
Scalable SaaS-Based Process Customization
with CaseWalls

Yu-Jen John Sun(B), Moshe Chai Barukh, Boualem Benatallah,
and Seyed-Mehdi-Reza Beheshti

School of Computer Science and Engineering, University of New South Wales,
Sydney, Australia

{johns,mosheb,boualem,sbeheshti}@cse.unsw.edu.au

Abstract. The rising popularity of SaaS allows individuals and enter-
prises to leverage various services (e.g. Dropbox, Github, GDrive and
Yammer) for everyday processes. However, these disparate services do
not in general communicate with each other, rather used in an ad-hoc
manner with little or no customizable process support. This inevitably
leads to “shadow processes”, often only informally managed by e-mail
or the like. In this paper, we propose a framework to simplify the inte-
gration of disparate services and effectively build customized processes.
The implementation of the proposed techniques includes an agile services
integration platform, called: CaseWalls. We provide a knowledge-based
event-bus for unified interactions between disparate services, while allow-
ing process participants to interact and collaborate on relevant cases.

1 Introduction

Traditional structured process-based systems increasingly prove too rigid amidst
today’s fast-paced and knowledge-intensive environments. A large portion of
processes, commonly described as “unstructured” or “semi-structured” processes,
cannot be pre-planned and likely depend upon human-interpretation. On the
other hand, there has been a plethora of apps to support everyday tasks with
enhanced collaboration. For example, Software-as-a-Service (SaaS) based tools
such as: (i) Dropbox to store and share files; (ii) Pivotal tracker to manage tasks
and projects; and (iii) Google Drive to edit and collaborate. Workers often need
to access, analyze, as well as integrate data from various such cloud data services.

Albeit, there are crucial gaps in the SaaS-enabled endeavor: The large number
of available services do not easily communicate with each other - often employed
ad-hoc. Moreover, such ready-made services implies conforming to a fixed set of
embedded features allowing little or no room for customization. Alternatively,
even if a collection of such services are used for different portions of tasks, this
inevitably leads to “shadow processes”, where synchronization between such
services is handled in an ad-hoc manner (e.g., actions are often accomplished in
a number of non-traceable steps via manual tasks, such as email or the like).

At the same time, the intent of the SOA-based approach was to simplify
service integration via APIs. However, this was met by the inherent need to
c© Springer-Verlag Berlin Heidelberg 2015
A. Barros et al. (Eds.): ICSOC 2015, LNCS 9435, pp. 218–233, 2015.
DOI: 10.1007/978-3-662-48616-0 14

Scalable SaaS-Based Process Customization with CaseWalls 219

understand various low-level APIs, leading to inflexible and costly programming
environments, requiring multiple and continuous patches. To counteract this,
advances in process composition languages emerged (e.g. BPEL), along with
Mashup environments (e.g. Yahoo! Pipes). Albeit, these environments rarely
provide productivity support tools akin to modern IDEs (e.g. code search and
discovery, ease of reuse, debugging, code generation). Moreover, they suffer from
the lack of agility and cannot support run-time changes. We thus call for an
exciting new change: where advanced techniques for simple, declarative, flexible
exploration and manipulation of multiple services in large scale and dynamic
environments, are needed. We argue, the ubiquity of process and services will
have little value if users cannot use, share and reuse them simply.

To address the above challenges, in this paper we propose a framework to sim-
plify service-integration and effectively build customized processes. Central is the
notion of Case Knowledge Graph (CKG), where common services-related low-
level logic can be abstracted, incrementally shared and thereby reused by devel-
opers. We organize knowledge into various dimensions: API s, Resources, Events
and Tasks. By identifying entities (i.e. attributes and relationships, along with
their specialization), a novel foundation is introduced to accumulate dispersed
case knowledge in a structured manner. This offers a unified representation,
manipulation and reuse of case knowledge to empower simplified SaaS-enabled
process customization. Empowered by this knowledge graph, we provide a novel
case customization and deployment platform, called CaseWalls, which enables:

– Professional process developers to incrementally create modular collections of
tasks - reusable and customizable process fragments (referred to as a “case”).
E.g. Create an issue on a project management service; upload a file into a
document management service; send an email when a co-worker upload new
version of a file; post videos and photos into social media services, etc.

– A simple, declarative yet powerful language that allow case-workers to search
existing tasks and compose into customized definitions. Composite tasks are
abstracted as reusable cases in the CKG for further reuse. The tasks search
component uses a “context” to describe the task “intent” and “objective” (e.g.,
upload a file, create an issue). Thus, using the business scenario to query the
CKG can return tasks that are appropriate for the given context.

– An event/activity “wall” to inform case-works about task progress; together
with a simple and declarative language to enable such participants to uni-
formly and collectively react, interact and collaborate on relevant case.

– The above is supported by a unified, knowledge-based event-bus for case
orchestration. The knowledge required at runtime to orchestrate cases (i.e.,
detecting events, executing tasks, invoking APIs) is automatically extracted
from the defined case definitions and expressed as event-action case orches-
tration rules. (We thus reuse a rule-engine as our execution environment.)

The rest of this paper is organized as follows: In Sect. 2, we propose a unified
case knowledge-graph and describe the constituent entities and relationships. In
Sect. 3, we present a novel knowledge-driven and declarative case manipulation

220 Y.-J. John Sun et al.

language. In Sect. 4, we present our implementation; evaluation in Sect. 5; then,
related-work and conclusions in Sect. 6.

2 Case-Knowledge Representation and Reuse

A knowledge-graph (KG) is an effective technique for taxonomy-based organiza-
tion of concepts and relationships. For example, Google-KG1 is a graph of pop-
ular informational concepts on the Web, such as “people, places and things”.
In our work, we apply a KG to curate (and thereby enable reuse) of service
and process related programming concepts (i.e. API s, Operations, Resources,
Events, Tasks) and their relationships. Formally, a KG is defined as an ordered
pair G = (V,E,Av, Ae) where, V is the vertex set whose elements are the vertices
(i.e. nodes or entities) of the graph; E is the edge set whose elements are the
edges (or relationships) between vertices of the graph; Av is a set of attributes
that can be associated with any vertex in V; and Ae is a set of attributes that
can be associated with any vertex in E.

Reference Scenario. For purpose of illustration, we describe a running exam-
ple that we adopt throughout this paper (also further elaborated in Sect. 5).
Consider the integration of a version-control and online source-code repository
system Github, with a story-tracking system Pivotal Tracker. Often code trace-
ability, collision and bug-repair require effective peer review and collaboration.
The integration of these two tools would provide a powerful combination.

Figure 1 illustrates a canonical graph of possible relationships between enti-
ties, (where entities are structured data-objects with unique identifiers, and
instance of entity-types, i.e. API s, Operations, Resources, Events and Tasks).
Illustrating the above scenario, we may learn that Pivotal Tracker consists of
a few Operations that manipulates Story and a StoryFinished Event that’s

Fig. 1. A canonical graph of possible relationships between entities in the Knowledge
Graph for case management systems.

1 http://www.google.com/insidesearch/features/search/knowledge.html.

http://www.google.com/insidesearch/features/search/knowledge.html

Scalable SaaS-Based Process Customization with CaseWalls 221

produced when a Story is finished. In addition, the Automated Task(1) will trig-
ger the FinishStory Operation when a PullRequest Event from Github is
received, providing a simplified work environment for the developer. In Pivotal
Tracker, after a story is created, it has to be started manually afterwards to
initiate the story. To simplify these steps, Task (2) can be used to shortcut this
procedure. In the following, we define specific entity-types that are relevant:

API. Application Program Interface, represent the plethora of tools (e.g. stor-
age, location, social-networking, etc.) exposed via Web-service interfaces (e.g.
REST, WSDL). An API thereby encapsulates the endpoint and operations, (and
other relevant information, e.g. OAuth protocol, refer [11]). We build upon our
previous work [4], for a unified-structured approach of Web-APIs in the KB.

Operation represent the set of operations offered by a specific service (e.g.
CreateIssue on Github, or CreateStory on Pivotal Tracker). Operations may
consume or produce resource-types; and may also be used as actions within tasks.

Resource represent the input or output for an API. In this context, resources
may have various granularities, from a large dataset to an entity representing
issues in Github, stories in Pivotal Tracker, and even pdf files in Dropbox. To
proficiently represent resources, we utilize JSON-Schema Draft v4.

Event is the record of an activity. Denoted E and consisting of attributes
{T,R, τ,D}, where T is the type of the event (e.g. Github provides 25 different
event2, such as Push, Issue, and Fork); R is the actor (i.e. person or device); τ is
the timestamp; and D is a set of data elements recorded with the event (e.g. the
task associated with the event). Events may be fine-grained (e.g. concrete events
defined at the API level), or coarse-grained that capture a pattern relevant to a
collection of resources (e.g., related stories in Pivotal Tracker).

Task represents the set of operations to achieve a defined goal, (ranging from
a single to a combination of several API endpoints). Moreover, we propose the
novel feature of “context”, which describes the “intent” and “objective”. This is
especially useful to human process-designers or human-driven search engines. In
this manner, operation endpoints may be mixed-and-matches between different
APIs, to provide a more comprehensive Task that precisely targets a particular
use-case. For example, the task CreateIssue may conform to different intents
such as report bugs, create pull requests or request feature. Functionally, there
are two task-types: Automated and Manual. The former assigned to an Event
that may trigger the task, while the latter only triggered manually by an actor.

Tasks may also have sub-tasks, in order to help reduce complexity. For
example, a Code Commit Task could be defined as a set of sub-tasks contain-
ing GithubPush and GithubPullRequest APIs. Utilizing Resources and Tasks
nodes, we can identify potential service integration patterns, i.e.: If a Task TA

produces Resource R and Task TB consumes Resource R, then Task TA and TB

can be invoked in a sequence. For example, the Task CreateIssue produces an
Issue and Task EditIssue consumes an Issue, therefore we can state that
EditIssue can be invoked after CreateIssue on the same resource.
2 https://developer.github.com/v3/activity/events/types/.

https://developer.github.com/v3/activity/events/types/

222 Y.-J. John Sun et al.

Relationship is denoted as R = (E1, E2), which indicates a connection between
entities E1 and E2. As illustrated, we have seven types of relationships: “API has
OPERATION”, “TASK use OPERATION”, “TASK use EVENT”, “OPERA-
TION consumes RESOURCE”, “OPERATION produces RESOURCE”, “TASK
compose TASK”, “OPERATION trigger EVENT”. In addition, there is “EVENT
compose EVENT” indicating that an event is complex, and is representative of
some pattern composed of several other events.

3 Knowledge-Reuse-Driven and Declarative Case
Definition Language

The notion of Case conceptualises a lightweight process (set of service inter-
actions). A case is thus defined to consist of: Tasks, People and Event. Tasks
indicate the services and the features needed in the interaction. People describes
who have access to the Case, especially the owner who has the privilege to edit
the case. Cases can contain both automated tasks. As well as manual tasks,
when human discretion and thereby intervention is required. However, Tasks
can also monitor Events (or patterns thereof) which may serve as notification
to participants (e.g. perform some manual task). Moreover, as Cases themselves
are represented as nodes which can be curated and reused in a modular manner.
While the platform is exposed via a RESTful interface, we further propose a
higher-level command-line Case Search, Definition and Interaction Language.

3.1 Knowledge-Reuse Language

Selecting the required tasks for a Case may not be trivial with an extensively
populated knowledge-graph. We thus propose an effective search component (uti-
lizing the index of the tasks objective and an iterative keyword search approach
[10]). The closest matching tasks are thus recommended to the user, based on
the objective tags described in Sect. 2. Albeit, the decision of whether a Task
(or Sub-task) should be included finally relies on the Case designers’ discretion
(Fig. 2).

expression
op task #matches tasks against all possible related keywords

resource #tasks that are related to the resources matching the keywords
input #tasks that consumes the resources matching the keywords
output #tasks that produces the resources matching the keywords
API #tasks that are directly related to the API specified
event #tasks that are monitoring the events specified
case #directly matches cases against all possible related keywords

keywords ::= {<string>} #set of keywords to perform the search

Fig. 2. Search Language Syntax

Scalable SaaS-Based Process Customization with CaseWalls 223

expression ::= <new_case> | <extend>
new_case CREATE CASE
 [<shared>][<using service>][<monitor events>][<include tasks>]
extend EXTEND CASE
 [<shared>] [<using service>][<monitor events>][<include tasks>]
own OWNED BY
shared SHARED WITH
using_service USING SERVICE
monitor_events MONITOR EVENTS
include_tasks INCLUDE TASKS

Fig. 3. Case Definition Language

3.2 Declarative Case Definition Language

Cases can be defined (or extended) using the language as defined below. The
syntax contains governance policies over both people and services. For people,
constructs such as OWNED BY (permission for editing/updating); SHARED
WITH (permission for interacting). For services, the USING SERVICE con-
struct indicates authorizations information - as the owner has to specify which
authorization to share between the users of the Case. The MONITOR EVENTS
construct details which events are to be monitored and notified to the partici-
pant users. While INCLUDE TASKS configures tasks related to the interaction
(Fig. 3).

Figure 4 illustrates an example of a GitHub Code Review Process with Pivotal
Tracker. Ordinarily, using Github alone, the Lead Developer may review code

Fig. 4. CodeReview Case Definition Example

224 Y.-J. John Sun et al.

by requiring the Engineers to submit their code in forms of Pull Requests3 and
then review it on Github. However, if the project manager wish to monitor the
review progress on Pivotal Tracker, they will have to manually create review
tasks (stories) for lead engineer every time a review is needed. Using CaseWalls,
we can simplify this process by defining a case and linking automated tasks to
auto-create stories when receiving a pull request. Events can also be monitored,
notification posted to interested participants and thereby manual tasks (e.g.
upon completing the review, merge the code into upstream, and close review
process) can also be accomplished.

3.3 Declarative Case Manipulation Language

Finally, we propose a interaction language to interact with the Case during
execution. Interactions may be with both manual tasks (awaiting human inter-
vention), as well as automated tasks (as in tapping into some 3rd-party service)
(Fig. 5).

expression ::=<op><params>
op ::=< op task > | < op resource >
op_task #
op_resource @
params

Fig. 5. Case Manipulation Langauge

Figure 6 illustrates CaseWalls for 3 participants in the Code Review process
defined earlier. On the left, we see a set of notifications - this informs the par-
ticipants what actions to take (if any). Actions might be interacting with some
external software service (e.g. [P] Pivotal Tracker, and [G] GitHub]), or per-
forming some manual task (i.e. [MT]). However, moreover behind the scenes
automated tasks (i.e. [AT]) are also being performed as defined in the Case. It is
thus apparent without CaseWalls all interactions would be done manually, with
little or no flexibility. Not only do CaseWalls help automate certain tasks, it also
automates the notification process - thus making it more simpler for participants
to identify what needs to be done. Subsequently, the interaction language can
be used to call upon manual tasks in a simple manner. As for implementation,
the semantics of the language are translated into Rule-based expressions for the
purpose of execution (refer to next section, at Sect. 4.4).

3 https://help.github.com/articles/using-pull-requests/.

https://help.github.com/articles/using-pull-requests/

Scalable SaaS-Based Process Customization with CaseWalls 225

Engineer

Lead
 Developer

Project
Manager

Case Walls Task Interactions

Fig. 6. CaseWalls with Illustration of Interactive Behavior

4 Implementation

4.1 Architecture

Figure 7 illustrates the system architecture and interaction of the main compo-
nents of the CaseWalls platform. At the heart of the system is the Knowledge-
Graph (KG) for Case-processes. It maintains the ontological relationships
between key entities and facilitates task/case-based processes. Manipulation as
well as effective searching of the case-based KG are conducted via the respective
components (as shown). The Event-Management system: collects raw event-data
from different services; and thereby, processes them using the patterns in the KG.
We leverage our previous work for this, [4,5]. This feeds into the Rule-Engine
which performs pattern-matching and can infer which actions to perform by
calling upon the Task Execution Engine.

Overall, CaseWalls has been implemented and exposed via a RESTful inter-
face, together with an event-notification system. Event-notifications can either
be PuSHed or Polled, and effectively formulate the Case-based Activity Walls.
Process participants can then take actions to interact/manipulate tasks. While
at the time of writing the interface provided is programmatic only, future plans
are to implement a GUI of the case-walls; or AS IS, we expect the platform to
be extensible enabling 3rd-party higher-level and customizable applications.

4.2 Knowledge Graph

The knowledge graph plays a crucial part in the system. It needs to be robust
and has to support complex graph query. We use Neo4j as the backend DB and

226 Y.-J. John Sun et al.

Fig. 7. System architecture of CaseWalls

build a typed graph database with a REST interface on top of it. Neo4j comes
with the label system for its entities, which lets the user marks entities with a
label but it doesn’t enforce any schema except for unique constraint. Therefore
we utilized JSON-Schema in the Knowledge graph for validating the JSON data.

By using Neo4j we can use its powerful graph query language call Cypher
Query Language to query complex relationships. We can easily find a path from
one Task to another. With this capability, we can provide the information about
the interoperability between Tasks. We implement a RESTful API to enrich KG
itself. Further details of the API can be found via swagger docs4. Figure 8 below
shows the definition of the DeliverOnPR task curated in the knowledge-base.

4.3 Event Management System

The Event Management system is implemented to aggregate and process the
events from different services. We use Fluentd5 for aggregating and dispatching
the events received from various services, Norikra6 and Esper EPL7 for process-
ing and generating high level events. For instance, defining an event with only

4 https://raw.githubusercontent.com/freehaha/case-wall-api/master/case.yaml.
5 http://www.fluentd.org/.
6 http://norikra.github.io.
7 http://esper.codehaus.org.

https://raw.githubusercontent.com/freehaha/case-wall-api/master/case.yaml
http://www.fluentd.org/
http://norikra.github.io
http://esper.codehaus.org

Scalable SaaS-Based Process Customization with CaseWalls 227

Task DeliverOnPR:
{
 "id": "ad6c7cf6-d18b-4323-8bc8-9e56055c313a",
 "name": "DeliverOnPR",
 "description": "deliver a story when a pull request is received",
 "mapping": "{\"current_state\": \"#delivered\",
 \"storyId\": \"$.storyId\", \"projectId\": \"$.projectId\"}",
 "type": "auto",
 "intent": [
 "pullrequest",
 "story",
 "deliver"
],
 "_type": "Task",
 "event": [
 "pull_request"
],
 "tasks": [
 "UpdateStory"
],
 "_created": 1432520794
}

Fig. 8. Task definition expressed in JSON for DeliverOnPR

the attributes we need (thus masking the different payload and/or structure of
the events). Higher-level events also enable defining an event based on a series of
targeted events rather than just a single event. Likewise, we utilize MongoDB8

and ElasticSearch9 for archiving and indexing event data. For event collection,
we implement an event-collecting application that connect to different services.
Collected events are then sent to Fluentd to dispatch and process. Since the
majority of services today utilize OAuth authorization, we have implemented
and allow user to authorize our application to collect events automatically for
them. Two kinds of events collecting mechanisms are implemented:

1. Pushing. Services like SendGrid, Twilio, Google Drive, Pivotal Tracker let
user register a callback url, often called webhook, where the service will send
a request to when events arrive. There is also a protocol call PupSubHubBub
proposed by Google trying to standardize this event delivery method.

2. Polling. Some services use the legacy event polling model, requiring the client
to constantly check whether there are new events. Another variation of it
developed lately is long polling, sometimes called comet, designed to reduce
the connection overhead by establish a keep-alive HTTP request. Services
providing this kind of mechanisms include Twitter, Twich.tv and Plurk.

4.4 Orchestration Engine: Generating Rules

CaseWalls further layers a more higher-level and declarative case manipula-
tion language (refer Sect. 3). To implement this language, the semantics are

8 http://www.mongodb.org.
9 http://www.elasticsearch.org.

http://www.mongodb.org
http://www.elasticsearch.org

228 Y.-J. John Sun et al.

translated into Rule-based expressions, denoted: Rtype : (Events → Actions).
This effectively means, rules are generated from case definitions. Once deployed,
the event-bus can detect relevant event-patterns, and working in conjunction
with the rules-engine provision the execution of cases. Since we mentioned there
are two main types of tasks: manual and automated. There are also two cor-
responding types of rules. Automated-task rules, denoted Rautomated consist of
service-related events (e.g. PullRequest); and task-actions (e.g. DeliverOnPR).
Manual-task rules, denoted Rmanual may additionally consist of special internal
events and actions. While not always necessarily utilized, they are at the dis-
posal of the developer in order to grasp better control over manual tasks. In
particular, they may prove useful to manage UI components10 associated with
manual tasks. For example, if an event ei triggers some manual task to be per-
formed, the rule Rulemanual : (ei → ax) may be defined, where ax can prepare
or perform some pre-processing to some UI component. Likewise, another rule
Rulemanual : (ei.ej → ay) could denote that the manual task has been com-
pleted, where ej is some UI event that the task was completed, and ay could
then be some post-processing action.

To better demonstrate case orchestration rules in the case of automated-
tasks, we illustrate as shown in Fig. 9 the series of rules (i.e. DeliverOnPR, and
CreateReviewOnPR) that would generated using the example Code Review case
that we defined earlier (refer Sect. 3).

"rules : [
{

"action": [
"UpdateStory"

],
"event": "pull_request",
"map": {

"projectId": "$.projectId",
"storyId": "$.storyId",
"current_state": "#delivered"

}
},

{
"action": [

"CreateStory"
],
"event": "pull_request",
"map": {

"projectId": "$.projectId",
"name": "#review PR #{number}"

}
}

]

Fig. 9. Example of generated case orchestration rules

5 Evaluation

Evaluation Objectives. To evaluate overall effectiveness, we assessed the fol-
lowing hypotheses: CaseWalls is capable of (a) Improving the productivity to
model, reuse and execute customized service-oriented processes; and (b) Increas-
ing the efficiency of application maintainability for agile service integration.

10 Even with some 3rd-party tools, developers may tap into the tool (e.g. via Web-
hooks as in the case of Github). Alternatively, we may also refer here to custom UI
components built by the developer to reflect certain manual tasks.

Scalable SaaS-Based Process Customization with CaseWalls 229

Experimental Setup. To assess the validity, the experiment was conducted by
implementing a real-life use-case scenario. Analysis was then conducted via
comparison to other approaches (incl. Javascript, Java, BPEL, Yahoo! Pipes).
We divided our scenario into 2 phases; where the latter phase was to add onto
the former, thus assessing ease of maintainability. Overall productivity was then
measured as: (a) Time taken to complete task; (b) Total number of lines-of-code
(LOC) excluding white-space; and (c) Number of extra dependencies needed.

Use-Case Scenario (Code Review and Development Cycle). Version Con-
trol Systems (VCS) are very common in software engineering - they help avoid
collision and improve traceability. While it is important to find where the bug
is introduced and revert it, peer review also helps to bring forward discovery
of such bugs. Github is one of the most popular online open-source repositories
for code. Likewise, Pivotal Tracker (PT) offers a good story-tracking system, to
help the team keep track of their progress. Phase 1 of this scenario involves
integration of these two tools in the basic workflow described below:

1. Project Manager PM creates a Story and assigned to Engineer.
2. Engineer starts working on the Story.
3. Engineer completes programming task and pushes onto Github.
4. Engineer finishes and delivers the Story.
5. PM accepts/rejects the delivery.

Effectively, Github + PT integration may be implemented by parsing com-
mit messages for syntax in the form of: “#(number) ”, such as: [Starts #12345,
#23456] ... [Finishes #12345] ... [Delivers #12345]. If any such messages are
detected, the corresponding action will be performed in PT. For example, if the
engineer commit message containing [Finishes #12345], when Github receives
this commit, it will automatically finish that story in PT. This helps simplify
the workflow by eliminating the otherwise manual work done within PT.

While this basic integration provides an initial improvement to eliminate the
manual creation, start, finish and delivery of a PT “story”, Phase 2 involves
adapting it to “continuous integration (CI)”. The notion of CI, as prominent in
software engineering today, calls for “continuous” testing whenever new changes
are made. This would thus significantly alter the semantics of the deliver action.
This means, at Step 4, we may want to introduce additional (and iterative)
stories (cf. Steps 2–4) for: testing and deployment before closing this change.

Experimental Results. We set out to prove (or disprove) our hypotheses;
the results are illustrated in Fig. 10. Outrightly, BPEL was excluded as real-
time events are not available without writing custom extension to the engine.
The same applied for Yahoo! Pipes, as it could not receive realtime events via
webhooks11. Hypothesis H(a) was evaluated as the time to complete both tasks
(excluding setup time) and LOC. Using CaseWalls this resulted in only 30 mins,

11 A possible solution could be done using feeds (rss/atom) for receiving the events,
and a web-query framework, such as YQL to make requests. However, doing so is
less interactive, less efficient and also requires writing sufficiently complex javascript.

230 Y.-J. John Sun et al.

compared to an average of 245 mins using other approaches (decrease of ∼ 88%);
while LOC was 53 compared, to an average of 376 (decrease of ∼ 86%), respec-
tively. For CaseWalls setup included time to create all the Operations/Events/-
Tasks in the KG; whereas for Javascript/Java this meant downloading and
installing the requisite SDKs (where applicable). CaseWalls also resulted in less
overall setup time. H(b) was then measured as the cost of implementing Phase
2 (including any setup time). CaseWalls resulted in only 25 mins to implement
compared to an average of 220 mins (decrease of ∼ 89%), with 30 and 93 LOC
respectively (decrease of ∼ 67%).

Fig. 10. Evaluation results for GDrive contribution calculator use-case

Overall, it was clear both time and LOC is significantly reduced when using
CaseWalls. We thus validate both our hypotheses as true with very promising
results. Moreover, our approach did not require any additional libraries, whereas
others required on average at least 2–3. CaseWalls also provided the facility of
increased transparency, as well as agile participant control - compared to other
solutions which were rather rigid. In light of these results, this evaluation study
successfully demonstrates the anticipated benefit of our proposed approach.

6 Related Work and Concluding Remarks

The ubiquitous access to thousands of APIs offer tremendous potential in modern
App development. For example, ProgrammableWeb records some 13,495 APIs
over numerous categories, including: financial, mapping, social-networking, etc.
The inevitable key to success is thus ‘API integration’ - as the empowerment to
compose disparate services (rather than reimplementing) will reap great reward.
Currently, there are a plethora of SaaS-enabled tools that aim to fulfill a spe-
cific user-need, however these ready-made solutions often imply conforming to a
fixed set of embedded features with little room for user-customization. On the
other side of the spectrum, BPM sought to offer customizable process-support
over disparate services, albeit it suffered significantly from a lack of flexibility.

Scalable SaaS-Based Process Customization with CaseWalls 231

In the following, we analyze these two technological polarities. We then offer an
innovative set of guiding principles for converging these polar extremes - which
is the refreshing outlook we have adopted in positioning our work in this paper.

Web-Services/API Integration Development. Modern service-oriented
systems aim to support services integration, [3,8,12]. For instance, the Enter-
prise Service-Bus (ESB) was an early and still prevalent method for handling
message-exchange over heterogenous and distributed components. Apache Ser-
viceMix [14], is one example providing advanced features. Micro-services are
yet another alternative approach that are well aligned with cloud provisioned
services, and tools such as Netflix Asagard [15], and Pivotal Cloud Foundry
[13], have emerged. Albeit, these methods still do not alleviate even professional
programmers from being coerced in understanding the various low-level service
APIs, as well as working directly with procedural programming constructs to
create and maintain complex applications. This leads to an inflexible and costly
environment which adds considerable complexity, demands extensive program-
ming effort, multiple and continuous patches, and perpetual solutions, [12].

Process-Oriented Service Programming. Advanced process support sys-
tems (e.g. BPEL) and Mashup environments (e.g. Yahoo! Pipes) aimed to coun-
teract the above challenges, while also appealing to the less-technical. However,
while they helped avoid low-level API programming, composition environments
significantly lacked the productivity support tools that developers were used to
whilst programmers using IDEs, (e.g. code search and discovery, ease of reuse,
debugging, code generation), [12]. Moreover, they suffered from the lack of flex-
ibility and cannot support run-time changes, [6]. This worsens as the variety of
services and variations of application requirements and constraints increase, [4].

Case Management. Flexibility is imperative to transition composition sys-
tems from the realm of static and small-scale environments to that of large-scale
computing, relying on highly unpredictable and evolving environments. Case-
Management is an emerging step in the right directions, given many processes
are knowledge-intensive and thereby human-driven, [1,2,9]. For example, a cus-
tomer initiating a request for some services, the set of interactions among people,
e.g. customer and relevant participants, and artifacts from initiation to comple-
tion is known as the ‘case’. However, while well conceptualized, much of its actual
implementation remains vague and depends on its context of use, [7].

Summary. Reflecting on the above, we have discovered Web-services mirroring
(at least conceptually), the evolution of database management systems (DBMS)s
over the last 30-years. In effect, DBMSs have called for generic abstractions and
declarative techniques (e.g., data-models, relational algebras, declarative query
techniques) for simplifying the design of complex applications and enabling high
level manipulation of data. Similarly, we propose the following set of guiding
principles that Web-service APIs should adopt: (i) Modularity, similar building
blocks in terms of simple and useful models; (ii) Declarative analysis, including
support for high-level language manipulation, integration and transformation;
and (iii) Knowledge-preserving, such that API-related programming knowledge
can be curated for future communal reuse.

232 Y.-J. John Sun et al.

Accordingly, CaseWalls is a refreshing step towards this innovative direc-
tion, providing a framework to simplify the integration of disparate services and
effectively build flexible customizable processes. Our knowledge-driven approach
builds upon our previous work [6], and is inspired by efforts in general knowledge-
graphs such as “linked data”. We have thus proposed a novel Case Knowledge
Graph (CKG) to facilitate the organization, integration, querying, and reusing of
the case management knowledge. Moreover, the ability for case-works to “re-use”
process knowledge is a vibrant change to most existing process platforms.

Empowered by this knowledge graph, we also provided a novel case cus-
tomization and deployment platform. And to even further increase user effi-
ciency, we introduced a simple, declarative yet powerful language to query and
analyze the knowledge graph. Unlike any previous works, CaseWalls focusses on
the transparency aspect of mid-process knowledge. The concept of “walls” thus
act as an activity wall akin to social status updates, albeit instead updates are
sourced as relevant events from case tasks. Participants are then empowered to
track the case execution, and react/interact accordingly.

Experimental results shows promising results, in particular addressing the
dimensions of increased user-efficiency. In future, we are excited to enhance and
extend the language power and expressivity - as well as implement a novel graph-
ical user-interface that mimics social-networking platforms. Whereby case-based
process functionality can effectively be combined within everyday tasks. We are
therefore very optimistic this work provides the foundation for future growth
into a new breed of enhanced process-support.

References

1. Van der Aalst, W.M., Weske, M., Grünbauer, D.: Case handling: a new paradigm
for business process support. Data Knowl. Eng. 53(2), 129–162 (2005)

2. Swenson, K., et al.: Taming the Unpredictable Real World Adaptive Case Man-
agement: Case Studies and Practical Guidance. Future Strategies Inc. (2011)

3. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services: Concepts Archi-
tectures and Applications. Springer Publishing Company Incorporated, Heidelberg
(2010)

4. Barukh, M.C., Benatallah, B.: ServiceBase: a programming knowledge-base for
service oriented development. In: Feng, L., Bressan, S., Winiwarter, W., Song, W.,
Meng, W. (eds.) DASFAA 2013, Part II. LNCS, vol. 7826, pp. 123–138. Springer,
Heidelberg (2013)

5. Barukh, M.C., Benatallah, B.: A toolkit for simplified web-services programming.
In: Lin, X., Manolopoulos, Y., Srivastava, D., Huang, G. (eds.) WISE 2013, Part
II. LNCS, vol. 8181, pp. 515–518. Springer, Heidelberg (2013)

6. Barukh, M.C., Benatallah, B.: ProcessBase: a hybrid process management plat-
form. In: Franch, X., Bhiri, S., Ghose, A.K., Lewis, G.A. (eds.) ICSOC 2014. LNCS,
vol. 8831, pp. 16–31. Springer, Heidelberg (2014)

7. Böhringer, M.: Emergent case management for ad-hoc processes: a solution based
on microblogging and activity streams. In: Muehlen, M., Su, J. (eds.) BPM 2010
Workshops. LNBIP, vol. 66, pp. 384–395. Springer, Heidelberg (2011)

Scalable SaaS-Based Process Customization with CaseWalls 233

8. Geambasu, R., Cheung, C., Moshchuk, A., Gribble, S.D., Levy, H.M.: Organizing
and sharing distributed personal web-service data. In: Proceedings of the 17th
International Conference on World Wide Web, pp. 755–764. ACM (2008)

9. Kaan, K., Reijers, H.A., van der Molen, P.: Introducing case management: opening
workflow management’s black box. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P.
(eds.) BPM 2006. LNCS, vol. 4102, pp. 358–367. Springer, Heidelberg (2006)

10. Klemisch, K., Weber, I., Benatallah, B.: Context-aware UI component reuse. In:
Salinesi, C., Norrie, M.C., Pastor, Ó. (eds.) CAiSE 2013. LNCS, vol. 7908, pp.
68–83. Springer, Heidelberg (2013)

11. Nolan, D., Lang, D.T.: Authentication for web services via OAuth. In: Nolan,
D., Lang, D.T. (eds.) XML and Web Technologies for Data Sciences with R, pp.
441–461. Springer, New York (2014)

12. Pautasso, C., Zimmermann, O., Leymann, F.: Restful web services vs. big web
services: making the right architectural decision. In: Proceedings of the 17th Inter-
national Conference on World Wide Web, pp. 805–814. ACM (2008)

13. Pivotal-Cloud-Foundry. http://pivotal.io/platform-as-a-service/pivotal-cloud-
foundry

14. ServiceMix, A.: Apache servicemix 3. x users’ guide. Apache ServiceMix Commu-
nity (2007). http://incubator.apache.org/servicemix/users-guide.html. (Cited on
p. 72, 73 and 149)

15. Sondow, J.: Asagard: web-based cloud management and deployment. The Netflix
Tech Blog (2012)

http://pivotal.io/platform-as-a-service/pivotal-cloud-foundry
http://pivotal.io/platform-as-a-service/pivotal-cloud-foundry
http://incubator.apache.org/servicemix/users-guide.html

	Scalable SaaS-Based Process Customization with CaseWalls
	1 Introduction
	2 Case-Knowledge Representation and Reuse
	3 Knowledge-Reuse-Driven and Declarative Case Definition Language
	3.1 Knowledge-Reuse Language
	3.2 Declarative Case Definition Language
	3.3 Declarative Case Manipulation Language

	4 Implementation
	4.1 Architecture
	4.2 Knowledge Graph
	4.3 Event Management System
	4.4 Orchestration Engine: Generating Rules

	5 Evaluation
	6 Related Work and Concluding Remarks
	References

