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Abstract. Due to the specificity of clustering, a problem that is intrin-
sically ill-posed, there are several approaches to comparing clusterings.
Comparison of clusterings obtained in different conditions is often the
only affordable evaluation strategy, due to the lack of a ground truth. In
this chapter we address a class of dimensionality-independent methods
which can be applied in the presence of a high-dimensional input space.
Specifically, we review some generalizations of this class of methods to
the case of fuzzy clustering, in several variants.

1 Introduction

High-dimensional data is encountered in most fields of science and technol-
ogy. Although progress in data analysis and processing methods constantly
changes the concept of what constitutes high dimensionality, there are some
aspects of the problem which are inherent and unescapable, since they are more
related to the ratio between data dimensionality and cardinality than to absolute
values of either.

The most well-known description of such phenomena is termed the curse of
dimensionality, which expresses the consequences of volume growing exponen-
tially with the number of dimensions. These consequences include for instance:

– Sparsification of data (the empty space phenomenon): In many cases the num-
ber of observations (cardinality) is comparable with or even lower than the
number of observed variables (dimensionality).

– Exponentially growing number of model parameters, with corresponding
growth of necessary observations to obtain a given level of confidence or
precision.

– Concentration effect on distances: For metrics of a very general form, max-
imum and minimum observed values tend to take on the same value with a
probability that grows very rapidly with dimensionality; therefore distances
are not meaningful any more.

While supervised analysis (for instance, classification) can count on a rich
set of methods to keep the effects of dimensionality under control, such as model
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complexity estimation and working with kernels, for unsupervised methods and
especially for clustering the same tools are not always available. This is because,
while classification works with the mapping from data to nominal labels, cluster-
ing works directly with the structure of the space where the data live. Nonethe-
less, several techniques are commonly encountered for enabling clustering in high
dimensions. These include (see also [29] in this book):

– Variable selection: Retain only the variables that are deemed significant to
the problem at hand, according to some criterion.

– Subspace clustering: Perform clustering in spaces defined by a subset of the
variables, and then search for the most meaningful subset. Alternatively, find
a subspace (a more general linear projection, not necessarily axis-parallel)
where clustering is most satisfactory.

– Intrinsic dimensionality estimation followed by (possibly nonlinear) dimen-
sionality reduction: Find the dimension of the subset of the data space where
the data actually “live”, which most often is much lower than the number of
observed variables, and then map data onto a lower-dimensional structure,
which can be linear (a subspace), locally linear (union of several subspaces,
each restricted to a given region), or non-linear (a manifold).

– Specialized metrics: Find ways to measure (dis)similarity that are less affected
by concentration effects, for instance with particular values of the exponent
in Minkowski metrics, or by using ranks instead of primary measures.

– Working with an affinity matrix rather than directly with data, using specific
methods that do not require the direct representation of objects: Agglomera-
tive clustering, correlation clustering, shared neighbors clustering.

– Using kernel and spectral clustering, which start from data representations
and map them into affinity-based representations by using specific measures
(kernels).

In this contribution we describe some techniques to measure similarities
between pairs of different clusterings, taking advantage of the added flexibility
provided by fuzzy clustering. We will review a few existing clustering similarity
indexes, and describe some possible generalisations and extensions that make
them applicable even in the fuzzy case. Some applications, using benchmark
data sets, will also be shown.

A recent extensive survey [12] cites 76 measures of similarity or dissimilarity
developed over the last century. The same problem can be cast as measuring
diversity among classifiers or clusterings, binary string similarity, categorical
feature similarity. A more recent trend has been to incorporate more informa-
tion than just the coincidence of binary/categorical attributes; this includes for
instance the development of fuzzy variants [10,40].

2 Fuzzy Clustering

2.1 Some Notations and Definitions

The task of data clustering can be defined using set-theoretic concepts. A cluster-
ing of a given data sample, a set of N data points in a metric space
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X = {x1, . . . xN}, can be defined as a partition of the sample itself. This iden-
tifies partitional clustering methods. So clustering seeks a K-partition Π =
{C1, . . . , CK} of X. Each “part” of the partition is a cluster Cj , represented
by a centroid from a set Y = {y1, . . . ,yK}. Note that these definitions allow
us to extend partitions from the finite sample at hand to the whole data space
where the data “live”, thus providing what is commonly called an “out-of-sample
extension”.

It is customary to express attribution of data point xl to cluster Cj by means
of an indicator function u(xl, Cj), the membership function. In the presence of
a finite data set X, the membership values are the entries ulj = u(xl, Cj) of the
membership matrix U , whose rows are membership vectors ul.

2.2 Fuzzy Clustering

When we want to take into account more refined models, with more information
made available through the representation of clusters, we can resort to a fuzzy
formalism [45]. In general, there are several ways to represent uncertainty with
fuzzy sets, but in the special case of fuzzy data clustering [42] “fuzzy” means
specifically representing partitions by means of real-valued indicator functions.
This implies that a fuzzy clustering is not a conventional partition, but rather a
fuzzy partition allowing for partial overlap of clusters.

When compared to standard clustering, fuzzy clustering provides a more
flexible and powerful data representation paradigm. Fuzzy partitional methods
based on centroids share some model parameters with their closest non-fuzzy
counterparts, the number of clusters being the most notable example. However,
most of them also require setting some additional parameters, which often play
the role of degrees of fuzziness. As basic examples, we can mention Bezdek’s
fuzzy c-means [7] which needs the exponent m to be set to control fuzziness,
and Krishnapuram and Keller’s possibilistic c-means [26] which requires a set
of width parameters βj , one per cluster. In [30], we have proposed a graded
possibilistic c-means clustering technique (GPCM) that provides control over
the degree of possibility, thus allowing a soft transition between the standard
probabilistic and the possibilistic models. This is done through an additional
parameter α.

2.3 Methods for Fuzzy Clustering

Now we briefly review some fuzzy clustering methods, characterized by the fact
that cluster centroids are defined as follows:

yj =
∑N

l=1 uljxl
∑K

j=1 ulj

. (1)

This formulation characterizes all the methods derived from c-means and is
obtained from the minimization of a suitable Lagrangian, but does not depend
on the actual computation of the memberships.
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However, the membership function will differ according to the specific method;
therefore the resulting centroids, whose computation depends on memberships as
per Eq. (1), in general will not be the same in different cases.

One taxonomy of methods uses the constraint imposed on the sum of all
membership for any given data point xl,

ζl =
K∑

j=1

ulj , (2)

as a discriminant feature. It is useful to think of a membership vector ul as a
point in the K-dimensional space of possible combinations of memberships for
the given point. The different feasible sets of membership values characterise
each specific method, as detailed in the following.

When the sum of memberships is constrained to ζl = 1, we are in the stan-
dard “probabilistic” case. With the usual formulation for crisp clustering, where
ux(C) ∈ {0, 1}, subject to the sum-1 constraint, only a set of K possible configu-
rations is available, namely, those corresponding to the membership vectors that
lie on the coordinate axes, a subset of the vertices of the unitary K-hypercube.
Here one and only one of the memberships can be 1, while all others are zero.

A more interesting and expressive case is that of fuzzy clustering. Here the
memberships lie on a segment of the K-dimensional hyperplane

ζl = 1. (3)

More specifically, they are located on the diagonal of the K-hypercube [0, 1]K ∈
R

K . Memberships obeying this constraint are formally equivalent to probabili-
ties. This case is termed “probabilistic” to stress this analogy. Crisp clustering
is a limit case of general probabilistic clustering, where “probabilities” corre-
spond to certainty; crisp memberships can only be located at the vertices of the
hypercube.

The Maximum Entropy (ME) approach [38,39] makes explicit use of the
probabilistic interpretation of memberships. In ME, by imposing the necessary
minimum condition on an objective function with an entropic penalty, the prob-
lem can be stated as a minimization of the following Lagrangian:

JME =
N∑

l=1

K∑

j=1

[
uljd

2
lj + ηulj log ulj

]
, (4)

and as a result of computing the necessary minimum conditions, memberships
can be obtained from:

ulj =
e−dlj/β

Zl
. (5)

where Zl =
∑K

j=1 e−dlj/β is termed the partition function. Clusters Cj then obey
the Gibbs distribution around the respective centroids yj :

Pr (x | Πj ) =
e−β‖x−yj‖2

Z(x)
, (6)
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where yj is the centroid representing cluster Cj and β is a resolution parameter
that, in a thermodynamic analogy, plays the role of a temperature. The quadratic
distortion is the “energy” of “particle” xl and Z(xl) is the corresponding “par-
tition function” at the specific “temperature” value 1/β:

Z(x) =
∑

k

e−β||xl−yk||2 . (7)

The optimization procedure proposed for this model includes an “annealing”
schedule to gradually lower the system’s temperature. Since at each step a sta-
ble state is reached before moving to the next step, this method is also called
Deterministic Annealing.

2.4 Possibilistic Clustering Models

The Possibilistic c-Means (PCM) [3,25,26] can be seen as being located at the
other end of the spectrum with respect to the probabilistic Maximum Entropy
method. It is based on removing any equality constraint on the sum of member-
ships, replaced by a set of loose requirements, which essentially allow the mem-
berships themselves to take any configuration within the hypercube [0, 1]K , with
the exception of two isolated points, those with all-zero and all-one memberships,
respectively. These are excluded by design by means of additional checks to avoid
trivial solutions. Note that now the memberships are not formally equivalent to
probabilities any more.

In this possibilistic case, taking as a reference the second formulation pre-
sented in [26], the objective function has the form

JPCM =
N∑

l=1

K∑

j=1

[
uljd

2
lj + ηj (ulj log ulj − ulj)

]
, (8)

and, again per the necessary minimum conditions, memberships are computed as

ulj = e−dlj/βj . (9)

If we set a single value β for all the βj , the only difference with Eq. 5 is in
the denominator. To take advantage of this fact, we generalize the membership
function as follows:

ulj =
vlj

Zl
, (10)

where we have introduced the free membership vlj , defined as follows:

vlj = e−dlj/βj . (11)

These functions share the same term for penalizing the overall distortion,
but each of them has different additional penalties. As a result, the centroid
location update equations remain the same, resulting in centers being placed
at the barycenter of clusters weighted by membership. The membership update
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equations, which as per Eqs. 5 and 9 express the dependence of memberships
from distances, differ by the form of the term Zl. For a general class of clustering
formulations and associated objective functions, we may redefine ζl in terms of
the free memberships

ζl =
K∑

j=1

vlj . (12)

For instance, in the probabilistic approaches Zl = ζl, whereas in standard
possibilistic approaches Zl = 1.

2.5 Graded Possibilistic Models

The classic probabilistic membership model, be it either hard or fuzzy, imple-
ments the concept of partitioning a set into disjoint subsets with memberships
formally equivalent to the probability of one out of K mutually exclusive events.
In the possibilistic approach each membership is formally equivalent to the prob-
ability of one out of K mutually independent events. Of course they may retain
the usual fuzzy interpretation as degrees of truth rather than probabilities.

The graded possibilistic membership model assumes instead that events may
be independent to a certain degree, but not completely, so that, while interme-
diate cases will be treated as independent, extreme cases (with some very high
or very low membership values) will be considered mutually exclusive. This pro-
vides the method with a notable expressive power in terms of fuzzy modelling.

The partition function characterizing the Graded Possibilistic c-Means
(GPCM) is derived from the interval constraint

∑K
j=1 ulj

[γ] = 1. Here we use

an interval variable [γ] = [ γ(l), γ(u) ]. Note that ulj
[γ] = [ulj

γ(l)
, ulj

γ(u)
] since an

exponential with interval exponent [A] = [A,A] is the interval e[A] = [eA, eA] [34].
An interval variable is commonly interpreted as the admissible range for the

actual value of an unknown variable. Adopting this interpretation, the mixed-
type equality between a non-interval variable a and an interval variable [A] has
been conventionally used with the following meaning: The equality a = [A] is
true when A ≤ a ≤ A, or a ∈ [A]. In most applications of interval arithmetic,
from numerical error bracketing to type-2 fuzzy sets, this means that [A] is the
uncertain representation of a.

In Ref. [30] this is explained in some more detail; here we restrict ourselves
to a particular choice of γ(l) and γ(u), for which we obtain the specific imple-
mentation that we study in this work: γ(l) = α and γ(u) = 1, where α ∈ (0, 1]
controls the “possibility level.” In other words, the interval parameter [γ] has
the form

[γ] = [α, 1]. (13)

In this specific, asymmetric implementation, memberships whose sum exceeds
1 are forbidden. Therefore clustering is effectively competitive among nearby
centroids. However, for far-away centroids, the competition decreases with α.
This allows us to obtain points which are not attributed to any cluster, thus
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providing a very natural representation for outliers. The partition function is in
this case computed as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Zl =
∑K

j=1 vlj if
∑K

j=1 vlj > 1

Zl =
(∑K

j=1 vα
lj

)1/α

if
∑K

j=1 vα
lj < 1

Zl = 1 otherwise.

(14)

For α = 1, the representation properties of the method reduce to those of ME,
while in the limit case for α → 0, the representation properties are equivalent
to those of PCM-II for low membership values, and to those of ME for higher
values.

This method, the Asymmetric Graded Possibilistic c-Means (AGPCM), has
several nice properties that make it worth studying and using in practice:

– In [30] this particular model has been shown to possess robustness properties.
The rejection ability can be applied in robust clustering and outlier analysis,
while its reverse, outlier identification, can be used in novelty detection and
data distribution characterization (or one-cluster clustering) as in [15].

– While for the fully possibilistic method it is very difficult to attain conver-
gence, the graded approach has better convergence for α sufficiently larger
than 0. It is also possible to “play” with parameters along the optimization
process, for instance applying an annealing schedule to α, so as to exploit the
best values in the most appropriate phase of the convergence: higher α in the
initial steps, when centroids need to break symmetry and diverge; lower α in
the later steps, when a precise, outlier-insensitive placement is sought.

– From the point of view of data analysis, full membership to more than one
cluster, as allowed by a symmetric formulation, may have a difficult inter-
pretation; in contrast, a point which does not belong to any cluster is easily
interpreted as an outlier.

– As a quantitative counterpart of the previous point, memberships summing
up to at most one allow a much easier comparison between clusterings, since
the range of values for fuzzy similarity indexes depends on the values of mem-
berships. This point will be discussed further on in this paper.

– Outlier insensitivity presents advantages with respect to convergence as well,
since, while centroids in non-fuzzy clustering are insensitive to points outside
their cluster, centroids in fuzzy clustering have to account for the effect of all
points. This is not the case with the possibilistic model. An illustration of this
increased precision in locating cluster centres is provided in Fig. 1.

– On the other hand, with respect to PCM and symmetric-GPCM, AGPCM
features an effective repulsion between nearby centroids, thus reducing the
risk of overlapping clusters.

The main disadvantage of this method is the presence of relatively many
parameters that need to be set. No criterion was given in the original work to
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Fig. 1. Outlier rejection demonstration for AGPCM. Above: Data set. Below: Cen-
troid locations. Black circles are the true cluster centres; triangles are centres found
with α = 0 (maximum rejection); squares are centres found with α = 1 (no rejec-
tion, representationally equivalent to ME). Note that some triangles are hidden by
true cluster centres since they are almost coincident; this is clearly not true for the
“probabilistic” centroids. Figures from [30].

assess the value of α, while β was initialized following heuristics available in the
literature; for both, “annealing” procedures were then applied, but without any
measure of quality. The stability analysis described in the following sections was
motivated by this lack of objective tools.

3 Comparing Fuzzy Clusterings

3.1 Approaches to the Comparison of Clusterings

Measuring the agreement between two clusterings amounts to measuring the
similarity between two partitions, and there are several partition similarities
available in the literature. It should be noted however that fuzzy clustering is not
addressed very frequently in these works, even if it has several advantages over
standard clustering from both representational and computational viewpoints
[24,30]. The two main approaches include comparing clusters after matching
them, and comparing co-association information.

The first approach consists in first identifying pairs of clusters, each composed
of one cluster from the first partition and one from the second, which can be
considered related, or, ideally the same cluster. A perfect match is difficult to
obtain, and this correspondence problem may not have a satisfactory solution.
The second step is to evaluate the degree of matching, and this is of course
possible only if the first step succeeded.

A second approach is based on co-association. Two data items are co-associated
if a partition puts them in the same cluster. The agreement or disagreement of par-
titions can be measured by coassociation, i.e., counting the number of pairs of data
items on which both partitions agree, and comparing it with the number of pairs on
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which they disagree. Several classic indexes are based on this rationale. In the fol-
lowing we review some of them and describe some variations, including fuzzy and
probabilistic versions.

This approach is followed in [16,21]. In [40] we defined a methodology to
extend several indexes based on co-association to the fuzzy and possibilistic
case, by means of co-association matrices [17]. Several indexes can simply be
computed starting from the entries of a confusion or contingency matrix, which
is readily obtained from the co-association matrix.

3.2 Notation

Suppose we select a partitional clustering method. For a specific choice of clus-
tering parameters, possibly including selecting a given number of clusters and
a random initialization, but excluding changes in the data sample, we obtain
a given partition. If we repeat this process for a number of times, the i-th run
will optimize a set Y i = {yi

1, . . . ,y
i
Ki} of Ki centroids, which represent a Ki-

partition Πi =
{
Ci

1, . . . , C
i
K

}
. We will not require that Ki = Kk for i �= k, i.e.,

it is not necessary to have the same number of clusters in different instances.
The i-th fuzzy indicator function will be similarly denoted as ui(xl, C

i
j), and

likewise we will have ui
lj = ui(xl, C

i
j). However, wherever we do not refer to

specific instances nor need to differentiate among them explicitly, we will drop
the sub/superscripts i, k to avoid a cumbersome notation.

We indicate the fact that partition Πi puts two data items xl and xm in
the same cluster by writing the indicator function xl ∼i xm. The negation is
expressed with the barred symbol: xl �i xm. This notation is borrowed from [5].

3.3 Co-association

In fuzzy clustering partitions are fuzzy, meaning that ∀xl ∈ Xl : 1, . . . , N , the
membership ulj = u(xl, Cj) ∈ [0, 1] for each cluster Cj ∈ P and ∀l : 1, . . . , N the
constraint

∑K
j=1 ulj = 1 holds as per Eq. (3); in addition, we allow possibilistic

partitions by removing this last constraint. As discussed earlier, possibilistic
partitions may be a meaningful extension to fuzzy partitions especially in the
asymmetric constraint case (where

∑
j u(xl, aj) ≤ 1), although they can also be

considered in symmetric graded cases and in fully possibilistic cases with a bit
more interpretation effort.

Under a given partition Π, each data point is now represented by a mem-
bership vector. We define the coassociation ξlm between two data items xl and
xm as the degree of similarity between the representation of the two items under
the partition Π. Extending the notation of [5], we compute ξlm = xl ∼ xm as
follows:

ξlm =
K∑

j=1

ulj ∧ umj . (15)

We can also define the negative coassociation, which is the logical complement
of the coassociation:

xl � xm = ξlm. (16)
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Note that in the non-fuzzy case these definitions collapse to the propositions
“partition Π puts/does not put xl and xm in the same cluster”, but in the fuzzy
case it is necessary to take all clusters into considerations because, in general,
none of them will be exactly zero or one. On the other hand, in the fuzzy case,
ξlm is a degree of coassociation rather than an integer value representing binary
logic conditions.

3.4 Fuzzy Coassociation

To obtain a specific fuzzy instantiation of the general definition of coassociation
just given, we have to appropriately define the conjunction connective [45]. We
adopt the product t-norm [33], which provides uniformity with respect to other
models of imprecision or uncertainty. The conjunction logical connective under
the product t-norm is defined as a ∧ b = ab, and the negation operator as
a = 1 − a, so that a ∨ b = a + b − ab (the probabilistic sum t-conorm). The fuzzy
coassociation between xl and xm, therefore, is a real value ξlm computed as

xl ∼ xm = ξlm =
K∑

j=1

uljumj = ul · um. (17)

For a whole data set X, consider all possible pairs X2. The coassociation
of all pairs is a matrix Ξ, the coassociation matrix (also termed bonding rela-
tionship in [8]). This matrix is redundant, since by definition it is symmetric. In
the following, as in [40], we serialize the coassociation matrix, taking only the
upper triangular array corresponding to its elements above the diagonal, and
we obtain a coassociation vector s of dimension H = N(N + 1)/2, the N -th
triangular number (the number of unique pairs of entries in the matrix including
the diagonal).

The coassociation vector is defined as

sh = ξlm for h = l(l − 1)/2 + m, h : 1 . . . H. (18)

when l : 1 . . . N and m : 1 . . . l (or, for C programmers: h = l(l + 1)/2 + m,
h : 0 . . . H − 1 when l : 0 . . . N − 1 and m : 0 . . . l). As defined, the linear index
h corresponds to a row-wise scan of the lower triangular part of Ξ, includ-
ing the diagonal. Note that these diagonal entries, the self-co-associations (co-
associations of points with themselves), are ξll = 1 ∀l only in non-fuzzy cases.
In general, due to the triangle inequality,

ξll =
K∑

j=1

uljulj =
K∑

j=1

ulj
2 ≤

⎛

⎝
K∑

j=1

ulj

⎞

⎠

2

. (19)

In the probabilistic case

ξll ≤
⎛

⎝
K∑

j=1

ulj

⎞

⎠

2

= 1, (20)



60 S. Rovetta and F. Masulli

where equality holds only for ulj = 1 for some j (non-fuzzy case), whereas in
the general possibilistic case

ξll ≤
⎛

⎝
K∑

j=1

ulj

⎞

⎠

2

∈ (
0,K2

)
. (21)

However, in the AGPCM case, again

ξll ≤
⎛

⎝
K∑

j=1

ulj

⎞

⎠

2

≤ 1. (22)

We may note that the difference between the probabilistic case and AGPCM
is in the lower bound, so that for AGPCM

ξll ≥ 0 (23)

but in the probabilistic case

ξll ≥ 1
K2

. (24)

Coassociations ξlm = xl ∼ xm (between different points) can be shown to
obey similar upper bounds, while the lower bound is 0 in all cases.

3.5 Comparing Two Partitions

To compare two partitions Πi and Πk we compute their respective coassociation
vectors si and sk. Note that the dimension of these vectors is H (Eq. 18), so it
only depends on the number of points, not the number of clusters. In other words,
the proposed methodology can be applied without any problem to different-size
partitions.

N =
[N00 N01

N10 N11

]

(25)

defined by

N00 = number of items s.t. xl �i xm and xl �k xm

N01 = number of items s.t. xl �i xm and xl ∼k xm

N10 = number of items s.t. xl ∼i xm and xl �k xm

N11 = number of items s.t. xl ∼i xm and xl ∼k xm

(26)

or equivalently
N00 =‖ (1 − si) ∧ (1 − sk) ‖ 1

N01 =‖ (1 − si) ∧ sk ‖ 1

N10 =‖ si ∧ (1 − sk) ‖ 1

N11 =‖ si ∧ sk ‖ 1

(27)



Comparing Fuzzy Clusterings in High Dimensionality 61

where ‖ · ‖1 is the 1-norm. Many pairwise partition similarity indexes can be
practically computed starting from the contingency matrix; reference [1] provides
a table.

We will also refer to the normalized contingency matrix

F =
1

‖N ‖1 N . (28)

where in the crisp case ‖N ‖1 = N . Following [11], we will use an index chosen in
{00, 01, 10, 11} to refer to generic events, where 10 and 01 refer to disagreements,
11 to a positive agreement (coassociation in both partitions) and 00 to a negative
agreement (non-coassociation in both partitions).

It is simple to verify that in the general case we can compute the entries of
N as follows:

N11 =
∑H

h=1 si
h ∧ sk

h = si · sk

N01 =
∑H

h=1(1 − si
h) ∧ sk

h = |sk|1 − si · sk

N10 =
∑H

h=1 si
h ∧ (1 − sk

h) = |si|1 − si · sk

N00 =
∑H

h=1(1 − si
h) ∧ (1 − sk

h) = H − |si|1 − |sk|1 + si · sk,

(29)

where 1 is an H-vector of all 1, · is the usual dot product and |v|1 is the 1-
norm of vector v. This reduces to actual counts for proper partitions; the same
direct interpretation is obviously not available for fuzzy partitions, but the above
definitions still hold and can be used to derive the generalized indexes.

For unsupervised learning, similarity indexes combine the off-diagonal terms
of M only in commutative operations, such as products or sums, because parti-
tions should be analysed in a symmetric fashion, since no one of them plays the
privileged role of a reference. Based on this observation, to make notations more
compact, we can additionally define shorthand symbols:

π = si · sk

σi = |si|1
σk = |sk|1
σ = σi + σk,

(30)

so that

M =
[

π σi − π

σk − π H − σ + π

]

. (31)

4 Partition Similarity Indexes

As already noted, indexes of partition similarity based on co-association, and in
particular on the contingency matrix M , can be computed by several approaches.
Some of them are reviewed in [31] and some are experimentally compared in
[27]. Here we use loosely the term partition to refer to crisp partitions, fuzzy
partitions, and possibilistic clusters.
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4.1 The Rand and Jaccard Indexes

The Rand index [36] is defined as

RI =
N00 + N11

N00 + N11 + N10 + N01
(32)

The Rand index is known to have a higher sensitivity (lower false negative
rate) than specificity (higher false positive rate). This is because the index does
not incorporate a-priori assumptions on a given null hypothesis, therefore is not
able to distinguish false negatives from true negatives. As a result, while the
index is expected to output the value 1 for identical partitions, it will not nec-
essarily output the value 0 for non-identical partitions. To cope with this known
issue, a modified version of the Rand index was proposed by Hubert and Arabie
[21] incorporating a “correction for chance” which provides the ability to com-
pare partition diversity with the null model, a hypergeometric data assumption.
The adjusted Rand index is another popular choice for comparing partitions.

The Jaccard index [22] is another well-known partition similarity measure.
It is defined as the ratio of the size of the intersection of two sets A and B to
the size of their union:

J(A,B) =
|A ∩ B|
|A ∪ B| , (33)

and the Jaccard distance is DJ (A,B) = 1 − J(A,B).
When comparing two different partitions of the same set X, this index is

usually computed from N as follows:

J(Πi,Πk) =
N11

N11 + N10 + N01
. (34)

4.2 The Fuzzy Jaccard Index

Starting from the definition of the Jaccard index, the fuzzy generalization of 34
is straightforward:

Jf (Πi,Πk) =
π

σ − π
, (35)

where Πi and Πk are fuzzy. We call this the fuzzy Jaccard index [40].
The choice of the Jaccard index over other possible measures is suggested by

the conclusions drawn in [43] after analysing a set of 39 different measures. The
Jaccard distance 1 − J is a metric; the value 0 is attained only for disjoint sets;
and the value 1 if and only if the two compared sets are equal.

For the fuzzy Jaccard index, the bidirectional implication in the latter prop-
erty holds only for non-fuzzy sets. Therefore self-co-association gives an indi-
cation about the degree of fuzziness of a clustering. We can also define the
normalized fuzzy Jaccard index as:

Jnf (Πi,Πk) =
Jf (Πi,Πk)

√
Jf (Πi,Πi)Jf (Πk,Πk)

, (36)
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which is 1 when comparing a partition with itself even in the fuzzy case. There-
fore, an analysis based on both Jf and Jnf can evaluate partition similarity and
partition confidence at the same time. Note that this very natural normalization
is also applied in [16], although with a different aim (make the range of values
comparable between measurements).

4.3 The Fuzzy Rand Index

Campello [10] and Brouwer [8] proposed fuzzy generalizations of the Rand [36],
Adjusted Rand [21] and Jaccard [22] indexes. Brouwer’s proposal is based on
normalized dot products between bonding relationships, i.e., cosine similarities
between fuzzy membership vectors.

Proceeding in a similar way to what we did with the Jaccard index, we can
define a fuzzy Rand index:

Rf () = (Πi,Πk) = 1 +
2π − σ

H
(37)

and a normalized fuzzy Rand index:

Rnf (Πi,Πk) =
Rf (Πi,Πk)

√
Rf (Πi,Πi)Rf (Πk,Πk)

. (38)

4.4 The Probabilistic Rand Index

We noted earlier that the Rand index suffers from a low specificity, and that
the adjusted Rand index was designed to compensate this issue. In [11] another
avenue was chosen to tackle the specificity problem, by including external infor-
mation in the form of weights that change the relative importance of terms in
the Rand index.

The rationale for this modification is that the terms of the contingency matrix
should be given different levels of relevance, since they refer to cases providing
different levels of information. In particular, there have been notable discus-
sions among the practitioners [4,9,37] about whether the number of negative
matches should be taken into account at all in similarity evaluation. The Jac-
card index does not take this term into account. However the Rand index RI
does. A weighted version of the Rand index was therefore defined by taking into
account directly the a-priori probability of the four events of interest (prior to
observing the data) c ∈ {00, 01, 10, 11}, namely, given a pair of arbitrary data
items (xl,xm), the probability that they are:

– in different clusters both in ΠA and in ΠB (event h = 00):

p00 = Pr (xl �A xm and xl �B xm) ;

– in the same cluster in ΠB but not in ΠA (h = 01):

p01 = Pr (xl �A xm and xl ∼B xm) ;
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– in the same cluster in ΠA but not in ΠB (h = 10):

p10 = Pr (xl ∼A xm and xl �B xm) ;

– in the same cluster both in ΠA and in ΠB (h = 11):

p11 = Pr (xl ∼A xm and xl ∼B xm) .

Note that this definition is empirically approximated by the quantities defined
in Eq. 26.

These values were computed in a maximum uncertainty (maximum entropy)
hypothesis, where all clusters are equiprobable, no spatial structure is known,
i.e., the probability of assigning a point to a cluster does not depend on its
location, and points are uniformly sampled:

p00 =
KA − 1

KB

KA − 1
KB

;

p01 =
KA − 1

KA

1
KB

;

p10 =
1

KA

KB − 1
KB

;

p11 =
1

KA

1
KB

.

(39)

Given the probability ph of event h, the authors define a corresponding
weight:

wh = − log ph. (40)

The probabilistic Rand index is defined as:

PRI =
w00N00 + w11N11

w00N00 + w11N11 + w10N10 + w01N01
(41)

We can compute maximum likelihood a-posteriori estimates (given the data)
of the probability of each of the four events of interest by approximating them
with the observed relative frequencies:

qh ≈ fh = Fh. (42)

By dividing numerator and denominator by the total sum, the indexes RI
and PRI can be expressed using the observed frequencies fh:

RI =
f00 + f11

f00 + f11 + f10 + f01
= f00 + f11 ≈ q00 + q11 (43)

and

PRI =
w00f00 + w11f11

w00f00 + w11f11 + w10f10 + w01f01
(44)

≈ w00q00 + w11q11
w00q00 + w11q11 + w10q10 + w01q01

(45)



Comparing Fuzzy Clusterings in High Dimensionality 65

This formulation makes it clear that the Rand index is the probability of
agreement between two partitions, after observing the data, while the proba-
bilistic Rand index also includes correction weights that depend on the a priori
probability of agreement, before observing the data.

4.5 The Probabilistic Jaccard Index

At this point it could be noted that the same procedure can be applied to other
contingency-matrix-based indexes, like the Jaccard index J defined in Eq. 34,
which can be expressed in terms of the observed frequencies/probabilities:

JI =
f11

1 − f00
≈ q11

1 − q00
. (46)

A “probabilistic” (weighted) version analogous to PRI can be defined: The
probabilistic Jaccard index is

PJI =
w11N11

w11N11 + w10N10 + w01N01

≈ w11q11
w11q11 + w10q10 + w01q01

(47)

with the same weight definitions as per Eq. 40.

5 Applications of Fuzzy Similarity Indexes

This section illustrates some applications of the dimensionality-independent fuzzy
clustering similarity indexes discussed so far. The applications include a visual
technique for stability analysis and monitoring the progress of clustering by deter-
ministic annealing.

5.1 Visual Stability Analysis Based on Comparing Fuzzy
Clusterings

Stability is the tendency of a learning system to be insensitive to changes in
data or in model parameters. It is related to robustness [2] and to generalisation
ability [23]. As already stated, in the context of clustering it is an important
quality criterion to make up for the absence of supervised information for objec-
tive evaluation. Many applications of stability in this role have been proposed
[6,28,44].

Cluster model selection it is one of the most studied issues in unsupervised
pattern recognition, with a long history starting in cluster analysis [36], and then
borrowing ideas from robust statistics [14,18–20,32,35].

In general (see Subsect. 3.4), fuzzy similarity indexes have the property that
the level of fuzziness in the partitions is reflected in the maximum value that the
index can reach. This is true also for possibilistic clusters, where an added feature
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is that the “best” clusterings are not only the stablest, but also those with the
highest degree of self-similarity (value of the similarity index when comparing a
clustering to itself). Self-similarity, therefore, acts as a measure of confidence. On
the other hand, we have seen also normalized indexes for possibilistic clustering,
so as to eliminate this sensitivity. In this case the analysis proceeds similarly to
that of probabilistic and non-fuzzy clustering. Finally, pairing the normalized and
unnormalized versions of an index makes it possible to perform both sensitivity
and confidence evaluations simultaneously.

Here we discuss a visual and interactive procedure, allowing the user to per-
ceive the effect of varying one or few parameters, in this case α and β in AGPCM.
Visual analysis is effective for parameters with a smooth effect on clustering per-
formance, so we don’t suggest it, for instance, to choose between different initial
conditions.

We resort to a graphic representation, a heat map which includes the com-
plete information about the distribution of the index as a function of the para-
meters, and suggest some criteria to evaluate this information in a visual way.
The clustering similarity matrix compares every possible pair of clusterings. The
matrix is symmetric, but in the possibilistic case the diagonal may contains val-
ues lower than 1: usually this indicates that the cluster centres are not significant,
i.e., that during training we found a bad local minimum. Therefore, we look for
values for which the diagonal is brighter. To facilitate this search when self-
similarity is particularly low, we can use Jnf , the normalized index. However,
we monitor the maximum value of the self-similarity to keep the quality of the
clustering under control.

For this experiment we have chosen a data set that has a good degree of
structure, but at the same time is not clearly clustered. This results in a vis-
ible instability, for instance when starting from different initialization points.
The problem is provided in the base data set package of the R language and
environment (www.R-project.org) as “quakes”. It consists of a subset of 1000
observations of quakes (seismic events with magnitude MB > 4.0) from a larger
database of 5000 observations. These quakes occurred around Fiji, starting in
1964, and are described by three-dimensional coordinates (latitude, longitude
and depth of event), plus the Richter magnitude and the number of stations
that reported it, for a total of 5 variables.

Since setting a large number of cluster centroids reduces instability, we kept
this number relatively small, fixing it at 7. The model parameter β was swept in
9 steps in the interval [3.9 × 10−3, 3.2 × 10−2]. The training was performed by 9
individual runs, each with a fixed value of β.

Each individual run consisted of one random initialization, and 30 complete
optimizations, each one initialized with the output of the previous one, and α
sweeping from 0.1 to 1 geometrically. Another parameter is varied across the 9
individual runs of each experiment. α, starting at 0.1 and progressing up to 1,
so that we obtain 30 × 30 similarity matrices.

The visual output of the method is shown in Fig. 2 [41]. These are plots of the
value of the fuzzy Jaccard index visualized as a heat map, the clearer the higher.

www.R-project.org


Comparing Fuzzy Clusterings in High Dimensionality 67

Fig. 2. Visual representation of the similarity index. Each individual heat map rep-
resents 30 experiments with different values of α ranging from 0.1 to 1. Across the 9
heat maps on the left (left to right, top to bottom): same initialization, β ranging from
0.0039 to 0.032. Across the 9 heat maps on the right: different random initializations,
β = 0.011. From [41]

The first set of heat maps shows the variation as a function of β. The most stable,
significant patch is attained in the seventh step (β = 0.011). The large, blurred
patches in the last steps are due to the excessive value of the width parameter
β. In this case, all points were attributed to a single, large cluster. On the other
hand, when the width β is too small, even the diagonal has low values and only
for the extreme values of α (lower right corner) data points are attributed to
clusters with some confidence.

From this analysis, the best value for α is the one corresponding to the (row
or column) coordinate of the center of the most stable area in the heat map.
In this particular instance, the best value for α is not at the possibilistic or
probabilistic extremes, but settles around an intermediate value, between 0.17
and 0.24. We select α = 0.21.

This intermediate value is a confirmation that the Graded Possibilistic app-
roach proposed in [30] actually provides a more flexible model, in terms of rep-
resentation, than either the standard fuzzy or possibilistic methods.

If we now consider the experiments with fixed β = 0.011 and different ran-
dom initializations (Fig. 2), we can see that, despite random variations in the
results, the stable patch recurs in most experiments in about the same location,
confirming the selected values of β = 0.011 and α = 0.21.

5.2 Tracking Deterministic Annealing

As already noted, the Maximum Entropy clustering model described in Sub-
sect. 2.3 is usually fit by an optimization procedure that involves gradual lower-
ing of the model parameter. However, in contrast to the traditional Simulated
Annealing [13] approach to minimization of functions of continuous variables, in
this case a new annealing steps occurs only after a stable state has been reached
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Fig. 3. Tracking deterministic annealing: Iris data.

at the previous step. This removes the main source of stochasticity, so that the
method is termed Deterministic Annealing.

One peculiarity of this method is that the computational temperature para-
meter acts as a fuzzifier. This implies that, as the optimization progresses, less
and less fuzzy clustering solutions are found, and for certain critical values of
the temperature a phenomenon that parallels “phase transitions” [38] occurs. At
phase transitions, cluster centroid that were overlapping because of the level of
fuzziness are taken apart by the optimization. Without changing the number of
centroids, this gives a hint about the number of clusters present in the data at
different resolutions.

Fuzzy clustering comparison indices can be used to illustrate this phenom-
enon in high dimensionality, where the position of centroids is not easy to appre-
ciate. But before applying the method in high dimensionality, we illustrate its
operation in a lower-dimensional, well-known case, Iris data. Referring to Fig. 3,
the top diagrams illustrate in three dimensions the position of centroids with
respect to data in three stable states: The three centroids define one, two and
three clusters depending on temperature.

The bottom diagram is a trace of the similarity of each pair of consecutive
solutions, as measured by Jf and Jnf . In the stable states, solutions stay very
similar to each other; this corresponds to flat areas where Jnf = 1. But at phase
transitions, there is a sudden variation in clustering solutions. This is clearly
pointed out by the notches in the graph of Jnf .

The high-dimensional problem chosen is the 20 Newsgroups data set. This is a
collection of about 20000 Usenet posts from 20 different newsgroups. The selected
versionhasbeenobtained fromhttp://qwone.com/∼jason/20Newsgroups/already
encoded by the vector space model.

http://qwone.com/~jason/20Newsgroups/
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To make the set more manageable only 1000 randomly selected samples from
the first 5 newsgroups have been used. Due to the encoding adopted, the dimen-
sionality has also been reduced from the original nearly 54 K to about 15 K
dimensions. The number of terms in the dictionary depends logarithmically on
the collection size, therefore the 1:20 reduction in data set cardinality results in
less than 1:4 reduction in dimensionality and the reduced data set can still easily
be categorized as high dimensional.

Figure 4 shows the result, obtained with 25 centroids. We expect about 5
clusters, so several centroids are going to overlap and we want to study the res-
olution (fuzziness) levels for which this overlapping is changed. Also in this case
clear notches appear for quite well-defined values of the temperature parameter.
By examining centroid positions in these configurations we can detect which
centroids are overlapping, and how many effective clusters are there. This makes
it possible to apply the multi-resolution analysis offered by the Deterministic
Annealing method also in the presence of high dimensional data.

Fig. 4. Tracking deterministic annealing: 20 Newsgroups data.

6 Conclusion

In the presence of high dimensionality we face counter-intuitive situations, and
visual inspection of clustering results would be beneficial. Some indices of mutual
similarity between clusterings offer a way to perform this type of analysis in a
dimensionality-independent way.

This chapter has presented some methods to extend these comparison indices
to the cases of fuzzy and possibilistic methods. It turns out that comparing fuzzy
clusterings reveals more information than in the crisp case.

In many cases we restricted the analysis to the Jaccard index, but a compar-
ison between the possible choices from [40] could be performed.
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