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Abstract. Dimensionality Reduction methods are effective preprocess-
ing techniques that clustering algorithms can use for coping with high
dimensionality. Dimensionality Reduction methods have the aim of pro-
jecting the original data set of dimensionality d, minimizing information
loss, onto a lower M-dimensional submanifold. Since the value of M is
unknown, techniques that allow knowing in advance the value of M,
called intrinsic dimension (ID), are quite useful. The aim of the paper
is to make the state-of-art of the methods of intrinsic dimensionality
estimation, underlining the achievements and the challanges.

1 Introduction

Dimensionality Reduction methods are effective preprocessing techniques that
clustering algorithms can use for coping with high dimensionality. Dimensionality
Reduction methods have the aim of projecting the original data set Ω ⊂ R

d,
minimizing information loss, onto a lower M -dimensional submanifold of R

d.
Since the value of M is unknown, techniques that allow knowing in advance
the value of M , are quite useful. Following Fukunaga, a data set Ω ⊂ R

d is
said to have intrinsic dimension (ID) [16] equal to M if its elements lie entirely
within a M-dimensional submanifold of R

d, where M < d. It is important to
observe that ID depends on the scale of data. In order to show this, it considers
a two-dimensional data set, e.g., a K-Möbius strip [20], adding to a data set
a three-dimensional gaussian noise. The data set, obtained in this way, has ID
equal to 2 at a coarse scale, since the two-dimensional set is dominant. But
if we change scale and observe the data set at fine scale, the noise becomes
dominant and the ID of data set is three. ID estimation of a data set is a classical
problem of pattern recognition and machine learning. The first algorithm of data
dimensionality estimation, by Bennett, dates back to 1969 [3]. ID estimation is
relevant in machine learning not only for dimensionality reduction methods but
also for other several reasons. Firstly, using more dimensions than the necessary
leads to several problems, such as an increase of the space required to store
data, a decrease in the algorithm speed, since it generally depends on the data
dimensionality. Besides, building reliable classifiers becomes harder and harder
when the dimensionality grows (curse of dimensionality [2]). To this purpose,
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we recall that the capacity (VC-dimension) [57] of the linear classifiers, that
determines their generalization capability, may depend on ID. Finally, ID is
relevant for some prototype-based clustering algorithms. For example, ID affects
the magnification factor [59] of a trained Neural Gas, that expresses the relation
between the data density and the density of the neural gas weight vectors1.

The aim of the paper is to make the state-of-art of the methods of the intrin-
sic dimensionality estimation, underlining the advances and the open problems.
Extending the taxonomy proposed by Jain and Dubes [25], we group the algo-
rithms for estimating ID in three disjoint categories, i.e., local, global, mixed.
In the local category, there are the algorithms that provide an ID estimation
using the information contained in sample neighborhoods. To the global cat-
egory belong the algorithms that make use of the whole data set providing a
unique and global ID estimate for the data set. Finally, in the mixed category,
there are the algorithms that can produce both a global ID estimate of the
whole data set and local ID estimate of particular subsets of the data set. In
the paper the most relevant algorithms for each category, underlining their weak
points, will be presented. In particular, it will be discussed the robustness of
each method with respect to the high dimensionality. The paper is organized
as follows: Sects. 2, 3, 4 describe global. local and mixed methods, respectively;
the benchmarking of ID estimation method is discussed in Sects. 5 and 6 open
problems are analyzed and some conclusion are drawn.

2 Global Methods

In the global category, the algorithms unfold the data set in the d-dimensional
manifold. Unlike local methods that use only the information contained in the
neighborhood of each data sample, global algorithms make use of the whole
data set. These methods make implicitly the assumption that the data lie on a
unique manifold of a fixed dimensionality. Global methods can be grouped in
four families: projection techniques, fractal-based algorithms, multidimensional
scaling methods and other techniques, where in the last category are collected
all the methods that cannot be assigned to the first three categories.

2.1 Projection Techniques

Projection techniques search for the best subspace to project the data by mini-
mizing the projection error. Principal Component Analysis (PCA) [26,30] is the
simplest and the most widely used projection method. PCA is a linear projection
method since projects the data along the directions of maximal variance. PCA
algorithm for ID estimation has the following steps:

1. Compute the N eigenvalues of the covariance matrix. Order them in decreas-
ing way, such that λ1 ≥ λ2, · · · ≥ λN .

1 If we denote with P the relation between the data density P and the density ρ of
the weight vectors, then ρ ∝ P α where α = ID

ID+2
.
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Fig. 1. Ω Data set. The data set is formed by points lying on the upper semicirconfer-
ence of equation x2 + y2 = 1. The ID of Ω is 1. Neverthless PCA yields two non-null
eigenvalues. The principal components are indicated by u and v.

2. Normalize the eigenvalues dividing each eigenvalue by the largest one λ1.
3. Choose a threshold value θ and compute the integer K such that λK ≥ θ and

λK+1 < θ.
4. return (ID=K).

It is easy to show that the loss of the information due to the discarding the
lowest (N-K) eigenvectors is equal to the sum of the lowest (N-K) eigenvalues
[4]. PCA is a poor estimator, since it tends to overestimate the ID. Consider a
data set formed by datapoints lying on a circumference, (Fig. 1) PCA yields an ID
estimate equal to 2 instead of the correct value of 1. Therefore we can assess that,
since PCA overestimates ID, PCA provides can be an upper bound of the actual
ID value of a dataset. Nonlinear projection methods have been designed in order
to overcome the PCA limitations. In order to cope with these problems, some
algorithms have been proposed to get Nonlinear PCAs. A widely used approach
to get a Nonlinear PCA is the autoassociative approach [28]. Nonlinear PCA is
performed by means of a five-layers neural network. The neural net has a typical
bottleneck structure. The first (input) and the last (output) layer have the same
number of neurons, while the remaining hidden layers have less neuron than the
first and the last ones. The second, the third and the fourth layer are called
respectively mapping, bottleneck and demapping layer. Mapping and demapping
layers have usually the same number of neurons. The number of the neurons of
the bottleneck layer provides an ID estimate. The targets used to train Nonlinear
PCA are simply the input vector themselves. Though autoassociative neural
networks (ANNs) outperforms linear PCA, as ID estimators, in some contexts,
ANNs present some drawbacks. ANNs cannot model curves or surfaces that
intersect themselves. Moreover, ANN projections onto curves and surfaces are
suboptimal [37].
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2.2 Fractal-Based Methods

Fractal-based techniques are global methods that have been successfully applied
to estimate the attractor dimension of the underlying dynamic system generating
time series [27]. Unless other global methods, they can provide as ID estimation
a non-integer value. Since fractals are generally2 characterized by a non-integer
dimensionality, for instance the dimension of Cantor’s set and Koch’s curve
[38] is respectively ln 2

ln 3 and ln 4
ln 3 , these methods are called fractal. In nonlinear

dynamics many definitions of fractal dimensions [13] have been proposed. The
Box-Counting and the Correlation dimension are the most popular. The first
definition of dimension (Hausdorff dimension) [13,41] is due to Hausdorff [19].
Since the Hausdorff dimension is not easy to evaluate, in practical application it
is replaced by an upper bound that differs only in some constructed examples:
the Box-Counting dimension (or Kolmogorov capacity) [41].

Kégl’s Algorithm. Let Ω = {x1,x2, . . . ,x�} be a set of points in R
n of cardi-

nality �. We denote with ν(r) the number of the boxes (i.e., hypercubes) of size
r required to cover Ω. It can be proven [41] that ν(r) is proportional to (1r )d,
where d is the dimension of the set Ω. This motivates the following definition.
The Box-Counting dimension (or Kolmogorov capacity) DB of the set Ω [41] is
defined by

DB = lim
r→0

ln(ν(r))
ln(1r )

(1)

where the limit is assumed to exist. Recently Kégl [29], has proposed a fast
algorithm (Kégl’s algorithm) to estimate the Box-Counting dimension. Kégl’s
algorithm is based on the observation that ν(r) is equivalent to the cardinality
of the maximum independent vertex set MI(Gr) of the graph Gr(V,E) with
vertex set V = Ω and edge set E = {(xi,xj) | d(xi,xj) < r}. Kégl has proposed
to estimate MI(G) using the following greedy approximation. Given a data set
Ω, we start with an empty set C. In an iteration over Ω, we add to C data points
that are at distance of at least r from all elements of C. The cardinality of C,
after every point in Ω has been visited, is the estimate of ν(r). The Box-Counting
dimension estimate is given by:

DB = − ln ν(r2) − ln ν(r1)
ln r2 − ln r1

(2)

where r2 and r1 are values that can be set up heuristically. It can be proven [29]
that the complexity of Kegl’s algorithm is given by O(DB�2), where � and DB

are the cardinality and the dimensionality of the data set, respectively.

Grassberger-Procaccia Algorithm. A good substitute for the Box-Counting
dimension can be the Correlation dimension [18]. Due to its computational sim-
plicity, the Correlation dimension is successfully used to estimate the dimension
2 Fractals have not always non-integer dimensionality. For instance, the dimension of
Peano’s curve is 2.
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of attractors of dynamical systems. The Correlation dimension [18] of a set Ω
is defined as follows. If the correlation integral Cm(r) is defined as:

Cm(r) = lim
�→∞

2
�(� − 1)

�∑

i=1

�∑

j=i+1

I(‖xj − xi‖ ≤ r) (3)

where I is an indicator function3, then the Correlation dimension D of Ω is:

D = lim
r→0

ln(Cm(r))
ln(r)

(4)

It can be proven that the Correlation Dimension is a lower bound of the Box-
Counting Dimension. The most popular method to estimate Correlation dimen-
sion is the Grassberger-Procaccia algorithm [18]. This method consists in plotting
ln(Cm(r)) versus ln(r). The Correlation dimension is the slope of the linear part
of the curve (see Fig. 2b). The computational complexity of the Grassberger-
Procaccia algorithm is O(�2s) where � is the cardinality of the data set and s is
the number of different times that the integral correlation is evaluated, respec-
tively. However, there are efficient implementations of the Grassberger-Procaccia
algorithm whose complexity does not depend on s. For these implementations,
the computational complexity is O(�2).

Takens’ Method. Takens [50] has proposed a method, based on Fisher’s
method of Maximum Likelihood [12], that allows to estimate the correlation
dimension with a standard error. Let Q be the following set Q = {qk | qk < r}
where qk is the the Euclidean distance between a generic couple of points of Ω
and r (cut-off radius) is a real positive number. Using the Maximum Likelihood
principle it can prove that the expectation value of the Correlation Dimension
〈Dc〉 is:

〈Dc〉 = −
⎛

⎝ 1
|Q|

|Q|∑

k=1

qk

⎞

⎠
−1

(5)

where |Q| stands for the cardinality of Q. Takens’ method presents some draw-
backs. It requires some heuristics to set the radius [53]. Besides, the method
is optimal only if the correlation integral Cm(r) assumes the form Cm(r) =
arD[1+br2+o(r2)] where a and b are constants, otherwise it can perform poorly
[52]. Finally, Hein and Audibert [20] proposed a generalization of the correlation
integral, in term of U-statistics [22], defined as follows:

Un,h(K) =
2

�(� − 1)

�∑

i=1

�∑

j=i+1

1
hm

K(‖xj − xi‖2/h2) (6)

where K(·) is a generic kernel of band width h and m is the dimensionality of
the manifold where the data are assumed that lie. On the basis of the Hoeffding
3 I(λ) is 1 iff condition λ holds, 0 otherwise.
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Fig. 2. (a) The attractor of the Lorentz system. (b) The log-log plot on Data set A.
Data set A is a real data time series generated by a Lorentz-like system, implemented
by NH3-FIR lasers.

Theorem [23], to guarantee the convergence of the U-statistics the bandwidth h
must fulfill �hm → ∞. Hein and Audibert used this property by fixing aconver-
gence rate for each dimension, that means weare fixing h as a function of the
data set cardinality �. Then the Eq. (6) is computed for subsamples of different
cardinalities, where h varies according to the function we have fixed. ID is deter-
mined by the U-statistic which has the smallest slope as a function of h. It is
worth to remark that, Hein and Audibert’s algorithm tries, even if partially, to
address the problem of ID dependence on the data scale.

Limitations of Fractal Methods. In addition to the drawbacks previously
exposed, estimation methods based on fractal techniques have a fundamental
limitation. It has been proved [14] that in order to get an accurate estimate
of the dimension D, the set cardinality � has to satisfy the so-called Eckmann-
Ruelle’s inequality, D < 2 log10 �.

The inequality shows that the number � of data points required to accurately
estimate the dimension of a D-dimensional set is at least 10

D
2 . Even for low

dimensional sets this leads to huge values of �. In order to cope with this problem
and to improve the reliability of the measure for low values of �, the method
of surrogate data [54] has been proposed. The method of surrogate data is an
application of bootstrap [15]. Given a data set Ω, the method of surrogate data
consists in creating a new synthetic data set Ω′, with larger cardinality, that has
the same statistical properties of Ω, namely the same mean, variance and Fourier
Spectrum. Although the cardinality of Ω′ can be chosen arbitrarily, the method
of surrogate data is infeasible when the dimensionality of the data set is high.
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In-fact a 18-dimensional data set to be estimated must have at least, on the
base of the Eckmann-Ruelle’ inequality, 109 points. Camastra and Vinciarelli
[7,8] proposed a procedure to power Grassberger and Procaccia method (GP
method), establishing empirically how much GP method underestimates the
dimensionality of a data set when data set cardinality is unadequate. Consider
a set Ω of cardinality �. The procedure is the following:

1. Create a set Ω′, whose ID d is known, with the same cardinality � of Ω. For
instance, Ω′ could be composed of � data points randomly generated in a
d-dimensional hypercube.

2. Measure the correlation dimension D of Ω′ with the GP method.
3. Repeat the two previous steps for T different values of d, obtaining the set

C = {(di,Di) : i = 1, 2, . . . , T ).
4. Perform a best-fitting to the data points in C. A plot (reference curve) Γ of

D versus d is generated. The reference curve allows to infer the value of D
when d is known.

5. The correlation dimension D of Ω is computed by GP method and, using Γ ,
the intrinsic dimension of Ω can be estimated.

The procedure assumes implicitly that the curve Γ depends on � and the depen-
dence of Γ on the Ω′ sets are negligible. It is worth to mention that Oganov and
Valle [56] used GP method in conjunction to Camastra and Vinciarelli proce-
dure’s to estimate ID of Crystal Fingerprint spaces.

2.3 Multidimensional Scaling and Other Methods

Multidimensional Scaling (MDS) [44] methods are projection techniques that
tend to preserve, as much as possible, the distances among data. Therefore data
that are close in the original data set should be projected in such a way that
their projections, in the new space (output space), are still close. To each pro-
jection is associated an index, usually defined stress, that measures the good-
ness of the projection. The best projection is the one whose stress is minimal.
Examples of the Multidimensional scaling methods are Bennett’s algorithm
[3], that now has only historical interest, MDSCAL [31], Sammon’s mapping
[47]. In the Other Methods category, are collected the methods that do not
belong to fractal, projection and MDS categories. To Other Methods category
belong Costa-Hero [11] algorithm and the algorithms recently proposed by Rozza
et al. [46] and Lombardi et al. [35]. For the sake of brevity, we only describe the
first algorithm. Costa-Hero’s algorithm assumes that data lie on a manifold. The
algorithm exploits entropic graphs on in order to estimate the ID dimensionality
and the entropy of the manifold. The algorithm is founded on the fact that the
length function, computed on the whole graph, depends on ID.

3 Local Methods

Local methods are algorithms that provide an ID estimation using the informa-
tion contained in sample neighborhoods, avoiding the projection of the data onto
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a lower-dimensional manifold. In this case, data do not lie on a unique manifold
of constant dimensionality but on multiple manifolds of different dimensionali-
ties. Since a unique ID estimate for the whole data is clearly not meaningful, it
prefers to provide an ID estimate for each small subset of data, assuming that it
lies on a manifold of constant dimensionality. More formally, local (or topological)
methods try to estimate the topological dimension of the data manifold. The def-
inition of topological dimension was given by Brouwer [21] in 1913. Topological
dimension is the basis dimension of the local linear approximation of the hyper-
surface where the data reside, i.e., the tangent space. For example, if the data
set lies on an m-dimensional submanifold, then it has an m-dimensional tangent
space at every point in the set. For instance, a sphere has a two-dimensional
tangent space at every point and may be viewed as a two-dimensional manifold.
Since the ID of the sphere is three, the topological dimension represents a lower
bound of ID. If the data does not lie on a manifold, the definition of topological
dimension does not directly apply. Sometimes the topological dimension is also
referred to simply as the local dimension. This is the reason why the methods
that estimate the topological dimension are called local. Algorithms that belong
to this category are Fukunaga-Olsen [17], Bruske-Sommer [5], Trunk [55], Pettis
et al. [42] and Verveer and Duin [58] ones.

3.1 Fukunaga-Olsen’s Algorithm

Fukunaga-Olsen’s algorithm is based on the observation that for data embedded
in a linear subspace, the dimension is equal to the number of non-zero eigen-
values of the covariance matrix. Besides, Fukunaga and Olsen assume that the
intrinsic dimensionality of a data set can be computed by dividing the data set
in small regions (Voronoi tesselation of data space). Voronoi tesselation can be
performed by means of a clustering algorithm, e.g., LBG [33]. In each region
(Voronoi set) the surface in which the vectors lie is approximately linear and
the eigenvalues of the local covariance matrix are computed. Eigenvalues are
normalized by dividing them by the largest eigenvalue. The intrinsic dimension-
ality is defined as the number of normalized eigenvalues that are larger than
a threshold T . Although Fukunaga and Olsen proposed for T , on the basis of
heuristic motivations, values such as 0.05 and 0.01, it is not possible to fix a
threshold value T good for every problem.

3.2 TRN-Based and Local MDS Methods

Topology Representing Network (TRN) is a unsupervised neural network pro-
posed by Martinetz and Schulten [39]. They proved that TRN are optimal topol-
ogy preserving maps i.e., TRN preserves in the map the topology originally
present in the data. Bruske and Sommer [5] proposed to improve Fukunaga-
Olsen’s algorithm using TRN in order to perform the Voronoi tesselation of the
data space. In detail, the algorithm proposed by Bruske and Sommer is the
following. An optimal topology preserving map G, by means of a TRN, is com-
puted. Then, for each neuron i ∈ G, a PCA is performed on the set Qi consisting
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of the differences between the neuron i and all of its mi closest neurons in G.
Bruske-Sommer’s algorithm shares with Fukunaga-Olsen’s one the same limita-
tions: since none of the eigenvalues of the covariance matrix will be null due to
noise, it is necessary to use heuristic thresholds in order to decide whether an
eigenvalue is significant or not. Finally, we conclude the section on local meth-
ods quoting the local MDS methods. As the global MDS methods discussed in
Sect. 2.3, local MDS methods are projection techniques that tend to preserve,
as much as possible, the distances among data. In local MDS, in an analogous
manner to global MDS, to each projection is associated an index or a cost that
measures the goodness of the projection. Unlike MDS methods, where the whole
data set is considered, local MDS methods work only on a small subset of data.
Examples of Local MDS methods are ISOMAP [51] and Local Linear Embedding
(LLE) [45]. The method for estimating ID is the same of global MDS. Compute
several MDS projection considering different dimensionality for the output space.
Pick the MDS projection with the best index or the minimum cost. The ID is
given by the dimensionality of the output space of the MDS projection selected.

4 Mixed Methods

The most relevant methods that belong to this category are Levina-Bickel [32]
and Carter-Raich-Hero algorithms [9]. For the sake of brevity, we only describe
the former algorithm.

4.1 Levina-Bickel Algorithm

The Levina-Bickel algorithm provides a maximum likelihood ID estimate. The
Levina-Bickel algorithm derives the maximum likelihood estimator (MLE) of the
intrinsic dimensionality D from a data set Ω = (x1, . . . ,x�) ∈ R

n. The dataset
Ω represents an embedding of a lower-dimensional sample, i.e., xi = g(Yi) where
Yi are sampled from an unknown smooth density f on R

D with D ≤ n, g is a
smooth mapping. Last assumption guarantees that close data in R

D are mapped
to close neighbors in the embedding. That being said, we fix a data point x ∈ R

n

assuming that f(x) is constant in a sphere Sx(r) centered in x of radius r and
we view Ω as a homogeneous Poisson process in Sx(r). Given the inhomogeneous
process {P (t,x), 0 ≤ t ≤ r}

P (t,x) =
�∑

i=1

I(xi ∈ Sx(t)), (7)

which counts the data whose distance from x is less than t. If we approximate it
by means a Poisson process and we neglect the dependence on x, the rate λ(t)
of the process P (t) is given by:

λ(t) = f(x)V (D)DtD−1, (8)
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where V (D) is the volume of a D-dimensional unit hypersphere. The Eq. (8) is
justified by the Poisson process properties since the surface area of the sphere
Sx(t) is d

dt [V (D)tD] = V (D)DtD−1. If we define θ = logf(x), the log-likelihood
of the process P (t) [49] is:

L(D, θ) =
∫ r

0

logλ(t)dP (t) −
∫ r

0

λ(t)dt. (9)

The equation describes an exponential family for which a maximum likelihood
estimator exists with probability that tends to 1 as the number of samples �
tends to infinity. The maximum likelihood estimator is unique and must satisfy
the following equations:

∂L

∂θ
=

∫ r

0

dP (t) −
∫ r

0

λ(t)dt = P (r) − eθV (D)rD = 0. (10)

∂L

∂D
=

(
1
D

+
V ′(D)
V (D)

)
P (r) +

∫ r

0

log t dP (t)+

− eθV (D)rD

(
log r +

V ′(D)
V (D)

)
= 0. (11)

If we plug the Eq. (10) into the Eq. (11) we obtain the maximum likelihood
estimate for the dimensionality D:

D̂r(x) =

⎡

⎣ 1
P (r,x)

P (r,x)∑

j=1

log
r

Tj(x)

⎤

⎦
−1

, (12)

where Tj(x) denotes the Euclidean distance between x and its j-th nearest
neighbor. Levina and Bickel suggest to fix the number of the neighbors k rather
than the radius of the sphere r. Therefore the estimate becomes:

D̂k(x) =

⎡

⎣ 1
k − 1

k−1∑

j=1

log
Tk(x)
Tj(x)

⎤

⎦
−1

. (13)

The estimate of the dimensionality is obtained averaging on all data points of
the data set Ω, that is:

D̂k =
1
�

�∑

i=1

D̂k(xi) (14)

The estimate of the dimensionality depends on the value of k. Levina and Bickel
suggest to average over a range of values of k = k1, . . . , k2 obtaining the final
estimate of the dimensionality, i.e.,

D̂ =
1

k2 − k1 + 1

k=k2∑

k=k1

D̂k. (15)
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David Mac Kay and Zoubin Ghamarani, in an unpublished comment [36], made
a strong criticism against Levina and Bickel’ s procedure of the global ID esti-
mation. Instead, they proposed to average the inverse of the estimators D̂k(xi).
In this way, the Eq. (14) has to be replaced with:

D̂k =
�(k − 1)

�∑

i=1

k−1∑

j=1

log
Tk(xi)
Tj(xi)

(16)

Using the same Levina and Bickel’s approach, the final estimate of the dimen-
sionality has to be obtained averaging D̂k over a range of values of k = k1, . . . , k2
obtaining the final estimate of the dimensionality expressed by Eq. (15).
Regarding the computational complexity, the Levina-Bickel algorithm requires
a sorting algorithm4, whose complexity is O(� log �), where � denotes the cardi-
nality of the data set. Hence the computational complexity for estimating D̂k

is O(k�2 log �), where k denotes the numbers of the neighbors that have to be
considered. Besides, Levina and Bickel suggest to consider an average estimate
repeating the estimate Dk s times, where s is the difference between the max-
imum and the minimum value that k can assume, i.e., k2 and k1, respectively.
Therefore the overall computational complexity of the Levina-Bickel algorithm
is O(k2s�2 log �).

5 ID Estimation Methods Benchmarking

A crucial issue in ID estimation is the experimental validation of the algorithms
designed for ID estimation. The experimental validation of such an algorithm
requires benchmarks, i.e., data sets, Benchmarks can be of two different types:
synthetical or real data. Regarding synthetical benchmarks, it is not difficult to
build synthetical data sets of given ID [20]. Moreover, the literature offer a cer-
tain number of synthetical benchmarks, both low-dimensional and high dimen-
sional. To this purpose, it is worth to mention 2-dimensional Swiss Roll [51],
3-dimensional 10-Möbius strip [20], 9-dimensional data set D of Santa Fe time
series competition [43], 12-dimensional manifold [20]. Unlike synthetical bench-
marks, it can be cumbersome to get real data benchmarks of known ID. Firstly,
it is necessary to split the benchmarks in two subfamilies: low-dimensional and
high-dimensional. Regarding low-dimensional real data benchmarks, the liter-
ature offers a limited availability of benchmarks, e.g., the 3-dimensional Face
Set [51] and the attractors in the phase space, of known dimensionality, gen-
erated, using method of delays [41], by real data time series. To this purpose,
it is worth to mention the Lorentz attractor generated by the data set A5 [24]

4 The complexity of effective sorting algorithms (e.g., mergesort and heapsort) is
� log �, where � is the number of elements that have to be sorted.

5 The data set A is a real data time series generated by a Lorentz-like chaotic system,
implemented by NH3-FIR lasers.
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Table 1. Chua’s circuit and Data set A attractor dimension estimates by Kégl, Levina-
Bickel, Grassberger-Procaccia methods.

Data set A attractor
dimension

Chua’s circuit attractor
dimension

Kégl estimate 2.02 2.14

Levina-Bickel estimate 2.35 2.26

Grassberger-Procaccia estimate 2.00 2.20

Theoretical value 2.06 ∼2.26

and Chua’s attractor generated by a real data time series, measured from a
hardware realization [1] of Chua’s circuit [10]. In Table 1 some experimental
comparisons [6] among ID estimators, performed on Data Set A and Chua’s cir-
cuit, are reported. If we pass to consider high-dimensional real data benchmarks
of known ID, the situation becomes very difficult. To our best knowledge, the
only high-dimensional benchmarks are the Crystal Fingerprint spaces (or Crystal
Fingerspaces) [40,56] recently proposed by Oganov and Valle in Crystallography
with the aim of representing crystalline structures. Crystal Fingerprint spaces are
spaces built starting by the real measured distances between atoms in the crys-
talline structure. The theoretical ID of a Crystal Fingerspace, based on crystal
degree of freedoms, is 3N+3, where N is the number of the atoms in the crys-
talline unitary cell. Crystal Fingerspaces have been derived for several crystal
structures, e.g., 39-dimensional H2O (crystalline cell with 8 atoms) and 147-
dimensional SiO2 (crystalline cell with 48 atoms). Crystal Fingerspace data are
available at http://mariovalle.name/CrystalFp/index.php/CrystalFpLib/Data.

6 Conclusions

In the paper we have reviewed the intrinsic dimension estimation methods under-
lining their advances. Nevertheless, some problem remain open. As remarked
previously, intrinsic dimension depends on the scale of data. Although some ID
estimation methods [20,34] tried to take in account, even if partially, of the
data scale, a reliable multiscale ID estimator is not available, yet. The other
open problems are related to the robustness of ID estimators w.r.t. the curse of
dimensionality. About this topic, there are two issues that remain to be fully
addressed. The former issue is the following. Each ID estimation method should
provide a lower bound on the cardinality in order to guarantee an accurate ID
estimation. To our best knowledge, this lower bound [14,48] is available only
for Correlation Dimension estimation methods, e.g., Eckmann-Ruelle’s inequal-
ity, whereas the other algorithms fully ignored the topic. The latter issue is the
lack of the robustness of ID estimators w.r.t. high dimensionality. Although an
empirical solution [8] was proposed, the construction of a robust ID estimators
w.r.t. high dimensionality remains one of the challange of the research in machine
learning.

http://mariovalle.name/CrystalFp/index.php/CrystalFpLib/Data
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