-and-set, an Ω(log n) lower bound was shown in [SP89] and indepen-
dently in [GW12]. On the other hand, an O(

√
n) deterministic obstruction-

free upper bound was given in [GHHW13]. The final breakthrough was the
c© Springer-Verlag Berlin Heidelberg 2015
Y. Moses (Ed.): DISC 2015, LNCS 9363, pp. 452–466, 2015.
DOI: 10.1007/978-3-662-48653-5 30

On the Optimal Space Complexity of Consensus for Anonymous Processes 453

recent obstruction-free algorithm designed by Giakkoupis et al. [GHHW14], with
O(log n) space complexity, essentially closing the problem1.

For consensus, an upper bound with n registers was long known from [AH90].
A lower bound of Ω(

√
n) by Fich et al. [FHS98] first appeared in 1993. The

proof is notorious for its technicality and utilizes a neat inductive combination
of covering and valency arguments. Another version of the proof appeared in a
textbook [AE14]. However, a linear lower bound or a sublinear space algorithm
has remained elusive to date.

The authors of [FHS98] conjectured a tight lower bound of Ω(n). But the
linear lower bound has not been proven even in a restricted, symmetric case,
where all processes are anonymous. In such a system processes can be thought
of as running the same code: all processes with the same input start in the
same initial state and behave identically. The same linear upper bound holds for
anonymous processes, since a deterministic obstruction free consensus algorithm
that uses O(n) registers is known [GR05]. Interestingly, the proof in [FHS98]
starts by showing the Ω(

√
n) lower bound for anonymous processes, which is

then extended to a much more complex argument for the general case. Therefore,
a linear lower bound in the anonymous setting might prove to be a meaningful
step in better understanding and solving the general case of the open problem.

Contribution: In this paper we prove the Ω(n) lower bound in the symmetric
(anonymous) case for consensus algorithms satisfying the standard nondeter-
ministic solo termination property. Any lower bound for algorithms satisfying
the nondeterministic solo termination implies a lower bound for deterministic
obstruction-free and randomized wait-free algorithms. As in [FHS98,AE14], the
bound is for the worst-case space complexity of the algorithm, i.e. for the number
of registers used in some execution, regardless of its actual probability.

Our argument relies on a specific class of executions which we call reserving,
and on the ability to define valency, corresponding to possible return values, for
these executions. This definition of valency and the ability to cover registers with
modified contents by reserved processes greatly simplifies the task of performing
an inductive argument. We hope these techniques will be useful for future work.

We also show how the lower bound can be extended to a non-anonymous,
adaptive, setting where processes come from a very large namespace and the
bound depends on the size of the subset of processes that actually participate in
the execution. However, this extension requires additional restrictions on register
size and termination, and is provided mainly to illustrate an approach.

Definitions and Notation: We use the standard shared-memory model and
similar notation to [FHS98,AE14]. We consider anonymous processes and atomic
read-write registers. A process is covering a register R, if the next step of p can
be a write to R. A block write of a set of processes P to a set of covered registers
V is a sequence of write steps by processes in P , where each step is a write to a
different register and all registers get written to.

1 The space complexity of randomized test-and-set against a strong (adaptive) adver-
sary remains open.

454 R. Gelashvili

In a system of anonymous processes, if a process p in state s performs a
particular operation, for any configuration with any process q in the same state s,
q can also perform the exact same operation. Finally, if p and q perform the same
operation from the same state with the same outcome (i.e. read the same value),
then both p and q end up in the same state after the operation. In randomized
algorithms, anonymous processes always perform the same operation from the
same state (including flipping coins with the same random distribution), and
end up in identical state if they observe the same results.

A clone of a process p, exactly as in [FHS98,AE14], is defined as another
process with the same input as p, that shadows p by performing the same oper-
ations as p in lockstep, reading and writing the same values immediately after p,
and remaining in the same state, all the way until some write of p. Because the
system consists of anonymous processes, in any execution with sufficiently many
processes, for any write operation of p, there always exists an alternative execu-
tion with a clone q that shadowed p all the way until the write. In particular,
in the alternative execution, process q covers the register and is about to write
the value that p last wrote there. Moreover, the two executions with or without
the clone covering the register are completely indistinguishable to all processes
other than the clone itself.

An execution is a sequence of steps by processes and a solo execution is an
execution where all steps are taken by a single process. An execution interval is
a subsequence of consecutive steps from some execution. In the binary consensus
problem each participating process starts with a binary input 0 or 1, and must
return a binary output. The correctness criterium is that all outputs must be
the same and equal to the input of some process. We say that an execution
interval decides 0 (or 1) if some process returns 0 (or 1, respectively) during this
execution interval.

A wait-free termination requirement means that each participating process
must eventually return an output within a finite number of own steps, regardless
of how the other processes are scheduled. The FLP result shows that in the
asynchronous shared memory model with read-write registers, no deterministic
algorithm can solve binary consensus in a wait-free way. However, it is possible to
deterministically solve obstruction-free consensus, i.e. when processes are only
required to return an output if they run solo from some configuration. It is
also possible to solve consensus in a randomized wait-free way, when processes
are allowed to flip random coins and decide their next steps accordingly. A
nondeterministic solo termination property of an algorithm means that from
each reachable configuration, for each process, there exists a finite solo execution
by the process where it terminates and returns an output. We prove our lower
bounds for binary consensus algorithms that satisfy this nondeterministic solo
termination property, because both deterministic obstruction-free algorithms
and randomized wait-free algorithms fall into this category.

On the Optimal Space Complexity of Consensus for Anonymous Processes 455

2 Space Complexity Lower Bound

In order to demonstrate our approach, we start by presenting a different proof of
the Ω(

√
n) space lower bound in the anonymous setting. It uses induction on the

number of registers written during an execution, as opposed to induction on the
tuple of sizes of pending block writes in [FHS98]. The proof also has an additional
benefit that the use of covering and valency arguments is decoupled. As usual,
we use covering to enforce writing to a new register, while a valency argument
reminiscent of [FLP85] ensures that both decision values remain reachable by
solo executions.

Next, building upon this new argument, we prove an Ω(n) space lower bound
for consensus with nondeterministic solo termination in a system of anonymous
processes. There are some significant differences, for instance, the execution is
constructed in such a way that after a register is written to, it always remains
covered. Moreover, valency is redefined to account for this specific class of exe-
cutions. The rest is induction.

2.1 A Square-Root Lower Bound

In this section, we define valency as follows. If there is a solo execution of some
process returning 0 from a configuration, then we call this configuration 0-valent
(and 1-valent if there is a solo execution of a process that returns 1). Solo termi-
nation implies that every configuration is 0-valent or 1-valent. Note that unlike
the standard definition of valency, our definition allows the same configuration
to be simultaneously 0-valent and 1-valent. We call such configurations that are
both 0-valent and 1-valent bivalent, and univalent otherwise. Notice that a con-
figuration is bivalent if two solo executions of the same process return different
values. If a configuration is 0-valent, but not 1-valent (i.e. no solo execution from
this configuration decides 1), then we call it 0-univalent, meaning that the con-
figuration is univalent with valency 0. Analogously, a configuration is 1-univalent
if it is 1-valent but not 0-valent.

Observe that if we have at least two processes, then in every bivalent con-
figuration we can always find two distinct processes p and q, such that there is
a solo execution of p returning 0 and a solo execution of q returning 1. This is
because either the configuration is bivalent because of solo executions of distinct
processes, in which case we are done, or two solo executions of some process
return different values, in which case it suffices to consider any terminating solo
execution of another process.

For the system of anonymous processes, and a consensus algorithm that uses
atomic read-write registers and satisfies the nondeterministic solo termination
property, we prove the following statement by induction:

Lemma 1. For r ≥ 0, there exists a system of (r−1)r
2 +2 anonymous processes,

such that for any consensus algorithm, a configuration Cr is reachable by an
execution Er with the following properties:

456 R. Gelashvili

– There is a set R of r registers, each of which has been written to during Er,
and

– the configuration Cr is bivalent.

Proof. The proof is by induction, with the base case r = 0. Our system consists
of two processes p and q, p starts with input 0, q starts with input 1, and C0 is
the initial state. Clearly, no registers have been written to in C0 and bivalency
follows by nondeterministic solo termination.

Now, let us assume the induction hypothesis for some r and prove it for r+1.
By the induction hypothesis, we can reach a configuration Cr using (r−1)r

2 +
2 processes. The goal is to use another r processes and extend Cr to Cr+1,
completing the proof since r + (r−1)r

2 + 2 = r(r+1)
2 + 2.

As discussed above, because we have at least 2 processes and Cr is bivalent,
there exists a process p and its solo execution α from Cr after which p returns 0
and a process q �= p and its solo execution β from Cr after which q returns 1.2

Recall that R is the set of r registers that were written to in execution Er. For
each register in R, let a new process clone the process that last wrote to it all
the way to covering the register poised to write the same value as present in the
register in configuration Cr.

Let us now apply the covering argument utilizing the clones. Consider exe-
cution Erαγβ, where γ is a block write to R by the new clones. We know that
process p returns 0 after Erα. During its solo execution α, process p has to write
to a register outside of R. Otherwise, the configuration after Erαγ is indistin-
guishable from Cr to process q as the values in all registers are the same, and
q is still in the same state as in Cr. Hence, q will return 1 after Erαγβ as it
would after Erβ, contradicting the correctness of the consensus algorithm. Anal-
ogously, process q has to write outside of R during β. Let α = α′wpα

′′, where
wp is the first write of p outside the set of registers R, and let β = β′wqβ

′′, with
wq being the first write outside of R. Let � be the length of γβ′wq and Bi be a
prefix of γβ′wq of length i, for all possible 0 ≤ i ≤ �.

Next, we use a valency argument to reach Cr+1. We show that either the
configuration reached after Erα

′γβ′wq, or one of the configurations reached after
Erα

′Biwp for some i, satisfies the properties necessary to be Cr+1. Clearly, we
have used the right number of processes to reach any of these configurations and
r + 1 registers have been written to while doing so, including R and the register
written by wp or wq. Thus, we only need to show that one of these configurations
is bivalent.

Assume the contrary. The configuration for i = 0 must be 0-univalent, since
p returns 0 only throughout α′′, and we assumed that the configuration is not
bivalent. Similarly, the configuration reached after Erα

′γβ′wq = Erα
′B� is 1-

univalent. It is univalent by our assumption and 1-valent as q running solo
returns 1 through β′′ (α′ does not involve a write outside of R and q cannot
distinguish from Erβ

′wqβ
′′). Because the configuration reached after Erα

′B� is

2 Alternatively one can say execution Erα ends with p returning 0 and Erβ ends with
q returning 1.

On the Optimal Space Complexity of Consensus for Anonymous Processes 457

1-univalent, any terminating solo execution of process p from that configuration
must also return 1. In particular, every terminating solo execution that starts
by p performing its next step wp returns 1. So the configuration reached after
Erα

′B�wp must be 1-univalent: solo executions of p return 1 (some solo exe-
cution terminates due to nondeterministic solo execution), and it is univalent
by our assumption (it is the same as configuration for i = �). Therefore, the
configuration reached after Erα

′Biwp is 0-univalent for i = 0 and 1-univalent
for i = �. Hence, we can find a switching point for some i and i + 1, where the
configuration X reached by Erα

′Biwp is 0-univalent, while the configuration Y
reached by Erα

′Bi+1wp is 1-univalent. Let o be the extra operation in Bi+1.
Operation o is not by p and may not be a read or a write to the same

register as wp writes to since p would not distinguish between X and Y and
would return the same output from both configurations through the same solo
execution, contradicting the existence of the different univalencies. Otherwise,
operations wp and o commute. Let σ be a terminating solo execution from Y by
the process that performed operation o, where it returns 1 due to the univalency
of Y . Also consider this process performing its next operation o from X. Since
wp and o commute, and o is not a read, the process cannot distinguish between
the resulting configuration and Y and returns 1 through σ as from Y . However,
oσ is a solo execution from X that returns 1, contradicting the 0-univalency
of X. The contradiction proves the induction step, completing our induction.

Notice that for n processes, Lemma 1 directly implies the existence of an execu-
tion where Ω(

√
n) registers are written to, proving the desired lower bound.

2.2 Linear Lower Bound

Consider systems with n anonymous processes and an arbitrary correct consen-
sus algorithm satisfying the nondeterministic solo termination property. We will
assume that no execution of the algorithm uses more than n/20 registers (oth-
erwise, we are trivially done), and prove that such an algorithm has to use Ω(n)
registers, which completes the proof. For notational convenience, let us define m
to be n/20.

The argument in Lemma 1 relies on a new set of clones in each iteration to
overwrite the changes to the contents of the registers made during the inductive
step. This is the primary reason why we only get an Ω(

√
n) lower bound. As

the authors of [FHS98] also mention, to get a stronger lower bound we would
instead have to reuse existing processes. In order to do so, these existing processes
need to cover the registers in our inductive configurations (we must also ensure
proper valency conditions on what they are about to write, but let us focus on
the covering). Now, even if we reach such a configuration, during a solo execution
interval of some process in the subsequent induction step, all the registers may
get written to, and we would have to use all the covering existing processes to
overwrite the changes. Therefore, in the next configuration, there is no way to
guarantee that the existing processes would still cover various registers.

458 R. Gelashvili

This is the primary reason why we have to replace solo executions in the proof
with a different class of executions that we call reserving. Intuitively, reserving
executions ensure that for the registers that are written to, some processes are
reserved to cover them. This way, we can have reserved processes cover the
registers in subsequent inductive configurations. Notice that the definition of
valency used in the proof of Lemma 1 was based on solo executions. Thus, we
also redefine valency based on reserving executions.

Reserving Executions. The following is a formal definition of a reserving
execution interval.

Definition 1. Let C be some configuration reachable by the algorithm, and let
P be a set of at least m+1 processes. We call an execution interval γ that starts
from configuration C reserving from C by P if:
– Every step in γ is by a process in P .
– At any time during the execution of γ: if we let Rw be the set of registers

written to so far during γ, then, for each register in Rw, there is a reserved
process p ∈ P covering that register, one per register.

– If a process p ∈ P returns during γ then it does so in the last step of γ.

Notice that by definition any prefix of a reserving execution interval is also a
reserving execution interval. Let Res(C,P) be the set of all reserving execution
intervals from C by processes in P that end with a process p ∈ P returning.
We first show that given sufficiently many processes, such an execution interval
exists. This is essential for defining the valency later. Recall that we assumed a
strict upper bound of m on the number of registers that can ever be written.

Lemma 2. For any reachable configuration C and a set of at least m + 1 pro-
cesses P , none of which have returned yet, we have that Res(C,P) �= ∅.

Proof. For a given C and P , we will prove the lemma by constructing a particular
reserving execution interval γ that ends when some process p ∈ P returns. We
start with an empty γ and continuously extend it. In the first stage, one by one,
for each process p ∈ P :

– Due to the nondeterministic solo termination, there exists a solo execution
of p where p returns.

• If p ever writes to any register during this solo execution, extend γ by the
prefix of the execution before this write, and move to the next process
in P .

• Otherwise, complete γ by extending it with the whole solo execution of
p.

We have finitely many processes and the first stage described above consists
of extending the execution interval at most |P | times. Each time, because of
the nondeterministic solo termination for some process p ∈ P , we extend γ by
a prefix of a finite solo execution of p. Moreover, all operations are reads by
processes in P , and therefore the prefix of γ constructed so far is reserving.

On the Optimal Space Complexity of Consensus for Anonymous Processes 459

If some process returns in the first stage, the construction of γ is complete.
Otherwise, since the first stage is finite, we move on to the second stage described
below. In the configuration after the first stage each of the at least m+1 processes
in P is covering a register (by their next write operation after the first stage).
From that configuration, the execution interval γ is extended by repeatedly doing
the following:
1. Let R be the set of covered registers by processes of P . Since |R| ≤ m < |P |,

we can find two processes p, q ∈ P covering the same register in R.
2. Due to the nondeterministic solo termination, there exists a solo execution

of p where p returns.
• If p ever writes to a register outside of R during this solo execution,

extend γ by the prefix of the execution before this write, and continue
from the first step. Notice that at the beginning of the next iteration,
process p still covers a register as required.

• Otherwise, complete γ by extending it with the whole solo execution
of p.

In the second stage, each iteration terminates, since for any process p ∈ P , we
can extend by at most the terminating solo execution of p, which exists and
is finite. After each iteration, if the construction is not complete, the size of R
increases by one. But there are at most m registers in the system and |R| ≤ m.
Thus, after at most m finite extensions, we will complete the construction of γ
when some process returns.

The execution is reserving because at all times, the registers that were
written-to are in R. Moreover, for each register in R, there is always a pro-
cess covering it starting from the time it was first covered by some process p in
the second step of some iteration all the way until the end of γ.

The next lemma follows immediately from the definition of reserving executions.

Lemma 3. Consider a reachable configuration C, a set of at least m+1 processes
P ′ none of which have returned yet, and another configuration C ′ reached after
some process p �∈ P ′ performs a write operation wp in C. Moreover, assume that
another process q �= p with q �∈ P ′ is covering the same register that wp writes
to. Then if γ ∈ Res(C ′, P ′), then wpγ is in Res(C,P) where P = P ′ ∪ {p} ∪ {q}.

New Definition of Valency. We say that a configuration C is 0-valentU with
respect to the set of processes U , if there exists a subset of at least m + 1
processes P ⊆ U and a reserving execution in Res(C,P) that finishes when some
process in P returns 0. We call C 0-valentm+1

U w.r.t. U , if there exists a subset of
exactly m+1 processes P ⊆ U (|P | = m+1), and a reserving execution interval
in Res(C,P) returning 0. We define 1-valentU and 1-valentm+1

U analogously. If
U contains at least m + 1 processes that have not returned, Lemma 2 implies
that every configuration is 0-valentm+1

U or 1-valentm+1
U (and thus 0-valentU or

1-valentU).

460 R. Gelashvili

As in our earlier definition in Section 2.1, but unlike the standard definition,
a configuration that is 0-valentm+1

U can still also be 1-valentm+1
U in which case

we call it bivalentm+1
U . Basically, a configuration is bivalentm+1

U if it is both
0-valentm+1

U due to some P ⊆ U and 1-valentm+1
U due to some Q ⊆ U . A

configuration that is not bivalentm+1
U is called univalentm+1

U . Finally, similar
to our earlier convention, we define a configuration to be 0-univalentm+1

U if it
is 0-valentm+1

U but not 1-valentm+1
U . On the other hand, a configuration that

is 1-valentm+1
U but not 0-valentm+1

U is called 1-univalentm+1
U . Terms bivalentU ,

univalentU , 0-univalentU and 1-univalentU are defined analogously.
Next we prove a lemma that lets us find reserving executions consisting of

disjoint processes.

Lemma 4. Consider a configuration C which is bivalentU w.r.t. U . Assume that
there are (possibly intersecting) sets of at least m + 1 processes each P ⊆ U and
Q ⊆ U such that |U | ≥ |P |+ |Q|+m, and some reserving execution in Res(C,P)
ends when p ∈ P returns 0, while some reserving execution in Res(C,Q) ends
when q ∈ Q returns 1. Then there are also disjoint sets of processes P ′ ⊆ U
and Q′ ⊆ U (P ′ ∩ Q′ = ∅), such that an execution in Res(C,P ′) returns 0
and an execution in Res(C,Q′) returns 1. Moreover, m + 1 ≤ min(|P ′|, |Q′|) ≤
min(|P |, |Q|) and max(|P ′|, |Q′|) ≤ max(|P |, |Q|).
Proof. None of the processes in U may have already returned in configuration
C, as that would contradict the existence of a reserving execution returning the
other output. If P and Q do not intersect then we set P ′ = P and Q′ = Q. Other-
wise, we can find a set H ⊆ U−P −Q of m+1 processes. By Lemma 2, Res(C,H)
is non-empty, and without loss of generality, some execution in Res(C,H) returns
0. Then, we set P ′ = H and Q′ = Q (if all executions in Res(C,H) return 1, we
would set P ′ = P and Q′ = H).

The Process-Clone Pairs and the Proof. As mentioned earlier, it is obvi-
ously not sufficient to simply cover registers with existing processes without any
knowledge of what they are about to write. In the proof of Lemma 1 we used
new clones that covered registers to block-overwrite these registers back to the
contents whose valency we knew. In order to do something similar with existing
processes, we associate a dedicated clone to each process. The process and its
clone remain in the same states and perform the same operations during the
whole execution.

Usually, when we schedule a process to perform an operation, its clone per-
forms the same operation immediately after the process. Thus the pair of the
process and the clone remain in the same state. Under these circumstances, we
can treat the pair of the process and its clone as a single process, because no
process can distinguish the execution from when the clone would not take steps.
However, sometimes we will split the pair by having only the process perform a
write operation and let the clone cover the register. We will explicitly say when
this is the case. After we split the pair of process and clone in such a way, we will
not schedule the process to take any more steps and thus the clone will remain

On the Optimal Space Complexity of Consensus for Anonymous Processes 461

poised to write to the covered register. After some delay, we will schedule the
clone of the process to write, effectively resetting the register to the value it
had when the process wrote. Moreover, because meanwhile the process did not
take any steps, after the write the clone will again be in the same state as its
associated process. Hence the pair of the process and clone will no longer be
split, and will continue taking steps in sync like a single process.

This is different from the way clones were used in the proof of Lemma 1,
because after the pair of the process and its clone is united, it can be split
again. Therefore, the same clone can reset the contents of registers written by
its associated process multiple times, instead of requiring a new clone every time.

We call a split pair of a process and a clone fresh as long as the register that
the process wrote to, and its clone is covering, has not been overwritten. After
the register is overwritten, we call the split pair stale.

In addition, we also use cloning in a way similar to the proof of Lemma 1,
except that we do this at most constantly many times, as opposed to r times,
to reach the next configuration Cr+1. Moreover, each time when we do this,
we create duplicates of both the process and its corresponding clone. This new
process-clone pair is in the same state as the original pair, and from there on
behaves like a single new process similar to all other pairs. We will always con-
sider valency with respect to sets of processes whose pairs are not split. Therefore,
the definition of valency does not need to change when the clones keep taking
steps immediately after their processes.

Sometimes, when considering process-clone pairs, none of which are split, we
may refer to them as processes, i.e. we may talk about a process taking steps or
returning a value. As mentioned earlier, it is assumed that as long as the pair
is not split, the clone always follows and takes the same steps right after the
process. Hence, in this context, a process taking a step means a pair taking a
step.

Now we are ready to prove the main result.

Theorem 1. In the system of anonymous processes, consider any correct con-
sensus algorithm satisfying nondeterministic solo termination, with the property
that every execution uses at most m registers. For each r with 0 ≤ r ≤ m, there
exists a set U containing 5m+6+2r process-clone pairs such that a configuration
Cr is reachable through an execution Er by processes and clones in U with the
following properties:
1. There exists a set R of r registers, that can be partitioned in two disjoint

subsets R = Rs ∪ Rc, where:
• Rs consists of all registers in the system that each have one fresh split pair

on them, last written by some process whose clone has not yet performed
the write and is covering the register.

• Rc = R − Rs. Each register in Rc is covered by an unique pair of both a
process and its clone.

Thus, each fresh pair is split on a different register in Rs, and an additional
|Rc| pairs are covering the registers in Rc. Let V be the set of these |Rs| +
|Rc| = r pairs.

462 R. Gelashvili

2. There are at most r stale split pairs in the system, that are all split on
pairwise different registers from R. Let L be the set of these at most r stale
split pairs.

3. There exist disjoint sets of process-clone pairs that are not split P,Q ⊆
U − V − L with |P | + |Q| ≤ 2m + 4, such that an execution in Res(Cr, P)
returns 0 and an execution in Res(Cr, Q) returns 1.3

Proof. The proof is by induction on r, with the base case r = 0. Out of the
5m + 6 processes-clone pairs, half of them start with an input 0 and half start
with an input 1. We let C0 be the initial state, P be a set of some m + 1
pairs with input 0, and Q be a set of some m + 1 pairs with input 1. The first
two properties are trivially satisfied; also P ∩ Q = ∅ and |P | + |Q| = 2m + 2.
By Lemma 2 and correctness of consensus, there is a reserving execution in
Res(C0, P) that decides 0, and a reserving execution in Res(C0, Q) that decides
1 (C0 is bivalentU). Observe that the pairs are not split and for the purposes of
valency we can just consider the steps of processes.

Now, let us assume induction hypothesis for some r, i.e. the existence of
Er and Cr with the required three properties, and prove the step for r + 1 by
extending Er to Er+1, resulting in the configuration Cr+1. Let U , P , Q, V , L
and R = Rs ∪ Rc all be defined as in the theorem statement for r. Our goal is
to construct sets U ′, P ′, Q′, V ′, L′ and R′ = R′

s ∪ R′
c for r + 1. In U ′ − U we

have two more process-clone pairs available that have not taken steps and can
be used to clone an existing process-clone pair. Let T denote U −V −L−P −Q.
Since |V | = r, L ≤ r and |P | + |Q| ≤ 2m + 4, we have |T | ≥ 3m + 2.

For all but |Rs| + |L| split pairs both processes and clones are in the same
states, about to perform the same operations. By definition, each stale pair in
L is split on a different register from R. In the following argument, we extend
the execution from Er to Er+1 by steps of processes and clones not in L. This
can introduce new stale split pairs and the resulting configuration Cr+1 may not
immediately satisfy the second property. We will then show how to modify the
extension and unite some stale split pairs, such that the resulting configuration
satisfies all properties, including the second property with the new L′.

Let α ∈ Res(Cr, P) be the reserving execution interval that returns 0, and
let β ∈ Res(Cr, Q) be the reserving execution interval that returns 1. Notice
that each time a process in P or Q takes a step in α or β, its clone performs an
identical step immediately after. The execution Erα ends with a process-clone
pair p ∈ P returning 0 and the execution Erβ ends with a process-clone pair
q ∈ Q returning 1.

Each register in Rc was covered by some pair of both a process and its clone in
V . Let γc be a block write to all registers in Rc by only the processes but not the
clones of these respective covering pairs: i.e. after each write we get a new fresh
split pair. Consider a configuration D reached from Cr by executing this block
write, i.e. a configuration reached after Erγc. Assume that D is 1-valentm+1

T ,
3 The pairs of processes in P and Q are not split, because all split pairs belong to V ∪L
(fresh to V and stale to L). Also, the third condition implies that the configuration
Cr is bivalentU−V −L.

On the Optimal Space Complexity of Consensus for Anonymous Processes 463

without loss of generality, because it has a valency. For any execution interval e,
let us denote by W (e) the set of registers written to during e. Hence, Rs ∩W (e)
is the set of registers in Rs that are written-to during e. Each register in Rs is
covered by a clone of a split pair whose process has already performed the write
and is stopped. Define γs(e) as a block write to all registers in Rs ∩ W (e) by
these trailing clones of the split pairs in V : i.e. after each write another clone
catches up with its process and a previously split pair is united. Basically, if
we run an execution interval e from Cr that changes contents of some registers
in Rs, we can then clean these changes up by executing γs(e), which leads to all
registers in Rs having the same contents as in Cr.

Using a crude covering argument we can first show that

Lemma 5. The execution interval α must contain a write operation outside R.

The proof of this lemma is provided later.
Based on this we can write α = α′wpα

′′, where wp is the write operation to
a register reg �∈ R, performed by some process-clone pair p ∈ P .

Looking ahead, when we reach Cr+1, the new set of registers R′ will be
R ∪ {reg}. Next, we prove the following lemma using an FLP-like case analysis:

Lemma 6. We can extend execution Er (i.e. from Cr) with an execution inter-
val e and reach a configuration satisfying the first and the third inductive require-
ments to be Cr+1 with a properly defined U ′, P ′, Q′, V ′ and R′ = R′

s ∪ R′
c, and

with all process-clone pairs that are not split being in sync. But the second prop-
erty is not immediately satisfied. All stale split pairs from L remain stale and
split, but some pairs that were fresh and split on registers in Rs ∩ W (e) may
have become stale in Cr+1 (because neither the process nor the clone in the split
pair has taken steps while the register was overwritten in e). However, these are
the only possible new stale split pairs in Cr+1, and they do not belong to the new
sets V ′ ∪ P ′ ∪ Q′.

The proof of this lemma can be found in the full version.4

In order to finish the proof of the theorem, we need to show how to construct
L′. According to the above Lemma 6 we can extend the execution to reach the
next configuration Cr+1 satisfying first and third but not the second property
about the stale split pairs L′. In Cr we had at most r stale pairs in the system,
each split on a different register, and L was the set of these pairs. But on the
way to reaching Cr+1, we may have introduced new stale pairs in the system.
According to Lemma 6 these must be the pairs that were fresh and split on
registers in Rs ∩ W (e) in Cr, and whose associated register in Rs has been
overwritten during e, making them stale in Cr+1.

The set of all stale pairs in Cr+1 may not satisfy the requirements imposed
for L′, since there could already have been a stale pair split on a register in
Rs ∩ W (e) in L (in Cr). Then two stale pairs would be split on this register in
Cr+1, violating the second property. However, for each such register in Rs∩W (e),
we know a stale pair ρ ∈ L was split on it in Cr, and that this register was

4 Available at http://arxiv.org/abs/1506.06817.

http://arxiv.org/abs/1506.06817

464 R. Gelashvili

written-to during extension W (e). We now modify the extension e; we add a
single write by the clone of the stale split pair ρ immediately before a write
operation to the same register that was already in e. This way, no pair other
than the clone of ρ observes a difference between the two executions, and we
will use the configuration reached by the modified execution as Cr+1. Because
of this indistinguishability, the new Cr+1 still satisfies other required properties.
Moreover, the pair ρ is not split anymore; it is united since the clone has caught
up with its process.

We can do the above modification to the execution for each register in Rs ∩
W (e) that previously ended up with two stale split processes in Cr+1. Let the
modified execution extension be e′. In e′, some stale split pairs from L are united,
indistinguishably to all other processes and clones, leading to a configuration
Cr+1, that still satisfies the first and third properties, and has at most one
stale pair split on any register. We take L′ to be the set of stale split pairs.
By construction, all stale pairs are split on registers in R′ and no two on the
same register, so we do have |L′| ≤ r + 1 as desired. Hence, we have reached
configuration Cr+1 satisfying all properties and completing the proof.

Corollary 1. In a system of n anonymous processes, any consensus algorithm
satisfying non-deterministic solo termination must use Ω(n) registers.

Proof. Theorem 1 directly implies the Ω(n) lower bound on the number of reg-
isters used in some execution. If n is the number of anonymous processes and
no execution uses more than m = n/20 registers, by Theorem 1 we can reach
Cm for large enough n, and we have enough processes n ≥ 10m + 12 + 4m. In
Cm there are m registers in R, each of which has either already been written-to
(Rs) or are covered by unique processes (Rc). We could perform a block write to
Rc by covering processes from V in Cm, after which in the resulting execution
m = n/20 = Ω(n) different registers would have been written to.

We now provide the delayed proof of Lemma 5.

Proof. Assume the contrary. We know that the execution Erα decides 0. No
process or clone that takes a step in γc or γs(α) appears in α (they belong to V ,
disjoint from P and Q), and by definition, no process or clone from T takes a
step in α, γc or γs(α). Thus, to all processes (and clones) in T , the configurations
after Erαγs(α)γc and after Erγc, which is configuration D, are indistinguishable.
This is because no process (or clone) in T has taken steps, the registers in R
contain the same values, and other registers were not touched during α, γs(α)
or γc. Configuration D is 1-valentm+1

T , so some extension from Erαγs(α)γc by
an execution interval from Res(D,T) decides 1. This contradicts the correctness
of the algorithm.

3 Extensions

Adaptive Lower Bound: Let us sketch a proof for an adaptive linear lower
bound on the space complexity of consensus for non-anonymous processes but

On the Optimal Space Complexity of Consensus for Anonymous Processes 465

under extra restrictions on register size and solo termination. In this setting,
processes are no longer anonymous, but we assume they come from a very large
namespace. Each of these huge number of processes executes its own code, how-
ever, we get to choose which subset of processes participates in the execution.
We show that there is a linear space lower bound that depends on the number
of participating processes, that is, for large enough namespace, we can find an
execution of n processes (out of all processes) where Ω(n) registers get written.

The restrictions are that the registers have a bounded size and that the con-
sensus algorithm satisfies bounded nondeterministic solo termination property,
meaning that there always is a terminating solo execution of a process consisting
of less than certain number of steps. If we had bounded nondeterministic solo
termination, the lower bound execution for anonymous processes constructed
in Theorem 1 would always contain less than B steps, where B is a finite bound
that only depends on n and the solo termination bound. As registers have a
bounded size, for both input values, a process can exhibit only finitely many
different behaviors during its first B steps, because in each step it can either
read or write a fixed number of different values. For a sufficiently large names-
pace (depending on B, n and register size), by pigeon-hole principle, we can
find n processes such that half of them start with input 1, half start with 0 and
all processes with the same input behave as anonymous for the first B steps of
an execution. Hence, we can use Theorem 1 and get an execution where n/20
registers are written to, as described at the end of Section 2.2.

Future Work: We believe that is should be possible to derive the above adaptive
lower bound without the bounded solo termination assumption, and to get good
estimate on the required size of the namespace. However, the major open problem
is still to resolve the general, non-anonymous and non-adaptive case, i.e. to get
tight bounds on the space required to solve consensus with exactly n asymmetric
processes.

Acknowledgments. Support is gratefully acknowledged from the National Science
Foundation under grants CCF-1217921, CCF-1301926, and IIS-1447786, the Depart-
ment of Energy under grant ER26116/DE-SC0008923, and the Oracle and Intel cor-
porations.

The author would like to thank Nir Shavit, Michael Coulombe and Dan Alistarh for
helpful conversations and feedback, and the anonymous reviewers for their excellent
comments.

References

[AE14] Attiya, H., Ellen, F.: Impossibility results for distributed computing. Syn-
thesis Lectures on Distributed Computing Theory 5(1), 1–162 (2014)

[AH90] Aspnes, J., Herlihy, M.: Fast randomized consensus using shared memory.
Journal of Algorithms 11(3), 441–461 (1990)

[BO83] Ben-Or, M.: Another advantage of free choice (extended abstract): Com-
pletely asynchronous agreement protocols. In: Proceedings of the Second
Annual ACM Symposium on Principles of Distributed Computing, PODC
1983, pp. 27–30. ACM, New York (1983)

466 R. Gelashvili

[FHS98] Fich, F., Herlihy, M., Shavit, N.: On the space complexity of randomized
synchronization. Journal of the ACM (JACM) 45(5), 843–862 (1998)

[FLP85] Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed
consensus with one faulty process. Journal of the ACM (JACM) 32(2),
374–382 (1985)

[GHHW13] Giakkoupis, G., Helmi, M., Higham, L., Woelfel, P.: An O(
√

n) space
bound for obstruction-free leader election. In: Afek, Y. (ed.) DISC 2013.
LNCS, vol. 8205, pp. 46–60. Springer, Heidelberg (2013)

[GHHW14] Giakkoupis, G., Helmi, M., Higham, L., Woelfel, P.: Test-and-set in optimal
space. In: Accepted to STOC 2015 (2014–2015)

[GR05] Guerraoui, R., Ruppert, E.: What can be implemented anonymously? In:
Fraigniaud, P. (ed.) DISC 2005. LNCS, vol. 3724, pp. 244–259. Springer,
Heidelberg (2005)

[GW12] Giakkoupis, G., Woelfel, P.: On the time and space complexity of ran-
domized test-and-set. In: Proceedings of the 2012 ACM Symposium on
Principles of Distributed Computing, pp. 19–28. ACM (2012)

[SP89] Styer, E., Peterson, G.L.: Tight bounds for shared memory symmetric
mutual exclusion problems. In: Proceedings of the Eighth Annual ACM
Symposium on Principles of Distributed Computing, pp. 177–191. ACM
(1989)

Compressing Communication in Distributed
Protocols

Yael Tauman Kalai1 and Ilan Komargodski2(B)

1 Microsoft Research, Cambridge, USA
yael@microsoft.com

2 Weizmann Institute of Science, 76100 Rehovot, Israel
ilan.komargodski@weizmann.ac.il

Abstract. We show how to compress communication in distributed pro-
tocols in which parties do not have private inputs. More specifically, we
present a generic method for converting any protocol in which parties
do not have private inputs, into another protocol where each message is
“short” while preserving the same number of rounds, the same communi-
cation pattern, the same output distribution, and the same resilience to
error. Assuming that the output lies in some universe of size M , in our
resulting protocol each message consists of only polylog(M, n, d) many
bits, where n is the number of parties and d is the number of rounds.
Our transformation works in the full information model, in the presence
of either static or adaptive Byzantine faults.

In particular, our result implies that for any such poly(n)-round dis-
tributed protocol which generates outputs in a universe of size poly(n),
long messages are not needed, and messages of length polylog(n) suffice.
In other words, in this regime, any distributed task that can be solved
in the LOCAL model, can also be solved in the CONGEST model with
the same round complexity and security guarantees.

As a corollary, we conclude that for any poly(n)-round collective
coin-flipping protocol, leader election protocol, or selection protocols,
messages of length polylog(n) suffice (in the presence of either static or
adaptive Byzantine faults).

1 Introduction

In classical algorithmic design the goal is to design efficient algorithms, where
the common complexity measures are time and space. In distributed algorithms,
where a set of parties tries to perform a predefined task, there are more param-
eters of interest, such as round complexity, message complexity, fault-tolerance,
and more.

I. Komargodski—Part of this work done while an internat MSR New England. Sup-
ported in part by a grant from the I-CORE Program of the Planning and Budgeting
Committee, the Israel Science Foundation, BSF and the Israeli Ministry of Science
and Technology.

c© Springer-Verlag Berlin Heidelberg 2015
Y. Moses (Ed.): DISC 2015, LNCS 9363, pp. 467–479, 2015.
DOI: 10.1007/978-3-662-48653-5 31

468 Y.T. Kalai and I. Komargodski

These measures have been studied in the literature under two main models:
LOCAL and CONGEST [11]. The LOCAL model is aimed at studying “local-
ized” executions of distributed protocols, and thus, messages of unlimited size
are allowed. The CONGEST model is geared towards understanding the effect
of congestion in the network, and thus, messages of poly-logarithmic size (in the
number of parties) are allowed.1

Most of the work in distributed computing assumes one of the models above
and focuses on optimizing resources such as round complexity, message complex-
ity and fault-tolerance. We initiate the study of the following question:

Is there a generic way to transform protocols in the LOCAL model to protocols
in the CONGEST model, without negatively affecting the round complexity,

fault-tolerance and other resources?

We give a positive answer to this question for protocols in which parties do not
have private inputs, without incurring any cost to the round complexity or the
resilience to errors. More details follow.

Our Model. In this work, our focus is on the synchronous, full information
model. Namely, we consider a distributed model in which n parties are trying
to perform a predefined task. Each party is equipped with a source of private
randomness and a unique ID. We assume the existence of a global counter which
synchronizes parties in between rounds, but the parties are asynchronous within
each round. The goal is to fulfill the task even in the presence of Byzantine faults.
In the full information model no restrictions are made on the computational
power of the faulty parties or the information available to them. Namely, the
faulty parties may be infinitely powerful, and we do not assume the existence of
private channels connecting pairs of honest parties.

We model faulty parties by a computationally unbounded adversary who
controls a subset of parties and whose aim is to bias the output of the protocol.
We assume that the adversary has access to the entire transcript of the protocol,
and once a party is corrupted, the adversary gains complete control over the
party and can send any messages on its behalf, and the messages can depend on
the entire transcript so far. In addition, we allow our adversary to be “rushing”,
i.e., it can schedule the delivery of the messages within each round. We consider
two classes of adversaries: static and adaptive. A static adversary is an adversary
that chooses which parties to corrupt ahead of time, before the protocol begins.
An adaptive adversary, on the other hand, is allowed to choose which parties to
corrupt adaptively in the course of the protocol as a function of the messages
seen so far.

1 We note that often the term CONGEST is a short-hand writing for CONGEST (B),
where B is a bandwidth constraint. In many cases, the convention is to set B to
be bounded by O(log n), where n is the number of parties. Here, we take a more
liberal interpretation, which allows for messages of size bounded by polylog(n) (see
e.g., [14]).

Compressing Communication in Distributed Protocols 469

The focus of this work, is on protocols in which parties do not have private
inputs. Many classical distributed tasks fall in this category, including collective
coin-flipping, leader election, selection and more.

A Concrete Motivation: Adaptively-Secure Coin-Flipping. An impor-
tant distributed task that was extensively studied in the full information model,
is that of collective coin-flipping. In this problem, a set of n parties use private
randomness and are required to generate a common random bit. The goal of the
parties is to jointly output a somewhat uniform bit even in the case that some
of the parties are faulty and controlled by a static (resp. adaptive) adversary
whose goal is to bias the output of the protocol in some direction.

This problem was first formulated and studied by Ben-Or and Linial [1]. In
the case of static adversaries, collective coin-flipping is well studied and almost
matching upper and lower bounds are known [2,13], whereas the case of adap-
tive adversaries has received much less attention. Ben-Or and Linial [1] showed
that the majority protocol (in which each party sends a uniformly random bit
and the output of the protocol is the majority of the bits sent) is resilient to
Θ(

√
n) adaptive corruptions. Furthermore, they conjectured that this protocol

is optimal, that is, they conjectured that any coin-flipping protocol is resilient
to at most O(

√
n) adaptive corruptions. Shortly afterwards, Lichtenstein, Linial

and Saks [8] proved the conjecture for protocols in which each party is allowed
to send only one bit. Very recently, Goldwasser, Kalai and Park [4] proved a
different special-case of the aforementioned conjecture: any symmetric (many-
bit) one-round collective coin-flipping protocol2 is resilient to at most Õ(

√
n)

adaptive corruptions. Despite all this effort, proving a general lower bound, or
constructing a collective coin-flipping protocol that is resilient to at least ω(

√
n)

adaptive corruptions, remains an intriguing open problem.
The result of [8] suggests that when seeking for a collective coin-flipping

protocol that is resilient to at least ω(
√

n) adaptive corruptions, to focus on
protocols that consist of many communication rounds, or protocols in which
parties send long messages. Our main result (Theorem 1) is that long messages
are not needed in adaptively secure coin-flipping protocols with poly(n) rounds,
and messages of length polylog(n) suffice. This is true more generally for leader
election protocols, and for selection protocols where the output comes from a
universe of size at most quasi-polynomial in n.

1.1 Our Results

Our main result is that “long” messages are not needed for distributed tasks
in which parties do not have private inputs. More specifically, we show how to
convert any n-party d-round protocol, where parties do not have private inputs,
and whose output comes from a universe of size M , into a d-round protocol,
with the same communication pattern, the same output distribution, the same
2 A symmetric protocol Π is one that is oblivious to the order of its inputs: namely,

for any permutation π : [n] → [n] of the parties, it holds that Π(r1, . . . , rn) =
Π(rπ(1), . . . , rπ(n)).

470 Y.T. Kalai and I. Komargodski

security guarantees, and where each message is of length polylog(M,n, d). Note
that for many well studied distributed tasks, such as coin-flipping, leader election,
and more, the output is from a universe of size at most poly(n), in which case our
result says that if we consider poly(n)-round protocols, then messages of length
polylog(n) suffice.

Our Results in More Detail. Formally, we say that a protocol Π, in which
parties do not have private inputs, is (t, δ, s)-statically (resp., adaptively) secure
if for any adversary A that statically (resp., adaptively) corrupts at most t = t(n)
parties, and any subset S of the output universe such that |S| = s, it holds that

∣
∣
∣Pr [Output of A(Π) ∈ S] − Pr [Output of Π ∈ S]

∣
∣
∣ ≤ δ,

where “Output of A(Π)” means the output of the protocol when executed in
the presence of the adversary A, “Output of Π” means the output of the pro-
tocol when executed honestly, and the probabilities are taken over the internal
randomness of the parties. In addition, we say that a protocol Π simulates a pro-
tocol Π ′ if the outcomes of the protocols are statistically close (when executed
honestly) and their communication patterns are the same.

Our main result is a generic communication compression theorem which,
roughly speaking, states that (t, δ, s)-statically (resp., adaptively) secure proto-
cols in the above model do not need “long” messages. Namely, we show that
any secure protocol which sends arbitrary long messages can be simulated by a
protocol which is almost as secure and sends short messages.

Theorem 1 (Main theorem – informal). Any (t, δ, s)-statically (resp., adap-
tively) secure d-round protocol that outputs m bits (or more generally, has an
output universe of size 2m), can be simulated by a d-round (t, δ′, s)-statically
(resp., adaptively) secure protocol, where δ′ = δ + negl(n), and in which parties
send random messages of length at most m · polylog(n, d).

Our results can also be seen as a transformation of protocols (in which parties
do not have private inputs) in the LOCAL model to protocols in the CONGEST
model, as discussed above. Our main theorem (Theorem 1) implies that any task,
whose output consists of at most polylog(n) bits, and in which parties do not
have private inputs, that can be solved in the LOCAL model with d ≤ poly(n)
rounds, can also be solved in the CONGEST model with d rounds.
Corollary 1. Any n-party (t, δ, s)-statically (resp., adaptively) secure
poly(n)-round protocol that outputs polylog(n) bits in the LOCAL model, can
be simulated by a (t, δ′, s)-statically (resp., adaptively) secure protocol in the
CONGEST model, where δ′ = δ + negl(n).

We emphasize that our results holds for any underlying communication pat-
tern including the broadcast channel or the message-passing model with any
underlying communication graph.

Finally, we note that the transformation in Theorem 1 preserves the com-
putational efficiency of the honest parties, but the resulting protocol is non-
uniform, even if the protocol we started with is uniform. We elaborate on this
in Section 1.3.

Compressing Communication in Distributed Protocols 471

1.2 Related Work

The resource of communication is central in several fields of computer science.
The field of communication complexity is devoted to the study of which problems
can be solved with as little communication as possible. We refer to the book of
Kushilevitz and Nisan [6] for an introduction to the field. In cryptography, min-
imizing communication has been the focus of several works in several contexts,
including private information retrieval [7], random access memory machines [9],
and more.

Interestingly, in the setting of distributed computing most of the work focuses
on optimizing other resources such as round complexity, fault-tolerance, and
the quality of the outcome. Very few works focus on optimizing the maximal
message length being sent during the protocols. Moreover, most of the work in
the literature focuses on static adversaries, and very few papers study distributed
protocols with respect to adaptive adversaries. Our results hold in both settings.

Finally, we mention that separations between the LOCAL and CONG-EST
models are known for general tasks. For example, for network graphs of diameter
D = Ω(log n), computing the minimum spanning tree (MST) in the LOCAL
model requires Θ(D) rounds, whereas in the CONGEST model every distributed
MST algorithm has round complexity Ω(D +

√
n/ log2 n) [12].

1.3 Overview of Our Techniques

In this section we provide a high-level overview of our main ideas and techniques.
First, we observe that one can assume, without loss of generality, that any pro-
tocol in which parties do not have private inputs, can be transformed into a
public-coin protocol, in which honest parties’ messages consist only of random
bits. This fact is a folklore, and for the sake of completeness we include a proof
sketch of it in Section 4.

Our main result is a generic transformation that converts any public-coin
protocol, in which parties send arbitrarily long messages, into a protocol in
which parties send messages of length m · polylog(n · d), where m is the number
of bits the protocol outputs, n is the number of parties participating in the
protocol, and d is the number of communication rounds. The resulting protocol
simulates the original protocol, has the same round complexity and satisfies the
same security guarantees. Next, we elaborate on how this transformation works.

Suppose for simplicity that in our underlying protocol each message sent is
of length L = L(n) (and thus the messages come from a universe of size 2L), and
think of L as being very large. We convert any such protocol into a new protocol
where each message consists of only � bits, where think of � as being significantly
smaller than L. This is done by a priori choosing 2� messages within the 2L-
size universe, and restricting the parties to send messages from this restricted
universe. Thus, now each message is of length �, which is supposedly significantly
smaller than L. We note that a similar approach was taken in [10] in the context
of transforming public randomness into private randomness in communication
complexity, in [3] to reduce the number of random bits needed for property

472 Y.T. Kalai and I. Komargodski

testers, and most recently in [4] to prove a lower bound for coin-flipping protocols
in the setting of strong adaptive adversaries.

A priori, it may seem that such an approach is doomed to fail, since by
restricting the honest parties to send messages from a small universe within the
large 2L-size universe, we give the adversary a significant amount of information
about future messages (especially in the multi-round case). Intuitively, the reason
security is not compromised is that there are many possible restrictions, and it
suffices to prove that a few (or only one) of these restrictions is secure. In other
words, very loosely speaking, since we believe that most of the bits sent by honest
parties are not “sensitive”, we believe that it is safe to post some information
about each message ahead of time.

For the sake of simplicity, in this overview we focus on static adversaries, and
to simplify matters even further, we assume the adversary always corrupts the
first t parties. This simplified setting already captures the high-level intuition
behind our security proof in Section 3.

Let us first consider one-round protocols. Note that for one-round protocols
restricting the message space of honest parties does not affect security at all
since we consider rushing adversaries, who may choose which messages to send
based on the content of the messages sent by all honest parties in that round.
Thus, reducing the length of messages is trivial in this case, assuming the set
of parties that the adversary corrupts is predetermined. We mention that even
in this extremely simplified setting, we need � to be linear in m for correctness
(“simulation”), i.e., in order to ensure that the output is distributed correctly.

Next, consider a multi-round protocol Π. We denote by H the restricted
message space, i.e., H is a subset of the message universe of size 2�, and denote
by ΠH the protocol Π, where the messages are restricted to the set H. Suppose
that for any set H there exists an adversary AH that biases the outcome of ΠH ,
say towards 0.3 We show that in this case there exists an adversary A in the
underlying protocol that biases the outcome towards 0. Loosely speaking, at each
step the adversary A will simulate one of the adversaries AH . More specifically,
at any point in the underlying protocol, the adversary will randomly choose a
set H such that the transcript so far is consistent with a run of protocol ΠH

with the adversary AH , and will simulate the adversary AH . The main difficulty
is to show that with high probability there exists such H (i.e., the remaining
set of consistent H’s is non-empty). This follows from a counting argument and
basic probability analysis.

In our actual construction, we have a distinct set H of size 2� corresponding to
each message of the protocol. Thus, if the underlying protocol Π has d rounds,
and all the parties send a message in each round, then the resulting (short-
message) protocol is associated with d ·n sets H1, . . . , Hd·n each of size 2�, where
the message of the jth party in the ith round is restricted to be in the set Hi,j .

We denote all these sets by a matrix H ∈ ({0, 1}L
)d·n×2�

, where the row (i, j)

3 Of course, it may be that for different sets H, the adversary AH biases the outcome
to a different value. For simplicity we assume here that all the adversaries bias the
outcome towards a fixed message, which we denote by 0.

Compressing Communication in Distributed Protocols 473

of H corresponds to the set of messages that the jth party can send during the
ith round.

Note that there are 2L·2�·d·n such matrices. Each time an honest party sends
a uniformly random message in Π it reduces the set of consistent matrices by
approximately a 2L-factor (with high probability). Any time the adversary A
sends a message, it also reduces the set of consistent matrices H, since his mes-
sage is consistent only with some of the adversaries AH , but again a probabilistic
argument can be used to claim that it does not reduce the set of matrices by too
much, and hence, with high probability there always exist matrices H that are
consistent with the transcript so far.

We briefly mention that the analysis in the case of adaptive corruptions
follows the same outline presented above. One complication is that the mere
decision of whether to corrupt or not reduces the set of consistent matrices H.
Nevertheless, we argue that many consistent matrices remain.

We emphasize that the above is an over-simplification of our ideas, and the
actual proof is more complex. We refer to Section 3 for more details.

2 Preliminaries

In this section we present the notation and basic definitions that are used in this
work. For an integer n ∈ N we denote by [n] the set {1, . . . , n}. For a distribution
X we denote by x ← X the process of sampling a value x from the distribution X.
Similarly, for a set X we denote by x ← X the process of sampling a value x from
the uniform distribution over X. Unless explicitly stated, we assume that the
underlying probability distribution in our equations is the uniform distribution
over the appropriate set. We let UL denote the uniform distribution over {0, 1}L.
We use log x to denote a logarithm in base 2.

A function negl : N → R is said to be negligible if for every constant c > 0
there exists an integer Nc such that negl(n) < n−c for all n > Nc.

The statistical distance between two random variables X and Y over a finite
domain Ω is defined as

SD(X,Y) � 1
2

∑

ω∈Ω

|Pr[X = ω] − Pr[Y = ω]| . (1)

The Model

The Communication Model and Distributed Tasks. We consider the syn-
chronous model where a set of n parties P1, . . . ,Pn run protocols. Each protocol
consists of rounds in which parties send messages. We assume the existence of
a global counter which synchronizes parties in between rounds (but they are
asynchronous within a round).

The focus of this work is on tasks where parties do not have any private
inputs. Examples of such tasks are coin-flipping protocols, leader election pro-
tocols, Byzantine agreement protocols, etc.

Throughout this paper, we restrict ourselves to public-coin protocols.

474 Y.T. Kalai and I. Komargodski

Definition 1 (Public-coin protocols). A protocol is public-coin if all honest
parties’ messages consist only of uniform random bits.

Jumping ahead, we consider adversaries in the full information model. In
Section 4 we argue that the restriction to public-coin protocols is without loss
of generality since in the full information model any protocol (in which parties
do not have private inputs) can be converted into a public-coin one, without
increasing the round complexity and without degrading security (though this
transformation may significantly increase the communication complexity).

The Adversarial Model. We consider the full information model where it is
assumed the adversary is all powerful, and may see the entire transcript of the
protocol. The most common adversarial model considered in the literature is the
Byzantine model, where a bound t = t(n) ≤ n is specified, and the adversary is
allowed to corrupt up to t parties. The adversary can see the entire transcript,
has full control over all the corrupted parties, and can send any messages on their
behalf. Moreover, the adversary has control over the order of the messages sent
within each round of the protocol.4 We focus on the Byzantine model throughout
this work.

Within this model, two types of adversaries were considered in the literature:
static adversaries, who need to specify the parties they corrupt before the pro-
tocol begins, and adaptive adversaries, who can corrupt the parties adaptively
based on the transcript so far. Our results hold for both types of adversaries.
Throughout this work, we focus on the adaptive setting, since the proof is more
complicated in this setting. In Subsection 3.1 we mention how to modify (and
simplify) the proof for the static setting.

Correctness and Security. For any protocol Π and any adversary A, we
denote by

out(AΠ | r1, . . . , rn)

the output of the protocol Π when executed with the adversary A, and where
each honest party Pi uses randomness ri.

Let Π be a protocol whose output is a string in {0, 1}m for some m ∈ N.
Loosely speaking, we say that an adversary is “successful” if he manages to bias
the output of the protocol to his advantage. More specifically, we say that an
adversary is “successful” if he chooses a predetermined subset M ⊆ {0, 1}m of
some size s, and succeeds in biasing the outcome towards the set M . To this
end, for any set size s, we define

succs(AΠ) def= max
M⊆{0,1}m s.t. |M |=s

succM (AΠ)

def= max
M⊆{0,1}m s.t. |M |=s

(

Pr
r1,...,rn

[out(AΠ | r1, . . . , rn) ∈ M] −

Pr
r1,...,rn

[outΠ(r1, . . . , rn) ∈ M]
)

,

4 Such an adversary is often referred to as “rushing”.

Compressing Communication in Distributed Protocols 475

where outΠ(r1, . . . , rn) denotes the outcome of the protocol Π if all the parties
are honest, and use randomness r1, . . . , rn.

Intuitively, the reason we parameterize over the set size s is that we may
hope for different values of succM (AΠ) for sets M of different sizes, since for
a large set M it is often the case that Prr1,...,rn [outΠ(r1, . . . , rn) ∈ M] is large,
and hence succM (AΠ) is inevitably small, whereas for small sets M the value
succM (AΠ) may be large.

For example, for coin-flipping protocols (where m = 1 and the outcome
is a uniformly random bit in the case that all parties are honest), often an
adversary is considered successful if it biases the outcome to his preferred bit
with probability close to 1, and hence an adversary is considered successful if
succM (AΠ) ≥ 1

2 − o(1) for either M = {0} or M = {1}, whereas for general
selection protocols (where m is a parameter) one often considers subsets M ⊆
{0, 1}m of size γ · 2m for some constant γ > 0, and an adversary is considered
successful if there exists a constant δ > 0 such that succM (AΠ) ≥ δ.

Definition 2 (Security). Fix any constant δ > 0, any t = t(n) ≤ n, and any
n-party protocol Π whose output is an element in {0, 1}m. Fix any s = s(m). We
say that Π is (t, δ, s)-adaptively secure if for any adversary A that adaptively
corrupts up to t = t(n) parties, it holds that

succs(AΠ) ≤ δ.

We note that this definition generalizes the standard security definition for coin-
flipping protocols and selection protocols. We emphasize that our results are
quite robust to the specific security definition that we consider, and we could have
used alternative definitions as well. Intuitively, the reason is that we show how
to transform any d-round protocol Π into another d-round protocol with short
messages, that simulates Π (see Definition 3 below), where this transformation is
independent of the security definition. Then, in order to prove that the resulting
protocol is as secure as the original protocol Π, we show that if there exists
an adversary for the short protocol that manages to break security according
to some definition, then there exists an adversary for Π that “simulates” the
adversary of the short protocol and breaches security in the same way. (See
Section 1.3 for more details, and Section 3 for the formal argument).

Finally, we mention that an analogous definition to Definition 2 can be given
for static adversaries. Our results hold for the static definition as well.

Definition 3 (Simulation). Let Π be an n-party protocol with outputs in
{0, 1}m. We say that an n-party protocol Π ′ simulates Π if

SD (outΠ , outΠ′) = negl(n),

where outΠ is a random variable that corresponds to the output of protocol Π
assuming all parties are honest, and outΠ′ is a random variable that corresponds
to the output of protocol Π ′ assuming all parties are honest.

476 Y.T. Kalai and I. Komargodski

3 Compressing Communication in Distributed Protocols

In this section we show how to transform any n-party d-round t-adaptively secure
public-coin protocol, that outputs messages of length m and sends messages of
length L, into an n-party d-round t-adaptively secure public-coin protocol in
which every party sends messages of length � = m · polylog(n, d).

Throughout this section, we fix μ∗ to be the negligible function defined by

μ∗ = μ∗(n, d) =
(√

ε + 1 − (1 − ε)dn
) · 2dn, (2)

and where ε = 2− log2(dn).

Theorem 2. Fix any m = m(n), d = d(n), L = L(n), and any n-party d-
round public-coin protocol Π that outputs messages in {0, 1}m and in which
all parties send messages of length L = L(n). Then, for any constant δ > 0,
any t = t(n) < n, and any s = s(m), if Π is (t, δ, s)-adaptively secure then
there exists an n-party d-round (t, δ′, s)-adaptively secure public-coin protocol,
that simulates Π, where all parties send messages of length � = m · log4(n · d),
and where δ′ ≤ δ + μ∗ (and μ∗ = μ∗(n, d) is the negligible function defined in
Equation (2)).

Proof. Fix any m = m(n), d = d(n), L = L(n), and any n-party d-round public-
coin protocol Π that outputs messages in {0, 1}m and in which all parties send
messages of length L = L(n). Fix any constant δ > 0, any t = t(n) < n, and
any s = s(m) such that Π is (t, δ, s)-adaptively secure. We start by describing
the construction of the (short message) protocol. Let

N = 2� = 2m·log4(n·d). (3)

Let
H = {H : [d · n] × {0, 1}� → {0, 1}L}

be the set all possible [d ·n]×{0, 1}� ≡ [d ·n]× [N] matrices, whose elements are
from {0, 1}L. Note that |H| = 2d·n·N ·L. We often interpret H : [d ·n]×{0, 1}� →
{0, 1}L as a function

H : [d] × [n] × {0, 1}� → {0, 1}L,

or as a matrix where each row is described by a pair from [d] × [n]. We abuse
notation and denote by

H(i, j, r) � H((i − 1)n + j, r).

As a convention, we denote by R a message from {0, 1}L and by r and a message
from {0, 1}�.

From now on, we assume for the sake of simplicity of notation, that in proto-
col Π, in each round, all the parties send a message. Recall that we also assume

Compressing Communication in Distributed Protocols 477

for the sake of simplicity (and without loss of generality) that Π is a public-
coin protocol (see Definition 1). For any H ∈ H we define a protocol ΠH that
simulates the execution of the protocol Π, as follows.

The Protocol ΠH . In the protocol ΠH , for every i ∈ [d] and j ∈ [n], in the ith

round, party Pj sends a random string ri,j ← {0, 1}�. We denote the resulting
transcript in round i by

TransH,i = (ri,1, . . . , ri,n) ∈ ({0, 1}�
)n

,

and denote the entire transcript by

TransH = (TransH,1 . . . ,TransH,d).

We abuse notation, and define for every round i ∈ [d],

H(TransH,i) = (H(i, 1, ri,1), . . . , H(i, n, ri,n)).

Similarly, we define

H(TransH) = (H(TransH,1) . . . , H(TransH,d)).

The outcome of protocol ΠH with transcript TransH is defined to be the outcome
of protocol Π with transcript H(TransH).

It is easy to see that the round complexity of ΠH (for every H ∈ H) is the
same as that of Π. Moreover, we note that with some complication in notation we
could have also preserved the exact communication pattern (instead of assuming
that in each round all parties send a message).

In order to prove Theorem 1 it suffices to prove the following two lemmas.

Lemma 1. There exists a subset H0 ⊆ H of size |H|
2 , such that for every matrix

H ∈ H0 it holds that ΠH is (t, δ′, s)-adaptively secure for δ′ = δ + μ∗, where μ∗

is the negligible function defined in Equation (2).

Lemma 2. There exists a negligible function μ = μ(n, d) such that,

Pr
H←H

[SD(outΠH
, outΠ) ≤ μ] ≥ 2

3
.

Indeed, given Lemmas 1 and 2, we obtain that there exists an H ∈ H such
that ΠH is (t, δ′, s)-adaptively secure and it simulates Π.

The proofs of Lemmas 1 and 2 can be found in the full version [5].

3.1 Static Adversaries

We note that Theorem 2 holds also for static adversary. For completeness, we
restate the theorem for static adversaries.

478 Y.T. Kalai and I. Komargodski

Theorem 3. Fix any m = m(n), d = d(n), L = L(n), and any n-party d-
round public-coin protocol Π that outputs messages in {0, 1}m and in which
all parties send messages of length L = L(n). Then, for any constant δ > 0,
any t = t(n) < n, and any s = s(m), if Π is (t, δ, s)-statically secure then
there exists an n-party d-round (t, δ′, s)-statically secure public-coin protocol that
simulates Π, where all parties send messages of length � = m · log4(n · d), and
where δ′ ≤ δ + μ∗ (where μ∗ = μ∗(n, d) is the negligible function defined in
Equation (2)).

The proof of Theorem 3 is almost identical to the proof of Theorem 2. An
outline is given in the full version [5].

4 Public-Coin Protocols

In this section we show how to convert any distributed protocol in which parties
do not have private inputs into a public-coin protocol.

Theorem 4. Every protocol Π in which parties do not have private inputs can
be transformed into a protocol Π ′ which simulates Π and such that the mes-
sages sent in Π ′ are uniformly random. Moreover, the protocol Π ′ preserves the
security of Π and its round complexity.

The proof sketch of this theorem can be found in the full version [5].

Acknowledgments. We thank Nancy Lynch, Merav Parter and David Peleg for help-
ful remarks and pointers. The second author thanks his advisor Moni Naor for his
continuous support.

References

1. Ben-Or, M., Linial, N.: Collective coin flipping, robust voting schemes and min-
ima of banzhaf values. In: 26th Annual Symposium on Foundations of Computer
Science, FOCS, pp. 408–416 (1985)

2. Feige, U.: Noncryptographic selection protocols. In: 40th Annual Symposium on
Foundations of Computer Science, FOCS, pp. 142–153 (1999)

3. Goldreich, O., Sheffet, O.: On the randomness complexity of property testing.
Computational Complexity 19(1), 99–133 (2010)

4. Goldwasser, S., Kalai, Y.T., Park, S.: Adaptively secure coin-flipping, revisited. In:
Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015.
LNCS, vol. 9135, pp. 663–674. Springer, Heidelberg (2015)

5. Kalai, Y.T., Komargodski, I.: Compressing communication in distributed proto-
cols. In: Electronic Colloquium on Computational Complexity (ECCC), vol. 22,
p. 92 (2015)

6. Kushilevitz, E., Nisan, N.: Communication complexity. Cambridge University Press
(1997)

7. Kushilevitz, E., Ostrovsky, R.: Replication is NOT needed: SINGLE database,
computationally-private information retrieval. In: 38th Annual Symposium on
Foundations of Computer Science, FOCS, pp. 364–373 (1997)

Compressing Communication in Distributed Protocols 479

8. Lichtenstein, D., Linial, N., Saks, M.E.: Some extremal problems arising form dis-
crete control processes. Combinatorica 9(3), 269–287 (1989)

9. Naor, M., Nissim, K.: Communication preserving protocols for secure function
evaluation. In: 33rd Annual ACM Symposium on Theory of Computing, STOC,
pp. 590–599 (2001)

10. Newman, I.: Private vs. common random bits in communication complexity. Inf.
Process. Lett. 39(2), 67–71 (1991)

11. Peleg, D.: Distributed Computing: A Locality-sensitive Approach. Society for
Industrial and Applied Mathematics (2000)

12. Peleg, D., Rubinovich, V.: A near-tight lower bound on the time complexity of
distributed minimum-weight spanning tree construction. SIAM J. Comput. 30(5),
1427–1442 (2000)

13. Russell, A., Saks, M.E., Zuckerman, D.: Lower bounds for leader election and
collective coin-flipping in the perfect information model. SIAM J. Comput. 31(6),
1645–1662 (2002)

14. Sarma, A.D., Molla, A.R., Pandurangan, G., Upfal, E.: Fast distributed pagerank
computation. Theor. Comput. Sci. 561, 113–121 (2015)

Privacy-Conscious Information Diffusion
in Social Networks

George Giakkoupis1, Rachid Guerraoui2, Arnaud Jégou1,
Anne-Marie Kermarrec1, and Nupur Mittal1(B)

1 INRIA, Rennes, France
{george.giakkoupis,arnaud.jegou,anne-marie.kermarrec,

nupur.mittal}@inria.fr
2 EPFL, Lausanne, Switzerland
rachid.guerraoui@eplf.ch

Abstract. We present Riposte, a distributed algorithm for dissemi-
nating information (ideas, news, opinions, or trends) in a social net-
work. Riposte ensures that information spreads widely if and only if a
large fraction of users find it interesting, and this is done in a “privacy-
conscious” manner, namely without revealing the opinion of any individ-
ual user. Whenever an information item is received by a user, Riposte
decides to either forward the item to all the user’s neighbors, or not to
forward it to anyone. The decision is randomized and is based on the
user’s (private) opinion on the item, as well as on an upper bound s
on the number of user’s neighbors that have not received the item yet.
In short, if the user likes the item, Riposte forwards it with probability
slightly larger than 1/s, and if not, the item is forwarded with probability
slightly smaller than 1/s. Using a comparison to branching processes, we
show for a general family of random directed graphs with arbitrary out-
degree sequences, that if the information item appeals to a sufficiently
large (constant) fraction of users, then the item spreads to a constant
fraction of the network; while if fewer users like it, the dissemination
process dies out quickly. In addition, we provide extensive experimental
evaluation of Riposte on topologies taken from online social networks,
including Twitter and Facebook.

1 Introduction

Social networking websites have become an important medium for communi-
cating and disseminating news, ideas, political opinions, trends, and behaviors.
Such online networks typically provide a reposting functionality, e.g., sharing
in Facebook or retweeting in Twitter, which allows users to share other’s posts
with their own friends and followers. As information is reposted from user to
user, large cascades of reposts can develop, and an information item can poten-
tially reach a large number of people, much larger than the number of users
exposed to the information initially (e.g., the users who witness a news event,
or learned about it from some local media). Since people tend to propagate
c© Springer-Verlag Berlin Heidelberg 2015
Y. Moses (Ed.): DISC 2015, LNCS 9363, pp. 480–496, 2015.
DOI: 10.1007/978-3-662-48653-5 32

Privacy-Conscious Information Diffusion in Social Networks 481

information which they find interesting and worth sharing (rather than random
content) [21], an information item may spread widely only if sufficiently many
users find it interesting. Ideally, the opposite direction should also hold: content
that a sufficiently large fraction of users would find interesting and would propa-
gate (if they knew about it), should be likely to spread widely. This is, however,
not always the case.

In countries with authoritarian regimes, users may not propagate anti-
government ideas for the fear of being prosecuted. There are in fact several
examples of political activists (and others) that have been convicted for posting
or just reposting anti-government opinions on social media [24,26]. But even
in democratic regimes, users may refrain from openly supporting their opinion
on certain sensitive issues, from politics and religion to sexuality and criminal
activity. For example, a user may not propagate a post supporting recreational
drug use for the fear that it may have a negative impact on his career—as it is
a common practice of employers to use social media for screening prospective
employees [14]. Or more generally, users may refrain from reposting a (political
or other) opinion when they believe it is not widely shared by their cycle—a
well known principle in sociology known as the “spiral of silence” [23]. In all
these cases, the dissemination of an idea in the social network is impeded by
privacy considerations; even if many users support the idea, they may choose
not to contribute to its propagation because they do not wish to reveal their
own opinion (as reposting the idea would suggest the user is in favor of it).

Our Contribution: Privacy-Conscious Diffusion. We investigate a dissem-
ination algorithm that has, roughly speaking, the following properties: (1) infor-
mation that a sufficiently large fraction of the population finds interesting is
likely to spread widely; (2) information that not sufficiently many people find
interesting does not spread far beyond the set of users exposed to it initially;
and (3) by observing the spreading process (in particular, the users’ reposts),
one cannot determine (with sufficient confidence) the opinion of any single user
on the information that is disseminated.

More specifically, we propose the following simple, local dissemination algo-
rithm, which we call Riposte. Let G denote the (directed) graph modeling the
social network, and n be the total number of users, and suppose that some
(small) initial set of users learn an information item t. For each user u that
learns t, Riposte decides to either repost t, to all u’s outgoing neighbors in G,
or to not repost t, to anyone. The decision is randomized and depends on the
user’s (private) opinion on the information, and the number of the user’s neigh-
bors that have not received the information yet. Precisely, if u likes t, then t is
reposted with probability λ/su, and if u does not like t, then t is reposted with
a (smaller) probability δ/su, where 0 < δ < 1 < λ are global parameters of the
dissemination mechanism, and su is an upper bound on the number of u’s outgo-
ing neighbors that have not received t yet. If the algorithm cannot have access

482 G. Giakkoupis et al.

to information about whether u’s neighbors already know the information, then
the total number of u’s outgoing neighbors can be used as the upper bound su.1

We argue that Riposte achieves the property of plausible deniability : A user
u can claim that, with reasonable probability, the act of reposting (or not) some
information, does not reflect u’s truthful opinion on the information, and is a result
of the randomness in the decision mechanism. Intuitively, the closer the parame-
ters λ and δ are to each other, the better the privacy. In the extreme case of λ = δ,
we have perfect privacy, but then the dissemination is independent of u’s opinion
(and thus of how interesting the information is). In the other extreme, if λ is the
maximum degree and δ = 0 (i.e., the user reposts the information iff it likes it),
the act of reposting (or not) the information reveals with certainty u’s opinion.
We formally quantify the privacy properties of Riposte in terms of ε-differential
privacy. In particular, we argue that Riposte is ln(λ/δ)-differentially private.

For the dissemination of information, we prove the following threshold behav-
ior. Suppose that each user likes a given item t with probability pt, independently
of the other users (pt is the same for all users and depends only on t). Thus pt is a
measure of how interesting item t is, and is equal to the expected fraction of users
that like t. Let S denote the set of users who receive item t initially (e.g., these
users receive the information from a news channel). We show that if pt < p∗, for
p∗ = (1−δ)/(λ−δ), then the expected number of users that learn the information
is O(|S|), i.e., at most a constant factor larger than the users exposed to the infor-
mation initially. This is true for any graph G. On the other hand, we show that the
following statement holds for a G from a family of random directed graphs with
arbitrary out-degree distribution [6]. (Such a graph could, for example, model the
Twitter network). If pt > p∗, then for a random initial set S, information t spreads
to Θ(n) users (i.e., at least some constant fraction of the network), with probabil-
ity 1−eΩ(|S|/d), where d denotes the average degree of G. In particular, this result
says that information spreads to Θ(n) users with constant probability when |S| is
close to the average degree, and with high probability if |S| is log n times larger
than the average degree. The analysis draws from the theory of branching pro-
cesses [3], and the intuition is simple: Basic computations yield that the expected
number of users that a given user passes the information to, is less than 1 when
pt < p∗, and greater than 1 if pt > p∗. The threshold phenomenon we observe
follows then from a similar phenomenon in branching processes. We note that the
result for pt > p∗ does not hold for arbitrary graphs. However, we expect that it
should hold for many graph families, of sufficiently high expansion.

We complement our analysis with extensive experimental results. We use a
complete snapshot of the Twitter graph of roughly 40 million users from 2009, and
smaller samples from other social networks, including Facebook and LiveJournal.
The experiments demonstrate clearly the predicted threshold phenomenon, with

1 Riposte can be viewed as a set of distributed pieces of software running at each
user’s machine connected to the social network. It is not the user who has the control
of whether the item will be eventually reposted or not but this piece of software. It
solicits the user’s opinion on the item, and then flips a coin to determine whether
the information will be reposted.

Privacy-Conscious Information Diffusion in Social Networks 483

very limited spread below the p∗ threshold, and substantial spread above p∗. The
latter suggests that our result for pt > p∗ should qualitatively hold for a larger
family of networks than the stylized model analysed formally. We also experiment
with non-uniform distributions of user opinions, where users closer to the source
users are more likely to like the information, obtaining qualitatively similar results.
Experiments suggest that reasonable values for Riposte’s parameters in the net-
works considered are δ = 0.75 and λ = 3. For these values, the plausible deniabil-
ity achieved ensures that, for example, if the prior probability for a user to like the
information is 0.01 or 0.1, and the user reposts the information, then the proba-
bility increases to 0.04 and 0.3 respectively (see Sect. 2.1 for details).

We view the results of this paper as potentially useful for addressing some
of the increasing concerns about users’ privacy in social networking services. In
particular, we think that Riposte could be of interest as a tool for spreading
information and petitions in Internet-based activism, a topic of considerable cur-
rent interest [10,12]. More generally, it is a tool that could be used for widespread
dissemination of sensitive information, which people would care to be exposed
to, but are not willing to disseminate themselves for the fear of being charged,
stigmatized, or isolated. We believe that such a tool could be incorporated in
existing social network services. Also our technique could find applications to
other distributed problems, such as distributed polling algorithms.

Related Work. Riposte uses a technique that is conceptually similar to the
randomized response technique (RRT). RRT was first introduced in 1965 [27]
for survey interviews, to increase the validity of responses to sensitive questions.
Roughly, the idea is to tell responder to lie with some fixed, predetermined,
probability plie (e.g., roll a die and lie whenever the die shows one or two, in
which case plie = 1/3).2 Since plie is known to the interviewer, the distribu-
tion of responders’ truthful answer can be easily estimated, and thus, accurate
estimations of aggregate results can be extracted—but an individual’s answer
is always plausibly deniable. (See [5] for other variations of RRT, and [2] for a
variant using cryptography to guarantee that the responder follows the RRT.)
In our diffusion mechanism, the same probability of reposting could be achieved
using the following RRT-like approach: User u is asked if she likes the post, but
is instructed to lie with probability plie = δ/(δ + λ); and if the answer is ‘yes’
then the post is reposted with probability (δ + λ)/su.

We are not aware of other works that use randomized responses in a way
similar to ours: to achieve dissemination that reflects user’s aggregate opinion,
while preserving the privacy of individual users’ opinion. In a more standard
use of RRT, Quercia et al. [25] proposed a method to aggregate location data
of mobile phone users by having each user report several erroneous locations in
addition to the correct one. Recently, Erlingsson et al. [11] presented an RRT-
based algorithm for crowdsourcing of population statistics from end-user client
software, deployed on Google’s Chrome Web browser.

2 The closer is plie to 1/2 the better the privacy.

484 G. Giakkoupis et al.

Another mechanism provided by social networking services, besides repost-
ing, which has the potential to make interesting posts widely visible is that of
liking. This mechanism has similar privacy issues as reposting. In [1], Alves et al.
proposed a scheme to anonymize user’s likes, which keeps the actual like count of
a post without revealing the names of the users who like it. Unlike our approach,
the scheme employs cryptographic techniques to achieve privacy, and requires a
centralized server (but the server does not know the users’ opinion).

We have said that our diffusion scheme could provide a tool for Internet-
based activism [10,12]. The use of pseudonyms, combined with methods for
hiding the user’s IP, has also been a common practice used by activists to hide
their identity while spreading sensitive information [29]. Our scheme protects the
users who contribute to the dissemination of information, but not the sources
of the information. This is not a problem in some settings, for example, if we
assume that anti-government information originates from a news channel (say,
WikiLeaks) located in a different country. If this is not the case, then pseudonyms
could be used to protect the privacy of the source.

We measure the privacy properties of our diffusion scheme in terms of
differential privacy [8,9]. Differential privacy was introduced in the context of
privacy-preserving analysis of statistical databases. Roughly speaking, differen-
tial privacy ensures that (almost, and quantifiably) no risk is incurred by joining
a statistical database. More relevant to our setting is the local model of differen-
tial privacy [17], also known as fully distributed model. In this model, there is no
central database administrator of private data; each individual maintains their
own data element (a database of size 1), and answers questions about it only
in a differentially private manner. The local privacy model was first introduced
in the context of learning, where it was shown that private learning in the local
model is equivalent to non-private learning in the statistical query model [15,17].

2 The Diffusion Algorithm

In this section, we describe our diffusion mechanism for disseminating informa-
tion in an online social network, and provide an analysis of its properties.

We model the social network as a directed graph G = (V,E) with |V | = n
nodes. Each node u ∈ V represents a user (from now on we will use the terms
node and user interchangeably), and a directed edge from node u to v denotes
that user u can send information to v. For example, for the case of the Twitter
social network, an edge (u, v) ∈ E in the underlying graph G denotes that user
v is “following” u. Borrowing Twitter’s parlance, in this paper, we will say that
v is a follower of u if (u, v) ∈ E. The number of u’s followers is thus the same
as u’s out-degree.

We assume that initially a set of users S ⊆ V learns an information item (from
a source external to the network). From each user that learns the information,
this information can be reposted to all its followers. (So, information can either be
sent to all followers of the user, or to none.) We propose a randomized distributed
algorithm, running locally at each user (i.e., at the user’s device connected to

Privacy-Conscious Information Diffusion in Social Networks 485

the social network service), which decides whether or not to repost the received
information; we call this algorithm Riposte.

Riposte takes as input the opinion of the user on the information item, i.e.,
if the user likes or does not like the information, and the algorithm’s effect is
to either repost the information or not. Riposte’ decision depends on: (1) the
user’s opinion, (2) an upper bound on the number of the user’s followers that have
not received the information yet, and (3) two global parameters of the protocol
(the same for all users), denoted δ and λ; both parameters are non-negative real
numbers satisfying δ < 1 and λ > 1. As explained later, these parameters control
the privacy properties of the protocol, and influence the dissemination.

Riposte Algorithm: For each new information item received by user u, if u
has k followers and s ≤ k is an estimate bounding from above the number of u’s
followers that have not received the item yet, then:
if u likes the item, the algorithm reposts the item with probability

rlike(s) :=

{
λ/s, if s ≥ λ + δ,

1 − δ(s−δ)
λs , if 0 < s < λ + δ;

if u does not like the item, it is reposted with probability rdis(s) := δ/s (if s > 0).

It is easy to verify that rdis(s) ≤ rlike(s), for all s, i.e., the probability of
reposting is larger when u likes the item. Also, the closer are δ and λ to each
other, the closer are the two probabilities rdis and rlike.

The definition of rlike(s) for the case of s < λ + δ will be justified when
we analyse the privacy of the protocol. Until then we can assume the following
simpler definition for all s > 0: rlike(s) := min{λ/s, 1}.

Riposte needs to know an upper bound on the number of the user’s followers
who have not yet received the item. This information is readily available in some
existing social network services, including Twitter, where the default setting is
that a user can access the list of items each of its followers has received. If this
information is not available, then the total number of followers k of the user can
be used as the upper bound s. For the analysis and the experimental evaluation,
we will make use also of that special variant of Riposte, where s = k.

DB-Riposte Algorithm (Degree-Based-Riposte): This algorithm is a spe-
cial instance of Riposte, where the total number of followers k of user u is used
as the upper bound s on the number of u’s followers who have not already
received the information.

An attractive analytical property of DB-Riposte is that the outcome of the
dissemination does not depend on the order in which the algorithm is executed
at different users, unlike in the general Riposte algorithm. For our analysis of
Riposte we assume that the order can be arbitrary.

We stress that Riposte does not reveal any information on the value of its
input (the user’s private opinion), other than the statistical information inferred

486 G. Giakkoupis et al.

by the outcome of the algorithm, to repost or not. Also, the user cannot prevent
the algorithm from reposting the information, even if she does not like the infor-
mation. In particular, if the user refuses to answer whether she likes an item
or not, this is interpreted as a negative answer by the algorithm (the user has
an incentive to answer positively if she likes the item, as this would potentially
result in larger spread).

We now analyze the properties of Riposte, regarding privacy and the spread
of information.

2.1 Privacy

Riposte achieves the property of plausible deniability : A user can claim that,
with reasonable probability, the act of reposting (or not) an information, does
not reflect the user’s truthful opinion on the information, and is a result of the
randomness in the algorithm.

The standard notion used to quantify plausible deniability is that of dif-
ferential privacy [9]. We recall now the definition of an ε-differentially private
algorithm. Let A be a randomized algorithm with input a collection of values,
x1, . . . , xm, that returns a value from some domain R. Since the algorithm is
randomized, for a fixed input x1, . . . , xm, its output A(x1, . . . , xm) is a random
variable, with some distribution over R. Suppose that the input to A is not known
to us (is private), and by observing the output of A we want to find out the value
of some of the inputs. More generally, we may have some information about the
input, i.e., a distribution over the possible combinations of input values, and
we want, by observing A’s output, to improve this information, i.e., obtain a
distribution closer to the true input values. We can quantify the extent to which
this is possible in terms of ε-differential privacy: algorithm A is ε-differentially
private if changing exactly one of it inputs x1, . . . , xm changes the distribution
of the output by at most an eε factor.

Definition 1 (ε-differential privacy). A randomized algorithm A with inputs
x1, . . . , xm from some finite domain and output A(x1, . . . , xm) on some domain
R, is ε-differentially private if for any two sets of inputs x1, . . . , xm and
x′
1, . . . , x

′
m that differ in exactly one value, and for any set of outputs Q ⊆ R,

Pr
(
A(x1, . . . , xm) ∈ Q

) ≤ eε · Pr
(
A(x′

1, . . . x
′
m) ∈ Q

)
.

In our setting, algorithm A is Riposte, which takes a single binary input:
the opinion of the user, and has a binary output: repost or not-repost.

Theorem 2. Riposte is ε-differentially private for ε = ln(λ/δ).

The proof is a straightforward application of the definitions, and can be found
in the full version of the paper [13].

Theorem 2 implies that the closer is the ratio λ/δ to 1, the better the achieved
privacy. In particular, if δ = λ we have perfect privacy, as the probability of

Privacy-Conscious Information Diffusion in Social Networks 487

reposting does not depend on the user’s opinion—but this is not desirable from
a dissemination point of view.

We discuss now what Theorem 2 implies about the information one can gain
for the opinion of a user on some information item it receives, by observing
whether or not the item was reposted from that user.

Let q be the (prior) probability that the user likes the information, capturing
the knowledge of an observer about the user’s opinion before the observer sees
whether or not this information is reposted from the user. Then from Theorem 2
it follows that the probability q̂ with which the observer believes that the user
likes the information, after the observer learns whether or not there was a repost,
satisfies the inequalities

q

q + (1 − q)(λ/δ)
≤ q̂ ≤ q

q + (1 − q)(δ/λ)
. (1)

(The proof is by Bayes’ Rule.) For the typical parameter values δ = 3/4 and
λ = 3 we use later in the experimental evaluation, Ineq. (1) yield, e.g., that if
q = 0.01 then 0.0025 < q̂ < 0.039; if q = 0.1 then 0.027 < q̂ < 0.31; and if
q = 0.9 then 0.69 < q̂ < 0.97.

Above we have considered the amount of information leaked when observing
the cascade of a single information item. However, if one can observe the cascades
of a sufficiently large number of sufficiently similar items, possibly over a long
period, then more information can potentially be leaked about the opinion of a
user on this type of information. We leave as a future work the study of such
correlation attacks.

2.2 Dissemination

In terms of dissemination, the goal of Riposte is that the fraction of users
receiving an information item should reflect the users’ overall opinion on the
item. In particular, information that a large fraction of users like should, typ-
ically, be received by a lot of users, while less interesting information should
not be received by many users. In the following, we quantify the notions of
interesting/not-interesting information by defining a popularity threshold, and
we provide bounds on the spread of popular items (with popularity above this
threshold) and unpopular items (with popularity below the threshold).

For the analysis, we make the assumption that all users are equally likely to
like a given item, independently of their position in the network and the opinion
of other users.

Definition 3 (Uniform opinion model & popularity). Each item t is asso-
ciated with a probability pt, called the popularity of t, and for each user u, the
probability that u likes t is equal to pt and independent of the other users’ opinion
about t.

We note that popularity pt is also equal to the expected fraction of users that
like t. An item’s popularity is not known in advance by the diffusion protocol.

488 G. Giakkoupis et al.

We define the popularity threshold p∗ as follows. Suppose that user u receives
an item with popularity p. Since u has probability p of liking the item in the
uniform model, the probability that Riposte reposts the item, if s > 0, is
p ·rlike(s)+(1−p) ·rdis(s). If s ≥ λ+δ, this probability is p ·(λ/s)+(1−p) ·(δ/s).
Moreover, if s is the exact number of u’s followers that have not received the
item yet, then the expected number of new users that learn the item from u is s
times that, i.e., pλ+(1−p)δ. The popularity threshold p∗ is then the probability
p for which this expectation is equal to 1.

Definition 4 (Popular/Unpopular items). For given λ and δ, we define the
popularity threshold p∗ := 1−δ

λ−δ , and we call an information item t popular if its
popularity is pt > p∗, and unpopular if pt < p∗.3

Next we establish an upper bound on the spread of unpopular items, and a
lower bound on the spread of popular items.

We first argue that the expected number of users who receive a given unpop-
ular item is by at most a constant factor larger that the number of user |S| who
receive the item initially (e.g., from a source external to the network). The con-
stant factor depends on the popularity of the item and parameters δ and λ. This
bound holds for any network G, assuming the uniform opinion model. Recall
that an item is unpopular if its popularity is smaller than p∗ = (1 − δ)/(λ − δ).

Theorem 5 (Spread of unpopular items). For any G, and under the uni-
form opinion model, Riposte guarantees that an item with popularity p < p∗

starting from any set S of users is received by an expected total number of at
most |S|/β users, where β = (p∗ − p)(λ − δ).

The proof of Theorem 5, which can be found in the full version of the
paper [13], is based on the fact that the expected number of new users that
learn the item from a given user that knows the item is smaller than one.

Observe that as p approaches the popularity threshold p∗, factor β decreases,
and thus the bound on the expected spread increases. Further, substituting the
definition of p∗ gives β = 1 − δ − p(λ − δ), which implies that increasing either
λ or δ increases the expected spread. These observations are consistent with the
intuition.

Next we consider the spread of popular items. We focus on a particular fam-
ily of random directed graphs which is convenient for our analysis, but is also
a reasonable model of some social network graphs, such as the Twitter graph,
characterized by large variation in the nodes’ out-degree (i.e., the number of
followers) and small variation in the nodes’ in-degree. This model is a simplifi-
cation of one considered in [6], and has a single parameter, a distribution φ on
the nodes’ out-degree.

3 For the asymptotic bounds we show later, we assume for a popular item t that
pt > p∗ + ε, and for an unpopular item t that pt < p∗ − ε, for some arbitrary small
constant ε > 0.

Privacy-Conscious Information Diffusion in Social Networks 489

Definition 6 (Random graph Gφ). For any probability distribution φ on the
set {0, . . . , n − 1}, Gφ is an n-node random directed graph such that the out-
degrees of nodes are independent random variables with the same distribution φ,
and for each node u, if u has out-degree k, then the set of u’s outgoing neighbors
is a uniformly random set among all k-sets of nodes not containing u.

We establish a lower bound on the probability of a popular item to be received
by a constant fraction of users in Gφ, for an arbitrary distribution φ (under a mild
constraint on the min out-degree). The above probability and the fraction size
grow respectively with the number σ = |S| of source nodes, and the popularity
p of the item. In particular, the probability converges to 1 for σ larger than the
average node degree μ.

Theorem 7 (Spread of popular items). Let φ be any probability distribution
on the set {�λ + δ�, . . . , n − 1}, let ε, ε′ > 0 be arbitrary small constants, and
1 ≤ σ ≤ n be an integer. Any information item with popularity p ≥ p∗ + ε, that
starts from a random initial set of σ nodes and spreads in Gφ using Riposte,
is received by at least (1 − ε′) · βn

β+1 users, with probability at least 1 − e−Ω(σ/μ),
where β = (p − p∗)(λ − δ) and μ is the mean of distribution φ.

Observe that the same constant β = |p − p∗| · (λ − δ) appears in both The-
orems 5 and 7. Unlike the bound of Theorem 5, the bound of (1 − ε′) · βn

β+1 in
Theorem 7 is independent of the number σ = |S| of source nodes; substituting
the definitions of β and p∗, yields β

β+1 = 1 − 1
pλ+(1−p)δ , thus the bound above

increases when any of λ, δ, or p increases. The independence from σ is intuitively
justified, because as long as the item reaches a “critical mass” of users, it will
almost surely spread to a constant fraction of the network. However, the prob-
ability with which such a critical mass will be reached does depend on σ. For σ
close to the average degree μ, this probability is at least a constant, and quickly
converges to 1 as σ/μ increases above 1.

The proof of Theorem 7 uses a coupling between the dissemination process
and an appropriate branching process, to show that the probability of the event
we are interested in, that at least a certain fraction of users receive the item,
is lower-bounded by the survival probability of the branching process. Then we
bound this survival probability using a basic result for branching processes.

Proof of Theorem 7. It suffices to prove the claim for DB-Riposte. The
reasons is that the reposting probabilities rlike(s) and rdis(s) are minimized when
s equals the number k of the user’s followers, and thus a standard coupling
argument shows that the number of users that receive the item if DB-Riposte
is used is dominated stochastically by the same quantity when Riposte is used.

We couple the diffusion process in Gφ with an appropriate branching process.
Recall that a (Galton-Watson) branching process is a random process starting
with one or more individuals, and in each step of the process a single individual
produces zero of more offsprings and then dies. The number of offsprings of an
individual follows a fixed probability distribution, the same for all individuals.

490 G. Giakkoupis et al.

The process either finishes after a finite number of steps, when no individuals are
left, or continues forever. The probabilities of these two complementary events
are called extinction and survival probability, respectively.

First we compute the distribution of the number of new users that learn the
item from a user u, at a point in time when fewer than
 users in total have
received the item—we will fix the value of
 later. The probability that u has
exactly i followers is φ(i), for i ∈ {�λ + δ�, . . . , n − 1} (and 0 for other i). Given
that u has i followers, the probability that DB-Riposte reposts the item from
u is (pλ + (1 − p)δ)/i = (β + 1)/i. Further, by the principle of deferred decision,
we can assume that if the item is reposted from u, only then are u’s i followers
chosen. We can also assume that they are chosen sequentially, one after the
other, and the item is sent to a follower before the next follower is chosen (this
does not change the overall outcome of the dissemination). Then the probability
that the j-th follower of u has not already received the item is at least 1 −
/n,
provided that at most
 users already know the item (including the first j − 1
followers of u).

Consider now the branching process in which σ individuals exist initially,
and the number X of offsprings of an individual is determined as follows. First
an integer i is drawn from distribution φ; then with probability 1− (β + 1)/i we
have X = 0 offspring, and with the remaining probability, (β + 1)/i, we draw
X’s value from the binomial distribution B(i, q), for q := 1 −
/n (this is the
distribution of the number of successes among i independent identical trials with
success probability q).

We use a simple coupling of the diffusion process with the branching process
above, until the point when
 users have received the item or the dissemina-
tion has finished (whichever occurs first). We assume that the diffusion process
evolves in steps, and each step involves the execution of the DB-Riposte algo-
rithm at a single node. Similarly a step in the branching process is that a single
individual reproduces and then dies. Let Nt denote the number of new users
that learn the item in step t of the diffusion process, and let Xt be the number
of offsprings born in step t of the branching process. From our discussion above
on the distribution of Nt and from the definition of the distribution of Xt ∼ X,
it follows that we can couple Nt and Xt such that Nt ≥ Xt if no more than

users in total have received the item in the first t steps.

From this coupling, it is immediate that the probability at least
 users receive
the item in total, is lower-bounded by the probability that the total progeny of
the branching process (i.e., the total number of individuals that ever existed)
is at least
. Further, the latter probability is lower bounded by the survival
probability of the branching process; we denote this survival probability by ζσ.
Thus to prove the theorem it suffices to show

ζσ = 1 − e−Ω(σ/μ),

for
 := (1 − ε′) · βn/(β + 1). The remainder of the proof is devoted to that.

Privacy-Conscious Information Diffusion in Social Networks 491

By the definition of the branching process, the expected number of offsprings
of an individual is

E[X] =
∑

i

φ(i) · β + 1
i

· E[B(i, q)]

=
∑

i

φ(i) · β + 1
i

· iq =
∑

i

φ(i) · (β + 1) · q = (β + 1) · q.

We observe that E[X] > 1, as

(β + 1) · q = (β + 1) ·
(

1 − (1 − ε′)β
β + 1

)

= 1 + ε′β. (2)

Further,

E[X2] =
∑

i

φ(i) · β + 1
i

· E[(B(i, q))2] =
∑

i

φ(i) · β + 1
i

· (i2q2 + iq(1 − q))

=
∑

i

φ(i) · (β + 1) · (iq2 + q(1 − q)) = (β + 1) · (μq2 + q(1 − q)),

where μ =
∑

i φ(i) · i is the mean of φ. We will use the following standard lower
bound on the survival probability ζ1, when there is just one individual initially
(see, e.g., [16, Sect. 5.6.1]),

ζ1 ≥ 2(E[X] − 1)
E[X2] − E[X]

.

Substituting the values for E[X] and E[X2] computed above yields

ζ1 ≥ 2(q(β + 1) − 1)
(β + 1)(μq2 + q(1 − q)) − q(β + 1)

=
2(q(β + 1) − 1)
q2(β + 1)(μ − 1)

=
2(q(β + 1) − 1)(β + 1)

q2(β + 1)2(μ − 1)
(2)
=

2ε′β(β + 1)
(1 + ε′β)2(μ − 1)

= Ω(1/μ),

where the final equation holds because β = (p − p∗)(λ − δ) ≥ ε(λ − δ) = Ω(1).
We can now express ζσ in terms of ζ1, by observing that a branching pro-

cess starting with σ individuals can be viewed as σ independent copies of the
branching process starting with a single individual each.4 The former branching
process survives if and only if at least one of the latter ones survives, thus,

ζσ = 1 − (1 − ζ1)σ ≥ 1 − e−ζ1σ = 1 − e−Ω(σ/μ).

This completes the proof of Theorem 7. 	

4 This is true for any branching process, and does not relate to the original diffusion
process.

492 G. Giakkoupis et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

F
ra

ct
io

n
of

 in
fo

rm
ed

 u
se

rs

Popularity of item

Riposte, λ=3, δ=0.75

p*

Renren
LiveJournal
Facebook
Google+
Twitter

Fig. 1. Dissemination for Riposte
as a function of the item popularity.

Table 1. Network topologies used in
the experiments. By avg-deg we denote
the average degree of the network.

Network Nodes Edges Avg-deg Source

Twitter 41.65M 1468M 35.2 [18]
LiveJournal 4.847M 68.99M 14.2 [4,19]
Facebook 3.097M 23.66M 15.3 [28]
Renren 965.3K 57.56M 59.6 [7]
Google+ 107.6K 13.67M 127 [20]

3 Experiments

In this section we provide experimental evaluation of the dissemination achieved
by Riposte on some real topologies of online social networks. The results are
surprisingly consistent with our analysis, even though some of the analytical
results were proven only for an ideal random graph model.

Datasets. We use the network topologies listed in Table 1. The Twitter dataset
is a complete snapshot of the network from 2009 [18], while the other datasets
are partial network samples. Twitter is a micro-blogging network service, Live-
Journal is a blogging network site, while Facebook, Renren, and Google+ are
online social networking sites. In each of these networks, every user maintains a
list of friends, and/or a list of users she follows. The friendship relation is typ-
ically reciprocal, whereas the follower relation is not; the former is represented
as an undirected edge, and the latter as a directed. In Twitter, LiveJournal and
Google+ edges are directed, while in Renren and Facebook undirected.

Setup. We consider the following protocols: (1) Riposte, with exact informa-
tion on the number of non-informed followers, i.e., s is the actual number of
the user’s followers that do not know the item yet—not just an upper bound;
(2) DB-Riposte, where no information about the followers status is available,
and thus s is the total number of followers; (3) the basic non privacy-conscious
protocol where a user reposts an item if she likes it and does not repost it if she
does not like it; we refer to this as the Standard protocol.

While datasets on social network topologies are publicly available, access
to user’s activity, including the list of items they post, receive, like or repost, is
severely restricted. Therefore, for our evaluation we rely on two synthetic models
to generate users’ opinions: (i) the uniform opinion model, where every item is
assigned a popularity p ∈ [0, 1], and each user likes the item independently with
probability p—this is the same model used in the analysis (see Definition 3); and
(ii) the distance-threshold opinion model, where a user likes the item precisely if
the (shortest-path) distance from a source to the user is at most some threshold
h. The latter model is motivated by the principle that users close to each other
tend to have similar opinions [22].

Privacy-Conscious Information Diffusion in Social Networks 493

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

F
ra

ct
io

n
of

 in
fo

rm
ed

 u
se

rs

Popularity of item

Twitter, λ=3, δ=0.75

p*

Standard
Riposte
DB-Riposte
β / (β + 1)

 1

 10

 100

 0.02 0.04 0.06 0.08 0.1

in

fo
rm

ed
 u

se
rs

 /

so
ur

ce
s

Popularity of item

Twitter, λ=3, δ=0.75

p*

Riposte
DB-Riposte
1/β

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5

F
ra

ct
io

n
of

 in
fo

rm
ed

 u
se

rs

Parameter h of the distance-threshold model

Twitter, λ=3, δ=0.75

Standard
Riposte
DB-Riposte
Interested users

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

F
ra

ct
io

n
of

 in
fo

rm
ed

 u
se

rs

Popularity of item

LiveJournal, λ=3, δ=0.75

p*

Standard
Riposte
DB-Riposte
β / (β + 1)

(a)

 1

 10

 100

 0.02 0.04 0.06 0.08 0.1

in
fo

rm
ed

 u
se

rs
 /

so

ur
ce

s
Popularity of item

LiveJournal, λ=3, δ=0.75

p*

Riposte
DB-Riposte
1/β

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6

F
ra

ct
io

n
of

 in
fo

rm
ed

 u
se

rs

Parameter h of the distance-threshold model

LiveJournal, λ=3, δ=0.75

Standard
Riposte
DB-Riposte
Interested users

(c)

Fig. 2. Dissemination in Twitter (top) and LiveJournal (bottom). (a) Comparison with
Standard and the β/(β +1) lower bound of Theorem 7. (b) Comparison with the 1/β
upper bound of Theorem 5 for unpopular items. (c) Distance-threshold model (all users
within distance h from the source, and only them, like the item).

In all experiments, we choose the set S of users who know the item initially to
be the followers of a random user, among all users with at least μ followers, where
μ is the average degree. We think that this is more realistic than choosing an
arbitrary or random set S: It is often the case that the source of the information
(e.g., a news channel) is itself a node in the online social network; then the
followers of that node constitute the set S of nodes exposed to the information
initially. For each point in the plots we present, we average the results over
10,000 random independent experiments, with a new random set S each time.
For the Riposte algorithm, where the dissemination may depend on the order
in which the protocol is executed at different users, we experimented with both
breadth-first and depth-first orders, obtaining very similar results.

Results. Fig. 1 shows the average number of users that receive the item when
using Riposte, as a function of the item popularity, for all networks (for param-
eters λ = 3 and δ = 0.75). In all cases, unpopular items (with popularity p below
the threshold p∗ identified by our analysis) have very limited spread, while pop-
ular items (with p > p∗) spread to a fraction of the networks that grows quickly
with p. Due to space limitations, in the following we present results only for
Twitter and LiveJournal; the results for the other three datasets are qualita-
tively similar and can be found in the full version [13].

Fig. 2a compares the dissemination using Riposte to that of DB-Riposte
and Standard, and also to the lower bound for the spread of popular items
predicted by Theorem 7. As expected, DB-Riposte informs fewer users than
Riposte but has overall qualitatively similar behaviour. Standard achieves
significantly wider dissemination, even for items with very low popularity, which
may be undesirable. The β/(1−β) bound of Theorem 7 is relatively close to the
curve for Riposte (slightly above it in the case of Twitter and intersecting it in
the case of LiveJournal). This lower bound was derived for an idealized random

494 G. Giakkoupis et al.

graph model, so it is reasonable that it does not apply exactly to the real topolo-
gies considered. On the other hand, the 1/β upper bound for unpopular items
of Theorem 5 holds for any graph, and Fig. 2b shows that it indeed bounds the
dissemination with Riposte in both Twitter and LiveJournal. Finally, Fig. 2c
presents the same results as Fig. 2a but for the distance-threshold opinion model.
We observe that Riposte achieves spread to a fraction of users that is relatively
close to the fraction of users that like the item. As before, Standard may spread
the item to a fraction significantly larger than the fraction that likes the item, in
particular, for items that not many users like. Additional experimental results
can be found in the full version of the paper [13].

4 Conclusion

We have presented a simple and local diffusion mechanism for social networks,
which guarantees widespread dissemination of interesting but possibly sensi-
tive information, in a privacy-conscious manner. The mechanism randomizes
the user’s action of reposting (or not) the information, in a way reminiscent
of the randomized response technique, and chooses the probabilities so that a
branching-process-like phenomenon takes place: if more than a certain fraction
of people like the information then a large cascade of reposts is formed, and if
fewer people like it then the diffusion process dies quickly. We believe this mech-
anism to be relevant as a tool for internet-based activism, and more generally for
promoting free speech. We also think that our techniques could find applications
to other distributed problems, such as distributed polling.

References

1. Alves, P., Ferreira, P.: AnonyLikes: anonymous quantitative feedback on social
networks. In: Eyers, D., Schwan, K. (eds.) Middleware 2013. LNCS, vol. 8275,
pp. 466–484. Springer, Heidelberg (2013)

2. Ambainis, A., Jakobsson, M., Lipmaa, H.: Cryptographic randomized response
techniques. In: 7th International Workshop on Theory and Practice in Public Key
Cryptography (PKC), pp. 425–438 (2004)

3. Athreya, K.B., Ney, P.E.: Branching processes. Springer (1972)
4. Backstrom, L., Huttenlocher, D., Kleinberg, J., Lan, X.: Group formation in large

social networks: Membership, growth, and evolution. In: 12th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining (KDD), pp. 44–54
(2006)

5. Chaudhuri, A.: Randomized response and indirect questioning techniques in sur-
veys. CRC Press (2010)

6. Chen, N., Olvera-Cravioto, M.: Directed random graphs with given degree distri-
butions. Stochastic Systems 3(1), 147–186 (2013)

7. Ding, C., Chen, Y., Fu, X.: Crowd crawling: Towards collaborative data collection
for large-scale online social networks. In: 1st ACM Conference on Online Social
Networks (COSN), pp. 183–188 (2013)

Privacy-Conscious Information Diffusion in Social Networks 495

8. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in
private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 265–284. Springer, Heidelberg (2006)

9. Dwork, C., Roth, A.: The algorithmic foundations of differential privacy. Founda-
tions and Trends in Theoretical Computer Science 9(3–4), 211–407 (2014)

10. Earl, J.: The dynamics of protest-related diffusion on the web. Information, Com-
munication & Society 13(2), 209–225 (2010)

11. Erlingsson, Ú., Pihur, V., Korolova, A.: RAPPOR: Randomized aggregatable
privacy-preserving ordinal response. In: ACM Conference on Computer and Com-
munications Security (CCS), pp. 1054–1067 (2014)

12. Garrett, K.: Protest in an information society: A review of literature on social
movements and new icts. Information, Communication & Society 9(02), 202–224
(2006)

13. Giakkoupis, G., Guerraoui, R., Jégou, A., Kermarrec, A.-M., Mittal, N.: Privacy-
conscious information diffusion in social networks. Technical report, INRIA Rennes
- Bretagne Atlantique, August 2015. https://hal.archives-ouvertes.fr/hal-01184246

14. Grasz, J.: Forty-five percent of employers use social networking sites to research
job candidates, CareerBuilder survey finds. CareerBuilder Press Releases, August
2009. http://www.careerbuilder.com/share/aboutus/pressreleasesdetail.aspx?
id=pr519&sd=8%2f19%2f2009&ed=12%2f31%2f2009&siteid=cbpr&sc cmp1=cb
pr519

15. Gupta, A., Hardt, M., Roth, A., Ullman, J.: Privately releasing conjunctions and
the statistical query barrier. SIAM Journal on Computing 42(4), 1494–1520 (2013)

16. Haccou, P., Jagers, P., Vatutin, V.A.: Branching processes: Variation, growth, and
extinction of populations. Cambridge Univ. Press (2005)

17. Kasiviswanathan, S.P., Lee, H.K., Nissim, K., Raskhodnikova, S., Smith, A.: What
can we learn privately? SIAM Journal of Computing 40(3), 793–826 (2011)

18. Kwak, H., Lee, C., Park, H., Moon, S.: What is Twitter, a social network or a
news media? In: 19th International Conference on World Wide Web (WWW),
pp. 591–600 (2010)

19. Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Community structure in
large networks: Natural cluster sizes and the absence of large well-defined clusters.
Internet Mathematics 6(1), 29–123 (2009)

20. Leskovec, J., Mcauley, J.J.: Learning to discover social circles in ego networks. In:
Advances in Neural Information Processing Systems (NIPS), pp. 539–547 (2012)

21. Macskassy, S.A., Michelson, M.: Why do people retweet? Anti-homophily wins
the day! In: 5th International Conference on Weblogs and Social Media (ICWSM)
(2011)

22. McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a feather: Homophily in
social networks. Annual Review of Sociology 27, 415–444 (2001)

23. Noelle-Neumann, E.: The spiral of silence a theory of public opinion. Journal of
Communication 24(2), 43–51 (1974)

24. NPR news In South Korea, old law leads to new crackdown, December 2011.
http://www.npr.org/2011/12/01/142998183/in-south-korea-old-law-leads-to-
new-crackdown

25. Quercia, D., Leontiadis, I., McNamara, L., Mascolo, C., Crowcroft, J.: SpotME
if you can: Randomized responses for location obfuscation on mobile phones. In:
31st IEEE International Conference on Distributed Computing Systems (ICDCS),
pp. 363–372 (2011)

https://hal.archives-ouvertes.fr/hal-01184246
http://www.careerbuilder.com/share/aboutus/pressreleasesdetail.aspx?id=pr519&sd=8%2f19%2f2009&ed=12%2f31%2f2009&siteid=cbpr&sc_cmp1=cb_pr519_
http://www.careerbuilder.com/share/aboutus/pressreleasesdetail.aspx?id=pr519&sd=8%2f19%2f2009&ed=12%2f31%2f2009&siteid=cbpr&sc_cmp1=cb_pr519_
http://www.careerbuilder.com/share/aboutus/pressreleasesdetail.aspx?id=pr519&sd=8%2f19%2f2009&ed=12%2f31%2f2009&siteid=cbpr&sc_cmp1=cb_pr519_
http://www.npr.org/2011/12/01/142998183/in-south-korea-old-law-leads-to-new-crackdown
http://www.npr.org/2011/12/01/142998183/in-south-korea-old-law-leads-to-new-crackdown

496 G. Giakkoupis et al.

26. TIME magazine. Indian women arrested over facebook post, November 2012. http://
newsfeed.time.com/2012/11/19/indian-woman-arrested-over-facebook-like/

27. Warner, S.L.: Randomized response: A survey technique for eliminating evasive
answer bias. Journal of the American Statistical Association 60(309), 63–69 (1965)

28. Wilson, C., Boe, B., Sala, A., Puttaswamy, K.P., Zhao, B.Y.: User interactions in
social networks and their implications. In: EuroSys, pp. 205–218 (2009)

29. Wulf, V., Misaki, K., Atam, M., Randall, D., Rohde, M.: ‘On the ground’ in Sidi
Bouzid: Investigating social media use during the tunisian revolution. In: 16th ACM
Conference on Computer Supported Cooperative Work (CSCW), pp. 1409–1418
(2013)

http://newsfeed.time.com/2012/11/19/indian-woman-arrested-over-facebook-like/
http://newsfeed.time.com/2012/11/19/indian-woman-arrested-over-facebook-like/

Fair Distributed Computation
of Reactive Functions

Juan Garay1, Björn Tackmann2(B), and Vassilis Zikas3

1 Yahoo Labs, Sunnyvale, CA, USA
garay@yahoo-inc.com

2 Computer Science and Engineering, UC San Diego, San Diego, CA, USA
btackmann@eng.ucsd.edu

3 Department of Computer Science, ETH Zurich, Zurich, Switzerland
vzikas@inf.ethz.ch

Abstract. A fair distributed protocol ensures that dishonest parties
have no advantage over honest parties in learning their protocol’s output.
What makes fairness a particularly intriguing research topic is Cleve’s
seminal result [STOC’86], which proved that fairness is impossible to
achieve in the presence of dishonest majorities and ignited a quest for
more relaxed, yet meaningful definitions of fairness. A common pattern
in existing works, however, is that they only treat the case of non-
reactive computation—i.e., distributed computation of “one-shot” (state-
less) functions, in which parties give all inputs strictly before any output
is computed. Yet, many natural cryptographic tasks are of a reactive
(stateful) nature.

In this work, we introduce the first notion of fairness tailored to
reactive distributed computation, which can be realized in the presence
of dishonest majorities. Our definition builds on the recently suggested
utility-based fairness notion (for non-reactive functions) by Garay et
al. [PODC’15], which, informally, measures the protocol’s fairness by
means of the utility of an adversary who aims to break it As in the
[PODC’15] work, our approach enjoys the advantage of offering a com-
parative notion, inducing a partial order on protocols with respect to
fairness.

We investigate protocols that restrict the adversary’s utility and pro-
vide, for each choice of parameters specifying this utility, a protocol for
fair and reactive two-party computation, which is optimal for a (natural)
range of parameters. Our study shows that achieving fairness in the reac-
tive setting is more complex than in the much-studied case of one-shot
functions, as increasing the number of rounds used for reconstructing the
output can lead to improved fairness, and the minimal required number
of rounds depends on the exact values of the adversary’s utility.

The full version of this paper can be found in [13].
B. Tackmann—Research done in part while at ETH Zurich, and partly supported by
the SNF through Fellowship no. P2EZP2-155566 and by NSF grant CNS-1228890.
V. Zikas—Research supported in part by the SNF through Ambizione grant
PZ00P-2142549

c© Springer-Verlag Berlin Heidelberg 2015
Y. Moses (Ed.): DISC 2015, LNCS 9363, pp. 497–512, 2015.
DOI: 10.1007/978-3-662-48653-5 33

498 J. Garay et al.

Keywords: Cryptographic protocols · Secure multi-party computation ·
Fairness · Game theory

1 Introduction

In secure multi-party computation (MPC) [14,19], a set of n parties wish to
perform some joint computation on their inputs in a secure manner, despite the
arbitrary behavior of some of them. The basic security requirements are privacy
(cheating parties learn only their output of the computation) and correctness
(cheaters cannot distort the outcome of the computation). An additional desired
property is fairness, which, roughly speaking, requires that the protocol does not
give a cheating party any advantage in learning the output of the computation
over the honest parties.

In traditional cryptographic definitions, the worst-case scenario of collabora-
tive cheating is captured by the notion of a (central) adversary. Informally, the
adversary is an entity which takes control of (“corrupts”) parties and then uses
them to attack the computation. Unfortunately, an early impossibility result by
Cleve [8] established that with such an adversary it is impossible to achieve all
three properties—correctness, privacy and fairness—simultaneously, unless there
is a majority of honest (i.e., uncorrupted) parties.

Following Cleve’s impossibility, much work has focused on achieving mean-
ingful weaker notions of fairness. One main example of this are gradual release-
type approaches [2,4,5,9,12,18], in which parties take turns in releasing bits of
information. More recently, Asharov et al. [1] suggested a definition of fairness
for the case of two parties using ideas from so-called “rational cryptography,”
where all the protocol participants are modeled as rational players aiming to
maximize a given utility function, and presented a gradual-release-based proto-
col satisfying their definition. This rational model for fairness was later enhanced
and extended in various ways (e.g., arbitrary instead of fail-stop misbehavior,
ideal-world/real-world definition) by Groce and Katz [16].

All of these weaker notions of fairness, however, are formalized in an “all-
or-nothing” manner, in the sense that either a protocol achieves the respective
security definition, or the notion renders the protocol unfair and makes no fur-
ther statement about it. For example, this is the case for resource fairness [12],
which formalizes the intuition of the gradual release paradigm [2,4,5,9,18] in a
simulation-based framework. Indeed, a resource-fair protocol should ensure that,
upon abort by the adversary, the amount of computation that the honest party
needs for producing the output is comparable to the adversary’s for the same
task; yet, a protocol that achieves a worse ratio between the amount of work
required by the honest party and the adversary is not distinguished from a fully
unfair one. The same holds for the above fairness definitions in rational cryptog-
raphy, which require the protocol to be an equilibrium strategy with respect to
a preference/utility function for curious-but-exclusive agents, where each agent
prefers learning the output to not learning it, but would rather be the only
one that learns it. We remark, though, that some of these frameworks do offer

Fair Distributed Computation of Reactive Functions 499

completeness results, in the sense that they show that one can construct proto-
cols that are fair in the respective notions; nevertheless, none of them provides
a comparative statement for protocols which do not fully satisfy their property.

Recent work by Garay et al. [11] introduced a quantitative approach to fair-
ness, based on the idea that one can use an appropriate utility function to
express the preferences of an adversary who wants to break fairness.1 The app-
roach allows for comparing protocols with respect to how fair they are, placing
them in a partial order according to a relative-fairness relation. Previously,
the only other notion providing any sort of comparative statement was that of
1/p-security (aka. “partial fairness”) [3,15], where security is given up with prob-
ability 1/p for some polynomial p, but which does not always guarantee privacy
and correctness (see [11] for a detailed comparison).

Technically, the approach of [11] builds on machinery developed in the recently
proposed Rational Protocol Design (RPD) framework of Garay et al. [10]. In more
detail, the framework describes how to design protocols which keep the utility
of an attacker aiming at provoking certain security breaches as low as possible.
At a high level, this is then used as follows: first, one specifies the class of utility
functions that naturally capture an adversary attacking a protocol’s fairness, and
then one interprets the actual utility that the best attacker (i.e., the one maxi-
mizing its utility) obtains against a given protocol as a measure of the protocol’s
success in satisfying the property. The more a protocol limits its best attacker
with respect to the fairness-specific utility function, the fairer the protocol is. We
remark that, in addition, this quantitative fairness approach preserves the com-
posability of the underlying security model (such as when using, e.g., [6,7]) with
respect to standard secure protocols, in the sense that it allows the replacement
of an ideal component (a “hybrid” or ideal functionality in the language of [7])
in a fair/optimal protocol by a protocol which securely implements it without
affecting its fairness/optimality.

Our Contributions. We present the first notion of fairness tailored to reactive
distributed computation, where parties provide inputs and receive outputs mul-
tiple times during the course of the computation; the notion can be realized in
the presence of dishonest majorities.

We specify the utility function characterizing the incentives of an attacker
who aims at breaking fairness of a two-party MPC protocol, deriving the natu-
ral quantitative notions of fairness and of protocol optimality. However, and as
expected, formulation and analysis are quite more complex here than in the non-
reactive case [11], where for example the honest parties can simply restart the
protocol after an “early abort” where no party received outputs, using default
inputs for the parties that caused the abort. In contrast, in the reactive case
earlier rounds in the computation may already have leaked information to the
adversary, which makes a restart potentially unsafe. As a result, the protocol
we present bounds the adversary’s utility by the maximum of two terms, one of
which is the same as in the non-reactive case and corresponds to the adversary’s
1 This approach is incomparable to the one in rational cryptography, as the honest

parties are not rational and follow whichever protocol is designed for them.

500 J. Garay et al.

strategy of aborting right after obtaining its output, and the other one stems
from the potential “early aborts” and depends on the number of rounds used
in the reconstruction of the protocol output as well as the exact values of the
adversary’s utility.

We then derive lower bounds, showing the protocol optimally fair for a natu-
ral class of parameter values—at a high level, those expressing that the adversary
prefers that the honest party does not get the output, to the extent that he is
willing to have negative utility when all parties receive the output (otherwise pre-
vious results apply), but only up to a point, after which the adversary’s aversion
toward giving the output to the honest parties is so large that he will abort any
protocol prematurely. Besides being optimally fair, the protocol is also optimal
with respect to the number of reconstruction rounds. For the remaining values,
the lower bound we derive is close to the bound achieved by our protocol but
not tight; we leave the closing of this gap as an open problem.

Organization of the Paper. The remainder of the paper is organized as
follows. In Section 2 we describe notation and the very basics of the RPD
framework [10] that are needed for understanding and evaluating our results.
In Section 3 we define the utility function of attackers who aim at violating fair-
ness, which enables the relative assessment of protocols as well as the notions
of “optimal” fairness which we use in this work. This section is a generalization
of the approach in [11] to the reactive computation case. Section 4 is dedi-
cated to the fair reactive protocol, starting with a general outline in Section 4.1,
and Section 4.2 explaining the protocol in detail; lower bounds are shown in
Section 4.3.

2 Preliminaries and Model

We first establish some notational conventions. For an integer m ∈ N, the set
of positive numbers smaller or equal to m is [m] := {1, . . . , m}. In the context
of two-party protocols, we will always refer to the parties as p1 and p2, and for
i ∈ {1, 2} the symbol ¬i refers to the value 3 − i (so p¬i �= pi). Most statements
in this paper are actually asymptotic with respect to an (often implicit) security
parameter k ∈ N. Hence, f ≤ g means that ∃k0 ∀k ≥ k0 : f(k) ≤ g(k), and a
function μ : N → R is negligible if for all polynomials p, μ ≤ 1/p, and noticeable
if there exists a polynomial p with μ ≥ 1/p. We further introduce the symbol

f
negl≈ g to denote that ∃ negligible μ : |f − g| ≤ μ, and f

negl≥ g to denote

∃ negligible μ : f ≥ g − μ, with
negl≤ defined analogously.

For the model of computation and protocol composition, we follow Canetti’s
adaptive simulation-based model for multi-party computation [6]. The protocol
execution is formalized by collections of interactive Turing machines (ITMs); the
set of all efficient ITMs is denoted by ITM. We generally denote our protocols
by Π and our (ideal) functionalities (which are also referred to as the trusted
party [6]) by F both with descriptive super- or subscripts, the adversary by A,
the simulator (aka the ideal-world adversary) by S, and the environment by Z.

Fair Distributed Computation of Reactive Functions 501

The random variable ensemble {execΠ,A,Z(k, z)}k∈N,z∈{0,1}∗ , which is more
compactly often written as execΠ,A,Z , describes the contents of Z’s output
tape after an execution with Π, F, and A, on auxiliary input z ∈ {0, 1}∗.

Secure Computation of Reactive Functions. The framework in [6] considers
synchronous protocols with guaranteed termination and allows for sequential and
modular composition, but lacks a formal definition of computation of reactive
functions.2 We describe here the real-world/ideal-world experiments for reactive
functions based on the model with adaptive adversaries [6, Sect. 5]. Although we
will be designing protocols only for two-party computation (2PC), since this is
the first formal treatment of the reactive setting with respect to fairness, we pro-
vide definitions for the more general case of n parties. The resulting model allows
for modular composition in a similar sense as in [6]: in each round of a protocol,
the parties can make use of a sub-protocol computing another functionality. For
the reduction to work, it is important that the higher-level protocol does not
continue—apart from interacting with the sub-protocol—until the sub-protocol
has terminated.

As discussed in [17], reactive computation can be seen as an ordered sequence
of computations of non-reactive functions that can maintain a joint (private)
state. More concretely, reactive computation is specified by a vector of (proba-
bilistic) functions f = (f1, . . . , fm), where each fλ ∈ f takes as input a vector
of values from {0, 1}∗ ∪ {⊥} (corresponding to the parties inputs to fλ), a uni-
formly random value r from a known domain R (corresponding to the random
coins used for evaluating fλ), and a state vector Sλ ∈ (({0, 1}∗∪{⊥})n×R)(λ−1),
which includes the inputs and random coins used for the evaluation of functions
f1, . . . , fλ−1. Each fλ ∈ f outputs a vector of strings yλ = (y1,λ, . . . , yn,λ) ∈
{0, 1}n, where yi,λ is pi’s output.

The Ideal Process. At a high level, execution in the ideal world is similar to the
corresponding experiment in [6], but instead of a single function, the trusted
third party (TTP, or “functionality”) Ff

rc is parameterized by the vector f =
(f1, . . . , fm) of functions to be sequentially evaluated, with each of these func-
tions receiving as input the state vector (consisting of all inputs received so far
as well as the used randomness) along with parties’ inputs to the function which
is currently computed. The output of the computation is taken to be the vector
of outputs of all functions in f .

The ability to maintain a joint state, however, is not the only difference
between reactive and non-reactive computation. Rather, we need to ensure that
parties be able to choose their input for any fλ, λ ∈ [m], depending on inputs
and outputs from the evaluation of f1, . . . , fλ−1. Thus, we cannot fix the input
sequence of the parties at the beginning of the protocol execution as is the
case with the ideal-evaluation experiment of non-reactive functions. Instead, we
assume that every party pi ∈ P gives as input to the trusted party a sequence

2 Our definitions can be extended to Universally Composable (UC) security [7] using
the approach of Katz et al. [17] to model terminating synchronous (reactive) com-
putation in UC.

502 J. Garay et al.

of m input-deciding functions Inpi
1, . . . , Inpm

i , where for each λ ∈ [m], Inpλ
i :

(({0, 1}∗)λ−1)2 → {0, 1}∗ is a function that on input the inputs and outputs from
the evaluation of functions f1, . . . , fλ−1 computes the input for the evaluation of
fλ. (Without loss of generality, assume that pi’s input to f1 is Inp1

i (0, 0).) Unlike
the parties, the simulator is allowed to to choose his inputs during his ongoing
interaction with the TTP.

The Real-World Execution. The real-world experiment in analogous to the corre-
sponding experiment in [6], where the input of each party pi is his input-deciding
function vector Inpi

1, . . . , Inpm
i .

Rational Protocol Design. Our results utilize the Rational Protocol Design
(RPD) framework [10]. Here we review the basic elements that are needed to
motivate and express our definitions and results; we refer to the framework
paper [10] for further details. In RPD, security is defined via a two-party sequen-
tial zero-sum game with perfect information, called the attack game, between a
protocol designer D and an attacker A. The designer D plays first by specifying
a protocol Π for the (honest) participants to run; subsequently, the attacker A,
who is informed about D’s move (i.e., learns the protocol) plays by specify-
ing a polynomial-time attack strategy A by which it may corrupt parties and
try to subvert the execution of the protocol (uncorrupted parties follow Π as
prescribed). It suffices to define the utility uA of the adversary as the game is
zero-sum; the utility uD of the designer is then −uA.

In RPD, the definition of utilities relies on the simulation paradigm3, with
the caveat that the real-world execution is compared to an ideal process in which
S gets to interact with a relaxed version of the functionality which, in addition
to implementing the task as F would, also allows the simulator to perform the
attacks we are interested in capturing. For example, an attack to the protocol’s
correctness is modeled by the functionality allowing the simulator to modify the
outputs (even of honest parties). Given such a functionality, the utility of any
given adversary is defined as the expected utility of the best simulator for this
adversary, where the simulator’s utility is defined according to which weaknesses
of the ideal functionality the simulator is forced to exploit.

3 Utility-Based Fairness and Protocol Optimality

In this section, we utilize the RPD machinery to introduce a natural fairness rela-
tion (partial order) to the space of efficient protocols for secure reactive two-party
computation (2PC) and define maximal elements in this order to be optimal
protocols with respect to fairness. Towards that goal, we follow the three-step
process described in [10,11] for specifying an adversary’s utility, instantiating
this process with parameters that capture a fairness-targeted attacker.

3 In RPD the statements are formalized in Canetti’s Universal Composition (UC)
framework [7]; however, one can use any other simulation-based model, in particular
the one in [6] described above.

Fair Distributed Computation of Reactive Functions 503

Step 1: Relaxing the Ideal Experiment to Allow Attacks on Fairness.
First, we relax the ideal world to allow the simulator to perform fairness-related
attacks. In particular, we consider the ideal-world experiment for reactive MPC
described in Sect. 2 but modify it to allow the simulator S to (1) refuse receiving
his inputs from the functionality and/or (2) refuse the functionality to deliver
outputs to the parties (i.e., instruct it to abort); analogously to [11], the simulator
is allowed to choose when to abort, i.e., before or after receiving his inputs if
he chooses to. The reactive MPC ideal functionality is parameterized by the
(sequence of) functions f = (f1, . . . , fm) as described in Sect. 2 and is denoted
Ff ,⊥

rc (or simply F⊥
rc if the function sequence is clear from the context). We

point out that when F ·,⊥
rc is parameterized with a single function (as in Ff,⊥

rc)
then it corresponds to the standard SFE functionality Ff,⊥

sfe (i.e., computation
of non-reactive functions) with unfair abort as in [11].

Step 2: Events and Payoffs. Next, we specify a set of events in the experiment
corresponding to the ideal evaluation of F⊥

rc which capture whether or not a
fairness breach occurs, and assign to each such event a “payoff” value capturing
the severity of provoking the event. The relevant questions to ask with respect
to fairness are:

1. Does the adversary learn “noticeable” information about the output of the
corrupted parties?

2. Do honest parties learn their output?

In comparison to the non-reactive case, there are a priori different ways to define
the events, based on whether one asks for the adversary to receive any output
or all the outputs. Since the reactive computation proceeds round by round, a
natural choice is to ask for the honest parties to receive all outputs, or otherwise
to ask for the adversary to also not receive information about some output. The
corresponding events (which we use to describe fairness) correspond to the four
possible combinations of answers to the above questions. In particular, we define
the events indexed by a string ij ∈ {0, 1}2, where i (resp., j) equals 1 if the
answer to the first (resp., second) question is yes and 0 otherwise. The events
are then as follows:

ER
00: The simulator does not ask Ff,⊥

rc for the all of the corrupted party’s outputs
and instructs Ff,⊥

rc to abort. This corresponds to neither the honest party
nor the adversary receiving all their outputs.

ER
01: The simulator does not ask Ff,⊥

rc for all of the corrupted party’s outputs
and does not instruct it to abort. This corresponds to the honest party
receiving all its outputs and the adversary not receiving some of its outputs.
This accounts also for the case where no party is corrupted.

ER
10: The simulator asks Ff,⊥

rc for all his outputs and instructs it to abort before
the honest party receives all its outputs. This corresponds to the adversary
receiving all its outputs and the honest party not receiving some of its out-
puts.

504 J. Garay et al.

ER
11: The simulator asks the functionality for all his outputs, and allows the

honest party to receive all its outputs (i.e., it does not abort). This accounts
also for the case where all parties are corrupted.

We remark that our definition does not give full advantage to an adversary
corrupting both parties. This is consistent with the intuitive notion of fairness,
as when there is no honest party, the adversary has nobody to gain an unfair
advantage over.

To each of the events ER
ij we associate a real-valued payoff γij which captures

the adversary’s utility when provoking this event. Thus, the adversary’s payoff is
specified by vector γ = (γ00, γ01, γ10, γ11) ∈ R

4, corresponding to events ER =
(ER

00, E
R
01, E

R
10, E

R
11).

Finally, we define the expected payoff of a given simulator S (for an environ-
ment Z) to be4:

U
F⊥

rc ,γ
I (S,Z) :=

∑

i,j∈{0,1}
γij Pr[ER

ij]. (1)

Step 3: Defining the Attacker’s Utility. Given U
F⊥

rc ,γ
I (S,Z), the utility

uA(Π,A) for a pair (Π,A) of a protocol Π and an adversary A is defined following
the methodology in [10] as the expected payoff of the best simulator5 that simu-
lates A in the F⊥

rc-ideal world in presence of the least favorable environment—
i.e., the one that is most favorable to the attacker. To make the payoff vector γ

explicit, we sometimes denote the above utility as ÛΠ,F⊥
rc ,γ(A) and refer to it as

the payoff of strategy A (for attacking Π).
More formally, for a protocol Π, denote by SIMA the class of simulators for A,

i.e, SIMA = {S ∈ ITM | ∀Z : execΠ,A,Z ≈ execF⊥
rc ,S,Z}. The payoff of strategy

A (for attacking Π) is then defined as:

uA(Π,A) := ÛΠ,F⊥
rc ,γ(A) := sup

Z∈ITM

inf
S∈SIMA

{UF⊥
rc ,γ

I (S,Z)}. (2)

To complete our formulation, we now describe a natural relation among the
values in γ which is both intuitive and consistent with existing approaches to
fairness, and which we will assume to hold for the remainder of the paper.
Specifically, we will consider attackers whose least preferred event is that the
honest parties receive their output while the attacker does not, i.e., we assume
that γ01 = minγ∈γ{γ}. Furthermore, we will assume that the attacker’s favorite
choice is that he receives the output and the honest parties do not, i.e., γ10 =
maxij∈{0,1}2{γij}. Lastly, we point out that for an arbitrary payoff vector γ,
one can assume without loss of generality that any one of its values equals zero,
and, therefore, we can set γ00 = 0. This can be seen immediately by setting
γ′

ij = γij − γ01. We denote the set of all payoff vectors adhering to the above

4 Refer to [10, Sect. 2] for the rationale behind this formulation.
5 The best simulator is taken to be the one that minimizes his payoff [10].

Fair Distributed Computation of Reactive Functions 505

restrictions by Γfair ⊆ R
4. Summarizing, our fairness-specific payoff (“prefer-

ence”) vector γ satisfies

0 = γ01 ≤ min{γ00, γ11} and max{γ00, γ11} < γ10.

Optimally Fair Protocols. We are now ready to define our partial order rela-
tion for protocols with respect to fairness. Informally, a protocol Π will be at
least as fair as another protocol Π′ if the utility of the best adversary A attack-
ing Π (i.e, the adversary which maximizes uA(Π,A)) is no larger than the utility
of the best adversary attacking Π′ (except for some negligible quantity).

Definition 1. Let Π and Π′ be protocols, and γ ∈ Γfair be a preference vector.
We say that Π is at least as fair as Π′ with respect to γ (i.e., it is at least as

γ-fair), denoted Π
γ

 Π′, if

sup
A∈ITM

uA(Π,A)
negl≤ sup

A∈ITM

uA(Π′,A). (3)

We will refer to a protocol which is a maximal element according to the above
fairness relation as an optimally fair protocol.

Definition 2. Let γ ∈ Γfair. A protocol Π is optimally γ-fair if it is at least as
γ-fair as any other protocol Π′.

4 Fair and Reactive 2PC

The optimally fair two-party computation (2PC) protocol in the non-reactive
case [11] can be described as follows: the protocol chooses one party uniformly
at random, and the output is reconstructed toward this party first. If one party
aborts the protocol early (that is, before the reconstruction phase), the other
party can restart the protocol with a default input for the (corrupted) party
that aborted. Intuitively, this means that the only way for a corrupted party to
prevent the honest party from receiving output is to run the protocol until the
reconstruction phase, hope to be the one that is chosen to receive the output
first, and then abort the protocol. The result is that the adversary’s expected
payoff is bounded by (γ10 + γ11)/2, where γ10 is the payoff for an unfair abort,
and γ11 is the payoff for a fair execution.

The most intuitive idea for solving the same problem for reactive computation
is to apply the same reconstruction protocol for distributing the outputs in each
round of the reactive computation. Unfortunately, the resulting protocol is not
optimal: if the adversary aborts prior to the reconstruction phase in some round
of the reactive computation, but it already achieved outputs in previous rounds,
the honest party cannot safely restart the protocol with a default input for
the corrupted party. Hence, adversaries with a utility satisfying γ00 > γ11 may
be better off by aborting the protocol early and thus definitely preventing the
honest party from obtaining output—the simple adversarial strategy of choosing

506 J. Garay et al.

one party to corrupt at random and aborting as soon as an output is received
is, in contrast to the non-reactive case, no longer optimal. In fact, even in the
reactive case, if γ11 ≥ γ00 = 0, then the adversary has no incentive to stop the
protocol before obtaining output, so we can use the same protocol as in [11].

4.1 Better Fairness Through More Rounds

In case the adversary’s utility satisfies γ00 > γ11, one can improve fairness guar-
antees by adding more rounds to a protocol’s reconstruction phase. The reason is
that if the adversary puts more emphasis on keeping the honest party from learn-
ing the output than on him learning the output himself, he might be tempted to
abort the protocol even without obtaining output. We use the assumption that
ER

01 is the adversary’s least preferred event to threaten him with potentially
only obtaining payoff γ01 in case of an early abort—and γ01 < γ11. By carefully
adapting the probabilities with which we output the value in a certain round of a
reconstruction protocol, we can consistently keep the adversary in the dilemma
between continuing the execution of the protocol or aborting it, maximizing the
honest party’s probability of obtaining the output.

We describe a protocol with r rounds, where one party—chosen at random—
obtains the output during the first r − 1 rounds, and the other party obtains
it only in the last round. In more detail, for each round l = 1, . . . , r − 1 there
is a probability pl ∈ [0, 1] for a party to obtain the output in that round. The
probabilities are the same for both parties since the setting is symmetric. In
each of the rounds, the adversary has the advantage to receive his output before
the honest party; this corresponds to the adversary in each round delaying his
message until receiving the honest party’s message, which is possible unless the
timing guarantees given by the network are extremely strong. Consequently,
in each round l = 1, . . . , r − 1, the adversary can trade giving the probability
pl corresponding to the current ith round to the honest party, obtaining the
probability pl+1 of the next (l+1)st round in exchange. We now have to determine
the values p1, . . . , pr−1 such as to keep the adversary in a constant dilemma.

The payoff for the adversary aborting in round l ∈ [1, . . . , r − 1] can be
computed by the probabilities for the honest party (p1 + · · · + pl−1) and the
adversary (p1 + · · · + pl) to have received the value and the respective payoff
values γ01 and γ10. The condition is then described by the equation

(
l+1∑

u=1

pu

)

γ10 +

(
l∑

u=1

pu

)

γ01 =

(
l∑

u=1

pu

)

γ10 +

(
l−1∑

u=1

pu

)

γ01,

which corresponds to, for all l = 1, . . . , r − 2,

pl+1 = pl

(−γ01

γ10

)

.

Fair Distributed Computation of Reactive Functions 507

With � := −γ01
γ10

, we obtain by induction that pl = �l−1p1. Providing the output
to the other party only in the last round means that

r−1∑

l=1

pl =
r−1∑

l=1

(�l−1p1) =

(
r−1∑

l=1

�l−1

)

· p1 = 1/2,

or p1 = 1/2
(∑r−1

l=1 �l−1
)−1

. In fact, we show in the remaining of the paper that
the protocol achieving this distribution of probabilities is optimal.

As only the rounds of the reconstruction phase are relevant for the achieved
fairness, we call a protocol an r-round-reconstruction protocol if it requires only
r rounds of interaction to reconstruct the outputs after the computation has
taken place. For simplicity, we only consider functionalities in which all parties
receive the same output; the extension to the general case can be achieved using
standard techniques. We now turn to a more detailed description of a fair reactive
2PC protocol, which is optimal when γ11 > −γ10, as it follows from our lower
bound results (Sect. 4.3).

4.2 The Fair Reactive Protocol

At a high level, the protocol works as follows: The functionality is sequentially
evaluating the functions f1, . . . , fm; the invariant of the computation is that at
any point, the state of the computation (i.e., the inputs and randomness used so
far) is shared according to a two-out-of-two authenticated secret sharing. Each
function fλ, for 1 ≤ λ ≤ m, is evaluated by having the two parties evaluate
the function fsh,fλ,D (formally specified in Figure 2) which on input a sharing
〈Sλ−1〉 of the current state along with the parties’ inputs x1,λ and x2,λ, outputs
a sharing 〈Sλ〉 of the updated state Sλ along with a sharing 〈fλ〉 of the outputs
of fλ evaluated on Sλ−1, x1λ and x2,λ. Next, the sharing 〈fλ〉 is reconstructed
in an r-round-reconstruction protocol as follows:

– The index of some party i ∈R {0, 1} is chosen uniformly at random (this will
be the party that will receive the output during some early output round,
i.e., before the last round r);

– for this party pi, a round l∗ ∈ [r − 1] is chosen according to the probability
distribution described in Section 4.1;

– in each round l ∈ [r −1]\{l∗} of the reconstruction protocol, party pi learns
only that this round was not chosen;

– in round l∗, pi learns the complete output;
– in the last round r, the sharing is reconstructed to both parties.

The idea behind the above construction is to have the adversary, in each
round, face the following conundrum: To increase the expected payoff, that is,
the probability of obtaining the output, it has to proceed to the next round.
This means, however, that it first has to finish the current round by sending
a message to the honest party, which will of course increase the honest party’s
probability of receiving the value (and hence reduce the adversary’s payoff).

508 J. Garay et al.

For this technique to work, however, we need to make sure that no information
about the chosen party and round leaks before the actually chosen party obtains
the message in the chosen round.

To achieve the above properties, we use the function fsh,fλ,D to compute
(and output) r pairs of sharings (〈y11〉, 〈y21〉), . . . , (〈y1r〉, 〈y2r〉) as follows: for
each round l ∈ [r − 1] \ {li}, y1l = y2l = DummyRound, where DummyRound is a
default value signifying that this is not the output; for round li, yili is set to the
output of the function, whereas y¬ili is DummyRound as before. Finally, for the
last round l = r, both y0r and y1r are set to the output of the function.

We are now ready to describe our reactive computation protocol, Πfair
RC , for

evaluating the two-party functionality described by f = (f1, . . . , fm). The pro-
tocol is parametrized by the function vector f , the number r of reconstruction
rounds used for each output, and the probability distribution D on [r − 1] of the
early output round l∗.

Protocol Πfair
RC (p1, p2, D, r, f1, . . . , fm)

Initialize S0 := (⊥, ⊥, 0); the parties compute a default sharing of S0, denoted
〈S0〉. For λ = 1, . . . , m, evaluate fλ sequentially as follows:
1. Use an (unfair MPC) sub-protocol to compute fsh,fλ,D on input the sharing

〈Sλ−1〉 of the current state and the fλ-inputs x
(λ)
1 and x

(λ)
2 of parties p1 and p2,

respectively; if the protocol aborts then abort the execution of Πfair
RC , otherwise

denote by 〈Sλ〉, (〈y(λ)
1,1 〉, 〈y(λ)

2,1 〉), . . . , (〈y(λ)
1,r 〉, 〈y(λ)

2,r 〉) the output of the evaluation.

2. For l = 1, . . . , r do the following sequentially: have 〈y(λ)
1,l 〉 and 〈y(λ)

2,l 〉 recon-
structed towards p1 and p2, respectively (by having pi send his share to p¬i).
3. For each pi ∈ {p1, p2}, if any of the reconstructions yields a value y �∈ {⊥
, DummyRound} then output y; otherwise abort.

Fig. 1. The protocol for fair reactive 2PC.

We give a complete description of the function fsh,λ,D used by Πfair
RC in Fig. 2.

The function is parameterized by the function f whose output is to be computed,
and further by a probability distribution D on the set [r − 1] according to which
the round l∗ is chosen.

We now analyze the degree of fairness achieved by Πfair
RC , which we later

(Sect. 4.3 show optimal for certain parameters by proving a lower bound on
the adversary’s payoff. The proof of the theorem appears in the full version.

Theorem 1. Let γ = (γ00, γ01, γ10, γ11) ∈ Γfair. Then

ūA(Πfair
RC ,A)

negl≤ max

{
γ10

2
∑r−1

l=1 �l−1
,
γ10 + γ11

2

}

,

with � =
∣
∣
∣γ01
γ10

∣
∣
∣. In particular, if γ11 > −γ10, then ūA(Πfair

RC ,A)
negl≤ γ10+γ11

2 .

Fair Distributed Computation of Reactive Functions 509

Function fsh,f,D(〈S〉, x1, x2)

• Upon receiving inputs (x1, 〈S〉1) and (x2, 〈S〉2) from p1 and p2, do:

1. If the shares 〈S〉1 and 〈S〉2 are inconsistent or the reconstructed state
is the abort vector S = (abt, abt), then set the output to y := ⊥;
otherwise, choose r ∈R {0, 1}∗, set y = f(x1, x2, S, r), and update S
by appending x1, x2 and r to S; denote by S′ the updated state.

2. Compute an authenticated sharing 〈S′〉 of S′.

3. Choose a party index i ∈R {1, 2} uniformly at random and choose a

round index l∗ D← [r − 1] according to D.

4. For l = 1, . . . , r − 1, compute the authenticated-sharing pair
(〈y1,l〉, 〈y2,l〉), where yjl is computed as follows:

If l < r, y¬i,l := DummyRound, whereas yi,l :=
{

y if l = l∗;
DummyRound otherwise.

If l = r, y1,l = y2,l = y.

• Output 〈S′〉, (〈y1,1〉, 〈y2,1〉), . . . , (〈y1,r〉, 〈y2,r〉).

Fig. 2. The function computing the authenticated sharings used in protocol Πfair
RC .

The adversary’s payoff depends on the number of rounds used in the recon-
struction, and the optimal number of rounds depends on the exact values of the
adversary’s utility. As long as γ11 > −γ10, we can adapt the probabilities such
that the adversary is incentivized to continue with the protocol, if γ11 ≤ −γ10,
then an abort during the first (non-trivial) reconstruction round is always prefer-
able. We provide more details on this relation in the full version.

4.3 Lower Bounds

In this section, we prove lower bounds on the adversary’s payoff that hold with
respect to arbitrary protocols. In the case γ11 > −γ10, this actually shows that
protocol Πfair

RC is optimally fair, as the lower bound tightly matches the upper
bound from Theorem 1. In the other case, i.e., γ11 ≤ −γ10, we still give a lower
bound which is close to the upper bound we proved.

We show the lower bounds on the adversary’s expected payoff using a specific
“two-phase exchange” functionality f⊥

2Ex that works as follows: Both parties
input a 2k-bit string, and in the first phase, both obtain the first k bits of the
other party’s input. In the second phase, they both obtain the remaining k bits
of the other party’s input. (See Fig. 3.)

There are simple and generic adversarial strategies Ai that corrupt party pi

in the beginning but follow the protocol honestly until the last output phase of
the protocol. Then, it aborts as soon as it obtained the output—that is, in each
round Ai checks whether the protocol would already provide the output if the
other (honest) party would abort; in this case, Ai aborts the protocol without

510 J. Garay et al.

Function f⊥
2Ex

The functionality f⊥
2Ex is a two-party functionality that proceeds in two rounds:

– Obtain from each pi an input xi ∈ {0, 1}2k, and split xi into xi = yi|zi with
yi, zi ∈ {0, 1}k. Output y1 to p2 and y2 to p1.

– No inputs: output z1 to p2 and z2 to p1.

Fig. 3. The two-phase exchange functionality.

sending the messages for that round.6 The bound proven in the following lemma
comes from the fact that if one of the parties gets the output first, then the
adversary Agen corrupting one party at random has a 1/2 chance to corrupt
this party and be the only one to get the output. The payoff of this strategy is
the same as for the SFE (non-reactive) case, and the proof of the lemma also
resembles the proof of the simpler case.

Lemma 1. Let γ = (γ00, γ01, γ10, γ11) ∈ Γfair. For every protocol Π which
securely implements the functionality f⊥

2Ex, there exists an adversary A with

ūA(Π,A)
negl≥ γ10 + γ11

2
. (4)

The lemma shows the optimality of the protocol described in Sect. 4.2 for
all cases where γ11 > −γ10. The next lemma provides a lower bound that is
relevant in the more general case without this restriction, and is also interesting
for protocols for which the bound from Equation (4) is not tight because, e.g.,
they use too few rounds. In fact, in the case of reactive MPC, the maximum
utility of the adversary generally depends on the number of protocol rounds,
and in particular we show a trade-off between the payoff of the generic adversary
and the payoff of adversaries that potentially abort during the protocol without
receiving their output. The proof is in the full version.

Lemma 2. Let γ = (γ00, γ01, γ10, γ11) ∈ Γfair, and Π be an r-round-reconstruc-
tion protocol that securely implements the functionality f⊥

2Ex, such that

ūA(Π,Agen) ≤ γ10 + γ11

2
+ ω.

Then, there exists an adversary A with

ūA(Π,A)
negl≥

(
1
2 − ω

γ10−γ11

)
γ10

∑r−1
�=1 ��−1

,

where � = −γ01/γ10.
6 In the case of (reactive) MPC the protocol may output only either the correct value

or an “abort” symbol, as an honest party cannot restart the protocol with a default
input because the adversary already obtained output in the previous rounds.

Fair Distributed Computation of Reactive Functions 511

By increasing the number of rounds in the reconstruction phase and choosing
a suitable distribution of probabilities over the rounds, we can decrease the
payoff of the “aborting” adversaries below the bound of the generic adversary,
thus establishing that protocol Πfair

RC is optimally fair. The necessary number of
rounds for the optimal result depends on the exact values of the adversary’s
utility, and can be computed as in Sect. 4.1; details appear in the full version.

Corollary 1. Let γ = (γ00, γ01, γ10, γ11) ∈ Γfair and γ11 > −γ01. Then protocol
Πfair

RC from Fig. 1 is optimally γ-fair.

References

1. Asharov, G., Canetti, R., Hazay, C.: Towards a game theoretic view of secure
computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632,
pp. 426–445. Springer, Heidelberg (2011)

2. Beaver, D., Goldwasser, S.: Multiparty computation with faulty majority. In: FOCS
1989, pp. 468–473. IEEE (1989)

3. Beimel, A., Lindell, Y., Omri, E., Orlov, I.: 1/p-Secure multiparty computation
without honest majority and the best of both worlds. In: Rogaway, P. (ed.)
CRYPTO 2011. LNCS, vol. 6841, pp. 277–296. Springer, Heidelberg (2011)

4. Blum, M.: How to exchange (secret) keys. ACM Transactions on Computer Science
1, 175–193 (1984)

5. Boneh, D., Naor, M.: Timed commitments. In: Bellare, M. (ed.) CRYPTO 2000.
LNCS, vol. 1880, pp. 236–254. Springer, Heidelberg (2000)

6. Canetti, R.: Security and composition of multiparty cryptographic protocols. Jour-
nal of Cryptology 13, 143–202 (2000)

7. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: FOCS 2001, pp. 136–145. IEEE (2001)

8. Cleve, R.E.: Limits on the security of coin flips when half the processors are faulty.
In: STOC 1986, pp. 364–369. ACM, Berkeley (1986)

9. Damg̊ard, I.: Practical and provably secure release of a secret and exchange of
signatures. Journal of Cryptology 8(4), 201–222 (1995)

10. Garay, J.A., Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Rational protocol
design: Cryptography against incentive-driven adversaries. In: FOCS 2013. IEEE
(2013)

11. Garay, J.A., Katz, J., Tackmann, B., Zikas, V.: How fair is your protocol? A utility-
based approach to protocol optimality. In: Spirakis, P. (ed.) PODC 2015. ACM
Press (2015)

12. Garay, J.A., MacKenzie, P.D., Prabhakaran, M., Yang, K.: Resource fairness and
composability of cryptographic protocols. In: Halevi, S., Rabin, T. (eds.) TCC
2006. LNCS, vol. 3876, pp. 404–428. Springer, Heidelberg (2006)

13. Garay, J.A., Tackmann, B., Zikas, V.: Fair distributed computation of reactive
functions. Cryptology ePrint Archive, Report 2015/807, August 2015

14. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game–A com-
pleteness theorem for protocols with honest majority. In: STOC 1987, pp. 218–229.
ACM (1987)

15. Gordon, S.D., Katz, J.: Partial fairness in secure two-party computation. In:
Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 157–176. Springer,
Heidelberg (2010)

512 J. Garay et al.

16. Groce, A., Katz, J.: Fair computation with rational players. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 81–98. Springer,
Heidelberg (2012)

17. Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Universally composable syn-
chronous computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 477–498.
Springer, Heidelberg (2013)

18. Pinkas, B.: Fair secure two-party computation. In: Biham, E. (ed.) EUROCRYPT
2003. LNCS, vol. 2656, pp. 87–105. Springer, Heidelberg (2003)

19. Yao, A.C.: Theory and applications of trapdoor functions. In: FOCS 1982,
pp. 80–91. IEEE (1982)

Smoothed Analysis of Dynamic Networks

Michael Dinitz1, Jeremy Fineman2, Seth Gilbert3, and Calvin Newport4(B)

1 Johns Hopkins University, Baltimore, USA
mdinitz@cs.jhu.edu

2 Georgetown University, Washington, DC, USA
jfineman@cs.georgetown.edu

3 National University of Singapore, Singapore, Singapore
seth.gilbert@comp.nus.edu.sg

4 Georgetown University, Washington, DC, USA
cnewport@cs.georgetown.edu

Abstract. We generalize the technique of smoothed analysis to dis-
tributed algorithms in dynamic networks. Whereas standard smoothed
analysis studies the impact of small random perturbations of input val-
ues on algorithm performance metrics, dynamic graph smoothed analysis
studies the impact of random perturbations of the underlying chang-
ing network graph topologies. Similar to the original application of
smoothed analysis, our goal is to study whether known strong lower
bounds in dynamic network models are robust or fragile: do they with-
stand small (random) perturbations, or do such deviations push the
graphs far enough from a precise pathological instance to enable much
better performance? Fragile lower bounds are likely not relevant for real-
world deployment, while robust lower bounds represent a true difficulty
caused by dynamic behavior. We apply this technique to three stan-
dard dynamic network problems with known strong worst-case lower
bounds: random walks, flooding, and aggregation. We prove that these
bounds provide a spectrum of robustness when subjected to smoothing—
some are extremely fragile (random walks), some are moderately fragile
/ robust (flooding), and some are extremely robust (aggregation).

1 Introduction

Dynamic network models describe networks with topologies that change over
time (c.f., [10]). They are used to capture the unpredictable link behavior that
characterize challenging networking scenarios; e.g., connecting and coordinat-
ing moving vehicles, nearby smartphones, or nodes in a widespread and fragile
overlay. Because fine-grained descriptions of link behavior in such networks are
hard to specify, most analyses of dynamic networks rely instead on a worst-case

M. Dinitz—Supported in part by NSF grant #1464239.
J. Fineman—Supported in part by NSF grants CCF-1218188 and CCF-1314633.
S. Gilbert—Supported in part by Singapore MOE Tier 2 ARC project 2014-T2-1-
157.
C. Newport—Supported in part by NSF grant CCF 1320279.

c© Springer-Verlag Berlin Heidelberg 2015
Y. Moses (Ed.): DISC 2015, LNCS 9363, pp. 513–527, 2015.
DOI: 10.1007/978-3-662-48653-5 34

514 M. Dinitz et al.

selection of graph changes. This property is crucial to the usefulness of these
analyses, as it helps ensure the results persist in real deployment.

A problem with this worst case perspective is that it often leads to extremely
strong lower bounds. These strong results motivate a key question: Is this
bound robust in the sense that it captures a fundamental difficulty introduced
by dynamism, or is the bound fragile in the sense that the poor performance it
describes depends on an exact sequence of adversarial changes? Fragile lower
bounds leave open the possibility of algorithms that might still perform well
in practice. By separating fragile from robust results, we can expand the algo-
rithmic tools available to those seeking useful guarantees in these challenging
environments.

In the study of traditional algorithms, an important technique for explaining
why algorithms work well in practice, despite disappointing worst case perfor-
mance, is smoothed analysis [16,17]. This approach studies the expected perfor-
mance of an algorithm when the inputs are slightly perturbed. If a strong lower
bound dissipates after a small amount of smoothing, it is considered fragile—as
it depends on a carefully constructed degenerate case. Note that this is different
from an “average-case” analysis, which looks at instances drawn from some dis-
tribution. In a smoothed analysis, you still begin with an adversarially chosen
input, but then slightly perturb this choice. Of course, as the perturbation grows
larger, the input converges to something entirely random. (Indeed, in the origi-
nal smoothed analysis papers [16,17], the technique is described as interpolating
between worst and average case analysis.)

In this paper, we take the natural step of adapting smoothed analysis to the
study of distributed algorithms in dynamic networks. Whereas in the traditional
setting smoothing typically perturbs numerical input values, in our setting we
define smoothing to perturb the network graph through the random addition and
deletion of edges. We claim that a lower bound for a dynamic network model
that improves with just a small amount of graph smoothing of this type is fragile,
as it depends on the topology evolving in an exact manner. On the other hand,
a lower bound that persists even after substantial smoothing is robust, as this
reveals a large number of similar graphs for which the bound holds.

Results. We begin by providing a general definition of a dynamic network model
that captures many of the existing models already studied in the distributed
algorithms literature. At the core of a dynamic network model is a dynamic graph
that describes the evolving network topology. We provide a natural definition of
smoothing for a dynamic graph that is parameterized with a smoothing factor
k ∈ {0, 1, ...,

(
n
2

)}. In more detail, to k-smooth a dynamic graph H is to replace
each static graph G in H with a smoothed graph G′ sampled uniformly from the
space of graphs that are: (1) within edit distance1 k of G, and (2) are allowed by
the relevant dynamic network model. (E.g., if the model requires the graph to
be connected in every round, smoothing cannot generate a disconnected graph.)

1 Edit distance, in this paper, is the number of edge additions/deletions needed to
transform one graph to another, assuming they share the same node set.

Smoothed Analysis of Dynamic Networks 515

Table 1. A summary of our main results. The columns labelled “k-smoothed” assume
k > 0. Different results assume different upper bounds on k.

Graph
k-Smoothed
Algorithm

k-Smoothed
Lower Bound

0-Smoothed
Lower Bound

Flooding Connected O(n2/3 log n/k1/3) Ω(n2/3/k1/3) Ω(n)

Hitting Time Connected O(n3/k) Ω(n5/2/(
√

k log n) Ω(2n)

Aggregation Paired O(n)-competitive Ω(n)-competitive Ω(n)-competitive

We next argue that these definitions allow for useful discernment between
different dynamic network lower bounds. To this end, we use as case studies
three well known problems with strong lower bounds in dynamic network mod-
els: flooding, random walks, and aggregation. For each problem, we explore the
robustness/fragility of the existing bound by studying how it improves under
increasing amounts of smoothing. Our results are summarized in Table 1. We
emphasize the surprising variety in outcomes: these results capture a wide spec-
trum of possible responses to smoothing, from quite fragile to quite robust.

For the minimal amount of smoothing (k = 1), for example, the Ω(2n) lower
bound for the hitting time of a random walk in connected dynamic networks
(established in [2]) decreases by an exponential factor to O(n3); the Ω(n) lower
bound for flooding time in these same networks (well-known in folklore) decreases
by a polynomial factor to O(n2/3 log n); and the Ω(n) lower bound on the achiev-
able competitive ratio for token aggregation in pairing dynamic graphs (estab-
lished in [4]) decreases by only a constant factor.

As we increase the smoothing factor k, our upper bound on random walk
hitting time decreases as O(n3/k), while our flooding upper bound reduces more
slowly as O(n2/3 log n/k1/3), and our aggregation bound remains in Ω(n) for k
values as large as Θ(n/ log2 n). In all three cases we also prove tight or near tight
lower bounds for all studied values of k.

Among other insights, these results indicate that the exponential hitting
time lower bound for dynamic walks is extremely fragile, while the impossibility
of obtaining a good competitive ratio for dynamic aggregation is quite robust.
Flooding provides an interesting intermediate case. While it is clear that an Ω(n)
bound is fragile, the claim that flooding can take a polynomial amount of time
(say, in the range n1/3 to n2/3) seems well-supported.

Full Version. Due to space constraints, we omit proofs from this extended
abstract. Full details for our results can be found in the full version [6].

Next Steps. The definitions and results that follow represent a first (but far from
final) step toward the goal of adapting smoothed analysis to dynamic networks.
There are many additional interesting dynamic network bounds that could be
subjected to a smoothed analysis. Moreover, there are many other reasonable
definitions of smoothing beyond the ones herein. While our definition is natu-
ral and our results suggestive, for other problems or models other definitions
might be more appropriate. Rather than claiming that our approach here is the

516 M. Dinitz et al.

“right” way to study the fragility of dynamic network lower bounds, we instead
claim that smoothed analysis generally speaking (in all its various possible for-
mulations) is an important and promising tool when trying to understand the
fundamental limits of distributed behavior in dynamic network settings.

Related Work. Smoothed analysis was introduced by Spielman and Teng [16,17],
who used the technique to explain why the simplex algorithm works well in
practice despite strong worst-case lower bounds. It has been widely applied to
traditional algorithm problems (see [18] for a good introduction and survey).
Recent interest in studying distributed algorithms in dynamic networks was
sparked by Kuhn et al. [11]. Many different problems and dynamic network
models have since been proposed; e.g., [1,3,5,7–9,12,14] (see [10] for a survey).
The dynamic random walk lower bound we study was first proposed by Avin
et al. [2], while the dynamic aggregation lower bound we study was first proposed
by Cornejo et al. [4]. We note other techniques have been proposed for exploring
the fragility of dynamic network lower bounds. In recent work, for example,
Denysyuk et al. [5] thwart the exponential random walk lower bound due to [2]
by requiring the dynamic graph to include a certain number of static graphs
from a well-defined set, while work by Ghaffari et al. [8] studies the impact of
adversary strength, and Newport [14] studies the impact of graph properties, on
lower bounds in the dynamic radio network model.

2 Dynamic Graphs, Networks, and Types

There is no single dynamic network model. There are, instead, many different
models that share the same basic behavior: nodes executing synchronous algo-
rithms are connected by a network graph that can change from round to round.
Details on how the graphs can change and how communication behaves given a
graph differ between model types.

In this section we provide a general definition for a dynamic network models
that captures many existing models in the relevant literature. This approach
allows us in the next section to define smoothing with sufficient generality that
it can apply to these existing models. We note that in this paper we constrain
our attention to oblivious graph behavior (i.e., the changing graph is fixed at
the beginning of the execution), but that the definitions that follow generalize in
a straightforward manner to capture adaptive models (i.e., the changing graph
can adapt to behavior of the algorithm).

Dynamic Graphs and Networks. Fix some node set V , where n = |V |. A
dynamic graph H, defined with respect to V , is a sequence G1, G2, ..., where each
Gi = (V,Ei) is a graph defined over nodes V . If this is not an infinite sequence,
then the length of H is |H|, the number of graphs in the sequence. A dynamic
network, defined with respect to V , is a pair, (H, C), where H is a dynamic
graph, and C is a communication rules function that maps transmission patterns
to receive patterns. That is, the function takes as input a static graph and an
assignment of messages to nodes, and returns an assignment of received messages

Smoothed Analysis of Dynamic Networks 517

to nodes. For example, in the classical radio network model C would specify that
nodes receive a message only if exactly one of their neighbors transmits, while
in the LOCAL model C would specify that all nodes receive all messages sent
by their neighbors. Finally, an algorithm maps process definitions to nodes in V .

Given a dynamic network (H, C) and an algorithm A, an execution of A
in (H, C) proceeds as follows: for each round r, nodes use their process defini-
tion according to A to determine their transmission behavior, and the resulting
receive behavior is determined by applying C to H[r] and this transmission pat-
tern.

Dynamic Network Types. When we think of a dynamic network model suitable
for running executions of distributed algorithms, what we really mean is a com-
bination of a description of how communication works, and a set of the different
dynamic graphs we might encounter. We formalize this notion with the concept
of the dynamic network type, which we define as a pair (G, C), where G is a set
of dynamic graphs and C is a communication rules function. For each H ∈ G,
we say dynamic network type (G, C) contains the dynamic network (H, C).

When proving an upper bound result, we will typically show that the result
holds when our algorithm is executed in any dynamic network contained within
a given type. When proving a lower bound result, we will typically show that
there exists a dynamic network contained within the relevant type for which
the result holds. In this paper, we will define and analyze two existing dynamic
network types: (1-interval) connected networks [7,9,11,12], in which the graph
in each round is connected and C describes reliable broadcast to neighbors in the
graph, and pairing networks [4], in which the graph in each round is a matching
and C describes reliable message passing with each node’s neighbor (if any).

3 Smoothing Dynamic Graphs

We now define a version of smoothed analysis that is relevant to dynamic graphs.
To begin, we define the edit distance between two static graphs G = (V,E) and
G′ = (V,E′) to be the minimum number of edge additions and removals needed
to transform G to G′. With this in mind, for a given G and k ∈ {0, 1, ...,

(
n
2

)},
we define the set:

editdist(G, k) = {G′ | the edit distance between G and G′ is no more than k}.

Finally, for a given set of dynamic graphs G, we define the set:

allowed(G) = {G | ∃H ∈ G such that G ∈ H}.

In other words, allowed describes all graphs that show up in the dynamic graphs
contained in the set G. Our notion of smoothing is always defined with respect
to a dynamic graph set G. Formally:

Definition 1. Fix a set of dynamic graphs G, a dynamic graph H ∈ G, and
smoothing factor k ∈ {0, 1, ...,

(
n
2

)}. To k-smooth a static graph G ∈ H (with

518 M. Dinitz et al.

respect to G) is to replace G with a graph G′ sampled uniformly from the set
editdist(G, k) ∩ allowed(G). To k-smooth the entire dynamic graph H (with
respect to G), is to replace H with the dynamic graph H′ that results when we
k-smooth each of its static graphs.

We will also sometimes say that G′ (resp. H′) is a k-smoothed version of G (resp.
H), or simply a k-smoothed G (resp. H). We often omit the dynamic graph set G
when it is clear in context. (Typically, G will be the set contained in a dynamic
network type under consideration.)

Discussion. Our notion of k-smoothing transforms a graph by randomly adding
or deleting k edges. A key piece of our definition is that smoothing a graph with
respect to a dynamic graph set cannot produce a graph not found in any members
of that set. This restriction is particularly important for proving lower bounds
on smoothed graphs, as we want to make sure that the lower bound results does
not rely on a dynamic graph that could not otherwise appear. For example, if
studying a process in a dynamic graph that is always connected, we do not want
smoothing to disconnect the graph—an event that might trivialize some bounds.

4 Connected and Pairing Dynamic Network Types

We now define two dynamic network types: the connected network type [7,9,11,
12], and the pairing network type [4]. We study random walks (Section 6) and
flooding (Section 5) in the context of the connected network type, whereas we
study token aggregation (Section 7) in the context of the pairing type.

4.1 Connected Network

The connected network type [7,9,11,12] is defined as (Gconn, Cconn), where Gconn

contains every dynamic graph (defined with respect to our fixed node set V) in
which every individual graph is connected, and where Cconn describes reliable
broadcast (i.e., a message sent by u in rounds r in an execution in graph H is
received by every neighbor of u in H[r]).

Properties of Smoothed Connected Networks. For our upper bounds, we show
that if certain edges are added to the graph through smoothing, then the algo-
rithm makes enough progress on the smoothed graph. For our lower bounds,
we show that if certain edges are not added to the graph, then the algorithm
does not make much progress. The following lemmas bound the probabilities
that these edges are added. The proofs roughly amount to showing that sam-
pling uniformly from editdist(G, k)∩allowed(Gconn) is similar to sampling from
editdist(G, k).

The first two lemmas are applicable when upper-bounding the performance
of an algorithm on a smoothed dynamic graph. The first lemma states that the k-
smoothed version of graph G is fairly likely to include at least one edge from the
set S of helpful edges. The second lemma, conversely, says that certain critical
edges that already exist in G are very unlikely to be removed in the smoothed
version.

Smoothed Analysis of Dynamic Networks 519

Lemma 1. There exists constant c1 > 0 such that the following holds. Consider
any graph G ∈ allowed(Gconn). Consider also any nonempty set S of potential
edges and smoothing value k ≤ n/16 with k |S| ≤ n2/2. Then with probability at
least c1k |S| /n2, the k-smoothed graph G′ of G contains at least one edge from S.

Lemma 2. There exists constant c2 > 0 such that the following holds. Consider
any graph G = (V,E) ∈ allowed(Gconn). Consider also any nonempty set S ⊆ E
of edges in the graph and smoothing value k ≤ n/16. Then with probability at
most c2k |S| /n2, the k-smoothed graph G′ removes an edge from S.

Our next lemma is applicable when lower-bounding an algorithm’s perfor-
mance on a dynamic graph. It says essentially that Lemma 1 is tight—it is not
too likely to add any of the helpful edges from S.

Lemma 3. There exists constant c3 > 0 such that the following holds. Consider
any graph G = (V,E) ∈ allowed(Gconn). Consider also any set S of edges and
smoothing value k ≤ n/16 such that S ∩ E = ∅. Then with probability at most
c3k |S| /n2, the k-smoothed graph G′ of G contains an edge from S.

4.2 Pairing Network

The second type we study is the pairing network type [4]. This type is defined as
(Gpair, Cpair), where Gpair contains every dynamic graph (defined with respect
to our fixed node set V) in which every individual graph is a (not necessarily
complete) matching, and Cpair reliable communicates messages between pairs
of nodes connected in the given round. This network type is motivated by the
current peer-to-peer network technologies implemented in smart devices. These
low-level protocols usually depend on discovering nearby nodes and initiating
one-on-one local interaction.

Properties of Smoothed Pairing Networks. In the following, when discussing a
matching G, we partition nodes into one of two types: a node is matched if it is
connected to another node by an edge in G, and it is otherwise unmatched. The
following property concerns the probability that smoothing affects (i.e., adds
or deletes at least one adjacent edge) a given node u from a set S of nodes of
the same type. It notes that as the set S containing u grows, the upper bound
on the probability that u is affected decreases. The key insight behind this not
necessarily intuitive statement is that this probability must be the same for all
nodes in S (due to their symmetry in the graph). Therefore, a given probability
will generate more expected changes as S grows, and therefore, to keep the
expected changes below the k threshold, this bound on this probability must
decrease as S grows.

Lemma 4. Consider any graph G = (V,E) ∈ allowed(Gpair) and constant δ >
1. Let S ⊆ V be a set of nodes in G such that: (1) all nodes in S are of the same
type (matched or unmatched), and (2) |S| ≥ n/δ. Consider any node u ∈ S
and smoothing factor k < n/(2 · δ). Let G′ be the result of k-smoothing G. The
probability that u’s adjacency list is different in G′ as compared to G is no more
than (2 · δ · k)/n.

520 M. Dinitz et al.

5 Flooding

Here we consider the performance of a basic flooding process in a connected
dynamic network. In more detail, we assume a single source node starts with
a message. In every round, every node that knows the message broadcasts the
message to its neighbors. (Flooding can be trivially implemented in a connected
network type due to reliable communication.) We consider the flooding process
complete in the first round that every node has the message. Without smoothing,
this problem clearly takes Ω(n) rounds in large diameter static graphs, so a
natural alternative is to state bounds in terms of diameter. Unfortunately, there
exist dynamic graphs (e.g., the spooling graph defined below) where the graph
in each round is constant diameter, but flooding still requires Ω(n) rounds.

We show that this Ω(n) lower bound is somewhat fragile by proving a poly-
nomial improvement with any smoothing. Specifically, we show an upper bound
of O(n2/3 log(n)/k1/3) rounds, with high probability, with k-smoothing. We also
exhibit a nearly matching lower bound by showing that the dynamic spooling
graph requires Ω(n2/3/k1/3) rounds with constant probability.

5.1 Lower Bound

We build our lower bound around the dynamic spooling graph, defined as follows.
Label the nodes from 1 to n, where node 1 is the source. The spooling graph is
a dynamic graph where in each round r, the network is the min {r, n − 1}-spool
graph. We define the i-spool graph, for i ∈ [n − 1] to be the graph consisting
of: a star on nodes {1, . . . , i} centered at i called the left spool, a star on nodes
{i + 1, . . . , n} centered on i + 1 called the right spool, and an edge between the
two centers i and i + 1. We call i + 1 the head node.

With node 1 as the source node, it is straightforward to see that, in the
absence of smoothing, flooding requires n−1 rounds to complete on the spooling
network. (Every node in the left spool has the message but every node in the
right spool does not. In each round, the head node receives the message then
moves to the left spool.) We generalize this lower bound to smoothing. The main
idea is that in order for every node to receive the message early, one of the early
heads must be adjacent to a smoothed edge.

Theorem 1. Consider the flooding process on a k-smoothed n-vertex spooling
graph, with k ≤ √

n and sufficiently large n. With probability at least 1/2, the
flooding process does not complete before the Ω(n2/3/k1/3)-th round.

5.2 An O(n2/3 logn/k1/3) Upper Bound for General Networks

Next, we show that flooding in every k-smoothed network will complete in
O(n2/3 log n/k1/3) time, with high probability. When this result is combined
with the Ω(n2/3/k1/3) lower bound from above, this shows this analysis to be
essentially tight for this problem under smoothing.

Smoothed Analysis of Dynamic Networks 521

Support Sequences. The core idea is to show that every node in every network
is supported by a structure in the dynamic graph such that if the message can
be delivered to anywhere in this structure in time, it will subsequently propagate
to the target. In the spooling network, this structure for a given target node u
consists simply of the nodes that will become the head in the rounds leading up
to the relevant complexity deadline. The support sequence object defined below
generalizes a similar notion to all graphs. It provides, in some sense, a fat target
for the smoothed edges to hit in their quest to accelerate flooding.

Definition 2. Fix two integers t and �, 1 ≤ � < t, a dynamic graph H =
G1, . . . , Gt with Gi = (V,Ei) for all i, and a node u ∈ V . A (t, �)-support
sequence for u in G is a sequence S0, S1, S2, ..., S�, such that the following prop-
erties hold: (1) For every i ∈ [0, �]: Si ⊆ V . (2) S0 = {u}. (3) For every i ∈ [1, �]:
Si−1 ⊂ Si and Si \ Si−1 = {v}, for some v ∈ V such that v is adjacent to at
least one node of Si−1 in Gt−i.

Notice that the support structure is defined “backwards” with S0 containing the
target node u, and each subsequent step going one round back in time. We prove
that every connected dynamic graph has such a support structure, because the
graph is connected in every round.

Lemma 5. Fix some dynamic graph H ∈ Gconn on vertex set V , some node
u ∈ V , and some rounds t and �, where 1 ≤ � < t. There exists a (t, �)-support
sequence for u in H.

The following key lemma shows that over every period of Θ(n2/3/k1/3) rounds
of k-smoothed flooding, every node has a constant probability of receiving the
message. Applying this lemma over Θ(log n) consecutive time intervals with a
Chernoff bound, we get our main theorem.

Lemma 6. There exists constant α ≥ 3 such that the following holds. Fix a
dynamic graph H ∈ Gconn on vertex set V , any node u ∈ V , and a consecutive
interval of αn2/3/k1/3 rounds. For smoothing value k ≤ n/16, node u receives
the flooded message in the k-smoothed version of H with probability at least 1/2.

Theorem 2. For any dynamic graph H ∈ Gconn and smoothing value k ≤ n/16,
flooding completes in O(n2/3 log n/k1/3) rounds on the k-smoothed version of H
with high probability.

6 Random Walks

As discussed in Section 1, random walks in dynamic graphs exhibit fundamen-
tally different behavior from random walks in static graphs. Most notably, in
dynamic graphs there can be pairs of nodes whose hitting time is exponential [2],
even though in static (connected) graphs it is well-known that the maximum hit-
ting time is at most O(n3) [13]. This is true even under obvious technical restric-
tions necessary to prevent infinite hitting times, such as requiring the graph to
be connected at all times and to have self-loops at all nodes.

522 M. Dinitz et al.

We show that this lower bound is extremely fragile. A straightforward argu-
ment shows that a small perturbation (1-smoothing) is enough to guarantee
that in any dynamic graph, all hitting times are at most O(n3). Larger per-
turbations (k-smoothing) lead to O(n3/k) hitting times. We also prove a lower
bound of Ω(n5/2/

√
k), using an example which is in fact a static graph (made

dynamic by simply repeating it). In some sense, it is not surprising that the lower
bound on random walks is fragile, as there exist algorithms for accomplishing the
same goals (e.g., identifying a random sample) in dynamic graphs in polynomial
time [2,15].

6.1 Preliminaries

We begin with some technical preliminaries. In a static graph, a random walk
starting at u ∈ V is a walk on G where the next node is chosen uniformly at
random from the set of neighbors on the current node (possibly including the
current node itself if there is a self-loop). The hitting time H(u, v) for u, v ∈ V
is the expected number of steps taken by a random walk starting at u until it
hits v for the first time. Random walks are defined similarly in a dynamic graph
H = G1, G2, . . . : at first the random walk starts at u, and if at the beginning
of time step t it is at a node vt then in step t it moves to a neighbor of vt in
Gt chosen uniformly at random. Hitting times are defined in the same way as in
the static case.

The definition of the hitting time in a smoothed dynamic graph is intuitive
but slightly subtle. Given a dynamic graph H and vertices u, v, the hitting time
from u to v under k-smoothing, denoted by Hk(u, v), is the expected number of
steps taken by a random walk starting at u until first reaching v in the (random)
k-smoothed version H′ of H (either with respect to Gconn or with respect to the
set Gall of all dynamic graphs). Note that this expectation is now taken over two
independent sources of randomness: the randomness of the random walk, and
also the randomness of the smoothing (as defined in Section 3).

6.2 Upper Bounds

We first prove that even a tiny amount amount of smoothing is sufficient to
guarantee polynomial hitting times even though without smoothing there is an
exponential lower bound. Intuitively, this is because if we add a random edge at
every time point, there is always some inverse polynomial probability of directly
jumping to the target node. We also show that more smoothing decreases this
bound linearly.

Theorem 3. In any dynamic graph H, for all vertices u, v and value k ≤ n/16,
the hitting time Hk(u, v) under k-smoothing (with respect to Gall) is at most
O(n3/k). This is also true for smoothing with respect to Gconn if H ∈ Gconn.

A particularly interesting example is the dynamic star, which was used by
Avin et al. [2] to prove an exponential lower bound. The dynamic star consists of

Smoothed Analysis of Dynamic Networks 523

n vertices {0, 1, . . . , n−1}, where the center of the start at time t is t mod (n−1)
(note that node n − 1 is never the center). Every node also has a self loop. Avin
et al. [2] proved that the hitting time from node n − 2 to node n − 1 is at least
2n−2. It turns out that this lower bound is particularly fragile – not only does
Theorem 3 imply that the hitting time is polynomial, it is actually a factor of n
better than the global upper bound due to the small degrees at the leaves.

Theorem 4. Hk(u, v) is at most O(n2/k) in the dynamic star for all k ≤ n/16
and for all vertices u, v (where smoothing is with respect to Gconn).

6.3 Lower Bounds

Since the dynamic star was the worst example for random walks in dynamic
graphs without smoothing, Theorem 4 naturally leads to the question of whether
the bound of O(n2/k) holds for all dynamic graphs in Gconn, or whether the
weaker bound of O(n3/k) from Theorem 3 is tight. We show that under smooth-
ing, the dynamic star is in fact not the worst case: a lower bound of Ω(n5/2/

√
k)

holds for the lollipop graph. The lollipop is a famous example of graph in which
the hitting time is large: there are nodes u and v such that H(u, v) = Θ(n3)
(see, e.g., [13]). Here we will use it to prove a lower bound on the hitting time
of dynamic graphs under smoothing:

Theorem 5. There is a dynamic graph H ∈ Gconn and nodes u, v such that
Hk(u, v) ≥ Ω(n5/2/(

√
k ln n)) for all k ≤ n/16 (where smoothing is with respect

to Gconn).

In the lollipop graph Ln = (V,E) the vertex set is partitioned into two pieces
V1 and V2 with |V1| = |V2| = n/2. The nodes in V1 form a clique (i.e. there is
an edge between every two nodes in V1), while the nodes in V2 form a path (i.e.,
there is a bijection π : [n/2] → V2 such that there is an edge between π(i) and
π(i + 1) for all i ∈ [(n/2) − 1]). There is also a single special node v∗ ∈ V1 which
has an edge to the beginning of the V2 path, i.e., there is also an edge {v∗, π(1)}.
The dynamic graph H in Theorem 5 is the dynamic lollipop: Gi = Ln for all
i ≥ 1. The starting point of the random walk u is an arbitrary node in V1, and
the target node v = π(n/2) is the last node on the path.

The intuition for the 1-smoothing case is relatively straightforward: if the
random walk is on the path then every Θ(n) rounds it will follow one of the
randomly added smoothed edges, which will (with probability 1/2) lead it back
to the clique. So in order to hit v, it has to spend less than n time in the path.
A standard analysis of the one-dimensional random walk then implies that it
will only move O(

√
n) positions from where it started, so it needs to start in the

final O(
√

n) nodes of the path. In each round, it will only see an edge from its
current location to this final set of nodes with probability O(1/n3/2), and will
follow it with probability only O(1/n) (since it will likely be in the clique). Hence
the total hitting time is Ω(n5/2). This idea can be formalized and extended to
k-smoothing.

524 M. Dinitz et al.

If we do not insist on the dynamic graph being connected at all times, then
in fact Theorem 3 is tight via a very simple example: a clique with a single
disconnected node.

Theorem 6. There is a dynamic graph H and vertices u, v such that Hk(u, v) ≥
Ω(n3/k) for all k ≤ n where smoothing is with respect to Gall.

7 Aggregation

Here we consider the aggregation problem in the pairing dynamic network type.
Notice, in our study of flooding and random walks we were analyzing the behav-
ior of a specific, well-known distributed process. In this section, by contrast,
we consider the behavior of arbitrary algorithms. In particular, we will show
the pessimistic lower bound for the aggregation problem for 0-smoothed pairing
graphs from [4], holds (within constant factors), even for relatively large amounts
of smoothing. This problem, therefore, provides an example of where smoothing
does not help much.

The Aggregation Problem. The aggregation problem, first defined in [4], assumes
each node u ∈ V begins with a unique token σ[u]. The execution proceeds for a
fixed length determined by the length of the dynamic graph. At the end of the
execution, each node u uploads a set (potentially empty) γ[u] containing tokens.
An aggregation algorithm must avoid both losses and duplications (as would
be required if these tokens were actually aggregated in an accurate manner).
Formally:

Definition 3. An algorithm A is an aggregation algorithm if and only if at the
end of every execution of A the following two properties hold:
(1) No Loss:

⋃
u∈V γ[u] =

⋃
u∈V {σ[u]}. (2) No Duplication: ∀u, v ∈ V, u = v :

γ[u] ∩ γ[v] = ∅.
To evaluate the performance of an aggregation algorithm we introduce the

notion of aggregation factor. At at the end of an execution, the aggregation
factor of an algorithm is the number of nodes that upload at least one token
(i.e., |{u ∈ V : γ[u] = ∅}|). Because some networks (e.g., a static cliques) are
more suitable for small aggregation factors than others (e.g., no edges in any
round) we evaluate the competitive ratio of an algorithm’s aggregation factor as
compared to the offline optimal performance for the given network.

The worst possible performance, therefore, is n, which implies that the algo-
rithm uploaded from n times as many nodes as the offline optimal (note that n
is the maximum possible value for an aggregation factor). This is only possible
when the algorithm achieves no aggregation and yet an offline algorithm could
have aggregated all tokens to a single node. The best possible performance is
a competitive ratio of 1, which occurs when the algorithm matches the offline
optimal performance.

Results Summary. In [4], the authors prove that no aggregation algorithm can
guarantee better than a Ω(n) competitive ratio with a constant probability or
better. In more detail:

Smoothed Analysis of Dynamic Networks 525

Theorem 7 (Adapted from [4]). For every aggregation algorithm A, there
exists a pairing graph H such that with probability at least 1/2: A’s aggregation
factor is Ω(n) times worse than the offline optimal aggregation factor in H.

Our goal in the remainder of this section is to prove that this strong
lower bound persists even after a significant amount of smoothing (i.e., k =
O(n/ log2 n)). We formalize this result below (note that the cited probability
is with respect to the random bits of both the algorithm and the smoothing
process):

Theorem 8. For every aggregation algorithm A and smoothing factor k ≤
n/(32 · log2 n), there exists a pairing graph H such that with probability at least
1/2: A’s aggregation factor is Ω(n) times worse than the offline optimal aggre-
gation factor in a k-smoothed version of H (with respect to Gpair).

7.1 Lower Bound

Here we prove that for any smoothing factor k ≤ (cn)/ log2 n (for some positive
constant fraction c we fix in the analysis), k-smoothing does not help aggregation
by more than a constant factor as compared to 0-smoothing. To do so, we begin
by describing a probabilistic process for generating a hard pairing graph. We
will later show that the graph produced by this process is likely to be hard for
a given randomized algorithm. To prove our main theorem, we will conclude by
applying the probabilistic method to show this result implies the existence of a
hard graph for each algorithm.

The α-Stable Pairing Graph Process. We define a specific process for generating
a pairing graph (i.e., a graph in allowed(Gpair)). The process is parameterized by
some constant integer α ≥ 1. In the following, assume the network size n = 2�
for some integer � ≥ 1 that is also a power of 2.2 For the purposes of this
construction, we label the 2� nodes in the network as a1, b1, a2, b2, ..., a�, b�. For
the first α rounds, our process generates graphs with the edge set: {(ai, bi) :
1 ≤ i ≤ �}. After these rounds, the process generates � bits, q1, q2, ..., q�, with
uniform randomness. It then defines a set S of selected nodes by adding to S the
node ai for every i such that qi = 0, and adding bi for every i such that qi = 1.
That is, for each of our (ai, bi) pairs, the process randomly flips a coin to select
a single element from the pair to add to S.

For all graphs that follow, the nodes not in S will be isolated in the graph
(i.e., not be matched). We turn our attention to how the process adds edges
between the nodes that are in S. To do so, it divides the graphs that follow
into phases, each consisting of α consecutive rounds of the same graph. In the
first phase, this graph is the one that results when the process pairs up the
nodes in S by adding an edge between each such pair (these are the only edges).

2 We can deal with odd n and/or � not a power of 2 by suffering only a constant
factor cost to our final performance. For simplicity of presentation, we maintain
these assumptions for now.

526 M. Dinitz et al.

In the second phase, the process defines a set S2 that contains exactly one node
from each of the pairs from the first phase. It then pairs up the nodes in S2

with edges as before. It also pairs up all nodes in S \ S2 arbitrarily. Every graph
in the second phase includes only these edges. In the third phase, the process
defines a set S3 containing exactly one node from each of the S2 pairs from the
previous pairs. It then once again pairs up the remaining nodes in S arbitrarily.
The process repeats this procedure until phase t = log2 |S| at which point only
a single node is in St, and we are done.

The total length of this dynamic graph is α(log2 (|S|)+1). It is easy to verify
that it satisfies the definition of the pairing dynamic network type.

Performance of the Offline Optimal Aggregation Algorithm. We now show that
the even with lots of smoothing, a graph generated by the stable pairing graph
process, parameterized with a sufficiently large α, yields a good optimal solution
(i.e., an aggregation factor of 1).

Lemma 7. For any k ≤ n/32, and any pairing graph H that might be gener-
ated by the (log n)-stable pairing graph process, with high probability in n: the
offline optimal aggregation algorithm achieves an aggregation factor of 1 in a
k-smoothed version of H.

Performance of an Arbitrary Distributed Aggregation Algorithm. We now fix
an arbitrary distributed aggregation algorithm and demonstrate that it cannot
guarantee (with good probability) to achieve a non-trivial competitive ratio in
all pairing graphs. In particular, we will show it has a constant probability of
performing poorly in a graph generated by our above process.

Lemma 8. Fix an online aggregation algorithm A and smoothing factor k ≤
n/(32 · log2 n). Consider a k-smoothed version of a graph H generated by the
(log n)-stable pairing graph process. With probability greater than 1/2 (over the
smoothing, adversary, and algorithm’s independent random choices): A has an
aggregation factor in Ω(n) when executed in this graph.

A final union bound combines the results from Lemmas 7 and 8 to get our
final corollary. Applying the probabilistic method to the corollary yields the
main theorem—Theorem 8.

Corollary 1. Fix an aggregation algorithm A and smoothing factor k ≤ n/(32 ·
log2 n). There is a method for probabilistically constructing a pairing graph H,
such that with probability greater than 1/2 (over the smoothing, adversary, and
algorithm’s independent random choices): A’s aggregation factor in a k-smoothed
version of H is Ω(n) times larger than the offline optimal factor for this graph.

References

1. Augustine, J., Pandurangan, G., Robinson, P., Upfal, E.: Towards robust and
efficient computation in dynamic peer-to-peer networks. In: Proceedings of the
ACM-SIAM Symposium on Discrete Algorithms (2012)

Smoothed Analysis of Dynamic Networks 527

2. Avin, C., Koucký, M., Lotker, Z.: How to explore a fast-changing world (cover time
of a simple random walk on evolving graphs). In: Aceto, L., Damg̊ard, I., Goldberg,
L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part
I. LNCS, vol. 5125, pp. 121–132. Springer, Heidelberg (2008)

3. Clementi, A., Silvestri, R., Trevisan, L.: Information spreading in dynamic graphs.
In: Proceedings of the ACM Symposium on Principles of Distributed Computing
(2012)

4. Cornejo, A., Gilbert, S., Newport, C.: Aggregation in dynamic networks. In:
Proceedings of the ACM Symposium on Principles of Distributed Computing
(2012)

5. Denysyuk, O., Rodrigues, L.: Random walks on evolving graphs with recurring
topologies. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 333–345. Springer,
Heidelberg (2014)

6. Dinitz, M., Fineman, J., Gilbert, S., Newport, C.: Smoothed analysis of
dynamic networks. Full version http://people.cs.georgetown.edu/cnewport/pubs/
SmoothingDynamicNetworks-Full.pdf

7. Dutta, C., Pandurangan, G., Rajaraman, R., Sun, Z., Viola, E.: On the complexity
of information spreading in dynamic networks. In: Proceedings of the ACM-SIAM
Symposium on Discrete Algorithms (2013)

8. Ghaffari, M., Lynch, N., Newport, C.: The cost of radio network broadcast for
different models of unreliable links. In: Proceedings of the ACM Symposium on
Principles of Distributed Computing (2013)

9. Haeupler, B., Karger, D.: Faster information dissemination in dynamic networks
via network coding. In: Proceedings of the ACM Symposium on Principles of Dis-
tributed Computing (2011)

10. Kuhn, F., Oshman, R.: Dynamic networks: models and algorithms. ACM SIGACT
News 42(1), 82–96 (2011)

11. Kuhn, F., Lynch, N., Oshman, R.: Distributed computation in dynamic networks.
In: Proceedings of the ACM Symposium on Theory of Computing (2010)

12. Kuhn, F., Oshman, R., Moses, Y.: Coordinated consensus in dynamic networks.
In: Proceedings of the ACM Symposium on Principles of Distributed Computing
(2011)

13. Lovász, L.: Random walks on graphs: a survey. In: Miklós, D., Sós, V.T., Szőnyi,
T. (eds.) Combinatorics, Paul Erdős is Eighty, vol. 2, pp. 1–46. János Bolyai Math-
ematical Society (1996)

14. Newport, C.: Lower bounds for structuring unreliable radio networks. In: Kuhn,
F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 318–332. Springer, Heidelberg (2014)

15. Das Sarma, A., Molla, A.R., Pandurangan, G.: Fast distributed computation in
dynamic networks via random walks. In: Aguilera, M.K. (ed.) DISC 2012. LNCS,
vol. 7611, pp. 136–150. Springer, Heidelberg (2012)

16. Spielman, D.A., Teng, S.: Smoothed analysis of algorithms: Why the simplex algo-
rithm usually takes polynomial time. J. ACM 51(3), 385–463 (2004)

17. Spielman, D.A., Teng, S.: Smoothed analysis: an attempt to explain the behavior
of algorithms in practice. Commun. ACM 52(10), 76–84 (2009)

18. Spielman, D.A., Teng, S.H.: Smoothed analysis: an attempt to explain the behavior
of algorithms in practice. Communications of the ACM 52(10), 76–84 (2009)

http://people.cs.georgetown.edu/cnewport/pubs/SmoothingDynamicNetworks-Full.pdf
http://people.cs.georgetown.edu/cnewport/pubs/SmoothingDynamicNetworks-Full.pdf

Fault Tolerant Reachability for Directed Graphs

Surender Baswana1, Keerti Choudhary1(B), and Liam Roditty2

1 Department of Computer Science and Engineering,
IIT Kanpur, Kanpur 208016, India

{sbaswana,keerti}@cse.iitk.ac.in
2 Department of Computer Science, Bar Ilan University, 52900 Ramat Gan, Israel

liam.roditty@biu.ac.il

Abstract. Let G = (V, E) be an n-vertices m-edges directed graph.
Let s ∈ V be any designated source vertex, and let T be an arbitrary
reachability tree rooted at s. We address the problem of finding a set
of edges E ⊆ E\T of minimum size such that on a failure of any vertex
w ∈ V , the set of vertices reachable from s in T ∪ E\{w} is the same as
the set of vertices reachable from s in G\{w}. We obtain the following
results:

• The optimal set E for any arbitrary reachability tree T has at most
n − 1 edges.

• There exists an O(m logn)-time algorithm that computes the opti-
mal set E for any given reachability tree T .

For the restricted case when the reachability tree T is a Depth-First-
Search (DFS) tree it is straightforward to bound the size of the optimal
set E by n − 1 using semidominators with respect to DFS trees from
the celebrated work of Lengauer and Tarjan [13]. Such a set E can be
computed in O(m) time using the algorithm of Buchsbaum et. al [4].

To bound the size of the optimal set in the general case we define
semidominators with respect to arbitrary trees. We also present a sim-
ple O(m log n) time algorithm for computing such semidominators. As a
byproduct, we get an alternative algorithm for computing dominators in
O(m log n) time.

1 Introduction

Networks in most real life applications are prone to failures. Failures, though
unpredictable, are transient due to some simultaneous repair process that is
undertaken in the application. This motivates the research on designing fault
tolerant structures for various graph problems.

We distinguish between two models for fault tolerance. In the Pre-Design
fault-tolerant model the network is designed from scratch such that it will fulfill

This research was partially supported by Israel Science Foundation (ISF) and Uni-
versity Grants Commission (UGC) of India. The research of the second author was
partially supported by Google India under the Google India PhD Fellowship Award.

c© Springer-Verlag Berlin Heidelberg 2015
Y. Moses (Ed.): DISC 2015, LNCS 9363, pp. 528–543, 2015.
DOI: 10.1007/978-3-662-48653-5 35

Fault Tolerant Reachability for Directed Graphs 529

certain robustness requirements that are known at the design phase. In the Post-
Design fault-tolerant model the network already exists and it has to fulfill new
robustness requirements. This model reflects the scenario in which the network
is a physical network such as a road network or an electricity network. Such
networks are rarely redesigned from scratch but new robustness requirements
are introduced through the years.

In this paper we consider the fault tolerant reachability problem in the post-
design fault-tolerant model. From theoretical perspective this model is more
challenging as it is stronger than the pre-design model.

We now define the problem formally. Given a directed graph G = (V,E)
and a source vertex s, a subgraph H is said to be a Fault Tolerant Reachability
Subgraph (FTRS) if for any pair of vertices v, w ∈ V , v is reachable from s in
G\{w} if and only if v is reachable from s in H\{w}. We consider the following
problem. We are given an arbitrary reachability tree T of s and we are required
to find a smallest set E ⊆ E of edges which on addition to T gives an FTRS.
We show that for each tree T , the optimal set E is of size at most n− 1. We also
present an algorithm that computes this optimal set in O(m log n) time.

Parter and Peleg [15] considered the question of finding a sparse subgraph of
G that preserves the distances from s under a single vertex failure. They showed
that if G is an undirected unweighted graph then it has a subgraph H with
O(n3/2) edges such that for every v, x ∈ V , it holds that the distance from s
to v in H \ {x} is the same as in G \ {x}. They also showed a lower bound of
Ω(n3/2). Recently Parter [14] showed a bound of O(n5/3) for the case of dual
failure. She also showed that this result is tight. For the case of weighted graphs,
Demetrescu et al. [8] established a lower bound of Ω(m) for single source fault
tolerant shortest paths structure. Therefore, in light of these lower bounds, it
makes sense to relax the problem requirements in order to obtain a graph H of
linear (or almost linear) size, as required by many real world applications.

Baswana and Khanna [1] showed that if one is willing to consider only undi-
rected graphs and to settle for an approximation then there is a subgraph with
O(n log n) edges that preserves the distances up to a multiplicative error of 3.
Parter and Peleg [16] improved this result and obtained a subgraph with at most
3n edges.

Focusing on the reachability in directed graphs instead of approximation
of shortest paths in undirected graphs, can be viewed as a different type of
relaxation.

The fault tolerant reachability is closely related to the notion of dominators.
Given a directed graph G and a designated vertex s we say that vertex v domi-
nates vertex w if every path from s to w contains v. A vertex v is said to be the
immediate dominator of w if (i) v is a dominator of w, and (ii) every dominator
of w (other than v itself) is also a dominator of v.

In a celebrated work [13], Lengauer and Tarjan show that dominators can be
computed in O(mα(m,n)) time, where α(m,n) is the inverse Ackermann func-
tion. Buchsbaum et. al [4] showed how to implement the algorithm of Lengauer
and Tarjan in O(m) time. For more details on the work of dominators, see

530 S. Baswana et al.

[4,11,12]. To the best of our knowledge, all non trivial previous results are based
on an initialization phase in which a Depth-First-Search (DFS) tree is computed.

Given a DFS tree T rooted at s it is straightforward using the ideas of
Lengauer and Tarjan [13] to find an FTRS. This is implicit in [13] and is based
on the notion of semidominators for DFS trees. This solves the FTRS problem
in the weaker model of pre-design fault tolerant in which the tree can be chosen
at the network design phase and hence can be chosen to be a DFS tree.

Our main result is that given any arbitrary tree T , we can efficiently compute
an optimal set E whose addition to T gives an FTRS. This solves the FTRS
problem in the more general model of post-design. In order to achieve this we
define semidominators with respect to arbitrary reachability trees and not just
DFS trees. We expect that this definition could be of independent interest. As
a byproduct of our new definition of semidominators we obtain the first non-
trivial algorithm for computing dominators that does not rely on a DFS tree
computation. The algorithm, however, has a running time of O(m log n) which
is slower than the state of the art for this problem by a logarithmic factor.

1.1 Related Work

Most of the previous work on fault tolerant structures is on all-pair shortest paths
(APSP). Demetrescu, Thorup, Chowdhury and Ramachandran [8] designed an
O(n2 log n) size data structure that can report the distance from u to v avoiding
x for any u, v, x ∈ V in O(1) time. Bernstein and Karger [3] improved the
preprocessing time of [8] to O(mn polylog n). Duan and Pettie [10] improved
the result of [8] by designing a data structure of O(n2 log n) size that can handle
two vertex faults.

Another closely related problem is the replacement paths problem. In this
problem we are given a source s and a target t and for each edge e on the shortest
path from s to t the algorithm computes the shortest path from s to t in the
graph without e. Many variants of this problem were studied along the years.
For a recent overview see [17] and reference therein.

The questions of finding graph spanners, approximate distance oracles and
compact routing schemes that are resilient to f vertex or edge failures were
studied in [5,6,9].

1.2 Organization of the Paper

We describe notations and terminologies in Section 2. For sake of completeness
we provide an overview of the FTRS for a DFS tree in Section 3. Here we
also highlight the difficulty in extending the existing algorithm for DFS tree
to arbitrary tree. In Section 4, we generalize the concept of semidominators to
arbitrary tree. In Section 5, we show that for any arbitrary tree T , there exists
an optimal set E of at most n − 1 edges whose addition to T will make it an
FTRS. Furthermore, if we are given the semidominators for all vertices in T , the
set E of edges can be computed in O(n) time. In Section 6, we provide a simple

Fault Tolerant Reachability for Directed Graphs 531

O(m log n) time algorithm to compute semidominators. In Section 7, we show
the computation of dominators from semidominators.

2 Preliminaries

Given a directed graph G = (V,E) on n = |V | vertices and m = |E| edges, and a
source vertex s ∈ V , the following notations will be used throughout the paper.

– T : Any arbitrary tree of G rooted at s.
– T (v): The subtree of T rooted at a vertex v.
– par(v): The parent of v in T .
– lca(u, v): The Lowest Common Ancestor of u and v in tree T .
– path(a, b): The tree path from a to b in T . Here a is assumed to be an

ancestor of b.
– out(S): The set of all those vertices in V \S which have an incoming edge

from some vertex in set S.
– deg(S): The sum of the degrees of all vertices in the set S.
– sdom(v): Semidominator of v w.r.t. tree T .
– (σ,w): The sequence obtained by appending w at the end of a sequence σ.
– 〈P :: Q〉: The path formed by concatenating paths P and Q in G. Here it

is assumed that the last vertex of P is the same as the first vertex of Q.

Let P : 〈v1, v2, . . . , vn〉 be a sequence of the vertices V defined by any preorder
traversal of tree T . For notational convenience henceforth, a vertex will also be
denoted by its preorder numbering. Thus, u ≤ v would imply that the preorder
number of u is less than that of v.

Definition 1. A simple path P = (u0, u1, . . . , ut = v) in G is said to be a detour
with respect to a given tree T if u0 is an ancestor of v in T , and for 0 < i < t,
none of the ui’s is an ancestor of v in T .

A detour from u to v can be seen as an alternate path to v when some
intermediate vertex on path(u, v) fails. It follows from Definition 1 that an edge
(u, v) ∈ T is also a detour for vertex v. However, such a detour cannot be used
to handle any failures. The next definition is important to characterize those
detours that are important for fault tolerant.

Definition 2. A detour to v with respect to T that emanates from the ancestor
of v with minimal preorder number is called a highest detour of v.

We denote the highest detour of v with HD(v). In case that there is more
than one highest detour we pick one arbitrarily.

532 S. Baswana et al.

3 DFS Tree Versus Arbitrary Tree

Lengauer and Tarjan [13] presented an algorithm for computing immediate dom-
inators. As part of their work they defined semidominators over a DFS tree T .
Their definition of semidominators can be reformulated as follows:

Definition 3 (Semidominators in DFS Tree). Let T be a DFS tree. For
any vertex v (v �= s), the semidominator sdom(v) is defined to be the highest
ancestor of v from which there is a detour to v. In other words, sdom(v) is equal
to the first vertex on HD(v).

It can be shown that a subgraph H of G that is composed of a reachability
tree T and the highest detours of all the vertices with respect to T is an FTRS
of G. For the case when T is a DFS tree, Lengauer and Tarjan [13] gave an
O(mα(m,n)) time algorithm for computing such an FTRS with at most 2n − 1
edges. In order to prove the 2n − 1 bound they used a crucial property of DFS
tree which in simple words can be re-stated as follows.

Property 1. If (sdom(v), v) is not an edge in G then we can always find a highest
detour HD(v) for v which can be represented as 〈HD(w) :: path(w, y) :: (y, v)〉,
where y is an in-neighbor of v and w is either equal to y or an ancestor of y.

For the case when T is an arbitrary tree, and not a DFS tree, Property 1 no
longer holds. A simple example that illustrates the situation for general trees is
shown in Figure 1. Thus it is not immediately clear whether we can obtain an
FTRS by adding at most n− 1 edges to an arbitrary tree given by an adversary.
In order to achieve our goal, we define semidominators for arbitrary trees in the
next section.

u

v y

w

a

b

Fig. 1. The highlighted and dashed paths in the figure represent respectively the high-
est detours HD(v) and HD(w) for vertices v and w. Detour HD(v) cannot be expressed
as 〈HD(w) :: path(w, y) :: (y, v)〉 because HD(w) passes through an ancestor of v.

Fault Tolerant Reachability for Directed Graphs 533

4 Semidominators with Respect to Arbitrary Trees

Given an arbitrary tree T , let D be a detour from a vertex u to a vertex v with
minimum number of non-tree edges. Let (u1, v1) be the first edge in D and let
(u2, v2), (u3, v3), . . . , (uk, vk) be the sequence of non-tree edges in the order they
appear in D \ (u1, v1). Here u1 = u and vk = v. Consider the edge (ui, vi), where
1 < i ≤ k. Since the segment of D from vi−1 to ui is a path in T it follows
that ui ∈ T (vi−1). Moreover, vi /∈ T (vi−1) as if vi ∈ T (vi−1) we can replace the
segment of D from vi−1 to vi by path(vi−1, vi), thereby reducing the number of
non-tree edges.

Consider now only the vertices (u, v1, v2, . . . , vk). From the above discussion
it follows that these vertices satisfy the relation that v1 ∈ out(u), and for
1 < i ≤ k, vi ∈ out(T (vi−1)). This motivates us to define the notion of a valid
sequence as follows.

Definition 4 (Valid sequence). A sequence of vertices (u, v1, v2, . . . , vk = v)
is said to be a valid sequence with respect to tree T if the following two conditions
hold:

(i) (u, v1) is an edge in G.
(ii) for 1 < i ≤ k, vi ∈ out(T (vi−1)).

Let u and v be any two vertices such that u is an ancestor of v in T . It follows
from Definition 4 that if there exists a detour from u to v in T , then there exists
a valid sequence from u to v. However, the other direction is not always true,
that is, a valid sequence from u to v in T may not correspond to a detour in T .
For example, consider the sequence σ = (u, b, w, v) in Figure 1. This is a valid
sequence but there is no detour from u to v. The one to one correspondence
between detours and valid sequences holds only when T is a DFS tree.

We will now define semidominator with respect to arbitrary trees using valid
sequence. In arbitrary trees, it will turn out that if there is a valid sequence from
sdom(v) to v and sdom(v) �= par(v), then there are two vertex disjoint paths
from sdom(v) to v. Our FTRS for any tree given tree T will store these vertex
disjoint paths in a compact manner.

Definition 5. A vertex u is semidominator of v if (i) u is an ancestor of v,
(ii) there is a valid sequence from u to v, and (iii) there is no other vertex on
path(s, u) which has a valid sequence to v.

Remark 1. There is a detour from an ancestor u of v to v in a DFS tree if and
only if there is a valid sequence from u to v. Hence in the case of DFS tree,
Definition 5 degenerates to Definition 3.

The following lemma provides an alternative definition to semidominators.
We shall use these two definitions interchangeably henceforth.

Lemma 1. Let u be a vertex with minimum preorder number such that there
exists a valid sequence from u to v. Then u is the semidominator of v.

534 S. Baswana et al.

Proof . To prove the lemma it suffices to show that u must be an ancestor
of v. Let us assume, towards a contradiction, that u is not an ancestor of v.
Thus, there is a vertex w such that w = lca(u, v), w �= v and w �= u. Let
(u = v0, v1, v2, . . . , vk = v) be a valid sequence from u to v. Let w1 and w2

be the children of w such that v0 = u ∈ T (w1) and vk = v ∈ T (w2). Let vj

be the first vertex of the sequence that doest not lie in T (w1). If j = 1, then
the in-neighbor v0 of v1 lies in T (w1). If j > 1, then vj has an in-neighbor
say uj that lies in T (vj−1) ⊆ T (w1). Thus, vj ∈ out(T (w1)). The sequence
σ = (w,w1, vj , vj+1, . . . , vk) is also a valid sequence that reaches v, and since
w < u, we get a contradiction. �

5 FTRS for any Arbitrary Tree

In this section we provide the construction of an optimal size FTRS containing
any given arbitrary tree. Our starting point is the following lemma that will be
used to show that in order to have two vertex disjoint paths from sdom(v) to v,
for each v, we need to keep only one extra incoming edge per vertex.

Lemma 2. Let u, v, w ∈ V be three vertices such that v ∈ out(T (w)), v /∈
out(u), and u is some common ancestor of v and w. Let H be a subgraph of G
containing tree T and an edge (y, v), where y ∈ T (w). If H contains two vertex
disjoint paths from u to w, then H also contains two vertex disjoint paths from
u to v.
Proof . Let us assume towards a contradiction that H does not contain two
vertex disjoint paths from u to v. Then it follows from Menger’s Theorem that
there exists a vertex x (other than u, v) such that every path from u to v in H
passes through x, therefore vertex x is on path(u, v). Let P and Q be two vertex
disjoint paths from u to w in H (see Figure 2). Since w �= x, at least one out of
these two paths, say Q, does not pass through x. Now 〈Q :: path(w, y) :: (y, v)〉
gives a path from u to v not passing though x. (Though this concatenated
path may contain loops, but we can remove all these loops). Thus we get a
contradiction. So H must contain two vertex disjoint paths from u to v. �

We now show that a subgraph of G containing a tree T is an FTRS if it
contains 2 vertex disjoint paths from sdom(v) to v, for each possible vertex v.

Lemma 3. Any subgraph H of G satisfying the following conditions is an
FTRS: (i) H contains tree T , (ii) If v is any vertex such that sdom(v) �= par(v),
then there exists two vertex disjoint paths from sdom(v) to v in H.
Proof . Consider the failure of an ancestor x of a vertex w in T . Suppose w is
reachable from s in G \ {x}. Then there must exist a detour D from u to v,
where u and v are respectively vertices lying above and below x in path(s, w).
Now a detour from u to v implies that there exists a valid sequence from u to
v. So the semidominator of v is either equal to u or an ancestor of u. Since here
sdom(v) �= par(v), H contains two vertex disjoint paths, say P and Q from
sdom(v) to v. Without loss of generality we can assume that x does not lie

Fault Tolerant Reachability for Directed Graphs 535

u

v
y

wP

Q

Fig. 2. Two vertex disjoint paths P and Q from u to w.

in P . Thus 〈path(s, sdom(v)) :: P :: path(v, w)〉 is a replacement path to w
(avoiding x) contained in subgraph H. �

For the rest of this section, let σ(v) denote a valid sequence from sdom(v) to v
of minimum possible length. The following lemma will be used in the construction
of an optimal size FTRS containing any arbitrary tree T .

Lemma 4. Consider a vertex v and its minimum length valid sequence σ(v) =
(u = v0, . . . , vk−1, vk = v). Let w = vk−1 be the second last vertex in σ(v). If
|σ(v)| > 2, then sdom(w) = sdom(v) and |σ(w)| < |σ(v)|.
Proof . To prove this lemma we use the alternative definition of semidominators
as given in Lemma 1. If sdom(w) < sdom(v), then (σ(w), v) will be a valid
sequence for v starting from a vertex whose preorder number is less than that
of sdom(v). This is because v ∈ out(T (w)). Similarly, if sdom(v) < sdom(w),
then σ(v) \ {v} will be a valid sequence for w starting from a vertex whose
preorder number is less than that of sdom(w). Thus sdom(w) must be equal
to sdom(v). Now suppose |σ(v)| ≤ |σ(w)|. Then σ(v) \ {v} would be a valid
sequence from sdom(w) to w of length strictly less than |σ(w)|. Hence |σ(w)|
must be less than |σ(v)|. �

Let L be the list of vertices in G arranged in the non-decreasing order of
length of σ(v). The following theorem presents an algorithm for computing an
FTRS of optimal size assuming that the minimum length valid sequences for all
vertices is known.

Theorem 1. Given any arbitrary reachability tree T rooted at s, Algorithm 1
computes an optimal set E such that T ∪ E is an FTRS. Moreover, the size of E
is always bounded by n − 1.
Proof . Note that H already contains the tree T . So it follows from Lemma 3
that it is sufficient to prove that for any vertex v if sdom(v) �= par(v), then H
contains two vertex disjoint paths from sdom(v) to v. The proof is by induction
on list L. Consider a vertex v such that sdom(v) �= par(v). If (sdom(v), v) is a
forward edge, then the tree path from sdom(v) to v, and the edge (sdom(v), v)
are two vertex disjoint paths from sdom(v) to v in H. Thus let us consider the

536 S. Baswana et al.

Algorithm 1. Computing an FTRS H containing an arbitrary tree T .
1 H ← T ;
2 foreach v ∈ L do
3 if (sdom(v), v) is a forward edge then
4 H ← H ∪ (sdom(v), v);
5 else if |σ(v)| > 2 then
6 w ← Second last vertex in σ(v);
7 y ← In-neighbor of v lying in T (w);
8 H ← H ∪ {(y, v)};
9 end

10 end

case when |σ(v)| > 2. Let w be the second last vertex of σ(v) and y be an in-
neighbor of v lying in T (w). So Lemma 4 implies that sdom(w) = sdom(v), and
w precedes v in list L.

We first consider the case when sdom(w) �= par(w). Since w will appear
before v in L, by induction hypothesis H contains two vertex disjoint paths from
sdom(w) to w. Now the edge (y, v) lies in H, so Lemma 2 implies that H contains
two vertex disjoint paths from sdom(v) to v also. Next let us consider the case
when sdom(w) = par(w). Since v lies outside T (w) but in the subtree rooted
at par(w) = sdom(v), we have that sdom(v) = lca(w, v) = lca(y, v). Thus in
this case path(sdom(v), v) and path(sdom(v), y)::(y, v) form two vertex disjoint
paths from sdom(v) to v. Hence, it can be seen that Algorithm 1 computes an
FTRS containing tree T .

Note that we add an extra incoming edge to v only if sdom(v) �= par(v). In
this case, there exist two vertex disjoint paths from sdom(v) to v in G. So v will
be reachable from s even after failure of par(v). Thus any FTRS must keep an
additional incoming edge to v in this case. Hence the subgraph H is indeed a
minimum size FTRS containing tree T . �

Remark 2. Given sdom(v) and a minimum length σ(v) for each v, Algorithm 1
takes O(n) time to compute optimal FTRS containing any given tree T .

In the following section, we present an O(m log n) time algorithm for computing
sdom(v) and a minimum length σ(v) for all v. This implies that given any tree
T , we can compute an optimal FTRS containing T in O(m log n) time.

6 Algorithm for Computing Semidominators and Valid
Sequences

Our algorithm for computing semidominators is an iterative algorithm. It pro-
cesses the vertices in the increasing order of the preorder numbering P of T . Let
vi denote the vertex at the ith place in P. During ith iteration, the algorithm
computes the set Wi consisting of all those vertices whose semidominator is vi.

Fault Tolerant Reachability for Directed Graphs 537

Consider a vertex vi. Let B denote the set of all those vertices w for which
there exists a valid sequence starting from vi and ending at w. The set B can
be computed as follows. We initialize B as the out-neighbors of vi. Next we add
out(T (w)) to B for each w in B, and proceed recursively. By the alternative
definition of semidominators as in Lemma 1 we have that Wi = B \ (∪j<iWj).

In order to design an efficient implementation of the algorithm outlined
above, there are two requirements. The first requirement is that while computing
valid sequences from vi we should not process those vertices whose semidomi-
nator have already been computed. For this purpose, we keep a flag variable
active/inactive corresponding to each vertex w in G. At any instant of time the
active vertices are those vertices whose semidominator has not yet been com-
puted. The second requirement is that given any vertex w we should be able
to compute the set of active nodes in out(T (w)) efficiently. In order to fulfill
these requirements, we use a data structure D that supports the following two
operations efficiently.

1. ActiveOutNghbrs(D, T (w)): return the set of active nodes in out(T (w)).
2. MarkInActive(D, S): mark the vertices in set S as inactive. This is done

by simply deleting from D the incoming edges to all vertices present in set S.

The data structure D is a suitably augmented segment tree formed on an Euler
tour of the tree T . The data structure takes O(deg(A) log n)) time to perform
ActiveOutNghbrs(D, T (w)) operation, where A is the set of vertices reported.
It takes O(deg(S) log n) time to perform MarkInActive(D, S) operation. We
provide the complete details of the data structure in Subsection 6.1.

Algorithm 2 gives the pseudo code for computing semidominators. It main-
tains a queue Q throughout the run of algorithm. The semidominator of the
vertices is computed in the order they are enqueued. Initially all the vertices in
G except root are marked as active. A vertex is marked inactive as soon as it is
enqueued in Q. In the ith iteration the algorithm computes the set of all those
vertices whose semidominator is vi as follows. First it computes the set S of all
the active out-neighbors of vi. This set is enqueued and for each w ∈ S, σ(w) is
set as (vi, w). Next while Q is non empty, it removes the first vertex say x from
Q. For each active node w in out(T (x)), σ(w) is assigned as (σ(x), w) and w
is enqueued in Q. This process is repeated until Q becomes empty. Vertex vi is
assigned as semidominator of all the vertices enqueued in the ith iteration.

Figure 3 illustrates the execution of our algorithm. Figure 3(a) depicts the
first iteration which is supposed to compute W1. The vertices that are enqueued
before the while loop are 〈2, 14〉. The execution of the while loop will place
vertices 15 and 16 into the queue in this order. It can be visually inspected that
these vertices constitute W1. Similarly Figure 3(b) depicts the second iteration
that is supposed to compute W2. The vertices that are enqueued before entering
the while loop are 〈3, 7, 12〉. The execution of the while loop will place vertices
5,10,4,8,11 into the queue in this order. It can be visually inspected that these
vertices constitute W2.

538 S. Baswana et al.

Algorithm 2. Computing semidominator and the corresponding valid
sequence
1 Q ← ∅;
2 for i = 1 to n do
3 S ← Set of active vertices lying in out(vi);
4 Enqueue(Q, S);
5 MarkInActive(D, S);
6 foreach w ∈ S do σ(w) = (vi, w);
7 while (Q 	= ∅) do
8 x ← Dequeue(Q);
9 sdom(x) ← vi;

10 S ← ActiveOutNghbrs(D, T (x));
11 Enqueue(Q, S);
12 MarkInActive(D, S);
13 foreach w ∈ S do σ(w) = (σ(x), w);
14 end

15 end

7

14

1

15

16

9

8 10

11

12

13

5

6

4

3

2

7

14

1

15

16

9

8 10

11

12

13

5

6

4

3

2

(a) (b)

Fig. 3. The filled vertices in Figure (a) and (b) respectively constitute the sets W1 and
W2. Figure (b) shows that all the vertices in W1 are marked inactive in round 2.

For each vertex u, let σ(u) denote a valid sequence from sdom(u) to u of
minimum possible length. Let L be the list of vertices in G arranged in the
non-decreasing order of |σ(u)|. Then it can be proved by induction on L that
Algorithm 2 correctly computes (i) semidominator of u, and (ii) a minimum
length valid sequence from sdom(u) to u, for each vertex u in G.

We now analyze the time complexity of Algorithm 2. The total time taken
by Step 3 in the algorithm is O(m). The time taken by steps 5, 10, and 12 is
O(log n) times the sum of degrees of vertices enqueued in Q. Since each vertex
is enqueued at most once, the running time of the algorithm is O(m log n).

Fault Tolerant Reachability for Directed Graphs 539

Theorem 2. There exists an O(m log n) time algorithm that for any given graph
with n vertices and m edges, and any given reachability tree T , computes the
semidominator and a minimum length valid sequence for each vertex in G.

From Theorems 1 and 2, we directly get the following result.

Theorem 3. There exists an O(m log n) time algorithm that for any given graph
G with n vertices and m edges, and any given reachability tree T rooted at source,
computes an optimal set E such that T ∪ E is an FTRS for G.

6.1 Data Structure

Let T be a segment tree [2] whose leaf nodes from left to right correspond to the
sequence 〈v1, ..., vn〉 (see Figure 4). Our data structure will be T whose nodes
are suitably augmented as follows. Let (u, v) be an edge in G. We store a copy
of the edge as the ordered pair (u, v) at all ancestors of u (including itself) in
tree T . Thus each edge in G is stored at O(log n) levels in T . Let E(b) be the
collection of edges stored at any node b in T . We keep the set E(b) sorted by the
second endpoint of the edges in a doubly link list. For each edge (u, v) ∈ E, we
also store pointer to all log n copies of it in T . The size of the data structure is
O(m log n) in the beginning.

Fig. 4. Data Structure.

The operation MarkInActive(D, S) involves deletion of incoming edges to
all the vertices in set S. Since we store pointers to all log n copies of an edge, a
single edge can be deleted from the data structure in O(log n) time. So the time
taken by this operation is O(deg(S) log n).

We now show that D can perform the operation ActiveOutNgh-

brs(D, T (w)) quite efficiently. Let S0 be the set of active nodes in out(T (w)).
Note that the preorder numbering of the vertices in T (w) will be a contiguous
subsequence of [1, .., n], and w would be the vertex of minimum preorder number
in T (w). Let z be the vertex with maximum preorder number in subtree T (w)
(This information can be precomputed in total O(n) time for all vertices in the
beginning). So [w, .., z] denotes the set of vertices in T (w).

540 S. Baswana et al.

Notice that any contiguous subsequence of [1, .., n] can be expressed as dis-
joint union of at most log n subrees in T . Let τ1, ..., τ� denote these subrees for
the subsequence [w, .., z]. For i = 1 to �, let Ei denote the set of all those edges
(x, y) such that x is a leaf node of τi and y lies outside the set [w, .., z]. It can be
observed that the desired set S0 corresponds to the set of second-endpoints of
all edges in the set ∪�

i=1Ei. Let b1, ..., b� respectively denote the roots of subtrees
τ1, ..., τ� in T . Then set Ei can be computed by scanning the list E(bi) from
beginning (and respectively end) till we encounter an edge (u, v) with v lying in
range [w, .., z]. (See Figure 4). Thus the time taken by the operation Active-

OutNghbrs(D, T (w)) is bounded by O(deg(S0) + log n), where S0 is the set of
vertices reported.

This data structure can be preprocessed in O(m log n) time as follows. First
we compute set E(b) for each leaf node b of T . This takes O(m) time. Now E(b)
for an internal node b can be computed by simply merging the lists E(b1), E(b2)
where b1 and b2 are children of b. The space complexity of D is also O(m log n).

Theorem 4. Given a graph G, it can be preprocessed in O(m log n) time to
build a data structure of size O(m log n) to perform the following operations.

1. ActiveOutNghbrs(D, T (w)): return the set of active nodes in out(T (w)).
2. MarkInActive(D, S): mark the vertices in set S as inactive.

The time taken by both of the above operations is O(deg(S) log n) where S is
the set of vertices reported in the first case, and S is the set of vertices marked
inactive in the second case.

7 Computation of Dominators from Semidominators

A vertex u �= v is said to be a dominator of v if every path from s to v passes
through u. Thus u is a dominator of v if and only if either u = s, or v becomes
unreachable from s on removal of u from G. For each vertex v, we use D(v) to
denote the set of dominators of v. In order to compute the set D(v) it suffices
to compute idom(v) defined as follows.

Definition 6 ([13]). Vertex u is said to be immediate dominator of v, denoted
by u = idom(v), if u is a dominator of v and every other dominator of v (other
than vertex u itself) is also a dominator of u.

The algorithm for computing immediate dominators from semidominators is
almost the same as for the restricted case when T is a DFS tree. For the sake of
completeness, we now provide this algorithm. The starting point is the concept
of relative dominators defined as follows.

Definition 7 ([4]). A vertex w is said to be a relative dominator of v if w
is a descendant of sdom(v) on path(sdom(v), v) for which sdom(w) has the
minimum preorder numbering.

Fault Tolerant Reachability for Directed Graphs 541

The following relationship between relative dominators, immediate domina-
tors, and semidominators was shown by Buchbaum et al. [4] for DFS tree. We
show that this relation holds even for any arbitrary tree as well.

Lemma 5 ([4]). For any vertex v, if sdom(rdom(v)) = sdom(v), then idom(v)
= sdom(v), otherwise, idom(v) = idom(rdom(v)).
Proof . Let w be a relative dominator of v, and u = idom(w). For the case when
w = v, it is easy to see that idom(v) = sdom(v). Thus we consider the case
w �= v. In this case, in order to prove that idom(v) = u, we need to show that
u is a dominator of v and there does not exists any other dominator of v on
path(u, v).

We first show that v is unreachable from s in G \ {u}. Since u = idom(w),
we have that w is unreachable from s in G\{u}. Assume towards a contradiction
that there is a path from s to v in G\{u}. Then there must exist a detour D
from a to b where a is an ancestor of u and b is a descendant of w belonging
to path(w, v). Since detour D implies existence of a valid sequence from a to
b, it follows that sdom(b) ∈ path(s, a). This contradicts that w is a relative
dominator of v. Hence v is unreachable from s in G\{u}. Thus u is a dominator
of v.

In order to show that u is the immediate dominator of v, it suffices to
show that there does not exist any vertex on path(u, v)\{u} whose removal
disconnects v from s. Assume towards a contradiction that there exists such
a vertex x. Since there are two vertex disjoint paths from sdom(v) to v, so x
can not lie on path(sdom(v), v)\{sdom(v), v}. Also note that x can not lie on
path(u,w)\{u,w} as there are two vertex disjoint paths from idom(w) to w.
Since sdom(v) is an ancestor of w, this contradicts the existence of x. �

Lemma 5 suggests that once we have computed relative dominators, the
immediate dominators can be computed in O(n) time by processing the vertices
of T in a top down manner. The task of computing relative dominators can be
formulated as a data structure problem on a rooted tree as follows.

Each tree edge (u, y) is assigned a weight equal to sdom(y). It can be seen
that if (a,w) is minimum weight edge on path(sdom(v), v), then w is a relative
dominator of v. So in order to compute relative dominators, all we need is to
compute the least weight edge on any given path of tree T . This problem turns
out to be an instance of Bottleneck Edge Query (BEQ) problem on trees with
integral weights. Demaine et al. [7] recently presented the following optimal
solution for this problem.

Theorem 5 (Demaine et al. [7]). A tree on n vertices and edge weights in
the range [1, n] can be preprocessed in O(n) time to build a data structure of
O(n) size so that given any u, v ∈ V , the edge of smallest weight on path(u, v)
can be reported in O(1) time.

We process tree T in a top down order to compute idom(v) as follows. We
first compute rdom(v) in O(1) time by performing BEQ query between v and
sdom(v). Using the data structure stated in Theorem 5, it takes O(1) time.
Let w = rdom(v). If w = v, then we set idom(v) ← sdom(v). Otherwise, we

542 S. Baswana et al.

set idom(v) ← idom(w). Since we process the vertices in a top down fash-
ion, idom(w) has already been computed. Hence it takes O(1) time to compute
idom(v). So it can be concluded that we can compute immediate dominators of
all vertices in O(n) time only if we know semidominators of all vertices.

References

1. Baswana, S., Khanna, N.: Approximate shortest paths avoiding a failed vertex:
Near optimal data structures for undirected unweighted graphs. Algorithmica
66(1), 18–50 (2013)

2. Bentley, J.L.: Solutions to Klee’s rectangle problems, Dept. of Comp. Sci.,
Carnegie-Mellon University, Pittsburgh, PA (1977) (unpublished manuscript)

3. Bernstein, A., Karger, D.: A nearly optimal oracle for avoiding failed vertices and
edges. In: STOC 2009: Proceedings of the 41st Annual ACM Symposium on Theory
of Computing, pp. 101–110. ACM, New York (2009)

4. Buchsbaum, A.L., Georgiadis, L., Kaplan, H., Rogers, A., Tarjan, R.E., Westbrook,
J.: Linear-time algorithms for dominators and other path-evaluation problems.
SIAM J. Comput. 38(4), 1533–1573 (2008)

5. Chechik, S.: Fault-tolerant compact routing schemes for general graphs. Inf. Com-
put. 222, 36–44 (2013)

6. Chechik, S., Langberg, M., Peleg, D., Roditty, L.: f-Sensitivity distance oracles and
routing schemes. Algorithmica 63(4), 861–882 (2012)

7. Demaine, E.D., Landau, G.M., Weimann, O.: On cartesian trees and range mini-
mum queries. Algorithmica 68(3), 610–625 (2014)

8. Demetrescu, C., Thorup, M., Chowdhury, R.A., Ramachandran, V.: Oracles for
distances avoiding a failed node or link. SIAM J. Comput. 37(5), 1299–1318 (2008)

9. Dinitz, M., Krauthgamer, R.: Fault-tolerant spanners: better and simpler. In:
Gavoille, C., Fraigniaud, P. (eds.) Proceedings of the 30th Annual ACM Sym-
posium on Principles of Distributed Computing, PODC 2011, San Jose, CA, USA,
June 6–8, 2011, pp. 169–178. ACM (2011)

10. Duan, R., Pettie, S.: Dual-failure distance and connectivity oracles. In: SODA
2009: Proceedings of 19th Annual ACM -SIAM Symposium on Discrete Algo-
rithms, Philadelphia, PA, USA, pp. 506–515. Society for Industrial and Applied
Mathematics (2009)

11. Fraczak, W., Georgiadis, L., Miller, A., Tarjan, R.E.: Finding dominators via dis-
joint set union. J. Discrete Algorithms 23, 2–20 (2013)

12. Georgiadis, L., Tarjan, R.E.: Dominators, directed bipolar orders, and independent
spanning trees. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.)
ICALP 2012, Part I. LNCS, vol. 7391, pp. 375–386. Springer, Heidelberg (2012)

13. Lengauer, T., Tarjan, R.E.: A fast algorithm for finding dominators in a flowgraph.
ACM Trans. Program. Lang. Syst. 1(1), 121–141 (1979)

14. Parter, M.: Dual failure resilient BFS structure (2015). arXiv:1505.00692
15. Parter, M., Peleg, D.: Sparse fault-tolerant BFS trees. In: Bodlaender, H.L., Ital-

iano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 779–790. Springer, Heidelberg
(2013)

http://arxiv.org/abs/1505.0069

Fault Tolerant Reachability for Directed Graphs 543

16. Parter, M., Peleg, D.: Fault tolerant approximate BFS structures. In: Chekuri,
C. (ed.) Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5–7, 2014,
pp. 1073–1092. SIAM (2014)

17. Williams, V.V.: Faster replacement paths. In: Randall, D. (ed.) Proceedings of the
Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2011, San Francisco, California, USA, January 23–25, 2011, pp. 1337–1346. SIAM
(2011)

Locally Optimal Load Balancing

Laurent Feuilloley1,2, Juho Hirvonen2, and Jukka Suomela2(B)

1 École Normale Supérieure de Cachan, Cachan, France
2 Helsinki Institute for Information Technology HIIT,

Department of Computer Science, Aalto University, Espoo, Finland
jukka.suomela@aalto.fi

Abstract. This work studies distributed algorithms for locally optimal
load-balancing : We are given a graph of maximum degree Δ, and each
node has up to L units of load. The task is to distribute the load more
evenly so that the loads of adjacent nodes differ by at most 1. If the
graph is a path (Δ = 2), it is easy to solve the fractional version of the
problem in O(L) communication rounds, independently of the number
of nodes. We show that this is tight, and we show that it is possible to
solve also the discrete version of the problem in O(L) rounds in paths.
For the general case (Δ > 2), we show that fractional load balancing can
be solved in poly(L, Δ) rounds and discrete load balancing in f(L, Δ)
rounds for some function f , independently of the number of nodes.

1 Introduction

In this work, we introduce the problem of locally optimal load balancing, and
study it from the perspective of distributed algorithms. In this problem, we are
given a graph G = (V,E), and each node has up to L units of load. The task is
to distribute load more evenly so that the loads of adjacent nodes differ by at
most 1:

G:

G:

input:

output:

That is, we want to smooth out the load distribution, and find an equilibrium in
which no edge can improve its load distribution by selfishly moving load between
its endpoints.

See the full version of this work [10] for detailed proofs and additional illustrations.

c© Springer-Verlag Berlin Heidelberg 2015
Y. Moses (Ed.): DISC 2015, LNCS 9363, pp. 544–558, 2015.
DOI: 10.1007/978-3-662-48653-5 36

Locally Optimal Load Balancing 545

A bit more formally, in the load balancing problem we are given an input
vector x : V → {0, 1, . . . , L}, and the task is to find an output vector y : V →
[0, L] and a flow f : E → R so that for each node v ∈ V we have

y(v) = x(v) +
∑

(u,v)∈E

f(u, v), (1)

and for each edge (u, v) ∈ E we have

|y(u) − y(v)| ≤ 1. (2)

Here is an illustration of the input and a feasible solution in the special case that
G is a path:

The problem comes in two natural flavours:

– Discrete load balancing : y(v) ∈ {0, 1, . . . , L}, i.e., load units are indivisible.
– Fractional load balancing : y(v) ∈ [0, L], i.e., load units can be divided.

1.1 Centralised Algorithms

Both discrete and fractional load balancing can be solved easily with the follow-
ing algorithm: Start with y ← x and f ← 0. Then repeatedly pick an unhappy
edge (u, v) ∈ E with y(u) ≥ y(v) + 2, and move one unit of load from u to v.
This algorithm clearly converges, as the potential function

∑
v y(v)2 decreases

by at least 2 in each step.

1.2 Local Solutions and Local Algorithms

In the above centralised algorithm, we can think that each node v has a pile of
y(v) tokens and we always move the topmost token. Then the height of a token
decreases by at least one every time we move it; hence no individual token is
moved more than L times. This argument shows that there always exists a local
solution in which the final position of a token is always within distance L from
its origin; that is, each token can stay in its radius-L neighbourhood.

In this work we are interested if the problem can be solved with a local
algorithm: is it possible to solve the problem so that we can compute the flow
f(u, v) for each edge (u, v) ∈ E based on only the information that is available
within distance T from (u, v) in graph G, for some T . Equivalently, we want
to know if there is a (deterministic) distributed algorithm in the usual LOCAL

546 L. Feuilloley et al.

model [21] that solves the load balancing problem in T communication rounds,
or more succinctly, in time T .

We will assume that the input graph has a maximum degree of Δ. We are
interested in local algorithms with a running time of T = T (L,Δ) that may
depend on the maximum load L and maximum degree Δ, but is independent
of the number of nodes n = |V |. Such an algorithm could be used to solve
load balancing even in infinitely large graphs, and it would be very easy to e.g.
parallelise such algorithms, as each part of the output can be determined based
on its local neighbourhood.

1.3 Smoothing with Moving Average

There is a special case that can be easily solved with a local algorithm in time
T = O(L): fractional load balancing in 2-regular graphs (cycles and infinite
paths). We can simply calculate the moving average of the input loads with a
window of size Θ(L). More concretely, each node gives a fraction 1/(2L + 1) of
its input load to every node (including itself) in its radius-L neighbourhood.
This way the final loads of adjacent nodes differ by at most L/(2L + 1) < 1/2
units. The same strategy can be applied easily in, e.g., d-dimensional grids.

Among others, the present work seeks to answer the following questions:

– Is the running time of O(L) optimal here, or could we solve it in time o(L)?
– Can we generalise this kind of smoothing algorithms to arbitrary graphs,

and if so, what is the running time?
– Can we generalise this kind of smoothing algorithms to discrete load

balancing?

1.4 Contributions

The contributions of this work are as follows. We start with a simple lower
bound:

Theorem 1. Load balancing requires Ω(L) rounds, even in the case of paths
and cycles.

Then we prove negative results for various algorithm families that have been
used widely in the prior work. To this end, we define the following algorithm
families:

– Match-and-balance algorithms: In each step, the algorithm finds a matching
M and balances the load (fully or partially) for each edge in M . More pre-
cisely, for each edge (u, v) ∈ M with y(u) > y(v), the algorithm increases
the flow f(u, v) by at most (y(u) − y(v))/2. For example, many natural dis-
tributed versions of the centralised algorithm from Section 1.1 are of match-
and-balance type.

– Careful algorithms: In each round, for each edge (u, v) ∈ E, the algorithm
increases or decreases f(u, v) by at most poly(L). All match-and-balance
algorithms are also careful algorithms.

Locally Optimal Load Balancing 547

– Oblivious algorithms: The total amount of load moved from node u to v
only depends on the initial load of u and the distance between u and v. For
example, the moving average algorithm from Section 1.3 is oblivious.

We show that algorithms of any of these types cannot find a locally optimal load
balancing efficiently (or at all):

Theorem 2. Any match-and-balance algorithm takes Ω(L2) rounds in the worst
case, even in paths and cycles.

Theorem 3. Any careful algorithm takes ΔΩ(L) rounds in the worst case.

Theorem 4. There are no oblivious algorithms for infinite d-regular trees with
d ≥ 3.

We then present the main contributions—local algorithms for load balancing.
First, we show that we can circumvent the barrier of Theorem 2:

Theorem 5. Discrete load balancing can be solved in time O(L) in paths and
cycles, with a deterministic local algorithm.

Corollary 1. The time complexity of both fractional and discrete load balancing
in paths and cycles is Θ(L).

Next we show that we can also circumvent the barriers of Theorem 3 and 4
for fractional load balancing—naturally, we have to design an algorithm that is
neither oblivious nor careful:

Theorem 6. Fractional load balancing can be solved in time poly(L,Δ) in
graphs of maximum degree Δ with a deterministic local algorithm.

Finally, we show that discrete load balancing can be solved locally, i.e., in
time that is independent of n:

Theorem 7. Discrete load balancing can be solved in time T (L,Δ), for some
function T , in graphs of maximum degree Δ with a deterministic local algorithm.

Whether there is an efficient algorithm for discrete load balancing in the
general case remains an open question.

2 Related Work

There is a vast body of literature related to problems that are superficially similar
to locally optimal load balancing. However, in many cases the primary goal is
something else—for example, achieving a near-optimal global solution—and the
algorithms just happen to also find a locally optimal solution.

Most of the previous solutions are inefficient. In particular, we are not aware
of any solution that comes close to O(L) for discrete load balancing on paths,
or close to poly(L,Δ) for fractional load balancing in general graphs. In prior
work, the inefficiency typically stems from at least one of the following factors:

548 L. Feuilloley et al.

1. Inherently global problems: A lot of prior work focuses on problems that are
inherently global—for example, the task is to find a solution such that the
difference between the minimum load and the maximum load is at most 1.
It is easy to see that any algorithm for solving such problems takes Ω(n)
rounds in the worst case.

2. Natural but inefficient algorithms: Many papers study various natural pro-
cesses for doing load balancing. Many of these are of match-and-balance
type, and virtually all of these are careful. Typically, the negative results of
Theorems 2 and 3 apply.

In contrast, we study a problem that can be solved efficiently, and our algorithms
demonstrate that it is indeed possible to break the barriers of Theorems 2 and 3.
In what follows, we will discuss related work in more detail.

Reducing a Global Potential with Local Rules. There is a lot of litera-
ture on load balancing when the goal is to reduce a global potential function
by iterating a local balancing rule. Examples of such potential functions are
the difference between the maximum and the minimum load (discrepancy), the
maximum load (makespan), and the quadratic difference to the average load.

Various models are considered: two classic models are the diffusion model,
where vertices distribute their load to all their neighbours, and the matching
model, where the load is exchanged only along the edges of a matching—for
example a random matching or an edge colouring.

In the continuous case, where the loads are assumed to be infinitely divisible,
the speed of convergence was analysed for simple schemes both in the diffusion
model [23,25] and the matching model [6,13]. In both the speed of convergence
is essentially captured by the spectral properties of the graph in question.

In the context of indivisible loads, known as the discrete case, similar prob-
lems were first studied for networks designed to balance the load quickly [22].
Different schemes for reducing the discrepancy in the discrete case were anal-
ysed, and the question of whether the speed of convergence in the continuous
case could be matched remained open [1,12,13,20]. Recently Sauerwald and
Sun [24] were able to prove convergence as fast as in the continous case, up to
constant factors. Nevertheless, reducing discrepancy is a global problem and can
take linear time in the worst case.

Semi-matching Problem. In the semi-matching problem the nodes of a graph
are divided into clients and servers [15]. Each client has to be assigned to an
adjacent server. The goal is to optimise the total waiting time of the clients.
Czygrinow et al. [8] presented a distributed algorithm for finding a locally opti-
mal semi-matching in time poly(Δ); this also implies a factor-2 approximation
of globally optimal semi-matchings. The semi-matching problem is very similar
to the locally optimal load balancing problem, especially when limited to the
case of degree 2 clients, with the tokens being more “localised”. Indeed, our
linear lower bound can be adapted to prove a lower bound for locally optimal

Locally Optimal Load Balancing 549

semi-matchings. However, to our knowledge, efficient semi-matching algorithms
do not directly imply efficient load-balancing algorithms.

Balls into Bins. In the d-choice process each of n balls goes in the least loaded
of d random bins. Dependency of the maximum load on the parameter d is well
known [3,17,26]. The choice of the bins can be modelled by a graph [18]; in
one variant the bins are connected by edges and each ball does a local search
until it finds a local minimum [5,7]. This process produces a locally optimal load
balancing, but the model of computing is sequential (balls arrive one at a time).

Sandpile Models and Chip-Firing Games. Our stability condition is similar
to what is used in sandpile models [4,9,16] and chip-firing games [2]. However,
in these problems the goal is usually to describe final configurations for fixed,
very simple algorithms that simulate a natural phenomenon.

Filtering. Sliding window algorithms for computing the running average or for
image filtering are natural local algorithms. Averaging type algorithms, how-
ever, cannot guarantee an integral solution to load balancing problems. Median
filtering does guarantee integral solutions for integral inputs; however, it does
not preserve the total load.

Games and Equilibriums. The locally optimal load balancing problem can
be seen as a problem of finding an equilibrium state, where no single load token
can gain advantage by moving. We show that such an equilibrium can be found
locally, that is, the decisions made in one part of the graph do not propagate too
far. This is in contrast with problems such as finding stable matchings, where
there is a local algorithm only for finding almost-stable matchings [11].

Matchings. Locally optimal load balancing is closely related to bipartite max-
imal matching : if the initial loads are x(v) ∈ {0, 2}, then it is easy to see that a
solution can be found using a bipartite maximal matching algorithm. This is a
problem that can be solved in time O(Δ) [14]. Showing a matching lower bounds
is a major open question, and we do not expect that one can prove tight lower
bounds for locally optimal load balancing as a function of Δ before we resolve
the distributed time complexity of bipartite maximal matching.

In our algorithms for discrete load balancing, we will use the bipartite max-
imal matching [14] algorithm as a subroutine. For fractional load balancing, we
use the almost-maximal fractional matching algorithm due to Khuller et al. [19]
as a subroutine.

3 Negative Results

We will now prove the negative results of Theorems 1–4. For simplicity,
we prove the statements for deterministic distributed algorithms; it is fairly

550 L. Feuilloley et al.

straightforward to extend the results to randomised algorithms (e.g., consider
the expected values of the outputs).

Recall that in Section 1 we defined the problem so that the output is bounded
by L. However, we will not exploit this restriction in any of the lower-bound
proofs. The negative results hold verbatim for a relaxed version of the problem
in which the outputs can be any nonnegative real numbers. We only assume that
the inputs are bounded by L.

3.1 Load Balancing on Paths and Cycles

We start with the unconditional lower bound that holds for any algorithm, for
both fractional and discrete load balancing, and in the simplest possible case of
paths or cycles.

Theorem 1. Load balancing requires Ω(L) rounds, even in the case of paths
and cycles.

Proof. We will give the proof for the case of paths; the case of cycles is very
similar. Consider a path P with n nodes, labelled with the numbers 1, 2, . . . , n
from left to right, for a sufficiently large n. Let A be a load-balancing algorithm.
For an input x : V → {0, ..., L}, we write A(x) for the output of A on input x.
Let h = �L/2� − 1.

Consider the following constant inputs: x0 : v 	→ 0 and xL : v 	→ L. Let
y0 = A(x0) and yL = A(xL). Clearly y0(v) = 0 for all v and yL(v) ≥ L for at
least one v. Hence we can find two nodes, � and r, such that y0(�) = 0, yL(r) ≥ L,
and |r − �| = L − 1.

W.l.o.g., assume that � < r. Let m = (r + �)/2 be the midpoint between
� and r. Now define an input x such that x(i) = 0 for i ≤ m and x(i) = L
otherwise. Note that the radius-h neighbourhoods of � are identical in x0 and x.
Similarly, the radius-h neighbourhoods of r are identical in xL and x.

Let y = A(x). If y(�) = y0(�) and y(r) = yL(r), we have a contradiction: the
distance between � and r is smaller than their load difference, and hence there has
to be an unhappy edge between them. Therefore y(�)
= y0(�) or y(r)
= yL(r).
In both cases, there is a node v that changed its output between two instances,
even though the inputs were identical up to distance h. Hence the running time
of A has to be at least h + 1 = Θ(L). ��

3.2 Match-and-Balance Algorithms

Recall that in each round, a match-and-balance algorithm finds some matching
M , and then for each edge (u, v) ∈ M with y(u) > y(v), the algorithm increases
the flow f(u, v) by at most (y(u) − y(v))/2. Note that M does not need to
be a maximal matching, a maximum matching, or a random matching—the
following lower bound holds regardless of how clever the algorithm tries to be in
its selection of the matching M , and even if it gets the matchings in zero time
from an oracle.

Locally Optimal Load Balancing 551

Theorem 2. Any match-and-balance algorithm takes Ω(L2) rounds in the worst
case, even in paths and cycles.

The basic idea of the proof is simple. Let A be a match-and-balance algo-
rithm.

1. We construct an instance in which A has to move Ω(L3) units of load in
total.

2. We prove that A can move only O(L) units of load per round.

Hence we have a lower bound of Ω(L2) for the running time of A.
We will again study the case of paths; the case of cycles is very similar. Let

P be a path with 2n + 1 nodes, labelled with −n,−n + 1, . . . , n from left to
right. We say that a load vector is monotone if y(i) ≥ y(j) for all i ≤ j. The key
feature of match-and-balance algorithms is that a monotone load vector remains
monotone after each step.

Lemma 1. Match-and-balance algorithms maintain a monotone load configura-
tion on P .

Proof. A simple case analysis, see the full version of this work [10]. ��
In a monotone configuration, we can only move O(L) units of load per round.

Lemma 2. Any match-and-balance algorithm A can move at most L/2 units of
load in a single round on path P with a monotone load configuration.

Proof. Since A maintains a monotone load configuration, the sum of the load
differences over all edges is at most L. Therefore even if M contains all edges
with a non-zero load difference, the algorithm can move only at most L/2 units
of load per round in total. ��
Proof (of Theorem 2). We will consider the input vector x where x(i) = L for
i ≤ 0 and x(i) = 0 otherwise. The vector is monotone and hence it remains
monotone throughout the execution of A. Consider the output of node 0. There
are two cases:

1. The output of node 0 is at most h = L/2. Now for each i = 0, 1, . . . , h − 1,
we can observe that the load of node −i has decreased by at least h − i
units, and by monotonicity, all of this load has been moved to the right. In
particular, for each i we have moved h− i units of load from node −i over at
least i+1 edges. The total amount of work done by the nonpositive nodes is
at least the tetrahedral number 1 ·h+2 ·(h−1)+ . . .+h ·1 = Θ(h3) = Θ(L3).

2. The output of node 0 is at least h = L/2. Now for each i = 0, 1, . . . , h − 1,
we can observe that the load of node i has increased by at least h − i units,
and by monotonicity, all of this load has been moved from the left. The total
amount of work done by the nonnegative nodes is at least Θ(L3).

By Lemma 2, moving Θ(L3) units of load takes Ω(L2) rounds. ��

552 L. Feuilloley et al.

3.3 Careful Algorithms

Recall that careful algorithms move O(L) units of load per round—this includes,
for example, all match-and-balance algorithms, as well as many other natural
algorithms that simulate the physical process of collapsing piles of tokens.

Theorem 3. Any careful algorithm takes ΔΩ(L) rounds in the worst case.

Proof. Construct the input (G, x) as follows: We have a tree Gu rooted at u,
a tree Gv rooted at v, plus an edge {u, v}. Both trees are of depth L/4; each
non-leaf node has d − 1 children. All nodes of Gu have an input load of 0, and
all nodes of Gv have an input load of L.

Now consider any solution (y, f). If y(u) ≥ L/4, then all nodes of Gu have
a load of at least 1, and there are dΩ(L) nodes in Gu. All of the load has to be
moved across the edge {u, v}, and hence f(v, u) = dΩ(L). Otherwise y(u) < L/4,
and y(v) < L/4 + 1. In this case all nodes of Gv have a load of at most L − 1,
and again we can conclude that f(v, u) = dΩ(L).

A careful algorithm starts with y ← x and f ← 0 and changes each element
of f by at most poly(L) in each round. Hence any careful algorithm has to spend
dΩ(L) for this instance. ��

3.4 Oblivious Algorithms

Recall that in an oblivious algorithm, the total amount of load moved from node
u to v only depends on the initial load of u and the distance between u and v.
For example, the algorithm that computes the moving average in an infinite path
is an oblivious algorithm. In the full version of this work [10] we show that such
algorithms do not exist for infinite regular trees of a degree larger than 2:

Theorem 4. There are no oblivious algorithms for infinite d-regular trees with
d ≥ 3.

4 Discrete Load Balancing in Paths and Cycles

We will now prove the positive results. We first give an algorithm that exactly
matches the lower bound of Theorem 1.

Theorem 5. Discrete load balancing can be solved in time O(L) in paths and
cycles, with a deterministic local algorithm.

Infinite Directed Paths. We will first show how to do load balancing in an
infinite path with a consistent orientation. That is, each node v has a degree
of 2, and it can refer to its left neighbour v − 1 and right neighbour v + 1 in a
globally consistent manner.

We will interpret the path with tokens as a 2-dimensional grid, indexed by
(v, i), where v ∈ V is a node and i ∈ {1, . . . , L} is a possible location for a token.
We say that (v, i) is a slot. Initially, slot (v, i) holds a token if x(v) ≥ i. Our
plan is to move the tokens around in the grid so that we maintain the following
stability conditions.

Locally Optimal Load Balancing 553

Definition 1. A token in slot (v, i) is k-stable if i = 1 or there is a token in
slot (v + k, i − 1). A configuration is k-stable if all tokens are k-stable. For a set
K, a configuration is K-stable if it is k-stable for all k ∈ K.

We write �a, b� = {a, a + 1, . . . , b}. Initially, the configuration is 0-stable. If
we can find a �−1, 1�-stable configuration, we can construct a feasible solution
to the load balancing problem by simply setting y(v) to be equal to the number
of tokens in slots (v, ·).

However, we will now design an O(L)-time algorithm with a stronger stability
condition: it will compute a �−3, 3�-stable configuration. Informally, we smooth
out the load distribution so that the slope of the load curve is at most 1/3. This
extra slack will be helpful when we eventually want to solve the problem in paths
without consistent orientations.

This algorithm is based on the concept of pushes. For a node v and integer
�, define the �-diagonal of v as the following list of slots:

S(v, �) =
(
(v − �, 1), (v − 2�, 2), . . . , (v − L�, L)

)

In an �-push we redistribute the tokens in each S(v, �): if there are k tokens in
S(v, �), then we redistribute the tokens so that the first k elements of S(v, �) are
occupied and the remaining L − k elements are empty. In essence, we let the
tokens slide along each diagonal so that they are piled on the bottom of each
diagonal.

An �-push can be efficiently implemented in time O(�L) with a distributed
algorithm: for example, node v is responsible for redistributing the tokens in
slots S(v, �), and we first use O(�L) rounds so that each node v can discover
everything related to S(v, �), and then another O(�L) rounds so that node v can
inform the relevant nodes regarding how to move tokens in S(v, �).

Clearly, after an �-push we will have an �-stable configuration. The non-trivial
part is that �-pushes do not interfere with any stability that we have previously
achieved.

Lemma 3. For every choice of integers � and k, if a configuration is k-stable,
then it is still k-stable after an �-push.

Proof. See the full version of this work [10]. ��
Now we can easily find a �−3, 3�-stable configuration in time O(L): the algo-

rithm simply does an �-push for each � ∈ �−3, 3�, sequentially, in an arbitrary
order. We will call this algorithm A1.

Remark 1. It may be helpful to compare pushing with the lower-bound construc-
tion of Theorem 2: while a match-and-balance algorithm can only move O(L)
units of load per round in monotone configurations, an O(1)-push can move
Ω(L3) units of load per O(L) rounds in certain monotone configurations.

554 L. Feuilloley et al.

Finite Directed Paths and Cycles. Algorithm A1 finds a �−3, 3�-stable
configuration in infinite directed paths in time O(L). It is fairly straightforward
to use A1 to design an algorithm A2 that works in finite directed paths and
cycles and still finds a �−3, 3�-stable configuration in time O(L). We give the
technical details in the full version of this work [10].

Undirected Paths and Cycles. So far we have designed an algorithm A2 that
finds a �−3, 3�-stable configuration in paths and cycles with a globally consistent
orientation. Now we show how to use it to design an algorithm A3 that finds a
�−1, 1�-stable configuration in paths and cycles without an orientation.

It can be shown that some form of local symmetry-breaking is needed. We
will use the familiar port-numbering model : Each node v has up to two commu-
nication ports, labelled with (v, 1) and (v, 2). The ports are identified with the
endpoints of the edges; each edge joins a pair of ports. The port numbers at the
endpoints of an edge do not need to match—for example, an edge {u, v} may
join (u, 1) to (v, 1) or (u, 1) to (v, 2).

In algorithm A2, we construct a virtual graph G′ as follows: Each node v
splits itself in two virtual nodes, v1 and v2. The virtual nodes also have two
ports. For each edge e = {u, v}, depending on the type of e we connect the
virtual nodes of u and v as follows:

– e joins (u, 1) to (v, 1): connect (u1, 1) to (v2, 2) and (u2, 2) to (v1, 1),
– e joins (u, 1) to (v, 2): connect (u1, 1) to (v1, 2) and (u2, 2) to (v2, 1),
– e joins (u, 2) to (v, 1): connect (u1, 2) to (v2, 1) and (u2, 1) to (v1, 2),
– e joins (u, 2) to (v, 2): connect (u1, 2) to (v1, 1) and (u2, 1) to (v2, 2).

If G was a path with n nodes, then G′ consists of two disjoint paths with n nodes
each. If G was an n-cycle, then G′ consists of either one cycle with 2n nodes or
two cycles with n nodes each.

The key observation is that there is a consistent port numbering in G: port
1 of a virtual node is always connected to port 2 of an adjacent virtual node.
We can now interpret the ports so that in each virtual node port 1 points “left”
and port 2 points “right”.

Each node first splits its input load arbitrarily between its virtual copies.
Then we run algorithm A2 to find a �−3, 3�-stable configuration in the virtual
graph, and then map all tokens back to the original graph: the new load of v is
the sum of the new loads of v1 and v2.

Now we have a configuration where the maximum load difference between a
pair of adjacent nodes is 2. However, the load is approximately well-balanced : a
load difference of more than 2 implies a distance of at least 4. Therefore we can
easily find a �−1, 1�-stable configuration in O(1) time with local operations. For
example, we can apply a match-and-balance algorithm: find a maximal matching
M of unhappy edges and move a token over each edge. Conveniently, all edges
become happy, including those that were not in M . It is easy to find a maximal
matching M in O(1) time, as this is in essence maximal matching in a bipartite
graph of maximum degree 2: on one side we have the nodes that are “too low”

Locally Optimal Load Balancing 555

and on the other side we have the nodes that are “too high” in comparison with
their neighbours.

In summary, we can find a �−1, 1�-stable configuration in any path or cycle
in time O(L), and therefore we can do discrete load balancing in any path or
cycle in time O(L).

5 Discrete Load Balancing in General Graphs

We will now show how to do discrete load balancing in graphs of maximum
degree Δ.

Theorem 7. Discrete load balancing can be solved in time T (L,Δ), for some
function T , in graphs of maximum degree Δ with a deterministic local algorithm.

Again, we will imagine that each node v has L slots, labelled (v, ·), and each
token is placed in one of the slots. Initially slots (v, 1), (v, 2), . . . , (v, x(v)) are
occupied with tokens.

We define the (downward) cone C(v, i) of slot (v, i) as the set of slots (u, j)
=
(v, i) such that i − j ≥ dist(v, u). In the algorithm, if there is a token in (v, i)
and all slots of the cone C(v, i) are full, then we say that the token is stable, and
we freeze it, i.e. it will never be moved again.

In the algorithm we try to match the highest unfrozen tokens with the free
slots in their cones. If they succeed then they move to these slots; otherwise they
can be frozen.

We now give the pseudo-code of the algorithm in a centralised way, prove the
correctness of the algorithm, and then show that it is actually a local algorithm.
The algorithm proceeds as follows:

1. All stable tokens of the initial configuration are frozen.
2. For each h = L,L − 1, . . . , 1:

(a) Construct the virtual bipartite graph Fh = (T ∪ S,E), where T consists
of unfrozen tokens at level h, S consists of all empty slots at levels below
h, and there is an edge {t, s} if s ∈ S is an empty slot in the cone of
token t ∈ T .

(b) In Fh, find a maximal matching M .
(c) For every unfrozen token t at level h: if the token is matched with a slot

s in M , move the token to slot s, otherwise freeze it.
(d) Collapse the tokens so that for each node v that holds k tokens, the

tokens are in the slots (v, 1), (v, 2), . . . , (v, k).

First, remark that we maintain the invariant that at round h, all load in
slots at height h either moves down or is safely frozen. Indeed, if a token is not
matched, then all slots in its cone will be full at the end of the loop, and if it
is matched, it moves to a strictly lower level, thereafter the invariant is true for
level h and maintained for the levels above. At the end of the algorithm all the
tokens are frozen, thus the configuration is stable.

556 L. Feuilloley et al.

We stated the algorithm in a centralised manner, but it is actually local: The
vertices only need the knowledge of their radius-L neighbourhood to find their
neighbours in graph Fh. Graph Fh has a maximum degree of O(LΔL). Therefore
we can find a maximal matching in Fh by simulating O(LΔL) rounds of the pro-
posal algorithm [14] in the virtual graph Fh. The simulation has a multiplicative
O(L) overhead—adjacent nodes in Fh are at distance O(L) in graph G. Finally,
we have O(L) iterations, giving the overall complexity of O(L3ΔL).

6 Fractional Load Balancing in General Graphs

In fractional load balancing, we can use the same basic idea as what we had in
the discrete case, but much faster:

Theorem 6. Fractional load balancing can be solved in time poly(L,Δ) in
graphs of maximum degree Δ with a deterministic local algorithm.

The key idea is that we can add ε units of slack, and find an almost maximal
fractional matching, instead of a maximal integral matching. With the algorithm
by Khuller et al. [19], this can be done in O(log 1

ε +log Δ) rounds, which gives us
an exponential speedup over the O(Δ)-round algorithm for maximal bipartite
matching. We give the details of the algorithm in the full version of this work [10].

7 Conclusions

In this work, we have introduced the problem of finding a locally optimal load
balancing, and studied its distributed time complexity. We have shown that the
problem can be solved in a strictly local fashion, but to do it, one has to resort
to algorithms that are very different from typical load-balancing strategies that
are used in the literature. Among the key findings are:

– an O(L)-time algorithms for discrete load balancing in paths and cycles,
– a poly(L,Δ)-time algorithm for fractional load balancing in graphs of max-

imum degree Δ.

The main open question is the distributed time complexity of the discrete
load balancing problem. Our algorithm is local, but it has a running time expo-
nential in L; the key question is whether poly(L,Δ)-time algorithms exist. We
suspect that it is related to another long-standing open question—the distributed
time complexity of bipartite maximal matching. Indeed, a polylog(Δ)-time algo-
rithm for bipartite maximal matching would imply a poly(L,Δ)-time algorithm
for discrete load balancing. We conjecture that such algorithms do not exist,
but proving such lower bounds seems to be still beyond the reach of current
techniques.

Another open question is the generalisation of the results from the LOCAL
model to the CONGEST model [21]. In particular, the polynomial-time algo-
rithm for fractional load balancing heavily abuses the unlimited bandwidth of
the LOCAL model, but it seems that there are no major obstacles for designing
an analogous algorithm that works efficiently in the CONGEST model.

Locally Optimal Load Balancing 557

Acknowledgments. We have discussed this problem and its variants over the years
with numerous people, including, at least, Sebastian Brandt, Pierre Fraigniaud, Mika
Göös, Petteri Kaski, Barbara Keller, Janne H. Korhonen, Juhana Laurinharju, Tuomo
Lempiäinen, Christoph Lenzen, Joseph S. B. Mitchell, Pekka Orponen, Joel Rybicki,
Thomas Sauerwald, Stefan Schmid, and Jara Uitto. Many thanks to all of you for your
comments, and many thanks to the anonymous reviewers for their feedback on this
work. Computer resources were provided by the Aalto University School of Science
“Science-IT” project.

References

1. Aiello, W., Awerbuch, B., Maggs, B., Rao, S.: Approximate load balancing on
dynamic and asynchronous networks. In: Proc. 25th Annual ACM Symposium on
Theory of Computing (STOC 1993), pp. 632–641. ACM Press (1993). doi:10.1145/
167088.167250

2. Anderson, R., Lovász, L., Shor, P., Spencer, J., Tardos, E., Winograd, S.: Disks,
balls, and walls: analysis of a combinatorial game. The American Mathematical
Monthly 96(6), 481–493 (1989). http://www.jstor.org/stable/2323970

3. Azar, Y., Broder, A.Z., Karlin, A.R., Upfal, E.: Balanced allocations. SIAM Journal
on Computing 29(1), 180–200 (1999). doi:10.1137/S0097539795288490

4. Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality: An explanation
of the 1/f noise. Physical Review Letters 59(4), 381–384 (1987). doi:10.1103/
PhysRevLett.59.381

5. Bogdan, P., Sauerwald, T., Stauffer, A., He, S.: Balls into bins via local search. In:
Proc. 24th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2013),
pp. 16–34. SIAM (2013). doi:10.1137/1.9781611973105

6. Boyd, S., Ghosh, A., Prabhakar, B., Shah, D.: Randomized gossip algorithms.
IEEE Transactions on Information Theory 52(6), 2508–2530 (2006). doi:10.1109/
TIT.2006.874516

7. Bringmann, K., Sauerwald, T., Stauffer, A., Sun, H.: Balls into bins via local
search: cover time and maximum loads. In: Proc. 31st International Symposium
on Theoretical Aspects of Computer Science (STACS 2014), pp. 187–198 (2014).
doi:10.4230/LIPIcs.STACS.2014.187

8. Czygrinow, A., Hanćkowiak, M., Szymańska, E., Wawrzyniak, W.: Distributed
2-approximation algorithm for the semi-matching problem. In: Aguilera, M.K. (ed.)
DISC 2012. LNCS, vol. 7611, pp. 210–222. Springer, Heidelberg (2012)

9. Dhar, D.: Theoretical studies of self-organized criticality. Physica A 369(1), 29–70
(2006). doi:10.1016/j.physa.2006.04.004

10. Feuilloley, L., Hirvonen, J., Suomela, J.: Locally optimal load balancing (2015).
http://arxiv.org/abs/1502.04511

11. Floréen, P., Kaski, P., Polishchuk, V., Suomela, J.: Almost stable matchings
by truncating the Gale-Shapley algorithm. Algorithmica 58(1), 102–118 (2010).
doi:10.1007/s00453-009-9353-9. http://arxiv.org/abs/0812.4893

12. Ghosh, B., Leighton, F.T., Maggs, B., Muthukrishnan, S., Plaxton, C.G.,
Rajaraman, R., Richa, A.W., Tarjan, R.E., Zuckerman, D.: Tight analyses of two
local load balancing algorithms. SIAM Journal on Computing 29(1), 29–64 (1999)

13. Ghosh, B., Muthukrishnan, S.: Dynamic load balancing by random matchings.
Journal of Computer and System Sciences 53(3), 357–370 (1996). doi:10.1006/
jcss.1996.0075

http://dx.doi.org/10.1145/167088.167250
http://dx.doi.org/10.1145/167088.167250
http://www.jstor.org/stable/2323970
http://dx.doi.org/10.1137/S0097539795288490
http://dx.doi.org/10.1103/PhysRevLett.59.381
http://dx.doi.org/10.1103/PhysRevLett.59.381
http://dx.doi.org/10.1137/1.9781611973105
http://dx.doi.org/10.1109/TIT.2006.874516
http://dx.doi.org/10.1109/TIT.2006.874516
http://dx.doi.org/10.4230/LIPIcs.STACS.2014.187
http://dx.doi.org/10.1016/j.physa.2006.04.004
http://arxiv.org/abs/http://arxiv.org/abs/1502.04511
http://dx.doi.org/10.1007/s00453-009-9353-9
http://arxiv.org/abs/0812.4893
http://dx.doi.org/10.1006/jcss.1996.0075
http://dx.doi.org/10.1006/jcss.1996.0075

558 L. Feuilloley et al.

14. Hańćkowiak, M., Karoński, M., Panconesi, A.: On the distributed complexity of
computing maximal matchings. In: Proc. 9th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA 1998), pp. 219–225. SIAM (1998)

15. Harvey, N.J.A., Ladner, R.E., Lovász, L., Tamir, T.: Semi-matchings for bipartite
graphs and load balancing. Journal of Algorithms 59(1), 53–78 (2006). doi:10.
1016/j.jalgor.2005.01.003

16. Kadanoff, L.P., Nagel, S.R., Wu, L., Zhou, S.M.: Scaling and universality in
avalanches. Physical Review A 39(12), 6524–6537 (1989). doi:10.1103/PhysRevA.
39.6524

17. Karp, R.M., Luby, M., Meyer auf der Heide, F.: Efficient PRAM simulation on a
distributed memory machine. Algorithmica 16(4–5), 517–542 (1996). doi:10.1007/
s004539900063

18. Kenthapadi, K., Panigrahy, R.: Balanced allocation on graphs. In: Proc. 17th
Annual ACM-SIAM Symposium on Discrete Algorithm (SODA 2006), pp. 434–443.
SIAM (2006). doi:10.1145/1109557.1109606. http://arxiv.org/abs/cs/0510086

19. Khuller, S., Vishkin, U., Young, N.: A primal-dual parallel approximation technique
applied to weighted set and vertex covers. Journal of Algorithms 17(2), 280–289
(1994). doi:10.1006/jagm.1994.1036

20. Muthukrishnan, S., Ghosh, B., Schultz, M.H.: First- and second-order diffusive
methods for rapid, coarse, distributed load balancing. Theory of Computing Sys-
tems 31(4), 331–354 (1998). doi:10.1007/s002240000092

21. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM Mono-
graphs on Discrete Mathematics and Applications. SIAM, Philadelphia (2000)

22. Peleg, D., Upfal, E.: The token distribution problem. SIAM Journal on Computing
18(2), 229–243 (1989). doi:10.1137/0218015

23. Rabani, Y., Sinclair, A., Wanka, R.: Local divergence of Markov chains and the
analysis of iterative load-balancing schemes. In: Proc. 39th Annual Symposium on
Foundations of Computer Science (FOCS 1998), p. 694. IEEE (1998). doi:10.1109/
SFCS.1998.743520

24. Sauerwald, T., Sun, H.: Tight bounds for randomized load balancing on arbitrary
network topologies. In: Proc. 53rd Annual Symposium on Foundations of Computer
Science (FOCS 2012), pp. 341–350. IEEE, October 2012. doi:10.1109/FOCS.2012.
86

25. Sinclair, A., Jerrum, M.: Approximate counting, uniform generation and rapidly
mixing Markov chains. Information and Computation 82(1), 93–133 (1989). doi:10.
1016/0890-5401(89)90067-9

26. Vöcking, B.: How asymmetry helps load balancing. Journal of the ACM 50(4),
568–589 (2003). doi:10.1145/792538.792546

http://dx.doi.org/10.1016/j.jalgor.2005.01.003
http://dx.doi.org/10.1016/j.jalgor.2005.01.003
http://dx.doi.org/10.1103/PhysRevA.39.6524
http://dx.doi.org/10.1103/PhysRevA.39.6524
http://dx.doi.org/10.1007/s004539900063
http://dx.doi.org/10.1007/s004539900063
http://dx.doi.org/10.1145/1109557.1109606
http://arxiv.org/abs/cs/0510086
http://dx.doi.org/10.1006/jagm.1994.1036
http://dx.doi.org/10.1007/s002240000092
http://dx.doi.org/10.1137/0218015
http://dx.doi.org/10.1109/SFCS.1998.743520
http://dx.doi.org/10.1109/SFCS.1998.743520
http://dx.doi.org/10.1109/FOCS.2012.86
http://dx.doi.org/10.1109/FOCS.2012.86
http://dx.doi.org/10.1016/0890-5401(89)90067-9
http://dx.doi.org/10.1016/0890-5401(89)90067-9
http://dx.doi.org/10.1145/792538.792546

Distributed Large Independent Sets in One
Round on Bounded-Independence Graphs

Magnús M. Halldórsson and Christian Konrad(B)

ICE-TCS, School of Computer Science, Reykjavik University, Reykjavik, Iceland
{mmh,christiank}@ru.is

Abstract. We present a randomized one-round, single-bit messages, dis-
tributed algorithm for the maximum independent set problem in poly-
nomially bounded-independence graphs with poly-logarithmic approx-
imation factor. Bounded-independence graphs capture various models
of wireless networks such as the unit disc graphs model and the quasi
unit disc graphs model. For instance, on unit disc graphs, our achieved
approximation ratio is O((log n

log log n
)2).

A starting point of our work is an extension of Turán’s bound for inde-
pendent sets by Caro and Wei which states that every graph G = (V, E)
contains an independent set of size at least β(G) :=

∑

v∈V
1

degG(v)+1
,

where degG(v) denotes the degree of v in G. Alon and Spencer’s proof
of the Caro-Wei bound in [1] suggests a randomized distributed one-
round algorithm that outputs an independent set of expected size equal
to β(G), using messages of sizes O(log n), where n is the number of ver-
tices of the input graph. To achieve our main result, we show that β(G)
gives poly-logarithmic approximation ratios for polynomially bounded-
independence graphs. Then, for O(1)-claw free graphs (which include
graphs of bounded-independence), we show that using a different algo-
rithm, an independent set of expected size Θ(β(G)) can be computed in
one round using single bit messages, thus reducing the communication
cost to an absolute minimum.

Last, in general graphs, β(G) may only give an Ω(n)-approximation.
We show, however, that this is best possible for one-round algorithms:
We show that each such distributed algorithm (possibly randomized) has
an approximation ratio of Ω(n) on general graphs.

1 Introduction

Something For Almost Nothing. When designing approximation algorithms,
the usual goal is to find desirable trade-offs between approximation guarantee
and the resources required by the algorithm, such as computation time, memory
consumption, the number of queries to the input, or, in the area of distributed
computing, message size and the number of communication rounds. In past years,
in various algorithmic disciplines, research has been carried out in order to deter-
mine the minimum amount of resources required to achieve non-trivial solutions.

Supported by Icelandic Research Fund grants 120032011 and 152679-051.

c© Springer-Verlag Berlin Heidelberg 2015
Y. Moses (Ed.): DISC 2015, LNCS 9363, pp. 559–572, 2015.
DOI: 10.1007/978-3-662-48653-5 37

560 M.M. Halldórsson and C. Konrad

Often, it is asked how much effort it takes to obtain at least something from the
given problem instance. Examples include property testing algorithms [18] that
query a given instance only a few times in order to reason about whether the
instance is close to having a certain property or it is far from having this prop-
erty. In distributed computing, this phenomenon can be observed for example
with regards to communication patterns and the total number of communica-
tion rounds. It has been shown that non-trivial computation is possible even
when the communication pattern of nodes is restricted to beeps [4]. Moreover,
research on so-called local algorithms [12,17] that employ only a few commu-
nication rounds has been carried out and highly non-trivial results have been
obtained (e.g. even some NP-hard problems can be solved in only a constant
number of communication rounds [2]).

In this paper, we ask whether non-trivial computation is possible if we grant
a distributed algorithm only a single communication round. Specifically, we ask
whether reasonable approximations to the maximum independent set problem
can be computed in this harsh setting.
Computational Model. We consider a network of computational units of
unbounded computational power V modelled by a graph G = (V,E). The graph
G constitutes the input graph of the problem. We assume that vertices have
unique IDs. Initially, besides its ID, every node v ∈ V also knows its degree
degG(v). Communication occurs in simultaneous communication rounds along
the edges E of G. Then the runtime of a distributed algorithm is the total num-
ber of communication rounds. In this work, we mainly focus on algorithms that
run in a single communication round. In the LOCAL model, algorithms may
exchange messages of unbounded sizes. In the CONGEST model, message sizes
are restricted to O(log n), where n denotes the number of vertices of the input
graph.
Independent Sets. An independent set I in a graph G = (V,E) is a subset
of non-adjacent vertices. An independent set I is maximal if it is inclusion-wise
maximal, i.e., I ∪ {v} is not an independent set for any v ∈ V \ I. A maximum
independent set is one of maximal size. The independence number of graph G is
the size of a maximum indendent set in G and is denoted by α(G). Computing
maximum independent sets is NP-hard on general graphs [10] and is even hard to
approximate within factor n1−ε for any ε > 0 [21]. The independent set problem
is one of the most studied problems in distributed computing, and we detail
related work further below.
Our Main Result. Our main result concerns graphs of polynomially bounded-
independence, a graph class that includes unit disc graphs and similar graph
classes that are used for modelling wireless networks (for a precise definition see
the next paragraph). We show that in the harsh setting of a single communication
round, a poly-logarithmic approximation ratio can be achieved in polynomially
bounded-independence graphs. Furthermore, we show that not only the number
of communication rounds but also message sizes can be reduced to an absolute
minimum, i.e., to single bit messages.

Distributed Large Independent Sets in One Round 561

Bounded-Independence Graphs. Graphs of bounded-independence capture
many intersection graphs of geometrical objects which in turn are used for mod-
elling conflict graphs of wireless networks. Given a collection X = {X1, . . . , Xn}
of geometrical objects, the corresponding intersection graph is obtained by
assigning X as the vertices of the graph, and an edge is introduced between
two vertices Xi,Xj iff the objects Xi and Xj intersect. In the literature, con-
flict graphs of wireless networks are often modelled by unit disc graphs [7], the
intersection graph of discs with equal radii, where the radius of the discs corre-
sponds to the transmission range of the wireless transmitters. Unit disc graphs
have many nice properties that allow for the design of efficient distributed algo-
rithms, but the assumption of identical transmission radii for all wireless trans-
mitters is often too restrictive. Consequently, the unit disc graphs model has
been extended to more elaborate models such as quasi unit disc graphs [13]
or general disc graphs. In a general disc graph, no restriction on the radii of
the discs are imposed. Then, the parameter δ = rmax/rmin is introduced into
the analysis of algorithms, where rmax and rmin denote the maximal and the
minimal radius of a disc, respectively.

All graphs of the graph classes mentioned above are of bounded-
independence, a property that restricts the size of a maximum independent
set within the set of nodes at a given maximal distance from any node. The
r-neighborhood of a node v is the set of nodes at distance at most r from v
(excluding v).

Definition 1. A graph G = (V,E) is of bounded-independence if there is a
bounding function f(r) so that for each node v ∈ V , the size of a maximum
independent set in the r-neighborhood of v is at most f(r),∀r ≥ 1. We say that
G is of polynomially bounded-independence if f(r) is a polynomial.

It is easily verified that unit disc graphs are of bounded-independence with
respect to a bounding function in O(r2), and (general) disc graphs are of
bounded-independence with respect to a bounding function in O((rδ)2). Many
important problems such as the maximal independent set problem, or the (Δ+1)-
coloring problem can be solved on bounded independence graphs by a distributed
algorithm by Schneider and Wattenhofer that uses O(log∗ n) communication
rounds [19] which underlines the usefulness of this graph class for distributed
computation.
Turán’s Bound and a One-Round Algorithm. A starting point of our work
is an extension of a celebrated theorem by Paul Turán. Turán showed that every
graph G = (V,E) contains an independent set of size at least n/d, where d is
the average degree of G. This result has been extended by Caro [3] and Wei [20]
who showed that there is an independent set of size at least

β(G) :=
∑

v∈V

1
degG(v) + 1

,

where degG(v) denotes the degree of vertex v in G. An independent set of
expected size β(G) can be found by a simple linear time randomized algorithm

562 M.M. Halldórsson and C. Konrad

that follows from an analysis of the Caro-Wei bound by Alon and Spencer in [1].
This algorithm works as follows: Every node v chooses a random real value
between 0 and 1 and adds itself to the independent set I if none of its neighbors
have chosen a larger real value than v. Then, the probability that a node v is
added to the independent set is 1

degG(v)+1 , and, hence, by linearity of expectation,
E|I| =

∑
v∈V

1
degG(v)+1 = β(G).

This algorithm can also be implemented distributively in a single commu-
nication round. Instead of choosing a random real value, every node chooses a
random value from a large enough ordered set (e.g. {1, 2, . . . , n3} suffices) so
that neighboring nodes choose different values with large enough probability. In
order to be able to determine such a number, nodes require knowledge of n,
i.e., the order of the input graph. Furthermore, communicating the chosen value
to neighboring nodes requires messages of size O(log n). This algorithm fulfills,
hence, the restrictions of the CONGEST model. In the following, we will refer
to this algorithm as Alon-Spencer-IS.

It is easy to see that in general graphs, an independent set of size β(G) may
be a factor Θ(n) smaller than the independence number α(G)1. This raises the
following questions:

1. Are there interesting graph classes for which β(G) is a non-trivial approxi-
mation to the independence number α(G)?

2. What are the minimum communication requirements for achieving the β(G)
bound?

3. Is there a one-round independent set algorithm with approximation factor
o(n) on general graphs?

Our Results in Detail. Concerning Question 1, we identify that in graphs of
polynomially bounded-independence, an independent set of size β(G) is a poly-
logarithmic approximation to a maximum independent set. For instance on unit
disc graphs, an independent set of size β(G) is an O((log n

log log n)2)-approximation
to a maximum independent set. Furthermore, we prove that our analysis is tight
up to a constant factor on d-dimensional unit sphere graphs, for any constant
integer d. We also show that on the more general class of k-claw free graphs2,
for k ≥ 3, a similar result cannot be obtained. In the full version of this paper,
we provide k-claw free graphs for which the Caro-Wei bound is not a poly-
logarithmic approximation to the independence number of the graph.

With regards to Question 2, we show that for the more general class of
O(1)-claw free graphs, the communication requirements can be reduced to an
absolute minimum at the price of losing a constant factor. We present a differ-
ent and even simpler one-round algorithm that computes an independent set of
1 Consider, for instance, the graph G = (C ∪ I, E1 ∪ E2) with |C| = |I| = n/2. The

edges E1 turn C into a clique. Furthermore, for every u ∈ C and v ∈ I, the edge
(u, v) is included in E2. Then, the size of a maximum independent set is n/2 while
β(G) ≤ 3

2
.

2 A graph is k-claw free, if it does not contain the complete bipartite K1,k as an
induced subgraph.

Distributed Large Independent Sets in One Round 563

expected size Θ(β(G)) using single bit messages, thus decreasing the message
sizes from O(log n) to 1. This algorithm has the additional advantage that it
does not require the knowledge of n in advance. The latter property and the low
communication requirements allow this algorithm to be implemented in wireless
and radio networks. Note that our main result, a poly-logarithmic approxima-
tion one-round single bits messages algorithm for the maximum independent set
problem in polynomially bounded-independence graphs, follows from the previ-
ous two results.

Last, we answer Question 3 in the negative. We provide a lower bound that
shows that any possibly randomized one-round algorithm with error probability
at most 1/n has approximation ratio Ω(n).

Further Related Work. As already mentioned, independent sets are among
the most studied problems in distributed computing. However, most works con-
sider the maximal independent set problem while we consider the maximum inde-
pendent set problem in this paper. It is known that computing a maximal inde-
pendent set requires Ω(

√
log n) communication rounds [12] in general graphs,

and even on a ring, Ω(log∗ n) rounds are necessary [14,15]. Concerning approxi-
mations to the maximum independent set problem, a (1 + ε)-approximation can
be computed in O(log∗ n) rounds in planar graphs [5]. As in graphs of bounded-
independence, a maximal independent set is a constant factor approximation to
a maximum independent set, the previously mentioned O(log∗ n) rounds algo-
rithm of Schneider and Wattenhofer [19] gives a constant-factor approximation.
Last, we note that the Caro-Wei bound and Turán bound have been previously
used as quality guarantees for independent set approximation (e.g., [6]).

Notations. Throughout the paper, we use the following notations. Let G =
(V,E) be a graph. For a node v ∈ V , let ΓG(v) denotes the neighborhood of v
and degG(v) = |ΓG(v)| its degree. The d-neighborhood of v, denoted Γ d

G(v), is
the set of nodes of distance at most d from v excluding v, while the set of nodes
at distance exactly d from v is denoted by Γ

(d)
G (v). Let Γ d

G[v] := Γ d
G(v) ∪ {v}

(and ΓG[v] = ΓG(v)∪{v}). For a subset of vertices U ⊆ V , the graph G|U is the
subgraph of G induced by the vertices U .

Outline. First, in Section 2, we prove our main result that the Caro-Wei bound
is a poly-logarithmic approximation to the independence number in polynomially
bounded-independence graphs. An algorithm with single-bit messages achieving
the Caro-Wei bound up to a constant factor for O(1)-claw free graphs is discussed
in Section 3. Then, in Section 4, we show that on general graphs, any possibly
randomized distributed one-round algorithm computes an independent set of
size at most O(1), while the graph has an independence number of Ω(n). Last,
in Section 5 we show that our analysis of Section 2 is tight for d-dimensional
unit sphere graphs.

Full Version. In the full version of this paper, we provide additional results.
We show that in O(1)-claw-free graphs, β(G) generally is not a poly-logarithmic
approximation to α(G). Furthermore,we argue that running our algorithm from

564 M.M. Halldórsson and C. Konrad

Section 3 iteratively multiple times does not substantially improve the approxi-
mation ratio of the algorithm.

2 Poly-Logarithmic Approximation on Bounded-
Independence Graphs

We show that in graphs of polynomially bounded-independence, an independent
set of size β(G) is a poly-logarithmic approximation of a maximum independent
set.

We first show that in any graph G = (V,E), for any node v ∈ V and a
large enough constant C, the sum of the inverted degrees in the C log n

log log n -
neighborhood of v is Ω(1) (Lemma 1). The size of an independent set in
such a C log n

log log n -neighborhood in a bounded-independence graph is at most
f(C log n

log log n), by definition. Hence, within the C log n
log log n -neighborhood of any

node v ∈ V , the ratio between the size of a maximum independent set and
the Caro-Wei bound is O(f(log n

log log n)). Then, by decomposing the input graph G

into components of diameters at most 2C log n
log log n , we extend this result to hold

for the entire graph (Theorem 1).

Lemma 1. Let G = (V,E) be an arbitrary graph with maximal degree Δ. Let
m = min{Δ,C log n

log log n}, for a large enough constant C. Then:

∑

u∈Γ m
G [v]

1
degG(u)

= Ω(1).

Proof. Let v ∈ V be any node, and let d0 = degG(v). For abbreviation, let sj =
|Γ (j)

G (v)| for j ≥ 1. We set s0 = 1 and we clearly have s1 = d0. Furthermore, let
di = 1

si

∑
u∈Γ

(i)
G (v)

degG(u) be the average degree of the nodes in Γ
(i)
G (v). Then,

the inverted degree sum of the nodes in the m-neighborhood can be bounded as
follows:

∑

u∈Γ m
G [v]

1
degG(u)

=
1
d0

+
m∑

j=1

∑

u∈Γ
(j)
G (v)

1
degG(u)

≥ 1
d0

+
m∑

j=1

∑

u∈Γ
(j)
G (v)

1
dj

=
1
s1

+
s1
d1

+
m∑

j=2

sj

dj
, (1)

where the first inequality follows from the relationship between the harmonic
mean and the arithmetic mean. For i ≥ 2, consider a node u ∈ Γ

(i)
G (v) of

degree at least di. Then, ΓG(u) ⊆ Γ
(i−1)
G (v) ∪ (Γ (i)

G (v) \ {u}) ∪ Γ
(i+1)
G (v). Hence,

degG(u) ≤ si−1 + si − 1 + si+1, and since di ≤ degG(u), we also have di ≤
si−1 + si + si+1. Similarly, for d1 we obtain the inequality d1 ≤ s1 + s2. Using

Distributed Large Independent Sets in One Round 565

this in Inequality 1, we obtain:

∑

u∈Γ m
G [v]

1
degG(u)

≥ 1
s1

+
s1
d1

+
m∑

j=2

sj

dj
≥ 1

s1
+

s1
s1 + s2

+
m∑

j=2

sj

sj−1 + sj + sj+1
. (2)

Suppose that the sequence (si)1≤i≤m is not strictly increasing. Let j be the
smallest index so that sj ≤ sj−1. If j = 2, then the term s1

s1+s2
of Inequality 2 can

be bounded by s1
s1+s2

≥ s1
s1+s1

= 1/2, and thus,
∑

u∈Γ m
G [v]

1
degG(u) > 1

2 = Ω(1).
Suppose that j > 2. Then, since j is the smallest index, we have sj−2 < sj−1.
Therefore, the addend with index j−1 of the sum in the right side in Inequality 2
can be bounded as follows:

sj−1

sj−2 + sj−1 + sj
>

sj−1

3 · sj−1
= 1/3,

which implies
∑

u∈Γ m
G [v]

1
degG(u) > 1

3 = Ω(1). Assume now that the sequence
(si)i is strictly increasing. We bound the right side of Inequality 2 as follows:

∑

u∈Γ m
G [v]

1
degG(u)

≥ 1
s1

+
s1

s1 + s2
+

m∑

j=2

sj

sj−1 + sj + sj+1

≥ 1
s1

+
s1

s1 + s2
+

m∑

j=2

sj

2 · sj + sj+1
. (3)

Let J ⊆ {2, . . . , m} be the subset of indices so that for each j ∈ J : sj

2·sj+sj+1
≤

log log n
log n . This implies that we have sj+1 ≥ sj

(
log n

log log n − 2
)
, for j ∈ J . Since

the sequence (si)i is strictly increasing, we can bound the size of the set J as
follows:

(
log n

log log n
− 2

)|J|
≤ n,

and therefore |J | = O(log n
log log n). We now set m = C log n

log log n for a large enough
constant C so that there are Θ(log n

log log n) indices i with i /∈ J and si

2·si+si+1
≥

log log n
log n . Then, the addends in the right side of Inequality 3 that correspond to

those indices i /∈ J sum up to a constant which proves part 1 of the result.
We derive now a bound on m that depends on the maximal degree Δ. To

this end, we depart from Inequality 3. Notice that the bound on Δ implies
sj ≤ sj−1Δ. Therefore, for any j, the addend in Inequality 3 that corresponds
to j is bounded as follows: sj

2sjsj−1
≥ sj

2sj+Δsj
= 1

2+Δ . Setting m = Θ(Δ) implies
that the right side of Inequality 3 sums up to a constant. 	

Theorem 1. Let G = (V,E) be of polynomially bounded-independence with
maximal degree Δ and with bounding function f . Then:

α(G) = O
(

β(G) · f(min{Δ,
log n

log log n
})

)

.

566 M.M. Halldórsson and C. Konrad

Proof. Let m = min{Δ,C log n
log log n} where C is the constant as in Lemma 1. Let S

be a maximal 2m-independent set in G, i.e., a maximal set of vertices of mutual
distance at least 2m. Let I∗ denote a maximum independent set in G. Since S
is maximal, every vertex in I∗ is at a distance at most 2m from a vertex in S,
and thus |I∗| ≤ |S| · f(2m). Since S is 2m-independent, the m-neighborhoods
around nodes in S are disjoint. Thus, using Lemma 1, we have

β(G) =
∑

v∈V

1
degG(v)

≥
∑

s∈S

∑

v∈Γ m
G (s)

1
degG(v)

= Ω(|S|).

Thus,
α(G) ≤ |S| · f(2m) = O(β(G) · f(2m)) = O(β(G)f(m)),

since f is a polynomial function. 	

3 Distributed Algorithm with Single Bit Messages

In the previous section, we showed that an independent set of size β(G) is a poly-
logarithmic approximation on graphs of polynomially bounded-independence.
The Alon-Spencer-IS algorithm computes an independent set of expected
size β(G), and thus we obtain a one-round poly-logarithmic approximation algo-
rithm for the maximum independent set problem on graphs of polynomially
bounded-independence with message sizes O(log n). In this section, we improve
on the message complexity of the previous algorithm. We propose an alternative
algorithm that computes an independent set of expected size Θ(β(G)) on O(1)-
claw free graphs using single bit messages. As bounded-independence graphs are
(f(1) + 1)-claw free and f(1) is a constant, this algorithm also constitutes an
improvement for bounded-independence graphs.

We will consider the one-round algorithm, Algorithm 1, which can be seen
as a simplified version of the well-known distributed maximal independent set
algorithm by Luby [16]. In each round of Luby’s algorithm, nodes of a general
graph G = (V,E) are added to an initially empty independent set. One round
consists of two phases: First, every node v ∈ V pre-selects itself with probability
Θ(1

degG(v)) as a candidate to join the independent set. Then, in the second phase,
ties are broken among the pre-selected nodes so that nodes with larger degree
are preferred. Finally, selected nodes and their neighbors are removed from G,
and the round is completed. The algorithm terminates when G is empty. In our
version of the algorithm, a simplified method for breaking ties is used. Instead
of preferring nodes with larger degree, we only add a pre-selected node to the
independent set if none of its neighbors have been pre-selected. This method of
breaking ties has been previously used, e.g., in [8,9,11].

We first derive a bound on the inverted degree sum of the neighborhood of
an arbitrary node v ∈ V in a k-claw free graph G = (V,E).

Lemma 2. Let G = (V,E) be a k-claw free graph. Then for every v ∈ V ,
∑

u∈ΓG(v)

1
degG(u)

≤ k − 1 .

Distributed Large Independent Sets in One Round 567

Algorithm 1. One-round independent set algorithm
Require: G = (V, E) {Input graph}
1: I ← ∅ {the independent set to be computed}
2: pi ← 1

2 deg(v)

3: Tv ←coin(pi) {Pre-selection step: If Tv = true then v is a candidate to join I}
4: for all v ∈ V with Tv = true do
5: if

∨

u∈ΓG(v) Tu = false then {Check whether a neighbor of v has been pre-

selected}
6: I ← I ∪ {v} {v is selected into the IS}
7: end if
8: end for

Proof. Let v be a node and let Hv = G|ΓG(v) be the subgraph induced by v’s
neighbors. Observe that for u ∈ V (H), degG(u) ≥ degH(u)+1. Since G is k-claw
free, α(H) ≤ k − 1. Thus, using the Caro-Wei bound, we get that

∑

u∈ΓG(v)

1
degG(u)

≤
∑

u∈V (H)

1
degH(u) + 1

≤ α(H) ≤ k − 1 .

	

Theorem 2. Algorithm 1 is a randomized distributed one-round algorithm
using single bit messages that finds independent sets with expected Θ(β(G))
size on graphs G with constant claw size. In particular, when G is poly-
nomially bounded-independence, it achieves an expected approximation ratio
O(f(min{Δ, log n

log log n})).

Proof. Let v be any node in G. Algorithm 1 adds v to the independent set if
two independent events happen: v is pre-selected in Line 3 of Algorithm 1 while
none of its neighbors are pre-selected. Then, by the linearity of expectation,

E |I| =
∑

v∈V

P [v ∈ I] =
∑

v∈V

P [v pre-selected] · P [v ∈ I | v pre-selected]

=
∑

v∈V

1
degG(v)

·
∏

u∈ΓG(v)

(1 − 1
degG(u)

) =

=
∑

v∈V

1
degG(v)

· Θ
(
e

−∑u∈ΓG(v)
1

degG(u)

)
= Θ(1) · β(G) ,

applying Lemma 2 in the last equality. If G is of bounded-independence with
bounding function f , it is (f(1) + 1)-claw free, which is a constant. Applying
Theorem 1 we obtain the approximation result. 	

Implementing Algorithm 1 in Beep Models and Wireless Networks. Algo-
rithm 1 places minimal demands on the underlying model in which it is imple-
mented. Initially, nodes only require the knowledge of their own degree (or of
an estimate thereof), and, in particular, information about the network size is

568 M.M. Halldórsson and C. Konrad

not needed. In many wireless networks, the degree of local congestion provides
a good estimate for a node’s degree, and congestion can often be inferred using
carrier sensing techniques.

The communication structure of the algorithm naturally fits beep-like models
and wireless networks. Pre-selected nodes send a signal to all their neighbors.
Hence, models that only support radio broadcast rather than the transmission
of individual messages to neighboring nodes are sufficient for implementing this
step. With regards to the reception of signals from neighboring nodes, in Line 5
of the algorithm, nodes only have to be able to learn whether no neighboring
node emitted a signal or whether at least one neighboring node emitted a signal.
This type of information matches precisely what can be learned by a node in
one round in the discrete beeping model as introduced in [4]. Also, in wireless
networks, carrier sensing can yield information that is possibly weaker (a node
that is within a short range did transmit) but sufficient for the operation of our
algorithm.

4 Lower Bound for One-Round Algorithms on General
Graphs

In this section, we prove that no distributed one-round algorithm can compute an
independent set whose size exceeds the Caro-Wei bound by more than a constant.
In particular, every possibly randomized distributed one-round algorithm on
general graphs has an approximation factor of Ω(n), where n is the number of
vertices of the input graph.

Consider an arbitrary d-regular bipartite graph H = (A,B,E) with |A| +
|B| = n′. Let G = (V,E) be the graph consisting of a (d+1)-clique and a copy of
H which is disjoint from the (d+1)-clique. Let n = |V |, and hence n′ = n−d−1.
G is clearly d-regular. Furthermore, since H contains an independent set of size
n′/2, the independence number of G is α(G) = n−d−1

2 . We assume that each
node has a unique label chosen from U = {1, . . . , m}, where m ≥ n. Let L denote
the set of all possible labellings.

In order to prove our lower bound, we exploit the fact that all nodes in V
have the same local views, i.e., in one round, all nodes can only learn the d labels
of their adjacent nodes. As all nodes run the same algorithm, clearly in average
over all possible labellings L, the probabilities for all nodes to end up in I is
equal. This fact is used in the following theorem:

Theorem 3. Every possibly randomized one-round distributed algorithm for
maximum independent set has an expected approximation factor of at least
(n−Δ−1)(Δ+1)

2n , where Δ is the maximal degree of the input graph.

Proof. Consider the d-regular graph G = (V,E) as defined above. Then Δ = d.
Consider a possibly randomized one-round algorithm for maximum independent
set. Then, as previously argued, for all u, v ∈ V , we have:

Distributed Large Independent Sets in One Round 569

P [u ∈ I] = P [v ∈ I] , and (4)

E|I| =
∑

u∈V

P [u ∈ I] , (5)

where the probabilities are taken over all possible labellings L and the random
coin flips of the algorithm. Let p be the probability that a node ends up in I.
Let C denote the (d + 1)-clique of G. Then, p · |C| = E|I ∩ C| ≤ 1, and hence,
p ≤ 1

|C| = 1
d+1 . Therefore, E|I| ≤ np = n

d+1 . Next, since α(G) = n−d−1
2 , the

expected approximation ratio is at least (n−d−1)(d+1)
2n . 	

Remark. The graph G of the previous construction is disconnected. This can be
circumvented by removing arbitrary edges u1v1, u2v2, where u1v1 is contained
in the (d + 1)-clique and u2v2 is outside the (d + 1)-clique, and reinserting edges
u1u2 and v1v2. The resulting graph is connected and equally suits for proving
the same lower bound.

5 Lower Bound for d-dimensional Unit Sphere Graphs

In this section, we show that the statement of Theorem 1, i.e., for any graph
G = (V,E) of polynomially bounded-independence with bounding function f

we have α(G) = O
(
β(G)f(min{Δ, log n

log log n})
)
, is tight for d-dimensional unit

sphere graphs. As a consequence, the analysis of Algorithm 1 is also tight.
In the full version of this paper, we investigate on the performance of run-

ning multiple rounds of Algorithm 1. We show that a super-constant number of
iterations is necessary in order to improve on the one-round bound performance
by more than a constant factor.

A d-dimensional unit sphere graph G = (S,E) is the intersection graph of
d-dimensional unit spheres S = {s1, . . . , sn} (all spheres have the same radius):
Each sphere si constitutes a vertex in G and two spheres are adjacent iff they
intersect. For d = 1, a unit sphere graph is a unit interval graph, and for d = 2,
a unit sphere graph is a unit disc graph.

Let d > 0 be some fixed dimension. We will denote our hard instance graph
with Hk = (VH , EH) where k is a parameter which we define later. We start our
construction of Hk with a grid graph Gk = (VG, EG) that is parametrized by an
integer k ≥ 1. The vertex set of Gk is defined as VG = {vx |x ∈ {0, 1, . . . , k−1}d}.
Let vx, vy with x, y ∈ {0, . . . , k − 1}d be two vertices of VG. Then vx and vy are
adjacent iff |x − y| = 1, where |x| =

∑
1≤i≤d |xi|.

The hard instance graph Hk is obtained from Gk as follows: For every vertex
vx ∈ VG, a clique Cx of size s(|x|) is introduced in Hk, where s(i) = dikdi logi n.
Suppose that vx and vy are adjacent nodes in Gk. Then all nodes of Cx are
connected to all nodes of Cy in Hk, or, in other words, Cx ∪ Cy also forms a
clique in Hk.

First, notice that the graph Hk is in fact a d-dimensional unit sphere graph.
Each vertex v ∈ Cx ⊆ VH with x ∈ {0, . . . , k − 1}d corresponds to a sphere
centered at position x with radius 1/2 (for convenience, in this construction

570 M.M. Halldórsson and C. Konrad

Fig. 1. Illustration of the two dimensional case: On the left, the grid graph G4 is
illustrated. On the right, the hard instance unit disc graph H4 is shown. H4 is obtained
from G4 by replacing each node at position (i, j) with a clique of size s(i + j).

we suppose that all spheres have the radius 1/2 instead of 1). An example is
provided in Figure 1.

We state now that Hk is of bounded-independence with respect to the bound-
ing function f(r) = (2r + 1)d.

Lemma 3. The d-dimensional unit sphere graph Hk is of bounded independence
with respect to the bounding function f(r) = (2r + 1)d.

Proof. The size of an independent set in the k-neighborhood of a node v ∈ Cx ⊆
VH for some x ∈ {0, . . . , k − 1}d is the same as the size of an independent set of
the node vx ∈ VG in the corresponding grid graph. Therefore, the r-neighborhood
of an arbitrary node vx ∈ VG with x ∈ {0, . . . , k − 1}d is a subset of the nodes
with indices j ∈ {x1 − r, . . . , x1 + r} × · · · × {xd − r, . . . , xd + r}. Therefore,
|{x1 − r, . . . , x1 + r} × · · · × {xd − r, . . . , xd + r}| = (2r + 1)d is an upper bound
on the size of an independent set in the r-neighborhood of v. 	

Next, we identify the correct value for k so that graph Hk has O(n) vertices,
and we show that β(Hk) = O(1).

Lemma 4. Consider graph Hk = (VH , EH), and let k = O(log n
d2 log log n). Then:

|VH | = O(n) and β(Hk) = O(1).

Proof. Denote by ni the number of cliques at distance i from the clique with
index (0, . . . , 0). Furthermore, denote by Vi := {v ∈ Cx : |x| = i} the set of
nodes at distance i from the clique with index (0, . . . , 0).

First, note that by construction of Hk we have ni ≤ ni+1d. This allows us to
establish a relation between |Vi| and |Vi+1|:

|Vi| = ni · s(i) ≤ ni+1d · (dikdi logi n) ≤ ni+1(di+1kdi logi n) =
|Vi+1|

kd log n
.

Distributed Large Independent Sets in One Round 571

Then, as |VH | =
∑

i∈{0,...,d(k−1)} |Vi| and by the previous inequality, we obtain:
|VH | = O(|Vd(k−1)|). Then, setting k = Θ(log n

d2 log log n) proves the first part of the
lemma:

|VH | = O
(|Vd(k−1)|

)
= O

(
dkdkd2k logkd n

)
= O(n).

Next, in order to prove that β(Hk) = O(1), notice that |Vi| ≤ nis(i). More-
over, the nodes of Vi have a degree of at least s(i + 1), the size of a clique at
distance i + 1. Each node of the clique C(k−1,...,k−1) clearly has a degree of at
least s(d(k − 1)). Thus, we have:

∑

v∈VH

1
degHk

(v)
=

⎛

⎝
∑

i∈{0,...,d(k−1)−1}
ni · s(i)

s(i + 1)

⎞

⎠ +
nd(k−1)sd(k−1)

sd(k−1)
≤

⎛

⎝
∑

i∈{0,...,d(k−1)−1}
kd · 1

dkd log n

⎞

⎠ + 1 =
k − 1
log n

+ 1 = O(1),

where we used the rough estimate ni ≤ kd. 	

Finally, we obtain the main theorem of this section on the performance of

Algorithm 1.

Theorem 4. Consider graph Hk = (VH , EH), and let k = O(log n
d2 log log n). Then,

Algorithm 1 computes an Ω((log n
d2 log log n)d) approximation to the maximum inde-

pendent set problem on Hk.

Proof. Lemma 4 yields that the graph H has O(n) vertices, and the inverted
degree sum of H is O(1). As in Algorithm 1 the probability that a node ends up
in the independent set is bounded from above by its inverted degree, Algorithm 1
computes an independent set of expected size O(1). Since the graph H contains
an independent set of size Ω((log n

d2 log log n)d), the theorem follows. 	

References

1. Alon, N., Spencer, J.H.: The probabilistic method. John Wiley & Sons (2004)
2. Barenboim, L.: On the locality of some NP-complete problems. In: Czumaj, A.,

Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part II. LNCS,
vol. 7392, pp. 403–415. Springer, Heidelberg (2012)

3. Caro, Y.: New results on the independence number. Tech. rep., Tel Aviv University
(1979)

4. Cornejo, A., Kuhn, F.: Deploying wireless networks with beeps. In: Lynch, N.A.,
Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 148–162. Springer,
Heidelberg (2010). http://dl.acm.org/citation.cfm?id=1888781.1888802

5. Czygrinow, A., Hańćkowiak, M., Wawrzyniak, W.: Fast distributed approximations
in planar graphs. In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 78–92.
Springer, Heidelberg (2008)

http://dl.acm.org/citation.cfm?id=1888781.1888802

572 M.M. Halldórsson and C. Konrad

6. Halldórsson, B.V., Halldórsson, M.M., Losievskaja, E., Szegedy, M.: Streaming
algorithms for independent sets. In: Abramsky, S., Gavoille, C., Kirchner, C.,
Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp.
641–652. Springer, Heidelberg (2010)

7. Halldórsson, M.M.: Wireless scheduling with power control. ACM Trans. Algo-
rithms 9(1), 7:1–7:20 (2012)

8. Halldórsson, M.M., Konrad, C.: Distributed algorithms for coloring interval graphs.
In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 454–468. Springer, Heidelberg
(2014)

9. Halldórsson, M.M., Mitra, P.: Nearly optimal bounds for distributed wireless
scheduling in the SINR model. In: Aceto, L., Henzinger, M., Sgall, J. (eds.)
ICALP 2011, Part II. LNCS, vol. 6756, pp. 625–636. Springer, Heidelberg (2011).
http://dl.acm.org/citation.cfm?id=2027223.2027287

10. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum
Press (1972)

11. Kesselheim, T., Vöcking, B.: Distributed contention resolution in wireless networks.
In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 163–178.
Springer, Heidelberg (2010). http://dl.acm.org/citation.cfm?id=1888781.1888803

12. Kuhn, F., Moscibroda, T., Wattenhofer, R.: What cannot be computed locally!
In: Proceedings of the Twenty-third Annual ACM Symposium on Principles of
Distributed Computing, PODC 2004, pp. 300–309. ACM, New York (2004)

13. Kuhn, F., Wattenhofer, R., Zollinger, A.: Ad-hoc networks beyond unit disk graphs.
In: Proceedings of the 2003 Joint Workshop on Foundations of Mobile Computing,
DIALM-POMC 2003, pp. 69–78. ACM, New York (2003)

14. Laurinharju, J., Suomela, J.: Brief announcement: Linial’s lower bound made easy.
In: Proceedings of the 2014 ACM Symposium on Principles of Distributed Com-
puting, PODC 2014, pp. 377–378. ACM, New York (2014)

15. Linial, N.: Locality in distributed graph algorithms. SIAM J. Comput. 21(1),
193–201 (1992)

16. Luby, M.: A simple parallel algorithm for the maximal independent set problem. In:
Proceedings of the Seventeenth Annual ACM Symposium on Theory of Computing,
STOC 1885, pp. 1–10. ACM, New York (1985)

17. Naor, M., Stockmeyer, L.: What can be computed locally? SIAM J. Comput. 24(6),
1259–1277 (1995)

18. Rubinfeld, R.: Sublinear time algorithms. In: Proceedings of the International
Congress of Mathematicians (2006)

19. Schneider, J., Wattenhofer, R.: An Optimal Maximal Independent Set Algorithm
for Bounded-Independence Graphs. Distributed Computing 22, March 2010

20. Wei, V.: A lower bound on the stability number of a simple graph. Tech. rep., Bell
Laboratories (1981)

21. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique
and chromatic number. In: Proceedings of the Thirty-eighth Annual ACM Sympo-
sium on Theory of Computing, STOC 2006, pp. 681–690. ACM, New York (2006)

http://dl.acm.org/citation.cfm?id=2027223.2027287
http://dl.acm.org/citation.cfm?id=1888781.1888803

Tight Bounds for MIS in Multichannel Radio
Networks

Sebastian Daum(B) and Fabian Kuhn

Department of Computer Science, University of Freiburg, Freiburg im
Breisgau, Germany

{sdaum,kuhn}@cs.uni-freiburg.de

Abstract. In [8] an algorithm has been presented that computes a
maximal independent set (MIS) within O(log2 n/F + log n polyloglog n)
rounds in an n-node multichannel variant of the standard graph-based
radio network, with F communication channels. The model assumes that
there is no collision detection and it that the network is a polynomially
bounded independence graph (BIG), a natural combinatorial generaliza-
tion of well-known geographic families. The upper bound of [8] is known
to be optimal up to the polyloglog n factor.
In this paper, we adapt this algorithm and its analysis to improve the
result of [8] in two ways. Mainly, we get rid of the polyloglog n fac-
tor in the runtime and we thus obtain an asymptotically optimal MIS
algorithm. In addition, our new analysis allows to generalize the class
of graphs from those with polynomially bounded local independence to
graphs with arbitrarily bounded local independence.

1 Introduction

In recent years there has been an increased interest in algorithms for shared spec-
trum networks [26]. Nowadays, most modern wireless communication networks
feature a multitude of communication frequencies [1,2,5]1—and we can certainly
expect this trend to continue.

In the light of this development, in the present paper, we settle the question
of determining the optimal asymptotic time complexity of computing a maximal
independent set (MIS) in the multichannel variant of the classic radio network
(RN) model first introduced in [4,7]. The task of constructing an MIS is one of
the best studied problems in the area of large-scale wireless networks. On the
one hand this is due to MIS (together with coloring problems) being one of the
key problems to study the problem of symmetry breaking in large, decentralized
systems. On the other hand an MIS provides a simple local clustering of the
graph, which can be used as a building block for computing more enhanced
organization structures such as, e.g., a communication backbone based on a
connected dominating set [6,18,28]. This is specifically relevant in the context

1 For example, the IEEE 802.11 WLAN standard provides a channel spectrum of up
to 200 (partially overlapping) channels and Bluetooth specifies 79 usable channels.

c© Springer-Verlag Berlin Heidelberg 2015
Y. Moses (Ed.): DISC 2015, LNCS 9363, pp. 573–587, 2015.
DOI: 10.1007/978-3-662-48653-5 38

574 S. Daum and F. Kuhn

of wireless mobile ad hoc networks or sensor networks, in which devices cannot
rely on already existing infrastructure to organize themselves.
Related Work. In [3,21] Alon et al. and Luby presented a simple randomized
parallel algorithm to compute an MIS of a general graph. It is straightforward
to a standard distributed message passing model and as a consequence, the
algorithm soon became an archetype for many distributed MIS algorithms also in
other—usually more limiting—settings. We assume here an extension to the RN
model, for which an MIS algorithm with runtime O(log2 n) has been presented in
[22] for the class of unit disk graphs (UDGs)—and proven asymptotically optimal
in [11]. While the UDG restriction is well-known and popular, a more general
variant known as bounded independence graphs (BIGs), that contains UDGs,
has become the focus of quite some research, e.g., [20,24,25]. In particular, [25]
shows that an MIS and many related structures can be computed in Θ(log∗ n)
rounds in such graphs if there are no collisions.

Much of the early algorithmic multichannel research has focused on networks
with faults assuming a malicious adversary that can jam up to t of the F available
channels, e.g., [10,14–17,19,27]. In addition, for fault-free networks, in [23] a
series of lower bound proofs were provided, which show that Ω(log2 n/F +log n)
rounds are needed to solve any problem requiring communication. In [19] a new
technique (heralding) to deal with congestion in multichannel RNs has been
established to solve leader election in single-hop networks in O(log2 n/F +log n)
rounds. [12] and [8] extend this technique to solve the problems of computing
an approximate minimum dominating set and an MIS, respectively.
Contributions. In RN models, in almost all cases a restriction to the under-
lying graph model is assumed. One of the most general ones are so-called α-
bounded independence graphs (BIGs), where α(r) is a function that limits
the size of a maximum independent set in any r-neighborhood of the given
graph. The algorithm from [8] solves the MIS problem in time O(log2 n/F +
log n(log log n)d) in such graphs for which α is bounded by a polynomial of
degree d. Here we get rid of the polyloglog factor and thus show how to close the
gap to the lower bound from [23]. At the same time, we remove any restriction
on α. We do so by adjusting the algorithm from [8]—and though the change is
relatively small, it leads to a significantly more involved analysis.

2 Preliminaries

Algorithm and analysis of this paper are based on [8] and its complete version
[9]. Here we try to be as self-contained as possible. However, due to lack of space,
proofs are omitted and we focus on motivating and explaining the algorithms
and main ideas of the analysis. For a full, detailed version, we refer to [13].
Radio Network Model. We model the network as a graph G = (V,E).
n := |V | or a polynomial upper bound on n is known by all nodes. Nodes
start out dormant and are awakened/activated by an adversary. While there is
no access to a global clock, communication happens in synchronous time slots
(rounds). The network comprises F communication channels. In each round each

Tight Bounds for MIS in Multichannel Radio Networks 575

node can choose to operate on one channel, either by listening or broadcasting.
A broadcasting node receives no message in that round, and its signal reaches
all neighbors that operate on the same channel. A node v listening can decode
an incoming message iff in that round exactly one of its neighbors broadcasts on
the same channel. If more neighbors broadcast, their signals collide at v and v
receives nothing, unable to detect this collision.
Notation. In our algorithm all nodes move between a finite set of states: W
– waiting, D – decay, A – active, H′ – herald candidate, H – herald, L′ – leader
candidate, L – leader, M – MIS node, E – eliminated/dominated. We overload
this notation to also indicate the set of nodes being in said state, e.g., X :=
{v ∈ V : v is in state X}. Since nodes change their states, in case of ambiguity,
we write Xr for the set of nodes in X in round r. State changes always happen
between rounds. We define VHF := A∪H

′∪L
′∪H∪L as the nodes in the so-called

herald filter (abbreviated throughout the paper by HF).
We use N(v) to denote the neighbors of v in G, while Nk(v) denotes the

set of nodes in distance at most k from v, including v. For S ⊆ V we write
NS(u) or Nk

S(u) to abbreviate N(u) ∩ S or Nk(u) ∩ S respectively. Also we let
N(S) :=

⋃
v∈S N(v). We call v ∈ V alone or lonely, if NVHF∪M(u) = ∅.

We say that an event A happens with high probability (w.h.p.), with decent
probability, or with constant probability (w.c.p.), if it happens with probability
at least 1−n−c, 1− log−c n, or Ω(1), respectively, where c is an arbitrarily large
chosen constant. By x � y we denote that x > cy for sufficiently large c > 1.
Bounded Independence. In addition to the communication characteristics
of the network, we require the network graph to be a BIG [20,24]. A graph G is
called an α-BIG with independence function α : N → N, if for every node v no
independent set S of the subgraph induced by Nd(v) exceeds cardinality α(d).
Note that α does not depend on n and thus for fixed d, α(d) is a constant. In [8], α
is required to be a polynomial, whereas in this paper, we put no restrictions on α.
It can easily be verified that one can always upper bound the largest independent
set of the subgraph induced by Nd(v) by α(2)d and thus α is upper bounded
by some exponential function. For simplicity we define a constant α := α(2) and
assume that all nodes know the value of α.
Number of Channels. We assume that F = ω(1) as otherwise single channel
algorithms achieve the same asymptotic bounds. For F = ω(log n) we only use
Θ(log n) channels since more channels do not lead to an additional asymptotic
advantage. For ease of exposition we assume F = Ω(log log n) and refer to [9]
for an explanation of how to adapt to the case F = o(log log n).
Maximal Independent Set. An MIS is computed in time T if the following
properties hold w.h.p. for each round r and node v (waking up in round rv):
(P1) v declares itself as either dominating (∈ M) or dominated (∈ E) before

round rv + T and this decision is permanent.
(P2) If v is dominated in round r, then N(v) ∩ Mr 	= ∅.
(P3) If v is dominating in round r, then N(v) ∩ Mr = ∅.

576 S. Daum and F. Kuhn

3 Algorithm Description

Detailed pseudo-code can be found in [13]. Here we only present pseudo-code for
the core structure of our MIS algorithm (Algorithm 1).

Algorithm 1 HeraldMIS—core structure
Input: σ⊕, σ�, Δmax, π�, α, n, nD = Θ(F), nA = Θ(log log n), nR = Θ(α(2)),

τW = Θ(log n), τD = Θ(log n/F), τlonely = Θ(log2 n/F + log n), τrbg = Θ(log n)
States: W—waiting, D—decay, M—MIS node, E—eliminated

A—active, L/L′—leader (candidate), H/H′—herald (candidate)
Channels: R1, . . . , RnR—report, D1, . . . , DnD —decay,

A1, . . . , AnA—herald, H—handshake, G—red-blue game

1: count ← 0; state ← W; γ ←⊥; lonely ←⊥; γmin ← log−24 n
2: while state 	= E do
3: count ← count + 1
4: lonely ← lonely + 1
5: γ ← min {γ · σ⊕, 1/2}
6: uniformly at random pick q ∈ [0, 1), j ∈ {1, . . . , nD} and k ∈ {1, . . . , nR}
7: switch state do
8: case W or D: run DFilter � stage 1—decay filter

9: case A: run HeraldProtocol � stage 2—herald filter

10: case H
′ or L

′: run Handshake

11: case H or L: run RedBlueGame

12: case M: run Dominator � stage 3—MIS node

13: if lonely = τlonely then
14: state ← M

15: endWhile

Theorem 1. Alg. HeraldMIS solves MIS within O(log2 n/F + log n) rounds.

First we summarize how the algorithm works, including results from [9]. The
algorithm is divided into three stages, decay filter (states W and D), herald filter
(states A, L′, H′, L and H), and decided nodes (states M and E). Nodes move
forward within those stages—possibly omitting the HF—but never backwards.
The decay filter is a powerful tool that provides that over the full runtime of the
algorithm the degree of the graph induced by nodes in the HF is in O(log3 n).
In short, nodes first only listen for a while (W), then they start broadcasting
on one out of Θ(F) random channels with probability p = 1/n (D), doubling
p every O(log n/F) rounds. If a node broadcasts, it moves to the HF and if it
receives a message it restarts in W. The decay filter is the same as in [9] and for
a detailed description and analysis we refer to [9]. Eliminated nodes (E) know
that they neighbor an MIS node and stop their protocol. MIS nodes (M) try
to inform their neighborhood (eliminating them), but they also actively disrupt
protocols in the HF, causing them to fail. Apart from this, there is no influence
between nodes being in different stages.

In this paper we almost exclusively focus on the HF. It helps for understand-
ing the algorithm to only think of the graph induced by nodes in the HF.

The HF is divided into three blocks, active state/herald protocol (A), hand-
shake protocol (L′ and H

′) and red-blue protocol (L and H). In the first block

Tight Bounds for MIS in Multichannel Radio Networks 577

nodes try to contact surrounding nodes. If this happens, both nodes engage in
a handshake, which can only succeed, if none of them neighbors any node in
the MIS or the third block. Upon success, both nodes start a series of coin flip-
ping games, with the purpose of ensuring that no two neighboring nodes that
became leaders (L) simultaneously, can join the MIS. The blocks that differ
from the algorithm in [9] are the active state and the red-blue protocol, where
the changes in the latter compensate the changes in the more complicated active
state.

There are two ways for a node v to join the MIS—either by waiting for a
long time without hearing from anyone, or by successfully communicating with a
node u, teaming up with it (as a leader-herald pair) and together passing through
handshake and red-blue protocol. The farther a pair advances in these blocks,
the closer its leader is to join the MIS. We now recap the behavior of a node v
in the HF, i.e., v ∈ VHF, pointing out changes to the original algorithm.
Loneliness. v maintains a counter lonely, which is reset to zero whenever v gets
a message. If lonely ever exceeds τlonely = Θ

(
log2 n/F + log n

)
, then v assumes

that it is alone/lonely in the HF (i.e., NVHF∪M(v) = ∅) and joins the MIS—
w.h.p., this action is safe, i.e., should v not be alone, then its neighbors are far
from joining the MIS themselves and v has enough time to eliminate them.2

Activity. Also, v maintains an activity value γ(v) ∈ [
γmin, 1/2

]
, with the

initial value γmin = Ω(1/polylog n). γ(v) solely governs the behavior of v in A,
yet all nodes in VHF maintain this value. Nodes outside VHF have zero activity.
By default, in each round, γ(v) increases by a (small) constant factor σ⊕ > 1
such that after Θ(log log n) rounds it reaches the maximum value 1/2. However,
whenever v hears from a leader or herald, then v reduces γ(v) by a (large)
constant factor σ� � σ⊕. This is a change to the original algorithm, where γ(v)
could only increase, and the reason is as follows. Leaders are likely to become
MIS nodes, and if they do they eliminate their neighbors anyway. For safety
reasons a leader l needs to wait Θ(log n) rounds before it may join the MIS.
During that time, if l’s neighbors keep high activity values, progress might be
hindered in a δ′ = O(log log n) neighborhood of l, which is why in [9] an α(δ′) =
O(polyloglog n) speed loss had to be accepted and also why the algorithm of [9]
only works for polynomial α. By also reducing γ, progress is guaranteed even in
close proximity of a leader-herald pair and nodes can join the MIS in a much
more pipelined fashion. At the same time, ’unjustified’ activity value reductions
only cause ’minor damage’ that can be mitigated.
Herald Protocol. In the active state (A), v participates in the herald protocol
with probability γ(v), otherwise it tries to learn of nearby leaders, heralds or
MIS nodes, by listening to one of constantly many report channels R1, ...,RnR ,
nR ≥ 3α2. If v participates in the herald protocol, then it chooses a channel Ai

from A1, ...,AnA with probability 2−i, listens on Ai with probability π� ≤ 1/10 or
broadcasts its ID otherwise.3 If v listens, but receives nothing, nothing happens
2 In [9] there existed some component called loneliness support block, operating on its

own set of channels S1, ...,SnS ; this block and its channels have been removed.
3 We want to note that π� is a constant parameter that we can choose arbitrarily.

578 S. Daum and F. Kuhn

and v stays in A. Should v receive from some node u, then next round it engages
with u in the handshake protocol as a herald candidate (H′), in the hope of moving
forward to the red-blue protocol together with u. If v chooses to broadcast, then
it deterministically pursues the handshake as a leader candidate (L′), hoping
that some other node u heard its message and joins in for the handshake.
Handshake and Red-Blue Protocol. For a detailed description and analysis,
see [13] and [9]. In short, a node h ∈ H

′ that received a message in the herald
protocol sends for two rounds on H, then listens twice, and sends again for two
rounds. A node l ∈ L

′ that was sending before acts reversely, i.e., it listens, sends
and listens. Only nodes that receive all expected messages move forward to the
red-blue protocol, otherwise return to A. The handshake can only possibly be
completed if a pair of exactly one broadcaster and one receiver participates.

The red-blue protocol is a repetition of τrbg/8 = Θ(log n) red-blue games of
8 rounds each. In odd rounds, both l and h of the leader-herald pair send a
blocking signal on H, causing nearby handshakes to fail. At the beginning of
each game, the leader l randomly picks blue or red. If it picks red, it sends a
message on G in round 2 and it listens on G in round 4, for blue it acts reversely.
In round 6, l sends the index k′ of the meeting channel for the next red-blue
game on a previously decided meeting channel Rk.4 In round 8 it listens on Rk′ .
The herald h on the other hand sends both in rounds 2 and 4. It listens in round
6 to update the meeting channel and in round 8 it sends on Rk′ .

By design of the handshake and the blocking signals in the red-blue protocol,
l can neighbor a leader or herald of a different pair only if that other node moved
to the red-blue protocol simultaneously or with a 2-round shift. If l has such a
neighbor, at some point it will not hear its herald in round 2/4, when it listens.
l then aborts the protocol, notifies h in round 6 and returns to A. The messages
sent by l/h in round 6/8 also have the purpose of letting nearby listening active
nodes reduce their activity values. An isolated pair on the other hand cannot
be knocked out anymore5 and after τrbg = Θ(log n) rounds the pair can assume
that there is no other conflicting pair nearby and the leader joins the MIS.

The handshake did not change and red-blue games have been extended by 2
rounds—round 8 now gives heralds also the possibility to reach their neighbors.
Summary of Changes. Compared to the algorithm in [9], the following three
things changed. The loneliness support block is not executed anymore, except
for maintaining the counter lonely. Also, the threshold τlonely has been lowered
to Θ

(
log2 n/F + log n

)
to reflect the new runtime of the algorithm. The main

change is that nodes reduce their activity γ if they hear from a leader or herald.
The change in the red-blue game is an addition of 2 rounds: the 7th round is just
a copy of rounds 1, 3 and 5; the 8th round gives the herald of the pair a possibility
to notify nearby active nodes in order to reduce their activity values—so far only
leaders and MIS nodes were able to reach out to their neighbors.

Note that while the algorithm itself has barely changed, the analysis needed
to be extended significantly in order to achieve the optimal runtime.
4 The very first meeting channel is fixed by l during the handshake.
5 Except by an MIS node, but that already implies progress.

Tight Bounds for MIS in Multichannel Radio Networks 579

4 Analysis

To prove that Algorithm 1 indeed solves MIS in the given time bounds, we take
the following approach. In [9] it was proven that the graph, induced by nodes
that passed the decay filter, has maximum degree Δmax = O(log3 n). A node u
in the HF joins the MIS either if it assumes to be alone, or if it manages to create
and maintain a leader-herald bond with a neighboring node for τrbg = Θ(log n)
rounds. If u in the HF stays alone, we are done; once u has a neighbor in VHF,
then within radius δ := δα = Θ(log log n) soon an isolated leader-herald pair is
created that maintains its bond for τrbg rounds.6 So far this is the same as in [9].
There, however, a stagnation of up to τrbg rounds might follow before the next
isolated pair or MIS node is created in N δ(u). Since up to α(δ) nodes in N δ(u)
can join the MIS before u or one of its neighbors joins itself, the runtime of the
HF is O(τrbgα(δ)), or O(log n polyloglog n) if α is polynomial.

Here, by decreasing activity levels of nodes neighboring leader-herald pairs,
the stagnation that can be caused by leaders on their way to join the MIS lasts
for no longer than O(log log n) rounds in expectation. This allows the creation
of isolated leader-herald pairs in N δ(u) in a pipelined manner, reducing the
expected runtime of the HF to O(αδ log log n). Unlike in [9], here we also can
choose δ as an arbitrarily small value in Θ(log log n) without increasing the
runtime by more than constant factors. Choosing δ < log log n/ log α and a
Chernoff argument bounds the runtime of the HF by O(log n) w.h.p.

In more detail, let u be a node entering the HF in round tu. For sake of
contradiction assume that u is undecided by time tu + τRT. If u stays lonely, it
joins the MIS eventually in τlonely � τRT rounds. Note that for u to move from
being non-lonely to lonely, some node in N2(u) must have joined the MIS shortly
before and eliminated all neighbors of u in VHF. This happens at most α2 times
and thus u spends at most α2τlonely � τRT rounds alone. Hence, assume that
u is not lonely, i.e., neighbors u′, and that no node in N2(u) joins the MIS. We
show that then most of the time both u and u′ have a high activity value γ.

The following argumentation motivates this. For u to decrease γ(u), it must
neighbor a pair. Let us call isolated pairs (in which the leader does not neighbor
another leader or herald) good pairs and the others bad pairs. Conditioning on
the event of a pair being created, w.c.p. that pair is good. This is considered
progress, as it guarantees one of two things: Within O(log n) rounds either the
leader itself joins the MIS or a neighbor of this pair does. In the opposite case
of bad pairs being created, in expectation these remain bad pairs only for a
constant number of rounds. Moreover, w.h.p., there are O(log n) rounds in total
in which bad pairs exist in N3(u) after tu, also causing only O(log n) rounds
of u and u′ having their activity below 1/2. Adjusting parameters we get that
for some τprog = O(τlonely) and an arbitrarily small constant ε, for (1 − ε)τprog
rounds in [tu, tu + τprog] the activity values of both u and u′ are 1/2.

Furthermore, all pairs, good and bad, inform their neighbors. By the defini-
tion of good pairs, its leaders are independent. With our choice of δ thus at most
6 “Soon” indeed means in O(1) rounds in expectation, as long as F = Ω(log log n).

580 S. Daum and F. Kuhn

O(
√

log n) good pairs exist in N δ(u). We argue that the activity values of nodes
neighboring a pair that has run the red-blue protocol for Ω(log log n) rounds
(which almost surely holds for good pairs), are below γlow := Θ(1/polylog n)
with some decent probability (i.e., 1 − logΩ(1) n). The total number of nodes in
N δ(u) becoming part of a good pair in [tu, tu + τprog] is O(

√
log n) and hence

O(
√

log nΔmax) nodes neighbor good pairs in that time. A union bound and a
Chernoff bound provide that the total amount of rounds in which any node v in
N δ(u) neighboring a good pair has γ(v) > γlow, is less than ετprog.

Together with the previous claim we get that in (1 − 2ε)τprog rounds in
[tu, tu + τprog] both conditions are true: γ(u) = γ(u′) = 1/2 and all good pairs
in N δ(u) “silenced” their neighbors—i.e., all their neighbors have activity below
γlow. Let us call a round with this property promising for u. Without going
into detail, we can show that now within distance δ there exists a node w with
the property of being so-called η-fat, i.e., w’s neighborhood is at least roughly as
active as that of any of its neighbors’. Fatness implies that w.c.p. two nodes l and
h in N1(w) become a good leader-herald pair. As said before, such a pair reduces
the activity values of its neighbors rather quickly, which causes the property of
η-fatness to move away from w to another node in N δ(u) and we can repeat
the argument. If a bad pair is created, then η-fatness might shortly fade, but
is restored quickly, so we can almost omit this case. Again using Chernoff tail
bounds, we show that at some point u itself becomes η-fat and now the creation
of an MIS node in N2(u) is inevitably.

We summarize again. Once an MIS node or good pair arises in constant
distance from u, we are done. In an Ω

(
log2 n/F + log n

)
interval, u is mostly in

a promising state. W.c.p. every O(1) rounds a node in N δ(u) becomes part of a
good pair or joins the MIS. In expectation, within Θ(log log n) rounds MIS nodes
eliminate their neighbors and good pairs silence theirs. After any of those events
happen, we measure the time until u is in a promising state again. Using Chernoff
over O(

√
log n) such random variables results in needing at most O(log n) time,

thus, by then u must be covered.

4.1 Guarantees from the Decay Filter

Due to lack of space we refer to [9] and [13] for a more detailed description
of what the decay filter accomplishes.7 But we informally state the two main
results. For each node v the decay filter guarantees that over the runtime of
Θ(log2 n/F + log n) rounds, (1) v or one of its neighbors enters the HF, but (2)
no more than Δmax = O(log3 n) nodes in N1(v) do.

From now on we only look at the graph G′ induced by V ′ := VHF∪M, induced
by non-eliminated nodes that made it past the decay filter. All notations are
tied to this subgraph, though we omit this in our notations, i.e., N(u) means the
neighborhood of u in G′. Instead, if we need to consider nodes from the states
W and D, then we explicitly say so and show this e.g. by writing NG(u).

7 The underlying algorithm has been first used and analyzed in [11], in a slightly more
restrictive graph model and in [8] it was shown that it also works in BIGs.

Tight Bounds for MIS in Multichannel Radio Networks 581

4.2 Definitions for the Herald Filter

Practically all parameters (including the above mentioned Δmax) depend in one
way or another on the bound on independence, i.e., on α, but in most cases those
dependencies are captured in the hidden constants of those asymptotic bounds.

For our analysis of a node u that enters the HF, we observe a specific δ =
Θ(log log n) neighborhood N δ(u) of u. We set

δ := δα :=
log log n

2 log α
= Θ(log log n), (0)

i.e., αδ = (2log α)
log log n
2 log α =

√
log n. The choice of δ guarantees that any indepen-

dent set in a δ-neighborhood is of size at most
√

log n.
Our main goal is to show quick progress in N δ(u). Progress is clearly achieved

if an MIS node arises, but due to the way a node can become an MIS node, we also
consider the creation of an isolated leader-herald pair progress (more precisely,
the leader of the pair needs to be isolated from other nodes in L or H), as the
leader will eventually join the MIS (or be knocked out permanently by a newly
created MIS node).

Definition 1. (Good Pair, Bad Pair) Consider a leader-herald pair (l, h) in
round r. We say (l, h) is a good pair in round r if none of the neighbors of l
(other than h) is (1) in state L or (2) in state H or (3) is a herald candidate in
round 5 or 6 of its respective handshake. Otherwise (l, h) is a bad pair.

Note that the definition of a good/bad pair is independent of possibly neigh-
boring MIS nodes. MIS nodes existing already for 4 rounds prevent the creation
of leader-herald pairs in their neighborhood completely. If on the other hand a
new MIS node appears next to a leader-herald pair (which is w.h.p. only possible
through the loneliness route), then we have progress in a close neighborhood.
Also, note that only the leader of the pair must be ’isolated’. There are two
reasons for this: (1) only leaders join the MIS (2) by protocol design the herald
of a pair can only receive messages from MIS nodes or its own leader—not by
other leaders (not even in round 6) nor other heralds. This is due to the fact that
any neighboring heralds act completely synchronously and a leader neighboring
a non-paired herald is ahead by precisely 2 rounds.8 Note also that bad pairs can
become good, but not vice versa. This is because all leaders and heralds prevent
the creation of further leaders/heralds in their neighborhood.

Definition 2. (Activity Mass) For a node u we define Γ(u) :=
∑

v∈N1(u) γ(v).
We call this the activity sum or activity mass of node u. Furthermore we let
Γ◦(u) := Γ(u) − γ(u) =

∑
v∈N(u) γ(v). In some cases we are only interested in

the activity mass of active nodes and then we have ΓA(u) :=
∑

v∈N1
A
(u) γ(v) and

Γ◦
A
(u) is defined analogously. Also

γmin := log−24 n = Θ(1/polylog n),
γlow :=

√
γmin = log−12 n.

8 Cf. Lemma 8.10 in [9] and the actions of nodes in rounds 6/8 of a red-blue game.

582 S. Daum and F. Kuhn

Definition 3. (Fatness) We call a node u η̂-fat for some value η̂ ∈ (0, 1), if it
holds that Γ(u) ≥ η̂ · maxv∈N(u){Γ(v)}.
In simple words, in terms of activity mass, u is (at least) in the same ’league’ as
its neighboring nodes. Using this we choose a specific fatness parameter η < 1:

η = ηα := α−8 ≤ α−2 log Δmax
log log n

The choice of η assures that a chain of activity sums (Γ(vi))i≥1 of nodes vi on
a path v1, v2, v3, . . . with Γ(vi) ≥ η−1Γ(vi−1) and Γ(v1) ≥ 2 has length at most
δ, because

(η−1)δ = (α−8)− log log n
2 log α ≥ (2log α)2

log Δmax
log log n

log log n
2 log α = Δmax

γ(u)≤1/2
> max

u∈VHF
Γ(u).

The algorithm needs to know a few more parameters. σ⊕ and σ� govern the
changes in a node’s activity level. The former is a small constant, greater than,
but close to 1. In most rounds a node u increases γ(u) by σ⊕. σ� is a much
larger factor used for decreasing activity, large enough to undo many previous
increments, but still in O(1).

σ⊕ := 26/(1000m̄) > 1
σ� := σ20m̄

⊕ = 212/100 > 1

m̄ is a large enough constant that depends on nR, but assuming that nR ≥ 3α2,
m̄ ≥ 216nR suffices. Since γmin = log−24 n, 167m̄ log log n = Θ(log log n) consec-
utive increments raise a node’s activity value to 1/2. Analogously, Θ(log log n)
decrements decrease it to its minimal value γmin.

Also two time thresholds τrbg = Θ(log n) and τlonely = Θ
(
log2 n/F + log n

)

are needed by the algorithm. τrbg is the number of rounds a node spends in
the red-blue protocol. If a node u ∈ VHF does not receive a single message for
τlonely consecutive rounds, u deduces that it is alone or all its neighbors got
eliminated, and joins the MIS. In our analysis we use further time thresholds
τnotif = Θ(log n), τprog = Θ

(
log2 n/F + log n

)
and τRT = Θ

(
log2 n/F + log n

)
,

for which the following inequality chain holds:

τRT � τlonely � τprog � τrbg � τnotif

τnotif is the maximum time needed for an MIS node to notify, w.h.p., all its
neighbors. If a node u is not lonely, then, w.h.p., significant progress is achieved
in less than τprog rounds; more precisely, an MIS node is created in NO(1)(u).
W.h.p., τRT is the maximum time a node spends in the HF before it gets decided.

4.3 Candidate Election—Nodes in States A (and L
′)

In this section we want to establish a few facts about how nodes can transit
from state A to state L

′ or H′, respectively. Note that nodes can switch between
states A and L

′ without communication, but to get towards any of the three
states H

′, L and H, communication is mandatory.

Tight Bounds for MIS in Multichannel Radio Networks 583

For some node u, constant k, round r and an index i ∈ {1, . . . , nA} we can
show that with probability 1 − Ω(αkπ�) no node in Nk

A
(u) receives anything on

any herald election channel Ai. If we condition on certain events tied to index
i, like knowing (by peeking at random bits of some nodes) that some nodes do
not operate on Ai, do operate on Ai, do operate and broadcast or listen on Ai,
then the statement does still hold true for all other channels. I.e., regardless of
conditioning on aforementioned events, with probability 1 − Ω(π�) no node in
Nk

A
(u) receives anything on any channel Aj 	= Ai. Thus, by choosing π� small,

we can decrease the chances of herald creation.
For lack of space we refer to [13] for a proper lemma statement.
Under certain conditions the creation of herald candidates can be lower

bounded. However, for our algorithm to work, we not only need to prove that
they are created, but that this happens in solitude, i.e., in a close neighborhood
no other herald candidates are created. The next lemma—an adaption of Lemma
8.8 from [9]—ensures this.

Lemma 1. Let t be a round in which for a node u ∈ A the following holds:
− there is no herald candidate in N2(u),
− all nodes v ∈ N2(u) that neighbor a herald or leader, have γ(v) ≤ γlow,
− all nodes in N2(u) neighboring MIS nodes are eliminated,
− Γ(u) ≥ 1,
If in addition it holds that either
(a) Γ(u) < 5α, u is 1

5α -fat and γ(u) = 1
2 , or

(b) Γ(u) ≥ 5α and u is η-fat,
then by the end of round t′ ∈ [t, t + 7], with probability Ω(π�) either a node in
N2(u) joins the MIS or a good pair (l, h) ∈ (L∩N1(u))× (H∩N1(u)) is created.

Let us start with an intuition of this Lemma. The basic intention is to show
that if u is η-fat, then w.c.p. in constant many rounds a good leader-herald pair
with both endpoints in N1(u) arises—for this u itself does not have to have a
high γ value, i.e., u does not need to be a likely part of the pair. The lemma
lists many requirements. We show that shortly after a node v moves to the HF,
in distance δ = O(log log n) most of the time there exists a node u that satisfies
these conditions. We also show that if an isolated pair is created in N1(u), those
requirements are again satisfied O(polyloglog n) rounds later (in expectation) by
another node u′ in this δ-neighborhood of v.

We want to point out that in the neighborhood of a fat node u with Γ(u)
at least one, w.c.p. “good things” happen (i.e., the creation of MIS nodes or
good leader-herald pairs) within constant many rounds, even if there are herald
candidates nearby or even if some nodes neighboring bad leaders/heralds have
high γ values. In other words, the first two requirements could be omitted.
Instead we use other results to show that from those relaxed conditions one can
get to the tighter ones listed here w.c.p. in constant many rounds. We argue in
Subsection 4.4, that every time an isolated pair is created, the algorithm achieves
progress, as it guarantees the creation of an MIS node nearby—even if this event
is delayed by O(log n) rounds.

584 S. Daum and F. Kuhn

Therefore, Lemma 1 “promises” progress in the proximity of a fat node.
However, we have no such statement for areas without fat nodes. Indeed an
excessive creation of bad pairs in such areas can even cause problems for our
argumentation. The next result, which is a key result within the whole analysis,
implies that if a pair is created at all, then w.c.p. this pair is good. This allows
us to proof later in Lemma 4 that nodes in the HF are practically always very
active in the candidate election process—unless they already neighbor an MIS
node or a good pair.

Lemma 2. Let r be a round in which node u is in state A and NA(u) 	= ∅. Let
Bu be the event that at the end of round r, u moves to state H

′ due to receiving a
message from some node v ∈ NA(u) on some channel Aλ̄. Further, let Du ⊆ Bu

be the event that Bu holds and in addition no other node v′ ∈ N3(v)\{u} receives
any message on channel Aλ̄ in round r. It holds that

P(Bu) =

{
O

(
π�

γ(u)
Γ◦
A
(u)

)
Γ◦
A
(u) > 2

O (π�γ(u)Γ◦
A
(u)) Γ◦

A
(u) ≤ 2

,

P(Du) =

{
Ω

(
π�

γ(u)
Γ◦
A
(u)

)
Γ◦
A
(u) > 2

Ω (π�γ(u)Γ◦
A
(u)) Γ◦

A
(u) ≤ 2

.

A simple corollary is—using the remarks in the beginning of Subsection 4.3—
that if u gets a message from v and there are no leaders or heralds nearby, then
w.c.p. u and v form a good leader-herald pair after 6 rounds.

4.4 Handshake & Red-Blue Protocol—States L
′, H′, L, H

We next very shortly recap and summarize the effects of the so-called Handshake
and Red-Blue Game, but for detailed information please see [9,13].

Foremost, the handshake cannot be passed by two nodes l and h, if l also
reached another herald h′. But the handshake also guarantees, that if two leader-
herald pairs neighbor each other during the red-blue protocol, i.e., one node
from one pair neighbors a node of another pair, then both pairs conducted the
handshake at the same time (or with an offset of 2 rounds).

The red-blue protocol grants that if a good pair (l, h) is executing the proto-
col, then a new MIS node arises nearby within τrbg = Θ(log n) rounds (usually
the leader l). On the other hand, any bad pair remains bad for only O(1) rounds
in expectation (note that good pairs can never turn bad).

4.5 Joining the MIS—Nodes in States M and E

Property 1 (P). The set M is an independent set at all times.

This intuitive assumption is needed for some of the upcoming statements; it
is clearly true at the beginning of the algorithm, when M = ∅. Lemma 7 shows
that if (P) is violated, then w.h.p. a contradiction occurs. The next lemma makes
sure that nodes in N(M) soon learn of their coverage.

Tight Bounds for MIS in Multichannel Radio Networks 585

Lemma 3. Assume (P) holds. Let v be a node that enters state M at time t.
Let w be a node in NG(v) that is awake at time t′ ≥ t and, if w ∈ L∪H, that it
is at most in round 9

10τrbg of its corresponding red-blue protocol. Then by time
t′ + τnotif = t′ + O(log n), w.h.p., w is in state E.9

4.6 Progress and Runtime

Lemma 8.13 of [9] shows that once a good leader-herald pair (l, h) is created, its
leader (or another node in N2(l)) joins the MIS within O(log n) rounds. Also,
within close proximity of fat nodes (which exist in any δ-neighborhood of nodes
in VHF) w.c.p. such solitary pairs are created every O(1) rounds. In the algorithm
of [9] it might happen that after a good pair (l, h) is created N δ(u), the only
fat node in N δ(u) is close to (l, h). A good pair blocks the creation of other
pairs around, so progress might be stalled until l joins the MIS, eliminating its
neighbors (and therefore their activity) and finally, forcing the local condition
of fatness to move to a different area of the graph.

Here we changed the algorithm to take care of this potential stagnancy issue.
We want the attribute of fatness to move away from a good pair (l, h) long before
l joins the MIS. More precisely, another node not neighboring good pairs should
become fat within o(log n) rounds. For this we require good pairs to reduce the
activity levels of their neighborhoods. However, a leader-herald pair does not
know whether it is good or bad before the τrbg = Θ(log n) red-blue games are
over. The idea to deal with this difficulty is the following. Good pairs manage in
expectation within O(log log n) rounds to reduce their neighborhood’s activity
far enough such that most of the time those nodes can be considered inactive.
Bad pairs, however, last for only O(1) rounds in expectation, and are created
rarely enough10 for affected nodes to recover their lost activity quickly. In other
words, the longer a node is a leader, the more likely it is indeed a good one.

Careful analysis allows to transform these observations into high probability
results. In the following γ(u, t) denotes the activity level of node u in round t.
Also, let ε be a small constant—about 0.1 is sufficiently small for the proofs.

Lemma 4. Let t be a time at which a node u /∈ N1(M) is in the HF. Then,
w.h.p., one of following holds:
(a) Within τprog = O(log2 n/F + log n) rounds, u ∈ N1(M), or
(b) | {t′ ∈ [t + 1, t + τprog] : γ(u, t′) = 1/2} | ≥ (1 − ε)τprog.

Next we upper bound the number of rounds in which any neighbors of good
pairs within distance δ from u manage to exceed the activity threshold γlow.

Definition 4. For a node u and a round r let I(u, r) be the event that
− all nodes x ∈ N δ(u), which neighbor an MIS node, are in state E, and
− all nodes x ∈ N δ(u), which neighbor a good herald h or good leader l, h, l ∈

(H ∪ L) \ N(M), have γ(x) ≤ γlow =
√

γmin = log−12 n and are neither bad
leaders nor bad heralds.

9 Note that this lemma also considers nodes w from the decay filter.
10 Controlled by reducing the parameter π�.

586 S. Daum and F. Kuhn

Lemma 5. Assume (P) holds. Further, let r̄ be a round in which node u is in
the HF and set J := [r̄ + 1, r̄ + τprog]. Then, w.h.p., one of the following holds:
− Within τprog = O(log n) rounds, there is an MIS node in N1(u), or
− | {r ∈ J : I(u, r)holds} | ≥ (1 − ε)τprog.

Lemma 6. Assume (P) holds. Let tu be a round in which some u /∈ N1(M) has a
neighbor u′ /∈ N1(M) in the HF. Then, w.h.p., within τprog = O(log2 n/F+log n)
rounds a node in N1({u, u′}) joins the MIS.

Lemma 7. W.h.p., (P) is not violated throughout the runtime of the algorithm.

Now we have everything at hand to prove Theorem 1.

Proof Sketch (of Theorem 1). As stated, the runtime of the decay filter is within
O

(
log2 n/F + log n

)
, i.e., for each node u in the decay filter, by that time a

node v ∈ N1
G(u) enters the HF. Also, over the course of O(log2 n) rounds, the

maximum degree of the graph G′ induced by all nodes in VHF is in O(log3 n).
Let thus u be a node that enters the HF. If it stays lonely for

τlonely = Θ
(
log2 n/F + log n

)
rounds, thenu joins theMIS andwe are done.Hence

assume that u does hear from a neighboring node u′ in theHF before τlonely rounds
have passed. We can now apply Lemma 6 to get an MIS node v created within
τprog = O

(
log2 n/F + log n

)
rounds. It either neighbors u, in which case within

τnotif = O(log n) rounds u is decided w.h.p., or it neighbors u′, which is also then
eliminated in τnotif rounds. That way u can become lonely again. However, since
an MIS node has been created in N2(u), this can happen at most α2 times. Thus,
at most τRT = 2α2τlonely rounds after u entered the HF, u is decided.

References

1. 802.11, I.: Wireless LAN MAC and Physical Layer Specifications, March 2012
2. Alliance, Z.: Zigbee specification. ZigBee Document 053474r06 1 (2005)
3. Alon, N., Babai, L., Itai, A.: A Fast and Simple Randomized Parallel Algorithm

for the Maximal Independent Set Problem. Journal of Algorithms (1986)
4. Bar-Yehuda, R., Goldreich, O., Itai, A.: On the Time-Complexity of Broadcast

in Multi-Hop Radio Networks: An Exponential Gap Between Determinism and
Randomization. Journal of Computer and System Sciences 45(1), 104–126 (1992)

5. Bluetooth Consortium: Bluetooth Specification Version 4.2, December 2014
6. Censor-Hillel, K., Gilbert, S., Kuhn, F., Lynch, N., Newport, C.: Structuring unre-

liable radio networks. In: Proc. ACM Symp. on Principles of Distr. Comp. (PODC),
pp. 79–88 (2011)

7. Chlamtac, I., Kutten, S.: On Broadcasting in Radio Networks–Problem Analysis
and Protocol Design. IEEE Trans. on Communications 33(12), 1240–1246 (1985)

8. Daum, S., Ghaffari, M., Gilbert, S., Kuhn, F., Newport, C.: Maximal independent
sets in multichannel radio networks. In: Proc. ACM Symp. on Principles of Distr.
Comp. (PODC) (2013)

9. Daum, S., Ghaffari, M., Gilbert, S., Kuhn, F., Newport, C.: Maximal Independent
Sets in Multichannel Radio Networks. Tech. Rep. 275, U. of Freiburg, Dept. of
Computer Science (2013)

Tight Bounds for MIS in Multichannel Radio Networks 587

10. Daum, S., Gilbert, S., Kuhn, F., Newport, C.: Leader election in shared spectrum
networks. In: Proc. ACM Symp. on Principles of Distr. Comp. (PODC) (2012)

11. Daum, S., Kuhn, F., Newport, C.: Efficient symmetry breaking in multi-channel
radio networks. In: Aguilera, M.K. (ed.) DISC 2012. LNCS, vol. 7611, pp. 238–252.
Springer, Heidelberg (2012)

12. Daum, S., Kuhn, F., Newport, C.: Efficient Symmetry Breaking in Multi-Channel
Radio Networks. Tech. Rep. 271, U. of Freiburg, Dept. of Computer Science (2012)

13. Daum, S., Kuhn, F.: Tight Bounds for MIS in Multichannel Radio Networks (2015).
CoRR abs/1508.04390, http://arxiv.org/abs/1508.04390

14. Dolev, S., Gilbert, S., Guerraoui, R., Kuhn, F., Newport, C.: The wireless synchro-
nization problem. In: Proc. ACM Symp. on Principles of Distr. Comp. (PODC),
pp. 190–199 (2009)

15. Dolev, S., Gilbert, S., Khabbazian, M., Newport, C.: Leveraging channel diversity
to gain efficiency and robustness for wireless broadcast. In: Peleg, D. (ed.) Dis-
tributed Computing. LNCS, vol. 6950, pp. 252–267. Springer, Heidelberg (2011)

16. Dolev, S., Gilbert, S., Guerraoui, R., Newport, C.: Gossiping in a multi-channel
radio network: an oblivious approach to coping with malicious interference
(extended abstract). In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 208–222.
Springer, Heidelberg (2007)

17. Dolev, S., Gilbert, S., Guerraoui, R., Newport, C.: Secure communication over radio
channels. In: Proc. ACM Symp. on Principles of Distr. Comp. (PODC) (2008)

18. Ephremides, A., Wieselthier, J.E., Baker, D.J.: A Design Concept for Reliable
Mobile Radio Networks with Frequency Hopping Signaling. Proc. of the IEEE
75(56–73) (1987)

19. Gilbert, S., Guerraoui, R., Kowalski, D., Newport, C.: Interference-resilient infor-
mation exchange. In: Proc. IEEE Conf. on Computer Communications (INFO-
COM) (2009)

20. Kuhn, F., Moscibroda, T., Nieberg, T., Wattenhofer, R.: Fast deterministic dis-
tributed maximal independent set computation on growth-bounded graphs. In:
Fraigniaud, P. (ed.) DISC 2005. LNCS, vol. 3724, pp. 273–287. Springer, Heidel-
berg (2005)

21. Luby, M.: A Simple Parallel Algorithm for the Maximal Independent Set Problem.
SIAM Journal on Computing 15(4), 1036–1053 (1986)

22. Moscibroda, T., Wattenhofer, R.: Maximal independent sets in radio networks. In:
Proc. ACM Symp. on Principles of Distr. Comp. (PODC), pp. 148–157 (2005)

23. Newport, C.: Radio network lower bounds made easy. In: Kuhn, F. (ed.) DISC
2014. LNCS, vol. 8784, pp. 258–272. Springer, Heidelberg (2014)

24. Schmid, S., Wattenhofer, R.: Algorithmic models for sensor networks. In: Proc.
Workshop on Parallel and Distr. Real-Time Systmes (WPDRTS), pp. 1–11 (2006)

25. Schneider, J., Wattenhofer, R.: A log-star distributed maximal independent set
algorithm for growth-bounded graphs. In: Proc. ACM Symp. on Principles of Distr.
Comp. (PODC), pp. 35–44 (2008)

26. Sherman, M., Mody, A., Martinez, R., Rodriguez, C., Reddy, R.: IEEE Standards
Supporting Cognitive Radio and Networks, Dynamic Spectrum Access, and Coex-
istence. IEEE Communications Magazine 46(7), 72–79 (2008)

27. Strasser, M., Pöpper, C., Capkun, S.: Efficient uncoordinated FHSS anti-jamming
communication. In: Proc. ACM Symp. on Mobile Ad Hoc Networking and Com-
puting (MOBIHOC) (2009)

28. Wan, P.J., Alzoubi, K.M., Frieder, O.: Distributed construction of connected dom-
inating set in wireless Ad Hoc networks. In: Proc. IEEE Conf. on Computer Com-
munications (INFOCOM) (2002)

http://arxiv.org/abs/1508.04390

Nonuniform SINR+Voroni Diagrams Are
Effectively Uniform

Erez Kantor1(B), Zvi Lotker2,3, Merav Parter4, and David Peleg4

1 CSAIL, Massachusetts Institute of Technology, Cambridge, MA 01239, USA
erezk@csail.mit.edu

2 Ben-Gurion University, Beersheba, Israel
3 University Paris Diderot, Paris, France

4 The Weizmann Institute of Science, Rehovot, Israel

Abstract. This paper concerns the behavior of an SINR diagram of
wireless systems, composed of a set S of n stations embedded in R

d,
when restricted to the corresponding Voronoi diagram imposed on S.
The diagram obtained by restricting the SINR zones to their correspond-
ing Voronoi cells is referred to hereafter as an SINR+Voronoi diagram.

While uniform SINR diagrams (where all stations transmit with the
same power) are simple and nicely structured (e.g., the station reception
zones are convex and “fat”) [3], nonuniform SINR diagrams might be
complex (e.g., the reception zones might be fractured and their bound-
aries might contain many singular points) [9]. In this paper, we establish
the (perhaps surprising) fact that a nonuniform SINR+Voronoi diagram
is topologically almost as nice as a uniform SINR diagram. In particular,
it is convex and effectively (In the sense that its fatness measure does
not depend on the number of stations n but only on parameters typi-
cally bounded by a constant.) fat. This holds for every power assignment,
every path-loss parameter α and every dimension d ≥ 1. The convexity
property also holds for every SINR threshold β > 0, and the effective
fatness holds for any β > 1. These fundamental properties provide a the-
oretical justification to engineering practices basing zonal tessellations
on the Voronoi diagram, and helps to explain the soundness and efficacy
of such practices.

We also consider two algorithmic applications. The first concerns the
Power Control with Voronoi Diagram (PCVD) problem, where given n
stations embedded in some polygon P, it is required to find the power
assignment that optimizes the SINR threshold of the transmission sta-
tion si for any given reception point p ∈ P in its Voronoi cell Vor(si).
The second application is approximate point location; we show that for

E.K is supported in a part by NSF Award Numbers CCF-1217506, CCF-AF-0937274,
0939370-CCF, and AFOSR Contract Numbers FA9550-14-1-0403 and FA9550-13-1-
0042. Z.L is supported in part by the Ministry of Science Technology and Space,
Israel, French-Israeli project MAIMONIDE 31768XL, the Israel Science Foundation
(grant 1549/13) and the French-Israeli Laboratory FILOFOCS. M.P and D.P are
supported in part by the Israel Science Foundation (grant 1549/13) and the I-CORE
program of the Israel PBC and ISF (grant 4/11). M.P is also supported by Rothschild
and Fulbright Fellowships.

c© Springer-Verlag Berlin Heidelberg 2015
Y. Moses (Ed.): DISC 2015, LNCS 9363, pp. 588–601, 2015.
DOI: 10.1007/978-3-662-48653-5 39

Nonuniform SINR+Voroni Diagrams Are Effectively Uniform 589

SINR+Voronoi zones, this task can be solved considerably more effi-
ciently than in the general non-uniform case.

1 Introduction

1.1 Background and Motivation

A common method for designing a cellular or wireless network in the plane is
by computing the Voronoi diagram of the base-stations, and making each base-
station responsible for its own Voronoi cell. This choice is natural, since it ensures
that the distance from every point p in the plane to the station responsible for
it is minimal. Yet what affects the performance of a wireless network is not
just the distance. Rather, reception at a given point in a given time is governed
by a complex relationship between the reception point and the set of stations
that transmit at that time. This relationship is described schematically by the
SINR formula, which also dictates the reception zones around each transmitted
station. Hence the areas in the intersection between SINR reception regions and
their corresponding Voronoi cells deserve particular attention, and are the focus
of the current paper.

We consider the Signal to Interference-plus-Noise Ratio (SINR) model, where
given a set of stations S = {s0, . . . , sn−1} in R

d concurrently transmitting with
power assignment ψ, and background noise N , a receiver at point p ∈ R

d suc-
cessfully receives a message from station si if and only if SINR(si, p) ≥ β, where
SINR(si, p) = ψi·dist(si,p)

−α
∑

j �=i ψj ·dist(sj ,p)−α+N for constants β ≥ 1 denoting the minimum
SINR required for a message to be successfully received, and α denoting the
path-loss parameter, and where dist() denotes Euclidean distance.

To model the reception zones we use the convenient representation of an
SINR diagram, introduced in [3], which partitions the plane into n reception
zones, one per station, and a complementary zone where no station can be heard.
The topology and geometry of SINR diagrams was studied in [3] in the relatively
simple setting of uniform power, where all stations transmit with the same power
level. It was shown therein that uniform SINR diagrams are particularly simple:
the reception zone of each station is convex, fat and strictly contained inside the
corresponding Voronoi cell.

SINR diagrams in the general nonuniform setting (i.e., with arbitrary power
assignments) were studied in [9]. The topological features of general SINR dia-
grams turn out to be much more complicated than in the uniform case, even
for networks with a small number of stations. In particular, the reception zones
are not necessarily fat, convex or even connected, and their boundaries might
contain many singular points.

In this paper, we explore the behavior of the reception zones of SINR dia-
grams when restricted to Voronoi diagrams. The resulting diagram, referred to
as an SINR+Voronoi diagram, consists of n reception zones, one per station,
obtained by the intersection of the SINR reception zones with their correspond-
ing Voronoi cells. Studying SINR+Voronoi diagrams is motivated by the com-
plexity of general nonuniform SINR zones and, perhaps more importantly, by the

590 E. Kantor et al.

abundant usage of hexagonal networks in practice; cellular networks are com-
monly designed as hexagonal networks, where each node serves as a base-station
to which mobile users must connect to make or receive phone calls. A mobile
user is normally connected to the nearest base-station, hence the base-stations
divide the area among them, such that each base-station serves all users that are
located inside its hexagonal grid cell (which is in fact its Voronoi cell). Due to
the disk shape of the sensing range of the sensor devices, using a hexagonal tes-
sellation topology is the most efficient way to cover the whole sensing area, and
indeed many routing, location management and channel assignment protocols
are based on it [6,12–15]. It is thus intriguing to ask whether the reception zones
of nonuniform SINR diagrams enjoy some desirable properties (e.g., assume a
convenient form) when restricted to their corresponding Voronoi cells.

In this paper, it is shown that the diagram obtained from a nonuniform SINR
diagram by restricting its reception zones to their respective Voronoi cells (e.g.,
hexagonal cells in the grid) behaves almost as nice as a uniform SINR diagram:
the resulting reception zones are convex, and their fatness measure depends only
on parameters typically bounded by a constant, and in particular is independent
of the number of stations in the network. For an illustration see the reception
zone of station s0 in Figure 1(a).

These fundamental properties provide a theoretical justification to engineer-
ing practices basing regional tessellations on the Voronoi diagram, and help to
explain the soundness and efficacy of such practices.

To prove convexity, we extend the proof for the uniform setting of [3] to the
nonuniform setting1. Apart from the theoretical interest, this result is of consid-
erable practical significance, as obviously, having a convex reception zone inside
each hexagonal cell may ease the development of protocols for various design
and communication tasks such as scheduling, topology control and connectivity.

We note that convexity within a Voronoi cell is important also in the mobile
setting, where no fixed tessellation can be assumed. For example, in the setting
of Vehicular ad-hoc network (VANET) [17], the stations are mobile but each
user is still mapped to the closest base-station. Hence, although the hexagonal
tessellation is no longer preserved, the convexity within the (dynamic) Voronoi
tessellation is still relevant (for an illustration, see Fig. 1(b)-(c)).

As an application for the convexity property, we consider the problem where
one wishes to cover the entire area of a given bounded polygon P by using a
base-station network embedded in P. One natural way to do that is by assigning
each base-station an area of coverage. Usually the base-station needs to cover
the area of its Voronoi cell up to where it intersects with P. Assuming the
power with which each base-station transmits can be controlled, it is desirable
to increase the SINR ratio as much as possible in order to increase the capacity
of the cellular network. The problem of determining the transmission energy of

1 Note that in the uniform setting too, convexity is guaranteed only inside the Voronoi
cell, but since the entire reception zone is restricted to the Voronoi cell, this implies
that the entire zone is convex. In contrast, in the nonuniform setting, the reception
zone of a station with a high transmission energy might exceed its Voronoi cell.

Nonuniform SINR+Voroni Diagrams Are Effectively Uniform 591

Fig. 1. The overlay of an SINR diagram of a nonuniform wireless network on the
corresponding Voronoi diagram. (a) Hexagonal Voronoi cells; the intersection between
the reception region of station s0 and the Voronoi cell around it is highlighted in bold.
(b) Slight random perturbation to a hexagonal network. (c) Random positions.

each base-station so as to maximize the capacity of the entire network is called
the Power Control Voronoi Diagram (PCVD) problem. We show that although
PCVD is a non-convex and non-discrete problem, it can be solved in a nearly
optimal manner.

Our algorithm is especially useful in the mobile setting where the positions
of base-stations change with time. This scenario can happen in sudden-onset
disasters and ad-hoc vehicle networks, since in these cases, the network structure
is not fixed and it is not clear how to divide the coverage areas between the base-
stations. Although it is natural to use the Voronoi diagram, it is not clear how
to assign the transmission energies in a way that guarantees a full coverage of
the area of interest. The solution proposed in this paper for this problem has
the advantage that it can adapted to a dynamic setting quite efficiently since
it depends upon the Voronoi tessellation that can be maintained efficiently in
a dynamic setting [5,8]. Exploiting the convexity property in Voronoi cells, we
propose a discrete equivalent formulation of the PCVD problem. Specifically, we
show that given the convexity guarantee, it is sufficient to insist on achieving the
optimal threshold β only on the vertex set of each Voronoi cell (where unbounded
Voronoi cells are bounded by using a bounding polygon P that contains the entire
coverage area). Computing a power assignment maximizing the coverage within
Voronoi cells has been considered also in [16] from a game theoretic point of
view; yet no analytic result has been known so far for this problem.

We then turn to consider the fatness property. In [9], it was shown that the
fatness of nonuniform zone can be bounded by some function of the maximum

592 E. Kantor et al.

transmission power ψmax, the ambient noise N , the SINR threshold β, the path-
loss exponent α, the distance κ to the closest interfering station and the number
of stations in the network. The SINR+Voronoi zones are shown to have a fatness
bound that is independent of n. In particular, since the network parameters
α, β, κ,N and ψmax are bounded in practice (unlike the number of stations), the
SINR+Voronoi zones are effectively fat.

Finally, using [4], the convexity and the improved fatness bound imply an
approximate point location scheme for SINR+Voronoi zones whose preprocess-
ing time and memory requirements are significantly more efficient than those
obtained in [9]. For a recent work on batched point location tasks see [1].

1.2 Geometric Notions and Wireless Networks

Geometric notions. We consider the d-dimensional Euclidean space R
d (for d ∈

Z≥1). Denote the distance between points p and q by dist(p, q) = ‖q−p‖ and the
ball of radius r centered at point p ∈ R

d by Bd(p, r) = {q ∈ R
d | dist(p, q) ≤ r}.

Unless stated otherwise, we assume the 2-dimensional Euclidean plane, and omit
d. The basic notions of open, closed, bounded, compact and connected sets of
points are defined in the standard manner.

We use the term zone to describe a point set with some “niceness” properties.
Unless stated otherwise, a zone refers to the union of an open connected set and
some subset of its boundary. It may also refer to a single point or to the finite
union of zones.

The point set P is said to be star-shaped with respect to point p ∈ P if the
line segment p q is contained in P for every point q ∈ P . In addition, P is said
to be convex if it is star-shaped with respect to any point p ∈ P , see [7].

For a bounded zone Z �= ∅ and an internal p ∈ Z, denote the maximal and
minimal diameters of Z w.r.t. p by δ(p, Z) = sup{r > 0 | Z ⊇ B(p, r)} and
Δ(p, Z) = inf{r > 0 | Z ⊆ B(p, r)}, and define the fatness parameter of Z with
respect to p to be ϕ(p, Z) = Δ(p, Z)/δ(p, Z). The zone Z is said to be fat with
respect to p if ϕ(p, Z) is bounded by some constant.

Wireless networks and SINR Diagrams. We consider a wireless network A =
〈d, S, ψ,N , β, α〉, where d ∈ Z≥1 is the dimension, S = {s0, s1, . . . , sn−1} is a set
of n ≥ 2 radio stations embedded in the d-dimensional space, ψ is an assignment
of a positive real transmitting power ψi to each station si, N ≥ 0 is the back-
ground noise, β ≥ 0 is a constant reception threshold, and α > 0 is the path-loss
parameter. The signal to interference & noise ratio (SINR) of si at point p is
defined as

SINRA(si, p) =
ψi · dist(si, p)−α

∑
j �=i ψj · dist(sj , p)−α + N

. (1)

Observe that SINRA(si, p) is always positive since the transmission powers and
the distances of the stations from p are always positive and the background noise
is non-negative. In certain contexts, it may be more convenient to consider the

Nonuniform SINR+Voroni Diagrams Are Effectively Uniform 593

reciprocal of the SINR function,

SINR−1
A (si, p) =

1
ψi

(∑

j �=i

ψj

(
dist(si, p)
dist(sj , p)

)α

+ N · dist(si, p)α
)
. (2)

When the network A is clear from the context, we may omit it and write simply
SINR(si, p). The fundamental rule of the SINR model is that the transmission
of station si is received correctly at point p /∈ S if and only if its signal to
noise ratio at p is not smaller than the reception threshold of the network, i.e.,
SINR(si, p) ≥ β. In this case, we say that si is heard at p. We refer to the set of
points that hear station si as the reception zone of si, defined as

HA(si) = {p ∈ R
d − S | SINRA(si, p) ≥ β} ∪ {si} .

(Note that SINR(si, ·) is undefined at points in S and in particular at si itself,
and that HA(si) is not is not necessarily connected or restricted to the Voroni
cell Vor(si)). The null zone is the set of points that hear no station si ∈ S (due
to the background noise and interference), HA(∅) = {p ∈ R

d −S | SINR(si, p) <
β, ∀si ∈ S}. An SINR diagram H(A) = {HA(si), 0 ≤ i ≤ n − 1} ∪ {HA(∅)} is
a “reception map” partitioning the plane into the stations reception zones and
the null zone. The following important technical lemma from [3] will be useful
in our later arguments.

Lemma 1. [3] Let f : Rd → R
d be a mapping consisting of rotation, translation,

and scaling by a factor of σ > 0. Consider some network A = 〈d, S, ψ,N , β, α〉
and let f(A) = 〈d, f(S), ψ,N /σ2, β, α〉, where f(S) = {f(si) | si ∈ S}. Then f
preserves the signal to noise ratio, namely, for every station si and for all points
p /∈ S, we have SINRA(si, p) = SINRf(A)(f(si), f(p)).

Avin et al. [3] discuss the relationships between an SINR diagram on a set of
stations S with uniform transmission powers and the corresponding Voronoi
diagram on S. Specifically, it is shown that the n reception zones HA(si) around
each point si are strictly contained in the corresponding Voronoi cells Vor(si)
where

Vor(si) = {p ∈ R
d | dist(si, p) ≤ dist(sj , p) for any j �= i} . (3)

In contrast, the reception zone of a nonuniform SINR diagram is not necessarily
contained within the Voronoi cell of the corresponding station (e.g., a strong
station with high transmission energy may be successfully received in points
outside its Voronoi cell). Kantor et al. [9] showed that nonuniform SINR diagrams
are related to a weighted variant of Voronoi diagrams [2].

SINR+Voronoi Diagrams. Consider a wireless network A = 〈d, S, ψ̄,N , β, α〉.
Let Vor(si) be the Voronoi cell of station si (see Eq. (3)). Define VHA(si) be
the reception zone of si restricted to its Voronoi cell, where

VHA(si) = HA(si) ∩ Vor(si) .

The SINR+Voronoi diagram consists of the n Voronoi-restricted reception zones

VH = 〈VHA(s0), . . . ,VHA(sn−1)〉.

594 E. Kantor et al.

2 Convexity of SINR+Voronoi Zones

Without loss of generality, throughout we fix a station s0 and show the following
(for an illustration see Fig. 2).

Theorem 1. For every wireless network A = 〈d, S, ψ,N ≥ 0, β > 0, α〉, The
Voronoi-restricted reception zone VHA(s0) is convex.

Fig. 2. The reception region of s0 is non-convex but its part restricted to the Voronoi
cell of s0 is convex. The green area depicts H(s0). The Voronoi-restricted reception
zone VH(s0) is the darker region.

2.1 Proof Outline

The following technical lemma from [11] plays a key role in our analysis. Denote
the origin point by q = (0, 0), let pL = (1, 0), pR = (−1, 0) and define ρi =
dist2(si, q), for every i = 0, ..., n − 1.

Lemma 2 ([11]). Let A be a noise-free network (N = 0) and let q /∈ S. Then

max{SINR−1
A (s0, pL) , SINR−1

A (s0, pR)} ≥ ∑n−1
i=1

ψi

ψ0
·
(

ρ0+1
ρi+1

)α/2

.

Our proof scheme for Lemma 1 is as follows. For simplicity, consider the
two-dimensional case. Using [3], the proof naturally extends to any dimension
d ≥ 2. Consider pairs of reception points p1, p2 ∈ VHA(s0). We classify such
pairs into two types. The first type is where s0 ∈ p1 p2. This type is handled
in Lemma 3, where it is shown that VHA(s0) is star-shaped with respect to s0.
The complementary type, where s0 �∈ p1 p2, is handled in two steps. First, in
Lemma 4, we consider the simplified case where there is no background noise
(i.e., N = 0) and use Lemma 2 to establish the claim. Finally, we consider the
general noisy case where N > 0 and establish Theorem 1.

Nonuniform SINR+Voroni Diagrams Are Effectively Uniform 595

Lemma 3. VHA(s0) is star-shaped with respect to s0.

Proof. In fact, we prove a slightly stronger assertion. Consider some point p ∈
Vor(s0). We show that SINR(s0, q) > SINR(s0, p) for all internal points q in
the segment s0 p. By Lemma 1, we may assume without loss of generality that
s0 = (0, 0) and p = (−1, 0). Consider some station si, i > 0. Note that si is
outside the unit circle around p (since p is in Vor(s0)). Therefore, if si is not
located on the positive half of the horizontal axis, then it can be relocated to a
new location s ′

i on the positive half of the horizontal axis by rotating it around
p so that dist(s ′

i, p) = dist(si, p) and dist(s ′
i, q) ≤ dist(si, q) for all points q ∈ s0 p

(see Fig. 3). This process can be repeated with every station si, i > 0, until
all interfering stations si �= s0 are located on the positive half of the horizontal
axis without decreasing the interference at any point q ∈ s0 p. Therefore it is
sufficient to establish the assertion under the assumption that si = (ai, 0), where
ai > 0, for every i > 0. Let q = (−x, 0) for some x ∈ (0, 1]. To show that
SINR(s0, q) > SINR(s0, p), we consider the reciprocal of the SINR function from
Eq. (2) on s0 and q, which in the defined setting assumes the form

f(x) = SINR−1(s0, q) =
n−1∑

i=1

[
ψi

ψ0

(
x

ai + x

)α]

+
xα

ψ0
· N ,

and prove that f(x) < f(1) for all x ∈ (0, 1). This follows since the derivative
df(x)

dx = αx
ψ0

·
(∑n

i=1
ψi·ai

(ai+x)(α+1) + N
)

is positive for x ∈ (0, 1].

p s0

s3
s1 s2

s2

s3

s1

Fig. 3. Relocating stations. All stations are mapped to the positive x-axis, so that the
SINR value at point p with respect to the station s0, is preserved.

596 E. Kantor et al.

2.2 Convexity without Background Noise

We now complete the proof for the noise free case where N = 0.

Lemma 4. For every wireless network A0 = 〈d, S, ψ̄,N = 0, β, α〉, VHA0(si) is
convex for every si ∈ S.

Proof. By Lemma 3, it remains to show that p1 p2 ⊆ VHA0(s0) for any pair of
points p1, p2 ∈ VHA0(s0) such that s0 /∈ p1 p2. Note that by the convexity of
a Voronoi cell, p1 p2 ⊂ Vor(si). Thus, there is no station si on this segment,
concluding that the SINRA0(s0, p) function is continuous on the p1 p2 segment.
It remains to prove that p1 p2 ⊆ HA0(s0), i.e., that SINRA0(s0, q) ≥ β for any
q ∈ p1 p2. We now show that for every q ∈ p1 p2,

SINRA0(s0, q) ≥ min{SINRA0(s0, p1),SINRA0(s0, p2)}.

Specifically, we show that the dual statement holds, namely, that

SINR−1
A0

(s0, q) ≤ max
{
SINR−1

A0
(s0, p1),SINR−1

A0
(s0, p2)

}
. (4)

By Lemma 1 and by the continuity of the SINRA function in the segment
p1 p2, it is sufficient to consider the case where p1 = (−1, 0), p2 = (1, 0) and
q = (0, 0), the middle point between p1 and p2 on the segment. By applying
Lemma 2, we have

max{SINR−1
A0

(s0, p1) , SINR−1
A0

(s0, p2)} ≥
n−1∑

i=1

ψi

ψ0
·
(

ρ0 + 1
ρi + 1

)α/2

. (5)

On the other hand, by Eq. (2),

SINR−1
A0

(s0, q) =
n−1∑

i=1

ψi

ψ0
·
(

ρ0
ρi

)α/2

. (6)

As q ∈ Vor(s0), we have that ρi ≥ ρ0 and hence ρ0/ρi ≤ (ρ0 + 1)/(ρi + 1) for
every i ∈ {1, ..., n− 1}. This, together with Eq. (5) and (6), implies Ineq. (4).

2.3 Convexity with Background Noise

We now consider the general case where N ≥ 0.

Proof (Theorem 1). Consider two points p1, p2 ∈ VHA(s0). We need to show
that p1 p2 ⊆ VHA(s0). By Lemma 1, we may assume without loss of generality
that p1 = (−1, 0) and p2 = (1, 0). Let dN = max{dist(s0, p1),dist(s0, p2)}.

Let A∗ be a noise-free (n + 1)-station network obtained from A by replacing
the background noise with a new station sN located in (0, dN) with transmission
power ψN = N · (d2N + 1)α/2. That is, A∗ = 〈d = 2, S∗, ψ̄∗,N = 0, β, α〉, where
S∗ = S ∪ {sN} and ψ̄∗ = (ψ0, ..., ψn−1, ψN). It is easy to verify that ψN ·

Nonuniform SINR+Voroni Diagrams Are Effectively Uniform 597

dist(sN , pi)−α = N and ψN · dist(sN , q)−α ≥ N , for every q ∈ p1 p2. Thus, on
the one hand,

SINRA∗(s0, pi) = SINRA(s0, pi), for i ∈ {1, 2}, (7)

and on the other hand, for all points q ∈ p1 p2,

SINRA(s0, q) ≥ SINRA∗(s0, q). (8)

We now show that p1, p2 ∈ VHA∗(s0). We first claim that p1, p2 ∈ Vor∗(s0)
where Vor∗ is the Voronoi diagram of the set S∗. Since p1, p2 ∈ VHA(s0), in
particular p1, p2 ∈ Vor(s0). This implies that dist(s0, pi) ≤ dist(sj , pi), for
every i ∈ {1, 2} and j ∈ {1, ..., n − 1}. In addition, dist(sN , pi) > dN ≥
dist(s0, pi), implying that p1, p2 ∈ Vor∗(s0) as needed. It remains to show that
p1, p2 ∈ HA∗(s0). Since p1, p2 ∈ HA(s0), SINRA(s0, pi) ≥ β for i ∈ {1, 2}.
Thus, by Eq. (7), SINRA∗(s0, pi) ≥ β as well, and p1, p2 ∈ HA∗(s0). Finally,
since p1, p2 ∈ VHA∗(s0) where A∗ is a noise free network, by Lemma 4 it holds
that SINRA∗(s0, q) ≥ β, for all points q ∈ p1 p2. Thus, by Ineq. (8), also
SINRA(s0, q) ≥ β, for all points q ∈ p1 p2, are required. Theorem 1 follows.

3 Fatness of SINR+Voronoi Zones

In this section we develop a deeper understanding of the shape of SINR+Voronoi
reception zones by analyzing their fatness. Consider a nonuniform power net-
work A = 〈d, S, Ψ̄ ,N , β, α〉 with positive background noise N > 0, where
S = {s0, . . . , sn−1}, and α ≥ 0 and β > 1 are constants2.

We focus on s0 and assume that its location is not shared by any other
station (otherwise, H(s0) = {s0}). Let κ = minsi∈S\{s0}{dist(s0, si)} denote
the distance between s0 and the closest interfering station. The known fatness
bounds for uniform and nonuniform reception zones are summarized as follows.

Fact 2. Let A be an n-station network.
(a) If A is uniform, then ϕ(s0,HAu(s0)) = O(1).
(b) If A is nonuniform, then ϕ(s0,HAnu(s0)) = O(ψmax/κ · √

n/N) for α = 2.

We now show that in the SINR+Voronoi setting, the fatness of VHA(s0) with
respect to s0, can be bounded as a function of ψmax, κ, α, β and N , namely, it
is independent of the number of stations n.

Theorem 3

ϕ(s0,VH(s0)) ≤
α
√

β + 1
α
√

β − 1
· max

{

1 ,
3
κ

· α

√
ψ0

N · β
· max{1, α

√
β − 1}

}

.

In certain cases, tighter bounds can be obtained. In particular, we say that an
SINR+Voronoi zone VHA(s0) is well-bounded if the minimal enclosing ball of
VHA(s0) is fully contained in the Voronoi cell Vor(s0). Then we have:
2 Note that the convexity proof presented in Section 2 holds for any β ≥ 0.

598 E. Kantor et al.

Lemma 5. If VHA(s0) is a well-bounded zone, then ϕ(s0,VHA(s0)) = O(1).

The proof of Thm. 3 is provided in the full version. Its overall structure is similar
to that of Thm. 4.2 in [3], but requires delicate adaptations for the nonuniform
setting. The radius Δ(s0,VHA(s0)) is easily bounded by considering the extreme
case where s0 is the solitary transmitting stations. Our main efforts went into
bounding the small radius δ(s0,VHA(s0)) by a function independent of n. The
proof consists of three main steps. First, we bound the fatness of SINR+Voronoi
zones in a setting of two stations in a one-dimensional space. Then, we consider
a special type of nonuniform power networks called positive collinear networks.
Finally, the general case is reduced to the case of positive collinear networks.

4 Applications

In this section, we present two applications for the properties established in
the previous sections. In Subsec. 4.1, we present an application for the con-
vexity property and describe a new variant of the power control problem. In
Subsec. 4.2, we exploit the convexity and the improved bound on the fatness of
SINR+Voronoi zones to obtain an improved approximate point location scheme
for SINR+Voronoi diagram.

4.1 The Power Control Voronoi Diagram (PCVD) Problem

In the standard power control problem for wireless networks, one is given a set
of n communication links L = {�0, . . . , �n−1}, where each link �i represents a
communication request from station si to receiver ri. The question is then to
find an optimal power assignment for the stations, so as to make the reception
threshold β as high as possible and ease the decoding process. As it turns out, this
problem can be solved elegantly using the Perron–Frobenius (PF) Theorem [18].
Essentially, since every station is required to satisfy a fixed number of receivers
(in the standard formulation, there is actually one receiver per station), the
system can be represented in a matrix form that has some useful properties.

We now consider a new variant of the problem in which every station has to
satisfy a continuous zone rather than a fixed number of points. The motivation
for this formulation is that it allows one to attain an optimal complete coverage
of the reception map. We now define the problem formally.

In the Power Control for Voronoi Diagram (PCVD) problem, one is given
a network of n stations S = {s0, . . . , sn−1} embedded in some d-dimensional
bounded polygon3 P and the task is to find an optimal power assignment for
the stations, so as to make the reception threshold β as high as possible while
still SINRA(si, p) ≥ β for every si and every point p ∈ Vor(si) ∩ P.

Note that without the convexity property within VHA(si) zones, established
in the previous section, it is unclear how to formulate this problem by using a
finite set of inequalities. This is because each Voronoi cell consists of infinitely
3 The role of P is to guarantee that all Voronoi cells restricted to P are bounded.

Nonuniform SINR+Voroni Diagrams Are Effectively Uniform 599

many reception points, each of which must satisfy an SINR constraint. Due to
the convexity property, we can provide the following succinct representation of
the problem. For every station si ∈ S, let Vi be the vertex set4 of the bounded
polytope Vor(si) ∩ P. Let m =

∑n−1
i=0 |Vi|. The optimization task consists of m

inequalities and n + 1 variables (n variables corresponding to the power assign-
ment and β). This yields the following formulation.

maximize β subject to: (9)
SINR(si, p) ≥ β for every si ∈ S and p ∈ Vi .

We first claim that this is a correct formulation for the Power Control for Voronoi
Diagram problem. Let β∗ be the optimum solution of Program (9). By the
feasibility of this solution, SINR(si, p) ≥ β∗ for every p ∈ Vi. Since the reception
zone is convex within its Voronoi cell, we get that SINR(si, p) ≥ β∗ for every
p ∈ Vor(si) (in particular, in the optimum β, the reception zone contains the
Voronoi cell of the station).

To solve Program (9), note that for any fixed β, the inequalities are linear
in the n transmission power variables and hence the resulting set of m linear
inequalities is solvable in polynomial time. A nearly optimum power assignment
can then be found by searching for the best β via binary search up to some
desired approximation.

4.2 The Closest Station Point Location Problem

In the Closest Station Point Location Problem, one is given a nonuniform power
network A with n transmitting stations, S = {s0, . . . , sn−1}. Given a query point
p ∈ R

2, it is required to answer whether sp is heard at p, where sp is the closest
station to p (i.e., p ∈ Vor(sp)).

Since nonuniform SINR zones are non-convex and non-fat, the preprocessing
time and memory required in the approximate point location scheme of [10] are
polynomial but costly. In this section we show that one can solve approximate
point location tasks for nonuniform networks with effectively the same bounds as
obtained for uniform networks (where ψmax and N are bounded by constants),
as long as the query point p belongs to the Voronoi cell of the station that should
be heard at p. Hence Lemma 5.1 of [3] yields the following.

Theorem 4. For every n-station nonuniform power network with SINR+
Voronoi reception zones 〈VHA(s1), . . . ,VHA(sn)〉, it is possible to construct,
in preprocessing time O((ψmax/(κ ·N))3/α · n2 · ε−1), a data structure DS requir-
ing memory of size O((ψmax/(κ · N))3/α · n · ε−1) that imposes a (2n + 1)-wise
partition ṼH = 〈VH+

A(s1), . . . ,VH+
A(sn),VH?

A(s1), . . . ,VH?
A(sn),VH−

A〉 of the
Euclidean plane, such that for every i ∈ {0, . . . , n − 1},
(a) VH+

A(si) ⊆ VHA(si),
(b) VHA(si) ∩ VH−

A = ∅,

4 Note that the Vi sets are not disjoint and hence vertices are counted multiple times

600 E. Kantor et al.

(c) VH?
A(si) is bounded and its area is at most an ε-fraction of the area of

VHA(si).

Furthermore, given a query point p, it is possible to extract from DS, in time
O(log n), the zone in ṼH to which p belongs. Hence the closest station point
location query can be answered with approximation ratio ε and query time
O(log(ψmax · n/(N · κ))), where κ = mini,j dist(si, sj).

For comparison, the general point location scheme of [10] requires O(n10ψ4
max/ε2)

preprocessing time and O(n8ψ4
max/ε2) memory bits.

5 Conclusion

The Voronoi diagram of the base stations is a natural model for wireless net-
works in the plane. In this paper we show that restricting nonuniform reception
zones to their corresponding Voronoi regions yields zones that are (almost) as
nice as uniform reception zones. The increasing demand for mobile and high
performance networks has created a need to dynamically determine the power
with which each base station should transmit in order to optimize the network
capacity. A common approach is to assign each base station its own Voronoi
cell. When the network is dynamic, the Voronoi cell is no longer fixed and one
can no longer compute in advance the parameters required for optimal network
performance. We consider the resulting fundamental Power Control for Voronoi
Diagram (PCVD) problem. The convexity property guaranteed for SINR recep-
tion zones within Voronoi regions enables us to discretize the PCVD problem
while maintaining optimality. In addition, we showed that point location queries
for SINR+Voronoi zones can be answered with almost the same bounds as for
the uniform case. We believe that this approach may pave the way for designing
additional algorithms for dynamic mobile networks

References

1. Aronov, B., Katz, M.J.: Batched point location in SINR diagrams via algebraic
tools. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.)
ICALP 2015. LNCS, vol. 9134, pp. 65–77. Springer, Heidelberg (2015)

2. Aurenhammer, F., Edelsbrunner, H.: An optimal algorithm for constructing the
weighted voronoi diagram in the plane. Pattern Recognition 17 (1984)

3. Avin, C., Emek, Y., Kantor, E., Lotker, Z., Peleg, D., Roditty, L.: SINR diagrams:
Convexity and its applications in wireless networks. J. ACM 59(4) (2012)

4. Avin, C., Lotker, Z., Pignolet, Y.-A.: On the power of uniform power: capacity
of wireless networks with bounded resources. In: Fiat, A., Sanders, P. (eds.) ESA
2009. LNCS, vol. 5757, pp. 373–384. Springer, Heidelberg (2009)

5. Basch, J., Guibas, L.J., Hershberger, J.: Data structures for mobile data (1997)
6. Chen, B., Jamieson, K., Balakrishnan, H., Morris, R.: Span: An energy-efficient

coordination algorithm for topology maintenance in ad hoc wireless networks.
Wireless Networks 8, 481–494 (2002)

Nonuniform SINR+Voroni Diagrams Are Effectively Uniform 601

7. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational
Ge-ometry: Algorithms and Applications. Springer-Verlag (2008)

8. Guibas, L.J., Mitchell, J.S.B., Roos, T.: Voronoi diagrams of moving points in
the plane. In: Schmidt, G., Berghammer, R. (eds.) Graph-Theoretic Concepts in
Computer Science. LNCS, vol. 570, pp. 113–125. Springer, Springer (1992)

9. Kantor, E., Lotker, Z., Parter, M., Peleg, D.: The topology of wireless communi-
cation. In: Proc. STOC (2011)

10. Kantor, E., Lotker, Z., Parter, M., Peleg, D.: The topology of wireless communi-
cation (2011). http://arxiv.org/pdf/1103.4566v2.pdf

11. Kantor, E., Lotker, Z., Parter, M., Peleg, D.: The minimum principle of SINR: a
useful discretization tool for wireless communication. In: Proc. FOCS (2015)

12. Kim, Y., Kim, J., Nam, H., An, S.: Hex-grid based routing protocol in wireless
sensor networks. In: Computat. Sci. & Eng., pp. 683–688 (2012)

13. Nocetti, F.G., Stojmenovic, I., Zhang, J.: Addressing and routing in hexagonal
networks with applications for tracking mobile users and connection rerouting in
cellular networks. IEEE Trans. Par. & Distr. Syst. 13, 963–971 (2002)

14. Ping, L.R., Rogers, G., Zhou, S., Zic, J.: Topology control with hexagonal tessel-
lation 2, 91–98 (2007)

15. Stojmenovic, I.: Honeycomb networks: Topological properties and communication
algorithms. IEEE Trans. Par. & Distr. Syst. 8, 1036–1042 (1997)

16. Xu, X., Li, Y., Gao, R., Tao, X.: Joint voronoi diagram and game theory-based
power control scheme for the hetnet small cell networks. EURASIP J. Wireless
Comm. and Networking 2014, 213 (2014)

17. Yousefi, S., Mousavi, M.S., Fathy, M.: Vehicular adhoc networks (vanets): chal-
lenges and perspectives. In: IEEE ITS Telecomm., pp. 761–766 (2006)

18. Zander, J.: Performance of optimum transmitter power control in cellular radiosys-
tems. IEEE Tr. Vehic. Technol. 41, 57–62 (1992)

http://arxiv.org/abs/http://arxiv.org/pdf/1103.4566v2.pdf

Stable Leader Election in Population Protocols
Requires Linear Time

David Doty1 and David Soloveichik2(B)

1 University of California, Davis, Davis, CA, USA
doty@ucdavis.edu

2 University of Texas at Austin, Austin, TX, USA
david.soloveichik@utexas.edu

Abstract. A population protocol stably elects a leader if, for all n, start-
ing from an initial configuration with n agents each in an identical state,
with probability 1 it reaches a configuration y that is correct (exactly
one agent is in a special leader state �) and stable (every configuration
reachable from y also has a single agent in state �). We show that any
population protocol that stably elects a leader requires Ω(n) expected
“parallel time” — Ω(n2) expected total pairwise interactions — to reach
such a stable configuration. Our result also informs the understanding of
the time complexity of chemical self-organization by showing an essential
difficulty in generating exact quantities of molecular species quickly.

1 Introduction

Background. Population protocols (PPs) were introduced by Angluin, Aspnes,
Diamadi, Fischer, and Peralta[2] as a model of distributed computing in which
the agents have very little computational power and no control over their sched-
ule of interaction with other agents. They also can be thought of as a special
case of Petri nets/vector addition systems[15,16], which were introduced in the
1960s as a model of concurrent processing. In addition to being an appropri-
ate model for electronic computing scenarios such as mobile sensor networks,
they are a useful abstraction of “fast-mixing” physical systems such as animal
populations[18], chemical reaction networks, and gene regulatory networks[7].

A PP is defined by a finite set Λ of states that each agent may have, together
with a transition function δ : Λ × Λ → Λ × Λ.1 Given states r1, r2, p1, p2 ∈ Λ,
if δ(r1, r2) = (p1, p2) (denoted r1, r2 → p1, p2) and a pair of agents in respective
states r1 and r2 interact, then their states become p1 and p2.2 A configuration

D. Doty—Author was supported by NSF grants CCF-1219274 and CCF-1442454
and the Molecular Programming Project under NSF grant 1317694.
D. Soloveichik—Author was supported by an NIGMS Systems Biology Center grant
P50 GM081879 and NSF grant CCF-1442454.

1 Some work on PPs allows “non-deterministic” transitions, in which the transition
function maps to subsets of Λ × Λ. Our results are independent of whether the PP
is deterministic or nondeterministic in this manner.

2 In the most generic model, there is no restriction on which agents are permitted to
interact. If one prefers to think of the agents as existing on nodes of a graph, then
it is the complete graph Kn for a population of n agents.

c© Springer-Verlag Berlin Heidelberg 2015
Y. Moses (Ed.): DISC 2015, LNCS 9363, pp. 602–616, 2015.
DOI: 10.1007/978-3-662-48653-5 40

Stable Leader Election in Population Protocols Requires Linear Time 603

of a PP is a vector c ∈ NΛ describing, for each state s ∈ Λ, the count c(s) of
how many agents are in state s. Executing a transition r1, r2 → p1, p2 alters
the configuration by decrementing the counts of states r1 and r2 by 1 each and
incrementing p1 and p2 by 1 each.3

Associated with a PP is a set of valid initial configurations that we expect
the PP to be able to handle.4 Agents interact in a pairwise manner and change
state based on the transition function. The next pair of agents to interact is
chosen uniformly at random among the n agents. (An interaction may be a
“null transition” r1, r2 → r1, r2.) We count the expected number of interactions
until some event occurs, and then define the “parallel time” until this event
as the expected number of interactions divided by the number of agents n.
This measure of time is based on the natural parallel model where each agent
participates in a constant number of interactions in one unit of time, hence Θ(n)
total interactions are expected per unit time [4]. In this paper all references to
“time” refer to parallel time.

In order to define error-free computation in PPs, we rely on to the notion of
stable computation [5]. The PP must get to a configuration that is correct5 and
“stable” in the sense that no subsequent sequence of transitions can take the
PP to an incorrect configuration. Error-free computation must be correct in an
“adversarial” schedule of transitions: we require that from every configuration
reachable by any sequence of transitions from the initial configuration, it is
possible to reach to a correct stable configuration. Since the configuration space
is finite, requiring stability is equivalent to requiring, under the randomized
model, that a correct stable configuration is reached with probability 1.6

A PP works “with a leader” if there is a special “leader” state �, and every
valid initial configuration i satisfies i(�) = 1. This is in contrast to a uniform
initial configuration (i(x) = n for some state x and i(y) = 0 for all states y �= x)
or an initial configuration only encoding the input (i(xi) = ni for i ∈ {1, . . . , k}
to represent any input (n1, n2, . . . , nk) ∈ Nk). It is known that the predicates
φ : Nk → {0, 1} stably computable by PPs are exactly the semilinear predi-
cates, whether an initial leader is allowed or not [5]. Although the initial leader
does not alter the class of computable predicates, it may allow faster computa-
tion. Specifically, the fastest known PPs to stably compute semilinear predicates

3 Possibly some of r1, r2, p1, p2 are equal to each other, so the count of a state could
change by 0, 1, or 2.

4 The set of valid initial configurations for a “self-stabilizing” PP is NΛ, where leader
election is provably impossible [6]. We don’t require the PP to work if started in any
possible configuration, but rather allow potentially “helpful” initial configurations
as long as they don’t already have small count states (see “α-dense” below).

5 What “correct” means depends on the task. For computing a predicate, for example,
Λ is partitioned into “yes” and “no” voters, and a “correct” configuration is one in
which every state present has the correct vote.

6 It is also equivalent to requiring that every fair sequence of transitions reaches a
correct stable configuration, where “fair” means that every configuration infinitely
often reachable is infinitely often reached [5].

604 D. Doty and D. Soloveichik

without a leader take as long as Θ(n) to converge.7 In contrast, with a leader, it
is known that any semilinear predicate can be stably computed with expected
convergence time O(log5 n) [4]. Thus, in certain circumstances, the presence of
a initial leader seems to give PPs more computational power (e.g., to converge
quickly). Angluin, Aspnes, and Eisenstat [4] asked whether polylogarithmic time
stable computation of semilinear predicates is possible without a leader; absent
a positive answer, the presence of a leader appears to add power to the model.

Statement of main result. Motivated in part by the apparent speedup possible
with an initial leader, we ask how quickly a leader may be elected from a con-
figuration lacking one. We pose the problem as follows: design a PP P with two
special states x (the initial state) and � (the leader state, which may or may
not be identical to x) such that, for every n ∈ N, from the initial configuration
in defined as in(x) = n and in(y) = 0 for all other states y, has the following
property. For every configuration c reachable from in, there is a configuration y
reachable from c that has a stable leader. By this we mean that in all configu-
rations y′ reachable from y (including y itself), y′(�) = 1.8

There is a simple O(n) expected time PP for stable leader election, with
(assuming x ≡ �) the single transition �, � → �, f . Our main theorem shows that
every PP that stably elects a leader requires time Ω(n) to reach a state with a
stable leader; thus the previous PP is asymptotically optimal.

Multiple leader states, multiple leaders, and other initial configurations. A more
general notion of leader election is to identify a subset Ψ ⊂ Λ of states that
are all considered leader states, and to require the PP to eventually reach a
configuration y in which

∑
�∈Ψ y(�) = 1, and this sum is 1 in every configuration

reachable from y. This corresponds more appropriately to how leader states
actually coordinate computation in PPs: a leader agent must remember some
state information in between transitions (hence it changes state while remaining
the unique leader). Our techniques actually show this stronger result as well (as
explained in Section 3.2). Further, our result implies that a PP cannot elect any
fixed quantity of leaders (e.g. exactly 256) or variable quantity of leaders under
a fixed bound (e.g. at most 256) in sublinear expected time.

In the simplest formulation of the task of leader election, we always start with
n agents in state x (as described above). Can we capture more generally leader
election from a configuration “without a pre-existing leader”? Intuitively, we
want to exclude initial configurations with states present in small but non-zero

7 See “Open questions” for the distinction between time to converge and time to
stabilize. In this paper, the time lower bound we prove is on stabilization.

8 Note that this problem abstracts away the idea that the leader might be useful for
something (such as computing predicates quickly). In particular, if a certain PP
requires an initial leader, and the correctness of the PP depends on the count of the
leader never exceeding 1, prior to the conclusion of the leader election, the presence
of multiple leaders may result in unintended transitions. However, our main result
is a impossibility theorem, showing that even if the objective is simplified to stable
leader election, without requiring the leader to be useful for any subsequent task,
this still requires Ω(n) time.

Stable Leader Election in Population Protocols Requires Linear Time 605

count. We can exclude such initial configurations, but allow otherwise deliber-
ately prepared starting conditions, using the notion of α-dense configurations:
any state present in the initial configuration has count ≥ αn. Our general neg-
ative result (Theorem 3.2) implies that even starting with best-case initial con-
figurations, as long as, for some constant α > 0, they are all α-dense, sublinear
time leader election is impossible. An open question relates to weakening the
notion of α-dense (see below).

Why simple proofs fail. It is tempting to believe that our negative result could
follow by a simple argument based on reasoning about the last transition to
change the count of the leader.9 However, as the following example illustrates,
reasoning about the last transition to change the count of the leader is insufficient
if some transition can produce a new leader. Consider the following PP, with
initial configuration i given by i(r) = n1/4, i(x) = n − n1/4, and transitions:

r, r → �, k (1)
r, k → k, k (2)

x, k → k, k (3)
�, � → �, k (4)

It can be shown (the analysis is presented in the full version of this paper)
that this PP stably elects a leader in sublinear time O(n1/2 log n) from the
above described non-α-dense initial configuration. Intuitively, it takes expected
time Θ(n1/2) for transition (1) to occur for the first time, producing a single
leader. Transition (4) ensures that if transition (1) occurs more than once, the
PP will eventually stabilize to a single leader. However, with high probability,
transitions (2) and (3) consume all r and x in O(log n) time before (1) executes
a second time. The probability is high enough that the overall expected time to
reach a state with a stable leader is sublinear. Although the above example does
not violate our theorem (since it relies on a non-dense initial configuration), it
shows that any proof of the main result cannot be based solely on reasoning about
the final transition. The proof must also effectively establish that configurations,
such as the initial configuration of the above PP, cannot be reached with high
probability in sublinear time.

Chemical reaction networks. The main result and proof are stated in the lan-
guage of PPs; however, the result holds for more general systems that have PPs as
a special case. The discrete, stochastic chemical reaction network (CRN) model
has been extensively used in the natural sciences to model chemical kinetics in
a well-mixed solution [14], and the model is also used prescriptively for speci-
fying the behavior of synthetic chemical systems [10,17]. As an essential form
of self-organization, biological cells seem able to precisely control the count of
certain molecules (centriole number [11] is a well studied example). How chemi-
cal systems transform relatively uncontrolled initial conditions to precisely con-
trolled amounts of desired species is still not well understood. Our negative result

9 Indeed, if we start with more than one leader, and no transition rule can produce
a new leader, then we can easily prove the impossibility of sublinear time leader
election as follows. To quickly reduce from two leaders to one, the other agent’s
state must be numerous in the population. Thus, the same transition could occur
again, leaving us with no leaders.

606 D. Doty and D. Soloveichik

applied to CRNs10 implies that generating with probability 1 an exact count of
a certain species, whether 1 or 256, is necessarily slower (Ω(n) time) than, for
example, destroying all molecules of the species (through the reaction X → ∅),
which takes O(log(n)) time.

Open questions. An important open question concerns the contrast between con-
vergence and stabilization. We say a PP electing a leader converges when it stops
changing the count of the leader (if it is correct, this count should be 1), and we
say it stabilizes when it first enters a configuration from which the count of the
leader cannot change. In many PPs these two events coincide, but it is possible
to converge strictly before stabilizing.11 Our proof shows only that stabilization
must take expected Ω(n) time. We leave as an open question whether there is a PP
that stably elects a leader and converges in expected o(n) time. Recall that there
are PPs that work with a leader to stably compute semilinear predicates with con-
vergence time O(log5 n) [4]. Thus if stable leader election can converge in expected
sublinear time, by coupling the two PPs it might be possible to achieve stable com-
putation of arbitrary semilinear predicates with sublinear convergence time.

It is similarly open to determine the optimal stabilization time for computing
semilinear predicates. The stably computing PPs converging in O(log5 n) time [4]
provably require expected time Ω(n) to stabilize, and it is unknown whether
faster stabilization is possible even with an initial leader.

The open question of Angluin, Aspnes, and Eisenstat [4] asks whether their
efficient high-probability simulation of a space-bounded Turing machine by a
PP could remove the assumption of an initial leader. That simulation has some
small probability ε > 0 of failure, so if one could elect a leader with a small
probability ε′ > 0 of error and subsequently use it to drive the simulation,by
the union bound the total probability of error would be at most ε + ε′ (i.e., still
close to 0). However, it remains an open question whether the necessary PP
exists. Alistairh and Gelashvili [1] showed that relaxing the requirement of O(1)
states to O(log3 n) states allows for a leader to be elected with high probability
in expected time O(log3 n).12

Our general negative result applies to α-dense initial configurations. How-
ever, is sublinear time stable leader election possible from other kinds of initial
configurations that satisfy our intuition of not having preexisting leaders? It is
known, for example, that for each 0 < ε < 1, an initial configuration with Θ(n)
agents in one state and Θ(nε) in another state can elect a leader in expected
time O(log2 n) with high probability [4], although this protocol has a positive
10 Our result holds for any CRN that obeys Theorem 4.3, the precise constraints of

which are specified in [13] (those constraints automatically apply to all PPs).
11 For example, consider the execution of the PP example above (1)–(4). Suppose (1)

occurs just once, and then transition (2) occurs repeatedly and eliminates all r from
the population. In this case, convergence happened when (1) occurred, but the PP
stabilized only when all r was eliminated. Although in our example both convergence
and stabilization occur in sublinear expected time, in general stabilization may occur
with a substantial delay after convergence.

12 Indeed, our proof technique fails if the number of states is not constant with respect
to n.

Stable Leader Election in Population Protocols Requires Linear Time 607

probability of failure. Above we give an example PP that stably elects a leader
(convergence and stabilization) in O(n1/2 log n) time starting from an initial con-
figuration with Θ(n) agents in one state and Θ(n1/4) in another state. In general
we want to better characterize the initial configurations for which sublinear time
leader election is possible.

2 Preliminaries

If Λ is a finite set (in this paper, of states), we write NΛ to denote the set of
functions c : Λ → N. Equivalently, we view an element c ∈ NΛ as a vector
of |Λ| nonnegative integers, with each coordinate “labeled” by an element of
Λ. Given s ∈ Λ and c ∈ NΛ, we refer to c(s) as the count of s in c. Let
‖c‖ = ‖c‖1 =

∑
s∈Λ c(s) denote the total number of agents. We write c ≤ c′ to

denote that c(s) ≤ c′(s) for all s ∈ Λ. Since we view vectors c ∈ NΛ equivalently
as multisets of elements from Λ, if c ≤ c′ we say c is a subset of c′. It is sometimes
convenient to use multiset notation to denote vectors, e.g., {x, x, y} and {2x, y}
both denote the vector c defined by c(x) = 2, c(y) = 1, and c(z) = 0 for all
z �∈ {x, y}. Given c, c′ ∈ NΛ, we define the vector component-wise operations
of addition c + c′, subtraction c − c′, and scalar multiplication mc for m ∈ N.
For a set Δ ⊂ Λ, we view a vector c ∈ NΔ equivalently as a vector c ∈ NΛ by
assuming c(s) = 0 for all s ∈ Λ \ Δ.

A population protocol (PP) is a pair P = (Λ, δ),13 where Λ is a finite set
of states, and δ : Λ × Λ → Λ × Λ is the (symmetric) transition function. A
configuration of a PP is a vector c ∈ NΛ, with the interpretation that c(s)
agents are in state s. By convention, the value n ∈ Z+ represents the total
number of agents ‖c‖. A transition is a 4-tuple α = (r1, r2, p1, p2) ∈ Λ4, written
α : r1, r2 → p1, p2, such that δ(r1, r2) = (p1, p2). This paper typically defines a
PP by a list of transitions, with δ implicit (there is a null transition δ(r1, r2) =
(r1, r2) if a different transition is not specified). If an agent in state r1 interacts
with an agent in state r2, then they change states to p1 and p2.

More formally, given a configuration c and transition α : r1, r2 → p1, p2, we
say that α is applicable to c if c ≥ {r1, r2}, i.e., c contains 2 agents, one in
state r1 and one in state r2. If α is applicable to c, then write α(c) to denote
the configuration c− {r1, r2} + {p1, p2} (i.e., the configuration that results from
applying α to c); otherwise α(c) is undefined. A finite or infinite sequence of
transitions (αi) is a transition sequence. Given an initial configuration c0 and
a transition sequence (αi), the induced execution sequence (or path) is a finite
or infinite sequence of configurations (c0, c1, . . .) such that, for all ci (i ≥ 1),
ci = αi−1(ci−1). If a finite execution sequence, with associated transition
sequence q, starts with c and ends with c′, we write c=⇒q c′. We write c=⇒ c′

13 We give a slightly different formalism than that of [5] for population protocols. The
main difference is that since we are not deciding a predicate, there is no notion of
inputs being mapped to states or states being mapped to outputs. Another difference
is that we assume (for the sake of brevity in some explanations, not because the
difference is essential to the proof) the transition function is symmetric (so there is
no notion of a “sender” and “receiver” agent as in [5]; the unordered pair of states
completely determines the next pair of states).

608 D. Doty and D. Soloveichik

if such a transition sequence exists (i.e., it is possible for the system to reach
from c to c′) and we say that c′ is reachable from c. If it is understood from con-
text what is the initial configuration i, then say c is simply reachable if i=⇒ c.
Note that this notation omits mention of P; we always deal with a single PP
at a time, so it is clear from context which PP is defining the transitions. If a
transition α : r1, r2 → p1, p2 has the property that for i ∈ {1, 2}, ri �∈ {p1, p2},
or if (r1 = r2 and (ri �= p1 or ri �= p2)), then we say that α consumes ri. In other
words, applying α reduces the count of ri. We similarly say that α produces pi

if it increases the count of pi.
We will find ourselves frequently dealing with infinite sequences of configu-

rations.14 The following lemma, used frequently in reasoning about population
protocols, shows that we can always take a nondecreasing subsequence.
Lemma 2.1 (Dickson’s Lemma [12]). Any infinite sequence x0,x1, . . . ∈ Nk

has an infinite nondecreasing subsequence xi0 ≤ xi1 ≤ . . ., where i0 < i1 <
In any configuration the next interaction is chosen by selecting a pair of

agents uniformly at random and applying transition function δ. To measure
time we count the expected total number of interactions (including null), and
divide by the number of agents n. (In the population protocols literature, this is
often called “parallel time”; i.e. n interactions among a population of n agents
corresponds to one unit of time). Let c ∈ NΛ and C ⊆ NΛ. Denote the proba-
bility that the PP reaches from c to some configuration c′ ∈ C by Pr[c=⇒ C].
If Pr[c=⇒ C] = 1,15 define the expected time to reach from c to C, denoted
T[c=⇒ C], to be the expected number of interactions to reach from c to some
c′ ∈ C, divided by the number of agents n.

3 Main Results

3.1 Impossibility of Sublinear Time Stable Leader Election

We consider the following stable leader election problem. Suppose that each PP
P = (Λ, δ) we consider has a specially designated state � ∈ Λ, which we call
the leader state. Informally, the goal of stable leader election is to be guaranteed
to reach a configuration with count 1 of � (a leader has been “elected”), from
which no transition sequence can change the count of � (the leader is “stable”).
We also assume there is a special initial state x (it could be that x ≡ � but it
is not required), such that the only valid initial configurations i are of the form
i(x) > 0 and i(y) = 0 for all states y ∈ Λ \ {x}. We write in to denote such an
initial configuration with in(x) = n.

Definition 3.1. A configuration y is stable if, for all y′ such that y=⇒y′,
y′(�) = y(�) (in other words, after reaching y, the count of � cannot change); y
is said to have a stable leader if it is stable and y(�) = 1.
14 In general these will not be execution sequences. Typically none of the configura-

tions are reachable from any others because they are configurations with increasing
numbers of agents.

15 Since PP’s have a finite reachable configuration space, this is equivalent to requiring
that for all x reachable from c, there is a c′ ∈ C reachable from x.

Stable Leader Election in Population Protocols Requires Linear Time 609

The following definition captures our notion of stable leader election. It
requires the PP to be “guaranteed” eventually to reach a configuration with
a stable leader.

Definition 3.2. We say a PP elects a leader stably if, for all n ∈ Z+, for all
c such that in =⇒ c, there exists y with a stable leader such that c=⇒y.

In other words, every reachable configuration can reach to a configuration
with a stable leader. It is well-known [5] that the above definition is equiva-
lent to requiring that the PP reaches a configuration with a stable leader with
probability 1.

Definition 3.3. Let t : Z+ → R+, and let Y be the set of all configurations
with a stable leader. We say a PP elects a leader stably in time t(n) if, for all
n ∈ Z+, T[in =⇒ Y] ≤ t(n).

Our main theorem says that stable leader election requires at least linear
time to stabilize:

Theorem 3.1. If a PP stably elects a leader in time t(n), then t(n) = Ω(n).

Thus a PP that elects a leader in sublinear time cannot do so stably, i.e., it
must have a positive probability of failure.

The high-level strategy to prove Theorem 3.1 is as follows. With high proba-
bility the PP initially goes from configuration in to configuration xn, such that
in the sequence (xn) for increasing population size n, every state count grows
without bound as n → ∞ (indeed Ω(n)); this follows from Theorem 4.3. We
then show that any such configuration must have an “O(1)-bottleneck transi-
tion” before reaching a configuration with a stable leader (informally this means
that every transition sequence from xn to a configuration y with a stable leader
must have a transition in which both input states have count O(1), depending on
the PP but not on n). Since it takes expected time Ω(n) to execute a transition
when both states have constant count, from any such configuration it requires
linear time to stably elect a leader. Since one of these configurations is reached
from the initial configuration with high probability, those configurations’ contri-
bution to the overall expected time dominates, showing that the expected time
to stably elect a leader is linear.

3.2 More General Impossibility Result in Terms of Inapplicable
Transitions and Dense Configurations

Rather than proving Theorem 3.1 using the notion of leader stability directly,
we prove a more general result concerning the notion of a set of inapplicable
transitions. The two generalizations are as follows. (1) A configuration y is stable
by Definition 3.1 if no transition altering the count of � is applicable in any
configuration reachable from y; Definition 3.4 generalizes this to an arbitrary
subset Q of transitions. (2) The valid initial configurations of Section 3.1 are
those with in(x) = n and in(y) = 0 for all y ∈ Λ \ {x}; Theorem 3.2 generalizes
this to any set I of configurations that are all “α-dense” (defined below) for
a fixed α > 0 independent of n, with a weak sort of “closure under addition”
property: namely, that for infinitely many i, i′ ∈ I, we have i + i′ ∈ I.

610 D. Doty and D. Soloveichik

Definition 3.4. Let Q be a set of transitions. A configuration y ∈ NΛ is said
to be Q-stable if no transition in Q is applicable in any configuration reachable
from y.

If we let Q be the set of transitions that alter the count of the leader state
�, then a Q-stable configuration y with y(�) = 1 exactly corresponds to the
property of having a stable leader.

Let I ⊆ NΛ and Q be a set of transitions. Let Y be the set of Q-stable
configurations reachable from some configuration in I. We say that a PP P =
(Λ, δ) Q-stabilizes from I if, for any i ∈ I, Pr[i=⇒ Y] = 1.16 If I and Q are
understood from context, we say that P stabilizes. For a time bound t(n), we
say that P stabilizes in expected time t(n) if, for all i ∈ I such that ‖i‖ = n,
T[i=⇒ Y] ≤ t(n).

To prove our time lower bound, we show that a “slow” transition necessarily
occurs, which means that the counts of the two states in the transition are
“small” when it occurs. We will pick a particular nondecreasing infinite sequence
C of configurations and define “small” relative to it: the “small count” states
are those whose counts are bounded in C (denoted bdd(C) below).
Definition 3.5. For an (infinite) set/sequence of configurations C, let bdd(C)
be the set of states { s ∈ Λ | (∃b ∈ N)(∀c ∈ C) c(s) < b }. Let unbdd(C) = Λ \
bdd(C).

Remark 3.1. Note that if C = (cm) is a nondecreasing sequence, then for all
k ∈ N, there is cm such that for all s ∈ unbdd(cm), cm(s) ≥ k. (Note that if C
is not nondecreasing, the conclusion can fail; e.g., cm(s1) = m, cm(s2) = 0 for
m even and cm(s1) = 0, cm(s2) = m for m odd.)

Let 0 < α ≤ 1. We say that a configuration c is α-dense if for all s ∈ Λ,
c(s) > 0 implies that c(s) ≥ α‖c‖, i.e., all states present in c occupy at least an
α fraction of the total count of agents.

Theorem 3.1 is implied by the next theorem, which the rest of the paper is
devoted to proving.

Theorem 3.2. Let P = (Λ, δ), let Q be any subset of transitions of P, let α > 0,
and let I ⊆ NΛ be a set of α-dense initial configurations such that, for infinitely
many i, i′ ∈ I, i + i′ ∈ I. Let Y be the set of Q-stable configurations reachable
from I, and let Δ = bdd(Y). Suppose P Q-stabilizes from I in expected time
o(n). Then there are infinitely many y ∈ Y such that ∀s ∈ Δ, y(s) = 0.

In other words, if some states have “small” count in all reachable stable
configurations, then there is a reachable stable configuration in which those
states have count 0. A PP P that stably elects a leader is a PP in which Q is
the set of transitions that alter the count of �, I = { in | n ∈ N } (note all in
are 1-dense), Y is the set of configurations reachable from I with a stable leader,
and P Q-stabilizes from I. Hence by Theorem 3.2, if P stabilizes in expected
time o(n), there is a stable reachable y where y(�) = 0, a contradiction. Thus
Theorem 3.1 follows from Theorem 3.2.
16 Recall that the condition Pr[i=⇒ Y] = 1 is equivalent to [(∀c ∈ NΛ) i=⇒ c implies

(∃y ∈ Y) c=⇒y].

Stable Leader Election in Population Protocols Requires Linear Time 611

We can also use Theorem 3.2 to prove that stable leader election requires
linear time under the more relaxed requirement that there is a set Ψ ⊂ Λ of
“leader states,” and the goal of the PP is to reach a configuration y in which∑

�∈Ψ y(�) = 1 and stays 1 in any configuration reachable from y. Choosing Q
as the set of transitions that alter that sum, Theorem 3.2 implies this form of
stable leader election also requires Ω(n) expected time.

Throughout the rest of this paper, fix P = (Λ, δ), α, I, and Q as in the
statement of Theorem 3.2.

4 Technical Tools

4.1 Bottleneck Transitions Require Linear Time

This section proves a straightforward observation used in the proof of our main
theorem. It states that, if to get from a configuration x ∈ NΛ to some config-
uration in a set Y ⊆ NΛ, it is necessary to execute a transition r1, r2 → p1, p2
in which the counts of r1 and r2 are both at most some number b, then the
expected time to reach from x to some configuration in Y is Ω(n/b2).

Let b ∈ N. We say that transition α : r1, r2 → p1, p2 is a b-bottleneck for
configuration c if c(r1) ≤ b and c(r2) ≤ b.

Observation 4.1. Let b ∈ N, x ∈ NΛ, and Y ⊆ NΛ such that Pr[x=⇒ Y] = 1.
If every transition sequence taking x to a configuration y ∈ Y has a b-bottleneck,
then T[x=⇒ Y] ≥ n−1

2(b·|Λ|)2 .

A proof of Observation 4.1 is given in the full version of this paper. Intuitively,
it follows because if two states r1 and r2 have count at most b, where b is a
constant independent of n, then we expect to wait Ω(n) time before agents in
states r1 and r2 interact.

Corollary 4.2. Let γ > 0, b ∈ N, c ∈ NΛ, and X,Y ⊆ NΛ such that
Pr[c=⇒ X] ≥ γ, Pr[c=⇒ Y] = 1, and every transition sequence from every
x ∈ X to some y ∈ Y has a b-bottleneck. Then T[c=⇒ Y] ≥ γ n−1

2(b·|Λ|)2 .

4.2 Sublinear Time from Dense Configurations Implies Bottleneck
Free Path from Configurations with Every State “Populous”

The following theorem, along with Corollary 4.2, fully captures the probabil-
ity theory necessary to prove our main theorem.17 Given it and Corollary 4.2,
Theorem 3.2 is provable (through Lemma 4.1) using only combinatorial argu-
ments about reachability between configurations.

17 Theorem 4.3 was proven for a more general model called Chemical Reaction Networks
(CRNs) that obey a certain technical condition [13]; as observed in that paper, the
class of CRNs obeying that condition includes all PPs, so the theorem holds uncon-
ditionally for PPs. The theorem proved in [13] is more general than Theorem 4.3,
but we have stated a corollary of it here. A similar statement is implicit in the proof
sketch of Lemma 5 of a technical report on a variant model called “urn automata”
that has PPs as a special case [3].

612 D. Doty and D. Soloveichik

For ease of notation, we assume throughout this paper that all states in Λ
are producible, meaning they have positive count in some reachable configura-
tion. Otherwise the following theorem applies only to states that are actually
producible. Recall that for α > 0, a configuration c is α-dense if for all s ∈ Λ,
c(s) > 0 implies that c(s) ≥ α‖c‖. Say that c ∈ NΛ is full if (∀s ∈ Λ) c(s) > 0,
i.e., every state is present. The following theorem states that with high proba-
bility, a PP will reach from an α-dense configuration to a configuration in which
all states are present (full) in “high” count (β-dense, for some 0 < β < α).

Theorem 4.3 (adapted from [13]). Let P = (Λ, δ) be a PP and α > 0. Then
there are constants ε, β > 0 such that, letting , X = { x ∈ NΛ | x is full and
β-dense }, for all α-dense configurations i, Pr[i=⇒ X] ≥ 1 − 2−ε‖i‖.

In [13], the theorem is stated for “sufficiently large” ‖i‖, but of course one
can always choose ε to be small enough to make it true for all i.

The following lemma reduces the problem of proving Theorem 3.2 to a com-
binatorial statement involving only reachability among configurations (and the
lack of bottleneck transitions between them). In Section 5 we will prove Theo-
rem 3.2 by showing that the existence of the configurations xm and ym and the
transition sequence pm in the following lemma implies that we can reach a Q-
stable configuration v ∈ NΓ , where Γ = unbdd(Y) and Y is the set of Q-stable
configurations reachable from I.

Lemma 4.1. Let α > 0. Let P = (Λ, δ) be a PP such that, for some set of
transitions Q and infinite set of α-dense initial configurations I, P reaches a set
of Q-stable configurations Y in expected time o(n). Then for all m ∈ N, there is
a configuration xm reachable from some i ∈ I and transition sequence pm such
that (1) xm(s) ≥ m for all s ∈ Λ, (2) xm =⇒pm

ym, where ym ∈ Y , and (3) pm

has no m-bottleneck transition.

The proof of Lemma 4.1 is in the full version of this paper. Intuitively, the
lemma follows from the fact that states xm are reached with high probability by
Theorem 4.3, and if no paths such as pm existed, then all paths from xm to a
stable configuration would have a bottleneck and require linear time. Since xm

is reached with high probability, this would imply the entire expected time is
linear.

4.3 Transition Ordering Lemma

The following lemma was first proven (in the more general model of Chemical
Reaction Networks) in [8]. Intuitively, the lemma states that a “fast” transition
sequence (meaning one without a bottleneck transition) that decreases certain
states from large counts to small counts must contain transitions of a certain
restricted form. In particular the form is as follows: if Δ is the set of states
whose counts decrease from large to small, then we can write the states in Δ
in some order d1, d2, . . . , dk, such that for each 1 ≤ i ≤ k, there is a transition
αi that consumes di, and every other state involved in αi is either not in Δ, or

Stable Leader Election in Population Protocols Requires Linear Time 613

comes later in the ordering. These transitions will later be used to do controlled
“surgery” on fast transition sequences, because they give a way to alter the
count of di, by inserting or removing the transitions αi, knowing that this will
not affect the counts of d1, . . . , di−1.

Lemma 4.2 (Adapted from [8]). Let b1, b2 ∈ N such that b2 > |Λ| · b1. Let
x,y ∈ NΛ such that x=⇒y via transition sequence q that does not contain a
b2-bottleneck. Define Δ = { d ∈ Λ | x(d) ≥ b2 and y(d) ≤ b1 }. Then there
is an order on Δ, so that we may write Δ = {d1, d2, . . . , dk}, such that, for
all i ∈ {1, . . . , k}, there is a transition αi of the form di, si → oi, o

′
i, such that

si, oi, o
′
i �∈ {d1, . . . , di}, and αi occurs at least (b2 − |Λ| · b1)/|Λ|2 times in q.

The intuition behind the proof is that the ordering is given (this is somewhat
oversimplified) by the last time in q the state’s count drops below b2. Each state
in Δ must go from “large” count (b2) to “small” count (b1), so when a state
di is below count b2, if a non-b2-bottleneck transition di, dj → . . . occurs, then
dj must exceed b2. This, in turn, means that state dj cannot yet have dropped
below count b2 for the last time, so dj is later in the ordering. The full argument
is more subtle (and uses a different ordering) because it must establish that the
transition’s outputs in Δ also come later in the ordering.

5 Proof of Theorem 3.2

By Lemma 4.1, there are sequences (xm) and (ym) of configurations, and a
sequence (pm) of transition sequences, such that, for all m, (1) xm(s) ≥ m for
all s ∈ Λ, and for some i ∈ I, i=⇒xm, (2) ym is Q-stable, and (3) xm =⇒pm

ym

and pm does not contain an m-bottleneck.
By Dickson’s Lemma there is an infinite subsequence of (xm) for which both

(xm) and (ym) are nondecreasing. Without loss of generality, we take (xm) and
(ym) to be these subsequences. Let Δ = bdd(ym) and Γ = unbdd(ym).

To prove Theorem 3.2 we need to show that there are configurations in Y
(the set of Q-stable configurations reachable from I) that contain states only in
Γ . Note that stability is closed downward: subsets of a Q-stable configuration
are Q-stable. For any fixed vΓ ∈ NΓ , vΓ ≤ ym for sufficiently large m, by the
definition of Γ (the states that grow unboundedly in ym as m → ∞). Thus any
state vΓ ∈ NΓ is automatically Q-stable. This is why Claims 5.1, 5.2, and 5.3
of this proof center around reaching configurations that have count 0 of every
state in Δ.

Recall the path xm =⇒pm
ym from Lemma 4.1. Intuitively, Claim 5.1 below

says that because this path is m-bottleneck free, Lemma 4.2 applies, and its tran-
sitions can appended to the path to consume all states in Δ from ym, resulting
in a configuration zΓ

m that contains only states in Γ . The “cost” of this manip-
ulation is that, to ensure the appended transitions are applicable, we add extra
agents in specific states corresponding to e ∈ NΛ. Claim 5.1 is not sufficient to
prove Theorem 3.2 because of this additional e; the subsequent Claims 5.2 and
5.3 will give us the machinery to handle it. The full proofs of Claims 5.1, 5.2,
and 5.3 are given in the full version of this paper, and we give examples and
intuition to explain them here.

614 D. Doty and D. Soloveichik

Claim 5.1. There is e ∈ NΛ such that for all large enough m, there is zΓ
m ∈ NΓ ,

such that xm + e=⇒ zΓ
m.

Example. We illustrate Claim 5.1 through an example. Define a PP by the
transitions

b, a → f, c (5)
b, c → f, a (6)
a, c → f, f (7)

f, c → f, b (8)
f, b → f, f (9)

For convenience, for state s ∈ Λ, let s also denote the count of that state in
the configuration considered. Let configuration xm be where f = 100, a = 100,
b = 100, c = 100. Suppose a transition sequence pm without an m-bottleneck
(m = 100) takes the PP from xm to ym, in which a = 3, b = 2, c = 1, and
f = 394. Then in the language of Lemma 4.2, Δ = {a, b, c}; these states go from
“large” count in xm to “small” count in ym.

Our strategy is to add interactions to pm in order to reach a configuration
zΓ

m with a = b = c = 0. There are two issues we must deal with. First, to get
rid of a we may try to add 3 instances of (5) at the end of pm. However, there
is only enough b for 2 instances. To eliminate such dependency, in Claim 5.1,
whenever we add a transition b, a → f, c, we add an extra agent in state b to
e. (In general if we consume r2 by adding transition r1, r2 → p1, p2, we add an
extra agent in state r1 to e.) Second, we need to prevent circularity in consuming
and producing states. Imagine trying to add more executions of (5) to get a to
0 and more of (6) to get c to 0; this will fail because these transitions conserve
the quantity a+c. To drive each of these states to 0, we must find some ordering
on them so that each can be driven to 0 using a transition that does not affect
the count of any state previously driven to 0.

Lemma 4.2 gives us a way to eliminate such dependency systematically. In
the example above, we can find the ordering d1 ≡ a, d2 ≡ c, and d3 ≡ b, with
respective transitions (5) to drive a to 0 (3 executions), (8) to drive c to 0 (4
executions: 1 to consume the 1 copy of c in ym, and 3 more to consume the extra
3 copies that were produced by the 3 extra executions of (5)), and (9) to drive
b to 0 (6 executions: 2 to consume 2 copies of b in ym, and 4 more to consume
the extra 4 copies that were produced by the 4 extra executions of (8)).

Intuitively, Claim 5.2 below works toward generating the vector of states e
that we needed for Claim 5.1. The vector e can be split into the Δ component
and the Γ component; we will handle the Γ component later. The “cost” for
Claim 5.2 is that the path must be taken “in the context” of additional agents
in states captured by p. Importantly, the net effect of the path preserves p, which
will give us a way to “interleave” Claims 5.1 and 5.2 as shown in Claim 5.3.

Claim 5.2. For all eΔ ∈ NΔ, there is p ∈ NΛ, such that for all large enough m,
there is wΓ

m ∈ NΓ , such that p + xm =⇒p + wΓ
m + eΔ, and unbdd(wΓ

m) = Γ .

Stable Leader Election in Population Protocols Requires Linear Time 615

Example. Recall the example above illustrating Claim 5.1. Claim 5.2 is more
difficult than Claim 5.1 for two reasons. First, we need to be able to obtain any
counts of states a, b, c (ie eΔ) and not only a = b = c = 0. Second, we no
longer have the freedom to add extra states as e and consume them. Note that
p cannot fulfill the same role as e because p must be recovered at the end.

For instance suppose eΔ is a = 7, b = 2, c = 1. Recall that ym has a = 3,
b = 2, c = 1. How can we generate additional 4 copies of a? Note that all
transitions preserve or decrease the sum a + b + c. Thus we cannot solely add
interactions to pm to get to our desired eΔ. The key is that we can increase a
by removing existing interactions from pm that consumed it. Indeed, Lemma 4.2
helps us by giving a lower bound on the number of instances of transitions
(5),(8),(9) that must have occurred in pm. (Note that in Claim 5.1, we didn’t
need to use the fact that these transitions occurred in pm. Now, we need to
ensure that there are enough instances for us to remove.) In our case, we can
remove 4 instances of interaction (5), which also decreases c by 4. To compensate
for this, we can remove 4 instances of interaction (8), which also decreases b by
4. Finally, we remove 4 instances of interaction (9). The net result is that we
reach the configuration a = 7, b = 2, c = 1, f = 130.

Note that unlike in Claim 5.1, we have more potential for circularity now
because we cannot add the other input to a transition as e. For example, we
can’t use transition (7) to affect c because it affects a (which we have previously
driven to the desired count). Luckily, the ordering given by Lemma 4.2 avoids
any circularity because the other input and both of the outputs come later in
the ordering.

Importantly, as we remove interactions from pm, we could potentially drive
the count of some state temporarily negative. Performing these interactions in
the context of more agents (p) ensures that the path can be taken.

Claim 5.3. For infinitely many i ∈ I, there is vΓ ∈ NΓ such that i =⇒vΓ .

Intuitively, Claim 5.3 follows by expressing i = i1 + i2 where i1 =⇒xm1 and
i2 =⇒xm2 , so i=⇒xm1 + xm2 . We then apply Claim 5.2 to xm2 (with xm1

playing the role of p) to get to a configuration with the correct e for Claim 5.1,
and then apply Claim 5.1 to remove all states in Δ.

Finally, Theorem 3.2 is proven because vΓ is Q-stable and it contains zero
count of states in Δ. To see that vΓ is Q-stable recall that vΓ ≤ ym′ for
sufficiently large m′ since Γ = unbdd(ym) and vΓ contains only states in Γ .
Since stability is closed downward, and ym′ is Q-stable, we have that vΓ is
Q-stable as well.

Acknowledgements. The authors thank Anne Condon and Monir Hajiaghayi for

several insightful discussions. We also thank the attendees of the 2014 Workshop on

Programming Chemical Reaction Networks at the Banff International Research Sta-

tion, where the first incursions were made into the solution of the problem of PP stable

leader election.

616 D. Doty and D. Soloveichik

References

1. Alistarh, D., Gelashvili, R.: Polylogarithmic-time leader election in population pro-
tocols. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.)
ICALP 2015. LNCS, vol. 9135, pp. 479–491. Springer, Heidelberg (2015)

2. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M., Peralta, R.: Computation
in networks of passively mobile finite-state sensors. Distributed Computing 18,
235–253 (2006). http://dx.doi.org/10.1007/s00446-005-0138-3, preliminary version
appeared in PODC 2004

3. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Urn automata.
Tech. Rep. YALEU/DCS/TR-1280, Yale University, November 2003

4. Angluin, D., Aspnes, J., Eisenstat, D.: Fast computation by population protocols
with a leader. Distributed Computing 21(3), 183–199 (2008). Preliminary Version
appeared in DISC 2006

5. Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The computational power of
population protocols. Distributed Computing 20(4), 279–304 (2007)

6. Angluin, D., Aspnes, J., Fischer, M.J., Jiang, H.: Self-stabilizing population pro-
tocols. In: Anderson, J.H., Prencipe, G., Wattenhofer, R. (eds.) OPODIS 2005.
LNCS, vol. 3974, pp. 103–117. Springer, Heidelberg (2006)

7. Bower, J.M., Bolouri, H.: Computational modeling of genetic and biochemical net-
works. MIT press (2004)

8. Chen, H.-L., Cummings, R., Doty, D., Soloveichik, D.: Speed faults in compu-
tation by chemical reaction networks. In: Kuhn, F. (ed.) DISC 2014. LNCS,
vol. 8784, pp. 16–30. Springer, Heidelberg (2014). http://dx.doi.org/10.1007/
978-3-662-45174-8 2

9. Chen, H.L., Doty, D., Soloveichik, D.: Deterministic function computation with
chemical reaction networks. Natural Computing 13(4), 517–534 (2014). Prelimi-
nary Version appeared in DISC 2012

10. Chen, Y.J., Dalchau, N., Srinivas, N., Phillips, A., Cardelli, L., Soloveichik, D.,
Seelig, G.: Programmable chemical controllers made from DNA. Nature Nanotech-
nology 8(10), 755–762 (2013)

11. Cunha-Ferreira, I., Bento, I., Bettencourt-Dias, M.: From zero to many: control of
centriole number in development and disease. Traffic 10(5), 482–498 (2009)

12. Dickson, L.E.: Finiteness of the odd perfect and primitive abundant numbers with
n distinct prime factors. American Journal of Mathematics 35(4), 413–422 (1913)

13. Doty, D.: Timing in chemical reaction networks. In: SODA 2014: Proceedings of
the 25th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 772–784,
January 2014

14. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. Journal
of Physical Chemistry 81(25), 2340–2361 (1977)

15. Karp, R.M., Miller, R.E.: Parallel program schemata. Journal of Computer and
System Sciences 3(2), 147–195 (1969)

16. Petri, C.A.: Communication with automata. Tech. rep, DTIC Document (1966)
17. Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical

kinetics. Proceedings of the National Academy of Sciences 107(12), 5393 (2010).
Preliminary Version appeared in DNA 2008

18. Volterra, V.: Variazioni e fluttuazioni del numero dindividui in specie animali con-
viventi. Mem. Acad. Lincei Roma 2, 31–113 (1926)

http://dx.doi.org/10.1007/s00446-005-0138-3
http://dx.doi.org/10.1007/978-3-662-45174-8_2
http://dx.doi.org/10.1007/978-3-662-45174-8_2

Hardware Transactions in Nonvolatile Memory

Hillel Avni1, Eliezer Levy1(B), and Avi Mendelson2

1 Huawei Technologies, European Research Center
{hillel.avni,eliezer.levy}@huawei.com

2 Technion CS & EE Departments, Haifa, Israel
avi.mendelson@technion.ac.il

Abstract. Hardware transactional memory (HTM) implementations
already provide a transactional abstraction at HW speed in multi-
core systems. The imminent availability of mature byte-addressable,
nonvolatile memory (NVM) will provide persistence at the speed of
accessing main memory. This paper presents the notion of persistent
HTM (PHTM), which combines HTM and NVM and features hardware-
assisted, lock-free, full ACID transactions. For atomicity and isolation,
PHTM is based on the current implementations of HTM. For durability,
PHTM adds the algorithmic and minimal HW enhancements needed due
to the incorporation of NVM. The paper compares the performance of
an implementation of PHTM (that emulates NVM aspects) with other
schemes that are based on HTM and STM. The results clearly indicate
the advantage of PHTM in reads, as they are served directly from the
cache without locking or versioning. In particular, PHTM is an order of
magnitude faster than the best persistent STM on read-dominant work-
loads.

1 Introduction

In [10], Herlihy and Moss defined hardware transactional memory (HTM), as a
way to leverage hardware cache coherency to execute atomic transactions in the
cacheable shared memory of multicore chips. The basic idea was that each trans-
action is isolated in the local L1 cache of the core that executes it. The semantics
of atomicity were borrowed from the database research [4]. However, database
transactions, unlike HTM transactions, are persistent, i.e. once a transaction
committed successfully, it is also backed up to stable storage.

As HTM lingered, much research was done on software transactional mem-
ory (STM) in order to obtain low overhead and scalable synchronization among
memory transactions without hardware assistance. Intel’s first HTM implemen-
tation reached the market in 2013. At the same time, STM was incorporated
into the GCC compiler [3,12].

Latest developments in memory technology (such as phase change memory,
STT-RAM, and memristors) introduce the possibility of NVM devices that are
fast and byte-addressable as DRAM, more power-efficient than DRAM, yet non-
volatile and cheap as HDD. This paper proposes to provide HTM transactions

c© Springer-Verlag Berlin Heidelberg 2015
Y. Moses (Ed.): DISC 2015, LNCS 9363, pp. 617–630, 2015.
DOI: 10.1007/978-3-662-48653-5 41

618 H. Avni et al.

with fast persistent storage by using NVM instead of (or in addition to) DRAM
while keeping the volatile cache hierarchy intact.

The remainder of this paper is organized as follows. We conclude the Intro-
duction section by reviewing related work. Section 2 introduces the model
and terminology of PHTM. Section 3 defines the PHTM implementation, and
explains the correctness of PHTM. Section 4 evaluates PHTM performance, and
Section 5 concludes and discusses future work.

1.1 Related Work

Coburn et al. [5] suggested NV-Heaps, a software transactional memory (STM)
that works correctly with NVM. The basic idea follows DSTM [9], in which
transactional objects are stored in NVM. A transactional object can be opened
for writing, and then the STM transaction, T, copies it to an undo log, and
locks it. T maintains a volatile read log and a non-volatile undo log for each
transaction. If a system failure occurs, T is aborted and the undo log, which is
persistent, is used to reverse the changes of T.

While NV-Heaps is object-based, the Mnemosyne STM [13], which was pub-
lished at the same time, is word-based and is derived from TinySTM [8]. However,
the ideas behind these algorithms, i.e. nonvolatile undo log and a volatile read
log, are identical.

While correct and feasible, the software-based methods exhibit poor per-
formance due to bookkeeping overhead and locking serialization. Thus, some
database implementations [11,14] use HTM for synchronization. However, these
databases still use HDDs for persistence.

PMFS [7] uses NVM for storage of a file system and [6] uses NVM for per-
sistence in an OLTP database. PMFS does use HTM, but only for very specific
purposes of managing file system metadata.

This paper introduces the combination of NVM and HTM for the purpose
of transaction processing. Our contribution is the presentation of a concrete
implementation that provides full ACID semantics to transactions. We emulate
this implementation and compare its performance to other approaches using
STM, HTM, and NVM.

2 Persistent HTM

The imminent availability of mature Non-Volatile RAM (NVM) technology is
bound to disrupt the way transactional systems are built. NVM devices are fast
and byte-addressable as DRAM, more power-efficient than DRAM, yet non-
volatile and cheap as HDD. Therefore, NVRAM will obliterate the traditional
multi-tier memory hierarchy that is fundamental to the durability guarantees
of ACID transactions. In this foreseen situation, maintaining invalid states in
main memory can render a system crash unrecoverable. Therefore, a fresh and
careful approach is required in the design of persistence and recovery after a
crash (Restart) schemes that would harness the benefits of NVM. In the sequel,
we use the following terms:

Hardware Transactions in Nonvolatile Memory 619

– HTM: A synchronization mechanism that commits transactions atomically,
and maintains isolation. Once an HTM transaction T commits, all its newly
modified data is in volatile cache.

– An HTM transaction Tk: A transaction executed by a processing core
Pk.

– NVM: nonvolatile, byte addressable, writable memory.
– Restart: The task of a restart is to bring the data to a consistent state,

removing effects of uncommitted transactions and applying the missing
effects of the committed ones.

The hardware model investigated here includes unlimited NVM, many cores and
no disk. All NVM is cacheable and caches are volatile and coherent. The system
includes limited size DRAM. Finally, we use the term Persistent HTM (PHTM)
to refer to the notion of existing HTM realizations, with the minimal necessary
hardware and software adjustments needed for the incorporation of NVM. The
PHTM system includes software and hardware.

2.1 Problem Definition

A difficulty arises when NVM persistency meets the growing number of cores
on modern hardware. On the one hand, as data is in NVM, it is unnecessary to
allocate another persistent storage for it, which reduces persistency overhead.
On the other hand, as an address is written, the new value must be exposed
atomically with a new consistent and persistent state. One alternative for guar-
anteeing this atomicity is by means of locks. With the ever growing number of
cores, locking will introduce bottlenecks. A method to achieve atomicity without
locking is HTM, but HTM cannot access physical memory. The problem is to
close the gap between HTM and NVM and allow an application to maintain con-
sistent and persistent states in NVM without locking and without duplicating
the data.

2.2 Data Store Flow

The state of a data item x (an addressable word), which is written by an HTM
transaction T, is specified as follows (see Figure 1). Note that x may be cached
in the volatile cache or reside only in the NVM (just like any other addressable
word):

1. Private / Shared: Private means x is only in the L1 cache of one thread,
and is not visible to other threads. When x is Shared, the cache coherency
makes its new value visible.

2. Persistent / Volatile: Persistent means that the last write of x is in NVM,
otherwise, the new value of x is Volatile in cache and will disappear on a
power failure.

3. Logged / Clear: When x is Logged, a restart will recover x from non-
volatile log. If x is Clear, the restart will not touch x, since its log record has
been finalized or its transaction aborted.

620 H. Avni et al.

Notice that although Figure 1 illustrates the state machine of a single write
in a PHTM transaction, the Logged state should be for the entire transaction.
That is, turning all writes of a single transaction from clear to logged requires a
single persistent write. In a PHTM commit, all writes are exposed by the HTM
and are simultaneously logged. Each write must generate a persistent log record,
but until a successful commit, the write is not logged in the sense that it will
not be replayed by a restart process.

When the HTM transaction Tk writes to a variable x, x is marked as trans-
actional in the L1 cache of Pk and is private, i.e., exclusively in the cache of Pk.
It is volatile, as it is only in cache, and clear, i.e. not logged, as the transaction is
not yet committed. Upon an abort or a power failure, the volatile private value
of x will be discarded and it will revert to its previous shared and persistent
value.

In the PHTM commit, the state of x changes twice. It becomes shared,
i.e. visible and at the same time it is also logged. Both changes must happen
atomically in a successful commit. After a successful commit, the PHTM flushes
the new value of x transparently to NVM and clears x. If there is a system failure
and restart when x is logged, the recovery process uses the log record of x to
write the committed value of x and then clears x.

Shared, Persistent, Clear

Private, Volatile, Clear

Shared, Volatile, Logged

Shared, Persistent, Logged

Logged

Write in an
HTM transaction

HTM Commit

Flush to NVM

Failure +
Restart

Recycle Log
Record

Abort /
 Failure + Restart

Replay Log and
Flush to NVM

Failure +
Restart

Fig. 1. State machine for a persistent transactional
variable

It is important to observe
that the log in NVM is
not a typical sequential log.
Instead, it holds unordered
log records only for transac-
tions that are either in-flight
or are committed and their
log records have not been
recycled yet.

3 PHTM
Implementation

If the L1 cache was non-
volatile, HTM would be per-
sistent as is without any fur-
ther modifications. A restart
event could abort the in-
flight transactions, and a
committed HTM transaction,
while in the cache, would be
instantly persistent and not
require any logging. However,
due to hardware limitations, e.g. fast wear out and slow writes of NVM, the
cache hierarchy will stay in volatile SRAM in the foreseeable future.

Hardware Transactions in Nonvolatile Memory 621

3.1 Hardware Ramifications

As shown in Figure 1, PHTM requires that the successful commit of the transac-
tion Tk will atomically set the persistent commit record of Tk. The tx end log(Tk)
instruction is added for this purpose. This instruction performs an HTM commit
and sets the commit record of Tk. Figure 2 shows the layout of the persistent
footprint of Tk in NVM. It includes the logged indication which serves as the
commit record of Tk. The tx end log(Tk) writes the commit record in NVM, and
in addition sets the status of the writes of Tk to Logged.

PHTM requires that log records are flushed from cache to NVM by a live
transaction without aborting itself. We call this process the Finalization of T.
In T finalization, after tx end log(T), flushing of the data written by T from
cache to NVM must not abort ongoing concurrent transactions that read this
value. Considering the HTM eager conflict resolution, these flushes must not
generate any coherency request and for performance, they should not invalidate
the data in the cache. Such operations are designated “transparent flushes” (TF)
as they have no effect of the cache hierarchy and the HTM subsystem.

Fig. 2. PHTM System

In summary, we define
a new HW-related primitive
called Transparent flush
(TF) as follows: If α is
a cached shared memory
address, TF(α) will write
α to physical shared mem-
ory, but will not invalidate
it and will not affect cache
coherency in any way. If
Tk reads α transactionally,
and then Tq, where possibly
k �= q executes TF(α), Tk

will not abort because of it.
The ARM DC CVAC instruc-
tion to clean data cache
by virtual address to point
of coherency [1], and the
cache line write back (CLWB)
instruction from Intel future
architecture [2] are examples
in this direction.

3.2 Software Details

The API of PHTM is tx start() and tx end() as in a non-persistent, Intel
HTM transaction. tx start() is translated to starting an HTM transaction, while
tx end() is translated to flushing the transaction persistent structure, followed by

622 H. Avni et al.

a tx end log(T) instruction, followed by flushing of the data itself. The machine
store instructions are replaced by the preprocessor with the tx write() function.

The log records and the size field that appear in the PHTM transaction
persistent object (Figure 2) are flushed as part of the transaction, but not as
part of the tx end log(Tk) instruction. However, multiple writes to the same
cache line will write to the same log record. Thus, as an optimization, the log
records are flushed only once before commit to prevent multiple flushes of the
same data.

In a system with NVM, it is assumed that the compiler will automati-
cally replace the tx end() with tx finalization(T) (Algorithm 2), and the store
instructions with tx write (Algorithm 1). This type of preprocessing already
exists for GCC STM support. In case a PHTM transaction gets aborted, all its
writes (to volatile memory) are undone automatically, and the commit record is
not set, so there is no overhead.

Fallback. The HTM follows a best effort policy, which means it does not supply
a progress guarantee. As a result, after a certain number of aborts in the standard
volatile HTM, the transaction must take a global lock and commit. However
with NVM, a global lock is not enough as the tentative writes may have already
contaminated memory. Therefore, an undo log entry must be created for every
volatile HTM write, or a full redo log must be created before the first value is
written to NVM. The first option was chosen to avoid read after write overhead.

Scalable Logging and Fast Recovery. With volatile cache and committed
HTM transactions that accommodate all their writes in cache, it is necessary to
log the writes in order to allow recovery in case a restart happened after HTM
commit, when the writes were still volatile.

All writes to the log must reach non-volatile memory before an HTM commit,
while all transactional writes stay in the cache. This implies that the log to NVM
needs to be flushed without aborting the executing transaction. As the log is
local, non-transactional stores to write the log records can be used, and later, a
flush is used to write them to NVM. The flush should be a TF so the log stays
in the cache and no transaction is aborted.

Logging must provide the restart process with the last committed value for
each logged variable x. The two ways to do this with concurrent transactions is
to attach a version to x or to verify that x is logged only once in the system. If
the appearance of x in multiple logs is allowed, then the latest version of the log
of x must be kept. Thus, freeing the log safely will require communication among
the committed transactions, e.g. barriers. This communication is not scalable.
On the other hand, not freeing the log will require unbounded memory and a
longer time for recovery in restarts.

Instead, each address is allowed to appear at most in one log. To avoid
instances of the same address in multiple logs, a volatile array of log marks is
added in which each memory address is mapped to one mark. When a transaction
is about to write x, it also marks x as logged. Until x is flushed, no other

Hardware Transactions in Nonvolatile Memory 623

transaction can write it. The reason marks are used is to prevent a write to a
variable that was already written by another transaction, but not yet flushed,
so it is still logged. All other conflicts are handled directly by the HTM. The
array of marks can be volatile, as in case of restart it is known that the logged
addresses are unique, and that the restart and recovery process do not create any
new log records. After restart, a new and empty array of marks can be allocated.

The writing of the marks is a part of a transaction, i.e. if Tk writes x, it
also marks x and in committing, the writing and the marking will take effect
simultaneously as they are both transactional writes, while at abort, they are
both canceled. As long as the mark is set, the value of x, which appears in
the log of Tk, cannot be changed. Therefore, after x is secured in NVM and
cleared, the mark is unset. It is important to emphasize that the transactional
load instructions ignore the marks and execute in full speed, which is a key
advantage of PHTM as Reads are processed in hardware speed.

Write. It is assumed there is a map function that extracts the index of the
mark from the address. The map not only performs mapping of every address
to a unique mark, but also maps all the addresses in the same cache line to the
same mark. As cache flushing is in cacheline units, the log records and the marks
are maintained in cacheline granularity.

Algorithm 1. PHTM Write Instrumentation

1: function tx write(addr, val, T)
2: id ← T.self id
3: m ← log marks[map(addr)]
4: � Caddr is the cache line of addr
5: if m.tx id = T.self id then
6: � T already accessed Caddr

7: rec index ← m.rec index
8: else
9: if m.tx id = null then
10: � Caddr is not marked
11: m.tx id ← id
12: rec index ← T.size
13: m.rec index ← rec index

14: T.size ← T.size + 1
15: T.addr[rec index] ← addr
16: T.data[rec index] ← Caddr

17: else
18: � Caddr is marked
19: xabort(MARKED)
20: end if
21: end if
22: � log the writing
23: T.data[rec index][offset] = val
24: � Perform the actual writing
25: addr ← val
26: end function

Algorithm 1 shows the implementation of tx write. It starts by locating the
mark of the address (Line 3). If the mark was already marked by T (Line 6),
T extracts the record index from the mark (Line 7). Otherwise, if the mark is
free (Line 10), T sets the mark to point to itself (Line 11). Next, T allocates
a log entry (Lines 12 - 14), which is in the index currently pointed by the size
field. T stores the index in the mark so later writes to the same line by T will

624 H. Avni et al.

use this index and increment the size field. Next, T stores the address in the log
(Line 15) and since this is the first access to this cacheline, T stores the original
content of this cacheline (Line 16). The restart will write full cache lines, and
thus the original values of the unwritten parts of the lines need to be kept.

If the address is currently marked by another transaction, T explicitly aborts
with the code MARKED (Line 19). When the abort handler sees the reason for
the abort was MARKED, it will not count this as a conflict and will not fallback
to locking. After acquiring the log mark, the value is written into the private,
logged copy of the cache line (Line 24), and then it is written to actual memory
(Line 25). Writing the marks is done in transactional mode, so they are added to
the transaction size, and may cause size violation and aborts that do not occur
in the standard HTM.

Finalization. In Algorithm 2, the code for tx finalize is presented. This code
replaces the HTM xend instruction to commit persistent HTM transactions.
Before committing the HTM transaction, the log, including its size (Line 3), and
data (Lines 6 and 5) are flushed to NVM using TF. Then the PHTM commits
using the new tx end log, and if the commit was successful it simultaneously sets
the logged indication of T (Line 11). Next, all the cache lines that include data
that was written during the transaction are flushed to NVM (Line 13). After
flushing, the data is persistent, so the log is cleared by writing zero to the log
indication and flushing it to NVM (Line 17). Only after clearing the log can the
marks (line 22) be freed and the size of the log (Line 20) be reset.

Algorithm 2. PHTM Finalization

1: function tx finalize(T)
2: � Transparently flush the log
3: sz ← T.size
4: for all s < sz do
5: TF (T.addr[s])
6: TF (T.data[s])
7: end for
8: TF (T.size)
9: � HTM commit and log
10: tx end log(T.logged)
11: � Transparently flush data
12: for all s < sz do

13: TF (T.addr[s])
14: end for
15: � Clear log with regular flushes
16: T.logged ← 0
17: Flush(T.logged)
18:
19: T.size ← 0 � Clear the marks
20: Flush(T.size)
21: for all s < sz do
22: marks[map(addr[s])] ← null
23: end for
24: end function

3.3 Correctness and Liveness

The correctness and liveness of PHTM are derived from HTM with the necessary
adjustments.

Hardware Transactions in Nonvolatile Memory 625

Correctness. When power is not interrupted the PHTM is operating exactly
as HTM with the addition of each transaction maintaining private information
about its writes and success. It is left to show that after a power failure in any
point of the execution, the last committed write of an address is in NVM. If the
last committed write is not logged than in Line 13 of Algorithm 2 it was already
flushed to NVM. If it is is logged than it was marked in Line 3 of Algorithm 1
and it is the only logged write to the address, so the recovery process will set
it in NVM. If the last write is not successfully committed then it is only in the
local volatile cache of the transaction executor and it will vanish at power down.

Liveness. As a PHTM transaction includes an HTM transaction and HTM has
no progress guarantees, PHTM has no progress guarantees either. However, an
HTM transaction cannot delay another concurrent HTM transaction, while if a
PHTM transaction stops before clearing its marks in Line 22 of Algorithm 2 it
can stop a concurrent transaction from writing the marked address. The mark,
which is a writer-writer lock, is set only from commit to the end the data flush. If
a transaction T1 committed but swapped out before clearing its write-set, it can
lockout a concurrent writer T2. To resolve this situation T2 may clear T1, as the
data is already shared. This help involves communication among transactions
so it is technically complicated and breaks the isolation among transactions. It
may also require that the synchronization primitives used will be persistent.

4 Evaluation

In this section the performance of PHTM is evaluated using an RB-Tree data
structure and a synthetic benchmark. The synthetic benchmark checks the over-
heads of PHTM and how it interacts with the size limitation of the HTM.

These tests were executed on an Intel Core i7-4770 3.4 GHz Haswell processor
with 4 cores, each with 2 hyper threads. Each core has private L1 and L2 caches,
whose sizes are 32 KB and 256 KB respectively. There is also an 8 MB L3
cache shared by all cores. Section 4.1 describes how the PHTM hardware was
emulated, i.e. the NVM and the tx end log instruction. Section 4.2 explains how
a persistent STM for a fair comparison was emulated and in Section 4.3 some
preliminary performance results are presented.

4.1 Hardware Emulation

Intels Haswell processors feature an HTM facility that is used the experiments.
However, NVM and PHTM are still not realized in hardware so they are emu-
lated for evaluation. We emulate the effects of power failure in PHTM by leaving
the power on and zeroing only the volatile regions, i.e. the log marks. To emulate
the tx end log, the commit record is written during the transaction. As this is
part of the transaction, the HTM itself makes the commit record visible simulta-
neously with a successful commit. In TF emulation, only the NVM access time
is emulated by inserting a 100 nanosecond delay according to the expected NVM

626 H. Avni et al.

performance. The interconnect traffic is not emulated, as this traffic is identical
to the interconnect traffic in the solution compared to, i.e., the persistent STM.

4.2 Compared Algorithms

PHTM. is compared with standard HTM, with an emulation of a persistent
software transactional memory (PSTM), and with standard STM without per-
sistence. The STM is from GCC [3,12], but in the lowest optimization level. In
order to provide a fair comparison of all 4 algorithms, compiler optimization,
which can reduce the number of accesses, is avoided.

Analagous to PHTM, PSTM implements a redo log in persistent memory.
The overhead of writes in PSTM is one flush of the log entry before commit
and one flush of the data after commit, so it is comparable to PHTM. PSTM
is based on Mnemosyne [13], but with few adjustments. A redo log and in-place
writing was chosen to be implemented in order to avoid huge read after write
penalties. PHTMs advantage over STM concerns the processor speed loads. For
a fair comparison, the PSTM loads should be as fast as possible in order to
challenge the PHTM.

The shortcomings of PSTM concern its STM nature, i.e. the overhead asso-
ciated with instructions instrumentation, locking and versioning. The problems
of PHTM concern its HTM origin, i.e. limited transaction size and sensitivity to
contention.

4.3 Benchmarks

PHTM performance is evaluated without contention on a synthetic array bench-
mark. It is then tested on an RB-Tree to see its performance under contention.
The algorithms checked include HTM, PHTM, STM and PSTM. In the
graphs, the HTM-CAP and PHTM-CAP lines are added to count the num-
ber of HTM capacity aborts and the HTM-CON and PHTM-CON lines are
added to count the number of conflict aborts in some of the graphs. Aborts are
counted in operations per second that where aborted. A conflict abort is retried
20 times before taking a global lock, but a capacity abort is not retried and locks
immediately, as a retry has low chance for success.

Array Workloads. In this workload all transactions have the same number of
accesses in order to make their execution time comparable. The tests access a set
of consecutive memory addresses, so the cache is filled with no fragmentation.
Each accessed address is in a separate cache line.

Read-Only: First, the performance of PHTM on a read-only workload is
observed. This is the best case for PHTM, as a PHTM load is in processor
speed. In Figure 3a, every transaction performs 512 load instructions cyclically
to various numbers of consecutive cache lines. It can be seen that as long as HTM
capacity limit is avoided, PHTM and HTM perform the same and outperform
STM and PSTM by an order of magnitude. The tests in Figure 3a execute on all

Hardware Transactions in Nonvolatile Memory 627

 0

 1

 2

 3

 4

 5

 6

2 4 8 16 32 64 128 256 512

M
 o

ps
 /

se
c

of Read Cache Lines

Array, Read Only, 8 Threads

HTM
PHTM

STM
PSTM

HTM-CAP
PHTM-CAP

(a) Array - Read only

 0

 10

 20

 30

 40

 50

 60

5 10 15 20 25 30 35 40 45 50

M
 o

ps
 /

se
c

Inserts % / Delets %

RB-Tree, Various Updates, 1K Nodes, 8 Threads

HTM
PHTM

STM
PSTM

HTM-CON
HTM-CAP

PHTM-CON
PHTM-CAP

(b) RB - 1K Nodes

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

1 2 4 8 16 32 64 128 256 512

M
 o

ps
 /

se
c

of Written Cache Lines

Array, Increments, No Conflicts, 8 Threads

HTM
PHTM

STM
PSTM

HTM-CAP
PHTM-CAP

(c) Array - Write Only

 0

 1

 2

 3

 4

 5

 6

 7

 8

5 10 15 20 25 30 35 40 45 50

M
 o

ps
 /

se
c

Inserts % / Delets %

RB-Tree, Various Updates, 1M Nodes, 8 Threads

HTM
PHTM

STM
PSTM

HTM-CON
HTM-CAP

PHTM-CON
PHTM-CAP

(d) RB - 100K Nodes

 0

 1

 2

 3

 4

 5

 6

 7

 8

0 1 2 3 4 5 6 7 8 9

M
 o

ps
 /

se
c

Reads out of 10 Accesses

Array, Read-Write, 8 Threads

PHTM
STM

PSTM

(e) Array - Read and Write Mix

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

5 10 15 20 25 30 35 40 45 50

M
 o

ps
 /

se
c

Inserts % / Delets %

2 X RB-Tree, Various Updates, 1M Nodes, 8 Threads

HTM
PHTM

STM
PSTM

HTM-CON
HTM-CAP

PHTM-CON
PHTM-CAP

(f) RB - 1M Nodes

Fig. 3. Synthetic array and a red-black tree benchmarks

628 H. Avni et al.

8 hardware threads. There is hyper threading and the cache size of each thread
is half as that which is on a core, i.e. 16KB or 256 cache lines of 64 bytes, so
when the access set size is 512 all HTM and PHTM transactions violate capac-
ity limitation and abort. At this point, HTM and PHTM performance becomes
equal to STM as it uses the fallback. As expected STM and PSTM perform
equivalently.

Write-Only: In this test, the performance of PHTM writes is examined. The
benchmark in Figure 3c is very similar to the one in Figure 3a. Every transaction
performs 512 store instructions cyclically to various numbers of consecutive
cache lines.

It is observed that as the number of accessed cache lines increases, the HTM
performance is not affected but the PHTM approaches the performance of PSTM
because the flushes to NVM dominate the performance. It must be emphasized
that the PHTM and PSTM only flush a cache line once in a transaction even
if they write the line multiple times. Therefore if the transaction accesses only
one cache line, it will write the same cache line 512 times but flush only twice
- one flush for the data after commit, and one for the log before commit. This
overhead can be mitigated if the TF is made non-blocking.

When the HTM and PHTM transactions start reaching the capacity limita-
tion, they execute with a global lock which dramatically reduces their perfor-
mance and prevents scaling. PHTM reaches the capacity limitation well before
standard HTM. This is because PHTM writes a log entry for every write, so it
accesses a larger amount of memory. In addition, the log entries are not in con-
tinuous memory, so they can violate the cache associativity even before the cache
is full. Note that in a real implementation non-transactional store instructions
could be used for the log and avoid an increase the transactional footprint.

Read-Write Mix: This test checks how the proportion of transactional load
instruction vs. the number of transactional store instructions affects the perfor-
mance of PHTM compared to STM and PSTM when the capacity aborts issue
is eliminated, i.e. in small transactions.

In Figure 3e, every transaction performs 10 accesses of 10 separated cache
lines with various number of writes. HTM is not shown in because it performs
a read and a write approximately in the same speed. Figure 3e illustrates that
until the read-only part reaches 80%, STM is faster than PHTM. However, when
the portion of read-only instructions reaches 90%, PHTM is already double the
performance of STM. As seen in Figure 3a, when the portion reaches 100%,
PHTM is 12 times faster than STM.

RB-Tree Workloads. To evaluate the PHTM in the face of contention, an
RB-Tree benchmark is used. All transactions access a tree with random keys
to insert, delete or lookup. The workloads executed run on 8 cores with a fixed
keys-range size and vary the amount of updates from 10% to 100%. Each tree
starts half full and the number of inserts equals the number of deletes to preserve
the tree size.

Hardware Transactions in Nonvolatile Memory 629

The first set of tests is performed on a small 1K nodes tree. As seen in Figure
3b there are no capacity aborts in HTM and PHTM. Conflict aborts rise but
the scalability is comparable to STM. In this test PHTM is about 6 times faster
than PSTM. The second set of tests in Figure 3d is executed on a 1M tree,
and we can see that capacity aborts are visible, but low. As a result, PHTM
is only 40% faster than PSTM. Still the scalability is the same even though
conflict aborts are high, which suggests STM also experiences similar aborts
rate. To further increase the capacity challenge, we execute transactions that
do the same operation on two 1M trees atomically. As seen in Figure 3f, the
capacity aborts rises and PHTM performance drops to PSTM.

As expected, capacity limitation is the worst problem of HTM as it forces
transactions to serialize, and the big obstacle to PHTM performance is capac-
ity aborts which it inherits from HTM. In each of the performed tests PHTM
keeps a constant difference from HTM (and PSTM from STM) throughout the
contention levels. The difference is due to the portion of writes in the workload.
The smaller the tree, less time is spent on traversing it, so the relative part of
writing grows, and the persistent algorithm overhead increases.

5 Conclusion

Future generations of systems are expected to accommodate thousands of cores
and petabytes of NVM. Lock based synchronization, as well as traditional log-
based persistence will introduce unacceptable overhead in those systems. PHTM
is a first step towards ACID transactions that avoid locking and provide persis-
tence in a way that is specialized to NVM. Preliminary experiments show PHTM
is 12x faster than its persistent STM counterpart on read-dominant workloads.
When contention exists, it is still 6x faster, and when the capacity limit is hit,
PHTM falls back to a software-based approach and then its performance equals
the performance persistent STM. These performance advantages stem from the
fact that PHTM avoids all locking in the reader path and its commit is instan-
taneously visible. PHTM presents a concept that should serve as a blueprint for
possible realizations that would evolve with the availability of mature NVM tech-
nology. Once the HW model we used will be instantiated as a concrete system,
further optimizations might be needed. Moreover, we expect that the current
limitations of HTM technology will be alleviated and then the applicability of
the PHTM scheme can be extended.

References

1. ARM architecture reference manual for ARMv8-a architecture profile. https://
silver.arm.com/download/ARM and AMBA Architecture/AR150-DA-70000-
r0p0-00bet6/DDI0487A e armv8 arm.pdf

2. Intel architecture instruction set extensions programming reference. https://
software.intel.com/sites/default/files/managed/0d/53/319433-022.pdf

3. Tm support in the gnu compiler collection. http://gcc.gnu.org/wiki/
TransactionalMemory

https://silver.arm.com/download/ARM_and_AMBA_Architecture/AR150-DA-70000-r0p0-00bet6/DDI0487A_e_armv8_arm.pdf
https://silver.arm.com/download/ARM_and_AMBA_Architecture/AR150-DA-70000-r0p0-00bet6/DDI0487A_e_armv8_arm.pdf
https://silver.arm.com/download/ARM_and_AMBA_Architecture/AR150-DA-70000-r0p0-00bet6/DDI0487A_e_armv8_arm.pdf
https://software.intel.com/sites/default/files/managed/0d/53/319433-022.pdf
https://software.intel.com/sites/default/files/managed/0d/53/319433-022.pdf
http://gcc.gnu.org/wiki/TransactionalMemory
http://gcc.gnu.org/wiki/TransactionalMemory

630 H. Avni et al.

4. Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery
in Database Systems. Addison-Wesley Longman Publishing Co. Inc., Boston (1987)

5. Coburn, J., Caulfield, A.M., Akel, A., Grupp, L.M., Gupta, R.K., Jhala, R.,
Swanson, S.: NV-heaps: making persistent objects fast and safe with next-
generation, non-volatile memories. In: Proceedings of the Sixteenth International
Conference, ASPLOS XVI, pp. 105–118. ACM, New York (2011)

6. DeBrabant, J., Arulraj, J., Pavlo, A., Stonebraker, M., Zdonik, S., Dulloor,
S.: A prolegomenon on oltp database systems for non-volatile memory. In:
ADMS@VLDB (2014)

7. Dulloor, S.R., Kumar, S., Keshavamurthy, A., Lantz, P., Reddy, D., Sankaran, R.,
Jackson, J.: System software for persistent memory. In: Proceedings of the Ninth
European Conference on Computer Systems, EuroSys 2014, pp. 15:1–15:15. ACM,
New York (2014)

8. Felber, P., Fetzer, C., Riegel, T.: Dynamic performance tuning of word-based
software transactional memory. In: PPoPP 2008: Proceedings of the 13th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming,
pp. 237–246. ACM (2008)

9. Herlihy, M., Luchangco, V., Moir, M., Scherer III, W.N.: Software transac-
tional memory for dynamic-sized data structures. In: Proceedings of the Twenty-
Second Annual Symposium on Principles of Distributed Computing, PODC 2003,
pp. 92–101. ACM, New York (2003)

10. Herlihy, M., Moss, J.E.B.: Transactional memory: architectural support for lock-
free data structures. In: Proceedings of the 20th Annual International Symposium
on Computer Architecture, ISCA 1993, pp. 289–300. ACM, New York (1993)

11. Leis, V., Kemper, A., Neumann, T.: Exploiting hardware transactional memory in
main-memory databases. In: IEEE 30th International Conference on Data Engi-
neering, Chicago, ICDE 2014, IL, USA, March 31–April 4, pp. 580–591 (2014)

12. Riegel, T.: Software Transactional Memory Building Blocks. Ph.D. thesis, Tech-
nische Universität Dresden, Dresden, 01062 Dresden, Germany (2013)

13. Volos, H., Tack, A.J., Swift, M.M.: Mnemosyne: Lightweight persistent memory.
SIGPLAN Not. 47(4), 91–104 (2011)

14. Wang, Z., Qian, H., Li, J., Chen, H.: Using restricted transactional memory to build
a scalable in-memory database. In: Proceedings of the Ninth European Conference
on Computer Systems, EuroSys 2014, pp. 26:1–26:15. ACM, New York (2014)

Space-Optimal Counting in Population Protocols

Joffroy Beauquier1, Janna Burman1(B), Simon Clavière2, and Devan Sohier2

1 LRI - CNRS UMR-8623, Université Paris Sud, Orsay, France
{joffroy.beauquier,janna.burman}@lri.fr

2 PRiSM - CNRS FRE-3709, Université de Versailles, Versailles, France
{simon.claviere,devan.sohier}@prism.uvsq.fr

Abstract. In this paper, we study the fundamental problem of count-
ing, which consists in computing the size of a system. We consider
the distributed communication model of population protocols of finite
state, anonymous and asynchronous mobile devices (agents) communi-
cating in pairs (according to a fairness condition). This work significantly
improves the previous results known for counting in this model, in terms
of (exact) space complexity. We present and prove correct the first space-
optimal protocols solving the problem for two classical types of fairness,
global and weak. Both protocols require no initialization of the counted
agents.

The protocol designed for global fairness, surprisingly, uses only one
bit of memory (two states) per counted agent. The protocol, function-
ing under weak fairness, requires the necessary logP bits (P states, per
counted agent) to be able to count up to P agents. Interestingly, this pro-
tocol exploits the intriguing Gros sequence of natural numbers, which is
also used in the solutions to the Chinese Rings and the Hanoi Towers
puzzles.

1 Introduction

Counting is a fundamental task in computer science, as illustrated by numerous
and important applications of this paradigm in many domains, like network
traffic monitoring, database query optimization, or data mining. The context of
this work is that of dynamic wireless ad-hoc networks. In this context, many
efficient counting protocols have been proposed recently (e.g., [18,23,25,27]).

More precisely, we consider large-scale ad-hoc networks of mobile sensors, in
which cheap and tiny devices, with limited communication, memory and compu-
tation power, move around and cooperate for achieving some task. Such networks
are of an unknown size, fundamentally asynchronous (no common clock), anony-
mous (no identifiers) and not permanently connected (due to communication

The extended version of this paper can be consulted in [8].
J. Beauquier—The work of this author was partially supported by the Israeli-French
Maimonide research project.
J. Burman—The work of this author was partially supported by the Israeli-French
Maimonide and the INS2I PEPS JCJC research projects.

c© Springer-Verlag Berlin Heidelberg 2015
Y. Moses (Ed.): DISC 2015, LNCS 9363, pp. 631–646, 2015.
DOI: 10.1007/978-3-662-48653-5 42

632 J. Beauquier et al.

limitation). The design of these networks is now focused on complex collections
of heterogeneous devices that should be robust, adaptive and self-organizing,
serving requests that vary with time. There are many reasons for these devices
to fail: extreme external conditions of temperature or pressure, battery exhaus-
tion, failures inherent to their cheap realization, etc. The ability to count them
(e.g., for, possibly, replacing some) may be crucial for ensuring that the tasks
are performed efficiently. In this work, we propose solutions to this problem,
concerning especially the reliability and the size requirements of the memory of
the network nodes.

To be able to analyze our solutions, we adopt a formal communication model
that suits the considered networks. This is the model of population protocols
(PP) [3]. In PP, mobile devices, called agents, are anonymous, undistinguishable
and asynchronous. Each agent has a finite state, that evolves over the course of
interactions. When two agents are sufficiently close one to the other, they inter-
act, and the effect of the interaction is a change of their states. The mobility is
modeled in a very general way, by a fairness assumption which is called global
fairness. In addition to this original fairness of PP, we consider also a classi-
cal type of fairness for distributed computing, which we call here weak. While
global fairness captures the randomization inherent to many real systems, weak
fairness only ensures progress of system entities. In general, PP is well adapted
to dynamic networks in which the topology changes (like in peer-to-peer net-
works), or to networks in which nodes move unpredictably (like in mobile sensor
networks).

The objective of this paper is to make a step towards a better understanding
of the possibilities and limitations of such networks, in studying the feasibility
and the complexity of the fundamental task of counting the number of agents.
The task of counting anonymous agents in PP has already been studied and sev-
eral results are known. Basically, we improve these results in terms of exact space
complexity. Moreover, the solutions we give are space optimal. Space is a cru-
cial factor, since a low memory is a basic condition in large-scale and unreliable
networks.

Current and previous studies on counting in PP consider various parameters
of the model that affect attractivity, efficiency and feasibility of the solutions.
We list and explain them below together with the related impossibility results:

– The first parameter is the nature of the fairness: global or weak. We consider
both cases, as already explained above. See formal definitions in Sec. 2.

– The second parameter is the requirement of initialization of agent states.
On one hand, efficient protocols for dynamic and unreliable networks should
not require initialization. There are at least two reasons for that. First, the
agents are cheap and prone to failures. So, it should be expected that some
memory or communication errors happen. Second, in dynamic and unreli-
able environments, it should be possible to execute most of the tasks, and
counting too, in a repetitive way. In both cases, re-initializing the network
could be a real problem. Moreover, it is generally hard to know when such a

Space-Optimal Counting in Population Protocols 633

re-initialization should be done, as termination detection is generally difficult
to obtain in such networks.

On the other hand, if no agent state can be initialized, it is impossible to
realize counting in PP, under weak or global fairness. This can be proven by
using a classical technique of network partitioning (see [9] and [8], Prop. 1).

Thus, to be able to solve the problem and still avoid initialization, all
previous works, as well as the current one, assume the initialization of only
one particular (and thus distinguishable) agent called the base station (BS).

– For defining the data structures used by finite-state agents in the solutions,
all previous studies assume the existence of a known upper bound P on the
number of (non-BS) agents. The space complexity of the solution is then
expressed as a function of the necessary number of states per agent with
respect to P . This is justified in the case of weak fairness, since it has been
proved in [9] that P (or more) agents cannot be counted with strictly less
than P states per agent by deterministic protocols (considered here as well).
However, in case of global fairness, we show that this assumption is not
needed, by presenting a protocol using only two states per agent.

– Finally, population protocols may be symmetric or asymmetric. In symmetric
protocols, two agents in an interaction (and thus in the corresponding tran-
sition) are indistinguishable if their states are identical. Thus, their states
are identical also after the transition. In asymmetric protocols, two agents in
an interaction can be always distinguished (e.g., there is always an initiator
and a responder in the interaction). Our study considers the more difficult
and general case of symmetric protocols. Such protocols can be deployed in
networks with either symmetric or asymmetric communications.

Most Related Work. Before presenting the contributions, we summarize the
previous results about counting in symmetric PP. For the reasons explained
above, all these results assume a distinguishable agent BS and do not require
any initialization of non-BS agents. Moreover, BS is considered to be a powerful
device, so its resources are in general not concerned by the protocol design.

In [9], the authors present different solutions to counting in PP. In particular,
they propose a symmetric protocol using 4P states per non-BS agent under weak
fairness, and prove the above-mentioned lower bound of P states. The authors
of [18] improve the solution in [9] from 4P to 2P states, under weak fairness, and
to 3

2P under global fairness. This latter result for global fairness is improved to
P in [7].

Note that an asymmetric population protocol can be transformed into a
symmetric one using the transformer of [10]. However, this transformer requires
global fairness and doubles the number of states per agent. This makes it inade-
quate for obtaining a space efficient symmetric solution from an asymmetric one
(in terms of exact space complexity).

Contributions. For the first time, we present and prove correct two space-
optimal symmetric population protocols solving the counting problem. One
solves the problem under global fairness, and uses only one bit of memory (two
states) per non-BS agent (Protocol 1, Sec. 3). It is shown that one agent state is

634 J. Beauquier et al.

not enough to solve the problem. The other protocol, designed for weak fairness,
uses only the necessary P states per non-BS agent (Protocol 2, Sec. 4). Both
protocols do not assume any initialization of the counted agents, but the neces-
sary initialization of BS. The protocol assuming weak fairness is silent (i.e., no
state changes after convergence). However, we show that no silent space-optimal
counting protocol exists in our framework under global fairness.

Other Related Work. Apart from the works already mentioned in the context
of PP, there are many others related to counting in related models. Many, like
[14,23–25,27], consider the synchronous model of dynamic graph. In this model, a
computation proceeds by synchronous rounds and, for each round, an adversary
chooses the links available for sending messages. Similarly to our case, in the
cited works, all nodes execute the same code and have no information about the
network (in most cases). In addition, all, except [23], assume anonymous nodes
having no unique identifiers. However, in contrast with this work, all nodes have
to be initialized, and authors are concerned with asymptotic complexity in terms
of rounds, bits and messages. All, but [14], study counting. [14] studies a related
problem of assigning (short) labels to nodes.

The problem of counting approximatively the number of nodes in a network,
using probabilities, is known under the term of size estimation. A common app-
roach to network size estimation is to use random walks [16,29] relying on a
token traversing the network and collecting information from the visited agents.
Another strategy is to use randomly generated numbers [22], and then exploit
classical results on order statistics to infer the number of participants [6,31].

In the context of large scale peer-to-peer and dynamic networks in general,
probabilistic and gossiping methods have also been proposed for estimating the
size of the network [15,20,22,26,28].

Another problem related to counting is the resource controller problem, intro-
duced in [1] and optimized in [13,21]. One of the main difference with our model
is that the topological changes there can be delayed until permission has been
granted by the controller.

To summarize, the most significant differences of the works mentioned in this
section with the current work is that we consider a totally asynchronous model
of finite state anonymous and non-initialized deterministic processes. Moreover,
in the considered model, termination detection is difficult and in many cases
impossible. This makes sequential composition of protocols challenging.

2 Model and Notations

As a basic model we use the model of population protocols of Angluin et al. [5]
with some adaption as detailed below. In this model, a system consists of a collec-
tion A of pairwise interacting agents, also called a population. Each agent repre-
sents a finite state sensing and communicating mobile device. Among the agents,
there may be a distinguishable agent called the base station (BS), which can be
as powerful as needed, in contrast with the resource-limited non-BS agents. The
non-BS agents are also called mobile, interchangeably. The size of the population

Space-Optimal Counting in Population Protocols 635

is the number of mobile agents, denoted by N, and is unknown (a priori) to the
agents.

A (population) protocol can be viewed as a finite transition system whose
states are called configurations. A configuration is as a vector of (local) states of
all the agents. Each agent has a state taken from a finite set, the same for all
mobile agents, but generally different for BS.

In this transition system, every transition between two configurations is
described by a transition between two agents happening during an interaction.
That is, when two agents x, in state p, and y, in state q, interact (meet), they
execute a transition (p, q) → (p′, q′). As a result, x changes its state from p to p′

and y from q to q′. If p = p′ and q = q′, the corresponding transition is said to
be null (such transitions are specified by default), and non-null otherwise.1 The
transitions are deterministic, if for every pair of states (p, q), there is exactly one
(p′, q′) such that (p, q) → (p′, q′). We consider only deterministic transitions and
thus, only deterministic protocols. Transitions and protocols can be symmetric
or asymmetric. Symmetric means that, if (p, q) → (p′, q′) is a possible transition,
then (q, p) → (q′, p′) is also a possible transition. In particular, if (p, p) → (p′, q′)
is symmetric, p′ = q′. Asymmetric is the contrary of symmetric.

Let C and C ′ be configurations. Then, C→C ′ is a transition (between
two configurations), if C ′ can be obtained from C by a single transition of
two agents in an interaction. This means that C contains two states p and
q and C ′ is obtained from C by replacing p and q by p′ and q′ respectively,
where (p, q) → (p′, q′) is a transition. If there is a sequence of configurations
C = C0, C1, . . . , Ck = C ′, such that Ci → Ci+1 for all i, 0 ≤ i < k, we say that
C ′ is reachable from C, denoted C

∗→ C ′.
An execution of a protocol is an infinite sequence of configurations

C0, C1, C2, . . . such that C0 is the starting configuration and for each i ≥ 0,
Ci → Ci+1.

An execution is said weakly fair, if every pair of agents in A interacts infinitely
often. An execution is said globally fair, if for every two configurations C and
C ′ such that C → C ′, if C occurs infinitely often in the execution, then C ′ also
occurs infinitely often in the execution. This definition together with the finite
state space assumption, implies that, if in an execution there is an infinitely often
reachable configuration, then it is infinitely often reached [4]. Global fairness can
be viewed as simulating randomized systems (without introducing randomization
explicitly) [19].

A problem is defined by a predicate D on executions. A population protocol
PP is said to solve a problem D, if and only if every execution of PP satisfies
the conditions defining D. The problem of counting is defined by the following
conditions: eventually, in any execution, there is at least one agent (BS, in our

1 In practice, when interacting with BS, the computations can be done completely on
the side of BS (i.e., the state of BS is not communicated to the mobile agent). The
non-BS agent only updates its state with the resulting one. In interactions between
two mobile agents, in the protocols described in this paper, the agents only have to
be able to compare their states.

636 J. Beauquier et al.

case) obtaining a value of N in some variable and this value does not change. Note
that the counting predicate is required to be satisfied only eventually (and forever
after). When it happens, we say that the protocol has converged. We consider
only semi-uniform protocols in the sense that the size of the population N is not
used by a protocol and all agents, except BS, are (a priori) indistinguishable and
interact according to the same possible transitions [12,30]. A protocol is called
silent, if in every execution, eventually, no agent state changes [11].

For simplicity, we do not present the rules of our protocols under the form
of possible transitions, but under the equivalent form of a pseudo-code.

3 Space-Optimal Counting under Global Fairness

In this section, we present a space-optimal protocol (Protocol 1 below) solving
the counting problem under global fairness. The protocol uses only one bit of
memory, i.e., only two states per mobile (non-BS) agent.

It is easy to see that with only one state per mobile agent, counting is impos-
sible. Indeed, in this case, BS cannot distinguish between populations of one or
more mobile agents ([8], Prop. 2). In addition, a partition argument can be used
to show why no silent (uniform) counting protocol exists with only two states
per agent ([8], Prop. 3).

Protocol 1 Description. Each mobile agent x has one bit markx, which is
flipped at each interaction of x with BS. Between any two mobile agents, there
are only null transitions. BS maintains a variable size totalBS that eventually
and forever holds the size of the population N. In addition, it maintains an array
sizeBS [2] of two elements, where sizeBS [0] holds an estimation for the number of
mobile agents currently marked 0 (i.e., with mark = 0), and similarly, sizeBS [1]
estimates the number of agents currently marked 1. Eventually, these estimations
become correct forever and size totalBS too, because the latter is computed at
each transition as the sum of sizeBS [0] and sizeBS [1] (line 6). The protocol itself
can be described in a simple way. Whenever an agent marked 0 interacts with
BS, BS flips its mark (to 1), decrements the estimation of 0 marked agents, i.e.,
sizeBS [0] (if it is not 0), and increases the estimation of 1 marked agents, i.e.,
sizeBS [1] (similarly for an agent marked 1).

The idea behind this solution is to try to reach a configuration, using the force
of global fairness, where all agents are marked similarly, let us say, by 0 (the proof
of Theorem 1 shows that it occurs eventually). From such a configuration, there
is always a possible segment of execution where each agent x interacts with BS,
exactly once. In each such interaction, the mark of x is flipped, to “remember”
that it has been “counted”. By the end of such an execution segment, all agents
are marked 1 (i.e., as “counted”). Moreover, both estimations of the number of
agents marked 1 and 0 in sizeBS [1] and in sizeBS [0], respectively, are correct
and stay correct from this moment on. Thus, the estimation of the size of the
population (in size totalBS) becomes also correct.

Space-Optimal Counting in Population Protocols 637

Protocol 1 Space-Optimal Counting under Global Fairness (one bit per agent)

Variables at BS:
sizeBS [2]: array of two non-negative integers, initialized to 0
size totalBS : non-negative integer initialized to 0; eventually holds N

Variable at a mobile agent x:
markx: in {0, 1}, initialized arbitrarily

1: when a mobile agent x interacts with BS do
2: if size[markx] > 0 then
3: size[markx] ← size[markx] − 1
4: markx ← 1 − markx
5: size[markx] ← size[markx] + 1
6: size totalBS ← sizeBS [0] + sizeBS [1]

Correctness of Protocol 1. Let us denote by #0(C), respectively #1(C), the
number of agents marked 0 (i.e., with mark = 0), respectively 1, in a configura-
tion C.

Lemma 1. For every configuration C, sizeBS [0] ≤ #0(C) (resp. sizeBS [1] ≤
#1(C)).

Proof. First, let us prove the lemma for sizeBS [0]. We prove by induction on the
index k ≥ 0 of a configuration in an execution (C0, C1, C2, . . . , Ck, . . .). At the
starting configuration C0, k = 0, the lemma holds because of the initialization
of sizeBS [0] to 0. Let us assume that the lemma holds for k = k′ and prove it
for k = k′ + 1. Then, sizeBS [0] ≤ #0(Ck′). From any configuration, and from
Ck′ in particular, the only possible interaction (BS, x) is of two types, either x
is marked 0 (markx = 0), or 1:

- If x is marked 0, during the following transition, its mark is flipped to 1 (line 4)
and thus #0(Ck′+1) = #0(Ck′)−1. At line 5, sizeBS [0] is decremented too (if it
is not 0), and this is the only line that changes sizeBS [0] in this transition (line 5
changes sizeBS [1]). Thus, after this transition, in Ck′+1, sizeBS [0] ≤ #0(Ck′+1).
- If, during an interaction (BS, x) at Ck′ , x is marked 1, during the following
transition, its mark is flipped to 0 (line 4) and thus #0(Ck′+1) = #0(Ck′) + 1.
At line 5, sizeBS [0] is incremented too, and this is the only line that changes
sizeBS [0] in this transition (line 5 changes sizeBS [1]).Thus, after this transition,
in Ck′+1, sizeBS [0] ≤ #0(Ck′+1).

Thus, the lemma holds for sizeBS [0]. As sizeBS [1] is managed exactly in the
same (but symmetric) way as sizeBS [0], the lemma also holds for sizeBS [1]. ��

As size totalBS is always set to the sum of sizeBS [0] and sizeBS [1] (line 6),
we have the following corollary.

Corollary 1. In any configuration, size totalBS ≤ N.

Lemma 2 below is easily obtained by observing the pseudo-code.

638 J. Beauquier et al.

Lemma 2. The value of size totalBS never decreases.

Proof. The value of size totalBS can decrease only by executing line 5,
size[markx] ← size[markx] − 1. Whenever this line is executed in a transi-
tion, line 5 is executed in the same transition too. Due to line 4, in line 5,
size[1 −markx] ← size[1 −markx] + 1. Thus, if line 5 is executed in some tran-
sition, size totalBS does not change. In all other cases, it can only increase. ��
Theorem 1. Under global fairness, (symmetric) Protocol 1 solves the counting
problem. Eventually, size totalBS = N and does not change anymore.

Proof. To prove the theorem, we show below that, from any possible configura-
tion, there is a reachable configuration C∗ s.t., in C∗, size totalBS = N. Then, by
global fairness, such configuration is eventually reached. Finally, by corollary 1
and lemma 2, we have size totalBS = N in all subsequent configurations.

Now we show why C∗ is always reachable. Consider a configuration C. In C,
let sizeBS [0] = x0, sizeBS [1] = x1, where x0, x1 are non-negative integers ≤ N.
By lemma 1, there are 0 ≤ x′

0, x
′
1 ≤ N s.t. #0(C) = x0+x′

0 and #1(C) = x1+x′
1.

Then, from C, there is the following possible execution (that reaches C∗). First,
x1 + x′

1 agents marked 1 interact with BS, each one exactly once. It is easy to
verify, by the code of Protocol 1, that at the end of this segment of execution,
sizeBS [0] = x0 + x1 + x′

1, sizeBS [1] = 0 and #0(C) = x0 + x′
0 + x1 + x′

1 =
N,#1(C) = 0 (all agents are marked 0). Now, x0+x1+x′

1 agents interact with BS
(each one exactly once), what results in sizeBS [0] = 0, sizeBS [1] = x0 + x1 + x′

1

and #0(C) = x′
0,#1(C) = x0+x1+x′

1. Finally, x′
0 agents marked 0 interact with

BS, each one exactly once. Now, sizeBS [0] = 0, sizeBS [1] = x0+x′
0+x1+x′

1 = N
and #0(C) = 0,#1(C) = x0 + x′

0 + x1 + x′
1 = N (all agents are marked 1).

In this configuration, size totalBS = N, and thus C∗ is reachable from (any
configuration) C. ��

4 Space-Optimal Counting under Weak Fairness

In this section, we present a silent symmetric space-optimal protocol (Protocol
2 below) solving the counting problem under weak fairness (see Theorem 2 and
Corollary 2). The protocol is correct starting from arbitrary states in mobile
agents, but BS. It uses at most P states per agent, which is necessary in the
current conditions for solving counting in populations with at most P mobile
agents (N ≤ P) [9].

Protocol 2 General Description. In this protocol, BS eventually counts the
mobile agents and stores the value in variable n. To realize this, BS successively
attempts to guess the number of mobile agents in the population, starting from
1 and ending with N (this guess is stored in n). For each guess n < P , BS tries
to name (differently) mobile agents in state 0 (zero-state) interacting with BS
(lines 3 and 9). That is, BS tries to assign to these agents distinct states from
{1, . . . , n} (also called here names). State 0 has a special technical role. Whenever
two agents with identical names (homonyms) interact, they change their state to

Space-Optimal Counting in Population Protocols 639

0 (line 12). Thus, this state indicates to BS that, either it has created homonyms
before, or that homonyms (or, simply, agents in state 0) existed already in the
population in the starting configuration.

Thus, zero-state mobile agents are named by BS. The names are given one
by one following some finite sequence U∗ of names (line 9). For simplicity, in
the presented protocol, this sequence is computed in advance and depends on
P . However, for an optimized version, the required prefix of U∗, UN, can be
computed on the fly, during an execution (see Remark 1). Sequence U∗ guar-
antees that, if there are N < P agents, whatever their starting states are, the
naming succeeds. If no naming succeeds, BS concludes that there are more than
P − 1 agents, that is N = P . Thus, the protocol actually realizes a (consecutive
minimal) naming for any N < P in order to realize finally a counting for any
N ≤ P .

Another important property of U∗ is that, for every guess n, if all the terms
of U∗, from the first to some lthn term, have been used by BS to name interacting
agents, then BS can conclude that the guess of n is wrong. It is safe then to
switch to the next guess n + 1 (line 8). In the sequel, we denote the prefix of
U∗ of length ln by Un (ln = |Un|). Any term of Un is in {1, . . . , n}. Thus, if BS
meets an agent in a state > n, it can conclude that it has never seen this agent
before. Hence, it can safely deduce that N > n, and switch to the next guess
n + 1 (lines 5 - 8).

As long as there are agents in state 0 or in a state > n, and n < P (line 2),
the base station continues renaming and counting, because all these agents will
eventually interact with BS (by weak fairness). If there are homonyms, eventually
they meet too and switch to state 0 (again, by fairness).

Naming Sequence U∗ - The Gros Sequence
As a matter of fact, sequence U∗ is not unique. We choose and define one of the
possible such sequences. We also prove the properties claimed about it above.
To define the sequence U∗, we consider the infinite sequence U∞, whose left
prefix Un is defined recursively by Un ≡ Un−1, n,Un−1, where U1 ≡ 1.
Sequence U∗ is obtained for n = P − 1, i.e., U∗ ≡ UP−1 ≡ UP−2, P − 1,UP−2.
For example, the prefix U4 of U∞ is: 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1.

Let ln ≡ |Un|. By construction of sequence U∞, l1 = 1, and ln+1 = 2ln + 1,
which gives ln = 2n − 1. Then, using the recursive definition of U∞ we obtain
that ∀n,U∞(2n) = n + 1 and ∀n,∀1 ≤ k < 2n,U∞(2n + k) = U∞(k).

Remark 1. Based on this alternative description, U∞, and U∗ in particular, can
be defined iteratively. The kth term of U∞ is one plus the index of the least
significant non-zero bit in the binary decomposition of k. Thus, BS does not need
to store the whole sequence of names in advance. It can compute the next state
to assign to a mobile agent based on a single integer variable. Such computation
of the sequence does not depend on P , but on the number of the sequence terms
which will be actually used. For this sequence, the number of terms used to name
n agents is at most ln = 2n−1. In consequence, the number of interactions (before
convergence) between BS and an agent in state 0 or > n is at most lN.

640 J. Beauquier et al.

Protocol 2 Space-Optimal Counting under Weak Fairness (P states per agent)

Variables at BS:
n: non-negative integer initialized to 0 // guess of N
k: non-negative integer initialized to 0 // pointer to the kth element of U∗

Shortcuts at BS:
U∗: constant sequence of elements in [1, . . . , P − 1] computed in advance

by the recursion U1 ≡ 1,U∗ ≡ UP−1 ≡ UP−2, P − 1,UP−2

U∗(k): returns the kth element of U∗

ln = 2n − 1 (≡ |Un|)

Variable at a mobile agent x:
namex: non-negative integer in [0, . . . , P − 1], initialized arbitrarily

1: when a mobile agent x interacts with BS do
2: if n < P ∧ (namex = 0 ∨ namex > n) then
3: if namex = 0 then
4: k ← k + 1 // advance k to point to the next element of U∗

5: else if namex > n then
6: k ← ln +1// because agent x with a name > n could not be seen before by

BS, the population must be larger than n, and k is updated accordingly
7: if k > ln then
8: n ← n + 1 // pointer k indicates that the population is larger
9: namex ← U∗(k) // set the name of x to the the kth element of U∗

10: when two mobile agents x and y interact do
11: if namex = namey then
12: namex ← namey ← 0 // set homonym states to 0

Remark 2. It appears that U∞ is known in the literature under the name of Gros
sequence. This sequence can be found all over mathematics. It has remarkable
properties with respect to the binary numeration, generating a Gray code. It
encodes an Hamiltonian cycle on the edges of a n-dimensional cube. It is also
the “greediest” square-free sequence (if one builds the sequence in choosing at
each step the smallest integer that does not produce a square). Finally, the Gros
sequence solves the Chinese Rings puzzle and, surprisingly, solved the Tower of
Hanoi puzzle long before the latter was at all invented. For details refer to [2,17].

One of the intuitions behind the use of the Gros sequence for counting
is related to the Hamiltonian cycle property on a cube. Consider a multi-
dimensional cube whose vertices are labeled by the multi-sets of n names and
edges connect vertices that differ by exactly one name. Whatever the initial
names are (the agents can be arbitrarily initialized), the Gros sequence leads, by
traveling along the Hamiltonian cycle it encodes, to the vertex where all names
are distinct. In the corresponding configuration the counting can be performed.

Now we give a more precise, but also more technical, explanation why, by
using this particular sequence U∗, BS correctly counts N (≤ P) agents. Consider
the prefix Un = Un−1, n,Un−1 of U∗. By assigning successively the numbers

Space-Optimal Counting in Population Protocols 641

given by Un, and in particular by the prefix Un−1, BS can assign distinct names
from {1, . . . , n−1} to all agents, only if N ≤ n−1. If it is not the case (N > n−1),
BS eventually detects it whenever it meets an agent x, either in state > n − 1,
or in state 0 after the last name in Un−1 has been assigned (i.e., homonyms
still exist). Then, BS guesses that N = n, and continues naming with the sub-
sequence (n,Un−1). That is, it assigns state n to agent x which becomes unique, if
effectively N = n. If this is the case, BS should successfully rename the remaining
n − 1 agents with n − 1 states from {1, . . . , n − 1}, following, once again, the
naming sequence defined by Un−1. From now on, the procedure repeats for the
sequence Un+1 = Un, n+ 1,Un. If the guess of N = n was wrong, BS eventually
detects it (at least, by the end of the prefix Un), and switches to guess n + 1.
That is, it will continue naming according to (n + 1,Un). This continues until
the guess of BS is correct, or till all attempts have failed, meaning that N = P .

Correctness of Protocol 2
In the proofs below, we consider a set E of non-zero-states associated to a
configuration C s.t., for every s ∈ E, the number of mobile agents in state
s in C is odd. This allows to focus only on the transitions involving BS, and
not on transitions between homonyms, which will happen eventually and do
not change the parity of the number of agents in any state. Moreover, for any
E,E′ ⊆ {1, . . . , n}, we denote by E�E′ ≡ E ∪ E′ − E ∩ E′ their symmetric
difference. In particular, E�{e} (e ∈ {1, . . . , n}) is E∪{e} if e /∈ E, and E−{e}
if e ∈ E.

In Lemma 3 below, we prove that when the sequence U∗ is used by the
protocol, it guarantees that, if N < P , E evolves until E = {1, . . . ,N}, where all
mobile agents have distinct names. Then, using Lemma 3 we obtain the main
Theorem 2.

Lemma 3. Let E0 ⊂ {1, . . . , n} and Ek+1 = Ek�{U∞(k + 1)}. There exists
some 1 ≤ j ≤ 2n − 1 such that Ej = {1, . . . , n}.
Proof. Let Hn (n ∈ N) be the induction hypothesis “for any subset E0 ⊂
{1, . . . , n} and such that Ek+1 = Ek�{U∞(k + 1)}, there is Ej = {1, . . . , n}
for some 1 ≤ j ≤ 2n − 1”.

Let us prove the basis for n = 1, i.e., for H1. As U∞(1) = 1, if E0 = ∅, then
E1 = {1} and j = 1. If E0 = {1}, j = 0. Thus H1 is true.

Assume that, for n ∈ N, Hn is true, and consider E0 ⊂ {1, . . . , n + 1}.
First, consider the case where n + 1 ∈ E0. Set E′

0 = E0 − {n + 1} and
E′

k+1 = E′
k�{U∞(k+1)}. For all k ≤ 2n−1, Ek = E′

k∪{n+1}. According to Hn,
there exists j such that E′

j = {1, . . . , n}. Then, Ej = E′
j∪{n+1} = {1, . . . , n+1}.

Now consider n + 1 /∈ E0. For all k ≤ 2n − 1, U∞(k) ≤ n, and n + 1 /∈ Ek.
Then, as U∞(2n) = n + 1, E2n = E2n−1 ∪ {n + 1}. Set E′

0 = E2n−1 and
E′

k+1 = E′
k�{U∞(k + 1)}. For all k ≤ 2n − 1, E2n+k = E′

k ∪ {n+ 1}. According
to Hn, there exists j such that E′

j = {1, . . . , n}. Then, E2n+j = {1, . . . , n + 1}.
By induction, the lemma is true. ��

642 J. Beauquier et al.

Theorem 2. Protocol 2 solves the counting problem, under weak fairness, for
up to P mobile agents, each with P states. Moreover, the protocol names up to
P − 1 mobile agents with distinct names (for any N < P , the names are in
{1, . . .N}).
Proof. Consider an execution (C0, C1, C2, . . .) of the protocol. For every i ≥ 0,
let Ei denote the set of states s.t., for every s ∈ Ei, the number of mobile agents
in state s in Ci is odd. If Ei = {1, . . . ,N}, then all the agents have distinct
states. Let ni and ki denote (respectively) the values of the variables n and k of
BS in a configuration Ci.

Lemma 3 implies that, for any N < P , if E0 ⊂ {1, . . . ,N} and Ek+1 =
Ek�{U∗(k + 1)}, there exists some 1 ≤ j ≤ 2N − 1 (lN = 2N − 1) such that
Ej = {1, . . . ,N} (|U∗| = 2P − 1).

If ni < N, agents cannot all have distinct non-zero-states in {1, . . . , ni}. Con-
sider a configuration where ni < N. There are two cases (i) and (ii) concerning
possible transitions with BS. In case (i), there are agents in state 0, or/and there
are different agents in the same state (homonyms), that will eventually interact
and change their states to 0 (line 12). In both sub-cases, a mobile agent in state
0 eventually meets BS; and in the corresponding transition, in line 4, k increases.
Once kj > lnj

(j > i), nj is incremented (lines 7 - 8). In case (ii), there exists
a mobile agent x with namex > ni, what causes n to increase too. Thus, even-
tually, nj = N. We show now that the protocol converges to n = N and not a
larger value.

– First, assume that the case (ii) does not occur. Consider the first configura-
tion (Ci) with ni = N, and suppose N < P . Starting from this configuration,
BS assigns states to agents following UN. Ei ∈ 2{1,...,N}, ki > lN−1 (lines 7 -
8), and only the following transitions between Ci and Ci+1 are possible:
1. a transition between homonyms (lines 11 - 12), which results in

Ei+1 = Ei;
2. a transition between BS and an agent in state 0 (lines 3, 4 and 9), which

results in Ei+1 = Ei�{U∗(ki)}.

The number of non-zero homonyms in a given configuration is finite, and
transitions of type 1 decrease this number, so that an infinite sequence of
transitions of this type is impossible. Thus, while Ei �= {1, . . . ,N} (meaning
that there are homonyms or agents in state 0), transitions of type 2 happen.
These transitions also increment ki. Let i1, i2, . . . denote the indexes of
transitions of type 2: Eij+1 = Eij�{U∗(kj)}. Lemma 3 implies that there is
some j such that Eij = {1, . . . ,N}. At this point, all agents are in distinct
states, and the protocol has converged with n = N, because n increases only
if the naming with n states has failed, i.e., when k > ln, (lines 7 - 8) and
this impossible in the considered case.

– In case (ii), BS interacts with an agent x with namex > ni. Agent x has not
been assigned before, since otherwise, it would have been given a state ≤ ni.
The naming with ni − 1 agents would have failed already, while this agent
had no interaction. Thus, the execution up to step i is undistinguishable from

Space-Optimal Counting in Population Protocols 643

an execution with at least ni agents, but with the agent currently meeting
BS, there are at least ni + 1 agents. Thus, N ≥ ni + 1. In any case, ni ≤ N.

��
Corollary 2. Protocol 2 is silent.

Proof. By Theorem 2, for any N < P , the protocol finally names all mobile
agents with distinct names in {1, . . .N}, and thus the condition at line 2 stops
being satisfied. Hence, in this case, eventually, no agent changes its state. In
the remaining case of N = P , the condition at line 2 stops being satisfied when
n reaches and stays equal to N (what happens, by Theorem 2). After that, no
agent can change its state. ��

5 Conclusion and Perspectives

In this paper, we presented two population protocols for counting, under two
classical fairness assumptions. Under global fairness, we gave a protocol with
only two states per agent and, under weak fairness, a protocol with P states
(P being an upper bound on the size of the system). In terms of exact space
complexity, both protocols are optimal in space and considerably improve the
best solutions known up to now, presenting a totally different angle of attack.2

Using a memory of only one bit has certainly practical advantages in appli-
cations for large-scale networks connecting very simple artifacts. Moreover, the
assumption of global fairness, necessary for the correctness of the corresponding
protocol, is realized in practice. As described in [5], this is because in practice,
a variety of parameters and events (like power-supply, local clock frequency or
movement of nodes) affect the scheduling of a system in a random way, making
the assumption of global fairness realistic.

The second protocol, under weak fairness, solves the challenge of counting
up to P with exactly P states per agent. Nevertheless, due to the nature of the
Gros sequence, its time complexity, in terms of non-null transitions or in terms of
(asynchronous) rounds, is exponential (a round being a shortest fragment of exe-
cution where each agent interacts with each other). This is because, in the worst
case, the number of non-null transitions (or rounds) till convergence depends on
the number of times BS renames a mobile agent. This is 2P−1 − 1 times, due to
the length of the used Gros sequence (|U∗| = 2P−1 − 1; see Remark 1).

We conjecture that this complexity is necessary for the optimal memory
space. Intuitively, starting from an arbitrary configuration with P mobile agents,
and with only P available states, no protocol at BS can detect the lacking names
(states) in the population, during a worst case execution. That is why, in this
2 One may notice that the proposed protocols look more like centralized protocols than

distributed ones. This comes from the nature of the problem and from the strong
memory constraints. First, as without BS the problem is impossible, any solution
has to use some sort of centralization; otherwise BS would not be necessary. Second,
reducing the memory to the minimum, strongly limits the useful information that
mobile agents can exchange to progress towards the solution.

644 J. Beauquier et al.

case, BS cannot advance in naming (required for counting) faster than by follow-
ing a sequence of at least O(2P) names. This length is necessary, because there
exist O(2P) different starting configurations and from any such configuration,
a sequence of at least O(2P) names is required (in the worst case), for BS to
obtain a configuration with distinctly named mobile agents, and count them.

Studying formally the trade off between space and time complexities for
counting algorithms in population protocols could be a valuable sequel to the
present work. Considering existing counting protocols designed for weak fairness,
we can identify the following tendency. With logP bits of memory per mobile
agent, the space-optimal protocol that we present in this paper has an exponen-
tial complexity. An additional bit of memory allows to design protocols like in
[18] with a logarithmic round complexity, while another additional bit allows to
solve this problem in a constant number of rounds [9]. It will be interesting to
study whether such drastic trade-offs are necessary.

For global fairness, much less studies about counting protocols and especially
about their complexity analysis exist. This is certainly an additional interesting
research direction.

Finally, another possible perspective concerns the space complexity of BS.
One may imagine a system, where all agents including the distinguishable BS
are resource-limited, motivating the study of the necessary space requirements
for BS.

Acknowledgments. The authors would like to thank Jean-Paul Allouche and Jean
Berstel for identifying the Gros sequence, and the anonymous reviewers for their
thoughtful and helpful remarks.

References

1. Afek, Y., Awerbuch, B., Plotkin, S.A., Saks, M.E.: Local management of a global
resource in a communication network. In: Symposium on Foundations of Computer
Science, pp. 347–357 (1987)

2. Allouche, J.-P., Shallit, J.O.: Automatic Sequences - Theory, Applications, Gener-
alizations. Cambridge Univ. Press (2003). ISBN 978-0-521-82332-6

3. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation
in networks of passively mobile finite-state sensors. Dist. Comp. 18(4), 235–253
(2006)

4. Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The computational power of
population protocols. Dist. Comp. 20(4), 279–304 (2007)

5. Angluin, D., Aspnes, J., Fischer, M.J., Jiang, H.: Self-stabilizing population pro-
tocols. ACM Trans. Auton. Adapt. Syst. 3(4) (2008)

6. Baquero, C., Almeida, P.S., Menezes, R., Jesus, P.: Extrema propagation: Fast
distributed estimation of sums and network sizes. IEEE Trans. Parallel Distrib.
Syst. 23(4), 668–675 (2012)

7. Beauquier, J., Burman, J., Clavière, S.: Comptage et nommage simples et efficaces
dans les protocoles de populations symétriques. In: ALGOTEL 2014, pp. 1–4, June
2014

Space-Optimal Counting in Population Protocols 645

8. Beauquier, J., Burman, J., Clavière, S., Sohier, D.: Space-Optimal Counting in
Population Protocols [Extended Version]. Technical report, LRI - CNRS, Univer-
sity Paris-Sud, June 2015

9. Beauquier, J., Clement, J., Messika, S., Rosaz, L., Rozoy, B.: Self-stabilizing count-
ing in mobile sensor networks with a base station. In: Pelc, A. (ed.) DISC 2007.
LNCS, vol. 4731, pp. 63–76. Springer, Heidelberg (2007)

10. Bournez, O., Chalopin, J., Cohen, J., Koegler, X.: Playing with population proto-
cols. In: CSP, pp. 3–15 (2008)

11. Dolev, S., Gouda, M.G., Schneider, M.: Memory requirements for silent stabiliza-
tion. Acta Inf. 36(6), 447–462 (1999)

12. Dolev, S., Israeli, A., Moran, S.: Self-stabilization of dynamic systems assuming
only read/write atomicity. Dist. Comp. 7(1), 3–16 (1993)

13. Emek, Y., Korman, A.: New bounds for the controller problem. In: DISC, pp. 22–34
(2009)

14. Fraigniaud, P., Pelc, A., Peleg, D., Perennes, S.: Assigning labels in an unknown
anonymous network with a leader. Dist. Comp. 14(3), 163–183 (2001)

15. Ganesh, A.J., Kermarrec, A.-M., Le Merrer, E., Massoulié, L.: Peer counting and
sampling in overlay networks based on random walks. Dist. Comp. 20(4), 267–278
(2007)

16. Gkantsidis, C., Mihail, M., Saberi, A.: Random walks in peer-to-peer networks:
Algorithms and evaluation. Perform. Eval. 63(3), 241–263 (2006)

17. Hinz, A.M., Klavzar, S., Milutinovic, U., Petr, C.: The Tower of Hanoi - Myths
and Maths. Birkhäuser Basel (2013). ISBN 3034802366, 9783034802369

18. Izumi, T., Kinpara, K., Izumi, T., Wada, K.: Space-efficient self-stabilizing counting
population protocols on mobile sensor networks. Theor. Comput. Sci. 552, 99–108
(2014)

19. Jiang, H.: Distributed Systems of Simple Interacting Agents. Ph.D thesis, Yale
University (2007)

20. Kempe, D., Dobra, A., Gehrke, J.: Gossip-based computation of aggregate infor-
mation. In: FOCS, pp. 482–491 (2003)

21. Korman, A., Kutten, S.: Controller and estimator for dynamic networks. Inf. Com-
put. 223, 43–66 (2013)

22. Kostoulas, D., Psaltoulis, D., Gupta, I., Birman, K.P., Demers, A.J.: Active and
passive techniques for group size estimation in large-scale and dynamic distributed
systems. Journal of Systems and Software 80(10), 1639–1658 (2007)

23. Kuhn, F., Lynch, N.A., Oshman, R.: Distributed computation in dynamic net-
works. In: STOC, pp. 513–522 (2010)

24. Di Luna, G.A., Baldoni, R., Bonomi, S., Chatzigiannakis, I.: Conscious and uncon-
scious counting on anonymous dynamic networks. In: Chatterjee, M., Cao, J.,
Kothapalli, K., Rajsbaum, S. (eds.) ICDCN 2014. LNCS, vol. 8314, pp. 257–271.
Springer, Heidelberg (2014)

25. Di Luna, G., Baldoni, R., Bonomi, S., Chatzigiannakis, I.: Counting in anonymous
dynamic networks under worst-case adversary. In: ICDCS, pp. 338–347 (2014)

26. Le Merrer, E., Kermarrec, A.-M., Massoulié, L.: Peer to peer size estimation in
large and dynamic networks: a comparative study. In: HPDC, pp. 7–17 (2006)

27. Michail, O., Chatzigiannakis, I., Spirakis, P.G.: Naming and counting in
anonymous unknown dynamic networks. In: Higashino, T., Katayama, Y.,
Masuzawa, T., Potop-Butucaru, M., Yamashita, M. (eds.) SSS 2013. LNCS,
vol. 8255, pp. 281–295. Springer, Heidelberg (2013)

28. Mosk-Aoyama, D., Shah, D.: Computing separable functions via gossip. In: PODC,
pp. 113–122 (2006)

646 J. Beauquier et al.

29. Ribeiro, B.F., Towsley, D.F.: Estimating and sampling graphs with multidimen-
sional random walks. In: ACM SIGCOMM, pp. 390–403 (2010)

30. Tel, G.: Introduction to Distributed Algorithms, 2nd edn. Cambridge University
Press (2000)

31. Varagnolo, D., Pillonetto, G., Schenato, L.: Distributed statistical estimation of
the number of nodes in sensor networks. In: IEEE Conference on Decision and
Control, CDC, pp. 1498–1503 (2010)

Brief Announcement: On the Voting Time of the
Deterministic Majority Process

Dominik Kaaser1, Frederik Mallmann-Trenn2,3, and Emanuele Natale4

1 University of Salzburg
2 École Normale Supérieure
3 Simon Fraser University

4 Sapienza Università di Roma

We study the deterministic binary majority process which is defined as follows.
We are given a graph G = (V,E) where each node has one out of two opinions.
The process runs in discrete rounds where in every round each node computes
and adopts the majority opinion among all of its neighbors.

It was proved independently by Goles and Olivos [2], and Poljak and S̊ura
[3] with the same potential function argument that the process always converges
to a two-periodic state. Their proof was popularized in the Puzzled columns of
Communications of the ACM [6]. Let the convergence time of a given graph, for a
given initial opinion assignment, be the time it takes until the two-periodic state
is reached. In this work we give bounds on the voting time, which is the maximum
convergence time over all possible initial opinion assignments. Frischknecht et al.
[1] note that the potential argument by Goles et al. [2,3,6] can be used to prove
an O (|E|) upper bound on the voting time which is also shown to be tight.

Among its widespread applications, variants of the majority process have
been used in the area of distributed community detection [4], where the voting
time is essentially the convergence time of the proposed community-detection
protocols. A lot of attention has been given to the two-periodic state to which
the majority process converges to. However, besides the O (|E|) upper bound
that follows from the result by Goles et al. [2,3,6], no further upper bound on
the voting time that holds for any initial opinion assignment has been proved.
Still, one can observe that in many graphs the voting time is much smaller than
O (|E|), e.g., the voting time of the complete graph is one.

We show that computing whether the voting time is greater than a given
number is NP-hard. Unlike many generalizations of the majority process, this
is the first NP-hardness proof that does not require any additional mechanisms
besides the bare majority rule of the deterministic binary majority process.

Theorem 1. For a given simple graph G and an integer k computing whether
there exists an initial opinion assignment for which the voting time of G is at
least k is NP-complete.

A module of a graph is a subset of vertices S such that for each pair of nodes
u, v ∈ S it holds that N(u) \S = N(v) \S. By carefully exploiting the structure
of the potential function by Goles et al. and leveraging the particular behavior
that certain modules of the graph exhibit in the majority process, we are able
to prove that the voting time of a graph can be bounded by that of a smaller
c© Springer-Verlag Berlin Heidelberg 2015
Y. Moses (Ed.): DISC 2015, LNCS 9363, pp. 647–648, 2015.
DOI: 10.1007/978-3-662-48653-5

648 D. Kaaser et al.

graph. This graph can be constructed in linear time by contracting suitable
vertices. Thus, we obtain a new upper bound that asymptotically improves on
the previous O (|E|) bound on graph classes characterized by a high number of
modules that are either cliques or independent sets. Our bound relies on a well-
known graph contraction technique, e.g., see the notion of identical vertices in
[5]. Before we state our upper bound precisely, we need the following definitions.

Definition 1. A set of nodes S is called a family if and only if for all pairs of
nodes u, v ∈ S we have N (u)\{v} = N (v)\{u}. We say that a family S is proper
if |S| > 1. Given a graph G = (V,E), its asymmetric graph GΔ = (V Δ, EΔ) is
the sub-graph of G induced by the subset V Δ ⊆ V constructed by replacing every
family of odd-degree non-adjacent nodes with one node and replacing any other
proper family with two nodes.

The set of families of a graph forms a partition of the nodes into equivalence
classes. We prove that the voting time of the majority process is bounded by
that of the graph GΔ, obtained by contracting its families into one or two nodes,
as stated in the following theorem.

Theorem 2. Given any initial opinion assignment on a graph G = (V,E), the
voting time of the majority process is at most

1 + min{|EΔ| − |V Δ
odd|/2, |EΔ|/2 + |V Δ

even|/4 + 7/4 · |V Δ|} .

Furthermore, this bound can be computed in O (|E|) time.

For instance, for the convergence time of the Turán graph T (n, r) we obtain an
O (

r2
)
bound and for the convergence time of full d-ary trees we get an O (|V |/d)

bound, compared to the previously best known bounds of O (
n2

)
and O (|V |),

respectively, originating from the O (|E|) bounds.

References

1. Frischknecht, S., Keller, B., Wattenhofer, R.: Convergence in (social) influence net-
works. In: Afek, Y. (ed.) DISC 2013. LNCS, vol. 8205, pp. 433–446. Springer, Hei-
delberg (2013)

2. Goles, E., Olivos, J.: Periodic behaviour of generalized threshold functions. Discrete
Mathematics 30(2), 187–189 (1980)

3. Poljak, S., S̊ura, M.: On periodical behaviour in societies with symmetric influences.
Combinatorica 3(1), 119–121 (1983)

4. Raghavan, U., Albert, R., Kumara, S.: Near linear time algorithm to detect com-
munity structures in large-scale networks. Physical Review E 76(3), 036106 (2007)

5. Sarıyüce, A., Saule, E., Kaya, K., Çatalyürek, U.: Shattering and compressing net-
works for betweenness centrality. In: Proc. SDM 2013, pp. 686–694 (2013)

6. Winkler, P.: Puzzled: Delightful Graph Theory. Comm. ACM 51(8), 104 (2008)

Brief Announcement:
Rumor Spreading with Bounded In-Degree

Sebastian Daum, Fabian Kuhn, and Yannic Maus

Dept. of Comp. Science, University of Freiburg, Freiburg, Germany
daum.sebastian@gmail.com, {kuhn,yannic.maus}@cs.uni-freiburg.de

1 Introduction, Model and Motivation

Random gossip (push and pull) is one of the most studied protocols for dis-
seminating information in a network, e.g., [1,3]. Classically, in each time unit,
every node u is allowed to contact a single random neighbor v. If u knows the
data (rumor) to be disseminated, node v learns it (known as push) and if node
v knows the rumor, u learns it (known as pull). While in the classic gossip
model, each node is only allowed to contact a single neighbor in each time unit,
each node can possibly be successfully contacted by and thus interact with many
neighboring nodes. As an extreme case, consider the behavior of random pull
in a star network where a single center node is connected to n− 1 leaf nodes. In
fact, all recent papers which study the time complexity of the random push-pull
protocol critically rely on the fact that a node can be contacted by many nodes
in a single round, e.g., [2]. However, in order to obtain applicable and scalable
protocols, ideally, we would like to not only limit the number of interactions each
node initiates, but also the number of interactions each node participates in.

We therefore study a weaker variant of the described random pull algorithm,
which we call rpull (stands for restricted pull). In each round, every node can
still initiate a connection to one uniformly random neighbor. However, if a single
node receives several connection requests, only one of these connections is actu-
ally established. We consider two versions of how one of these incoming requests
is selected. Assume that in a given round some informed node v receives requests
from a set of neighbors Rv. In the adversarial rpull protocol, an (adaptive)
adversary picks some node u ∈ Rv which will then learn the rumor, whereas in
the random rpull protocol, we assume that a uniformly random node u ∈ Rv

learns the rumor (chosen independently for different nodes and rounds). While
the choice of which neighbor a node (actively) contacts with a request is under
the control of the protocol, it is not necessarily clear how one of the incoming
requests in Rv is chosen, e.g., it might be determined by the underlying network
infrastructure in which case the adversarial model allows to study the worst-case
behavior.

A full version of this paper can be found at http://arxiv.org/abs/1506.00828

c© Springer-Verlag Berlin Heidelberg 2015
Y. Moses (Ed.): DISC 2015, LNCS 9363, pp. 649–650, 2015.
DOI: 10.1007/978-3-662-48653-5

650 S. Daum et al.

2 Contributions

Separation of Adversarial and Random Pull: For trees we can show that
both forms of rpull are asymptotically as fast as pull plus an additive term in
the order of the degree of the node that initially has the rumor. On general graphs
we show an exponential separation between adversarial and random rpull.

Theorem 1. There is a graph such that for all source nodes, the random rpull
protocol informs all nodes of the network in polylogarithmic time, w.h.p., whereas
the adversarial rpull algorithm requires time Ω̃(

√
n) to even succeed with a con-

stant probability.

Comparison of Pull and RPull: Let δ and Δ denote the smallest and largest
degrees of a given graph G. In each round of rpull, in expectation, each informed
node receives at most Δ/δ requests. Hence, if an uninformed node u sends a
request to an informed node, u should receive the rumor with probability at
least Ω(δ/Δ). Consequently, intuitively, the slowdown of using random rpull
instead of the usual pull protocol should not be more than roughly O(Δ/δ).

Theorem 2. For every given instance, if the pull algorithm informs all nodes
in T rounds with probability p, the random rpull algorithm reaches all nodes in
time O

(T · Δ
δ · log n)

with probability (1 − o(1))p. The same result holds when
comparing random push-pull with random push-rpull1.

While the statement is intuitive its proof turns out more involved. Formally, we
prove a stronger statement and couple the random processes defined by pull
and random rpull such that for every start configuration, w.h.p., the set of
nodes informed after O

(
Δ
δ · log n)

rounds of random rpull is a superset of the
set of nodes informed in a single pull round. We achieve this by coupling both
processes with an intermediate process which is similar to rpull but removes
dependencies between nodes which request from the same neighbor. Note that
there is no coupling of pull and rpull in the classical sense, i.e., a coupling which
does relinquish the w.h.p. term.

Furthermore, we show that for such a round-by-round analysis, our bound is
tight. That is, there are configurations where Ω

(
Δ
δ log n

)
random rpull rounds

are needed to simulate a single pull round, w.h.p..

References

1. Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis, H.,
Swinehart, D., Terry, D.: Epidemic algorithms for replicated database management.
In: Proc. Symp. on Principles of Dist. Comp. (PODC), pp. 1–12 (1987)

2. Giakkoupis, G.: Tight bounds for rumor spreading in graphs of a given conductance.
In: Proc. Symp. on Theoretical Aspects of Comp. Sc. (STACS), pp. 57–68 (2011)

3. Karp, R., Schindelhauer, C., Shenker, S., Vöcking, B.: Randomized rumor spreading.
In: Proc. Symp. on Foundations of Comp. Sc. (FOCS), pp. 565–574 (2000)

1 By push-rpull we denote the combination of rpull with a simultaneous execution
of the classic push protocol.

Brief Announcement: On the Power of One Bit
in Graph Exploration Without Backtracking

Artur Menc1, Dominik Paj ↪ak
2, and Przemys�law Uznański3�

1 Wroc�law University of Technology, Poland
2 Computer Laboratory, University of Cambridge, UK
3 Helsinki Institute for Information Technology HIIT,

Department of Computer Science, Aalto University, Finland

We consider a model of a deterministic (Ma,Mw)-agent with Ma bits of internal
memory and Mw bits at each node of some graph G that is able to visit vertices
and traverse edges of G. The memory at each node is accesible only upon visiting
to that node. The goal of the agent is to explore an anonymous and initially
unknown G, i.e. visit all its n nodes. We assume that there is no global labeling
of nodes but we assume local port-labeling i.e., edges outgoing from each node
of degree d are uniquely labeled with numbers from 1 to d. The label of the port
via which the agent entered to its current location is not a part of the input to
our agent hence Ma + Mw ≥ log2 d as each deterministic algorithm needs at
least d different inputs to produce d different outputs.

Upper bound. Exploration by a (0, log d)-agent is possible by using procedure
called Rotor-router that works in pessimistic time Θ(mD) [1,4] in any graph
with m edges and diameter D. In Rotor-router the agent upon consecutive
visits to node v is propagated to neighbors of v in a round-robin fashion. Previous
work on Rotor-router [1,4] showed that this procedure exhibits the following
regular structure. In subsequent phases, it traverses Eulerian cycles of subgraphs
of directed symmetric version of G, where i-th phase starts with the i-th traversal
of the arc associated with port 1 outgoing from the starting vertex. In each
phase, Rotor-router follows the same trajectory as in previous phases, with
the exception that each so-called border vertex v (a vertex whose set of outgoing
arcs contains both traversed and not traversed arcs at the beginning of a given
phase) is a root of a new exploration subphase. In an exploration subphase, some
neighborhood of border vertex v is explored, including all unvisited neighbors of
v, potentially creating new border vertices.

Algorithm overview. In our algorithm One-bit, the agent carries one bit of
information (two states: α-MODE and β-MODE), that is whether the last seen
vertex was visited at most deg(v) times or not. Exploration subphase in one non-
interrupted α-MODE resembles an exploration subphase from Rotor-router,
that is starting each time from some border vertex v, and ending in the same

� Part of this work was done while D. Paj ↪ak was visiting P. Uznański at Aix-Marseille
Université. Partially supported by the Labex Archimède and by the ANR project
MACARON (ANR-13-JS02-0002)

c© Springer-Verlag Berlin Heidelberg 2015
Y. Moses (Ed.): DISC 2015, LNCS 9363, pp. 651–652, 2015.
DOI: 10.1007/978-3-662-48653-5

652 A. Menc et al.

vertex v, while traversing only new arcs. Denote a sequence of vertices visited by
v0 = v, v1, . . . , vk = v. When returning to v for the deg(v)-th time, the algorithm
detects that every neighbor of v was visited, and switches to β-MODE, where
agent will follow the same sequence v0, v1, . . . , vk traversing each arc for the
second time. However, whenever in a β-MODE the agent detects that its current
location is a new border vertex, let us call it vi, then current β-MODE will be
interrupted by a subsequent (recursive) phases of α-MODE and β-MODE both
starting and ending in vi. Only after those two phases (and possible recursive
ones), the agent will fall back to original β-MODE traversal and continue to vi+1.

Theorem 1. An (1,O(log d))-agent following algorithm One-bit explores with
return any graph in time 4m, by traversing every edge twice in each direction.
Moreover, after the exploration is completed, the memory state of the agent and
of each node is equal to the initial state.

Lower bounds. Exploration using a (∞, 0)-agent corresponds to a well known
problem of Universal Traversal Sequences. Exploration time in this model is
lower bounded by Ω(n1.51) on the path [3] and by Ω(n4) in general graphs [2].
We show lower bound for (0,∞)-agent. The following theorem is an evidence
that the Rotor-router is the best strategy for oblivious agent with memory
on nodes.

Theorem 2. For any (0,∞)-agent the worst-case exploration time of graph G
is at least (n − 1)2 if G is a path and Ω(n3) if G can be an arbitrary graph.

Conclusions. We showed that in the model with unknown inport having only
one type of memory leads to pessimistic exploration time Ω(n3). On the other
hand (1,O(log d))-agent can explore in optimal time 4m. Secondly we show
that a single type of memory cannot guarantee that the agent will stop after
completeing the task while our One-bit algorithm for (1,O(log d))-agent has
this property.

References

1. Bampas, E., G ↪asieniec, L., Hanusse, N., Ilcinkas, D., Klasing, R., Kosowski, A.:
Euler tour lock-in problem in the rotor-router model. In: Keidar, I. (ed.) DISC
2009. LNCS, vol. 5805, pp. 423–435. Springer, Heidelberg (2009)

2. Borodin, A., Ruzzo, W.L., Tompat, M.: Lower bounds on the length of universal
traversal sequences. JCSS 45(2), 180–203 (1992)

3. Dai, H.K., Flannery, K.E.: Improved length lower bounds for reflecting sequences.
In: Cai, J.-Y., Wong, C.K. (eds.) COCOON 1996. LNCS, vol. 1090, pp. 56–67.
Springer, Heidelberg (1996)

4. Yanovski, V., Wagner, I.A., Bruckstein, A.M.: A distributed ant algorithm for effi-
ciently patrolling a network. Algorithmica 37(3), 165–186 (2003)

Brief Announcement: Uniform Information
Exchange in Multi-channel Wireless Ad Hoc

Networks

Li Ning1, Dongxiao Yu2, Yong Zhang1,2, Yuexuan Wang2,3,
Francis C.M. Lau2, and Shengzhong Feng1

1 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China
{li.ning,zhangyong,sz.feng}@siat.ac.cn

2 Department of Computer Science, The University of Hong Kong, Hong Kong
{dxyu,fcmlau}@cs.hku.hk

3 College of Computer Science and Technology, Zhejiang University, China
amywang@hku.hk

We consider a complete graph of n nodes, any pair of which can communicate
with each other directly through one of F available wireless channels. n is not
known to the nodes. Time is divided into synchronous rounds. In each round, a
node can select at most one channel to listen to or transmit on. Transmission
is successful if there is exactly one node transmitting on a channel (and one or
more nodes listening). If two or more nodes transmit on the same channel, a
collision occurs and their transmissions fail. Nodes can detect collisions, i.e., can
distinguish collision from silence. We study distributed solutions to the informa-
tion exchange problem: given initially k nodes each holding a packet, the task is
to disseminate these k packets to all n nodes as quickly as possible. We assume
that multiple packets can be packed in a single message.

Recently, due to the advent of mobile devices that can operate on multiple
channels, some attention has been given to studying the effect of multiple chan-
nels on improving communication [1–4]. However, all existing works require prior
knowledge of n. In ad hoc networks, to make n known to all the nodes in fact
can be a tough task. Moreover, in ad hoc networks, the value of n could change
sporadically or even frequently due to nodes leaving and joining. Hence, there
is practical need for designing uniform protocols that do not require any prior
information about the network including n and k. Not knowing the parameters
n or k greatly increases the difficulty of designing fast algorithms, especially in
the case where different nodes can operate on different channels, as it is hard to
manage the transmission probabilities over the distributed set of nodes.

The details of this work can be found in [5].
This work is supported in part by NSFC of China (61402461, 61073174, 11171086,
61433012, U1435215), Shenzhen Funding Program for Fundamental Research
(JCYJ20140509174140680), Natural Science Foundation of Hebei (A2013201218),
and the HKU Small Project Fund.

c© Springer-Verlag Berlin Heidelberg 2015
Y. Moses (Ed.): DISC 2015, LNCS 9363, pp. 653–654, 2015.
DOI: 10.1007/978-3-662-48653-5

654 L. Ning et al.

Uniform Information Exchange Protocol

Given F available channels, our protocol applies a very intuitive rule for the
nodes to select a channel: in each round, a node selects one channel uniformly
at random, and then transmits or listens on the selected channel. If a node lis-
tens and detects that the selected channel is idle, it doubles its transmission
probability, or otherwise, it halves the probability. To achieve the desired effi-
ciency in using the channels, the total transmission probability of all the nodes
should be in a “safe range”, [α1 · F , α2 · F] with constants α2 > α1 > 0. Since
the nodes distributedly and independently select their channels, the per-channel
total transmission probability of nodes selecting a channel may vary substan-
tially from channel to channel. This causes difficulties in analyzing whether the
safe range is still guaranteed after an update (halving or doubling). In our proto-
col, the nodes selecting the same channel update their transmission probabilities
consistently, and we show that whenever the total transmission probability of all
the nodes falls outside the safe range, there are enough channels where the nodes
would behave consistently to pull the total transmission probability back to be
within the safe range. Our protocol also applies the technique of indirection: “if
your message is received by another transmitter, then you need never to trans-
mit again.” With this in place, transmitting nodes become fewer and fewer as
the protocol executes. When the number of transmitting nodes becomes rather
small, using all F > 1 channels is not beneficial, as it is harder for these nodes
to meet each other over a randomly selected channel. In our solution, when
there are only a few transmitting nodes remaining, they stop selecting a random
channel but would operate on a pre-defined channel.

Main Results. The proposed protocol can accomplish the dissemination in
O(k/F+F·log n) rounds with high probability, assuming collision detection. This
result is asymptotically optimal when k is large (k ≥ F2 · log n). Furthermore,
our protocol can handle dynamic joining and leaving of nodes efficiently. After
a node joining or leaving, the existing nodes will adapt quickly to a state of
“safe range”, in which the F channels will continue to be made full use of. Our
protocol is probably the first known uniform protocol for information exchange.

References

1. Daum, S., Ghaffari, M., Gilbert, S., Kuhn, F., Newport, C.C.: Maximal independent
sets in multichannel radio networks. In: PODC 2013 (2013)

2. Halldórsson, M.M., Wang, Y., Yu, D.: Leveraging multiple channels in ad hoc net-
works. In: PODC 2015 (2015)

3. Wang, Y., Wang, Y., Yu, D., Yu, J., Lau, F.C.M.: Information exchange with colli-
sion detection on multiple channels. JOCO, 1–18 (2014)

4. Yu, D., Wang, Y., Yu, Y., Yu, J., Lau, F.C.M.: Speedup of information exchange
using multiple channels in wireless ad hoc networks. In: INFOCOM 2015 (2015)

5. Ning, L., Yu, D., Zhang, Y., Wang, Y., Lau, F.C.M., Feng, S.: Uniform Informa-
tion Exchange in Multi-channel Wireless Ad Hoc Networks. CoRR abs/1503.08570
(2015)

Brief Announcement: Self-stabilizing Virtual
Synchrony

Shlomi Dolev1, Chryssis Georgiou2, Ioannis Marcoullis2, and Elad M. Schiller3

1 Ben-Gurion University of the Negev, Israel
2 University of Cyprus, Cyprus

3 Chalmers University of Technology, Sweden

Introduction. Systems satisfying the Virtual Synchrony (VS) property provide
message multicast and group membership services in which all system events,
group membership changes, and incoming messages, are delivered in the same
order. VS is an important abstraction, proven to be extremely useful when imple-
mented over asynchronous, typically large-scale, message-passing distributed sys-
tems, as it simplifies the design of distributed applications, e.g., State Machine
Replication (SMR). The VS property ensures that two or more processors that
participate in two consecutive communicating groups should have delivered the
same messages. Self-stabilizing systems can tolerate transient faults that drive
the system to an unpredicted arbitrary configuration. Such systems automat-
ically regain consistency from any such configuration, and then produce the
desired system behavior ensuring it for a practically infinite number of succes-
sive steps, e.g., 264 steps. We present the first, to our knowledge, self-stabilizing
virtual synchrony algorithm.

An Overview of Our Results. We consider an asynchronous message passing
system consisting of n uniquely identified processors of which a minority may
become inactive (crash). Any message that is sent infinitely often from one active
processor to another active processor is eventually received. The communication
links have known bounded capacity, and can emulate reliable FIFO communica-
tion channel protocols using existing self-stabilizing algorithms.

Bounded labeling scheme for multiple writers. We extend an existing self-
stabilizing labeling scheme to support counter incrementing by multiple label
creators (writers) rather than by a single writer. The labels are related to an
integer counter allowing the system to stabilize. A 64-bit counter, for example, is
considered to be practically infinite. There are two main challenges to achieve the
result. Multiple writers can concurrently create labels. To overcome this issue,
we include the writer identity to break symmetry and decide which label is the
most recent one. In this way, the scheme ensures that every active processor pi
eventually “cleans up” the system from obsolete labels of which pi appears to
be the creator, but may be the result of the system’s initial arbitrary state.

The second challenge is to overcome problems emerging from labels
attributed to inactive processors that cannot clean-up their own labels. Note
that there is no knowledge of these processors’ inactivity. Consider an initial
c© Springer-Verlag Berlin Heidelberg 2015
Y. Moses (Ed.): DISC 2015, LNCS 9363, pp. 655–656, 2015.
DOI: 10.1007/978-3-662-48653-5

656 S. Dolev et al.

system state including a cycle of labels �1 ≺ �2 ≺ �3 ≺ �1, all of the same cre-
ator, say px, where ≺ is the label order relation. If px is active, it will eventually
learn about these labels and introduce a label greater than them all. But if px
is inactive, the system’s asynchronous nature may present the three labels to
some active processor pi in their order of precedence and force their adoption,
indefinitely. We settle this issue by keeping a label history of proven sufficient
label size. The algorithm is proved to be self-stabilizing and to provide a global
maximal label.

Practically infinite counter for multiple writers. We extend the labeling scheme
to handle counters, where a counter consists of a label, as used in the label-
ing scheme; an integer sequence number, ranging from 0 to 2b, say b = 64;
and a processor id. The counter increment algorithm uses the same structures
and procedures as the labeling algorithm, but now with counters instead of
labels. The challenge for the counter algorithm is to make sure that when a
label has an exhausted counter (i.e., one that has reached its maximum) the
label is changed and a new label is chosen. The counter algorithm is proved to
guarantee eventually monotonic counter increment by multiple writers given a
minority of inactive processors. The counter increment algorithm can be used to
obtain a self-stabilizing MWMR shared memory emulation.

Self-stabilizing virtual synchrony. Systems guaranteeing the VS property provide
two main services: a membership service and a reliable multicast service. We pro-
vide these services in a coordinator-based solution, considering a single majority
group in the system, the primary partition. The membership service provides the
current group view of the recently live and connected group members. A view is
composed of the view identifier obtained from the counter increment algorithm,
and the group membership is provided by a failure detector (FD). The output
of the coordinator’s FD defines the set of view members; this helps to main-
tain a consistent membership among the group members, despite inaccuracies
between the various FDs. The coordinator is also responsible for the consistency
of the multicast mechanism within the group. To this end, it requests, collects
and combines input from the group members, and then multicasts the updated
information before initiating a new multicast round. Each participant keeps the
last delivered message and the view identifier that delivered this message. This,
together with the intersection property of majorities, and after taking care of
some subtle issues, provides the VS property. As part of our VS solution, we also
implement a virtually synchronous SMR algorithm. Every processor maintains a
replica of the state machine and the last processed (composite) message. Starting
from an arbitrary configuration, our algorithm eventually implements replicated
automaton emulation that preserves VS. Full details can be found in [1].

References

1. Dolev, S., Georgiou, C., Marcoullis, I., Schiller, E.M.: Self-stabilizing virtual syn-
chrony. In: Pelc, A., Schwarzmann, A.A. (eds.) SSS 2015. LNCS, vol. 9212, pp.
248–264. Springer, Heidelberg (2015). (arXiv:1502.05183)

http://arxiv.org/abs/1502.05183

Brief Announcement: Distributed Task
Allocation in Ant Colonies

Anna Dornhaus1, Nancy Lynch2, Tsvetomira Radeva2, and Hsin-Hao Su3

1 University of Arizona
2 Massachusetts Institute of Technology

3 University of Michigan

A common problem in both distributed computing and insect biology is designing
a model that accurately captures the behavior of a given distributed system or
an ant colony, respectively. While the challenges involved in modeling computer
systems and ant colonies are quite different from each other, a common approach
is to explore multiple variations of different models and compare the results in
terms of the simplicity of the model and the quality of the results. We consider
the task allocation problem as a case study and explore multiple models inspired
from both distributed computing and biological experiments. We compare the
models with respect to their significance in understanding real ant behavior and
also their technical relevance to distributed computing.

Task Allocation: In ant colonies, the task allocation problem is a distributed
assignment of ants to tasks with the goal of satisfying the demands of all tasks.
The first attempt at modeling the task allocation problem from a distributed
computing perspective was in [2], where the authors show that the ants can solve
the task allocation problem in O(|T | log |A|) rounds, where A is the set of ants
and T is the set of tasks. Biologists have also modeled the ant task allocation
process from a distributed perspective by designing various models [5,6] that try
to match the actual ant behavior.

Summary of Results: We consider two families of models based on the type
of input ants receive from the environment. In our first family of models, each
ant learns from the environment (1) whether it is successful at the current task
it is working on, and (2) a new task it can start working on if it is idle or
unsuccessful at its old task. For (1), we consider a function that ensures the
number of successful ants working on a given task is no more than the demand
for the task. For (2), we consider different options, ranging from a uniformly
random task to a task chosen based on the proportion of ants already working
on it. We show that, depending on the choice of this function, the running time
of the resulting task allocation process ranges from O(log |T |) to O(|T | log |A|)
rounds, also proving a better time bound for the algorithm in [2].

The second family of models we consider captures the individual variation
in the work units each ant provides to different tasks. Task allocation with indi-
vidual variation is NP-hard; we provide a simple mechanism to approximately

This work is sponsored in part by NSF grants BIO-1455983, CCF-0939370, CCF-
1217338, CNS-1318294 and AFOSR grant FA9550-13-1-0042.

c© Springer-Verlag Berlin Heidelberg 2015
Y. Moses (Ed.): DISC 2015, LNCS 9363, pp. 657–658, 2015.
DOI: 10.1007/978-3-662-48653-5

658 A. Dornhaus et al.

satisfy the demands of each task (assuming this is possible). We show that after
O(|A|1−ε) rounds, the ants converge to a solution that satisfies the demands with
an O(W |A|1/2+ε) additive error, where W is the ratio between the largest and
the smallest number of work units provided by the ants. In each round, each
ant switches to the current most promising task with some probability, and that
probability diminishes in each subsequent round. The current most promising
task for a given ant is the task with the largest deficit (the difference between the
demand and the work provided already) weighted by the work units the ant is
capable of providing for the task. The main technique in our analysis is derived
from the multiplicative weight update method for solving linear programs [1,7]
with modifications to accommodate the limited capabilities of ants. We conjec-
ture that the above technique has potential applications outside the ant world;
for example, task allocation among non-communicating agents with individual
variation and a global view of task deficits.

Contribution to Biology: One goal of our analysis is to show that if task
allocation is allowed to be approximate, it need not become significantly more
difficult with larger colony sizes; this is supported by the fact that, in our results,
the convergence time of the task allocation process depends only logarithmically,
or does not depend at all, on |A|. This conclusion is not obvious from prior theory
results (e.g. [2]), which contradicted the notion of empiricists that larger colonies
perform better at task allocation [4].

Our results also provide a novel hypothesis for the existence of idle ants:
we show that the task allocation process is faster when there are extra ants
compared to the case where the number of ants is very close to the total sum of
demands. While the existence of idle ants is supported by empirical evidence [3],
biologists do not have an adequate explanation for this behavior. These general
observations make our results broadly relevant for understanding the evolution
of division of labor in biological systems.

References

1. Arora, S., Hazan, E., Kale, S.: The multiplicative weights update method: a meta-
algorithm and applications. Theory of Computing 8(1), 121–164 (2012)

2. Cornejo, A., Dornhaus, A.R., Lynch, N.A., Nagpal, R.: Task allocation in ant
colonies. In: Proc. 28th Symposium on Distributed Computing, pp. 46–60 (2014)

3. Dornhaus, A., Holley, J.-A., Pook, V.G., Worswick, G., Franks, N.R.: Why do not all
workers work? colony size and workload during emigrations in the ant temnothorax
albipennis. Behavioral Ecology and Sociobiology 63(1):43–51, 2008.

4. Dornhaus, A., Powell, S., Bengston, S.: Group size and its effects on collective
organization. Annual review of entomology 57, 123–141 (2012)

5. Gordon, D.M., Goodwin, B.C., Trainor, L.E.H.: A parallel distributed model of the
behaviour of ant colonies. Journal of Theoretical Biology 156(3), 293–307 (1992)

6. Pacala, S.W., Gordon, D.M., Godfray, H.C.J.: Effects of social group size on infor-
mation transfer and task allocation. Evol Ecol 10(2), 127–165 (1996)

7. Young, N.E.: Randomized rounding without solving the linear program. In: Proc.
26th ACM-SIAM Symposium on Discrete Algorithms, pp. 170–178 (1995)

Brief Announcement: A Concurrency-Optimal
List-Based Set

Vincent Gramoli1,2, Petr Kuznetsov3, Srivatsan Ravi4, and Di Shang2

1 NICTA
2 University of Sydney

vincent.gramoli@sydney.edu.au,dsha5693@uni.sydney.edu.au
3 Télécom ParisTech

petr.kuznetsov@telecom-paristech.fr
4 TU Berlin

srivatsan.ravi@tu-berlin.de

Measuring concurrency. Multicore applications require highly concurrent data
structures. Yet, the very notion of concurrency is vaguely defined, to say the least.
What is meant by a “highly concurrent” data structure implementing a given
high-level object type? Generally speaking, one could compare the concurrency
of algorithms by running a game where an adversary decides on the schedules
of shared memory accesses from different processes. At the end of the game,
the more schedules the algorithm would accept without hampering high-level
correctness, the more concurrent it would be. The algorithm that accepts all
correct schedules would then be considered concurrency-optimal.

The lack of concurrency. To illustrate the difficulty of optimizing concurrency,
let us consider a highly concurrency-friendly data structures: the sorted linked
list. Since updates on a list-based set affect only a small number of contiguous
list nodes, most of them could, in principle, run concurrently without conflicts.

The Lazy Linked List [1] achieves high concurrency by holding locks on only
two consecutive nodes when updating but suffers from an overly conservative
post-locking validation scheme. More precisely, both insert(v) and remove(v) tra-
verse the structure until they find a node whose value is larger or equal to v,
at which point they acquire locks on two consecutive nodes. Only then the exis-
tence of the value v is checked: if v is found (resp. not found), then the insertion
(resp., removal) releases the locks and returns without modifying the structure.
To illustrate that this concurrency limitation may lead to poor scalability, con-
sider Figure 1 that depicts the performance of a 100-element Lazy Linked List
under a workload of 10% updates (insertions/removals) and 90% of contains on
a 64-core machine. The list is comparatively small, hence all updates (even the
failed insertions and removals) are likely to contend. We can see that when we
increase the number of threads beyond 40, the performance drops significantly.
This observation raises an interesting question: Does there exist a concurrency-
optimal list-based set algorithm?

The author is supported by the Agence Nationale de la Recherche, ANR-14-CE35-
0010-01, project DISCMAT.

c© Springer-Verlag Berlin Heidelberg 2015
Y. Moses (Ed.): DISC 2015, LNCS 9363, pp. 659–660, 2015.
DOI: 10.1007/978-3-662-48653-5

660 V. Gramoli et al.

Fig. 1. The concurrency limitation of the
Lazy Linked List based set leads to poor
scalability as operations potentially con-
tend on meta-data even when they do not
modify the structure

Our contribution. We answer this ques-
tion in the affirmative. We propose the
Versioned List, the first concurrency-
optimal list-based set algorithm to
date [2]. Its key feature is a ver-
sioned try-lock, a novel synchronization
step inspired by transactional memory
(TM). It allows us to implement a pre-
locking validation: an update operation
uses a CAS to set a versioned try-lock
immediately after the validation of the
node succeeds. In short, a lock is taken
and schedules are rejected only if the
data structure has to be modified under
the effect of either a successful inser-
tion or a successful removal. The versioned try-lock can be implemented using a
StampedLock since Java 8 and a uint in C/C++. The Versioned List algorithm
combines this new version try-lock with existing efficient mechanisms: the log-
ical deletion technique of the Harris-Michael algorithm [3,4] and the wait-free
traversal of the Lazy Linked List [1]. If acquiring the try-lock fails because of a
version change, then the operation re-reads some nodes.

We show that the Versioned List algorithm implements a linearizable set and
rejects a concurrent schedule only if otherwise the linearizability of the set type
is violated. Our algorithm is thus provably concurrency-optimal: no other correct
list-based set algorithm can accept more schedules. This observation unveils an
interesting desirable data structure property by which concurrent operations
conflict on metadata only when they “conflict” on data, for which we need to
exploit the semantics of the high-level data type. Note that this property extends
the formal definitions of DAP [5–7] that are all trivially ensured by classic linked
list implementations simply because all their operations “access” the head node
and, thus, are allowed to conflict on the metadata.

References
1. Heller, S., Herlihy, M., Luchangco, V., Moir, M., Scherer III, W.N., Shavit, N.: A lazy

concurrent list-based set algorithm. In: Anderson, J.H., Prencipe, G., Wattenhofer,
R. (eds.) OPODIS 2005. LNCS, vol. 3974, pp. 3–16. Springer, Heidelberg (2006)

2. Gramoli, V., Kuznetsov, P., Ravi, S., Shang, D.: A concurrency-optimal list-based
set. Technical Report 1502.01633, arXiv (2015)

3. Harris, T.L.: A Pragmatic implementation of non-blocking linked-lists. In: Welch,
J.L. (ed.) DISC 2001. LNCS, vol. 2180, pp. 300–314. Springer, Heidelberg (2001)

4. Michael, M.M.: High performance dynamic lock-free hash tables and list-based sets.
In: SPAA, pp. 73–82 (2002)

5. Attiya, H., Hillel, E., Milani, A.: Inherent limitations on disjoint-access parallel
implementations of transactional memory. In: SPAA, pp. 69–78 (2009)

6. Guerraoui, R., Kapalka, M.: Principles of Transactional Memory. Synthesis Lectures
on Distributed Computing Theory. Morgan & Claypool Publishers (2010)

7. Ellen,F.,Fatourou,P.,Kosmas,E.,Milani,A.,Travers,C.:Universalconstructionsthat
ensure disjoint-access parallelism and wait-freedom. In: PODC, pp. 115–124 (2012)

Brief Announcement: HTM-Assisted Combining

Alex Kogan and Yossi Lev

Oracle Labs

1 Introduction

Transactional lock elision (TLE) [2] and flat combining (FC) [1] are two tech-
niques aimed to improve performance of lock based programs. TLE uses hard-
ware transactional memory (HTM) for optimistic synchronization, where critical
sections’ code is run concurrently using hardware transactions as long as their
associated lock is not held; the lock is only acquired when a transaction fails
to commit. FC, on the other hand, is effective when many threads are trying
to acquire the lock ; the thread holding the lock (denoted as combiner) executes
operations on behalf of threads waiting for the lock. Along with improved cache
locality, this approach allows optimizing a sequence of operations by either com-
bining them together into a more compact operation, or by eliminating one oper-
ation with another. Therefore, while TLE is often beneficial for data structures
whose operations rarely conflict (e.g., a binary tree), FC is more suitable for
data structures with inherently conflicting operations (e.g., a stack or a queue).

This work introduces the HTM-assisted Combining Framework (HCF), that
integrates the optimistic synchronization and combining approaches for a “best
of both words” solution. We demonstrate that it is not sufficient to simply apply
the FC algorithm if and when the lock is acquired by threads using TLE, as
threads that are not waiting for the lock are still prevented from making any
progress. HCF, on the other hand, attempts to combine operations using HTM,
and thus allows multiple (combiner and non-combiner) threads to access the data
structure concurrently. In particular, HCF allows multiple threads to concurrently
combine different kind of operations, and hence is well suited for data structures
with operations of different nature. For example, consider a priority queue, where
we expect all RemoveMin operations to conflict with each other, while Insert
operations can still run in parallel with all other operations. With HCF, we can use
TLE for Insert operations while concurrently combining RemoveMin operations.
Importantly, due to the use of HTM, this is achieved using a simple sequential
implementation of the data structure protected by a global lock, without the
need to reason about fine-grained synchronization. In particular, the choice of
how many combiners to use and which operations to combine can only affect
performance, not correctness.

2 Overview of HCF

Algorithm Overview: HCF assigns each operation Op to a publication array,
PA(Op), that has at most one thread executing as a combiner for the operations

c© Springer-Verlag Berlin Heidelberg 2015
Y. Moses (Ed.): DISC 2015, LNCS 9363, pp. 661–662, 2015.
DOI: 10.1007/978-3-662-48653-5

662 A. Kogan and Y. Lev

it stores. Using multiple publication arrays allows concurrent execution of oper-
ations that are unlikely to conflict with each other. In the following we briefly
describe how operations are applied using HCF.

A thread T first tries to apply the operation Op using a hardware transaction
(TX). If failed (perhaps multiple times), it announces the operation in PA(Op),
and keeps trying to execute Op using a TX, while checking that the operation
is not being helped by a combiner thread. If Op is still not completed after
these attempts, T becomes the combiner for the operations in PA(Op), where
it tries to execute a subset of them (including Op) using one ore more TXs.
Finally, if T failed to apply Op using TXs in the combining phase, it acquires
the data-structure lock and finishes the combining operation while holding the
lock, without using HTM. Both combining phases (with or without HTM) allow
any data-structure specific combining and elimination techniques that can reduce
the contention on the main data structure, and help executing operations faster.
Critically, like with TLE, any TX run by HCF respects the data structure’s lock,
testing that it is not held and aborting otherwise.
Evaluation: We evaluated HCF with a priority queue data structure, imple-
mented as a skip-list, so we can efficiently combine N RemoveMin operations
by chopping off the first N elements in the list. Experiments were done on an
Intel Haswell (Core i7-4770) 4-core hyper-threaded machine (total of 8 hardware
threads). HCF allows us to assign the RemoveMin and Insert operations to dif-
ferent publication arrays, so they can execute in parallel, while still restricting
the parallelism (and enable combining) between operations of the same type. We
used different number of TX trials in each phase for the two operation types, as
multiple RemoveMin operations are much less likely to succeed in parallel, while
Insert operations can enjoy from parallel execution. Furthermore, in the com-
bining phases, all RemoveMin operations were combined into a single operation,
but no combining or helping was applied for Insert operations. The throughput
results confirm that when running only RemoveMin operations, FC significantly
outperforms TLE, and when running only Insert operations, TLE has the upper
hand. In both cases, our HCF variants provide competitive or better results to
that of the winning strategy. The biggest advantage of HCF, however, is evident
in the 50%-50% operation mix experiment. There, the variants that use different
configurations of HCF for Insert and RemoveMin outperform all other mecha-
nisms (including the naive solution that uses TLE and applies FC if and when a
thread is acquiring the lock) by a large margin (e.g., by about 40% at 8 threads).
This demonstrates one of the most important benefits of our algorithm: the abil-
ity to easily apply different combining policies in parallel for different operations
executed on the same data structure.

References
1. Hendler, D., Incze, I., Shavit, N., Tzafrir, M.: Flat combining and the

synchronization-parallelism tradeoff. In: Proceedings of the ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA), pp. 355–364 (2010)

2. Rajwar, R., Goodman, J.R.: Speculative lock elision: enabling highly concurrent
multithreaded execution. In: Proceedings of the 34th Annual ACM/IEEE Interna-
tional Symposium on Microarchitecture, pp. 294–305 (2001)

Brief Announcement: Left-Right - A
Concurrency Control Technique with Wait-Free

Population Oblivious Reads

Pedro Ramalhete1 and Andreia Correia2

1 Cisco Systems,
pramalhe@gmail.com
2 ConcurrencyFreaks

andreiacraveiroramalhete@gmail.com

We present a new concurrency control algorithm with Blocking Starvation-Free
write operations and Wait-Free Population Oblivious read operations, which we
named the Left-Right technique. This technique requires using two instances of
a given resource, and can be used on any data structure, allowing concurrent
access to it, similar to a Reader-Writer lock, but in a non-blocking manner for
reads, and it does not need an automatic Garbage Collector (GC).

To allow concurrent read and write access to a data structure or object
written for single threaded execution, a common approach is to use a Reader-
Writer lock. Another alternative is Copy-On-Write (COW), which consists of
replacing the instance by a copy of that instance with the applied modification.
Peterson [3] has presented several solutions to the Concurrent Reading While
Writing problem. One of them guarantees wait-free progress for both reads and
writes, allowing Readers and Writer to access simultaneously buff1 and buff2
instances, which compromises memory reclamation.

The Left-Right is a concurrency control technique with two identical objects
or data structures, that allows an unlimited number of threads (Readers) to
access one instance in read-only mode, while a single thread (Writer) modi-
fies the other instance. The Writer starts by working on the right-side instance
(rightInst) while the Readers read the left-side instance (leftInst), and once
the Writer completes the modification, the two instances are switched and new
Readers will read from the rightInst. The Writer will wait for all the Readers
still running on the leftInst instance to finish, and then repeat the modifica-
tion on the leftInst, leaving both instances up-to-date. It us up to the Writer
to ensure that Readers are always running on the data structure that is currently
not being modified. The synchronization between Writers is achieved with an
exclusive lock that is used to protect write-access (writersMutex).

The components ensuring a Writer performs in exclusivity are the following: a
leftRight variable which is toggled by the Writer between LEFT and RIGHT, that
indicates which instance the Readers should go into; a versionIndex variable,
which is modified by the Writer, functioning like a timestamp; and a Reader’s
indicator [1], readIndic, for each Reader to publish the versionIndex it read.
The readIndic is a data structure that allows Readers to publish their state
through arrive() and depart(), and for the Writer to determine the presence

c© Springer-Verlag Berlin Heidelberg 2015
Y. Moses (Ed.): DISC 2015, LNCS 9363, pp. 663–664, 2015.
DOI: 10.1007/978-3-662-48653-5

664 P. Ramalhete and A. Correia

of ongoing Readers with isEmpty(). A simple implementation of the readIndic
is to use two single atomic synchronized counters, one per versionIndex.

const int a r r i v e (void) {
int v i = ver s i on Index . load () ;
r e ad Ind i c [v i]−>a r r i v e () ;

return v i ;
}

void depart (const int v i) {
r e ad Ind i c [v i]−>depart () ;

}

void toggleVersionAndWait (void)
{

int v i = ver s i on Index . load () ;
int p = vi & 0x1 ;
int n = (v i+1) & 0x1 ;
while (! r e ad Ind i c [n]−>isEmpty ())
{

t h i s t h r e ad : : y i e l d () ;
}
ve r s i on Index . s t o r e (n) ;

while (! r e ad Ind i c [p]−>isEmpty ())
{

t h i s t h r e ad : : y i e l d () ;
}

}

template<typename R, typename A>
R applyRead (A& arg1 ,

funct ion<R(T∗ ,A)>& f) {
const int v i = a r r i v e () ;
T∗ i n s t = l e f tR i g h t . load () == LEFT

? l e f t I n s t : r i g h t I n s t ;
R r e t = f (ins t , arg1) ;
depart (v i) ;
return r e t ;

}

template<typename R, typename A>
R applyMut (A& arg1 ,

funct ion<R(T∗ ,A)>& f) {
lock guard<mutex> m(writersMutex) ;
i f (l e f tR i g h t . load () == LEFT) {

f (r i g h t I n s t , arg1) ;
l e f tR i g h t . s t o r e (RIGHT) ;

toggleVersionAndWait () ;
return f (l e f t I n s t , arg1) ;

} else {
f (l e f t I n s t , arg1) ;
l e f tR i g h t . s t o r e (LEFT) ;

toggleVersionAndWait () ;
return f (r i g h t I n s t , arg1) ;

}
}

As shown on the C++ code above, the Writer calling applyMut() will acquire
the lock on writersMutex to guarantee mutual exclusivity between Writers,
and proceed to modify the instance opposite to the one currently referenced by
leftRight. Then, it toggles the leftRight, making the modification visible to
new Readers. The final step is to modify the other instance, but first, it is neces-
sary to guarantee that no Reader is accessing the intance, and this guarantee is
provided by toggleVersionAndWait(). The method applyRead() shown above
has no loops, and always executes in a constant number of steps, thus ensuring
that read operations are wait-free population oblivious.

In summary, read operations can run concurrently with all operations, and
will never have to wait for a Writer or for other Readers. Moreover, new Readers
have no impact on the Writer’s progress, making its progress starvation free
relative to Readers. In addition, Writers will be starvation free if a starvation free
writersMutex lock is used. We believe that due to its performance, low latency,
and flexibility of usage, in practice, this technique can be used to wrap any data
structure or object, as an alternative to other synchronization techniques, such
as Reader-Writer locks, or COW with RCU [2] memory reclamation.

References

1. Lev, Y., Luchangco, V., Olszewski, M.: Scalable reader-writer locks. In: Proceedings
of the Twenty-First Annual Symposium on Parallelism in Algorithms and Architec-
tures, pp. 101–110. ACM (2009)

2. McKenney, P.E., Walpole, J.: What is rcu, fundamentally? (2007)
3. Peterson, G.L.: Concurrent reading while writing. ACM Transactions on Program-

ming Languages and Systems (TOPLAS) 5(1), 46–55 (1983)

Brief Announcement: Tight Space Bounds for
Memoryless Anonymous Consensus

Leqi Zhu

University of Toronto, Toronto, ON M5S 3G4, Canada
lezhu@cs.toronto.edu

Introduction. Tight Θ(n2) bounds are known for the total step complexity of
randomized algorithms for n-process consensus from registers [1]. However, there
is a large gap between the best known space lower bound of Ω(

√
n) registers [2]

and the Θ(n) space complexity of the best existing algorithms. We prove match-
ing upper and lower bounds of n for the space complexity of nondeterministic
solo-terminating consensus in a restricted computational model. Specifically, we
consider an asynchronous system with n anonymous processes, which communi-
cate through an m-component multi-writer snapshot. Each process alternately
performs SCAN and UPDATE. The location and value of each UPDATE can
depend only on the result of the preceding SCAN by the same process. The only
exception is the first UPDATE by each process, which can also depend on its
input. We call algorithms designed for this model memoryless.

Lower Bound. Let C be any configuration of an n-process memoryless anony-
mous consensus algorithm. A process is free in C if it has already taken at least
one step and is poised to perform a SCAN in C. Since processes are anonymous
and memoryless, an adversary can cause any two free processes in C to behave
identically if they both see the same result on their next SCAN. We say C is solo
v-deciding for free processes if there is a solo execution by a free process starting
from C that decides v. We say C is (P, q)-bivalent if P is a set of processes
covering distinct components and q /∈ P is a process covering a component such
that CβP is solo v-deciding for free processes and Cβq is solo v-deciding for free
processes, for some v ∈ {0, 1}, where βq is an UPDATE by q and βP consists of
one UPDATE by each process in P .

Given a (Z∪{p}, q)-bivalent configuration C, consider the longest prefix α′ of
q’s solo terminating execution α from C such that Cα′βZ∪{p} is solo v-deciding
for free processes. The next step δ by q in α after α′ must be an UPDATE to a
component not covered by Z ∪ {p}. Running p from Cα′βP until it is about to
perform an UPDATE yields a ({p}, q)-bivalent configuration C ′. Since C ′ is also
({q}, p)-bivalent, the same argument implies that there is an execution from C ′

in which q takes at least two steps, such that the resulting configuration C ′′ is
({q}, p)-bivalent and every process in Z is free. Note that at least |Z|+2 different
components were updated in the execution from C to C ′′ (via δ and βZ∪{p}).

I would like to thank my advisor, Dr. Faith Ellen, and David Solymosi. This work
was supported by the Natural Sciences and Engineering Council of Canada.

c© Springer-Verlag Berlin Heidelberg 2015
Y. Moses (Ed.): DISC 2015, LNCS 9363, pp. 665–666, 2015.
DOI: 10.1007/978-3-662-48653-5

666 L. Zhu

We show that, if C is ({p}, q)-bivalent and Z is a set of free processes in C,
there is an execution γ from C in which p and q take at least two steps, such that
Cγ is (Z∪{p}, q)-bivalent. The proof is by induction on |Z|. The base case, when
Z = ∅, holds by the previous paragraph. Fix any Z ′ ⊂ Z with |Z ′| = |Z| − 1.
By induction, there is an execution γ1 in which p and q take at least two steps,
such that Cγ1 is (Z ′ ∪ {p}, q)-bivalent. By the preceding paragraph, there is an
execution γ2 from Cγ1 in which at least |Z ′|+2 components have been updated
and p and q have taken at least 2 steps, such that Cγ1γ2 is ({p}, q)-bivalent
and each process in Z ′ is free in Cγ1γ2. By induction, there is an execution γ3
such that Cγ1γ2γ3 is (Z ′ ∪ {p}, q)-bivalent. Among the components updated in
γ2γ3, there is at least one component j which is not covered by Z ′ ∪ {p} in
Cγ1γ2γ3. Let z′ ∈ Z ′ ∪{p, q} be the last process to UPDATE component j prior
to Cγ1γ2γ3, and let σ′ be the SCAN by z′ before this UPDATE. Note that every
process in Z ′ is free immediately before σ′. Modifying the execution γ1γ2γ3 to
let the remaining free process in Z −Z ′ perform its SCAN immediately after σ′

gives a (Z ∪ {p}, q)-bivalent configuration.
To obtain the lower bound, construct a ({p}, q)-bivalent configuration having

a set Z of n−2 free processes. Apply the previous argument to get a (Z∪{p}, q)-
bivalent configuration. Running q until it is about to UPDATE a component not
covered by Z ∪{p} gives a configuration with n components covered. This proof
method, which uses induction on the number of free processes to build larger
coverings, seems applicable in the general case. In fact, we recently used this
method to give a different, much simpler proof of the Ω(

√
n) lower bound in [2].

Upper Bound. We describe an n-process memoryless anonymous obstruction-
free consensus algorithm using an n-component multi-writer snapshot, matching
the lower bound. The algorithm can also be made randomized wait-free by [3].

Intuitively, 0 and 1 are competing to complete laps. If v gets a substantial
lead on v, then v is decided. Initially, each component contains (0, 0). If a process
with input x sees this initial state in a SCAN, it updates component 1 with (x̄, x).
Otherwise, it determines the laps, 	0 and 	1, of 0 and 1 by finding the largest
values in the first and second entries of the components returned by its SCAN.
If some component is not (0, 	1), then it updates the first such component with
(0, 	1). So, suppose all components are the same. If value v is ahead of value v
by at least 2 laps, for some v ∈ {0, 1}, then it decides v. If not, it increments the
larger of 	0 and 	1 (breaking ties in favour of 	0) and updates component 1 with
(0, 	1). This is repeated until the process decides.

References

1. Attiya, H., Censor, K.: Tight bounds for asynchronous randomized consensus. J.
ACM 55(5), 20 (2008)

2. Fich, F., Herlihy, M., Shavit, N.: On the space complexity of randomized synchro-
nization. J. ACM 45(5), 843–862 (1998)

3. Giakkoupis, G., Helmi, M., Higham, L., Woelfel, P.: An O(
√
n) space bound for

obstruction-free leader election. In: Afek, Y. (ed.) DISC 2013. LNCS, vol. 8205, pp.
46–60. Springer, Heidelberg (2013)

Brief Announcement: On the Uncontended
Complexity of Anonymous Consensus

Claire Capdevielle1, Colette Johnen1, Petr Kuznetsov2, and Alessia Milani1

1 Univ. Bordeaux, LaBRI, UMR 5800, F-33400 Talence, France
2 Télécom ParisTech

Consensus is one of the central distributed abstractions. By enabling a collection
of processes to agree on one of the values they propose, consensus can be used to
implement any generic replicated service in a consistent and fault-tolerant way.
Therefore, complexity of consensus implementations has become one of the most
important topics in the theory of distributed computing.

It is known that consensus cannot be solved in an asynchronous read-write
shared memory system in a deterministic and fault-tolerant way. One way to cir-
cumvent this impossibility is to only guarantee progress (using reads and writes)
in executions meeting certain conditions, e.g., in the absence of contention. Alter-
natively, a process is guaranteed to decide in the wait-free manner, but stronger
(and more expensive) synchronization primitives, such as compare-and-swap, can
be applied in the presence of contention.

We are interested in consensus algorithms in which a propose operation is
allowed to apply primitives other than reads and writes on the base objects only
in the presence of interval contention, i.e., when another propose operation is
concurrently active. Such algorithms are called interval-solo-fast.

Ideally, interval-solo-fast algorithms should have an optimized behavior in
uncontended executions. It appears therefore natural to explore the uncontended
complexity of consensus algorithms: how many memory operations (reads and
writes) can be performed and how many distinct memory locations can be
accessed in the absence of interval contention?

In general, interval-solo-fast consensus can be solved with only constant
uncontended complexity. We therefore restrict our study to anonymous con-
sensus algorithms, i.e., algorithms not using process identifiers and, thus, pro-
gramming all processes identically. Besides intellectual curiosity, practical rea-
sons to study anonymous algorithms in the shared memory model are discussed
in [GR07].

Our results. On the lower-bound side, we show that any anonymous
interval-solo-fast consensus algorithm exhibits non-trivial uncontended complex-
ity that depends on n, the number of processes, and m, where m is the size of
the set of input values that can be proposed. More precisely, we show that, in
the worst case, a propose operation running solo, i.e., without any other process

Partially supported by the ANR project DISPLEXITY (ANR-11-BS02-014). This
study has been carried out in the frame of the Investments for the future Programme
IdEx Bordeaux- CPU (ANR-10-IDEX-03-02). The third author was supported by the
Agence Nationale de la Recherche, under grant agreement N ANR-14-CE35-0010-01,
project DISCMAT.

c© Springer-Verlag Berlin Heidelberg 2015
Y. Moses (Ed.): DISC 2015, LNCS 9363, pp. 667–668, 2015.
DOI: 10.1007/978-3-662-48653-5

668 C. Capdevielle et al.

invoking propose, must write to Ω(min(
√
n, logm/ log logm)) distinct memory

locations. This metrics, called solo-write complexity, is upper-bounded by step
complexity of the algorithm, i.e., the worst-case number of all primitives applied
by an individual propose operation. In the special case of input-oblivious algo-
rithms, where the sequence of memory locations written in a solo execution does
not depend on the input value, we derive a stronger lower bound of Ω(

√
n) on

solo-write complexity. Our proof only requires the algorithm to ensure that oper-
ations terminate in solo executions, so the lower bounds also hold for abortable
and obstruction-free consensus implementations.

On the positive side, we show that our lower bound is tight. Our matching
consensus algorithm is based on our novel value-splitter abstraction, extending
the classical splitter mechanism, interesting in its own right. Informally, a value-
splitter exports a single operation split that takes a value in a value set V as
a parameter and returns a boolean response so that (1) if a split operation
completes before any other split operation starts, then it returns true, and (2)
all split operations that return true were invoked with the same parameter value.

Our consensus algorithm adapts the classical splitter-based algorithm
[LMS03] to the new value-splitter abstraction. We have implemented an anony-
mous and input-oblivious value-splitter that exhibits O(

√
n) space and solo-write

complexity. Also we have slightly modified the weak conflict detector proposed
in [AE14], to implement a regular (not input-oblivious) value-splitter exhibit-
ing space and step complexity of O(logm/ log logm). These two value-splitter
read-write implementations combined with our consensus algorithm provide the
matching upper bound.

Table 1. Space and solo-write complexity for anonymous interval-solo-fast consensus

Input-oblivious Not input-oblivious
Ω(

√
n) Ω(min(

√
n, logm

log logm
))

O(
√
n) if

√
n ≤ logm

log logm
, O(

√
n) if

√
n ≥ logm

log logm
, O(logm

log logm
) [LMS03,AE14]

Our results are summarized in Table 42 and detailed in [?]. Overall, they
imply the first nontrivial tight lower bound on the space complexity for consensus
known so far. They also show that there is an inherent gap between anonymous
and non-anonymous consensus algorithms.

References

[AE14] Aspnes, J., Ellen, F.: Tight bounds for adopt-commit objects. Theory of
Computing Systems 55(3), 451–474 (2014)

[CJKM] Capdevielle, C., Johnen, C., Kuznetsov, P., Milani, A.: On the uncon-
tended complexity of anonymous consensus. https://hal.archives-ouvertes.fr/
hal-01180864/document

[GR07] Guerraoui, R., Ruppert, E.: Anonymous and fault-tolerant shared-memory
computing. Distributed Computing 20(3), 165–177 (2007)

[LMS03] Luchangco, V., Moir, M., Shavit, N.: On the uncontended complexity of con-
sensus. In: Fich, F.E. (ed.) DISC 2003. LNCS, vol. 2848, pp. 45–59. Springer,
Heidelberg (2003)

https://hal.archives-ouvertes.fr/hal-01180864/document
https://hal.archives-ouvertes.fr/hal-01180864/document

Brief Announcement: Anonymous
Obstruction-free

(n, k)-Set Agreement with n − k + 1 Atomic
Read/Write Registers

Zohir Bouzid1, Michel Raynal1,2, and Pierre Sutra3

1 IRISA, Université de Rennes, 35042 Rennes, France
2 Institut Universitaire de France

3 University of Neuchâtel, Switzerland

Abstract. This paper presents an obstruction-free solution to the (n, k)-
set agreement problem in an asynchronous anonymous read/write system
using solely (n−k+1) registers. We then extend this algorithm into (i) a
space-optimal solution for the repeated version of (n, k)-set agreement,
and (ii) an x-obstruction-free solution using (n− k+ x) atomic registers
(with 1 ≤ x ≤ k < n).

1 Context and Motivation

Due to failures, concurrent processes have to deal not only with finite asynchrony,
i.e., arbitrary process speed, but also with infinite asynchrony. In this context,
mutex-based synchronization is useless, and pioneering works in fault-tolerant dis-
tributed computing have instead promoted the design of concurrent algorithms.

A first challenge: multi-writer registers. When processes communicate
with Single-Writer Multi-Reader (SWMR) atomic registers, a concurrent algo-
rithm usually associates each process to a register. If now processes communicate
with Multi-Writer Multi-Reader (MWMR) atomic registers, as any process can
write any register, the previous association is no longer granted for free. To still
benefit from existing SWMR registers-based solutions, we can emulate SWMR
registers on top of MWMR registers. In a system of n processes, n MWMR regis-
ters are needed for the simulation to be non-blocking [4]. Hence, if the underlying
system provides less than n MWMR registers, the simulation approach is irrel-
evant and novel techniques must be found.

A second challenge: anonymity. Some algorithms based on MWMR regis-
ters require processes to write control values that include their identities. On the
contrary, in an anonymous system, processes have no identity, the same code, and
the same initialization of their local variables. Hence, they are in a strong sense
identical. In this context, the core question that interests us is the following: “Is
it possible to solve a given problem with MWMR registers and anonymous pro-
cesses, and if the answer is “yes”, how many registers do we need ?”

Consensus and k-set agreement. This paper focuses on the k-set agree-
ment problem in a system of n processes. This problem introduced in [3], and
denoted (n, k)-set agreement in the following, is a generalization of consensus,
which corresponds to the case where k = 1. Assuming that each participating
c© Springer-Verlag Berlin Heidelberg 2015
Y. Moses (Ed.): DISC 2015, LNCS 9363, pp. 669–670, 2015.
DOI: 10.1007/978-3-662-48653-5

670 Z. Bouzid et al.

process proposes a value, every non-faulty process must decide a value that was
proposed by some process, and at most k different values can be decided.

Impossibility results and the case of obstruction-freedom. When k or
more processes may fail, there is no deterministic wait-free read/write solution
to (n, k)-set agreement [1]. To sidestep this impossibility, we consider a weak
progress property, namely obstruction-freedom. For (n, k)-set agreement, this
property states that a process decides only if it executes solo during a “long
enough” period of time. The notion of x-obstruction-freedom [7] generalizes this
idea to any group of at most x processes.

2 Contributions of the Paper
This paper details an obstruction-free solution to the (n, k)-set agreement prob-
lem in an asynchronous anonymous read/write system where any number of
processes may crash. Our algorithm makes use of (n − k + 1) MWMR regis-
ters, i.e., exactly n registers for consensus. In anonymous systems, (n, k)-set
agreement requires Ω(

√
n
k − 2) MWMR registers [6]. On another hand, the best

obstruction-free (n, k)-set agreement algorithm known so far requires 2(n−k)+1
registers [5]. Hence, our algorithm provides a gain of (n− k) MWMR registers.

In the repeated version of the (n, k)-set agreement problem, processes partic-
ipate in a sequence of (n, k)-set agreement instances. It was recently proved [6]
that (n−k+1) atomic registers are necessary to solve repeated (n, k)-set agree-
ment. This paper shows that a simple modification of our base construction
solves repeated (n, k)-set agreement without additional atomic registers, being
consequently optimal.

Our base algorithm, its extension to solve repeated (n, k)-set agreement, as
well as an x-obstruction-free variation that uses n− k+ x MWMR registers are
all detailed in our companion technical report [2].

References

1. Borowsky, E., Gafni, E.: Generalized FLP impossibility result for t-resilient asyn-
chronous computations. In: STOC 1993 (1993)

2. Bouzid, Z., Raynal, M., Sutra, P.: Anonymous Obstruction-free (n, k)-Set Agree-
ment with n− k + 1 Atomic Read/Write Registers. RR 2027, Univerité de Rennes
1 (2015)

3. Chaudhuri, S.: More Choices Allow More Faults: Set Consensus Problems in Totally
Asynchronous Systems. Information and Computation 105, 132–158 (1993)

4. Delporte-Gallet, C., Fauconnier, H., Gafni, E., Lamport, L.: Adaptive register allo-
cation with a linear number of registers. In: Afek, Y. (ed.) DISC 2013. LNCS, vol.
8205, pp. 269–283. Springer, Heidelberg (2013)

5. Delporte-Gallet, C., Fauconnier, H., Gafni, E., Rajsbaum, S.: Blackart: obstruction-
free k-set agreement with |MWMR registers| < |proccesses|. In: Gramoli, V., Guer-
raoui, R. (eds.) NETYS 2013. LNCS, vol. 7853, pp. 28–41. Springer, Heidelberg
(2013)

6. Delporte, C., Fauconnier, H., Kuznetsov, P., Ruppert, E.: On the space complexity
of set agreement. In: PODC 2015 (2015)

7. Taubenfeld, G.: Contention-sensitive data structures and algorithms. In: Keidar, I.
(ed.) DISC 2009. LNCS, vol. 5805, pp. 157–171. Springer, Heidelberg (2009)

Brief Announcement: Faster Data Structures in
Transactional Memory Using Three Paths

Trevor Brown
University of Toronto, Toronto, Ontario, Canada

With the introduction of Intel’s restricted hardware transactional memory
(HTM) in commodity hardware, the transactional memory abstraction has
finally become practical to use. Transactional memory allows a programmer to
easily implement safe concurrent code by specifying that certain blocks of code
should be executed atomically. However, Intel’s HTM implementation does not
offer any progress guarantees. Even in a single threaded system, a transaction
can repeatedly fail for complex reasons. Consequently, any code that uses HTM
must also provide a non-transactional fallback path to be executed if a trans-
action fails. Since the primary goal of HTM is to simplify the task of writing
concurrent code, a typical fallback path simply acquires a global lock, and then
runs the same code as the transaction. This is essentially transactional lock eli-
sion (TLE). Changes made by a process on the fallback path are not atomic, so
transactions that run concurrently with a process on the fallback path may see
inconsistent state. Thus, at the beginning of each transaction, a process reads
the state of the global lock and aborts the transaction if it is held.

Despite its widespread use, there are many problems with this fallback path.
If transactions abort infrequently, then processes rarely execute on the fallback
path. However, once one process begins executing on the fallback path, all con-
current transactions will abort, and processes on the fast path will cascade onto
the fallback path. This has been called the lemming effect, from the myth that
lemmings will leap from cliffs in large numbers.

One simple way to mitigate the lemming effect is to retry aborted transactions
a few times, waiting between retries for the fallback path to become empty. For
some common workloads (e.g., range queries and updates on an ordered set
implemented with a binary search tree), some operation is nearly always on the
fallback path, so concurrency is very limited and performance is poor. Thus,
waiting for the fallback path to become empty is not always a good solution.

A more sophisticated solution is to design transactions so they can com-
mit even if processes are executing on the fallback path. One way to do this is
to start with a hand-crafted fallback path that uses fine-grained synchroniza-
tion, and obtain a fast path by wrapping each operation in a transaction (and
then optimizing the resulting sequential code). This technique was explored by
Liu et al. [1]. To support concurrency between the two paths, the fast path must
read and update the meta-data used by the fallback path to synchronize pro-
cesses. Unfortunately, the overhead of manipulating meta-data on the fast path
can eliminate much or all of the performance benefit of HTM.

This work was supported by NSERC. I thank my advisor Faith Ellen for her helpful
comments on this work. Some experiments were performed while at Oracle Labs.

c© Springer-Verlag Berlin Heidelberg 2015
Y. Moses (Ed.): DISC 2015, LNCS 9363, pp. 671–672, 2015.
DOI: 10.1007/978-3-662-48653-5

672 T. Brown

To overcome this, we introduce a novel
approach for obtaining faster algorithms
by using three execution paths: an HTM-
based fast path, an HTM-based mid-
dle path and a non-transactional fallback
path. Our approach eliminates the lem-
ming effect without imposing any over-
head on the fast path. Each operation
begins on the fast path, and moves to the middle path after it retries F times.
An operation on themiddle pathmoves to the fallback path after retryingM times
on the middle path. The fast path does not manipulate any synchronization meta-
data used by the fallback path, so operations on the fast path and fallback path
cannot run concurrently. Thus, whenever an
operation is on the fallback path, all oper-
ations on the fast path move to the middle
path. The middle path manipulates the syn-
chronization meta-data used by the fallback
path, so operations on the middle path and
fallback path can run concurrently. Opera-
tions on the middle path can also run con-
currently with operations on the fast path.
The lemming effect does not occur, since an
operation does not have to move to the fall-
back path simply because another operation
is on the fallback path. Since processes on
the fast path do not run concurrently with
processes on the fallback path, the fallback
path does not impose any overhead on the fast
path.

Experiments were performed on a 36-core
Intel system, comparing the performance of a
binary search tree with several two- and three-
path algorithms, and different retry strate-
gies, over a variety of workloads. In the 100%
update workload, the three-path algorithm matches the performance of TLE
and significantly outperforms the other algorithms. In the workload with range
queries, TLE succumbs to the lemming effect and performs very poorly. These
results suggest that three-path algorithms can be used to obtain the full perfor-
mance benefit of HTM while robustly avoiding the lemming effect.

References

1. Liu, Y., Zhou, T., Spear, M.: Transactional acceleration of concurrent data struc-
tures. In: Proceedings of the 27th ACM on Symposium on Parallelism in Algorithms
and Architectures, SPAA 2015, New York, NY, USA, pp. 244–253. ACM (2015)

Brief Announcement: Space Bounds for Reliable
Multi-Writer Data Store

Inherent Cost of Read/Write Primitives

Gregory Chockler1, Dan Dobre2,
Alexander Shraer3, and Alexander Spiegelman4

1 Royal Holloway, University of London
Gregory.Chockler@rhul.ac.uk

2 European Patent Office
dan@dobre.net
3 Google, Inc.

shralex@google.com
4 Technion

sashas@tx.technion.ac.il

1 Introduction
Reliable storage emulations from fault-prone components have established them-
selves as an algorithmic foundation of modern storage services and applications.
Most existing reliable storage emulations are built from storage services sup-
porting custom-built read-modify-write (RMW) primitives (e.g., [2]). Since such
primitives are not typically available with pre-existing or off-the-shelf compo-
nents (such as cloud storage services or network-attached disks), it is natural to
ask if they are indeed essential for efficient storage emulations.

In this paper, we answer this question in the affirmative. We prove that the
number of registers required to emulate a reliable multi-writer register for k
clients from a collection of multi-writer multi-reader (MWMR) atomic base reg-
isters hosted on crash-prone servers requires at least kf registers where f is the
maximum number of tolerated server failures. We further show that this bound
cannot be circumvented even in the failure-free runs where emulated register
operations do not execute concurrently, which implies that no such algorithm
can be adaptive to point contention.

Given the base registers are stored on servers, we also address the number of
servers required to support the emulation under assumption that the number of
registers per server is bounded by a known constant m. We show that the num-
ber of servers required to support k clients exceeds the requisite kf/m servers
stipulated by our space bound by at least f + 1 additional servers.

Our bounds apply to any reliable implementations of a multi-writer register,
which are at least safe [8], and solo-terminating. They complement and tighten
the lower bounds of [1], and shed light onto inherent costs of the existing con-
structions of reliable services out of unreliable MWMR registers [4].

On a positive side, we show that Compare-and-Swap (CAS) primitives,
which readily available with many popular cloud data stores (such as Ama-
zon DynamoDB) can be used to emulate a reliable multi-writer atomic register
with constant storage and adaptive time complexity.

This work was partially supported by Royal Society International Exchanges grant.
c© Springer-Verlag Berlin Heidelberg 2015
Y. Moses (Ed.): DISC 2015, LNCS 9363, pp. 673–674, 2015.
DOI: 10.1007/978-3-662-48653-5

674 G. Chockler et al.

2 Overview of the Results

We assume an asynchronous distributed system where clients coordinate by
accessing shared objects stored on a collection of servers. Both clients and servers
can fail by crashing. We study space complexity of storage services that mask
the client and server failures by emulating a single reliable MWMR register. Our
reliability requirement is f-tolerance, that is, the register must remain correct
as long as at most f servers and any number of clients crash.

Lower Bounds Below, we give statements of our space lower bounds for f -
tolerant register emulations where the objects stored on servers are MWMR
atomic wait-free registers. The proofs can be found in [5].
Theorem 1. For any k ≥ 0, f ≥ 0, there is no f-tolerant algorithm emulating
a multi-writer safe [8] solo-terminating register for k clients that uses less than
kf base registers in all failure-free runs r such that no two emulated register
operations execute concurrently in r.

Theorem 2. For any f > 0, there is no f-tolerant algorithm that emulates a
multi-writer safe solo-terminating register such that the number of registers used
by the emulation is adaptive to point contention [3].

Theorem 3. For any m > 0, � > 0, and f ≥ 0, there is no f-tolerant algorithm
emulating a multi-writer safe solo-terminating register register for k ≥ �m clients
using less than �f + f + 1 servers if each server can store at most m registers.

Upper Bound In [5], we show that a single CAS object per server is sufficient
to implement an f -tolerant wait-free atomic MWMR register for any number
of clients whose time complexity is adaptive to point contention. Our result is
derived in a modular fashion by first obtaining the RMW primitive required by
the multi-writer ABD emulation (MW-ABD) of [7] from a sinlge CAS, and then
plugging the resulting primitive into MW-ABD.

References
1. Aguilera, M., Englert, B., Gafni, E.: On using network attached disks as shared

memory. In: PODC 2003 (2003)
2. Attiya, H., Bar-Noy, A., Dolev, D.: Sharing Memory Robustly in Message-Passing

Systems. J. ACM 42(1)
3. Attila, H., Fouren, A.: Algorithms Adapting to Point Contention. J. ACM 50(4)
4. Basescu, C., Cachin, C., Eyal, I., Haas, R., Sorniotti, A., Vukolic, M., Zachevsky,

I.: Robust data sharing with key-value stores. In: DSN 2012 (2012)
5. Chockler, G., Dobre, D., Shraer, A., Spiegelman, A.: Space Bounds for Reliable

Multi-Writer Data Store: Inherent Cost of Read/Write Primitives (2015). https://
pure.royalholloway.ac.uk/portal/files/25314522/main.pdf

6. Gafni, E., Lamport, L.: Disk Paxos. Distributed Computing 16(1)
7. Gilbert, S., Lynch, N.A., Shvartsman, A.A.: Rambo: A Robust, Reconfigurable

Atomic Memory Service for Dynamic Networks. Distributed Computing 23(4)
8. Shao, C., Pierce, E., Welch, J.L.: Multi-writer consistency conditions for shared

memory objects. In: Fich, F.E. (ed.) DISC 2003. LNCS, vol. 2848, pp. 106–120.
Springer, Heidelberg (2003)

https://pure.royalholloway.ac.uk/portal/files/25314522/main.pdf
https://pure.royalholloway.ac.uk/portal/files/25314522/main.pdf

DISC 2015 Special Poster Session List

1. The Entropy of a Distributed Computing Schedule.
Joffroy Beauquier, Blanchard Peva, Janna Burman and Rachid Guerraoui

2. Local Approximation of Independent Sets and Coloring.
Marijke Bodlaender, Magnus M. Halldorsson and Christian Konrad

3. Atomic Snapshots with Small Registers.
Tian Chen, Faith Ellen, Yuanhao Wei and Leqi Zhu

4. Large Cuts with Local Algorithms on Triangle-Free Graphs.
Juho Hirvonen, Joel Rybicki, Stefan Schmid and Jukka Suomela

5. Approximation of Distances and Shortest Paths in the Broadcast Congest
Clique.
Stephan Holzer and Nathan Pinsker

6. Adaptive Broadcast by Fault-Local Self-Stabilizing Spanning Tree Switching.
Sushanta Karmakar

7. Fast MST Computation in Congested Clique with Near-Optimal Message
Complexity.
Sriram V. Pemmaraju and Vivek B. Sardeshmukh

8. On Liveness of Dynamic Storage with Infinitely Many Reconfigurations.
Alexander Spiegelman and Idit Keidar

c© Springer-Verlag Berlin Heidelberg 2015
Y. Moses (Ed.): DISC 2015, LNCS 9363, p. 675, 2015.
DOI: 10.1007/978-3-662-48653-5

Author Index

Afek, Yehuda 309
Alistarh, Dan 185
Arbel, Maya 170
Atalar, Aras 341
Attiya, Hagit 75
Augustine, John 276
Avni, Hillel 617

Baswana, Surender 528
Beauquier, Joffroy 631
Bouzid, Zohir 669
Brown, Trevor 671
Burman, Janna 631

Capdevielle, Claire 667
Castañeda, Armando 420
Censor-Hillel, Keren 405
Cerone, Andrea 388
Chalopin, Jérémie 107, 123
Chockler, Gregory 356, 673
Choudhary, Keerti 528
Chung, Hyun Chul 75
Clavière, Simon 631
Cooper, Colin 248
Correia, Andreia 663

Das, Shantanu 123
Daum, Sebastian 573, 649
Denysyuk, Oksana 60
Dinitz, Michael 513
Dobre, Dan 673
Dolev, Shlomi 655
Dornhaus, Anna 657
Doty, David 602

Ellen, Faith 75
Elsässer, Robert 248

Feng Shengzhong 653
Feuilloley, Laurent 544
Fineman, Jeremy 513
Fish, Benjamin 1

Gafni, Eli 140
Garay, Juan 497
Gawrychowski, Paweł 123
Gelashvili, Rati 452
Georgiou, Chryssis 655
Giakkoupis, George 480
Gibson, Joel 200
Gilbert, Seth 31, 513
Godard, Emmanuel 107
Golan-Gueta, Guy 170
Gotsman, Alexey 388
Goubault, Éric 436
Gramoli, Vincent 200, 659
Guerraoui, Rachid 47, 480

Halldórsson, Magnús M. 559
Hassan, Ahmed 325
Hemed, Nir 371
Hillel, Eshcar 170
Hirvonen, Juho 544

Jégou, Arnaud 480
Jehl, Leander 154
Johnen, Colette 667

Kaaser, Dominik 647
Kalai, Yael Tauman 467
Kantor, Erez 405, 588
Keidar, Idit 170, 356
Kermarrec, Anne-Marie 480
Kijima, Shuji 92
Kogan, Alex 661
Komargodski, Ilan 467
Konrad, Christian 559
Kopinsky, Justin 185
Kosowski, Adrian 123
Kuhn, Fabian 573, 649
Kumar, Saptaparni 75
Kun, Jeremy 1
Kuznetsov, Petr 185, 232, 659, 667

Labourel, Arnaud 123
Lau, Francis C.M. 653

Lelkes, Ádám D. 1
Lenzen, Christoph 16
Lev, Yossi 661
Lev-Ari, Kfir 356
Levy, Eliezer 617
Lotker, Zvi 588
Lv, Yuezhou 292
Lynch, Nancy 405, 657

Malkhi, Dahlia 140
Mallmann-Trenn, Frederik 647
Marcoullis, Ioannis 655
Matveev, Alexander 309
Maurer, Alexandre 47
Maus, Yannic 649
Meling, Hein 154
Menc, Artur 651
Mendelson, Avi 617
Milani, Alessia 667
Mimram, Samuel 436
Mittal, Nupur 480
Moll, Oscar R. 309
Moscibroda, Thomas 292

Natale, Emanuele 647
Naudin, Antoine 107
Newport, Calvin 31, 513
Ning, Li 653

Pająk, Dominik 651
Palmieri, Roberto 325
Pandurangan, Gopal 276
Parter, Merav 405, 588
Peleg, David 588

Radeva, Tsvetomira 657
Radzik, Tomasz 248
Rajsbaum, Sergio 420
Ramalhete, Pedro 663
Ravi, Srivatsan 185, 232, 659
Ravindran, Binoy 325
Raynal, Michel 420, 669
Renaud-Goud, Paul 341
Reyzin, Lev 1
Rinetzky, Noam 371

Rivera, Nicolás 248
Robinson, Peter 276
Roditty, Liam 528
Ruan, Wenjia 215
Rybicki, Joel 16

Schiller, Elad M. 655
Seidel, Jochen 263
Shang, Di 659
Shavit, Nir 185, 309
Shiraga, Takeharu 248
Shraer, Alexander 673
Sohier, Devan 631
Soloveichik, David 602
Spear, Michael 215
Spiegelman, Alexander 673
Su, Hsin-Hao 657
Suomela, Jukka 544
Sutra, Pierre 669

Tackmann, Björn 497
Tasson, Christine 436
Tsigas, Philippas 341
Turán, György 1

Uehara, Taichi 92
Uitto, Jara 263
Uznański, Przemysław 123, 651

Vafeiadis, Viktor 371
Vitenberg, Roman 154

Wang, Yuexuan 653
Wattenhofer, Roger 263
Welch, Jennifer L. 75
Woelfel, Philipp 60

Yamashita, Masafumi 92
Yamauchi, Yukiko 92
Yang, Hongseok 388
Yu, Dongxiao 653

Zhang, Yong 653
Zhu, Leqi 665
Zikas, Vassilis 497

678 Author Index

	Preface
	Organization
	Awards and Keynote Lecture
	The 2015 Edsger W. Dijkstra Prizein Distributed Computing
	The 2015 Doctoral Dissertation Awardin Distributed Computing
	DISC 2015 Invited Lecture:System Algorithms for the Cloud and Big Data
	Contents
	On the Computational Complexity of MapReduce
	1 Introduction
	2 Background and Previous Work
	2.1 MapReduce
	2.2 Complexity

	3 Models
	3.1 MapReduce and MRC
	3.2 Nonuniformity
	3.3 Other Models of Parallel Computation

	4 Space Complexity Classes in MRC0
	5 Hierarchy Theorems
	6 Discussion and Open Problems
	References

	Efficient Counting with Optimal Resilience
	1 Introduction
	1.1 Contributions
	1.2 Prior Work
	1.3 Structure of the Article

	2 Preliminaries
	3 Optimal Resilience Boosting
	3.1 The Road Map
	3.2 Agreeing on a Common Counter (Once in a While)
	3.3 Reaching Consensus
	3.4 Proofs of Theorems 1 and 2

	4 Less Communication After Stabilisation
	5 Discussion
	References

	The Computational Power of Beeps
	1 Introduction
	2 Model
	3 Leader Election
	3.1 Leader Election Lower Bound
	3.2 The Universal Leader Election Algorithm
	3.3 Optimal Leader Election
	3.4 Fast Leader Election with Sub-Optimal State
	3.5 Fast Leader Election with O(1) States and High Probability

	4 Solving General Distributed Decision Problems
	References

	Byzantine Fireflies
	1 Introduction
	2 Model and Problem
	3 Lower Bound
	4 Known Beeping Period
	4.1 Algorithm (Known Period Synchronous Beeping - KPSB)
	4.2 Informal Description
	4.3 Correctness Proof

	5 Unknown Beeping Period
	5.1 Preliminaries
	5.2 Algorithm (Unknown Period Synchronous Beeping - UPSB)
	5.3 Informal Description
	5.4 Correctness Proof

	6 Average Beeping Period
	6.1 Lower Bound
	6.2 Preliminaries
	6.3 Algorithm (Average Period Synchronous Beeping - APSB)
	6.4 Informal Description
	6.5 Correctness Proof

	7 Synchronous Lighting
	7.1 Problem
	7.2 Algorithm (Average Period Synchronous Lighting - APSL)
	7.3 Correctness Proof

	8 Conclusion
	References

	Wait-Freedom is Harder Than Lock-Freedom Under Strong Linearizability
	1 Introduction
	2 Preliminaries
	3 Impossibilities
	3.1 Group Valency and Super Valency
	3.2 Impossibility Proof

	4 Lock-Free Implementations
	5 Discussion
	References

	Simulating a Shared Register in an Asynchronous System that Never Stops Changing
	1 Introduction
	2 Model
	3 The CCReg Algorithm
	4 Correctness Proof
	5 Discussion
	References

	Plane Formation by Synchronous Mobile Robots in the Three Dimensional Euclidean Space
	1 Introduction
	2 Robot Model
	3 Symmetry in 3D-Space
	4 Proof of Theorem 1
	4.1 Necessity
	4.2 Sufficiency

	5 Conclusion
	References

	Anonymous Graph Exploration with Binoculars
	1 Introduction
	2 Exploration with Binoculars
	2.1 The Model
	2.2 The Exploration Problem
	2.3 Our Results

	3 Definitions and Notations
	3.1 Graphs
	3.2 Simplicial Complexes

	4 First Impossibility Result and Lower Bound
	5 Exploration of FC
	5.1 Presentation of the Algorithm
	5.2 Correction of the Algorithm

	6 Complexity of the Exploration Problem
	7 Conclusion

	Limit Behavior of the Multi-agent Rotor-Router System
	1 Introduction
	1.1 Related Work
	1.2 Our Results

	2 Model and Preliminaries
	3 Periodicity of the Rotor-Router System
	4 Stabilization Time of the Rotor-Router System
	5 Simulation of the Rotor-Router
	6 Conclusion
	References

	Elastic Configuration Maintenance via a Parsimonious Speculating Snapshot Solution
	1 Introduction
	1.1 Related Work

	2 Problem Model
	3 SpSn Read-Write Solution
	4 SpSn Message-Passing Solution
	5 Dynamic Reconfiguration Using SpSn
	6 Application: Read-Write Store
	7 Conclusions
	References

	SmartMerge: A New Approach to Reconfiguration for Atomic Storage
	1 Introduction
	2 System Model
	3 Problem: Atomic Storage Using Smart Merge
	4 Algorithm: Atomic Storage Using Smart Merge
	5 Related Work
	6 Conclusion
	References

	Towards Automatic Lock Removal for Scalable Synchronization
	1 Introduction
	2 Transformation
	2.1 Lock-Based Data Structures
	2.2 Combining Optimism and Pessimism
	2.3 Transforming the Code Phases

	3 Evaluation
	4 Related Work
	5 Discussion
	References

	Inherent Limitations of Hybrid Transactional Memory
	1 Introduction
	2 Preliminaries
	3 Hybrid Transactional Memory (HyTM)
	4 HyTM Instrumentation
	5 Linear Instrumentation Lower Bound
	6 Instrumentation-Optimal HyTM Algorithms
	7 Related Work
	8 Concluding Remarks
	References

	Why Non-blocking Operations Should be Selfish
	1 Introduction
	2 Preliminaries
	3 Equivalence of Amortised Measures of Contention
	4 Evaluation of the Selfish Linked List
	4.1 The Selfish Linked List Algorithm
	4.2 Experimental Evaluation

	5 Towards a More Refined Notion of Contention
	6 Related Work
	7 Conclusion
	References

	Hybrid Transactional Memory Revisited
	1 Introduction
	2 The Hybrid Cohorts Approach
	3 Implementation
	4 Evaluation
	4.1 Microbenchmark Performance
	4.2 STAMP Performance
	4.3 Memcached Performance

	5 Conclusions and Future Work
	References

	Grasping the Gap Between Blocking and Non-Blocking Transactional Memories
	1 Introduction
	2 TM Model and Properties
	3 Lower Bounds for Obstruction-Free TMs
	3.1 Impossibility of Invisible Reads
	3.2 Stall Complexity
	3.3 RAW/AWAR Complexity

	4 Upper Bound for Opaque Progressive TMs
	5 Related Work
	6 Concluding Remarks
	References

	Fast Consensus for Voting on General Expander Graphs
	1 Introduction
	1.1 Background on Distributed Pull Voting
	1.2 Main Results

	2 Expected Change in Weight after One Step of Voting
	3 Proof of Theorem 1
	4 Specific Examples and Notes on Eigenvalue Gaps
	References

	Randomness vs. Time in Anonymous Networks
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	3 Tailor-Made 2-Hop Coloring
	4 Trade-off Lower Bound

	Fast Byzantine Leader Election in Dynamic Networks
	1 Introduction
	1.1 Computing Model and Problem Definition

	2 The Byzantine Leader Election Algorithm
	2.1 Preliminaries and Technical Tools
	2.2 A Byzantine Leader Election Algorithm

	3 Conclusion

	Local Information in Influence Networks
	1 Introduction
	1.1 Related Work

	2 Model and Definition
	2.1 Influence Network Model
	2.2 k-Hop Influence Network and Local Decision Algorithm

	3 Hierarchy of Algorithms
	4 Algorithms
	4.1 Preliminaries
	4.2 Byzantine-Safe Algorithm
	4.3 Rational-Safe Algorithms
	4.4 Protocol-Safe Algorithms
	4.5 Possible-Safe Algorithms
	4.6 Putting Everything Together

	5 Conclusion
	References

	Amalgamated Lock-Elision
	1 Introduction
	2 Amalgamated Lock-Elision
	2.1 Algorithm Overview
	2.2 Algorithm Details

	3 Performance Evaluation
	3.1 Micro-benchmarks
	3.2 Various Red-Black Tree Sizes
	3.3 KyotoCabinet

	4 Conclusion
	References

	Transactional Interference-Less Balanced Tree
	1 Introduction
	2 Background
	3 Reducing the Interference of Structural Operations
	4 TxCF-Tree
	4.1 Structural Operations
	4.2 Semantic Operations

	5 Correctness
	6 Evaluation
	7 Conclusions
	References

	Analyzing the Performance of Lock-Free Data Structures: A Conflict-Based Model
	1 Introduction
	2 Related Work
	3 Problem Statement
	3.1 Running Program and Targeted Platform
	3.2 Examples and Issues
	3.2.1 Immediate Upper Bounds
	3.2.2 Conflicts
	3.2.3 Process

	4 Execution without Hardware Conflicts
	4.1 Setting
	4.1.1 Notations and Definitions

	4.2 Cyclic Executions
	4.3 Throughput Bounds

	5 Expansion and Complete Throughput Estimation
	5.1 Expansion
	5.2 Throughput Estimate

	6 Experimental Evaluation
	6.1 Setting
	6.2 Synthetic Tests
	6.3 Treiber's Stack
	6.4 Discussion
	6.5 Back-Off Tuning

	7 Conclusion
	References

	A Constructive Approach for Proving Data Structures' Linearizability
	1 Introduction
	2 Preliminaries
	3 Base Point Analysis
	4 Linearizability Using Base Point Analysis
	4.1 Update Operations
	4.2 Read-Only Operations

	5 Roadmap for Proving Linearizability
	5.1 Stage I: Base Conditions
	5.2 Stage II: Linearizability of Update Operations
	5.3 Stage III: Linearizability of Read-Only Operations

	6 Discussion
	References

	Modular Verification of Concurrency-Aware Linearizability
	1 Introduction
	2 Motivating Examples
	2.1 Exchanger
	2.2 Elimination Stack

	3 Concurrency-Aware Linearizability (CAL)
	3.1 A Formal Definition of Concurrency-Aware Linearizability

	4 Specifying Concurrency-Aware Concurrent Objects
	5 Verifying the Exchanger and the Elimination Stack
	5.1 Verifying the Exchanger

	6 Related Work
	References

	Transaction Chopping for Parallel Snapshot Isolation
	1 Introduction
	2 Operational Specification of PSI
	3 Axiomatic Specification of PSI
	4 Equivalence of the Specifications
	5 Chopping PSI Transactions
	6 Related Work
	References

	Computing in Additive Networks with Bounded-Information Codes
	1 Introduction
	1.1 Contributions and Methods
	1.2 Comparison with Related Work

	2 Background: Additive Networks and BCC
	3 New Tools
	4 Symmetry Breaking Tasks
	4.1 Leader Election

	5 Approximation Tasks: Degree Approximation
	6 Revealing Asymmetry -- Distributed Tournament
	7 Discussion
	References

	Specifying Concurrent Problems:Beyond Linearizability and up to Tasks
	1 Introduction
	2 Limitations of Linearizability and Set-Linearizability
	3 Concurrent Objects
	3.1 System Model
	3.2 The Notion of an Interval-Sequential Object
	3.3 An Example: The Validity Task

	4 Interval-Linearizability
	5 Tasks and Interval-Sequential Objects
	References

	From Geometric Semantics to Asynchronous Computability
	1 Introduction
	2 Concurrent Semantics of Asynchronous Read/Write Protocols
	2.1 Interleaving Semantics of Atomic Read/Write Protocols
	2.2 Directed Geometric Semantics
	2.3 Equivalence of the Standard and Geometric Semantics

	3 Protocol Complexes, Derived from the Concurrent Semantics
	3.1 Protocol Complex
	3.2 Construction of the Protocol Complex from the Directed Geometric Semantics
	3.3 Particular Case of 1-Round Immediate Snapshot Protocols

	4 Conclusion and Future Work

	On the Optimal Space Complexity of Consensus for Anonymous Processes
	1 Introduction
	2 Space Complexity Lower Bound
	2.1 A Square-Root Lower Bound
	2.2 Linear Lower Bound

	3 Extensions
	References

	Compressing Communication in Distributed Protocols
	1 Introduction
	1.1 Our Results
	1.2 Related Work
	1.3 Overview of Our Techniques

	2 Preliminaries
	3 Compressing Communication in Distributed Protocols
	3.1 Static Adversaries

	4 Public-Coin Protocols
	References

	Privacy-Conscious Information Diffusion in Social Networks
	1 Introduction
	2 The Diffusion Algorithm
	2.1 Privacy
	2.2 Dissemination

	3 Experiments
	4 Conclusion
	References

	Fair Distributed Computation of Reactive Functions
	1 Introduction
	2 Preliminaries and Model
	3 Utility-Based Fairness and Protocol Optimality
	4 Fair and Reactive 2PC
	4.1 Better Fairness Through More Rounds
	4.2 The Fair Reactive Protocol
	4.3 Lower Bounds

	References

	Smoothed Analysis of Dynamic Networks
	1 Introduction
	2 Dynamic Graphs, Networks, and Types
	3 Smoothing Dynamic Graphs
	4 Connected and Pairing Dynamic Network Types
	4.1 Connected Network
	4.2 Pairing Network

	5 Flooding
	5.1 Lower Bound
	5.2 An O(n2/3logn / k1/3) Upper Bound for General Networks

	6 Random Walks
	6.1 Preliminaries
	6.2 Upper Bounds
	6.3 Lower Bounds

	7 Aggregation
	7.1 Lower Bound

	References

	Fault Tolerant Reachability for Directed Graphs
	1 Introduction
	1.1 Related Work
	1.2 Organization of the Paper

	2 Preliminaries
	3 DFS Tree Versus Arbitrary Tree
	4 Semidominators with Respect to Arbitrary Trees
	5 FTRS for any Arbitrary Tree
	6 Algorithm for Computing Semidominators and Valid Sequences
	6.1 Data Structure

	7 Computation of Dominators from Semidominators
	References

	Locally Optimal Load Balancing
	1 Introduction
	1.1 Centralised Algorithms
	1.2 Local Solutions and Local Algorithms
	1.3 Smoothing with Moving Average
	1.4 Contributions

	2 Related Work
	3 Negative Results
	3.1 Load Balancing on Paths and Cycles
	3.2 Match-and-Balance Algorithms
	3.3 Careful Algorithms
	3.4 Oblivious Algorithms

	4 Discrete Load Balancing in Paths and Cycles
	5 Discrete Load Balancing in General Graphs
	6 Fractional Load Balancing in General Graphs
	7 Conclusions
	References

	Distributed Large Independent Sets in One Round on Bounded-Independence Graphs
	1 Introduction
	2 Poly-Logarithmic Approximation on Bounded-Independence Graphs
	3 Distributed Algorithm with Single Bit Messages
	4 Lower Bound for One-Round Algorithms on General Graphs
	5 Lower Bound for d-dimensional Unit Sphere Graphs
	References

	Tight Bounds for MIS in Multichannel Radio Networks
	1 Introduction
	2 Preliminaries
	3 Algorithm Description
	4 Analysis
	4.1 Guarantees from the Decay Filter
	4.2 Definitions for the Herald Filter
	4.3 Candidate Election---Nodes in States A (and L')
	4.4 Handshake & Red-Blue Protocol---States L', H', L, H
	4.5 Joining the MIS---Nodes in States M and E
	4.6 Progress and Runtime

	References

	Nonuniform SINR+Voroni Diagrams Are Effectively Uniform
	1 Introduction
	1.1 Background and Motivation
	1.2 Geometric Notions and Wireless Networks

	2 Convexity of SINR+Voronoi Zones
	2.1 Proof Outline
	2.2 Convexity without Background Noise
	2.3 Convexity with Background Noise

	3 Fatness of SINR+Voronoi Zones
	4 Applications
	4.1 The Power Control Voronoi Diagram (PCVD) Problem
	4.2 The Closest Station Point Location Problem

	5 Conclusion
	References

	Stable Leader Election in Population Protocols Requires Linear Time
	1 Introduction
	2 Preliminaries
	3 Main Results
	3.1 Impossibility of Sublinear Time Stable Leader Election
	3.2 More General Impossibility Result in Terms of Inapplicable Transitions and Dense Configurations

	4 Technical Tools
	4.1 Bottleneck Transitions Require Linear Time
	4.2 Sublinear Time from Dense Configurations Implies Bottleneck Free Path from Configurations with Every State ``Populous''
	4.3 Transition Ordering Lemma

	5 Proof of Theorem 3.2
	References

	Hardware Transactions in Nonvolatile Memory
	1 Introduction
	1.1 Related Work

	2 Persistent HTM
	2.1 Problem Definition
	2.2 Data Store Flow

	3 PHTM Implementation
	3.1 Hardware Ramifications
	3.2 Software Details
	3.3 Correctness and Liveness

	4 Evaluation
	4.1 Hardware Emulation
	4.2 Compared Algorithms
	4.3 Benchmarks

	5 Conclusion
	References

	Space-Optimal Counting in Population Protocols
	1 Introduction
	2 Model and Notations
	3 Space-Optimal Counting under Global Fairness
	4 Space-Optimal Counting under Weak Fairness
	5 Conclusion and Perspectives
	References

	Brief Announcement: On the Voting Time of the Deterministic Majority Process
	Brief Announcement: Rumor Spreading with Bounded In-Degree
	Brief Announcement: On the Power of One Bitin Graph Exploration Without Backtracking
	Brief Announcement: Uniform Information Exchange in Multi-channel Wireless Ad HocNetworks
	Brief Announcement: Self-stabilizing Virtual Synchrony
	Brief Announcement: Distributed Task Allocation in Ant Colonies
	Brief Announcement: A Concurrency-Optimal List-Based Set
	Brief Announcement: HTM-Assisted Combining
	Brief Announcement: Left-Right - AConcurrency Control Technique with Wait-Free Population Oblivious Reads
	Brief Announcement: Tight Space Bounds for Memoryless Anonymous Consensus
	Brief Announcement: On the Uncontended Complexity of Anonymous Consensus
	Brief Announcement: AnonymousObstruction-free(n, k)-Set Agreement with n − k + 1 Atomic Read/Write Registers
	Brief Announcement: Faster Data Structures in Transactional Memory Using Three Paths
	Brief Announcement: Space Bounds for Reliable Multi-Writer Data Store Inherent Cost of Read/Write Primitives
	DISC 2015 Special Poster Session List
	Author Index

