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Abstract. With the increasingly intense competition in mobile applications, 
more and more attention has been paid to online comments. For the masses, 
comments have been viewed as reliable references to guide the choice of appli-
cations; for providers, they have been regarded as an important channel to learn 
expectations, demands and complaints of users. Therefore, comments analysis 
has become a hot topic in both requirements engineering and mobile application 
development. But analyzers in both areas are always not only suffered from the 
vast noise in comments, but also troubled by their incompleteness and inaccura-
cy. Therefore, how to obtain more convincing enlightenments from comments 
and how to reduce the manpower needed become the research focuses. This pa-
per aims to propose a Scenario Model Aggregation Approach (SMAA) for  
analyzing and modeling user comments of mobile applications. By selecting 
appropriate natural language processing technologies and machine learning al-
gorithms, SMAA can help requirements analysts to build aggregated scenario 
models, which can be used as the source of evolutionary requirements for the 
decision making of application evolution. The aggregated scenario model is not 
only easy to read and understand, but also able to reduce the manpower needed 
greatly. Finally, the feasibility of SMAA is exemplified by a case study. 

Keywords: Scenario model aggregation approach · Aggregated scenario  
model · Mobile application · User comments · Kernel concerns 

1 Introduction 

With the increasing development of mobile Internet, mobile applications become 
more and more prevalent. But intense competition, short life cycle and low user adhe-
sion are all obstacles for their success. Being alert to the changes of user expectations 
and evolving the mobile app accordingly are the only way for them to stand out. 
Therefore, online comments, as one of the most important channels of expressing user 
expectations and dissatisfaction, have become a vital source to obtain evolutional 
requirements from the masses. 

The contents described in user comments always have strong relationships with 
scenarios. But as online comments are spontaneously described by users rather than 
elaborately elicited by professional requirements engineer, most of them do not  
contain the essential scenario information clearly, which makes them difficult to  
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understand and results in incomplete and inaccurate understanding on the real intents 
of users. To help requirements analysts understand authentic user intents, it needs 
to develop a scenario extraction, modeling and aggregation method to extract and 
aggregate scenario information hidden inside those comments. 

This paper proposes a Scenario Model Aggregation Approach (SMAA) which can 
support different components to utilize various natural language processing (NLP) 
technologies, machine learning algorithms and modeling methods to analyze and 
categorize comments and their attached records, and construct aggregated scenario 
models (ASMs) based on certain kernel concerns.  Each part of SMAA is exempli-
fied by a sample method. Finally, the feasibility of SMAA is shown by a case study. 

The remainder of this paper is organized as follows: Section 2 introduces related 
work. Section 3 introduces the preliminary knowledge. Section 4 elaborates SMAA 
with sample methods. Section 5 presents the case study. Section 6 presents the com-
parison with related work.  Section 5 draws out the conclusion and further work. 

2 Related Work 

As the development of mobile application stores, many studies focus on the analysis 
and utilization of online comments of mobile applications. These studies can be main-
ly divided into two categories.  

One category is concerned on the types [1, 2], characteristics [1] and effects of App 
comments [3-5]. They point out that some types of comments, such as functional 
errors and requests for additional features, are good sources to obtain user require-
ments [1, 2]. But how to extract requirements is not the focus of these articles. 

The other category is concerned on how to extract and analyze information from 
App comments. We summarized the research topics, research methods, and outputs of 
this category in Fig. 1. 

The 1st research topic is informative comments extraction. As users post their 
comments for different purposes, some comments are noises from the perspective of 
requirements extraction. Therefore, many researchers [6, 7] have focused on how to 
extract informative comments from the raw comments. Thus, the input of this stage is 
raw user comments, and the output is informative comments in the perspective of 
requirements engineers. The informative comments extraction mainly adopts classifi-
cation models or keyword based extraction methods. E.g., Bayesian classifier is used 
to extract informative user comments by filtering noisy and irrelevant ones [6]. A 
prototype system is developed to extract new feature requests by summarizing 237 
keyword based grammar rules [7].  

The 2nd research topic is requirements topics extraction. Extracting requirements 
topics from thousands to millions of comments manually is time-consuming and labo-
rious. So, many researchers are dedicated on how to extract feedback topics from user 
comments automatically. The input of this stage is informative comments, and the 
outputs are representative sentences or words of each requirements topic. Topic mod-
els and cluster models are commonly used in this stage. E.g., topic models such as 
LDA [6-9] and ASUM [10] have been used to extract implicit topics and representa-
tive topic words from informative comments. Clustering models, such as K-Means 
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[11] and GN community discovery model [12], have been used to cluster comments 
and select the topic sentence for each cluster. 

The 3rd research topic is Topic-based analysis. After requirements topics extrac-
tion, developers try to use the topics for further analysis. The input of this stage is 
usually requirements topics and their related data, the outputs are various analysis 
results for decision-making. Statistical analysis methods are commonly used in this 
stage. For example, granger causality model are used to analyze whether the utility of 
a topic (system aspect) is useful in forecasting the software sales [11]. Linear regres-
sion model are used to identify reasons why users like or dislike a given App [8]. 

 
Fig. 1. Research topics of information extraction and analysis from App comments  

The above studies focus on extracting useful information and topics from online 
user comments. For the providers, the extracted information can be used to learn us-
ers’ expectations and complaints.  But as pointed in [13], due to the arbitrariness and 
imperfection of the expression, it would be difficult to spy out the true intent behind 
the text. Thus, only relying on the surface meanings of the online comments to infer 
user requirements and make evolution decisions will face significant risks. 

This paper focuses on providing a Scenario Model Aggregation Approach (SMAA) 
which can integrate the above techniques to construct ASMs from user comments and 
related data sources, which can help analyzers learn the implications more clearly and 
accurately.  

3 Preliminaries 

3.1 Definitions 

Definition 1: Raw User Comment (RUC) 
RUCs refer to the raw comments which are posted by users of some specific mobile 
application in a certain application market. They usually contain the information such 
as text, rating, and publishing time. Some comments may present user preferences, 
error feedbacks and advices which are useful to understand users’ demands. And oth-
ers may only contain useless information from the perspective of requirements engi-
neers such as pure emotion expressions and advertisements. 
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Definition 2: Informative Comment (IC) 
ICs refers to the comments which contain useful information for further improvement 
of the application, such as new feature requests, defect feedbacks and error reports. 
ICs are also called as potential evolution requirements, as they can be used to extract 
user requirements. According to the different intents, ICs can be divided into 2 cate-
gories: Improvement Comments (ImCs) and Fault Feedback Comments (FFCs). 

Definition 3: Kernel Concern (KC) 
KC refers to the core user demand implicated in a specific IC. 

Definition 4: Informative Comment with Scenario Information (SIC) 
SICs refer to ICs with scenario information. Scenario information refers to the infor-
mation, such as trigger operations, usage contexts and underlying rationales, which 
can be used to reconstruct the scenario. 

This paper aims to automatically extract scenario information of similar comments 
and build ASMs. 

3.2 Stanford Parser 

Stanford parser is a multi-language syntactic parser developed by Stanford natural 
language processing team [14]. Its output has many formats, such as part-of-speech 
(POS) tagged text, phrase structure tree (PST), and dependency relations (DRs) [14]. 
POS, PSTs and DRs are always adopted by various methods to understand the text 
written in natural language automatically. 

In this paper, firstly, we use Stanford Word Segmenter to split each comment writ-
ten in Chinese into a sequence of words; then, the sequence is imported into Stanford 
parser to get its PST and DRs for further processing. 

3.3 Decision Tree Model 

Among various classification models, decision tree model (DTM) is famous for its 
good understandability and high accuracy. DTM is a tree-like model used to predict 
or classify. Each non-leaf node represents a "test" on an attribute and each leaf node 
represents a class label. Each branch represents the outcome of the test and the path 
from root to a specific leave represents classification rules. 

In SMAA, it recommends using DTM to identify SICs. The dependency relations 
identified by Stanford parser and the category attribute identified by analysts will be 
used to construct DTM. 

4 Scenario Model Aggregation Approach and Its instantiation 

4.1 Scenario Model Aggregation Approach 

To help requirements engineers to extract the scenario information and aggregate 
ASMs from RUCs, a kernel concern based scenario model aggregation approach is 
proposed. The approach includes the following 5 stages, as shown in Fig. 2: 
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Fig. 2. The main steps of SMAA 

1) Filtering RUCs: In this stage, the goal is to obtain ICs from RUCs through de-
noising and filtering. Many machine learning algorithms can be used to fulfill the task, 
such as Naive Bayes [6, 15]. 

2) KCs automated extraction: This stage aims to mine representative KCs from the 
collection of ICs. NLP and data mining technologies can be used in this stage, which 
will be exemplified in Section 4.2.  

3) Choosing seeds for building ASMs: In this stage, an analyst needs to choose 
KCs they are interested in, and take these concerns as seeds to construct ASMs. 

4) Constructing ASMs for each KC: In this stage, the following operations should 
be performed on each chosen KC: 

4.1) Identifying SICs with a specific KC: Find all ICs which contain the KC 
and identify those with scenarios information to construct a set of SICs. Various 
classification approaches, such as decision tree and deep learning, can be used. 
The sample method is described in Section 4.3.1. 

4.2) Building scenario model instance for each SIC: For each SIC, extract the 
scenario information from the text of the SIC and its attached record, such as de-
vice type and OS type; and then create a scenario model instance. Ontology-based 
and context-aware methods can be used to extract scenario information automati-
cally. An ontology-based scenario model instance construction method is exempli-
fied in Section 4.3.2. 

4.3) ASM construction: Aggregate all the scenario elements from the scenario 
model instances of a specific KC and build a ASM. The way of aggregating scena-
rio model instances should be decided according to the characteristics of the sce-
nario elements. For instance, “AND/OR tree” can be used for aggregating scenario 
elements of “trigger condition”. 

5) ASMs refinement: The kernel concern based ASMs is checked one by one ma-
nually to verify whether it misses some key elements or not. If the information of any 
necessary element is deficient, the analyst should organize the relative stakeholders 
together to refine the models. The refined model can be used as the reference model, 
which can help providers and analyzers to understand the user demand correctly. 

Due to space limitation, the steps 1, 3 and 5 will not be discussed further as many 
existing methods can be used directly. In the following sections, only the sample  
methods of step 3 and 4 will be elaborated. Since the sample data are from Android 
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Market (http://apk.hiapk.com/) in China, the sample methods are constructed to be 
suitable to analyzing user comments written in Chinese. 

4.2 Kernel Concerns Automated Extraction Based on NLP 

Many techniques can be used to extract KCs from ICs, such as LDA and ASUM  
[6-10]. Here, we’ll instantiate it by using NLP parser, which includes the following 
two steps: 1) Topic comments extraction: Extract topic comments from all ICs;  
2) Kernel concerns (KCs) extraction: Extract KCs from the topic comments. 

4.2.1   Topic Comments Extraction 
As shown in Fig. 3, the topic comments extraction contains two steps: 1) Clustering 
ICs; and 2) choosing representative topic comments (RTCs) for each cluster. 

 
Fig. 3. Topic comments extraction 

1)  Clustering ICs: Using K-means can classify ICs to several clusters. The rec-
ommended cluster number (RCN) can be calculated according to a modified version 
of Cans’ metric [17, 18], in which RCN will be high if individual comments are dis-
similar with each other, and low otherwise. If all comments are same, RCN equals to 
1. RCN should be equal or lesser than the number of the comments. Analysts can 
manually adjust RCN according to their own will or reading ability: the bigger the 
cluster number is, the more the representative topic comments they need to read [18]. 

2) Choosing RTCs for each cluster: After the analyst determines the number of 
RTCs for each cluster (here suppose it to m), the comments which is m nearest to the 
centroid (measured by cosine similarity) will be chosen as the representatives of the 
cluster. 

4.2.2   Kernel Concerns Extraction 
Here, feature requests and fault feedbacks are regarded as the default KCs recom-
mended automatically from the perspective of requirements engineers. And analysts 
can manually modify the KCs according to their preferences. 

By analyzing the features of output formats of Stanford parser, the KCs extraction 
algorithm can be designed as follow: 
Algorithm 1: KCs extraction algorithm (KCsEA) 
Input: representativeTopicComment 
Output: kernelConcern 

1) Parse representativeTopicComment by Stanford Parser to get its phrase struc-
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ture tree GT and dependency relations set DependencySet; 
2) Identify the core word of verb phrase VP:  

2.1) Locate in the bottom right VP in the GT; 
2.2) Annotate the last verb (VV or VA) of this VP as its core word; 

3) Expand the core word: Find the words in DependencySet which has one of the 
following dependency relations with the core word: advmod (adverbial modifier), 
nsubj (nominal subject), and dobj (direct object); and combine the located modifier 
with the core word to construct the output kernelConcern; 

4) return kernelConcern. 
 
The returned kernelConcern will be regarded as recommended KC for the specific 

topic comment. It will be displayed together with the topic comment to analysts, 
which can help them understand its meaning and context. E.g., the KC of RTC “升级

后经常死机” (in English “often crashes after upgrade”) is shown as Fig. 4. 
 

 

Fig. 4. The display style of a RTC and its recommended KC 

Recommending KCs automatically can greatly reduce the manual workload of ex-
tracting them from a large volume of ICs. At the same time, it allows the analyzer to 
modify or redesignate the KCs according to his/her preference, which is helpful to 
construct ideal scenario models. 

4.3 KC Based ASM Construction 

Many modeling methods can be used to construct ASMs based on KCs. The follow-
ing method is just a sample method. 

4.3.1   Decision Tree Based Automatic Identification of Informative Comments 
with Scenario Information 
As stated in Section 3.3, the paths from root to leaf represent classification rules in deci-
sion tree model. These paths are helpful to understand which dependency relation has 
closely correlation with scenario information. Therefore, decision tree model is chosen 
as the classification model to distinguish ICs with or without scenario information. 

As shown in Fig. 5, the identification process of SICs based on decision tree model 
has two stages: constructing classifier and using classifier. 

The process of constructing classifier is as follow: 
1) Annotating the categories: Select some comments as the training dataset, and 

ask some analyst(s) to pick out all SICs. Thus, all training data will have a class label. 
Table 1 showes some sample ICs annotated by an analyst. 

2) Parsing IC: Get the dependency relations of each IC in the training dataset by 
Stanford parser. 

3) Vectorizing IC: Use dependency relations and the category information to  

“升级后经常死机”In Chinese: 
“often crash after upgrade”In English: 
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construct attribute vectors for ICs: ca = (d1, d2, …, dn, r), where di (i=1..n) represents a 
certain dependency relation, n is the number of frequently used dependency relation 
in Chinese  [14], and r is its corresponding class label. 

For example, suppose that the kth IC in the training dataset contains dependency  
relations 1, 2 and 3, and it is annotated as SIC. Then its attribute vector is:  
cak = (1,1,1, 0, …,0, 1) 

4) Training the model: Select the C4.5 algorithm in WEKA 3.12 to train the model. 

 
Fig. 5. The identification process of SICs based on decision tree model 

The process of using classifier is as follows: 
First parse all ICs one by one to get the dependency relations of each comment; 

then, construct the attribute vector cdi=(di1,di2,…,din) for each IC; finally, use the 
trained model to test all vectors to determine whether they are SICs or not. 

Table 1. ICs with or without annotation 

NO Comments in Chinese (C) and English (E) SIC? 

1 打开定位后就自动退出 (C) 
Abnormal exit after open the positioning function (E) 

☑ 

2 有时候自动退出，望改进 (C) 
Sometimes it will exit abnormally, please fix it.(E) 

口 

3 老是闪退 (C) 
Always quit without prompt.(E) 

口 

4 5.0版本有时出现闪退 (C) 
Version 5.0 always exits without prompt.(E) 

☑ 

4.3.2   Scenario Model Instances Construction 
As pointed in [16], scenario model can help requirements analysts understand the 
authentic intentions of users. Thus, building scenario model is crucial for extracting 
scenario information from comments and their attached records. 



 A SMAA for Mobile App Requirements Evolution Based on User Comments 83 

 
Fig. 6. Scenario metamodel 

As shown in Fig. 6, a scenario metamodel is defined according to the available 
scenario information which could be extracted from the features of user comments in 
mobile application stores. The scenario metamodel defines that a scenario model 
should contain the following information: 

1) General scenario information: General scenario information contains some basic 
elements such as terminal type, terminal OS and application version. These kinds of 
information are recorded by mobile applications as soon as users post their comments. 
Thus, they can be crawled or directly accessed from the application stores. 

2) Categorized information: the information extracted from the text of the comment. 
As Fault Feedback Comments (FFCs) and Improvement Comments (ImCs) are 2 typical 
kinds of comments, the information extracted from them should be also classified into 2 
categories: improvement feedback (IF) info and fault feedback (FF) info.  

The scenario information in FFCs mainly concerns on: the trigger (the operation(s) 
triggered the fault) and the fault appearance (system appearance when fault occurs).  

The scenario information in ImCs mainly focuses on: the improvement mode (add-
ed/ modified / deleted / improved / lowered, et al), the specific function name which 
need to improve, the target place (usually represented by its parent function), the im-
provement rationale and the trigger. The data models of 2 kinds of scenario model 
instances are shown in Fig. 7(a) and 7(b).  

 

 
Fig. 7. Data models of scenario model 

(a) Data model of FF Scenario 
Model

(b) Data model of IF Scenario Model 

FFScenarioModel { 
// General Info 
Terminal terminal; 
OS os; 
AppVersion appVersion; 
// FaultFeedback ScenarioInfo 
Type type=faultFeedback 
KernelConcern kernelConcern; 
Trigger trigger; 
FaultAppearence faultAppearence; 
} 

IFScenarioModel {
// General Info 
Terminal terminal; 
OS os; 
AppVersion appVersion; 
// ImprovementFeedback ScenarioInfo 
Type type=improvementFeedback  
KernelConcern kernelConcern; 
Trigger trigger; 
ImpMode impMode; 
FuncName funcName; 
Target target; 
ImpRationale impRationale; 
} 
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Based on the above scenario metamodel, an ontology based scenario model infor-
mation extraction method is proposed. 

The ontology tree model is shown as Fig. 8. The top ontology is the root. It 
According to the source of the ontology, the ontology can be divided into Domai-

nOntology and ApplicationOntology. DomainOntology contains the domain gener-
al concepts and the relationships among them. The concepts such as “add”, “modify” 
and “delete” are all instances of DomainOntology, as they are general concepts for the 
whole domain. ApplicationOntology represents the ontology related to a specific 
application. For example, the concepts, such as “search around” and “positioning”, 
may only be used for the map related applications. 

According to the nature of the ontology, it can be divided into ActionOntology, 
EntityOntology and ModifierOntology. ActionOntology can be further subdivided 
into OperationOntology, such as “click” and “move”, and ExpectationOntology, 
such as “hope” and “suggestion”. EntityOntology can be subdivided into Functio-
nOntology, such as “navigation” and “positioning”, PeripheralOntology, such as 
“camera” and “microphone”, and FaultOntology, such as “exception” and “crash”.  

 
Fig. 8. The ontology tree model for scenario model element extraction 

The scenario model instance construction algorithm based on ontology tree is as 
follow. 

Algorithm2: Scenario model instance construction algorithm (SMICA) 
Input: ontoModel; // the ontology tree model 

sic; //the comment with scenario information 
Output: sic.scenarioModel //the scenario model instance of sic. 
1) Parse sic by Stanford parser to get the phrase structure tree sic.struTree, and the 

dependency relations set sic.DependencySet. 
2)  Scan the leaf nodes in sic.struTree one by one according to the ontoModel: if a 

leaf node matches one of the concepts in the ontoModel, the node will be marked 
with the ontology category label; otherwise it is marked with label “Others”. 

3)  Construct scenario model instance according to sic: 
3.1) When sic contains a phrase marked with ExpectationOntology, extract sce-

nario elements according to the data model of IF scenario model, and construct the 
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corresponding model instance sic.ScenarioModel: 
3.1.1)  sic.scenarioModel.type= improvementFeedback； 
3.1.2) Find the leaf node which is marked with ExpectionOntology, and up 

traverse sic.struTree from this node to find the nearest vp which contain a phrase 
marked with OperationOntology, and assign the verb (v) to the element im-
pMode : sic.scenarioModel.impMode = v, and assign the verb’s nearest direct 
object e  to the element funcName: sic.scenarioModel.funcName  =e; 

3.1.3) If there exists a leaf node fn in sic.struTree which is marked with Func-
tionOntology, check whether its parent node has a leaf node labeled as Locatio-
nOntology. If yes, assign fn to element “Target”: sic.scenarioModel.target=fn; 

3.1.4) If there exists a leaf node which is marked with ConditionOntology, 
find the word tp which has a dependency relation case, and assign tp to the ele-
ment “trigger”: sic.scenarioModel.trigger=tp； 

3.1.5) If there exists a leaf node which is marked with CausalityOntology, 
find the word tp which has a dependency relation case, and assign tp to the ele-
ment “impRationale”: sic.scenarioModel.impRationale = tp; 
3.2) When sic contains a phrase marked with FaultOntology, extract scenario 

elements according to the FF scenario metamodel, and construct its model in-
stance sic.scenarioModel accordingly as follows:  

3.2.1)  sic.scenarioModel.type= faultFeedback; 
3.2.2) Locate the leaf node fo which is marked with FaultOntology; expand 

the word fo with its nearest adjunct word and record the expand phrase as efo, 
and assign it to the element “faultAppearence”:  sic.scenarioModel. faultAp-
pearence = efo; 

3.2.3) If there exists a leaf node which is marked with ConditionOntology, 
find the word tp which has a dependency relation case, and assign it to the ele-
ment “trigger”: sic.scenarioModel.trigger = tp；  

3.3) Automatically extract the general scenario elements of sic and assign them 
to the corresponding model elements; 

4)  Return sic.scenarioModel. 

 
Fig. 9. A parsing example 

打开 定位 后 自动 闪退就

dobj

loc

case

advmod

advmod

a.   dependency relations 
b.  phrase structure tree
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Fig. 10. The corresponding scenario model instance of Fig. 9 

For example, the comment “打开定位后就自动闪退” (“Quit without prompt after 
open the positioning function” in English) can be parsed by Stanford parser to obtain  
the dependency relations and the phrase structure tree as shown in Fig. 9(a) and 9(b). 
Referred to the ontoModel, the leaf nodes “打开”(Open)、“后”(After)、 “闪退”(Quit 
without prompt) are marked with OperationOntology, LocationOntology, and  Faul-
tOntology respectively. Therefore, its model instance can be constructed according to 
the above algorithm shown in Fig.10. 

4.3.3   Aggregated Scenario Model Construction 
Aggregated scenario models are also classified into 2 categories: the improvement 
feedback aggregated scenario models (IFASM) and the fault feedback aggregated 
scenario models (FFASM), as shown in Fig. 11(a) and 11(b). Where, 

 

 
Fig. 11. Data models of ASMs 

(d) Data Model of CTriggerSet(c) Data Model of CKernelConcern

(a) Data model of FFASM (b) Data model of IFASM

ASM { 
// General Info 
CTerminalSet terminalSet; 
COSSet osSet; 
CAppVersionSet appVersionSet; 
// fault feedback aggregation 
Type type=faultFeedback 
CKernelConcern kernelConcern; 
CTriggerSet triggerSet; 
CFaultAppSet faultAppSet; 
} 

ASM {
// General Info 
CTerminalSet terminalSet; 
COSSet osSet; 
CAppVersionSet appVersionSet; 
// improvement feedback aggregation 
Type type=improvementFeedback 
CKernelConcern kernelConcern; 
CTriggerSet triggerSet; 
CImproveModeSet improveModeSet; 
CFuncNameSet funcNameSet 
CTarget target 
CFaultAppearenceSet faultAppearenceSet; 
CRationaleSet rationaleSet 
} 

CKernelConcern { 
Dimension dim; 
DimValue dimValue 
Times times; 
} 

CTrigger { 
Trigger trigger; 
Times times 
} 
CTriggerSet triggerSet= new Set of CTrigger 
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1) Type: Represent the type of the aggregated scenario model; 
2) CKernelConcern: As shown in Fig. 11(c), it has 3 attributes: Dimension, Dim-

Value and Times. Dimension represents the designated aggregate dimension which 
can be any dimension in the scenario model instance; DimValue is a specific value 
the aggregation focuses on; Times is a counter which record the number of SICs ag-
gregated under the condition of the same Dimension with same DimValue. 

3) CTriggerSet: Trigger is an attribute in scenario model instance. It records the 
trigger of the comment. Accordingly, CTriggerSet records the triggers of all aggre-
gated model instance. For each element CTrigger in CTriggerSet, it consists of the 
attribute trigger and times, where trigger is the same as the one in the model instance, 
and times is the count of model instances with a certain same trigger. 

4) Other attributes: The data structure of each set attribute is similar with CTrig-
gerSet. 

By using the above data structure, the following algorithm can be used to aggregate 
the model after all model instances are available. 

Algorithm 3: ASM construction algorithm 
Input: insScenarioModelSet; // the scenario model instance set to be aggregated 
           insModelType; // the type of model instances to be aggregated 
           dim, dimvalue; // the dimension and its value to be aggregated 
Output: m; // the aggregated scenario model 
1) New an empty ASM:  

m = new ASM (insModelType); 
2) Set the attributes of the Kernel Concern:  

m.kernelConcern.dim=dim; 
m.kernelConcern.dimValue=dimValue; 
m.kernelConcern.times=0; 

3) Traverse the insScenarioModelSet:  
For each model instance c in insScenarioModelSet, execute:  
if(c.scenarioModel.dim==dimvalue&&c.scenarioModel.type==m.type) then 
{   m.kernelConcern.times++; 

for any d different from Dimension{dim, type} in c 
{ if exist (c.scenarioModel.d, m.d) then 

{e=getelem(m.d, c.scenarioModel.d); e.times++; putelem(m.d, e)} 
else { e=newelem(c.scenarioModel.d, 1); add(m.d, e)} 

4) return m. 
 
Through the above sample methods, the SMAA can be implemented to support the 

requirements engineers to analyze the kernel concerns hidden in raw user comments 
and construct aggregated scenario models. 

5 Case Study 

A mobile application named “Baidu Map” in Android Market (http://apk.hiapk.com/) 
is selected to exemplify the effect of SMAA. Baidu Map has 2335 user comments in 
this store by January 1, 2014. Following the steps in SMAA strictly, the results is as 
follows:  
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1) Filtering RUCs: Using Naive Bayes and down sampling method described in 
[15], 610 ICs are obtained. 

2)  KCs automated extraction: 
2.1) Topic comments extraction: According to section 4.2.1, the K-means clus-

tering algorithm in Weka 3.6.10 is adopted to cluster the ICs. The cluster number 
is set to 11 based on Can’s metric [18], and the distance function adopted is Eucli-
dean distance. The nearest comment to the centroid is selected as the RTC for 
each cluster, which is listed in the 2nd column of Table 2. 

2.2)Kernel concerns extraction: According to section 4.2.2, the KCs extraction 
algorithm based on Stanford parser is adopted to extract and recommend kernel 
concerns for each topic comment. These concerns are listed in the 3rd column of 
Table 2 and the final accepted KCs by the authors are listed in the 4th column. 

3) Choosing seeds for building ASMs: Choose “闪退” (“quit without prompt” in 
English) as the seed, namely the selected KC to construct and refine the ASM. 

4) ASM construction based on the KC: 
4.1) Identifying SICs with the KC: Find all ICs which contain the chosen seed 

“闪退(quit without prompt)” through retrieval. 15 ICs are retrieved, and 11 of 
them are labeled as SICs. The decision tree model is trained by C4.5 algorithm in 
Weka 3.6.10. 

4.2) Building scenario model instance for each SIC: According to the algorithm 
proposed in section 4.3.2, the scenario model instances are built for each comment; 

4.3) ASM construction: According to the algorithm in section 4.3.3, the aggre-
gated scenario model with the kernel concern “闪退(quit without prompt)” is built 
as shown in Fig. 12.  

Table 2. Comments Analysis for Baidu Map in Andriod Market 
CID Representative comments of each cluster Recommended KCs Accepted KCs 

1 4.0不能用 
4.0 cannot be used 

不能用 
Cannot be used  

2 

百度地图这弹广告不说,而且不能退出老是自 

动启动 

Not to mention pop ads, Baidu map exit abnormally 
and often restart. 

退出老是自动启动 
exit abnormally  
and often restart 

自动启动 
Restart 

3 新版本4.5，闪退 
New version 4.5, quit without prompt 

版本闪退 
Version quit  
without prompt 

闪退 
Quit without 
prompt 

4 度娘又升级了，误差增加到十千米。 
Baidu update again, error increased to 10 kms 

增加误差 
error increase 

误差增加 

Error increased 

5 

我是note2，装好后不运行，但电量里看百度地
图耗电最高 
Note2, not running after installed, but its power 
consumption is the highest  

耗电最高 
Highest power 
consumption 

耗电 
Power con-
sumption 

6 地图不准 
Map is not accurate 

地图不准确 
Map is not accurate 

 

7 
耗电量大，手机发热厉害，都快50℃了 
Large power consumption, it become very hot, 
almost 50℃ 

50℃了 
Almost 50℃ 

 

发热 
Become hot 
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Table 3. (Continued) 
 

8 定位不准 
Positioning is not accurate 

定位不准 
Positioning is not 
accurate 

 

9 地图更新太慢！ 
Map update too slow! 

地图更新太慢 
Map update too 
slow 

 

10 定位太差了! 
Positioning is too bad! 

定位太差 
Positioning is too 
bad! 

 

11 没有农村离线地图。 
No rural offline map. 

离线地图 
No offline map 

 

 

 

Fig. 12. The ASM in the concern of “闪退(quit without prompt)” 

According to the ASM, a requirements analyzer can clearly learn that the version 
4.* often “闪退” (quit without prompt), one of its trigger operations is “一按导航” 
(click navigation), and occurred in GPRS and mobile networks. But the type of the 
terminal is not clear. If needed, the analyzer can launch a refinement activity accord-
ing to the step 5 in SMAA. 

6 Comparison with Related Work 

As summarized in section 2, previous work focused on how to use specific technolo-
gy to extract and analyze information form App comments. The main outputs of pre-
vious work were specific information such as informative comments, topic words, 
topic sentences, and analysis results based on topic. 

一按导航/ 
one-click navigation 

Triggers Apperences 

Terminals 

Network 

AppVersions 

1 

《KernelConcerns》 
KernelConcern=闪退/ 
quit without prompt 

11
Rom 

gprs 

I9220 
1 

1 

1 

移动网络/ 
mobile networks 

p6200 1 

1

3.2 1 

4.0 

4.0.4 

4.5 

2 

3 

1 

闪退/ 
quit without prompt 

11 
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This focuses of the proposed approach SMAA are that 1) automated extract scena-
rio information from comments, and 2) organize the information in appropriate forms 
for good visibility and understandability. The outputs of SMAA are ASMs which are 
suitable for evolution requirements analysis and refinement. 

7 Conclusion and Future Work 

This paper proposes a scenario model aggregation approach SMAA with the follow-
ing functionality: 1) It can support raw user comments filtering and kernel concerns 
extraction; 2) it can help requirements engineers to construct aggregated scenario 
models based on kernel concerns they are interested in. These models are helpful for 
understanding the authentic user needs and judging how critical they are. Therefore, 
they can be used for making evolution requirements decision. According to the elabo-
rated sample methods, a case study is carried out, which exemplifies its effects. 

This approach has strong scalability and flexibility, as it can adopts various exist-
ing natural language processing technologies and machine learning algorithms to 
filter raw user comments, classify informative comments, extract kernel concerns, and 
construct aggregate scenario models. 

Further studies should be conducted in the following directions: 1) quantitative as-
sessments are needed to verify the effect of different machine learning algorithms and 
tools adopted in the approach; 2) the effectiveness and efficiency of the sample me-
thods and algorithms should be evaluated; 3) more cases and empirical experiments 
should be carried out to verify its effectiveness; and 4) an integrated analysis envi-
ronment should be developed to improve the usability of the approach. 
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