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Abstract. The distribution of distances between points in a high-
dimensional data set tends to look quite different from the distribution
of the distances in a low-dimensional data set. Concentration of norm is
one of the phenomena from which high-dimensional data sets can suffer.
It means that in high dimensions – under certain general assumptions –
the relative distances from any point to its closest and farthest neigh-
bour tend to be almost identical. Since cluster analysis is usually based
on distances, such effects must be taken into account and their influence
on cluster analysis needs to be considered. This paper investigates con-
sequences that the special properties of high-dimensional data have for
cluster analysis. We discuss questions like when clustering in high dimen-
sions is meaningful at all, can the clusters just be artifacts and what are
the algorithmic problems for clustering methods in high dimensions.

1 Introduction

Clustering is an exploratory data analysis method applied to data in order to
discover structures or groups – called clusters – in a data set. Data objects
within the same cluster should be similar, data objects from different clusters
dissimilar. This means that cluster analysis must be based on a similarity or
nearness concept to measure how close or similar data objects are. Often a dual
concept to similarity or nearness – a distance measure – is used. Especially, for
data sets having exclusively real-valued attributes, i.e. data sets that are subsets
of Rm where m is the dimension of the data set, the Euclidean metric or – more
generally – any metric derived from a norm on R

m can be seen as a candidate
of a distance measure on which clustering can be based.

In this paper, we focus on clustering high-dimensional data having only real-
valued attributes.

The term curse of dimensionality was coined by Bellman [1], referring to
the combinatorial explosion that is often implied by handling a large number of
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dimensions. In the context of cluster analysis, for many algorithms the number
of dimensions does not cause serious computational problems. The number of
data objects is usually more critical from the computational complexity point of
view than the number of dimensions.

Today, the term curse of dimensionality is understood in more general terms,
covering also other aspects of high-dimensional data than just problems of com-
putational complexity. Distance measures like the Euclidean distance for high-
dimensional data exhibit surprising properties that differ from what is usual for
low-dimensional data. Two examples for such properties are the concentration
of norm phenomenon – stating that under certain assumptions the relative dis-
tances from any point to its closest and farthest neighbour tend to be almost
identical for high-dimensional data – and the hubness phenomenon where it
seems that for high-dimensional data the distribution of the number of times
a data point occurs among the k nearest neighbours of other data points is
extremely skewed to the right and a few data points – the hubs – are found very
often among the k nearest neighbours of other data points.

But what are the consequences of these effects for cluster analysis? In order
to find answers to this question, we have to take a closer look at these phenomena
in Sect. 2 and we also need a brief overview on clustering approaches in Sect. 3.
In Sect. 4, we relate properties of high-dimensional data to clustering and discuss
the crucial question what a cluster in high dimensions is. Based on these con-
siderations, we consider the consequences for clustering high-dimensional data
in terms of what is meaningful and in terms of algorithmic problems in Sect. 5.
We summarise the results of the paper in Sect. 6.

2 Properties of High-Dimensional Data

The concentration of norm phenomenon (CoN) can formally be described in the
following way [2,3]. Let Xm be an m-dimensional random vector and let dm(x)
denote the distance of x ∈ R

m to the origin of the coordinate system based on
a suitable distance measure, for instance the Euclidean distance. Let n ∈ N be
the size of the sample that is taken from the random vector Xm. Let d(max)

m and
d
(min)
m denote the largest and the smallest distance of a point in the sample to

the origin of the coordinate system. Then

lim
m→∞ Var

(
dm(Xm)

E(dm(Xm))

)
= 0 ⇒ d

(max)
m − d

(min)
m

d
(min)
m

→p 0 (1)

holds, where →p denotes convergence in probability. In other words, when the
relative variance – relative with respect to the mean distance – of the distances
to the origin converges to zero for higher dimensions, then the relative difference
of the closest and farthest point in the data set goes to zero with increasing
dimensions. The requirement that the relative variance goes to zero is for instance
satisfied when the random vector Xm is a sample from m independent and
identically distributed random variables with finite expectation and variance
and the Euclidean distance is used as the distance measure.
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The converse theorem also holds [3].
It should be noted that the choice of the origin of the coordinate system

as the query point to which the distances of the data points are computed is
not of importance. Equation (1) is also valid for any other query or reference
point. The same applies to the distance measure. A detailed investigation on
fractional distances is provided in [4]. A discussion on various distance measures
in connection with the CoN phenomenon is provided in [5–7].

The hubness phenomenon [8] is another property that is often observed for
high-dimensional data. For the hubness phenomenon, one counts for each point
of a data set how often this points occurs among the k nearest neighbours of
other points where k is a fixed constant. Especially for uniformly distributed
data one would expected that each point roughly occurs equally often among
the k nearest neighbours of other points. However, for higher dimensions this
is not true. This means that some points – called hubs – occur extremely often
among the k nearest neighbours of other points.

Low et al. [9] argue that the hubness phenomenon is actually not a direct
effect of high-dimensional data, but a boundary effect. The reason why it is
connected to high-dimensional data is simply that for higher dimensions the
proportion of the data at the boundary of the data set increases exponentially
with the dimensions. Especially, when n + 1 ≤ m holds, where n is the number
of data points and m is the number of dimensions, and all data points lie in
general position, they also automatically lie on the convex of the data points.

Before we discuss what these phenomena mean for cluster analysis, we give
a brief overview on basic clustering techniques in the following section.

3 Cluster Analysis

Cluster analysis aims at grouping a data set into clusters where data objects
within a cluster are similar to each other and different from data objects in
other clusters. Especially for data with real-valued attributes, similarity is usu-
ally defined based on a notion of distance like the Euclidean or the Manhattan
distance. In order to understand how the CoN and the hubness phenomenon
might affect cluster analysis, it is important to understand how these distances
are used in the clustering process. Therefore, we provide a brief overview on
cluster analysis which is far from being complete. For more details on cluster
analysis we refer to books like [10,11].

Hierarchical agglomerative clustering is a relational clustering technique that
is based on a distance matrix in which the pairwise distances of the data objects
are entered. For data with real-valued attributes, these distances are often simply
the Euclidean distances between the data points. Initially, each data point is
considered as a separate cluster and then – step by step – the closest points or
clusters are joint together to form a larger cluster until all data points end up
in one cluster. The number of clusters is determined based on the dendrogram
that shows in which order the clusters were joint together and how large the
distances were between the joint clusters.
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Hierarchical clustering cannot avoid at least quadratic complexity in the
number of data points, since the required distance matrix is already quadratic in
the number of data objects. Therefore, hierarchical clustering can be problematic
for larger data sets. And when we deal with high-dimensional data, the data set
is usually bigger, at least compared to the number of dimensions. Of course, for
very high-dimensional data, this might not be the case.

When the data set to be clustered is a subset of R
m, one would need to

calculate the distance matrix for hierarchical clustering from the (Euclidean)
distances between the vectors. Various clustering techniques are proposed that
avoid the computation of a distance matrix that leads to quadratic complexity
in the number of data objects.

It should be noted that it is usually recommended to carry out some kind
of normalisation on the single dimensions to avoid that the measurement units
of the single dimensions influence the distances and therefore also the clustering
results. If, for instance, one of the attributes would be the height of persons,
the data could be represented in various measurement units like centimetres,
metres or also millimetres. The measurement of the height in metres would
mean that the difference of two “data objects” (persons) in this attribute will
normally be less than 1. If, however, the height is measured in millimetres, a
difference of 100 between two persons would not be unusual. There are various
strategies to normalise a real-valued attribute, for example z-score normalisation
where the mean value is subtracted from each value and then a division by
the sample standard deviation of the corresponding attribute is carried out.
Of course, there might be good reason not to carry out normalisation, since
normalisation will change the spatial distribution and geometrical shape of the
data. But this decision depends on the specific data set and the meaning and
the relations betweens its attributs. However, normalisation is not the topic of
this paper and we refer to the overview on normalisation in [11].

Prototype-based clustering like the well known k-means algorithm [12] tries
to avoid this complexity problem. From a purely algorithmic point of view, k-
means clustering can be described as follows. First the number of clusters k must
be fixed. Then each of the k clusters is represented by a prototype vi ∈ R

m when
we want to cluster m-dimensional data. These prototypes are chosen randomly
in the beginning. Then each data vector is assigned to the nearest prototype
(with respect to the Euclidean distance). Then each prototype is replaced by
the centre of gravity of those data assigned to it. The alternating assignment of
data to the nearest prototype and the update of the prototypes as cluster centres
is repeated until the algorithm converges, i.e., no more changes happen.

This algorithm can also be seen as a strategy for minimising the objective
function

f =
k∑

i=1

n∑
j=1

uijdij (2)

under the constraints

k∑
i=1

uij = 1 for all j = 1, . . . , n (3)
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where uij ∈ {0, 1} indicates whether data vector xj is assigned to cluster i
(uij = 1) or not (uij = 0). dij =‖ xj − vi ‖2 is the squared Euclidean distance
between data vector xj and cluster prototype vi.

One of the problems of k-means clustering is that it can be quite sensitive to
the choice of the initial prototypes and can easily get stuck in local minima of
the objective function (2), i.e. leading to counterintuitive clustering results.

Fuzzy k-means clustering1 [13,14] is a generalisation of k-means clustering
and is less sensitive to the initialisation, since the number of local minima of
the objective function can be reduced [15]. For fuzzy clustering, the constraints
uij ∈ {0, 1} is relaxed to uij ∈ [0, 1]. However, this change alone would still yield
the same optimum of the objective function (2). Therefore, a so-called fuzzifier
w > 1 is introduced in the objective function:

f =
k∑

i=1

n∑
j=1

uw
ijdij . (4)

k-means and its fuzzified version can also be extended to adapt to other than
spherical cluster shapes [16] or clusters of different sizes [17]. For a more detailed
overview on fuzzy cluster analysis we refer to [18,19].

Gaussian mixture models can be seen as a probabilistic model for cluster-
ing where the data from each cluster are assumed to represent a sample from a
multidimensional normal distribution. The expectation-maximisation algorithm
(EM) can be viewed as a generalisation of the k-means algorithm where proto-
types in the form the parameters of the normal distributions and assignments
to clusters in terms of probabilities are estimated in an alternating fashion.

All the above mentioned clustering algorithm assume that the number of
clusters is known. There are, of course, methods to estimate the number of
clusters based on cluster validity measures or techniques from model selection
like the Bayes information criterion. But there are also clustering techniques that
automatically determine the number of clusters. These clustering algorithms are
usually density-based, i.e. they try to find regions of higher data concentration
that form clusters. Examples for such algorithms are DBSCAN [20], DENCLUE
[21] and OPTICS [22].

Subspace clustering – for an overview see for instance [23] – refers to
approaches that are especially tailored for high-dimensional data. Their main
idea is not to cluster the data in all dimensions, but to look for clusters in
projections to lower dimensions. These projections can be axes-parallel, but do
not have to be. Essentially, subspace clustering comprises two component that
are combined in the algorithm: Finding a suitable projection and applying a
clustering algorithm in the corresponding subspace defined by the projection.

Before we take a closer look at high-dimensional data in connection with
cluster analysis, we mention a few examples where it is of interest to cluster
1 For fuzzy clustering, the number of clusters is usually denoted by c, so that fuzzy c-

means clustering (FCM) is the common term. But for consistency reasons, we always
denote the number of clusters by k.
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high-dimensional data. First of all, when can we speak of high-dimensional data?
The CoN phenomenon and the hubness effect can already be quite noticeable
30 dimensions. Data of this dimensionality can easily be found in many appli-
cations like industrial production where simultaneously measurements from a
larger number of sensors is recorded constantly. Patient data in medicine includ-
ing the laboratory results can also have a significant number of attributes.

But there are also applications having 10,000 or more dimensions. High
throughput technologies like microarrays can measure the expression of far more
than 10,000 genes easily. Often, the genes are clustered, which would mean that
the number of data objects exceeds 10,000, but not the number of dimensions.
But sometimes it is also interesting to cluster microarray data from different
experiments or different individuals which leads to such high-dimensional data,
since then each gene or its expression value is considered as an attribute (see for
instance [24]). Other high throughput technologies like mass spectrometry for
proteomics and in combination with gas chromatography for metabolomics or
next generation sequencing also produce data with thousands of dimensions. In
[25] growth curves of more than 4000 mutants under more than 100 conditions
were measured by the VITEK R©2 technology and clustered.

So there is an obvious need to cluster data with more than 30 up to tens of
thousands dimensions. But what are clusters in such high dimensions? How do
they look like and what can we expect from them? The following section will
discuss these question in more detail.

Fig. 1. An artificial data set with two clusters characterised by the x-values.
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4 What are Clusters, Especially in Higher Dimensions?

The CoN phenomenon affects high-dimensional data in general. Especially, near-
est neighbour search and database queries of the top k similar cases might not
be meaningful anymore for high-dimensional data [26].

But what are the consequences for cluster analysis which is usually also based
on distance notions? In order to discuss these consequences, it is essential to first
clarify what we mean by or what we expect from a cluster in high dimensions.
However, to specify what we expect from a high-dimensional cluster is not so
obvious as the following two artificial examples show. Both examples contain
two clusters, each of them having 1000 data objects.

The first example is essentially a one-dimensional example. Both clusters
are generated by normal distributions with variance 1. But the first cluster has
expected value 0, whereas the second cluster has expected value 4.5. In order
to make it a high-dimensional example, we add additional dimensions that do
not contribute to the distinction of the clusters. For both clusters, the values
of the additional dimensions come from standard normal distributions, i.e. with
expected value 0 and variance 1.

Figure 1 shows the two-dimensional data set. The relevant attribute to dis-
tinguish the two clusters is shown on the x-axis, whereas the first irrelevant
attribute is shown on the y-axis.
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Fig. 2. Distribution of the distances of the data to the origin of the coordinate system
in the first example for one (left) and two (right) dimensions.

We now consider the distribution of the Euclidean distances of the points in
the data set to the origin of the coordinate system. Figure 2 shows this distrib-
ution for the one-dimensional case on the left hand side when only the relevant
attribute is considered. The histogram has one peak for each cluster. The first
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cluster is represented by the peak at 1. This corresponds to the data from the
standard normal distribution scattering around zero with an average distance of
1, since the variance is 1. The second peak is at 4.5, the expected value of the
second normal distribution.

The right-hand side of Fig. 2 shows the distribution of the distances in the
two-dimensional case, i.e. when in addition to the relevant attribute, one irrel-
evant attribute is present that does not contribute to the distinction of the
clusters.
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Fig. 3. Distribution of the distances of the data to the origin of the coordinate system
in the first example for 10 (left) and 30 (right) dimensions.

When we increase the number of attributes whose distributions are the same
for both clusters, the two peaks in the histograms in Fig. 2 start to melt together,
as can be seen in Fig. 3 which shows the histograms for 10 and 30 dimensions.
For 10 dimensions, two peaks can still be identified, whereas they are almost
invisible in 30 dimensions.

For 50 dimensions in Fig. 4 on the left-hand side, only one peak can be
identified although the distribution is still skewed. For 200 dimensions in Fig. 4
on the right-hand side even the skewness has vanished.

Table 1 shows some statistical characteristics of the intra- and the inter-
cluster distances for this example. The intra-cluster distances are obtained by
computing the Euclidean distance between each pair of points from the same
cluster. For the inter-cluster distances, the two points are always chosen from
different clusters. For low dimensions, the distributions of the intra- and the
inter-cluster distances differ significantly. But with an increasing number of
dimensions, these two distributions become more and more similar.

What does this simple artificial example tell us about clusters in high dimen-
sions? There is no doubt about the two clusters in low dimensions as Fig. 1
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Fig. 4. Distribution of the distances of the data to the origin of the coordinate system
in the first example for 50 (left) and 200 (right) dimensions.

illustrates it clearly for two dimensions and as the histograms indicate it with
their two peaks in low dimensions. But are these two clusters still present in
high-dimensions? Neither the distance histograms for higher dimensions nor the
vanishing difference between the intra- and the inter-cluster distance distribu-
tions indicate that there are two clusters present.

The histograms produced for this example are all based on the Euclidean
distance or norm. François et al. demonstrated in [4] that the concept of Lp-
norms can help to relax the effects of the curse of dimensionality. The Lp-norm
is defined as

‖ x ‖p =

(
m∑
i=1

|xi|p
) 1

p

.

Choosing p = 2 leads to the Euclidean norm. But other values for p are also
possible. For p ≥ 1 these norms are called Lp- or Minkowski norms. For 0 < p < 1
they are called fractional norms although they do not satisfy the properties of a
norm. Both [4,27] make a strong point for the use of fractional norms or metrics
for high-dimensional data. However, for the simple example considered here,
fractional norms do not improve the situation. In contrast, a high value of p
in the Lp-norm will lead to better results here. The two clusters start to melt
together later for Lp-norms with large p. Figure 5 corresponds to Fig. 4, except
that the Lp-norm with p = 400 is used. The clusters are now not fused together
completely, even for 200 dimensions.

Before we further discuss this example, we consider another artificial example.
Again, there are two clusters. In contrast to the first example, there is not a single
attribute by which the two clusters can be distinguished, but each attribute
contributes a little bit to the distinction of the two clusters. For each attribute,
we assume a normal distribution with variance 1 for both clusters, but with
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Table 1. Statistical characteristics of the intra- and inter-cluster distances for the first
example.

Dimensions

intra/inter 1 2 3 5 10 20 30 50 100 200

Minimum < 0.001 0.001 0.026 0.237 0.871 2.479 3.782 6.031 9.841 15.967

Minimum < 0.001 0.048 0.129 0.384 1.733 3.318 4.732 6.336 10.824 16.613

5% quantile 0.088 0.537 1.053 1.860 3.269 5.136 6.649 8.882 12.954 18.771

5% quantile 2.218 3.377 3.782 4.343 5.390 6.925 8.193 10.192 13.995 19.560

25% quantile 0.450 1.283 1.969 2.877 4.309 6.167 7.660 9.884 13.932 19.752

25% quantile 3.607 5.278 5.597 6.064 6.962 8.334 9.515 11.431 15.110 20.626

Median 0.954 2.004 2.772 3.699 5.107 6.931 8.394 10.602 14.624 20.446

Median 4.561 6.600 6.883 7.306 8.107 9.379 10.496 12.340 15.925 21.390

Mean 1.132 2.161 2.895 3.788 5.169 6.972 8.422 10.625 14.635 20.452

Mean 4.549 6.595 6.892 7.324 8.144 9.426 10.544 12.379 15.959 21.405

75% quantile 1.633 2.869 3.687 4.602 5.965 7.733 9.152 11.340 15.329 21.143

75% quantile 5.501 7.913 8.176 8.558 9.285 10.467 11.521 13.285 16.773 22.167

95% quantile 2.788 4.314 5.157 6.022 7.281 8.943 10.295 12.439 16.349 22.158

95% quantile 6.844 9.795 10.036 10.383 11.025 12.091 13.061 14.696 18.041 23.306

Maximum 6.990 9.952 10.046 10.490 11.683 12.914 13.942 15.943 19.802 25.211

Maximum 10.420 14.741 14.753 15.173 16.061 17.083 17.452 18.608 22.115 27.236

expected value 0 for the first, and expected value 1 for the second cluster. Again,
each cluster contains 1000 data objects.

Figure 6 shows the data for two dimensions. The two clusters are visually
indistinguishable. Only the use of different symbols for the two clusters provides
visual information about the presence of two clusters.

In the same fashion as for the first example, Figs. 7, 8 and 9 show the dis-
tributions of the distances to the origin of the coordinate system for the second
example for different dimensions. We can observe exactly the opposite effect as
in the first example. For low dimensions, there is only one peak and the two clus-
ters cannot be detected by looking at the histograms. For about 30 dimensions,
the single peak starts to be separated into two peaks and the separation of the
two peaks is almost perfect for 200 dimensions.

Table 2 contains the characteristics of the inter-cluster distances for the sec-
ond example. The intra-cluster distances have, of course, the same characteristics
as in the first example, i.e. the values correspond to the ones in Table 1 (the non-
bold face rows). It is no surprise that we can observe the opposite effect as in the
first example. For low dimensions, the distributions of the intra- and the inter-
cluster distances are quite similar, but with an increasing number of dimensions,
they become more and more distinguishable.

5 Consequences for Clustering Algorithms

The two examples in the previous section illustrate how the CoN phenomenon
influences cluster analysis in high dimensions. If we assume that the clusters
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Fig. 5. Distribution of the distances of the data to the origin of the coordinate system
in the first example for 50 (left) and 200 (right) dimensions based on the Lp-norm with
p = 400.

are defined by only a few variables and most of the other variables have no
connection to the clusters at all, then the CoN phenomenon destroys the distin-
guishability of clusters as demonstrated by the first example. But when (almost)
all attributes contribute at least a little bit to the distinction of the clusters, the
CoN phenomenon even helps to identify the clusters.

How many “noise” dimensions can be tolerated in the first example, until we
say that there are no longer two clusters? How many dimensions do we need in
the second example, until we can really speak of two clusters?

Of course, for real world data, the situation is usually more complicated.
There might be some attributes that lead to good clusters and other attributes
which are simply “noise” in terms of the clustering. And in contrast to the two
examples, attributes might also be correlated. The first example has shown that
a limited number of “noise” attributes or “noise” dimensions can be tolerated.

Table 2. Statistical characteristics of the inter-cluster distances for the second example.

Dimensions

1 2 3 5 10 20 30 50 100 200

Minimum < 0.001 0.004 0.026 0.210 1.117 2.656 4.680 7.195 12.355 19.791

5% quantile 0.114 0.687 1.340 2.382 4.082 6.385 8.212 10.984 15.998 23.112

25% quantile 0.577 1.623 2.481 3.611 5.327 7.612 9.428 12.168 17.165 24.243

Median 1.208 2.513 3.467 4.588 6.267 8.517 10.301 13.016 17.988 25.037

Mean 1.398 2.672 3.587 4.679 6.325 8.561 10.330 13.039 17.998 25.044

75% quantile 2.025 3.548 4.560 5.648 7.258 9.462 11.203 13.881 18.819 25.836

95% quantile 3.341 5.206 6.260 7.288 8.765 10.882 12.540 15.178 20.031 27.001

Maximum 7.284 10.488 10.747 13.522 14.648 16.883 17.821 19.528 24.085 31.059
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Fig. 6. An artificial data set with two clusters that are difficult to distinguish in low
dimensions.

But what happens when there are different combinations of attributes, leading to
different clustering results? Which clusters should we trust when there are com-
pletely different clusters for different combinations of attributes, i.e. in different
subspaces?

There is, of course, a clear argument for some kind of subspace clustering
approach. Typically, the number of clusters we expect or we are searching for in
a data set, is limited. In many applications, even 20 clusters is already a very
large number. When we have k clusters and think in terms of prototype-based
clustering, the cluster centres lie in an at most (k−1)-dimensional hyperplane. So
this means that, at least when the clustering result is good, the clustering could
have been carried out on the projection of the data to this (k − 1)-dimensional
hyperplane.

The idea of finding interesting patterns in lower dimensions in high-
dimensional data sets by suitable projections is well known in data analysis as
a technique called projection pursuit [28]. However, projection pursuit focuses
mainly on two- and three-dimensional projections for visualisation purposes and
does not specifically aim at finding clusters. Since projections of high-dimensional
data to low dimensions tend to resemble normal distributions, one way to carry
out projection pursuit is to generate random two- or three-dimensional projec-
tions and to apply a test for normality. Those projections for which the normality
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Fig. 7. Distribution of the distances of the data to the origin of the coordinate system
in the second example for one (left) and two (right) dimensions.

hypothesis is rejected are then presented to the user for further inspection or the
projections can be ranked according to their p-values that the tests for normality
yielded. However, a deviation from a normal distribution does not necessarily
indicate that there are clusters in the data set.

Finding the right projection is a crucial problem in subspace clustering. It can
be seen as a feature selection strategy [29] when only axes-parallel projections
are considered.

It should be taken into account that we have to deal with the problem of
multiple testing for very high-dimensional data like in the case of microarrays:
multiple testing in the sense that we test a larger number of projection for the
presence or absence of clusters. When we have many attributes, the number of
possible projections is extremely large – or even infinite if we drop the restric-
tion to axes-parallel projections. This means that the probability that a certain
projection contains clusters just by chance might not be negligible.

As an example, consider a data set with 200 data objects and 10,000
attributes which are all independent samples from a uniform distribution on
the unit interval. So we have 200 uniformly distributed data points in the unit
hypercube of dimension 10,000. There are, of course, no clusters. But we do not
know this fact, since in reality we would not know from which distribution the
data were generated. In order to find clusters in subspaces, we only consider
projections to three dimensions here. Figure 10 illustrates a projection where we
can see two clusters. One cluster is above the diagonal plane of the unit cube,
the other one below.

What is the chance that we can find such a projection for our uniformly
distributed data from the 10,000-dimensional unit hypercube? Assume the sep-
aration between the clusters should be at least 0.1 units, i.e. the plane in Fig. 10
would be turned into a box of height2 0.1. What is the probability that no
2 In Fig. 10 the separation between the two clusters is chosen larger for illustration

purposes.
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Fig. 8. Distribution of the distances of the data to the origin of the coordinate system
in the second example for 10 (left) and 30 (right) dimensions.

projection will look like this, i.e. that each projection contains at least one point
within the separating box? The box has a volume of

√
12 +

(
1
2

)2

·
√

12 +
(

1
2

)2

· 0.1 = 0.125,

so that the remaining volume of the cube is 1 − 0.125 = 0.875. The probability
that all points lie in this remaining cube outside the separating box, i.e. that we
have two artificial clusters, is 0.875200 and the probability that these artificial
random cluster do not occur for a single projection to three dimensions is 1 −
0.875200. The probability that we will not find such random clusters in any of
the 10000 · 9999 · 9998 possible projections to three dimensions is

(
1 − 0.875200

)10000·9999·9998 ≈ 0.08.

So there is only an 8 % chance that we will not find these spurious random
clusters in any of the three-dimensional projections of our data set from a high-
dimensional uniform distribution. It should be noted that we have only consid-
ered projections to three dimensions and a specific separating plane between the
clusters. If we allow projections to more than three dimensions and take into
account that the random clusters might be separated by other planes or geo-
metric shapes, the situation gets much worse and the probability that we find
random clusters in a projection is almost 1, even if we have more than 200 data
points.

Therefore, it is highly recommended to carry out some additional tests to
verify whether clusters found by subspace clustering in very high-dimensional
data set are not just random effects. One can apply a permutation test in which
the values in each column of the data table are randomly permuted. Then the
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Fig. 9. Distribution of the distances of the data to the origin of the coordinate system
in the second example for 50 (left) and 200 (right) dimensions.

clustering algorithm is applied to the randomly permuted data. When the clus-
tering algorithm still finds clusters in this permuted data set, one cannot trust
the clusters that were found in the original data set. The permutation test should
be carried out more than once.

A Monte Carlo test is also possible by generating random data of the same
dimension and with the same number of data objects, but using a distribution
where no clusters should be found like the uniform distribution in the unit hyper-
cube that we have considered above. When the algorithm can find clusters in
such a random data set, the clusters in the real data set might again be just
random artifacts.

Subspace clustering is definitely needed when we assume that our data set is
more like the first example described in Sect. 4, i.e. there are a few attributes that
contribute to the clusters and the large majority of attributes is just “noise”. In
this case, clustering algorithms taking all attributes into account, would have lit-
tle or no chance to discover the clusters. The CoN and the hubness phenomenon
will hide the clusters.

But how is the situation when the data set is more of the type as the second
example described in Sect. 4, i.e. most of the attributes contribute a little bit to
the clusters and only a few “noise” attributes might be present? Fig. 9 indicates
that the CoN phenomenon can even make it easier to find the clusters. The
reason is that the CoN phenomenon is not applicable to the whole data set.
The assumption that the relative variance goes to zero is not satisfied here. The
relative variance in this simple example is strictly positive due to the two clusters
whose centres have a distance of

√
m. The expected distance to the origin is

√
m
2 .

So the relative variance is roughly 1
4 . The CoN phenomenon does occur, but in

each cluster separately as can be seen from Fig. 9 where the two peaks in the
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Fig. 10. A possible projection which contains clusters only by chance.

histograms for the clusters become not only better separated, but also quite
narrow for high dimensions.

However, the situation is not as positive and simple as it seems. When we
look at prototype-based clustering, it is not a problem of the objective function.
For an ideal data set as the second example in Sect. 4, the objective function
will have a clear global minimum at the centre of the two clusters. But when
we have more than just two clusters, it becomes a problem of local minima of
the objective function and therefore a problem of a good initialisation. Since
the location of the cluster centres is not known a priori, the initial prototypes
are placed “somewhere” and then suffer from the CoN phenomenon on the level
of the clusters in the sense that all clusters have roughly the distance to them
unless a prototype is located close to a true cluster centre.

In [30] it was demonstrated that k-means clustering has difficulties to find
clusters in high dimensions, even when the clusters are well separated. One
might suspect that this is the well-known sensitivity of k-means clustering to
the initialisation and that fuzzy clustering might yield better results. But the
contrary is the case. For fuzzy clustering, all or most of the prototypes tend to
converge in the centre of gravity of the whole data set.

What is the reason for this surprising result? Fig. 11 from [30] explains this
effect. It shows the objective function (4) of fuzzy clustering reduced to one
parameter for a specific data set. The data set consists of a fixed number of
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Fig. 11. The objective function of fuzzy clustering has a local minimum in the centre
of all data points for high-dimensional data.

well-separated clusters – each of them concentrated in a single point – distributed
uniformly on the surface of an (m−1)-dimensional unit hypersphere. The cluster
prototypes are first all placed into the origin, i.e. the centre of gravity of all the
data points. Then the cluster prototypes are moved along the lines connecting
each cluster prototype with one of the true cluster centres. So at 0 on the x-axis
in Fig. 11 all prototypes are at the origin (radius=0), at 0.5 they are halfway
between the origin and the true cluster centres and at 1 each of the prototypes
is placed exactly in one of the cluster centres. As can be seen from the figure, the
clear global minimum of the objective function is at 1, i.e. when all prototypes
are placed in the true cluster centres. But there is a local minimum at the origin,
separated by a local maximum from the global minimum. The local maximum is
shifted more to the right for higher dimensions. Since the algorithm to minimise
the objective function of fuzzy clustering can be view as a gradient descent
technique [31], the cluster prototypes will end up in the local minimum at the
origin when the initialisation is not close enough to the true cluster centres.

These considerations about the objective function for fuzzy clustering in high
dimensions demonstrate that the CoN phenomenon occurs on the level of the
cluster centres in the sense that all cluster centres have roughly the same distance
from a prototype that is not placed close to a true cluster centre. So this is not a
problem of the objective function which clearly shows a global minimum at the
correct cluster centres. It is a problem of the optimisation algorithm. In contrast
to this example where the clusters are well separated, the first example in Sect. 4
would also cause a problem for the objective function, since the minimum would
not be pronounced very clearly.
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There are ways to partly avoid these problems. One way is to try to adjust the
fuzzifier w in the objective function (4) depending on the number of dimensions.
The higher the number of dimensions, the smaller, but of course larger than 1,
the fuzzifier should be chosen. A better way to avoid the tedious adjustment
of the fuzzifier is to use a polynomial fuzzifier function [32] that replaces the
power function uw by a quadratic polynomial of the form w ·u2 +(1−w) ·u with
u ∈ [0, 1]. This leads to a convex combination of the standard k-means clustering
objective function (2) and the objective function for fuzzy clustering (4) with
fuzzifier 2.

Density-based clustering suffers from the problem that density can vary to an
extreme extend in high dimensions and it is very difficult to adjust the parameter
settings.

6 Conclusions

Clustering high-dimensional data is a difficult task. The problem starts already
with the understanding of how a cluster should be characterised. Will only a few
dimensions or attributes contribute to the clustering and the large majority of
attributes is considered as “noise”?

We have seen with the first example in Sect. 4 that a limited number of
“noise” attributes can be tolerated without destroying the clusters. If the data
set is expected to contain too many “noise” attributes that are irrelevant for
the clustering, subspace clustering techniques are needed. Subspace clustering
drastically increases the complexity of clustering, since not only clusters need to
be found but also the right subspace. Apart from this, for very high-dimensional
data, subspace clustering might lead to finding spurious clusters that “look
good”, but are just random effects as we have illustrated in Sect. 5. Therefore,
validation techniques like permutation or Monte Carlo tests should be applied
to get an idea for the chances of finding spurious clusters.

If the number of “noise” attributes is limited, subspace clustering might not
be necessary. However, clustering algorithms might still suffer from the CoN
phenomenon. As we have seen, if the clusters are well separated, this is not a
problem of the cluster model – the objective function – but a problem of the
algorithm to find the best cluster model or to minimise the objective function. As
for subspace clustering, it is highly recommended to evaluate the clusters. How-
ever, here other methods than permutation or Monte Carlo tests might be better
suited like cross-validation in the sense of resampling [33] or the application of
other cluster validity measures. A good overview on cluster validity measures can
be found in [34]. These techniques are also often used to determine the number
of clusters.

Missing values are a problem that is usually not considered in cluster analysis
[35]. But missing values will occur with larger probability in high-dimensional
data. This is still an open problem.
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neighbors in high-dimensional data. Mach. Learn. Res. 11, 2487–2531 (2010)

9. Low, T., Borgelt, C., Stober, S., Nürnbberger, A.: The hubness phenomenon: fact
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