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Abstract. The traditional model-driven developing methods in require-
ment engineering (RE) have met challenges. Under the dropback of big
data, we propose a new framework of software design method based
on requirement data. Given a set of requirement data, which are usu-
ally acquired directly from users’ intuitive descriptions about systems,
we consider the method to analyze them and extract useful information
from them in order to build the formal specifications of systems. Here
the ‘data’ could be any form and could describe any prospect of function-
alities of systems, the ‘model’ could be any types of formal models like
process algebra, automata, or some forms of state-diagrams. We limit the
scope of our discussion in this paper to a special type of data and formal
models. We first use some simple examples to clarify the general idea of
‘data-driven’ we propose. Then as a case study, we apply this idea to the
requirement specification of a special type of systems—spatial-temporal
systems by proposing a special formal model in order to capture the
spatial-time features of them.

Keywords: Requirement engineering · Data-driven · Big data ·
Automata theory · Spatial-temporal · Spatial hybrid automata

1 Introduction

In software engineering, as system is becoming more and more complex in size
and logic, traditional methods for software developing like event-driven design
or object-oriented design are becoming more and more difficult to meet our
requirements. We need more convenient and intuitive way to design our software
while the software we design should fully satisfy our requirements. Recently, big
data has become a hot topic in computer science. As data sets grow rapidly in
size, people start thinking about new ways of analyzing, capturing and extracting
useful information from data sets. This big change lead us to think of a new way
to develop our software as big data can also offer large information about the
requirements of systems.

Many developing methods of software engineering have been investigated
throughout the history. Niklaus Wirth gives the well-known formula: Program =
Data structure + Algorithm. This formula has guided us many years to develop
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software. Later, one develops the formalization method to establish the (behav-
ior) semantics and relations of (between) programs or data structure. Finite state
machine is a classical method to describe such semantics and relations. As the
development of large-scale and complex software, one explores the model-driven
design framework. UML [1] is a typical platform of model-driven software devel-
opment. Finite state machine is still the core of UML for description of translation
among states.

Wikipedia [2] defines that data-driven programming is a programming
paradigm in which the program statements describe the data to be matched
and the processing required rather than defining a sequence of steps to be taken.

Wirfs-Brock and Wilkerson in [3] give the concept of data-driven design. They
think that data-driven design is the result of adapting abstract data type design
methods to object-oriented programming. The data-driven approach to object-
oriented design focuses on the structure of the data in a system. This results in
the incorporation of structural information in the definitions of classes.

Related to data-driven design, event-driven design is proposed and originated
in the area of active databases in the 1980s with the introduction of triggers to
database system [4][5]. A trigger is an Event-Condition-Action (ECA) rule which
is checked by the DBMS whenever an event occurs that matches the Event part
of the rule [6]. In event-based systems, an event can take many forms and data are
abstracted as the event instance [7]. Miro Samek in [8] says that state machines
are perhaps the most effective method for developing robust event-driven code
for embedded systems.

Requirements engineering (RE) [9] refers to the process of defining, docu-
menting and maintaining requirements and to the subfields of systems engineer-
ing and software engineering concerned with this process[10][11][12][13].

Formal method is an important method for requirement specification. We
proposed a process algebra called STeC for specifying of real-time system with
spatial temporal consistency requirements [14].

In this paper, we propose a new developing method for software engineering
based on data sets. The core idea is that we can build the specifications of sys-
tems based on the data sets which offer requirement information about systems
using some mechanism. To make things easier, we restrict our forms of data to
be the sequence of actions that the system behave, our models to be the abstract
automata. We give some easy-understanding examples to explain our ideas. The
paper is organized as follows: in Section 2, we introduce our data-driven frame-
work and basic concepts of each components of the framework. In Section 3,
we give some simple examples of data domain and their relevant formal models
using classical automata theories. In Section 4 we give a case study and explain
how to build formal specifications for a spatial-temporal system based on spatial-
temporal requirement data using our data-driven method. We introduce a type
of state machine called spatial-hybrid automata as its formal model. At last, we
make a conclusion in Section 5.
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2 Framework for Data-Driven Automata Design

Fig. 1 gives the core idea of data-driven framework. The data offers the require-
ments of systems. It can give information about how a system behave, or for
instance, some features about a system. The model gives the formal specifica-
tions of systems, it needs to be well chosen and generated based on the data. The
traces (generated by the model) is analyzed if it fits our requirements. If not,
more data is needed to give more concrete requirements. The key part of this
procedure is the mechanism to choose and generate the formal model from data,
which could be hard and varies from different data domains and requirements.
In our paper, we only consider the data as some types of sequences of events,
and models as some kinds of automata.

2.1 Data Type, Trace and Word

A data is a set of traces that describe a sequential of events of a system. Since the
types of behaviours of systems vary from one to another, the type of data should
also be different. For some systems we only consider the logical relationships
between their actions, for some others, we also need to consider the time issues
together with actions, and for the rest, we even consider their space relationships.

We next give a definition of a data, trace and word. A trace consists of a
sequence of words. A word is a tuple of different elements that belong to different
domains, which makes data distinguished from one to another.

Definition 21. A word is a n-tuple w ∈ D1×D2× ...×Dn, Di (i ∈ {1, 2, ..., n})
is called data domain.

Definition 22. A trace is a finite or infinite sequence of words, denoted as
Tr = w1w2...wn... where wi ∈ D1 × D2 × ... × Dn for all i ∈ {1, 2, ...} and some
n ∈ N

+.

Definition 23. A data is a set of traces for some type of word, denoted as
Data = {Tr | Tr = w1w2...wn..., wi ∈ D1 × ... × Dn ∀i ∈ N

+}.
The data domain D can be any mathematical structure, e.g, R, R+, N, any

partial order sets, etc.

2.2 Languages and Automata

The language in computer science is undertood as a set of words, like data,
in our example. So in the data-driven framework of automata design, we can
equivalently treat data as languages, with different types of word (Def. 21). For
some types of languages, for example, regular languages [16], the mechanism
of generating the corresponding automata is determined. That is, for any reg-
ular languages, its generated model can fully fit it. For example, determined
finite automata (DFA) can be generated from regular languages [17], timed
automata [18] can be generated from timed regular expressions [19], hybrid
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Fig. 1. The Data-Driven Framework of Software Development

automata [20] can be generated from hybrid traces, etc. The same for the context-
free languages or ω-languages. However, not all languages can be easily translated
into automata, for example, timed non-regular languages can not be translated
into a timed automata. Also, for the languages that contains an informal type
of words (not the word that can be accepted by automata), the algorithms for
translations is not direct. In Section 4, we build a type of automata called spatial-
hybrid automata for the model of spatial-temporal data types based on hybrid
automata.

3 Some Examples of Data Domain

We give some examples 1 of different types of data and their generated formal
specifications. We firstly introduce a simple real-time system, called ‘Railroad
Crossing System’ (abbreviated as RCS), as an example. Then pick up some
different types of data as examples based on different behaviours of this system.

3.1 Railroad Crossing System

Railroad Crossing System (or RCS) (shown in Fig. 2) is a dynamic scheduling
system at a crossing. There are two agents: a train and a gate. The gate is at
the crossing road where there is a railroad in east-west direction and a road in

1 Some early examples of data-driven languages are the text-processing languages sed
and AWK [15], where the data is a sequence of lines in an input stream ?C these
are thus also known as line-oriented languages ?C and pattern matching is primarily
done via regular expressions or line numbers.
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south-north direction. The train communicates with the gate dynamically when
attending to pass the crossing. The gate keeps opened when no train coming, and
has to close itself if there is a train coming. We summarize the system scenario
and list the behaviours of the train and the gate respectively as below:

RCS System Scenario:

– Train passes through a crossroad which installs a gate for safety.
– Normally, the gate is open so that cars and people may pass the railroad.

But, if a train passes through this crossroad then the gate must be closed.
– This control between gate and train will be completed through sending and

getting messages each other.

Train Behaviour:

– Train sends a message App to gate at the location Lapp and then goes to
gate;

– At location Lpass, if the train gets the message Cross from gate then it
passes through the gate and sends message leaving to gate at the location
Lleav.

– Otherwise, the train must stop at the location Lstop and waits for the
message Cross there;

Gate Behaviour:

– The gate is open for cars and people to pass through railroad.
– If the gate gets the message App then closes;
– If the gate is closed then sends a message Cross to train;
– When the gate gets a message leaving and does not get the message App

then it opens.

Next we extract part of their behaviours and represent them as different
types of data.

Fig. 2. Railroad Crossing System
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3.2 The Data

Untimed Data. The untimed data only captures logical relationships between
actions.

For example, suppose we capture the action ‘open’ of the gate of RCS system
as a sequences, using the data defined as follows:

Dataopen = {Tr | Tr = 〈open〉∗}
Tr is a trace. It is a regular languages, so the mechanism from it to its formal

model is determined. Fig. 3 shows its corresponding automata.
Similarly, we can capture and generate the behaviours of sequences of ‘open-

close’ of the gate, like:

DataOC = {Tr | Tr = (〈open〉〈close〉)∗}
Fig. 4 shows its corresponding automata.

1start

〈open〉

Fig. 3. Automata accepting the trace
’door open’

1start

2

〈open〉〈close〉

Fig. 4. Automata accepting the trace
’door open-close’

Timed Data. Timed data contain information about time concerning the point
at which actions happen or how long actions would take through. For example,
we now capture the sequences of actions of train ‘stop-run’ with a two-tuple
arrays of data:

DataSRT = {Tr | Tr = (〈stop, duration= 1m〉〈run, duration= 5m〉)∗}
We suppose that the train ‘stop’ for 1 minutes, and keep ‘running’ for

5 minutes...(this behaviour may not true for the scenario described above in
Section 3.1, it is just an example! The same in the rest of paper). DataSRT con-
tains a domain representing the duration of one action. Though it is not a formal
timed language for timed automata, we can translate it into a timed language:

L = {trace | trace = 〈stop′, 1〉〈run′, 6〉〈stop′, 7〉〈run′, 13〉...}
Where we take stop′ as an instant action, meaning the finishing of the action stop,
the same as run′. We can proof that such timed language L is a timed regular
expression so we generate a timed automata shown as Fig. 5, we translate the
‘duration’ to a clock ‘x’ in timed automata.
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1start x ≤ 1

2 x ≤ 5

stop′;

x = 1;

x := 0

run′;

x = 5;

x := 0

Fig. 5. Timed Automata accepting the
trace ’train stop-run’

Spatio-Time Data. Spatio-time data not only have time issues, but also space
issues. They record behaviours that concern both time and locations.

Suppose that the train in RCS system approach the gate at time 14:34,
location ‘Lapp’, taking 2 minutes, then arrive at location ‘Lpass’ at time 14:36.
It then take 8 minutes to stop at time 14:44. After waiting for 2 minutes, the
train passes the gate at time 14:46, taking 2 minutes. We give the corresponding
data as follows:

‘Train Passing’ spatio-time data:

DataTP = {Tr},

where

Tr = 〈 appr, location= Lapp, time= 14 : 34, duration= 2m〉 〈 stop,
location= Lpass, time= 14 : 36, duration= 8m〉 〈 wait, location= Lstop,

time= 14 : 44, duration= 2m〉 〈 pass, location= Lstop, time= 14 : 46,
duration= 2m〉

See that DataTP is not in a form that can be accepted by any kinds of
automata. So we need to make a translation, we translate data DataTS into a
timed trace and a propositional trace of timed automata as follows:

trace = 〈 appr, 14 : 34 〉 〈 stop, 14 : 36〉 〈 wait, 14 : 44〉 〈 pass, 14 : 46〉 〈 ∅,
14 : 48〉

proptrace = 〈∅〉 〈Lapp〉 〈 Lpass 〉 〈 Lstop 〉 〈 Lstop 〉 〈 ∅ 〉
we now can generate timed automata according to them by adding propo-

sitions on each state representing the locations. Fig. 6 is the corresponding
timed automata, the data ‘location’ is translated to atomic propositions in timed
automata.
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∅start

y ≤ 0

{Lappr}

y ≤ 2m

{Lpass}

y ≤ 8m

{Lstop}

y ≤ 2m

{Lstop}

y ≤ 2m

∅

appr;

y = 0 ∧ x = 14 : 34;

y := 0

stop;

y = 2m ∧ x = 14 : 36;

y := 0

wait;

y = 8m ∧ x = 14 : 44;

y := 0pass;

y = 2m ∧ x = 14 : 46;

y := 0

∅;

y = 2m;

y := 0

Fig. 6. Timed Automata accepting the trace ’Train Passing’

Hybrid Data. Hybrid data describes the behaviours with time issues and the
change rate of variables.

Suppose that after the gate receive the message ‘App’ from the train, it will
process for 2 seconds, then it will close itself for 30 seconds, with the rate of
3 degrees per second. After getting the message ‘Leave’ from the train for 2
seconds, it will open itself again for 30 seconds, with the same rate. We give the
data as follows:

‘Gate Close-Open’ hybrid data:

DataGCO = {Tr | Tr = (〈App?, duration= 2s〉 〈close, angle0= 90d, angle1= 0,
rate= −1〉 〈open, angle0= 0d, angle1= 90d, rate= 1〉 〈Leave?, duration= 2s〉 )∗}

We can translate the data into a hybrid trace and a differential equation
trace as follows:

trace = 〈App′?, a = 90, t = 0〉〈close′, a = 90, t = 2〉〈∅, a = 90, t =
30〉〈Leave′?, a = 0, t = 30〉〈open′, a = 0, t = 2〉〈∅a = 90, t = 30〉...

vftrace = 〈ȧ = 0, ṫ = 1〉〈ȧ = 0, ṫ = 1〉〈ȧ = −1, ṫ = 1〉〈ȧ = 0, ṫ = 1〉〈ȧ = 0, ṫ =
1〉〈ȧ = 1, ṫ = 1〉〈ȧ = 0, ṫ = 1〉...

Variable t records time eclapse and d records the angle value. Fig. 7 shows
the generated automata.

4 Case Study—Data-Driven Method for Spatial-Temporal
System

In this section, we give an example of building a formal specification for a special
type of system—spatial temporal system based on a type of spatial-time data.
We propose a formal model called ‘spatial-hybrid automata for the specification.
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ṫ = 1start

0 ≤ t ≤ 2

ṫ = 1

0 ≤ a ≤ 90

ȧ = −1, ṫ = 1

0 ≤ a ≤ 90

ȧ = 1, ṫ = 1

App
′?;

;

t := 0

close
′;

a = 90 ∧ t = 2;

t := 0

∅;

a = 0;

t := 0

Leave
′?;

;

t := 0

open
′;

a = 0 ∧ t = 2;

t := 0

∅;

a = 90;

t := 0

Fig. 7. The Hybrid Automata of ‘Gate Close-Open’

4.1 A Counter Example

From Section 3, we show some examples of data which can generate an automata.
Now consider an example of data which can not (or say not suitable) generate
an automata. We change DataTP into a new form as:

Data′
TP = {Tr}

where

Tr = 〈 appr, l= 1km, time= 14 : 34, duration= 2m〉 〈 stop, l= 0.8km,
time= 14 : 36, duration= 8m〉 〈 wait, l= 0.3km, time= 14 : 44, duration= 2m〉

〈 pass, l= 0.3km, time= 14 : 46, duration= 2m〉
We replace the locations of each word in Data′

TS with an exact number l.
So the data turns into a hybrid data we can translate it into a hybrid trace as
follows:

trace = 〈 appr, T = 14 : 34, l = 1, d = 2 〉 〈 stop, T = 14 : 36, l = 0.8, d = 8〉 〈
wait, T = 14 : 44, l = 0.3, d = 2〉 〈 pass, T = 14 : 46, l = 0.3, d = 2〉 〈 ∅,

T = 14 : 48, l = 0.3, d = 2〉
trace = 〈stop, T = 14 : 34, l = 10, d = 2〉〈run, T = 14 : 36, l = 10, d =

δ1〉〈stop, T = 15 : 10, l = 25, d = 2〉〈run, T = 15 : 12, d = δ2〉〈stop, T = 16 :
15, l = 50, d = 2〉...

Now the problem rises, since the data does not specify the change rate of l,
we can not generate a hybrid automata for it. It tells us we need to introduce
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an ‘abstract’ automata that only give the conditions of each edge but leave the
different equations free unknown. We call it ‘spatial hybrid automata’ because it
leave locations as a condition whose domain varies from different types of data
we choose for it.

Indeed, we are interested in a special type of systems called ‘spatial hybrid
systems, as introduced below.

4.2 Spatial Temporal System

A type of software systems is called spatial hybrid system, the examples of this
kind of systems are like Internet of Things and Cyber-Physical Systems. In their
behaviours, both the time point at which an action occurs and the location at
which an action stays count. Consider the ‘Railroad Crossing System’ (RCS) in
Section 3, in such a system, the train speed depends on the environment (for
example, the weather, the traffic condition or the driver), considerations which
are partially ignored in a high-level model. However, the train is expected to
communicate with the gate at some specific locations on the track. So is the
gate, which should respond before the train reaches a given point, if to avoid
any accident and have an ‘optimal’ use. For this type of systems, we propose a
hybrid automata in a special domain—‘space’ domain based on hybrid automata
to capture their behaviours.

4.3 Spatial Hybrid Automata

As an abstraction of hybrid automata, spatial hybrid automata add a set of
special conditional triggers called ‘locations’, and reduce the expressive power to
be weaker than hybrid automata. Such automata are good for abstracting the
spatial-temporal features of spatial-temporal systems, and on the other hand
though it loses the power of hybrid automata, but can be easily refined to be
concrete hybrid automata.

In spatial hybrid automata, we stress that the trigger of each edge is depend-
ing on not only the conditions of variables, but also the conditions in the special
triggers we define—‘locations’. We take differential equations in each state as
parameters and thus they are not certain. In other words, we only give the con-
ditions (‘location’) when each edge can be triggered and do not tell the exact
form of differential equations for each state to reach those conditions. We remain
the time variables and continuous variables the same in hybrid automata, but
adding our set—‘locations’ as part of guard conditions. The formal definition is
as follows:

Definition 41. A Spatial hybrid automaton sHa is a collection (Q,X,L,M,Σ, F,
Init,D,E,G,R), (q, x) ∈ Q × X as the state of sHa denoted as St, where

1. Q = {q1, q2, . . .} is a set of discrete states;
2. X = Rn is a set of continuous states;
3. L= {l1, l2, . . . , ln} is a finite set of locations, li ∈ P (X) for any 1 ≤ i ≤ n

(P (X) denotes the power set of X).
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4. M= {m1,m2, . . .} is a set of messages;
5. Σ⊆ {ch?, ch!}×M ∪Act is the set of events. Act is normal events. {ch?, ch!}×

M is the synchronizing events.
6. Init ⊆ Q × X × P (F ) is a set of initial states;
7. D(·) : Q → P (X) is a domain;
8. E ⊆ Q × Q is a set of edges;
9. G(·) : E → L × Σ×P (X) is a guard condition;

10. R(·, ·) : E × X → P (X) is a reset map for a jump.
11. F : Q → P (Q × X → Rn) is the set of all vector fields for each state that

satisfy all locations and guards of edges starting from this state (where f(·, ·) :
Q × X → Rn is a vector field). For any q1 ∈ Q, F (q1) = {f | (∀(q1, q2) ∈
E)(∀(l, a, g) ∈ G((q1, q2)))(∃t ∈ R

+).(ẋ = f(q1, x) ∧ x(t) ∈ l ∩ g};

The different from the definition of hybrid automata is that we define a set
of differential equations for each state that satisfy all guards of each edge from
this state. We also add location set L as a field of locations. A location can be
any physical locations like R, R2, etc.

We say a differential equation ẋ = f(q, x) satisfies a guard g, for example, we
mean that there exists a time point t such that x(t) ∈ g. For each state q, there
exists a set of differential equations F (q) that satisfy all its guard conditions
(F (q) might be ∅ if no guards can be satisfied). This shows that in our spatial-
hybrid automata we do not care the exact differential equation that trigger each
edge. We do not care how to achieve the edge conditions, but the edge conditions
itself.

4.4 Semantics of Spatial Hybrid Automata

Like hybrid automata, we give the transition semantics of spatial hybrid
automata. The transition relation of spatial hybrid automata, as hybrid
automata, constitutes of the labelled transition relation and the continuous tran-
sition relation.

Labelled Transition Relation. A triple →⊆ St × Σ × St is called a labelled
transition relation. We write s

a−→ s′ if (s, a, s′) ∈→.

Continuous Transition Relation. A triple =⇒⊆ St × R
+ × St is called a

continuous transition relation. We write s
δ==⇒ s′ if (s, δ, s′) ∈=⇒.

Definition 42 (Transition Semantics). Let sHa = (Q,X,L,M,Σ, F, Init,
D,E,G,R) be a spatial hybrid automata, the transition relation is given as fol-
lows:

i. State. For any (q0, x0), (q0, x0) ∈ St iff x0 ∈ D(q) and F (q0) =
{f | (∀(q0, q) ∈ E)(∀(l, a, g) ∈ G((q0, q)))(∃t ∈ R

+).(ẋ = f(q0, x) ∧ x(t) ∈
l ∩ g}.



44 Y. Zhang et al.

ii. Labelled Trans. For any s = (q0, x0), s′ = (q1, x1) ∈ St, a ∈ Σ, s
a−→ s′ iff

(q0, q1) ∈ E, (x0, a, x0) ∈ G((q0, q1)) and x1 ∈ R((q0, q1), x0).
iii. Continuous Trans. For any s = (q, x0), s′ = (q, x1) ∈ St, δ ∈ R

+ and
f ∈ F (q), s

δ==⇒ s′ iff x1 = x0 +
∫ t0+δ

t0
f(q, x)dt for some t0.

The spatial hybrid automata allow all continuous transitions with the dif-
ferential equations ranging in set F (q) for each state q. While the definition of
state and labelled transitions remain the same as hybrid automata.

4.5 Formal Model of Data′
TS

Given the data Data′
TP in Section 4.1, we can build a spatial-hybrid automata

sHaTP shown in Fig. 8.

d ≤ 0

(Ṫ = 1, ḋ = 1)

F (0)

start

0

d ≤ 2

(Ṫ = 1, ḋ = 1)

F (1)

1

d ≤ 8

(Ṫ = 1, ḋ = 1)

F (2)

2

(d ≤ 2

Ṫ = 1), ḋ = 1

F (3)

3

d ≤ 2

(Ṫ = 1, ḋ = 1)

F (4)

4

(Ṫ = 1, ḋ = 1)

F (5)

5

appr;

d = 0 ∧ T = 14 : 34∧
l = 1;

d := 0

stop;

d = 2 ∧ T = 14 : 36∧
l = 0.8;

d := 0

wait;

d = 8 ∧ T = 14 : 44∧
l = 0.3;

d := 0
pass;

d = 2 ∧ T = 14 : 46∧
l = 0.3;

d := 0

∅;

d = 2;

d := 0

Fig. 8. Spatial-hybrid automata for Data′
TP

sHaTP = (Q,X,F, L,M,Σ, f, Init,D,E,G,R), where

– Q = {0, 1, 2, 3, 4, 5};
– X = R

3, since there are 3 variables: T , d, l;
– L = {l = 1, l = 0.8, l = 0.3} are the location conditions;
– M = ∅;
– Σ = {appr, stop, wait, pass} is the set of alphabets;
– Init = {(0, x)}, where x = [T = 14 : 34, d = 0, l = 0];
– D is the domain of invariants. e.g, D(0) = (d ≤ 0), D(2) = (d ≤ 8);
– E = {(0, 1), (1, 2), (2, 3), (3, 4), (4, 5)} is the set of edges;
– G is guard condition. e.g, G((2, 3)) = (l = 0.3, wait, d = 8 ∧ T = 14 : 44);
– R is a reset map. e.g, R((2, 3), d) = 0;
– F is the set of vector fields for each state. e.g, F (0) = F0 = {f | (∃t ∈

R
+).(Ṫ = f(0, T ) = 1 ∧ ḋ = f(0, d) = 1 ∧ l̇ = f(0, l) ∧ d(t) = 0 ∧ T (t) = 14 :

34 ∧ l(t) = 1)};

Compared with the automata of DataTP (Fig. 6), in sHaTP , each variable is
not only driven by one differential equation in each state, but a set of differential
equations. Each edge is triggered by not only guards but also locations (L).
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4.6 Condition-Triggered Transition System

In Section 4.3 we propose a ‘location triggered’ hybrid automata, it is an abstract
automata where in each state, a set of differential equations (not only one) satisfy
all guards and locations of edges out of this state. The differential equations
that satisfy the guards are depending on the domain of ‘locations’, just as the
DataTS and Data′

TS shown above. More generally, we can define an abstract
transition system called ‘condition-triggered transition system’, where each edge
is triggered by one or several conditions with specific domains. See the next
definition:

Definition 43. A condition-triggered transition system ctTS is a collection
(Q,X, C,Σ, F, Init,D,E,G,R), (q, x) ∈ Q × X as the state of ctTS, where

1. Q = {q1, q2, . . .} is a set of discrete states;
2. X = Rn is a set of continuous states;
3. C= {c1, c2, . . .} is a finite set of conditions;
4. Σ is set of alphabets.
5. Init ⊆ Q × X × P (F ) is a set of initial states;
6. Dom(·) : Q → P (X) is a domain; (P (X) denotes the power set of X)

7. E ⊆ Q × Q is a set of edges;
8. G(·) : E → C × Σ×P (X) is a guard condition;
9. R(·, ·) : E × X → P (X) is a reset map for a jump.

10. F : Q → P (Q × X → Rn) is the set of all differential equations that
satisfy all guards and conditions in C. For any state q1 ∈ Q, F (q1) =
{f | (∀(q1, q2) ∈ E)(∀(c, a, g) ∈ G((q1, q2)))(∃t ∈ R

+).(ẋ = f(q1, x) ∧ x(t) ∈
c ∩ g};

It is almost like a hybrid automata except that we take each condition c in C
as a variable, it determines the set of differential equations F (q) for each state
q. We omit the discussion about it.

5 Conclusion

In this paper, we are trying to give a new developing method for software engi-
neering by which somehow to solve the crucial problems existed in the field of
nowadays software engineering. We mainly propose a data-driven framework and
give some examples to explain our idea. We also give a case study of building
the formal model of a special type of systems—spatial-temporal systems using
our proposed framework.

The core idea of the data-driven framework that distinguishes it from other
methods is that we want to design models through the data, since data is the most
intuitive for humanbeings and somehow easy to acquire. In this paperwe only show
some example of how data and their relative models (might) look like, and choose
a formal model for a special type of data. We have no idea about the way of gen-
erating model from data. It is a complex problem, and various from one another
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according to different types of data, different user requirements and some other
factors. For the future work, maybe we will focus on building some concrete sys-
tems (under well-defined circumstances and clear users’ requirements) and trying
to find concrete algorithms to deal with the generating procedure.
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