
Efficient Querying of XML Data Through
Arbitrary Security Views

Houari Mahfoud1(B) and Abdessamad Imine2

1 Abou-Bekr Belkäıd University, Tlemcen, Algeria
houari.mahfoud@gmail.com

2 University of Lorraine and INRIA-LORIA, Nancy, France

Abstract. We study the problem of querying virtual security views of
XML data that has received a great attention during the past years.
A major concern here is that user XPath queries posed on recursive views
cannot be rewritten to be evaluated on the underlying XML data. Exist-
ing rewriting solutions are based on the non-standard language, “Regular
XPath”, which makes rewriting possible under recursion. However, query
rewriting under Regular XPath can be of exponential size. We show that
query rewriting is always possible for arbitrary security views (recursive
or not) by using only the expressive power of the standard XPath. We
propose a more expressive language to specify XML access control poli-
cies as well as an efficient algorithm to enforce such policies. Finally,
we present our system, called SVMAX, that implements our solutions
and we show that it scales well through an extensive experimental study
based on real-life DTD.

Keywords: XML access control · Security views · Materialization ·
Query rewriting · XPath · Regular XPath · XML databases · Confiden-
tiality and integrity

1 Introduction

In parallel with the rapid growth of the World Wide Web, an increasing amount
of data have become available electronically to humans and programs. Such data
may be combined from heterogeneous systems based on different data formats,
and need to be maintained in a self-describing format to accommodate a variety
of ever-evolving business needs. This has led a need for a neutral and flexible
way for exchanging data among different devices, systems, and applications. The
solution to this problem came with the advent of XML [1,2].

The eXtensible Markup Language (XML) is a W3C recommendation that
encodes data in a format which can be processed easily and exchanged across
multiple platforms. XML has been universally received as the de facto standard
for representing and exchanging data. An XML document represents not only
base information, but also information about the relationship of data items to
each other in the form of the hierarchy (hierarchical structure). Moreover, it

c© Springer-Verlag Berlin Heidelberg 2015
A. Hameurlain et al. (Eds.): TLDKS XXII, LNCS 9430, pp. 75–114, 2015.
DOI: 10.1007/978-3-662-48567-5 3

76 H. Mahfoud and A. Imine

can be searched or updated without requiring a static definition of the schema
(schema-less property). XML brings a number of powerful capabilities to infor-
mation modeling: (a) Heterogeneity (each record can contain different data
fields); (b) Extensibility (new types of data can be added at will and do not
need to be determined in advance); and (c) Flexibility (data fields can vary in
size and configuration from instance to instance). These features and capabilities
have made of XML the most used format for several needs and within various
situations:

• XML-based technologies: XML has emerged as a critical enabler to various
technology initiatives. Service-oriented architectures (SOA), enterprise appli-
cation integration (EAI), web services, and standardization efforts in many
industries all rely on or make use of XML as an underlying technology.

• XML-based languages: XML contributes on the creation of many markup lan-
guages for various domains such as MathML for mathematic, CML for chem-
istry, SBML and BIOPAX for biology, SCORM for e-learning.

• Desktop applications : Open-office files, Ant’s Build files, and Mac plist con-
figuration files are all written in XML format.

Specifically, we focus on situations where XML does not serve just as a technol-
ogy or a configuration model, as explained above, but as a primordial format for
data representation and exchange. Such situations are often encountered when
the managed data has a volatile schema and is inherently hierarchical in nature.
The properties of XML make it an unavoidable and more suitable format for
this kind of data. We take first the case of medical data which is often presented
with XML. A simple scenario of that is the “Electronic Health Record (ERH)1”,
an ongoing national project started in France at 2004, which has as goal to allow
each one to access electronically to his own medical data (e.g. personal infor-
mation, appointments, analysis results, medical and surgical history). Data of
two different patients may not have the same rigid structure, e.g. one patient
may have some surgical information whereas the other does not have any sur-
gical item. Each department within the hospital may maintain his own volatile
and local schema of data, and all schema may be combined to form the global
data schema of the hospital. Moreover, the hospital data may be exchanged with
other hospitals or laboratories that are not supposed to use the same schema.
According to this context, it is much more natural to use XML for local data rep-
resentation and to ensure efficiently the mapping between the different schema
[3,4]. Many XML-based solutions are proposed for managing medical data: the
hData [5] and MEDOX [6] frameworks, the HL7 standard2, solutions for inter-
operability of health-care applications [7], security [8,9] and integration [10,11]
of health-care data. The other case occurs with the e-business where XML is an
unavoidable standard not only for data representation, but essentially for ensur-
ing interoperability of different systems. For this purpose, many XML-based
1 The original name is the DMP, that refers in French to “Dossier Médical Personnel”.
2 Available at: http://www.hl7standards.com/.

http://www.hl7standards.com/

Efficient Querying of XML Data Through Arbitrary Security Views 77

solutions have been proposed: the IBM jStart team [12], the DITA OASIS Stan-
dard [13], the ebXML consortium [14], and the Oracle solutions [15] rely all on
XML to address needs of managing and publishing business information.

Day to day operations that use XML data need to be easy to use, quick to
carry out, and more importantly safe from unauthorized accesses. For instance,
electronic commerce transactions require enforcement of some security con-
straints ensuring that crucial information will be accessible only to autho-
rized entities. In addition, many organizations (mostly medical and commercial)
manipulate sensitive information that should be selectively exposed to different
classes of users based on their access privileges. A good example of such sensitive
data is the “EHR” explained above. All patients’ data are stored in a centralized
database, and can be accessed totally/partially by different health personnels:
nurses, doctors, pharmacists, insurance company staff, etc. Due to the sensitive
nature of this data, a security policy is applied that controls access to different
parts of the health-care data. For instance, grant to an insurance company a read
access that concerns only medication information. The general scenario that can
be found in practice is the following. For some XML data there may be multiple
user groups which want to query the same data. For these user groups, different
access privileges may be imposed, specifying what parts of the data are accessible
to the users. The problem of secure XML access is to enforce these privileges. The
well-established security specification and enforcement approaches of relational
databases cannot be easily adapted for XML databases. This can be explained
by the fact that XML has its own properties: an hierarchical structure, schema-
less and node relationship properties. Consequently, the problem of secure access
to XML data has its own particular flavor and requires specific solutions.

1.1 Motivation

It is increasingly common nowadays to find virtual views used to protect
access to data as supported by many database systems (e.g. Oracle 11g, IBM
DB2). Different models have been proposed that study such kind of protection
[16–21]. Most of them deal only with read access rights. Given an XML docu-
ment T that conforms to a schema D, a security view S is defined that heads
some inaccessible information from D. According to S, a schema view Dv is
derived first and provided to the user that describes the accessible data (s)he
is able to see. Moreover, a virtual data view Tv is extracted that displays only
accessible parts of T . XPath [22,23] is the most used language to query such
virtual data view. For each XPath query Q posed on Tv, the query rewriting
principle consists on rewriting Q into another one Q′ such that: evaluating Q
over Tv yields the same result as the evaluation of Q′ over the original docu-
ment T . Many rewriting algorithms have been proposed during the last decade
[16,18,19,21,24,25].

Although a tremendous effort has been done on improving query rewriting
over virtual XML views, most of existing algorithms are limited in the sens that

78 H. Mahfoud and A. Imine

they deal only with non recursive schema3. We investigate the use of DTD gram-
mar as data schema. Recursive DTDs often arise in practice when specifying for
instance (bio)medical and biological data. Examples of such DTDs are GedML
and BIOML. The study done in [26] shown that most of the real-world DTDs
are recursive. The rewriting process over virtual views becomes more challenging
when manipulating recursive DTDs. Specifically, for two accessible nodes A and
B, there may be some inaccessible nodes that connect A with B at the original
data, these nodes are hidden in the view and thus B appears as immediate child
of A in the virtual data view. Each query A/B must be rewritten to return only
accessible B nodes that are either immediate children of some accessible nodes A
or connected to them with only inaccessible nodes. Roughly, to rewrite a query
A/B it remains to find all the inaccessible paths4 that connect accessible nodes
A with accessible B at the original data. Because of recursion, these paths may
lead to an infinite set which cannot be explicitly expressed with the standard
XPath. Thus, the query rewriting over recursive views is still an open problem.

For this reason, Fan et al. [17,27] proposed, as extension of their previous
work [25], the first algorithm for coping with recursive security views. Their
algorithm has been refined later by Groz et al. [18] by considering different
types of DTDs and larger class of queries. The key idea behind these three
works was to use the Regular XPath language [28] that is more expressive than
the standard XPath and offers possibility to define recursive paths by means of
the Kleene star operator “*”. Although Regular XPath ensures query rewriting
over arbitrary security views (recursive or non), this process may be costly since
rewritten queries may be of exponential size. Regular XPath based investigations
cannot be easily applied in practice: no tool exists to evaluate Regular XPath
queries. Furthermore, more commercial database systems (e.g. Oracle 11g, IBM
DB2, eXist-db, Sedna) provide support for the standard XPath to manipulate
XML data. Therefore, there is a need for an XPath-based practical solution to
secure XML data over arbitrary views.

Given the above, our first motivation at the outset was to develop some
practical security solutions that can be easily and efficiently integrated within
existing systems that provide support for managing XML data. We have focused
principally on shortcomings of security-view-based approaches [17,18,24,25], and
investigated some practical and efficient solutions to overcome them. This paper
is thus a continuation to the important effort done during the two decades to
design and implement XML access control models.

1.2 Contributions

An Efficient Approach for Coping with Arbitrary XML Security
Views. While, in case of recursive security views, the query rewriting is not
always possible over the downward fragment of XPath5 [17] (class of queries
3 A recursive schema has at least an element defined (in)directly in terms of itself.
4 Paths composed by only inaccessible nodes.
5 This fragment is more used both in practice and in theory, and several theoretical

results have been found around this fragment [29,30].

Efficient Querying of XML Data Through Arbitrary Security Views 79

with child -axis, descendant-axis, and complex predicates), we show that the
expressive power of the standard XPath is sufficient to overcome this rewrit-
ing limitation. We extend the access specification language of Fan et al. [25]
with new annotation types in order to define compact and more expressive XML
access control policies. Then, we show that by extending the downward fragment
of XPath with some axes and operators, the query rewriting becomes possible
under arbitrary security views (recursive or non). As explained in Sect. 5, our
rewriting approach can deal with a larger class of XPath queries that includes
downward-axes (child, descendant), upward-axes (parent, ancestor). Moreover,
it can be easily extended to rewrite horizontal-axes (preceding, following). We
propose finally an efficient algorithm to rewrite XPath queries over arbitrary
security views. Compared with the one presented in [17,27], our algorithm uses
only the access specification (i.e. the read-access annotations) to rewrite any
user query rather than using an auxiliary structure, like automatons, which can
be costly or even impracticable in some cases. Moreover, our algorithm runs in
linear time in the size of the query.

SVMAX system has been implemented to show the practicality and efficiency
of our results. To our knowledge, SVMAX (Secure and Valid MAnipulation
of XML) is the first system that provides secure handling of XML data over
arbitrary views (recursive or non).

Further Contributions. We emphasize that SVMAX implements some other
solutions, that are not explained here, but which are based on the results of
this paper and then deserve a little discussion to complete the description of
the system. We studied the XML access control by considering the operations
of the XQuery Update Facility [31]. Our results in this context are based prin-
cipally on the contribution of this paper. More precisely, we proposed in [32,33]
a fine-grained language to specify XML update policies and which overcomes
expressiveness limits of existing models [21,34]. Our update specification lan-
guage is an extension of the read-access specification language that we describe
in Sect. 4. SVMAX implements a linear time algorithm to enforce our XML
update policies.

As we shall explain, SVMAX provides visual editor that helps the adminis-
trator to specify either read and update policies. These policies are enforced
through the rewriting modules of the system: XPath Rewriter and XQuery
Update Rewriter to rewrite safely, and w.r.t the corresponding policy, read-access
queries and update queries respectively.

The wide use of W3C standards in practice makes of SVMAX a useful
system that can be easily integrated, as an API, within commercial database
systems. See [35] for more details of the system.

1.3 Outline of the Paper

The remainder of the paper is organized as follows. Section 2 provides essen-
tially background about XML and XPath query language. We explain in Sect. 3
the main problem we tackle throughout this paper. Section 4 presents formal

80 H. Mahfoud and A. Imine

description of our access control model, and especially our access specification
language. Policies based on such language are enforced through the rewriting
approach explained in Sect. 5. Section 6 presents a brief overview of our system,
followed by an extensive experimental study based on real-world DTDs. Related
work is reviewed in Sect. 7. Finally, we conclude the paper in Sect. 8.

Additional parts of our contributions (algorithms, proofs,...) can be found
on-line at https://tel.archives-ouvertes.fr/tel-01093661/.

2 Preliminaries

We present basic notions and definitions that are used throughout the paper.

2.1 Document Type Definitions

Definition 1 (DTD [1]). A Document Type Definition (DTD) D is a triple
(Σ, P , Root), where Σ is a finite set of element types; Root is a distinguished
type in Σ called the root type; and P is a function defining element types such
that for any A in Σ, P (A) is a regular expression α, called the content model
of A, and defined as follows:

α := str | ε | B | α’,’α | α’|’α | α* | α+ | α?

where str denotes the text type PCDATA, ε is the empty word, B is an element
type in Σ, α’,’α denotes concatenation, and α’|’α denotes disjunction. A → P(A)
refers to the production rule of A. For each element type B occurring in P (A),
we refer to B as a child type of A and to A as a parent type of B. Moreover,
P (A) can be defined using the operators ’*’ (set with zero or more elements),
’+’ (set with one or more elements), and ’?’ (optional set of elements). A DTD
D is recursive if some element type A is defined (in)directly in terms of itself.

Example 1. We consider the department DTD (Σ,P ,dept) with Σ={dept,
course, project, cname, takenBy, givenBy, students, scholarship, student,
sname, mark, professor, pname, grade, type, private, public, descp, results,
result, members, member, name, qualif , theoretical, experimental, sub-
project}. The production rules of this DTD are defined as follows:

dept → (course+, project*)
course → (cname, takenBy, givenBy)
takenBy → (students)
students → (scholarship?, student+)
scholarship → (student+)
student → (sname, mark)
givenBy → (professor+)
professor → (pname, grade)
project → (type, descp, results, members, sub-project)
type → (private | public)
results → (str | result)*
members → (member+)
member → (name, qualif , (theoretical | experimental)*)
sub-project → (project*)

https://tel.archives-ouvertes.fr/tel-01093661/

Efficient Querying of XML Data Through Arbitrary Security Views 81

The element types private and public are empty, while the remaining element
types (e.g. mark, result) are text elements. A dept element has a list of course
elements as well as zero or more project elements. A course consists of cname
(course name), and lists of students and professor elements defined via the rela-
tions takenBy and givenBy respectively. A student who has registered for the
course has a name (sname), a mark and may be part of a scholarship program.
A professor is defined by his name (pname) and grade. A project is presented
by its type (that can be either private or public), a description (descp), some
results, and may be composed by zero or more than one projects (through the
sub-project relation). A member of a given project is presented by his name, a
qualification (denoted qualif that can be professor, student, external researcher
etc.), and a list of his contributions (that can be either theoretical or experi-
mental). Notice that results element type has mixed content (combination of
text values that serve as comments, and result elements). Moreover, member
element type has complex content, i.e. a sequence container that has the choice
container (theoretical | experimental)*. �

2.2 XML Documents

We model an XML document with a finite node-labeled sibling-ordered unranked
tree. Let Σ be a finite set of node labels (with a special label str) and C an
infinite set of text values. We represent our XML documents with a structure,
called XML Tree, defined as follows:

Definition 2 (XML Tree). An XML tree T over Σ is a structure (N ,root,
R↓, R→, λ, ν), where N is a set of nodes, root ∈ N is a distinguished root node,
R↓ ⊆ N × N is the parent-child relation, R→ ⊆ N × N is a successor relation
on (ordered) siblings, λ : N → Σ is a function assigning to every node its label,
and ν : N → C is a function assigning a text value to each node with label str.

The relations R↓∗ and R→∗ represent the reflexive transitive closure of R↓
and R→ respectively. We use R↑ and R← to denote the converse of R↓ and R→
respectively. In addition, R↑∗ and R←∗ denote respectively the converse of R↓∗

and R→∗ . Contrary to the model defined in [28], we define the function ν to
associate data values with nodes since data value comparison is supported by
our XPath fragments defined subsequently.

Definition 3 (Validation of XML trees w.r.t DTD [28]). An XML tree
T = (N, r,R↓, R→, λ, ν), defined over the set Σ of node labels, conforms to a
DTD D=(Ele, P, root) if the following conditions hold:

1. The root of T is mapped to root (i.e. λ(r)=root);
2. Each node in T is labeled either with an element type A in Ele, called an A

element, or with str, called a text node, therefore Σ = Ele ∪ {str};
3. For each A element with k ordered children n1, ..., nk, the word λ(n1), ..., λ(nk)

belongs to the regular language defined by P(A);
4. Each text node n (i.e. with λ(n) = str) carries a string value ν(n) (i.e.

PCDATA) and is the leaf of the tree.

82 H. Mahfoud and A. Imine

Note that elements of T are a set of nodes of N that are labeled with Ele,
while nodes represent both elements and text nodes (i.e. nodes labeled with str).
Subsequently, we use the terms of node and element interchangeably.

We call T an instance of a DTD D if T conforms to D. We denote by T (D) the
set of all XML trees that conform to D. For instance, Fig. 1 depicts6 an XML
document that conforms to the department DTD of Example 1.

2.3 XPath Queries

We define here the different fragments of XPath [23] that are used throughout
this paper.

Definition 4 (XPath Downward fragment). We denote by X the downward
fragment of XPath [36] that is defined as follows:

p := α::η | p [q]· · ·[q] | p /p | p ∪ p

q := p | p =c | q ∧ q | q ∨ q | ¬ (q)
α := ε | ↓ | ↓+ | ↓∗

where p denotes an XPath query and it is the start of the production, η is a node
test that can be an element type, ∗ (that matches all types), or function text()
(that tests whether a node is a text node), c is a string constant, and ∪, ∧, ∨, ¬
denote union, conjunction, disjunction, and negation respectively; α stands for
XPath axis relations and can be one of ε, ↓, ↓+, or ↓∗ which denote self, child,
descendant, and descendant-or-self axis respectively. Finally the expression q is
called a qualifier, filter or predicate.

A qualifier q is said valid at a node n, denoted by n � q, if and only if one of
the following conditions holds: (i) q is an atomic predicate that, when evaluated
over n, returns at least one node (i.e. there are some nodes reachable from n
via q); (ii) q is given by α::text()=c and there is at least one node, reachable
according to axis α from n, that has a text node with value c; (iii) q is a boolean
expression and it is evaluated to true at n (e.g. n � ¬(q) if and only if the query
q evaluates to empty set over n). We note by S�Q�(T) the set of nodes resulted
from the evaluation of the query Q over the XML tree T .

We define in the following more expressive fragments of XPath that are used
to overcome the query rewriting limitation discussed latter in Sect. 3.2.

Definition 5 (Extended fragment). We consider an extended fragment of
X , denoted by X ⇑

[n,=], and defined as follows:

p := α::η | p [q]· · ·[q] | p /p | p ∪ p | p [1]
q := p | p =c | q ∧ q | q ∨ q | ¬ (q) | p = ε::∗
α := ε | ↓ | ↓+ | ↓∗ | ↑ | ↑+ | ↑∗

6 We recall that indices in our examples of XML trees are used to distinguish between
elements of the same type, e.g. course1 and course2. Moreover, because of space
limitation we focus only on some nodes while

�
denotes the remaining ones.

Efficient Querying of XML Data Through Arbitrary Security Views 83

F
ig
.
1
.
E

x
a
m

p
le

o
f
d
ep
a
rt
m
en

t
X

M
L

d
o
cu

m
en

t.

84 H. Mahfoud and A. Imine

We enrich then X by the three upward-axes parent (↑), ancestor (↑+), and
ancestor-or-self (↑∗), as well as the position and the node comparison predi-
cates [23].

In general [23], the position predicate, defined with [k](k ∈ N), is used to return
the kth node from an ordered set of nodes. For instance, since we model XML
documents as ordered trees, the query ↓::∗[2] at a node n returns its second
child node. The node comparison is used to check the identity of two nodes.
Specifically, the predicate [p1=p2] is valid at a node n only if the evaluation of
the right and left XPath queries at n results in exactly the same single node.
Note that if p1 and/or p2 refer to more than one single node then a dynamic
error is raised. The original XPath notation of the predicate [p = ε::∗] is given by
[p is ε::∗]. However, we use “=” instead “is” for simplification. As an example,
the predicate [↑∗::∗[1]=ε::∗] is valid at any node n since the queries ↑∗::∗[1]
and ε::∗ are equivalent and return the same single node over any context node.
Contrary to the global definitions of position predicate (i.e. [k] with k ∈ N)
and node comparison predicate (i.e. [p1=p2]) [23], for our purpose we need only
the forms [1] and [p=ε::∗] respectively. We define both restrictions since the
resulting predicates are sufficient to overcome the limitation of XPath query
rewriting as we shall show later. Furthermore, based on these restrictions our
fragment of Definition 5 requires less evaluation time compared to the global
fragment (defined with the global position and node comparison predicates).

We summarize our extensions of fragment X by the following subsets: X ⇑

(X with upward-axes), X ⇑
[n] (X ⇑ with position predicate), and X ⇑

[n,=] (X ⇑
[n] with

node comparison predicate). It should be noticed that we use fragment X to
specify security policies as well as to formulate user requests (i.e. access queries
and update operations). We will explain later how the augmented fragments of
X defined above can be used to preserve confidentiality and integrity of XML
data.

2.4 Regular XPath Queries

We talk about the extension of XPath queries with the transitive closure oper-
ator “*”. For instance, the reflexive transitive closure of the XPath query ↓::A,
denoted by (↓::A)*, is the infinite union (where ε denotes the empty query): ε ∪
↓::A ∪ ↓::A/↓::A ∪ ↓::A/↓::A/↓::A ∪ Transitive closure is a natural and use-
ful operation that allows definition of recursive paths, and many languages for
semistructured data support it (e.g. recursive SQL queries [37,38]). The major
concern here is that XPath [22,23] does not support transitive closure, and thus
arbitrary recursive paths are not expressible in this language [39].

In spite of its clear practical benefits, no XML engine supports the transitive
closure operator. This has led researchers to define some extensions of the XPath
language in order to enable definition of recursive path expressions. A useful
study is given in [28] to know more about the theoretical properties of XPath
1.0 extended with regular path expressions. Based on their definitions, our class

Efficient Querying of XML Data Through Arbitrary Security Views 85

of Regular XPath queries, denoted by Xreg, is defined as follows (p* denotes an
infinite repetition of the query p):

p := α::ntst | p* | p [q]· · ·[q] | p /p | p ∪ p

q := p | p =c | q ∧ q | q ∨ q | ¬ (q)
α := ε | ↓ | ↓+ | ↓∗

Based on the formal evaluation algorithm of Xreg queries described in [17],
that relies on MFAs (Mixed Finite state Automatas), we get the following results:

Proposition 1. Given an Xreg query Q defined over a DTD D, Q can be
translated into an equivalent MFA M of size at most O(|Q|.|D|) in at most
O(|Q|2.|D|2) time. Moreover, M can be evaluated over any instance T of D in
at most O(|Q|2.|D|2 + |Q|.|D|.|T |) time and space.

3 Problem Statement

We present in this section the basic problem we tackle, namely answering XML
queries over recursive security views.

3.1 XML Security Views

The notion of security view, introduced first by [40], consists on defining for each
group of users a view of the underlying XML document that displays all and only
parts of the document these users are allowed to access. Fan et al. [25] refined
this notion by introducing first a language to specify fine-grained access control
policies and a rewriting algorithm to enforce such policies. Security views are now
the basic of most existing XML access control models [16–19,21,24,25,27,41,42].

Let T be an XML document that conforms to a DTD D. This document may
be queried simultaneously by different users having different access privileges.
An access control policy, as defined in [25], is an extension of the document DTD
D associating accessibility conditions to element types of D. These conditions
specify elements of T the users are granted access to. More specifically, an access
specification is defined as follows:

Definition 6 (Access Specification [25]). An access specification S is a pair
(D, ann) consisting of a DTD D and a partial mapping ann such that, for each
production rule A → P (A) and each element type B in P (A), ann(A, B), if
explicitly defined, is an annotation of the form:

ann(A, B) := Y | N | [Q]

where [Q] is an XPath predicate. The root type of D is annotated Y by default.

Intuitively, the specification values Y , N , and [Q] indicate that the B children of
A elements in an instantiation of D are accessible, inaccessible, or conditionally
accessible respectively. If ann (A, B) is not explicitly defined, then B inherits the
accessibility of A. On the other hand, if ann (A, B) is explicitly defined then B
may override the accessibility inherited from A.

86 H. Mahfoud and A. Imine

Example 2. We consider the department DTD of Example 1 and we define some
access privileges for professors. Assume that a professor, identified by his name
$pname, can access to all his courses information except the information denot-
ing whether or not a given student holds a scholarship. The access specifica-
tion, S=(dept, ann), corresponding to these privileges can be specified as fol-
lows:
ann (dept, course) = [↓ ::givenBy/↓ ::professor/↓ ::pname = $pname

︸ ︷︷ ︸

Q1

]

ann (students, scholarship) = N

ann (scholarship, student) = [↑+::course[Q1]]

Here $pname is treated as a constant parameter, i.e. when a concrete value,
e.g., Eichten, is substituted for $pname, the specification defines the access
control policy for the professor Eichten. Observe that ann (course, takenBy)
is not explicitly defined, which means that in an instantiation of the depart-
ment DTD, an takenBy element inherits its accessibility from its parent element
course, this accessibility is either Y or N according to the evaluation of the
predicate [Q1] at this course element. Similarly for cname, students, givenBy
and his descendant types. The annotation ann (students, scholarship)=N over
a scholarship element overrides the accessibility inherited from its ancestor
course to make this scholarship element inaccessible. Moreover, the annota-
tion ann (scholarship, student)=[↑+::course[Q1]] overrides the accessibility N ,
inherited from scholarship element, and indicates that student children of
scholarship elements are conditionally accessible (i.e. they are accessible if the
professor is granted to access to their ancestor element course). �

Access control policies based on the specification of Definition 6 are enforced
through the derivation of a security view [25]. A security view is an extension of
the original XML document and the DTD that: (1) may be automatically derived
from an access specification, (2) displays to the user all and only accessible
parts of the XML document, (3) provides the user with a schema of all his
accessible data so he can formulate and optimize his queries, and (4) allows
a safe translation of user queries to prevent access to sensitive data7. More
formally, an XML security view is defined as follows:

Definition 7 (Security View [25]). Given an access specification S=(D, ann)
defined over a non-recursive DTD D, a security view V is a pair (Dv, σ) where
Dv is the DTD view of D that presents the schema of all and only data the user
is granted access to, and σ is a function defined as follows: for any element type
A and its child type B in Dv, σ(A, B) is a set of XPath expressions that when
evaluated over an A element of an XML tree T of D, returns all its accessible
children B. In other words, σ maps each instance of D to an instance of Dv that
contains only accessible data.

7 This translation is necessary only if the views of the data are virtual, i.e. not mate-
rialized.

Efficient Querying of XML Data Through Arbitrary Security Views 87

The DTD view Dv is given to the user for formulation and optimization of
queries. However, the set of XPath expressions defined by σ are hidden from
the user and used to extract for any XML tree T ∈ T (D), a view Tv of T that
contains all and only accessible nodes of T .

Example 3. Consider the access specification S=(dept, ann) of Example 2. The
DTD view deptv=(Σv, dept, Pv) of the department DTD can be computed by
eliminating the scholarship element type, i.e. Σv := Σ \ {scholarship}, and by
changing the definition of dept and students element types as follows:

Pv(dept) := (course*, project*)
Pv(students) := (student+)
Pv(A) := P (A), for all remaining element types A in Σv

The function σ is defined over the production rules of deptv as follows: (refer to
Example 2 for the definition of [Q1])

dept → Pv(dept):
σ(dept, course) = ↓::course[Q1]
σ(dept, project) = ↓::project

students → Pv(students):
σ(students, student) =
↓::student ∪ ↓::scholarship/↓::student[↑+::course[Q1]

A → Pv(A): (for each remaining element type A in Σv)
σ(A, B) = ↓::B (for each child type B in Pv(A))

Using the resulting security view V =(deptv, σ), the view of the XML document
of Fig. 1 is derived and depicted in Fig. 2, this view shows all and only parts of
the original XML document that are accessible w.r.t the specification S=(dept,
ann). Note that all descendants of the element project1 are still unchanged. �

Given a security view V =(Dv, σ) defined for an access specification S=(D, ann),
then, for each instance T of D and its view Tv computed using the σ function,
one can either materialize Tv and evaluate user queries directly over it [24,43],
or keep Tv virtual for some reasons [17–19,21]. In case of virtual views, the query
rewriting principle is used to translate each user query Q defined in Dv over the
virtual view Tv, into a safe one Qt defined in D over the original document T
such that: evaluating Q over Tv returns the same set of nodes as the evaluation
of the rewritten query Qt over T .

Example 4. Consider the query ↓::dept/↓::course of the professor Wenfei
defined over the view of Fig. 2. This query can be rewritten, using the secu-
rity view of Example 3, to ↓::dept/σ(dept, course) that is equal to:

↓::dept/↓::course[↓::givenBy/↓::professor/↓::pname=“Wenfei”]
The evaluation of this query over the original XML document of Fig. 1 returns
only accessible course elements, i.e. course1. �

Since most existing approaches for securing XML data are based on the
security view model, we discuss thereafter the major limits of this model.

88 H. Mahfoud and A. Imine

Fig. 2. The view of the dept XML document w.r.t the policy of Example 2.

3.2 Security View’s Drawbacks

We study only the case of querying virtual XML data, then problems related to
manipulation of materialized XML views [24,43] are outside the topic of interest
of this work. More precisely, we discuss subsequently obstacles encountered when
manipulating recursive views8 and this at the stage of query rewriting. Even if
the rewriting of XPath queries is quite straightforward for non-recursive XML
security views, some obstacles may arise in the presence of recursive views that
make this rewriting process impossible for some class of XPath queries. More
precisely, the rewriting process is based on the definition of the function σ that, in
case of recursive DTDs, cannot be defined in XPath as we show by the following
example.

Example 5. We consider the department DTD of Example 1 and we assume that
a personal of some department, identified by his name $pname, can access to
information of any project in which he is a member, as well as information of all
public projects. The access specification, S=(dept, ann), corresponding to these
privileges is defined with:

ann (dept, project) = ann (sub-project, project) =
[↓ ::type/↓ ::public ∨ ↓ ::members/↓ ::member[↓ ::name = $pname]
︸ ︷︷ ︸

Q2

]

Note that if the predicate [Q2] is valid at a given project element then all its
descendant elements inherit this accessibility except sub-project elements that
may override it (that depends to the evaluation of [Q2]). Consider the case of
the professor “Wenfei”, the view of the XML document of Fig. 1 is derived and
depicted in Fig. 3. Given an accessible dept element, there is an infinite set of
paths that connect this element to its accessible children of type project. More
precisely, σ(dept, project) can be defined using the transitive closure operator
“*” with: σ(dept, project) = (↓::project[¬(Q2)]/↓::sub-project)*/↓::project[Q2].
8 A security view is recursive if it is defined over a recursive DTD.

Efficient Querying of XML Data Through Arbitrary Security Views 89

The recursive path (↓::project[¬(Q2)]/↓::sub-project)* is defined over only
inaccessible elements. Thus, the expression σ(dept, project) has to extract, over
each accessible element of type dept in the original data, the accessible descen-
dants of type project that appear in the view of the data as immediate children
of this dept element. In other words, an element m of type project is shown in
the view of Fig. 3 as an immediate child of some dept element n if and only:
m and n are both accessible in the original tree of Fig. 1, and either m is an
immediate child of n or separated from n with only inaccessible elements. Take
the case of the elements dept1 and project2 of the tree of Fig. 1. After hiding the
inaccessible element project1, project2 appears in the view of Fig. 3 as immedi-
ate child of dept1. The same principle is applied for the elements project2 and
project4. �

Authors of [28] showed that the kleen star operator “*” cannot be expressed
in XPath. For this reason, the function σ of Example 5 cannot be defined in the
standard XPath which makes the query rewriting process more challenging. We
are principally motivated by studding the closure of a significant class of XPath
queries (denoted by X) under query rewriting, i.e. whether all queries of this
class can be rewritten over arbitrary security views (recursive or not). We define
formally the closure property as follows:

Definition 8. An XML query language L is closed under query rewriting if
there exists a function R: L → L that, for any access specification S=(D,ann)
and any DTD view Dv of D, translates each query Q of L defined over Dv into
another one R(Q) defined in L over D such that: for any T ∈ T (D) and its
virtual view Tv, S�R(Q)�(T)=S�Q�(Tv).

Note that Fan et al. [25] shown that the fragment X (Definition 4) is closed
under query rewriting in case of non-recursive security views. However, in case
of recursion, that is no longer the case as shows the following theorem:

Theorem 1 ([17,36]). In case of recursive XML security views, the XPath
fragment X is not closed under query rewriting.

Finally, we should emphasize that no practical solution exists to respond
to XML queries over recursive security views. Some theoretical results exist
that are based on Regular XPath language which allows definition of recursive
queries. According to [17,18], the fragment Xreg of Sect. 2.4 is closed under
query rewriting. However, some major drawbacks are to be noted: no standard
solution exists to evaluate regular queries, Regular XPath evaluation is more
costly than standard XPath in general, and since contemporary database systems
provide support for XPath only as XML query language, the results found around
Regular XPath are still impractical.

4 Access Control with Arbitrary DTDs

Figure 4 presents our XML access control framework. It is designed particularly
for native XML databases where XML data is stored in its native format. The

90 H. Mahfoud and A. Imine

Fig. 3. The view of the dept XML document w.r.t the policy of Example 5.

module Policy Specifier allows the administrator to specify, for each group of
users, the document they can query and an access control policy to handle this
querying. According to this policy, the module View Generator computes a vir-
tual view of their related document as well as a view (or an approximated view)
of its corresponding DTD. This DTD view is used by the users to formulate their
queries and query the virtual data view that is provided to them. Recall that the
fragment X is used for user queries formulation. Each X query is rewritten into
a safe one, defined in the fragment X ⇑

[n,=], and evaluated over the original doc-
ument. The results of this evaluation are given to the user as a set of sub-trees
where each one presents an accessible node referred to by the input query.

We present in the following the hospital DTD that corresponds to a real-life
patient medical data [44] and which is used throughout the rest of this paper.

Example 6. The hospital DTD (Σ,P ,hospital) is defined with the following pro-
duction rules (definitions of elements whose type is str are omitted):

hospital → (department*)
department → (name, patient*)
patient → (pname, wardNo, parent?, sibling?,

symptoms*, intervention)
parent → (patient*)
sibling → (patient*)
symptoms → (symptom*)
intervention → (doctor, treatment)
doctor → (dname, specialty)

treatment → (type, Tresult*, diagnosis)
diagnosis → (Dresult*, implies?)
implies → (treatment | intervention)

Efficient Querying of XML Data Through Arbitrary Security Views 91

Fig. 4. Our XML access control framework.

A hospital DTD document consists of a list of departments, each department
(defined by its name) has a list of patients currently residing in the hospital.
For each patient, the hospital maintains her name (pname), a ward number
(wardNo), a family medical history by means of the recursively defined par-
ent and sibling relations, as well as a list of symptoms. The hospitalization is
marked by the intervention of one or many doctors depending on their specialty
and the patient care requirement. For each intervention, the hospital also main-
tains the responsible doctor (represented by its name dname and specialty), and
the treatment applied. A treatment is described by its type, a list of result (Tre-
sult), and it is followed by a diagnosis phase. According to the diagnosis results
(Dresult), either another treatment is planned or the intervention of another
doctor/specialist/expert is solicited9. An instance of this hospital DTD is given
in Fig. 5 (some text contents are abbreviated by ’...’). �

9 According to [44], this may happen when the required treatment is outside the area
of expertise of the current responsible doctor.

92 H. Mahfoud and A. Imine

Fig. 5. Example of hospital data.

4.1 Access Specification

Fan et al. [25] proposed the first language for the specification of XML access
control policies through annotation of DTD grammars. Moreover, authors of
[24] studied the classification of such policies w.r.t the default annotation, the
inheritance and the overriding of annotations. In this work we consider only
the case of top-down access control policies where the root node of the XML
tree is accessible by default and each intermediate node can either inherit the
annotation of its parent node or override it (see Definition 6). Although both
access specification languages defined in [24,25] are based on the same principle,
i.e. annotating element types of DTDs with Y , N and [Q], there is a significant
difference in the use of conditional annotations (i.e. annotations of the form [Q]).
We consider the following example for more details:

Efficient Querying of XML Data Through Arbitrary Security Views 93

Example 7. We suppose that there are two annotations ann (A, B)=[¬ (↓::D)]
and ann (C, D)=Y defined over a simple XML tree composed by only one path:

R → A → B → C → D

Note that the predicate [¬ (↓::D)] is invalid at the element node B. According to
[25], all the subtree rooted at this B element is inaccessible and thus the second
annotation that concerns the element node D does not take effect. According
to [24] however, the element node D overrides the value N inherited from its
ancestor element B and becomes accessible. �

In general, let n be an element node that is concerned by an annotation of the
form [Q]. For the former work, if n � Q then all the subtree rooted at n is
inaccessible and no annotation defined over descendants of n can take effect.
For the second work however, even if n � Q, descendants of n can override this
annotation to become accessible.

We assume that the two definitions are useful and in practice applications
may require the application of both kinds of annotations, even within the same
scenario. For this reason, we present a refined and more expressive access speci-
fication language whose access specifications are defined as follows:

Definition 9 (Extended Access Specification). We define an access spec-
ification S as a pair (D, ann) consisting of a DTD D and a partial mapping
ann such that, for each production rule A → P (A) and each element type B in
P (A), ann(A, B), if explicitly defined, is an annotation of the form:

ann(A, B) := Y | N | [Q] | Nh | [Q]h

where [Q] is an XPath predicate. Annotations of the form Nh and [Q]h are called
downward-closed annotations. The root type of D is annotated Y by default.

Recall from Definition 6 that annotations of the form Y , N , and [Q] indicate
that an B element, child of an A element, is accessible, inaccessible, or condi-
tionally accessible respectively. We allow overriding between annotations of the
three previous forms. In other words, each element concerned by an annotation
of the form Y , N , or [Q] overrides its inherited annotation if it is defined with
one of these three forms. The special specification values Nh and [Q]h indicate
that overriding is denied or conditionally allowed respectively. More specifically,
let n1, . . . , nl (l ≥ 2) be element nodes of types A1, . . . , Al respectively where
each ni (1 ≤ i < l) is parent node of ni+1. The annotation ann (A1, A2)=Nh

indicates that all the subtree rooted at n2 is inaccessible and no element under
n2 can override this annotation. Thus, if some annotation ann (Ai, Ai+1)=Y |[Q]
is explicitly defined then the element node ni+1 remains inaccessible even if
ni+1 � Q. However, the annotation ann (A1, A2)=[Q2]h indicates that annota-
tions defined over descendant types of A2 take effect only if Q2 is valid. In other
words, given the annotation ann (Ai, Ai+1)=Y (resp. [Qi+1]), the element node
ni+1 is accessible if and only if: n2 � Q2 (resp. n2 � Q2 ∧ ni+1 � Qi+1).

94 H. Mahfoud and A. Imine

Example 8. Suppose that the hospital wants to impose some restrictions that
allow some nurse to access only information of patients who are being treated in
the critical care department and residing at the ward 421. In addition, all sibling
data should be inaccessible. This policy can be specified using our specification
language with an access specification S=(D, ann) where D is the hospital DTD
and the function ann defines the three following annotations:

R1: ann (hospital, department)=[↓ ::name = “critical care′′
︸ ︷︷ ︸

Q1

]h

R2: ann (department, patient)=ann (parent, patient)=[↓ ::wardNo = “421′′
︸ ︷︷ ︸

Q2

]

R3: ann (patient, sibling)=Nh

According to this specification, the view of the data of Fig. 5 is extracted and
depicted in Fig. 6. This view displays all and only the data the nurse is granted
access to. All the data of the ENT department is hidden, i.e. the subtree rooted
at the departement2 element. Since R1 is downward-closed and departement2 �

Q1, then the annotation R2 cannot be applied at patient6 element which remains
inaccessible even with patient6 � Q2. Notice that departement1 � Q1 which
means that the departement1 element is accessible and overriding of annotations
is allowed for its descendants. Thus, the elements patient1 and patient3 are
accessible along with their immediate children since Q2 is valid at these elements,
while the element patient2 (with patient2 � Q2) overrides the annotation Y
inherited from patient1 and becomes inaccessible along with all its immediate
children. In this way, patient3 element appears at the view of Fig. 6 as immediate
child of parent1. Finally, since sibling2 element is concerned by the downward-
closed annotation R3 with value Nh, then all the subtree rooted at sibling2 is
inaccessible and annotation R2 cannot take effect over the elements patient4 and
patient5. �

Our access specification language is more expressive than existing ones in the
sens that the access policies of many current approaches can be specified in our
language using only few annotation values as shown in Table 1. For instance, the
policy of Example 8 cannot be specified in the fragment X using the specifica-
tion languages presented in [24,25]. This can be done using a more expressive
fragment, like X ⇑, but the annotations may be more verbose and difficult to
manage.

The completeness and consistency of access control policies have been defined
in [45] as follows. Let P be an access control policy and T be an XML tree. If
a node n in T is not concerned by any access rule of P then P is incomplete.
Moreover, if there are both a negative and a positive access rule for the same
node n (i.e. n is both accessible and inaccessible) then P is inconsistent. Consider
our access specifications of Definition 9, we define the notions of completeness
and consistency, along the same lines as [24,25], as follows:

Definition 10. Given an access specification S=(D, ann) and an XML tree
T ∈ T (D), then, we say that S is complete and consistent if and only if the

Efficient Querying of XML Data Through Arbitrary Security Views 95

Fig. 6. View of the tree of Fig. 5 computed w.r.t the policy of Example 8.

accessibility of each node in T is uniquely defined, i.e. it is either accessible or
inaccessible.

Proposition 2. The access control policies based on Definition 9 are complete
and consistent.

Proof. Authors of [24] have proved that access policies defined with specifica-
tion values of the form Y , N and [Q] are complete and consistent. The case of
downward-closed annotations is straightforward and the proof of the latter work
can be easily extended to handle this kind of annotations. �

Table 1. Current approaches’ policies specified with our language.

Access policies Required specification values Remark

Y N Nh [Q] [Q]h

[17,25,27] � � �
[24] � � � case of top-down policies

[18] � � �
[21] � � �
[19] � �
[46] � � � deny overwrites as the conflict

resolution policy

[47] � � � with denial downwards
consistency requirement

96 H. Mahfoud and A. Imine

4.2 Accessibility

The enforcement of our access control policies relies principally on the definition
of node accessibility. Inspired from [18,46], we define a single XPath filter, that
can be constructed for any access specification, which checks whether a given
XML node is accessible or not w.r.t this specification.

Definition 11. Let n be an B element that is child of an A element. A given
annotation ann(A, B) is valid at n if and only if ann(A, B)=Y |[Q]|[Q]h with
n � Q. Otherwise, it is invalid, i.e. ann(A, B)=N |Nh|[Q]|[Q]h with n � Q.

If ann (A, B)=[Q]h with n � Q (resp. ann (A, B)=Nh|[Q]h with n � Q) then we
talk about valid (resp. invalid) downward-closed annotation. Given the above,
we define the node accessibility as follows:

Definition 12. Let S=(D, ann) be an access specification, T be an instance of
D, and n be an element node in T of type B having parent node of type A. The
element node n is accessible w.r.t S if and only if the following conditions hold:

(i) Either there exists an explicitly defined annotation ann(A, B) that is valid
at n; or the first annotation explicitly defined over ancestors of n is valid.

(ii) There is no invalid downward-closed annotation defined over ancestors of n.

More specifically, consider the element nodes n1, . . . , nk (k ≥ 2) of element types
A1, . . . , Ak respectively where n1 is the root node. Take the case of the element
node nk, the condition (i) of Definition 12 refers to one of the following three
cases:

(a) Only the default annotation ann (A1)=Y is defined over the types
A1, . . . , Ak. Thus, nk inherits its accessibility from the root node n1.

(b) The annotation ann (Ak−1, Ak) is explicitly defined and valid at nk.
(c) The annotation ann (Ai−1, Ai) is explicitly defined and valid at the element

ni (1 < i < k), and no annotation is defined over the types Ai+1, . . . , Ak.
Thus, nk inherits its accessibility from its ancestor node ni.

The condition (ii) of Definition 12 implies that for any downward-closed anno-
tation ann (Ai−1, Ai) defined over ancestor ni of nk (with 1 < i < k), either
ann (Ai−1, Ai)= Nh or ann (Ai−1, Ai)=[Q]h with ni � Q. Finally, note that a
text node is accessible if and only if its parent element is accessible.

Definition 13. Given an access specification S=(D, ann), we define two X ⇑
[n]

predicates Aacc
1 and Aacc

2 as follows:

Aacc
1 := ↑∗::*[allAnn][1][validAnn], where:

allAnn := ε::root
∨

ann(A′,A)∈ann ε::A/↑::A′

validAnn := ε::root
∨

(ann(A′,A)=Y)∈ann ε::A/↑::A′ ∨
(ann(A′,A)=[Q]|[Q]h)∈ann

ε::A[Q]/↑::A′

Efficient Querying of XML Data Through Arbitrary Security Views 97

Aacc
2 :=

∧
(ann(A′,A)=[Q]h)∈ann ¬ (↑+::A[¬ (Q)]/↑::A′)

∧
(ann(A′,A)=Nh)∈ann ¬

(↑+::A/↑::A′)

The predicates Aacc
1 and Aacc

2 satisfy the conditions (i) and (ii) of Definition 12
respectively.

The first predicate checks whether the node n is explicitly concerned by a
valid annotation (case b) or inherits its accessibility from a valid annotation
defined over its ancestors (cases a and c). The second predicate checks whether
the node n is not in the scope of an invalid downward-closed annotation. The
predicate [allAnn] consists of a disjunction of all annotations, while [validAnn]
presents disjunction of only valid annotations. More precisely, the evaluation
of the predicate ↑∗::*[allAnn] at a node n returns an ordered set of nodes N
that contains the node n and/or some of its ancestors such that each one is
“explicitly” concerned by an annotation of S, i.e. N ⊆ {n} ∪ ancestors(n)10,
and ∀m ∈ N , m is of type B and has a parent node of type A where ann (A,B) is
explicitly defined in S. The predicate ↑∗::*[allAnn][1] (i.e. N [1]) returns the first
node in N , i.e. either the node n (if it is explicitly concerned by an annotation),
the first ancestor of n that is explicitly concerned by an annotation, or the root
node (if only the default annotation is defined). The last predicate [validAnn]
checks whether the annotation defined over the node N [1] is valid: this means
that either the node n is explicitly concerned by a valid annotation or it inherits
its accessibility from one of its ancestors that is concerned by a valid annotation
(condition (i)). The use of the second predicate Aacc

2 is obvious: if n � Aacc
2

then all the downward-closed annotations defined over ancestors (n) are valid
(condition (ii)).

Lemma 1. Given an access specification S=(D, ann), we define the accessibil-
ity predicate Aacc:=Aacc

1 ∧ Aacc
2 such that: for any XML tree T ∈ T (D), a node

n of T is accessible if and only if n � Aacc.

According to this lemma, for any access specification S=(D, ann) and any
XML tree T ∈ T (D), the query ↓∗::∗[Aacc] over T returns the set of all accessible
nodes of T where Aacc is computed w.r.t S.

Example 9. Consider the access policy of nurses defined in Example 8 with the
following annotations:

ann (hospital, department)=[↓ ::name = “critical care′′
︸ ︷︷ ︸

Q1

]h

ann (department, patient)=ann (parent, patient)=[↓ ::wardNo = “421′′
︸ ︷︷ ︸

Q2

]

ann (patient, sibling)=Nh

According to these annotations, the predicates Aacc
1 and Aacc

2 , that compose
Aacc, are defined as follows:
10 We use ancestors (n) to refer to all ancestors of the node n.

98 H. Mahfoud and A. Imine

Aacc
1 := ↑∗::*[allAnn][1][validAnn], where:

allAnn := ε::root ∨ ε::department/↑::hospital ∨ ε::patient/↑::department ∨
ε::patient/↑::parent ∨ ε::sibling/↑::patient

validAnn := ε::department[Q1]/↑::hospital ∨ ε::patient[Q2]/↑::department
∨ ε::patient[Q2]/↑::parent ∨ ε::root

Aacc
2 := ¬ (↑+::departement[¬ (Q1)]/↑::hospital) ∧

¬ (↑+::sibling/↑::patient)

Consider the case of the element patient1 of Fig. 5. The predicate ↑∗::*[allAnn]
at patient1 returns the set N={patient1, departement1, hospital1} (each ele-
ment is concerned by an explicit annotation). We have N [1]= {patient1} and
the predicate [validAnn] is valid at patient1 (since patient1 � Q2). Thus, the
predicate Aacc

1 is valid at patient1. It is clear to see that Aacc
2 is also valid at

patient1. We conclude that patient1 � (Aacc
1 ∧ Aacc

2) which means that the ele-
ment patient1 is accessible. Consider now the element patient2, ↑∗::*[allAnn]
at patient2 returns the set N

′
={patient2, patient1, departement1, hospital1},

N
′
[1]={patient2}, however, the predicate [validAnn] is not valid at patient2

(since patient2 � Q2). Thus, patient2 � Aacc
1 and then the element patient2 is

not accessible. For the element patient4, although patient4 � Aacc
1 , patient4 is

inaccessible since patient4 � Aacc
2 (i.e. patient4 is descendant of sibling2 element

that is concerned by an invalid downward-closed annotation). Finally, the query
↓∗::∗[Aacc] over the Fig. 5 returns all the accessible elements that compose the
view of Fig. 6. �

5 Query Rewriting

We discuss in this section the basic principle of our XML access control app-
roach. We recall that the fragment X (see Definition 4) is used in our approach for
specification of access control policies as well as for formulation of user queries.
However, we use more larger fragments of XPath to overcome the query answer-
ing problem presented in Sect. 3.2. More precisely, the access control policies
based on Definition 9 are enforced through a rewriting technique. Let S=(D,
ann) be an access specification, T be an instance of D, Tv be the virtual view
of T computed w.r.t S, and Q be a query defined in X . Our goal is to define a
rewriting function Rewrite such that:

X −→ X ⇑
[n,=]

Q �−→ Rewrite (Q) such that S�Rewrite(Q)�(T)=S�Q�(Tv)

5.1 Queries Without Predicates

Let us now consider queries without predicates, postponing rewriting of pred-
icates to the next subsection. We consider the case of X queries of the form
α1::η1/· · · /αk::ηk (k ≥ 1) where αi ∈ {ε, ↓, ↓∗, ↓+} and ηi can be any element

Efficient Querying of XML Data Through Arbitrary Security Views 99

type, *-label, or text() function. The union of queries is discussed later. We
show first that the rewriting limitation for this kind of queries is encountered
when manipulating the ↓ axis, however, the remaining axes can be rewritten in
a simple manner using only the accessibility predicate.

Example 10. Consider the XML tree of Fig. 5 and its view depicted in Fig. 6 that
is computed w.r.t the access policy of Example 8. We suppose the the nurse for-
mulates the query ↓+::departement/↓+::patient over its data view which returns
the nodes patient1 and patient3. It is easy to see that this query can be rewrit-
ten over the original data into ↓+::departement[Aacc]/↓+::patient[Aacc] where
the predicate Aacc is given in Example 9. Obviously, this rewritten query selects
first accessible departement elements of Fig. 5, i.e. departement1 element, and
then returns all its accessible descendants of type patient, i.e. patient1 and
patient3. The accessibility of these nodes are checked using Aacc. Consider
now another query over the data view of nurses defined by ↓∗::parent/↓::∗ and
which must return only the node patient3. Since there is a cycle between the
patient and parent elements of the hospital DTD, this latter query cannot
be rewritten using only the accessibility predicate. More precisely, the query
↓∗::parent[Aacc]/↓::∗[Aacc] over the original document returns no element since
it selects first the accessible element parent1, while its immediate child patient2
is not accessible. Moreover, a cycle cannot be captured by replacing ↓ axes
with ↓∗ axes. The query ↓∗::parent[Aacc]/↓::∗[Aacc] over the original document
returns both the node patient3 as well as other additional elements: pname3,
symptoms3, symptom3, etc. �

We show in the following how that the upward axes and the position predicate
of the XPath fragment X ⇑

[n] can be used to overcome the rewriting limitation
encountered when considering X queries without predicates.

Definition 14. Given an access specification S=(D, ann) and an element type
B, then we define two X ⇑

[n] predicates A+ and AB with: A+ := ↑+::∗[Aacc], and
AB := ↑+::∗[Aacc][1]/ε::B. For any element node n, the evaluation S�A+�({n})
returns all the accessible ancestors of n, while S�AB�({n}) returns the first acces-
sible ancestor of n whose type is B.

Finally, we give the details of our rewriting function. Given an access speci-
fication S=(D, ann), we define the function Rewrite : X −→ X ⇑

[n] that rewrites
any X query Q, of the form α1::η1/· · · /αk::ηk (k ≥ 1), into another one defined
in the fragment X ⇑

[n] as follows:

Rewrite (Q) := ↓∗::ηn[Aacc][prefix−1(α1::η1/· · · /αk::ηk)]

The qualifier prefix−1(α1::η1/· · · /αk::ηk) presents a recursive rewriting in a
descendant manner where each sub-query αi::ηi is rewritten over all the sub-
queries that precede it in the query Q. In other words, for each sub-query αi::ηi

(1 ≤ i ≤ k), prefix−1(α1::η1/· · · /αi−1::ηi−1) is already computed and used to
compute prefix−1(α1::η1/· · · /αi::ηi) as follows:11

11 For αi ∈ {↓+, ↓∗}, α−1
i =↑+ if αi=↓+ and ↑∗ otherwise.

100 H. Mahfoud and A. Imine

– αi = ↓:
prefix−1(α1::η1/· · · /αi::ηi) := Aηi−1 [prefix−1(α1::η1/· · · /αi−1::ηi−1)]

– αi ∈ {↓+, ↓∗}:
prefix−1(α1::η1/· · · /αi::ηi) := α−1

i ::ηi−1[Aacc][prefix−1(α1::η1/· · · /αi−1::ηi−1)]
– αi = ε:

prefix−1(α1::η1/· · · /αi::ηi) := ε::ηi−1[prefix−1(α1::η1/· · · /αi−1::ηi−1)]

As a special case, the first sub-query is rewritten over the root type. Thus, we
have prefix−1(↓::η1)=Aroot, prefix−1(↓+::η1)=↑+::root, while for the remain-
ing axes, α1 ∈ {ε, ↓∗}, prefix−1(α1::η1) is empty.

Example 11. Let us consider the query Q=↓∗::parent/↓::∗ of Example 10 posed
over the data view of Fig. 6. By considering the access specification of Example
8, this query can be rewritten as follows: Rewrite (Q)=↓∗::∗[Aacc][Aparent]. By
replacing Aparent with its value, we obtain: ↓∗::∗[Aacc][↑+::∗[Aacc][1]/ε::parent].
Recall that the definition of the predicate Aacc w.r.t the access specification
of Example 8 is given in Example 9. The evaluation of the query ↓∗::∗[Aacc]
over the original document of Fig. 5 returns a node set N composed by all the
accessible nodes depicted in Fig. 6. The evaluation of [Aparent] over the set N
returns only those elements having as the first accessible ancestor, an element
of type parent, thus the query ↓∗::∗[Aacc][Aparent] over the original document
returns the element patient3 that is the only element that satisfies the predicate
[Aparent]: S�Aparent�({patient3}) returns the element parent1, i.e. patient3 �
Aparent. Therefore, the query Rewrite (Q) over the original document of Fig. 5
returns only the element patient3 as does the query Q over the data view of
Fig. 6. �

5.2 Rewriting Predicates

We discuss in this section the rewriting of predicates of the fragment X to
complete the description of our rewriting approach. Given an access specification
S=(D, ann), we define the function RW Pred : X → X ⇑

[n,=] that rewrites any X
predicate P , of the form α1::η1/· · · /αk::ηk (k ≥ 1), into another one defined in
the fragment X ⇑

[n,=]. In a descendant manner, RW Pred (P) is recursively defined
over sub-predicates of P as follows:

– αi =↓:
RW Pred(αi::ηi/· · · /αk::ηk):=

↓+::ηi[Aacc][RW Pred(αi+1::ηi+1/· · · /αk::ηk)]/A+[1]=ε::∗
– αi ∈ {↓+, ↓∗}:

RW Pred(αi::ηi/· · · /αk::ηk) :=
αi::ηi[Aacc][RW Pred(αi+1::ηi+1/· · · /αk::ηk)]

– αi = ε:
RW Pred(αi::ηi/· · · /αk::ηk) := ε::ηi[RW Pred(αi+1::ηi+1/· · · /αk::ηk)]

As a special case, the predicate α::η/text()=’c’ (text-content comparison) is
rewritten, according to the axis α, as follows:

Efficient Querying of XML Data Through Arbitrary Security Views 101

– RW Pred(↓::η/text()=’c’) := ↓+::η[Aacc][self ::∗/text()=’c’]/A+[1] = ε::∗
– For α ∈ {↓+, ↓∗}, RW Pred(α::η/text()=’c’) := α::η[Aacc]/text()=’c’
– RW Pred(ε::η/text()=’c’) := ε::η/text()=’c’

Example 12. Consider the access specification of Example 8 and the data view
of Fig. 6. It is clear that the predicate [↓ ::patient/ ↓ ::wardNo = “421′′

︸ ︷︷ ︸

P

] is sat-

isfied only over the element node parent1. This predicate is rewritten into
[RW Pred (P)] as follows:

– [RW Pred (P)] = [↓+::patient[Aacc][RW Pred (↓::wardNo=“421”)]/A+[1]=ε::∗]
– [RW Pred (↓::wardNo=“421”)] =

[↓+::wardNo[Aacc][ε::∗/text()=“421”]/A+[1]=ε::∗]

Consider the XML document of Fig. 5, it is easy to check that the predicate
[RW Pred (P)] is satisfied only over the element node parent1. �

Finally, we generalize the definition of the function Rewrite to take into
account all queries of the fragment X . Given an access specification S=(D,
ann), the function Rewrite : X −→ X ⇑

[n,=] is redefined to rewrite any X query
Q, of the form α1::η1[p1]/· · · /αk::ηk[pk] (k ≥ 1), into another one defined in the
fragment X ⇑

[n,=] as follows (where pt
i=RW Pred (pi) for 1 ≤ i ≤ k):

Rewrite (Q) := ↓∗::ηk[Aacc][pt
k][prefix−1(Q)]

The qualifier prefix−1(Q) is recursively defined as follows:

– αi = ↓:
prefix−1(α1::η1[p1]/· · · /αi::ηi[pi]) :=

Aηi−1 [pt
i−1][prefix−1(α1::η1[p1]/· · · /αi−1::ηi−1[pi−1])]

– αi ∈ {↓+, ↓∗}:
prefix−1(α1::η1[p1]/· · · /αi::ηi[pi]) :=

α−1
i ::ηi−1[pt

i−1][Aacc][prefix−1(α1::η1[p1]/· · · /αi−1::ηi−1[pi−1])]

– αi = ε:
prefix−1(α1::η1[p1]/· · · /αi::ηi[pi]) :=

ε::ηi−1[pt
i−1][prefix−1(α1::η1[p1]/· · · /αi−1::ηi−1[pi−1])]

As a special case, query of X of the form Q1 ∪ · · · ∪ Qk (k ≥ 1) is rewritten into
Rewrite (Q1) ∪ · · · ∪ Rewrite (Qk).

Example 13. Consider the access specification defined in Example 8. The X
query Q=↓+::parent/↓::patient[↓ ::pname = “Martin′′

︸ ︷︷ ︸

P

] over the data view of

Fig. 6 is rewritten over the original data of Fig. 5 as follows:

Rewrite (Q)=↓∗::patient[Aacc][RW Pred (P)][↑+::∗[Aacc][1]/ε::parent]

RW Pred (P) = [↓∗::pname[Aacc][ε::∗/text()=“Martin”]/A+[1]=ε::∗]

102 H. Mahfoud and A. Imine

The evaluation of the query Rewrite (Q) over the original data returns the ele-
ment node patient3 as does the query Q over the data view. �

We emphasize that the generalization of the function RW Pred to handle
complex predicates is quite straightforward. For instance, RW Pred (P1 ∨ P2) is
given by RW Pred (P1) ∨ RW Pred (P2). Moreover, RW Pred (P1[P2]) is given by
RW Pred (P1[RW Pred (P2)]).

5.3 Coping with X⇑ queries

We show how our rewriting function Rewrite can be extended to rewrite the
upward axes {↑, ↑+, ↑∗}. Let S=(D, ann) be an access specification. Firstly, the
function Rewrite : X ⇑ −→ X ⇑

[n,=] is redefined to rewrite any X ⇑ query Q, of the
form α1::η1[p1]/· · · /αk::ηk[pk] (k ≥ 1), into another one defined in the fragment
X ⇑

[n,=] as follows (we consider only the case where αi ∈ {↑, ↑+, ↑∗} since the case
of the remaining axes is already studied):

Rewrite (Q) := ↓∗::ηk[Aacc][pt
k][prefix−1(Q)]

The qualifier prefix−1(Q) is recursively defined as follows:

– αi = ↑:
prefix−1(α1::η1[p1]/· · · /αi::ηi[pi]) :=

↓+::ηi−1[Aacc][pt
i−1][prefix−1(α1::η1[p1]/· · · /αi−1::ηi−1[pi−1])]/

A+[1]=ε::ηi

– αi ∈ {↑+, ↑∗}: (α−1
i =↓+ if αi=↑+ and ↓∗ otherwise)

prefix−1(α1::η1[p1]/· · · /αi::ηi[pi]) :=
α−1

i ::ηi−1[Aacc][pt
i−1][prefix−1(α1::η1[p1]/· · · /αi−1::ηi−1[pi−1])]

The function RW Pred : X ⇑ −→ X ⇑
[n,=] is redefined to rewrite any X ⇑ predicate P ,

of the form α1::η1/· · · /αk::ηk (k ≥ 1), into another one defined in the fragment
X ⇑

[n,=] as follows (only the case of upward axes is considered):

– αi =↑:
RW Pred(αi::ηi/· · · /αk::ηk) := Aηi [RW Pred(αi+1::ηi+1/· · · /αk::ηk)]

– αi ∈ {↑+, ↑∗}:
RW Pred(αi::ηi/· · · /αk::ηk) := αi::ηi[Aacc][RW Pred(αi+1::ηi+1/· · · /αk::ηk)]

5.4 Theoretical Results

We present briefly some results that concern the evaluation of the overall answer-
ing time of our rewriting approach as well as its correctness.

Lemma 2. Every X ⇑
[n,=] query Q can be evaluated over an XML document T

in time O(|Q|.|T |).

Efficient Querying of XML Data Through Arbitrary Security Views 103

Fig. 7. Comparing our solution with that of [17].

The proof of this lemma is based on the results of the XPath query complexity
analysis detailed in [48].

Theorem 2. Given an access specification S=(D, ann), an XML tree T ∈ T (D)
and its virtual view Tv computed w.r.t S. There exists an algorithm Rewrite that
translates any X query Q over Tv into an X ⇑

[n,=] query Qt over T at most in time
O(|Q|). Moreover, Qt can be evaluated over T at most in time O(|Q|.|ann|.|T |).

Theorem 3. The query rewriting approach is correct for any query of the frag-
ment X .

Theorem 3 shows the correctness of our query rewriting approach. More
specifically, for any access specification S=(D,ann), any XML tree T ∈ T (D)
and its virtual view Tv, our rewriting algorithm Rewrite translates any X query
Q over Tv into a safe one Qt defined over T such that: S�Q�(Tv)=S�Qt�(T).

Our algorithm Rewrite and the detailed proofs are given on-line at https://
tel.archives-ouvertes.fr/tel-01093661/.

Finally, we make a brief comparison of our XPAth-based solution with that of
[17] that is based on Regular XPath. We consider the same access specification,
the same XML tree, and we show how an X query Q over this tree can be
answered using both our solution and that of [17]. Figure 7 details the results of
this comparison at each step of the XML access control processing.

https://tel.archives-ouvertes.fr/tel-01093661/
https://tel.archives-ouvertes.fr/tel-01093661/

104 H. Mahfoud and A. Imine

6 Implementation and Experimental Study: The SVMAX
Framework

We recall that our results on read-access control have been successfully extended
to secure the update operations of the XQuery Update Facility [31] (see [32,33]).
We have developed the SVMAX, a system that facilitates specification and
enforcement of both read and update access rights for XML data. It provides
general and expressive access control models that overcome limitations of exist-
ing approaches. Both of read and update rights of SVMAX are defined by anno-
tating DTD grammars and enforced through the rewriting principle. SVMAX is
well-suited to efficiently rewrite such queries and updates, and to be integrated
within database systems that provide support for the W3C standards: XPath
and XQuery Update Facility.

6.1 System Overview

SVMAX is composed by the following major modules: (1) a Policy Specifier,
for the specification of read and update privileges; (2) a View Generator, for
the generation of DTD and data views; (3) an XPath Rewriter [49] and (4)
an XQuery Update Rewriter [33], for the rewriting of read and update queries
respectively; (5) the Validator that applies an incremental validation after each
update operation is performed12. These modules are implemented as an API
allowing SVMAX to be integrated within existing native XML database systems
that are aware of the XML data structure and support W3C standards.

On the other hand, SVMAX can run in standalone mode through its visual
tool, SVMAXV . This latter is a GUI tool that monitors the previous modules.
More precisely, SVMAXV is used by the administrator to specify read and
update policies, generate virtual views of the DTD and the XML data, and
provide these views to the user. The user requests (XPath queries or XQuery
update operations) are rewritten, using the adequate rewriter module, to be
safely evaluated over the original XML data and then evaluation results are
returned to the user. See [35] for more descriptions and screenshots of the system.

We should emphasize that in case of recursive DTDs, the DTD view gen-
eration is not always guaranteed [18] or can be of exponential size [50]. More
specifically, hiding some information from the DTD may result in a context-free
grammar that cannot be captured with a regular grammar13. In such situations,
our View generator module generates an approximated DTD view. Our approx-
imations are based on the well-known sufficient conditions for regularization of
context-free grammars [51].

6.2 Performance Evaluation

In this section we present an evaluation of SVMAX. Our system is provided
both as a Java API and a visual tool, the SVMAXV . Using this latter, one
12 This is still an ongoing work: we deal only with simple kinds of DTDs and update

operations, however, the global case is part of our perspective.
13 It is undecidable in general to find a regular solution for a context-free grammar.

Efficient Querying of XML Data Through Arbitrary Security Views 105

can choose a document DTD, specify access and update policies, and enforce
these policies over underlying XML data. We focused in our experiments on the
overall-time required for rewriting and evaluation of XPath queries. The study is
conducted on the following aspects: (1) measure of scalability and degradation of
our rewriting approaches, and (2) comparison of SVMAX with respect to naive
approach in terms of overall answering time. Since our system can be integrated
within existing NXDs, the other concern of experimentation is (3) a study of the
integration efficiency.

(1) Scalability. We measure the time required by SVMAX to rewrite general
XPath queries. We use the complex real-life recursive DTD GedML14 and we
generate randomly 10 access specifications by varying the number of annotations
(from 20 into 200). After, we define different XPath queries of size15 400 that
include most features of the XPath fragment X ⇑: with ↓∗-axis (Q1); with ↓∗-axis
and predicates (Q2); with ↓-axis (Q3); with ↓-axis and predicates (Q4); with ↓∗-
axis, predicates, and ∗-labels inside predicates (Q5); with ↓-axis, predicates, and
∗-labels inside predicates (Q6). Note that the used predicates contain different
operators (e.g. ∧, ∨, and text comparison).

Using SVMAX, we rewrite these queries according to each of the access
specifications previously generated. Figure 8 shows the overall rewriting times.
Notice that the rewriting time obtains a constant nature, i.e., it does not increase
with the growth of the number of access annotations. This can be explained by
the fact that, for an XPath query in input, our rewriter parses all its sub-queries
(with the form axis::label) and rewrites them using the accessibility predicate.
The computation time of this latter is negligible (less than 10 ms for large access
specifications), and thus, our rewriting time depends basically on the parsing of
the query, then on the size of the query. Since our queries have the same size,
the overall rewriting time does not depend on the number of access annotations
and still remains constant at some point. Moreover, we remark that in general,
a query with ↓+-axis requires more rewriting time than a query with ↓-axis (Q1

w.r.t Q3), also a query with predicates consumes some additional time (Q2 w.r.t
Q1; and Q4 w.r.t Q3). The ∗-labels require less rewriting time (Q2 w.r.t Q5; and
Q4 w.r.t Q6).

(2) Policy Enforcement. We measure the end-to-end processing time of our
system for larger access specifications and general XPath queries. Since no tool
exists in practice to secure querying of recursive XML views, we compare our
system only w.r.t some naive approach as explained in the following.

We generate an XML document T of size 10MB that conforms to the GedML
DTD, and different access specification Si=(GedML, ann) of size i (i=|ann|),
where i is varying from 10 to 150. We define after a complex XPath query with

14 Genealogy Markup Language: http://xml.coverpages.org/gedml-dtd9808.txt.
15 The size of an XPath expression is the occurrence number of all its element types,

∗-labels, and text() functions.

http://xml.coverpages.org/gedml-dtd9808.txt

106 H. Mahfoud and A. Imine

50 100 150 200

0

0.5

1
·104

Number of access annotations

Q
ue

ry
re
w
ri
ti
ng

ti
m
e
(m

s)

Q1 Q2 Q3
Q4 Q5 Q6

(a)

Fig. 8. SVMAX rewriting degradation for read update rights.

important size, different axes and complex predicates. This query is rewritten,
w.r.t each specification Si, both with our approach and using the on-the-fly
materialization [24] as the naive approach. Figure 9 shows the answering times
of each approach16. It is clearly shown that in case of large size of specifications
and XML data, our system requires a small answering time and achieves an
improvement of the naive approach by up to a factor of 10.

20 40 60 80 100 120 140 160 180 200

0

20

40

60

80

61 55
6

13
49

1

14
26

6

21
03

9

27
99

4

38
76

6

47
28

8

33
04

4

21
89

5

Number of annotations

A
ns
w
er
in
g
ti
m
e
(s
)

SVMAX Naive approach

Fig. 9. Overall answering time: SVMAX versus naive approach.

(3) Integrating SVMAX Within NXDs. Finally, we use SVMAX as a
simple Java API and we integrate it within different native XML databases: (1)
BaseX, (2) Sedna and (3) eXist. The selection of these NXDs is done according
to their growing use, as well as to their supports for querying and updating
16 In the following figures, the numbers of queried nodes are depicted at the middle.

Efficient Querying of XML Data Through Arbitrary Security Views 107

of XML data. The XPath language is supported by the three NXDs. However,
only BaseX provides implementation for the XQuery update facility; each of the
remaining systems provides a proprietary update language.

The communication between the SVMAX API and the underlying database
system is ensured by using the APIs XQJ and XML:DB, present in most systems.
The goal of this integration is to offer existing databases easy-to-use and efficient
support to securely manipulate (recursive) XML views, as well as to leverage
advantages of these systems (e.g. query optimization technologies).

We generate a simple XML document of 2 MB, a general query, and some
policies P 1,...,P 10 defined with the same principle explained in the previous
subsection. Using the SVMAX rewriters, the query is safely rewritten w.r.t
the different policies and sent to the underlying database for evaluation. The
overall answering times (rewriting and evaluation) are depicted in Fig. 10. We
remark that eXist database takes more time than the other (282 s for the simple
policy P 1, i.e., with 20 annotations). The BaseX XQuery processor overcomes
noticeably the Sedna processor in general by up to a factor of 2.

The first result of this study shows that our system has been successfully and
easily integrated within such database systems. Since there are various imple-
mentation of the W3C standards, the other benefit of this study is to know
with which XPath (resp. XQuery) processor the SVMAX rewritten queries may
provide more efficiency.

20 40 60 80 100 120 140 160 180 200
0

2

4

6

29
19

38
62

43
39

43
39

37
61

29
55

32
89

28
93

31
94

14
21

Number of annotations

A
ns
w
er
in
g
ti
m
e
(s
)

BaseX Sedna eXist

105x 3

105x

105x 5

105x

Fig. 10. Integration of SVMAX within NXDs.

7 Related Work

Figure 11 summaries the evolution of the XML access control models during the
two decades. At the outset, used approaches [47,52] consisted on annotating
naively the XML data with some security labels to specify which actions can

108 H. Mahfoud and A. Imine

be performed on which XML nodes, and thus restrict access to sensitive data
through these labels. Although, some improvements [41,53] have been made in
order to avoid the costly re-annotation of the data, these naive approaches are
time consuming and generally difficult to apply for example in case of different
users, multiple actions, and dynamic policies. Other models have been proposed
[34,46] that define access policies without any labeling of data, and enforce these
policies during the evaluation of users requests (read-access queries or update
operations). An access policy is defined as a set of XPath expressions, each one
refers to a set of XML nodes over which the user can execute some actions
(read or update). The users requests are rewritten w.r.t the underlying access
policies by adding some XPath predicates in order to execute the requested
action only on authorized data (i.e. data that can be queried and/or updated).
These XPath-based approaches outperform the instance-based approaches in
most cases. However, the major limitation of these models is the lack of support
for authorized users to access the data: the schema of accessible data is necessary
for the users in order to formulate and optimize their queries; as well as for the
security administrator for understanding how the authorized view of the XML
data, for a group of users, will actually look like.

To overcome limitations of node-labeling protection and XPath-based pro-
tection, Stoica and Farkas [40] introduced the notion of XML security view that
consists on defining, for each group of users, a view of the XML document that
displays all and only accessible information. This notion has been refined later
and used in different ways by providing each group of users with (1) a mate-
rialized view of accessible data; (2) a virtual view; or (3) a view that consists
of a combination of materialized and virtual sub-views [42]. Fan et al. [25] pro-
posed an expressive language which aims to define such security views and based
on the notion of schema annotation. Roughly, the schema of the XML data is
paired with a collection of XPath expressions that, when evaluated over the
data, extract only accessible information. The server defines, for each group of
users, such collections of XPath expressions representing users access policies.
According to each access policy, the schema (e.g. a DTD) is then sanitized by
eliminating information of inaccessible data, the resulted schema view is pro-
vided to the users who use it for formulation and optimization of their queries.
While the users may query the views, they are not allowed to directly query
the underlying XML data. An important issue is to answer queries posed on the
views and to ensure the selective exposure of data to different classes of users.

One way to do this is to provide each group of users with a materialized view
of all and only accessible data (as studied in [24]), which is used to evaluate
users queries directly over it and offers faster access to the data. However, when
the XML data and/or the access policies are changed, all users views should be
(incrementally) maintained [55–58]. Note that in some cases, incremental main-
tenance of materialized views leads to the same performances as re-computation
of the views from scratch. In addition to the maintenance cost, materialization
of all users views within the server is time and memory consuming.

Efficient Querying of XML Data Through Arbitrary Security Views 109

Fig. 11. Evolution of XML Access Control Models.

The view virtualization is the adequate and more scalable solution in case
of huge data, an important number of users, and dynamic policies. Fan et al.
[25] defined the notion of query rewriting that consists on translating queries
posed over virtual views into equivalent ones to be evaluated over the original
data. Since DTDs found in practice are often recursive [26], many authors have
refined this work to use more expressive query language [17,18,27], namely Reg-
ular XPath. Regular XPath is more expressive than XPath and allows definition
of recursive paths. The use of this language to secure XML data has been more
studied in [17,18]. However, Regular XPath based solutions still a theoretical
achievement and may be impractical since rewriting of Regular XPath expres-
sions may be of exponential cost as we have shown in Sect. 5.4. In addition,
Regular XPath is not commonly used in practice17 and most of the commercial
database systems (e.g. eXistdb) offer support for the W3C standards: XPath
and XQuery. Thus, the securing of such queries remains a strong necessity.

8 Conclusions

We aimed to provide a practical solution for the open problem that consists
on rewriting XPath queries under DTDs recursion. We have investigated the
extension of the downward class of XPath with some axes and operators, and
showed that the resulted XPath fragment X ⇑

[n,=] can be used to rewrite efficiently
any X query, over the data view, into a safe one that can be evaluated directly
over the original data. Our proposal yields the first practical solution for the
rewriting problem. The conducted experimentation shows the efficiency of our

17 Note that no tool exists in practice to evaluate Regular XPath queries.

110 H. Mahfoud and A. Imine

approach. Most importantly, the translation of queries from X to X ⇑
[n,=] does

not impact the performance of the queries answering.
Recall that a previous solution of the rewriting problem has been investigated

in [27] that relies on the non-standard Regular XPath language. By the following
comparison, we show that XPath-based rewriting is more efficient than the one
based on Regular XPath since this later can lead to an exponential cost. Given
an access specification S=(D, ann), an XML tree T ∈ T (D), let Q be an X query
posed over the virtual view Tv of T . Whatever the type of D (recursive or not),
we make possible the answering of Q over T in at most O(|Q|.|ann|.|T |) time,
while [17] do this in O(|Q|.|σ|.|Dv|) space and O(|Q|2.|σ|.|Dv|2+ |Q|.|σ|.|Dv|.|T |)
time. We should emphasize that |ann| is bounded by O(|D|2) (i.e. we can define
at most |D|2 annotations). However, the size of the function σ is, in general,
larger than O(|D|2). In other words, the number of the paths presented by the
function σ may be exponential on the size of the DTD as we show by the following
example.

Example 14. Consider the DTD D=({Root,A1, . . . , An}, P , Root) where n ∈ N

and the production rules are given as follows:

P (Root) := (A1| · · · |An)
P (Ai) := (A1| · · · |Ai−1|Ai+1| · · · |An), i ≤ n

We define now the access specification S=(D, ann) where ann contains only the
default annotation ann(Root)=Y , i.e. all element types of D are accessible. It is
easy to prove that, for any element types Ai, Aj (i ≤ n and j ≤ n), the number
of paths presented by σ(Ai, Aj) may be bounded by: Σ1≤i≤n−2

(n−2)!
(n−2−i)! . �

Finally, we conclude that our rewriting approach is more efficient in practice
than the one based on Regular XPath and requires an answering time that is
linear on the size of the input query, the number of annotations, and the size of
the XML data. This would lead for an efficient integration of our solution within
some existing database systems. Moreover, by working with the XPath standard,
we make possible the use of a bulk of interesting results found around the XPath
language (e.g. XPath queries optimization [59,60] and efficient evaluation [61]).

References

1. Robie, J., Chamberlin, D., Dyck, M., Florescu, D., Melton, J., Siméon, J.: Extensi-
ble Markup Language (XML) 1.0 (Fifth Edition). W3C Recommendation (2008).
http://www.w3.org/TR/2008/REC-xml-20081126/

2. Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F., Cowan, J.:
Extensible Markup Language (XML) 1.1 (Second Edition). W3C Recommendation
(2006). http://www.w3.org/TR/2006/REC-xml11-20060816/

3. Amavi, J., Chabin, J., Halfeld-Ferrari, M., Réty, P.: A toolbox for conservative
XML schema evolution and document adaptation. In: Decker, H., Lhotská, L.,
Link, S., Spies, M., Wagner, R.R. (eds.) DEXA 2014, Part I. LNCS, vol. 8644, pp.
299–307. Springer, Heidelberg (2014)

http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/2006/REC-xml11-20060816/

Efficient Querying of XML Data Through Arbitrary Security Views 111

4. Chabin, J., Halfeld Ferrari, M., Musicante, M.A., Réty, P.: Conservative type exten-
sions for XML data. In: Hameurlain, A., Küng, J., Wagner, R. (eds.) TLDKS IX.
LNCS, vol. 7980, pp. 65–94. Springer, Heidelberg (2013)

5. Gerald, B., Sleeper, H., Gregorowicz, A., Dingwell, R.: hData - a simple XML
framework for health data exchange. In: Proceedings of Balisage: The Markup
Conference, Montral, Canada, August 11–14, 2009, vol. 3, pp. 299–307 (2009)

6. Fried, E., Geng, Y., Ullrich, S., Kneer, D., Grottke, O., Rossaint, R., Deserno,
T.M., Kuhlen, T.: MEDOX: an XML-based approach of medical data organization
for segmentation and simulation. In: Bildverarbeitung für die Medizin 2010 - Algo-
rithmen - Systeme - Anwendungen, Aachen, Germany, March 14–16, 2010. CEUR
Workshop Proceedings, vol. 574, 251–255. CEUR-WS.org (2010)

7. Cavalini, L.T., Cook, T.W.: Use of XML schema definition for the development of
semantically interoperable healthcare applications. In: Gibbons, J., MacCaull, W.
(eds.) FHIES 2013. LNCS, vol. 8315, pp. 125–145. Springer, Heidelberg (2014)

8. la Rosa Algarin, A.D., Demurjian, S.A., Berhe, S., Pavlich-Mariscal, J.A.: A secu-
rity framework for XML schemas and documents for healthcare. In: 2012 IEEE
International Conference on Bioinformatics and Biomedicine Workshops, BIBMW
2012, Philadelphia, USA, October 4–7, 2012, pp. 782–789. IEEE (2012)

9. Steele, R., Gardner, W., Chandra, D., Dillon, T.S.: Framework and prototype for
a secure XML-based electronic health records system. IJEH 3(2), 151–174 (2007)

10. Kumar, C.S., Govardhan, A., Rao, C.V.G.: Usage of XML technology in electronic
health record for effective heterogeneous systems integration in healthcare. IJMEI
1(4), 399–406 (2009)

11. Thuy, P.T.T., Lee, Y., Lee, S.: Semantic and structural similarities between XML
schemas for integration of ubiquitous healthcare data. Pers. Ubiquit. Comput.
17(7), 1331–1339 (2013)

12. IBM jStart team: IBM Emerging Technology’s client engagement team. http://
www-01.ibm.com/software/ebusiness/jstart/

13. DITA OASIS Standard: An XML architecture for designing, writing, managing,
and publishing information. http://dita.xml.org/

14. ebXML consortium: Electronic Business using eXtensible Markup Language.
http://www.ebxml.org/

15. Oracle White Paper: Sun Storage 7000 Unified Storage Systems and XML-Based
Archiving for SAP Systems, April 2010. http://www.oracle.com/us/solutions/sap/
database/ss7000-sap-implementation-guide-352637.pdf

16. Rassadko, N.: Policy classes and query rewriting algorithm for XML security views.
In: Damiani, E., Liu, P. (eds.) Data and Applications Security 2006. LNCS, vol.
4127, pp. 104–118. Springer, Heidelberg (2006)

17. Fan, W., Geerts, F., Jia, X., Kementsietsidis, A.: Rewriting regular xpath queries
on XML views. In: ICDE, pp. 666–675. IEEE (2007)

18. Groz, B., Staworko, S., Caron, A.-C., Roos, Y., Tison, S.: XML security views
revisited. In: Gardner, P., Geerts, F. (eds.) DBPL 2009. LNCS, vol. 5708, pp.
52–67. Springer, Heidelberg (2009)

19. Luo, B., Lee, D., Lee, W.C., Liu, P.: Qfilter: rewriting insecure XML queries
to secure ones using non-deterministic finite automata. VLDB J. 20(3), 397–415
(2011)

20. Cong, G.: Query and update through XML views. In: Bhalla, S. (ed.) DNIS 2007.
LNCS, vol. 4777, pp. 81–95. Springer, Heidelberg (2007)

21. Damiani, E., Fansi, M., Gabillon, A., Marrara, S.: A general approach to securely
querying XML. Comput. Stand. Interfaces 30(6), 379–389 (2008)

http://www-01.ibm.com/software/ebusiness/jstart/
http://www-01.ibm.com/software/ebusiness/jstart/
http://dita.xml.org/
http://www.ebxml.org/
http://www.oracle.com/us/solutions/sap/database/ss7000-sap-implementation-guide-352637.pdf
http://www.oracle.com/us/solutions/sap/database/ss7000-sap-implementation-guide-352637.pdf

112 H. Mahfoud and A. Imine

22. Clark, J., DeRose, S.: XML path language (XPath) 1.0. W3C Recommendation,
November 1999. http://www.w3.org/TR/xpath/

23. Berglund, A., Boag, S., Chamberlin, D., Fernández, M.F., Kay, M., Robie, J.,
Siméon, J.: XML path language (XPath) 2.0 (second edition). W3C Recommen-
dation, December 2010. http://www.w3.org/TR/2010/REC-xpath20-20101214/

24. Kuper, G.M., Massacci, F., Rassadko, N.: Generalized XML security views. Int. J.
Inf. Sec. 8(3), 173–203 (2009)

25. Fan, W., Chan, C.Y., Garofalakis, M.N.: Secure XML querying with security views.
In: Proceedings of the ACM SIGMOD International Conference on Management
of Data, pp. 587–598. ACM (2004)

26. Choi, B.: What are real dtds like? In: Fifth International Workshop on the Web
and Databases (WebDB), pp. 43–48 (2002)

27. Fan, W., Geerts, F., Jia, X., Kementsietsidis, A.: SMOQE: a system for providing
secure access to XML. In: Proceedings of the 32nd International Conference on
Very Large Data Bases, pp. 1227–1230. ACM (2006)

28. Marx, M.: XPath with conditional axis relations. In: Bertino, E., Christodoulakis,
S., Plexousakis, D., Christophides, V., Koubarakis, M., Böhm, K. (eds.) EDBT
2004. LNCS, vol. 2992, pp. 477–494. Springer, Heidelberg (2004)

29. Wood, P.T.: Containment for XPath fragments under DTD constraints. In: Cal-
vanese, D., Lenzerini, M., Motwani, R. (eds.) ICDT 2003. LNCS, vol. 2572, pp.
297–311. Springer, Heidelberg (2002)

30. Neven, F., Schwentick, T.: On the complexity of Xpath containment in the presence
of disjunction, DTDs, and variables. Logical Methods in Computer Science 2(3)
(2006)

31. Robie, J., Chamberlin, D., Dyck, M., Florescu, D., Melton, J., Siméon, J.: Xquery
update facility 1.0. W3C Recommendation, March 2011. http://www.w3.org/TR/
xquery-update-10/

32. Mahfoud, H., Imine, A.: A general approach for securely updating XML data.
In: Proceedings of the 15th International Workshop on the Web and Databases
(WebDB 2012), pp. 55–60 (2012)

33. Mahfoud, H., Imine, A.: On securely manipulating XML data. In: Garcia-Alfaro, J.,
Cuppens, F., Cuppens-Boulahia, N., Miri, A., Tawbi, N. (eds.) FPS 2012. LNCS,
vol. 7743, pp. 293–307. Springer, Heidelberg (2013)

34. Fundulaki, I., Maneth, S.: Formalizing XML access control for update operations.
In: SACMAT, pp. 169–174. ACM (2007)

35. Mahfoud, H., Imine, A., Rusinowitch, M.: SVMAX: a system for secure and valid
manipulation of XML data. In: Proceedings of the 17th International Database
Engineering & Applications Symposium (IDEAS), pp. 154–161. ACM (2013)

36. Jia, X.: From Relations to XML: Cleaning, Integrating and Securing Data. Doctor
of philosophy, Laboratory for Foundations of Computer Science. School of Infor-
matics. University of Edinburgh (2007)

37. Fan, W., Yu, J.X., Li, J., Ding, B., Qin, L.: Query translation from XPath to SQL
in the presence of recursive dtds. VLDB J. 18(4), 857–883 (2009)

38. Krishnamurthy, R., Chakaravarthy, V.T., Kaushik, R., Naughton, J.F.: Recursive
XML schemas, recursive XML queries, and relational storage: XML-to-SQL query
translation. In: Proceedings of the 20th International Conference on Data Engi-
neering (ICDE 2004), pp. 42–53. IEEE Computer Society (2004)

39. ten Cate, B.: The expressivity of XPath with transitive closure. In: Proceedings of
the Twenty-Fifth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems (PODS 2006), pp. 328–337. ACM (2006)

http://www.w3.org/TR/xpath/
http://www.w3.org/TR/2010/REC-xpath20-20101214/
http://www.w3.org/TR/xquery-update-10/
http://www.w3.org/TR/xquery-update-10/

Efficient Querying of XML Data Through Arbitrary Security Views 113

40. Stoica, A., Farkas, C.: Secure XML views. In: Research Directions in Data and
Applications Security, IFIP WG 11.3 Sixteenth International Conference on Data
and Applications Security. IFIP Conference Proceedings, vol. 256, pp. 133–146.
Kluwer (2002)

41. Duong, M., Zhang, Y.: An integrated access control for securely querying and
updating XML data. In: Proceedings of the Nineteenth Australasian Database Con-
ference (ADC). CRPIT, vol. 75, pp. 75–83. Australian Computer Society (2008)

42. Thimma, M., Tsui, T.K., Luo, B.: HyXAC: a hybrid approach for XML access
control. In: 18th ACM Symposium on Access Control Models and Technologies
(SACMAT), ACM (2013)

43. Fegaras, L.: Incremental maintenance of materialized XML views. In: Hameurlain,
A., Liddle, S.W., Schewe, K.-D., Zhou, X. (eds.) DEXA 2011, Part II. LNCS, vol.
6861, pp. 17–32. Springer, Heidelberg (2011)

44. Shastry, P.D.N.M.: Integrated Healthcare IHE Pathway for the Patients: Patient
Treatment Lifecycle Management (PTLM). Radiology Clinic, United Kingdom
(2000). (October 2012) http://www.clinrad.nhs.uk/

45. Samarati, P., di Vimercati, S.C.: Access control: policies, models, and mechanisms.
In: Focardi, R., Gorrieri, R. (eds.) FOSAD 2000. LNCS, vol. 2171, pp. 137–146.
Springer, Heidelberg (2001)

46. Fundulaki, I., Marx, M.: Specifying access control policies for XML documents
with XPath. In: SACMAT 2004, 9th ACM Symposium on Access Control Models
and Technologies, pp. 61–69, ACM (2004)

47. Murata, M., Tozawa, A., Kudo, M., Hada, S.: XML access control using static
analysis. ACM Trans. Inf. Syst. Secur. 9(3), 292–324 (2006)

48. Gottlob, G., Koch, C., Pichler, R.: Efficient algorithms for processing XPath
queries. ACM Trans. Database Syst. 30(2), 444–491 (2005)

49. Mahfoud, H., Imine, A.: Secure querying of recursive XML views: a standard
XPath-based technique. In: WWW (Companion Volume), pp. 575–576. ACM
(2012)

50. Kuper, G.M., Massacci, F., Rassadko, N.: Generalized XML security views. In:
10th ACM Symposium on Access Control Models and Technologies (SACMAT),
pp. 77–84. ACM (2005)

51. Andrei, S., Chin, W.N., Cavadini, S.V.: Self-embedded context-free grammars with
regular counterparts. Acta Inf. 40(5), 349–365 (2004)

52. Murata, M., Tozawa, A., Kudo, M., Hada, S.: XML access control using static
analysis. In: Proceedings of the 10th ACM Conference on Computer and Commu-
nications Security (CCS), pp. 73–84. ACM (2003)

53. Duong, M., Zhang, Y.: Dynamic labelling scheme for XML data processing. In:
Meersman, R., Tari, Z. (eds.) OTM 2008, Part II. LNCS, vol. 5332, pp. 1183–1199.
Springer, Heidelberg (2008)

54. Oasis extensible access control markup language (XACML) TC, January 3013.
https://www.oasis-open.org/committees/tc home.php?wg abbrev=xacml

55. Bonifati, A., Goodfellow, M.H., Manolescu, I., Sileo, D.: Algebraic incremental
maintenance of XML views. In: 14th International Conference on Extending Data-
base Technology (EDBT), pp. 177–188. ACM (2011)

56. Nica, A.: Incremental maintenance of materialized views with outerjoins. Inf. Syst.
37(5), 430–442 (2012)

57. Gupta, A., Mumick, I.S.: Maintenance of materialized views: Problems, techniques,
and applications. IEEE Data Eng. Bull. 18(2), 3–18 (1995)

58. Gupta, A., Mumick, I.S., Rao, J., Ross, K.A.: Adapting materialized views after
redefinitions: techniques and a performance study. Inf. Syst. 26(5), 323–362 (2001)

http://www.clinrad.nhs.uk/
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml

114 H. Mahfoud and A. Imine

59. Maneth, S., Nguyen, K.: XPath whole query optimization. PVLDB 3(1), 882–893
(2010)

60. Georgiadis, H., Charalambides, M., Vassalos, V.: A query optimization assistant
for XPath. In: Proceedings of the 14th International Conference on Extending
Database Technology (EDBT 2011), ACM (2011)

61. Hsu, W.C., Liao, I.E.: CIS-X: a compacted indexing scheme for efficient query
evaluation of XML documents. Inf. Sci. 241, 195–211 (2013)

	Efficient Querying of XML Data Through Arbitrary Security Views
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Outline of the Paper

	2 Preliminaries
	2.1 Document Type Definitions
	2.2 XML Documents
	2.3 XPath Queries
	2.4 Regular XPath Queries

	3 Problem Statement
	3.1 XML Security Views
	3.2 Security View's Drawbacks

	4 Access Control with Arbitrary DTDs
	4.1 Access Specification
	4.2 Accessibility

	5 Query Rewriting
	5.1 Queries Without Predicates
	5.2 Rewriting Predicates
	5.3 Coping with X"322A37E queries
	5.4 Theoretical Results

	6 Implementation and Experimental Study: The SVMAX Framework
	6.1 System Overview
	6.2 Performance Evaluation

	7 Related Work
	8 Conclusions
	References

