Aggregating Functionality, Use History,
and Popularity of APIs to Recommend
Mashup Creation

Aditi Jain, Xumin Liu®™), and Qi Yu

B. Thomas Golisano College of Computing and Information Sciences,
Rochester Institute of Technology, Rochester, USA
{axj4268,xumin.liu,qi.yu}@rit.edu

Abstract. Creating mashups from existing Web APIs has provided an
effective means to boost software reuse and approach the full poten-
tial of online programming resources. One of the key hindrance faced by
mashup creation is to discover relevant APIs, especially due to the recent
fast growth of Web APIs and the brief, unstructured API descriptions. In
this paper, we propose a novel approach that recommends APIs to create
a mashup given a free-form text description. We incorporate three het-
erogeneous but complimentary factors into the recommendation process:
the functionality of an API, the usage history of the API by existing
mashups, and the popularity of the API. We leverage probabilistic topic
models to learn an API’s functionality from its textual description and
compute relevance between the API and the given mashup description.
As most APITs lack a rich textual description, we extend the API discovery
process by exploiting collaborative filtering to estimate the probability
of an API being used by existing similar mashups. These two sources of
information are then integrated through Bayes’ theorem, which allows
us to discover a set of functionally relevant APIs. The popularity of
these APIs is then factored in to perform quality based ranking so that
the best APIs can be recommended first. A comprehensive experimen-
tal study has been conducted on a real-world dataset to evaluate the
efficiency and effectiveness of the proposed method. The result indicates
that our method is efficient and provides better recommendation than
other competitive methods.

1 Introduction

The advent and advance of the Web 2.0 paradigm have expanded the develop-
ment of mashups and their use in various web and mobile applications. Web
service mashup refers to the composition of several web services or APIs (as
most of them are REST-ful) to augment the functionality of those APIs. For
example, an application to show weather forecast on a map of a location may
integrate the mapping API by Google and weather API by Weather Channel.
Mashups let a developer reuse already existing APIs and save development time
and provide higher quality and reliability with least effort [2]. As the interest in

© Springer-Verlag Berlin Heidelberg 2015
A. Barros et al. (Eds.): ICSOC 2015, LNCS 9435, pp. 188-202, 2015.
DOI: 10.1007/978-3-662-48616-0_12

Aggregating Functionality, Use History, and Popularity of APIs 189

developing mashups increases so does the number of APIs. For example, there are
about 13,444 APIs as of May 2015 published on ProgrammableWeb. Selecting
the best suited API for mashup creation is a strenuous task even for an experi-
enced developer. Many of the APIs lie under the same umbrella of functionality,
so picking an optimal API among them in terms of quality and user-interest fur-
ther complicates the selection process. Other limitations in selecting services for
mashup include the compatibility of services with each other, so analyzing the
input/output parameters of the services is again laborious. Therefore, there’s a
need for an approach that could simplify the API selection process for mashup
composition so that developers can focus on other parts of their applications.

Existing efforts on recommending services for mashup creation fall into three
main categories that are based on functionality based, QoS, and social network,
respectively. Each type of approaches focus on one aspect, making them vulner-
able to the possible low quality and insufficient input of that particular type of
information. Functionality based approaches focus on finding APIs that provide
relevant functionality [6,7,9]. They leverage various information resources, such
as structured and unstructured API descriptions, semantic markups, tags, topic
models, and API categories, to identify those relevant APIs for a mashup. QoS-
based approaches use QoS value as the main guidance for finding suitable APIs
for a mashup [3]. The generation of a mashup is led by an optimization process,
aiming to achieve the best QoS in the end. These approach require the input
from users to identify those functionally related APIs. This could be very chal-
lenging for users given the huge number of available APIs online. Social network
based approaches leverage the network among mashups, APIs, user etc. and
then predict links for services and mashup [2,10]. These approaches require user
information as the input for API recommendation, which is difficult to obtain
in many cases.

In this paper, we propose a novel approach that addresses the above limita-
tions when recommending APIs to create a mashup given its textual description.
The approach is hybrid as it estimates the recommendation probability of an API
from three perspectives: functionality, usage history, and popularity. Specifically,
our contributions in this work are summarized as follows.

1. We exploit probabilistic topic models to derive functional features of APIs
and the desired mashup specification given by the user. Both the APIs and
mashup can be then represented as probabilistic distributions on latent topics.
The relevance of an API to a mashup is measured by the similarity between
the topic distributions of its description and the mashup specification.

2. We leverage matrix factorization based collaborative filtering to iden-
tify additional functionally relevant APIs. The idea of using collaborative
filtering is to leverage the mashup creation efforts made before, which were
recorded in descriptions of existing mashups. As our goal is to create a
mashup, no APIs have been used by such a new API yet, giving rise to
the long-standing cold start issue in recommender systems. We instead focus
on the existing mashups that are similar to the user desired mashup based
on their topic distributions computed using probabilistic topic models. These

190 A. Jain et al.

mashups are then used in a collaborative filtering algorithm to locate addi-
tional relevant APIs.

3. We apply Bayes’ theorem to integrate the two sources of information
obtained through probabilistic topic models and collaborative filtering, which
gives the posterior probability of given an API being used by the new mashup.
The top-k most probable APIs are identified, which are all considered as
functionally relevant to the new mashup. The popularity of these APIs are
then used to implicitly perform QoS based ranking and recommend the
best ones to the user.

The remainder of this paper is organized as follows. In Sect. 2, we give an
overview of existing effort that is relevant to the proposed approach. In Sect. 3,
we present in detail the proposed API discovery and recommendation approach
for mashup creation. In Sect. 4, we describe our experimental result. We conclude
in Sect. 5.

2 Related Work

In this section, we discuss several representative related work and differentiate
them with our work.

Functionality Based Recommendation. An approach was proposed to use Rela-
tional Topic Model (RTM) to identify functionally equivalent APIs for recom-
mendation [6]. RTM determines topic distribution in a document considering
all the citations and web links present in the document. The approach assumes
that mashups and APIs form a network of documents where documents consist
of topic related words and tags and links between them means that the API
is part of the mashup. Now, to recommend a mashup, RTM model and binary
random variables are used to predict the links. An iMashup tool was proposed
to compose mashup based on a data-driven approach using tag-based seman-
tic annotations [7]. It aims toward quick and easy composition of mashup as
many end-users want ease in the discovery and integration of services to get the
required final mashup. The tool makes use of tags to derive semantic annotations
and links them to service’s inputs/outputs. Then services are linked based on
similar tags and a directed acyclic graph is constructed using those links. Depth
first search and then regression search is run to obtain the recommendation
services from the graph. In our work, we consider more factors besides function-
ality for recommendation. A category-based approach was proposed to identify
the latent categories of potential APIs from the development requirement of a
mashup and recommend the top ranked APIs in each category [9]. This method
assumes that no more than one API should be selected from one category for
a mashup, which is not always the case. As an example, a social mashup that
allows users to access multiple social accounts may require several social APIs,
such as Twitter, Facebook, and LinkedIn.

Aggregating Functionality, Use History, and Popularity of APIs 191

Quality-Based Recommendation. An approach was proposed to use the quality
of APIs to drive the composition of a mashup [3]. A tool was developed to allow
a user to drag APIs to add to a mashup. Then the tool calculates how the added
API would influence the overall quality of the mashup and provide suggestions
for alternative services. To start with the quality evaluation, first the QoS is
taken into account and then the role of this service in the mashup is analyzed.
Naturally, a master/central service would influence quality of the mashup more
as compared to any slave/side services. This method requires a user to select
the appropriate APIs from the functionality perspective, which imposes a great
burden on users due to the large number of available APIs.

Social-Based Recommendation. A social-aware recommendation approach was
proposed to address the implicit and explicit requirements of a user [10]. The app-
roach explores and analyzes the social relationships between tags, mashups/API
topics, and users by building a coupled matrix model. Then coupled-factorization
algorithm is ran on the matrices obtained after the analysis to identify latent
relationships and construct a recommendation prediction matrix. Another social-
based approach was proposed by A. Maaradji et al. for service discovery and
selection for mashup composition [8]. It proposed a platform called Social Com-
poser (SoCo), which leverages social interactions of composition interests of users
to derive mashup recommendations. It transforms the interactions between users
and services to interactions between users. It uses an implicit social graph to map
implicit social relations between users and links the users depending on their
composition interest and activities. These links help build recommendation con-
fidence based on the common interest of two users. The recommendation is based
on analyzing user profiles for user’s interests in services and relevance of services.
An approach was proposed to solve the cold-start problem and under utilization
of social information [4]. It makes use of both social and functional information
to accelerate service discovery and recommendation for mashups. The method
first extracts semantic descriptors from user’s mashup query to discover candi-
date APIs and social features are extracted using popularity and collaboration
ratings. Then, these semantic and social features of APIs are represented using
graphs. The candidate mashup chains are assessed for input/output connectivity
to recommend services for mashups. This approach assumes the knowledge of
service input/output, which may be difficult to obtain for RESTful services that
have become the majority of online APIs. In contrast, our approach can work
with both structured and unstructured service descriptions so that it can be
used for both SOAP based and RESTful services. The social based approaches
request user information and the corresponding social network. Such information
may be hard, or impossible to locate in many real-world scenarios.

3 The Proposed Approach

In this section, we describe in detail the proposed approach that aggregates
API functionality, their usage history by existing mashups, along with their

192 A. Jain et al.

popularity to recommend relevant APIs for mashup creation. The approach is
composed of three interrelated components - (1) functionality based APT discov-
ery, (2) matrix factorization based collaborative filtering to expand the candidate
API space, and (3) popularity based ranking for API recommendation.

Given the limited terms in the API descriptions, discovery of functionally
relevant candidate APIs should go beyond simply matching terms in the descrip-
tions. The recent advances in topic models in natural language processing and
machine learning enable us to match APIs and mashups based on their underly-
ing topics, which are expected to cover the functionality they provide. In partic-
ular, we exploit the Latent Dirichlet Allocation (or LDA [1]) model to determine
the topics in API descriptions and the desired mashup specification given by the
user. Then cosine similarity is used to determine the similarity between the topic
distributions of API descriptions and the given mashup specification. Topic mod-
els still inherently rely on the use of terms to derive the underlying topics, based
upon which the relevant APIs will be identified. As a result, the few terms used
by most API descriptions may limit the effectiveness of topic models and hence
relevant APIs may be missed out. To address this limitation, matrix-factorization
based collaborative filtering is employed to discover additional candidate APIs
based on the way they have been used in other existing mashups. We will focus
on the existing mashups that are similar to the user desired mashup based on
their topic distributions computed using LDA. Each of these two components
will assign a relevance score to each API. Since the relevance scores lie in the
range of 0 to 1, they can be interpreted as the probability of being relevant to the
user desired mashup. By making the class conditional independence assumption,
we can leverage the Bayes’ theorem to integrate the two relevance scores into a
single one, which allows us to choose a set of top-k candidate APIs. These top-k
candidates will be finally ranked and returned to the user based on how popular
they have been used in the past. As the top-k candidates are mainly determined
from a functional perspective, the popularity of these APIs help factor in the
non-functional aspects of these services, which enable to recommend functionally
relevant services with good qualities.

In sum, the first two components of the proposed approach help discover a set
of functionally relevant APIs for mashup creation while the last component uses
popularity to implicitly perform QoS based ranking of these selected APIs and
recommend the best ones to the user. Figure 1 illustrates the overall structure
of the proposed approach.

3.1 Functionality-Based Candidate API Discovery

In this component, functionally relevant APIs are identified based on the given
mashup specification in the mashup query. LDA is used to represent the func-
tionality of available APIs and mashup specification by determining their topics.

LDA is a generative model, which regards each document as generated from a
collection of topics and each topic is a distribution of words. It will determine the
topic distribution in API descriptions and the mashup specification in the given
mashup query to analyze their functionality. The API descriptions in this study
are part of the API dataset from ProgrammableWeb.com that contains API

Aggregating Functionality, Use History, and Popularity of APIs 193

API name and API Mashup name and Mashup-API binary
description Mashup description matrix
LDA model Trained LDA model Cofeb ke 1l
(Matrix factorization)
API topic distribution Mashup topic
distribution
[Java code to calculate Cosine Similarity J
Candidate API list Candidate AP list

Combined candidate API
list

Python code to
recommend APIs based
on Popularity

k-most popular APls
recommended

Fig. 1. Overall structure of the approach

names, descriptions of API, the number of mashups an API has been used for,
API providers, and tags. Like many other model, LDA consists of two phases -
learning or training phase and inference or testing phase. LDA is trained using
API descriptions. In the training phase, the model takes all the API descrip-
tions and the total number of topics as input. It tries to distribute words under
different topics based upon their co-occurrences to obtain word-topic distribu-
tions. Meanwhile, it analyzes and assigns each document (or API description in
this case) with probability of existence of each topic and gives topic probabil-
ity distribution as the output. The topics having high probabilities contribute
towards the identification of functionality of the API. In the testing phase, the
topics for given mashup specification are inferred. The word-topic distributions
are available from the training model obtained using API descriptions. The same
topics from the training set are used to find the probability of those topics in
the given mashup specification. After obtaining topic distributions for both APIs
and mashup specification, the similarity between each API and the mashup spec-
ification can be calculated using the cosine similarity of their respective topic
distribution vectors.

3.2 Historical Usage Based API Discovery

As stated above, the lack of rich API descriptions may limit the power of using
topic models, such as LDA, to identify their underlying functionality and hence

194 A. Jain et al.

discover APIs that are relevant to a user desired mashup. To address this issue,
we propose to leverage historical usage of APIs in existing mashups and apply
collaborative filtering techniques to identify additional candidate APIs.

Collaborative filtering is one of the most famous techniques for recommenda-
tion systems. It is based on the concept that if two users who previously preferred
same items would prefer similar items in future. While recommending items to
a user, all the users similar to an active user are found and the items preferred
by those users are recommended. Alternatively, if a user prefers an item, similar
items could be referred to the user. Thus, leveraging usage history of an item and
a user, items could be recommended to users by analyzing the preference of users
in past. Collaborative filtering could use two techniques - neighborhood-based or
model-based. Neighborhood-based approaches usually use Pearson Correlation
Coefficient to calculate the nearest or most similar users (and/or items) for rec-
ommendation. Though this technique is easy to understand and implement, it
is usually not effective when the data is sparse and its performance decreases as
the size of the dataset grows. On the other hand, model-based approaches, such
as matrix factorization, are usually effective to overcome the data sparsity issue.
These techniques are based on the idea that there are latent features/factors
that could be discovered from user preferences and then be used for making
recommendations [11].

Matrix factorization based collaborative filtering utilizes a user-item matrix,
which usually represents user ratings for each item and may contain empty
entries suggesting that user has not used that item and doesn’t provide a rating
for it. Thus, predicting the rating for these unused items would aid the rec-
ommendation process. This matrix is decomposed to learn latent factors and
obtain two different matrices (corresponding to users and items, respectively)
whose product recovers the original matrix. In practice, the original matrix is
never recovered perfectly. The goal is to discover component matrices whose
product minimizes the errors or differences between the original matrix and
recovered matrix. After the errors are minimized, the new matrix would contain
predicted approximate rating values for those empty entries. Early implementa-
tion of matrix factorization relies on Singular Value Decomposition (SVD), which
is inefficient for large sparse data matrices. We instead exploit the Alternating
Least Squares (ALS) method which works well with sparse data matrices and
minimizes the squared errors by alternating between holding one of the factors
fixed while computing the other [5].

The above idea can be applied to identify relevant APIs based on their usage
history of existing mashups. Specifically, mashups play the role of users and
APIs play the role of items. The key remaining issue is that since the goal is to
create a new mashup, there is no usage history for the mashup yet. To still apply
collaborative filtering, we instead seek for existing mashups that are similar to
the desired mashup. We can again leverage LDA based topic models to determine
the similarity between the new mashup specification and all existing mashup
descriptions. In this way, the most similar existing mashups can be identified.
After that, all the APIs used by these mashups will be included in the candidate
list. This helps include some additional APIs but the number may still be limited

Aggregating Functionality, Use History, and Popularity of APIs 195

as most mashups only use a very small number of APIs. For example, after
analyzing the mashups crawled from ProgrammableWeb.com, it was observed
that around 85 % of the mashups use only three or less APIs. We then use each
of these mashups as if it is the new API and apply matrix factorization based
collaborative filtering to identify more relevant APIs. Intuitively, APIs that have
been used by mashups that are similar to new mashup stand a greater chance of
being used again as they would be more contextually relevant and thus could be
recommended for the required mashup. As the output, a list of candidate APIs
for the new mashup is returned with a probability of the API being used by the
new mashup.

3.3 Popularity Based API Ranking

By using topic models in the first component, each API is assigned a cosine simi-
larity with the new mashup that a user desires to create. Similarly, by leveraging
the API usage history through collaborative filtering in the second component,
each API is assigned a probability of being used by the new mashup. In fact, the
outputs from the two components can be both regarded as relevance scores of an
APIL. Since the relevance scores take values in [0, 1], we can interpret them as the
probability of being relevant to the user desired mashup. Let p(a|m) denotes
the probability that API a is relevant to mashup m based on their topic distri-
butions; let p(a,|m) denotes the probability that API a is relevant to mashup
m based on its usage history in existing mashups similar to m. By assuming
conditional independence, we can compute

plalm) = p(at|m)p(a,|m) (1)

p(alm) essentially specifies given a mashup m, how likely API a will be used in
it. We are instead interested to know given an API a, how likely it will be used
by the (new) mashup m, which is given by the posterior probability p(m|a). By
applying Bayes’ theorem, we have

p(mla) o< p(as, au|m)p(m) = p(as|m)p(au|m)p(m) (2)

p(m) is the prior probability of observing a mashup m, which can be set to 1/M
with M denoting the total number of mashups. We can use p(m/|a) to select the
top-k most relevant APIs.

The top-k APIs are all considered as providing relevant functionality for the
new mashup. However, some of these APIs may offer identical functionality. It
would be desirable if these APIs can be ranked based on their nonfunctional
properties (i.e., QoS) and returned to the user. Intuitively, APIs which have
higher quality are the ones frequently used for constructing existing mashups,
hence, they are more popular as compared to the others. Thus, the popularity
score, which is computed as the number times an API has been used in existing
APIs, can serve as a good QoS indicator and be used to rank the functionally
relevant APIs. In this way, the recommended APIs are not only functionally
relevant for the new mashup, but also provide a good QoS guarantee [6].

196 A. Jain et al.

4 Experiments and Evaluation

We conducted a set of experiments to evaluate the efficiency and effectiveness
of the proposed approach. We collected the experimental dataset by crawling
the ProgrammableWeb.com, one of the largest public web API repository. We
crawled the API and mashup profiles including their names, API categories, tags,
brief descriptions, and the use of APIs by mashups. There are 10,325 APIs and
6,819 mashups in the dataset, but only the mashups that use four or more APIs
were selected to get more tangible results. So, about 950 mashups were selected
and used.

All experiments were carried out on a Macbook Pro with 2.6 GHz Core
processor and 8 GB DDR3 memory under Mac OS X 10.9.5 operating system.
The evaluation focus mainly on the accuracy of the recommendation. We use
the summary of a mashup as the input and evaluate how well it can predict the
APIs for the mashup, comparing the actual APIs used by the mashup with the
ones recommended by our approach. We compare the proposed method with
functionality based, collaborative filtering based recommendations, as well as
some existing competitive methods [6].

4.1 Training Probabilistic Topic Models

We used the Mallet LDA package' to learn latent topics and the their proba-
bilistic distributions for terms. As mashup descriptions are treated as the input
from users that reflect their requirements on creating a mashup, such infor-
mation is not always available before making recommendations. Therefore, we
only uses API descriptions for the topic learning process. The performance of
LDA is affected by the predefined number of topics. The optimal number can be
obtained through a set of trials and the observation on the resulted word-topic
distribution for each trial. If many semantically unrelated words are assigned to
the same topic, then the specified number of topics should be bigger. On the
other hand, if many semantically related words are assigned to different topics,
the specified number of topics should be smaller. Following this guidance, we
trained the model with different number of topics, starting from 30 to 100 with
an interval of 5 topics. We settled at 65 topic as this gave us the most readable
result. The output of the LDA model training are topic-document and word-
topic distributions. Figure 2 illustrates distribution of 14 topics over 10 different
APT descriptions. Figure4 visualizes some example words for topics 4, 63, and
45. The font size of each word in the table is proportional to the probability of
the word appearing in that topic. For example, the word interface appears more
number of times as compared to word developer in topic 45 which corresponds
to web-related topic. The relation between APIs flickr and tumbir can be seen
through Figs.2 and 4 that topic 63 has the highest probability, which consists
of words like social, friends, photos etc. (which we know is true). Also, Fig.3
illustrates percentage of API descriptions assigned to different topics. It shows

! http://mallet.cs.umass.edu/.

http://mallet.cs.umass.edu/

Aggregating Functionality, Use History, and Popularity of APIs 197

M Topic 63

M Topic 59

M Topic 53

0.75 M Topic 47
I Topic 45

. Topic 44

Il Topic 42

: - M Topic 38

-

M Topic 27
= M Topic 26
W Topic 22

Topic Probability
o
[

0.25 .
L Topic 13

. M Topic 4

M Topic 1

APl Names

Fig. 2. Stacked bar graph illustrating topic distribution over API description

that topic 45 is assigned to approximately 21 % of the API descriptions. This is
because it contains words like interface and protocol, which are common words
used for API descriptions.

After training the LDA model, the model was used to infer topics in mashup
description of the mashup query. To infer the topics, the word-topic distribution
is piped from the model trained with API description. We use the same topics
from the training set and find the probabilities of those topics in mashup descrip-
tion. The inference output of the mashup query is the list of topics with their
probabilities. The topics in each document are ordered based on their topic prob-
abilities. Hence, the first topic assigned for each document is the most prominent
topic and so on.

4.2 Evaluation Result

We used the current API used by mashups as the ground truth to evaluate the
accuracy of our recommendation method. We divided the mashups into three
sets: training, validation, and testing. In the training and validation sets, the
use of APIs by mashups is assumed to be known. The testing set consists of
302 mashups, where the use of APIs by these mashups were compared to the
recommendation result for the evaluation. We compared our recommendation
method with two other ones: topic modeling based and collaborative filtering
based approaches. As most of the existing mashup recommendation methods
do not tackle the cold start problem, their experimental results are not compa-
rable to ours except for the one proposed in [6]. Therefore, we compared our
method to it.

198 A. Jain et al.

Topic 0

Topic 4

Topic 8
Topic 12
Topic 16
Topic 20
Topic 24
Topic 28
Topic 32
Topic 36
Topic 40
Topic 44
Topic 48
Topic 52
Topic 56
Topic 60
Topic 64

Topic Number

0 0.05 0.1 0.15 0.2 0.25
Percentage of API descriptions assigned to topics

Fig. 3. Bar graph illustrating percentage of API descriptions assigned to topics

Traditional metrics for measuring prediction accuracy of a recommendation
system includes precision and recall. Precision is the ratio of the total number of
properly recommended APIs to the total number of recommended APIs. Recall
is the ratio of the total number of properly recommended APIs to the total
relevant APIs. In this work, we use recall@T" to examine the impact of the
number of recommended APIs on the accuracy. That is, given a constant T,
a recommendation system suggests the top T APIs. We set T' from 10 to 100,
with an interval of 10. Recall is calculated as the ratio of the total number of
properly recommended APIs in the suggested list (Nr;) to the total number of
APIs actually used in the mashup (N,,,). Therefore, the overall performance
of the recommendation is the average of all recalls evaluated in the testing set,
ie.,

M
recall@T = (1/M) > (Nr;/Nim,) (3)
=1

We also use F-score as an evaluation metric. F-score integrates both recall
and precision by computing the harmonic mean of them as follows, i.e.,

Recall x Precision

F- =

seore Recall + Precision
Figure5 shows the average recall values for top-T" recommended APIs and
compares each of the approach where T € {10, 20, ...,100}. It can be seen that
the proposed hybrid recommendation method outperforms the LDA based and

Aggregating Functionality, Use History, and Popularity of APIs 199

create ; o
online I n te rface photos
update rosponses social

manage protocol protiss

send developer

function

Fig. 4. Example of word-topic distribution

collaborative filtering method methods. On the one hand, LDA can find similar
APIs, but doesn’t consider mashup’s usage history, which leads to recommending
APIs that are not relevant or not preferred by the mashup. This explains why
it performs poorly. On the other hand, collaborative filtering considers mashup
usage history and can recommend APIs that are preferred by the mashups, thus
performing much better than LDA. However, collaborative filtering suffers from
the cold-start problem. Therefore, combining both approaches to give a hybrid
solution seems logical to overcome these issues to some extent. Moreover, inte-
grating popularity score of APIs adds QoS factors in the recommendation as
usually most popular APIs are acknowledged as being of high quality. Figure5
also demonstrates that the value of recall increases as the number of recom-
mended APIs increases for all the approaches. This is a logical behavior as the
probability of relevant APIs being recommended would be higher when more
APIs are recommended. But when this number is higher than 80 the recall is
almost constant and when recommended APIs lie between 60-80 there is not
much difference in recall values. This indicates that about 60-80 APIs could be
recommended in order to achieve similar performance and recommending less
number of APIs would reduce mashup creator’s further workload.

Table 1. Comparison of proposed approach with the ERTM Approach in [6]

Recall | Average precision

Proposed approach | 0.62 | 0.41
ERTM approach 0.27 |0.16

Table1 compares our work and the one proposed in [6]. In order to make
a fair comparison, we used the metric in their work to evaluate the accuracy.
That is, average precision gives the accuracy of ranked recommendation list i.e.
it considers the order of the recommended list and computes if the results in
higher rank/position in the list are relevant or not. This measure is computed
as it is usually desirable in search results to know if top results are relevant to
the user or not. It was computed as:

200 A. Jain et al.

o7 0736 0746 0753 0755 0755

0.615
0.6
0.
3
S 04
[
0.20-
0.d2s 0.050 0.055 0.059 0.060 0.062 0.062 0.063 0.064 0.065
10 20 30 40 50 60 70 80 90 100
Number of APIs r led
0.250'242
0.2
§ 0.15
2
o
o
a 0.1
0.043
005 T 0.039
0414 0013 0.01 0008 0.006 0.006 0.005 0004 0004 0004
o 4 —
10 20 30 40 50 60 70 80 90 100
Number of APIs r ded
® Proposed Approach # Matrix Factorization CF Content-based
04 T
0.417
0.3
2
2 o0z
w
0.10. _ ‘ 0.075
0.02 X ’ =9
0.q17 8 0.016 0.014 0011 001 0.009 0.008 0.008 0.007
0 L + n '
10 20 30 40 50 60 70 80 90 100

Number of APIs r ded

Fig.5. Average Recall, Precision and F-score comparison for the proposed approach,
individual matrix factorization CF and LDA with cosine similarity. The number of
recommended APIs was increased to analyze its effect on the performance.

21 (P(k) x rel(k))
|Relevant APIs|

Average Precision =

where k is the rank/position of the API in the list; P(k) is the precision at cut-off
k and rel(k) is the change in recall or in simple words, it indicates if the API at

Aggregating Functionality, Use History, and Popularity of APIs 201

5 T

50.2
51 7 85 485 122 ag2 %1 ¢
46.6 ~N—
47 444 45.3 461

Time (seconds)
I~
W

i1 2 3 4 5 6 7 8 9 10

Number (in thousands)
API Mashups

Fig. 6. Influence of increasing number of APIs and mashups on matrix factorization’s
performance

rank k is relevant or not. Its value is 1 if the API is relevant, otherwise it is 0.
As shown in Table 1, the average recall of our approach is 0.62, which is better
than the one in [6]. Our approach achieves a better precision as well, i.e., 0.27
vs 0.16.

Finally, to evaluate the performance of the approach, performance of matrix
factorization phase was evaluated. This is because its performance is directly
proportional to the increasing number of APIs and mashups as it increases data
density. Also, performance of LDA depends on the number of topics and first
phase could be performed offline, therefore, it is not considered in the evaluation
of performance of the complete approach. Figure6 shows that time required
to train the matrix factorization model and predict ratings increases with the
increase in the number of APIs and mashups.

5 Conclusion

In this paper, we propose a novel approach to recommend relevant APIs with
good QoS for mashup creation. The proposed approach integrates functionality
and usage history to discover functionally relevant APIs and then uses their
popularity in existing mashups to achieve a ranked list of candidate APIs. By
aggregating multiple sources of information, the proposed approach helps dis-
cover a set of functionally relevant APIs for mashup creation while performing
QoS based ranking of these selected APIs so as to recommend the best ones to
the user. The results of the experiments demonstrate that the proposed approach
outperforms both individual matrix factorization and content-based (LDA plus
cosine similarity) approaches. Moreover, it also has better accuracy as compared
to other competitive methods.

202 A. Jain et al.

Our future work will focus on improving recommendation accuracy by explor-
ing advanced topic modeling techniques and checking the orchestration compat-
ibility of candidate APIs.

Acknowledgments. This work was supported by US National Science Foundation
under grant DUE-1141200.

References

1. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn.
Res. 3, 993-1022 (2003)

2. Cao, B., Liu, J., Tang, M., Zheng, Z., Wang, G.: Mashup service recommenda-
tion based on user interest and social network. In: 2013 IEEE 20th International
Conference on Web Services (ICWS), pp. 99-106, June 2013

3. Cappiello, C., Matera, M., Picozzi, M., Daniel, F., Fernandez, A.: Quality-
aware mashup composition: issues, techniques and tools. In: 2012 Eighth Interna-
tional Conference on the Quality of Information and Communications Technology
(QUATIC), pp. 10-19, September 2012

4. Jung, J., Lee, K.-H.: Socially-enriched semantic mashup of web APIs. In: Liu, C.,
Ludwig, H., Toumani, F., Yu, Q. (eds.) Service Oriented Computing. LNCS, vol.
7636, pp. 389-403. Springer, Heidelberg (2012)

5. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender
systems. Computer 8, 30-37 (2009)

6. Li, C., Zhang, R., Huai, J., Sun, H.: A novel approach for API recommendation
in mashup development. In: 2014 IEEE International Conference on Web Services
(ICWS), pp. 289-296, June 2014

7. Liu, X., Zhao, Q., Huang, G., Mei, H., Teng, T.: Composing data-driven service
mashups with tag-based semantic annotations. In: 2011 IEEE International Con-
ference on Web Services (ICWS), pp. 243-250, July 2011

8. Maaradji, A., Hacid, H., Skraba, R., Lateef, A., Daigremont, J., Crespi, N.: Social-
based web services discovery and composition for step-by-step mashup completion.
In: 2011 IEEE International Conference on Web Services (ICWS), pp. 700-701,
July 2011

9. Xia, B., Fan, Y., Tan, W., Huang, K., Zhang, J., Wu, C.: Category-aware API
clustering and distributed recommendation for automatic mashup creation. IEEE
Trans. Serv. Comput. PP(99), 1 (2014)

10. Xu, W., Cao, J., Hu, L., Wang, J., Li, M.: A social-aware service recommendation
approach for mashup creation. In: 2013 IEEE 20th International Conference on
Web Services (ICWS), pp. 107-114, June 2013

11. Yu, Q.: Cloudrec: a framework for personalized service recommendation in the
cloud. Knowl. Inf. Syst. 43(2), 417443 (2015)

	Aggregating Functionality, Use History, and Popularity of APIs to Recommend Mashup Creation
	1 Introduction
	2 Related Work
	3 The Proposed Approach
	3.1 Functionality-Based Candidate API Discovery
	3.2 Historical Usage Based API Discovery
	3.3 Popularity Based API Ranking

	4 Experiments and Evaluation
	4.1 Training Probabilistic Topic Models
	4.2 Evaluation Result

	5 Conclusion
	References

