Are RESTful APIs Well-Designed? Detection
of their Linguistic (Anti)Patterns

Francis Palma'2®) Javier Gonzalez-Huerta!, Naouel Moha!,
Yann-Gaél Guéhéneuc?, and Guy Tremblay'

! Département d’informatique, Université du Québec & Montréal, Montréal, Canada
{gonzalez huerta.javier,moha.naouel,tremblay.guy}@ugam.ca
2 Ptidej Team, DGIGL, Ecole Polytechnique de Montréal, Montréal, Canada
{francis.palma,yann-gael.gueheneuc}@polymtl.ca

Abstract. Identifier lexicon has a direct impact on software understand-
ability and reusability and, thus, on the quality of the final software
product. Understandability and reusability are two important character-
istics of software quality. REST (REpresentational State Transfer) style
is becoming a de facto standard adopted by many software organisa-
tions. The use of proper lexicon in RESTful APIs might make them
easier to understand and reuse by client developers, and thus, would
ease their adoption. Linguistic antipatterns represent poor practices in
the naming, documentation, and choice of identifiers in the APIs as
opposed to linguistic patterns that represent best practices. We present
the DOLAR approach (Detection Of Linguistic Antipatterns in REST),
which applies syntactic and semantic analyses for the detection of linguis-
tic (anti)patterns in RESTful APIs. We provide detailed definitions of
ten (anti)patterns and define and apply their detection algorithms on 15
widely-used RESTful APIs, including Facebook, Twitter, and YouTube.
The results show that DOLAR can indeed detect linguistic (anti)patterns
with high accuracy and that they do occur in major RESTful APIs.

Keywords: REST - Patterns + Antipatterns + Detection + Semantic
analysis

1 Introduction

Service-Oriented Architecture (SOA) has changed the way software systems are
developed, deployed, and consumed [6]. The REpresentational State Transfer
(REST) architectural-style [7] is becoming a de facto standard, adopted by large
software organisations like Facebook, Twitter, Dropbox, and YouTube, for devel-
oping and publishing their services, a.k.a. their RESTful APIs.

In REST, well-designed URIs (Uniform Resource Identifiers) facilitate main-
tenance and evolution for APIs developers. Moreover, well-designed and named
RESTful APIs may attract client developers more than poorly designed or named
ones [14] because client developers must understand the providers’ APIs while
© Springer-Verlag Berlin Heidelberg 2015

A. Barros et al. (Eds.): ICSOC 2015, LNCS 9435, pp. 171-187, 2015.
DOI: 10.1007/978-3-662-48616-0_11

172 F. Palma et al.

designing and developing their Web-based systems that use these APIs. There-
fore, in the design and development of RESTful APIs, their understandability
and reusability are two major quality factors.

Source code lexicon is shown to be an influential factor on the understand-
ability, reusability and, overall, on the quality of software systems [12]. APIs
designers use related natural names—mnatural language words—to name soft-
ware entities [11]. In REST, linguistic relations among resources, services, and
parameters are crucial [8] and the lack of such linguistic relations and—or poor
naming may degrade the overall design of RESTful APIs and translate into lin-
guistic antipatterns. Linguistic antipatterns are poor solutions to common recur-
ring naming problems, which may hinder the consumption of RESTful APIs. In
contrast, linguistic patterns are best solutions to common naming problems and
may facilitate the consumption of RESTful APIs.

A number of best and poor linguistic practices for RESTful APIs design
are listed in the literature [4,8,14] but they do not provide clear and detailed
descriptions. In this paper, we represent those best and poor practices as pat-
terns and antipatterns, respectively. For example, x Contextless Resource Names
[8] is a linguistic antipattern that describes a URI composed of nodes from differ-
ent semantic contexts as in the URI www.example.com/newspaper /player where
“newspaper” and “player” do not belong to the same semantic context. On the
contrary, v Contextualised Resource Names [8] is a linguistic pattern describ-
ing a URI composed of nodes that belong to the same semantic context and
helping developers to understand better the resources or the interaction con-
text with the server, and thus, increasing the understandability and reusability
of an API. An example URI is www.example.com/newspapers/media because
“newspapers” and “media” belong to the same semantic context. For RESTful
APIs, the automatic detection of such linguistic patterns and antipatterns is a
means to assess their understandability and reusability. However, no previous
work analysed linguistic (anti)patterns in RESTful APIs.

In this paper, we present DOLAR (Detection Of Linguistic Antipatterns
in REST), an approach supported by SOFA (Service Oriented Framework for
Antipatterns) [17], which integrates syntactic and semantic analyses of RESTful
APIs for detecting linguistic (anti)patterns. Semantic analyses are used to infer
meaning and relationships among language elements whereas syntactic analy-
ses focus on structural properties [9]. We propose (1) a detailed definition of
ten common (anti)patterns for RESTful APIs [4,8,14] and their corresponding
detection algorithms; (2) the DOLAR approach relying on the SOFA frame-
work [17] extended with syntactic and semantic analyses based on WordNet!
and Stanford CoreNLP?; (3) an empirical validation of DOLAR in which we
analyse ten REST linguistic (anti)patterns on a set of 15 well-known RESTful
APIs—including Facebook, Twitter, and YouTube—invoking over 300 methods.
The validation results show that (1) DOLAR has an average precision and recall
over 75 % and (2) out of the 15 analysed RESTful APIs, most of them involve

! wordnet.princeton.edu.
2 nlp.stanford.edu/software/corenlp.shtml.

www.example.com/newspaper/player
www.example.com/newspapers/media
http://wordnet.princeton.edu
http://nlp.stanford.edu/software/corenlp.shtml

Are RESTful APIs Well-Designed? 173

syntactical URIs design problems and they do not organise URIs nodes in a
hierarchical manner. Moreover, we also observed that the REST APIs designers,
in general, use appropriate contextual resource names and they do not use verbs
in URIs, which is a good URIs design practice in REST.

The remainder of the paper is organised as follows: Sect. 2 discusses related
work. Section 3 presents the ten linguistic (anti)patterns. Section4 presents the
DOLAR approach. Section 5 presents a validation of DOLAR. Finally, Sect. 6
concludes the paper and sketches future work.

2 Related Work

Over the last years, several researchers (e.g., [1,2]) used semantic analyses to
detect linguistic antipatterns and to check for consistency between source code
and comments in object-oriented (OO) systems.

Abebe et al. [1] present a first set of lexicon bad smells in OO source code
and a tool-suite that uses semantic analyses for their detection. Arnaoudova
et al. [2] present a first definition of linguistic antipatterns, define 17 linguistic
antipatterns in OO programming, and implement their detection algorithms.
The authors search for the differences between the naming used for software
entities (e.g., method names and return types) and their implementation and/or
documentation. For example, one antipattern they define “Is” returns more than
a Boolean, which analyses the name of a method starting with “Is” and checks
whether the method returns a boolean or not [2].

Semantic analyses are also applied to Web services design and development [15,
21]. Rodriguez et al. [21] present a study on bad linguistic practices identified on
a set of WSDL descriptions and provide a catalog of Web services discoverability
antipatterns. These antipatterns focus on the comments, elements names, or types
used for representing the data models in WSDL documents. Mateos et al. [15]
present a tool to detect a subset of antipatterns presented in [21].

Other researchers also use semantic analyses in different aspects of the
software development life-cycle [3,13,20]. For example, Lu et al. [13] define an
approach to improve code searches by identifying relevant synonyms using the
WordNet English lexical database. Arnaoudova et al. [3] perform analyses on
identifiers renaming in OO systems and classify them. Finally, Rahman and
Roy [20] present an approach to automatically suggest relevant search terms
based on the textual descriptions of software change tasks.

These approaches are tailored to OO identifiers and their consistencies with
comments [1,2] or to traditional SOAP-based Web services interfaces [15,21],
and therefore, they cannot be applied to RESTful APIs due to their intrinsic
nature. For example, the invocation of RESTful services relies on a uniform
interface formed using HT'TP methods to access or modify resources via URIs.

Some researchers have dealt with the linguistic aspect of RESTful APIs.
For example, Hausenblas [10] performs a subjective analysis on RESTful APIs
to assess the quality of the URIs naming. However, he does not perform an
automatic nor a systematic analysis. Moreover, he does not search for specific

174 F. Palma et al.

@ Step 1 @ Step 2 @Step 3
Clients Autheyication
Interfaces
RESTful API —>>|implementation | Service o | Methods |psameterised
Interface: Invocation > Detected
Textual - Request URIS™ | application m-Linguistic
extua - pp .

Descriptions _|Aigorithmic | Detection > (Anti)Patte

of Linguistic | Analysis e Algorithms Detection Algorithms -
(Anti)Patterns Implementation

{ Manual step @Automatic -

Fig. 1. DOLAR approach.

antipatterns. Parrish [19] also performs a subjective lexical comparison between
two well-known RESTful APIs, e.g., Facebook and Twitter. In the comparison,
the author analyses, for example, the use of verbs and nouns in URIs naming.
Although the above two deal with linguistic aspects of RESTful APIs, they
only rely on the subjective view on a set of good linguistic practices and recom-
mendations. Thus, there is no dedicated approach to automatically assess the
linguistic quality of RESTful APIs by detecting poor and best practices.

3 REST Linguistic Patterns and Antipatterns

Table 1 presents the ten linguistic (anti)patterns that we consider in this paper
and that have been extracted from existing literature [4,8,14,23].

4 The DOLAR Approach

We now present the DOLAR approach (Detection Of Linguistic Antipatterns
in REST) for the analysis and detection of linguistic (anti)patterns in RESTful
APIs. DOLAR proceeds in three steps, as shown in Fig. 1.

Step 1. Analysis of Linguistic (Anti)Patterns: This step consists in analysing
the description of REST linguistic (anti)patterns from the literature to identify
their relevant properties. We use these relevant properties to define algorithmic
rules for (anti)patterns.

Step 2. Implementation of Interfaces and Detection Algorithms: This step
involves the implementation of detection algorithms for (anti)patterns based
on rules defined in Step 1 and the service interfaces for RESTful APIs.

Step 3. Detection of Linguistic (Anti)Patterns: This step deals with the auto-
matic application of detection algorithms implemented in Step 2 on RESTful
APIs for the detection of linguistic (anti)patterns.

4.1 Analysis of Linguistic Patterns and Antipatterns

We analyse the definitions of the (anti)patterns listed in Sect.3 to identify
their linguistic aspects. A linguistic aspect for the detection of the Context-
less Resource Names antipattern is, for example, to check if a URI nodes belong
to the same semantic context.

Are RESTful APIs Well-Designed? 175

Table 1. List of ten linguistic (anti)patterns in REST.

1. v/Contextualised vs. ¥Contextless Resource Names

Description: URIs should be contextual, i.e., nodes in URIs should belong to semantically-related
context. Thus, the Contextless Resource Names antipattern appears when URIs are composed of
nodes that do not belong to the same semantic context.

Example: Xhttps://www.example.com/newspapers/players?id=123 is a XContextless Resource
Names antipattern because ‘newspapers’ and ‘players’ do not belong to same semantic context.
vhttps://www.example.com/newspapers/media/page?id=123 is a v’ Contextual Resource Names pattern
because ‘soccer’, ‘team’, and ‘players’ belong to same semantic context.

Consequences: Contextless Resource Names do not provide a clear context for a request, which
may mislead the APIs clients by decreasing the understandability of the APIs [8].
2. vHierarchical vs. ¥XNon-hierarchical Nodes

Description: Each node forming a URI should be hierarchically related to its neighbor nodes. In
contrast, Non-hierarchical Nodes is an antipattern that appears when at least one node in a URI is
not hierarchically related to its neighbor nodes.

Example: Xhttps://www.example.com/professors/university/faculty/ is a ¥Non-hierarchical
Nodes antipattern since ‘professors’, ‘faculty’, and ‘university’ are not in a hierarchical relation-
ship. vhttps://wuw.example.com/university/faculty/professors/ is a v Hierarchical Nodes pattern
since ‘university’, ‘faculty’, and ‘professors’ are in a hierarchical relationship.

Consequences: Using non-hierarchical names may confuse users on the real purpose of the API
and hinders their understandability and, therefore, the API’s usability [8].
3. vTidy vs. XAmorphous URIs

Description: REST resource URIs should be tidy and easy to read. A Tidy URI is a URI with
appropriate lower-case resource naming, no extensions, underscores, or trailing slashes. Amorphous
URI antipatterns appear when URIs contain symbols or capital letters that make them difficult to
read and use. As opposed to good practices [14], a URI is amorphous if it contains: (1) upper-case
letter (except for Camel Cases [16]), (2) file extensions, (3) underscores, and, (4) a final trailing-slash.

Example: Xhttps://www.example.com/NEW_Customer/_photoOl.jpg/ is a ¥Amorphous URI antipat-
tern since it includes a file extension, upper-case resource names, and underscores.
v'https://www.example.com/customers/1234 is a v Tidy URI pattern since it only contains lower-case
resource naming, without extensions, underscores, or trailing slashes.

Consequences: (1) Upper/lower-case names may refer to different resources, RFC 3986 [4]. (2) File

extensions in URIs violate RFC 3986 and affect service evolution. (3) Underscores are hidden when

highlighting URIs, decreasing readability. (4) Trailing-slash mislead users to provide more resources.
4. v/Verbless vs. XCRUDy URIs

Description: Appropriate HT'TP methods, e.g., GET, POST, PUT, or DELETE, should be used
in Verbless URIs instead of using CRUDy terms (e.g., create, read, update, delete, or their syn-
onyms) [8]. The use of such terms as resource names or requested actions is highly discouraged [14].

Example: XPOST https://www.example.com/update/players/age?id=123 is a XCRUDy URIs antipat-
tern since it contains a CRUDy term ‘update’ while updating the user’s profile color relying on
an HTTP POST method. v'POST https://wuw.example.com/players/age?id=123 is a v/ Verbless URIs
pattern since is an HT'TP POST request without any verb.

Consequences: Using CRUDy terms in URIs can be confusing for API clients, i.e., in the best cases
they overload the HTTP methods and in the worst cases they go against HTTP methods. CRUDy
terms in a URI confuse and prohibit users to use proper HT'TP methods in a certain context and
may introduce another REST antipattern, Tunnelling through GET/POST [23].

5. vSingularised vs. ¥Pluralised Nodes

Description: URIs should use singular/plural nouns consistently for resources naming across the
API. When clients send PUT/DELETE requests, the last node of the request URI should be singular.
In contrast, for POST requests, the last node should be plural. Therefore, the Pluralised Nodes
antipattern appears when plural names are used for PUT/DELETE requests or singular names are
used for POST requests. However, GET requests are not affected by this antipattern [8].

Example: The first example URI is a POST method that does not use a pluralised resource, thus
leading to ¥ Pluralised Nodes antipattern. On the other hand, for the v'Singularised Nodes pattern,
the DELETE request acts on a single resource for deleting it.

XDELETE https://www.example.com/team/players or ¥POST https://www.example.com/team/player

V' DELETE https://www.example.com/team/player or ¥POST https://www.example.com/team/players

Consequences: If a plural node for PUT (or DELETE) request is used at the end of a URI, the
API clients cannot create (or delete) a collection of resources, which may result in, for example, a
403 Forbidden server response. In addition, even if the resources can be filtered through query-like
parameters, it confuse the user if one or multiple resources are being accessed/deleted [8].

176 F. Palma et al.

1: CONTEXTLESS-RESOURCE-NAMES(Request- URT)

2 URINodes «— EXTRACT-URI-NODES(Request-URI)

3 for each index = 1 to LENGTH(URINodes)-1

4 Setl «— CAPTURE-CONTEXT-BY-SYNSETS(URINodes ndex)

5 Set2 «— CAPTURE-CONTEXT-BY-SYNSETS(URINodesndex+1)
6: if Set1 N Set2 =0

7 print “Contextless Resource Names detected”

8 break

9 end if

10: end for

Fig. 2. Algorithmic rule of the Contextless Resource Names antipattern.

Figure 2 shows the algorithmic rule we define for the Contextless Resource
Names antipattern. We compare the context of every pair of nodes or resources in
a URI, lines 4-6. We report a URI as an occurrence of this antipattern if we find
at least one contextless relation among all possible resource pairs. Conversely, we
report an occurrence of the corresponding pattern iff all possible resource pairs
share at least one common context and are relevant for that particular URI.

We rely on WordNet and Stanford CoreNLP to capture contexts and per-
form semantic analyses. WordNet is a widely used lexical database, which groups
nouns, verbs, and adjectives into sets of cognitive synonyms—synsets—each rep-
resenting unique concepts which can be used interchangeably in a certain con-
text. WordNet is useful in finding semantic similarity between words using its
underlying hypernym-hyponym and meronym-holonym relations as Fig. 3 depicts.
In Fig. 3a, medium is one of 11 synsets of ‘media’ and there exist different types
of medium including newspaper, film, telecommunication, and so on defined in
WordNet. Based on WordNet, medium is thus the hypernym of newspaper and
newspaper is the hyponym of medium. Such relations also exhibit contextual
relevance between words and can be useful for analysing Contextless Resource
Names antipattern [8] in URIs. In addition, there exist part-of, i.e., holonym-
meronym, relations between words defined in WordNet (see Fig. 3b). For exam-
ple, a university consists of faculty member, student, and department and
the department may include biology and chemistry. Thus, university is a
holonym of faculty member and faculty member is a meronym of university.
Such hierarchical relations defined in WordNet between words can be useful in
analysing Non-hierarchical Nodes antipattern [8].

Moreover, Stanford’s CoreNLP annotate nodes (after splitting CamelCase
nodes) with its underlying POS (part-of-speech) tagger to differentiate verbs
(i.e., actions) and nouns (i.e., resources). We also define algorithmic rules for
nine other linguistic (anti)patterns.

4.2 Implementation of Interfaces and Detection Algorithms

This step includes the implementation of services’ interfaces and the implemen-
tation of detection algorithms of linguistic (anti)patterns. We implemented the
service interfaces of RESTful APIs under study using JAVA, which contain the

Are RESTful APIs Well-Designed? 177

media holonym """
- universi
hypernym

*... holonym

edium/ e meronym, . .
epartment-.,

culty
{ member..-

hyponym,..-(News) studen

¢ ‘paper,.." telecommunication

film lecturers professors biology ™. chemistry: " €"0"Y™

(a) Hypernym-Hyponym relation (b) Holonym-Meronym relation

Fig. 3. Hypernym-Hyponym and Meronym-Holonym relations in WordNet.

methods callable to access or modify services’ underlying resources. Each of
the interface methods is mapped to a HTTP method. Using the appropriate
HTTP methods, our DOLAR approach sends HTTP requests to real REST-
ful APIs and receives HTTP responses. Linguistic (anti)patterns, for example,
Amorphous URIs (or Tidy URIs) require the fully-parameterised request URIs
to be detected, which can only be obtained after HTTP requests are made.
For each RESTful API, the details required to implement its service interfaces,
i.e., resources, HT'TP actions to perform on its resources, and the parameters
for each HTTP request, can be found in its online documentation as shown in
Table 2. For other linguistic (anti)patterns, it is enough to extract URIs from
the documentation of the RESTful APIs and then to analyse them.

Like the REST service interfaces, the detection algorithms for linguistic
(anti)patterns are also written in JAVA. In fact, we manually transform the
algorithmic rules defined the previous section into the executable programs.

4.3 Detection of Linguistic Patterns and Antipatterns

Methods Invocation: For each RESTful API, besides the service interfaces,
we also implement clients to call the methods in the service interfaces, which
perform read, write, update, or delete operations on resources. These explicit
calls are done at detection time to obtain fully parameterised request URIs sent
to the servers, which are required for detecting (anti)patterns like Amorphous
URI In REST, a resource may be related to multiple Java methods because
any of the four basic operations (GET, POST, PUT, and DELETE) can be per-
formed. As for the clients authentication, large companies often requires clients
authentication to accept secured HTTP requests. Thus, we also implement the
OAuth 2.0 authentication protocol. In the end, this step produces the set of all
parameterised requests URIs and their responses.

Application of Detection Algorithms: The SOFA framework (Service Ori-
ented Framework for Antipatterns) [17] automatically applies the algorithmic
rules in the form of detection algorithms on the parameterised requests URIs
from the clients, collected in the previous step. Finally, the SOFA framework
returns a set of detected REST linguistic (anti)patterns.

The SOFA framework, uses a Service Component Architecture (SCA) [5]. It
relies on FraSCAti [22] for its runtime support. We added 13 REST (anti)patterns

178 F. Palma et al.

related to the design of REST requests/responses in a previous work [18]. We
extend SOFA with detection support of REST linguistic (anti)patterns using
linguistic analyses based on WordNet and Stanford CoreNLP.

Specifically, we extend the REST Handler component to facilitate the detec-
tion of REST linguistic (anti)patterns by wrapping each RESTful API in an SCA
component and applying the detection algorithms on the SCA-wrapped REST-
ful APIs. By wrapping each API, we can introspect each full request URI with
its actual runtime parameters, relying on FraSCAti IntentHandler, a runtime
interceptor. We invoke methods from a service interface defined with an Inten-
tHandler to introspect the request details, which allows on-the-fly syntactic and
semantic analyses of parameterised request URIs.

5 Validation

In this section, we assess the effectiveness of DOLAR approach by showing the
accuracy of the defined algorithmic rules, the extensibility of our SOFA frame-
work, and the performance of the detection algorithms.

5.1 Hypotheses
We define three hypotheses to assess DOLAR's effectiveness:

H;. Accuracy: The set of all defined rules have an average precision and recall
of more than 75 %, i.e., more than three out of four are true positives and we do
not miss more than one out of four of all existing (anti)patterns.

H,. Extensibility: Our SOFA framework is extensible for adding new service-
oriented and REST-specific (anti)patterns. In addition, SOFA facilitates an easy
integration of new RESTful APIs.

Hj. Performance: The concretely implemented detection algorithms perform
with a low detection times, i.e., on an average in the order of seconds.

5.2 Subjects and Objects

The subjects of our study are the ten REST linguistic (anti)patterns described
in Sect. 3. The objects are 15 common and well-known RESTful APIs for which
we found documentations. We choose APIs whose underlying HT'TP methods,
APIs end-points, and authentication mechanisms are well explained, for example
Facebook, Twitter, Dropbox, or YouTube, as summarised in Table 2.

5.3 Validation Process

We followed the instructions in the online documentation for APIs and imple-
mented their (authenticated) clients. We invoked a set of 309 REST methods
from 15 RESTful APIs to access their resources. We collected all fully parame-
terised request URIs from the clients and responses from the servers. Later, we

Are RESTful APIs Well-Designed?

Table 2. List of 15 analysed RESTful APIs and their online documentations.

RESTful APIs | Online documentations

Alchemy alchemyapi.com/api

BestBuy developer.bestbuy.com/documentation

Bitly dev.bitly.com/api.html

CharlieHarvey | charlieharvey.org.uk/about/api

Dropbox dropbox.com/developers/core/docs

Externalip api.externalip.net

Facebook developers.facebook.com/docs/graph-api
Instagram instagram.com/developer

Musicgraph developer.musicgraph.com/api-docs/overview
Ohloh github.com/blackducksw/ohloh_api
StackExchange | api.stackexchange.com.docs

TeamViewer integrate.teamviewer.com/en/develop/documentation
Twitter dev.twitter.com/rest/public

YouTube youtube.com/yt/dev/api-resources.html
Zappos developer.zappos.com/docs/api-documentation

179

applied our algorithmic rules in the form of detection algorithms implemented
manually on the REST requests URIs and report (anti)patterns detected by our
SOFA framework. We validated the results in two phases: (1) all the Dropbox
URIs and (2) four representative APIs, i.e., Facebook, Twitter, Dropbox, and
YouTube, for which we randomly selected some candidate request URIs detected
as (anti)patterns. We chose those four APIs based on our previous findings [18],
which concluded that Twitter and Dropbox are more problematic APIs, whereas
Facebook and YouTube were well-designed.

We involved three professionals manually evaluated the URIs to identify the
true positives and false negatives to define a ground truth for a predefined subset
of the analysed URIs. The professionals have knowledge on REST and did not
take part in the detection step. We provided them with the descriptions of REST
linguistics (anti)patterns and the sets of all requests URIs collected during the
service invocations. We resolved conflicts at the majority.

Due to the large size of the data-sets, we performed the validation on two sam-
ple sets because it is a laborious task to validate all APIs and all (anti)patterns
and because Facebook, Dropbox, Twitter, and YouTube are representative APIs
[18]. Therefore, in the first phase, we choose one medium sized API, Dropbox, to
calculate the recall on one APT (the entire validation would have required 1,545
questions for 309 test methods).

In the second phase, we randomly selected 50 validation questions (out of 630
possible candidates) to measure overall accuracy. We used precision and recall to
measure the detection accuracy. Precision is the ratio between the true detected

http://alchemyapi.com/api
http://developer.bestbuy.com/documentation
http://dev.bitly.com/api.html
http://charlieharvey.org.uk/about/api
http://dropbox.com/developers/core/docs
http://api.externalip.net
http://developers.facebook.com/docs/graph-api
http://instagram.com/developer
http://developer.musicgraph.com/api-docs/overview
http://github.com/blackducksw/ohloh_api
http://api.stackexchange.com.docs
http://integrate.teamviewer.com/en/develop/documentation
http://dev.twitter.com/rest/public
http://youtube.com/yt/dev/api-resources.html
http://developer.zappos.com/docs/api-documentation

180 F. Palma et al.

Tidy Contextualised Verbless Hierarchical ~ Singularised
vs. vs. vs. vs. vs.
Amorphous Contextless CRUDy Non-Hierarchical Pluralised
Alchemy []_H ‘:]‘ :]H ‘_‘ ‘I:I‘
BestBuy | i | | | [| il |
Bitly H || RO] I
CharlieHarvey [it [JC /I [)i (/N (]
DropBox | JEEmigE N N
Externalip [‘ I i]Di ‘u 1 ‘u |‘
Facebook | . D |:| |:| [I ‘ ‘ D Pattern
h “ ‘ ! ! ‘ ! D No Detection
Instagram H NN NEEEEENGEE] iE—
. " i o | |
e EE Im Iaml i
Ohloh H‘_ CCOmm :]‘H ‘I:I_ ‘I:I‘
StackExchange D | I D |:| | ‘ | |:| | |
\ 1 \ \
. I I I o I
Teamviewer [[l | [[1 —
1 | | 1
we L THL N
YouTube [] [] [
Zappos I i [IR I]!

Fig. 4. Linguistic (anti)patterns detected in each RESTful APIL.

(anti)patterns and all detected (anti)patterns. Recall is the ratio between the
true detected (anti)patterns and all existing true (anti)patterns.

5.4 Interpretation of the Results

The mosaic plot in Fig. 4 shows the pattern-wise representation of the detection
results on the 15 RESTful APIs. Columns correspond to each (anti)pattern while
rows represent the detected (anti)patterns on each API. In each row, the height
of the mosaic represents the size of the method suite we tested for an API. In
Fig. 4, the most frequent patterns are Verbless URI and Contextualised Resource
Names—the majority of the analysed APIs did not include any CRUDy terms or
any of their synonyms and the nodes in these URIs belong to the same semantic
context. In contrast, the most frequent antipatterns are Amorphous URI and
Non-Hierarchical Nodes—the majority of the analysed APIs involve at least one
syntactical problem and that URI nodes for those APIs were not organised in
a hierarchical manner. However, the conclusions drawn above are based on the
analysis results obtained applying the DOLAR approach.

Table 3 presents detailed detection results for the ten linguistic (anti)patterns
on 15 RESTful APIs. The table reports the (anti)patterns in the first column
followed by the analysed RESTful APIs in the following fifteen columns. For each
RESTful API and for each (anti)pattern, we report the total number of occur-
rences reported as positives by our detection algorithms. The last two columns
show the total detected occurrences across 15 APIs (with percentage) and the
average detection time. The detailed detection results for all the 309 tested

Are RESTful APIs Well-Designed? 181

Table 3. Detection results of the ten REST lexical (anti)patterns (numbers in paren-
thesis show the number of methods tested for each API).

» &
2 S| m

2 g CAEE g

=

o NEEREEHHEREERE z

< 3 Sln|e| o5 ® P NERIC RN =

glal, |2 glo|Ple|Lle|elelE & g

= ol | > &gl glal=|d|E]R e o o

& S E A EE R HE] 3

B Z@@aRa|xla|g|2|Slalee>|g o 3

7)) <4 | S AAEIAARO AN =) 3

] Ao v NS a|Xw|a|w|~ |~ =) 5]

~ izl eig gl & A
[Lexical Antipatterns/Patterns |
XAmorphous URI 8[0[15[0 [14|2[65]14[19] 7 [28] 3 |25[10[9 [219(71%)|0.984s
vTidy URI 1120[0(12|374[20]0|0[25|16[0] 70| 90(29%)[0.968s
No Detection ojofjojo]olofo|0]0]o[0]0]0]0]0] 0(0.0%) -
®Contextless Resource Names 0[0[2(4[1|0|7[4[9[2]|6]0 1|0] 42(14%)[0.565s
v Contextualised Resource Names| 9 [0 [8 |4 (14| 0 (21| 8 [10]328[0(19] 6 |0 [130(42%)| 0.66s
No Detection 0120[54]216([39)270]2(19](19| 0]10]9(137(44%) —
XCRUDy URI 0(0[0|O0[6(0[0O|0O|0O[0O|1]0O[5|0|0 12(4%)[0.737s
v'Verbless URI 9 [20[15(12]11| 5 [58|14[19] 7 [52]19|20]17]9 |287(93%)[0.677s
No Detection 0(0[{0[O0[O|1T{9|0|0]|0O|0O]|O]O|O|O 10(3%) —
XNon-hierarchical Nodes 9[0[10[8[15]0[28]12]19]5[34] 0]25] 6 [0 [171(55%)[0.584s
v'Hierarchical Nodes ofofjo|o|ojolo|o]jo]|0|0]0|0]010] 0(0.0%)]0.592s
No Detection 0120[54]216([39)270]2(19(19| 01119 [138(45%) —
XPluralised Nodes ofojojo|(8(o0fofo0|l0j0O|0O|2]1|0|0O 11(4%)|0.668s
vSingularised Nodes ofojo|o]ojolo|1]of0[0|2]|1]3]0 7(2%)]0.656s
No Detection 9 [20[15(12] 9|6 [67|13]19] 7 [53|15|23]14] 9 291(94%) —

methods from 15 RESTful APIs are available on our project Web site http://
sofa.ugqam.ca/dolar/.

As shown in Table 3, more than 70 % of analysed URIs (219 out of 309) show
amorphousness. Exceptionally, the Bestbuy API has all the URIs detected as
Tidy URI In contrast, all the URIs in Instagram and Twitter, for example,
have syntactic problems and all of them are detected as Amorphous URI. As
for the Contextualised Resource Names pattern, most of the APIs applied this
pattern correctly—APIs providers use contextual resources names as nodes in
URIs design—an important factor that affects the understandability of RESTful
APIs. However, our dictionary-based analyses did not relate contexts among
URI nodes for 137 cases because the dictionaries we used are general English
dictionaries and do not relate to specific domains like social networks such as
Twitter and Facebook. However, a domain specific dictionary might reason about
URIs contexts more accurately.

We observe the same detection results for Hierarchical Nodes pattern, i.e.,
the dictionaries could not find hierarchical relations among URIs nodes. Indeed,
we have zero detection for Hierarchical Nodes pattern because: (1) around 50 %
of tested URIs used only one node (excluding the base URI) in which case we
cannot check the hierarchical relation and (2) more than 20 % URIs contain digits
or numbers as nodes, which again do not fall under any hierarchical relations.

The occurrences of CRUDy URI antipattern were detected in only 4 % (12
out of 309) tested URIs. In contrast, 93 % (287 out of 309) of the tested URIs

http://sofa.uqam.ca/dolar/
http://sofa.uqam.ca/dolar/

182 F. Palma et al.

are Verbless URI. In other words, APIs designers seem aware of not mixing the
definition of traditional Web service operations and resource-oriented HTTP
requests in REST. In traditional Web services, operation identifiers reflect what
they are doing, whereas in REST, actions to be performed on a resource should
be explicitly mentioned only using HTTP methods and not within a URI through
a CRUDy term. Finally, there is a significant amount of No Detection for Singu-
larised vs. Pluralised Nodes since about 90 % of our tested requests used HTTP
GET method. HTTP GET requests can retrieve both single and multitude of
resources. However, for the remaining 10 %, the Pluralised Nodes antipattern
appeared more frequently than the Singularised Nodes pattern.

Here, we discuss the Conteztless Resource Names antipattern in detail (since,
it is our running example for this paper). Out of 309 tested URIs, 14 % (42 occur-
rences) of them are detected as Contextless Resource Names antipatterns, 42 %
(130 occurrences) are detected as Contextualised Resource Names patterns, and
44 % (137 occurrences) are detected as None. More specifically, for example,
in Bestbuy, most of the URIs have only one node followed by parameters. We
ignore parameters while we capture the context. Thus, if there is only one node
in URISs, it is not possible to find any contextual relationship. Therefore, all the
Bestbuy URIs are detected as No Detection.

In contrast, the Dropbox, Facebook, StackExchange, Twitter, and YouTube
involve a high number of contextualised URIs naming. These good practices may
help their APIs clients better understand and reuse. The following snippet shows
two request URIs from Facebook where the URI nodes are considered to be in
the same semantic context:

1. https://graph.facebook.com/v2.2/{user_id1}/mutualfriends/{user_id2}?access_token=CAATtS. .

2. https://graph.facebook.com/v2.2/{user_id1}/friendlists?access_token=CAATt8..

For Facebook, our DOLAR approach reported 21 tested methods (out of 67)
as Contertualised Resource Names patterns.

5.5 Further Discussion of the Results

Table4 shows the validation results on Dropbox (Validation 1) and on four
representative APIs (Validation 2). For the first validation, the average precision
is 81.4 % and recall is 78 % for all (anti)patterns. For the second validation, the
average precision is 79.7 %.

In the first validation of Dropbox, two occurrences of Verbless URI are false
positives. The terms ‘copy’ and ‘search’ (or their synonyms) were not consid-
ered CRUDy by our algorithm in /1/copy_ref/dropbox/MyDropboxFolder/ and
/1/search/dropbox/MyDropboxFolder/. However, the manual validation consid-
ered those terms CRUDy. Thus, on Dropbox, we had a precision of 100 % and
a recall of 75% for CRUDy URI and a precision of 80 %, recall of 100 % for
Verbless URI

The Non-hierarchical Nodes antipattern was detected by our detection algo-
rithm in 14 cases whereas the manual validation suggested only three of them

Are RESTful APIs Well-Designed? 183

Table 4. Complete validation results on Dropbox (Validation 1) and partial validation
results on Facebook, Dropbox, Twitter, and YouTube (Validation 2). ‘P’ represents the
numbers of detected positives and ‘TP’ the numbers of true positives.

Ang ns Validation 1 Validation 2
Patterns DPOL[;‘; Vali Precision l:' ‘;::ii Recall A;:Z:lgle DPOLI,T_:} Validated | Precision lljr :;:iii
% Amorphous URI 13|12 12 92.31% 100% 41 4 4 100%
v'Tidy URL 313 4 100% 96.2% 75% | 87.5% [3] 3 3 100% 100%
No detection 0 0 0 - - 0 0 0 -
% Contextless Resource Names 0 0 0 - - 2 0 2 0%
¥ Contextualised Resource Names 14 | 14 14 100% 100% 100% 100% 513 5 60% 53.3%
No detection 212 2 100% 100% 313 3 100%
% CRUDy URI 61 6 8 100% 75% 212 2 100%
v Verbless URI 10 8 8 80% 90% 100% | 87.5% | 9 | 9 9 100% 100%
No detection 00 0 - - 0|0 0 -
% Non-hierarchical Nodes 141 3 3 21.43% 100% 6 1 3 16.67%
v Hierarchical Nodes 00 11 - 60.7% 0% 66.7% [0 | 0 11 - 58.3%
No detection 212 2 100% 100% 41 4 5 100%
% Pluralised Nodes 613 4 50% 75% 1|1 4 100%
v Singularised Nodes 0]0 2 - 60% 0% 48.3% 1|1 6 100% 86.7%
No detection 10 7 10 70% 70% 10| 6 10 60%
Average Precision 81.4% | Recall 78% Precision _ 79.7%

actually are organised in a non-hierarchical order. We manually investigated
the causes of such discrepancies, and found that the URIs that we identified as
antipatterns by our detection algorithms and, later, were (manually) validated
as patterns have the following URI pattern:

1. {baseURI}/{medial|revisions|shares}/dropbox/MyDropboxFolder/...
2. {baseURI}/fileops/{copyldelete|move|create folder}/?root=dropbox&path=...

Our dictionary-based analyses did not find any hierarchical relations between
{media,revisions,shares} and dropbox, between MyDropboxFolder and dropbox,
and so on. Yet, these hierarchical relations are obvious for developers and it was
easy to infer the hierarchical relations among those pairs simply because they
use a natural naming scheme [11]. It is the same for the second example, where
fileops and {copy,delete,move,create_folder} are validated to be in hierarchical
relation and the English dictionaries could not find any hierarchical relations,
thus DOLAR considered them as Non-hierarchical Nodes antipatterns. There-
fore, for this antipattern, we had a low precision of 21.43 %.

In the second validation, also for the Non-hierarchical Nodes antipattern,
DOLAR faces a similar problem for Twitter as illustrated in these examples:

1. {baseURI}/help/privacy.json

2. {baseURI}/statuses/{show.json|user_timeline.json}?screen name=...

The dictionary-based analyses did not find any hierarchical relations between
‘help’ and ‘privacy’ or between ‘statuses’ and {show,user,timeline} and reported
them as non-hierarchical. The precision for Non-hierarchical Nodes antipattern
is therefore 16.67 %, due to this limitation with the analyses.

Finally, an interesting observation from Table4: two cases were identified
as Contextless Resource Names antipatterns that were manually validated as

184 F. Palma et al.

Contextualised Resource Names pattern. Our investigation shows that the Eng-
lish dictionaries suggested ‘Canucks’ and ‘albums’ in Facebook and ‘followers’
and ‘list’ in Twitter to be in two different contexts. However, three profession-
als validated them as patterns, which caused the precision down to 0% for this
antipattern in four representative APIs, with an average precision of 53.3 %.

1. https://graph.facebook.com/Canucks/albums?access_token=CAA2...

2. https://api.twitter.com/1.1/followers/list.json?screen name=...

5.6 Discussion on the Hypotheses

We now discuss the hypotheses defined in Sect. 5.1.

H;,. Accuracy: From Table4, for the first validation on Dropbox API, we
obtained an average precision of 81.4% and recall of 78 % (Validation 1). As
for the second validation, on a partial set of tested methods on Facebook, Drop-
box, Twitter, and YouTube (i.e., 50 out of 125 tested methods), we obtained
an average precision of 79.7% (Validation 2). However, for the second valida-
tion, we cannot calculate recall because we validated only a part of all tested
methods. Moreover, for the manually validated subset of URIs, we had a lower
precision ranging between 16.67 % and 21.43 % only for Non-hierarchical Nodes
antipattern due to the limitations of WordNet dictionary. Thus, despite lower
precision for one specific antipattern, with an average precision of 81.4 % and
79.7 %, and a recall of 78 % for all (anti)patterns, we can positively support our
first hypothesis on the accuracy of our defined set of rules and the detection
algorithms.

H,. Extensibility: We added to SOFA ten new REST linguistic (anti)patterns,
which required semantic analyses for their detection. At present, SOFA can
detect a set of 23 REST (anti)patterns from both syntactic and semantic aspects.
Furthermore, we added three new RESTful APIs (i.e., Instagram, StackEx-
change, and Externalip), and more than 190 new HTTP requests from [18].
To add new (anti)patterns, one needs to implement and integrate their detec-
tion algorithms within SOFA architecture. To add a new RESTful API, one
must add its service interface, the underlying methods of the service, an authen-
ticated client that can invoke these methods, and a wrapper SCA component,
which specifies the bindings, base URI, and various runtime properties. Thus, it
is possible to add new (anti)patterns, which supports our second hypothesis.

H;. Performance: Table3 (last column) shows the detection time for each
pattern and antipattern, ranging between 0.565s and 0.984s, with an average
of 0.709s. In fact, the total required time also includes the execution time, i.e.,
sending requests and receiving responses (ranges from 2.074s to 20.656s, with
an average of 6.92s). We performed our experiment on an Intel Core-i7 with a
processor speed of 2.50 GHz and 8 GB of memory. The reported detection times
are comparatively low (on an average, 10 % of the total required time). However,
the total required time also depends on the number of tested methods for each

Are RESTful APIs Well-Designed? 185

API. With such a low average detection time of 0.709s and execution time of
6.92s, we can positively support our third hypothesis on performance.

5.7 Threats to Validity

To minimise the threat to the external validity of our results, we performed
experiments on 15 well-known APIs by invoking over 300 methods. We used
WordNet for lexical and semantic analyses of URIs. However, one limitation
of WordNet is that it does not include information on the semantic similarity
between words. In addition, the number of defined relationships among words
is limited and it lacks compound concepts or words. For example, we found
URIs with compound resource identifiers that, when split, may cause loosing
contextual information. This threat to the internal validity affected our detection
results. However, we plan to incorporate other similarity measure techniques like
second order similarity to improve our semantic analysis.

The detection results may deviate depending on the defined algorithmic rules
of linguistic (anti)patterns. Engineers may have their own views and levels of
expertise on REST linguistic (anti)patterns, which may affect the definition of
algorithmic rules. We tried to minimise this threat to the construct validity by
defining all rules after a thorough review of definitions in existing literature
on REST linguistic (anti)patterns. We also involved three professionals in the
validation of the results and involved a third expertise if conflicts arose. Finally,
to minimise the threat to reliability validity—the possibility to replicate this
study—we gather the details to replicate this study, including the algorithmic
rules and the client request URIs, on our Web site.

6 Conclusion and Future Work

REST client developers need to understand well RESTful APIs while designing
and developing their own Web-based systems. Understandability and reusability
are thus two major factors that APIs providers must consider. This paper pre-
sented DOLAR (Detection Of Linguistic Antipatterns in REST), an approach
supported by the SOFA framework [17] extended with syntactic and semantic
analyses, for the detection of linguistic (anti)patterns in RESTful APIs.

We applied DOLAR to specify ten linguistic (anti)patterns. We validated
DOLAR by analysing 15 RESTful APIs and invoking 309 methods and showed
its accuracy: (1) an average precision of 81.4% and recall of 78 % on Dropbox
and (2) an average precision of 79.7% for a partial validation on Facebook,
Dropbox, Twitter, and YouTube. We also observed that out of the 15 analysed
RESTful APIs, most of them involve syntactical URIs design problems and do
not organise URIs nodes in a hierarchical manner. However, the REST APIs
designers, in general, use appropriate resource names fit for a context and they
do not use verbs in URIs, which is a good URIs design practice in REST.

As future work, we want to apply DOLAR on other RESTful APIs and to
Open Linked Data. We plan also to include domain-specific ontologies in the

186 F. Palma et al.

semantic analyses to overcome the limitations of English dictionaries and to
apply other natural language processing techniques like second order similari-
ties. We want to perform a validation of DOLAR results with RESTful APIs
developers.

Acknowledgements. The authors thank Charlie Faucheux for initiating the study.
This study is supported by NSERC (Natural Sciences and Engineering Research Coun-
cil of Canada) and FRQNT, Canada research grants.

References

1. Abebe, S.L., Haiduc, S., Tonella, P., Marcus, A.: Lexicon bad smells in software.
In: 2009 16th Working Conference on Reverse Engineering, pp. 95-99. IEEE (2009)

2. Arnaoudova, V., Di, M.: Linguistic antipatterns: what they are and how developers
perceive them. Empirical Softw. Eng. (2015)

3. Arnaoudova, V., Eshkevari, L.M., Penta, M.D., Oliveto, R., Antoniol, G.,
Gueheneuc, Y.G.: REPENT: analyzing the nature of identifier renamings. IEEE
Trans. Softw. Eng. 40(5), 502-532 (2014)

4. Berners-Lee, T., Fielding, R.T., Masinter, L.: Uniform Resource Identifier (URI),
Generic Syntax (2005)

5. Edwards, M.: Service Component Architecture (SCA). OASIS, USA, April 2011

6. Erl, T.: Service-Oriented Architecture: Concepts, Technology and Design. Pearson
Education, Boston (2005)

7. Fielding, R.T.: Architectural Styles and the Design of Network-based Software
Architectures. Ph.D. thesis, University of California, Irvine (2000)

8. Fredrich, T.: RESTful Service Best Practices: Recommendations for Creating Web
Services, May 2012. http://www.restapitutorial.com/resources.html

9. Goddard, C.: Semantic Analysis: A Practical Introduction. Oxford Textbooks in
Linguistics, OUP Oxford (2011)

10. Hausenblas, M.: On entities in the web of data. In: Wilde, E., Pautasso, C. (eds.)
REST from Research to Practice, pp. 425-440. Springer, New York (2011)

11. Laitinen, K.: Estimating understandability of software documents. SIGSOFT
Softw. Eng. Notes 21(4), 81-92 (1996)

12. Lawrie, D., Morrell, C., Feild, H., Binkley, D.: Effective identifier names for com-
prehension and memory. Innovations Syst. Softw. Eng. 3(4), 303-318 (2007)

13. Lu, M., Sun, X., Wang, S., Lo, D., Duan, Y.: Query expansion via wordnet for
effective code search. In: 22nd IEEE International Conference on Software Analysis,
Evolution, and Reengineering, Montreal, Canada, pp. 545-549 (2015)

14. Massé, M.: REST API Design Rulebook. O’Reilly, Sebastopol (2012)

15. Mateos, C., Rodriguez, J.M., Zunino, A.: A tool to improve code-first web services
discoverability through text mining techniques. Softw. - Pract. Experience (2014)

16. Microsoft MSDN: Capitalization Styles. https://msdn.microsoft.com/en-us/
library /x2dbyw72(v=vs.71).aspx

17. Moha, N.; Palma, F., Nayrolles, M., Conseil, B.J., Guéhéneuc, Y.-G., Baudry,
B., Jézéquel, J.-M.: Specification and detection of SOA antipatterns. In: Liu, C.,
Ludwig, H., Toumani, F., Yu, Q. (eds.) ICSOC 2012. LNCS, vol. 7636, pp. 1-16.
Springer, Heidelberg (2012)

http://www.restapitutorial.com/resources.html
https://msdn.microsoft.com/en-us/library/x2dbyw72(v=vs.71).aspx
https://msdn.microsoft.com/en-us/library/x2dbyw72(v=vs.71).aspx

18.

19.
20.

21.

22.

23.

Are RESTful APIs Well-Designed? 187

Palma, F.; Dubois, J., Moha, N.; Guéhéneuc, Y.-G.: Detection of REST pat-
terns and antipatterns: a heuristics-based approach. In: Franch, X., Ghose, A.K.,
Lewis, G.A., Bhiri, S. (eds.) ICSOC 2014. LNCS, vol. 8831, pp. 230—244. Springer,
Heidelberg (2014)

Parrish, A.: Social Network APIs: A Revised Lexical Analysis (2010)

Rahman, M.M., Chanchal, R.K.: TextRank based search term identification for
software change tasks. In: 22nd IEEE International Conference on Software Analy-
sis, Evolution, and Reengineering, Montreal, Canada, pp. 540-544 (2015)
Rodriguez, J.M., Crasso, M., Zunino, A., Campo, M.: Improving web ser-
vice descriptions for effective service discovery. Sci. Comput. Program. 75(11),
1001-1021 (2010)

Seinturier, L., Merle, P., Rouvoy, R., Romero, D., Schiavoni, V., Stefani, J.B.: A
component-based middleware platform for reconfigurable service-oriented architec-
tures. Softw. Pract. Experience 42(5), 559-583 (2012)

Tilkov, S.: REST Anti-Patterns, July 2008. www.infoq.com/articles/
rest-anti-patterns

www.infoq.com/articles/rest-anti-patterns
www.infoq.com/articles/rest-anti-patterns

	Are RESTful APIs Well-Designed? Detection of their Linguistic (Anti)Patterns
	1 Introduction
	2 Related Work
	3 REST Linguistic Patterns and Antipatterns
	4 The DOLAR Approach
	4.1 Analysis of Linguistic Patterns and Antipatterns
	4.2 Implementation of Interfaces and Detection Algorithms
	4.3 Detection of Linguistic Patterns and Antipatterns

	5 Validation
	5.1 Hypotheses
	5.2 Subjects and Objects
	5.3 Validation Process
	5.4 Interpretation of the Results
	5.5 Further Discussion of the Results
	5.6 Discussion on the Hypotheses
	5.7 Threats to Validity

	6 Conclusion and Future Work
	References

