
Alistair Barros
Daniela Grigori
Nanjangud C. Narendra
Hoa Khanh Dam (Eds.)

 123

13th International Conference, ICSOC 2015
Goa, India, November 16–19, 2015
Proceedings

Service-Oriented
ComputingLN

CS
 9

43
5

Se
rv

ice
s S

cie
nc

e

Lecture Notes in Computer Science 9435

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Alistair Barros • Daniela Grigori
Nanjangud C. Narendra • Hoa Khanh Dam (Eds.)

Service-Oriented
Computing
13th International Conference, ICSOC 2015
Goa, India, November 16–19, 2015
Proceedings

123

Editors
Alistair Barros
Queensland University of Technology
Brisbane, QLD
Australia

Daniela Grigori
Université Paris Dauphine
Paris
France

Nanjangud C. Narendra
M.S. Ramaiah University
Bangalore
India

Hoa Khanh Dam
University of Wollongong
Wollongong, NSW
Australia

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-662-48615-3 ISBN 978-3-662-48616-0 (eBook)
DOI 10.1007/978-3-662-48616-0

Library of Congress Control Number: 2015947417

LNCS Sublibrary: SL2 – Programming and Software Engineering

Springer Heidelberg New York Dordrecht London
© Springer-Verlag Berlin Heidelberg 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer-Verlag GmbH Berlin Heidelberg is part of Springer Science+Business Media
(www.springer.com)

Preface

Welcome to the proceedings of the 13th 1nternational Conference on Service-Oriented
Computing (ICSOC 2015), held in Goa, India, November 16–19, 2015. ICSOC 2015
was co-organized by ServTech and IBM Research. These proceedings contain high-
quality research papers that represent the latest results, ideas, and position and vision
statements in the field of service-oriented computing.

Since the first occurrence of the conference in 2003, where service-oriented com-
puting was given impetus through the rise of Web service platforms and standards as
well as dedicated service description and composition languages and techniques,
ICSOC has grown to become a premier international forum. It has continued to attract
high-quality and highly cited publications from academics, industry researchers, and
practitioners to share, report, and discuss their ground-breaking work. ICSOC 2015
continued along this tradition.

The selected papers demonstrate increasing maturity and synergies across service-
oriented computing and cloud computing, growing synergies with the Internet of
Things, and ongoing maturity in service composition and interoperability, which are
strongly related to the fields of BPM and software engineering. This year’s call for
papers attracted 124 research and industry submissions from 31 countries and six
continents. The submissions were rigorously evaluated by at least three reviewers,
followed by a discussion moderated by a senior Program Committee (PC) member who
made a final recommendation in the form of a meta-review. The PC was composed of
148 world-class experts (136 PC members and 22 senior PC members) in service-
oriented computing from 22 different countries.

The ICSOC 2015 program featured 18 full papers (acceptance rate of 16 %) and
nine short papers in the research track. Also featured were five papers in the industry
track. The conference program was highlighted by invited keynotes, lively panel dis-
cussions, multiple demonstrations, the PhD Symposium, and eight workshops on
different aspects of service-oriented and cloud computing.

We would like to express our gratitude to all individuals, institutions, and sponsors that
supported ICSOC 2015. The high-quality program would not have been possible without
the expertise and dedication of our PC and in particular of our senior PC members. We are
grateful for the guidance of the general chairs (Aditya Ghose and Srinivas Padmanab-
huni), the effort of more than 60 external reviewers, the proceedings chair (Hoa Dam), the
publicity chairs (Georgiana Copil, Tri Kurniawan and Renuka Sindhgatta), the local
organizers (Karthikeyan Ponnalagu and Wagh Ramarao S.) and volunteers, and last but
not least to the distinguished members of the ICSOC Steering Committee. All of them
helped to make ICSOC 2015 a success. Finally, a special word of thanks goes to all
researchers, practitioners, and students who contributed their presentations, questions, and
active participation in the conference. We hope you enjoy these proceedings!

November 2015 Alistair Barros
Daniela Grigori

Nanjangud C. Narendra

ICSOC 2015 Organization

General Chairs

Aditya Ghose University of Wollongong, Australia
Srinivas Padmanabhuni Infosys Technologies Limited, India

Program Chairs

Alistair Barros Queensland University of Technology, Australia
Daniela Grigori Université Paris Dauphine, France
Nanjangud C. Narendra M.S. Ramaiah University, India

Steering Committee

Boualem Benatallah University of New South Wales, Australia
Fabio Casati University of Trento, Italy
Bernd Krämer FernUniversität in Hagen, Germany
Winfried Lamersdorf University of Hamburg, Germany
Heiko Ludwig IBM Research, USA
Mike Papazoglou Tilburg University, The Netherlands
Jian Yang Macquarie University, Australia
Liang Zhang Fudan University, China

Publication Chair

Hoa Khanh Dam University of Wollongong, Australia

Workshop Chairs

Walid Gaaloul Telecom SudParis, France
Alex Norta Tallinn University of Technology, Estonia
G.R. Gangadharan IDRBT, India

Panel Chairs

Florian Daniel University of Trento, Italy
Gargi B. Dasgupta IBM Research, India
Andreas Metzger University of Duisburg-Essen, Germany

Finance Chair

Bernd Krämer FernUniversität in Hagen, Germany

PhD Symposium Chairs

Antonio Brogi University of Pisa, Italy
Hong-Linh Truong TU Wien, Austria
Guido Governatori NICTA, Australia

Demonstration Track Chairs

Vinay Kulkarni Tata Consultancy Services Limited, India
P. Radha Krishna Infosys Limited, India
Vinod Muthusamy IBM Research, USA

Organizing Chairs

Karthikeyan Ponnalagu IBM Research, India
Wagh Ramrao S. Goa University, India

Publicity Chairs

Georgiana Copil TU Wien, Austria
Tri Kurniawan Brawijaya University, Indonesia
Renuka Sindhgatta IBM Research, India

Web Chairs

Allahbaksh Asadullah Infosys Labs, India
Ayu Saraswati University of Wollongong, Australia

Senior Program Committee

Samik Basu Iowa State University, USA
Boualem Benatallah UNSW, Australia
Athman Bouguettaya RMIT, Australia
Fabio Casati University of Trento, Italy
Schahram Dustdar TU Wien, Austria
Xavier Franch Universitat Politecnica de Catalunya, Spain
Aditya Ghose University of Wollongong, Australia
Mohand-Said Hacid University of Lyon, France
Grace Lewis Software Engineering Institute, USA
Lin Liu Tsinghua University, China
Heiko Ludwig IBM Research, USA
Michael Maximilien IBM Research, USA

VIII ICSOC 2015 Organization

Flavio De Paoli Università di Milano Bicocca, Italy
Cesare Pautasso University of Lugano, Switzerland
Barbara Pernici Politecnico di Milano, Italy
Gustavo Rossi UNLP, Argentina
Michael Q. Sheng Adelaide University, Australia
Stefan Tai TU Berlin, Germany
Zahir Tari RMIT University, Australia
Mathias Weske HPI/University of Potsdam, Germany
Jian Yang Macquarie University, Australia
Liang Zhang Fudan University, China

Program Committee

Fahim Akhter King Saud University, Saudi Arabia
Rama Akkiraju IBM/USA, USA
Alvaro Arenas Instituto de Empresa Business School, Spain
Ebrahim Bagheri Ryerson University, Canada
Luciano Baresi Politecnico di Milano, Italy
Alistair Patrick Barros Queensland University of Technology, Australia
N. Md. Jubair Basha Muffakham Jah College of Engineering and

Technology, India
Djamel Belaid Telecom Sud Paris, France
Khalid Belhajjame Université Paris Dauphine, France
Umesh Bellur Indian Institute of Technology, India
Nejib Ben Hadj-Alouane National School of Engineers of Tunis (ENIT), Tunisia
Moez Ben Haj Hmida National Engineering School of Tunis (ENIT), Tunisia
Sonia Ben Mokhtar LIRIS, CNRS, France
Salima Benbernou Université Paris Descartes, France
Reda Bendraou LIP6 Paris Universitas, France
Djamal Benslimane University of Lyon, France
Sami Bhiri Telecom SudParis, France
Domenico Bianculli University of Luxembourg, Luxembourg
Frederique Biennier INSA of Lyon, France
Walter Binder University of Lugano, Switzerland
M. Brian Blake University of Miami, USA
Omar Boucelma Aix-Marseille University, France
Athman Bouguettaya RMIT, Australia
Ivona Brandic Vienna University of Technology, Austria
Christoph Bussler Oracle Corporation, USA
Cristina Cabanillas Vienna University of Economics and Business, Austria
Manuel Carro UPM and IMDEA Software Institute, Spain
Wing-Kwong Chan City University of Hong Kong, Hong Kong,

SAR China
Francois Charoy University of Lorraine, France
Sanjay Chaudhary Ahmedabad University, India
Shiping Chen CSIRO ICT, Australia

ICSOC 2015 Organization IX

Lawrence Chung The University of Texas at Dallas, USA
Hoa Khanh Dam University of Wollongong, Australia
Florian Daniel University of Trento, Italy
Bruno Defude Telecom Sud Paris, France
Shuiguang Deng Zhejiang University, China
Nirmit Desai IBM Research, India
Khalil Drira LAAS Toulouse, France
Yucong Duan Hainan University, China
Abdelkarim Erradi Qatar University, Qatar
Rik Eshuis Eindhoven University of Technology, The Netherlands
Onyeka Ezenwoye Georgia Regents University, USA
Marcelo Fantinato University of Sao Paulo, Brazil
Marie-Christine Fauvet University of Grenoble Alpes, France
Joao E. Ferreira University of Sao Paulo, Brazil
Walid Gaaloul Telecom SudParis, France
N.D. Gangadhar MS Ramaiah University of Applied Sciences, India
G.R. Gangadharan IDRBT, India
Paolo Giorgini University of Trento, Italy
Claude Godart University of Lorraine, France
Mohamed Graiet ISIMM, Tunisia
Sven Graupner HP Labs, Palo Alto, USA
Daniela Grigori University of Paris-Dauphine, France
Adnene Guabtni NICTA, Australia
Armin Haller Australian National University, Australia
Jun Han Swinburne University of Technology, Australia
Peng Han Chongqing Academy of Science and Technology,

China, China
Bernhard Holtkamp Fraunhofer ISST, Germany
Richard Hull IBM Research, USA
Fuyuki Ishikawa National Institute of Informatics, Japan
Hai Jin HUST, China
Ejub Kajan State University of Novi Pazar, Serbia
Dimka Karastoyanova University of Stuttgart, Germany
Raman Kazhamiakin Fondazione Bruno Kessler, Italy
Hamamache Kheddouci University of Lyon, France, France
Kais Klai University of Paris 13, France
Ryan Ko University of Waikato, New Zealand
Gerald Kotonya Lancaster University, UK
Peep Kungas University of Tartu, Estonia
Philippe Lalanda Joseph Fourier University, France
Philipp Leitner University of Zurich, Switzerland
Henrik Leopold VU University Amsterdam, The Netherlands
Huma Mehadisa Lepakshi Infosys, India
Frank Leymann University of Stuttgart, Germany
Ying Li Zhejiang University, China
Xumin Liu Rochester Institute of Technology, USA

X ICSOC 2015 Organization

Alessio Lomuscio Imperial College London, UK
Zakaria Maamar Zayed University, United Arab Emirates
Zaki Malik Wayne State University, USA
Ioana Manolescu Inria, France
Jordi Marco Universitat Politècnica de Catalunya, Spain
Massimo Mecella Sapienza Università di Roma, Italy
Brahim Medjahed University of Michigan - Dearborn, USA
Jan Mendling WU Vienna, Austria
Lars Moench University of Hagen, Germany
Marco Montali Free University of Bozen-Bolzano, Italy
Hamid Reza

Motahari-Nezhad
HP, USA

Michael Mrissa University of Lyon, France
Nanjangud C. Narendra M.S. Ramaiah University, India
Surya Nepal CSIRO, Australia
Alex Norta Tallinn University of Technology, Estonia
Srinivasa Padmanabhuni Infosys Technologies Limited, India
Helen Paik UNSW, Australia
Olivier Perrin Lorraine University, France
RadhaKrishna Pisipati Infosys Technologies Limited, India
Marco Pistore Fondazione Bruno Kessler, Italy
Pierluigi Plebani Politecnico di Milano, Italy
Pascal Poizat Université Paris Ouest and LIP6, France
Artem Polyvyanyy Queensland University of Technology, Australia
Karthikeyan Ponnalagu IBM Research, India
Mu Qiao IBM Almaden Research Center, USA
Lakshmish Ramaswamy University of Georgia, USA
Manfred Reichert University of Ulm, Germany
Wolfgang Reisig Humboldt-Universität zu Berlin, Germany
Stefanie Rinderle-Ma University of Vienna, Austria
Colette Roland Université Paris 1 Pantheon Sorbonne, France
Antonio Ruiz-Cortes University of Sevilla, Spain
Sherif Saakr University of New South Wales, Australia
Mohammad Sadoghi IBM T.J. Watson Research Center, USA
Diptikalyan Saha IBM Research, India
Iman Saleh Intel Corporation, USA
Jun Shen University of Wollongong, Australia
Larisa Shwartz IBM T.J. Watson Research Center, USA
Ignacio Silva-Lepe IBM T.J. Watson Research Center, USA
Yogesh Simmhan Indian Institute of Science, India
Sergey Smirnov SAP, Germany
George Spanoudakis City University London, UK
Jianwen Su University of California at Santa Barbara, USA
Wei Tan IBM T.J. Watson Research Center, USA
Samir Tata Telecom SudParis, France
Philippe Thiran University of Namur, Belgium

ICSOC 2015 Organization XI

Roman Vaculin IBM T.J. Watson Research Center, USA
Guiling Wang North China University of Technology, China
Jianwu Wang University of California, USA
Yan Wang Macquarie University, Australia
Zhongjie Wang Harbin Institute of Technology, China
Ingo Weber NICTA, Australia
Yi Wei Microsoft, USA
Matthias Weidlich Imperial College London, UK
Lai Xu Bournemouth University, UK
Moez Yeddes National Institute of Applied Sciences and Technology,

Tunisia
Jian Yu Auckland University of Technology, New Zealand
Qi Yu Rochester Institute of Technology, USA
Uwe Zdun University of Vienna, Austria
Weiliang Zhao University of Wollongong, Australia
Yan Zheng Aalto University/Xidian University, Finland
Floriano Zini Free University of Bozen-Bolzano, Italy
Andrea Zisman City University London, UK

Demonstration Track Committee

Adnene Guabtni NICTA, Australia
Armin Haller CSIRO, Australia
Athman Bouguettaya RMIT University, Australia
Dickson Chiu The University of Hong Kong, Hong Kong,

SAR China
Djamal Benslimane University of Lyon, France
Florian Daniel University of Trento, Italy
Helen Paik University of New South Wales, Australia
Ivona Brandic Vienna University of Technology, Austria
Mohammad Sadoghi IBM Research, USA
Philipp Leitner University of Zurich, Switzerland
Philippe Lalanda Joseph Fourier University, France
Pierluigi Plebani Politecnico di Milano, Italy
Raman Kazhamiakin SOA Research Unit, Fondazione Bruno Kessler,

Trento, Italy
Sonia Ben Mokhtar LIRIS, CNRS, France
Uwe Zdun University of Vienna, Austria
Wei Tan IBM T.J. Watson Research Center, USA
Xumin Liu Rochester Institute of Technology, USA

Additional Reviewers

Nariman Ammar Wayne State University, USA
Nour Assy Telecom SudParis, France
Daniel Batista University of Sao Paulo, Brazil

XII ICSOC 2015 Organization

Oscar Cabrera Bejar Polytechnic University of Catalunya, Spain
Lubomir Bulej Università della Svizzera Italiana, Switzerland
Isaac Caicedo-Castro University of Grenoble, France
Sivadon Chaisiri University of Waikato, New Zealand
Martina De Sanctis Fondazione Bruno Kessler, Italy
Boris Duedder Technical University of Dortmund, Germany
Walid Fdhila University of Vienna, Austria
Pablo Fernndez University of Seville, Spain
Manuel Gall University of Vienna, Austria
Genady Grabarnik St. John’s University, USA
Ikbel Guidara LAAS-CNRS and Université de Toulouse, France
Antonio Manuel Gutirrez University of Seville, Spain
Emna Hachicha Telecom SudParis, France
Khayyam Hashmi Wayne State University, USA
Regina Hebig University of Pierre and Marie Curie, France
Tobias Hildebrandt University of Vienna, Austria
Georg Kaes University of Vienna, Austria
Ryan Ko University of Waikato, New Zealand
Fabio Kon University of Sao Paulo, Brazil
Rafael Liberato Federal University of Technology-Parana, Brazil
Annapaola Marconi Fondazione Bruno Kessler, Italy
Andrea Marrella Sapienza University of Rome, Italy
Wafa Mekki University of Sfax, Tunisia
Emna Mezghani Luxembourg Institute of Science and Technology,

Luxembourg
Erfan Najmi Wayne State University, USA
Marcio K. Oikawa Federal University of ABC, Brazil
Jos Antonio Parejo University of Seville, Spain
Luca Piras TrentoRISE, Italy
Manuel Resinas University of Seville, Spain
Gerald Schermann University of Zurich, Switzerland
Joel Scheuner University of Zurich, Switzerland
Stefan Schnig University of Bayreuth, Germany
Andr Luis Schwerz Federal University of Technology-Parana, Brazil
Sana Sellami Aix Marseille University, France
Sebastiano Spicuglia IBM Zurich Research Lab, Switzerland
Liang Tang LinkedIn, USA
Giuseppe Valetto Fondazione Bruno Kessler, Italy
Peifeng Yin IBM Almaden Research Center, USA
Karn Yongsiriwit Telecom SudParis, France
Mo Yu Pennsylvania State University, USA

ICSOC 2015 Organization XIII

Contents

Internet of Services/Things

Combining Practical and Dialectical Commitments for Service
Engagements . 3

Pankaj R. Telang, Anup K. Kalia, John F. Madden,
and Munindar P. Singh

Positron: Composing Commitment-Based Protocols 19
Scott N. Gerard, Pankaj R. Telang, Anup K. Kalia,
and Munindar P. Singh

Analysis of Timing Constraints in Heterogeneous Middleware Interactions . . . 36
Ajay Kattepur, Nikolaos Georgantas, Georgios Bouloukakis,
and Valérie Issarny

Context-Driven Assessment of Provider Reputation in Composite Provision
Scenarios . 53

Lina Barakat, Phillip Taylor, Nathan Griffiths, and Simon Miles

Data Services and Cloud Platform Management

Runtime Model-Based Privacy Checks of Big Data Cloud Services 71
Eric Schmieders, Andreas Metzger, and Klaus Pohl

Optimizing Workload Category for Adaptive Workload Prediction
in Service Clouds . 87

Chunhong Liu, Yanlei Shang, Li Duan, Shiping Chen, Chuanchang Liu,
and Junliang Chen

On Developing and Operating of Data Elasticity Management Process. 105
Tien-Dung Nguyen, Hong-Linh Truong, Georgiana Copil,
Duc-Hung Le, Daniel Moldovan, and Schahram Dustdar

Cloud Services Management

Supporting Cloud Service Operation Management for Elasticity 123
Georgiana Copil, Hong-Linh Truong, and Schahram Dustdar

rSLA: Monitoring SLAs in Dynamic Service Environments 139
Heiko Ludwig, Katerina Stamou, Mohamed Mohamed,
Nagapramod Mandagere, Bryan Langston, Gabriel Alatorre,
Hiroaki Nakamura, Obinna Anya, and Alexander Keller

http://dx.doi.org/10.1007/978-3-662-48616-0_1
http://dx.doi.org/10.1007/978-3-662-48616-0_1
http://dx.doi.org/10.1007/978-3-662-48616-0_2
http://dx.doi.org/10.1007/978-3-662-48616-0_3
http://dx.doi.org/10.1007/978-3-662-48616-0_4
http://dx.doi.org/10.1007/978-3-662-48616-0_4
http://dx.doi.org/10.1007/978-3-662-48616-0_5
http://dx.doi.org/10.1007/978-3-662-48616-0_6
http://dx.doi.org/10.1007/978-3-662-48616-0_6
http://dx.doi.org/10.1007/978-3-662-48616-0_7
http://dx.doi.org/10.1007/978-3-662-48616-0_8
http://dx.doi.org/10.1007/978-3-662-48616-0_9

AISLE: Assessment of Provisioned Service Levels in Public IaaS-Based
Database Systems . 154

Jörn Kuhlenkamp, Kevin Rudolph, and David Bermbach

Service Composition

Are RESTful APIs Well-Designed? Detection of their Linguistic (Anti)
Patterns . 171

Francis Palma, Javier Gonzalez-Huerta, Naouel Moha,
Yann-Gaël Guéhéneuc, and Guy Tremblay

Aggregating Functionality, Use History, and Popularity of APIs to
Recommend Mashup Creation . 188

Aditi Jain, Xumin Liu, and Qi Yu

Integrating Gaussian Process with Reinforcement Learning for Adaptive
Service Composition . 203

Hongbing Wang, Qin Wu, Xin Chen, and Qi Yu

Scalable SaaS-Based Process Customization with CaseWalls 218
Yu-Jen John Sun, Moshe Chai Barukh, Boualem Benatallah,
and Seyed-Mehdi-Reza Beheshti

Business Process Management

Correlation Mining: Mining Process Orchestrations Without Case
Identifiers. 237

Shaya Pourmirza, Remco Dijkman, and Paul Grefen

Verification of GSM-Based Artifact-Centric Systems by Predicate
Abstraction. 253

Pavel Gonzalez, Andreas Griesmayer, and Alessio Lomuscio

Mining and Querying Process Change Information Based on Change Trees. . . . 269
Georg Kaes and Stefanie Rinderle-Ma

Property Preservation in Adaptive Case Management. 285
Rik Eshuis, Richard Hull, and Mengfei Yi

Cloud Services (Short Papers)

Modelling and Optimizing Bandwidth Provision for Interacting Cloud
Services . 305

Chao Chen, Ligang He, Bo Gao, Cheng Chang, Kenli Li, and Keqin Li

XVI Contents

http://dx.doi.org/10.1007/978-3-662-48616-0_10
http://dx.doi.org/10.1007/978-3-662-48616-0_10
http://dx.doi.org/10.1007/978-3-662-48616-0_11
http://dx.doi.org/10.1007/978-3-662-48616-0_11
http://dx.doi.org/10.1007/978-3-662-48616-0_12
http://dx.doi.org/10.1007/978-3-662-48616-0_12
http://dx.doi.org/10.1007/978-3-662-48616-0_13
http://dx.doi.org/10.1007/978-3-662-48616-0_13
http://dx.doi.org/10.1007/978-3-662-48616-0_14
http://dx.doi.org/10.1007/978-3-662-48616-0_15
http://dx.doi.org/10.1007/978-3-662-48616-0_15
http://dx.doi.org/10.1007/978-3-662-48616-0_16
http://dx.doi.org/10.1007/978-3-662-48616-0_16
http://dx.doi.org/10.1007/978-3-662-48616-0_17
http://dx.doi.org/10.1007/978-3-662-48616-0_18
http://dx.doi.org/10.1007/978-3-662-48616-0_19
http://dx.doi.org/10.1007/978-3-662-48616-0_19

Four-Fold Auto-Scaling on a Contemporary Deployment Platform
Using Docker Containers . 316

Philipp Hoenisch, Ingo Weber, Stefan Schulte, Liming Zhu,
and Alan Fekete

An SLA-Based Advisor for Placement of HPC Jobs on Hybrid Clouds 324
Kiran Mantripragada, Leonardo P. Tizzei, Alecio P.D. Binotto,
and Marco A.S. Netto

Optimizing Long-Term IaaS Service Composition . 333
Sajib Mistry, Athman Bouguettaya, Hai Dong, and A.K. Qin

QoS and Trust (Short Papers)

On the Complexity of QoS-Aware Service Selection Problem. 345
Faisal N. Abu-Khzam, Cristina Bazgan, Joyce El Haddad,
and Florian Sikora

TRACE: A Dynamic Model of Trust for People-Driven Service
Engagements: Combining Trust with Risk, Commitments, and Emotions 353

Anup K. Kalia, Pradeep K. Murukannaiah, and Munindar P. Singh

A Context-Aware Approach for Personalised and Adaptive QoS
Assessments . 362

Lina Barakat, Adel Taweel, Michael Luck, and Simon Miles

Service Composition (Short Papers)

Spatio-Temporal Composition of Crowdsourced Services 373
Azadeh Ghari Neiat, Athman Bouguettaya, and Timos Sellis

Design for Adaptation of Distributed Service-Based Systems 383
Antonio Bucchiarone, Martina De Sanctis, Annapaola Marconi,
Marco Pistore, and Paolo Traverso

Industry Track Papers

Automatic Deployment of Services in the Cloud with Aeolus Blender 397
Roberto Di Cosmo, Antoine Eiche, Jacopo Mauro, Stefano Zacchiroli,
Gianluigi Zavattaro, and Jakub Zwolakowski

Analyzing Resource Behavior to Aid Task Assignment in Service Systems. . . 412
Renuka Sindhgatta, Aditya Ghose, and Gaargi Banerjee Dasgupta

Contents XVII

http://dx.doi.org/10.1007/978-3-662-48616-0_20
http://dx.doi.org/10.1007/978-3-662-48616-0_20
http://dx.doi.org/10.1007/978-3-662-48616-0_21
http://dx.doi.org/10.1007/978-3-662-48616-0_22
http://dx.doi.org/10.1007/978-3-662-48616-0_23
http://dx.doi.org/10.1007/978-3-662-48616-0_24
http://dx.doi.org/10.1007/978-3-662-48616-0_24
http://dx.doi.org/10.1007/978-3-662-48616-0_25
http://dx.doi.org/10.1007/978-3-662-48616-0_25
http://dx.doi.org/10.1007/978-3-662-48616-0_26
http://dx.doi.org/10.1007/978-3-662-48616-0_27
http://dx.doi.org/10.1007/978-3-662-48616-0_28
http://dx.doi.org/10.1007/978-3-662-48616-0_29

SenseX: Design and Deployment of a Pervasive Wellness Monitoring
Platform for Workplaces . 427

Rakshit Wadhwa, Amandeep Chugh, Abhishek Kumar, Mridula Singh,
Kuldeep Yadav, Sharanya Eswaran, and Tridib Mukherjee

Opportunities for Process Improvement: A Cross-Clientele Analysis
of Event Data Using Process Mining . 444

R.P. Jagadeesh Chandra Bose, Avantika Gupta, Deepthi Chander,
Ajith Ramanath, and Koustuv Dasgupta

Pricing IT Services Deals: A More Agile Top-Down Approach 461
Aly Megahed, Kugamoorthy Gajananan, Mari Abe, Shun Jiang,
Mark Smith, and Taiga Nakamura

Demonstration Track Papers

SimMon: A Toolkit for Simulating Monitoring Mechanism in Cloud
Computing Environments . 477

Xinkui Zhao, Jianwei Yin, Pengxiang Lin, Chen Zhi, Shichun Feng,
Hao Wu, and Zuoning Chen

CASE: A Platform for Crowdsourcing Based API Search. 482
Tingting Liang, Liang Chen, Zhining Xie, Wei Yang, and Jian Wu

WSTP: Web Services Tagging Platform. 486
Sana Sellami and Hanane Becha

Personalized Messaging Engine: The Next Step in Employee Engagement . . . 491
Varun Sharma, Abhishek Tripathi, Saurabh Srivastava, Aditya Hegde,
and Koustuv Dasgupta

Offering Context-Aware Personalised Services for Mobile Users 495
Marie-Christine Fauvet, Sanjay Kamath,
Isaac-Bernardo Caicedo-Castro, Pathathai Na-Lumpoon,
Ahmed Lbath, and Lorraine Goeuriot

Author Index . 499

XVIII Contents

http://dx.doi.org/10.1007/978-3-662-48616-0_30
http://dx.doi.org/10.1007/978-3-662-48616-0_30
http://dx.doi.org/10.1007/978-3-662-48616-0_31
http://dx.doi.org/10.1007/978-3-662-48616-0_31
http://dx.doi.org/10.1007/978-3-662-48616-0_32
http://dx.doi.org/10.1007/978-3-662-48616-0_33
http://dx.doi.org/10.1007/978-3-662-48616-0_33
http://dx.doi.org/10.1007/978-3-662-48616-0_34
http://dx.doi.org/10.1007/978-3-662-48616-0_35
http://dx.doi.org/10.1007/978-3-662-48616-0_36
http://dx.doi.org/10.1007/978-3-662-48616-0_37

Internet of Services/Things

Combining Practical and Dialectical
Commitments for Service Engagements

Pankaj R. Telang1(B), Anup K. Kalia2, John F. Madden3,
and Munindar P. Singh2

1 Cisco Systems, Research Triangle Park, Durham, NC 27709, USA
ptelang@gmail.com

2 North Carolina State University, Raleigh, NC 27695-8206, USA
{akkalia,singh}@ncsu.edu

3 Duke University Medical Center, Durham, NC 27710, USA
john.madden@duke.edu

Abstract. We understand a service engagement as a form of collab-
oration arising in a sociotechnical system (STS). Although STSs are
fruitfully modeled using normative abstractions such as commitments, a
conventional (practical) commitment can capture only part of the story,
namely, a debtor’s promise to the creditor to bring about the consequent
if the antecedent holds. In contrast, in a dialectical commitment, which
we highlight, a debtor asserts to the creditor that the consequent is true
if the antecedent is. For example, a customer may dialectically commit
to a seller that the product she received is damaged but may not prac-
tically commit to damaging the product. We introduce a novel bipar-
tite operationalization of dialectical commitments that separates their
objective and subjective aspects and thus avoids the problems arising if
we merely treat dialectical like practical commitments. We express that
operationalization in temporal logic, developing a verification tool based
on NuSMV, a well-known model-checker, to verify if the participants’
interactions comply with the participants’ dialectical commitments. We
present a set of modeling patterns that incorporate both practical and
dialectical commitments. We validate our proposal using a real-world
scenario of contradictory medical diagnoses by different specialists.

1 Introduction

A service engagement involves two or more autonomous parties interacting with
each other and is thus a prototypical sociotechnical system (STS) [22]. An STS
can be fruitfully modeled using normative relationships. To this end, commit-
ments have been extensively employed in modeling service engagements (and
associated business processes) [5,19,20,24]. A key benefit of commitments over
traditional approaches is that commitments capture outcomes in a declarative
manner and minimally constrain the behavior of the participants. Two kinds of
commitment are known in the literature [13,16,21]: practical and dialectical. In
a practical commitment, a debtor agent promises a creditor agent to bring about
a condition (consequent) if some other condition (antecedent) holds. For exam-
ple, a customer may commit to paying a reseller if the reseller delivers the goods.
c© Springer-Verlag Berlin Heidelberg 2015
A. Barros et al. (Eds.): ICSOC 2015, LNCS 9435, pp. 3–18, 2015.
DOI: 10.1007/978-3-662-48616-0 1

4 P.R. Telang et al.

In a dialectical commitment, the debtor claims that the consequent holds pro-
vided the antecedent does. For example, a customer may dialectically commit to
a reseller that the customer received the goods in a damaged condition. These
commitments differ in the nature of their standard of satisfaction. For exam-
ple, a customer may dialectically commit that it received damaged goods, but
may not practically commit to damaging the goods. Previous research has nearly
always considered only practical commitments [6,25,26], a recent exception being
Baldoni et al. [2].

The present paper incorporates dialectical commitments in modeling an STS
to tackle a previously ignored challenge, namely, how participants make claims
about putative facts, claims that may be mutually inconsistent. For example,
a customer may claim that goods received are damaged whereas the courier
may claim the goods delivered were not damaged. Although this paper doesn’t
tackle norm types other than commitments [22], by bringing forth dialectical
commitments, it supports the possibility of modeling disputes between partic-
ipants in STSs and disparities in their policies. This paper sheds light on how
potentially to resolve such disputes, thereby facilitating policy-governed secure
collaboration.

Research Question and Contributions. When we model secure collaboration in
STSs in normative terms [23], it is important to accommodate disputes among
STS participants regarding facts and norms. Previous approaches include the
objective, but omit the social, aspect of norms in their lifecycles [22]. This leads to
our research question: How can we formalize norms in a manner that incorporates
their objective and subjective elements and supports verification of interactions
on comprehensive grounds?

This paper is restricted to two norm types: dialectical and practical commit-
ments. It contributes a novel operational model and temporal logic formalization
based on Computational Tree Logic (CTL) along with a tool based on NuSMV
[17], a CTL model checker, to verify if participants’ interactions comply with
their commitments. This paper provides a set of modeling patterns incorpo-
rating practical and dialectical commitments. We evaluate our approach on a
breast cancer diagnosis process specified by a committee of experts called by a
major government agency (Office of the Assistant Secretary for Planning and
Evaluation (ASPE), US Department of Health and Human Services) [1]. The
significance of this work arises from its expanding the operational treatment
and formal verification of commitments to incorporate dialectical commitments,
thereby enabling new applications that previous approaches cannot tackle.

2 Background

We illustrate the generality of our approach by introducing it via Cisco’s Quote
to Cash (QTC) business process [25] and evaluating it via a healthcare collabo-
ration scenario (introduced in Sect. 4). The QTC process encompasses all of the
key activities that begin from a customer requesting a quote, and end in Cisco
receiving payment from the customer. The participants in this process include

Combining Practical and Dialectical Commitments for Service Engagements 5

customers, resellers, distributors, logistics providers, banks, contract manufac-
turers, and service providers. A customer purchases goods either directly from
Cisco, or from a reseller. In addition to selling the goods, a reseller provides value-
added services of installing and configuring goods. A reseller purchases goods
either from a distributor, or from Cisco. A distributor always purchases goods
from Cisco. Unlike a reseller, a distributor may purchase and stock the goods in
its warehouse. To build and ship its products, Cisco uses contract manufacturers
and transportation providers respectively. The participants use different banks
and credit companies for making payments.

2.1 Practical Commitments

A practical commitment [21] C(debtor, creditor, o-context, antecedent,
consequent) means that debtor commits to creditor in the organizational con-
text o-context to bring about the consequent provided the antecedent holds.
(For brevity, we omit o-context where appropriate.) For example, C(cisco,
customer, court, pay, deliver goods) means that cisco commits under the
o-context court to customer to deliver goods, provided customer pays.

Expired (E) Null (N) Pending (P)

Conditional (C) Detached (D)

Terminated (T) Satisfied (S) Violated (V)

Active (A)

create
antecedent failure

antecedent

cancel cancel ∨
consequent failure

consequent
release

suspendreactivate

Fig. 1. Practical commitment lifecycle as a state
transition diagram.

We describe the lifecycle of
a practical commitment from
Fig. 1 [25] using the above exam-
ple. When cisco creates the
commitment, its state changes to
active from null. If customer
pays cisco (antecedent holds),
the commitment is detached.
The commitment is terminated
if cisco cancels the commit-
ment when conditional, or cus-
tomer releases cisco from the
commitment. The commitment
is satisfied when the goods are
delivered (consequent holds). It
is violated if customer has paid
up (antecedent holds), but cisco does not deliver the goods (consequent fails),
or if cisco cancels the commitment. When the commitment is conditional, if
customer does not pay (antecedent fails) cisco, then the commitment expires.
If cisco delegates the commitment to another company (delegatee), cisco may
suspend the commitment, making it pending. If the delegatee company fails
to provide goods to customer, then cisco may reactivate its commitment to
customer.

2.2 Computation Tree Logic

Computation Tree Logic (CTL) [4] is a temporal logic based on a branching
time structure. Each temporal operator in CTL has two components. The first

6 P.R. Telang et al.

component is a path quantifier: either A, meaning on all of the paths; or E,
meaning on at least one path. The second component is a linear-time opera-
tor: F, meaning in a future state; G, meaning (globally) in all future states; and
X, meaning in the next state. A CTL formula may contain the standard logi-
cal operators: ¬,∧,∨, and →, meaning negation, conjunction, disjunction, and
implication, respectively. As an example, AG(p → AFq) means that on all paths
if proposition p holds in a state, then on all paths emanating from that state
proposition q holds in a future state.

3 Dialectical Commitments

The lifecycle of a practical commitment, as shown in Fig. 1, is inadequate for cap-
turing the semantics of a dialectical commitment. For example, consider Fig. 2,
which shows a possible execution in which customer and cisco interact to
decide if the goods delivered to customer are damaged. customer informs
cisco, i.e., dialectically commits that the goods are damaged.

Customer Cisco Court

goods damaged

challenge

requestInput

goods not damaged

custAgrees

Fig. 2. Customer and Cisco interactions.

However, cisco disagrees with
customer and challenges cus-
tomer’s claim. That is cisco dialec-
tically commits that the goods
are not damaged. customer then
requests a relevant higher author-
ity, such as court, for resolution.
court concludes that the goods
are not damaged. customer agrees
with court and retracts its dialec-
tical commitment.

If we employ the lifecycle of
a practical commitment to han-
dle customer’s dialectical commit-
ment, then the commitment is violated since court concludes that the goods
are not damaged. Thus, the lifecycle of a practical commitment fails to handle
customer’s retraction of a dialectical commitment appropriately.

We write a dialectical commitment using a notation similar to that of a prac-
tical commitment: D(debtor, creditor, o-context, antecedent, consequent).
For example, D(customer, cisco, court, �, goods-damaged) means that cus-
tomer dialectically and unconditionally (antecedent is �, true) commits to
cisco that the goods are damaged. We allow the debtor to be a set of roles.
For example, in the QTC process, customer and reseller may jointly com-
mit to cisco that the goods are damaged: D({customer, reseller}, cisco,
court, �, goods-damaged).

3.1 The Proposed Lifecycle of Dialectical Commitments

Figure 3 shows our proposed lifecycle of a dialectical commitment. The state
of a dialectical commitment has two dimensions: objective (computed based on

Combining Practical and Dialectical Commitments for Service Engagements 7

Null (N) Null (N)

Conditional (C) Detached (D) Asserted (R) Pending (P)

Expired (E) Satisfied (S) Violated (V) Terminated (T)

Objective Social

Active (A)

cancel ∨ release

create create

antecedent fail

antecedent

consequent failconsequent

suspend

reactivate

Fig. 3. Dialectical commitment lifecycle as a state-transition diagram.

the antecedent and consequent, treated as objective facts) and social (computed
based on the creditor or the debtor’s actions). Thus, the state of a dialectical
commitment is bipartite and written as a pair, e.g., 〈satisfied , asserted〉.

A dialectical commitment is null before it is created. Upon creation, its objec-
tive state becomes active and its social state becomes asserted. The active state
has two substates: conditional and detached. The commitment becomes detached
when its antecedent holds. If the antecedent of a conditional commitment fails,
then the commitment becomes expired. The commitment is satisfied if its con-
sequent becomes true when it is active. The commitment becomes violated if
its consequent fails when it is detached. On the social side, if the debtor can-
cels or suspends the commitment when it is asserted, it becomes terminated
or pending, respectively. If the debtor reactivates the commitment when it is
pending, it becomes asserted. We write the bipartite state of a dialectical com-
mitment as a pair: 〈objective-state, social-state〉. We write the objective state
as Dostate

obj and social state as Dsstate
soc , where ostate ∈ {N,C,D,E, S, V } and

sstate ∈ {N,R,P, T} (state labels are from Fig. 3).
We describe the progression of a dialectical commitment in the customer-

cisco interactions from Fig. 2. customer informs cisco that the goods are
damaged and thus creates the dialectical commitment: Du = D(customer,
cisco, court, �, goods-damaged). Upon creation, Du’s state is 〈detached ,
asserted〉 (detached since its antecedent is true (�)).

However, cisco disagrees with customer and challenges customer’s claim,
thus creating the dialectical commitment: Dc = D(cisco, customer, court,
�, ¬goods-damaged). Upon creation, Dc is 〈detached , asserted〉. customer and
cisco may resolve their difference of opinion among themselves. But in Fig. 2
they escalate the dispute to court on the condition of goods. court concludes
that the goods are not damaged, which causes Du to transition to 〈violated ,

8 P.R. Telang et al.

asserted〉, and Dc to transition to 〈satisfied , asserted〉. Finally, customer agrees
that the goods are not damaged, that is, customer cancels Du, causing its state
to transition to 〈violated , terminated〉.

3.2 Formalization

We now formalize the lifecycle of dialectical commitments in CTL. We group
the specifications into four groups: state-action, state-state, terminal states, and
acceptable executions. To save the space, we describe one from each group.

State-Action Transitions. The CTL specifications for state-action transitions fol-
low from the lifecycle given above. For brevity, we explain only a few of them in
English.

SA1. AG (DN
obj ∧ create ∧ ¬antecedent → AX DC

obj)
SA2. AG (DN

obj ∧ create ∧ antecedent → AX DD
obj)

SA3. AG (DC
obj ∧ antecedent → AX DD

obj)
SA4. AG (DC

obj ∧ antecedent fail → AX DE
obj)

SA5. AG (DD
obj ∧ consequent fail → AX DV

obj)
SA6. AG (DC∨D

obj ∧ consequent → AX DS
obj)

On any path, if a dialectical commitment is conditional or detached
in a state and its consequent holds, then on all paths emanating from
that state in the next state, the commitment’s objective state becomes
satisfied.

SA7. AG (DN
soc ∧ create → AX DR

soc)
On any path, if a dialectical commitment’s social state is null in a state
and the debtor creates it, then on all paths emanating from that state in
the next state, the commitment’s social state becomes asserted.

SA8. AG (DR
soc ∧ suspend → AX DP

soc)
SA9. AG (DP

soc ∧ reactivate → AX DR
soc)

SA10. AG (DR
soc ∧ (cancel ∨ release) → AX DT

soc)

SA1 means that on any path, if a dialectical commitment is null in a state, the
antecedent is not holding, and the debtor creates it, then on all paths emanating
from that state, the commitment objectively becomes conditional in the next
state.

State-State Transitions. These follow from the dialectical commitment lifecycle.

SS1. AG (DN
obj → AX DN∨C∨E∨D∨S∨V

obj)
SS2. AG (DC

obj → AX DC∨E∨D∨S
obj)

SS3. AG (DD
obj → AX DD∨V ∨S

obj)
SS4. AG (DN

soc → AX DN∨R
soc)

SS5. AG (DR
soc → AX DR∨T∨P

soc)
SS6. AG (DP

soc → AX DP∨R
soc)

SS1 means if a dialectical commitment is objectively null in a state, then
on all paths emanating from that state, in the next state, the commitment
may objectively remain null or may transition to conditional, expired, detached,
satisfied, or violated.

Combining Practical and Dialectical Commitments for Service Engagements 9

Terminal States. These follow from the dialectical commitment lifecycle.

TS1. AG (DE
obj → AX DE

obj) TS2. AG (DS
obj → AX DS

obj)
TS3. AG (DV

obj → AX DV
obj) TS4. AG (DT

soc → AX DT
soc)

TS1 means on any path, if a dialectical commitment is objectively expired
in a state, then on all paths emanating from that state in the next state, the
commitment objectively remains expired.

Acceptable Executions. The above CTL specifications, which follow from the life-
cycle, represent hard integrity requirements on the executions. The participants
may have additional requirements on acceptable executions. We now describe
some common acceptable executions.

AE1. AF AG (DN
obj ∨ DC

obj) AE2. AF AG (DE
obj ∧ DR

soc)
AE3. AF AG (DS

obj ∧ DR
soc) AE4. AF AG (DV

obj ∧ DT
soc)

AE1 means an execution is acceptable if a dialectical commitment is never
created or remains forever conditional on it. AE2 means an execution is accept-
able if a dialectical commitment is created but later expires. AE3 means on
an execution, a dialectical commitment may be objectively satisfied and socially
asserted, i.e., 〈satisfied , asserted〉. However, such an execution may be acceptable
since the debtor is asserting a statement that is deemed objectively true. AE4
means on an execution, a debtor may create a dialectical commitment whose con-
sequent turns out to be false, that is, the commitment transitions to: 〈violated ,
asserted〉. In such a case, the debtor should cancel the commitment thus tran-
sitioning its state to: 〈violated , terminated〉. Debtor’s cancellation implies that
the debtor acknowledges its error. In some scenarios, debtor may be penalized
for such fallacies—the context may create a commitment in which the debtor is
required to pay a penalty to the creditor.

The CTL specification capturing the above desirable states of a dialectical
commitment is: AF AG (DN

obj ∨DC
obj ∨ (DS

obj ∧DR
soc)∨ (DV

obj ∧DT
soc)). This specifi-

cation means that on all paths in the future, a dialectical commitment’s objec-
tive state remains null or conditional , or its objective and social state becomes
〈satisfied , asserted〉, or 〈violated , terminated〉.

These examples pertain to executions ending up in certain states. In some
cases, the participants may desire executions that pass through some intermedi-
ate states. We can state and verify additional properties on intermediate states
as well. For example, we can write the requirement that D should always be
created as: AF DC∨D

obj .

3.3 Modeling Patterns

This section presents a nonexhaustive set of representative modeling patterns.

Service Provisioning with Claimed Correctness. A provider (1) practically
commits to a client to bring about a consequent condition if some antecedent
condition holds, and (2) dialectically commits that either the client would agree

10 P.R. Telang et al.

with the consequent, or in case of a disagreement between the client and the
provider, a higher authority would agree with the consequent.

C1 = C(provider, client, ant, con)
D1 = D(provider, client, con, clientAgrees ∨ authAgrees)

For example, reseller (practically) commits to customer to providing and
installing the goods if customer pays: C(reseller, customer, pay, goods ∧
install). And reseller dialectically commits to customer that the goods will
be in a working condition, and the installation service acceptable: D(reseller,
customer, goods, clientGoodsWorking ∨ authGoodsWorking), D(reseller, cus-
tomer, install, clientAcceptableInstallation ∨ authAcceptableInstallation).

Escalation. o-context commits to bringing about the creation of a commit-
ment (C2) that if the provider violates its commitment (C1), and the client
escalates the (presumed) violation to the o-context. In C3, another provider
commits to client to bring about the consequent. Additionally, the o-context
may penalize the violating provider or not, depending on the modeled settings
and the particular circumstances that obtain, some of which need not concern
client.

C1 = C(provider,client, ant, con)
C2 = C(o-context,client, vio(C1) ∧ escalate, create(C3))
C3 = C(provider’,client, ant’, con)

For example, distributor practically commits to delivering goods to cus-
tomer: C1 = C(distributor, customer, �, goods). If distributor fails
to deliver the goods, the context court directs another distributor to deliver
the goods: C2 = C(court, customer, vio(C1) ∧ escalate, create(C3)), C3 =
C(distributor’, customer, �, goods).

Chained Service Provisioning with Jointly Claimed Correctness.
Provider SP1 commits to a client to bring about a consequent if some antecedent
holds. Additionally, SP1 dialectically commits that either the client or (in case
of a disagreement between the client and the provider) a higher authority would
agree that the consequent holds, if providers SP2 and SP3 do not violate their
dialectical commitment (D2). SP2 and SP3 jointly dialectically commit to SP1
that either SP1 or (in case of a disagreement) a higher authority would agree
that con-3 holds.

C1 = C(sp1,client, ant1, con1)
D1 = D(sp1,client,¬vio(D2) ∧ con1, clientAgreeCon1 ∨ authAgreeCon1)
C2 = C(sp3, sp2, ant2, con2)
C3 = C(sp2, sp1, ant3, con3)
D2 = C({sp2, sp3}, sp1, con3, sp1AgreeCon3 ∨ authAgreeCon3)

Combining Practical and Dialectical Commitments for Service Engagements 11

4 Evaluation

We evaluate our approach on a breast cancer diagnosis process specified by a
committee of experts called by a major government agency (US Department
of Health and Human Services) [1]. This process models five roles: patient,
physician, radiologist, pathologist, and registrar. The roles interact
as follows: (1) the physician orders a mammography (imaging) exam for the
patient; (2) if the radiologist notices suspicious calcifications, she recommends a
biopsy; (3) if the physician agrees, she performs a biopsy, and sends the collected
tissue specimen to the pathologist; (4) the pathologist analyzes the specimen,
and performs ancillary studies; (5) the pathologist and radiologist may confer to
reconcile their results and produce a consensus report; (6) the physician reviews
the integrated report with the patient to create a treatment plan; and (7) the
pathologist forwards his report to a cancer registry’s registrar.

We apply the patterns on the cancer diagnosis scenario to produce a
commitment-based model. We rename the pattern roles with the scenario-specific
role names, and substitute the scenario-specific tasks as the antecedents and con-
sequents of the appropriate commitments. We describe the commitments shown
in Table 1 and the patterns that compose the model.

Table 1. Commitment-based model for the diagnosis process

C1 C(phy, pat, diagReq ∧ ¬ vio(C2) ∧ ¬ vio(C3), diag)

C2 C(pat, phy, iApptReq, iApptKept)

C3 C(pat, phy, bApptReq, bApptKept)

C4 C(rad, phy, biopsyReq ∧ bApptKept, radPathResults)

C5 C(rad, phy, imagingReq ∧ iApptKept, imagingResults)

C6 C(path, rad, pathologyReq ∧ tissue, pathResults)

C7 C(path, hosp, patHasCancer, patRepToRegistrar)

C8 C(reg, hosp, patRepToRegistrar, addPatToRegistry)

C9 C(hosp, phy, vio(C5) ∧ esc, create(C5’) ∧ create(D2’))

C10 C(board, rad, radReq, BAgreesPath ∨ BDisagreesPath)

C11 C(board, phy, phyReq, BAgreesRad ∨ BDisagreesRad)

C12 C(board, pat, patReq, BAgreesPhy ∨ BDisagreesPhy)

D1 D(phy, pat, diag ∧ ¬vio(D3), patAgrees ∨ BAgreesDiag)

D2 D(rad, phy, imaging, phyAgreesI ∨ BAgreesI)

D3 D({rad, path}, phy, radPathResults, phyAgreesRP ∨ BAgreesRP)

D4 D(rad, path, radResults, pathAgreesR ∨ BAgreesR)

D5 D(path, rad, pathResults, radAgreesP ∨ BAgreesP)

(phy: physician, pat: patient, rad: radiologist, board:
tumor board, reg: Registrar, hosp: hospital)

12 P.R. Telang et al.

Patient’s Appointments. Practical commitments (C2, C3). patient com-
mits to physician to keep her imaging (C2) and biopsy appointments (C3) if
requested.

Add Patient to Registry. Practical commitments (C7, C8). pathologist
commits to hospital (C7) to reporting patient to registrar if patient has
cancer, and registrar commits to hospital (C8) to add patient to the reg-
istry.

Patient’s Radiology and Pathologist’s Diagnosis. Chained service provider
with jointly claimed correctness (C1, D1, C4, C6, D3). pathologist commits
to radiologist (C6) to provide a pathology report if radiologist requests
it and provides a tissue sample. radiologist commits to physician (C4) to
provide an integrated radiology and pathology report if physician requests it
and patient keeps the necessary appointment. pathologist and radiologist
jointly dialectically commit to physician (D3) regarding the correctness of the
integrated report. physician commits to patient (C1) to provide a diagno-
sis report if patient requests it and keeps necessary appointments. physician
dialectically commits to patient (D1) to the correctness of the diagnosis report
if the integrated radiology and pathology report is correct.

Patient’s Imaging. Service provisioning with correctness (C5, D2). radiol-
ogist commits to physician (C5) to provide imaging results if physician
requests the results. In addition, radiologist dialectically commits to physi-
cian (D2) regarding the correctness of the imaging results.

Escalate Radiologist’s Failure to Provide Imaging Results. Escalate (C5,
C9, C5’, D2’). hospital commits to physician to bring about the creation of
practical (C5’) and dialectical (D2’) commitments from an alternative radi-
ologist if the original radiologist violates commitment C5 and physician
escalates the violation.

Tumor Board Provides Input on a Diagnosis. Practical commitments (C10,
C11, C12, C13). tumor board commits to physician, radiologist, patient,
and pathologist to provide its input on a diagnosis upon request.

Radiologist and Pathologist Guarantee their Diagnoses. Dialectical com-
mitments (D4, D5). radiologist dialectically commits (D4) to pathologist
that upon providing the radiology report, either pathologist would agree with
those results, or in the case of a disagreement, tumor board will agree with
those results. pathologist makes a similar commitment (D5) to radiologist
regarding the pathology report.

4.1 Verification

This section applies our verification approach to the ASPE process. We adopt
the UML 2.0 Sequence Diagram notation [18] to create sequence diagrams for the
model from Table 1. Figure 4 shows one of the sequence diagrams. The condition
on the outer opt(ional) block is that radiologist has reported the imaging

Combining Practical and Dialectical Commitments for Service Engagements 13

Fig. 4. physician requests tumor board to review the imaging results.

results (whether patient has cancer or not) to physician, and created D2. In
the nested alt(ernate) block, physician either agrees with the imaging results,
thus satisfying D2, or requests tumor board for an assessment, thus creating
C11. In the inner alt(ernate) block, tumor board either agrees or disagrees
with the imaging results. In either case, tumor board satisfies C11. If tumor
board disagrees with the imaging results, radiologist cancels and retracts D2

by informing physician her agreement with tumor board.
We develop a NuSMV module for dialectical commitments. We employ this

module in verifying models that contain dialectical commitments. Our verifica-
tion tool (based on NuSMV) [10] takes sequence diagrams and a commitment
model as the input. It reports if the sequence diagrams comply with the com-
mitments in the model.

On a computer with 2.66 GHz Intel Core 2 Duo processor, and 8 GB mem-
ory, our tool verified the set of sequence diagrams we developed for this scenario
(including the one from Fig. 4) in 0.2 s. Our tool reported that the sequence
diagrams satisfy the model from Table 1. To demonstrate how our approach
detects an error, we remove the message from radiologist to physician agree-
ing to tumor board’s assessment from the sequence diagram in Fig. 4. Figure 5
shows a partial screenshot of the NuSMV output demonstrating that the model
fails to satisfy the (highlighted) CTL specification. The specification shows that
AF AG (DN

obj ∨DC
obj ∨ (DS

obj ∧DR
soc)∨ (DV

obj ∧DT
soc)) is false for D2. The counterex-

ample shows a trace in which radiologist violates D2; i.e., D2 remains in the
state (violated, asserted). This means radiologist does not agree with tumor
board’s recommendation, and does not cancel D2.

14 P.R. Telang et al.

Fig. 5. Tool output indicating an error in the sequence diagrams with respect to the
commitments.

4.2 Benefits of Dialectical Commitments

Our approach captures relationships between the participants in terms of practical
and dialectical commitments and omits the internal activities of individual partic-
ipants (e.g., pathologist’s slides activity). In this way, it avoids tight coupling
between the participants. In addition, our approach provides a basis for answering
some significant questions, which the traditional approach cannot answer.

What happens if the treatment plan turns out to be incorrect? Who is or
are accountable? An incorrect treatment plan arises from an incorrect inte-
grated radiology and pathology report, which means radiologist and pathol-
ogist both violate their joint dialectical commitment D3. In this case, D1 never
detaches, and thus physician is not accountable for the incorrect diagnosis (that
is, he does not violate D1).

What happens if radiologist delivers the mammography results on time
but her diagnosis is wrong? radiologist violates D2 by delivering an incorrect
mammography. physician may incorrectly conclude that patient is free of
cancer. In such a case, radiologist would be accountable for the erroneous
claim.

The questions show how our approach produces models that are valuable for
diagnosis and organizational governance.

5 Related Work

Commitments have been extensively employed for modeling processes. However,
in contrast to our work, most of the previous work has considered only practical
commitments. El Menshawy et al. [7] propose the CTLC+ logic for verifying
commitments. Their logic handles practical commitments, and includes modali-
ties for commitment creation and fulfillment (or violation). In contrast, our app-
roach handles both practical and dialectical commitments, and considers the

Combining Practical and Dialectical Commitments for Service Engagements 15

entire lifecycle of commitments not just their creation and fulfillment (or viola-
tion). Specifically, CTLC+ cannot handle scenarios in which the debtor cancels
its commitment, or the creditor releases the debtor from the commitment.

Winikoff [27] states that agent interactions designed by focusing on mes-
sages restrict agent autonomy by limiting their interaction flexibility. He pro-
poses a commitment-based approach for modeling agent interactions. We agree
with Winikoff and employ commitments for modeling processes. However, unlike
Winikoff, in addition to practical commitments, we consider dialectical commit-
ments as a first class abstraction to model the guarantees made by the partic-
ipants (agents). Further, we show how agents’ interactions can be verified with
respect to their commitments.

Singh [21] presents a combined logic for practical and dialectical commit-
ments. He formulates postulates that capture reasoning patterns for commit-
ments. Our work goes beyond Singh’s work in proposing an operationalization
of dialectical commitments via a new lifecycle, and showing how to employ CTL
to formally verify agent interactions. Additionally, we propose novel reasoning
patterns incorporating practical and dialectical commitments.

McBurney and Parsons [13], and Krabbe and Walton [11] describe an
argumentation-based representation for agent dialogs (interactions), and formal
dialectical systems in argumentation, respectively, that include a notion of com-
mitments. However, their approach violates the autonomy of the participants.
For example, a question by one agent may “impose a commitment on the sec-
ond to provide a response” (p. 266). In contrast, we treat a commitment being
created autonomously by its debtor. In addition, we provide a formalization of
commitments that supports verification.

Some work on architecture for collaboration is relevant even though it does
not incorporate commitments. Narendra et al. [15] propose an architecture
framework for modeling cross-enterprise collaborations that consists of three
layers: strategy, operational, and service layers. The strategy layer specifies the
goals and business rules; the operational layer specifies the services; and the
service layer specifies the service implementations. Narendra et al.’s framework
lacks adequate modeling of the relationships among the participants. It will be
interesting to incorporate commitments (practical and dialectical) to capture the
relationships among the participants at the strategy layer.

Liptchinsky et al. [12] propose an approach for modeling dynamic collabo-
ration processes that employs a network of collaborative documents and a social
network of collaborators. The notion of relations is a fundamental element in
Liptchinsky et al.’s modeling approach. It will be interesting to incorporate com-
mitments to model the relations. Commitments provide a rigorous way to capture
the relations among the actors such as an actor (or a group of actors) committing
to performing certain action or an actor (or a group of actors) making a claim.

Hofreiter et al. [9] present the UMM methodology for modeling global chore-
ographies, that is, interactions among organizations. UMM seeks to specify a
choreography at a high level, independently of the underlying implementation
technology. However, UMM lacks well-defined abstractions for capturing the rela-
tionships underlying the collaborations. Commitments can provide an abstract

16 P.R. Telang et al.

and technology independent way of specifying relationships in UMM’s business
domain and requirements views.

We agree with Grando et al. [8] regarding the benefits of high-level abstrac-
tions for specifying medical processes. However, unlike our approach, Grando
et al. take a centralized viewpoint that violates the autonomy of the partici-
pants by mandating their goals. Further, since Grando et al.’s approach ignores
the social commitments between the participants, it misses specifying the par-
ticipants’ responsibilities to each other in the modeled process.

Müller et al. [14] describe the importance of interoperability in healthcare
but focus on data interoperability, i.e., with respect to message formats. We
incorporate considerations of interactions and thus enable specifying and verify-
ing interoperability in general. For example, a radiologist is interoperable with a
hospital not only because they agree on the formats of messages they exchange
but because they agree on the commitments involved in those messages.

6 Discussion and Future Work

To model sociotechnical systems, such as service engagements, involves modeling
the relevant normative relationships or norms properly [22]. Although we con-
sider commitments as the only norm type in this paper, we give first-class status
to dialectical commitments, which are a crucial element of secure collaboration.
The main new idea of our approach is highlighting the social nature of dialectical
commitments. This idea would readily apply to other norm types. We enhance
an existing commitment-based process modeling and verification method [25] to
incorporate dialectical commitments and organizational context. In healthcare
settings, dialectical commitments enable precisely identifying the accountable
party behind a diagnosis.

We incorporate our proposed method into a verification approach and tool
based on NuSMV. Our representation enables stating important properties of
models in high-level terms to capture stakeholder requirements. Our tool can
identify potential errors in models, thereby leading to the design of correct STSs.

In future research, we will address some limitations of this work. In particular,
on the theoretical side, we will investigate how dialectical commitments relate
to other norm types in STSS from the standpoint of foundations of representing,
verifying, and achieving secure collaboration in open settings. On the practical
side, we will develop and empirically evaluate an enhanced modeling method-
ology incorporating dialectical commitments as well as a verification method
that incorporates an enhanced notion of time to support better representation
and verification of STSs. We will also study how commitments relate to existing
business process modeling standards such as BPEL [3].

Acknowledgments. Thanks to the anonymous reviewers for helpful comments and
to the US Department of Defense for partial support through a Science of Security
Lablet grant.

Combining Practical and Dialectical Commitments for Service Engagements 17

References

1. ASPE. The importance of radiology and pathology communication in the diagnosis
and staging of cancer: mammography as a case study, November 2010. Office of
the Assistant Secretary for Planning and Evaluation, U.S. Department of Health
and Human Services. http://aspe.hhs.gov/sp/reports/2010/PathRad/index.shtml

2. Baldoni, M., Baroglio, C., Chopra, A.K., Singh, M.P.: Composing and verifying
commitment-based multiagent protocols. In: Proceedings of the 24th International
Joint Conference on Artificial Intelligence (IJCAI), pp. 10–17, Buenos Aires, July
2015

3. BPEL. Web services business process execution language, version 2.0, July 2007.
http://docs.oasis-open.org/wsbpel/2.0/

4. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state
concurrent systems using temporal logic specification. ACM Trans. Program. Lang.
Syst. 8(2), 244–263 (1986)

5. Desai, N., Chopra, A.K., Singh, M.P.: Amoeba: a methodology for modeling
and evolving cross-organizational business processes. ACM Trans. Softw. Eng.
Methodol. (TOSEM) 19(2), 6:1–6:45 (2009)

6. El-Menshawy, M., Bentahar, J., Dssouli, R.: Modeling and verifying business inter-
actions via commitments and dialogue actions. In: J ↪edrzejowicz, P., Nguyen, N.T.,
Howlet, R.J., Jain, L.C. (eds.) KES-AMSTA 2010, Part II. LNCS, vol. 6071, pp.
11–21. Springer, Heidelberg (2010)

7. El Menshawy, M., Bentahar, J., El Kholy, W., Dssouli, R.: Reducing model check-
ing commitments for agent communication to model checking ARCTL and GCTL*.
Auton. Agents Multi-Agent Syst. 27(3), 375–418 (2013)

8. Grando, M.A., Peleg, M., Glasspool, D.: A goal-oriented framework for specifying
clinical guidelines and handling medical errors. J. Biomed. Inf. 43(2), 287–299
(2010)

9. Hofreiter, B., Huemer, C., Liegl, P., Schuster, R., Zapletal, M.: UN/CEFACT’s
modeling methodology (UMM): a UML profile for B2B e-commerce. In: Proceed-
ings of the 2nd International Workshop on Best Practices of UML (ER), pp. 19–31
(2006)

10. Kalia, A.K., Telang, P.R., Singh, M.P.: Protos: a cross-organizational business
modeling tool (demonstration). In: Proceedings of the 11th International Confer-
ence on Autonomous Agents and MultiAgent Systems (AAMAS), IFAAMAS, pp.
1489–1490, Valencia, Spain, June 2012

11. Krabbe, E.C.W., Walton, D.: Formal dialectical systems and their uses in the study
of argumentation. In: Feteris, E.T., Garssen, B., Francisca Snoeck Henkemans, A.
(eds.) Keeping in Touch with Pragma-Dialectics and Computation, vol.163, pp.
245–263. Benjamin (2011)

12. Liptchinsky, V., Khazankin, R., Schulte, S., Satzger, B., Truong, H.-L., Dustdar,
S.: On modeling context-aware social collaboration processes. Inf. Syst. 43, 66–82
(2014)

13. McBurney, P., Parsons, S.: Dialogue games for agent argumentation. In: Simari, G.,
Rahwan, I. (eds.) Argumentation in Artificial Intelligence, pp. 261–280. Springer,
USA (2009)

14. Müller, H., Schumacher, M., Godel, D., Khaled Omar, A., Mooser, F., Ding, S.:
Medicoordination: a practical approach to interoperability in the Swiss health sys-
tem. In: Proceedings of the Medical Informatics in a United and Healthy Europe
(MIE), vol. 150, pp. 210–214. IOS Press (2009)

http://aspe.hhs.gov/sp/reports/2010/PathRad/index.shtml
http://docs.oasis-open.org/wsbpel/2.0/

18 P.R. Telang et al.

15. Narendra, N.C., Lê, L.-S., Ghose, A., Sivakumar, G.: Towards an architectural
framework for service-oriented enterprises. In: Ghose, A., Zhu, H., Yu, Q., Delis,
A., Sheng, Q.Z., Perrin, O., Wang, J., Wang, Y. (eds.) ICSOC 2012. LNCS, vol.
7759, pp. 215–227. Springer, Heidelberg (2013)

16. Norman, T.J., Carbogim, D.V., Krabbe, E.C.W., Walton, D.N.: Argument and
multi-agent systems. In: Reed, C., Norman, T.J. (eds.) Argumentation Machines:
New Frontiers in Argument and Computation, Volume 9 of Argumentation Library,
Chapter 2, pp. 15–54. Kluwer (2004)

17. NuSMV. A new symbolic model checker (2012). http://nusmv.fbk.eu
18. Object Management Group, Framingham, Massachusetts. UML 2.0 Superstructure

Specification, October 2004
19. Paja, E., Giorgini, P., Paul, S., Meland, P.H.: Security requirements engineering

for secure business processes. In: Niedrite, L., Strazdina, R., Wangler, B. (eds.)
BIR Workshops 2011. LNBIP, vol. 106, pp. 77–89. Springer, Heidelberg (2012)

20. Robinson, W.N., Purao, S.: Specifying and monitoring interactions and commit-
ments in open business processes. IEEE Softw. 26(2), 72–79 (2009)

21. Singh, M.P.: Semantical considerations on dialectical and practical commitments.
In: Proceedings of the 23rd Conference on Artificial Intelligence (AAAI), pp. 176–
181. AAAI Press, Chicago, July 2008

22. Singh, M.P.: Norms as a basis for governing sociotechnical systems. ACM Trans.
Intel. Syst. Technol. (TIST) 5(1), 21:1–21:23 (2013)

23. Singh, M.P.: Cybersecurity as an application domain for multiagent systems. In:
Proceedings of the 14th International Conference on Autonomous Agents and
MultiAgent Systems (AAMAS), IFAAMAS, pp. 1207–1212. Blue Sky Ideas Track,
Istanbul, May 2015

24. Telang, P.R., Kalia, A.K., Singh, M.P.: Engineering service engagements via com-
mitments. IEEE Internet Comput. 18, 1–8 (2014)

25. Telang, P.R., Singh, M.P.: Specifying and verifying cross-organizational business
models: an agent-oriented approach. IEEE Trans. Serv. Comput. 5(3), 305–318
(2012). Appendix pp. 1–5

26. Verdicchio, M., Colombetti, M.: Commitments for agent-based supply chain man-
agement. SIGecom Exchan. 3(1), 13–23 (2002)

27. Winikoff, M.: Designing commitment-based agent interactions. In: Proceedings of
the IEEE/WIC/ACM International Conference on Intelligent Agent Technology,
pp. 363–370 (2006)

http://nusmv.fbk.eu

Positron: Composing Commitment-Based
Protocols

Scott N. Gerard1, Pankaj R. Telang2, Anup K. Kalia3(B),
and Munindar P. Singh3

1 IBM, Research Triangle Park, Durham, NC 27709, USA
sgerard@us.ibm.com

2 Cisco, Research Triangle Park, Durham, NC 27709, USA
ptelang@cisco.com

3 NC State University, Raleigh, NC 27695, USA
{akkalia,singh}@ncsu.edu

Abstract. We understand a sociotechnical system (STS) as a microso-
ciety in which social entities interact about and via technical entities.
A protocol specifies an STS by describing how its members collaborate
by giving meaning to their interactions. We restrict ourselves to protocols
that specify messages between roles in terms of how they create and affect
commitments among the roles. A key idea of our approach, Positron,
is that a protocol specifies the accountability of one role to another in
addition to the requirements from each role. Specifically, Positron incor-
porates role accountability and role requirements as two integral aspects
of protocol composition. In this way, it seeks to promote collaboration in
STSs through natural requirements elicitation; flexibility enactment; and
compliance and validation (ascribing accountability for each requirement
to a specific role). Positron maps composite protocols to the representa-
tions of a well-known model checker as a way to verify protocols to assist
in their correct formulation. We evaluate Positron by demonstrating it
on real-life protocols.

Keywords: Commitments · Commitment protocols · Agent communi-
cation · Communication protocols · Protocol composition · Verification
of multiagent systems · Model checking

1 Introduction

We study sociotechnical systems (STSs) wherein autonomous parties interact
about and through technical entities [29]. STSs arise in a variety of collaborative
settings, including cross-organizational service engagements. A protocol specifies
an STS in abstract terms by describing two or more roles and the messages those
roles may exchange along with meanings of those messages [7]. Protocols arise
commonly in business, e.g., RosettaNet [25], and healthcare, e.g., HL7 [16]. By
bringing forth collaboration requirements, protocols separate implementations
from interactions, thereby promoting the flexibility of autonomous collaborators,
such as is needed in sociotechnical systems.
c© Springer-Verlag Berlin Heidelberg 2015
A. Barros et al. (Eds.): ICSOC 2015, LNCS 9435, pp. 19–35, 2015.
DOI: 10.1007/978-3-662-48616-0 2

20 S.N. Gerard et al.

Existing protocol approaches [16,25], however, standardize the message for-
mats and operational constraints, but not the meanings of those messages, which
are left informally stated. The past several years have seen the development of
approaches that apply commitments [26] to specify the meanings of the messages
in a protocol [3,34], where protocol designers define meanings. The commitment-
based approaches help deal with the autonomy and heterogeneity of participants
and promote flexibility in interactions. The benefits of commitments for model-
ing service engagements are well established. For example, Telang and Singh [30]
demonstrated an error in a published RosettaNet guideline when modeled using
commitments. Therefore, for brevity, we do not review the extensive literature
on commitments here. Singh [28] provides a conceptual summary.

Challenge: Composition. Composition is a key construct in software engineer-
ing as a way to promote reuse and modularity. Existing approaches for protocols,
whether operational or commitment-based, do not adequately support their com-
position, because they incorporate internal details or lack a formal semantics of
interactions. Existing approaches, e.g., HL7 [16] and RosettaNet [25], provide
atomic two-party protocols with the intent for them to be composed but do
not support the composition as such and do not provide a construct by which
two or more protocols could be composed. Thus the separation of interaction
and implementation fails above the level of the atomic (predefined) protocols.
Section 5 reviews the literature in detail. Suffice it to state here that previous
relevant research falls into these categories: (a) composition but no commitments
[22,27]; (b) commitments but no composition [14]; and (c) composition and com-
mitments. The last subcategory can be further refined as (c1) purely abstract
description without a specification language or tools [19]; (c2) composition of
commitment-based protocols based on axioms [9,11] or regulative constraints [4]
but without producing a composite protocol for further reuse and composition;
and (c3) our present approach to composition of commitment-based protocols
based on role responsibilities and accountabilities.

Motivating Research Questions and Contributions. How can we (1) for-
malize accountability, a crucial element of secure collaboration, as a basis for
formal modeling and verification of STSs and (2) support composition of pro-
tocols to specify STSs? We address this question by restricting ourselves to
composition and verification of commitment protocols, deferring representing
other normative relationships [29] and their mapping to agent decision-making
to future work.

Specifically, we propose Positron, a language and verification approach that
supports composing commitment-based protocols and formally reasoning about
them to verify desired properties. Positron (a) introduces role requirements,
which capture a role’s motivation, and role accountability, which captures the
commitments a role makes to other creditor roles (that benefit from those com-
mitments) as elements of a composite protocol specification; (b) shows how to
recursively expand nested constituent protocols; (c) supports a methodology
for composing commitment protocols; and (d) provides a decision procedure
and mechanical verification of protocols with respect to role requirements, role

Positron: Composing Protocols 21

accountabilities, and enactments. Positron compiles protocol specifications into
MCMAS [17] models and checks protocols against temporal logic formulas. It
then employs the MCMAS model checker to verify if the composite protocol
satisfies those temporal formulas. The Positron verifier builds upon the Pro-
ton [14], verifier for commitment protocol refinement, expanding it to tackle
protocol composition.

2 Background and Motivation

We write C{debtors},{creditors}(antecedent, consequent) [14] to denote a com-
mitment from the specified debtors to the specified creditors that if the
antecedent begins to hold, the debtors will bring about the consequent.
The antecedent and consequent are Boolean expressions. For example,
CPH,{CC,Re} (deliverReq ∧ approval,deliverCar) denotes that PolicyHolder
(PH) commits to CallCenter (CC) and Repairer (Re) that he will deliver
his car to Repairer whenever requested and the repair request is approved.

When the antecedent becomes true, the commitment is detached, and the
debtors become unconditionally committed to the creditors. When the conse-
quent becomes true, the commitment is discharged. Debtors should discharge
their detached commitments. However, debtors are autonomous and may violate
a commitment, for simplicity, by canceling it. The only computational require-
ment for commitments is: each detached commitment must eventually be dis-
charged (satisfied, delegate, assigned, or released) or canceled. A commitment
imposes no ordering constraint between the antecedent and consequent, although
in specific settings there may be a practical constraint.

Running Example: AGFIL. The following real-life case involves automobile
insurance claims processing for AGF Irish Life Holding (AGFIL) [5], as Fig. 1
summarizes. This case involves four parties plus PolicyHolder and Adjuster
(not shown). AGFIL underwrites automobile insurance policies and covers losses
incurred by policy holders. Europ Assist (EA) provides a 24-h help-line service for
receiving claims. Approved Repairers provide repair services. Lee Consulting
Services (Lee) coordinates with AGFIL, repairers, and adjusters to handle a
claim.

Figure 1 describes the workflows of each participant along with how they
relate to one another. Notwithstanding that one could adopt a standard process
notation, the main point is that such a description tightly couples the inner
workings of the participants. Conventional protocol approaches [16,25,32] deem-
phasize the inner workings and capture the interactions between the participants
via a formal notation in terms of constraints on the ordering of the messages
exchanged between the participants.

In contrast, a commitment protocol emphasizes the social state of an interac-
tion, expressed in terms of commitments. A commitment protocol describes the
roles involved, the messages they exchange, and any preconditions and effects of
the messages on the social state. An agent adopts a role and enacts the specified

22 S.N. Gerard et al.

Fig. 1. Traditional process model of cross-organizational insurance claim processing [5].

protocol by autonomously choosing (in accordance with its internal policies) how
to interact.

3 Technical Approach

Positron provides a formal language in which to express composite protocols based
on existing constituent protocols. Positron is a Java application that reads pro-
tocols described in the Positron language (examples shown in Listings 1 and 2),
flattens any hierarchically nested protocols, and generates input to the MCMAS
model checker.

Recall that Proton [14] provides a language for capturing roles, propositions,
commitments, and messages. Positron augments the Proton language by adding
constructs to define a composite protocol using a set of parameterized constituent
protocols and defines a protocol composition methodology.

Further, while it accepts and verifies any CTL expression, Positron introduces
five constructs for common verification patterns when composing protocols: Func-
tion Req for role requirements, coupling commitments for role accountabilities,
and three path expressions for good and bad enactments.

Definition 1. A Positron protocol is a six-tuple of PR, a set of role names;
PP, a set of role-qualified propositions; PC, a set of commitments; PM, a set of
guarded messages; PF, a set of CTL expressions to be verified; and PU, a set of
use (include) statements.

For brevity, we omit the Positron grammar in favor of examples. Listing 1
specifies AGFIL’s Claim Handling protocol as roles (insured and claims handler),
propositions, commitments, and messages (with their guards and effects on the
propositions).

Positron: Composing Protocols 23

Listing 1. Claim constituent protocol
1: protocol Claims (role In, roleCH, propnotify, prop estimate, prop invoice, proppay) {
2: role In; CH;

3: prop notify; estimate; invoice; pay;

4: commitment

5: cc = CIn,CH (estimate and invoice, pay);

6: notify.cc1 = CCH,In(notify, estimate);

7: pay.c1 = CIn,CH (invoice,pay);

8: pay.c2 = CCH,In(pay, invoice);

9: message

10: In → CH : [true] notify requestMsg means {notify};
11: CH → In : [notify.isSet()] notify responseMsg means {estimate};
12: In → CH : [true] pay do1 means {pay};
13: CH → In : [true] pay do2 means {invoice};
14: }

Listing 2 describes the AGFIL composite protocol. In the statement begin-
ning on Line 4, this protocol uses the Claims protocol in Listing 1, mapping
roles and propositions in protocol AGFIL to equivalent versions in protocol
Claims. We omit the other constituent protocols for space. It turns out that the
AGFIL protocol has no additional messages since all its messages derive from its
constituents. The AGFIL protocol includes formulas describing the correctness
requirements.

Listing 2. Positron specification for AGFIL protocol (partial)
1: protocol AGFIL {
2: role PH; In; CC; CH; Re; Ad;
3: prop accident; deliver; repair; paid; . . .
4: use In-CH : Claims(agfil.Claims,
5: role In = In, roleCH=CH,
6: propnotify = true, prop estimate=reportCH,
7: proppay = payCH, prop invoice=repairIn);
8: . . .
9: commitment

10: CC1 : CCC,{PH, Re}(deliverReq, notifyRe);
11: PH1 : CPH,{CC,Re}(deliverReq ∧ approval, deliver);
12: . . .
13: formula
14: AG(paid ∧ accident → AF(repair ∨ anyCancel));
15: Req(In, coverage ∧ premium ∧ accident, repair);
16: AG(¬(repair ∧ ¬inspectCH));
17: . . .
18: EFPath(accident, deliverReq, payCa, reportCH, reportRe, . . . , repair);
19: ¬EFPath(repair, accident);
20: . . .
21: }

24 S.N. Gerard et al.

Definition 2. An MCMAS representation is a tuple of Magent, a set of agent
names, including a distinguished agent Env representing the environment; Mstate,
a set of agent-qualified variable names; Mmsg, a set of agent-qualified guarded
transition functions; Mevol, a set of agent-qualified evolution expressions; Minit,
a set of agent-qualified variable initializations; Meval, a mapping from proposi-
tions to expressions over variables in Mstate; Mfair, a set of fairness expressions;
and Mctl, a set of CTL expressions to be verified.

Protocol Composition. Positron supports nested composition of protocols.
A composite protocol P can use (include) a parameterized constituent protocol
with a use statement q : Q(x = p) specifying protocol name (q), protocol type
(Q), a set of arguments p passed by a composite protocol P, and a matching set of
parameters x accepted by constituent Q. Arguments and parameters are named
and have a type of either role or proposition. The argument and parameter
sets must contain matching names and types. Positron expands any hierarchical
nesting in P to produce a single, flat protocol P ′. Expansion gives every element
in Q a new, unique name, and replaces each parameter with its corresponding
argument. Unique names are constructed by prepending the constituent name q
to each element name in Q. Positron supports using multiple copies or instances
of the same constituent Q by using distinct names q and q′.

Definition 3. Given a set of arguments p, a parameterized constituent protocol
type Q accepts a set of parameters x, where the sets p and x agree in both name
and type. Define Qx

p as Q in which all elements in Q are given unique names,
and every parameter in x is replaced with its corresponding argument in p.

Expanding a composite P containing a constituent q : Q(x = p) yields the
union of P and Qx

p , and removing P ’s use statement q : Q(x = p).

Definition 4. Given a composite protocol P that uses a constituent protocol
q : Q(x = p), where P passes a set of arguments p, Q accepts a set of parameters
x, and the sets p and x agree in name and type. Then protocol P ′ = expand(P, q :
Q(x = p)) is the expanded version of P and Q, and is defined as follows, where
x ∈ {R,P,C,M,F}

Px(P ′) := Px(P) ∪ Px(Qx
p)

PU(P ′) := (PU(P) − q) ∪ PU(Qx
p).

Positron Conversion to MCMAS. The conversion of a Positron protocol, P,
to an MCMAS representation M = conv(P) is a two-step process. First, con-
stituent protocol expansion (Protocol Composition) flattens all nested
protocols, ensuring PU is the empty set. Second, additional conversion func-
tions, convpm(Px), convert each element of a Positron protocol to elements of an
MCMAS representation. The final MCMAS representation consolidates these
generated elements. The ISPL source input into MCMAS is generated from the
above-mentioned MCMAS representation.

Positron: Composing Protocols 25

Role Requirements. A role requirement reflects a role-desired goal of an agent
playing a role in the composite protocol. In Positron, Req(r, p, q) means that
role r requires that q will occur whenever p occurs. In AGFIL, one of Pol-
icyHolder’s role requirements is: if Insurer offers coverage, I paid the pre-
mium, and I have an accident, then my car will be repaired: Req(PH, coverage ∧
premium ∧ accident, repair)

It is incorrect to formalize a role requirement as the CTL specification:
AG(accident → AF repair), which ignores commitment violations that dis-
rupt a collaboration: a commitment may fail because its debtor either chooses
not to, or is prevented by circumstances from, discharging it. In verifying a role
requirement, we cannot assume commitments are never canceled. Rather, we
express role r’s requirement as: if r fulfills all its own commitments and p holds
at any state, then on each branch eventually, either q holds or a role other than
r canceled one of its commitments. If r’s requirement fails because r cancels a
commitment, that is not a fault of the protocol; it is r’s fault.

A Positron role requirement maps to an MCMAS CTL expression as

Req(r, p, q) := AG(p → AF(q ∨
∨

r′ �=r

r′.anyCancel))

where r′.anyCancel is true if and only if role r′ cancels any of its commitments.

Enactment Requirements. Although capturing all possible enactments is not
feasible for all protocols, designers and other stakeholders often know of specific
good and bad enactments. We use these enactments for partially verifying a
composite protocol as a way to assist designers refine protocol specifications (e.g.,
its constituent protocols and coupling commitments) or other requirements. An
enactment corresponds to a scenario in requirements engineering [13] and yields
a unit test. In Positron, the enactment specifications can be “good” (must exist)
or “bad” (must not exist).

We use model checking to verify enactments. We introduce three recursive
functions to simplify enactment specification. An enactment E is an ordered list
of Boolean expressions over states and messages. head(E) is the first element in
list E, and tail(E) is E without the first element, and EX, EF and EU are CTL
operators. Define

EXPath(E) :=
{
head(E) ∧ EX(EXPath(tail(E))) if |E| > 1
EX(P) if |E| = 1

EFPath(E) :=
{
EF(head(E) ∧ EFPath(tail(E))) if |E| > 1
EF(P) if |E| = 1

EUPath(r, E) :=
{
E(¬r U (head(E) ∧ EUPath(r, tail(E)))) if |E| > 1
E(¬r U P) if |E| = 1

EXPath specifies a path of states that must appear consecutively. EXPath
is often too strong a constraint, since it precludes interleaving of constituent
protocols. EFPath specifies a path of states that must appear in order, but not
necessarily consecutively. EUPath specifies a path of states that must appear in

26 S.N. Gerard et al.

order, and constrains which states can be interleaved in the path. Expression r
identifies which states must not be interleaved in the path. An EUPath require-
ment is stronger than EFPath and weaker than EXPath. Two example require-
ments from AGFIL include ¬EFPath(repair, accident) and EFPath(accident,
deliverReq,deliverCar, . . . , repair).

Coupling Commitments. A composite protocol would in general relate
its constituent protocols. All roles are jointly accountable for ensuring con-
stituent protocols are properly interrelated. We capture each role’s role
accountabilities as coupling commitments. A coupling commitment’s debtor
is the accountable role, and its creditors are (in general) the union of all
roles connected by the interrelated constituent protocols, minus the debtor:
Caccountable role,{interrelated roles}(antecedent, consequent).

Consider two coupling commitments from AGFIL. (1) CallCenter
commits to PolicyHolder and Repairer that it will notify Repairer
whenever it receives a request: CCC,{PH, Re}(deliverReq,notifyRe). (2) Pol-
icyHolder commits to CallCenter and Repairer that he will deliver
his car to Repairer whenever requested and the repair request is approved:
CPH,{CC,Re} (deliverReq ∧ approval,deliverCar).

Verification. Positron reads specifications of the composite and constituent
protocols and generates a single MCMAS input file. MCMAS reads the input,
builds the appropriate model, and reports whether each CTL formula holds in
the model.

Fig. 2. Selected states and transitions for AGFIL.

Figure 2 shows a portion of the state space Positron generates for verification
from AGFIL’s constituent protocols and coupling commitments. The start state
is s0. Solid lines are valid transitions (messages); dashed lines are transitions
that must not occur infinitely often. Since the message guard for coverage is
premium, coverage can occur only after premium, making s1 . . . s8 invalid start
states. Notice that the top row (premium, coverage, accident, and repair) begins
a good enactment. Positron can verify the existence of this path using an EFPath
requirement. Further, Positron can ensure that the model is free of specific bad
enactments, for example, that s1 must not be a start state.

Positron generates a model checking fairness constraint for each commitment:
a commitment must not remain unconditional and unresolved forever. Dashed

Positron: Composing Protocols 27

loops are invalid because they violate a commitment fairness constraint. A com-
posite protocol may fail to satisfy role or enactment requirements for different
reasons:

– FailRR: If a role requirement (Req) formula fails, then coupling commitments
are missing; add coupling commitments that require agents to act as appro-
priate.

– FailG: If a good enactment formula fails, then either (FailGG) some message
guards are too strong; weaken guards to enable additional good transitions.
Or (FailGC) some commitment can become detached, but can never resolve;
weaken guards to enable transitions that satisfy the commitment’s consequent.

– FailB : If a bad enactment formula fails, then some message guards are too
weak; strengthen guards to disable existing incorrect transitions.

4 Evaluation of Positron Modeling and Tools

We evaluate our contributions by modeling real-life protocols from the insur-
ance, manufacturing, and healthcare domains. Table 1 summarizes our iterative
methodology to develop a composite protocol such as in Listing 2.

AGFIL Evaluation. We extend the AGFIL scenario by adding (a) Policy-
Holder role and accident reporting; (b) Adjuster role and the redirection
of two messages between ClaimHandler and Repairer through Adjuster;
(c) payments from Insurer to ClaimHandler and Repairer; (d) a proto-
col for premiums and coverage between PolicyHolder and Insurer; and
(e) Repairer returning the car.

We create the AGFIL protocol of Listing 2 as follows. Roles: Identify roles:
Insurer (In) for agent AGFIL, CallCenter (CC) for Europ Assist,
ClaimHandler (CH) for Lee, PolicyHolder (PH), Repairer (Re), and

Table 1. Inputs and outputs for each step of the methodology.

Step Name Inputs Outputs

1 Roles Background and
requirements

Composite roles

2 Constituent selection Role relationships and
protocol library

Constituent protocols

3 Role requirements Role’s needs Role requirements

4 Enactments Background knowledge
of requirements

Good and bad enactments

5 Coupling Enactments Coupling commitments

Composite protocol

6 Positron All artifacts Protocol specification

7 Verification Protocol specification Model checker results

28 S.N. Gerard et al.

Adjuster (Ad). Constituent Selection: Identify constituent protocols:
RequestResponse, Exchange (where two roles swap items), Claims for In-CH
and ApprovedWork for CH-Re. Role Requirements: Identify role require-
ments: PolicyHolder requires: (1) if he has coverage, pays his premium, and
has an accident, his car is repaired; (2) if he delivers his car to Repairer, his car
is returned. Insurer requires: if a claim is filed, the claim is finalized. All roles
except PolicyHolder require payment if they perform their tasks. All these
are described as Req functions. Enactments: Identify enactments: (a) Poli-
cyHolder reports an accident to CallCenter (PH-CC); (b) CallCenter
assigns and notifies Repairer to repair the car (CC-Re); (c) CallCenter asks
PolicyHolder to deliver his car to a specific Repairer (PH-CC); (d) Pol-
icyHolder delivers car to Repairer (PH-Re); remaining steps are omitted.
Performing repairs before an accident is reported is a bad enactment: (e) car
repaired; (f) accident reported. Coupling: Identify coupling commitments: (1)
Between messages (a) and (b) of the accident-reporting enactment (see previous
step), if PolicyHolder reports an accident, CallCenter assigns and notifies
Repairer and (2) between messages (c) and (d), if CallCenter asks Pol-
icyHolder to deliver his car to Repairer, he does so. Positron: Generate
the Positron specification for AGFIL. Listing 2 shows snippets of the Positron
specification for AGFIL protocol. Lines 2 and 3 declare roles and propositions.
Line 4 instantiates constituent Claims named In-CH. Lines 10 and 11 are two
coupling commitments. Line 15 lists one of PolicyHolder’s role requirements.
Line 16 lists an Insurer requirement as explicit CTL. Line 18 verifies the good,
accident-reporting enactment that must exist in the composite, and Line 19 veri-
fies a bad enactment that must not exist. Listing 1 is the Claims protocol used as
a constituent protocol. From all previous artifacts, generate the MCMAS input
files. Verification: Run MCMAS model checker.

Quote To Cash Evaluation. Quote To Cash (QTC) is an important busi-
ness process that supports manufacturing supply chains [24]. Roles: Identify
roles: Customer, Reseller, Distributor, Seller, Shipper1, and Ship-
per2. Constituent Selection: Identify constituent protocols: Customer
orders goods and services from Reseller using constituent protocol Commer-
cialTran (ComTran), Reseller fulfills the order by Outsourcing to Distribu-
tor, Distributor orders good from Seller using CommercialTran, Seller
arranges shipping with Shipper2, and Distributor arranges shipping with
Shipper1, using additional instances of Outsourcing, and Seller provides a cus-
tomer support contract to Customer though StandingService. Role Require-
ments: Identify role requirements; if Customer pays, he receives goods and
services, if Reseller pays Distributor, he receives shipment, and for Cus-
tomer whenever a role performs its task, it gets paid. Enactments: Identify
two enactments for Customer placing an order and ending with fulfillment: one
if Distributor has goods in stock, one if it restocks from Seller. Fulfilling an
order before it is verified is a bad enactment. Coupling: Identify coupling com-
mitments: (1) Customer couples Cu-Re and Cu-Re-Di: if Customer receives
a shipment, he pays Reseller, (2) Reseller couples Cu-Re and Cu-Re-Di:

Positron: Composing Protocols 29

whenever Reseller receives an order, he orders from Distributor. Positron:
Generate Positron specification for QTC. Verification: Run MCMAS model
checker.

Healthcare (ASPE) Evaluation. We consider the healthcare process for
breast cancer diagnosis, as described by an HHS committee [2]. The resulting
ASPE protocol contains five roles (for convenience, we associate feminine pro-
nouns with Patient, Radiologist, and Registrar and masculine pronouns
with Physician and Pathologist.) The process begins when Patient visits
a primary care physician (Physician), who detects a suspicious mass in her
breast. He sends Patient to Radiologist for a mammography. If Radiolo-
gist notices suspicious calcifications, she sends a report to Physician recom-
mending a biopsy. Physician requests the Radiologist to perform a biopsy,
who collects a tissue specimen from Patient and sends it to a Pathologist.
Pathologist analyzes the specimen, and performs ancillary studies. If neces-
sary, Pathologist and Radiologist confer to reconcile their results and pro-
duce a consensus report. Physician reviews the integrated report with Patient
to create a treatment plan. Pathologist forwards his report to Registrar
who adds Patient to a state-wide cancer registry. There are only two cou-
pling commitments in ASPE. Physician has no coupling commitments because
it is his choice whether Patient needs mammogram and biopsy exams from
Radiologist.

Table 2. Statistics. (M is 106, G is 109, s is seconds.)
Composite metric AGFIL QTC ASPE
Constituent instances 11 6 12
Roles 6 6 5
Propositions 22 37 18
Commitments (total) 24 43 12

Coupling commitments 9 21 2
Messages 22 55 20
CTL formulas (total) 9 17 14

Role requirements 8 13 7
Enactment requirements 1 4 7

Positron statements 94 164 81
State space size 120 M 381 G 1.47 M
Positron processing time 1.98 s 3.16 s 1.68 s
MCMAS processing time 4.29 s 1274 s 5.78 s
Total time 6.27 s 1278 s 7.46 s

Real-Life Results:
Positron and MCMAS
were run on all three,
hierarchical examples
with the statistics and
timings for the final,
corrected protocols
shown in Table 2.
Positron processing was
quick at less than 4 s,
and total processing of
AGFIL and ASPE were
also quick at less than
8 s. QTC, with a 1000
times larger state space
and the most CTL
formulas, required 21
minutes.

Model Verification: Resolving verification errors is a challenging task, requir-
ing careful consideration of the interactions between the generated MCMAS
model and CTL statements.

Positron helped identify and fix several verification failures. Good enactment
failures (FailGG and FailGC) were generally easier to fix, since they only require

30 S.N. Gerard et al.

that some path exist. One or more requirements or coupling commitments were
slightly weakened to allow additional branches at appropriate points. Bad enact-
ment failures (FailB) were harder to fix as they required the impossibility of a
particular enactment. One or more role requirements or coupling commitments
were added. Hand checking was insufficient to ensure the changes would elimi-
nate all bad paths; only reruns of Positron and MCMAS could confidently verify
the changes.

Model Validation: Although identifying requirements was easy, some initial
specifications were incorrect because preconditions were missed. For example,
PolicyHolder’s role requirement initially failed (FailRR) because coupling com-
mitment among CallCenter, PolicyHolder, and Repairer did not include
approval; Repairer will not repair a car just because it is delivered to him. And,
an accident is insufficient to getPolicyHolder’s car is repaired;PolicyHolder
must also have a policy and pay the premium. Positron generates model checking
fairness conditions to ensure all unconditional commitments eventually resolve.
Initially, one of the AGFIL’s good enactment mysteriously failed because, even
though the model allowed all the transitions, the good enactment had unresolv-
able commitments (invalid by commitment fairness conditions). We corrected the
model so all commitments could resolve.

5 Discussion: Literature and Future Work

Positron gains an advantage over both traditional process modeling and existing
(operational) protocol approaches by focusing on high-level relationships realized
as constituent protocols, and by focusing on commitments rather than control
flow. Because role accountabilities are stated as commitments, if a requirement
fails, we can trace the failure back to a specific failing role.

Composite protocols provide a formal means to capture how constituent pro-
tocols may be composed to realize an STS specification. Because these protocols
capture meanings as commitments (generalizable to norms), yet have a formal
semantics that maps to sound enactments, they can provide a natural approach
to support secure policy-governed collaboration in ways that are not visible to
low-level, operational approaches.

Literature. Table 3 compares Positron with other work. Some papers propose
a protocol specification language, and some propose an accompanying proto-
col specification methodology. Some papers address single protocols in isolation;
some address common patterns within protocols; some address the composi-
tion of multiple protocols to create new composite protocols. Of those papers
that address verification, some address sociotechnical requirements; some address
verification properties between two protocols or models (such as protocol refine-
ment); some address protocol-wide properties; some verify properties that must
hold between the constituents of a composite protocol; some formulate role-
specific properties; some formulate good or bad enactment properties; and some
address other verification topics not addressed above.

Positron: Composing Protocols 31

Table 3. Approach comparison. Column abbreviations and citations are Po = Positron;
Pr = Proton; DA, DO, Dv and DM = Desai et al.; T = Telang and Singh; Y =
Yolum; Mi = Miller and McBurney; G = Günay et al.; C = Cheong and Winikoff,
Mc = McGinnis and Robertson, L = Lomuscio et al., B = Baldoni et al. Check marks
show the significant topics addressed by each paper. The cell contents of the verifica-
tion rows indicate whether the paper discusses (D) or mechanizes (M) verification of
known good or bad paths.

Significant topics Po Pr DA DO Dv DM T Y Mi G C Mc L B

Verification topics [14] [9] [10] [8] [11] [31] [33] [21] [15] [6] [20] [18] [4]

Protocol specification � � � � – � � � � � � � – �
Methodology � – � � – – � – – � � – – –

Single protocol – � � � � – – � � � – � � �
Protocol patterns – – – – – – � – – – – – – –

Protocol-to-protocol verification – � – – – – ? – – – – ? ? –

Protocol composition � – � � � � – – � – � – � �
Requirements verification

Sociotechnical M – – – M – M – – D – – M M

Protocol-to-protocol – M – – – – M – – – – – M –

Protocol M – – – M – – M M D D – – M

Inter-constituent M – – – – M – – – – – – – –

Role-specific M – – – – – – – – D – – M –

Enactments M – – – – – M – – – D – M M

Other M M – – M M M M M D – – M M

Desai et al. [9] propose OWL-P [10] and MAD-P [11] for specifying and ver-
ifying commitment protocols and their compositions. They employ axioms to
specify a composition. These approaches suffer from a key drawback: axiom vio-
lations are not assigned to any particular role. In contrast, Positron employs
coupling commitments with clear role accountability for the effects of one con-
stituent protocol on others. Further, Amoeba is purely manual, whereas Positron
incorporates mechanical verification. Adopting Amoeba’s event ordering idea
would add flexibility to our approach, but more granular parameterizations of
constituents provides the same functionality.

Telang and Singh [31] (T&S) describe a methodology for modeling STSs
that captures the commitments to be created among the parties by melding
selected collaboration patterns. In contrast, a protocol in Positron additionally
specifies the messages and guards, and the protocols are first-class entities that
retain their identity in the composite protocol, yielding improved modularity and
modifiability. Most significantly, T&S’s approach verifies if one implementation
is sound with respect to the model. In contrast, Positron verifies if the model
itself is sound.

Yolum [33] proposes generic correctness properties of commitment protocols
for design-time verification, but does not address composite protocols. She con-
siders generic properties, whereas we consider role-specific STS requirements.
It would be interesting to formulate Yolum’s generic correctness properties in
Positron.

32 S.N. Gerard et al.

Miller and McBurney [21] (M&M) propose the RASA language based on
propositional dynamic logic (PDL) to specify and compose protocols. RASA’s
preconditions, actions and postconditions correspond to Positron’s guards, mes-
sages and meanings. Positron additionally incorporates role requirements,
coupling commitments, and good and bad enactment paths, making Positron
practically viable. Theses are important in naturally describing STS protocols,
as we demonstrated above. Whereas M&M describe a custom reasoner, we rely
on standard CTL semantics as realized in MCMAS.

Günay et al. [15] treat protocols as sets of commitments and propose auto-
matically generating such sets from an agent’s beliefs, goals, and capabilities.
In contrast, we offer a semiautomatic approach where a tool helps designers
compose existing protocols. Automatic generation is attractive but may not be
feasible for complex settings, although a hybrid approach of developing atomic
protocols mechanically and composite protocols with human assistance might
be viable.

Cheong and Winikoff [6] describe the Hermes system for goal-oriented inter-
action. They focus on interaction-level goals, whereas we focus on role-level
requirements and commitments. Their action sequence diagrams capture only
good enactments.

McGinnis and Robertson [20] propose an approach in which an agent sends
a protocol specification to other agents at runtime, as a way to accomplish
dynamic, runtime, protocol adaptation. They remark that their approach lacks
a way to prevent agents from making an undesirable change to a protocol. If
their protocols were augmented with commitments, Positron could help address
this gap. For example, an agent may not remove a message from a protocol that
brings about the consequent of a detached commitment. While they describe
rules for dynamically changing protocols, they do not address formal verification
of interaction properties.

Lomuscio et al. [18] semiautomatically compile and verify contract-regulated
service compositions with compliance expressed in temporal-epistemic logic using
MCMAS (which we adopt). A crucial difference is that Lomuscio et al. consider
service compositions; we consider protocol compositions. Since a protocol has
a distributed footprint, protocol compositions are inherently more subtle than
service compositions. A potential benefit from adopting MCMAS is that it sup-
ports more expressive logics such as Alternating-Time Temporal Logic (ATL) [1],
which could help capture subtle correctness criteria for protocols.

We propose a methodology and use role responsibilities and role account-
abilities using expressions in CTL. Others describe the complementary issue of
temporal pattern languages which assist users to correctly capture their high
level requirements as temporal expressions. Dwyer et al. [12] describe a pattern
language for temporal expressions in CTL, LTL and other formalisms. Baldoni
et al. [4] compose protocols using regulative specifications as LTL constraints.

BPMN 2.0 [23] is a standard notation for business process modeling. BPMN
addresses both orchestration and choreography; in taking a multiagent app-
roach, Positron focuses on choreography. Our protocols are similar to BPMN

Positron: Composing Protocols 33

Conversation objects. Both protocols and Conversations can involve two or more
roles (Participants), and both can have simple or complex message sequencing
relationships. But, BPMN does not specify how to describe the relationships
between messages in a complex Conversation, except through internal orchestra-
tion; our complex protocols fully specify message sequencing relationships using
external guard statements. Both support arbitrary nesting. We formally verify
our compositions using temporal logic; model verification is explicitly out-of-
scope in the BPMN specification. Positron’s primary building blocks are proto-
cols and commitments. BPMN has no counterpart to our coupling commitments,
which are key to our interrelating constituent protocols and formal verification.

Threats, Limitations, and Future Directions. One limitation of Positron is
that it does not handle varieties of accountability besides commitments [29] and
does not show how to evaluate agent goals and decision making with respect to
protocols [15]. Importantly, we have not established that practitioners employing
Positron can obtain the benefits in abstraction, reusability, and correctness the
motivate it.

These threats and limitations lead to useful future directions. At the theo-
retical level, treating the goals of the participants is natural. At the practical
level, generating enactments via tooling would be valuable. At the empirical
level, evaluating the effectiveness of Positron (the approach and the tool) with
professional developers on collaboration in STSs would be necessary to promote
adoption by industry. To this end, we have developed a graphical notation for
protocol composition called composite protocol diagrams (CPDs). CPDs seek to
succinctly visualize the essence of a composite protocol both to analysts and
technical designers, who collaborate in its construction. We defer an empirical
evaluation of CPDs and competing notations as a way to determine if the high-
level abstractions of Positron can help analysts and designers combat complexity
and communicate more effectively with each other.

Acknowledgments. Thanks to the anonymous reviewers for helpful comments and
to the US Department of Defense for partial support through a Science of Security
Lablet grant.

References

1. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J.
ACM 49(5), 672–713 (2002)

2. ASPE: the importance of radiology and pathology communication in the diagno-
sis and staging of cancer (November 2010). Assistant Secretary for Planning and
Evaluation, U.S. Department of Health and Human Services. http://aspe.hhs.gov/
sp/reports/2010/PathRad/index.shtml

3. Baldoni, M., Baroglio, C., Marengo, E.: Behavior-oriented commitment-based pro-
tocols. In: Proceedings of the 19th European Conference on Artificial Intelligence
(ECAI), pp. 137–142, August 2010

http://aspe.hhs.gov/sp/reports/2010/PathRad/index.shtml
http://aspe.hhs.gov/sp/reports/2010/PathRad/index.shtml

34 S.N. Gerard et al.

4. Baldoni, M., Baroglio, C., Marengo, E., Patti, V., Capuzzimati, F.: Engineering
commitment-based business protocols with the 2CL methodology. J. Auton. Agents
Multi-Agent Syst. (JAAMAS) 28(4), 519–557 (2014)

5. Browne, S., Kellett, M.: Insurance (motor damage claims) scenario. Document
D1.a, CrossFlow Consortium (1999)

6. Cheong, C., Winikoff, M.P.: Hermes: designing flexible and robust agent inter-
actions. In: Dignum, V. (ed.) Handbook of Research on Multi-Agent Systems,
Chap. 5. IGI Global (2009)

7. Chopra, A.K., Dalpiaz, F., Aydemir, F.B., Giorgini, P., Mylopoulos, J.,
Singh, M.P.: Protos: foundations for engineering innovative sociotechnical systems.
In: Proceedings of the 18th IEEE International Requirements Engineering Confer-
ence (RE), pp. 53–62, August 2014

8. Desai, N., Cheng, Z., Chopra, A.K., Singh, M.P.: Toward verification of com-
mitment protocols and their compositions. In: Proceedings of the 6th Interna-
tional Conference on Autonomous Agents Multiagent Systems, pp. 33:1–33:3. ACM
(2007)

9. Desai, N., Chopra, A.K., Singh, M.P.: Amoeba: a methodology for modeling and
evolving cross-organizational business processes. ACM Trans. Soft. Eng. Methodol.
(TOSEM) 19(2), 6:1–6:45 (2009)

10. Desai, N., Mallya, A.U., Chopra, A.K., Singh, M.P.: Interaction protocols as design
abstractions for business processes. IEEE Trans. Soft. Eng. 31(12), 1015–1027
(2005)

11. Desai, N., Singh, M.P.: A modular action description language for protocol com-
position. In: Proceedings of the 22nd Conference on Artificial Intelligence (AAAI),
pp. 962–967, July 2007

12. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: Proceedings of the International Conference on Software
Engineering (ICSE), pp. 411–420, May 1999

13. Filippidou, D.: Designing with scenarios: a critical review of current research and
practice. Requirements Eng. 2(1), 1–22 (1998)

14. Gerard, S.N., Singh, M.P.: Formalizing and verifying protocol refinements. ACM
Trans. Intell. Syst. Technol. (TIST) 4(2), 21:1–21:27 (2013)

15. Günay, A., Winikoff, M., Yolum, P.: Commitment protocol generation. In: Proceed-
ings of the 10th AAMAS Workshop Declaration Agent Languages and Technologies
(DALT), pp. 51–66, June 2012

16. HL7: Health Level Seven (2007). http://www.hl7.org
17. Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: a model checker for the verification

of multi-agent systems. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol.
5643, pp. 682–688. Springer, Heidelberg (2009)

18. Lomuscio, A., Qu, H., Solanki, M.: Towards verifying contract regulated ser-
vice composition. J. Auton. Agents Multi-Agent Syst. (JAAMAS) 24(3), 345–373
(2012)

19. Mallya, A.U., Singh, M.P.: An algebra for commitment protocols. J. Auton. Agents
Multi-Agent Syst. (JAAMAS) 14(2), 143–163 (2007)

20. McGinnis, J., Robertson, D.: Dynamic and distributed interaction protocols. In:
Kudenko, D., Kazakov, D., Alonso, E. (eds.) AAMAS 2004. LNCS (LNAI), vol.
3394, pp. 167–184. Springer, Heidelberg (2005)

21. Miller, T., McBurney, P.: Propositional dynamic logic for reasoning about first-
class agent interaction protocols. Comput. Intel. 27(3), 422–457 (2011)

http://www.hl7.org

Positron: Composing Protocols 35

22. Miller, T., McGinnis, J.: Amongst first-class protocols. In: Artikis, A.,
O’Hare, G.M.P., Stathis, K., Vouros, G.A. (eds.) ESAW 2007. LNCS (LNAI), vol.
4995, pp. 208–223. Springer, Heidelberg (2008)

23. Object Management Group: Business Process Model and Notation (2011). http://
bpmn.org/

24. Oracle: Automating the Quote-to-Cash process, June 2009. http://www.oracle.
com/us/industries/045546.pdf

25. RosettaNet: Home page (2009). http://www.rosettanet.org
26. Singh, M.P.: An ontology for commitments in multiagent systems: toward a unifi-

cation of normative concepts. Artif. Intel. Law 7(1), 97–113 (1999)
27. Singh, M.P.: Information-driven interaction-oriented programming. In: Proceed-

ings of the 10th International Conference on Autonomous Agents MultiAgent Sys-
tems (AAMAS), pp. 491–498, May 2011

28. Singh, M.P.: Commitments in multiagent systems. In: Paglieri, F., et al. (eds.) The
Goals of Cognition, Chap. 32, pp. 613–638. College Publications (2012)

29. Singh, M.P.: Norms as a basis for governing sociotechnical systems. ACM Trans.
Intel. Syst. Technol. (TIST) 5(1), 21:1–21:23 (2013)

30. Telang, P.R., Singh, M.P.: Abstracting and applying business modeling patterns
from RosettaNet. In: Maglio, P.P., Weske, M., Yang, J., Fantinato, M. (eds.) ICSOC
2010. LNCS, vol. 6470, pp. 426–440. Springer, Heidelberg (2010)

31. Telang, P.R., Singh, M.P.: Specifying and verifying cross-organizational business
models: an agent-oriented approach. IEEE Trans. Serv. Comput. 5(3), 305–318
(2012)

32. WS-CDL: Web Services Choreography Description Language, Version 1.0,
November 2005. http://www.w3.org/TR/ws-cdl-10/

33. Yolum, P.: Design time analysis of multiagent protocols. Data Knowl. Eng. J.
63(1), 137–154 (2007)

34. Yolum, I., Singh, M.P.: Commitment machines. In: Meyer, J.-J.C., Tambe, M.
(eds.) ATAL 2001. LNCS (LNAI), vol. 2333, pp. 235–247. Springer, Heidelberg
(2002)

http://bpmn.org/
http://bpmn.org/
http://www.oracle.com/us/industries/045546.pdf
http://www.oracle.com/us/industries/045546.pdf
http://www.rosettanet.org
http://www.w3.org/TR/ws-cdl-10/

Analysis of Timing Constraints
in Heterogeneous Middleware Interactions

Ajay Kattepur1(B), Nikolaos Georgantas2, Georgios Bouloukakis2,
and Valérie Issarny2

1 PERC, TCS Innovation Labs, Mumbai, India
ajay.kattepur@tcs.com

2 MiMove Team, Inria Paris-Rocquencourt, Paris, France
{nikolaos.georgantas,georgios.bouloukakis,valerie.issarny}@inria.fr

Abstract. With the emergence of Future Internet applications that con-
nect web services, sensor-actuator networks and service feeds, scalabil-
ity and heterogeneity support of interaction paradigms are of critical
importance. Heterogeneous interactions can be abstractly represented
by client-service, publish-subscribe and tuple space middleware connec-
tors that are interconnected via bridging mechanisms providing interop-
erability among the services. In this paper, we make use of the eXtensible
Service Bus (XSB), proposed in the CHOReOS project as the connec-
tor enabling interoperability among heterogeneous choreography partic-
ipants. XSB models transactions among peers through generic post and
get operations that represent peer behavior with varying time/space cou-
pling. Nevertheless, the heterogeneous lease and timeout constraints of
these operations severely affect latency and success rates of transactions.
By precisely studying the related timing thresholds using timed automata
models, we verify conditions for successful transactions with XSB con-
nectors. Furthermore, we statistically analyze through simulations, the
effect of varying lease and timeout periods to ensure higher proba-
bilities of successful transactions. Simulation experiments are compared
with experiments run on the XSB implementation testbed to evaluate the
accuracy of results. This work can provide application developers with
precise design time information when setting these timing thresholds in
order to ensure accurate runtime behavior.

Keywords: Heterogeneous services · Middleware interoperability · Inter-
action paradigms · Timed automata · Uppaal · Statistical analysis

1 Introduction

Service Oriented Architectures (SOA) allow heterogeneous components to inter-
act via standard interfaces and by employing standard protocols. Choreogra-
phies [4] of such components allow large scale integration of devices (exposed as

V. Issarny—This work has been partially supported by the European Union’s Hori-
zon 2020 Research and Innovation Programme H2020/2014–2020 under grant agree-
ment number 644178 (project CHOReVOLUTION, http://www.chorevolution.eu).

c© Springer-Verlag Berlin Heidelberg 2015
A. Barros et al. (Eds.): ICSOC 2015, LNCS 9435, pp. 36–52, 2015.
DOI: 10.1007/978-3-662-48616-0 3

http://www.chorevolution.eu

Analysis of Timing Constraints in Heterogeneous Middleware Interactions 37

services) via SOA. However, these principally use the client-service interaction
paradigm, as for instance, with RESTful services [21]. With the advent of par-
adigms such as the Internet of Things [13] that involve not only conventional
services but also sensor-actuator networks and data feeds, additional middleware
level abstractions are needed to ensure interoperability.

In particular, heterogeneous platforms, such as REST [21] supporting client-
service interactions, publish-subscribe based Java Messaging Service [20], or
JavaSpaces [11] offering a shared tuple space, can be made interoperable through
middleware protocol converters [15]. In this paper, we use the eXtensible Service
Bus (XSB) proposed by the CHOReOS project1 [9,12] for dealing with heteroge-
neous choreographies at the middleware level. XSB prescribes a connector that
abstracts and unifies the three aforementioned interaction paradigms: client-
service (CS), publish-subscribe (PS) and tuple space (TS). Furthermore, XSB
is implemented as a common bus protocol that enables interoperability among
services employing heterogeneous interactions following one of these paradigms.

While our previous work [16] studies the effect of heterogeneous choreogra-
phies on multi-dimensional end-to-end QoS properties, we now analyze hetero-
geneous middleware interactions with specific emphasis on timing behavior. We
propose a timing model that can represent a system relying on not only any of
the CS, PS, TS paradigms, but also any interconnection between them. This
model can be used to compare between paradigms, select among them, tune the
timing parameters of the overlying application, and also do the previous when
interconnection is involved. Our model captures data availability and validity in
time with the lease parameter, as well as intermittent availability of the data
recipients with the timeout parameter. Hence, this model allows us to study, in
a unified manner, time coupling and decoupling among interacting peers.

We examine the conditions for successful transactions with timed
automata [2], and verify reachability and safety properties by employing the
Uppaal [6] model-checker. This analysis provides us with formal conditions
for successful XSB transactions and their reliance on the lease and timeout
parameters as well as on the stochastic behavior of interacting peers. We fur-
ther perform statistical analysis through simulation of transactions over multiple
runs, and study the success rate and latency trade-off with varying lease and
timeout periods. Simulation outputs are compared with experiments run on
the XSB testbed with respect to the accuracy of predicted results. By analyz-
ing the related timing thresholds, we enable designers to leverage the lease
and timeout periods effectively in order to obtain maximal transaction success
rates. Moreover, designers can evaluate the impact of interconnecting heteroge-
neous systems having different timing behaviors, or the impact of replacing a
middleware paradigm by another.

The rest of the paper is organized as follows. An overview of heterogeneous
interaction paradigms and XSB is provided in Sect. 2. The model for timing
analysis of XSB transactions is introduced in Sect. 3. This is further refined with
timed automata models and verification of properties in Sect. 4. The results of our
analysis through simulation experiments are presented in Sect. 5, which includes

1 http://www.choreos.eu/bin/view/Main/.

http://www.choreos.eu/bin/view/Main/

38 A. Kattepur et al.

comparison with experiments on the XSB implementation. This is followed by
related work and conclusions in Sects. 6 and 7, respectively.

2 Interconnecting Heterogeneous Interaction Paradigms

To deal with heterogeneous service choreographies of the Future Internet, we
make use of the modeling solution proposed in the CHOReOS [9] project. While
typical service choreographies utilize pure client-service interactions between
participants, Future Internet applications require inclusion of service feeds (via
publish-subscribe) and sensor-actuator networks (via shared tuple spaces). We
briefly review salient properties of these interaction paradigms:

Table 1. XSB connector API.

Primitives Arguments

post mainscope, subscope, data, lease

get ↑mainscope, ↑subscope, ↑data, timeout

– Client-Service (CS) is a commonly used paradigm for web services. A client
(source) communicates directly with a server (destination) either by direct
messaging (one-way send) or by a remote procedure call (RPC, two-way)
through an operation. Both synchronous and asynchronous reception of mes-
sages (receive) are possible at the receiving entity (within a timeout period).
CS represents tight space coupling, with the client and service having knowl-
edge of each other. There is also tight time coupling, with service availability
being crucial for successful message passing.

– Publish-Subscribe (PS) is a commonly used paradigm for content broadcast-
ing/feeds. Peers interact using an intermediate broker service; publishers
produce (publish) events characterized by a specific topic (filter) to the
broker; subscribers subscribe their interest for specific topics to the broker;
and the broker matches received events with subscriptions and delivers a copy
of each event to an interested subscriber (retrieve) until a lease period.
PS allows space decoupling, as the subscribers need not know each other.
Additionally, time decoupling is possible, with the disconnected subscribers
receiving updates synchronously or asynchronously when reconnected to the
broker.

– Tuple Space (TS) is commonly used for shared data with multiple read/write
users. Peers interact with a tuple space (tspace) and have write (out), read
and tuple removal (take) access to the commonly shared data. Further, peers
are able to choose a template to select the tuples they procure from the tuple
space. TS enables both space and time decoupling between interacting peers.

We employ the eXtensible Service Bus (XSB) connector2, which ensures
interoperability across the above interaction paradigms. XSB extends the con-
ventional ESB system integration paradigm [12]. The XSB API is depicted in
2 http://xsb.inria.fr/.

http://xsb.inria.fr/

Analysis of Timing Constraints in Heterogeneous Middleware Interactions 39

Table 2. APIs of interaction paradigms mapped to XSB primitives.

Interaction Native primitives XSB primitives

CS send(destination, operation,

message)
post(destination, operation,

message, 0)

receive(↑source, ↑operation,
↑message, timeout)

get(↑source, ↑operation, ↑message,
timeout)

PS publish(broker, filter, event,

lease)
post(broker, filter, event, lease)

retrieve(↑broker, ↑filter, ↑event,
timeout)

get(↑broker, ↑filter, ↑event,
timeout)

TS out(tspace, template, tuple,

lease)
post(tspace, template, tuple,

lease)

take(↑tspace, ↑template, ↑tuple,
timeout)

get(↑tspace, ↑template, ↑tuple,
timeout)

read(↑tspace, ↑template, ↑tuple,
timeout)

get(↑tspace, ↑template, ↑tuple,
timeout)

Table 1, where we only refer to one-way interactions; two-way interactions are
built by combining two of the former. It employs primitives such as post and
get to abstract CS (send, receive), PS (publish, retrieve), and TS (out,
take/read) interactions. The data argument can represent a CS message, PS
event or TS tuple. The mainscope and subscope arguments are used to unify
space coupling (addressing mechanisms) across CS, PS and TS. We employ the
↑ symbol in Table 1 to denote a return argument of a primitive. XSB primitives
and arguments can be mapped one-to-one to typical primitives and arguments
of CS, PS and TS as shown in Table 2.

We exploit the semantics of the lease and timeout parameters in each inter-
action paradigm as follows: lease refers to emitted messages, events or tuples,
and characterizes both data availability in time, e.g., thanks to storing by a
broker, and data validity, e.g., for data that become obsolete as part of a data
feed. Hence, lease equals to zero in the client-service paradigm, as shown in
Table 2. timeout characterizes the interval during which a receiving peer is con-
nected and available. During this active period, the peer can receive one or
more sent messages, events or tuples, either synchronously or asynchronously.
Between active periods, the peer is disconnected, e.g., for energy-saving or other
application-related reason. In the next section, we study in further detail the
effect of these parameters on successful interactions.

3 Timing Analysis of Interactions

In this section, we examine the timing thresholds for timeout/lease periods
and their effects on successful data passing in choreography interactions, where
data is our generic representation of messages, events and tuples. We examine,
in a unified manner, both time (de)coupled and synchronous/asynchronous data

40 A. Kattepur et al.

passing. This analysis is critical for inter-operating heterogeneous distributed
systems, where the designer has to reconcile varying system timing behaviors.

In order to enrich choreography interactions with timing constraints, we focus
on one-way transactions over a client-service, publish-subscribe, or tuple space
connection, abstractly represented by the XSB connector: a transaction repre-
sents an end-to-end interaction enabling posting and getting of data. We examine
latency increments δ for such transactions. Our analysis considers in particular
the “steady state” behavior of publish-subscribe and tuple space interactions.
For PS, this means that subscribers are already subscribed and do not unsub-
scribe during the study period. For TS, this means that peers accessing the
tuple space properly coordinate for preventing early removal of data by one of
the peers before all interested peers have accessed this data.

Fig. 1. Analysis of post and get δ increments.

In an XSB transaction, a poster entity posts data with a validity period
lease; this data can be procured using get within the timeout period at the
getter side. Figure 1 depicts a XSB transaction as a correlation in time between
a post operation and a get operation. The post and get operations are inde-
pendent and have individual time-stamps. We assume that application entities
(undertaking the poster and getter roles) enforce their semantics independently
(no coordination). The post operation is initiated at tpost. A timer is started
also at tpost, constraining the data availability to the lease period δpost-on. Note
that the δpost-on period may be set to 0, as in the case of CS messages. The
period when the lease period elapses and the next post operation is yet to
begin is denoted as δpost-off.

Similarly at the getter side, the get operation is initiated at tget, together
with a timer controlling the active period limited by the timeout interval,
denoted as δget-on. If get returns within the timeout period with valid data
(not exceeding the lease), then the transaction is successful. We consider this
instance also as the end of the post operation. post operations are initiated

Analysis of Timing Constraints in Heterogeneous Middleware Interactions 41

repeatedly, with an interval rate δpost (set as a random valued variable) between
two successive post operations. Similarly, get operations are initiated repeat-
edly, with a random valued interval equal to δget between the start of two suc-
cessive δget-on periods; the interval between timeout and the next tget qualifies
the disconnection period of receivers (δget-off). While lease and timeout are in
general set by application/middleware designers, inter-arrival delays δpost and
δget are stochastic random variables dependent on multiple factors such as con-
current number of peers, network availability, user (dis)connections and so on.

Note that this model allows concurrent post messages; buffers of active
receiving entities (including the broker and tuple space) are assumed to be infi-
nite. The data processing, transmission and queueing (due to processing and
transmission of preceding data) times inside the transaction are assumed to be
negligible (or of the same order in the CS case of δpost-on ≈ 0) compared to
durations of δpost-on and δget-on periods. In particular regarding queueing, we
assume that we have no heavy load effects. This means that: all posts arriving
during an active period are immediately served; all posts arriving during an inac-
tive period are immediately served at the next δget-on period, unless they have
expired before. This corresponds to a G/G/∞/∞ queueing model, where there
are an infinite number of on-demand servers, hence there is no queueing. We
assume that the general distribution characterizing service times incorporates
the disconnections of receivers. Extending this model with actual queueing is
part of our ongoing unfinished work.

Successful transactions depend on either of the disjunctive conditions:

tget < tpost < tget + timeout (1)

tpost < tget < tpost + lease (2)

meaning that a successful transaction occurs as long as a post and a get opera-
tion overlap in time. Otherwise, there is no overlapping in time between the two
operations: only one of them takes place, and goes up to its maximum duration,
i.e., lease for post and timeout for get. Precisely:

1. If get occurs first, and then post occurs before timeout: the transaction is
successful. Else, timeout is reached, and the get operation yields no trans-
action.

2. If post occur first, and then get occurs before lease: the transaction is
successful. Else, lease is reached, and the transaction is a failure.

The above analysis of XSB transactions not only can represent the individual CS,
PS, TS interactions, but also any heterogeneous interconnection between them,
e.g., a PS publisher interacting with a TS reader. Interconnection is performed
through the XSB bus, i.e., an ESB-style middleware implementing the XSB
connector. We assume that the effect of the XSB bus on the timings of the
end-to-end interactions is negligible.

42 A. Kattepur et al.

4 Timed Automata Model

In this section, we build a timed automata model that represents the typical
behavior of the XSB connector and of application components using this con-
nector for performing the timed interactions described in the previous section.
By relying on the expressive power of timed automata, we are able not only to
model the timing conditions of such interactions, but also to introduce basic sto-
chastic semantics for the poster and getter behavior. Using the Uppaal model
checker, we provide and verify essential properties of our timed automata model,
including formal conditions for successful XSB transactions.

4.1 Timed Automata Model of XSB

A timed automaton [2] is essentially a finite automaton extended with real-valued
clock variables. These variables model the logical clocks in the system, which are
initialized with zero when the system is started, and then increase synchronously
at the same rate. Clock constraints are used to restrict the behavior of the
automaton. A transition represented by an edge can be taken only when the
clock values satisfy the guard labeled on the edge. Clocks may be reset to zero
when a transition is taken. Clock constraints are also used as invariants at
locations represented by vertices: they must be satisfied at all times the location
is reached or maintained.

In order to study XSB interactions with timed automata, we make use of
Uppaal [6]. Uppaal is an integrated tool environment for modeling, validation
and verification of real-time systems modeled as networks of timed automata.
In such networks, automata synchronize via binary synchronization channels.
For instance, with a channel declared as chan c, a transition of an automa-
ton labeled with c! (sending action) synchronizes with the transition of another
automaton labeled with c? (receiving action). Uppaal makes use of computation
tree logic (CTL) [10] to specify and verify temporal logic properties. We employ
the committed location qualifier (marked with a ‘C’) for some of the locations.
In Uppaal, time is not allowed to pass when the system is in a committed loca-
tion; additionally, outgoing transitions from a committed location have absolute
priority over normal transitions. The urgent location qualifier (marked with a
‘U’) is also used: time is not allowed to pass when the system is in an urgent
location, either (without the priority clause of committed locations, though).

We represent XSB transactions with the connector roles XSB poster, XSB
getter, and with the corresponding XSB glue. The two roles model the behavior
expected from application components employing the connector, while the glue
represents the internal logic of the connector coordinating the two roles. We
detail in the following the modeling of these components.

Figure 2 shows the poster behavior. Typically, a poster entity repeatedly emits
a post! message to the glue without receiving any feedback about the end (suc-
cessful or not) of the post operation. We have enhanced (and at the same time
constrained) the poster’s behavior with a number of features. The committed loca-
tions post event (post! sent to the glue) and post end event (post end?

Analysis of Timing Constraints in Heterogeneous Middleware Interactions 43

received from the glue) have been introduced to detect the corresponding events.
Upon these events, the automaton oscillates between the post on and post off
locations, which correspond to the δpost-on and δpost-off intervals presented in
Fig. 1. delta post is a clock that controls the δpost interval between two succes-
sive post operations. delta post is reset upon a new post operation and set
to lease at the end of this operation (note that the post init location and its
outgoing transition serve initializing delta post at the beginning of the poster’s
execution – this unifies verification also for the very first post operation). The
invariant condition delta post<=max delta post (where max delta post is a
constant) at the post off location ensures that a new post operation will be
initiated before the identified boundary. This setup results in at most one post
operation active at a time. This post remains active (δpost-on interval) for lease
time (and then it expires) or less than lease time (in case of successful transac-
tion). In both cases, we set delta post to lease at the end of the post operation
(this enables verification, since we can not capture absolute times in Uppaal).
Hence, the immediately following δpost-off interval will last a stochastic time uni-
formly distributed in the interval [lease, max delta post]. With regard to the
timing model of Sect. 3, we opted here for restraining concurrency of post oper-
ations for simplifying the architecture of the glue. The present model (poster,
getter and glue) can be compared to one of the infinite on-demand servers of the
G/G/∞/∞ model of Sect. 3. Nevertheless, this model is sufficient for verifying
Conditions (1) and (2) for successful XSB transactions. These conditions relate
any post operation with an overlapping get operation; possible concurrency of
post operations has no effect on this. Moreover, we will see that these condi-
tions are independent of the probability distributions characterizing the poster
and getter’s stochastic behavior.

Figure 3 shows the getter behavior. Typically, a getter entity repeatedly emits
a get! message to the glue, with at most one get operation active at a time. The
duration of the get operation is controlled by the getter with a local timeout;
upon the timeout, a get end! message is sent to the glue. Before reaching the
timeout, multiple data items (posted by posters) may be delivered to the getter
by the glue, each with a get return? message. We have enhanced the getter’s
behavior with similar features as for the poster. Hence, we capture the events and
time intervals presented in Fig. 1 with the get event, get end event, get on,
get off locations, as well as with the delta get clock and the invariant con-
ditions delta get<=timeout (at get on) and delta get<=max delta get (at
get off). This setup results in a succession of δget-on and δget-off intervals,
with the former lasting timeout time and the latter lasting a stochastic time
uniformly distributed in the interval [timeout, max delta get]. We have addi-
tionally introduced the committed location no trans, which, together with the
Boolean variable get ret, helps detecting whether the whole timeout period
elapsed with no transaction performed or at least one data item was received.

The glue automaton is shown in Fig. 4. It determines the synchronization of
the incoming post? and get? operations. A successful synchronization between
such operations leads to a successful transaction, which is represented in the

44 A. Kattepur et al.

automaton by the trans succ location. Note that the timing constraints speci-
fied in Sect. 3 regarding the lifetime of posted data have been applied here with
the additional clock delta post on employed to guard transitions dependent on
the lease period. Two ways for reaching the trans succ location are considered:

– If the get? operation occurs from the initial location (leading to location
glue get), a consequent post? operation results in a get return!message and
eventually the successful transaction location trans succ (Eq. 1). At the same
time, the poster is notified of the end of the post operation with post end!.
Note that we employ the urgent location qualifier for glue get post; thus, the

post_end_event

post_init

post_event

post_on

post_off
delta_post <= max_delta_post

delta_post := lease
post_end ?delta_post := lease

post !
delta_post := 0

Fig. 2. XSB poster automaton.

get_end_event

get_init

get_event

no_trans

get_on
delta_get <= timeout

get_off
delta_get <= max_delta_get

get_ret == 0

get_ret == 1

delta_get >= timeout
get_end !

delta_get := timeout

get !
get_ret := 0, delta_get :=0

delta_get <= timeout
get_return ?
get_ret := 1

Fig. 3. XSB getter automaton.

trans_fail

trans_succ

glue_post
delta_post_on <= leaseglue_get_postglue_getglue_init

post_end ! delta_post_on >= lease

post_end ! get_return !

delta_post_on <= lease
get ?

post ?
delta_post_on := 0

get_end ?

post ?
delta_post_on := 0get ?

Fig. 4. XSB glue automaton.

Analysis of Timing Constraints in Heterogeneous Middleware Interactions 45

glue completes instantly the successful transaction and is ready for a new one.
At the glue get location, if the get end? message is received from the getter
automaton (suggesting delta get >= timeout), the glue is reset to the initial
location glue init.

– If the post? operation occurs initially (leading to location glue post), a get?
operation before the constraint delta post on <= lease results again in a
successful transaction (Eq. 2). Exceeding the lease period without any get?
results in location trans fail, and the automaton returns to its initial loca-
tion glue init, notifying at the same time the poster with post end!. This
is done without any delay, thanks to the invariant delta post on <= lease
at the glue post location.

4.2 Verification of Properties

We verify reachability and safety properties of the combined automata XSB
poster, XSB getter and XSB glue, by using the model checker of Uppaal. A
reachability property, specified in Uppaal as E<>ϕ, expresses that, starting at
the initial state, a path exists such that the condition ϕ is eventually satisfied
along that path. A safety property, specified in Uppaal as A[]ϕ, expresses that
the condition ϕ invariantly holds in all reachable states.

Poster Automaton. We verify a set of reachability and safety properties that
characterize the timings of the poster’s stochastic behavior.

A[] poster.post event imply delta post==0 (3)

A[] poster.post on imply delta post<=lease (4)

A[] poster.post off imply (delta post>=lease and

delta post<=max delta post)
(5)

E<> poster.post end event and delta post<lease (6)

Equation 3 states that post events occur at time 0 captured by the delta post
clock. Equations 4 and 6 together state that [0, lease] is the maximum interval
in which a post operation is active, nevertheless, the operation can end before
lease is reached. Equation 5 states that [lease, max delta post] is the maxi-
mum interval in which there is no active post operation. This confirms the fact
that we artificially “advance time” to lease at the end of the post operation.

Getter Automaton. We verify similar properties that characterize the timings
of the getter’s stochastic behavior.

A[] getter.get event imply delta get==0 (7)

A[] getter.get on imply delta get<=timeout (8)

A[] getter.get off imply (delta get>=timeout and

delta get<=max delta get)
(9)

46 A. Kattepur et al.

A[] getter.get end event imply delta get==timeout (10)
Hence, Eq. 7 states that get events occur at time 0 captured by the delta get
clock. Equations 8 and 10 together state that a get operation precisely and
invariantly terminates at the end of the [0, timeout] interval. Equation 9 states
that [timeout, max delta get] is the maximum interval in which there is no
active get operation.

Glue Automaton. Finally, we verify conditions for successful transactions
using the glue automaton.

A[] glue.trans succ imply (poster.post on and getter.get on

and (delta post==0 or delta get==0))
(11)

In addition to the reachability property (E<> glue.trans succ), we verify the
safety property in Eq. 11. According to this, a successful transaction event implies
that while a post operation is active a get event occurs, or while a get operation
is active a post event occurs.

A[] glue.trans fail imply (poster.post on and getter.get off

and delta post==lease and delta get-timeout>=lease)
(12)

In addition to the reachability property (E<> glue.trans fail), we verify the
safety property in Eq. 12. A failed transaction event means that lease is reached
for an active post operation and no get operation is active. Additionally, the
ongoing inactive get interval entirely includes the terminating active post inter-
val. With regard to the stochastic post and get processes of our specific setting,
we explicitly checked that if the condition max delta get-timeout>=lease does
not hold for the given values of the included constants, then the reachability
property E<> glue.trans fail is indeed not satisfied.

A[] getter.no trans imply (getter.get on and poster.post off

and delta get==timeout and delta post-lease>=timeout)
(13)

In addition to the reachability property (E<> getter.no trans), we verify the
safety property in Eq. 13. Symmetrically to Eq. 12, a no-transaction event implies
that timeout is reached for an active get operation and no post operation
is active. Additionally, the ongoing inactive post interval entirely includes the
terminating active get interval. Similarly to Eq. 12, we check that if this safety
property is not satisfied, then the state getter.no trans is indeed not reachable.

Checking Eqs. 11, 12, 13, successful transactions are determined by the dura-
tions and relative positions in time of the δpost-on, δpost-off, δget-on and δget-off
intervals. These depend on the deterministic parameter constants lease, timeout
and on the stochastic parameters δpost and δget. Nevertheless, Eqs. 11, 12, 13 are
expressed in a general way, independently of the specific post and get processes.
Hence, the analysis results of this section provide us with general formal con-
ditions for successful XSB transactions and their reliance on observable and
potentially tunable system and environment parameters. Using these results,
we perform experiments to quantify the effect of varying these parameters for
successful transactions in the next section.

Analysis of Timing Constraints in Heterogeneous Middleware Interactions 47

5 Results: Analysis of Timing Thresholds

In this section, we provide results of simulations of XSB transactions with var-
ied timeout and lease periods. We demonstrate that varying these periods has
a significant effect on the rate of successful transactions. In case of choreogra-
phies, the trade-off involved between success rates and latency (depending on
timeout/lease periods) is also evaluated.

5.1 Transaction Success Rates

In order to test the effect of varying lease and timeout periods on transaction
success rates, we perform simulations over the timing analysis model described in
Sect. 3. Poisson arrival rates are assumed for subsequent tpost instances (hence,
δpost follows the corresponding exponential distribution). The data is valid for a
deterministic lease period and then discarded. Similarly, there are exponential
intervals between subsequent tget periods (δget follows this distribution). The
getter entity is active for a deterministic timeout period and can disconnect for
random valued intervals. Applying the timing model in Sect. 3, the simulation
enables concurrent posts with no-queueing. As the arrivals follow a Poisson
process, this simulates an M/G/∞/∞ queueing model.

The simulations done in Scilab3 analyze the effect of varying lease and
timeout periods on XSB transactions. We set δpost between subsequent post
messages to have a mean of 10 s. The get messages are simulated with varying
exponential active periods (δget). This procedure was run for 10, 000 tget periods
to collect transaction statistics, by applying the formal conditions of Sect. 4.

The rates of successful transactions are shown in Fig. 5 for various values
of lease, timeout and δget periods. As expected, increasing timeout periods
for individual lease values improves the success rate. However, notice that the
success rate is severely bounded by lease periods. For time/space coupled CS
interactions, where the lease period is very low (0 s), the success rate, even at

20 40 6010 30 5012 14 16 18 22 24 26 28 32 34 36 38 42 44 46 48 52 54 56 58

1

0.2

0.4

0.6

0.8

0.1

0.3

0.5

0.7

0.9

Timeout Interval (seconds)

Su
cc

es
s

R
at

e

Lease = 0, delta_get = exponential(10)
Lease = 0, delta_get = exponential(20)
Lease = 0, delta_get = exponential(40)
Lease = 10, delta_get = exponential(10)
Lease = 10, delta_get = exponential(20)
Lease = 10, delta_get = exponential(40)
Lease = 40, delta_get = exponential(10)
Lease = 40, delta_get = exponential(20)
Lease = 40, delta_get = exponential(40)

Fig. 5. Transaction success rates with varying timeout and lease periods.

3 http://www.scilab.org.

http://www.scilab.org

48 A. Kattepur et al.

higher timeout intervals, remains bound at around 70% for δget with mean 40 s.
Reducing get disconnection intervals (by properly setting δget and timeout)
produces a significant improvement in the success rate, especially for the CS
case. For the other interaction paradigms (PS/TS), where the lease period can
be varied: a higher lease period combined with higher timeout or lower δget
intervals would guarantee better success rates.

5.2 Latency vs. Success Rate

In order to study the trade-off between end-to-end latency and transaction suc-
cess rate, we present cumulative latency distributions for transactions in Fig. 6.
Note that we assume that all posts arriving during an active get period are
immediately served; all posts arriving during an inactive get period are immedi-
ately served at the next active period, unless they have expired before. All failed
transactions are pegged to the value: lease.

We set δpost = Poisson(10) s and δget = Exponential(20) s for all simulated
cases. From Fig. 6, lower lease periods produce markedly improved latency.
For instance, with lease = 10 s, timeout = 20 s, all transactions complete
within 10 s. Comparing this to Fig. 5, the success rate with these settings is 78%.
Changing to lease = 40 s, timeout = 20 s, we get a success rate of 95%, but
with increased latency. So, with higher levels of lease periods (typically PS/TS),
we notice high success rates, but also higher latency. While individual success
rates and latency values depend also on the network/middleware efficiency, our
analysis provides general guidelines for setting the lease and timeout periods
to ensure successful transactions.

We provide in the following an illustrative use case, where our fine-grained
timing analysis can be employed to properly configure a concrete application. In
a transport information management system based on both authoritative and
mobile crowd-sourced information from multiple heterogeneous sources, posts
carrying events of interest for the average user arrive with a mean rate of 1 event
every 10 min. To guarantee the freshness of provided information, notifications
are maintained by the system for a lease period of 10 min. We assume that

0 20 4010 30 502 4 6 8 12 14 16 18 22 24 26 28 32 34 36 38 42 44 46 48

1

0.4

0.6

0.8

0.5

0.7

0.9

0.45

0.55

0.65

0.75

0.85

0.95

Latency (seconds)

Cu
m

ul
at

ive
 D

en
sit

y

Lease = 10, Timeout = 10
Lease = 10, Timeout = 20
Lease = 10, Timeout = 40
Lease = 20, Timeout = 10
Lease = 20, Timeout = 20
Lease = 20, Timeout = 40
Lease = 40, Timeout = 10
Lease = 40, Timeout = 20
Lease = 40, Timeout = 40

Fig. 6. Latency distributions for transactions with varying timeout and lease periods.

Analysis of Timing Constraints in Heterogeneous Middleware Interactions 49

users access the system every 20 min on average to receive up-to-date trans-
port information on their hand-held devices. They stay connected for a timeout
period and then disconnect, also for resource saving purposes. Actual connec-
tion/disconnection behavior is based on the user’s profile and context at the
specific time. By relying on our statistical analysis, an application designer may
configure the timeout period of user access to 10 min. Using scaled values from
Figs. 5 and 6, this guarantees that the user will receive on average 65% of the
posted notifications, within at most 8 min of latency with a probability of 0.63.
If these values are insufficient and the designer re-configures the timeout to
20 min, this guarantees that now the user will receive on average 80% of the
posted notifications, within at most 4 min of latency with a probability of 0.77.
This technique can be extended to other scenarios, where varying such parame-
ters would provide improvements in performance metrics.

5.3 Comparison with XSB Implementation

In order to validate the simulations performed in Sect. 5.1, we implement real-
istic transactions using the XSB framework. Specifically, we use two middleware
implementations: (i) for lease = 0 transactions, the DPWS4 CS middleware pro-
vides an API to set a poster and a getter interacting with each other directly; and
(ii) for (lease> 0) transactions, the JMS5 PS middleware provides an API to set
a poster, a getter, and the intermediate entity through which they interact. Apply-
ing the same settings as in Sect. 5.1, posters and getters perform operations based
on probability distributions (exponential δpost with mean of 10 s and δget with
various mean periods). At the intermediate entity we set various lease periods,
using the JMS API. Note that in these XSB implementation settings, we have con-
current posts and queueing. This corresponds to an M/G/1/∞ queueing model;
however, the queueing time of data due to processing of preceding data is negligi-
ble in our specific settings. All the transactions are performed using an Intel Xeon
W3550e 3.08 GHz × 4 (7.8 GB RAM) under a Linux Mint OS. For getting reliable
results, the mean values of δpost and δget intervals are expected to be close to the
expected mean values. To do so, we create sufficient number of post operations

Table 3. Simulated vs measured transaction success rates.

lease (s) δget (s) Simulation Measurement

0 exponential(20) 0.65 0.717

0 exponential(40) 0.35 0.42

10 exponential(20) 0.75 0.778

10 exponential(40) 0.48 0.554

40 exponential(20) 0.93 0.91

40 exponential(40) 0.75 0.81

4 http://ws4d.e-technik.uni-rostock.de/jmeds.
5 http://activemq.apache.org.

http://ws4d.e-technik.uni-rostock.de/jmeds
http://activemq.apache.org

50 A. Kattepur et al.

and get connections/disconnections by running each experiment for at least 2 h.
In Table 3, we compare the results of simulated and measured success rates for
timeout = 20s, δpost = Poisson(10)s, lease = 0, 10, 40s and various δget. The
absolute deviation between the two is no more than 10%. This deviation may be
attributed to implementation factors such as network delays and buffering at each
entity (poster, getter, intermediate entity) which may affect the success rates. As
this deviation is not too high, it allows developers to rely on our simulation model
to tune the system.

6 Related Work

With an always increasing number of heterogeneous devices being interconnected
among them and with conventional services through the Internet of Things [13],
extensions to standard (client-service oriented) ESB-style bridging middleware
[8] are required. The XSB connector [12], which resulted from the CHOReOS
project [9], explicitly incorporates multiple interaction paradigms, including PS
and TS schemes. XSB relies on protocol conversion [19], which allows reasoning
about diverse interaction paradigms using the unifying XSB semantics. In our
previous work [16], we extended the XSB connector with multi-dimensional QoS
metrics that can incorporate timeliness, security and resource efficiency levels.
However, we did not consider limited data lifetime, disconnections of peers, or
asynchronous reception, as we do in this paper.

Our work upgrades middleware connectors for heterogeneous interaction par-
adigms with timing analysis. In [24], service composition models are studied
where synchronous, asynchronous or parallel interaction may provide superior
success rates under time constraints. Similar tuning of time parameters has been
applied in distributed real time systems [17] for resource management, while
checking end-to-end performance across multiple layers. Besides, middleware-
based QoS control has been proposed by [7], where the QoS-aware adaptation
and reconfiguration of systems is performed by reflective middleware. In [22],
a grid quorum based publish-subscribe system is proposed to deal with delay-
sensitive aspects of Internet of Things applications. In comparison, the contri-
bution of our work is a unified timing analysis across heterogeneous middleware
paradigms.

Timed automata [2] have been applied to a variety of real time system mod-
els to ensure accurate behavior under timed guards. Model checkers such as
Uppaal [6] and PRISM [18] have been proposed for timed and probabilistic
properties of such systems. We make use of such tools for design time analy-
sis of heterogeneous middleware interactions. Timed automata are used in [23]
for studying fault tolerant behavior (safety, bounded liveness) in distributed
asynchronous real timed systems. In [14], the transmission channels of publish-
subscribe middleware are modeled using probabilistic timed automata to ver-
ify properties of supported interactions. The same authors do model-checking
of publish-subscribe applications using Bogor [3] and the PRISM probabilistic
model checker [14]. A closely related work is [1], where formal analysis (using
colored Petri-Nets) of various types of time synchronization in distributed mid-
dleware architectures has been performed. Indeed, alternatives to simulation

Analysis of Timing Constraints in Heterogeneous Middleware Interactions 51

based approaches, such as statistical model checking [5], may be applied in the
context of our work in order to verify, for instance, probabilistic reachability
properties. However, simulation techniques are needed as a starting point, in
order to elicit distributions needed as inputs to statistical model checkers.

In our paper, we unify the verification of the timing behavior of multiple
heterogeneous interactions using timed automata and their statistical analy-
sis. While our prior work focused mainly on the functional interoperability or
QoS upgrade of heterogeneous middleware systems, we further model here the
fine-grained effect of timing thresholds on both coupled and decoupled distrib-
uted systems as well as their combinations. By leveraging the analysis of timing
thresholds, designers of heterogeneous choreographies can accurately set con-
straints to ensure high success rates for transactions.

7 Conclusions

Timing constraints have typically been used for time-sensitive systems to ensure
properties such as deadlock freeness and time-bounded liveness. In this paper, we
study the XSB interoperable middleware connector from the CHOReOS project,
by accurately modeling its timing behavior through timed automata. Verification
of conditions for successful XSB transactions is done in Uppaal in conjunction
with the timing guards specified. We demonstrate that accurate setting of lease
and timeout periods significantly affects the transaction success rate. By pro-
viding a fine-grained analysis of the related timing thresholds for designers of
choreographies, increased probability of successful transactions can be ensured.
This is crucial for accurate runtime behavior, especially in the case of heteroge-
neous space-time coupled/decoupled interactions with variable connectivity of
peers. Furthermore, we demonstrate that the latency vs. success rate tradeoff
can be suitably configured for heterogeneous choreographies. Finally, we confirm
the sufficient accuracy of our results by comparing with experimental outcomes
from the XSB implementation framework.

References

1. Aldred, L., van der Aalst, W.M.P., Dumas, M., ter Hofstede, A.H.M.: On
the notion of coupling in communication middleware. In: Meersman, R.
(ed.) CoopIS/DOA/ODBASE 2005. LNCS, vol. 3761, pp. 1015–1033. Springer,
Heidelberg (2005)

2. Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126,
183–235 (1994)

3. Baresi, L., Ghezzi, C., Mottola, L.: On accurate automatic verification of
publish-subscribe architectures. In: IEEE International Conference on Software
Engineering (2007)

4. Barker, A., Walton, C.D., Robertson, D.: Choreographing web services. IEEE
Trans. Serv. Comput. 2, 152–166 (2009)

5. Basu, A., Bensalem, S., Bozgt, M., Delahaye, B., Legay, A.: Statistical abstraction
and model-checking of large heterogeneous systems. Int. J. Softw. Tools Techno.
Transfer 14, 53–71 (2012)

52 A. Kattepur et al.

6. Behrmann, G., David, A., Larsen, K.G.: A tutorial on uppaal 4.0. Technical report,
Aalborg University, Denmark (2006)

7. Blair, G.S., Andersen, A., Blair, L., Coulson, G., Sanchez, D.: Supporting dynamic
QoS management functions in a reflective middleware platform. Proc. IEE Softw.
147(1), 13–21 (2000)

8. Chappell, D.A.: Enterprise Service Bus. O’Reilly Media, Sebastopol (2004)
9. CHOReOS. Final CHOReOS architectural style. Technical report, Large Scale

Choreographies for the Future Internet (2013)
10. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state

concurrent systems using temporal logic specifications. ACM Trans. Program.
Lang. Syst. 8(2), 244–263 (1986)

11. Freeman, E., Hupfer, S., Arnold, K.: JavaSpaces Principles, Patterns, and Practice.
Addison-Wesley Professional, Essex (1999)

12. Georgantas, N., Bouloukakis, G., Beauche, S., Issarny, V.: Service-oriented distrib-
uted applications in the future internet: the case for interaction paradigm interop-
erability. In: Lau, K.-K., Lamersdorf, W., Pimentel, E. (eds.) ESOCC 2013. LNCS,
vol. 8135, pp. 134–148. Springer, Heidelberg (2013)

13. Guinard, D., Karnouskos, S., Trifa, V., Dober, B., Spiess, P., Savio, D.: Interacting
with the SOA-based internet of things: discovery, query, selection, and on-demand
provisioning of web services. IEEE Trans. Serv. Comput. 3, 223–235 (2010)

14. He, F., Baresi, L., Ghezzi, C., Spoletini, P.: Formal analysis of publish-subscribe
systems by probabilistic timed automata. In: Derrick, J., Vain, J. (eds.) FORTE
2007. LNCS, vol. 4574, pp. 247–262. Springer, Heidelberg (2007)

15. Issarny, V., Bennaceur, A., Bromberg, Y.-D.: Middleware-layer connector syn-
thesis: beyond state of the art in middleware interoperability. In: Bernardo, M.,
Issarny, V. (eds.) SFM 2011. LNCS, vol. 6659, pp. 217–255. Springer, Heidelberg
(2011)

16. Kattepur, A., Georgantas, N., Issarny, V.: QoS analysis in heterogeneous chore-
ography interactions. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC
2013. LNCS, vol. 8274, pp. 23–38. Springer, Heidelberg (2013)

17. Kim, M., Stehr, M.-O., Talcott, C., Dutt, N., Venkatasubramanian, N.: Combining
formal verification with observed system execution behavior to tune system para-
meters. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol.
4763, pp. 257–273. Springer, Heidelberg (2007)

18. Kwiatkowska, M., Norman, G., Parker, D.: PRISM: probabilistic symbolic model
checker. In: Proceedings of Tools Session of Aachen International Muliconference
on Measurement, Modelling and Evaluation of Computer-Communication Systems,
pp. 7–12 (2001)

19. Lam, S.S.: Protocol conversion. IEEE Trans. Softw. Eng. 14(3), 353–362 (1988)
20. Richards, M., Monson-Haefel, R., Chappell, D.A.: Java Message Service, 2nd edn.

O’Reilly, Sebastopol (2009)
21. Richardson, L., Ruby, S.: RESTful Web Services. O’Reilly, Sebastopol (2007)
22. Sun, Y., Qiao, X., Cheng, B., Chen, J.: A low-delay, lightweight publish/subscribe

architecture for delay-sensitive IoT services. In: IEEE 20th International Confer-
ence on Web Services (2013)

23. Waszniowski, L., Krakora, J., Hanzalek, Z.: Case study on distributed and fault
tolerant system modeling based on timed automata. J. Syst. Softw. 82, 1678–1694
(2009)

24. Zhang, T., Ma, J., Sun, C., Li, Q., Xi, N.: Service composition in multi-domain
environment under time constraint. In: IEEE International Conference on Web
Services (2013)

Context-Driven Assessment of Provider
Reputation in Composite Provision Scenarios

Lina Barakat1(B), Phillip Taylor2, Nathan Griffiths2, and Simon Miles1

1 King’s College London, London, UK
{lina.barakat,simon.miles}@kcl.ac.uk
2 University of Warwick, Coventry, UK

{Phillip.Taylor,Nathan.Griffiths}@warwick.ac.uk

Abstract. Service-oriented computing has become the de-facto way of
developing distributed applications and, in such systems, an accurate
assessment of reputation is essential for selecting between alternative
providers. Existing methods typically assess reputation on a combina-
tion of direct experiences by the client being provided with a service
and third party recommendations, but they exclude from consideration
a wealth of information about the context of providers’ previous actions.
Such information is particularly important in composite service provision
scenarios, where providers may delegate sub-tasks to others, and thus
their success or failure needs to be interpreted in this context and repu-
tation assessed according to responsibility. In response, to enable richer,
more accurate reputation mechanisms, this paper models the delegation
knowledge underlying a composite service provision, and incorporates
such knowledge into the reputation assessment process, adjusting the
contributions of past interactions with the composite service provider
according to delegation context relevance. Experimental results demon-
strate the effectiveness of the proposed approach.

Keywords: Reputation assessment · Delegation context · Composite
service provider · Interaction weighting

1 Introduction

A service-oriented system can be seen as a dynamic marketplace, where individ-
uals and organisations rely on providers to execute services with an appropriate
quality in order to fulfil their own goals. Such reliance implies a degree of risk
through dependence upon a third party, and so there is a need for mechanisms
that ensure correctness and fairness of providers’ and customers’ behaviour to
help assess and manage this risk. Trust and reputation are concepts commonly
modelled in mechanisms for improving the success of interactions by minimising
uncertainty when self-interested individuals interact [11]. Trust is an assessment
of the likelihood that an individual or organisation will cooperate and fulfil its
commitments [12], while reputation can be viewed as the public perception of

c© Springer-Verlag Berlin Heidelberg 2015
A. Barros et al. (Eds.): ICSOC 2015, LNCS 9435, pp. 53–67, 2015.
DOI: 10.1007/978-3-662-48616-0 4

54 L. Barakat et al.

Fig. 1. Delegation hierarchy of food home delivery

the trustworthiness of a given entity [13]. In this paper, we will use the terms
trust and reputation interchangeably.

Many models exist in which reputation is derived from direct experience of
clients and third party recommendations, with numerical or probabilistic repre-
sentations for reputation [1–7]. However, these existing methods focus solely on
the clients’ experience of the ultimate outcome of a service provision, without
consideration of the full history of activity behind such provision, thus omitting
from assessment potentially relevant information. Such information is of partic-
ular importance in the case of composite service provision, where the provider
may depend on other sub-providers to accomplish the task requested.

To illustrate, consider a provider PFHD offering home delivery of nutritious
food packages (e.g. meal packages) to customers. The provider does not produce
the food packages locally, but deals with a number of specialised suppliers for
this purpose (e.g. professional individuals, food companies, etc.). Specifically,
provider PFHD exposes the options available from these suppliers to potential
customers via a dedicated search interface, collects a customer’s order, and del-
egates this order to a suitable food package supplier. Following the preparation
of the food package, provider PFHD contacts its food transportation partner,
provider PFPD, for the delivery of the food package to the customer. Figure 1
depicts the delegation hierarchy of provider PFHD and its sub-providers. This
hierarchy is not visible to the customer, who rates its interaction with provider
PFHD based on the customer’s perception of the final outcome (the food package
delivered). Computing the reputation of provider PFHD, without interrogating
the history of delegation underlying customer ratings, might yield an inaccurate
reputation assessment for the current situation. For example, a low reputation of
provider PFHD due to the past failures of its transportation sub-provider PFPD

to meet consumers’ constraints on delivery time might give an unfair view if the
sub-provider has been changed to avoid such failures re-occurring.

In response, this paper extends existing reputation models by incorporating
the delegation context underlying a composite service provision into the repu-
tation assessment process1. In particular, the delegation context of a provision

1 See http://jaspr.org/case-studies for example usage scenarios.

http://jaspr.org/case-studies

Context-Driven Assessment of Provider Reputation 55

Table 1. Symbols often used throughout the paper

Symbol Description Symbol Description

attr Capability’s attributes P Set of providers

C Set of capabilities rating Interaction’s rating for an
aspect

cmp Goal (composite) capability rel Delegation context relevance

cnd Capability’s candidate providers rep Reputation score for an aspect

dctx Interaction’s delegation context time Interaction’s time

I Set of interactions wt Interaction’s weight

is utilised as additional evidence for determining the relevance of the ratings
available on this provision for the current situation, thus enabling more accurate
and informed reputation estimates. The rest of the paper is organised as follows.
Sections 2 and 3 provide the delegation model and the rating model, respectively,
for a composite service provider. The incorporation of delegation context into
reputation assessment is detailed in Sect. 4, while a corresponding evaluation is
presented in Sect. 5. Section 6 discusses related issues, Sect. 7 presents related
work, and finally Sect. 8 concludes the paper.

2 Delegation Model

To achieve a composite task cmp, the corresponding provider, henceforth referred
to as Pcmp, may often rely on a number of sub-contractors to perform the various
sub-tasks involved. Formally, knowledge of such a delegation model is a tuple,
(C,P, cnd, dg, attr), detailed below (see Table 1 for the often used notation).

C is the set of capabilities relevant for achieving composite task cmp (includ-
ing cmp itself). Each capability c ∈ C denotes a competence in achieving a par-
ticular sub-task (simple or composite) of composite task cmp. In our example,
C = {FHD,FPP , FPD,FPR,PPR,FPK}. Note that, we refer to a capa-
bility and its corresponding task interchangeably. We keep the definition of a
capability generic to be applicable to a wide range of domains, e.g. it may refer
to an operation signature, a resource specification, or an ontology term.

P is the set of available providers in the community offering capabilities from
C. Providers encapsulate such offerings within services, and expose them through
uniform, machine-readable interfaces (or metadata) on a network of customers.

cnd : C → 2P , is the candidate provider function, mapping each capability
c ∈ C to the set of providers cnd(c) ⊂ P offering this capability as a service. Dif-
ferent mechanisms are possible for discovering candidate providers: by consulting
a central service repository (e.g. a UDDI2 registry) storing service metadata (e.g.
SAWSD3 descriptions); or by calling for service proposals over the network (e.g.
using the contract net protocol [16]). We make no assumptions in our model
about any specific technology or service discovery and matching mechanism.
2 http://uddi.org/pubs/uddi v3.htm# Toc85907967.
3 http://www.w3.org/TR/sawsdl/.

http://uddi.org/pubs/uddi_v3.htm#_Toc85907967
http://www.w3.org/TR/sawsdl/

56 L. Barakat et al.

dg : C → G, is the decomposition graph function, defining the hierarchical
delegation structure in the community. It maps a composite capability c ∈ C
to its decomposition graph dg(c) = (V,E) ∈ G, which specifies the comprising
(finer-grained) sub-capabilities that can be outsourced to sub-contractors and
their dependencies, such that V ⊂ C, E ⊂ V × V , and G is the set of all
directed graphs that can be formed from the capabilities in C. For instance, in
our example, dg(FHD) = ({FPP , FPD}, {(FPP , FPD)}).

Finally, attr : C → 2AN , is the attribute function, mapping each capability
c ∈ C to the set of attributes attr(c) ⊂ AN characterising this capability (AN
is the set of all attribute names). Such features are domain dependent, and can
be either global (common to all tasks), e.g. cost and duration, or local (only
specific to particular tasks), e.g. the quality of packaging (which is specific to
packaging-related tasks) in the food manufacturing domain. Note that a com-
posite capability inherits all the attributes characterising its sub-capabilities.

3 Rating Model

The rating model of a composite service provider Pcmp (the ratee), enriched with
delegation context, is a tuple, (I, time, rater, rating, dctx), as detailed below.

I is the set of previous interactions with the ratee up to the current time
step, for which ratings are available to the reputation assessor.

time : I → T ∪ {⊥}, is an interaction time step function, specifying for an
interaction i ∈ I, the point in time time(i) ∈ T at which the interaction took
place (T is the set of all time steps). Note that time(i) = ⊥ indicates that the
time of interaction i is either not utilised for reputation assessment (the case
of some reputation models), or unknown (e.g. knowledge of the interaction is
acquired from a third party with no time information).

rater : I → U ∪ {⊥}, is an interaction rater function, specifying the rating
party rater(i) ∈ U for interaction i ∈ I (U is the set of all users who interacted
with the ratee). The availability and utilisation of the rater knowledge depend on
the reputation model adopted: while some models allow for third party ratings,
others only account for personal experience. Moreover, in some models, the rater
identities are kept anonymous with the ratings being collected and accessible via
a dedicated store, in which case ∀i ∈ I, rater(i) = ⊥.

rating : I × AN ∪ {overall} → RV ∪ {⊥}, is an interaction rating function,
mapping an interaction i ∈ I, to the rating, rating(i, a) ∈ RV , provided for this
interaction on aspect a ∈ attr(cmp) ∪ {overall}. Here, overall denotes an overall
perspective on the interaction, and RV is the set of all possible rating values.
Note that rating(i, a) = ⊥ indicates that rating on aspect a is not available for
interaction i. The domain of rating values RV depends on the reputation model
adopted, e.g. it can be binary, indicating either success or failure, or numeric,
indicating the level of satisfaction according to a particular scale.

Finally, dctx : I×C → P ∪{⊥}, is an interaction’s delegation context function
(which we introduce into the rating model), representing knowledge regarding
the participants in the realisation of composite capability cmp during interac-
tion i ∈ I. In particular, it maps a sub-capability node c ∈ C in a decomposition

Context-Driven Assessment of Provider Reputation 57

graph, to the provider dctx(i, c) ∈ cnd(c), to which this capability was delegated
by the ratee (or its sub-contractors) during interaction i. Details of how such
delegation knowledge can be acquired by the reputation assessor are discussed
in Sect. 6. In general, different levels of visibility might be available to the asses-
sor regarding this knowledge. For example, the assessor might be aware of the
delegation hierarchy fully, or only partially (e.g. only the direct sub-contractors
of the ratee, performing the sub-capabilities of dg(cmp), are known), or as in
the traditional rating model, might not have access to any delegation knowledge
except for dctx(i, cmp) = ratee, i.e. ∀c ∈ C \ {cmp}, dctx(i, c) = ⊥.

4 Context Exploitation for Reputation Assessment

A basic abstraction of a number of existing reputation assessment models is a
tuple (wt, rep), as detailed below.

wt : I → WV , is an interaction weighting function, governing the contribu-
tion of each available previous interaction i ∈ I for the reputation assessment at
hand. Here, WV is the set of possible weight values, and can be a binary domain,
corresponding to an interaction selection decision, or a continuous domain, cor-
responding to an interaction ranking decision. Commonly, the factors playing a
role in the evaluation of an interaction’s weight wt(i), are its recency time(i)
(recent observations are usually favoured over older ones), and the observing
party rater(i) (direct experience is usually favoured over third party opinions).

rep : AN ∪{overall} → PV , is the reputation assessment function, providing
a numeric value rep(a) ∈ PV that reflects the level of trust the assessor places
in the ratee (at the current time point) with respect to aspect a ∈ attr(cmp) ∪
{overall} of capability cmp. Depending on the reputation model and the domain
of rating values, rep(a) may refer to the expected probability of success, the
expected rating, etc. It is usually estimated by applying some statistical summary
function, aggr, over the ratings of interactions i ∈ I, while accounting for their
weights wt(i), i.e., rep(a) = aggr({< wt(i), rating(i, a) >}i∈I). For example,
aggr may correspond to a weighted mean over numeric ratings, or a probability
estimation measure over categorical (e.g. binary) ratings, etc.

The extension we propose to existing reputation models is to account for an
interactions’s delegation context, dctx(i, c ∈ C), in the assessment of its weight
wt(i). The idea is to assign higher weights to those interactions sharing simi-
lar delegation context with the potential interaction under consideration. The
intuition behind this is straightforward: the best indication of how a provider
may behave in future is how the provider behaved under similar conditions in
the past, with differing conditions potentially leading to different behaviour. To
achieve this, we are interested in quantifying the relevance between the delega-
tion context of each existing interaction i ∈ I, and that of the potential future
interaction, which we refer to as fi. Details are presented next.

4.1 Delegation Context Relevance Assessment

We aim for four criteria to be accounted for by the measure of relevance between
the delegation contexts of interactions i ∈ I, and that of future interaction fi.

58 L. Barakat et al.

Fig. 2. Multi-level relevance: i1 is more relevant than i2 and i3

Fig. 3. Hidden Deleg. Context (a), Attr. centric Cap. (b): i1 is more relevant than i2

1. Multi-level relevance, taking into consideration similarities of delegation con-
text across all levels of the delegation hierarchy. For example, in Fig. 2, i1
should be considered more relevant to fi than both i2 and i3. This is because,
when compared to i1, i2 further differs from fi in the leaf provider of capa-
bility c5, while i3 further differs in the intermediary provider of capability c2.
In fact, whilst it is important to account for differences at the level of leaf
sub-contractors since these are the ones actually performing the requested
capabilities, intermediary sub-contractors may also play an important role in
coordination, passing on truthful information, etc.

2. Hidden delegation context, discounting the relevance of an interaction in the
case of uncertainty (i.e. missing information) regarding its delegation context.
For example, in Fig. 3(a), i1 should be considered more relevant to fi than
i2. This is because, unlike i1, i2’s instantiation of capabilities c4 and c5 could
be different from those of fi.

3. Attribute-centric capabilities, assigning higher importance to those capabili-
ties in the delegation hierarchy that have an impact on the attribute under
assessment. For instance, consider Fig. 3(b) and assume that capabilities c1,
c2, and c3 correspond to FHD, FPP , and FPD of our motivating example,
and that the attribute under assessment is portion size of the delivered food.
Both i1 and i2 differ from fi in one provider, but i1 should be considered more
relevant to fi than i2. This is because, since food package delivery (FPD)
has no effect on portion size, which is mainly determined by food package
preparation (FPP), any difference in the performances of providers P3 and
P4 would not cause any deviation for this attribute, as opposed to a difference
between P2 and P5, which could potentially affect portion size.

Context-Driven Assessment of Provider Reputation 59

Fig. 4. Composition structure: i1 is more relevant than i2; i3 is more relevant than i4

4. Composition structure, taking into consideration the various connectivity con-
structs (e.g. sequence, parallel, loop) among sub-capabilities in a decompo-
sition graph. For instance, consider Fig. 4, where capabilities c3 and c4 are
performed in parallel, and c5 is repeated k times. Assume assessment of execu-
tion time, with the domain knowledge indicating that c4 usually takes much
longer to be achieved than c3. Whilst both i1 and i2 differ from fi in one
provider in the parallel construct, i1 should be considered more relevant than
i2 to fi. This is because, given that c3’s execution time is normally dominated
by that of c4 regardless of the provider, any difference in the performances of
providers P3 and P6 is unlikely to affect the overall execution time observed
for the interaction, as opposed to a similar difference in the performances of
P4 and P7. Similarly, i3 should be considered more relevant to fi than i4 since
a difference in the performances of P9 and P5 would be magnified k times,
unlike a similar difference between P8 and P2.

A simple measure of relevance, rel ∈ [0, 1], satisfactory of the above, between
the delegation context of interaction i, dctx(i, c ∈ C) (referred to as dctxi for
simplicity), and the delegation context of future interaction fi, dctx(fi, c ∈ C)
(referred to as dctxfi), with respect to attribute a ∈ attr(cmp), can be given as:

rel(dctxi, dctxfi, a) =
∑

c∈C,
dctx(fi,c) �=⊥

role(c, a) × prel(dctx(i, c), dctx(fi, c)) (1)

Function role(c, a) ∈ [0, 1] defines the attribute-dependent distribution of
roles among the capabilities under assessment (those instantiated with a provider
in fi). That is, it specifies the relative importance of a capability for the relevance
assessment, s.t.

∑

c∈C, dctx(fi,c) �=⊥
role(c, a) = 1. In particular, the role of capability

c regarding attribute a is determined according to its hierarchical importance,
Wh, structural importance, Ws, and attribute-related importance, Wa, as:

role(c, a) =
Wh(c) × Ws(c, a) × Wa(c, a)∑

cj∈C,
dctx(fi,cj) �=⊥

Wh(cj) × Ws(cj , a) × Wa(cj , a)
(2)

60 L. Barakat et al.

The hierarchical importance of capability c, Wh(c) ∈ [0, 1], is governed by c’s
level in the instantiated delegation hierarchy of fi. Alternative options include:
(a) assigning equal importance to all levels, i.e. Wh(c) = 1 (∀c); (b) favouring
capabilities at lower levels, e.g. Wh(c) = lvl(c)

maxlvl(c) , where lvl(c) is the level of c

in the delegation hierarchy (with lvl(cmp) = 1), and maxlvl(c) is the number
of levels in fi’s longest instantiated hierarchy path containing capability c; and
(c) accounting only for the capabilities at the lowest level, i.e. Wh(c) = 1 if
c is a leaf capability in fi’s instantiated delegation hierarchy, and Wh(c) = 0
otherwise.

The structural importance of capability c regarding attribute a, Ws(c, a) ∈
Z
+, is governed by the position of c and its ancestors, ancestor(c), in the corre-

sponding decomposition graphs, and can be defined as follows:

Ws(c, a) =
∏

cj∈{c}∪ancestor(c)

localWs(cj , a) (3)

with localWs(cj , a) = occur(cj , unfold(critical(cg(cj), a))). Here: occur(c, g) is
the number of occurrences of capability c in graph g; cg(c) is the decomposition
graph containing capability c in the delegation hierarchy; critical(g, a) returns
the sub-graph of g that is considered critical for attribute a (i.e. the subgraph
determining the performance regarding attribute a); and unfold(g) returns the
unfolded version of graph g using loop unfolding [14].

The attribute-related importance of c regarding attribute a, Wa(c, a) ∈ [0, 1],
can be defined as follows: Wa(c, a) = 1 if a ∈ attr(c); and Wa(c, a) = 0, otherwise.

Finally, function prel(dctx(i, c), dctx(fi, c)) ∈ [0, 1] measures the relevance
between providers dctx(i, c) and dctx(fi, c), responsible for performing c in i
and fi, respectively. It can be defined as follows:

prel(dctx(i, c), dctx(fi, c)) =

⎧
⎪⎨

⎪⎩

1 if dctx(i, c) = dctx(fi, c)

0.5 if (dctx(i, c) �= dctx(fi, c)) ∧ (dctx(i, c) = ⊥)

0 if (dctx(i, c) �= dctx(fi, c)) ∧ (dctx(i, c) �= ⊥)

(4)

The correspondence between the criteria outlined earlier and the suggested
relevance equation rel can be summarised as follows. The multi-level relevance
factor is captured via the aggregation function (the sum function in Eq. 1) over
the scores of relevant capabilities, as well as via the hierarchical importance
component Wh of function role. The hidden delegation context factor is captured
via the provider relevance function prel, assigning lower relevance value (i.e. 0.5)
in the case of missing (unavailable) instantiation of a capability. Finally, both the
attribute-centric capabilities and the composition structure factors are captured
in function role, via the attribute-related importance component Wa and the
structural importance component Ws, respectively.

4.2 Reputation Model Extension

In this Section, we show how an existing reputation model, FIRE [4], can be
extended to account for the delegation context relevance proposed in Eq. 1. FIRE

Context-Driven Assessment of Provider Reputation 61

combines four different types of reputation and trust: interaction trust from
direct experience, witness reputation from third party reports, role-based trust,
and certified reputation based on third-party references. We do not consider the
role-based and certified reputation components in this paper.

Reputation is assessed in FIRE from tuples of form (α, β, a, i, rating(i, a)),
where α and β are agents that participated in interaction i such that α gave β a
rating value of rating(i, a) ∈ [−1,+1] for the term a. A rating of +1 is absolutely
positive, −1 is absolutely negative, and 0 is neutral. To determine direct reputa-
tion of agent β for term a, an assessing agent α extracts the set of ratings from its
database of the form (α, β, a, ,) where “ ” matches any value. Moreover, agents
maintain a list of acquaintances, and use these to identify witnesses to evaluate
witness reputation. Specifically, an evaluator α will ask its acquaintances for
ratings of β for term a (i.e. ratings of the form (, β, a, ,)). Finally, the overall
trust is calculated as a weighted mean of each of the component sources.

Since we focus on investigating the effect of delegation context on reputation,
we do not consider the effect of the rating party or the interaction topology in
this paper. That is, for simplicity, we assume that all previous interactions with
agent β are accessible to any reputation assessor (e.g. via a dedicated rating
repository), assigning equal importance to all raters. In FIRE, this corresponds
to a fully connected agent network, with equal weights being assigned to the indi-
vidual and witness experience. Thus, to determine the reputation of a provider
Pcmp on behalf of a client, the assessor queries the rating store for ratings of the
form (, Pcmp, a, i, rating(i, a)). These ratings are scaled using a recency factor,
λ, in the interaction weight function, instantiated in FIRE per interaction i as:

wt(i) = recency(i) = e
|time(i)−time(fi)|

λ (5)

The reputation value the assessor has in Pcmp for term a is then calculated
as the weighted mean of the available ratings: rep(a) =

∑
i∈I wt(i)×rating(i,a)

∑
i∈I wt(i) .

Note that, to combine the reputation of different attributes a into a single com-
posite assessment for agent Pcmp, we use a weighted sum across all attributes:
rep(overall) =

∑
a rep(a)×attrwt(a), where attrwt(a) corresponds to the weight

of attribute a for the client, such that
∑

a attrwt(a) = 1.
Now, in order to account for the delegation context in FIRE, we adjust the

weighting that is given to an interaction i so that it becomes attribute dependent
and incorporates delegation context relevance, as follows:

wt(i, a) = recency(i) × rel(dctxi, dctxfi, a). (6)

5 Experiments and Results

This section presents an empirical evaluation of the proposed delegation-context-
aware reputation framework, focusing on its performance in terms of producing
more accurate reputation assessments4. The simulation involves one composite
4 Source code and data for the results presented in this paper are freely available from

http://jaspr.org/source-code.

http://jaspr.org/source-code

62 L. Barakat et al.

provider agent interacting with a number of customers. In particular, we adopt
our example scenario, showing the results from the perspective of the food home
delivery provider PFHD, with the delegation hierarchy of Fig. 1. We assume that
each (sub-)capability can be delegated to pnum alternative providers.

The simulation proceeds on the basis of rounds, each corresponding to an
interaction between a customer and composite provider PFHD. In each round,
provider PFHD instantiates its delegation hierarchy with a particular combina-
tion of sub-contractors, and accordingly delivers particular values for the aspects
of interest. The customer then rates provider PFHD on each aspect according to
their satisfaction. The customer ratings and the provider’s delegation context of
the current round are utilised by the reputation assessor to adjust the reputation
of provider PFHD for the next round. Other experimental settings are outlined
in Sects. 5.1 and 5.2, followed by experimental results in Sect. 5.3.

5.1 Customer Rating Generation

The evaluation considers three attributes: execution time (ex), quality of packag-
ing (qp), and portion size (pz) of the delivered food. We assume that the perfor-
mance of provider PFHD with respect to each of these attributes is determined
by the corresponding performances of the leaf sub-contractors who actually per-
form the capabilities (therefore we utilise option (c) for weights Wh).

Assuming knowledge that the food preparation (FPR) normally takes much
longer than the packaging preparation (PPR), i.e. PPR does not belong to
the critical path for evaluating ex, and that the packaging could be damaged
during food packaging (FPK) or during food package delivery (FPD), the values
delivered by provider PFHD in an interaction for each considered attribute are:

valprv(PFHD, ex) = valprv(PFPR, ex) + valprv(PFPK , ex) + valprv(PFPD, ex)
valprv(PFHD, qp) = min(valprv(PPPR, qp), valprv(PFPK , qp), valprv(PFPD, qp))
valprv(PFHD, pz) = valprv(PFPR, pz)

Here, Pc denotes the provider selected for executing capability c in the inter-
action, and valprv(Pc, a) is the value produced by provider Pc for attribute a
during the interaction. The generation of values valprv for atomic providers is
governed by their attribute policies, which are represented as normal distribu-
tions (with mean μ and variance σ2) over the corresponding attribute domains,
and assigned per candidate atomic provider at the beginning of experiments.

Based on this, the utility perceived by the customer in an interaction regard-
ing aspect a ∈ {ex, qp, pz} is: utilityprv(a) = valprv(PFHD, a), while the util-
ity considered acceptable by the customer is: utilityacc(a) = valacc(a), where
valacc(a) corresponds to the value considered acceptable for attribute a (fixed
among all customers in our experiments). Given this, the rating assigned by the
customer for aspect a in interaction i, rating(i, a) ∈ [−1,+1], compatible with
the reputation model discussed in Sect. 4.2, equals to:

Context-Driven Assessment of Provider Reputation 63

Fig. 5. Effect of Delegation Context Exploitation

rating(i, a) =

⎧
⎨

⎩

utilityprv(a)−utilityacc(a)
max(a)−utilityacc(a)

if utilityprv(a) ≥ utilityacc(a)
utilityprv(a)−utilityacc(a)

utilityacc(a)−min(a) otherwise

where min(a) and max(a) are the minimum and maximum possible values for a.
Finally, the overall rating of provider PFHD in interaction i is given as:

rating(i, overall) =
∑

a∈{ex,qp,pz} attrwt(a) × rating(i, a), where attrwt(a) is
the weight of attribute a for the customer (fixed to 1

3 for the three attributes).

5.2 Evaluation Strategies and Measure

We refer to the following reputation strategies: RM EW, the reputation model
assigning equal weights to all interactions, i.e. ∀i, wt(i, a) = 1; RM Time, the
reputation model weighting interactions according to recency, i.e. according to
Eq. 5; RM Ctx, the reputation model weighting interactions according to dele-
gation context relevance, i.e. according to Eq. 6 with ∀i, recency(i) = 1; and
RM Time Ctx, the reputation model weighting interactions according to both
recency and delegation context relevance, i.e. according to Eq. 6. As a perfor-
mance measure, we quantify the difference between the provider’s reputation
exposed to the customer prior to an interaction i, repi(a) (which, given the
reputation model adopted, can be viewed as the predicted rating for the inter-
action), and the customer’s actual rating following the interaction, rating(i, a).
That is, we measure |repi(a) − rating(i, a)| at each round (with a = overall).

5.3 Results

In this section, we compare the outlined strategies under various environment
settings. All the results reported are averaged over 100 simulation runs.

The Effect of Delegation Context Exploitation. Figure 5(a) reports the results in
settings with dynamic delegation context, and assuming static attribute policies
of sub-providers. In particular, composite provider PFHD changes its delega-
tion context (i.e. switches its sub-providers to different ones) after 100 rounds,

64 L. Barakat et al.

Fig. 6. Effect of Visibility Levels of Delegation Context

then returns back again to the old delegation context after another 100 rounds.
As can be seen, RM EW suffers from poor accuracy after the first change in
the delegation context, since the reputation score mostly reflects old, no longer
relevant ratings. This degradation in performance is of less severity after the
second (recurring) change, with the ratings observed during the first 100 rounds
becoming relevant again. Strategy RM Time achieves better adaptive behav-
iour by favouring more recent ratings and gradually forgetting outdated ones,
but is outperformed by RM Ctx (the best performing strategy in this case).
This is because, by utilising knowledge of delegation context, RM Ctx incor-
porates only the most relevant ratings into reputation assessment (eliminating
irrelevant ratings, collected under different delegation context). Thus, it achieves
the fastest recovery of accuracy after the first change, and avoids an accuracy
drop after the second change (by favouring the ratings collected in the first 100
rounds, which become relevant again). No further performance improvement is
achieved by combining delegation context awareness with recency in this case.

Figure 5(b) reports the results with dynamic delegation context settings as
above, but also with dynamic attribute policies of sub-providers. In particular,
the attribute policies of each candidate sub-provider are set to change after
150 rounds, with a policy change being simulated by a repositioning of the
corresponding mean μ. Here, although RM Ctx still achieves dominating results
after the change of the delegation context at round 100, it fails to do so once the
providers’ policies change at round 150, and further deteriorates in performance
when the old delegation context reoccurs at round 200. This is because, RM Ctx
considers all the ratings collected under similar delegation context to be of equal
importance, despite the fact that those collected prior to round 150 may no
longer be relevant. The best performing strategy in this case is RM Time Ctx,
which can eliminate the effect of such irrelevant ratings with time, while keeping
the advantages of delegation context utilisation.

The Effect of Delegation Knowledge Granularity. Figure 6 compares the per-
formance of RM Ctx under various delegation context visibility levels, in set-
tings with dynamic delegation context as above and static attribute policies of

Context-Driven Assessment of Provider Reputation 65

sub-providers. In particular, we compare: RM Ctx FV , assuming full visibil-
ity of the delegation context; RM Ctx PV , assuming partial visibility of the
delegation context, where only the direct sub-contractors, PFPP and PFPD, of
composite provider PFHD are known; and RM Ctx NV , assuming no visibility
of the delegation context, i.e. the only provider visible is provider PFHD. Changes
in delegation context are assumed to only affect leaf capabilities FPR, PPR,
FPK, and FPD, while the intermediary provider of capability FPP always
remains the same. Clearly, RM Ctx NV does not detect delegation context
changes, assigning equal weights to all ratings for the duration of the simulation,
thus exhibiting bad performance after change points. RM Ctx PV , on the other
hand, is only able to observe the change in the sub-provider of leaf capability
FPD. As a result, it discounts the importance of the ratings before the change,
but does not eliminate their effect entirely (these ratings are still considered
partially relevant), which decreases its accuracy compared to RM Ctx FV .

6 Discussion

Why would providers expose (true) delegation context? Providers are the obvious
source of delegation context as it is a record of how they provided a service,
but it may be against their interests to release such records. There are a few
initial answers to this question, though full exploration of the issue is beyond
the scope of this paper. First, such information should be expected to be present
in the client-accessible service advert at the time of service provision. Second,
there are two agents in an interaction that could provide (or verify) information
regarding a particular delegation, the delegator and the delegatee (a commonly
used mechanism for non-repudiation). Finally, the contracts which clients agree
with providers can require some recording of details as part of service provision,
possibly with involvement of a notary to help ensure validity.

How would providers expose delegation context? The PROV standard [10]
(published by W3C as a standard for interoperable provenance) could provide
a suitable solution for this purpose [15]. A PROV document describes in a
queryable form the causes and effects within a particular past process of a sys-
tem (such as agents interacting, the execution of a program, or enactment of a
physical world process), as a directed graph with annotations. The contents of
a provenance graph can be collated from data recorded by a set of independent
agents, and clients have a standard means to query the data, e.g. by SPARQL5.

7 Related Work

In a service-oriented system individuals and organisations rely on providers to
successfully execute services with an appropriate quality to fulfil their own goals,
and such reliance implies a degree of risk. Trust and reputation provide an effec-
tive way of assessing and managing this risk, and are studied by researchers
from many domains. In multi-agent systems, most established computational

5 http://www.w3.org/TR/sparql11-overview/.

http://www.w3.org/TR/sparql11-overview/

66 L. Barakat et al.

reputation models, such as TRAVOS [1], HABIT [2], ReGreT [3] and FIRE [4],
typically use a combination of direct and indirect experience. In TRAVOS [1],
the trust score is the expected probability (using the beta distribution) that
the trustee will fulfil its obligations towards the truster in an interaction, esti-
mated based on the outcomes of the previous direct interactions with the trustee.
When there is a lack of personal experience, the truster seeks the opinions
of other sources, accounting for their reliability. Similarly, HABIT [2] uses a
probabilistic approach, utilising Bayesian network to support reasoning about
reputation. ReGreT [3] takes into account three dimensions of reputation: the
individual dimension (based on direct interactions), the social dimension (from
other sources utilising the group relation), and the ontological dimension (defin-
ing the different reputational aspects). FIRE [4] (adopted in this paper) is based
on ReGreT, adding role-based trust and certified reputation based on third-party
references.

Trust and reputation models have also been investigated in service-oriented
systems. For example, Maximilien et al. [5] estimate a service’s reputation for a
quality by aggregating its previously observed quality values (shared and acces-
sible to all assessors). Similarly, Xu et al. [6] extend the UDDI registry with a
reputation manager, aggregating the past ratings of a service into a reputation
score. Malik et al. [7] propose a decentralised approach for service reputation
assessment, where customers seek ratings from their peers, with the credibility
of ratings being estimated based on deviation from the majority opinion.

These approaches view a service as a simple service, ignoring potential com-
position information behind its provision, and relying mainly on recency to dis-
count the effect of irrelevant past interactions. We argue that recency alone is not
sufficient as the behaviour of a composite service is affected by its underlying
composition circumstances, which may change, or older ones reoccur (making
older interactions better predictors of the current service behaviour). To provide
more accurate indications of interaction relevance, our work complements such
recency-based interaction weighting with composition-context-based weighting.

Finally, a number of researchers focus on designing suitable mechanisms for
distributing the score obtained by a composite service to its component ser-
vices [8,9]. Proposed factors for governing such distribution include a compo-
nent service’s structural importance, replaceability, and run-time performance.
However, these approaches do not account for the implications of the component
services on the reputation evaluation mechanism of the composite service itself
(the focus of this paper), but can be considered complementary to our work.

8 Conclusion

This paper presented how delegation information underlying a composite ser-
vice provision can be utilised to provide more accurate reputation assessment
of the composite service provider. Specifically, such information is used to scale
the ratings available for the provider, assigning higher weights to those col-
lected under circumstances comparable to the current settings. The proposed
composition-context-based weighting is independent of any particular reputation

Context-Driven Assessment of Provider Reputation 67

model, but for evaluation purposes, was incorporated into an existing reputation
model, FIRE, which scales ratings according to recency. The results show that it
results in improving performance. Future work involves accounting for alterna-
tive decomposition graphs per capability, and for personalised user requirements.

Acknowledgments. This work was part funded by the UK Engineering and Physical
Sciences Research Council as part of the Justified Assessments of Service Provider
Reputation project, ref. EP/M012654/1 and EP/M012662/1.

References

1. Teacy, W.T.L., Patel, J., Jennings, N.R., Luck, M.: Coping with inaccurate reputa-
tion sources: experimental analysis of a probabilistic trust model. In: 4th Interna-
tional Conference on Autonomous Agents and Multiagent Systems, pp. 997–1004
(2005)

2. Teacy, W.T.L., Luck, M., Rogers, A., Jennings, N.R.: An efficient and versatile app-
roach to trust and reputation using hierarchical bayesian modelling. Artif. Intell.
193, 149–185 (2012)

3. Sabater-Mir, J., Sierra, C.: Regret: a reputation model in gregarious societies. In:
4th Workshop on Deception, Fraud and Trust in Agent Societies, pp. 61–69 (2001)

4. Huynh, T.D., Jennings, N.R., Shadbolt, N.R.: An integrated trust and reputation
model for open multi-agent systems. J. Auton. Agent. Multi-Agent Syst. 13, 119–
154 (2006)

5. Maximilien, E.M., Singh, M.P.: Agent-based trust model involving multiple quali-
ties. In: 4th International Joint Conference on Autonomous Agents and Multiagent
Systems, pp. 519–526 (2005)

6. Xu, Z., Martin, P., Powley, W., Zulkernine, F.: Reputation-enhanced QoS-based
web services discovery. In: IEEE International Conference on Web Services, pp.
249–256 (2007)

7. Malik, Z., Bouguettaya, A.: RATEWeb: reputation assessment for trust establish-
ment among web services. VLDB J. 18, 885–911 (2009)

8. Nepal, S., Malik, Z., Bouguettaya, A.: Reputation propagation in composite ser-
vices. In: IEEE International Conference on Web Services, pp. 295–302 (2009)

9. Wen, S., Li, Q., Yue, L., Liu, A., Tang, C., Zhong, F.: CRP: context-based repu-
tation propagation in services composition. SOCA 6, 231–248 (2012)

10. W3C. PROV model primer (2013). http://www.w3.org/TR/prov-primer/
11. Pinyol, I., Sabater-Mir, J.: Computational trust and reputation models for open

multi-agent systems: a review. Artif. Intell. Rev. 40, 1–25 (2013)
12. Gambetta, D.: Can we trust trust? In: Gambetta, D. (ed.) Trust: Making and

Breaking Cooperative Relations, pp. 213–237. Basil Blackwell, Oxford (1988)
13. Jsang, A., Ismail, R., Boyd, C.: A survey of trust and reputation systems for online

service provision. Decis. Support Syst. 43, 618–644 (2007)
14. Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang, H.:

QoS-aware middleware for web services composition. IEEE Trans. Softw. Eng. 30,
311–327 (2004)

15. Miles, S., Griffiths, N.: Incorporating mitigating circumstances into reputation
assessment. In: 2nd International Workshop on Multiagent Foundations of Social
Computing (2015)

16. Smith, R.G., Davis, R.: Frameworks for cooperation in distributed problem solving.
IEEE Trans. Syst. Man Cybern. 11, 61–70 (1981)

http://www.w3.org/TR/prov-primer/

Data Services and Cloud Platform
Management

Runtime Model-Based Privacy Checks of Big
Data Cloud Services

Eric Schmieders(B), Andreas Metzger, and Klaus Pohl

paluno (The Ruhr Institute for Software Technology),
University of Duisburg-Essen, Essen, Germany

{eric.schmieders,andreas.metzger,klaus.pohl}@paluno.uni-due.de

Abstract. Cloud services have to comply with privacy policies when
storing or processing data. As cloud services become increasingly data-
intensive, e.g., in the case of big data analytics, data privacy concerns
become more critical and challenging to address. In particular, data
may only be processed at certain geo-locations. However, the actual
geo-locations of the many storage and compute nodes involved in big
data processing is dynamically selected during runtime. In addition, the
execution of concrete data processing tasks may change data classifi-
cations from, e.g., personal to anonymized data. Thus, privacy policy
checks for big data cloud services have to consider information about the
actual nodes and data processing tasks at runtime. The proposed app-
roach R-PRIS monitors cloud services to derive and maintain typed run-
time models providing the aforementioned information. R-PRIS checks
the typed runtime models against privacy policies by employing a data-
classification-aware search. The evaluation of R-PRIS, performed on
Amazon Web Services (including Hadoop), indicates that the approach
may efficiently and timely detect privacy violations in big data cloud
services.

Keywords: Privacy · Big data · Cloud services · Runtime checking

1 Introduction

Cloud services have to comply with privacy policies when storing, transferring,
and processing data. For instance, the EU Data Protection Directive1 (DPD) as
well as the US Health Insurance Portability and Accountability Act2 (HIPAA)
only permit processing personal data within countries that implement sufficient
data protection mechanisms. Moreover, privacy policies, such as the ones pro-
posed by NIST 800-122 or FIPS 1993, distinguish between different data clas-
sifications. Data classifications indicate the data’s identifiability or sensitivity,
which requires to treat the classified data accordingly.

1 http://eur-lex.europa.eu/.
2 http://www.hhs.gov/ocr/privacy/.
3 http://csrc.nist.gov/.

c© Springer-Verlag Berlin Heidelberg 2015
A. Barros et al. (Eds.): ICSOC 2015, LNCS 9435, pp. 71–86, 2015.
DOI: 10.1007/978-3-662-48616-0 5

http://eur-lex.europa.eu/
http://www.hhs.gov/ocr/privacy/
http://csrc.nist.gov/

72 E. Schmieders et al.

As cloud services become increasingly data-intensive – being used for large-
scale and real-time big data analytics tasks for instance [3] – the implementa-
tion of such privacy policies becomes ever more challenging. Data and processing
tasks are distributed among a vast number of storage and compute nodes to cope
with the high volume of data and to ensure the high velocity of data processing
(e.g., when using the MapReduce programming model). In addition, data classi-
fications may dynamically change based on the data processing tasks executed by
the various compute nodes (e.g., a task may aggregate personal customer data
into anonymized sales statistics). On top of that, storage and compute nodes
may be dynamically deployed, replicated, and migrated to achieve performance,
availability, and cost goals of cloud providers. Given all this complexity and
dynamism, each of the involved nodes still has to comply with privacy policies
during the entire cloud service life-cycle.

Existing approaches for checking privacy policies have not addressed cloud
elasticity or data classification changes (e.g., [6,7,10,13]). In our previous work
[16,17], we introduced R-PRIS, a privacy compliance checking approach for
dynamic cloud services. In this paper we extend R-PRIS to cope with the
aforementioned challenges imposed by data-intensive services. In particular, the
extended R-PRIS approach is able to consider data classification changes. This
is important, as disregarding data classification changes may lead to a high rate
of false positive violations. Such a high positive rate would limit applicability for
big data cloud services. For instance, it would prohibit migrating many of the
storage and compute nodes that do not process privacy-relevant data.

The extended R-PRIS approach utilizes a data-classification-aware search
strategy based on typed runtime models. To this end, we propose typed runtime
models for reflecting data placement and data classification changes. In order
to facilitate the specification of fine-grained privacy polices, R-PRIS allows for
defining data classifications, impact levels, and their relations. Using this infor-
mation, R-PRIS monitors the cloud services, automatically updates the typed
runtime model, and checks the model against privacy policies.

We evaluated the applicability and performance of R-PRIS for a data-intensive
cloud service hosted on Amazon Web Services (AWS), leveraging Hadoop clusters
for data processing. Our results indicate that R-PRIS is able to efficiently and
timely detect privacy violations in big data cloud services.

The remainder of the paper is structured as follows: Sect. 2 identifies relevant
classes of privacy policy violations. Using these classes of violations as basis,
Sect. 3 describes the R-PRIS approach. Section 4 investigates the realizability of
the approach by means of a proof of concept implementation. Section 5 describes
the setup and results of experiments to evaluate the performance of R-PRIS.
Related work is discussed in Sect. 6.

2 Privacy Policy Violations in Big Data Cloud Services

Cloud providers allow for specifying the geo-locations at which virtual machines
shall be executed. However, misconfigured cloud infrastructures, software fail-
ures, and incorrect geo-location specifications might lead to virtual machine
placements that result in privacy policy violations.

Runtime Model-Based Privacy Checks of Big Data Cloud Services 73

As a simple example for such situations, take two interacting service compo-
nents v1 and v2 that process personal data. Both components are deployed on
separate virtual machines that are initially hosted on cloud data centers within
the EU. During runtime, the virtual machine hosting v1 is migrated to a data
center outside of the EU. After migration, v1 and v2 continue to exchange per-
sonal data. However, as this now implies transfer of data beyond EU borders,
this may violate data geo-location policies.

To identify these dynamic changes that need to be reflected in the R-PRIS
runtime models, we systematically determine changes of cloud services proper-
ties. We focus on changes that stem from the cloud service software architec-
ture and the underlying cloud infrastructure. We analyze whether the identified
changes can lead to privacy policy violations. To be specific, we follow three
steps in our analysis: (i) we identify architectural, deployment, and functional
properties of big data cloud services that – if changed – may lead to policy
violations (column 1 in Table 1); (ii), we determine concrete types of changes of
these properties; e.g., due to cloud elasticity mechanisms (column 2); and (iii) we
identify the concrete violations of privacy policies resulting from these changes
(column 3). Table 1 summarizes the results of the analysis.

Table 1. Policy violations in big data cloud services

Property Change Violation

1 Compute
node’s
geo-
location

New node;
replication;
migration

A compute node is instantiated at an excluded
geo-location (e.g., a virtual machine hosting a
marketing application is instantiated in the US)

2 Storage
nodes
geo-
location

Data upload;
replication;
migration

A storage node is assigned to store personal data
excluded at the node’s geo-location (e.g., a
Hadoop node has to process a new chunk of
personal data)

3 Node
interac-
tions

New node;
migration;
replication

A new interaction between nodes is established
that involve transfer of personal data to
excluded geo-location (e.g., an existing Hadoop
cluster is integrated into a cloud service)

4 Data
classifi-
cations

Changed
processing
task

The new task may produce data with different
classification (e.g., a Hadoop task determines
the average number of purchased items for a
specific customer)

3 R-PRIS: Privacy Checks for Big Data Cloud Services

The main idea of R-PRIS (Runtime model-based PRIvacy checkS) is to utilize
runtime models for performing privacy policy checks. In general, runtime models

74 E. Schmieders et al.

are dynamically updated abstractions of the reflected systems [18]. The architec-
tural runtime models of R-PRIS contain information about compute and storage
node deployments, data flows occurring among these nodes, and data classifica-
tion changes. The main steps of R-PRIS are depicted in Fig. 1: cloud monitoring
information is used for updating architectural runtime models, which in turn are
employed for policy violation checks.

Fig. 1. Overview of R-PRIS

This paper focuses on two main new contributions introduced by the extended
R-PRIS approach: the use of a typed runtime model to consider data classifi-
cation changes (Sect. 3.1) and the enhanced privacy policy checks based on this
model (Sect. 3.2).

3.1 Typed Runtime Model

The typed runtime model employed for taking data classification changes into
account is an extension of the architectural runtime model that we introduced in
[16,17]. The architectural runtime model Gti

R reflects the deployment of storage
and compute nodes (properties 1 and 2 in Table 1), as well as node interactions
(property 3 in Table 1) at time point ti.

In R-PRIS, the updates of Gti
R are specified as graph transformation rules.

Event-condition-action patterns are employed to reason on observed monitoring
information as well as to trigger and parametrize the matching graph transfor-
mation rules. This results in an updated runtime model Gti+1

R for time ti+1.
When extending this architectural runtime model with the data classifica-

tion information (property 4 in Table 1), we implemented a clear separation
of concerns. We separated the dynamically evolving information about node

Runtime Model-Based Privacy Checks of Big Data Cloud Services 75

deployments and interactions (architectural runtime model) from the rather sta-
ble information about data classifications (data classification model). For the
mapping of elements between these two models (e.g., for mapping a Method
node to its data classification) we utilize the typed graph concept.

The edges and vertices of a typed graph are assigned to types stored in a
separate type graph (for an introduction to typed graphs see [4]). We consider
the runtime model as the typed graph and the data classifications as the type
graph. Similar to the dynamic type checking in type systems, in our work a set
of rules defines how typed vertices are to be treated during runtime.

The concept of the typed runtime model will be described more precisely in
the following. We use the typed runtime model shown in Fig. 2 as illustrative
example. First, we formally define an R-PRIS architectural runtime model as:

Definition 1. Let Gti
R = (VR,ER,sR,tR) be a directed graph that models a big

data cloud service at a certain point in time ti. VR are the vertices, i.e. service
entities, and ER the edges, i.e. relations between the cloud service entities. Func-
tion sR : E → V specifies the source vertex of edges ER and function tR : E → V
specifies the target vertex of edges ER.

Fig. 2. Example of a typed runtime model in R-PRIS

The lower part of Fig. 2 shows an example of an R-PRIS architectural runtime
model, where vertices are expressed as UML objects and edges are expressed as

76 E. Schmieders et al.

UML associations. The different kinds of objects and associations are defined
by a meta model (introduced in [16,17]). The meta model provides concepts for
modeling virtual machines, components, and methods to reflect changes of the
compute node property. The deployment relationship reflects changes of geo-
locations and the data source relationships models changes in interactions.

To express how different data classifications relate to each other in terms of
identifiability or sensitivity, we define a data classification model as follows:

Definition 2. Let GT = (VT , ET , sT , tT) be the directed graph that represents
the data classifications. VT are the vertices, i.e. data classifications, and ET

the edges, expressing the relations between the data classifications. sT : E → V
defines the source vertex of edges ∈ ET and tT : E → V defines the target
vertex of edges ∈ ET . Relations between data classifications are transitive4, i.e.,
(x � y) ∧ (y � z) → (x � z).

The upper part of Fig. 2 shows an example for a data classification model GT .
It includes the data classes Personal Information, Personally Identifiable Infor-
mation, etc. The relationship lessCriticalThan reflects the criticality relationship
among data classifications.

To interrelate GR and GT we exploit the concept of typed graphs. Typed
graphs employ graph morphisms for interrelating specific elements of two graphs.
We define the graph morphism for R-PRIS as follows:

Definition 3. Let m : Gti
R → GT be a graph morphism that maps Gti

R to GT .
Function m is defined as m = (mV ,mE) with functions mV : VR → VT and
mE : ER → VT × VT .

In our approach, mV and mE are specified as follows. mV maps Content-
Description and Method entities to data classes VT of the data classification
model. The mapping from ContentDescription describes the ‘static’ classifica-
tion of contents (data objects). The mapping from Method describes a change
of data classification imposed by executing the method (data processing tasks).
All other Gti

R entities are initially mapped to ‘no’ data classification (⊥). Start-
ing from this initial mapping, we will dynamically update the graph morphism
during the policy check in order to determine policy violations (see Sect. 3.2).

Based on Definitions 1–3, we can now define the R-PRIS typed runtime
model:

Definition 4. The R-PRIS typed runtime model is defined as Gtyped = (Gti
R,

GT ,m) with Gti
R as the architectural runtime model instance, GT the data clas-

sification model, and m the graph morphism that maps Gti
R to GT .

When processing data, methods can change the classifications of the processed
data. For instance, method getCartItens (v8 in Fig. 2) changes personal infor-
mation to personally identifiable information. To reflect this, we define data
classification changes as:
4 Which implies that GT has to be acyclic.

Runtime Model-Based Privacy Checks of Big Data Cloud Services 77

Definition 5. Given a typed runtime model Gtyped, let vk ∈ Gti
R represent a

method or a data object and let vl ∈ Gti
R represent a method that accesses data

provided by vk. vl either retains the data classification of the accessed data, i.e.
m(vk) = m(vl) or changes the classification to a less critical one, i.e. m(vk) �
m(vl). We define the change (in the latter case) as data classification change.

3.2 Privacy Policy Checks

The main idea of our privacy policy check is to express the check as a reachabil-
ity analysis on the architectural runtime models. In [16] we have formalized and
realized this reachability analysis as an st-connectivity problem on the architec-
tural runtime model, thereby considering node deployment and interaction but
not data classification changes.

3.2.1 Data-Classification-Aware Search
In order to cover data classification changes in big data cloud services, we extend
the reachability analysis by the data classification model, i.e., we search the
typed runtime model (including the type model, see Sect. 3.1). Let’s take a policy
p = (geo, class), which prescribes that data classified as class must neither be
processed nor stored at the specified geo-location geo. The reachability analysis
then aims to find a ‘violation path’ that connects the ‘forbidden’ geo-location
vertex for geo with the data classification vertex for class. In simple terms, a
‘violation path’ is a sequence of vertices connected by edges that do not exhibit a
data classification less critical than class. If such a path exists, the cloud service
either stores or processes data at the forbidden geo-location, thereby violating
the checked policy p.

As an example, let’s define geo = USA and class = PersonalInformation,
which means that our cloud service may not store or process personal informa-
tion in the US. Using the typed runtime model of the cloud service in Fig. 2, the
reachability analysis aims to find a ‘violation path’ that connects the ‘forbidden’
geo-location vertex USA (v2) with the data classification vertex PersonalInfor-
mation (v15). As can be seen, such a path cannot be found, because although
v13 is typed as PersonalInformation, the path from v13 to v2 traverses vertices
which change the data classification to less critical levels; e.g., v7 changes it to
PersonallyIdentifiableInformation. This means that the example cloud service
(in the current deployment reflected in the typed runtime model) complies with
the privacy policy.

To realize the described reachability analysis, the policy check starts with
defining vgeo ∈ Gti

R as start vertex and vclass ∈ Gti
R as target vertex (with the

geo-location and the data classification specified in the policy to be checked).
The check then performs a depth first search of the typed runtime model, during
which three main mechanisms are employed:

– Early Termination: The search terminates the traversal of the current path
as soon as it reaches a vertex vn classified as less critical than class. Regardless

78 E. Schmieders et al.

of the data classifications along any continuation of the current path, data that
passes through vn will always be less critical than what is expressed in the
privacy policy to be checked. This does not exclude the existence of other paths
from vgeo to vclass. Thus, we terminate the search at vn and then backtrack
to vn−1 to explore other paths to reach vclass.

– Backtracking: To facilitate backtracking, and thus not have to start from
vgeo each time we have terminated a path traversal, we employ the graph mor-
phisms introduced in Sect. 3.1 to store the data classification for all vertices
we have traversed thus far. This allows us to continue from vn−1 by retrieving
the classification we have computed at a certain point of traversal.

– Classification Traversal: The traversal of Gti
R is continued as long as the

classification of the successor vertex vn+1 is higher or the same as the clas-
sification of the current vertex vn. The continuation is decided by expanding
the search space to GT (also in the case of backtracking). If there exists a
path from the data classification of vn to the data classification of vn+1, then
the search continues. In this case, the method returns data equally or more
critical5 than specified in p.

Fig. 3. Example traversal through the typed runtime model

3.2.2 Performance Optimization
When traversing Gti

R and dynamically classifying VR ∈ Gti
R there is a situation

that requires the utilization of a search heuristic for avoiding the re-visiting of
nodes. This is important as revisiting nodes would negatively impact on the
approach’s time complexity.

Let us assume the check passes a vertex vs classified with mV (vs) = c1.
Further, the traversal leads over two crossing paths to a vertex vt with mV (vt) =
c1. One of these paths includes a v1 with mV (v1) = c1 and the other path
mV (v2) = c2 (with (c1, c2) : lessCriticalThan). If the path over c2 is traversed
5 A policy concerning less critical data must also hold for more critical data.

Runtime Model-Based Privacy Checks of Big Data Cloud Services 79

first, then this traversal results in a false negative (the actual violation is not
detected). The reasons are (i) that c1 is less critical than c2 such that the checked
policy holds and (ii) the path over c1 to v1 is not traversed without visiting nodes
twice, which blocks the traversal of the path for c1. In order to tackle this issue
without re-visiting nodes, the check visits vertices adjacent to a vertex v with
respect to their criticality in an ascending order (by omitting classifications less
critical than mV (v)), which avoids the blocking effect.

3.2.3 Example Policy Check
Figure 3 shows an excerpt of G2

R, which is an update of G1
R. It shows the

morphism-based typings to ease backtracking as thinner arrows, whereas the
broader arrows are the initial mappings.

Let us assume, we want to check policy p = (USA, AnonymizedInforma-
tion). We dynamically type the start node with the classification specified in p,
i.e. v2 �→ v20. The algorithm starts to traverse G2

R and dynamically resolves ⊥
with the classifications of the preceding vertices (enabling backtracking). The
classification of v5 is set to v20. The classifications of v5 and v7 differ. Thus, the
search is expanded to GT (classification traversal). As the classification of v7 is
reachable from the classification of v5 the search continues. v11 is dynamically
typed with the classification of the preceding note, i.e. v11 �→ v19. After tra-
versing the data vertex v12 and typing it with PersonallyIdentifyableInformation
the algorithm visits v13 (not shown in the figure). The algorithm checks whether
there is a path from PersonallyIdentifyableInformation to the classification of
v13 in GT , which is the case. In consequence, data that is classified more critical
than vclass can be transferred into the USA, which violates p.

4 Proof of Concept Implementation

To demonstrate the feasibility and applicability of R-PRIS, we developed a pro-
totype implementation that we deployed on actual cloud infrastructures. This
R-PRIS prototype is also used during our experimental evaluation in Sect. 5.

4.1 Prototype Architecture

The R-PRIS prototype consists of six main components (see Fig. 4): the moni-
toring probes, the monitoring server, the event processor, the model controller,
the policy checker, and a third-party host geo-location service. The probes are
deployed on the virtual machines that host the big data cloud service’s software
components. The monitoring server forwards the parsed monitoring information
to the event processor. The event processor invokes a REST service6 for resolv-
ing the VM geo-location. The processor triggers the model controller to execute
model transformation rules that modify the runtime model with respect to the
observed service changes. We use the Henshin graph transformation API for per-
forming the model updates. Henshin supports runtime model based on Ecore7.
6 http://freegeoip.net/json/.
7 http://www.eclipse.org/modeling/emf/.

http://freegeoip.net/json/
http://www.eclipse.org/modeling/emf/

80 E. Schmieders et al.

For more details on this model-update approach, see [17]. After updating the
model, the model controller triggers the policy checker component, which checks
the runtime model against the privacy policies (see Sect. 3.2).

The components we developed have been implemented in Java SE 1.7. They
are deployed on a dedicated server hosted at our institute (R-PRIS server in
Fig. 4) to have maximum control over the prototype and facilitate performance
measurements without external influences. The server is equipped with 4 GB of
RAM and a single core 2 GHz processor.

Fig. 4. R-PRIS prototype and parts of the example service

4.2 Cloud Service and Infrastructure

To test the applicability of R-PRIS, we employ a realistic cloud service that
builds on the CoCoME case study [14]. CoCoME represents a typical trading
service operated by a supermarket chain. In the CoCoME scenario of inter-
est, the CoCoME service sends personalized recommendation e-mails to online
customers by exploiting a Hadoop cluster for big data analytics. The Amazon
reference architecture for e-commerce websites8 is used as the underlying struc-
ture for the CoCoME service components. The architecture includes a recom-
mendation web service, a marketing administration application, a Hadoop name
node, and Hadoop data nodes. All virtual machines are instrumented with the
R-PRIS monitoring probes. The lower half of Fig. 4 shows a subset of these vir-
tual machines and the CoCoMe components they host. We choose Amazon EC2
as a realistic execution environment for the cloud services.

4.3 Change Scenarios

To assess the applicability of R-PRIS, we expose the prototype to four change
scenarios. These scenarios cover all changes identified in Sect. 2. For each change,
8 http://aws.amazon.com/architecture/.

http://aws.amazon.com/architecture/

Runtime Model-Based Privacy Checks of Big Data Cloud Services 81

we have defined a scenario with positive (policy violation) and negative (policy
compliance) situations.

Figure 5 shows excerpts of the actual runtime models (as Eclipse EMF trees).
As a pre-condition for each scenario, the virtual machines of the CoCoME service
are deployed on a data center in Ireland (see GInitConf

R in Fig. 5). The other
models show situations after executing the change scenarios. In each change
scenario, one virtual machine is migrated to the US and thus potentially provokes
a policy violation. Employing migration is sufficient in our change scenarios, as
from a technical perspective, a migration shuts down a virtual machine at the
source location and re-starts it at the target location (which leads to initializing
a new node, new interactions, etc.; cf. [1]).

Table 2 shows the covered properties, the provoked violation, the applied
changes, and the runtime model updates as well as the policy checker results.
As the results from the change scenarios indicate, R-PRIS is able to keep the
typed runtime model in sync with the reflected CoCoME service. Moreover,
the policy checks correctly determine violations and compliance to CoCoME’s
privacy policy. In particular, the correct true negative check after the migration
of the recommendation web service (case GCS2

R) demonstrates that R-PRIS is
able to avoid false positives that stem from ignoring data classification changes.

Fig. 5. Screenshots of runtime models (Eclipse EMF) generated by R-PRIS

82 E. Schmieders et al.

Table 2. Executed change scenarios and observations

Covered

property

Scenario Migrated VM Observed R-PRIS Behaviour

Compute node

geo-

location

(1), node

interac-

tions (3),

data classi-

fication (4)

Positive Marketing

adminis-

tration

application

The runtime model reflects the applied change

correctly (see GCS1
R in Fig. 5). The check detects a

policy violation. The check message includes the

violating data flow of personal data that starts in

one of the DataNodes, leads over the NameNode

and is requested by the getResult() method

(marked grey in the figure).

Negative Recommen-

dation web

service

The runtime model reflects the change correctly (see

GCS2
R in Fig. 5). The check assesses the CoCoME

service as policy compliant. The showStatistics()

method of the recommendation web service

invokes the getStatistics() method of the

marketing administration application.

getStatistics() accesses personal information from

the data nodes, but changes the data’s

classification from PersonalInformation to

PersonallyIndentifiableInformtion. The changed

classification does not violate the privacy policy.

By reflecting the classification change, the check

avoids a false positive in comparison to a check

that does not take data classification into account.

Storage geo-

location

(2), inter-

actions

(3),

classifica-

tions (4)

Positive Data node

(personal

data)

The runtime model reflects the change correctly (see

GCS3
R & GCS4

R in Fig. 5). The check detects the

policy violation. Storing personal data at excluded

geo-locations violates the privacy policy.

Negative Data node

(non-

personal

data)

The runtime model reflects the change correctly (see

GCS3
R & GCS4

R in Fig. 5). The check assesses the

CoCoME service to be policy compliant. Only

non-personal information is stored in the US.

5 Performance Evaluation

Policy violations need to be detected timely in order to have sufficient time to
mitigate and respond to these violations. Thus, as one key criterion of R-PRIS we
evaluate its performance. On the one hand, we measure its response time based
on the aforementioned change scenarios, thereby determining values for realistic
application scenarios (Sect. 5.1). On the other hand, we analyze the runtime
complexity by means of the O-notation in order to determine the scalability of
the approach (Sect. 5.2).

5.1 Experimental Evaluation

We evaluate the performance of R-PRIS by taking dedicated measurements for
its three main phases: (phase 1) cloud monitoring, including sending monitoring

Runtime Model-Based Privacy Checks of Big Data Cloud Services 83

Total

Phase 1

Phase 2

Phase 3

0 1000 2000 3000 4000
Time (ms)

Fig. 6. Response times per phase (on Amazon Web Services)

Table 3. Measurement per phase and total

Phase Average (ms) Median (ms) Minimum (ms) Maximum (ms)

3 1 1 1 3

2 86 76 35 172

1 113 462 267 4218

Total 1119 532 329 4032

data to the R-PRIS server and resolving host geo-location using third-party
service; (phase 2) runtime model update; and (phase 3) policy check.

We use the prototypical implementation and the change scenarios introduced
in Sect. 4. The scenarios include violations (i.e., best and typical cases for reach-
ability analysis) and non-violations (i.e., worst cases for reachability analysis as
the entire graph has to be traversed). During the execution we repeated the four
change scenarios five times each. Thus, we measure 20 response times for each
phase during the experiment. The results are shown in Fig. 6 and in Table 3.

We consider the measured worst case response time of around 4 seconds
promising. However, in order to speed up the response further, we analyzed the
time consumption in phase 1 as this phase predominates the overall duration.

Further investigation showed that the comparatively high response times as
well as the outliers in phase 1 stem from employing a third-party service for
resolving the host-geolocation. Thus, we choose an alternative cloud infrastruc-
ture that offers ‘built-in’ geo-location APIs. We have repeated the measurements
for phase 1 on the Azure cloud9, which offers a REST API for geo-locating vir-
tual machines. The measured results for phase 1 on Azure are: avg = 488 ms,
med = 441 ms, and max = 924 ms. This shows a clear reduction of the overall
worst case response time, but exhibit low impact on the med value. The rea-
son might be that the quality of the built-in geo-location API is generally more
stable than the third-party service.

9 http://azure.microsoft.com.

http://azure.microsoft.com

84 E. Schmieders et al.

A further performance improvement may be possible if cloud management
APIs were available that emit monitoring events as soon as cloud migrations
are triggered. In this case, the time that it takes for performing cloud migration
or starting a new virtual machine (which may well be in the order of tens or
hundreds of seconds [11]), may be used to run the policy checks and stop the
migration if it turns out to violate the policy.

5.2 Runtime Complexity Analysis

The above experiments delivered concrete response times for a cloud service that
was deployed on a small cloud cluster. To assess the scalability of R-PRIS with
respect to performance, we perform a complexity analysis of the approach.

The worst case runtime complexity for depth first search is given by O(|V |+
|E|). As the approach visits the vertices of VR once at most (see Sect. 3.2.2),
the worst case complexity of traversing Gti

R is O(|VR| + |ER|). However, in
our approach we perform two interwoven depth first searches. For every pair
of adjacent vertices the typed graph is traversed, such that |ER| resolves to
O(|ER| · (|VT | + |ET |)). The overall worst case complexity of the policy check is
thus given by f(Gtyped) ∈ O(|VR| + |ER| · (|VT | + |ET |)).

The actual complexity of f(Gtyped) is quite low, when taking knowledge
about the application context into account. The data classifications and their
relations represented in GT are derived from standards. Thus, |VT | and |ET |
have low values (in the order of 10) and, more importantly, are considered to
be constant (in case of FIPS, |VT | = 3 and |ET | = 2). According to the O
simplification rules, constants are to be neglected when analyzing worst case
complexity. Thus, the checking function’s complexity reduces to f(Gtyped) ∈
O(|VR| + |ER|) and scales linearly with the size of the runtime model.

6 Related Work

In this section we discuss how R-PRIS relates to existing privacy checks of cloud
services and existing runtime model approaches.

Privacy Policy Checks: Research on privacy policy compliance of big data
and cloud services mainly focusses on policy violation prevention and compliance
monitoring. In policy violation prevention, privacy-by-design principles guide the
design and implementations of privacy aware architectures. For instance, the
approach presented in [6] equips cloud services with mechanisms that permit or
grant data access after matching the client characteristics with privacy policies.
However, changes of data geo-locations imposed by migration or replication of
the component storing the data are not considered. Data transfers between the
client services and further services are not covered. Transitive data transfers that
may lead to policy violations thus remain undetected.

Compliance monitoring approaches such as [7,10] employ cloud services audits
during runtime. For instance, the approach in [7] correlates ping round-trip

Runtime Model-Based Privacy Checks of Big Data Cloud Services 85

times of the audited service with geographical information. This allows to deter-
mine whether the service interface resides at specific geo-locations. However, the
software components behind the service interfaces might be migrated or repli-
cated, while the service interface remains at the same geo-location. For instance,
Hadoop data nodes might be replicated to different locations while the request
handling master node remains invariant. Further, policy checks may exploit elas-
ticity events [1], by checking elasticity events against policies. Although this
would enable local checks, it would not cover the analysis of data classification
changes across software components.

Runtime Models: Runtime models provide global views on cloud services.
Behavioral runtime models utilize, e.g., sequence-models [12], workflow models
[9,15], and Markov-chains [5]. These models include activities and interactions
of the reflected applications but do not provide information about computing
nodes, their geo-locations, and the processed data. In contrast, architectural
runtime models, e.g., [2,8], combine behavioral aspects of the system with struc-
tural information. These models do not provide information on the geo-location,
processed data, and changes of data classifications. However, our runtime model
approach [17] provides the required information as being designed for supplying
the policy check with the necessary reflections of real world systems.

7 Conclusion and Future Work

We addressed the challenges involved in checking the compliance of big data
cloud services against data geo-location policies. In particular, we have addressed
the problem of considering different data classifications in order to avoid false
positive violations. The main ideas underlying our approach were (1) using typed
runtime models that reflect cloud services and data classifications, as well as
(2) exploiting efficient reachability analyses on these runtime models to detect
policy violations. Our proof of concept implementation and the experimental
evidence indicates that the proposed approach is able to correctly identify pol-
icy violations with reasonably fast response times. In future work, we plan to
investigate the applicability of R-PRIS to a real life example. Further, we plan
to complement the approach with pro-active policy violation detection. To this
end, we envision the assessments of adaptation plans (e.g., expressed in terms
of prescriptive runtime models) before their execution.

Acknowledgements. This work was partially supported by the DFG (German Res.
Found.) under Priority Programme “SPP1593” (grant PO 607/3-1).

References

1. Aceto, G., Botta, A., de Donato, W., Pescapè, A.: Cloud monitoring: A survey.
Comput. Netw. 57(9), 2093–2115 (2013). http://www.sciencedirect.com/science/
article/pii/S1389128613001084

http://www.sciencedirect.com/science/article/pii/S1389128613001084
http://www.sciencedirect.com/science/article/pii/S1389128613001084

86 E. Schmieders et al.

2. Brosig, F., Huber, N., Kounev, S.: Automated extraction of architecture-level
performance models of distributed component-based systems. In: 2011 26th
IEEE/ACM International Conference on Automated Software Engineering (ASE)
(2011)

3. Chen, H., Chiang, R.H., Storey, V.C.: Business intelligence and analytics: From
big data to big impact. MIS Q. 36(4), 1165–1188 (2012)

4. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Monographs in Theoretical Computer Science. An EATCS Series.
Springer-Verlag New York Inc., Secaucus (2006)

5. Epifani, I., Ghezzi, C., Mirandola, R., Tamburrelli, G.: Model evolution by run-time
parameter adaptation. In: 31st International Conference on Software Engineering
(ICSE) (2009)

6. e Ghazia, U., Masood, R., Shibli, M.: Comparative analysis of access control sys-
tems on cloud. In: 2012 13th ACIS International Conference on Software Engi-
neering, Artificial Intelligence, Networking and Parallel Distributed Computing
(SNPD) (2012)

7. Gondree, M., Peterson, Z.N.: Geolocation of data in the cloud. In: Proceedings
of the third ACM Conference on Data and Application Security and Privacy,
CODASPY 2013. ACM, New York (2013)

8. Huber, N., Brosig, F., Kounev, S.: Modeling dynamic virtualized resource land-
scapes. In: Proceedings of the 8th International ACM SIGSOFT Conference on
Quality of Software Architectures (2012)

9. Ivanović, D., Carro, M., Hermenegildo, M.: Constraint-based runtime prediction
of SLA violations in service orchestrations. In: Kappel, G., Maamar, Z., Motahari-
Nezhad, H.R. (eds.) Service Oriented Computing. LNCS, vol. 7084, pp. 62–76.
Springer, Heidelberg (2011)

10. Juels, A., Oprea, A.: New approaches to security and availability for cloud data.
Commun. ACM 56(2), 64–73 (2013)

11. Mao, M., Humphrey, M.: A performance study on the VM startup time in the cloud.
In: 2012 IEEE 5th International Conference on Cloud Computing (CLOUD), pp.
423–430

12. Maoz, S.: Using model-based traces as runtime models. Computer 42(10), 28–36
(2009)

13. Park, S., Chung, S.: Privacy-preserving attribute distribution mechanism for access
control in a grid. In: 21st International Conference on Tools with Artificial Intelli-
gence (2009)

14. Rausch, A., Reussner, R., Mirandola, R., Plasil, F. (eds.): The Common Compo-
nent Modelling Example (CoCoME). LNCS, vol. 5153. Springer, Heidelberg (2011)

15. Schmieders, E., Metzger, A.: Preventing performance violations of service composi-
tions using assumption-based run-time verification. In: Abramowicz, W., Llorente,
I.M., Surridge, M., Zisman, A., Vayssière, J. (eds.) ServiceWave 2011. LNCS, vol.
6994, pp. 194–205. Springer, Heidelberg (2011)

16. Schmieders, E., Metzger, A., Pohl, K.: A runtime model approach for data geo-
location checks of cloud services. In: Franch, X., Ghose, A.K., Lewis, G.A., Bhiri,
S. (eds.) ICSOC 2014. LNCS, vol. 8831, pp. 306–320. Springer, Heidelberg (2014)

17. Schmieders, E., Metzger, A., Pohl, K.: Architectural runtime models for privacy
checks of cloud applications. In: Proceedings of the 7th International Workshop
on Principles of Engineering Service-Oriented and Cloud Systems, PESOS 2015,
ACM, New York (2015)

18. Szvetits, M., Zdun, U.: Systematic literature review of the objectives, techniques,
kinds, and architectures of models at runtime. Softw. Syst. Model., Dec 2013

Optimizing Workload Category for Adaptive
Workload Prediction in Service Clouds

Chunhong Liu1(B), Yanlei Shang1, Li Duan1,2, Shiping Chen2,
Chuanchang Liu1, and Junliang Chen1

1 State Key Laboratory of Networking and Switching Technology,
Beijing University of Posts and Telecommunications, Beijing 100876, China

{liuchunhong2012,shangyl,duanli,lcc3265,chjl}@bupt.edu.cn
2 DATA61, Commonwealth Scientific

and Industrial Research Organization, Sydney, Australia
Shiping.Chen@csiro.au

Abstract. It is important to predict the total workload for facilitating
auto scaling resource management in service cloud platforms. Currently,
most prediction methods use a single prediction model to predict work-
loads. However, they cannot get satisfactory prediction performance due
to varying workload patterns in service clouds. In this paper, we pro-
pose a novel prediction approach, which categorizes the workloads and
assigns different prediction models according to the workload features.
The key idea is that we convert workload classification into a 0–1 pro-
gramming problem. We formulate an optimization problem to maximize
prediction precision, and then present an optimization algorithm. We
use real traces of typical online services to evaluate prediction method
accuracy. The experimental results indicate that the optimizing workload
category is effective and proposed prediction method outperforms single
ones especially in terms of the platform cumulative absolute prediction
error. Further, the uniformity of prediction error is also improved.

Keywords: Cloud computing · Resource provisioning · Workload pre-
diction · 0–1 programming

1 Introduction

Service clouds are a kind of service platform using cloud computing technol-
ogy, on which lots of application systems are running. These applications are
designed according to Service-Oriented Architecture (SOA), and it encapsulates
business processes into services. Adoption of the new platform paradigm by ser-
vice provider could make energy and cost to reduce obviously due to the resource
provisioning advantages of cloud computing.

With the ability of dynamic provisioning resources, cloud computing platform
can adjust the resource to meet the demand of application, which is an important
characteristic and is different from traditional platform. By using auto scaling
technology, service clouds provide on-demand resource to users. Service providers
c© Springer-Verlag Berlin Heidelberg 2015
A. Barros et al. (Eds.): ICSOC 2015, LNCS 9435, pp. 87–104, 2015.
DOI: 10.1007/978-3-662-48616-0 6

88 C. Liu et al.

are free from considering over-provisioning or under-provisioning for a service.
In order to enable the scalability, it is necessary to develop a mechanism to scale
up or down virtual machine (VM) automatically. Many cloud providers, such as
AWS EC2 [1] and Google the App Engine [2], focus on the scalability, that means
providing on-demand computing power and storage capacities dynamically. In
these cases, cloud computing is a good choice to liberate service providers from
deploying physical infrastructures.

In order to take advantage of scalability, service clouds need to support auto
scaling technology in a way that service clouds manage VM instances automati-
cally [3]. Therefore, it is of important significance to realize the resources predis-
tribution via predicting workload. Workload prediction is a key step to realize
predistribution and improve the accuracy of distribution in service clouds.

Currently, most workload prediction methods generally utilize a single pre-
diction method [3–18], which choose special predicting model aiming at a certain
workload feature. However, these methods could not get satisfactory prediction
performance for service clouds. Because the service is different in service clouds
and the service workload changes in a variety forms.

Service workloads have various patterns influenced by service type. As key
characteristic of workloads, burstiness and self-similarity [19–21] have been
reported for some kinds of application in cloud. There are also research works
[22–24] analyze that the actual cloud computing workloads are highly time-
varying in nature. Wang [21] classified the workloads into slow time-scale data
and fast time-scale data according to the speed of load change in form of time-
series employing. They described the relationship of two kinds of workload and
characterized the impact of the workload on the value of dynamic resizing.

Focus on the variation pattern of workloads, a prediction method based on
feature discriminations could be used to obtain a more accurate prediction effect
in service clouds. In the project, the common workload classification method is to
extract the feature of workload, classify the workload by comparing the feature
value with a threshold value. Therefore, the determination of threshold value
greatly influence the workload category. However, the workloads are dynami-
cally changing in service clouds. The threshold need dynamic change with the
service numbers floating on account of the service adding or reducing at any
time in service clouds. However, dynamic adjustment of the threshold needs a
lot of historical statistics or experience, and this increases the computation and
management difficulty. The key problem of workload classified prediction is how
to catalog workload effectively, which is the crux of the matter to obtain more
accurate total prediction results.

In this paper, we propose a prediction approach based on feature discrimi-
nation. The key idea is that we transform the workload classification threshold
problem into the task assignment one. By modeling and solving the integer
programming, the service is allocated a suitable forecasting method automati-
cally. We formulate an optimization problem to maximize prediction precision.
The problem is then converted to a 0–1 programming problem. Our objective is
to design an intelligent workload prediction management architecture with more

Optimizing Workload Category for Adaptive Workload Prediction 89

robust characteristics to adapt various workload change modes and minimize the
predicting error of service clouds. Our contributions are summed up as follows:

1. We propose a categorical prediction approach according to different change
mode of workload in order to get higher platform prediction accuracy. Our
work applies feedback from the latest observed workloads to a prediction
model and update the model parameter on the run. Our method has well
robustness and adaptive ability.

2. We present the optimal way to classify workloads in order to allocate predic-
tion models adaptively. We establish a 0–1 programming model and use the
sum of l2-norm of workload average rate to trade off the prediction accuracy
and time. The optimizing solution can dynamically determine the type of
service workloads effectively.

The rest of the paper is organized as follows. Section 2 describes the design of
our adaptive management architecture for workload prediction. The workload
classification optimize model is established and solution is given online in Sect. 3.
Section 4 shows the evaluation. We present the related work in Sect. 5, and con-
clude this paper with Sect. 6.

2 System Architecture

We propose the architecture of workload prediction based on feature discrimina-
tion in service clouds. In the proposed architecture, adaptive workload manage-
ment can automatically allocate a prediction model to each service by solving
the optimal problem.

Figure 1 shows the architecture of the classified workload prediction in ser-
vice clouds. There are Admission Controller module, Resource Manager module,
Predictor module and Data Warehouse module in the proposed architecture.
Infrastructures include compute, storage and network resources. The services

Fig. 1. Adaptive management architecture for workload prediction in service clouds

90 C. Liu et al.

request is scaled in response to change infrastructures at fixed interval. The
fixed interval is denoted as reconfiguration interval. The Admission Controller
module determines the user’s access. The Resource Manager module adjusts the
allocation of resources according to the change of user requests dynamically.
All of the service workload logs are transferred to workloads database, named
as Data Warehouse. The historical workload information is used to distinguish
workload type. It is also used to train and test the prediction model.

The Predictor module is the key module of this paper, it is highlighted in
the figure. Once a new service is added, or an old service is down, the Workload
Classifier is triggered. Then service workloads could be divided into different data
types according to the change pattern of workload. Different prediction method
is allocated to appropriate workload based on the optimal solution provided
by Workload Classifier. The output of the Predictor is the total workloads of
the platform. The total predicting workloads are estimated as the number of
VMs and the Resource Manager module takes the number as input. Then the
Resource Manager makes the decision to scale up or down VMs for the next
reconfiguration interval.

The Workload Classifier automatically allocates suitable prediction model
according to the change pattern of each service. In service clouds, there are web
service, blog service, audio service, video service, e-mail service and so on. We
classify workloads of these services into fast time-scale data or slow time-scale
data according to the speed of load change in form of time-series employing. The
fast time-scale data is stochasticity and nonlinearity, in which the burstiness of
arrivals was high. The slow time-scale data is similar to linearity, in which the
peak-to-mean ratio was low. The major difference between fast time-scale data
and slow time-scale data is the intensity and speed of change. Therefore, we
consider workload average change rate in the workload classification model. The
result of workload classification is affected by the behavior of each load recently.
Compared with slow time-scale workload, the fast time-scale workload changes
violent and its average change rate is larger. This classification well distinguishes
the load from the perspective of the change rate.

A constant prediction model cannot cover two kinds of data sets which are
with contrary change pattern. In this paper, we utilize linear regression (LR)
model and support vector regression (SVR) model to predict the workload,
because they are naturally efficient and effective in the forecasting paradigm.
Especially SVR is very suitable for the prediction of small sample nonlinear
data. Therefore, they are suitable to these change patterns in this paper.

Workload Classifier component is the key to realize adaptive classification
prediction. More detailed description can be seen in Sect. 3.

3 Model Formulation and Solution

In this section, the workload category problem is transformed into task assign-
ment one which has a good solution. A 0–1 mixed integer programming of min-
imum assignment model is established, and an online solution is given in this
section.

Optimizing Workload Category for Adaptive Workload Prediction 91

3.1 The Workload

We consider a discrete-time model that there is a time interval which is evenly
divided into “frames” t ∈ {1, . . . , K} . In practice, the length of a frame could
be 5–10 min. Given a set of time series data wt, t ∈ {1, . . . , K} , t = 1 is the first
frame of the time series, wt stands for the actual data in frame t.

3.2 The Workload Classification Problem

Supposed there are i kinds of services Ai(i = 1, · · · , n) in service clouds. There
are j kinds of prediction models Mj(j = 1, 2) for Ai, which are fit for forecasting
workload according to the characteristic of each kind of application workload
provided by service clouds. Assign Mj to Ai, the predicting time is denoted
by tij , the predicting error is denoted by εij (i = 1, · · · , n, j = 1, 2). Here, εij
expresses Mean Absolute Percentage Error (MAPE) of a service workload i by
model j at the frame t, defined as εij = 1

n

∑n
s=1

∣∣∣(ŵs − ws)/ws

∣∣∣, where ws is the
actual output, and ŵs is the prediction output, s is the observing time point,
n is the data number of observation dataset at frame t. Cumulative Absolute
Error at frame t denoted by cεt, and expresses the sum of MAPE of all services
loads in service clouds, defined as cεt =

∑n
i=1 εti .

In order to achieve the minimum cεt and satisfy the time requirement mean-
while, it is the key to improve the platform prediction performance that assigns
suitable prediction models to each service in service clouds. While the workload
feature is hard to extract and dynamic changing threshold is difficult to deter-
mine, we transform that problem into an assignment problem by establishing
the optimization model.

Supposed xij expressed as distributing prediction model Mj to service Ai.

xij=
{

0 Ai is not assigned prediction model j
1 Ai is assigned prediction model j

(1)

When a new service is adding, or an old service is down at frame t, we need
to reorganize the service type and reassign the prediction model. Then we need
to determine xij .

3.3 The Workload Classification Optimization

Given the workload classification component above, the platform has one con-
trol decision vector xij , i.e. the allocation of prediction models when service
number is changing at each frame. Given the limited error vector and time
vector for Ai that satisfy the SLA requirements are ε = (ε1, · · · εi · · · , εn) and
T = (T1, · · · , Ti, · · · , Tn). The goal of the service clouds is to determine xij to
minimize the predicting error during [0, K]:

92 C. Liu et al.

min
n∑

i=1

2∑
j=1

εijxij

s.t. 0 < tij < Ti i =1, · · · ,n, j =1, 2
0 < εij < Ei i =1, · · · ,n, j =1, 2
n∑

i=1

xij = 1 j =1, 2

xij ∈ {0, 1}n

(2)

where:
Ti is the upper limit of predicting time for Ai. It equals to configuration

time - VM restart time - service deployment time.
εij is the predicting error of Ai under current predicting model scheme j, Ei

is the maximum error limit of Ai.
This model generalizes the service cloud optimization problem by accounting

the total error of the platform. However, there is an issue in the model: the object
of minimum platform error leads to the results that the optimal solution tends
to be fast time-scale type. If it is assigned as fast data, it will use SVR model to
forecast workload. Compared with LR model, SVR model has small predicting
error and long predicting time. Predicting time of platform at frame t defined as
the maximum predicting time of each service used in frame t. This would lead
to more fast items and a long predicting time in the optimal solution for the
workload classification.

With regard to this issue, we consider time factor, instead of only consider-
ing minimum platform error in the model. There is a significant difference in the
average change rate of workload between fast time-scale and slow time-scale. The
fast time-scale workload changes violent and the average change rate of work-
load is larger. Defined workload average change rate as ω=

∑n
j=1 (yj+1 − yj)/N .

There is obviously difference between fast time-scale and slow time-scale in term
of ω. The ω value of fast type is greater than that of slow type. In a classification
result, the more fast type number, the larger sum of l2-norm for ω. Therefore,
to deal with the above issue, the Eq. (2) can be more balanced by introducing
the sum of l2-norm for ω to tradeoff the overall prediction performance includ-
ing prediction accuracy and time. Constant λ trades off a priori knowledge as
throughout on the influence degree of the model. It needs to be determined
before solving the optimization problem. Then the problem (2) may be written
as Eq. (3). The influence of λ value on the prediction results will be discussed
in Sect. 4.4.

min
n∑

i=1

2∑
j=1

εijxij+λ
n∑

i=1

2∑
j=1

‖ωi · xij‖2
s.t. 0 < tij < Ti i =1, · · · ,n, j =1, 2

0 < εij < Ei i =1, · · · ,n, j =1, 2
n∑

i=1

xij = 1 j =1, 2

xij ∈ {0, 1}n.

(3)

Optimizing Workload Category for Adaptive Workload Prediction 93

3.4 The Optimal Solution

Equation (3) is a 0–1 integer programming, branch and bound method is a
primary algorithm to solve this kind of problem. The classical branch and bound
algorithm works for the low efficiency when the scale of the problem is bigger. The
branch and sub-problem choice strategies are important factors of the algorithm
efficiency [26,27]. We adopt a search approach to solve Eq. (3). In order to
achieve the better time performance, we choose the minimum cost priority and
feasibility pruning strategies in searching, pruning and bounding process in this
section. There is a detailed description in Fig. 2.

Given integrate programming as shown in Eq. (3), S(P) is the feasible solu-
tion set of Eq. (3), x is the feasible solution, Fu is the upper bound of the opti-
mal value. Programming (3) can be divided into sub-programmings, denoted by
(P1), (P2) · · · (Pi), and each sub-programming has corresponding relaxation pro-
gramming, denoted by (P1), (P2), · · · , (Pi) , S(Pi) is the feasible solution set of(
Pi

)
, x(i) is the optimal solution and fi is the optimal value. NF is the subscript

set of the detecting problem Pi.
All the children nodes are produced from the current node in branch process.

Those nodes that are impossible to generate feasible solutions are abandon, and
other children nodes are adding to activated nodes set NF. Then new expansion
node is chosen from the activated nodes set. In branch process, the minimum cεk
is the strategy to choose the branching node. We select the appropriate subscript
k ∈ {1, 2, · · · , n} according to Eq. (4).

k = arg min{f(
⌊
x0
j

⌋
), f(

⌈
x0
j

⌉
)|x0

j is fraction} (4)

After k is determined, xk = 0 or xk = 1, and the original problem is divide
into two sub-problems.

The boundary of objective function for the sub-problems is established in
a bounding process. If a sub-problem value is outside the boundary, this sub-
problem will be pruned. To solve the relaxed programming

(
Pi

)
can obtain the

optimal solution x(i) and the optimal value fi.
In step i ≥ 0, the low boundary of the optimal value fi for (Pi) can be

obtained, denoted as:

LFLi = min{fi |i ∈ NF }

In step i ≥ 0, the upper boundary of the optimal value fi for (Pi) can be
obtained, denoted as:

UFUi = min{LF (fi)
∣∣fi ∈ S(P)}

To repeat branching, bounding and pruning process until there is no node in
NF, the best feasible solution is the optimal solution of the original problem as
shown in Eq. (3).

Through the above discussion, the branch and bound algorithm for the pre-
diction model assignment program solving is described as Fig. 2.

94 C. Liu et al.

Fig. 2. Flow chart of branch and bound algorithm

Optimizing Workload Category for Adaptive Workload Prediction 95

4 Experimental Analysis

In order to illustrate the effectiveness of the proposed approach in service clouds,
we conduct experiments with the data set built from some typical services of the
application system developed by our lab. First, each service is allocated a suitable
prediction model according to the optimal solution. With this assignment, we
compare our method with single prediction methods in term of the platform
cumulative absolute predicting error proposed in this paper. In order to obtain
more accurate workload classification by optimal solution, we discuss the effect
of parameter λ in optimization model on optimal solution followed.

4.1 Setup of the Experiment

There are some application systems in the experimental service clouds, such
as Social Network Sites(SNS), Multimedia Conference System(Video System),
Online Learning System(Learning System) and so on. Each of them is composed
of more than one services. Table 1 lists some of the services of these systems.
They are running in service clouds which are based on OpenStack, using two IBM
x3650 servers as control nodes and three IBM x3650 servers as computing nodes.

Table 1. Services of the application system in service clouds

Application Service

SNS Web service

Picture service

Blog service

Comment service

E-mail service

Video system Video service

White board service

Discuss service

Cache service

Learning system Web service

White board service

Video service

Discuss service

E-mail service

The data set of optimal classification experiment is built from the real trace of
requests to service servers. We sample workloads of these services every 10 min
time interval for 48 h in service clouds. The time interval is set by the time
spending on booting a VM. The data set is composed of 30 groups workload
traffic samples include 20 groups fast time-scale data plus 10 groups slow time-
scale data to evaluate the workload classification optimization result. We would

96 C. Liu et al.

0 50 100 150 200 250
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Time(10 mins)

Tr
af

fic

Actual
LR predicted
SVR predicted

(a)

182 184 186 188 190 192 194 196
2000

2500

3000

3500

4000

4500

5000

Time(10 mins)

Tr
af

fic

Actual
LR predicted
SVR predicted

(b)

0 50 100 150 200 250
40

60

80

100

120

140

160

Time(10 mins)

Tr
af

fic

Actual
LR predicted
SVR predicted

(c)

160 165 170 175 180 185 190 195 200
90

100

110

120

130

140

150

Time(10 mins)

Tr
af

fic

Actual
LR predicted
SVR predicted

(d)

Fig. 3. Comparative prediction results on two kinds of workload: Web Service and
Video Service. Figures on the left column illustrate comparative results using LR and
SVR algorithm; figures on the right column enlarge the results for more clear illus-
tration. (a) Web Service workload, (b) Enlarged part, (c) Video Service workload,
(d) Enlarged part.

conduct our prediction experiment with two typical workloads to evaluate the
proposed prediction approach. Workload variation pattern is a stochastic fea-
ture, closely related to the characteristics of service applications. For example,
the traffic workload of web service is greatly influenced by a web content and
change drastically with the arrivals burstiness. Video service mainly provides
video transmission and decoding process for multimedia conference system. Its
users mainly in the campus tend to use the video service in the daily work time.
The traffic curve appears certain regularity and takes the shape of a flat curve.
The ratio of peak to average is low and has cyclical change. Then we choose
these two service workloads to verify the prediction result.

Optimizing Workload Category for Adaptive Workload Prediction 97

4.2 Workload Prediction Methods Analysis

The prediction models used in the prediction experiment are LR and SVR. LR
[28] models the relationship between one or more input variables z and a depen-
dent output variable y by using a linear equation. We take the following form.

yt = β1 + β2zt (5)

where y is the target variable, here is prediction workload. z is the explained
variable, here is the time. t indexes the sample interval. The coefficients β1, β2 are
determined by solving a linear regression equation based on previous workloads
yt−1, yt−2, yt−3 and so on. β1, β2 change with different previous workloads, that
is to say, this model can change with the workload trend. We use the Ordinary
Least Squares to solve the Eq. (5).

Before using the SVR to predict time series, sample space reconstruction is
required. We analyze our time series data, and give the reconstruction process
as follow. Given time series xt (t = 1, 2, · · · , T), from Takens phase space delay
reconstructing theory, we use the m-dimensional vector, it is defined as

x(t − 1) = [x(t − τ), x(t − 2τ), · · · , x(t − mτ)] (6)

where m is an embedding dimension and τ is delay constant. The prediction
model can be described as x(t) = g(x(t−1)), g is a non-linear map. For our time
series data, the input variables should be reconstructed using Eq. (6) of all data
sets in the beginning, the values of embedding dimension and delay constant for
the data set are set as follows: m = 3, τ = 1.

Weused theGaussianRBFkernel anddefinedasK(xi, xj) = exp(−‖xi − xj‖2)
/(dδ2)), where d is the dimensionality of x, d = 2 , δ2 is the variance of the kernel.
We used the leave - one out cross validation approach to select model parame-
ters, which chose the test and training sets randomly [29]. This method divided
sample data into two parts, 70 % of the data is processed as a training set and
30 % of the data is processed as a test set. We used LIBSVM toolbox [30] to
implement SVR algorithm. SVR parameter Settings are as follows: m = 3, c =
100, g = 0.5, s = 3, p = 0.001, t = 2.

Because of adopting cross validation, we use another half of the data set to
test the prediction effect. As shown in Fig. 3, both SVR and LR make a good
prediction effect for slow time-scale data. For fast time-scale data, the traffic
changes drastically, more burstiness of arrivals come out near the sudden change.
LR could not adapt the change and it produces a greater predictive error and
phase deviation. SVR could adapt the dramatic change tendency well, because
it conducts nonlinear kernel transforms. SVR has better prediction effect for
fast time-scale data. But SVR needs more predicting time than LR. Therefore,
we allocate the linear regression model for slow time-scale data as well as the
support vector machine model for fast time-scale data in classified prediction
approach.

98 C. Liu et al.

0 5 10 15 20
8

9

10

11

12

13

14

15

16

Time frame t

C
um

ul
at

iv
e

Ab
so

lu
te

 E
rro

r

SVR
LR
Clssification Prediction

Fig. 4. Comparison of cumulative absolute error

4.3 Classified Prediction Effect Analysis

According to the above prediction model allocation scheme, we compare the
prediction effect of classified prediction approach with SVR and LR prediction
model. We evaluate the accuracy of the prediction approaches based on a num-
ber of metrics: Mean Absolute Percentage Error (MAPE), Cumulative Absolute
Error at the frame t (cεt).

We select 20 points uniformly within prediction period and compute the
MAPE and cεt. Then we compare the prediction effect of three approaches in
terms of the mean value, the square error, and the mean square deviation of
MAPE.

Figure 4 shows cεt of service clouds at 20 prediction points. It illustrates that
the MAPE of the classified prediction is minimum, SVR comes second, and LR
is the highest.

In regard of the mean value, the square error and the mean square error
at 20 prediction points with three methods, the statistical results are listed in
Table 2. The mean cεt of three prediction methods (e.g. classified prediction,
SVR, LR) are 11.227, 13.544 and 10.266 respectively. Therefore, compared with
SVR and LR, the classified prediction method reduces the platform cumulative
absolute predicting error by 8.56 % and 24.20 % respectively. For different ser-
vice load predictions, the cumulative error of a single prediction method is far
bigger than the adaptive classification prediction method depending on the load
characteristics.

Table 2 shows the cεt statistical results of service clouds at 20 prediction
points. The mean value of the classification prediction method is the smallest,
LR is the highest. It illustrates that the cεt of the classification prediction distrib-
utes more concentrated and forecasts more accurately. Variance and standard
deviation of cεt at each time are consistent. Variance and standard of classifica-

Optimizing Workload Category for Adaptive Workload Prediction 99

Table 2. Statistical results of cumulative absolute error

Mean value Square error Mean square error

SVR 11.227 2.5997 1.6124

LR 13.544 1.7377 1.3182

Classified prediction 10.266 1.6702 1.2924

0 10 20 30 40 50 60 70 80 90 100
Fast time−scale data protportion(%)

In
cr

ea
se

predicting error
predicting time

Fig. 5. Influence of fast time-scale data proportion on error and time.

tion prediction method are the smallest, and that of SVR are the biggest. This
illustrates that the cεt of the classification prediction method distribute more
stably, compared with single prediction methods.

4.4 Influence of the Parameters λ on Workload Classification
Optimization

As analysis in the previous section, the proportion of fast time-scale data in
workload classification produces an effect on platform prediction accuracy and
platform prediction time in classified predicting approach.

We measure the platform prediction error and platform prediction time by
classified prediction approach, which the proportion of fast time-scale data
increases from 0 to 100 % with 30 groups of load respectively. Figure 5 illustrates
the influence of fast time-scale data proportion on accuracy and time. Obviously,
with the increase of proportion, the platform prediction error decrease distinctly.
Meanwhile, this would increase the platform prediction time. Therefore, finding
the optimal ratio of fast time-scale workload is the key to improve the platform
prediction result and keeping the balance of the forecasting accuracy and time
performance to satisfy the response time of SLA.

In the workload classification optimization model, parameter λ plays the
role to control the ratio of fast time-scale data in the solution of optimization.
λ trades off a priori knowledge of workload on the influence of the model. It

100 C. Liu et al.

Table 3. The relation between λ and optimal classification results

λ Accuracy of
classification

Average cumu-
lative absolute
error

Average
predicting
time (ms)

0 73.33 % 3.456 72.026

[0.11,1) 93.33 % 3.47 54.053

+∞ 33.33 % 8.028 0.0525

needs to be determined before solving the optimization problem. Thus the value
of parameter λ on the optimal solution and predicting accuracy performance is
studied in this section.

Table 3 illustrates the effect of λ. Here, accuracy of classification is defined
as the correct classification number divided by the total number of load. Aver-
age cumulative absolute error equals to cεt divided by the number of services.
Average predicting time equals to the sum of predicting time divided by the
number of services.

From Table 3, we analyze the effect of λ range where global optimal solution
can be found.

(1) λ = 0 that is only the error term, no regular item to play a role. In opti-
mal solution X, there are 26 workloads identified as fast time-scaled data,
4 workloads identified as slow time-scaled data. Classification accuracy is
73.33 %.

(2) As λ value is gradually increasing from 0.11 to 1, regular item plays more
important role. In optimal solution X, there are 22 workloads identified as
fast time-scaled data, 8 workloads identified as slow time-scaled data. 2 slow
time- scaled workloads identified as fast time-scaled data on account of severe
changing in the test interval. Classification accuracy is 93.33 %. Compared
with (1), workload predicting model scheme, average cumulative absolute
error only increase 0.4 % but average predicting time reduce 33.25 % in this
scheme.

(3) λ = +∞ that is regular item to play an important role, the error term nearly
play no function. In optimal solution X, 30 workloads are identified as slow
time-scaled data. Because in this optimal model, the objective is only time
performance and the predicting time of slow time-scaled is much better than
fast time-scaled. Classification accuracy is only 33.33 %. The model with no
information of workload average rate of change leads to poor performance.

5 Related Work

At present, the approaches for workload or resource prediction in cloud can be
classified in two categories according to the feature of a prediction method.

The first category prediction methods employed classical prediction mod-
els by studying the application characteristic in the cloud platform. To satisfy

Optimizing Workload Category for Adaptive Workload Prediction 101

upcoming resource demands, Islam et al. [4] used Neural Network (NN) and
Linear Regression (LR) to get new prediction-based resource measurement and
provisioning strategies. Markov method is also used to predict workload. Studies
[5–7] show that web and data center workloads tend to present behavior that
can be effectively captured by time series-based models. Regard workload as
time series, the Autoregressive Integrated Moving Average (ARIMA) model was
applied to estimate the future need of applications. Roy et al. [8] utilized lin-
ear prediction method such as the exponential moving average, a second order
autoregressive moving average and moving average method, to forecast the time
series workloads. Sapankevych et al. [9] provided a survey of time series predic-
tion applications using support vector machines (SVM) approach. It points out
that the motivation for using SVMs is the ability of this methodology to accu-
rately forecast time series data when the underlying system processes are typ-
ically nonlinear, nonstationary and not defined a priori knowledge. SVMs have
also been proven to outperform other non-linear techniques including neural-
network based non-linear prediction techniques such as multi-layer perceptrons.
The work of [10] shows SVM provides the best prediction model among SVM,
NN and LR with the SLA metrics for Response Time and Throughput. John
et al. [11] analyzed the cloud workloads and used Markov modeling and Bayesian
modeling to predict workload. Mathias et al. [12] developed a Markov framework
to model the capacity variability of a service cluster for VM provisioning.

The second category prediction methods tended to propose a new prediction
approach according to the feature of workload. They usually adopted the single
prediction strategy at the same time to predict all the services resources. As
typical ones, Caron et al. [13] proposed a Pattern Match algorithm to predict
workload taking advantage of the self-similar feature. The main idea is to find out
the historical load data similar to the load in current stage by using the feature
of web traffic self-similar. Meanwhile, Gong et al. [14] presented a predictive
elastic resource scaling scheme named as PRESS, which monitored CPU usage
of VM, and derived signature-driven resource demand prediction by employing a
Fast Fourier Transform. For applications with no repeating patterns, a discrete-
time Markov chain based method was proposed to obtain state-driven resource
demand prediction. Ghorbani et al. [15] introduced a fractal operator to account
for the time-varying fractal and bursty properties of the cloud workloads.

However, these methods mentioned above usually adopt the single predic-
tion strategy, that is, at the same time using the same method to predict all the
services resources. Although many works were dedicated to resource prediction
in clouds, there are few researches related to the application scenarios in which
a variety of businesses run on the cloud platform at the same time. Consider-
ing the influence of cross correlation between servers’ workloads, Khan et al.
[16] analyzed the interaction between these workloads from the perspective of
multiple time series, and then used hidden Markov chain model to predict the
workload. Zhang et al. [17] designed a workload factoring service for proactive
workload management. It segregated flash crowd workload from base workload
with a data item detection algorithm.

102 C. Liu et al.

Finally, Kupferman et al. [18] recommended a set of scoring metrics to mea-
sure the effectiveness and efficiency of dynamic scaling algorithms in terms
of availability and cost. Copil et al. [31] presented a framework for estimat-
ing and evaluating cloud service elasticity behavior to estimate the expected
elasticity behavior in time. It advise elasticity controllers about cloud service
behavior to improve cloud service elasticity. Islam et al. [4] discussed a set of
predicting metrics to evaluate the accuracy of the prediction algorithms, includ-
ing Mean Absolute Percentage Error(MAPE), PRED(25), Root Mean Squared
Error(RMSE) and R2 Prediction Accuracy.

6 Conclusions and Future Work

To facilitate auto scaling resource management in service clouds, one of the
crucial technologies is to predict resources in advance. In service clouds, it is
difficult to predict accuracy due to the variation pattern of workloads.

In order to solve the above problem, we have presented an adaptive workload
prediction approach in this paper. The approach categorizes the workloads and
assigns different prediction models according to the speed of workload change.
The key idea is that we formulate an optimization problem to maximize predic-
tion precision, then convert workload classification into a 0–1 programming prob-
lem. It is solved quickly by employing an improved branch and bound algorithm.

We evaluated its accuracy using real traces from some typical services of
the application system developed by our lab. We also analyzed the parameters
value and the influence of the fast time-scale data on workload classification
optimization. The experiment results demonstrate that our approach predicts
more accurately in terms of the platform cumulative absolute predicting error.
Moreover, the predicting error is well-distributed.

Our approach is also generic, and it can be used well in most service-cloud
scenarios. In future, we plan to implement and evaluate our classification predic-
tion approach for a wide variety of workloads by integrating the existing service
platforms of our laboratory. We also intend to introduce more prediction models
for these workload patterns. We need to modify the optimal model accordingly.
This strategy will facilitate the prediction framework to make business-level
SLAs constraint (such as, response time, accuracy performance and cost etc.)
for adaptive and optimal resource provisioning in the cloud.

Acknowledgement. The work is supported by National Key Technology Research
and Development Program of China (Grant No. 2012BAH94F02); National Natural
Science Foundation of China (Grant No. 61132001); National High-tech R&D Program
of China (863 Program) under Grant No. 2013AA102301; Project of New Generation
Broad band Wireless Network (Grant No. 2014ZX03006003);The National Grand Fun-
damental Research 973 Program of China (Grant No. 2011CB302506).

References

1. Amazon elastic compute cloud. http://aws.amazon.com/ec2/

http://aws.amazon.com/ec2/

Optimizing Workload Category for Adaptive Workload Prediction 103

2. Google app engine. http://developers.google.com/appengine/
3. Jingqi, Y., Chuanchang, L., Yanlei, S., et al.: A cost-aware auto-scaling approach

using the workload prediction in service clouds. Inf. Syst. Front. 16(1), 7–18 (2014)
4. Islam, S., Keung, J., Lee, K., et al.: Empirical prediction models for adaptive

resource provisioning in the cloud. Future Gener. Comput. Syst. 28(1), 155–162
(2012)

5. Calheiros, R.N., Masoumi, E., et al.: Workload prediction using ARIMA model
and its impact on cloud applications’ QoS. IEEE Trans. Cloud Comput. 2(8),
1–11 (2014)

6. Tran, V.G., Debusschere, V., Bacha, S.: Hourly server workload forecasting up
to 168 hours ahead using seasonal ARIMA model. In: Proceedings of the 13th
International Conference on Industrial Technology (ICIT 2012), pp. 1127–1131
(2012)

7. Jiang, Y., Perng, C.S., Li, T., et al.: Cloud analytics for capacity planning and
instant vm provisioning. IEEE Trans. Netw. Serv. Manage. 10(3), 312–325 (2013)

8. Roy, N., Dubey, A., Gokhale, A.: Efficient autoscaling in the cloud using pre-
dictive models for workload forecasting. In: Proceedings of the 2011 IEEE 4th
International Conference on Cloud Computing, pp. 500–507, IEEE (2011)

9. Sapankevych, N.I., Sankar, R.: Time series prediction using support vector
machines: a survey. IEEE Comput. Intell. Mag. 4(2), 24–38 (2009)

10. Bankole, A.A., Ajila, S.A.: Cloud client prediction models for cloud resource provi-
sioning in a multitier web application environment. In: Proceedings of 2013 IEEE
7th International Symposium on Service Oriented System Engineering (SOSE),
pp. 156–161, IEEE (2013)

11. Panneerselvam, J., Liu, L., Antonopoulos, N., et al.: Workload analysis for the
scope of user demand prediction model evaluations in cloud environments. In:
2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing
(UCC), pp. 883–889 (2014)

12. Björkqvist, M., Spicuglia, S., Chen, L., Binder, W.: QoS-aware service VM provi-
sioning in clouds: experiences, models, and cost analysis. In: Basu, S., Pautasso,
C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 69–83. Springer,
Heidelberg (2013)

13. Caron, E., Desprez, F., Muresan, A.: Forecasting for Cloud computing on-demand
resources based on pattern matching. Technical report, INRIA, pp. 1–23 (2010)

14. Gong, Z., Gu, X., Wilkes, J.: Press: Predictive elastic resource scaling for cloud
systems. In: 2010 International Conference on Network and Service Management
(CNSM), pp. 9–16, IEEE (2010)

15. Ghorbani, M., Wang, Y., Xue, Y., et al.: Prediction and control of bursty cloud
workloads: a fractal framework. In: Proceedings of the 2014 International Con-
ference on Hardware/Software Codesign and System Synthesis, pp. 12–21, ACM
(2014)

16. Khan, A., Yan, X., Tao, S., et al.: Workload characterization and prediction in the
cloud: a multiple time series approach. In: Network Operations and Management
Symposium (NOMS), 2012, pp. 1287–1294, IEEE (2012)

17. Zhang, H., Jiang, G., Yoshihira, K., et al.: Proactive workload management in
hybrid cloud computing. IEEE Trans. Netw. Serv. Manage. 11(1), 7–18 (2014)

18. Kupferman, J., Silverman, J., Jara, P., Browne, J.: Scaling into the cloud. Techni-
cal report, University of California, Santa Barbara; CS270 - Advanced Operating
Systems (2009). http://cs.ucsb.edu/∼jkupferman/docs/ScalingIntoTheClouds.pdf

http://developers.google.com/appengine/
http://cs.ucsb.edu/~jkupferman/docs/ScalingIntoTheClouds.pdf

104 C. Liu et al.

19. Yin Jianwei, L., Xingjian, Z.X.: BURSE: a bursty and self-similar workload gen-
erator for cloud computing. IEEE Trans. Parallel Distrib. Syst. 26(3), 668–680
(2015)

20. Eldin, A.A., Rezaie, A., Mehta, A., et al.: How will your workload look like in 6
years? Analyzing Wikimedia’s workload. In: 2014 IEEE International Conference
on Cloud Engineering (IC2E), pp. 349–354 (2014)

21. Wang, K., Lin, M., Ciucu, F., et al.: Characterizing the impact of the workload on
the value of dynamic resizing in data centers. In: 2013 Proceedings IEEE Interna-
tional Conference on Computer Communications (INFOCOM), pp. 515–519 (2013)

22. Reiss, C., Tumanov, A., Ganger, G.R., et al.: Heterogeneity and dynamicity of
clouds at scale: google trace analysis. In: Proceedings of the Third ACM Sympo-
sium on Cloud Computing, pp. 7–20, ACM (2012)

23. Di, S., Kondo, D., Cirne, W.: Characterization and comparison of cloud versus grid
workloads. In: Proceedings of IEEE International Conference on Cluster Comput-
ing, pp. 230–238 (2012)

24. Liu, Z., Cho, S.: Characterizing machines and workloads on a google cluster. In:
Proceedings of International Conference on Parallel Processing Workshops, pp.
397–403 (2012)

25. Jorgensen, M.: Experience with the accuracy of software maintenance task effort
prediction models. IEEE Trans. Softw. Eng. 21(8), 674–681 (1995)

26. Chan, D.Y., Ku, C.Y., Li, M.C.: A method to improve integer linear programming
problem with branch-and-bound procedure. Appl. Math. Comput. 179(2), 484–493
(2006)

27. Mingfang, N.: Li Qi.: a surrogate constraint bounding approach to mixed 0–1 linear
programming problems. J. Syst. Sci. Math. Sci. 19(3), 341–347 (1999)

28. Seber, G.A.F., Lee, A.J.: Linear Regression Analysis. Wiley, New York (2012)
29. Mao, W., Xu, J.: Cao Xizheng.: a fast and robust model selection algorithm for

multi-input multi-output support vector machine. Neurocomputing 130, 10–19
(2014)

30. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM
Trans. Intell. Syst. Technol. (TIST) 2(3), 1–27 (2011)

31. Copil, G., Trihinas, D., Truong, H.-L., Moldovan, D., Pallis, G., Dustdar, S., Dika-
iakos, M.: ADVISE – a framework for evaluating cloud service elasticity behavior.
In: Franch, X., Ghose, A.K., Lewis, G.A., Bhiri, S. (eds.) ICSOC 2014. LNCS, vol.
8831, pp. 275–290. Springer, Heidelberg (2014)

On Developing and Operating of Data Elasticity
Management Process

Tien-Dung Nguyen, Hong-Linh Truong(B), Georgiana Copil, Duc-Hung Le,
Daniel Moldovan, and Schahram Dustdar

Distributed Systems Group, TU Wien, Vienna, Austria
{d.nguyen,truong,e.copil,d.le,d.moldovan,dustdar}@dsg.tuwien.ac.at

Abstract. The Data-as-a-Service (DaaS) model enables data analytics
providers to provision and offer data assets to their consumers. To achieve
quality of results for the data assets, we need to enable DaaS elasticity by
trading off quality and cost of resource usage. However, most of the cur-
rent work on DaaS is focused on infrastructure elasticity, such as scaling
in/out data nodes and virtual machines based on performance and usage,
without considering the data assets’ quality of results. In this paper, we
introduce an elastic data asset model for provisioning data enriched with
quality of results. Based on this model, we present techniques to generate
and operate data elasticity management process that is used to monitor,
evaluate and enforce expected quality of results. We develop a runtime
system to guarantee the quality of resulting data assets provisioned on-
demand. We present several experiments to demonstrate the usefulness
of our proposed techniques.

1 Introduction

To provide flexible access to vast amounts of data, several types of Data-as-a-
Service (DaaS) have emerged to allow users to execute data analytics atop a vast,
rich set of data sources, such as Azure’s Data Market1, Infochimps2, Factual3,
and a number of research systems [1–3]. Many of these systems support the
concept of elasticity by scaling data nodes, re-assigning data partitions and re-
configuring data clusters to automatically adapt to dynamic changes in their
workload [1–3]. Overall, these systems support the elasticity of data services at
the infrastructure level. The question of how to ensure the quality of resulting
analytics, covering quality of data, prices, analytics time, and forms of outputs
for data analytics, has not been in the focus of existing elastic data systems.

To solve this problem, we examine another aspect of elasticity in data ana-
lytics within DaaS by considering how we could provide data assets resulting
from data analytics in an elastic manner. That is, data consumers must be able
to request, obtain and utilize data assets with different quality and cost based

1 http://datamarket.azure.com.
2 http://www.infochimps.com.
3 http://factual.com.

c© Springer-Verlag Berlin Heidelberg 2015
A. Barros et al. (Eds.): ICSOC 2015, LNCS 9435, pp. 105–119, 2015.
DOI: 10.1007/978-3-662-48616-0 7

http://datamarket.azure.com
http://www.infochimps.com
http://factual.com

106 T.-D. Nguyen et al.

on their requirements. For example, if the quality of data associated with the
resulting data assets is high, the cost for the resulting data assets might be
increased. To achieve this in an elastic manner, besides dealing with the elas-
ticity of computing resources for data processing, the DaaS provider must have
mechanisms to deal with the elasticity of quality of data and cost.

In our approach, a data provider can provision a data asset based on qual-
ity of results (QoRs) by utilizing DaaS. Within DaaS there are different data
analytics functions, which can be represented as a workflow of data analytics
tasks, produces a data asset. A QoR model [4] can be used to specify, e.g., the
quality of the data asset, the output form of the data asset, the time to deliver
the data asset, and the price of the data asset. To ensure the QoR of the data
asset, the DaaS provider needs to deploy, control, monitor not only its under-
lying computing systems (i.e., virtual machine), but also the data used to offer
data assets. We refer to process having the above-mentioned features as data
elasticity management process (DEP).

In this paper, we introduce a novel model of elastic data asset to associate
the data asset with its QoR. Elastic data asset can have states, w.r.t. quality
and cost, that can be changed over time to reflect the QoR in the interest of the
data consumer. Based on that, we present techniques to support generating DEP
to ensure QoR for data asset and the runtime environment to operate DEP for
DaaS. In this paper, we illustrate our approach through real-world applications
of data assets provisioning near-real time data.

The rest of this paper is organized as follows: Sect. 2 presents the motivation
for our work. Section 3 introduces the model for elastic data assets. Section 4
presents techniques to generate data elasticity management process and its run-
time. Section 5 presents experiments. Section 6 discusses related work. Finally,
we conclude the paper and discuss our future work in Sect. 7.

2 Motivation and Approach

Let us consider a scenario with a GPS DaaS provider and several DaaS con-
sumers, such as public transportation and taxi companies. They want to sell and
buy near-real time GPS data of vehicles in the HoChiMinh City. The provider
owns this data source and wants to sell potential data assets to DaaS consumers,
trading off (i) accuracy of moving-vehicle – abbreviated by vehicleAcr – the per-
centage of on-street vehicles over the total number of vehicles, (ii) accuracy of
speed of vehicles – speedAcr – the percentage of vehicles have the difference of
measured speed and estimated speed higher than a threshold, deliveryT ime –
the minimum time to deliver data asset in seconds, and cost. The DaaS provider
wants to sell data assets in a flexible way based on a QoR associated with the
data assets. For example, a data asset is sold with a QoR = {vehicleAcr ≥ 81%,
speedAcr ≥ 81%, deliveryT ime ≤ 55(seconds), and cost per a window of data
asset e0.09}. Furthermore, a customer might accept lowered values of vehicleAcr
and speedAcr and a higher deliveryT ime, if the price is reduced.

Currently, it is challenging to build such a DaaS that can fulfill the above requi-
rements from both the provider and customer perspectives. First, the provider

On Developing and Operating of Data Elasticity Management Process 107

must provision data assets, which have business values, from suitable data ana-
lytics processes (e.g., enriching near-real time GPS data with estimated average
speeds of vehicles in different areas). Second, the DaaS provider must define met-
rics w.r.t QoR for the data asset and for each type of data asset, the provider
can choose many metrics associated with it. Third, the provider must develop
DEP for monitoring and controlling quality of data, performance of DaaS and
resource usage to ensure QoR. Finally, the provider must develop a suitable run-
time environment for executing the DEP together with data analytics process.

One major issue that arises from the above scenario is that the DEP are
tightly coupled to the metrics in specified and expected QoR, which makes the
DEP very difficult to be extended with other QoR. Moreover, information of
data analytics, which is used to provision data asset, must be considered when
creating DEP. It is also difficult for the DaaS provider to modify the DEP, after
the DaaS has already been deployed. We need methods to create DEP that
can be reusable and extensible w.r.t. changes of the QoR metrics associated
with data asset. However, current models of data services [1–3,5] are not yet
associated with QoR that can support the above-mentioned requirements. These
challenges motivate us to develop a technique to support generating DEP. The
goal is to support the DaaS provider easily provisioning data asset from data
analytics and QoR. Based on these inputs, we can support to generate DEP to
achieve the elasticity of the provisioned data assets.

3 Elasticity Model for Data Assets

3.1 Data Assets and Their Quality of Results

A provider might utilize different data sources to offer data assets. We assume
that a data item can be a record in a relational database, a document in
document-based database or a key-value pair in key-valued database. An ana-
lytics of a set of data items will produce a data asset. In our work, we support
to provision data assets from batch and near real time data analytics; a near
real time data asset is delivered to customers with a predefined time window.
A window of data asset also includes a set of data items. Let DAF be a set of
data analytics functions defined based on a data model for data sources. Such
function can be simple, e.g., including several data queries, or complex, e.g.,
including different data analysis algorithms. For provisioning data assets from
the data sources, each data asset can be produced by a data analytics function
(DAF) dataAsset = {daf, daf ∈ DAF}. The DaaS provider can provision data
assets they want to sell by defining and executing the DAF. For example, a DAF
may include activities for (i) reading streaming GPS data, (ii) clustering vehi-
cle location, (iii) estimating the average speed of vehicles in each cluster, and
(iv) outputting data in the form of comma-separated values (csv).

Data assets offered to data consumers can be characterized by many metrics.
These metrics are rich and dependent on data sources and DAF, such as data
accuracy, data completeness and data consistency [6]. Moreover, the monetary
value of the data assets may depend on the values of these quality metrics.

108 T.-D. Nguyen et al.

To support the DaaS provider to present the expected values of these metrics
and cost, we reuse the QoR model in [4,7]. The QoR model includes a set of
metrics, a set of QoR elements (qElement) and a form of data asset.

– A set of metrics measures quality of data assets. Each metric can be accessed/
adjusted by primitive actions detailed in the next subsection.

– A qElement is defined as a set of conditions established based on these metrics
in specific ranges and a specific cost for data assets.

– The form of data assets indicates the format of the output asset (e.g., comma-
separated values or a bar chart) resulted from DAF.

We choose this QoR model to associate QoR metrics4 to data asset because
this model is easy for DaaS provider to present the expectation of quality and
cost of data asset together with DAF.

3.2 Data Elasticity Management Process

Figure 1 presents the relationship between data assets, DAFs and DEP. By exe-
cuting the data analytics function 1, we have data asset y. The provider
would like to sell data asset y to their customers. To ensure the QoR of this
data asset, a data elasticity management process is invoked. A data elasticity
management process includes sub-processes to monitor/control quality of data
and performance (e.g., deliveryT ime), and a resource control plan to manage
resource usage at infrastructure level when executing these sub-processes.

Fig. 1. Ensuring QoR for data assets by using data elasticity management process

There are different approaches to apply DEP: (i) improve the quality of data
x which is used for determining data asset y from data analytics function 1,
(ii) adjust data analytics function 1 by tuning parameters, plugging sub-processes
or replacing process fragments to improve the quality of data asset y better,
and/or (iii) improve the data asset y to produce a better data asset by separate
processes. In this paper, we support the third method, through which we can

4 https://github.com/tuwiendsg/EPICS/blob/master/depic/examples/qor/qor.yml.

https://github.com/tuwiendsg/EPICS/blob/master/depic/examples/qor/qor.yml

On Developing and Operating of Data Elasticity Management Process 109

ensure QoR of data asset produced by DAF. The general principle is that we store
result data assets from DAF into a data buffer, then we use the sub-processes
to ensure quality of data before delivering the data assets to customer. The
sub-processes include many actions organized on workflows. We refer to these
actions as primitive actions. A primitive action can be used to perform data
assessment and quality adjustment, for example, applying regression algorithms
[6] to smooth the values of vehicle speeds to increase data accuracy. QoR of
data assets also depends on underlying computing infrastructure resources, e.g.,
delivery time and throughput of data asset. To adjust the values of these metrics,
we can carry out primitive actions such as dynamic provisioning infrastructure
resources to distribute workloads for many processing services [1]. For exam-
ple, scaling out computational resources for data cleansing services can help to
increase the throughput.

3.3 Managing Primitive Actions

Figure 2 shows the model for capturing primitive action metadata5. Primitive
actions to monitor quality of data have to return the values of quality of data
assets and can be executed in parallel, while primitive actions to adjust the
quality of data do not return values and have to be executed in a particular
order to avoid data corruption by overwriting and achieve semantic of adjust-
ment processes. Therefore, a primitive action can be an adjustment action (i.e.,
an action to adjust the quality of data asset), a monitoring action (i.e., an action
to assess quality of data asset) or a resource control action (i.e., an action to
scale in/out monitoring/adjustment services at runtime). At runtime, a primitive
action is executed through an invocation of an adjustment/monitoring service.
A primitive action call will invoke its corresponding service. To deal with differ-
ent situations of quality of a data asset, an adjustment action can have multiple
adjustment cases. Each adjustment case is specified by the parameters of its
adjustment action. To determine the right adjustment case, we use information

Fig. 2. Model of primitive action metadata

5 An example of primitive action metadata can be found here https://github.com/
tuwiendsg/EPICS/blob/master/depic/examples/pam/pam.yml.

https://github.com/tuwiendsg/EPICS/blob/master/depic/examples/pam/pam.yml
https://github.com/tuwiendsg/EPICS/blob/master/depic/examples/pam/pam.yml

110 T.-D. Nguyen et al.

about expected QoR in PAM and analytic tasks in DAF. For example, an adjust-
ment action, which removes missing-value records in a data asset to improve data
completeness, has an estimated result 100 %. For another example, an analytic
task in DAF employs k-means with the stop condition after 5 loops that may lead
to a bad data asset because the convergence does not approach global optimum
[8]. Previous studies proposed methods to determine metadata for adjustment
cases, for example, selecting input parameters for decision trees [9], or select-
ing input parameters for clustering data [8]. These studies can help to indicate
right parameters from estimated QoR metrics and analytics tasks for adjustment
cases. We assume that data about primitive action metadata results from these
studies, which are out of the scope of our study. A prerequisite action is used
to decide which adjustment actions are executed before another one. A resource
control strategy has conditions for metrics at system level (e.g., cpuUsage) to
scale in/out monitoring/adjustment services.

3.4 Elastic Data Asset

Considering a data asset (da) resulted from a DAF, we use a monitoring process
to determine if the da is delivered with the expected qElement or not. If not, we
apply an adjustment process to this da to create another da which will meet the
expected qElement. To model the changes of QoR of the da by predetermined
monitoring and adjustment processes, we need to model elasticity states (i.e.,
states w.r.t qElement within the QoR) associated with the da and DEP.

Equation 1 defines an elastic state, which is a binary vector of conditions
associated with each metric being monitored. For metric i, let emi be the current
evaluated metric value, while cji gives condition ji for metric i. This eState is
evaluated to true if the conjunction over the eState[ji], considering the current
metric values emi, is evaluated to true. The set of all eStates associated with a
data asset, ESda, is given by the eStates obtained from the combination of all
conditions available for all metrics specified in the QoR, as defined in Eq. 2.

eStateda[j1 . . . jn] = {[cj1(em1), . . . , cjn(emn)]|
emi ∈ EMqor, cji ∈ CDqor} (1)

ESda = {eStateda[j1 . . . jn]|
∀[j1 . . . jn] ∈ combinations(jx), (2)

jx ∈ NumberOfConditions(Metricx, qor)}

The eda, defined in Eq. 3, is composed of da, which is obtained by applying a
daf , the ESda defined in Eq. 2, the set of data elasticity management processes
DEP , and the initial and final eStates, eStatein and eStatefi. The eStates are
managed by a set of data elasticity management processes DEP .

eda = (da,ES, eStatein ∈ ES,DEP, eStatefi ∈ ES) (3)

On Developing and Operating of Data Elasticity Management Process 111

The data elasticity management processes (DEP) associated with an eda
includes a monitoring process (pm), adjustment processes (pc) and resource con-
trol plan (pr). A pm is used to determine eStatein of da, while pc and pr are
used to do transition of the da from an eStatein to an eStatefi in ES:

– Monitoring process: let MA be the set of monitoring actions. Each moni-
toring action is mapped to a specific monitoring service to measure value
of a specific QoR metric. Thus, a monitoring process of a da is defined as
pm = {ma(parameters)},ma ∈ MA; eState = pm(da); and parameters
denotes parameters for the monitoring actions.

– Adjustment process: let CA be the set of adjustment actions. Each adjust-
ment action is mapped to a specific adjustment service to adjust quality
of a specific QoR metric. An adjustment process can be defined as pc =
({ca(parameters)}), where ca ∈ CA.

– Resource control plan: let RA be the set of resource control strategy. Each
resource control strategy is used to control a metric at infrastructures to ensure
the quality of a specific QoR metric. A resource control plan can be defined
as pr = ({ra}), where ra ∈ RA.

4 Generating and Operating Data Elasticity Management
Processes

4.1 Generating Data Elasticity Management Processes

Based on the model of eda, our approach to generate DEP for data asset includes
3 steps: (i) generating a monitoring process to understand the quality of data
assets, (ii) generating an adjustment process to adjust the quality of data assets,
and (iii) generating a resource control plan during the execution of the processes.

Algorithm 1. Algorithm to generate data elasticity management processes
1: function Generate data elasticity management processes(qor, daf, pam)

2: listOfMonitoringAction =findMonitoringActions(qor.metricList(), pam)

3: monitoringProcess =parallelizeMonitoringActions(listOfMonitoringAction)

4: finalEStateSet =decompose(qor.qElements(), pam)

5: for each eState in finalEStateSet do

6: adjustmentCases =findAdjustmentCases(eState, pam, daf)

7: adjustmentProcess =buildWorkflow(adjustmentCases, pam)

8: resourceControlP lan=findControlStrategies(eState, pam, daf)

9: elasticProcesses =

10: new ElasticProcesses(eState,monitoringProcess, adjustmentProcess, resourceControlP lan)

11: end for

12: end function

Algorithm 1 describes the algorithm to generate DEP. The inputs for this
algorithm include a QoR, a DAF and the primitive action metadata (PAM).
Based on the list of metrics in the QoR and the monitoring actions associated
with these metrics in PAM, the algorithm generates a monitoring process by

112 T.-D. Nguyen et al.

organizing the monitoring actions in parallel (line 2–3). The final eState set of a
data asset is determined through decomposing ranges of values of QoR metrics
of the qElements into conditions of estimated results of corresponding metrics
(line 4). For each eState in the final eState set, the algorithm finds primitive
actions based on its corresponding QoR metrics of conditions in the eState. If the
primitive action is a type of adjustment action, the algorithm finds adjustment
cases by matching (i) the conditions in the eState with estimated results in PAM
and (ii) analytic tasks in the DAF with the ones in PAM (line 6). The adjustment
cases are found if both (i) and (ii) are matched. An adjustment process is built
from the adjustment action list and prerequisite actions in PAM (line 7). The
algorithm creates sub-workflows of the adjustment actions by connecting the
prerequisite actions in sequence. Then, these sub-workflows are connected by
parallel gateways. If the primitive action is a type of resource control action, the
algorithm finds resource control strategies by matching (iii) the conditions in the
eState with estimated results in PAM and (iv) analytic tasks in the DAF with
the ones in PAM (line 8). The resource control strategies are found and added to
the resource control plan if both (iii) and (iv) are matched. The resource control
plan is used to create SYBL control strategies [10] for scaling in/out computing
resources for data elasticity operations.

4.2 Runtime for Data Elasticity Management Process

To support the generation and operation of DEP, we have implemented the Tool-
ing and the Runtime, as shown in Fig. 3. Tooling allows the DaaS provider to
define DAF and QoR used for generating DEP and to tune parameters’ values
of monitoring/control actions in DEP. The Cloud Service Specification Genera-
tor utilizes COMOT services [11] API to determine the non-existing monitoring
and adjustment services in the cloud infrastructure and generate a cloud ser-
vice specification describing the deployment of DEP and other runtime services
used for QoR enforcement, such as Monitoring/Adjustment Services, Data Asset
Loader and EDA Repository, and resource control plan. In our runtime, the Data
Asset Loader is responsible for getting data assets from data analyics functions
and storing them into the EDA Repository from which data assets will be passed

Fig. 3. The architecture of the runtime of data elasticity management processes

On Developing and Operating of Data Elasticity Management Process 113

to enrichment actions. The Orchestrator executes monitoring process, handling
validation and applying appropriate adjustment process. In our prototype6, we
interface to different Data Analytics Platforms. These platforms are responsible
for processing DAF and returning unqualified data assets.

5 Evaluation

5.1 Experiment Settings

We use the scenario described in Sect. 2 with near-real time GPS data of vehicles
in the HoChiMinh City. We obtained this 1.17 GB real data from our research
collaborators and emulated real-time data sources by sending historical GPS
data to scalable message oriented middleware (MOM) located in the same cloud
infrastructure with our runtime services. Figure 4 shows two experimental DAFs
used to provision data assets. daf1 gets near-real time GPS data from MOM,
clustering locations of vehicles based their latitude and longitude - window size
of 5000 data items, and estimating vehicle speed in each cluster. daf2 is an
extension of the daf1 that checks if the current estimate speed is over a threshold,
historical GPS data will be used to estimate the average vehicle speed, enrich
data with address and output data. The DaaS consumers might be interested in
using the data asset 1 to detect potential traffic congestion and the DataAsset2
to find causes of traffic congestion.

Workflow output ports

DataAsset1

READ_MOM

ESTIMATION_VEHICLE_SPEED_STREAMING

MYSQL_OUTPUTER

STOP_CONDITION

(a) daf1

Workflow output ports

DataAsset2

READ_MOM

ESTIMATION_VEHICLE_SPEED_STREAMING

SPEED_THRESHOLD_EVALUATION

MYSQL_OUTPUTER

ESTIMATION_VEHICLE_SPEED_BATCH_PROCESSING

LOCATION_ENRICHMENT

SPEED_THRESHOLD

STOP_CONDITION

(b) daf2

Fig. 4. Data Analytics functions for provisioning GPS data

We have two phases in provisioning data assets. First, we deployed DAFs
which continuously deliver initial data assets to the Data Asset Buffer; the exe-
cution of DAFs represents a streaming data analytics system. Second, when a
consumer requests a data asset through a DaaS, the corresponding generated
DEP will take streaming initial data assets in the runtime Data Asset Buffer
and then apply monitoring and quality enrichment before returning suitable

6 Available at: https://github.com/tuwiendsg/EPICS/tree/master/depic.

https://github.com/tuwiendsg/EPICS/tree/master/depic

114 T.-D. Nguyen et al.

data assets to the consumer. In the first phase, all customers should share the
operation cost, whereas in the second case, each customer pay only the cost due
to the delivery of its data assets.

The QoR of the data assets are measured by the following metrics: speedAcr –
accuracy of speed of vehicles, i.e., the percentage of vehicles have the squared
deviations of speed higher than a threshold, vehicleAcr – accuracy of moving-
vehicle, i.e., the percentage of on-street vehicles over the total number of vehicles,
throughput – the average number of data assets delivered per second, abbreviated
as das/s, and deliveryTime – the minimum time (in seconds) to deliver data asset
in the second phase.

For primitive action metadata (PAM), we assume that domain experts use
the model primitiveAction = {qoRMetric, estimatedResult, analyticTask} to
fill in right primitive action for specific QoR metric, estimated result and ana-
lytic task. Depending on different estimated results and analytic tasks, different
primitive actions and their parameters are used.

5.2 Generating Data Elasticity Management Processes

We use different QoRs, DAFs and primitive action metadata to evaluate our
proposed generation technique, as shown in Table 1. We evaluate the generated
DEP using completeness. The completeness has value yes in case the DEP have
complete monitoring process, adjustment processes and resource control plans to
ensure QoR of the data asset, and value no in case the DEP are unable to ensure
QoR of the data asset because at least one of monitoring process, adjustment
processes and resource control plans has missing or conflict data.

Table 2 summarizes the results of generating DEP in 5 cases:

– case 1: Because the conditions in the qElement set match the estimated results
in the primitive action metadata pam1 completely, and pam1 has complete
information of primitive actions, the generated DEP are complete.

– case 2: We use the qElement2, which has a condition of vehicleAcr is [91,95].
This condition is a subset of estimatedResult [81,100]. Therefore, the esti-
mated result in ranges [81,90] and [96,100] cannot be satisfied and the gener-
ated adjustment process is not complete.

– case 3: We use daf2, which has stopCondition of K-means is different from the
ones in the adjustment cases, leading to the incompleteness of the generated
resource control plan.

– case 4: pam2 has an adjustment action for vehicleAcr, however, the estimated
result is missing. So that the adjustment processes are not complete.

– case 5: The resource control plans of throughput and deliveryT ime are con-
flicted because their resource control strategies control the same monitor-
ing/adjustment services at runtime. Therefore, we have to choose another
resource control plan to deal with these metrics manually.

We can see that our techniques could generate complete DEP when informa-
tion of primitive actions are complete. In case of missing information of primitive
actions or conflicts in DEP, the DEP can be customized manually. In future, we
will develop an algorithm to automatically resolve these conflicts.

On Developing and Operating of Data Elasticity Management Process 115

Table 1. Summary of QoR, primitive action metadata and DAF

qElement [speedAcr(%)];[vehicleAcr(%)];[deliveryTime(s)];

[throughput(das/s)];cost(e)

QoR qor1 qElement1 [81,100];[81,100];[0,55];[];[0.007]

qElement2 [81,100];[81,100];[56,∞];[];[0.006]

qElement3 [61,80];[61,80];[0,55];[];[0.006]

qElement4 [41,60];[41,60];[0,55];[];[0.005]

qElement5 [21,40];[21,40];[0,55];[];[0.004]

qor2 qElement1 [81,100];[91,95];[0,55];[];[0.007]

qElement2 [81,100];[81,100];[56,∞];[];[0.006]

qElement3 [61,80];[61,80];[0,55];[];[0.006]

qElement4 [41,60];[41,60];[0,55];[];[0.005]

qElement5 [21,40];[21,40];[0,55];[];[0.004]

qor3 qElement1 [81,100];[81,100];[0,55];[1.05,∞];[0.007]

qElement2 [81,100];[81,100];[56,∞];[0,1.04];[0.006]

qElement3 [61,80];[61,80];[0,55];[1.05,∞];[0.006]

qElement4 [41,60];[41,60];[0,55];[1.05,∞];[0.005]

qElement5 [21,40];[21,40];[0,55];[1.05,∞];[0.004]

PAM # primitive action [associatedQoRMetrics];[estimatedResult];

[analyticsTask - parameter:value]

pam1 adjustmentAction1 [speedAcr];[81,100];[kmeans - stopCondition:5]

adjustmentAction2 [vehicleAcr];[81,100];[]

resourceControlAction1 [deliveryTime];[0,55];[]

resourceControlAction2 [throughput];[1.05,∞];[]

pam2 adjustmentAction1 [speedAcr];[81,100];[kmeans - stopCondition:5]

adjustmentAction2 [vehicleAcr];[];[]

resourceControlAction1 [deliveryTime];[0,55];[]

resourceControlAction2 [throughput];[1.05,∞];[]

DAF # DAF task [analyticsTask - parameter:value]

daf1 estimation vehicle speed [kmeans - stopCondition:5]

daf2 estimation vehicle speed [kmeans - stopCondition:10]

Table 2. Completeness of DEP in different cases

case 1 case 2 case 3 case 4 case 5

QoR qor1 qor2 qor1 qor1 qor3

Primitive action metadata pam1 pam1 pam1 pam2 pam1

Data analytics function daf1 daf1 daf2 daf1 daf1

Completeness of the processes Yes No No No No

5.3 Operating Data Elasticity Management Processes

We evaluate the generated DEP in case 1 at runtime. In the evaluation, we
show 3 aspects of elasticity including resource (i.e., virtual machine), quality

116 T.-D. Nguyen et al.

(i.e., vehicleAcr, speedAcr and deliveryTime) and cost (i.e., processing cost
and data asset cost). We use 1 VM (3GB RAM,2 vCPUs, 40GB Disk) for
COMOT services. We use 1 m1.small VM (1GB RAM, 1 vCPU, 40GB) for
MOM. We use 1 VM (7GB RAM, 4 vCPUs, 40GB Disk) for Tooling, Orches-
trator, Data Asset Loader and Data Analytics Function Management. We use
4 VMs for monitoring/adjustment services at the beginning. Each monitor-
ing/adjustment service runs on 1 m1.small VM. We test the execution of the
generated DEP with 5 concurrent DaaS consumers in case of using consumer-
Requirement1 = {vehicleAcr ≥ 81%, speedAcr ≥ 81%, and deliveryT ime ≤
55(s)} and consumerRequirement2 = {vehicleAcr ≥ 61%, speedAcr ≥ 61%,
and deliveryT ime ≤ 55(s)}. To study cost elasticity, we defined the data asset
cost as follows:

costda =
nbMetrics∑

i=1

unitCost(qorMetrici) ∗ wi ∗ (

nbCondi∑

j=1

(j ∗ qElementcondj)) (4)

qElementcondj
is a boolean condition associated with qorMetrici, and wi are

weighted factors. For each qorMetrici in a qElement, only one qElementcondj

has value 1 and the others have value 0. The data asset cost depends on the
values of vehicleAcr and speedAcr, which are divided into 5 ranges to present
quality of data from low to high. This cost also depends on the processing time,
including analyticT ime in the first phase and deliveryT ime in the second phase.
From this general function, we have 5 functions for data asset cost assump-
tions - f1 and f2 (wprocessingTime = 1, wvechicleAcr = 0, wspeedAcr = 0), f3 and f4
(wprocessingTime = 0, wvechicleAcr = 0, wspeedAcr = 1) and f5 (wprocessingTime = 0.5,
wvechicleAcr = 0.25, wspeedAcr = 0.25). We use the unit cost for speedAcr and
vehicleAcr as e0.0002, the unit cost for machines in the data analytics phase
as 0.104 EUR (the same as the cost of t2.large instance7), and the unit cost for
machines in the enrichment phase as e0.026 (the same as the cost of t2.small
instance).

Figure 5 shows deliveryT ime of data asset with different consumer require-
ments. deliveryT ime is controlled under the range [0,55] from the 46th and 14th

window of data in case of using consumerRequirement1 and consumerRequir-
ement2, respectively. Figure 6(a) shows the values of speedAcr in cases of using
and not using the DEP: the values of speedAcr are always in ranges [81,100] in
case of using the DEP but not in the case of not using the DEP.

Figures 5 and 6(a) show data asset cost defined by f1, f2, f3 and f4. We see
the relationships between the values deliveryTime/speedAcr and data asset cost.
When the values of QoR do not meet expected values, the data asset cost needs
to be lowered. Figure 6(b) shows the relationship between processing cost and
data asset cost from f5 in cases of using customerRequirement1 and customer
Requirement2. The processing cost for an data asset is the sum of the quality
adjustment cost and data analytic cost. The quality adjustment cost is calculated
by multiplication of deliveryT ime, the number of used VMs and the unit cost of
t2.small instance. The total data analytic cost is calculated by the multiplication

7 http://aws.amazon.com/ec2/pricing/.

http://aws.amazon.com/ec2/pricing/

On Developing and Operating of Data Elasticity Management Process 117

of analytic time, the number of used VMs and a unit cost of t2.large instance
so we assume the data analytic cost per data asset equals to the total data ana-
lytic cost divided by the number of consumers. We see that the processing cost
at the beginning is high because deliverytime is too long. Then, the process-
ing cost increases (i.e., from the 3th window of data asset to the 35th window
of data asset) because the adjustment/monitoring services scale out continu-
ously (i.e., more VMs are used). After that, the cost of VMs remains unchanged
because deliveryT ime is stable and there is no need of scaling in/out actions.
Figure 6(b) shows that, with f5 for consumer requirement 2, compared with con-
sumer requirement 1, the processing cost has a higher degree of fluctuations than
that of data asset cost, suggesting in certain situations the provider spends more
operational costs. We cannot conclude which is the best function for data asset
cost, but support the provider to decide an appropriate cost functions.

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50 60 70 80 90 100
-0.0002

-0.0001

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

D
el

iv
er

y
T

im
e(

s)

Window of data asset

deliveryTime for consumer requirement 1
data asset cost for consumer requirement 1 - f1
data asset cost for consumer requirement 1 - f2

(a) customer requirement 1

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50 60 70 80 90 100
-0.0002

-0.0001

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

D
el

iv
er

y
T

im
e(

s)

D
at

a
A

ss
et

 c
os

t (
E

U
R

)

Window of data asset

deliveryTime for consumer requirement 2
data asset cost for consumer requirement 2 - f1
data asset cost for consumer requirement 2 - f2

(b) customer requirement 2

Fig. 5. deliveryTime and data asset cost

 60

 80

 100

 120

 140

 160

 180

 0 10 20 30 40 50 60 70 80 90 100
 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

V
eh

ic
le

 S
pe

ed
 A

cc
ur

ac
y

(%
)

D
at

a
A

ss
et

 c
os

t (
E

U
R

)

Window of data asset

speedAcr without using DEP
speedAcr using DEP
data asset cost for f3
data asset cost for f4

(a) speedAcr with and without DEP

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 0.001

 0 10 20 30 40 50 60 70 80 90 100
Window of data asset

processing cost for consumer requirement 1
processing cost for consumer requirement 2

data asset cost for consumer requirement 1 - f5
data asset cost for consumer requirement 2 - f5

(b) Processing and data asset cost

Fig. 6. speedAcr, processing cost and data asset cost

6 Related Work

Elasticity Model of Data Provision: Existing studies have been introduced to sup-
port certain elasticity models for data provisioning. Examples are ElasTras which

118 T.-D. Nguyen et al.

supports dynamic partition reassignment [1], functional requirement changes
using a database schema evolution rule [2], reconfiguration of data cluster respond-
ing to workload changes [5], and changes of mapping of identifiers to storage
processes under heavy load [3]. In general, these works support elastic data distri-
bution by dynamically adding/removing data nodes and moving data partitions
between data nodes. Our research objective is different in the sense that our data
model is introduced to abstract data asset and DEP to ensure QoR.

Data Elasticity Management Processes for Quality of Analytics: Although there
exist techniques to enable DEP [7,12,13], they do not support runtime QoR-
aware delivery and runtime environment for DEP. Our previous Drain supports
selecting and configuring process fragments to ensure QoR of data [7]. However,
it does not consider factors which impacts on the QoR of data from analytics
functions and does not address resource controls at runtime; it also does not
generate DEP for DaaS. Hauder [14] presented a framework to generate data
processes from an abstract process, but this approach uses only one criterion
(valid/invalid) to evaluate generated process and do not consider QoR of data
and elasticity at runtime. Liu et al. presented the requirement for data service
composition as nested tables [12] and proposed an algorithm for data service
composition based on links and weights of links between actions. Wang et al.
proposed a model to specify a pre-defined data process and requirements of
quality of services as well as cost and presented an improved version of a genetic
algorithm to select data-intensive service when generating service composition
[13]. This algorithm optimizes the service selection process based quality of ser-
vices and cost (e.g., data cost, access cost, and transfer cost). Different from
existing approaches, we use DAF to provision a data asset and a QoR model to
present requirements of this data asset. We develop a technique to generate DEP
to monitor, adjust quality of data asset and control resource at runtime. More-
over, previous studies have not investigated elasticity when generating service
composition, while we consider elasticity at runtime.

7 Conclusions and Future Work

Data assets produced from data analytics functions should be provided based on
different quality of results in an elastic manner. In this paper, we show that, with
appropriate knowledge about primitive actions for monitoring, adjustment and
resource control, we can support the provider to generate DEP as well as can
leverage underlying elastic platforms to manage and operate DEP to provision
QoR-aware data assets. We also support the provider to study data asset cost
functions based on QoR and cost of resource usage.

We are currently testing several experiments of generated DEP with many
other types of data. We are working on optimizing the execution of data analytics
functions. Moreover, we will develop a programming framework to support the
DaaS provider to easily build services for primitive actions.

Acknowledgment. This work is supported by the European Commission in terms of
the CELAR FP7 project (FP7-ICT-2011-8 #317790).

On Developing and Operating of Data Elasticity Management Process 119

References

1. Das, S., Agrawal, D., El Abbadi, A.: Elastras: an elastic, scalable, and self-
managing transactional database for the cloud. ACM Trans. Database Syst. 38,
5:1–5:45 (2013)

2. Ishida, Y.: Scalable variability management for enterprise applications with data
model driven development. In: International Software Product Line Conference
Co-located Workshops, SPLC 2013, pp. 90–93. ACM, New York (2013)

3. Unterbrunner, P., Alonso, G., Kossmann, D.: High availability, elasticity, and
strong consistency for massively parallel scans over relational data. VLDB J. 23(4),
627–652 (2014)

4. Truong, H.L., Dustdar, S.: Principles of software-defined elastic systems for big
data analytics. In: International Conference on Cloud Engineering, IC2E 2014, pp.
562–567. IEEE Computer Society, Washington (2014)

5. Cruz, F., Maia, F., Matos, M., Oliveira, R., Paulo, J.A., Pereira, J., Vilaça, R.:
Met: workload aware elasticity for nosql. In: European Conference on Computer
Systems, EuroSys 2013, pp. 183–196. ACM, New York (2013)

6. Batini, C., Cappiello, C., Francalanci, C., Maurino, A.: Methodologies for data
quality assessment and improvement. ACM Comput. Surv. 41, 16:1–16:52 (2009)

7. Murguzur, A., Schleicher, J.M., Truong, H.-L., Trujillo, S., Dustdar, S.: DRain:
an engine for quality-of-result driven process-based data analytics. In: Sadiq, S.,
Soffer, P., Völzer, H. (eds.) BPM 2014. LNCS, vol. 8659, pp. 349–356. Springer,
Heidelberg (2014)

8. Guo, J.J., Luh, P.: Selecting input factors for clusters of gaussian radial basis
function networks to improve market clearing price prediction. IEEE Trans. Power
Syst. 18, 665–672 (2003)

9. D’heygere, T., Goethals, P.L., Pauw, N.D.: Use of genetic algorithms to select
input variables in decision tree models for the prediction of benthic macroinver-
tebrates. Ecol. Model. 160, 291–300 (2003). Modelling the structure of acquatic
communities: concepts, methods and problems

10. Copil, G., Moldovan, D., Truong, H.L., Dustdar, S.: Sybl: an extensible language
for controlling elasticity in cloud applications. In: 13th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid), pp. 112–119. IEEE
(2013)

11. Truong, H.L., Dustdar, S., Copil, G., Gambi, A., Hummer, W., Le, D.H., Moldovan,
D.: Comot-a platform-as-a-service for elasticity in the cloud. In: IEEE International
Workshop on the Future of PaaS, colocated with IC2E. IEEE (2014)

12. Liu, C., Wang, J., Han, Y.: Situation-aware data service composition based on
service hyperlinks. In: Huang, Z., Liu, C., He, J., Huang, G. (eds.) WISE Workshops
2013. LNCS, vol. 8182, pp. 153–167. Springer, Heidelberg (2014)

13. Wang, L., Shen, J., Luo, J., Dong, F.: An improved genetic algorithm for cost-
effective data-intensive service composition. In: 2013 Ninth International Confer-
ence on Semantics, Knowledge and Grids (SKG), pp. 105–112 (2013)

14. Hauder, M., Gil, Y., Liu, Y.: A framework for efficient data analytics through
automatic configuration and customization of scientific workflows. In: IEEE
7th International Conference on E-Science, e-Science 2011, 5–8 December 2011,
Stockholm, Sweden, pp. 379–386 (2011)

Cloud Services Management

Supporting Cloud Service Operation
Management for Elasticity

Georgiana Copil(B), Hong-Linh Truong, and Schahram Dustdar

Distributed Systems Group, Vienna University of Technology, Vienna, Austria
{e.copil,truong,dustdar}@dsg.tuwien.ac.at

Abstract. Complex cloud services rely on various IaaS, PaaS, and SaaS
cloud offerings. Fast (re)deployment and testing cycles, and the rapid-
ity of changes of various dependent infrastructures and services, imply a
need for continuous adaptation. Although software-based elasticity con-
trol solutions can automate various decisions through intelligent decision-
making processes, in many cases, such adaptation requires interactions
among different cloud service provider employees and among different
providers. However, decisions from stakeholders and elasticity software
controllers should be seamlessly integrated.

In this paper, we analyze the needs of service providers and the possi-
ble interactions in elasticity operations management that should be sup-
ported. We focus on interactions between service provider employees and
elasticity controllers, and propose novel interaction protocols consider-
ing various organization roles and their concerns from the elasticity con-
trol point of view. We introduce the elasticity Operations Management
Platform (eOMP) which supports seamless interactions among service
provider employees and software controllers. eOMP provides elasticity
directives to enable notifications for complex elasticity issues to be solved
by service provider employees, and the necessary mechanisms for manag-
ing cloud service elasticity. Our experiments show that service provider
employees can easily interact with elasticity controllers, and, according
to their responsibilities, take part in the elasticity control to address
issues which may arise at runtime for complex software services.

1 Introduction

A service deployed in the cloud can make use of various resources and services
offered by cloud providers, and can be very dynamic at run-time. The cloud is
one of the most dynamic environments: providers can change their cost schemas,
and the offered service characteristics, from one day to another. Although in this
environment automated controllers are necessary, given this high dynamism, it
might be necessary for service stakeholders to re-examine the desired behavior
of a cloud service, and their interactions with other stakeholders (e.g., cloud
providers, or data providers). For instance, whenever the load of the cloud ser-
vice dramatically changes, the normal “safety requirements” (e.g., do not exceed

This work was supported by the European Commission in terms of the CELAR FP7 project
(FP7-ICT-2011-8 #317790).

c© Springer-Verlag Berlin Heidelberg 2015
A. Barros et al. (Eds.): ICSOC 2015, LNCS 9435, pp. 123–138, 2015.
DOI: 10.1007/978-3-662-48616-0 8

124 G. Copil et al.

a specific cost value) might not hold. For these situations, service providers have
employed analysts to oversee the control process, and detect when such a case
is encountered by a controller. A much better solution would be that the con-
troller itself notifies the responsible person with the encountered situation (e.g.,
unexpected behavior or service health issues). In such situations, the employ-
ees responsible for the detected cases, once notified, should be able to easily
interact with the controller to solve the detected issues. This type of “human-in-
the-loop” based control not only improves the runtime elasticity customization
capabilities, but also empowers service providers with more control over their
services and automated elasticity controllers. Thus, for obtaining service elastic-
ity at runtime, the service provider needs this kind of support in its operation
phase (i.e., from service management lifecycle), in order to carry out the ser-
vice operation processes in the cloud environment. Although currently several
solutions provide elasticity control of cloud services (e.g., [1,2]), service provider
employees are not included in the elasticity control process.

For addressing the challenges above, in this paper we propose adding roles
(i.e., service provider employees) as first class entities in cloud service elasticity
control loops. Based on the roles, we define necessary interaction protocols for
managing service elasticity operation phase. We focus on interactions between
roles and elasticity controllers, but we also support simple interaction among
employees, for notifying each other of updates or for delegating responsibility for
incidents. We extend SYBL [3], a language for expressing elasticity requirements,
to support roles and role-based communication between stakeholders. Based on
this, we develop an elasticity Operations Management Platform (eOMP) for
cloud services, and we validate its usefulness showing various events encoun-
tered for a complex service. eOMP can adapt to various organization structures,
and enables service provider employees to interact easily with the elasticity con-
troller, for obtaining a more complex elasticity control. These interactions are
real-time, reason for which great care needs to be given to the controller, which
should be able to perform normally without human intervention. eOMPs sup-
ports managing unexpected situations, by facilitating the collaboration between
elasticity controllers and service employees, identifying various types of events
occurring during operation phase, and providing mechanisms for solving them.

The paper is organized as follows: Sect. 2 presents the motivation of our
work. Section 3 discusses the interactions and roles necessary for elasticity oper-
ations. Section 4 describes the design of our platform and the interactions sur-
rounding which the platform is designed. Section 5 presents eOMP case studies,
Sect. 6 describes related work, and Sect. 7 concludes the paper and outlines our
future work.

2 Motivation

For managing cloud services, a service provider needs to prepare its employees
for issues (e.g., errors appearing at system, application or infrastructure level, or
change in cloud provider offerings) that could appear in cloud environments, and
to adapt their internal processes. Moreover, given cloud environment’s dynamism,

Supporting Cloud Service Operation Management for Elasticity 125

Fig. 1. Motivating scenario

it might be necessary to constantly analyze the service at runtime, to ensure that
the service customers receive the expected quality of service. For this, it would
be necessary to use an automated elasticity controller (e.g., rSYBL [4]), rapidly
reacting to environment changes. The elasticity controller can release from the
employees responsibilities, but might cause change in other responsibilities, by
including the elasticity controller in the service operation management. Figure 1
shows a complex environment ranging from IoT-specific resources (i.e., sensors,
actuators) up to the cloud environment, where information gathered by sensors
is stored and processed. In cloud infrastructures, we consider a complex cloud
service using various types of software (e.g., NoSQL databases, RabbitMQ),
processing data coming from sensors and exposing it to various service customers
(e.g., fire department, or building management application). In this paper, we
consider cloud service elasticity as being controlled at multiple levels of abstrac-
tion, following the cloud service model presented in [4], where the cloud service
is composed of units (i.e., elementary parts of the service), which can be grouped
into topologies (i.e., semantically connected units).

Focusing on the service provider, we can see that it needs to fulfil various types
of requirements (e.g., data placement for IoT device users, or providing expected
quality for service customers). While it is obvious that nowadays decision-making
solutions should be as much software-based as possible, given the complexity of
the setting, there are situations in which it is necessary for the decisions to be taken
by real persons playing various roles in the organization. Depending on the type
of change which has appeared in the service (i.e., following elasticity dimensions:
resources, cost, quality [5]), various roles can have different interests or respon-
sibilities in the cloud service control. For instance, whenever the cost of running
the platform in the cloud gets high, a financial administrator might analyze the
overall evolution, and decide whether as a strategic decision it makes sense to
use more virtual resources than initially estimated. For this, s/he could either

126 G. Copil et al.

(a) From elasticity changes to responsible roles

(b) From roles to elasticity operation actions

Fig. 2. Role interaction flow

invest more in the platform, or negotiate with cloud providers for better prices.
Although most times service elasticity is achieved simply by allocating more/-
less virtual resources, similar effects might be achieved by changing configurations
(e.g., changing the load balancing mechanism). In this case, employees in charge
with configuration management should know which configuration is being used.
The service provider’s goals can also evolve in time, due to varying number or
types of users. In our scenario, when adding further data providers for the ser-
vice, the control requirements need to be modified by the responsible employees,
e.g., ensure better data transfer, even though the cost would go over what before
was specified as the maximum admissible cost.

Therefore, although an automated solution is necessary for this case, the
Level of Automation (LOA) [6] of the elasticity controller should not be of Full
Automation, but the human (service provider employee) should be included in
the control loop, for supporting the cases discussed above, in a Supervisory Con-
trol mode. Moreover, for achieving this kind of interaction between the elasticity
controller and the different types of service provider employees, clear interac-
tion protocols are needed. Since existing solutions mainly focus on full automa-
tion [1,2], we propose using supervisory control for cloud services elasticity, and
define interaction protocols for elasticity control. Thus, we introduce a platform
easing service provider’s interaction with the elasticity controller, at multiple
levels of authority and for multiple elasticity concerns.

3 Analyzing Interactions in Elasticity Operations
Management

3.1 Role Interactions

As described in our motivation, the main focus of our work is supporting ser-
vice providers to achieve better supervised elasticity control. Different service

Supporting Cloud Service Operation Management for Elasticity 127

provider employees are normally in charge with different operations, thus being
associated with various roles as part of the organization. We use the term roles
instead of stakeholders or employee types, to indicate attributions associated
to employees/stakeholders, an employee or stakeholder possibly having multi-
ple roles at a time. Moreover, while the roles present in a company are rarely
dynamic, the stakeholders/employee types and persons in a company are both
volatile and dynamic. Following our motivation scenario, the roles and elastic-
ity controller need to collaborate in order to manage service operation during
runtime. As shown in Fig. 2a, roles should be notified by other roles or by the
elasticity controller concerning the operation events which occur in relation to
the current service. From the operation events, we focus on elasticity changes.
We characterize elasticity changes according to the elasticity dimensions (i.e.,
resources, cost, and quality), and focus on: (i) request for change (RFC), (ii) inci-
dent, and (iii) elasticity notification event. The request for change event can
be initiated by either an elasticity controller or a role, requesting for changes
in properties of the service. The elasticity capabilities (i.e., changes which can
be enforced at runtime for modifying service behavior) can incur unexpected
behavior in quality, cost or resources, which can indicate an issue in the service
configuration or the deployed artifacts. Moreover, service providers are inter-
ested in failure events, in order to be able to learn from service behavior and
environment changes which produce failures. As shown in Fig. 2b, a role can
receive a multitude of messages from other roles or from elasticity controllers.
Analyzing them, the role decides whether it can perform needed actions, or if
it should delegate to other roles. After analyzing the interaction flow, the next
section is focused on analyzing the roles and their responsibilities and interests
in elasticity operations management.

3.2 Elasticity Operations and Roles

In the case of elastic cloud services the elasticity controllers play a big role in
management, as opposed to ordinary service management roles [7]. Lower level
authority roles (i.e., system administrator) have limited responsibilities, super-
vising and delegating work to the elasticity controller. We focus on designing
interaction between elasticity controllers and several roles1, excluding the roles
whose functionalities are replaced by the elasticity controller (e.g., Performance/-
Capacity Analyst, Systems Operator, or Capacity Manager).

Table 1 shows the possible elasticity-driven behavior modifications which can
be triggered by the elasticity controller, and the roles which might be interested
in these types of modifications. Depending on the frequency of modifications, the
roles are interested of receiving events more or less often, events being aggregated
from a number of modifications, or containing a single modification. For instance,
cost-related modifications need to be viewed by finance-related roles, like IT
Financial Manager, Procurement Analysis, or Service Manager. Quality-related
events (e.g., service part is not healthy, requirements not fulfilled) are of interest
for Operations Manager and Service Manager.
1 http://www.itsmcommunity.org/downloads/ITIL Role Descriptions.pdf.

http://www.itsmcommunity.org/downloads/ITIL_Role_Descriptions.pdf

128 G. Copil et al.

4 Elasticity Operations Management Platform

We design our platform (Fig. 3) following the flow described in the previous
section, for supporting interactions between roles and elasticity controllers, and
even third party roles. The controller sends messages through an Embedded
Queue, for message locality reasons. From our elasitcity Operations Manage-
ment Platform (eOMP), the Control Communication component processes the
received notifications. Here we provide a plugin-based mechanism for ensuring
that eOMP can be adapted to different elasticity controllers, the only constraint
being to map controller notifications to the eOMP model with operation events.
The Control Communication component processes the operation events, and
depending on their types, and depending on the responsibilities of the roles
in the Role Management Component, maps the controller messages to correct
interactions with current roles, and adds them to the queue. For this, we use a
Queue as a Service, since depending on the number of roles, and possibly in the
future, organizations, that we want to support, the scale of the queue and rout-
ing complexity can increase. Queue interactions are consumed from the roles’
side by the Interaction processing component, which directly interacts with the
role (e.g., user interface, command line, API-driven communication). For com-
munication between roles, we use a component for collaborative interactions in
human-based computing systems (e.g., SmartCOM2).

We designed the platform in such a way that the elasticity controller is agnos-
tic to IT service management processes, or role types. This is beneficial since it
enables service providers to choose other controllers, or, for the case of very small
company (i.e., one employee), to use the controller without the rest of our plat-
form. The roles and responsibilities can be modified by the eOMP administrator,
e.g., by using roles from a different standard.

4.1 Entities of the Interaction

For defining the interactions which may occur for the cloud service elasticity con-
trol, we focus on the participants in interactions. We use organization to describe
an association with a functional structure (e.g., service provider organization).
We focus firstly on modeling interactions between the service provider organiza-
tion and the elasticity controller, and secondly on modeling limited interactions
among organizations.

Roles (Eq. 2) are entities which are associated with responsibilities R and
authority levels Aut, and which can be assigned to different employees at various
points in the organization lifetime. Each organization is defined by a set of role
types, which change rarely throughout organization lifetime (e.g., when adopting
CMMI3, roles change). Third party roles are roles from partner organizations,
which are known to the current organization, and are accessible only through an
internal role for various actions (e.g., notifications, or contract re-negotiations).

2 https://github.com/tuwiendsg/SmartCom/wiki.
3 http://cmmiinstitute.com/.

https://github.com/tuwiendsg/SmartCom/wiki
http://cmmiinstitute.com/

Supporting Cloud Service Operation Management for Elasticity 129

Table 1. Examples of elasticity modifications and roles interested

Modification type Roles interested

Changes in cost due to scaling/changing the
infrastructure/software services which
are being used

IT Financial Manager, Service
Manager

Changes in cost due to providers change in
cost, without change in performance

Procurement Analysis, Service
Manager, Operations Manager

Changes in quality due to providers change
in quality, without change in cost

Service Manager, Operations Manager

Requirement on cost inflicts degradation of
performance

Operations Manager

Configuration change due to change of the
workload

Configuration Librarian, System
Administrator, Operations
Manager

Service part which is not healthy
(erroneous, not behaving as expected)

Test Manager, Operations Manager,
System Administrator, Incident
Analyst

Changes in quality w/o change in workload Operations Manager, Service Manager

Requirements which are not fulfilled/ are on
danger of not being fulfilled by the cloud
service elasticity controller

Operations Manager

Data compliance requirements changed by
the data provider

Service Manager, Operations Manager

Fig. 3. eOMP Design

As we are interested in elasticity control operations management, we focus on
Elasticity Responsibilities (Eq. 2) related to elasticity dimensions [5].

Roles = {(R,Aut)|R ∈ Responsabilities,Aut ∈ [min,max]} (1)
Responsabilities = {x ∨ Relations(x, y)

|x, y ∈ {Cost,Quality,Resources,Error,Analytics}} (2)

We define a Message as being composed of a header, and a body, the header
containing initiator and receiver related information, while the body con-
tains the message type, its priority and the content of the message. The
message content (Eq. 3) can contain suggested interactions, which are nested

130 G. Copil et al.

interactions suggested by the initiator for the receiver (e.g., an elasticity con-
troller can suggest the Procurement Analyst to re-negotiate the contract with
the cloud provider due to cost increase). Using these entities, an interaction can
be defined as a tuple of Initiator-Receiver-Message (Eq. 4), where each of the
Initiator and Receiver can be a set of Roles.

Content = {[Cause, SuggestedMeasure]|
Cause ∈ Requirements ∪ ExpectedBehavior

SuggestedMeasure ∈ Interactions ∪ Actions} (3)
Interaction = {[InteractionID, Initiator,Receiver,Message]|

Initiator,Receiver ∈ Roles,Message ∈ Messages}. (4)

4.2 Interaction Protocols for Supervisory Control of Elasticity

As discussed previously, elasticity depends on a large set of variables, both from
the IoT, cloud and business world. Elasticity behavior of a service is subject to
the business strategy of the service provider, and this can vary with the economic
perspectives, and with the market evolution (e.g., the financial manager should
decide the strategy in case of financial crisis, and not the elasticity controller).
We propose using a supervisory control mechanism [6,8], in which any decision
of the human overrides any decision of the elasticity controller (i.e., the roles are
the outer control loop). For this, we define a set of interaction protocols, based
on the entities defined above, for facilitating the communication between roles
and elasticity controllers.

Role as Initiator - Bootstrapping Dialogs: The goal of this interaction is to
enable roles to initiate dialogs with the elasticity controllers for bootstrapping the
elasticity controller (Fig. 4a and b). For starting elasticity control, the elasticity
controller is sent a prepare message, followed by information describing the
cloud service is sent one at a time (e.g., service description, custom metrics
description), and if each step is successfully achieved, a Start Control message
is sent. Each call from the role to the dialog starts a complex process on the
controller side (e.g., possible elasticity requirement conflicts are solved). For
testing an elasticity capability, a Start Test message is sent for starting the test
mode. For instance, the System Administrator is able through this dialog to
set all needed information for elasticity control (e.g., structure, resources used),
and then wait and ensure that each step is successfully completed.

Role as Initiator - Request for Change: The goal of this interaction is to
enable the roles to modify expected service behavior during runtime (Table 2).
Whenever a role decides that an update is necessary, e.g., due to events signaled
by the elasticity controller, the role can modify elasticity requirements, or deploy-
ment description (e.g., after a manual re-deployment). For instance, the Service
Manager can decide to undeploy the service from the cloud environment, and,
e.g., keep only an on-premise deployment.

Supporting Cloud Service Operation Management for Elasticity 131

(a) Interactions for Starting Elasticity
Control

(b) Interactions for Testing Elasticity
Capability

Fig. 4. Interaction dialogs

Table 2. Interactions for requesting modification in control

Interaction type Interaction details

Undeploy the service [ID, Role, EC, [RFC, Priority, [Cause,

UndeployService (ServiceID)]]]

Replace metric composition rules [ID, Role, EC, [RFC, Priority, [Cause,

ReplaceRules (ServiceID,

CompositionRules)]]

Replace deployment [ID, Role, EC, [RFC, Priority, [Cause,

ReplaceDeployment (ServiceID,

DeplDescription)]]

Replace elasticity requirements [ID, Role, EC, [RFC, Priority, [Cause,

ReplaceRequirements (ServiceID,

Requirements)]]

Pause/Resume control [ID, Role, EC, [RFC, Priority, [Cause,

PauseControl (ServiceID)]]

Elasticity Controller as Initiator: The goal of this interaction is to enable the
elasticity controller to notify appropriate roles on changes in elasticity behavior
(Fig. 5). Whenever abnormal changes are observed in the cloud service behav-
ior, the elasticity controller notifies roles, depending on the Responsibilities, and
the Authority which they have associated. For instance, in the case of conflict-
ing requirements which cannot be automatically solved (e.g., response time is
expected to be low, while the cloud provider is running in degraded mode), the
controller notifies the roles causing the conflict (i.e., Rolei . . . Rolej), as well as a
higher authority role having the responsibilities ∪x=i..j Responsabilities(Rolex).

132 G. Copil et al.

Fig. 5. Elasticity controller bringing the roles into the control loop

4.3 Elasticity Directives-Driven Interactions

For creating custom interactions, we have extended the SYBL [3] elasticity
requirements definition language with the new NOTIFY directive, with BNF form
described in the Listing 1.1, to be triggered when certain conditions hold. A call
of the notify() method of the NOTIFY directive maps to the initiation of a new
interaction between the elasticity controller and the role mentioned in the direc-
tive. An example of such a directive can be No1: NOTIFY OperationsManager WHEN
responseTime > 1.2 s : notify(WARNING, "Response time exceeds 1.2 s").
Whenever a condition for a notification directive is true, the Controller Commu-
nication starts an interaction (i.e., translating the aforementioned directive into
interaction [No1, EC, Operations Manager, Notification, "Response time
exceeds 1.2 s"]. However, the frequency of interactions initiated by the Con-
troller Communication is adjusted with the interaction aggregation presented in
Sect. 4.4.

Listing 1.1. SYBL Notification in Backus Naur Form (BNF)

Notification := notificationID:NOTIFY Role WHEN ComplexCondition
: notify(NotificationType , message)

Role := ROLE(Responsability1 , Responsability2), Role |
ROLE (Responsability1 , Responsability2)|
RoleX , Role | RoleX

NotificationType := NOTIFICATION | ERROR | WARNING

4.4 Interaction Aggregation

For mapping messages, we provide a generic processing mechanism which
searches metric patterns associated with responsibilities in the message from the

Supporting Cloud Service Operation Management for Elasticity 133

controller, and creates a new message with the structure described in Sect. 4.1,
initiating interactions for the appropriate roles, considering roles’ responsibili-
ties. Depending on roles authorities (Eq. 2), interactions are either aggregated
or immediately sent to the Interaction Management component.

Each role, depending on its responsibilities, receives a different number of
messages, or only emergency messages, the amount of messages being inversely
proportional with the authority and directly proportional with the responsi-
bilities (e.g., for a maximum Authority of 10, a Service Manager role with an
authority of 10 should receive less often messages than the System Adminis-
trator with authority 5). Moreover, the nature of the messages should reflect
the responsibilities and interests. For this, the Controller Communication Mod-
ule examines messages and identifies metrics of interest for the responsibilities
associated with each role. For filtering the interactions initiated, an aggregation
function can be defined, selecting the amount of messages to be sent to the roles.
The more complex the filtering of the messages, the easier it would be for roles
to interact with the elasticity controller. We define in 5 a simple logarithmic
filtering function, deciding if the aggregation of messages so far should be sent.

f(Role,QInteractions)
= (logauth max(Role.Authority) ∗
THRESHOLD NOTIFICATION <= QInteractions.size())
∨(logauth max(Role.Authority) ∗ THRESHOLD ERROR

<= MaxPriority(QInteractions)). (5)

5 Prototype and Experiments

5.1 Prototype

The elasticity Operations Management Platform (eOMP) is implemented as a
Java enterprise application, which can be deployed either in the cloud or under
service provider’s premises. eOMP is open-source and available together with fur-
ther experiments, details and user guides4. The current version integrates with
the rSYBL elasticity controller, making use of the notification queue (i.e., embed-
ded queue in the eOMP design, implemented using ActiveMQ5) exposing events
during runtime. This can be easily extended to other elasticity controllers, by
implementing an adapter for receiving and processing events. The service queue
is using CloudAMQP6, which is managed RabbitMQ7 offered as a cloud service.
Our Primefaces8-based frontend includes dynamically generating diagrams and
charts for the cloud service provider employees.

4 http://tuwiendsg.github.io/rSYBL/eOMP.
5 http://activemq.apache.org.
6 http://cloudamqp.com.
7 http://rabbitmq.com.
8 http://www.primefaces.org/.

http://tuwiendsg.github.io/rSYBL/eOMP
http://activemq.apache.org
http://cloudamqp.com
http://rabbitmq.com
http://www.primefaces.org/

134 G. Copil et al.

Fig. 6. eOMP snapshot: implicit initial dialog requesting services information

(a) eOMP snapshot: replace requirements

(b) eOMP snapshot: dialog for clarifying requirements

Fig. 7. Conflicting requirements resolution

5.2 Elasticity Operations Management Features

To illustrate eOMP features, we used our pilot application9 which consists of:
(1) an event processing topology composed of an event processing unit and a
load balancer, and (2) a data end topology composed of a data node unit and
a data controller unit. We used recordings from a previous run, to which we
injected events (i.e., by modifying monitored data for a limited amount of time).
We chose this approach instead of real-time injecting faults, since it is more
reliable, and our focus is showcasing the eOMP platform, and not the service
versatility.

9 https://github.com/tuwiendsg/DaaSM2M.

https://github.com/tuwiendsg/DaaSM2M

Supporting Cloud Service Operation Management for Elasticity 135

Implicit vs. Explicit Interactions. For understanding current service behav-
ior, roles need elasticity controller interactions executed regularly (e.g., every
10 min, or each time the role logs into the platform). We distinguish between
two types of interactions from the user/employee perspective: (1) implicit inter-
actions, for getting the necessary data to be displayed to the employee (e.g.,
dialogs for getting the service description), and (2) explicit interactions, initi-
ated by the eOMP user. Figure 6 shows a dialog from the first type, with the
system administrator (one role of the current logged in employee) requesting for
initial description information. While without eOMP, the employee would need
to manually call them, with eOMP the implicit interactions are already managed
when the employee logs on in the platform.

Solving Conflicting Requirements. The controller can encounter a case
where no actions are suitable for solving the discovered issues. Figure 7a shows a
situation where constraints Co1(“Co1:CONSTRAINT cost < 10$;”) and Co3(“Co3:

CON STRAINT responseTime < 400 ms;”) are conflicting, because of the high
workload and the limit on the cost. Since the employee receiving this interac-
tion has more roles associated, s/he decides to replace the requirement from the
Procurement Analyst role, for being able to increase the limit for the service
cost. The interaction dialog from the three roles is shown in Fig. 7b, and con-
sists of two steps: (1) the controller notifies the Incident Analyst role that no
action is available due to the requirements conflict, (2) the employee uses the
Procurement Analyst role to modify the cost requirement. Moreover, eOMP
uses knowledge on role types and their authorities, avoiding modification con-
flicts (e.g., with no eOMP, two roles can fix observed issues at the same time). In
our case, the role interaction with the elasticity controller is managed by eOMP,
the employee being able to choose even a different role from which the issue can
be solved better.

Service Health Incidents. Another issue which may occur during service
operation is that a service part might be unhealthy (i.e., monitoring metrics have
error-like values for an amount of time). With eOMP, all the roles which have
incidents as responsibilities receive notifications, but the timing and the amount
of notifications is inversely proportional with their authority. Figure 8 shows
interactions which are due to Event Processing Topology being unhealthy.
When the Operations Manager (high authority) gets the interaction from the
controller, it means that the lower level authority roles have ignored or weren’t
able to address the situation. Therefore, it delegates the interaction to the Inci-
dent Analyst. The Incident Analyst can try to fix the issue, or can report on
the difficulty of the issue. Left side of Fig. 8 shows the actions performed by the
Incident Analyst (i.e., pause-fix-replace service description). All can be followed
by the Operations Manager, to make sure the incident is being solved, since
these interactions are part of the initial dialog.

136 G. Copil et al.

Fig. 8. eOMP snapshot: unhealthy service part dialog

(a) Total role interactions (b) Role interactions in time

Fig. 9. eOMP snapshots: Statistical information regarding interactions

Dealing with Roles Authorities. Figure 9 shows the number of interactions
which occurred over time, undertaken by each role. The amount of interactions
varies with the events which occur, with role’s responsibilities in relation with
these events, and with role’s authority. We can see that higher level authority
roles have less interactions (e.g., Service Manager has no interactions), following
the interaction aggregation function in Sect. 4.4.

Thus, eOMP facilitates interactions between service providers and elasticity
controllers, and among service provider roles, automating operation tasks and pro-
viding support for interaction management based on role’s authority and responsi-
bilities. With eOMP the roles can easily follow the evolution of their elastic service,
and the evolution, in time, of incidents, requests for change, or measures taken by
the elasticity controller in order to control their service behavior.

6 Related Work

Various standards and processes have been proposed over the years for IT service
management. Sallé [9] provides an analysis of the evolution of IT service man-
agement over the years, and its evolution towards IT governance. Starting from
Information Systems Management Architecture [10], IT management method-
ologies have evolved towards well-defined standards/best practices of IT service
management (e.g., ITIL R© [11], BSI ISO 20000 [12], FitSM [13]). Although the
focus of this paper is not the management processes adopted by organizations,
understanding their internal processes is necessary for being able to support them
in their quest for cloud service elasticity. Since the latest reference models used

Supporting Cloud Service Operation Management for Elasticity 137

nowadays in organizations (e.g., [12,14]) are in alignment with ITIL R© service
management practices, we used these processes and organization roles. How-
ever, our design (see Sect. 4) is such that, roles and processes can be modified
for accommodating future service management models.

Operation management in cloud computing has been approached mostly from
the cloud provider’s perspective [15,16], and little from service provider (i.e.,
cloud customer) perspective. Bleizeffer et al. [7] propose a set of user roles in
cloud systems, having as core roles not only the cloud service provider, but
also the cloud service consumer and cloud service creator. The three core roles
are expanded into a taxonomy of interconnected user roles, which communi-
cate with each other for delegating responsibilities or gathering information.
Demont et al. [17] present an initial proposal of integrating the TOSCA cloud
service description standard with ITIL elements. Several commercial solutions
enable cloud infrastructure management support, but do not support service
operations management at cloud customer’s service level (e.g., Oracle Enterprise
Manager10, BMC Cloud Operations Management11). Liu et al. [18] propose an
incident diagnosis approach based on incident relationships, using co-occurring
and re-occurring incidents for performing root cause analysis. Munteanu et al.
[19] propose an architectural approach for cloud incident management, including
incident lifecycle management, event and incident detection, incident classifica-
tion and recovery and root cause analysis.

In contrast with above presented work, we focus on the elasticity aspect of
service operations management in the cloud, characterizing the relevant prop-
erties and interactions. Moreover, we emphasize the importance of supervisory
control for the cloud, and introduce service provider employees as first-class
entities in the control loops.

7 Conclusions and Future Work

Operation management for services elasticity becomes increasingly more com-
plex when the services rely on several other third-party services deployed in
multiple cloud environments. We have proposed a set of interaction protocols
for managing elasticity operations of cloud services, which take into considera-
tion service provider roles as first class entities in the service elasticity control.
We introduced the eOMP platform, which allows service provider employees to
manage the cloud service operations related with elasticity, interacting with the
elasticity controller and other employees of the service provider.

As future work, we are studying multi-organizational interactions for cloud
services. For this case, dialogs are much more complex, since we need to model
the various types of information necessary in the communication, and we need
mechanisms to support and track inter-organization interactions. Moreover, orga-
nizations could follow different standards, and offer different access points (e.g.,
a cloud provider might expose IT Financial Administrator role for re-negotiating
contracts, and Operations Management for handling QoS issues).

10 http://www.oracle.com/technetwork/oem/enterprise-manager.
11 http://www.bmc.com/it-solutions/cloud-operations-management.html.

http://www.oracle.com/technetwork/oem/enterprise-manager
http://www.bmc.com/it-solutions/cloud-operations-management.html

138 G. Copil et al.

References

1. Mao, M., Humphrey, M.: Scaling and scheduling to maximize application perfor-
mance within budget constraints in cloud workflows. In: IEEE 27th International
Symposium on Parallel Distributed Processing (IPDPS), pp. 67–78 (2013)

2. Jiang, J., Lu, J., Zhang, G., Long, G.: Optimal cloud resource auto-scaling for
web applications. In: 2013 13th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing, pp. 58–65 (2013)

3. Copil, G., Moldovan, D., Truong, H.L., Dustdar, S.: Sybl: an extensible language
for controlling elasticity in cloud applications. In: International Symposium on
Cluster, Cloud and Grid Computing (CCGrid), pp. 112–119. IEEE/ACM (2013)

4. Copil, G., Moldovan, D., Truong, H.-L., Dustdar, S.: Multi-level elasticity control
of cloud services. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013.
LNCS, vol. 8274, pp. 429–436. Springer, Heidelberg (2013)

5. Dustdar, S., Guo, Y., Satzger, B., Truong, H.L.: Principles of elastic processes.
IEEE Internet Comput. 15(5), 66–71 (2011)

6. Endsley, M.R., Kaber, D.B.: Level of automation effects on performance, situation
awareness and workload in a dynamic control task. Ergonomics 42, 462–492 (1999)

7. Bleizeffer, T., Calcaterra, J., Nair, D., Rendahl, R., Schmidt-Wesche, B., Sohn,
P.: Description and application of core cloud user roles. In: Proceedings of the 5th
ACM Symposium on Computer Human Interaction for Management of Information
Technology. CHIMIT 2011, pp. 2:1–2:9. ACM, New York (2011)

8. Sheridan, T.B.: Adaptive automation, level of automation, allocation authority,
supervisory control, and adaptive control: distinctions and modes of adaptation.
IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum. 41(4), 662–667 (2011)

9. Sallé, M.: It service management and it governance: review, comparative analysis
and their impact on utility computing. Hewlett-Packard Company, pp. 8–17 (2004)

10. Van Schaik, E.A.: A Management System for the Information Business: Organiza-
tional Analysis. Prentice-Hall Inc., Upper Saddle River (1985)

11. Arraj, V.: Itil R©: The Basics. Buckinghampshire, UK (2010)
12. BSI Group: ISO/IEC 20000-Information technology-Service management. http://

www.iso.org/iso/publication item.htm?pid=PUB200013
13. FedSM: FitSM: Standards for IT Service Management. http://www.fedsm.eu
14. HP: The HP IT Service Management (ITSM) Reference Model. ftp://ftp.hp.com/

pub/services/itsm/info/itsm rmwp.pdf
15. Zhan, H.J., Zhang, W.: The operation and maintenance management system of the

cloud computing data center based on ITIL. In: Jeong, H.Y., Obaidat, M.S., Yen,
N.Y., ParK, J.J.J.H. (eds.) Advanced in Computer Science and Its Applications.
LNEE, vol. 279, pp. 1103–1108. Springer, Heidelberg (2014)

16. IBM: Integrated service management and cloud computing: More than just
technology best friends. https://www.ibm.com/ibm/files/E955200R99025N70/
5Integrated service management and cloud computing 644KB.pdf

17. Demont, C., Breitenbücher, U., Kopp, O., Leymann, F., Wettinger, J.: Towards
integrating tosca and itil. In: ZEUS, Citeseer, pp. 28–31 (2013)

18. Liu, R., Lee, J.: IT incident management by analyzing incident relations. In: Liu,
C., Ludwig, H., Toumani, F., Yu, Q. (eds.) ICSOC 2012. LNCS, vol. 7636, pp.
631–638. Springer, Heidelberg (2012)

19. Munteanu, V., Edmonds, A., Bohnert, T., Fortis, T.F.: Cloud incident manage-
ment, challenges, research directions, and architectural approach. In: International
Conference on Utility and Cloud Computing, pp. 786–791. IEEE/ACM (2014)

http://www.iso.org/iso/publication_item.htm?pid=PUB200013
http://www.iso.org/iso/publication_item.htm?pid=PUB200013
http://www.fedsm.eu
ftp://ftp.hp.com/pub/services/itsm/info/itsm_rmwp.pdf
ftp://ftp.hp.com/pub/services/itsm/info/itsm_rmwp.pdf
https://www.ibm.com/ibm/files/E955200R99025N70/5Integrated_service_management_and_cloud_computing_644KB.pdf
https://www.ibm.com/ibm/files/E955200R99025N70/5Integrated_service_management_and_cloud_computing_644KB.pdf

rSLA: Monitoring SLAs in Dynamic Service
Environments

Heiko Ludwig1(B), Katerina Stamou1, Mohamed Mohamed1,
Nagapramod Mandagere1, Bryan Langston1, Gabriel Alatorre1,

Hiroaki Nakamura1, Obinna Anya1, and Alexander Keller2

1 IBM Research - Almaden, San Jose, CA, USA
{hludwig,stamou,mmohamed,pramod,bryanlan,galatorr,

obanya}@us.ibm.com, hnakamur@jp.ibm.com
2 IBM Global Technology Services, Chicago, IL, USA

alexk@us.ibm.com

Abstract. Today’s application environments combine Cloud and on-
premise infrastructure, as well as platforms and services from different
providers to enable quick development and delivery of solutions to their
intended users. The ability to use Cloud platforms to stand up applica-
tions in a short time frame, the wide availability of Web services, and the
application of a continuous deployment model has led to very dynamic
application environments. In those application environments, managing
quality of service has become more important. The more external service
vendors are involved the less control an application owner has and must
rely on Service Level Agreements (SLAs). However, SLA management
is becoming more difficult. Services from different vendors expose differ-
ent instrumentation. In addition, the increasing dynamism of applica-
tion environments entails that the speed of SLA monitoring set up must
match the speed of changes to the application environment.

This paper proposes the rSLA service and language that is both flex-
ible enough to instrument virtually any environment and agile enough
to scale and update SLA management as needed. Using rSLA the time
of setting up SLA compliance monitoring of application environments
involving infrastructure, platform, and application services can be sig-
nificantly reduced.

Keywords: Service Level Agreement · Cloud Computing · PaaS ·
Monitoring · Reporting

1 Introduction

Cost, availability and on-demand scaling have accelerated the adoption of differ-
ent application deployment models. Today’s application environments combine
Cloud and on-premise infrastructure as well as platforms and services from dif-
ferent providers to enable the quick development and delivery of solutions to
their intended users. For example, a Web or mobile application of an online
c© Springer-Verlag Berlin Heidelberg 2015
A. Barros et al. (Eds.): ICSOC 2015, LNCS 9435, pp. 139–153, 2015.
DOI: 10.1007/978-3-662-48616-0 9

140 H. Ludwig et al.

merchant might be deployed on a cloud-based Platform-as-a-Service (PaaS), use
persistence services within the platform, run ID and login management through a
third-party Web service, and be monitored by various in-house logistics systems.

The ability to use Cloud platforms to stand up applications in a short time
frame, the - now - wide availability of services, and the application of a continuous
deployment model has led to a much more dynamic application environment,
changing at high velocity.

Managing quality of service has become more important in the context of the
Cloud and the prolific use of micro-services. The more external service vendors
are involved the less control an application owner has over the quality of the
delivery of this service and must rely on the quality commitments of his or her
vendors in the form of Service Level Agreements (SLAs).

SLAs are widely used in the context of corporate Information Technology
(IT) outsourcing. Practically every outsourcing customer requires his or her ven-
dors to commit to SLAs and holds vendors accountable with financial penalties
or rewards for achieving objectives. Objectives typically relate to the perfor-
mance of systems and services, their availability, and the performance of ser-
vice processes such as provisioning servers and responding to help desk tickets.
Many vendors sell SLA management systems, often as part of service manage-
ment suites (e.g., IBM Integrated Service Management/ISM) or as Software-as-
a-Service (e.g., ServiceNow). In enterprise practice setting up SLA management
for a particular domain and monitoring compliance on an ongoing basis requires
substantial integration projects to collect metrics in a data warehouse. Aggregat-
ing and adjudicating SLA compliance likewise often requires substantial manual
work or ad-hoc scripting.

While this is viable for large outsourcing contracts and all their intricate
details this is not a good match for today’s dynamic application environments
using Clouds and services from multiple vendors. One key problem is the hetero-
geneity of interfaces. Services from different vendors have different instrumenta-
tion and use different service management systems making it difficult to collect
and aggregate performance data for service level objective evaluation. While sys-
tem vendor heterogeneity is certainly an issue within one enterprise it is easier
to avoid and system level standards such as the Common Information Model
(CIM) of the Distributed Management Task Force (DMTF) help management
systems to interact with servers, network components and the like. Management
APIs on a Cloud and service level have not yet undergone such widely accepted
standardization although some schemes have been proposed [6].

In addition to heterogeneity, the increasing dynamism of application environ-
ments entails that SLA monitoring must be set up at the speed of change of the
application environment. Continuous deployment, or DevOps, enables constant
changes to applications and the binding to new services. Cloud infrastructure
and - in particular - platform services enable the deployment of new applica-
tions on very short notice. Organizations can respond rapidly to novel needs and
change their application environment at a fast pace.

rSLA: Monitoring SLAs in Dynamic Service Environments 141

To provide effective SLA management in a Cloud environment, the SLA
management system must be able to set up the monitoring of customer-specific
SLA terms against a heterogeneous set of service instrumentation in a short
amount of time.

This paper proposes the rSLA service, which is both flexible enough to instru-
ment virtually any environment and agile enough to scale and update SLA man-
agement as needed. Given an SLA expressed using a formal SLA specification,
rSLA sets up the monitoring infrastructure and starts monitoring compliance.
Using rSLA the time of setting up SLA compliance monitoring of application
environments involving infrastructure, platform, and application services can be
significantly reduced and aligned with a typical DevOps life-cycle.

The remainder of this paper is organized as follows: The next section discusses
related work. Subsequently, we give an overview of the approach, followed by a
discussion of the rSLA language. After that we outline architecture and execution
model, including the implementation. In this section we also show in a case
study how we applied our approach to a real customer environment. Finally, we
summarize and conclude.

2 Related Work

QoS has been an important part of IT Service management for a long time. As a
result, a significant body of work has focused on different aspects of QoS - from
measurement to enforcement.

In addition to typical IT service SLA management products mentioned in the
introduction, many providers of Cloud and networking services do provide spe-
cific service performance/availability information on their Web sites or through
APIs. This is often the basis of tiered service offerings, with better quality
demanding a higher price. For instance, Amazon provides a generic monthly
uptime SLO of 99.95 % for their compute resources and performance SLO of 2 k
IOPS for EBS SSD volumes at the point of writing of this paper. [2] provides
a survey on current service level provisioning practices and compares the SLAs
of five public cloud service providers. While this typically entails some kind of
availability/performance guarantees it is not a custom SLA, tailored to a client’s
business needs. This one size fits all policy is often too restrictive.

An important part of a solution to automate SLA management is a for-
mal, machine-interpretable representation of the SLA. Several specifications have
been proposed in the Web service and Grid context such as the Web Service Level
Agreement language (WSLA) [10], the Web Services Offer Language (WSOL)
[17] and Web Service Agreement (WS-Agreement) standard of the Open Grid
Forum [1]. WSLA is designed to capture SLAs for web services and is used,
among other things, to facilitate automatic service configuration, e.g., to con-
figure load balancers of clustered Web servers. WS-Agreement inherits language
characteristics of the WSLA specification and has been used in numerous ini-
tiatives [3,16]. SLA representations were also used for on-demand service provi-
sioning [5,9] and automated service composition [18].

142 H. Ludwig et al.

These uses require the automatic set up of SLA compliance monitoring for
the systems they are applied to, e.g., Web services. While reading metrics at
specific points of a distributed cluster could be described in some representa-
tions such as WSLA there was no prescribed way to address the heterogeneous
instrumentation found in today’s Cloud scenarios. It was not really necessary
because the systems instrumented were assumed to be Web servers, Grid sched-
ulers, etc. A number of approaches that use SLAs as a key element of compliance
evaluation, such as [4,13,14], have been proposed for application monitoring in
dynamic systems. Like these authors, we focus on comprehensive QoS monitor-
ing of SLAs. However, our approach includes a flexible and scalable monitoring
mechanism and action framework required for quick setup of SLA monitoring
in today’s heterogeneous and dynamic cloud environment.

Recent work has investigated SLAs for Cloud deployments. In [7] Kouki et al.
propose the Cloud Service Level Agreement language (CSLA) that enables the
definition of SLAs for any type of cloud service. CSLA is intended for dynamic
service provisioning environments and is based on the Open Cloud Computing
Interface (OCCI) [15] and the Cloud Computing Reference Architecture of the
National Institute of Standards and Technology (NIST) [8]. While these propos-
als define some common metrics and SLA parameters to set individually they
reflect more an advertised QoS than a commitment to an individual customer.

In contrast, our work focuses on building a light weight, extensible system
for SLA management with the goal of rapid deployment and adaptability to
ever changing cloud landscape and customizability to different client business
requirements.

3 Overview of the Approach

The key objective of our SLA compliance monitoring system presented in this
paper is the fast setup of monitoring an SLA in an environment in which the
subject of monitoring is evolving quickly and services expose heterogeneous mea-
surement interfaces. This section provides an overview of our approach how to
address all of those issues at the same time. The first subsection discusses the
system model outlining how the rSLA service interacts with interfaces of a het-
erogeneous environment. The second part describes the major elements of an
SLA document’s content.

3.1 System Model

Cost, availability and on-demand scaling have accelerated customer adoption
of different application deployment models - on-premise Cloud, private Cloud,
public Cloud or hybrid Clouds, in addition to their traditional dedicated envi-
ronments. Depending on the services an application depends on, the choice of
platform varies. A single application could potentially be reliant on multiple
Clouds for the set of services it consumes. From a customer or tenant perspec-
tive, monitoring service levels that their workloads are receiving often becomes
a complex task of aggregating information across multiple Cloud providers, each

rSLA: Monitoring SLAs in Dynamic Service Environments 143

Fig. 1. rSLA system overview

using different proprietary monitoring and management stacks. Furthermore, the
DevOps transition increases the rate of change of applications and consequently
their bindings to services.

Figure 1 shows an overview of the proposed rSLA system model. The rSLA
framework is made up of three main components:

1. a language for administrators or service providers to express service level
agreements;

2. a set of Xlets - lightweight, dynamically bound adapters; Xlets abstract the
heterogeneity of service management interfaces to rSLA, both for the reading
of metrics as well as the acting on the result of SLA evaluation; and

3. a modular SLA evaluation service; this service interprets the rSLA document.
It performs the reading of measurements through monitoring Xlets as defined
in the document, aggregates metrics, evaluates compliance and then notifies
stakeholders.

A formal language for SLAs is the key to both custom SLAs on a case-by-
case basis and fast deployment of the SLA. The Xlet approach provides the
level of abstraction and indirection to intermediate between service interface
heterogeneity and the need of the SLA evaluation service to read metrics in a
homogeneous way.

The rSLA evaluation itself can be deployed in any of the Cloud deployment
models - on-premise Cloud, private Cloud, public Cloud or hybrid Clouds. Fur-
ther sections describe the language concepts, the execution model, and imple-
mentation. The case study later in the paper discusses some Xlets we wrote for
a particular Cloud service.

144 H. Ludwig et al.

3.2 SLA Model

An rSLA document describes how metrics are to be obtained from instrumen-
tation and how they are to be aggregated. Based on those metrics Service Level
Objectives (SLOs) can be defined and it can be specified how to proceed if those
SLOs are met or violated. Figure 2 illustrates the main concepts of the proposed
approach using a simple example.

Fig. 2. rSLA concepts overview

This example describes an SLA defining networking guarantees. The cus-
tomer is interested in a daily guarantee, which needs to exceed 99.5 % availabil-
ity, and an hourly one, which needs to be only 99 %. The current status of the
network at any given point in time can be obtained at the proprietary interface
of the Cloud provider with whom the customer enters the SLA. There is an Xlet
exposing an rSLA monitoring interface that can be requested to provide network
status in an rSLA standard way and which in turns requests this status from
the proprietary Cloud management interface.

When expressing the rSLA document the author of this document has to
describe how to translate what can be read by instrumentation into a high-
level metric on which the customer wants to have a commitment. In addition,
the actual SLO must be articulated. This gives us our main set of concepts for
rSLA:

rSLA: Monitoring SLAs in Dynamic Service Environments 145

The foundation of measurement are base metrics. Base metrics describe how
metrics are to be obtained from instrumentation and how frequently. For this
purpose a base metric has a measurement directive and a schedule.

The measurement directive describes how a specific metric can be obtained
through an Xlet. It points to an Xlet, the specific service entity, and the metric
to be obtained. For example, our networking Xlet for this Cloud provider may
provide status for an external access network as well as the internal network,
connecting the different virtual machines of this customer (service entities). Mul-
tiple metrics may be available for those entities such as availability and latency.
The measurement directive will point to the specific metric of a specific entity.

The schedule describes the frequency at which measurements are taken. The
periodicity can reflect the customer’s needs. For our networking example this
time frame will typically be a sampling interval in a range of seconds to minutes.

Composite metrics aggregate values of base metrics and other composite met-
rics. The aggregations are described using expressions over values from the met-
rics it depends on. The phrasing of the expression must be type-compatible with
the types of the input metrics. Oftentimes, expressions involve aggregations of
time series, e.g., to averages over a time period, or aggregate different metrics
such as the network availability of multiple network segments. In our example,
two composite metrics depend on the same base metric, one aggregating network
state in the window of the last hour, one in the window of a day. While the basic
approach to metric aggregation is simple, we often find quite complex functions
excluding some values and performing complex stochastic operations. This puts
significant requirements on the richness of expressions the language provides.

Service Level Objectives define the commitment of a service provider to its
customer. This is defined in a Boolean expression over metric values. Oftentimes,
commitments are bounded by a precondition. For example, a response time
guarantee for a REST call is only given if the request rate to the service is less
than a certain number of calls per minute. This is commonly used to scope the
applicability of the SLO. SLOs can also be associated with a schedule that defines
when to evaluate the precondition and objective expressions. Alternatively, it
can be evaluated each time input metrics have new values. This might lead to
a significant computation effort when large numbers of metrics are sampled at
high frequency.

Finally, though not shown in the figure, notifications define how external
services are to be informed about the state of SLOs and metrics. The rSLA lan-
guage provides notifications as event-condition-action rules that describe when
notifications should take place, according to a schedule or when a new evalua-
tion is available; the specific condition, e.g., upon violation; and how to notify.
For this “how” part, the action, we fall back to our Xlet concept. Notification
Xlets provide a homogeneous interface abstracting from various possible recip-
ient interfaces. Notification directives describe how to connect to those Xlets.
Notification statements also include a description which information is to be
passed on, the marshalling of the action.

146 H. Ludwig et al.

Based on this small set of concepts SLA authors can express a large variety of
SLAs. Measurement directives connect the rSLA language to the systems model;
composite metrics can express custom metrics aggregation to the level needed
by the client; SLOs express the commitment; notifications define how to actively
communicate the SLO status and other information to recipient services.

4 rSLA Language

The rSLA language allows an SLA author to express the concepts outlined in
the previous section. The specific language design is key to the consumability of
the language and the usability of the approach as a whole. Prior to diving into
the specifics of our language elements we want to briefly discuss some issues and
guiding principles.

4.1 Design Considerations

Many of past and current approaches to representing SLAs such as WSLA, WS-
Agreement, WSOL and CSLA choose XML as a substrate. While some of those
languages have enjoyed success in systems deployment or as basis for further
research work none has seen wide-spread adoption in industry at this point.
While not having systematically studied adoption, the authors of this paper
have been involved in some of those efforts and received feedback as to why or
why not to use one language or another. A key item of feedback from practi-
tioners was that XML is hard to read. While there is always the opportunity
to provide advanced editors to not expose authors to the actual representation
many professionals actually prefer writing system-level scripts.

When considering who actually writes rSLA documents it turns out that
this would often be administrators with significant experience in scripting. The
rSLA syntax is designed to resemble other languages that administrators use on
a daily basis. Many domain specific languages have seen acceptance lately, e.g.
Chef (www.chef.io). rSLA aims at providing a similar experience to its authors.

Another issue with early efforts such as WSLA is the limitation of its expres-
sion language, or its complete absence in the normative specification, in case of
WS-Agreement. While WSLA has an extensible set of functions, a practitioner
would actually have to change its evaluation engine to extend it. This is not
practical. WS-Agreement suggests to use the expression language of your choice,
again requiring an addition to a runtime system. From a practitioner’s perspec-
tive they are incomplete. The rSLA language is meant to encompass a wide set
of functions that can be used in expressions. In addition, the language design
enables to define extension to the standard language expression scope as part of
the SLA document itself.

To achieve those objectives the rSLA language is designed as a Domain Spe-
cific Language (DSL) on the basis of Ruby - hence the “r” in rSLA. Ruby,
as a substrate language, has some characteristics that makes it suitable as a

www.chef.io

rSLA: Monitoring SLAs in Dynamic Service Environments 147

basis of a DSL, in particular its scripting approach and its easy access to meta-
interpretation. Many DSLs such as Chef are also based on Ruby and administra-
tors often have encountered those before. Other languages and their interpreters
might be equally suitable from a technical requirements perspective.

4.2 rSLA Language Elements

This section discusses the rSLA language elements in an overiew and example
manner. We provide a small rSLA document that specifies three rSLA objects:
an SLA, a base metric and a service level objective. The SLA can be read by an
rSLA engine in a cloud runtime environment. A full specification of the language
is beyond the scope of an individual paper of this format. The rSLA language
documentation describes in detail the language structure, the use of rSLA state-
ments, and its production rules [11].

Listings 1.1 and 1.2 illustrate example statements for the creation of an SLA
and a base metric and, respectively, of an SLO object. A deployed rSLA ser-
vice can read and process these statements in a runtime environment. An rSLA
document must have exactly one sla statement. The sla statement defines the
parties to the SLA.

1 sla do

2 tenant "ExampleClient "

3 provider "ExampleProvider "

4 end

5

6 basemetric do

7 name "bareMetalProvisioning "

8 unit "seconds"

9 type "event set integer"

10

11 measurementdirective do

12 entity "/process/baremetal_provisioning "

13 type "event set integer"

14 source "http :// provisioningxlet.stage1.mybluemix.net/

process/baremetal_provisioning /time"

15 end

16

17 schedule do

18 frequency "1"

19 unit "m"

20 method "every"

21 end

22 end

Listing 1.1. rSLA SLA (lines 1–4) and basemetric (lines 6–19) statements

The base metric definition includes its measurementdirective and may
include a schedule if values are received according to a schedule. Its attributes
are name, unit and type.

The type of this particular example is an event set of integers. Types of
metrics can be either simple types or one of two complex types: time series and

148 H. Ludwig et al.

event set. An event set is a set of values collected over time. Typical examples
include provisioning events. In a given time interval any number of provisioning
processes may have occurred. If a provider wants to give a guarantee over the
time it takes to provision, say for 90 % of the processes, we need a complex type
able to accommodate this set of values representing the time it took. Time series,
on the other hand, are equidistant readings of values.

The measurement directive describes where to read the base metric values.
It describes the entity in question, its type, and the source. In this specific case
the source is a fully articulated URL. Based on the detailed metric name and
the entity specification a reference to an Xlet name could have sufficed as well.

The schedule follows the syntax of the Rufus scheduler [12], which is sufficient
for our purposes.

Another required element of an SLA is the SLO. An example of such an SLO
statement is illustrated by Listing 1.2.

1 slo do

2 name "bareMetalProvisioning"

3 precondition "bmtotalProvisionsNumber .value≤100"

4 objective "bmGoodProvisionsNumber.value\

bmtotalProvisionsNumber .value≥0.9"

5

6 schedule do

7 frequency "60"

8 unit "m"

9 method "every"

10 end

11 end

Listing 1.2. rSLA SLO creation script

The SLO definition in Listing 1.2 provides an example of an SLO statement
in the rSLA language. The slo has a name to refer to, a schedule according to
which it is evaluated and two expressions: the precondition defines the bounding
condition of the SLO while the objective defines what must be achieved.

Upon SLO evaluation, the rSLA engine will first evaluate the precondition
block. If the logical outcome from the execution of the precondition block is false,
the SLO is met. In our case, if the total number of bare metal servers provisioned
in the past hour is less or equal than hundred, the SLO applies. If it is larger,
it doesn’t - and no violation occurs. In case the precondition is true or if there
is no precondition block, the rSLA runtime evaluates the objective block. If the
logical outcome from processing the statements in the objective block is true the
SLO is healthy. Otherwise the SLO evaluation indicates a violation.

Both base metric and SLOs enable a user to define schedules for the measure-
ment and respectively the evaluation of such rSLA instances. Schedule details are
passed to a scheduler service that instantiates schedule objects and coordinates
their processing.

Both precondition and objective are expressions following Ruby syntax. Val-
ues of metrics, both base metrics and composite metrics, are referred to by

rSLA: Monitoring SLAs in Dynamic Service Environments 149

their name “.” value. This can refer to a complex type or a simple type. Ruby
expressions resolving to a Boolean type are valid. This enables authors to use
any available Ruby function, providing the full expressiveness of the substrate
scripting language.

Not illustrated for space reasons is the composite metric statement. It has
name, unit and type like the base metric but rather than a measurement direc-
tive it has an expression as well, which has to yield a result according to its type.
Equally, all type-compatible Ruby expressions are valid.

This syntax allows administrators and others of similar skill to define SLAs
in a scripting-like DSL. Using an existing scripting language as substrate, in our
case Ruby, enables us to use a full scope of expressions.

5 rSLA Runtime Architecture and Implementation

The rSLA Service is designed to be run either by a service provider, a customer,
or a third party such as a service integrator. The following section explains the
components constituting the rSLA service and its interaction with xlets.

5.1 rSLA Service

The rSLA service is a Ruby application, a given because it is a Ruby DSL. rSLA
offers different REST interfaces that allow the management of the life cycle of
an SLA described using our DSL.

The rSLA service exposes a set of life cycle management functions to its user,
in particular to create, activate, deactivate and remove SLAs. At the reception
of a new SLA, the rSLA Service interprets the file and creates a set of objects.
The new objects are persisted in a Cloudant no-SQL database service using a
CouchRest data model.

On the activation of an SLA, the rSLA Service orchestrates all the needed
operations to activate and manage the SLA life cycle. It starts by scheduling
data collection for base metrics with the rSLA scheduler service, which is a
companion service to the rSLA application itself. Based on the defined schedules,
the scheduler triggers rSLA Service interfaces exposed to the scheduler associated
with metrics. The rSLA service then invokes the monitoring Xlets to collect
new observations for the related base metrics. The observations received from
Xlets are persisted in Cloudant. Observations are JSON structures returned by
monitoring Xlets that contain the metric value requested, a time stamp and an
extras object that contains more information useful for further diagnostics. For
example, in case of our provisioning processes, in addition to the provisioning
time as the value of the metric it may be interesting to know which particular
server has been provisioned if a provisioning process takes longer than expected.

Similarly, according to the schedule of an SLO, the Scheduler triggers an
rSLA Service interface for SLO evaluation. The rSLA service then retrieves
the data related to the specific SLO, reifies the corresponding metrics as Ruby

150 H. Ludwig et al.

objects and then evaluates the expressions of the SLO, precondition and objec-
tive. As an optimization step, this evaluation may use the map-reduce functions
offered by Cloudant to delegate possible parallel processings to Cloudant and
benefit from its efficiency.

Afterwards, the rSLA Service generates JSON notifications representing the
results of the evaluation. These notifications are sent to the Notification Xlet for
formatting and reporting to the client.

5.2 rSLA Xlets

As described previously, Xlets offer a standard interface for monitoring and noti-
fication as a generic REST API, abstracting from the heterogeneity of different
service interfaces. In our architecture, Xlets are services on Bluemix. An Xlet is
customized according to its role in the overall system. As shown in Fig. 3, each
Xlet provides three interfaces:

– CFBrokerInterface: Since the Xlets are provided as services on Bluemix, they
need to offer this generic interface that describes exactly how to provision the
service, how to unprovision it, how to bind the service to a given application
and how to unbind it.

– ConfigurationInterface: In order to ensure multi-tenancy and customization
of an Xlet, it must offer an interface to configure its tenancy. This interface
could offer other functionalities of customization, e.g., to configure the access
credentials for Cloud resources.

– RuntimeInterface: This interface provides the main business of the xlet. It
describes the specific functionalities to be offered by the application instance
(e.g., monitoring services, reporting services).

All Xlets observe the same architecture but differ in their implementations
from one use case to another. The runtime interface of the monitoring Xlets are
in line with the DMTF Cloud Infrastructure Management Model [6]. They allow
collecting monitoring data for a specific type of resources with different granu-
larities. For example, Fig. 3 shows a SoftLayer specific Xlet. The SLXlet allows
to get monitoring data of SoftLayer-provisioned servers for a given account. The
account credentials are passed to the Xlet in the configuration phase through
the Configuration interface. Afterwards, the runtime interface of the Xlet can be
used to get the list of servers, the list of metrics for a given server, or the value
for a given metric for a specific server.

Fig. 3. Xlet interface design

rSLA: Monitoring SLAs in Dynamic Service Environments 151

Using a PaaS as Xlet platform, in our case the Bluemix implementation of
Cloud Foundry, has advantageous characteristics: scalability is inherited from
the scalability of the Bluemix environment. Since the Xlet can be provisioned as
an application or a service within Bluemix, it is easy to scale it horizontally to
cope with the work load by adding or removing new instances. All Xlets have a
common and generic core code that often allow the easy reusability with minor
modifications for specific use cases. Managing Xlets is handled to Bluemix, the
management here includes provisioning, deprovisioning, binding and unbinding
Xlets to the rSLA service. Xlets can be integrated flexibly using Bluemix services
and can be provisioned using different plans, e.g., shared or dedicated. The rSLA
architecture itself does not depend on a specific PaaS code base or service.

5.3 Case Study

We have conducted a pilot of the rSLA service to support the management of
Cloud services used by an existing customer. In one agreement, the customer
migrated a workload from a customer-owned, on-premise data center environ-
ment to the IBM Softlayer Infrastructure-as-a-Service. Along with the move, the
customer required the monitoring of seven custom SLOs that had never been
offered previously by the service provider in the Cloud in this form.

Each of the seven SLOs consist of one base metric and one service level
objective, with multiple composite metrics used to aggregate to level needed by
the SLOs. The rSLA document has been defined based on the written agreement
with the customer and discussions with the client. The rSLA was submitted to
and executed by the rSLA service to activate and initiate the measurement of
the involved base metrics. The rSLA service monitors, measures, evaluates and
reports the service level status of the seven involved SLOs on a daily basis,
resulting in about 100 MB/month in observation data.

We developed three different Xlets to monitor various aspects of the service
such as network status and provisioning process times, as well as one Xlet for
email notification. Overall, it took 3 weeks from first contact with the project
team to the start of monitoring. This included the development of the specific
Xlets, the definition of the SLA document, and obtaining the access keys to the
client’s Cloud service API. This is much faster than a traditional integration to
an enterprise SLA management system. In a future scenario, these Xlets could be
reused for another client of Softlayer requesting an SLA related to the same base
metrics. The remaining effort only comprises the writing of the SLA document
and obtaining the API keys for monitoring Xlet configuration, which may be as
little as a number of hours or a day. Over time, having acrued a variety of Xlets
for various service interfaces, SLA monitoring for popular services can be set up
just based on an rSLA document.

6 Summary and Conclusions

Today’s cloud-based application environments enable their users to deploy and
change applications constantly, binding to different services and platforms on

152 H. Ludwig et al.

short notice. Traditional enterprise SLA management typically requires a com-
plicated setup process lagging far behind the application life cycles of a DevOps
environment. Current industry practice to Cloud SLA management often fails
to take into account specific customer needs. Existing approaches for Web and
Grid services often fail to deal with interface heterogeneity in an effective way
and have a syntax that is often perceived to be cumbersome by practitioners.

The rSLA approach presented in this paper addresses the efficient specifica-
tion of SLAs in a formal language and, at the same time, uses the Xlet archi-
tecture abstractions to overcome issues of heterogeneity. While reusing some
existing concepts such as metrics and SLOs, rSLA makes a number of significant
contributions to meet the objective of fast SLA deployment in a Cloud environ-
ment: Xlets provide a standard way to refer to and use diverse interfaces. The
concept of rSLA measurement directives ties base metrics to the way metrics can
be obtained through Xlets, thereby enabling references to metrics from various
interfaces in the language. The design of the rSLA language as a Ruby DSL
provides access to a full expression language in a way that is familiar to many
target users such as administrators using Chef.

The approach has been implemented on Bluemix and tried out in a pilot,
monitoring IaaS-related SLOs. This has been accomplished much faster than
using an enterprise SLA management system and we were able to deal with a
previously unknown management API, which Web service-oriented systems such
as WSLA cannot. In addition, the resulting SLAs are actually legible. While we
have obtained first results of our approach presented in this paper further work
will be required addressing expressiveness of different scenarios, performance,
and user acceptance.

The current implementation still has some limitations: it does not allow a
user to specify his own measurement mechanisms and xlets are bound statically.
We expect to address some of those issues in future work.

References

1. Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Nakata, T.,
Pruyne, J., Rofrano, J., Tuecke, S., Xu, M.: Web Services Agreement Specification
(WS-Agreement), September 2005. http://mailman.ogf.org/documents/GFD.107.
pdf

2. Baset, S.A.: Cloud slas: present and future. SIGOPS Oper. Syst. Rev. 46(2), 57–66
(2012)

3. Butler, J., Lambea, J., Nolan, M., Theilmann, W., Torelli, F., Yahyapour, R.,
Chiasera, A., Pistore, M.: SLAs empowering services in the future internet. In:
Domingue, J. (ed.) The Future Internet. LNCS, vol. 6656, pp. 327–338. Springer,
Heidelberg (2011)

4. Comuzzi, M., Kotsokalis, C., Spanoudakis, G., Yahyapour, R.: Establishing and
monitoring slas in complex service based systems. In: IEEE International Confer-
ence on Web Services 2009, ICWS 2009, pp. 783–790, July 2009

5. Dan, A., Davis, D., Kearney, R., Keller, A., King, R., Kuebler, D., Ludwig, H.,
Polan, M., Spreitzer, M., Youssef, A.: Web services on demand: WSLA-driven
automated management. IBM Syst. J. 43, 136–158 (2004)

http://mailman.ogf.org/documents/GFD.107.pdf
http://mailman.ogf.org/documents/GFD.107.pdf

rSLA: Monitoring SLAs in Dynamic Service Environments 153

6. Cloud Management Working Group, D.: Cloud infrastructure management inter-
face (CIMI) model and RESTful HTTP-based protocol an interface for manag-
ing cloud infrastructure, dsp0263. Technical report, Distributed Management Task
Force, Inc. (2014)

7. Kouki, Y., de Oliveira, F., Dupont, S., Ledoux, T.: A language support for cloud
elasticity management. In: 2014 14th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGrid), pp. 206–215, May 2014

8. Liu, F., et al.: SP 500-292 Cloud Computing Reference Architecture, September
2011

9. Ludwig, H., Dan, A., Kearney, R.: Cremona: an architecture and library for cre-
ation and monitoring of WS-agreements. In: Proceedings of the 2nd International
Conference on Service Oriented Computing (ICSOC 2004), pp. 65–74. ACM (2004)

10. Ludwig, H., Keller, A., Dan, A., King, R., Franck, R.: Web Service Level Agreement
(WSLA) Language Specification. Technical report, IBM Corporation, January 2003

11. Ludwig, H.: rSLA language specification. Technical report, IBM research Almaden
USA, May 2015

12. Mettraux, J.: rufus-scheduler (2005). https://github.com/jmettraux/
rufus-scheduler. Accessed January 2015

13. Michlmayr, A., Rosenberg, F., Leitner, P., Dustdar, S.: Comprehensive QoS moni-
toring of web services and event-based SLA violation detection. In: Proceedings of
the 4th International Workshop on Middleware for Service Oriented Computing,
MWSOC 2009, pp. 1–6. ACM, New York (2009)

14. Muller, C., Oriol, M., Franch, X., Marco, J., Resinas, M., Ruiz-Cortes, A.,
Rodriguez, M.: Comprehensive explanation of SLA violations at runtime. IEEE
Trans. Serv. Comput. 7(2), 168–183 (2014)

15. OCCI: Open Cloud Computing Interface (2010). http://occi-wg.org/
16. Torkashvan, M., Haghighi, H.: Cslam: a framework for cloud service level agree-

ment management based on WSLA. In: 2012 Sixth International Symposium on
Telecommunications (IST), pp. 577–585, November 2012

17. Tosic, V., Patel, K., Pagurek, B.: WSOL - web service offerings language. In:
Bussler, C.J., McIlraith, S.A., Orlowska, M.E., Pernici, B., Yang, J. (eds.) CAiSE
2002 and WES 2002. LNCS, vol. 2512, pp. 57–67. Springer, Heidelberg (2002)

18. Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J., Sheng, Q.Z.: Quality driven
web services composition. In: Proceedings of the 12th International Conference on
World Wide Web, WWW 2003, pp. 411–421. ACM, New York (2003)

https://github.com/jmettraux/rufus-scheduler
https://github.com/jmettraux/rufus-scheduler
http://occi-wg.org/

AISLE: Assessment of Provisioned Service
Levels in Public IaaS-Based Database Systems

Jörn Kuhlenkamp(B), Kevin Rudolph, and David Bermbach

Information Systems Engineering Research Group,
Technische Universität Berlin, Berlin, Germany

{jk,kr,db}@ise.tu-berlin.de

Abstract. When database systems running on top of public cloud ser-
vices run into performance problems, it is hard to identify the concrete
infrastructure service for which provisioning additional resources would
solve said performance problem. In this work, we present AISLE, which
develops a model for expected service levels and includes metrics which
assess values from service level monitoring to identify these cloud ser-
vices. Using AISLE, we develop such a model for the Amazon EBS ser-
vice and evaluate our approach in experiments with Apache Cassandra
running on top of EBS-backed EC2 instances.

Keywords: Cloud computing · IaaS · Service levels · Cloud monitoring

1 Introduction

Today’s database systems often run on top of IaaS cloud services where the
database administrator provisions the required amount of resources for each
underlying service. A systematic approach for identifying the required amount
is still missing today so that the administrator will typically provision resources
based on his gut feeling and adapt later on. Even if the database system is
already deployed and running and even if detailed monitoring data is available,
it is challenging to identify the specific cloud services where additional resources
should be provisioned. This is typically the case since cloud providers offer only
very limited Service Level Agreements (SLAs) so that it is hard to interpret
monitoring results.

Another problem is that not only the workloads, which the database system
is confronted with, change over time requiring adaption of provisioned resource
amounts but also the observable service levels of cloud services may vary over
time due to a lack of SLAs, e.g., [3].

In this work, we present AISLE (Assessing Infrastructure Service Level
Environments), an approach that develops a model for an Expected Service Level
(ESL) based on SLA information, documentation, and benchmarking results.
Part of this approach are three metrics which enable the database administra-
tor to easily assess whether the observed monitoring data for a specific service
quality is limited by this expected service level, thus, identifying cloud services
c© Springer-Verlag Berlin Heidelberg 2015
A. Barros et al. (Eds.): ICSOC 2015, LNCS 9435, pp. 154–168, 2015.
DOI: 10.1007/978-3-662-48616-0 10

AISLE 155

where additional provisioned resources are likely to positively affect the database
system. We then use this approach to develop an ESL model for the Amazon
EBS service1 based on documentation and benchmarking. As an evaluation,
we deployed an Apache Cassandra cluster on EBS-backed EC22 instances and
verified experimentally that provisioning extra resources for the services identi-
fied by our metrics yields much better results than other more intuitive scaling
approaches.

The paper is structured as follows: Sect. 2 gives a brief introduction to selected
cloud services, systems and benchmarking tools. Section 3 describes AISLE, and
Sect. 4 presents our application of AISLE to the EBS service. In Sect. 5, we use
the model developed in Sect. 4 to evaluate our approach before discussing related
work (Sect. 6) and coming to a conclusion (Sect. 7).

2 Background

In this section, we will briefly introduce cloud services, systems, and tools which
we will refer to later.

Amazon Web Services: The Amazon EC2 service offers virtual machines
(EC2 instances). EC2 instances have an instance type which determines the
amount of resources, e.g., virtual CPU cores or memory, available to applica-
tions running on that instance. For disk storage, EC2 instances can use either
ephemeral disk or EBS volumes, instances of the Amazon EBS service. EBS
volumes come in different sizes and have a type (e.g., Provioned IOPS) which
determines the service level and the amount of dedicated bandwidth.

Apache Cassandra: Cassandra, a NoSQL system initially developed as a write-
efficient database for the Facebook message inbox [10], is maintained as Apache
project and widely used, e.g., by Netflix. Cassandra implements the Dynamo
replication architecture [7] and a BigTable-inspired schemaless data model and
storage engine [4].

Flexible I/O Tester: The Flexible I/O Tester (FIO)3 is a tool for studying disk
or network performance metrics on Linux systems. FIO works by synthetically
creating workloads based on a stochastic model and offers extensive configuration
options which makes it particularly suitable for our needs.

Yahoo! Cloud Serving Benchmark: The Yahoo! Cloud Serving Benchmark
(YCSB) [5] is an extensible, modular benchmarking tool which emulates clients
of a distributed database system and measures client-side performance metrics.
YCSB comes with a set of standard workloads of which we use workloads A and
B; A is a write-heavy (50 % read and 50 % update requests), B a read-heavy
(95 % reads and 5 % updates) workload. We use both workloads with a uniform
request distribution.
1 aws.amazon.com/ebs.
2 aws.amazon.com/ec2.
3 linux.die.net/man/1/fio.

http://www.aws.amazon.com/ebs
http://www.aws.amazon.com/ec2
http://linux.die.net/man/1/fio

156 J. Kuhlenkamp et al.

3 Assessing Cloud Service Levels

In this section, we describe AISLE, which transforms monitoring data into a
quality metric-independent score describing how close the specific metric is to
an ESL. As cloud providers give very few guarantees in SLAs, we first discuss
how a (potentially complex) model – describing service levels a cloud service user
could realistically observe – can be developed. Afterwards, we introduce three
metrics which describe how a given monitoring value ranks compared to said
model. These metrics can then be used to easily identify cloud services where
additional resources are likely to have a strong effect on the database system.

3.1 Deriving a Model for Expected Service Levels

Cloud providers rarely offer SLAs that characterize service levels a database
administrator can expect from the cloud service(s) the database is running on. If
any, these SLAs typically give very limited guarantees [2]. Beyond these explicitly
guaranteed service levels, additional information can be gained from documen-
tation or via infrastructure benchmarking – this information describes service
levels that are not guaranteed but which can still be realistically expected in
database deployments. Explicit SLAs will typically be very precise, guarantee-
ing concrete metric values, e.g., a compute service might guarantee a minimum
number of 1.5 Tera Flops per virtual machine. Implicit SLAs, in contrast, could
be based on large data sets describing relative frequencies of values measured,
e.g., EC2 instances would, based on [12], have a distribution function with two
peaks characterizing their computation power. Alternatively, a documentation-
based implicit SLA could require a relatively complex model, as we will see later
in this paper. In any case, a model for ESLs should describe relative frequencies
of service levels which can be expected when using that specific cloud service, i.e.,
an ESL is only for the most simplistic scenario a single value but will typically be
a distribution of values. Also, even the “best”4 value of an ESL is not necessarily
the “best” value which can be reached – positive outliers are always possible –
but it describes service levels that can be realistically reached in practice.

3.2 Normalizing Monitoring Data

For a given Observed Service Level (OSL), which can be obtained through run-
time monitoring, we would like to characterize how “close” this value is to the
ESL of the corresponding service quality. For quality-independent description
and analysis of this “closeness”, we propose to normalize service levels in a way
that assigns 100 % to observed service levels that reach exactly the ESL. We
call this normalized service level Service Level Pressure (SLP). Please, note that
SLP can reach values beyond 100 % whenever an observed service level exceeds
the ESL.

4 What “best” is, highly depends on the respective quality metric.

AISLE 157

The SLP for a given OSL o is defined as the ratio of o to the ESL. If the
ESL is a single value then SLP(o) is trivial to calculate (e.g., if ESL is 5 and o is
3, then SLP(o) is 60 %.). If the ESL is a discrete distribution assigning relative
frequencies f to service level values s, then the SLP is calculated as the weighted
sum of all ratios o/s, i.e.,

SLP (o) =
∑

∀s

o

s
∗ f (1)

As SLP values are likely to show a large variability over time and short
random spikes rarely have an influence on the database system, we propose to
introduce the concept of time into two new metrics which are built on top of
SLP: For a given time series of SLP values, we are interested in the periods of
time during which these SLP values exceed a threshold that the database admin-
istrator deems critical, e.g., 70 %. Specifically, we propose to use the following
two metrics to describe these critical pressure durations:

– Maximum Critical Pressure Time: MCPT(c) describes the longest period of
time during which the SLP values continuously exceeded the value c.

– Total Critical Pressure Time: TCPT(c) describes the total time that the SLP
values of the time series exceeded the value c. TCPT(c) is expressed as per-
centage of the length of the time series.

0%

50%

100%

150%

200%

250%

300%

0 50 100 150 200 250 300 350 400 450 500

Se
rv

ic
e

L
ev

el
 P

re
ss

ur
e

Time [Seconds]

MCPT(95%) = 135s / 500s = 27%

TCPT(95%) = 318s / 500s = 64%

Critical SLP = 95%

Fig. 1. Maximum critical pressure time and total critical pressure time based on a
service level pressure threshold of 95 % for a 500 s interval.

Furthermore, beside using absolute values, we express both metrics as rela-
tive durations regarding the overall duration of the analyzed monitoring period
in percent. Figure 1 shows an example of MCPT and TCPT. High MCPT values

158 J. Kuhlenkamp et al.

imply a critical impact, e.g., caused by log consolidation [1] or online data migra-
tion [9], on the database system so that the amount of resources provisioned from
the corresponding cloud service should be reconsidered. High TCPT values, on
the other hand, are caused by the number of requests that the database receives,
i.e., they are a hint that indicates from which cloud services the database admin-
istrator should provision more resources if the additional load persists.

4 Expected Service Level Model

In this section, we present an ESL model for the Amazon EBS service to apply
AISLE to an infrastructure topology (topology) that includes EBS volumes. First,
we present an analytical ESL model based on the EBS documentation. Second,
we present results for an extended experimental evaluation of EBS, our exper-
imental toolkit FIOEBS and an resulting experimental ESL model. Third, we
discuss our results and compare analytical and experimental ESL models.

4.1 Analytical Expected Service Level Model

In implicit SLs, Amazon EBS gives throughput guarantees for volumes and con-
nections according to the documentation for the EBS API version 2015-03-01.
Precisely, volume throughput is quantified in (i) normalized operations per second
(no/s) and (ii) bandwidth per second (bw/s). Furthermore, connection through-
put is quantified in bw/s. A normalized operation (NO) no(o) describes an oper-
ation o that is issued against a volume as a function of the operation size in KiB
do. Therefore, a single operation is divided into a number of NOs based on a
normalized operation size ndo. If not stated otherwise, we assume a normalized
operation size of ndo = 256 KiB. Therefore, a single operation equals no NOs:
no(o) = �do/ndo�. For example, an operation o1 with request size do1 = 512 KiB
implies two NO.

An IO volume is provisioned with a configurable number of provisioned nor-
malized operations (PNO) per second pnoio = 0, . . . , 20000. The maximum num-
ber of configurable PNO depends on the configured volume size in GiB vsv of
a volume v: max pnoio(v) = 30 ∗ vsv. Furthermore, an IO volume provisions a
guaranteed bw/s pbwio: pbwio = 320 MiB/s.

EBS-optimized connections provide a dedicated guaranteed bw/s in MiB
pbwopt = 62.5, 93.75, 125, 250, 500 that depends on the instance type. Non EBS-
optimized connections do not provide any explicit performance SLs.

4.2 Experiment Setup

In this section, we present a subset of the benchmarking experiments we used
while trying to break and to extend the analytical performance model.

Infrastructure: We conduct all presented experiments in the same EC2 avail-
ability zone of eu-west-1 and use three different EC2 instance types in our

AISLE 159

experiments: t2.micro, t2.small, m3.medium. In the tests presented, we used
IO Volumes (io1) with sizes of 100 GiB and PNOs of 300, 900 and 1800.

Benchmarking: We use FIO in version 2.1.3 to generate workloads and collect
measurements. We deviate from the standard configuration with the following
parameters. We emulate synchronous requests, i.e., ioengine=sync, disable page
cache access, i.e., direct=1, refill buffers for operations, i.e., refill buffers=1,
and invalidate the buffer-cache, i.e., invalidate=1. We generate a synthetic data
set of up to 1 file and with a file size of 70 GiB. Before each experiment, we
execute a load phase in which we create file descriptors and write every block of
the complete dataset.

Workload: We use a Ramp Phase of 120 s in which no measurements are col-
lected to avoid skewed measurements during initialization. Afterwards, we exe-
cute a Run Phase for 120 s during which we collect measurements. We use a
single thread to issue operations with an operation size of 4, 32, 64, 256 or 1024
KiB. We issue operations with a random variation of the file offset between issued
operations. Furthermore, we use 5 workload mixes with different combinations
of read percentage (R) and write percentage (W): (i) R100/W0, (ii) R75/W25,
(iii) R50/W50 (iv) R25/W75 and R100/W0.

Measurements: We collect performance measurements with a granularity of 1 s
on the user-side, i.e., Iostat, and 1 min on the provider-side, i.e., CloudWatch.
Precisely, we measure throughput, i.e., average number of operations per second
(ops/s) and average bandwidth per second (bw/s) in KiB, and, latency, i.e.,
average per operation latency. Due to space restrictions, latency measurements
are not presented in this paper but included in the primary data set.

Implementation of the Experiment Toolkit: We designed and implemented
an extensible toolkit called AisleEbs5 to automate the setup of testbeds and
the execution of experiments. Furthermore, we want to foster reproducibility of
our experiments. AisleEbs allows to setup, execute and aggregate results for a
number of FIO experiments on Amazon EC2. We implemented AisleEbs based
on the configuration management system Ansible6. Figure 2 provides a concise
overview of the interactions of AisleEbs.

Experiments: Due to restricted space, we only include a subset of our experi-
ments and datasets. Within this paper, variable parameters in experiments are:
instance, instance type, PNOs, workload mix and operation size. The presented
results correspond to a total of 1125 experiments that are composed as follows:
1125 experiments = 3 (instance type) × 3 (PNOs) × 5 (operation size) × 5
(workload mix) × 5 (repetitions).

4.3 Experiment Results

Over all experiments, we do not see significant variations for the three parame-
ters instance, instance type and workload mix. Therefore, we present results for
5 github.com/jkuhlenkamp/aisle ebs.
6 ansible.com/home.

http://www.github.com/jkuhlenkamp/aisle_ebs
http://www.ansible.com/home

160 J. Kuhlenkamp et al.

Fig. 2. Overview on interactions within a AisleEbs experiment testbed.

different PNOs and record sizes, i.e., 75 experiments per boxplot. We encourage
the interested reader to analyze and/or reproduce our dataset that is available
with our toolkit implementation. Presented Boxplots show averages instead of
the medians, boxes present 25th and 75th percentils and whiskers 1st and 99th
percentils.

0

500

1,000

1,500

2,000

2,500

 4 32 64 256 1,024

O
pe

ra
tio

ns
 [

#/
s]

Request Size [KiB]

(a) Operations per second

0

20

40

60

80

100

120

140

160

180

4 32 64 256 1024

B
an

dw
id

th
 [

M
iB

/s
]

Request Size [KiB]

(b) Bandwidth per second

Fig. 3. Throughput for 100 GiB volume size and 300 PNOs.

300 Provisioned Normalized Operations. Figure 3 shows our results for
300 PNOs. Figure 3a shows an avg. throughput of 300 ops/s for operation sizes
up to 64 KiB with low variability. With increasing operation sizes avg. ops/s drop
down to a minimum of 60 ops/s for 1024 KiB. Figure 3b shows an proportional

AISLE 161

increase in avg. bw/s with increasing operation sizes up to 64 KiB with low
variability. For operation sizes of 256 KiB and 1024 KiB observed bw/s further
increases by a lower factor at large variability.

Our results indicate that up to an operation size of 64 KiB throughput is
limited by the number of PNOs. Furthermore, low variability indicates that
PNO-based SLs are enforced effectively with low provider-side over- and under-
provisioning. For request sizes of 256 KiB and 1024 KiB, our results indicate
that throughput is limited by available bw/s. Furthermore, increasing variability
indicates that bandwidth-based SLs are not enforced as strictly and/or effectively
as operation-based SLs. We argue that the decreasing variability of measured
ops/s for operation sizes of 1024 results from the fact that EBS enforces PNOs
based on normalized ops/s, and we measure not normalized ops/s as perceived
by FIOEBS.

0

500

1,000

1,500

2,000

2,500

 4 32 64 256 1,024

O
pe

ra
tio

ns
 [

#/
s]

Request Size [KiB]

(a) Operations per second

0

20

40

60

80

100

120

140

160

180

4 32 64 256 1024

B
an

dw
id

th
 [

M
iB

/s
]

Request Size [KiB]

(b) Bandwidth per second

Fig. 4. Throughput for 100 GiB volume size and 900 PNOs.

900 Provisioned Normalized Operations. Figure 4 shows our results for
900 PNOs. Figure 4a shows an avg. throughput of 916 and 871 ops/s with low
variability for operations sizes of 4 and 32 KiB. For larger operation sizes, we
measure a large decrease of avg. ops/s. Figure 4b shows that proportional band-
width increase stops and variability increases at operation sizes of 64 KiB. We
observe a maximum bandwidth of 139 MiB/s for operations sizes of 1024 KiB.
Our results indicate that up to a operation size of 32 KiB throughput is limited
by the number of PNOs and for large operation sizes by bandwidth.

1800 Provisioned Normalized Operations. Figure 5 shows our results for
1800 PNOs. Figure 5a shows an avg. throughput of 1788 ops/s for operations sizes
of 4 KiB. For larger operation sizes, avg. ops/s drop to 64 for 1024 KiB. Figure 5b
shows that proportional bandwidth increase stops and variability increases for
operation sizes larger than 4 KiB.

162 J. Kuhlenkamp et al.

0

500

1,000

1,500

2,000

2,500

 4 32 64 256 1,024

O
pe

ra
tio

ns
 [

#/
s]

Request Size [KiB]

(a) Operations per second

0

20

40

60

80

100

120

140

160

180

4 32 64 256 1024

B
an

dw
id

th
 [

M
iB

/s
]

Request Size [KiB]

(b) Bandwidth per second

Fig. 5. Throughput for 100 GiB volume size and 1800 PNOs.

Our results indicate that up to a operation size of 4 KiB throughput is
limited by the number of PNOs and for large operation sizes by bandwidth. In
comparison to 900 PNOs, absolute throughput and throughput variability does
not change significantly for operation sizes of 256 KiB and 1024 KiB.

4.4 Discussion

Our results indicate that an increase of PNOs for an volume does not increase
avg. bw/s but maximum bw/s for that volume. Furthermore, variability at maxi-
mum throughput increases with increasing absolute throughput. We observe the
highest throughput variability for the same PNOs at the turning points between
operation-based and bandwith-based throughput limitation. If not subject to an
operation-based limitation, we observe an avg. bw/s of 60 MiB for 256 KiB and
66 MiB for 1024 KiB, since indicating that t2.micro, t2.small and m3.medium
instances share similar instance to EBS connection limitations. We argue that
this observed behavior might change for other instance types and EBS-optimized
volume connections, respectively.

For EBS volumes with small numbers of PNOs under workloads with small
operation sizes, our results indicate that the analytical ESL model obtained from
the EBS documentation predicts ESLs with high accuracy. However, for larger
operation sizes and PNOs the accuracy of the analytical model quickly decreases.
Overall, we argue that the documentation of ESLs without experimental evalu-
ation is not sufficient to serve as an accurate information base for infrastructure
optimization decisions. Experimental evaluation of public infrastructure services
increases the overhead for applying AISLE. However, we argue that experimen-
tal ESL models can be reused for the evaluation of different deployments and
shared between different IaaS users.

Next, we apply AISLE based on the obtained ESL model for EBS in an
evaluation and optimization of a Cassandra deployment on EC2.

AISLE 163

5 Use Case: Cassandra

In this section, we apply our method and obtained ESL model to a Cassandra
deployment on two topologies.

5.1 Deployment Enviroment

We deployed Cassandra clusters with standard configuration parameters and no
replication.

Infrastructure: For each experiemnt, we provision a 3-node topology of either
m3.large or m3.medium EC2 instances, all in the same availability zone of the
eu-west-1 region. Both instance types provide moderate networking performance
and are not EBS-optimized. We attached a single 100 GiB IO volume with 300
PNOs to each instance.

Workload: As a load generator, we deployed YCSB on a single m3.large instance
to emulate 100 client threads running for 30 min. Furthermore, we use for both
setups m3.large and m3.medium initial datasets that exceed each instance’s
memory almost by a factor three. We emulate YCSB standard workloads A
and B.

Toolkit and Measurements: We implemented the tool AisleCassandra7 to
automate experiment execution. We use Amazon CloudWatch8 to obtain
provider-side and Iostat9 to obtain user-side monitoring measurements.

5.2 AISLE Application

We apply AISLE within our two topology setups under workloads A and B. First,
we conduct an a priori analysis of the initial topologies. Second, we adjust the
initial topologies and conduct a second a posteriori analysis. For both analyses,
we present boxplots of SLP for ops/s (Pop) and SLP for bw/s (Pbw).

300 Provisioned Normalized Operations. Figure 6 shows our results for
setups m3.medium and m3.large for workload A and workload B. For both setups
and workloads, our results show a high Pop compared to a low Pbw. m3.large
under both workloads and m3.medium under workload B show a Pop above
80 % on avg. and 92 % for the 75th percentile for all volumes except volume
1 in m3.medium. Since, indicating underprovisioned SLs regarding ops/s SLs.
m3.medium under workload A shows 99th percentile Pop of less than 85 % for
volume 1 and 3, since, results indicate small potential for optimization for both
volumes. We adjust the volumes in both setups regarding ops/s SLs. Precisely,
we increase PNOs from 300 to 1800 for all IO volumes.

7 github.com/jkuhlenkamp/aisle cassandra.
8 aws.amazon.com/cloudwatch/.
9 linux.die.net/man/1/iostat.

http://www.github.com/jkuhlenkamp/aisle_cassandra
http://www.aws.amazon.com/cloudwatch/
http://www.linux.die.net/man/1/iostat

164 J. Kuhlenkamp et al.

0%

50%

100%

150%

200%

Se
rv

ic
e

L
ev

el
 P

re
ss

ur
e

m3.large m3.medium
wl A

vol1 vol2 vol3 vol1 vol2 vol3 vol1 vol2 vol3 vol1 vol2 vol3

wl B
m3.large m3.medium

Fig. 6. Boxplots of Service Level Pressures for (i) ops/s and (ii) bw/s for EBS volumes
in 3 node clusters and 300 Provisioned Normalized Operations.

1800 Provisioned Normalized Operations. Figure 7 shows our results for
the adjusted setups m3.medium and m3.large for workload A and workload
B. For both workloads and adjusted setups, our results show a shift from a
high Pop to high Pbw in comparision to the inital setups. For both workloads,
all volumes in m3.large report 25th percentile Pbw above 89 %. Therefore, our
results indicate underprovisioned SLs regarding bw/s. For both workloads, all
volumes in m3.medium report 99th percentile values for Pop and Pbw of less than
71 %. Therefore, indicating overprovisioned volumes regarding both SLs.

0%

50%

100%

150%

200%

Se
rv

ic
e

L
ev

el
 P

re
ss

ur
e

m3.large m3.medium
wl A

vol1 vol2 vol3 vol1 vol2 vol3 vol1 vol2 vol3 vol1 vol2 vol3

wl B
m3.large m3.medium

Fig. 7. Boxplots of Service Level Pressures for (i) ops/s and (ii) bw/s for EBS volumes
in 3 node clusters and 1800 Provisioned Normalized Operations.

AISLE 165

5.3 Discussion

We showed that AISLE is suitable to characterize the optimization potential
regarding SLs of public IaaS-based topologies. However, we are aware that our
approach might imply a certain implementation and management overhead in
comparison to a trial and error-based scale-out strategy. The overhead is due to
obtaining ESL models, the setup of monitoring infrastructure and conducting
analysis. Therefore, we compare AISLE to a scale-out strategy. Furthermore, we
discuss the adoption of provider-side monitoring solutions to decrease required
management overheads for monitoring solutions.

AISLE vs. Scale-Out. The application of AISLE implies an additional man-
agement overhead for a user of an infrastructure service. Therefore, we compare
AISLE to a trivial scale-out strategy, i.e., the provisioning of additional servers
with the same configuration into an existing cluster. We refer to AISLE-based
scaling as Option A (Experimental) and scale-out-based scaling as Option B
(Analytical). We compare both approaches in terms of application SLs for the
Cassandra cluster using a ratio for simpler comparison. Precisely, the ratio con-
sists of the overall topology cost in $ per month divided by Cassandra through-
put, i.e. avgerage client requests per second (req/s). For Option B, we assume a
linear increase in throughput as indicated by previous research [9,14]. Further-
more, we select the corresponding cluster size for Option B as follows: We select
the highest resulting throughput that is lower than the corresponding through-
put for Option A. Table 1 shows a concise comparison between Option A and
Option B. As shown in column Opt. A - Opt. B and indicated by negative com-
parison values, a AISLE-based scaling strategy results in a higher scaleup under
lower costs per month for all workloads (wl A and wl B) and instances types
and, as expected, a higher benefit for m3.large.

Table 1. Performance and costs comparison for scaling an initial Cassandra cluster
(Base) with scaling strategy AISLE (Opt.A) vs. horizontal scale-out (Opt.B).

Opt. A (Experimental) Opt. B (Analytical) Opt. A - Opt. B

PIOPS = 1,800 PIOPS = 300 Savings

#nodes $/(req/s) #nodes $/(req/s) $/(req/s)

m3.large, wl A
(update-
heavy)

3 0.08 14 0.22 −0.14

m3.large, wl B
(read-heavy)

3 0.13 13 0.33 −0.20

m3.medium, wl A
(update-
heavy)

3 0.11 7 0.13 −0.02

m3.medium, wl B
(read-heavy)

3 0.19 7 0.23 −0.04

166 J. Kuhlenkamp et al.

Provider-Side vs. Client-Side Monitoring. AISLE requires monitoring of
infrastructure resources. Therefore, we compare two common options that are
available to a user to enable a monitoring solution: (i) client-side monitoring, i.e.,
Iostat, and (ii) provider-side monitoring, i.e., Amazon CloudWatch. Client-side
monitoring implies a management and performance overhead. Still, client-side
monitoring implies the freedom to adapt and verify monitored metrics and gran-
ularity. Provider-side monitoring implies a low management and performance
overhead. However, users have limited control over the monitoring solution and
must trust a provider.

Next, we apply AISLE with monitoring traces obtained from Amazon Cloud-
Watch. According to the latest CloudWatch documentation, i.e., API version
2010-08-01, CloudWatch provides a metric VolumeConsumedReadWriteOps that
reports no/s based on a normalized operation size of 256 KiB with 1 min gran-
ularity. Figure 8 shows no/s reported by CloudWatch and Iostat for a single
volume. Our measurements indicate that CloudWatch reports much higher no/s
for the same 1 min interval. We further analyzed this behavior. We believe that
CloudWatch reports no/s based on a normalized operation size of 16 KiB instead
of 256 KiB. Therefore, we derived no/s for normalized operation size of 16 KiB for
Iostat measurements. Figure 8 shows the derived scaling factor and the resulting
no/s model for a normalized operation size of 16 KiB for Iostat. Visual analysis
indicates that this is indeed the case.

0

3

6

9

12

15

0

50,000

100,000

150,000

200,000

250,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Sc
al

e
Fa

ct
or

O
ve

ra
ll

O
pe

ra
tio

ns
 [#

/m
in

ut
e]

Time [Minutes]

Monitored Provider-side Operations Analytical Client-side Operations (base 16KiB)

Monitored Client-side Operations Analytical Client-side Scale Factor (base 16KiB)

Fig. 8. Comparison of client-side (Iostat) and provider-side (CloudWatch) throughput
measurements for different normalized operation sizes.

6 Related Work

There is no directly related approach with the same scope as AISLE. Existing
publications fall in either of the following three groups:

AISLE 167

Infrastructure Optimization: Several autonomous computing approaches
adapt provisioned resources at runtime for database systems, e.g., [6,13,17].
In contrast to AISLE, these approaches all require explicit knowledge on the
implementation details of the database systems whereas AISLE is theoretically
application-agnostic – even though only evaluated for database systems – and
treats the system as a blackbox. As AISLE in its current version does not adapt
provisioned resources but rather provides the necessary information to do so to
an administrator, these approaches complement our work.

Provider Perspective: Approaches like [16,18] take a provider perspective
and focus, e.g., on offering optimal physical resource sets to virtual machines
depending on the runtime requirements of the virtual machine. AISLE, in con-
trast, takes the perspective of a client who does not have any influence and
knowledge on the service internals.

Infrastructure Benchmarking: Performance benchmarking of infrastructure
services like Amazon EBS has been done before, e.g., [8,11,15]. We introduce
new metrics to not only measure but also interpret results. For the special case
of Amazon EBS, we also ran our experiments in more configuration setups and
could, thus, also observe more fine-grained results: For instance, our experiments
indicate low bandwidth variability for a certain combinations of EBS volume
configurations and operation sizes whereas [11] reported overall high bandwidth
variability.

7 Conclusion

In this work, we presented AISLE, an approach that develops a model for an
Expected Service Level based on SLA information, documentation, and bench-
marking results. Part of this approach are three metrics which enable the data-
base administrator to easily assess whether the observed monitoring data for a
specific service quality is limited by this expected service level, thus, identify-
ing cloud services where additional provisioned resources are likely to positively
affect the database system. As an example, we have based on AISLE developed
an ESL node for the Amazon EBS service and verified experimentally that pro-
visioning extra resources for the services identified by our metrics yields much
better results than other more intuitive scaling approaches. We believe that our
approach is not limited to database systems and will, therefore, in future work
try to extend it to all kinds of applications running on top of cloud services.

Acknowledgments. We thank Amazon Web Services for a generous grant that
enabled us to run our experiments.

References

1. Ahmad, M.Y., Kemme, B.: Compaction management in distributed key-value data-
stores. PVLDB 8(8), 850–861 (2015)

168 J. Kuhlenkamp et al.

2. Baset, S.A.: Cloud SLAs. ACM SIGOPS Operating Syst. Rev. 46(2), 57 (2012)
3. Bermbach, D., Tai, S.: Benchmarking eventual consistency: Lessons learned from

long-term experimental studies. In: Proceedings of the 2nd International Confer-
ence on Cloud Engineering (IC2E). IEEE (2014)

4. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M.,
Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: a distributed storage system for
structured data. ACM Trans. Comput. Syst. 26(2), 1–26 (2008)

5. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking
cloud serving systems with YCSB. In: Proceedings of the 1st ACM Symposium on
Cloud Computing

6. Copil, G., Trihinas, D., Truong, H.-L., Moldovan, D., Pallis, G., Dustdar, S.,
Dikaiakos, M.: ADVISE – a framework for evaluating cloud service elasticity behav-
ior. In: Franch, X., Ghose, A.K., Lewis, G.A., Bhiri, S. (eds.) ICSOC 2014. LNCS,
vol. 8831, pp. 275–290. Springer, Heidelberg (2014)

7. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin,
A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: amazon’s highly avail-
able key-value store. In: Proceedings of 21st ACM SIGOPS Symposium on Oper-
ating Systems Principles

8. Dittrich, J., Quian, J.A.: Runtime measurements in the cloud: observing, analyzing,
and reducing variance. Proc. VLDB Endow. 3(1), 460–471 (2010)

9. Kuhlenkamp, J., Klems, M., Röss, O.: Benchmarking scalability and elasticity of
distributed database systems. Proc. VLDB Endow. 7(12), 1219–1230 (2014)

10. Lakshman, A., Malik, P.: Cassandra. ACM SIGOPS Operating Syst. Rev. 44(2),
35–40 (2010)

11. Leitner, P., Cito, J.: Patterns in the chaos a study of performance variation and
predictability in public IaaS clouds. In: Proceedings of the 24th International World
Wide Web Conference (WWW 2015). ACM, Florence (2015)

12. Lenk, A., Menzel, M., Lipsky, J., Tai, S., Offermann, P.: What are you paying for?
performance benchmarking for infrastructure-as-a-service offerings. In: 2011 IEEE
International Conference on Cloud Computing (CLOUD), pp. 484–491 (2011)

13. Lim, H.C., Babu, S., Chase, J., Parekh, S.: Automated control in cloud computing:
challenges and opportunities. In: Proceedings of the 1st Workshop on Automated
Control for Datacenters and Clouds, pp. 13–18 (2009)

14. Rabl, T., Sadoghi, M., Jacobsen, H.A., Gómez-Villamor, S., Muntés-Mulero, V.,
Mankowskii, S.: Solving big data challenges for enterprise application performance
management. Proc. VLDB Endow. 5(12), 1724–1735 (2012)

15. Scheuner, J., Leitner, P., Cito, J., Gall, H.: Cloud WorkBench - infrastructure-
as-code based cloud benchmarking. In: Proceedings of the 6th IEEE International
Conference on Cloud Computing Technology and Science (CloudCom 2014) (2014)

16. Shen, Z., Subbiah, S., Gu, X., Wilkes, J.: CloudScale. In: Proceedings of the 2nd
ACM Symposium on Cloud Computing - SOCC 2011, pp. 1–14 (2011)

17. Trushkowsky, B., Fox, A., Franklin, M.: The scads director: Scaling a distributed
storage system under stringent performance requirements. In: Proceedings of the
9th USENIX Conference on File and Storage Technologies (FAST 2011), pp. 12–25.
USENIX Association, Berkeley (2011)

18. Yao, J., Jung, G.: Bottleneck detection and solution recommendation for cloud-
based multi-tier application. In: Franch, X., Ghose, A.K., Lewis, G.A., Bhiri, S.
(eds.) ICSOC 2014. LNCS, vol. 8831, pp. 470–477. Springer, Heidelberg (2014)

Service Composition

Are RESTful APIs Well-Designed? Detection
of their Linguistic (Anti)Patterns

Francis Palma1,2(B), Javier Gonzalez-Huerta1, Naouel Moha1,
Yann-Gaël Guéhéneuc2, and Guy Tremblay1

1 Département d’informatique, Université du Québec à Montréal, Montréal, Canada
{gonzalez huerta.javier,moha.naouel,tremblay.guy}@uqam.ca

2 Ptidej Team, DGIGL, École Polytechnique de Montréal, Montréal, Canada
{francis.palma,yann-gael.gueheneuc}@polymtl.ca

Abstract. Identifier lexicon has a direct impact on software understand-
ability and reusability and, thus, on the quality of the final software
product. Understandability and reusability are two important character-
istics of software quality. REST (REpresentational State Transfer) style
is becoming a de facto standard adopted by many software organisa-
tions. The use of proper lexicon in RESTful APIs might make them
easier to understand and reuse by client developers, and thus, would
ease their adoption. Linguistic antipatterns represent poor practices in
the naming, documentation, and choice of identifiers in the APIs as
opposed to linguistic patterns that represent best practices. We present
the DOLAR approach (Detection Of Linguistic Antipatterns in REST),
which applies syntactic and semantic analyses for the detection of linguis-
tic (anti)patterns in RESTful APIs. We provide detailed definitions of
ten (anti)patterns and define and apply their detection algorithms on 15
widely-used RESTful APIs, including Facebook, Twitter, and YouTube.
The results show that DOLAR can indeed detect linguistic (anti)patterns
with high accuracy and that they do occur in major RESTful APIs.

Keywords: REST · Patterns · Antipatterns · Detection · Semantic
analysis

1 Introduction

Service-Oriented Architecture (SOA) has changed the way software systems are
developed, deployed, and consumed [6]. The REpresentational State Transfer
(REST) architectural-style [7] is becoming a de facto standard, adopted by large
software organisations like Facebook, Twitter, Dropbox, and YouTube, for devel-
oping and publishing their services, a.k.a. their RESTful APIs.

In REST, well-designed URIs (Uniform Resource Identifiers) facilitate main-
tenance and evolution for APIs developers. Moreover, well-designed and named
RESTful APIs may attract client developers more than poorly designed or named
ones [14] because client developers must understand the providers’ APIs while
c© Springer-Verlag Berlin Heidelberg 2015
A. Barros et al. (Eds.): ICSOC 2015, LNCS 9435, pp. 171–187, 2015.
DOI: 10.1007/978-3-662-48616-0 11

172 F. Palma et al.

designing and developing their Web-based systems that use these APIs. There-
fore, in the design and development of RESTful APIs, their understandability
and reusability are two major quality factors.

Source code lexicon is shown to be an influential factor on the understand-
ability, reusability and, overall, on the quality of software systems [12]. APIs
designers use related natural names—natural language words—to name soft-
ware entities [11]. In REST, linguistic relations among resources, services, and
parameters are crucial [8] and the lack of such linguistic relations and–or poor
naming may degrade the overall design of RESTful APIs and translate into lin-
guistic antipatterns. Linguistic antipatterns are poor solutions to common recur-
ring naming problems, which may hinder the consumption of RESTful APIs. In
contrast, linguistic patterns are best solutions to common naming problems and
may facilitate the consumption of RESTful APIs.

A number of best and poor linguistic practices for RESTful APIs design
are listed in the literature [4,8,14] but they do not provide clear and detailed
descriptions. In this paper, we represent those best and poor practices as pat-
terns and antipatterns, respectively. For example, Contextless Resource Names
[8] is a linguistic antipattern that describes a URI composed of nodes from differ-
ent semantic contexts as in the URI www.example.com/newspaper/player where
“newspaper” and “player” do not belong to the same semantic context. On the
contrary, Contextualised Resource Names [8] is a linguistic pattern describ-
ing a URI composed of nodes that belong to the same semantic context and
helping developers to understand better the resources or the interaction con-
text with the server, and thus, increasing the understandability and reusability
of an API. An example URI is www.example.com/newspapers/media because
“newspapers” and “media” belong to the same semantic context. For RESTful
APIs, the automatic detection of such linguistic patterns and antipatterns is a
means to assess their understandability and reusability. However, no previous
work analysed linguistic (anti)patterns in RESTful APIs.

In this paper, we present DOLAR (Detection Of Linguistic Antipatterns
in REST), an approach supported by SOFA (Service Oriented Framework for
Antipatterns) [17], which integrates syntactic and semantic analyses of RESTful
APIs for detecting linguistic (anti)patterns. Semantic analyses are used to infer
meaning and relationships among language elements whereas syntactic analy-
ses focus on structural properties [9]. We propose (1) a detailed definition of
ten common (anti)patterns for RESTful APIs [4,8,14] and their corresponding
detection algorithms; (2) the DOLAR approach relying on the SOFA frame-
work [17] extended with syntactic and semantic analyses based on WordNet1

and Stanford CoreNLP2; (3) an empirical validation of DOLAR in which we
analyse ten REST linguistic (anti)patterns on a set of 15 well-known RESTful
APIs—including Facebook, Twitter, and YouTube—invoking over 300 methods.
The validation results show that (1) DOLAR has an average precision and recall
over 75 % and (2) out of the 15 analysed RESTful APIs, most of them involve

1 wordnet.princeton.edu.
2 nlp.stanford.edu/software/corenlp.shtml.

www.example.com/newspaper/player
www.example.com/newspapers/media
http://wordnet.princeton.edu
http://nlp.stanford.edu/software/corenlp.shtml

Are RESTful APIs Well-Designed? 173

syntactical URIs design problems and they do not organise URIs nodes in a
hierarchical manner. Moreover, we also observed that the REST APIs designers,
in general, use appropriate contextual resource names and they do not use verbs
in URIs, which is a good URIs design practice in REST.

The remainder of the paper is organised as follows: Sect. 2 discusses related
work. Section 3 presents the ten linguistic (anti)patterns. Section 4 presents the
DOLAR approach. Section 5 presents a validation of DOLAR. Finally, Sect. 6
concludes the paper and sketches future work.

2 Related Work

Over the last years, several researchers (e.g., [1,2]) used semantic analyses to
detect linguistic antipatterns and to check for consistency between source code
and comments in object-oriented (OO) systems.

Abebe et al. [1] present a first set of lexicon bad smells in OO source code
and a tool-suite that uses semantic analyses for their detection. Arnaoudova
et al. [2] present a first definition of linguistic antipatterns, define 17 linguistic
antipatterns in OO programming, and implement their detection algorithms.
The authors search for the differences between the naming used for software
entities (e.g., method names and return types) and their implementation and/or
documentation. For example, one antipattern they define “Is” returns more than
a Boolean, which analyses the name of a method starting with “Is” and checks
whether the method returns a boolean or not [2].

Semantic analyses are also applied to Web services design and development [15,
21]. Rodriguez et al. [21] present a study on bad linguistic practices identified on
a set of WSDL descriptions and provide a catalog of Web services discoverability
antipatterns. These antipatterns focus on the comments, elements names, or types
used for representing the data models in WSDL documents. Mateos et al. [15]
present a tool to detect a subset of antipatterns presented in [21].

Other researchers also use semantic analyses in different aspects of the
software development life-cycle [3,13,20]. For example, Lu et al. [13] define an
approach to improve code searches by identifying relevant synonyms using the
WordNet English lexical database. Arnaoudova et al. [3] perform analyses on
identifiers renaming in OO systems and classify them. Finally, Rahman and
Roy [20] present an approach to automatically suggest relevant search terms
based on the textual descriptions of software change tasks.

These approaches are tailored to OO identifiers and their consistencies with
comments [1,2] or to traditional SOAP-based Web services interfaces [15,21],
and therefore, they cannot be applied to RESTful APIs due to their intrinsic
nature. For example, the invocation of RESTful services relies on a uniform
interface formed using HTTP methods to access or modify resources via URIs.

Some researchers have dealt with the linguistic aspect of RESTful APIs.
For example, Hausenblas [10] performs a subjective analysis on RESTful APIs
to assess the quality of the URIs naming. However, he does not perform an
automatic nor a systematic analysis. Moreover, he does not search for specific

174 F. Palma et al.

Detection
Algorithms

Implementation

Detected
Linguistic
(Anti)Patte

RESTful APIs Methods
Invocation

Clients

Application

Authentication

Algorithmic

Rules

Interfaces

Service
Interfaces

Implementation

Step 2

Detection Algorithms

Step 3

Parameterised

Request URIsTextual
Descriptions
of Linguistic

(Anti)Patterns

Analysis

Step 1

Manual step Automatic s

Fig. 1. DOLAR approach.

antipatterns. Parrish [19] also performs a subjective lexical comparison between
two well-known RESTful APIs, e.g., Facebook and Twitter. In the comparison,
the author analyses, for example, the use of verbs and nouns in URIs naming.

Although the above two deal with linguistic aspects of RESTful APIs, they
only rely on the subjective view on a set of good linguistic practices and recom-
mendations. Thus, there is no dedicated approach to automatically assess the
linguistic quality of RESTful APIs by detecting poor and best practices.

3 REST Linguistic Patterns and Antipatterns

Table 1 presents the ten linguistic (anti)patterns that we consider in this paper
and that have been extracted from existing literature [4,8,14,23].

4 The DOLAR Approach

We now present the DOLAR approach (Detection Of Linguistic Antipatterns
in REST) for the analysis and detection of linguistic (anti)patterns in RESTful
APIs. DOLAR proceeds in three steps, as shown in Fig. 1.

Step 1. Analysis of Linguistic (Anti)Patterns: This step consists in analysing
the description of REST linguistic (anti)patterns from the literature to identify
their relevant properties. We use these relevant properties to define algorithmic
rules for (anti)patterns.

Step 2. Implementation of Interfaces and Detection Algorithms: This step
involves the implementation of detection algorithms for (anti)patterns based
on rules defined in Step 1 and the service interfaces for RESTful APIs.

Step 3. Detection of Linguistic (Anti)Patterns: This step deals with the auto-
matic application of detection algorithms implemented in Step 2 on RESTful
APIs for the detection of linguistic (anti)patterns.

4.1 Analysis of Linguistic Patterns and Antipatterns

We analyse the definitions of the (anti)patterns listed in Sect. 3 to identify
their linguistic aspects. A linguistic aspect for the detection of the Context-
less Resource Names antipattern is, for example, to check if a URI nodes belong
to the same semantic context.

Are RESTful APIs Well-Designed? 175

Table 1. List of ten linguistic (anti)patterns in REST.

1. Contextualised vs. Contextless Resource Names
Description: URIs should be contextual, i.e., nodes in URIs should belong to semantically-related
context. Thus, the Contextless Resource Names antipattern appears when URIs are composed of
nodes that do not belong to the same semantic context.
Example: https://www.example.com/newspapers/players?id=123 is a Contextless Resource
Names antipattern because ‘newspapers’ and ‘players’ do not belong to same semantic context.
https://www.example.com/newspapers/media/page?id=123 is a Contextual Resource Names pattern

because ‘soccer’, ‘team’, and ‘players’ belong to same semantic context.
Consequences: Contextless Resource Names do not provide a clear context for a request, which
may mislead the APIs clients by decreasing the understandability of the APIs [8].

2. Hierarchical vs. Non-hierarchical Nodes
Description: Each node forming a URI should be hierarchically related to its neighbor nodes. In
contrast, Non-hierarchical Nodes is an antipattern that appears when at least one node in a URI is
not hierarchically related to its neighbor nodes.
Example: https://www.example.com/professors/university/faculty/ is a Non-hierarchical
Nodes antipattern since ‘professors’, ‘faculty’, and ‘university’ are not in a hierarchical relation-
ship. https://www.example.com/university/faculty/professors/ is a Hierarchical Nodes pattern
since ‘university’, ‘faculty’, and ‘professors’ are in a hierarchical relationship.
Consequences: Using non-hierarchical names may confuse users on the real purpose of the API
and hinders their understandability and, therefore, the API’s usability [8].

3. Tidy vs. Amorphous URIs
Description: REST resource URIs should be tidy and easy to read. A Tidy URI is a URI with
appropriate lower-case resource naming, no extensions, underscores, or trailing slashes. Amorphous
URI antipatterns appear when URIs contain symbols or capital letters that make them difficult to
read and use. As opposed to good practices [14], a URI is amorphous if it contains: (1) upper-case
letter (except for Camel Cases [16]), (2) file extensions, (3) underscores, and, (4) a final trailing-slash.
Example: https://www.example.com/NEW Customer/ photo01.jpg/ is a Amorphous URI antipat-
tern since it includes a file extension, upper-case resource names, and underscores.
https://www.example.com/customers/1234 is a Tidy URI pattern since it only contains lower-case

resource naming, without extensions, underscores, or trailing slashes.
Consequences: (1) Upper/lower-case names may refer to different resources, RFC 3986 [4]. (2) File
extensions in URIs violate RFC 3986 and affect service evolution. (3) Underscores are hidden when
highlighting URIs, decreasing readability. (4) Trailing-slash mislead users to provide more resources.

4. Verbless vs. CRUDy URIs
Description: Appropriate HTTP methods, e.g., GET, POST, PUT, or DELETE, should be used
in Verbless URIs instead of using CRUDy terms (e.g., create, read, update, delete, or their syn-
onyms) [8]. The use of such terms as resource names or requested actions is highly discouraged [14].
Example: POST https://www.example.com/update/players/age?id=123 is a CRUDy URIs antipat-
tern since it contains a CRUDy term ‘update’ while updating the user’s profile color relying on
an HTTP POST method. POST https://www.example.com/players/age?id=123 is a Verbless URIs
pattern since is an HTTP POST request without any verb.
Consequences: Using CRUDy terms in URIs can be confusing for API clients, i.e., in the best cases
they overload the HTTP methods and in the worst cases they go against HTTP methods. CRUDy
terms in a URI confuse and prohibit users to use proper HTTP methods in a certain context and
may introduce another REST antipattern, Tunnelling through GET/POST [23].

5. Singularised vs. Pluralised Nodes
Description: URIs should use singular/plural nouns consistently for resources naming across the
API. When clients send PUT/DELETE requests, the last node of the request URI should be singular.
In contrast, for POST requests, the last node should be plural. Therefore, the Pluralised Nodes
antipattern appears when plural names are used for PUT/DELETE requests or singular names are
used for POST requests. However, GET requests are not affected by this antipattern [8].
Example: The first example URI is a POST method that does not use a pluralised resource, thus
leading to Pluralised Nodes antipattern. On the other hand, for the Singularised Nodes pattern,
the DELETE request acts on a single resource for deleting it.
DELETE https://www.example.com/team/players or POST https://www.example.com/team/player
DELETE https://www.example.com/team/player or POST https://www.example.com/team/players

Consequences: If a plural node for PUT (or DELETE) request is used at the end of a URI, the
API clients cannot create (or delete) a collection of resources, which may result in, for example, a
403 Forbidden server response. In addition, even if the resources can be filtered through query-like
parameters, it confuse the user if one or multiple resources are being accessed/deleted [8].

176 F. Palma et al.

1: Contextless-Resource-Names(Request-URI)
2: URINodes ← Extract-URI-Nodes(Request-URI)
3: for each index = 1 to Length(URINodes)-1
4: Set1 ← Capture-Context-by-Synsets(URINodesindex)
5: Set2 ← Capture-Context-by-Synsets(URINodesindex+1)
6: if Set1 ∩ Set2 = ∅
7: print “Contextless Resource Names detected”
8: break
9: end if
10: end for

Fig. 2. Algorithmic rule of the Contextless Resource Names antipattern.

Figure 2 shows the algorithmic rule we define for the Contextless Resource
Names antipattern. We compare the context of every pair of nodes or resources in
a URI, lines 4–6. We report a URI as an occurrence of this antipattern if we find
at least one contextless relation among all possible resource pairs. Conversely, we
report an occurrence of the corresponding pattern iff all possible resource pairs
share at least one common context and are relevant for that particular URI.

We rely on WordNet and Stanford CoreNLP to capture contexts and per-
form semantic analyses. WordNet is a widely used lexical database, which groups
nouns, verbs, and adjectives into sets of cognitive synonyms—synsets—each rep-
resenting unique concepts which can be used interchangeably in a certain con-
text. WordNet is useful in finding semantic similarity between words using its
underlying hypernym-hyponym and meronym-holonym relations as Fig. 3 depicts.
In Fig. 3a, medium is one of 11 synsets of ‘media’ and there exist different types
of medium including newspaper, film, telecommunication, and so on defined in
WordNet. Based on WordNet, medium is thus the hypernym of newspaper and
newspaper is the hyponym of medium. Such relations also exhibit contextual
relevance between words and can be useful for analysing Contextless Resource
Names antipattern [8] in URIs. In addition, there exist part-of, i.e., holonym-
meronym, relations between words defined in WordNet (see Fig. 3b). For exam-
ple, a university consists of faculty member, student, and department and
the department may include biology and chemistry. Thus, university is a
holonym of faculty member and faculty member is a meronym of university.
Such hierarchical relations defined in WordNet between words can be useful in
analysing Non-hierarchical Nodes antipattern [8].

Moreover, Stanford’s CoreNLP annotate nodes (after splitting CamelCase
nodes) with its underlying POS (part-of-speech) tagger to differentiate verbs
(i.e., actions) and nouns (i.e., resources). We also define algorithmic rules for
nine other linguistic (anti)patterns.

4.2 Implementation of Interfaces and Detection Algorithms

This step includes the implementation of services’ interfaces and the implemen-
tation of detection algorithms of linguistic (anti)patterns. We implemented the
service interfaces of RESTful APIs under study using Java, which contain the

Are RESTful APIs Well-Designed? 177

Fig. 3. Hypernym-Hyponym and Meronym-Holonym relations in WordNet.

methods callable to access or modify services’ underlying resources. Each of
the interface methods is mapped to a HTTP method. Using the appropriate
HTTP methods, our DOLAR approach sends HTTP requests to real REST-
ful APIs and receives HTTP responses. Linguistic (anti)patterns, for example,
Amorphous URIs (or Tidy URIs) require the fully-parameterised request URIs
to be detected, which can only be obtained after HTTP requests are made.
For each RESTful API, the details required to implement its service interfaces,
i.e., resources, HTTP actions to perform on its resources, and the parameters
for each HTTP request, can be found in its online documentation as shown in
Table 2. For other linguistic (anti)patterns, it is enough to extract URIs from
the documentation of the RESTful APIs and then to analyse them.

Like the REST service interfaces, the detection algorithms for linguistic
(anti)patterns are also written in Java. In fact, we manually transform the
algorithmic rules defined the previous section into the executable programs.

4.3 Detection of Linguistic Patterns and Antipatterns

Methods Invocation: For each RESTful API, besides the service interfaces,
we also implement clients to call the methods in the service interfaces, which
perform read, write, update, or delete operations on resources. These explicit
calls are done at detection time to obtain fully parameterised request URIs sent
to the servers, which are required for detecting (anti)patterns like Amorphous
URI. In REST, a resource may be related to multiple Java methods because
any of the four basic operations (GET, POST, PUT, and DELETE) can be per-
formed. As for the clients authentication, large companies often requires clients
authentication to accept secured HTTP requests. Thus, we also implement the
OAuth 2.0 authentication protocol. In the end, this step produces the set of all
parameterised requests URIs and their responses.

Application of Detection Algorithms: The SOFA framework (Service Ori-
ented Framework for Antipatterns) [17] automatically applies the algorithmic
rules in the form of detection algorithms on the parameterised requests URIs
from the clients, collected in the previous step. Finally, the SOFA framework
returns a set of detected REST linguistic (anti)patterns.

The SOFA framework, uses a Service Component Architecture (SCA) [5]. It
relies on FraSCAti [22] for its runtime support. We added 13 REST (anti)patterns

178 F. Palma et al.

related to the design of REST requests/responses in a previous work [18]. We
extend SOFA with detection support of REST linguistic (anti)patterns using
linguistic analyses based on WordNet and Stanford CoreNLP.

Specifically, we extend the REST Handler component to facilitate the detec-
tion of REST linguistic (anti)patterns by wrapping each RESTful API in an SCA
component and applying the detection algorithms on the SCA-wrapped REST-
ful APIs. By wrapping each API, we can introspect each full request URI with
its actual runtime parameters, relying on FraSCAti IntentHandler, a runtime
interceptor. We invoke methods from a service interface defined with an Inten-
tHandler to introspect the request details, which allows on-the-fly syntactic and
semantic analyses of parameterised request URIs.

5 Validation

In this section, we assess the effectiveness of DOLAR approach by showing the
accuracy of the defined algorithmic rules, the extensibility of our SOFA frame-
work, and the performance of the detection algorithms.

5.1 Hypotheses

We define three hypotheses to assess DOLAR’s effectiveness:

H1. Accuracy: The set of all defined rules have an average precision and recall
of more than 75%, i.e., more than three out of four are true positives and we do
not miss more than one out of four of all existing (anti)patterns.

H2. Extensibility: Our SOFA framework is extensible for adding new service-
oriented and REST-specific (anti)patterns. In addition, SOFA facilitates an easy
integration of new RESTful APIs.

H3. Performance: The concretely implemented detection algorithms perform
with a low detection times, i.e., on an average in the order of seconds.

5.2 Subjects and Objects

The subjects of our study are the ten REST linguistic (anti)patterns described
in Sect. 3. The objects are 15 common and well-known RESTful APIs for which
we found documentations. We choose APIs whose underlying HTTP methods,
APIs end-points, and authentication mechanisms are well explained, for example
Facebook, Twitter, Dropbox, or YouTube, as summarised in Table 2.

5.3 Validation Process

We followed the instructions in the online documentation for APIs and imple-
mented their (authenticated) clients. We invoked a set of 309 REST methods
from 15 RESTful APIs to access their resources. We collected all fully parame-
terised request URIs from the clients and responses from the servers. Later, we

Are RESTful APIs Well-Designed? 179

Table 2. List of 15 analysed RESTful APIs and their online documentations.

RESTful APIs Online documentations

Alchemy alchemyapi.com/api

BestBuy developer.bestbuy.com/documentation

Bitly dev.bitly.com/api.html

CharlieHarvey charlieharvey.org.uk/about/api

Dropbox dropbox.com/developers/core/docs

Externalip api.externalip.net

Facebook developers.facebook.com/docs/graph-api

Instagram instagram.com/developer

Musicgraph developer.musicgraph.com/api-docs/overview

Ohloh github.com/blackducksw/ohloh api

StackExchange api.stackexchange.com.docs

TeamViewer integrate.teamviewer.com/en/develop/documentation

Twitter dev.twitter.com/rest/public

YouTube youtube.com/yt/dev/api-resources.html

Zappos developer.zappos.com/docs/api-documentation

applied our algorithmic rules in the form of detection algorithms implemented
manually on the REST requests URIs and report (anti)patterns detected by our
SOFA framework. We validated the results in two phases: (1) all the Dropbox
URIs and (2) four representative APIs, i.e., Facebook, Twitter, Dropbox, and
YouTube, for which we randomly selected some candidate request URIs detected
as (anti)patterns. We chose those four APIs based on our previous findings [18],
which concluded that Twitter and Dropbox are more problematic APIs, whereas
Facebook and YouTube were well-designed.

We involved three professionals manually evaluated the URIs to identify the
true positives and false negatives to define a ground truth for a predefined subset
of the analysed URIs. The professionals have knowledge on REST and did not
take part in the detection step. We provided them with the descriptions of REST
linguistics (anti)patterns and the sets of all requests URIs collected during the
service invocations. We resolved conflicts at the majority.

Due to the large size of the data-sets, we performed the validation on two sam-
ple sets because it is a laborious task to validate all APIs and all (anti)patterns
and because Facebook, Dropbox, Twitter, and YouTube are representative APIs
[18]. Therefore, in the first phase, we choose one medium sized API, Dropbox, to
calculate the recall on one API (the entire validation would have required 1,545
questions for 309 test methods).

In the second phase, we randomly selected 50 validation questions (out of 630
possible candidates) to measure overall accuracy. We used precision and recall to
measure the detection accuracy. Precision is the ratio between the true detected

http://alchemyapi.com/api
http://developer.bestbuy.com/documentation
http://dev.bitly.com/api.html
http://charlieharvey.org.uk/about/api
http://dropbox.com/developers/core/docs
http://api.externalip.net
http://developers.facebook.com/docs/graph-api
http://instagram.com/developer
http://developer.musicgraph.com/api-docs/overview
http://github.com/blackducksw/ohloh_api
http://api.stackexchange.com.docs
http://integrate.teamviewer.com/en/develop/documentation
http://dev.twitter.com/rest/public
http://youtube.com/yt/dev/api-resources.html
http://developer.zappos.com/docs/api-documentation

180 F. Palma et al.

Tidy
vs.

Contextualised
vs.

Verbless
vs.

Hierarchical
vs.

Singularised
vs.

Fig. 4. Linguistic (anti)patterns detected in each RESTful API.

(anti)patterns and all detected (anti)patterns. Recall is the ratio between the
true detected (anti)patterns and all existing true (anti)patterns.

5.4 Interpretation of the Results

The mosaic plot in Fig. 4 shows the pattern-wise representation of the detection
results on the 15 RESTful APIs. Columns correspond to each (anti)pattern while
rows represent the detected (anti)patterns on each API. In each row, the height
of the mosaic represents the size of the method suite we tested for an API. In
Fig. 4, the most frequent patterns are Verbless URI and Contextualised Resource
Names—the majority of the analysed APIs did not include any CRUDy terms or
any of their synonyms and the nodes in these URIs belong to the same semantic
context. In contrast, the most frequent antipatterns are Amorphous URI and
Non-Hierarchical Nodes—the majority of the analysed APIs involve at least one
syntactical problem and that URI nodes for those APIs were not organised in
a hierarchical manner. However, the conclusions drawn above are based on the
analysis results obtained applying the DOLAR approach.

Table 3 presents detailed detection results for the ten linguistic (anti)patterns
on 15 RESTful APIs. The table reports the (anti)patterns in the first column
followed by the analysed RESTful APIs in the following fifteen columns. For each
RESTful API and for each (anti)pattern, we report the total number of occur-
rences reported as positives by our detection algorithms. The last two columns
show the total detected occurrences across 15 APIs (with percentage) and the
average detection time. The detailed detection results for all the 309 tested

Are RESTful APIs Well-Designed? 181

Table 3. Detection results of the ten REST lexical (anti)patterns (numbers in paren-
thesis show the number of methods tested for each API).

R
E
S
T
fu

l
A
P
Is

(9
)A

lc
h
em

y
(2

0
)B

es
tb

u
y

(1
5
)B

it
ly

(1
2
)C

h
a
rl
ie
H

a
rv

ey

(1
7
)D

ro
p
B
o
x

(6
)E

x
te

rn
a
li
p

(6
7
)F

a
ce

b
o
o
k

(1
4
)I
n
st

a
g
ra

m

(1
9
)M

u
si
cg

ra
p
h

(7
)O

h
lo

h
(5

3
)S

ta
ck

E
x
ch

a
n
g
e

(1
9
)T

ea
m

V
ie
w
er

(2
5
)T

w
it
te

r

(1
7
)Y

o
u
T
u
b
e

(9
)Z

a
p
p
o
s

(3
0
9
)
T
o
ta

l

D
et

ec
ti
o
n

T
im

e

Lexical Antipatterns/Patterns

Amorphous URI 8 0 15 0 14 2 65 14 19 7 28 3 25 10 9 219(71%) 0.984s
0706152000243210021IRUydiT 90(29%) 0.968s
000000000000000noitceteDoN 0(0.0%) –

Contextless Resource Names 0 0 2 4 1 0 7 4 9 2 6 0 6 1 0 42(14%) 0.565s
Contextualised Resource Names 9 0 8 4 14 0 21 8 10 3 28 0 19 6 0 130(42%) 0.66s

90109191202936245020noitceteDoN 137(44%) –

005010000060000IRUyDURC 12(4%) 0.737s
97102912579141855112151029IRUsselbreV 287(93%) 0.677s
000000009100000noitceteDoN 10(3%) –

Non-hierarchical Nodes 9 0 10 8 15 0 28 12 19 5 34 0 25 6 0 171(55%) 0.584s
Hierarchical Nodes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0(0.0%) 0.592s

No Detection 0 20 5 4 2 6 39 2 0 2 19 19 0 11 9 138(45%) –

Pluralised Nodes 0 0 0 0 8 0 0 0 0 0 0 2 1 0 0 11(4%) 0.668s
Singularised Nodes 0 0 0 0 0 0 0 1 0 0 0 2 1 3 0 7(2%) 0.656s

9413251357913176692151029noitceteDoN 291(94%) –

methods from 15 RESTful APIs are available on our project Web site http://
sofa.uqam.ca/dolar/.

As shown in Table 3, more than 70 % of analysed URIs (219 out of 309) show
amorphousness. Exceptionally, the Bestbuy API has all the URIs detected as
Tidy URI. In contrast, all the URIs in Instagram and Twitter, for example,
have syntactic problems and all of them are detected as Amorphous URI. As
for the Contextualised Resource Names pattern, most of the APIs applied this
pattern correctly—APIs providers use contextual resources names as nodes in
URIs design—an important factor that affects the understandability of RESTful
APIs. However, our dictionary-based analyses did not relate contexts among
URI nodes for 137 cases because the dictionaries we used are general English
dictionaries and do not relate to specific domains like social networks such as
Twitter and Facebook. However, a domain specific dictionary might reason about
URIs contexts more accurately.

We observe the same detection results for Hierarchical Nodes pattern, i.e.,
the dictionaries could not find hierarchical relations among URIs nodes. Indeed,
we have zero detection for Hierarchical Nodes pattern because: (1) around 50 %
of tested URIs used only one node (excluding the base URI) in which case we
cannot check the hierarchical relation and (2) more than 20 % URIs contain digits
or numbers as nodes, which again do not fall under any hierarchical relations.

The occurrences of CRUDy URI antipattern were detected in only 4 % (12
out of 309) tested URIs. In contrast, 93 % (287 out of 309) of the tested URIs

http://sofa.uqam.ca/dolar/
http://sofa.uqam.ca/dolar/

182 F. Palma et al.

are Verbless URI. In other words, APIs designers seem aware of not mixing the
definition of traditional Web service operations and resource-oriented HTTP
requests in REST. In traditional Web services, operation identifiers reflect what
they are doing, whereas in REST, actions to be performed on a resource should
be explicitly mentioned only using HTTP methods and not within a URI through
a CRUDy term. Finally, there is a significant amount of No Detection for Singu-
larised vs. Pluralised Nodes since about 90 % of our tested requests used HTTP
GET method. HTTP GET requests can retrieve both single and multitude of
resources. However, for the remaining 10 %, the Pluralised Nodes antipattern
appeared more frequently than the Singularised Nodes pattern.

Here, we discuss the Contextless Resource Names antipattern in detail (since,
it is our running example for this paper). Out of 309 tested URIs, 14 % (42 occur-
rences) of them are detected as Contextless Resource Names antipatterns, 42 %
(130 occurrences) are detected as Contextualised Resource Names patterns, and
44 % (137 occurrences) are detected as None. More specifically, for example,
in Bestbuy, most of the URIs have only one node followed by parameters. We
ignore parameters while we capture the context. Thus, if there is only one node
in URIs, it is not possible to find any contextual relationship. Therefore, all the
Bestbuy URIs are detected as No Detection.

In contrast, the Dropbox, Facebook, StackExchange, Twitter, and YouTube
involve a high number of contextualised URIs naming. These good practices may
help their APIs clients better understand and reuse. The following snippet shows
two request URIs from Facebook where the URI nodes are considered to be in
the same semantic context:

1. https://graph.facebook.com/v2.2/{user id1}/mutualfriends/{user id2}?access token=CAATt8..

2. https://graph.facebook.com/v2.2/{user id1}/friendlists?access token=CAATt8..

For Facebook, our DOLAR approach reported 21 tested methods (out of 67)
as Contextualised Resource Names patterns.

5.5 Further Discussion of the Results

Table 4 shows the validation results on Dropbox (Validation 1) and on four
representative APIs (Validation 2). For the first validation, the average precision
is 81.4 % and recall is 78 % for all (anti)patterns. For the second validation, the
average precision is 79.7 %.

In the first validation of Dropbox, two occurrences of Verbless URI are false
positives. The terms ‘copy’ and ‘search’ (or their synonyms) were not consid-
ered CRUDy by our algorithm in /1/copy ref/dropbox/MyDropboxFolder/ and
/1/search/dropbox/MyDropboxFolder/. However, the manual validation consid-
ered those terms CRUDy. Thus, on Dropbox, we had a precision of 100 % and
a recall of 75 % for CRUDy URI and a precision of 80 %, recall of 100 % for
Verbless URI.

The Non-hierarchical Nodes antipattern was detected by our detection algo-
rithm in 14 cases whereas the manual validation suggested only three of them

Are RESTful APIs Well-Designed? 183

Table 4. Complete validation results on Dropbox (Validation 1) and partial validation
results on Facebook, Dropbox, Twitter, and YouTube (Validation 2). ‘P’ represents the
numbers of detected positives and ‘TP’ the numbers of true positives.

actually are organised in a non-hierarchical order. We manually investigated
the causes of such discrepancies, and found that the URIs that we identified as
antipatterns by our detection algorithms and, later, were (manually) validated
as patterns have the following URI pattern:

1. {baseURI}/{media|revisions|shares}/dropbox/MyDropboxFolder/...
2. {baseURI}/fileops/{copy|delete|move|create folder}/?root=dropbox&path=...

Our dictionary-based analyses did not find any hierarchical relations between
{media,revisions,shares} and dropbox, between MyDropboxFolder and dropbox,
and so on. Yet, these hierarchical relations are obvious for developers and it was
easy to infer the hierarchical relations among those pairs simply because they
use a natural naming scheme [11]. It is the same for the second example, where
fileops and {copy,delete,move,create folder} are validated to be in hierarchical
relation and the English dictionaries could not find any hierarchical relations,
thus DOLAR considered them as Non-hierarchical Nodes antipatterns. There-
fore, for this antipattern, we had a low precision of 21.43 %.

In the second validation, also for the Non-hierarchical Nodes antipattern,
DOLAR faces a similar problem for Twitter as illustrated in these examples:

1. {baseURI}/help/privacy.json
2. {baseURI}/statuses/{show.json|user timeline.json}?screen name=...

The dictionary-based analyses did not find any hierarchical relations between
‘help’ and ‘privacy’ or between ‘statuses’ and {show,user,timeline} and reported
them as non-hierarchical. The precision for Non-hierarchical Nodes antipattern
is therefore 16.67 %, due to this limitation with the analyses.

Finally, an interesting observation from Table 4: two cases were identified
as Contextless Resource Names antipatterns that were manually validated as

184 F. Palma et al.

Contextualised Resource Names pattern. Our investigation shows that the Eng-
lish dictionaries suggested ‘Canucks’ and ‘albums’ in Facebook and ‘followers’
and ‘list’ in Twitter to be in two different contexts. However, three profession-
als validated them as patterns, which caused the precision down to 0 % for this
antipattern in four representative APIs, with an average precision of 53.3 %.

1. https://graph.facebook.com/Canucks/albums?access token=CAA2...

2. https://api.twitter.com/1.1/followers/list.json?screen name=...

5.6 Discussion on the Hypotheses

We now discuss the hypotheses defined in Sect. 5.1.

H1. Accuracy: From Table 4, for the first validation on Dropbox API, we
obtained an average precision of 81.4 % and recall of 78 % (Validation 1). As
for the second validation, on a partial set of tested methods on Facebook, Drop-
box, Twitter, and YouTube (i.e., 50 out of 125 tested methods), we obtained
an average precision of 79.7 % (Validation 2). However, for the second valida-
tion, we cannot calculate recall because we validated only a part of all tested
methods. Moreover, for the manually validated subset of URIs, we had a lower
precision ranging between 16.67 % and 21.43 % only for Non-hierarchical Nodes
antipattern due to the limitations of WordNet dictionary. Thus, despite lower
precision for one specific antipattern, with an average precision of 81.4 % and
79.7 %, and a recall of 78 % for all (anti)patterns, we can positively support our
first hypothesis on the accuracy of our defined set of rules and the detection
algorithms.

H2. Extensibility: We added to SOFA ten new REST linguistic (anti)patterns,
which required semantic analyses for their detection. At present, SOFA can
detect a set of 23 REST (anti)patterns from both syntactic and semantic aspects.
Furthermore, we added three new RESTful APIs (i.e., Instagram, StackEx-
change, and Externalip), and more than 190 new HTTP requests from [18].
To add new (anti)patterns, one needs to implement and integrate their detec-
tion algorithms within SOFA architecture. To add a new RESTful API, one
must add its service interface, the underlying methods of the service, an authen-
ticated client that can invoke these methods, and a wrapper SCA component,
which specifies the bindings, base URI, and various runtime properties. Thus, it
is possible to add new (anti)patterns, which supports our second hypothesis.

H3. Performance: Table 3 (last column) shows the detection time for each
pattern and antipattern, ranging between 0.565 s and 0.984 s, with an average
of 0.709 s. In fact, the total required time also includes the execution time, i.e.,
sending requests and receiving responses (ranges from 2.074 s to 20.656 s, with
an average of 6.92 s). We performed our experiment on an Intel Core-i7 with a
processor speed of 2.50 GHz and 8 GB of memory. The reported detection times
are comparatively low (on an average, 10 % of the total required time). However,
the total required time also depends on the number of tested methods for each

Are RESTful APIs Well-Designed? 185

API. With such a low average detection time of 0.709 s and execution time of
6.92 s, we can positively support our third hypothesis on performance.

5.7 Threats to Validity

To minimise the threat to the external validity of our results, we performed
experiments on 15 well-known APIs by invoking over 300 methods. We used
WordNet for lexical and semantic analyses of URIs. However, one limitation
of WordNet is that it does not include information on the semantic similarity
between words. In addition, the number of defined relationships among words
is limited and it lacks compound concepts or words. For example, we found
URIs with compound resource identifiers that, when split, may cause loosing
contextual information. This threat to the internal validity affected our detection
results. However, we plan to incorporate other similarity measure techniques like
second order similarity to improve our semantic analysis.

The detection results may deviate depending on the defined algorithmic rules
of linguistic (anti)patterns. Engineers may have their own views and levels of
expertise on REST linguistic (anti)patterns, which may affect the definition of
algorithmic rules. We tried to minimise this threat to the construct validity by
defining all rules after a thorough review of definitions in existing literature
on REST linguistic (anti)patterns. We also involved three professionals in the
validation of the results and involved a third expertise if conflicts arose. Finally,
to minimise the threat to reliability validity—the possibility to replicate this
study—we gather the details to replicate this study, including the algorithmic
rules and the client request URIs, on our Web site.

6 Conclusion and Future Work

REST client developers need to understand well RESTful APIs while designing
and developing their own Web-based systems. Understandability and reusability
are thus two major factors that APIs providers must consider. This paper pre-
sented DOLAR (Detection Of Linguistic Antipatterns in REST), an approach
supported by the SOFA framework [17] extended with syntactic and semantic
analyses, for the detection of linguistic (anti)patterns in RESTful APIs.

We applied DOLAR to specify ten linguistic (anti)patterns. We validated
DOLAR by analysing 15 RESTful APIs and invoking 309 methods and showed
its accuracy: (1) an average precision of 81.4 % and recall of 78 % on Dropbox
and (2) an average precision of 79.7 % for a partial validation on Facebook,
Dropbox, Twitter, and YouTube. We also observed that out of the 15 analysed
RESTful APIs, most of them involve syntactical URIs design problems and do
not organise URIs nodes in a hierarchical manner. However, the REST APIs
designers, in general, use appropriate resource names fit for a context and they
do not use verbs in URIs, which is a good URIs design practice in REST.

As future work, we want to apply DOLAR on other RESTful APIs and to
Open Linked Data. We plan also to include domain-specific ontologies in the

186 F. Palma et al.

semantic analyses to overcome the limitations of English dictionaries and to
apply other natural language processing techniques like second order similari-
ties. We want to perform a validation of DOLAR results with RESTful APIs
developers.

Acknowledgements. The authors thank Charlie Faucheux for initiating the study.
This study is supported by NSERC (Natural Sciences and Engineering Research Coun-
cil of Canada) and FRQNT, Canada research grants.

References

1. Abebe, S.L., Haiduc, S., Tonella, P., Marcus, A.: Lexicon bad smells in software.
In: 2009 16th Working Conference on Reverse Engineering, pp. 95–99. IEEE (2009)

2. Arnaoudova, V., Di, M.: Linguistic antipatterns: what they are and how developers
perceive them. Empirical Softw. Eng. (2015)

3. Arnaoudova, V., Eshkevari, L.M., Penta, M.D., Oliveto, R., Antoniol, G.,
Gueheneuc, Y.G.: REPENT: analyzing the nature of identifier renamings. IEEE
Trans. Softw. Eng. 40(5), 502–532 (2014)

4. Berners-Lee, T., Fielding, R.T., Masinter, L.: Uniform Resource Identifier (URI),
Generic Syntax (2005)

5. Edwards, M.: Service Component Architecture (SCA). OASIS, USA, April 2011
6. Erl, T.: Service-Oriented Architecture: Concepts, Technology and Design. Pearson

Education, Boston (2005)
7. Fielding, R.T.: Architectural Styles and the Design of Network-based Software

Architectures. Ph.D. thesis, University of California, Irvine (2000)
8. Fredrich, T.: RESTful Service Best Practices: Recommendations for Creating Web

Services, May 2012. http://www.restapitutorial.com/resources.html
9. Goddard, C.: Semantic Analysis: A Practical Introduction. Oxford Textbooks in

Linguistics, OUP Oxford (2011)
10. Hausenblas, M.: On entities in the web of data. In: Wilde, E., Pautasso, C. (eds.)

REST from Research to Practice, pp. 425–440. Springer, New York (2011)
11. Laitinen, K.: Estimating understandability of software documents. SIGSOFT

Softw. Eng. Notes 21(4), 81–92 (1996)
12. Lawrie, D., Morrell, C., Feild, H., Binkley, D.: Effective identifier names for com-

prehension and memory. Innovations Syst. Softw. Eng. 3(4), 303–318 (2007)
13. Lu, M., Sun, X., Wang, S., Lo, D., Duan, Y.: Query expansion via wordnet for

effective code search. In: 22nd IEEE International Conference on Software Analysis,
Evolution, and Reengineering, Montreal, Canada, pp. 545–549 (2015)

14. Massé, M.: REST API Design Rulebook. O’Reilly, Sebastopol (2012)
15. Mateos, C., Rodriguez, J.M., Zunino, A.: A tool to improve code-first web services

discoverability through text mining techniques. Softw. - Pract. Experience (2014)
16. Microsoft MSDN: Capitalization Styles. https://msdn.microsoft.com/en-us/

library/x2dbyw72(v=vs.71).aspx
17. Moha, N., Palma, F., Nayrolles, M., Conseil, B.J., Guéhéneuc, Y.-G., Baudry,

B., Jézéquel, J.-M.: Specification and detection of SOA antipatterns. In: Liu, C.,
Ludwig, H., Toumani, F., Yu, Q. (eds.) ICSOC 2012. LNCS, vol. 7636, pp. 1–16.
Springer, Heidelberg (2012)

http://www.restapitutorial.com/resources.html
https://msdn.microsoft.com/en-us/library/x2dbyw72(v=vs.71).aspx
https://msdn.microsoft.com/en-us/library/x2dbyw72(v=vs.71).aspx

Are RESTful APIs Well-Designed? 187

18. Palma, F., Dubois, J., Moha, N., Guéhéneuc, Y.-G.: Detection of REST pat-
terns and antipatterns: a heuristics-based approach. In: Franch, X., Ghose, A.K.,
Lewis, G.A., Bhiri, S. (eds.) ICSOC 2014. LNCS, vol. 8831, pp. 230–244. Springer,
Heidelberg (2014)

19. Parrish, A.: Social Network APIs: A Revised Lexical Analysis (2010)
20. Rahman, M.M., Chanchal, R.K.: TextRank based search term identification for

software change tasks. In: 22nd IEEE International Conference on Software Analy-
sis, Evolution, and Reengineering, Montreal, Canada, pp. 540–544 (2015)

21. Rodriguez, J.M., Crasso, M., Zunino, A., Campo, M.: Improving web ser-
vice descriptions for effective service discovery. Sci. Comput. Program. 75(11),
1001–1021 (2010)

22. Seinturier, L., Merle, P., Rouvoy, R., Romero, D., Schiavoni, V., Stefani, J.B.: A
component-based middleware platform for reconfigurable service-oriented architec-
tures. Softw. Pract. Experience 42(5), 559–583 (2012)

23. Tilkov, S.: REST Anti-Patterns, July 2008. www.infoq.com/articles/
rest-anti-patterns

www.infoq.com/articles/rest-anti-patterns
www.infoq.com/articles/rest-anti-patterns

Aggregating Functionality, Use History,
and Popularity of APIs to Recommend

Mashup Creation

Aditi Jain, Xumin Liu(B), and Qi Yu

B. Thomas Golisano College of Computing and Information Sciences,
Rochester Institute of Technology, Rochester, USA

{axj4268,xumin.liu,qi.yu}@rit.edu

Abstract. Creating mashups from existing Web APIs has provided an
effective means to boost software reuse and approach the full poten-
tial of online programming resources. One of the key hindrance faced by
mashup creation is to discover relevant APIs, especially due to the recent
fast growth of Web APIs and the brief, unstructured API descriptions. In
this paper, we propose a novel approach that recommends APIs to create
a mashup given a free-form text description. We incorporate three het-
erogeneous but complimentary factors into the recommendation process:
the functionality of an API, the usage history of the API by existing
mashups, and the popularity of the API. We leverage probabilistic topic
models to learn an API’s functionality from its textual description and
compute relevance between the API and the given mashup description.
As most APIs lack a rich textual description, we extend the API discovery
process by exploiting collaborative filtering to estimate the probability
of an API being used by existing similar mashups. These two sources of
information are then integrated through Bayes’ theorem, which allows
us to discover a set of functionally relevant APIs. The popularity of
these APIs is then factored in to perform quality based ranking so that
the best APIs can be recommended first. A comprehensive experimen-
tal study has been conducted on a real-world dataset to evaluate the
efficiency and effectiveness of the proposed method. The result indicates
that our method is efficient and provides better recommendation than
other competitive methods.

1 Introduction

The advent and advance of the Web 2.0 paradigm have expanded the develop-
ment of mashups and their use in various web and mobile applications. Web
service mashup refers to the composition of several web services or APIs (as
most of them are REST-ful) to augment the functionality of those APIs. For
example, an application to show weather forecast on a map of a location may
integrate the mapping API by Google and weather API by Weather Channel.
Mashups let a developer reuse already existing APIs and save development time
and provide higher quality and reliability with least effort [2]. As the interest in
c© Springer-Verlag Berlin Heidelberg 2015
A. Barros et al. (Eds.): ICSOC 2015, LNCS 9435, pp. 188–202, 2015.
DOI: 10.1007/978-3-662-48616-0 12

Aggregating Functionality, Use History, and Popularity of APIs 189

developing mashups increases so does the number of APIs. For example, there are
about 13,444 APIs as of May 2015 published on ProgrammableWeb. Selecting
the best suited API for mashup creation is a strenuous task even for an experi-
enced developer. Many of the APIs lie under the same umbrella of functionality,
so picking an optimal API among them in terms of quality and user-interest fur-
ther complicates the selection process. Other limitations in selecting services for
mashup include the compatibility of services with each other, so analyzing the
input/output parameters of the services is again laborious. Therefore, there’s a
need for an approach that could simplify the API selection process for mashup
composition so that developers can focus on other parts of their applications.

Existing efforts on recommending services for mashup creation fall into three
main categories that are based on functionality based, QoS, and social network,
respectively. Each type of approaches focus on one aspect, making them vulner-
able to the possible low quality and insufficient input of that particular type of
information. Functionality based approaches focus on finding APIs that provide
relevant functionality [6,7,9]. They leverage various information resources, such
as structured and unstructured API descriptions, semantic markups, tags, topic
models, and API categories, to identify those relevant APIs for a mashup. QoS-
based approaches use QoS value as the main guidance for finding suitable APIs
for a mashup [3]. The generation of a mashup is led by an optimization process,
aiming to achieve the best QoS in the end. These approach require the input
from users to identify those functionally related APIs. This could be very chal-
lenging for users given the huge number of available APIs online. Social network
based approaches leverage the network among mashups, APIs, user etc. and
then predict links for services and mashup [2,10]. These approaches require user
information as the input for API recommendation, which is difficult to obtain
in many cases.

In this paper, we propose a novel approach that addresses the above limita-
tions when recommending APIs to create a mashup given its textual description.
The approach is hybrid as it estimates the recommendation probability of an API
from three perspectives: functionality, usage history, and popularity. Specifically,
our contributions in this work are summarized as follows.

1. We exploit probabilistic topic models to derive functional features of APIs
and the desired mashup specification given by the user. Both the APIs and
mashup can be then represented as probabilistic distributions on latent topics.
The relevance of an API to a mashup is measured by the similarity between
the topic distributions of its description and the mashup specification.

2. We leverage matrix factorization based collaborative filtering to iden-
tify additional functionally relevant APIs. The idea of using collaborative
filtering is to leverage the mashup creation efforts made before, which were
recorded in descriptions of existing mashups. As our goal is to create a
mashup, no APIs have been used by such a new API yet, giving rise to
the long-standing cold start issue in recommender systems. We instead focus
on the existing mashups that are similar to the user desired mashup based
on their topic distributions computed using probabilistic topic models. These

190 A. Jain et al.

mashups are then used in a collaborative filtering algorithm to locate addi-
tional relevant APIs.

3. We apply Bayes’ theorem to integrate the two sources of information
obtained through probabilistic topic models and collaborative filtering, which
gives the posterior probability of given an API being used by the new mashup.
The top-k most probable APIs are identified, which are all considered as
functionally relevant to the new mashup. The popularity of these APIs are
then used to implicitly perform QoS based ranking and recommend the
best ones to the user.

The remainder of this paper is organized as follows. In Sect. 2, we give an
overview of existing effort that is relevant to the proposed approach. In Sect. 3,
we present in detail the proposed API discovery and recommendation approach
for mashup creation. In Sect. 4, we describe our experimental result. We conclude
in Sect. 5.

2 Related Work

In this section, we discuss several representative related work and differentiate
them with our work.

Functionality Based Recommendation. An approach was proposed to use Rela-
tional Topic Model (RTM) to identify functionally equivalent APIs for recom-
mendation [6]. RTM determines topic distribution in a document considering
all the citations and web links present in the document. The approach assumes
that mashups and APIs form a network of documents where documents consist
of topic related words and tags and links between them means that the API
is part of the mashup. Now, to recommend a mashup, RTM model and binary
random variables are used to predict the links. An iMashup tool was proposed
to compose mashup based on a data-driven approach using tag-based seman-
tic annotations [7]. It aims toward quick and easy composition of mashup as
many end-users want ease in the discovery and integration of services to get the
required final mashup. The tool makes use of tags to derive semantic annotations
and links them to service’s inputs/outputs. Then services are linked based on
similar tags and a directed acyclic graph is constructed using those links. Depth
first search and then regression search is run to obtain the recommendation
services from the graph. In our work, we consider more factors besides function-
ality for recommendation. A category-based approach was proposed to identify
the latent categories of potential APIs from the development requirement of a
mashup and recommend the top ranked APIs in each category [9]. This method
assumes that no more than one API should be selected from one category for
a mashup, which is not always the case. As an example, a social mashup that
allows users to access multiple social accounts may require several social APIs,
such as Twitter, Facebook, and LinkedIn.

Aggregating Functionality, Use History, and Popularity of APIs 191

Quality-Based Recommendation. An approach was proposed to use the quality
of APIs to drive the composition of a mashup [3]. A tool was developed to allow
a user to drag APIs to add to a mashup. Then the tool calculates how the added
API would influence the overall quality of the mashup and provide suggestions
for alternative services. To start with the quality evaluation, first the QoS is
taken into account and then the role of this service in the mashup is analyzed.
Naturally, a master/central service would influence quality of the mashup more
as compared to any slave/side services. This method requires a user to select
the appropriate APIs from the functionality perspective, which imposes a great
burden on users due to the large number of available APIs.

Social-Based Recommendation. A social-aware recommendation approach was
proposed to address the implicit and explicit requirements of a user [10]. The app-
roach explores and analyzes the social relationships between tags, mashups/API
topics, and users by building a coupled matrix model. Then coupled-factorization
algorithm is ran on the matrices obtained after the analysis to identify latent
relationships and construct a recommendation prediction matrix. Another social-
based approach was proposed by A. Maaradji et al. for service discovery and
selection for mashup composition [8]. It proposed a platform called Social Com-
poser (SoCo), which leverages social interactions of composition interests of users
to derive mashup recommendations. It transforms the interactions between users
and services to interactions between users. It uses an implicit social graph to map
implicit social relations between users and links the users depending on their
composition interest and activities. These links help build recommendation con-
fidence based on the common interest of two users. The recommendation is based
on analyzing user profiles for user’s interests in services and relevance of services.
An approach was proposed to solve the cold-start problem and under utilization
of social information [4]. It makes use of both social and functional information
to accelerate service discovery and recommendation for mashups. The method
first extracts semantic descriptors from user’s mashup query to discover candi-
date APIs and social features are extracted using popularity and collaboration
ratings. Then, these semantic and social features of APIs are represented using
graphs. The candidate mashup chains are assessed for input/output connectivity
to recommend services for mashups. This approach assumes the knowledge of
service input/output, which may be difficult to obtain for RESTful services that
have become the majority of online APIs. In contrast, our approach can work
with both structured and unstructured service descriptions so that it can be
used for both SOAP based and RESTful services. The social based approaches
request user information and the corresponding social network. Such information
may be hard, or impossible to locate in many real-world scenarios.

3 The Proposed Approach

In this section, we describe in detail the proposed approach that aggregates
API functionality, their usage history by existing mashups, along with their

192 A. Jain et al.

popularity to recommend relevant APIs for mashup creation. The approach is
composed of three interrelated components - (1) functionality based API discov-
ery, (2) matrix factorization based collaborative filtering to expand the candidate
API space, and (3) popularity based ranking for API recommendation.

Given the limited terms in the API descriptions, discovery of functionally
relevant candidate APIs should go beyond simply matching terms in the descrip-
tions. The recent advances in topic models in natural language processing and
machine learning enable us to match APIs and mashups based on their underly-
ing topics, which are expected to cover the functionality they provide. In partic-
ular, we exploit the Latent Dirichlet Allocation (or LDA [1]) model to determine
the topics in API descriptions and the desired mashup specification given by the
user. Then cosine similarity is used to determine the similarity between the topic
distributions of API descriptions and the given mashup specification. Topic mod-
els still inherently rely on the use of terms to derive the underlying topics, based
upon which the relevant APIs will be identified. As a result, the few terms used
by most API descriptions may limit the effectiveness of topic models and hence
relevant APIs may be missed out. To address this limitation, matrix-factorization
based collaborative filtering is employed to discover additional candidate APIs
based on the way they have been used in other existing mashups. We will focus
on the existing mashups that are similar to the user desired mashup based on
their topic distributions computed using LDA. Each of these two components
will assign a relevance score to each API. Since the relevance scores lie in the
range of 0 to 1, they can be interpreted as the probability of being relevant to the
user desired mashup. By making the class conditional independence assumption,
we can leverage the Bayes’ theorem to integrate the two relevance scores into a
single one, which allows us to choose a set of top-k candidate APIs. These top-k
candidates will be finally ranked and returned to the user based on how popular
they have been used in the past. As the top-k candidates are mainly determined
from a functional perspective, the popularity of these APIs help factor in the
non-functional aspects of these services, which enable to recommend functionally
relevant services with good qualities.

In sum, the first two components of the proposed approach help discover a set
of functionally relevant APIs for mashup creation while the last component uses
popularity to implicitly perform QoS based ranking of these selected APIs and
recommend the best ones to the user. Figure 1 illustrates the overall structure
of the proposed approach.

3.1 Functionality-Based Candidate API Discovery

In this component, functionally relevant APIs are identified based on the given
mashup specification in the mashup query. LDA is used to represent the func-
tionality of available APIs and mashup specification by determining their topics.

LDA is a generative model, which regards each document as generated from a
collection of topics and each topic is a distribution of words. It will determine the
topic distribution in API descriptions and the mashup specification in the given
mashup query to analyze their functionality. The API descriptions in this study
are part of the API dataset from ProgrammableWeb.com that contains API

Aggregating Functionality, Use History, and Popularity of APIs 193

Fig. 1. Overall structure of the approach

names, descriptions of API, the number of mashups an API has been used for,
API providers, and tags. Like many other model, LDA consists of two phases -
learning or training phase and inference or testing phase. LDA is trained using
API descriptions. In the training phase, the model takes all the API descrip-
tions and the total number of topics as input. It tries to distribute words under
different topics based upon their co-occurrences to obtain word-topic distribu-
tions. Meanwhile, it analyzes and assigns each document (or API description in
this case) with probability of existence of each topic and gives topic probabil-
ity distribution as the output. The topics having high probabilities contribute
towards the identification of functionality of the API. In the testing phase, the
topics for given mashup specification are inferred. The word-topic distributions
are available from the training model obtained using API descriptions. The same
topics from the training set are used to find the probability of those topics in
the given mashup specification. After obtaining topic distributions for both APIs
and mashup specification, the similarity between each API and the mashup spec-
ification can be calculated using the cosine similarity of their respective topic
distribution vectors.

3.2 Historical Usage Based API Discovery

As stated above, the lack of rich API descriptions may limit the power of using
topic models, such as LDA, to identify their underlying functionality and hence

194 A. Jain et al.

discover APIs that are relevant to a user desired mashup. To address this issue,
we propose to leverage historical usage of APIs in existing mashups and apply
collaborative filtering techniques to identify additional candidate APIs.

Collaborative filtering is one of the most famous techniques for recommenda-
tion systems. It is based on the concept that if two users who previously preferred
same items would prefer similar items in future. While recommending items to
a user, all the users similar to an active user are found and the items preferred
by those users are recommended. Alternatively, if a user prefers an item, similar
items could be referred to the user. Thus, leveraging usage history of an item and
a user, items could be recommended to users by analyzing the preference of users
in past. Collaborative filtering could use two techniques - neighborhood-based or
model-based. Neighborhood-based approaches usually use Pearson Correlation
Coefficient to calculate the nearest or most similar users (and/or items) for rec-
ommendation. Though this technique is easy to understand and implement, it
is usually not effective when the data is sparse and its performance decreases as
the size of the dataset grows. On the other hand, model-based approaches, such
as matrix factorization, are usually effective to overcome the data sparsity issue.
These techniques are based on the idea that there are latent features/factors
that could be discovered from user preferences and then be used for making
recommendations [11].

Matrix factorization based collaborative filtering utilizes a user-item matrix,
which usually represents user ratings for each item and may contain empty
entries suggesting that user has not used that item and doesn’t provide a rating
for it. Thus, predicting the rating for these unused items would aid the rec-
ommendation process. This matrix is decomposed to learn latent factors and
obtain two different matrices (corresponding to users and items, respectively)
whose product recovers the original matrix. In practice, the original matrix is
never recovered perfectly. The goal is to discover component matrices whose
product minimizes the errors or differences between the original matrix and
recovered matrix. After the errors are minimized, the new matrix would contain
predicted approximate rating values for those empty entries. Early implementa-
tion of matrix factorization relies on Singular Value Decomposition (SVD), which
is inefficient for large sparse data matrices. We instead exploit the Alternating
Least Squares (ALS) method which works well with sparse data matrices and
minimizes the squared errors by alternating between holding one of the factors
fixed while computing the other [5].

The above idea can be applied to identify relevant APIs based on their usage
history of existing mashups. Specifically, mashups play the role of users and
APIs play the role of items. The key remaining issue is that since the goal is to
create a new mashup, there is no usage history for the mashup yet. To still apply
collaborative filtering, we instead seek for existing mashups that are similar to
the desired mashup. We can again leverage LDA based topic models to determine
the similarity between the new mashup specification and all existing mashup
descriptions. In this way, the most similar existing mashups can be identified.
After that, all the APIs used by these mashups will be included in the candidate
list. This helps include some additional APIs but the number may still be limited

Aggregating Functionality, Use History, and Popularity of APIs 195

as most mashups only use a very small number of APIs. For example, after
analyzing the mashups crawled from ProgrammableWeb.com, it was observed
that around 85 % of the mashups use only three or less APIs. We then use each
of these mashups as if it is the new API and apply matrix factorization based
collaborative filtering to identify more relevant APIs. Intuitively, APIs that have
been used by mashups that are similar to new mashup stand a greater chance of
being used again as they would be more contextually relevant and thus could be
recommended for the required mashup. As the output, a list of candidate APIs
for the new mashup is returned with a probability of the API being used by the
new mashup.

3.3 Popularity Based API Ranking

By using topic models in the first component, each API is assigned a cosine simi-
larity with the new mashup that a user desires to create. Similarly, by leveraging
the API usage history through collaborative filtering in the second component,
each API is assigned a probability of being used by the new mashup. In fact, the
outputs from the two components can be both regarded as relevance scores of an
API. Since the relevance scores take values in [0, 1], we can interpret them as the
probability of being relevant to the user desired mashup. Let p(at|m) denotes
the probability that API a is relevant to mashup m based on their topic distri-
butions; let p(au|m) denotes the probability that API a is relevant to mashup
m based on its usage history in existing mashups similar to m. By assuming
conditional independence, we can compute

p(a|m) = p(at|m)p(au|m) (1)

p(a|m) essentially specifies given a mashup m, how likely API a will be used in
it. We are instead interested to know given an API a, how likely it will be used
by the (new) mashup m, which is given by the posterior probability p(m|a). By
applying Bayes’ theorem, we have

p(m|a) ∝ p(at, au|m)p(m) = p(at|m)p(au|m)p(m) (2)

p(m) is the prior probability of observing a mashup m, which can be set to 1/M
with M denoting the total number of mashups. We can use p(m|a) to select the
top-k most relevant APIs.

The top-k APIs are all considered as providing relevant functionality for the
new mashup. However, some of these APIs may offer identical functionality. It
would be desirable if these APIs can be ranked based on their nonfunctional
properties (i.e., QoS) and returned to the user. Intuitively, APIs which have
higher quality are the ones frequently used for constructing existing mashups,
hence, they are more popular as compared to the others. Thus, the popularity
score, which is computed as the number times an API has been used in existing
APIs, can serve as a good QoS indicator and be used to rank the functionally
relevant APIs. In this way, the recommended APIs are not only functionally
relevant for the new mashup, but also provide a good QoS guarantee [6].

196 A. Jain et al.

4 Experiments and Evaluation

We conducted a set of experiments to evaluate the efficiency and effectiveness
of the proposed approach. We collected the experimental dataset by crawling
the ProgrammableWeb.com, one of the largest public web API repository. We
crawled the API and mashup profiles including their names, API categories, tags,
brief descriptions, and the use of APIs by mashups. There are 10,325 APIs and
6,819 mashups in the dataset, but only the mashups that use four or more APIs
were selected to get more tangible results. So, about 950 mashups were selected
and used.

All experiments were carried out on a Macbook Pro with 2.6 GHz Core
processor and 8 GB DDR3 memory under Mac OS X 10.9.5 operating system.
The evaluation focus mainly on the accuracy of the recommendation. We use
the summary of a mashup as the input and evaluate how well it can predict the
APIs for the mashup, comparing the actual APIs used by the mashup with the
ones recommended by our approach. We compare the proposed method with
functionality based, collaborative filtering based recommendations, as well as
some existing competitive methods [6].

4.1 Training Probabilistic Topic Models

We used the Mallet LDA package1 to learn latent topics and the their proba-
bilistic distributions for terms. As mashup descriptions are treated as the input
from users that reflect their requirements on creating a mashup, such infor-
mation is not always available before making recommendations. Therefore, we
only uses API descriptions for the topic learning process. The performance of
LDA is affected by the predefined number of topics. The optimal number can be
obtained through a set of trials and the observation on the resulted word-topic
distribution for each trial. If many semantically unrelated words are assigned to
the same topic, then the specified number of topics should be bigger. On the
other hand, if many semantically related words are assigned to different topics,
the specified number of topics should be smaller. Following this guidance, we
trained the model with different number of topics, starting from 30 to 100 with
an interval of 5 topics. We settled at 65 topic as this gave us the most readable
result. The output of the LDA model training are topic-document and word-
topic distributions. Figure 2 illustrates distribution of 14 topics over 10 different
API descriptions. Figure 4 visualizes some example words for topics 4, 63, and
45. The font size of each word in the table is proportional to the probability of
the word appearing in that topic. For example, the word interface appears more
number of times as compared to word developer in topic 45 which corresponds
to web-related topic. The relation between APIs flickr and tumblr can be seen
through Figs. 2 and 4 that topic 63 has the highest probability, which consists
of words like social, friends, photos etc. (which we know is true). Also, Fig. 3
illustrates percentage of API descriptions assigned to different topics. It shows
1 http://mallet.cs.umass.edu/.

http://mallet.cs.umass.edu/

Aggregating Functionality, Use History, and Popularity of APIs 197

Fig. 2. Stacked bar graph illustrating topic distribution over API description

that topic 45 is assigned to approximately 21 % of the API descriptions. This is
because it contains words like interface and protocol, which are common words
used for API descriptions.

After training the LDA model, the model was used to infer topics in mashup
description of the mashup query. To infer the topics, the word-topic distribution
is piped from the model trained with API description. We use the same topics
from the training set and find the probabilities of those topics in mashup descrip-
tion. The inference output of the mashup query is the list of topics with their
probabilities. The topics in each document are ordered based on their topic prob-
abilities. Hence, the first topic assigned for each document is the most prominent
topic and so on.

4.2 Evaluation Result

We used the current API used by mashups as the ground truth to evaluate the
accuracy of our recommendation method. We divided the mashups into three
sets: training, validation, and testing. In the training and validation sets, the
use of APIs by mashups is assumed to be known. The testing set consists of
302 mashups, where the use of APIs by these mashups were compared to the
recommendation result for the evaluation. We compared our recommendation
method with two other ones: topic modeling based and collaborative filtering
based approaches. As most of the existing mashup recommendation methods
do not tackle the cold start problem, their experimental results are not compa-
rable to ours except for the one proposed in [6]. Therefore, we compared our
method to it.

198 A. Jain et al.

Fig. 3. Bar graph illustrating percentage of API descriptions assigned to topics

Traditional metrics for measuring prediction accuracy of a recommendation
system includes precision and recall. Precision is the ratio of the total number of
properly recommended APIs to the total number of recommended APIs. Recall
is the ratio of the total number of properly recommended APIs to the total
relevant APIs. In this work, we use recall@T to examine the impact of the
number of recommended APIs on the accuracy. That is, given a constant T ,
a recommendation system suggests the top T APIs. We set T from 10 to 100,
with an interval of 10. Recall is calculated as the ratio of the total number of
properly recommended APIs in the suggested list (NT i) to the total number of
APIs actually used in the mashup (Nmi

). Therefore, the overall performance
of the recommendation is the average of all recalls evaluated in the testing set,
i.e.,

recall@T = (1/M)
M∑

i=1

(NT i/Nmi
) (3)

We also use F-score as an evaluation metric. F-score integrates both recall
and precision by computing the harmonic mean of them as follows, i.e.,

F-score =
Recall ∗ Precision

Recall + Precision

Figure 5 shows the average recall values for top-T recommended APIs and
compares each of the approach where T ∈ {10, 20, ..., 100}. It can be seen that
the proposed hybrid recommendation method outperforms the LDA based and

Aggregating Functionality, Use History, and Popularity of APIs 199

Fig. 4. Example of word-topic distribution

collaborative filtering method methods. On the one hand, LDA can find similar
APIs, but doesn’t consider mashup’s usage history, which leads to recommending
APIs that are not relevant or not preferred by the mashup. This explains why
it performs poorly. On the other hand, collaborative filtering considers mashup
usage history and can recommend APIs that are preferred by the mashups, thus
performing much better than LDA. However, collaborative filtering suffers from
the cold-start problem. Therefore, combining both approaches to give a hybrid
solution seems logical to overcome these issues to some extent. Moreover, inte-
grating popularity score of APIs adds QoS factors in the recommendation as
usually most popular APIs are acknowledged as being of high quality. Figure 5
also demonstrates that the value of recall increases as the number of recom-
mended APIs increases for all the approaches. This is a logical behavior as the
probability of relevant APIs being recommended would be higher when more
APIs are recommended. But when this number is higher than 80 the recall is
almost constant and when recommended APIs lie between 60–80 there is not
much difference in recall values. This indicates that about 60–80 APIs could be
recommended in order to achieve similar performance and recommending less
number of APIs would reduce mashup creator’s further workload.

Table 1. Comparison of proposed approach with the ERTM Approach in [6]

Recall Average precision

Proposed approach 0.62 0.41

ERTM approach 0.27 0.16

Table 1 compares our work and the one proposed in [6]. In order to make
a fair comparison, we used the metric in their work to evaluate the accuracy.
That is, average precision gives the accuracy of ranked recommendation list i.e.
it considers the order of the recommended list and computes if the results in
higher rank/position in the list are relevant or not. This measure is computed
as it is usually desirable in search results to know if top results are relevant to
the user or not. It was computed as:

200 A. Jain et al.

Fig. 5. Average Recall, Precision and F-score comparison for the proposed approach,
individual matrix factorization CF and LDA with cosine similarity. The number of
recommended APIs was increased to analyze its effect on the performance.

Average Precision =
∑n

k=1(P (k) × rel(k))
|Relevant APIs|

where k is the rank/position of the API in the list; P (k) is the precision at cut-off
k and rel(k) is the change in recall or in simple words, it indicates if the API at

Aggregating Functionality, Use History, and Popularity of APIs 201

Fig. 6. Influence of increasing number of APIs and mashups on matrix factorization’s
performance

rank k is relevant or not. Its value is 1 if the API is relevant, otherwise it is 0.
As shown in Table 1, the average recall of our approach is 0.62, which is better
than the one in [6]. Our approach achieves a better precision as well, i.e., 0.27
vs 0.16.

Finally, to evaluate the performance of the approach, performance of matrix
factorization phase was evaluated. This is because its performance is directly
proportional to the increasing number of APIs and mashups as it increases data
density. Also, performance of LDA depends on the number of topics and first
phase could be performed offline, therefore, it is not considered in the evaluation
of performance of the complete approach. Figure 6 shows that time required
to train the matrix factorization model and predict ratings increases with the
increase in the number of APIs and mashups.

5 Conclusion

In this paper, we propose a novel approach to recommend relevant APIs with
good QoS for mashup creation. The proposed approach integrates functionality
and usage history to discover functionally relevant APIs and then uses their
popularity in existing mashups to achieve a ranked list of candidate APIs. By
aggregating multiple sources of information, the proposed approach helps dis-
cover a set of functionally relevant APIs for mashup creation while performing
QoS based ranking of these selected APIs so as to recommend the best ones to
the user. The results of the experiments demonstrate that the proposed approach
outperforms both individual matrix factorization and content-based (LDA plus
cosine similarity) approaches. Moreover, it also has better accuracy as compared
to other competitive methods.

202 A. Jain et al.

Our future work will focus on improving recommendation accuracy by explor-
ing advanced topic modeling techniques and checking the orchestration compat-
ibility of candidate APIs.

Acknowledgments. This work was supported by US National Science Foundation
under grant DUE-1141200.

References

1. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn.
Res. 3, 993–1022 (2003)

2. Cao, B., Liu, J., Tang, M., Zheng, Z., Wang, G.: Mashup service recommenda-
tion based on user interest and social network. In: 2013 IEEE 20th International
Conference on Web Services (ICWS), pp. 99–106, June 2013

3. Cappiello, C., Matera, M., Picozzi, M., Daniel, F., Fernandez, A.: Quality-
aware mashup composition: issues, techniques and tools. In: 2012 Eighth Interna-
tional Conference on the Quality of Information and Communications Technology
(QUATIC), pp. 10–19, September 2012

4. Jung, J., Lee, K.-H.: Socially-enriched semantic mashup of web APIs. In: Liu, C.,
Ludwig, H., Toumani, F., Yu, Q. (eds.) Service Oriented Computing. LNCS, vol.
7636, pp. 389–403. Springer, Heidelberg (2012)

5. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender
systems. Computer 8, 30–37 (2009)

6. Li, C., Zhang, R., Huai, J., Sun, H.: A novel approach for API recommendation
in mashup development. In: 2014 IEEE International Conference on Web Services
(ICWS), pp. 289–296, June 2014

7. Liu, X., Zhao, Q., Huang, G., Mei, H., Teng, T.: Composing data-driven service
mashups with tag-based semantic annotations. In: 2011 IEEE International Con-
ference on Web Services (ICWS), pp. 243–250, July 2011

8. Maaradji, A., Hacid, H., Skraba, R., Lateef, A., Daigremont, J., Crespi, N.: Social-
based web services discovery and composition for step-by-step mashup completion.
In: 2011 IEEE International Conference on Web Services (ICWS), pp. 700–701,
July 2011

9. Xia, B., Fan, Y., Tan, W., Huang, K., Zhang, J., Wu, C.: Category-aware API
clustering and distributed recommendation for automatic mashup creation. IEEE
Trans. Serv. Comput. PP(99), 1 (2014)

10. Xu, W., Cao, J., Hu, L., Wang, J., Li, M.: A social-aware service recommendation
approach for mashup creation. In: 2013 IEEE 20th International Conference on
Web Services (ICWS), pp. 107–114, June 2013

11. Yu, Q.: Cloudrec: a framework for personalized service recommendation in the
cloud. Knowl. Inf. Syst. 43(2), 417–443 (2015)

Integrating Gaussian Process
with Reinforcement Learning for Adaptive

Service Composition

Hongbing Wang1(B), Qin Wu1, Xin Chen1, and Qi Yu2

1 School of Computer Science and Engineering and Key Laboratory
of Computer Network and Information Integration,

Southeast University, Nanjing, China
hbw@seu.edu.cn, {bellawu627,cyceve}@gmail.com
2 College of Computing and Information Sciences,

Rochester Institute of Tech, Rochester, USA
qi.yu@rit.edu

Abstract. Service composition offers a powerful software paradigm to
build complex and value-added applications by exploiting a service ori-
ented architecture. However, the frequent changes in the internal and
external environment demand adaptiveness of a composition solution.
Meanwhile, the increasingly complex user requirements and the rapid
growth of the composition space give rise to the scalability issue. To
address these key challenges, we propose a new service composition
scheme, integrating gaussian process with reinforcement learning for
adaptive service composition. It uses kernel function approximation to
predict the distribution of the objective function value with strong com-
munication skills and generalization ability based on an off-policy
Q-learning algorithm. The experimental results demonstrate that our
method clearly outperforms the standard Q-learning solution for service
composition.

1 Introduction

In service computing, when a single web service can not meet a complex user
requirement, combining multiple existing services to build a complex value-added
service becomes a common practice, leading to services composition [6]. How-
ever, network-based web services are inherently dynamic. Therefore, a particular
composition solution may become infeasible before execution due to the changes
in the internal and external service composition environment (e.g., Quality of
Service or QoS declining or functional decay). Therefore, a composition solution
needs to adapt to those uncertain factors and deliver an adaptive and reliable
composition solution to users [19]. In addition, the complexity of a composition
workflow and the growth of candidate services lead to a large composition space,
which can be expressed by mn with m being the number of abstract service in
a composition workflow and n being the number of candidate services for each
abstract service [4,16]. Given the above challenges, we should provide a new
c© Springer-Verlag Berlin Heidelberg 2015
A. Barros et al. (Eds.): ICSOC 2015, LNCS 9435, pp. 203–217, 2015.
DOI: 10.1007/978-3-662-48616-0 13

204 H. Wang et al.

composition solution, which achieves certain adaptability while addressing the
scalability issue at the same time.

Adaptive service composition as a hot topic attracts attentions and recent
studies mainly use integer programming, graph planning, reinforcement learning
and so on. Among them, integer programming may be limited by the scale of
the problem. Graph planning is poorly suited to a dynamic environment. Exist-
ing reinforcement learning methods are also falling short for large-scale prob-
lems [20]. For a large-scale and dynamic service composition problem,
multi-agent, hierarchical reinforcement learning and function approximation
technologies provide some promising directions, some of which have been applied
into services composition with some success. For example, our previous work
addressed the problem by exploiting multi-agent technologies [20] and achieved
a relatively good composition performance. In this paper, we aim to explore
function approximation techniques to deal with large-scale service composition
as the proposed composition solution is built upon an reinforcement learning
algorithm. Reinforcement learning concerns the problem of a learning agent
interacting with its environment to achieve a given goal [1]. Instead of being
given examples of desired behavior, the learning agent must discover by trial
and error how to behave in order to get the most reward, which means that
reinforcement learning methods have inherent adaptability for a dynamic envi-
ronment [20]. However, table-based reinforcement learning algorithms, such as
the Q-learning algorithm [1], only perform well in small-scale problems. They
lack the generalization ability for large-scale problems.

Function approximation techniques overcome the drawbacks of exact repre-
sentations for value functions and policies in reinforcement learning algorithms.
They can solve problems in large or continuous state and action spaces [2]. In
addition, function approximations [2] can be separated into two main types: para-
metric and nonparametric. Parametric approximations map from a parameter
space into the space of functions with predetermined forms and number of para-
meters. The parameters are tuned using training data about the target function.
Unlike the parametric case, nonparametric approximation also has parameters,
but the number of parameters is determined from the data instead of a prior.
Thus nonparametric approximations are more flexible for the practical and large
problems, where it is hard to predefine the number of parameters.

In this paper, we propose a new adaptive composition solution using an
off-policy reinforcement learning algorithm integrated with gaussian process, a
nonparametric approximator. GP is a kind of Bayesian Nonparametric (BNP)
function approximation model. In the large-scale service composition framework,
we first model the service composition problem with a Markov decision process,
then utilize an off-policy Q-learning algorithm to achieve the optimal or near-
optimal composition scheme. In order to adapt to the large-scale scenarios, we
model the Q-value function evaluation process with a kernel function nonpara-
metric approximator to improve the composition performance. Our contributions
are summarized as follows:

– We introduce the MDP-WSC (Markov Decision Process-Web Service Com-
position) model to address large-scale service composition in a dynamic and
complex environment.

Integrating Gaussian Process with Reinforcement Learning 205

– We optimize a reinforcement learning algorithm based on gaussian process for
service composition. It is a kernel function approximation technique and can
predict the distribution of the objective function value with strong communi-
cation skills and generalization ability.

The reminder of this paper is organized as follows. Section 2 describes related
work. Section 3 introduces the problem formulation and basic definitions. Section 4
presents our approach for service composition based on off-policy Q-learning inte-
grated with gaussian process. In Sect. 5, some experimental results are presented
for evaluating the proposed approach. The paper is concluded in Sect. 6.

2 Related Work

In this section, we review some existing works that are most relevant to our app-
roach, including reinforcement learning (RL) and gaussian process (GP) adopted
in service composition.

Wang et al. [23] proposed an adaptive RL method based on a Markov Deci-
sion Process (MDP) that finds an optimal solution at runtime. A MDP builds
a model for obtaining compositions consisting of multiple aggregated workflows.
The work in [20] extended the ideas in [23] and proposed a optimized model for
service composition in multi-agent scenarios. Liu et al. [14] proposed an improved
RL approach that utilizes the reuse strategy to enhance performance and stabil-
ity of RL techniques. However, they impose high computational cost especially
in large service environments. Moustafa et al. [15] proposed an approach to
the QoS-aware service composition problem using multi-objective reinforcement
learning. But the method is not very efficient for large-scale service composition
scenarios.

The above RL methods for service composition are based on a look-up table,
which is difficult to extend to a large-scale scenario. An possible solution is
to replace the look-up table and value function with function approximation
techniques [3]. Most function approximation techniques can be classified as para-
metric and non-parametric approximation [2]. GP is one of the common non-
parametric function approximation techniques [18]. It is a natural generalization
of multivariate gaussian random variables to infinite (countably or continuous)
index sets. GP has been applied in a large number of fields to a diverse range
of ends, and many deep theoretical analyses of various properties are available.
It is attractive because of its flexible non-parametric nature and computational
simplicity [17].

Yaakov Engel [8] proposed an on-line learning approach to the problem of
value function estimation in continuous state spaces by imposing a gaussian prior
over value functions and assuming a gaussian noise model. They also proposed
a SARSA based extension that allows gradual improvement of policies in [9].
Jonathan Ko [13] presented a general technique for system identification that
combines GP and RL into a single formulation, which is done by training a GP
on the residual between the non-linear model and the ground truth training data.

206 H. Wang et al.

Thomas Gartner [11] investigated the use of GP to approximate the quality of
state-action pairs and employed GP in relational Rl by using graph kernels as
the covariance function between state-action pairs.

3 Problem Formulation

Similar to our previous studies [20–23], we use a Markov Decision Process (MDP)
to model the selection of services to form a service composition.

Definition 1 (MDP-Based Web Service Composition (MDP-WSC)).
A MDP-WSC is a 6-tuple MDP-WSC=< S, S0, Sτ , A(.), P,R >, where

– S is a finite set of world states;
– S0 ∈ S is the initial state from which an execution of the service composition

starts;
– Sτ ⊂ S is the set of terminal states, indicating an end of composition execution

when reaching one state Si
τ ∈ Sτ ;

– A(s) represents the set of services that can be executed in state s ∈ S;
– P is the probability distribution function. When a web service α is invoked,

the world makes a transition from its current state s to a succeeding state s′.
The probability for this transition is labeled as P (s′ |s, α);

– R is the immediate reward function. When the current state is s, and a service
α is selected, then we can get an immediate reward r = R(s, a) from the
environment after executing an action.

Fig. 1. The MDP-WSC of a Composite Service

Figure 1 shows a MDP-WSC graph of a composite service for a vacation
plan. It consists of two kinds of nodes, i.e., state nodes and service nodes, which
are represented by open circles and solid circles, respectively. s0 is the initial
state node, and nodes with double circles are terminal state nodes, such as s10.
A state node can be followed by a number of invoked service nodes, labeled with
the transition probability P (s′|s, α). Immediate reward r can be expressed by
aggregated QoS value of a service [23]. A MDP-WSC transition graph can be
created by using some automatic composition approaches, such as an AI planner
[16]. In addition, a MDP-WSC model has sufficient expression ability to describe
a business process control flow [23], and its solution is a deterministic policy π,
which determines the service selection under the specified state.

Integrating Gaussian Process with Reinforcement Learning 207

There are many reinforcement learning algorithms for solving MDP problems,
from which the off-policy Q-learning algorithm is a widely used strategy for its
simplicity and insensitivity for policy [24]. The off-policy Q-learning algorithm
incrementally evaluates actions’ Q-values according to the reward function and
Q-function. Its iterative formula can be seen in Eq. (1), where α is the learning
rate and γ is the discount factor.

In our large-scale service composition scenario, our solution may face poor
performance if we directly apply the off-policy Q-learning algorithm to search the
optimal (or near-optimal) composition sequence since the Q-learning algorithm
is limited by the solution space. Therefore, we need to optimize the off-policy
Q-learning algorithm to adapt to the large-scale composition scenario.

Q(s, a) ← (1 − α) ∗ Q(s, a) + α ∗ (r + γ ∗ max Q(s′, a′)) (1)

Function approximation is designed to address large-scale or continuous state
space problems [2]. In particular, kernel-based nonparametric approximation,
which is supported by a lot of statistical literature, directly tune parameters from
observed data without specifying prior parameter forms and numbers. It can
achieve more accurate characterization of the state space and is more suitable for
online learning. Therefore, it is widely applied in machine learning algorithms [7,
17]. For a deeper understanding of the principles of kernel methods, we first
introduce several important definitions and theorems related to kernel function
approximation.

Definition 2 (Reproducing Kernel Hilbert Space). H denotes a real-value
Hilbert function space defined in an abstract set X, ∀f(x) ∈ H,x ∈ X, if there
is a binary function k : X × X → �, which satisfies the following conditions:

1. For any fixed y ∈ X, k(x, y) ∈ H as a function of x.
2. For any f ∈ H, f(y) =< f(·), k(·, y) >H.

Then, kernel k is called a reproducing kernel of H, H is called reproducing kernel
space for k, abbreviated as RKHS.

We give the Representer Theorem based on Reproducing Kernel Hilbert
Space, which is the theoretical basis of kernel methods.

Theorem 1 (Representer Theorem). Suppose X is a non-empty set, k(·, ·)
is a positive definite real-valued kernel for X × X, and also is the reproducing
kernel for Hilbert space Hk. Given a sample set (x1, y1), ..., (xn, yn) ∈ X × �,
a strictly increasing real-valued function g : [0,∞] → �, and any risk function
R :

(
X × �2

)m → � ∪ {∞}, then the following objective function f∗ ∈ Hk

satisfies:

f∗ = arg min
f∈Hk

{R ((x1, y1, f(x1)) , ..., (xn, yn, f(xn))) + g (‖f‖)},

and f∗ satisfies the following equation,

f∗ (·) =
n∑

i=1

θik (·, xi), for any1 ≤ i ≤ n, θi ∈ �.

208 H. Wang et al.

According to the Representer Theorem, the value function of a reinforcement
learning algorithm can be expressed as Eq. (2), where s denotes observed data,
si denotes samples, θ denotes parameter vector, and k(·, ·) denotes the kernel
function. Another theorem having a profound impact on kernel methods is Mer-
cer theorem, and it also provides theoretical support for the widely used kernel
trick.

V (s) =
n∑

i=1

θik (s, si). (2)

Theorem 2 (Mercer Theorem). Let k(·, ·) be a positive-definite, symmetri-
cal, continuous and bounded kernel function. Then, the (positive-definite) integral
operator Tk : Θ → Θ defined by Tkθ(x) =

∫
x

k(x, x′)θ(x′)ρx(x′)dx′, where ρx(·)
is the marginal distribution of x, has a countable set of continuous eigenfunctions
{ψi}∞

i=1 with their respective positive eigenvalues {λi}∞
i=1, such that for almost

all x, x′, k(x, x′) =
∞∑

i=1

λiψi(x)ψi(x′).

According to Mercer theorem, if we define φi =
√

λiψi, then k(x, x′) =
∞∑

i=1

φi(x)φi(x′) = φ(x)Tφ(x′), and we can get an useful corollary, referred to as

“Kernel Trick”.

Corollary 1 (Kernel Trick): Any algorithm, which may be stated using only
inner products between members of the input space, can be immediately replaced
with a new (kernel) algorithm, in which the inner products are replaced with
kernel evaluations.

An algorithm, applying Kernel Trick to convert to a non-linear kernel form,
will be understood as a linear algorithm in the feature space. For example,

according to the kernel expression of Representer Theorem
t∑

i=1

αik (xi, x), after

using the Kernel Trick, we can get the expression wTφ(x), where w =
T∑

i=1

αiφ(xi).

In this paper, we utilize gaussian process, a Bayesian nonparametric (BNP)
function approximation kernel method, to model Q-value function evaluation in
the algorithm learning process so as to address large-scale service composition
problem. Gaussian process [3,5,17], seeking to a maximum posterior probability
through Bayesian inference, can achieve a probability distribution of Q-value for
a reinforcement learning algorithm, which is helpful for state-space search in the
learning process. Specifically, it is be defined as the following:

Definition 3 (Gaussian Process). Gaussian process can be seen as a set of
random variables, wherein each random variable contains an input variable x(x ∈
X, (x ∈ �d)), and for any finite random variables fx are subject to a joint
Gaussian distribution.

Integrating Gaussian Process with Reinforcement Learning 209

f ∼ gp(m, k) (3)

A gaussian process can be uniquely determined by the mean function m(x) =
E(fx) and covariance function k(x, x′) = E[(fx − m(x))(fx′ − m(x′))], wherein
k is the kernel function. Under the noisy environment, given the training sam-
ple input and the corresponding output value {(xi, fi) |i = 1, ..., n}, f∗ is output
value corresponding to the testing input set X∗. Then we can get a joint distri-
bution,

[
y
f∗

]
∼ N

(
0,

[
K(X,X) + ω2

nI K(X,X∗)
K(X∗,X) K(X∗,X∗)

])
(4)

where the K(X,X∗) denotes n × n∗ (n is the number of training sample, n∗
is the number of testing points) covariance matrix between training samples
and testing points. K(X,X), K(X∗,X), and K(X∗,X∗) are similarly defined. ε
denotes noise, y(x) = f(x) + ε, and cov(y) = K(X,X) + ω2

nI.
Then, we can get the posterior predictive equation of a noisy gaussian process

as following:

f∗
∣∣X, y,X∗ ∼ N

(
f∗, cov(f∗)

)
,

f∗
Δ= E[f∗ |X, y,X∗] = K(X∗,X)

[
K(X,X) + ω2

nI
]−1

y,

cov(f∗) = K(X∗,X∗) − K(X∗,X)
[
K(X,X) + ω2

nI
]−1

K(X,X∗).
(5)

4 Reinforcement Learning for Service Composition Based
on Gaussian Process

4.1 Predicting Q-Value Based on Gaussian Process

When modeling the Q-value function with a gaussian process, the corresponding
input field is all state-action pairs, and the desired result is a function of the
distribution of Q values. More specifically, Z = [z1,··· ,zτ] represents the sam-
ple collection of observed action-state pairs, and a action-state pair is labelled
as z =< s, a >. −→y = [y1, · · · , yτ]T is the observed value vector corresponding
to the sample collection of action-state pairs. Given some data points −→y for
the input field Z, we aim to predict the value of Q-function yτ+1 at new input
point zτ+1. We use K(Z,Z) to represent the kernel matrix, and take the corre-
sponding Kl,m = k(zl, zm) as the covariance between state-action pair zl and
zm. K(Z, zτ+1) indicates the estimation of the kernel vector for state τ + 1. ω2

n

represents the possibility of uncertainty for estimation. Based on Eq. (5), we can
derive the estimation and covariance of Q-value

Q̂(zτ+1) = m(zτ+1) = αT
τ K(Z, zτ+1),

cov(zτ+1) = k(zτ+1, zτ+1) + ω2
n − KT(Z, zτ+1)[K(Z,Z) + ω2

nI]−1K(Z, zτ+1)
(6)

where ατ = [K(Z,Z) + ω2
nI]−1y.

We use this as the updating formula of the Q-learning algorithm, and replace
Q(s, a) with the estimated value Q̂(s, a) according to the gaussian posterior
prediction.

210 H. Wang et al.

Q̂(s, a) = (1 − α) ∗ Q̂(s, a) + α ∗ (r + γ ∗ max Q̂(s′, a′)) (7)

We update Q̂ according to the newly observed data. The accuracy of obser-
vation depends on the accuracy of the current model. ω2

n, which represents the
gaussian noise, serves as a regularization item here. It can prevent the model
from converging too fast to an inaccurate estimation Q∗.

4.2 Constructing the Sparse Dictionary Online

Although integrating gaussian process with reinforcement learning can improve
the flexibility and accuracy, the continually increasing sample space in iterative
processes may lead to an increase for computational complexity at a polynomial
rate (the time complexity is usually O(τ3), and τ is the size of trained sample
data), which may cause thorny challenges to practical use. Given this, there is
a need for sparsification of the sample space, aiming at constructing a sparse
dictionary and thus reducing the number of redundant samples and speeding up
the convergence.

The method for dictionary construction can be classified as either on-line or
off-line. Off-line dictionary construction uses either feature selection or feature
extraction methods. Kernel principal component analysis (KPCA) is a common
method, which is an extension of the standard PCA by exploiting the kernel
trick. The computational complexity of standard feature decomposition using
KPCA is O(n3).

The basic idea of online dictionary construction is as following: if a new
sample zi can be converted to a linear representation by samples in the dic-
tionary, then the new sample will not join in the dictionary. Assuming that at
t − 1, we get a sample dictionary, Dt−1 =

{
φ(z1), φ(z2), ..., φ(zMt−1)

}
, where

φ(zi) is the feature vector of zi in the dictionary D and M is the size of the
dictionary (i.e., M = |Dt−1|). Online dictionary construction methods include
Approximate Linear Dependence (ALD), Projection and Novel Criterion (NC).
Due to the online requirement of reinforcement learning, we need to construct
a sparse dictionary online to guarantee the effectiveness and efficiency. Approxi-
mate Linear Dependence (ALD), which finds approximate answers for full rank
conditions, has been used in reinforcement learning. It can construct a sparse
dictionary online according to the condition of approximate linear dependence.

For a new feature vector φ(zt), the condition of approximate linear depen-
dence can be depicted as following:

δt = min
c

∥∥∥∥∥∥

∑

j

cjφ(zj) − φ(zt)

∥∥∥∥∥∥

2

≤ ξ (8)

where c = [cj] and ξ is the threshold that determines the approximation quality
and sparsity. When the condition in Eq. (8) is satisfied, the feature vector φ(zj)
will be ignored. Otherwise, it will join in the sample set.

Integrating Gaussian Process with Reinforcement Learning 211

δt = min
c

∥∥∥∥∥
∑
j

cjφ(zj) − φ(zt)

∥∥∥∥∥

2

= min
c

{
∑
i,j

cicj < φ(zi), φ(zj) > − 2
∑
i

ci < φ(zi), φ(zt) > + < φ(zt), φ(zt) >

}
,

(9)

By using the kernel trick, < φ(x), φ(y) >= k(x, y) = kxy, we can derive that

δt = min
c

{cTKt−1c − 2cTkt−1(zt) + ktt}, (10)

where the solution of Eq. (10) is

ct = Kt−1
−1k(t − 1)(zt),

δt = ktt − kT
t−1(zt)ct

(11)

We can see that, the computation of every step in the ALD method is mainly
focusing on getting a inverse of the kernel matrix. So, the computational com-
plexity is O(M2), and M is the size of the sample dictionary. We use the method
mentioned above to construct a sparse dictionary.

4.3 Updating the Gaussian Process Parameters

We know that the dictionary is the basis of prediction by a gaussian process.
The functional form and parameters of a gaussian process are updated by data
samples in the dictionary. Now we will introduce the method for updating the
gaussian process parameter, which is similar to what in [5].

Given a dictionary Zd, according to Eq. (6), the predictive value and covari-
ance are computed as following:

m(zτ+1) = αT
τ k(Zd, zτ+1)

cov(zτ+1) = k(zτ+1, zτ+1) + kT(Zd, zτ+1)Cτk(Zd, zτ+1)
(12)

where Cτ = −(K + ω2
nI)−1. Given a new data point, the kernel matrix trans-

position and weight α can be computed according to the rank of the current
kernel matrix. When updating online, we first give the definition of the following
scalars:

qτ+1 =
y − αT

τ kxτ

ω2
n + kT(Zd, zτ+1)Cτk(Zd, zτ+1) + k(zτ , zτ)

,

rτ+1 = − 1
ω2

n + kT(Zd, zτ+1)Cτk(Zd, zτ+1) + k(zτ , zτ)

(13)

We take eτ+1 as unit vector, the operators Tτ+1(·), Uτ+1(·) means expanding
the τ dimensional vector and matrix to τ +1 dimensional vector and matrix (by
adding in 0). Consequently, the gaussian process parameter can be computed
recursively by the following equations:

ατ+1 = Tτ+1(ατ) + qτ+1sτ+1,
Cτ+1 = Uτ+1(Cτ) + rτ+1sτ+1s

T
τ+1,

sτ+1 = Tτ+1(Cτkxτ+1) + eτ+1.
(14)

212 H. Wang et al.

4.4 OGPQ Algorithm

In this section, we introduce the main steps of Q-learning for large-scale service
composition based on a gaussian process (referred to as OGPQ). By constructing
the sparse dictionary online as well as predicting the distribution of Q-values
and updating the gaussian process parameter, we can derive an algorithm for
large-scale service composition based on kernel methods. The algorithm is given
below.

1: Initialization: discount rate γ, learning rate α, Q̂(s, a) = 0(s ∈ S, a ∈ A),
initial state s0, terminal state sr, BV = {}

2: repeat
3: for every episode, every time step τ do
4: According to ε-greedy policy, select the service aτ

5: execute the service aτ , observe the reward rτ ,sτ+1, make zτ =< sτ , aτ >
yτ = r + γmaxaτ+1Q̂(sτ+1, aτ+1)(equal to 7)

6: if δτ+1 > ξ (judge by the ALD method) then
7: BV =BV +zτ

8: end if
9: compute Kzτ+1 , ατ+1

10: update Q̂(zτ+1) = m(zτ+1) = αTK(Z, zτ+1)
11: Until sτ+1 is the terminal state
12: end for
13: until the convergence condition is satisfied

Algorithm 1. OGPQ Algorithm

BV in the dictionary represents the sample dictionary, which is empty at
first. After the selection of services according to the ε-greedy policy, we can judge
whether a new sample should join the dictionary based on the newly observed
data (state-action input zτ and the corresponding output yτ). Then we update
the parameter of the gaussian process and adjust the predicted Q-value, until
the algorithm converges to an optimal estimation Q∗.

5 Experiments and Analysis

In this section, we present the experimental result of our proposed service com-
position method. We demonstrate the effectiveness, adaptivity and scalability of
the off-policy Q-learning algorithm integrated with a gaussian process. We also
compare it with the standard Q-learning algorithm, and analyze the results.

5.1 Experiment Setting

We randomly generate MDP-WSC transition graphs and use them as the input,
and choose four QoS attributes from the extended QWS Dataset1, which are
1 http://www.uoguelph.ca/∼qmahmoud/qws/.

http://www.uoguelph.ca/~qmahmoud/qws/

Integrating Gaussian Process with Reinforcement Learning 213

ResponseT ime, Throughput, Availability and Reliability. A number of key
parameters are set up for the experiments as follows. The learning rate α of the
standard Q-learning algorithm (referred to as GRQ in what follows) is set to 0.6
according to the study in [23]. In this paper, the learning rate for the Q-learning
algorithm integrated with a gaussian process (referred to as OGPQ in what
follows) is 300

300+n(s)∗β (β = 0.6, n(s) is the number of accessing state s), which is a
form of α = a

b+k satisfying the convergence condition of iterative algorithm [10,
12]. The discount factor γ is set to 0.9 and the ε-greedy exploration strategy
value is set to 0.6. Other parameters are set as follows: recency regulators factor
μ = 0.1, gaussian kernel k(x, x′) = exp

(
‖x − x′‖2

/
(
2σ2

k

))
, σk = 0.1, threshold

parameter of sparsity ξ = π
2 , regularization term ω2

n=1. The experiments are
conducted on an Intel i3-2120 3.30 GHz PC with 4 GB RAM.

5.2 Result Analysis

1. Validation of Effectiveness. The purpose of the first experiment is to
examine the effectiveness of OGPQ compared with GRQ. In this scenario, a
MDP-WSC has 100 state nodes and 100 candidate services for each state. We
can see from Fig. 2(a), OGPQ is obviously superior to GRQ with regard to
convergence rate, where OGPQ converges at about the 3000th episode and GRQ
converges at about the 3600th episode. Since OGPQ performs online training,
its performance is not outstanding in initial learning, but with more and more
training samples, the gaussian posterior value prediction tends to be mature,
which helps guide the state-space search and accelerate convergence. In contrast,
GRQ can not effectively utilize the learning experience to guide learning process.
It performs a random exploration, which is limited by the large-scale composition
space. Thus, its convergence rate is relatively slower. In addition, OGPQ also
achieves a higher cumulative reward value than that of GRQ, which means that
OGPQ is closer to the optimal composition solution than GRQ.

Overall, this experiment verifies the effectiveness of OGPQ. It also demon-
strates its superiority in terms of exploration and convergence when compared
with GRQ.

2. Validation of Adaptability. The purpose of the second experiment is to
verify the adaptability of OGPQ. The setting of the service state nodes and can-
didate services is the same with the first experiment. To simulate a dynamic envi-
ronment, we randomly change the QoS values from a fixed number of candidate
services during the learning process. In order to facilitate comparison, we change
the QoS after the 1500th learning episode and before the 1600th learning episode.
According to the experimental results in Fig. 2(b), OGPQ and GRQ both finally
achieve convergence in spite of the dynamic environment, which demonstrates
the adaptability of both algorithms. In addition, OGPQ is superior to GRQ per-
taining to convergence rate and discount cumulative reward value. Since OGPG
predicts the Q-value distribution based on samples, the QoS fluctuation in the
learning process has little effect on convergence rate and the discount cumulative

214 H. Wang et al.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1000 2000 3000 4000 5000 6000

di
sc

ou
nt

ed
 c

um
ul

at
iv

e
re

w
ar

d

Episodes

 OGPQ
GRQ

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1000 1500 2000 2500 3000 3500 4000 4500 5000

di
sc

ou
nt

ed
 c

um
ul

at
iv

e
re

w
ar

d

Episodes

 OGPQ
GRQ

)b()a(

Fig. 2. (a) Validation of effectiveness (b) Validation of adaptability

reward value. It converges at about the 3100th learning episode with discount
cumulative reward value of 55. In constrast, GRQ is totally dependent on the
composition learning algorithm, which needs to relearn the optimal composition
solution and delay convergence when the QoS of candidate services changes.

In sum, this experiment verifies the adaptability of the proposed OGPQ
algorithm facing with a dynamic composition environment, which is beneficial
to provide a more reliable service composition solution.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1000 1500 2000 2500 3000 3500 4000 4500 5000

di
sc

ou
nt

ed
 c

um
ul

at
iv

e
re

w
ar

d

Episodes

 OGPQ
GRQ

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1000 1500 2000 2500 3000 3500 4000 4500 5000

di
sc

ou
nt

ed
 c

um
ul

at
iv

e
re

w
ar

d

Episodes

 OGPQ
GRQ

)b()a(

Fig. 3. (a) 200 candidate services, (b) 300 candidate services

3. Validation of Scalability. Here, we examine the influence of the states and
candidate services respectively to verify the scalability of the proposed OGPQ
algorithm. Firstly, we vary the number of services for each state node from
200 to 500 while fixing the state nodes at 100. From Figs. 3 and 4, we can
see that OGPQ always has a distinct advantage, and converges at about the
3200th episode, 3400th episode, 3800th episode and 4000th episode, respectively
when the candidate services for each state increasing from 200 to 500. On the
other hand, GRQ converges at about the 4100th episode, 4400th episode, 4800th
episode and 56000th episode, respectively. That is to say, GRQ can not converge
before the 5000th episode in the 500 candidate services scenario. GRQ is a pure
table-based learning algorithm and its learning efficiency will drop rapidly when

Integrating Gaussian Process with Reinforcement Learning 215

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1000 1500 2000 2500 3000 3500 4000 4500 5000

di
sc

ou
nt

ed
 c

um
ul

at
iv

e
re

w
ar

d

Episodes

 OGPQ
GRQ

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1000 1500 2000 2500 3000 3500 4000 4500 5000

di
sc

ou
nt

ed
 c

um
ul

at
iv

e
re

w
ar

d

Episodes

 OGPQ
GRQ

)b()a(

Fig. 4. (a) 400 candidate services, (b) 500 candidate services

 50

 100

 150

 200

 1000 1500 2000 2500 3000 3500 4000 4500 5000

di
sc

ou
nt

ed
 c

um
ul

at
iv

e
re

w
ar

d

Episodes

11.3% deviation from the optimal

8.9% deviation from the optimal

7.6% deviation from the optimal

OGPQ2
OGPQ3
OGPQ4

Fig. 5. Different state number for OGPQ

facing a large-scale composition scenario. The proposed OGRP algorithm, which
integrats the generalization ability of a gaussian process, can address large-scale
problems. Thus it still maintains a strong scalability in a large-scale service
composition scenario.

Next, we fix the candidate service number as 100 for each state node and
increase the state nodes from 200 to 400, to explore the impact of the growth on
state nodes for service composition. As the number of state nodes directly affects
the discount cumulative reward value, we use deviation degree D to perform
experimental analysis. Deviation degree is given by D = OPR−CCR

OPR , where OPR
indicates the optimal convergence reward, and CCR is the current convergence
reward. We can see from Fig. 5, the deviation degree D of OGPQ in the scenarios
of 200 state nodes, 300 state nodes and 400 state nodes is 9.8 %, 15.1 %, and
20.5 %, respectively. The more state nodes the higher of D. That is to say,
the increasing number of state nodes may result in more deviation from the
optimality and fall into local optima. Hence, we can conclude that the OGPQ
has the scalability when face with the increment of states nodes.

To sum up, the OGPQ algorithm can be applied to large-scale service com-
position scenarios with good scalability compared with GRQ.

216 H. Wang et al.

6 Conclusions and Future Directions

To take QoS into consideration and maintain composition adaptivity and effi-
ciency in a large-scale scenario, we propose a service composition approach based
on reinforcement learning and gaussian process. In our approach, we first model
the service composition problem using a MDP-WSC model, and aggregate all the
QoS values into the reward function. In this way, the optimal service composi-
tion problem is transformed into a stochastic decision process problem. We then
use the modified Q-learning algorithm to compute the solution, which integrates
with a gaussian process. Through experimental analysis, we have demonstrated
the effectiveness, adaptivity, and scalability in large-scale service composition.

The proposed approach can be further improved from the following aspects:

– In our framework, we assume that the environment can be observed fully,
which may be not practical in some complex scenarios. To overcome this, a
more generalized decision model based on Partially Observed Markov Decision
Process can be introduced in the future work.

– The ALD method used to achieve the sparseness of the online dictionary still
faces the problem of efficiency. We will try to exploit the NC method (whose
time complexity is O(n)), which may reduce the computational complexity.

– The size of QWS dataset used in our experiment can not meet our require-
ments for large-scale service composition scenarios. We plan to collect more
real services’ information and thus to construct a large-scale service dataset
for service composition.

Acknowledgments. This work is partially supported by NSFC Key Projects
(No. 61232007 and 61532013) and Doctoral Fund of Ministry of Education of China
(No. 20120092110028)

References

1. Barto, A.G.: Reinforcement Learning: An Introduction. MIT press, Cambridge
(1998)

2. Busoniu, L.: Reinforcement learning and dynamic programming using function
approximators. In: Automation and Control Engineering Series (2010)

3. Carl Edward Rasmussen, M.K.: Gaussian processes in reinforcement learning. Adv.
Neural Inf. Process. Syst. 16(2004), 751–759 (2004)

4. Constantinescu, I., Faltings, B., Binder, W.: Large scale, type-compatible service
composition. In: Proceedings of the IEEE International Conference on Web Ser-
vices (ICWS), pp. 506–513. IEEE (2004)

5. Csató, L., Opper, M.: Sparse on-line gaussian processes. Neural Comput. 14(3),
641–668 (2002)

6. Dustdar, S., Schreiner, W.: A survey on web services composition. Int. J. Web Grid
Serv. 1(1), 1–30 (2005)

7. Engel, Y.: Algorithms and representations for reinforcement learning. Ph.D. thesis,
Citeseer (2005)

Integrating Gaussian Process with Reinforcement Learning 217

8. Engel, Y., Mannor, S., Meir, R.: Bayes meets bellman: the gaussian process app-
roach to temporal difference learning. In: ICML, vol. 20, p. 154 (2003)

9. Engel, Y., Mannor, S., Meir, R.: Reinforcement learning with gaussian processes.
In: Proceedings of the 22nd International Conference on Machine Learning, pp.
201–208. ACM (2005)

10. Even-Dar, E., Mansour, Y.: Learning rates for Q-learning. J. Mach. Learn. Res. 5,
1–25 (2004)

11. Gärtner, T., Driessens, K., Ramon, J.: Graph kernels and gaussian processes for
relational reinforcement learning. In: Horváth, T., Yamamoto, A. (eds.) ILP 2003.
LNCS (LNAI), vol. 2835, pp. 146–163. Springer, Heidelberg (2003)

12. Gosavi, A.: A tutorial for reinforcement learning. Department of Engineering Man-
agement and Systems Engineering (2011)

13. Ko, J., Klein, D.J., Fox, D., Haehnel, D.: Gaussian processes and reinforcement
learning for identification and control of an autonomous blimp. In: 2007 IEEE
International Conference on Robotics and Automation, pp. 742–747. IEEE (2007)

14. Liu, Q., Sun, Y., Zhang, S.: A scalable web service composition based on a strategy
reused reinforcement learning approach. In: 2011 Eighth Web Information Systems
and Applications Conference (WISA), pp. 58–62. IEEE (2011)

15. Moustafa, A., Zhang, M.: Multi-objective service composition using reinforcement
learning. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS,
vol. 8274, pp. 298–312. Springer, Heidelberg (2013)

16. Oh, S.C., Lee, D., Kumara, S.R.: Effective web service composition in diverse and
large-scale service networks. IEEE Trans. Serv. Comput. (TSC) 1(1), 15–32 (2008)

17. Rasmussen, C.E.: Gaussian processes for machine learning (2006)
18. Taylor, G., Parr, R.: Kernelized value function approximation for reinforcement

learning. In: Proceedings of the 26th Annual International Conference on Machine
Learning, pp. 1017–1024. ACM (2009)

19. Trummer, I., Faltings, B.: Optimizing the tradeoff between discovery, composition,
and execution cost in service composition. In: Proceedings of the IEEE Interna-
tional Conference on Web Services (ICWS), pp. 476–483. IEEE (2011)

20. Wang, H., Chen, X., Wu, Q., Yu, Q., Zheng, Z., Bouguettaya, A.: Integrating
on-policy reinforcement learning with multi-agent techniques for adaptive service
composition. In: Franch, X., Ghose, A.K., Lewis, G.A., Bhiri, S. (eds.) ICSOC
2014. LNCS, vol. 8831, pp. 154–168. Springer, Heidelberg (2014)

21. Wang, H., Wang, X.: A novel approach to large-scale services composition. In:
Ishikawa, Y., Li, J., Wang, W., Zhang, R., Zhang, W. (eds.) APWeb 2013. LNCS,
vol. 7808, pp. 220–227. Springer, Heidelberg (2013)

22. Wang, H., Wu, Q., Chen, X., Yu, Q., Zheng, Z., Bouguettaya, A.: Adaptive and
dynamic service composition via multi-agent reinforcement learning. In: Proceed-
ings of the IEEE International Conference on Web Services (ICWS), pp. 447–454.
IEEE (2014)

23. Wang, H., Zhou, X., Zhou, X., Liu, W., Li, W., Bouguettaya, A.: Adaptive ser-
vice composition based on reinforcement learning. In: Maglio, P.P., Weske, M.,
Yang, J., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6470, pp. 92–107. Springer,
Heidelberg (2010)

24. Wiering, M., Van Otterlo, M.: Reinforcement learning. In: Wiering, M., van
Otterlo, M. (eds.) Adaptation, Learning, and Optimization, vol. 12. Springer,
Heidelberg (2012)

Scalable SaaS-Based Process Customization
with CaseWalls

Yu-Jen John Sun(B), Moshe Chai Barukh, Boualem Benatallah,
and Seyed-Mehdi-Reza Beheshti

School of Computer Science and Engineering, University of New South Wales,
Sydney, Australia

{johns,mosheb,boualem,sbeheshti}@cse.unsw.edu.au

Abstract. The rising popularity of SaaS allows individuals and enter-
prises to leverage various services (e.g. Dropbox, Github, GDrive and
Yammer) for everyday processes. However, these disparate services do
not in general communicate with each other, rather used in an ad-hoc
manner with little or no customizable process support. This inevitably
leads to “shadow processes”, often only informally managed by e-mail
or the like. In this paper, we propose a framework to simplify the inte-
gration of disparate services and effectively build customized processes.
The implementation of the proposed techniques includes an agile services
integration platform, called: CaseWalls. We provide a knowledge-based
event-bus for unified interactions between disparate services, while allow-
ing process participants to interact and collaborate on relevant cases.

1 Introduction

Traditional structured process-based systems increasingly prove too rigid amidst
today’s fast-paced and knowledge-intensive environments. A large portion of
processes, commonly described as “unstructured” or “semi-structured” processes,
cannot be pre-planned and likely depend upon human-interpretation. On the
other hand, there has been a plethora of apps to support everyday tasks with
enhanced collaboration. For example, Software-as-a-Service (SaaS) based tools
such as: (i) Dropbox to store and share files; (ii) Pivotal tracker to manage tasks
and projects; and (iii) Google Drive to edit and collaborate. Workers often need
to access, analyze, as well as integrate data from various such cloud data services.

Albeit, there are crucial gaps in the SaaS-enabled endeavor: The large number
of available services do not easily communicate with each other - often employed
ad-hoc. Moreover, such ready-made services implies conforming to a fixed set of
embedded features allowing little or no room for customization. Alternatively,
even if a collection of such services are used for different portions of tasks, this
inevitably leads to “shadow processes”, where synchronization between such
services is handled in an ad-hoc manner (e.g., actions are often accomplished in
a number of non-traceable steps via manual tasks, such as email or the like).

At the same time, the intent of the SOA-based approach was to simplify
service integration via APIs. However, this was met by the inherent need to
c© Springer-Verlag Berlin Heidelberg 2015
A. Barros et al. (Eds.): ICSOC 2015, LNCS 9435, pp. 218–233, 2015.
DOI: 10.1007/978-3-662-48616-0 14

Scalable SaaS-Based Process Customization with CaseWalls 219

understand various low-level APIs, leading to inflexible and costly programming
environments, requiring multiple and continuous patches. To counteract this,
advances in process composition languages emerged (e.g. BPEL), along with
Mashup environments (e.g. Yahoo! Pipes). Albeit, these environments rarely
provide productivity support tools akin to modern IDEs (e.g. code search and
discovery, ease of reuse, debugging, code generation). Moreover, they suffer from
the lack of agility and cannot support run-time changes. We thus call for an
exciting new change: where advanced techniques for simple, declarative, flexible
exploration and manipulation of multiple services in large scale and dynamic
environments, are needed. We argue, the ubiquity of process and services will
have little value if users cannot use, share and reuse them simply.

To address the above challenges, in this paper we propose a framework to sim-
plify service-integration and effectively build customized processes. Central is the
notion of Case Knowledge Graph (CKG), where common services-related low-
level logic can be abstracted, incrementally shared and thereby reused by devel-
opers. We organize knowledge into various dimensions: API s, Resources, Events
and Tasks. By identifying entities (i.e. attributes and relationships, along with
their specialization), a novel foundation is introduced to accumulate dispersed
case knowledge in a structured manner. This offers a unified representation,
manipulation and reuse of case knowledge to empower simplified SaaS-enabled
process customization. Empowered by this knowledge graph, we provide a novel
case customization and deployment platform, called CaseWalls, which enables:

– Professional process developers to incrementally create modular collections of
tasks - reusable and customizable process fragments (referred to as a “case”).
E.g. Create an issue on a project management service; upload a file into a
document management service; send an email when a co-worker upload new
version of a file; post videos and photos into social media services, etc.

– A simple, declarative yet powerful language that allow case-workers to search
existing tasks and compose into customized definitions. Composite tasks are
abstracted as reusable cases in the CKG for further reuse. The tasks search
component uses a “context” to describe the task “intent” and “objective” (e.g.,
upload a file, create an issue). Thus, using the business scenario to query the
CKG can return tasks that are appropriate for the given context.

– An event/activity “wall” to inform case-works about task progress; together
with a simple and declarative language to enable such participants to uni-
formly and collectively react, interact and collaborate on relevant case.

– The above is supported by a unified, knowledge-based event-bus for case
orchestration. The knowledge required at runtime to orchestrate cases (i.e.,
detecting events, executing tasks, invoking APIs) is automatically extracted
from the defined case definitions and expressed as event-action case orches-
tration rules. (We thus reuse a rule-engine as our execution environment.)

The rest of this paper is organized as follows: In Sect. 2, we propose a unified
case knowledge-graph and describe the constituent entities and relationships. In
Sect. 3, we present a novel knowledge-driven and declarative case manipulation

220 Y.-J. John Sun et al.

language. In Sect. 4, we present our implementation; evaluation in Sect. 5; then,
related-work and conclusions in Sect. 6.

2 Case-Knowledge Representation and Reuse

A knowledge-graph (KG) is an effective technique for taxonomy-based organiza-
tion of concepts and relationships. For example, Google-KG1 is a graph of pop-
ular informational concepts on the Web, such as “people, places and things”.
In our work, we apply a KG to curate (and thereby enable reuse) of service
and process related programming concepts (i.e. API s, Operations, Resources,
Events, Tasks) and their relationships. Formally, a KG is defined as an ordered
pair G = (V,E,Av, Ae) where, V is the vertex set whose elements are the vertices
(i.e. nodes or entities) of the graph; E is the edge set whose elements are the
edges (or relationships) between vertices of the graph; Av is a set of attributes
that can be associated with any vertex in V; and Ae is a set of attributes that
can be associated with any vertex in E.

Reference Scenario. For purpose of illustration, we describe a running exam-
ple that we adopt throughout this paper (also further elaborated in Sect. 5).
Consider the integration of a version-control and online source-code repository
system Github, with a story-tracking system Pivotal Tracker. Often code trace-
ability, collision and bug-repair require effective peer review and collaboration.
The integration of these two tools would provide a powerful combination.

Figure 1 illustrates a canonical graph of possible relationships between enti-
ties, (where entities are structured data-objects with unique identifiers, and
instance of entity-types, i.e. API s, Operations, Resources, Events and Tasks).
Illustrating the above scenario, we may learn that Pivotal Tracker consists of
a few Operations that manipulates Story and a StoryFinished Event that’s

Fig. 1. A canonical graph of possible relationships between entities in the Knowledge
Graph for case management systems.

1 http://www.google.com/insidesearch/features/search/knowledge.html.

http://www.google.com/insidesearch/features/search/knowledge.html

Scalable SaaS-Based Process Customization with CaseWalls 221

produced when a Story is finished. In addition, the Automated Task(1) will trig-
ger the FinishStory Operation when a PullRequest Event from Github is
received, providing a simplified work environment for the developer. In Pivotal
Tracker, after a story is created, it has to be started manually afterwards to
initiate the story. To simplify these steps, Task (2) can be used to shortcut this
procedure. In the following, we define specific entity-types that are relevant:

API. Application Program Interface, represent the plethora of tools (e.g. stor-
age, location, social-networking, etc.) exposed via Web-service interfaces (e.g.
REST, WSDL). An API thereby encapsulates the endpoint and operations, (and
other relevant information, e.g. OAuth protocol, refer [11]). We build upon our
previous work [4], for a unified-structured approach of Web-APIs in the KB.

Operation represent the set of operations offered by a specific service (e.g.
CreateIssue on Github, or CreateStory on Pivotal Tracker). Operations may
consume or produce resource-types; and may also be used as actions within tasks.

Resource represent the input or output for an API. In this context, resources
may have various granularities, from a large dataset to an entity representing
issues in Github, stories in Pivotal Tracker, and even pdf files in Dropbox. To
proficiently represent resources, we utilize JSON-Schema Draft v4.

Event is the record of an activity. Denoted E and consisting of attributes
{T,R, τ,D}, where T is the type of the event (e.g. Github provides 25 different
event2, such as Push, Issue, and Fork); R is the actor (i.e. person or device); τ is
the timestamp; and D is a set of data elements recorded with the event (e.g. the
task associated with the event). Events may be fine-grained (e.g. concrete events
defined at the API level), or coarse-grained that capture a pattern relevant to a
collection of resources (e.g., related stories in Pivotal Tracker).

Task represents the set of operations to achieve a defined goal, (ranging from
a single to a combination of several API endpoints). Moreover, we propose the
novel feature of “context”, which describes the “intent” and “objective”. This is
especially useful to human process-designers or human-driven search engines. In
this manner, operation endpoints may be mixed-and-matches between different
APIs, to provide a more comprehensive Task that precisely targets a particular
use-case. For example, the task CreateIssue may conform to different intents
such as report bugs, create pull requests or request feature. Functionally, there
are two task-types: Automated and Manual. The former assigned to an Event
that may trigger the task, while the latter only triggered manually by an actor.

Tasks may also have sub-tasks, in order to help reduce complexity. For
example, a Code Commit Task could be defined as a set of sub-tasks contain-
ing GithubPush and GithubPullRequest APIs. Utilizing Resources and Tasks
nodes, we can identify potential service integration patterns, i.e.: If a Task TA

produces Resource R and Task TB consumes Resource R, then Task TA and TB

can be invoked in a sequence. For example, the Task CreateIssue produces an
Issue and Task EditIssue consumes an Issue, therefore we can state that
EditIssue can be invoked after CreateIssue on the same resource.
2 https://developer.github.com/v3/activity/events/types/.

https://developer.github.com/v3/activity/events/types/

222 Y.-J. John Sun et al.

Relationship is denoted as R = (E1, E2), which indicates a connection between
entities E1 and E2. As illustrated, we have seven types of relationships: “API has
OPERATION”, “TASK use OPERATION”, “TASK use EVENT”, “OPERA-
TION consumes RESOURCE”, “OPERATION produces RESOURCE”, “TASK
compose TASK”, “OPERATION trigger EVENT”. In addition, there is “EVENT
compose EVENT” indicating that an event is complex, and is representative of
some pattern composed of several other events.

3 Knowledge-Reuse-Driven and Declarative Case
Definition Language

The notion of Case conceptualises a lightweight process (set of service inter-
actions). A case is thus defined to consist of: Tasks, People and Event. Tasks
indicate the services and the features needed in the interaction. People describes
who have access to the Case, especially the owner who has the privilege to edit
the case. Cases can contain both automated tasks. As well as manual tasks,
when human discretion and thereby intervention is required. However, Tasks
can also monitor Events (or patterns thereof) which may serve as notification
to participants (e.g. perform some manual task). Moreover, as Cases themselves
are represented as nodes which can be curated and reused in a modular manner.
While the platform is exposed via a RESTful interface, we further propose a
higher-level command-line Case Search, Definition and Interaction Language.

3.1 Knowledge-Reuse Language

Selecting the required tasks for a Case may not be trivial with an extensively
populated knowledge-graph. We thus propose an effective search component (uti-
lizing the index of the tasks objective and an iterative keyword search approach
[10]). The closest matching tasks are thus recommended to the user, based on
the objective tags described in Sect. 2. Albeit, the decision of whether a Task
(or Sub-task) should be included finally relies on the Case designers’ discretion
(Fig. 2).

expression
op task #matches tasks against all possible related keywords

resource #tasks that are related to the resources matching the keywords
input #tasks that consumes the resources matching the keywords
output #tasks that produces the resources matching the keywords
API #tasks that are directly related to the API specified
event #tasks that are monitoring the events specified
case #directly matches cases against all possible related keywords

keywords ::= {<string>} #set of keywords to perform the search

Fig. 2. Search Language Syntax

Scalable SaaS-Based Process Customization with CaseWalls 223

expression ::= <new_case> | <extend>
new_case CREATE CASE
 [<shared>][<using service>][<monitor events>][<include tasks>]
extend EXTEND CASE
 [<shared>] [<using service>][<monitor events>][<include tasks>]
own OWNED BY
shared SHARED WITH
using_service USING SERVICE
monitor_events MONITOR EVENTS
include_tasks INCLUDE TASKS

Fig. 3. Case Definition Language

3.2 Declarative Case Definition Language

Cases can be defined (or extended) using the language as defined below. The
syntax contains governance policies over both people and services. For people,
constructs such as OWNED BY (permission for editing/updating); SHARED
WITH (permission for interacting). For services, the USING SERVICE con-
struct indicates authorizations information - as the owner has to specify which
authorization to share between the users of the Case. The MONITOR EVENTS
construct details which events are to be monitored and notified to the partici-
pant users. While INCLUDE TASKS configures tasks related to the interaction
(Fig. 3).

Figure 4 illustrates an example of a GitHub Code Review Process with Pivotal
Tracker. Ordinarily, using Github alone, the Lead Developer may review code

Fig. 4. CodeReview Case Definition Example

224 Y.-J. John Sun et al.

by requiring the Engineers to submit their code in forms of Pull Requests3 and
then review it on Github. However, if the project manager wish to monitor the
review progress on Pivotal Tracker, they will have to manually create review
tasks (stories) for lead engineer every time a review is needed. Using CaseWalls,
we can simplify this process by defining a case and linking automated tasks to
auto-create stories when receiving a pull request. Events can also be monitored,
notification posted to interested participants and thereby manual tasks (e.g.
upon completing the review, merge the code into upstream, and close review
process) can also be accomplished.

3.3 Declarative Case Manipulation Language

Finally, we propose a interaction language to interact with the Case during
execution. Interactions may be with both manual tasks (awaiting human inter-
vention), as well as automated tasks (as in tapping into some 3rd-party service)
(Fig. 5).

expression ::=<op><params>
op ::=< op task > | < op resource >
op_task #
op_resource @
params

Fig. 5. Case Manipulation Langauge

Figure 6 illustrates CaseWalls for 3 participants in the Code Review process
defined earlier. On the left, we see a set of notifications - this informs the par-
ticipants what actions to take (if any). Actions might be interacting with some
external software service (e.g. [P] Pivotal Tracker, and [G] GitHub]), or per-
forming some manual task (i.e. [MT]). However, moreover behind the scenes
automated tasks (i.e. [AT]) are also being performed as defined in the Case. It is
thus apparent without CaseWalls all interactions would be done manually, with
little or no flexibility. Not only do CaseWalls help automate certain tasks, it also
automates the notification process - thus making it more simpler for participants
to identify what needs to be done. Subsequently, the interaction language can
be used to call upon manual tasks in a simple manner. As for implementation,
the semantics of the language are translated into Rule-based expressions for the
purpose of execution (refer to next section, at Sect. 4.4).

3 https://help.github.com/articles/using-pull-requests/.

https://help.github.com/articles/using-pull-requests/

Scalable SaaS-Based Process Customization with CaseWalls 225

Engineer

Lead
 Developer

Project
Manager

Case Walls Task Interactions

Fig. 6. CaseWalls with Illustration of Interactive Behavior

4 Implementation

4.1 Architecture

Figure 7 illustrates the system architecture and interaction of the main compo-
nents of the CaseWalls platform. At the heart of the system is the Knowledge-
Graph (KG) for Case-processes. It maintains the ontological relationships
between key entities and facilitates task/case-based processes. Manipulation as
well as effective searching of the case-based KG are conducted via the respective
components (as shown). The Event-Management system: collects raw event-data
from different services; and thereby, processes them using the patterns in the KG.
We leverage our previous work for this, [4,5]. This feeds into the Rule-Engine
which performs pattern-matching and can infer which actions to perform by
calling upon the Task Execution Engine.

Overall, CaseWalls has been implemented and exposed via a RESTful inter-
face, together with an event-notification system. Event-notifications can either
be PuSHed or Polled, and effectively formulate the Case-based Activity Walls.
Process participants can then take actions to interact/manipulate tasks. While
at the time of writing the interface provided is programmatic only, future plans
are to implement a GUI of the case-walls; or AS IS, we expect the platform to
be extensible enabling 3rd-party higher-level and customizable applications.

4.2 Knowledge Graph

The knowledge graph plays a crucial part in the system. It needs to be robust
and has to support complex graph query. We use Neo4j as the backend DB and

226 Y.-J. John Sun et al.

Fig. 7. System architecture of CaseWalls

build a typed graph database with a REST interface on top of it. Neo4j comes
with the label system for its entities, which lets the user marks entities with a
label but it doesn’t enforce any schema except for unique constraint. Therefore
we utilized JSON-Schema in the Knowledge graph for validating the JSON data.

By using Neo4j we can use its powerful graph query language call Cypher
Query Language to query complex relationships. We can easily find a path from
one Task to another. With this capability, we can provide the information about
the interoperability between Tasks. We implement a RESTful API to enrich KG
itself. Further details of the API can be found via swagger docs4. Figure 8 below
shows the definition of the DeliverOnPR task curated in the knowledge-base.

4.3 Event Management System

The Event Management system is implemented to aggregate and process the
events from different services. We use Fluentd5 for aggregating and dispatching
the events received from various services, Norikra6 and Esper EPL7 for process-
ing and generating high level events. For instance, defining an event with only

4 https://raw.githubusercontent.com/freehaha/case-wall-api/master/case.yaml.
5 http://www.fluentd.org/.
6 http://norikra.github.io.
7 http://esper.codehaus.org.

https://raw.githubusercontent.com/freehaha/case-wall-api/master/case.yaml
http://www.fluentd.org/
http://norikra.github.io
http://esper.codehaus.org

Scalable SaaS-Based Process Customization with CaseWalls 227

Task DeliverOnPR:
{
 "id": "ad6c7cf6-d18b-4323-8bc8-9e56055c313a",
 "name": "DeliverOnPR",
 "description": "deliver a story when a pull request is received",
 "mapping": "{\"current_state\": \"#delivered\",
 \"storyId\": \"$.storyId\", \"projectId\": \"$.projectId\"}",
 "type": "auto",
 "intent": [
 "pullrequest",
 "story",
 "deliver"
],
 "_type": "Task",
 "event": [
 "pull_request"
],
 "tasks": [
 "UpdateStory"
],
 "_created": 1432520794
}

Fig. 8. Task definition expressed in JSON for DeliverOnPR

the attributes we need (thus masking the different payload and/or structure of
the events). Higher-level events also enable defining an event based on a series of
targeted events rather than just a single event. Likewise, we utilize MongoDB8

and ElasticSearch9 for archiving and indexing event data. For event collection,
we implement an event-collecting application that connect to different services.
Collected events are then sent to Fluentd to dispatch and process. Since the
majority of services today utilize OAuth authorization, we have implemented
and allow user to authorize our application to collect events automatically for
them. Two kinds of events collecting mechanisms are implemented:

1. Pushing. Services like SendGrid, Twilio, Google Drive, Pivotal Tracker let
user register a callback url, often called webhook, where the service will send
a request to when events arrive. There is also a protocol call PupSubHubBub
proposed by Google trying to standardize this event delivery method.

2. Polling. Some services use the legacy event polling model, requiring the client
to constantly check whether there are new events. Another variation of it
developed lately is long polling, sometimes called comet, designed to reduce
the connection overhead by establish a keep-alive HTTP request. Services
providing this kind of mechanisms include Twitter, Twich.tv and Plurk.

4.4 Orchestration Engine: Generating Rules

CaseWalls further layers a more higher-level and declarative case manipula-
tion language (refer Sect. 3). To implement this language, the semantics are

8 http://www.mongodb.org.
9 http://www.elasticsearch.org.

http://www.mongodb.org
http://www.elasticsearch.org

228 Y.-J. John Sun et al.

translated into Rule-based expressions, denoted: Rtype : (Events → Actions).
This effectively means, rules are generated from case definitions. Once deployed,
the event-bus can detect relevant event-patterns, and working in conjunction
with the rules-engine provision the execution of cases. Since we mentioned there
are two main types of tasks: manual and automated. There are also two cor-
responding types of rules. Automated-task rules, denoted Rautomated consist of
service-related events (e.g. PullRequest); and task-actions (e.g. DeliverOnPR).
Manual-task rules, denoted Rmanual may additionally consist of special internal
events and actions. While not always necessarily utilized, they are at the dis-
posal of the developer in order to grasp better control over manual tasks. In
particular, they may prove useful to manage UI components10 associated with
manual tasks. For example, if an event ei triggers some manual task to be per-
formed, the rule Rulemanual : (ei → ax) may be defined, where ax can prepare
or perform some pre-processing to some UI component. Likewise, another rule
Rulemanual : (ei.ej → ay) could denote that the manual task has been com-
pleted, where ej is some UI event that the task was completed, and ay could
then be some post-processing action.

To better demonstrate case orchestration rules in the case of automated-
tasks, we illustrate as shown in Fig. 9 the series of rules (i.e. DeliverOnPR, and
CreateReviewOnPR) that would generated using the example Code Review case
that we defined earlier (refer Sect. 3).

"rules : [
{

"action": [
"UpdateStory"

],
"event": "pull_request",
"map": {

"projectId": "$.projectId",
"storyId": "$.storyId",
"current_state": "#delivered"

}
},

{
"action": [

"CreateStory"
],
"event": "pull_request",
"map": {

"projectId": "$.projectId",
"name": "#review PR #{number}"

}
}

]

Fig. 9. Example of generated case orchestration rules

5 Evaluation

Evaluation Objectives. To evaluate overall effectiveness, we assessed the fol-
lowing hypotheses: CaseWalls is capable of (a) Improving the productivity to
model, reuse and execute customized service-oriented processes; and (b) Increas-
ing the efficiency of application maintainability for agile service integration.

10 Even with some 3rd-party tools, developers may tap into the tool (e.g. via Web-
hooks as in the case of Github). Alternatively, we may also refer here to custom UI
components built by the developer to reflect certain manual tasks.

Scalable SaaS-Based Process Customization with CaseWalls 229

Experimental Setup. To assess the validity, the experiment was conducted by
implementing a real-life use-case scenario. Analysis was then conducted via
comparison to other approaches (incl. Javascript, Java, BPEL, Yahoo! Pipes).
We divided our scenario into 2 phases; where the latter phase was to add onto
the former, thus assessing ease of maintainability. Overall productivity was then
measured as: (a) Time taken to complete task; (b) Total number of lines-of-code
(LOC) excluding white-space; and (c) Number of extra dependencies needed.

Use-Case Scenario (Code Review and Development Cycle). Version Con-
trol Systems (VCS) are very common in software engineering - they help avoid
collision and improve traceability. While it is important to find where the bug
is introduced and revert it, peer review also helps to bring forward discovery
of such bugs. Github is one of the most popular online open-source repositories
for code. Likewise, Pivotal Tracker (PT) offers a good story-tracking system, to
help the team keep track of their progress. Phase 1 of this scenario involves
integration of these two tools in the basic workflow described below:

1. Project Manager PM creates a Story and assigned to Engineer.
2. Engineer starts working on the Story.
3. Engineer completes programming task and pushes onto Github.
4. Engineer finishes and delivers the Story.
5. PM accepts/rejects the delivery.

Effectively, Github + PT integration may be implemented by parsing com-
mit messages for syntax in the form of: “#(number) ”, such as: [Starts #12345,
#23456] ... [Finishes #12345] ... [Delivers #12345]. If any such messages are
detected, the corresponding action will be performed in PT. For example, if the
engineer commit message containing [Finishes #12345], when Github receives
this commit, it will automatically finish that story in PT. This helps simplify
the workflow by eliminating the otherwise manual work done within PT.

While this basic integration provides an initial improvement to eliminate the
manual creation, start, finish and delivery of a PT “story”, Phase 2 involves
adapting it to “continuous integration (CI)”. The notion of CI, as prominent in
software engineering today, calls for “continuous” testing whenever new changes
are made. This would thus significantly alter the semantics of the deliver action.
This means, at Step 4, we may want to introduce additional (and iterative)
stories (cf. Steps 2–4) for: testing and deployment before closing this change.

Experimental Results. We set out to prove (or disprove) our hypotheses;
the results are illustrated in Fig. 10. Outrightly, BPEL was excluded as real-
time events are not available without writing custom extension to the engine.
The same applied for Yahoo! Pipes, as it could not receive realtime events via
webhooks11. Hypothesis H(a) was evaluated as the time to complete both tasks
(excluding setup time) and LOC. Using CaseWalls this resulted in only 30 mins,

11 A possible solution could be done using feeds (rss/atom) for receiving the events,
and a web-query framework, such as YQL to make requests. However, doing so is
less interactive, less efficient and also requires writing sufficiently complex javascript.

230 Y.-J. John Sun et al.

compared to an average of 245 mins using other approaches (decrease of ∼ 88%);
while LOC was 53 compared, to an average of 376 (decrease of ∼ 86%), respec-
tively. For CaseWalls setup included time to create all the Operations/Events/-
Tasks in the KG; whereas for Javascript/Java this meant downloading and
installing the requisite SDKs (where applicable). CaseWalls also resulted in less
overall setup time. H(b) was then measured as the cost of implementing Phase
2 (including any setup time). CaseWalls resulted in only 25 mins to implement
compared to an average of 220 mins (decrease of ∼ 89%), with 30 and 93 LOC
respectively (decrease of ∼ 67%).

Fig. 10. Evaluation results for GDrive contribution calculator use-case

Overall, it was clear both time and LOC is significantly reduced when using
CaseWalls. We thus validate both our hypotheses as true with very promising
results. Moreover, our approach did not require any additional libraries, whereas
others required on average at least 2–3. CaseWalls also provided the facility of
increased transparency, as well as agile participant control - compared to other
solutions which were rather rigid. In light of these results, this evaluation study
successfully demonstrates the anticipated benefit of our proposed approach.

6 Related Work and Concluding Remarks

The ubiquitous access to thousands of APIs offer tremendous potential in modern
App development. For example, ProgrammableWeb records some 13,495 APIs
over numerous categories, including: financial, mapping, social-networking, etc.
The inevitable key to success is thus ‘API integration’ - as the empowerment to
compose disparate services (rather than reimplementing) will reap great reward.
Currently, there are a plethora of SaaS-enabled tools that aim to fulfill a spe-
cific user-need, however these ready-made solutions often imply conforming to a
fixed set of embedded features with little room for user-customization. On the
other side of the spectrum, BPM sought to offer customizable process-support
over disparate services, albeit it suffered significantly from a lack of flexibility.

Scalable SaaS-Based Process Customization with CaseWalls 231

In the following, we analyze these two technological polarities. We then offer an
innovative set of guiding principles for converging these polar extremes - which
is the refreshing outlook we have adopted in positioning our work in this paper.

Web-Services/API Integration Development. Modern service-oriented
systems aim to support services integration, [3,8,12]. For instance, the Enter-
prise Service-Bus (ESB) was an early and still prevalent method for handling
message-exchange over heterogenous and distributed components. Apache Ser-
viceMix [14], is one example providing advanced features. Micro-services are
yet another alternative approach that are well aligned with cloud provisioned
services, and tools such as Netflix Asagard [15], and Pivotal Cloud Foundry
[13], have emerged. Albeit, these methods still do not alleviate even professional
programmers from being coerced in understanding the various low-level service
APIs, as well as working directly with procedural programming constructs to
create and maintain complex applications. This leads to an inflexible and costly
environment which adds considerable complexity, demands extensive program-
ming effort, multiple and continuous patches, and perpetual solutions, [12].

Process-Oriented Service Programming. Advanced process support sys-
tems (e.g. BPEL) and Mashup environments (e.g. Yahoo! Pipes) aimed to coun-
teract the above challenges, while also appealing to the less-technical. However,
while they helped avoid low-level API programming, composition environments
significantly lacked the productivity support tools that developers were used to
whilst programmers using IDEs, (e.g. code search and discovery, ease of reuse,
debugging, code generation), [12]. Moreover, they suffered from the lack of flex-
ibility and cannot support run-time changes, [6]. This worsens as the variety of
services and variations of application requirements and constraints increase, [4].

Case Management. Flexibility is imperative to transition composition sys-
tems from the realm of static and small-scale environments to that of large-scale
computing, relying on highly unpredictable and evolving environments. Case-
Management is an emerging step in the right directions, given many processes
are knowledge-intensive and thereby human-driven, [1,2,9]. For example, a cus-
tomer initiating a request for some services, the set of interactions among people,
e.g. customer and relevant participants, and artifacts from initiation to comple-
tion is known as the ‘case’. However, while well conceptualized, much of its actual
implementation remains vague and depends on its context of use, [7].

Summary. Reflecting on the above, we have discovered Web-services mirroring
(at least conceptually), the evolution of database management systems (DBMS)s
over the last 30-years. In effect, DBMSs have called for generic abstractions and
declarative techniques (e.g., data-models, relational algebras, declarative query
techniques) for simplifying the design of complex applications and enabling high
level manipulation of data. Similarly, we propose the following set of guiding
principles that Web-service APIs should adopt: (i) Modularity, similar building
blocks in terms of simple and useful models; (ii) Declarative analysis, including
support for high-level language manipulation, integration and transformation;
and (iii) Knowledge-preserving, such that API-related programming knowledge
can be curated for future communal reuse.

232 Y.-J. John Sun et al.

Accordingly, CaseWalls is a refreshing step towards this innovative direc-
tion, providing a framework to simplify the integration of disparate services and
effectively build flexible customizable processes. Our knowledge-driven approach
builds upon our previous work [6], and is inspired by efforts in general knowledge-
graphs such as “linked data”. We have thus proposed a novel Case Knowledge
Graph (CKG) to facilitate the organization, integration, querying, and reusing of
the case management knowledge. Moreover, the ability for case-works to “re-use”
process knowledge is a vibrant change to most existing process platforms.

Empowered by this knowledge graph, we also provided a novel case cus-
tomization and deployment platform. And to even further increase user effi-
ciency, we introduced a simple, declarative yet powerful language to query and
analyze the knowledge graph. Unlike any previous works, CaseWalls focusses on
the transparency aspect of mid-process knowledge. The concept of “walls” thus
act as an activity wall akin to social status updates, albeit instead updates are
sourced as relevant events from case tasks. Participants are then empowered to
track the case execution, and react/interact accordingly.

Experimental results shows promising results, in particular addressing the
dimensions of increased user-efficiency. In future, we are excited to enhance and
extend the language power and expressivity - as well as implement a novel graph-
ical user-interface that mimics social-networking platforms. Whereby case-based
process functionality can effectively be combined within everyday tasks. We are
therefore very optimistic this work provides the foundation for future growth
into a new breed of enhanced process-support.

References

1. Van der Aalst, W.M., Weske, M., Grünbauer, D.: Case handling: a new paradigm
for business process support. Data Knowl. Eng. 53(2), 129–162 (2005)

2. Swenson, K., et al.: Taming the Unpredictable Real World Adaptive Case Man-
agement: Case Studies and Practical Guidance. Future Strategies Inc. (2011)

3. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services: Concepts Archi-
tectures and Applications. Springer Publishing Company Incorporated, Heidelberg
(2010)

4. Barukh, M.C., Benatallah, B.: ServiceBase: a programming knowledge-base for
service oriented development. In: Feng, L., Bressan, S., Winiwarter, W., Song, W.,
Meng, W. (eds.) DASFAA 2013, Part II. LNCS, vol. 7826, pp. 123–138. Springer,
Heidelberg (2013)

5. Barukh, M.C., Benatallah, B.: A toolkit for simplified web-services programming.
In: Lin, X., Manolopoulos, Y., Srivastava, D., Huang, G. (eds.) WISE 2013, Part
II. LNCS, vol. 8181, pp. 515–518. Springer, Heidelberg (2013)

6. Barukh, M.C., Benatallah, B.: ProcessBase: a hybrid process management plat-
form. In: Franch, X., Bhiri, S., Ghose, A.K., Lewis, G.A. (eds.) ICSOC 2014. LNCS,
vol. 8831, pp. 16–31. Springer, Heidelberg (2014)

7. Böhringer, M.: Emergent case management for ad-hoc processes: a solution based
on microblogging and activity streams. In: Muehlen, M., Su, J. (eds.) BPM 2010
Workshops. LNBIP, vol. 66, pp. 384–395. Springer, Heidelberg (2011)

Scalable SaaS-Based Process Customization with CaseWalls 233

8. Geambasu, R., Cheung, C., Moshchuk, A., Gribble, S.D., Levy, H.M.: Organizing
and sharing distributed personal web-service data. In: Proceedings of the 17th
International Conference on World Wide Web, pp. 755–764. ACM (2008)

9. Kaan, K., Reijers, H.A., van der Molen, P.: Introducing case management: opening
workflow management’s black box. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P.
(eds.) BPM 2006. LNCS, vol. 4102, pp. 358–367. Springer, Heidelberg (2006)

10. Klemisch, K., Weber, I., Benatallah, B.: Context-aware UI component reuse. In:
Salinesi, C., Norrie, M.C., Pastor, Ó. (eds.) CAiSE 2013. LNCS, vol. 7908, pp.
68–83. Springer, Heidelberg (2013)

11. Nolan, D., Lang, D.T.: Authentication for web services via OAuth. In: Nolan,
D., Lang, D.T. (eds.) XML and Web Technologies for Data Sciences with R, pp.
441–461. Springer, New York (2014)

12. Pautasso, C., Zimmermann, O., Leymann, F.: Restful web services vs. big web
services: making the right architectural decision. In: Proceedings of the 17th Inter-
national Conference on World Wide Web, pp. 805–814. ACM (2008)

13. Pivotal-Cloud-Foundry. http://pivotal.io/platform-as-a-service/pivotal-cloud-
foundry

14. ServiceMix, A.: Apache servicemix 3. x users’ guide. Apache ServiceMix Commu-
nity (2007). http://incubator.apache.org/servicemix/users-guide.html. (Cited on
p. 72, 73 and 149)

15. Sondow, J.: Asagard: web-based cloud management and deployment. The Netflix
Tech Blog (2012)

http://pivotal.io/platform-as-a-service/pivotal-cloud-foundry
http://pivotal.io/platform-as-a-service/pivotal-cloud-foundry
http://incubator.apache.org/servicemix/users-guide.html

Business Process Management

Correlation Mining: Mining Process
Orchestrations Without Case Identifiers

Shaya Pourmirza(B), Remco Dijkman, and Paul Grefen

Eindhoven University of Technology,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands
{s.pourmirza,r.m.dijkman,p.w.p.j.grefen}@tue.nl

Abstract. Process discovery algorithms aim to capture process orches-
tration models from event logs. These algorithms have been designed for
logs in which events that belong to the same case are related to each
other - and to that case - by means of a unique case identifier. However,
in service oriented systems these case identifiers are usually not stored
beyond request-response pairs, which makes it hard to relate events that
belong to the same case. This is known as the correlation challenge. This
paper addresses the correlation challenge by introducing a new process
discovery algorithm, called the correlation miner, that facilitates process
discovery when events are not associated with a case identifier. Experi-
ments performed on both synthetic and real-world event logs show the
applicability of the correlation miner.

Keywords: Process mining · Process discovery · Event correlation
1 Introduction

Over the past decade, there has been an increasing interest in the area of process
mining [2,10,16–18,20–22]. The goal of process mining is to extract information
about processes from event logs, i.e., execution histories. One of the prominent
branches of process mining is process discovery [20], which concerns itself with
generating an orchestration model from an event log.

Process discovery techniques assume that an event log contains at least, for
each recorded event: (i) a reference to the executed activity, (ii) a reference to the
case for which the activity was executed, and (iii) the timestamp at which the
activity was completed [21]. Table 1 shows an example of the event log involving
30 events in 10 cases. The main idea behind discovery algorithms is to merge,
cluster and aggregate the different cases in an event log and generate a suitable
orchestration model based on that. For example, considering the event log from
Table 1, it is possible to capture three different traces of execution: <A,B,E >
for Cases 1, 4 and 5; <A, D, E > for Cases 2, 3, 8 and 9; and finally, <A, C, E >
for Cases 6, 7 and 10. Figure 1 presents the corresponding orchestration model,
as it would have been mined by the Disco process mining tool [11].

The research leading to these results has received funding from the European Union’s
Seventh Framework Programme under grant agreement 2012-318275 (GET Service).

c© Springer-Verlag Berlin Heidelberg 2015
A. Barros et al. (Eds.): ICSOC 2015, LNCS 9435, pp. 237–252, 2015.
DOI: 10.1007/978-3-662-48616-0 15

238 S. Pourmirza et al.

Table 1. An example event log

Case Activity Timestamp Case Activity Timestamp Case Activity Timestamp

1 A 00:20 4 B 05:04 7 E 09:17
1 B 02:04 4 E 07:26 8 A 06:20
1 E 02:32 5 A 03:40 8 D 08:36
2 A 02:15 5 B 05:59 8 E 10:03
2 D 03:14 5 E 07:49 9 A 06:41
2 E 05:06 6 A 04:18 9 D 08:56
3 A 02:27 6 C 07:08 9 E 10:20
3 D 04:17 6 E 09:05 10 A 07:13
3 E 06:51 7 A 05:54 10 C 09:10
4 A 03:06 7 C 07:30 10 E 10:26

Fig. 1. Orchestration model generated from the example event log

While process mining techniques require an event to be associated with a
case, making this association can be problematic. This is also referred to as the
correlation challenge [18]. This challenge arises, for example, when information
about the occurrence of activities is stored in separate service oriented systems
and there is no obvious identifier to correlate the occurrences. It is considered
especially problematic in service mining [19], because correlations between mes-
sages that are being exchanged for the same case, may not be stored beyond
request-response pairs. When associations between events that belong to the
same case are not present, process discovery becomes impossible, as illustrated
by Table 2, which shows the event log from Table 1 without case identifiers. In
this event log it is not possible to identify cases and, consequently, it is not
possible to cluster and aggregate them into an orchestration model.

Therefore, the goal and contribution of this paper is to develop a process
discovery technique that can discover orchestrations when events are neither
correlated by case identifiers nor by additional data elements. Although extensive
research has been carried out on both process discovery and event correlation
techniques, to the best of our knowledge, only one [8] such process discovery
technique exists that will be further discussed in this paper.

The remainder of this paper is structured as follows. Section 2 presents some
preliminaries regarding the event logs and orchestration models. Section 3
introduces the actual technique that has been developed to capture orchestration

Correlation Mining: Mining Process Orchestrations Without Case Identifiers 239

Table 2. An example event log without case identifiers

Activity Timestamp Activity Timestamp Activity Timestamp

A 00:20 B 05:04 C 07:30
B 02:04 E 05:06 E 07:49
A 02:15 A 05:54 D 08:36
A 02:27 B 05:59 D 08:56
E 02:32 A 06:20 E 09:05
A 03:06 A 06:41 C 09:10
D 03:14 E 06:51 E 09:17
A 03:40 C 07:08 E 10:03
D 04:17 A 07:13 E 10:20
A 04:18 E 07:26 E 10:26

models from event logs without case identifiers. Section 4 discusses the evalua-
tion setup and summarizes the obtained results. Section 5 compares our tech-
nique with related literatures. Finally, Sect. 6 concludes the paper by giving a
brief overview and its findings.

2 Preliminaries

In the literature, an event log has been defined as a multiset of cases [18]. However
in this paper, we cannot reuse this definition since we have no explicit case.
Therefore, we define an event log as follows.

Let A be a set of activities and T be a set of timestamps. L ⊆ A × T is an
event log. We use Ea to denote a set of events referring to the activity a ∈ A, such
that Ea = {(a, t)|(a, t) ∈ L}. In addition, we represent the timestamp at which
event e ∈ Ea has happened by te. Note that, strictly speaking, multiple events
for the same activity can happen at the same time. However, for simplicity,
this is not covered by our definition. While the occurrence of identical events is
sufficiently rare to not create problems with the algorithm, it does require some
pre-processing of the log to make sure that identical events are distinguished
from each other (e.g. by adding a suffix to the timestamp).

There exist various notations in which the orchestration model that is the
result of applying a process discovery algorithm can be represented (e.g. Petri-
Nets and BPEL) [18]. In this paper, we adopt a rather abstract definition of an
orchestration model, which is in line with the notation that is used by the Disco
tool for process discovery [11].

The orchestration model is a directed weighted graph G = (V, E , ω) such that:

– V = {(a, n)|a ∈ A ∧ n = |Ea|}, where A is the set of activities and n indicates
for each node the number of occurrences of that activity in the event log;

– E ⊆ V × V is the set of edges;

240 S. Pourmirza et al.

– ω : E → N maps edges to natural numbers, where ω(a, b) = n if and only if
there are n observations of activity a being directly followed by activity b in
some case in the log. We require that e ∈ E if and only if ω(e) > 0.

For a node v ∈ V, the in-degree, denoted degin(v), is
∑

(w,v)∈E ω(w, v). The
out-degree, denoted degout(v), is

∑
(v,w)∈E ω(v, w). When degin(v) = 0, we call

the node a source node. When degout(v) = 0, we call the node a sink node.
It is important to note that, for any node (a, n) ∈ V that is not a sink node, it

must hold that degout(a) = n, because the number of cases that pass through the
node must also continue to another node. Similarly, for any node (a, n) ∈ V that
is not a source node, it must hold that degin(a) = n. We call these constraints
the orchestration graph rule.

3 Correlation Mining Technique

The basic idea of the correlation miner is based on the orchestration graph rule,
defined in the previous paragraph, which states that the number of cases that pass
through an activity must be equal to the number of incoming and outgoing cases
for that activity. We can count the number of cases that pass through an activity
a by counting the number of occurrences |Ea| of that activity in the log. Subse-
quently, we can draw the edges between the activities, in such a way that orches-
tration graph rule is met. This is a constraint programming problem that can be
solved using integer linear programming. At this point we assume that the source
and sink nodes are set manually.

As an example, Fig. 2a shows an orchestration model that can be constructed
from the log in Table 2. In this log A occurs 10 times, while D occurs 4 times.
We manually select A as a source node. Consequently, it has an in-degree of 0.
The number of occurrences of A corresponds to the out-degree of A, which is
4 (to D) plus 6 (to E) equals 10. Similarly, the number of occurrences of D
corresponds to the in-degree and the out-degree of D. In this way, creating an
orchestration model that meets the orchestration graph rule for all activities,
produces Fig. 2a. However, Fig. 2b, c, and d are also models that meet this rule.
While Fig. 2c is the model that matches the original log from Table 1 best, the
orchestration graph rule alone is not enough to determine that.

As the example shows, it is often possible to create more than one model
that meets the criteria. Therefore, additional measurements from the event log
are required in order to select the best model. To this end, the correlation miner
creates two matrices, the Precede/Succeed matrix and the Duration matrix. Each
score in Precede/Succeed matrix, P/Si,j , indicates the fraction of events referring
to activity i that have occurred before events referring to activity j. If this
score is high, it is more likely that there is an edge from i to j. Each score
in Duration matrix, Di,j , indicates the average time or standard deviation (we
will experiment with both alternatives) of the time difference between events
referring to activity i and events referring to activity j. If this score is low, it is
more likely that there is an edge from i to j. In the remainder of this section,

Correlation Mining: Mining Process Orchestrations Without Case Identifiers 241

A

D

B C

E

4

3
3

3
1

6

(a) Alternative 1

A

B C

D

E

3

4

3
3

4

3

(b) Alternative 2

A

B

C

D

E

3

4

3 3

4

3

(c) Alternative 3

A

C B

D

E

3

4

3
3

4

3

(d) Alternative 4

Fig. 2. Feasible graphs of example log

we explain how these matrices are computed, how they are used to construct
the linear programming problem, and ultimately how the orchestration model is
constructed.

3.1 Precede/Succeed Matrix

The first step in the correlation miner is to calculate the Precede/Succeed matrix.
This matrix is a square matrix of order n, with n = |A|. Let i represent a
row in the matrix as well as an activity from A and let j represent a col-
umn and an activity. A value P/Si,j in the matrix represent the fraction of
events from i that occurred before events from j and is computed as follows.
Ωi,j = {(e, f)|e ∈ Ei ∧ f ∈ Ej} is the set of all pairs of occurrences of i and j.
Furthermore, given events e and f , let b(e, f) be a function that is 1 if te < tf
and 0 otherwise.

P/Si,j =

∑
(e,f)∈Ωi,j

b(e, f)

|Ωi,j |

P/S =

A B C D E

A 0.00 0.47 0.97 0.73 0.88
B 0.53 0.00 1.00 0.67 0.90
C 0.03 0.00 0.00 0.33 0.57
D 0.26 0.33 0.67 0.00 0.70
E 0.12 0.10 0.43 0.30 0.00

Fig. 3. P/S matrix for example log

Returning to our exam-
ple (Table 2), P/SC,E can
be computed as follows.
ΩC,E contains 30 ele-
ments since |EC | = 3 and
|EE | = 10.

∑
(e,f)∈ΩC,E

b

(e, f) = 17, because in 17
cases C occurred before E.
Therefore, P/SC,E ≈ 0.57.

242 S. Pourmirza et al.

Similarly, we can calculate the value for each pair of activities in a given event
log. Figure 3 illustrates the matrix that is calculated based on the example log.

For the performance reasons, we can remove some pairs to not include them
for consideration during the next two steps of the algorithm. This can be done via
a threshold filter. The goal of the threshold filter is to remove pairs of activities
that have a very low probability of forming an edge. For example, in Fig. 3, we
have P/SA,C = 0.97 and P/SC,A = 0.03. These values indicate that it is likely
that there is an edge from A to C, but no edge from C to A. The challenge is
to select a threshold that removes as many pairs as possible in order to increase
performance, but to prevent false positives, because pairs that are removed at
this stage will never become edges in the orchestration model.

3.2 Duration Matrix

The second step in the correlation miner is to generate the Duration matrix.
This matrix is a square matrix of order n, with n = |A|. Let i represent a row
in the matrix as well as an activity from A and let j represent a column and
an activity. A value Di,j indicates the average time difference or the standard
deviation of the time difference between events referring to activity i and events
referring to activity j.

In order to calculate the value of Di,j we need to have a mapping between
elements of Ei and elements of Ej . The idea behind this mapping is that it maps
events that belong to the same case. We compute the mapping, by relating the
events in such a way that the variance in the time difference is as low as possible,
because we argue that the time difference between events from the same case
have a more constant probability distribution than the time difference between
events from different cases. This principle is not likely to yield a perfect mapping,
in the sense that events are mapped if and only if they belong to the same case.
However, a perfect mapping is not necessary. We just need a mapping that has
a time distribution that is close enough to the perfect mapping.

Formally, let Ωi,j be defined as in Sect. 3.1. Then we compute the mapping
Mi,j ⊆ Ωi, j that satisfies the following constraints.

∀(e, f) ∈ Mi,j : ∃(e, f ′) ∈ Mi,j ⇒ f = f ′

∀(e, f) ∈ Mi,j : ∃(e′, f) ∈ Mi,j ⇒ e = e′

∀(e, f) ∈ Mi,j : te < tf

These constraints state that each event can be mapped at most once and that
each event from Ei must be mapped to an event from Ej that occurs at a later
point in time. In addition, the mapping must maximize its size (i.e. as many
events must be mapped as possible), while minimizing the standard deviation of
the time difference between mapped events. With this mapping, we can compute
Di,j as either the mean ΔMi,j or the standard deviation σΔMi,j .

|Mi, j| must be maximized
σΔMi,j must be minimized, where ΔMi,j = {tf − te|(e, f) ∈ Mi,j}

Correlation Mining: Mining Process Orchestrations Without Case Identifiers 243

D1[3 : 14]

D2[4 : 17]

D3[8 : 36]

D4[8 : 56]

C1[7 : 08]

C2[7 : 30]

C3[9 : 10]

Activity D

Activity C

Fig. 4. Mapping of events ED to events EC

D =

A B C D E

A 0 74 109 108 220
B 54 0 214 164 69
C 6 0 0 87 42
D 0 106 150 0 124
E 0 102 62 96 0

Fig. 5. Duration matrix for example log

Returning to our example (Table 2), DD,C can be computed as follows.
Figure 4 shows the mapping from events ED to events EC that satisfies the
constraints above. The average time difference between mapped events is approx-
imately 153 s. Similarly, we can calculate the value for each pair of activities in
a given event log. Figure 5 illustrates the matrix that is calculated based on the
example log. Note that the time difference in the matrix is slightly different from
the time difference that we computed above. This is because we implemented an
efficient (greedy) algorithm to compute the mapping, which does not always pro-
duce the mapping that satisfies all constraints. In particular, it does not always
return the mapping with the lowest standard deviation, but rather the mapping
with a local minimum. Although a lower score of Di,j indicates that it is more
likely that there is an edge from i to j, a score of 0 means it is not possible to
have such an edge, since we assume that events cannot happen at the same time
in the event log.

3.3 Orchestration Model Construction

The final step in the correlation miner is to generate the orchestration model.
We first explain how all possible orchestration models can be generated, taking
the orchestration graph rule into account. Then we explain how the best orches-
tration model can be selected from all possible orchestration models, using the
Precede/Succeed matrix (Sect. 3.1) and Duration matrix (Sect. 3.2).

In order to construct feasible models, we formulate our problem as an Integer
Linear Programming (ILP) problem. Each possible edge (i, j) between activities
becomes a variable xij of our ILP problem. The value that is assigned to each
variable, xij , indicates the frequency with which an event for activity i is directly

244 S. Pourmirza et al.

followed by an event from activity j in a case. Therefore this value can be seen
as an edge weight for the edge that connects the node that refers to activity
i to the node that refers to activity j. Let X denote the set that contains the
introduced variables. Also, let As be the set of activities that we consider start
activities and Ae be the set of activities that we consider end activities. We can
reduce the problem space, by removing all variables:

– xij that represent unlikely edges, because of a P/Si,j or Di,j thresholds;
– xis, s ∈ As, which represent incoming edges to start activities; and
– xei, e ∈ Ae, which represent outgoing edges from end activities.

Subsequently, for the resulting set of variables X , we can formulate the constraints
of our ILP problem as follows. The lower bound for each variable is 0, while the
upper bound for each variable is min(|Ei|, |Ej |), because these are the minimum
and the maximum number of cases that can flow on the edges. The sum of the
number of cases on the incoming edges of an activity a, must be equal to the num-
ber of times an event Ea occurs for that activity. Similarly, the sum of the number
of cases on the outgoing edges of an activity a, must be equal to the number of
times an event Ea occurs for that activity. Consequently, the constraints become:

xij ≥ 0 for each a /∈ As :
∑

xia∈X
xia = |Ea|

xij ≤ min(|Ei|, |Ej |) for each a /∈ Ae :
∑

xai∈X
xai = |Ea|

Returning to the example of the log from Table 2, we can formulate the follow-
ing constraints. xAE ≥ 0 and xAE ≤ 10. Similarly, xAB ≥ 0 and xAB ≤ 3. Also,
xAE + xBE + xCE + xDE = 10 and xAB + xAC + xAD + xAE = 10. In addition,
xCB + xCD + xCE = 3, and xAC + xBC + xDC = 3. Note that, since xCA repre-
sents an incoming edge to a start node A and xEC represents an outgoing edge
from an end node E, these two variables have been removed and consequently
are ignored in these constraints.

By applying these constraints, we can construct all feasible orchestration
models. Now in the second part of this section, our goal is to select the model,
from all feasible ones, that best represents the event log behavior. For this pur-
pose, we employ matrices that we computed in the first two steps of the corre-
lation miner algorithm in order to formulate an objective function to select the
optimal model out of all feasible ones, using ILP principles.

The matrices from step 1 and step 2 provide some evidence to suggest that
if activity pair (i, j) contains a high value for P/Si,j and a low value for Di,j ,
these two activities may have a higher chance to form an edge. Based on this
statement, our objective is to select the model that has a higher cumulative
value of P/Ss and a lower cumulative value of Ds for the edges. To achieve this
objective, we define a coefficient for each variable xij , in our ILP in order to
consider these values. Since we are interested in a high value of P/Si,j and a low

Correlation Mining: Mining Process Orchestrations Without Case Identifiers 245

value of Di,j , we define an edge ratio as Di,j

P/Si,j
for each variable xij that must

be minimized. Note that, we need to keep the sum of edge ratios for each edge
independent of the assigned value of the referring variables and count the edge
ratio if there is an edge, irrespective of the weight of that edge. Thus, ideally,
each xij is divided by its value and set to 0 if xij = 0 in order to eliminate
their influence. However, this is not possible in an ILP. Therefore, in order to
reduce this influence we divide each variable by its upper bound. In conclusion,
we formulate the objective function for our ILP as follow:

Cij =
Di,j

P/Si,j
· 1
min(|Ei|, |Ej |) minimize

∑

xij∈X
Cij · xij

Returning to the example log (Table 2), by considering the constraints, mul-
tiple models can be constructed as shown on Fig. 2. Now, we can calculate the
objective function for each of these orchestration models and select the one that
has a lowest value as an output of our algorithm. The value for the orchestration
model from Fig. 2c is the lowest. Therefore, we select the orchestration model of
Fig. 2c as the final result of our correlation miner.

The algorithm that we described above may return a model that contains
cycles. However, since the correlation miner only deals with acyclic orchestra-
tions, these cycles should be removed. Therefore, it employs Johnson’s algorithm
[12] to capture all edges that are involved in cycles in the model. It then calcu-
lates the edge ratio for these edges and removes the edge with highest edge ratio.
The correlation miner then reruns the third step of the algorithm and repeats
this until a model without cycles is returned. As the main loop of the algorithm
is ILP solving, the time complexity is polynomial.

4 Evaluation

This section presents the evaluation of the correlation miner. It first presents the
setup of the evaluation in Sect. 4.1. Then it presents two evaluations, one using
synthetic event logs (Sect. 4.2) and one using a modified version of a real-world
event log (Sect. 4.3).

4.1 Evaluation Setup

In order to conduct our evaluation, we have implemented the correlation miner
as a Java application. Since the algorithm uses the Gurobi ILP Solver [15],
which is commercial software, one needs to install this software on his machine
with a proper license. For the interested reader we provide on-line access to the
algorithm1, which can only be used for the academic purposes. Moreover, we are
currently investigating the licensing issue in order to implement the algorithm
as a ProM [6] plug-in.

1 http://is.ieis.tue.nl/research/correlation.

http://is.ieis.tue.nl/research/correlation

246 S. Pourmirza et al.

Original Orchestration Model Mined Orchestration Model

Log with Case IDs Log without Case IDs

1a.generate log 1b. generate model

2. remove case IDs

3. apply correlation miner

4. evaluate result

Fig. 6. Evaluation procedure

Figure 6 depicts the procedure for evaluating our algorithm. For the eval-
uation with synthetic logs, we first create synthetic orchestration models with
particular properties, to investigate the effect that these properties have on our
algorithm. This will be explained in detail in Sect. 4.2. Subsequently (step 1a),
we generate synthetic logs for these models, using the BIMP simulator2. For
the evaluation with real-world logs, we take a log from practice. Subsequently
(step 1b), we generate a orchestration model for that log. This will be explained
in detail in Sect. 4.3. Now that we have both a log and a model, we remove
the case identifiers from the log (step 2) to generate a log that can be used for
correlation mining and (step 3) we apply the correlation miner. Finally (step 4),
we assess the quality of the mined model.

In order to measure the quality of the mined models, we use precision and
recall. Precision measures the fraction of edges in the mined model that are
correct, i.e. are also in the original orchestration model. Recall measures the
fraction of correct edges that have been found. These measures are defined as
follows. Let TP be the set of edges that exist in the mined model and also in
the original; FN be the set of edges that do not exist in the mined model but
do exist in the original model; and FP be the set of edges that exist in the
mined model but do not exist in the original model. Then precision and recall
are defined as:

precision =
TP

TP + FP
recall =

TP

TP + FN

Returning to Fig. 2 and assuming that Fig. 2b is the mined model and Fig. 2c
the original model, we can calculate precision and recall as follows. TP for these
two models is 4, including AB, AD, CE and DE; FN is 2, including AC and
BE; and finally FP is again 2, including BC and AE. Consequently, precision
and recall for Fig. 2b are approximately 0.67.

In related work fitness and appropriateness have been introduced [16] as
measures to evaluate the quality of a mined orchestration model. However, these
measures evaluate the quality of an orchestration model as it is compared to
a log. We evaluate the quality of the orchestration model as it is compared
to another orchestration model; the orchestration model that should have been
returned. By doing so, we can get more meaningful results. However, clearly
2 http://bimp.cs.ut.ee/.

http://bimp.cs.ut.ee/

Correlation Mining: Mining Process Orchestrations Without Case Identifiers 247

this is only possible when such an orchestration model indeed exists. In other
situations fitness and appropriateness should be used.

4.2 Synthetic Event Logs

We evaluated the correlation miner using over 250 synthetic event logs with
different properties. We varied properties that we assumed would have an effect
on the quality of the mined orchestration model. Specifically, we generated logs:

– using both structured and unstructured orchestration models [13] and using
orchestration models with different numbers of branches, because these factors
influence model complexity and we assume that more complex models are
more difficult to mine;

– that contained different numbers of cases, because a higher number of cases
provides more data to mine from and should therefore produce more accurate
models;

– with different inter-arrival times and activity durations, because time prop-
erties play an important role in our algorithm and should therefore have an
impact on the quality of the result.

In total we used 6 orchestration models to generate our logs. For reasons of space,
we do not present all results, but rather the results for the model that produced
the best results (Fig. 7a) and the model that produced the worst results (Fig. 7b).
These models primarily vary with respect to whether they are structured or
unstructured. The maximum number of branches does not vary much, because
our evaluation showed that the number of branches did not play a substantial
role in the quality of the results.

Table 3 presents the results for mining logs that were generated from the
model from Fig. 7a. We generated different logs from this model, in such a way
that the duration of activities and the inter-arrival times, were either:

– distributed uniformly with a median that was selected randomly from the
interval (1, 100];

– distributed normally with a mean that was selected randomly from the interval
(1, 100] and a standard deviation that was selected randomly from the interval
of 1

5 to 1
7 of the selected mean;

– distributed exponentially with a mean that was selected randomly from the
interval (1, 100].

For each of these three distributions, we produced an event log with 200, 2,000,
and 10,000 cases, which is the maximum number of cases that can be produced
by the BIMP Simulator. In two experiments, the correlation miner was not able
to generate an orchestration model, because after removing some variables (e.g.
by removing cycles, or P/S threshold filter), it was unable to solve the model with
ILP, as the model became infeasible with regard to its constraints. The results in
this table show that the correlation miner can mine a simple structured model
perfectly, provided that there are sufficiently many cases in the log.

248 S. Pourmirza et al.

(a) Structured Model with 3 Branches (b) Unstructured Model with 4 Branches

Fig. 7. Evaluation orchestration models

Table 3. Results of using the correlation miner for Fig. 7a

Distribution Uniform Exponential Normal

of cases 200 2000 10000 200 2000 10000 200 2000 10000

Recall 1.00 1.00 1.00 n/a 1.00 1.00 n/a 1.00 1.00

Precision 1.00 1.00 1.00 n/a 1.00 1.00 n/a 1.00 1.00

Table 4 presents an overview of the results for mining logs that were generated
from the model from Fig. 7b. Experiments on these logs have been conducted
with activity duration distributions that were selected in the same manner as
for the model from Fig. 7a, but with inter-arrival times that were either selected
in the same manner or from an interval with a longer duration ((200, 300]). We
also experimented with the ranges (1, 10] and [10, 10]. However, these did not
lead to substantially different results. Therefore, due to space restrictions, we
do not publish those results here. For each of these combinations of probability
distributions, we produced an event log with 100, 1,000, and 10,000 cases.

Under most conditions, the results for this more complex unstructured model
are worse than for the structured model. If a structured model contains a task with
n outgoing flows, there is for sure another task with n incoming flows; however, if
an unstructured model contains a task with n outgoing flows, it may not have any
task with n incoming flows. Therefore, solving the structured model is easier for
our ILP. The other interesting finding to emerge from Table 4 is that if the inter-
arrival time between cases is higher than the service time of activities, this leads to
substantially better results. Comparing the first 6 column of results in this table
with the second 6, shows that in the experiments with higher inter-arrival time
the results for recall and precision noticeably increased on average by 27 % and
42 % respectively. This result can be explained, because if the inter-arrival time is
the same as the service time, cases are more ‘intertwined’ in the log, such that the
correlation miner has more difficulties telling them apart based on their timing
properties (which other mining algorithms can do based on case identifiers).

Also, as expected, and in line with the findings from Table 3, a higher number
of cases in the log leads to better models in most cases. However, in experiments
in which activities were distributed exponentially, our algorithm did not find a
significant difference between the event logs that originally contained 100 and
1000 cases.

Correlation Mining: Mining Process Orchestrations Without Case Identifiers 249

Table 4. Results of using the correlation miner for Fig. 7b

Inter-arrival time [1–100] [200–300]

Distribution Uniform Exponential Uniform Exponential

of cases 100 1000 10000 100 1000 10000 100 1000 10000 100 1000 10000

Recall 0.57 0.79 0.64 0.57 0.57 0.71 0.75 0.93 1.00 0.93 0.71 1.00

Precision 0.42 0.65 0.47 0.42 0.42 0.56 0.86 0.87 1.00 0.81 0.59 1.00

Hence, based on these results, we can conclude that the correlation miner is
applicable to mine logs without case identifiers, especially for structured models
and when the inter-arrival time between cases is higher than the service time of
activities and the number of cases in the log is high enough.

4.3 Real-World Event Log

We also evaluated the algorithm based on a real-world event log. To this end, we
used a modified version of the log from the BPI Challenge of 2012 [5]. First,
we mined an orchestration model from this event log using Disco [11]. We then
removed all loops in order to make it acyclic, because that our algorithm only
deals with acyclic models at this stage. For the same reason, we then removed
the cases from the log in which loops appeared. The resulting version of this
real-world event log contained 13 activities, 70,425 events, and 11,647 cases.

In accordance with the evaluation procedure described in Sect. 4.1, we then
removed all case identifiers from the log, mined the log using the correlation
miner and evaluated the quality of the mined model. The results obtained from
this experiment show a precision of 85 % and a recall of 63 %. The lower result
for recall can be explained by the fact that our algorithm seeks to find edges with
higher frequencies, while we used the Disco model that included all possible edges
that could be mined from the log, not just the ones with the higher frequency.
Normally speaking, one would not be interested in the Disco model that con-
tains all edges, because this model also includes edges that represent exceptional
situations. Indeed if we remove edges with lower frequency (i.e., <50) from the
original model our recall indeed increases to 68 % as precision decreases to 79 %.

Based on these results, we claim that the correlation miner is also applicable
to mine real-world event logs

5 Related Work

To the best of our knowledge, the closest work to the correlation miner has
been published in [8], where the authors tackled the same problem, but based
their analysis on event logs neither with case id nor with timestamps. Since the
correlation miner also uses timestamps, it is expected to produce more reliable
results. Specifically, for the real-world event log (Sect. 4.3), [8] yields a model

250 S. Pourmirza et al.

with precision 61 % and recall 41 %, which are 24 % and 22 % lower than the cor-
relation miner’s results respectively. However, [8] can process cyclic orchestration
models.

As suggested in [1], correlating events in an event log is a continuing challenge
in the field of process mining, and more specifically, in service mining. Therefore,
we discuss the rest of related works in three categories: (i) process discovery,
(ii) service mining, and (iii) event correlation.

A large and growing body of literature has been published in the field of
process discovery. Van Dongen et al. reviewed discovery algorithms that generate
orchestration Petri Net notation [21]. Also, other surveys such as [17], shown
that a significant number of studies employ different approaches to discover
orchestration models from event logs, such as fuzzy algorithm [10]. A recent
study by Verbeek and van der Aalst [22] introduced a generic divide-and-conquer
framework to enable process discovery and conformance checking for big event
logs. Their approach is similar to our correlation miner in the sense that both
have been implemented using Integer Linear Programming. However, the precise
optimization problem that they solve is different.

The topic of service mining has been investigated in [2], which illustrated the
potential of applying process mining in the context of web services by employing
the ProM as a process mining tool and IBM’s WebSphere as a reference system.
Furthermore, Dustdar et al. [7] introduced Web Services Interaction Mining,
which concerns itself with performing process mining techniques in order to
analyze service interactions. Finally, [23] presented a web service mining frame-
work aiming at the discovery of unexpected and interesting service compositions.
To the best of our knowledge, other than [8], no process or service mining algo-
rithms currently exist that can mine a log that contains no case identifiers and
no additional data elements to do the correlation on.

Several techniques have been developed to facilitate event correlation in the
context of service-oriented systems. [3] identified a set of 18 correlation patterns
that have been grounded in a formal model. The concept of correlation set, a
query to retrieve identifiers from messages that are unique for a particular cases,
has been included in many correlation techniques such as [9], which proposed an
algorithm that assigns a certain identifier to each case in a multi-party supply
chains. De Pauw et al. carried out a study to discover conversations in web
services by using semantic correlation analysis [4], in which different services
pass dedicated identifiers inside their messages. Moreover, in [14] the authors
developed an interactive semi-automated tool for event correlation from web
service interaction logs. In contrasts, our algorithm enables fully automated event
correlation and is only based on occurrences and timestamps of events rather
than other data elements that are associated with events.

6 Conclusion

In this paper, we have presented an algorithm, the correlation miner, that enables
mining of orchestration models from event logs without case identifiers.

Correlation Mining: Mining Process Orchestrations Without Case Identifiers 251

The basic idea of this algorithm is to construct an orchestration model, in
such a way that the number of cases that flow into and out of an activity should
be equal to the number of events that happen for that activity. However, it is
often possible to generate more than one orchestration model that meets this
rule. Therefore, we defined additional criteria that need to be fulfilled in order
to select the best model. Since logs without case identifiers provide two elements
of information: (i) how many times an event occurred for a particular activity,
and (ii) at which time an event has occurred, we designed our algorithm based
on these two characteristics.

Accordingly, the correlation miner has three steps. In the first two steps,
it creates two matrices, the Precede/Succeed matrix and the Duration matrix.
Given two activities, the corresponding element in the Precede/Succeed matrix
indicates the fraction of events referring to the first activity that have occurred
before events referring to the second activity. If this value is high, it is more
likely that there is an edge from the first to the second activity. Similarly, given
two activities, the corresponding element in the Duration matrix indicates the
average time difference between events referring to the first activity and events
referring to the second activity. If this value is low, it is more likely that there
is an edge from the first to the second activity. Finally, in the third step, the
correlation miner constructs all possible orchestration models based that meet
the rule mentioned above and then it selects the best one based on the values
from the Precede/Succeed matrix and the Duration matrix.

To evaluate the applicability of the correlation miner, we performed experi-
ments with both synthetic event logs and a real-world event log. The results from
the evaluation show that the correlation miner produces good results under most
conditions. In particular, it produced a model with 85 % precision and 63 % recall
for the real-world log. The evaluations with the synthetic logs show that results
are better for structured models than for unstructured models. Also, results
are better when there are more cases in the log to mine from, and when the
inter-arrival time of cases is higher than the duration of activities.

The current correlation miner is only able to mine acyclic orchestrations.
There is, therefore, a definite further need for research to enable mining of cyclic
orchestrations as well. Furthermore, additional work is needed to ensure that our
algorithm can produce an accurate average time difference between activities for
the Duration matrix, given that we do not know which events belong to the same
case and should, therefore, be used to compute the time difference.

References

1. van der Aalst, W.M.P.: Challenges in service mining: record, check, discover. In:
Daniel, F., Dolog, P., Li, Q. (eds.) ICWE 2013. LNCS, vol. 7977, pp. 1–4. Springer,
Heidelberg (2013)

2. van der Aalst, W.M., Verbeek, H.E.: Process mining in web services: the websphere
case. IEEE Data Eng. Bull. 31(3), 45–48 (2008)

3. Barros, A., Decker, G., Dumas, M., Weber, F.: Correlation patterns in
service-oriented architectures. In: Dwyer, M.B., Lopes, A. (eds.) FASE 2007. LNCS,
vol. 4422, pp. 245–259. Springer, Heidelberg (2007)

252 S. Pourmirza et al.

4. De Pauw, W., Hoch, R., Huang, Y.: Discovering conversations in web services using
semantic correlation analysis. In: ICWS, pp. 639–646. IEEE (2007)

5. van Dongen, B.: Bpi challenge 2012. dataset (2012)
6. van Dongen, B.F., de Medeiros, A.K.A., Verbeek, H.M.W., Weijters, A.J.M.M.,

van der Aalst, W.M.P.: The ProM framework: a new era in process mining tool
support. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp.
444–454. Springer, Heidelberg (2005)

7. Dustdar, S., Gombotz, R.: Discovering web service workflows using web services
interaction mining. IJBPIM 1(4), 256–266 (2006)

8. Ferreira, D.R., Gillblad, D.: Discovering process models from unlabelled event logs.
In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol.
5701, pp. 143–158. Springer, Heidelberg (2009)

9. Gerke, K., Mendling, J., Tarmyshov, K.: Case construction for mining supply chain
processes. In: Abramowicz, W. (ed.) Business Information Systems. LNBIP, vol.
21, pp. 181–192. Springer, Heidelberg (2009)

10. Günther, C.W., van der Aalst, W.M.P.: Fuzzy mining – adaptive process simplifi-
cation based on multi-perspective metrics. In: Alonso, G., Dadam, P., Rosemann,
M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 328–343. Springer, Heidelberg (2007)

11. Günther, C., Rozinat, A.: Disco: discover your processes. In: Proceedings of the
BPM 2012 Demo Track. CEUR Workshop Proceedings, vol. 940, pp. 40–44 (2012)

12. Johnson, D.B.: Finding all the elementary circuits of a directed graph. SIAM J.
Comput. 4(1), 77–84 (1975)

13. Mendling, J., Reijers, H.A., Cardoso, J.: What makes process models understand-
able? In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714,
pp. 48–63. Springer, Heidelberg (2007)

14. Motahari-Nezhad, H.R., Saint-Paul, R., Casati, F., Benatallah, B.: Event corre-
lation for process discovery from web service interaction logs. VLDB J. 20(3),
417–444 (2011)

15. Optimization, G.: Inc. gurobi optimizer reference manual, version 5.0 (2012)
16. Rozinat, A., van der Aalst, W.M.: Conformance checking of processes based on

monitoring real behavior. Inf. Syst. 33(1), 64–95 (2008)
17. Tiwari, A., Turner, C.J., Majeed, B.: A review of business process mining: state-

of-the-art and future trends. BPM J. 1, 5–22 (2008)
18. van der Aalst, W.: Process Mining. Springer, Heidelberg (2011)
19. van der Aalst, W.: Service mining: using process mining to discover, check, and

improve service behavior. IEEE Trans. Serv. Comput. 6(4), 525–535 (2013)
20. van der Aalst, W., et al.: Process mining manifesto. In: Daniel, F., Barkaoui, K.,

Dustdar, S. (eds.) BPM Workshops 2011, Part I. LNBIP, vol. 99, pp. 169–194.
Springer, Heidelberg (2012)

21. van Dongen, B.F., Alves de Medeiros, A.K., Wen, L.: Process mining: overview and
outlook of Petri net discovery algorithms. In: Jensen, K., van der Aalst, W.M.P.
(eds.) ToPNoC II. LNCS, vol. 5460, pp. 225–242. Springer, Heidelberg (2009)

22. Verbeek, H.M.W., van der Aalst, W.M.P.: Decomposed process mining: the ilp
case. In: Fournier, F., Mendling, J. (eds.) BPM 2014 Workshops. LNBIP, vol. 202,
pp. 264–276. Springer, Heidelberg (2015)

23. Zheng, G., Bouguettaya, A.: Service mining on the web. IEEE Trans. Serv. Com-
put. 2(1), 65–78 (2009)

Verification of GSM-Based Artifact-Centric
Systems by Predicate Abstraction

Pavel Gonzalez1, Andreas Griesmayer2, and Alessio Lomuscio1(B)

1 Department of Computing, Imperial College London, London, UK
{pavel.gonzalez09,a.lomuscio}@imperial.ac.uk

2 ARM, Cambridge, England
andreas.griesmayer@arm.com

Abstract. Artifact-centric systems are a recent paradigm to model and
implement business workflows. They describe data, processes, internal
and external agents and include mechanisms for data hiding and access
control. GSM is a language for the implementation of artifact-centric sys-
tems. Since GSM programs have infinitely many states, their verification
is challenging. We here present a predicate abstraction technique that
enables us to verify GSM programs against rich specifications built on
an epistemic, first-order variant of the μ-calculus. We give the theoreti-
cal underpinnings of the technique and present GSMC, the first model
checker for GSM that implements SMT-based, three-valued abstraction
for GSM.

1 Introduction

Artifacts are structures that “combine data and process in an holistic manner”
to describe business interactions, typically in a service-oriented architecture [1].
The data component is given by the relational databases underpinning the arti-
facts in a system, whereas the workflows are described by “lifecycles” associated
with each artifact schema. Artifacts systems define complex workflow schemes
based on artifacts. The system’s participants, or agents, interact with the artifact
system by performing events on it.

Differently from services where typically only the process interfaces are adver-
tised, in artifact-centric systems the data structures are also made public. Due to
their expressiveness and flexibility, Artifact-centric architectures are increasingly
being used in variety of application areas including case management systems [2].
Artifact centric systems are executed in a hub which provides the functionality
for service execution. A flexible and powerful language for modelling and execut-
ing artifact-centric systems is the Guard-Stage-Milestone programming language
(GSM). The open-source design and runtime engine Acsi Hub [3,4] is an envi-
ronment whereby system orchestration and choreography are executed.

If artifact-centric environments are to fulfil their promise to drive the future
generation of data-intensive services, they need to be verifiable. This should
involve not only the hub itself governing the interactions between artifact calls,
but also, and crucially, the agents implementing the services in the system, as
is normally done when reasoning about services [5]. In addition to providing
c© Springer-Verlag Berlin Heidelberg 2015
A. Barros et al. (Eds.): ICSOC 2015, LNCS 9435, pp. 253–268, 2015.
DOI: 10.1007/978-3-662-48616-0 16

254 P. Gonzalez et al.

correctness guarantees and rapid prototyping, techniques such as model check-
ing can form the underpinnings for the implementation of automatic service
orchestration and choreography [6].

In this paper we develop verification methodologies for artifact-centric sys-
tems implemented in GSM. Since GSM programs include data models, they
are infinite state programs; it follows that traditional model checking methods
based on finite-state machines cannot be applied to them. To address this prob-
lem we develop a novel predicate abstraction methodology [7] for GSM defined
on a three-valued semantics to account for over- and under-approximation of the
models. We also present GSMC, the first model checker for GSM, that imple-
ments the technique discussed. We evaluate the technique on a large industrial
scale example.

RelatedWork. Several techniques for the verification of artifact-centric systems
have been put forward [8–13].While these provide considerable insight in the decid-
ability and complexity of the verification problem, they do not provide a concrete
verification technique for actual systems. The first contributions concerning the
practical verification of GSM systems appeared in [14,15]. These, however, are
defined on coarse, user-given abstractions of GSM models where little data is
present and ad-hoc restrictions on variable ranges are applied to obtain finite state
systems. Additionally the specification language used is limited.

Incomplete verification methodologies operating directly on the source code
have been developed in software verification. The abstraction techniques devel-
oped in this context normally target reachability properties only. However,
3-valued abstraction can be applied to specifications based on the μ-calculus [16].

This paper extends existing work by providing 3-valued abstractions for GSM
programs specified by a first-order version of the epistemic μ calculus. This
enables us to specify services not in purely propositional terms as it is tradition-
ally done but, instead, by referring to the underlying databases.

2 The Guard-Stage-Milestone Language and Multi-agent
Systems

While GSM provides a language for the realisation of artifact-centric systems,
GSM on its own is not equipped with constructs for the implementation of
external actors operating on the system. In GSM these are abstracted by events
reaching the system.

However, to verify the possible executions of the system we need to represent
how the agents interact with it. Artifact-centric Multi-Agent Systems (AC-MAS)
were put forward in [15] to provide a semantics for GSM and the behaviours
of external agents. We summarise these concepts below but refer to the cited
literature for more details.

The Guard-Stage-Milestone (GSM) has recently been put forward as a
declarative language for implementing artifact systems [17]. GSM describes an
artifact system Γ that depends on of artifact types that correspond to classes of

Verification of GSM-Based Artifact-Centric Systems 255

Fig. 1. A lifecycle model.

key business entities. A system comprises of a number of artifact instances of
artifact types. Each type has an information model, which gives an integrated
view of the business data, and a hierarchical lifecycle model, which describes the
structure and evolution of the business process. The artifact system interacts
with its environment via events. The information model is partitioned into the
set of data attributes, which hold business data, and the set of status attributes,
which capture the state of the lifecycle model. Figure 1 illustrates a portion of
the lifecycle of a manufacturing process and represents the core concepts: The
boxes denote stages, which represent clusters of activity designed to achieve mile-
stones (◦) that represent operational objectives. A guard (�) triggers activities
in a stage when a certain condition is fulfilled. Both milestones and guards are
controlled declaratively through sentries. A sentry of an artifact instance ι is an
expression χ(ι) in terms of incoming events, guards and milestones, and the sta-
tus of the instance. In the example above, the Stage ‘Collecting Parts’ contains
‘Research & Order’, which is triggered by an external event; upon reaching the
milestone ‘parts ordered’ the next stage ‘Receiving’ is activated.

The operational semantics for GSM is based on the notion of a business step
(B-step). This is an atomic unit that corresponds to the effect of processing one
incoming event. A B-step has the form of a tuple σ = (Σ, e,Σ′), where e is an
incoming external event and Σ, Σ′ are snapshots that capture the current and
next state of the information model respectively.

The programming language GSM [4] provides the construct for the realisation
of GSM systems; the semantics of GSM programs is given in terms of B-steps.

Artifact-Centric Multi-agent Systems. While GSM models the business
artifacts, agents model the possible interactions that external actors and ser-
vices may have with the artifact system. Below we summarise the key elements
from [15] where a formalism for defining the behaviour of the agents, and their
access to the artifact system, is described. The concepts of views and windows
are used define which attributes and artifact instances are visible to an agent;
events represent external actions that cause a change in the system. In the exam-
ple above, views can be used to hide details like procurement of parts from a
customer, while allowing access to higher level information, e.g., the start and
end of the parts assembling process. Window, instead, can be used to hide orders
that do not belong to a particular customer. While a view ν and an event ε are

256 P. Gonzalez et al.

simple lists, a window ωi(ι) is a formula that is evaluated for a specific artifact
instance ι and an agent i. The instance is exposed to the agent only if ωi(ι)
evaluates to true. The behaviour of an agent is given by its protocol ℘ in terms
of the visible state of the artifact system, and the agent’s unique ID and set of
private variables var.

We formalise an agent-based GSM system for a set of agents A operating
on an environment given by the artifact system E through an Artifact-centric
Multi-Agent Systems (AC-MAS) [9]. An AC-MAS P = 〈S, I, Act, τ, Λ〉, where
S ⊆ LE × L1 × · · · × Ln is the set of reachable global states, I is the initial
state, Act = ActE × Act1 × · · · × Actn is the set of actions, τ : S × Act → 2S

is the global transition relation, and Λ : S → 2AP is the evaluation relation for
a set of propositions AP . A global state (lE , l1, . . . , ln) ∈ S for the system is
given in terms of the snapshot Σ of the artifact system for lE , and the accessible
variables of each agent for l1, . . . , ln. We also write li(s) to extract the visible
state for agent i from a global state s ∈ S. The sets of actions ActE and Acti
are directly defined by the events the system provides and the permissions of the
agents. The global transition relation τ(s, α) with s ∈ S and α ∈ Act is given by
the corresponding B-steps defined by GSM in combination with the protocols ℘
of the agents, where only one agent can interact with the artifact system at a
time while the others are idle.

The initial state I is a global state with not artifact instances in Σ and with
all private variables set to their initial value. We write s → s′ iff there exists an
α, such that s′ ∈ τ(s, α); in this case s′ a successor of s. A run r from s is an
infinite sequence s0 → s1 → . . . with s0 = s. We write r[i] for the i-th state in
the run and rs for the set of all runs starting from s. A state s′ is reachable from
s if there is a run from s that contains s′, formally ∃r′ ∈ rs : ∃i ≥ 0 : r′[i] = s′.
Note that portions of the global state may not be visible to an agent. In line
with the standard semantics of epistemic logic [18], we say that the states s and
s′ are epistemically indistinguishable for agent i, or s ∼i s′, iff li(s) = li(s′), i.e.,
if agent i’s local state is the same in s and s′.

3 Three-Valued Abstraction for AC-MAS

Predicate Abstraction [7] is a technique used to generate sound approximations of
infinite state systems by grouping together system states satisfying certain prop-
erties into abstract states. May transition between abstract states correspond to
possible transitions between some of corresponding concrete states. This leads to
an over-approximation of the possible behaviour that is conservative for safety
properties but may lead to unsound results otherwise. Three-valued abstrac-
tion has been employed [16,19] to overcome these limitations. In three-valued
abstraction a second transition relation (or must relation) is introduced to encode
when a change in the corresponding concrete states must happen. This allows
to concurrently maintain over- and under-approximations that are conservative
for both positive and negative specifications and allows to detect when a result
cannot be determined.

Verification of GSM-Based Artifact-Centric Systems 257

To extend this technique to AC-MAS, we introduce the three-valued seman-
tics for the epistemic μ-calculus and replace τ with τm, the global may transition
relation, and τM , the global must transition relation, to get P = 〈S, I, Act, τm, τM ,
Λ〉. Analogously to the concrete case, we write s

may−→ t (s must−→ t) for t ∈ τm(s, a)
(t ∈ τM (s, a)). Over- and under-approximations for the epistemic relations are
denoted as may∼i and must∼i respectively. This extended definition of AC-MAS allows
us to define abstraction formally as:

Definition 1 (Abstraction). Let P = 〈S, I, Act, τm, τM , Λ〉 and P ′ = 〈S′, I ′,
Act′, τ ′

m, τ ′
M , Λ′〉 be AC-MAS over the same set A of agents and sets AP ′ ⊆ AP

of propositions. We say that P ′ is an abstraction of P if:

1. s′ ∈ I ′ iff there exists s ∈ I, such that s ∈ γ(s′);
2. s′ may−→′

t′ iff there exist s ∈ γ(s′) and t ∈ γ(t′), such that s
may−→ t;

3. s′ must−→′
t′ iff for each s ∈ γ(s′) there exists t ∈ γ(t′), such that s must−→ t;

4. s′ may∼i
′
t′ iff there exist s ∈ γ(s′), t ∈ γ(t′) such that s

may∼i t or there exists u′

such that s′ may∼i u′ and u′ may∼i t′;
5. s′ must∼i

′
t′ iff for each s ∈ γ(s′) there exists t ∈ γ(t′), such that s must∼i t, and for

each t ∈ γ(t′) there exists s ∈ γ(s′), such that t must∼i s;
6. p ∈ Λ′(s′) iff p ∈ Λ(s) for each s ∈ γ(s′);

where γ : S′ �→ 2S is the concretisation function that maps each abstract state
s′ ∈ S′ to the non-empty set of concrete states Ss′ ⊆ S it represents; may−→′

and may−→
are the may transition relations in P ′ and P respectively; must−→′

and must−→ are the must
transition relations; may∼i

′
and may∼i are the may epistemic relations; and must∼i

′
and must∼i

are the must epistemic relations.

May transition relations in the abstract model P ′ over-approximate may
transition relations in the concrete model P: whenever there is a may transition
between two states in P, there is is a transition between the corresponding
abstract states of P ′. Conversely, must transition relations in the abstract model
P ′ under-approximate must transition relations in the concrete model P; they
are only created for concrete transitions that are common to all of the states of
P represented by the source abstract state.

We define may and must epistemic possibility relations in the abstract sys-
tem similarly to the temporal case; however, there are additional constraints
due to the nature of the relations. Specifically, we require both to be equivalence
relations. This is achieved by building the transitive closure for may∼i , while rela-
tions in must∼i that are not symmetric are removed. By insisting on equivalence
relations, we ensure that the usual KT45 axioms [18] for knowledge are satisfied
in the abstract model.

Note that if the abstract may epistemic possibility relation were defined
analogously to abstract may transition relations, it would not necessarily be
transitive. Therefore, we define the abstract may epistemic possibility relation
as the transitive closure of this relation. Similarly, if the abstract must epistemic
possibility relation were defined analogously to abstract must transition rela-
tions, it would not be necessarily symmetric. Therefore, we remove the abstract

258 P. Gonzalez et al.

must epistemic possibility relations that are not symmetric. The labelling of an
abstract state is defined so that it is consistent with the labelling of all the con-
crete states it represents. The bi-implication ensures that the abstract labelling
function is exact.

We use an extension of the epistemic μ-calculus [20] as our specification
language. We use the observational semantics for the epistemic component Ki

in addition to the standard μ-calculus [21] and define the language L in BNF
notation as follows. Let AP be a finite set of atomic propositions and V a set of
propositional variables, then:

ϕ ::= | p | Z | ¬ϕ | ϕ ∧ ϕ | �ϕ | Kiϕ | μZ.ϕ | νZ.ϕ

where p ∈ AP and Z ∈ V. Here Kiϕ means agent i knows ϕ [18].
The syntactic combinations μZ and νZ are the least and greatest fix-point

operators respectively. An interpretation ρ : V → 2S assigns the free proposi-
tional variable Z as a set of states. Any occurrence of Z in ϕ falls within an
even number of negations. Furthermore, we assume that formulas are closed
and well-named, i.e., all propositional variables are bound exactly once in any
formula.

To evaluate a formula ϕ, we compute sets of states such that a state s satisfies
ϕ if s ∈ [[ϕ]]P,ρ

tt ; a state s refutes ϕ if s ∈ [[ϕ]]P,ρ
ff . In addition to satisfaction (tt)

and refutation (ff), we write ⊥ to express that the truth value is unknown. We
define the three-valued semantics for L in line with [16] and extend it by the
epistemic operator Ki as follows:

Definition 2 (Three-Valued Semantics). Let P be AC-MAS. The three-
valued semantics of ϕ ∈ L in P for an environment ρ, denoted [[ϕ]]M,ρ

3 , is defined
by a mapping S → {tt, ff,⊥} such that:

[[ϕ]]P,ρ
3 (s) =

⎧
⎨

⎩

tt, if s ∈ [[ϕ]]P,ρ
tt

ff, if s ∈ [[ϕ]]P,ρ
ff

⊥, otherwise

The sets [[ϕ]]P,ρ
tt ⊆ S and [[ϕ]]P,ρ

ff ⊆ S for ϕ ∈ L over P are defined as:

[[]]P,ρ
tt = S [[]]P,ρ

ff = ∅
[[p]]P,ρ

tt = {s ∈ S : p ∈ Λ(s)} [[p]]P,ρ
ff = {s ∈ S : p /∈ Λ(s)}

[[Z]]P,ρ
tt = ρ(Z) [[Z]]P,ρ

ff = ρ(Z)

[[¬ϕ]]P,ρ
tt = [[ϕ]]P,ρ

ff [[¬ϕ]]P,ρ
ff = [[ϕ]]P,ρ

tt

[[ϕ1 ∧ ϕ2]]
P,ρ
tt = [[ϕ1]]

P,ρ
tt ∩ [[ϕ2]]

P,ρ
tt [[ϕ1 ∧ ϕ2]]

P,ρ
ff = [[ϕ1]]

P,ρ
ff ∪ [[ϕ2]]

P,ρ
ff

[[�ϕ]]P,ρ
tt = ax([[ϕ]]P,ρ

tt) [[�ϕ]]P,ρ
ff = ex([[ϕ]]P,ρ

ff)

[[μZ.ϕ]]P,ρ
tt = lfp(λg.[[ϕ]]P,ρ[Z �→g]

tt) [[μZ.ϕ]]P,ρ
ff = gfp(λg.[[ϕ]]P,ρ[Z �→g]

ff)

[[νZ.ϕ]]P,ρ
tt = gfp(λg.[[ϕ]]P,ρ[Z �→g]

tt) [[νZ.ϕ]]P,ρ
ff = lfp(λg.[[ϕ]]P,ρ[Z �→g]

ff)

[[Kiϕ]]P,ρ
tt = axi([[ϕ]]P,ρ

tt) [[Kiϕ]]P,ρ
ff = exi([[ϕ]]P,ρ

ff) ∪ [[ϕ]]P,ρ
ff

Verification of GSM-Based Artifact-Centric Systems 259

where for X ⊆ S: ax(X) = {s | ∀s′ : s
may−→ s′ ⇒ X}, ex(X) = {s | ∃s′ : s must−→

s′ ∧X}, axi(X) = {s | ∀s′ : s
may∼i s′ ⇒ X}, and exi(X) = {s | ∃s′ : s must∼i s′ ∧X}.

Intuitively, ax returns states whose may successors are all in X. In contrast, ex
computes all states for which at least one must transition exists. Similarly, axi

and exi are the corresponding operators for the epistemic relations for a given
agent i and give the set of the respective indistinguishable states. The definition
for [[Kiϕ]]P,ρ

ff allows for a tighter under-approximation since agents do not know
ϕ in states where ϕ is false.

An AC-MAS P satisfies a formula ϕ, or [P |3= ϕ] = tt, if all its initial states
are in [[ϕ]]P,ρ

tt . An AC-MAS P refutes ϕ, or [P |3= ϕ] = ff, if at least one initial
state is in [[ϕ]]P,ρ

ff . Otherwise we say [P |3= ϕ] = ⊥. Note that the abstraction for
AC-MAS models P as defined above is consistent, i.e., [[ϕ]]tt ∩ [[ϕ]]ff = ∅ for any
ϕ ∈ L. Therefore the set [[ϕ]]P,ρ

⊥ can be computed as S\([[ϕ]]P,ρ
tt ∪ [[ϕ]]P,ρ

ff).

Abstracting GSM. To instantiate the theory above, we now outline a method-
ology for constructing abstract AC-MAS models from concrete GSM programs.
This process includes abstracting the data to build a finite model using predi-
cates, as well as the computation of the temporal and epistemic may and must
relations. Observe that GSM programs only regulate the evolution of the artifact-
centric system in the presence of external events and do not include a description
of the agents’ behaviour with the system. To account for the evolution of both
we combine GSM programs with procedural agent descriptions, thereby obtain-
ing a GSM-MAS program. We do not present the agents descriptions here; we
simply assume that they define the local states for the agents and define their
evolution, both in terms of the actions performed on the artifact-centric system
(or events) and the changes to their local state in the presence of actions. By
GSM-MAS we refer to the combined programs consisting of the GSM code and
the agents descriptions. It can be checked that AC-MAS provide a semantics for
GSM-MAS programs.

Given a GSM-MAS program P and a specification ϕ as input, we generate an
abstract P ′ such that if checking P ′ |= ϕ returns either true or false, then the
same result also applies to P; if P ′ |= ϕ returns undefined, then no conclusion
can be drawn on P and the abstraction needs to be refined.

States in the abstract system are represented by predicates, which are Boolean
variables that represent the validity of expressions in the concrete system. Pred-
icates are selected by analysing the GSM-MAS program and the specification
to be verified. In doing so we retain the status attributes of the lifecycles, as
these are already Boolean, but replace the potentially unbound data attributes.
To capture key conditions in the system, binary relations (=, �=, <,≤, >,≥) or
quantifications over sets of data (∃,∀) are selected by syntactically analysing the
GSM-MAS program to get an initial set of predicates pi.

In contrast to classical approaches, which build abstractions locally to single
execution blocks, the declarative nature of GSM-MAS programs and the quan-
tification over artifact instances results in predicates that are shared between
instances or agents. While predicates that are local to an artifact instance or
agent can be treated as instance variables, shared predicates need to be treated

260 P. Gonzalez et al.

concrete

must & may

may
p : x < 3
q : x = 3
x := x + 1

0

1

2

3

4

5

pqpq

pq

Fig. 2. Concrete and abstract transi-
tions of a non-negative integer counter.

(1,0)

(0,1)

(0,0)

(1,1)

concrete

must & may

may
p : x = 1
q : x > y

(x, y) ∈{0, 1} × {0, 1}

Fig. 3. Indistinguishable states of an
agent given y ∈ ν.

carefully to avoid incorrect abstractions for the local states of the agents. Build-
ing the abstract state using data predicates along with the original status
attributes guarantees that the abstract system retains the same structure, while
maintaining an over-approximation of the data space of the concrete system.

Since several concrete states correspond to an abstract state, temporal
changes in the abstract system can only approximate the corresponding changes
in the concrete data. Rather than giving the full procedure, instead we here
compute the may and must transition relations on a simple example. Consider
the abstraction of a non-negative integer counter with a single integer variable x
that is initialised to 0 and gets incremented by 1 at each step using the assign-
ment x := x + 1. If we base our abstract states on the predicates p : x < 3
and q : x = 3, we have three possible abstract states, which are shown in Fig. 2.
Between the abstract states pq and pq we have a may transition because the
concrete system can transition to a state that is in pq. There is no must transi-
tion, however, because from a state in pq the concrete system can also transition
to a state that is still in pq. In contrast, all concrete states in pq transition to
pq, which means that we have both may and must transitions.

In line with existing literature in epistemic logic [18], the agents’ knowledge
is computed on the basis of the equality of their local components. In our case,
however, the agents’ local states are given by private variables, but also their
view ν and the window ω. In the labelling algorithm for computing the sets
in which an epistemic formula holds, the existential pre-image ∼i (X) of the
set of global states X with respect to the appropriate epistemic relation (may∼i or
must∼i) is computed by existential quantification of variables outside of the view,
and restriction to the window. The pre-image can be directly used to compute
[[Kiϕ]]P,ρ

ff , since must∼i ([[ϕ]]P,ρ
ff) = exi([[ϕ]]P,ρ

ff) = {s | ∃s′ : s must∼i s′ ∧ [[ϕ]]P,ρ
ff }. This

is not the case for [[Kiϕ]]P,ρ
tt , where may∼i (X) = {s | ∃s′ : s

may∼i s′ ∧X}; in this case
we first compute the pre-image of [[ϕ]]P,ρ

ff and then take its complement.
To build the abstract epistemic relations, views and windows have to be

defined in terms of the predicates for the abstract states. The window ω can be
expressed as a formula using relations between variables. Since we build our set
of predicates using exactly those relations, we can build a direct mapping to an

Verification of GSM-Based Artifact-Centric Systems 261

abstract function ω′. In other words, the abstract and concrete window functions
represent the exact same states and ω(γ(x)) = ω′(x) for any abstract state x.

The abstraction of the view ν is less straightforward, however, as predicates
may use sets of variables that do not coincide with ν, and in the case of shared
predicates may even relate to different instances and agents. This implies that
an agent may be able to determine the value of a predicate only for some states.
To avoid computing ν′ depending on the state, we compute two sets νmay and
νmust that give correct over- and under-approximations of the epistemic relation.

For the over-approximation may∼i , we select only the local predicates for νmay

that exclusively refer to visible variables in ν. This ensures that an agent can
distinguish two states in the abstract system only if it has enough visibility in
the concrete system to determine the value of the predicates. We exclude shared
predicates since one or more of the referenced instances might be outside the
window ω and thus the predicate may be unknown. Note that fewer predicates
in ν result in a larger set ∼i (X), thereby ensuring that an over-approximation
is generated. This set is then restricted to the set Rmay of reachable states
computed with may−→, which represent the states possibly reachable in the abstract
model.

For the must transitions must∼i , we need to ensure under-approximation; we stip-
ulate that s must∼i t if for each of the concrete states in s there is a concrete state
in t such that there is an epistemic relation for agent i between them. Intuitively,
this means that we need to consider every predicate for νmust that encodes at least
one variable visible in the concrete system. Note, however, that this may not be
sufficient as, if the predicates are not independent of each other, they may allow to
infer information about a value even if it is not visible to the agent. Consider the
example in Fig. 3 with p : x = 1 and q : x > y with the visible variable y. In the
concrete system, (x, y) = (1, 1) is distinguishable from (0, 0), but not from (0, 1).
To compute must∼i with visible predicate q and only quantify p would result in a tran-
sition between pq and pq, which is not a proper under-approximation because of
the missing epistemic relation between (0, 0) and (1, 1) in the concrete system. To
ensure a correct under-approximation is generated, we transitively select all pred-
icates that share the variables with predicates already in νmust and also include
shared predicates. Finally, we restrict must∼i by Rmust, computed by must−→, which cor-
responds to the set of states that are known to be reachable in the concrete system.

4 Implementation and Experimental Results

GSMC is an open source model checker that implements the technique described
above [22]. It is operated via a command line application written in C++ that
uses the CUDD library [23] for BDD operations and the SMT solver CVC4 [24] to
help compute the abstractions. GSMC uses binary decision diagrams (BDDs) to
represent the sets of states and the transition relations of the abstract model.

GSMC operates directly on GSM programs developed in the Acsi Hub [4], a
web-based application that supports the design and implementation of artifact
systems. By using the Acsi Hub, users can design business artifacts with GSM

262 P. Gonzalez et al.

lifecycles through a design editor and then immediately deploy these programs
on an execution engine. The description of the agents and specification properties
are supplied in plain text files.

GSMC supports specifications written in a temporal-epistemic logic with
quantification over artifact instances. The language, called Instance Quanti-
fied CTLK [15], or IQ-CTLK, extends the usual epistemic branching time logic
CTLK and has the following syntax:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | EXϕ | EGϕ | E(ϕUϕ) | Kiϕ | ∀x : R ϕ | ∃x : R ϕ

where R is the name of an artifact type and p is an atomic proposition over the
agents’ private data and the attributes of active instances that are specified in
terms of instance variables bound by the quantification operators. The quantified
instance variables range over the active instances of a given artifact type R in
the state where the quantification is evaluated and must be bound.

We introduce a bound on the number of instances that can be generated and
use an overflow flag that indicates if the bound was reached during a run. The
bound in the number of instances restricts the possible behaviour of the system
and may lead to loss of soundness or completeness when the limit is reached.
The bound can be revised before any execution. Any IQ-CTLK formula to be
verified is first rewritten into a CTLK formula by replacing the quantification
operators as follows:

∀x : ϕ ⇒
∧

ι∈Γ

created(ι) → ϕ ∃x : ϕ ⇒
∨

ι∈Γ

created(ι) ∧ ϕ

where the expression created(ι) checks if instance ι was created. This is required
since the new formula ranges over the actual instances, which are created dynam-
ically at run-time, and the number of active instances is not a priori known. The
CTLK formula is then translated to an epistemic μ-calculus formula using the
fixed point characterisation of CTL [25]; the resulting specification is checked on
the abstract model.

In the rest of the section we evaluate the tool. Both use cases are complete
Acsi Hub applications. We verify the temporal-epistemic properties of the sys-
tems and discuss performance of the implemented techniques. All tests were
conducted on a 64-bit Fedora 17 Linux machine with a 2.10 GHz Intel Core i7
processor and 4 GB RAM.

Evaluation: The Order-to-Cash Scenario. This is an application in which a
seller schedules the assembly of a product based on a confirmed purchase order
from a buyer that requires several components, that are sourced from different
suppliers. When the product is assembled, a carrier ships the order to the buyer.
The buyer can cancel a purchase order at any time before the delivery. We refer
to [17] for more details. The GSM program consists of a single-artifact Acsi Hub
application with 10 data attributes, 9 stages, 11 milestones, and 12 events. We
model a collection of components by introducing an integer counter. The process
is considered complete when 3 components have arrived. The following three

Verification of GSM-Based Artifact-Centric Systems 263

agent roles interact with the artifact system: (1) a Buyer who creates an artifact
instance that represents the order; (2) a Seller who fulfils the order; and (3) a
Carrier who ships the finished product to the Buyer.

We constructed several GSM-MAS with different numbers of agents and
bounds on artifact instances. We report on the verification of these systems
against four temporal-epistemic specifications. In the following Diogenes is an
agent of role Buyer. The first specification, Property 1, states that Diogenes
knows that the product might be be received via any of his orders as long as
these are not cancelled, i.e., that there is no deadlock in processing the order:

AG ∀x : CustomerOrder((x.BuyerId �= Diogenes ∧ ¬Diogenes.Cancelled)
→ KDiogenes EF x.Received) (1)

Property 2 states that Diogenes may come to know that a product is received
for an order with a different owner. This can be used to ascertain whether the
orders are private to the buyers:

EF ∃x : CustomerOrder(x.BuyerId �= Diogenes ∧ KDiogenes x.Received) (2)

Property 3 encodes the ability of an agent to deduce information it can not
directly observe by checking whether Diogenes always knows there are 3 Pur-
chaseOrders collected in all of his orders when the milestone Ready is achieved:

AG ∀x : CustomerOrder((x.Ready ∧ x.BuyerId = Diogenes)
→ KDiogenes (x.PurchaseOrders = 3)) (3)

The last specification, Property 4, encodes the ownership of the order. It
implies that an agent other than Diogenes can cancel an order that belongs to
Diogenes. This is done by using a private variable, which is true only if Diogenes
executed the Cancelled event. We thus require that an order that belongs to
Diogenes cannot be cancelled if this variable is false:

EF ∃x : CustomerOrder(x.BuyerId = Diogenes ∧ x.Cancelled
∧ Diogenes.cancelled �= 1) (4)

We first verified the properties in the abstract system and measured the
number of may and must reachable states, memory used, and CPU time required.
GSMC evaluated Property 1 to be unknown, Properties 2 and 4 to be false, and
Property 3 to be true in the abstract model. Table 1 reports the performance for
a system with 1 agent per role and a system of 15 agents (6 Buyers, 5 Sellers,
and 4 Carriers). We observe that there is an order of magnitude of difference
in the number of may and must reachable states; this implies that there are
specifications, such as Property 1, that cannot be determined. However, the tool
is still able to find answers to the other three properties. The results are in line
with our expectations, confirming the correctness of the GSM program against
said specifications.

264 P. Gonzalez et al.

Table 1. Performance for different numbers of artifact instances ι and agents.

#ι 3 agents 15 agents

#may #must MB s #may #must MB s

1 0.91 e2 0.45 e2 55 0.2 1.65 e3 5.89 e2 69 2.1

2 2.23 e3 5.27 e2 78 0.9 1.32 e6 1.55 e5 106 4.6

3 5.34 e4 5.45 e3 93 4.8 1.03 e9 3.83 e7 124 31.9

4 1.28 e6 5.46 e4 112 25.5 7.99 e11 9.02 e9 233 168.8

5 3.10 e7 5.42 e5 172 90.4 6.05 e14 2.05 e12 463 596.2

6 7.57 e8 5.36 e6 273 257.2 4.53 e17 4.57 e14 898 2014.2

For a comparison we disabled the predicate abstraction feature and verified
the same Order-to-Cash system under the same conditions. In this case GSMC
evaluated Properties 1 and 3 to be true and Properties 2 and 4 to be false in the
model, which is consistent with the abstraction results. Note that the previously
unknown Property 1 is returned as true when predicate abstraction is disabled.

Table 2 presents the performance of the tool executed on the same machine,
under the same conditions. By comparing this table to Table 1, we see that veri-
fication of the concrete model initially outperforms abstraction. This is because
there is a constant overhead from building the may and must temporal transi-
tions by calls to the SMT solver. However, as the model grows we clearly see the
benefits of the abstraction methodology as it reduces the number of states to be
considered. For example, for 15 agents and 5 instances we have over two orders
of magnitude reduction in the number of states to be considered and an order
of magnitude reduction in the verification time.

Although the tool does not support automatic refinement for the abstrac-
tion methodology, by manually adding the predicates x.PurchaseOrders = 0,
x.PurchaseOrders = 1, and x.PurchaseOrders = 2 we could refine the abstract
model in such a way that may and must reachable state spaces become equal
to those of the concrete model. In doing so Property 1 is no longer returned
as unknown but true; this is in line with the results obtained by verifying the
concrete system.

The Second Evaluation Scenario focuses on the management of research
programs. The scenario consists of three conceptual entities modelled as busi-
ness artifacts: CallForProposals represents the annual call of a funding pro-
gram; Project encodes one project which starts as a proposal and, if successful,
becomes a funded research project; ReviewBoard governs the assembling of a
review board for a specified research topic and the reviews of all competing pro-
posals. We focus on three roles: the Program Manager initiates the process and
confirms the board; the Program Staff Member supervises projects on behalf of
the funding agency, the Project Leader is responsible for a particular proposal.
The scenario was implemented in the Acsi Hub. We refer to [26] for detail.

Verification of GSM-Based Artifact-Centric Systems 265

Table 2. Performance for different settings of the concrete system.

#ι 3 agents 15 agents

#states MB s #states MB s

1 1.17 e2 27 0.1 2.92 e3 31 0.2

2 3.71 e3 52 0.7 4.16 e6 70 4.9

3 1.16 e5 64 5.9 5.82 e9 84 65.5

4 3.67 e6 96 42.1 8.01 e12 222 360.2

5 1.18 e8 195 176.7 1.09 e16 539 1419.6

6 3.83 e9 375 500.5 N/A N/A N/A

The GSM program for this scenario is a significantly larger application than
the Order-to-Cash, as it consists of 45 stages, 56 milestones, and 19 events.
For this reason we here report only the interactions between the agents and
the ReviewBoard artifact type only, i.e., the types CallForProposals and Project
are not analysed here. We also restrict the number of agents to one per role.
Nevertheless, GSMC builds the transition relations for the whole GSM program.

An artifact instance is created when the agent Manager decides to set up a
review board. When the Manager confirms the assembled board, the lifecycle
of the ReviewBoard instance terminates. The agent Staff carries out several
administration task, including assembling and updating the review board. Both
Manager and Staff can access all artifact instances. In contrast, the agent Leader
cannot observe any of them. Agents do not set specific payloads; this implies we
can examine all the possible non-deterministic behaviours.

The first two specifications we analyse concern the simple reachability of
stages and milestones. Property 5 states that there is an instance of the Review-
Board artifact type in which eventually the stage SendProposalsToReviewers is
open:

EF ∃x : ReviewBoard(x.SendProposalsToReviewers) (5)

Property 6 encodes that there is an instance of ReviewBoard in which eventually
the milestone ReviewsTerminated is achieved. This means that an instance will
terminate:

EF ∃x : ReviewBoard(x.ReviewsTerminated) (6)

The next two specifications demonstrate the use of 3-valued abstraction on sets
of data. These formulas cannot be verified on concrete systems as sets of data
cannot be represented on concrete models. Property 7 states that there is an
instance of ReviewBoard in which eventually the the active reviewers is equal to
the specified number of reviewers required:

EF ∃x : ReviewBoard(x.Reviewers.size() = x.ReviewBoardSize) (7)

Property 8 states that there is an instance of ReviewBoard in which eventually
the set of active reviewers contains a reviewer called Diogenes:

EF ∃x : ReviewBoard(x.Reviewers.exists(FirstName = Diogenes)) (8)

266 P. Gonzalez et al.

Table 3. Performance results for 1 instance of the ReviewBoard artifact type.

Operation Result Memory Time

Computation of τm and τM � 395 MB 33.16 s

Computation of Rmay and Rmust � 364 MB 3.06 s

Property 5 � 280 MB 1.21 s

Property 6 � 284 MB 1.02 s

Property 7 � 278 MB 0.80 s

Property 8 � 272 MB 0.92 s

Property 9 � 312 MB 1.54 s

Property 10 ✗ 320 MB 2.22 s

The last two specifications concern reasoning about the knowledge of the agents.
Property 9 says that agent Manager knows there is a path where eventually the
milestone ReviewsTerminated is achieved:

KManager (EF ∃x : ReviewBoard(x.ReviewsTerminated)) (9)

Finally, Property 10 encodes that agent Leader knows there is a path where
eventually the milestone ReviewsTerminated is achieved:

KLeader (EF ∃x : ReviewBoard(x.ReviewsTerminated)) (10)

The data attributes of the concrete model are represented by 10 predicates in
the abstract model. The abstract model is then encoded by GSMC into BDDs
by using 142 Boolean variables. As the construction of the transition relations
requires three distinct sets of Boolean variables, there are 426 Boolean variables
in total. The may reachable state space of the model spans over approximately
7.1 × 109 states, and its construction requires 30 iterations. The must reachable
state space has 8.4 × 107 states and it is built in 12 iterations. The total time
for the verification was 43.88 s and the memory usage peaked at 395 MB.

Table 3 presents the performance of the individual operations undertaken by
GSMC, as well as the verification results. The first row reports the construction
of the transition relations, the second row shows the construction of may and
must reachable state spaces, and the remaining rows give the performance for
the properties verified in this section. Properties 5–9 are true in the model.
Property 10 is false in the model since the agent Leader cannot observe the
ReviewBoard lifecycle.

5 Conclusions

Artifact-centric systems have been put forward as an intuitive paradigm to
model applications for businesses and services. Differently from process mod-
els, artifact-centric systems give equal prominence to both the process model

Verification of GSM-Based Artifact-Centric Systems 267

(i.e., the lifecycles) and that information model (i.e., the data structures). GSM
has been introduced as a programming framework for artifact-centric systems
and recently adopted as part of the OMG Case Management Model and Notation
standard [27]. This suggests its use may increase considerably in the future.

In this paper we introduced a methodology for the verification of GSM sys-
tems. The technique extends state-of-the-art methods in verification by providing
a predicate abstraction methodology to GSM. In addition to catering for GSM
programs directly, we support first-order quantification to refer to the data refer-
enced by artifacts. Differently from any other mainstream predicate abstraction
technique we also support operators expressing the knowledge of the agents in
the system.

We implemented the technique in GSMC, the first model checker for GSM
that supports GSM’s information model. The checker supports GSM’s infinite
models and automatically generates, via SMT calls, finite abstract models that
can be efficiently encoded as BDDs and then verified. To evaluate the efficiency
of the approach we have discussed the experimental results obtained by using the
checkers on sophisticated use-cases generated by third-parties in the EU project
ACSI. The approach as currently implemented does not support recursion in the
GSM programs. In the future we plan to add partial support for basic recursive
data types and automatic refinement.

References

1. Cohn, D., Hull, R.: Business artifacts: a data-centric approach to modeling business
operations and processes. Bull. IEEE Comput. Soc. Tech. Committee Data Eng.
32(3), 3–9 (2009)

2. Marin, M., Hull, R., Vacuĺın, R.: Data centric BPM and the emerging case manage-
ment standard: a short survey. In: La Rosa, M., Soffer, P. (eds.) BPM Workshops
2012. LNBIP, vol. 132, pp. 24–30. Springer, Heidelberg (2013)

3. Heath, F.T., Hull, R., Vaculin, R.: Barcelona: a design and runtime environment
for modeling and execution of artifact-centric business processes. In: Demo Track
in International Conference on Business Process Management 2011 (2011)

4. Boaz, D., Heath, T., Gupta, M., Limonad, L., Sun, Y., Hull, R., Vacuĺın, R.: The
ACSI hub: a data-centric environment for service interoperation. In: Proceedings of
the BPM Demo Sessions 2014 Co-located with the 12th International Conference
on Business Process Management (BPM 2014). Volume 1295 of CEUR Workshop
Proceedings, CEUR-WS.org (2014)

5. Baresi, L., Bianculli, D., Ghezzi, C., Guinea, S., Spoletini, P.: Validation of web
service compositions. IET Softw. 1(6), 219–232 (2007)

6. Alonso, G., Casati, F., Kuno, H.A., Machiraju, V.: Web Services - Concepts
Architectures and Applications. Data-Centric Systems and Applications. Springer,
Heidelberg (2004)

7. Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

8. Belardinelli, F., Lomuscio, A., Patrizi, F.: Verification of deployed artifact systems
via data abstraction. In: Kappel, G., Maamar, Z., Motahari-Nezhad, H.R. (eds.)
Service Oriented Computing. LNCS, vol. 7084, pp. 142–156. Springer, Heidelberg
(2011)

268 P. Gonzalez et al.

9. Belardinelli, F., Lomuscio, A., Patrizi, F.: An abstraction technique for the ver-
ification of artifact-centric systems. In: Proceedings of Principles of Knowledge
Representation and Reasoning (KR 2012), pp. 319–328 (2012)

10. Belardinelli, F., Lomuscio, A., Patrizi, F.: Verification of GSM-based artifact-
centric systems through finite abstraction. In: Liu, C., Ludwig, H., Toumani, F.,
Yu, Q. (eds.) Service Oriented Computing. LNCS, vol. 7636, pp. 17–31. Springer,
Heidelberg (2012)

11. Bhattacharya, K., Gerede, C.E., Hull, R., Liu, R., Su, J.: Towards formal analysis
of artifact-centric business process models. In: Alonso, G., Dadam, P., Rosemann,
M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 288–304. Springer, Heidelberg (2007)

12. Deutsch, A., Hull, R., Patrizi, F., Vianu, V.: Automatic verification of data-centric
business processes. In: Proceedings of the 12th International Conference on Data-
base Theory (ICDT 2009), Volume 361 of ACM International Conference Proceed-
ing Series, pp. 252–267. ACM (2009)

13. Belardinelli, F., Lomuscio, A., Patrizi, F.: Verification of agent-based artifact sys-
tems. J. Artif. Intel. Res. 51, 333–376 (2014)

14. Gonzalez, P., Griesmayer, A., Lomuscio, A.: Verifying GSM-based business arti-
facts. In: Proceedings of the IEEE International Conference on Web Services
(ICWS 2012), pp. 25–32 (2012)

15. Gonzalez, P., Griesmayer, A., Lomuscio, A.: Model checking GSM-based multi-
agent systems. In: Lomuscio, A.R., Nepal, S., Patrizi, F., Benatallah, B., Brandić,
I. (eds.) ICSOC 2013. LNCS, vol. 8377, pp. 54–68. Springer, Heidelberg (2014)

16. Shoham, S., Grumberg, O.: 3-valued abstraction: more precision at less cost. Inf.
Computat. 206(11), 1313–1333 (2008)

17. Hull, R., et al.: Business artifacts with guard-stage-milestone lifecycles: managing
artifact interactions with conditions and events. In: Proceedings of the 5th ACM
International Conference on Distributed Event-Based Systems (DEBS 2011) (2011)

18. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge.
The MIT Press, Cambridge (1995)

19. Chechik, M., Devereux, B., Easterbrook, S., Gurfinkel, A.: Multi-valued symbolic
model-checking. ACM Trans. Softw. Eng. Methodol. 12(4), 371–408 (2003)

20. Bozianu, R., Dima, C., Enea, C.: Model-checking an epistemic μ-calculus with
synchronous and perfect recall semantics (2013). CoRR abs/1310.6434

21. Kozen, D.: Results on the propositional μ-calculus. Theor. Comput. Sci. 27(3),
333–354 (1983)

22. Gonzalez, P., Griesmayer, A., Lomuscio, A.: GSMC: a model checker for GSM
(2014). http://vas.doc.ic.ac.uk/software/extensions/

23. Somenzi, F.: CUDD: CU decision diagram package release 2.5.0 (2012). http://
vlsi.colorado.edu/∼fabio/CUDD/

24. Barrett, C., Tinelli, C.: CVC4 version 1.2 (2013). http://cvc4.cs.nyu.edu/web/
25. Huth, M., Ryan, M.: Logic in Computer Science: Modelling and Reasoning about

Systems. Cambridge University Press, Cambridge (2004)
26. Toribio Gomez, D., Murphy-O’Connor, C., De Leenheer, P., Malarme, P.: D5.5

deployment and evaluation of pilots using final ACSI hub system results and eval-
uation. Project deliverable, The ACSI Project (EU FP7-ICT-257593) (2013)

27. Group, O.M.: Case management model and notation, version 1.0. Technical report
(2014)

http://arxiv.org/abs/1310.6434
http://vas.doc.ic.ac.uk/software/extensions/
http://vlsi.colorado.edu/~fabio/CUDD/
http://vlsi.colorado.edu/~fabio/CUDD/
http://cvc4.cs.nyu.edu/web/

Mining and Querying Process Change
Information Based on Change Trees

Georg Kaes(B) and Stefanie Rinderle-Ma

Faculty of Computer Science, University of Vienna, Vienna, Austria
{georg.kaes,stefanie.rinderle-ma}@univie.ac.at

Abstract. Analyzing process change logs provides valuable information
about the evolution of process instances. This information can be used
to support responsible users in planning and executing future changes.
Change mining results in a change process, which represents the depen-
dencies between process changes mined from the change log. However,
when it comes to highly adaptive process settings, multiple limitations
of the change process representation can be found, i.e., based on change
processes it is not possible to provide answers to important analysis
questions such as ‘How many instances have evolved in a similar way?’
or ‘Which changes have occurred following a particular change?’. In this
paper, change trees and n-gram change trees are introduced to serve as a
basis to analyze changes in highly adaptive process instances. Moreover,
algorithms for discovering change trees and n-gram change trees from
change logs are presented. The applicability of the approach is evaluated
based on a systematic comparison with change mining, a proof-of-concept
implementation and by analyzing real-world data.

1 Introduction

Process change and evolution is a key concern in many application domains
such as care [1], manufacturing [1,2], logistics [3], and health care [4]. The man-
agement of change information in business processes is a relevant challenge for
flexible process aware information systems (PAIS) [4]. Change logs are a central
asset to log, manage and understand how a process (instance) evolves over time
[5]. Approaches such as [6,7] advocate the exploitation of knowledge on previ-
ous changes for supporting users in applying future changes. Whereas [6] ana-
lyzes user annotations, [7] presents change mining to discover change processes
from change logs. The resulting change processes visualize possible orderings of
changes and contain information about possible dependencies between changes.
However, as it will be shown, change processes are not suitable for answering
the following analysis questions:

Q1: Which process instances have evolved in a similar way?
Q2: Which process instances have evolved in a similar way after a certain change

sequence?

c© Springer-Verlag Berlin Heidelberg 2015
A. Barros et al. (Eds.): ICSOC 2015, LNCS 9435, pp. 269–284, 2015.
DOI: 10.1007/978-3-662-48616-0 17

270 G. Kaes and S. Rinderle-Ma

Both questions are relevant in practical settings. Analyzing which process
instances have evolved in a similar way can be used as a starting point for pre-
dicting changes which may become necessary in the future. In the care domain,
for example, Q1 can be used to analyze patients’ treatment histories in order
to predict future changes. Imagine two patients which have received the same
treatments over a course of time, whereby the first patient’s treatment plan is
already further developed than the treatment plan of the second patient. When
the question arises which changes may be necessary for the second patient’s
treatment plan in the future, the change information from the first patient’s
treatment plan can be used as a starting point.

Q2 provides more focus by asking for, e.g., the development of a treatment
after a certain therapy was applied. This information can be used as a basis for
analyzing what usually happens after a certain set of changes has been applied.
Imagine a therapy in the nursing home setting which requires the nurses to
conduct multiple other therapies afterwards, maybe because of possible compli-
cations. The question of interest is now, how many treatment plans have evolved
in which way after this certain therapy has been conducted. This information
can be used to further enhance the planning and conduction of therapies.

The question is how change information of process instances can be rep-
resented such that Q1 and Q2 can be sufficiently analyzed. As both Q1 and
Q2 refer to the process instance level and as we assume that changes might be
applied multiple times (think, for example, of steps such as physical therapy that
might become necessary multiple times), a suitable representation must meet the
following requirements:

R1: ability to deal with multiple occurrences of (change) instances (Q1, Q2)
R2: ability to deal with multiple occurrences of changes (Q1, Q2)
R3: ability to detect change sequences that follow a certain change pattern (Q2)

Existing approaches such as change mining do not fully meet these require-
ments. Hence, this paper introduces two new representations for information
stored in change logs1. At first, the change tree is defined in Sect. 3 as a basis to
meet requirements R1 and R2. In addition to the formal definition an algorithm
is presented that mines change trees from change logs. Section 4 introduces the
n-gram change tree as a further development of the change tree meeting require-
ment R3. Based on representing change sequences as n-grams the n-gram change
tree offers a projection on those parts of the change instances that evolved after
the occurrence of the n-gram. It is shown how n-gram change trees can be con-
structed from change logs. The feasibility of the change tree and n-gram change
tree is evaluated in several ways. Section 5 systematically compares change tree
and n-gram change tree to other representations such as change processes and
graphs. A proof-of-concept implementation as well as an application of the con-
cepts to a real-world data set from the BPI 2014 challenge is presented in Sect. 6.
Section 7 discusses related approaches and Sect. 8 concludes the paper and gives
an overview over future work.
1 Fundamental definitions of changes and change logs are presented in Sect. 2.

Mining and Querying Process Change Information Based on Change Trees 271

Overall, change tree and n-gram change tree are novel change log represen-
tations that meet requirements R1, R2, and R3 and hence enable the in-depth
analysis of highly dynamic process applications.

2 Change Log Definitions

The following definitions of changes and change logs are based on the recom-
mendations from literature. A change Δ is defined according to [5] as Δ :=
(type, subject, paramList, S)

Typical change types as summarized in the change patterns collection [8]
are INSERT, DELETE, or MOVE. Subject refers to the task or activity to be,
e.g., inserted or deleted. The paramList specifies, for example, the context of
a change. Finally, S is the (instance) schema the change is applied to. Change
Δ = (INSERT, A, <B, C>, S) inserts activity A between activities B and C in
instance schema S.

Making a simplification to [5], a change log is defined as

cL :=< Δ1, . . . , Δn > (1)

Assume the following change log
cL = < Δ1 = (INSERT, A, <Therapy Fragment C, End>, SI1),

Δ1 = (INSERT, A, <Therapy Fragment C, End>, SI2),

Δ2 = (INSERT, B, <Therapy Fragment C, End>, SI2)>.
The implicit assumption of an ordering suggests that two times an activity

A was inserted between Therapy Fragment C and End, followed by an insertion
of activity B between Therapy Fragment C and End.

An MXML-based format for change logs was proposed in the context of
change mining [9]. Listing 1.1 shows the MXML representation for cL.

Listing 1.1. Fragment for Change Log Example in MXML

<WorkflowLog ...>

<Process id="OR">

<ProcessInstance id="1">

<AuditTrailEntry >

<Data >

<Attribute name=" CHANGE.postset">End </Attribute >

<Attribute name=" CHANGE.type">INSERT </Attribute >

<Attribute name=" CHANGE.subject">A</Attribute >

<Attribute name=" CHANGE.rationale">Therapy Fragment A required </Attribute >

<Attribute name=" CHANGE.preset">Therapy Fragment C</Attribute >

</Data >

<WorkflowModelElement >INSERT.A</ WorkflowModelElement >

<EventType >complete </EventType >

<Originator >Dr. Ford </ Originator >

</AuditTrailEntry >

</ProcessInstance >

<ProcessInstance id="2">

<AuditTrailEntry >

<Data >

<Attribute name=" CHANGE.postset">End </Attribute >

<Attribute name=" CHANGE.type">INSERT </Attribute >

<Attribute name=" CHANGE.subject">A</Attribute >

272 G. Kaes and S. Rinderle-Ma

<Attribute name=" CHANGE.rationale">Therapy Fragment A required </Attribute >

<Attribute name=" CHANGE.preset">Therapy Fragment C</ Attribute >

</Data >

<WorkflowModelElement >INSERT.A</ WorkflowModelElement >

<EventType >complete </EventType >

<Originator >Dr. Ford </ Originator >

</AuditTrailEntry >

<AuditTrailEntry >

<Data >

<Attribute name=" CHANGE.postset">End </Attribute >

<Attribute name=" CHANGE.type">INSERT </ Attribute >

<Attribute name=" CHANGE.subject">B</Attribute >

<Attribute name=" CHANGE.rationale">Therapy Fragment B required </Attribute >

<Attribute name=" CHANGE.preset">Therapy Fragment C</ Attribute >

</Data >

<WorkflowModelElement >INSERT.B</ WorkflowModelElement >

<EventType >complete </EventType >

<Originator >Dr. Dent </ Originator >

</AuditTrailEntry >

</ProcessInstance >

</Process >

</WorkflowLog >

Comparing Eq. 1 and the MXML-based representation in Listing 1.1, the lat-
ter collects changes at the instance level whereas the former refers to the schema
level. In fact, change mining aggregates the instance-specific change informa-
tion into an analysis model, i.e., the change process. Figure 1 shows the result
of applying change mining to the log in Listing 1.1 as produced by the Change
Miner plugin of the ProM 5.2 framework2.

Process EndProcess Start

INSERT.A
complete

INSERT.B
complete

Fig. 1. Change process resulting from change mining (using ProM 5.2)

For the considerations of this paper, a process instance is characterized by
the changes that have been applied to the instance3. Hence, in the following we
only refer to change instances (instances for short).

Definition 1 (Change Instance, Change Log). Let I be a set of process
instances and C be a set of changes. For each I ∈ I, SI denotes the instance
schema, i.e., the schema the instance is currently running on, and ΔI

1, . . . , Δ
I
n

reflect the changes applied to I (SI) so far, ΔI
j ∈ C, j = 1, . . . n. Assume that

ΔI
i was applied before ΔI

j if i < j, i, j ∈ {1, ..., n}. Then a change instance I is
defined as follows:

I : ΔI
1 → ΔI

2 → ... → ΔI
n

A change log cL represents a collection of change instances.
2 http://www.promtools.org/doku.php?id=prom52.
3 i.e., any other information such as (instance) schema or execution state will be

considered in future work.

http://www.promtools.org/doku.php?id=prom52

Mining and Querying Process Change Information Based on Change Trees 273

For Listing 1.1 the change log cL with the associated change instances turns out
as follows:

I1: Δ1

I2: Δ1 → Δ2.

3 Change Trees

In order to be able to answer Q1 and meet requirements R1 and R2 (cf. Sect. 1),
a representation for change information shall represent the chronological order
of changes made to all instances in one aggregated view. Definition 2 presents
the change tree as a representation for instance change information. Intuitively
the change tree represents each of the change instances in a change log along
with the number of its occurrences along paths from the root to the leafs.

Definition 2 (Change Tree). Let cL be a change log and C be the changes
contained in cL. Then change tree T is defined as a rooted multiway tree T :=
(r,V,E) with

1. r := ∅ is the unique root node
2. V ⊆ C × N0

3. ∀ leaf nodes v = (Δ,n) ∈ V: n > 0
4. ∀ paths p from root r to node v = (Δ, n) ∈ V with n > 0: p corresponds to

n change instances in cL.

To complete Definition 2, Algorithm 1 sets out how new changes are added
to a change tree. Deletion or reorganization on change trees do not become
necessary since removing change Δ from the change tree is considered as adding
a “compensating” change Δ′.

Algorithm 1. Adding a Change to a Change Tree
Input:

– change Δ (applied to instance I)
– change tree CT (which contains instance I)

1 Begin
2 currentnode = root of CT
3 for i = 0; i < I.length; i++ do
4 currentnode = child node where I is stored

5 if there is a child of currentnode containing Δ then
6 Decrement count of currentnode
7 Go to the node containing Δ
8 Increment the count of this node

9 else
10 Decrement count of currentnode
11 Create a new child node for currentnode containing Δ
12 Set the count of this node to 1

13 End

274 G. Kaes and S. Rinderle-Ma

Let us illustrate the concept of the change tree along the example depicted in
Fig. 2. Figure 2 shows a change log (left side) and its representation as a change
tree (right side)4. Change instance I1 for example consists of two consecutive
applications of change Δ1 (R2: multiple occurrence of changes). Starting from
the root node and going towards Leaf 2 in the change tree, the change instance
can be reproduced. The number 1x in Leaf 2 indicates that this change instance,
i.e., Δ1 → Δ1, occurred once in the change log. With this, the change tree offers
the possibility to count the number of multiple instance occurrences.

Fig. 2. Change log and corresponding change tree

In order to illustrate how a change is added to a change tree (cf. Algorithm 1)
consider Fig. 3 which depicts two scenarios based on a change instance I : Δ1

and a given change tree (left side). In a first scenario change Δ1 is again applied
to I such that I is updated to I : Δ1 → Δ1. As a first step I is located in the
change tree (lines 2–4 in Algorithm 1). As a second step we look if the currently
applied change has already been applied to some other change instance I ′ with
I = I ′ for I before applying Δ1 the second time (lines 5–9). If such I ′ exists,
the change instance is moved further up the change tree to the next level. This
is the case for I in scenario 1. Now assume in a second scenario that not Δ1 has
been applied a second time, but Δ3 instead. In this case, no I ′ exists with I = I ′

(before the new change). Thus a new branch in the change tree is created and
the change instance is moved there (change Δ3, second and third pane).

Overall, the change tree representation covers all instances in the log as well
as maintains the number of occurrences of change instances (R1) and change
occurrences (R2). With respect to question Q1 as set out in the introduction,
the change tree offers the possibility to determine how many instances have
evolved in which way. This information can be important for predicting and
planning future changes.

Algorithm 2 sets out how a change tree can be mined from a change log.
The algorithm starts with the first set of changes which has been applied to

4 For illustration reasons the change tree is annotated with the number of leafs.

Mining and Querying Process Change Information Based on Change Trees 275

Fig. 3. Adding a change to a change tree

the process instances in the change log (line 30). For instances I1 and I2 from
Fig. 2 this is Δ1, for I3, I4 and I5 this is Δ3 (the first row of changes). For each
instance in the given set of instances (for the root node this are all instances in
the change log) the change at the current position is checked. If a node containing
this change does not already exist a new node is generated. For the first iteration
two nodes containing Δ1 and Δ3 are generated. Next we check if the change we
just created the node for is the last change for this process instance or not. If
it is, we increment the counter for this node. This means that the instance is
finished, we have reached leaf level and we have found one more instance with
the given set of changes. If it is not the last instance we add the current instance
to the set of instances for this node which will be traversed in later iterations.
The set of instances is used to generate the child nodes for our current node, and
since there is a following change, there will be a child node. Now we recursively
reuse this function to generate all child nodes for each node in our set of nodes.
After the first iteration this means that the function is called for the nodes Δ1

(with instances I1 and I2) and Δ3 (with instances I3, I4 and I5). Note that the
iterator is incremented, thus analyzing the second level of changes (instances I1,
I4 and I5: Δ1, instances I2 and I3: Δ2).

4 n-Gram Change Trees

In order to answer Q1 (cf. Sect. 1), the change tree represents the chronologi-
cal order of changes made to all instances in one aggregated view. In order to
answer Q2, in addition, all occurrences of a specific change sequence must be
detected and “consolidated” in the resulting representation in order to analyze
what happened after the change sequence to the process instances of interest.

A change instance as defined in Definition 1 can also be understood as a string
and a change sequence as substring. Thus, the problem can be considered as a
transformation of the problem of n-gram models in language processing where
two strings are defined as equivalent “if they end in the same n – 1 words” [10].

276 G. Kaes and S. Rinderle-Ma

Algorithm 2. Create a change tree from a change log
Input: Change log cL

1 //parent is the parent node for the children which are inserted

2 //set-of-instances is the set of instances which contains data for child nodes of the
current parent node

3 //iterator is the number of the change in the change log instance - iterator=2 means the
2nd change applied to the instance

4 function create-children(parent,set-of-instances,iterator)
5 set-of-nodes = new Array

6 foreach instance in set-of-instances do
7 if there is no child node with the current change for this parent then
8 node = create-node(instanceiterator,parent)

9 set-of-nodes.add(node)

10 else
11 node = the child node of the parent containing the current change

12 if instanceiterator+1==empty then
13 node.count++

14 else
15 node.nextinstances.add(instance)

16 foreach node in set-of-nodes do
17 create-children(node,node.nextinstances,iterator+1)

1919 return ;

20 function create-node(label,parent)
21 node.label = label

22 node.count = 0

23 node.nextinstances = new Array

24 node.children = new Array

25 if parent then
26 parent.children.add(node)

27 return node

28 Begin

29 root = create-node(null,null);

30 create-children(root, change log, 0);

Hence, the n-gram in the change setting will reflect the change pattern (sub-
string) of interest and we will determine the change sequences following the
change pattern for each of its occurrences in the log.

Assume that we are interested in the n-gram Δ1 → Δ2 and consider the
example depicted in Fig. 4. For instance I2, the n-gram can be found at the
beginning whereas for instances I4 and I5 the n-gram occurs after Δ3. This
results in a change tree where the required sequence of changes can be found in
two different branches of the change tree (red nodes in the middle pane).

To see all changes following n-gram Δ1 → Δ2, the two subtrees contain-
ing the n-gram have to be combined, i.e. restructuring the change tree becomes
necessary. This can be achieved by using a suffix tree [11] or, more precisely, a
generalized suffix tree which contains more than one string. A suffix tree repre-
sents all suffixes for a given string. Suffix trees are commonly used for pattern
matching in various scenarios, from string matching to finding common motifs

Mining and Querying Process Change Information Based on Change Trees 277

Fig. 4. Development of the n-gram change tree

in DNA sequences [12]. In contrast to simple implementations of the suffix tree
the algorithm proposed by Ukkonen [13] works in linear time O(n), where n
represents the length of the string.

In the generalized suffix tree in Fig. 4 the leaf node of path Root → Δ2 → 2
means that two instances have change Δ2 as their suffix. There are also two
instances which end with the changes Δ3 → Δ2 (instance I2 and I3), but only
one instance which ends with Δ2 → Δ3 (instance I4).

As depicted in Fig. 4 the suffix tree is constructed over the suffixes for all
strings which can be found in the set of change logs for process instances I1 to
I5. For n-gram Δ1 → Δ2 we can now easily see the combined subtrees since all
suffixes which start with the sequence can be found directly at the root node
(marked red in Fig. 4, third pane). This information can be represented as the n-
gram change tree, depicted in the second pane of Fig. 5. The n-gram change tree
contains the n-gram in its root node. The suffixes of the n-gram , i.e., Δ3 → Δ2,
Δ3, and Δ4 have produced two paths from root to leafs. Specifically, Δ3 → Δ2

and Δ3 are aggregated into one such path.

Fig. 5. All occurrences of the n-gram in the change tree and the n-gram change tree

The n-gram change tree can be defined similarly to the change tree with some
modifications as set out in Definition 3.

Definition 3 (n-Gram Change Tree). Let cL be a change log and C be the
changes contained in cL. Then n-gram change tree nT is defined as a change
tree (cf. Definition 2) where the following conditions are different:

278 G. Kaes and S. Rinderle-Ma

1* r :=< Δ1,...,Δl > where Δi ∈ C, i = 1,...,l. is the unique root node
4* ∀ paths p from root r to node v = (Δ, n) ∈ V with n > 0: p corresponds to a

projection of n change instances in cL starting from < Δ1,...,Δl > as defined
in the root node.

Algorithm 1 also works for n-gram change trees with the only difference that
the change is only added to the n-gram change tree if it has been applied after
the respective n-gram has been applied to an instance.

Preparing the Change Logs for Queries: In a complex setting such as the nursing
domain, often multiple changes are made, which are not necessarily interacting
with each other. For example, a patient has problems with his right knee, but at
the same time he is on a special diet because of certain allergies. In these cases,
we have to trim the aforementioned data structure, so only the relevant
changes are analyzed. Based on these trimmed change logs, we can analyze
the remaining logs with either the change tree or the n-gram change tree.

5 Comparison with Other Representations

This section compares the change tree and the n-gram change tree to other
representations such as the change process [9] and graph-based structures. The
basis for the evaluation is Listing 1.1 with an extension by multiple instances5.
Recall for the following examples that
< Δ1 = (INSERT, A, {Therapy Fragment C, End}, S) and

Δ2 = (INSERT, B, {Therapy Fragment C, End}, S)>.
First consider the scenario depicted in Table 1. On the left side the change log is

depicted, in the middle the resulting change process after applying change mining,
and on the right side the change tree. Note that the resulting change process as for
example shown in Fig. 1 has been transformed into a Petri Net in order to reason
about the semantics of splits.

For the scenario in Table 1 the change process does not convey the infor-
mation that for 9 instances change Δ1 has been applied while change Δ2 has
only been applied for two instances. Moreover, based on the OR-split, it is not
possible to see that for 3 instances first Δ1 and then Δ2 has been applied while
for one scenario the reverse order of change occurred. The reason for this limita-
tion is that change mining abstracts from the number of instance occurrences. In
contrast to this the change tree reflects multiple occurrences of change instances,
thus fulfilling requirement R1. All possible combinations of changes as they can
be found in the change logs can be easily detected and interpreted. For example
it can be concluded that the probability of having change Δ1 is nine times the
probability of change Δ2.

In the second scenario (cf. Table 2) the change process cannot correctly reflect
the difference between the scenario where only change Δ1 has been applied, and
the two others where Δ1 respectively Δ2 followed Δ1. The multiple occurrence

5 The logs can be found on http://cs.univie.ac.at/project/apes.

http://cs.univie.ac.at/project/apes

Mining and Querying Process Change Information Based on Change Trees 279

Table 1. Multiple instance occurrences

of the same change cannot be reflected correctly in the change process. The
change tree in Table 2 removes the inaccuracy of the change process regarding
the occurrence of multiple changes at different points in time. We can now easily
see that in the given situation for each case change Δ1 has been applied first.
In half of the cases afterwards change Δ1 has been applied again - in the other
half change Δ2 was used.

Table 2. Distinction of change occurrences

The problem that multiple occurrences of the same change cannot be cor-
rectly reflected in the change process is aggravated in the third scenario shown in
Table 3. Here, different process scenarios still produce the same change process.
The fact that in two cases Δ1 has been applied only once are not reflected in the

Table 3. Multiple change occurrences

280 G. Kaes and S. Rinderle-Ma

resulting change process. The corresponding change trees clearly show a distinc-
tion between the instances where Δ1 has been applied once or multiple times,
thus fulfilling requirement R2.

Representing change logs as graph structure instead of a tree would lead to
information loss and is thus not a viable solution. Consider the tree and the
graph representation in Fig. 6. The change tree on the left has been compressed
to a graph structure which requires fewer nodes. Each edge in the graph contains
information about how many instances have evolved in the respective direction,
so it can be seen that after Δ1 on the first level four instances have evolved to
Δ3 (and possibly beyond this point). As can be discovered easily in the change
tree, only one instance stopped its evolution here at Δ3 while 2 instances evolved
further to Δ1 and one instance evolved to Δ2. However, this information is lost
in the graph representation since the two Δ3 nodes would be merged.

Fig. 6. Comparing tree- and graph based models

6 Proof-of-Concept and Real-World Example

In order to provide experts with the possibility to use the change tree and the
n-gram change tree for their own projects, we implemented it as a ProM plugin6

Based on MXML and XES log files one can build a change tree, select an n-gram
and generate the n-gram change tree (cf. Fig. 7).

During the Business Process Intelligence (BPI) Challenge real world process
logs are analyzed from various points of view. The BPI Challenge 20147 was
based on data from different processes of Rabobank Group ICT. When analyzing
the log files we found that one of these processes is suited to be analyzed by the
change tree since its log provides a set of activities which describe what has
happened to a specific item in order to solve some problem. These activities are

6 The current version of the plugin is available as a nightly build at http://www.
promtools.org/prom6/nightly/.

7 http://www.win.tue.nl/bpi/2014/challenge,
doi:10.4121/uuid:c3e5d162-0cfd-4bb0-bd82-af5268819c35.

http://www.promtools.org/prom6/nightly/
http://www.promtools.org/prom6/nightly/
http://www.win.tue.nl/bpi/2014/challenge
http://dx.doi.org/10.4121/uuid:c3e5d162-0cfd-4bb0-bd82-af5268819c35

Mining and Querying Process Change Information Based on Change Trees 281

Fig. 7. Implementation of the change tree as a ProM plugin

the basic building blocks for our change tree: Each time a new activity is planned
for a specific item, the process of this item changes. Thus, the change tree can
be used to mine change information from these log files.

By mining process logs with the change tree we want to find information
about what has usually happened after a certain change or a set of changes. For
example we found multiple repeating process steps after including “Standard
Change Type 88” (SCT 88) into the process. This is reflected by the change
tree depicted in Fig. 8. Specifically, the tree is a 1-gram change tree with 1-gram
“Standard Change Type 88”.

Fig. 8. Process steps following Standard Change Type 88

From the 1-gram change tree it can be concluded that change “Standard
Change Type 88” was followed in most cases by a change sequence containing
“Standard Change Type 82” or “Standard Change Type 41”. Since the provided
data lacks context information it is not possible to deduce any semantical infor-
mation from the generated change tree. If more information was available one

282 G. Kaes and S. Rinderle-Ma

could predict certain requirements for future tasks based on the change tree.
Think for example of knowledge about resources required for a specific task,
such as requiring a technical specialist for executing “Standard Change Type
82”. Using the n-gram change tree as a resource planning instrument it can be
predicted that after executing change “Standard Change Type 88”, with a cer-
tain probability “Standard Change Type 82” will become necessary as well and
a technical specialist will be required (even if not required for “Standard Change
Type 88” in the first place).

7 Related Work

Change of process instances and process schemas have been analyzed from var-
ious vantage points.

[7,9] describe the generation of a change process based on change mining.
This method of analyzing change logs provides valuable information, especially
for process instances which are based on a common schema, for example, on how
to improve the process schema itself. However, as shown in this paper, change
mining is not suited to reflect multiple change instances and multiple occurrences
of changes. Moreover, searching for change patterns and their subsequent changes
is not supported.

[6] aims at supporting users when applying change operations as well. For
this, users can annotate changes with explanations and the systems exploits the
changes by their frequencies together with the annotations in order to suggest
changes to users. Change trees and n-gram change trees do not consider addi-
tional change annotations. However, in the presence of such annotations, [6] can
provide complementary information to users.

[14] focuses on analyzing process variants, which are derived from a common
process schema. The authors’ goal is to find the process schema, where the
smallest set of changes has to be applied to in order to obtain the schema of
the individual process instances. In a first scenario, the existence of a reference
process schema is assumed. This reference schema is adapted such that as few
as possible additional changes will be necessary to reflect the process instances.
In the second part, a process schema is generated solely based on the process
instances and their changes. This approach does not construct analysis models
from change logs, but it can serve as valuable complement to the approach
presented in this paper. For example, one could find the change with the smallest
set of required changes and use it as a basis for future changes.

Changes in the process instances schema cannot only be derived from the
change log, but also from the event log. [15] presents methods to detect sudden
changes in the process schema solely based on event log entries. For analyzing
the effects of a change, such a system would also be of interest: Imagine a doctor
who adds a new therapy to a patient where drug X has to be applied each
week. It is generally known that drug X cannot be given at the same time
as drug Y, which the patient currently receives. However for some reason the
administration of drug Y has not been removed from the patient’s therapy plan,

Mining and Querying Process Change Information Based on Change Trees 283

and the next time the doctor sees that he should administer drug Y he just
skips the corresponding process task. Such effects of changes, which cannot be
detected based on the change tree could be analyzed with such a system.

8 Conclusion and Future Work

This paper introduced change trees and n-gram changes together with the asso-
ciated mining algorithms in order to discover analysis models from change logs
that support users in deciding on future change application based on previously
applied changes. The benefit of change trees – specifically when compared to
existing change mining results – is that they reflect multiple change instances and
multiple change occurrences. Both are characteristic to highly adaptive process
scenarios. In addition, n-gram change trees enable answers to questions such as
‘which changes happened after the occurrence of a certain change pattern?’. This
can be very interesting for users, as they do not have to search possibly com-
plex change tree structures containing all the information in a change log, but a
“projection” of the trees to the information of interest. Change trees and n-gram
change trees have been evaluated in several ways: we compared them to exist-
ing change mining techniques and graph based methods, provided a technical
implementation and an application to a real-world log.

Change trees reflect the structural aspect of change logs. Specifically, change
instances and patterns are only considered as equal if they contain exactly the
same changes. For practical settings it might be also of interest to consider ‘sim-
ilar’ change sequences and patterns, i.e., go from a structural point of view to a
more semantic one. This also might necessitate the inclusion of additional infor-
mation such as process instance execution state or other instance parameters.

Data mining techniques such as Generalized Sequential Patterns might be
useful to narrow down the number of possible change sequences to those which
are statistically significant. Especially in change logs where a large number of
different process changes appear, such an approach can significantly increase the
usability of the change tree. Additionally, the analysis of scalability and efficiency
when it comes to very large process logs is an interesting topic for future work.

References

1. Kaes, G., Rinderle-Ma, S., Vigne, R., Mangler, J.: Flexibility requirements in real-
world process scenarios and prototypical realization in the care domain. In: Meers-
man, R., et al. (eds.) OTM Workshops. LNCS, vol. 8842, pp. 55–64. Springer,
Heidelberg (2014)

2. Schulte, S., Schuller, D., Steinmetz, R., Abels, S.: Plug-and-play virtual factories.
IEEE Internet Comput. 16, 78–82 (2012)

3. Bassil, S., Keller, R.K., Kropf, P.G.: A workflow-oriented system architecture for
the management of container transportation. In: Desel, J., Pernici, B., Weske, M.
(eds.) BPM 2004. LNCS, vol. 3080, pp. 116–131. Springer, Heidelberg (2004)

4. Reichert, M., Weber, B.: Enabling Flexibility in Process-Aware Information Sys-
tems - Challenges, Methods, Technologies. Springer, Heidelberg (2012)

284 G. Kaes and S. Rinderle-Ma

5. Rinderle, S., Reichert, M., Jurisch, M., Kreher, U.: On representing, purging, and
utilizing change logs in process management systems. In: Dustdar, S., Fiadeiro,
J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 241–256. Springer,
Heidelberg (2006)

6. Weber, B., Reichert, M., Rinderle-Ma, S., Wild, W.: Providing integrated life cycle
support in process-aware information systems. Int. J. Coop. Inf. Syst. 18, 115–165
(2009)

7. Günther, C., Rinderle-Ma, S., Reichert, M., van der Aalst, W.: Using process min-
ing to learn from process changes in evolutionary systems. Int. J. Bus. Process
Integr. Manag. 3, 61–78 (2008)

8. Weber, B., Reichert, M., Rinderle-Ma, S.: Change patterns and change support
features - enhancing flexibility in process-aware information systems. Data Knowl.
Eng. 66, 438–466 (2008)

9. Günther, C.W., Rinderle, S., Reichert, M., van der Aalst, W.: Change mining in
adaptive process management systems. In: Meersman, R., Tari, Z. (eds.) OTM
2006. LNCS, vol. 4275, pp. 309–326. Springer, Heidelberg (2006)

10. Brown, P., Desouza, P., Mercer, R., Della Pietra, V., Lai, J.: Class-based n-gram
models of natural language. Comput. Linguist. 18, 467–479 (1992)

11. McCreight, E.M.: A space-economical suffix tree construction algorithm. J. ACM
23, 262–272 (1976)

12. Sagot, M.-F.: Spelling approximate repeated or common motifs using a suffix tree.
In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN 1998. LNCS, vol. 1380, pp. 374–390.
Springer, Heidelberg (1998)

13. Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14, 249–260 (1995)
14. Li, C., Reichert, M., Wombacher, A.: Mining business process variants: Challenges,

scenarios, algorithms. DKE 70, 409–434 (2011)
15. Jagadeesh Chandra Bose, R.P., van der Aalst, W.M.P., Žliobaitė, I., Pechenizkiy,

M.: Handling concept drift in process mining. In: Mouratidis, H., Rolland, C. (eds.)
CAiSE 2011. LNCS, vol. 6741, pp. 391–405. Springer, Heidelberg (2011)

Property Preservation in Adaptive Case
Management

Rik Eshuis1(B), Richard Hull2, and Mengfei Yi1

1 School of Industrial Engineering, Eindhoven University of Technology,
Eindhoven, The Netherlands

H.Eshuis@tue.nl, m.yi@student.tue.nl
2 IBM T. J. Watson Research Center, Yorktown Heights, New York, USA

hull@us.ibm.com

Abstract. Adaptive Case Management (ACM) has emerged as a key
BPM technology for supporting unstructured business process, and has
been used to support flexible services orchestration. A key problem in
ACM is that case schemas need to be changed to best fit the case at hand.
Such changes are ad-hoc, and may result in schemas that do not reflect
the intended logic or properties. This paper presents a formal approach
for reasoning about which properties of a case schema are preserved after
a modification, and describes change operations that are guaranteed to
preserve certain properties. The Case Management model used here is
a variant of the Guard-Stage-Milestone model for declarative business
artifacts. Applicability is illustrated using a real-life example.

1 Introduction

Case management has been introduced to support knowledge intensive business
processes, which are organized around data artifacts [8,22,25]. Case manage-
ment often needs to support flexible business processes that are performed by
knowledge workers. So case management schemas must be easy to change. Adap-
tive Case Management (ACM) has been proposed as umbrella term for flexible
case management [20]. Case Management has been applied in many knowledge-
worker driven application areas, including fraud detection, healthcare, education,
and social work, and has also been used as a basis to support flexible services
orchestration to enable collaboration between enterprises (e.g., [15,17]).

Designing case management models is hard. The presence of business rules
may make it difficult to assess and predict the behavior specified in a case man-
agement model or schema. However, changing case management schemas is even
harder. Unwanted behavior such as logical errors can be easily introduced by
changing a case management model. More generally, a change could have unde-
sirable side effects. Therefore, certain user-defined properties should be preserved
in the changed schema.

This paper studies conditions under which case management schemas can be
changed while preserving specified properties. We use the Guard-Stage-Milestone
(GSM) model; GSM schemas declaratively specify life-cycles of business artifacts.
c© Springer-Verlag Berlin Heidelberg 2015
A. Barros et al. (Eds.): ICSOC 2015, LNCS 9435, pp. 285–302, 2015.
DOI: 10.1007/978-3-662-48616-0 18

286 R. Eshuis et al.

The meta-model underlying the OMG standard Case Management Model and
Notation (CMMN) [3] is based on GSM. In this paper we use a restricted variant
of the GSM model, called Fully Acyclic GSM, to enable a focus on the key
ideas and the development of informative and useful results. We leave for future
research the generalization of the approach to richer variants of GSM.

The paper makes three fundamental contributions. First, we develop a pre-
cise definition for testing the preservation of properties. This is based on the
notion of conditional emulatability, which allows to specify a condition under
which executions of one GSM schema can be imitated by executions of a second
GSM schema. Second, we develop a general-purpose “Lifting Lemma”. Speaking
intuitively, this provides a mechanism for isolating changes to a “local area” in
a GSM schema. And third, we use the Lifting Lemma to show how key change
operations can be defined so as to guarantee the preservation of certain prop-
erties. Importantly, the theoretical work is motivated by examples arising in a
real-world application.

The remainder of this paper is structured as follows. Section 2 introduces the
problem of changing GSM schemas based on a real-world example, and illus-
trates change operations that preserve specified properties. Section 3 formally
introduces the GSM model used in this paper. Section 4 develops the Lifting
Lemma, and Sect. 5 illustrates applications of the Lifting Lemma by defining
general-purpose change operations that preserve selected properties. Section 6
describes related work, and Sect. 7 offers brief conclusions.

Due to space limitations, the presentation here is terse. To improve readabil-
ity, several of the definitions and some of the results are presented in an informal
style. A technical report [10] contains more details on the results.

2 Motivation

To introduce the problem of variability, we consider an example based on a real-
world process from an international technology company, which has offices in
different geographic regions of the world. In the process, business criteria for
partner contracts are assessed. Each region has its own flavor of the process.

Example 2.1. The base process, called here BCAbase, is used for the main
region and has the following activities (see Fig. 1). First, data is gathered needed
to perform the assessment. Next, two activities are performed in parallel as a
pre-check. The credit is checked to ensure that the credit limit of the partner
is still valid. In parallel, the past performance of the partner is evaluated and
checked. If both checks are successful, the pre-check succeeds and a detailed check
is performed, which may either succeed or fail. If the pre-check has succeeded
within three weeks, a bonus is paid to the team managing the deal.

Figure 1 shows the lifecycle part of the GSM schema for this process. The life-
cycle contains stages (rounded rectangles) which represent the business activities
(in this paper, these are essentially (atomic) tasks that are not explicilty mod-
eled within the GSM schema). Guards (diamonds) specify under which condition
work in a stage is launched. Milestones (circles) represent business objectives

Property Preservation in Adaptive Case Management 287

Fig. 1. Main business criteria assessment process (BCAbase)

Table 1. Stages and guards for BCAbase in Fig. 1

Stage Guard

Initial Data Gathering init

Credit Check IDGS

Business Performance Evaluation Check IDGS

Detailed Check PCS

Fast Turnaround Business Eligibility IDGS

Team Bonus Pay C:Fast Turnaround Business Eligibility
∧ fast turnaround ∧ PCS

that are achieved by stages to which they are attached or by important events.
Guards and milestones have sentries (business rules) that specify when they are
executed; these are shown in Tables 1 and 2. Sentries implicitly specify depen-
dencies between stages and milestones: for instance, the sentry of the guard of
stage Credit Check states that the stage is opened if milestone IDGS has been
achieved, so the guard of Credit Check depends on IDGS. The dependencies are
graphically depicted using dashed arrows in Fig. 1. (Our diagramatic convention
does not explictly indicate how multiple milestones are combined in a sentry,
e.g., the sentry for PCS; please refer to the tables.) Rectangles represent data
attributes. A dashed line from a stage to a data attribute indicates that the stage
computes a value for the data attribute. To compare different GSM schemas, we
make use of output attributes, depicted in bold italics, which can be milestones
or data attributes. Some attributes are not shown (spez., fast turnaround com-
puted by Fast Turnaround Business Eligibility and BP good computed by Business
Performance Evaluation Check).

The behavior of GSM schemas is driven by event occurrences, which are
typically the result of completion of a stage execution. In response to an event
occurrence, a B(usiness)-step is taken, in which as many sentries as possible
are applied. For instance, suppose that in some “snapshot”, i.e., the state of
an artifact instance at some time during its execution, the milestone BPECS
is true and stages Credit Check and Fast Turnaround Bonus Eligibility are the

288 R. Eshuis et al.

Table 2. Milestones for BCAbase in Fig. 1

Milestone Full name Sentry

IDGS Initial Data Gathering Successful C:Initial Data Gathering ∧ . . .

IDGU Initial Data Gathering
Unsuccessful

C:Initial Data Gathering ∧ . . .

CCS Credit Check Successful C:Credit Check ∧rating ≥ 8

CCU Credit Check Unsuccessful C:Credit Check ∧ rating < 8

BPECS Business Performance Evaluation
Check Successful

C:Business Performance Evaluation
Check ∧ BP good

BPECU Business Performance Evaluation
Check Unsuccessful

C:Business Performance Evaluation
Check ∧ ¬ BP good

PCS Pre-checks Successful CCS ∧ BPECS

PCU Pre-checks Unsuccessful CCU ∨ BPECU

DCS Detailed Check Successful C:Detailed Check ∧ . . .

DCU Detailed Check Unsuccessful C:Detailed Check ∧ . . .

TBPS Team Bonus Pay Successful C:Team Bonus Pay

Fig. 2. Process BCAdel resulting after applying change of Example 2.3

only open stages. If stage completion event C:Credit Check now occurs with
value 9 for rating, then milestone CCS gets achieved. The milestone PCS also
gets achieved, and also stage Detailed Check is opened (and thus, the external
activity associated with that stage is started). At this point no further sentries
can be applied, the B-step is finished, and the new snapshot has been computed.
(See also Example 3.5 below.) ��

We next present three variations on this example.

Example 2.2. In another region, the business performance of a partner is eval-
uated and checked only if the partner has more than 300 employees. The GSM
schema of Fig. 1 is changed as follows (the other sentries are not changed):

– The guard of stage Business Performance Evaluation Check becomes IDGS ∧
employee count ≥ 300.

– Milestone PCS can be achieved via extra sentry CCS ∧ employee count < 300.

Property Preservation in Adaptive Case Management 289

Fig. 3. Process BCAins after applying change of Example 2.4

Now the question arises how the change affects cases. We would like to assert
that for partners with 300 or more employees, the new GSM schema emulates
the behavior of the old GSM schema, and the old GSM schema emulates that
of the new, so for the same cases, the same output results in both schemas.
(‘Emulates’ is defined precisely in Definition 4.4 below.) For partners with less
than 300 employees, this assertion does not hold. In particular, it may be that a
company with say 290 employees and a poor performance is accepted under the
new schema but rejected under the old schema. Example 5.2 will illustrate how
the formalism and results of this paper can be applied to prove these properties. ��
Example 2.3. Consider again the base process BCAbase of Example 2.1. In yet
another region, the credit of the partner is not checked. Schema BCAbase is
changed by deleting stage Credit check and milestones CCS and CCU, as visual-
ized in BCAdel in Fig. 2. The sentries of milestones PCS and PCU need to change
as follows (the other sentries are not changed):

– The sentry of milestone PCS becomes BPECS.
– The sentry of milestone PCU becomes BPECU.

To characterize the change, we would like to assert that for cases under the
old schema for which the credit check was successful, the new schema emulates
the old schema. For cases of partners for which the credit check was unsuccessful
in Fig. 1 there is a difference: for those cases the detailed check can be performed
as in Fig. 2. This example will be revisited in Examples 4.5 and 4.11. ��

Example 2.4. Consider again the base process BCAbase. In a fourth region,
the market addressed by the partner is assessed. Stage Addressable Market Check
is inserted with milestones AMCS (Addressable Market Check Successful) and
AMCU (Addressable Market Check Unsuccessful); see BCAins in Fig. 3. The sen-
tries need to change as follows (the other sentries are not changed):

290 R. Eshuis et al.

– The guard of stage Addressable Market Check becomes IGDS∧annual revenue ≥
$500K;

– The sentry of milestone PCS is replaced with two sentries: CCS ∧ BPECS ∧
AMCS and CCS ∧ BPECS ∧ annual revenue < $500K.

– The sentry of milestone PCU becomes CCU ∨ BPECU ∨ AMCU.

The change assertion is that for cases in which the annual revenue is lower
than $500K, the old schema emulates the new schema and vice versa. Also for
cases in which the annual revenue is higher or equal to $500K and the milestone
AMCS gets achieved, the old and the new schema emulate each other. This will
be revisited in Example 5.9. ��

3 The Formal GSM Model

This section presents formal definitions for the variant of GSM used in this paper.
This includes a specific notion of “executions” of a GSM schema, that will be
important in our reasoning about property preservation. It is assumed that the
reader is familiar with the basic aspects of the formal definitions of GSM (e.g.,
as in [6,9,14]).

The development here imposes a family of restrictions on the GSM variants
of, e.g., [9,14], to enable the development of interesting theoretical properties
concerning schema evolution.A comparison of the GSM used here with previous
variants is presented in [10]. Importantly, in the GSM variant used here, the
executions are monotonic, that is, an attribute value does not change once it is
defined.Generalization and adaptation of these results to richer variants of GSM,
and to the full GSM model, are left for future research.

These assumptions enable a streamlined approach for the formal definitions
of GSM schema and operational semantics.

We assume three infinite disjoint sets of names, for data attributes, for mile-
stones, and for stages. Each data attibute a has a type type(a) which is scalar
(e.g., string, character, integer, float, etc.), or is a set of records of scalars. Mile-
stones can be used as attributes with type Boolean. Both data attributes and
milestones may take the unassigned (or null) value (denoted ⊥).

We assume a condition language C that includes fixed predicates over scalars
(e.g., ‘≤’ over integers or floats), and Boolean connectives. Quantification and
testing set membership is supported for working with the set-valued attributes.
The condition formulas may involve stage, milestone, and data attributes. All
attributes start with undefined value (⊥). Milestones will take the value True if
one of their sentries go true. Stages will take the value True at the time when they
complete. (This is a variation on the traditional behavior of stage attributes.)

A sentry ψ has one of the three forms: “ϕ”, “C :S”, or “C :S ∧ϕ”, where ϕ is
a condition formula ranging over the attributes of Γ . Here “C :S” is called the
completion event for stage S. Also, C :S (if present) is the completion event for
ψ and ϕ (if present) is the formula for ψ.

Property Preservation in Adaptive Case Management 291

Definition 3.1. A GSM schema is a 5-tuple Γ = (Att = Attd ∪ Attm ∪
AttS,mstart,Attout, sen, sig) where:

1. Attd is a finite set of data attributes.
2. Attm is a finite set of milestone attributes.
3. AttS is a finite set of stage attributes.
4. mstart ∈ Attm is called the start milestone. It is used as a mechanism for

launching an execution of Γ .
5. Attout ⊆ Attd ∪ Attm is the set of output attributes for Γ . This set is also

denoted as out(Γ).
6. The sentry assignment sen is a function from AttS ∪ (attm − {mstart}) to sets

of sentries with formulas in the condition language C ranging over Att, and
such that if there is a completion event C :S then S ∈ AttS.

7. The signature assignment sig is a function from AttS to pairs (I,O) of finite
sets of attributes from Attd If sig(S) = (I,O), then we denote I as sigin(S),
called the input of S, and denote O as sigout(S), called the output of S.

Sentries define dependencies between stage and milestone attributes of Γ .
For a1, a2 ∈ AttS ∪ Attm, a dependency (a1, a2) signifies that there is a sentry
of a2 that references a1. The dependency graph of Γ , denoted DG(Γ), contains
all these dependencies [10]. Schema Γ is Fully Acyclic if DG(Γ) is a directed
acyclic graph. Then Γ is called an FA-GSM schema. Each FA-GSM schema is a
GSM schema in the sense of earlier work [6,9], and the equivalence theorem for
B-steps developed there also holds for FA-GSM schemas.

Definition 3.2. For a GSM schema Γ = (Att = Attd∪Attm∪AttS,mstart,Attout,
sen, sig) a snapshot is a mapping σ from Att into values of appropriate type
(where some attributes may be assigned the null value ⊥). For milestone and
stage attributes, the only permitted values are ⊥ and True.

In the GSM model used here, milestone and stage attributes will never take
the value False. This is because such attributes will remain undefined until they
become true.

Definition 3.3. Let Γ = (Att = Attd ∪Attm ∪AttS,mstart,Attout, sen, sig) be a
GSM schema. Let μ be a sentry for miletone m, and let ϕ be the formula of μ.
Given a snapshot σ of Γ (where some attributes may have undefined value), ϕ
is strictly satisfied by σ, denoted σ |=strict ϕ, if σ is non-null for each attribute
A occurring in ϕ, and if ϕ is satisfied by σ.

Now let ϕ be the formula of a sentry for a stage S. For snapshot σ of Γ , ϕ
is strictly satisfied for S by σ, denoted σ |=strict

S ϕ, if (a) σ is non-null for each
attribute in sigin(S), (b) σ is non-null for each attribute occurring in ϕ, and
(c) ϕ is satisfied by σ.

In particular, if σ |=strict
S ϕ, then each input attribute for S is defined, and

so S can be launched. In this paper we focus on strict satisfaction, and refer to
this simply as “satisfaction”.

292 R. Eshuis et al.

The notion of B-step for a FA-GSM schema Γ and snapshot σ is defined as
in [6,9]. Further, it can be verified that the basic equivalence results from [6]
apply to FA-GSM schemas.

Definition 3.4. Let Γ be an FA-GSM schema. An execution of Γ is a sequence

ξ = (σinit, σ0, α1, β1, σ1, . . . , αn, βn, σn)

where (a) the σ’s are snapshots; (b) σinit is special initial snapshot that is essen-
tially all false except for mstart which is assumed to have just turned to True;
(c) each σi is the result of a B-step based on the preceding σ and (for i > 0) the
incoming stage completion, denoted as βi. Stages may be launched as part of a
B-step; the set of these are represented by the α’s. The family of executions of
Γ is denoted Exec(Γ).

An execution is terminal if it cannot be extended. The set of terminal exe-
cutions is denoted TermExec(Γ).

Example 3.5. We illustrate the notion of execution by revisiting Example 2.1
and the B-step described there. Snapshots are denoted here by listing all mile-
stones that are true, all stages that are open, and the value of each defined data
attribute. In each execution of BCAbase, σ0 = {Initial Data Gathering}. After that
stage completes, we might arrive at σ1 that additionally has milestone IDGS true,
and each of Credit Check, Business Performance Evaluation Check, and Fast Turn-
around Bonus Eligibility open. Also, α2 holds these three stage names. The next
steps of the execution might be as follows.

β2 = C :Business Performance Evaluation Check
σ2 = {init, IDGS,BPECS,

Credit Check,Fast Turnaround Bonus Eligibility,
employee count : 1200, annual revenue : $700K, BP good : True}

α3 = ∅
β3 = C :Credit Check
σ3 = {init, IDGS,BPECS,CCS,PCS,

Fast Turnaround Bonus Eligibility,Detailed Check,
employee count : 1200, annual revenue : $700K,
rating : 9, BP good : True, }

α4 = {Detailed Check}
The B-step of Example 2.1 occurs from β3 to σ3. ��

4 Reasoning About GSM Executions

This section develops tools for reasoning about GSM executions, including com-
paring the executions supported by different FA-GSM schemas. The first sub-
section introduces the notion of stage i/o assignments, used to formally study
the possible behaviors of stage executions. The second subsection defines condi-
tional emulation, which provides the basis for formally comparing the behaviors
of FA-GSM schemas. And the third subsection presents the Lifting Lemma.

Property Preservation in Adaptive Case Management 293

4.1 Stage i/o Assignments

A primary goal of this paper is to study the preservation of properties when
transforming an FA-GSM schema Γ 1 into a related FA-GSM schema Γ 2. To
accomplish this we study properties of elements of Exec(Γ 1) vis-a-vis elements
of Exec(Γ 2). Non-determinism in executions of an FA-GSM Γ may lead to dif-
ferent outcomes for the same input, which complicates a fair comparison among
executions of different schemas. There are two ways that non-determinism arises:

Different Stage Outputs: Since many stages correspond to human activities,
the outputs may vary due to a variety of factors that are not explicitly
available in the snapshot that launched the stage containing that stage.

Different Stage Completion Timing: Because sentries may include stage
completion events, there may be “race” conditions under which a sentry
does or does not fire. For example, consider sentry ψ = C :S ∧ ϕ. Suppose
that in a particular execution ξ stage S completes before all variables in ϕ
have become defined. Then ψ can never be triggered in ξ. In contrast, if S
completes after all variables in ϕ have become defined then ψ might trigger
in ξ.

The next definition allows us to focus on pairs of executions for which all
shared stages have the same behavior.

Definition 4.1. Given FA-GSM schema Γ a stage i/o assignment is a function
τ with domain the stages of Γ , such that for each stage S, τ [S] is a function
whose signature matches the signature of S in Γ .

An execution ξ = σinit, σ0, α1, β1, . . . , σn of Γ is compliant with τ if for each
i ∈ [1..n], the payload of the stage completion βi = C :S(c1, . . . , cp) corresponds
to the application of τ [S] on the values from the snapshot that launched S.

Example 4.2. Let IDG denote stage Initial Data Gathering of BCAbase, and
BPEC denote Business Performance Evaluation Check. In one stage i/o assign-
ment τABC for the ABC company, we might have

τABC[IDG](employee count) = 1200
τABC[IDG](annual revenue) = $500K

τABC[BPEC](BP good) = True

Because the evaluations of business performance may be subjective, a differ-
ent stage i/o assignment τ ′

ABC might arise, with τ ′
ABC[IDG] = τABC[IDG] but

τ ′
ABC[BPEC](BP good) = False. ��

We use the stage i/o assignment to “explain” the output of stages in a partic-
ular execution. Intuitively, the following result states that the full range of non-
determinism in GSM executions can be controlled by holding the stage behaviors
and the relative timing of stage completion fixed (proof omitted).

Lemma 4.3. If two executions of Γ are compliant with the same stage i/o
assignment, and if the order of stage completions is the same, then they are
identical in all other ways as well.

294 R. Eshuis et al.

4.2 Conditional Emulation

In the general case, we shall be looking at a pair Γ 1, Γ 2 of FA-GSM schemas
and attempting to compare elements of TermExec(Γ 1) with elements of
TermExec(Γ 2). We typically focus on executions that satisfy a condition, e.g.,
in the case of Example 2.2, Ω = “employee count ≥ 300”. We then demonstrate
that executions of one schema that satisfy the condition can be emulated by exe-
cutions of the other, e.g., for each execution of BCAmod that satisfies Ω there is a
corresponding execution of BCAbase that behaves identically on output attributes
PCU, DCS, and recommendation (see Example 5.2 below).

In the sequel, if f is a function over domain D, and C ⊆ D, then f |C denotes
the restriction of f to C.

Suppose now that Γ i = (Atti = Attid ∪ Attim ∪ AttiS,mstart
i,Attiout, sen

i, sigi)
for i in [1,2]. Suppose further that τ i is a stage i/o assignment for Γ i, i in [1,2].
Then τ1 and τ2 are compatible if τ1|Att1S∩Att2S

= τ2|Att1S∩Att2S
.

Let Γ 1, Γ 2 be as above. As suggested above, we shall work with conditions
Ω over the union Att1 ∪ Att2, in order to focus on executions of Γ 1 or Γ 2 of
interest. For a snapshot σ1 over Γ 1, σ1 satisfies Ω with existential extension,
denoted σ1 |=ex Ω, if there is some extension σ of σ1 to include all attributes of
Ω not in Att1, such that σ |=strict Ω.

We now define the notion of “conditional emulatability”, which enables us
to compare the behavior of pairs of schemas with regards to selected attributes.

Definition 4.4. Let Γ i = (Atti = Attid ∪ Attim ∪ AttiS,mstart
i,Attiout, sen

i, sigi)
be an FA-GSM schema for i in [1,2], and let A ⊆ Att1 ∩ Att2, and let Ω be a
condition over Att1 ∪Att2. Then Γ 1 emulates Γ 2 under Ω, denoted Γ 1⇀Ω,AΓ 2,
if the following holds. If

1. τ2 is a stage i/o assignment for Γ 2;
2. ξ2 ∈ Exec(Γ 2) is a (possibly non-terminal) τ2-compliant execution with final

snapshot σ2; and
3. σ2 |=ex Ω

then

1. there exists a stage i/o assignment τ1 for Γ 1 that is compatible with τ2, and
2. there exists a τ1-compliant execution ξ1 ∈ Exec(Γ 1) with final snapshot σ1,
3. such that σ1|A = σ2|A.

We write Γ 1�Ω,AΓ 2 if Γ 1⇀Ω,AΓ 2 and Γ 2⇀Ω,AΓ 1.

Example 4.5. Recall BCAbase (Example 2.1) and BCAdel (Example 2.3). Let A
= PCS, PCU and Ω = “Rating = 9”. We illustrate now how it can be shown that
Γ 1�Ω,AΓ 2. For the ⇀ direction, fix stage i/o assignment τ2 for Γ 2. We focus
here on executions ξ2 of Γ 2 where IDGS is satisfied. In those cases, the only τ1

that extends τ2 and enables satisfaction of Ω will have τ1[Credit Check](Rating)
= 9. For this τ1, the stage Credit Check will execute and return Rating with
value 9 and trigger the milestone CCS. Thus, an execution ξ1 compliant with

Property Preservation in Adaptive Case Management 295

τ1 can be constructed from ξ2 by inserting the launch and completion of Credit
Rating sometime in between the satisfaction of IDGS and satisfaction of CCS.
Emulation in the other direction is straightforward to show. ��

4.3 The Lifting Lemma

The Lifting Lemma will enable us to infer emulatability in terms of output
attributes, i.e., at a “global level”, based on emulatability in terms of selected
milestone attributes, i.e., at a “local level”.

To state the lifting lemma we need to be able to talk about the areas where
schemas Γ 1, Γ 2 differ.

Definition 4.6. Let Γ 1, Γ 2 be FA-GSM schemas, and let Δi be a subset of the
stages and milestones of Γ 1 for i in [1,2]. Then Δ1,Δ2 is a change pair for Γ 1, Γ 2

if the two schemas are identical except for the milestones and stages (and their
sentries) in the delta’s.

Next, we introduce the notion of “fence” that allows us to create a separation
between a change set and an output attribute.

Definition 4.7. Let Γ = (Att = Attd ∪ Attm ∪ AttS,mstart,Attout, sen, sig) be
an FA-GSM schema, let Δ ⊂ Attm ∪ AttS, and let O ⊆ Attout. A set F ⊆ Attm
is a fence between Δ and O if for each pair δ ∈ Δ, o ∈ O and each path ρ from
δ to o in DG(Γ) there is some m ∈ M on path ρ.

Speaking intuitively, if F is a fence between Δ and O, and if certain “race”
conditions do not hold, then the values assigned to O will not be impacted by
the behavior in the Δ area. The next definition identifies the “race” conditions
that need to be avoided (see Example 4.9 below).

Definition 4.8. Let Γ = (Att = Attd ∪ Attm ∪ AttS,mstart,Attout, sen, sig) be
an FA-GSM schema, F ⊆ Attm a set of milestones in Γ , and v ∈ Attm ∪ AttS.
Then v is completion independent modulo F if for each stage S ∈ AttS and each
path ρ from S to v, if there is a node w on ρ with a sentry of form “C :S . . . ”,
then there is a node f ∈ F that lies between w and v in ρ.

Example 4.9. In BCAbase, with the exception of bonus and TBPS, all output
attributes are completion independent modulo {PCS}. In contrast, bonus and
TBPS are not, because of the completion event C:Fast Turnaround Bonus Eligibility
in the guard for stage Team Bonus Pay. ��

We now have the Lifting Lemma, which states that under certain conditions,
if Γ 1 emulates Γ 2 for the elements of a fence, then Γ 1 also emulates Γ 2 for
output attributes that are downstream from that fence. The proof, omitted, is
based on splicing of executions.

296 R. Eshuis et al.

Lemma 4.10 (Lifting Lemma). Let Γ i = (Atti = Attid ∪ Attim ∪ AttiS,mstart
i,

Attiout, sen
i, sigi) be an FA-GSM schema for i in [1,2]. Suppose that:

1. Δ1,Δ2 is a change pair for Γ 1, Γ 2.
2. O ⊆ out(Γ 1) ∩ out(Γ 2).
3. F is a fence between Δi and O in Γ i for i in [1,2].
4. O is completion independent modulo F in Γ i, for i in [1,2].
5. Ω is a condition over Att1 ∪ Att2.
6. Γ 1⇀Ω,FΓ 2.

Then Γ 1⇀Ω,OΓ 2.

We next apply the Lifting Lemma to the example of deletion from Sect. 2.

Example 4.11. Recall Example 4.5, and the property BCAbase�Ω,ABCAdel,
where F = {PCS,PCU} and Ω = “rating = 9”. Let Δ1 = {Credit Check, CCS,
CCU, PCS, PCU} and Δ2 = {PCS, PCU}. Then Δ1,Δ2 is a change pair for
Γ 1, Γ 2. It is straightforward to verify that F is a fence between these change
sets and the output attributes O = {IDGU, PCU, recommendation, DCS, DCU}.
Thus, by the Lifting Lemma, Γ 1�Ω,OΓ 2. Intuitively, this states that Γ 1, Γ 2

have identical behavior on O, if the rating attribute is assumed to have value 9.
There are no guarantees with regards to the attribute bonus), because of a possi-
ble race condition involving the completion of Fast Turnaround Bonus Eligibility,
which occurs in the sentry for Team Bonus Pay.

However, note that bonus and TBPS have a completion dependency on Fast
Turnaround Bonus Elibibility that is not blocked by F . As a result, the Lifting
Lemma does not apply to those attributes. Indeed, it is possible to construct an
example execution ξ1 of Γ 1 where Team Bonus Pay is not launched, but in the
corresponding execution ξ2 of Γ 2 this stage would launch.

Note that if the completion event C:Fast Turnaround Bonus Eligibility in
the guard for Team Bonus Pay were dropped, then Term Bonus Pay, TBPS, and
bonus would be completion independent modulo F , and so the Lifting Lemma
would apply to them. ��

5 Property Preserving Schema Modifications

This section presents operators for modifying FA-GSM schemas that guarantee
the preservation of various properties. The operators focus on sentry modifica-
tion, and on deletions and insertions of stages and milestones. The proofs about
property preservation rely on the Lifting Lemma. (The proofs are omitted here,
but available in [10].) Examples from Sect. 2 are used to illustrate the results
developed here.

We begin with a useful observation that is a very straightforward consequence
of the Lifting Lemma. Before making the observation, we need the following: the
notion of “shadow” of a change set Specifically, the shadow of Δ is the set of
milestones, stages, and data attributes that are “downstream” of nodes in Δ in
the graph DG(Γ).

Property Preservation in Adaptive Case Management 297

Let Δ1,Δ2 be a change pair for FA-GSM schemas Γ 1, Γ 2. It is easily shown
that shadow(Δ1, Γ 1) = shadow(Δ2, Γ 2).

Proposition 5.1. Let Γ i = (Atti = Attid ∪Attim ∪AttiS,mstart
i,Attiout, sen

i, sigi)
for i in [1,2], and let Δ1,Δ2 be a change pair for Γ 1, Γ 2. Let A
= shadow(Δ1, Γ 1) = shadow(Δ2, Γ 2), and let O = (Att1out ∪ Att2out) − A. Then
Γ 1�True,OΓ 2.

We next examine a simple form of sentry modification.

Example 5.2. Consider BCAbase from Example 2.1 and BCAmod from Exam-
ple 2.2. Recall that BCAmod is formed from BCAbase by modifying the sentry
on Business Performance Evaluation Check, to skip launching of that stage if the
client has < 300 employees, and adding a sentry for milestone PCS. Let Ω =
“employee count ≥ 300”. A case-by-case argument can be used to show that
BCAbase�Ω,{PCS,PCU}BCA

mod. Now let

– O = {IDGU, PCU, recommendation, DCS, DCU}.
– Δ1 = {Business Performance Evaluation Check, BPECS, BPECU, PCS}.
– Δ2 = {PCS}.

Similar to Example 4.11, it is easily verified that F = {PCS, PCU} is a fence for
Δi and O, for i in [1,2]. Further, O is completion-independent modulo F . The
Lifting Lemma now implies that Γ 1�Ω,OΓ 2. ��

5.1 Deletion

This subsection develops constructions for deleting milestones and stages from
FA-GSM schemas. Similar to the examples of Sect. 2, the focus is on enabling
the deletions while maximizing emulatability.

We begin by describing the construction for deleting a single milestone. We
shall use two notational conventions. The first is for substitutions in sentries:
given a sentry ψ, an attribute z, and a formula ϕ, ψ[z/ϕ] denotes the result
of replacing all occurrences of z in ψ by (ϕ). The second is a manipulation on
sentries called completion-event removal: For a sentry of form ψ = C :S∧ϕ, define
cer(ψ) to be S ∧ϕ. Notice that ψ will be true for the single B-step where stage S
completes, whereas cer(ψ) will be true for that B-step and all subsequent B-steps.
If ψ does not include a completion event, If ψ is eventless, then cer(ψ) = ψ.

The following definition specifies implicitly an algorithm for deleting a mile-
stone while preserving all output behaviors.

Definition 5.3. Let Γ = (Att = Attd ∪Attm ∪AttS,mstart,Attout, sen, sig) be an
FA-GSM schema, m a milestone of Γ , and M = {ψ1, . . . , ψq} the set of sentries
of m in Γ . The deletion of m from Γ , denoted del(Γ,m), is the FA-GSM schema
constructed from Γ in the following way. Suppose that v is a stage or milestone
in Γ , that χ is a sentry for v, and that m occurs in χ. Then replace χ in Γ with
a set of sentries

N = {χ[m/cer(ψp)] | p ∈ [1, q]}
Finally, delete m from the set of attributes of Γ .

298 R. Eshuis et al.

Intuitively, in the construction of schema del(Γ,m) occurrences of m in sen-
tries are replaced by “macro-expansions” of m. It can be shown that in this
construction, the set F of stages and milestones whose sentries are changed can
serve as a fence, and that Γ�True,Fdel(Γ,m).

Deleting a stage S from an FA-GSM schema Γ is similar to deleting a mile-
stone, in terms of performing “macro-expansions” in selected sentries. However,
there are three complications. First, data attributes produced by S are assigned
default values −→c . Second, use of the default values must be delayed until S would
have completed. And third, sentries that include S or C :S must be rewritten.

Definition 5.4. Let Γ = (Att = Attd ∪ Attm ∪ AttS,mstart,Attout, sen, sig) be
an FA-GSM schema, S a stage of Γ , and M = {ψ1, . . . , ψq} the set of sentries of
m in Γ . Let −→a = sigout(S) and let −→c be a vector of constants having types that
match −→a . The deletion of S from Γ using −→c for −→a , denoted del(Γ, S,−→a /−→c), is
an FA-GSM schema constructed from Γ in the following way. Suppose that v
is a stage or milestone in Γ , that χ is a sentry for v, and that χ includes C :S
and/or includes one or more attribute from −→a . Then replace χ with a set of
sentries

N = {χ[C :S/ψp,
−→a /−→c] ∧ cer(ψp) | p ∈ [1, q]}.

Finally, delete S from AttS.

Example 5.5. To illustrate the above construction, consider a variation BCAdel
var

of BCAdel, in which only the stage Credit Check is deleted, but milestones CCS
and CCU are to be retained. In this case, the sentry of CCS will become “IDGS
∧ 9 ≥ 8”, and the sentry of CCU will become “IDGS ∧9 < 8”. ��

Suppose that F is the set of milestones and stages whose sentries are impacted
by the stage deletion, if −→c is a vector of constants having the types of −→a =
sigout(S), and let Ω be “−→a = −→c ”. Then Γ�Ω,Fdel(Γ,m).

We now state a general result concerning deletion of a set X of stages and
milestones. Let −→a /−→c be the union of all the mappings from attributes to con-
stants (used for the stages that are deleted). The delete operators above can be
applied one at a time for the elements of X , and the ordering does not affect the
end result, denoted as del(Γ,X ,−→a /−→c).

Theorem 5.6. Let Γ = (Att = Attd ∪ Attm ∪ AttS,mstart,Attout, sen, sig), X ,−→a and −→c and Γ ′ = del(Γ,X ,−→a /−→c) be as above. Let F be the collection of all
stages and milestones in Γ ′ whose sentries have been modified, and let Ω be the
formula −→a = −→c . Then Γ�Ω,FΓ ′. Furthermore, if O ⊆ Attout is completion-
independent modulo F , then Γ�Ω,OΓ ′.

5.2 Insertion

This subsection studies property preservation in the context of insertions to an
FA-GSM schema Γ . Speaking intuitively, the emphasis here is on enabling the
designer to insert one or several stages and milestones, while ensuring that the

Property Preservation in Adaptive Case Management 299

global impact of the insertion is minimized “when things go right” (cf. schema
BCAins).

The following definition is provided to talk about “bulk” insertions.

Definition 5.7. Let Γ be an FA-GSM schema. An insertable fragment for Γ is
a tuple Δ = (AttΔ = AttΔd ∪AttΔm ∪AttΔS ,AttΔout, sen

Δ, sigΔ) where the set AttΔ

are new, where the sentries of Δ may refer to attributes from Γ and Δ, and
where the insertion of Δ into Γ yields a well-formed FA-GSM schema.

To enable modular insertions, and to facilitate straightforward reasoning
about the impact of an insertion, a best practice is to include as part of Δ
one or more milestones that are used to indicate the “success” or “failure” of a
case with regards to the inserted activity. The following result assumes there is
a single “success” milestone. The result follows easily from the Lifting Lemma.

Theorem 5.8. Let Γ = (Att = Attd ∪Attm ∪AttS,mstart,Attout, sen, sig) be an
FA-GSM schema, and let Δ = (AttΔ = AttΔd ∪ AttΔm ∪ AttΔS ,AttΔout, sen

Δ, sigΔ)
be an insertable fragment that includes a milestone msuccess. Suppose that F ⊆
Attm is a family of milestones in Γ , and suppose that Γ ′ is the result of modifying
ins(Γ,Δ) by replacing each sentry μ of a milestone in F by μ ∧ msuccess. Let
Ω = “msuccess”. Finally, let O ⊆ Attout be completion-independent modulo F
in Γ ′. Then Γ⇀Ω,OΓ ′.

Example 5.9. In the schema BCAins of Example 2.4, with regards to the above
theorem, the milestone AMCS plays the role of msuccess, the set {PCS} plays the
role of F , and the set {recommendation, DCS, DCU} plays the rols of O. In this
case, the theorem tells us that for each execution of BCAins for which AMCS
goes true, there is a corresponding execution of the base schema BCAbase with
the same outcomes on O. ��

6 Related Work

We discuss the literature on changes in process models for activity-centric busi-
ness process management and case management.

In the context of activity-centric BPM, change operations have been pro-
posed [26]. Different correctness criteria have been identified in the literature to
assess which changes are allowed so that cases can be migrated properly from
an old to a new schema [24]. A particular focus has been on ensuring that when
the execution of a BP instance starts on one schema and migrates to another
one while in flight, the final BP instance corresponds to an execution of the new
schema. In our approach, we study a novel form of correctness, which focuses
on preservation of schema properties, defined in terms of emulatability of one
shema by another one. A form of unconditional emulatability was studied in
connection with declarative artifact-centric business processes in [4]. That work
was in an abstract setting; in contrast the results here are tied to a practical
Case Management model, and motivated by a real-world use case.

300 R. Eshuis et al.

Case management originates from industry, including, e.g., [25] and work
on business artifacts, e.g., [22]. Recent overview works include [8,13,20]. Case
management is related to the more general concept of data-centric business
process management, which studies how activity-centric processes can be made
more data-aware [16,18,22,23] to improve their flexibility. This includes work on
declarative artifact-centric models, including GSM [5,6] and declarative process
models for case management [12].

Though the problem of change has been recognized as central to case man-
agement [13], in particular adaptive case management [19], it has not been widely
studied. Mukkalama et al. [21] study change in DCR Graphs, a declarative for-
malism for case management. They define basic change operations that add and
remove behavior, but their operations are aimed at a micro-level, so removing
atomic elements from schema. In our approach, we study also the impact of
adding and removing larger fragments, so at a macro level. They focus on log-
ical correctness and the use of automated verification techniques, whereas we
develop tests for property preservation that can be checked at a syntactic level.

Motahari et al. [19] present a framework and prototype implementation that
supports adaptive case management in social enterprises. The framework sup-
ports change, but does not address preservation of properties across changes.

There has been active research on verification for artifact-centric BPM mod-
els (e.g., [1,2,7,11]). That work could be also be applied to reason about preser-
vation of properties of case management schemas during evolution. The approach
in the current paper uses syntactic conditions rather than semantic ones, and
would thus be subsantially easier to deploy and maintain than a verification-
based approach.

7 Conclusion

This paper studies schema modifications in the context of a varient of the Guard-
Stage-Milestone (GSM) model for Case Management. The main contributions of
this paper are (i) a precise definition for testing the preservation of properties
through the use of conditional emulatability; (ii) the development of a general-
purpose “Lifting Lemma” which allows a variety of approaches to achieve and/or
prove property preservation; and (iii) the specification of operators to perform
schema manipulations that are guaranteed to preserve certain properties. The
theoretical work is motivated by examples arising in a real-world application.

The research here can be extended in several directions, including the follow-
ing: (a) extend results to more general kinds of GSM schema; (b) extend results
to other Case Management and BPM models ([25] is a natural first candidate,
and also the OMG CMMN standard [3]); (c) develop algorithms for schema mod-
ifications other than deletion and insertion, that preserve specified properties;
(d) generalize to support adaptation of schemas for cases that are “in-flight”.
and (e) develop approaches to apply the theoretical results developed here in
practical settings.

Property Preservation in Adaptive Case Management 301

References

1. Belardinelli, F., Lomuscio, A., Patrizi, F.: Verification of GSM-based artifact-
centric systems through finite abstraction. In: Liu, C., Ludwig, H., Toumani, F.,
Yu, Q. (eds.) Service Oriented Computing. LNCS, vol. 7636, pp. 17–31. Springer,
Heidelberg (2012)

2. Bhattacharya, K., Gerede, C.E., Hull, R., Liu, R., Su, J.: Towards formal analysis
of artifact-centric business process models. In: Alonso, G., Dadam, P., Rosemann,
M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 288–304. Springer, Heidelberg (2007)

3. BizAgi and others. Case Management Model and Notation (CMMN), v1, May
2014. OMG Document Number formal/2014-05-05, Object Management Group

4. Calvanese, D., De Giacomo, G., Hull, R., Su, J.: Artifact-centric workflow domi-
nance. In: Baresi, L., Chi, C.-H., Suzuki, J. (eds.) ICSOC-ServiceWave 2009. LNCS,
vol. 5900, pp. 130–143. Springer, Heidelberg (2009)

5. Cohn, D., Hull, R.: Business artifacts: a data-centric approach to modeling business
operations and processes. IEEE Data Eng. Bull. 32(3), 3–9 (2009)

6. Damaggio, E., Hull, R., Vacuĺın, R.: On the equivalence of incremental and fixpoint
semantics for business artifacts with guard-stage-milestone lifecycles. Inf. Syst. 38,
561–584 (2013)

7. Deutsch, A., Hull, R., Patrizi, F., Vianu, V.: Automatic verification of datacentric
business processes. In: Proceedings of the International Conference on Database
Theory (ICDT) (2009)

8. Di Ciccio, C., Marrella, A., Russo, A.: Knowledge-intensive processes: characteris-
tics, requirements and analysis of contemporary approaches. J. Data Semant. 4(1),
29–57 (2015)

9. Eshuis, R., Hull, R., Sun, Y., Vacuĺın, R.: Splitting GSM schemas: a framework
for outsourcing of declarative artifact systems. Inf. Syst. 46, 157–187 (2014)

10. Eshuis, R., Hull, R., Yi, M.: Reasoning about Property Preservation in Adaptive
Case Management. BETA Working Paper Series, Eindhoven University of Tech-
nology (2015)

11. Hariri, B.B., Calvanese, D., Giacomo, G.D., Deutsch, A., Montali, M.: Verification
of relational data-centric dynamic systems with external services. In: Proceedings of
the International Symposium Principles of Database Systems, pp. 163–174 (2013)

12. Hildebrandt, T.T., Mukkamala, R.R., Slaats, T.: Designing a cross-organizational
case management system using dynamic condition response graphs. In: Proceedings
of the IEEE EDOC 2011, pp. 161–170. IEEE Computer Society (2011)

13. Huber, S., Hauptmann, A., Lederer, M., Kurz, M.: Managing complexity in adap-
tive case management. Proc. S-BPM ONE 360, 209–226 (2013)

14. Hull, R., Damaggio, E., Masellis, R.D., Fournier, F., Gupta, M., III, F.H., Hobson,
S., Linehan, M., Maradugu, S., Nigam, A., Sukaviriya, P., Vacuĺın, R.: Business
artifacts with guard-stage-milestone lifecycles: managing artifact interactions with
conditions and events. In: Proceedings of the 5th ACM International Conference
on Distributed Event-Based Systems, pp. 51–62. DEBS, USA (2011)

15. Hull, R., Narendra, N.C., Nigam, A.: Facilitating workflow interoperation using
artifact-centric hubs. In: Baresi, L., Chi, C.-H., Suzuki, J. (eds.) ICSOC-
ServiceWave 2009. LNCS, vol. 5900, pp. 1–18. Springer, Heidelberg (2009)

16. Künzle, V., Reichert, M.: Philharmonicflows: towards a framework for object-aware
process management. J. Softw. Maintenance 23(4), 205–244 (2011)

302 R. Eshuis et al.

17. Limonad, L., Boaz, D., Hull, R., Vacuĺın, R., Heath, F.T.: A generic business
artifacts based authorization framework for cross-enterprise collaboration. In: SRII
Global Conference, pp. 70–79 (2012)

18. Meyer, A., Pufahl, L., Fahland, D., Weske, M.: Modeling and enacting complex
data dependencies in business processes. In: Daniel, F., Wang, J., Weber, B. (eds.)
BPM 2013. LNCS, vol. 8094, pp. 171–186. Springer, Heidelberg (2013)

19. Motahari-Nezhad, H.R., Bartolini, C., Graupner, S., Spence, S.: Adaptive case
management in the social enterprise. In: Liu, C., Ludwig, H., Toumani, F., Yu,
Q. (eds.) Service Oriented Computing. LNCS, vol. 7636, pp. 550–557. Springer,
Heidelberg (2012)

20. Motahari-Nezhad, H.R., Swenson, K.D.: Adaptive case management: overview and
research challenges. In: IEEE Conference on Business Informatics (CBI) 2013, pp.
264–269. IEEE (2013)

21. Mukkamala, R.R., Hildebrandt, T.T., Slaats, T.: Towards trustworthy adaptive
case management with dynamic condition response graphs. Proc. EDOC 2013,
127–136 (2013)

22. Nigam, A., Caswell, N.S.: Business artifacts: an approach to operational specifica-
tion. IBM Syst. J. 42(3), 428–445 (2003)

23. Redding, G., Dumas, M., ter Hofstede, A.H.M., Iordachescu, A.: A flexible, object-
centric approach for business process modelling. SOCA 4(3), 191–201 (2010)

24. Rinderle, S., Reichert, M., Dadam, P.: Correctness criteria for dynamic changes in
workflow systems - a survey. Data Knowl. Eng. 50(1), 9–34 (2004)

25. van der Aalst, W.M.P., Weske, M., Grünbauer, D.: Case handling: a new paradigm
for business process support. Data Knowl. Eng. 53(2), 129–162 (2005)

26. Weber, B., Reichert, M., Rinderle-Ma, S.: Change patterns and change support
features - enhancing flexibility in process-aware information systems. Data Knowl.
Eng. 66(3), 438–466 (2008)

Cloud Services (Short Papers)

Modelling and Optimizing Bandwidth Provision
for Interacting Cloud Services

Chao Chen1, Ligang He1,2(B), Bo Gao1, Cheng Chang2, Kenli Li2,
and Keqin Li2,3

1 Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK
{chao,liganghe,bogao}@dcs.warwick.ac.uk

2 School of Computer Science and Electronic Engineering, Hunan University,
Changsha 410082, China

{chengchang,lkl}@hnu.edu.cn
3 Department of Computer Science, State University of New York,

New Paltz, NY 12561, USA
lik@newpaltz.edu

Abstract. Non-deterministic communication patterns among interact-
ing Cloud services impose a challenge in determining appropriate band-
width provision to satisfy the communication demands. This paper aims
to address this challenge and develops a Communication Input-Output
(CIO) model to capture data communication produced by Cloud ser-
vices. The proposed model borrows the ideas from the Leontief’s Input-
Output Model in economy. Based on the model, this paper develops a
method to determine the bandwidth provision for individual VMs that
host a service. We further develop a Communication-oriented Simulated
Annealing (CSA) algorithm, which takes an initial VM-to-PM mapping
as input and finds the mapping with the minimal bandwidth provision
and without increasing the PM usage in the initial mapping. Experi-
ments have been conducted to evaluate the effectiveness and efficiency
of the CIO model and the CSA algorithm.

1 Introduction

Services deployed in a Cloud are often hosted in a number of virtual machines
(VMs), which are then placed on Physical Machines (PMs). In a Cloud environ-
ment, when services are invoked, the service invocations are often not isolated.
An invocation to a service may spawn further invocations to other services. More-
over, service invocation and consequently data communication among them may
not be static, but depend on the dynamic system information or service input.
Consider the following example. NASDAQ QMX, the largest stock exchange
company in the world, has been developing their data analysis services on Ama-
zon Web Services (AWS) [1]. The data analysis process may involve a collection
of interacting services, which are implemented through the standard services

This research was partially funded by the Key Program of National Natural Science
Foundation of China (Grant Numbers: 61133005, 61432005).

c© Springer-Verlag Berlin Heidelberg 2015
A. Barros et al. (Eds.): ICSOC 2015, LNCS 9435, pp. 305–315, 2015.
DOI: 10.1007/978-3-662-48616-0 19

306 C. Chen et al.

provided in AWS, such as S3, VPC, EC2, etc. Which services are involved in the
data analysis workflow and their invocation order are not static, but depend on
dynamic system information at runtime, such as the initial data submitted by
the clients, performance or security needs of the clients, and so on.

This brings the challenge to determine the bandwidth provision for these
services and more specifically for the VMs that host the services. Solving the
problem of VM bandwidth provision can help the tenants equip the VMs with
proper communication capacity. In EC2, different types of VM instances have dif-
ferent communication capacity and consequently different price rates. Moreover,
the data transfer between VMs is also charged in AWS. An exemplar applica-
tion of this work is that when an enterprise tenant purchases the VMs in EC2
to build a business Cloud platform, offering to its users a rich set of interacting
services, this work can help the enterprise decide which type of VM instance is
most appropriate for each service, so that the VMs are able to fulfil the commu-
nication requirement inherent in the business Cloud while the enterprise does
not pay unnecessary extra bills for VMs with higher bandwidth.

This paper aims to address this challenge by developing a Communication
Input-Output (CIO) model for data communication among services. It borrows
the idea from Leontief’s Input-Output model in Economy and captures the inter-
action relation and impact among services. The data communication performed
by each service can be calculated from the model. Knowing data communication
performed by a service does not necessarily mean that the solution is apparent
to the problem of bandwidth provision for the service’s VMs. This is because
if two VMs of two communicating services are consolidated into the same PM,
the data transmission between these two VMs does not consume their band-
width. Generally, even if the bandwidth provision for the services is determined,
the bandwidth provision for each individual VM still depends on the specific
VM-to-PM mapping. A lot of existing work has investigated the methods to
find the VM-to-PM mapping with the minimal number of PMs. However, pre-
vious work does not take into account the non-deterministic nature of service
interaction when they design their consolidation strategies. Our studies found
that even if the VM-to-PM mapping has the minimal number of PMs, there
is still room to further reduce the communication cost in the mapping while
maintaining the minimal number of PMs. This paper designs and implements
a Communication-oriented Simulated-Annealing (CSA) algorithm to reduce the
total bandwidth provision of all VMs in a set of interacting services. The CSA
algorithm takes as input the VM-to-PM mapping with the minimal number of
PMs that is generated by the existing strategies. The CSA gradually adjusts the
initial VM mapping to generate new mappings with reduced bandwidth provi-
sion. The adjustment of VM mappings is designed in the way that it does not
increase the number of used PMs.

2 Background and Related Work

Background of the IO Model. Leontief’s input-output (IO) model [2] divides
an economy into sectors (e.g. agriculture, manufacturing, etc.). Goods produced

Modelling and Optimizing Bandwidth Provision 307

by a sector are consumed by the consumer market and other sectors. The con-
sumer market is referred to as the open sector. Demands generated from the open
sector are referred to as external demands. Goods that are exchanged between
sectors is referred to as internal demands of the economy. Let column vectors
A and X denote the external demands and the total demands of all sectors in
the economy respectively, and C denote the internal consumption matrix of the
economy in which cij represents the amount of goods that need to be consumed
by sector i to produce one unit of goods in sector j. Leontief’s IO model can be
expressed by Eq. 1, which can determine the total demand vector X.

X = (I − C)−1A. (1)

Bandwidth Provision in Cloud. The work in [3–7] implements the techniques
to enforce the minimum bandwidth allocation for each VM that is used to host
specific services. However, these studies do not consider the policies to determine
the appropriate bandwidth capacity for each service and its constituent VMs
from a holistic perspective.

The methods proposed in the literature [3,4,8] are mostly job-oriented (or
tenants-oriented), i.e., to calculate the resource allocation given the specific tasks
submitted by the tenants. However, as we discussed in Sect. 1, service invocations
in a service workflow may vary according to the dynamic system information,
and therefore it may be difficult to know beforehand the exact execution paths
of the workflows in the Cloud. The bandwidth allocation policies developed in
this paper are service-oriented, which do not focus on allocating the resources
for a set of specific tasks, but aim to allocate the resources for each service based
on the interaction patterns among the services.

VMs-to-PMs Placement. Various methods have been developed to address the
VM-to-PM mapping problem, including knapsack modelling [9], the mixed integer
programming [10], genetic algorithms [11], and heuristic methods [12]. However,
the work is used to tackle the placement of independent VMs (i.e., there are no
communications among VMs), aiming to minimize the usage of physical machines.
In this paper, we investigate the placement method for interacting VMs.

Our previous work in [13] conducted the research in the same problem domain.
The work in [13] and this work are in the big scope of the same project on inves-
tigating resource management for interacting services in Clouds. Nevertheless,
they focus on completely different aspects of the project. The work in [13] focuses
on computing resources demanded by services, while this work focuses on the
demand for communication resources. The technical contributions in [13] are not
attributed to the current work in terms of both developed IO models and VM
placement algorithms.

3 Modelling Bandwidth Provision

3.1 The Communication Input-Output Model

We consider a cloud system as an economy, and each service hosted on the cloud
as a sector of this economy. Instead of producing goods, cloud services (sectors)

308 C. Chen et al.

produce and exchange/communicate data over the network. Whereas goods in
a real economy are measured by a common currency that is recognised across
different sectors, data produced by services is measured in units of bandwidth
across the network infrastructure. Similar to the production of goods in an econ-
omy as described by Leontief’s model, the cause for the production of data by
services is also classifiable as internal and external demands.

Internal demand is the data produced by a service as a consequence of a call
from another service. Given two services si and sj from service economy S, we
define a consumption coefficient cij as Eq. 2, where di and dj denote the average
data size produced by si and sj respectively, and pij denotes the probability that
one invocation of sj causes one invocation of si. To understand Eq. 2, suppose
sj is able to produce one unit of data per unit of time (e.g. it is allocated with
one unit of bandwidth). Since an invocation of sj produces dj amount of data
on average, sj can be invoked 1/dj times in a unit of time, so that the allocated
bandwidth (one unit) of sj is able to transfer the amount of data produced by
sj . As a consequence, the number of invocations to si is then given by (1/dj)pij .
Therefore, the total amount of data produced by si can be obtained by Eq. 2. As
defined by Eq. 2, cij represents the amount of data produced by service (sector)
si for each unit of data produced by sj in a time unit. This is in line with the
definition of cij used in Leontief’s model.

cij =
1
dj

pjidi (2)

In contrast, external demand in a cloud economy is the data produced by a
service due to the invocation requested by external clients. When a service si is
at the head of a service workflow (e.g., a login service at the start of a workflow),
then the number of times si is invoked by the clients in a time unit (which we
call the arrival rate of external requests for service si and is denoted by λi),
together with the average amount of data that an invocation of si produces (i.e.,
di), determines the amount of data that will be produced by si in a time unit
due to the external demand. Therefore, the external data demand for si, denoted
by ai, can be calculated by

ai = λidi. (3)

This definition is also in line with the definition of external demand as
defined by Leontief’s model. The end clients of the cloud system who trigger
service workflows can be regarded as the open sector of the cloud economy which
demands data production from the services.

From these derivations, we can see that a cloud economy shares many similar
properties to that of a real economy. By Eqs. 2 and 3, we are able to apply the
philosophy of Leontief’s IO model to a cloud setting as follows.

We denote xout
i as size of data produced by si in a time unit in order to

meet both internal and external demand (we use “out” to indicate that these
are the data that need to be sent out from si). We can establish the relation
shown in Eq. 4, where Xout and A are vectors of dimension |S| holding the data
production (xout

i) and external data demands (ai in Eq. 3) of the Cloud economy,

Modelling and Optimizing Bandwidth Provision 309

respectively, and C is the matrix of cij . Equation 4 establishes the interdepen-
dencies within the Cloud economy in terms of data production. xout

i represents
the amount of data that may be transmitted over the uplink network interface of
the PMs that service si is hosted in. Note that if si and the destination service
of some data sent by si are located in the same PM, no uplink bandwidth of the
PM needs to be consumed for transferring this part of data. In Subsect. 3.2, we
will present how to handle this situation and determine the bandwidth allocation
for individual VMs that collectively host service si.

Xout = CXout + A (4)

In addition to the economy described by Leontief’s model, which only con-
siders the amount of goods produced by each sector, we need to calculate the
amount of data received by each service in our data demand IO model. This is
because Leontief’s model does not consider the additional cost associated with
a service receiving the data through its host PM’s downlink network interface.

Among xout
i of data sent by si, the amount of xout

i pij will be sent to sij . Let
c′
ij denote the probability that a unit of data produced by si is to be received

by sj . Then c′
ij can be calculated as xout

i pij

xout
i

= pij . We denote xout
ij as the size of

data transmitted from si to sj in a time unit and xin
ji as the size of data received

by sj from si in a time unit, then we have

xin
ji = xout

ij = c′
ijx

out
i . (5)

Additionally, we denote xin
i as the size of data consumed by si (i.e., received

from all services) in a time unit. xin
i can then be calculated by Eq. 6, where

Xin is the vector of xin
i and C ′ is the matrix of c′

ij . Equation 6 establishes the
relationship between data production (out) and consumption (in).

Xin = C ′Xout. (6)

3.2 Bandwidth Provision for VMs

From the CIO model, we can derive the amount of data that are communicated
by each service. In this section, our objective is to translate this quantity into
actual bandwidth provision for individual VMs hosting a service. In a cloud
system, each service is hosted by a collection of VMs. We assume that the service
is the only service hosted in each of the VMs. This assumption is reasonable since
it is a typical setting in Clouds to host different Cloud services in different VMs
so as to provide the isolated service environments.

When two VMs of a pair of services are located on the same PM, data may
be transmitted locally and thus does not consume the VMs’ physical bandwidth.
However, in order to take advantage of this local data transmission channel, the
local ratio between the numbers of VMs of two service needs to match their
global ratio. This is explained in detail below.

Given a pair of services si and sj from S, Vi and Vj denote the total number
of VMs in the cloud for hosting these two services, respectively. Consequently,

310 C. Chen et al.

the amount of data sent from a V M i (V M i denotes a VM that hosts service si)

to service j can be calculated by xout
ij

Vi
, where xout

ij is the data sent by service i
to j in a time unit, which is calculated by Eq. 4. Given a PM PMk, vik and vjk

denote the number of V M i and V M j in PMk, respectively. Then in PMk, the
amount of data that are communicated by V M is to service j is vik

xij

Vi
. If vik

vjk

(i.e., the local ratio of the number of V M i to the number of V M j in PMk) is
no greater than Vi

Vj
(i.e., the global ratio of the number of V M i to the number of

V M j in the cloud), all data sent by V M is in PMk (the VMs that host service
i in PMk) to service j can be handled by V M js in PMk. Therefore, there is
no need to consume the bandwidth of V M i (or V M j) for sending (or receiving)
these data. For example, assume Vi and Vj are 20 and 50, respectively. If in PMk,
vik is 2 and vjk is 6, then there are more than fair share of V M j (which is 5) in
PMk to handle the data sent by V M i in the same machine (since 2/6 < 20/50).

On the contrary, if the local ratio is greater than the global ratio, which
means that there are not adequate V M j in PMk to handle the data sent by
V M i in PMk. The portion of data that cannot be handled by V M j in PMk,
denoted by yijk, have to be sent by V M i to V M j in another PM, PMl, and
therefore consume the uplink bandwidth of V M i and the downlink bandwidth of
V M j . yijk can be calculated by Eq. 7. Equation 7 essentially compares whether
the local ratio is no greater than the global ratio. If so, yijk is 0. Otherwise, Eq. 7
calculates the data that si has to send out after deducting the portion of data
that can be handled by V M j in the same machine.

Since yijk is the data communicated in a time unit, yijk is essentially the
bandwidth that has to be allocated to the V M is in PMk for sending data to
service sj . Therefore, yijk

vik
is the uplink bandwidth that has to be allocated

to each V M i in PMk for sending the data to sj , while yijk

vjl
is the downlink

bandwidth allocated to each V M j in PMl for receiving yijk. The total uplink
bandwidth that needs to be allocated to V M i in PMk can be calculated by∑

sj∈PMk
yijk.

yijk = max{vik
xij

Vi
(1 − vjk(Vi/Vj)

vik
), 0} (7)

Given a VM-to-PM mapping, denoted by M, the total uplink communication
bandwidth generated by M can be calculated by Eq. 8, where yijk is the amount
of data that are sent from V M i (hosting service i) in PMk (consuming the
uplink bandwidth of PMk) to V M j (hosting service j) in other PMs. The total
downlink bandwidth generated by a VM-to-PM mapping can be calculated in a
similar way.

C(M) =
∑

k

∑

j

∑

i

yijk. (8)

4 The Communication-Oriented Simulated Annealing
Algorithm

In the classical SA approach, an initial solution is first generated (a solution is
encoded) and the neighbourhood searching routine is then applied to generate

Modelling and Optimizing Bandwidth Provision 311

new suitable candidate solutions. A cost function and the metropolis criterion
[14], which models the transition of a thermodynamic system, are used to deter-
mine the quality of the solutions and guide the searching direction so that better
solutions can be gradually generated until the stopping criterion is met.

In this section, we design a Communication-oriented SA (CSA) algorithm
that aims to find the VM-to-PM mapping with the minimal bandwidth provision
for all VMs. In the CSA algorithm, the initial solution is set as the VM-to-
PM mapping that is generated by the MinPM algorithm [9] (i.e., the algorithm
that produce the VM-to-PM mapping that uses the minimal number of PMs to
host VMs). The amount of bandwidth provision calculated in Eq. 8 is used as
the cost function for the CSA algorithm. The CSA algorithm adjusts the VM-
to-PM mapping, aiming to reduce the bandwidth provision without increasing
the number of PMs. This section presents the encoding of the solution, the
neighbourhood searching routine and the flow of CSA algorithm in this paper.

Encoding the Solution. In the SA algorithm, a solution is encoded as a two-
dimensional array, A, in which an element a[i][j] represents how many VMs of
Service sj there are in PMi. Note that this encoding method does not differenti-
ate the VMs for the same service. This way, the number of VMs does not affect
the complexity of the algorithm. Consequently, the proposed SA algorithm can
find the good VM-to-PM mappings efficiently.

Neighbourhood Searching. In SA, the design of neighbourhood searching
routine is critical for generating good solutions with good efficiency. This sub-
section presents the method to conduct the neighbourhood searching. Two prob-
abilities, pp and ps, are set to represent the possibility that the VM mapping of
a service in a PM is adjusted. To improve the efficiency, the following design is
adopted for the neighbourhood searching. The neighbourhood searching routine
randomly selects N × pp PMs (N is the total number of PMs) to adjust the VM
mappings of some services in these PMs. For a selected PM, the routine further
randomly selects M × ps services (assume M is the number of services in the
PM) and the VM mappings of these services will be adjusted. For service si in
PMj , its VM mapping is adjusted in the following way. First, the neighbourhood
searching routine randomly selects another PM, PMk, and then randomly selects
a service, sl (l �= i), in PMk. The routine then tries to swap the VMs between
si and sl. In order to render a valid swap, the routine calculates the maximum
number of VMs that can be swapped between the two services, which can be
calculated using Algorithm 1, where fk and fl are the spare resource capacity in
PMk and PMl, respectively, vik is the number of V M i in PMk, swapik is the
maximum number of V M i that can be swapped in PMk. A valid swap is one
after which the total capacity of every type of resource (the resource types of
CPU utilization, memory and bandwidth are considered in this work) allocated
to the VMs in either PM does not exceed the total physical resource capacity
of the PM. This validity rule guarantees that the number of required PMs does
not increase. The neighbourhood searching is presented in Algorithm 2.

As discussed above, the neighbourhood searching routine randomly selects
N ×pp PMs (N is the total number of PMs) and in each selected PM, the routine

312 C. Chen et al.

Algorithm 1. Calculating maximum
number of VMs that can be swapped
1: if V M i

k × vik < V Mj
l × vjl then

2: Swapik = vik

3: Swapjl = [
V Mi

k×vik+fk

V M
j
l

]

4: else if V M i
k × vik > V Mj

l × vjl then
5: Swapjl = vjl

6: Swapjk = [
V M

j
l

×vjl+fl

V Mi
k

]

7: else
8: Swapik = vik
9: Swapjl = vjl

Algorithm 2. Neighbourhood search-
ing
1: Randomly select �pp × N� PMs
2: for each of these PM do
3: Randomly select ps × S |k services in

PMk
4: for each of services do
5: Randomly select a PM, PMl(l �= k)

and a service j (j �= i) in PMi
6: Call Algorithm1 to calculate maxi-

mum number of VMs in V M i and
V Mj that can form a valid swap

7: Swap calculated number of VMs
between si in PMk and sj in PMc

8: Return new VM-to-PM mapping, M′

further selects M ×ps services to adjust their VM mappings. Therefore, the time
complexity of Algorithm 2 is O(pp × N × ps × M).

Simulated Annealing. Algorithm 3 outlines the entire SA process aiming to
find the optimal VM-to-PM allocation. In the algorithm, T is the initial temper-
ature of the SA process, which is typically set as 1000. factor is the cool-down
factor of the SA process, which is typically set as 0.85. In each iteration, M is
the current VM-to-PM mapping. Algorithm 2 is called to generate a new candi-
date VM-to-PM mapping, M′ (Line 4). Equation 8 is then applied to calculate
the communication cost (C′(M′)) of the new mapping M′ (line 5). If C′(M′) is
better(smaller) than that of the current mapping, the algorithm accepts the new
mapping and the new mapping becomes the current mapping (Line 6–8). Oth-
erwise, the metropolis criterion, calculated by exp(−ΔC(M)

T), is used to decide
whether this new but worse VM mapping should be accepted. If the calculated
metropolis criterion is greater than a float number randomly generated between
0 and 1 (Line 7), M′ is accepted. Otherwise, the current mapping remains intact.
The iteration repeats until the current mapping stays unchanged for a certain
number of consecutive iterations (counted by j) or the number of iterations
(counted by i) reaches a pre-set number, kmax1 and kmax2 in the CSA (Line 2).

There are at most kmax2 iterations in the “while” loop in Algorithm 3. In
each iteration, calling Algorithm 2 dominates the time spent in an iteration.
Therefore, the time complexity of Algorithm 3 is O(kmax2ppNpsM).

5 Performance Evaluation

We have conducted the simulation experiments to evaluate the effectiveness of
the CIO model and the CSA algorithm developed in this work.

The synthetic trace is generated in the simulation experiments. A set of 500
services are generated. A service is defined as the start service, from which all
workflows in the trace start. Another service is defined as the end service, which

Modelling and Optimizing Bandwidth Provision 313

Algorithm 3. The CSA Algorithm
Require: M
1: i = 0, j = 0
2: while j ≤ kmax1 or i ≤ kmax2 do
3: T ← T × factor
4: M′ ← Call Algorithm2
5: C′(M′) ← Call Eq. 8
6: ΔC(M) ← C′(M′) − C(M)

7: if ΔC(M) < 0 or exp(
−ΔC(M)

T
) >

R(0, 1) then
8: M ← M′
9: j = 0
10: else
11: j = j + 1
12: i = i + 1

Fig. 1. Accuracy of the CIO model using
synthetic traces

means that when the workflow reaches to this service, it will not invoke further
services. The degree of parallelism (denoted by DP) is set, which is 3 by default,
when generating the workflow instances for the synthetic trace. For all services
except the end service, after a service (e.g., si) invoked by a task is completed,
it further randomly invokes DP (e.g., 3) services. The roulette wheel method
is used to randomly determine which DP services are selected based on pij . In
the synthetic trace, the value of pij is randomly set from the range of [0.001,
0.003] with the average of 0.002 (i.e., 1/500, where 500 is the number of services
generated in the trace). The workflow instance stops growing when all branches
in the workflow reach the end service. The technique presented in [13] is used
to calculate the number of VMs for each service. The strategy presented in [9]
is used to generate the initial VM-to-PM mapping with the minimal number
of PMs.

5.1 Accuracy of the CIO Model

It is straightforward to determine pij for the synthetic trace since a service
randomly invokes another service. With pij , we apply the bandwidth IO model to
calculate the bandwidth allocated for each service. In the simulator developed in
this work, we allocate the calculated bandwidth to the services and then run the
simulation experiments. We record the amount of data that are communicated by
each service. If the proposed bandwidth IO model is effective, then the amount
of data that are communicated by each service in a time unit in the simulation
experiment should equal to the bandwidth allocated to each service. The results
are shown in Fig. 1. The average percentage of discrepancy between the CIO
model and simulation experiments is 1.3 %, which suggests that the CIO model
is able to capture the bandwidth demands accurately.

314 C. Chen et al.

5.2 The Effectiveness of CSA

The experiments in this subsection investigate the effectiveness of the CSA algo-
rithm. In the experiments, we first used the methods proposed in [9], which we
call the MinPM algorithm in this paper, to obtain the VM-to-PM mapping that
uses the minimal number of PMs to host the VMs. We then apply the proposed
SA algorithm to further adjust the VM-to-PM mapping in order to reduce the
communication cost without increasing the number of PMs. We also used the
greedy method presented in [15] to perform the VM-to-PM mapping and com-
pared the results against those generated by the proposed SA. In the greedy
algorithm, all services are ranked in the decreasing order of their communica-
tion intensity (i.e., the data that have to be communicated by a service in this
paper). The greedy algorithm first place the VMs of the first service (i.e., the
one with most communication intensity) on PMs, with each PM having the same
number of VMs or having at most ±1 difference if it can not be evenly divided).
Then the greedy algorithm selects the next service, s2, and tries to place its VMs
to PMs so that the local ratio of the number of VMs of s1 to that of s2 in a PM
equal (or is the closest) to the global ratio of the total number of VMs of s1 to
that of s2. The procedure repeats until all VMs are mapped.

(a) (b) (c)

Fig. 2. Comparing CSA with other existing algorithms using synthetic trace

We increase the arrival rate of the generated workflows and use the technique
presented in [13] to calculate the number of VMs for each service under different
arrival rates. The experimental results are shown in Fig. 2(a, b and c). It can be
seen that CSA outperforms other two algorithms in all cases.

References

1. Amazon case study: Nasaq OMX. http://goo.gl/28wfGV
2. Leontief, W.: Input-output analysis. New Palgrave Dictionary of Economics (1987)
3. Jalaparti, V., Ballani, H., Costa, P., Karagiannis, T., Rowstron, A.: Bridging the

tenant-provider gap in cloud services. In: ACM SOCC (2012)
4. Meng, X., Pappas, V., Zhang, L.: Improving the scalability of data center networks

with traffic-aware virtual machine placement. In: IEEE INFOCOM (2010)
5. Popa, L., Kumar, G., Chowdhury, M., Krishnam. A., Ratnas, S., Stoica, I.: Fair-

cloud: sharing the network in cloud computing. In: ACM SIGCOMM (2012)

http://goo.gl/28wfGV

Modelling and Optimizing Bandwidth Provision 315

6. Ballani, H., Costa, P., Karagiannis, T., Rowstron, A.: Towards predictable data-
center networks. In: ACM SIGCOMM (2011)

7. Ballani, H., Jang, K., et al.: Chatty tenants and the cloud network sharing problem.
In: Proceedings of NSDI2013 (2013)

8. Jiang, J.W., Lan, T., et al.: Joint VM placement and routing for data center traffic
engineering. In: IEEE INFOCOM (2012)

9. Hermenier, F., Lorca, X., Menaud, J.-M., Muller, G., Lawall, J.: Entropy: a con-
solidation manager for clusters. In: 2009 ACM SIGPLAN/SIGOPS (2009)

10. Petrucci, V., et al.: A dynamic optimization model for power and performance
management of virtualized clusters. In: Proceedings of e-Energy 2010 (2010)

11. He, L., Zou, D., et al.: Developing resource consolidation frameworks for moldable
virtual machines in clouds. Future Gener. Comput. Syst. 32(1), 69–81 (2013)

12. Hu, L., Jin, H., Liao, X., Xiong, X., Liu, H.: Magnet: a novel scheduling policy for
power reduction in cluster with virtual machines. In: Cluster (2008)

13. Chen, C., He, L., Chen, H., Sun, J., Gao, B., Jarvis, S.: Developing communication-
aware service placement frameworks in the cloud economy. In: Cluster (2013)

14. Van Laarhoven, P.J., Aarts, E.H.: Simulated Annealing. Springer, Heidelberg
(1987)

15. He, L., Jarvis, S.A., Spooner, D.P., Jiang, H., Dill, D.N., Nudd, G.R.: Allocating
non-real-time and soft real-time jobs in multiclusters. In: TPDS (2006)

Four-Fold Auto-Scaling on a Contemporary
Deployment Platform Using Docker Containers

Philipp Hoenisch1,2(B), Ingo Weber2,3, Stefan Schulte1, Liming Zhu2,3,
and Alan Fekete2,4

1 TU Wien, Vienna, Austria
{p.hoenisch,s.schulte}@infosys.tuwien.ac.at

2 Software Systems Research Group, NICTA, Sydney, Australia
{Ingo.Weber,Liming.Zhu,Alan.Fekete}@nicta.com.au

3 School of Computer Science and Engineering, University of New South Wales,
Sydney, Australia

4 School of Information Technologies, University of Sydney, Sydney, Australia

Abstract. With the advent of Docker, it becomes popular to bundle
Web applications (apps) and their libraries into lightweight linux con-
tainers and offer them to a wide public by deploying them in the cloud.
Compared to previous approaches, like deploying apps in cloud-provided
virtual machines (VMs), the use of containers allows faster start-up and
less overhead. However, having containers inside VMs makes the decision
about elastic scaling more flexible but also more complex. In this con-
temporary approach to service provisioning, four dimensions of scaling
have to be considered: VMs and containers can be adjusted horizontally
(changes in the number of instances) and vertically (changes in the com-
putational resources available to instances). In this paper, we address
this four-fold auto-scaling by formulating the scaling decision as a multi-
objective optimization problem. We evaluate our approach with realistic
apps, and show that using our approach we can reduce the average cost
per request by about 20–28 %.

1 Introduction

With the advent of Docker1, lightweight containers are gaining wide-spread popu-
larity among early adopter-type companies, including Facebook and Google [15].
Such containers are also particularly suitable to power recent trends like microser-
vices andDevOps [1].We consider the approachwhere a variety of different services
or Web applications (apps) are running inside containers, each app deployed in
instances of a particular container type. Various container instances are deployed
on top of VM instances, which can be obtained from Infrastructure-as-a-Service
(IaaS) providers, e.g., Amazon Web Services (AWS).

Virtualization brought the benefit of detaching the setup of a machine from a
physical machine (PM), and enabled IaaS cloud offers. VMs contain a full oper-
ating system (OS) and all software required for a specific purpose. Further, a
1 http://docker.io, accessed 29/7/15.

c© Springer-Verlag Berlin Heidelberg 2015
A. Barros et al. (Eds.): ICSOC 2015, LNCS 9435, pp. 316–323, 2015.
DOI: 10.1007/978-3-662-48616-0 20

http://docker.io

Four-Fold Dynamic Auto-Scaling 317

VM’s configuration can be packaged into an image and cloned arbitrarily often.
This mechanism is commonly used for apps running in the cloud [19]. Most
recently, the idea of having an additional abstraction layer has been picked up
by lightweight containers which can be described as smaller variants of VMs:
the OS is not included in a container; instead, the one from the host machine
is used. However, most additional programs are included inside the container.
Like VMs, containers offer resource elasticity, isolation, flexibility and depend-
ability. Containers do need to run on compatible versions of the OS, and they
share resources through the outside OS, but these limitations are compensated
by benefits of faster start-up times (on the order of seconds, where booting a
VM takes on the order of minutes) and less overhead in terms of used resources
(since the containers do not require a separate OS). One can certainly use Docker
containers (from now on only called containers)2 instead of VMs directly on an
OS that runs on private PMs. However, in public cloud platforms such as AWS,
the norm is running containers inside VMs obtained from the IaaS providers.
These VMs are initially launched with only the OS and no app-specific software.
That raises a complicated question of allocation: how many VMs are needed, and
how should the containers be configured and distributed among the VMs? Com-
pared to instance allocation of VMs in former approaches, container deployment
requires making allocation decisions from a much larger space of options. As in
all cloud platforms, allocation needs to be dynamic and elastic: as the load on an
application changes, the amount of resources used should be adjusted to match
the change, so the costs can be scaled up and down following usage.

In this paper we propose to use a multi-objective optimization model to solve
the allocation problem for lightweight containers on top of VMs. In this model,
we consider horizontal and vertical auto-scaling on both the container and VM
level. Hence, we make the following contributions:

– We offer a multi-objective optimization model for scaling a contemporary
deployment platform (consisting of containers and VMs) including the inter-
actions between the different layers. This has more degrees of freedom than
scaling just VMs as in traditional cloud deployment scenarios.

– We show how the optimization model can be used for making auto-scaling
decisions for this deployment platform. The control decisions require solving
the optimization problem, which we can do for reasonably-sized distributed
systems, even though the additional degrees of freedom make the optimization
task more complex than for traditional approaches.

– Using a prototype, we provide a realistic evaluation of our approach against
two baseline scenarios which consider fewer dimensions of scaling. In our
experiments we achieved total savings of up to 28 %.

The remainder of the paper is structured as follows. We start with a motivating
example and give an overview of our approach in Sect. 2. In Sect. 3 we present the
2 In our current implementation we use Docker as container technology. The app-

roach however would work for any lightweight container supporting resource and
application isolation, scalability and dependability.

318 P. Hoenisch et al.

details of the optimization problem. We discuss the results of our experimental
evaluation in Sect. 4 and related work in Sect. 5. Section 6 concludes the paper.
An accompanying technical report (TR) [8] provides details that were omitted
here for brevity.

2 Motivating Example

Consider the Following a Platform-as-a-Service (PaaS) Scenario: we assume the
role of a provider hosting various apps using a public IaaS cloud service3. Apps
have a specific type and are provided by different customers or content providers
who want to have a fixed hosted solution. Each app may come with an optional
Service Level Agreement (SLA), e.g., defining a maximal response time which
should not be exceeded or a specific throughput which should be achieved. For
the sake of simplicity, say the provider hosts the following three apps for three
customers, all subject to varying workloads. App A: Joomla with extensions
for appointment management, for customer 1, a hairdresser; App B: Wordpress
with plugins for CRM and Lead Management, for customer 2, a tech startup;
and App C: NodeJS with the web site of customer 3, a skiing tour operator. As
these apps would interfere with each other, each app is packaged into a separate
container type. For that, a dockerfile specifies the configuration necessary to
start containers, i.e., a new container instance of the same container type. New
containers for the apps can then be instantiated as desired. Common practice is
to specify version and build numbers or commit hashes in the dockerfile, so that
all containers spawned from the same dockerfile start off as being the same, i.e.,
running the same application code, versions and libraries. If an app needs to be
upgraded, this is initiated by changing the dockerfile.

The provider leases VMs of different types, i.e., each VM type has a different
configuration in terms of supplied resources. In order to deploy containers onto
a VM, a VM needs to be instantiated resulting in a VM instance. Notably, the
provider can deploy many different containers (of different types) on a single
VM instance. In addition, the provider may deploy a specific container type
on several VM instances, resulting in various container instances where each
container instance may have a different configuration. This configuration can be
used to ensure the app’s SLA is met, by defining requirements on the underlying
VM, e.g., the resource demand in terms of CPU and RAM. The requirements
on CPU are defined in CPU shares. By default, each VM has 1024 CPU shares
available which are split between the hosted container instances. Say the provider
leases a dual-core VM for all three apps and the respective numbers of requests
rise during peak times – therefore the system needs to be scaled. The problem
then is: how many VMs of which types are needed, and how should the containers
for the different apps be distributed among them, with which configuration?
3 Internal IT operation units face a very similar situation when providing container

hosting to their organization. Hence, instead of a public cloud IaaS a private cloud
can be used.

Four-Fold Dynamic Auto-Scaling 319

If the demand for all three apps increases more or less uniformly, it may be
sufficient to lease more VMs, each hosting all three apps. However, if the demand
for App A grows a lot faster than for App B and C, more resources need to be
provisioned for it. If later App A’s demand shrinks, the freed up resources may
be released. Alternatively, if App B experiences increased demand at that point,
the resources freed up by App A can be re-purposed for App B.

As can be seen, the decision of how many VMs of which type should be
leased when and how to distribute and configure the containers is not straight
forward. Hence, in this paper, we make use of an optimization approach and
define four-fold auto-scaling as a multi-objective optimization model.

3 Optimization Approach

Building on the example scenario and the main aspects of our problem landscape,
we now give an overview of our multi-objective optimization model. Due to space
constraints, we present only the main objective function and refer to our technical
report (TR) for more information [8]. The optimization model takes as input a set
of different VM types (V = {1, ..., v#}) and container types (D = {1, ..., d#}).
v corresponds to a VM type and kv to a specific VM instance. Accordingly,
d refers to a container type and cd to a specific container instance (having a
certain configuration). Each VM instance and container instance comprises a
certain specification in terms of CPU and RAM. For the sake of simplicity, we
generalize all types of resources here; in our implementation we differentiate
CPU shares and RAM.

The goal of the objective function below is minimizing the overall cost, i.e.,
the cost for all leased VMs. Hence, the output of the model is two-fold: first it
defines how many VM instances of which types are needed, and second, which
container (including its configuration) should be deployed on which VM instance.
The decision variable x(cd,kv,t) is set by the solver and defines which container
cd should be deployed on which VM instance kv at time t.

min

[
∑

v∈V

cv · γ(v,t) +
∑

d∈D

∑

cd∈Cd

∑

v∈V

∑

kv∈Kv

(
(1 − z(d,kv,t)) · (x(cd,kv,t) · Δd)

)

+
∑

v∈V

∑

kv∈Kv

ωR
f · f(R,kv,t) +

∑

d∈D

∑

cd∈Cd

∑

v∈V

∑

kv∈Kv

(
ωs · s(i,cd,t) · x(cd,kv,t)

)
]

The objective function comprises four terms. The first term
∑

v∈V cv · γ(v,t)
computes the overall VM leasing cost: γ(v,t) many VM instances of type v with
cost cv are leased at time t. The second term

∑
d∈D

∑
cd∈Cd

∑
v∈V

∑
kv∈Kv(

(1 − z(d,kv,t)) · (x(cd,kv,t) · Δd)
)

sums up the time needed to deploy a container
(Δd) on a VM instance kv. If a specific container of type cd gets deployed the
first time on a VM instance kv, some data needs to be downloaded from the con-
tainer registry. Hence, this procedure may take some time. However, this data
is cached on the VM instance as long as it is running, thus future deployments

320 P. Hoenisch et al.

of the same container type will be much faster. In case a VM instance’s cache
contains already the needed data (z(d,kv,t)=1), the product inside the sums is
0. Further, this term prioritizes placement of containers on VM instances where
they are cached already, since the term is minimized as part of the overall objec-
tive function. The third term

∑
v∈V

∑
kv∈Kv

(ωR
f ·f(R,kv,t)) computes the amount

of free resources (f(R,kv,t)). This term ensures that containers are deployed on
already leased VM instances instead of leasing additional ones, provided enough
resources are available. In order to control the contribution of this term towards
the objective function, we weigh the free resources using the weight ωR

f . The
fourth term

∑
d∈D

∑
cd∈Cd

∑
v∈V

∑
kv∈Kv

(
ωs · s(i,cd,t) · x(cd,kv,t)

)
sums up the

amount of deployed containers for each container type at time t. It aims at avoid-
ing over-provisioning on the container level by demanding to lease the smallest
amount of resources to containers while still fulfilling the demand. As before,
the term is weighed with a constant value ωs.

The full optimization model can be found in the TR [8]. It includes numerous
constraints, which define limits on valid container deployments and VM leasing
plans. Overall, the optimization model ensures that enough resources are leased
to handle the demand for each app at any time. Hence, the outcome of the opti-
mization model is two-fold: (1) it determines whether additional VM instances
need to be leased or if already leased VM instances can be terminated, and
(2) it determines which container types to instantiate on which VM instance.
Consequently, the system landscape subject to continuous change: VMs may
appear or disappear at any time and containers may be moved between them.

4 Evaluation

Our optimization-based control of auto-scaling has been evaluated through mea-
suring the behavior of a prototype. The source code is available at http://
reliableops.com. Details of the architecture and evaluation can be found in the
TR [8]. We compare our optimized approach against two state-of-the art base-
lines for making scaling decisions: One-for-All and One-for-Each. In both cases,
additional resources are leased or released based on a threshold. One-for-All
leases only quad-core VMs, where each VM hosts one container of each type.
One-for-Each leases only single-core VMs, each hosting exactly one container.
As in the example scenario in Sect. 2, we have three different container types
(i.e., three apps). We test using two request arrival patterns, sending different
and varying amounts of requests to each app.

Table 1. Evaluation results

Arrival Pattern 1 Arrival Pattern 2

Optimized One-for-All One-for-Each Optimized One-for-All One-for-Each

Leased cores (σ) 28.13 (0.38) 39.5 (0) 29.68 (0.14) 28.75 (0.43) 39.5 (0) 29.88 (0.25)

Leasing cost (σ) 378.4 (0.92) 505.6 (0) 474.67 (2.31) 393.2 (1.38) 505.6 (0) 478.00 (4)

Cost/Invocations (σ) 0.17 (0.012) 0.23 (0.22) 0.21 (0.02) 0.17 (0.03) 0.24 (0.06) 0.22 (0.04)

SLA adherence 97.47% 98.02% 98.22% 96.95% 96.92% 97.1%

http://reliableops.com
http://reliableops.com

Four-Fold Dynamic Auto-Scaling 321

The result of our evaluation are shown in Table 1. As the numbers reveal, the
SLA adherence for both arrival patterns and for each scaling strategy are very sim-
ilar, varying by less than 2.5 %. This can be expected given that we used the same
thresholds for scaling up or down. Hence, in the following we focus on the leased
CPU cores and incurred cost. It is not surprising that the One-for-All scenario pro-
duced the highest cost. In this scaling strategy, only quad-core VMs were leased,
each hosting one container instance per app.This leads to a highly over-provisioned
system when some apps experience relatively low load, as VMs are not be fully
used in this case. Hence, leasing single-core VMs with only one app as in One-for-
Each is∼5 %cheaper.However, even leasing smallerVMsmaynot beperfect. Since
single-core VMs can not service as much load as more powerful VMs, more VMs are
needed. In addition, in our cost model, leasing two single-core VMs is more expen-
sive than leasing one dual-core VM (∼20 % more expensive). Thus vertical scaling
can be helpful: leasing the rightVMsize depending on the needmay eventually lead
to less leasing cost. Our four-fold optimization approach can take advantage of this,
as can be seen in the Cost/Invocations row in Table 1: Eventually, for Arrival Pat-
tern 1, we achieved savings of ∼28 % (with ∼33 % less cores) over the One-for-All
scenario and monetary savings of ∼23 % (∼4 % less cores) over the One-for-Each.
For Arrival Pattern 2, we achieved with our optimization cost savings of ∼25 %
(∼32 % less cores) over the One-for-All scenario and savings of ∼20 % (∼4 % less
cores) over the One-for-Each scenario.

5 Related Work

Resource allocation and auto-scaling are major research challenges in the field of
cloud computing [3]. Several different approaches have been proposed for scaling
single services, scientific workflows and business processes. Approaches for both
fields differ in a number of aspects, e.g., process perspective, timeliness, resource
insensitivity, scheduling on step-level or for the full process, etc. [6,7,16,17]. The
major difference of process-based scaling versus scaling single services lays in the
versatility, i.e., the amount of parallel requests may jump within a few seconds
from a low to a very high number. Hence, the demand of resources may also
change quickly which makes scaling decisions more complicated [2]. As resources
are commonly paid for a fixed Billing Time Unit (BTU) (several minutes to a
few hours), releasing resources before the end of such a cycle should be avoided.

The adherence to SLAs has also been investigated. SLAs are defined by cus-
tomers under the objective of optimizing profit for the IaaS provider [11], or
to achieve a high resource utilization [5,9,10]. For that, most approaches apply
threshold-based scaling, i.e., fixed rules apply depending on the current load.
Li et al. propose using reinforcement learning to reason about the best config-
uration to ensure a certain level of QoS [12]. However, it is more realistically
for service providers to isolate different apps: they may have conflicts amongst
each other, like exposing the same ports, using incompatible libraries, or privacy
constraints preventing their deployment in the same VM [18].

322 P. Hoenisch et al.

To overcome this configuration problem, commonly apps and their libraries
are packed into a single VM. Doing so, a more fine grained scaling is possi-
ble. However, from the point of view of a IaaS provider, the problem of unused
resources has only been shifted. Now the question is how to use the PMs effi-
ciently. A number of solutions have been proposed which consider different VM
placement approaches with the aim of utilizing the physical resources efficiently
[4,14,20]. As it is common that apps communicate with each other, having them
in separate VMs will eventually lead to high data transfer. Cloud providers often
charge for in and out-bound traffic. Hence, VM placement should consider a col-
location of VMs which communicate regularly with each other [6,13]. Approaches
for scaling VMs and placing them on PMs are particularly relevant to our work.
However, using VMs instead of containers should be limited to cases where a
full OS is needed while containers should be used to isolate single apps. Further,
optimizing VM placement is only applicable for datacenter operators with hard-
ware access. Where this is not the case, using containers in combination with
VMs allows much finer-grained scaling and resource usage optimization.

6 Conclusions

The traditional approach of hosting apps directly on VMs suffers from sev-
eral disadvantages, such as the overhead of a full OS and slow start-up time,
a degree of vendor lock-in, and relatively coarse-grained units for scaling. In
order to overcome those problems more and more organizations use lightweight
container technologies like Docker. These add an additional abstraction layer on
top of VMs, enabling more efficient use of VMs. When running containers on
top of VMs, auto-scaling decisions have greater flexibility and greater complex-
ity. In this paper, we defined a four-fold auto-scaling decision problem for this
deployment scenario as a multi-objective optimization model, and we proposed a
control architecture that dynamically and elastically adjusts VM and container
provisioning. Based on a prototype implementation, which uses IBM CPLEX as
optimization solver, we evaluated our approach extensively, comparing it against
two näıve scaling strategies. We showed that our approach can choose and exe-
cute scaling decisions, achieving a cost reduction of 20–28 % over the baselines.
In our future work we want to extend this optimization model and consider the
location of containers, privacy aspects, and long-running transactions.

Acknowledgments. We thank An Binh Tran for sharing his technical expertise
on Docker, and IBM for the academic license of CPLEX. NICTA is funded by the
Australian Government as represented by the Department of Communications and
the Australian Research Council through the ICT Centre of Excellence program. This
work is partially supported by the European Union within the SIMPLI-CITY FP7-
ICT project (Grant agreement no. 318201) and within the CREMA H2020-RIA project
(Grant agreement no. 637066).

Four-Fold Dynamic Auto-Scaling 323

References

1. Bass, L., Weber, I., Zhu, L.: DevOps: A Software Architect’s Perspective. Addison-
Wesley Professional, Boston (2015)

2. Brousse, N.: Scaling on EC2 in a fast-paced environment. In: USENIX LISA (2011)
3. Buyya, R., Ranjan, R., Calheiros, R.N.: InterCloud: utility-oriented federation of

cloud computing environments for scaling of application services. In: Park, J.H.,
Hsu, C.-H., Yeo, S.-S., Yang, L.T. (eds.) ICA3PP 2010, Part I. LNCS, vol. 6081,
pp. 13–31. Springer, Heidelberg (2010)

4. Chen, W., Qiao, X., Wei, J., Huang, T.: A profit-aware virtual machine deployment
optimization framework for cloud platform providers. In: IEEE CLOUD (2012)

5. Emeakaroha, V.C., Brandic, I., Maurer, M., Breskovic, I.: SLA-aware application
deployment and resource allocation in clouds. In: COMPSAC Workshops (2011)

6. Hoenisch, P., Hochreiner, C., Schuller, D., Schulte, S., Mendling, J., Dustdar, S.:
Cost-efficient scheduling of elastic processes in hybrid clouds. In: IEEE CLOUD
(2015)

7. Hoenisch., P., Schuller, D., Schulte, S., Hochreiner, C., Dustdar, S.: Optimization
of complex elastic processes. IEEE Transactions on Services Computing (2015)

8. Hoenisch, P., Weber, I., Schulte, S., Zhu, L., Fekete, A.: Four-fold auto-scaling
for Docker containers. Technical report, UNSW-CSE-TR-201513, University of
New South Wales (2015). ftp://ftp.cse.unsw.edu.au/pub/doc/papers/UNSW/
201513.pdf

9. Juhnke, E., Dörnemann, T., Bock, D., Freisleben, B.: Multi-objective scheduling
of BPEL workflows in geographically distributed clouds. In: IEEE CLOUD (2011)

10. Kertesz, A., Kecskemeti, G., Brandic, I.: An interoperable and self-adaptive app-
roach for SLA-based service virtualization in heterogeneous cloud environments.
Future Gener. Comput. Syst. 32, 54–68 (2012)

11. Lee, Y.C., Wang, C., Zomaya, A.Y., Zhou, B.B.: Profit-driven service request
scheduling in clouds. In: IEEE CCGrid (2010)

12. Li, H., Venugopal, S.: Using reinforcement learning for controlling an elastic web
application hosting platform. In: IEEE ICAC 2011 (2011)

13. Meng, X., Pappas, V., Zhang, L.: Improving the scalability of data center networks
with traffic-aware virtual machine placement. In: IEEE INFOCOM (2010)

14. Mills, K., Filliben, J., Dabrowski, C.: Comparing VM-placement algorithms for
on-demand clouds. In: IEEE CloudCom (2011)

15. MSV, J., McCrory, C.: Is docker a threat to the cloud ecosystem?, August 2014.
http://research.gigaom.com/2014/08/is-docker-a-threat-to-the-cloud-ecosystem/.
Gigaom Research

16. Schulte, S., Janiesch, C., Venugopal, S., Weber, I., Hoenisch, P.: Elastic business
process management: state of the art and open challenges for BPM in the cloud.
Future Gener. Comput. Syst. 46, 36–50 (2015)

17. Schulte, S., Schuller, D., Hoenisch, P., Lampe, U., Dustdar, S., Steinmetz, R.: Cost-
driven optimization of cloud resource allocation for elastic processes. Int. J. Cloud
Comput. 1(2), 1–14 (2013)

18. Shen, Z., Subbiah, S., Gu, X., Wilkes, J.: Cloudscale: elastic resource scaling for
multi-tenant cloud systems. In: ACM SOCC (2011)

19. Varia, J.: Architecting for the cloud: best practices. Amazon Web Services
Whitepaper (2011)

20. Xu, J., Fortes, J.: Multi-objective virtual machine placement in virtualized data
center environments. In: GreenCom - CPSCom (2010)

ftp://ftp.cse.unsw.edu.au/pub/doc/papers/UNSW/201513.pdf
ftp://ftp.cse.unsw.edu.au/pub/doc/papers/UNSW/201513.pdf
http://research.gigaom.com/2014/08/is-docker-a-threat-to-the-cloud-ecosystem/

An SLA-Based Advisor for Placement of HPC
Jobs on Hybrid Clouds

Kiran Mantripragada, Leonardo P. Tizzei, Alecio P.D. Binotto,
and Marco A.S. Netto(B)

IBM Research, Sao paulo, Brazil
{kiran,ltizzei,abinotto,mstelmar}@br.ibm.com

Abstract. Several scientific and industry applications require High
Performance Computing (HPC) resources to process and/or simulate
complex models. Not long ago, companies, research institutes, and uni-
versities used to acquire and maintain on-premise computer clusters;
but, recently, cloud computing has emerged as an alternative for a sub-
set of HPC applications. This poses a challenge to end-users, who have to
decide where to run their jobs: on local clusters or burst to a remote cloud
service provider. While current research on HPC cloud has focused on
comparing performance of on-premise clusters against cloud resources,
we build on top of existing efforts and introduce an advisory service to
help users make this decision considering the trade-offs of resource costs,
performance, and availability on hybrid clouds. We evaluated our ser-
vice using a real test-bed with a seismic processing application based on
Full Waveform Inversion; a technique used by geophysicists in the oil &
gas industry and earthquake prediction. We also discuss how the advisor
can be used for other applications and highlight the main lessons learned
constructing this service to reduce costs and turnaround times.

1 Introduction

Current work on HPC cloud has focused on understanding the cost-benefits of
cloud over on-premise clusters [1,6–9,13,15–17,20,23]. However, there is still a
gap between this understanding and helping users make decisions on bursting
their jobs to the cloud. While applications may suffer network overhead, cloud
is more effective when we consider resource availability—users do not have to
wait long time periods in job queues of cluster management systems.

This paper introduces an advisory service to support users in deciding how
to distribute computing jobs between on-premise and cloud resources. Our main
contributions are: (i) an advisory service for bursting jobs to the cloud, consid-
ering performance and cost difference between cloud and on-premise resources,
as well as deadline, local job queue, and application characteristics (Sect. 2);
(ii) a case study that shows the advisory service being used by a seismic process-
ing application from the oil & gas industry. We also measured the impact of
unreliable execution time predictions on cloud bursting decisions (Sects. 3 and 4).

Extended version of this paper is available at arxiv.org.

c© Springer-Verlag Berlin Heidelberg 2015
A. Barros et al. (Eds.): ICSOC 2015, LNCS 9435, pp. 324–332, 2015.
DOI: 10.1007/978-3-662-48616-0 21

An SLA-Based Advisor for Placement of HPC Jobs on Hybrid Clouds 325

2 Advisory Service and Policies

The advisory service considers a user deadline, incurred costs, the on-premise job
queue length (local), the provisioning time (cloud), the price ratio between local
and cloud for the resource allocation, the type of available hardware, and the
estimated execution time for both environments with different configurations.

The main input parameters to the advisor are the application profiles and
the cost models. The application profiler generates profiles that describe the
behavior of a given application considering infrastructure, financial costs, perfor-
mance, and number of required processors. Several approaches exist to produce
application profiles [2,3,10,18,22,24]. The cost model for a cloud infrastructure
comes from price values offered by cloud providers, whereas the model for the
on-premise cluster is a ratio based on the cloud costs [14].

The advisory service currently supports two policies: (i) the maximum budget
for running jobs, when users are more concerned about costs; (ii) the maximum
execution time, when users must meet a deadline to deliver results, and budget
is a secondary concern. Both policies readjust the number of cores for the cloud
environment due to restrictions in the number of cores per machine.

3 Application Case Study in Oil and Gas Industry

The case study of our advisory service relies on the application profile for the
Full Waveform Inversion (FWI) [21] and cost models for the SoftLayer cloud
provider and an on-premise cluster. FWI is a CPU-intensive application in the
area of seismic analysis that has components present in other HPC applications,
such as communication among multiple processes, solvers for linear systems,
matrix operations, among others. We assume that the profile of such applications
can be represented by a power-law function due to its inherent scale-invariance
characteristics. Hence, similar applications can be scaled to a finer or coarser
grid resolution and will behave similarly, by simple tuning the coefficients of the
power-law function [11,12]:

t = a P b (1)

where t is the execution time, P is the number of processors, and the coefficients
a and b are empirically determined. We can also invert Eq. 1 to solve the number
of processors for a given time restriction t as the input parameter.

In order to develop a cost model, we collected prices charged by cloud
providers; in our case, SoftLayer1 cloud infrastructure. Similar findings from our
experiments could be obtained using other cloud providers as they rely on simi-
lar prices and charging models (hourly-based). Heterogeneity [5] will be explored
as future work. We observed that the hourly-rate for provisioning nodes is a
linear relationship to the number of processors P, which can be described by
(Ch = αP + β). For simplification purposes, we assume the offset coefficient (β)
can be neglected and the “price per hour”:

1 SoftLayer website: http://www.softlayer.com/.

http://www.softlayer.com/

326 K. Mantripragada et al.

ΔC

Δt
= αP (2)

where ΔC
Δt is the hourly-rate for nodes provisioning and α is a linear coefficient

determined empirically.
We can integrate Eq. 2 over time to quantify the total cost for a given turn-

around time (the number of processors P does not change with time), while we
simplified the costs of on-premise HPC clusters by assuming it is proportional
to cloud costs: [8,14]: Ccloud = T (αP) and Clocal = T (K α P), where T is the
turnaround time and C is the total cost for a given number of processors P and
turnaround time T . By coupling the application and costs models (Eqs. 1 and 2),
we can have one equation that provides C (total cost) for a given time T , a cost
model coefficient (α), and the application profile (from a and b):

C = a α

⎡

⎣
(

T
a

)(1+ 1
b)

1 + 1
b

⎤

⎦ . (3)

4 Evaluation

The goals of the evaluation are to understand: (i) the financial and time savings
of the advisor and (ii) how the advisor is dependent from the application profile
accuracy. We compared the advisor against four policies:

– Always-Local: submits jobs to the on-premise environment—it represents
users who do not want or cannot move their jobs to the cloud. We used
this policy as baseline for comparison because it still represents the most
conservative and traditional behavior of HPC users;

– Always-Cloud: submits jobs to the cloud—it represents users who do not
have access to an on-premise cluster or are willing to test the cloud to avoid
acquiring a new cluster in the future;

– Random: randomly decides between cloud and local environments—it is an
attempt to represent users who do not have any supporting mechanism or
intuition to know where to run their jobs;

– Worst-Case: chooses the opposite environment provided by the advisor—it
represents hypothetical users who make extremely wrong decisions. This helps
us understand how much a user can loose with such decisions.

Other policies [4,19] could be studied, however finding the optimal resource
allocation policy is out of the scope of this paper.

The input data were: deadline ranges from 1 to 100 h; budget ranges from
10 to 100 USD; queue size time ranges from 1 % to 50 % of the deadline; setup
time ranges from 1 % to 50 % of the deadline; price ratio between cloud and
local environments, with the price of cloud environment ranging from 70 % to
340 % the price of the local environment; total of 28,000 executions per policy.
The ranges for the budget, deadline, and setup time are based on our experience

An SLA-Based Advisor for Placement of HPC Jobs on Hybrid Clouds 327

with the FWI application. The price ratio is based on HPC cloud literature [8].
The FWI profile was generated using a single input data set, which described the
size of the domain, the precision of the output image, and the varying number
of processors from 10 to 40.

The advisor computes the costs and turnaround time for both environments
for each set of input variables. For each result, the advisor calculates the relative
difference between the costs of both environments in the following way:

min(Costcloud, Costlocal) − Costlocal

Costlocal
(4)

where Costlocal > 0. When the budget-aware policy is executed, the advisor
calculates the relative difference of the turnaround time in a similar manner.
The results of the other decision policies used for comparison are also relative
to the always-local decision policy.

We selected two environments to compare the target application. Cloud:
processor frequency = 2.60 GHz, cores per processor 4, memory per machine
64 GB, Ethernet network, CentOS operating system. Cluster: processor frequency
= 2.80 GHz, cores per processor 10, memory per machine 132 GB, Ethernet/
Infiniband network, RHEL operating system.

Application profiles describe resource consumption of the application. We
derived the power-law scaling function (Eq. 1), in which the coefficients a and b
were computed through non-linear least squares curve fitting:

tlocal = 1013.50P−1.58
local and tcloud = 7004.86P−2.06

cloud .

4.1 Results: Costs and Time Savings

Figure 1 shows the results for the deadline-aware policy. When local environ-
ment is cheaper (K < 1) and even 80 % (K = 1.8) more expensive than cloud, it
delivers the cheapest cost most of the time. When the price ratio is 1.8, local envi-
ronment provides the cheapest cost around 71 % of the instances. The reason for
this is that local environment showed the best computing performance for exe-
cuting the target application. Thus, even when the local environment is around
80 % more expensive than cloud, its performance counterbalances its cost. When
the price ratio reaches 2.2, the local environment is surpassed by cloud in terms
of cost, i.e., cloud is the cheapest environment around 56 % of the time and this
percentage becomes greater as the price ratio grows, as expected.

Figure 2 shows the results for the budget-aware policy. Similarly to deadline-
aware, always-cloud is comparable to worst-case and advisor is comparable to
always-local when the local price is equal to or below the cloud price. However,
for higher price ratios, always-cloud surpasses always-local faster than deadline-
aware. The turning point occurs when price ratio is around 1.0: always-local is on
average 30 % faster than always-cloud, but the median is –0.12; that is, always-
cloud is half the time at least 12 % faster than always-local. Although the local
environment has better computing performance results over cloud, when they
have a similar price (i.e., price ratio around 1.0), the decision on where to run for

328 K. Mantripragada et al.

a given budget is not obvious due to the other input parameters (queue length
and setup time), affecting the turnaround time.

When the advisor calculates an execution time to meet the budget, the cou-
pled model yields a solution that is near-optimal for execution time. Searching
for the optimal execution time is not worthwhile since the adjustments over the
infrastructure to meet the available configurations overpass intermediate values
found in the optimal solution. For instance, an estimated number of processors
NProcs = 9.5 must be adjusted to 10 or 9, according to the policies.

Results show the advisor selects the environment that best suits users’ needs.
The lack of such supporting tool might cause unnecessary costs or waste of
time. Besides, some input variables (e.g., queue size time) can change frequently,
making impossible to manually calculate the best environment for execution.

4.2 Results: Accuracy of the Application Profile

We defined the range of inaccuracies from −90 % (i.e., −0.9) error to 100 %
(i.e., 1.0) error, aiming to cover a wide spectrum of such profiles. For each set
of input data, the application profile specifies the infrastructure necessary to
meet deadline or budget constraints depending on the policy. Let us say this
infrastructure has 100 cores disregarding the policy; after injecting the error
within the aforementioned range, it will have from 10 (i.e., 100 ∗ (1.0 − 0.9)) to
200 cores (i.e., 100 ∗ (1.0 + 1.0)).

Fig. 1. Boxplots of the Deadline-aware policy: the lower the costs the better the policy

Fig. 2. Boxplots of the Budget-aware policy: the lower the time, the better the policy

An SLA-Based Advisor for Placement of HPC Jobs on Hybrid Clouds 329

For each estimation of the advisor, the input data also varied in the same
way that was described in previous evaluation (Sect. 4.1), which means that
each policy has been executed 28,000 times for each inaccurate profile. After
the execution, the advisor provided either the same decision that was computed
using the accurate profile or a different one. Even if the decision was the same,
it is usually based on slightly different results. Thus, we measured whether the
decision is the same or not, and the relative difference between results using an
inaccurate and the accurate profile. These relative differences, when executing
the deadline-aware policy, were calculated as follows:

CostInaccurate − CostAccurate

CostAccurate
(5)

where CostInaccurate and CostAccurate are the costs measured using inaccurate
and accurate profiles, respectively. The relative differences were calculated sim-
ilarly when executing the budget-aware policy. Table 1 shows a comparison of
the results provided by the advisor using inaccurate and accurate profiles. The
first column compares the decision of the advisor using both profiles: = means
same decision and �= otherwise. For each policy, this table shows the average of
the relative differences (avg), their standard deviation (std) and total number
of decisions (size) for each inaccurate profile. So, for each inaccurate profile, the
sum of equal and different decisions is 28,000.

As the error gets close to zero, the percentage of same decisions increases.
Even when the error is 0.9, the advisor computed the same decision for deadline-
aware policy around 93 % of the times and for budget-aware policy around 92 %
of times. The number of different decisions for the budget-aware is greater than
the number of same decisions (53 % against 47 %, respectively) only when the

Table 1. Results from the advisor using inaccurate and accurate profiles

Decision Error Deadline-aware Budget-aware

Avg Std Size Avg Std Size

= –0.9 –0.8 0.3 17293 (62 %) –0.2 0.7 13068 (47 %)

�= –1.0 0.0 10707 (38 %) –0.4 0.5 14932 (53 %)

= –0.5 –0.4 0.3 25356 (91 %) 0.3 0.6 23236 (83 %)

�= –0.6 0.0 2644 (9 %) 0.0 0.4 4764 (17 %)

= –0.1 –0.1 0.1 26004 (93 %) 0.1 0.4 27272 (96 %)

�= 0.1 0.3 1996 (7 %) 0.2 0.3 728 (4 %)

= 0.1 0.1 0.1 27115 (97 %) 0.1 0.1 27829 (99 %)

�= 0.1 0.1 885 (3 %) 0.1 0.0 171 (1 %)

= 0.5 0.4 0.4 26597 (95 %) 0.1 0.3 26685 (95 %)

�= 0.8 0.2 1403 (5 %) 0.2 0.2 1315 (5 %)

= 0.9 0.9 0.8 25982 (93 %) 0.0 0.3 25807 (92 %)

�= 1.5 0.4 2018 (7 %) 0.3 0.3 2193 (8 %)

330 K. Mantripragada et al.

error is –0.9. For this error, the advisor proposed the same decision for the
deadline-aware policy around 62 % of the time.

For most of the inaccuracy ranges, the number of equal decisions is far greater
than the number of different decisions. That is, even if the application profile
is inaccurate, it has a minor decision impact. Therefore, the advisor provides
evidence that it is resilient to inaccuracies in the application profile. One reason
for this is the wide spectrum of data that has been exercised. In some situations,
the difference between choosing cloud or local is so great that the inaccuracy has
little to no impact on job(s) placement decision. These results also show that
as inaccuracy gets close to zero, the number of correct decisions increases, as
expected. When the inaccuracy is close to zero, the infrastructure calculated by
the application profile has low chance of being relevant to the final result.

5 Conclusions

The advisory service is composed of modules that can be extended/plugged-in to
have more refined Application Profiles and to suit other applications. Further
investigations will be required to collect data from a wide range of applications.
The main lessons from our study are: (i) in HPC cloud, apart from resource
performance, it is important to consider the time a user has to wait in a job queue
of the on-premise environment compared to the overhead of cloud resources—
more relevant is the total turnaround time, as also pointed by Marathe et al.
[14]; (ii) it is possible to consider an advisory service for HPC hybrid clouds even
without having highly precise application/job profiles—however, very inaccurate
profiles may generate negative impact on costs and turnaround delays; (iii) the
higher the cost differences between cloud and on-premise resources the higher the
savings brought by an advisory service for resource selection on hybrid clouds.

Acknowledgment. We thank Eduardo Rodrigues and Nicole Sultanum for their com-
ments on this paper. This work has been partially supported by FINEP/MCTI under
grant no. 03.14.0062.00.

References

1. Belgacem, M.B., Chopard, B.: A hybrid HPC/cloud distributed infrastructure:
coupling EC2 cloud resources with HPC clusters to run large tightly coupled mul-
tiscale applications. Future Gener. Comput. Syst. 42, 11–21 (2015)

2. Binotto, A.P.D., Wehrmeister, M.A., Kuijper, A., Pereira, C.E.: Sm@rtConfig: a
context-aware runtime and tuning system using an aspect-oriented approach for
data intensive engineering applications. Control Eng. Prac. 21(2), 204–217 (2013)

3. Calheiros, R.N., Netto, M.A.S., Rose, C.A.F.D., Buyya, R.: EMUSIM: an inte-
grated emulation and simulation environment for modeling, evaluation, and vali-
dation of performance of cloud computing applications. Prac. Experience, Softw.
43(5), 595–612 (2013)

An SLA-Based Advisor for Placement of HPC Jobs on Hybrid Clouds 331

4. De Assunção, M.D., Di Costanzo, A., Buyya, R.: Evaluating the cost-benefit
of using cloud computing to extend the capacity of clusters. In: Proceedings of
the ACM International Symposium on High Performance Distributed Computing
(2009)

5. Delimitrou, C., Kozyrakis, C.: QoS-aware scheduling in heterogeneous datacenters
with paragon. ACM Trans. Comput. Syst. 31(4), 12 (2013)

6. Gentzsch, W., Yenier, B.: The UberCloud HPC experiment: compendium of case
studies. Technical report, Tabor Communications, Inc. (2013)

7. Gentzsch, W., Yenier, B.: The UberCloud experiment: technical computing in the
cloud - 2nd compendium of case studies. Technical report, Tabor Communications,
Inc. (2014)

8. Gupta, A., Kale, L.V., Gioachin, F., March, V., Suen, C.H., Lee, B.S., Faraboschi,
P., Kaufmann, R., Milojicic, D.: The who, what, why and how of high performance
computing applications in the cloud. In: Proceedings of the IEEE International
Conference on Cloud Computing Technology and Science (2013)

9. Gupta, A., Milojicic, D.: Evaluation of HPC applications on cloud. In: Open Cirrus
Summit (2011)

10. Jarvis, S.A., Spooner, D.P., Keung, H.N.L.C., Cao, J., Saini, S., Nudd, G.R.: Per-
formance prediction and its use in parallel and distributed computing systems.
Future Gener. Comput. Syst. 22(7), 745–754 (2006)

11. Li, H.: Workload dynamics on clusters and grids. J. Supercomput. 47(1), 1–20
(2009)

12. Lowen, S.B., Teich, M.C.: Fractal-Based Point Processes. Wiley, New York (2005)
13. Mantripragada, K., Binotto, A., Tizzei, L.P.: A self-adaptive auto-scaling method

for scientific applications on HPC environments and clouds. In: Proceedings of the
International Workshop on Adaptive Self-tuning Computing Systems (2015)

14. Marathe, A., Harris, R., Lowenthal, D.K., de Supinski, B.R., Rountree, B., Schulz,
M., Yuan, X.: A comparative study of high-performance computing on the cloud.
In: Proceedings of the International Symposium on High-performance Parallel and
Distributed Computing (2013)

15. Mateescu, G., Gentzsch, W., Ribbens, C.J.: Hybrid computing-where HPC meets
grid and cloud computing. Future Gener. Comput. Syst. 27(5), 440–453 (2011)

16. Napper, J., Bientinesi, P.: Can cloud computing reach the top500? In: Proceedings
of the Combined Workshops on UnConventional High Performance Computing
Workshop Plus Memory Access Workshop (2009)

17. Ostermann, S., Iosup, A., Yigitbasi, N., Prodan, R., Fahringer, T., Epema, D.:
A performance analysis of EC2 cloud computing services for scientific computing.
In: Avresky, D.R., Diaz, M., Bode, A., Ciciani, B., Dekel, E. (eds.) Proceedings of
Cloud Computing. LNICST, vol. 34, pp. 115–131. Springer, Heidelberg (2010)

18. Sadjadi, S.M., Shimizu, S., Figueroa, J., Rangaswami, R., Delgado, J., Duran, H.,
Collazo-Mojica, X.J.: A modeling approach for estimating execution time of long-
running scientific applications. In: Proceedings of the IEEE International Sympo-
sium on Parallel and Distributed Processing (2008)

19. Unuvar, M., Steinder, M., Tantawi, A.N.: Hybrid cloud placement algorithm. In:
Proceedings of the IEEE International Symposium on Modelling, Analysis and
Simulation of Computer and Telecommunication Systems (2014)

20. Vecchiola, C., Pandey, S., Buyya, R.: High-performance cloud computing: a view
of scientific applications. In: Proceedings of the International Symposium on Per-
vasive Systems, Algorithms, and Networks (2009)

21. Virieux, J., Operto, S.: An overview of full-waveform inversion in exploration geo-
physics. Geophysics 74(6), WCC1–WCC26 (2009)

332 K. Mantripragada et al.

22. Yang, L.T., Ma, X., Mueller, F.: Cross-platform performance prediction of parallel
applications using partial execution. In: ACM/IEEE Supercomputing (2005)

23. Zaspel, P., Griebel, M.: Massively parallel fluid simulations on amazon’s HPC
cloud. In: Proceedings of the International Symposium on Network Cloud Com-
puting and Applications (2011)

24. Zheng, G., Wilmarth, T., Jagadishprasad, P., Kalé, L.V.: Simulation-based per-
formance prediction for large parallel machines. Int. J. Parallel Program. 33(2),
183–207 (2005)

Optimizing Long-term IaaS Service Composition

Sajib Mistry, Athman Bouguettaya, Hai Dong(B), and A.K. Qin

School of Computer Science and Information Technology,
RMIT University, Melbourne, Australia

{sajib.mistry,athman.bouguettaya,hai.dong,kai.qin}@rmit.edu.au

Abstract. We propose a new economic model based optimization
approach to compose anoptimal set of infrastructure service requests over a
long-term period. The service requests have the features of variable arrival
time and dynamic resource and QoS requirements. A new economic model
is proposed that incorporates dynamic pricing and operation costmodeling
of the service requests. A genetic optimization approach is incorporated in
the economic model that generates dynamic global solutions considering
the runtime behavior of service requests. Experimental results prove the
feasibility of the proposed approach.

1 Introduction

Cloud computing is increasingly becoming the technology of choice as the next-
generation platform for conducting business. Infrastructure-as-a-Service (IaaS),
Platform-as-a-Service (PaaS), and Software-as-a-Service (SaaS) solutions have
already been offered by big companies in the cloud market [1]. An IaaS provider
receives service requests in the form of computing resource (i.e., functional) and
Quality of Service (QoS) (i.e., non-functional) requirements. The provider asso-
ciates resource specifications (e.g., CPU, Memory, and Network Bandwidth) and
QoS attributes (e.g., availability, throughput, and response time) with provided
Virtual Machines (VMs) [2]. For the latter, the provider usually specifies them in
a Service Level Agreements (SLA), where SLA violations may incur penalties for
the provider [1]. The key challenge for the provider is the optimal composition
of the service requests that closely meet the provider’s economic expectation by
considering certain constraints, such as resource limits and SLA violations.

The provider-consumer relationship between IaaS and SaaS providers is long-
lasting and economically driven [3]. The contract period of a long-term service
are usually counted in months or years. Due to the nature of the cloud consumers,
e.g., multi-tenancy and changing business and cost requirements, a fixed set of
requirements are often inapplicable in a long-term period. The key character-
istic of the long-term service requests is that its functional and non-functional
requirements change from time to time [3]. The long-term economic expecta-
tion of an IaaS provider also can change over time. Here we consider profit,
SLA violations, and resource utilization as the key components in the long-term
economic expectation. For example, a provider may find that SLA violations in
the summer period influence the reputation more than the other periods. In this
c© Springer-Verlag Berlin Heidelberg 2015
A. Barros et al. (Eds.): ICSOC 2015, LNCS 9435, pp. 333–342, 2015.
DOI: 10.1007/978-3-662-48616-0 22

334 S. Mistry et al.

research, we assume that the long-term economic expectation of an IaaS provider
has already been defined. The objective is to select an optimal set of long-term
service requests that satisfy the provider’s long-term economic expectations.

In our previous research, we propose a new model for predicting dynamic con-
sumer request behavior in long-term IaaS service compositions [4]. We observe
that SaaS providers’ run-time service requests can be different from their initial
requests. However, an effective economic model based optimization process using
the predicted data is missing in the existing approaches. For example, the under-
utilized resources for some service requests can be reallocated to fulfill other
suitable service requests to maximize the profit. To the best of our knowledge,
existing composition approaches only consider the composition of short-term ser-
vice requests [5,6]. We identify that two long-term factors, i.e., economic model
and dynamic optimization are missing in the existing approaches. The long-term
economic model evaluates a composition of requests using the future predicted
economic factors, such as dynamic pricing and operation cost. The dynamic opti-
mization process operates at different times of a composition interval to improve
the efficiency of the global composition.

We propose a new long-term IaaS service composition framework that com-
poses stochastic service requests dynamically. We represent the long-term ser-
vice requests as multidimensional time series. Existing approaches consider the
short-term economic model of the IaaS provider [7–9], which is inapplicable
for a long-term period. We propose an economic model for cost and revenue
analysis considering the long-term aspects of IaaS provider. The proposed eco-
nomic model is constructed as a Dynamic Bayesian Network (DBN) [10]. We
use a multidimensional time series matching approach to evaluate a composi-
tion’s fitness to the given long-term economic expectation. Next, we propose a
genetic algorithm (GA) for long-term service composition using the economic
model. Although combinatorial optimization techniques such as Integer Linear
Programming (ILP) and dynamic programming are the preferable choices for
service composition [4], they cannot be used in IaaS service combination, as the
economic model is non-linear in nature [9]. The proposed approach deals with
the non-linear objective function by creating a population of feasible solutions.

2 Related Work

A prediction model for long-term dynamic behavior of the consumers is proposed
in [4]. A Mixed Integer Linear Programming(MILP) based optimization process
is used with short-term economic and one-time arrival model of requests in [4].
Short-term resource allocation algorithms for SaaS providers are proposed in
[5] to minimize the infrastructure cost and SLA violations. A task scheduling
algorithm is proposed in [6] that uses analytic hierarchy process to optimally
allocate resources. Heuristic algorithms are proposed to determine whether a
new request can be admitted without impacting accepted requests in [11]. We
propose a dynamic IaaS service composition framework that considers stochastic
arrival of the requests and long-term economic model of the provider, which is
a new area in this field.

Optimizing Long-term IaaS Service Composition 335

The long-term QoS economic model of a service consumer is proposed in
[2]. The model states how QoS requirements of end users change over time. An
economic model for self-tuned catching is proposed in [7]. An economic model of
federated cloud is described in [9]. The model evaluates the cost of using resources
from a federated cloud and develops a resource management core for the profit
maximization. Existing economic models, nevertheless, do not consider long-term
relationships among composite QoSs, resource utilization, and operation costs.
Generic penalty-based and repair-based methods for composition are proposed in
[12]. However, such methods are not incorporated in long-term economic models
for dynamic environments. Hence, we need to develop an economic model based
dynamic optimization technique for IaaS service composition.

3 The Long-term Economic Model of the IaaS Provider

We represent the long-term service requests as multidimensional time series.
Each long-term service request of the ith consumers is defined as a tuple, Ui =
{ct,mt, nbt, avt, rtt, tht| t ε [1, T]}. Here, c,m, andnb are the required units of
CPU, Memory, and Network respectively. The QoS requirements av, rt, and th
specify the required units of Availability, Response time, and Throughput respec-
tively. [1, T] is a composition interval. Let us assume that there are k requests
(Sk) in the map denoted as MAP (Sk) = {< U1, Arrival1 >, .., < Uk, Arrivalk >}.
The requests are already transformed into runtime behavior and the arrival times
are predicted in a request map. The task of the economic model is to generate
the long-term economic valuation of the request map. We consider profit (P),
number of SLA violations (NO SLV), and resource utilization factor(UF) as
the key attributes in the economic valuation. The next task is to measure the
closeness of the composition to a given long-term economic expectation.

3.1 The Long-term Economic Valuation

The first task is to convert the request map MAP (Sk) to the long-term economic
valuation denoted as EV AL(t) = {Pt, NO SLVt, UFt | t ε T}. We use long-term
revenue and operation cost modeling to calculate the profit. As the business mod-
els of IaaS providers are similar to business models of utility providers, demand-
driven pricing model is a common phenomena in the cloud market. For example,
the price of a EC2 service fluctuates up to 80 % in the Amazon cloud spot market
[9]. As Dynamic Bayesian Network (DBN) models succeed in modelling tempo-
ral dynamic environments [10], we represent the dynamic pricing behavior as a
DBN. The DBN describes the correlations among physical resources (computing
(C), storage(M) and network(NB)), QoS values(Availability (AV), Through-
put (TH), and Response time (RT)), demand, and service price. The model
calculates the probability (Q) of a service price X at t for the service request
U (t) = {C, M, NB, AV, TH, RT} given its previous price at time (t − 1) as follows:

Q(X,U (t), t) = P (Pricet = X|U (t), P ricet−1) (1)

336 S. Mistry et al.

The IaaS provider may serve exiting and new requests at the same time. Due
to the pricing model, a service may be priced differently for different consumers.
As long-term requests reserve the resources at current prices, the price is cor-
related with the arrival time. For instance, a consumer who arrives at time t
always pays the price advertised at time t. As each request in MAP (Sk) is asso-
ciated with its arrival time, we sort them in an ascending order. Let us denote,
Q(X,Y,U (t), t0) is the initial probability table for the request U0. We gener-
ate the individual probability table Q(X,Y,U (t), ti) for request Ui using Eq. 1.
We calculate the revenue time series (REVt) of MAP (Sk) using the Maximum
Probable Explanation (MPE) algorithm [10] on Q(X,Y,U (t), ti) in Eq. 2.

Pi...P0 =arg max {Q(X, U(t), ti) | Q(X, U(t), ti−1),Q(X, U(t), t0)} (2)

REVt =
∑|MAP (Sk)|

i
Pi, where U(t) ε Ui

We apply the following assumptions to model the long-term cost:

1. The fixed costs of the provider are distributed over the servers for
the amortization period. Such costs include data center building cost,
land cost, hardware price, etc. Each server i has a capital cost in a time unit
t represented as CAPEXit. Generally t is treated as a month or quarter in
a year. If the provider has N physical servers, the fixed cost at time t is
calculated by the following equation:

Fixed Costt = CAPEXit × N. (3)

2. The operation cost is determined by the server power consumption.
Although there are other costs, such as maintenance cost, employee salary,
and insurance cost, we choose the power consumption cost for simplicity.
ARIMA is a popular model to predict the dynamic price of power [9]. In
Eq. 4, the auto regressive (AR) part depends on the p lagged values of the
time series of aggregated AGn where L is the lag operator and αi is the
coefficient constant. The moving average (MA) part depends on the q lagged
values of the previous prediction errors (εt) and θi is the coefficient constant.
d represents the number of times that the difference operation is performed
to obtain the stationary time series. The values of (p, d, q) is determined by
the Box-Jenkis method for the price history [4].

(1 − ∑p
i=1 αiL

i)(1 − L)dPowert = (1 +
∑q

i=1 θiL
i)εt. (4)

3. Each running physical server should have a predefined threshold
(σ) of utility. For example, the provider may decide that physical server
will not run unless the resources are expected to be used more than 30 %.

The number of physical servers that will run to satisfy requests depends on
the resource allocation module installed in the server [9]. The module requires
the composed request from individual service requests. The composed request
time series ({C̄t, M̄t, N̄Bt, ĀV t, ¯THt, R̄T t}) for ˆMAP (Sk) can be formed using
the composition rule of resources [5] and composition rules of the QoSs [3] as
follows:

Optimizing Long-term IaaS Service Composition 337

Resource Composition: X̄t =
∑| ˆMAP (Sk)|

i X
(t)
i where, X = {C,M,NB} (5)

QoS Composition: ĀV t = max(av
(t)
i); ¯THt = max(th(t)

i); R̄T t =
∑| ˆMAP (Sk)|

i (rt(t)i); where i ε ˆMAP (Sk)

Our long-term economic model is independent of any particular resource
allocation schemes. We assume that the resource allocation scheme installed in
the physical servers has a function (F) to convert the composed requests to an
utility factor (UF) as:

UFt = F (C̄t, M̄t, N̄Bt, ĀV t, ¯THt, R̄T t) (6)

Let us assume that a server has a maximum utility factor UFmax. Hence,
� UFt

UFmax
� of the physical server is needed to satisfy the composite requests. Each

running physical server has two types of power cost units: (a) fixed power cost
for the routine operation of the server (fixed unit) and (b) variable power cost
(variable unit) to satisfy the utility factor. If UF is linearly proportional to the
(variable unit) with the constant V arcons, we can calculate the operation cost
at time t using the following equation:

OP Costt = Powert × (fixed unit × � UFt

UFmax
� + V arcons × UFt) (7)

The proposed framework allows SLA violations to occur. The SLA violation
cost SLA Cost(t) depends on the SLA violation penalty rate (SLA Penalty)
and the number of SLA violations(NO SLVt) in a certain time t. We calcu-
late the number of SLA violations and the constrained satisfied utility factor
using Algorithm 1. Algorithm 1 checks whether a composition satisfies all the
constraints. It reduces the number of service requests until all the constraints
are satisfied. The SLA violation cost (SLA Cost) is calculated using the follow-
ing equation:

SLA Costt = SLA Penalty × NO SLVt (8)

The revenue, the operation cost, and the SLA violation cost are used to
calculate the profit of a composition. Algorithm1 determines the number of SLA
violation and the resource utilization factor. We generate long-term economic
valuation of the request map MAP (Sk) using Eqs. 2, 3, 7, and 8 as follow:

EV AL(t) = {REVt − Fixed Costt − OP Costt − SLA Costt, NO SLVt, UFt| t ε T}. (9)

3.2 Long-term Economic Expectation and Fitness of a Composition

We include profit, number of SLA violation, and resource utility factor as the key
attributes in the long-term economic expectation. However, the influence of the
attributes may not be equal all the time. For example, SLA violations at peak
hours may be more important than the profit when considering business reputa-
tion. We incorporate such influence weights in the multidimensional time series,
EXP (t) = {(PE

t , WP
t), (NO SLV E

t , WS
t), (UFE

t , WUF
t)| t ε T}.We define the fitness

of a composition as the distance between the long-term economic valuation of

338 S. Mistry et al.

Algorithm 1. Determining the number of SLA violation and Utility Factor of
a composition
Input: Request Map: MAP (Sk), Resource and QoS constraints:(Cmax, Mmax, NBmx, AVmax,

RTmax, THmax), server utility threshold σ and maximum utility factor UFmax.
Output: the number of SLA violations (NO SLVt) and Utility Factor (UFt) at time t
1: NO SLVt:=-1
2: repeat
3: NO SLVt:=NO SLVt+1
4: Set Candidate(|MAP (Sk)|) = {i ε MAP (Sk)}
5: Generate Xt := (C̄t, M̄t, N̄Bt, ĀV t, ¯THt, R̄T t) using Candidate(|MAP (Sk)|) in Eq. 5
6: Generate UFt := F (Yt) using Eq. 6
7: Server utility threshold σ̂:=(UFmax mod UFt)
8: Remove any requests from the MAP (Sk) with a random distribution and update

|MAP (Sk)| := |MAP (Sk)| − 1
9: until Xt < Xmax | X ε {C, M, NB, AV, RT, TH} and σ̂ < σ
10: Return NO SLVt and UFt

the composition and the economic expectation. For simplicity, we deploy the
Euclidean Distance as the default distance function. As smaller distance infers
better fitness, we formulate the weighted fitness function in Eq. 10. This fitness
function acts as the objective function in the proposed genetic optimization.

Fitness(MAP (Sk)) = DIS(EXP,EV AL) =
√∑T

t=1
WP

t

(PE
t −Pt)2

+ WS
t

(NO SLV E
t −NO SLVt)2

+ WUF
t

(UFE
t −UFt)2

. (10)

3.3 Genetic Optimization Using the Economic Model

The proposed economic model is non-linear in nature. We design a genetic algo-
rithm (GA) to address the non-linear properties in IaaS economic model. The
task of the optimization process is to find an optimal subset {MAP (Sk) | k < N}
that maximizes the fitness of the composition stated in Eq. 10. The GA simu-
lates evolutionary processes by considering an initial population of individuals
and applying genetic operators in each reproduction. In optimization terms,
each individual in the population is encoded into a string or chromosome that
represents a possible solution to a given problem. We use a binary string rep-
resentation X[j] = 0 or 1 to represent the possible solution of MAP (Sk). The
jth request is considered in the solution if X[j] = 1. For example, a candidate
solution {B,C} is represented as {0110} in the IaaS composition if the incom-
ing requests are {A,B,C,D}. The fitness of an individual is evaluated based
on the fitness function in Eq. 10. Highly fit solutions reproduce new “offspring”
solutions (i.e., children) by exchanging pieces of their genetic information in a
crossover procedure. Mutation is often applied after crossover by altering some
genes in the strings. The less fit chromosomes in the population are replaced by
the new children. This process is repeated until a satisfactory solution is found.
We use a binary tournament selection method [12] to generate the initial pop-
ulation for the first optimization. Crossover point is set in the middle point of
chromosome. We set the mutation rate as 2 bits per child. After discarding the
duplicated child in crossover operation, the new population replaces the individ-
ual chromosomes with the lowest fitness value (steady-state replacement). We
continue generating new populations until the solutions are not improved.

Optimizing Long-term IaaS Service Composition 339

The requests in the long-term IaaS composition are based on their predicted
future behavior. However, existing requests in the system may behave differ-
ently than predicted. We use fixed interval (ΔT) to check whether the exist-
ing composition is deviating from the prediction. Other check points are the
predicted incoming arrival times of new requests. For example, assume that
{(A, t0), (C, t5)} is the initial IaaS composition. If Δt = 2, the optimization
check points are t3 and t5. If request B arrives at time t2, we may consider
inclusion of B if the new predicted behavior of A is different from its initial
prediction. Hence, the optimization process should be run again from scratch to
update the solution.

4 Experiments and Results

A set of experiments are conducted to evaluate the efficiency of the proposed
long-term economic model and genetic algorithm. At first we evaluate the pre-
diction accuracy of the economic model. The fitness of the economic model based
composition is compared with a greedy and brute-force approach. In the greedy
approach, the provider does not consider the future arrival and valuation of the
requests. It accepts the requests that does not violate the SLA at the time of
arrival [11]. The brute-force approach considers all the possible compositions
to choose the optimal composition. All the experiments are conducted on com-
puters with Intel Core i7 CPU (2.13 GHz and 4 GB RAM). R statistical tool
[13] is used to implement the algorithms. We evaluate the proposed method
using a mixture of Google Cluster resource utilization [14], real world cloud QoS
performance [15], and synthetic data. We randomly generates 100 arrival time
points and attach them with the requests to generate a stochastic map of 100
long-term requests. We synthetically generate the runtime behavior of the ser-
vice requests using Correlation Density Index (CDI) [4]. A higher CDI refers
to a lower randomness of the correlations between the service request and the
runtime service usage in the history. We generate five sets of service runtime
requests with 5 different CDI values (0.5, 0.6, 0.7, 0.8, 0.9) from the map of
100 long-term requests. The long-term economic expectation is also syntheti-
cally created (Fig. 1(a)). The mean and standard deviation of the attributes in
economic expectation are as follows: profit (mean: $100, sd: $20, weight: 0.5),
number of SLA violation (mean: $3, sd: $2, and weight: 0.3), and utility factor
(mean: 80 %, sd: 30 %, and weight: 0.2).

4.1 Setup of the Long-term Economic Model

The proposed economic model incorporates the change of service price and oper-
ation cost. We use the time series of electricity price (Et) from Australian Bureau
of Statistics [16] to generate the change in the service price and operation cost.
The price of resources and QoS are set by following a weighted Rackspace pric-
ing model as ($5 × Et/unit per hour for any types of resources). [9] provides
a short-term mapping relationship between operation cost and utilization. We

340 S. Mistry et al.

Table 1. Long-term relationship between Utility Factor and Operation Cost

UF Cost/hour UF Cost/hour UF Cost/hour

5 % $110 × Et 20 % $120 × Et 30 % $140 × Et

60 % $150 × Et 90 % $160 × Et 100 % $165 × Et

Fig. 1. (a) Long-term Economic Expectation of the provider (b) Prediction accuracy

of DBN

generate the long-term behavior between operation cost and utilization using the
dynamic electricity price in Table 1. The SLA violation fee is 20 % of the revenue
credited to consumers. The resource constraints are set by allowing maximum
100 units for each attributes. We use the resource allocation algorithm in [11] as
the utility factor in Eq. 6.

4.2 Efficiency of the Economic Model Based Composition

At first, we evaluate the performance of the propose DBN in the economic model.
We model the 18 months (Jan 2012–Sep 2013) electricity price with the proposed
DBN. The predicted price from the DBN is compared with the actual price using
Normalized Root Mean Square Error (NRMSE) defined in Eq. 11.

NRMSE =

√
∑n

i=1(
PR(q)−AC(q)

AC(q)max−AC(q)min
)2

n (11)

Figure 1(b) depicts the closeness (0.3 NRMSE) of the prediction toward actual
behavior. Figure 2(a) depicts the efficiency of the long-term composition over
the greedy approach. We observe that the greedy approach only maximizes the
economic fitness at the beginning, while the proposed economic model based
service composition maximizes the fitness in a steady rate over the period of
composition (Fig. 2(a)). Although brute-force produces the best composition in
Fig. 2(b), it is not applicable as its time complexity is (2N). The proposed app-
roach is not polynomial with respect to request size (Fig. 2(a)). Although it takes

Optimizing Long-term IaaS Service Composition 341

Time (Month)

Ex
pe

ct
at

io
n

Fi
tn

es
s

4th 8th 12th 15th 18th

0
20

40
60

80
10

0

Proposed Economic model based composition
Greedy Approach
Brute-force Approach

(a)

0
10

0
20

0
30

0
40

0
50

0

No of Requests

N
o

of
 it

er
at

io
ns

5 6 7 8 9

Proposed Economic model based composition
Greedy Approach
Brute-force Approach

(b)

Fig. 2. (a) The long-term composition fitness (b) Effect of request size in time
complexity

more computation time than the greedy approach, the difference is negligible in
real world implementation.

5 Conclusion

In summary, we propose a novel dynamic service composition framework for
IaaS providers to gain their long-term economic expectations. The proposed
long-term economic model evaluates the long-term economic behavior of service
compositions. Experimental results show that our approach is more profitable
than the greedy approach and suitable for runtime implementation.

Acknowledgements. This research was made possible by NPRP 7-481-1-088 grant
from the Qatar National Research Fund (a member of The Qatar Foundation). The
statements made herein are solely the responsibility of the authors.

References

1. Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A.: Above
the clouds: A berkeley view of cloud computing. Tech, UC Berkeley (2009)

2. Ye, Z., Bouguettaya, A., Zhou, X.: QoS-aware cloud service composition based
on economic models. In: Liu, C., Ludwig, H., Toumani, F., Yu, Q. (eds.) Service
Oriented Computing. LNCS, vol. 7636, pp. 111–126. Springer, Heidelberg (2012)

3. Ye, Z., Mistry, S., Bouguettaya, A., Dong, H.: Long-term qos-aware cloud service
composition using multivariate time series analysis. IEEE Trans. Serv. Comput.
1(99), 1–16 (2014)

4. Mistry, S., Bouguettaya, A., Dong, H., Qin, A.K.: Predicting dynamic requests
behavior in long-term iaas service composition. In: Proceedings of ICWS (2015)

5. Wu, L., Garg, S., Buyya, R.: Sla-based resource allocation for software as a service
provider (saas) in cloud environments. In: Proceedings of CCGrid, pp. 195–204
(2011)

342 S. Mistry et al.

6. Ergu, D., Kou, G., et al.: The analytic hierarchy process: task scheduling and
resource allocation in cloud. J. Supercomput. 64, 835–848 (2013)

7. Dash, D., Kantere, V., Ailamaki, A.: An economic model for self-tuned cloud
caching. In: Proceedings of ICDE, pp. 1687–1693 (2009)

8. Thanakornworakij, T., Nassar, R. et al.: An economic model for maximizing profit
of a cloud service provider. In: Proceedings of ARES, pp. 274–279 (2012)

9. Goiri, Í., Guitart, J., Torres, J.: Economic model of a cloud provider operating in
a federated cloud. Inf. Syst. Front. 14(4), 827–843 (2012)

10. Murphy, K.P.: “Dynamic bayesian networks: representation, inference and learn-
ing,” Ph.D. dissertation, University of California, Berkeley (2002)

11. Wu, L., Garg, S., Buyya, R.: Sla-based admission control for a software-as-a-service
provider in cloud computing environments. J. Comput. Syst. Sci. 78(5), 1280–1299
(2012)

12. Ye, Z., Zhou, X., Bouguettaya, A.: Genetic algorithm based QoS-aware service com-
positions in cloud computing. In: Yu, J.X., Kim, M.H., Unland, R. (eds.) DASFAA
2011, Part II. LNCS, vol. 6588, pp. 321–334. Springer, Heidelberg (2011)

13. Qian, H.: PivotalR: a package for machine learning. R J. 6(1), 57 (2014)
14. Reiss, C., Wilkes, J., Hellerstein, J.L.: Google cluster-usage traces: format +

schema. Google Inc., Mountain View, CA, USA, Technical report (2011)
15. Jiang, W., Lee, D., Hu, S.: Large-scale longitudinal analysis of soap-based and

restful web services. In: Proceedings of ICWS, pp. 218–225 (2012)
16. ESAA, “Electricity prices in australia,” Aus B. of Statistics, Technical report 02

(2000)

QoS and Trust (Short Papers)

On the Complexity of QoS-Aware Service
Selection Problem

Faisal N. Abu-Khzam1, Cristina Bazgan2,3, Joyce El Haddad2,
and Florian Sikora2(B)

1 Departement of Computer Science and Mathematics,
Lebanese American University, Beirut, Lebanon

faisal.abukhzam@lau.edu.lb
2 PSL, Université Paris-Dauphine, LAMSADE UMR CNRS 7243, Paris, France

{bazgan,elhaddad,florian.sikora}@lamsade.dauphine.fr
3 Institut Universitaire de France, Paris, France

Abstract. This paper addresses the QoS-aware service selection prob-
lem considering complex workflow patterns. More specifically, it focuses
on the complexity issues of the problem. The NP-hardness of the prob-
lem, under various settings, has been open for many years and has never
been addressed thoroughly. We study the problem complexity depending
on the workflow structure, the number of workflow tasks, the number of
alternative services per task and the categories of quality of service crite-
rion associated to services. We provide for the first time the NP-hardness
proof of the problem. Additionally, we show that the problem is poly-
nomial in case of only one criterion per task and pseudo-polynomial if
there is a fixed number of criteria.

Keywords: Quality of Service · Service selection · Optimization · Com-
plex workflows

1 Introduction

One of the key features of Service-Oriented Architectures is to realize workflows
by composing loosely coupled web services. Each of these services provides a func-
tionality and their composition creates the functionality of a new value-added
service, called a composite service. As many providers might offer functionally
equivalent services, several candidates might be available for the realization of a
task in a workflow. To distinguish among these candidates, their non-functional
properties are considered such as Quality of Service (QoS) (e.g. execution dura-
tion, execution cost, reputation, and availability). Since only one component
service is needed for a task, the service selection problem based on quality of
service, denoted QoS-aware Service Selection problem, is an important
step in the composition process. It helps to choose services that best meet QoS
constraints.

In the literature, the QoS-aware Service Selection problem has been
claimed to be NP-hard and then essentially exponential time exact algorithms
c© Springer-Verlag Berlin Heidelberg 2015
A. Barros et al. (Eds.): ICSOC 2015, LNCS 9435, pp. 345–352, 2015.
DOI: 10.1007/978-3-662-48616-0 23

346 F.N. Abu-Khzam et al.

and heuristics have been investigated. Our first contribution in this paper is
to establish that QoS-aware Service Selection is solvable in polynomial
time for one criterion for complex workflow including those with inclusive pat-
terns (OR pattern) which have never been studied as far as we know. Another
contribution is to present a first NP-hardness proof of the problem for work-
flows with simple structure even with two criteria. Moreover, our approach goes
beyond classical QoS categories and adds new ones. However, we show that this
problem is only weakly NP-hard, which allows the existence of an exact pseudo-
polynomial time algorithm. This type of algorithm is of particular interest since
typical values for real instances are small and in this case a pseudo-polynomial
time algorithm becomes a polynomial time algorithm. Therefore, the problem
is not as hard as claimed by previous studies. Our results are thus tight in the
sense that our pseudo-polynomial time results are the best possible considering
the complexity lower bounds.

Related Work. QoS-aware Service Selection problem has been formulated
as an optimization problem and discussed by several authors [1–3,9,10,12,14,15].
Surveys of existing approaches can be found in [5,8,11]. Most of these papers note
that the problem is NP-hard. They state that QoS-aware Service Selection
is equivalent to Multi-Dimension Multiple-Choice Knapsack problem [2].
To solve QoS-aware Service Selection problem, some approaches propose
exact solutions. Bonatti and Festa [3] formulated the problem as a matching
problem between requests and offers. The goal is to find a binding between
requests and offers, compatible with the given matching and optimal regarding
the preferences associated to services and invocations. Yu and Lin [14] pro-
posed a combinatorial approach modeling the problem as a Multiple-Choice
Knapsack problem applied only to sequential structure workflows, and a graph
approach modeling the problem as a Constrained Shortest Path problem
applied to more general structure workflows. Schuller et al. [9] formulated the
problem as a linear optimization problem for simple structure workflows, which
can be solved optimally using integer linear programming techniques. This app-
roach was extended in Schuller et al. [10] to consider structured as well as
unstructured workflows. More recently, Gabrel et al. [6] studied complexity of
the problem in case of one criteria and proposed a mixed integer program to
solve it. Likewise, a number of heuristic algorithms have been proposed to solve
QoS-aware Service Selection. Zeng et al. [15] proposed a local optimiza-
tion approach which selects Web services one at the time by associating a task
of the workflow to the best candidate service. Canfora et al. [4] proposed to
tackle the problem with a genetic algorithm. Zhang et al. [16] proposed a strat-
egy to decompose a composite service with a general flow structure into parallel
execution paths. Then, the authors modeled service selection problem for each
execution path as a multi-objective optimization problem, and presented an ant
colony optimization algorithm to solve it. More recently, Trummer et al. [12]
proposed three algorithms to solve the problem: a first exact algorithm with
exponential complexity, a second polynomial time heuristic algorithm with no
guaranteed error bound, and a third polynomial time approximation algorithm
with guarantee error bound.

Complexity of QoS-Aware Service Selection Problem 347

Organization. The rest of the paper is organized as follows. Section 2 presents
some background elements related to our problem, as well as definitions. Section 3
provides some positive complexity results. These positive results are tight as
Sect. 4 shows complexity lower bounds. Section 5 concludes and highlights some
future work. Due to space constraints, proofs are devoted to the full version of
the paper.

2 System Model and Problem Statement

2.1 Workflows

A workflow is an abstract business process that combines several tasks. A task
represents a step that has to be accomplished by a single web service invo-
cation and is associated with a set of service candidates that are all able to
provide the required functionality but might differ in their non-functional prop-
erties, namely Quality of Service (QoS) values. The connections (or transitions)
between tasks represent a transfer of control from a preceding task to the one
that follows. These connections include control structures such as sequence, par-
allel (AND-split, AND-join), exclusive (XOR-split and XOR-join), and inclusive
(OR-split and OR-join) patterns (for details see in [13]). These patterns, written
in Business Process Modeling Notation 2.0 could be concatenated or interlaced
recursively to create complex workflows.

In this work, we expect all workflows to be structured [7] that is meeting the
following requirements : (i) having a single entry point (i.e. with no incoming
connection), (ii) a single exit point (i.e. with no outgoing connections), and (iii) a
split of some kind is closed by a corresponding join of the same kind and the
same number of branches (i.e. each AND-split has a corresponding AND-join
and each (X)OR-split has a corresponding (X)OR-join). Formally, a structured
workflow is defined as follows.

Definition 1 (Structured Workflow). A structured workflow wf on a set of
tasks T = {t1, . . . , tn} is defined recursively as:

– a task ti ∈ T is a structured workflow wf. Both the entry and exit points of wf
are ti in this case.

– a sequence pattern (wf1, . . . ,wf�) of structured workflows wf1, . . . ,wf�. The
entry point of wf is the entry point of wf1, the exit point of wf is the exit
point of wf�, and for all k, 1 � k < �, the exit point of wfk has a transition to
the entry point of wfk+1.

– an AND pattern of structured workflows AND-split(wf1, . . . ,wf�)AND-join
where the entry point of wf is AND-split, the exit point of wf is AND-join,
and with transitions between AND-split and the entry points of each wfi and
between the exit point of each wfi and AND-join.

– a XOR pattern of structured workflows XOR-split(wf1, . . . ,wf�)XOR-join where
the entry point of wf is XOR-split, the exit point of wf is XOR-join, and with
transitions between XOR-split and the entry points of each wfi and between
the exit point of each wfi and XOR-join.

348 F.N. Abu-Khzam et al.

– an OR pattern of structured workflows OR-split(wf1, . . . ,wf�)OR-join where
the entry point of wf is OR-split, the exit point of wf is OR-join, and with
transitions between OR-split and the entry points of each wfi and between the
exit point of each wfi and OR-join.

Definition 2 (Structured Workflow Without Sharing Tasks). A struc-
tured workflow without sharing is a structured workflow in which every task has
one incoming and one outgoing transition.

We represent workflows as trees of patterns recursively as in Definition 1
where a leaf node represents a task and a non-leaf node is either SEQ for sequen-
tial pattern, AND for parallel pattern, XOR (resp. OR) for a choice of one (resp.
of one or several) out of several alternative branches.

The control flow describes the execution ordering of the tasks through differ-
ent patterns. Informally, a subset of tasks T ′ ⊆ T satisfies the control flow of a
workflow wf if T ′ satisfies the control flow of at least one wfi in the case of OR
pattern, of all wfi in the case of AND or sequence patterns, or of exactly one wfi
in the case of XOR pattern. More formally:

Definition 3 (Control Flow Satisfaction). Consider a workflow wf on a set
of tasks T . The control flow satisfaction of wf by a subset of tasks T ′ ⊆ T is
defined recursively as:

– when wf is a task ti, then T ′ satisfies the control flow of wf iff ti ∈ T ′.
– when wf is a sequence of workflows (wf1, . . . ,wf�), then T ′ satisfies the control

flow of wf iff T ′ satisfies the control flow of each workflow wfi.
– when wf is AND-split(wf1, . . . ,wf�)AND-join, then T ′ satisfies the control flow

of wf iff T ′ satisfies the control flow of each workflow wfi.
– when wf is XOR-split(wf1, . . . ,wf�)XOR-join, then T ′ satisfies the control flow

of wf iff T ′ satisfies the control flow of exactly one workflow wfi.
– when wf is OR-split(wf1, . . . ,wf�)OR-join, then T ′ satisfies the control flow of

wf iff T ′ satisfies the control flow of at least one workflow wfi.

2.2 Services and Quality of Service

Services are software components that encapsulate atomic functionality. Since
executing a task only one service is needed among service candidates then non-
functional properties such as Quality of Service (QoS) are considered. Denoting
by C the set of criteria and assuming a fixed ordering between them, services are
described by their QoS vectors of non-negative rational values as follows.

Definition 4 (Service). A service s is a tuple (f, c) where f represents its
offered functionality, and c = (c1(s), . . . , cp(s)) represents its QoS vector where
ci(s) is the QoS value for criterion i.

Consider a workflow wf composed of a set of n tasks T = {t1, . . . , tn}. For
each task tj ∈ T , there is a set of mj candidate services Sj = {sj,1, . . . , sj,mj

}.

Complexity of QoS-Aware Service Selection Problem 349

A vector c(sj,�) = (c1(sj,�), . . . , cp(sj,�)) is associated to each service sj,� that
represents the evaluation of a service sj,� on criterion ci, for i = 1, . . . , p. Con-
sider the set T ′ ⊆ T satisfying the control flow of wf and the set S of selected
services, we can compute the QoS values of a workflow wf from the QoS values
of the selected services sj,� ∈ S as shown in Table 1. Note that, for an exclusive
pattern (XOR-split/-join pattern) there is no aggregation function between wfi,
i = 1, . . . , � since exactly one wfi satisfies the control flow. For all the other
patterns, the QoS of the wf is the QoS of the selected services for the work-
flows wfi that satisfy the control flow. As shown in Table 1, we classify into five
categories the most used QoS criteria according to their aggregation functions
that could be summation (

∑
or sum), product (

∏
or prod), minimum (min)

and maximum (max). Optimization objective could be minimization (MIN) or
maximization (MAX).

Table 1. Aggregation Functions

QoS category Sequence pattern AND or OR pattern Objective function

cat 1
∑

tj∈T ′,sj,�∈S∩Sj

ci(sj,�)
∑

tj∈T ′,sj,�∈S∩Sj

ci(sj,�) Min or Max

cat 2
∑

tj∈T ′,sj,�∈S∩Sj

ci(sj,�) max{ci(sj,�) :
tj ∈ T ′, sj,� ∈ S ∩ Sj}

Min

cat 3
∏

tj∈T ′,sj,�∈S∩Sj

ci(sj,�)
∏

tj∈T ′,sj,�∈S∩Sj

ci(sj,�) Min or Max

cat 4 min{ci(sj,�) :
tj ∈ T ′, sj,� ∈ S ∩ Sj}

min{ci(sj,�) :
tj ∈ T ′, sj,� ∈ S ∩ Sj}

Max

cat 5 max{ci(sj,�) :
tj ∈ T ′, sj,� ∈ S ∩ Sj}

max{ci(sj,�) :
tj ∈ T ′, sj,� ∈ S ∩ Sj}

Min

The QoS values of a leaf in the tree of patterns are equal to the QoS values
of the selected service sj,� in the candidate set Sj . The QoS values of an non-
leaf node are computed based on the QoS criteria values of its children and their
associated aggregation functions. The QoS values of non-leaf nodes are computed
recursively.

2.3 Problem Statement

The QoS-aware Service Selection problem is an optimization problem that
aims at binding every leaf node in the tree of patterns representing a workflow
task to at most one of its service candidates. Formally, the problem can be stated
as follows.

The QoS range values of a criterion ci of category cat 3 is in Q ∩ (0, 1], and
of categories cat 1, cat 2, cat 4 and cat 5 is in N for any service s.

The decision problem associated with QoS-aware Service Selection con-
sists of p bounds b1, . . . , bp ∈ Q to decide if there exists a subset of tasks T ′ ⊆ T
satisfying the control flow of wf and a service sj,� ∈ Sj associated to each task
tj ∈ T ′ such that the value ci associated with this solution is smaller than or

350 F.N. Abu-Khzam et al.

QoS-aware Service Selection:

Input: A workflow wf on a set of tasks T = {t1, . . . , tn}, a set of candidate
services Sj for each task tj ∈ T (of size at most m) and a vector c =
(c1, . . . , cp) of p criteria such that ci(s) ∈ Q, ∀s ∈ Sj , j = 1, . . . , n, i =
1, . . . , p.

Output: A subset of tasks T ′ ⊆ T satisfying the control flow of wf and a
subset S of services such that a service sj,� ∈ Sj ∩ S is associated to each
task tj ∈ T ′ in order to optimize each ci, 1 � i � p.

equal to (resp. greater than or equal to) bi in the case of a minimization (resp.
maximization) criterion ci, for i = 1, . . . , p.

The solution for our problem is a subset T ′ ⊆ T containing only leaves of the
tree of patterns (i.e. only tasks) satisfying the control flow of wf in contrast with
the other papers in the area where all leaves of the tree (i.e. all tasks of T) are
selected in T ′ even if no service is selected for a task.

Before giving some complexity notions, we define the size on an input of
QoS-aware Service Selection. Given an input instance I of the problem,
its maximum value, denoted by V (I), is max{ci(s) : s ∈ Sj , j = 1, . . . , n, i =
1, . . . , p} and its size, denoted by |I|, is O(nm log V (I)).

3 Complexity Upper Bounds

In this section, we give some positive results concerning QoS-aware Service
Selection. We show that the problem is polynomial time solvable if there is only
one criterion and pseudo-polynomial time solvable if there are a fixed number of
criteria. Moreover, we will show in the next section that pseudo-polynomiality
is also tight, i.e. one cannot expect polynomiality.

When the number of criteria is one (i.e. p = 1), then QoS-aware Ser-
vice Selection is a single criterion optimization problem and we search for an
optimal solution. When the number of criteria is more than one (p � 2), then
QoS-aware Service Selection is a p-criteria optimization problem. In this
case, there is typically no optimal solution that is the best for all the criteria.
Therefore, the standard situation is that any solution can always be improved
on at least one criterion. The solutions of interest, called efficient solutions, are
those such that any other solution which is better on one criterion is necessarily
worse on at least one other criterion. The vectors associated to efficient solutions
are called nondominated vectors.

Theorem 1. QoS-aware Service Selection is solvable in linear time for
instances with only one criterion.

Theorem 2. An instance of QoS-aware Service Selection on p criteria,
p � 2, with one of them of cat 4 or cat 5, can be reduced in polynomial time to
several instances on p − 1 criteria.

Complexity of QoS-Aware Service Selection Problem 351

Corollary 1. QoS-aware Service Selection is polynomial time solvable for
instances with two criteria where one of them is of cat 4 or cat 5.

Theorem 3. For a fixed number of criteria p, QoS-aware Service Selec-
tion is solvable in pseudo-polynomial time.

4 Complexity Lower Bounds

In this section, we prove that the positive results of the previous section are
tight, i.e. QoS-aware Service Selection is weakly NP-hard. We will show
that it is the case even for very restricted instances.

For an instance of QoS-aware Service Selection with two criteria c1 and
c2 we denote by Max/Max (or Min/Min) when c1 and c2 are to be maximized
(or minimized) and by Min/Max (resp. Max/Min) when c1 is to be minimized
(resp. maximized) and c2 to be maximized (resp. minimized).

Theorem 4. When p = 2 and the criteria c1 and c2 are both of cat 1 or both
of cat 3, then QoS-aware Service Selection is NP-hard even when

1. one AND pattern, 2 services per task, and Max/Max (or Min/Min, or
Min/Max).

2. one sequence pattern, 2 services per task, and Max/Max (or Min/Min, or
Min/Max).

3. a sequence of XOR patterns,1 service per task, and Max/Max (or Min/Min,
or Min/Max).

4. one OR pattern, 1 service per task, and Min/Max.

5 Conclusion

In this work, we establishedNP-hardness proofs forQoS-aware Service Selec-
tion,whichhold even invery restrictive cases.However,we showthat this hardness
result is counter-balanced by the existence of a pseudo-polynomial time algorithm,
which is able to solve optimally the problem in polynomial time for small values of
QoS services, which is the common case in real instances.

For future work, we suggest investigating the complexity of the problem in
case of two criteria of cat 1 and cat 3. However, one would easily notice that
if there are three criteria (at least two of cat 1, or at least two of cat 3), then
the problem is clearly NP-hard due to Theorem 4. It would also be interesting
to investigate the potential relation between the shape of a workflow and the
complexity of the problem. Of particular interest are cases where the problem
becomes strongly NP-hard. Another interesting direction would be to establish
approximation algorithms that return solutions with a priori guarantee of quality
in polynomial time even for large values of QoS services.

Acknowledgements. We are grateful for the support by the bilateral research coop-
eration CEDRE between France and Lebanon (grant number 30885TM).

352 F.N. Abu-Khzam et al.

References

1. Alrifai, M., Risse, T., Nejdl, W.: A hybrid approach for efficient web service com-
position with end-to-end QoS constraints. ACM Trans. Web 6(2), 7:1–7:31 (2012)

2. Ardagna, D., Pernici, B.: Global and local QoS guarantee in web service selection.
In: Bussler, C.J., Haller, A. (eds.) BPM 2005. LNCS, vol. 3812, pp. 32–46. Springer,
Heidelberg (2006)

3. Bonatti, P.A., Festa, P.: On optimal service selection. In: Proceedings of the 14th
International Conference on World Wide Web, pp. 530–538 (2005)

4. Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: An approach for QoS-
aware service composition based on genetic algorithms. In: Proceedings of the 7th
GECCO, pp. 1069–1075. ACM (2005)

5. El Haddad, J.: Optimization techniques for QoS-aware workflow realization in web
services context. In: Lacroix, Z., Vidal, M.E. (eds.) RED 2010. LNCS, vol. 6799,
pp. 134–149. Springer, Heidelberg (2012)

6. Gabrel, V., Manouvrier, M., Murat, C.: Web services composition: complexity and
models. Discrete Appl. Math. (2014). http://dx.doi.org/10.1016/j.dam.2014.10.020

7. Kiepuszewski, B., ter Hofstede, A.H.M., Bussler, C.J.: On structured workflow
modelling. In: Wangler, B., Bergman, L.D. (eds.) CAiSE 2000. LNCS, vol. 1789,
pp. 431–445. Springer, Heidelberg (2000)

8. Moghaddam, M., Davis, J.G.: Service selection in web service composition: a com-
parative review of existing approaches. In: Bouguettaya, A., Sheng, Q.Z., Daniel, F.
(eds.) Web Services Foundations, pp. 321–346. Springer, New York (2014)

9. Schuller, D., Miede, A., Eckert, J., Lampe, U., Papageorgiou, A., Steinmetz,
R.: QoS-based optimization of service compositions for complex workflows. In:
Fantinato, M., Yang, J., Weske, M., Maglio, P.P. (eds.) ICSOC 2010. LNCS, vol.
6470, pp. 641–648. Springer, Heidelberg (2010)

10. Schuller, D., Polyvyanyy, A., Garćıa-Bañuelos, L., Schulte, S.: Optimization of
complex QoS-aware service compositions. In: Kappel, G., Motahari-Nezhad, H.R.,
Maamar, Z. (eds.) Service Oriented Computing. LNCS, vol. 7084, pp. 452–466.
Springer, Heidelberg (2011)

11. Strunk, A.: Qos-aware service composition: a survey. In: 2010 IEEE 8th European
Conference on Web Services (ECOWS), pp. 67–74. IEEE (2010)

12. Trummer, I., Faltings, B., Binder, W.: Multi-objective quality-driven service selec-
tion - a fully polynomial time approximation scheme. IEEE Trans. Softw. Eng.
40(2), 167–191 (2014)

13. van Der Aalst, W.M., Ter Hofstede, A.H., Kiepuszewski, B., Barros, A.P.: Workflow
patterns. Distrib. Parallel Databases 14(1), 5–51 (2003)

14. Yu, T., Lin, K.-J.: Service selection algorithms for web services with end-to-end
QoS constraints. Inf. Syst. E-Business. Manage 3(2), 103–126 (2005)

15. Zeng, L., Benatallah, B., Ngu, A.H.H.: QoS-aware middleware for web services
composition. IEEE Trans. Softw. Eng. 30, 311–327 (2004)

16. Zhang, W., Chang, C.K., Feng, T., Jiang, H.: QoS-based dynamic web service
composition with ant colony optimization. In: 34th Annual Computer Software
and Applications Conference, pp. 493–502. IEEE (2010)

http://dx.doi.org/10.1016/j.dam.2014.10.020

TRACE: A Dynamic Model of Trust
for People-Driven Service Engagements

Combining Trust with Risk, Commitments, and Emotions

Anup K. Kalia(B), Pradeep K. Murukannaiah,
and Munindar P. Singh

North Carolina State University, Raleigh, NC 27695-8206, USA
{akkalia,pmuruka,singh}@ncsu.edu

Abstract. Trust is an important element of achieving secure collabora-
tion that deals with human judgment and decision making. We consider
trust as it arises in and influences people-driven service engagements.
Existing approaches for estimating trust between people suffer from two
important limitations. One, they consider only commitment as the pri-
mary means of estimating trust and omit additional significant factors,
especially risk and emotions. Two, they typically estimate trust based
either on fixed parameter models that require manual setting of para-
meters or based on Hidden Markov Models (HMM), which assume con-
ditional independence and are thus ill-suited to capturing complex rela-
tionships between trust, risk, commitments, and emotions.

We propose TRACE, a model based on Conditional Random Fields
(CRF) that predicts trust from risk, commitments, and emotions.
TRACE does not require manual parameter tuning and relaxes con-
ditional independence assumptions among input variables. We evaluate
TRACE on a dataset collected by the Intelligence Advanced Research
Projects Activity (IARPA) in a human-subject study. We find that
TRACE outperforms existing trust-estimation approaches and that incor-
porating risk, commitments, and emotions yields lower trust prediction
error than incorporating commitments alone.

1 Introduction

People-driven service engagements involve how people interact to carry out col-
laborative business processes [6,7]. Such business processes involve human judg-
ment and decision-making [13]. Trust is a crucial element of achieving secure
collaboration where people interact since it enhances the quality of a collab-
oration. We consider direct interaction between people, which can be used to
inform the design of user agents to facilitate collaboration among people. As
people interact, they estimate and continually revise trust in each other based
on their mutual interactions. Trust is established as a crucial element of service
selection, e.g., [11]. However, as service settings become more complex and inter-
twined with social interactions, we need to expand our understanding of trust
in services to promote the human element.
c© Springer-Verlag Berlin Heidelberg 2015
A. Barros et al. (Eds.): ICSOC 2015, LNCS 9435, pp. 353–361, 2015.
DOI: 10.1007/978-3-662-48616-0 24

354 A.K. Kalia et al.

Existing approaches to trust estimation consider commitments alone.
Gambetta [4] interprets trust as a truster’s assessment of a trustee for per-
forming a specific task. Mayer et al. [12] define trust as the willingness of a
truster to be vulnerable to a trustee for the completion of a task. Teacy et al.
[18] consider trust as the truster’s estimation of probability that a trustee will
fulfill its obligation toward the truster. Wang et al. [20] represent trust as the
belief of a truster that the trustee will cooperate, and estimate trust by aggre-
gating positive and negative experiences. Singh [16] provides a formal semantics
for trust that supports various postulates on trust, including how trust relates
to commitments. Kalia et al. [8] consider commitments to predict trust.

Considering trust as a dynamic variable, two major classes of trust models
arise in the literature. First, fixed-parameter trust models, where the parameters
of the model are manually fixed, typically, based on heuristics [18,20]. Second,
machine-learned trust models, typically Hidden Markov Models (HMM) [10,19,
21], assume that input variables are conditionally independent of each other
given the output variable.

Research Question. Our overarching question is: How can we improve trust pre-
diction by incorporating (in addition to commitments) two attributes (1) risk
taken by a truster toward a trustee, and (2) emotions displayed by a truster
toward a trustee without presuming conditional independence? We consider risk
because it depends on a truster’s belief about the likelihood of gains or losses it
might incur from its relationship with a trustee [12]. For example, a manager may
trust a subordinate who performs a high-risk task more than another who per-
forms a low-risk task, even if both subordinates succeed at the task. Conversely,
the manager may assign high-risk tasks to a subordinate whom he or she trusts
more than the other. We consider emotions because studies in psychology sug-
gest that positive emotions (e.g., happiness, gratitude) increase trust, whereas
negative emotions (e.g., anger) decrease trust [2]. Conditional independence may
not hold in our setting. For example, consider the relationships between trust
(output variable) and risk and commitments (two input variables). An HMM
model would assume that risk and commitments are independent given the level
of trust. However, the likelihood of gaining from risk is higher if commitments
are satisfied.

Contributions. We propose TRACE, a model of trust based on Conditional Ran-
dom Fields (CRF) [9]. TRACE avoids manual fixing of parameters and relaxes
the conditional independence assumption. To create TRACE, first, we propose
relationships between trust, risk, commitments, and emotions. Then, we train
TRACE using the past observations between people. Once TRACE is trained,
we use it to infer trust given new observations. Our claims are two fold: (1) by
capturing complex relationships among output and input variables, TRACE
estimates trust between people better than fixed-parameter and HMM-based
trust models, and (2) by capturing risk, commitments, and emotions, TRACE
performs better than models that capture only commitments. We evaluate our
claims via data collected from a human-subject study conducted by the Intelli-
gence Advanced Research Projects Activity (IARPA).

TRACE: A Dynamic Model of Trust for People-Driven Service Engagements 355

2 A Conceptual Model of Trust

TRACE enhances Mayer et al.’s [12] trust antecedent framework (TAF) as shown
in Fig. 1. The trust model contains four variables: trust (T), risk (R), commit-
ments (C), and emotions (E). We describe each variable V = 〈T,R,C,E〉 using
Singh’s [15,16] formal notation V〈debtor, creditor, antecedent, consequent〉. In
the notation, the debtor and the creditor are the roles enacted by individuals.
The antecedent represents conditions and the consequent represents tasks.

Fig. 1. The TRACE model enhances the trust antecedent framework [12] with emotion.

Commitments. We represent a commitment as C〈trustee, truster, antecedent,
consequent〉. In a commitment, the trustee commits to the truster to perform
the consequent. If the trustee performs the consequent, the commitment
is satisfied. If the antecedent is true but the trustee does not perform the
consequent, the commitment is violated.

Risk. We represent risk as R〈truster, trustee, antecedent, consequent〉, denoting
that the truster takes a risk by accepting the trustee’s offer to perform the
consequent. If the trustee performs the consequent, the truster gains; else,
the truster suffers a loss.

Trust. We represent trust as T〈truster, trustee, antecedent, consequent〉, denot-
ing that the truster believes the trustee if the trustee performs the conse-
quent. If the trustee does not perform the consequent, the truster begins
to doubt the trustee. Based on TAF, trust has three dimensions: (1) abil-
ity, the trustee’s competency to perform the consequent, (2) benevolence,
the trustee’s willingness to perform the consequent, and (3) integrity, the
trustee’s ethics and morality in performing the consequent.

Emotions. An emotion is a psychological response to an external or internal
event [3,17]. We introduce emotions as a response to commitment outcomes
(satisfaction or violation) in the TAF (Fig. 1). Similar to trust and risk, we
denote emotions as E〈truster, trustee, antecedent, consequent〉. The truster
displays a positive emotion if the trustee performs the consequent, else a
negative emotion.

Postulates. Next, we propose postulates that capture relationships between the
variables above. In these postulates, Vt represents the state of the variable V at
time t.

356 A.K. Kalia et al.

P1: Tt → Tt+1. The trust Tt+1 is influenced by the past trust Tt. This postulate
is consistent with the HMM trust models [10,19,21] since they assume that
a truster computes its current trust Tt+1 for a trustee based on its past trust
Tt with the trustee.

P2: Ct → Tt. The current commitment outcome Ct influences the current trust
Tt. We consider this postulate since Kalia et al. [8] suggest that a truster
trusts a trustee if the trustee satisfies the trustee’s commitments toward the
truster.

P3: Rt → Ct. The risk taken influences the commitment outcome Ct or the gain
or loss realized in the risk Rt. The postulate is supported by TAF [12].

P4: Rt → Tt. The current risk taken Rt influences the current trust Tt. The
postulate is supported by TAF [12].

P5: Ct → Et. The commitment outcome Ct influences the current emotion Et.
Smith and Ellsworth [17] suggest that a truster’s emotions depend on the
truster’s appraisal of a trustee’s commitments toward the truster.

P6: Rt → Et. The risk taken Rt influences the truster’s emotion Et. We consider
this postulate to capture the indirect effect that the risk taken influences the
commitment outcomes (P3), which influence emotions (P5).

P7: Et → Tt. The current emotion Et influences the current trust Tt. Psycho-
logical studies suggest that a truster makes trust-based judgments toward a
trustee based on his or her emotional relationships with the trustee [2].

3 The TRACE Model

To compute trust, we propose the TRACE model using dynamic Bayesian mod-
els. In these models, we consider T, R, C, and E as random variables. Using
the variables and the relationships proposed above, we construct two dynamic
Bayesian models as show in Figs. 2a and b, respectively. Figure 2a represents the
HMM model (the state-of-the-art-model) whereas Fig. 2b represents the TRACE
model.

HMM-Based Solutions and their Limitations. Dynamic Bayesian mod-
els such as HMMs can be adapted to compute trust as shown in Fig. 2a. Here,
input variables are considered as a sequence of observations x={C, R, E}Tt=1,
and output variables are considered as a sequence of states y={T}Tt=1 where T
is the length of a specific sequence. Then, a HMM represents the joint distrib-
ution p(y,x), making two independence assumptions: (1) the current state yt is
independent of y1, y2, . . ., yt−2, given yt−1; (2) observations xt are independent
of each other, given yt. Given these independence assumptions, the joint distri-
bution can be computed as p(y, x) =

∏T
t=1 p(yt|yt−1) × p(xt|yt). However, a

downside of making these assumptions is that the corresponding models ignore
some of the trust dependencies postulated in Sect. 2. For example, the HMM
shown in Fig. 2a assumes Ct to be independent of Et given trust Tt, which may
not be true according postulate P5.

TRACE: A Dynamic Model of Trust for People-Driven Service Engagements 357

T t T t+1

Ct Rt Et Ct+1 Rt+1 Et+1

T t T t+1

Ct Rt Et Ct+1 Rt+1 Et+1

Fig. 2. Graphical representation of HMM and TRACE trust models (two time slices).

TRACE. TRACE employs CRFs to overcome the limitations of HMM-based
trust models. As shown in Fig. 2b, our CRF-based model considers all the depen-
dencies postulated in Sect. 2. As Lafferty et al. [9] describe, unlike HMMs, CRFs
are agnostic to dependencies between the observations. Further, the conditional
probability of the label sequence can depend on arbitrary, nonindependent fea-
tures of the observation sequence without forcing the model to account for the
distribution of those dependencies. CRFs capture relationships between input
and output variables (x, y) as feature functions (undirected edges in the graphi-
cal model shown in Fig. 2b). A feature function can be computed by considering
the entire input sequence.

An HMM model simplifies the computation of the joint probability by assum-
ing conditional independence. In contrast, a CRF model employs discriminative
modeling, where the distribution p(y|x) is learned directly from the data (not
requiring to learn the parameters of the entire joint distribution). The most
important aspect of CRFs is to relate p(y|x) and feature functions fk(yt, yt−1,
xt). Each feature function covers either a state-state pair (yt, yt−1), e.g., (Tt+1,
Tt) or a state-observation pair (xt, yt), e.g., (Ct, Tt), (Et, Tt), and (Rt, Tt). Sup-
pose we have K feature functions that represent state-state and state-observation
pairs from x and y. Then, p(y|x) can be computed starting from the joint dis-
tribution p(y,x) as follows.

p(y|x) =
p(y,x)∑
y

p(y,x)
=

exp
{

K∑
k=1

λkfk(yt, yt−1, xt)
}

∑
y

exp
{

K∑
k=1

λkfk(yt, yt−1, xt)
} . (1)

Training. To estimate the parameters λk in Eq. 1, we consider the training
data D={xi, yi}Ni=1. The parameters can be estimated by maximizing the log-
likelihood L on the training data D, i.e., L(D) =

∑N
i=1 log p(y|x).

358 A.K. Kalia et al.

Inference. To find the best possible state sequence y for observations x, we
use the Viterbi algorithm [14]. According to the algorithm, we define a quantity
δt(i) that indicates the highest score (highest probability) of a path at time t as
δt(i) = maxy1,y2,...,yt−1 p(y1,y2,. . .,yt=i, x1, x2, . . ., xt|λ) where i represents the
state at time t.

4 Evaluation

We evaluate TRACE on data collected from subjects executing the Checkmate
protocol [5] adapted from the iterated investment or dictator economic decision-
making game [1]. The subjects assessed each other’s trustworthiness as they
played the game.

The Checkmate Protocol. The protocol involves two roles: banker and game
player. The banker’s task is to loan money to a game player from an initial
endowment of 50 USD. The game player’s task, in a single round of the protocol,
is to complete a virtual maze of desired difficulty and collect as many cash boxes
hidden in the maze as possible within the allotted time. The game player requests
a loan from the banker to play a maze, promising to play a maze of certain
difficulty and return (1) the loan with all gains, (2) the loan with 50 % of all
gains, (3) 50 % of the available money, or (4) a fixed amount. After the game
player’s request, the banker chooses a loan category: small (1–7 USD), medium
(4–10 USD), or big (7–13 USD). Then, a dollar amount, randomly generated
within the banker’s chosen category, is loaned to the game player. The game
player does not know the category chosen by the banker. Next, the game player
plays a maze of a certain difficulty (not necessarily what he or she had promised).
The banker will not know the actual maze played. The difficulty of the maze
determines the risk involved: low risk (75–150 %; i.e., the player could lose up to
25 % or gain up to 150 % of the loan amount in this maze), moderate risk (50–
200 %), or high risk (0–300 %). Finally, the game player returns some money to
the banker (not necessarily what he or she had promised).

A pair of subjects (one banker; one player) executed the protocol for up to five
rounds. After each round, the subjects answered questions about their (individ-
ual) emotions and perceptions of the opponent’s trustworthiness. All the money
involved was real—that is, subjects kept the money they were left with at the
end of all rounds.

Data. The data consists of 431 rows collected from 63 subjects, where each row
corresponds to the sequence of rounds played between two subjects. The data we
obtained reflects only the banker’s perspective. Thus, our observations and pre-
dictions are from the banker’s perspective. We compute the variables of our inter-
est for each round in a sequence as follows. (1) We treat the commitment from
the player to the banker, C〈player, banker, loan, return〉, as satisfied if the player
returned at least the amount he or she had loaned, and as violated, otherwise.
(2) We compute the gain or loss in the risk, R〈banker, player, loan, return〉, based
on the difference between the loaned and returned amounts. (3) The dataset rep-
resents the banker’s trust for the player after the round, T〈banker, player, loan,

TRACE: A Dynamic Model of Trust for People-Driven Service Engagements 359

return〉, as a three-tuple 〈A,B, I〉, indicating the banker’s perception of player’s
ability, benevolence, and integrity, respectively, each a real value (0–1) derived
from the post-round questionnaire. (4) The dataset represents the banker’s emo-
tion after he or she receives a return from the player, E〈banker, player, loan,
return〉, as real-valued (1–10) state anxiety scores derived from the post-round
questionnaire.

Mean Absolute Error (MAE). We treat trust estimation as a classification
problem. Thus, we discretized each trust dimension (A, B, and I) into three
categories (low, medium, and high) of almost equal frequency, making sure that
no trust value is repeated across categories. The sizes of the resulting categories
were A: [114, 155, 162], B: [109, 163, 159], and I: [118, 136, 177]. We measure the

performance of a trust model via MAE =
∑N

i |actuali−predictedi|
N .

Comparison. For comparing HMM and TRACE, we perform a three-fold cross
validation and compare the average MAE of the three folds. For each model, we
considered the following feature combinations to predict trust: (1) C: only com-
mitments, (2) C+R: commitments and risk, (3) C+E: commitments and emo-
tions, (4) R+E: risk and emotions, and (5) C+R+E: commitments, risk and
emotions. For each of these settings, we hypothesize that TRACE yields a lower
MAE than HMM.

5 Results and Discussion

Table 1 compares HMM and TRACE, considering different feature combinations
for predicting trust. When we consider only C, TRACE yields lower MAEs than
HMM for each trust attribute. The primary reason for the result might be that
CRF employs discriminative modeling whereas HMM employs generative mod-
eling. Considering all features (C + R + E), TRACE again yields lower MAEs
than HMM for each trust attribute (A, B, and I). We attribute this result to
dependencies between C, R, and E, given T, which HMM ignores but TRACE
incorporates.

Next, for C + R, TRACE performs better than HMM in predicting A and I
(MAEs for B are quite similar). Thus, not assuming C and R as conditionally
independent given T (as TRACE does) is beneficial to trust prediction than
assuming so (as HMM does). However, for C + E, HMM performs better than
TRACE for B and I (MAEs for A are quite similar). Thus, treating C and E
as conditionally independent is beneficial to trust prediction than not treating
so. This result suggests that changes in a truster’s emotions are not limited to
the appraisal of commitments, but can depend on other factors present in the
truster’s environment [17]. The result for R + E is mixed: TRACE performs
better than HMM for B and I, whereas HMM performs better than TRACE
for A.

In summary, these observations suggest that dependency relationships between
commitments, risk, and emotions vary depending on whether the observed trust

360 A.K. Kalia et al.

Table 1. MAEs of HMM and TRACE considering different feature combinations.

Input variables HMM TRACE

A B I A B I

C 1.1220 0.8564 1.0917 0.8744 0.7576 0.7988

C + R 0.8974 0.7655 0.8484 0.7463 0.7685 0.7876

C + E 0.8619 0.7433 0.7184 0.8617 0.7656 0.7580

R + E 0.8468 0.8376 0.7992 0.8949 0.6815 0.6568

C + R + E 0.8870 0.7977 0.7714 0.7878 0.7427 0.7141

attribute is ability, benevolence, or integrity. Thus, our finding can be valuable in
choosing the right set of dependencies given input and output variables of interest.

Threats to Validity. We identify three caveats about our evaluation. First, our
dataset, although real, consists of short sequences. We expect both HMM and
TRACE to perform better given longer sequences. Second, the dataset is skewed
toward positive trust values and our conclusions may not hold since the trust
values have a different distribution. Third, the dataset represents emotions using
anxiety scores only, thereby lacking realistic emotion responses along multiple
dimensions such as anger and joy.

Discussion. Despite these limitations, TRACE illustrates that a probabilistic
model of trust that incorporates commitments, risk, and emotions can produce
trust estimates with fairly good accuracy. Collaboration inevitably involves one
party making itself vulnerable to another and inherently involves negotiation.
The negotiation may be explicit, as in the dataset we studied, or implicit, such
as when one party decides whether to take up any offer from another, including
commonplace situations such as accessing a weblink or an email attachment. Our
findings therefore open up the possibility of developing user agents that promote
secure collaboration by helping a user calibrate the perceived trust with the risk
undertaken in light of available measures of risk and gain from commitments.
We defer investigating such agents to future research.

Acknowledgments. Thanks to the NCSU Laboratory of Analytic Sciences and to the
US Department of Defense for support through the Science of Security Lablet. Thanks
to Zhe Zhang, Chung-Wei Hang, and the anonymous reviewers for useful comments.

References

1. Berg, J., Dickhaut, J., McCabe, K.: Trust, reciprocity, and social history. Games
Econ. Behav. 10(1), 122–142 (1995)

2. Dunn, J.R., Schweitzer, M.E.: Feeling and believing: the influence of emotion on
trust. J. Pers. Soc. Psychol. 88(5), 736–748 (2005)

3. Friedenberg, J., Silverman, G.: Cognitive Science, 2nd edn. SAGE Publications,
Thousand Oaks (2012)

TRACE: A Dynamic Model of Trust for People-Driven Service Engagements 361

4. Gambetta, D.: Can we trust trust? In: Trust: Making and Breaking Cooperative
Relations. Blackwell, New York (1988)

5. IARPA: The checkmate protocol (2014). https://www.innocentive.com/ar/
challenge/9933465

6. Kalia, A.K., Motahari-Nezhad, H.R., Bartolini, C., Singh, M.P.: Monitoring com-
mitments in people-driven service engagements. In: Proceedings of the 10th IEEE
International Conference Service Computing, pp. 160–167 (2013)

7. Kalia, A.K., Singh, M.P.: Muon: designing multiagent communication protocols
from interaction scenarios. J. Auton. Agents Multi-Agent Syst. 29(4), 621–657
(2015)

8. Kalia, A.K., Zhang, Z., Singh, M.P.: Estimating trust from agents’ interactions via
commitments. In: Proceedings of the 21st European Conference Artificial Intelli-
gence, pp. 1043–1044 (2014)

9. Lafferty, J.D., McCallum, A.K., Pereira, F.C.N.: Conditional random fields.
In: Proceedings of the 18th International Conference on Machine Learning,
pp. 282–289 (2001)

10. Liu, X., Datta, A.: Modeling context aware dynamic trust using hidden markov
model. In: Proceedings of the 26th National Conference on Artificial Intelligence,
pp. 1938–1944 (2012)

11. Maximilien, E.M., Singh, M.P.: Toward autonomic web services trust and selection.
In: Proceedings of the 2nd International Conference on Service-Oriented Comput-
ing, pp. 212–221 (2004)

12. Mayer, R.C., Davis, J.H., Schoorman, F.D.: An integrative model of organizational
trust. Acad. Manag. Rev. 20(3), 709–734 (1995)

13. Nezhad Motahari, H.R., Spence, S., Bartolini, C., Graupner, S., Bess, C.,
Hickey, M., Joshi, P., Mirizzi, R., Ozonat, K., Rahmouni, M.: Casebook: a cloud-
based system of engagement for case management. IEEE Internet Comput. 17(5),
30–38 (2013)

14. Rabiner, L.R.: A tutorial on hidden markov models and selected applications
in speech recognition. In: Readings in Speech Recognition, pp. 267–296. Morgan
Kaufmann, San Mateo (1990)

15. Singh, M.P.: An ontology for commitments in multiagent systems: toward a unifi-
cation of normative concepts. Artif. Intell. Law 7(1), 97–113 (1999)

16. Singh, M.P.: Trust as dependence: a logical approach. In: Proceedings of the
10th International Conference on Autonomous Agents and MultiAgent System,
pp. 863–870, Taipei (2011)

17. Smith, C.A., Ellsworth, P.C.: Patterns of cognitive appraisal in emotion. J. Pers.
Soc. Psychol. 48(4), 813–838 (1985)

18. Teacy, W.L., Patel, J., Jennings, N.R., Luck, M.: Travos: trust and reputation in
the context of inaccurate information sources. J. Auton. Agents Multi-Agent Syst.
12(2), 183–198 (2006)

19. Vogiatzis, G., MacGillivray, I., Chli, M.: A probabilistic model for trust and rep-
utation. In: Proceedings of the 9th International Conference Autonomous Agents
and Multiagent System, pp. 225–232 (2010)

20. Wang, Y., Hang, C.W., Singh, M.P.: A probabilistic approach for maintaining trust
based on evidence. J. Artif. Intell. Res. 40, 221–267 (2011)

21. Zheng, X., Wang, Y., Orgun, M.A.: Modeling the dynamic trust of online service
providers using HMM. In: Proceedings of the 20th IEEE International Conference
on Web Services, pp. 459–466 (2013)

https://www.innocentive.com/ar/challenge/9933465
https://www.innocentive.com/ar/challenge/9933465

A Context-Aware Approach for Personalised
and Adaptive QoS Assessments

Lina Barakat(B), Adel Taweel, Michael Luck, and Simon Miles

Department of Informatics, King’s College London, London, UK
{lina.barakat,adel.taweel,michael.luck,simon.miles}@kcl.ac.uk

Abstract. Given the importance of QoS (quality of service) prop-
erties for distinguishing between functionally-equivalent services and
accommodating different user expectations, a number of QoS estima-
tion approaches have been proposed, utilising the observation history
available on a service. Although the context underlying such previ-
ous observations (and corresponding to both user and service related
factors) could provide an important source of information for the QoS
estimation process, it has only been utilised to a limited extent by exist-
ing approaches. In response, we propose a context-aware quality learn-
ing model, realised via a learning-enabled service agent, exploiting the
contextual characteristics of the domain in order to provide more per-
sonalised, accurate and relevant quality estimations for the situation at
hand. The experiments conducted demonstrate the effectiveness of the
proposed approach.

Keywords: Context awareness · Change detection · Personalisation ·
Quality value learning

1 Introduction

Services advertised by different providers can overlap in their functional capabil-
ities, but offer varying quality of service (QoS) levels. Such QoS properties, thus,
play an essential role in differentiating between functionally equivalent services
and accommodating different user needs. However, the subjective nature of some
properties and the dynamic and unreliable nature of service environments may
result in cases where the quality values available from the service provider are
either uninstantiated or untrustworthy. Consequently, a number of efforts focus
on learning more accurate estimation of service quality values, based on the data
available regarding the service’s past performance (e.g. [5,7,8]). Most such learn-
ing approaches, however, rely on data recency to account for potential changes in
the service’s behaviour. That is, newer service observations are favoured, while
older ones are eventually forgotten, without consideration of the service’s circum-
stances, thus neglecting important evidence for detecting a change occurrence.
Moreover, the observations are usually assumed to be objective, and thus the
predictions produced do not account for a user’s particular situation. We argue
c© Springer-Verlag Berlin Heidelberg 2015
A. Barros et al. (Eds.): ICSOC 2015, LNCS 9435, pp. 362–370, 2015.
DOI: 10.1007/978-3-662-48616-0 25

Context-Aware Personalised and Adaptive QoS Assessments 363

that acccounting for the circumstances under which the observations were col-
lected (in relation to both the user and the service) is essential to ensure that
only relevant data is captured in the learning process, as illustrated below.

User Circumstances. Consider a scenario where a user wants to order a meal
for dinner, and therefore contacts a food-specialised broker. The broker has
access to information about a pool of meal delivery services that are offered
by various food providers. Let’s assume that the user suffers from chewing and
swallowing problems, and therefore requires the meal to be of tender texture.
Given a candidate meal option, the broker thus needs to assess its corresponding
texture from past available ratings to determine its suitability for the user. Since
the perception of food texture could be affected by the presence of chewing and
swallowing difficulties, the ratings of users sharing similar dysphagia conditions
with the current user should have the highest impact on texture assessment at
hand, while the contribution of those with no difficulties should be minimal.

Service Circumstances. Consider a similar food ordering scenario where a
user is interested in a meal that is highly rated in terms of taste. Again, the
broker here needs to assess the taste property of each candidate meal option.
Assume one such option is service s, with a good rating history up to time step tk,
after which the service exhibits a change in recipe, occurring, for instance, due to
a change in the head chef, or the temporary unavailability of some ingredients
(e.g. some ingredients might not be available at winter time). Such a change
could affect many aspects of the meal, including taste, making such previous
user observations under the old recipe less (or no longer) relevant under the new
one. Now, if the service switches again to the old recipe, window [t1, tk] of the
historical observations on taste available for service s becomes relevant again,
and is a useful source of information for assessment of taste for this service.

Given this, we propose enriching service observations with contextual infor-
mation, and exploiting such information during QoS learning to capture the
most relevant data for the situation at hand, thus achieving more personalised
and adaptive quality predictions. By context, we refer to any conditions and cir-
cumstances that may affect the perception of a quality value by a service user,
either related to the user itself (user context) or related to the service (service
context). The context model is presented in Sect. 2. Sections 3 and 4 present our
context-aware QoS learning model and the experimental results, respectively.
Related work and conclusion are discussed in Sects. 5 and 6.

2 Context Model

The quality characteristics of a service may be dependent on the user situation
(user context) under which the service provision happens (e.g. user’s location),
as well as on service-related circumstances (service context), which could change
over time either periodically (e.g. a change in a food service’s recipe with season)
or non-periodically (e.g. a rare event such as a sudden server crash).

364 L. Barakat et al.

Formally, knowledge of context information relevant for a service provision
is a tuple (Q,Cu, Cs, ctxu, ctxs, dom), as follows. Q is the set of quality of ser-
vice attributes of the service, either generic such as price and response time,
or domain-dependent such as taste of a food service. Cu and Cs are the sets
of attributes characterising a user’s context and the service’s context, respec-
tively, expected to affect the quality values delivered by the service (and are
shared among similar service types). ctxu is a quality attribute’s user context
function, mapping quality attribute q ∈ Q to the user-related context attributes
ctxu(q) ⊂ Cu that may have an impact on the perception of q by the user, e.g.,
ctxu(texture) = {chewing and swallowing condition}, and ctxu(price) = ∅. ctxs

is a quality attribute’s service context function, mapping quality attribute q ∈ Q
to the service-related context attributes ctxs(q) ⊂ Cs that may have an impact
on the behaviour of the service so that the same user may observe different values
of q under different values of these attributes, e.g., ctxs(taste) = {food recipe}.
Finally, dom is an attribute domain function, mapping an attribute a (quality or
contextual) to its corresponding set of possible values. In this paper, we assume
that dom(a) corresponds to a discrete domain (for continuous attributes, this is
obtained via applying an appropriate discretisation algorithm).

3 Context-Aware QoS Learning

In our approach, a service’s QoS characteristics are assessed via a learning-
enabled agent associated with the service. This agent (which, for example, could
be acting on behalf of the service provider or the broker with which the service is
registered) exploits a contextually-enriched history of past interactions with the
service in order to expose personalised and dynamism-aware QoS information to
clients. The modelling and learning details of such an agent are presented next.

3.1 Service Observation

For each quality attribute q ∈ Q, the agent receives a stream of service observa-
tions, each reporting the outcome encountered for q in a previous interaction with
the service, along with the contextual circumstances surrounding this interaction.
Formally, a service observation is denoted as (vq, vu , vs), where: vq ∈ dom(q)
is the value observed for q; vu = (v1

u, ..., vmu) are the respective values of user-
side contextual attributes (c1u, ..., cmu) ∈ ctxu(q)m; and vs = (v1

s , ..., v
k
s) are the

respective values of service-side contextual attributes (c1s, ..., c
k
s) ∈ ctxs(q)k.

3.2 Agent Configuration and Learning Model

The main idea behind our approach is that, for a particular quality attribute, the
agent maintains a set of learned value models, each corresponding to a different
behaviour of the service (as a result of changes in service-side circumstances).
When previously-encountered service circumstances reoccur, older observations
of the service collected under such circumstances become relevant again, and

Context-Aware Personalised and Adaptive QoS Assessments 365

the agent can reuse the respective historical value model (learned from these
observations) to make future quality value predictions. Such reuse of a previously
learned value model facilitates a faster adaptation to a behavioural change of
the service (as opposed to re-learning the behaviour from new interactions), and
consequently improves the accuracy of quality predictions.

Formally, the configuration of a service agent at a particular time step is a
tuple (Ω, active), where: Ω is the model library of the agent, containing the set
of learned value models for quality attributes; and function active maps each
quality attribute q ∈ Q to its currently active value model active(q) ∈ Ω (i.e.
the model utilised to predict the attribute’s value for the next discovery attempt
by a consumer). Each model ω ∈ Ω is of the form q : ψ ← M . Here, q ∈ Q is the
quality attribute the value of which the model is trying to predict. Precondition
ψ identifies the service-side contextual circumstances under which the model
is valid (it is a logical formula in disjunctive normal form (DNF) restricting
the values of contextual attributes cs ∈ ctxs(q)). Finally, body M is the actual
prediction model for quality attribute q under condition ψ. It corresponds to the
underlying function qval between the values of user-side contextual attributes
affecting q and the corresponding value of q, i.e. qval(q, vu) ∈ dom(q) is the
value predicted for quality attribute q given user’s contextual values vu .

The configuration of the agent evolves over time as the agent’s learning pro-
gresses. In particular, given the current configuration (Ω, active), and a new
service observation (vq, vu , vs), value vector vs is compared against the con-
textual precondition ψ of the currently active model active(q), and two cases
are distinguished. Case 1. vs is subsumed by ψ, in which case no behavioural
drift is assumed, and observation (vq, vu) is simply used to update body M of
the currently active model active(q) to increase its accuracy with more incom-
ing data. Case 2. vs is not subsumed by ψ, in which case a behavioural drift
is suspected and further two sub-cases are distinguished. Case 2.1. vs is sub-
sumed by the contextual precondition ψ′ of another existing model ω′ ∈ Ω of
attribute q (ω′ �= active(q)). Here, a recurring behaviour (i.e. a behaviour learned
previously) is assumed, and the respective model ω′ becomes the current active
model for attribute q, with its body M ′ being updated with observation (vq, vu).
Case 2.2. vs is not subsumed by any contextual precondition of any previously
learned model for quality attribute q. In this case, the agent suspects a new
service behaviour, and therefore set up a new model ωn for attribute q, which
is added to the model library. The contextual precondition ψn of this model is
the conjunction of values vs , while its body Mn is built incrementally from the
new incoming observations starting from the current observation (vq, vu).

After the new model ωn is stabilised (i.e. after stability incoming observa-
tions under condition ψn), it is compared against the other existing models in the
agent’s library to verify whether it is actually reflecting a new service behaviour
for attribute q (we utilise the conceptual equivalence measure proposed by Yang
et al. [1] for such comparison). If no similar model is found, the new behaviour
is confirmed and model ωn becomes the currently active model for attribute q.
Otherwise (i.e. a similar model ωsim exists in the library), model ωn is discarded

366 L. Barakat et al.

(i.e. removed from the library), while model ωsim is regarded as the currently
active model for q, with its contextual precondition ψsim being generalised to
subsume condition ψn. Note that, if a service context different to vs is encoun-
tered prior to stabilising model ωn, the observations encountered under condition
ψn are considered as noise and ωn is simply discarded.

4 Experiments and Results

We evaluate the performance of the proposed approach in terms of producing
accurate quality value predictions in dynamic and user-dependent settings1. We
show the results (averaged over 100 runs) from the perspective of one service
and one quality attribute q. An experiment run consists of a number of learning
episodes of the service agent, each involving three steps: (1) observing value
vq for quality attribute q delivered by the service under user’s context vu and
service’s context vs ; (2) adjusting the current configuration utilising this new
observation (vq, vu , vs); and (3) predicting the expected quality value for the
next user using the adjusted configuration. Further details are presented next.

4.1 Value Model Implementation

To implement the body M of each model ω ∈ Ω, we use the Naive Bayesian clas-
sifier [2]. In particular, given a quality attribute q and a corresponding observed
user’s context sample vu , the value vq predicted for q is the one maximising the
posterior probability p(vq|vu), given as p(vq|vu) = p(vq)×p(vu |vq)

p(vu)
. Here: p(vq) is

the prior probability of value vq; p(vu) is the prior probability of sample vu

(this is the same for all the values of q and thus could be omitted); and p(vu |vq)
is the posterior probability of sample vu conditioned on value vq. To simplify
the computation cost of p(vu |vq), independence is usually assumed among the
attributes of the sample, leading to: p(vu , vq) =

∏m
i=1 p(vi

u|vq). The estimation
of probabilities p(vq) and p(vi

u|vq) can be easily achieved via maintaining cor-
responding value counts, and thus the incremental learning function learnq,u,
corresponds to the update of these counts after each new service observation.

4.2 Dataset

We utilise a synthetic dataset inspired by STAGGER concepts [2], but is adapted
to suit our problem. We assume: five possible outcomes for quality attribute
q, dom(q) = {v1

q , v
2
q , v

3
q , v

4
q , v

5
q}; three user-side context attributes, c1u, c2u, and

c3u, affecting q, each with three possible values, dom(c1u) = {v1,1
u , v1,2

u , v1,3
u },

dom(c2u) = {v2,1
u , v2,2

u , v2,3
u }, and dom(c3u) = {v3,1

u , v3,2
u , v3,3

u }; one service-side
context attribute, cs, with three possible values, dom(cs) = {v1

s , v
2
s , v

3
s}; and

three different service behaviours regarding attribute q, behaviour 1 (associated

1 Source code and data for the results presented in this paper are freely available from
http://jaspr.org/source-code.

http://jaspr.org/source-code

Context-Aware Personalised and Adaptive QoS Assessments 367

with v1
s) where the actual value of q is v1

q (under v1,1
u ∧ v2,1

u) and is v2
q (other-

wise), behaviour 2 (associated with v2
s) where the actual value of q is v1

q (under
v2,2
u ∨ v3,2

u) and is v3
q (otherwise), and behaviour 3 (associated with v3

s) where
the actual value of q is v4

q (under v1,2
u ∨ v1,3

u) and is v5
q (otherwise). The service

switches from one behaviour to another at particular points, with such drifts
being associated with changes in the value of service-side context attribute cs.

4.3 Evaluation Strategies and Measure

We refer to the following quality value learning strategies. Strategy MML, our
proposed multi-model learning approach. Strategy SSL, a simple summary-
based learning approach, which predicts the quality value vq with the highest
prior probability, p(vq), based on all the observations so far and ignoring the
user’s context. Finally, strategy SWL w, a sliding window based learning app-
roach, a well known way in the literature of adapting to potential changes in
incoming data [3]. It utilises the Naive Bayesian classifier presented in Sect. 4.1
as its main model, but maintains a fixed window of the latest w observations,
based upon which the model is updated at each time step (this strategy accounts
for the user’s context, but ignores the service’s context). By SWL all, we refer
to accounting for all the data observed so far. The performance of each strategy
is evaluated by assessing its prediction accuracy at each time step, calculated as
the success rate (i.e. number of successful predictions

total number of predictions) over the last 20 observations.

4.4 Results

To study the importance of user context awareness, we first assume a static
service behaviour regarding attribute q (e.g. behaviour 2), and compare our
learning strategy, MML, against the simple summary one, SSL. To simulate
situations of imperfect user’s contextual knowledge, attribute q is subjected to
different levels of noise η%. The results in Fig. 1(a) demonstrate that MML
achieves an accuracy of over 80% (at 0% noise) after only 30 cycles, as opposed
to SSL where the accuracy fluctuates around 50% for the entire run. It is also
evident that even with high noise levels (e.g. 30 % noise), MML still outperforms
SSL, indicating the importance of contextual evidence even if imperfect.

To study adaptivity in dynamic environments, we now assume that the ser-
vice follows the behaviour sequence 1-2-3-1-2-3, with each behaviour being fixed
for 300 episodes. Figure 1(b) compares the adaptation strategies in the case of
encountered new behaviour (i.e. changes during the first 900 episodes), with
stability being set to 15. MML outperforms the other strategies, increasing
the accuracy to over 90% after just 30 observations from the change point.
SWL all, however, suffers from poor performance, especially after a change,
where the learned model mostly reflects irrelevant observations. In fixed win-
dowing strategies, increasing the window size results in a slower reactivity to
a change since older irrelevant observations take longer to be forgotten, while
smaller windows achieve faster adaptation but affect the prediction accuracy due
to depending on insufficient number of observations. In the case of encountered

368 L. Barakat et al.

Fig. 1. Evaluation results

recurring behaviour (i.e. changes in the second 900 episodes), and unlike the
other strategies, MML always maintains high accuracy (see Fig. 1(c)), elimi-
nating the period of performance degradation after a change due to reusing an
existing stable model. The effect of imperfect (e.g. incomplete) service-side con-
text knowledge on MML is studied in Fig. 1(d), where context attribute cs is
subjected to various levels of noise η%, and the results indicate robustness to
noise.

5 Related Work

The QoS properties of services are important criteria upon which services are
discovered, selected, and composed [4]. Accurate estimation of such properties
has thus received much attention. Aschoff et al. [5] model the response time of
a service as a random variable, with the exponentially weighted moving average
being utilised for estimating the expected value of this variable at a particular
time step according to historical data. Similarly, time series modelling based
on ARIMA (AutoRegressive Integrated Moving Average) has been proposed
by Amin et al. [6] for the purpose of QoS forecasting. Barakat et al. [7] provide
probabilistic, multi-valued quality estimations for services via applying an online
learning algorithm inspired by Policy Hill-Climbing based on past user ratings.
Trust and reputation mechanisms have also been considered for the purpose of

Context-Aware Personalised and Adaptive QoS Assessments 369

accurate quality predictions [8], where an assessment of a QoS dimension’s trust-
worthiness (e.g. a time-weighted average of the past service ratings) is under-
taken prior to an interaction. In contrast to our approach, all such efforts rely
on favouring recent observations to handle changes in the service’s behaviour,
without accounting for contextual clues, thus neglecting important evidence.

To facilitate personalised QoS information for users, a number of approaches
utilise collaborative filtering for quality value prediction [9]. Although such
approaches capture the user’s context implicitly, they usually suffer from the data
sparsity problem, unlike our approach, which explicitly exploits available user’s
contextual knowledge, which allows deriving personalised quality assessments for
the user even in the absence of previous interactions with this user. Finally, like
us, Lin et al. [10] explicitly incorporate the user’s contextual attributes as input
for the quality value prediction process. Yet, they do not account for changes in
the service’s behaviour associated with service-side context.

6 Conclusion

The paper presented a context-aware QoS learning approach for personalised
and adaptive quality estimations. The learning is conducted via a service agent,
which maintains a pool of quality prediction models; each characterising a par-
ticular service behaviour and providing personalised value predictions for users.
Experimental results show that the approach achieves high accuracy and a faster
change adaptation when compared to commonly adopted time-based learning.

Acknowledgments. This work was part funded by the UK Engineering and Physical
Sciences Research Council as part of the Justified Assessments of Service Provider
Reputation project, ref. EP/M012654/1 and EP/M012662/1.

References

1. Yang, Y., Wu, X., Zhu, X.: Mining in anticipation for concept change: proactive-
reactive prediction in data streams. Data Min. Knowl. Discov. 13, 261–289 (2006)

2. Widmer, G.: Tracking context changes through meta-learning. Mach. Learn. 27,
259–286 (1997)

3. Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on
concept drift adaptation. ACM Comput. Surv. 46, 1–37 (2014)

4. Barakat, L., Miles, S., Poernomo, I., Luck, M.: Efficient multi-granularity service
composition. In: IEEE International Conference on Web Services, pp. 227–234
(2011)

5. Aschoff, R., Zisman, A.: QoS-driven proactive adaptation of service composition.
In: Kappel, G., Maamar, Z., Motahari-Nezhad, H.R. (eds.) Service Oriented Com-
puting. LNCS, vol. 7084, pp. 421–435. Springer, Heidelberg (2011)

6. Amin, A., Colman, A., Grunske, L.: An approach to forecasting QoS attributes
of web services based on ARIMA and GARCH models. In: IEEE International
Conference on Web Services, pp. 74–81 (2012)

370 L. Barakat et al.

7. Barakat, L., Mahmoud, S., Miles, S., Taweel, A., Luck, M.: An agent-based service
marketplace for dynamic and unreliable settings. In: Franch, X., Ghose, A.K.,
Lewis, G.A., Bhiri, S. (eds.) ICSOC 2014. LNCS, vol. 8831, pp. 169–183. Springer,
Heidelberg (2014)

8. Maximilien, E. M., Singh, M. P.: Agent-based Trust Model Involving Multiple
Qualities. In: 4th International Joint Conference on Autonomous Agents and Mul-
tiagent Systems, pp. 519–526 (2005)

9. Zheng, Z., Ma, H., Lyu, M.R., King, I.: QoS-aware web service recommendation
by collaborative filtering. IEEE Trans. Serv. Comput. 4, 140–152 (2011)

10. Lin, D., Shi, C., Ishida, T.: Dynamic service selection based on context-aware QoS.
In: IEEE International Conference on Services Computing, pp. 641–648 (2012)

Service Composition (Short Papers)

Spatio-Temporal Composition
of Crowdsourced Services

Azadeh Ghari Neiat(B), Athman Bouguettaya, and Timos Sellis

School of Computer Science and Information Technology,
RMIT, Melbourne, Australia

{azadeh.gharineiat,athman.bouguettaya,timos.sellis}@rmit.edu.au

Abstract. We propose a new composition approach for crowdsourced
services based on dynamic features such as spatio-temporal aspects. The
proposed approach is defined based on a formal crowdsourced service
model that abstracts the functionality of crowdsourced data on the cloud
in terms of spatio-temporal features. We present a new QoS-aware spatio-
temporal union composition algorithm to efficiently select the optimal
crowdsourced composition plan. Experimental results validate the per-
formance of the proposed algorithm.

Keywords: Crowdsourced service · Spatio-temporal composition ·
Crowdsourced service composition · Spatio-temporal QoS

1 Introduction

The ubiquity of mobile devices enables to crowdsource sensor data. Storing,
processing and managing continuous streams of crowdsourced sensed data pose
key challenges [4]. Due to availability, low-cost and fast access to cloud services,
the aggregation of crowdsourced sensor data on the cloud (i.e., crowdsourced
Sensor-Cloud) provides a unique opportunity to address the above challenges.

We propose to harness the service paradigm as a key mechanism to turn
crowdsourced sensor data into useful information. The service paradigm is a
powerful abstraction hiding data-specific information which focuses on how data
is to be used. In this regard, the functionality of crowdsourced sensor data on
the cloud is abstracted as crowdsourced services which are easily accessible irre-
spective of the distribution of crowdsourced sensor data sources.

Because of the nature of crowdsourced sensors, mobility is an intrinsic part of
the functional and non-functional aspects of crowdsourced services. This provides
an opportunity to combine individual crowdsourced services to provide value-
added services whenever they are available. However, this also presents challenges
because of the hiding distributed, volatile and dynamic aspects including spatio-
temporal dependencies. In this regard, we focus on spatio-temporal aspects as key
parameters to query the crowdsourced Sensor-Cloud. The challenge can be more
formally defined as finding the “best” spatio-temporal composition of crowd-
sourced services.
c© Springer-Verlag Berlin Heidelberg 2015
A. Barros et al. (Eds.): ICSOC 2015, LNCS 9435, pp. 373–382, 2015.
DOI: 10.1007/978-3-662-48616-0 26

374 A. Ghari Neiat et al.

This paper focuses on providing a framework for spatio-temporal selection
and composition of crowdsourced services. We first formally define a new spatio-
temporal model for crowdsourced services and composition framework. In addi-
tion, we propose a spatio-temporal union composition algorithm. Our case study
focuses on the use of WiFi hotspot sharing in a geographical area. Finally, a per-
formance study of the proposed approach is presented.

The remainder of the paper is structured as follows: Sect. 2 formally defines
the crowdsourced service model and composition framework. Section 3 illus-
trates the new QoS model. Section 4 details the proposed composition approach.
Section 5 describes the evaluation of the approach. Section 6 concludes and high-
lights our future work.

Motivating Scenario. Let us assume that Sarah would like to find the best
WiFi hotspot-covered path from ‘A’ to ‘B’. The process of finding the best
journey is considered as a two-steps composition problem. In the first step as
explained in [2], we consider a line segment as a service (e.g., a tram service)
with a set of quality parameters. By applying STA* [3], we have a set of optimal
travel plans from ‘A’ to ‘B’. In the second step, we take the first step output
as an input and then look at WiFi coverages as a key parameter to determine
the best travel plan. Our approach considers one path at a time for selecting the
best coverage along each and every optimal plan. The novelty of this approach
is considering QoS WiFi coverage as a service because of intrinsic complexity
of WiFi coverage which usually includes area, signal strength and bandwidth.
Therefore, we formulate the problem of selecting the best coverage as a compo-
sition of WiFi coverages on a journey from ‘A’ to ‘B’. Each basic WiFi coverage
is offered by one hotspot provided by the crowd. Therefore, the entire coverage
of a plan will be crowdsourced. We also assume that hotspots are static, i.e., the
coverage does not change in time and space. Key to crowdsourcing hotspots are
the spatio-temporal attributes which will be used for selecting and composing
services. This paper focuses on the second level.

2 Spatio-Temporal Model for Crowdsourced Service

In this section, we propose a new formal spatio-temporal model for an atomic
crowdsourced service and crowdsourced service composition framework.

2.1 Spatio-Temporal Model for Atomic Crowdsourced Services

We discuss the key concepts to model a crowdsourced service in terms of spatio-
temporal features of crowdsourced sensor data.

Definition 1: Linear Composition Plan P . A linear composition plan P is mod-
elled as a sequence of component line segment services [2] in the form of a
trajectory {< pi, ti >, 1 � i � k}, where

– pi is a geospatial coordinate set (xi,yi),
– ti is a time instant.

Spatio-Temporal Composition of Crowdsourced Services 375

Definition 2: Linear Plan Set P. Given a source point ς and destination point
ξ, a linear plan set P is a set of all optimal linear composition plans from ς to
ξ (Fig. 1(a)). We assume that P is the output of applying a variation of STA*
algorithm in our previous work [3] that return k optimal linear plans.

Definition 3: Sensor sen. A sensor sen is a tuple of < sid, loc, sa, tsp > where

– sid is a unique sensor ID,
– loc is the latest recorded location of sen,
– sa is the specific sensing area centred at loc with the radius Rs,
– tsp (timestamp) is the latest time in which sensor data related to a crowd-

sourced service is collected from sen.

Definition 4: Crowdsourced Service S. A crowdsourced service S is a tuple of <
id, SEN , space-time, F , Q > where

– id is a unique service ID,
– SEN = {seni.sid|1 � i � m} represents a finite set of sensors seni collecting

sensor data related to S. In this paper, we assume that each crowdsourced
service consists of one sensor (i.e., |SEN | = 1),

– space-time describes the spatio-temporal domain of S. In this paper, we
restrict the space of a service to a surface area. The space is presented by
a spatial square area As which is a minimum bounding square containing the
sensing area of S (i.e., S.SEN.sen1.sa). The time is a tuple < ts, te >, where
• ts is a start-time of S,
• te is an end-time of S.
As can be seen in Fig. 1(b), the crowdsourced service is modelled as a Minimum
Bounding Box MBB which is represented by (xs, ys, ts) (i.e., bottom-left) and
(xe, ye, te) (i.e., top-right),

– F describes a set of functions offered by S (e.g., providing WiFi hotspot),
– Q is a tuple < q1,q2, ... , qn >, where each qi denotes a QoS property of S.

Fig. 1. Crowdsourced service model

2.2 Spatio-Temporal Model for Composite Crowdsourced Services

It is quite likely that a linear plan cannot be covered by a single crowdsourced
service. In such cases, crowdsourced services may need to be composed to cover
the linear plan. The following rule, called spatio-temporal composability, checks
whether two component services are spatio-temporally composable.

376 A. Ghari Neiat et al.

– Definition 5: Spatio-Temporal Composability. Two component services Sk and
Sl are spatio-temporally composable with respect to a linear plan P iff
• Sk ∩ P �= ∅ & Sl ∩ P �= ∅ i.e., Sk and Sl intersect P .
• Sl has overlap with the extended MBB of Sk (i.e., MBBEx(Sk)). The

MBBEx (i.e., buffer area) is computed by extending each edge of the area of
Sk by a distance d and also extending time edge by time period τ (Fig. 2(a)).
The values of d and τ are assumed to be user-defined. For example, in our
scenario d are τ are the maximum disconnection tolerant distance and time.

• Two edge vectors Vpspe
and Vlocklocl

are in the same direction. The vectors
Vpspe

and Vlocklocl
connect two vertices (ps, pe) and (locklocl) respectively.

ps and pe are the start-point and end-point of P and lock and locl are the
sensed points of Sk and Sl, respectively (Fig. 2(a)). The vector direction is
used as heuristic which is based on the premise that the best neighbours
are going to be found in the direction where the traveler is going.

As can be seen in Fig. 2(a), Sk and Sl are spatio-temporal composable. How-
ever, although Sm intersects P , it does not have overlap with MBBEx(Sk).
As a result, Sm and Sk are not spatio-temporal composable.

Given a plan P and a set of crowdsourced services {S1, S2, ..., Sn}, we model
a composite crowdsourced service as the total union area of component services
that covers P (Fig. 2(b)). A composite crowdsourced service CCS is a sequence
of component services { Si, 1 � i � n } where each pair of (Si, Si+1) is spatio-
temporal composable. In the remainder of the paper, the service and composite
service are used to refer to a crowdsourced service and composite crowdsourced
service, respectively.

Fig. 2. Composite crowdsourced service model

2.3 Spatio-Temporal Index Data Structure for Crowdsourced
Services

Indexing of services enables the fast discovery of services. We index services
considering their spatio-temporal features using a 3D R-tree [5]. The 3D R-tree
is a spatio-temporal index data structure which efficiently answers the range

Spatio-Temporal Composition of Crowdsourced Services 377

queries of the type “report all objects located within a specific area during the
given time interval”. The leaf nodes of the 3D R-tree represent actual services
which are presented using MBB that encloses the area of a service (Fig. 3).
To find composable services, called neighbours, we use Spatio-TemporalSearch
algorithm [3] which searches through the 3D R-tree to find neighbours that
intersect MBBEx(S).

3 An Extensible Quality Model for Crowdsourced Service

Given the diversity of service offerings, an important challenge for users is to
discover the ‘right’ service satisfying their requirements. We introduce novel
QoS attributes for services. For the sake of clarity, we use a limited number of
QoS attributes.

3.1 Quality Model for Atomic Crowdsourced Service

We propose to use spatio-temporal quality criteria which is part of describing
the non-functional aspects of services:

– Coverage (cov): Signal strength is associated with the coverage area of a ser-
vice. The closer the user to the center of a service, the stronger WiFi signal is.
We model qcov(S) using exponential attenuation probabilistic coverage model
[1]. In this model, each service has a confident radius Rc (Fig. 4). The cover-
age qcov(S) varies from zero to one. Within the distance of Rc, the value of
qcov(S) is 1 which means full signal. In the interval (Rs − Rc), the value of
qcov(S) approaches zero as the distance from the center increases. Beyond Rs,
the value of qcov(S) is set to zero.

– Capacity (cap): Capacity indicates the bandwidth for each user’s request
which is important for uploading and downloading. Given an atomic service
S, qcap is computed as follows:

0 � DTR

Ncr(S)
� 1 (1)

Fig. 3. Example of a 3D R-tree Fig. 4. Coverage QoS model

378 A. Ghari Neiat et al.

where DTR is the maximum speed at which the data can be transmitted for
S (i.e., total available bandwidth) and Ncr(S) is the number of concurrent
requests that S can support. We assume that total available bandwidth is
equally allocated.

3.2 Quality Model for Composite Crowdsourced Service

Aggregation functions are used to compute the QoS of composite services.

– Coverage: The coverage value of a composite service is the product of the
coverage of all its component services. For each component service Si, qcov(Si)
is computed with respect to the linear plan P as follows:

{
1 0 � dis(P, loc) � Rc

e−ka dis(P, loc) > Rc
(2)

where a = dis(P, loc) − Rc and dis(P, loc) is the perpendicular distance from
the sensed point of the component service loc to the linear plan P (Fig. 4).
k is a sensor-technology dependent parameter which varies with the type of
sensors and environment. The qcov of the component service which is within
the distance of Rc is 1. The qcov value of the service lies within (Rc, Rs)
exponentially decreases as the perpendicular distance increases. Since a com-
ponent service intersects the linear plan, the value of dis is not beyond Rs

(i.e., qcov �= 0).
– Capacity: The capacity value for a composite service is the average of the

capacity of all its component services.

4 QoS-Aware Spatio-Temporal Union Composition
Algorithm

We propose a new algorithm FindBestPlan to find the best linear plan of P. The
idea of our algorithm is to initially prune the search space with respect to P and
select a set of filtered services over the whole set of candidate services. We then
divide the union composition into two phases: local for an individual component
line segment service of the linear plan and global for the whole linear plan. The
local phase computes the optimal union composition plan that covers the given
line segment service. The global phase combines the optimal union composition
plans of all its component line segment services obtained from the local phase.
Finally, the best plan in P is selected as the optimal solution. Algorithm 1 gives
the details of FindBestPlan algorithm. In general, FindBestPlan algorithm works
in the following four steps:

4.1 Crowdsourced Service Filtering

To improve the efficiency of the proposed approach, the first step is to reduce
the search space of the algorithm. We develop a MBB that encloses a set of

Spatio-Temporal Composition of Crowdsourced Services 379

Algorithm 1. FindBestPlan Algorithm
Input: Linear plan set P, 3D R-tree RT , maximum tolerant disconnection distance d, time period τ

Output: The plan with the highest union utility-score in P bestPlan

1: max-union-u-score=0
2: enclosingMBB = compute the enclosing MBB
3: Add all crowdsorced services inside the enclosing

MBB of RT to a new 3D R-tree CRT
4: for each P ∈ P do

5: UCSList = ∅ // The list of component services
6: for each line segment service ls in P do

7: UCSList.insert(UnionComposition (CRT , ls,
d, τ))

8: end for

9: Compute union-u-score[P]
10: if union-u-score[P] > max-u-score then

11: max-u-score = union-u-score[P]
12: bestPlan = P
13: end if

14: end for

15: return bestPlan

services relevant to P. The services outside this MBB are assumed to have lit-
tle probability of being involved in the optimal composition plan. The enclos-
ing MBB is represented by the lower-bound [xmin, ymin, tmin] and upper-bound
[xmax, ymax, tmax], where xmin (resp. xmax) and ymin (resp. ymax) are the lowest
(resp. highest) x-coordinate and y-coordinate among all coordinates of all opti-
mal linear plans (Fig. 5). tmin and tmax are the minimum and maximum time
value among all time instants of all optimal linear plans. 3D R-tree retrieves
the services which are inside the enclosing MBB and have overlap with bound-
aries. All retrieved services are indexed by a new 3D R-tree (CRT) (2–3 in
Algorithm 1).

4.2 Decomposition

The decomposition step divides each linear composition plan into elementary
line segment services ls. Each ls is presented by a line segment of length 1 which
consists of two consecutive tuples (< pi, ti >,< pi+1, ti+1 >) (Fig. 1(a)).

4.3 Local Union Composition

Given a line segment service ls, the local union composition step finds a com-
posite service that covers ls. The spatio-temporal union composition problem
can be modeled as a directed graph search problem in which each vertex has
an associated space-time attribute of a service and each edge is associated with
QoS attributes. If an edge exists, it means that there is a neighbour dependency
between vertices. A virtual start-point vertex (ls.ps, ls.ts) and virtual end-point
vertex (ls.pe, ls.te) are added to the graph. The virtual vertices are connected
to all neighbour services. Note that if no service is within the distance d of start-
point and end-point, the search distance is increased until a service is found.
The coverage and capacity of these neighbour services are set to neutral values
of one and zero, respectively. We propose UnionComposition algorithm which is
a variation of Dijkstra shortest path finding algorithm that minimizes the search
cost function to find the optimal union composition plan from the start-point to
end-point.

380 A. Ghari Neiat et al.

UnionComposition differs on search cost and neighbour functions. The search
cost function of a union composition is defined as the following utility func-
tion [6]:

union-u-score =
∑

Qi ∈ neg

Wi
Qmax

i −Qi

Qmax
i −Qmin

i

+
∑

Qi ∈ pos

Wi
Qi −Qmin

i

Qmax
i −Qmin

i

(3)

To find neighbour services (i.e. candidate services) of a service, we define
a new neighbour function based on Spatio-TemporalSearch algorithm [3] which
searches through the 3D R-tree to find neighbours. Then neighbours which inter-
sect the line segment and are in the same direction of the segment are added to
the candidate list.

The details of UnionComposition is shown in Algorithm 2. The algorithm
starts finding neighbour services of the start-point of the line segment. The union-
u-score of services in the candidate list are computed (4–6). The algorithm selects
the candidate service with the lowest cost as the next candidate to be examined.
Because the higher value of union-u-score shows the better QoS, we use (1 -
union-u-score). The candidate service with the smallest union-u-score sets as
the current service (L.8). For the current service, all of its unvisited neighbours
are considered and their tentative u-scores are computed (14–18). If the current
service is the neighbour of the destination (i.e., the search is successful) (9–11)
or if the candidate list is empty (i.e., there is no composition plan) (L. 7), then
stop. Otherwise, the algorithm selects the candidate service with the smallest
tentative u-score and sets it as the new current service and continue (19–25).

Algorithm 2. UnionComposition Algorithm

Input: Line segment service ls , filtered 3D R-tree
CRT, , maximum tolerant disconnection distance d, time
period τ

Output: Best crowdsourced composition plan CCS

1: compositionPlan = ∅ // The plan of navigated ser-
vices

2: visitedList= ∅ // The list of services already evalu-
ated.

3: candidateList = Spatio-TemporalSearch(CRT,ls.ps,
ls.ts,d, τ) ∩ ls

4: for each S ∈ candidateList do

5: compute union-u-score[S]
6: end for

7: while candidateList /∈ ∅ do

8: currentS = A service in candidateList having the
lowest (1-union-u-score) value

9: if currentS ∈ Spatio-TemporalSearch(CRT,ls.pe,
ls.te, d, τ) then

10: return compositionPlan + currentS
11: end if

12: visitedList.insert(currentS)
13: candidateList.remove(currentS)
14: NeighboursList = Spatio-TemporalSearch(CRT,

currentS.loc, currentS.te, d, τ) ∩ ls

15: for each ns ∈ NeighboursList do

16: if ns /∈ visitedList and ns.id �= currentS.id
then

17: tentative-u-score= union-u-score[ns]
18: end if

19: if ns /∈ candidateList or tentative-u-score ≤
union-u-score[ns] then

20: compositionPlan[ns] = currentS
21: u-score[ns] = tentative-u-score
22: if ns /∈ candidateList then

23: candidateList.insert(ns)
24: end if

25: end if

26: end for

27: end while

28: output(”No plan!”)

4.4 Global Union Composition

After performing the local union (L.7 Algorithm 1), each line segment service
ends up with an optimal union composition plan that covers the line segment

Spatio-Temporal Composition of Crowdsourced Services 381

service. The global union step takes the output of all local unions, combines them
as a composite service and computes the union utility score of the composite
service for each optimal linear plan (L.9 Algorithm1). The best plan of P is
the plan with the highest union utility score of the composition process (10–13
Algorithm 1).

5 Experiments Results

In our experiment, we show the significance of our filtering step in terms of
computation time. To the best of our knowledge, there is no usable and relevant
real spatio-temporal service test case to evaluate our approach. Therefore, we
focus on evaluating the proposed approach using synthetic services. Our evalu-
ation sets a baseline upon which future work will be compared to. We run our
experiments on a 3.60 GHZ Intel Xeon processor and 16 GB RAM under Win-
dows 7. In our simulation, services are randomly distributed in a 70 × 70 region.
The space and time attributes of services are randomly determined within the
region range. The qcov is assigned at runtime based on the distance between the
service and the linear plan with respect to Rs, Rc and k parameters. To obtain
a more realistic approach, we use heterogeneous sensors for services by varying
the values of these parameters which are set as follows: k = 0.5 and Rs ∈ [4, 6]
and Rc ∈ [1, 3] are randomly selected. The qcap ∈ [50, 100] is also randomly
generated. We set the weights as Wcov = 0.5 and Wcap = 0.5. The remaining
service parameters are also randomly generated using a uniform distribution.
All experiments are conducted 100 times and the average results are computed.
Each experiment starts from a different source and destination point which are
randomly generated. For each experiment we apply a variation of STA* [3] and
select top two optimal linear plans. FindtBestPlan algorithm is then executed
to find the best plan based on union composition cost.

We study the significance of our filtering stage in terms of the computation
time. We define the optimality ratio as follows:

Optimality ratio =
ctwf − ctf

ctwf
(4)

Fig. 5. Example of an enclosing MBB Fig. 6. Optimality in terms of compu-
tation time

382 A. Ghari Neiat et al.

where ctwf is the execution time of our algorithm FindtBestPlan without filter-
ing and ctf is the execution time of FindtBestPlan by applying filtering stage.
We measure optimality ratio while fixing the default map size and varying the
number of services from 200 to 1000 with an iteration range of 200. Figure 6
illustrates that filtering phase produces a satisfying optimality (i.e., more than
58 %). It means that applying filtering stage significantly reduces the computa-
tion time which confirms our expectation about its impact on the computation
time. The results also show that the optimality ratio increases slightly along
with the number of services.

6 Conclusion

We introduce a new spatio-temporal union composition algorithm to efficiently
select the optimal union composition plan considering multiple new QoS crite-
ria. We demonstrate that our algorithm has a satisfying efficiency in terms of
optimality. Future work focuses on moving and transient crowdsourced services.

Acknowledgments. This research was made possible by NPRP 7-481-1-088 grant
from the Qatar National Research Fund (a member of The Qatar Foundation). The
statements made herein are solely the responsibility of the authors.

References

1. Altınel, İ.K., Aras, N., Güney, E., Ersoy, C.: Binary integer programming formu-
lation and heuristics for differentiated coverage in heterogeneous sensor networks.
Comput. Netw. 52(12), 2419–2431 (2008)

2. Neiat, A.G., Bouguettaya, A., Sellis, T., Dong, H.: Failure-proof spatio-temporal
composition of sensor cloud services. In: Franch, X., Ghose, A.K., Lewis, G.A.,
Bhiri, S. (eds.) ICSOC 2014. LNCS, vol. 8831, pp. 368–377. Springer, Heidelberg
(2014)

3. Neiat, A.G., Bouguettaya, A., Sellis, T., Ye, Z.: Spatio-temporal composition of sen-
sor cloud services. In: 2014 IEEE International Conference on Web Services (ICWS),
pp. 241–248. IEEE (2014)

4. Hossain, M.A.: A survey on sensor-cloud: architecture, applications, and approaches.
Int. J. Distrib. Sens. Netw. 2013, 1–18 (2013)

5. Theoderidis, Y., Vazirgiannis, M., Sellis, T.: Spatio-temporal indexing for large mul-
timedia applications. In: Proceedings of the Third IEEE International Conference
on Multimedia Computing and Systems, pp. 441–448. IEEE (1996)

6. Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang, H.:
Qos-aware middleware for web services composition. IEEE Trans. Softw. Eng. 30(5),
311–327 (2004)

Design for Adaptation of Distributed
Service-Based Systems

Antonio Bucchiarone, Martina De Sanctis, Annapaola Marconi,
Marco Pistore, and Paolo Traverso(B)

Fondazione Bruno Kessler, Via Sommarive, 18, Trento, Italy
{bucchiarone,msanctis,marconi,pistore,traverso}@fbk.eu

Abstract. Internet of Services applications need to cope with a con-
tinuously changing environment, both in terms of the context in which
they operate, and of the services, users and providers involved. In this
setting, adaptivity is to be considered an intrinsic characteristic of appli-
cations rather than an exception to be handled. In this paper we propose
a design for adaptation approach that fully exploits the advantages of
the service-oriented paradigm to support the development and operation
of service-based applications operating in highly dynamic environments.
The approach is based on dynamic and incremental service composition
and re-configuration techniques and is evaluated on a real-world scenario
in the Smart Cities domain.

1 Introduction

The Internet of Services (IoS) foresees a future Internet in which the provisioning
of, access to and use of services will be as widespread as content is today. The
urgent need for a more efficient and sustainable society, together with the spread
of ubiquitous communication networks, highly distributed wireless sensor tech-
nology, and intelligent management systems, makes the Smart City ecosystem
an ideal ground for IoS. In this setting, the role of service-oriented computing
is to enable the integration and interplay between new and legacy city services
to support the creation and delivery of innovative and efficient services for the
citizens [10].

A key challenge that needs to be overcome for this to become a reality, is
the capability of dealing with the continuously changing complex environment
in which Smart City applications operate. Consider for instance the case of a
“smart children’s mobility system”, supporting service users (parents, children)
and providers (drivers, teachers, traffic aids, volunteers) in their daily opera-
tion of children mobility services (e.g., school buses, walking buses, bike trains,
ride-sharing among parents). The implementation of such a system requires to
deal with a variety of heterogeneous services provided by autonomous entities
(e.g., registration services provided by the school, volunteer managem ent, safety
and traffic information from local police system, access to smart and wearable
devices). In this setting, changes are not only frequent, they are an inner char-
acteristic of the system. In particular, the system should be resilient to changes
c© Springer-Verlag Berlin Heidelberg 2015
A. Barros et al. (Eds.): ICSOC 2015, LNCS 9435, pp. 383–393, 2015.
DOI: 10.1007/978-3-662-48616-0 27

384 A. Bucchiarone et al.

in existing services and in user requirements, as well as be open and extensi-
ble for new functionalities and facilities to become part of the system. This is
made particularly challenging by the high degree of connection and interdepen-
dencies among system components which are provided by autonomous entities
[1]. There is therefore the need to develop applications that are adaptable “by
design” and to provide a dynamic and scalable runtime environment that makes
them resilient to the aforementioned changes.

In this paper we propose a design for adaptation approach that supports
the development, deployment and execution of service-based systems operat-
ing in dynamic environments and we discuss its effectiveness when applied to
Smart cities applications like the “smart children’s mobility system”. The app-
roach exploits advanced techniques for dynamic and incremental service com-
position [2], to effectively deal with changes occurring at different levels in the
system. Each system component is modeled in terms of the functionalities it
provides and of the conditions under which each functionality can be used (e.g.
context/situation-related properties). At the same time, it is possible to partially
specify the implementation logic of each component that is then automatically
refined with (one or a composition of) functionalities provided by other compo-
nents. This results in a dynamic network of components, where most changes
can be handled at a local level, that is, affecting only those components directly
related to the change and making the change transparent to the rest of the
system.

The rest of the paper is structured as follows. Section 2 introduces the children
mobility scenario used as a reference throughout the paper; Sect. 3 presents in
details the proposed approach for the definition and operation of service-based
systems that are adaptable by design; finally, Sect. 4 discusses the effectiveness
and performances of the approach while Sect. 5 presents some related works and
conclusions.

2 Motivating Scenario

Independent and active mobility has been proven to be fundamental for the
development of children and adolescents. Plenty of initiatives have been set up
in our cities supporting children’s freedom of movement. Just to cite a few exam-
ples, we have school buses, walking buses (children walking together to school
supervised by volunteer parents), children bike-trains (similar to walking buses,
by bike), volunteers at crosswalks, ride-sharing among parents. However, if the
aim is to deliver “smart children mobility services”, these services cannot be
managed each by itself, but they should become part of an integrated mobil-
ity solution, the Smart Children Mobility System (SCMS), that supports service
users (parents, children) and providers (teachers, traffic aids and volunteers) in
their daily operation and management of the different mobility services.

Figure 1 presents an overview of the different components in the SCMS. If
we consider the part of the system related to the walking school bus (WSB), we
notice that the system should support the registration of children, parents and

Design for Adaptation of Distributed Service-Based Systems 385

Fig. 1. Smart children mobility system: a partial overview of the system

volunteers and their access to the system (User Profile Management component),
the training of volunteers (Volunteer Management component), the organization
of routes (WSB Manager component) taking into account the needs of families but
also route safety (e.g., presence of sidewalks, traffic situation, guarded cross-
walks). The daily operation of the service requires to handle children attendance
and volunteers availability for each route (Route Manager), the compilation of
attendance books, tracking of children and volunteer position (WSN Manager),
as well as managing possible exceptions (e.g. find a substitute for a volunteer,
change the route due to roadworks, suspend the route due to weather condi-
tions). Some components are in common with the bike train and ride shar-
ing (e.g. Route Manager, Volunteer Management, User Profile Management). This
allows not only replication avoidance, but also enabling synergies among the
different services (e.g., exploit the ride-sharing service to cover a WSB route in
case of bad weather).

A key characteristic of the system is the variety and heterogeneity of services
involved: from domain-specific functionalities (e.g., management of walking bus
routes, compilation of attendance books) to general-purpose ones (e.g., access
management, user tracking); from back-end functionalities (in gray in the Figure)
requiring the interaction with third party systems and devices (e.g. retrieving
cycle lines, traffic/safety street information, interacting with smart objects) to
front-end ones (e.g., Apps to be accessed by parents, volunteers, teachers). More-
over, the SCMS needs to deal with the dynamicity of the scenario, both in terms
of the variability of services involved and of context changes affecting its oper-
ation. In particular, the system should be open and extensible, which means
that new services (e.g., a new tracking device), as well as changes in existing

386 A. Bucchiarone et al.

services (e.g., changes in parents authorization procedure, changes in any third
party system) should require minimum maintenance. This is made particularly
challenging by the collective nature of the services to be provisioned, since their
operation requires the collaboration of different autonomous actors (school, par-
ents associations, transport departments, local police), and it results in a high
degree of connection and interdependencies among system components (as shown
in Fig. 1).

3 General Framework and Approach

In this section we present the proposed approach for modeling and executing dis-
tributed adaptive service-based systems, such as the SCMS described in Sect. 2.

The system is modeled through a set of domain objects representing system
components. Each domain object is characterized by a core process, implement-
ing its own behavior, and a set of process fragments, representing the function-
alities it provides (see Fig. 2). Fragments [5,11] are executable processes that
communicate with the core process and that can be received and executed by
other domain objects.

Fig. 2. Domain object model Fig. 3. Domain properties modeled as STS

Unlike traditional system specification, where components’ behavior are com-
pletely specified, our approach allows the partial specification of the expected
operation of domain objects through abstract activities that can be refined at
run-time according to the fragments offered by the other domain objects in the
system. For instance, the Device manager (see Fig. 4) can partially define the
functionality for the localization of a device. Different smart devices can join
the system and publish different tracking procedures. At run-time, when the
device to be tracked is known (e.g. smart bracelet), the Device manager will use
the fragments offered by the specific device to refine its abstract activity and
to eventually locate the device. Abstract activities can be used both in the core
process of a domain object as well as in the fragments it provides. The latter

Design for Adaptation of Distributed Service-Based Systems 387

case is more complex, and enables a higher level of dynamicity, since it allows
a domain object to expose a partially specified fragment whose execution does
not rely only on communications with its core process but also on fragments
provided by other domain objects, thus enabling a “chain of refinements”.

These dynamic features offered by the framework rely on a set of concepts,
describing the operational environment, on which each domain object has a
partial view. In particular (see Fig. 2), the internal domain knowledge captures
the behavior of the domain concept implemented by the domain object, while
the external domain knowledge represents domain concepts that are required to
accomplish its behavior but for whose implementation it relies on other domain
objects. Domain knowledge (both internal and external) is defined through
domain properties, each giving a high-level representation of a domain concept
(e.g. WSB route, child trip, device handler).

Consider for instance the domain property Child trip in Fig. 3 that models
the typical daily trip of a child using a mobility service offered by the SCMS
(e.g. walking bus). The participation of the child needs to be CONFIRMED, than
the child reaches the pick up point (AT PICK-UP POINT) and she is PICKED-UP by
a volunteer when she joins the ride. During the journey she might be ON-PATH

(this is used to model the fact that at some times the system is certain of her
position) and she eventually reaches the school (ARRIVED).

Each abstract activity is defined in terms of the goal it needs to achieve,
expressed as domain properties’ states to be reached. It is automatically refined
at run-time, considering the set of fragments currently provided by other domain
objects, the current domain knowledge configuration, and the goal to be reached.
Activities in processes and fragments are annotated with preconditions and effects.
Preconditions constrain the activity execution to specific domain knowledge con-
figurations. For instance, in Fig. 4, the precondition P2: Device tracker = active

says that, to execute the fragment Geo-locate device in the Bracelet domain
object, the domain property Device tracker (see Fig. 3) must be in the state
active. Effects model the expected impact of the activity execution on the
domain and represent its evolution in terms of domain properties events. For
instance, in Fig. 4, the effect E2: On route verifier.verified models the evolu-
tion of the On route verifier domain property (see Fig. 3).

Preconditions and effects are used to model how the execution of fragments
is constrained by and evolves the domain knowledge. This information is used to
identify the fragment (or composition of fragments) that can be used to refine
an abstract activity in a specific domain knowledge configuration.

The resulting adaptive system is a dynamic network of domain objects.
Potential dependencies (soft dependencies, from here on) are established between
a domain object and all those domain objects in the system whose provided func-
tionality (internal domain knowledge) matches with one of its required behaviors
(domain property in its external domain knowledge). A soft dependency between
two domain objects becomes a strong dependency if, during the system execu-
tion, they inter-operate by injecting and executing a fragment. The external
domain knowledge of a domain object is not static since, if during a refinement

388 A. Bucchiarone et al.

Fig. 4. A detailed example of dynamic refinements on the SCMS scenario

a domain object injects a fragment containing abstract activities in its own core
process, it receives also the domain properties on which the fragment execution
relies on, thus spanning its external knowledge. This dinamicity is reflected in
the soft dependencies between domain objects because new dependencies might
be established due to refinements.

In the following we present in details the different forms of refinement sup-
ported by the approach and how the adaptive system evolves at run-time. Con-
sider, for instance, the scenario in Fig. 4 where a parent, or the school, wants to
verify if a child is on the route of the WSB to which she has been subscribed.

Step 1. During the execution of the core WSB application process the abstract
activity monitor child position needs to be refined. Its goal G1: Child Trip =

Design for Adaptation of Distributed Service-Based Systems 389

on path is defined over the Child Trip domain property (see Fig. 3). The refine-
ment mechanism is triggered. The WSB child trip domain object implements the
child trip domain property and exposes, among others, the fragment check on

path. Supposing that this fragment is selected for the refinement, the first step
of the refinement process consists in the injection of the check on path fragment
in the behavior of the WSB application. Moreover, since the injected fragment
contains an abstract activity, namely on route, the WSB application, together
with the fragment, inherits the domain property on which the goal G2: On Route

Verifier = on route is defined (Step 1 in Fig. 4). Thus, the WSB application

domain object dynamically extends its knowledge boundaries and will use the
received domain property to discover new domain objects (i.e., on WSB route

verifier) and their related fragments. This step shows how fragments, together
with domain knowledge, are exchanged by domain objects and injected at run-
time in the core process. In particular, the WSB child trip domain object does
not refine the on route abstract activity in its fragment, thus leaving the respon-
sibility to refine it to the receiver domain objects.

Step 2. The check on path fragment, executed in the WSB application core
process, communicates with the internal process of WSB child trip, which imple-
ments the functionality. During the execution of the WSB child trip process,
the abstract activity track child needs to be executed. This activity has been
defined as abstract since its execution depends on the tracking procedure sup-
ported by the device. The goal G3: Device Handler = localized on track child

activity is expressed over Device handler domain property (see Fig. 3). The
device handler behavior is offered by the Device manager through its fragment
Locate device. A strong dependency is established between WSB child trip and
Device manager, and the locate device fragment is injected in place of the track

child activity (Step 2 in Fig. 4). This is an example in which, as opposite to
Step 1, a domain object has an abstract activity in its core behavior, thus hiding
to potential users of his fragments the fact that his behavior depends on third
parties fragments.

Step 3. The execution of Locate device starts the execution of the Device

manager’s core process, which allows a device to be localized. The Device manager

process contains an abstract activity, Localize device, which can be refined in
different ways depending on the device to be tracked. This allows the Device

manager to track any kind of smart object connected to the network, provided
that it offers the possibility to be tracked. In our example, supposing that the
child to be tracked has a bracelet, the Localize device activity is refined exploit-
ing the functionalities offered by the Bracelet domain object. In this case, it offers
the Check device fragment to verify the GPS connection’s availability and, the
Geo-locate device fragment to ask for the current position. Since the Geo-locate

device fragment, needed to accomplish the goal G4, is constrained by the precon-
dition P2: Device tracker = active, the Check device fragment is selected and
composed with it as its execution, thanks to effect E4, satisfies the precondition
P2. The obtained fragments’ composition is then injected in place of the localize

device activity (Step 3 in Fig. 4).

390 A. Bucchiarone et al.

Step 4. The execution goes back to Check on path fragment in the core process
of WSB application. Once child position has been obtained, last step consists in
verifying if the child is on the route of the WSB. The On route abstract activity
can be refined. The WSB application exploits the domain knowledge received by
the WSB Child Trip in Step1, to find the fragments to refine the abstract activity.
The Check on route fragment is selected and injected in the WSB application

(Step 4 in Fig. 4) and the whole refinement process ends.

4 Evaluation

In this Section we evaluate the proposed solution both in terms of its effectiveness
in defining adaptive systems that are resilient to a wide range of changes and
in terms of the scalability of the automated composition techniques used for the
refinement of abstract activities.

TYPE CHANGE PROBABILITY IMPACT SUPPORTED SOLUTION IMPACT POSSIBLE SOLUTIONS

Add component
(internal/external)

High Local
Add domain object,

new soft dependencies
None -

Add provided functionality High Local
Add fragment in domain object,

new soft dependencies
None -

Behavioral / structural change in
provided functionality

Medium Local
Change fragment specification

(activities, preconditions, effects)
None / Local

 Multiple process variants (None).
Re-refinement (Local).

Remove functionality Low Local
Remove fragment,

reduction in soft dependencies
None -> Broad

 Multiple process variants (None).
Re-refinement chain (Broad).

Remove component Low Local
Remove domain object,

reduction in soft dependencies
None -> Broad

 Multiple process variants (None).
Re-refinement chain (Broad).

New domain concept Medium Local
Add domain property and new domain

objects/framents implementing it
None -

Change in a domain concept Low Broad
Update domain property and all related
fragment annotations in domain objects

None -> Broad
 Multiple process variants (None).

Multiple re-refinement chains (Broad).

SY
ST

E
M

ADAPTIVE SYSTEM MODEL RUNNING INSTANCES

D
O

M
A

IN

Fig. 5. Impact of system- and domain-level changes on an adaptive system instance

In Fig. 5 we list a set of changes typical of systems operating in the Internet
of Services. For each change, together with its probability to occur, we present
its impact on the adaptive system. We distinguish system-level and domain-level
changes. Among system-level changes we have: the need to include new compo-
nents (e.g. a new kind of wearable device in the SCMS), remove components,
add/remove functionalities to existing components (e.g., the new version of the
WSB Child Trip component allows changing pick-up point for a specific ride),
as well as changing the operation (both in terms of behavior or data structures)
of existing functionalities. With domain-level changes we mean changes in the
domain concepts on which the dynamic operation of the adaptive system relies
on (domain knowledge model).

When analyzing the resilience of the system to changes, we consider both the
impact on the adaptive system model, that is, domain objects models on which
future instances will be based, and on the running instances. In both cases we

Design for Adaptation of Distributed Service-Based Systems 391

present the impact of the change in terms of its scope (local to the affected
component vs broad) and of the activities to be performed to apply the change
to the system (Solution).

As emerges from Fig. 5, the resulting adaptive system model is resilient to
all system-level changes (local impact). Moreover, the only change at domain-
level having a broad impact is the case in which a domain concept needs to be
revised. However, this latter change is the least likely to occur, since it implies a
revision in the standard operation of a domain concept. This is usually related
to changes in a business procedure or regulation, or when the way of doing
something changes in a disruptive way (e.g., a completely new way of tracking
a device).

If we consider the impact on running instances the situation is more complex.
This is due to the fact that process instances, within domain objects instances,
might be connected through strong dependencies, since some abstract activities
have been refined with process fragments. For this reason, if the change concerns
adding a new component or functionality, or a new domain concept to the sys-
tem, then there is no impact at all on the running instances; whereas in some
other cases the impact might span the instances subject of change and affect
other instances in the system (broad impact). In Fig. 5 we suggest some possible
solutions to limit the impact of the change or, in case this is not possible, to
deal with it without affecting the system operation. A very effective solution,
that makes every change transparent to running instances, is based on the com-
bination of the proposed approach with techniques supporting multiple process
variants (e.g. approaches based on software product lines such as the one in [9]).
This would allow the definition of a new variant of the system according to the
required change, on which all new instances will be based, and keep the old ver-
sion of the system as a sibling variant on which running instances can continue
their operation.

To conclude, we will briefly discuss the scalability of the automatic refinement
techniques on which the approach is based. The key question is whether it is
feasible to solve large number of refinement problems at run-time, each involving
a potentially large set of domain objects and available fragments. The refinement
mechanisms proposed in Sect. 3 have been implemented in the ASTRO-CAptEvo
Framework [2] and tested on a real-world car logistic scenario (for a detailed
description of the experiments please refer to [2]). The experiments consider over
2500 refinement problems on an adaptive system with 29 domain object types,
69 process fragment models and 40 domain properties models. On average, an
adaptation problem contained 7 process fragments that could potentially be used
in the final solution, and, as such, were presented in the planning domain. The
experiments show that 90 % of problems were resolved within 0.1 seconds and
99 % within 10 seconds. These results, based on advanced optimization (problem
reduction) and solution reuse techniques, clearly prove the feasibility of on-the-
fly refinement for adaptive systems.

392 A. Bucchiarone et al.

5 Related Works and Conclusions

In this paper we propose a design for adaptation approach that, exploiting
advanced service refinement and re-configuration techniques, supports the design,
development, and operation of service-based systems that are resilient to a wide
range of changes. Various other approaches have been proposed in this direction.
In the following we consider those approaches that might be applied in scenarios
similar to the SCMS presented in this paper.

We will start by analyzing rule-based approaches. We mention MoDAR [12],
a model-driven approach for the development of adaptive service-based systems.
Rules are used to capture the variable part of a business process and linked
in specific cutting points of the base process. In [8], the authors tackled the
problem of the unpredictable execution of service-based applications by mod-
eling composite services as artifacts that can change at runtime. Here, rules
are used to model adaptation needs (events) and adaptation actions, from the
design-time phase. However, rules are not suitable for managing continuous and
unpredictable changes in open environments, since they require human interven-
tion to be revised.

Another category of approaches, quite close to our proposal, that emerged
in recent years are artifact-centric approaches. In [7] the authors present a for-
mal framework defining Business Artifacts which represent conceptual entities
made of their attributes and states, their tasks modeling services performed
on such artifacts and business rules defined in ECA style specifying the life-
cycle of an individual artifact, as well as the control logic of a process executing
between interacting artifacts. Although the work in [7] supports flexibility and re-
usability, it suffers from the same limitations of rule-based approaches described
in previous paragraph.

Other works [3,9] exploit the concepts of dynamic software product lines
(DSPL) [6]. In DSPL a software family is analysed as a whole and both common
and reusable assets are established, together with the possible customizations
of the application. Feature models are used to specify alternative variations
that can be used for adaptation. In [3] the authors bring forward the idea of
their previous approach, called DAMASCo [4], which mainly consists in allowing
services reuse in pervasive systems, and provide an extension based on both SOA
and DSPL. Feature models are used to represent the variability of the services by
modeling families of adaptable software products and to allow, as a consequence,
the realization of dynamic service composition in a context-aware manner. In [9]
the authors present LateVa, where similar processes containing common and
variable parts are called process variants. Base process models are annotated
with variation points where fragments can be dynamically entered. In this way,
both software reuse and run-time variability are addressed. The main limitation
of DSPL-based approaches is that they assume a close world where process
variants (and thus fragments) are pre-defined. For this reason, these approaches
do not fit well in open environments in which system components, and their
provided functionalities, can enter or leave the system in any moment.

Although the approach proposed in this paper might overcome some limita-
tions of existing works in the field, there are several open issues we would like

Design for Adaptation of Distributed Service-Based Systems 393

to deal with in the near future. Among them, the most important is an on-the-
field evaluation of the approach experimenting the SCMS with end-users. A key
extension is the possibility of verifying the current state of the external domain
knowledge of each domain object through monitoring facilities offered by other
domain objects (at the moment the state evolves considering only the effect
annotations on the received fragments and might not be aligned with the real
world situation). Another important extension concerns the support for other
forms of run-time adaptation (e.g., reaction to a context change observed by
monitoring the environment).

Acknowledgment. This work is partially funded by 7th Framework EU-FET project
600792 ALLOW Ensembles.

References

1. Bucchiarone, A., Cappiello, C., Di Nitto, E., Kazhamiakin, R., Mazza, V., Pistore,
M.: Design for adaptation of service-based applications: main issues and require-
ments. In: Dan, A., Gittler, F., Toumani, F. (eds.) ICSOC/ServiceWave 2009.
LNCS, vol. 6275, pp. 467–476. Springer, Heidelberg (2010)

2. Bucchiarone, A., Marconi, A., Mezzina, C.A., Pistore, M., Raik, H.: On-the-Fly
adaptation of dynamic service-based systems: incrementality, reduction and reuse.
In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274,
pp. 146–161. Springer, Heidelberg (2013)

3. Cubo, J., Gamez, N., Fuentes, L., Pimentel, E.: Composition and self-adaptation
of service-based systems with feature models. In: Favaro, J., Morisio, M. (eds.)
ICSR 2013. LNCS, vol. 7925, pp. 326–342. Springer, Heidelberg (2013)

4. Cubo, J., Pimentel, E.: DAMASCo: a framework for the automatic composition of
component-based and service-oriented architectures. In: Crnkovic, I., Gruhn, V.,
Book, M. (eds.) ECSA 2011. LNCS, vol. 6903, pp. 388–404. Springer, Heidelberg
(2011)

5. Eberle, H., Unger, T., Leymann, F.: Process fragments. In: Meersman, R., Dillon,
T., Herrero, P. (eds.) OTM 2009, Part I. LNCS, vol. 5870, pp. 398–405. Springer,
Heidelberg (2009)

6. Hallsteinsen, S.O., Hinchey, M., Park, S., Schmid, K.: Dynamic software product
lines. IEEE Comput. 41(4), 93–95 (2008)

7. Hull, R., Damaggio, E., De Masellis, R., Fournier, F., Gupta, M., Heath, F.T., Hob-
son, S., Linehan, M.H., Maradugu, S., Nigam, A., Sukaviriya, P.N., Vacuĺın, R.:
Business artifacts with guard-stage-milestone lifecycles: managing artifact interac-
tions with conditions and events. In: DEBS 2011

8. Hussein, M., Han, J., Yu, Y., Colman, A.: Enabling runtime evolution of context-
aware adaptive services (2013)

9. Murguzur, A., Trujillo, S., Truong, H.L., Dustdar, S., Ortiz, Ó., Sagardui, G.:
Run-time variability for context-aware smart workflows. IEEE Software 32, 52–60
(2015)

10. Pistore, M., Traverso, P., Paolucci, M., Wagner, M.: From software services to a
future internet of services. In: Future Internet, Assembly, pp. 183–192 (2009)

11. Sirbu, A., Marconi, A., Pistore, M., Eberle, H., Leymann, F., Unger, T.: Dynamic
composition of pervasive process fragments. In: ICWS, pp. 73–80. IEEE (2011)

12. Yu, J., Sheng, Q.Z., Swee, J.K.Y.: Model-driven development of adaptive service-
based systems with aspects and rules. In: Chen, L., Triantafillou, P., Suel, T. (eds.)
WISE 2010. LNCS, vol. 6488, pp. 548–563. Springer, Heidelberg (2010)

Industry Track Papers

Automatic Deployment of Services in the Cloud
with Aeolus Blender

Roberto Di Cosmo1, Antoine Eiche2, Jacopo Mauro3(B), Stefano Zacchiroli1,
Gianluigi Zavattaro3, and Jakub Zwolakowski1

1 University of Paris Diderot, Sorbonne Paris Cité, PPS, CNRS, Paris, France
2 Mandriva S.A, Paris, France

3 Department of Computer Science and Engineering,
University of Bologna/INRIA FoCUS, Bologna, Italy

jmauro@cs.unibo.it

Abstract. We present Aeolus Blender (Blender in the following), a
software product for the automatic deployment and configuration of
complex service-based, distributed software systems in the “cloud”. By
relying on a configuration optimiser and a deployment planner, Blender
fully automates the deployment of real-life applications on OpenStack
cloud deployments, by exploiting a knowledge base of software services
provided by the Mandriva Armonic tool suite. The final deployment is
guaranteed to satisfy not only user requirements and relevant software
dependencies, but also to be optimal with respect to the number of used
virtual machines.

1 Introduction

The cloud market is now a reality able to modify companies behaviour. The
needs for solutions or efficient tools to support development activities for the
profitability of the company is becoming more and more important. The new
perspectives of IT usage (mobility, social networks, Web 2.0, Big Data) has
brought the world into a new digital revolution. The first consequence is an
explosion in the needs for computing and storage. According to an IDC study
[23], digital data created in the world will increase to 40 Zettabytes in 2020.
Faced with this, CIOs need to change, becoming more and more service-based
and evolve their IT towards virtualized platforms and cloud (IAAS, PAAS, and
SAAS) to address issues related to infrastructure growth, the need for power
and provision computing resources on demand from internal or third party.

The CloudIndex study [34], conducted in partnership with Capgemini and
Orange Business Services, indicates that 30 % of respondents (300 companies)

This work was supported by the EU projects FP7-610582 Envisage: Engineering
Virtualized Services (http://www.envisage-project.eu), FP7-644298 HyVar: Scal-
able Hybrid Variability for Distributed, Evolving Software Systems (http://www.
hyvar-project.eu), and the ANR project ANR-2010-SEGI-013-01 Aeolus. It was par-
tially performed at IRILL, center for Free Software Research and Innovation in Paris,
France, http://www.irill.org.

c© Springer-Verlag Berlin Heidelberg 2015
A. Barros et al. (Eds.): ICSOC 2015, LNCS 9435, pp. 397–411, 2015.
DOI: 10.1007/978-3-662-48616-0 28

http://www.envisage-project.eu
http://www.hyvar-project.eu
http://www.hyvar-project.eu
http://www.irill.org

398 R. Di Cosmo et al.

have a cloud strategy and three quarters of them are planning to dedicate
resources to this strategy. Two main directions emerge: homogenise the applica-
tion portfolio and facilitate the deployment of applications.

Driven by this business need, several tools have been developed and used rou-
tinely to help system architects and administrators to automate at least some of
the deployment and configuration phases of the complex service application in
the cloud. For instance, configuration managers like Puppet [35] and Chef [33]
are largely used by the “DevOps” community [13] to automate the configuration
of package-based applications. Domain specific languages like ConfSolve [22] or
Zephyrus [10] can be used to compute—starting from a high-level partial descrip-
tion of the application to be realised—an (optimal) allocation of the needed soft-
ware components to computing resources. Tools like Engage [15] or Metis [26]
synthesise the precise order in which low-level deployment actions should be
executed to realise the desired application.

Despite the availability of such tools, the mainstream approach for deploy-
ing cloud applications is still to exploit pre-configured virtual machines images,
which contain all the needed software packages and services, and that just need
to be run on the target cloud system (e.g., Bento Boxes [16], Cloud Blueprints [8],
and AWS CloudFormation [2]). However, the choices of the services to use (e.g.,
WordPress installed with Apache or Nginx, with NFS or GlusterFS support)
lead to an explosion of configurations that can hardly be matched by the offered
set of pre-configured images. Moreover, pre-configured images often force the
user to run her application on specific cloud providers, inducing an undesirable
vendor lock-in effect.

Arguably, the adoption of pre-configured images is still the most popular
approach due to the lack of integrated solutions that support system designers
and administrators throughout the entire process, ranging from the high-level
declarative description of the application to the low-level deployment and config-
uration actions. In this paper we describe Blender, a software product maintained
by Mandriva, which is based on the approach taken by the Aeolus project [7]
that strives to overcome the limitations of using pre-configured images.

More precisely, Blender integrates three independent tools:

Zephyrus [10]. A tool that automatically generates, starting from a partial
and abstract description of the target application, a fully detailed service
oriented architecture indicating which components are needed to realise such
application, how to distribute them on virtual machines, and how to bind
them together. Zephyrus is also capable of producing optimal architectures,
minimising the amount of needed virtual machines while still guaranteeing
that each service has its needed share of computing resources (CPU power,
memory, bandwidth, etc.) on the machine where it gets deployed.

Metis [25,26]. A planner that generates a fully detailed sequence of deployment
actions to be executed to bring an application to a desired configuration (e.g.,
as the one produced by Zephyrus). Plans are made of individual deployment
actions like installing a software artefact, changing its state according to
its internal life-cycle, provisioning virtual machines, etc. Metis relies on an

Automatic Deployment of Services in the Cloud with Aeolus Blender 399

ad hoc planning algorithm that exploits service dependencies to prune the
search space and produce the needed deployment steps very efficiently (i.e.,
provably in polynomial time). Metis could produce plans involving hundreds
of components in less than one minute.

Armonic [27]. A collection of scripts and libraries that, starting from a knowl-
edge base of information about available software artefacts, allows for the
deployment of software applications and services on several Linux distrib-
utions. Each software artefact has a list of states, and each state performs
actions to deploy and configure the associated software component on the
target distribution.

By exploiting the above tools, Blender realises a framework that supports system
architects and administrators all the way from the design phase down to the
deployment on a cloud infrastructure. The present paper extends [10,25–27] by
offering a tighter integration among the three tools and by adding an actual user
interface that turns Blender into a real, production-ready solution.

A declarative approach is adopted throughout Blender, according to which
only a minimal amount of information needs to be initially given. For instance, it
is sufficient to indicate the main services the application should expose to appli-
cation users, plus non-functional requirements like the desired level of replication
(for load balancing and/or fault tolerance) for critical service instances. From
this initial information, Blender computes the complete architecture of the appli-
cation and supports the administrator in the deployment phases, during which
only context-dependent configuration variables needs to be manually instanti-
ated.

Paper Structure. Section 2 presents Blender from the point of view of the users,
by showing how to realise a real-life, moderately complex service-based cloud
application: a replicated, load-balanced deployment of the WordPress blogging
platform. Section 3 enters into more details, by showing what happens behind
the scenes when Blender is used to realise the case study of Sect. 2. Section 4
points to the open source implementation of Blender. Before concluding, Sect. 5
reviews related literature and tools.

2 Deploying a WordPress Farm with Blender

We consider the deployment of a so-called “WordPress farm”, i.e., a load bal-
anced, replicated blogging service based on WordPress.1 A typical approach to
deploy this kind of application is to rely on specific services listed in Table 1.

Instead, of adopting pre-configured virtual machines, on which instances of
these software artifacts have been installed, our approach starts from reusable,
abstract descriptions of these services, collected in the Armonic knowledge base.
Only a limited amount of case-by-case information must be provided by the user.
From these elements (the abstract description of the available software artifacts

1 https://wordpress.com/.

https://wordpress.com/

400 R. Di Cosmo et al.

Table 1. Software components used to deploy a WordPress farm

WordPress a blogging tool based on PHP;
Galera Cluster for MySQL: a multi-master cluster of MySQL databases syn-

chronously replicated;
HAProxy a load balancer for TCP and HTTP-based applications spreading requests

across multiple servers;
Varnish an HTTP accelerator designed for content-heavy dynamic web sites support-

ing dynamic load balancing;
HTTP Server a software component serving web server requests;
NFS client/server an application implementing a distributed file system.

and the additional specific user-defined information), Blender synthesises and
then deploys the entire application.

When executing Blender, the first piece of information the user will need to
provide is an indication of the desired front-end service to be deployed, in this
case the Varnish load balancer. Based on this initial piece of information, Blender
will guide the user through an interactive question/answer phase, during which
the main services needed to complete the application are chosen, and service-
dependent additional information are asked to the user. The kind of information
requested to the user in this second phase typically deals with desired installation
policies, which usually vary on a case-by-case basis. For instance, as shown in
Fig. 1a, once Varnish and WordPress with NFS is chosen, two different solutions
for the database are proposed (i.e., single shared installation or multi-master
replication based on Galera). As shown in Fig. 1b the user can then also specify
that specific service pairs cannot be co-installed on the same virtual machine
(e.g., WordPress cannot be installed with Galera for performance reasons) or
that two services have to be co-installed (e.g., WordPress and HAProxy are
installed on the same machine for fault tolerance reasons). This information
cannot be automatically inferred, as it depends on specific properties like the
expected workload, so user guidance is required.

Once these pieces of information are entered, Blender translates the descrip-
tion of the Armonic services into the Aeolus component-based model represen-
tations used by Zephyrus and Metis. In particular, Zephyrus synthesises the full
architecture of the installation, indicates how many and which kind of virtual
machines are needed, and distributes the services onto such machines. Subse-
quently, Metis computes the sequence of deployment actions needed to reach
the final configuration produced by Zephyrus.

The computed plan is not ready to be executed yet, because some system-
level configuration parameters are still missing (e.g., administrative passwords,
credentials, etc.) and should be provided by the user. Blender asks the user for
these information and, once all the configuration data is available, it proceeds
to create the virtual machines computed by Zephyrus on the target OpenStack

Automatic Deployment of Services in the Cloud with Aeolus Blender 401

(a) Selection choice: MySQL or a MySQLs replicated via HaProxy?

(b) Deciding and forbidding co-installation.

Fig. 1. User inputs for WordPress installation

infrastructure. Then, Blender uses Armonic to deploy and configure components
by executing state changes, according to the Metis deployment plan.

In our example, during the interactive Q/A phase we have chosen Varnish
to balance the traffic between 2 WordPress servers, NFS support, and 3 Galera
instances. Moreover, we chose to inhibit co-installation of WordPress with Galera
or the NFS Server, and to install HAProxy on every machine where WordPress
is installed. The only additional piece of information asked by Blender as config-
uration data were the admin passwords for the DBs and HAProxy services.

The final architecture produced by Blender is depicted in Fig. 2. The instal-
lation requires 6 machines, 3 running Debian and 3 MBS (Mandriva Business
Server). It took approximately 7 min to deploy such architecture on a simple
OpenStack infrastructure deployed on an Intel Xeon server with 4 cores. The
computation of the final configuration and the deployment plan was almost
instantaneous: the execution of Zephyrus and Metis required less than a sec-
ond while the most time consuming task was the deployment of the Galera

402 R. Di Cosmo et al.

Fig. 2. Deployed WordPress farm architecture

Cluster that required 3 min and half (1 min and 10 s for every instance). The
other services were deployed instead in less than a minute.

3 Blender Internals

As depicted in Fig. 3, Blender is intended to be used in combination with an
XMPP server and an OpenStack cloud installation. Blender is realised as an
XMPP client that wraps and combines the tools Zephyrus, Metis, and Armonic
and exposes its functionalities via ad hoc commands.2 Basically, such commands
are used to launch Zephyrus, view the graph representing the computed final con-
figuration, fill the configuration variables, and perform the deployment actions
according to the plan produced by Metis. It is possible to interact with Blender
via a Web user interface or the command line. An advantage of this architecture
is that new elements can be added by wrapping them as simple XMPP clients.
For instance, other IaaS offers can be easily added in addition to the currently
supported OpenStack.

Blender relies on scripts that integrate Zephyrus, Metis, and Armonic follow-
ing the execution flow depicted in Fig. 4. Such workflow requires two distinct

2 http://xmpp.org/extensions/xep-0050.html.

http://xmpp.org/extensions/xep-0050.html

Automatic Deployment of Services in the Cloud with Aeolus Blender 403

Fig. 3. Blender environment

inputs: an Armonic service repository, and a high-level description of the desired
application to be deployed.

Armonic associates to every service a life-cycle that can be conceptually
viewed as a state machine representing the different steps that need to be per-
formed in order to deploy the service. For example, a service could have an
associated state machine with 4 states: not installed, installed, configured, and
active. Each state is usually associated to a collection of actions that need to
be performed to enter into or exit each state, and actions that can be invoked
on the service when a state has been entered. Technically speaking, states are
implemented as Python classes, and actions are class methods. Each state has at
least enter and leave hooks that are invoked when a state is entered and exited.
Actions to be performed require the instantiation of a group of variables captur-
ing information such as the required services, or the needed configuration values
(with their default or optional values). In some cases, the required functional-
ities should be local when they must be provided in the same host where the
component is deployed. For instance, in our running example, the NFS client is
a local dependency of WordPress because an active WordPress needs an NFS
client to be installed on the same machine.3

The first step of the Blender execution flow is querying the user to gather her
desiderata. This task is performed by the Builder that asks the user for the ser-
vices she wants to install, their desired replication constraints, and information
about the need or impossibility to co-install onto the same host specific pairs of
services.

When the user has entered all this information, the Builder queries the
Armonic service repository and generates:

3 For more information related to Armonic services we refer the interested reader to
[28].

404 R. Di Cosmo et al.

Fig. 4. Blender execution flow

specification file containing the encoding of the constraints that should be
satisfied in the final configuration expressed in the specification language
used by Zephyrus;

universe file containing the Aeolus component representations [11] of available
services, in the JSON format used by both Zephyrus and Metis;

configuration data file containing indications about the system-level config-
ured data needed to configure Armonic services. Some of them, if not already
provided, will have to be entered by the user later on (e.g., credentials). Other
data may be inferred from the configuration parameters of other components
(e.g., WordPress can suggests a database name to its database dependency).

An excerpt of the specification file generated from user input for the running
example is as follows:

Varnish:Active >= 1
and #(_){_ : #Galera:Active > 0 and

#Wordpress:ActiveWithNfs > 0 } = 0

The first line requires a final configuration to have at least one Varnish service in
the Active state. The second and third lines forbid the co-installation of Galera
with WordPress. This is obtained requiring that the number of virtual machines
having at least one Galera and one WordPress is 0.

The universe file is generated by encoding Armonic services into Aeolus com-
ponents, which faithfully capture states and transitions. In Aeolus terminology,

Automatic Deployment of Services in the Cloud with Aeolus Blender 405

methods exposed by states become provide ports. These methods and special
state methods (e.g., enter and leave) can expose dependencies which become
require ports. As an example, a graphical representation of the Aeolus model for
the WordPress service of our example is given in Fig. 5. WordPress is depicted as
a 5 state automaton, requiring the add database functionality from the HAProxy
to be configured, the start and get document root functionalities to be active,
and the mount functionality from the NFS client to support the NFS. When
active with NFS support, WordPress will provide the get website functionality
to other services.

Since theAeolusmodel abstracts away fromconfiguration data, these are stored
in the configuration data file, which will be later used to perform deployment.

@Haproxy/Active/add_database

Template

wordpress

@Httpd/Configured/get_document_root

Configured

Active

ActWithNFS @Nfs_client/Active/mount

@Httpd/Active/start

@Wordpress/ActiveWithNfs/get_website

Installed

Legend

Component

State

Initial State

Provide Port

Require Port

Fig. 5. Aeolus representation of the WordPress component

The universe file generated by the Builder is subsequently post-processed in
order to merge together services that must be installed on the same machine.
For instance, in our example, the WordPress services needs an NFS client to be
installed on the same machine. These two services are therefore merged together
obtaining a new service that consumes the sum of the resources. This simplifies
the input of Zephyrus, reducing the number of services to be managed, thus
speeding up the computation of the final optimal configuration, i.e., the one
that uses the smallest number of virtual machines.

The solution computed by Zephyrus is then processed to decouple the ser-
vices that were previously merged together. Indeed, while Zephyrus abstracts
away from the internal life-cycles of the service, Metis needs to consider individ-
ual automata to compute the needed deployment actions. Metis then takes the
post-processed output of Zephyrus and the original Universe file to compute a
deployment plan to reach the final configuration.

At this point the user is asked to provide the missing configuration data for
the final deployment. The configuration data file generated by the Builder is
processed together with the output of Zephyrus to detect which services should

406 R. Di Cosmo et al.

be installed and then fill the missing data querying the user if needed. This task
is performed by a component dubbed Filler that uses several Armonic libraries
to deduce configuration variables from default values when possible.

Once all the configuration information are filled in, the plan produced by
Metis and the configuration data file are passed to the Launcher, a Python
tool that acquires and bootstraps the virtual machines indicated in the output
of Zephyrus using the OpenStack API, and transforms the abstract deployment
actions generated by Metis into concrete actions that are sent to Armonic agents
running on individual virtual machines.

4 Implementation

The complete toolchain presented in this paper is publicly available and released
as free software, under the GPL license. Blender consists of approximately 5k lines
of Python and is available from https://github.com/aeolus-project/blender. As
Blender is an integrator, it has as software dependencies the tools it integrates:

– Zephyrus that amounts to about 10k lines of OCaml and is available from
https://github.com/aeolus-project/zephyrus;

– Metis that amounts to about 3.5k lines of OCaml and is available from https://
github.com/aeolus-project/metis;

– Armonic that amounts to about 5k lines of Python, plus glue code for service
life-cycles written in shell script or Augeas and is available from https://
github.com/armonic/armonic.

Screencasts showing the use of Blender to deploy different WordPress installa-
tions are available at http://blog.aeolus-project.org/aeolus-blender/.

5 Related Work

Currently, developing an application for the cloud is accomplished by relying
on the Infrastructure as a Service (IaaS) or the Platform as a Service (PaaS)
levels. The IaaS level provides a set of low-level resources forming a “bare”
computing environment. Developers pack the whole software stack into virtual
machines containing the application and its dependencies and run them on phys-
ical machines of the provider’s cloud. Exploiting the IaaS directly allows a great
flexibility but requires also a great expertise and knowledge of both the cloud
infrastructure and the application components involved in the process. At the
PaaS level (e.g., [5,18]) a full development environment is provided. Applica-
tions are directly written in a programming language supported by the frame-
work offered by the provider, and then automatically deployed to the cloud. The
high-level of automation comes however at the price of flexibility: the choice of
the programming language to use is restricted to the ones supported by the PaaS
provider, and the application code must conform to specific APIs.

To deploy distributed applications at the IaaS level, different languages with
their deployment engines have been proposed. In this context, one prominent

https://github.com/aeolus-project/blender
https://github.com/aeolus-project/zephyrus
https://github.com/aeolus-project/metis
https://github.com/aeolus-project/metis
https://github.com/armonic/armonic
https://github.com/armonic/armonic
http://blog.aeolus-project.org/aeolus-blender/

Automatic Deployment of Services in the Cloud with Aeolus Blender 407

work is represented by the TOSCA (Topology and Orchestration Specification
for Cloud Applications) standard [32], promoted by the OASIS consortium [31]
for open standards. TOSCA proposes an XML-like rich language to describe an
application. Deployment plans are usually manually specified using the BPMN
or BPEL notations, workflow languages defined in the context of business process
modelling. Other similar deployment languages approaches are CloudML [17],
the Fractal-based language extending the OVF standard [14], and approaches
supporting the OASIS CAMP standard [30] such as Apache Brooklyn [3]. All
these approaches allow a form of abstraction of the configuration to deploy. How-
ever, contrary to what can be done in Blender, the configuration to deploy have to
be fully specified with all its configuration parameters and service dependencies.
Moreover, due to their lack of a production-ready tool support, these approaches
have seen a limited practical adoption so far. For this reason, as previously men-
tioned, the most common solution for the deployment of a cloud application is
still to rely on pre-configured virtual machines (e.g., Bento Boxes [16], Cloud
Blueprints [8], and AWS CloudFormation [2]).

Another common, but more knowledge-intensive solution, is to use configura-
tion management tools which allows application managers to avoid some of the
drawbacks of pre-configured images (e.g., lack of flexibility, lock-in mechanism)
at the price of requiring a deep knowledge and expertise of the management tool
and the configuration to realise.

One of the most similar approach to Blender is Engage [15], a tool that
automatically generates the right order in which deployment actions should be
performed to deploy some services. Engage avoids circular service dependencies
and therefore the deployment plan can be generated by a simple topological
sort of the graph representing the service dependencies. This is a significant
limitation w.r.t. Blender because circular dependencies can arise in practice when,
for instance, configuration information flow between services in both directions
(consider, e.g., a master database that first requires the slave authentication and
subsequently provides the slave with a dump of the database). Moreover, Engage
does not provide a production-ready tool support.

Other commercial configuration management tools are instead Terraform [19],
Juju [24], Cloudify [9], Rudder [29], and Scalr [37]. Terraform [19] is a config-
uration tool to describe both resources and services used to remotely execute
a sequence of low-level deployment actions. However, it lacks a mechanism to
describe the relationships between software services. Juju [24] is a tool and
approach by Canonical, dedicated to the management of Ubuntu-based cloud
environments. It is more a software orchestration framework than a proper con-
figuration tool as it focuses on services and their relationships, to the detriment
of many low-level aspects. Cloudify [9] is a software suite for the orchestration
of the deployment and the life cycle of applications in the cloud. It is based on a
meta language to describe a deployment plan and a monitoring software used to
follow the application behaviour and to trigger a set of tasks to perform. Rud-
ders [29] is an open source web solution dedicated to the production, automation
and configuration of application deployment using CFEngine [6] and providing

408 R. Di Cosmo et al.

real-time monitoring of the application trying to ensure its compliance using
a rule base mechanism. Scalr [37] is an open source web application for cloud
services management. Scalr uses the API of major cloud providers to deploy
templates containing a Scalr agent that allows for fine grained interaction with
supported services such as MySQL, Apache, etc.

All these commercial configuration management tools are used to declare the
services to be installed on each machine and their configuration. However, con-
trary to Blender, the burden of deciding where services should be deployed, and
how to interconnect them is left to the operator. Furthermore, no offering com-
putes the final and optimal configuration starting from a partial specification,
nor can devise the order in which deployment actions must be performed.

Other related works are ConfSolve [22] and Saloon [36]. ConfSolv is an acad-
emic approach that relies on a constraint solver to propose an optimal allocation
of virtual machines to servers, and of application services to virtual machines.
Saloon instead computes a final configuration by describing a cloud application
using a feature model extended with feature cardinalities. Unfortunately, Conf-
Solve does not compute the actions needed to reach the computed configuration
while Saloon automatically detects inconsistencies but, differently from Blender,
it does not offer the ability to minimise the number of resources and virtual
machines to be used.

Another relevant research direction leverages on traditional planning tech-
niques and tools coming from artificial intelligence. In [4,20,21] off-the-shelf plan-
ning solvers are exploited to automatically generate (re-)configuration actions.
To use these tools, however, all the deployment actions with their precondi-
tions and effects need to be properly specified in a formalism similar to the
Planning Domain Definition Language (the de facto standard language for plan-
ners). The Blender approach, on the other hand, relies on simpler and natural
service descriptions (i.e., state machines describing the temporal order of the
service configuration actions).

Finally, we would like to underline that Blender integrates various tools, some
of which have been detailed elsewhere. Zephyrus has been presented in [10]. The
present paper extends [10] in several ways: it integrates Metis to drive deploy-
ment on the basis of an actual deployment plan; it adds an actual user inter-
face turning Blender into a real, production-ready solution; and it offers tighter
integration among the three tools. Thanks to Metis, which supports the synthe-
sis of infrastructure-independent plans, Blender could also be used with other
deployment engines, while deployment as described in [10] relied on hard-coded
internal mechanisms of Armonic. The new GUI supports the user in lively step-
by-step visualisation of the effect of each deployment action. This functionality
is effective if actions are executed in sequence. For this reason the current ver-
sion of Blender serialises the actions synthesised by Metis (which, a priori, are
parallelisable); future versions of Blender will consider parallel deployments by
further improving its GUI.

Metis has been presented in [25]. The tool validation in that paper was done
by using automatically generated descriptions of components. The integration

Automatic Deployment of Services in the Cloud with Aeolus Blender 409

of Metis in Blender described in this paper, on the other hand, represents the
validation of Metis on real use-cases.

6 Conclusions

We have presented Blender, a tool exploiting a configurator optimiser, an ad hoc
planner, and a deployment engine to automate the installation and deployment
of complex service-based cloud applications. Blender does not rely on predefined
recipes, but on reusable service descriptions that are used as building blocks to
synthesise a fully functional configuration satisfying the user desiderata. Blender
is easy to use, comes with a web graphical interface, and requires as input just
those specific configuration parameters that cannot be deduced from the service
descriptions. It is an open source project started by Mandriva S.A., a software
company specialised in Linux and open-source software providing innovative
and easy to use offerings and business services to professionals. Mandriva with
its research unit Innova is planning to exploit Blender offering a new server
management solutions to speed up the current trend of migration of physical
servers to cloud environments.

Since there is no standard benchmark for application deployment, as a future
work we plan to define qualitative and quantitative evaluation mechanisms by
first describing a series of deployment tasks that can later be used to evaluate
both the improvements of future Blender versions and for comparison with pos-
sible future competitors. Moreover, as done in [12], we would like to compare the
quality of the automatically generated deployment plans against those (manu-
ally) devised by DevOps. Since Blender always produces an optimal final config-
uration, its solution can be used to prove that an existing handmade solution is
optimal. If instead the solutions differ due to the fact that some constraints were
not specified or forgotten by the user, we may capture the missing requirements
and then use them to ease and standardize the deployment of future similar
deployment tasks.

Furthermore, we would like to reduce the deployment time of Blender by
following the maximal parallelisable plan suggested by Metis. In this way, the
deployment actions that are found to be independent may be executed in par-
allel. Moreover, noticing that replicated servers (e.g., the Debian machines con-
taining the replicated database in our WordPress example) share part of their
deployment plan, we would like to use live virtual machine cloning instead of
re-creating instances that will end up being similar from scratch.

Further optimizing service deployment actions is outside the scopes of Blender.
These actions are indeed intrinsic to the nature of the services to be deploy
and depend just on their Armonic definition. However, we would like to tackle
instead the time required by Zephyrus to compute the final optimal configura-
tion. Indeed, as shown in [38] for some complex and large WordPress deployment
scenarios, the computation of the optimal configuration may become the most
computational intensive task of the toolchain. Even though for scenarios of rea-
sonable size (for a typical professional WordPress installation) less than one

410 R. Di Cosmo et al.

minute of computation is needed, in our biggest stress tests (i.e., in one case
we required Zephyrus to compute a solution for a system having 103 software
components distributed over 86 machines) we experienced computation times of
more than 20 min. To reduce the time required by Zephyrus in these cases we
therefore plan to adopt portfolio solvers (e.g., [1]) or exploit heuristics (e.g., local
search techniques) to quickly get good but possibly sub-optimal solutions.

Finally we also plan to integrate other public IaaS solutions (such as Amazon
EC2, RackSpace, or Google Compute Engine) directly as well as exploiting and
interface with other services libraries and tools such as Juju [24] or Apache
Brooklyn [3].

References

1. Amadini, R., Gabbrielli, M., Mauro, J.: A multicore tool for constraint solving. In:
IJCAI, pp. 232–238 (2015)

2. Amazon. AWS CloudFormation. http://aws.amazon.com/cloudformation/
3. Apache Software Foundation. Apache Brooklyn. https://brooklyn.incubator.

apache.org/
4. Arshad, N., Heimbigner, D., Wolf, A.L.: Deployment and dynamic reconfiguration

planning for distributed software systems. Softw. Qual. J. 15(3), 265–281 (2007)
5. Microsoft Azure. http://azure.microsoft.com
6. Burgess, M.: A site configuration engine. Comput. Syst. 8(2), 309–337 (1995)
7. Catan, M., Di Cosmo, R., Eiche, A., Lascu, T.A., Lienhardt, M., Mauro, J.,

Treinen, R., Zacchiroli, S., Zavattaro, G., Zwolakowski, J.: Aeolus: mastering
the complexity of cloud application deployment. In: Lau, K.-K., Lamersdorf, W.,
Pimentel, E. (eds.) ESOCC 2013. LNCS, vol. 8135, pp. 1–3. Springer, Heidelberg
(2013)

8. CenturyLink. Cloud Blueprints. http://www.centurylinkcloud.com/products/
management/blueprints

9. Cloudify. http://getcloudify.org/
10. Di Cosmo, R., Lienhardt, M., Treinen, R., Zacchiroli, S., Zwolakowski, J., Eiche,

A., Agahi, A.: Automated synthesis and deployment of cloud applications. In: ASE,
pp. 211–222. ACM (2014)

11. Di Cosmo, R., Mauro, J., Zacchiroli, S., Zavattaro, G.: Aeolus: a component model
for the cloud. Inf. Comput. 239, 100–121 (2014)

12. de Gouw, S., Lienhardt, M., Mauro, J., Nobakht, B., Zavattaro, G.: On the inte-
gration of automatic deployment into the ABS modeling language? In: ESOCC
(2015)

13. DevOps. http://devops.com/
14. Etchevers, X., Coupaye, T., Boyer, F., De Palma, N.: Self-configuration of distrib-

uted applications in the cloud. In: CLOUD, pp. 668–675. IEEE (2011)
15. Fischer, J., Majumdar, R., Esmaeilsabzali, S.: Engage: a deployment management

system. In: PLDI, pp. 263–274. ACM (2012)
16. Flexiant. Bento Boxes. http://www.flexiant.com/2012/12/03/application-provi

sioning/
17. Gonçalves, G.E., Endo, P.T., Santos, M.A., Sadok, D., Kelner, J., Melander, B.,

Mångs, J.-E.: CloudML: an integrated language for resource, service and request
description for D-Clouds. In: CloudCom, pp. 399–406. IEEE (2011)

http://aws.amazon.com/cloudformation/
https://brooklyn.incubator.apache.org/
https://brooklyn.incubator.apache.org/
http://azure.microsoft.com
http://www.centurylinkcloud.com/products/management/blueprints
http://www.centurylinkcloud.com/products/management/blueprints
http://getcloudify.org/
http://devops.com/
http://www.flexiant.com/2012/12/03/application-provisioning/
http://www.flexiant.com/2012/12/03/application-provisioning/

Automatic Deployment of Services in the Cloud with Aeolus Blender 411

18. Google App Engine. https://developers.google.com/appengine/
19. HashiCorp. Terraform. https://terraform.io/
20. Herry, H., Anderson, P.: Planning with global constraints for computing infrastruc-

ture reconfiguration. In: CP4PS (2012)
21. Herry, H., Anderson, P., Wickler, G.: Automated planning for configuration

changes. In: LISA. USENIX Association (2011)
22. Hewson, J.A., Anderson, P., Gordon, A.D.: A declarative approach to automated

configuration. In: LISA, pp. 51–66 (2012)
23. IDC. Executive summary: a universe of opportunities and challenges (2012).

http://www.emc.com/collateral/analyst-reports/idc-the-digital-universe-in-2020.
pdf

24. Juju, devops distilled. https://juju.ubuntu.com/
25. Lascu, T.A., Mauro, J., Zavattaro, G.: A planning tool supporting the deployment

of cloud applications. In: ICTAI, pp. 213–220. IEEE (2013)
26. Lascu, T.A., Mauro, J., Zavattaro, G.: Automatic component deployment in the

presence of circular dependencies. In: Fiadeiro, J.L., Liu, Z., Xue, J. (eds.) FACS
2013. LNCS, vol. 8348, pp. 254–272. Springer, Heidelberg (2014)

27. Mandriva. Armonic. http://armonic.readthedocs.org/en/latest/index.html
28. Mandriva. Armonic, Lifecycle anatomy. http://armonic.readthedocs.org/en/

latest/lifecycle.html
29. Normation. Rudder. http://www.normation.com/en
30. OASIS. Cloud Application Management for Platforms. http://docs.oasis-open.org/

camp/camp-spec/v1.1/camp-spec-v1.1.html
31. OASIS. Organization for the Advancement of Structured Information Standards

(OASIS). https://www.oasis-open.org
32. OASIS. Topology and Orchestration Specification for Cloud Applications

(TOSCA) Version 1.0. http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/
TOSCA-v1.0-cs01.html

33. Opscode. Chef. http://www.opscode.com/chef/
34. PAC. Cloudindex study (2014).http://www.cloudindex.fr/sites/default/files/

PAC%20CloudIndex%20-%202014.pdf
35. Puppetlabs. Puppet. http://puppetlabs.com/
36. Quinton, C., Pleuss, A., Le Berre, D., Duchien, L., Botterweck, G.: Consistency

checking for the evolution of cardinality-based feature models. In: SPLC, pp. 122–
131. ACM (2014)

37. Scalr Cloud Management. http://www.scalr.com/
38. Zwolakowski, J.: A formal approach to distributed application synthesis and

deployment automation. Ph.D thesis, Univeristé Paris Diderot - Paris 7 (2015)

https://developers.google.com/appengine/
https://terraform.io/
http://www.emc.com/collateral/analyst-reports/idc-the-digital-universe-in-2020.pdf
http://www.emc.com/collateral/analyst-reports/idc-the-digital-universe-in-2020.pdf
https://juju.ubuntu.com/
http://armonic.readthedocs.org/en/latest/index.html
http://armonic.readthedocs.org/en/latest/lifecycle.html
http://armonic.readthedocs.org/en/latest/lifecycle.html
http://www.normation.com/en
http://docs.oasis-open.org/camp/camp-spec/v1.1/camp-spec-v1.1.html
http://docs.oasis-open.org/camp/camp-spec/v1.1/camp-spec-v1.1.html
https://www.oasis-open.org
http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.html
http://www.opscode.com/chef/
http://www.cloudindex.fr/sites/default/files/PAC%20CloudIndex%20-%202014.pdf
http://www.cloudindex.fr/sites/default/files/PAC%20CloudIndex%20-%202014.pdf
http://puppetlabs.com/
http://www.scalr.com/

Analyzing Resource Behavior to Aid Task
Assignment in Service Systems

Renuka Sindhgatta1(B), Aditya Ghose2, and Gaargi Banerjee Dasgupta1

1 IBM Research-India, Bangalore, India
renuka.sr@in.ibm.com

2 University of Wollongong, Wollongong, NSW, Australia
aditya.ghose@uow.edu.au, gdasgupt@in.ibm.com

Abstract. Service organizations increasingly depend on the operational
efficiency of human resources for effective service delivery. Hence,
designing work assignment policies that improve efficiency of resources
is important. This paper explores the role that data (specifically service
execution histories) can play in identifying optimal policies for allocating
service tasks to service workers. Using data from the telecommunications
domain, we investigate the impact of assigning similar and distinct tasks
within the temporal frames of a day, across days and a week. We find
that similar work, when done within a day, significantly improves the effi-
ciency of workers. However, workers working on distinct tasks across days
also have higher efficiency. We build a simulation model of the service
system under study, to gain insights into the dispatch policy considering
similarity and variety of tasks assigned. Our work demonstrates use of
data to generate critical insights on resource behavior and efficiencies,
that can further aid in improving task assignment to resources.

Keywords: Resource assignment · Task similarity · Task variety · Sim-
ulation model

1 Introduction

A service system as defined by Sphorer [9] is an important unit of analysis in
support of understanding the operations of an organization. A service system
comprises of resources (that include people, organizations, shared information,
technology) and their interactions that are driven by a process to create a suit-
able outcome to the customer. Arguably, the most critical resources in a service
system are human resources. Without loss of generality, we shall refer to these
as Service Workers (SW). Unlike machines or equipment, the behavior and effi-
ciency of service workers is highly variable, and contingent on factors such as
the experience gained from repeated execution of similar tasks (and potentially
negatively impacted by the well-known psychological pitfalls that accrue from a
lack of variety). Understanding resource behavior is critical as the overall effi-
ciency of the service system or the service organization largely depends on the
resources.
c© Springer-Verlag Berlin Heidelberg 2015
A. Barros et al. (Eds.): ICSOC 2015, LNCS 9435, pp. 412–426, 2015.
DOI: 10.1007/978-3-662-48616-0 29

Analyzing Resource Behavior to Aid Task Assignment 413

Several large service organizations provide services that involve procedural
and repetitive tasks i.e. tasks that do not require creativity and innovation.
Service workers are commonly assigned or reassigned tasks based on a variety
of criteria including experience, skills, their availability and sometimes other,
often arbitrary, measures. It is important to note that in an environment that
emphasizes the need for cost efficiencies, these traditional measures of suitability
(of a service worker to perform a particular task) may not be sufficient and in
some cases relevant. Instead, it is critical to identify work design and allocation
policies that can improve the efficiency of human workers. In the context of
work design and assignment, there are studies indicating distinct approaches:
(a) assign similar work to a service worker where rhythmic and repeatable work
will result in improved efficiency [13], (b) assign different tasks to provide variety
of work to the service workers and improve their motivation and reduce boredom
[10]. (c) balance both similar and variety of tasks assignment to the worker
[10]. There are limited studies on evaluating the influence of work design and
efficiency and using it to aid task assignment, especially in domain where workers
are multi-skilled and not every one in a team can perform the task. For example,
how does short term experience of a worker influence efficiency? Does variety
of work have an impact or influence on day to day work efficiency? Does multi-
skilling provide benefits of variety to a service worker? We aim to address some
of these questions through this work.

In this paper, we study the data from a large service system, from the telecom-
munications domain, and evaluate the efficiency of service workers with respect
to work done in a short time frame such as a single day, across days and weeks.
That is, we study the impact of short-term experience on the efficiency of work-
ers. Further, we describe a heuristic approach for an improvement in productivity
of a worker, based on findings and make targeted assignment of workers to tasks.
The approach considers similar and distinct work done by workers in immedi-
ate past to make future assignment. Evaluation of a heuristic assignment policy
is performed using discrete event simulation that mimics the operations of the
service system under study. This paper considers a common type of service sys-
tem, where efficiency of service workers directly contributes to organizational
productivity. Ultimately, our work serves to highlight the utility of performing
such analysis to generate domain-specific, or organization-specific insights.

The outline of this paper is as follows: We discuss related work in Sect. 2.
Next, we define key concepts, present our hypothesis and discuss our data col-
lection i.e. the data used for our analysis, in Sect. 3. Section 4, presents our data
analysis and model developed to support our hypothesis. In Sect. 5, we build a
simulation model to evaluate the improvements possible when assignment is done
considering the work done by resources prior to the task under consideration.
We discuss validity of our results in Sect. 6. Section 7 concludes the paper.

2 Related Work

In this section, we outline the background of our study in the light of related
work. We present the research trends in two specific areas related to our study.

414 R. Sindhgatta et al.

2.1 Modeling Service Systems

A resource model as defined by Ramaswamy et al. [17], forms a key element in
building a formal service delivery model. Resources having capabilities required
by tasks of service delivery process, are assigned to the process, to enable its com-
pletion. Resources in service systems are humans, referred to as Service Workers
(SW). Service system models define attributes of service workers, such as avail-
ability by considering shifts roasters and capability by defining a skill vector.
A Work or Service Request (SR) arriving in the service system is defined by
considering complexity, severity (or importance) and the minimum capability
required to complete the work. Dispatching policies [2], with considerations to
the tardiness, lateness and utilization of the resources have been evaluated with
respect to various service system workloads, that assign a SR to one or more
service workers. In their work, Diao et al. [6] present the first detailed model
of a complex delivery system. A model for an optimal labor cost given complex
constraints of resource availability, capability and service level is defined. In one
of the recent studies on service systems [1], the authors discuss how teams can be
formed in accordance with one of the following service delivery models: (a) Cus-
tomer focused (b) Business Function focused and (c) Technology-focused. Here
authors hint, that the choice of the delivery model organization should be based
on multiple factors, one of which is the expertise or skill of knowledge workers.
Further, study on organizing service systems with teams having multiple skills
has been evaluated and compared to social compute units [5,18]. In these stud-
ies, the operational efficiency of resources with specific capability, is considered
to be homogeneous. Our work, extends from existing service system studies, and
defines a dispatching model based on the insights gathered from the data, by
defining allocation policies influencing resource efficiency.

2.2 Resource Behavior Analysis

Behavior of resources, when executing processes has attracted significant research
interest in the recent years. In [22], common pitfalls associated with building sim-
ulation models, has been highlighted, that includes incorrect modeling of human
resources. The authors emphasize incorrect representation or modeling of human
resources as the cause of simulation models providing misleading outcome mea-
sures. Outcome measures refer to the average utilization of resources, average
throughput or number of requests completed periodically, service quality that
includes completing work within a specified target time. A process mining frame-
work that can be used to detect outliers in resource behavior indicators (RBI)
has been proposed in [16]. RBIs include metrics related to resource utilization,
resource skills and productivity. The framework helps in time series analysis of
indicators for each resource. In [19], the authors present an approach that uses
historical data and illustrate variance in operational productivity of workers,
for requests with different priorities and complexities. Variances in efficiency of
workers are used to define policies for dispatching and optimally staff teams.
Organizational behavior research to improve work design indicates two distinct

Analyzing Resource Behavior to Aid Task Assignment 415

strategies of specialization and variety. In one of the recent studies by Staats
et al. [20], the authors suggest that specialization or similar work during a single
day improves the productivity of the worker while variety of tasks across days,
helps in retaining the worker within the organization. The study has been car-
ried out for a Japanese Bank where a large part of the process is automated
and human resources involved in executing manual tasks of the process do not
require any specialized skill or training. Narayanan et al. [10] analyze the degree
to which task specialization enhances learning, and show that excessive expo-
sure to task variety is an impediment to learning. Learning effects have been
observed for repetitive tasks in manual, cognitive and knowledge-based work
[12]. In [15], the authors present the idea that similar case instances in a row
can be processed faster than randomly distributed case instances. Case instances
that possess similar attributes are grouped together and distributed to resources
at runtime. Depreciation or forgetting models and its effects has been studied by
a few assignment models [11]. Learning and forgetting models help in identifying
the assignment policies prior to workers achieving steady state of productivity.
Hence, as indicated in much of the work done in the past, resource behavior has
an important bearing on the efficiency and quality of a business process.

In this work, we seek to study how the experience gained in a shorter temporal
frames, impacts worker efficiency. The study is conducted on a service system,
in the telecommunications domain, requiring specialized skills. We further use
the insights gained from the study to aid task assignment (or dispatch policy),
and evaluate outcome measures of the service system.

3 Background

We now outline the context of our study by presenting the concepts of service
system used in this study.

3.1 Service System

Work arrives into the system when customers request for a service. Work is
defined by a work type and is further characterized by a set of capabilities
required to complete the work. Resource(s) having the capabilities are assigned
to the work for completing it. There are several dispatching policies that are
used to assign work to a resource. In certain service systems, the task or work
may require more that one resource, and is handed over to multiple resources to
complete it. In this study we limit ourselves to scenarios where a single resource
completes the work, as the service system that we study consists of tasks that
requires a single SW to complete the work. We define key concepts underpinning
the service system below:

Work Request or Task. Work requests constitute inputs to the service sys-
tem and are handled by service workers. Typically, a work request (WR) is
characterized by a work type. In this paper, we use task, request and work
request interchangeably.

416 R. Sindhgatta et al.

Skills. A finite set of skills pertaining to the domain defined by S.
WorkType. Work type categorizes a work request. There are a finite set of Work

Types WT. There is one to many relation of work type to skills required for
the work type defined by w : WT �→ S.

Service Workers. Service Workers are the human resources in the service
system, who work on Work Requests. There a finite set of service workers
SW . A one to many relation of service worker to skills possessed by the
worker is defined by s : SW �→ S.

Service Time. Service time refers to the time a service worker spends to com-
plete the work request. Hence, it is the time between the work request being
assigned to the worker, to the time the service worker completes the request.

Work Arrivals. The arrival pattern of service requests is captured for finite set
of time intervals T (e.g. hours of a week). That is, the arrival rate distribution
is estimated for each of the time intervals in T , where the arrival rate is
assumed to follow a stationary Poisson arrival process within these time
intervals (one hour time periods) [2,7].

Dispatching or Task Assignment. The task assignment is done by assigning
a work request to a service worker with the necessary skills such that w∩s �=
∅. Hence, a SW with any one of the skills required for the work type of the
work request can be assigned the work request.

An important consideration in assigning task to service workers is their avail-
ability and suitability. To evaluate the tasks that service workers work on and
their operational efficiency, we introduce the following hypotheses that guide our
investigations:

HYPOTHESIS 1: Doing similar work within a day has a significant influence
on productivity of a service worker and its influence lasts for a day.

Consistent with the previous research [20], doing similar work helps worker
perform certain steps in the process faster, that improves operational efficiency
or reduces service time. We further, evaluate the influence of doing similar work
in immediate past such as previous day and week to determine the temporal
frame of influence.

HYPOTHESIS 2: Working on work requests of different work types, i.e. doing a
variety of work has an influence the operational efficiency of a service worker.

Studies indicate that, variety of work has an influence on employee turnover.
Task variety lowers levels of boredom [23] and increases job satisfaction [8,20].

HYPOTHESIS 3: Multi-skilled service workers focus on a limited number of work
types. The benefit of training on multiple skills diminishes with workers focusing
on a smaller percentage of work types.

Multi-skilling has been recognized as a tool for increasing production flexi-
bility [14]. Studies in the past indicate multi-skilling through cross-training in
a manufacturing set up, to be beneficial but find greatest benefit when cross-
training is minimal [4,14].

Analyzing Resource Behavior to Aid Task Assignment 417

3.2 Setting and Data Collection

The setting for our analysis is a large telecommunications service provider orga-
nization. The organization provides services for fixed line telephone, mobile tele-
phone and broadband services. A process aware information system (PAIS) is
used, where customers using service of the organization report problems related
to the services e.g. internet speed, modem failures, phone lines not functioning
etc. Depending on the problem, a work request is created with a specific work
type. Technicians from the service provider organization are assigned to work on
these work requests and resolve them. Each technician, goes to the customer site
and resolves the issue. A large percentage of problems or requests are handled
by a single technician (∼94 %). Once a technician completes the task, a new task
is assigned. A technician spends time in traveling from one customer location to
another location. We do not consider the travel time in our study. The service
time is computed as the time spent between a technician reaching the customer’s
premises and time of completion of the request. Each technician has one or more
domain skills that enables to address problems of specific type: problems related
to cable management, plain telephone service, digital subscriber line etc.

The PAIS helps capture the time an issue was raised by the customer, the
work type, the time at which the technician reached the customer site and the
time when the technician solved the problem. A period of 3 months is analyzed
with more than 89000 work requests served by 490 technicians. There are close
to 30 work types that have less than 100 work requests. We drop these work
requests from our study leaving us with 78,350 work requests served by 480
technicians. The distribution of natural logarithm of service time in minutes has
a mean of 4.28 and standard deviation of 0.768 is shown in Fig. 1(a). Resources
complete between 1 to 8 tasks in a day depicted in Fig. 1(b).

4 Data Analysis

This sections presents the models developed to support the hypothesis presented
in Sect. 3.

4.1 Performance Improvement Doing Similar Work

For testing our hypothesis 1, we use linear regression models to understand the
relationship and influence of work done by service workers within a day, previous
day and week on the service times. The service time is the dependent variable
in the model.We compute the following independent variables:

– Number of Prior Similar Tasks (SimilarTasks): The number of work requests
having the same work type as the current task, completed before the task in
the same day.

– Number of Prior Dissimilar Tasks (DissimilarTasks): The number of work
requests having different work type as the current task, completed before the
task in the same day.

418 R. Sindhgatta et al.

Fig. 1. (a) Distribution of log of service time (b) Histogram of work completed by
resources per day

– Number of Similar Tasks Previous Day (PreviousDaySimilarTasks): The num-
ber of work requests having the same work type as the current task, completed
on the previous day.

– Number of Similar Tasks in Week (WeekSimilarTasks): The number of work
requests having the same work type, completed during the week.

These independent variables will help understand the temporal impact of work-
ing on similar tasks and the impact of working on different tasks in a single day.

We use multiple linear regression to understand the influence of independent
variables on the dependent variable. We report the estimates of the coefficients of
the independent variables along with their standard errors. The magnitude and
the sign of the coefficients indicate the degree and directionality of influence of
the corresponding independent variable on the dependent variable. The t value
is the ratio of each coefficient to its standard error. Using this t value and the
Student’s t-distribution, the p value is calculated. If the p value is less than
the significance level (usually taken to be 5 % or 1 %.), the corresponding result
is statistically significant. DF denotes the degrees of freedom. F is the Fisher
F-statistic - is the test statistic for testing the statistical significance of the
model. R2 is the coefficient of determination - the ratio of the regression sum of
squares to the total sum of squares, indicating the goodness of fit of the regression
model. To compensate for over-fitting a model, adjusted R2 is used that adjusts
the R2 value for the number of variables in the model. The objective of building
the model, as indicated earlier, is to understand the influence of independent
variables on the dependent variable.

We build a simple model, with the log(service time) as the dependent variable
and all the other independent variables indicating similar work and dissimilar
work done by the technician prior to doing a particular task. We also control
for the total work done by each technician every week as technicians or workers
can have different volumes of tasks assigned. This is done by adding the total
work done by each technician every week (TotalWorkInWeek) as an additional

Analyzing Resource Behavior to Aid Task Assignment 419

variable into the regression model. The output of the model is shown in Table 1.
This model shows that doing similar tasks in a day improves the service time.
For example a worker doing a similar task twice in a day will have the service
time of the second task reduced by a factor of 0.9 (e−1∗0.097 = 0.907). Doing dis-
similar tasks in the same day prior to the current tasks does improve the service
time, but is lower than of doing similar tasks in the day. The influence of the
tasks done in the previous day, on the service time is statistically insignificant
as shown in the model. Hence, work done on the previous day, does not have
any significant influence on the service time of the technician. Table 1 presents
standardized estimate, that refers to how many standard deviations a dependent
variable changes, per standard deviation increase in the independent variable.
Standardized estimates help evaluate independent variables, that have a greater
effect on the dependent variable. Doing similar tasks in the week improves service
time, accounting for experience gained through the week. From the model, influ-
ence of doing similar tasks in a day and week has a large effect on the efficiency
of the service worker. Therefore, this provides support for hypothesis 1.

Table 1. Multiple linear regression model showing service time based on similar tasks
done in a day, dissimilar tasks done in a day, similar tasks done previous day and
similar tasks done in a week.

Estimate Std. Estimate Std. Err t value p-value

Intercept 4.282 0.013 319.6 <0.0001

SimilarTasks −0.097 −0.073 0.005 −19.86 <0.0001

DissimilarTasks −0.046 −0.040 0.004 −11.10 <0.0001

PreviousDaySimilarTasks 0.004 0.003 0.005 0.764 0.445

WeekSimilarTasks −0.023 −0.098 0.001 −22.25 <0.0001

TotalWorkInWeek −0.01 −0.051 0.001 −19.93 <0.0001

DF = 78349 F = 1038.21 Adjusted R2 = 0.062

4.2 Efficiency Improvement with Variety in Work

To study the impact of variety in the work done by service workers (hypothesis 2),
we compute two independent variables:

– WorkerCapability is the number of work types a worker is capable of working
on based on the skills possessed by the worker and skills required by the work
type.

– WorkVarieyIndex is the ratio of the number of work types a service worker
works on (on the job), and the WorkCapability. Valid values of WorkVari-
etyIndex would lie between [0,1]. A higher WorkVarietyIndex is indicative of
a worker working on different work types, and hence, higher variety.

WorkVarietyIndex is incorporated into the existing model (of Table 1). We
control for WorkerCapability because some workers may be trained on too few,
or too many skills and hence, have very low or high WorkCapability respec-
tively. The model with WorkVarietyIndex is shown in Table 2. Service workers

420 R. Sindhgatta et al.

with higher WorkVarietyIndex have lower service time indicated by its negative
coefficient. Hence, it supports our hypothesis 2 of work variety improving the
operational efficiency of service worker.

Table 2. Multiple linear regression model showing service time based on similar tasks
done in a day, dissimilar tasks done in a day, similar tasks done previous day and
similar tasks done in a week and WorkVarietyIndex.

Estimate Std. Estimate Std. Err t value p-value

Intercept 4.180 0.027 215.77 <0.0001

SimilarTasks −0.098 −0.073 0.005 −18.196 <0.0001

DissimilarTasks −0.044 −0.040 0.004 −13.895 <0.0001

PreviousDaySimilarTasks 0.002 0.001 0.003 0.419 0.675

WeekSimilarTasks −0.005 −0.011 0.001 −3.847 <0.0001

TotalWorkInWeek −0.001 −0.005 0.001 1.93 0.153

WorkVarietyIndex −0.125 −0.051 0.014 −9.681 <0.0001

WorkCapability 0.001 0.092 0.000 36.976 <0.0001

DF = 73940 F = 1266.386 Adjusted R2 = 0.107

4.3 Influence of Multi-skilling on Variety in Work

Multi-skilling allows workers to be more flexible addressing changes in demand,
absenteeism and work assignment. We created a simple model to examine the
relationship between variety in the work done by service workers, during the
period of study (WorkTypes WorkedOn) and the variety in work a service worker
is capable of working on by virtue of skills possessed (WorkType Capable). The
result of the model is presented in Table 3. We use linear regression model with-
out an intercept. The model shows that, workers are utilized on 21.7 % of the
work types they are capable of. This could be, due to workers possessing a large
number of obsolete skills that may not have any demand. However, based on the
model and results, hypothesis 3 of workers focusing on a limited number of work
types is supported by Table 3.

4.4 Dispatching Considering Resource Behavior

Service time influences the number of requests completed per day or week by
a service worker (throughput) and the time a resource is busy servicing the
requests (utilization). Our model observations can be used to improve the dis-
patching rules or policies when assigning tasks to service workers. Algorithm 1
formally describes the policy. Initially, the minimum permissible queue length i.e.
queueLenThreshold, is set to zero. queueLenThreshold is the number of requests
that can be pending with the service worker. The dispatching policy checks
for service workers with minimum permissible queue length and possessing the
required skills. Among them, it finds a service worker, who has completed a
minimum of 1 work request similar to the work type of the WR to be assigned.
This is to account for assigning the work that is similar to previous completed

Analyzing Resource Behavior to Aid Task Assignment 421

Table 3. Model predicting WorkTypes workedOn using WorkType Capable.

Estimate Std. Error t value p-value

WorkType Capable 0.217 0.00 911.7 <0.0001

DF = 485 F = 882.647 Adjusted R2 = 0.646

work. If there are no service workers available, then the policy looks for service
workers having a queue length of 1 and 2 by increasing the minimum permis-
sible queue length, until the MaxQThreshold is reached. If it does not find any
service worker, then the service worker with the least queue length is chosen.
In the following sections, we refer to this policy as SimilarWorkDispatch policy.
In the next section, we compare SimilarWorkDispatch policy to the policy of
assigning tasks to a worker with suitable skills and the lowest queue length. We
refer to the dispatching policy of assigning work to a SW with the required skill
and lowest queue of pending requests as MininimumQueueDispatch policy.

Input: WR, SWList
Output: SWid

id = φ;
queueLenThreshold = 0 ;
MaxQThreshold = 3 ;
while id = Ø OR queueLenThreshold < MaxQThreshold do

maxPreviousSimilarWR=0;
foreach wi ∈ SWList do

if wi.QueueLength == queueLenThreshold then
// get number of completed requests matching WR workType ;
wSimilarCount = getCompletedSimilarWorkInDay(WR);
if wSimilarCount > maxPreviousSimilarWR then

id = wi.id ;
maxPreviousSimilarWR = wSimilarCount ;

end

end

end
if id == Ø then

queueLenThreshold = queueLenThreshold + 1;
else

break ;
end

end
if id == Ø then

id = getWorkerWithLeastQueueLength;
end

Algorithm 1. Work Similarity based Dispatching Policy considering previous
similar work done by service workers

422 R. Sindhgatta et al.

5 Simulation Based Experimentation

We describe the simulation set up that mimics the service system being eval-
uated. The simulation model enables us to compare overall performance of the
service system using a dispatching policy that considers resource behavior, as
described in Sect. 4.4 - SimilarWorkDispatch policy, and MimimalQueueDispatch
policy. Each Work Request that comes into the system is assigned to a suitable
service worker based on the dispatching policy. For the purpose of simulation,
the following parameters are set.

– Work Arrivals: A finite set of time intervals for arriving work, denoted by T,
containing one element for each hour of week. Hence, |T | = 168.

– Work Type: A finite set of WorkTypes are generated and each work request
is associated with a work type when it is created.

– Worker Queue Length: Each service worker has a queue. The number of
requests in the queue determines the load on the worker.

– Service Time: The service time of the worker used in the simulation model is
based on the service system under study. For each work request, the number
of prior similar work types completed by the service worker, within the day, is
computed. The mean and the standard deviation of service time, for a specific
number of prior similar tasks is computed. Figure 2 shows the plot of means of
log service time varying with the number of similar tasks done within a day.
In the simulation experiments, we compute the service time for each worker
based on the (μs, σs) with s indicating the number of similar tasks done by
the worker in the day.

– WorkVarietyIndex: The WorkVarietyIndex for simulation experiments uses
a normal distribution with a mean, μ = 0.27 and a standard deviation,
σ = 0.07. Figure 2 shows the box plot of WorkVarietyIndex of the system
under study. Each SW is assigned a WorkVarietyIndex based on the normal
distribution with the mean and sigma values of the SS under study. The ser-
vice time of a technician with higher WorkVarietyIndex is lowered by factor
(e−0.125∗WorkV arietyIndex). The coefficient −0.125 is taken from the regression
model. WorkVarietyIndex is associated to each SW.

We build the service system model using AnyLogic simulation software [3,21]
which supports discrete event simulation technique. We simulate up to 40 weeks
of simulation runs. Measurements are taken at end of each week. No measure-
ments are recorded during the warm up period of first four weeks. For our experi-
ments, we consider request arrivals follow a Poisson model where the inter-arrival
times follow an exponential distribution. In steady state the parameters that are
measured include:

– Throughput or the number of work requests completed per week.
– Resource utilization: captures ratio of busy-time of a resource to the total

time of the simulation run.

The simulation model is evaluated with the work arrivals derived from data.
For the purpose of simulation, a smaller subset of the real-life data is used.

Analyzing Resource Behavior to Aid Task Assignment 423

Fig. 2. Mean of Log Service Time with Similar Work done in the day, Box plot of
WorkVarietyIndex

Each work is associated to one of the 15 work types similar to that of the
service system under study. One hundred service workers are instantiated in
the model. Each service worker is multi-skilled and is initialized with a spe-
cific WorkVarietyIndex. The results of the simulation experiments are presented
in Fig. 3. Results compare two dispatching policies - MinimumQueueDispatch,
SimilarWorkDispatch. The SimilarWorkDispatch policy is run for different value
of MaxQThreshold values. As indicated in Fig. 3, SimilarWorkDispatch policy
provides higher throughput when the MaxQThreshold = 2. At higher values of
MaxQThreshold, the algorithm starts dispatching to workers with higher queue
length. The throughput reduces as the requests wait in the queue of the service
workers. Hence, for higher MaxQThereshold values, the gains from improved
service time, by doing similar work, is offset by the wait time in the queue of
the service worker. An additional simulation is run where workers do not have
any variety in their work or the. WorkVarietyIndex of service workers is set
to 0 - SimilarWorkDispatchNoVariety. The observation is made to validate the
improvement achieved by workers having variety in their tasks.

Figure 3 also compares the average resource utilization between these dis-
tinct dispatching policies. As the MaxQThreshold for SmartWorkDispatch policy
increases, there are a few resources assigned the task (resources who have done
similar work), while other resources remain free. Hence, the average resource
utilization reduces. Hence, the SmartWorkDispatch policy is sensitive to the
MaxQThreshold which should be set based on the evaluation of historical data
for a service system.

Applying Insights from the study: The insights obtained from the simulation
runs can be applied in practice to improve the efficiency of the service system.
Important considerations that emerge from the experiment are: (i) Dispatching
similar work provides substantial improvement in the performance of the service
system, (ii) The gains due to the dispatching similar work policy should be
evaluated based on the reduction in service time by doing similar work and the

424 R. Sindhgatta et al.

Fig. 3. Throughput and Resouce Utilization comparing (a) Similar Work based dis-
patch (b) Worker with minimum Queue length

wait time in the queue of busy service workers. (iii) As work variety improves
the performance of the service system, variety in can be balanced by dispatching
different work types across days and similar work within a single day.

6 Threats to Validity

There are some potential threats to validity for this work. It is extremely hard to
predict the behavior of human resources working on tasks requiring specialized
skills. The adjusted R2 of the regression models were small, indicating that these
effects highlight a small amount of the wide variance in the service time of the
workers. However, our results are in line with some of the work done in the past
[20,23], in the broader context of organizational behavior and work design and
do provide insights on the influence of similar and variety of work done on the
service times of workers. In this system under study, data related to quality of
work done was not captured. Hence service time has been viewed as an imperfect
proxy measure of quality.

Further, we have studied a single, but large service system in this work.
While, the work requests handled by the workers is repetitive, they are not done

Analyzing Resource Behavior to Aid Task Assignment 425

in large volumes. The service levels for the requests are relaxed and the workers
do not have any specific targets to finish in time. While insights can be drawn
from our study, we do not claim that these results can be generalized in all
instances. These results serve as the basis of using data driven approach for
evaluating understanding resource behaviors in similar contexts and use them
to improve task assignment.

7 Conclusion and Future Work

In this paper we studied the data from a large telecommunication service provider
system. The impact of assigning similar and dissimilar tasks to a worker in a
temporal frame of within a day, across days and a week was analyzed. From
our results, we observe efficiency gains by a worker is significant when doing
similar tasks in a day. Further, doing variety of work across days also improves
efficiency. A simulation model was used to evaluate benefits of establishing a
dispatching policy for task assignment. Through this work, we demonstrate, the
value of such analysis in specific organizational contexts. In future, we would
evaluate and analyze resource efficiency in other domains such are IT service
management requiring specialized skills for completing tasks.

References

1. Agarwal, S., Sindhgatta, R., Dasgupta, G.B.: Does One-Size-Fit-All suffice for
service delivery clients? In: Pautasso, C., Zhang, L., Fu, X., Basu, S. (eds.) ICSOC
2013. LNCS, vol. 8274, pp. 177–191. Springer, Heidelberg (2013)

2. Banerjee, D., Dasgupta, G.B., Desai, N.: Simulation-based evaluation of dispatch-
ing policies in service systems. In: WSC, pp. 779–791 (2011)

3. Borshchev, A.: The Big Book of Simulation Modeling. Multimethod Modeling with
AnyLogic 6. Kluwer, Boston (2013)

4. Brusco, M.J., Johns, T.R.: Staffing a multiskilled workforce with varying levels
of productivity: An analysis of cross-training policies*. Decis. Sci. 29(2), 499–515
(1998)

5. Dasgupta, G.B., Sindhgatta, R., Agarwal, S.: Behavioral analysis of service delivery
models. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS,
vol. 8274, pp. 652–666. Springer, Heidelberg (2013)

6. Diao, Y., Heching, A.: Staffing optimization in complex service delivery systems.
In: CNSM, pp. 1–9 (2011)

7. Diao, Y., Heching, A., Northcutt, D.M., Stark, G.: Modeling a complex global
service delivery system. In: WSC, pp. 690–702 (2011)

8. Fried, Y., Ferris, G.R.: The validity of the job characteristics model: A review and
meta-analysis. Pers. Psychol. 40(2), 287–322 (1987)

9. Maglio, P.P., Vargo, S.L., Caswell, N., Spohrer, J.: The service system is the basic
abstraction of service science. Inf. Syst. E-Business Manage. 7(4), 395–406 (2009)

10. Narayanan, S., Balasubramanian, S., Swaminathan, J.M.: A matter of balance:
Specialization, task variety, and individual learning in a software maintenance envi-
ronment. Manage. Sci. 55(11), 1861–1876 (2009)

426 R. Sindhgatta et al.

11. Nembhard, D.A.: Heuristic approach for assigning workers to tasks based on indi-
vidual learning rates. Intl. J. Prod. Res. 39(9), 1955–1968 (2001)

12. Nembhard, D.A., Uzumeri, M.V.: Experiential learning and forgetting for manual
and cognitive tasks. Intl. J. Ind. Ergon. 25(4), 315–326 (2000)

13. Newell, A., Rosenbloom, P.S.: Mechanisms of skill acquisition and the law of prac-
tice. In: The soar papers, vol. 1, pp. 81–135. MIT Press, Cambridge (1993)

14. Park, P.S.: The examination of worker cross-training in a dual resource constrained
job shop. Eur. J. Oper. Res. 52(3), 291–299 (1991)

15. Pflug, J., Rinderle-Ma, S.: Dynamic instance queuing in process-aware information
systems. In: ACM 28th Symposium on Applied Computing, pp. 1426–1433. ACM,
USA (2013)

16. Pika, A., Wynn, M.T., Fidge, C.J., ter Hofstede, A.H.M., Leyer, M., van der
Aalst, W.M.P.: An extensible framework for analysing resource behaviour using
event logs. In: Jarke, M., Mylopoulos, J., Quix, C., Rolland, C., Manolopoulos,
Y., Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014. LNCS, vol. 8484, pp. 564–579.
Springer, Heidelberg (2014)

17. Ramaswamy, L., Banavar, G.: A formal model of service delivery. In: SCC 2008,
vol. 2, pp. 517–520. IEEE, July 2008

18. Sengupta, B., Jain, A., Bhattacharya, K., Truong, H.L., Dustdar, S.: Collective
problem solving using social compute units. Int. J. Cooperative Inf. Syst. 22(4)
(2013)

19. Sindhgatta, R., Dasgupta, G.B., Ghose, A.: Analysis of operational data for exper-
tise aware staffing. In: Sadiq, S., Soffer, P., Völzer, H. (eds.) BPM 2014. LNCS,
vol. 8659, pp. 317–332. Springer, Heidelberg (2014)

20. Staats, B.R., Gino, F.: Specialization and variety in repetitive tasks: Evidence from
a japanese bank. Manage. Sci. 58(6), 1141–1159 (2012)

21. XJ Technologies (2011). http://www.xjtek.com/
22. Van der Aalst, W.M.P., Nakatumba, J., Rozinat, A., Russell, N.: Business process

simulation: How to get it right
23. Warr, P.B.: Work, Happiness, and Unhappiness. Routledge, New York (2007)

http://www.xjtek.com/

SenseX: Design and Deployment of a Pervasive
Wellness Monitoring Platform for Workplaces

Rakshit Wadhwa, Amandeep Chugh, Abhishek Kumar, Mridula Singh,
Kuldeep Yadav(B), Sharanya Eswaran, and Tridib Mukherjee

Xerox Research Centre, Bangalore, India
{rakshit.wadhwa,amandeep.chugh,abhishek.kumar2,mridula.singh,

kuldeep.r,sharanya.eswaran,tridib.mukherjee}@xerox.com

Abstract. With the increasing number of desk jobs, workplaces have
become the epicentre of several health risks. In this paper, we design
and develop a pervasive wellness monitoring platform, SenseX, that uses
a variety of devices and sensors to track physical activity level of employ-
ees in an organization. SenseX platform offers APIs which can be used
by 3rd party applications to create services and applications, which can
focus on specific interventions (e.g. to reduce prolonged sitting). We per-
formed a real-world evaluation of the platform by deploying it in an
IT organization for 6 weeks and observed longitudinal variations. We
believe that SenseX platform helps in realizing the vision of “wellness as
a service” in modern workplaces, enabling multitudes of different wellness
services, which will be a key for sustained adoption of wellness programs.

1 Introduction

With the proliferation of computers and information technology in the last two
decades, the number of desk jobs have grown at a phenomenal rate. In the United
States (US), less than 20% of private sector jobs have moderate levels of physical
activity, decreasing by nearly 30% compared to the early 60s [9]. Similarly, nearly
4 out of 5 people have desk jobs in the United Kingdom. A survey done in US
reports shows that a typical worker spends 7.5 h sitting at work, 8 h sleeping,
4.5 h watching television or at home computer including leisure time, 1 h eating
and only 3 h physically active or standing, i.e. sedentary for 21 h out of 24 h
everyday [7]. Many studies have identified prolonged sitting as a high risk factor
for severe health problems such as diabetes, cancer, heart attack, and stroke.
For instance, [8] reports that adults who have moderate-to-high amounts of
sitting time (four hours or more) have significantly higher cardio-metabolic risks
compared to those who have lesser sitting time (less than three hours). Also,
it is also found that the production of enzymes that burn fat declines by as
much as 90 % after one hour of continuous sitting [5]. Additionally, it has been
found out that excessive sitting results in depression, lower life expectancy, larger
waist circumference and slower metabolism and over a term the harmful effects of
sitting keep increasing. Surprisingly, researchers have found that regular exercise
and balanced diet do not negate the adverse effects of prolonged sitting [4].
c© Springer-Verlag Berlin Heidelberg 2015
A. Barros et al. (Eds.): ICSOC 2015, LNCS 9435, pp. 427–443, 2015.
DOI: 10.1007/978-3-662-48616-0 30

428 R. Wadhwa et al.

It is clearly evident that most of the sedentary behavior is found in workplace
environments. Unarguably, they have become the epicenter of serious health risks
and as a result, organizations have started investing in wellness programs. Work-
place wellness is a $6 billion industry in the United States alone where majority
of organizations spending at least $521 per employee per year [1]. Organizations
are investing in these wellness programs to improve social, mental, and physical
health of their employees as well as to reduce their healthcare payback costs.
Most of these wellness programs incorporate costly wearable devices such as
Fitbit, Nike Fuel Band, and Jawbone UP for activity tracking with physiological
attributes. However, these wearables do not result in sustained adoption due to
their obtrusiveness. For the users, it is more of an overhead to carry, wear and
maintain an extra device. A study in US shows that more than 50% of consumers
who owned an activity tracker stopped using them after 6 months [6]. Similar to
activity trackers, standing workstations have also failed to have sustained impact
and most users stop using those desks after one month of use [2]. Additionally,
there are many playstore apps such as Motion24x7, Moves, Google Fit performs
activity recognition using sensors available on the smartphone itself. However,
these apps too fail to get a sustained adoption due to factors such as limited
coverage i.e. users tend to leave their mobile phones stranded on desks while at
work, and high battery consumption, which is due to nonstop sensing. Hence,
there is a need for an unobtrusive, frugal, and pervasive platform for wellness
monitoring and interventions in workplace environments.

In this paper, we design a pervasive wellness monitoring platform SenseX
which leverages an employee’s everyday devices and existing infrastructure (i.e.
interconnected desktop/laptop, enterprise WiFi) for activity tracking and phys-
iological measurements (i.e. heart rate). SenseX builds services to interface
with different workstation devices (i.e. keyboard, mouse, webcam), workplace
infrastructure (i.e. enterprise WiFi, calendar, BLE), and mobile phone sensors to
sense activities and context of an employee. SenseX employs intelligent sensing
approaches such as triggered-sensing i.e. offloading sensing load to infrastruc-
ture sensors whenever possible and opportunistic-sensing i.e. switching a sensor
ON only when there is an opportunity to sense. Such approaches help in mini-
mizing energy-consumption and increase sensing coverage. SenseX processes the
device-specific measurements to infer fine-grained activities of a user as well as
to extract high-order contextual information. A cloud-based SenseX service is
used for the fusion of multiple device-specific activity profiles into a single pro-
file, which is used for pushing appropriate interventions and notifications. Fur-
ther, SenseX platform offers APIs which can be used by 3rd party applications
to create services and applications, which can focus on specific interventions (e.g.
to reduce prolonged sitting) to induce systematic behavior changes. We believe
that SenseX platform helps in realizing the vision of “wellness as a service” in
modern workplaces, enabling multitudes of different wellness services, which will
be a key for sustained adoption of wellness programs. Specifically, this paper
makes the following contributions:

SenseX 429

1. First of its kind pervasive wellness monitoring platform which intelligently
combine mobile, workstation, and infrastructure sensors to perform activity
monitoring in workplaces.

2. Intelligent sensing approaches i.e. triggered-sensing to increase sensing cover-
age and reduce battery consumption. SenseX provided multitude of services
and APIs to enable quick development of workplace-specific intervention and
challenges.

3. A real-world deployment with 30 participants and detailed evaluation of Sen-
seX platform with StandUp wellness challenge.

2 Related Work

The enhancement in the sensing capabilities of computerized devices along with
the advancement in the area of ubiquitous and pervasive computing has resulted
into the evolution of many fitness and healthcare applications/systems. We can
broadly divide the previous work related to ours in three categories namely,
Mobile-enabled sensing, Workstation-based sensing and Wellness platforms and
services.

Mobile-Enabled Sensing. Modern-day smartphones are computationally pow-
erful and at the same time are equipped with array of sensors, and thus have
been widely used for day-to day sensing, activity recognition and health moni-
toring systems. Kwapisz et al. [10] proposed and developed a system for android
devices, which could recognize, log and maintain simple physical activities like
walking, jogging, sitting, standing etc. using phone based accelerometer. Sim-
ilarly smartphones have been used widely for activity recognition [11,13,14].
Physiological parameter monitoring is yet another focus area in which researchers
have exploited the capabilities of the smartphone. Aishwarya et al. [21] proposed
smartphone based methodology to estimate the range of human blood pressure
(BP) using Photoplethysmography. Similar to this [22] discuss a system which
enables tracking the heart rate with user’s finger tip placed on smartphone’s
camera. Sumida et al. [19] correlate the accelerometer, walking speed readings
with the heartrate and estimate its variation while walking. There is no dearth
of mobile-based systems designed with physiological parameter monitoring capa-
bility using integrated external sensors [25] and only internal sensors like camera
etc. [23,24].

Workstation-Based Sensing. Although workstations generally do not have
any dedicated sensors, but many sensing hints can be obtained from inherent
components like mouse, keyboard, touchpad, webcam etc. Thus researchers have
exploited these sensing capabilities of workstation for measuring a number of
health-related parameters like heart-rate, stress levels, emotional state etc. Sun
et al. [15] suggest and demonstrate the use of mouse events to detect stress. Epp
et al. [26] show that emotional states can be recognized using keystroke features.
On the other hand [16–18] discuss and exhibit the ability of webcam equipped
workstations to predict heart-rate.

430 R. Wadhwa et al.

Wellness Platforms and Services. The growing awareness and realization
regarding the effectiveness of preventive healthcare has motivated the research
community to design and develop several dedicated and ubiquitous healthcare
platforms/systems. [28] discuss a service-oriented architecture platform for inte-
gration of health-data from various personal health devices. Li et al. designed
and implemented a cloud-based platform for personal health sensor data man-
agement in a collaborative manner. Similarly [30] discuss the implementation of
a scalable, robust cloud-based platform which can manage the semistructured,
unstructured, and heterogeneous physiological signal effectively and can satisfy
high concurrent requests from ubiquitous healthcare services.

SenseX builds upon the research work done in mobile and workstation-based
sensing outlined above. However, there is lack of a platform that provides per-
vasive sensing capabilities such as SenseX and flexibility to create new interven-
tions/challenges especially in workplaces.

3 System Design

Fig. 1. System design of SenseX platform with different
layers.

Modern workplace envi-
ronment consists of exist-
ing infrastructure of
inter-connected desktops
(i.e. laptop/PCs) equip-
ped with web cameras,
and employees carry their
mobile phones with them.
SenseX platform is desi-
gned to perform multi-
modal sensing that
encomapasses existing
workplace infrastructure
as sensor hints along with
mobile-based sensors to
accurately track activity levels as well as wellness of an employee. SenseX plat-
form follows a layered architecture involving three different layers designed for
sensing raw data, and subsequently extracting high-level attributes to enable
appropriate interventions. Figure 1 presents a snapshot of proposed three lay-
ered design with each layer consisting of a set of components. These compo-
nents are part of the various services that run on end-user devices (i.e. mobile,
workstation) and a cloud instance. SenseX follows a decentralized model where
most of the sensing and processing of data is performed on end-user devices and
aggregation is performed using a cloud instance. Further, the rationale of having
layered design is that it enables flexibility of adding or removing layers as well
as components by third party applications and services. These services can use
activity tracking and context inference capabilities of SenseX and build their
own wellness management and intervention solutions.

SenseX 431

3.1 Sensing and Actuation Layer

This layer is responsible for interfacing with hardware devices and sensors to
collect sensory measurements. Some of the primary components of this layer are
device-specific integrations, sensor controller and scheduler, data collector, and
a rule engine. SenseX using following device-specific integrations.

1. Mobile Phone: Mobile phone is equipped with a variety of different sen-
sors such as location, light, proximity, accelerometer, gyroscope, microphone,
etc. SenseX has a dedicated service running on the mobile phone, which can
start/stop sampling any of these sensors based on the application require-
ments. All these sensors provide raw data values, which are later processed
in higher layers to infer user-specific activity and contextual attributes. For
example, accelerometer sensor data capture provides x, y, and z coordinate
values corresponding to the motion in three axes/dimensions of a mobile
phone while location sensor can provide the geo-coordinates or WiFi/GPS/
Bluetooth fingerprint of user’s current location.

2. Workstation Devices: Many people use desktop/laptop in their workplaces.
SenseX runs a workstation service to capture different sensing cues from
the workstation devices including activity on mouse/keyboard, name of fore-
ground application (s), and webcam video feed. Based on the application
requirements, SenseX service subscribe to one or more of these cues from
the OS to collect raw sensor data. For example, an OS-based interrupt is
generated whenever the keyboard or mouse is used. SenseX listens for such
interrupts and records them with their respective time stamps. This data is
processed in subsequent layers to infer high-order activities i.e. to find if a
person was sitting or not in a given time interval. The main assumption is
that if there is a steady stream of keyboard and mouse interrupts, the user
is sitting continuously. Similarly, webcam-based video feed can be recorded
as part of sensing, which could be used for simply detecting the presence
of a person at workstation or to do more complex ones such as extracting
physiological parameters.

3. Infrastructure-Based Devices/Services: Most of the organizations use dif-
ferent hardware sensors and software services as part of their day-to-day
functioning. Some of these services include RFID card for access control,
enterprise WiFi for ubiquitous network access, Bluetooth low energy (BLE)
devices for tracking intra-organization movements, organization-wide calen-
dar services for maintaining schedules, and messenger services for commu-
nication. SenseX provides customized services to gather sensor cues from
available organization-wide sensors and services. For example, cues from cal-
endar service can indicate the schedule of employees whereas enterprise WiFi
or BLE can be used for localization of employees in the workplace environ-
ment.

Sensing Service Controller and Scheduler. Some of the above sensors are
battery-constrained (i.e. mobile sensors) whereas some of them have near con-
tinuous power supply (i.e. workstation devices). One of the main responsibilities

432 R. Wadhwa et al.

of this layer is to control different sensors based on the application requirements,
posed by higher layers. This module also identifies opportunities where battery-
constrained sensors can be complemented with the data from infrastructure or
workstation sensors. In a nutshell, it employs a novel triggered-sensing based
approach to dynamically start/stop a device-specific service whenever there is an
opportunity to use infrastructure-based sensors. The main idea behind triggered-
sensing is to reduce sensing data redundancy as much as possible, thus improving
battery life.

We present a use-case to demonstrate applicability and effectiveness of
triggered-sensing based approach. For example, SenseX need to monitor a user
Alice’s sitting and standing patterns to provide an intervention for excessive
sitting. Lets assume that Alice goes to her office by foot. While walking, Sen-
seX mobile service will remain ON to keep track of Alice’s activities. After,
Alice reaches her workplace and starts using her workstation devices (i.e. key-
board, mouse), a trigger is generated by SenseX workstation service to the cloud
instance and it pushes a notification to mobile service for switching off mobile
sensors as shown by the first trigger in Fig. 2. Meanwhile, workstation service
keeps reporting the current activity (i.e. sitting) to the cloud instance. When-
ever, there is an activity change detected by the SenseX workstation service i.e.
there is no activity for a certain time, it starts sampling the webcam feed as
represented by second trigger of Fig. 2. If it concludes that Alice is not present
on workstation, then cloud instance send a trigger to mobile service to resume
activity tracking.

Another advantage of triggered-sensing based approach comes in the form
of increased sensing coverage where different sensing schemes can complement
each other in terms of data collection. Consider the above scenario, Alice may
place her phone on the table while working on the workstation and in such
a case, a system using only mobile sensors will not be able to sense current
state/activity. However, SenseX can sense the activity of Alice based on the
usage of workstation devices. Further, the applicability of triggered-sensing based
approach is not restricted to above described use-case only and it can be easily
extended to a variety of other scenarios. For example, SenseX may use enterprise
WiFi-based tracking for finding current location of a user rather than actively
scanning mobile-based WiFi.

Fig. 2. An instance of triggered-sensing based
approach employed in SenseX. Red color mark-
ers shows different triggers, which initiates other
sensors (Color figure online)

Rule engine component trans-
lates higher order activity infer-
ence requirements into low-level
sensor mappings. For instance,
if an application wants to track
sitting-standing pattern of an
employee, it enables mobile ser-
vice and workstation-based sen-
sors to track activity patterns.
One of primary challenges faced
by SenseX platform is in terms

SenseX 433

of heterogeneity that includes different devices and lack of a standardized repre-
sentation in sensing data. Sensing and actuation layer handles device heterogene-
ity by implementing different sensing interfaces for different devices and provide
ability to control as well as collect sensory data from them. However, data hetero-
geneity still remains a challenge and higher layers as presented in Fig. 1 provide
a solution for the same.

3.2 Activity Inference and Fusion Layer

The primary responsibility of this layer is to infer various high-level activities
(i.e. sitting, standing, walking) as well as contextual attributes (i.e. inMeeting,
Indoor/Outdoor, DeviceOnTable) from the raw data collected by sensing and
actuation layer. After sensor/device specific inference, the different activities are
fused together to create a wholistic activity profile for every user. Addition-
ally, this layer hosts components to estimate physiological parameters from the
sensing data.

Activity and Context Inference. This component aims to recognize high
order activities from raw sensor measurements. Some of the activity inferences
are straightforward i.e. if a person is typing on a keyboard/mouse or her pres-
ence is detected using webcam, her activity can be classified as ‘sitting’. How-
ever, some of the activity inferences need processing and in most of the cases
require three different steps i.e. pre-processing of sensor data, extracting fea-
tures, and applying a classification scheme to recognize the activity. Due to
significant heterogeneity among sensed data values in SenseX, these processing
steps need to be implemented distinctively for each device/sensor category. For
example, accelerometer sensors provide X, Y, Z values representing motion in
three axes/dimensions and it can be used to infer user activities such as sit-
ting, standing, walking, climbing stairs, etc. The pre-processing steps involves
dividing accelerometer data stream into segments (say x seconds) based on
application and accuracy requirements. For each segment, it calculate set of
statistical (mean, standard deviation, skewness, RMS), time-domain (integral,
auto-correlation) and frequency-domain (spectral energy, spectral entropy) fea-
tures. These feature values are then fed into a classification framework such as
decision tree or SVM to recognize users’ activity.

Contextual information is an integral part of a wellness platform and it enriches
the user-specific activity profile as well as notification delivery/intervention mech-
anism. For example, notifications could be smarter and will not be delivered when
a person is in meeting. Some of the contextual information is easy to sense, for
example, context information of a person being in a meeting or not, can be
easily sensed from the calendar information. However, some of the contextual
attributes such as detecting mobile phones’ presence in pocket require processing
and fusion of multiple sensors data. For example, to detect whether the phone
is in pocket or not, SenseX uses accelerometer sensor readings to find angle of
inclination which is fused with proximity sensor information to classify whether

434 R. Wadhwa et al.

a phone is in pocket or lying flat while facing up or lying flat while facing down,
etc. SenseX also interfaces with enterprise WiFi network and BLE technology
to infer current location of the user [20].

Activity Fusion. Aforementioned components infer activity and context from
device-specific sensor measurements and convert data representation from low-
level to high-level activity or contextual constructs. SenseX utilizes different
kinds of devices/sensors for activity and context tracking and most of higher
order inferences (activity recognition) are performed on the device itself, while
periodically reporting to SenseX cloud instance. This module perform fusion
of activity constructs coming from two or more different devices/sensors. For
example, the SenseX workstation service may detect that a person was sitting
from 09:00 to 09:44 AM where as mobile service infers that the person was walk-
ing from 9:45 to 10:15 AM. This information is fused to make a single activity
profile. In some of the cases, time information across two different activities may
overlap due to errors in inferencing. In such cases, this module assigns higher
priority to the infrastructure and workstation based sensors.

Physiological Analysis. Considerable research has been done to extract phys-
iological parameters such as heart rate from activity data [19] as well as webcam-
based video feed [18]. Further, there have been efforts to use webcam-based video
feed to detect respiratory problems, emotions, etc. The focus of SenseX platform
is to use existing research work as a pervasive mechanism to measure vital signs
in day-to-day life. Heart rate measurement is an important vital parameter to
diagnose various ailments such as anxiety, stress, cardio-vascular disease, etc.

Opportunistic Sensing. This component works in-conjunction with sensing
service controller component to enable sensor tracking only when there is an
opportunity detected. For example, physiological analysis does not work when
there is motion w.r.t. subject’s face in the video. In case of SenseX, there could
be two kinds of opportunity-based sensing. Based on the detection of an opportu-
nity, this component sends trigger to sensor controller module to enable tracking.

– Context-directed/Detection: In this case, detection of contextual attri-
butes decide whether sensing should be enabled or not. For example, an appli-
cation may require sensing of heart rate just after lunch time. To enable such
sensing, required context is continuously tracked and a notification is issued
to the user when there is an opportunity.

– Sensing-directed/Prediction: This is a completely automated and non-
obtrusive approach where sensing is dependent on end-result i.e. automati-
cally figuring out the instances where there is likely to be little motion so that
heart rate tracking is possible using webcam. SenseX achieves this by con-
tinuously tracking system usage logs (i.e. mouse activity, keyboard activity,
open applications) and using this information to predict the right moments
with the help of a supervised classifier.

SenseX 435

3.3 Analytics and Notifications

This layer performs high-level analytics on user-specific activity profiles and
contextual attributes. High-level analytics is performed to detect broad patterns
across an organization or a group of people as well as personalized behavior
specific to a user. Based on these patterns, appropriate notifications can be gen-
erated and issued to users at opportune moments. This layer also contains a
user profile component which tracks longitudinal data of users’ response to the
interventions/notifications, contextual information, privacy policies and the end
result i.e. whether a user complied with the notification or not. The context
tracking along with notification history captures specific behavioral attributes
such as user X does not like to get disturbed while coding. This data in conjunc-
tion with behavior modelling component is used to employ the right persuasion
strategies to motivate the user to comply with notifications. For example, an
application dealing with prolonged sitting of employees can sense the sitting
time using SenseX and accordingly, send notification in time to alert user to
take break periodically. Based on the contextual attributes and longitudinal his-
tory, the notification may look like following:

“You have a meeting in “10” min and working from last 35 min. Please take
a break now and walk for 2 min”.

4 Implementation Details

We developed SenseX platform with most of components described in Fig. 1.
To demonstrate the efficacy of the platform for performing pervasive sensing
and appropriate interventions, we developed an application StandUp to monitor
activity levels of employees in an organization.

Mobile Service: It is a native OS service developed for Android devices due
to its popularity and large market-share, especially in developing markets. Sen-
seX mobile service is able to perform low-level sensory measurement i.e.
accelerometer, proximity, microphone, etc. and contains activity inference algo-
rithms to extract high-order activities and contextual attributes. StandUp is
implemented as a native mobile application that accesses SenseX service to
sense various activities (i.e. sitting, standing, walking, unknown, etc.). An activ-
ity sensed from mobile service is categorized as ‘unknown’ if the phone is kept
on a flat surface (e.g. table). StandUp visualizes sensed activities in a day-based
activity profile along with timeline as shown in Fig. 3a. Apart from day-based
activity profile, users can see their weekly performance and an organization
leaderboard where they can compare their performance with peers as shown
in Fig. 3c. StandUp also uses SenseX intervention mechanism to provide engag-
ing notifications to the users which provide “just-in-time” alerts for daily goals,
compliance level etc.

Workstation Service: SenseX workstation service is implemented using
Microsoft’s .NET Framework 3.5 and supports all desktops/laptops running
Windows OS. The service is configured to run whenever system is rebooted or

436 R. Wadhwa et al.

(a) (b) (c) (d)

Fig. 3. a,b,c. Snapshots of StandUp Mobile Application d. Snapshot of workstation
service ticker and notification

awakens after sleep mode. It supports functionality to track keyboard activity,
mouse activity, webcam-based feed, and front ground application usage. StandUp
uses the workstation service to track activity of an employee and builds a simple
windows form based application to visualize such activity levels. StandUp appli-
cation places a ticker on the users’ desktop to show the current station of user
activity as shown in Fig. 3d. Similar to mobile service, StandUp application uses
workstation service to provide timely notifications in case of prolonged sitting
as shown in Fig. 3d.

Cloud-Based Instance: The server is hosted on a VM (virtual machine) pro-
vided by a public cloud service provider. The end-device services such as work-
station service and mobile service communicate with the cloud-based instance
using HTTP Get/Post requests. SenseX uses Google Cloud Messaging (GCM)
to push updates on mobile devices. StandUp application uses APIs to provide
a web-based dashboard which can be accessed by organization administrator
to track installation, status of running services, application usage, organization
leaderboard, and broad patterns.

5 Evaluation

SenseX is a platform designed for pervasive wellness monitoring platform in
workplaces; consists of different services running across devices. As described
in Sect. 4, StandUp application uses these services to provide activity monitoring
and interventions for prolonged sitting in workplaces. The system evaluation of
a platform such as SenseX is important to establish the effectiveness of different
features (i.e. triggered-sensing) where as a typical wellness monitoring system
will be questioned on how much can it contribute towards increasing activity
levels, especially in a workplace setting. Specifically, for SenseX and StandUp,
we conduct a mix of both system-evaluation (i.e. measuring impact of triggered-
sensing, sensing coverage) and a user-study evaluation to capture the personal
characteristic of users. We frame following research questions to guide both of
these evaluation mechanisms.

SenseX 437

– R1: How much sensing coverage is provided by different services of SenseX ?
How does sensing coverage vary across different users of the system?

– R2: What is the impact of triggered-sensing on the SenseX system? How
much is the trigger-delay among different services? Does it help in saving
energy for battery-constrained devices?

– R3: What are the activity patterns (i.e. continuous sitting time, daily steps)
of employees working in a workplace environment? How do these patterns fair
when put along organization wide leaders and slackers?

– R4: What is the impact of nudging an employee to take a stroll in case of
prolonged sitting? How long does she take to respond to these notifications?

– R5: What is the impact of gamification and incentivizing the top performing
employees? What is the observed difference between leaders and slackers in
the system?

Deployment Details: We did a pilot deployment of proposed platform in an IT
organization with a total of 30 participants (25 males and 5 females). The ages of
participants ranged from 21 to 45 years, with a mean age of 29 years (male = 28,
female = 31). All the participants used StandUp mobile and desktop application
which were built upon SenseX services. The participants were given flexibility to
specify the time intervals where activity tracking can be performed on desktop
and mobile applications; default interval was set from 7AM to 7PM . To make
the challenge engaging and competitive, we announced awards for top 3 weekly
leaders chosen based on their performance over two metrics, i.e. average step
count and average notification compliance score. Initially, we planned to run the
deployment for 4 weeks but extended it for another 4 weeks keeping in mind
engagement and interest of the participants. During the pilot, SenseX logged
several parameters related to participants’ performance and interaction with
the system. We analyzed the collected data to answer aforementioned research
questions.

5.1 Sensing Coverage

The sensing coverage in the context of SenseX is defined as the fraction of time
where activity monitoring is possible in a participant’s day-to-day life. Sen-
seX uses mobile sensors along with contextual and environmental information,
sensed by the workstation service. Using logs, we characterized activity moni-
toring w.r.t. sources i.e. mobile, workstation, or unknown. An activity is said to
be ‘unknown’ if mobile device happened to be placed on a flat surface and there
was no activity sensed by the workstation service. Across all the participants in
our deployment study, we observed that mobile service sensed nearly 50% of the
total time, nearly 25% of the time was monitored by the workstation service and
rest of the time was categorized as unknown as can be inferred from Fig. 4c. This
brings an interesting observation that mobile-based wellness applications such
as Moves and Google Fit are not able to track activities for more than 50% of
time. Further, Fig. 4c shows the sensing coverage pattern for the subset of par-
ticipants who had both mobile and desktop services actively running throughout

438 R. Wadhwa et al.

(a) (b) (c)

Fig. 4. a. Measured trigger-delay between mobile service to workstation service b.
Battery decay comparison for both mobile-only activity tracking approach and Sen-
seX based triggered-sensing with baseline c. Comparison of sensing coverage for mobile
and workstation based services across different participants

the deployment study. We observe that for some users (ID: 5 & 16), more infor-
mation is obtained from workstation service as compared to mobile sensors. It
could be due to limited monitoring because some of the users enabled activity
tracking during workplace timings only. Our analysis show that workstation-
based service increases the sensing coverage to a large extent especially during
workplace timings.

5.2 Triggered-Sensing and Battery Consumption

Section 3 presents triggered-sensing approach to offload sensing responsibilities
to workstation service when there is an opportunity. In such cases, workstation
service with the help of cloud instance need to send a trigger to mobile service
indicating that it should stop sensing. We use push-based notification system
to send trigger to a mobile service instead of a pull-model where it has to con-
tinuously look for a trigger by sending repeated request to the cloud instance.
It is important to characterize the time to send this trigger from workstation
service till it reaches to mobile service, represented as trigger delay. We emulated
trigger-delay using SenseX platform where a total of 1200 requests where sent
from workstation service to mobile service for a duration of 8 h. We present the
observed trigger-delay in Fig. 4a, most of the time the delay was less than 10 s.
Similarly, we compared energy consumption of SenseX activity tracking services
w.r.t. only mobile-based tracker and baseline as shown in Fig. 4b. In mobile-based
tracking approach, a continuous activity tracker that uses accelerometer ran on
a MotoE phone till the battery reached to a low level where as baseline shows
the battery decay without any external service. We found that SenseX using its
triggered-sensing approach could increase the battery life time by nearly 25%
of the time. From our experimental results, we conclude that triggered-sensing
works in near real-time and helps in increasing sensing coverage as well as result
in significant energy-savings.

5.3 Workplace Activity Patterns

StandUp challenge was designed to increase the overall activity level of employ-
ees at a workplace. Figure 5a presents the CDF of the number of steps for each

SenseX 439

(a) (b) (c) (d)

Fig. 5. a. CDF of day-wise steps across different participants b. CDF of sitting time
sessions across different weeks c. CDF of the response time observed for all the noti-
fications during the deployment d. Average number of leaderboard hits per user each
week during the deployment

week across all participants. We see a clear shift among the first and sixth week,
indicating that more people have increased their number of steps over the course
of the pilot. Figure 5b shows the CDF of the sitting time of users, i.e., the time
for which a user sits continuously at a stretch. We see that the duration of
sitting segment of the users have marginally decreased from week 1 to week 6,
which indicates that the users started adhering to the notifications and had been
avoiding sitting continuously for longer durations. We conclude that StandUp
challenge was effective in increasing the overall activity level among employees.
Considering that, there was no effective way to capture baseline (i.e. partic-
ipants’ performance before intervention), we have only provided performance
comparison on week-to-week basis.

5.4 Effect of Notifications

One of the important aspects of StandUp challenge was to continuously monitor
the sitting-standing pattern of the people and send notifications if they sit for
more than a threshold time t. In case of StandUp, t was set to 40 min based on
the prior medical studies and repetitive notifications were pushed every 5 min.
The participants also had an option to stop the notification temporarily if they
were busy. We compute a compliance score which is an indicator of percentage
of time a participant has acted on notification or remain active at least 2 min
in an hour. Figure 5c shows the CDF of response time for both workstation and
mobile notifications. Response time is the time between when a notification is
pushed and the user moves out of his sitting position (and proceeds to stand or
walk). We see that for nearly half of the notifications, participants have acted in
less than 10 min. We also observe that there is a slight preference of mobile-based
notifications over workstation ones. Also, long tail of larger response times are
observed because many time participants did not carry their mobile phone when
they took a break.

5.5 Effect of Incentives and Gamification

With the help of SenseX analytics capabilities, StandUp maintained an
organization-wide leaderboard which could be accessed by the participants. The

440 R. Wadhwa et al.

leaderboard was established based on two metrics i.e. average step count and
compliance score. At the end of each week, cash prizes worth 15 USD each were
announced for the top 3 leaders. We did not collect any qualitative data to mea-
sure the impact of leaderboard or incentives. However, we collected quantitative
data on how many times leaderboard page was accessed by different participants
during the deployment and we used that as a proxy to capture the interest of
participants. Figure 5d presents the average number of leaderboard hits per user
each week, (i.e., the number of times the leaderboard was visited by a user). We
see that initially, it was visited two times per day on average, and the frequency
gradually reduced as the initial excitement of the pilot settled in. However, the
leaderboard visits have remained stable over the last 3 weeks, converging at
around one visit every day by each user on an average.

Next, we analyzed the performance attributes of leaders and slackers during
the deployment study. The participants above the 95th percentile of step count
are taken as the leaders and those below the 5th percentile of step count are
taken as the slackers. It may be noted that the set of leaders and slackers may
vary in each week. We see a clear correlation between the leaders/slackers and
the average sitting time, response time, and leaderboard hits, i.e., the step count-
based leaders also feature in the above-average category for leader board hits,
and below average (i.e., shorter duration) for sitting time and response time,
and vice versa for the slackers.

6 Discussion

Modern day workplace forces a sedentary lifestyle that involves reduced physical
activity and prolonged sitting, which poses a risk of severe ailments including
diabetes, cancer, heart attack and stroke. Current wellness solutions are costly,
dependent on wearable devices, which do not have a sustainable impact. We
designed and developed a comprehensive wellness monitoring platform i.e. Sen-
seX, which intelligently uses combination of mobile, workstation, and infrastruc-
ture sensors to do pervasive activity and physiological monitoring in workplaces.
With multitude of different services, SenseX enables easy creation of different
wellness interventions and challenges that can drive sustained behavioral changes
among employees. As an example, we created a wellness challenge i.e. StandUp to
increase the activity levels of employees in an organization. We ran the challenge
for nearly 6 weeks and observed several key insights i.e. increased daily step count
across weeks, reduced sitting sessions, positive effect of gamification/incentives,
etc. From a systems’ evaluation perspective, SenseX uses triggered-sensing app-
roach to increase the sensing coverage by nearly 25% and reduced the battery
consumption considerably.

Through its pervasive sensing capabilities, we believe that SenseX helps in
realizing the vision of “wellness as a service in modern workplaces, enabling
plethora of different wellness services and interventions”. We provide a sample
of some of the other challenges/interventions that can be created using SenseX.

SenseX 441

1. Vitamin D Challenge: IT workers suffer from lack of vitamin D, which is
obtained by sun-exposure. A service can be created using SenseX activity
monitoring and contextual inference capabilities that infer the presence of a
person in outdoor and uses weather data to estimate the vitamin D exposure.

2. Healthy Meetings: A significant amount of sitting time in an IT workplace
happens during the meetings. SenseX can be used to create a challenge to
have meetings where people opt to stand, which can be compared across
different departments in a workplace.

In essence, SenseX can help in creating many such challenges, which will
drive sustained adoption of wellness programs. The layered architecture of Sen-
seX can be used to enhance specific components, for example, accurate behavior
modelling will help in enhancing the response time of the platform notifications.
Similarly, pervasive sensing capabilities of SenseX could be enhanced to measure
conditions such as sensing stress using keyboard and mouse activity.

References

1. Employee Wellness Program. https://hbr.org/2010/12/whats-the-hard-return-on-
employee-wellness-programs

2. http://ergo.human.cornell.edu/CUESitStand.html
3. http://usatoday30.usatoday.com/news/health/medical/health/medical/cancer/sto

ry/2011-11-03/Prolonged-sitting-linked-to-breast-cancer-colon-cancer/51051928/1
4. http://www.runnersworld.com/health/sitting-is-the-new-smoking-even-for-

runners
5. http://blogs.hbr.org/2013/01/sitting-is-the-smoking-of-our-generation/
6. http://endeavourpartners.net/assets/Wearables-and-the-Science-of-Human-Behav

ior-Change-EP4.pdf
7. Ergotron JustStand Survey and Index Report - JustStand.org. http://www.

juststand.org/portals/3/literature/SurveyIndexReport.pdf
8. Staiano, A.E., Harrington, D.M., Barreira, T.V., Katzmarzyk, P.T.: Sitting time

and cardiometabolic risk in US adults: associations by sex, race, socioeconomic
status and activity level, British J. Sports Med. http://www.ncbi.nlm.nih.gov/
pubmed/23981954

9. Church, T.S., Thomas, D.M., Tudor-Locke, C., Katzmarzyk, P.T., Earnest, C.P.,
Rodarte, R.Q., Martin, C.K., Blair, S.N., Bouchard, C.: Trends over 5 decades in
US occupation-related physical activity and their associations with obesity. PloS
One 6(5), e19657 (2011)

10. Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone
accelerometers. ACM SigKDD Explor. Newsl. 12(2), 74–82 (2011)

11. Brezmes, T., Gorricho, J.-L., Cotrina, J.: Activity recognition from accelerometer
data on a mobile phone. In: Omatu, S., Rocha, M.P., Bravo, J., Fernández, F.,
Corchado, E., Bustillo, A., Corchado, J.M. (eds.) IWANN 2009, Part II. LNCS,
vol. 5518, pp. 796–799. Springer, Heidelberg (2009)

12. Hache, G., Lemaire, E., Baddour, N.: Mobility change-of-state detection using a
smartphone-based approach. In: 2010 IEEE International Workshop on Medical
Measurements and Applications Proceedings (MeMeA), pp. 43–46. IEEE (2010)

https://hbr.org/2010/12/whats-the-hard-return-on-employee-wellness-programs
https://hbr.org/2010/12/whats-the-hard-return-on-employee-wellness-programs
http://ergo.human.cornell.edu/CUESitStand.html
http://usatoday30.usatoday.com/news/health/medical/health/medical/cancer/story/2011-11-03/Prolonged-sitting-linked-to-breast-cancer-colon-cancer/51051928/1
http://usatoday30.usatoday.com/news/health/medical/health/medical/cancer/story/2011-11-03/Prolonged-sitting-linked-to-breast-cancer-colon-cancer/51051928/1
http://www.runnersworld.com/health/sitting-is-the-new-smoking-even-for-runners
http://www.runnersworld.com/health/sitting-is-the-new-smoking-even-for-runners
http://blogs.hbr.org/2013/01/sitting-is-the-smoking-of-our-generation/
http://endeavourpartners.net/assets/Wearables-and-the-Science-of-Human-Behavior-Change-EP4.pdf
http://endeavourpartners.net/assets/Wearables-and-the-Science-of-Human-Behavior-Change-EP4.pdf
http://www.juststand.org/portals/3/literature/SurveyIndexReport.pdf
http://www.juststand.org/portals/3/literature/SurveyIndexReport.pdf
http://www.ncbi.nlm.nih.gov/pubmed/23981954
http://www.ncbi.nlm.nih.gov/pubmed/23981954

442 R. Wadhwa et al.

13. Khan, A.M., Lee, Y.-K., Lee, S., Kim, T.-S.: Human activity recognition via an
accelerometer-enabled-smartphone using kernel discriminant analysis. In: 2010 5th
International Conference on Future Information Technology (FutureTech), pp. 1–6.
IEEE (2010)

14. Zhang, S., McCullagh, P., Nugent, C., Zheng, H.: Activity monitoring using a smart
phone’s accelerometer with hierarchical classifcation. In: 2010 Sixth International
Conference on Intelligent Environments (IE), pp. 158–163. IEEE (2010)

15. Sun, D., Paredes, P., Canny, J.: MouStress: detecting stress from mouse motion. In:
Proceedings of the 32nd Annual ACM Conference on Human Factors in Computing
Systems, pp. 61–70. ACM (2014)

16. Poh, M.-Z., McDuff, D.J., Picard, R.W.: Non-contact, automated cardiac pulse
measurements using video imaging and blind source separation. Opt. Express
18(10), 10762–10774 (2010)

17. Mestha, L.K., Kyal, S., Xu, B., Lewis, L.E., Kumar, V.: Towards continuous moni-
toring of pulse rate in neonatal intensive care unit with a webcam. In: Engineering
in Medicine and Biology Society (EMBC), 2014 36th Annual International Con-
ference of the IEEE, pp. 3817–3820. IEEE (2014)

18. Wei, L., Tian, Y., Wang, Y., Ebrahimi, T., Huang, T.: Automatic webcam-
based human heart rate measurements using laplacian eigenmap. In: Lee, K.M.,
Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012, Part II. LNCS, vol. 7725,
pp. 281–292. Springer, Heidelberg (2013)

19. Sumida, M., Mizumoto, T., Yasumoto, K.: Estimating heart rate variation during
walking with smartphone. In: Proceedings of the 2013 ACM International Joint
Conference on Pervasive and ubiquitous computing. ACM (2013)

20. Balaji, B., Xu, J., Nwokafor, A., Gupta, R., Agarwal, Y.: Sentinel: occupancy based
HVAC actuation using existing WiFi infrastructure within commercial buildings.
In: Proceedings of the 11th ACM Conference on Embedded Networked Sensor
Systems, p. 17. ACM, November 2013

21. Visvanathan, A., Banerjee, R., Dutta Choudhury, A., Sinha, A., Kundu, S.: Smart
Phone Based Blood Pressure Indicator. In: MobileHealth, 11–14 August 2014,
Philadelphia, PA, USA (2014)

22. Pal, A., Sinha, A., Choudhary, A., Chattopadyay, T., Visvanathan, A.: A robust
heart rate detection using smart-phone video. In: MobileHealth 2013, Proceedings
of the 3rd ACM MobiHoc workshop on Pervasive wireless healthcare, pp. 43–48
(2013)

23. Grimaldi, D., Kurylyak, Y., Lamonaca, F., Nastro, A.: Photoplethysmography
detection by smartphones videocamera. In: Proceedings of IEEE International Con-
ference IDAACS 2011, pp. 488–491, September 2011

24. Scully, C.G., Lee, J., Meyer, J., Gorbach, A.M., Granquist-Fraser, D., Mendelson,
Y., Chon, K.H.: Physiological parameter monitoring from optical recordings with
a mobile phone. IEEE Trans. Biomed. Eng. 59(2), 303–306 (2012)

25. Kang, S., Kwon, S., Yoo, C., Seo, S., Park, K., Song, J., Lee, Y.: Sinabro: oppor-
tunistic and unobtrusive mobile electrocardiogram monitoring system. In: Proceed-
ings of HotMobile, Santa Barbara, CA (2014)

26. Epp, C., Lippold, M., Mandryk, R.L.: Identifying emotional states using keystroke
dynamics. In: CHI 2011, Vancouver, BC, Canada, 7–12 May 2011

27. Zeng, L., Hsueh, P., Chang, H.: Greenolive: an open platform for wellness manage-
ment ecosystem. In: IEEE/INFORMS International Conference on Service Oper-
ations and Logistics (SOLI 2010) (2010)

SenseX 443

28. Leel, S.-H., Song, J.H., Ye, J.-H., Lee, H.J., Yi, B.-K., Kim, I.K.: SOA-based inte-
grated pervasive personal health management system using PHDs. In: Proceedings
of the 4th International Conference on Pervasive Computing Technology Health-
care, Munich, Germany, p. 14, March 2010

29. Li, Y., Guo, L., Wu, C., Lee, C.-H., Guo, Y.: Building a cloud-based platform for
personal health sensor data management. In: IEEE-EMBS International Confer-
ence on Biomedical and Health Informatics (BHI), pp. 223–226 (2014)

30. He, C., Fan, X., Li, Y.: Toward ubiquitous healthcare services with a novel efficient
cloud platform. IEEE Trans. Biomed. Eng. 60(1), 230–234 (2012)

Opportunities for Process Improvement:
A Cross-Clientele Analysis of Event Data Using

Process Mining

R.P. Jagadeesh Chandra Bose(B), Avantika Gupta, Deepthi Chander,
Ajith Ramanath, and Koustuv Dasgupta

Xerox Research Center India, Bangalore 560103, India
{jagadeesh.prabhakara,avantika.gupta,deepthi.chander,

ajith.ramanath,koustuv.dasgupta}@xerox.com

Abstract. Services organizations are always under pressure to operate
under tight costs and to improve their operational efficiency. Transac-
tion processing is one of the major operations in a services organization.
An organization is typically trained to serve a standard set of processes
within different domains across several clients. Although each client has
their own specifics with respect to a process, there is a lot of common-
ality within similar processes across clients. An organization’s opera-
tional KPIs (i.e., Key Performance Indicators like processing time) across
these clients when dealing with such related processes might not be sim-
ilar; an organization might perform well for some clients and perform
below par on others. There is a need to gain insights for such variance
in performance and seek opportunities to learn from well performing
client engagements (e.g., establish best practices) and leverage these
learnings/insights on non-performing clients. We present a framework
for analysing operational event data of related processes across different
clients to gain insights on process executions. We present results of ana-
lyzing real-world transaction processing operations of a large services
organization using the proposed framework. Our analysis shows that
resource workload, clarity of process definitions, experience, and skill
proficiency are key factors that influence the average processing time of
transactions.

1 Introduction

Services organizations cater to a large number of clients on a daily basis. Each
client specifies certain Service Level Agreements (SLAs) to quantify perfor-
mance, e.g., turnaround time, cost, quality etc., which need to be met by service
providers. Service providers typically implement/deploy a service delivery frame-
work to meet these SLAs. Most service providers are challenged by a constant
need to closely monitor the performance and efficiency of their operations to meet
stringent compliance requirements, handle cost pressures, inefficient processes
and complex workflows. Inability to meet SLAs due to inefficient business
processes can amount to 20% loss for businesses today.
c© Springer-Verlag Berlin Heidelberg 2015
A. Barros et al. (Eds.): ICSOC 2015, LNCS 9435, pp. 444–460, 2015.
DOI: 10.1007/978-3-662-48616-0 31

Opportunities for Process Improvement 445

Many of today’s service organizations record event data pertaining to their
operations, which have been exploited to gain insights on process executions,
for example, using process mining [1] techniques. Traditionally, such insights are
obtained in silos, i.e., processes pertaining to clients are analyzed independently.
In recent years, there has been considerable interest in cross-clientele analysis.
The main motivation for such an analysis stems from the fact that - although ser-
vice providers may be performing variants of a similar process across its clients,
the Key Performance Indicators (KPIs)1 may vary significantly across clients.
For instance, two clients requiring a similar process (e.g., document verification)
to be executed, may incur very different turnaround times for process completion.
In some cases, this can even result in the service provider meeting SLA spec-
ifications for some clients, and violating those of others, despite the similarity
in processes executed for the clients. This variation in business process perfor-
mance can be attributed to variations in workflow design, resource allocation,
context dependencies, skill deficiencies, etc. Given that services organizations
frequently encounter the need to execute similar processes across its clients, a
siloed approach of operational execution data analysis does not suffice. There is
a need to gain insights for such variance in performance and seek opportunities
to learn from well performing client engagements (e.g., establish best practices)
and leverage these learnings/insights on non-performing clients.

In this paper, we propose an extensible framework using process mining that
supports cross-clientele learnings based on analysis of event logs containing busi-
ness events of various clients and their processes. The framework comprises of

– an analytic engine that provides insights on various aspects of a process such
as process discovery, conformance checking (e.g., deviations from expected
behaviour), and performance analysis (e.g., turnaround times, working times,
bottlenecks)

– a root cause diagnostic engine that assists in identifying the potential causes
of some observed behaviour

– a recommendation engine that provides prescriptions for improving the oper-
ations of an organization.

We present some insights from analyzing the operational data of transaction
processing pertaining to a large services organization. In particular, we demon-
strate how the proposed framework can elicit factors that influence the perfor-
mance of key client processes.

The remainder of the paper is organized as follows. Related work is dis-
cussed in Sect. 2. Section 3 provides some background on process mining and
event logs. The framework for cross-clientele analysis is presented in Sect. 4.
Section 5 presents and discusses the application of the proposed framework on a
real-life case study. Finally, Sect. 6 concludes the paper.

1 Note that SLAs typically are external metrics (for clients) while KPIs are internal
metrics (for the organization).

446 R.P. Jagadeesh Chandra Bose et al.

2 Related Work

While most prior works in process mining adopt a client-specific view, recent
works have recognized the benefits of process analysis across clients [5,6]. Buijs
et al. [5] cross-correlate process models of different clients with respect to their
actual behaviours observed from event logs along process model quality metrics
(e.g., process complexity), behavioral quality metrics (e.g., throughput time)
and comparison metrics (e.g., process similarity). However, they do not provide
any root cause analysis of the observed behavior. Process-related risks pertain-
ing to deadline transgressions or overruns are inferred in [12] using statistical
techniques by identifying potential risk indicators such as abnormal activity
execution/waiting time, multiple executions of activity etc. Root cause analysis
of deviant process instances are studied in [8,11,15]. The basic idea in all of
these is to define some features (e.g., workload, sequence of activities, etc.) and
translate the problem of finding root-causes into a classification problem.

The impact of factors such as the complexity of work, priority or importance
of work and expertise of the worker, on the operational productivity of the worker
have also been studied [14]. However, [8,11,12,14,15] all focus on analyzing a sin-
gle client/process. In contrast, our work analyzes several clients/processes and in
addition, we explore the influence of factors such as resource skills/capabilities,
their proficiency, team composition and process complexity on various behavioral
aspects of process executions. Our work presents a holistic, data-driven frame-
work with pluggable components which analyzes, infers and identifies opportu-
nities for process improvements based on cross-learnings from event log data
pertaining to various client process executions.

3 Background

In this section, we provide some background on process mining. Process min-
ing serves as a bridge between data mining and business process modeling and
analysis. The starting point of process mining is the notion of an event log. An
event log captures the manifestation of events pertaining to the instances of a
single process. A process instance is also referred to as a case. Each event e
in the log corresponds to a single case and can be related to an activity or a
task (for instance, e corresponds to audit task). Events within a case need to be
ordered. An event may also carry optional additional information like timestamp
(e occurred on April 2nd 2015 at 13:25:10 IST), resource (e was executed by
Kathy), transaction type (e is a start event, i.e., the start of the auditing task
by Kathy), and various data elements such as costs (e costed $0.5), etc. Timing
information of when an event occurred is required to analyze the performance
related aspects (e.g., waiting time, processing time, etc.) of the process. Resource
information such as the person executing the activity is useful when analyzing
the organizational perspective, and in conjunction with time, can help in analyz-
ing the productivity of various resources. We refer to these additional properties
as attributes. To summarize,

Opportunities for Process Improvement 447

– an event log captures the execution of a process.
– an event log contains process instances or cases.
– each case consists of an ordered list of events.
– each event can be associated exactly to a single case.
– events can have attributes such as activity, time, resource, etc.

Event logs from different systems and organizations can be stored in different
formats, e.g., databases, plain text files, etc. For process mining applications,
a common event log format based on a process meta model, called the MXML
format (Mining XML) [7], has been proposed. This has been followed by a
more recent advancement, called the XES (eXtensible Event Stream) [9]. XES
is adopted as the standard by the IEEE Task Force on Process Mining.

A process should be analyzed holistically across four dimensions: (i) control-
flow, (ii) data, (iii) resource, and (iv) time. Note that these dimensions are not
orthogonal. The topics in process mining can be broadly classified into three
categories (i) discovery, (ii) conformance, and (iii) enhancement.

– Discovery: Process discovery deals with the discovery of models from event
logs. These models may describe control-flow, organizational aspects, time
aspects, etc. There are dozens of process discovery techniques generating
process models using different notations (Petri nets, EPCs, BPMN, heuris-
tic nets, etc.) [1].

– Conformance: Conformance or compliance checking deals with comparing an
apriori model with the observed behavior as recorded in the log and aims at
detecting inconsistencies/deviations between a process model and its corre-
sponding execution log. In other words, it checks for any violation between
what was expected to happen and what actually happened. The apriori models
can be specified using different notions such as Petri nets, Declarative models,
or in the form of business rules.

– Enhancement: Enhancement deals with extending or improving an existing
model based on information about the process execution in an event log. For
example, annotating a process model with performance data to show bottle-
necks, throughput times, etc., by exploiting the timestamps in the event log.

For a classic introduction to process mining, the reader is referred to [1]. We
adopt several techniques from process mining and the process mining tool ProM
[16]2 to discover insights on process executions. While ProM supports analysis of
one event log pertaining to a process, we built a plug-in in ProM that analyzes
a collection of logs together. In addition, we built a root cause diagnostic engine
to analyze the causes for observed behavior.

4 Framework for Cross-Clientele Analysis

In this section, we discuss an extensible framework for performing cross-clientele
analysis of operations within a services organization. Figure 1 depicts the frame-
work for cross-clientele analysis. The basic building blocks of the framework are
discussed below:
2 See www.processmining.org for more information and to download ProM.

www.processmining.org

448 R.P. Jagadeesh Chandra Bose et al.

CL1

CL2

:
:

CLn

Event Logs

Augmented Data

Process
Models

Organizational
Structure

Business Rules

Skills

Process Discovery and
Complexity Analysis

Compliance Analysis

Performance Analysis

Analytic Engine

Process Models and
Complexity

Deviations

Bottlenecks

Insights (What)

Root Cause
Diagnostic
Engine

(Why)

Recommendation
Engine

(How)

Fig. 1. Framework for analysis of process executions across clients.

– Event Logs: At the outset, we need to consider event logs pertaining to the
operations of a particular process for all clients we are interested in analyzing.
The particular choice of clients and processes can be driven from various
means, e.g., one can choose clients across different geographies, based on their
type such as gold, silver, and platinum, based on their KPI metrics (clients
whose KPIs are met vs. those that are not), or can even be random.

– Augmented Data: In addition to the event logs, one can have other forms
of data that augment the event logs. For example, one can have a repository
of client process models corresponding to how the organization expects the
process executions to happen, organizational structure eliciting the resources,
their roles, departments, groups etc., data about the skills and proficiency of
resources, business rules, etc. Some example business rules include: activity
X should be executed by a resource with a proficiency at least 2 in skill S,
activity Y should be executed within 2 h of executing activity X.

– Analytic Engine: Given a set of event logs and optional augmented data
as mentioned above, one can derive several kinds of insights related to the
process executions. The analysis techniques can be broadly divided into three
categories:
• Process Discovery and Complexity Analysis: This corresponds to the discov-

ery of process models from event logs and analyzing them. We can compare
how the process models vary across the clients, identify what is common
between them, which workflow patterns are used in the processes, which
client processes are complex (e.g., structural complexity), etc.

• Compliance Analysis: This corresponds to verifying how compliant are
client process executions with respect to their expected behavior. This
takes as input event logs (capturing process executions) and process mod-
els or business rules (capturing expected behavior). One can apply replay
techniques (replaying process instance traces onto the process models/

Opportunities for Process Improvement 449

business rules) to identify what sort of deviations manifest, how often do
they manifest in the process executions. If all client processes follow a sim-
ilar process model, this gives a snapshot view of how compliant various
client executions are w.r.t the expected behavior.

• Performance Analysis: This corresponds to various performance related
aspects pertaining to the process executions, e.g., the average working/
processing time of activities, the waiting times, sojourn times between
activities, the turnaround time of the process etc. In addition, we perform
resource performance analysis in the process, i.e., how do different resources
execute an activity: the working/processing times that different resources
take to execute an activity, deviations in execution times, etc.

Note that as mentioned above, insights should ideally cater to all the four
perspectives (control-flow, data, resource, and time) of a process.

– Root Cause Diagnostic Engine: The insights that are uncovered in the
earlier steps provide descriptive information as to what is happening in the
operations of the process. Having discovered any interesting insights, the orga-
nization would be interested in identifying what the underlying (root) causes
are for the observed behavior. The root cause diagnoser assists in identifying
and corroborating factors that can be attributed to an observed behavior. The
factors that influence the behavior of a process, e.g., resource skills and profi-
ciency, process complexity, etc., can be (pre)defined. From the event logs and
other augmented data sources, we extract the values corresponding to these
features and the problem of finding the root causes can be posed as a learning
problem. For example, for a given process, if we are interested in dissecting
whether resource skill levels attribute to the variations in performance (work-
ing time), we can create a resource-skills matrix with each cell (i,j) in the
matrix capturing the proficiency level of resource ‘i’ in skill ‘j’. We can clas-
sify the resources into various classes, e.g., efficient and poor, based on their
performance. We can then apply techniques like decision trees to learn the
discriminatory features if any between the defined classes. Simple correlation
analysis techniques can also reveal any potential causes.

– Recommendation Engine: This corresponds to providing prescriptions to
the organization towards improving their operations. The recommendations
are driven by the root causes discovered in the earlier step, e.g., if skill pro-
ficiency is identified as a cause, one can recommend training of resources to
improve their skill levels.

Note that the proposed framework can be extended with additional techniques.
In this paper, we consider only the analytic and root cause diagnostic engines.
The recommendation engine is beyond the scope of this paper. We are in dis-
cussions with the business stakeholders to translate/leverage some of our root
causes to recommendations/prescriptions.

450 R.P. Jagadeesh Chandra Bose et al.

5 Cross-Clientele Analysis for Transaction Based
Outsourcing (TBO) Business

In this section, we discuss the results of applying the proposed framework on the
event logs pertaining to a transaction processing business organization within
Xerox Services. The proposed framework has been implemented as a plug-in in
the process mining tool ProM [16].

5.1 Business Context

For confidentiality, we anonymize the discussion on the business without losing
any information. The organization serves clients across different domains D =
{D1,D2, . . . , Dn}. Within each domain, D, there are several processes PD =
{P1, P2, . . . , Pm}. For each process, P , the organization has defined a set of steps
that caters to the process. For a particular client C and a process in a domain,
PC , the organization configures the steps to cater to the needs of the client.
These configurations result in different transaction types T P

C = {T1, T2, . . . , Tk}
for the client process.

The resources in the organization are skilled on the defined steps of a process.
Different resources are skilled to execute different processes and the proficiency
levels of resources on the skills can vary.

The organization has around 1400 employees and provides services across 4
primary domains and 163 processes for over 90 clients. The organization typi-
cally handles between 5000 and 10000 transactions per day. Although the daily
volume of transactions is relatively moderate, we look at three months of longi-
tudinal data to demonstrate the efficacy of our framework. We believe that the
proposed framework is capable of handling scenarios with much larger volumes
of transactions.

Fig. 2. An expected process behavior for the transactions.

The organization receives instances of a process as transactions. Each trans-
action refers to a process instance and the typical workflow of a process corre-
sponds to the transaction being assigned by a “team lead” to a resource whose
role is termed “processor”. The processor then works on the transaction (based
on a well defined set of steps). The processor can either finish the transaction
in one go or can process it for some time, suspend it and later resume it for
completion. Once the processor completes his/her task, the transaction is then
assigned to an “auditor” for quality check. The auditor checks if the processor
has processed the transaction correctly and if no issues are perceived, the trans-
action is completed. If issues are found, the auditor sends the transaction back
to the processor, who has to rectify the errors identified. Just like the proces-
sor, an auditor can perform his/her task in one go or can do the task for some

Opportunities for Process Improvement 451

time, suspend it and later resume it for completion. The organization expects
the transactions failing the auditor checks to be a rare event. Figure 2 depicts
the process behavior for transaction processing.

5.2 Data Set

We have selected four processes that are commonly executed by five clients in
domain A.3 These are some of the most critical processes that the organization
provides services on and the chosen clients are among the big ones. The organiza-
tion is interested in gaining insights on how these processes are managed across
these clients. Let these processes be denoted by PA

1 , P2A, PA
3 , and PA

4 and the
clients by CA

1 , CA
2 , CA

3 , CA
4 , and CA

5 . For these client-process combinations we
have considered all transactions that have started and completed over a three
month period between January 2015 and March 2015.

Table 1 depicts the number of transaction types and the average number
of steps per transaction type for each of the client-process combinations. Also
depicted in Table 1 is the minimum and maximum number of steps among the
transaction types for a client-process combination. We can see that clients CA

1

and CA
2 have a lot of heterogeneity in their processes (this is reflected in the large

number of transaction types for processes PA
1 , PA

3 , and PA
4). At the same time,

several of these transaction types are simple (involving only few steps), which is
reflected in the relatively low average number of steps for these processes when
compared to the other clients. The organization is particularly interested in the
way how processors are executing their task. Hence in the rest of the discus-
sion, we focus on insights related to processors. Table 2 depicts the volume of
transactions, the number of “processors” who worked on these transactions, and
the average number of transactions per resource for each of the client-process
combinations. Also highlighted in the table are some aberrations. For example,
we can see that client CA

4 exhibits drastically different characteristics when com-
pared to others, the average number of transactions per resource is much larger
(278.82) when compared to other clients for PA

1 and much lesser (4.22) for PA
3 .

Similarly, for client CA
5 , the average number of transactions per resource is less

(6.75) for PA
3 and much larger (429.57) for PA

4 .
For each of these transactions, the organization records event data in the

form of a worklog. The worklog contains information about the high level steps
of the process elicited above, e.g., when a transaction arrived, the team lead
who assigned the transaction to a processor, when it was assigned, and to whom
it was assigned etc. We process this data and generate XES/MXML event logs
amenable for process mining. The next few sections provide a detailed analysis
using the proposed framework in Fig. 1

5.3 Process Discovery and Complexity Analysis

As illustrated in the framework in Fig. 1, several types of insights can be obtained
using various analysis techniques. Figure 3 depicts the process model discovered
3 Recall that the organization serves clients across different domains.

452 R.P. Jagadeesh Chandra Bose et al.

Table 1. The number of transaction types (#TT), the average number of steps per
transaction type, the minimum, and the maximum number of steps among the trans-
action types for different processes across different clients in domain A.

PA
1 PA

2 PA
3 PA

4

#TT avg. min. max. #TT avg. min. max. #TT avg. min. max. #TT avg. min. max.

CA
1 88 1.5 1 11 2 4.5 1 8 11 1.45 1 6 34 2.5 1 9

CA
2 53 5.0 1 29 5 32.4 4 53 22 1.9 1 8 9 3.0 1 6

CA
3 13 5.2 1 15 4 5.75 1 9 5 6.2 2 11 5 6.0 4 8

CA
4 7 5.0 1 11 1 1.0 1 1 3 1.3 1 2 - - - -

CA
5 9 8.2 6 12 2 8.5 7 10 7 2.4 1 6 2 6.5 6 7

Table 2. The number of transactions (#T), the number of processors (#R) deployed,
and the average number of transactions per processor for different processes across
different clients in domain A.

PA
1 PA

2 PA
3 PA

4

#T #R avg. #T #R avg. #T #R avg. #T #R avg.

CA
1 2917 19 153.52 1323 9 147 599 22 27.22 1804 15 120.66

CA
2 7146 36 198.5 600 23 26.09 404 20 20.2 3052 38 80.31

CA
3 1736 12 144.66 440 16 27.5 965 21 45.95 1572 20 78.6

CA
4 6413 23 278.82 38 9 4.22 201 7 28.71 - - -

CA
5 1494 8 186.75 54 8 6.75 444 14 31.75 6014 14 429.57

using the heuristics miner [17] for client CA
3 and process PA

1 . We can see that
the workflow followed is along the expected process behavior illustrated in Fig. 2.
In addition to the control-flow, the discovered process model provides insights
about how often a particular activity and flow was executed. We can see that for
roughly 3.8% of the transactions, processors have suspended and resumed the
processing of the transaction. Similarly for 1.8% of the transactions, an auditor
has suspended and resumed the auditing of the transaction.

Figure 4 depicts the process model discovered using the heuristics miner for
client CA

4 and process PA
1 . In this model, we can see that for 72 transactions,

an auditor has found a quality issue with how the transaction is processed by a
processor. For a significant number of transactions 16% (unlike the earlier case
where it was just 3.8%), the processor has suspended and resumed the trans-
action. Furthermore, the processors have (re-)suspended the transaction several
times (263 instances) before they finally complete it. This clearly indicates that
the processors had difficulty in executing this transaction (as is evident both
from the number of times quality issues have been discovered and the number
of times processors have to suspend and resume the transactions). One reason
for this could be attributed to the relatively large volume of transactions that a
resource is assigned on average. Recall from Table 2 that for this client-process,
the average number of transactions per resource (278.82) is much larger than

Opportunities for Process Improvement 453

Fig. 3. Process model discovered using heuristics miner for client CA
3 and process PA

1 .

significant number
of suspends

quality issues detected

significant number
of re-suspends

Fig. 4. Process model discovered using heuristics miner for client CA
4 and process PA

1 .

the average for this process across other clients. Process discovery techniques of
our framework have thus been able to uncover the operational process model,
even while providing insights w.r.t. the variants in control-flow aspects across
client-process combinations.

5.4 Compliance Analysis

We next discuss some results on conformance checking (or compliance) analysis
of the event data. Recall that conformance checking analyzes how conformant
are real executions with respect to some expected behavior. One can specify the
expected behavior in the form of a process model and replay techniques such as
[2,4,13] can be applied. These techniques provide an objective fitness metric indi-
cating how conformant a process instance is with respect to the expected behav-
ior. In addition, they also reveal what deviations from the expected behavior are
manifested in the process instance. One can also specify the expected behavior
in the form of rules, for example as linear temporal logic (LTL) constraints for
the control-flow perspective of a process and techniques such as [3,10] can be
used to identify the conformance or non-conformance of process instances. We
have used the Petri net equivalent of the process model depicted in Fig. 2 as the
model for expected behavior and replayed the event logs of each client-process
using [4]. Table 3 depicts the results of conformance analysis where we elicit
various classes of deviations uncovered, the client-processes, and the number of
transactions where those deviations are manifested.

454 R.P. Jagadeesh Chandra Bose et al.

Table 3. Deviations uncovered during conformance checking analysis for the various
client-processes of domain A.

Deviation Client, Process #Trans.

Transaction is assigned to two different processors (CA
2 , PA

2) 1

(CA
4 , PA

3) 1

Auditing is done by two different resources (CA
1 , PA

1) 1

Auditing is done after a transaction is completed (CA
3 , PA

1) 1

(CA
3 , PA

2) 5

(CA
3 , PA

4) 1

Quality issues are identified and processing is done
more than once

(CA
3 , PA

1) 1

(CA
4 , PA

1) 72

Transaction is withdrawn after processor completes
the task

(CA
3 , PA

2) 1

There are two instances where a transaction is assigned to two different
processors. In one instance, (CA

2 , PA
2), the team lead first assigned the transac-

tion to a processor who does not respond by accepting the transaction. The team
lead then reassigns the transaction to a different processor. The other instance,
(CA

4 , PA
3), presents an interesting scenario where the transaction is assigned to

a different processor after the initially assigned processor has started working
on the transaction. Deviations are observed in the audit executions as well. In
one instance, auditing is done by two different auditors. The first auditor started
auditing and suspended the task. It was later resumed by another auditor who
completed the task. There are several instances where auditing was done after the
transaction was completed. It is interesting to note that this deviation emanates
only from operations related to client CA

3 across three different processes.
Recall from our earlier discussion that the organization expects quality check

failures to be a rare event. We encountered two client-process combinations, (CA
3 ,

PA
1) and (CA

4 , PA
1), where quality issues are perceived. Only one transaction

failed the quality check in the former while 72 transactions failed the check in
the latter (also as illustrated in Fig. 4). It is interesting to note that the quality
issues are perceived only in process PA

1 . In one instance, (CA
3 , PA

2), a transaction
is withdrawn after the processor finished executing the task. The deviations thus
uncovered could then be analyzed by team leads and steps could be taken to
prevent such deviations in the future.

5.5 Performance Analysis

We next discuss the results of performance analysis. Table 4 depicts the average
and standard deviation of the working time that a processor takes to complete
his/her task for the various client-process combinations. The large deviations
can be attributed to the variations in the number of check items (steps) among

Opportunities for Process Improvement 455

the transaction types of a client-process and also to the resources working on
the process. We can see that processors take relatively very long time to finish
tasks for all processes pertaining to client CA

4 as highlighted in the table. Note
that PA

2 is defined over only one step for CA
4 and PA

3 over one/two steps unlike
other clients. This implies that the entire process is defined as one/two steps
rather than splitting into several smaller steps. The processor working on the
transaction has to remember all that has to be done for CA

4 for this transaction
using only these one/two check items (steps), which is difficult. Performance
analysis can help us uncover bottleneck processes/tasks.

5.6 Root Cause Analysis

We analyzed if the number of steps in which processes are defined can potentially
be a root cause for the variation in performance. The premise is that the more
the number of steps, the finer the detail to which the process is explained.

Table 4. The average and standard deviation of working times (in seconds) taken by
processors for different processes across different clients in domain A.

PA
1 PA

2 PA
3 PA

4

CA
1 2827 ± 9270 433 ± 2392 9878 ± 19259 1260 ± 4960

CA
2 1618 ± 9201 5522 ± 19308 7624 ± 13566 4271 ± 21538

CA
3 2349 ± 12806 9473 ± 29293 17087 ± 28643 1375 ± 4627

CA
4 5282± 29129 44291± 60309 58180± 131275

CA
5 3364 ± 12787 3279 ± 12733 40792 ± 56348 529 ± 3770

Figure 5 depicts the influence of the number of steps on the processor’s work-
ing time of the transaction for various processes across all clients. We have
considered the maximum number of steps as well as the average number of steps
defined in a process and studied if there are any significant correlations. We can
see that as the maximum number of steps increases, the average working time
decreases. For a particular process, among clients where the maximum number of
steps is the same, the average working time is directly proportional to the aver-
age number of steps in the process. For example, in Fig. 5(a) (also see Table 1),
although both CA

1 and CA
4 have the same number of maximum steps (11), their

average working times are 2827 and 5282 respectively (see Table 4). It can be
concluded that, CA

4 takes relatively longer time because the average number of
steps for this client is 5 as against 1.5 for client CA

1 .
Note that causal relations/correlations only suggest plausible factors for an

observed behaviour. Valid conclusions can only be drawn in conjunction with
process owners, while considering complete operational context. We believe this
will have to be an iterative process, i.e., we discover insights from the data,
present it to the process owners, incorporate their feedback, and if required
repeat the analysis. The ability of a completely automated system for drawing
confident conclusions largely depends on the goodness/quality of event data.

456 R.P. Jagadeesh Chandra Bose et al.

10 12 14 16 18 20 22 24 26 28 30
1000

1500

2000

2500

3000

3500

4000

4500

5000

5500
T

im
e

(s
ec

on
ds

)

Maximum Number of Steps
10 12 14 16 18 20 22 24 26 28 30

0

1

2

3

4

5

6

7

8

9

N
um

be
r

of
 S

te
ps

Processing Time
Average Steps

(a) PA
1

10
0

10
110

2

10
4

10
6

T
im

e
(s

ec
on

ds
)

10
0

10
1 10

0

10
1

10
2

N
um

be
r

of
 S

te
ps

Maximum Number of Steps

Processing Time
Average Steps

(b) PA
2

1 2 3 4 5 6 7 8 9 10 11 12
 0

10000

20000

30000

40000

50000

60000

70000

80000

T
im

e
(s

ec
on

ds
)

Maximum Number of Steps
1 2 3 4 5 6 7 8 9 10 11 12

0

1

2

3

4

5

6

7

8

N
um

be
r

of
 S

te
ps

Processing Time
Average Steps

(c) PA
3

5 6 7 8 9 10
0

500

1000

1500

2000

2500

3000

3500

T
im

e
(s

ec
on

ds
)

Maximum Number of Steps
5 6 7 8 9 10

1

2

3

4

5

6

7

8

N
um

be
r

of
 S

te
ps

Processing Time
Average Steps

(d) PA
4

Fig. 5. Influence of the number of steps defined for a process on the processing time.

For example, apart from process data, one may also rely on information about
resource activities each day, e.g., whether resources are working on other trans-
actions with higher priority. Such completeness in event data logging is rarely
observed. Therefore, for the study reported in the paper, we presented the uncov-
ered causal relations to process owners, who concurred with the correlations,
leading us to the stated conclusions.

In order to study the influence of resources on the variation in processing
(working) time, we first filtered all infrequent transaction types and resources.
We considered the transaction types that contribute to the top 95 percentile of
transactions and resources who worked on at least 5% of transactions. Table 5
depicts the volume of transactions and the number of resources after this filter-
ing. We can see that the number of resources who regularly work on the process
is much less when compared to all resources who worked on the process. For
example, for process PA

1 , there are 19 resources who worked on client CA
1 on all

transactions but only 6 of them worked on at least 5% of transactions. When
the volume of transactions arriving on certain days are high, in order to meet
the SLAs, the organization deploys more resources to cater to the high volumes.

Figure 6 depicts the process model discovered using the heuristics miner for
the client CA

4 and process PA
1 . We can see that in this model, the number

of transactions with quality issues are 14 (0.35%) unlike the original model

Opportunities for Process Improvement 457

Table 5. The number of transactions (#T), the number of processors (#R) deployed,
and the average number of transactions per processor for different processes across dif-
ferent clients in domain A (considering only frequent transaction types and resources).

PA
1 PA

2 PA
3 PA

4

#T #R avg. #T #R avg. #T #R avg. #T #R avg.

CA
1 1913 6 318.33 1189 2 594.50 504 11 45.82 1263 6 210.50

CA
2 3711 5 742.20 328 7 46.86 252 6 42.00 987 6 164.50

CA
3 1566 4 391.5 345 6 57.50 728 10 72.80 1109 6 184.83

CA
4 4001 8 500.12 38 9 4.22 199 6 33.17

CA
5 1286 6 214.33 51 5 10.20 423 11 38.45 4617 5 923.40

Fig. 6. Process model discovered using heuristics miner for client CA
4 and PA

1 consid-
ering only frequent transaction types and resources.

where there are 72 (1.13%) transactions with quality issues. This indicates that
resources who are deployed on a need basis being not so familiar with the process
tend to do more mistakes. Similarly, the number of times a processor suspends
and resumes a transaction (10.82%) is lesser than the case when all resources
are involved (16.01%).

Table 6 depicts the average and standard deviation of working time of the
processors for the filtered log. We study if the experience and proficiency levels
(in skills) of resources are potential causes for the variations in working times.
Figure 7 depicts the relationship between the average working time of resources
and their experience and skill proficiency for process PA

1 and two of the clients.
We thus validate the intuitive results, that the working times are inversely pro-
portional to the experience of resources and directly proportional to their skill
proficiency levels, i.e., as resources gain experience, they tend to take less time.
However, an experienced resource may take longer time than a less experienced
resource if his/her proficiency level is lesser. We see an exceptional scenario in
Fig. 7(b) where a resource with the maximum experience and proficiency level
taking the longest time to execute this process. Upon further investigation, we
uncovered that this resource, although processing large volumes of transactions
for this process, is also involved in processing transactions related to another
process. The context of the other process (demand, SLAs etc.) might require

458 R.P. Jagadeesh Chandra Bose et al.

Table 6. The average and standard deviation of working times (in seconds) taken by
processors for different processes across different clients in domain A (considering only
frequent transaction types and resources).

PA
1 PA

2 PA
3 PA

4

CA
1 2665 ± 9209 415 ± 2514 10125 ± 18704 1009 ± 2822

CA
2 1213 ± 9015 4871 ± 18078 8214 ± 14503 2726 ± 15296

CA
3 2349 ± 13268 8722 ± 27687 15373 ± 22996 1280 ± 4941

CA
4 4974± 31383 44291± 60309 58760± 131807

CA
5 3367 ± 13333 3400 ± 13099 41692 ± 56969 504 ± 2236

900 1000 1100 1200 1300 1400 1500 1600 1700
1000

1500

2000

2500

3000

3500

4000

4500

5000

Pr
oc

es
si

ng
 T

im
e

(s
ec

on
ds

)

Experience (days)
900 1000 1100 1200 1300 1400 1500 1600 1700

0

1

2

3

4

5

6

7

8
Sk

ill
s

Pr
of

ic
ie

nc
y

Processing Time
Skills Proficiency

(a) CA
1

200 400 600 800 1000 1200 1400 1600 1800 2000
2000

4000

6000

8000

10000

12000

14000

Pr
oc

es
si

ng
 T

im
e

(s
ec

on
ds

)

Experience (days)
200 400 600 800 1000 1200 1400 1600 1800 2000

0

1

2

3

4

5

6

Sk
ill

s
Pr

of
ic

ie
nc

y

Processing Time
Skills Proficiency

(b) CA
4

Fig. 7. Relationship between experience and proficiency in skills of resources and their
working/processing time

him to be more involved in the execution of that process than this one, thereby
resulting in longer working times for this process.

We have analyzed the event data pertaining to various client-process combi-
nations in another domain and the basic observations discussed so far manifested
also in the other domain. To summarize, our key findings are:

– the granularity at which process steps are defined influences the process-
ing time; fine-granular steps help processors comprehend the task easily and
thereby lead to efficient execution

– a resource’s experience and skill proficiency significantly impact the process-
ing time

– adhoc resources deployed for executing a process to cater to large volume
of transactions (on certain days) tend to make mistakes while executing the
task (especially, for complex processes) impacting both the quality as well as
processing time.

Based on our analysis, we prescribe that (i) processes should be defined in detail
to help processors execute the process efficiently; (ii) stable resources should be
deployed as far as possible to execute a process. Even if resources are to be

Opportunities for Process Improvement 459

deployed temporarily to cater to the demand, it is advisable to have a limited
pool of resources who are familiar with the process; (iii) resource experience and
skill proficiency should both be considered when forming team compositions.
These prescriptions are envisioned to be part of the recommendation engine
after discussing with the business stakeholders.

6 Conclusions

Process improvement efforts based on insights obtained from the analysis of
operational event data has primarily been applied on individual processes sep-
arately. Analysis of event logs pertaining to a similar process across different
clients provides valuable insights on the operations of an organization. In this
paper, we provided a framework that enables cross-client analysis and presented
results on applying this framework on a real-life case study from a services orga-
nization. We uncovered that detailed description of process definitions, balanced
workload, stable, proficient and experienced resources all lead towards opera-
tional excellence. Organizations can incorporate these learnings to aspects such
as team formation (skill/experience dependent), training, workload distribution,
task description etc. In addition to providing insights from cross-client learnings,
we envision that our framework can assist service organizations in determining
the health of client-process combinations and provide client-process benchmarks.
As future work we would like to build a recommendation engine that provides
prescriptions for operational excellence augmented with a simulation engine that
corroborates with what-if analysis of the prescriptions.

References

1. van der Aalst, W.M.P.: Process Mining: Discovery Conformance and Enhancement
of Business Processes. Springer New York Inc., New York (2011)

2. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Replaying history on
process models for conformance checking and performance analysis. Wiley Inter-
disc. Rev. Data Min. Knowl. Discov. 2(2), 182–192 (2012)

3. van der Aalst, W.M.P., de Beer, H.T., van Dongen, B.F.: Process mining and
verification of properties: an approach based on temporal logic. In: Meersman, R.,
Tari, Z. (eds.) OTM 2005. LNCS, vol. 3760, pp. 130–147. Springer, Heidelberg
(2005)

4. Adriansyah, A., van Dongen, B.F., van der Aalst, W.M.P.: Conformance checking
using cost-based fitness analysis. In: Proceedings of the 15th IEEE International
Enterprise Distributed Object Computing Conference (EDOC), pp. 55–64 (2011)

5. Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: Towards cross-
organizational process mining in collections of process models and their execu-
tions. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM Workshops 2011, Part
II. LNBIP, vol. 100, pp. 2–13. Springer, Heidelberg (2012)

6. CoSeLoG (2014). http://www.win.tue.nl/coselog/wiki/project#the project
7. van Dongen, B.F., van der Aalst, W.M.P.: A meta model for process mining data.

In: Proceedings of the CAiSE Workshops (EMOI-INTEROP Workshop), vol. 2,
pp. 309–320 (2005)

http://www.win.tue.nl/coselog/wiki/project#the_project

460 R.P. Jagadeesh Chandra Bose et al.

8. Ferreira, D.R., Vasilyev, E.: Using logical decision trees to discover the cause of
process delays from event logs. Comput. Ind. 70, 194–207 (2015)

9. Günther, C.W.: XES Standard Definition (2009). www.xes-standard.org
10. Maggi, F.M., Montali, M., Westergaard, M., van der Aalst, W.M.P.: Monitor-

ing business constraints with linear temporal logic: an approach based on colored
automata. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS,
vol. 6896, pp. 132–147. Springer, Heidelberg (2011)

11. Nguyen, H., Dumas, M., La Rosa, M., Maggi, F.M., Suriadi, S.: Mining business
process deviance: a quest for accuracy. In: Meersman, R., Panetto, H., Dillon, T.,
Missikoff, M., Liu, L., Pastor, O., Cuzzocrea, A., Sellis, T. (eds.) OTM 2014. LNCS,
vol. 8841, pp. 436–445. Springer, Heidelberg (2014)

12. Pika, A., van der Aalst, W.M.P., Fidge, C.J., ter Hofstede, A.H.M., Wynn, M.T.:
Predicting deadline transgressions using event logs. In: La Rosa, M., Soffer, P.
(eds.) BPM Workshops 2012. LNBIP, vol. 132, pp. 211–216. Springer, Heidelberg
(2013)

13. Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on
monitoring real behavior. Inf. Syst. 33(1), 64–95 (2008)

14. Sindhgatta, R., Dasgupta, G.B., Ghose, A.: Analysis of operational data for exper-
tise aware staffing. In: Sadiq, S., Soffer, P., Völzer, H. (eds.) BPM 2014. LNCS,
vol. 8659, pp. 317–332. Springer, Heidelberg (2014)

15. Suriadi, S., Ouyang, C., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Root cause
analysis with enriched process logs. In: La Rosa, M., Soffer, P. (eds.) BPM Work-
shops 2012. LNBIP, vol. 132, pp. 174–186. Springer, Heidelberg (2013)

16. Verbeek, H.M.W., Buijs, J.C.A.M., Dongen, B.F.V., van der Aalst, W.M.P.:
ProM 6: the process mining toolkit. In: CEUR Workshop Proceedings, vol. 615,
pp. 34–39 (2010)

17. Weijters, A.J.M.M., van der Aalst, W.M.P.: Rediscovering workflow models from
event-based data using little thumb. Integr. Comput.-Aided Eng. 10(2), 151–162
(2003)

www.xes-standard.org

Pricing IT Services Deals: A More Agile
Top-Down Approach

Aly Megahed1(✉), Kugamoorthy Gajananan2, Mari Abe2, Shun Jiang1,
Mark Smith3, and Taiga Nakamura1

1 IBM Research – Almaden, San Jose, CA, USA
{aly.megahed,sjiang,taiga}@us.ibm.com

2 IBM Research – Tokyo, Tokyo, Japan
{gajan,maria}@jp.ibm.com

3 IBM Global Technology Services, North Harbour, Portsmouth, Hampshire, UK
marksmith@uk.ibm.com

Abstract. Information technology service providers bid on high valued services
deals in a competitive environment. To price these deals, the traditional bottom
up approach is to prepare a complete solution, i.e., know the detailed services to
be offered to the client, find the exact costs of these services, and then add a gross
profit to reach the bidding price. This is a very time consuming and resource
intensive process. There is a business need to get quick (agile) early estimates of
both cost and price using a core set of high level data for the deal. In this paper,
we develop a two-step top down approach for doing this. In the first step, we mine
historical and market data to come up with estimates on the cost and price. We
provide some numerical results based on industry data that statistically shows that
there is a benefit of using historical data in this step beside the traditional way of
using market data. Because the bidding price is not the sole factor affecting the
chances of winning a deal, we then enter the different price points in a predictive
analytics model (step two) to calculate the relative probability of winning the deal
at each point. Such probabilities with the corresponding prices can provide
significant insights to the business helping them reach quick reliable pricing.

Keywords: Service analytics · IT service deals · Predictive analytics · Pricing
services · Estimating prices · Data mining

1 Introduction

Information Technology (IT) service providers compete to win high valued IT service
contracts [1, 2]. Typically, clients ask for proposals that provide the pricing of particular
services. Then, service providers prepare the deal pricing, submit their proposals, and
enter a deal bidding process trying to win the contract.

The kind of services included in these deals are often complex, high valued, and very
hard to quote [3]. Examples of these services include account management, storage
systems, databases, and migrating the client infrastructure to the cloud.

© Springer-Verlag Berlin Heidelberg 2015
A. Barros et al. (Eds.): ICSOC 2015, LNCS 9435, pp. 461–473, 2015.
DOI: 10.1007/978-3-662-48616-0_32

Traditional practical approaches price deals via what we call the “bottom up”
approach. This approach involves estimating the cost of individual activities at a granular
level that together form a total cost for each individual IT service. Later, a markup/gross
profit margin is added either to each service separately or to the sum of costs of all
services in order to reach the overall price of the deal. Once this price is reached, usually
solution designers assess the competitiveness of the solution by comparing it to historical
deals and market data. Akkiraju et al. [3] provides a methodology for such assessment.

Note that services in this type of business are usually hierarchal. The first highest
level of each service is always decomposed into smaller levels. For instance, end user
is one of the common high level service that are usually further decomposed into hard‐
ware for end users, end user refresh (which refers to users who would get refresh/
replacement for their assets),…etc. Hardware for end users can be further decomposed
to different hardware devices,…. and so on. For the bottom up approach to work, a
detailed solution with all levels of all provided services needs to be prepared and costed.
This can be time consuming and solution designers might not know all the detailed
requirements at all service levels in early stages of the bidding process. Thus, there is a
need to come up with an alternative “agile” approach that estimates prices of these
complex IT deals with minimum information based on a typical scope of such services,
e.g., using the highest level of services to be offered in the deal. “Agile” here refers to
needing fewer inputs and coming up with prices very fast.

In this paper, we provide such an approach in a framework that consists of two parts.
In the first part, we develop a calculation logic algorithm that comes up with the costing
and pricing of the high level services included in a deal based on both market and
historical data. While in the second part, we construct a methodology for predicting the
relative win probabilities of these different price points. Using this “top-down”
approach, solution designers can very quickly price complex deals and assess the relative
chances of winning these deals for different pricing points. Figure 1 illustrates a compar‐
ison between the two approaches.

Additionally, service providers traditionally use market data collected from market
consultancy companies to benchmark pricing generated from bottom up solutioning. In the
first part of our framework, not only do we automate this process in an algorithmic fashion
by estimating the cost and price directly using such market data, but we also statistically
show that mining historical data in our top down approach might be more realistic in
costing services compared to purely using market benchmark data. In opposed to market
data, historical data is stored data of past deals for the same service provider.

Therefore, the contribution of this paper is three-fold. We develop an approach that
both enables solution designers to determine price points of complex deals as well as
assess the relative chances of winning these deals. Furthermore, we introduce the notion
of assessing the cost of complex IT deals based on historical data and show that it could
be effective for accurately costing some services compared to using the more traditional
method of using market data.

The rest of this paper is organized as follows: in Sect. 2, we review the literature of
related work. We present our approach with its two parts in Sect. 3, and then illustrate
some results in Sect. 4. Section 5 ends the paper with the conclusions and some recom‐
mendations for future work.

462 A. Megahed et al.

2 Related Work

The term “service” is often used to identify online services (e.g. web services) in the
area of service-oriented computing. We note that “service” in this paper is broader than
online services in the sense that our “services” identify and cover various constructs of
IT services that include labor cost, management cost such as building customer relations
and monitoring customer satisfactions, and other operational cost of human activities
provided by IT solution venders/providers. Gamma et al. [4] describe an Information
Technology Infrastructure Library (ITIL) which provides a service design and catalog
approach to organize service solutions. The service solutions that we study in this paper
are organized using a particular taxonomy that follows the approach of our previous
work in Akkiraju et al. [4] where one solution (deal) consists of a structure of particular
hierarchical services. The top level is the highest level for the services and each service
at that level is further decomposed into lower levels.

Pricing services has long been discussed in the literature of marketing and business
management. Researchers have developed different pricing methods based on several
pricing objectives. Avlonitis et al. [5, 6] summarized three categories of pricing methods
linked with pricing objectives based on interviews of 170 service sector companies; (1)
Cost based methods – where a profit margin is added on the cost, (2) Competition based
methods – where pricing is done according to the market’s average prices or relevant to
the competitors prices, and (3) Demand based pricing – in which the price is set to satisfy

Fig. 1. Description of our proposed top down approach versus the existing bottom up approach

Pricing IT Services Deals: A More Agile Top-Down Approach 463

customer’s needs. Their results showed that the cost based method is the most adopted
approach in their sample. However, it also showed that when the pricing objectives are
associated with both the competitors and the customers, the possibility of adopting the
market’s associated pricing method increases. In [7], Tawalbeh stated an empirical study
of a mobile service provider in which pricing was traditionally driven by a cost based
method. The study concluded that service providers should focus more on market
oriented pricing when the provider’s pricing objectives are profit, market share, and sales
maximization.

Multiple previous papers illustrated different methods of pricing some IT services.
For instance, Basu et al. [8] developed a managerial guideline for pricing cloud offerings.
Their approach models the utility of customers as a function of some parameters which
have positive and negative effects on that utility. However, this paper (and its references)
focuses on a particular service rather than the special case that we study here for deals
composed of several complex IT services.

In the area of service sciences, several papers have been published investigating the
assessment of “winnability” of IT services deals. The main relevant papers in this area
are our previous works of Greenia et al. [1] and Megahed et al. [2]. In the former paper,
the authors developed a predictive analytics model for predicting the winnability of in-
flight deals, that is, deals that the service provider has already submitted the bid on. In
the latter work, a similar predictive analytics model was developed but its focus was on
predicting winnability of deals in an earlier stage, i.e., before submitting the bid. The
main conclusion in both works is that the bidding price is not the only factor affecting
the chances of winning IT services deals. Other attributes, such as competition, the type
of client, and client’s geographical location, have a statistically significance on the
prediction of winnability. We incorporate these findings in the second part of our
approach for pricing such IT deals. In the next Section, we develop our approach and
explain its different pieces.

3 Methodology

As indicated in the introduction, our top down approach consists of two parts. In the
first part, we provide a calculation logic that uses both historical data and market data
in order to estimate service costs and prices of a deal using information about the highest
level services included in such deal. Then, because the bidding price is not the only
factor affecting the chances of winning a deal [1, 2], we adopt a predictive analytics
model in the second part of our approach to come up with the relative probability of
winning the deal corresponding to each price point. Below, we first start with some
definitions and then we describe the two parts of our approach.

3.1 Definitions

We first differentiate between two categories of services that are included in any deal:
(a)�regular services (referred to as services below): for which cost will be independent
of other services. Regular services are also services that have baselines/units. Examples
of regular services are databases and end user, where the baseline for each is number of

464 A. Megahed et al.

databases and number of end users, respectively- and (b) common services: for which
the cost is dependent on the different regular services included in the deal. An example
for common services is account management, where its cost is determined depending
on the costs/amounts of all regular services included in the deal since each of these
services would need some account management.

Let D be the set of deals (historical and market data deals). We then define any deal
 by the tuple of sets (Meta Information, Services, Common Services) where Meta

Information is the set of the meta-data of the deal, namely:

where the Deal Outcome is either won or lost. Losing a deal might be due to another
competitor winning it, it might be the case that the client decided to not pursue it
anymore, or it might be because the service provider decided to not continue bidding on
it. Contract year is the calendar year at which delivery of the services will begin. Geog‐
raphy and industry are the geographical location and industry of the client, respectively.
The Meta Information can also be extended to include additional attributes of the deal.
Remember that we are modeling this whole problem with respect to the service provider.

Services is the set of regular services, Services = {Service1, ……, Servicei, …..,
ServiceM}, where M is the cardinality of the set Services. Similarly, Common Services
is the set of common services, Common Services = {Common Service1, ……, Common
Servicej, ….., ServiceN}, where N is the cardinality of the set Common Services.

Following the definitions of regular and common services, we define any regular
service , where , by the tuple (Baseline, Cost, Price).
Baseline of a regular service Servicei is the unit/measure of the amount of the service
provided by the IT service provider to a client. Refer to the two examples of databases
and end user above. Cost is the total cost of Servicei and Price is the price of Servicei.
Any common service is defined by the tuple
(Percentage of Total Cost, Cost, Price), where Percentage of Total Cost is the cost of
that common service as a percentage of the total deal cost, Cost is its total cost, and Price
is its total price. Note that the total deal cost/price is the sum of the costs/price of all
regular and common services. Also, note that the cost is what the service provider pays
to provide the service (cost of labor, hardware,…etc.), while the price is what is included
in the bidding price, i.e., it is the cost with some profit margin (gross profit added to it).

Let us specify any scenario S as a new deal for which a solution designer needs to
estimate its target price/cost. We assume that the following are given for such scenario:
the elements of the sets Servicess, Common Servicess, the values of Baselines for each

 and the elements of the set Meta Informations, where each set is
given the index s to specify that it is related to scenario S. Our target is to estimate the
Cost and Price for each element of the sets Services and Common Services, and thus the
total cost and price of Scenarios. The next Subsection details our methodology of calcu‐
lating these.

Pricing IT Services Deals: A More Agile Top-Down Approach 465

3.2 Peer Selection and Calculation Logic

Peer Selection. The first step in our calculation logic is to select peer deals. That is, we
load historic and market benchmark data from the IT service provider’s databases and
carry out the deal selection at two stages. In the first stage, we use the Meta Informa‐
tions (Deal Outcome, Contract Year, Geography, and Industry) of the scenario to filter
in the deals that have the matching values for respective fields. The reason behind this
is that each of these fields is a characteristic of the deal and affects the cost of delivering
each of its services. For instance, a service delivered from Asia is likely to have a
different delivery cost compared to a service delivered to North America. Similarly,
delivery a service in 2015 is likely to happen at a different cost compared to delivering
the same service in 2016. Then, for each service in the set Services or Common Serv‐
ices, we filter out the peer deals that do not have that service. Thus, we have a different
set of peers for each service of our scenario. The second stage of deal selection is to
order these deals according to some criteria that we explain below.

Since there are two types of data sources - historic and market benchmark, peer
selections are done separately for each source so that cost computation for a scenario’s
services can be computed in two perspectives. This is what we referred to above as the
two different price points that we calculated using our approach.

We also ensures that a minimum required number peer historical deals for each
service of a scenario exist in the database; if not, we report that no data is found for the
historical deals prospective; so as not to report inaccurate results. A solution designer
will specify the minimum threshold for the required number of peers, for each scenario.
However, we do not specify that minimum number of peers for market data, as usually,
there are a few market data/standard deal(s) for each service-Meta Data combination.

Sorting of Selected Peers for a regular service. , the sorting
criteria of the set of peers selected for that service that we adopt is based on baselines
proximity. , let Baseline Proximitydsi be the baseline proximity between
deal and scenario S for service . We define Baseline Proximitydsi as
follows:

That is we assume that a deal and scenario are similar with respective to a service if
the difference between the baselines is small. This assumption is justified because unit
costs (which we will use below from peers to calculate the costs of our scenario) are
typically similar for deals with similar/close proximity. That is because baselines define
the complexity of the service and the variation of the unit costs for the same service
across different deals is related to the quantity (baselines) of that service in each deal.
The reason behind this is that service providers can usually achieve some kind of a
quantity discount on unit costs for larger quantities. There is no set function that relates
such quantity discount to the baselines and thus we adopt the baseline proximity to
account for all that. Therefore, the outcome of the deal selection at service level is a set
of similar deals, which are ordered based on their proximity value.

466 A. Megahed et al.

Sorting of Selected Peers for a common service. We sort peer deals for common
services according to a different proximity. Let that proximity by Common Service
Proximitydsj (the proximity between deal and scenario S for common service

). Since common services do not have baselines and since they are
related to the overall cost of regular services, we base that proximity on the total cost of
regular services. That is:

We note that in order for us to calculate the above proximity, we first have to have
calculated the costs for regular services of our scenario, which we show in the next
calculation step.

Lastly, we set a maximum threshold T on the set of peer deals. Typically for market
data, the threshold is 1, while for historical data, this can be set by the solution designer.
We then use the top T peers in each ordered set of peers for each service to do our
calculations below.

Calculation Logic. We here show how we calculate the costs for each service in the
two sets of regular and common services for both the historical data and market data
prospectives. Note that the cost calculation for each service is performed for each year
of the total number of contract years of a scenario.

Cost calculation for Regular Services of a Scenario. For each regular service ,
we first compute the unit cost of that service in each of its peer deals by dividing the cost
of that service by its baselines. Then, we retrieve the lth Percentile of these unit costs. Typi‐
cally, one would use the median, but the solution designer can choose any arbitrary value
for l. The rationale behind using the percentile is to allow the user to adjust for the
complexity of the service if not captured by the chosen peers, i.e., if the unit costs of the
selected peers are too diverse, then the user can input a percentile that is related to the
complexity of the service that he/she might know and that we cannot capture automati‐
cally/algorithmically. Let us call the resulting unit-cost for service i : Unit-costi

Let Baselinei be the baseline of service i of our scenario. Therefore, the cost of the
regular service for our scenario S, Costs,i, is computed as:

Cost Calculation for Common Services of a Scenario. Since the costs of common serv‐
ices are related to the costs of regular services, for each common service

, Costs,j (which is the cost of service j for our scenario S) will be
computed as follows:

For each service , we calculate the percentage of the cost of
that service to the overall cost of the deal for each peer deal in the ordered list of peer
deals for that service. Then, we again apply an arbitrary percentile to these percentages
to get the percentage of that service to that the total cost of our scenario S. We call the
resulting percentage value of a common service Ps, j

Pricing IT Services Deals: A More Agile Top-Down Approach 467

Now, the total cost of all services in our scenario S is

Where SUMs,all is the total cost of the scenario (sum of the costs for all services; both
regular and common ones), SUMs,reg is the sum of the costs for the regular services. Now
we have that for each in our scenario S:

We thus transform the above set of linear equations to a standard format as:

Where J is the cardinality of the set Common Servicess. By using the Cramer’s rule
[9], we solve the above equations to compute the cost of each common service per year.

Since the only difference in calculation steps between historical data and market
data is that for market data we typically have a maximum of 1 (or a few) market deals,
we do not apply the percentiles for calculating unit costs (for regular services) and unit
percentages (for common services) for the market data calculations when that maximum
threshold is 1. Other than that, everything else is exactly similar to historical data
calculations.

In the Sect. 4, we show the usefulness of using historical data in addition to the more
traditional adoption of market data through some numerical experiments.

Now, adding up the costs of both regular and common services, we reach the esti‐
mated cost of a deal, for each of the historical data and market data cases. Then, by
adding a chosen arbitrary gross profits (GPs) to the cost, we get different price points.
Our overall approach, as can be seen from the details in the previous subsections, uses
a minimal amount of inputs from the user and generates prices very fast, and thus is
“agile” as required by modern business practices in this type of industry.

To assess the relative chance of winning the deal corresponding to each price point,
we use a win prediction model discussed in the next subsection.

3.3 Win Prediction

We use the predictive analytics model developed in our earlier work in [2]. The model is
based on the well-known naïve Bayes classifier. We refer the reader to references [10, 11]
for an explanation of the naïve Bayesian model. The factors included that were shown to
be significant are some of the deal attributes, in addition to some derived parameters.
Beside the bidding price, we summarize the other significant factors used in the model as
follows:

468 A. Megahed et al.

Complexity of the Deal. Complexity is determined based on the number and effort of
delivery of the offered services to the client.

Global Versus Local. Deals are global if the services will be delivered to multiple
countries. Local deals are ones in which services are delivered to one or two countries
of close proximity (e.g., Australia and New Zealand).

Key Services Delivery Executive. Deals are sometimes assigned to a delivery executive
responsible for the delivery of services after contract signing. The parameter here is
whether a delivery executive is assigned early on for the deal or not.

Third Party Advisor. A third party advisor is used by some clients. The parameter here
is whether the client has such advisor or not.

Contract Length. The number of years of the deal delivery.

Client-Market Segmentation. Clients are classified based on size, market audience,
and market potential.

Number of Competitors. This is a count of the number of other service providers
competing to win the same deal.

Competitor Classification. Competitors are classified according to whether they
provide cloud, software, and network, whether they are niche or consultant.

The model is fairly accurate. It produces an average accuracy of 86 % and 93 % on
training and testing data, respectively. The idea here is that multiple copies of the deal
that we are trying to price will be entered as testing data to the model. All copies share
the same meta data/attributes, except for the bidding price. Each copy has a different
price point, out of the ones we calculated above (as well as any user chosen price). Note
also that since the GPs are arbitrary, multiple GPs can be applied to the calculated costs
and more copies of the same deal can be added. The predictive model will then output
a ranked list for these copies and provide a relative winning probability score for each
price point. Using that way, we are able to quantitatively/analytically assess different
bidding price points given the fact that price is not the only factor affecting winnability
and we can thus get a chart like the one in Fig. 2. The chart shows different pricing
options (cost + GP) with the corresponding relative winning probabilities. Figure 3 gives
an overview of the architecture of our overall approach.

4 Numerical Results

In the bottom up approach, accurate costs of services in the IT deal are evaluated at the
lowest levels and summed up to come up with the costs of services at the higher levels.
In coming up with fast evaluations of the costs of services in the early stages of the
bidding process, traditionally, solution designers use market data. In the first part of our
approach described in the previous Section, we proposed mining historical deal data
besides market data. In this Section, we conduct some experiments to show that doing

Pricing IT Services Deals: A More Agile Top-Down Approach 469

so might be beneficial, i.e., might result in costs that are closer to the more accurate
actual costs obtained using the detailed traditional bottom top approach.

Fig. 2. Different price points with their corresponding values and relative winning probabilities

Fig. 3. Architecture/Overview of our overall approach

470 A. Megahed et al.

For our experiments, we selected 39 deals at random from a repository of real
industry historical deals for an IT service provider that has complete costs cases. For
each of the deals, we used baselines at the highest level for the services included in the
deal and performed our calculation algorithm described in Sect. 3.1 to get market data
and historical data costs. Then, we compared these costs with the actual costs in the
sample data. The metric we used is the relative absolute difference between the calcu‐
lated value and the actual value. Thus, for historical data and market data, respectively,
the error would be:

Note that we do the comparison at the cost level since prices are calculated by adding
arbitrary GPs. Note also that the accuracy of cost estimation of a new deal does not
imply a higher probability of winning the deal; since accurate costs do not imply
competitive costs/prices and even competitive costs/prices are not the sole predic‐
tive factor for winnability, as discussed in the previous Section of this paper.

We calculated the error for each service out of 13 services for the 39 sample points
for both market data and historical data. Then, for each service, we performed a paired
t-test to test the following hypothesis:

Where,

Here, is the difference between the mean of the historical data error (denoted
as and that of market data (denoted as). For the used
test of hypothesis, we used the same notation, assumptions, and details in the texts
of Montgomery et al. [10] and Walpole et al. [11]. The test is justified since calcu‐
lations of each of market data and that of historical data were done independently
on each service using the same historical complete costs cases/deals. After assessing
the assumptions of the test, we calculated the p-value for each service. Table 1 illus‐
trates the results of the tests.

One can see from the results that there is a statistical evidence/significance that
using historical data would yield more accurate costs than using market data for some
of the services. This illustrates the usefulness of adopting the historical data mining
into our approach. We next state the conclusions and directions for future work.

Pricing IT Services Deals: A More Agile Top-Down Approach 471

Table 1. P-value results for the paired t-test of each service

Service number P-Value Reject Ho at a
significance
level of 0.05

Reject Ho at a
significance
level of 0.1

1 0.210

2 0.048 x x

3 0.036 x x

4 0.047 x x

5 0.091 x

6 0.138

7 0.068 x

8 0.044 x x

9 0.003 x x

10 0.044 x x

11 0.266

12 0.392

13 0.065 x

5 Conclusion and Future Work

In this paper, we provided an approach that not only gives a quick agile estimate for the
costs and prices of information technology complex services deals with minimal input,
but also assesses the relative probabilities of winning such deals for each price estimate.
Our approach consists of two phases. In the first phase, we used both historical and
market data to estimate the costs. In addition, we showed experimental results based on
industry data that illustrates that using historical data is more accurate in estimating the
costs for many services, when compared to using market data (which is the more tradi‐
tional business approach). In the second phase of our approach, we incorporated our
price estimates in a predictive analytics model to come up with relative winning prob‐
abilities corresponding to each price point. Providing this output helps the solution
designers and business executives decide on the final bidding price they would like to
pursue.

There are several directions for future research to this work. Instead of estimating
the costs/prices based on the highest level of the services, if the solution designer knows
a little more detail (e.g., for the second highest level baselines of the offered services in
the deal), then one can estimate the costs/prices based on historical and market data at
that level. One challenge would be that not all chosen peer deals have all these services

472 A. Megahed et al.

at that second level in them. Thus, some machine learning approach might need to be
used to compensate these values. Another direction for future research would then be
comparing the accuracy of the cost estimation based on the top level of services (as we
do in this paper) with that of the second level.

References

1. Greenia, B.D., Qiao, M., Akkiraju, R.: A win prediction model for IT outsourcing bids. In:
Service Research and Innovation Institute Global Conference, pp. 39–42 (2014)

2. Megahed, A., Ren, G., Firth, M.: Modeling business insights into predictive analytics for the
outcome of IT service contracts. In: Proceedings of the 12th IEEE International Conference
on Services Computing (SCC), pp. 515–521 (2015)

3. Akkiraju, R., Smith, M., Greenia, D., Jiang, S., Nakamura, T., Mukherjee, D., Pusapaty, S.:
On pricing complex IT service solutions. In: Service Research and Innovation Institute Global
Conference, pp. 55–64 (2014)

4. Gamma, N., Do Mar Rosa, M., Da Silva, M.: IT services reference catalog. In: IFIP/IEEE
International Symposium on Integrated Network Management (IM), pp. 764–767 (2013)

5. Avlonitis, J.G., Indounas, A.K.: Pricing objective and pricing methods in the service sector.
J. Serv. Mark. 19(1), 47–57 (2005)

6. Indounas, K., Avlonitis, G.J.: Pricing objectives and their antecedents in the services sector.
J. Serv. Manage. 20(3), 342–374 (2009)

7. Tawalbeh, M.: The impact of marketing-oriented pricing on product mix pricing strategies –
an empirical study on the mobile telecommunication providers in Jordan. Int. J. Econ.,
Commer. Manage. III(1) (2015)

8. Basu, S., Chakraborty, S., Sharma, M.: Pricing cloud services—the impact of broadband
quality. Omega 50, 96–114 (2015)

9. Adhikari, M.R., Adhikari, A.: Text Book of Linear Algebra: Introduction to Modern Algebra.
Allied publisher Pvt Ltd. (2005)

10. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer Series
in Statistics, 2nd edn. Springer, NY (2009)

11. Russell, S., Norvig, P.: Artificial Intelligence: A modern Approach, 3rd edn. Prentice Hall,
PA (2009)

12. Montgomery, D., Runger, G.: Applied Statistics and Probability for Engineers, 5th edn.
Wiley, New York (2010)

13. Walpole, R., Myers, R., Myers, S., Ye, K.: Probability and Statistics for Engineers and
Scientists, 9th edn. Pearson, Boston (2011)

Pricing IT Services Deals: A More Agile Top-Down Approach 473

Demonstration Track Papers

SimMon: A Toolkit for Simulating Monitoring
Mechanism in Cloud Computing Environments

Xinkui Zhao1(B), Jianwei Yin1, Pengxiang Lin1, Chen Zhi1, Shichun Feng1,
Hao Wu1, and Zuoning Chen2

1 College of Computer Science, Zhejiang University, Hangzhou, China
{zhaoxinkui,zjuyjw,pxlin,zjuzhichen}@zju.edu.cn

2 National Parallel Computing Engineering Research Center, Beijing, China
chenzuoning@163.net

Abstract. Monitoring is significant to supervise the state of services
and guide adaptive management of services in cloud computing environ-
ments. Working as auxiliary tools, monitoring systems are expected to
incur the least extra cost on physical resources (CPU, memory, network,
etc.). Since the scale and requirement of different data centers vary from
each other, it is impossible to design a suit-to-all monitoring solution
for all the data centers. However, for a certain data center, it is hard
to determine whether a predesign monitoring mechanism is well suited
before the mechanism is deployed in a real production environment. To
address these issues, we propose SimMon, a toolkit for simulating moni-
toring mechanism in cloud computing environments. SimMon is used to
simulate the process on collection, dissemination, storage and requisition
of monitoring data. With the help of SimMon, system administrators are
able to compare different monitoring mechanisms and select the best one
before it is adopted by a monitoring system in a real-world data center.

1 Motivation

Fueled up by the explosive growth of services in cloud computing environments,
traditional predesigned and suit-to-all monitoring tools are not efficient enough
for cloud monitoring for three reasons. (1) The number of monitoring target
becomes huge, which makes the traditional centralized management structure
incapable to efficiently coordinate these dispersed collection agents. Efficient
and distributed organization of the monitoring agents are required to ensure
the performance of monitoring systems [2]. (2) The volume of data that are
disseminated across data centers is large, which incurs much more extra network
pressure [4]. To eliminate the extra pressure, tricky strategies, such as dynamic

This work was partially sponsored by National Natural Science Foundation of China
under Grant (No. 61272129), National High-Tech Research Program of China (NO.
2013AA01A213), New-Century Excellent Talents Program by Ministry of Education
of China (No. NCET-12-0491), Zhejiang Provincial Natural Science Foundation of
China (No. LR13F020002), Science and technology Program of Zhejiang Province
(No.2012C01037-1).

c© Springer-Verlag Berlin Heidelberg 2015
A. Barros et al. (Eds.): ICSOC 2015, LNCS 9435, pp. 477–481, 2015.
DOI: 10.1007/978-3-662-48616-0 33

478 X. Zhao et al.

control on monitoring target, monitoring interval, data polling strategy, etc., are
necessary to handle collected data [3]. (3) In cloud environments, services are
located on infrastructures across different regions, which makes the underlying
network structure for data dissemination complex. To ensure fast data access
and high availability, new protocols that provide better solution for monitoring
data storage and requisition are imperative [5].

Considering the above reasons, it is vital to design monitoring mechanisms
according to the characteristics and monitoring requirements of a specific data
center in cloud computing environments. In this work, we propose SimMon,
a toolkit to simulate monitoring mechanisms and evaluate their effectiveness.
SimMon is used in two main scenarios: (1) to test whether a monitoring strategy
would work well in a certain data center before it is deployed and run in a real
production environment; (2) to compare the results of different strategies and
decide which strategy is the most appropriate one for a specific data center.

2 Architecture of SimMon

Figure 1 depicts the architecture of SimMon. It is composed by four main com-
ponents: network, data storage, data dissemination and strategy control panel.

Fig. 1. Architecture of SimMon

Modeling Network. Network layer is an important consideration since the
bandwidth and time costed by data transmission highly rely on underlying
network structure and the logical topology of monitoring systems. In order to
model the network structure, we simulate the behavior of root switch, aggrega-
tion switch and access switch separately and combine them as a layered struc-
ture. Apart from the underlying network structure, logical monitoring topology
focuses on the organization of monitoring agents. A monitoring system com-
monly consists of three kinds of agent: collection agent (also called as sensor),
federation agent and root agent. Collection agents are hosted on the same vir-
tual machine with the service target to locally collect monitoring measurements.
Federation agents are in charge of data organization and processing for a subset
of collection agents. Root agents act as central nervous to control the global

SimMon: A Toolkit for Simulating Monitoring Mechanism 479

scheduling strategies of monitoring systems. We define the three kinds of agents
to support the design for centralized, tree-based, P2P-based, and hybrid topolo-
gies. We adopt an event-based mechanism to control the process on packets
transformation and handle the packet loss situation. Latency between nodes is
calculated from the underlying network structure and a BRITE-style file that
contains delay metrics between each pair of virtual machines.

Modeling Data Storage. In monitoring systems, collected data are usually
transferred from collection agents to federation agents and stored in a data
repository for future query and analysis. To model the data storage process, we
give an interface to simulate different data repositories, such as MySQL and
HBase. Concurrently with the support for database simulation, the organization
of the storage nodes in a distributed database is also important to reduce the
total network bandwidth cost and the chance for resource conflicts. A good
algorithm should consider the data volume to be transferred and the resource
usage of business-related workload in the data center. Furthermore, in data query
process, it is important to find the shortest route to get requested data. We
implement a cache-hit strategy to store the data that collected in the most
recent period in cache for fast query. To ensure high availability, we design a
structure to support users to define different replication strategies. More than
one copy of replication of the collected data are stored in replication servers in
case of emergency.

Modeling Data Dissemination. In a distributed monitoring system, mon-
itoring data are collected by collection agents and disseminated to federation
agents. In the dissemination layer, there are three main processes that may cost
extra resources: getting monitoring data, disseminating the data, and receiving
the data. In the process of getting monitoring data, we simulate strategies to
deploy bunches of sensors intelligently and implement algorithms on precise tar-
get selection, accurate collection interval selection and dynamic data preprocess-
ing to reduce the data from source. In the process of disseminating the data, we
reduce data dissemination actions by intelligent strategies on load balancing and
data polling (data collected by the dispersed collection agents can be pushed to
federation nodes passively or be pulled by federation nodes proactively). In the
process of receiving the transferred data, we design two protocols: unicast pro-
tocol and multicast protocol. An unicast protocol can improve the accuracy of
delivered data, while a broadcast protocol brings efficiency for data delivery.

Modeling Strategy Control Panel. Sensors are the source of monitoring
data, and they are developed and deployed individually with monitoring sys-
tems. Meanwhile monitoring systems should be capable to discover independent
sensors and add them into management consoles. There are two main solutions
to discover newly installed sensors: event-based announcement from the installed
sensors and periodic scan from federation agents or root agents. We implement
security and privacy policies by creating subnets for a certain set of sensors.
Monitoring systems are expected to send alarms to system administrators when
a certain kind of event occurs. To filter out those false alarms, we build an inter-
face to support users to redesign the alarm strategy and compare their results.

480 X. Zhao et al.

3 Implementation

On the design of SimMon, we first adopt the classes that are inherited from
CloudSim [1] to build a testbed that contains hosts, switches, virtual machines,
and workloads, and the testbed is a simulation of a data center in cloud comput-
ing environment. Based on the simulated data center, we develop a new toolkit
to support users to build different monitoring mechanisms. We use Java language
to implement the simulation toolkit and the toolkit program contains 15890 lines
of code in total. Source code of SimMon is available at http://www.cmsci.net/
pxlin/simmon.

4 Demonstration

In the demonstrations, we first use SimMon to simulate a cloud data center with
10000 physical servers (PSs), and each PS host 16 virtual machines. The PSs are
dispersed in 10 individual small-scale data centers, and they are connected by
a tree-based underlying network. Workloads running in the cloud environment
are simulated with certain distributions. The simulated cloud data center is
the target that we want to monitor. Hence all the monitoring mechanisms are
designed based on the data center. We use three examples to demonstrate three
common usage scenarios of SimMon.

– Influence of different topologies in monitoring systems. In this demon-
stration, we build four monitoring systems with different monitoring topolo-
gies: star-based, tree-based, P2P-based, and hybrid. In each monitoring sys-
tem, we first simulate a data polling strategy that pushes collected data with
certain interval to federation agents. We then summarize the total extra cost
caused by monitoring systems and compare the influence of different topolo-
gies.

– Data dissemination cost comparison by different polling strategies.
In the demonstration, we implement three data polling strategies: push at a
certain interval, hybrid push and pull, intelligent exchange between push and
pull. Based on SimMon, we compare the extra cost and accuracy of these
strategies.

– Effective alarm reduction by different alarm strategies. In this demon-
stration, we test three different strategies on producing alarms: alarm on CPU
usage, alarm on memory usage and alarm on CPU and memory usage. Based
on SimMon, we compare the number of effective alarms that are caused by
the three strategies.

References

1. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A., Buyya, R.: Cloudsim:
a toolkit for modeling and simulation of cloud computing environments and eval-
uation of resource provisioning algorithms. Softw. Pract. Experience 41(1), 23–50
(2011)

http://www.cmsci.net/pxlin/simmon
http://www.cmsci.net/pxlin/simmon

SimMon: A Toolkit for Simulating Monitoring Mechanism 481

2. Jain, N., Kit, D., Mahajan, P., Yalagandula, P., Dahlin, M., Zhang, Y.: Star:
self-tuning aggregation for scalable monitoring. In: Proceedings of the 33rd Inter-
national Conference on Very Large Data Bases, VLDB 2007, pp. 962–973. VLDB
Endowment (2007)

3. Lu, X., Yin, J., Li, Y., Deng, S., Zhu, M.: An efficient data dissemination approach
for cloud monitoring. In: Liu, C., Ludwig, H., Toumani, F., Yu, Q. (eds.) ICSOC
2012. LNCS, vol. 7636, pp. 733–747. Springer, Heidelberg (2012)

4. Meng, S., Iyengar, A.K., Rouvellou, I.M., Liu, L.: Volley: violation likelihood based
state monitoring for datacenters. In: Proceedings of the 2013 IEEE 33rd Inter-
national Conference on Distributed Computing Systems, ICDCS 2013, pp. 1–10.
IEEE Computer Society, Washington, DC (2013)

5. Wang, C., Schwan, K., Talwar, V., Eisenhauer, G., Hu, L., Wolf, M.: A flexible
architecture integrating monitoring and analytics for managing large-scale data
centers. In: Proceedings of the 8th ACM International Conference on Autonomic
Computing, pp. 141–150. ACM (2011)

CASE: A Platform for Crowdsourcing Based
API Search

Tingting Liang(B), Liang Chen, Zhining Xie, Wei Yang, and Jian Wu

Zhejiang University, Hangzhou, China
{liangtt,cliang,lynntse,victor0118,wujian2000}@zju.edu.cn

Abstract. With the rapid growth of Web APIs on the Internet, search-
ing appropriate APIs is becoming a challenging problem. General API
search systems (e.g., ProgrammableWeb) implement API search through
simple keywords matching leading to unsatisfactory search results. In
this paper, we presents a crowdsourcing based API search engine CASE.
Specifically, the API search engine leverages social information, Twitter
List, a tool used by individual users to organize accounts that interest
them on semantics. Based on the lists information, Latent Semantic
Indexing (LSI) model is employed to compute the semantic similarity
between the APIs and queries. Furthermore, the popularity of APIs
inferred from the lists number is integrated with the semantic similarity
to generate the final search result.

1 Introduction and Motivation

With the development of Web and mobile applications, a form of service called
application programming interface (API) becomes prevalent. An API is a gate-
way to other people’s software and can be employed to invoke a third-party soft-
ware component over the Internet. Compared to the traditional web services,
APIs are in a more popular style and can make solution more accessible and
more useful, which lead to a rapid growth of Web APIs. According to the analy-
sis offered by ProgrammableWeb (PW)1, a platform dedicated to manage APIs
and mashups, the number of its following APIs increased fast in recent years and
has reached 10850 by October 2014. Thus, how to discover the appropriate APIs
becomes a hot issue. Since general API search systems consider the keywords
match rather than the real semantic or topic information of APIs, the perfor-
mance of API search is limited. Taking PW as an example, if a consumer takes
“travel” as the query in search system, the top result is “Webcams.travel” which
is a directory of touristic webcams and classified in Video category. Absolutely,
“Webcams.travel” is not the objective API. The reason is that PW search system
only seeks APIs whose names or descriptions contain the query.

To alleviate the limitation of general API search systems, introducing crowd-
sourcing information into the search method is a popular and novel strategy. And
it has been proved effective in many other fields, such as information retrieval,
1 ProgrammableWeb: http://www.programmableweb.com.

c© Springer-Verlag Berlin Heidelberg 2015
A. Barros et al. (Eds.): ICSOC 2015, LNCS 9435, pp. 482–485, 2015.
DOI: 10.1007/978-3-662-48616-0 34

http://Webcams.travel
http://Webcams.travel
http://www.programmableweb.com

CASE: A Platform for Crowdsourcing Based API Search 483

Fig. 1. An example of list Fig. 2. Framework of crowdsourcing
based API search

social network, etc. [2,4]. In this paper, we introduce extra crowdsourcing infor-
mation, named as Twitter lists [3], to improve the performance of API search.
Twitter lists, which are used to help users organize the Twitter accounts they
are interested in, include list names and descriptions that contain a wealth of
semantic information. Figure 1 illustrates the contents of lists by showing several
lists including LinkedIn. Most of the list names are related to ‘Social Media’ and
‘Career’ along with the corresponding list descriptions, which distinctly reflect
the topic of LinkedIn. After being matched with APIs in PW, we crawled 3877
APIs’ Twitter accounts and the lists involving them. One API could be involved
in many lists and the most reaches 84511. 30.8 % of total APIs are organized by
more than 100 lists, and 70.1 % are included by at least 10 lists. Thus the list
information of most APIs is full of richness.

In this paper, we build a demonstration of API search engine called CASE.
The critical idea of CASE is to infer an API’s topic by analyzing semantics of
lists including the API Twitter account. Based on the lists information, Latent
Semantic Indexing (LSI) [1] is employed to compute the semantic similarity
between APIs and queries. Additionally, the popularity of APIs inferred from
the lists number is integrated with the semantic similarity to generate the final
search result. Therefore, CASE could provide semantics matched and popularity
satisfied results for a given query.

2 Algorithm Framework

Figure 2 illustrates the whole framework of algorithm applied in the API search
engine. The list data for API search is crawled from Twitter after being matched
with APIs crawled from PW. Generally, the process of the algorithm could be
divided into two parts. The first part is utilizing the name and description infor-
mation of lists to compute the semantic similarity, including three steps: pre-
processing, LSI and similarity calculation. After the data pre-processing like
tokenization, stop words removal, stemming, etc., the features extracted from
lists and the given query could be mapped into a conceptual space through LSI.

484 T. Liang et al.

The returned relevant APIs are ranked according to cosine similarity, thus the
semantics based rank score of an API and a given query is defined as:

scores(q,APIi) = sim(q, di) =

∑
j wq,jwi,j√∑

j w2
q,j

√∑
j w2

i,j

, (1)

where w denotes term vector of an API or query in latent semantic space.
Another part is about popularity calculation for each API based on its list num-
ber, which reflects how popular an API is among Twitter users to a certain
extent. The popularity based rank score of an API is define as:

scorep(APIi) =
log10 N − log10 min

log10 max − log10 min
(2)

where N represents the number of lists including the ith API, min and max
respectively denote the minimal and maximal numbers of APIs’ lists.

The final rank score is decided by the integration of semantic similarity and
API’s popularity, since the two measures synthetically satisfy the demands of
users. Thus, combining the last two equations, we define the final rank score as:

score(q,APIi) = λscores(q,APIi) + (1 − λ)scorep(APIi), λ ∈ [0, 1] (3)

where λ is a weight to balance the importance of semantic similarity and popu-
larity.

3 User Interface

Our crowdsourcing based API search engine is online available, users can use
it to search APIs by visiting http://zjumsi.com/projects/case/index.php. The
overall pages in the search platform are designed based on HTML5. The first
page offers the crowdsourcing based API search function of the platform, and
the next pages show some information and analysis about APIs, Twitter lists,
and the demo video2.

Figure 3(a) depicts the search interface and 52 sample queries from 12 cate-
gories are offered here. Users can click any sample query or input a query man-
ually for searching the appropriate APIs. Figure 3(b) shows the search result
page while user chooses a sample query holiday. It can be easily found that each
search result entity mainly includes four parts: (1) API name; (2) API descrip-
tion; (3) the category API belongs to; (4) the lists number including API which
shows API’s popularity. Moreover, the first icon beside the API name links to the
API page in ProgrammableWeb, which offers more detailed information about
the API. When click the second icon, it will show the page of Twitter lists includ-
ing the API, helping users to better understand the crowdsourcing knowledge
about API.
2 The demo video also can be found at https://youtu.be/D6xTzFkAXjQ.

http://zjumsi.com/projects/case/index.php
https://youtu.be/D6xTzFkAXjQ

CASE: A Platform for Crowdsourcing Based API Search 485

(a) Search Page (b) Search Result Page

Fig. 3. User interface of CASE

4 Conclusion and Outlook

This paper demonstrates a crowdsourcing based API search platform named
CASE. CASE applies LSI model to calculate semantic similarity based on Twit-
ter lists information, and integrates it with API popularity to infer the final
search result. Therefore, the search platform offers semantics matched and pop-
ularity satisfied results for a user query.

To enrich the function of the API search platform, it is considered to assign
tags for each API which can be used to find APIs with similar function, and
recommend APIs for a specific mashup in our future work.

Acknowledgment. This research was partially supported by the National Technology
Support Program under grant of 2011BAH16B04, the National Natural Science Foun-
dation of China under grant of 61173176, Science and Technology Program of Zhejiang
Province under grant of 2013C01073, National High-Tech Research and Development
Plan of China under Grant No. 2013AA01A604.

References

1. Deerwester, S.C., Dumais, S.T., Landauer, T.K., Furnas, G.W., Harshman, R.A.:
Indexing by latent semantic analysis. JAsIs 41(6), 391–407 (1990)

2. Ghosh, S., Sharma, N., Benevenuto, F., Ganguly, N., Gummadi, K.: Cognos: crowd-
sourcing search for topic experts in microblogs. In: Proceedings of the 35th Inter-
national ACM SIGIR Conference on Research and Development in Information
Retrieval, pp. 575–590. ACM (2012)

3. Kallen, N.: Twitter blog: Soon to launch: Lists (2009)
4. Lamere, P.: Social tagging and music information retrieval. J. New Music Res. 37(2),

101–114 (2008)

WSTP: Web Services Tagging Platform

Sana Sellami(✉) and Hanane Becha

Aix-Marseille Université, CNRS, LSIS UMR 7296, 13397 Marseille, France

Abstract. Recently tagging has been employed to improve the performance of
service discovery. Two main challenges have to be addressed when tags are used
in Web service discovery: tag relevancy and tag sense disambiguation. In this
paper, we present our Web service tagging platform that addresses these problems
and allows a semantic search of tagged Web services.

Keywords: Web service discovery · Tag · Semantic

1 Introduction

Tagging is the process of describing a resource by assigning textual keywords (tags) to
it as a classification mechanism. The use of tags predates computers. In computer based
systems, traditionally, tags were assigned by Web page developers and online databases
publishers to help users find content. With the growth of social networking and multi‐
media sharing, user-contributed tags have gained wide popularity. Recently, tagging
was employed to improve the performance of service discovery [1, 2]. There are two
main challenges that have to be addressed when tags are used in Web service discovery:
tag relevancy and tag sense disambiguation. First, to address the tag relevancy issue,
we recommend the addition of three parameters to each tag: score, popularity, and
occurrence. A score is assigned to each tag to denote the relevance of that tag from the
user’s perspective. Popularity denotes the relevance of a given tag according to the user’s
expertise (The user’s expertise is assessed based on a simple three question quiz.). More
weight is given for the most experienced users’ tags. Occurrence is the number of times
that a given tag was added to the same service. Second, to address the tag sense disam‐
biguation, we use the WordNet dictionary to take into account the synonyms of the tags
in the service search.

Our collaborative tagging Web Services Platform (WSTP) is unlike existing tagging
systems (e.g., Titan1, APIs.io2); since the Web services discovery is based on a search using
tags. The WSTP returns the most relevant services according to the tags defined in the
user’s request and the tags of the available services. The remainder of the paper is organ‐
ized as follows. Section 2 presents the architecture of the platform. Section 3, explains the
details of the planned platform demonstration. Section 4 provides concluding thoughts.

1 http://ccnt.zju.edu.cn:8080/.
2 http://apis.io/.

© Springer-Verlag Berlin Heidelberg 2015
A. Barros et al. (eds.): ICSOC 2015, LNCS 9435, pp. 486–490, 2015.
DOI: 10.1007/978-3-662-48616-0_35

http://ccnt.zju.edu.cn:8080/
http://apis.io/

2 System Overview

In this section, we provide an overview of our recommended platform (Fig. 1) for tagging
Web services called WSTP (Web Services Tagging Platform).

Fig. 1. WSTP Architecture

As illustrated in Fig. 1, users are empowered to perform two actions: assigning new
tags to the available services and performing a tag-based search request. Each service
has at least one tag which is by default the service name. The user-contributed tags are
used to create linked services based on tag similarities and domains. Users can rely on
service descriptions (if available) and/or or on their expertise in web services to tag
services manually.

2.1 Web Services Tagging Process

Users can improve the tag-based service discovery mechanism by adding new tags to
each web service that they have invoked. To avoid malicious tags, users are required to
register in the system before actively taking part in the tagging and searching of Web
services. Even though one can argue that there are no wrong tags, it is logical that some
tags could be more relevant than others with respect to a given service. To address the
tag relevance problem, users are requested to add a score value to each tag that they add
(see Definition 1).

WSTP: Web Services Tagging Platform 487

Definition 1 (Tag Definition): A tag denoted as Tag (S) is a couple of name and a
score: Tag(S) = (nameTag, scoreTag) Where nameTag and scoreTag are respectively the
name and the score of the tag where scoreTag ∈[0, 100].

2.2 Semantic Search of Linked Web Services

The semantic search process locates the most relevant services according to the user’s
request by performing a similarity search function. This search function takes a set of
tags and their scores relevance as input to calculate the similarity between tags and their
scores (see below Definition 2). During the search by tag, sense disambiguation tech‐
niques based on the WordNet3 lexical thesaurus are applied. In WordNet each term (tag)
is a synset and it has a set of synonyms.

Definition 2 (Semantic Tag Similarity): The tag similarity denoted as SimTag (R, S),
where R is a user request and S a service, is defined as follow:

Where Wscore and Wsem are weight set of the tag score and the semantic similarity,
respectively, Wscore + Wsem = 1 and:

is the tag similarity between the user’s score request and services.

is the semantic similarity between tags.

3 Demonstration

The WSTP system has been implemented in Java and it does interact with the MySQL
database. The web pages are in JSP4. We rely on WordNet version 2.1. WSTP contains
a collection5 of 151 Web services from different categories including Stock, Tourism,
Weather, Telecommunication, Economy and Finance. The demonstration of WSTP
platform shows the following features of our platform:

(1) Searching Web services by name, categories, tags or by browsing the linked
services graph; (2) Adding Web services and Tags. This functionality requires user
authentication; and (3) Searching Web services by setting a tag list with scores; A Web

3 https://wordnet.princeton.edu.
4 JavaServer Pages.
5 http://www.zjujason.com/data.html.

488 S. Sellami and H. Becha

https://wordnet.princeton.edu
http://www.zjujason.com/data.html

services tag and search example is demonstrated in our video which is available at:
http://www.lsis.org/sellamis/Projects.html#WSTP.

We considered a set of four services in the DEMO category as illustrated in Table 1:

Table 1. Example of web services

Web services Tags

WS1 sound:60 music:10 video:60

WS2 audio:70 social:40

WS3 dance:40 party:60 picture:80

WS4 music:80 sound:50 social:30 image:40

Consider a user request R = music:80 sound:50 social:30 image:40 picture:50.
The semantic search functionality compares the tags of R with the tags of services

to find the most relevant services. Then, in the first iteration, we compared the occurrence
of the tags and the name similarities based on the WordNet thesaurus. For each tag, we
obtained a set of synonyms as described in Table 2. We retrieved the max (score) of
each of the similar tags. All the tags that are synonyms were reduced to one tag with the
most important, i.e. highest, score and we merged the rest of the tags. The result of this
transformation is described in Table 3.

Table 2. Synonym results

Table 3. Web services similarities and ranking

Web services Tags Similarity Ranking

WS1 sound:60 music:10 video:60 0.39 3

WS2 audio:70 social:40 044 2

WS3 dance:40 party:60 picture:80 0.24 4

WS4 music:80 sound:50 social:30 image:40 0.96 1

Based on the synonym transformations, we applied a semantic tag similarity function
(see Definition 2) and obtained the following services as described in Table 3.

WSTP: Web Services Tagging Platform 489

http://www.lsis.org/sellamis/Projects.html%23WSTP

4 Future Work

We plan to enhance the semantic services search by querying a LOD (Linked Open
Data) like DBpedia6 and interacting with Programmable Web7 for retrieving information
on Web APIs from the repository. With this enhancement we will be able to provide a
platform for linked services based not only on tag similarities but also on mashups, or
category links.

References

1. Chen, L., Wu, J., Zheng, Z., Lyu, M.R., Wu, Z.: Modeling and exploiting tag relevance for
Web service mining. Knowl. Inf. Syst. 39, 153–173 (2014)

2. Fang, L., Wang, L., Li, M., Zhao, J., Zou, Y., Shao, L.: Towards automatic tagging for web
services. In: 2012 IEEE 19th International Conference on Web Services, pp. 528–535 (2012)

6 http://wiki.dbpedia.org/.
7 http://www.programmableweb.com/.

490 S. Sellami and H. Becha

http://wiki.dbpedia.org/
http://www.programmableweb.com/

Personalized Messaging Engine: The Next Step
in Employee Engagement

Varun Sharma(B), Abhishek Tripathi, Saurabh Srivastava, Aditya Hegde,
and Koustuv Dasgupta

Xerox Research Centre India, Bangalore, India
{varun.sharma2,abhishek.tripathi3,saurabh.srivastava,

aditya.hegde,koustuv.dasgupta}@xerox.com

Abstract. Employers today are struggling to engage positively with
their employees to reduce attrition and improve productivity. There are
solutions in the market which are trying to solve the problem but they
suffer from two critical issues. Firstly, the scope of the existing solutions
is too narrow to capture each and every interaction happening within the
company. Secondly, their learning from the employee behaviour is either
non-existent or minimal at best. Personalized Messaging Engine (PME)
is an attempt to provide end-to-end system to organizations for effec-
tive employee engagement. PME uses SOA principles to connect to each
and every system through which employees engage with their employers.
It uses the data aggregated from multiple systems to provide a hyper-
personalized and dynamic experience to each employee. With the help of
APIs, multiple systems can push data to PME and it then processes the
data to send relevant pre-configured messages to the employees in the
domain of Health, Wealth and Career. Additionally, PME uses several
factors to prioritize messages for each and every employee. It uses a state-
of-the-art learning engine to combine Subject Matter Experts opinion,
Client Strategy, User Experiences and behaviour to find the messages
which are most effective for the employees.

Keywords: Service oriented architecture · Recommendation engine ·
Personalized messaging · Employee engagement

1 Introduction

Employee engagement is crucial to a healthy relationship between an organi-
zation and its employees. According to [2], companies that do a better job at
engaging employees do outperform their competitions. Companies today are gen-
erating data at a break neck pace at every touch point between employees and
employers. There is no solution at this stage which captures all that data, analy-
ses it and uses the analysis to improve the engagement levels between employee
and employer. PME combines SOA principles and data analytics to create a
solution which can fill the aforementioned gap. Given the monolithic nature of
most of the applications used within a company, connecting all of them together
c© Springer-Verlag Berlin Heidelberg 2015
A. Barros et al. (Eds.): ICSOC 2015, LNCS 9435, pp. 491–494, 2015.
DOI: 10.1007/978-3-662-48616-0 36

492 V. Sharma et al.

is a challenging task. PME makes use of several Data-as-a-Service applications
to collect data from such applications.

In order to inspire employees to read and take action on messages, it is impor-
tant not only to prioritize and present highly relevant messages to employees,
but also to personalize prioritization by taking into account employees feedback
(e.g., ratings based on usefulness of messages, actions taken on delivered mes-
sages etc.). In addition to employees preference for message prioritization, an
organization will also have its own preferences for message prioritization. Thus,
it is important to combine both organizations and employees preferences for the
prioritization.

We propose using Collective Matrix Factorization (CMF) [1] to jointly model
preferences from employees and employer along with other related data sets
such as employee demography in terms of health, wealth, career and personal
information. The CMF output can be used to (i) get a joint prioritization of
messages, (ii) predict buying behavior (i.e. likelihood to act upon the messages)
of employees for new messages and (iii) predict relevant messages for a new
employee.

2 System Architecture

PME is a combination of several services talking to each other via APIs. In
addition to standard ETL processes to gather data, data-as-a-service is used to
aggregate data in multiple scenarios. At the core of PME are the Messaging
Engine and Learning Engine which evaluate the eligibility of a message for an
employee and also prioritizes the message for her. Using REST APIs, various
channels such as HR Web Portals, Mobile Applications and Call Centre commu-
nicate with PME. Additionally, PME talks to an administrative console (again,
via REST APIs) which allows employers to configure their HR strategies and
messages.

2.1 Overview

Figure 1 depicts the PME system. The following two are the most important
components of PME: (i) Messaging Engine and (ii) Learning Engine.

Messaging Engine: The Messaging Engine allows administrators to config-
ure employers strategy and add messages in the domain of Health, Wealth and
Career. Additionally, administrators can define rules based on which PME will
decide the applicability of the message for an employee.

Learning Engine: The most important module within PME is the learning
engine based on CMF. The learning engine looks at multiple data points to
come up with a relevance score of a message for a given employee. In addition
to employee data, following are the inputs for CMF:

Personalized Messaging Engine: The Next Step in Employee Engagement 493

Fig. 1. Overview of PME system

1. Risk. A parameter defined by the Subject Matter Expert based on her view
of the importance of the message.

2. Initiative. It captures the long term strategy of the employer and can be
configured at multiple levels such as at a domain (Health, Wealth, Career)
level, at a category (e.g. all preventive care messages) level and at an indi-
vidual message level.

3. Campaign. It lets the employers control the priorities of the messages over
a short duration based on annual events or seasonal events.

4. Feedback from the employees The feedback from the employees is captured
at 3 different levels:
(a) Level 1: Employees are asked to rate a message and the rating is captured

via a REST API call.
(b) Level 2: The interest of the employees is captured by storing whether

they clicked on a hyperlink present in the message.
(c) Level 3: If an employee acts on a message and the same is reflected

through a change in her profile, it is considered as a positive feedback.

2.2 SOA Based Integration

PME has been envisioned to be channel or client agnostic from the very begin-
ning. We have achieved that by creating a multi-tenant web service which can
be completely controlled through the REST APIs that it exposes. The system
uses OAuth 2.0 to manage the authentication of the users accessing the system.
It provides 3 different types of access controls

494 V. Sharma et al.

1. System Administrator are super users of the system who can access all its
settings and make changes when needed.

2. Client Administrator can add or modify settings specific to a client of the
PME system.

3. Client Users provide authentication settings which can be used by multiple
channels (SMS, Web Portals, etc.) to pull relevant messages and send it to
their users.

3 Features in PME

In the demonstration, we are going to talk about the capabilities of the PME
through the following system:

1. A web portal which uses the PME REST APIs to show relevant messages to
its users.

2. PME Admin Console which uses the REST APIs to configure PME settings
for its clients.

During the demonstration, we will cover the following aspects of PME:

1. Use the admin console to onboard a new client.
2. Add/Modify messages in the client message library.
3. Run the Messaging Engine to compute the eligibility of the employees as per

the criteria defined in the messages.
4. Demonstrate the ranking of messages for each employee after the Messaging

Engine has finished its computation.
5. Demonstrate the capability of PME to capture feedback at multiple levels.
6. Demonstrate the capability of learning engine by using user feedback to re-

prioritize the messages for each employee.

4 Conclusion

Personalized Messaging Engine is the first major step in using a holistic view of
the activities in the company to create a more productive and engaged workforce.
By using SOA techniques to combine disjoint systems to create that holistic view,
PME analyses vast amount of data to provide the hyper-personalized experience
required to keep the workforce happy and attrition rate low.

References

1. Klami, A., Bouchard, G., Tripathi, A.: Group-sparse embeddings in collective matrix
factorization. In: ICLR 2014 (2014)

2. Crim, D., Gerard, H.S.: What engages employees the most or, the ten Cs of employee
engagement. Ivey Bus. J. 70, 1–5 (2006)

Offering Context-Aware Personalised Services
for Mobile Users

Marie-Christine Fauvet1(B), Sanjay Kamath1,
Isaac-Bernardo Caicedo-Castro2, Pathathai Na-Lumpoon3,

Ahmed Lbath1, and Lorraine Goeuriot1

1 LIG (MRIM), University of Grenoble Alpes, 38000 Grenoble, France
Marie-Christine.Fauvet@imag.fr

2 University of Córdoba, Córdoba, Colombia
3 University of Chang-Mai, Chiang Mai, Thailand

1 Introduction

This paper presents a system that provides mobile users, context-aware person-
alized services. Users might need any sort of services: information about the
weather, places to visit, accommodation booking, etc. The eTourism system is
based on a semantic composition of recommended services into a composite ser-
vice. A typical use case is as following:

Alice is an American tourist visiting Paris in France. At 4 PM, she wants to
book a table at the finest restaurant in the city, and the direction to get there.
So, she picks up her smartphone and accesses the system whose architecture is
discussed in the next section (see Sect. 2), and issues the query: I want to book
a table for 2 people at the finest restaurant in the city, and I need the directions
to the restaurant.

The eTourism system will assist Alice by (1) analyzing her query; (2) cap-
turing her context information; (3) processing the query, by identifying the right
services, and composing them. (4) enacting the resulting composite services thus
fulfilling Alice’s needs.

Our main contribution is threefold: first, we have addressed service retrieval
issues in order to build a module which discovers services queried by users; then,
we have dealt with issues related with service operation automated composition
to execute business processes, and finally, our system supports interactions with
users to discover the missing parameters (not included in users’ queries or their
context information) in order to execute the business process. The expected
result of the executable business process is able to fulfill the user’s needs.

The demonstration introduced in this paper is accessible via the link http://
lig-membres.imag.fr/etourism/.

2 System Architecture

The system we describe in this paper provides mobile users with context-aware
personalized services according to their needs [5] when they are travelling. Figure 1
c© Springer-Verlag Berlin Heidelberg 2015
A. Barros et al. (Eds.): ICSOC 2015, LNCS 9435, pp. 495–498, 2015.
DOI: 10.1007/978-3-662-48616-0 37

http://lig-membres.imag.fr/etourism/
http://lig-membres.imag.fr/etourism/

496 M.-C. Fauvet et al.

Fig. 1. A context-aware discovering system for mobile users

sketches the overall architecture of this system. The role of each module and the
flow of information are detailed further in this section.

We consider the following definitions for context, profile and service concepts.
A context includes spatial, temporal, physical, and environmental properties that
could be collected by sensors embedded on the devices used to submit the queries.
Such properties are for example: GPS location, timestamp, external temperature,
screen size, etc. A profile captures users’ personal details, preferences and centres
of interest.

We adopt the definition of service given by the W3C [6]: A Web service is
a software system designed to support interoperable machine-to-machine inter-
action over a network. It has an interface described in a machine-processable
format (specifically WSDL1). Other systems interact with the web service in a
manner prescribed by its description using SOAP2 messages, typically conveyed
using HTTP with an XML serialization in conjunction with other Web-related
standards.

The system whose architecture is sketched in Fig. 1, is accessible to registered
users via a website on their mobile device (see Fig. 1, the data flow 1). This
system is built on top of three components, each of which has been implemented
as a service (the Portal is a web application).

1 Web Service Description Language, http://www.w3.org/TR/wsdl.
2 Simple Object Access Protocol.

http://www.w3.org/TR/wsdl

Offering Context-Aware Personalised Services for Mobile Users 497

User Interaction and Query Management (UIQM). This module aims at managing user
connections and handling queries submitted by users. From data flow 1, this module
receives the query and identification, and extracts from it the information needed to
choose and compose service components. With data flow 2 the module sends queries
to the Service Discovery module: if the query contains multiple requirements, it is split
according to individual requirements and sent as single topic queries. With data flow 3,
the users’ requirements are sent to the Service Composition module. For more detailed
description see [2].

Service Discovery (SD). Given the user’s query received in the data flow 2, her profile and
context, this module is responsible for retrieving services among a repository of service
descriptions, that once composed can potentially meet the user’s needs expressed in
her query (for details see [1]). The retrieved services are then sent, following the data
flow 4, to the next module.

Service Composition (SC). Eventually this module is in charge of automatically com-
posing and executing services returned by the discovery phase. This module results in
a BPMN3 model (see data flow 5) whose tasks refer to a service operation (for details
see [3,4]). During the execution of the BPMN model some interactions with the user
might be necessary to give value to parameters not found in the original query (see
data flow 6).

3 Use Case

In order to illustrate the use case presented in Sect. 1, we will detail the process on the
following query: I want to book a table for 2 people at the finest restaurant in the city,
and I need the directions to the restaurant.

The User Interaction and Query Management (UIQM) module analyses the query to
retrieve Alice’s context and profile, along with the parameters needed for the require-
ments of the query.

The UIQM first captures Alice’s context information: coordinates=”48.2167 N,
2.3332 E”, current date=”1/06/2014”. Besides, the system has the following informa-
tion about Alice’s profile: name=”Alice”, citizenship=”USA”, travelPurpose=”tourism”,
gender=”female”.

The query considered in the use case has two requirements (restaurant booking, and
directions), then the UIQM module splits this query into two subqueries and submits
them to the SD. The first subquery is: I want to book a table at the finest restaurant in
the city. The second subquery is I need the directions to the restaurant. The SD sends
to the SC two ranked lists of candidate services, one for each subquery. From the list
of candidate services that may fulfill the first subquery, the one with the highest rank
contains the following operations:

1. FindFinestRestaurant: cityName −→ name, address which receives as a parameter
the name of the city where Alice is looking for the finest restaurant. This operation
returns the name and the address of the restaurant.

2. BookRestaurant: name, people, phone −→ bookingConfirmation which receives as
parameters the restaurant name, the number of persons, and the user’s telephone
number. As a result, the operation returns a confirmation whether the table has
been booked or not.

3 Business Process Management Notation (http://www.bpmn.org).

http://www.bpmn.org

498 M.-C. Fauvet et al.

In the ranked list of candidate services that fulfill the second subquery, the highest
ranked service contains the following operations:

1. FromCoordinatesToCity: longitude, latitude −→ cityName which, given geographical
coordinates, returns the name of the city whose location includes these coordinates.

2. CoordinatesFromAddress: address −→ longitude, latitude which returns the geo-
graphical coordinates of the giver address.

3. GetDirection: origin, destination −→ direction which provides instructions on how
to reach a destination. This operation receives two parameters, the coordinates of
the starting point, and the coordinates of the destination.

The module SC takes as an input the operations of both services and compose
them. The resulting composite is transformed into a BPMN model which in turn is
executed on top of BPMN engine taken from the shelf. The resulting composite service
fulfills both Alice’s needs (i.e., booking a table at the finest restaurant of the city, and
getting the directions to go there).

4 Conclusion and Further Work

In this work, we contribute with a context-aware system which provides mobile users
with services, which are requested through queries in natural language.

For further work: (1) we will address service recommendation issues, aiming at
provide services in push-mode, (2) we will tackle issues related with user privacy pro-
tection, (3) we will handle stateful services in business process model and (4) we will
improve the user interaction by including into the system speech recognition to support
spoken queries.

References

1. Caicedo-Castro, I.-B.: S3niffer: A text description-based service search system. Ph.D.
Dissertation, University of Grenoble (2015)

2. Kamath, S.: Discovering context information and parameters from a natural lan-
guage query. Masters MoSIG (2015).https://hal.archives-ouvertes.fr/hal-01172050

3. Na-Lumpoon, P.: Toward a framework for automated service composition and exe-
cution: E tourism applications. Ph.D. Dissertation, University of Grenoble (2015)

4. Na-Lumpoon, P., Fauvet, M.-C., Lbath, A.: Toward a framework for automated ser-
vice composition and execution. In: Proceedings of the 8th International Conference
on Software, Knowledge, Information Management and Applications, Dhaka (2014)

5. Na-Lumpoon, P., Lei, M., Caicedo-Castro, I., Fauvet, M.-C., Lbath, A.: Context-
aware service discovering system for nomad users. In: Proceedings of the 7th
International Conference on Software, Knowledge, Information Management and
Applications (SKIMA), Chiang Mai, Thailand (2013)

6. W3C. Web services glossary (2004). www.w3c.org/TR/ws-gloss

https://hal.archives-ouvertes.fr/hal-01172050
www.w3c.org/TR/ws-gloss

Author Index

Abe, Mari 461
Abu-Khzam, Faisal N. 345
Alatorre, Gabriel 139
Anya, Obinna 139

Barakat, Lina 53, 362
Barukh, Moshe Chai 218
Bazgan, Cristina 345
Becha, Hanane 486
Beheshti, Seyed-Mehdi-Reza 218
Benatallah, Boualem 218
Bermbach, David 154
Binotto, Alecio P.D. 324
Bouguettaya, Athman 333, 373
Bouloukakis, Georgios 36
Bucchiarone, Antonio 383

Caicedo-Castro, Isaac-Bernardo 495
Chander, Deepthi 444
Chang, Cheng 305
Chen, Chao 305
Chen, Junliang 87
Chen, Liang 482
Chen, Shiping 87
Chen, Xin 203
Chen, Zuoning 477
Chugh, Amandeep 427
Copil, Georgiana 105, 123

Dasgupta, Gaargi Banerjee 412
Dasgupta, Koustuv 444, 491
De Sanctis, Martina 383
Di Cosmo, Roberto 397
Dijkman, Remco 237
Dong, Hai 333
Duan, Li 87
Dustdar, Schahram 105, 123

Eiche, Antoine 397
Eshuis, Rik 285
Eswaran, Sharanya 427

Fauvet, Marie-Christine 495
Fekete, Alan 316
Feng, Shichun 477

Gajananan, Kugamoorthy 461
Gao, Bo 305
Georgantas, Nikolaos 36
Gerard, Scott N. 19
Ghari Neiat, Azadeh 373
Ghose, Aditya 412
Goeuriot, Lorraine 495
Gonzalez, Pavel 253
Gonzalez-Huerta, Javier 171
Grefen, Paul 237
Griesmayer, Andreas 253
Griffiths, Nathan 53
Guéhéneuc, Yann-Gaël 171
Gupta, Avantika 444

Haddad, Joyce El 345
He, Ligang 305
Hegde, Aditya 491
Hoenisch, Philipp 316
Hull, Richard 285

Issarny, Valérie 36

Jagadeesh Chandra Bose, R.P. 444
Jain, Aditi 188
Jiang, Shun 461

Kaes, Georg 269
Kalia, Anup K. 3, 19, 353
Kamath, Sanjay 495
Kattepur, Ajay 36
Keller, Alexander 139
Kuhlenkamp, Jörn 154
Kumar, Abhishek 427

Langston, Bryan 139
Lbath, Ahmed 495
Le, Duc-Hung 105
Li, Kenli 305
Li, Keqin 305
Liang, Tingting 482
Lin, Pengxiang 477
Liu, Chuanchang 87
Liu, Chunhong 87

Liu, Xumin 188
Lomuscio, Alessio 253
Luck, Michael 362
Ludwig, Heiko 139

Madden, John F. 3
Mandagere, Nagapramod 139
Mantripragada, Kiran 324
Marconi, Annapaola 383
Mauro, Jacopo 397
Megahed, Aly 461
Metzger, Andreas 71
Miles, Simon 53, 362
Mistry, Sajib 333
Moha, Naouel 171
Mohamed, Mohamed 139
Moldovan, Daniel 105
Mukherjee, Tridib 427
Murukannaiah, Pradeep K. 353

Nakamura, Hiroaki 139
Nakamura, Taiga 461
Na-Lumpoon, Pathathai 495
Netto, Marco A.S. 324
Nguyen, Tien-Dung 105

Palma, Francis 171
Pistore, Marco 383
Pohl, Klaus 71
Pourmirza, Shaya 237

Qin, A.K. 333

Ramanath, Ajith 444
Rinderle-Ma, Stefanie 269
Rudolph, Kevin 154

Schmieders, Eric 71
Schulte, Stefan 316
Sellami, Sana 486
Sellis, Timos 373

Shang, Yanlei 87
Sharma, Varun 491
Sikora, Florian 345
Sindhgatta, Renuka 412
Singh, Mridula 427
Singh, Munindar P. 3, 19, 353
Smith, Mark 461
Srivastava, Saurabh 491
Stamou, Katerina 139
Sun, Yu-Jen John 218

Taweel, Adel 362
Taylor, Phillip 53
Telang, Pankaj R. 3, 19
Tizzei, Leonardo P. 324
Traverso, Paolo 383
Tremblay, Guy 171
Tripathi, Abhishek 491
Truong, Hong-Linh 105, 123

Wadhwa, Rakshit 427
Wang, Hongbing 203
Weber, Ingo 316
Wu, Hao 477
Wu, Jian 482
Wu, Qin 203

Xie, Zhining 482

Yadav, Kuldeep 427
Yang, Wei 482
Yi, Mengfei 285
Yin, Jianwei 477
Yu, Qi 188, 203

Zacchiroli, Stefano 397
Zavattaro, Gianluigi 397
Zhao, Xinkui 477
Zhi, Chen 477
Zhu, Liming 316
Zwolakowski, Jakub 397

500 Author Index

	Preface
	ICSOC 2015 Organization
	Contents
	Internet of Services/Things
	Combining Practical and Dialectical Commitments for Service Engagements
	1 Introduction
	2 Background
	2.1 Practical Commitments
	2.2 Computation Tree Logic

	3 Dialectical Commitments
	3.1 The Proposed Lifecycle of Dialectical Commitments
	3.2 Formalization
	3.3 Modeling Patterns

	4 Evaluation
	4.1 Verification
	4.2 Benefits of Dialectical Commitments

	5 Related Work
	6 Discussion and Future Work
	References

	Positron: Composing Commitment-Based Protocols
	1 Introduction
	2 Background and Motivation
	3 Technical Approach
	4 Evaluation of Positron Modeling and Tools
	5 Discussion: Literature and Future Work
	References

	Analysis of Timing Constraints in Heterogeneous Middleware Interactions
	1 Introduction
	2 Interconnecting Heterogeneous Interaction Paradigms
	3 Timing Analysis of Interactions
	4 Timed Automata Model
	4.1 Timed Automata Model of XSB
	4.2 Verification of Properties

	5 Results: Analysis of Timing Thresholds
	5.1 Transaction Success Rates
	5.2 Latency vs. Success Rate
	5.3 Comparison with XSB Implementation

	6 Related Work
	7 Conclusions
	References

	Context-Driven Assessment of Provider Reputation in Composite Provision Scenarios
	1 Introduction
	2 Delegation Model
	3 Rating Model
	4 Context Exploitation for Reputation Assessment
	4.1 Delegation Context Relevance Assessment
	4.2 Reputation Model Extension

	5 Experiments and Results
	5.1 Customer Rating Generation
	5.2 Evaluation Strategies and Measure
	5.3 Results

	6 Discussion
	7 Related Work
	8 Conclusion
	References

	Data Services and Cloud Platform Management
	Runtime Model-Based Privacy Checks of Big Data Cloud Services
	1 Introduction
	2 Privacy Policy Violations in Big Data Cloud Services
	3 R-PRIS: Privacy Checks for Big Data Cloud Services
	3.1 Typed Runtime Model
	3.2 Privacy Policy Checks

	4 Proof of Concept Implementation
	4.1 Prototype Architecture
	4.2 Cloud Service and Infrastructure
	4.3 Change Scenarios

	5 Performance Evaluation
	5.1 Experimental Evaluation
	5.2 Runtime Complexity Analysis

	6 Related Work
	7 Conclusion and Future Work
	References

	Optimizing Workload Category for Adaptive Workload Prediction in Service Clouds
	1 Introduction
	2 System Architecture
	3 Model Formulation and Solution
	3.1 The Workload
	3.2 The Workload Classification Problem
	3.3 The Workload Classification Optimization
	3.4 The Optimal Solution

	4 Experimental Analysis
	4.1 Setup of the Experiment
	4.2 Workload Prediction Methods Analysis
	4.3 Classified Prediction Effect Analysis
	4.4 Influence of the Parameters on Workload Classification Optimization

	5 Related Work
	6 Conclusions and Future Work
	References

	On Developing and Operating of Data Elasticity Management Process
	1 Introduction
	2 Motivation and Approach
	3 Elasticity Model for Data Assets
	3.1 Data Assets and Their Quality of Results
	3.2 Data Elasticity Management Process
	3.3 Managing Primitive Actions
	3.4 Elastic Data Asset

	4 Generating and Operating Data Elasticity Management Processes
	4.1 Generating Data Elasticity Management Processes
	4.2 Runtime for Data Elasticity Management Process

	5 Evaluation
	5.1 Experiment Settings
	5.2 Generating Data Elasticity Management Processes
	5.3 Operating Data Elasticity Management Processes

	6 Related Work
	7 Conclusions and Future Work
	References

	Cloud Services Management
	Supporting Cloud Service Operation Management for Elasticity
	1 Introduction
	2 Motivation
	3 Analyzing Interactions in Elasticity Operations Management
	3.1 Role Interactions
	3.2 Elasticity Operations and Roles

	4 Elasticity Operations Management Platform
	4.1 Entities of the Interaction
	4.2 Interaction Protocols for Supervisory Control of Elasticity
	4.3 Elasticity Directives-Driven Interactions
	4.4 Interaction Aggregation

	5 Prototype and Experiments
	5.1 Prototype
	5.2 Elasticity Operations Management Features

	6 Related Work
	7 Conclusions and Future Work
	References

	rSLA: Monitoring SLAs in Dynamic Service Environments
	1 Introduction
	2 Related Work
	3 Overview of the Approach
	3.1 System Model
	3.2 SLA Model

	4 rSLA Language
	4.1 Design Considerations
	4.2 rSLA Language Elements

	5 rSLA Runtime Architecture and Implementation
	5.1 rSLA Service
	5.2 rSLA Xlets
	5.3 Case Study

	6 Summary and Conclusions
	References

	AISLE: Assessment of Provisioned Service Levels in Public IaaS-Based Database Systems
	1 Introduction
	2 Background
	3 Assessing Cloud Service Levels
	3.1 Deriving a Model for Expected Service Levels
	3.2 Normalizing Monitoring Data

	4 Expected Service Level Model
	4.1 Analytical Expected Service Level Model
	4.2 Experiment Setup
	4.3 Experiment Results
	4.4 Discussion

	5 Use Case: Cassandra
	5.1 Deployment Enviroment
	5.2 AISLE Application
	5.3 Discussion

	6 Related Work
	7 Conclusion
	References

	Service Composition
	Are RESTful APIs Well-Designed? Detection of their Linguistic (Anti)Patterns
	1 Introduction
	2 Related Work
	3 REST Linguistic Patterns and Antipatterns
	4 The DOLAR Approach
	4.1 Analysis of Linguistic Patterns and Antipatterns
	4.2 Implementation of Interfaces and Detection Algorithms
	4.3 Detection of Linguistic Patterns and Antipatterns

	5 Validation
	5.1 Hypotheses
	5.2 Subjects and Objects
	5.3 Validation Process
	5.4 Interpretation of the Results
	5.5 Further Discussion of the Results
	5.6 Discussion on the Hypotheses
	5.7 Threats to Validity

	6 Conclusion and Future Work
	References

	Aggregating Functionality, Use History, and Popularity of APIs to Recommend Mashup Creation
	1 Introduction
	2 Related Work
	3 The Proposed Approach
	3.1 Functionality-Based Candidate API Discovery
	3.2 Historical Usage Based API Discovery
	3.3 Popularity Based API Ranking

	4 Experiments and Evaluation
	4.1 Training Probabilistic Topic Models
	4.2 Evaluation Result

	5 Conclusion
	References

	Integrating Gaussian Process with Reinforcement Learning for Adaptive Service Composition
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 Reinforcement Learning for Service Composition Based on Gaussian Process
	4.1 Predicting Q-Value Based on Gaussian Process
	4.2 Constructing the Sparse Dictionary Online
	4.3 Updating the Gaussian Process Parameters
	4.4 OGPQ Algorithm

	5 Experiments and Analysis
	5.1 Experiment Setting
	5.2 Result Analysis

	6 Conclusions and Future Directions
	References

	Scalable SaaS-Based Process Customization with CaseWalls
	1 Introduction
	2 Case-Knowledge Representation and Reuse
	3 Knowledge-Reuse-Driven and Declarative Case Definition Language
	3.1 Knowledge-Reuse Language
	3.2 Declarative Case Definition Language
	3.3 Declarative Case Manipulation Language

	4 Implementation
	4.1 Architecture
	4.2 Knowledge Graph
	4.3 Event Management System
	4.4 Orchestration Engine: Generating Rules

	5 Evaluation
	6 Related Work and Concluding Remarks
	References

	Business Process Management
	Correlation Mining: Mining Process Orchestrations Without Case Identifiers
	1 Introduction
	2 Preliminaries
	3 Correlation Mining Technique
	3.1 Precede/Succeed Matrix
	3.2 Duration Matrix
	3.3 Orchestration Model Construction

	4 Evaluation
	4.1 Evaluation Setup
	4.2 Synthetic Event Logs
	4.3 Real-World Event Log

	5 Related Work
	6 Conclusion
	References

	Verification of GSM-Based Artifact-Centric Systems by Predicate Abstraction
	1 Introduction
	2 The Guard-Stage-Milestone Language and Multi-agent Systems
	3 Three-Valued Abstraction for AC-MAS
	4 Implementation and Experimental Results
	5 Conclusions
	References

	Mining and Querying Process Change Information Based on Change Trees
	1 Introduction
	2 Change Log Definitions
	3 Change Trees
	4 n-Gram Change Trees
	5 Comparison with Other Representations
	6 Proof-of-Concept and Real-World Example
	7 Related Work
	8 Conclusion and Future Work
	References

	Property Preservation in Adaptive Case Management
	1 Introduction
	2 Motivation
	3 The Formal GSM Model
	4 Reasoning About GSM Executions
	4.1 Stage i/o Assignments
	4.2 Conditional Emulation
	4.3 The Lifting Lemma

	5 Property Preserving Schema Modifications
	5.1 Deletion
	5.2 Insertion

	6 Related Work
	7 Conclusion
	References

	Cloud Services (Short Papers)
	Modelling and Optimizing Bandwidth Provision for Interacting Cloud Services
	1 Introduction
	2 Background and Related Work
	3 Modelling Bandwidth Provision
	3.1 The Communication Input-Output Model
	3.2 Bandwidth Provision for VMs

	4 The Communication-Oriented Simulated Annealing Algorithm
	5 Performance Evaluation
	5.1 Accuracy of the CIO Model
	5.2 The Effectiveness of CSA

	References

	Four-Fold Auto-Scaling on a Contemporary Deployment Platform Using Docker Containers
	1 Introduction
	2 Motivating Example
	3 Optimization Approach
	4 Evaluation
	5 Related Work
	6 Conclusions
	References

	An SLA-Based Advisor for Placement of HPC Jobs on Hybrid Clouds
	1 Introduction
	2 Advisory Service and Policies
	3 Application Case Study in Oil and Gas Industry
	4 Evaluation
	4.1 Results: Costs and Time Savings
	4.2 Results: Accuracy of the Application Profile

	5 Conclusions
	References

	Optimizing Long-term IaaS Service Composition
	1 Introduction
	2 Related Work
	3 The Long-term Economic Model of the IaaS Provider
	3.1 The Long-term Economic Valuation
	3.2 Long-term Economic Expectation and Fitness of a Composition
	3.3 Genetic Optimization Using the Economic Model

	4 Experiments and Results
	4.1 Setup of the Long-term Economic Model
	4.2 Efficiency of the Economic Model Based Composition

	5 Conclusion
	References

	QoS and Trust (Short Papers)
	On the Complexity of QoS-Aware Service Selection Problem
	1 Introduction
	2 System Model and Problem Statement
	2.1 Workflows
	2.2 Services and Quality of Service
	2.3 Problem Statement

	3 Complexity Upper Bounds
	4 Complexity Lower Bounds
	5 Conclusion
	References

	TRACE: A Dynamic Model of Trust for People-Driven Service Engagements
	1 Introduction
	2 A Conceptual Model of Trust
	3 The TRACE Model
	4 Evaluation
	5 Results and Discussion
	References

	A Context-Aware Approach for Personalised and Adaptive QoS Assessments
	1 Introduction
	2 Context Model
	3 Context-Aware QoS Learning
	3.1 Service Observation
	3.2 Agent Configuration and Learning Model

	4 Experiments and Results
	4.1 Value Model Implementation
	4.2 Dataset
	4.3 Evaluation Strategies and Measure
	4.4 Results

	5 Related Work
	6 Conclusion
	References

	Service Composition (Short Papers)
	Spatio-Temporal Composition of Crowdsourced Services
	1 Introduction
	2 Spatio-Temporal Model for Crowdsourced Service
	2.1 Spatio-Temporal Model for Atomic Crowdsourced Services
	2.2 Spatio-Temporal Model for Composite Crowdsourced Services
	2.3 Spatio-Temporal Index Data Structure for Crowdsourced Services

	3 An Extensible Quality Model for Crowdsourced Service
	3.1 Quality Model for Atomic Crowdsourced Service
	3.2 Quality Model for Composite Crowdsourced Service

	4 QoS-Aware Spatio-Temporal Union Composition Algorithm
	4.1 Crowdsourced Service Filtering
	4.2 Decomposition
	4.3 Local Union Composition
	4.4 Global Union Composition

	5 Experiments Results
	6 Conclusion
	References

	Design for Adaptation of Distributed Service-Based Systems
	1 Introduction
	2 Motivating Scenario
	3 General Framework and Approach
	4 Evaluation
	5 Related Works and Conclusions
	References

	Industry Track Papers
	Automatic Deployment of Services in the Cloud with Aeolus Blender
	1 Introduction
	2 Deploying a WordPress Farm with Blender
	3 Blender Internals
	4 Implementation
	5 Related Work
	6 Conclusions
	References

	Analyzing Resource Behavior to Aid Task Assignment in Service Systems
	1 Introduction
	2 Related Work
	2.1 Modeling Service Systems
	2.2 Resource Behavior Analysis

	3 Background
	3.1 Service System
	3.2 Setting and Data Collection

	4 Data Analysis
	4.1 Performance Improvement Doing Similar Work
	4.2 Efficiency Improvement with Variety in Work
	4.3 Influence of Multi-skilling on Variety in Work
	4.4 Dispatching Considering Resource Behavior

	5 Simulation Based Experimentation
	6 Threats to Validity
	7 Conclusion and Future Work
	References

	SenseX: Design and Deployment of a Pervasive Wellness Monitoring Platform for Workplaces
	1 Introduction
	2 Related Work
	3 System Design
	3.1 Sensing and Actuation Layer
	3.2 Activity Inference and Fusion Layer
	3.3 Analytics and Notifications

	4 Implementation Details
	5 Evaluation
	5.1 Sensing Coverage
	5.2 Triggered-Sensing and Battery Consumption
	5.3 Workplace Activity Patterns
	5.4 Effect of Notifications
	5.5 Effect of Incentives and Gamification

	6 Discussion
	References

	Opportunities for Process Improvement: A Cross-Clientele Analysis of Event Data Using Process Mining
	1 Introduction
	2 Related Work
	3 Background
	4 Framework for Cross-Clientele Analysis
	5 Cross-Clientele Analysis for Transaction Based Outsourcing (TBO) Business
	5.1 Business Context
	5.2 Data Set
	5.3 Process Discovery and Complexity Analysis
	5.4 Compliance Analysis
	5.5 Performance Analysis
	5.6 Root Cause Analysis

	6 Conclusions
	References

	Pricing IT Services Deals: A More Agile Top-Down Approach
	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Definitions
	3.2 Peer Selection and Calculation Logic
	3.3 Win Prediction

	4 Numerical Results
	5 Conclusion and Future Work
	References

	Demonstration Track Papers
	SimMon: A Toolkit for Simulating Monitoring Mechanism in Cloud Computing Environments
	1 Motivation
	2 Architecture of SimMon
	3 Implementation
	4 Demonstration
	References

	CASE: A Platform for Crowdsourcing Based API Search
	1 Introduction and Motivation
	2 Algorithm Framework
	3 User Interface
	4 Conclusion and Outlook
	References

	WSTP: Web Services Tagging Platform
	Abstract
	1 Introduction
	2 System Overview
	2.1 Web Services Tagging Process
	2.2 Semantic Search of Linked Web Services

	3 Demonstration
	4 Future Work
	References

	Personalized Messaging Engine: The Next Step in Employee Engagement
	1 Introduction
	2 System Architecture
	2.1 Overview
	2.2 SOA Based Integration

	3 Features in PME
	4 Conclusion
	References

	Offering Context-Aware Personalised Services for Mobile Users
	1 Introduction
	2 System Architecture
	3 Use Case
	4 Conclusion and Further Work
	References

	Author Index

