
© Springer-Verlag Berlin Heidelberg 2015
L. Liu and M. Aoyama (Eds.): APRES 2015, CCIS 558, pp. 75–91, 2015.
DOI: 10.1007/978-3-662-48634-4_6

A Scenario Model Aggregation Approach for Mobile
App Requirements Evolution Based on User Comments

Dong Sun and Rong Peng()

State Key Laboratory of Software Engineering,
Computer School, Wuhan University, Wuhan, China

{rongpeng,sundong}@whu.edu.cn

Abstract. With the increasingly intense competition in mobile applications,
more and more attention has been paid to online comments. For the masses,
comments have been viewed as reliable references to guide the choice of appli-
cations; for providers, they have been regarded as an important channel to learn
expectations, demands and complaints of users. Therefore, comments analysis
has become a hot topic in both requirements engineering and mobile application
development. But analyzers in both areas are always not only suffered from the
vast noise in comments, but also troubled by their incompleteness and inaccura-
cy. Therefore, how to obtain more convincing enlightenments from comments
and how to reduce the manpower needed become the research focuses. This pa-
per aims to propose a Scenario Model Aggregation Approach (SMAA) for
analyzing and modeling user comments of mobile applications. By selecting
appropriate natural language processing technologies and machine learning al-
gorithms, SMAA can help requirements analysts to build aggregated scenario
models, which can be used as the source of evolutionary requirements for the
decision making of application evolution. The aggregated scenario model is not
only easy to read and understand, but also able to reduce the manpower needed
greatly. Finally, the feasibility of SMAA is exemplified by a case study.

Keywords: Scenario model aggregation approach · Aggregated scenario
model · Mobile application · User comments · Kernel concerns

1 Introduction

With the increasing development of mobile Internet, mobile applications become
more and more prevalent. But intense competition, short life cycle and low user adhe-
sion are all obstacles for their success. Being alert to the changes of user expectations
and evolving the mobile app accordingly are the only way for them to stand out.
Therefore, online comments, as one of the most important channels of expressing user
expectations and dissatisfaction, have become a vital source to obtain evolutional
requirements from the masses.

The contents described in user comments always have strong relationships with
scenarios. But as online comments are spontaneously described by users rather than
elaborately elicited by professional requirements engineer, most of them do not
contain the essential scenario information clearly, which makes them difficult to

76 D. Sun and R. Peng

understand and results in incomplete and inaccurate understanding on the real intents
of users. To help requirements analysts understand authentic user intents, it needs
to develop a scenario extraction, modeling and aggregation method to extract and
aggregate scenario information hidden inside those comments.

This paper proposes a Scenario Model Aggregation Approach (SMAA) which can
support different components to utilize various natural language processing (NLP)
technologies, machine learning algorithms and modeling methods to analyze and
categorize comments and their attached records, and construct aggregated scenario
models (ASMs) based on certain kernel concerns. Each part of SMAA is exempli-
fied by a sample method. Finally, the feasibility of SMAA is shown by a case study.

The remainder of this paper is organized as follows: Section 2 introduces related
work. Section 3 introduces the preliminary knowledge. Section 4 elaborates SMAA
with sample methods. Section 5 presents the case study. Section 6 presents the com-
parison with related work. Section 5 draws out the conclusion and further work.

2 Related Work

As the development of mobile application stores, many studies focus on the analysis
and utilization of online comments of mobile applications. These studies can be main-
ly divided into two categories.

One category is concerned on the types [1, 2], characteristics [1] and effects of App
comments [3-5]. They point out that some types of comments, such as functional
errors and requests for additional features, are good sources to obtain user require-
ments [1, 2]. But how to extract requirements is not the focus of these articles.

The other category is concerned on how to extract and analyze information from
App comments. We summarized the research topics, research methods, and outputs of
this category in Fig. 1.

The 1st research topic is informative comments extraction. As users post their
comments for different purposes, some comments are noises from the perspective of
requirements extraction. Therefore, many researchers [6, 7] have focused on how to
extract informative comments from the raw comments. Thus, the input of this stage is
raw user comments, and the output is informative comments in the perspective of
requirements engineers. The informative comments extraction mainly adopts classifi-
cation models or keyword based extraction methods. E.g., Bayesian classifier is used
to extract informative user comments by filtering noisy and irrelevant ones [6]. A
prototype system is developed to extract new feature requests by summarizing 237
keyword based grammar rules [7].

The 2nd research topic is requirements topics extraction. Extracting requirements
topics from thousands to millions of comments manually is time-consuming and labo-
rious. So, many researchers are dedicated on how to extract feedback topics from user
comments automatically. The input of this stage is informative comments, and the
outputs are representative sentences or words of each requirements topic. Topic mod-
els and cluster models are commonly used in this stage. E.g., topic models such as
LDA [6-9] and ASUM [10] have been used to extract implicit topics and representa-
tive topic words from informative comments. Clustering models, such as K-Means

 A SMAA for Mobile App Requirements Evolution Based on User Comments 77

[11] and GN community discovery model [12], have been used to cluster comments
and select the topic sentence for each cluster.

The 3rd research topic is Topic-based analysis. After requirements topics extrac-
tion, developers try to use the topics for further analysis. The input of this stage is
usually requirements topics and their related data, the outputs are various analysis
results for decision-making. Statistical analysis methods are commonly used in this
stage. For example, granger causality model are used to analyze whether the utility of
a topic (system aspect) is useful in forecasting the software sales [11]. Linear regres-
sion model are used to identify reasons why users like or dislike a given App [8].

Fig. 1. Research topics of information extraction and analysis from App comments

The above studies focus on extracting useful information and topics from online
user comments. For the providers, the extracted information can be used to learn us-
ers’ expectations and complaints. But as pointed in [13], due to the arbitrariness and
imperfection of the expression, it would be difficult to spy out the true intent behind
the text. Thus, only relying on the surface meanings of the online comments to infer
user requirements and make evolution decisions will face significant risks.

This paper focuses on providing a Scenario Model Aggregation Approach (SMAA)
which can integrate the above techniques to construct ASMs from user comments and
related data sources, which can help analyzers learn the implications more clearly and
accurately.

3 Preliminaries

3.1 Definitions

Definition 1: Raw User Comment (RUC)
RUCs refer to the raw comments which are posted by users of some specific mobile
application in a certain application market. They usually contain the information such
as text, rating, and publishing time. Some comments may present user preferences,
error feedbacks and advices which are useful to understand users’ demands. And oth-
ers may only contain useless information from the perspective of requirements engi-
neers such as pure emotion expressions and advertisements.

78 D. Sun and R. Peng

Definition 2: Informative Comment (IC)
ICs refers to the comments which contain useful information for further improvement
of the application, such as new feature requests, defect feedbacks and error reports.
ICs are also called as potential evolution requirements, as they can be used to extract
user requirements. According to the different intents, ICs can be divided into 2 cate-
gories: Improvement Comments (ImCs) and Fault Feedback Comments (FFCs).

Definition 3: Kernel Concern (KC)
KC refers to the core user demand implicated in a specific IC.

Definition 4: Informative Comment with Scenario Information (SIC)
SICs refer to ICs with scenario information. Scenario information refers to the infor-
mation, such as trigger operations, usage contexts and underlying rationales, which
can be used to reconstruct the scenario.

This paper aims to automatically extract scenario information of similar comments
and build ASMs.

3.2 Stanford Parser

Stanford parser is a multi-language syntactic parser developed by Stanford natural
language processing team [14]. Its output has many formats, such as part-of-speech
(POS) tagged text, phrase structure tree (PST), and dependency relations (DRs) [14].
POS, PSTs and DRs are always adopted by various methods to understand the text
written in natural language automatically.

In this paper, firstly, we use Stanford Word Segmenter to split each comment writ-
ten in Chinese into a sequence of words; then, the sequence is imported into Stanford
parser to get its PST and DRs for further processing.

3.3 Decision Tree Model

Among various classification models, decision tree model (DTM) is famous for its
good understandability and high accuracy. DTM is a tree-like model used to predict
or classify. Each non-leaf node represents a "test" on an attribute and each leaf node
represents a class label. Each branch represents the outcome of the test and the path
from root to a specific leave represents classification rules.

In SMAA, it recommends using DTM to identify SICs. The dependency relations
identified by Stanford parser and the category attribute identified by analysts will be
used to construct DTM.

4 Scenario Model Aggregation Approach and Its instantiation

4.1 Scenario Model Aggregation Approach

To help requirements engineers to extract the scenario information and aggregate
ASMs from RUCs, a kernel concern based scenario model aggregation approach is
proposed. The approach includes the following 5 stages, as shown in Fig. 2:

 A SMAA for Mobile App Requirements Evolution Based on User Comments 79

Raw
comments

1 Filtering
RUCs

Informative
comment

2 KCs automated
extraction

Concern aspects

3 Choosing seeds for
building ASMs

Chosen
concerns

Research content of this
paper

Artifact
Legends:

Operation Output artifact

Input artifact

5 ASMs refinement

Refined ASMs stakeholder

4.1 Identifying SICs
with specific KC

4.2 Building scenario
model instance for each SIC

4.3 ASM construction

Scenario
ontology

Informativecomment
with scenario
Information

Scenario model
instances

Aggregated scenario
models(ASMs)

Fig. 2. The main steps of SMAA

1) Filtering RUCs: In this stage, the goal is to obtain ICs from RUCs through de-
noising and filtering. Many machine learning algorithms can be used to fulfill the task,
such as Naive Bayes [6, 15].

2) KCs automated extraction: This stage aims to mine representative KCs from the
collection of ICs. NLP and data mining technologies can be used in this stage, which
will be exemplified in Section 4.2.

3) Choosing seeds for building ASMs: In this stage, an analyst needs to choose
KCs they are interested in, and take these concerns as seeds to construct ASMs.

4) Constructing ASMs for each KC: In this stage, the following operations should
be performed on each chosen KC:

4.1) Identifying SICs with a specific KC: Find all ICs which contain the KC
and identify those with scenarios information to construct a set of SICs. Various
classification approaches, such as decision tree and deep learning, can be used.
The sample method is described in Section 4.3.1.

4.2) Building scenario model instance for each SIC: For each SIC, extract the
scenario information from the text of the SIC and its attached record, such as de-
vice type and OS type; and then create a scenario model instance. Ontology-based
and context-aware methods can be used to extract scenario information automati-
cally. An ontology-based scenario model instance construction method is exempli-
fied in Section 4.3.2.

4.3) ASM construction: Aggregate all the scenario elements from the scenario
model instances of a specific KC and build a ASM. The way of aggregating scena-
rio model instances should be decided according to the characteristics of the sce-
nario elements. For instance, “AND/OR tree” can be used for aggregating scenario
elements of “trigger condition”.

5) ASMs refinement: The kernel concern based ASMs is checked one by one ma-
nually to verify whether it misses some key elements or not. If the information of any
necessary element is deficient, the analyst should organize the relative stakeholders
together to refine the models. The refined model can be used as the reference model,
which can help providers and analyzers to understand the user demand correctly.

Due to space limitation, the steps 1, 3 and 5 will not be discussed further as many
existing methods can be used directly. In the following sections, only the sample
methods of step 3 and 4 will be elaborated. Since the sample data are from Android

80 D. Sun and R. Peng

Market (http://apk.hiapk.com/) in China, the sample methods are constructed to be
suitable to analyzing user comments written in Chinese.

4.2 Kernel Concerns Automated Extraction Based on NLP

Many techniques can be used to extract KCs from ICs, such as LDA and ASUM
[6-10]. Here, we’ll instantiate it by using NLP parser, which includes the following
two steps: 1) Topic comments extraction: Extract topic comments from all ICs;
2) Kernel concerns (KCs) extraction: Extract KCs from the topic comments.

4.2.1 Topic Comments Extraction
As shown in Fig. 3, the topic comments extraction contains two steps: 1) Clustering
ICs; and 2) choosing representative topic comments (RTCs) for each cluster.

Fig. 3. Topic comments extraction

1) Clustering ICs: Using K-means can classify ICs to several clusters. The rec-
ommended cluster number (RCN) can be calculated according to a modified version
of Cans’ metric [17, 18], in which RCN will be high if individual comments are dis-
similar with each other, and low otherwise. If all comments are same, RCN equals to
1. RCN should be equal or lesser than the number of the comments. Analysts can
manually adjust RCN according to their own will or reading ability: the bigger the
cluster number is, the more the representative topic comments they need to read [18].

2) Choosing RTCs for each cluster: After the analyst determines the number of
RTCs for each cluster (here suppose it to m), the comments which is m nearest to the
centroid (measured by cosine similarity) will be chosen as the representatives of the
cluster.

4.2.2 Kernel Concerns Extraction
Here, feature requests and fault feedbacks are regarded as the default KCs recom-
mended automatically from the perspective of requirements engineers. And analysts
can manually modify the KCs according to their preferences.

By analyzing the features of output formats of Stanford parser, the KCs extraction
algorithm can be designed as follow:
Algorithm 1: KCs extraction algorithm (KCsEA)
Input: representativeTopicComment
Output: kernelConcern

1) Parse representativeTopicComment by Stanford Parser to get its phrase struc-

 A SMAA for Mobile App Requirements Evolution Based on User Comments 81

ture tree GT and dependency relations set DependencySet;
2) Identify the core word of verb phrase VP:

2.1) Locate in the bottom right VP in the GT;
2.2) Annotate the last verb (VV or VA) of this VP as its core word;

3) Expand the core word: Find the words in DependencySet which has one of the
following dependency relations with the core word: advmod (adverbial modifier),
nsubj (nominal subject), and dobj (direct object); and combine the located modifier
with the core word to construct the output kernelConcern;

4) return kernelConcern.

The returned kernelConcern will be regarded as recommended KC for the specific

topic comment. It will be displayed together with the topic comment to analysts,
which can help them understand its meaning and context. E.g., the KC of RTC “升级

后经常死机” (in English “often crashes after upgrade”) is shown as Fig. 4.

Fig. 4. The display style of a RTC and its recommended KC

Recommending KCs automatically can greatly reduce the manual workload of ex-
tracting them from a large volume of ICs. At the same time, it allows the analyzer to
modify or redesignate the KCs according to his/her preference, which is helpful to
construct ideal scenario models.

4.3 KC Based ASM Construction

Many modeling methods can be used to construct ASMs based on KCs. The follow-
ing method is just a sample method.

4.3.1 Decision Tree Based Automatic Identification of Informative Comments
with Scenario Information
As stated in Section 3.3, the paths from root to leaf represent classification rules in deci-
sion tree model. These paths are helpful to understand which dependency relation has
closely correlation with scenario information. Therefore, decision tree model is chosen
as the classification model to distinguish ICs with or without scenario information.

As shown in Fig. 5, the identification process of SICs based on decision tree model
has two stages: constructing classifier and using classifier.

The process of constructing classifier is as follow:
1) Annotating the categories: Select some comments as the training dataset, and

ask some analyst(s) to pick out all SICs. Thus, all training data will have a class label.
Table 1 showes some sample ICs annotated by an analyst.

2) Parsing IC: Get the dependency relations of each IC in the training dataset by
Stanford parser.

3) Vectorizing IC: Use dependency relations and the category information to

“升级后经常死机”In Chinese:
“often crash after upgrade”In English:

82 D. Sun and R. Peng

construct attribute vectors for ICs: ca = (d1, d2, …, dn, r), where di (i=1..n) represents a
certain dependency relation, n is the number of frequently used dependency relation
in Chinese [14], and r is its corresponding class label.

For example, suppose that the kth IC in the training dataset contains dependency
relations 1, 2 and 3, and it is annotated as SIC. Then its attribute vector is:
cak = (1,1,1, 0, …,0, 1)

4) Training the model: Select the C4.5 algorithm in WEKA 3.12 to train the model.

Fig. 5. The identification process of SICs based on decision tree model

The process of using classifier is as follows:
First parse all ICs one by one to get the dependency relations of each comment;

then, construct the attribute vector cdi=(di1,di2,…,din) for each IC; finally, use the
trained model to test all vectors to determine whether they are SICs or not.

Table 1. ICs with or without annotation

NO Comments in Chinese (C) and English (E) SIC?

1 打开定位后就自动退出 (C)
Abnormal exit after open the positioning function (E)

☑

2 有时候自动退出，望改进 (C)
Sometimes it will exit abnormally, please fix it.(E)

口

3 老是闪退 (C)
Always quit without prompt.(E)

口

4 5.0版本有时出现闪退 (C)
Version 5.0 always exits without prompt.(E)

☑

4.3.2 Scenario Model Instances Construction
As pointed in [16], scenario model can help requirements analysts understand the
authentic intentions of users. Thus, building scenario model is crucial for extracting
scenario information from comments and their attached records.

 A SMAA for Mobile App Requirements Evolution Based on User Comments 83

Fig. 6. Scenario metamodel

As shown in Fig. 6, a scenario metamodel is defined according to the available
scenario information which could be extracted from the features of user comments in
mobile application stores. The scenario metamodel defines that a scenario model
should contain the following information:

1) General scenario information: General scenario information contains some basic
elements such as terminal type, terminal OS and application version. These kinds of
information are recorded by mobile applications as soon as users post their comments.
Thus, they can be crawled or directly accessed from the application stores.

2) Categorized information: the information extracted from the text of the comment.
As Fault Feedback Comments (FFCs) and Improvement Comments (ImCs) are 2 typical
kinds of comments, the information extracted from them should be also classified into 2
categories: improvement feedback (IF) info and fault feedback (FF) info.

The scenario information in FFCs mainly concerns on: the trigger (the operation(s)
triggered the fault) and the fault appearance (system appearance when fault occurs).

The scenario information in ImCs mainly focuses on: the improvement mode (add-
ed/ modified / deleted / improved / lowered, et al), the specific function name which
need to improve, the target place (usually represented by its parent function), the im-
provement rationale and the trigger. The data models of 2 kinds of scenario model
instances are shown in Fig. 7(a) and 7(b).

Fig. 7. Data models of scenario model

(a) Data model of FF Scenario
Model

(b) Data model of IF Scenario Model

FFScenarioModel {
// General Info
Terminal terminal;
OS os;
AppVersion appVersion;
// FaultFeedback ScenarioInfo
Type type=faultFeedback
KernelConcern kernelConcern;
Trigger trigger;
FaultAppearence faultAppearence;
}

IFScenarioModel {
// General Info
Terminal terminal;
OS os;
AppVersion appVersion;
// ImprovementFeedback ScenarioInfo
Type type=improvementFeedback
KernelConcern kernelConcern;
Trigger trigger;
ImpMode impMode;
FuncName funcName;
Target target;
ImpRationale impRationale;
}

84 D. Sun and R. Peng

Based on the above scenario metamodel, an ontology based scenario model infor-
mation extraction method is proposed.

The ontology tree model is shown as Fig. 8. The top ontology is the root. It
According to the source of the ontology, the ontology can be divided into Domai-

nOntology and ApplicationOntology. DomainOntology contains the domain gener-
al concepts and the relationships among them. The concepts such as “add”, “modify”
and “delete” are all instances of DomainOntology, as they are general concepts for the
whole domain. ApplicationOntology represents the ontology related to a specific
application. For example, the concepts, such as “search around” and “positioning”,
may only be used for the map related applications.

According to the nature of the ontology, it can be divided into ActionOntology,
EntityOntology and ModifierOntology. ActionOntology can be further subdivided
into OperationOntology, such as “click” and “move”, and ExpectationOntology,
such as “hope” and “suggestion”. EntityOntology can be subdivided into Functio-
nOntology, such as “navigation” and “positioning”, PeripheralOntology, such as
“camera” and “microphone”, and FaultOntology, such as “exception” and “crash”.

Fig. 8. The ontology tree model for scenario model element extraction

The scenario model instance construction algorithm based on ontology tree is as
follow.

Algorithm2: Scenario model instance construction algorithm (SMICA)
Input: ontoModel; // the ontology tree model

sic; //the comment with scenario information
Output: sic.scenarioModel //the scenario model instance of sic.
1) Parse sic by Stanford parser to get the phrase structure tree sic.struTree, and the

dependency relations set sic.DependencySet.
2) Scan the leaf nodes in sic.struTree one by one according to the ontoModel: if a

leaf node matches one of the concepts in the ontoModel, the node will be marked
with the ontology category label; otherwise it is marked with label “Others”.

3) Construct scenario model instance according to sic:
3.1) When sic contains a phrase marked with ExpectationOntology, extract sce-

nario elements according to the data model of IF scenario model, and construct the

 A SMAA for Mobile App Requirements Evolution Based on User Comments 85

corresponding model instance sic.ScenarioModel:
3.1.1) sic.scenarioModel.type= improvementFeedback；
3.1.2) Find the leaf node which is marked with ExpectionOntology, and up

traverse sic.struTree from this node to find the nearest vp which contain a phrase
marked with OperationOntology, and assign the verb (v) to the element im-
pMode : sic.scenarioModel.impMode = v, and assign the verb’s nearest direct
object e to the element funcName: sic.scenarioModel.funcName =e;

3.1.3) If there exists a leaf node fn in sic.struTree which is marked with Func-
tionOntology, check whether its parent node has a leaf node labeled as Locatio-
nOntology. If yes, assign fn to element “Target”: sic.scenarioModel.target=fn;

3.1.4) If there exists a leaf node which is marked with ConditionOntology,
find the word tp which has a dependency relation case, and assign tp to the ele-
ment “trigger”: sic.scenarioModel.trigger=tp；

3.1.5) If there exists a leaf node which is marked with CausalityOntology,
find the word tp which has a dependency relation case, and assign tp to the ele-
ment “impRationale”: sic.scenarioModel.impRationale = tp;
3.2) When sic contains a phrase marked with FaultOntology, extract scenario

elements according to the FF scenario metamodel, and construct its model in-
stance sic.scenarioModel accordingly as follows:

3.2.1) sic.scenarioModel.type= faultFeedback;
3.2.2) Locate the leaf node fo which is marked with FaultOntology; expand

the word fo with its nearest adjunct word and record the expand phrase as efo,
and assign it to the element “faultAppearence”: sic.scenarioModel. faultAp-
pearence = efo;

3.2.3) If there exists a leaf node which is marked with ConditionOntology,
find the word tp which has a dependency relation case, and assign it to the ele-
ment “trigger”: sic.scenarioModel.trigger = tp；

3.3) Automatically extract the general scenario elements of sic and assign them
to the corresponding model elements;

4) Return sic.scenarioModel.

Fig. 9. A parsing example

打开 定位 后 自动 闪退就

dobj

loc

case

advmod

advmod

a. dependency relations
b. phrase structure tree

86 D. Sun and R. Peng

Fig. 10. The corresponding scenario model instance of Fig. 9

For example, the comment “打开定位后就自动闪退” (“Quit without prompt after
open the positioning function” in English) can be parsed by Stanford parser to obtain
the dependency relations and the phrase structure tree as shown in Fig. 9(a) and 9(b).
Referred to the ontoModel, the leaf nodes “打开”(Open)、“后”(After)、 “闪退”(Quit
without prompt) are marked with OperationOntology, LocationOntology, and Faul-
tOntology respectively. Therefore, its model instance can be constructed according to
the above algorithm shown in Fig.10.

4.3.3 Aggregated Scenario Model Construction
Aggregated scenario models are also classified into 2 categories: the improvement
feedback aggregated scenario models (IFASM) and the fault feedback aggregated
scenario models (FFASM), as shown in Fig. 11(a) and 11(b). Where,

Fig. 11. Data models of ASMs

(d) Data Model of CTriggerSet(c) Data Model of CKernelConcern

(a) Data model of FFASM (b) Data model of IFASM

ASM {
// General Info
CTerminalSet terminalSet;
COSSet osSet;
CAppVersionSet appVersionSet;
// fault feedback aggregation
Type type=faultFeedback
CKernelConcern kernelConcern;
CTriggerSet triggerSet;
CFaultAppSet faultAppSet;
}

ASM {
// General Info
CTerminalSet terminalSet;
COSSet osSet;
CAppVersionSet appVersionSet;
// improvement feedback aggregation
Type type=improvementFeedback
CKernelConcern kernelConcern;
CTriggerSet triggerSet;
CImproveModeSet improveModeSet;
CFuncNameSet funcNameSet
CTarget target
CFaultAppearenceSet faultAppearenceSet;
CRationaleSet rationaleSet
}

CKernelConcern {
Dimension dim;
DimValue dimValue
Times times;
}

CTrigger {
Trigger trigger;
Times times
}
CTriggerSet triggerSet= new Set of CTrigger

 A SMAA for Mobile App Requirements Evolution Based on User Comments 87

1) Type: Represent the type of the aggregated scenario model;
2) CKernelConcern: As shown in Fig. 11(c), it has 3 attributes: Dimension, Dim-

Value and Times. Dimension represents the designated aggregate dimension which
can be any dimension in the scenario model instance; DimValue is a specific value
the aggregation focuses on; Times is a counter which record the number of SICs ag-
gregated under the condition of the same Dimension with same DimValue.

3) CTriggerSet: Trigger is an attribute in scenario model instance. It records the
trigger of the comment. Accordingly, CTriggerSet records the triggers of all aggre-
gated model instance. For each element CTrigger in CTriggerSet, it consists of the
attribute trigger and times, where trigger is the same as the one in the model instance,
and times is the count of model instances with a certain same trigger.

4) Other attributes: The data structure of each set attribute is similar with CTrig-
gerSet.

By using the above data structure, the following algorithm can be used to aggregate
the model after all model instances are available.

Algorithm 3: ASM construction algorithm
Input: insScenarioModelSet; // the scenario model instance set to be aggregated
 insModelType; // the type of model instances to be aggregated
 dim, dimvalue; // the dimension and its value to be aggregated
Output: m; // the aggregated scenario model
1) New an empty ASM:

m = new ASM (insModelType);
2) Set the attributes of the Kernel Concern:

m.kernelConcern.dim=dim;
m.kernelConcern.dimValue=dimValue;
m.kernelConcern.times=0;

3) Traverse the insScenarioModelSet:
For each model instance c in insScenarioModelSet, execute:
if(c.scenarioModel.dim==dimvalue&&c.scenarioModel.type==m.type) then
{ m.kernelConcern.times++;

for any d different from Dimension{dim, type} in c
{ if exist (c.scenarioModel.d, m.d) then

{e=getelem(m.d, c.scenarioModel.d); e.times++; putelem(m.d, e)}
else { e=newelem(c.scenarioModel.d, 1); add(m.d, e)}

4) return m.

Through the above sample methods, the SMAA can be implemented to support the

requirements engineers to analyze the kernel concerns hidden in raw user comments
and construct aggregated scenario models.

5 Case Study

A mobile application named “Baidu Map” in Android Market (http://apk.hiapk.com/)
is selected to exemplify the effect of SMAA. Baidu Map has 2335 user comments in
this store by January 1, 2014. Following the steps in SMAA strictly, the results is as
follows:

88 D. Sun and R. Peng

1) Filtering RUCs: Using Naive Bayes and down sampling method described in
[15], 610 ICs are obtained.

2) KCs automated extraction:
2.1) Topic comments extraction: According to section 4.2.1, the K-means clus-

tering algorithm in Weka 3.6.10 is adopted to cluster the ICs. The cluster number
is set to 11 based on Can’s metric [18], and the distance function adopted is Eucli-
dean distance. The nearest comment to the centroid is selected as the RTC for
each cluster, which is listed in the 2nd column of Table 2.

2.2)Kernel concerns extraction: According to section 4.2.2, the KCs extraction
algorithm based on Stanford parser is adopted to extract and recommend kernel
concerns for each topic comment. These concerns are listed in the 3rd column of
Table 2 and the final accepted KCs by the authors are listed in the 4th column.

3) Choosing seeds for building ASMs: Choose “闪退” (“quit without prompt” in
English) as the seed, namely the selected KC to construct and refine the ASM.

4) ASM construction based on the KC:
4.1) Identifying SICs with the KC: Find all ICs which contain the chosen seed

“闪退(quit without prompt)” through retrieval. 15 ICs are retrieved, and 11 of
them are labeled as SICs. The decision tree model is trained by C4.5 algorithm in
Weka 3.6.10.

4.2) Building scenario model instance for each SIC: According to the algorithm
proposed in section 4.3.2, the scenario model instances are built for each comment;

4.3) ASM construction: According to the algorithm in section 4.3.3, the aggre-
gated scenario model with the kernel concern “闪退(quit without prompt)” is built
as shown in Fig. 12.

Table 2. Comments Analysis for Baidu Map in Andriod Market
CID Representative comments of each cluster Recommended KCs Accepted KCs

1 4.0不能用
4.0 cannot be used

不能用
Cannot be used

2

百度地图这弹广告不说,而且不能退出老是自

动启动

Not to mention pop ads, Baidu map exit abnormally
and often restart.

退出老是自动启动
exit abnormally
and often restart

自动启动
Restart

3 新版本4.5，闪退
New version 4.5, quit without prompt

版本闪退
Version quit
without prompt

闪退
Quit without
prompt

4 度娘又升级了，误差增加到十千米。
Baidu update again, error increased to 10 kms

增加误差
error increase

误差增加

Error increased

5

我是note2，装好后不运行，但电量里看百度地
图耗电最高
Note2, not running after installed, but its power
consumption is the highest

耗电最高
Highest power
consumption

耗电
Power con-
sumption

6 地图不准
Map is not accurate

地图不准确
Map is not accurate

7
耗电量大，手机发热厉害，都快50℃了
Large power consumption, it become very hot,
almost 50℃

50℃了
Almost 50℃

发热
Become hot

 A SMAA for Mobile App Requirements Evolution Based on User Comments 89

Table 3. (Continued)

8 定位不准
Positioning is not accurate

定位不准
Positioning is not
accurate

9 地图更新太慢！
Map update too slow!

地图更新太慢
Map update too
slow

10 定位太差了!
Positioning is too bad!

定位太差
Positioning is too
bad!

11 没有农村离线地图。
No rural offline map.

离线地图
No offline map

Fig. 12. The ASM in the concern of “闪退(quit without prompt)”

According to the ASM, a requirements analyzer can clearly learn that the version
4.* often “闪退” (quit without prompt), one of its trigger operations is “一按导航”
(click navigation), and occurred in GPRS and mobile networks. But the type of the
terminal is not clear. If needed, the analyzer can launch a refinement activity accord-
ing to the step 5 in SMAA.

6 Comparison with Related Work

As summarized in section 2, previous work focused on how to use specific technolo-
gy to extract and analyze information form App comments. The main outputs of pre-
vious work were specific information such as informative comments, topic words,
topic sentences, and analysis results based on topic.

一按导航/
one-click navigation

Triggers Apperences

Terminals

Network

AppVersions

1

《KernelConcerns》
KernelConcern=闪退/
quit without prompt

11
Rom

gprs

I9220
1

1

1

移动网络/
mobile networks

p6200 1

1

3.2 1

4.0

4.0.4

4.5

2

3

1

闪退/
quit without prompt

11

90 D. Sun and R. Peng

This focuses of the proposed approach SMAA are that 1) automated extract scena-
rio information from comments, and 2) organize the information in appropriate forms
for good visibility and understandability. The outputs of SMAA are ASMs which are
suitable for evolution requirements analysis and refinement.

7 Conclusion and Future Work

This paper proposes a scenario model aggregation approach SMAA with the follow-
ing functionality: 1) It can support raw user comments filtering and kernel concerns
extraction; 2) it can help requirements engineers to construct aggregated scenario
models based on kernel concerns they are interested in. These models are helpful for
understanding the authentic user needs and judging how critical they are. Therefore,
they can be used for making evolution requirements decision. According to the elabo-
rated sample methods, a case study is carried out, which exemplifies its effects.

This approach has strong scalability and flexibility, as it can adopts various exist-
ing natural language processing technologies and machine learning algorithms to
filter raw user comments, classify informative comments, extract kernel concerns, and
construct aggregate scenario models.

Further studies should be conducted in the following directions: 1) quantitative as-
sessments are needed to verify the effect of different machine learning algorithms and
tools adopted in the approach; 2) the effectiveness and efficiency of the sample me-
thods and algorithms should be evaluated; 3) more cases and empirical experiments
should be carried out to verify its effectiveness; and 4) an integrated analysis envi-
ronment should be developed to improve the usability of the approach.

Acknowledgements. The research is supported by the National Natural Science Foundation of
China under Grant No. 61170026.

References

1. Pagano, D., Maalej, W.: User feedback in the appstore: an empirical study. In: 2013 21st
IEEE International Requirements Engineering Conference (RE), pp. 125–134 (2013)

2. Khalid, H.: On identifying user complaints of iOS apps. In: 2013 35th International
Conference on Software Engineering (ICSE), pp. 1474–1476 (2013)

3. Harman, M., Jia, Y., Zhang, Y.: App store mining and analysis: MSR for app stores. In:
Proceedings of the 9th IEEE Working Conference on Mining Software Repositories,
pp. 108–111 (2012)

4. Kim, H.-W., Lee, H.L., Son, J.E.: An exploratory study on the determinants of smartphone
app purchase. In: The 11th International DSI and the 16th APDSI Joint Meeting, Taipei,
Taiwan (2011)

5. Chia, P.H., Yamamoto, Y., Asokan, N.: Is this app safe? a large scale study on application
permissions and risk signals. In: Proceedings of the 21st International Conference on
World Wide Web, pp. 311–320 (2012)

 A SMAA for Mobile App Requirements Evolution Based on User Comments 91

6. Chen, N., Lin, J., Hoi, S.C.H., Xiao, X., Zhang, B.: AR-Miner: mining informative reviews
for developers from mobile app marketplace. In: Proceedings of the 36th International
Conference on Software Engineering, pp. 767–778 (2014)

7. Iacob, C., Harrison, R.: Retrieving and analyzing mobile apps feature requests from online
reviews. In: 2013 10th IEEE Working Conference on Mining Software Repositories
(MSR), pp. 41–44 (2013)

8. Fu, B., Lin, J., Li, L., Faloutsos, C., Hong, J., Sadeh, N.: Why people hate your app:
making sense of user feedback in a mobile app store. In: Proceedings of the 19th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp. 1276–1284 (2013)

9. Oh, J., Kim, D., Lee, U., Lee, J.-G., Song, J.: Facilitating developer-user interactions
with mobile app review digests. In: CHI 2013 Extended Abstracts on Human Factors in
Computing Systems, pp. 1809–1814 (2013)

10. Galvis Carreño, L.V., Winbladh, K.: Analysis of user comments: an approach for software
requirements evolution. In: Proceedings of the 2013 International Conference on Software
Engineering, pp. 582–591 (2013)

11. Jiang, W., Ruan, H., Zhang, L.: Analysis of economic impact of online reviews: an
approach for market-driven requirements evolution. In: Zowghi, D., Jin, Z. (eds.) APRES
2014. CCIS, vol. 432, pp. 45–59. Springer, Heidelberg (2014a)

12. Jiang, W., Ruan, H., Zhang, L., Lew, P., Jiang, J.: For user-driven software evolution:
requirements elicitation derived from mining online reviews. In: Tseng, V.S., Ho, T.B.,
Zhou, Z.-H., Chen, A.L., Kao, Hung-Yu. (eds.) PAKDD 2014, Part II. LNCS, vol. 8444,
pp. 584–595. Springer, Heidelberg (2014b)

13. Kompan, M., Bieliková, M.: Context-based satisfaction modelling for personalized
recommendations. In: 2013 8th International Workshop on Semantic and Social Media
Adaptation and Personalization (SMAP), pp. 33–38 (2013)

14. Chang, P.-C., Tseng, H., Jurafsky, D., Manning, C.D.: Discriminative reordering with
Chinese grammatical relations features. In: Proceedings of the Third Workshop on Syntax
and Structure in Statistical Translation, pp. 51–59 (2009)

15. Ni, Y., Peng, R., Sun, D., Lai, H.: Potential evolution requirements detect method based on
user comments. Wuhan Univ. (Nat. Sci. Ed.) 61, 347–355 (2015)

16. Sutcliffe, A.: Scenario-based requirements engineering. In: Proceedings of 11th IEEE
International Requirements Engineering Conference, 2003, pp. 320–329 (2003)

17. Davril, J.-M., Delfosse, E., Hariri, N., Acher, M., Cleland-Huang, J., Heymans, P.: Feature
model extraction from large collections of informal product descriptions. In: Proceedings
of the 2013 9th Joint Meeting on Foundations of Software Engineering, pp. 290–300
(2013)

18. Can, F., Ozkarahan, E.A.: Concepts and effectiveness of the cover-coefficient-based
clustering methodology for text databases. ACM Trans. Database Syst. 15, 483–517
(1990)

	A Scenario Model Aggregation Approach for Mobile App Requirements Evolution Based on User Comments
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Definitions
	3.2 Stanford Parser
	3.3 Decision Tree Model

	4 Scenario Model Aggregation Approach and Its instantiation
	4.1 Scenario Model Aggregation Approach
	4.2 Kernel Concerns Automated Extraction Based on NLP
	4.3 KC Based ASM Construction

	5 Case Study
	6 Comparison with Related Work
	7 Conclusion and Future Work
	References

