
Francesco Masulli · Alfredo Petrosino
Stefano Rovetta (Eds.)

 123

LN
CS

 7
62

7

First International Workshop, CHDD 2012
Naples, Italy, May 15, 2012
Revised Selected Papers

Clustering High-
Dimensional Data



Lecture Notes in Computer Science 7627

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany



More information about this series at http://www.springer.com/series/7409

http://www.springer.com/series/7409


Francesco Masulli • Alfredo Petrosino
Stefano Rovetta (Eds.)

Clustering High-
Dimensional Data
First International Workshop, CHDD 2012
Naples, Italy, May 15, 2012
Revised Selected Papers

123



Editors
Francesco Masulli
DIBRIS
University of Genoa
Genoa
Italy

Alfredo Petrosino
University of Naples “Parthenope”
Naples
Italy

Stefano Rovetta
DIBRIS
University of Genoa
Genoa
Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-662-48576-7 ISBN 978-3-662-48577-4 (eBook)
DOI 10.1007/978-3-662-48577-4

Library of Congress Control Number: 2015950900

LNCS Sublibrary: SL3 – Information Systems and Applications, incl. Internet/Web, and HCI

Springer Heidelberg New York Dordrecht London
© Springer-Verlag Berlin Heidelberg 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer-Verlag GmbH Berlin Heidelberg is part of Springer Science+Business Media
(www.springer.com)



Preface

One of the most long-standing problems afflicting machine learning techniques is
dataset dimensionality. Owing to the evolution of technologies for acquiring and
creating information, however, this issue has recently become ubiquitous. In many
applications to real-world problems, we deal with data with anywhere from a few
dozen to many thousands of dimensions. Such high-dimensional data spaces are often
encountered in areas such as medicine or biology, where DNA microarray technology
and next-generation sequencing can produce a large number of measurements at once;
the clustering of text documents, where, if a word-frequency vector is used, the number
of dimensions equals the size of the dictionary; and many others, including data
integration and management, and social network analysis. In all these cases, the
dimensionality of data makes learning problems hardly tractable.

In particular, dimensionality is a highly critical factor for the clustering task. The
following problems need to be addressed for clustering high-dimensional data:

– When the dimensionality is high, the volume of the space increases so fast that the
available data become sparse, and we cannot find reliable clusters, as clusters are
data aggregations (curse of dimensionality).

– The concept of distance becomes less precise as the number of dimensions grows,
since the distance between any two points in a given dataset converges (concen-
tration effects).

– Different clusters might be found in different subspaces, thus a global filtering of
attributes is not sufficient (local feature relevance problem).

– Given a large number of attributes, it is likely that some attributes are correlated.
Hence, clusters might exist in arbitrarily oriented affine subspaces.

– High-dimensional data could likely include irrelevant features, which may obscure
the effect of the relevant ones.

This volume is the outcome of work done during the International Workshop on
Clustering High-Dimensional Data, held at Istituto Italiano per gli Studi Filosofici,
Palazzo Serra di Cassano, in Naples (Italy) on May 15, 2012, where speakers were
subsequently invited to submit a paper related to their presentation.

The papers collected here aim to present an updated view of many different
approaches toward clustering high-dimensional data, and can be divided by topic into
three groups.

The first group introduces the general subject and issues of high-dimensional data
clustering. Chapter 1 provides a general introduction, while Chapter 2 explores some
properties of high-dimensional data that make it difficult to detect and even to define
clusters.

The second group of chapters presents examples of techniques used to find and
investigate clusters in high dimensionality. Chapter 3 focuses on an approach to sub-
space clustering; Chapter 4 presents a selection of dimensionality-independent



methods for comparing clusterings; and Chapter 5 deals with clustering high-
dimensional time series.

The third group deals with the most common approach to tackling dimensionality
problems, namely, dimensionality reduction and its application in clustering. Chapter 6
introduces the topic of intrinsic dimensionality estimation, and Chapter 7 presents a
specific technique for intrinsic dimensionality estimation. Chapter 8 compares four
dimensionality reduction methods for binary data, while the last contribution, Chapter 9,
focuses on dimensionality reduction by feature selection using rough-fuzzy techniques.

July 2015 Francesco Masulli
Alfredo Petrosino
Stefano Rovetta

VI Preface
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Clustering High-Dimensional Data

Francesco Masulli1,2(B) and Stefano Rovetta1

1 Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi
DIBRIS, Università di Genova, Genova, Italy

2 Center for Biotechnology, Temple University, Philadelphia, USA
francesco.masulli@unige.it

Abstract. This chapter introduces the task of clustering, concerning the
definition of a structure aggregating the data, and the challenges related
to its application to the unsupervised analysis of high-dimensional data.
In the recent literature, many approaches have been proposed for facing
this problem, as the development of efficient clustering methods for high-
dimensional data is is a great challenge for Machine Learning as it is of
vital importance to obtain safer decision-making processes and better
decisions from the nowadays available Big Data, that can mean greater
operational efficiency, cost reduction and risk reduction.

1 Introduction

Clustering aims to find a structure that aggregates the data into some groups
with the property that data belonging to a group (or cluster) are more similar
to data in that cluster than to data in other clusters.

With the beginning of the 21st Century, the decrease in the cost of storage
and the increasing of the interest that is permeating the society toward the
collection of data of all kinds, on scales unimaginable until recently, in most of
the fields, ranging from science, to finance, to the Internet and mobile devices
and sensors, has resulted in the availability of large, continuously growing masses
of data (Big Data).

Often, those data contain hyper-informative details about each observed
instance. The problem of data clustering in high-dimensional data spaces has
then become of vital interest for the analysis of those Big Data, to obtain safer
decision-making processes and better decisions.

This chapter is organized as follows: Sect. 2 introduces the problem of clus-
tering; Sect. 3 presents the problem of high-dimensional data analysis; Some rele-
vant approaches high-dimensional data clustering are surveyed in Sect. 4; Sect. 5
presents the conclusions.

2 Defining Clustering

The concept of clustering dates back to at least the Greeks philosophers. Plato
(∼400 BC), in his Statesman dialogue [15], introduces the approach of grouping
objects based on their similar properties (categorization). This approach was
c© Springer-Verlag Berlin Heidelberg 2015
F. Masulli et al. (Eds.): CHDD 2012, LNCS 7627, pp. 1–13, 2015.
DOI: 10.1007/978-3-662-48577-4 1



2 F. Masulli and S. Rovetta

further explored and systematized by Aristotle (∼350 BC) in his Categories
treatise [6].

In the last century, psychologists of Gestalt (word that in German means
“shape, form”) proposed a theory of visual perception organization based on the
so called Principles of Grouping [25,26,42]:

– Law of Proximity: perception tends to group stimuli that are close together as
part of the same object, and stimuli that are far apart as two separate objects.

(a)

(b)

(c)

Fig. 1. Gestalt’s Laws: (a) Law of Proximity; (b) Law of Similarity; (c) Law of Good
Continuation.
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– Law of Similarity: perception lends itself to seeing stimuli that physically
resemble each other as part of the same object, and stimuli that are different
as part of a different object.

– Law of Good Continuation: when there is an intersection between two or more
objects, people tend to perceive each object as a single uninterrupted object.

– and other laws (Closure, Good Form, Common Fate, etc.).

As shown in the examples in Fig. 1 those Gestalt’s law explain many cases
when our perceptual system organizes the elements of a visual stimulus in sep-
arate groups (or clusters).

From a Machine Learning viewpoint, an intuitive definition of clustering task
can be: To find a structure in the given data that aggregates the data into some
groups (or clusters) with the property that data belonging to a cluster are more
similar to data in that cluster than to data in other clusters (homogeneity crite-
rion). A more formal definition of clustering is difficult to state, as the clustering
task is not a well-posed problem [23,38].

A problem is well-posed in Hadamard’s sense [21] when a solution exists,
is unique, and depends continuously on the initial data (i.e., is robust against
noise). Form this point of view, clustering is a ill-posed problems, as the parti-
tioning task of data sets following the homogeneity criterion can lead to different
reasonable solutions, and, in addition, the solution obtained by many clustering
algorithms are subject to the noise (outliers) in the data. Figure 2 illustrates a
typical situation in clustering: We have a two-dimensional data set of 20 points
(a) that can be easily portioned in two groups (b), but, if we allow clusters to be
nested, we can interpret it as a structure of six clusters (c), or also as a different
organization of four clusters (d).

Many measures of cluster validity have been introduced in the literature
of the last four decades, proposing endogenous and exogenonous criteria [29] for
choosing the best clustering, but often the best clustering depends on the desired
results and we embed our knowledge on the problem (implicitly or explicitly) in
the clustering algorithm, performing a regularization of the problem [21].

To manage the complexity and ambiguity of the problem we could start with
an operational definition of a clustering procedure. To this aim, given the data
set, we state a clustering problem by setting the following elements:

– A data representation: we must represent the instances of the data set as
vectors of characteristics (or features) using a suitable transformation of raw
data. We must choose the feature to use and their attributes (binary, discrete,
continue) and scales. Data representation is usually strictly dependent on the
knowledge of the problem. Sometimes the features are given, while sometimes
we need to choose/select them. We stress that a good choice of features can
lead to a good quality of clustering procedure.

– A similarity measure (or, conversely, a dissimilarity measure) to be used for
comparing the instances of the data set. Among the most used measures, we
can mention the Euclidean, the Mahalanobis, and the Hamming distances
(that are dissimilarity measures), and similarity measures such as the corre-
lation and the Jacard index [23].
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(a) Data set (b) Two clusters

(c) Six clusters (d) Four clusters

Fig. 2. Different clusterings for a set of points (modified from [38]).

– A model of clustering, i.e., a clustering algorithm. The principal categories of
clustering algorithms are the hierarchical algorithms that try to find structures
of data which can be further divided in substructures recursively, and partitive
algorithms that are aimed to find a single partition of data. In the choice of
the clustering model we should also take into account that most clustering
algorithms, such as the K-Means, seek to find a classification of the data into
non-overlapping groups [29]; conversely, fuzzy clustering algorithms allow an
object to partially belong to several groups [8].

This is our reference setting in the remainder of the chapter.
We apply clustering techniques in data analysis instead of supervised classi-

fication techniques (e.g. neural networks or support vector machines) [23] when
labeling the (full) data set is too expensive or infeasible, when the available
labeling of data is ambiguous, when we need to improve our understanding of
the nature of data, or we want to reduce the number of data (information) to
transmit. For those reasons clustering is a fundamental tool in data mining,
document retrieval, image segmentation and pattern classification.

3 The Century of Big Data

In the last decades the quantity of data to be analyzed has increased explosively
due to socials factors and to the related technological evolution (CPU, memory
storage systems, computer interconnections) which showed a growth sometime
faster than that exponential expected from Moore’s Law [34].

In this regard we quote here some passages from the speech given by David
L. Donoho at the AMS Conference on Math Challenges of the 21st Century in
2000 [18]: “The coming century is surely the century of data. A combination of
blind faith and serious purpose makes our society invest massively in the collec-
tion and processing of data of all kinds, on scales unimaginable until recently.
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Hyperspectral Imagery, Internet Portals, Financial tick-by-tick data, and DNA
Microarrays are just a few of the better-known sources, feeding data in torrential
streams into scientific and business databases worldwide. ...

The trend today is towards more observations but even more so, to radi-
cally larger numbers of variables – voracious, automatic, systematic collection of
hyper-informative detail about each observed instance. We are seeing examples
where the observations gathered on individual instances are curves, or spectra,
or images, or even movies, so that a single observation has dimensions in the
thousands or billions, while there are only tens or hundreds of instances available
for study. ...”

One year later, in 2001, Douglas Laney of Gartner, Inc. proposed the now
mainstream definition of Big Data as the three Vs of Big Data (“3Vs” model):
volume (amount of data), velocity (speed of data in and out) and variety (range of
data types and sources) [30]. In addition, some other dimensions are considered
when thinking about Big Data, included variability (as data flows can be highly
inconsistent with periodic peaks), veracity (as the quality of the data being
captured can vary greatly), and complexity (as data coming from multiple sources
need to be linked, connected and correlated before analysis).

Big Data is nowadays a popular term used to describe the exponential growth
and availability of data, both structured and unstructured. Big Data may be as
important to business and society as the Internet has become, as more data may
lead to more accurate analyses, and more accurate analyses may lead to more
confident decision making and better decisions can mean greater operational
efficiencies, cost reductions and reduced risk [31].

While in the past excessive data volume was a storage issue, with the present
fast decreasing trend of storage costs other issues emerge. As Donoho pointed out
in [18], “classical methods are simply not designed to cope with this kind of explo-
sive growth of dimensionality of the observation vector. We can say with complete
confidence that in the coming century, high-dimensional data analysis will be a
very significant activity, and completely new methods of high-dimensional data
analysis will be developed; we just don’t know what they are yet. ...”

Concerning high-dimensional data analysis, we quote an excerpt from page 97
of the well-known book Adaptive Control Processes: A Guided Tour by Richard
Bellman, published in 1961 [7], where he introduces the concept of curse of
dimensionality as the impossibility of optimizing a function of many variables
by a brute force search on a discrete multidimensional grid, as the number of
grids points increases exponentially with dimensionality, i.e., with the number
of variables: “In view of all that we have said in the forgoing sections, the many
obstacles we appear to have surmounted, what casts the pall over our victory
celebration? It is the curse of dimensionality, a malediction that has plagued the
scientist from the earliest days”.

Nowadays, the curse of dimensionality refers to any problem in data analysis
that results from a large number of variables (features, or attributes).

When we cluster high dimensional data sets we have to overcome some dif-
ficult problems that are expressions of the curse of dimensionality [27]:
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– When the dimensionality is high, the volume of the space increases so fast
that the available data becomes sparse, and we cannot find reliable clusters,
as clusters are data aggregations.

– The concept of distance becomes less precise as the number of dimensions
grows, since the distance between any two points in a given dataset converges
(concentration effect):

lim
d→+∞

distmax − distmin

distmin
→ 0

– Different clusters might be found in different subspaces, so a global filtering
of attributes is not sufficient (local feature relevance problem).

– Given a large number of attributes, it is likely that some attributes are corre-
lated. Hence, clusters might exist in arbitrarily rotated subspaces.

– High-dimensional data could likely include irrelevant features, which may
obscure the effect of the relevant ones.

4 Approaches to High Dimensional Data Clustering

4.1 Subspace Clustering

Subspace clustering algorithms localize the search for relevant dimensions allow-
ing them to find clusters that exist in multiple, and possibly overlapping sub-
spaces. This technique is an extension of feature selection that attempts to find
clusters in different subspaces of the same dataset. Just as with feature selec-
tion, subspace clustering requires a search method and an evaluation criteria.
In addition, subspace clustering must somehow limit the scope of the evaluation
criteria so as to consider different subspaces for each different cluster.

There are two major approaches to subspace clustering based on their search
strategy:

– Top-down algorithms that find an initial clustering in the full set of dimensions
and evaluate the subspaces of each cluster, and then iteratively improve the
results.

– Bottom-up approaches that find dense regions in low dimensional spaces and
combine them to form clusters.

Subspace clustering is aimed to find all clusters in all subspaces. In different
subspaces the same point can then belong to different clusters. Subspaces can
be axis-parallel or general (i.e., not necessarily axis-parallel). In a space with
d dimensions we have 2d − 2 axis-parallel subspaces, not counting the space
itself and the empty (0-dimensional) degenerate subspace. If we allow rotations
in addition to axis selection, then an infinite number of subspaces is possible.
Therefore to make Subspace Clustering computationally feasible some heuristic
must be used, such as in CLIQUE [5] and SUBCLU [24].
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4.2 Projected Clustering

In high-dimensional spaces, even though a good partition cannot be defined
on all the dimensions because of the sparsity of the data, some subset of the
dimensions can always be obtained on which some subsets of data form high
quality and significant clusters.

Projected clustering [2,4] methods are aimed to find clusters (referred to as
projected clusters) specific to a particular group of dimensions. Each cluster may
refer to a different subsets of dimensions

The output of a typical projected clustering algorithm, searching for k clus-
ters in subspaces of dimension l, is twofold:

– a partition of data of k+1 different clusters, where the first k clusters are well
shaped, while the (k + 1)-th cluster elements are outliers, which by definition
do not cluster well.

– a possibly different set of l dimensions for each of the first k clusters, such
that the points in each of those cluster are well clustered in the subspaces
defined by these vectors.

Usually, projected clustering algorithms use a special distance function
together with a standard clustering algorithm. For example, the PreDeCon algo-
rithm [10] after checking the attributes that best support a cluster for each
point, applies a standard clustering algorithm, using a modified distance func-
tion weighting more the dimensions with low variance. Another projected clus-
tering algorithm, named PROCLUS [2], proceeds as the regular Partitioning
Around Medoids (PAM) algorithm, but for each found medoid it finds the sub-
space spanned by attributes with low variance, and then points are assigned to
the closest medoid, considering only the subspace of that medoid in determining
the distance.

4.3 Biclustering

Biclustering [22,32] (aka co-clustering, or two-way clustering) is a methodol-
ogy allowing for feature set and data points clustering simultaneously, i.e., to
find clusters of samples possessing similar characteristics together with features
creating these similarities.

In other words, biclustering answers the question: What characteristics make
similar objects similar to each other? The output of biclustering is not a parti-
tion or hierarchy of partitions of either rows or columns, but a partition of the
whole matrix into sub-matrices or patches. We can obtain different biclustering
structures: single bicluster, different non-overlapping structures, and overlapping
with or without structure.

The goal of biclustering is to find as many patches as possible, and to have
them as large as possible, while maintaining strong homogeneity within patches.

In the microarray analysis framework, the pioneering work by Cheng and
Church [13] employs a set of greedy algorithms to find one or more biclusters in
gene expression data, based on a mean squared residue as a measure of similarity.
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Table 1. Shared farthest neighbor clustering algorithm.

1. Compute the distance (or other dis/similarity measure) of each point to all others,
and for each point identify the farthest neighbor (labeling).

2. Find the clusters at the first level by aggregating all points sharing a common
farthest neighbor label.

3. Within each cluster, the second farthest neighbor can be considered in the same
way. This produces a second level clustering within each cluster of the first level.

4. The procedure is recursively repeated until no further differentiation is found (all
points within a level l-1 cluster share the same l-th farthest neighbor), or until a
predefined maximum level is reached.

One bicluster is identified at a time iteratively. The masking of null values of the
discovered biclusters are replaced by large random numbers that help to find new
biclusters at each iteration. Nodes are deleted and added and also the inclusion
of inverted data is taken into consideration when finding biclusters. [40] notices
that this approach affects the subsequent discovery of large-sized biclusters and
proposes a two-phase probabilistic algorithm termed Flexible Overlapped Clus-
ters (FLOC) to simultaneously discover a set of possibly overlapping biclusters.
Bipartite graphs are also employed in [39], with a bicluster being defined as a
subset of genes that jointly respond across a subset of conditions. An approach
based on fuzzy sets theory is presented in [20]. Other methods for biclustering
have been also presented in [12,33,43] and in many more recent papers.

4.4 Hierarchical Clustering

Hierarchical clustering (also called hierarchical cluster analysis or HCA) meth-
ods which seek to organize data in a hierarchy of clusters. There are two main
strategies for hierarchical clustering [35]:

– Agglomerative or “bottom up” approaches, where each instance starts in its
own cluster, and pairs of clusters are merged as one moves up the hierarchy.

– Divisive or “top down” approaches, where all instances start in one cluster,
and splits are performed recursively as one moves down the hierarchy.

In general, the merges and splits are determined in a greedy manner. Hierar-
chical clustering a shows the capability of visualizing a structure in the form of a
taxonomy (dendrogram), which makes it interesting in a number of applications.

Efficient agglomerative methods of complexity O(n2) are SLINK [37] for
single-linkage and CLINK [17] for complete-linkage clustering. Eisen et al. [19]
proposed a hierarchical agglomerative clustering algorithm whereby at each stage
only two objects (either single data objects or clusters) are merged. The algo-
rithm operates on a proximity matrix containing the distances among all possible
pairs of points.

Hierarchical approach to clustering work is useful for high dimensional and
low cardinality data sets, but the taxonomy obtained is not very stable, as often a
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Fig. 3. Data points.

small noise on data can significantly affect it. Moreover, the standard hierarchical
approach does not require the selection of model order, simply because it makes
no attempt at defining “real” clusters (densities) and provides an organization
of data, but with no identification of clusters. Finally, agglomerative algorithms
cannot produce a partial (rough) result, to be refined only if needed (“anytime”
algorithms in the data mining jargon).

Table 2. (a) Data matrix; (b) Proximity matrix; (c) Rank matrix.

Data point x y

1 2 8.3

2 4.7 7.4

3 1.0 6.3

4 3.6 1.2

(a)

Data point 1 2 3 4

1 0 2.85 2.32 7.28

2 2.85 0 3.89 6.30

3 2.32 3.89 0 5.64

4 7.28 6.30 5.64 0

(b)

Data point 1 2 3 4

I Neighboor 3 1 1 3

II Neighboor 2 3 2 2

III Neighboor 4 4 4 1

(c)
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Fig. 4. Dendrogram for the problem shown in Fig. 3.

In [36] we proposed a different approach to hierarchical clustering based
on the so-called Principle of Points in Perspective (3P): Two points should be
considered similar if they share the same farthest point among all remaining data,
i.e., points must be examined not with reference to their neighborhood (locally),
but with reference far-away points in the data set, therefore “in perspective”.
Then, we iterate to the second far way, the third, and so on. For each point we
will use the list of ranks of other points.

The method for hierarchical clustering we proposed in [36], named Shared
Farthest Neighbor (SFN) clustering algorithm, is based on the following property
of data: Closer points have usually a different nearest neighbor and equal farthest
neighbor. In Table 1 a description of the SFN clustering algorithm is presented.

In Fig. 3 and Table 2 we show an example. The coordinates of data points
are reported in Table 2a. We calculate the Proximity matrix (Table 2b) using the
Euclidean distance, and then the Rank matrix (Table 2c). In Fig. 4 the dendro-
gram resulting from the application of SFN clustering algorithm to the Rank
matrix is shown.

We notice that the Shared Farthest Neighbor approach to clustering gives us
a stable dendrogram result, as it start working with the farthest points, and that
evaluation is less sensible to noise as the closeness evaluation used in standard
hierarchical clustering methods. Moreover, we can stop the iteration of the SFN
algorithm “anytime”, obtaining a partial analysis of the data points aggregation.

In [36] we evaluated the quality of the SFN clustering algorithm on a group
of biomedical data sets, choosing among labeled benchmarks and using labels
for external evaluation. The obtained error ratios of SFN are comparable with
or lower than those obtained in literature using supervised techniques.

5 Conclusions

In this chapter we have introduced the problem of data clustering in high-
dimensional data space that in recent years has become of vital interest for the
analysis of so called Big Data, term describing growth and availability of data
in most of the fields, ranging from science, to finance, to Internet and sensors
and mobile devices, both structured and unstructured.
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We provided also a quick suvery of some approaches to High Dimensional
Data Clustering, including Subspace Clustering, Projected Clustering, Bicluster-
ing, and Hierarchical Clustering, giving some details on Shared Farthest Neigh-
bor algorithm for agglomerative hierarchical clustering proposed by us [36].
Many other approaches towards clustering high-dimensional data presented in
the recent years are noteworthy, as, e.g., the techniques of correlation cluster-
ing [1,3,11], ensemble clustering [28], and multi-view clustering [9,14,16,41].

Although there is no single solution to the problem of unsupervised analysis in
the presence of high data dimensionality, the development of efficient clustering
methods for this type of data is a great challenge for Machine Learning as it is of
vital importance to obtain safer decision-making processes and better decisions
that can mean greater operational efficiency, cost reduction, and risk reduction.

References
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24. Kailing, K., Kriegel, H.P., Kröger, P.: Density-connected subspace clustering for
high-dimensional data. In: Proceedings of the 2004 SIAM International Conference
on Data Mining, pp. 246–257 (2004)

25. Koffka, K.: Principles of Gestalt Psychology. Harcourt, Brace, New York (1935)
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Abstract. The distribution of distances between points in a high-
dimensional data set tends to look quite different from the distribution
of the distances in a low-dimensional data set. Concentration of norm is
one of the phenomena from which high-dimensional data sets can suffer.
It means that in high dimensions – under certain general assumptions –
the relative distances from any point to its closest and farthest neigh-
bour tend to be almost identical. Since cluster analysis is usually based
on distances, such effects must be taken into account and their influence
on cluster analysis needs to be considered. This paper investigates con-
sequences that the special properties of high-dimensional data have for
cluster analysis. We discuss questions like when clustering in high dimen-
sions is meaningful at all, can the clusters just be artifacts and what are
the algorithmic problems for clustering methods in high dimensions.

1 Introduction

Clustering is an exploratory data analysis method applied to data in order to
discover structures or groups – called clusters – in a data set. Data objects
within the same cluster should be similar, data objects from different clusters
dissimilar. This means that cluster analysis must be based on a similarity or
nearness concept to measure how close or similar data objects are. Often a dual
concept to similarity or nearness – a distance measure – is used. Especially, for
data sets having exclusively real-valued attributes, i.e. data sets that are subsets
of Rm where m is the dimension of the data set, the Euclidean metric or – more
generally – any metric derived from a norm on R

m can be seen as a candidate
of a distance measure on which clustering can be based.

In this paper, we focus on clustering high-dimensional data having only real-
valued attributes.

The term curse of dimensionality was coined by Bellman [1], referring to
the combinatorial explosion that is often implied by handling a large number of
c© Springer-Verlag Berlin Heidelberg 2015
F. Masulli et al. (Eds.): CHDD 2012, LNCS 7627, pp. 14–33, 2015.
DOI: 10.1007/978-3-662-48577-4 2
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dimensions. In the context of cluster analysis, for many algorithms the number
of dimensions does not cause serious computational problems. The number of
data objects is usually more critical from the computational complexity point of
view than the number of dimensions.

Today, the term curse of dimensionality is understood in more general terms,
covering also other aspects of high-dimensional data than just problems of com-
putational complexity. Distance measures like the Euclidean distance for high-
dimensional data exhibit surprising properties that differ from what is usual for
low-dimensional data. Two examples for such properties are the concentration
of norm phenomenon – stating that under certain assumptions the relative dis-
tances from any point to its closest and farthest neighbour tend to be almost
identical for high-dimensional data – and the hubness phenomenon where it
seems that for high-dimensional data the distribution of the number of times
a data point occurs among the k nearest neighbours of other data points is
extremely skewed to the right and a few data points – the hubs – are found very
often among the k nearest neighbours of other data points.

But what are the consequences of these effects for cluster analysis? In order
to find answers to this question, we have to take a closer look at these phenomena
in Sect. 2 and we also need a brief overview on clustering approaches in Sect. 3.
In Sect. 4, we relate properties of high-dimensional data to clustering and discuss
the crucial question what a cluster in high dimensions is. Based on these con-
siderations, we consider the consequences for clustering high-dimensional data
in terms of what is meaningful and in terms of algorithmic problems in Sect. 5.
We summarise the results of the paper in Sect. 6.

2 Properties of High-Dimensional Data

The concentration of norm phenomenon (CoN) can formally be described in the
following way [2,3]. Let Xm be an m-dimensional random vector and let dm(x)
denote the distance of x ∈ R

m to the origin of the coordinate system based on
a suitable distance measure, for instance the Euclidean distance. Let n ∈ N be
the size of the sample that is taken from the random vector Xm. Let d(max)

m and
d
(min)
m denote the largest and the smallest distance of a point in the sample to

the origin of the coordinate system. Then

lim
m→∞ Var

(
dm(Xm)

E(dm(Xm))

)
= 0 ⇒ d

(max)
m − d

(min)
m

d
(min)
m

→p 0 (1)

holds, where →p denotes convergence in probability. In other words, when the
relative variance – relative with respect to the mean distance – of the distances
to the origin converges to zero for higher dimensions, then the relative difference
of the closest and farthest point in the data set goes to zero with increasing
dimensions. The requirement that the relative variance goes to zero is for instance
satisfied when the random vector Xm is a sample from m independent and
identically distributed random variables with finite expectation and variance
and the Euclidean distance is used as the distance measure.
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The converse theorem also holds [3].
It should be noted that the choice of the origin of the coordinate system

as the query point to which the distances of the data points are computed is
not of importance. Equation (1) is also valid for any other query or reference
point. The same applies to the distance measure. A detailed investigation on
fractional distances is provided in [4]. A discussion on various distance measures
in connection with the CoN phenomenon is provided in [5–7].

The hubness phenomenon [8] is another property that is often observed for
high-dimensional data. For the hubness phenomenon, one counts for each point
of a data set how often this points occurs among the k nearest neighbours of
other points where k is a fixed constant. Especially for uniformly distributed
data one would expected that each point roughly occurs equally often among
the k nearest neighbours of other points. However, for higher dimensions this
is not true. This means that some points – called hubs – occur extremely often
among the k nearest neighbours of other points.

Low et al. [9] argue that the hubness phenomenon is actually not a direct
effect of high-dimensional data, but a boundary effect. The reason why it is
connected to high-dimensional data is simply that for higher dimensions the
proportion of the data at the boundary of the data set increases exponentially
with the dimensions. Especially, when n + 1 ≤ m holds, where n is the number
of data points and m is the number of dimensions, and all data points lie in
general position, they also automatically lie on the convex of the data points.

Before we discuss what these phenomena mean for cluster analysis, we give
a brief overview on basic clustering techniques in the following section.

3 Cluster Analysis

Cluster analysis aims at grouping a data set into clusters where data objects
within a cluster are similar to each other and different from data objects in
other clusters. Especially for data with real-valued attributes, similarity is usu-
ally defined based on a notion of distance like the Euclidean or the Manhattan
distance. In order to understand how the CoN and the hubness phenomenon
might affect cluster analysis, it is important to understand how these distances
are used in the clustering process. Therefore, we provide a brief overview on
cluster analysis which is far from being complete. For more details on cluster
analysis we refer to books like [10,11].

Hierarchical agglomerative clustering is a relational clustering technique that
is based on a distance matrix in which the pairwise distances of the data objects
are entered. For data with real-valued attributes, these distances are often simply
the Euclidean distances between the data points. Initially, each data point is
considered as a separate cluster and then – step by step – the closest points or
clusters are joint together to form a larger cluster until all data points end up
in one cluster. The number of clusters is determined based on the dendrogram
that shows in which order the clusters were joint together and how large the
distances were between the joint clusters.
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Hierarchical clustering cannot avoid at least quadratic complexity in the
number of data points, since the required distance matrix is already quadratic in
the number of data objects. Therefore, hierarchical clustering can be problematic
for larger data sets. And when we deal with high-dimensional data, the data set
is usually bigger, at least compared to the number of dimensions. Of course, for
very high-dimensional data, this might not be the case.

When the data set to be clustered is a subset of R
m, one would need to

calculate the distance matrix for hierarchical clustering from the (Euclidean)
distances between the vectors. Various clustering techniques are proposed that
avoid the computation of a distance matrix that leads to quadratic complexity
in the number of data objects.

It should be noted that it is usually recommended to carry out some kind
of normalisation on the single dimensions to avoid that the measurement units
of the single dimensions influence the distances and therefore also the clustering
results. If, for instance, one of the attributes would be the height of persons,
the data could be represented in various measurement units like centimetres,
metres or also millimetres. The measurement of the height in metres would
mean that the difference of two “data objects” (persons) in this attribute will
normally be less than 1. If, however, the height is measured in millimetres, a
difference of 100 between two persons would not be unusual. There are various
strategies to normalise a real-valued attribute, for example z-score normalisation
where the mean value is subtracted from each value and then a division by
the sample standard deviation of the corresponding attribute is carried out.
Of course, there might be good reason not to carry out normalisation, since
normalisation will change the spatial distribution and geometrical shape of the
data. But this decision depends on the specific data set and the meaning and
the relations betweens its attributs. However, normalisation is not the topic of
this paper and we refer to the overview on normalisation in [11].

Prototype-based clustering like the well known k-means algorithm [12] tries
to avoid this complexity problem. From a purely algorithmic point of view, k-
means clustering can be described as follows. First the number of clusters k must
be fixed. Then each of the k clusters is represented by a prototype vi ∈ R

m when
we want to cluster m-dimensional data. These prototypes are chosen randomly
in the beginning. Then each data vector is assigned to the nearest prototype
(with respect to the Euclidean distance). Then each prototype is replaced by
the centre of gravity of those data assigned to it. The alternating assignment of
data to the nearest prototype and the update of the prototypes as cluster centres
is repeated until the algorithm converges, i.e., no more changes happen.

This algorithm can also be seen as a strategy for minimising the objective
function

f =
k∑

i=1

n∑
j=1

uijdij (2)

under the constraints

k∑
i=1

uij = 1 for all j = 1, . . . , n (3)
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where uij ∈ {0, 1} indicates whether data vector xj is assigned to cluster i
(uij = 1) or not (uij = 0). dij =‖ xj − vi ‖2 is the squared Euclidean distance
between data vector xj and cluster prototype vi.

One of the problems of k-means clustering is that it can be quite sensitive to
the choice of the initial prototypes and can easily get stuck in local minima of
the objective function (2), i.e. leading to counterintuitive clustering results.

Fuzzy k-means clustering1 [13,14] is a generalisation of k-means clustering
and is less sensitive to the initialisation, since the number of local minima of
the objective function can be reduced [15]. For fuzzy clustering, the constraints
uij ∈ {0, 1} is relaxed to uij ∈ [0, 1]. However, this change alone would still yield
the same optimum of the objective function (2). Therefore, a so-called fuzzifier
w > 1 is introduced in the objective function:

f =
k∑

i=1

n∑
j=1

uw
ijdij . (4)

k-means and its fuzzified version can also be extended to adapt to other than
spherical cluster shapes [16] or clusters of different sizes [17]. For a more detailed
overview on fuzzy cluster analysis we refer to [18,19].

Gaussian mixture models can be seen as a probabilistic model for cluster-
ing where the data from each cluster are assumed to represent a sample from a
multidimensional normal distribution. The expectation-maximisation algorithm
(EM) can be viewed as a generalisation of the k-means algorithm where proto-
types in the form the parameters of the normal distributions and assignments
to clusters in terms of probabilities are estimated in an alternating fashion.

All the above mentioned clustering algorithm assume that the number of
clusters is known. There are, of course, methods to estimate the number of
clusters based on cluster validity measures or techniques from model selection
like the Bayes information criterion. But there are also clustering techniques that
automatically determine the number of clusters. These clustering algorithms are
usually density-based, i.e. they try to find regions of higher data concentration
that form clusters. Examples for such algorithms are DBSCAN [20], DENCLUE
[21] and OPTICS [22].

Subspace clustering – for an overview see for instance [23] – refers to
approaches that are especially tailored for high-dimensional data. Their main
idea is not to cluster the data in all dimensions, but to look for clusters in
projections to lower dimensions. These projections can be axes-parallel, but do
not have to be. Essentially, subspace clustering comprises two component that
are combined in the algorithm: Finding a suitable projection and applying a
clustering algorithm in the corresponding subspace defined by the projection.

Before we take a closer look at high-dimensional data in connection with
cluster analysis, we mention a few examples where it is of interest to cluster
1 For fuzzy clustering, the number of clusters is usually denoted by c, so that fuzzy c-

means clustering (FCM) is the common term. But for consistency reasons, we always
denote the number of clusters by k.



What are Clusters in High Dimensions and are they Difficult to Find? 19

high-dimensional data. First of all, when can we speak of high-dimensional data?
The CoN phenomenon and the hubness effect can already be quite noticeable
30 dimensions. Data of this dimensionality can easily be found in many appli-
cations like industrial production where simultaneously measurements from a
larger number of sensors is recorded constantly. Patient data in medicine includ-
ing the laboratory results can also have a significant number of attributes.

But there are also applications having 10,000 or more dimensions. High
throughput technologies like microarrays can measure the expression of far more
than 10,000 genes easily. Often, the genes are clustered, which would mean that
the number of data objects exceeds 10,000, but not the number of dimensions.
But sometimes it is also interesting to cluster microarray data from different
experiments or different individuals which leads to such high-dimensional data,
since then each gene or its expression value is considered as an attribute (see for
instance [24]). Other high throughput technologies like mass spectrometry for
proteomics and in combination with gas chromatography for metabolomics or
next generation sequencing also produce data with thousands of dimensions. In
[25] growth curves of more than 4000 mutants under more than 100 conditions
were measured by the VITEK R©2 technology and clustered.

So there is an obvious need to cluster data with more than 30 up to tens of
thousands dimensions. But what are clusters in such high dimensions? How do
they look like and what can we expect from them? The following section will
discuss these question in more detail.

Fig. 1. An artificial data set with two clusters characterised by the x-values.
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4 What are Clusters, Especially in Higher Dimensions?

The CoN phenomenon affects high-dimensional data in general. Especially, near-
est neighbour search and database queries of the top k similar cases might not
be meaningful anymore for high-dimensional data [26].

But what are the consequences for cluster analysis which is usually also based
on distance notions? In order to discuss these consequences, it is essential to first
clarify what we mean by or what we expect from a cluster in high dimensions.
However, to specify what we expect from a high-dimensional cluster is not so
obvious as the following two artificial examples show. Both examples contain
two clusters, each of them having 1000 data objects.

The first example is essentially a one-dimensional example. Both clusters
are generated by normal distributions with variance 1. But the first cluster has
expected value 0, whereas the second cluster has expected value 4.5. In order
to make it a high-dimensional example, we add additional dimensions that do
not contribute to the distinction of the clusters. For both clusters, the values
of the additional dimensions come from standard normal distributions, i.e. with
expected value 0 and variance 1.

Figure 1 shows the two-dimensional data set. The relevant attribute to dis-
tinguish the two clusters is shown on the x-axis, whereas the first irrelevant
attribute is shown on the y-axis.
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Fig. 2. Distribution of the distances of the data to the origin of the coordinate system
in the first example for one (left) and two (right) dimensions.

We now consider the distribution of the Euclidean distances of the points in
the data set to the origin of the coordinate system. Figure 2 shows this distrib-
ution for the one-dimensional case on the left hand side when only the relevant
attribute is considered. The histogram has one peak for each cluster. The first
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cluster is represented by the peak at 1. This corresponds to the data from the
standard normal distribution scattering around zero with an average distance of
1, since the variance is 1. The second peak is at 4.5, the expected value of the
second normal distribution.

The right-hand side of Fig. 2 shows the distribution of the distances in the
two-dimensional case, i.e. when in addition to the relevant attribute, one irrel-
evant attribute is present that does not contribute to the distinction of the
clusters.
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Fig. 3. Distribution of the distances of the data to the origin of the coordinate system
in the first example for 10 (left) and 30 (right) dimensions.

When we increase the number of attributes whose distributions are the same
for both clusters, the two peaks in the histograms in Fig. 2 start to melt together,
as can be seen in Fig. 3 which shows the histograms for 10 and 30 dimensions.
For 10 dimensions, two peaks can still be identified, whereas they are almost
invisible in 30 dimensions.

For 50 dimensions in Fig. 4 on the left-hand side, only one peak can be
identified although the distribution is still skewed. For 200 dimensions in Fig. 4
on the right-hand side even the skewness has vanished.

Table 1 shows some statistical characteristics of the intra- and the inter-
cluster distances for this example. The intra-cluster distances are obtained by
computing the Euclidean distance between each pair of points from the same
cluster. For the inter-cluster distances, the two points are always chosen from
different clusters. For low dimensions, the distributions of the intra- and the
inter-cluster distances differ significantly. But with an increasing number of
dimensions, these two distributions become more and more similar.

What does this simple artificial example tell us about clusters in high dimen-
sions? There is no doubt about the two clusters in low dimensions as Fig. 1
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Fig. 4. Distribution of the distances of the data to the origin of the coordinate system
in the first example for 50 (left) and 200 (right) dimensions.

illustrates it clearly for two dimensions and as the histograms indicate it with
their two peaks in low dimensions. But are these two clusters still present in
high-dimensions? Neither the distance histograms for higher dimensions nor the
vanishing difference between the intra- and the inter-cluster distance distribu-
tions indicate that there are two clusters present.

The histograms produced for this example are all based on the Euclidean
distance or norm. François et al. demonstrated in [4] that the concept of Lp-
norms can help to relax the effects of the curse of dimensionality. The Lp-norm
is defined as

‖ x ‖p =

(
m∑
i=1

|xi|p
) 1

p

.

Choosing p = 2 leads to the Euclidean norm. But other values for p are also
possible. For p ≥ 1 these norms are called Lp- or Minkowski norms. For 0 < p < 1
they are called fractional norms although they do not satisfy the properties of a
norm. Both [4,27] make a strong point for the use of fractional norms or metrics
for high-dimensional data. However, for the simple example considered here,
fractional norms do not improve the situation. In contrast, a high value of p
in the Lp-norm will lead to better results here. The two clusters start to melt
together later for Lp-norms with large p. Figure 5 corresponds to Fig. 4, except
that the Lp-norm with p = 400 is used. The clusters are now not fused together
completely, even for 200 dimensions.

Before we further discuss this example, we consider another artificial example.
Again, there are two clusters. In contrast to the first example, there is not a single
attribute by which the two clusters can be distinguished, but each attribute
contributes a little bit to the distinction of the two clusters. For each attribute,
we assume a normal distribution with variance 1 for both clusters, but with
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Table 1. Statistical characteristics of the intra- and inter-cluster distances for the first
example.

Dimensions

intra/inter 1 2 3 5 10 20 30 50 100 200

Minimum < 0.001 0.001 0.026 0.237 0.871 2.479 3.782 6.031 9.841 15.967

Minimum < 0.001 0.048 0.129 0.384 1.733 3.318 4.732 6.336 10.824 16.613

5% quantile 0.088 0.537 1.053 1.860 3.269 5.136 6.649 8.882 12.954 18.771

5% quantile 2.218 3.377 3.782 4.343 5.390 6.925 8.193 10.192 13.995 19.560

25% quantile 0.450 1.283 1.969 2.877 4.309 6.167 7.660 9.884 13.932 19.752

25% quantile 3.607 5.278 5.597 6.064 6.962 8.334 9.515 11.431 15.110 20.626

Median 0.954 2.004 2.772 3.699 5.107 6.931 8.394 10.602 14.624 20.446

Median 4.561 6.600 6.883 7.306 8.107 9.379 10.496 12.340 15.925 21.390

Mean 1.132 2.161 2.895 3.788 5.169 6.972 8.422 10.625 14.635 20.452

Mean 4.549 6.595 6.892 7.324 8.144 9.426 10.544 12.379 15.959 21.405

75% quantile 1.633 2.869 3.687 4.602 5.965 7.733 9.152 11.340 15.329 21.143

75% quantile 5.501 7.913 8.176 8.558 9.285 10.467 11.521 13.285 16.773 22.167

95% quantile 2.788 4.314 5.157 6.022 7.281 8.943 10.295 12.439 16.349 22.158

95% quantile 6.844 9.795 10.036 10.383 11.025 12.091 13.061 14.696 18.041 23.306

Maximum 6.990 9.952 10.046 10.490 11.683 12.914 13.942 15.943 19.802 25.211

Maximum 10.420 14.741 14.753 15.173 16.061 17.083 17.452 18.608 22.115 27.236

expected value 0 for the first, and expected value 1 for the second cluster. Again,
each cluster contains 1000 data objects.

Figure 6 shows the data for two dimensions. The two clusters are visually
indistinguishable. Only the use of different symbols for the two clusters provides
visual information about the presence of two clusters.

In the same fashion as for the first example, Figs. 7, 8 and 9 show the dis-
tributions of the distances to the origin of the coordinate system for the second
example for different dimensions. We can observe exactly the opposite effect as
in the first example. For low dimensions, there is only one peak and the two clus-
ters cannot be detected by looking at the histograms. For about 30 dimensions,
the single peak starts to be separated into two peaks and the separation of the
two peaks is almost perfect for 200 dimensions.

Table 2 contains the characteristics of the inter-cluster distances for the sec-
ond example. The intra-cluster distances have, of course, the same characteristics
as in the first example, i.e. the values correspond to the ones in Table 1 (the non-
bold face rows). It is no surprise that we can observe the opposite effect as in the
first example. For low dimensions, the distributions of the intra- and the inter-
cluster distances are quite similar, but with an increasing number of dimensions,
they become more and more distinguishable.

5 Consequences for Clustering Algorithms

The two examples in the previous section illustrate how the CoN phenomenon
influences cluster analysis in high dimensions. If we assume that the clusters
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Fig. 5. Distribution of the distances of the data to the origin of the coordinate system
in the first example for 50 (left) and 200 (right) dimensions based on the Lp-norm with
p = 400.

are defined by only a few variables and most of the other variables have no
connection to the clusters at all, then the CoN phenomenon destroys the distin-
guishability of clusters as demonstrated by the first example. But when (almost)
all attributes contribute at least a little bit to the distinction of the clusters, the
CoN phenomenon even helps to identify the clusters.

How many “noise” dimensions can be tolerated in the first example, until we
say that there are no longer two clusters? How many dimensions do we need in
the second example, until we can really speak of two clusters?

Of course, for real world data, the situation is usually more complicated.
There might be some attributes that lead to good clusters and other attributes
which are simply “noise” in terms of the clustering. And in contrast to the two
examples, attributes might also be correlated. The first example has shown that
a limited number of “noise” attributes or “noise” dimensions can be tolerated.

Table 2. Statistical characteristics of the inter-cluster distances for the second example.

Dimensions

1 2 3 5 10 20 30 50 100 200

Minimum < 0.001 0.004 0.026 0.210 1.117 2.656 4.680 7.195 12.355 19.791

5% quantile 0.114 0.687 1.340 2.382 4.082 6.385 8.212 10.984 15.998 23.112

25% quantile 0.577 1.623 2.481 3.611 5.327 7.612 9.428 12.168 17.165 24.243

Median 1.208 2.513 3.467 4.588 6.267 8.517 10.301 13.016 17.988 25.037

Mean 1.398 2.672 3.587 4.679 6.325 8.561 10.330 13.039 17.998 25.044

75% quantile 2.025 3.548 4.560 5.648 7.258 9.462 11.203 13.881 18.819 25.836

95% quantile 3.341 5.206 6.260 7.288 8.765 10.882 12.540 15.178 20.031 27.001

Maximum 7.284 10.488 10.747 13.522 14.648 16.883 17.821 19.528 24.085 31.059



What are Clusters in High Dimensions and are they Difficult to Find? 25

Fig. 6. An artificial data set with two clusters that are difficult to distinguish in low
dimensions.

But what happens when there are different combinations of attributes, leading to
different clustering results? Which clusters should we trust when there are com-
pletely different clusters for different combinations of attributes, i.e. in different
subspaces?

There is, of course, a clear argument for some kind of subspace clustering
approach. Typically, the number of clusters we expect or we are searching for in
a data set, is limited. In many applications, even 20 clusters is already a very
large number. When we have k clusters and think in terms of prototype-based
clustering, the cluster centres lie in an at most (k−1)-dimensional hyperplane. So
this means that, at least when the clustering result is good, the clustering could
have been carried out on the projection of the data to this (k − 1)-dimensional
hyperplane.

The idea of finding interesting patterns in lower dimensions in high-
dimensional data sets by suitable projections is well known in data analysis as
a technique called projection pursuit [28]. However, projection pursuit focuses
mainly on two- and three-dimensional projections for visualisation purposes and
does not specifically aim at finding clusters. Since projections of high-dimensional
data to low dimensions tend to resemble normal distributions, one way to carry
out projection pursuit is to generate random two- or three-dimensional projec-
tions and to apply a test for normality. Those projections for which the normality
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Fig. 7. Distribution of the distances of the data to the origin of the coordinate system
in the second example for one (left) and two (right) dimensions.

hypothesis is rejected are then presented to the user for further inspection or the
projections can be ranked according to their p-values that the tests for normality
yielded. However, a deviation from a normal distribution does not necessarily
indicate that there are clusters in the data set.

Finding the right projection is a crucial problem in subspace clustering. It can
be seen as a feature selection strategy [29] when only axes-parallel projections
are considered.

It should be taken into account that we have to deal with the problem of
multiple testing for very high-dimensional data like in the case of microarrays:
multiple testing in the sense that we test a larger number of projection for the
presence or absence of clusters. When we have many attributes, the number of
possible projections is extremely large – or even infinite if we drop the restric-
tion to axes-parallel projections. This means that the probability that a certain
projection contains clusters just by chance might not be negligible.

As an example, consider a data set with 200 data objects and 10,000
attributes which are all independent samples from a uniform distribution on
the unit interval. So we have 200 uniformly distributed data points in the unit
hypercube of dimension 10,000. There are, of course, no clusters. But we do not
know this fact, since in reality we would not know from which distribution the
data were generated. In order to find clusters in subspaces, we only consider
projections to three dimensions here. Figure 10 illustrates a projection where we
can see two clusters. One cluster is above the diagonal plane of the unit cube,
the other one below.

What is the chance that we can find such a projection for our uniformly
distributed data from the 10,000-dimensional unit hypercube? Assume the sep-
aration between the clusters should be at least 0.1 units, i.e. the plane in Fig. 10
would be turned into a box of height2 0.1. What is the probability that no
2 In Fig. 10 the separation between the two clusters is chosen larger for illustration

purposes.
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Fig. 8. Distribution of the distances of the data to the origin of the coordinate system
in the second example for 10 (left) and 30 (right) dimensions.

projection will look like this, i.e. that each projection contains at least one point
within the separating box? The box has a volume of

√
12 +

(
1
2

)2

·
√

12 +
(

1
2

)2

· 0.1 = 0.125,

so that the remaining volume of the cube is 1 − 0.125 = 0.875. The probability
that all points lie in this remaining cube outside the separating box, i.e. that we
have two artificial clusters, is 0.875200 and the probability that these artificial
random cluster do not occur for a single projection to three dimensions is 1 −
0.875200. The probability that we will not find such random clusters in any of
the 10000 · 9999 · 9998 possible projections to three dimensions is

(
1 − 0.875200

)10000·9999·9998 ≈ 0.08.

So there is only an 8 % chance that we will not find these spurious random
clusters in any of the three-dimensional projections of our data set from a high-
dimensional uniform distribution. It should be noted that we have only consid-
ered projections to three dimensions and a specific separating plane between the
clusters. If we allow projections to more than three dimensions and take into
account that the random clusters might be separated by other planes or geo-
metric shapes, the situation gets much worse and the probability that we find
random clusters in a projection is almost 1, even if we have more than 200 data
points.

Therefore, it is highly recommended to carry out some additional tests to
verify whether clusters found by subspace clustering in very high-dimensional
data set are not just random effects. One can apply a permutation test in which
the values in each column of the data table are randomly permuted. Then the
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Fig. 9. Distribution of the distances of the data to the origin of the coordinate system
in the second example for 50 (left) and 200 (right) dimensions.

clustering algorithm is applied to the randomly permuted data. When the clus-
tering algorithm still finds clusters in this permuted data set, one cannot trust
the clusters that were found in the original data set. The permutation test should
be carried out more than once.

A Monte Carlo test is also possible by generating random data of the same
dimension and with the same number of data objects, but using a distribution
where no clusters should be found like the uniform distribution in the unit hyper-
cube that we have considered above. When the algorithm can find clusters in
such a random data set, the clusters in the real data set might again be just
random artifacts.

Subspace clustering is definitely needed when we assume that our data set is
more like the first example described in Sect. 4, i.e. there are a few attributes that
contribute to the clusters and the large majority of attributes is just “noise”. In
this case, clustering algorithms taking all attributes into account, would have lit-
tle or no chance to discover the clusters. The CoN and the hubness phenomenon
will hide the clusters.

But how is the situation when the data set is more of the type as the second
example described in Sect. 4, i.e. most of the attributes contribute a little bit to
the clusters and only a few “noise” attributes might be present? Fig. 9 indicates
that the CoN phenomenon can even make it easier to find the clusters. The
reason is that the CoN phenomenon is not applicable to the whole data set.
The assumption that the relative variance goes to zero is not satisfied here. The
relative variance in this simple example is strictly positive due to the two clusters
whose centres have a distance of

√
m. The expected distance to the origin is

√
m
2 .

So the relative variance is roughly 1
4 . The CoN phenomenon does occur, but in

each cluster separately as can be seen from Fig. 9 where the two peaks in the
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Fig. 10. A possible projection which contains clusters only by chance.

histograms for the clusters become not only better separated, but also quite
narrow for high dimensions.

However, the situation is not as positive and simple as it seems. When we
look at prototype-based clustering, it is not a problem of the objective function.
For an ideal data set as the second example in Sect. 4, the objective function
will have a clear global minimum at the centre of the two clusters. But when
we have more than just two clusters, it becomes a problem of local minima of
the objective function and therefore a problem of a good initialisation. Since
the location of the cluster centres is not known a priori, the initial prototypes
are placed “somewhere” and then suffer from the CoN phenomenon on the level
of the clusters in the sense that all clusters have roughly the distance to them
unless a prototype is located close to a true cluster centre.

In [30] it was demonstrated that k-means clustering has difficulties to find
clusters in high dimensions, even when the clusters are well separated. One
might suspect that this is the well-known sensitivity of k-means clustering to
the initialisation and that fuzzy clustering might yield better results. But the
contrary is the case. For fuzzy clustering, all or most of the prototypes tend to
converge in the centre of gravity of the whole data set.

What is the reason for this surprising result? Fig. 11 from [30] explains this
effect. It shows the objective function (4) of fuzzy clustering reduced to one
parameter for a specific data set. The data set consists of a fixed number of
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Fig. 11. The objective function of fuzzy clustering has a local minimum in the centre
of all data points for high-dimensional data.

well-separated clusters – each of them concentrated in a single point – distributed
uniformly on the surface of an (m−1)-dimensional unit hypersphere. The cluster
prototypes are first all placed into the origin, i.e. the centre of gravity of all the
data points. Then the cluster prototypes are moved along the lines connecting
each cluster prototype with one of the true cluster centres. So at 0 on the x-axis
in Fig. 11 all prototypes are at the origin (radius=0), at 0.5 they are halfway
between the origin and the true cluster centres and at 1 each of the prototypes
is placed exactly in one of the cluster centres. As can be seen from the figure, the
clear global minimum of the objective function is at 1, i.e. when all prototypes
are placed in the true cluster centres. But there is a local minimum at the origin,
separated by a local maximum from the global minimum. The local maximum is
shifted more to the right for higher dimensions. Since the algorithm to minimise
the objective function of fuzzy clustering can be view as a gradient descent
technique [31], the cluster prototypes will end up in the local minimum at the
origin when the initialisation is not close enough to the true cluster centres.

These considerations about the objective function for fuzzy clustering in high
dimensions demonstrate that the CoN phenomenon occurs on the level of the
cluster centres in the sense that all cluster centres have roughly the same distance
from a prototype that is not placed close to a true cluster centre. So this is not a
problem of the objective function which clearly shows a global minimum at the
correct cluster centres. It is a problem of the optimisation algorithm. In contrast
to this example where the clusters are well separated, the first example in Sect. 4
would also cause a problem for the objective function, since the minimum would
not be pronounced very clearly.
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There are ways to partly avoid these problems. One way is to try to adjust the
fuzzifier w in the objective function (4) depending on the number of dimensions.
The higher the number of dimensions, the smaller, but of course larger than 1,
the fuzzifier should be chosen. A better way to avoid the tedious adjustment
of the fuzzifier is to use a polynomial fuzzifier function [32] that replaces the
power function uw by a quadratic polynomial of the form w ·u2 +(1−w) ·u with
u ∈ [0, 1]. This leads to a convex combination of the standard k-means clustering
objective function (2) and the objective function for fuzzy clustering (4) with
fuzzifier 2.

Density-based clustering suffers from the problem that density can vary to an
extreme extend in high dimensions and it is very difficult to adjust the parameter
settings.

6 Conclusions

Clustering high-dimensional data is a difficult task. The problem starts already
with the understanding of how a cluster should be characterised. Will only a few
dimensions or attributes contribute to the clustering and the large majority of
attributes is considered as “noise”?

We have seen with the first example in Sect. 4 that a limited number of
“noise” attributes can be tolerated without destroying the clusters. If the data
set is expected to contain too many “noise” attributes that are irrelevant for
the clustering, subspace clustering techniques are needed. Subspace clustering
drastically increases the complexity of clustering, since not only clusters need to
be found but also the right subspace. Apart from this, for very high-dimensional
data, subspace clustering might lead to finding spurious clusters that “look
good”, but are just random effects as we have illustrated in Sect. 5. Therefore,
validation techniques like permutation or Monte Carlo tests should be applied
to get an idea for the chances of finding spurious clusters.

If the number of “noise” attributes is limited, subspace clustering might not
be necessary. However, clustering algorithms might still suffer from the CoN
phenomenon. As we have seen, if the clusters are well separated, this is not a
problem of the cluster model – the objective function – but a problem of the
algorithm to find the best cluster model or to minimise the objective function. As
for subspace clustering, it is highly recommended to evaluate the clusters. How-
ever, here other methods than permutation or Monte Carlo tests might be better
suited like cross-validation in the sense of resampling [33] or the application of
other cluster validity measures. A good overview on cluster validity measures can
be found in [34]. These techniques are also often used to determine the number
of clusters.

Missing values are a problem that is usually not considered in cluster analysis
[35]. But missing values will occur with larger probability in high-dimensional
data. This is still an open problem.
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Abstract. Density-based clustering defines clusters as dense areas in
feature space separated by sparsely populated areas. It is known to suc-
cessfully identify clusters of arbitrary shapes even in noisy data. Today,
we face increasingly high-dimensional data, i.e. data objects described
by many attributes. Effects attributed to the “curse of dimensionality”
mean that in high-dimensional spaces, traditional clustering methods fail
to identify meaningful clusters. In little more than a decade, the research
field of subspace clustering has established methods for identifying clus-
ters in subsets of the attributes in such high-dimensional spaces. As the
number of possible subsets is exponential in the number of attributes,
efficient algorithms are crucial. This short survey discusses challenges in
this area, and presents models and algorithms for efficient and scalable
density-based subspace clustering.

Keywords: Data mining · Clustering · Density-based clustering · Sub-
space clustering · High dimensional · Efficiency

1 Introduction

With increasing availability for sensors, large amounts of data are being col-
lected in a variety of applications. Ranging from science to business and end
user applications, the volume of data collections is growing continuously. At the
same time, the number of attributes describing the data is increasing as well. As
prices for storage are dropping, many features are routinely collected for a given
data object.

Knowledge discovery in databases is a well-established approach for making
sense of large data collections in a (semi-)automatic fashion. A core step in the
process is the extraction of patterns from task-relevant cleaned data using data
mining algorithms. A popular data mining method is clustering, which aims to
discover groups of data objects based on mutual similarity.

Different clustering paradigms exist in the clustering literature. Density-
based clustering defines clusters as maximal groups of density-connected objects
that are separated by sparsely populated areas in feature space [8]. This approach
is known to perform well even in data collections including noise.
c© Springer-Verlag Berlin Heidelberg 2015
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In high-dimensional data, i.e., in data with a large number of attributes (or
dimensions or features), clustering is known to fail due to effects attributed to
the “curse of dimensionality” [6]. As the number of dimensions increases, the
distances between objects in the feature space become more and more alike [7].
As a consequence, the distance in the high-dimensional space no longer discerns
between nearby and far away objects. Since dense objects are defined as those
with at least a certain number of objects within their neighborhood, this means
that density-based clustering in high-dimensional data fails to detect meaningful
clusters.

In recent years, the data mining community has researched subspace cluster-
ing methods as a method for clustering in high dimensional data. The general
idea is to identify clusters in subspace projections of the data. This is based on
the important observation that relevance of dimensions might not be globally
uniform; instead, locally different subspace projections might be relevant for dif-
ferent clusters. In this manner, it is also possible that a data object is assigned
to different clusters in different subspace projections.

In this short survey, we give a brief overview over density-based subspace
clustering, and we review some of our work in this area. For a more general
discussion of density-based clustering, clustering in high-dimensional data, and
subspace clustering also using other clustering paradigms, the interested reader
is referred to a number of recent surveys and evaluation studies on the topic
[2,11,12,14,17–19].

2 Density-Based Subspace Clustering

Density-based clustering was originally introduced as DBSCAN in the seminal
work in [8]. A cluster is defined as a maximal group of density-connected objects
that originate around one or more dense core objects. Objects are core objects
when their density, i.e., the number of objects within a neighborhood, exceeds a
pre-defined threshold.

Definition 1. Density-Based Cluster. A density-based cluster C w.r.t. den-
sity threshold minPoints and neighborhood radius ε is defined as follows:

– All objects in C are dense, i.e., there are at least minPoints objects in their
neighborhood:

∀o ∈ C : |Nε(o)| = |{p ∈ DB | dist(p, o) ≤ ε}| ≥ minPoints

– All objects are density-connected, i.e., for any two objects in the cluster, there
is a chain of objects between them such that the successor in the chain is in
the predecessor’s neighborhood:

∀o, p ∈ C : ∃ q1, . . . , qm ∈ C : ∀i∈{2,...,m} qi ∈ Nε(qi−1) ∧ q1 = o ∧ qm = p
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– The cluster is maximal, i.e., any two density-connected objects are either both
in cluster C or both not in it:

∀o, p ∈ DB : o, p density-connected ⇒ (o ∈ C ⇔ p ∈ C)

This definition is illustrated in Fig. 1. The density of an object is assessed by
counting the number of objects in its neighborhood, i.e., within ε distance. If the
density exceeds the minPoints threshold, the object is a core object. From such
core objects, all objects that are density-connected are assigned to the same
cluster. Sparse areas in feature space separate a cluster (points to the lower
left) from another cluster (points to the upper right). Since not all objects are
necessarily assigned to a cluster, density-based clustering tolerates noise in the
data.

Fig. 1. Density-based clustering: a cluster is a maximal group of objects that are
connected via mutual inclusion in their neighborhood starting from at least one dense
core object.

In high-dimensional data, an effect known as the “curse of dimensionality”
limits the applicability of density-based clustering (and other clustering para-
digms). As distances are known to be more and more alike [7], it is no longer
possible to meaningfully use the neighborhood notion for density assessment and
cluster assignment. Intuitively, this means that irrelevant dimensions hinder the
detection of clusters. Global dimensionality reduction techniques, such as Prin-
cipal Components Analysis (PCA) may be able to reduce the data to a lower
dimensional projection where clustering is possible. In many cases, however, the
relevance of dimensions is not globally uniform, but varies locally. For some
clusters, a certain subset of dimensions might be relevant, whereas for others,
another subset is relevant. A single global reduction can therefore only detect
some of the patterns, and loses those that are visible only in other projections.

To illustrate this effect in high dimensions, we give a toy example in two
dimensions in Fig. 2. Assuming that we cannot cluster the two-dimensional full
space directly, we can see that the projection to dimension D1 results in a dif-
ferent set of subspace clusters than the projection to dimension D2. Using only
a single global projection, this cannot be uncovered. Please note that in high
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dimensional spaces, this effect is much more pronounced, and clusters visible
in some subspace projections will display as random noise in other subspace
projections.

D1

D
2

C1,D1 C2,D1

C
3,
D

2
C

4,
D

2
C

5,
D

2

Fig. 2. Toy example of local relevance of dimensions: in projection to dimension D1

different subspace clusters are discovered than in projection to D2

In subspace clustering, the goal is the discovery of the relevant subspace pro-
jection for each cluster. As a consequence, the above definition of a density-based
cluster can be easily adapted to subspace clustering by associating each cluster
with its subspace, and by restricting the density-assessment in the neighborhood
to this subspace.

Definition 2. Density-Based Subspace Cluster. A density-based cluster CS

w.r.t. density threshold minPoints and neighborhood radius ε is defined as fol-
lows:

– All objects in C are dense, i.e., there are at least minPoints objects in their
S-neighborhood:

∀o ∈ C : |NS
ε (o)| = |{p ∈ DB | distS(p, o) ≤ ε}| ≥ minPoints

– All objects are S-density-connected, i.e., for any two objects in the cluster,
there is a chain of objects between them such that the successor in the chain
is in the predecessor’s neighborhood:

∀o, p ∈ C : ∃ q1, . . . , qm ∈ C : ∀i∈{2,...,m} qi ∈ NS
ε (qi−1) ∧ q1 = o ∧ qm = p
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– The cluster is maximal, i.e., any two density-connected objects are either both
in cluster C or both not in it:

∀o, p ∈ DB : o, p S-density-connected ⇒ (o ∈ C ⇔ p ∈ C)

While this straightforward extension of DBSCAN to subspace clustering has
been shown to successfully identify subspace clusters also in higher dimensional
data [10], some specific challenges of high-dimensional data have been addressed.
These challenges are two-fold: (i) regarding a model of density-based subspace
clustering (dimensionality bias, redundancy) and (ii) regarding the efficiency
of density-based subspace clustering (pruning, indexing), as discussed in the
following sections.

3 Dimensionality Unbiased Density

When assessing the density around an object in full space, the neighborhood
distance does not change. In subspace clustering, however, we restrict the den-
sity assessment to the subspace projection under consideration. While this is
perfectly reasonable in order to identify density-connected groups in different
subspace projections, a new issue arises when the overall clustering in all possi-
ble subspace projections is considered.

As the number of dimensions increases, the expected distance between any
two data objects increases as well. As a consequence, the expected density drops
accordingly. This means that comparing the number of data objects in the neigh-
borhood of two subspaces of different dimensionality is biased towards the lower
dimensional subspace. We say that the density assessment is dimensionality
biased. This creates a problem when searching for all subspace clusters in all
possible subspace projections. Either, one can set a low density threshold in
order to ensure that also relatively high dimensional subspace clusters can be
considered dense and thereby be discovered, and retrieve a huge number of low
dimensional subspace clusters. Or, one can set a high density threshold to avoid
overwhelming numbers of subspace clusters, and miss higher dimensional sub-
space clusters. Thus, dimensionality bias is a fundamental threat to meaningful
subspace cluster discovery, as the distinction between dense clusters and sparse
noisy areas is blurred by effects of the dimensionality.

In [3], a general definition of the notion of a dimensionality unbiased density
measure is given:

Definition 3. Dimensionality Unbiased Density Measure. A density
measure ϕS

ε is dimensionality unbiased if its expected density is the same for
any two subspaces S1 and S2 ⊆ D:

∀ S1,S2 : E
[
ϕS1

ε

]
= E

[
ϕS2

ε

]

Using our notion above, the density measure ϕS
ε is the count of objects within

the neighborhood: ϕS
ε (o) = |NS

ε (o)|. As discussed above, this density measure is
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Fig. 3. Illustrating dimensionality bias: the expected density in a uniformly distributed
space (left) in a one-dimensional space (top) is larger than in a two-dimensional space
(bottom). Using a fixed density-threshold, a bias towards detection of low dimensional
subspace clusters is observed. In the right figure, both neighborhoods contain the same
number of points, which is more unexpected in a two-dimensional space.

biased, as increasing dimensionality leads to larger distances, and lower density
within the neighborhood. An example is illustrated in Fig. 3. At the left, the
situation in a uniformly distributed space is depicted for one-dimensional (top)
and two-dimensional subspaces (bottom). As we can see, the expected number of
objects within the chosen neighborhood size for this example is 9 and 5, respec-
tively. At the right, we see an example in the two-dimensional space, where the
neighborhood contains also 9 data objects, which is unexpected in this dimen-
sionality, and should be recognized as the beginning of a subspace cluster. This
can only be achieved by adapting the density measure such that bias is avoided.

Following [3], a density measure can be made unbiased by normalizing with
its expected value:

Lemma 1. Eliminating Dimensionality Bias. For any density measure ϕS
ε

1
E[ϕS

ε ]
ϕS

ε is dimensionality unbiased.

Thus, by normalizing with the expected value within a subspace of a certain
dimensionality, the density can be made unbiased. Going back to the example in
Fig. 3, we can see that if we normalize with the expected value, then the situation
at the bottom right is easily distinguished from the one at the top right. In
this manner, it is easily possible to set the parameter for the density threshold
such that both low dimensional and high dimensional subspace clusters can be
detected. This is an important property for meaningful subspace clustering in
high dimensional data.



40 I. Assent

4 Redundancy-Removal

Another issue that we are confronted with when moving from full space to sub-
space clustering, is the potential redundancy of the detected patterns. As noted
before, a data object can be assigned to more than one cluster in different sub-
space projections. While this is a desirable property in order to uncover different
patterns that might be able to describe diverse aspects of an object’s alignment
with different groups in the data, there is also a caveat. More precisely, a data
object that is part of a subspace cluster of dimensionality k is likely to be also
clustered similarly with other objects in dimensionality k − 1, k − 2, etc. Very
often, these subspace clusters do not differ substantially, and therefore do not
contribute any novel information for the user. By contrast, they can lead to over-
whelming result sizes. At the most extreme, it may happen that more subspace
clusters are reported than there are data objects in the entire database. Clearly,
this is not an informative result.

We illustrate this in Fig. 4. As we can see, the two-dimensional subspace
cluster is reflected in its two projections to both one-dimensional subspaces.
Clearly, for higher dimensional subspace clusters, there are many more possible
lower dimensional subspace projections. In the example, one of the reflected
subspace clusters at the left includes a number of additional data objects, so it
might be interesting to report this as a subspace cluster of its own, depending
on user preferences. Please note, that we generally assume that among any two
subspace clusters describing a given pattern, the higher dimensional one is the
more interesting one, as it enumerates all dimensions in which we can describe
the pattern. Additionally, of course, there can be subspace clusters that are not
reflected in higher dimensional subspace clusters, such as the one-dimensional
one at the lower left. This one should always be reported.

Therefore, research on subspace clustering has also investigated redundancy
removal. In [5], redundancy is defined using a user preference parameter. This
parameter specifies the relative amount of new data objects to be present in a
non-redundant lower dimensional subspace cluster. In this manner, it is possible
to trade-off result size with degree of new information.

Definition 4. Non-redundant Subspace Cluster. A density-based cluster
CS is non-redundant w.r.t. redundancy parameter δ iff

¬∃(C ′S′
)subspace cluster with C ′ ⊆ C ∧ S′ ⊃ S ∧ |C ′| ≥ δ · |C|

Interestingly enough, removing redundancy not only reduces the result to
a manageable size, but also improves the overall quality of the result set. As
demonstrated in the experimental evaluation in [5], the quality typically increases
as redundancy is removed. This is largely attributed to the fact that redundant
and smaller patterns often constitute noise or less prominent patterns that do
not accurately grasp the overall structure of the data.

Recently, also more advanced definitions of redundancy have been studied,
that consider the situation where a subspace cluster might be very similar to
the union of two (or more) other clusters, and aim to optimize the result set
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Fig. 4. Redundancy in subspace clustering: a two-dimensional subspace cluster is likely
to be repeated similarly in its one-dimensional projections. If sufficiently many new data
objects are included in the one-dimensional subspace cluster, it might be interesting to
report as a separate pattern as well.

such that (almost) all data objects are described by a suitable subspace cluster
[15]. Other approaches include [13], where the goal is to identify statistically
significant patterns.

These models describe the desired output, i.e., which subspace clusters should
be reported among the possibly large number of patterns in the different subspace
projections. Naturally, the question arises how to efficiently detect all subspace
clusters, and ideally only the non-redundant ones.

5 Pruning Subspace Clusters

Clearly, naively searching all possible subspace projections is not feasible for
reasonably sized high dimensional data sets. To reduce the effort necessary in
order to do density-based subspace clustering, especially for unbiased measures
that are different for different dimensionalities, a multistep filter-and-refine algo-
rithm has been introduced in [4]. An overview over the general idea is given in
Fig. 5. As we can see, it is based on an initial conservative approximation of sub-
space cluster candidates using so called hypercubes. These hypercubes undergo
a weak density filter that checks whether the candidate could be a subspace
cluster in any dimensionality. Finally, if both filter steps are successfully passed,
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Fig. 5. Multistep filter-and-refine approach to subspace clustering: the data space is
discretized losslessly via a density-conserving grid to generate hypercube candidates.
Passing a weak density filter, only successful candidates are clustered with respect to
the exact unbiased density measure in the corresponding subspace projection in order
to generate the correct result.

the refine step subjects the candidate to the exact subspace clustering using
the unbiased density measure. Since each filter step allows for pruning of sparse
areas in space or weakly populated hypercubes, only few candidates typically
undergo the expensive final clustering step. In this manner, subspace clustering
is rendered considerably more efficient.

In the following, we discuss the filter steps in more detail. Initially, the data
space has to be discretized in order to form a conservative approximation of
potential subspace clusters in enclosing hypercubes. Please note that discretiza-
tion is an approach that was also used in the first subspace clustering algorithm,
CLIQUE [1]. Their grid discretization, however, may result in missed subspace
clusters due to position or resolution of the grid. This issue is illustrated in
Fig. 6. As we can see in the image to the left, the cluster in grid cells 2 and 3 in
dimension 2 (grey area) is cut apart by the grid. Using a density threshold of
e.g. five, this cluster would not be detected. By contrast, the sparsely populated
area in cell 2 in both dimensions would pass the threshold and become part of
the result.

In order to avoid this problem, the work in [4] uses a novel density-conserving
grid that can detect such situations. As can be seen in the right part of the
figure, additional borders at the top of the cell in each dimension are introduced.
These borders are exactly the size of the neighborhood radius in density-based
subspace clustering. Consequently, if there is no object in this border, no density-
connection across the cell boundaries exist. Otherwise, if there is such an object,
then there might well be a cluster that extends across more than one cell. Thus,
the two cells would be merged to form what is called a hypercube. Processing
all cells in a predefined order, all necessary merges are performed in the first
hypercube filter step. At the end of this step, a conservative approximation of
any possible subspace cluster has been generated. It can be described concisely
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Fig. 6. Discretization approaches to subspace clustering: traditional grid (left) with
issues regarding position and resolution, and the density-conserving grid (right) with
additional density borders.

using the cell boundaries in the respective dimensions and the number of objects
therein.

Once these hypercubes have been detected, a second filter step entails. It is
based on the observation that any valid subspace cluster according to the unbi-
ased density-based model has to exceed the density threshold for at least the
weakest density measure. Since the expected density drops with the dimension-
ality, the weakest density measure is the one in the full space. Thus, the weak
density filter simply checks the hypercube using this full space density assess-
ment. Some hypercubes will be pruned in this step, while the remaining ones
are subjected to the exact subspace clustering routine. After this refinement, all
density-based subspace clusters have been detected. For details on how to prove
this completeness, please see [4].

6 Indexing Subspace Clustering

The first subspace clustering algorithm CLIQUE uses an algorithmic approach
similar in spirit to the apriori approach to frequent itemset mining [1]. The idea
is to search the subspace projections in a bottom-up fashion. Starting from the
one-dimensional projections, only subspace clusters from lower dimensions are
combined to form candidates for higher dimensional projections. These candi-
dates are verified, and if successful, used to generate candidates on the next
higher level. This algorithmic approach is illustrated in Fig. 7 (left).

While this approach has been used successfully, also in density-based sub-
space clustering [10], its scalability is limited. This is due to the inherent principle
used in bottom-up approaches: a high dimensional subspace cluster is reflected in
its lower dimensional projections. Therefore, in order to generate the interesting
high dimensional subspace clusters, a very large number of (redundant) lower
dimensional subspace clusters has to be generated first. Also, these methods
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Fig. 7. Left: bottom-up or breadth-first approach to subspace clustering: starting from
one-dimensional projections, subspace clusters are used to generate candidates on the
next higher level. Entire levels have to be generated before moving to the next higher
level. Right: depth-first approach to subspace clustering: identify the highest possible
subspace projection that contains subspace cluster candidates, and prune any lower
dimensional redundant subspace cluster if successful.

assume a monotonicity property of the density measure. For unbiased density
measures, they therefore do not work.

As an alternative, a depth-first approach based on the above discretization
has been proposed in [5]. As a key advantage, it proposes an index structure
that is capable of handling all different subspace projections. For bottom-up
approaches such an index structure cannot be devised, as all possible combina-
tions of dimensions would need to be available in the index.

The idea of the so-called SCY-tree is to use the discretized representation
discussed above to create a compact representation of the data. Each cell count
is mapped to a node in the tree, including border counts. An example is given
in Fig. 8: at the left, we see the density-conserving grid representation in two
dimensions. To the right, the corresponding SCY-tree in three dimensions is
depicted. The highlighted area to the left of the grid corresponds to all three
data objects that are located in cell one in dimension one. This is reflected in
the grey node “1:3” at the leaf level which records three objects in cell one (note
that the leaf level corresponds to dimension one in the example). The highlighted
border object at the top of cell three connects cells one and two in dimension
two. Correspondingly, there is a special node “1” at the middle level in the tree
between the nodes that contain the cell counts for cell one and cell two. The
highlighted path from the root to the leaf tells us that there are five objects
located in cell two in dimension three (not visible in the grid), out of which four
are located in cell two in dimension two, out of which three are located in cell
one in dimension one. In this manner, it is possible to identify the location of all
objects in all dimensions.

The SCY-tree contains all the information necessary to analyze the counts
in all subspace projections without having to go back to the database. Algo-
rithmically, this is similar in spirit to the FP-tree mining algorithm for frequent
itemset mining [9]. The idea is to cut out the relevant paths to form so-called
restricted trees that contain only counts in the respective projections. This is
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Fig. 8. SCY-tree index structure for subspace clustering: nodes record the cell id and
the cell count, the level in the tree indicates the dimension. A path from the root to a
leaf corresponds to the exact count in a full space cell.

illustrated in Fig. 9: to obtain a restricted tree for a particular cell or dimension,
the corresponding nodes on that level are identified and the paths for the rele-
vant subspace projections are extracted. Please note that the merge of several
paths or trees is straightforward: simply sum up the corresponding counts.

The flexibility in this extraction of information in arbitrary subspace projec-
tions makes it possible to work in a depth-first manner (see also Fig. 7 (right)).
The core idea is to build hypercubes of the highest possible dimension, i.e., such
that the count or density thresholds are still met. Then, these candidates are
subjected to the filter steps outlined above. Only if these filter criteria are not
met, the algorithm will consider a lower dimensional projection. Otherwise, if all
filters are successfully passed and the refinement step discovers a valid subspace
cluster, then all redundant lower dimensional projections can be immediately dis-
carded without even being generated. This is a major advantage over bottom-up
approaches that have to work their way up through all redundant candidates in
order to reach the more interesting higher dimensional projections.

dim 2

dim 3

2:3

2:3

SCY-tree T{ (1,1) }

restrict(dimension 1,interval 1)

Fig. 9. Working directly on the index structure: extracting count information for a
particular subspace projection is straightforward. In this example, identify all nodes
corresponding to cell one in dimension one (leaf level) to obtain a restricted SCY-tree
that contains the corresponding counts in dimensions two and three.
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7 Approximate Jump Clustering

In extremely large scale or very high dimensional data sets, the run times of
subspace clustering remain an issue. In order to further improve the efficiency of
subspace clustering algorithms, approximate approaches have been proposed. By
relaxing the completeness constraint, the idea is to identify promising regions
in higher dimensional subspace projections just from a few lower dimensional
indicators [16]. Figure 10 illustrates such a jump from several one-dimensional
to a single three-dimensional region. Please note that in general, several jumps to
higher dimensional subspace projections are typically used. This type of process-
ing can be likened to traditional best-first search: the processing order of sub-
space projections is based on priorities using information on promising regions
from lower dimensional subspace projections.

B

full space
jump targets

jump source

B

Initial information

best-first

subspaces
(processed)

B

B

subspaces
(not processed)

large parts of
search space

DB

DB
∅

Fig. 10. Approximate “jump” subspace clustering or best-first search: based on initial
information in low dimensional subspace projections, few promising regions in higher
dimensional subspace projections are selected for a direct jump that avoids intermediate
subspace projections all together.

The general idea is to maintain a hierarchy of information at different levels
of granularity that allow the subspace clustering algorithm to steer through the
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search space of regions in different subspace projections. All information obtained
by the algorithm is organized in priority queues. As illustrated in Fig. 11, the low-
est level contains initial density estimates (one- or two-dimensional histograms)
for all regions. From these, hyperrectangles are formed at the next higher level,
then actual subspace clusters. The entire process is steered such that preference
is given to the most promising regions that have not yet been covered.
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Fig. 11. Hierarchy of information maintained in priority queues for subspace clustering:
at the lowest level, density estimates (histograms) initialize the process, at level 1,
hyperrectangles are stored, and level 2 maintains actual subspace clusters.

Please note that we can once again make use of the issue of redundancy in
order to obtain a good steering strategy: we know that the clusters in subspaces
of high dimensionality are likely to be reflected in very many low dimensional
subspace projections. This effect is put to good use by giving priority to hyper-
rectangles that are very similar and therefore likely to be reflections of the same
subspace cluster. On the other hand, priority is given to regions that include
data objects that are not yet covered, i.e., that are not yet assigned to any sub-
space cluster. In this manner, the subspace clustering aims to find an (almost)
complete subspace clustering of the data objects that avoids mining large areas
of the search space. Experimentally, not only substantial efficiency gains, but
also good quality results are found [16].

8 Conclusion

Density-based clustering is a successful approach to automatically grouping data
based on mutual similarity even in noisy data. In high-dimensional data, tradi-
tional clustering approaches fail due to effects attributed to the “curse of dimen-
sionality”. This paper discusses work done on density-based subspace clustering
in such high-dimensional data.

In subspace clustering, the goal is to find clusters in the subspace projections
that are most relevant to describe them. As discussed in this piece of work, a
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number of specific challenges arise for density-based subspace clustering. Regard-
ing suitable models of subspace clustering, removing dimensionality bias is an
important issue. As the dimensionality increases, the density assessment should
still be capable of reliable differentiating dense areas from noise. Another con-
cern is the pruning of redundant subspace clusters that contain more or less the
same information.

From an efficiency point of view, this is also helpful in that non-interesting
lower dimensional subspace clusters do not need to be generated. A multistep
filter-and-refine approach can further reduce run times by identifying conservative
approximations based on density-conserving grids. This approach is supported by
an index structure that maintains cell counts for tree-based depth-first process-
ing. For most efficient processing, the completeness constraint can be relaxed
in favor of an approximate jump subspace clustering technique that maintains
information on promising regions to be processed in a best-first fashion.

The above advances in density-based subspace clustering still face limitations
for extremely high dimensional data as is common e.g. in bioinformatics. For
these application domains, further efficiency improvements are necessary. At the
same time, there are often different similarity measures that are usually not
studied in density-based subspace clustering. The recent interest in the data
mining community in parallel computation techniques such as Hadoop opens
for exciting new research that will make it possible to make full use of modern
hardware.
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15. Müller, E., Assent, I., Günnemann, S., Krieger, R., Seidl, T.: Relevant subspace
clustering: mining the most interesting non-redundant concepts in high dimensional
data. In: ICDM, pp. 377–386 (2009)
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Abstract. Due to the specificity of clustering, a problem that is intrin-
sically ill-posed, there are several approaches to comparing clusterings.
Comparison of clusterings obtained in different conditions is often the
only affordable evaluation strategy, due to the lack of a ground truth. In
this chapter we address a class of dimensionality-independent methods
which can be applied in the presence of a high-dimensional input space.
Specifically, we review some generalizations of this class of methods to
the case of fuzzy clustering, in several variants.

1 Introduction

High-dimensional data is encountered in most fields of science and technol-
ogy. Although progress in data analysis and processing methods constantly
changes the concept of what constitutes high dimensionality, there are some
aspects of the problem which are inherent and unescapable, since they are more
related to the ratio between data dimensionality and cardinality than to absolute
values of either.

The most well-known description of such phenomena is termed the curse of
dimensionality, which expresses the consequences of volume growing exponen-
tially with the number of dimensions. These consequences include for instance:

– Sparsification of data (the empty space phenomenon): In many cases the num-
ber of observations (cardinality) is comparable with or even lower than the
number of observed variables (dimensionality).

– Exponentially growing number of model parameters, with corresponding
growth of necessary observations to obtain a given level of confidence or
precision.

– Concentration effect on distances: For metrics of a very general form, max-
imum and minimum observed values tend to take on the same value with a
probability that grows very rapidly with dimensionality; therefore distances
are not meaningful any more.

While supervised analysis (for instance, classification) can count on a rich
set of methods to keep the effects of dimensionality under control, such as model
c© Springer-Verlag Berlin Heidelberg 2015
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complexity estimation and working with kernels, for unsupervised methods and
especially for clustering the same tools are not always available. This is because,
while classification works with the mapping from data to nominal labels, cluster-
ing works directly with the structure of the space where the data live. Nonethe-
less, several techniques are commonly encountered for enabling clustering in high
dimensions. These include (see also [29] in this book):

– Variable selection: Retain only the variables that are deemed significant to
the problem at hand, according to some criterion.

– Subspace clustering: Perform clustering in spaces defined by a subset of the
variables, and then search for the most meaningful subset. Alternatively, find
a subspace (a more general linear projection, not necessarily axis-parallel)
where clustering is most satisfactory.

– Intrinsic dimensionality estimation followed by (possibly nonlinear) dimen-
sionality reduction: Find the dimension of the subset of the data space where
the data actually “live”, which most often is much lower than the number of
observed variables, and then map data onto a lower-dimensional structure,
which can be linear (a subspace), locally linear (union of several subspaces,
each restricted to a given region), or non-linear (a manifold).

– Specialized metrics: Find ways to measure (dis)similarity that are less affected
by concentration effects, for instance with particular values of the exponent
in Minkowski metrics, or by using ranks instead of primary measures.

– Working with an affinity matrix rather than directly with data, using specific
methods that do not require the direct representation of objects: Agglomera-
tive clustering, correlation clustering, shared neighbors clustering.

– Using kernel and spectral clustering, which start from data representations
and map them into affinity-based representations by using specific measures
(kernels).

In this contribution we describe some techniques to measure similarities
between pairs of different clusterings, taking advantage of the added flexibility
provided by fuzzy clustering. We will review a few existing clustering similarity
indexes, and describe some possible generalisations and extensions that make
them applicable even in the fuzzy case. Some applications, using benchmark
data sets, will also be shown.

A recent extensive survey [12] cites 76 measures of similarity or dissimilarity
developed over the last century. The same problem can be cast as measuring
diversity among classifiers or clusterings, binary string similarity, categorical
feature similarity. A more recent trend has been to incorporate more informa-
tion than just the coincidence of binary/categorical attributes; this includes for
instance the development of fuzzy variants [10,40].

2 Fuzzy Clustering

2.1 Some Notations and Definitions

The task of data clustering can be defined using set-theoretic concepts. A cluster-
ing of a given data sample, a set of N data points in a metric space
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X = {x1, . . . xN}, can be defined as a partition of the sample itself. This iden-
tifies partitional clustering methods. So clustering seeks a K-partition Π =
{C1, . . . , CK} of X. Each “part” of the partition is a cluster Cj , represented
by a centroid from a set Y = {y1, . . . ,yK}. Note that these definitions allow
us to extend partitions from the finite sample at hand to the whole data space
where the data “live”, thus providing what is commonly called an “out-of-sample
extension”.

It is customary to express attribution of data point xl to cluster Cj by means
of an indicator function u(xl, Cj), the membership function. In the presence of
a finite data set X, the membership values are the entries ulj = u(xl, Cj) of the
membership matrix U , whose rows are membership vectors ul.

2.2 Fuzzy Clustering

When we want to take into account more refined models, with more information
made available through the representation of clusters, we can resort to a fuzzy
formalism [45]. In general, there are several ways to represent uncertainty with
fuzzy sets, but in the special case of fuzzy data clustering [42] “fuzzy” means
specifically representing partitions by means of real-valued indicator functions.
This implies that a fuzzy clustering is not a conventional partition, but rather a
fuzzy partition allowing for partial overlap of clusters.

When compared to standard clustering, fuzzy clustering provides a more
flexible and powerful data representation paradigm. Fuzzy partitional methods
based on centroids share some model parameters with their closest non-fuzzy
counterparts, the number of clusters being the most notable example. However,
most of them also require setting some additional parameters, which often play
the role of degrees of fuzziness. As basic examples, we can mention Bezdek’s
fuzzy c-means [7] which needs the exponent m to be set to control fuzziness,
and Krishnapuram and Keller’s possibilistic c-means [26] which requires a set
of width parameters βj , one per cluster. In [30], we have proposed a graded
possibilistic c-means clustering technique (GPCM) that provides control over
the degree of possibility, thus allowing a soft transition between the standard
probabilistic and the possibilistic models. This is done through an additional
parameter α.

2.3 Methods for Fuzzy Clustering

Now we briefly review some fuzzy clustering methods, characterized by the fact
that cluster centroids are defined as follows:

yj =
∑N

l=1 uljxl∑K
j=1 ulj

. (1)

This formulation characterizes all the methods derived from c-means and is
obtained from the minimization of a suitable Lagrangian, but does not depend
on the actual computation of the memberships.
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However, the membership function will differ according to the specific method;
therefore the resulting centroids, whose computation depends on memberships as
per Eq. (1), in general will not be the same in different cases.

One taxonomy of methods uses the constraint imposed on the sum of all
membership for any given data point xl,

ζl =
K∑

j=1

ulj , (2)

as a discriminant feature. It is useful to think of a membership vector ul as a
point in the K-dimensional space of possible combinations of memberships for
the given point. The different feasible sets of membership values characterise
each specific method, as detailed in the following.

When the sum of memberships is constrained to ζl = 1, we are in the stan-
dard “probabilistic” case. With the usual formulation for crisp clustering, where
ux(C) ∈ {0, 1}, subject to the sum-1 constraint, only a set of K possible configu-
rations is available, namely, those corresponding to the membership vectors that
lie on the coordinate axes, a subset of the vertices of the unitary K-hypercube.
Here one and only one of the memberships can be 1, while all others are zero.

A more interesting and expressive case is that of fuzzy clustering. Here the
memberships lie on a segment of the K-dimensional hyperplane

ζl = 1. (3)

More specifically, they are located on the diagonal of the K-hypercube [0, 1]K ∈
R

K . Memberships obeying this constraint are formally equivalent to probabili-
ties. This case is termed “probabilistic” to stress this analogy. Crisp clustering
is a limit case of general probabilistic clustering, where “probabilities” corre-
spond to certainty; crisp memberships can only be located at the vertices of the
hypercube.

The Maximum Entropy (ME) approach [38,39] makes explicit use of the
probabilistic interpretation of memberships. In ME, by imposing the necessary
minimum condition on an objective function with an entropic penalty, the prob-
lem can be stated as a minimization of the following Lagrangian:

JME =
N∑

l=1

K∑
j=1

[
uljd

2
lj + ηulj log ulj

]
, (4)

and as a result of computing the necessary minimum conditions, memberships
can be obtained from:

ulj =
e−dlj/β

Zl
. (5)

where Zl =
∑K

j=1 e−dlj/β is termed the partition function. Clusters Cj then obey
the Gibbs distribution around the respective centroids yj :

Pr (x | Πj ) =
e−β‖x−yj‖2

Z(x)
, (6)
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where yj is the centroid representing cluster Cj and β is a resolution parameter
that, in a thermodynamic analogy, plays the role of a temperature. The quadratic
distortion is the “energy” of “particle” xl and Z(xl) is the corresponding “par-
tition function” at the specific “temperature” value 1/β:

Z(x) =
∑

k

e−β||xl−yk||2 . (7)

The optimization procedure proposed for this model includes an “annealing”
schedule to gradually lower the system’s temperature. Since at each step a sta-
ble state is reached before moving to the next step, this method is also called
Deterministic Annealing.

2.4 Possibilistic Clustering Models

The Possibilistic c-Means (PCM) [3,25,26] can be seen as being located at the
other end of the spectrum with respect to the probabilistic Maximum Entropy
method. It is based on removing any equality constraint on the sum of member-
ships, replaced by a set of loose requirements, which essentially allow the mem-
berships themselves to take any configuration within the hypercube [0, 1]K , with
the exception of two isolated points, those with all-zero and all-one memberships,
respectively. These are excluded by design by means of additional checks to avoid
trivial solutions. Note that now the memberships are not formally equivalent to
probabilities any more.

In this possibilistic case, taking as a reference the second formulation pre-
sented in [26], the objective function has the form

JPCM =
N∑

l=1

K∑
j=1

[
uljd

2
lj + ηj (ulj log ulj − ulj)

]
, (8)

and, again per the necessary minimum conditions, memberships are computed as

ulj = e−dlj/βj . (9)

If we set a single value β for all the βj , the only difference with Eq. 5 is in
the denominator. To take advantage of this fact, we generalize the membership
function as follows:

ulj =
vlj

Zl
, (10)

where we have introduced the free membership vlj , defined as follows:

vlj = e−dlj/βj . (11)

These functions share the same term for penalizing the overall distortion,
but each of them has different additional penalties. As a result, the centroid
location update equations remain the same, resulting in centers being placed
at the barycenter of clusters weighted by membership. The membership update
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equations, which as per Eqs. 5 and 9 express the dependence of memberships
from distances, differ by the form of the term Zl. For a general class of clustering
formulations and associated objective functions, we may redefine ζl in terms of
the free memberships

ζl =
K∑

j=1

vlj . (12)

For instance, in the probabilistic approaches Zl = ζl, whereas in standard
possibilistic approaches Zl = 1.

2.5 Graded Possibilistic Models

The classic probabilistic membership model, be it either hard or fuzzy, imple-
ments the concept of partitioning a set into disjoint subsets with memberships
formally equivalent to the probability of one out of K mutually exclusive events.
In the possibilistic approach each membership is formally equivalent to the prob-
ability of one out of K mutually independent events. Of course they may retain
the usual fuzzy interpretation as degrees of truth rather than probabilities.

The graded possibilistic membership model assumes instead that events may
be independent to a certain degree, but not completely, so that, while interme-
diate cases will be treated as independent, extreme cases (with some very high
or very low membership values) will be considered mutually exclusive. This pro-
vides the method with a notable expressive power in terms of fuzzy modelling.

The partition function characterizing the Graded Possibilistic c-Means
(GPCM) is derived from the interval constraint

∑K
j=1 ulj

[γ] = 1. Here we use

an interval variable [γ] = [ γ(l), γ(u) ]. Note that ulj
[γ] = [ulj

γ(l)
, ulj

γ(u)
] since an

exponential with interval exponent [A] = [A,A] is the interval e[A] = [eA, eA] [34].
An interval variable is commonly interpreted as the admissible range for the

actual value of an unknown variable. Adopting this interpretation, the mixed-
type equality between a non-interval variable a and an interval variable [A] has
been conventionally used with the following meaning: The equality a = [A] is
true when A ≤ a ≤ A, or a ∈ [A]. In most applications of interval arithmetic,
from numerical error bracketing to type-2 fuzzy sets, this means that [A] is the
uncertain representation of a.

In Ref. [30] this is explained in some more detail; here we restrict ourselves
to a particular choice of γ(l) and γ(u), for which we obtain the specific imple-
mentation that we study in this work: γ(l) = α and γ(u) = 1, where α ∈ (0, 1]
controls the “possibility level.” In other words, the interval parameter [γ] has
the form

[γ] = [α, 1]. (13)

In this specific, asymmetric implementation, memberships whose sum exceeds
1 are forbidden. Therefore clustering is effectively competitive among nearby
centroids. However, for far-away centroids, the competition decreases with α.
This allows us to obtain points which are not attributed to any cluster, thus
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providing a very natural representation for outliers. The partition function is in
this case computed as follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Zl =
∑K

j=1 vlj if
∑K

j=1 vlj > 1

Zl =
(∑K

j=1 vα
lj

)1/α

if
∑K

j=1 vα
lj < 1

Zl = 1 otherwise.

(14)

For α = 1, the representation properties of the method reduce to those of ME,
while in the limit case for α → 0, the representation properties are equivalent
to those of PCM-II for low membership values, and to those of ME for higher
values.

This method, the Asymmetric Graded Possibilistic c-Means (AGPCM), has
several nice properties that make it worth studying and using in practice:

– In [30] this particular model has been shown to possess robustness properties.
The rejection ability can be applied in robust clustering and outlier analysis,
while its reverse, outlier identification, can be used in novelty detection and
data distribution characterization (or one-cluster clustering) as in [15].

– While for the fully possibilistic method it is very difficult to attain conver-
gence, the graded approach has better convergence for α sufficiently larger
than 0. It is also possible to “play” with parameters along the optimization
process, for instance applying an annealing schedule to α, so as to exploit the
best values in the most appropriate phase of the convergence: higher α in the
initial steps, when centroids need to break symmetry and diverge; lower α in
the later steps, when a precise, outlier-insensitive placement is sought.

– From the point of view of data analysis, full membership to more than one
cluster, as allowed by a symmetric formulation, may have a difficult inter-
pretation; in contrast, a point which does not belong to any cluster is easily
interpreted as an outlier.

– As a quantitative counterpart of the previous point, memberships summing
up to at most one allow a much easier comparison between clusterings, since
the range of values for fuzzy similarity indexes depends on the values of mem-
berships. This point will be discussed further on in this paper.

– Outlier insensitivity presents advantages with respect to convergence as well,
since, while centroids in non-fuzzy clustering are insensitive to points outside
their cluster, centroids in fuzzy clustering have to account for the effect of all
points. This is not the case with the possibilistic model. An illustration of this
increased precision in locating cluster centres is provided in Fig. 1.

– On the other hand, with respect to PCM and symmetric-GPCM, AGPCM
features an effective repulsion between nearby centroids, thus reducing the
risk of overlapping clusters.

The main disadvantage of this method is the presence of relatively many
parameters that need to be set. No criterion was given in the original work to
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Fig. 1. Outlier rejection demonstration for AGPCM. Above: Data set. Below: Cen-
troid locations. Black circles are the true cluster centres; triangles are centres found
with α = 0 (maximum rejection); squares are centres found with α = 1 (no rejec-
tion, representationally equivalent to ME). Note that some triangles are hidden by
true cluster centres since they are almost coincident; this is clearly not true for the
“probabilistic” centroids. Figures from [30].

assess the value of α, while β was initialized following heuristics available in the
literature; for both, “annealing” procedures were then applied, but without any
measure of quality. The stability analysis described in the following sections was
motivated by this lack of objective tools.

3 Comparing Fuzzy Clusterings

3.1 Approaches to the Comparison of Clusterings

Measuring the agreement between two clusterings amounts to measuring the
similarity between two partitions, and there are several partition similarities
available in the literature. It should be noted however that fuzzy clustering is not
addressed very frequently in these works, even if it has several advantages over
standard clustering from both representational and computational viewpoints
[24,30]. The two main approaches include comparing clusters after matching
them, and comparing co-association information.

The first approach consists in first identifying pairs of clusters, each composed
of one cluster from the first partition and one from the second, which can be
considered related, or, ideally the same cluster. A perfect match is difficult to
obtain, and this correspondence problem may not have a satisfactory solution.
The second step is to evaluate the degree of matching, and this is of course
possible only if the first step succeeded.

A second approach is based on co-association. Two data items are co-associated
if a partition puts them in the same cluster. The agreement or disagreement of par-
titions can be measured by coassociation, i.e., counting the number of pairs of data
items on which both partitions agree, and comparing it with the number of pairs on
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which they disagree. Several classic indexes are based on this rationale. In the fol-
lowing we review some of them and describe some variations, including fuzzy and
probabilistic versions.

This approach is followed in [16,21]. In [40] we defined a methodology to
extend several indexes based on co-association to the fuzzy and possibilistic
case, by means of co-association matrices [17]. Several indexes can simply be
computed starting from the entries of a confusion or contingency matrix, which
is readily obtained from the co-association matrix.

3.2 Notation

Suppose we select a partitional clustering method. For a specific choice of clus-
tering parameters, possibly including selecting a given number of clusters and
a random initialization, but excluding changes in the data sample, we obtain
a given partition. If we repeat this process for a number of times, the i-th run
will optimize a set Y i = {yi

1, . . . ,y
i
Ki} of Ki centroids, which represent a Ki-

partition Πi =
{
Ci

1, . . . , C
i
K

}
. We will not require that Ki = Kk for i �= k, i.e.,

it is not necessary to have the same number of clusters in different instances.
The i-th fuzzy indicator function will be similarly denoted as ui(xl, C

i
j), and

likewise we will have ui
lj = ui(xl, C

i
j). However, wherever we do not refer to

specific instances nor need to differentiate among them explicitly, we will drop
the sub/superscripts i, k to avoid a cumbersome notation.

We indicate the fact that partition Πi puts two data items xl and xm in
the same cluster by writing the indicator function xl ∼i xm. The negation is
expressed with the barred symbol: xl �i xm. This notation is borrowed from [5].

3.3 Co-association

In fuzzy clustering partitions are fuzzy, meaning that ∀xl ∈ Xl : 1, . . . , N , the
membership ulj = u(xl, Cj) ∈ [0, 1] for each cluster Cj ∈ P and ∀l : 1, . . . , N the
constraint

∑K
j=1 ulj = 1 holds as per Eq. (3); in addition, we allow possibilistic

partitions by removing this last constraint. As discussed earlier, possibilistic
partitions may be a meaningful extension to fuzzy partitions especially in the
asymmetric constraint case (where

∑
j u(xl, aj) ≤ 1), although they can also be

considered in symmetric graded cases and in fully possibilistic cases with a bit
more interpretation effort.

Under a given partition Π, each data point is now represented by a mem-
bership vector. We define the coassociation ξlm between two data items xl and
xm as the degree of similarity between the representation of the two items under
the partition Π. Extending the notation of [5], we compute ξlm = xl ∼ xm as
follows:

ξlm =
K∑

j=1

ulj ∧ umj . (15)

We can also define the negative coassociation, which is the logical complement
of the coassociation:

xl � xm = ξlm. (16)
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Note that in the non-fuzzy case these definitions collapse to the propositions
“partition Π puts/does not put xl and xm in the same cluster”, but in the fuzzy
case it is necessary to take all clusters into considerations because, in general,
none of them will be exactly zero or one. On the other hand, in the fuzzy case,
ξlm is a degree of coassociation rather than an integer value representing binary
logic conditions.

3.4 Fuzzy Coassociation

To obtain a specific fuzzy instantiation of the general definition of coassociation
just given, we have to appropriately define the conjunction connective [45]. We
adopt the product t-norm [33], which provides uniformity with respect to other
models of imprecision or uncertainty. The conjunction logical connective under
the product t-norm is defined as a ∧ b = ab, and the negation operator as
a = 1 − a, so that a ∨ b = a + b − ab (the probabilistic sum t-conorm). The fuzzy
coassociation between xl and xm, therefore, is a real value ξlm computed as

xl ∼ xm = ξlm =
K∑

j=1

uljumj = ul · um. (17)

For a whole data set X, consider all possible pairs X2. The coassociation
of all pairs is a matrix Ξ, the coassociation matrix (also termed bonding rela-
tionship in [8]). This matrix is redundant, since by definition it is symmetric. In
the following, as in [40], we serialize the coassociation matrix, taking only the
upper triangular array corresponding to its elements above the diagonal, and
we obtain a coassociation vector s of dimension H = N(N + 1)/2, the N -th
triangular number (the number of unique pairs of entries in the matrix including
the diagonal).

The coassociation vector is defined as

sh = ξlm for h = l(l − 1)/2 + m, h : 1 . . . H. (18)

when l : 1 . . . N and m : 1 . . . l (or, for C programmers: h = l(l + 1)/2 + m,
h : 0 . . . H − 1 when l : 0 . . . N − 1 and m : 0 . . . l). As defined, the linear index
h corresponds to a row-wise scan of the lower triangular part of Ξ, includ-
ing the diagonal. Note that these diagonal entries, the self-co-associations (co-
associations of points with themselves), are ξll = 1 ∀l only in non-fuzzy cases.
In general, due to the triangle inequality,

ξll =
K∑

j=1

uljulj =
K∑

j=1

ulj
2 ≤

⎛
⎝ K∑

j=1

ulj

⎞
⎠

2

. (19)

In the probabilistic case

ξll ≤
⎛
⎝ K∑

j=1

ulj

⎞
⎠

2

= 1, (20)
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where equality holds only for ulj = 1 for some j (non-fuzzy case), whereas in
the general possibilistic case

ξll ≤
⎛
⎝ K∑

j=1

ulj

⎞
⎠

2

∈ (
0,K2

)
. (21)

However, in the AGPCM case, again

ξll ≤
⎛
⎝ K∑

j=1

ulj

⎞
⎠

2

≤ 1. (22)

We may note that the difference between the probabilistic case and AGPCM
is in the lower bound, so that for AGPCM

ξll ≥ 0 (23)

but in the probabilistic case

ξll ≥ 1
K2

. (24)

Coassociations ξlm = xl ∼ xm (between different points) can be shown to
obey similar upper bounds, while the lower bound is 0 in all cases.

3.5 Comparing Two Partitions

To compare two partitions Πi and Πk we compute their respective coassociation
vectors si and sk. Note that the dimension of these vectors is H (Eq. 18), so it
only depends on the number of points, not the number of clusters. In other words,
the proposed methodology can be applied without any problem to different-size
partitions.

N =
[N00 N01

N10 N11

]
(25)

defined by

N00 = number of items s.t. xl �i xm and xl �k xm

N01 = number of items s.t. xl �i xm and xl ∼k xm

N10 = number of items s.t. xl ∼i xm and xl �k xm

N11 = number of items s.t. xl ∼i xm and xl ∼k xm

(26)

or equivalently
N00 =‖ (1 − si) ∧ (1 − sk) ‖ 1

N01 =‖ (1 − si) ∧ sk ‖ 1

N10 =‖ si ∧ (1 − sk) ‖ 1

N11 =‖ si ∧ sk ‖ 1

(27)



Comparing Fuzzy Clusterings in High Dimensionality 61

where ‖ · ‖1 is the 1-norm. Many pairwise partition similarity indexes can be
practically computed starting from the contingency matrix; reference [1] provides
a table.

We will also refer to the normalized contingency matrix

F =
1

‖N ‖1 N . (28)

where in the crisp case ‖N ‖1 = N . Following [11], we will use an index chosen in
{00, 01, 10, 11} to refer to generic events, where 10 and 01 refer to disagreements,
11 to a positive agreement (coassociation in both partitions) and 00 to a negative
agreement (non-coassociation in both partitions).

It is simple to verify that in the general case we can compute the entries of
N as follows:

N11 =
∑H

h=1 si
h ∧ sk

h = si · sk

N01 =
∑H

h=1(1 − si
h) ∧ sk

h = |sk|1 − si · sk

N10 =
∑H

h=1 si
h ∧ (1 − sk

h) = |si|1 − si · sk

N00 =
∑H

h=1(1 − si
h) ∧ (1 − sk

h) = H − |si|1 − |sk|1 + si · sk,

(29)

where 1 is an H-vector of all 1, · is the usual dot product and |v|1 is the 1-
norm of vector v. This reduces to actual counts for proper partitions; the same
direct interpretation is obviously not available for fuzzy partitions, but the above
definitions still hold and can be used to derive the generalized indexes.

For unsupervised learning, similarity indexes combine the off-diagonal terms
of M only in commutative operations, such as products or sums, because parti-
tions should be analysed in a symmetric fashion, since no one of them plays the
privileged role of a reference. Based on this observation, to make notations more
compact, we can additionally define shorthand symbols:

π = si · sk

σi = |si|1
σk = |sk|1
σ = σi + σk,

(30)

so that

M =
[

π σi − π

σk − π H − σ + π

]
. (31)

4 Partition Similarity Indexes

As already noted, indexes of partition similarity based on co-association, and in
particular on the contingency matrix M , can be computed by several approaches.
Some of them are reviewed in [31] and some are experimentally compared in
[27]. Here we use loosely the term partition to refer to crisp partitions, fuzzy
partitions, and possibilistic clusters.
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4.1 The Rand and Jaccard Indexes

The Rand index [36] is defined as

RI =
N00 + N11

N00 + N11 + N10 + N01
(32)

The Rand index is known to have a higher sensitivity (lower false negative
rate) than specificity (higher false positive rate). This is because the index does
not incorporate a-priori assumptions on a given null hypothesis, therefore is not
able to distinguish false negatives from true negatives. As a result, while the
index is expected to output the value 1 for identical partitions, it will not nec-
essarily output the value 0 for non-identical partitions. To cope with this known
issue, a modified version of the Rand index was proposed by Hubert and Arabie
[21] incorporating a “correction for chance” which provides the ability to com-
pare partition diversity with the null model, a hypergeometric data assumption.
The adjusted Rand index is another popular choice for comparing partitions.

The Jaccard index [22] is another well-known partition similarity measure.
It is defined as the ratio of the size of the intersection of two sets A and B to
the size of their union:

J(A,B) =
|A ∩ B|
|A ∪ B| , (33)

and the Jaccard distance is DJ (A,B) = 1 − J(A,B).
When comparing two different partitions of the same set X, this index is

usually computed from N as follows:

J(Πi,Πk) =
N11

N11 + N10 + N01
. (34)

4.2 The Fuzzy Jaccard Index

Starting from the definition of the Jaccard index, the fuzzy generalization of 34
is straightforward:

Jf (Πi,Πk) =
π

σ − π
, (35)

where Πi and Πk are fuzzy. We call this the fuzzy Jaccard index [40].
The choice of the Jaccard index over other possible measures is suggested by

the conclusions drawn in [43] after analysing a set of 39 different measures. The
Jaccard distance 1 − J is a metric; the value 0 is attained only for disjoint sets;
and the value 1 if and only if the two compared sets are equal.

For the fuzzy Jaccard index, the bidirectional implication in the latter prop-
erty holds only for non-fuzzy sets. Therefore self-co-association gives an indi-
cation about the degree of fuzziness of a clustering. We can also define the
normalized fuzzy Jaccard index as:

Jnf (Πi,Πk) =
Jf (Πi,Πk)√

Jf (Πi,Πi)Jf (Πk,Πk)
, (36)
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which is 1 when comparing a partition with itself even in the fuzzy case. There-
fore, an analysis based on both Jf and Jnf can evaluate partition similarity and
partition confidence at the same time. Note that this very natural normalization
is also applied in [16], although with a different aim (make the range of values
comparable between measurements).

4.3 The Fuzzy Rand Index

Campello [10] and Brouwer [8] proposed fuzzy generalizations of the Rand [36],
Adjusted Rand [21] and Jaccard [22] indexes. Brouwer’s proposal is based on
normalized dot products between bonding relationships, i.e., cosine similarities
between fuzzy membership vectors.

Proceeding in a similar way to what we did with the Jaccard index, we can
define a fuzzy Rand index:

Rf () = (Πi,Πk) = 1 +
2π − σ

H
(37)

and a normalized fuzzy Rand index:

Rnf (Πi,Πk) =
Rf (Πi,Πk)√

Rf (Πi,Πi)Rf (Πk,Πk)
. (38)

4.4 The Probabilistic Rand Index

We noted earlier that the Rand index suffers from a low specificity, and that
the adjusted Rand index was designed to compensate this issue. In [11] another
avenue was chosen to tackle the specificity problem, by including external infor-
mation in the form of weights that change the relative importance of terms in
the Rand index.

The rationale for this modification is that the terms of the contingency matrix
should be given different levels of relevance, since they refer to cases providing
different levels of information. In particular, there have been notable discus-
sions among the practitioners [4,9,37] about whether the number of negative
matches should be taken into account at all in similarity evaluation. The Jac-
card index does not take this term into account. However the Rand index RI
does. A weighted version of the Rand index was therefore defined by taking into
account directly the a-priori probability of the four events of interest (prior to
observing the data) c ∈ {00, 01, 10, 11}, namely, given a pair of arbitrary data
items (xl,xm), the probability that they are:

– in different clusters both in ΠA and in ΠB (event h = 00):

p00 = Pr (xl �A xm and xl �B xm) ;

– in the same cluster in ΠB but not in ΠA (h = 01):

p01 = Pr (xl �A xm and xl ∼B xm) ;
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– in the same cluster in ΠA but not in ΠB (h = 10):

p10 = Pr (xl ∼A xm and xl �B xm) ;

– in the same cluster both in ΠA and in ΠB (h = 11):

p11 = Pr (xl ∼A xm and xl ∼B xm) .

Note that this definition is empirically approximated by the quantities defined
in Eq. 26.

These values were computed in a maximum uncertainty (maximum entropy)
hypothesis, where all clusters are equiprobable, no spatial structure is known,
i.e., the probability of assigning a point to a cluster does not depend on its
location, and points are uniformly sampled:

p00 =
KA − 1

KB

KA − 1
KB

;

p01 =
KA − 1

KA

1
KB

;

p10 =
1

KA

KB − 1
KB

;

p11 =
1

KA

1
KB

.

(39)

Given the probability ph of event h, the authors define a corresponding
weight:

wh = − log ph. (40)

The probabilistic Rand index is defined as:

PRI =
w00N00 + w11N11

w00N00 + w11N11 + w10N10 + w01N01
(41)

We can compute maximum likelihood a-posteriori estimates (given the data)
of the probability of each of the four events of interest by approximating them
with the observed relative frequencies:

qh ≈ fh = Fh. (42)

By dividing numerator and denominator by the total sum, the indexes RI
and PRI can be expressed using the observed frequencies fh:

RI =
f00 + f11

f00 + f11 + f10 + f01
= f00 + f11 ≈ q00 + q11 (43)

and

PRI =
w00f00 + w11f11

w00f00 + w11f11 + w10f10 + w01f01
(44)

≈ w00q00 + w11q11
w00q00 + w11q11 + w10q10 + w01q01

(45)
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This formulation makes it clear that the Rand index is the probability of
agreement between two partitions, after observing the data, while the proba-
bilistic Rand index also includes correction weights that depend on the a priori
probability of agreement, before observing the data.

4.5 The Probabilistic Jaccard Index

At this point it could be noted that the same procedure can be applied to other
contingency-matrix-based indexes, like the Jaccard index J defined in Eq. 34,
which can be expressed in terms of the observed frequencies/probabilities:

JI =
f11

1 − f00
≈ q11

1 − q00
. (46)

A “probabilistic” (weighted) version analogous to PRI can be defined: The
probabilistic Jaccard index is

PJI =
w11N11

w11N11 + w10N10 + w01N01

≈ w11q11
w11q11 + w10q10 + w01q01

(47)

with the same weight definitions as per Eq. 40.

5 Applications of Fuzzy Similarity Indexes

This section illustrates some applications of the dimensionality-independent fuzzy
clustering similarity indexes discussed so far. The applications include a visual
technique for stability analysis and monitoring the progress of clustering by deter-
ministic annealing.

5.1 Visual Stability Analysis Based on Comparing Fuzzy
Clusterings

Stability is the tendency of a learning system to be insensitive to changes in
data or in model parameters. It is related to robustness [2] and to generalisation
ability [23]. As already stated, in the context of clustering it is an important
quality criterion to make up for the absence of supervised information for objec-
tive evaluation. Many applications of stability in this role have been proposed
[6,28,44].

Cluster model selection it is one of the most studied issues in unsupervised
pattern recognition, with a long history starting in cluster analysis [36], and then
borrowing ideas from robust statistics [14,18–20,32,35].

In general (see Subsect. 3.4), fuzzy similarity indexes have the property that
the level of fuzziness in the partitions is reflected in the maximum value that the
index can reach. This is true also for possibilistic clusters, where an added feature
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is that the “best” clusterings are not only the stablest, but also those with the
highest degree of self-similarity (value of the similarity index when comparing a
clustering to itself). Self-similarity, therefore, acts as a measure of confidence. On
the other hand, we have seen also normalized indexes for possibilistic clustering,
so as to eliminate this sensitivity. In this case the analysis proceeds similarly to
that of probabilistic and non-fuzzy clustering. Finally, pairing the normalized and
unnormalized versions of an index makes it possible to perform both sensitivity
and confidence evaluations simultaneously.

Here we discuss a visual and interactive procedure, allowing the user to per-
ceive the effect of varying one or few parameters, in this case α and β in AGPCM.
Visual analysis is effective for parameters with a smooth effect on clustering per-
formance, so we don’t suggest it, for instance, to choose between different initial
conditions.

We resort to a graphic representation, a heat map which includes the com-
plete information about the distribution of the index as a function of the para-
meters, and suggest some criteria to evaluate this information in a visual way.
The clustering similarity matrix compares every possible pair of clusterings. The
matrix is symmetric, but in the possibilistic case the diagonal may contains val-
ues lower than 1: usually this indicates that the cluster centres are not significant,
i.e., that during training we found a bad local minimum. Therefore, we look for
values for which the diagonal is brighter. To facilitate this search when self-
similarity is particularly low, we can use Jnf , the normalized index. However,
we monitor the maximum value of the self-similarity to keep the quality of the
clustering under control.

For this experiment we have chosen a data set that has a good degree of
structure, but at the same time is not clearly clustered. This results in a vis-
ible instability, for instance when starting from different initialization points.
The problem is provided in the base data set package of the R language and
environment (www.R-project.org) as “quakes”. It consists of a subset of 1000
observations of quakes (seismic events with magnitude MB > 4.0) from a larger
database of 5000 observations. These quakes occurred around Fiji, starting in
1964, and are described by three-dimensional coordinates (latitude, longitude
and depth of event), plus the Richter magnitude and the number of stations
that reported it, for a total of 5 variables.

Since setting a large number of cluster centroids reduces instability, we kept
this number relatively small, fixing it at 7. The model parameter β was swept in
9 steps in the interval [3.9 × 10−3, 3.2 × 10−2]. The training was performed by 9
individual runs, each with a fixed value of β.

Each individual run consisted of one random initialization, and 30 complete
optimizations, each one initialized with the output of the previous one, and α
sweeping from 0.1 to 1 geometrically. Another parameter is varied across the 9
individual runs of each experiment. α, starting at 0.1 and progressing up to 1,
so that we obtain 30 × 30 similarity matrices.

The visual output of the method is shown in Fig. 2 [41]. These are plots of the
value of the fuzzy Jaccard index visualized as a heat map, the clearer the higher.

www.R-project.org
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Fig. 2. Visual representation of the similarity index. Each individual heat map rep-
resents 30 experiments with different values of α ranging from 0.1 to 1. Across the 9
heat maps on the left (left to right, top to bottom): same initialization, β ranging from
0.0039 to 0.032. Across the 9 heat maps on the right: different random initializations,
β = 0.011. From [41]

The first set of heat maps shows the variation as a function of β. The most stable,
significant patch is attained in the seventh step (β = 0.011). The large, blurred
patches in the last steps are due to the excessive value of the width parameter
β. In this case, all points were attributed to a single, large cluster. On the other
hand, when the width β is too small, even the diagonal has low values and only
for the extreme values of α (lower right corner) data points are attributed to
clusters with some confidence.

From this analysis, the best value for α is the one corresponding to the (row
or column) coordinate of the center of the most stable area in the heat map.
In this particular instance, the best value for α is not at the possibilistic or
probabilistic extremes, but settles around an intermediate value, between 0.17
and 0.24. We select α = 0.21.

This intermediate value is a confirmation that the Graded Possibilistic app-
roach proposed in [30] actually provides a more flexible model, in terms of rep-
resentation, than either the standard fuzzy or possibilistic methods.

If we now consider the experiments with fixed β = 0.011 and different ran-
dom initializations (Fig. 2), we can see that, despite random variations in the
results, the stable patch recurs in most experiments in about the same location,
confirming the selected values of β = 0.011 and α = 0.21.

5.2 Tracking Deterministic Annealing

As already noted, the Maximum Entropy clustering model described in Sub-
sect. 2.3 is usually fit by an optimization procedure that involves gradual lower-
ing of the model parameter. However, in contrast to the traditional Simulated
Annealing [13] approach to minimization of functions of continuous variables, in
this case a new annealing steps occurs only after a stable state has been reached
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Fig. 3. Tracking deterministic annealing: Iris data.

at the previous step. This removes the main source of stochasticity, so that the
method is termed Deterministic Annealing.

One peculiarity of this method is that the computational temperature para-
meter acts as a fuzzifier. This implies that, as the optimization progresses, less
and less fuzzy clustering solutions are found, and for certain critical values of
the temperature a phenomenon that parallels “phase transitions” [38] occurs. At
phase transitions, cluster centroid that were overlapping because of the level of
fuzziness are taken apart by the optimization. Without changing the number of
centroids, this gives a hint about the number of clusters present in the data at
different resolutions.

Fuzzy clustering comparison indices can be used to illustrate this phenom-
enon in high dimensionality, where the position of centroids is not easy to appre-
ciate. But before applying the method in high dimensionality, we illustrate its
operation in a lower-dimensional, well-known case, Iris data. Referring to Fig. 3,
the top diagrams illustrate in three dimensions the position of centroids with
respect to data in three stable states: The three centroids define one, two and
three clusters depending on temperature.

The bottom diagram is a trace of the similarity of each pair of consecutive
solutions, as measured by Jf and Jnf . In the stable states, solutions stay very
similar to each other; this corresponds to flat areas where Jnf = 1. But at phase
transitions, there is a sudden variation in clustering solutions. This is clearly
pointed out by the notches in the graph of Jnf .

The high-dimensional problem chosen is the 20 Newsgroups data set. This is a
collection of about 20000 Usenet posts from 20 different newsgroups. The selected
versionhasbeenobtained fromhttp://qwone.com/∼jason/20Newsgroups/already
encoded by the vector space model.

http://qwone.com/~jason/20Newsgroups/
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To make the set more manageable only 1000 randomly selected samples from
the first 5 newsgroups have been used. Due to the encoding adopted, the dimen-
sionality has also been reduced from the original nearly 54 K to about 15 K
dimensions. The number of terms in the dictionary depends logarithmically on
the collection size, therefore the 1:20 reduction in data set cardinality results in
less than 1:4 reduction in dimensionality and the reduced data set can still easily
be categorized as high dimensional.

Figure 4 shows the result, obtained with 25 centroids. We expect about 5
clusters, so several centroids are going to overlap and we want to study the res-
olution (fuzziness) levels for which this overlapping is changed. Also in this case
clear notches appear for quite well-defined values of the temperature parameter.
By examining centroid positions in these configurations we can detect which
centroids are overlapping, and how many effective clusters are there. This makes
it possible to apply the multi-resolution analysis offered by the Deterministic
Annealing method also in the presence of high dimensional data.

Fig. 4. Tracking deterministic annealing: 20 Newsgroups data.

6 Conclusion

In the presence of high dimensionality we face counter-intuitive situations, and
visual inspection of clustering results would be beneficial. Some indices of mutual
similarity between clusterings offer a way to perform this type of analysis in a
dimensionality-independent way.

This chapter has presented some methods to extend these comparison indices
to the cases of fuzzy and possibilistic methods. It turns out that comparing fuzzy
clusterings reveals more information than in the crisp case.

In many cases we restricted the analysis to the Jaccard index, but a compar-
ison between the possible choices from [40] could be performed.
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Abstract. Due to technological advances there is the possibility to
collect datasets of growing size and dimension. On the other hand, stan-
dard techniques do not allow the easy management of large dimensional
data and new techniques need to be considered in order to find use-
ful results. Another relevant problem is the information loss due to the
aggregation in large data sets. We need to take into account this infor-
mation richness present in the data which could be hidden in the data
visualization process. Our proposal - which contributes to the litera-
ture on temporal data mining - is to use some new types of time series
defined as the beanplot time series in order to avoid the aggregation and
to cluster original high dimensional time series effectively. In particular
we consider the case of high dimensional time series and a clustering
approach based on the statistical features of the beanplot time series.

Keywords: Beanplots · High dimensional data · Clustering · Self-
organizing maps

1 Introduction

The growth of data results in an increased size of the modern databases. Data
are collected and stored in an easier way with respect to the past. High dimen-
sional time series are used frequently in many fields: economics and finance,
bioinformatics, environmetrics and medicine [22]. In many situations it could
be necessary to cope with long time series or with time series characterized by
many observations not equally spaced. This is the case, for example, of high
frequency data, also defined as inhomogeneous time series, particularly relevant
in the financial context [5,12,14,16,25,27,28,31,33,40,41]. In all cases the need
for data aggregation arises. However this data processing can lead to a loss of
information so it is necessary to find different statistical techniques to handle
the problem. Various authors [1–4,7,36] have proposed new approaches to the
problem taking into account not only the aggregated value for the period of the
single observation (by considering the day, a year and so on) but also new types of
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data which represent the temporal intra-period variations as intervals, boxplots
or histograms. In this way the information considered is enriched by consider-
ing the entire data structure by each period and not only an aggregation. The
analysis is performed by considering the symbolic data by a representation of the
intra-period variation. A new approach was recently proposed in [8,10,11]. In
these works we transform each temporal observation into beanplot time series
so as to consider not only the minima or maxima in the period interval but
also the intra-period variation. Different time series can be referred to different
process characteristics, simultaneously collected [37]. In particular high dimen-
sional time series are becoming ubiquitous in various fields. For example we can
consider risk management, portfolio allocation, the study of the panel time series.
At the same time it is important to remember in environmetrics the analysis of
different locations and many indices in the monitoring process [22]. All these
advances make use of high dimensional time series. Unfortunately these data
types share some characteristics like missing values, different time series length
or unequally spaced observations (such as homogeneous time series [14]). So the
proposal is to consider the beanplot time series as a representation of the origi-
nal time series, which allow us to take into account the intra-period variability.
This transformation permits the visualization of the initial time series [11]. At
this point we can consider a parameterization of the initial beanplot time series
and a synthesis using the Time Series Factor Analysis (TSFA) [15] from the
different time series obtained. Then from the factorial time series we extract the
structural features of the factorial time series and we consider another dimen-
sionality reduction by using the self-organizing maps [21]. The work is organized
as follows: in the second section we consider the characteristics of the financial
high dimensional time series; in the third we describe the beanplot time series;
from the fourth to the sixth sections we illustrate our proposal: we consider
beanplot time series instead of scalar time series and we also consider in this
context the problem of high-dimension financial datasets. The beanplots allow
us to retain the relevant information from the original time series. In particular
we start from the choice of the temporal interval and from the visualization of
the original data. So we obtain the transformation in beanplot time series, then
we start with the interpretation of the data. In section seven we consider an
approach based on clustering these types of time series based on self-organizing
maps. The remaining part of the work is devoted to a simulation study (with
two different synthetic datasets) and the application to real financial data.

2 Financial High Dimensional Data Characteristics

High dimensional time series are a relevant issue in present day data: [6,17,22,
29,35]. In the financial context high dimensional time series can be, for example,
referred to different stocks (asset prices), exchange rates or different financial
items. High dimensional data are becoming more and, more importantly in eco-
nomic and financial applications and nowadays represent a big challenge. At
the same time financial time series present relevant characteristics. In particular
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they are characterized by high volatility, missing values and series of unequal
length (for a review of characteristics of the financial time series [32]). Data
representing each different financial item (for example an asset price) simulta-
neously considered in the time can be collected in different vectors. The concept
of high dimensional data in our case is directly related to the number of obser-
vations in typical high frequency financial data. In these cases the observations
are overwhelming and so it is necessary to consider these data by using this
method in the appropriate way. In particular it is necessary to take into account
the specific techniques when there are longer time series and it is necessary to
handle high dimensional financial time series. In these cases classical cluster-
ing techniques become impractical [38] and it is necessary to take into account
different techniques. There are various proposals in this respect [26,38] to use
a new method which is useful in the case of high dimensional data. Replacing
the original time series with some measures of the characteristics can be used
in many cases [38]. At the same time new problems have to be considered in
the case of large datasets. In financial time series, for example, aggregation by
a single temporal interval can lead to a loss of information. This is the case
with the High-Frequency data [14] in which the number of observations in the
single day is usually overwhelming. There are various proposals and approaches
to cope with this problem in this context. In particular many proposals belong
to the field of the Symbolic Data Analysis literature [4]. More in general the
purpose of this literature is to represent the intra-period data as an aggregate
representation such as Intervals, Boxplots, Histogram time series. In this context
the original time series to be analyzed are not related to scalars but are related
to the complex objects or the symbolic data [1]. These different types of time
series show as their principal characteristic the capability to take into account
not only the inter-temporal variability (like the scalar time series) but also the
intra-temporal variability. Drago and Scepi [10] show that these time series tend
to retain the information of the original scalar time series (the trend, the sea-
sonality and the cycle for example) and allow to compare quickly the variability
of the series over time and more importantly the structural changes. In this case
by considering the motivating problems (financial high dimensional time series)
when the number of time series is high we need appropriate approaches to take
into account a higher number of columns. The aim of this work is to innovate
the temporal data mining approaches in these types of time series. In particular,
different approaches have been proposed and studied in recent years considering
some types of representations based on histograms [2]. We propose an innovative
approach of clustering high dimensional data based on the Beanplot Time Series
to avoid information loss and to take into account the intra-period variability in
the clustering process. In this work we will present the methods and the relevant
code in R [30] to replicate the methods for other real cases.

3 Beanplot Time Series

The aim of clustering is to obtain different homogeneous groups from an unlabeled
data set of time series iwhere thedissimilaritywithin groupsneeds tobemaximized
[24]. We start from a data set of time series i.
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Pi = {Pit : t ∈ T} (1)

Where i is a different index representing the time series, and t is the time. To
avoid the problem of data aggregation in very long time series, various authors
propose different representations like histograms, intervals or boxplots. We pro-
pose a different representation taking into account the intra-period variation
[8,10]. A Beanplot Time Series (based on Beanplot [19]) can be defined as an
ordinated sequence of beanplot data over time t.

f̂h,t =
1

nh

i=1∑
n

K(
x − xi

h
) (2)

Here K is a defined kernel and h can be defined as a smoothing parameter
or a bandwidth. K can be a Gaussian function with the mean 0 and variance 1.
An important property of the kernel density estimation is that the area under
the curve is 1. Thus we obtain the Fig. 1 for the beanplot time series related to
the US Market (period 1996–2010).

Fig. 1. Beanplot time series

Figure 1 shows that the single beanplot typically represents the variation
intra-period, where the beanplot dynamics shows the variation inter-period dur-
ing the time. Upper and Lower bound indicates the minima and the maxima
where the density trace shows structural change over time. The bumps show
equilibria levels over times [11], where the beanlines show the aggregated values
of the series (the mean, or the meadians by period). The kernel is typically a
non-negative and real-valued function K(u) which satisfy [23]:∫

K(u)du = 1,

∫
uK(u)du = 0,

∫
u2K(u) = k2 < ∞ (3)
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The lower and upper limits of integration being −∞ and +∞. In general var-
ious Kernel function can be normally used, like the uniform, triangle, Epanech-
nikov, quartic (biweight), tricube (triweight), Gaussian and cosine. In particular
the h parameter controls the variance. We can establish the parameter h by
choosing the Sheather-Jones method [34].

K(
x − xi

h
) =

1√
2π

e− x−x2
i

2h2 (4)

The beanplot beanline can be specified as the mean or median. Relevant
characteristics of the beanplots (in particular as representing the variability) are
the beanplot upper and the lower bound:

[X]t = [Xt,L,Xt,U ] where −∞ < Xt,L ≤ Xt,U < ∞ (5)

Another way to represent the information related to the location and the size
of the Beanplots are the Beanplots Center and Radius:

[X]t = 〈Xt,C ,Xt,R〉 where Xt,C = (Xt,L +Xt,U )/2 and Xt,R = (Xt,U −Xt,L)/2
(6)

In this sense we can have information both for the long run dynamics (rep-
resented by the beanlines over time) and the intra-day variability represented
by the upper and lower bounds and centers and radius. The density trace shows
the entire data structure at time t. An important choice is related to the interval
period I to define each beanplot. In this sense we need to consider a spectral
analysis before the analysis to avoid hiding the cycles. Another possibility is to
define an a priori choice for the specific window depending on the scope of the
analysis.

4 Parameterizing Beanplot Time Series Data

The beanplot time series need to be parameterized in order to define and com-
pare the different beanplots over time. From the original data we obtain the
trajectories related to the beanplots (also defined as attribute time series). For
each parameter we obtain an attribute time series. Then after a process related
to the TSFA [15] we obtain the factorial time series zt. So it is relevant to choose
adequately the bandwidth h for the beanplot time series and the number of
parameters or features considered n. In particular we need to choose a unique
h parameter for the entire beanplot series. It is important to note that in the
use of the beanplot time series in visualization aims [11] or in an exploratory
data analysis context there is no need to choose a unique h parameter by the
Sheather-Jones method [34] or choose another criteria. In fact in the parameter-
ization of the different attribute time series for each beanplot there is the need
to take into account the differences between the beanplots [10]. However using
adequately the attribute time series it is possible to detect outliers in the entire
beanplot time series. We need to define adequately the process described by
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the beanplots, so we need to choose accordingly the parameters Xc and Y c, its
number n and the bandwidth h in order to represent correctly the beanplots and
the underlying data. In particular the number of parameters n represents both
the data structure of the interval temporal and the beanplot evolutive dynamics
over time by means of its attribute time series. As an output of the process we
note that the Xc and the Y c can be differently intepreted by considering com-
paratively different beanplots: the long run data structure for the Xc and the
variability for the Y c. From the beanplot time series we obtain attributes time
series for Xc and the Y c. In particular we show an example in Fig. 2 for the
beanplot attribute time series of the Dow Jones Index 1996–2010, in which we
have chosen n = 3 for Xc and Y c).

Fig. 2. Attribute time series

The crucial point in the parametrization process is the choice of the band-
width h and the choice of the number of the n features considered in relation
to the data structure. It is important to validate the choices in the parame-
terization (the n choice of the features and the chosen bandwidth h) and its
adequacy to represent initial data. In this way the validation occurs in repeating
the process a number of times to find an optimal representation of the beanplot
time series and its parameters. In general it is necessary to take into account a
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lower bandwidth h in the series with a higher number of features n if there is a
higher level of observations: thus, we can capture a higher number of features.
In particular, we consider that the higher the complexity of the original time
series, the higher the complexity requested and the number of features to be
taken into account. Therefore, it is necessary for most of the cases to reproduce
the structure of the beanplot by considering at least three descriptors for the Xc

and three descriptors for the Y c.

5 Time Series Factor Analysis on Beanplot Time Series

From the attribute time series identified in the parameterization process we need
to synthetyze the attribute time series. These factorial time series substitute the
original one and can be used in the clustering process. In particular we use the
Time Series Factor Analysis (TSFA) depicted in [15] to estimate to the attribute
time series for the Xc and for the Y c. We start from the n observed processes
zi,t with i = 1..n and t = 1..T , where we search from the k unobserved processes
(the factors) ξi,t with t = 1..T and i = 1..k to obtain the measurement model:

zt = α + Bξt + εt (7)

Where α is a vector of intercepts, B is an n×k matrix of factor loadings and ε
is a n vector of random errors. Each factor score represents a measurement model
of a latent variable that is the underlying phenomena of interest. At the end of
the procedure we obtain a set of factors for each attribute time series. Following
[15] for measuring the factor score predictor we use the Bartlett predictor.

ξt = (BtΨ−1
t B)−1BtΨ−1Bt(zt − αt) (8)

Where: ψt is the covariance of (εt). The loadings can be estimated by Fac-
tor Analysis estimators (Maximum Likelihood in particular) using the sample
covariance of the error [15]. We compute one factor time series, we define from
now on as zt for the Xc and for the Y c, using the attribute time series. The
two factorial time series Xc and Y c represent the general dynamics of the bean-
plot (in particular the location and the size), and the second one represents
the response of the shock or the short run dynamics (the shape). The final aim
of the clustering process is to recognize groups of time series with a synchro-
nous dynamics (related to the location of the beanplot or the Xc) and a similar
response to the shocks (related to the Y c).

6 From Time Series Factor Analysis to the Feature
Clustering Approach

The aim is to cluster the different beanplot time series by using the different
factorial time series. In Finance, clustering techniques can be applied in a range
of problems like Asset Allocation and Statistical Arbitrage. Clustering, in par-
ticular, can be defined as the process of obtaining different groups of items
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(or time series) highly similar between themselves but different by groups [24].
Liao (2005) [24] reviews the different approaches in clustering time series. Given
a set of time series it is necessary to have a clustering algorithm or a procedure
to classify a set of unlabelled time series. The specific choice of the algorithm
can depend on different factors and different data typologies, for example the
different purposes and application [24]. At the same time there can be different
distinctions which it is possible to make by considering different time series. Liao
[24] makes a list of relevant distinctions in time series clustering: discrete-valued
data or real valued, uniformly and non-uniformly sampled data, univariate and
multivariate and equal or unequal length, but Kavitha and Punithavilli con-
sider clustering techniques of data streams [20]. At the same time non uniformly
sample data need to be transformed by obtaining uniformed data [38]. In these
cases there can be sometimes the need for an aggregation process, which leads to
loss of information, for example in the case of clustering of high frequency data
[14]. Another approach is to consider a representation which does not lose the
information on intra day variability. In this context it is possible to consider all
the works in Symbolic Data Analyis (SDA) [3,4]. So in this sense we cluster the
different representations of the series such as intervals, boxplots, or histograms
of the series with the aim of taking into account the intra-period variability.
By considering the beanplot representation [9,10] and its parameterization in
attribute time series [8,11] we start from the factorial time series which repre-
sents each time series then we cluster directly the factorial time series. So we
can have many columns related to a single process or phenomenon and we need
to classify groups of homogeneous factorial time series. In these cases the classi-
cal techniques are difficult to be implemented and there is the need to consider
some other new techniques to take into account the different data characteristics
[38]. We can start from the set of factorial time series we have obtained, which
represents the initial time series. So we obtain the factorial time series for the
Xc and the Y c then we compute the dissimilarity matrix. In particular, corre-
lational distances can be used as distances. We try to specifically recognize the
correlation between the dynamics of the different synthesizing factors over time.
So we have for two generic factorial time series a and b:

d(a, b) = 1 − (corr(ξa, ξb)) (9)

Considering the absolute values:

d(a, b) = 1 − |(corr(ξa, ξb))| (10)

and finally:
d(a, b) = 2

√
1 − (corr(ξa, ξb))2 (11)

Where it is possible to recognize the correlation between the dynamics of
the different synthesizing factors over time [8]. It is possible to obtain the dis-
similarity matrices related and we use different clustering methods to compare
the different results. In particular it is possible to use the hierarchical clustering
and the non hierarchical clustering by using different methods. At this point we
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can apply different methods to observe the robustness of the results. However
for long factorial time series this approach is not simple [38]. So we can consider
an approach for considering very long Beanplot time series which allow us to
consider the unequal length of the factorial time series. In practice from each
factorial time series we extract the characteristic features [26,38]. Following [38]
the features we consider represent the characteristics of the time series. These
are chosen by considering extensively all the characteristics of the factorial time
series, such as trend and seasonality, periodicity, serial correlation, non linear
autoregressive structure, skewness, kurtosis and so on [18,38]. The features rep-
resent the stylized representation of the original factorial time series and they
are scaled from 0 to 1 to show if a feature is particularly strong compared to
the considered factorial time series [38]. In this way we can explore structural
similarities between the series, considering not the actual values but the struc-
tural characteristics of the factorial time series. In the clustering algorithm they
represent the finite set of inputs for the Self Organizing Maps (SOM) [13]. We
consider the features from the factorial time series. The computations can be
obtained using the package Kohonen in R [39].

7 Using the Self Organizing Maps

We propose an alternative clustering approach to cluster. In this way most of
the clustering is done interactively not in an automated fashion. We can use
the Self Organizing Maps to reduce the data dimensionality. In this sense the
input of the data matrix are the factorial time series characteristics and then
the output are the labels for each beanplot time series. Self Organizing Maps
can be considered a typology of neural networks with neurons organized as a
low dimensional structure and trained in an iterative unsupervised procedure
[24]. A SOM is characterised by a nonlinear projection of a high dimensional
data mostly on a two dimensional low grid [38]. The learning algorithm of the
SOM is initialized by using the same scheme used in all the neural networks. So
the training process is carried out by presenting the input patterns by assigning
small random values to the neurons weight vectors w in the network [24]. In
this way each input pattern s is presented to all grid points where the closest
matching to the weights of each neuron l is found:

dl = ‖s − wl‖ =

√√√√ n∑
l=1

(si − wil)2 (12)

Then the neuron output is computed and the weighting w is updated [38].
The results of the clustering approach usually show two aspects: the data classes
or labels and the metric or topological relations between the initial data [38]. In
this case the input is represented by the features extracted from each factorial
time series representing each beanplot time series. From the training process
we can obtain the output of the SOM in the form of a two dimensional map
visualizing the groups of the factorial time series. The clustering of the factorial
time series is the main output.



Time Series Clustering from High Dimensional Data 81

8 Simulation Study

Now we will experiment the validity of the method by considering 2 distinct
computational experiments. We consider different simulated factorial time series
from the original beanplot time series. In particular we simulate 125 different
time series. Each time series is characterized by 96000 observations, and they
are originally transformed into 2400 temporal beanplots to represent the data
structure accordingly. From the beanplot time series we parameterize, consider-
ing three parameters: three for Xc and three for Y c. It is important to note that
we consider three points for Xc and three points for the Y c which seems to cover
the aspects we want to take into account. The bandwidth for the entire series is
fixed at 3.14, a value obtained after the search of the best relevant value for the
entire series. So in this case, following the Time Series Factor Analysis method-
ology we obtain the 125 factorial time series related to the factor 1 (one factorial
time series for each beanplot). The factor 1 represents the long run dynamics of
the beanplot time series, so we are mainly considering the long run dynamics of
our time series. At this point we extract the characteristic features of factorial
time series, then we consider the matrix obtained by the characteristic features
as input of the SOM. The result is shown in Fig. 3.

Fig. 3. Simulation 1: 128 Beanplot time series

In Fig. 3 the codebook vectors are visualized in a specific segment plot [39].
By observing the image it is possible to see the associations between the different
characteristics of the factorial time series. In particular we can observe that the
time series are regrouped by similar characteristics and the clusters show the
relevant characteristics of the group. The plot of the codebook vectors shows a
mapping of the data (in particular considering the factor 1 of the factorial time
series). We found mainly three groups in the analysis. A group of beanplot time
series with features in the factorial time series show higher Hurt, Lyapunov and
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Fig. 4. Simulation 2: 500 Beanplot time series

dc autocorrelation coefficient (dc is for decomposition) and also higher seasonal
characteristics. Another group is characterized by dc nonlinear and also dc skew-
ness, whereas a third group is characterized by various general characteristics
from nonlinear to frequency. So we obtain the ex-post clusters and we compare
them with the expected initial groups. We repeat the same procedure by using
other clustering methods to compare the results. In particular we use the corre-
lation distance between the factorial time series and the Hierarchical Clustering
(correlation distance, complete linkage method) and the classical K-Means. We
compare the clusters obtained also by modifying the parameters of the SOM. It
is important to train different maps to observe the sensitivity of the results to
changes [39]. The results of the ex-post results confirm our ex-ante expectations.
We compare the results obtained considering all the replications using the dif-
ferent methods (SOM on characteristic features, Hierarchical Clustering using
correlation distance and classical K-Means).

In experiment 2 we are directly simulating from the results of a factorial time
series whereas in experiment 1 a number of 500 different factorial time series are
considered. Results for the trained network are in Fig. 4. In this case we observe
a more similar structure for the beanplot time series and the features of the
factorial time series representing them. In particular the similar characteristics
are Lyapunov and dc autocorrelation for all the groups. Differences are related
mainly to single characteristics like trend or skewness. There is a strange group
characterised by frequency, trend and seasonal. That means there exists some
factorial time series which behave strangely. The results are gained when we
have simulated some of the factorial time series starting from some measured
ones and then performing some model changes.
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9 Application on Real Data

In the application we consider a set of 100 random stocks on the US market (the
period 1900–2012 is considered). It is important to note that we are using daily
data but that the methods can also be used for longer time series. However the
method presented in the paper considers the feature of the time series so could be
used also for inhomogeneous time series. In any case we maximize the number of
different observations considered and so we consider series of different length. In
this way we obtain the beanplot time series, then we extract the characteristics
of the series to compare with the long run dynamics.

Fig. 5. Application on financial data (US Stock Market)

The results for the trained network are visualized in Fig. 5. The patterns show
the different characteristics for the groups (by observing the different codebook
vectors). The classification of the single factorial time series fit the initial expec-
tations. By considering the different clusters obtained there is evidence of the
different market mechanisms of shocks transmission between the different stocks.
The different characeristics for each codebook vectors of the networks (see Fig. 5)
associated to a group of series show the common features and behavior of the
series. So the difference between the SOM units has relevant economic impli-
cations. In particular we observe that stocks also act as a signal for the entire
market. It is interesting to observe the similarity between the different code-
book vectors. By observing the codebook vectors we can visualize the different
patterns in the data. At the same time it is interesting to focus on specific char-
acteristics of the factorial time series (like the beanplots) to exploit them in
statistical arbitrage models. So in this sense the procedure could be extremely
interesting in exploring possible couples or triples of stocks with the aim of
making statistical arbitrage using financial data. In particular by observing the
similar stocks in the groups (stocks reacting similarly to the financial shocks) we
can find important patterns to exploit in the trading models.
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10 Conclusions

We have considered in this work an approach to handle high dimensional time
series by means of beanplot time series. The results are of particular interest
when it is remembered that we are considering very long time series, so we are
using a higher quantity of information. The modern datasets are characterized
by a high quantity of information so it is essential to have a technique to handle
this data in an adequate way. In particular the extraction of the features for
the different time series shows the relevant characteristics useful in financial
applications, for example, where we show the way to transform the results into
specific decisions at an operational level.
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Abstract. Dimensionality Reduction methods are effective preprocess-
ing techniques that clustering algorithms can use for coping with high
dimensionality. Dimensionality Reduction methods have the aim of pro-
jecting the original data set of dimensionality d, minimizing information
loss, onto a lower M-dimensional submanifold. Since the value of M is
unknown, techniques that allow knowing in advance the value of M,
called intrinsic dimension (ID), are quite useful. The aim of the paper
is to make the state-of-art of the methods of intrinsic dimensionality
estimation, underlining the achievements and the challanges.

1 Introduction

Dimensionality Reduction methods are effective preprocessing techniques that
clustering algorithms can use for coping with high dimensionality. Dimensionality
Reduction methods have the aim of projecting the original data set Ω ⊂ R

d,
minimizing information loss, onto a lower M -dimensional submanifold of R

d.
Since the value of M is unknown, techniques that allow knowing in advance
the value of M , are quite useful. Following Fukunaga, a data set Ω ⊂ R

d is
said to have intrinsic dimension (ID) [16] equal to M if its elements lie entirely
within a M-dimensional submanifold of R

d, where M < d. It is important to
observe that ID depends on the scale of data. In order to show this, it considers
a two-dimensional data set, e.g., a K-Möbius strip [20], adding to a data set
a three-dimensional gaussian noise. The data set, obtained in this way, has ID
equal to 2 at a coarse scale, since the two-dimensional set is dominant. But
if we change scale and observe the data set at fine scale, the noise becomes
dominant and the ID of data set is three. ID estimation of a data set is a classical
problem of pattern recognition and machine learning. The first algorithm of data
dimensionality estimation, by Bennett, dates back to 1969 [3]. ID estimation is
relevant in machine learning not only for dimensionality reduction methods but
also for other several reasons. Firstly, using more dimensions than the necessary
leads to several problems, such as an increase of the space required to store
data, a decrease in the algorithm speed, since it generally depends on the data
dimensionality. Besides, building reliable classifiers becomes harder and harder
when the dimensionality grows (curse of dimensionality [2]). To this purpose,
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we recall that the capacity (VC-dimension) [57] of the linear classifiers, that
determines their generalization capability, may depend on ID. Finally, ID is
relevant for some prototype-based clustering algorithms. For example, ID affects
the magnification factor [59] of a trained Neural Gas, that expresses the relation
between the data density and the density of the neural gas weight vectors1.

The aim of the paper is to make the state-of-art of the methods of the intrin-
sic dimensionality estimation, underlining the advances and the open problems.
Extending the taxonomy proposed by Jain and Dubes [25], we group the algo-
rithms for estimating ID in three disjoint categories, i.e., local, global, mixed.
In the local category, there are the algorithms that provide an ID estimation
using the information contained in sample neighborhoods. To the global cat-
egory belong the algorithms that make use of the whole data set providing a
unique and global ID estimate for the data set. Finally, in the mixed category,
there are the algorithms that can produce both a global ID estimate of the
whole data set and local ID estimate of particular subsets of the data set. In
the paper the most relevant algorithms for each category, underlining their weak
points, will be presented. In particular, it will be discussed the robustness of
each method with respect to the high dimensionality. The paper is organized
as follows: Sects. 2, 3, 4 describe global. local and mixed methods, respectively;
the benchmarking of ID estimation method is discussed in Sects. 5 and 6 open
problems are analyzed and some conclusion are drawn.

2 Global Methods

In the global category, the algorithms unfold the data set in the d-dimensional
manifold. Unlike local methods that use only the information contained in the
neighborhood of each data sample, global algorithms make use of the whole
data set. These methods make implicitly the assumption that the data lie on a
unique manifold of a fixed dimensionality. Global methods can be grouped in
four families: projection techniques, fractal-based algorithms, multidimensional
scaling methods and other techniques, where in the last category are collected
all the methods that cannot be assigned to the first three categories.

2.1 Projection Techniques

Projection techniques search for the best subspace to project the data by mini-
mizing the projection error. Principal Component Analysis (PCA) [26,30] is the
simplest and the most widely used projection method. PCA is a linear projection
method since projects the data along the directions of maximal variance. PCA
algorithm for ID estimation has the following steps:

1. Compute the N eigenvalues of the covariance matrix. Order them in decreas-
ing way, such that λ1 ≥ λ2, · · · ≥ λN .

1 If we denote with P the relation between the data density P and the density ρ of
the weight vectors, then ρ ∝ P α where α = ID

ID+2
.
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Fig. 1. Ω Data set. The data set is formed by points lying on the upper semicirconfer-
ence of equation x2 + y2 = 1. The ID of Ω is 1. Neverthless PCA yields two non-null
eigenvalues. The principal components are indicated by u and v.

2. Normalize the eigenvalues dividing each eigenvalue by the largest one λ1.
3. Choose a threshold value θ and compute the integer K such that λK ≥ θ and

λK+1 < θ.
4. return (ID=K).

It is easy to show that the loss of the information due to the discarding the
lowest (N-K) eigenvectors is equal to the sum of the lowest (N-K) eigenvalues
[4]. PCA is a poor estimator, since it tends to overestimate the ID. Consider a
data set formed by datapoints lying on a circumference, (Fig. 1) PCA yields an ID
estimate equal to 2 instead of the correct value of 1. Therefore we can assess that,
since PCA overestimates ID, PCA provides can be an upper bound of the actual
ID value of a dataset. Nonlinear projection methods have been designed in order
to overcome the PCA limitations. In order to cope with these problems, some
algorithms have been proposed to get Nonlinear PCAs. A widely used approach
to get a Nonlinear PCA is the autoassociative approach [28]. Nonlinear PCA is
performed by means of a five-layers neural network. The neural net has a typical
bottleneck structure. The first (input) and the last (output) layer have the same
number of neurons, while the remaining hidden layers have less neuron than the
first and the last ones. The second, the third and the fourth layer are called
respectively mapping, bottleneck and demapping layer. Mapping and demapping
layers have usually the same number of neurons. The number of the neurons of
the bottleneck layer provides an ID estimate. The targets used to train Nonlinear
PCA are simply the input vector themselves. Though autoassociative neural
networks (ANNs) outperforms linear PCA, as ID estimators, in some contexts,
ANNs present some drawbacks. ANNs cannot model curves or surfaces that
intersect themselves. Moreover, ANN projections onto curves and surfaces are
suboptimal [37].
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2.2 Fractal-Based Methods

Fractal-based techniques are global methods that have been successfully applied
to estimate the attractor dimension of the underlying dynamic system generating
time series [27]. Unless other global methods, they can provide as ID estimation
a non-integer value. Since fractals are generally2 characterized by a non-integer
dimensionality, for instance the dimension of Cantor’s set and Koch’s curve
[38] is respectively ln 2

ln 3 and ln 4
ln 3 , these methods are called fractal. In nonlinear

dynamics many definitions of fractal dimensions [13] have been proposed. The
Box-Counting and the Correlation dimension are the most popular. The first
definition of dimension (Hausdorff dimension) [13,41] is due to Hausdorff [19].
Since the Hausdorff dimension is not easy to evaluate, in practical application it
is replaced by an upper bound that differs only in some constructed examples:
the Box-Counting dimension (or Kolmogorov capacity) [41].

Kégl’s Algorithm. Let Ω = {x1,x2, . . . ,x�} be a set of points in R
n of cardi-

nality �. We denote with ν(r) the number of the boxes (i.e., hypercubes) of size
r required to cover Ω. It can be proven [41] that ν(r) is proportional to (1r )d,
where d is the dimension of the set Ω. This motivates the following definition.
The Box-Counting dimension (or Kolmogorov capacity) DB of the set Ω [41] is
defined by

DB = lim
r→0

ln(ν(r))
ln(1r )

(1)

where the limit is assumed to exist. Recently Kégl [29], has proposed a fast
algorithm (Kégl’s algorithm) to estimate the Box-Counting dimension. Kégl’s
algorithm is based on the observation that ν(r) is equivalent to the cardinality
of the maximum independent vertex set MI(Gr) of the graph Gr(V,E) with
vertex set V = Ω and edge set E = {(xi,xj) | d(xi,xj) < r}. Kégl has proposed
to estimate MI(G) using the following greedy approximation. Given a data set
Ω, we start with an empty set C. In an iteration over Ω, we add to C data points
that are at distance of at least r from all elements of C. The cardinality of C,
after every point in Ω has been visited, is the estimate of ν(r). The Box-Counting
dimension estimate is given by:

DB = − ln ν(r2) − ln ν(r1)
ln r2 − ln r1

(2)

where r2 and r1 are values that can be set up heuristically. It can be proven [29]
that the complexity of Kegl’s algorithm is given by O(DB�2), where � and DB

are the cardinality and the dimensionality of the data set, respectively.

Grassberger-Procaccia Algorithm. A good substitute for the Box-Counting
dimension can be the Correlation dimension [18]. Due to its computational sim-
plicity, the Correlation dimension is successfully used to estimate the dimension
2 Fractals have not always non-integer dimensionality. For instance, the dimension of
Peano’s curve is 2.
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of attractors of dynamical systems. The Correlation dimension [18] of a set Ω
is defined as follows. If the correlation integral Cm(r) is defined as:

Cm(r) = lim
�→∞

2
�(� − 1)

�∑
i=1

�∑
j=i+1

I(‖xj − xi‖ ≤ r) (3)

where I is an indicator function3, then the Correlation dimension D of Ω is:

D = lim
r→0

ln(Cm(r))
ln(r)

(4)

It can be proven that the Correlation Dimension is a lower bound of the Box-
Counting Dimension. The most popular method to estimate Correlation dimen-
sion is the Grassberger-Procaccia algorithm [18]. This method consists in plotting
ln(Cm(r)) versus ln(r). The Correlation dimension is the slope of the linear part
of the curve (see Fig. 2b). The computational complexity of the Grassberger-
Procaccia algorithm is O(�2s) where � is the cardinality of the data set and s is
the number of different times that the integral correlation is evaluated, respec-
tively. However, there are efficient implementations of the Grassberger-Procaccia
algorithm whose complexity does not depend on s. For these implementations,
the computational complexity is O(�2).

Takens’ Method. Takens [50] has proposed a method, based on Fisher’s
method of Maximum Likelihood [12], that allows to estimate the correlation
dimension with a standard error. Let Q be the following set Q = {qk | qk < r}
where qk is the the Euclidean distance between a generic couple of points of Ω
and r (cut-off radius) is a real positive number. Using the Maximum Likelihood
principle it can prove that the expectation value of the Correlation Dimension
〈Dc〉 is:

〈Dc〉 = −
⎛
⎝ 1

|Q|
|Q|∑
k=1

qk

⎞
⎠

−1

(5)

where |Q| stands for the cardinality of Q. Takens’ method presents some draw-
backs. It requires some heuristics to set the radius [53]. Besides, the method
is optimal only if the correlation integral Cm(r) assumes the form Cm(r) =
arD[1+br2+o(r2)] where a and b are constants, otherwise it can perform poorly
[52]. Finally, Hein and Audibert [20] proposed a generalization of the correlation
integral, in term of U-statistics [22], defined as follows:

Un,h(K) =
2

�(� − 1)

�∑
i=1

�∑
j=i+1

1
hm

K(‖xj − xi‖2/h2) (6)

where K(·) is a generic kernel of band width h and m is the dimensionality of
the manifold where the data are assumed that lie. On the basis of the Hoeffding
3 I(λ) is 1 iff condition λ holds, 0 otherwise.
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Fig. 2. (a) The attractor of the Lorentz system. (b) The log-log plot on Data set A.
Data set A is a real data time series generated by a Lorentz-like system, implemented
by NH3-FIR lasers.

Theorem [23], to guarantee the convergence of the U-statistics the bandwidth h
must fulfill �hm → ∞. Hein and Audibert used this property by fixing aconver-
gence rate for each dimension, that means weare fixing h as a function of the
data set cardinality �. Then the Eq. (6) is computed for subsamples of different
cardinalities, where h varies according to the function we have fixed. ID is deter-
mined by the U-statistic which has the smallest slope as a function of h. It is
worth to remark that, Hein and Audibert’s algorithm tries, even if partially, to
address the problem of ID dependence on the data scale.

Limitations of Fractal Methods. In addition to the drawbacks previously
exposed, estimation methods based on fractal techniques have a fundamental
limitation. It has been proved [14] that in order to get an accurate estimate
of the dimension D, the set cardinality � has to satisfy the so-called Eckmann-
Ruelle’s inequality, D < 2 log10 �.

The inequality shows that the number � of data points required to accurately
estimate the dimension of a D-dimensional set is at least 10

D
2 . Even for low

dimensional sets this leads to huge values of �. In order to cope with this problem
and to improve the reliability of the measure for low values of �, the method
of surrogate data [54] has been proposed. The method of surrogate data is an
application of bootstrap [15]. Given a data set Ω, the method of surrogate data
consists in creating a new synthetic data set Ω′, with larger cardinality, that has
the same statistical properties of Ω, namely the same mean, variance and Fourier
Spectrum. Although the cardinality of Ω′ can be chosen arbitrarily, the method
of surrogate data is infeasible when the dimensionality of the data set is high.
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In-fact a 18-dimensional data set to be estimated must have at least, on the
base of the Eckmann-Ruelle’ inequality, 109 points. Camastra and Vinciarelli
[7,8] proposed a procedure to power Grassberger and Procaccia method (GP
method), establishing empirically how much GP method underestimates the
dimensionality of a data set when data set cardinality is unadequate. Consider
a set Ω of cardinality �. The procedure is the following:

1. Create a set Ω′, whose ID d is known, with the same cardinality � of Ω. For
instance, Ω′ could be composed of � data points randomly generated in a
d-dimensional hypercube.

2. Measure the correlation dimension D of Ω′ with the GP method.
3. Repeat the two previous steps for T different values of d, obtaining the set

C = {(di,Di) : i = 1, 2, . . . , T ).
4. Perform a best-fitting to the data points in C. A plot (reference curve) Γ of

D versus d is generated. The reference curve allows to infer the value of D
when d is known.

5. The correlation dimension D of Ω is computed by GP method and, using Γ ,
the intrinsic dimension of Ω can be estimated.

The procedure assumes implicitly that the curve Γ depends on � and the depen-
dence of Γ on the Ω′ sets are negligible. It is worth to mention that Oganov and
Valle [56] used GP method in conjunction to Camastra and Vinciarelli proce-
dure’s to estimate ID of Crystal Fingerprint spaces.

2.3 Multidimensional Scaling and Other Methods

Multidimensional Scaling (MDS) [44] methods are projection techniques that
tend to preserve, as much as possible, the distances among data. Therefore data
that are close in the original data set should be projected in such a way that
their projections, in the new space (output space), are still close. To each pro-
jection is associated an index, usually defined stress, that measures the good-
ness of the projection. The best projection is the one whose stress is minimal.
Examples of the Multidimensional scaling methods are Bennett’s algorithm
[3], that now has only historical interest, MDSCAL [31], Sammon’s mapping
[47]. In the Other Methods category, are collected the methods that do not
belong to fractal, projection and MDS categories. To Other Methods category
belong Costa-Hero [11] algorithm and the algorithms recently proposed by Rozza
et al. [46] and Lombardi et al. [35]. For the sake of brevity, we only describe the
first algorithm. Costa-Hero’s algorithm assumes that data lie on a manifold. The
algorithm exploits entropic graphs on in order to estimate the ID dimensionality
and the entropy of the manifold. The algorithm is founded on the fact that the
length function, computed on the whole graph, depends on ID.

3 Local Methods

Local methods are algorithms that provide an ID estimation using the informa-
tion contained in sample neighborhoods, avoiding the projection of the data onto
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a lower-dimensional manifold. In this case, data do not lie on a unique manifold
of constant dimensionality but on multiple manifolds of different dimensionali-
ties. Since a unique ID estimate for the whole data is clearly not meaningful, it
prefers to provide an ID estimate for each small subset of data, assuming that it
lies on a manifold of constant dimensionality. More formally, local (or topological)
methods try to estimate the topological dimension of the data manifold. The def-
inition of topological dimension was given by Brouwer [21] in 1913. Topological
dimension is the basis dimension of the local linear approximation of the hyper-
surface where the data reside, i.e., the tangent space. For example, if the data
set lies on an m-dimensional submanifold, then it has an m-dimensional tangent
space at every point in the set. For instance, a sphere has a two-dimensional
tangent space at every point and may be viewed as a two-dimensional manifold.
Since the ID of the sphere is three, the topological dimension represents a lower
bound of ID. If the data does not lie on a manifold, the definition of topological
dimension does not directly apply. Sometimes the topological dimension is also
referred to simply as the local dimension. This is the reason why the methods
that estimate the topological dimension are called local. Algorithms that belong
to this category are Fukunaga-Olsen [17], Bruske-Sommer [5], Trunk [55], Pettis
et al. [42] and Verveer and Duin [58] ones.

3.1 Fukunaga-Olsen’s Algorithm

Fukunaga-Olsen’s algorithm is based on the observation that for data embedded
in a linear subspace, the dimension is equal to the number of non-zero eigen-
values of the covariance matrix. Besides, Fukunaga and Olsen assume that the
intrinsic dimensionality of a data set can be computed by dividing the data set
in small regions (Voronoi tesselation of data space). Voronoi tesselation can be
performed by means of a clustering algorithm, e.g., LBG [33]. In each region
(Voronoi set) the surface in which the vectors lie is approximately linear and
the eigenvalues of the local covariance matrix are computed. Eigenvalues are
normalized by dividing them by the largest eigenvalue. The intrinsic dimension-
ality is defined as the number of normalized eigenvalues that are larger than
a threshold T . Although Fukunaga and Olsen proposed for T , on the basis of
heuristic motivations, values such as 0.05 and 0.01, it is not possible to fix a
threshold value T good for every problem.

3.2 TRN-Based and Local MDS Methods

Topology Representing Network (TRN) is a unsupervised neural network pro-
posed by Martinetz and Schulten [39]. They proved that TRN are optimal topol-
ogy preserving maps i.e., TRN preserves in the map the topology originally
present in the data. Bruske and Sommer [5] proposed to improve Fukunaga-
Olsen’s algorithm using TRN in order to perform the Voronoi tesselation of the
data space. In detail, the algorithm proposed by Bruske and Sommer is the
following. An optimal topology preserving map G, by means of a TRN, is com-
puted. Then, for each neuron i ∈ G, a PCA is performed on the set Qi consisting
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of the differences between the neuron i and all of its mi closest neurons in G.
Bruske-Sommer’s algorithm shares with Fukunaga-Olsen’s one the same limita-
tions: since none of the eigenvalues of the covariance matrix will be null due to
noise, it is necessary to use heuristic thresholds in order to decide whether an
eigenvalue is significant or not. Finally, we conclude the section on local meth-
ods quoting the local MDS methods. As the global MDS methods discussed in
Sect. 2.3, local MDS methods are projection techniques that tend to preserve,
as much as possible, the distances among data. In local MDS, in an analogous
manner to global MDS, to each projection is associated an index or a cost that
measures the goodness of the projection. Unlike MDS methods, where the whole
data set is considered, local MDS methods work only on a small subset of data.
Examples of Local MDS methods are ISOMAP [51] and Local Linear Embedding
(LLE) [45]. The method for estimating ID is the same of global MDS. Compute
several MDS projection considering different dimensionality for the output space.
Pick the MDS projection with the best index or the minimum cost. The ID is
given by the dimensionality of the output space of the MDS projection selected.

4 Mixed Methods

The most relevant methods that belong to this category are Levina-Bickel [32]
and Carter-Raich-Hero algorithms [9]. For the sake of brevity, we only describe
the former algorithm.

4.1 Levina-Bickel Algorithm

The Levina-Bickel algorithm provides a maximum likelihood ID estimate. The
Levina-Bickel algorithm derives the maximum likelihood estimator (MLE) of the
intrinsic dimensionality D from a data set Ω = (x1, . . . ,x�) ∈ R

n. The dataset
Ω represents an embedding of a lower-dimensional sample, i.e., xi = g(Yi) where
Yi are sampled from an unknown smooth density f on R

D with D ≤ n, g is a
smooth mapping. Last assumption guarantees that close data in R

D are mapped
to close neighbors in the embedding. That being said, we fix a data point x ∈ R

n

assuming that f(x) is constant in a sphere Sx(r) centered in x of radius r and
we view Ω as a homogeneous Poisson process in Sx(r). Given the inhomogeneous
process {P (t,x), 0 ≤ t ≤ r}

P (t,x) =
�∑

i=1

I(xi ∈ Sx(t)), (7)

which counts the data whose distance from x is less than t. If we approximate it
by means a Poisson process and we neglect the dependence on x, the rate λ(t)
of the process P (t) is given by:

λ(t) = f(x)V (D)DtD−1, (8)
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where V (D) is the volume of a D-dimensional unit hypersphere. The Eq. (8) is
justified by the Poisson process properties since the surface area of the sphere
Sx(t) is d

dt [V (D)tD] = V (D)DtD−1. If we define θ = logf(x), the log-likelihood
of the process P (t) [49] is:

L(D, θ) =
∫ r

0

logλ(t)dP (t) −
∫ r

0

λ(t)dt. (9)

The equation describes an exponential family for which a maximum likelihood
estimator exists with probability that tends to 1 as the number of samples �
tends to infinity. The maximum likelihood estimator is unique and must satisfy
the following equations:

∂L

∂θ
=

∫ r

0

dP (t) −
∫ r

0

λ(t)dt = P (r) − eθV (D)rD = 0. (10)

∂L

∂D
=

(
1
D

+
V ′(D)
V (D)

)
P (r) +

∫ r

0

log t dP (t)+

− eθV (D)rD

(
log r +

V ′(D)
V (D)

)
= 0. (11)

If we plug the Eq. (10) into the Eq. (11) we obtain the maximum likelihood
estimate for the dimensionality D:

D̂r(x) =

⎡
⎣ 1

P (r,x)

P (r,x)∑
j=1

log
r

Tj(x)

⎤
⎦

−1

, (12)

where Tj(x) denotes the Euclidean distance between x and its j-th nearest
neighbor. Levina and Bickel suggest to fix the number of the neighbors k rather
than the radius of the sphere r. Therefore the estimate becomes:

D̂k(x) =

⎡
⎣ 1

k − 1

k−1∑
j=1

log
Tk(x)
Tj(x)

⎤
⎦

−1

. (13)

The estimate of the dimensionality is obtained averaging on all data points of
the data set Ω, that is:

D̂k =
1
�

�∑
i=1

D̂k(xi) (14)

The estimate of the dimensionality depends on the value of k. Levina and Bickel
suggest to average over a range of values of k = k1, . . . , k2 obtaining the final
estimate of the dimensionality, i.e.,

D̂ =
1

k2 − k1 + 1

k=k2∑
k=k1

D̂k. (15)
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David Mac Kay and Zoubin Ghamarani, in an unpublished comment [36], made
a strong criticism against Levina and Bickel’ s procedure of the global ID esti-
mation. Instead, they proposed to average the inverse of the estimators D̂k(xi).
In this way, the Eq. (14) has to be replaced with:

D̂k =
�(k − 1)

�∑
i=1

k−1∑
j=1

log
Tk(xi)
Tj(xi)

(16)

Using the same Levina and Bickel’s approach, the final estimate of the dimen-
sionality has to be obtained averaging D̂k over a range of values of k = k1, . . . , k2
obtaining the final estimate of the dimensionality expressed by Eq. (15).
Regarding the computational complexity, the Levina-Bickel algorithm requires
a sorting algorithm4, whose complexity is O(� log �), where � denotes the cardi-
nality of the data set. Hence the computational complexity for estimating D̂k

is O(k�2 log �), where k denotes the numbers of the neighbors that have to be
considered. Besides, Levina and Bickel suggest to consider an average estimate
repeating the estimate Dk s times, where s is the difference between the max-
imum and the minimum value that k can assume, i.e., k2 and k1, respectively.
Therefore the overall computational complexity of the Levina-Bickel algorithm
is O(k2s�2 log �).

5 ID Estimation Methods Benchmarking

A crucial issue in ID estimation is the experimental validation of the algorithms
designed for ID estimation. The experimental validation of such an algorithm
requires benchmarks, i.e., data sets, Benchmarks can be of two different types:
synthetical or real data. Regarding synthetical benchmarks, it is not difficult to
build synthetical data sets of given ID [20]. Moreover, the literature offer a cer-
tain number of synthetical benchmarks, both low-dimensional and high dimen-
sional. To this purpose, it is worth to mention 2-dimensional Swiss Roll [51],
3-dimensional 10-Möbius strip [20], 9-dimensional data set D of Santa Fe time
series competition [43], 12-dimensional manifold [20]. Unlike synthetical bench-
marks, it can be cumbersome to get real data benchmarks of known ID. Firstly,
it is necessary to split the benchmarks in two subfamilies: low-dimensional and
high-dimensional. Regarding low-dimensional real data benchmarks, the liter-
ature offers a limited availability of benchmarks, e.g., the 3-dimensional Face
Set [51] and the attractors in the phase space, of known dimensionality, gen-
erated, using method of delays [41], by real data time series. To this purpose,
it is worth to mention the Lorentz attractor generated by the data set A5 [24]

4 The complexity of effective sorting algorithms (e.g., mergesort and heapsort) is
� log �, where � is the number of elements that have to be sorted.

5 The data set A is a real data time series generated by a Lorentz-like chaotic system,
implemented by NH3-FIR lasers.
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Table 1. Chua’s circuit and Data set A attractor dimension estimates by Kégl, Levina-
Bickel, Grassberger-Procaccia methods.

Data set A attractor
dimension

Chua’s circuit attractor
dimension

Kégl estimate 2.02 2.14

Levina-Bickel estimate 2.35 2.26

Grassberger-Procaccia estimate 2.00 2.20

Theoretical value 2.06 ∼2.26

and Chua’s attractor generated by a real data time series, measured from a
hardware realization [1] of Chua’s circuit [10]. In Table 1 some experimental
comparisons [6] among ID estimators, performed on Data Set A and Chua’s cir-
cuit, are reported. If we pass to consider high-dimensional real data benchmarks
of known ID, the situation becomes very difficult. To our best knowledge, the
only high-dimensional benchmarks are the Crystal Fingerprint spaces (or Crystal
Fingerspaces) [40,56] recently proposed by Oganov and Valle in Crystallography
with the aim of representing crystalline structures. Crystal Fingerprint spaces are
spaces built starting by the real measured distances between atoms in the crys-
talline structure. The theoretical ID of a Crystal Fingerspace, based on crystal
degree of freedoms, is 3N+3, where N is the number of the atoms in the crys-
talline unitary cell. Crystal Fingerspaces have been derived for several crystal
structures, e.g., 39-dimensional H2O (crystalline cell with 8 atoms) and 147-
dimensional SiO2 (crystalline cell with 48 atoms). Crystal Fingerspace data are
available at http://mariovalle.name/CrystalFp/index.php/CrystalFpLib/Data.

6 Conclusions

In the paper we have reviewed the intrinsic dimension estimation methods under-
lining their advances. Nevertheless, some problem remain open. As remarked
previously, intrinsic dimension depends on the scale of data. Although some ID
estimation methods [20,34] tried to take in account, even if partially, of the
data scale, a reliable multiscale ID estimator is not available, yet. The other
open problems are related to the robustness of ID estimators w.r.t. the curse of
dimensionality. About this topic, there are two issues that remain to be fully
addressed. The former issue is the following. Each ID estimation method should
provide a lower bound on the cardinality in order to guarantee an accurate ID
estimation. To our best knowledge, this lower bound [14,48] is available only
for Correlation Dimension estimation methods, e.g., Eckmann-Ruelle’s inequal-
ity, whereas the other algorithms fully ignored the topic. The latter issue is the
lack of the robustness of ID estimators w.r.t. high dimensionality. Although an
empirical solution [8] was proposed, the construction of a robust ID estimators
w.r.t. high dimensionality remains one of the challange of the research in machine
learning.

http://mariovalle.name/CrystalFp/index.php/CrystalFpLib/Data
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Abstract. In the past two decades the estimation of the intrinsic dimen-
sionality of a dataset has gained considerable importance, since it is
a relevant information for several real life applications. Unfortunately,
although a great deal of research effort has been devoted to the develop-
ment of effective intrinsic dimensionality estimators, the problem is still
open. For this reason, in this paper we propose a novel robust intrin-
sic dimensionality estimator that exploits the information conveyed by
the normalized nearest neighbor distances, through a technique based on
rank-order statistics that limits common underestimation issues related
to the edge effect. Experiments performed on both synthetic and real
datasets highlight the robustness and the effectiveness of the proposed
algorithm when compared to state-of-the-art methodologies.

Keywords: Intrinsic dimensionality estimation · Manifold learning ·
Rank-order statistics

1 Introduction

In the last decade a great deal of research work has been devoted to the devel-
opment of the intrinsic dimensionality (id) estimators. To this aim, considering
a dataset XN ≡ {xi}N

i=1 ⊂ �D, the feature vectors xi are generally viewed as
points constrained to lie on a low dimensional manifold M ⊆ �d embedded in
a higher dimensional space �D, where d is the intrinsic dimensionality to be
estimated. In more general terms, according to [11], XN is said to have id equal
to d ∈ {1..D} if its elements lie entirely within a d-dimensional (locally) smooth
manifold embedded in �D.

The knowledge of dataset’s id is crucial for several applications in the field
of Artificial Intelligence, as it is highlighted by the following reasons. At first,
dimensionality reduction techniques, which are often used to reduce the “curse
of dimensionality” effect [17] by computing a more compact representation of the
data, are profitable when the number of projection dimensions is the minimal
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one that allows to retain the maximum amount of useful information expressed
by the data. Furthermore, when using an auto-associative neural network [19] to
perform a nonlinear feature extraction, the id can suggest a reasonable value for
the number of hidden neurons. Moreover, according to the statistical learning
theory [32], the capacity and the generalization capability of a classifier may
depend on the id. In particular, in [10] the authors mark that, in order to balance
a classifier’s generalization ability and its empirical error, the complexity of the
classification model should also be related to the id of the available dataset.
Finally, as it has been recently shown in [2], id estimation methods are used to
evaluate the model order in a time series, which is crucial to make reliable time
series predictions. This consideration is supported by the fact that the domain of
attraction of a nonlinear dynamic system has a very complex geometric structure
and the studies on the geometry of the attraction domain are closely related to
fractal geometry, and therefore to fractal dimension.

Unfortunately, although a great deal of research effort has been focused on the
development of id estimators, the problem is still open. For this reason, in this
paper we present a novel methodology for intrinsic dimensionality estimation
that exploits the information conveyed by the normalized neighbor distances
through an efficient technique based on rank-order statistics. This method limits
common underestimation issues related to the edge effect without introducing
de-biasing procedures that reduce the effective sample size by filtering the border
points [4].

This paper is organized as follows: Sect. 2 briefly surveys the most notable
state-of-the-art techniques aimed at id estimation; in Sect. 3 base theoretical
results laying foundations of the proposed estimator are presented; Sect. 4
describes the proposed algorithm, also providing a concise analysis of its prop-
erties; a detailed comparison with well-known methodologies on a wide family
of datasets is reported in Sect. 5; finally, Sect. 6 reports conclusions and future
works.

2 Related Works

In this section well-known id estimators are shortly recalled, highlighting their
advantages and drawbacks.

In the following, the surveyed id estimators are grouped according to the
categorization proposed in [22]. In particular, two groups have been identified
by the authors: projection methods, which search for the best subspace where
to project the data, and geometric id estimators, which exploit statistics related
to either the distances between neighboring points or the fractal dimension,
expressing them as functions of the id of the embedded manifold.

The most cited projection method is the Principal Component Analysis (PCA)
[18], which projects the input dataset on the d directions of its maximum variance
(principal components, PCs). More precisely, given a dataset of observed points
pt ∈ �D, PCA computes their low dimensional representations px ∈ �d by pro-
jecting the points pt ∈ �D on the d directions (also called principal components,
PCs) of their maximum variance. To this aim, PCA computes the D × d projec-
tion matrix W (whose columns wi, i = 1, .., d are the PCs), so that the reduced
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points px are obtained from the observed points as px = W T (pt − p̄t) (being
p̄t the mean of the observed points), while, given the reduced data, the recon-
structed points are p̃t = Wpx + p̄t. The projection matrix W is the one that
minimizes the sum of square distances between the observed points pt and the
reconstructed ones p̃t. According to [18], W can be obtained by selecting as PCs
the eigenvectors corresponding to the highest eigenvalues of the data covariance
matrix. Exploiting PCA, the intrinsic dimension d can be estimated by count-
ing the number of retained PCs, that generally are the PCs whose corresponding
(normalized) eigenvalue is higher than a threshold parameter. The problem of
using PCA for id estimation relies in the difficulty of choosing a proper value for
the threshold; moreover, PCA is a linear technique that cannot successfully deal
with points drawn from nonlinearly embedded manifolds, and generally produces
overestimations.

More accurate results can be obtained by applying a local PCA [12] that
combines local id estimates computed in small subregions of the dataset; unfor-
tunately, complications arise in the identification of local regions and in the
thresholds selection [33].

Based on the observation that PCA and its variants are deterministic models
lacking an associated probabilistic model for the observed data and a method
for selecting the number of PCs to be retained (the id), in [30] the authors pre-
sented the Probabilistic PCA (PPCA). This approach reformulates PCA as the
maximum likelihood solution of a specific latent variable model by considering
a d−dimensional latent variable x (representing the reduced data) and setting
their prior distribution to be a zero mean Gaussian whose covariance matrix
is a d−dimensional identity matrix (that is N (x|0, Id)). The D−dimensional
observed variable t is then defined as: t = Wx+μ+ ε, that is a linear transfor-
mation of the latent variable x where W is a D × d parameter representing the
projection matrix, μ is a D−dimensional vector, and ε is a zero-mean Gaussian
distributed vector with covariance σ2ID representing noise. Hence, the marginal
distribution of the observed variable t, is a constrained Gaussian distribution
governed by the three parameters W , μ, and σ. The maximum likelihood solu-
tion for these parameters allows to project the observed dataset on the reduced
d−dimensional space and therefore represents the solution computed by means
of PPCA.

Even though PPCA has obtained promising results, it still does not provide
any mechanism for estimating the best value of the latent space dimensionality
d, that is the id. For this reason, in [1] the author further extends the PPCA
model by defining a Bayesian treatment of PCA (called Bayesian PCA or BPCA).
To this aim a prior distribution over the three parameters W , μ, and σ is intro-
duced to formulate the posterior over the dataset and the predictive density by
marginalizing over the three parameters. To automatically determine an effec-
tive dimensionality d for the latent variable x, the author further introduces
a “hierarchical” prior p(W |α) over the parameter W that is governed by a
q−dimensional vector of hyper-parameters α = α1, .., αq, where αi controls the
inverse “relevance” of wi, and q is initially set to q = D − 1. To make use of
this model the author exploits a local Gaussian approximation to estimate the
posterior distribution of W , which must be marginalized to solve the problem.
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Combining this procedure with maximum likelihood to determine the values of
the αi, the authors note that the vectors wi for which there is insufficient sup-
port from the data will be driven to zero, with the corresponding αi −→ ∞,
so that unused dimensions are switched off completely. The id is then defined
as the number of PCs whose “relevance” value remains non-zero. This technique
has been extended in [23] to cope with exponential family distributions, but this
method requires the knowledge of the distribution underlying the data.

To achieve an automatic selection of meaningful PCs, in [14] the authors
propose the Sparse Probabilistic Principal Component Analysis (SPPCA) that
exploits the sparsity of the projection matrix through a probabilistic Bayesian
formulation.

Unfortunately, all the above mentioned projection approaches cannot pro-
vide reliable id estimates since they are too sensitive to noise and parameter
settings [22].

Perhaps, the most popular geometric id estimator is the Correlation Dimen-
sion (CD) [13] that is based on the assumption that the volume of a d-dimensional
set scales as rd with its size r. Since the performances of CD are affected by the
choice of the scale r, in [15] the author suggests an estimator based on the
asymptotes of a smoothed version of the CD estimate.

Another interesting technique, based on the analysis of point neighborhoods,
is the Maximum Likelihood Estimator (MLE, [22]) that applies the principle of
maximum likelihood to the distances between close neighbors, and derives the
estimator by a Poisson process approximation. More precisely, calling k the num-
ber of neighbors, xi the ith point, and Tk(xi) the radius of the smallest sphere
centered in xi containing exactly k neighbors, the local intrinsic dimension is
estimated as:

d̂(xi) =

⎛
⎝1

k

k∑
j=1

log
Tk+1(xi)
Tj(xi)

⎞
⎠

−1

In [8] the authors propose an algorithm, which exploits entropic graphs to
estimate both the id and the intrinsic entropy of a manifold. This technique is
based on the observation that the length function of such graphs, that is the sum
of arc weights on the minimal graph that spans all the points in the dataset,
is strongly dependent on d. The authors test their method by adopting either
the geodesic minimal spanning tree (GMST [7]), where the arc weights are the
geodetic distances computed through the ISOMAP [29] algorithm, or the kNN-
graph (kNNG [8]), where the arc weights are based on the Euclidean distances,
thus requiring a lower computational cost.

We note that the recalled neighborhood based estimators underestimate the
id when its value is sufficiently high and, to our knowledge, only few works
propose possible solutions to this problem [3,5,24,27,28].

3 Theoretical Results

Consider a manifold M ≡ �d embedded in a higher dimensional space �D

through a locally isometric nonlinear smooth map φ : �d → �D; to estimate
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the id of M by means of points drawn from the embedded manifold through a
smooth probability density function (pdf) f , we need to identify a “mathematical
object” depending only on d, and we should define a consistent estimator for d
based on it.

Assume by hypothesis that the employed manifold sampling process is driven
by a smooth pdf f ; moreover, consider a spherical neighborhood of the origin
0d having radius ε; denoting with χBd(0d,1) the indicator function on the unit
ball Bd(0d, 1), the pdf restricted to such a neighborhood is:

fε(z) =
f(εz)χBd(0d,1)(z)∫
t∈Bd(0d,1)

f(εt)dt
(1)

In [24] the authors prove the following:

Theorem 1. Given {εi} → 0+, Eq. (1) describes a sequence of pdfs having the
unit d-dimensional ball as support; such sequence converges uniformly to the
uniform distribution Bd in the ball Bd(0d, 1).

Theorem 1 ensures that, from a theoretical standpoint, in our setting it is
possible to assume uniformly distributed points in every neighborhood of M;
in other words, we are allowed to define consistent estimators based on local
information, assuming without loss of generality that the normalized points are
uniformly drawn from Bd(0d, 1).

Our technique exploits the statistical properties of norms computed on points
drawn from uniformly sampled hyperspheres to define a consistent estimator of
the manifold’s id. In particular, let {zi}k

i=1 be a set of points1 uniformly drawn
from Bd(0d, 1). Let Ri ∈ [0, 1] denote the distance of Zi from the center of the
hypersphere 0d, i.e. Ri = ||Zi||, where || · || is the L2 norm operator. In [24] it is
shown that the cumulative distribution function (cdf) FRi

of Ri can be evaluated
by means of the ratio between Vr that is the volume of a d dimensional hyper-
sphere of radius r, and the analogously defined V1, thus obtaining FRi

(r) = rd.
Denoting with {R(i)}k

i=1 the order statistic of the observed distances, they fol-
low a Beta distribution2 with parameters i and k − i + 1 (Beta (i, k − i + 1))
evaluated in rd. This result, which is grounded on the theory of order statis-
tics [34], arises from the fact that R(i) ≤ r iff #{Rj ≤ r}k

j=1 ≥ i, where # is
the cardinality operator. To exploit useful asymptotic properties of Beta random
variables (rvs), we opt to concentrate on the distribution of R(k) which, after
some algebra, simplifies in a Beta (τ, 1), i.e. FR(k) = rτ , where τ = kd.

To keep the underestimation effect [27] low when the number of border points
increases in high dimensional spaces (“edge effect”, [33]), we subtract from R(k)

another rv suffering from the same problem and having the same behavior (for
technical details, see Sect. 4 where the algorithm is described).
1 By default, capital letters (such as U, X) will denote random variables (rv) and small

letters (u, x) their corresponding realization.
2 The pdf of a random variable X following a Beta distribution with parameters α

and β is defined as fX(x|α, β) = (B(α, β))−1xα−1(1 − x)β−1 where B is the Beta
function providing for the normalization factor.
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More precisely, let {z′
i}k′

i=1 be a further sample of points uniformly drawn
from Bd(0d, 1) and, with the same notation used so far, define R′

i and R′
(k′)

to be respectively the norm of z′
i, and the norm of the farthest point from the

origin. The reproducibility property still holds for R′
(k′) that is distributed as a

Beta (τ ′, 1), where τ ′ = k′d.
Before describing that the distribution law of the difference Δ(k,k′) between

R(k) and R′
(k′) converges to the cdf FL of an asymmetric Laplace distribution,

let us introduce the following lemma.

Lemma 1. Let Ba be a rv following a Beta distribution of parameters (1, a) and
Y1 a rv following an Exponential distribution3 of parameter λ = 1 (Exp (1)).

The sequence of rvs {aBa}a∈N converges to Y1 both in mean (i.e. aBa
L2

−−→
Y1, or equivalently lima→∞ aBa = Y1) with order O(a−2) and uniformly (i.e.
lima→∞ supy∈�+ |faBa

(y) − fY1(y)| = 0) with order O(a−1), where faBa
and

fY1 are the pdfs of aBa and Y1, respectively.

Proof. First of all, note that according to standard approximations for contin-
uous univariate distributions [16], lima→∞ aBa = Y1. This is easily shown by
noting that FaBa

(y) =
(
1 − y

a

)a−1 converges to e−y for a → ∞.
Moreover, let us compute the mean square error as follows:

||aBa − Y1||22 =
∫ a

y=0

(faBa
(y) − fY1(y))2 +

∫ ∞

y=a

(fY1(y))2 =

1
4a − 2

+ 2ae−a(−a)−a(Γ (a,−a) − Γ (a)) + 1 (2)

where Γ (a) and Γ (a, z) are respectively the Gamma function (
∫ ∞
0

ta−1e−t dt)
and the Incomplete Gamma function (

∫ ∞
z

ta−1e−tdt). The log-log scale repre-
sentation of Eq. (2) leads us to fit it through the power-law function φ2(a) =
0.065

a2 whose quality can be appreciated in Fig. 1(a). A similar investigation of
||aBa −Y1||∞ = max

{
maxy∈[0,a] |faBa

(y) − fY1(y)| , fY1(a)} leads to its approx-
imation through φ∞(a) = 0.242

a (see Fig. 1(b)).

We are now ready to state the following theorem.

Theorem 2. Let B1 and B2 be two Beta distributed rv of parameters (a1, 1) and
(a2, 1). For a1, a2 > M (M ∈ �+ arbitrary large) the difference Δ = B1 − B2

follows an asymmetric Laplace distribution [20] with parameters γ =
√

a2/a1 and
σ =

√
2/a1a2.

Proof. At first, we note that B1 = 1−B1 follows a Beta (1, a1); moreover, accord-
ing to Lemma 1, for large enough values of a we may approximate the distribution
of a1B1 with Exp (1). In particular, B1 ∼ 1/a1Exp (1) = Exp (a1). After having
applied the same reasoning to B2, consider the difference Δ between B1 and B2:

Δ = B1 − B2 = (1 − B2) − (1 − B1) = B2 − B1 (3)
3 The pdf of a random variable Y following an Exponential distribution is defined as

fY (y|λ) = λe−λy.
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Fig. 1. Comparison between: (a) ||aBa−Y1||22 (dashed black curve) and its approxima-
tion φ2 (gray curve), and (b) ||aBa−Y1||∞ (dashed black curve) and its approximation
φ∞ (gray curve).

The distribution of the rv Δ (reported in Eq. (3)) may be computed by evaluating
the convolution integral between Exp (a2) and Exp (a1), thus obtaining:

FΔ(δ; a1, a2) =

{
a2ea1δ

a1+a2
if δ < 0

1 − a1e−a2δ

a1+a2
otherwise

(4)

This looks like a special case of the well-known asymmetric Laplace distribution
of Kozubowski and Podgórski [20], defined as:

FL(l; γ, σ) =

⎧⎪⎨
⎪⎩

√
2γe

√
2y

γσ

σ(γ2+1) if δ < 0
√
2γe−

√
2γy
σ

σ(γ2+1) otherwise
(5)

The connection between Eqs. (4) and (5) is attested by the substitutions a2 ←
√
2γ
σ ,

a1 ←
√
2

γσ , and their inverses γ ←
√

a2
a1

, σ ←
√

2
a1a2

.

As a direct consequence of Theorem 2, the difference Δ(k,k′) between R(k) and
R′

(k′) may be well approximated by a rv following an asymmetric Laplace dis-

tribution of parameters γ =
√

τ ′
τ and σ =

√
2

ττ ′ .

Remark 1. To numerically evaluate the feasibility of the approximations intro-
duced in Lemma 1, consider firstly the relation that links the ai parameters
of the Beta distributions in Theorem2 with the id d through the equality
ai = dk, with k neighborhood size. For instance, we need an id d of at least
25 to tolerate an absolute error ε = 0.001: this value is obtained by solving
φ∞(dk) = 0.001 = 0.242

kd in d and assuming a neighborhood size k equal to 10
(as usually set in the literature and in our experiments). The needed id drops
down to d = 3 when the tolerated error lowers to ε = 0.01.

A more detailed investigation of the problem allows us to further improve
the aforementioned relation. Looking at Fig. 2, we observe how the difference
fBai

(y) − fYai
(y) between the pdf of a Beta distribution Bai

with parameters
(1, ai) and the pdf of an Exponential distribution Yai

of rate ai tends to vanish
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Fig. 2. Course of the difference fBai
(y) − fYai

(y) when ai = 20.

for values of y close to 1. Moreover, thanks to the compression of norms, we know
that the probability of observing a normalized distance under a given threshold
(for example 0.8) between a point and its k-th neighbor in a kNN goes to zero
as the dimensionality increases. In particular, denoting with Bkd a rv following
a Beta distribution of parameters (kd, 1), the value of the cdf evaluated in the
chosen threshold, i.e. FBkd

(0.8) = 0.8dk, drops below 10−4 for d ≥ 4 and k = 10.
This observation justifies the computation of ||aBa − Y1||∞ only on that

portion of the domain which effectively has a non negligible probability of being
observed. In particular, the approximation:

sup
y∈[0.8ai,∞)

∣∣faiBai
(y) − fY1(y)

∣∣ ≈ 3 × 10−15

y
(6)

shows that the absolute error is so small to justify the use of the exponential
approximation to the Beta distribution at least for d ≥ 4.

As reported in [20], a Maximum Likelihood estimator (ML) could be found
for the parameters γ and σ of FL. In particular, denoting with l = {l1, . . . , lN} a
sample drawn from an asymmetric Laplace distribution, and using as statistics:

α =
1
N

N∑
j=1

max{lj , 0} β = − 1
N

N∑
j=1

min{lj , 0} (7)

a consistent ML for γ and σ is:

γ̂ = 4

√
β

α
σ̂ =

√
2 4
√

α 4
√

β
(√

α +
√

β
)

(8)

Finally, according to Theorem2 and thanks to the properties of maximum like-
lihood estimators, a ML for the parameters of the Beta (τ, 1) and Beta (τ ′, 1) can
be computed as:

τ̂ =
√

2
γ̂σ̂

τ̂ ′ =
√

2γ̂

σ̂
(9)

Note that due to the usage of the kNN algorithm, a direct estimate of τ in
R(k) may be poor. More precisely, in high dimensional spaces, the kNN method
is strongly affected by the edge effect [33] that reduces the quality of the neigh-
borhood estimation. The usage of Δ(k,k′) helps to reduce the aforementioned
effects, as shown in our experimental results.
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4 The Algorithm

In this section we show how the theoretical results presented in Sect. 3 can be
exploited to estimate the id of a given dataset. In particular, the thorny problem
is to understand how to retain the information contained in neighbor distances
narrowing the underestimation caused by the edge effect, without wasting any
sample data and still maintaining a low computational cost. We meet all these
requirements by considering the difference between the k-th and (k − 1)-th far-
thest distance of a (k + 1) nearest neighborhood, normalized by the (k + 1)-th
and k-th one respectively. Indeed, referring both distances to the same set, their
difference helps to reduce the bias introduced by the edge effect as shown in our
experimental results. Moreover, thanks to the different normalizations, the corre-
lation between the two distances affects only marginally their joint distribution,
so that we may still assume them to be independent random variables.

To achieve our goal, we consider a manifold M ≡ �d embedded in a higher
dimensional space �D through a locally isometric nonlinear smooth map φ :
M → �D, and a sample set XN = {xi}N

i=1 = {φ(zi)}N
i=1 ⊂ �D, where zi

are independent identically distributed points drawn from M according to a
non-uniform smooth pdf f : M → �+.

To estimate the id of M, for each point xi ∈ XN we find the set of k + 1
(1 ≤ k ≤ N − 2) nearest neighbors X̄k+1 = X̄k+1(xi) = {xj}k+1

j=1 ⊂ XN . Let
rij denote the distance between xj and xi, and, according to standard order
statistics notation, refer to ri(j) as the j-th ordered smallest distance. The two
normalized distances

r̂i =
ri(k)

ri(k+1)
r̂′
i =

ri(k−1)

ri(k)
(10)

are used to compute two vectors of normalized distances r̂ = {r̂i}N
i=1 and r̂′ =

{r̂′
i}N

i=1, together with their difference δ̂ = r̂ − r̂′.
Observing that δ̂ is a sample of an asymmetric Laplace distribution with

parameters γ =
√

k−1
k and σ = 1

d

√
2

k(k−1) , we compute the statistics α and β

according to Eq. (7). Equation (8) allows to obtain a ML estimate for σ̂ which is
used to get a twofold estimation for d as described in Eq. (9):

d̂1 =
√

2
kγσ̂

d̂2 =
√

2γ

(k − 1)σ̂
(11)

Finally, we obtain a unique id estimate by computing the mean between d̂1 and
d̂2 (i.e. d̂ = (d̂1 + d̂2)/2). We call this id estimator DROS (Dimensionality from
Rank Order Statistics). Its time complexity is O(DN log N) and it is dominated
by the time complexity of the kNN algorithm (O(DN log N)). For the sake of
clarity, in Appendix A the pseudocode of this algorithm is reported.

Considering Theorem 4 in [9], which ensures that geodetic distances in the
infinitesimal ball converge to Euclidean distances with probability 1, Table 1
in [20], which resumes the convergence properties of ML estimators for asymmet-
ric Laplace distributions, and the convergence results presented in Theorem 1,
DROS represents a consistent estimator for the id of the manifold M.
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5 Algorithm Evaluation

This section is organized as follows: in Sect. 5.1 we describe the datasets employed
in our experiments; in Sect. 5.2 we summarize the adopted experimental settings;
in Sect. 5.3 we report the results achieved by the proposed algorithm, comparing
them to those obtained by state-of-the-art id estimators.

5.1 Dataset Description

To evaluate our algorithm, we performed experiments on the 10 synthetic and
4 real datasets reported in Table 1. In details, the 10 synthetic datasets were
generated by employing the tool proposed in [15], while the used real datasets
are the ISOMAP face database [29], the MNIST database [21], the Santa Fe [26]
dataset, and the DSVC1 time series [2].

Table 1. Short description of the 10 synthetic and 4 real datasets employed in our
experiments, where d is the id and D is the embedding space dimension.

Dataset Name d D Description

Syntethic M1 10 11 Uniformly sampled sphere linearly embedded

M2 3 5 Affine space

M3 4 6 Concentrated figure, confusable with a 3d one

M4 4 8 Nonlinear manifold

M5 2 3 2-d Helix

M6 6 36 Nonlinear manifold

M7 2 3 Swiss-Roll

M8 1 13 Curve

M9 10 11 Uniformly sampled hypercube

M10 2 3 Möebius band 10-times twisted

Real MFaces 3 4096 ISOMAP face dataset

MMNIST1 8 − 11 784 MNIST database (digit 1)

MSantaFe 9 50 Santa Fe dataset (version D2)

MDSVC1 2.26 20 Real time series of a Chua’s circuit

The ISOMAP face database consists in 698 gray-level images of size 64 × 64
representing the face of a sculpture. This dataset has three degrees of freedom,
two for the pose and one for the lighting direction.

The MNIST database consists in 70000 gray-level images of size 28 × 28 of
hand-written digits; in our tests we used the subset representing the digit 1,
containing 6742 training points. The id of this database is not actually known,
but we rely on the estimations proposed in [9,15] for the different digits, and in
particular on the range {8..11} for the digit 1.



112 S. Bassis et al.

The version D2 of the Santa Fe dataset is a synthetic time series of 50000
one-dimensional points; it was generated by a simulation of particle motion, and
it has nine degrees of freedom. In order to estimate the attractor dimension of
this time series, we used the method of delays described in [25], which generates
D-dimensional vectors by collecting D values from the original dataset; by choos-
ing D = 50 we obtained a dataset containing 1000 points in �50.

The DSVC1 is a real data time series composed of 5000 samples and measured
from a hardware realization of the Chua’s circuit [6]. We employed the method
of delays choosing D = 20, and we obtained a dataset containing 250 points in
�20; the id of this dataset is ∼ 2.26 as reported in [2].

5.2 Experimental Setting

To evaluate the quality of our method, we compared it with state-of-the-art id
estimators such as: BPCA, SPPCA, kNNG, CD, and MLE. For kNNG, MLE, and BPCA we
used the authors’ implementation4, while for the other algorithms we employed
the version provided by the Dimensionality Reduction Toolbox5 [31].

Table 2. Parameter settings for the different estimators: k represents the number of
neighbors, γ is the edge weighting factor for kNNG, M is the number of Least Square
(LS) runs, N is the number of resampling trials per LS iteration, α and π represent the
parameters (shape and rate) of the Gamma prior distributions describing the hyper-
parameters and the observation noise model of BPCA, μ contains the mean and the
precision of the Gaussian prior distribution describing the bias inserted in the inference
of BPCA.

Dataset Method Parameters

Synthetic SPPCA None

BPCA iters = 500, α = (2.0, 2.0) π = (2.0, 2.0) μ = (0.0, 0.01)

CD None

MLE k1 = 6 k2 = 20

kNNG k1 = 6, k2 = 20, γ = 1, M = 10, N = 1

DROS k = 12

Real SPPCA None

BPCA iters = 2000, α = (2.0, 2.0) π = (2.0, 2.0) μ = (0.0, 0.01)

CD None

MLE k1 = 3 k2 = 8

kNNG k1 = 3, k2 = 8, γ = 1, M = 10, N = 1

DROS k = 10

4
http://www.eecs.umich.edu/∼hero/IntrinsicDim/,
http://www.stat.lsa.umich.edu/∼elevina/mledim.m,
http://research.microsoft.com/en-us/um/cambridge/projects/infernet/blogs/bayesianpca.aspx.

5
http://cseweb.ucsd.edu/∼lvdmaaten/dr/download.php.

http://www.eecs.umich.edu/~hero/IntrinsicDim/
http://www.stat.lsa.umich.edu/~elevina/mledim.m
http://research.microsoft.com/en-us/um/cambridge/projects/infernet/blogs/bayesianpca.aspx
http://cseweb.ucsd.edu/~lvdmaaten/dr/download.php
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As mentioned above, to create the synthetic datasets we adopted the genera-
tor described in [15] producing 20 instances of each dataset reported in Table 1,
each of which is composed by 2500 randomly sampled points.

To obtain an unbiased estimation, for each technique we averaged the results
achieved on the 20 instances. Furthermore, to execute multiple tests also on
MMNIST1 and MIsolet we extracted 5 random subsets containing 2500 points
each, and we averaged the achieved results.

In Table 2 the configuration parameters employed in our tests are summa-
rized. To relax the dependency of the kNNG algorithm from the selection of the
value of its parameter k, we performed multiple runs with k1 ≤ k ≤ k2 and we
averaged the obtained results (see Table 2).

5.3 Experimental Results

This section reports the results achieved on both synthetic and real datasets. In
particular, Table 3 summarizes the results obtained on the synthetic datasets. It
is possible to note that our technique strongly outperforms the projection meth-
ods we used as a baseline comparison; while it achieves results always comparable
with those obtained by the best performing geometric approaches. In the last row
of Table 3 the Mean Percentage Error (MPE) indicator, proposed in [24] in order
to evaluate the overall performance of a given estimator, is reported. For each
algorithm this value is computed as the mean of the percentage errors obtained
on each dataset, i.e. MPE = 100

#M
∑

M
|d̂M−dM|

dM
, where dM is the real id, d̂M

is the estimated one, and #M is the number of tested manifolds. Considering
this indicator, our method ranks as the best performing estimator.

Table 3. Results achieved on the synthetic datasets. The best approximations are
highlighted in boldface.

Dataset d SPPCA BPCA kNNG CD MLE DROS

M8 1 3.00 5.70 1.07 1.14 1.00 1.08

M5 2 3.00 2.00 2.06 1.98 1.97 2.02

M7 2 3.00 2.00 2.09 1.93 1.96 2.07

M10 2 3.00 1.55 2.03 2.19 2.21 2.05

M2 3 3.00 3.00 3.03 2.88 2.88 2.91

M3 4 4.00 4.00 3.82 3.23 3.83 3.89

M4 4 8.00 4.25 4.76 3.88 3.95 4.05

M6 6 12.00 12.00 11.24 5.91 6.39 6.27

M1 10 11.00 5.45 9.89 9.12 9.10 9.09

M9 10 10.00 5.20 10.21 8.09 8.26 9.21

MPE 56.00 69.22 13.10 8.36 5.64 4.35
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In Table 4 the results obtained on real datasets are summarized6. As can be
noticed, the MPE confirms that our technique is the best estimator. Moreover,
these results show that our methodology is the most robust to the presence of
noise, which usually characterizes real data.

Table 4. Results achieved on the real datasets by the employed approaches. The best
approximations are highlighted in boldface.

Dataset d SPPCA BPCA kNNG CD MLE DROS

MDSVC1 2.26 4.00 6.00 1.86 1.92 2.03 2.23

MFaces 3 5.00 4.00 4.32 3.37 4.05 4.03

MSanta Fe 9 19.00 18.00 7.43 4.39 7.16 7.85

MMNIST1 8–11 9.00 11.00 9.58 6.96 10.29 8.69

MPE 69.30 85.09 18.00 24.27 16.30 15.97

6 Conclusions and Future Works

In this paper we propose a novel consistent estimator, called DROS, that exploits
neighboring distances to estimate the id of a given dataset by means of an
efficient technique based on rank-order statistics.

Experiments on both synthetic and real datasets show that DROS is a really
promising technique for id estimation, at least in terms of the Mean Percentage
Error indicator.

Future works will be devoted both to identify a bound for the finite sample
error to further formally evaluate the effectiveness of the proposed approach,
and to effectively exploit on different scales the farthest neighbor distances to
correctly deal with data drawn from manifolds of different ids. Moreover, it
will be interesting to validate the quality of the proposed method by applying
it as a parameter-estimation step of dimensionality reduction algorithms, and
comparing the achieved results with those obtained by employing other state-
of-the-art id estimators.

A Algorithm Implementation

In this appendix the pseudocode of our algorithm is reported. In Algorithm 1
DROS is shown, where kNN(XN ,x, k) is the procedure that employs a k-nearest
neighbor search returning the set of the k ordered nearest neighbors of x in XN

and their corresponding distances.

6 Note that, when the true value of the id is not known, we considered the mean value
of the range as dM .



A Novel Intrinsic Dimensionality Estimator Based on Rank-Order Statistics 115

Algorithm 1. Pseudo-code for the DROS algorithm.

1 Input:

2 XN : The dataset points {xi}N
i=1.

3 k: The kNN parameter.

4 Output:

5 d̂: The estimated intrinsic dimensionality.

6
7 {Def ine α and β . }
8 α = 0 ;

9 β = 0 ;

10
11 for i :=1 to N do b e g i n

12 {Find the ordered k + 1 neighbors and t h e i r d i s t anc e s

13 (ri ) from xi . }
14 [X̄k+1, ri] = kNN(XN , xi, k) ;

15
16 {Normalize the k−order s t a t i s t i c by employing the (k + 1)th . }
17 r̂i =

ri(k)
ri(k+1)

;

18
19 {Normalize the (k − 1)−order s t a t i s t i c by employing the kth . }
20 r̂′

i =
ri(k−1)

ri(k)
;

21
22 {Compute t h e i r d i f f e r e n c e . }
23 δ̂i = r̂i − r̂′

i ;

24
25 {Update α . }
26 α = α + 1

N
max{δ̂i, 0} ;

27
28 {Update β . }
29 β = β − 1

N
min{δ̂i, 0} ;

30 end

31
32 {Compute γ and σ̂ . }
33 γ =

√
k−1

k
;

34 σ̂ =
√
2 4√α 4√β

(√
α +

√
β
)
;

35
36 {Compute the id d̂ . }
37 d̂1 =

√
2

kγσ̂
;

38 d̂2 =
√

2γ
(k−1)σ̂

;

39 d̂ = (d̂1 + d̂2)/2 ;
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20. Kotz, S., Kozubowski, T.J., Podgórski, K.: Maximum likelihood estimation of
asymmetric laplace parameters. Ann. Inst. Stat. Math. 54(4), 816–826 (2002)

21. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86, 2278–2324 (1998)

22. Levina, E., Bickel, P.J.: Maximum likelihood estimation of intrinsic dimension. In:
Proceedings of NIPS 17(1), pp. 777–784 (2005)

23. Li, J., Tao, D.: Simple exponential family PCA. In: Proceedings of AISTATS, pp.
453–460 (2010)

24. Lombardi, G., Rozza, A., Ceruti, C., Casiraghi, E., Campadelli, P.: Minimum
neighbor distance estimators of intrinsic dimension. In: Gunopulos, D., Hofmann,
T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011, Part II. LNCS, vol.
6912, pp. 374–389. Springer, Heidelberg (2011)

25. Ott, E.: Chaos in Dynamical Systems. Cambridge University Press, Cambridge
(1993)

26. Pineda, F.J., Sommerer, J.C.: Estimating generalized dimensions and choosing
time delays: A fast algorithm. In: Time Series Prediction. Forecasting the Future
and Understanding the Past, pp. 367–385 (1994)

27. Rozza, A., Lombardi, G., Ceruti, C., Casiraghi, E., Campadelli, P.: Novel high
intrinsic dimensionality estimators. Mach. Learn. J. 89(1–2), 37–65 (2012)

28. Rozza, A., Lombardi, G., Rosa, M., Casiraghi, E., Campadelli, P.: IDEA: intrinsic
dimension estimation algorithm. In: Maino, G., Foresti, G.L. (eds.) ICIAP 2011,
Part I. LNCS, vol. 6978, pp. 433–442. Springer, Heidelberg (2011)



A Novel Intrinsic Dimensionality Estimator Based on Rank-Order Statistics 117

29. Tenenbaum, J., Silva, V., Langford, J.: A global geometric framework for nonlinear
dimensionality reduction. Science 290, 2319–2323 (2000)

30. Tipping, M.E., Bishop, C.M.: Probabilistic principal component analysis. J. Royal
Stat. Soc., Ser. B 61(Pt. 3), 611–622 (1997)

31. Van der Maaten, L.J.P.: An introduction to dimensionality reduction using matlab.
Technical report, Delft University of Technology (2007)

32. Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998)
33. Verveer, P.J., Duin, R.P.W.: An evaluation of intrinsic dimensionality estimators.

IEEE Trans. PAMI 17, 81–86 (1995)
34. Wilks, S.S.: Mathematical Statistics. Wiley Publications in Statistics. John Wiley,

New York (1962)



Dimensionality Reduction in Boolean Data:
Comparison of Four BMF Methods

Eduard Bartl1, Radim Belohlavek1, Petr Osicka1(B), and Hana Řezanková2
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Abstract. We compare four methods for Boolean matrix factorization
(BMF). The oldest of these methods is the 8M method implemented in
the BMDP statistical software package developed in the 1960s. The three
other methods were developed recently. All the methods compute from
an input object-attribute matrix I two matrices, namely an object-factor
matrix A and a factor-attribute matrix B in such a way that the Boolean
matrix product of A and B is approximately equal to I. Such decompo-
sitions are utilized directly in Boolean factor analysis or indirectly as a
dimensionality reduction method for Boolean data in machine learning.
While some comparison of the BMF methods with matrix decomposition
methods designed for real valued data exists in the literature, a mutual
comparison of the various BMF methods is a severely neglected topic. In
this paper, we compare the four methods on real datasets. In particular,
we observe the reconstruction ability of the first few computed factors as
well as the number of computed factors necessary to fully reconstruct the
input matrix, i.e. the approximation to the Boolean rank of I computed
by the methods. In addition, we present some general remarks on all the
methods being compared.

1 Matrix Decompositions, Dimensionality Reduction,
and Boolean Data

Matrix Decompositions. Various matrix decomposition methods have nowadays
an established role in science and engineering. Probably the most widely used
and studied are the singular value decomposition, principal component analy-
sis, independent component analysis, and various factor analysis methods [6,11,
12,17], which were designed for real-valued matrices. Let us also mention the
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non-negative matrix factorization [5,11,14] which aims at decomposing a non-
negative matrix into a product of two non-negative matrices. The latter constrain
makes the method related to the Boolean matrix factorization, yet, the calculus
behind this method is the ordinary matrix calculus.

Boolean Data. Long before the interest in Boolean data in data mining, it
has been recognized that the nature of Boolean data (also called binary data,
presence-absence data, 0/1 data or the like) requires a specific treatment, see
e.g. [23,24]. The literature on the analysis of Boolean data using matrix meth-
ods reveals, briefly speaking, the following picture. First, methods designed for
real-valued data, such as the ones mentioned above, are applied to Boolean
data, see e.g. [31] for more information. Second, methods designed originally
for real-valued data are modified for Boolean data, see e.g. [15,26–28,30,33].
As pointed out in several papers, see e.g. [20,31], the methods which bring a
Boolean matrix into a product of real-valued matrices with possibly negative
values, such as those mentioned above, suffer the problem of interpretability of
the output matrix entries. Unlike methods mentioned above, the methods exam-
ined in the present paper are based on the calculus of Boolean matrices [13]. In
particular, the methods aim at finding for a given Boolean matrix I two Boolean
matrices, A and B, whose Boolean product is equal or approximately equal to
I. Such methods have been investigated in several papers, see e.g. [4,8,18–20].
Note also that computational complexity aspects of the problems related to the
decomposition of Boolean matrices was investigated for the first time in [29] (in
different terms, however) and is further discussed e.g. in [20,21,32].

Dimensionality Reduction. A common feature of matrix decompositions (factor-
izations) in general and those designed for Boolean data in particular is dimen-
sionality reduction. Namely, a decomposition of an input n × m object-variable
matrix I into a product of an n × k and k × m matrices A and B corresponds
to a discovery of k new variables, called factors and interpret A and B as the
object-factor and factor-variable matrices. In such case, the original relationship
between objects and variables described by I may be reconstructed from the
relationship between objects and factors described by A and the relationship
between factors and the original variables described by B. Thus, if k < m, it is
reasonable to consider the factors as more fundamental variables, which are “hid-
den” in that input data. The objects may be represented in the lower-dimensional
(k-dimensional) space of factors instead of the m dimensional space of the orig-
inal variables and using B, one may transform an object representation in the
factor space to the variable space and vice versa. This general logic applies to
Boolean data and Boolean matrix factorizations (BMF) as well. The dimension-
ality reduction has two important aspects. First, a technical one which consists
in the possibility to represent and process objects in a lower-dimensional space,
resulting in faster processing and less storage space. Closely connected is the
second aspect, namely the knowledge discovery aspect. The factors very often
represent more fundamental variables of which the original variables are just
particular manifestations. In this regard, one benefit consists in the fact that the



120 E. Bartl et al.

discovery of factors itself provides a useful information for the user: the user gets
to know the “true” explanatory variables for the input data. Another benefit is
that as a rule, processing the data in terms of factors leads to improvement in
quality compared to processing in terms of the original variables which are in
fact derived from the factors. The reader interested in particular applications of
the above-mentioned benefits of dimensionality reduction due to BMF is referred
to [4,10,16,20,24,25,31,32].

In the present paper, we compare four selected methods for decomposition of
Boolean matrices. In Sect. 2, we describe the problem of Boolean matrix factor-
ization and its variants. In Sect. 3, we briefly describe the four methods compared
in this paper, including the 8M which seems to be unknown to the recent litera-
ture and seems not to be described in the literature The experimental comparison
of the methods is presented in Sect. 4. Section 5 contains a discussion on further
issues and concludes the paper.

2 Boolean Matrix Factorization

General BMF Problem. We denote by I an n×m Boolean matrix, i.e. the entry
Iij corresponding to row i and column j is either 0 or 1. We use I because
very often, the matrix describes an incidence relation between n objects, which
correspond to the rows, and m attributes, which correspond to the columns of I.
The set of all n × m Boolean matrices is denoted by {0, 1}n×m. The ith column
and jth row of I are denoted by Ii and I j , respectively. A general aim in BMF
is to find for a given I ∈ {0, 1}n×m (and possibly other parameters) matrices
A ∈ {0, 1}n×k and B ∈ {0, 1}k×m for which

I is (approximately) equal to A ◦ B, (1)

where ◦ denote the Boolean matrix product given by

(A ◦ B)ij =
k

max
l=1

min(Ail, Blj). (2)

Such an exact or approximate decomposition of I into A ◦ B corresponds to
a discovery of k factors (new Boolean variables) that exactly or approximately
explain the data: Ail = 1 indicates that factor l applies to object i while Blj

indicates that attribute j is a particular manifestation of factor l (think of person
P as object, “being fluent in English” as attribute, and “having good education”
as factor). The least k for which an exact decomposition I = A ◦ B exists is
called the Boolean (or Schein) rank of I [4,13,20]. Then, according to (2), the
factor model (1) reads:

object i has attribute j if and only if there exists factor l such that l
applies to i and j is a particular manifestation of l.

The matrices I, A, and B are usually called the object-attribute matrix, the
object-factor (or factor score) matrix, and the factor-attribute (or factor loadings
or basis vector) matrix [4,20].
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Matrix Distance and Error Measurement. To assess how well the product A◦ B
approximates the input matrix I, we need an appropriate matrix distance func-
tion. A natural choice is the following. Recall that the L1-norm (Hamming weight
in case of Boolean matrices) of an n × m matrix C is given by

||C|| =
∑m,n

i=1,j=1 |Cij |.
The induced matrix distance, that is conveniently used for measuring error in
matrix decompositions [13,20], is given by

E(C,D) = ||C − D|| =
∑m,n

i=1,j=1 |Cij − Dij |. (3)

Two Particular Problems. The following particular variants of the general BMF
problem have been discussed in the literature.

Problem 1.
input: Boolean matrix I ∈ {0, 1}n×m, positive integer k
output: Boolean matrices A ∈ {0, 1}n×k and B ∈ {0, 1}k×m minimizing
||I − A ◦ B||.

This problem is called the discrete basis problem (DBP) in [20]. In [4], the fol-
lowing the problem is considered:

Problem 2.
input: Boolean matrix I ∈ {0, 1}n×m, positive integer ε
output: Boolean matrices A ∈ {0, 1}n×k and B ∈ {0, 1}k×m with k as small
as possible such that ||I − A ◦ B|| ≤ ε.

The two problems reflect two important views on BMF, the first one empha-
sizing the importance of the first k (presumably most important) factors, the sec-
ond one emphasizing the need to account for (and thus to explain) a prescribed
portion of data. We use these two problems as the main ones for comparing the
two methods in our paper.

An important fact is that both Problem 1 and Problem 2 are NP-hard opti-
mization problems (see e.g. [4,20,32]) and that the hardness of this problem
follows from NP-hardness of the set basis problem [29]. As a result, unless P =
NP, efficient algorithms attempting to solve Problem 1 and 2 need to designed
as approximation algorithms.

3 The Four Methods Being Compared

In this section, we briefly describe the four methods compared in this paper.

Algorithm 1. This algorithm, described in [4], utilizes formal concepts of I as
factors. Recall that a formal concept of I (see [9]) is any pair 〈C,D〉 of sets C ⊆
{1, . . . , n} (rows, objects) and D ⊆ {1, . . . , n} (columns, attributes) satisfying
the following property: D is the set of all attributes j for which Iij = 1 for every
object i ∈ C and, vice versa, C is the set of all objects i for which Iij = 1 for every
attribute j ∈ D. Formal concepts are very well understood by domain experts.
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Note that formal concepts may be thought of as particular biclusters in I and
that a closer examination of the relationships between the problems involved in
BMF and those involved in biclustering might be worth pursuing. Geometrically,
they are, up to permuting rows and columns, just maximal rectangles full of 1s
in the matrix I. If a set F of formal concepts is to be used as a set of factors
of I, the corresponding matrices AF and BF are defined the following way:
column l of AF is just the characteristic vector of Cl and row l of BF is just
the characteristic vector of Dl, where 〈Cl,Dl〉 is the lth formal concept in F . It
is proved in [4] that using such factors is optimal in that the Boolean rank of I
may be achieved by using formal concepts as factors. In Algorithm 1, one first
computes all the formal concepts of I. The algorithm proceeds in a greedy way:
In every step, it selects the concept that covers the largest number of entries
with 1 in I that were not covered by the previously selected concepts (〈C,D〉
covers Iij = 1 if i ∈ C and j ∈ D, i.e. the rectangle corresponding to 〈C,D〉
spans over the entry 〈i, j〉).

Algorithm 2. This algorithm, described in [4], utilizes formal concepts of I as
factors the same way as Algorithm 1. However, Algorithm 2 avoids the necessity
to compute all the concepts of I and browse through them during the greedy
selection. Instead, the algorithm computes the candidate factors, i.e. concepts of
I, on demand the following, greedy way. Each time a new factor is needed, one
looks at the columns of I and selects the one concept generated by a column
which covers most of the yet uncovered 1s in I. Such a concept corresponds to
a narrow but high rectangle in the data. Then one tries to see if such rectangle
may be extended to a wider (and thus not so high) rectangle by adding some
attribute and deleting the objects so that one still has a rectangle. If so, one
selects the best such rectangle, i.e. covering most of the yet uncovered 1s in
I. One repeats the process of extension until no such extension yields a better
rectangle. This way one obtains the new factor and eventually a set F of formal
concepts—the factors of I. For both, Algorithm 1 and 2, the resulting set F of
concepts has always the property I = AF ◦BF , i.e. the algorithms find an exact
decomposition of I. Hence, Algorithm 1 and 2 can be used for Problem 1 and
2. Namely, one stops the algorithm after k factors are computed (Problem 1) or
after the error drops below ε, i.e. after ||I − AF ◦ BF || ≤ ε (Problem 2).

Asso. The Asso algorithm [20] works as follows. From the input n × m matrix
I, the required number k of factors, and additional parameters τ, w+, and w−,
the algorithm computes an m × m Boolean matrix C in which Cij = 1 if the
confidence of the association rule {i} ⇒ {j} is at least τ , i.e. if a/b ≥ τ , where a
is the number of rows r of I in which Iri = Irj = 1 and b is the number of rows
r of I in which Iri = 1. The rows of C are then the candidate rows for matrix
B. The actual k rows of B are selected from the rows of C in a greedy manner
using parameters w+ and w−. For every candidate row Cl of C (candidate for a
new row of B), one computes the best corresponding column c (candidate for a
new column of A), i.e. a c maximizing function cover(Cl , c) = w+ ·cov −w+ ·err
where cov is the number of entries 〈i, j〉 covered by Cl and c (in that ci = 1
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and Clj = 1) which were not covered by the previously selected factors (drop
in error due to Cl and c), and err is the number of entries 〈i, j〉 for which
Iij = 0 but are covered by Cl and c, and not covered by any of the previously
selected factors (increase in error due to Cl and c). One then adds to A and
B as a new column and row the c and Cl for which cover(Cl , c) is largest but
positive. If k factors have been computed or if no l with positive cover(Cl , c)
exists, one stops. Asso is designed for Problem 1 but generally it cannot be used
for Problem 2 because there is no guarantee in general that matrices A and B
with ||I − AF ◦ BF || ≤ ε are found. In particular, Asso may not be used for
computing an exact decomposition of I.

8M of BMDP. This method is implemented in a quite old but still very good
statistical package BMDP [18], developed at the UCLA in the 1960s, originally
for biomedical applications. The 8M method (called also Boolean Factor Analysis
method in BMDP) is very interesting and seems to be unknown to the recent
literature on BMF. The algorithm behind 8M works as follows. To compute k
factors of I (and thus the corresponding n × k and k × m matrices A and B),
the algorithm starts q < k candidate rows of B (candidate factor loadings).
These are either supplied by the user or computed from I using a heuristic
based on inclusion of the columns of I. From this set of q factor loading, the
algorithm computes q factor scores (candidate columns of A); from the q scores,
the algorithm tries to find better q factor loadings, etc. until no change occurs
or three such cycles are completed. Such tuning of factor loadings and scores
is called refinement (the details are too technical to be included here). The
algorithm then iteratively adds further factors as follows. Suppose l factors have
been obtained. Then, one adds new factor l + 1, refines the loadings and scores
of all the factors as above, adds new factor l + 2 and refines again. Then the
lth factor is removed and the remaining factors are refined. Consequently, the
process is repeated, i.e. two new factors are added, one is removed, etc. For
example, starting with q = 2 factors, we obtain 2, 3, 4, 3, 4, 5, 4, 5, 6, 7, 6, 7, 8,
etc. factors. The process stops when the required number k of factors is obtained
the second time. For example, with q = 2 and k = 6, one computes 2, 3, 4, 3, 4,
5, 4, 5, 6, 7, 6 factors and the last six ones are the final factors output by the
algorithm. By default, q = k − 2 but q may be set by the user. The algorithm
therefore performs steps back to possibly decrease Eo component of error. A
new factor is added based on the matrix describing the error committed by the
factors obtained so far. In particular, one uses the column of I which contains
the largest number of 1s uncovered by the previously computed factors. As with
Asso, the significance of the two types of errors (see Sect. 4.1) is controlled by
a parameter (by default, both types have the same weight). It follows from the
description that 8M is designed for Problem 1. Note that the actual scenario
of the run of the 8M method in BMDP may be controlled by user-specified
parameters, but default of these parameters values make it possible for the user
to run the method by just supplying the input data.
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4 Experimental Comparison

4.1 Method of Comparison

It follows from the above-mentioned facts that if A and B form the output of
any BMF method, one may look at the factors as rectangles full of 1s. Such
rectangles should approximately cover the input matrix I which is due to the
objective to have small error E(I,A◦B), see (3). Clearly, E may be seen as being
the sum of two components, Eu corresponding to 1s in I that are 0 s in A ◦ B
(uncovered) and Eo corresponding to 0s in I that are 1s in A ◦ B (overcovered):

E(I,A ◦ B) = Eu(I,A ◦ B) + Eo(I,A ◦ B) (4)

with

Eu(I,A ◦ B) = |{〈i, j〉 | Iij = 1, (A ◦ B)ij = 0}|,
Eo(I,A ◦ B) = |{〈i, j〉 | Iij = 0, (A ◦ B)ij = 1}|.

Note that in the BMDP manual on the 8M method [18], Eu and Eo are called
the positive and negative discrepancy, respectively. For convenience, we use the
functions

eu(I,A ◦ B) =
Eu(I,A ◦ B)

||I|| and eo(I,A ◦ B)) =
Eo(I,A ◦ B)

||I||
and

e(I,A ◦ B) = eu(I,A ◦ B) + eo(I,A ◦ B)) =
E(I,A ◦ B)

||I||
measuring a kind of a relative error of A ◦ B with respect to I, and

q(I,A ◦ B) = 1 − e(I,A ◦ B). (5)

which may be thought of as measuring coverage quality. Clearly, q(I,A ◦B) = 1
if and only if I = A◦B (exact decomposition). Furthermore, q(I,A◦B) decreases
with increasing error, i.e. with increasing E(I,A ◦ B).

4.2 Datasets Used

We used the datasets described in Table 1.1 The columns Rows and Columns
show the dimension of matrix I describing the dataset (indicating n rows and
m columns), No. 1s contains the number of entries in the input matrix equal to
1 (i.e. ||I||), and Density is the percentage of 1s (i.e. ||I||

n·m ).
The Mushroom dataset is taken from the UCI Machine Learning Repository

[1]. The original dataset consists of 8125 objects and 23 nominal attributes (for
example, attribute class with values edible and poisonous, or attribute cap-shape
taking values such as bell, conical or convex ). We transformed this dataset to a
1 We thank P. Miettinen for providing us with the datasets DBLP, DNA, and Paleo.
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Table 1. Real datasets

Dataset Rows Columns no. 1s Density

Mushroom 8124 119 186852 0.19

Tic-tac-toe 959 30 9580 0.33

DBLP 19 6980 17179 0.13

DNA 4590 393 26527 0.01

House Votes Republicans 108 16 907 0.52

House Votes Democrats 124 16 1032 0.52

Paleo 501 139 3537 0.05
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Fig. 1. Performance of algorithms on selected real datasets (relative error q(I, A ◦ B)
where A and B are given by the first k factors)
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Fig. 2. Performance of algorithms on selected real datasets (relative error q(I, A ◦ B)
where A and B are given by the first k factors)

Boolean matrix by nominal scaling, i.e. by replacing a nominal attribute y with
p values v1, . . . , vp by p Boolean attributes yv1 , . . . , yvp

in such a way that at ith
row, the value of the column corresponding to yvj

is 1 if and only if the value of
the attribute y at ith row in the original dataset is equal to vj .

The Tic-tac-toe dataset is taken from [1] as well, and it encodes the complete
set of possible board configurations at the end of tic-tac-toe games. The original
dataset consists of 958 objects and 9 nominal attributes (each attribute taking
one of the three values: x, o, blank). Binarization of this dataset was performed
by nominal scaling as described above.

The DBLP dataset contains information about in which of the 19 selected
conferences the 6980 authors have published. The dataset is based on the DBLP
database (http://www.informatik.uni-trier.de/∼ley/db/).

http://www.informatik.uni-trier.de/~ley/db/
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Table 2. Performance of algorithms on real datasets I (coverage quality by first k
factors)

Dataset k Algorithm 1 Algorithm 2 Asso 8M (BMDP)

Mushroom 1 0.1678 0.1294 0.1988 -

2 0.2603 0.2335 0.3333 0.4002

3 0.3435 0.3231 0.4138 0.4422

4 0.4129 0.3724 0.4570 0.4630

5 0.4750 0.4608 0.4807 0.5427

10 0.6044 0.5823 0.5606 0.6383

20 0.7307 0.7148 0.6602 0.7081

30 0.8210 0.8096 0.7221 0.7588

59 0.9415 0.9486 0.8235 0.8591

98 0.9977 0.9955 0.8502 -

117 1.0000 0.9994 - -

128 - 1.0000 - -

Tic-tac-toe 1 0.0764 0.0764 0.0653 0.0764

2 0.1229 0.1229 0.1131 0.1230

3 0.1665 0.1665 0.1567 0.1666

4 0.2102 0.2102 0.2004 0.2042

5 0.2538 0.2538 0.2440 0.2595

10 0.4517 0.4517 0.4455 0.4048

20 0.7816 0.7816 0.7933 0.7135

29 0.9771 0.9771 1.0000 0.9693

30 0.9914 0.9914 - 1.0000

31 1.0000 1.0000 - -

DBLP 1 0.1312 0.1312 0.1312 0.1867

2 0.2378 0.2378 0.2378 0.3165

3 0.3439 0.3439 0.3439 0.3717

4 0.4131 0.4131 0.4131 0.4044

5 0.4683 0.4683 0.4683 0.4541

10 0.6923 0.6923 0.6923 0.6865

19 0.9624 0.9624 0.9624 1.0000

20 0.9827 0.9827 0.9827 -

21 1.0000 1.0000 1.0000 -

DNA 1 0.0827 0.0827 0.0880 0.0950

2 0.1303 0.1303 0.1137 0.1479

3 0.1615 0.1563 0.1405 0.1861

4 0.1881 0.1875 0.1655 0.1955

5 0.2141 0.2128 0.1893 0.1996

10 0.3074 0.3008 0.2795 0.2297

20 0.4383 0.4145 0.3890 0.2720

30 0.5250 0.5031 0.4716 0.3835

83 0.7706 0.7503 0.7288 0.7523

345 0.9839 0.9817 0.9858 -

518 1.0000 0.9992 - -

539 - 1.0000 - -
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Table 3. Performance of algorithms on real datasets II (coverage quality by first k
factors)

Dataset k Algorithm 1 Algorithm 2 Asso 8M (BMDP)

House Votes Rep. 1 0.5093 0.5093 0.5115 0.6527

2 0.6549 0.6549 0.6207 0.7244

3 0.7320 0.7320 0.7089 0.7905

4 0.7971 0.7971 0.7772 0.8203

5 0.8390 0.8390 0.8081 0.8501

9 0.9338 0.9283 0.8886 0.9239

10 0.9525 0.9459 0.9051 -

11 0.9658 0.9592 0.9184 -

18 1.0000 0.9977 - -

19 - 1.0000 - -

House Votes Dem. 1 0.3682 0.3682 0.2819 0.5155

2 0.4641 0.4641 0.3905 0.6143

3 0.5523 0.5523 0.4844 0.7006

4 0.6240 0.6240 0.5562 0.7422

5 0.6937 0.6937 0.6269 0.7694

10 0.8953 0.8895 0.9001 0.8886

14 0.9534 0.9486 0.9806 -

20 0.9932 0.9874 - -

24 1.0000 0.9980 - -

26 - 1.0000 - -

Paleo 1 0.0265 0.0265 0.0265 0.0266

2 0.0486 0.0474 0.0474 0.0475

3 0.0695 0.0695 0.0684 0.0746

4 0.0890 0.0890 0.0879 0.0792

5 0.1063 0.1063 0.1051 0.0871

10 0.1815 0.1809 0.1815 0.0978

20 0.3138 0.3101 0.3135 0.1866

30 0.4212 0.4209 0.4240 0.2485

135 0.9722 0.9663 0.9892 0.9706

139 0.9802 0.9748 0.9997 -

156 1.0000 0.9994 - -

157 - 1.0000 - -

The DNA dataset is taken from [22] and contains binary chromosome
subband-specific information of DNA amplifications in human neoplasms.

The House Votes Republicans and House Votes Democrats datasets are taken
from the UCI Machine Learning Repository [1]. The original dataset contains 168
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Republican and 267 Democratic voting results on the 16 issues (e.g. education
spending, duty free exports or immigration). We divided the dataset into two,
one for Republicans, one for Democrats. Then we removed from both of them
all the rows with missing values, reducing the size to 108 × 16 and 124 × 16,
respectively.

The Paleo dataset comes from [7] and describes fossil records per location.
The data is based on NOW public release 030717.

4.3 Results

We ran Algorithms 1 and 2 to let them compute the exact decomposition of the
input matrix I. From the resulting set of factors, one may then directly obtain
the coverage quality (5) of the first l factors for l = 1, . . . , k, where k is the
number of factors computed by the algorithm.

For Asso, we ran the algorithm for k = m, i.e. we asked Asso to compute
at most m (number of attributes) factors. Due to the logic of Asso, from the
computed k factors, we may again directly obtain the coverage quality (5) of
the first l factors. This is because, as in case of Algorithm 1 and 2, when letting
Asso compute k1 factors and then, starting again, letting it compute k2 < k1
factors, the sequence of the first k2 factors computed is the same for both runs.
Asso requires to set parameters τ , w+, and w−. In fact, since w+ and w− are
connected, we kept w+ = 1 and varied w− only. For every dataset, we ran Asso
with all possible combinations of τ ∈ {0.85, 0.9, 0.95} and w− ∈ {1, 2, 3} and
selected the parameters for which Asso performed best. We report the results
based on the best performance of Asso obtained this way. The parameters are
given by Table 4.

Table 4. Parameters for Asso algorithm

Dataset τ w+ w−

Mushroom 0.95 1 2

Tic-tac-toe 0.9 1 1

DBLP 0.9 1 2

DNA 0.95 1 3

House Votes Republicans 0.9 1 3

House Votes Democrats 0.95 1 1

Paleo 0.95 1 1

We ran the 8M method with the default parameters. Due to the logic of
8M, the method needs to be run again from start for every required number
k of attributes because when computing new factors, it recomputes the factors
computed so far.
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This way, we are able to observe from the results how the methods perform
in solving both Problem 1 (fix the number k of factors and observe the corre-
sponding coverage quality q achieved by the respective algorithm; q corresponds
uniquely to the error function E) and Problem 2 (fix coverage quality q, which
corresponds to ε, and observe the corresponding number k of factors needed by
the respective algorithm).

The results are depicted in the graphs in Figs. 1 and 2 and in Tables 2 and
3. Due to limited scope, we include only results regarding the coverage quality
(5), which is nevertheless the most important measure. For some input data and
values, the BMDP software failed to compute the results, basically due to the
data size issues. Because of the properties of Asso, namely the fact, that Asso
is generally not able to compute exact decompositions, some values are missing
for Asso as well.

The graphs depict for each dataset involved the coverage quality (5) of each
of the four algorithms (vertical axis) of the k factors computed by the algorithms
(horizontal axis). The results further support the observation from [4] that even
though Algorithm 2 is designed as a simplified version of Algorithm 1 in that it
searches through a limited number of candidate factors, in terms of quality of
the computed factors, the two algorithms have nearly the same performance. For
4 out of 7 datasets (DBLP, DNA, Paleo, Tic-tac-toe) also the performance of
Asso is very similar to Algorithm 1 and Algorithm 2, although Asso shows a ten-
dency to perform slightly worse than the other two methods for small numbers
of factors, and on the other hand, to perform slightly better for higher num-
bers of factors. A clear example of this behaviour is the dataset House Votes
Democrats. For the remaining two datasets (Mushroom, House Votes Republi-
cans) Asso is the worst of all the compared methods. The results we have for 8M
of BMDP indicate that this method computes for both House Votes datasets and
for a small number of factors a decomposition with the highest coverage quality.
However, as the number of factors grows its performance in comparison with the
remaining methods declines.

Let us also note that even though we did not perform a careful comparison
of time efficiency of the algorithms, basically because we did not use our own
implementation of 8M, the following may be observed. The fastest algorithm is
Algorithm 2 which implements a direct greedy selection without any preprocess-
ing. Second fastest is Asso which needs to preprocess the data, followed by 8M,
and Algorithm 2, which is slowed down very much by computing the possibly
large set of all formal concepts of the input matrix first, and then iterating
through it multiple times.

5 Conclusions and Further Issues

In this paper we compared four methods for Boolean matrix factorization by
testing them on seven real datasets mainly taken from UCI Machine Learning
Repository [1].

The results of experiments indicate that there is not a single method that
performs the best for all datasets. In order to obtain a decomposition with a good
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coverage quality one has to experiment with different methods (and if possible,
different combinations of their parameters). Moreover, the relative performances
of methods cannot be, in general, predicted on the basis of simple features as are
size and density of datasets. However, we do not claim that partial predictions
cannot be made. For example, in a limited scope of our experiments BMDP
performed, for a small number of factors, significantly better than the remaining
three methods whenever the input dataset had a high density.

Another example would be the fact that Algorithm 1 and Algorithm 2 are
always able to provide an exact decomposition (due to the universality of formal
concepts as factors, see [4]) while the remaining methods do not have this ability
in general. In other words, the coverage quality corresponding to the Boolean
rank of an arbitrary matrix for Algorithms 1 and 2 is equal to 1. While, in most
of the examined datasets, this coverage quality for Asso and BMDP is strictly
smaller than 1.

Future research includes the following topics:

– A more detailed study of the two types of errors, Eo and Eu, made by the BMF
algorithms. This seems to be an interesting, yet not epored characteristics.
Note that both Algorithm 1 nor 2 make zero Eo error, yet they perform very
well. This indicates a potential to make them perform still better by allowing
for some Eo error in an appropriate way.

– Experimental as well as analytical comparison of computational complexity
of BMF algorithms.

– In [2,3], the BMF problem is extended to ordinal data matrices and the
method from [4] is extended to this type of data. It remains to be seen how
the ideas behind other existing algorithms may be extended to this important
type of data.

– Develop further applications of BMF, particularly in fields such as psychology
or biosciences where Boolean data are abundant.
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Abstract. Rough set theory and fuzzy logic are mathematical frame-
works for granular computing forming a theoretical basis for the treat-
ment of uncertainty in many real–world problems. The focus of rough
set theory is on the ambiguity caused by limited discernibility of objects
in the domain of discourse; granules are formed as objects and are drawn
together by the limited discernibility among them. On the other hand,
membership functions of fuzzy sets enables efficient handling of over-
lapping classes. The hybrid notion of rough fuzzy sets comes from the
combination of these two models of uncertainty and helps to exploit, at
the same time, properties like coarseness and vagueness. We describe a
model of the hybridization of rough and fuzzy sets, that allows for fur-
ther refinements of rough fuzzy sets and show its application to the task
of unsupervised feature selection.

Keywords: Rough fuzzy sets · Modelling hierarchies · Unsupervised
feature selection

1 Introduction

Feature selection concerns the selection of the most predictive input attributes
with respect to a given outcome, with application in tasks that involve large
number of features which would be difficult to process. The main difference with
other dimensionality reduction methods, is that selected features preserve the
original meaning of the features after reduction.

In the recent years, granular computing has been extensively employed for
feature selection. It is based on the concept of information granule, that is a
collection of similar objects which can be considered indistinguishable. Partition
of an universe into granules offers a coarse view of the universe where con-
cepts, represented as subsets, can be approximated by means of granules. In this
framework, rough set theory can be regarded to as a family of methodologies
and techniques that make use of granules [26,27]. The focus of rough set theory
is on the ambiguity caused by limited discernibility of objects in the domain of
discourse. Granules are formed as objects and are drawn together by the limited
discernibility among them, without any apriori information needed. Granula-
tion is of particular interest when a problem involves incomplete, uncertain or
c© Springer-Verlag Berlin Heidelberg 2015
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vague information. In such cases, precise solutions can be difficult to obtain and
hence the use of techniques based on granules can lead to a simplification of the
problem at hand.

The rough set ideology of using only the supplied data and no other infor-
mation has many benefits in feature selection, although the requirement that all
data has to be discrete imposes some limitations. In order to overcome these lim-
itations, multivalued logic can be applied to handle uncertainty and vagueness
present in information system, the most visible of which is the theory of fuzzy
sets [41]. In this framework, uncertainty is modelled by means of functions that
define the degree of belongingness of an object to a given concept. Hence mem-
bership functions of fuzzy sets enable efficient handling of overlapping classes.

The hybrid notion of rough fuzzy sets comes from the combination of these
two models of uncertainty to exploit, at the same time, properties like coarseness,
by handling rough sets [26], and vagueness, by handling fuzzy sets [41]. In this
combined framework, rough sets embody the idea of indiscernibility between
objects in a set, while fuzzy sets model the ill-definition of the boundary of a
subclass of this set.

Nevertheless, some considerations are in order. Classical rough set theory is
defined over a given partition, although several equivalence relations, and hence
partitions, can be defined over the universe of discourse. Different partitions
correspond to a coarser or finer view of the universe, because of different infor-
mation granules, thus leading to coarser or finer definition of the concept to be
provided. Then a substantial interest arises about the possibility of exploiting
different partitions and, possibly, rough sets of higher order to reduce the dimen-
sionality of data. This leads to a choice of the partition that represents the data
in the best manner. In order to exploit different partitions, we propose to refine
them in a hierarchical manner, so that partitions at each level of the hierarchy
retain all the important information contained into the partitions of the lower
levels. The operation employed to perform the hierarchical refinement is called
Rough–Fuzzy product (RF-product).

The hybridization of rough and fuzzy sets reported here has been observed
to possess a viable and effective solution in feature selection. The model exhibits
a certain advantage of having a new operator to compose rough fuzzy sets that
is able to produce a sequence of composition of rough fuzzy sets in a hierarchical
manner. Theory of RF-product along with results and comparisons with other
techniques are reported in the context of unsupervised feature selection.

The article is organized as follows. In Sect. 2 the literature about feature selec-
tion using rough and fuzzy theories is reviewed. In Sect. 3 rough–fuzzy sets are
introduced along with the rough–fuzzy product operation, while in Sect. 4 their
application to feature selection is explained. Section 5 presents the experimental
results and Sect. 6 concludes the paper.

2 Related Works

As dimensions increase, the amount of data needs to increase as well, other-
wise there would not be enough points to perform a useful analysis. This is the
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so-called curse of dimensionality [2]. In order to avoid spurious patterns that
would lower the performance, most techniques employ some kind of dimension-
ality reduction.

Many problems in machine learning involve high dimensional descriptions of
input features and therefore much research has been carried out on dimension-
ality reduction [7].

However, existing approaches tend to destroy the underlying semantic of
the features [8] or require apriori information about the data [21]. In order to
overcome these limitations, rough set theory is a technique that can reduce
dimensionality using only information contained into the dataset, preserving
at the same time the semantic of the features. Rough set theory can be used as
such a tool to discover data dependencies and to reduce the number of attributes
contained in a dataset [26].

In particular, the use of rough set theory to achieve dimensionality reduction
has been proved to be a successful approach due to the following aspects:

– only the concepts embedded in data are analysed
– no apriori information about the data is required
– minimal knowledge representation is found

Given a dataset with discretized attribute values, rough set theory finds the most
informative subset of the original attributes. This subset is called reduct.

Recently, researchers have focused their attention on reduct and classification
algorithms based on rough sets [31] Finding all the reducts has been proved to
be NP-Hard [19], but in many applications it is sufficient to compute only one
reduct, that is the best reduct with respect to a given cost criterion associated
with the selected attributes.

Nowadays many implementations of feature selection and classification tech-
niques based on rough set theory are available [17].

Khoo et al. [18] proposed a novel approach for classification of inconsistent
information systems, achieved by combining rough set theory and statistic induc-
tive learning. Authors presented a rough set-based classification system that for
each possible rule generated, was able to provide an estimation of the expected
classification reliability. The proposed technique was compared with the other
rule techniques (ID3 and LERS).

Bakar et al. [1] presented an algorithm for finding minimum size reducts based
on rough set theory and binary integer programming. The idea is to transform
a granule, obtained from a decision system, into a BIP model.

In [13] authors employ rough set theory in order to construct an ensemble
of classifiers. The ensemble was theoretically formulated within the rough set
theory framework and implemented by using set-oriented database operations.
The proposed approach was used to compute a set of reducts comprising the
minimum set of attribute required for the decision categories. For each reduct, a
reduct table was generated and a rule induction algorithm was used to compute
the maximal generalized rules for each reduct table. Finally, a set of classifiers
were trained based on the corresponding reducts.
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In [30], Questier et al. described how rough set theory can be employed
to construct reducts as in a supervised approach but to reduce the number of
features in unsupervised hierarchical clustering. The Wallace measure has been
used to compare the results obtained on the original data set and those obtained
on the reduced data set.

Swiniarski and Skowron [32] presented an application of rough set method for
feature selection in pattern recognition. The proposed algorithm is based on the
application of rough set theory to the result of principal components analysis
(PCA). Experiments have been performed using neural networks for face and
mammogram recognition.

Rough set-based methods have proved their effectiveness also in conjunction
with neural network classifiers. In [10] Grzymala-Busse introduced a new algo-
rithm called Modified Learning Examples Module Version 2 (MLEM2) able to
induce rules from data with both symbolic and numerical attributes with missing
attribute values. The algorithm was compared with LEM2, MODLEM Laplace
and entropy-based algorithm, performing better in terms of number of rules as
well as accuracy.

Hu et al. in [14] proposed a new rough sets model and two algorithms for
computing core and reduct. These algorithms were applied in a real-life applica-
tion with very large data sets proving to be efficient and scalable compared with
traditional rough set models.

In [4] authors proposed a new definition of parametrization reduction for soft
sets and compared it with reduction based on rough set theory. By employing
this new definition, they improved the results of a soft set in a decision-making
problem.

Thangavel et al. [33] proposed an algorithm to deal with data containing only
input information (condition attributes) without decision (class attribute). K-
Means algorithm was applied to cluster the given information system for different
values of K and a decision table computed using the clustered data as decision
attribute. Quickreduct and Variable Precision Rough Set (VPRS) algorithms
were applied for selecting features. Different data sets from the UCI machine
learning repository were used to evaluate the performance of the proposed app-
roach, yielding good results when used in combination with VPRS.

Thangavel et al. [34] proposed a Modified Quickreduct algorithm and com-
pared its performance with different reduct algorithms such as Quickreduct and
VPRS on data sets from UCI repository. The proposed algorithm allowing both
vertical reduct (feature selection) and horizontal reduct (object selection) gen-
erated minimal reducts with respect to Quickreduct and VPRS.

Authors in [35] proposed an Accelerated Quickreduct algorithm whose perfor-
mance was compared with the original Quickreduct algorithm. The experiments,
carried out on datasets available in UCI repository, made clear that the Accel-
erated Quickreduct produced the minimal reduct and the rules induced through
C4.5 algorithm revealed that the Accelerated Quickreduct was performing well.

A major drawback when using rough set theory is represented by real value
attributes, because it is not possible to say whether two attribute values are
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similar and to what extent they are indiscernible. A possible solution to this
problem consists in discretizing the real valued attributes in order to obtain a
dataset composed only by crisp values. This preprocessing step is not always
adequate, being the source of potential information loss.

Fuzzy sets provide a framework to handle real value data effectively, by allow-
ing values to belong to more than one class with different degrees of membership,
and hence handling vagueness present in data.

In an hybridized approach, rough set theory allows to obtain a linguistic
description whereas fuzzy set theory allows to generate numerical values starting
from its linguistic description.

Jensen and Shen [17] reviewed semantics–preserving dimensionality reduction
technique using fuzzy–rough set approaches. The result showed that rough set
methods were non able to deal with real–valued attributes effectively and hence
the need of rough and fuzzy hybridized approaches. To this aim authors present
the Quickreduct algorithm which exploits at the same time both rough and fuzzy
sets theories.

In [37], Tsai et al. proposed a new fuzzification technique called Modified
Minimization Entropy Principle Algorithm (MMEPA) to construct membership
functions of linguistic variables. The proposed algorithm was combined with
VPRS yielding an entropy-based fuzzy–rough classification approach.

Authors in [12] proposed a method which combined VPRS and fuzzy set the-
ory to produce a set of fuzzy certain and fuzzy possible rules from quantitative
data given an uncertainty and misclassification tolerance degree. Rough set the-
ory was employed to map each quantitative value into a fuzzy set of linguistic
terms and then to compute the fuzzy lower and upper approximations. The rules
obtained by the two approximations sets were used to classify unknown objects.

Thangavel and Pethalakshmi [36] proposed an Improved Quickreduct algo-
rithm based on rough and fuzzy sets. In the proposed algorithm, the attributes
were first normalized and the procedure to derive the degree of dependency of
each attribute has been modified accordingly. Experimental results showed that
the Improved Quickreduct produces minimal reduct.

In [38] a novel concept of attributes reduction with fuzzy rough sets is pro-
posed and an algorithm using discernibility matrix to compute all the reducts
is developed. A solid mathematical foundation is set up for attributes reduction
with fuzzy rough sets and a detailed comparison with the Quickreuct algorithm
is also presented. Experimental results show that the proposed algorithm is fea-
sible and valid.

Authors in [3] generalize the classical rough set framework for attribute reduc-
tion within the context of fuzzy rough set theory, based on the notion of fuzzy
decision reducts. The concept of a fuzzy decision reduct is introduced, as the
weighted version of its crisp version. Its role is to assign to each attribute subset
a measure of the predictive power with respect to the original decision system.
Authors consider also alternative ways of defining fuzzy decision reducts. Exper-
imental results showed the potential of the proposed approach.
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Jensen and Shen in [15] proposed an extension of the fuzzy–rough feature
selection algorithm, based on interval–valued fuzzy sets, in order to face the
problem of missing values. In particular, by exploiting interval–valued fuzzy–
rough sets, a new feature selection algorithm is developed that not only handles
missing values, but also alleviates the problem of defining overly–specific type–1
fuzzy similarity relations.

In [16] three new robust approaches to fuzzy–rough feature selection based on
fuzzy similarity relations are proposed. In particular, a fuzzy extension to crisp
discernibility matrices is proposed and employed for experimentation, showing
that the methods produce small reduct while preserving classification accuracy.

Parthaláin et al. [24] examine a rough set based feature selection technique
which exploits information extracted from the lower approximation, from the
boundary region and the distance of objects in the boundary region from the
lower approximation. This information allows to obtain smaller subset if com-
pared to those obtained using the dependency function alone. The proposed
approach demonstrates that information extracted from the boundary region is
useful for feature selection.

In [20] a novel fuzzy-rough sets based feature selection method is presented
by maximizing the relevance and minimizing the redundancy of the selected
features. The fuzzy equivalence partition matrix is introduced in order to com-
pute many f-information measures and a novel entropy for fuzzy approxima-
tion spaces is proposed to measure the relevance and redundancy of features.
The f-information measures have been shown to be effective for selecting non-
redundant and relevant features. Also some fuzzy-rough set based quantitative
indexes are introduced for evaluating the performance of the proposed method.

Supervised feature selection methods evaluate subsets of features using an
objective function in order to select only those features related to the the decision
classes. However, in many applications, class labels are not available or incom-
plete, and unsupervised feature selection approaches are needed. Approaches to
unsupervised feature selection can be divided in two broad classes: those that
maximize clustering performance with respect to an index function [6,23], and
those that select features based on their relevance. The main idea of the latter
methods, is that features with little or no information with respect to the remain-
ing features are redundant and can be eliminated [5,11,22]. The work presented
in [25] is based on fuzzy-rough sets and, in particular, employs a fuzzy-rough
discernibility measure to compute the discernibility between a single feature and
a subset of other features. If the single feature can be discerned by the subset of
the other features, than it is considered redundant and removed from the feature
set. Features are removed until no further inter-dependency can be found.

In [39] authors propose a new unsupervised quick reduct algorithm based on
rough set theory. The proposed algorithm is based on a new definition of positive
region for unsupervised subset evaluation measure using rough set theory. The
evaluation of degree of dependency value for a features subset leads to each
conditional attribute and evaluate mean of dependency values for all conditional
attributes.
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3 Rough-Fuzzy Sets

Let us start from the definition of a rough fuzzy set given by Dubois and Prade
[9]. Let U be the universe of discourse, X a fuzzy subset of U , such that μX(u)
represents the fuzzy membership function of X over U , and R an equivalence
relation that induces the partition U/R = {Y1, . . . , Yp} (from now on denoted as
Y) over U in p disjoint sets, i.e. Yi

⋂
Yj = ∅ ∀i, j = 1, . . . , p and

⋃p
i=1 Yi = U .

Considering the lower and upper approximations of the fuzzy subset X as,
respectively, the infimum and the supremum of the membership functions of the
elements of a class Yi to the fuzzy set X [29], a rough-fuzzy set can be defined
as a triple

RFX = (Y, I,S) (1)

where Y = {Y1, . . . , Yp} is a partition of U in p disjoint subsets Y1, . . . , Yp, and
I,S are mappings of kind U → [0, 1] such that ∀u ∈ U ,

I(u) =
p∑

i=1

νi × μYi
(u) (2)

S(u) =
p∑

i=1

νi × μYi
(u) (3)

where

νi = inf{μX(u)|u ∈ Yi} (4)
νi = sup{μX(u)|u ∈ Yi} (5)

Y and μ uniquely define a rough-fuzzy set.
In the proposed framework, different partitions, possibly obtained by apply-

ing different equivalent relations, are refined in a hierarchical manner, so that
partitions at each level of the hierarchy retain all the important information con-
tained into the partitions of the lower levels. The operation employed to perform
the hierarchical refinement is called Rough–Fuzzy product (RF-product) and is
defined by:

Definition 1. Let RF i = (Yi, Ii,Si) and RF j = (Yj , Ij ,Sj) be two rough
fuzzy sets defined, respectively, over partitions Yi = (Y i

1 , . . . , Y i
p ) and Yj =

(Y j
1 , . . . , Y j

p ) with Ii ( resp. Ij) and Si (resp. Sj) indicating the measures
expressed in Eqs. (2) and (3). The RF–product between two rough-fuzzy sets,
denoted by ⊗, is defined as a new rough fuzzy set

RF i,j = RF i ⊗ RF j = (Yi,j , Ii,j ,Si,j) (6)

where Yi,j = (Y i,j
1 , . . . , Y i,j

2p−1) is a new partition whose equivalence classes are
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Y ij
k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s=h
q=1⋃
s=1
q=h

Y i
q ∩ Y j

s h = k, k ≤ p

s=p
q=h⋃
s=h
q=p

Y i
q ∩ Y j

s h = k − p + 1, k > p

(7)

and Ii,j and Si,j are

Ii,j(u) =
2p−1∑
k=1

νi,j
k × μi,j

k (u) (8)

Si,j(u) =
2p−1∑
k=1

νi,j
k × μi,j

k (u) (9)

and

νij
k =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

sup
s=1,...,h
q=h,...,1

{ν
i
q, ν

i
s} h = k, k ≤ p

sup
s=h,...,p
q=p,...,h

{νi
q, ν

i
s} h = k − p + 1, k > p

(10)

νij
k =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

inf
s=1,...,h
q=h,...,1

{ν
i
q, ν

i
s} h = k, k ≤ p

inf
s=h,...,p
q=p,...,h

{νi
q, ν

i
s} h = k − p + 1, k > p

(11)

4 Rough-Fuzzy Product Feature Selection

In this section we describe how the rough–fuzzy product can be exploited in
order to find distinctive features in an unsupervesided way. In particular, the
proposed approach is composed by two steps

1. feature granularization, which consists in partitioning the data considering
each single feature and building a rough–fuzzy set for each partition

2. feature selection, which consists in combining rough–fuzzy sets by means of
rough–fuzzy product and selecting the most distinctive features
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4.1 Feature Granularization

The feature granularization step is based on the principle of justifiable gran-
ularity [28], that is concerned with the formation of a meaningful informa-
tion granule Ω based on some experimental evidence of scalar numeric data,
D = x1, x2, . . . , xN . Such construct has to respect two requirements:

1. The numeric evidence accumulated within the bounds of Ω has to be as high
as possible, i.e. the existence of the information granule is well motivated, or
justified, by the experimental data.

2. The information granule should be as specific as possible meaning that it
represents a well-defined semantics, i.e. Ω has to be as specific as possible.

Let us consider Ω as an interval to be constructed. In the simplest case, the
first requirement is quantified by counting the number of data falling within the
bounds of Ω, specifically we consider

f1(card(Xk ∈ Ω)) = card(Xk ∈ Ω) (12)

The specificity of the information granule can be quantified by taking into
account its size. The length of the interval Ω can be considered as a measure of
specificity, in particular we consider

f2(length(Ω)) = exp(−α|a − m|) (13)

The lower the value of f2(length(Ω)), the higher the specificity is.
In order to construct the interval information granules, we start with the

determination of the numeric representative of the set of data D. A sound rep-
resentative is its median, med(D), as it is a robust estimator of the sample and
typically comes as one of the elements of D. An information granule Ω is formed
by forming its lower and upper bounds, denoted by a and b, respectively.

The length of Ω, which quantifies the specificity of the information granule, is
given now as |a−m|, where m = med(D). More generally, we employ f2(|a−m|)
where f2 is a nonincreasing function, i.e. f2(length(Ω)) = exp(−α|a−m|), where
α is a positive parameter offering some flexibility in the produced information
granule. The optimal granularization is obtained by maximizing the sum over
all the granules Ωi

∑
i

V (Ωi) (14)

where

V (Ωi) = f1(card(Xk ∈ Ωi)) ∗ f2(length(Ωi)) (15)

As the requirements of experimental evidence and specificity are in conflict,
we consider the maximization of the product V = f1 ∗ f2.
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4.2 Feature Selection

The same procedure is applied independently to each feature of the dataset, thus
yielding many partitions of the same dataset. As explained before, for each par-
tition it is possible to define a rough–fuzzy set which can be composed by means
of the rough–fuzzy product. Let RF i = (Yi, Ii,Si) and RF j = (Yj , Ij ,Sj) be
two rough–fuzzy sets relative to feature i and j, and let RF i,j = RF i ⊗ RF j =
(Yi,j , Ii,j ,Si,j) be the rough–fuzzy set obtained by applying the rough–fuzzy
product to these rough–fuzzy sets. In order to evaluate the goodness of the
newly formed rough–fuzzy set with respect the operands, we propose to exploit
again the principle of justifiable granularity, where for each granule Y i,j

k of the
new rough–fuzzy set

f1(card(Y i,j
k )) = card(Y i,j

k ) (16)

represents the experimental evidence and

f2(Y
i,j
k ) = exp(−β|νi,j

k − νi,j
k |) (17)

represents the spread with respect to the membership degrees. The optimal
rough–fuzzy set is obtained by maximizing

p∑
k=1

V (Y i,j
k ) (18)

where

V (Y i,j
k ) = card(Y i,j

k ) ∗ exp(−β|νi,j
k − νi,j

k |) (19)

The Rough-Fuzzy Product Feature Selection Algorithm is sketched in
Algorithm 1. First each feature is granularized by maximizing Eq. 15 and a
rough–fuzzy set is constructed as defined in Eq. 1 (lines 2–5). Second the couple
of features that maximize Eq. 19 is found by applying the rough–fuzzy product
in Eq. 6 (lines 8–15). The remaining features, are added one at time only if the
rough–fuzzy set obtained by rough–fuzzy producting the rough–fuzzy sets of the
new feature and the already selected features, leads to a better solution with
respect to Eq. 19.

5 Experimental Results

In this section, experimental results for the proposed approach are presented.
The method is compared with some supervised and unsupervised methods. The
comparison with the supervised methods is included to show that despite missing
or incomplete labels, RFPFS can effectively reduce dimensionality and discover
useful subsets of features. The experimental setup consists of three steps: (1)
feature selection, (2) dataset reduction by retaining selected features, (3) clas-
sifier learning. Note that the class label have been removed before applying
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Algorithm 1. RFPFS - Rough Fuzzy Product Feature Selection
1: F = {set of features}
2: for all c ∈ F do
3: Granularization of c
4: Rough–Fuzzy Set of c
5: end for
6: RFPD={∅}
7: Vmax = 0
8: for all i, j ∈ F do
9: RF i,j = RF i ⊗ RF j

10: V (RF i,j) =
∑p

k=1 V (Y i,j
k )

11: if V (RF i,j) > Vmax then
12: Vmax = V (RF i,j)
13: RFPD = {i, j}
14: end if
15: end for
16: for all c ∈ F and c /∈ RFPD do
17: RFRFPD∪c = RFRFPD ⊗ RF c

18: V (RFRFPD∪c) =
∑p

k=1 V (Y RFPD∪c
k )

19: if V (RFRFPD∪c) > Vmax then
20: Vmax = V (RFRFPD∪c)
21: RFPD = RFPD ∪ {c}
22: end if
23: end for

RFPFS algorithm. The classifier used in tests is the J48 classifier that creates
decision trees by choosing the most informative features via an entropy measure,
and recursively partitions the data into subtables based on their values. Each
node in the tree represents a feature with branches from a node representing the
alternative values this feature can take according to the current subtable. Par-
titioning stops when all data items in the subtable have the same classification.

The first test has been performed on three datasets from the UCI repository,
namely Wine (178 instances and 13 features), Wisconsin (569 instances and 32
features), and Sonar (208 instances and 60 features). From Table 1 it is possible to
note how the proposed algorithm selects approximately half of the features (1/3
in the Sonar dataset) still obtaining good classification accuracy with respect to
the unreduced dataset.

Table 1. Results on UCI datasets.

Unreduced RFPFS (No. of selected features)

Wine 94.41 93.80 (6)

Wisconsin 72.46 73.62 (14)

Sonar 93.86 95.03 (22)
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Table 2. RFPFS Vs. Unsupervised features selection algorithms.

Unreduced UFRFS B–UFRFS D–UFRFS RFPFS

Wine 94.41 (13) 79.74 (7) 81.99 (7) 79.74 (6) 93.80 (6)

Water 83.08 (38) 81.54 (7) 80.51 (7) 81.54 (7) 80.30 (4)

Table 3. RFPFS Vs. Supervised features selection algorithms.

Unreduced CFS Consis FRFS B–FRFS D–FRFS RFPFS

Wine 94.41 (13) 94.41 (11) 97.10 (5) 94.97 (5) 96.08 (5) 94.41 (5) 93.80 (6)

Water 83.08 (38) 81.54 (11) 81.02 (11) 79.49 (6) 80.26 (6) 80.77 (6) 80.30 (4)

In the second test, the proposed method has been compared to some super-
vised (correlation-based (CFS) [11], consistency-based [40], fuzzy-rough lower
approximation-based (FRFS) [16], boundary region-based (B-FRFS) [16],
discernibility-based (D-FRFS) [16]) and unsupervised (fuzzy-rough lower
approximation-based (UFRFS) [25], unsupervised boundary region-based (B-
UFRFS) [25] and unsupervised discernibility-based (D-UFRFS) [25]) feature
selection methods. The dataset used in this test are Wine as in the first test,
and Water (390 instances and 38 features).

From Table 2 it is possible to see how RFPFS clearly outperforms the consid-
ered unsupervised approaches on the Wine dataset while on the Water dataset
the results are comparable but with less features selected. The results are even
more interesting if compared with those obtained by the supervised approaches,
shown in Table 3. Even in this case the proposed method is comparable with the
other approaches in terms of accuracy, but without considering the class labels.

6 Conclusions

This paper has presented a novel technique for unsupervised feature selection,
based on the rough–fuzzy product operation already presented in the literature.
The proposed approach is data-driven, and no user-defined thresholds or domain-
related information is required. The experimental results show that the approach
can reduce dataset dimensionality considerably whilst retaining useful features
when class labels are unknown or missing.
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