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Abstract. We introduce a unified framework for dynamic epistemic log-
ics, which in particular encompasses Public Announcement Logic (PAL),
Epistemic Action (EA) and Preference Upgrade (PU). Our framework
consists of a generic language, in which some of the known reduction
axioms are expressible, together with relational and algebraic semantics.
We then establish correspondences between generic reduction axioms and
semantic properties, in both relational and algebraic settings. This leads
to alternative proofs of the completeness of PAL, EA, PU with respect
to their relational semantics and algebraic semantics (for the former two).

1 Introduction

Dynamic Epistemic Logic (DEL) is a branch of modal logic for reasoning about
knowledge changes or belief revisions caused by communication. This is techni-
cally materialised by adding, to a static epistemic logic, dynamic operators that
express actions of communication. These operators are interpreted as transfor-
mations of Kripke models (model transformations). The pioneer study on DEL
is Public Announcement Logic (PAL) [5]. Then Epistemic Action (EA) [2] was
proposed for reasoning about a greater variety of communication, including pub-
lic announcements, and this has made the research area much more active. Until
now, many DELs for various kinds of actions of communications have been pro-
posed and studied: Update Model [11], Command Logic [14], Belief Change [6],
Preference Upgrade (PU) [8], Evidence Dynamics [9] and Manipulative Update
[12]. PAL and EA, among others, have been studied well: recently, algebraic
counterparts of model transformations were proposed as the algebraic semantics
of PAL [4] and EA [3].

Modal Correspondence in DEL: We aim at developing a modal correspon-
dence theory for DEL in general, which establishes a link between axioms and
properties of model transformations. There are some precedents in the literature
[6–8]. Among these, van Benthem [7] gives a quite comprehensive account based
on the concept of update universe to PAL, EA, Belief Change and Evidence Dy-
namics. In this paper we further this line of research, proposing a more general
framework. We consider a wider class of dynamic operators than those studied
in [7], which are generally expressed by formulas. In addition, we give not only
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frame/model correspondences but also soundness-completeness-type correspon-
dences for model transformations in general.

Organisation and Novel Contribution: The main contribution of our pa-
per is in proposing a general framework for modal correspondence in DEL. We
proceed as follows:
– Section 2: Language. We first propose a generic DEL language that is defined

by using abstract action expressions. The languages of PAL, EA and PU
(without the auxiliary universal modality) can be obtained by substituting
their action expressions for abstract ones.

– Section 3: Relational Semantics. We then propose the notion of a two-layered
relational model in which model transformations are expressed by abstract
update relations instead of ordinary operational ways. The language and
the two-layered models allow us to develop a general modal correspondence
theory for the generic fragment. We then give correspondence results spe-
cific to PAL, EA and PU. As corollaries, we obtain alternative proofs of
completeness of these logics. While the ordinary proofs are based on trans-
lation of dynamic formulas into purely static ones by reduction axioms, our
new proofs consist in matching each reduction axiom with a corresponding
semantic property. Thus our proofs are modular.

– Section 4: Algebraic Semantics. We undertake a similar analysis in an al-
gebraic setting: we propose an algebraic notion of model; give general cor-
respondence results and ones specific to PAL and EA; and also obtain
alternative modular proofs of the completeness of these two logics.

– Section 5: Duality. To conclude the paper, we give several results on the
duality between our relational and algebraic models.

2 Generic DEL Language

Let us begin by proposing a generic language for DEL.

Definition 1 (Generic DEL Language). Let P be a set of atomic proposi-
tions, E a set of epistemic expressions and A a set of action expressions. We
define a generic DEL language L(E,A) by the following rule:

ϕ ::= � | p | ¬ϕ | ϕ ∨ ψ | 〈e〉ϕ | 〈〈α〉〉ϕ
where p ranges over P, e over E and α over A.

In other words, the language L(E,A) is the multimodal language with modalities
〈e〉 and 〈〈α〉〉 (e ∈ E, α ∈ A). The individual languages of Public Announcement
Logic (PAL), Epistemic Action (EA) and Preference Upgrade (excluding the
universal modality) (PU) can be seen as special cases of L(E,A):

Example 1 (Specific DEL Languages). Let Ag be a given set of agents.
– The language of PAL can be expressed as LPAL = L(Ag,APAL), where

APAL = {!ϕ | ϕ ∈ LPAL}. As APAL depends on LPAL, these two sets are actu-
ally defined by simultaneous induction; however, the resulting language fits
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the pattern of L(E,A). The same remark applies to the other two examples
below. The intended meaning of [n]ϕ := ¬〈n〉¬ϕ is ‘agent n knows ϕ’, while
[[!ϕ]]ψ := ¬〈〈!ϕ〉〉¬ψ means ‘ψ holds after a truthful public announcement of
ϕ’.

– The language of EA is LEA = L(Ag,AEA) where AEA is the set of action
models (U, s) [2]. An action model (U, s) consists of a finite Kripke frame
(U, {→n}n∈Ag) together with a precondition function Pre : U → LEA and
s is a state of U : [[(U, s)]]ϕ := ¬〈〈(U, s)〉〉¬ψ is read as ‘ϕ holds after an
epistemic action (U, s)’, and [n]ϕ is as in PAL.

– The language LPU of PU can also be expressed as LPU = L(EPU,APU)
where EPU = {n, n̄ | n ∈ Ag} and APU = {ϕ!, �ϕ | ϕ ∈ LPU}. [n]ϕ and
[[ϕ!]]ψ := ¬〈〈ϕ!〉〉¬ϕ are as [n]ϕ and [[!ϕ]]ψ in PAL, while [n̄]ϕ := ¬〈n̄〉¬ϕ
and [[�ϕ]]ψ := ¬〈〈�ϕ〉〉¬ψ express ‘all the worlds which agent n considers at
least as good as the current one satisfy ϕ’ ([8]) and ‘ψ holds after suggestion
of ϕ’, respectively.

A common feature of dynamic epistemic logics is the use of reduction ax-
ioms, which are intended to transform any dynamic formula (involving dynamic
modalities 〈〈α〉〉) into a purely static one. Some reduction axioms are already
expressible in the generic DEL language L(E,A):

Definition 2 (Generic Reduction Axioms). We call the following axioms
generic reduction axioms:

RN : 〈〈α〉〉¬ϕ ↔ 〈〈α〉〉� ∧ ¬〈〈α〉〉ϕ RP : 〈〈α〉〉p ↔ 〈〈α〉〉� ∧ p
RK : 〈〈α〉〉〈e〉ϕ ↔ 〈〈α〉〉� ∧ 〈e〉〈〈α〉〉ϕ RA : 〈〈α〉〉� ↔ �

Notice that RP refers to atomic propositions p, thus logics involving RP are not
closed under uniform substitution.

We can give proof systems PAL,EA and PU to the above three logics—PAL,
EA, PU—by choosing a suitable set of generic reduction axioms and adding
some extra ones: here we consider the multimodal logic K (without the substi-
tution rule) in the language L(E,A) as the base logic and use the symbol ⊕ for
the addition of axiom schemata.

Example 2
– PAL = K⊕ RNRKRP ⊕ RT : 〈〈!ϕ〉〉� ↔ ϕ.
– EA = K ⊕ RNRP ⊕ Pre : 〈〈(U, s)〉〉� ↔ Pre(s) ⊕ AEA : 〈〈(U, s)〉〉〈n〉ϕ ↔

〈〈(U, s)〉〉� ∧∨{〈n〉〈〈(U, t)〉〉ϕ | s →n t}.
– PU = K⊕ RN (for ϕ! and �ϕ)⊕ RP (for ϕ! and �ϕ)⊕ RK (for (ϕ!, n), (ϕ!, n̄),

(�ϕ, n))⊕RT (for ϕ!)⊕RA (for �ϕ)⊕APU : 〈〈�ϕ〉〉〈n̄〉ψ ↔ (¬ϕ ∧ 〈n̄〉〈〈�ϕ〉〉ψ) ∨
(〈n̄〉(ϕ ∧ 〈〈�ϕ〉〉ψ)).

We can easily see that these proof systems are equivalent to the original ones in
[2, 5, 8].

3 Relational Semantics

3.1 Model Transition System

Usually, the language of a DEL is interpreted by using a Kripke model M =
(S, {Re}e∈E , V ). The effect of an action α is explained in terms of model
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transformation: M is transformed into another model Mα and a state v in M
is sent to a state w in Mα (cf. Baltag [1]). Since we want to treat a family
(property) of model transformations in one general framework, it is convenient
to consider a family of Kripke models, linked to each other by dynamic action
relations. Hence, we consider the following novel system, which modifies the
update universe (see Remark 1 infra) in [7]:

Definition 3 (Model Transition System). A model transition system (MTS)
for L(E,A) is a triple M = (MI , Φ,R) such that
1. MI is a family of Kripke models Mi = (S, {Re}e∈E , V ) indexed by i ∈ I

(Mi is allowed to be an empty structure),
2. Φ : I × A → I is a function (notation: Mα

i := MΦ(i,α)),
3. R assigns a binary relation Rα

i ⊆ Mi ×Mα
i to each (i, α) ∈ I × A.

Analogously, a frame transition system (FTS) F = (FI , Φ,R) is defined by using
indexed Kripke frames instead of indexed Kripke models. We say that F =
(FI , Φ,R) is the underlying FTS of an MTS M = (MI , Φ,R) and write F =
U(M) if Fi is the underlying frame of Mi for each i ∈ I. An MTS expresses
model transformations: a model Mi is transformed into Mα

i by action α, and
the state v in Mi is sent to w in Mα

i if vRα
i w. As a result, a pointed model

(Mi, v) is transformed into (Mα
i , w) that satisfies vR

α
i w, if such a w exists.

The generic DEL language L(E,A) is interpreted by an MTS:

Definition 4. Suppose that Mi = (S, {Re}e∈E , V ) is a Kripke model in an MTS
M = (MI , Φ,R) and v is a state in Mi. We inductively define the notion of a
formula ϕ being satisfied at state v in Mi ∈ MI (notation: M,Mi, v |= ϕ) as
follows:

M,Mi, v |= � iff always
M,Mi, v |= p iff v ∈V (p)
M,Mi, v |= ¬ϕ iff M,Mi, v �|= ϕ
M,Mi, v |= ϕ ∨ ψ iff M,Mi, v |= ϕ or M,Mi, v |= ψ
M,Mi, v |= 〈e〉ϕ iff for some w ∈ S, vRew and M,Mi, w |= ϕ
M,Mi, v |= 〈〈α〉〉ϕ iff for some w ∈ Mα

i , vR
α
i w and M,Mα

i , w |= ϕ

We say that M validates ϕ if M,Mi, v |= ϕ for any Kripke model Mi in M and
state v in Mi. Validity in an FTS is defined analogously.

The model transformations of the three logics—PAL, EA, PU—are ex-
pressed by MTSs (MI , Φ,R) by defining Φ and R as follows (the families MI

have to be given so that Φ and R are well-defined):

Example 3 (Specific Model Transition Systems)

– PAL-MTS: for every !ϕ ∈ APAL and Mi = (S, {Rn}n∈Ag, V ) ∈ MI ,

• M!ϕ
i = (S′, {R′

n}n∈Ag, V
′) is the submodel of Mi whose carrier set is

S′ = {v ∈ S | M,Mi, v |= ϕ}, and
• R!ϕ

i = {(v, v) ∈ Mi ×M!ϕ
i | v ∈ M!ϕ

i }.
– EA-MTS: for every action model (U, s) ∈ AEA with U = (U, {→n}n∈Ag) and

Mi = (S, {Rn}n∈Ag, V ) ∈ MI ,
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• M
(U,s)
i = (S′, {R′

n}n∈Ag, V
′) is given by

∗ S′ = {(v, t) | v ∈ Mi, t ∈ U and M,Mi, v |= Pre(t)},
∗ (v, t)R′

n(w, u) iff vRnw and t→nu for any n ∈ Ag,
∗ (v, t) ∈ V ′(p) iff v ∈ V (p),

• Φ(i, (U, s)) = Φ(i, (U, t)) for any i ∈ I and (U, s), (U, t) ∈ AEA, and

• R
(U,s)
i = {(v, (v, s)) ∈ Mi ×M

(U,s)
i | (v, s) ∈ M

(U,s)
i }.

– PU-MTS: for every ϕ!, �ϕ ∈ APU, and Mi = (S, {Rn, Rn̄}n̄∈Ag, V ) ∈ MI ,

• Mϕ!
i = (S, {R′

n, Rn̄}n∈Ag, V ) is given by

∗ R′
n = {(v, w) ∈ Rn | M,Mi, v |= ϕ iff M,Mi, w |= ϕ},

• M�ϕ
i = (S, {Rn, R

′
n̄}n∈Ag, V ) is given by

∗ R′̄
n = {(v, w) ∈ Rn̄ | M,Mi, v |= ¬ϕ or M,Mi, w |= ϕ},

• Rϕ!
i = {(v, v) ∈ Mi × Mϕ!

i | M,Mi, v |= ϕ}, and R�ϕ
i = {(v, v) ∈

Mi ×M�ϕ
i | v ∈ M�ϕ

i }.

Usually bounded morphisms are defined between Kripke models. We extend
them to morphisms between MTSs as follows:

Definition 5. Let M = (MI , Φ,R) and N = (NJ , Ψ,Q) be MTSs. A bounded
morphism f : M → N is a pair (f, {fi}i∈I) of a function f : I → J and bounded
morphisms (in the ordinary sense) fi : Mi → Nf(i) that satisfies the following
conditions for any i ∈ I and action expression α ∈ A: (Here fα

i denotes fΦ(i,α).)
1. f(Φ(i, α)) = Ψ(f(i), α), 2. if vRα

i w then fi(v) Qα
f(i) fα

i (w),

3. if fi(v) Qα
f(i) w′ then vRα

i w and fα
i (w) = w′ for some w ∈ Mα

i .

Items 2 and 3 in the definition correspond to the homomorphic condition and
the back condition in the definition of ordinary bounded morphisms. Item 1 is
their precondition. As expected, we have:

Proposition 1. Let (f, {fi}i∈I) : M → N be a boundedmorphism betweenMTSs.
Then, for anyMi inM and state v inMi, (M,Mi, v) and (N,Nf(i), fi(v)) satisfy
exactly the same formulas.

We call a bounded morphism (f, {fi}i∈I) : (MI , Φ,R) → (NJ , Ψ,Q) surjective if
for any j ∈ J there is an i ∈ I such that f(i) = j and fi : Mi → Nj is surjective,
and we say that N is a bounded morphic image of M if there is a surjective
bounded morphism from M to N. Similar notions are defined for FTSs.

Remark 1. Our MTSs generalise the idea of update universe [7] to the generic
DEL language L(E,A). In particular, PAL-MTSs for the specific language LPAL

(Example 3) roughly correspond to the original. The difference is that [7] con-
siders relations (M, s)RP (N, t) with P a subset of the carrier set of M. These
relations, for example, interpret an announcement !ϕ as R[[ϕ]], which may be
called ‘extensional’ in the sense that R[[ϕ]] = R[[ψ]] whenever [[ϕ]] = [[ψ]]. In com-

parison with this interpretation, our interpretation is ‘intensional’, since R!ϕ
i

does not necessarily coincide with R!ψ
i , even if ϕ and ψ are logically equivalent.
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3.2 General Correspondence Results

We now give a correspondence between classes of MTSs (or FTSs) and the
generic reduction axioms. The results below extend some of the observations
made in [7].

Definition 6 (Deterministic FTS). AnFTS (FI , Φ,R) [oranMTS (MI , Φ,R)]
is deterministic if for each (i, α) ∈ I × A,Rα

i is a partial function.

This means that the result of each action is completely determined by the current
state.

Proposition 2. An FTS validates RN iff it is deterministic.

Definition 7 (Epistemic MTS). An MTS M = (MI , Φ,R) is epistemic if for
each (i, α) ∈ I ×A, vRα

i w implies that v and w satisfy exactly the same atomic
propositions.

Proposition 3. An MTS M validates RP and U(M) validates RN iff M is de-
terministic and epistemic.

Proposition 3 indicates that RNRP corresponds to the model transformations
that are deterministic and preserve the facts (the valuations). Examples of this
kind of action include suggestion [8], lying [12] and commanding [14].

Definition 8 (Eliminative FTS). An FTS F = (FI , Φ,R) is called eliminative
if for any (i, α) ∈ I×A, Fα

i is a subframe of Fi and the inverse relation (Rα
i )

−1

embeds Fα
i into Fi.

Proposition 4. An FTS validates RN and RK iff it is a bounded morphic image
of an eliminative FTS.

Proof. For convenience, we assume that E is a singleton. Suppose that FTS
F = (FI , Φ,R) validates RN and RK. It is easy to see that for each (i, α) ∈ I ×A,
Rα

i of F is a partial bounded morphism between Kripke frames.
However, F may not be an eliminative FTS. We construct an eliminative FTS

F′ = (FI×A∗ , Φ′,R′) from F thus: let us denote each Kripke frame Fi in FI by
(Si, Ri). We first extend the notation Φ(i, α) and Rα

i (α ∈ A) (cf. Definition 3)
to Φ(i, γ) and Rγ

i for each string γ ∈ A∗; Φ(i, ε) = i and Φ(i, γα) = Φ(Φ(i, γ), α)
for γ ∈ A∗ and α ∈ A, and Rε

i = {(x, x) | x ∈ Fi} and Rγα
i = Rγ

i ◦Rα
Φ(i,γ).

Then, each Kripke frame F(i,γ) = (S(i,γ), R(i,γ)) in FI×A∗ is defined as follows:
S(i,γ) := {v ∈ Fi | there exists a state w ∈ FΦ(i,γ) such that vRγ

i w}; R(i,γ) :=
Ri ∩ (S(i,γ) × S(i,γ)). Lastly, Φ

′ and R′ are defined to be Φ′((i, γ), α) = Φ(i, γα)
and R′α

(i,γ) = {(v, v) | v ∈ F(i,γα)}.
A surjective bounded morphism f = (f, {f(i,γ)}(i,γ)∈I×A∗) from F′ to F can be

defined as follows: f : I × A∗ → I maps (i, γ) to Φ(i, γ); f(i,γ) : F(i,γ) → FΦ(i,γ)

maps v ∈ S(i,γ) ⊆ Si to w ∈ SΦ(i,γ) such that vRγ
i w. Since each Rα

i is a partial
bounded morphism, f is indeed a bounded morphism. ��
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Proposition 4 means that RNRK corresponds to the actions that eliminate several
possible states as PAL actions do, but may cause change of truth values of
atomic propositions.

In the context of DEL, we often restrict our attention to epistemic actions,
which do not change the truth values of atomic propositions. Thus here we
name an epistemic MTS M whose underlying FTS U(M) is eliminative, an
eliminative MTS. Eliminative updates appear in the literature not only in this
state-eliminating style [5, 6] but in the link-cutting style as in PU-MTSs [6, 8].
By Proposition 3 and the construction of the proof in Proposition 4, this class
is captured by RN, RK and RP:

Proposition 5. An MTS M validates RP and U(M) validates RN and RK iff
M is a bounded morphic image of an eliminative MTS.

Proposition 5 means that RNRKRP corresponds to the actions that eliminate
possible states, i.e. increase agents’ knowledge in the epistemic case. Public an-
nouncements are a typical example of such actions, but these do not always
have to be expressed by a formula. For example, think of the computer game
Minesweeper. Each time the player clicks on a cell on the board, the player’s
knowledge about the mines’ locations is updated. Thus 〈〈click〉〉 can be equally
considered an action. The logic K ⊕ RNRKRP could be useful to model such a
situation.

Definition 9 (Unconditional FTS). An FTS F = (FI , Φ,R) [or an MTS
(MI , Φ,R)] is called unconditional if for each (i, α) ∈ I × A, Rα

i satisfies the
condition that for any v ∈ Fi, there exists w ∈ Fα

i such that vRα
i w.

If we were to express this differently, there is no precondition to the action α
and therefore α is always possible. RA expresses this property:

Proposition 6. An FTS validates RA iff it is unconditional.

Note that Propositions 2, 3 and 6 do not involve the construction of a bounded
morphism, thus they can be freely combined.

We know that all the above combinations of generic reduction axioms are
canonical in the ordinary sense, that is, their canonical models of the form
(S, {Re}e∈E , {Rα}α∈A, V ) satisfy their corresponding frame/model properties.
Given this and all the correspondence results above, soundness and complete-
ness hold for each of the following pairs:

1. K⊕RN and the class of deterministic FTSs
2. K⊕RNRP and the class of deterministic and epistemic MTSs
3. K⊕RNRK and the class of eliminative FTSs
4. K⊕RNRKRP and the class of eliminative MTSs
5. K⊕RA and the class of unconditional FTSs
6. K⊕RARN and the class of unconditional and deterministic FTSs
7. K⊕RARNRP and the class of unconditional, deterministic and epistemic MTSs

Remark 2. RN plays an important role; for example, without RN we cannot even
prove that RP is linked to the class of epistemic MTSs.
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3.3 Specific Correspondence Results

So far we have been concerned with the generic DEL language L(E,A) and
MTSs/FTSs in general. We now proceed to the extra reduction axioms in Ex-
ample 2, which are specific to the languages of PAL, EA and PU. Our modu-
lar approach leads to an alternative proof of completeness for each of the three
logics.

Proposition 7
1. Let M be a deterministic and epistemic MTS for LPAL. M validates RT and

U(M) validates RK iff M is a bounded morphic image of an eliminative MTS

N where each transformed model N!ϕ
i is the submodel of Ni whose carrier

set is {v ∈ Ni | N,Ni, v |= ϕ}, i.e. M is a bounded morphic image of a
PAL-MTS.

2. PAL is sound and complete with respect to the class of PAL-MTSs.

As a PAL-MTS precisely expresses the intended model transformation of PAL,
we obtain an alternative proof of the completeness of PAL with respect to the
original semantics in [5].

Remark 3. An alternative and modular proof of the completeness of PAL has
already been given in [13]. It also uses a canonical Kripke model of the form
(S, {Rn}n∈Ag, {R!ϕ}!ϕ∈APAL

, V ). However, our approach stresses the modular na-
ture of the argument by starting from the generic framework.

For EA, we have the following result:

Proposition 8
1. Let M = (M, Φ,R) be an MTS for LEA that satisfies Φ(i, (U, s)) = Φ(i, (U, t))

for any i ∈ I and (U, s), (U, t) ∈ AEA. Then, M validates RP and Pre while
U(M) validates RN and AEA iff M is a bounded morphic image of an EA-
MTS.

2. EA is complete with respect to the class of EA-MTSs.

From these two results, we obtain an alternative proof of the completeness with
respect to the semantics in [2], in a way analogous to the case of PAL.

For PU, we do not yet have an adequate characterisation of APU. Nevertheless,
the previous generic results turn out to be useful when proving the following
result:

Proposition 9. PU is complete with respect to the class of PU-MTSs.

This also leads to an alternative proof of the completeness of PU with respect
to the semantics in [8].

4 Algebraic Semantics

We discuss algebraic semantics of DEL and develop a similar correspondence
theory as above.
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4.1 Algebraic Model Transition System

We first introduce an algebraic counterpart of the notion of MTS (Definition 3).
By algebraic model, we mean M = (A, θ), where A = (A,+,−, 1, {fe}e∈E) is a
Boolean algebra with operators (BAO) and θ : P → A is an assignment.

Definition 10 (Algebraic Model Transition System). An algebraic model
transition system (AMTS) for L(E,A) is a triple M = (MI , Φ,F) such that
1. MI is a family of algebraic models Mi indexed by i ∈ I,
2. Φ : I × A → I is a function (notation: Mα

i := MΦ(i,α)),
3. F assigns a 0-preserving additive function1 Fα

i from the carrier set of Mα
i

to that of Mi for each (i, α) ∈ I × A (notation: Fα
i : Mα

i → Mi).

Analogously, an algebra transition system (ATS) A = (AI , Φ,F) is also defined
by using indexed BAOs instead of indexed algebraic models. We say that A =
(AI , Φ,F) is the underlying ATS of an AMTSM = (MI , Φ,F) and write A = U(M)
if Ai ∈ AI is the underlying BAO of algebraic model Mi for each i ∈ I.

Definition 11. Let M = (MI , Φ, F ) be an AMTS for L(E,A) and Mi =
(A,+,−, 1, {fe}e∈E , θ) in MI. The meaning [ϕ]Mi,M of an L(E,A)-formula ϕ
is inductively defined as follows:

[�]Mi,M = 1 [p]Mi,M = θ(p)
[¬ϕ]Mi,M = −[ϕ]Mi,M [ϕ ∨ ψ]MiM = [ϕ]Mi,M + [ψ]Mi,M

[〈e〉ϕ]Mi,M = fe([ϕ]Mi,M) [〈〈α〉〉ϕ]Mi ,M = Fα
i ([ϕ]Mα

i ,M)

We say that an AMTS M validates ϕ if [ϕ]Mi,M = 1 for any Mi in M. Validity
in an ATS is defined analogously.

The algebraic semantics of PAL [4] and of EA [3] can be rephrased in terms of
our AMTSs as follows. An algebraic semantics of PU has not been established.
This shall be dealt with in our forthcoming work.

Example 4 (Specific Algebraic Model Transition Systems)
PAL: Let A = (A,+,−, 1, {fe}e∈E) be a BAO and M = (A, θ) an algebraic

model. For each a ∈ A, we define A↓a = (A↓a,+′,−′, 1′, {f ′
e}e∈E) and M↓a =

(A↓a, θa) as follows:
A↓a = {x ∈ A | x ≤ a} x+′ y = a · (x + y) = x+ y

−′(x) = a · (−x) 1′ = a · 1 = a
f ′
e(x) = a · fe(x) θa(p) = a · θ(p)

A PAL-AMTS (for the language LPAL) is then given as follows: for every Mi =

(A,+,−, 1, {fn}n∈Ag) and !ϕ ∈ APAL, let M!ϕ
i = M↓[ϕ]Mi,M, and F!ϕ

i be the

set inclusion function from A↓[ϕ]Mi,M to A. It is easy to see that F!ϕ
i is indeed

0-preserving and additive.
EA: Suppose that M = (A,+,−, 1, {fn}n∈Ag, θ) is an algebraic model and

that (U, s) is an action model with U = (U, {→n}n∈Ag). We define
∏

U M =
(
∏

U A,+′,−′, 1′, {f ′
n}n∈Ag, θ

′):
∏

U A is the |U |-colored product (i.e. the power
of A with each coordinate indexed by u ∈ U); +′, −′, 1′ and θ′ are defined

1 That is, Fα
i such that Fα

i (0) = 0 and Fα
i (x+ y) = Fα

i (x) + Fα
i (y).
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coordinatewise; and f ′
n :

∏
U A → ∏

U A is defined by f ′
n(k)(s) =

∨{fn(k(t)) |
s→nt} for any k ∈ ∏

U A and s ∈ U . An EA-AMTS M is then given as follows
(here [Pre]Mi,M denotes the element 〈[Pre(s)]Mi,M〉s∈U of

∏
U M): each trans-

formed model M(U,s)
i is given by (

∏
U Mi)↓[Pre]Mi,M; F

(U,s)
i : M(U,s)

i → Mi is

defined to be the composition of the set inclusion M(U,s)
i ↪→ ∏

U Mi and the
s-th projection

∏
U Mi → Mi; and we impose the condition that Φ(i, (U, s)) =

Φ(i, (U, t)) for any i ∈ I and (U, s), (U, t) ∈ AEA.

Homomorphisms for AMTSs are defined as follows:

Definition 12. Let M = (MI , Φ,F) and N = (NJ , Ψ,G) be AMTSs. A homomor-
phism h from M to N is a pair (h, {hj}j∈J ) of a function h : J → I and algebraic
model homomorphisms2 hj : Mh(j) → Nj, such that for any j ∈ J and action
expression α ∈ A, 1. Φ(h(j), α) = h(Ψ(j, α)) and 2. hj ◦ Fα

h(j) = Gα
j ◦ hΨ(j,α).

Proposition 10. Let (h, {hj}j∈J) : M → N be a homomorphismbetweenAMTSs.
Then, for anyNj in N and L(E,A)-formula ϕ, hj([ϕ]Mh(j) ,M) = [ϕ]Nj ,N.

We call a homomorphism (h, {hj}j∈j) : (MI , Φ,F) → (NJ , Ψ,G) injective if for
any i ∈ I there is a j ∈ J such that h(j) = i and hj : Mi → Nj is an injective
homomorphism, and we say that M can be embedded into N if there is an injective
homomorphism from M to N. Similar notions are defined for ATSs.

4.2 General Algebraic Correspondence Results

Let us now discuss correspondences between reduction axioms and algebraic
properties.

Definition 13. An ATS A = (AI , Φ,F) is deterministic if each Fα
i : Aα

i → Ai

preserves all meets (i.e. Fα
i (x · y) = Fα

i (x) · Fα
i (y)).

Proposition 11. An ATS validates RN iff it is deterministic.

Correspondence results concerning RK are expressed by the following notions:

Definition 14. An ATS A = (AI , Φ,F) is eliminative if for any algebraic model
Ai ∈ AI and α ∈ A, the transformed model Aα

i is given by Ai ↓ a for some
a ∈ Ai, and Fα

i : Aα
i → Ai the set inclusion function. An eliminative AMTS is

analogously defined by using Mi↓a instead of Ai↓a.

Proposition 12. Let A be an ATS and M an AMTS.
1. A validates RN and RK iff it can be embedded into an eliminative ATS.
2. M validates RP and U(M) validates RN and RK iff M can be embedded into

an eliminative AMTS.

2 These are BAO homomorphisms that preserve assignments.
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As a corollary, soundness and completeness hold for each of the following
pairs:

1. K⊕RN and the class of deterministic ATSs
2. K⊕RNRK and the class of eliminative ATSs
3. K⊕RNRKRP and the class of eliminative AMTSs

4.3 Specific Correspondence Results

We next turn to correspondence results specific to PAL and EA.

Proposition 13
1. An AMTS M for LPAL validates RP and RT while U(M) validates RN and RK

iff M can be embedded into a PAL-AMTS.
2. PAL is sound and complete with respect to the class of PAL-AMTSs.

The above results lead to an alternative and modular proof of the completeness of
PAL with respect to the algebraic semantics in [4] since a PAL-AMTS expresses
the intended algebraic model transformations of PAL.

Analogously, in the case of EA, the following results give its completeness
with respect to the algebraic semantics in [3]:

Proposition 14
1. LetM = (MI , Φ,F) be an AMTS for LEA that satisfies Φ(i, (U, s)) = Φ(i, (U, t))

for any i ∈ I and (U, s), (U, t) ∈ AEA. Then,M validates RP andPrewhileU(M)
validates RN and AEA iff M can be embedded into an EA-AMTS.

2. EA is sound and complete with respect to the class of EA-AMTSs.

5 On Duality between MTSs and AMTSs

The correspondence results in Section 4 were generated by the duality between
MTSs and AMTSs. This can be summarised as follows.

First of all, all MTSs and all bounded morphisms, and all AMTSs and all ho-
momorphisms constitute categories MT S and AMT S . Here, the composi-
tion of morphisms is defined as follows: for bounded morphisms f = (f, {fi}i∈I) :
(LI , Φ,P) → (MJ , Ψ,Q) and g = (g, {gj}j∈J) : (MJ , Ψ,Q) → (NK , X,R), their
composition g ◦ f is given by (g ◦ f, {gf(i) ◦ fi}i∈I); and for homomorphisms
f = (f, {fj}j∈J) : (LI , Φ,F) → (MJ , Ψ,G) and g = (g, {gk}k∈K) : (MJ , Ψ,G) →
(NK , X,H), their composition g ◦ f is defined by (f ◦ g, {gk, ◦fg(k)}k∈K).

Between these two categories, there are contravariant functors as follows:
(Here, M+ and M+ denote the full complex algebra with the assignment of
an ordinary Kripke model M and the ultrafilter model of an algebraic model
M.)
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Definition 15
1. A contravariant functor (−)+ : MT S → AMT S is given as follows: its

object function assigns to each MTS M = ({Mi}i∈I , Φ,R) the AMTS M+ =
({M+

i }i∈I , Φ,R
+) where R+(i, α) is given by (Rα

i )
−1 : (Mα

i )
+ → M+

i ; its
arrow function assigns to each bounded morphism (f, {fi}i∈I) : M → N the
homomorphisms (f, {f−1

i : M+
f(i) → M+

i }i∈I) : N
+ → M+.

2. A contravariant functor (−)+ : AMT S → MT S is given as follows: its
object function assigns to each AMTS M = ({Mi}i∈I , Φ,F) the MTS M+ =
({Mi+}i∈I , Φ,F+) where F+(i, α) is defined by vF+

α
i w ⇔ Fα

i [w] ⊆ v; its
arrow function assigns to each homomorphism (f, {fj : Mf(j) → Nj}j∈J) :

M → N the bounded morphism (f, {f−1
j : Nj+ → Mf(j)+}j∈J) : N+ → M+.

In particular, surjective bounded morphisms of MTSs and injective homomor-
phisms of AMTSs are ‘dual’ via the above contravariant functors.

On the relationship between these two functors (−)+ and (−)+, the following
result is immediate:
1. An MTSM = (MI , Φ,R) is ‘embedded’ into (M+)

+ by εM = (IdI , {Πi}i∈I) :
M → (M+)+ where each embeddingΠi : Mi → (M+

i )+ assigns the principal
ultrafilter πx to x ∈ Mi.

2. An AMTS M = (MI , Φ,F) is ‘embedded’ into (M+)
+ by ηM = (IdI , {ri}i∈I) :

M → (M+)
+ where ri : Mi → (Mi+)

+ is the canonical embedding.
All the εM meet the condition of a natural transformation from IdMT S to
(−)+◦(−)+and all the ηM meet that of a natural transformation from IdAMT S

to (−)+ ◦ (−)+. However, placing a condition on M and M is necessary for εM
and ηM to be arrows in the categories MT S and AMT S , and to obtain
natural transformations ε and η. For instance, as an easy example, let us take
the condition that all Mi ∈ M and all Mi ∈ M are finite. Those objects satisfy-
ing this condition constitute full subcategories FinMT S and FinAMT S of
MT S and AMT S , which are equivalent via the restricted functors of (−)+

and (−)+ as η and ε become natural isomorphisms in this case. It is this duality
that underlies our algebraic development: for example, the algebraic character-
isation of the axiom RN (Proposition 4.2) is obtained by the fact that Rα

i is a
partial function (i.e. deterministic) iff (Rα

i )
−1 preserves intersections (i.e. meets).

6 Conclusion

We have proposed a general framework for modal correspondence in Dynamic
Epistemic Logic (DEL) in both relational and algebraic semantics. (i) We first
introduced a generic DEL language and (ii) accordingly introduced model transi-
tion systems (MTSs) and algebraic model transition systems (AMTSs) as ‘static’
formalisations of model transformations. Using our framework, (iii) we gave gen-
eral correspondence results for generic reduction axioms and (iv) extended them
to specific reduction axioms defining PAL, EA and PU. (v) All these consti-
tute modular proofs to the completeness of the three logics with respect to both
relational and algebraic semantics.
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An exception is the algebraic study of PU, which shall be addressed in our
future work. It would be also interesting to study other DELs, such as LCC [10],
and other operators, like common knowledge operators. In this paper we have
only considered reduction axioms that already exist in the literature. However,
since our language is generic, it is perhaps possible to treat a more general class
of axioms and develop a ‘dynamic’ Sahlqvist theory for them. This too shall
form the object of our future studies.
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