
© Springer-Verlag Berlin Heidelberg 2015
L. Liu and M. Aoyama (Eds.): APRES 2015, CCIS 558, pp. 149–154, 2015.
DOI: 10.1007/978-3-662-48634-4_11

TimePF: A Tool for Modeling and Verifying Timing
Requirements Based on Problem Frames

Yuanyang Wang, Xiaohong Chen(), and Ling Yin

Shanghai Key Laboratory of Trustworthy Computing,
East China Normal University, Shanghai, China

xhchen@sei.ecnu.edu.cn

Abstract. As the key element of embedded systems, the timing requirements
are becoming more and more important. An increasing number of systems need
strict time constraints especially some safety critical systems such as high-speed
railway systems. We have proposed an approach for modeling and verifying
timing requirements [1–3]. By combining the Problem Frames (PF) approach
[4] and CCSL (Clock Constraint Specification Language) [5], it can model tim-
ing requirements from the perspective of environment and verify them with
NuSMV. To support this approach, we develop a supporting tool (named
TimePF) by extending the DPTool [6]. TimePF is a graphical tool which pro-
vides various modeling and verifying techniques for timing requirements. This
paper presents its architecture and implementation, and gives an illustrating ex-
ample to show how to use it following the modeling and verifying process.

1 Architecture and Implementation

1.1 Architecture

Fig.1 shows the architecture of TimePF. It includes 3 layers, i.e., data layer, function
layer and interface layer. The function layer models and verifies timing requirements.
The data layer provides data for function layer. And the interface layer is responsible
for the interactions with users. We will introduce the function layer in detail. It in-
cludes modeling module and verifying module. The modeling module includes 2 sub-
modules, i.e., data processing module and graphical operation module.

Modeling Module
 Data processing sub-module

This module accepts the inputs in terms of a problem diagram and scenario graphs.
All the problem domains in problem diagram will be traversed to find interactions
related to each problem domain. Meanwhile, all the paths in scenario diagram will
be traversed to find the possible temporal relations among interactions.
 Graphical operation sub-module

This module edits graphic elements on the interface. It adds a clock for each interac-
tion. All the clocks and clock relations form a clock diagram. In addition, this
module defines composite clocks and additional constraints. These new added con-
straints will be checked to ensure that there are no conflicts among the new con-
straints and existing ones.

150 Y. Wang et al.

Fig. 1. Architecture of TimePF

Verifying Module
The verifying module transforms the CCSL description from the model into NuSMV
description, and verifies the consistency of timing specification. The transformation
follows the transforming rules. It also defines the consistency properties with CTL,
and verifies these properties by calling NuSMV.

1.2 Implementation

The TimePF is implemented in Java. Fig.2 shows its snapshot. There are 5 major
areas on the interface, i.e., Menu, Toolbar, Process, Plotting and Information area.

Fig. 2. Snapshot of TimePF

Process

Plotting area

Information
display area

Toolbar

Menu

 TimePF: A Tool for Modeling and Verifying Timing Requirements Based on PF 151

 There are 5 items in the Menu, i.e., File, Ontology, Edit, Check, Help. The File
menu is responsible for creating, opening and saving a project. The Ontology menu
can load, show and check environment ontology. The Edit menu edits operations
about clock and clock constraint. And the Check menu executes some checking
operations such as Check consistency. The Help menu shows some help informa-
tion about the tool.

 The Toolbar gives three kinds of qualitative relations among clocks. They are pre-
cedence, coincidence and strict precedence.

 The area of Process shows the steps to be followed in the tool.
 The Plotting area shows the diagrams drew by the tool, including problem dia-

gram, scenario diagram, clock diagram and time point diagram.
 The Information area shows some information related to the diagram in the Plot-

ting area. The information includes diagrams, phenomenon, interactions and cita-
tion information.

2 Process and Illustrating Example

Fig.3 shows the process of modeling and verifying timing requirements. It includes 2
major steps, i.e., modeling timing requirements, and verifying timing specification. In
order to be clearly understood, we use the Anti-lock Braking System (ABS) as an
example to show the steps of using TimePF. The description of ABS is as follows.
It is composed by four sensors and four actuators. The four sensors (ifl, ifr, irl, irr)
are used to measure the rotational speed of wheels. And the four actuators (ofl, ofr,
orr, orl) represent the braking pressure on each wheel. The ABS is triggered by R.
The signals of four sensors must arrive in a certain input delay (for example 0.5ms).

Fig. 3. Process for modeling and verifying timing requirements

Define clocks for
each problem

domain

Establish
qualitative

relations among
clocks

Identify
quantitative

relations among
clocks

Run on NuSMV
and obtain results

Describe the
consistency

property in CTL

Transform timing
specification into

NuSMV
descriptions

Problem
diagram

Model timing requirements

Verify timing specification

Timing
specification

Derive timing
specification for
the to-be built

system

Define the
Transforming

rules

Scenario
graphs

152 Y. Wang et al.

Step 1: Model Timing Requirements. The inputs of this step are a problem diagram
and scenario graphs. The output is the timing specification of the to-be built system. It
has 4 sub-steps:

1) Define clocks for each problem domain in the problem diagram. A clock is de-
fined as C:=< I, <>, where, C is the clock, I is the set of time points, and < is the
partial order relation defined on I which named StricPre. Clocks are classified into
two kinds, domain clocks and interaction clocks. The domain clock is expressed as
d.C, where d represents the problem domain and C represents the clock. And the
interaction clock can be defined as int.C, where int represents the interaction and C
represents the clock. Since each problem domain can initiate or receive many inte-
ractions, each domain clock is composed by the interaction clocks of this domain
using the union operator of CCSL [6]. If a domain is composite, its clock will be
established by the clocks of sub-domains using clock operators of CCSL including
sup, inf and union [6].

Fig. 4. Define domain clocks Fig. 5. Define clock constraints

Fig. 6. Clock relations

 TimePF: A Tool for Modeling and Verifying Timing Requirements Based on PF 153

Example: In the ABS system, int1 is an interaction that ABS software initiates and
domain ifl receives R. It has a corresponding clock, int1.C1. Domain ifl has a clock
too, ifl.Cifl. As domain ifl has two related interactions, int1 and int2, then the Time-
PF automatically generates ifl.Cifl= int1.C1ifl union int2.C2ifl . In the tool, Clock edi-
tor (Fig. 4) defines domain clock, and union constraints are shown in Fig.6.
2) Establish qualitative relations among clocks. The qualitative relation operators
provided by CCSL consist of subclock, fasterThan and alternate. These qualitative
relations could be obtained directly from existing scenario graphs. We argue that
interaction relations of the same problem domain could be directly transformed to
the following clock relations:

 int1 behOrd int2 implies Cint1 strictPre Cint2.
 int1 behEna int2 implies Cint1 strictPre Cint2.
 int1 reqOrd int2 implies Cint1 strictPre Cint2.
 int1 syncBehReq int2 implies Cint1 subClock Cint2, and Cint2 subclock Cint1.
Example: In the scenario graph of ABS, int1 behOrd int2, then we get Cint1 strictPre
Cint2 (Fig.6). This is generated automatically.

3) Identify quantitative relations among clocks expressed as C1 bounderDrift(i, j)
C2. It means that the time interval between the time points C1 and C2 is within the
range [i, j], where i is a negative integer and j is a positive integer.

Example: In the ABS, int1 happens before int2 is within the range [1, 2], then we
use bounderDrift relation as shown in Fig.5.

4) Derive the timing specification of the to-be built system. Firstly, define clock
Csys for system by union each problem domain clock. The timing specification con-
tains three parts: system clock Csys, related clocks of Csys and clock relations
including the qualitative relations obtained from step 2) and quantitative relations
obtained from step 3).

Example: In the ABS system, we define CABS for the system. It is composed by Sensor
and Actuator. So we get CABS = CSensor union CActuator. The Sensor clock has relations
with other clocks as shown in Fig.6. Finally, a specification in format of .txt is ob-
tained.

Table 1. Transformation rules from timing specification to the NuSMV descriptions

Timing specification in LTS NuSMV descriptions
Clock C C:boolean
Clock relation constraint MODULE
State s VAR s:boolean;

Transition
s {C1, C2,…,Cn} s’

TRANS
case
s=TRUE:
next(C1)=TRUE & next(C2)=TRUE &…&
next(Cn)=TRUE &
next(s)=FALSE & next(s’)=TRUE
case;

Step 2: Verify Timing Specification. The input of this step is the timing specifica-
tion obtained in step 1. And the output of this step is the verification results and the
verified timing specification. It has 4 sub-steps:

154 Y. Wang et al.

1) Define the transformation algorithm from the timing specification to the
descriptions of NuSMV. Firstly, we define the operational semantics of timing
specification using Labelled Transition System (LTS). By direct mapping, the
transformation rules form LTS to NuSMV descriptions are given in Table 1. Then
the transformation algorithm could be defined (omitted due to limited space).
2) Transform the timing specification into the NuSMV descriptions according to
the transformation rules in 1).

Example: According to the transformation algorithm, the constraint ifl.Cifl= int1.C1ifl
union int2.C2ifl could be transformed into ctr1: union (C1, C2, Cifl). According to the
transformation rules in Table 1, union could be transformed to:

MODULE union(left, right, new)
TRANS

 (next(left)=TRUE & next(new)=TRUE)|(next(right)=TRUE &
next(new)=TRUE)|(next(left)=FALSE & next(right)=FALSE & next(new)=FALSE)

3) Describe the consistency property of timing specification in CTL. For the tim-
ing specification with clock set T= {C1, C2,…,Cn}, we say it is consistent if it satis-
fies the following two CTL formula:

o EF(AGp), where p=!(C1|C2|…|Cn);
o CiT, EF (AGq), where q=!Ci.

Example: In the ABS system, T={CABS,CSensor,CActuator,Cifl,Cifr,Cirl,Cirr,Cofl,Cofr,
Corl,Corr,C1ifl,C2ifl,C1irr,C2irr,C1irl,C2ifr,C2irl,C1ifr,C3ofl,C4ofl,C3ofr,C4ofr,C3orr,C4orr,C3orl,C4orl,Cint

1,Cint2,Cint22,Cint3 ,C1Sensor,C1sensor2,C1,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,Csen1,Csen2,Csen3,
Cact1,Cact2,Cact3}. Its consistency formula is generated automatically by our tool.

4) Check the consistency of timing specification using NuSMV, and obtain the
verification results and the verified timing specification.

Example: After clicking Check consistency menu, the consistency of the ABS system
could be checked automatically. There is no inconsistency condition. Then the timing
specification could be output in the format of .txt at the same folder with the project.

Acknowledgement. This research was supported by the National Natural Science Foundation
of China under grants 61202104 and 91418203, and the Doctoral Fund of Ministry of Educa-
tion of China under Grant 20120076120016.

References
1. Chen, X., Liu, J., Mallet, F., Jin, Z.: Modeling timing requirements in problem frames

using CCSL. In: Proceedings of the 18th Asia-Pacific Software Engineering Conference
(APSEC 2011), pp. 381–388 (2011)

2. Yin, L., Chen, X., Liu, J.: Consistency analysis of timing requirements for cyber-physical
system. Journal of Software, 25(2), 400−418 (2014, in Chinese)

3. Chen, X., Liu, J.: Modeling Software Timing Requirements: An Environment Based
Approach, 36(1), 88–103 (2013, in Chinese)

4. Jackson, M.: Problem Frames: Analyzing and Structuring Software Development
Problems. Addison-Wesley (2001)

5. Mallet, F.: Clock constraint specification language: specifying clock constraints with
UML/MARTE. Innovations in Systems and Software Engineering. 4(3), 309–314 (2008)

6. Chen, X., Yin, B., Jin, Z.: DPTool: a tool for guiding the problem description and the prob-
lem projection. In: Proceeding of the 18th IEEE International Requirements Engineering
Conference, pp. 401–402 (2010)

	TimePF: A Tool for Modeling and Verifying Timing Requirements Based on Problem Frames
	1 Architecture and Implementation
	1.1 Architecture
	1.2 Implementation

	2 Process and Illustrating Example
	References

