Symbolic Model Checking for Dynamic Epistemic
Logic

Johan van Benthem®?2, Jan van Eijck!:3, Malvin Gattinger!, and Kaile Su*®

! Institute for Logic, Language & Computation (ILLC), University of Amsterdam
2 Department of Philosophy, Stanford University
3 Centrum Wiskunde & Informatica, Amsterdam
4 Institute for Integrated and Intelligent Systems, Griffith University
5 Department of Computer Science, Jinan University

Abstract. Dynamic Epistemic Logic (DEL) can model complex infor-
mation scenarios in a way that appeals to logicians. However, existing
DEL implementations are ad-hoc, so we do not know how the frame-
work really performs. For this purpose, we want to hook up with the
best available model-checking and SAT techniques in computational logic.
We do this by first providing a bridge: a new faithful representation of
DEL models as so-called knowledge structures that allow for symbolic
model checking. Next, we show that we can now solve well-known bench-
mark problems in epistemic scenarios much faster than with existing
DEL methods. Finally, we show that our method is not just a matter of
implementation, but that it raises significant issues about logical repre-
sentation and update.

1 Introduction

We bring together two strains in the area of epistemic model checking. On one
side, there are many frameworks for symbolic model checking on interpreted
systems using temporal logics [24,30]. On the other hand, there are explicit
model checkers for variants of Dynamic Epistemic Logic (DEL) like DEMO [15]
with inferior performance but superior usability as they allow specification in
dynamic languages directly. The goal of our work is to connect the two worlds of
symbolic model checking and DEL in order to gain new insights on both sides.

Existing work on model checking DEL mainly focuses on specific examples,
for example the Dining Cryptographers [28], the Sum and Product riddle [26]
or Russian Cards [12]. Given these specific approaches, a general approach to
symbolic model checking the full DEL language is desirable. A first step is [30]
which presents symbolic model checking for temporal logics of knowledge. How-
ever, it does not cover announcements or other dynamics. The framework here
extends these ideas with dynamic operators and a twist on the semantics.

Our knowledge structures are similar in spirit to hypercubes from [25], but
of a different type: We do not use interpreted systems and temporal relations
are not part of our models. Hence also our language does not contain temporal
operators but primitives for epistemic events like announcements.

(© Springer-Verlag Berlin Heidelberg 2015
W. van der Hoek et al. (Eds.): LORI 2015, LNCS 9394, pp. 366-378, 2015.
DOI: 10.1007/978-3-662-48561-3 30

Symbolic Model Checking for DEL 367

Related to our work is also [13] where DEL is translated into temporal epis-
temic logics for which symbolic model checkers exist. However, this method has
not been implemented and the complexity and performance are not known. We
do not translate to a temporal logic but check DEL formulas directly.

The paper is structured as follows. In Section 2 we recall standard semantics
of DEL as in [11]. We then present knowledge structures in Section 3 and discuss
the famous Muddy Children example in Section 4, together with experimental
results in Section 5. Section 6 is a case study of the Russian Cards problem. Our
main theoretical results are in Section 7: Knowledge structures are equivalent to
S5 Kripke models. Moreover, S5 action models from [1] can be described in the
same way. Section 8 gives a conclusion and suggestions for further research.

All source code can be found at https://github.com/jrclogic/SMCDEL.

2 Dynamic Epistemic Logic on Kripke Models

Definition 1. Fiz a set of propositions V and a finite set of agents I. The DEL
language L(V') is given by

pu=ploploeAe | Kip|Cap|lele | [¢lap

wherep € V, 1 € I and A C I. We also use the abbreviations V1) := —(—pA—1))
and ¢ — 1 := =(p A —w)). The boolean formulas are p :=p | - | p A .

The formula K,y is read as “agent i knows ¢” while Cag says that ¢ is
common knowledge among agents in A. The formula [¢]p indicates that after a
public announcement of 1, ¢ holds. In contrast, [1)] A says that after announcing
¥ to the agents in A, ¢ holds. The standard semantics for £(V') are given by
means of Kripke models as follows.

Definition 2. A Kripke model for n agents is a tuple M = (W, nt,Ky,- -+, Ky),
where W is a set of worlds, 7 associates with each world a truth assignment
to the primitive propositions, so that m(w)(p) € {T, L} for each world w and
primitive proposition p, and K1, - -+, IC,, are binary accessibility relations on W.
By convention, WM KM and 7™ are used to refer to the components of M.
We omit the superscript M if it is clear from context. Finally, let CX be the
transitive closure of (J;c o KM.

A pointed Kripke model is a pair (M, w) consisting of a Kripke model and a
world w € WM. A model M is called an S5 Kripke model iff, for every i, KM
is an equivalence relation. A model M is called finite iff WM is finite.

Definition 3. Semantics for L(V') on pointed Kripke models are given induc-
tively as follows.

|=<P/\¢iﬁ(Maw o a'nd(M’w))=¢
S

)
; = e iff not (M,w) = ¢
) = Ko iff for all w'

W, if wkMw', then (M,w') = .

https://github.com/jrclogic/SMCDEL

368 J. van Benthem et al.

5. (M,w) = Cayp iff for allw' € W, if wCXw', then (M, w") | ¢.

6. (M,w) = [b]p iff (M,w) = 1 implies (MY, w) = ¢ where MY is a new
Kripke model defined by the set WM" = {we WM | (M,w) E 9}, the
relations ICZMUJ =KMn (VVMw)2 and the valuation 7" (w) = =M (w).

7. (M,w) = [¥)ae iff (M,w) | v implies that (MwA7 (1,w)) = ¢ where
(o) WME = {(1,w) | we WM and (M,w) ¢} U{(0,w) | we WM}

A
(b) For (b,w) and (V',w') in WM ifi € A, let (b,w)K,* (o, 0') iff b=V

i
A
and wKMw'. If i ¢ A, then let (b, w)ICZMw v, w") iff wkMw'.

(c¢) For each (b,w) € WM WM“/?((ba w)) =M (w).

Note that a group announcement [t)]a¢ is private in the sense that only the
agents in A obtain knowledge about v. However, the announcement is not secret
because the other agents still learn that the agents in A might have learned .

3 Knowledge Structures

While the preceding semantics is standard in logic, it cannot serve directly as an
input to current sophisticated model-checking techniques. For this purpose, in
this section we introduce a new format, knowledge structures. Their main advan-
tage is that also knowledge and results of announcements can be computed via
purely boolean operations. We first recapitulate some notions and abbreviations.

Given a set of propositional variables P, we identify a truth assignment over P
with a subset of P. We say a formula ¢ is a formula over P if each propositional
variable occurring in ¢ is in P. For convenience, we use the logical constants T
and | which are always true and always false, respectively. We also use = to
denote the usual satisfaction relation between a truth assignment and a formula.

We use substitution and quantification as follows. For any formula ¢ and ¢ €
{T, L}, and any propositional variable p, let o(Z) denote the result of replacing
every p in ¢ by 9. For any A = {p1,...,pn}, let 90(’12) =)0 (),
i.e. the result of substituting 1 for all elements of A. We use Vpy to denote

%) (?)) (i) For any A = {p1,...,pn}, let VAp :=Vp1Vpa ... Vpuo.

Definition 4. Suppose we have n agents. A knowledge structure is a tuple F =
(V,0,04,...,0,) where V is a finite set of propositional variables, 0 is a boolean
formula over V' and for each agent i, O; C V.

Set V' is the vocabulary of F. Formula 0 is the state law of F. It determines
the set of states of F and may only contain boolean operators. The variables in
O; are called agent i’s observable variables. An assignment over V', given as the
set of true propositions, that satisfies 0 is called a state of F. Any knowledge
structure only has finitely many states. Given a state s of F, we say that (F,s)
s a scene and define the local state of an agent i at s as sN O;.

Given a knowledge structure (V,0,01,---,0,,) and a set V of subsets of V,
we use &y to denote a relation between two assignments s, s’ on V' satisfying 6
such that (s,s") € Ey iff there exists a P € V with sN P = s' N P. We use &,

to

(s,

Symbolic Model Checking for DEL 369

denote the transitive closure of Ey. Let Vo = {O; | i € A}. We then have
s') € Ey, iff there exists an i € A with sNO; = s' N O;.

We now give alternative semantics for £(V') on knowledge structures. Defini-

tions 5 and 6 run in parallel, both proceeding by the structure of .

Definition 5. Semantics for DEL on scenes are defined inductively as follows.

S G Lo o =

s) EpiffsE=p.

) I= = iff not (F,s) = ¢
;|=W\¢lﬁ(f8)l=¢a”d(f8)ﬁ¢
)

w

)

»w ®»

E Kp iff for all ' of F, if sNO; = s'NO;, then (F,s') E ¢.
,8) = Cayp iff for all s' of F, if (s,s8') € &, then (F,s') = ¢.

,8) E [W)e iff (F,s) | ¢ implies (F¥,s) &= ¢ where ||[¢|| 7 is given by
Definition 6 and

)

»

(F
(F
(F,
(F
(F
(F

JT_"LZJ = (V,H/\ ||wH]:aOla>O'n)

(F,s) E [W]ap iff (F,s) E 1 implies (.Ff,su{pw}) = @ where py is a new
propositional variable, ||Y|| 7 is given by Definition 6 and

where O} := 0; U{py} ifi € A and O] := O; otherwise.

Before defining the boolean equivalents of formulas, we can already explain some
similarities and differences between Definitions 3 and 5. The semantics of the
boolean connectives are the same. For the knowledge operators, on Kripke models
we use an accessibility relation ;. On knowledge structures this is replaced with
the condition s N O; = s’ N O;, inducing an equivalence relation on the states.
We can already guess that knowledge structures encode S5 Kripke models.

Definition 6. For any knowledge structure F = (V,0,01,---,0,) and any
DEL formula ¢, we define a boolean formula ||| r.

Crds o o =

For any primitive formula, let ||p||F := p.

For negation, let ||| 7 := —||¢||#.

For conjunction, let |11 A 2|l 7 = ||1]l# A |12 7.

For knowledge, let | K| 7 :=Y(V\O;)(0 — ||[¢]|7)-

For common knowledge, let |Cat| 7 := gfpA where A is the following oper-
ator on boolean formulas given and gfpA denotes its greatest fixed point:

Aa) = 9=~ \ YV N0 = o)

€A
For public announcements, let |[¥])¢]l= = ||[¥]lz = 1€l 7v-
For group announcements, let ||[1)]ag]lr == [¥]l7 — (I&llz2)("F).-

where F¥ and }'Z are as given by Definition 5.

370 J. van Benthem et al.

Given these definitions, a simple induction on ¢ gives us the following Theorem.

Theorem 1. Definition 6 preserves and reflects truth. That is, for any formula
v and any scene (F,s) we have that (F,s) = ¢ iff s = ||¢l|F.

We can now explain the public and group announcements. First observe that
public announcements only modify the state law of the knowledge structure.
Moreover, the new state law is always a conjunction containing the previous
one. Hence the set of states is restricted, just like public announcements on
Kripke models restrict the set of possible worlds. Second, note that a group
announcement adds a single observational variable and can therefore at most
double the number of states, just like in the Kripke semantics in Definition 3.

4 Example 1: Muddy Children

How does our new format do in practice? For this purpose, we consider some
well-known benchmarks in the epistemic agency literature. We start with how
their new representations looks like. After that, we go on to actual computa-
tional experiments. The famous Muddy Children example will illustrate how
announcements, both of propositional and of epistemic facts, work on knowl-
edge structures. An early version of the puzzle are the three ladies on a train
in [23]. For a standard analysis with Kripke models, see [17, p. 24-30] or [11,
p. 93-96].

Let p; stand for “child 7 is muddy”. We consider the case of three children
I = {1,2,3} who are all muddy, i.e. the actual state is {p1,p2,p3}. At the
beginning the children do not have any information, hence the initial knowledge
structure Fp in Figure 1 has the state law 6y = T. All children can observe
whether the others are muddy but do not see their own face. This is represented
with observational variables: Agent 1 observes ps and ps, etc. Now the father
says: “At least one of you is muddy.” This public announcement limits the set of
states by adding this statement to the state law. Note that it already is a purely
boolean statement, hence the formula is added as it is, leading to Fj.

O1 = {p2,p3}
Fo= |V ={p1,p2,p3},00 =T, O2 = {p1,ps}

Os = {p1,p2}
O1 = {p2,ps}
Fi= |V ={p1,p2,p3},6h = (p1 VP2V p3), O2 = {p1,ps}
Oz = {p1,p2}

Fig. 1. Knowledge structures before and after the first announcement.

The father now asks “Do you know if you are muddy?” but none of the children
does. As it is common in the literature, we understand this as a public announce-
ment of “Nobody knows their own state.” A, (—~(K;p; V K;—p;)). This is not

Symbolic Model Checking for DEL 371

a purely boolean formula, hence the public announcement is slightly more com-
plicated: Using Definition 6 and Theorem 1 we find a boolean formula which
on the current knowledge structure JF; is equivalent to the announced formula.
Then this boolean equivalent is added to 6. We have

[K1p1ll7 =Y(V\ O1)(01 = |Ip1ll7) = Vp1((p1 V p2 V p3) — p1)
= ((T V po \/pg) — T) A ((J_ V pa \/p3) — J_) = —|(p2 \/pg)

[K1=p1ll7 = Y(V\ O1) (01 = [|=p1ll7) = Vp1((p1 V p2 V p3) — —p1)
=({(TVpa2Vps) > "T)A((LVpaVps) ——-L)=1

and analogous for Kops, Ko—ps, K3ps and K3—ps. These results make intuitive
sense: In our situation where all children are muddy, a child knows it is muddy
iff it sees that the other two children are clean. It can never know that it is clean
itself. The announced formula becomes

| A (~(Kipi V Ki=pi))|| 7 = »/\1 I=(Kipi V Ki=pi) || 7
1€

- = =(=(p2 Vp3)) A=(=(p1 V p3)) A=(=(p1 V p2))
= (p2 Vp3) A (p1Vp3) A (p1V p2)

The announcement essentially says that at least two children are muddy. We
get a knowledge structure Fs with the following more restrictive state law 6.
Vocabulary and observational variables do not change, so we do not repeat them.

Oz = (p1 VP2 Vp3) A((p2 Vp3) A(p1LVps)A(pLVp2))

Now the same announcement (“Nobody knows their own state.”) is made again.
It is important that again we start with the epistemic formula A, ;(—~(Kip; V
K,;—p;)) and compute an equivalent formula with respect to F». For reasons of
space we skip tedious boolean reasoning and just note that

[K1pil| 7, = Y(V\ O1)(02 = [|p1ll) = =(p3 A p2)

| K1=p1llz, =Y(V\ O1)(02 = ||=p1ll7) = ~(p2 V p3)

which gives us |=(K1p1 V K1—p1)|| 7 = ps A p2 and analogous formulas for chil-
dren 2 and 3. Hence with respect to F» we get the following boolean equivalent
of the announcement, essentially saying that everyone is muddy.

| A (=(Kipi V Ki=pi))ll 7, = (p3 Ap2) A (p3 Ap1) A (p2 A p1)
il
=p1 Ap2 A\ p3

The resulting knowledge structure thus has the state law 05 = 02 A (p1 Ap2 Aps)
which is in fact equivalent to p; A p2 A ps and marks the end of the story: The
only state left is the situation in which all three children are muddy.

372 J. van Benthem et al.

5 Symbolic Model Checking: Implementation and
Benchmarking

The previous section showed how epistemic operators get replaced by booleans
when a new state law is computed. We could see that syntactically the state law
becomes more and more complex, but semantically the same boolean function
can be represented with a much shorter formula. This is where Binary Decision
Diagrams (BDDs) come in extremely handy.

First presented in [5], BDDs provide an elegant data structure for boolean
functions. In many cases they are less redundant and thus smaller than a corre-
sponding truth table. Additionally, they can be manipulated efficiently: Given
BDDs for ¢ and 1 we can compute the BDD for ¢ A v, ¢ — 1 etc. Moreover,
BDDs are canonical: Two formulas are equivalent iff their BDDs are identical.
For an in-depth introduction, see [22, p. 202-280]. To see how BDDs can be used
to describe knowledge structures, Figure 2 shows the BDDs for 6y to 63.

mi

!
!
Fig. 2. Four BDDs representing the state laws 6y to 6.

!
|
|
|
|
|
|
|
| !
!
|

-

Our new symbolic model checker SMCDEL works as follows: It takes two
inputs, a scene (F, s) where the state law is given as a BDD, and a DEL formula
. To check whether ¢ holds at state s we first compute the equivalent boolean
formula ||| 7 according to Definition 6 and then check the boolean satisfaction
s F ||¢|l 7. Alternatively, we can check whether a formula is valid on F, i.e. true
at all states, by checking whether 8 — ||¢||r is a tautology. The full set of states
does not have to be generated and events are not executed explicitly.

We compared the performance of this method to DEMO-S5, an explicit model
checker optimized for multi-agent S5 [15]. As a benchmark we used the question
“For n muddy children, how many announcements of » Nobody knows their own
state.« are needed until they do know their own state?”. We measured how long
each method takes to find and verify the correct answer, namely n — 1.

Figure 3 shows the results on a logarithmic scale: Explicit model checking
with DEMO-S5 quickly becomes unfeasible whereas our symbolic model checker
SMCDEL can deal with scenarios up to 40 agents in less than a second.

The model checker is implemented in Haskell and can be used similarly to
DEMO-S5. To represent BDDs we use CacBDD [27] via the binding library

Symbolic Model Checking for DEL 373

T T T T T

seconds

—o— DEMO-S5
—a— SMCDEL with CacBDD

—_
[en)
o o

L L LLL L L L L1 L L. .1 L L LLLL O L1 L

| I I I I I
15 20 25 30 35 40

no. of children (all muddy)

o
ot
—_
o

Fig. 3. Benchmark Results on a logarithmic scale.

HasCacBDD [19]. The program can also be used with CUDD [18,29] which pro-
vides very similar performance. All experiments were done using 64-bit Debian
GNU/Linux 8.0 with kernel 3.16.0-4, GHC7.8.3 and g++ 4.9 on an Intel Core
i3-2120 3.30 GHz processor and 4 GB of memory.

Muddy Children has also been used to benchmark MCMAS [24] but the for-
mula checked there concerns the correctness of behavior and not how many
rounds are needed. Moreover, the interpreted system semantics of model check-
ers like MCMAS are very different from DEL. Still, connections between DEL
and temporal logics have been studied and translations are available [3,13].

A scenario which fits nicely into both frameworks is the dining cryptographers
protocol [7]. The statement “If cryptographer 1 did not pay the bill, then after
the announcements are made, he knows that no cryptographers paid, or that
someone paid, but in this case he does not know who did.” is also checked in [24].
It can be formalized in DEL as follows where p; says that agent ¢ paid and v
is the announcement: —py — [¢](K1 (A, —pi) V (K1 (Vg pi) A Nio(mK1D5))).
SMCDEL can check this for n = 50 in less than a second. Proper benchmarks
and comparisons of all parameters will be done in the future.

6 Example 2: Russian Cards

As a second case study we applied our symbolic model checker to the Russian
Cards Problem. One of its first logical analyses is [10] and the problem has since

374 J. van Benthem et al.

gained notable attention as an intuitive example of information-theoretically (in
contrast to computationally) secure cryptography [9,14].

The basic version of the problem is this: Seven cards, enumerated from 0 to
6, are distributed between Anne, Bob and Crow such that Anne and Bob both
receive three cards and Crow one card. It is common knowledge which cards
exist and how many cards each agent has. Everyone knows their own but not the
others’ cards. The goal of Anne and Bob now is to learn each others cards without
Crow learning them. They can only communicate via public announcements.

Many different solutions exist but here we will focus on the so-called five-hands
protocols (and their extensions with six or seven hands): First Anne makes an
announcement of the form “My hand is one of these: ...”. If her hand is 012 she
could for example take the set {012,034, 056,135,146,236}. It can be checked
that this announcement does not tell Crow anything, independent of which card
it has. In contrast, Bob will be able to rule out all but one of the hands in the
list depending on his own hand. Hence the second and last step of the protocol
is an announcement by Bob about which card Crow has. For example, if Bob’s
hand is 345 he would finish the protocol with “Crow has card 6.”.

Verifying this protocol for the fixed deal 012|345/6 with our symbolic model
checker takes less than a second. Moreover, checking multiple protocols in a row
does not take much longer because the BDD package caches results. Compared
to that, a DEMO implementation [12] needs 4 seconds to check one protocol.

We can not just verify but also find all 5/6/7-hands protocols, using a com-
bination of manual reasoning and brute-force. By Proposition 32 in [10] safe
announcements from Anne never contain “crossing” hands, i.e. two hands with
multiple card in common. If we also assume that the hands are lexicographically
ordered, this leaves us with 1290 possible lists of five, six or seven hands of three
cards. Only some of them are safe announcements which can be used by Anne.
We can find them by checking all the corresponding 1290 formulas. Our model
checker can filter out the 102 safe announcements within 1.6 seconds, generating
and verifying the same list as in [10] where it was manually generated.

7 Equivalence of S5 Kripke Models and Knowledge
Structures

Having shown the computational advantage of our new knowledge models, we
now look more deeply into the foundations of what we have been doing. For
a start, we show that knowledge structures and standard models for DEL are
equivalent from a semantic point of view. Lemma 1 gives us a canonical way
to show that a knowledge structure and an S5 Kripke model satisfy the same
formulas. Theorems 2 and 3 say that such equivalent models and structures can
always be found. These translations are also implemented in SMCDEL.

Lemma 1. Suppose we have a knowledge structure F = (V',0,04,---,0,,) and
a finite S5 Kripke model M = (W, m,Kq,--+,K,,) with a set of primitive propo-
sitions V. C V'. Furthermore, suppose we have a function g : W — P(V') such
that

Symbolic Model Checking for DEL 375

C1 For all wy,wy € W, and all i such that 1 < i < n, we have that g(w1)NO; =
g(wg) N Oi Zﬁ le:Z‘U)Q.

C2 For allw e W and v € V, we have that v € g(w) iff m(w)(v) = true.

C3 For every s C V', s is a state of F iff s = g(w) for some w € W.

Then, for every formula ¢ over V we have (F, g(w)) = ¢ iff (M, w) = ¢.

Proof. By induction on ¢: Use C2 for atomic propositions, note that the boolean
semantics are the same, use C1 and C3 for the knowledge operator and show
that the conditions carry over to the results of announcements.

We do not give details here because the proof does not provide any new
insights: Conditions C1 to C3 describe a special case of a p-morphism between
M and the Kripke model encoded by F, see Definition 7 below. Hence their
equivalence with respect to the modal language already follows from general
invariance results in modal logic [4, §2.1]. The following definition and theorem
show that for every knowledge structure there is an equivalent Kripke model.

Definition 7. For any F = (V,0,01,---,0,), we define the Kripke model
M(F) = W,n,K1,---,Ky) as follows

1. W is the set of all states of F,
2. for each w € W, let the assignment w(w) be w itself and
3. for each agent i and all w,w' € W, let w;w' iff wN O; = w' NO;.

Theorem 2. For any knowledge structure F, any state s of F, and any ¢ we

have (F,s) = ¢ iff (M(F),s) = ¢.
Proof. By Lemma 1 using the identity function as g.

Vice versa, for any S5 Kripke model we can find an equivalent knowledge struc-
ture. The essential idea is to add propositions as observational variables to encode
the relations of each agent. To obtain a simple knowledge structure we should
add as few propositions as possible. The method below adds), ; ceiling(log, ;)
propositions where k; is the number of K;-equivalence classes and ceiling(-) de-
notes the smallest integer not less than the argument. This could be further
improved if one were to find a general way of using the propositions already
present in the Kripke model as observational variables directly.

Definition 8. For any S5 model M = (W, n,K1,---,K,) we define a knowl-
edge structure F(M) as follows. For each i, write y1,. ..,k for the equivalence
classes given by K; and let l; := ceiling(log, k;). Let O; be a set of l; many
fresh propositions. This yields the sets of observational variables O, ..., Oy, all
disjoint to each other. If agent i has a total relation, i.e. only one equivalence
class, then we have O; = &. Enumerate k; many subsets of O; as Oy, ..., O,
and define the function g; : W — P(O;) by gi(w) := O () where y(w) is the
equivalence class of w. Let V' :=V UlUy.;<,, Oi and define g : W — P(V’) by

gw) ={veV|r(w)() =TI |J gw)

0<i<n

376 J. van Benthem et al.

Let V' be the set of atomic propositions and their negations from V'. Finally, let
F(M):=(V',0hp,01,...,0,) where

O :/\{\/Q| QCV and g(w) EVQ for alleW}

Theorem 3. For any finite S5 pointed Kripke model (M, w) and every formula
©, we have that (M,w) = ¢ iff (F(M), g(w)) E ».

Proof. By Definition 8, g; is such that for all wy,wy € W, g;(w1) and g;(ws)
are the same subset of O; iff w; and ws are in the same equivalence class of
IC;. Tt is therefore easy to check the first two conditions of Lemma 1. For the
“if” part of C3: If s = g(w') for some w’ € W, then by the definition of 8,
we have that g(w’) = 0y and hence g(w’) is a state of F(M). For the “only if”
part, assume that for every w € W, s # g(w). Then, for every w € W, there is
an atomic formula ¢,, over V' such that s = ¢, but g(w) = —¢,. Therefore,
5 E Awew Pw- Moreover, we have for every w’ € W, g(w') = Ve ~¢w, and
hence vweW - € I'y. Consequently, we have s £ I'yy and hence s is not a
state of F(M). Now the theorem follows from Lemma 1.

What we have seen is how the two ways of modeling in this paper, though
computationally different, are semantically equivalent. This leads us to consider
how their interplay will work in more complex settings. The obvious direction
to probe this is the area where DEL unleashes its full power: We now give an
outlook how knowledge structures can be generalized to action models. They
were first described in [1] and we do not repeat definitions here but refer to
[11] for a textbook treatment. What action models are to Kripke frames, the
following knowledge transformers are to knowledge structures.

Definition 9. A knowledge transformer for a given vocabulary V is a tuple
X = (V*T,07,04,...,0,) where V* is a set of atomic propositions such that
VNVt =g, 0% is a possibly epistemic formula over VUV and O; C VT for
all agents i. An event is a knowledge transformer together with a subset x C VT,
written as (X, x).

The knowledge transformation of a knowledge structure F = (V,0,01,...,0,)
with a knowledge transformer X = (V*,07,0F,...,O%F) for V is defined by:

FY¥ = WVUuVvton|ot|z0,00{,...,0,U0)
Given a scene (F,s) and an event (X, x) we define (F,s)*®) := (F¥ sUx).

The two kinds of events discussed above fit well into this general definition:
The public announcement of ¢ is the event ((&,¢,d,...,9),2) and the an-
nouncement of ¢ to A is given by (({p,},p, — ©,07,...,0%),{p,}) where
Of = {p,} ifi € A and O] = @ otherwise.

Theorem 4. For any S5 action model there is an equivalent knowledge trans-
former and vice versa.

Proof. Define translations similar to Definitions 7 and 8. Then use Lemma 1.
Finally, Definition 6 can be extended to cover event operators: Let ||[X, z]o|| 7 :=

10517 — l¢'|| 7x where 6 := 6+ (_‘?) (Vi\x) and ¢’ 1= ¢ (?) <V1\x).

Symbolic Model Checking for DEL 377

8 Conclusion and Future Work

We have achieved our goal of putting a new engine into DEL by a suitable seman-
tic model transformation. This was shown to work well in various benchmarks,
for example the Muddy Children and Russian cards. But there is obviously more
to be explored now that we know this. In future work we aim to extend our the-
oretical framework and the implementation in different directions.

One line would be to use the same models with richer languages, and see
whether the parallels that we found still persist. For example, action models
with factual change [2]| should also be representable as knowledge transformers.
They also motivate a new notion of action equivalence which might help to solve
a problem with action models where bisimulation had to be replaced with the
more complicated notion of action emulation [16].

Another direction would be to extend the framework to other dynamic phe-
nomena such as belief change or preference change which are usually non-S5. For
this we can use the literature on abstraction for transition systems, starting with
the seminal [8]. Moreover, BDDs have already been used to model belief change
in [21]. Also abstraction ideas from the DEL literature could be implemented and
their performance compared, for example the very compact modeling of Muddy
Children in [20] and the mental programs from [6].

But perhaps the deepest issue that we see emerging in our approach is this.
While standard logical approaches to information flow assume a sharp distinction
between syntax and semantic models, our BDD-oriented approach suggests the
existence of a third intermediate level of representation combining features of
both that may be the right level to be at, also from a cognitive viewpoint. We
leave the exploration of the latter grander program to another occasion.

Acknowledgements. Thiswork was partially supported by NSFC grant 61472369
and carried out within the Tsinghua-UvA Joint Research Center in Logic. We thank
our anonymous referees for useful comments and suggestions.

References

1. Baltag, A., Moss, L.S., Solecki, S.: The logic of public announcements, common
knowledge, and private suspicions. In: Bilboa, I. (ed.) TARK 1998, pp. 43-56 (1998)

2. van Benthem, J., van Eijck, J., Kooi, B.: Logics of communication and change.
Information and Computation 204(11), 1620-1662 (2006)

3. van Benthem, J., Gerbrandy, J., Hoshi, T., Pacuit, E.: Merging frameworks for
interaction. Journal of Philosophical Logic 38(5), 491-526 (2009)

4. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. In: Cambridge Tracts in
Theoretical Computer Science, no. 53. CUP, Cambridge (2001)

5. Bryant, R.E.: Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Transaction on Computers C-35(8), 677-691 (1986)

6. Charrier, T., Schwarzentruber, F.: Arbitrary public announcement logic with men-
tal programs. In: Proceedings of the 2015 International Conference on Autonomous
Agents and Multiagent Systems, pp. 1471-1479. IFAAMAS (2015)

378

10.
11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.
30.

J. van Benthem et al.

. Chaum, D.: The dining cryptographers problem: Unconditional sender and recipi-

ent untraceability. Journal of Cryptology 1(1), 65-75 (1988)

. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM

Transactions on Programming Languages and Systems 16(5), 1512-1542 (1994)

. Cordon-Franco, A., van Ditmarsch, H., Fernandez-Duque, D., Soler-Toscano, F.:

A geometric protocol for cryptography with cards. Designs, Codes and Cryptogra-
phy 74(1), 113-125 (2015), http://dx.doi.org/10.1007/510623-013-9855-y
van Ditmarsch, H.: The russian cards problem. Studia Logica 75(1), 31-62 (2003)
van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic epistemic logic, vol. 1.
Springer, Heidelberg (2007)

van Ditmarsch, H., van der Hoek, W., van der Meyden, R., Ruan, J.: Model Check-
ing Russian Cards. Electr. Notes Theor. Comput. Sci. 149(2), 105-123 (2006)

van Ditmarsch, H., van der Hoek, W., Ruan, J.: Connecting dynamic epistemic
and temporal epistemic logics. Logic Journal of IGPL 21(3), 380-403 (2013)
Duque, D.F.; Goranko, V.: Secure aggregation of distributed information. CoRR
abs/1407.7582 (2014), http://arxiv.org/abs/1407.7582

van Eijck, J.: DEMO-S5. Tech. rep., CWI (2014)

van Eijck, J., Ruan, J., Sadzik, T.: Action emulation. Synthese 185(1), 131-151
(2012)

Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about knowledge,
vol. 4. MIT Press, Cambridge (1995)

Gammie, P.: hBDD. https://github.com/peteg/hBDD (2011, updated 2014)
Gattinger, M.: HasCacBDD (2015), https://github.com/m4lvin/HasCacBDD
Gierasimczuk, N., Szymanik, J.: A note on a generalization of the Muddy Children
puzzle. In: Apt, K.R. (ed.) TARK 2011, pp. 257-264. ACM (2011)

Gorogiannis, N., Ryan, M.D.: Implementation of Belief Change Operators Using
BDDs. Studia Logica 70(1), 131-156 (2002)

Knuth, D.E.: The Art of Computer Programming. Combinatorial Algorithms, Part
1, vol. 4A. Addison-Wesley Professional (2011)

Littlewood, J.: A Mathematician’s Miscellany. Methuen, London (1953)
Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: an open-source model checker for
the verification of multi-agent systems. International Journal on Software Tools for
Technology Transfer, 1-22 (2015)

Lomuscio, A.R., van der Meyden, R., Ryan, M.: Knowledge in Multiagent Systems:
Initial Configurations and Broadcast. ACM Trans. Comp. L. 1(2), 247-284 (2000)
Luo, X., Su, K., Sattar, A., Chen, Y.: Solving Sum and Product Riddle via BDD-
Based Model Checking. In: Web Intel. /TAT Workshops, pp. 630-633. IEEE (2008)
Lv, G., Su, K., Xu, Y.: CacBDD: A BDD Package with Dynamic Cache Manage-
ment. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 229-234.
Springer, Heidelberg (2013)

van der Meyden, R., Su, K.: Symbolic Model Checking the Knowledge of the Dining
Cryptographers. In: CSFW, pp. 280-291. IEEE Computer Society (2004)
Somenzi, F.: CUDD: CU Decision Diagram Package Release 2.5.0 (2012)

Su, K., Sattar, A., Luo, X.: Model Checking Temporal Logics of Knowledge Via
OBDDs. The Computer Journal 50(4), 403-420 (2007)

http://dx.doi.org/10.1007/s10623-013-9855-y
http://arxiv.org/abs/1407.7582
https://github.com/peteg/hBDD
https://github.com/m4lvin/HasCacBDD

	Symbolic Model Checking for Dynamic Epistemic Logic

	1 Introduction
	2 Dynamic Epistemic Logic on Kripke Models
	3 Knowledge Structures
	4 Example 1: Muddy Children
	5 Symbolic Model Checking: Implementation and Benchmarking
	6 Example 2: Russian Cards
	7 Equivalence of S5 Kripke Models and Knowledge Structures
	8 Conclusion and Future Work
	References

