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Preface

This volume contains the papers presented at LORI-5, the 5th International
Workshop on Logic, Rationality and Interaction, held during October 28–31,
2015, in Taipei, Taiwan, and hosted by the Department of Philosophy of National
Taiwan University and the Institute of Philosophy of Mind and Cognition of
National Yang-Ming University.

There were 62 submissions to LORI-5. Each submission was reviewed by
at least two, and on average three, Program Committee (PC) members. The
committee decided to accept 32 full papers and seven abstracts for poster pre-
sentations.

The topics covered in this program represent well the span and depth that
have become a trademark of the LORI workshop series, where logic interfaces
with disciplines as diverse as game theory and decision theory, philosophy and
epistemology, linguistics, computer science, and artificial intelligence. The tech-
nical program of the workshop was further enriched with invited talks by Maria
Aloni, Branden Fitelsen, Joseph Halpern, Churn-Jung Liau, Fenrong Liu, and
Eric Pacuit.

The LORI series took off with a first event, LORI-1, hosted in August 2007
by Beijing Normal University in Beijing. That event was a great success, pro-
viding an effective platform for Chinese and non-Chinese logicians to meet and
exchange research ideas. The wish to perpetuate such a platform led to four
later editions: LORI-2, hosted by Southwest University in Chongqing; LORI-3,
hosted by Sun Yat-sen University in Guangzhou; LORI-4, held at Zhejiang Uni-
versity in Hangzhou; and of course LORI-5 in Taipei, of which this book collects
the proceedings. A history of the series can be accessed at www.golori.org.

As Organizing Committee and PC chairs we would like to thank the authors
of all submitted papers for their submissions and the PC members and external
reviewers for a truly outstanding job under extremely tight time constraints. The
program owes the greatest debt to their contribution. Our activity was further
supported by the indefatigable work of Fenrong Liu and Johan van Benthem on
the general organization of LORI. As to the local organization, LORI-5 would
not have taken place without the tremendous amount of work put in by Eric
Peng. A great thanks for organizing LORI-5 should also go to the Department
of Philosophy at the National Taiwan University and the Institute of Philosophy
of Mind and Cognition at National Yang-Ming University. We would also like
to acknowledge the use of EasyChair, which has been a fantastic tool for both
organizing the reviewing process and creating these proceedings.

Special thanks for sponsorship goes to the College of Liberal Arts at National
Taiwan University and National Yang-Ming University, to the Ministry of Science
and Technology of Republic of China (Taiwan), and to the National Committee
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of the Republic of China for the Division of Logic, Methodology and Philosophy
of Science. Last but not least, thanks to the School of EEE&CS at the University
of Liverpool, UK, for financially supporting the proceedings of LORI-5.

August 2015 Wiebe van der Hoek
Wesley H. Holliday

Wen-fang Wang
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Sabotage Modal Logic:

Some Model and Proof Theoretic Aspects

Guillaume Aucher1, Johan van Benthem2, and Davide Grossi3

1 University of Rennes 1 – INRIA
guillaume.aucher@irisa.fr

2 University of Amsterdam, Stanford University, Tsinghua University
J.vanBenthem@uva.nl

3 University of Liverpool
D.Grossi@liverpool.ac.uk

Abstract. We investigate some model and proof theoretic aspects of
sabotage modal logic. The first contribution is to prove a characteriza-
tion theorem for sabotage modal logic as the fragment of first-order logic
which is invariant with respect to a suitably defined notion of bisimula-
tion (called sabotage bisimulation). The second contribution is to provide
a sound and complete tableau method for sabotage modal logic. We also
chart a number of open research questions concerning sabotage modal
logic, aiming at integrating it within the current landscape of logics of
model update.

1 Introduction

Sabotage modal logic (SML) [6] expands the standard modal language with an
edge-deletion modality �ϕ whose intended reading is “after the deletion of at
least one edge in the frame it holds that ϕ”. As such it can be viewed as the modal
logic of arbitrary edge deletion. Although it inspired several later formalisms in
the dynamic epistemic logic tradition [7] (e.g., graph modifiers logic [3], memory
logic [1], swap logic [2], arrow update logic [13]), and is directly related to recent
work in theoretical computer science (e.g., [16,12]) and learning theory (e.g.,
[11]) it remains a rather under-investigated logic.

The only work focusing specifically on SML is, to the best of our knowledge,
[15,14] where the undecidability of the satisfiability problem and the complexity
of the model-checking problem of SML are established. Among the open ques-
tions concerning SML, that work points to the lack of a notion of bisimulation
characteristic for SML. The present article addresses such question and can be
regarded as an application of standard techniques and methods of modal cor-
respondence theory [5] to sabotage modal logic. The article provides as well
a sound and complete tableau method for SML. This contributes to the proof
theory of SML, which has rather been neglected so far. In pursuing our investi-
gations, the article establishes a few related model-theoretic results and aims at
putting SML ‘on the map’ of current research in dynamic epistemic logic.

c© Springer-Verlag Berlin Heidelberg 2015
W. van der Hoek et al. (Eds.): LORI 2015, LNCS 9394, pp. 1–13, 2015.

DOI: 10.1007/978-3-662-48561-3�1



2 G. Aucher, J. van Benthem, and D. Grossi

Outline of the article. Section 2 introduces SML and what is thus far known
of its properties. That is the starting point of the article. Section 3 introduces
a notion of bisimulation for SML—called sabotage bisimulation—and Section 4
characterizes SML as the fragment of first-order logic (FOL) which is invariant for
sabotage bisimulation. Section 5 provides a sound and complete tableau method
for sabotage modal logic. Section 6 concludes with some open research questions.

2 Preliminaries

In this section, we introduce the syntax and semantics of SML, recapitulate some
key results from [14], and present a standard translation for SML (to FOL).

2.1 Syntax

Let P be a countable set of propositional atoms. The set of formulae of the
sabotage modal language Ls is defined by the following grammar in BNF:

Ls : ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | ♦ϕ | �ϕ

where p ∈ P. The remaining set of Boolean connectives {∨,→} and the modal
operators � and � can be defined in the standard way. The formula ⊥ is an
abbreviation for the formula p∧¬p (for a chosen p ∈ P) and � is an abbreviation
for ¬⊥. The iteration of n sabotage operators or modalities will sometimes be
denoted by �n and ♦n, respectively, �n and �n. To save parenthesis, we use the
following ranking of binding strength: �,�,�,♦,¬,∧,∨,→.

A natural measure of syntactic complexity for sabotage formulae is given
by their sabotage depth [14]. Let ϕ ∈ Ls. The sabotage depth of ϕ, written
sd(ϕ), is inductively defined as follows: sd(�) = sd(p) := 0, sd(¬ϕ) := sd(ϕ),
sd(ϕ1 ∧ ϕ2) := max{sd(ϕ1), sd(ϕ2)}, sd(♦ϕ) := sd(ϕ) and sd(�ϕ) := sd(ϕ) + 1.

2.2 Semantics

We will be working with standard Kripke models M = (W,R, V ) where: W is
a non-empty set; R ⊆ W ×W ; and V : P −→ 2W . The pair (W,R) is called a
frame, and is denoted by F .

Such structures will be also interpreted as models for the binary fragment
of FOL with equality1 denoted L1. Sometimes we will use the following FOL
terminology/notation. We say that a model M satisfies a formula ϕ(x) ∈ L1 (or
a set Γ (x) ⊆ L1) with one free variable x under the assignment of w to x if and
only if ϕ (respectively Γ ) is true of w, in symbols, M |= ϕ(x)[w] (respectively,
M |= Γ (x)[w]). We say that a model M realizes a set Γ (x) ⊆ L1 with one free
variable x (i.e., a type) if and only if there exists an element w ∈ W such that
M |= Γ (x)[w].

1 We refer the reader to [4, Ch. 2.4].
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The satisfaction relation for Ls is defined as usual for the atomic and Boolean
cases, and for the standard modalities. For the sabotage modality it is as follows:

(W,R, V ), w |= �ϕ ⇐⇒ ∃(w′, w′′) ∈ R s.t. (W,R \ {(w′, w′′)}, V ), w |= ϕ (1)

In other words, �ϕ is satisfied by a pointed model if and only if there exist two
R-related (possibly identical) states such that, once the edge between these two
states is removed from R, ϕ holds at the same evaluation state. The notions of
validity and logical consequence are defined as usual.

We say that two pointed models (M, w) and (M′, w′) are sabotage-related

(notation, (M, w)
�−→ (M′, w′)) if and only if: w′ = w; W ′ = W ; R′ = R \

{(w′′, w′′′)} for some w′′, w′′′ ∈ W ; V ′ = V . The set r(M, w) = {(M′, w′) |
(M, w)

�−→ (M′, w′)} denotes the set of all models which are sabotage-related to

a given pointed model (M, w). Similarly, rn(M, w) = {(M′, w′) | (M1, w1)
�−→

(M2, w2)
�−→ . . .

�−→ (Mn+1, wn+1) & (M1, w1) = (M, w) & (Mn+1, wn+1) =

(M′, w′)} denotes the set of all models which are related to (M, w) by a
�−→-path

of length n. Finally, r∗(M, w) = {(M′, w′) | (M, w)
�−→

∗
(M′, w′)} denotes the

set of all pointed models which are reachable from (M, w) by the reflexive and

transitive closure of
�−→. We will often drop the reference to a given point in the

model, which will be clear by the context, and simply write M �−→ M′ instead
of (M, w)

�−→ (M′, w′).
The set of sabotage modal formulae which are satisfied by a pointed model

(M, w), i.e., the sabotage modal logic theory of w in M, is denoted T
s(M, w). We

say that two pointed models (M, w) and (M′, w′) are sabotage modally equivalent
—notation: (M, w) �s (M′, w′)—if and only if they satisfy the same sabotage
modal formulae, that is, they have the same sabotage modal logic theory.

SML can express properties that are beyond the reach of standard modal logic.
An example is the property “there are at most n successors” with 1 ≤ n (see
also Example 1 below):

∃≤ny (xRy) . (2)

This property can be expressed in SML with:

�⊥∨
∨

1≤i≤n

�i�⊥. (3)

A dual formula expresses the property “there are at least n successors”. In fact,
SML can even define frames up to isomorphisms. Indeed, one can easily show
that the formula ♦�∧�♦�∧��⊥ is true in a model if and only if its underlying
frame consists of one reflexive point.

Finally, let us recapitulate the findings of [15,14]. They are proved with a
multi-modal version of SML, but all our results and methods are easily general-
izable to this multi-modal setting.

Theorem 1 ([15,14]). Themodel-checking problem of SML is PSPACE-complete.
SML lacks the finite model property, the tree-model property and its satisfiability
problem is undecidable.
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2.3 A Standard Translation for SML

A standard translation for SML was first sketched in the technical report [15].
In this section we describe such translation and its correctness in detail. This is
essential to prepare the later sections of the article.

Setting up the Translation. In order to define a standard translation from
the language of SML to the free variable fragment of FOL with equality one needs
to keep track of the changes that the sabotage operators introduce in the model.

This can be achieved by indexing the standard translation with a set E con-
sisting of pairs of variables. The idea is that when the standard translation is
applied to the outermost operator of a given formula, this set is empty. As the
analysis proceeds towards inner operators, each sabotage operator � in the for-
mula will introduce a new pair of variables in E, which will be bound by an
existential quantifier. Here is the formal definition:

Definition 1 (Standard Translation for SML). Let E be a set of pairs (y, z)
of variables—edges—and x be a designated variable. The translation STE

x :
Ls −→ L1 is recursively defined as follows:

STE
x (p) = P (x)

STE
x (⊥) = x = x

STE
x (¬ϕ) = ¬STE

x (ϕ)

STE
x (ϕ1 ∧ ϕ2) = STE

x (ϕ1) ∧ STE
x (ϕ2)

STE
x (♦ϕ) = ∃y

⎛

⎝xRy ∧
∧

(v,w)∈E

¬(x = v ∧ y = w) ∧ STE
y (ϕ)

⎞

⎠

STE
x (�ϕ) = ∃y, z

⎛

⎝yRz ∧
∧

(v,w)∈E

¬(y = v ∧ z = w) ∧ STE∪{(y,z)}
x (ϕ)

⎞

⎠

The key clauses concern ♦-formulae and �-formulae. Let us start with the latter.
Formula �ϕ is translated as the first order formula stating the following: that
there exists some R-edge denoted by (y, z); that such edge is different from any
edge possibly denoted by the pairs in E; that the translation of ϕ should now
be carried out with respect to the set E ∪ {(y, z)}; and that this translation is
realized at x.

As to the former clause, it says that formula ♦ϕ is translated as the first
order formula with x free, which states the existence of a state y accessible from
x via an edge which is different from all the edges in the set E, and that the
translation of ϕ is realized at y.

Setting up the translation like this allows one to book-keep the removal of
edges via E. The removal of edges is handled by imposing the existence of states
which are different from the ones reachable via the ‘removed’ edges. In other
words edge removal is simulated by imposing the existence of edges which are
then not used to interpret inner modal operators.
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It is important to notice the following feature of the translation. Depending
on the chosen E, STE can possibly yield formulae with several free variables,

e.g.: ST
(v,w)
x ♦p = ∃y (xRy ∧ ¬(x = v ∧ y = w) ∧ p) . However, if STE is applied

to a formula ϕ by setting E = ∅, that is to say, if the translation is initiated
with an empty E, then, at each successive application of STE to subformulae of
ϕ, the variables occurring in W will be bound by some quantifiers introduced at
previous steps. For any ϕ, ST ∅

x (ϕ) yields a FOL formula with only x free.

Correctness of the Translation. We prove now the correctness of the trans-
lation proposed in Definition 1.

Theorem 2. Let M, w be a pointed model and ϕ ∈ Ls:

M, w |= ϕ ⇐⇒ M |= ST ∅
x (ϕ)[w]

Proof (Sketch). By induction on the structure of ϕ. We omit the Boolean and
modal cases. The case for the sabotage operator � is proven by the following
series of equivalences:

M, w |= �ϕ ⇐⇒ M, w
�−→ M′, w |= ϕ semantics of � (1)

⇐⇒ M, w
�−→ M′ |= ST ∅

x (ϕ)[w] IH

⇐⇒ M |= ∃y, z
(
yRz ∧ ST {(y,z)}

x (ϕ)[w]
)

sem. of � (1) and Def. 1

⇐⇒ M |= ST ∅
x (�ϕ)[w] Def. 1 ��

We conclude the section with the following observation:

Proposition 1. SML is not contained in any fixed variable fragment of FOL.

Proof. We show SML contains formulae that are not definable in any fixed vari-
able fragment of FOL. Consider the above FOL formulae with counting quantifier
of Expression (2) with 1 ≤ n. Clearly, for each integer n, Expression (2) is de-
finable in FOL (without counting quantifiers) using a fixed number of variables.
But no fixed variable fragment can define Expression (2) for all integers n. Since
Expression (2) is equivalent to (3) it follows that although SML is FOL-definable
(Corollary 2) it is not definable in any fixed variable fragment of FOL. ��

3 Bisimulation for SML

In this section, we introduce a notion of bisimulation for SML.

3.1 Sabotage Bisimulation

Definition 2 (s-bisimulation). Let M1 = (W1, R1, V1) and M2 = (W2, R2, V2)
be two Kripke models. A non-empty relation Z ⊆ r∗(M1, w) × r∗(M2, v) is an
s-bisimulation between the two pointed models (M1, w) and (M2, v)—notation,
Z : (M1, w) �s (M2, v)—if the following conditions are satisfied:
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Atom: If (M1, w)Z(M2, v) then M1, w |= p iff M2, v |= p, for any atom p.
Zig♦: If (M1, w)Z(M2, v) and there exists w′ ∈ W1 s.t. wR1w

′ then there exists
v′ ∈ W2 s.t. vR2v

′ and (M1, w
′)Z(M2, v

′);
Zag♦: If (M1, w)Z(M2, v) and there exists v′ ∈ Ss s.t. vR1v

′ then there exists
w′ ∈ W1 s.t. wR1w

′ and (M1, w
′)Z(M2, v

′);
Zig�: If (M1, w)Z(M2, v) and there exists M′

1 such that (M1, w)
�−→ (M′

1, w),

then there exists M′
2 such that (M2, v)

�−→ (M′
2, v) and (M′

1, w)Z(M′
2, v);

Zag�: If (M1, w)Z(M2, v) and there exists M′
2 such that (M2, v)

�−→ (M′
2, v),

then there exists M′
1 such that (M1, w)

�−→ (M′
1, w) and (M′

1, w)Z(M′
2, v).

We write (M1, w) �s (M2, v) if there exists an s-bisimulation Z s.t. (M1, w)
Z(M2, v).

It is worth spending a few words about Definition 2. The notion of s-bisimulation
strengthens the standard modal bisimulation with the ‘zig’ and ‘zag’ conditions
for the sabotage modality. Just like the sabotage modality is an ‘external’ modal-
ity so is s-bisimulation an ‘external’ notion of bisimulation. Standard bisimula-
tion keeps the model fixed and changes the evaluation point along the accessibil-
ity relation of the Kripke model, s-bisimulation keeps the evaluation point fixed
and changes the model by picking one among the sabotage-accessible ones.

3.2 Bisimulation and Modal Equivalence in SML

We first show that s-bisimulation implies SML equivalence.

Proposition 2 (�s ⊆ �s). For any two pointed models (M1, w) and (M2, v)
it holds that: (M1, w) �s (M2, v) =⇒ (M1, w) �s (M2, v).

Proof. The proof is by induction on the syntax of ϕ. Assume (M1, w1)Z(M2, w2).
Base: The Atom clause of Definition 2 covers the case of atoms and nullary op-
erators. Step: The Boolean cases are as usual. The Zig♦ and Zag♦ clauses of
Definition 2 take care of ♦-formulae in the standard way. As to �-formulae, as-

sumeM1, w1 |= �ϕ. By the semantics of � we have that M1
�−→ M′

1, w |= ϕ and,

by clause Zig� of Definition 2, it follows that M2
�−→ M′

2 and (M′
1, w)Z(M′

2, v).
By IH we conclude that M′

2, v |= ϕ and, consequently, M2, v |= �ϕ. Similarly,
from M2, v |= �ϕ we conclude M1, w |= �ϕ by clause Zag� of Definition 2. ��

Just like for the standard modal language, the converse of Proposition 2 can
be proven under the assumption that the models at issue are ω-saturated. Before
introducing such notion let us fix some notation. Given a finite set Y , the ex-
pansion of L1 with a finite set of constants Y is denoted L1

Y , and the expansion
of a Kripke model M to L1

Y is denoted MY .
2

Definition 3 (ω-saturation). A model M = (W,R, V ) is ω-saturated if, and
only if, for every Y ⊆ W such that |Y | < ω, the expansion MY realizes every
set Γ (x) of L1

Y -formulae whose finite subsets Γ ′(x) ⊆ Γ (x) are all realized in
MY .

2 For more on ω-saturation we refer the reader to [4, Ch. 2] and [9, Ch. 2].
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Intuitively, a model M is ω-saturated if for any set of formulae Γ (x, y1, . . . , yn)
over a finite set of variables, once some interpretation of y1, . . . , yn is fixed to,
e.g., w1, . . . , wn, and all finite subsets of Γ (x)[w1, . . . , wn] are realizable in M,
then the whole of Γ (x)[w1, . . . , wn] is realizable in M. From a modal point of
view, Definition 3 requires that if for any subset of Γ there are accessible states
satisfying it at the evaluation point, then there are accessible states satisfying
the whole of Γ at the evaluation point. This is precisely the property used in
the proof of the following proposition.

Proposition 3 (�s ⊆ �s). For any two ω-saturated pointed models (M1, w1)
and (M2, w2) it holds that: (M1, w1) �s (M2, w2) =⇒ (M1, w1) �s (M2, w2).

Proof. It suffices to show that�s is an s-bisimulation (Definition 2). Base: The
condition Atom is straightforwardly satisfied. Step: The proof for conditions
Zig♦ and Zag♦ proceeds as usual for basic modal languages. We prove that the

condition Zig� is satisfied. Assume (M1, w1) �s (M2, w2) and (M1, w1)
�−→

(M′
1, w1). We show that there exists (M′

2, w2) such that (M2, w2)
�−→ (M′

2, w2)
and (M′

1, w1) �s (M′
2, w2). We have that for any finite Γ ⊆ T

s(M′
1, w1) the

following sequence of equivalences holds:

M1, w1 |= �
∧

Γ ⇐⇒ M2, w2 |= �
∧

Γ

⇐⇒ M2 |= ST ∅
x

(
�
∧

Γ
)
[w2]

⇐⇒ M2 |= ∃y, z
(
yRz ∧ ST {(y,z)}

x

(∧
Γ
))

[w2]

The first equivalence holds by the assumption of sabotage equivalence between
(M1, w1) and (M2, w2). The second one follows by Theorem 2 and the third one
by Definition 1. From this, by ω-saturation of M2 we can conclude that:

there are y, z ∈ M2 such that yRz and M2 |= ST {(y,z)}
x (Ts(M′

1, w1)) [w2].

By Theorem 2 there exists then a model M′
2 such that M2

�−→ M′
2 and M′

2 |=
ST ∅

x (Ts(M′
1, w1)) [w2]. By Theorem 2 we conclude that (M′

1, w1) �s (M′
2, w2),

which completes the proof of the Zig� clause. In the same way it can be proven
that also the condition Zag� is satisfied. ��
We have thus established a match between sabotage modal equivalence and
sabotage bisimulation for the class of ω-saturated models.

4 Characterization of SML by Invariance

In this section, we characterize SML as the one free variable fragment of FOL
which is invariant under s-bisimulation.3

3 Recall that the standard translation ST ∅ of a sabotage modal logic formula always
produces a FOL formula with only one free variable.
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Theorem 3 (Characterization of SML by s-bisimulation Invariance). An
L1-formula is equivalent to the translation of an Ls formula if, and only if, it is
invariant for sabotage bisimulation.

Proof. [Left to right] This direction follows from Proposition 2. [Right to left]
We proceed as customary. Let ϕ ∈ L1 with one free variable x. Assume that ϕ
is invariant under s-bisimulation and consider the following set:

C
s(ϕ) = {ST ∅

x (ψ) | ψ ∈ Ls and ϕ |= ST ∅
x (ψ)}.

The result follows from these two claims:

(i) If Cs(ϕ) |= ϕ then ϕ is equivalent to the translation of an Ls-formula.
(ii) It holds that Cs(ϕ) |= ϕ, i.e., for any pointed modelM, w: ifM |= C

s(ϕ)[w]
then M |= ϕ[w].

As to (i). Assume that C
s(ϕ) |= ϕ. From the deduction and compactness

theorems of FOL we have that |= ∧
Γ → ϕ for some finite Γ ⊂ C

s(ϕ). The
converse holds by the definition of C

s(ϕ): |= ϕ → ∧
Γ . We thus have that

|= ϕ ↔ ∧
Γ proving the claim.

As to (ii). Take a pointed model M, w such that M |= C
s(ϕ)[w] and consider

its sabotage modal theory Ts(M, w). Now consider the setΣ = ST ∅
x (T

s(M, w))∪
{ϕ}. We proceed by showing that:

(a) Σ is consistent;
(b) M |= ϕ[w], thus proving claim (ii).

To prove (a) assume, towards a contradiction, that Σ is inconsistent. By the
compactness of FOL we then obtain that |= ϕ → ¬∧

Γ for some finite Γ ∈ Σ.
But then, by the definition of Cs(ϕ), we have that ¬∧

Γ ∈ C
s(ϕ), and hence

¬∧
Γ ∈ ST ∅

x (T
s(M, w)) which is impossible as Γ ⊂ ST ∅

x (T
s(M, w)).

Now we will prove (b). As Σ is consistent, it can be realized by a pointed
model, which we call M′, w′. Observe, first of all, that M, w �s M′, w′ as
they both have the same sabotage modal theory. Now take two ω-saturated
elementary extensions (Mω, w) and (M′

ω, w
′) of (M, w) and (M′, w′). That

such extensions exist can be proven by a chain construction argument (see [9,
Proposition 3.2.6]). By the invariance of FOL under elementary extensions, since
M′ |= ϕ[w] (by the construction of Σ) we can conclude that M′

ω |= ϕ[w]. From
this, by the assumption that ϕ is invariant for s-bisimulation and Proposition 3,
we conclude that Mω |= ϕ(x)[w] and again, by elementary extension, that M |=
ϕ(x)[w], which establishes claim (ii) and completes the proof. ��

Definable and undefinable properties in SML. So which FOL properties belong
to the fragment identified by Theorem 3 and which ones do not? We provide
examples of SML-definable and undefinable (at model level) properties.

Example 1 (Counting successors). Consider the FOL property “there exist at
most n successors” (2). This property is not bisimulation invariant, but it is
invariant with respect to sabotage bisimulation. It is therefore definable in SML
(by formula (3)).



Sabotage Modal Logic: Some Model and Proof Theoretic Aspects 9

a

b c

d

b′

d′

c′

a′ a′′

Fig. 1. Two s-bisimilar models (s-bisimulation rendered by the dashed lines). At state
d the property “all successors have one same successor” is true. It fails at state d′.

1 2 3 4 . . .

1′ 2′ 3′ 4′ . . .

Fig. 2. Sabotage bisimulation between two frames (dashed lines). Only the part of
the s-bisimulation relation originating in points 1 and 2′ is depicted. The top frame
is F = 〈N,≥〉 (transitive edges are omitted) and the bottom model is F ′ = 〈N, >〉
(transitive edges are omitted).

Example 2 (Confluence). Consider the FOL property “all successors have one
same successor”. The property is not invariant for sabotage bisimulation. It is
therefore not definable in SML. See Figure 1 for an illustration.

Example 3 (Reflexive states). Consider the FOL property xRx. This property is
not invariant with respect to sabotage bisimulation. To witness this fact take
two pointed models built on the set of natural numbers (with 0) where the point
of evaluation is set at 0 and the accessibility relations are: on the first model
the greater or equal relation (hence reflexive), and on the second one the strictly
greater relation (hence irreflexive). That is: M = 〈N,≥〉 and M′ = 〈N, >〉.
We have that 〈M, 0〉 �s 〈M′, 0〉. Figure 2 depicts (part of) a relation which
is a (standard) bisimulation Z between the two models and which in addition
has the property that any edge deletion on one model can be ‘mirrored’ on
the other model obtaining pointed models that are still connected by Z (recall
Definition 2). In particular observe that the deletion of a reflexive edge in M at
point i can be ‘mirrored’ by the deletion of edge (i, i+ 1) in M′ (note that the
accessibility relations are transitive in both models). However, M |= xRx[0] and
M′ |= xRx[0]. Property xRx is therefore not definable in SML.

5 Tableau Method for SML

Since SML is not invariant under (standard) bisimulation [14], it is clear that the
sort of reduction argument normally used to obtain sound and complete axiom
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systems for logics of model update (cf. [10]) can not be applied as that would
imply an embedding of SML into logic K. It is therefore natural to attempt a
semantics-driven approach to the proof theory of SML, like a tableau method.

Moreover, SML does not have the tree-model property: there are specific SML
formulae satisfied in Kripke models whose underlying frames can not be trees.
For example, the formula ♦� ∧ �♦� ∧ ��⊥ is true in a model if and only if
its underlying frame consists of one reflexive point. Hence, the labeled tableau
system for logic K has to be adapted for SML.

Definition 4 (Label, Labeled Formula and Relation Term). Let S be an
infinite set whose elements are called labels. An extended label is an expression
of the form �E where � ∈ S and E is a finite set of pairs of S. A labeled formula
is an expression of the form (�E ϕ) where �E is a label and ϕ ∈ Ls. A relation
term is an expression of the form (R �1 �2) where �1, �2 ∈ S.

Input: A formula ϕ ∈ Ls.

Output: A tableau T for ϕ: each branch may be infinite, finite and labeled open,
or finite and labeled closed.

1. Initially, T is a tree consisting of a single root node labeled with (�∅ ϕ).
2. Repeat the following steps as long as possible:

(a) Choose a branch which is neither closed nor open and choose a labeled
formula (�E ψ) (or a pair of labeled formula (�E ψ) and relation term
(R �1 �2)) not selected before on this branch.

(b) Apply the appropriate tableau rule of Figure 4 to (�E ψ) (or the pair
(�E ψ), (R �1 �2)):
– if the tableau rule is rule ¬∧ (or rules ♦, �), add two successor nodes

(resp. n + 1, n successor nodes) to the branch labeled with the in-
stantiations of the denominators of that rule,

– otherwise, add a unique successor node labeled with the instantiation
of the denominator(s) of that rule.

(c) i. Label by × (closed) the (new) branches which contain two labeled
formulae (�E p) and (�F ¬p) (where E and F may possibly be differ-
ent sets) or two labeled formulae (�E ϕ) and (�E ¬ϕ).

ii. Label by � (open) the (new) branches where there are no more for-
mulae to decompose.

Fig. 3. Construction of a tableau.

Definition 5 (Tableau). A (labeled) tableau is a tree whose nodes are labeled
with labeled formulae or relation terms. The tableau tree for a formula is con-
structed as shown in the algorithm of Figure 3. In the tableau rules of Figure 4,
the formulae above the horizontal lines are called numerators and those below
are called denominators. A tableau closes when all its branches are closed. A
branch is open when it is infinite or it terminates in a leaf labeled open.
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(�E ϕ ∧ ψ)

(�E ϕ) (�E ψ)
∧

(�E ¬(ϕ ∧ ψ))

(�E ¬ϕ) | (�E ¬ψ)
¬∧

(�E ¬¬ϕ)
(�E ϕ)

¬¬

(�E1 ¬♦ϕ) (R �1 �2)

(�E2 ¬ϕ)
¬♦

(�E ¬�ϕ) (R �1 �2)

(�E∪{(�1,�2)} ¬ϕ)
¬�

where (�1, �2) /∈ E in both rules above.

(�E ♦ϕ)
(R � �1)(�

E
1 ϕ) | . . . | (R � �n)(�

E
n ϕ) | (R � �n+1)(�

E
n+1 ϕ)

♦

where {�1, . . . , �n} are all the labels occurring in the current branch such that
(�, �i) /∈ E for all i ∈ {1, . . . , n} and �n+1 is a ‘fresh’ label not occurring in the

current branch.

(�E �ϕ)
(R �1 �′1)(�

E∪{(�1,�′1)} ϕ) | . . . | (R �n �′n)(�
E∪{(�n,�′n)} ϕ)

�

where {(�1, �′1), . . . , (�n, �′n)} := (M ×M) ∪ {(�+, �++)} \ E, with M the set of
labels occurring in the current branch to which we add a ‘fresh’ label �∗, and

(�+, �++) is a pair of ‘fresh’ and distinct labels.

Fig. 4. Tableau rules.

The construction of a tableau may not necessarily terminate (see Example 4).
This is in line with the fact that the satisfiability problem of SML is undecidable.
Nevertheless, a tableau closes only if the construction terminates. Note that if we
remove the rules for sabotage we obtain a sound and complete tableau method
for logic K which is somewhat non-standard (and computationally demanding).

Theorem 4 (Soundness and Completeness). Let ϕ ∈ Ls. If ϕ is unsatis-
fiable, then the tableau for ϕ closes (completeness). If the tableau for ϕ closes
then ϕ is unsatisfiable (soundness).

Example 4. In Figure 5, on the right, we display the execution of the tableau
method of Figure 3 on the formula ♦�∧�♦�∧��⊥. We obtain a single open
branch (labeled with �) from which we can extract a model whose frame is a
single reflexive point. This formula is thus satisfiable, and in fact only in this
frame. In Figure 5, on the left, we show that the tableau construction may not
necessarily terminate by exhibiting an infinite branch in the tableau for the
formula ♦�∧�♦�. Even if the formula holds in pointed models having at least
two successors, our tableau method does not terminate with this formula as
input and produces a pointed model with infinitely many successors.
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(�∅1 ♦	∧ �♦	)

(�∅1 ♦	) (�∅1 �♦	)

(R �1 �2)

(�∅2 	)

(�
{(�1,�2)}
1 ♦	)

(R �1 �3)

(�
{(�1,�2)}
3 	)

(�
{(�1 �3)}
1 ♦	)

(�∅1 ♦	∧ �♦	∧ ��⊥)

(�∅1 ♦	) (�∅1 �♦	) (�∅1 ��⊥)

(R �1 �2)

(�∅2 	)

(R �1 �1)

(�∅1 	)

(�∅2 ♦	) (�∅1 ♦	)

(R �2 �3)

(�∅3 	)
(�

{(�1,�1)}
1 �⊥)

(�
{(�2,�3)}
1 �⊥)

(R �1 �3)

(�
(�1,�1)
3 	)

(R �1 �1)

(�
{(�1,�1)}
1 	)

�
(�

{(�2,�3)}
2 ⊥)

×

(�
{(�1,�1)}
3 ⊥)

×

(R �2 �1)

(�∅1 	)

(R �2 �2)

(�∅2 	)

(�
{(�2,�1)}
1 �⊥) (�

{(�2,�2)}
1 �⊥)

(�
{(�2,�1)}
2 ⊥)

×

(�
{(�2,�2)}
2 ⊥)

×

∧

♦

¬�

♦

¬�

∧

♦ ♦

¬♦ ¬♦

♦
¬�

¬�
♦ ♦

¬♦
¬♦

¬� ¬�

¬♦ ¬♦

♦ ♦

Fig. 5. An infinite branch in the tableau for ♦	 ∧ �♦	 (left), and tableau for ♦	 ∧
�♦	 ∧��⊥ (right).

6 Conclusions and Future Work

We have touched upon some model theoretic aspects of SML and fleshed out
the theory of a standard translation for SML, which was only sketched in [15].
We have studied such translation together with a notion of bisimulation tailored
to SML thereby establishing a novel characterization theorem for the logic. We
have also provided the first proof system for SML in the form of a sound and
complete tableau method.

SML remains a rather under-investigated formalismandmany natural questions
are still open. We conclude by mentioning a few. First, it is unclear to what ex-
tent standard techniques of modal correspondence theory (see [4, Ch. 3]) are ap-
plicable to SML. In particular, can the Sahlqvist theorem be extended to SML?
Second, the set of valid formulae of SML is not closed under uniform substitution
(e.g., p ↔ �p). Is the set of schematic validities of SML decidable? Is it axioma-
tizable? Third, SML is not a well-behaved logic (recall Theorem 1). The fact that
edge deletion is arbitrary seems to be the key feature that sets SML apart from bet-
ter behaved logics in the dynamic epistemic logic landscape where deletions, even
of a very general kind, are definable (e.g., [8]). Are there natural restrictions on
the semantics of SML (e.g., ‘localized’ edge deletion) which yield better behaved
variants? Finally, the notion of sabotage bisimulation suggests a natural opera-
tionalization of equivalence in terms of model comparison games. How such games
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relate to the original sabotage game of [6] and what further insights they can give
into SML are also worthwhile lines of research.
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1 Introduction

Game theoretical semantics suggests a very intuitive approach to formal seman-
tics. The semantic verification game for classical logic is played by two players,
verifier and falsifier who we call Heloise and Abelard respectively. The goal of
Heloise in the game is to verify the truth of a given formula in a given model
whereas for Abelard it is to falsify it. The rules are specified syntactically based
on the form of the formula. During the game, the given formula is broken into
subformulas step by step by the players. The game terminates when it reaches
the propositional literals and when there is no move to make. If the game ends up
with a propositional literal which is true in the model in question, then Heloise
wins the game. Otherwise, Abelard wins. Conjunction is ssociated with Abelard,
disjunction with Heloise. That is, when the main connective is a conjunction, it
is Abelard’s turn to choose and make a move, and similarly, disjunction yields
a choice for Heloise. The negation operator switches the roles of the players:
Heloise becomes the falsifier, Abelard becomes the verifier. The major result of
this approach states that Heloise has a winning strategy if and only if the given
formula is true in the given model. The semantic verification game and its rules
are shaped by classical logic and consequently by its restrictions. In this work,
we first observe how the verification games change in non-classical, especially
propositional paraconsistent logics, and give Hintikka-style game theoretical se-
mantics for them. We will obtain games in which winning strategies for players
are not necessary and sufficient conditions for truth values of the formulas.

Game theoretical semantics (GTS, for short) was largely popularized by Hin-
tikka and Helsinki School researchers even though earlier pointers to similar ideas
can be found in Parikh [12]. An overview of the field and its relation to various
epistemic and scientific topics can be found in [15]. Moreover, [9,14,15] provide ex-
tensive surveys of GTS. A game theoretical concept of truth and its relation to win-
ning strategieswere investigatedby [3]. Pietarinen considered various non-classical
issues including partiality and non-competetive games within the framework of
GTS with some connections to the Kleene logic without focusing on particular
(paraconsistent) logics [13,16,23]. Hintikka and Sandu discussed non-classicality
in GTS also without specifically offering any insight on paraconsistency [9,14]. Tu-
lenheimo studied languages with two negation signs, which can bear some resem-
bles to paraconsistent ideas on weak and strong negations [26]. Additionally, there
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were some technical work discussing the intersection of GTS and intuitionism in-
cluding some work on type-theoretical foundations [21]. An epistemic, first-order
extension of GTS, called “Independence-Friendly” logic, was suggested by Hin-
tikka and Sandu relating GTS to Henkin quantifiers [8,11]. Some discussions on
intuitionism from the viewpoint of GTS are worth noting. Tennant argued that
some aspects of GTS do not work intuitionistically [25]. Similarly, Hintikka noted
that the law of excluded middle may not hold in some instances since the lack of
a winning strategy for a player does not entail the existence of a winning strategy
for the other player [7]. However, Hintikka himself, perhaps with the exception of
independence-friendly logic, is not very clear on GTS and intuitionism, especially
when it comes to negation [25]. GTS relates directly to various issues in program-
ming languages, yet, this will not be our focus here.

In this work, we consider propositional paraconsistent logics. We define para-
consistent logic as any formal system that does not satisfy the explosion prin-
ciple: ϕ,¬ϕ � ψ for any ϕ, ψ. There exists a wide variety of paraconsistent
logics, and there are numerous ways to construct them [5,18,19]. Apart from its
proof-theoretical definition, paraconsistency can also be described semantically
suggesting that in paraconsistent logic some formulas and their negations can
both be true.

Apart from studying the underlying logic, GTS can also be approached from a
game theoretical perspective. It is then worthwhile to consider verification games
where i) Abelard and Heloise both may win, ii) Abelard and Heloise both may
lose, iii) Heloise may win, Abelard may not lose, iv) Abelard may win, Heloise
may not lose, v) There is a tie, vi) There is an additional player, vii) Players do
not take turns. Such different possibilities can occur, for instance, when both p
and ¬p are true, so that both players can have winning strategies. We can also
imagine verification games with additional truth values and additional players
beyond verifiers and falsifiers, and also construct games where players may play
simultaneously.

This paper investigates the logical conditions which entail such game theo-
retical conditions, and aims at filling the gap in the literature between GTS
and paraconsistency. In what follows, we consider a variety of well-known para-
consistent logics, offer a game semantics for them and observe how different
logics generate different verification games. This is also important philosophi-
cally especially when winning strategies are seen as constructive proofs for truth
in an intuitionistic sense or when they are seen as verifications [3]. Therefore,
by focusing on inconsistent formulas and associated winning strategies, we offer
(constructive) proofs for inconsistencies (cf. appendix) and expand the compu-
tational discussions on the connection between proofs, strategies and truth.

2 Game Semantics for Logic of Paradox

Logic of paradox (LP, for short) introduces an additional truth value P , called
paradoxical, which intuitively stands for both true and false [17].
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LP is a conservative extension of the classical logic, thus preserves the clas-
sical truth. The logics LP and Kleene’s three valued system K3 have the same
truth tables. However, they differ on the truth values that they preserve in
valid inferences, and how they read P . It is read as over-valuation in LP and
as under-valuation in K3. The truth values that are preserved in validities are
called designated truth values [20]. In LP, it is the set {T, P}; in K3, it is the
set {T }. Designated truth values can be thought of as extensions of the classical
notion of truth. Even if the truth tables of two logics are the same, different
sets of designated truth values produce different sets of validities, thus different
logics. For instance, p ∨ ¬p is a theorem in LP, but not in K3.

¬
T F
F T
P P

∧ T P F

T T P F
P P P F
F F F F

∨ T P F

T T T T
P T P P
F T P F

Fig. 1. The truth table for LP and K3.

We stipulate that the introduction of the third truth value requires an addi-
tional player that we call Astrolabe after Abelard and Heloise’s son. Astrolabe
is the paradoxifier in the game forcing the game to an end with P .

In GTS for LP, the first problem is to determine the turns of the players at
each connective. For instance, if the formula T ∧ P is considered, the problem
becomes evident. In this quick game, if we assume that it is Abelard’s turn then
he will not have a move that can bring him a win. From the truth table, it
can be seen that the formula evaluates to P , so Astrolabe can be expected to
have a winning strategy. In order to make it possible, then, Astrolabe must be
allowed to make a move at a conjunction, too. Similarly, if F ∨ P is considered,
which evaluates to P , Eloise cannot make a move that can bring him a win, and
Astrolabe needs to be given a turn to make a move to win the game. Therefore, we
associate disjunction with Heloise and Astrolabe, and conjunction with Abelard
and Astrolabe. This modification introduces parallel play where the players may
make moves in a parallel, concurrent fashion. In the case of a negation, Heloise
and Abelard will switch their role, and Astrolabe will keep his role as P is a fixed-
point for negation in LP. Astrolabe’s role always remains as the paradoxifier.

Let us now formally define GTS for LP following the terminology in [14].
First, we take the language L of propositional logic with its standard signature.
A model M is a tuple (S, v) where S is a non-empty domain on which the game
is played, and the valuation function v assigns the terms in L to truth values in
the logic. For simplicity, we assume L does not have → nor ↔. We define the
verification game as a tuple Γ = (π, ρ, σ, δ) where π is the set of players, ρ is
the set of well-defined game rules, σ is the set of positions, and δ is the set of
designated truth values. The set of positions is determined by the subformulas
of the given formula and remains unchanged in the logics we discuss as they use
the same propositional syntax. We embed the turn function at the positions into
the rules of the game for simplicity. A semantic verification game is defined as
Γ (M,ϕ) for a game Γ , model M and a formula ϕ ∈ L. A strategy for a player
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is a set of rules that tells him which move to make at each position where it
is his turn. A winning strategy is the one that guarantees a win for the player
regardless of the moves of the opponent(s). A winning strategy for a player does
not necessarily entail the lack of a winning strategy for the opponent(s). Let us
now reconsider the following example before determining the π and ρ for LP.

Example 1. Consider the formula (P ∧T )∨(P ∧F ) which evaluates to P . In this
game, Astrolabe has a winning strategy: at each end-node (P ∧T and P ∧F ), he
selects P . Here, we also observe that Abelard being stuck at some states (such
as P ∧ T ) does not necessarily entail a win for neither of the other players.

(P ∧ T ) ∨ (P ∧ F )

Heloise

P ∧ T

Abelard

P T

Astrolabe

P T

P ∧ F

Abelard

P F

Astrolabe

P F

Astrolabe

P ∧ T

Abelard

P T

Astrolabe

P T

P ∧ F

Abelard

P F

Astrolabe

P F

We call the verification game for LP as GTSLP. GTSLP is a non-zero sum
verification game where more than one player may have a winning strategy, and
making the opponent lose does not necessarily entail that it is a win for the
player himself. Also, as we shall see, in GTSLP admitting winning strategies
does not necessarily entail the truth value of the formula in question.

Definition 1. The tuple ΓLP = (π, ρ, σ, δ) is an LP verification game for LP
where π = {Astrolabe, Heloise, Abelard}, σ is as in classical logic, δ is {T, P}
and ρ is given as follows inductively for a game ΓLP(M,ϕ).
— If ϕ is atomic, the game terminates, and Heloise wins if ϕ is true, Abelard
wins if ϕ is false and Astrolabe wins if ϕ is paradoxical,
— if ϕ = ¬ψ, Abelard and Heloise switch roles, Astrolabe keeps his role, and
the game continues as ΓLP(M,ψ),
— if ϕ = χ∧ψ, Abelard and Astrolabe choose between χ and ψ simultaneously,
— if ϕ = χ∨ψ, Heloise and Astrolabe choose between χ and ψ simultaneously.

Correctness theorem for GTSLP follows.

Theorem 1. In a GTSLP verification game ΓLP(M,ϕ)
— Heloise has a winning strategy if ϕ is true in M ,
— Abelard has a winning strategy if ϕ is false in M ,
— Astrolabe has a winning strategy if ϕ is paradoxical in M .

LP distinguishes different trues and falses: trues that are only true (T ), falses
that are only false (F ), and trues that are also false (P ) and falses that are
also ture (P ). In GTS, this carries over to games allowing Astrolabe making
moves alongside Heloise and Abelard. In, GTSLP there are winning strategies
that causes a loss for the opponent, and there are winning strategies do not.
Additionally, there are winning strategies that cannot guarantee the logical truth
of formulas. A game for P ∧ F illustrate this point, where both Abelard and
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Astrolabe can have a winning strategy. But, this does not directly say anything
about the truth value of P ∧F . Therefore, in GTSLP, the immediate connection
between the existence of winning strategies and truth values becomes slightly
more complicated as the following theorem identifies.

Theorem 2. In a GTSLP verification game ΓLP(M,ϕ),
— If Heloise has a winning strategy, then ϕ is true in M ;
— If Abelard has a winning strategy, then ϕ is false in M ;
— If Astrolabe has a winning strategy, but not the other players, then ϕ is
paradoxical in in M .

Theorem 2 also indicates that Astrolabe’s strategy is the strictly dominated
in a sense that if some other player also has a winning strategy, then Astrolabe’s
strategy will not bring him a win. Based on this observation, it is possible to
change some game rules in order to give a biconditional correctness theorem
for GTSLP by prioritizing some players over the others. This will allow some
players to dominate the others reflecting the truth table for LP. In this new
and extended reading of GTSLP, such a move priority is given to the parents
(Abelard and Heloise), they are let to play first, then Astrolabe makes his move.
This extension prevents parallel moves and incorporates winning strategies into
the game rules. These additional rules are given as follows.

1. For propositional letters and negation, the rules are as before.
2. Disjunction belongs to Heloise and Astrolabe; conjunction belongs to Abelard

and Astrolabe.
3. If Heloise (resp. Abelard) has a winning strategy in the sub-game they

choose, the game proceeds with her (resp. his) move.
4. Otherwise, Astrolabe makes a move.

Example 2. Let us consider the formula in Example 1. Given (P ∧T )∨ (P ∧F ),
Heloise first attempts to choose either of them only to realize that she does not
have a winning strategy in either of the sub-games with P ∧T or P ∧F . So, she
cannot make a move, and it becomes Astrolabe’s turn. Astrolabe chooses P ∧T .
Now, Abelard attempts to choose either P or T only to realize that neither
brings him a win. So, he cannot make a move. Astrolabe makes a move, chooses
P , and wins - this is Astrolabe’s winning strategy. If Astrolabe chose P ∧F , then
first Abelard would make a move and choose F for a win. Yet, Abelard still does
not have a winning strategy in this game.

As we mentioned earlier, such a twist on GTSLP is ad-hoc. It incorporates
possessing winning-strategies, which is a meta-logical condition, into game rules,
which are supposed to be syntactic. This modification naturally provides a bi-
conditional Theorem 1 at the expense of violating the pure syntacticality of the
game rules, resulting in completely ad-hoc game rules.

3 Game Semantics for First-Degree Entailment

Semantic evaluations are generally thought of as functions from logical formulas
to truth values. This ensures that each and every formula is assigned a unique
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truth value. However, it is possible to replace the valuation function with a
valuation relation which can produce multiple truth values for logical formulas.
The system obtained in this manner is called First-degree entailment (FDE, for
short), and is due to Dunn [1,6].

For the given propositional language L, the valuation relation r is defined
on L × {0, 1}. By ϕr∅, we will denote the situation where ϕ is not related to
any truth value. By ϕr{0, 1}, we denote the situation when ϕ is related to both
truth values. FDE is a paraconsistent (inconsistency-tolerant) and paracomplete
(incompleteness-tolerant) logic. For formulas ϕ, ψ ∈ L, the valuation r is defined
inductively as follows.

– ¬ϕr1 iff ϕr0
– ¬ϕr0 iff ϕr1
– (ϕ ∧ ψ)r1 iff ϕr1 and ψr1

– (ϕ ∧ ψ)r0 iff ϕr0 or ψr0
– (ϕ ∨ ψ)r1 iff ϕr1 or ψr1
– (ϕ ∨ ψ)r0 iff ϕr0 and ψr0

Notice that LP can be obtained from FDE by imposing a restriction on FDE
that no formula gets the truth value ∅. We denote the GTS for FDE as GTSFDE.

What does the relational semantics correspond to in verification games? If
the truth value P in LP can intuitively be thought of as both true and false,
and if this allows concurrent moves in GTSLP, then the same approach works
in GTSFDE as well. In FDE, unlike LP, formulas can have no truth value which
suggests that neither Heloise nor Abelard may have a winning strategy. Also, in
FDE, both players can have winning strategies. We define the verification games
for FDE in the standard fashion as follows.

Definition 2. The tuple ΓFDE = (π, ρ, σ, δ) is a FDE verification game where
π = {Heloise, Abelard}, σ is as in classical logic, δ is {T } and ρ is given as
follows inductively for a game ΓFDE(M,ϕ).
— If ϕ is atomic, the game terminates, and Heloise wins if ϕr1, Abelard wins
if ϕr0, neither wins if ϕr∅,
— if ϕ = ¬ψ, players switch roles, and the game continues as ΓFDE(M,ψ),
— if ϕ = χ ∧ ψ, Abelard and Heloise choose between χ and ψ simultaneously,
— if ϕ = χ ∨ ψ, Abelard and Heloise choose between χ and ψ simultaneously.

The above rules determines the turn function for the GTSFDE which suggests
that both players make moves at all binary connectives. A simple example can
be helpful.

Example 3. Consider the formula p∧ (q ∨ r) where pr{0, 1}, qr∅ and rr0. Then,
this formula evaluates to 0. In the verification game, Abelard first chooses q ∨ r,
and then chooses r. Alternatively, he can also choose p as his winning strategy,
yet this also gives Heloise a win. This is also another case where existence of
winning strategies do not guarantee the truth value of the formula in question.

The correctness theorem for GTSFDE is given as follows.

Theorem 3. In a game ΓFDE(M,ϕ), we have the following:
— Heloise has a winning strategy if ϕr1,
— Abelard has a winning strategy if ϕr0,
— Either of the players or none of the players has a winning strategy if ϕr∅.
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The connection between FDE and LP can further be explicated as follows.

Corollary 1. For an LP model M and a formula ϕ, let M ′ be the model obtained
from M by maintaining the same carrier set and replacing the valuation function
of LP with the valuation relation of FDE as follows: T 	→ 1, F 	→ 0 and P 	→
{0, 1}. If Heloise or Abelard has a winning strategy in ΓLP(M,ϕ), then Heloise
or Abelard has a winning strategy in ΓFDE(M

′, ϕ) respectively. If only Astrolabe
has a winning strategy in ΓLP(M,ϕ), then both Heloise and Abelard have winning
strategies in ΓFDE(M

′, ϕ).

The converse of Corollary 1 is not true. In GTSFDE, for a game T ∧ F , both
Abelard and Heloise have winning strategies. Yet, in LP for a game T ∧ F ,
Astrolabe does not have a winning strategy.

The lack of biconditional correctness theorem for GTSFDE can be seen more
clearly once LP is considered as a restricted case of FDE.

4 Game Semantics for A Relevant Logic

Relevant logics define negation differently by resorting to possible worlds modal-
izing the negation operator. The idea is due to Routley and Routley, and we will
focus on their logic [22]. A Routley model is a structure (W,#, v) where W is a
set of possible worlds, # is a map from W to itself, and v is a valuation function
defined in the standard way. In this system, the semantics for disjunction and
conjunction is local, whereas for negation, possible worlds are needed.

v(w,¬ϕ) = 1 iff v(#w,ϕ) = 0
v(w,ϕ ∧ ψ) = 1 iff v(w,ϕ) = 1 and v(w,ψ) = 1
v(w,ϕ ∨ ψ) = 1 iff v(w,ϕ) = 1 or v(w,ψ) = 1

We call Routleys’ system RR, and denote its GTS as GTSRR. Notice that
if #w = w, then we have the classical truth conditions. Further connections
between RR and FDE or LP can be found in [19]. We define semantical games
in RR as ΓRR(M,ϕ,w) where M,ϕ are as before, and w ∈ W is a possible world.

Definition 3. The tuple ΓRR = (π, ρ, σ, δ) is a RR verification game where
π = {Heloise, Abelard}, σ is in the form of (ϕ,w) for ϕ ∈ L and w ∈ W , δ is
{T } and ρ is given as follows inductively for a game ΓRR(M,ϕ,w) where w is a
possible world.
– If ϕ is atomic, the game terminates, and Heloise wins if ϕ is true, Abelard
wins if ϕ is false,
– if ϕ = ¬ψ, the players switch roles, and the game continues as ΓRR(M,ψ,#w),
– if ϕ = χ ∧ ψ, Abelard chooses between χ and ψ,
– if ϕ = χ ∨ ψ, Heloise chooses between χ and ψ.

The correctness theorem is given as follows.

Theorem 4. In a game ΓRR(M,ϕ,w), Heloise has a winning strategy if ϕ is
true, and Abelard has a winning strategy if ϕ is false.
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The converse of Theorem 4 is not correct as the # operator can create incon-
sistencies. In order to see this, let w |= ¬ϕ and w′ |= ϕ. If #(w) = w′, then by
definition ϕ is both true and false at w′ satisfying an inconsistency.

5 Translating Games

It is possible to give a translation between three-valued logics and modal logic
S5 [10]. Modal logic S5 is defined as a system (W,R, V ) where W is a non-empty
set, R is an equivalence relation on W ×W and V is the valuation.

Now, we give a translation of LP (and K3) into S5 via GTS. The translation
is built on the following observation: “In an S5-model there are three mutually
exclusive and jointly exhaustive possibilities for each atomic formula p: either p
is true in all possible worlds, or p is true in some possible worlds and false in
others, or p is false in all possible worlds” [10].

Given the propositional language L, we extend it with the modal symbols �
and ♦ and close it under the standard rules to obtain the modal language LM .
GTS for modal logic is well-known. “Diamond” formulas are assigned to Heloise
whereas the “Box” formulas are assigned to Abelard. Also, similar to the RR,
formulas in LM are associated with a possible world, and when a move is made
from a modal formula, the next possible world is determined by R.

The translations TrLP : L 	→ LM and TrK3 : L 	→ LM for LP and K3
respectively are given as follows where p is a propositional variable [10].

TrLP (p) = ♦p
TrK3(p) = �p
TrLP (¬ϕ) = ¬TrK3(ϕ)
TrK3(¬ϕ) = ¬TrLP (ϕ)

TrLP (ϕ ∧ ψ) = TrLP (ϕ) ∧ TrLP (ψ)
TrK3(ϕ ∧ ψ) = TrK3(ϕ) ∧ TrK3(ψ)
TrLP (ϕ ∨ ψ) = TrLP (ϕ) ∨ TrLP (ψ)
TrK3(ϕ ∨ ψ) = TrK3(ϕ) ∨ TrK3(ψ)

The translation is a co-induction, and it generates fully modalized formulas.
As the authors underlined, for fully modalized formulas in S5, a formula is true
somewhere in an S5 model if and only if it is true everywhere in the model. This
fact is due to the frame properties of S5 [10].

Given ΓLP = (π, ρ, σ, δ), we define ΓS5 = (π′, ρ′, σ′, δ′) as follows: π′ =
{Heloise,Abelard}, ρ and σ′ are the rules and positions of verifications games of
S5, and δ′ = {1}. The correctness of the translation for LP is as follows.

Theorem 5. Let ΓLP(M,ϕ) be given. Then,
– if Heloise has a winning strategy in ΓLP(M,ϕ), then she has a winning strategy
in ΓS5(M,TrLP (ϕ)),
– if Abelard has a winning strategy in ΓLP(M,ϕ), then he has a winning strategy
in ΓS5(M,TrLP (ϕ)),
– if only Astrolabe has a winning strategy in ΓLP(M,ϕ), then both Abelard and
Heloise have winning strategies in ΓS5(M,TrLP (ϕ)).

For an LP valuation v, and a model M of S5, v and M are said to be TrLP -
equivalent if for all ϕ ∈ L we have (i) 1 ∈ v∗(ϕ) ⇔ M |=S5 TrLP (ϕ), and (ii)
0 ∈ v∗(ϕ) ⇔ M �|=S5 TrK3(ϕ), where v∗ is the (truth table) function based on v
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that maps formulas to truth values of LP. Based on various results in [10], we
now prove the following, the converse of Theorem 5.

Theorem 6. Let M be an S5 model, ϕ ∈ L with an associated verification game
ΓS5(M,ϕ). Then, there exists an LP model M ′ and a game ΓLP(M

′, ϕ) where,
— if Heloise has a winning strategy for ΓS5(M,ϕ) at each point in M , then
Heloise has a winning strategy in ΓLP(M

′, ϕ),
— if Abelard has a winning strategy for ΓS5(M,ϕ) at each point in M , then
Abelard has a winning strategy in ΓLP(M

′, ϕ),
— if Heloise or Abelard has a winning strategy for ΓS5(M,ϕ) at some points
but not all in M , then Astrolabe has a winning strategy in ΓLP(M

′, ϕ).

For an application of Theorem 5, consider the formula p ∨ q where p and q
have the truth values P, F respectively in LP. Then, Tr(p ∨ q) = ♦p ∨ ♦q where
p, q have the truth values {T, F}, {F} respectively in S5. Based on Theorem 5,
we expect both players to have winning strategies. First, Heloise has a winning
strategy in this game if she chooses p. Also, notice that all possible moves of
Heloise brings Abelard a win without him even not making any moves, due to
the truth values of p, q. Thus, both players have winning strategies in this game.

6 Conclusion

Giving a full picture of GTS for all paraconsistent logics goes beyond the limits
of this article. Some well-studied logics such as da Costa’s C-systems and LFIs
(Brazilian School), 4-valued Belnap logic, the modal extensions of the logics we
presented, and the preservationist approach (Canadian School) are the natural
next steps of this project [4,5,2,24].

The current work can be seen as a case for logical pluralism. The classical
GTS is essentially a very narrow and limited case with many additional and
auxiliary game theoretical and logical presuppositions. Once those assumptions
are set aside (or at least questioned) for various reasons, GTS turns out to be
expressive enough for a variety of non-classical logics as we have exemplified.
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Appendix: Proofs

Proof (Proof of Theorem 1). We start with the case for Heloise. We proceed by
induction on ϕ. Let ϕ be true in M .

If ϕ is a propositional letter p which is true in M , then Heloise wins the game
by definition, hence has a winning strategy.

Let ϕ = ¬ψ. Then, ψ is false. By the game rules, now the game continues
where Heloise is the falsifier. By the induction hypothesis (for falsifier), Heloise

http://www.illc.uva.nl/j50/.ILLC
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the falsifier has a winning strategy for ψ. Then, she has a winning strategy as
the verifier for ϕ.

Now, let ϕ be a conjunction of the form χ∧ψ. Since, ϕ is assumed to be true,
the only way to make it true is to have χ and ψ both true. Then, by the induction
hypothesis, Heloise has a winning strategy for both χ and ψ. Then, for ϕ, Abelard
and Astrolabe make moves. Yet, whichever move they make (whichever of χ or
ψ they choose), Heloise will have a winning strategy. Thus, for ϕ, she has a
winning strategy: whatever move Abelard and Astrolabe make, she has a win.

Let ϕ be a disjunction of the form χ ∨ ψ. Then, by the induction hypothesis,
Heloise has a winning strategy for either χ or ψ whichever is true. Then, choos-
ing the true disjunct is her winning strategy at ϕ, independent from whatever
Astrolabe chooses.

The case for Abelard is almost identical to that of Heloise’s, hence skipped.
For Astrolabe, we first assume that the given formula ϕ is paradoxical in M .

If ϕ is a propositional letter p which is paradoxical in M , then Astrolabe has a
winning strategy by definition. Similarly, if ϕ = ¬ψ, then, ψ is paradoxical, too.
By the game rules, Astrolabe’s rule remains the same. By the induction hypoth-
esis, he has a winning strategy for ψ, and thus for for ϕ by simply maintaining
the same role and the strategy, and proceeding with ψ.

For ϕ = χ∧ψ. Since ϕ is assumed to be paradoxical, we only have two options
for χ and ψ: (1) either one of them has the truth value P and the other has the
truth value T , (2) both have the truth value P . Therefore, Astrolabe has winning
strategy for at least one of χ and ψ, by the induction hypothesis. Then, for ϕ,
Astrolabe chooses the conjunct that has the truth value P for which he has a
winning strategy already. This forms his winning strategy for ϕ, independent
from whatever move Abelard makes.

If ϕ = χ∨ψ, then we have two options as well: (1) one of the disjuncts has the
truth value P and the other one has the truth value F , (2) both have the truth
value P . By a similar argument Astrolabe has a winning strategy for either case.

Proof (Proof of Theorem 2). The proof is by induction on ϕ for each player,
and the cases for Heloise and Abelard are very similar to the classical case.
Now, assume that for ϕ, only Astrolabe has a winning strategy. The cases for
propositional variables and negation are as above, hence skipped.

Now, let ϕ = χ ∧ ψ. If only Astrolabe has a winning strategy, this means,
Astrolabe has a winning strategy for either of the conjuncts (as he can choose
whichever he likes), say χ without loss of generality. Then, by the induction
hypothesis, χ is paradoxical. Since Abelard does not have a winning strategy,
by Theorem 1, then neither of the conjuncts is false. Thus, by the truth table
ϕ is forced to be paradoxical as χ is paradoxical. Otherwise, if Abelard had a
winning strategy, and if one of the conjuncts was F , then P ∧F would return F ,
not P disproving the claim. This is the reason why only Astrolabe is supposed
to have a winning strategy.

The case for disjunction for Astrolabe is very similar.

Proof (Proof of Theorem 3). We start with the case for Heloise. Suppose ϕr1.
The cases for propositional variables and negation are immediate. Let ϕ = χ∧ψ.
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If ϕr1, then we have both χr1 and ψr1. By the induction hypothesis, Heloise has
winning strategies for both χ and ψ. Thus, she has a winning strategy for ϕ. For
the failure of the reverse direction, assume that Heloise has a winning strategy,
that is, to choose χ (without loss of generality). Assume further that, Abelard
has a winning strategy as well, that is, to choose ψ. Then, by the indiction
hypothesis χr1 and ψr0 which forces ϕr0. Heloise’s case for disjunction is very
similar.

The interesting case is for ∅. Now, assume ϕr∅. If ϕ is a propositional vari-
able, by definition, no player wins. If ϕ = ¬ψ, then ψr∅, and by the induction
hypothesis, no player has a winning strategy.

Let ϕ = χ ∧ ψ. Then, we have two options: (1) both χr∅ and ψr∅, or (2) χr1
and ψr∅ (without loss of generality). If the prior one is the case, by the induction
hypothesis, no player has a winning strategy for χ or ψ. Thus, no player has a
winning strategy for ϕ. If the latter is the case, then Heloise can have a winning
strategy for ϕ as she can make a move at a conjunction which forms her winning
strategy for ϕ. Dually, if ϕ = χ ∨ ψ, then, we have two options: (1) both χr∅
and ψr∅, or (2) χr0 and ψr∅ (without loss of generality). If the prior one is the
case, by the same argument as above, no player has a winning strategy for ϕ. If
the latter is the case, as Abelard can make a move at a disjunction and choose
χ, then he can have a winning strategy for ϕ.

Proof (Proof of Corrolary 1). The first part about Heloise and Abelard follows
from Theorem 2 and Theorem 3. In other words, if Heloise has a winning strategy
in an LP game, then the formula is true in LP by Theorem 2. The translation
then translates T of LP to 1 of FDE. Then, by Theorem 3, Heloise has a winning
strategy in the FDE game. The argument is similar for Abelard.

If only Astrolabe has a winning strategy for the LP game for ϕ, then by
Theorem 2, ϕ is paradoxical. By the translation, then ϕ is related to both 0 and
1 in FDE. By Theorem 3, then both Heloise and Abelard has winning strategies
in the FDE game.

Proof (Proof of Theorem 4). The proof is by induction on ϕ. Let us see the case
for Heloise at w. The case for Abelard is very similar hence will be skipped.

If ϕ is a propositional letter p. Then, if p is true then, by definition, Heloise
has a winning strategy.

Let ϕ = ¬ψ. Then the game continues at # for ψ with switched roles, where
v(#w,ψ) = 0. Thus Heloise becomes falsifier. Then, by the induction hypothesis
(for Abelard), the falsifier has a winning strategy for the game at #w for ψ. Thus,
Heloise has a winning strategy at w for ¬ψ which forms her winning strategy
for ϕ. The cases for conjunction and disjunction are as expected thus omitted.

Proof (Proof of Theorem 5). The theorem is given for LP and S5. Yet, a similar
theorem for K3 and S5 can also be given. We will assume the correctness of such
a theorem for this proof as the translation co-depends on both LP and K3.

Assume that Heloise has a winning strategy for ϕ in LP. Let us proceed by
induction on ϕ. If ϕ is a propositional letter p, then p is true in LP. Then, it
translates to S5 as ♦p, which is a turn for Heloise. Then, the game in S5 starts
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by Heloise with ♦p, and she makes a move to p for which she has a winning
strategy.

For ϕ = ¬ψ, suppose Heloise has a winning strategy for ¬ψ in LP. By the
translation, she has a winning strategy for ¬TrK3(ψ) in S5. So, by the assumed
similar theorem for K3 and S5, Abelard has a winning strategy in S5 for TrK3(ψ).
Then, in S5 Heloise has a winning strategy for ¬TrK3(ψ) which is TrLP (¬ψ).
Thus, Heloise has a winning strategy for TrLP (ϕ) in S5.

The cases for conjunction and disjunction are immediate. Also the case for
Abelard is very similar, hence skipped. The case for Astrolabe is interesting.

Assume that only Astrolabe has a winning strategy for ϕ in LP. As the first
step of the induction, assume ϕ = p for a propositional variable p. So, p is
paradoxical. The translation of p into S5 is ♦p. Also, notice that for paradoxical
p, we have ¬p ≡ p. The translation of ¬p into S5 is ♦¬p. Thus, for a paradoxical
p, both players have a winning strategy in the game in S5.

Now, let ϕ = ¬ψ. Suppose that only Astrolabe has a winning strategy. By
the game rules of GTSLP, Astrolabe has a winning strategy for ψ as well as the
negation of a paradoxical formula is also paradoxical. Now, we will use the co-
inductive part of the argument. By the induction hypothesis for the same result
for K3, Abelard and Heloise have winning strategies in the translated game in
S5 for TrK3(ψ). Taking one step back, with their roles switched, both Abelard
and Heloise have winning strategies in a game for ¬TrK3(ψ), too. Then, by the
translation, they have winning strategies for TrLP (¬ψ), which is TrLP (ϕ) in S5.
A symmetric argument for the K3-S5 is straight forward.

The cases for the binary connectives are straight forward, hence skipped.

Proof (Proof of Theorem 6). In [10], while constructing the LP model based on a
given S5 model, the authors associate the propositions that are true everywhere
with the LP truth value T , the propositions that are true nowhere with F , and
the propositions that are true somewhere with P . They also show that the given
S5 model and the LP model obtained in this fashion are TrLP -equivalent [10].

Based on these observation, then, if Heloise has awinning strategy forΓS5(M,ϕ)
at all points in M , then ϕ has a truth value T in LP. By Theorem 1, Heloise has a
winning strategy in ΓLP(M

′, ϕ). Similarly, if Abelard has a winning strategy for
ΓS5(M,ϕ) at all points in M , then ϕ has a truth value F in LP. Again, by Theo-
rem 1, Abelard has a winning strategy in ΓLP(M

′, ϕ). Finally, if Astrolabe has a
winning strategy for ΓS5(M,ϕ) at some points in M , then ϕ has a truth value P
in LP. By Theorem 1, Astrolabe has a winning strategy in ΓLP(M

′, ϕ).
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This line of research originates in the work of Kirman and Sondermann [11],
which characterizes the so-called Arrow-rational social welfare functions by es-
tablishing a bijective correspondence between them and the collection of ultrafil-
ters over the set of individuals. The Kirman-Sonderman correspondence hinges
on the fact that the decisive coalitions associated with any Arrow-rational social
welfare function form an ultrafilter over the set of individuals. Herzberg and
Eckert [8] gave a very elegant generalization of the Kirman-Sondermann corre-
spondence in a model-theoretic setting by characterizing Arrow-rational social
welfare functions as exactly those defined in terms of an ultraproduct construc-
tion parametrized by the ultrafilter of their associated decisive coalitions.

In the literature on social choice, there are several ways to treat abstention1.
The first approach is to ignore any voters that abstain, and thus working in
a variable domain model (see Pivato [14]). The second approach is to treat
abstention as if the voters ranked all candidates equally. The third approach is
to treat abstention as a separate type of input that may be elicited from a voter.
This means that there are two types of inputs that voters may submit: ranking
of candidates or abstention. Our method belongs to the third approach.

In the present paper, the results in [8] are extended to a setting in which the as-
sumption that every individual votes/expresses a judgment is dropped. Allowing
the empty model to occur in profiles is a natural way to formalize the vote ab-
stention of the corresponding individual. However, the standard model-theoretic
notion of ultraproduct is not amenable to support this natural formalization of
vote abstention, given that it is enough for a coordinate to be empty for the
standard ultraproduct construction to yield the empty set/model. This would
correspond to situations in which the abstention of one voter would be enough
to declare the voting round null. While this is true in some situations, there
are many settings (e.g. referenda) in which the voting round is declared null
unless a certain quorum of voters is met. Technically, the contribution of the
present paper is based on replacing the standard model-theoretic ultraproduct
construction with a generalized one, introduced by Makkai [13] in a category-
theoretic setting. The main advantage of Makkai’s ultraproduct is that it yields
the empty model unless nonempty models occur in each coordinate belonging to
some member of its associated ultrafilter. In this respect, Makkai’s ultraproduct
reflects more faithfully than the standard one the indications of the ‘large sets’
of the ultrafilter.

We observe that, in the extended setting accounting for vote abstention, Ar-
row’s impossibility theorem strengthens. Indeed, the usual assumption, also re-
quired in [8], on the existence of three non-isomorphic models of the theory is
dropped, and replaced by the weaker requirement on the existence of two non-

1 Notice that we use the term “abstention” in a way which is different from how it
is typically used in the social choice literature. In particular, abstention does not
mean being indifferent between two options (this would correspond, in our setting,
to allowing the model associated with any voter to be a partial but not necessarily
linear order). By abstention, we mean that voters do not take part in the voting
process altogether.
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isomorphic models. This allows us to extend e.g. Arrow’s impossibility theorem
[1] to a setting of elections with only two candidates (cf. discussions at the end
of Section 2).

Finally, from a more methodological perspective, besides allowing for the ex-
tension of the results in [8] to a setting accounting for vote abstention, Makkai’s
ultraproduct construction lends itself to connecting the model-theoretic ap-
proach to judgment aggregation to the algebraic and category-theoretic ap-
proaches in [4], [7], [9] and [10]. Establishing these systematic connections is
the focus of ongoing research.

Structure of the Paper. In Section 2, preliminaries are collected about Arrow-
rational aggregators, the first leg of the generalized Kirman-Sondermann corre-
spondence is introduced, and the Arrow’s impossibility theorem for vote absten-
tion is briefly discussed. In Section 3, the generalized ultraproduct construction
is introduced as a specialization of Makkai’s general definition to the present
model-theoretic setting. In Section 4, relevant properties are collected of the
generalized ultraproduct construction. In Section 5, the second leg of the gener-
alized Kirman-Sondermann correspondence is introduced, and the proof of the
Kirman-Sondermann isomorphism is given. In Section 6, the case study of pref-
erence aggregation in the setting of vote abstention is discussed.

2 Arrow-Rational Aggregators

Fix a first-order language L, consisting of identity ≈, constant symbols c for each
element in a given non-empty set A and of relation symbols R each of which of
finite arity k = k(R). Let S denote the set of atomic L-formulas, and I the
Boolean closure of S. Fix a consistent set T of universal L-sentences, let Ω be
the class of models M of T the domain of which coincides with the subset AM of
the interpretations in M of the constant symbols in L. In what follows, we will
always consider models up to isomorphism. Hence, models in Ω can be thought of
as equivalence classes of isomorphic models. We let |Ω| denote the cardinality of
Ω modulo isomorphism. We will denote L-structures by B, and elements in Ω by
M,N , possibly with subscripts or superscripts. Sometimes, abusing notation, we
will use M,N for elements in Ω∪{∅}. We let R, . . . , c, . . . denote the symbols in
the language L and let RB, . . . , cB, . . . denote the corresponding semantic object
in the L-structure B. For each L-structure B, let AB := {cB | c constant symbol
in L}. We let |M | denote the domain of M . As usual, for any model M and
formula λ, we write M |= λ to indicate that λ is true of M .

The extra assumption that the universe of each model M in Ω is the set
AM = {cM | c is a constant symbol in L} guarantees the following

Fact 1. Any two models M1,M2 ∈ Ω ∪ {∅} such that M1 |= λ iff M2 |= λ for
any λ ∈ I are isomorphic.

Proof. The claim trivially holds both when M1 and M2 coincide with the empty
set, and when only one of the two coincides with the empty set (in the latter
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case the assumptions do not hold: indeed, the sentence c ≈ c for any constant
symbol c holds of the nonempty model and does not hold of the empty model).
If M1 and M2 are both nonempty, then their domains bijectively correspond:
indeed, |M1| = AM1 ∼= AM2 = |M2|. By definition, this bijective correspondence
identifies the interpretations of all constant symbols. Since by assumption M1 |=
R(c1, . . . ck) iff M2 |= R(c1, . . . ck) for any relation symbol R and all constant
symbols c1, . . . ck, it is a straightforward verification that this correspondence
identifies also the interpretations of each relation symbol.

Fix a non-empty set I, which we will think of as the set of individuals. The
subsets of I will be referred to as coalitions. Elements M ∈ (Ω ∪ {∅})I are the
profiles. For any such profile, and any λ ∈ I, the coalition supporting λ given M
is the set C(M,λ) := {i ∈ I | Mi |= λ}.

An aggregator is a partial map f : (Ω ∪ {∅})I → Ω ∪ {∅}. The domain of f
is denoted dom(f).

Definition 1. (cf. [8], definition before Remark 3.3) An aggregator f is Arrow-
rational if it satisfies the following conditions:

(A1) Universal Domain: dom(f) = (Ω ∪ {∅})I .
(A2) Generalized Pareto Principle: for any M ∈ dom(f) and any λ ∈ I,

if f(M) |= λ, then C(M,λ) �= ∅.

(A3) Generalized Systematicity: for all M,N ∈ dom(f) and all λ, μ ∈ I,
if C(M,λ) = C(N,μ), then f(M) |= λ iff f(N) |= μ.

The collection of Arrow-rational aggregators is denoted by AR.

Definition 2. (Decisive Coalition) For any aggregator f , a coalition C ⊆ I
is f -decisive if, for any λ ∈ I and any M ∈ dom(f),

if C = C(M,λ), then f(M) |= λ.

Let Df denote the set of the f -decisive coalitions.

The following lemma is an immediate consequence of the definitions involved:

Lemma 1. For any aggregator f satisfying (A3), any M ∈ dom(f) and λ ∈ I,
C(M,λ) ∈ Df iff f(M) |= λ.

The following lemma shows that the assignment f 	→ Df defines a map Λ :
AR → βI, where βI denotes the set of ultrafilters over I. The map Λ provides
one direction of the generalized Kirman-Sondermann correspondence we aim at
obtaining. The following lemma is a variant of Lemma 5.3 in [8], which assumes
the aggregator to be weakly Arrow-rational2 instead of Arrow-rational, as is done

2 An aggregator is weakly Arrow-rational if it satisfies conditions of (A2), (A3) of
Definition 1 and the following condition (A1’): there exist models M1,M2,M3 ∈ Ω
s.t. {M1,M2,M3}I ⊆ dom(f), and M1,M2,M3 respectively are models of three
pairwise inconsistent L-sentences.
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here. Another perhaps more interesting difference is that here we assume that
there are at least two non-isomorphic models in Ω, whereas Lemma 5.3 in [8]
assumes the existence of at least three non-isomorphic models in Ω. The proof
of this lemma can be found in an expanded version of the present paper [2].

Lemma 2. For any f ∈ AR, the collection Df is an ultrafilter over I.3

Notice that there are significant cases in which the lemma above is not implied
by Lemma 5.3 in [8]. The reason is that, in significant cases, Arrow-rationality
does not imply weak Arrow-rationality. Indeed, it was shown in [8, Remark 3.2]
that condition (A1) implies condition (A1’) if μ, ν ∈ S exist such that μ∧ν, μ∧¬ν
and ¬μ∧ν are each consistent with T . In this case, three pairwise different models
M1,M2,M3 exist in Ω such that M1 |= μ ∧ ν,M2 |= μ ∧ ¬ν and M3 |= ¬μ ∧ ν,
which then makes (A1) sufficient for (A1’). However, let us provide a significant
example in which such μ and ν do not exist, and Arrow-rationality does not imply
weak Arrow-rationality. Indeed, let L consist of one binary relation symbol <
and two constant symbols a and b. Let T be the L-theory that says that < is
a strict linear order and that there are exactly two alternatives a and b (this
example models elections with only two candidates). Then, up to isomorphism,
there are exactly two models for T . Hence, in this case, condition (A1) does
not imply condition (A1’). Moreover, the assumptions of the lemma above are
satisfied by this example, whereas those of Lemma 5.3 in [8] are not.

2.1 Arrow-type Impossibility for Vote Abstention

Definition 3. An aggregator f : (Ω ∪ {∅})I → Ω ∪ {∅} is dictatorial if there
exists some i ∈ I such that f(M) = Mi for any profile M .

Lemma 3. Any aggregator f : (Ω ∪ {∅})I → Ω∪{∅} satisfying (A3) and such
that Df is a principal ultrafilter is dictatorial.

Proof. Let i0 ∈ I be the generator of Df . It is enough to show that f(M)
is isomorphic to Mi0 for any profile M . By Fact 1, it is enough to show that
f(M) |= λ iff Mi0 |= λ for any λ ∈ I. Indeed, by Lemma 1,

f(M) |= λ iff C(M,λ) ∈ Df iff Mi0 |= λ.

As an immediate consequence of the lemmas above we obtain:

3 Recall that, for every non-empty set I , a filter D over I is a collection of subsets of
I which is closed under supersets and intersection of finitely many members. A filter
D is proper if ∅ /∈ D. An ultrafilter over I is a maximal proper filter. Maximality
can be equivalently characterized by the following conditions: (a) for any X ⊆ I , if
X /∈ D then I \X ∈ D; (b) for all X,Y ⊆ D, if X ∪ Y ∈ D, then either X ∈ D or
Y ∈ D. An ultrafilter D over I is principal if it is of the form {X ⊆ I | i0 ∈ X} for
some i0 ∈ I , and is nonprincipal otherwise. An immediate consequence is that, if I
is finite, all ultrafilters over I are principal.
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Corollary 1. If T is a universal L-theory such that |Ω| ≥ 2, then any Arrow-
rational aggregator f : (Ω ∪ {∅})I → Ω ∪ {∅} such that the ultrafilter Df is
principal is dictatorial.

The assumption |Ω| ≥ 2 in the statement of the corollary above is needed in
order to apply Lemma 2. As is well known, in the standard setting of Arrow’s
theorem, the analogous corollary fails for |Ω| = 2, the majority rule being a
counterexample. However, notice that, in the present setting in which aggrega-
tors are maps f : (Ω ∪ {∅})I → Ω ∪ {∅}, the majority rule is not guaranteed
anymore to define an aggregator. Indeed, let I = {i1, i2, i3} and A = {a, b}. Let
T be the universal theory of two-element linear orders (cf. Section 6).

Then Ω consists, up to isomorphism, of the models Ma (the one in which
a is preferred to b, that is, in which Rab is true), and Mb (the one in which
b is preferred to a, that is, in which Rba is true). No universal aggregator f :
(Ω ∪ {∅})I → Ω ∪ {∅} satisfies the following condition:

f(M) |= λ iff |{i | Mi |= λ}| > |{i | Mi |= ¬λ}|. (2.1)

Indeed, consider the input M = (Ma,Mb,∅) and the sentences Rab, Rba and
a ≡ a. Clearly, {i | Mi |= Rab} = {i1}, {i | Mi |= Rba} = {i2} and {i | Mi |= a ≡
a} = {i1, i2}. If f satisfies (2.1), this implies that f(M) |= ¬Rab, f(M) |= ¬Rba
and f(M) |= a ≡ a. However, none of Ma,Mb,∅ satisfy the three sentences
simultaneously, therefore f cannot be well-defined at M = (Ma,Mb,∅), and
thus f cannot be universal.

3 Generalized Ultraproduct Construction

The remainder of the paper is aimed at providing a setting which incorporates
the Arrow-type impossibility result for vote abstention as a special case. Towards
this aim, in the present section a construction is introduced which, for each (ul-
tra)filter D over I and each profile M ∈ (Ω∪{∅})I , yields an L-model U(M,D).
This construction amounts to the specialization of Makkai’s ultraproduct con-
struction (cf. [13, Section 1.3]) from a more general category-theoretic setting to
the model-theoretic setting of interest here. In the remainder of this subsection
we fix a set I and an (ultra)filter D over I.

We find it useful to make use of the following auxiliary definition: for any
I-indexed family of sets S = {Si | i ∈ I}, let the generalized union product of S
be defined as follows:

GUPD(S) :=
∐

J∈D

∏

j∈J

Sj =
⋃

{{(si)i∈J | si ∈ Si} | J ∈ D}.

Notice that we are not excluding Si to be empty for some i ∈ I. This definition
naturally applies also to I-indexed families R = {Ri | i ∈ I} where Ri is a k-ary
relation (for a fixed k ≥ 1) on a given set Si for each i ∈ I:4

GUPD(R) :=
∐

J∈D

∏

j∈J

Rj =
⋃

{{(si)i∈J | si ∈ Ri} | J ∈ D}.

4 In this case, we will say that R is a family of k-ary relations over S.
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The definition above also applies when k = 0, if we regard any element ci ∈ Si

as a 0-ary relation Ri on Si.
5 Under this stipulation, I-indexed families R of

0-ary relations can be identified with I-indexed sequences c = (xi)i∈I such that
for every i ∈ I

xi =

{
ci if ci ∈ Si

∗ if Si = ∅,

where ∗ /∈ ⋃
i∈I Si. Then, for every J ∈ D, the product set

∏
j∈J Rj reduces to

the sequence (xj)j∈J , and hence

GUPD(c) :=
∐

J∈D

∏

j∈J

Rj =
⋃

{(xj)j∈J | J ∈ D}.

For the sake of readability, we will drop the subscripted D when this causes no
confusion. Clearly, GUP (c) ∩ GUP (S) �= ∅ iff some J ∈ D exists such that
cj ∈ Sj for every i ∈ J .

Notice that if R is an I-indexed family of k-ary relations over S, then GUP (R)
is not a k-ary relation on GUP (S). Fortunately, this situation can be remedied
as follows. For any set S and k ≥ 1, let Sk denote the k-ary universal relation
on S. The following isomorphism holds for any J ∈ D and any k ≥ 1:

σJ :
∏

j∈J

(Sj)
k −→ (

∏

j∈J

Sj)
k

whichmaps theJ-indexed array (sj)j∈J ofk-tuples sj = (sj1, . . . , s
j
k) ∈ (Sj)

k to the

k-tuple of J-indexed arrays ((sj1)j∈J , . . . , (s
j
k)j∈J ). Since

∏
j∈J Rj ⊆ ∏

j∈J (Sj)
k,

the σJ -direct image of
∏

j∈J Rj is a k-ary relation:

σJ [
∏

j∈J

Rj ] ⊆ (
∏

j∈J

Sj)
k.

Hence, GUP (R) induces the k-ary relation

GUP ′(R) :=
⋃

{σJ [
∏

j∈J

Rj ] | J ∈ D} ⊆ (GUP (S))k.

Consider the equivalence relation on GUP (S)6 defined as follows:

(sj)j∈J ≡D
S (th)h∈H iff {i ∈ J ∩H | si = ti} ∈ D.

Definition 4. (cf. [13], Section 1.3) For any profile M ∈ (Ω ∪ {∅})I, the gen-
eralized ultraproduct of M over D is the L-model U = U(M,D) specified as
follows:

5 Regarding elements c ∈ S as 0-ary relations on S departs from the usual convention
in model theory, according to which 0-ary relations are truth-values.

6 For ease of notation, we will often drop the subscript in ≡D
S and rely on the context

for its correct interpretation.
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– the universe |U(M,D)| of U(M,D) is

U(S,D) := GUP (S)/≡D
S ,

where S = {|Mi| | i ∈ I};
– for any constant symbol c,

cU = cU(M,D) := [(xj)j∈J ]≡D
S
;

where (xj)j∈J ∈ GUP (c) ∩ GUP (S), and c = (xi)i∈I such that for every
i ∈ I

xi =

{
cMi if Mi �= ∅

∗ otherwise ;

– for any k-ary relation symbol R (k ≥ 1), the k-ary relation RU = RU(M,D)

on U is defined as follows:

([(sj1)j∈J1 ]≡D
S
, . . . , [(sjk)j∈Jk

]≡D
S
) ∈ RU iff ((tj1)j∈J , . . . (t

j
k)j∈J ) ∈ GUP ′(R)

for some J ∈ D and some (tj1)j∈J , . . . , (t
j
k)j∈J such that, for every 1 ≤ � ≤ k,

(tj�)j∈J ≡D
S (sj�)j∈J�

.

Notice that the elements of GUP (c)∩GUP (S) are all identified by ≡D
S , so cU is

well-defined. Notice also that cU is defined only if GUP (c) ∩GUP (S) �= ∅, and
as discussed early on, this is the case iff some J ∈ D exists such that Mj �= ∅

for every j ∈ J . On the other hand, as we will discuss next (cf. Fact 2), this
condition also characterizes the non-emptiness of U(M,D).

4 Properties of the Generalized Ultraproduct
Construction

Let S be an I-indexed family of sets. For any ultrafilter D over I and any J ∈ D,
if Si = ∅ for some i ∈ J , then

∏
i∈J Si = ∅. Hence:

Fact 2. For every I-indexed family of sets S and any ultrafilter D over I,

GUP (S) �= ∅ iff some J ∈ D exists s.t. Si �= ∅ for all i ∈ J.

Recall that if D is a principal ultrafilter, D is generated by the singleton {i0} for
some individual i0 ∈ I, which can be identified with the dictator. The following
fact is an immediate consequence of the fact above:

Fact 3. For every profile M and any principal ultrafilter D over I,

U(M,D) = ∅ iff Mi0 = ∅. (4.1)

Definition 4 generalizes the following
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Definition 5. For any (ultra)filter D on I, and any profile M ∈ ΩI , the stan-
dard ultraproduct of M over D is the L-model U ′ = U ′(M,D) specified as
follows:

– the universe |U ′(M,D)| of U ′(M,D) is

∏

i∈I

Mi/ ∼D,

where for any (si)i∈I , (ti)i∈I ∈ ∏
i∈I Mi,

(si)i∈I ∼D (ti)i∈I iff {i ∈ I | si = ti} ∈ D;

– for any constant symbol c,
cU

′
:= [c]∼D

where c = (cMi)i∈I ;
– for any k-ary relation symbol R (k ≥ 1), the k-ary relation RU ′

= RU ′(M,D)

on U ′ is defined as follows:

(
[(si1)i∈I ]∼D , . . . , [(s

i
k)i∈I ]∼D

) ∈ RU ′
iff {i ∈ I | (si1, . . . , sik) ∈ RMi} ∈ D.

The definition above is in general different from Definition 4. Indeed, if Mi = ∅

for some i ∈ I, then U ′(M,D) = ∅, while U(M,D) does not need to be empty
(cf. Fact 2). However, if Mi �= ∅ for any i ∈ I, then the two constructions can
be identified, as shown in the following.

Fact 4. For any (ultra)filter D on I, and any profile M ∈ (Ω∪{∅})I, if Mi �= ∅

for every i ∈ I then U(M,D) and U ′(M,D) are isomorphic.

Proof. Clearly, for all (yi)i∈I and (y′i)i∈I ,

(yi)i∈I ≡D (y′i)i∈I iff {i ∈ I | yi = y′i} ∈ D iff (yi)i∈I ∼D (y′i)i∈I .

Moreover, for every J ∈ D and for every (tj)j∈J there exists some (yi)i∈I s.t.
(tj)j∈J ≡D (yi)i∈I : indeed, the assumption that Mi �= ∅ for every i ∈ I guaran-
tees that there exists at least one I-indexed array defined as follows:

yi =

{
ti if i ∈ K

any y ∈ Mi �= ∅ otherwise.

By construction, {i ∈ I∩J = J | yi = ti} = J ∈ D, and hence (tj)j∈J ≡D (yi)i∈I .
From the facts above, it follows that the map ϕ : |U(M,D)| → |U ′(M,D)|
defined by the assignment [(tj)j∈J ]≡D 	→ [(yi)i∈I ]∼D is well defined and has an
inverse ψ : |U ′(M,D)| → |U(M,D)| defined by the assignment [(yi)i∈I ]∼D 	→
[(yi)i∈I ]≡D . Moreover, these assignments identify cU

′
and cU for every constant

symbol c, and also identify RU and RU ′
for every k-ary relation symbol R.

Indeed, it can be easily verified that ϕ(cU ) = cU
′
and that

([(sj1)j∈J1
]≡D , . . . , [(sjk)j∈Jk

]≡D ) ∈ RU iff (ϕ([(sj1)j∈J1
]≡D ), . . . , ϕ([(sjk)j∈Jk

]≡D )) ∈ RU′
.
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The following is a restatement of [13, Theorem 1.3.1] specialized to the model-
theoretic setting of our interest. The proof of this theorem appears in the ex-
tended version of the present paper (cf. [2]).

Theorem 5. (Generalized �Los’s Theorem). The following are equivalent for any
formula λ(x1, . . . , xn) with n free variables and any profile M ∈ (Ω ∪ {∅})I :
– U(M,D) |= λ

(
[s1

J1 ]≡D , . . . , [sn
Jn ]≡D

)
;

– {i ∈ J1 ∩ . . . ∩ Jn | Mi |= λ (s1,i, . . . sn,i)} ∈ D.

5 Generalized Kirman-Sondermann Correspondence

The present section is aimed at introducing the second half of the generalized
Kirman-Sondermann correspondence (the first half was discussed at the end of
Section 2, before Lemma 2), and characterizing Arrow-rational aggregators in
terms of the generalized ultraproduct construction introduced in the previous
subsection. Recall that, for any L-structure B with domain B and any C ⊆ B
such that AB ⊆ C, the restriction of B to C is the L-structure the universe
of which is C, which is obtained by restricting the interpretation of all relation
symbols to C. For every M ∈ Ω, let resAM denote the restriction of M to AM .
In what follows, we find it convenient to define resAM also when M is the empty
model. If M = ∅, then we stipulate that resAM = ∅.

Lemma 4. For all λ ∈ I,
resAU(M,D) |= λ iff C(M,λ) ∈ D.

Proof. By the generalized �Los’s theorem, C(M,λ) = {i ∈ I | Mi |= λ} ∈ D iff
U(M,D) |= λ. Since by assumption λ is quantifier-free, the latter condition is
equivalent to resAU(M,D) |= λ.

Definition 6. For every ultrafilter D over I, let fD : (Ω ∪ {∅})I → Ω ∪ {∅} be
defined by the assignment

M 	→ resAU(M,D).

By �Los’s theorem, U(M,D) |= T for every profile M . Since T is a universal
theory, this implies that resAU(M,D) |= T , which shows that fD is well defined.
The following proposition shows that the assignment D 	→ fD defines a map
Φ : βI → AR.

Proposition 1. For every ultrafilter D over I, the aggregator fD is Arrow-
rational.

Proof. Condition (A1) is verified by construction. As to (A2), fix a profileM and
λ ∈ I, and assume that fD(M) |= λ, that is, resAU(M,D) |= λ. Then Lemma
4 implies that C(M,λ) ∈ D. Hence C(M,λ) must be nonempty, since D is an
ultrafilter, and hence is proper. As to (A3), let C(M,λ) = C(N,μ) for some
M,N and λ, μ ∈ I. Hence, by Lemma 4,

fD(M) |= λ iff C(M,λ) ∈ D iff C(N,μ) ∈ D iff fD(N) |= μ.
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Next, we are going to show that the maps Λ and Φ defining the Kirman-
Sondermann correspondence (cf. discussions before Lemma 2 and before Propo-
sition 1) are inverse to one another.

Proposition 2. For every f ∈ AR, fDf
and f can be identified up to isomor-

phism.

Proof. By Lemmas 4 and 1,

resAU(M,Df ) |= λ iff C(M,λ) ∈ D iff f(M) |= λ

for any profile M and any λ ∈ I. Then the statement follows from Fact 1.

In the proof of the next proposition, we make crucial use of the assumption that
at least two non-isomorphic models exist in Ω.

Proposition 3. For every D ∈ βI, DfD = D.

Proof. Fix X ⊆ I, and let us show that X ∈ DfD iff X ∈ D. By assumption,
two non-isomorphic models M,N exist in Ω ∪ {∅}. As shown in the proof of
Proposition 2, this implies that M |= λ and N �|= λ for some λ ∈ I. Let us define
the profile M ∈ (Ω ∪ {∅})I as follows: for any i ∈ I, let

Mi =

{
M if i ∈ X

N if i /∈ X.

By construction, C(M,λ) = X , and hence the required equivalence can be
proved as follows:

C(M,λ) ∈ DfD iff fD(M) |= λ (Lemma 1)

iff resAU(M,D) |= λ (Definition 6)

iff C(M,λ) ∈ D. (Lemma 4)

The following is an immediate consequence of Propositions 2 and 3:

Theorem 6. (Kirman-Sondermann Correspondence for Vote Absten-
tion). For any language L, any universal L-theory T with at least two non-
isomorphic models, and any set I of individuals, the set AR of Arrow-rational
aggregators (cf. Definition 1) and the set βI of the ultrafilters over I bijectively
correspond via the map Λ : AR → βI defined by the assignment f 	→ Df . The
inverse of Λ is the map Φ : βI → AR, defined by the assignment D 	→ fD.

6 Arrow-Type Impossibility Theorem for Vote Abstention

By taking concrete universal theories T , the treatment developed so far special-
izes to concrete settings in social choice. As an example, in the present section,
we capture and discuss the theory of preference aggregation in settings in which
individuals might abstain from voting.

The case of preference aggregation over n candidates is modelled, as is done
in [9], by taking L to be a language with n constant symbols a1, . . . , an and one
binary relation symbol R. Consider the following theory Tn:
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– ∀x(¬Rxx) (irreflexivity);
– ∀x∀y∀z(Rxy ∧Ryz → Rxz) (transitivity);
– ∀x∀y(Rxy ∨Ryx ∨ x ≈ y) (completeness);
– ∀x(¬x ≈ x) ∨ ∀x(x ≈ a1 ∨ . . . ∨ x ≈ an);
– ∀x∀y(x ≈ aj ∧ y ≈ ak → ¬x ≈ y) for j �= k;

The first three sentences state that each model Mi of T is a linear order given
by the individual i, and the last two items state that the domain of each model is
either empty or consists of n pairwise distinct elements aM1 , . . . , aMn . Therefore,
the aggregator f : (Ω ∪ {∅})I → Ω∪{∅} aggregates a collection of linear orders
(or empty order, corresponding to the voter abstention case) into a single linear
order (or empty order).

When n ≥ 2, it is easy to see that |Ω| ≥ 2; therefore Corollary 1 applies,
yielding:

Theorem 7. (Generalized Arrow impossibility theorem for preference aggrega-
tion). For Tn given above (n ≥ 2) and for any finite I, any Arrow-rational
aggregator f : (Ω ∪ {∅})I → Ω ∪ {∅} is dictatorial.

The present setting for vote-abstention allows to prove a strengthened version
of Arrow’s impossibility theorem in preference aggregation which, unlike the
standard one, holds e.g. also for 2-candidate elections. The technical reason for
this is to be traced in the proof of Lemma 2, omitted in the present paper
but available in [2], which is a variant of Lemma 5.3 in [8]. Indeed, given two
non-isomorphic models, the empty model plays the role of the third one. As
discussed after Corollary 1, the features of the present set up are such that the
counterexamples to the analogous strengthening in the standard setting are not
definable anymore.
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Abstract. In dynamic epistemic logic, actions are described using
action models. In this paper we introduce a framework for studying learn-
ability of action models from observations. We present first results con-
cerning propositional action models. First we check two basic learnability
criteria: finite identifiability (conclusively inferring the appropriate action
model in finite time) and identifiability in the limit (inconclusive conver-
gence to the right action model). We show that deterministic actions are
finitely identifiable, while non-deterministic actions require more learning
power—they are identifiable in the limit. We then move on to a particular
learning method, which proceeds via restriction of a space of events within
a learning-specific action model. This way of learning closely resembles the
well-known update method from dynamic epistemic logic. We introduce
several different learning methods suited for finite identifiability of partic-
ular types of deterministic actions.

Dynamic epistemic logic (DEL) allows analyzing knowledge change in a sys-
tematic way. The static component of a situation is represented by an epistemic
model, while the structure of the dynamic component is encoded in an action
model. An action model can be applied to the epistemic model via so-called
product update operation, resulting in a new up-to-date epistemic model of the
situation after the action has been executed. A language, interpreted on epis-
temic models, allows expressing conditions under which an action takes effect
(so-called preconditions), and the effects of such actions (so-called postcondi-
tions). This setting is particularly useful for modeling the process of epistemic
planning (see [7,1]): one can ask which sequence of actions should be executed
in order for a given epistemic formula to hold in the epistemic model after the
actions are executed.

The purpose of this paper is to investigate possible learning mechanisms in-
volved in discovering the ‘internal structure’ of actions on the basis of their
executions. In other words, we are concerned with qualitative learning of action
models on the basis of observations of pairs of the form (initial state, resulting
state). We analyze learnability of action models in the context of two learn-
ing conditions: finite identifiability (conclusively inferring the appropriate action
model in finite time) and identifiability in the limit (inconclusive convergence to
the right action model). The paper draws on the results from formal learning
theory applied to DEL (see [11,13,12]).
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Learning of action models is highly relevant in the context of epistemic plan-
ning. A planning agent might not initially know the effects of her actions, so she
will initially not be able to plan to achieve any goals. However, if she can learn
the relevant action models through observing the effect of the actions (either
by executing the actions herself, or by observing other agents), she will eventu-
ally learn how to plan. Our ultimate goal is to integrate learning of actions into
(epistemic) planning agents. In this paper, we seek to lay the foundations for
this goal by studying learnability of action models from streams of observations.

The structure of the paper is as follows. In Section 1 we recall the basic
concepts and notation concerning action models and action types in DEL. In
Section 2 we specify our learning framework and provide general learnabil-
ity results. In Section 3 we study particular learning functions, which proceed
via updating action models with new information. In the end we briefly dis-
cuss related and further work. The full version of the paper is available at
http://arxiv.org/abs/1507.04285.

1 Languages and Action Types

Let us first present the basic notions required for the rest of the article (see [6,8]
for more details). Following the conventions of automated planning, we take the
set of atomic propositions and the set of actions to be finite. Given a finite set
P of atomic propositions, we define the (single-agent) epistemic language over
P , Lepis(P ), by the following BNF: φ ::= p | ¬φ | φ ∧ φ | Kφ, where p ∈ P .
The language Lprop(P ) is the propositional sublanguage without the Kφ clause.
When P is clear from the context, we write Lepis and Lprop instead of Lepis(P )
and Lprop(P ), respectively. By means of the standard abbreviations we introduce
the additional symbols →, ∨, ↔, ⊥, and �.

Definition 1 (Epistemic Models and States). An epistemic model over a
set of atomic propositions P is M = (W,R, V ), where W is a finite set of worlds,
R ⊆ W ×W is an equivalence relation, called the indistinguishability relation,
and V : P → P(W ) is a valuation function. An epistemic state is a pointed
epistemic model (M, w) consisting of an epistemic model M = (W,R, V ) and a
distinguished world w ∈ W called the actual world.

A propositional state (or simply state) over P is a subset of P (or, equivalently,
a propositional valuation ν : P → {0, 1}). We identify propositional states and
singleton epistemic models via the following canonical isomorphism. A proposi-
tional state s ⊆ P is isomorphic to the epistemic model M = ({w}, {(w,w)}, V )
where V (p) = {w} if p ∈ s and V (p) = ∅ otherwise. Truth in epistemic states
(M, w) with M = (W,R, V ) (and hence propositional states) is defined as usual
and hence omitted.

Dynamic epistemic logic (DEL) introduces the concept of an action model for
modelling the changes to states brought about by the execution of actions [6]. We
here use a variant that includes postconditions [8,7], which means that actions can
have both epistemic effects (changing the beliefs of agents) and ontic effects (chang-
ing the factual states of affairs).



42 T. Bolander and N. Gierasimczuk

Definition 2 (Action Models). An action model over a set of atomic propo-
sitions P is A = (E,Q, pre, post), where E is a finite set of events; Q ⊆ E ×E
is an equivalence relation called the indistinguishability relation; pre : E →
Lepis(P ) assigns to each event a precondition; post : E → Lprop(P ) assigns to
each event a postcondition. Postconditions are conjunctions of literals (atomic
propositions and their negations) or �.1 dom(A) = E denotes the domain of A.
The set of all action models over P is denoted Actions(P ).

Intuitively, events correspond to the ways in which an action changes the epis-
temic state, and the indistinguishability relation codes (an agent’s) ability to
recognize the difference between those different ways. In an event e, pre(e) spec-
ifies what conditions have to be satisfied for it to take effect, and post(e) specifies
its outcome.

Example 1. Consider the action of tossing a coin. It can be represented by the
following action model (h means that the coin is facing heads up):

A = e1 : 〈�, h〉 e2 : 〈�,¬h〉

We label each event by a pair whose first argument is the event’s precon-
dition while the second is its postcondition. Hence, formally we have A =
(E,Q, pre, post) with E = {e1, e2}, Q is the identity on E, pre(e1) = pre(e2) =
�, post(e1) = h and post(e2) = ¬h. The action model encodes that tossing the
coin will either make h true (e1) or h false (e2).

Definition 3 (Product Update). Let M = (W,R, V ) and A =
(E,Q, pre, post) be an epistemic model and action model (over a set of atomic
propositions P ), respectively. The product update of M with A is the epis-
temic model M⊗A = (W ′, R′, V ′), where W ′ = {(w, e) ∈ W × E | (M, w) |=
pre(e)}; R′ = {((w, e), (v, f)) ∈ W ′ × W ′ | wRv and eQf}; V ′(p) = {(w, e) ∈
W ′ | post(e) |= p or ((M, w) |= p and post(e) �|= ¬p)}. For e ∈ dom(A), we
define M⊗ e = M⊗ (A � {e}).
The product update M⊗A represents the result of executing the action A in
the state(s) represented by M.

Example 2. Continuing Example 1, consider a situation of an agent seeing a
coin lying heads-up, i.e., the singleton epistemic state M = ({w}, {w,w}, V )
with V (h) = {w}. Let us now calculate the result of executing the coin toss in
this model.

M⊗A = (w1, e1) : h (w1, e2) :

Here each world is labelled by the propositions being true at the world.

1 We are here using the postcondition conventions from [7], which are slightly non-
standard. Any action model with standard postconditions can be turned into one of
our type, but it might become exponentially larger in the process [8,7].
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We say that two action models A1 and A2 are equivalent, written A1 ≡ A2,
if for any epistemic model M, M⊗A1↔M⊗A2, where ↔ denotes standard
bisimulation on epistemic models [17].

Definition 4 (Action Types). An action model A = (E,Q, pre, post) is:

– atomic if |E| = 1.
– deterministic if all preconditions are mutually inconsistent, that is, |=

pre(e) ∧ pre(f) → ⊥ for all distinct e, f ∈ E.
– fully observable if Q is the identity relation on E. Otherwise it is partially

observable.
– precondition-free if pre(e) = � for all e ∈ E.
– propositional if pre(e) ∈ Lprop for all e ∈ E.
– universally applicable if |= ∨

e∈E pre(e).
– normal if for all propositional literals l and all e ∈ E, pre(e) |= l implies

post(e) �|= l.
– with basic preconditions if all pre(e) are conjunctions of literals (proposi-

tional atoms and their negations).
– with maximal preconditions if all pre(e) are maximally consistent conjunc-

tions of literals (i.e., preconditions are conjunctions of literals in which each
atomic proposition p occurs exactly once, either as p or as ¬p).

Some of the notions defined above are known from existing literature [7,8,16].
The newly introduced notions are precondition-free, universally applicable, and
normal actions, as well as actions with basic preconditions. Note that action
types interact with each other, atomic actions are automatically both determin-
istic and fully observable, and precondition-free actions can only be deterministic
if atomic.2

In the remainder of this section we set a uniform representation of action
models that we will later on use in learning methods. We also specify and justify
the restrictions we impose on action models. In this paper we are concerned
with product updates of propositional states with propositional action mod-
els. Let s denote a propositional state over P , and let A = (E,Q, pre, post)
be any propositional action model. Using the definition above and the canon-
ical isomorphism between propositional states and singleton epistemic states,
we get that s ⊗ A is isomorphic to the epistemic model (W ′, R′, V ′), where
W ′ = {e ∈ E | s |= pre(e)}, R′ = {(e, f) ∈ W ′ × W ′ | eQf}, V ′(p) = {e ∈
W ′ | post(e) |= p or (s |= p and post(e) �|= ¬p)}. If A is fully observable, then
the indistinguishability of s⊗A is the identity relation. This means that we can
think of s ⊗ A as a set of propositional states (via the canonical isomorphism
between singleton epistemic models and propositional states). In this case we
write s′ ∈ s⊗A to mean that s′ is one of the propositional states in s⊗A. When
A is atomic we have s⊗ a = s′ for some propositional state s′ (using again the
canonical isomorphism).

2 The actions considered in propositional STRIPS planning (called set-theoretic plan-
ning in [9]) correspond to epistemic actions that are atomic and have basic post-
conditions.



44 T. Bolander and N. Gierasimczuk

Example 3. Consider the action model A of Example 1 (the coin toss). It is a
precondition-free, fully observable, non-deterministic action. Consider an initial
propositional state s = {h}. Then s⊗A is the epistemic model of Example 2. It
has two worlds, one in which h is true, and another in which h is false. So we have
∅, {h} ∈ s ⊗ A, i.e., the outcome of tossing the coin is either the propositional
state where h is false (∅) or the one where h is true ({h}).
Proposition 1. Any propositional action model is equivalent to a normal action
model with basic preconditions.

The condition for being universally applicable intuitively means that the ac-
tion specifies an outcome no matter what state it is applied to. In this paper we
will only be concerned with universally applicable action models.

2 Learning Action Models

In the following we will use the expressions action and action model interchange-
ably. Below we will first present general results on learnability of various types
of action models, and then, in Section 3, we study particular learning methods
and exemplify them.

We are concerned with learning fully observable actions (action models). Par-
tially observable actions are generally not learnable in the strict sense to be
defined below. Consider for instance an agent trying to learn an action that
controls the truth value of a proposition p, but where the agent cannot observe
p (events making p true and events making p false are indistinguishable). Then
clearly there is no way for that agent to learn exactly how the action works.
The case of fully observable actions is much simpler. If initially the agent has
no uncertainty, her “belief state” can be represented by a propositional state.
Executing any sequence of fully observable actions will then again lead to a
propositional state. So in the case of fully observable actions, we can assume
actions to make transitions between propositional states.

For the rest of this section, except in examples, we fix a set P of atomic
propositions.

Definition 5. A stream E is an infinite sequence of pairs (s, s′) of propositional
states over P , i.e., E ∈ (P(P ) × P(P ))ω. The elements (s, s′) of E are called
observations. Let N := N

+ ∪ {0}, let E be a stream over P , and let s, t ∈ P(P ).
En stands for the n-th observation in E. E [n] stands for the the initial segment
of E of length n, i.e., E0, . . . , En−1. set(E) := {(x, y) | (x, y) is an element of E}
stands for the set of all observations in E; we similarly define set(E [n]) for initial
segments of streams.

Definition 6. Let E be a stream over P and A a fully observable action model
over P . The stream E is sound with respect to A if for all (s, s′) ∈ set(E),
s′ ∈ s ⊗ A. The stream E is complete with respect to A if for all s ⊆ P and
all s′ ∈ s ⊗ A, (s, s′) ∈ set(E). In this paper we always assume the streams to
be sound and complete. For brevity, if E is sound and complete wrt A, we will
write: ‘E is for A’.
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A learning function is a computable L : (P(P )×P(P ))∗ → Actions(P )∪ {↑}.
In other words, a learning function takes a finite sequence of observations (pairs
of propositional states) and outputs an action model or a symbol corresponding
to ‘undecided’.

We will study two types of learning: finite identifiability and identifiability in
the limit. First let us focus on finite identifiability. Intuitively, finite identifiability
corresponds to conclusive learning: upon observing some finite amount of action
executions the learning function outputs, with certainty, a correct model for the
action in question (up to equivalence). This certainty can be expressed in terms
of the function being once-defined: it is allowed to output an action model only
once, there is no chance of correction later on. Formally, we say that a learning
function L is (at most) once defined if for any stream E for an action over P and
n, k ∈ N such that n �= k, we have that L(E [n])=↑ or L(E [k])=↑.
Definition 7. Let X be a class of action models and A ∈ X , L be a learning
function, and E be a stream. We say that:

1. L finitely identifies A on E if L is once-defined and there is an n ∈ N s.t.
L(E [n]) ≡ A.

2. L finitely identifies A if L finitely identifies A on every stream for A.
3. L finitely identifies X if L finitely identifies every A ∈ X .
4. X is finitely identifiable if there is a function L which finitely identifies X .

The following definition and theorem are adapted from [15,14,13].

Definition 8. Let X ⊆ Actions(P ). A set DA ⊆ P(P )×P(P ) is a definite finite
tell-tale set (DFTT ) for A in X if

1. DA is sound for A (i.e., for all (s, s′) ∈ DA, s′ ∈ s⊗A),
2. DA is finite, and
3. for any A′ ∈ X , if DA is sound for A′, then A ≡ A′.

Lemma 1. X is finitely identifiable iff there is an effective procedure D : X →
P(P(P )× P(P )), given by A �→ DA, that on input A produces a definite finite
tell-tale of A.

In other words, the finite set of observations DA is consistent with only one
action A in the class (up to equivalence of actions). D is a computable function
that gives a DA for any action A.

Theorem 1. For any finite set of propositions P the set of (fully observable)
deterministic propositional actions over P is finitely identifiable.

Example 4. Theorem 1 shows that deterministic actions are finitely identifiable.
We will now show that this does not carry over to non-deterministic actions, that
is, non-deterministic actions are in general not finitely identifiable. Consider the
action of tossing a coin, given by the action model A in Example 1. If in fact the
coin is fake and it will always land tails (so it only consists of the event e2), in
no finite amount of tosses the agent can exclude that the coin is fair, and that



46 T. Bolander and N. Gierasimczuk

heads will start appearing in the long run (that e1 will eventually occur). So
the agent will never be able to say “stop” and declare the action model to only
consist of e2. This argument can be generalised, leading to the theorem below.

Theorem 2. For any finite set of propositions P the set of arbitrary (including
non-deterministic) fully observable propositional actions over P is not finitely
identifiable.

A weaker condition of learnability, identifiability in the limit, allows widening
the scope of learnable actions, to cover also the case of arbitrary actions. Identifi-
ability in the limit requires that the learning function after observing some finite
amount of action executions outputs a correct model (up to equivalence) for the
action in question and then forever keeps to this answer (up to equivalence) in all
the outputs to follow. This type of learning can be called ‘inconclusive’, because
certainty cannot be achieved in finite time.

Definition 9. Let X be a class of action models and A ∈ X , L be a learning
function, and E be a stream. We say that:

1. L identifies A on E in the limit if there is k ∈ N such that for all n ≥ k,
L(E [n]) ≡ A.

2. L identifies A in the limit if L identifies A in the limit on every E for A.
3. L identifies X in the limit if L identifies in the limit every A ∈ X .
4. X is identifiable in the limit if there is an L which identifies X in the limit.

The following theorem is adapted from [2].

Theorem 3. For any finite set of propositions P the set of (fully observable)
propositional actions over P is identifiable in the limit.

Having established the general facts about finite identifiability and identifia-
bility in the limit of propositional fully-observable actions, we will now turn to
studying particular learning methods suited for such learning conditions.

3 Learning Actions via Update

Standard DEL, and in particular public announcement logic, deals with learning
within epistemic models. If an agent is in a state described by an epistemic model
M and learns from a reliable source, that φ is true, her state will be updated
by eliminating all the worlds where φ is false. That is, the model M will be
restricted to the worlds where φ is true. This can also be expressed in terms of
action models, where the learning of φ corresponds to taking the product update
of M with the event model 〈φ,�〉 (public announcement of φ).

Now we turn to learning actions rather than learning facts. Actions are rep-
resented by action models, so to learn an action means to infer the action
model that describes it. Consider again the action model A of Example 1. The
coin toss is non-deterministic and fully observable: either h or ¬h will non-
deterministically be made true and the agent is able to distinguish these two



Learning Actions Models: Qualitative Approach 47

outcomes (no edge between e1 and e2). However, we can also think of A as the
hypothesis space of a deterministic action, that is, the action A is in fact deter-
ministically making h true or false, but the agent is currently uncertain about
which one it is. Given the prior knowledge that the action in question must be
deterministic, learning the action could proceed in a way analogous to that of
update in the usual DEL setting.

It could for instance be that the agent knows that the coin is fake and always
lands on the same side, but the agent initially does not know which. After
the agent has executed the action once, she will know. She will observe either
h becoming false or h becoming true, and can hence discard either e1 or e2
from her hypothesis space. She has now learned the correct deterministic action
model for tossing the fake coin. Note the nice symmetry to learning of facts:
here, learning of facts means eliminating worlds in epistemic models, learning of
actions means eliminating events in action models.

In the rest of this section, all action models are silently assumed to be: fully ob-
servable, propositional, and universally applicable. Furthermore, we can assume
them to be normal and have basic preconditions, due to Proposition 1.

3.1 Learning Precondition-Free Atomic Actions

We will first propose and study an update learning method especially geared
towards learning the simplest possible type of ontic actions: precondition-free
atomic actions.

Definition 10. For any deterministic action model A and any pair of
propositional states (s, s′), the update of A with (s, s′) is defined by
A | (s, s′) := A � {e ∈ E | if pre(e) |= s then s⊗ e = s′}. For a set
S of pairs of propositional states, we define: A | S := A � {e ∈
E | for all (s, s′) ∈ S, if pre(e) |= s then s⊗ e = s′}.
The update A | (s, s′) restricts the action model A to the events that are con-
sistent with observing s′ as the result of executing the action in question in the
state s.

Definition 11. The update learning function for precondition-
free atomic actions over P is the learning function L1 defined by
L1(E [n]) = A1

init | set(E [n]) where A1
init = (E,Q, pre, post) with

E = {ψ | ψ is a consistent conjunction of literals over P}; Q is the iden-
tity relation on E × E; pre(e) = � for all e ∈ E; post(ψ) = ψ.

In Figure 1 we show a generic example of such update learning for P = {p, q}.
Theorem 4. The class of precondition-free atomic actions is finitely identifiable
by the update learning function Lupdate

1 , defined in the following way:

Lupdate
1 (E [n]) =

⎧
⎪⎨

⎪⎩

L1(E [n]) if card(dom(L1(E [n]))) = 1

and for all k < n, Lupdate
1 (E [k]) = ↑;

↑ otherwise.
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p∧q
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�

q

¬p∧qp∧¬q

¬q ¬p

¬p∧¬q

p∧q

p

Fig. 1. On the left hand side A1
init for P = {p, q}, together with sets corresponding

to possible observations. We have labelled each event e by post(e). On the right hand
side the state of learning after observing E0 = ({q}, {p, q}).

3.2 Learning Deterministic Actions with Preconditions

We now turn to learning of action models with preconditions. First we only treat
the case of maximal preconditions, then afterwards we generalise to arbitrary
(not necessarily maximal) preconditions.

Definition 12. The update learning function for deterministic action mod-
els with maximal preconditions over P is the learning function L2 defined by
L2(E [n]) = A2

init | set(E [n]) where A2
init = (E,Q, pre, post) with E = {(φ, ψ) |

φ is a maximally consistent conjunction of literals over P and ψ is a conjunction
of literals over P not containing any of the conjuncts of φ }; Q is the identity
on E × E; pre((φ, ψ)) = φ; post((φ, ψ)) = ψ.

Theorem 5. The class of deterministic action models with maximal precondi-
tions is finitely identifiable by the following update learning function Lupdate

2 .

Lupdate
2 (E [n]) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

L2(E [n]) if for all e, e′ ∈ dom(L2(E [n]))
if e �= e′, then pre(e) �= pre(e′)
and for all k < n, Lupdate

2 (E [k]) = ↑;
↑ otherwise.

Example 5. Consider a simple scenario with a pushbutton and a light bulb. As-
sume there is only one proposition p: ‘the light is on’, and only one action:
pushing the button. We assume an agent wants to learn the functioning of the
pushbutton. There are 4 distinct possibilities: 1) the button does not affect the
light (i.e., the truth value of p); 2) it is an on button: it turns on the light
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unconditionally (makes p true); 3) it is an off button: it turns off the light un-
conditionally (makes p false); 4) it is an on/off button (flips the truth value of
p). If the agent is learning by update, it starts with the action model A2

init con-
taining the following events: 〈p,�〉, 〈¬p,�〉, 〈p,¬p〉, and 〈¬p, p〉. Note that by
definition A2

init does not contain the events 〈p, p〉 and 〈¬p,¬p〉, since they both
have a postcondition conjunct which is also a precondition conjunct. Assume
the first two observations the learner receives (the first elements of a stream E)
are (∅, {p}) and ({p}, ∅). Since the agent uses learning by update, she revises her
model as follows (cf. Definition 12):

〈p,�〉 〈¬p,�〉
〈p,¬p〉 〈¬p, p〉

〈p,�〉 ����〈¬p,�〉
〈p,¬p〉 〈¬p, p〉

���〈p,�〉 ����〈¬p,�〉
〈p,¬p〉 〈¬p, p〉

A2
init A2

init | E0 A2
init | E0 | E1

observation E0 :
(∅, {p})

observation E1 :
({p}, ∅)

Now the agent has reached a deterministic action model A2
init | set(E [2]), and

can report this to be the correct model of the action, cf. Theorem 5. Note that
the two observations correspond to first pushing the button when the light is
off (E0), and afterwards pushing the button again after the light has come on
(E1). These two observations are sufficient to learn that the pushbutton is of
the on/off type (it has one event that makes p true if p is currently false, and
another event making p true if currently false).

Consider now another stream E ′ where the first two elements are (∅, {p}) and
({p}, {p}). Update learning will now instead reduce the initial action model A2

init

to the action model only containing 〈p,�〉 and 〈¬p, p〉. This time the learner
identifies the button to be an on button, again after only two observations. It
is not hard to show that in a setting with only one propositional symbol p, any
deterministic action will be identified after having received the first two distinct
observations.

Example 6. Consider learning the functioning of an n-bit binary counter, where
the action to be learned is the increment operation. For i = 1, . . . , n, we use the
proposition ci to denote that the ith least significant bit is 1. Consider first the
case n = 2. A possible stream for the increment operation is the following:

(∅, {c1}), ({c1}, {c2}), ({c2}, {c2, c1}), ({c2, c1}, {∅}), · · ·
0 0 → 0 1
c2 c1 c2 c1

0 1 → 1 0
c2 c1 c2 c1

1 0 → 1 1
c2 c1 c2 c1

1 1 → 0 0
c2 c1 c2 c1

· · ·

Using the update learning method on this stream, it is easy to show that the
learner will after the first 4 observations be able to report the correct action
model containing the following events: 〈¬c2 ∧ ¬c1, c1〉, 〈¬c2 ∧ c1, c2 ∧ ¬c1〉, 〈c2 ∧
¬c1, c1〉, 〈c2 ∧ c1,¬c2 ∧ ¬c1〉. Note that since A2

init has maximal preconditions,
the action model learned for an n-bit counter will necessarily contain 2n events:
one for each possible configuration of the n bits. If we did not insist on maximal
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preconditions, we would only need n + 1 events to describe the n-bit counter:
〈¬ci ∧ ci−1 ∧ ci−2 ∧ · · · ∧ c1, ci ∧ ¬ci−1 ∧ ¬ci−2 ∧ · · · ∧ ¬c1〉 for all i = 2, . . . , n,
〈¬c1, c1〉 and 〈cn ∧ · · · ∧ c1,¬cn ∧ · · · ∧ ¬c1〉. This means that there is room for
improvement in our learning method.

To allow learning of deterministic action models where preconditions are not
required to be maximal we need a different learning condition. Consider learn-
ing an action on P = {p} that sets p true unconditionally. With non-maximal
preconditions, all of the following events would be consistent with any stream
for the action: 〈�, p〉, 〈¬p, p〉, 〈p,�〉. To get to a deterministic action model, the
learning function would have to delete either the first or the two latter events.
We can make it work as described in the following.

For any action model A we define

min(A) = A � {e | there is no event e′ �= e with pre(e) |= pre(e′)}.
Furthermore, we define L3 to be exactly like L2 of Definition 12 except in the def-
inition of E, φ can be any conjunction of literals, not only maximally consistent
ones.

Theorem 6. The class of deterministic action models is finitely identifiable by
the following update learning function Lupdate

3 .

Lupdate
3 (E [n]) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min(L3(E [n])) if for all s ∈ P(P ) there exists an s′ s.t.
(s, s′) ∈ set(E [n]) and for all k < n,

Lupdate
3 (E [k]) = ↑;

↑ otherwise.

The theorem can be seen as a generalisation of Theorem 5 in that it allows the
learner to learn more compact action models in which maximal consistency of
preconditions is not enforced (on the contrary, by the way the min operator is
defined above, the learner will learn an action model with minimal precondi-
tions). For instance, in the case of the n-bit counter considered in Example 5,
it can be shown that the learner will learn the action model with n + 1 events
instead of the one with 2n events.

4 Conclusions and Related Work

This paper is the first to study the problem of learnability of action models in
dynamic epistemic logic (DEL). We provided an original learnability framework
and several early results concerning fully observable propositional action models
with respect to conclusive (finite identifiability) and inconclusive (identifiability
in the limit) learnability. Apart from those general results, we proposed various
learning functions which code particular learning algorithms. Here, by imple-
menting the update method (commonly used in DEL), we demonstrated how
the learning of action models can be seen as transitioning from nondeterministic
to deterministic actions.
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Related Work. A similar qualitative approach to learning actions has been
addressed by [18] within the STRIPS planning formalism. The STRIPS setting
is more general than ours in that it uses atoms of first-order predicate logic for
pre- and postconditions. It is however less general in neglecting various aspects
of actions which we have successfully treated in this paper: negative precondi-
tions (i.e., negative literals as precondition conjuncts), negative postconditions,
conditional effects (which we achieve through non-atomic action models). We
believe that the ideas introduced here can be applied to generalize the results of
[18] to richer planning frameworks allowing such action types. It is also worth
mentioning here that there has been quite substantial amount of work in relating
DEL and learning theory (see [11,12] for overviews), which concerns a different
setting: treating update and upgrade revision policies as long term learning meth-
ods, where learning can be seen as convergence to certain types of knowledge
(see [3,4,5]). A study of abstract properties of finite identifiability in a setting
similar to ours, including various efficiency considerations, can be found in [13].

Further Directions. In this short paper we only considered fully observable
actions applied in fully observable states, and hence did not use the full ex-
pressive power of the DEL formalism. The latter still remains adequate, since
action models provide a very well-structured and principled way of describing
actions in a logical setting, and since its use opens ways to various extensions.
The next steps are to cover more DEL action models: those with arbitrary pre-
and postconditions, and those with partial observability and multiple agents.
As described earlier, partially observable actions are not learnable in the strict
sense considered above, but we can still investigate agents learning “as much as
possible” given their limitations in observability. The multi-agent case is par-
ticularly interesting due to the possibility of agents with varied limitations on
observability, and the possibility of communication within the learning process.

We plan to study the computational complexity of learning proposed in this
paper, but also to investigate other more space-efficient learning algorithms. We
are also interested algorithms that produce minimal action models. Further-
more, we here considered only what we call reactive learning: the learner has
no influence over observations. We would also like to study the case of proactive
learning, where the learner gets to choose which actions to execute, and hence
observe their effects. This is probably the most relevant type of learning for a
general learning-and-planning agent. In this context, we also plan to focus on
consecutive streams : streams corresponding to executing sequences of actions
rather than observing arbitrary state transitions. Our ultimate aim is to relate
learning and planning within the framework of DEL. Those two cognitive capa-
bilities are now investigated mostly in separation—our goal is to bridge them.

Acknowledgements. Nina Gierasimczuk is funded by NWO Veni grant 275-
20-043. We are grateful to Martin Holm Jensen, Mikko Berggren Ettienne and
the anonymous reviewers for valuable ideas and feedback.



52 T. Bolander and N. Gierasimczuk

References

1. Andersen, M.B., Bolander, T., Jensen, M.H.: Conditional epistemic planning. In:
del Cerro, L.F., Herzig, A., Mengin, J. (eds.) JELIA 2012. LNCS, vol. 7519,
pp. 94–106. Springer, Heidelberg (2012)

2. Angluin, D.: Inductive inference of formal languages from positive data. Informa-
tion and Control 45(2), 117–135 (1980)

3. Baltag, A., Gierasimczuk, N., Smets, S.: Belief revision as a truth-tracking process.
In: Apt, K. (ed.) TARK 2011: Proceedings of the 13th Conference on Theoretical
Aspects of Rationality and Knowledge, pp. 187–190. ACM (2011)

4. Baltag, A., Gierasimczuk, N., Smets, S.: Truth tracking by belief revision. ILLC
Prepublication Series PP-2014-20 (to appear in Studia Logica 2015) (2014)

5. Baltag, A., Gierasimczuk, N., Smets, S.: On the solvability of inductive problems:
A study in epistemic topology. ILLC Prepublication Series PP-2015-13 (to appear
in Proceedings of TARK 2015) (2015)

6. Baltag, A., Moss, L.S., Solecki, S.: The logic of public announcements and com-
mon knowledge and private suspicions. In: Gilboa, I. (ed.) TARK 1998: Proceed-
ings of the 7th Conference on Theoretical Aspects of Rationality and Knowledge,
pp. 43–56. Morgan Kaufmann (1998)

7. Bolander, T., Andersen, M.B.: Epistemic planning for single- and multi-agent sys-
tems. Journal of Applied Non-Classical Logics 21, 9–34 (2011)

8. van Ditmarsch, H., Kooi, B.: Semantic results for ontic and epistemic change.
In: Bonanno, G., van der Hoek, W., Wooldridge, M. (eds.) LOFT 7: Logic and
the Foundation of Game and Decision Theory. Texts in Logic and Games, vol. 3,
pp. 87–117. Amsterdam University Press (2008)

9. Ghallab, M., Nau, D.S., Traverso, P.: Automated Planning: Theory and Practice.
Morgan Kaufmann (2004)

10. Gierasimczuk, N.: Learning by erasing in dynamic epistemic logic. In: Dediu, A.H.,
Ionescu, A.M., Mart́ın-Vide, C. (eds.) LATA 2009. LNCS, vol. 5457, pp. 362–373.
Springer, Heidelberg (2009)

11. Gierasimczuk, N.: Knowing One’s Limits. Logical Analysis of Inductive Inference.
Ph.D. thesis, Universiteit van Amsterdam, The Netherlands (2010)

12. Gierasimczuk, N., de Jongh, D., Hendricks, V.F.: Logic and learning. In: Baltag, A.,
Smets, S. (eds.) Johan van Benthem on Logical and Informational Dynamics.
Springer (2014)

13. Gierasimczuk, N., de Jongh, D.: On the complexity of conclusive update. The
Computer Journal 56(3), 365–377 (2013)

14. Lange, S., Zeugmann, T.: Types of monotonic language learning and their char-
acterization. In: COLT 1992: Proceedings of the 5th Annual ACM Conference on
Computational Learning Theory, pp. 377–390. ACM (1992)

15. Mukouchi, Y.: Characterization of finite identification. In: Jantke, K.P. (ed.) AII
1992. LNCS, vol. 642, pp. 260–267. Springer, Heidelberg (1992)

16. Sadzik, T.: Exploring the Iterated Update Universe, ILLC Prepublications
PP-2006-26 (2006)

17. Sietsma, F., van Eijck, J.: Action emulation between canonical models. Journal of
Philosophical Logic 42(6), 905–925 (2013)

18. Walsh, T.J., Littman, M.L.: Efficient learning of action schemas and web-service
descriptions. In: AAAI 2008: Proceedings of the 23rd National Conference on Ar-
tificial Intelligence, vol. 2, pp. 714–719. AAAI Press (2008)



Great Expectations

Eddy Keming Chen and Daniel Rubio

Rutgers University

Abstract. Standard expected utility theory faces familiar problems with
the infinities. We propose a new theory based on surreal numbers and sug-
gest that it solves many of those problems, including Pascal’s Wager and
the Pasadena Game.

1 Introduction

The standard expected utility maximization account of rationality has been very
successful in the finite domain. But the introduction of infinities leads to puzzle
and paradox. There are two ways for the infinite to make its entrance. In some
problems, a state or proposition has an infinite utility attached to it. In other
problems, there are infinitely many states or propositions with finite utilities
attached, leading to infinite expected utilities.

There is a classic puzzle associated with each. Pascal’s wager, nearly as old
as decision theory itself, is the best-known problem involving infinite utilities
associated with a single state. The St. Petersburg Game is the best known as-
sociated with an infinite state space leading to an infinite expected utility, but
it has given rise to an even more fearsome cousin: the Pasadena Game.

We propose to conservatively extend classic expected utility theory with non-
standard analysis; namely, Conway’s surreal numbers. In §2, we introduce surreal
mathematics and prove a representation theorem. In §3, we analyze pascal’s
wager, showing that we can deal with infinite utilities arising from a single state
(and that there is nothing malformed about such problems. In §4, we analyze the
Pasadena game, and show that our theory has the resources to deal even with
very hard problems involving infinite state spaces (problems that more resist
analysis by more standard mathematical methods).

2 A Surreal Solution

Transfinite decision theory requires the ability to perform arithmetic opera-
tions on finite and infinite numbers, with commutativity and non-absorption
(and other standard desirable properties of addition) intact, and where every
number—finite and transfinite—has an additive inverse (so that, for example,
ω − ω, is defined). In short: we need a totally ordered field including both the
finite and transfinite numbers. More precisely, we require:

1. an ordered-field including all reals and ordinals;

c© Springer-Verlag Berlin Heidelberg 2015
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2. addition in that field that is commutative, non-absorptive, and such that
each element has an additive inverse;

3. multiplication in that field that is commutative, non-absorptive, and such
that each non-zero element has a multiplicative inverse.

In short: we need a number system and accompanying operations that allow us
to treat finite and transfinite numbers in similar and familiar ways.

2.1 Surreal Numbers: The Basics

Fortunately, John Conway discovered (or invented, depending on your philoso-
phy of mathematics) such a field, and began its exploration in his On Numbers
and Games (1974). Conway called the objects he discovered surreal numbers.
For those familiar with Dedekind’s construction of the reals out of the ratio-
nals, it may be helpful to note that Conway’s construction is quite similar to
Dedekind’s. Except, rather than using the rationals, Conway uses the ordinals.
Nevertheless, we can think of Surreal numbers as being something analogous to
performing “Dedekind cuts” on ordinals. They are defined recursively as follows:1

Definition 1. If L and R are sets of numbers, and no x ∈ L ≥ any y ∈ R,
then {L|R} is a number.

Convention 1. If x={L|R}, we will write xL as a convention for the typi-
cal member of L, and xR for the typical member of R

Definition 2. x ≥ y iff no xR ≤ y and no yL ≥ x

Other familiar ordering relations are defined in the usual way.2

Definition 1 looks circular. Fortunately, the null set is trivially a set of num-
bers, and so our first surreal number is {∅|∅} = 0.3 From 0, we gain two new
numbers: {0|∅} = 1 and {∅|0} = −1. From these numbers, we can find yet more
numbers. In order to avoid tedious iterations, we can see the structure of the
surreals laid out in figure 1. We use No to denote the class of numbers created
by repeated application of definition 1, and the iteration of definition 1 on which
n is found its ‘birthday.’4

With a hearty stock of numbers, we can now set about defining arithmetic
operations.

Definition 3: x + y = {xL + y, x+ yL|xR + y, yR + x}

Definition 4: -x = {-xL|-xR}
1 Conway [1974]
2 x �≥ y iff not x ≥ y, x > y iff x ≥ y and y �≥ x, x = y iff x ≥ y and y ≥ x
3 A similar trick saves definition 2 from circularity, for it allows us to prove that 0 ≥ 0.
4 So the birthday of 0 is day 0 the birthday of 1,−1 is day 1, etc.
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Fig. 1. The Surreal Tree

Definition 5: x × y = {xL × y + yL × x − xL × yL, xR × y + yR × x − xR ×
yR|xL × y + yR × x− xL × yR, xR × y + yL × x− xR × yL}

These definitions make No an ordered field including all reals and all ordinals
(in fact, Conway proves that it is a universally embedding field). We refer the
interested reader to Conway for the proofs and further details.5

2.2 Representation Theorem

The first step in any decision theory is a representation theorem. Here, we state
a von Neumann and Morgenstern-style representation theorem for surreal utili-
ties. See Appendix for the proof.
Notation 1: Let � denote an embedding from the standard universe into the
surreal universe. Let No denote a surreal model.

Theorem 1 (Surreal Von Neumann-Morgenstern Theorem). Let X be
a space of lotteries, and let � be a binary relation ⊆ X × X . There exists an
affine function U : X → No such that ∀x, y ∈ X

U(x) ≤ U(y) ⇔ x � y

if and only if � satisfies all of the following:

1. Completeness: ∀x, y ∈ X, either x � y or y � x.
2. Transitivity: ∀x, y, z ∈ X, if x � y and y � z, then x � z.

3. Continuity�: ∀x, y, z ∈ X, if x ≺ y ≺ z, then there exist surreals p, q ∈ �(0, 1)
such that px+ (1− p)z ≺ y ≺ qx+ (1 − q)z.

5 Conway [1974], 15-44
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4. Independence�: ∀x, y, z ∈ X, ∀p ∈ �(0, 1], x � y if and only if px+(1−p)z �
px+ (1− p)z.

Proof: See Appendix.

2.3 Dominance Theorems

Dominance reasoning is among the most venerable and secure ways we have to
deal with uncertainty. We define dominance as follows (assuming act-state inde-
pendence, as we shall and have throughout):

Weak Dominance. Act 1 weakly dominates Act 2 iff Act 1 and 2 contain
the same states, every state in Act 1 pays at least as well as it does in Act 2,
and one state pays more in Act 1 than it does in Act 2.

Strict Dominance. Act 1 strictly dominates Act 2 iff Act 1 and 2 contain
the same states, and every state in Act 1 pays better than it does in Act 2.

It is known that in the finite case, expected utility maximization respects dom-
inance.6 But it is also known that in the infinite case, expected utility maxi-
mization need not respect dominance.7 These results show that some revision
of the EU axioms is required in order to put transfinite decision theory on a
even footing with its finite cousin, and may represent the most serious challenge
emerging from the Pasadena Game literature.

Traditionally, utility functions are real-valued. This property is enforced by
the Archimedean Axiom (or by the choice of Continuity Axiom):

Archimedean. If G1 ≺ G2 ≺ G3, then there exists some probability ε ∈ (0, 1)
s.t. (1− εG1) + εG3 ≺ G ≺ (1− εG3) + εG1.

But because No is a non-archimedean field, our proposal and results require
that we give it up (as astute readers of §4.3 will note, even though we replace
it with a “weaker” axiom which allows surreal probabilities). Happily, it is the
Archimedean Axiom that is the source of our trouble with Dominance in the
first place (as Fine, Hajek and Nover note). In fact, in the framework of surreal
numbers, we can easily prove that both Weak Dominance and Strict Dominance
hold up to countable sums.

Theorem 2 (Surreal Strict Dominance Theorem.) Let {ai}i∈N and {bi}i∈N be
two surreal-valued expected payoff series. If {ai}i∈N strictly point-wise dominates

{bi}i∈N, then
∞∑
i=1

ai >
∞∑
i=1

bi.

Proof: See Appendix.

6 See Easwaran [Ms.].
7 Fine [2008], see Hajek and Nover [2008] for further discussion.
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Theorem 3 (Surreal Weak Dominance Theorem.) Let {ai}i∈N and {bi}i∈N be
two surreal-valued expected payoff series. If {ai}i∈N strictly dominates {bi}i∈N

at least in one term and weakly dominates {bi}i∈N in all other terms, then
∞∑
i=1

ai >
∞∑
i=1

bi.

Proof: We leave this as an exercise for the reader. �

3 Pascal’s Wager

With the technical work out of the way, we turn to our opening puzzles to
showcase our theory. First up: Pascal’s wager. Many criticisms have been leveled
against this argument.8 Two of these in particular display the difficulties involved
in infinitely valued states. Hajek’s ‘mixed strategies’ objection reveals the odd
feature that (in cardinal arithmetic), a 1 in 1000 shot at an infinite utility is as
valuable as a 999 in 1000 shot. Diderot’s ‘many gods’ objection requirs us to add
and subtract infinities, resulting in sums that typically go undefined.

3.1 Mixed Strategies

Typically, Pascal’s wager has been set up as a decision problem with two options.

Table 1. Pascal’s Wager, Classical Presentation

God No God

Christian ∞ 10

Non-Christian 5 10

Expected Payoff ∞ 10

But decision theorists know better. Whenever we have gambles, we can adopt
mixtures of those gambles. We can think of mixtures heuristically as using coin
flips to decide which gamble to take. So someone presented with the decision in
Table 1 might make her choice by flipping a fair coin. In that case, the expected
utility of the flip strategy = the expected utility of simply picking “Christian.”
In fact, the coin can be arbitrarily biased against Christian, and still the mixed
strategy has the same expected utility as the pure “Christian” option. This is
counterintuitive because gambles with arbitrary biases will have the same ex-
pected utility and the agent ought to be indifferent among the different gambles.

This is because ∞, at least in the extended reals and more familiar Cantorian
realms, has the absorption property.9 By standard lights, a chance at ∞ is as
good as the genuine artifact. But in surreal arithmetic, this is not true. The

8 See Jordan [2007] for a review.
9 In Hajek‘s terms:reflexive under multiplication.
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surreal ω is strictly greater than the surreal .5ω. Thus, our proposal correctly
predicts that the pure “Christian” strategy beats all mixed strategies.10

Hajek noted the potential for surreal valued utilities to escape his objection.11

Instead, he argues that surreal infinite numbers do not have the same properties
as the infinity Pascal seems to be talking about. Hajek’s Pascal sees salvation as
the greatest good, and thus possessing the absorption property for addition. We
do not dispute Hajek’s reading of Pascal (although we express some skepticism
about the theology underlying a view according to which salvation is the greatest
good, or indeed the rationality of a view whereby salvation and no apple is as
preferable as salvation plus an apple),12 but we are less interested in giving a
faithful representation of Pascal’s original argument than we are in applying our
more general proposal to this problem in transfinite decision theory.

3.2 Many Gods

A common objection to Pascal is that his decision problem is too simple, and
as a result, the use of infinite utilities looks less problematic than it is.13 For
there are a great many purported gods, many of which treat their followers well,
and their doubters cruelly. Moreover, there are any number of other potential
eschatological situations. Perhaps there is a god, but god is a universalist, so
that everyone ends well. Perhaps there is a god, but god is a rationalist, and
so anyone who makes epistemic decisions (like belief in a god) for pragmatic
reasons ends poorly. The objection goes that once we see all these situations,
and their accompanying infinite utilities and disutilities in the decision problem,
we conclude that there’s nothing interesting to say, and so problems of this sort
aren’t sensibly posed.14

But our proposal allows us to formulate and analyze this objection precisely.
Let E1...En... be a (potentially infinite) partition over states in an expanded
Pascalian decision problem. With each Ei, we associate some surreal number n,
corresponding to u(Ei) in the agent’s utility function. Let cr(Ei) be value of the
agent’s credence function over Ei. We can then give the EU of each of the Ei’s.

For example, suppose our agent thinks there are three live divine candidates:
Zeus, Apollo and Athena. She then has four religious options: Zeusianism, Athe-
nianism, Apollinism, and Atheism. Zuesianism is an exclusivist religion. Zuesians

10 We note that our proposal is not the only one to do this. See Bartha [2007] and
Herzberg [2011] for alternate proposals that make the same prediction. We do note
that all of these proposals make use of non-Archimedean utilities, of which we shall
say more soon.

11 Hajek [2003].
12 But see Herzberg [2011] for discussion.
13 The objection is as old as Diderot [1746], but has received a more rigorous formulatin

in e.g. Cargile [1966]. Herzberg [2011] briefly discusses this possibility but focuses
instead on modeling agents who do not countenance it.

14 Rescher [1985] presses this line of reasoning, although not explicitly in connection
with the many gods objection.
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get infnite utiity, but everyone else is damned. But according to Athenian the-
ology, Athena is a universalist who will give everyone infinite utility. According
to Apollinism, Apollo rewards atheists and damns everyone else.15 We may rep-
resent the problem as a table, representing the finite utility of a regular life as 100:

Table 2. Pascal’s Wager With Three Gods

Zeus Athena Apollo Atheism

Zeusian ω ω -ω 100

Athenian -ω ω -ω 100

Apollinist -ω ω -ω 100

Atheist -ω ω ω 100

Already, using surreal values allows her to assign a sensible ranking of her
options. Which religion is best will depend on what her credence function is
like. If, for instance, Cr(Zeus) = .5, Cr(Athena) = .3, Cr(Apollo) = .1, and
Cr(Atheism) = .1, then EU(Zeusian) = .7ω − 10 > EU(Atheist) = -.1ω + 10 >
EU(Athenian) = EU(Apollinist) = −.3ω + 10; with the credence favoring Zeus,
Zeus is the best option. On the other hand, if Cr(Zeus) = .1, Cr(Athena) =
.2, Cr(Apollo) = .2, and Cr(Atheism) = .5, then EU(Atheist) = .3ω + 50 >
EU(Zeusian) = .1ω + 50 > EU(Athenian) = EU(Apollinist) = −.1ω + 50; with
the credence favoring atheism, Atheist is the best option.16

We can do this for arbitrarily complicated decision problems of this sort. So
there is nothing incoherent or problematic about the use of infinite utilities. We
leave evaluation of the argument’s ultimate success or failure to future work.

4 Infinite State Spaces

In this section, we will discuss the problems of infinite state spaces, specifically
the Pasadena Game. We start by giving an overview of the problem, which stems
from results about countable sums and convergence. Then we show how our the-
ory is able to make sense of the problem. Our solution here is less straightforward
than the analysis of Pascal’s wager, but still leads to a way for consistently valu-
ing games like it.

15 Such Apollo is thus an example of the sort of god no one believes, but is regularly
trotted out by philosophers objecting to Wager-style arguments. We propose Silly
Theism as a technical name for this type of religion.

16 As we have set things up, the exclusivist and atheist options each dominate the
universalist and silly options, but other combinations (such as scenarios with multiple
exclusivist gods in play, or mildly inclusivist options where some gods favor some
infidels over others) can bring out the benefits of those.
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4.1 The Pasadena Game

Hajek and Nover’s Pasadena game is played by flipping a coin until a coin lands
heads, paying on the nth flip $(−1)n−12n/n.17

Table 3. Pasadena Game

Heads on nth Flip 1 2 3 4 ...

Probability 1/2 1/4 1/8 1/16 ...

Payoff $2 $-2 $8/3 $-4 ...

Expected Payoff $1 $-1/2 $1/3 $-1/4 ...

The expected payoffs of this game match the alternating harmonic series, as-
suming utility linear in dollars. This series is conditionally convergent. But the
Riemann Rearrangement Theorem tells us that in a conditionally convergent
series, infinite summation is non-commutative. For any such conditionally con-

vergent series
∞∑
i=1

ai, we can make it to converge to a different number simply

by changing the order of the summation. In fact, for any real number n, we can
rearrange the terms in some way such that it converges to that number. The

theorem also says that
∞∑
i=1

ai can be rearranged such that it diverges to +∞ or

−∞.
This mathematical result, therefore, leaves us no way to consistently assign a

expected value to the game; however we add up the expected payoffs, for every
real number (or positive/negative infinity) there is a rearrangement of the series
which sums to it.

It is initially tempting to argue that there is something wrong with the
Pasadena Game itself. After all, asking for the sum of the members of the set {1,
-1/2, 1/3, -1/4...} will likely draw a bemused look and an explanation of condi-
tional convergence from a mathematician, in the same way asking for the largest
natural number will draw a bemused look and an explanation of infinity. But
Hajek and Nover give us several compelling reasons against thinking that the
game is somehow flawed, incoherent, or ill-stated.18 In doing so, they introduce
the Altadena Game, which is exactly like the Pasadena game, but worth $1 more
in every state. And with it, a new constraint on solutions: any solution to the
Pasadena Game must predict that the Altadena Game (which strictly dominates
it) is more valuable. Standard EU theory cannot satisfy this contstraint.19

The key to evading pasadena-style problems is to evade conditional conver-
gence. By relying on the equivalence of affine transformations of the utility func-
tion in faithfully representing preferences, we can always produce a ‘stable’ way
to value a game.

17 Hajek and Nover [2004].
18 Hajek & Nover [2004], [2006] and [2008]. See Colyvan [2006] and [2008] for an op-

posing view.
19 Fine [2008], Hajek and Nover [2008].
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Before we proceed, a few definitions and another result:

cc-vulnerability. Let u be a utility function and p the probability function
which together with u represents some agent’s preferences. We will say that u
is cc-vulnerable with respect to p iff there is some X ⊆ {xi : x is the product of
pi and ui } such that the members of X can be all and only the members of a
conditionally convergent series.

cc-invulnerability. Let u be a utility function and p be a probability function.
We will say that u is cc-invulnerable with respect to p iff u is not CC-Vulnerable
with respect to p.

cc-invulnerable Transformation. Let p be a probability function, u be a
utility function and u′ be a positive affine transformation of u. We say that u′ is
a cc-invulerable transformation of u with respect to p iff u is cc-vulnerable with
respect to p and u′ is cc-invulnerable with respect to p.

Corollary 6.1. Let u be a surreal-valued utility function. There exists a utility
function u′ that is a cc-invulnerable transformation of u.

We will fix the probability function p and drop the “with respect to p” in the fol-
lowing discussion. By Corollary 6.1,20 every utility function with codomain No
(which is to say, surreal-valued) has a cc-invulnerable transformation (in fact,
infinitely many). We note that this is not true of utility functions with codomain
R, and thus surreal utilities are vital to our proposed resolution.

Because any representable preference structure can be adequately represented
with a cc-invulnerable utility function, we contend that cc-vulnerability in the
utility function is inessential to adequately representing a preference structure.
Because cc-vulnerable utility functions give rise to problematic gambles like the
Pasadena Game, we contend that cc-vulnerability is a representational defect.
We propose that cc-vulnerable representations be rejected in favor of their cc-
invulnerable transformations. This proposal does not allow the problematic pay-
off series to arise; but so long as we have a representation theorem, it ensures
that any preference structure—and, a fortiori, any preference structure which
can be represented by a utility function that is linear in dollars—can still be
represented.

With the surreal representation theorem in hand, we can deploy the Surreal
Dominance Theorems (theorems 2-3) and Corollary 6.1 to give our solution
to the Pasadena problems. We suggest the following procedure for an agent
whose utility is linear in dollars: first, take an agent’s entire preference structure;
next, locate a cc-invulnerable surreal representation of it (whose existence is
guaranteed by the Surreal Representation Theorem and Corollary 6.1). When
this has been done, the original Pasadena game will have a fixed utility; call

20 Proof in Appendix.
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it x.21 Furthermore, a dollar will also have a fixed utility; call it y. For the
Altadena Game and others lie, the utility well be will be x+ ny, where n is the
number of ‘steps’ distant (dollars added) it is from the original game . This gives
the value of the game in utils. If a dollar value is desired, we may simply look
at the relation between dollars and utils in the fixed representation. A similar
but more complicated procedure will work agents whose utility is not linear
in dollars. Since the surreals (codomain of the utility function) form a totally
ordered field, we have given a systematic solution that (1) consistently values
the Pasadena games; (2) respects dominance reasoning; and (3) relative to an
adequate representation, ensures a fixed interval between ‘steps’ on the ladder
of the Pasadena sequence.

A Proofs of Key Theorems

See http://www.danielkfrubio.com/papers/.
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Abstract. The present paper contributes to the development of the
mathematical theory of epistemic updates using the tools of duality the-
ory. Here we focus on Probabilistic Dynamic Epistemic Logic (PDEL).
We dually characterize the product update construction of PDEL-models
as a certain construction transforming the complex algebras associated
with the given model into the complex algebra associated with the up-
dated model. Thanks to this construction, an interpretation of the lan-
guage of PDEL can be defined on algebraic models based on Heyting
algebras. This justifies our proposal for the axiomatization of the intu-
itionistic counterpart of PDEL.

Keywords: intuitionistic probabilistic dynamic epistemic logic, duality,
intuitionistic modal logic, algebraic models, pointfree semantics.
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1 Introduction

The contributions of the present paper pertain to the research program, started
in [MPS14,KP13] and continued in [GKP13,FGK+14b,Riv14,BR15,FGK+14a]
[FGK+14c,FGKP14], which is aimed at developing the mathematical theory of
epistemic updates with the tools of duality theory.

The present paper lays the semantic ground for the introduction of a logical
framework generalizing probabilistic dynamic epistemic logic (PDEL) [Koo03],
[vBGK09]. The generalization concerns the following respects:
(a) weakening the underlying reasoning machinery from classical propositional
logic to nonclassical formalisms (e.g. intuitionistic logic);
(b) generalizing the formal treatment of agents’ epistemics by relaxing the re-
quirement of normality for the epistemic modal operators;
(c) considering intuitionistic probability theory as the background framework for
probabilistic reasoning.

A major motivation for (c) is the need to account for situations in which the
probability of a certain proposition p is interpreted as an agent’s propensity to
bet on p given some evidence for or against p. If there is little or no evidence for

c© Springer-Verlag Berlin Heidelberg 2015
W. van der Hoek et al. (Eds.): LORI 2015, LNCS 9394, pp. 64–76, 2015.
DOI: 10.1007/978-3-662-48561-3_6
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or against p, it should be reasonable to attribute low probability values to both
p and ¬p, which is forbidden by classical probability theory (cf. [Wea03]).

A major motivations for (a) is the need to account for situations in which
truth emerges as the outcome of a complex procedure (rather than e.g. being
ascertained instantaneously). Examples of these situations are ubiquitous in so-
cial science. For instance, consider the case of the assessment of the authenticity
of works of art. Turner’s painting The Beacon Light is a case in point: after
doubts had been cast on its being a genuine Turner, recent investigations into
the materials and painting techniques have established its authenticity1. A fully
fledged formalisation of such cases will be reported on in an extended version of
the present paper [CFP+]. By its main features, intuitionistic logic is particu-
larly suited to account for situations like the one mentioned above, where truth
is ascertained by means of a procedure (a ‘proof’). Moreover, the intuitionis-
tic environment allows for a finer-grained analysis when serving as a base for
more expressive formalisms such as modal and dynamic logics. Indeed, the fact
that the box-type and the diamond-type modalities are no longer interdefinable
makes several mutually independent choices possible which cannot be disentan-
gled in the classical setting. It should be remarked at this point that of course it
is possible in principle to use formalisms based on classical propositional logic to
analyse situations in which truth emerges as a social construct (e.g. the outcome
of a procedure), and that an ‘automatic’ and powerful way of generating such a
formalism is via Gödel-type encodings. However, the resulting treatment is sig-
nificantly more cumbersome and ad hoc, and from a technical point of view such
an encoding might destroy nice properties enjoyed by the original intuitionistic
framework (see e.g. discussion at the end of [CGP14, Section 36.9]). Insisting on
a Boolean propositional base could have been motivated by the need to rely on
a well developed and solid mathematical environment. However, recent devel-
opments (cf. e.g. [CPS,CGP14,CP15,CFPS15,CC15,PSZ15a,PSZ15b,GMP+15])
have made available a mathematical environment for non-classical logics2 that
is as advanced and solid as the classical one, and on which it is now possible
to capitalise. Finally, these mathematical developments appear in tandem with
interesting analyses on the philosophical side of formal logic (e.g. [AP14]), ex-
ploring epistemic logic in an evidentialist key, which is congenial with the kind
of social situations targeted by our research programme.

Our methodology follows [MPS14,KP13], and is based on the dual charac-
terization of the product update construction for standard PDEL-models as a
certain construction transforming the complex algebras associated with a given
model into the complex algebra associated with the updated model. This dual
characterization naturally generalizes to much wider classes of algebras, which

1 cf. e.g. Darren Devine, End to doubts over museum’s Turner paintings as
all found to be genuine. Wales Online, 23 September 2012. Retrieved from
http://www.walesonline.co.uk/news/wales-news/end-doubts-over-museums-turner-
2024586 .

2 By non-classical logics we mean logics the propositional base of which is weaker than
classical propositional logic.
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include, but are not limited to, arbitrary BAOs and arbitrary modal expansions
of Heyting algebras (HAOs). Thanks to this construction, the benefits and the
wider scope of applications given by a point-free, nonclassical theory of epistemic
updates are made available: for instance, this construction makes it possible to
derive the definition of product updates on topological spaces by means of an
effective computation. As an application of this dual characterization, we present
the axiomatization for the intuitionistic analogue of PDEL which arises seman-
tically from this construction.

Structure of the Paper: In Section 2, we give an alternative, two-step treat-
ment of the PDEL-update on relational models. In Section 3, we expand on the
methodology underlying the application of the duality toolkit. Section 4 is the
main section, in which the construction of the PDEL-updates on Heyting alge-
bras is introduced. In Section 5, we very briefly describe how the updates on
algebras can be used to define the intuitionistic version of PDEL.

2 PDEL Language and Updates

In the present section, we report on the language of PDEL, and give an alter-
native, two-step account of the product update construction on PDEL-models.
This account is similar to the treatment of epistemic updates in [MPS14,KP13],
and as explained in Section 3, it lays the ground to the dualization procedure
which motivates the construction introduced in Section 4. The specific PDEL
framework we report on shares common features with those of [BCHS13] and
[vBGK09].

2.1 PDEL-Formulas, Event Structures, and PES-Models

In the remainder of the paper, we fix a countable set AtProp of proposition letters
p, q and a set Ag of agents i. We let α1, ..., αn, β denote rational numbers.

Definition 1. The set L of PDEL-formulas ϕ and the class PEML of proba-
bilistic event structures E over L are built by simultaneous recursion as follows:

ϕ ::= p | ⊥ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ → ϕ | ♦iϕ | �iϕ | 〈E , e〉ϕ | [E , e]ϕ | (
n∑

k=1

αkμi(ϕ)) ≥ β.

The connectives �, ¬, and ↔ are defined by the usual abbreviations. A proba-
bilistic event structure over L is a tuple E = (E, (∼i)i∈Ag, (Pi)i∈Ag, Φ, pre), such
that E is a non-empty finite set, each ∼i is an equivalence relation on E, each
Pi : E → [0, 1] assigns a probability distribution on each ∼i-equivalence class
(i.e.,

∑{Pi(e
′) : e′ ∼i e} = 1), Φ is a finite set of pairwise inconsistent L-

formulas, and pre assigns a probability distribution pre(•|φ) over E for every
φ ∈ Φ.

Informally, elements of E encode possible events, the relations ∼i encode as
usual the epistemic uncertainty of the agent i, who assigns probability Pi(e) to
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e being the actually occurring event, formulas in Φ are intended as the precon-
ditions of the event, and pre(e|φ) expresses the prior probability that the event
e ∈ E might occur in a(ny) state satisfying precondition φ. In what follows, we
will refer to the structures E defined above as event structures over L.

Definition 2. A probabilistic epistemic state model (PES-model) is a structure
M = (S, (∼i)i∈Ag, (Pi)i∈Ag, [[·]]) such that S is a non-empty set, each ∼i is an
equivalence relation on S, each Pi : S → [0, 1] assigns a probability distribution
on each ∼i-equivalence class, (i.e.,

∑{Pi(s
′) : s′ ∼i s} = 1), and [[·]] : AtProp →

PS is a valuation map.

As usual, the map [[·]] will be identified with its unique extension to L, so that
we will be able to write [[ϕ]] for every ϕ ∈ L.

Notation 1. For any probabilistic epistemic model M, any probabilistic event
structure E, any s ∈ S and e ∈ E we let pre(e | s) denote the value pre(e | φ), for
the unique φ ∈ Φ such that M, s � φ (recall that the formulas in Φ are pairwise
inconsistent). If no such φ exists then we let pre(e | s) = 0.

2.2 Epistemic Updates

Throughout the present subsection, we fix a PES-model M and a probabilistic
event structure E over L. The updated model is given in two steps, the first of
which is detailed in the following

Definition 3. Let the intermediate structure of M and E be the tuple

∐
E M := (

∐
|E| S, (∼

∐

i )i∈Ag, (P
∐

i )i∈Ag, [[·]]∐)

where
∐

|E| S ∼= S×E is the |E|-fold coproduct of S, each binary relation ∼
∐

i

on
∐

|E| S is defined as follows:

(s, e) ∼
∐

i (s′, e′) iff s ∼i s
′ and e ∼i e

′;

each map P
∐

i :
∐

|E| S → [0, 1] is defined by (s, e) �→ Pi(s) · Pi(e) · pre(e | s) and
[[p]]∐ := {(s, e) | s ∈ [[p]]M} = [[p]]M × E for every p ∈ AtProp.

Remark 1. In general P
∐

i does not induce probability distributions over the ∼
∐

i -
equivalence classes. Hence,

∐
E M is not a PES-model.3 However, the second step

of the construction will yield a PES-model.

Finally, in order to define the updated model, observe that the map pre in E
induces the map pre : E → L defined by e �→ ∨{φ ∈ Φ | pre(e | φ) �= 0}.
3 Indeed, Definition 9 will be introduced in Section 4 precisely with the purpose of
capturing the dual of P

∐

i .
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Definition 4. For any PES-model M and any probabilistic event structure E
over L, let

M
E := (SE , (∼E

i )i∈Ag, (P
E
i )i∈Ag, [[·]]ME )

with

1. SE := {(s, e) ∈ ∐
|E| S | M, s � pre(e)};

2. [[p]]ME := [[p]]∐ ∩ SE ;

3. ∼E
i = ∼

∐

i ∩(SE × SE) for any i ∈ Ag;
4. each map P E

i : SE → [0, 1] is defined by the assignment

(s, e) �→ P
∐

i (s, e)
∑{P

∐

i (s′, e′) | (s, e) ∼i (s′, e′)}
.

3 Methodology

In the present section, we expand on the methodology of the paper. In the
previous section, we gave a two-step account of the product update construction
which, for any PES-model M and any event model E over L, yields the updated
model ME as a certain submodel of a certain intermediate model

∐
E M. This

account is analogous to those given in [MPS14,KP13] of the product updates
of models of PAL and Baltag-Moss-Solecki’s dynamic epistemic logic EAK. In
each instance, the original product update construction can be illustrated by the
following diagram (which uses the notation introduced in the instance treated
in the previous section):

M ↪→
∐

E
M ←↩ ME .

As is well known (cf. e.g. [DP02]) in duality theory, coproducts can be dually
characterized as products, and subobjects as quotients. In the light of this fact,
the construction of product update, regarded as a “subobject after coproduct”
concatenation, can be dually characterized on the algebras dual to the relational
structures of PES-models by means of a “quotient after product” concatenation,
as illustrated in the following diagram:

A �
∏

E
A � A

E ,

resulting in the following two-step process. First, the coproduct
∐

E M is dually
characterized as a certain product

∏
E A, indexed as well by the states of E ,

and such that A is the algebraic dual of M; second, an appropriate quotient of∏
E A is then taken, which dually characterizes the submodel step. On which

algebras are we going to apply the “quotient after product” construction? The
prime candidates are the algebras associated with the PES-models via standard
Stone-type duality:
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Definition 5. For any PES-model M, its complex algebra is the tuple

M
+ := 〈PS, (♦i)i∈Ag, (�i)i∈Ag, (P

+
i )i∈Ag〉

where for each i ∈ Ag and X ∈ PS,

♦iX = {s ∈ S | ∃x(s ∼i x and x ∈ X)},
�iX = {s ∈ S | ∀x(s ∼i x =⇒ x ∈ X)},

dom(P+
i ) = {X ∈ PS | ∃y∀x(x ∈ X =⇒ x ∼i y)}4

P+
i X =

∑
x∈X Pi(x)

In this setting, the “quotient after product” construction behaves exactly in
the desired way, in the sense that one can check a posteriori that the following
holds:5

Proposition 1. For every PES-model M and any event structure E over L, the
algebraic structures (M+)E and (ME)+ can be identified.

Moreover, the “quotient after product” construction holds in much greater gen-
erality than the class of complex algebras of PES-models, which is exactly its
added value over the update on relational structures. In the following section,
we are going to define it in detail in the setting of epistemic Heyting algebras.

4 Probabilistic Dynamic Epistemic Updates on Heyting
Algebras

The present section aims at introducing the algebraic counterpart of the event
update construction presented in Section 2.

For the sake of enforcing a neat separation between syntax and semantics,
throughout the present section we will disregard the logical language L, and work
on algebraic probabilistic epistemic structures (APE-structures, cf. Definition 10)
rather than on APE-models (i.e. APE-structures endowed with valuations). To
be able to define the update construction, we will need to base our treatment
on the following, modified definition of event structure over an algebra, rather
than over L:
Definition 6. For any epistemic Heyting algebra A (cf. Definition 7), a prob-
abilistic event structure over A is a tuple E = (E, (∼i)i∈Ag, (Pi)i∈Ag, Φ, pre) such
that E, ∼i, Pi are as in Definition 1; Φ is a finite subset of A such that aj∧ak = ⊥
for all ai, aj ∈ Φ such that ai �= aj; pre assigns a probability distribution pre(•|a)
over E for every a ∈ Φ.

In what follows, we will typically refer to the structures defined above as event
structures. In the next subsection, we introduce APE-structures based on epis-
temic Heyting algebras. In Subsection 4.2 we introduce the first step of the two-
step update, namely, the ‘product’ construction. In Subsection 4.3, we introduce
the second and final step, the ‘quotient’ construction.

4 i.e. the domain of P+
i consists of all the subsets of the equivalence classes of ∼i.

5 Caveat: we are abusing notation here. Proposition 1 should be formulated using
Definition 13 and Fact 2.
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4.1 Algebraic Probabilistic Epistemic Structures

Definition 7. An epistemicHeyting algebra is a tupleA := 〈L, (♦i)i∈Ag, (�i)i∈Ag〉
such that L is a Heyting algebra, and each ♦i and�i is a monotone unary operation
on L such that for all a, b ∈ L,

♦i(a → b) ≤ �ia → ♦ib ♦ia → �ib ≤ �i(a → b)
♦ia ∧ b ≤ ♦i(a ∧ ♦ib) �i(a ∨�ib) ≤ �ia ∨ b
a ≤ ♦ia �ia ≤ a
♦i♦ia ≤ ♦ia �ia ≤ �i�ia.

In what follows, A will denote an epistemic Heyting algebra.

Definition 8. An element a ∈ A is i-minimal if

1. a �= ⊥,
2. ♦ia = a and
3. if b ∈ A, b < a, and ♦ib = b, then b = ⊥.

Let Mini(A) denote the set of the i-minimal elements of A.

Notice that for any b ∈ A \ {⊥} there exists at most one a ∈ Mini(A) such
that b ≤ a. Indeed every such a must coincide with ♦ib. The next definition uses
insights from [Wea03].

Definition 9. A partial function μ : A → R
+ is an i-premeasure on A if

dom(μ) = Mini(A)↓, and μ is order-preserving, μ(⊥) = 0 if dom(μ) �= ∅ and for
every a ∈ Mini(A) and all b, c ∈ a↓ it holds that μ(b∨ c) = μ(b)+μ(c)−μ(b∧ c).
An i-premeasure on A is an i-measure if μ(a) = 1 for every a ∈ Mini(A).

Definition 10. An algebraic pre-probabilistic epistemic structure (ApPE-
structure) is a tuple F := 〈A, (μi)i∈Ag〉 such that A is an epistemic Heyting alge-
bra (cf. Definition 8), and each μi is an i-premeasure on A. An ApPE-structure
F is an algebraic probabilistic epistemic structure (APE-structure) if each μi is
a i-measure on A. We refer to A as the support of F .

Lemma 1. For any PES-model M, the i-minimal elements of its complex alge-
bra M

+ are exactly the equivalence classes of ∼i.

Proposition 2. For any PES-model M, the complex algebra M
+ (cf. Definition

5) is an APE-structure.

4.2 The Intermediate (Pre-)Probabilistic Epistemic Structure

In the present subsection, we define the intermediate ApPE-structure
∏

E
F as-

sociated with any APE-structure F and any event structure E over the support
of F (cf. Definition 10 for the definition of support):

∏

E

F := 〈
∏

|E|
A, (♦′

i)i∈Ag, (�′
i)i∈Ag, (μ

′
i)i∈Ag〉 (4.1)

Let us start by defining the algebra which will become the support of the inter-
mediate APE-structure above:
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Definition 11. For every epistemic Heyting algebra A = (L, (♦i)i∈Ag, (�i)i∈Ag)
and every event structure E over A, let

∏

E

A := (
∏

|E|
L, (♦′

i)i∈Ag, (�′
i)i∈Ag),

where

1.
∏

|E| L is the |E|-fold power of L, the elements of which can be seen either

as |E|-tuples of elements in A, or as maps f : E → A.
2. For any f : E → A, the map ♦′

i(f) : E → A is defined by the assignment
e �→ ∨{♦if(e

′) | e′ ∼i e};
3. For any f : E → A, the map �′

i(f) : E → A is defined by the assignment
e �→ ∧{�if(e

′) | e′ ∼i e}.
Below, the algebra

∏
E
A will be sometimes abbreviated as A

′.

We refer to [KP13, Section 3.1] for an extensive justification of the definition of
the operations ♦′

i and �′
i.

Proposition 3. For every epistemic Heyting algebra A and every event struc-
ture E over A, the algebra A

′ is an epistemic Heyting algebra.

Proposition 4. For every A and i, Mini(A
′) = {fe,a | e ∈ E and a ∈ Mini(A)},

where for any e ∈ E and a ∈ Mini(A), the map fe,a : E → A is defined by the
following assignment:

e′ �→
{
a if e′ ∼i e
⊥ otherwise.

Definition 12. For any APE-structure F and any event structure E over the
support of F , let ∏

E

F := 〈
∏

E

A, (μ′
i)i∈Ag〉

where

1.
∏

E
A = A

′ is defined as in Definition 11;
2. each μ′

i : A
′ → [0, 1] is defined as follows:

dom(μ′
i) = Mini(A

′)↓
μ′
i(f) =

∑
e∈E

∑
a∈Φ Pi(e) · μi(f(e) ∧ a) · pre(e | a).

Proposition 5. For every APE-structure F and every event structure E over
the support of F , the intermediate structure

∏
E
F is an ApPE-structure (cf.

Definition 10).

Proof. The proof that
∏

E
A is an epistemic Heyting algebra is entirely analogous

to the proof of [KP13, Proposition 8], and is omitted. Let us assume that the
domain of μ′

i is non-empty. By definition, μ′
i is order-preserving and μ′

i(⊥) = 0.
Finally, by Proposition 4, i-minimal elements of A′ are of the form fe,a : E → A

for some e ∈ E and some i-minimal element a ∈ A. Fix one such element, and
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let g, h : E → A such that g ∨ h ≤ fe,a. By definition, f ≤ fe,a can be rewritten
as f(e′) ≤ fe,a(e

′) for any e′ ∈ E. Since fe,a(e
′) = ⊥ for any e′ �i e, we can

deduce that g(e′) = h(e′) = ⊥ for any e′ �i e. Hence,

μ′
i(g ∨ h)

=
∑

e′∈E

∑

a∈Φ

Pi(e
′) · μi((g(e

′) ∨ h(e′)) ∧ a) · pre(e′ | a) (by definition)

=
∑

e′∼ie

∑

a∈Φ

Pi(e
′) · μi((g(e

′) ∨ h(e′)) ∧ a) · pre(e′ | a)

(g(e′) = h(e′) = ⊥ for any e′ �i e and μi(⊥) = 0)

=
∑

e′∼ie

∑

a∈Φ

Pi(e
′) · μi((g(e

′) ∧ a) ∨ (h(e′) ∧ a)) · pre(e′ | a) (distributivity)

=
∑

e′∼ie

∑

a∈Φ

Pi(e
′) · (μi(g(e

′) ∧ a) + μi(h(e
′) ∧ a)− μi(g(e

′) ∧ h(e′) ∧ a)) · pre(e′ | a)

=
∑

e∈E

∑

a∈Φ

Pi(e) · (μi(g(e) ∧ a) + μi(h(e) ∧ a)− μi(g(e) ∧ h(e) ∧ a)) · pre(e | a)

(μi(⊥) = 0 by Definition 16 and g(e′) = h(e′) = ⊥ for any e′ �i e)

= μ′
i(g) + μ′

i(h)− μ′
i(g ∧ h) (by definition)

Definition 13. For any PES-model M and any event structure E = (E, (∼i

)i∈Ag, (Pi)i∈Ag, Φ, pre) over L, let EE := (E, (∼i)i∈Ag, (Pi)i∈Ag, ΦM, preM), where
ΦM := {[[φ]]M | φ ∈ Φ}, and pre

M
assigns a probability distribution pre(•|a) over

E for every a ∈ ΦM.

Fact 2. For any PES-model M and any event structure E over L, the tuple EE
is an event structure over the epistemic Heyting algebra underlying M

+.

Proposition 6. For every PES-model M and any event structure E over L,

(
∐

E
M)+ ∼=

∏

EE

M
+.

4.3 The Pseudo-Quotient and the Updated APE-Structure

In the present subsection, we define the APE-structure FE, resulting from the
update of the APE-structure F with and the event structure E over the support
of F , by taking a suitable pseudo-quotient of the intermediate APE-structure∏

E
F . Some of the results which are relevant for the ensuing treatment (such

as the characterization of the i-minimal elements in the pseudo-quotient) are
independent of the fact that we will be working with the intermediate algebra.
Therefore, in what follows, we will discuss them in the more general setting of
arbitrary epistemic Heyting algebras A:
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Definition 14. (cf. [MPS14, Sections 3.2, 3.3]) For any A and any a ∈ A,
let Aa := (L/∼=a, (♦a

i )i∈Ag, (�a
i )i∈Ag), where ∼=a is defined as follows: b ∼=a c iff

b ∧ a = c ∧ a for all b, c ∈ L, each operation ♦a
i is defined by the assignment

♦a
i [b] := [♦i(b∧ a)] and each operation �a

i is defined by the assignment �a
i [b] :=

[�i(a → b)], where [c] denotes the ∼=a-equivalence class of any given c ∈ L.

Proposition 7. (cf. [MPS14, Fact 12]) The algebra A
a of Definition 14 is an

epistemic Heyting algebra.

Proposition 8. The following are equivalent for any A and any a ∈ A:

1. [b] ∈ Mini(A
a);

2. [b] = [b′] for a unique b′ ∈ Mini(A) such that b′ ∧ a �= ⊥.

Hence, in what follows, whenever [b] ∈ Mini(A
a), we will assume w.l.o.g. that

b ∈ Mini(A) is the “canonical” (in the sense of Proposition 8) representant of [b].
For any APE-structure F and any event structure E over the support A of

F , the map pre in E induces the map pre : E → A defined by e �→ ∨
a∈Φ

pre(e|a) �=0
a.

It immediately follows from Propositions 4 and 8 that the i-minimal elements
of A

E are exactly the elements [fe,a] for e ∈ E and a ∈ Mini(A) such that
a ∧ pre(e′) �= ⊥ for some e′ ∼i e.

Definition 15. For any APE-structure F and any event structure E over the
support of F , the updated APE-structure is the tuple FE := (AE, (μE

i )i∈Ag), s.t.:

1. A
E := (

∏
E
A)pre, i.e. AE is obtained by instantiating Definition 14 to

∏
E
A

and pre ∈ ∏
E
A;

2. dom(μE

i ) = Mini(A
E)↓ for each partial map μE

i : AE → [0, 1] and μE

i ([g]) :=
μ′
i(g)

μ′
i(f)

for every [g] ∈ dom(μE
i ) where [g] ≤ [f ] for some [f ] ∈ Mini(A

E).

Notice that if [g] �= ⊥ then [f ] is unique (cf. discussion after Definition 8). If
[g] = ⊥ then μ′(g) = 0. Hence the above is well-defined.

Proposition 9. For any APE-structure F and any event structure E over the
support of F , the tuple FE is an APE-structure.

Proof. By Proposition 7, AE is an epistemic Heyting algebra. Let us assume that
the domain of μE

i is non-empty. To finish the proof, it remains to be shown that
each partial map μE

i satisfies the conditions of Definition 9. Clearly, μE

i (⊥) = 0
and μE

i ([f ]) = 1 for all [f ] ∈ Mini(A
E).

To argue that μE
i is monotone, observe preliminarily that μ′

i(g) = μ′
i(g∧ pre).

This follows by the definition of μ′
i and the fact that if pre(e | a) �= 0 then

a ≤ pre(e). Assume that [g1] ≤ [g2] ≤ [fe,a]. This means that g1∧pre ≤ g2∧pre.
Since μ′

i is monotone, μ′
i(g1) = μ′

i(g1∧pre) ≤ μ′
i(g2∧pre) = μi(g2). This implies

that
μ′
i(g1)

μ′
i(fe,a)

≤ μ′
i(g2)

μ′
i(fe,a)

that is, μE

i ([g1]) ≤ μE

i ([g2]).
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As for the last condition, let [g1] and [g2] in FE such that [g1] ≤ [fe,a] and
[g2] ≤ [fe,a]. We have:

μE

i ([g1] ∨ [g2]) =
μ′
i((g1 ∧ pre) ∨ (g2 ∧ pre))

μ′
i(fe,a)

=
μ′
i(g1 ∧ pre) + μ′

i(g2 ∧ pre)− μ′
i((g1 ∧ g2) ∧ pre)

μ′
i(fe,a)

=
μ′
i(g1 ∧ pre)

μ′
i(fe,a)

+
μ′
i(g2 ∧ pre)

μ′
i(fe,a)

− μ′
i((g1 ∧ g2) ∧ pre)

μ′
i(fe,a)

=
μ′
i(g1)

μ′
i(fe,a)

+
μ′
i(g2)

μ′
i(fe,a)

− μ′
i(g1 ∧ g2)

μ′
i(fe,a)

= μE

i ([g1]) + μE

i ([g2])− μE

i ([g1 ∧ g2]).

Lemma 2. For any PES-model M and any event structure E over L,
(P+

i )EE = (P E
i )

+.

Proposition 1 follows from the above lemma and [KP13, Proposition 3.6].

5 PDEL, Intuitionistically

In the present section, we apply the update construction on algebras introduced
in the previous section to the definition of the intuitionistic counterpart of PDEL.

Definition 16. Algebraic probabilistic epistemic models (APE-models) are tu-
ples M = 〈F , v〉 s.t. F = 〈A, (μi)i∈Ag〉 is an APE-structure, and v : AtProp → A.

The update construction of Section 4 extends from APE-structures to APE-
models. Indeed, for any APE-model M and any event structure E over L (cf.
Definition 1), the following tuple is an event structure over A:

EE := (E, (∼i)i∈Ag, (Pi)i∈Ag, ΦM, preM),

where ΦM := {[[φ]]M | φ ∈ Φ}6, and preM assigns a probability distribution
pre(•|a) over E for every a ∈ ΦM. Then,

ME := 〈FE , vE〉,
where FE := FEE as in Definition 15, and vE(p) = [v

∏

(p)] for every p ∈ AtProp,
where v

∏

(p) : E → A is defined by the assignment e �→ v(p). For every e ∈ E,
let πe :

∏
EE A → A be the eth projection; also, let π :

∏
EE A → A

EE be the

quotient map. As explained in [MPS14, Section 3.2], the map ι : AEE → ∏
EE A

defined by the assignment [g] �→ g ∧ pre is well defined.

6 Caveat: the definition of EE should more appropriately be given by simultaneous
induction together with the interpretation of formulas.
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Definition 17. The interpretation of L-formulas on any APE-model M is de-
fined recursively as follows:

[[p]]M = v(p) [[ϕ → ψ]]M = [[ϕ]]M →A [[ψ]]M
[[⊥]]M = ⊥A [[�]]M = �A

[[ϕ ∧ ψ]]M = [[ϕ]]M ∧A [[ψ]]M [[ϕ ∨ ψ]]M = [[ϕ]]M ∨A [[ψ]]M
[[♦iϕ]]M = ♦i[[ϕ]]M [[�iϕ]]M = �i[[ϕ]]M

[[〈E, e〉ϕ]]M = [[pre(e)]]M ∧A πe ◦ ι([[ϕ]]MEE ) [[[E, e]ϕ]]M = [[pre(e)]]M →A πe ◦ ι([[ϕ]]MEE )

[[(
∑n

k=1 αkμi(ϕk)) ≥ β]]M =
∨{a ∈ A | a ∈ Mini(A) and (

∑n
k=1 αkμi([[ϕk]]M ∧ a)) ≥ β}

The following axioms are sound on APE-models under the interpretation above:

〈E, e〉(
n∑

k=1

αkμi(ϕk) ≥ β) ↔ Pre(e) ∧
( n∑

k=1

∑

e′∼ie
φ∈Φ

αk · Pi(e
′) · pre(e′ | φ)μi(φ ∧ 〈E, e′〉ϕk)

+
∑

e′∼ie
φ∈Φ

−β · Pi(e
′) · pre(e′ | φ)μi(φ) ≥ 0

)

[E, e](
n∑

k=1

αkμi(ϕk) ≥ β) ↔ Pre(e) →
( n∑

k=1

∑

e′∼ie
φ∈Φ

αk · Pi(e
′) · pre(e′ | φ)μi(φ ∧ [E, e′]ϕk)

+
∑

e′∼ie
φ∈Φ

−β · Pi(e
′) · pre(e′ | φ)μi(φ) ≥ 0

)
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1 Introduction

Social Choice and Judgment Aggregation. The theory of social choice is
the formal study of mechanisms for collective decision making, and investigates
issues of philosophical, economic, and political significance, stemming from the
classical Arrovian problem of how the preferences of the members of a group can
be “fairly” aggregated into one outcome.

In the last decades, many results appeared generalizing the original Arrovian
problem, which gave rise to a research area called judgment aggregation (JA) [25].
While the original work of Arrow [1] focuses on preference aggregation, this can
be recognized as a special instance of the aggregation of consistent judgments,
expressed by each member of a group of individuals over a given set of logically
interconnected propositions (the agenda): each proposition in the agenda is either
accepted or rejected by each group member, so as to satisfy certain requirements
of logical consistency. Within the JA framework, the Arrovian-type impossibility
results (axiomatically providing sufficient conditions for aggregator functions to
turn into degenerate rules, such as dictatorship) are obtained as consequences of
characterization theorems [26], which provide necessary and sufficient conditions
for agendas to have aggregator functions on them satisfying given axiomatic
conditions.

In the same logical vein, in [24], attitude aggregation theory was introduced;
this direction has been further pursued in [19], where a characterization theo-
rem has been given for certain many-valued propositional-attitude aggregators
as MV-algebra homomorphisms.

The Ultrafilter Argument and its Generalizations. Methodologically, the
ultrafilter argument is the tool underlying the generalizations and unifications
mentioned above. It can be sketched as follows: to prove impossibility theorems
for finite electorates, one shows that the axiomatic conditions on the aggregation
function force the set of all decisive coalitions to be an (ultra)filter on the pow-
erset of the electorate. If the electorate is finite, this implies that all the decisive
coalitions must contain one and the same (singleton) coalition: the oligarchs (the
dictator). Employed in [11] and [23] for a proof of Arrow’s theorem alternative to
the original one1, this argument was applied to obtain elegant and concise proofs
of impossibility theorems also in judgment aggregation [7]. More recently, it gave
rise to characterization theorems, e.g. establishing a bijective correspondence be-
tween Arrovian aggregation rules and ultrafilters on the set of individuals [20].
Moreover, the ultrafilter argument has been generalized by Herzberg and Eck-
ert [20] to obtain a generalized Kirman-Sondermann correspondence as a conse-
quence of which Arrow-rational aggregators can be identified with those arising
as ultraproducts of profiles (see also [2], in which the results in [20] have been gen-
eralized to a setting accounting for vote abstention), and—using the well-known
correspondence between ultrafilters and Boolean homomorphisms—similar cor-

1 See also [16] for further information about the genesis and application of the tech-
nique.
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respondences have been established between Arrovian judgment aggregators and
Boolean algebra homomorphisms [18].

Escaping Impossibility via Nonclassical Logics. While much research in
this area explored the limits of the applicability of Arrow-type results, at the
same time the question of how to ‘escape impossibility’ started attracting increas-
ing interest. In [5], Dietrich provides a unified model of judgment aggregation
which applies to predicate logic as well as to modal logic and fuzzy logics. In [6],
Dietrich argues that impossibility results do not apply to a wide class of realistic
agendas once propositions of the form ‘if a then b’ are modelled as subjunctive
implications rather than material implications. Besides their theoretical value,
these results are of practical interest, given that subjunctive implication mod-
els the meaning of if-then statements in natural language more accurately than
material implication. In [27] and [28], Porello discusses judgment aggregation in
the setting of intuitionistic, linear and substructural logics. In particular, in [28],
it is shown that linear logic is a viable way to circumvent impossibility theorems
in judgment aggregation.

Aim. A natural question arising in the light of these results is how to uniformly
account for the role played by the different logics (understood both as formal lan-
guage and deductive machinery) underlying the given agenda in characterization
theorems for JA.

The present paper focuses on Abstract Algebraic Logic as a natural theoretical
setting for Herzberg’s results [17, 19], and the theory of (fully) selfextensional
logics as the appropriate logical framework for a nonclassical interpretation of
logical connectives, in line with the approach of [6].

Abstract Algebraic Logic and Selfextensional Logics. Abstract Algebraic
Logic (AAL) [14] is a forty-year old research field in mathematical logic. It was
conceived as the framework for an algebraic approach to the investigation of
classes of logics. Its main goal was establishing a notion of canonical algebraic
semantics uniformly holding for classes of logics, and using it to systematically
investigate (metalogical) properties of logics in connection with properties of
their algebraic counterparts.

Selfextensionality is the metalogical property holding of those logical systems
whose associated relation of logical equivalence on formulas is a congruence of
the term algebra. Wójcicki [29] characterized selfextensional logics as the logics
which admit a so-called referential semantics (which is a general version of the
well known possible-world semantics of modal and intuitionistic logics), and
in [22], a characterization was given of the particularly well behaved subclass of
the fully selfextensional logics in general duality-theoretic terms. This subclass
includes many well-known logics, such as classical, intuitionistic, modal, many-
valued and relevance logic. These and other results in this line of research (cf. e.g.
[8,9,15,21]) establish a systematic connection between possible world semantics
and the logical account of intensionality.

Contributions. In the present paper, we generalize and refine Herzberg’s char-
acterization result in [19] from the MV-algebra setting to any class of algebras
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canonically associated with some selfextensional logic. This generalization si-
multaneously accounts for agendas expressed in the language of such logics as
modal, intuitionistic, relevance, substructural and many-valued logics. Besides
having introduced the connection between AAL and Judgment Aggregation, the
added value of this approach is that it is parametric in the logical system S. In
particular, the properties of agendas are formulated independently of a specific
logical signature and are slightly different than those in Herzberg’s setting. In
contrast with Herzberg’s characterization result, which consisted of two slightly
asymmetric parts, the two propositions which yield the characterization result
in the present paper (cf. Propositions 1 and 2) are symmetric. Aggregation of
propositional attitudes modeled in classical, intuitionistic, modal, �Lukasiewicz
and relevance logic can be uniformly captured as special cases of the present
result. This makes it possible to fine-tune the expressive and deductive power
of the formal language of the agenda, so as to capture e.g. intensional or vague
statements.

Structure of the Paper. In Section 2, relevant preliminaries are collected
on Abstract Algebraic Logic. In Section 3, Herzberg’s algebraic framework for
aggregation theory is generalized from MV-algebras to S-algebras, where S is
an arbitrary selfextensional logic. In Section 4, the main characterization result
is stated. In Section 5, the impossibility theorem for judgment aggregation is
deduced as a corollary of the main result, and one well known setting accounting
for the subjunctive reading of implication is discussed.

2 Preliminaries on Abstract Algebraic Logic

The present section collects the basic concepts of Abstract Algebraic Logic that
we will use in the paper. For a general view of AAL the reader is addressed
to [13] and the references therein.

2.1 General Approach.

As mentioned in the introduction, in AAL, logics are not studied in isolation, and
in particular, investigation focuses on classes of logics and their identifying met-
alogical properties. Moreover, the notion of consequence rather than the notion
of theoremhood is taken as basic: consequently, sentential logics, the primitive
objects studied in AAL, are defined as tuples S = 〈Fm,�S〉 where Fm is the
algebra of formulas of type LS over a denumerable set of propositional variables
V ar, and �S is a consequence relation on (the carrier of) Fm (cf. Subsection 2.3).

This notion encompasses logics that are defined by any sort of proof-theoretic
calculus (Gentzen-style, Hilbert-style, tableaux, etc.), as well as logics arising
from some classes of (set-theoretic, order-theoretic, topological, algebraic, etc.)
semantic structures, and in fact it allows to treat logics independently of the way
in which they have been originally introduced. Another perhaps more common
approach in logic takes the notion of theoremhood as basic and consequently
sees logics as sets of formulas (possibly closed under some rules of inference).
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This approach is easily recaptured by the notion of sentential logic adopted in
AAL: Every sentential logic S is uniquely associated with the set Thm(S) =
{ϕ ∈ Fm | ∅ �S ϕ} of its theorems.

2.2 Consequence Operations

For any set A, a consequence operation (or closure operator) on A is a map
C : P(A) → P(A) such that for every X,Y ⊆ A: (1) X ⊆ C(X), (2) if X ⊆
Y , then C(X) ⊆ C(Y ) and (3) C(C(X)) = C(X). The closure operator C is
finitary if in addition satisfies (4) C(X) =

⋃{C(Z) : Z ⊆ X,Z finite}. For any
consequence operation C on A, a set X ⊆ A is C-closed if C(X) = X . Let CC
be the collection of C-closed subsets of A.

For any set A, a closure system on A is a collection C ⊆ P(A) such that A ∈ C,
and C is closed under intersections of arbitrary non-empty families. A closure
system is algebraic if it is closed under unions of up-directed2 families.

For any closure operator C on A, the collection CC of the C-closed subsets of
A is a closure system on A. If C is finitary, then CC is algebraic. Any closure
system C on A defines a consequence operation CC on A by setting CC(X) =⋂{Y ∈ C : X ⊆ Y } for everyX ⊆ A. The CC-closed sets are exactly the elements
of C. Moreover, C is algebraic if and only if CC is finitary.

2.3 Logics

Let L be a propositional language type (i.e. a set of connectives and their arities,
which we will also regard as a set of function symbols) and let FmL denote
the algebra of formulas (or term algebra) of L over a denumerable set V of
propositional variables. Let FmL be the carrier of the algebra FmL. A logic (or
deductive system) of type L is a pair S = 〈FmL,�S〉 such that �S⊆ P(FmL)×
FmL such that the operator C�S : P(FmL) → P(FmL) defined by

ϕ ∈ C�S (Γ ) iff Γ �S ϕ

is a consequence operation with the property of invariance under substitutions ;
this means that for every substitution σ (i.e. for every L-homomorphism σ :
FmL → FmL) and for every Γ ⊆ FmL,

σ[C�S (Γ )] ⊆ C�S (σ[Γ ]).

For every S, the relation �S is the consequence or entailment relation of S. A
logic is finitary if the consequence operation C�S is finitary. Sometimes we will
use the symbol LS to refer to the propositional language of a logic S.

The interderivability relation of a logic S is the relation ≡S defined by

ϕ ≡S ψ iff ϕ �S ψ and ψ �S ϕ.

S satisfies the congruence property if ≡S is a congruence of FmL.
2 For 〈P,≤〉 a poset, U ⊆ P is up-directed when for any a, b ∈ U there exists c ∈ U
such that a, b ≤ c.
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2.4 Logical Filters

Let S be a logic of type L and let A be an L-algebra (from now on, we will drop
reference to the type L, and when we refer to an algebra or class of algebras in
relation with S, we will always assume that the algebra and the algebras in the
class are of type L).

A subset F ⊆ A is an S-filter of A if for every Γ ∪ {ϕ} ⊆ Fm and every
h ∈ Hom(FmL,A),

if Γ �S ϕ and h[Γ ] ⊆ F, then h(ϕ) ∈ F.

The collection FiS(A) of the S-filters of A is a closure system. Moreover, FiS(A)
is an algebraic closure system if S is finitary. The consequence operation associ-
ated with FiS(A) is denoted by CA

S . For every X ⊆ A, the closed set CA
S (X) is

the S-filter of A generated by X . If S is finitary, then CA
S is finitary for every

algebra A.
On the algebra of formulas Fm, the closure operator CFm

S coincides with C�S
and the CFm

S -closed sets are exactly the S-theories ; that is, the sets of formulas
which are closed under the relation �S .

2.5 S-algebras and Selfextensional Logics

One of the basic topics of AAL is how to associate in a uniform way a class of
algebras with an arbitrary logic S. According to contemporary AAL [13], the
canonical algebraic counterpart of S is the class AlgS, whose elements are called
S-algebras. This class can be defined via the notion of Tarski congruence.

For any algebra A (of the same type as S) and any closure system C on A,
the Tarski congruence of C relative to A, denoted by Ω̃A(C), is the greatest
congruence which is compatible with all F ∈ C, that is, which does not relate
elements of F with elements which do not belong to F . The Tarski congruence
of the closure system consisting of all S-theories relative to Fm is denoted by
Ω̃(S). The quotient algebra Fm/Ω̃(S) is called the Lindenbaum-Tarski algebra
of S.

For any algebra A, we say that A is an S-algebra (cf. [13, Definition 2.16]) if
the Tarski congruence of FiS(A) relative to A is the identity. It is well-known
(cf. [13, Theorem 2.23] and ensuing discussion) that AlgS is closed under direct
products. Moreover, for any logic S, the Lindenbaum-Tarski algebra is an S-
algebra (see page 36 in [13]).

A logic S is selfextensional (cf. [29]) when the relation of logical equivalence
between formulas

ϕ ≡S ψ iff ϕ �S ψ and ψ �S ϕ

is a congruence relation of the formula algebra Fm. An equivalent definition of
selfextensionality (see page 48 in [13]) is given as follows: S is selfextensional iff
the Tarski congruence Ω̃(S) and the relation of logical equivalence ≡S coincide.
In such case the Lindenbaum-Tarski algebra reduces to Fm/ ≡S . Examples of
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selfextensional logics besides classical propositional logic are intuitionistic logic,
positive modal logic [4], the {∧,∨}-fragment of classical propositional logic, Bel-
nap’s four-valued logic [3], the local consequence relation on modal formulas
arising from Kripke frames, the (order-induced) consequence relation associ-
ated with MV-algebras and defined by “preserving degrees of truth” (cf. [12]),
and the order-induced consequence relation of linear logic. Examples of non-
selfextensional logics include the -induced consequence relation of linear logic,
the (-induced) consequence relation associated with MV-algebras and defined
by “preserving absolute truth” (cf. [12]), and the global consequence relation on
modal formulas arising from Kripke frames.

From now on we assume that S is a selfextensional logic and B ∈ AlgS. For
any formula ϕ ∈ Fm, we say that ϕ is provably equivalent to a propositional
variable iff there exist a propositional variable x such that ϕ ≡ x.

3 Formal Framework

In the present section, we generalize Herzberg’s algebraic framework for ag-
gregation theory from MV-propositional attitudes to S-propositional attitudes,
where S is an arbitrary selfextensional logic. Our conventional notation is similar
to [19]. Let L be a logical language which contains countably many connectives,
each of which has arity at most n, and let Fm be the collection of L-formulas.

3.1 The Agenda

The agenda will be given by a set of formulasX ⊆ Fm. Let X̄ denote the closure
of X under the connectives of the language, i.e. the smallest set containing all
formulas in X and the 0-ary connectives in L, and closed under the connectives
in the language. Notice that for any constant c ∈ L, we have c ∈ X̄ .

We want the agenda to contain a sufficiently rich collection of formulas. In
the classical case, it is customary to assume that the agenda contains at least
two propositional variables. In our general framework, this translates in the
requirement that the agenda contains at least n formulas that ‘behave’ like
propositional variables, in the sense that their interpretation is not constrained
by the interpretation of any other formula in the agenda.

We could just assume that the agenda contains at least n different proposi-
tional variables, but we will deal with a slightly more general situation, namely,
we assume that the agenda is n-pseudo-rich:

Definition 1. An agenda is n-pseudo-rich if it contains at least n formulas
{δ1, . . . , δn} such that each δi is provably equivalent to xi for some set {x1, . . . , xn}
of pairwise different propositional variables.

3.2 Attitude Functions, Profiles and Attitude Aggregators

An attitude function is a function A ∈ BX which assigns an element of the
algebra B to each formula in the agenda.
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The electorate will be given by some (finite or infinite) set N . Each i ∈ N is
called an individual.

An attitude profile is an N -sequence of attitude functions, i.e. A ∈ (BX)N .
For each ϕ ∈ X , we denote the N -sequence {Ai(ϕ)}i∈N ∈ BN by A(ϕ).

An attitude aggregator is a function which maps each profile of individual
attitude functions in some domain to a collective attitude function, interpreted as
the set of preferences of the electorate as a whole. Formally, an attitude aggregator
is a partial map F : (BX)N � BX .

3.3 Rationality

Let the agenda contain formulas ϕ1, . . . , ϕm, g(ϕ1, . . . , ϕm) ∈ X , where g ∈ L is
an m-ary connective of the language and m ≤ n. Among all attitude functions
A ∈ BX , those for which it holds that A(g(ϕ1, . . . , ϕn)) = gB(A(ϕ1), . . . , A(ϕn))
are of special interest. In general, we will focus on attitude functions which are
‘consistent’ with the logic S in the following sense.

We say that an attitude function A ∈ BX is rational if it can be extended to
a homomorphism Ā : Fm/≡ −→ B of S-algebras. In particular, if A is rational,
then it can be uniquely extended to X̄ , and we will implicitly use this fact in
what follows.

We say that a profile A ∈ (BX)N is rational if Ai is a rational attitude
function for each i ∈ N .

We say that an attitude aggregator F : (BX)N � BX is rational if for all
rational profiles A ∈ dom(F ) in its domain, F (A) is a rational attitude function.
Moreover, we say that F is universal ifA ∈ dom(F ) for any rational profileA. In
other words, an aggregator is universal whenever its domain contains all rational
profiles, and it is rational whenever it gives a rational output provided a rational
input.

3.4 Decision Criteria and Systematicity

A decision criterion for F is a partial map f : BN
� B such that for all

A ∈ dom(F ) and all ϕ ∈ X ,

F (A)(ϕ) = f(A(ϕ)). (3.1)

As observed by Herzberg [19], an aggregator is independent if the aggregate
attitude towards any proposition ϕ does not depend on the individuals attitudes
towards propositions other than ϕ:

An aggregator F is independent if there exists some map g : BN ×X � B
such that for all A ∈ dom(F ), the following diagram commutes (whenever the
partial maps are defined):

X BN ×X
A, idX

��

B
F (A) ����

���
���

���
���

��

g
��
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An aggregator F is systematic if there exists some decision criterion f for
F , i.e. there exists some map f : BN

� B such that for all A ∈ dom(F ), the
following diagram commutes (whenever the partial maps are defined):

X BN
A

��

B
F (A) ���

��
��

��
�

f
��

Systematic aggregation is a special case of independent aggregation, in which
the output of g does not depend on the input in the second coordinate. Thus, g
is reduced to a decision criterion f : BN

� B.
An aggregator F is strongly systematic if there exists some decision criterion f

for F , such that for all A ∈ dom(F ), the following diagram commutes (whenever
the partial maps are defined):

X̄ BN
A

��

B
F (A) ���

��
��

��
�

f
��

Notice that the diagram above differs from the previous one in that the agenda
X is now replaced by its closure X̄ under the connectives of the language. If X is
closed under the operations in LS , then systematicity and strong systematicity
coincide.

A formula ϕ ∈ Fm is strictly contingent if for all a ∈ B there exists some
homomorphism v : Fm → B such that v(ϕ) = a. Notice that for any n ≥ 1, any
n-pseudo rich agenda (cf. Definition 1) always contains a strictly contingent for-
mula. Moreover, if the agenda contains some strictly contingent formula ϕ, then
any universal systematic attitude aggregator F has a unique decision criterion
(cf. [19, Remark 3.5]).

Before moving on to the main section, we mention four definitions which
appear in Herzberg’s paper, namely that of Paretian attitude aggregator (cf.
[19, Definition 3.7]), complex and rich agendas (cf. [19, Definition 3.8]), and
strongly systematizable aggregators (cf. [19, Definition 3.9]). Unlike the previous
ones, these definitions rely on the specific MV-signature, and thus do not have a
natural counterpart in the present, vastly more general setting. However, as we
will see, our main result can be formulated independently of these definitions.
Moreover, a generalization of the Pareto condition follows from the assumptions
of F being universal, rational and strongly systematic, as then it holds that
for any constant c ∈ LS , and any ϕ ∈ Fm, if Ai(ϕ) = c for all i ∈ N , then
F (A)(ϕ) = c.
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4 Characterization Results

In the present section, the main results of the paper are presented. In what
follows, we fix a language type L and a selfextensional logic S. Recall that ≡
indicates the interderivability relation associated with S and B is an arbitrary
algebra in AlgS.
Lemma 1. Let X be an n-pseudo-rich agenda, m ≤ n, g ∈ L be an m-ary
connective and a1, . . . , am ∈ B. Then there exist formulas δ1, . . . , δm ∈ X in the
agenda and a rational attitude function A : X −→ B such that A(δj) = aj for
each j ∈ {1, . . . ,m}.
Proof. As the agenda is n-pseudo-rich, there are formulas δ1, . . . , δm ∈ X each
of which is provably equivalent to a different propositional variable xi. Notice
that this implies that the formulas δ1, . . . , δm are not pairwise interderivable. So
the ≡-equivalence cells [δ1], . . . , [δm] are pairwise different, and moreover there
exists a valuation v : Fm/≡ −→ B such that v(δi) = ai for all i ∈ {1, . . . ,m}.
Let A := v ◦ π�X , where π�X : X → Fm/≡ is the restriction of the canonical
projection π : Fm → Fm/≡ to X . Then clearly A : X → B is the required
rational attitude function.

Lemma 2. Let X be an n-pseudo-rich agenda, m ≤ n, g ∈ L be an m-ary
connective and a1, . . . ,am ∈ BN . Then there exist formulas δ1, . . . , δm ∈ X in
the agenda and a rational attitude profile A : X −→ BN such that A(δj) = aj

for each j ∈ {1, . . . ,m}.
Proof. As the agenda is n-pseudo-rich, there are formulas δ1, . . . , δm ∈ X each
of which is provably equivalent to a different propositional variable xi. By the
previous lemma, for each i ∈ N , there exists a rational attitude function Ai :
X −→ B such that Ai(δj) = aj(i) for each j ∈ {1, . . . ,m}. Thus it is easy to
check that the sequence of attitudes A := {Ai}i∈N is a rational profile such that
A(δj) = aj for each j ∈ {1, . . . ,m}.

Recall that given that X is n-pseudo rich, there exists a unique decision
criterion for any strongly systematic attitude aggregator F (cf. page 85). We
omit the proofs of the following propositions, which can be found in an extended
version of the present paper (cf. [10]):

Proposition 1. Let F be a rational, universal and strongly systematic attitude
aggregator. Then the decision criterion of F is a homomorphism of S-algebras.
Proposition 2. Let f : BN

� B be a homomorphism of S-algebras. Then the
function F : (BX)N � BX , defined for any rational profile A and any ϕ ∈ X
by the following assignment:

F (A)(ϕ) = f(A(ϕ)),

is a rational, universal and strongly systematic attitude aggregator.
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Finally, the conclusion of the following corollary expresses a property which is a
generalization of the Pareto condition (cf. [19, Definition 3.7]).

Corollary 1. If F is universal, rational and strongly systematic, then for any
constant c ∈ LS and ϕ ∈ Fm, if Ai(ϕ) = cB for all i ∈ N , then F (A)(ϕ) = cB.

Proof. Let c ∈ LS and ϕ ∈ Fm. Notice that by definition of the product algebra,

the sequence {cB}i∈N is precisely cB
N

. If Ai(ϕ) = cB for all i ∈ N , i.e. A(ϕ) =

cB
N

, then by Proposition 1, F (A)(ϕ) = f(A(ϕ)) = f(cB
N

) = cB, as required.

5 Applications

In the present section, we show how the setting in the present paper relates to
existing settings in the literature.

5.1 Arrow-Type Impossibility Theorem for Judgment Aggregation

Let S be the classical propositional logic. Its algebraic counterpart AlgS = BA is
the variety of Boolean algebras. Let L = {¬,∨} be its language (the connectives
∧,→,↔ are definable from the primitive ones). Let B = 2 be the two-element
Boolean algebra. Let X ⊆ FmL be a 2-pseudo-rich agenda.

By Propositions 1 and 2, for every electorate N , there exists a bijection
between rational, universal and strongly systematic attitude aggregators F :
(2X)N −→ 2X 3 and Boolean homomorphisms f : 2N −→ 2.

Recall that there is a bijective correspondence between Boolean homomor-
phisms f : 2N −→ 2 and ultrafilters of 2N . Moreover, if N is finite, every
ultrafilter of 2N is principal. In this case, a decision criterion corresponds to an
ultrafilter exactly when it is dictatorial.

5.2 A Mathematical Environment for the Subjunctive
Interpretation of ‘if – then’ Statements

In [6], Dietrich argues that, in order to reflect the meaning of connection rules
(i.e. formulas of the form p → q or p ↔ q such that p and q are conjunctions of
atomic propositions or negated atomic propositions) as they are understood and
used in natural language, the connective → should be interpreted subjunctively.
That is, the formula p → q should not be understood as a statement about
the actual world, but about whether q holds in hypothetical world(s) where p
holds, depends on q’s truth value in possibly non-actual worlds. Dietrich proposes
that, in the context of connection rules, any such implication should satisfy the
following conditions:

(a) for any atomic propositions p and q, p → q is inconsistent with {p,¬q} but
consistent with each of {p, q} {¬p, q} {¬p,¬q};

3 Note that in this case an alternative presentation of F is F : P(X)N −→ P(X),
which is the standard one.
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(b) for any atomic propositions p and q, ¬(p → q) is consistent with each of
{p,¬q}, {p, q}, {¬p, q} and {¬p,¬q}.

Clearly, the classical interpretation of p → q as ¬p ∨ q satisfies only condition
(a) but not (b). The subjunctive interpretation of → has been formalised in
various settings based on possible-worlds semantics. One such setting, which
is different from the one adopted by Dietrich’s, is given by Boolean algebras
with operators (BAOs). These are Boolean algebras endowed with an additional
unary operation � satisfying the identities �1 = 1 and �(x ∧ y) = �x ∧ �y.
Let us further restrict ourselves to the class of BAOs such that the inequality
�x ≤ x is valid. This class coincides with AlgS, where S is the normal modal
logic T with the so-called local consequence relation. It is well known that T is
selfextensional and is complete w.r.t. the class of reflexive Kripke frames. In this
setting, let us stipulate that p → q is interpreted as �(¬p ∨ q).

It is easy to see that this interpretation satisfies both conditions (a) and (b).
To show that p → q is inconsistent with {p,¬q}, observe that �(¬p∨q)∧p∧¬q ≤
(¬p ∨ q) ∧ p ∧ ¬q = (¬p ∧ (p ∧ ¬q)) ∨ (q ∧ (p ∧ ¬q)) = ⊥ ∨⊥ = ⊥.

To show that p → q is consistent with {p, q},consider the two-element BAO
s.t. �1 = 1 and �0 = 0. The assignment mapping p and q to 1 witnesses the
required consistency statement. The remaining part of the proof is similar and
hence is omitted.

Clearly, the characterization theorem given by Propositions 1 and 2 applies
also to this setting. However, the main interest of this setting is given by the
possibility theorems. It would be a worthwile future research direction to explore
the interplay and the scope of these results.
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Abstract. Savage’s framework of subjective preference among acts pro-
vides a paradigmatic derivation of rational subjective probabilities within
a more general theory of rational decisions. The system is based on a set
of possible states of the world, and on acts, which are functions that
assign to each state a consequence. The representation theorem states
that the given preference between acts is determined by their expected
utilities, based on uniquely determined probabilities (assigned to sets of
states), and numeric utilities assigned to consequences. Savage’s deriva-
tion, however, is based on a highly problematic well-known assumption
not included among his postulates: for any consequence of an act in some
state, there is a “constant act” which has that consequence in all states.
This ability to transfer consequences from state to state is, in many
cases, miraculous – including simple scenarios suggested by Savage as
natural cases for applying his theory. We propose a simplification of the
system, which yields the representation theorem without the constant
act assumption. We need only postulates P1-P6. This is done at the cost
of reducing the set of acts included in the setup. The reduction excludes
certain theoretical infinitary scenarios, but includes the scenarios that
should be handled by a system that models human decisions.

Keywords: subjective expected utility, Savage’s postulates, constant
acts, context-dependent decision making.

1 Introduction

In his classic The Foundations of Statistics1 Savage sets up a foundational sys-
tem within which he derives both subjective probabilities and utilities from the
preferences of a rational agent, provided that the preferences satisfy certain plau-
sible postulates. The upshot is that the expected utilities come out as a measure
that defines the agent’s given preferences. The derivation relies however on ad-
ditional implicit assumptions, one of which, the CAA discussed below, is quite
problematic. Let us first recall the basic structure of the Savage system. It is
based on the following four components:

1 The first edition [4] of Savage’s book was published in 1954, all citations made in
this paper refer to the second and revised edition [5] published in 1972.
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1. A set S of states (or states of the world),
2. A set C of consequences, which are the consequences of the agent’s acts,
3. A set A of acts, where each act is a function, f , which associates with every

state, s, the consequence f(s) of performing f in a world that is in state s,
4. The (rational) agent’s preference relation, �, defined over acts, which is a total

preorder. Here, as is customary in current mathematics, “preorder” means a
reflexive and transitive relation. A preorder is total or complete if for any f, g
either f � g or g � f .

The intended meaning of f � g is: f is weakly preferable to g, i.e., is at least
as good as g; it is also written g � f . If both f � g and g � f , then we denote
it by f ≡ g. Obviously this is an equivalence relation, it means that f and g
are equi-preferable: the agent considers them to be equally good. We define:
f � g =Df f � g and g �� f . This means that f is strictly preferred to g. Note
that our notation and terminology differ from Savage’s and this can be more than
a technicality. For instance, after defining “constant acts” he does not use this
term and one has to infer that certain acts are constant only from the notation;
that notation, however, is sometimes ambiguous.2

Other elements are introduced in Savage’s presentation at later stages, as the
system is being developed in the book. Thus, there are events, which are sets of
states that form, under the usual set-theoretic operations, a Boolean algebra, B,
in which S is the universal set. And there is the notion of conditional preference,
that is: f � g given E where E is an event, which is defined using P2 (the sure-
thing postulate) and which is supposed to express what the agent prefers under
the assumption that s ∈ E. Furthermore, for any f, g ∈ A, the combination of
f and g with respect to an event E, in symbols f |E + g|E, is defined as: f(s) if
s ∈ E, g(s) if s ∈ E, where E = S − E is the compliment of E with respect to
S.3 We sometimes refer to this operation as “cut-and-paste”. This notation can
be easily generalized to define combinations of n many acts: f1|P1 + · · ·+ fn|Pn

is the act h such that h(s) = fi(s) for s ∈ Pi (i = 1, . . . , n), and this is used
under the assumption that P1, . . . , Pn is a partition of the set of all states.

1.1 The Problem of the Constant-act Assumption

One crucial element of the system is the notion of constant acts or, in Savage’s
phrasing, “acts that are constant” (p.25). The idea is that a constant act has
the same consequence in all states. To be precise, being a constant act is not a

2 Savage’s “simple ordering” is, in our terminology, a total preorder. He uses ‘F ’ for
the set of consequences and he characterizes total preorders as “simple orderings”. In
particular, he uses boldface letters f , g, . . . for acts and italics f , g, . . . for values of
“acts that are constant”, writing f ≡ g when f(s) = g for all states s. He also uses ‘f ’
for constant act whose value is f . Furthermore, he sometimes switches to italicized
notation even when the function is not constant, as he does in the statement of P4
on p.31, where he writes fA(s) instead of fA(s), or in Theorem 1 on page 70, where
he writes f(s) = fi instead of f(s) = fi as he should.

3 Some writers use ‘f ⊕E g’ or ‘fEg’ or ‘
[
f on E, g on E

]
’ for combined acts.
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property of a single act, but is subject to an axiom that applies to a bunch of acts:
the preference between two constant acts, given some event, does not depend
on the event. The fifth postulate (P5) posits the existence of two non-equivalent
constant acts.

Savage’s representation theorem claims that a preference relation that satisfies
the postulates determines a unique (finitely additive) probability on B and a
utility function (unique up to a linear transformation) which assigns numeric
utilities to consequences, such that f � g iff the expected utility of f is greater
or equal to that of g. The derivation of a probability and a utility is carried out
in two stages. In the first stage a finitely additive probability is derived from
a preference relation, which satisfies the postulates P1–P6. As far as constant
acts are concerned, this derivation does not require more than P5 (the existence
of two non-equivalent constant acts is sufficient). But in the second stage—the
derivation of a utility in chapter 5—Savage tacitly assumes the following:

CAA (Constant-acts Assumption). For every consequence a ∈ C there ex-
ists a constant act ca, such that ca(s) = a, for all s ∈ S.

Note that after introducing “acts that are constant” Savage hardly uses the
term anymore and one has to infer that such and such acts are constant only
from the notation, which is not always consistent (see Footnote 2). Fishburn ([2])
who observed that CAA is required for the proof of the representation theorem,
has also pointed out the problematic nature of CAA (cf. Footnote 4 below).
Among others who have also emphasized the need for CAA in Savage’s system
are [3,6,7]. This assumption, we shall argue, does not sit well with certain simple
scenarios of decision making, which Savage considers as the kind of situations
that his system is supposed to handle.

The difficulty is the fact that the very possibility of some consequence may
depend on the world being in a certain state: the consequence could not exist in
a different state of the world. At the beginning of his book ([5, p.14]) Savage
proposes the following omelet-making problem to illustrate the way his system
works. The agent, call him John (in the book it is ‘you’), has to finish making
an omelet, which was begun by his wife. She broke into a bowl five good eggs
and John finds a sixth egg, which can be added to the bowl or thrown away (we
assume that there is no option of keeping it for future use). John does not know
if the egg is good or rotten and has to decide between three acts: (1) Break it
into the bowl (2) break it into a saucer to see if it is good or rotten (3) throw
it away. There are two possible states of the world good and rotten, which are
determined by the state of the sixth egg. The consequences of each act are given
in Table 1, as it appears in the book.

John’s ranking of the acts (that is, his preference relation, �) reflects both
his probabilistic estimates regarding the likeliness of each state, as well as the
utility values of the consequences; for example, if he is sufficiently confident that
the egg is good and if washing the saucer is, for him, of considerable nuisance,
he will prefer “break into bowl” to “break into saucer”. His preferences for these
three acts cannot, of course, determine the probabilities and utilities, but if the
set of acts over which the preference relation is defined is sufficiently rich (where
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Table 1. Savage omelet example.

Act
State

Good Rotten
break into bowl six-egg omelet no omelet and all five

eggs destroyed
break into saucer six-egg omelet and a

saucer to wash
five-egg omelet and a
saucer to wash

throw away five-egg omelet and one
good egg wasted

five-egg omelet

“sufficiently rich” is determined by the postulates), then we get probabilities and
utilities. Obviously the consequence “six-egg omelet” means an omelet made of
the six eggs of the story, in the case where the sixth egg is good. Yet CAA requires
that there should be a constant act that yields that consequence also in the state
in which the sixth egg is rotten. It would involve a miraculous production of a
good six-egg omelet out of five good eggs and a rotten one.4

The problem arises also in the second scenario, which Savage proposes for
the very purpose of clarifying what is implied by a constant act (ibid. p.25). A
person, call her Jane, plans to go with friends on a picnic, and she has to choose
between buying a tennis racquet and buying a bathing suit (assume that buying
both is ruled out for financial reasons). The bathing suit would be handier if the
picnic is held near water where one can swim; the racquet would be better, if
the picnic is not held near water but near a tennis court. One might consider the
possession of a bathing suit and the possession of a tennis racquet as constant,
state-independent consequences. But Savage makes it clear that this would not
do, since the preference order of possessing a racquet and possessing a bathing
suit depends on the state of the world, where the state of the world includes
the picnic-location. Savage argues that the payoffs should be entities such as: “a
refreshing swim with friends, or sitting on a shadeless beach twiddling a brand-
new tennis racquet while one’s friends swim”. That, however, does not make
the constant-acts problem easier. To get a constant act, we have to appeal to
the theoretical possibility that while Jane sits on a shadeless beach twiddling a
brand new tennis racket, she has somehow the enjoyment of a refreshing swim
with her friends.

Perhaps the constant-acts problem is not so difficult if we consider getting
sums of money, or some other quantitative goods, as being of equivalent value to

4 In passing, Fishburn ([2, p.166-7]) also voiced this unsatisfactory feature of CAA.
He pointed out that, for any states s, s′ ∈ S, if W (s) and W (s′) are respectively
the sets of consequences that may occur under s and s′, then it might well be that
W (s) �= W (s′) (or even that W (s) ∩ W (s′) = ∅), in which case the CAA fails. He
remarked that he is not aware of any axiomatic system that does not make the
assumption that W (s) = W (s′) = C for all s, s′ ∈ S, and he left this line of research
as an open question (see also [1, p.162]).
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the consequences in question. In the omelet scenario, John may consider getting
$k as being equivalent to a six-egg omelet and this can serve also as a payoff in
the state “rotten”. But it is not clear what the equivalence of $k with a six-egg
omelet means in the given context where John has to finish making the omelet.
We may consider replacing Table 1 by the following table, in which the entries
are dollar amounts; this would turn the problem into a problem of choosing
between gambles. (Obviously, k is assumed to be the largest payoff, l is the

Act
State

Good Rotten
Gamble 1 $k $l
Gamble 2 $m $n
Gamble 3 $p $q

smallest, m > n and q > n.) And we may consider offering John the choice of
not completing the task – throwing out all eggs – and getting in return to choose
a gamble from the table above. But this artificial dubious device undermines the
big attraction of Savage’s system: its ability to evaluate consequences that do
not consist in winning or loosing sums of money or goods. If all consequences
are to be replaced by dollar sums before the system is applied, the main point
of the system is lost.

One objective of this paper is to show that CAA is not required for applying
Savage’s system to any finitistic problem, that is to say, a problem that is stated
in terms of finitely many evants, finitely many acts and finitely many possible
consequences. All that we need is the existence of two distinguished constant
acts.

1.2 The Significance of the Set of Acts and the Boolean Algebra

The weaker the postulates and the presuppositions which are needed to get the
representation theorem, the stronger the theorem is. The basic presupposition
of Savages system is that the preference relation is defined over some very rich
set of acts. In some places Savage even considers every function from states to
consequences to be an act, in situations in which the set of states, as well as the
set of consequences, has the cardinality of the continuum. This is exorbitant.
Of course the set of acts should be sufficient for handling the kind of problems
that the system is designed for. As a rule, these problems are stated in terms of
finitely many simple acts, where a simple act is an act, f , which has finitely many
values, such that, f−1(x) is an event (a member of the Boolean algebra B) for
each consequence x that is a value of f . Such acts are called by Savage gambles. It
is easily seen that a simple act, f , can be written in the form f = f |P1+. . .+f |Pn,
where P1, . . . , Pn is a partition of S, Pi = f−1(xi) and the xi are consequences.
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In the initial scenario the agent is supposed to decide between given options
that belong to some finite set of simple acts. P6 implies however that the pref-
erence is to be defined over richer sets that involve more refined events (cf.
Theorem 2.3 below). But, as we shall show, we never need more than simple
acts. (In Section 3, we comment on how our model can be generalized to treat
certain infinitary cases.)

Now the richness of the set of acts is also determined by the richness of the
Boolean algebra B of events, namely the collection of subsets that constitute
events. As noted, Savage considers possibilities in which this Boolean algebra
consists of all subsets of real numbers. But his proof of the representation theo-
rem requires only that it be a σ-algebra, that is, closed under unions of countable
many sets. Our results can be now stated as follows:

i. While we assume that the Boolean algebra is a σ-algebra, we can derive the
representation theorem if we consider only a preference defined over simple
acts, which include two non-equivalent constant ones.

ii. Moreover, we can also give up the assumption that the algebra is a σ-algebra
and get the representation theorem, nonetheless. In fact, we need only a
countable Boolean algebra so that the simple acts defined over it satisfy P6.

(i) is proved by using Savage’s derivation of probabilities from two constant acts.
We deviate from him in the derivation of expected utilities for simple acts (where
the set of consequences is arbitrary). In the next section, we lay out the basic
ideas behind our construction, the full technical details will be left to the full
paper. (ii) is a more difficult result that is based on a more difficult derivation
of probabilities. We do not have the space for getting into it here.

2 Context-Dependent Decision-Making

2.1 Subjective Probability

To derive subjective probability from preferences, Savage uses P1-P6. The con-
struction starts with a derivation of qualitative probabilities.

Definition 2.1 For any events E,F , say that E is weakly more probable than
F , written E � F , if, for any constant acts ca and cb such that ca � cb,

ca|E + cb|E � ca|F + cb|F . (2.1)

Savage’s P4 guarantees that (2.1) does not depend on the choice of the pair of
constant acts. It is also not difficult to show that � is a qualitative probability.
The task is to show that this qualitative probability admits a numerical repre-
sentation: there exists a real-valued probability measure μ defined on an algebra
of events satisfying:

E � F ⇐⇒ μ(E) ≥ μ(F ). (2.2)

Savage’s proof of the existence of a quantitative probability that satisfies (2.2)
requires the assumption that the algebra of events is closed under countable
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unions, i.e., it is a σ-algebra. (That one can do without this assumption is, as
noted above, the content of our second result.) So far only two non-equivalent
constant acts are required.5

Theorem 2.2 (Savage) Let � be a preference relation among acts. Suppose
that � satisfies P1-6 and that the Boolean algebra B of events is a σ-algebra,
then there exists a unique (finitely additive) probability measure μ for which (2.2)
holds.

The proof of the theorem establishes also the following theorem, which holds
under the assumption that the algebra of events is a σ-algebra.

Theorem 2.3 Given the probability measure μ obtained above, for any event E
and any 0 ≤ ρ ≤ 1, there exists some F ⊆ E such that μ(F ) = ρμ(E).

Note that, unlike Theorem 2.2, Theorem 2.3 fails if the assumption that the
Boolean algebra is a σ-algebra is omitted. A weaker version of it holds: The set
of all ρ for which the equality holds is dense in (0, 1).

2.2 Utility for All Acts

The following are some simple properties of the two distinguished constant acts,
which are immediate from the definitions above and Theorem 2.2.

Lemma 2.4 For any events E,F ,

1. μ(E) > μ(F ) iff c1|E + c0|E � c1|F + c0|F ,
2. μ(E) = μ(F ) iff c1|E + c0|E ≡ c1|F + c0|F .

We show that, under P1-6 and the assumption that there exist two constant
acts c0 and c1, the agent’s preferences can be represented by a utility function
in Savage’s system without appealing to CAA. To this end, we first observe that
to each act f ∈ A satisfying c1 � f � c0 there corresponds a combined act using
the two distinguished constant acts which is indifferent to f under �.

Lemma 2.5 For and f ∈ A, if c1 � f � c0, there exists an event Ef such that

c1|Ef + c0|Ef ≡ f. (2.3)

In proving this lemma, we make full use of the derived personal probability μ
from Theorem 2.2, the proof given here is somewhat standard in utility theory.
Figure 1 provides an illustration of the general method involved in the proof,
where c1|Ef + c0|Ef is the act that yields c1 if Ef occurs, status quo otherwise.
The aim is to find the appropriate Ef so that the given event f is indifferent to
this combined act.
5 This observation is also noted in [1, p.161] where the author remarked that “[as far
as obtaining a unique probability measure is concerned] Savage’s C [i.e., the set of
consequences] can contain as few as two consequences.” See [2, §14.1-3] for a clean
exposition of Savage’s proof of (2.2), and see especially §14.3 for an illustration of
the role of P1-6 played in deriving numerical probability.
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Fig. 1. The case where c1 � f � c0

Proof of Lemma 2.5. Let us consider the following two sets of events.

B : =
{
E

∣∣∣ c1
∣∣E + c0

∣∣E � f
}
;

C : =
{
E

∣∣∣ c1
∣∣E + c0

∣∣E � f
}
.

(2.4)

It is easily seen that B and C are nonempty, for at least we have S ∈ B and ∅ ∈ C.
Let μ be the probability measure derived from Theorem 2.2, Next, consider the
following sets defined in terms of B,C and μ:

Bµ : =
{
μ(E)

∣∣∣ E ∈ B
}
;

Cµ : =
{
μ(E)

∣∣∣ E ∈ C
}
.

(2.5)

Let α∗ = inf Bµ and α∗ = supCµ. Note that, for any a > α∗, there must exist
some a′ ∈ Bµ such that a > a′ ≥ α∗ (for, otherwise, a is a lower bound of
Bµ strictly greater than α∗, which contradicts the assumption α∗ = inf Bµ).
Since a′ ∈ Bµ then, by the definition of Bµ in (2.5), there is some event, say,
F ′ ∈ B such that μ(F ′) = a′. Further, let F be an event such that μ(F ) = a (the
existence of F is guaranteed by Theorem 2.3). Then, by Lemma 2.4, μ(F ) = a >
μ(F ′) = a′ ≥ α∗ implies c1|F + c0|F � c1|F ′+ c0|F ′ � f. It follows, via P1, that,
for any F ,

μ(F ) > α∗ =⇒ F /∈ C. (2.6)

The contrapositive of (2.6) says that, for any F , F ∈ C implies that μ(F ) ≤ α∗.
In other words, α∗ is an upper bound of Cµ, and hence α∗ = supCµ ≤ α∗. Using
a symmetric argument one can show that α∗ ≥ α∗. Hence α∗ = α∗.

Next, let Ef be such that μ(Ef ) = α∗ = α∗ (again, the existence of Ef

is guaranteed by Theorem 2.3). The proof is completed if we can show that
Ef ∈ B ∩C. Suppose, to the contrary, Ef /∈ B, then, by P1, f � c1|Ef + c0|Ef .
The latter implies, via P6, there exists a partition {Pi}ni=1 such that,

c1

∣∣∣Pi +
(
c1
∣∣Ef + c0

∣∣Ef

)∣∣∣Pi for all i = 1, . . . , n, (2.7)

that is,

f � c1

∣∣∣Ef ∪ Pi + c0

∣∣∣Ef ∪ Pi for all i = 1, . . . , n. (2.8)
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Then, it follows that Ef ∪ Pi ∈ C for all i = 1, . . . , n. On the other hand, note
that Pi’s form a partition of S, we consider two cases:

(1) If for some Pj in the partition we have μ(Ef ∪ Pj) > μ(Ef ) = α∗, then, by
(2.6), Ef ∪ Pj /∈ C, a contradiction.

(2) If μ(Ef ∪ Pj) ≤ μ(Ef ) = α∗ for all j = 1, . . . , n, then it is easily seen that
μ(Ef ) = 1. By Lemma 2.4(2), it follows that c1|Ef+c0|Ef ≡ c1|S+c0|S = c1,
and hence Ef ∈ B, but this contradicts the hypothesis Ef /∈ B.

Hence, Ef must be in B. Similarly, it can be shown that Ef ∈ C. Then we have
Ef ∈ B ∩ C. This completes the proof of the lemma. ��

Remark 1. 1. In light of the lemma, for any f ∈ A satisfying c1 � f � c0, let
Ef be such that (2.3) holds, we define the utility of f to be

U [f ] := μ(Ef ), (2.9)

where μ is obtained through Theorem 2.2 and Ef is from (2.3).
2. Notice that, if there exists another event E′

f for which (2.3) holds, then we

have c1|Ef+c0|Ef ≡ c1|E′
f+c0|E′

f . It follows, via Lemma 2.4(2), that μ(E′
f ) =

μ(Ef ), hence U [f ] is well defined.
3. For the two distinguished constant acts c1 and c0, trivially we have Ec1 = S

and Ec0 = ∅, then (2.9) yields that U [c1] = 1 and U [c0] = 0.
4. It is plain that U does not need to be uniquely defined by (2.9): if h is

any monotonically increasing function on the reals (or any order preserving
function), then U can also be defined by h ◦ μ.

5. If f � c1 (or c0 � f), it is easy to see that Lemma 2.5 can be adjusted to show
that there exists some Ef such that f |Ef +c0|Ef ≡ c1 (or c1|Ef +f |Ef ≡ c0),
in which case U can be defined standardly as in (2.11) below.

Theorem 2.6 Let � be a preference relation over acts, if � satisfies P1-6, then
there exists a real-valued function U on A satisfying, for all f, g ∈ A,

f � g ⇐⇒ U [f ] ≥ U [g], (2.10)

where

U [f ] :=

⎧
⎪⎨

⎪⎩

1
µ(Ef )

if f � c1,

μ(Ef ) if c1 � f � c0,
µ(Ef )

µ(Ef )−1 if c0 � f.

(2.11)

2.3 Context-Dependent Expected Utility for Simple Acts

We now proceed to show that, assuming P1-6, the utility of a simple act can be
further expressed as its expected utility of its consequences. Let us denote the set
of all simple acts by A0. Recall that a simple act f ∈ A0 is one that has a finite
number of consequences, say, x1, . . . , xn, and let P1, . . . , Pn be the corresponding
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sets of states under which they obtain. It is easily seen that {Pi}ni=1 forms a
partition of S:

Pi = f−1(xi) (i = 1, . . . , n),

Pi ∩ Pj = ∅ (i �= j) and

n⋃

i=1

Pi = S.
(2.12)

We seek to define a context-dependent utility function u over consequences such
that the utility of a simple act U [f ] can be represented by its expected utility:

U [f ] =
n∑

i=1

μ(Pi)u(Pi, xi), (2.13)

where u(Pi, xi) is the utility of consequences xi given Pi. As it will be shortly
shown, in all cases in which μ(Pi) > 0 this value depends only on the conse-
quence xi. And this value is the same across different acts. We thus can speak
of context-dependent utilities. We can assign utilities to consequences, but these
utilities can be used for the purpose of calculating expected utilities as long as the
consequence is obtained as a value of states that constitute a set of probability
greater than 0.

We adopt the following notation:

c∗x(s) :=

{
x if s ∈ E,

0 if s /∈ E,
for some E ∈ B. (2.14)

We refer to c∗x as a locally constant act which yields x in all states in E, 0 (status
quo) otherwise. It is obvious that c∗x is a generalization of Savage’s notion of
constant act. Now with (2.14), a simple act f satisfying (2.12) can be expressed
by the combination of a series of locally constant acts as follows

f = c∗x1
|P1 + · · ·+ c∗xn

|Pn. (2.15)

The goal is to represent simple acts in the form of (2.15) by expected utilities.6

Observe that, if μ(Pi) = 0 for some Pi, then the term μ(Pi)u(Pi, xi) in (2.13)
is 0, in which case consequence xi can be seen as having no contribution to the
total utility calculation. As a rule, one can assign in this situation an arbitrary

6 Savage ([5, p.71]) uses
∑

i ρifi to denote the class of simple acts for which, to use
his notations, there exist partitions Bi of S such that P (Bi) = ρi and f(s) = fi for
s ∈ Bi. He further remarks that if a simple act f is such that “the consequences
fi will befall the person in case Bi occurs, then the value of f is independent of
how the partition Bi is chosen.” In other words, his utility function, once derived,
is state-independent. We, on the other hand, take that the value of a consequence
depends on the states under which it obtains. Thus, we allow that for two simple
acts f, g with different partitions {Pi}ni=1 and {Qi}ni=1 for which μ(Pi) = μ(Qi) and
f(s) = g(t) for s ∈ Pi and t ∈ Qi (i = 1, . . . , n), f �≡ g. That is, we allow Theorem
1 ([5, p.70]) to fail in our decision model where utilities are context-dependent.
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finite value to the consequence f(s) where s ∈ Pi. If, on the other hand, μ(Pi) �=
0, consider act c∗xi

|Pi + c0|Pi. Then in light of Theorem 2.6, define a context-

dependent utility of xi in Pi in terms of the utility of c∗xi
|Pi + c0|Pi as follows

u(Pi, xi) :=

⎧
⎨

⎩
c if μ(Pi) = 0,

U
[
c∗xi

∣∣Pi+c0

∣∣Pi

]

µ(Pi)
if μ(Pi) �= 0,

(2.16)

where c can be any number in [0, 1]. Finally, it remains to verify that � among
simple acts indeed admits an expected utility representation using the probabil-
ity measure μ and utility function u given above. We put this claim in the form
of the following theorem. The rather straightforward proof is omitted.

Theorem 2.7 Let � be a preference relation over acts, if � satisfies P1-6, then
there exist a probability measure μ on events and a utility function u on the
consequences such that, for any f, g,∈ A0,

f � g ⇐⇒
∑

x∈f(S)

μ
[
f(s) = x

]
u
(
f−1(x), x

) ≥
∑

x∈g(S)

μ
[
g(s) = x

]
u
(
g−1(x), x

)
.

3 Infinitary Cases

Our method can be generalized to treat certain infinitary case. There are acts,
f , in which there are countably many consequences, say x1, x2, . . . , xn, . . . such
that f−1(xn) is a non-null set for every n. In other words, we allow the number
of cells of the partition in (2.12) to be unbounded. Then (2.16) and Theorem 2.7
also apply to this case, where the expected utility of f can be defined by

∞∑

i=1

μ
[
f(s) = xi

]
u
(
f−1(xi), xi

)
(3.1)

provided that
∑∞

i=1 μ
[
f(s) = xi

] · ∣∣u(f−1(xi), xi

)∣∣ converges. It is defined as the
sum of the positive values minus the sum of the negative ones. Note that μ does
not need to be countably additive. The expectation in that case is defined for
discrete random variables, for which the sum absolutely converges.

Finally, we point out that Savage needed the CAA because he wanted to
extend the expectation to continuous random variables, that is, he wanted to
define the integral: ∫

X(s) dμ(s) (3.2)

where X is a measurable function, which is interpreted in his system as a general
act with potentially uncountably many consequences, and μ is a finitely additive
probability. Mathematically this is interesting. But we do not think that it is
required for applying his system to decision scenarios which a rational human
agent is expected to face.
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Abstract. Graphs are employed to define a variety of distance-based
binary merging operators. We provide logical characterization results for
each class of merging operators introduced and discuss the extension of
this approach to the merging of sequences and multisets.

1 Introduction

Belief Merging ([1,2]), also called arbitration ([3,4]), belief fusion ([5]), and non-
prioritized belief revision ([6]), is the process of combining two or more, possibly
inconsistent, propositions into a single consistent proposition. The purpose of
such a combination is to model, depending on the application, the process of
agreement between possibly disagreeing parties, of group decision among mul-
tiple possibly conflicting courses of action, or, simply, of making sense out of a
number of possibly conflicting sources of information.

Consider the following example: let Analyst1 and Analyst2 be two stock mar-
ket analysts, and Stock1 and Stock2 be the stocks of two companies. Let p the
proposition “Stock1’s price will rise,” and q the proposition “Stock2’s price will
rise.” Now suppose Analyst1 believes that A = p∧ q and Analyst2 believes that
B = ¬p ∧ q. That is, Analyst1 believes that Stock1 and Stock2 will rise while
Analyst2 believes that Stock1 will fall and Stock2 will rise. If one had to merge
the opinions of Analyst1 and Analyst2, then most likely one would keep the
belief that Stock2 will rise and believe nothing about Stock1, where the two
analysts disagree. If we denote the operation of merge with ⊗ then A ⊗ B = q
. Observe that the conjunction A ∧ B cannot model agreement because it is a
contradiction. Similarly, if instead Analyst1 believes that A = p∨q and Analyst2
believes that B = ¬p∨ q, then disjunction A∨B cannot model agreement either
because it is a tautology.

The problem of merging has been extensively studied in different fields. For
example, in distributed computing and theory of networks ([7]), multiple agents
need to negotiate a common agreement or adopt a common view. In databases
([8]), we need to merge databases that may have inconsistent information.
In social settings, voting and or belief aggregation schemes are nothing but
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algorithms that merge different views or preferences (votes) into a single one
(elected outcome).

There have been several approaches to belief merging. We have model based
operators ([3]), syntax sensitive operators ([2]), and default based operators ([9])
among others (for a survey see [10]) as well as merging operators at the higher
level of preference relations ([11]). Further, there have been significant steps to-
wards an understanding of the theoretical underpinnings of merging. A form of
binary merging called arbitration has been logically characterized with postu-
lates similar to AGM postulates in [4]. Arbitration based on distance has been
characterized in [12]. Other representation results have been obtained for multi-
set merging ([13]) and multiset merging with integrity constraints ([14]). How-
ever, in the binary case, merging operator systems do not correspond uniquely
to the distance spaces from which they were generated (as shown in [12]). In the
multiset case, a characterization result with respect to distance spaces is missing
entirely ([10]). The purpose of this paper is to introduce and characterize three
classes of distance-based binary merging operators that are modeled by graphs.

We will proceed as follows: in the next section we will introduce the basic idea
of geodesic reasoning, how it applies to merging, and present the first formal
definitions. In Section 3, we define three binary merging operators through sets
of logical postulates and show that these are characterized by corresponding
graph theoretic operators. In Section 4, we explore the ways how those binary
operators can be generalized to sequences and multisets of propositions thus
modeling belief merging for several agents. In Section 5, we place the present
framework among previous significant results in the area and conclude.

2 Geodesic Reasoning

We will define and characterize three merging operators that can be defined on
graphs using the metric defined on graphs, called geodesic. The use of geodesic
metric rests on a novel view of similarity as a derived concept. Traditionally, sim-
ilarity has been conceived as a primitive concept usually represented by distance;
that is, the following identification is made:

similarity = distance

Our idea ([15]) is that similarity is not primitive but it can be generated by a
relation of indistinguishability. This idea can be summarized by the following
maxim: two objects are similar when there is a context within which they are
indistinguishable. Therefore, similarity can be measured with degrees of indis-
tinguishability.

For example, although two similar houses might appear different in various
details when we stand in front of them, they will appear identical if we observe
them from a larger distance x. Thus, similarity implies indistinguishability at a
certain distance x. The smaller the distance, the more similar the objects are.
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A simple representation of indistinguishability by a reflexive symmetric non-
transitive relation goes back to [16]. Such relations have been studied together
with a set under various names such as tolerance spaces ([17]), proximity spaces,
and others, but the best way to describe a set of worlds with an indistinguisha-
bility relation is simply a graph. Similarity now will be the distance map defined
on the graph defined by the shortest path. Given a relation R the distance from
y to x is the least number of times we need to apply R in order to reach y from
x. Traditionally, this kind of relation has been called geodesic. We have

similarity = geodesic distance (of a graph)

Using graphs with their geodesic metric generalizes several popular formalisms
such as threshold and integer metrics as well as, hamming distance (see [18]).

When we perform merging of two beliefs we choose the models of the two
beliefs that are the most similar and therefore the closest with respect to the
geodesic distance.

Example 1. We illustrate the process with the following example (edges repre-
sent the reflexive symmetric tolerance relation).

�

a

�

��

��b

�

c

�

��

��d

�

e

Fig. 1. Non-commutative revision

In Figure 1, let A = {a, b} and B = {d, e}. Then the merging, denoted by
A⊗B, of A with B equals the subset {b, d} containing the elements of A and B
whose distance is the least among the elements of the two sets: the distance of b
from d is 2 while the distance of a from d and e from b is 3. This form of merging
corresponds to arbitration of [4], and is a special case of the distance-based
merging operator of [12].

The merging operator defined has an important property, namely, it implies
disjunction:

φ⊗ ψ � φ ∨ ψ.

There are are cases, however, where this is not possible or not desirable.

Example 2. Suppose that we count the pennies saved in a jar. An initial count
finds 112 pennies. A second count finds 114 pennies. It seems plausible that the
merge of these two counts is the set {112, 113, 114} as one or both counts could
have been wrong. Using the propositions of the previous example, we would like
that the extension of A ⊗ B is the set {b, c, d} (see Figure 2). We will call this
form of merging convex merging.
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�

a

�

b

�

�

�

	




c

�

d

�

e

Fig. 2. Convex merging

Example 3. Suppose now that we need to classify submitted articles into three
groups accept, reject and borderline. For a given paper, we receive two reviews
from the referees. One thinks it belongs to the accept group and the other to the
reject group. It seems to me that the merge of those two opinions is borderline.
Obviously this notion of merging seems more appropriate when beliefs have
different sources such as the case of voting. Using the above example, we would
like that A⊗B is modeled by the set {c} (see Figure 3). We will call this form
of merging barycentric merging.

�

a

�

b

�

��

��c

�

d

�

e

Fig. 3. Barycentric merging

Although the above examples describe binary merging operators, we believe
that similar ideas can be applied to multiset merging. Geodesic semantics have
been successfully developed for a variety of belief change operators such as re-
vision, update, conditionalization, and contraction ([18,19,20]) and this paper is
an effort towards extending geodesic semantics to belief merging.

2.1 Tolerance Spaces and Their Geodesic

We will use a reflexive and symmetric relation to model indistinguishability.
A set equipped with such a relation is frequently called a tolerance space. In
addition, we will assume that the space is connected:

Definition 1. Let X be a set and R ⊆ X × X a relation on X. Then (X,R)
is called a (connected) tolerance space when R is reflexive, symmetric, and (X
is) connected, i.e., for all x, y ∈ X there is a non negative integer n such that
xRny.

In the above definition, we assume R0 = idX , Rn = Rn−1 ◦R for n > 0.
Given a tolerance space (X,R) we can define a metric called geodesic with a

map d from X ×X to Z+ (the set of non-negative integers) where

d(x, y) = min{n | xRny}.
Note that a geodesic metric is not any integer metric. The values of the geodesic
metric are determined by adjacency. The results of this paper depend heavily on



106 K. Georgatos

this property which can be described with: for all x, y ∈ X such that d(x, y) = n
with 1 < n < ∞ there is z ∈ V with z 
= x, y such that d(x, y) = d(x, z)+d(z, y).
In particular we can choose z so that d(x, z) = 1. Note here that a geodesic
metric is a topological metric, that is, it satisfies identity, symmetry and triangle
inequality.

The geodesic distance extends to distance between non-empty subsets with

d(A,B) = min{d(x, y) | x ∈ A, y ∈ B}. (1)

We shall also write d(x,A) for d({x}, A). Similarly for d(A, x). We will write
Ac for the complement of A and An for the set {x ∈ X : d(A, x) ≤ n} (where
n = 0, 1, . . .). The proof of the following is straightforward

Lemma 1. If A and Ac are non-empty, we have d(A,Ac) = 1.

3 Merging Based on a Geodesic

We will define and characterize three different notions of belief merging. We will
use a propositional language L with a finite set of atomic propositions. We will
also assume classic propositional calculus and write φ � ψ if φ implies ψ and
φ ≡ ψ if they are equivalent. An interpretation w is a function from atomic
propositions to {T, F}. An interpretation extends to a map from L to {T, F}
and will be called a model of φ if it maps φ to T . We write M for the set of
all models. If A is a set of formulas then we write v(A) to denote the set of all
models of A. If X is a set of models then φX denotes a formula whose set of
models is X . We say φ is complete, if for any propositional formula ψ, φ implies
ψ or φ implies ¬ψ. φw is complete for all w and if φ is complete then there is a
model w such that φw ≡ φ (because our language is finite).

3.1 Non-prioritized Revision Merging

This notion of merging picks the “closest” models of the propositions to be
merged. It has been introduced first in [3] and its logical properties have been
studied in [4]. Schlechta gave a characterization of this merging where closeness is
defined by a general notion of distance between models ([12]) (see Example 1). In
this section we will characterize this form of merging using the geodesic distance
of a graph. Note that both Revesz and Schlechta’s characterizations are based
on distance notions more general than ours so their postulates are also valid
in our framework. Our postulated refer explicitly neither to points (complete
theories) nor to distance as in Schlechta’s characterization. In other words we
give a purely logical characterization of the underlying graph.

We will now characterize the revision merge of a geodesic space. To this end
call a merging operator revision geodesic if it satisfies the rules of Table 1.

A few words about the rules appearing in Table 1: Rule 1 guarantees that
merging returns a consistent formula if one of the formulas is consistent and
Rule 2 merging with an inconsistent has no effect. Using Rule 3 if two formulas
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Table 1. Geodesic merging rules

1. If φ is consistent then φ ∧ (φ⊗ ψ) is consistent
2. If φ is inconsistent then φ⊗ ψ ≡ ψ
3. If φ ∧ ψ is consistent, then φ⊗ ψ ≡ φ ∧ ψ
4. If φ1 ≡ φ2 then φ1 ⊗ ψ ≡ φ2 ⊗ ψ
5. φ⊗ ψ ≡ ψ ⊗ φ
6. If φ � ¬ψ then (ψ ⊗ ¬ψ) ∧ φ � (φ⊗ ¬φ) ∧ φ
7. If φ � ¬ψ and φ⊗ ¬φ � ¬ψ then ψ ⊗ ¬ψ � ¬φ
8. If φ � ¬ψ then (φ⊗ ψ) ∧ ψ ≡ ((φ⊗¬φ)⊗ ψ) ∧ ψ
9. φ⊗ ψ � φ ∨ ψ

are consistent together then their merging becomes their conjunction. Rule 4
postulates substitution of logically equivalent formulas and Rule 5 commutativ-
ity. Rule 6 is a form of monotonicity for the second argument. Rule 7 implies
symmetry for the underlying relation of indistinguishability. Rule 8 is an induc-
tion axiom that allows us to define merging from less distant formulas. Finally,
Rule 9 postulates arbitration. Rule 9 implies the following

φ⊗ ψ ≡ ((φ⊗ ψ) ∧ φ) ∨ ((φ⊗ ψ) ∧ ψ). (2)

We will characterize the class of geodesic merging operators using a merg-
ing operation on subsets based on geodesic distance, thus the use of the term
“geodesic”. The distance d is the geodesic distance of the tolerance space (M,R),
where M is the set of models and the indistinguishability relation R is defined
from the merging operator ⊗ with

(x, y) ∈ R if and only if φy � φx ⊗ ¬φx. (3)

The distance d between models lifts to a distance between subsets of models
using (1). We can now define a merging operator on subsets with

A⊗ B =

{{x ∈ A, y ∈ B : d(x, y) = d(A,B)} if A,B 
= ∅
A ∪B otherwise.

(We use the same symbol for the merging operators between formulas and sub-
sets.)

Observe that the above definition is equivalent to the following:

A⊗ B =

{
(Ad(A,B) ∩B) ∪ (Bd(A,B) ∩ A) if A,B 
= ∅
A ∪B otherwise.

Now the following characterization theorem holds:

Theorem 1. Let ⊗ be a geodesic merging operator. Then there exists a binary
relation R (defined by (3)) such that (M,R) is a tolerance space, where M is the
set of models, and the following holds

v(φ ⊗ ψ) = v(φ)⊗ v(ψ). (4)
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Conversely, if an operator satisfies (4) then it is a geodesic merging operator.

The above proposition shows that the set of rules of Table 1 characterizes the
class of geodesic metrics.

Now the question that arises is in what sense this is a non-prioritized revision.
The answer is that the definition of merge can be based on the definition of
revision:

Definition 2. A merge operator ⊗ will be called non-prioritized revision oper-
ator if there exists a revision operator ∗ such that

φ⊗ ψ ≡ (φ ∗ ψ) ∨ (ψ ∗ φ).

It is not hard to show that a revision geodesic merge operator is a non-
prioritized revision. It suffices to define the revision operator. Simply let (as in
[14])

φ ∗ ψ = (φ⊗ ψ) ∧ ψ (5)

We now have the following.

Proposition 1. Let ∗ be the operator defined as above then

φ⊗ ψ ≡ (φ ∗ ψ) ∨ (ψ ∗ φ).

A characterization of the revision operator can be given in terms of distance.
Let

A ∗B =

{{y ∈ B : d(A, y) = d(v(A), v(B)} if A,B 
= ∅
B otherwise

or, equivalently,

A ∗B =

{
Ad(A,B) ∩B if A,B 
= ∅
B otherwise.

Corollary 1. If ∗ is defined by (5) then

v(φ ∗ ψ) = v(φ) ∗ v(ψ). (6)

The operator ∗ is a revision operator because it is defined through distance
minimization as in [21,18]. Nevertheless it is useful to know what properties
exactly this revision operator satisfies. This question has been answered in [18].
Call a revision operator geodesic if it satisfies the properties of Table 2.

The following has been proved in [18].

Proposition 2. If ∗ is an operator that satisfies (6), then ∗ is a geodesic revision
operator. Conversely, given a geodesic revision operator ∗, then there exists a
binary relation R such that (M,R) is a tolerance space, where M is the set of
models, and ∗ satisfies (6).
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Table 2. Geodesic revision rules

1. φ ∗ ψ � ψ
2. If ψ is consistent, then φ ∗ ψ is consistent
3. If φ is inconsistent, then φ ∗ ψ ≡ ψ
4. If φ ∧ ψ is consistent, then φ ∗ ψ ≡ φ ∧ ψ
5. If ψ1 ≡ ψ2 and φ1 ≡ φ2 then φ1 ∗ ψ1 ≡ φ2 ∗ ψ2

6. If ψ � ¬φ then φ ∗ ψ ≡ (φ ∗ ¬φ) ∗ ψ
7. If ψ � ¬φ then φ ∗ ψ ≡ (¬φ ∗ φ) ∗ ψ
8. If φ ∗ ψ ≡ χ ∗ ψ then φ ∗ ψ ≡ (φ ∨ χ) ∗ ψ
9. If ψ � ¬φ then φ ∗ ψ � ¬ψ ∗ ψ

10. If φ � ¬ψ then φ ∗ ¬φ � ¬ψ iff ψ ∗ ¬ψ � ¬φ

Table 3. Convex merging rules

1. If φ is consistent then φ ∧ (φ⊗c ψ) is consistent
2. If φ is inconsistent then φ⊗c ψ ≡ ψ
3. If φ ∧ ψ is consistent, then φ⊗c ψ ≡ φ ∧ ψ
4. If φ1 ≡ φ2 then φ1 ⊗c ψ ≡ φ2 ⊗c ψ
5. φ⊗c ψ ≡ ψ ⊗c φ
6. If φ � ¬ψ then ψ ⊗c ¬ψ ∧ φ � φ⊗c ¬φ ∧ φ
7. If φ � ¬ψ and φ⊗c ¬φ � ¬ψ then ψ ⊗c ¬ψ � ¬φ
8. If φ � ¬ψ then φ⊗cψ ≡ ((φ⊗c¬φ)⊗cψ)∨ ((ψ⊗c¬ψ)⊗cφ)

3.2 Convex Merging

The second binary operator we will consider is convex merging. This form of
merging is illustrated by Example 2. The idea is not only picking the closest
worlds modeling the propositions to be merged, but also including in-between
worlds not necessarily belonging to the propositions to be merged.

Call an operator (geodesic) convex merging if it satisfies the rules of Table 3.
Notice that the only changes are the omission of the arbitration rule and the
replacement of the induction rule with the more appropriate Rule 8.

Now define an operator on subsets with

A⊗c B =

{{x : d(A, x) + d(B, x) = d(A,B)} if A,B 
= ∅
A ∪B otherwise.

The following characterization theorem holds:

Theorem 2. Let ⊗c be a geodesic convex merging operator. Then there exists a
binary relation R (defined by (3)) such that (M,R) is a tolerance space and the
following holds

v(φ⊗c ψ) = v(φ)⊗c v(ψ). (7)
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Table 4. Barycentric merging rules

1. If φ is inconsistent, then φ� ψ ≡ ψ
2. If φ ∧ ψ is consistent, then φ� ψ ≡ φ ∧ ψ
3. If φ1 ≡ φ2 then φ1 � ψ ≡ φ2 � ψ
4. φ� ψ ≡ ψ � φ
5. If φ � ¬ψ then (ψ � ¬ψ) ∧ φ � (φ� ¬φ) ∧ φ
6. If φ � ¬ψ and φ� ¬φ � ¬ψ then ψ � ¬ψ � ¬φ
7. If φ � ¬ψ and (φ�¬φ) ∧ ψ is consistent,

then φ� ψ ≡ ((φ� ¬φ)� ψ) ∨ ((ψ � ¬ψ)� φ)
8. If φ ∨ (φ� ¬φ) � ¬ψ,

then φ� ψ ≡ ((φ� ¬φ)� ψ)� ((ψ �¬ψ)� φ)

Conversely, if an operator satisfies (7) then it is a convex merging operator.

As a contraction operator can generate a revision operator using the Levi
identity, a convex merging operator generates a revision merging operator. To
see that notice that we have

A⊗B = (A⊗c B) ∩ (A ∪B).

3.3 Barycentric Merging

In this section, we will characterize the third notion of binary merging called
barycentric. This notion of merging corresponds to Example 3. The elements
of the barycentric merge fall between and are spaced equally from the merged
subsets. This notion of merging has been early identified by Revesz (See Example
3.1)

Definition 3. Call an operator (geodesic) barycentric merging if it satisfies the
rules of Table 4.

Observe that Rule 9 of Table 1 does not hold in barycentric merging because
the equidistant elements might not belong in the merged subsets.

Define the following operator on subsets:

A�B =

{{x ∈ mid(A,B) : d(A, x) + d(B, x) = d(A,B)} if A,B 
= ∅
A ∪B otherwise.

where

mid(A,B) = Ak ∩Bk, k = min{l : Al ∩Bl 
= ∅}.
The barycentric merging arises by selecting those elements of the convex merging
that are “midway” between the merged subsets.

The need for barycentric merging has been early identified.
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Example 4. This a modified version of Example 3.1 in [3]. Suppose two students
are tutored in programming using examples in Datalog (D), SQL (S) or Query-
by-example (Q). One student prefers examples in all three languages (D∧S∧Q)
while the other prefers examples only in Query-by-example (¬D ∧ ¬S ∧ Q). If
we need to merge the preferences of the students, that is

D ∧ S ∧Q⊗ ¬D ∧ ¬S ∧Q

then geodesic merging would pick their disjunction (D∧S∧Q)∨ (¬D∧¬S ∧Q).
Barycentric merging, in contrast, would pick (¬D ∧ S ∧ Q) ∨ (D ∧ ¬S ∧ Q).
Revesz points out that in this example barycentric merging should be chosen over
geodesic merging, as the former satisfies both students (albeit not completely),
while the latter, should the tutor chooses to teach all three, might result to one
student dropping out of the tutoring sessions.

Now the following characterization theorem holds:

Theorem 3. Let � be a geodesic barycentric merging operator. Then there exists
a binary relation R (defined by (3)) such that (M,R), where M is the set of
models, is a tolerance space and the following holds

v(φ � ψ) = v(φ)� v(ψ). (8)

Conversely, if an operator satisfies (8) then it is a barycentric merging operator.

4 Further Work

Extending the previous results to multisets is perhaps the most important future
direction of this work. However, it is not immediately clear how one may proceed.

A straightforward definition of multisets of formulas, or rather sequences of
formulas, is to use binary merging to define merging of sequences of formulas.
Let

⊗(φ1, φ2, . . . , φn)

denote the merging of the sequence φ1,φ2. . .,φn. Using a binary merging operator
we have

⊗(φ1, . . . , φn) = ((. . . (φ1 ⊗ φ2) · · · )⊗ φn).

Therefore there can be defined three different operators depending on the basic
binary operator used. Unfortunately, the order of operations need to be specified
as none of the merging operators introduced is associative. A counterexample
for barycentric merging appears in Figure 4: notice that

{a} � ({b} � {c}) = {a} � {a, d3} = {a}

whereas

({a} � ({b})� {c} = {d1} � {c} = {a, d5}.
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Fig. 4. Barycentric revision is not associative

Nevertheless, fixing a specific order of evaluation to sequences can be of interest.
For example we can choose to favor latter received information and this feature
can be part of a belief change strategy (as in belief revision).

Another more principled approach will be to employ indistinguishability once
more to define a tolerance space among multisets. Let (X,R) be a tolerance
space. Then, let (Xn, Rn) be the product tolerance space, where Rn is defined
by

(x1, . . . , xn)Rn(y1, . . . , yn) iff xiRyi for i = 1, . . . , n.

The product space is not commutative but by regarding Xn as the multiset
space rather than the product space—we keep the same notation for multi-
set and vectors—the relation of indistinguishability can be adjusted as follows:
the multiset (x1, . . . , xn) is indistinguishable from (y1, . . . , yn) if there exists a
permutation π such that xiRyπ(i) for i = 1, . . . , n. Now that we have an indis-
tinguishability relation among multisets we can define a tolerance space with a
geodesic metric. The geodesic metric is defined as the shortest path (of Rn) be-
tween the two multisets but one may show that it can be reduced to the geodesic
metric of the original space X :

d((x1, . . . , xn), (y1, . . . , yn)) = min
π

{max
i

{d(xi, yπ(i))}}.

The geodesic metric lifts to a metric between subsets of multisets and therefore
a geodesic revision operator can be defined the same way as in the previous
section.

In case of multiple agents, a subset of multisets is not arbitrary but rather it
has the following form

(A1, . . . , An) = {(x1, . . . , xn) | xi ∈ Ai}.
Each subset in the multiset contains all the worlds that the agent considers
possible and represents the view of an agent. Merging translates to agreement
or common view therefore we need to look for elements that are common to all
subsets. So if

⋂
Ai is not empty then merging should result to the following set

(A1, . . . , An) ∩Dn
X ,
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where Dn
X = {(x, . . . , x) | x ∈ X} ⊆ Xn. If

⋂
Ai is empty then the merging

process should pick the closest elements to (A1, . . . , An) from the diagonal set
Dn

X . Therefore the merging of (A1, . . . , An) is the revision

(A1, . . . , An) ∗Dn
X

The above revision operator is the one induced by the geodesic metric on the tol-
erance space of the multisets of elements defined earlier. This notion of multiset
merging readily reduces to a binary revision operator.

The above options for extending merging to a richer framework reveal the
variety of meanings merging can have, as well as, the ways it can be applied. We
believe that geodesic semantics lends a useful tool, and the study of the above
definitions and their characterization within the geodesic framework is currently
under investigation. There is no characterization of distance based merging op-
erators on multisets. We know many properties that such operators satisfy but
we do not know the properties that characterize them ([10]). We believe that the
employment of geodesic semantics is a right step towards representation results
of this kind.

5 Comparison with Other Work and Conclusion

Geodesic merging characterized in Section 3.1 is a special case of arbitration
(see [3,4]). In particular, the rules of Table 1 imply all postulates of arbitration
operators in Section 3 of [4]. Postulates A1 to A5 of [4] correspond to our Rules
2 to 5 while A7 and A8 are translations of Rules 9 and 1, respectively, of Table1.
Postulate A6 holds true for all merging operators based on a notion of a global
distance (see Remark 6.9 in [14]). A simpler way to show that geodesic merging
is a special case of arbitration is to show that every graph gives rise to a set of
parametrized orderings of complete interpretations (worlds) (the models of [4])
using the following definition

w ≤φ w′ iff d(φ,w) ≤ d(φ,w′),

where φ ∈ L and w,w′ are worlds.
Similarly, geodesic merging is easily seen to be a special case of Schlechta’s

non prioritized revision operator ([12]). The axioms of Definition 2.2 of [12] are
implied by our rules of Table 1 when restricted to finite language and assuming a
Katsuno-Mendelzon presentation like ours (for example Condition (↑ 2) on page
47 of [12] corresponds to Rule 3 of Table 1). Semantically, we minimize over a
geodesic metric which is a special case of minimization over the semi-metric used
in [12].

Finally, one can see that our rules for geodesic merging satisfy the IC merging
postulates of [14] in the binary case when merging is constrained by the dis-
junction of the formulas to be merged. This follows from the results of Section
6 of [14] where it is shown that arbitration operators can be seen as a special
case of IC merging operators. However, it is not immediately obvious how one
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can induce a convex or a barycentric operator from an IC merging operator.
It can be shown using techniques from the previous section that convex and
barycentric operators can also be thought of as special cases of IC merging op-
erators. Therefore, all of the classes of merging operators introduced herein do
not deviate from the IC merging framework.

Now, it is clear where our merging operators are situated. They are all special
cases of well studied classes of merging operators. The advantage of our approach
is that we have shown that our classes of operators are characterized by a global
metric on a graph. Other merging operators have been shown to correspond to
either families of orderings on worlds (that may represent closeness), or general-
ized distance relations (where the triangle inequality does not necessarily hold).
In both cases, the framework is too general. On one hand, families of orderings
are parametrized by epistemic states which means that we need a relation for
each formula in our language. In contrast, our approach is a single global relation
(a graph). Generalized distance relations, on the other hand, do not necessarily
satisfy a triangle inequality which forms the basis of most examples appearing
in studies of merging operators. Hamming distance examples are ubiquitous and
geodesic metric is a (qualitative) generalization of hamming distance. Moreover,
geodesic metrics also encompass the metrics generated by threshold (see [19]), so
we believe that such merging operators will be especially useful to applications
where continuous metrics are mapped to integer ones (usually because of round-
ing). In other words, our framework is at an appropriate level of abstraction.
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Abstract. This article provides a three-way interaction between exper-
iments, logic and cognitive modelling so as to bring out a shared per-
spective among these diverse areas, aiming towards better understanding
and better modelling of human strategic reasoning in dynamic games.

1 Introduction

How suitable are idealized formal models of social reasoning processes with re-
spect to the nuances of the real world? In particular, do these formal methods
represent human strategic reasoning satisfactorily or should we instead concen-
trate on empirical studies and models based on those empirical data? Ghosh,
Meijering and Verbrugge [6] made an effort to bridge the gap between logical
and cognitive treatments of strategic reasoning in dynamic games. They pro-
posed to combine empirical studies, formal modeling and cognitive modeling to
study human strategic reasoning. In their words, “rather than thinking about
logic and cognitive modeling as completely separate ways of modeling, we con-
sider them to be complementary and investigate how they can aid one another
to bring about a more meaningful model of real-life scenarios”. In the current
article, we apply this combination of methods to the question to what extent
people use backward induction or forward induction in dynamic games.

Backward and Forward Induction Reasoning. Backward Induction (BI)
is the textbook approach for solving extensive-form games with perfect informa-
tion. In generic games without payoff ties, BI yields the unique subgame perfect
equilibrium. The assumptions underpinning BI are that all players commonly
believe in everybody’s future rationality, no matter how irrational players’ past
behaviour has already proven. See [15,18] for more details.

In Forward Induction (FI) reasoning, on the other hand, a player tries to
rationalize the opponent’s past behaviour in order to assess his future moves.
Thus, in a subgame where no strategy of the opponent is consistent with common
knowledge of rationality and his past behaviour, the player may still rationalize
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the opponent’s past behaviour by attributing to him a strategy which is opti-
mal against a presumed suboptimal strategy of hers, or by attributing to him a
strategy which is optimal vis-a-vis a rational strategy of hers, which is only opti-
mal against a suboptimal strategy of his. If the player pursues this rationalizing
reasoning to the highest extent possible [2] and reacts accordingly, she ends up
choosing what is called an Extensive-Form Rationalizable (EFR) strategy [17]
(see also [18,16,5]). Thus EFR strategies are based on FI reasoning, and in the
following we use the terms EFR and FI synonymously.

There have been extensive debates among game theorists and logicians about
the merits of backward induction. Experimental economists and psychologists
have shown that human subjects do not always follow the backward induction
strategy in large centipede games [10,14]. Recently, based on an eye-tracking
study and complexity considerations, it turned out that even when human sub-
jects produce the outwardly correct ‘backward induction answer’ in smaller
games, they may use a different internal reasoning strategy to achieve it [13,3].
To investigate human reasoning strategies, Ghosh, Meijering and Verbrugge [6]
presented a formal language to represent strategies on a finer-grained level than
was possible before. The language and its semantics helped to precisely distin-
guish different cognitive reasoning strategies, that can then be tested on the basis
of computational cognitive models and experiments with human subjects. The
syntactic framework of the formal system provided a generic way of constructing
computational cognitive models of the participants of a ‘marble drop’ game.

Aims of This Article. Ghosh, Heifetz and Verbrugge [5] conducted a game-
theoretic experiment that involves a participant’s expectations about the oppo-
nent’s reasoning strategies, that may in turn depend on expectations about the
participant’s reasoning. It deals with the following question: In a dynamic game
of perfect information, are people inclined to do forward induction reasoning
(i.e. show EFR behaviour)? In the current work, we extend our aim of bridging
formal and empirical studies to this question from behavioural game theory, uti-
lizing the experimental findings from [5]. The main new elements of this work
with respect to [6,5,8] are as follows:
– We study robustness of the findings of [5], to alleviate concern that differ-

ent participants might follow a variety of reasoning patterns. Thus, more
grounding is given to the outcomes, which is used for formal modelling.

– Unlike the eye-tracking studies used in [13,6], the experiment which forms
the backbone of this paper includes participants’ verbal comments regarding
the reasoning they applied to perform their actions (see [8]), which made it
possible to introduce agents’ beliefs about their opponents’ moves and beliefs
in the logical language. We conjecture that this language is more succinct
than the language proposed in [6] in describing strategic reasoning, which in
turn may lead to a more efficient modelling.

In what follows, we briefly recall Ghosh and colleagues’ recent experiment on
forward induction [5,8], report a robustness study of the findings of the experi-
ment, and extend the language introduced in [6] to describe players’ reasoning
strategies, adding a belief operator to reflect players’ expectations. Finally, we
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Fig. 1. Collection of the main games used in the experiment. The ordered pairs at the
leaves represent pay-offs for the computer (C) and the participant (P ), respectively.

sketch how strategy-formulas in this extended language can be turned into com-
putational cognitive models that help to distinguish what is going on in people’s
minds when they play dynamic games of perfect information.

2 An Experimental Study: Do People Use FI?

We provide a brief summary of the experimental games and the experimental
procedure underlying the current work. The experiment (previously reported
in [5]) was designed to tackle the question whether people are inclined to use
forward induction (FI ) reasoning when they play dynamic perfect information
games. The main interest was to examine participants’ behaviour following a
deviation from BI behaviour by their opponent right at the beginning of the
game; for details, see [5,8].

The games that were used in the experiment are given in Figures 1 and 2. In
these two-player games, the players play alternately. Let C denote the computer
and P the participant. In the first four games (Figure 1), the computer plays
first, followed by the participant. The players control two decision nodes each. In
the last two games (Figure 2), which are truncated versions of two of the games
of Figure 1, the participant moves first.

To explicate the difference between BI and EFR behaviour consider game 1,
one of the experimental games (cf. Figure 1). Here, the unique Backward Induc-
tion (BI) strategies for player C and player P are a; e and c; g, respectively, which
indicate that the game will end at the first node, going down. In contrast, EFR
would proceed as follows, starting from the scenario in which the game reaches the
first decision node of P . Among the two strategies of playerC that are compatible
with this event, namely b; e and b; f , only the latter is rational for playerC. This is
because of the fact that b; e is dominated by a; e, while b; f is optimal for playerC if
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Fig. 2. Truncated versions of Game 1 and Game 3. The ordered pairs at the leaves
represent pay-offs for C and P , respectively.

she believes that playerP will play d;hwith a high enough probability. Attributing
to player C the strategy b; f is thus player P ’s best way to rationalize player C’s
choice of b, and in reply, d; g is player P ’s best response to b; f . Thus, the unique
Extensive-Form Rationalizable (EFR, [17]) strategy (an FI strategy) of player P
is d; g, which is distinct from his BI strategy c; g. For a detailed discussion on BI
and EFR strategies in games 2, 3, 4, 1�, 3�, see [5].

The experiment was conducted at the Institute of Artificial Intelligence at
the University of Groningen, the Netherlands. A group of 50 Bachelor’s and
Master’s students from different disciplines took part. They had little or no
knowledge of game theory, so as to ensure that neither backward induction nor
forward induction was already known to them.1 The participants played the
finite perfect-information games in a graphical interface on the computer screen
(cf. Figure 3). In each case, the opponent was the computer which had been
programmed to play according to plans that were best responses to some plan
of the participant, and this was told to the participants.

Fig. 3. Graphical in-
terface for the partici-
pants. The computer con-
trols the blue trapdoors
and acquires blue mar-
bles (represented as dark
grey in a black and white
print) as pay-offs, while
the participant controls
the orange trapdoors and
acquires orange marbles
(light grey in a black and
white print) as pay-offs.

1 The candidate participants were asked about their educational details. Two students
who had followed a course on game theory were excluded.
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After 14 practice games, each participant played 48 experimental games.
There were 8 rounds, each comprised of 6 games as described above. Differ-
ent graphical representations of the same game were used in different rounds.
Participants earned 10-15 euros for participation, depending on points earned.

At the end of the experiment, each participant was asked the following ques-
tion: ‘When you made your choices in these games, what did you think about
the ways the computer would move when it was about to play next?’ The par-
ticipant needed to describe in his own words, the plan he thought was followed
by the computer on its next move after the participant’s initial choice. We used
these answers to classify various strategic reasoning processes applied by the
participants while playing the experimental games.

To analyse whether participants P played FI strategies in the games described
in figures 1 and 2, we can formulate the following hypothesis (see [5] for an
explanation) concerning the participant’s choice in his first decision node (if
reached in games 1, 2, 3, 4, and in all rounds of games 1� and 3�):

“d will be played most often in game 3, less so in game 1, even less in
games 3� and 4, least often in games 1� and 2”, which we henceforth
abbreviate as “d : 3 � 1 � 3�, 4 � 1�, 2.”

In games 1 and 3, d is the only EFR move; in games 1� and 2, d is neither
a BI nor an EFR move; and in games 3� and 4, both c and d are EFR moves.
Moreover, in game 3, reaching the first decision node is compatible with common
knowledge of rationality.

Ghosh et al. [5] found that in the aggregate, participants were indeed more
likely to make decisions in accordance with their best-rationalization EFR con-
jecture, i.e., consistent with FI reasoning. For a detailed study and a discussion
of some alternative explanations of the results, see [5,8]. Our main concern in
the current paper is how we can construct cognitive models based on the exper-
imental findings and how logic can play a role in such construction. To justify
our aim, we first investigate the robustness of the results of [5] based on the
available group-divisions.

2.1 Robustness: Different Results for Different Groups?

We segregated the participants in terms of gender and discipline and went on to
test the hypothesis over the different groups formed by segregation.2

Segregation by Gender. The available data on the behaviour of participants
at their first decision node in the six games were divided into two groups: male
and female. Overall, 40 men and 10 women had participated in the experiment
reported in [5,8]. We studied the choices made by participants belonging to the
two groups.3 For the hypothesis, we have the following, very similar to the results
reported in [5]:

2 Because of little variance among participants, we did not segregate by age.
3 The results are based on one sample and two sample proportion tests.
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– Male d : 3, 3� � 4 � 1� � 1 � 2
– Female d : 3, 3� � 4 � 1�, 1 � 2

As to individual games, the tests revealed the following behaviour. We use the
notations i � j to denote that options i and j are chosen equally often, and
i � j to denote that i is chosen more often than j. The null hypothesis was that
c and d were chosen equally often at the first decision node:

– Game 1: c � d (male, female).
– Game 2: c � d (male, female).
– Game 3: d � c (male, female).
– Game 4: d � c (male), d � c (female).
– Game 1�: c � d (male, female).
– Game 3�: d � c (male, female).

Segregation by Discipline. For this study, the data on 50 participants was
separated into three broad groups based on the nature of the study fields of the
participants:

Artificial Intelligence (AI): artificial intelligence and human-machine commu-
nication (27 students);

Behavioural and Social Sciences (BSS): accountancy, economics and business
economics, human resource management, international relations, law and
business economics, and psychology (10 students);

Exact Sciences (ES): biology, biomedical sciences, drug innovation, computer
science, mathematics, and physics (13 students).

Similar statistical analysis was done over the choices made by the participants
belonging to the three groups. We summarize the results for the hypothesis:

– AI d : 3, 3� � 4 � 1�, 1 � 2
– BSS d : 3, 3� � 4 � 1�, 1 � 2
– ES d : 3, 3� � 4 � 1�, 1 � 2

For the hypotheses on the individual games:

– Game 1: c � d (AI, BSS), d � c (ES).
– Game 2: c � d (AI, BSS, ES).
– Game 3: d � c (AI, BSS, ES).
– Game 4: d � c (BSS, ES), d � c (AI).
– Game 1�: c � d (AI, BSS), d � c (ES).
– Game 3�: d � c (AI, BSS, ES).

The statistical analyses based on gender and discipline suggest that the results
mentioned in Section 2 about participants’ behaviour at their first decision node
are robust. We only found minor variations corresponding to certain groups.

3 A Language for Strategies

In the line of [6], we propose a logical language specifying strategies of players.
Our motivation for introducing this logical framework is to build a pathway
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from empirical to cognitive modelling studies. A detailed formal study of this
framework regarding its expressive power and axiomatics is left for future work.

This framework uses empirical studies to provide insights into cognitive mod-
els of human strategic reasoning as performed during the experiment discussed
in Section 2. The main idea is to use the logical syntax to express the differ-
ent reasoning procedures as performed and conveyed by the participants and
use these formulas to systematically build up reasoning rules of computational
cognitive models of strategic reasoning.

A novel part of the proposed language is that we add an explicit notion of be-
lief to the language proposed in [6] in order to describe participants’ expectations
regarding future moves of the computer. This belief operator is parametrized by
both players and nodes of the game tree so that the possible expectations of play-
ers at each of their nodes can be expressed within the language itself. The whole
point is to explicate the human reasoning process, therefore the participants’
beliefs and expectations need to come to the fore. Such expectations formed
an essential part of the current experimental study. We first build a syntax for
game trees (cf. [19,7]). Let N denote a finite set of players and let Σ denote a
countable set of actions.

Syntax for Extensive form Game Trees. Let Nodes be a countable set. The
syntax for specifying finite extensive form game trees is given by:

G�Nodes� :� �i, x� � Σam�J��i, x�, am, tam�

where i � N , x � Nodes , J�finite� � Σ, and tam � G�Nodes�.
Given h � G�Nodes�, we define the tree Th generated by h inductively as

follows (see Figure 4 for an example):

– h � �i, x�: Th � �Sh,	h, �λh, sx� where Sh � 
sx�, �λh�sx� � i.

– h � ��i, x�, a1, ta1��  ���i, x�, ak, tak
�: Inductively we have trees T1, . . .Tk

where for j : 1 � j � k, Tj � �Sj ,	j , �λj , sj,0�.

Define Th � �Sh,	h, �λh, sx� where

� Sh � 
sx� � ST1 � . . .� STk
;

� �λh�sx� � i and for all j, for all s � STj ,
�λh�s� � �λj�s�;

� 	h �
�

j:1�j�k�
�sx, aj , sj,0�� �	j�.

Given h � G�Nodes�, let Nodes�h� denote the set of distinct pairs �i, x� that
occur in the expression of h.

1
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Fig. 4. Extensive form game tree. The nodes
are labelled with turns of players and the edges
with the actions. The syntactic representation
of this tree can be given by:
h � ��1, x0�, a, t1� � ��1, x0�, b, t2�, where
t1 � ��2, x1�, c1, �2, y1�� � ��2, x1�, d1, �2, y2��;
t2 � ��2, x2�, c2, �2, y3�� � ��2, x2�, d2, �2, y4��.



Human Strategic Reasoning in Dynamic Games 123

3.1 Strategy Specifications

A syntax for specifying partial strategies and their compositions in a structural
manner involving simultaneous recursion has been used in [6] to describe empir-
ical reasoning of participants involved in a game experiment in a dynamic game
called ‘marble drop’ [12,11], as demonstrated by an eye-tracking study [13]. The
main case specifies, for a player, which conditions she tests before making a
move. In what follows, the pre-condition for a move depends on observables that
hold at the current game position, some belief conditions, as well as some simple
finite past-time conditions and some finite look-ahead that each player can per-
form in terms of the structure of the game tree. Both the past-time and future
conditions may involve some strategies that were or could be enforced by the
players. These pre-conditions are given by the syntax defined below.

For any countable set X , let BPF �X� (the boolean, past and future combi-
nations of the members of X) be sets of formulas given by the following syntax:

BPF �X� :� x � X � �ψ � ψ1 � ψ2 � �a
��ψ � �a��ψ,

where a � Σ, a countable set of actions.
Formulas in BPF �X� can be read as usual in a dynamic logic framework

and are interpreted at game positions. The formula �a��ψ (respectively, �a��ψ)
refers to one step in the future (respectively, past). It asserts the existence of an
a edge after (respectively, before) which ψ holds. Note that future (past) time
assertions up to any bounded depth can be coded by iteration of the correspond-
ing constructs. The ‘time free’ fragment of BPF �X� is formed by the boolean
formulas over X . We denote this fragment by Bool�X�.

For each h � G�Nodes� and �i, x� � Nodes�h�, we now add a new operator

B
�i,x�
h to the syntax of BPF �X� to form the set of formulas BPF b�X�. The

formula B
�i,x�
h ψ can be read as “in the game tree h, player i believes at node x

that ψ holds”. One might feel that it is not elegant that the belief operator is
parametrized by the nodes of the tree, however, our main aim is not to propose
a logic for the sake of its nice properties, but to have a logical language that can
be used suitably for constructing computational cognitive models corresponding
to participants’ strategic reasoning.

Syntax. Let P i � 
pi0, p
i
1, . . .� be a countable set of observables for i � N

and P �
�

i�N P i. To this set of observables we add two kinds of propositional
variables �ui � qi� to denote ‘player i’s utility (or payoff) is qi’ and �r � q� to
denote that ‘the rational number r is less than or equal to the rational number
q’4 The syntax of strategy specifications is given by:

Strat i�P i� :� �ψ �� a�i � η1 � η2 � η1  η2,

where ψ � BPF b�P
i�. For a detailed explanation see [6]. The basic idea is to

use the above constructs to specify properties of strategies as well as to combine
them to describe a play of the game. For instance, the interpretation of a player

4 as in [6] and inspired by [4].
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i’s specification �p �� a�i where p � P i, is to choose move a at every game
position belonging to player i where p holds. At positions where p does not hold,
the strategy is allowed to choose any enabled move. The strategy specification
η1 � η2 says that the strategy of player i conforms to the specification η1 or η2.
The construct η1 η2 says that the strategy conforms to specifications η1 and η2.

Semantics. Weconsider perfect information gameswith belief structures asmod-
els.The idea is very similar to that of temporal belief revision framepresented in [4].

Let M � �T , 
��x
i �, V � with T � �S,	, s0, �λ,U�, where �S,	, s0, �λ� is an ex-

tensive form game tree, U : frontier�T � � N � Q is a utility function. Here,

frontier�T � denotes the leaf nodes of the tree T . For each sx � S with �λ�sx� � i,
we have a binary relation ��x

i over S (cf. the connection between h and Th pre-
sented above). Finally, V : S � 2P is a valuation function. The truth value of a
formula ψ � BPF b�P � at the state s, denoted M, s �� ψ, is defined as follows:

– M, s �� p iff p � V �s�.
– M, s �� �ψ iff M, s ��� ψ.
– M, s �� ψ1 � ψ2 iff M, s �� ψ1 or M, s �� ψ2.

– M, s �� �a��ψ iff there exists an s� such that s
a
	s� and M, s� �� ψ.

– M, s �� �a��ψ iff there exists an s� such that s�
a
	s and M, s� �� ψ.

– M, s �� B
�i,x�
h ψ iff the underlying game tree of TM is the same as Th and for

all s� such that s ��x
i s�, s� �� ψ.

The truth definitions for the new propositions are as follows:

– M, s �� �ui � qi� iff U�s, i� � qi.
– M, s �� �r � q� iff r � q, where r, q are rational numbers.

Strategy specifications are interpreted on strategy trees of T . We also assume
the presence of two special propositions turn1 and turn2 that specify which
player’s turn it is to move, i.e. the valuation function satisfies the property

– for all i � N , turni � V �s� iff �λ�s� � i.

One more special proposition root is assumed to indicate the root of the game
tree, that is the starting node of the game. The valuation function satisfies the
property

– root � V �s� iff s � s0.

We recall that a strategy for player i is a function μi which specifies a move at
every game position of the player, i.e. μi : Si � Σ. A strategy μ can also be
viewed as a subtree of T where for each node belonging to the opponent player
i, there is a unique outgoing edge and for nodes belonging to player ı, every
enabled move is included. A partial strategy for player i is a partial function
σi which specifies a move at some (but not necessarily all) game positions of
the player, i.e. σi : Si � Σ. A partial strategy can be viewed as a set of total
strategies of the player [6].

The semantics of the strategy specifications are given as follows. Given a
model M and a partial strategy specification η � Strat i�P i�, we define a semantic
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function ��M : Strat i�P i� � 2Ω
i�TM �, where each partial strategy specification

is associated with a set of total strategy trees and Ωi�T � denotes the set of all
player i strategies in the game tree T .

For any η � Strat i�P i�, the semantic function �η�M is defined inductively:

– ��ψ �� a�i�M � Υ � 2Ω
i�TM � satisfying: μ � Υ iff μ satisfies the condition

that, if s � Sμ is a player i node then M, s �� ψ implies outμ�s� � a.
– �η1 � η2�M � �η1�M � �η2�M
– �η1  η2�M � �η1�M  �η2�M

Above, outμ�s� is the unique outgoing edge in μ at s. Recall that s is a player
i node and therefore by definition of a strategy for player i, there is a unique
outgoing edge at s.

Before describing specific strategies found in the empirical study, we would

like to focus on the new operator of belief, B
�i,x�
h proposed above. Note that this

operator is considered for each node in each game. The idea is that the same
player might have different beliefs at different nodes of the game. We had to
introduce the syntax of the extensive form game trees to make this definition
sound, otherwise we would have had to restrict our discussion to single game
trees. The semantics given to the operator is entangled in both the syntax and
semantics, which might create problems in finding an appropriate axiom system.
A possible solution would be to introduce some generic classes of games similar to
the idea of generic game boards [20], using the notion of enabled game trees [7].
This is left for future work, as well as a comparison of the expressiveness of the
current language with those of existing logics of belief and strategies.

3.2 Describing Specific Strategies in the Experimental Games

Let us now express some actual reasoning processes that participants displayed
during the experiment. Some participants described how they reasoned in their
answers to the final question. Example 1 of such reasoning: “If the game reaches
my first decision node and if the payoffs are such that I believe that the computer
would not play e if its second decision node is reached, then I play d at my
current decision node”. This kind of strategic reasoning can be expressed using
the following formal notions.

Let us assume that actions are part of the observables, that is, Σ � P . The
semantics for the actions can be defined appropriately. Let n1, . . . , n4 denote the
four decision nodes of game 1, with C playing at n1 and n3, and P playing at
the remaining two nodes n2 and n4. We have four belief operators for this game
- two for each player. We abbreviate some formulas which describe the payoff
structure of the game:

�d��f��h���uC � pC� 	 �uP � pP �� = α

�d��f��g���uC � qC� 	 �uP � qP �� = β

�d��e���uC � rC� 	 �uP � rP �� = γ

�c���uC � sC� 	 �uP � sP �� = δ

�b���a���uC � tC� 	 �uP � tP �� = χ

ϕ :� α! β ! γ ! δ ! χ
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Let ψi denote the conjunction of all the order relations of the rational payoffs
for player i given in game 1. A strategy specification describing the strategic
reasoning of Example 1 (at the node n2) is:

η1P : ��ϕ! ψP ! ψC ! �b
��root! B

n2,P
g1 �d��e! B

n2,P
g1 �d��f�g� �� d�P

A BI reasoning at the same node can be formulated as follows:

η2P : ��ϕ! ψP ! ψC ! �b
��root! B

n2,P
g1 �d�e! B

n2,P
g1 �d��f�g� �� c�P

The example above shows how strategic reasoning of participants can be formu-
lated in the proposed framework (which could then be converted to appropriate
reasoning rules to build up computational cognitive models). Note that our rep-
resentations have become quite succinct using the belief operator, compared to
the representations we had in [6], because expressions for response strategies are
not needed anymore. We leave the details for future work.

4 Modelling in ACT-R

We now provide a brief description of the cognitive architecture at the basis of
our computational cognitive model. ACT-R is an integrated theory of cognition
as well as a cognitive architecture that many cognitive scientists use [1]. ACT-R
consists of modules that link with cognitive functions, for example, vision, motor
processing, and declarative processing. Each module maps onto a specific brain
region. Furthermore, each module is associated with a buffer and the modules
communicate among themselves via these buffers.

The computational cognitive models that we propose are inspired by [6]. We
consider a class of models, where each model is based on a set of strategy spec-
ifications that can be generated using the logical framework we presented in
Section 3. The specifications can represent both backward induction reasoning
or forward induction reasoning (in particular, EFR reasoning), among others.

Each of the specifications defined in Subsection 3.2 comprises comparisons
between relevant payoffs for both the players. For each comparison, a cognitive
model has a set of production rules that specify what the model should do.
To compare player C’s payoffs, say at two leaf nodes, the model first has to
find, attend, and encode them in the so-called problem state buffer [1]. For each
subsequent payoff, the model performs the following procedure (cf. Figure 5):
– request the visual module to find the payoffs’ visual locations;
– direct visual attention to that location; and
– update the problem state (buffer).

The specifications η1P and η2P (see Subsection 3.2) specify what the model should
do after encoding the payoffs in the problem state. First, the payoffs need to be
compared and the comparison needs to stored. Then the belief operators are
dealt with as follows (cf. Figure 5):
– attend visual location of the node depicted by the belief operator; and
– encode the actions and beliefs at the problem state (buffer).

The decisions are made corresponding to the recorded payoffs and the resulting
beliefs. An example production rule could be as follows; the model will select
and fire this production rule to generate a response:
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Fig. 5. Flowcharts for reasoning processes as described in Example 1 and BI

IF

Goal is to record Player P ’s If the current goal is to record Player P ’s beliefs
belief at node n at node n,

Problem State represents and the problem state has stored the actions,
Player P ’s actions at n,
c and d

B
�P,n�f and belief is f will be played (by C),

THEN
Decision is play d then request the manual (or motor) module

to produce a key press (i.e., play d).

5 Conclusion

In this paper we have continued the line of work started in [6] and proposed
another logical language to aid in the construction of computational cognitive
models based on the findings of a game-theoretic experiment. We have shown
that logic can play a major role in Marr’s computational and algorithmic levels
of inquiry for cognitive sciences [9]. In future we aim to implement various sets of
specifications in separate models, and to simulate repeated game play to study
possible learning effects. An advantage of constructing ACT-R models, not only
logical formulas, is that quantitative predictions are generated, for example,
concerning decision times, locus of attention and activity of brain regions, which
can then be tested in further experiments.
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Abstract. This paper continues a line of work that studies individual
preference upgrades in order to model situations akin to a process of
public deliberation in collective decision making. It proposes a general
upgrade policy, presenting its semantic definition and a corresponding
modality for describing its effects as well as a complete axiom system.

1 Introduction

Deliberation and aggregation are essential and complementary components of
any democratic decision making process. While the well-studied process of aggre-
gation focuses on accumulating individual preferences without discussing their
origin [1], deliberation can be seen as a conversation through which individuals
justify their preferences, a process that might lead to changes in their opinions as
they are influenced by one another. Even if deliberation does not lead to unanim-
ity, the discussion can lead to some ‘preference uniformity’ (see how deliberation
can help in bypassing social choice theory’s impossibility results in [2]), which
might facilitate their eventual aggregation. In addition, the combination of both
processes provides a more realistic model for decision making scenarios.

In [3], the authors presented a framework where agents have both preferences
over a set of objects and reliability over the agents themselves. The main focus
was to study how the public announcement of the individual preferences af-
fects the preferences themselves. The paper proposed several preference upgrade
policies based on the agents’ reliability orderings, and then introduced a gen-
eral lexicographic upgrade operation subsuming all of them. Decision procedures
were provided to decide whether, under such upgrade policies, the iterative and
public announcement of individual preferences can eventually lead to preference
unanimity/stability.

But not every ‘reasonable’ policy for upgrading individual preferences falls
under the scope of the general lexicographic upgrade (see page 132 for a dis-
cussion) - this paper presents a more general upgrade policy, viz. the general
layered upgrade. As we see in the example discussed later (cf. Example 1), the
general definition provided in this paper captures intuitive upgrades which could
not be formalised by policies discussed in [3]. Moreover, this short and technical
note constitutes a necessary step towards formalizing reasonable deliberation
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processes which would facilitate their combination with aggregation processes in
decision making. We leave this combination/reconciliation part for future work.

2 Recalling the Framework

This section briefly recalls (and, in some cases, extends) the definitions of the
PR framework; further details can be found in [3]. Throughout this paper, let
Ag be a finite non-empty set of agents, with |Ag| = n.

Definition 1 (PR Frame). A preference and reliability (PR) frame F is a tuple
〈W, {≤i,�i}i∈Ag〉 where (i) W is a finite non-empty set of worlds, (ii) ≤i ⊆
(W × W ) is a total preorder (a total, reflexive and transitive relation), agent
i’s preference relation over worlds in W (u ≤i v is read as “world v is at least
as preferable as world u for agent i”); (iii) �i ⊆ (Ag × Ag) is a total order
(a total, reflexive, transitive and antisymmetric relation), agent i’s reliability
relation over agents in Ag (j �i j

′ is read as “agent j′ is at least as reliable as
agent j for agent i”).

The motivations for the restrictions on the preference and the reliability re-
lations are discussed in [3]. For now, here are further useful definitions.

Definition 2. Let F = 〈W, {≤i,�i}i∈Ag〉 be a frame.

– mr(i) = j (j is agent i’s most reliable agent) iffdef j′ �i j for every j′ ∈ Ag;
– Max≤i(U), the set containing agent i’s most preferred worlds among those

in U ⊆ W , is formally defined as {v ∈ U | u ≤i v for every u ∈ U}.

2.1 A Formal Language

Throughout this paper, let At be a countable set of atomic propositions.

Definition 3 (Language). Formulas ϕ, ψ and relational expressions π, σ of
the language LPR are given by

ϕ, ψ ::= � | p | j �i j
′ | ¬ϕ | ϕ ∨ ψ | 〈π〉ϕ

π, σ ::= 1 | ≤i | ≥i | ?(ϕ, ψ) | −π | π ∪ σ | π ∩ σ

with p ∈ At and i, j, j′ ∈ Ag. Standard abbreviations as the converse operator
−1 over relational expressions1 will facilitate the writing of formulas.2

The set of formulas of LPR contains atomic propositions (p) and formulas de-
scribing the agents’ reliability relations (j �i j

′), and it is closed under negation
(¬), disjunction (∨) and modal operators of the form 〈π〉 with π a relational
expression. The set of relational expressions contains the constant 1 (the global

1 Such operator is given by 1−1 := 1, (≤i)
−1 := ≥i, (≥i)

−1 := ≤i, (?(ϕ,ψ))
−1 :=

?(ψ,ϕ), (−π)−1 := −(π−1), (π ∪ σ)−1 := π−1 ∪ σ−1 and (π ∩ σ)−1 := π−1 ∩ σ−1.
2 Additionally, 〈<i〉ϕ := 〈≤i ∩−≥i〉ϕ and 〈>i〉ϕ := 〈−≤i ∩≥i〉ϕ.
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relation), the preference relations (≤i), their respective converse (≥i; [4,5]) and
an additional construction of the form ?(ϕ, ψ) with ϕ and ψ formulas of the
language, and it is closed under Boolean operations over relations (the so called
boolean modal logic; [6]).

The following two definitions establish what a model is and how formulas of
LPR are interpreted over such structures.

Definition 4 (PR Model). A PR model M is a tuple 〈F, V 〉 where F is a PR
frame and V : At → ℘(W ) is a valuation function.

Definition 5 (Semantic Interpretation). Let M = 〈W, {≤i,�i}i∈Ag , V 〉 be
a PR model. The function �·�M from formulas in LPR to subsets of W and the

function ��·��M from relational expressions in LPR to binary relations over W are
defined simultaneously in the following way.

���M := W �p�M := V (p) �j �i j
′�M :=

⎧
⎨

⎩
W if j �i j

′

∅ otherwise

�¬ϕ�M := W \ �ϕ�M �ϕ ∨ ψ�M := �ϕ�M ∪ �ψ�M

�〈π〉ϕ�M := {w ∈ W | there is u ∈ �ϕ�M with (w, u) ∈ ��π��
M}

and

��1��
M

:= W ×W ��−π��
M

:= (W ×W ) \ ��π��
M

��≤i
��
M

:= ≤i
��π ∪ σ��

M
:= ��π��

M ∪ ��σ��
M

��≥i
��
M

:= {(v, u) ∈ (W ×W ) | u ≤i v} ��π ∩ σ��
M

:= ��π��
M ∩ ��σ��

M

��?(ϕ,ψ)��
M

:= �ϕ�M × �ψ�M

Note, in particular, how ��?(ϕ, ψ)��
M

is the set of those pairs (u, v) ∈ (W ×W )
such that u satisfies ϕ and v satisfies ψ.3 A formula ϕ is true at world w ∈ W
in model M when w ∈ �ϕ�

M . A formula is valid when it is true at every world
of every model, as usual.

The operator ?(ϕ, ψ), useful for providing the axiom system for the general
upgrade operation to be introduced in Subsection 3.1, is the only construction in
LPR that does not appear in [3]. Thus, an axiom system characterising formulas
in LPR valid on PR models is given by the axioms and rules in Table 1 of [3]
plus the formula 〈?(ψ1, ψ2)〉ϕ ↔ (ψ1 ∧ 〈1〉(ψ2 ∧ ϕ)), which characterises the
extra operator.

3 Individual Preference Upgrades

Intuitively, a public announcement of the agents’ individual preferences might
induce an agent i to adjust her own preferences according to what has been

3 The relation ��?(ϕ,ψ)��
M

is a natural generalisation of the relation ��?ϕ��
M

:= {(u, u) ∈
(W ×W ) | u ∈ �ϕ�M} for the traditional PDL test operation ?ϕ [7].



132 S. Ghosh and F.R. Velázquez-Quesada

announced and the reliability ordering she assigns to the set of agents.4 For
example, an agent might adopt the preferences of the agent on whom she relies
the most, or might use such preference for ‘breaking ties’ among her equally-
preferred zones.

In [3] the authors introduced the general lexicographic upgrade operation,
which creates a preference ordering following a priority list of orderings.

Definition 6 (General Lexicographic Upgrade). A lexicographic list R
over W is a finite non-empty list whose elements are indexes of preference order-
ings over W , with |R| the list’s length and R[k] its kth element (1 ≤ k ≤ |R|).
Intuitively, R is a priority list of preference orderings, with ≤R[1] having the
highest priority. Given R, the preference ordering ≤R ⊆ (W ×W ) is defined as

u ≤R v iffdef

(
u ≤R[ |R| ] v ∧

|R|−1∧

k=1

u �R[k] v
)

︸ ︷︷ ︸
1

∨
|R|−1∨

k=1

(
u <R[k] v ∧

k−1∧

l=1

u �R[l] v
)

︸ ︷︷ ︸
2

Thus, u ≤R v holds if this agrees with the least prioritised ordering (≤R[|R|])
and for the rest of them u and v are equally preferred (part 1), or if there is an
ordering ≤R[k] with a strict preference for v over u and all orderings with higher
priority see u and v as equally preferred (part 2).

This operation allows an agent i to upgrade her preferences by taking ≤′
i :=

≤R, with R a lexicographic list containing the ordered indexes of the agents
whose preferences will be used. It subsumes not only the natural instance in
which R is given directly by the agent’s reliability ordering, but also other pos-
sibilities as, e.g., one in which the agent adopts ‘as is’ the preferences of the
agent on whom she relies the most. A sound and complete axiom system for a
modality representing the operation can be found in [3].

Even though the general lexicographic upgrade covers many natural upgrades,
there are also ‘reasonable’ policies that fall outside its scope. Sometimes we are
not interested in considering the complete order among the choices of the most
reliable agent, but only her most preferred choices. For example, consider a girl
planning to take a boy out for a movie of his choice, and let wi denote the world
where ‘movie i is the most preferred’ (i = 1, 2, 3, 4). Rather than considering the
complete preference ordering it makes more sense to consider the most preferred
movies of the boy and among that what she would like to watch most as well. In
any case they can take note of their choices among all the options, as they may
not know which movie ticket they would get. We will get back to this example
in a moment. For the following definition, recall that Max≤i(W ) denotes agent
i’s most preferred worlds among those in W .

Definition 7 (Conservative Upgrade). Agent j put her most reliable agent’s
most preferred worlds above the rest, using her old ordering to break ties in both
zones.5 More precisely, with U := Max≤mr(j)

(W ),

4 Note that this work does not focus on the formal representation of such announce-
ment, but rather on the formal representation of its effects.

5 This upgrade is called lexicographic in [8] and [9].
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u ≤′
j v iffdef ({u, v} ∩ U = {u, v} ∧ u ≤j v) ∨ ({u, v} ∩ U = {v}) ∨

({u, v} ∩ U = ∅ ∧ u ≤j v)

The conservative upgrade is not an instance of the general lexicographic up-
grade, as there are cases in which the output of the former cannot be reproduced
by any instance of the latter.

Example 1. Suppose agent a is agent b’s most reliable agent and their individual
preferences are as below (reflexive and transitive arrows omitted).

a: w2 w1

w3

w4

b: w3 w4 w1 w2

A conservative upgrade on b’s preferences will create two zones, the upper
one with a’s most preferred worlds (w3 and w4), and the lower one with the
remaining worlds (w1 and w2). Within each zone, b’s old preferences will apply,
thus producing w3 <′

b w4 and w1 <′
b w2. The final result is then

b: w1 w2 w3 w4

Observe how no lexicographic list can produce this outcome. First, no singleton
list does the job, as ≤′

b is different from both ≤a and ≤b. The list 〈〈a ; b〉〉 (with
the leftmost ordering having the highest priority) also fails, as it would give
≤a the highest priority, thus producing an ordering with w2 strictly below w1,
different from what ≤′

b states. Finally, 〈〈b ; a〉〉 fails too, as it will give priority to
≤b, thus putting w4 strictly below w1, again different from what ≤′

b establishes.

Now agents a and b can be considered as the boy and girl respectively in the
earlier example, with their preference orders about movies given as above. After
a conservative preference upgrade, the first choice movie for the girl is movie 4.

3.1 The General Layered Upgrade

The conservative upgrade does not create a preference ordering following a pri-
ority list of orderings. Instead, it puts a set of elements of the domain at the
topmost layer of the ordering (in Definition 7, the set Max≤mr(j)

(W )), then using
a ‘default’ ordering (in Definition 7, ≤j) to sort both this layer and those worlds
that do not appear in it. This observation leads to the following definition.

Definition 8 (General Layered Upgrade). A layered list S over W is a fi-
nite (possibly empty) list of pairwise disjoint subsets of W together with a default
preference ordering over W . The list’s length is denoted by |S|, its kth element is
denoted by S[k] (with 1 ≤ k ≤ |S|), and ≤S

def is its default preference ordering.
Intuitively, S defines layers of elements of W in the new preference ordering
≤S , with S[1] the set of worlds that will be in the topmost layer and ≤S

def the
preference ordering that will be applied to each individual set and to those worlds

not in
⋃|S|

k=1 S[k]. Formally, given S, the ordering ≤S ⊆ (W ×W ) is defined as
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u ≤S v iffdef

(
u ≤S

def v ∧ (
{u, v} ∩

|S|⋃

k=1

S [k] = ∅ ∨
|S|∨

k=1

{u, v} ⊆ S [k]
))

︸ ︷︷ ︸
1

∨
|S|∨

k=1

(
v ∈ S [k] ∧ u /∈

k⋃

l=1

S [l]
)

︸ ︷︷ ︸
2

Thus, u ≤S v holds if this agrees with the default ordering ≤S
def and either neither

u nor v are in any of the specified sets in S or else both are in the same set (part
1), or if there is a set S[k] in which v appears and u appears neither in the same
set (a case already covered in part 1) nor in one with higher priority (part 2).

Here are two useful observations. First, if |S| = 0, then while both the whole
part 2 and the right-hand side of the rightmost disjunct in part 1 collapse to ⊥,
the left-hand side of the rightmost disjunct in part 1 collapses to �. Thus,

u ≤S v iff u ≤S
def v

On the other hand, if S’s sets form a partition of W (i.e., the sets are not only

mutually exclusive but also collectively exhaustive), then
⋃|S|

k=1 S[k] = W so the
left-hand side of the rightmost disjunct in part 1 collapses to ⊥. Then,

u ≤S v iff
(
u ≤S

def v ∧
|S|∨

k=1

{u, v} ⊆ S [k]
)

︸ ︷︷ ︸
1

∨
|S|∨

k=1

(
v ∈ S [k] ∧ u /∈

k⋃

l=1

S [l]
)

︸ ︷︷ ︸
2

In fact, since ≤S
def is used to break ties not only within each S[k] but also among

those worlds not appearing in any such set, the provided definition of a layered
list actually just ‘abbreviates’ (but still it is equivalent to) a list that requires a
full partition of W by not writing explicitly the set with the least priority.

Third, a layered list S has a semantic nature, as it is given in terms of subsets
of the domain and binary relations over it. Of course, when it is intended to be
applied to a given model, it can also be defined syntactically.

Definition 9. A layered list S is defined syntactically within LPR whenever each
S[k] is given as a formula χk in LPR and its default ordering ≤S

def is given as
a relational expression πS

def in LPR. In such cases, Definition 8 is adjusted by

writing �χk�
M instead of S[k] and ��πS

def
��
M

instead of ≤S
def , for M the model in

which such layered list is applied. In such cases, ≤S will be written as ≤S(M).

The next proposition makes possible the definition that follows it.

Proposition 1. Let S be a layered list over W . If ≤S
def is reflexive (transitive,

total, respectively), then so is ≤S . For syntactically defined layered lists S, if
��πS

def
��
M

is reflexive (transitive, total, respectively), then so is ≤S(M).
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Definition 10. Let M = 〈W, {≤i,�i}i∈Ag , V 〉 be a PR model.

– Let S be a layered list whose default ordering is reflexive, transitive and
total;6 let j ∈ Ag be an agent. The PR model gyjS(M) = 〈W, {≤′

i,�i}i∈Ag , V 〉
is such that, for every agent i ∈ Ag, ≤′

i := ≤S(M) if i = j, and ≤′
i := ≤i

otherwise.
– Let S be a list of |Ag| layered lists whose default ordering are reflexive,

transitive and total, with Si its ith element.7 The PR model gyS(M) =
〈W, {≤′

i,�i}i∈Ag , V 〉 is such that, for every agent i ∈ Ag, ≤′
i := ≤Si(M)

On the Generality of the General Layered Upgrade. When layered lists
are defined semantically, the general layered upgrade can build any conceivable
total, reflexive and transitive preference ordering by simply using a layered list
that spells out explicitly the desired output, using then the full Cartesian product
as the default ordering.

When layered lists are restricted to syntactically definable ones, the power of
the layered upgrade depends on the expressivity of the used language. Neverthe-
less, LPR is expressive enough to define layered lists that replicate the behaviour
of not only the general lexicographic (Definition 6) but also the conservative
upgrade (Definition 7). This shows how the general layered upgrade is indeed a
generalisation of the general lexicographic upgrade.

Proposition 2. The general lexicographic upgrade is an instance of the general
layered upgrade with S defined syntactically within LPR.

Proof (Sketch). Let M = 〈W, {≤i,�i}i∈Ag , V 〉 be a PR model. Take any lexico-
graphic list R, and let L1, . . . , Lm be the layers it generates (with L1 being the
topmost) when applied over M . If the relational expression 1 is used for defining
the default ordering, then in order to prove the proposition it is enough to provide
m formulas χk such that Lk = �χk�

M . In order to do this, first observe how, if
U = �χU �

M , then Max≤i(U) = �χU ∧ [<i]¬χU �
M . Now, note how

L1 = Max≤R[|R|]

(
Max≤R[|R|−1]

(
· · ·Max≤R[1]

(W ) · · ·
))

This and the previous observation suggest the following recursive definition:

μ1(τ ) := τ ∧ [<R[1]]¬τ
μ2(τ ) := μ1(τ ) ∧ [<R[2]]¬μ1(τ )

...

μ|R|(τ ) := μ|R|−1(τ ) ∧ [<|R|]¬μ|R|−1(τ )

in which τ is a parameter. Then, given W = ���
M , it is not hard to see that

χ1 := μ|R|(�) is such that L1 = �χ1�
M

6 If S is defined syntactically, then ��πS
def

��
M

should be reflexive, transitive and total.
7 If Si is defined syntactically, then ��π

Si
def

��
M

should be reflexive, transitive and total.
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But then, since

L2 = Max≤R[|R|]

(
Max≤R[|R|−1]

(
· · ·Max≤R[1]

(W \ L1) · · ·
))

it follows that

χ2 := μ|R|(� ∧ ¬χ1) is such that L2 = �χ2�
M

This process can be repeated. In its mth iteration, by observing

Lm = Max≤R[|R|]

(
Max≤R[|R|−1]

(
· · ·Max≤R[1]

(W \
⋃m−1

k=1 Lk) · · ·
))

it follows that

χm := μ|R|(� ∧
∧m−1

k=1 ¬χk) is such that Lm = �χm�M

The process stops here, as W = L1 ∪ · · · ∪ Lm, and thus further iterations will
produce formulas χ such that �χ�

M = ∅.

Proposition 3. The conservative upgrade is an instance of the general layered
upgrade with S defined syntactically within LPR.

Proof (Sketch). It is enough to provide the explicit definition of a syntactically
defined layered list that does the job. Take any PR model M with domain W and
observe how �

∧
i′∈Ag(i

′ �j i)�
M = W iff i = mr(j). Then,

χ :=
∧

i′∈Ag(i
′ �j i) → [<i]⊥ implies Max≤mr(j)

(W ) = �χ�M

Thus, a ‘singleton list’ with χ as its unique set and ≤j as its default relational
expression induces the ordering generated by the conservative upgrade.

A more illuminating way to prove how the general layered upgrade indeed
extends the general lexicographic one is by noticing that, while the general lex-
icographic upgrade cannot revert strict preferences when these are unanimous,
the general layered can. More precisely, on the one hand,

Proposition 4. For every PR model, if all agents put a given world strictly
above another, then so does the ordering ≤R induced by any lexicographic R.

Nevertheless, on the other hand,

Fact 1. There are PR models in which all agents agree in the relative strict
order between two worlds, and yet a general layered upgrade can reverse it.

Proof. Take a frame with a single agent having a strict preference of w1 over w2.
This order is switched by using a general layered upgrade with a singleton list
given by [>]⊥ and with 1 being the relational expression for its default ordering.

The generality offered by the general layered upgrade might be welcomed
from some perspectives, but it might not be completely desirable from others.
For example, when the layered list is given syntactically by LPR, it allows the
definition of ‘unreasonable’ preference upgrade policies. As an illustration, a
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singleton layered list for agent j with its set defined by [>mr(j)]⊥ (with mr(j)
characterised as in the proof of Proposition 3) will move to the top of j’s ordering
those worlds that are, for her most reliable agent, the least preferred ones.

From this perspective, the general lexicographic upgrade has some advantages
over the layered one: not only combines the current orderings in a ‘natural’ way,
but also has some pleasant properties, as it respects unanimity not only over
strict preferences, as shown before, but also over equal-preferability.

Proposition 5. For every PR model, if all agents agree in that two worlds are
equally preferred, then so does the ordering ≤R induced by any lexicographic R.

A more detailed study of the expressivity of the general layered upgrade when
the used list is syntactically defined within LPR is left for future work.

Some Observations and a Comparison. In the literature one can find several
operations describing changes in orderings among objects. In particular, there are
several dynamic epistemic logic [10,11] proposals for orderings interpreted not
only as preferences (so the operations represent preference change: e.g., [12,13]),
but also as plausibility (so the operations are understood as forms of belief
revision: e.g., [8,9,14,15]). It is worthwhile to discuss, albeit briefly, some key
characteristics of the general layered upgrade and how it relates to existing
frameworks.

A straightforward observation is that the general layered upgrade (GLay)
only affects the ordering, keeping the domain intact (thus differing from, e.g.,
[14,15]). More interesting is the fact that, although it generalises the general
lexicographic upgrade (GLex ) of [3], GLay still has a lexicographic spirit: the
sets in S actually define an ordering, and thus ≤S is the result of a lexicographic
upgrade with the order generated by the sets having the highest priority, and
the default ordering being used only to ‘break ties’.

A closer comparison between GLay and the plausibility action models (PAM )
of [15] is also useful. They share the same spirit, as a PAM is a relational
structure in which each ordered ‘world’ is associated to a formula, thus defining
in this way an ordering among sets of worlds, just as the sets of a layered list
in GLay. Moreover, a PAM acts over a plausibility model following the ‘action
priority’ rule: the ordering in the resulting model is a combination of the one in
initial model with that of the PAM in which the latter has the priority, exactly
as GLay does when it prioritises the sets over the default ordering. In fact, the
crucial difference between these frameworks might be simply the expressivity of
the language used for both the initial ordering and the default one. With respect
to the initial ordering, the language used in the PAM framework is equivalent
to the fragment of LPR in which the relational expressions are only ≤i and
∼i := ≤i ∪ ≥i; maybe more important, with respect to the default ordering, by
construction PAM uses only the agent’s preference relation, but GLay allows a
full relational expression. Whether this difference in expressivity allows GLay to
create orderings that cannot be defined by using PAM remains to be studied.
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Note that the layers of a ‘layered list’ can be interpreted as levels of beliefs in
such plausibility models, and also in the KD45-O models of [16]. The basic differ-
ence here is the additional ‘default ordering’ which makes sense while describing
preferences as it can be thought of as some preference ordering exogenously
instilled in agents, which comes to the fore when absolutely necessary.

The Formal Language

Definition 11. The language LPR
{gy} extends LPR with a modality 〈gyiS〉 for ev-

ery agent i ∈ Ag and every layered list S whose default ordering is reflexive,
transitive and total. Given a PR model M , define

�〈gyi
S〉ϕ�M := �ϕ�gy

i
S(M)

with gyiS(M) as in Definition 10. Note how, by defining [gyiS ]ϕ := ¬〈gyiS〉¬ϕ,
then �[gyiS ]ϕ�

M := �ϕ�
gyi

S(M) so 〈gyiS〉ϕ ↔ [gyiS ]ϕ is valid.

The modality 〈gyiS〉 allows to describe the effects of upgrading agent i’s pref-
erences via the general layered upgrade with S, keeping the preferences of the
remaining agents as before. This definition can be extended to simultaneous up-
grades by asking for a list S of layered lists and using a modality 〈gyS〉 whose
semantic interpretation uses the operation gyS(·) of Definition 10.

For an axiom system, this paper provides valid formulas and validity-pre-
serving rules indicating how to rewrite a formula using 〈gyiS〉 as a provably
equivalent one in LPR. Then, while soundness follows from the validity and
validity preserving properties of the rewriting tools, completeness follows from
the completeness of the basic ‘static’ system (end of Subsection 2.1).8

Besides indicating how to translate atomic propositions, reliability formulas
and their Boolean combinations, the rewriting formulas should indicate how to
translate formulas involving modal operators of the form 〈π〉, where π can be
any relational expression. Hence, given any relational expression in the model
gyiS(M), a ‘matching’ relational expression in the original model M should be
provided. The layered relational transformer defined below, similar in spirit to
the program transformers of [18] for providing rewriting axioms for regular PDL-
expressions [7] (in their case, after the action-model updates of [19]), will capture
this. However, in order to express within LPR the effect of a general layered
upgrade, the used layered list S must be syntactically defined in LPR: indeed, if
either some S[k] or else the default ordering ≤S

def is not LPR-definable, then the
language cannot tell whether a world is in S[k] or whether a pair satisfies ≤S

def ,
and thus it cannot describe the upgrade’s effects.

Definition 12 (Layered Relational Transformer). Let M be a PR model
with domain W ; let i be an agent. Let S be a syntactically defined layered list
over W for which each set S[k] is characterised by a formula χS[k] in LPR (i.e.,

S[k] = �χS[k]�
M ) and whose default ordering ≤S

def is characterised by a relational

8 See Chapter 7 of [10] (cf. [17]) for an extensive explanation of this technique.
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expression πS
def in LPR (i.e., ≤S

def =
��πS

def
��
M
). Define NS as the formula satisfied

by those worlds that do not appear in a set in S, and Nk
S as the formula satisfied

by those worlds that do not appear in the sets S[1], . . . ,S[k] for some index k:9

NS := ¬
∨|S|

k=1 χS[k] Nk
S := ¬

∨k
l=1 χS[l]

A layered relational transformer Ty i
S is a function from relational expressions

to relational expressions defined in the following way.

Tyi
S(≤i) :=

⎛

⎝πS
def ∩

(
?(NS ,NS)∪

|S|⋃

k=1

?(χS[k], χS[k])
)
⎞

⎠

︸ ︷︷ ︸
1

∪
|S|⋃

k=1

?
(
Nk

S , χS[k]

)

︸ ︷︷ ︸
2

Tyi
S(≥i) :=

⎛

⎝(πS
def)

−1 ∩
(
?(NS ,NS)∪

|S|⋃

k=1

?(χS[k], χS[k])
)
⎞

⎠

︸ ︷︷ ︸
1

∪
|S|⋃

k=1

?
(
χS[k],N

k
S
)

︸ ︷︷ ︸
2

Ty i
S(1) := 1 Ty i

S(−π) := −Ty i
S(π)

Ty i
S(≤j) := ≤j for i �= j Ty i

S(π ∪ σ) := Ty i
S(π)∪ Ty i

S(σ)

Ty i
S(≥j) := ≥j for i �= j Ty i

S(π ∩ σ) := Ty i
S(π)∩ Ty i

S(σ)

Ty i
S(?(ψ1, ψ2)) := ?

(〈gyi
S〉ψ1, 〈gyi

S〉ψ2

)

Intuitively, a layered relational transformer Tyi
S takes a relational expression

representing a relation in the model gyiS(M) and returns a matching relational
expression representing a relation in the original model M . The cases for the
basic relational expressions, ≤i and ≥i, are the important ones. The first uses
Definition 8 to establish that ≤i in gyiS(M) corresponds to ≤S(M) in M ; the
second uses the same definition to indicate that ≥i in gyiS(M) is the converse
of ≤S(M) in M . The remaining cases take care of the constant 1, the basic
relational expressions for agents other than i and of the relational test as well
as the complement, union and intersection of relations. With Ty i

S defined, it is
possible now to provide the promised axiom system.

Theorem 2. The axioms and rules on Table 1 together with those of the ba-
sic ‘static’ system (end of Subsection 2.1) provide a sound and complete axiom
system (with i any agent) for LPR

{gy} with respect to PR models.

Proof (Sketch). The rule and the axioms for atomic propositions, reliability,
negation and disjunction are standard for an operation without precondition that
does not affect atomic propositions (and, in this case, neither reliability). The
axiom for relational expressions, the key one, makes crucial use of the layered
relational transformer, stating that there is a ϕ-world π-reachable from the eval-
uation point at gyiS(M) if and only if there is a 〈gyiS〉ϕ-world Tyi

S(π)-reachable
from the evaluation point at M . As an example, if π is ≤i, then the axiom is

9 The case with |S| = 0 can be understood as a case in which each S [k] is the empty
set, and thus χS[k] = ⊥. In such case, NS becomes the always true �.
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Table 1. Axioms for LPR
{gy} w.r.t. PR models.

� 〈gyi
S〉� � 〈gyi

S〉(ϕ ∨ ψ) ↔
(〈gyi

S〉ϕ ∨ 〈gyi
S〉ψ

)

� 〈gyi
S〉p ↔ p � 〈gyi

S〉(ϕ → ψ) ↔
(〈gyi

S〉ϕ → 〈gyi
S〉ψ

)

� 〈gyi
S〉j′ �j j′′ ↔ j′ �j j′′ � 〈gyi

S〉〈π〉ϕ ↔ 〈Ty i
S(π)〉〈gyi

S〉ϕ
� 〈gyi

S〉¬ϕ ↔ ¬〈gyi
S〉ϕ From � ϕ infer � [gyi

S]ϕ

〈gyi
S〉〈≤i〉ϕ ↔ 〈

(
πS
def ∩

(
?(NS ,NS)∪

|S|⋃

k=1

?(χS[k], χS[k])
))

︸ ︷︷ ︸
1

∪
|S|⋃

k=1

?
(
Nk

S , χS[k]

)

︸ ︷︷ ︸
2

〉〈gyi
S〉ϕ

whose right-hand side, by using the axioms for ∪ and ? together with some
commutation and distribution, is equivalent to

〈πS
def ∩ ?(NS ,NS)〉〈gyi

S〉ϕ ∨
|S|∨

k=1

〈πS
def ∩ ?(χS[k], χS[k])〉〈gyi

S〉ϕ
︸ ︷︷ ︸

1

∨
|S|∨

k=1

(
Nk

S ∧〈1〉(χS[k] ∧ 〈gyi
S〉ϕ)

)

︸ ︷︷ ︸
2

Thus, the axiom states that after a general layered upgrade for i with S there will
be a ≤i-reachable ϕ-world, 〈gyiS〉〈≤i〉ϕ, if and only if before the operation the
current world is not in S and can ≤S

def-reach a world not in S that will satisfy
ϕ after the operation (first disjunct on part 110), or else the current world is in
some S[k] and can ≤S

def-reach a world also in S[k] that will satisfy ϕ after the
operation (second disjunct on part 1), or else there is a k such that the current
world is not in the sets S[1], . . . ,S[k] and there is a world in S[k] that will satisfy
ϕ after the operation (part 2). This is simply the unfolding of the definition of ≤S
(Definition 8), and it emphasises the role played by the formulas characterising
each χS[k] and the relational expression characterising ≤S

def .

Observe how the simultaneous upgrade modality 〈gyS〉, briefly sketched be-
low Definition 11, is also axiomatised by the presented system as long as the
relational transformer is changed by making the cases for each agent i relative
to i’s layered list Si (thus removing the cases “for agents different from i”).

Going back to the example discussed in Section 3, let pi denote the fact that
‘movie i is most preferred’. Consider the PR model M as given in Example 1,
where agent a can be the most reliable agent for himself, and V (pi) = {wi} for
each i. Then one can easily show that WM = �〈≤b〉p2 ∧ 〈gybS〉〈≤b〉p4�M .

10 Recall that ?(ϕ,ψ) describes the relation �ϕ�M × �ψ�M . Hence, ≤∩?(ψ,ψ) describes

the restriction of ��≤��
M

to the set of worlds satisfying ψ.
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4 Conclusions and Further Work

The paper has introduced a general preference upgrade operation subsuming sev-
eral reasonable upgrade policies, providing also a modality to describe its effects
as well as its complete axiomatisation. As the motivation for this work comes
from the modelling of the process of deliberation, the next step in this research
project is the characterisation not only of those situations in which the repeti-
tive application of (instances of) the defined operation leads to agents having the
same preferences (preference unanimity), but also of those situations in which
further applications of the operation do not make any difference (preference sta-
bility). Also interesting is an in-depth exploration of the power of such operation
as well as an extensive and formal comparison with related frameworks. Finally,
it would be meaningful to get a formal framework for decision making processes
that combine the methods of deliberation and aggregation.
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Abstract. We investigate, in a logical setting, the proposal that asser-
tion primarily functions to express and coordinate doxastic states and
that ‘might’ fundamentally expresses lack of belief. We provide a formal
model of an agent’s doxastic state and precise assertability conditions
for an associated formal language. We thereby prove that an arbitrary
assertion (including a complex of ‘might’ and ‘factual’ claims) always
succeeds in expressing a well-defined doxastic state. We then propose
a fully general and intuitive doxastic update operation as a model of
an agent coming to accept an arbitrary assertion. We provide reduction
axioms for some novel update operations related to this proposal.

1 Introduction

Consider the following conversation in ordinary language:

(1) Context: Mark hasn’t been able to find his house keys in his pocket, his bag,
or on his nightstand. While searching, Mark looks out the window at his
partner Sue’s car, but he sees no reason to think the keys could be there: it
is extremely rare that Sue uses his house keys without checking with him.
a) M: I’m so annoyed. I must have accidentally left my keys on the bus.
b) S: Actually, they might be in my car.
c) M: Ah, OK. I’ll go look.

Intuitively, Sue has raised for Mark the possibility that the keys are in her car,
which he had previously decided not to take ‘seriously’ even though he was aware
of it. He acknowledges that possibility and so goes to check her car.

Surprisingly, offering an explanation of this information flow has proven diffi-
cult. Most theorists have tried to provide a semantics for the word ‘might’ which,
when combined with a picture of assertion, will generate the right results.1 The
simplest explanation would identify a particular piece of information that Sue
puts forward in (1b) and which Mark subsequently adopts. Note, however, that
the information that it’s compatible with Sue’s information that the keys are
in her car does not do the trick. If Mark accepts that information, he acquires
a belief about Sue, not about the keys. More sophisticated views posit many
pieces of information2 or information whose truth depends on who assesses it.3

1 The orthodox semantics belongs to Kratzer [1981, 2012]. See also Papafragou [2006].
2 See von Fintel and Gillies [2011].
3 See MacFarlane [2011a, 2014].
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DOI: 10.1007/978-3-662-48561-3_12



144 P. Hawke and S. Steinert-Threlkeld

Although we will not explicitly argue against these views here, their baroqueness
merits initial hesitation.

Against this backdrop, expressivists argue that epistemic modals generally
serve to express features of agents’ doxastic states and assertion helps to co-
ordinate on those features.4 In this paper, we develop a formal model of the
above information flow that captures these expressivist thoughts. In the next
section, we motivate the view that ‘might’ expresses lack of belief (which we
call abelief).5 Following that, we provide a formal model of assertability and
doxastic states that allows us to precisely identify the set of beliefs and abeliefs
expressed by an arbitrary (and possibly complex) assertion. Then, we identify a
simultaneous update operation for a given set of beliefs and abeliefs which is fully
general, gives the right results in many cases, and reduces to natural updates in
the particular case of bare indicative or bare ‘might’ assertions. After present-
ing this model, we demonstrate how our view handles epistemic contradictions,
disagreement, and interactions with conjunction and disjunction.

2 Proposal: ‘Might’ as Abelief Coordinator

To make precise our view that assertion functions primarily to coordinate dox-
astic states, we need to say what doxastic states are. For us, such a state is a set
of worlds W with a plausibility order �. An agent believes that p if and only if
p is true in all of the most plausible worlds. This natural model generalizes the
standard modal semantics of belief in a way that allows conditional beliefs and
various revision policies to be modeled.6

To warm up to our analysis of (1), consider a ‘factual’ version:

(2) Context: as in (1)
a) M: I must have accidentally left my keys on the bus.
b) S: They are in my car.
c) M: Oh, OK. Thanks!

On our picture, Sue, in (2b), does two things: she expresses that she believes
that the keys are on the table and invites Mark to modify his doxastic state so
as to acquire that belief. When Mark accepts the assertion, he does so modify
his state.

Let c, b, n, and p be the propositions that the keys are in Sue’s car, in Mark’s
bag, on his nightstand, or in his pocket, respectively. We can model Mark’s
doxastic state with 5 worlds: W = {c, b, n, p, L}. In our abused notation, the
worlds c, b, etc. are worlds in which only the corresponding proposition is true.
L is a world in which the keys are ‘lost’ (i.e. left on the bus). Initially, Mark’s
doxastic state looks like this:7

4 See Yalcin [2007, 2011] for expressivism about epistemic modals.
5 An agent abelieves that p iff she does not believe that p. This is different from
disbeleiving that p, which means believing that not-p.

6 See, for instance, van Benthem [2011].
7 w � v means w is strictly more plausible than v. In our notation, b, n, p are all
equally plausible.
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(3) L � c � b, n, p

Because the unique most plausible world is an L world, Mark believes L, that
the keys are lost. Upon accepting Sue’s assertion, Mark’s doxastic state becomes:

(4) c � L � b, n, p

The c world has been upgraded to be the unique most plausible world, and so
Mark believes that the keys are in Sue’s car.

What, then, about (1)? Sue’s ‘might’ assertion in (1b) expresses that she
abelieves that ¬c and invites Mark to modify his doxastic state so as to acquire
that abelief. After Mark accepts the assertion, his doxastic state looks like:

(5) c, L � b, n, p

Because there is a c world among the most plausible worlds, Mark no longer
believes ¬c, i.e. he now abelieves ¬c.

In general, assertion functions to coordinate doxastic states by expressing a
state and inviting one’s interlocutors to adopt the same state. The two most
fundamental such states are belief and abelief. Let us call assertions which pri-
marily express beliefs B-assertions and those which primarily express abeliefs
A-assertions. In general, then, we can say the following about the informational
effect of accepting assertions of each type:

– B-assertion triggers conservative revision: ↑ p (�) is just like � with the most
plausible p-worlds made more plausible than all others

– A-assertion triggers conservative contraction: � p (�) is just like � with the
most plausible p-worlds merged with the previous most plausible worlds

These notions of update – and our terminology – are not new: conservative
revision is closely related to standard notions of revision in the AGM belief
revision literature; while conservative contraction is closely related to standard
notions of belief contraction.8

We note two points. First, given this picture of assertion, it would be very
surprising if we had no means of expressing abelief. Secondly, viewing ‘might’
as expressing abelief provides a plausible model of its role in the dynamics of
conversation. We substantiate this claim more below.

3 Two Problems for Mixed Assertions

While our previous story gave a precise and intuitive account of ‘bare’ B-assertions
and A-assertions, it must be generalized to handle assertions of higher complex-
ity, potentially mixing expressions of belief and abelief. A simple example: p ∧ ♦q.
8 Conservative revision corresponds in a precise sense to transitively relational par-
tial meet revision and conservative contraction corresponds to transitively relational
partial meet contraction. See Hansson [2014], especially sect. 4, for an overview of
these results. See Rott [2009] for a comprehensive list of belief update procedures,
including those that appear in this paper.
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Intuitively, an assertion thereof expresses belief in p and abelief in ¬q. But now
consider an assertion of p∨♦q. What doxastic state is thereby expressed? Or, even
worse: (p ∧ ♦q) ∨ ♦ (s ∧ (♦t ∧ ¬q))? In the current section, we provide two logical
frameworks (3.1-3.3) which together give precise answers (3.4-3.5) to the following
two questions about an arbitrary assertion: (i) can it be understood to express a
doxastic state (and, if so, what state is expressed)? (ii) what update operation is
performed on acceptance?

3.1 Language

We work with a standard logical language containing: atomic proposition letters
(p, q, r, . . . ); boolean operators ¬,∨,∧; ♦ϕ (“ϕ might be the case”); and Bϕ
(“the agent believes that ϕ”).

3.2 Assertability Logic

Let s be an information set (a set of possible worlds). We will define what it
means for a formula to be assertable9 relative to an information set. In what
follows, read s � ϕ as “ϕ is assertable relative to information s”. For the sake of
simplicity, we save the case of Bϕ for an extended version of this paper. Call the
fragment of our language that ignores the B operator the assertability language.

Definition 1 (General Assertability Conditions). Given a set of worlds
W , an information state s ⊆ W , and a valuation V :

– s � p iff: ∀w ∈ s: w ∈ V (p)
– s � ¬ϕ iff: ∀w ∈ s: {w} � ϕ
– s � ϕ ∧ ψ iff: s � ϕ and s � ψ
– s � ϕ ∨ ψ iff: ∃s1, s2: s = s1 ∪ s2 and s1 � ϕ and s2 � ψ
– s � ♦ϕ iff: s � ¬ϕ
We intend these conditions to reflect compelling pre-theoretic intuitions. The

final clause is, in particular, worth remarking on: this clause is inspired by the
strongly felt illegitimacy of asserting both “it might be that ϕ” and “ϕ is not
the case” in a single context (an intuition emphasized by Yalcin [2007, 2011]).
Certain important consequences of these conditions are immediate:10

– s � ♦ϕ iff ∃w ∈ s : {w} � ϕ
– Relative to singletons {w}, this logic is classical
– Relative to singletons, ♦ϕ and ϕ are equivalent

9 It is not our goal to here offer an account that does full justice to our ordinary
conception of assertion, nor the many facets of the theoretical role that assertion
is intended to play in linguistic theorizing. For a more thoroughgoing discussion
of assertion, see MacFarlane [2011b]. Our immediate goal is to offer a simple and
natural account of when a sentence is assertable relative to a particular body of
information, predominantly thought of as the belief worlds of a relevant agent.

10 Our framework of assertability conditions is similar in technical spirit to the expres-
sivist semantics of Lin [2013], a connection we do not detail here. At any rate, the
formulation, conceptual underpinnings, dialectical role and technical consequences
of the current framework diverge from that of Lin [2013] in significant ways.
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3.3 Doxastic Logic

We now present a truth-conditional semantics for our language, with the in-
tended purpose of making precise the manner of thinking about an agent’s dox-
astic states that we have so far utilized in this paper. Our semantics is in the
tradition of dynamic doxastic logic,11 though we only add a dynamic component
in the next section. Our goal is to have a precise language for describing the
beliefs and abeliefs of an agent. In particular, it suits our purpose to exclude ♦ϕ
sentences from our semantics.

Definition 2 (Doxastic model). A doxastic model is a tuple M =
〈W, {�w} , V 〉 where:
– W is a set of worlds
– �w, the plausibility order on W at w, is a total pre-order on W : a reflexive,

transitive, total relation.
– V is a valuation function assigning a proposition (i.e. a set of worlds) to

each atom p.

Moreover, we require the orderings �w to be reverse well-founded: every non-
empty X ⊆ W has a maximal element.12

For a given plausibility order �, � denotes its strict counterpart: v � w iff v �
w and w �� v. For X ⊆ W , we define Best� (X) := {w ∈ X | ∀v ∈ X,w � v}.
This is the set of maximal, or ‘best’, worlds among X . We will denote by bw

the set of ‘belief worlds’ at w, that is the set of worlds maximal in �w, i.e.
Best�w (W ). By the assumption of reverse well-foundedness, these sets are al-
ways non-empty.

Definition 3 (Static Semantics)

– M, w � p iff: w ∈ V (p)
– M, w � ¬ϕ iff: M, w � ϕ
– M, w � ϕ ∧ ψ iff: M, w � ϕ and M, w � ψ
– M, w � Bϕ iff: for every v ∈ bw, M, v � ϕ

Two more definitions will be useful in what follows. We will write �ϕ�
M :=

{w ∈ W | M, w � ϕ} and omit the superscript when context allows. For brevity,
we will also write Bestw (ϕ) := Best�w

(
�ϕ�

M)
.

3.4 From Assertion to Doxastic State Expression

In this section we work towards a theorem that addresses our first problem: what
doxastic state is expressed by an arbitrary assertion? The theorem will state that
for every assertable sentence there exists a well-defined doxastic state expressed
by that sentence. What’s more, the proof for this result supplies the ingredients
for a method for constructing such a doxastic state, though we will not state
such an algorithm explicitly.

11 See van Benthem [2011] for an overview of this tradition.
12 In terms of frame correspondence, we can impose this requirement via the Löb axiom

� (�p → p) → p.
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Definition 4 (Assertoric Equivalence). We say that two sentences ϕ and ψ
in the assertability language are assertorically equivalent just in case

s � ϕ iff: s � ψ

for every information state s (and every doxastic model M).

Definition 5 (♦-Free Formulae). A sentence in our assertability language is
♦-free just in case it contains no occurrence of ♦.

Lemma 1. If ϕ is ♦-free, then s � ϕ iff s ⊆ V (ϕ), where V is the unique
extension of V interpreting ¬ as complement, ∧ as intersection, and ∨ as union.

Proof. By induction on ♦-free formulas (exercise).

Proposition 1 (Assertability Facts). For any sentence ϕ in the assertability
language, let ϕ∗ be the sentence that results from ϕ by deleting every occurrence
of ♦. Then:

(1) s � ♦ϕ iff: s � ♦ϕ∗. That is: ♦ is redundant in the scope of ♦.
(2) s � ¬ϕ iff: s � ¬ϕ∗. That is: ♦ is redundant in the scope of ¬.
(3) If ψ1 and ψ2 are both ♦-free, then:

s � (ψ1 ∧ ♦ϕ1
1 ∧ . . . ∧ ♦ϕ1

m) ∨ (ψ2 ∧ ♦ϕ2
1 ∧ . . . ∧ ♦ϕ2

n) iff:

s � (ψ1 ∨ ψ2) ∧ ♦(ψ1 ∧ ϕ1
1) ∧ . . . ∧ ♦(ψ1 ∧ ϕ1

m) ∧ ♦(ψ2 ∧ ϕ2
1) ∧ . . . ∧ ♦(ψ2 ∧ ϕ2

n)

Proof.
(1) s � ♦ϕ is equivalent to ∃w ∈ s : {w} � ϕ. Further, for any ψ that does

not contain a belief operator, {w} � ♦ψ holds just in case {w} � ψ holds.
Hence: ∃w ∈ s : {w} � ϕ is equivalent to ∃w ∈ s : {w} � ϕ∗.

(2) s � ¬ϕ is equivalent to ∀w ∈ s : {w} � ϕ. Further, for any ψ that does
not contain a belief operator, {w} � ♦ψ holds just in case {w} � ψ holds.
Hence: ∀w ∈ s : {w} � ϕ is equivalent to ∀w ∈ s : {w} � ϕ∗.

(3) We illustrate the proof with a particular instance. The general case uses
Lemma 1. We show that

s � (p ∧ ♦q) ∨ (r ∧ ♦s) iff: s � (p ∨ r) ∧ ♦(p ∧ q) ∧ ♦(r ∧ s)

s � (p ∧ ♦q) ∨ (r ∧ ♦s)
iff: ∃s1, s2 : s1 ∪ s2 = s, and s1 � p, and s1 � ♦q, and s2 � r, and s2 � ♦s
iff: s � p ∨ r and ∃v1 ∈ s : {v1} � p ∧ q and ∃v2 ∈ s : {v2} � r ∧ s
iff: s � (p ∨ r) ∧ ♦(p ∧ q) ∧ ♦(r ∧ s) ��

Lemma 2. Let ϕ be a sentence in the assertability language. Then there exist
sentences β, α1, . . . , αn (for some n ≥ 0) such that:

– β, α1, . . . , αn contain no occurrences of ♦,
– s � ϕ iff s � β ∧ ♦α1 ∧ . . . ∧ ♦αn
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Proof. By induction on the complexity of formulae. The non-trivial cases (taking
the assumption that ϕ is assertorically equivalent to β ∧ ♦α1 ∧ . . . ∧ ♦αn as the
induction hypothesis):

– ¬ϕ: using fact 2 of proposition 1, we conclude that ¬ϕ is assertorically equiv-
alent to ¬ (β ∧ α1 ∧ . . . ∧ αn).

– ϕ1 ∨ϕ2: assume that ϕ1 is assertorically equivalent to β1 ∧♦α1
1 ∧ . . .∧♦α1

m,
and that ϕ2 is assertorically equivalent to β2∧♦α2

1∧ . . .∧♦α2
n. Now use fact

3 of proposition 1.
– ♦ϕ: fact 1 of proposition 1 shows that this is assertorically equivalent to

♦(β ∧ α1 ∧ . . . ∧ αn) ��
Lemma 3. Let ϕ be a ♦-free sentence in the assertability language and M and
w be an arbitrary doxastic model and world. Then:

bw � ϕ iff: M, w � Bϕ

Proof. By induction on the complexity of formulae (exercise). ��
Lemma 4. Let M and w be an arbitrary doxastic model and world. Then, for
any ϕ in the assertability language:

bw � ♦ϕ iff: M, w � ¬B(¬ϕ)

Proof. By induction on the complexity of formulae (exercise). ��
Definition 6 (Doxastic State Description). A doxastic state description is
a sentence of the form

Bϕ ∧ ¬B(¬ψ1) ∧ . . . ∧ ¬B(¬ψn)

where ϕ and ψi, for i ≤ n, are all ♦-free.

Definition 7 (Doxastic State Expression). ϕ (in the assertability language)
expresses doxastic state description δ just in case: for every doxastic model M
and world w,

bw � ϕ iff: M, w � δ

Theorem 1 (From Assertion to Doxastic State Expression). For every
sentence ϕ in the assertability language, there exists a doxastic state description
δϕ that is expressed by ϕ.

Proof. bw � ϕ
iff: bw � β ∧ ♦α1 ∧ . . . ∧ ♦αn [Lemma 2]
iff: bw � β and bw � ♦α1 and . . . and bw � ♦αn

iff: M, w � Bβ and M, w � ¬B(¬α1) and . . . and M, w � ¬B(¬αn) [Lem-
mas 3 and 4]
iff: M, w � B(β) ∧ ¬B(¬α1) ∧ . . . ∧ ¬B(¬αn) ��
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3.5 Dynamics

Recall our second problem: for an arbitrary assertion, what update does an
agent’s doxastic state undergo upon acceptance of that assertion? For example,
consider an assertion p ∧ ♦q. This expresses the doxastic state Bp ∧ ¬B¬q in
the sense of Definition 7. How can an agent update her doxastic state so that
this is an adequate description thereof? First, note that sequentially applying
conservative revision and contraction will not work. Consider W = {w1, w2, w3}
where w1 satisfies p but not q, w2 satisfies q but not p, and w3 satisfies both p
and q. Suppose the agent’s doxastic state has the form

(6) w1 � w2 � w3

Then ↑ p (�¬q (�)) will be the same order (6). But at a world with that order,
B¬q is true. On the other hand, �¬q (↑ p (�)) is

(7) w1, w2 � w3

But at a world with this order, Bp is not true. Thus, Bp ∧ ¬B¬q is not an
accurate description of either doxastic state. This example shows that the update
to perform upon accepting a mixed assertion cannot simply be an iteration of our
earlier updates. To address this issue, we enrich the language with expressions
of the form [�ϕ]ψ with intended reading: “after conservative expansion by ϕ,
ψ holds” and use this to define a simultaneous update operation.

Definition 8 (Conservative Expansion). Given an order � and X ⊆ W ,
we denote by �X (�) the conservative expansion of � by X, where: �X (�)
is the order that is just like � except with all of X made most plausible and all
worlds in X made equally plausible to each other.

We extend this to a model-changing operation as follows: M�X is just like
M, except with each �w replaced with �X (�w). We focus on the case where
X = �ϕ�

M for some formula in our language, in which case we will write M�ϕ,
calling this the conservative expansion of M by ϕ.

Definition 9 (Dynamic Semantics). The static semantics can be extended:

– M, w � [�ϕ]ψ iff: M�ϕ,w � ψ

Using this framework, we have the resources to define conservative revision
and conservative contraction operations, respectively as follows:

i. ↑ ϕ (�w) := �Bestw(ϕ) (�w)
ii. �ϕ (�w) := � (Bestw(ϕ) ∪Bestw(�)) (�w)

Now, we can define an operation that tells us how to update on an arbitrary
doxastic state description. Intuitively, it is the operation of simultaneously per-
forming the conservative revisions and conversative contractions suggested by
the set of beliefs and abeliefs expressed by that description.
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Definition 10 (Simultaneous Update). The simultaneous update to believe
β and abelieve α1, . . . , αn is the following operation:

[↑�β, α1, . . . , αn] (�w) :=
[
�Bestw(β) ∪

⋃

1≤i≤n

Bestw (¬αi ∧ β)
]
(�w)

For all of conservative revision, conservative contraction, and simultaneous
update, we can define the appropriate model-changing operations and extend
the syntax with dynamic operators in exactly the same way as was done for
conservative expansion above. Our definiton of simultaneous update has many
attractive consequences. First, note that this update handles our earlier counter-
example. [↑� p,¬q] applied to the order in (6) yields

(8) w1, w3 � w2

In a world with this order, however, Bp∧¬B¬q is true. Moreover, this definition
handles our motivating cases (1) and (2) with aplomb. If ϕ∗ is a doxastic state
description, we will abbreviate the above by [↑�ϕ∗]. In the case when ϕ∗ has no
conjunct B(β), replace β with �. In the case when ϕ∗ has no conjunct ¬Bψi,
set n = 1 and α1 = ⊥.

Proposition 2. Let ϕ be a sentence in the assertability language. Then, for
every model and order:

i. If ϕ expresses no abeliefs, then [↑�ϕ∗] (�) = [↑ β] (�)
ii. If ϕ expresses a single abelief, then [↑�ϕ∗] (�) = [�α1] (�)

When working with dynamic operators like this, a natural question to ask
is: is every sentence in the language with dynamic operators equivalent to some
sentence in the static ‘base’ language? One usually provides a ‘yes’ answer to
this question by giving reduction axioms which show how to push the dynamic
operators to simpler subformulas. We can provide such axioms for many of our
operators. Conservative revision is already well understood,13 so we focus on
conservative expansion and conservative contraction. We start with conservative
expansion and the doxastic language. We must augment the language with an
existential modality E and its dual universal modality U .

Proposition 3. The following reduction axioms are valid for the class of dox-
astic models:

[�ϕ] p ↔ p

[�ϕ]¬ψ ↔ ¬ [�ϕ]ψ

[�ϕ]ψ ∧ χ ↔ [�ϕ]ψ ∧ [�ϕ]χ

[�ϕ]Bψ ↔ (Eϕ ∧ U (ϕ → [�ϕ]ψ)) ∨ (¬Eϕ ∧B [�ϕ]ψ)

[�ϕ]Eψ ↔ E [�ϕ]ψ

13 See chapter 8 of van Benthem [2011], where it goes by ‘conservative upgrade’.
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For the case of conservative contraction, we extend the language with a con-
ditional belief operator Bϕψ with the following semantics:

Definition 11 (Conditional Belief). For a doxastic model M and world w:

M, w � Bϕψ iff: for every v ∈ Bestw (ϕ) ,M, v � ψ

Note that Bϕ is the special case B�ϕ.

Proposition 4. The following reduction axioms are valid for the class of dox-
astic models: those above for atoms, ¬, ∧, and E but with �ϕ and

[�ϕ]Bψ ↔ B [�ϕ]ψ ∧Bϕ [�ϕ]ψ

This axiom makes good intuitive sense. After the update, the agent believes
ψ iff the new best worlds are all ψ. The new best worlds are: the old best worlds
merged with the old best ϕ worlds. The first conjunct handles the former and
the second conjunct the latter. Of course, if we have conditional belief in our
language, one would like a reduction axiom for that operator.

Theorem 2. The following reduction axioms are valid for doxastic models:

[�ϕ]Bχψ ↔
(
¬E (ϕ ∧ [�ϕ]χ) ∧B[�ϕ]χ [�ϕ]ψ

)
∨

(E (ϕ ∧ [�ϕ]χ) ∧ U (ϕ ∧ [�ϕ]χ → [�ϕ]ψ))

[�ϕ]Bχψ ↔
(
Bϕ¬ [�ϕ]χ ∧B[�ϕ]χ [�ϕ]ψ

)
∨

(
¬Bϕ¬ [�ϕ]χ ∧ Bϕ∧[�ϕ]χ [�ϕ]ψ ∧

(
¬B¬ [�ϕ]χ → B[�ϕ]χ [�ϕ]ψ

))

Proof. First, consider conservative expansion. [�ϕ]Bχψ says: after making all
of the ϕ worlds most plausible (and equally plausible), the best χ worlds are
ψ worlds. We make a case distinction: (i) no ϕ worlds become χ-worlds or (ii)
some ϕ worlds become χ-worlds. If (i), then the best χ-worlds after the update
are the best worlds pre-update that become χ. We then need to check that those
worlds become ψ worlds. That is what the first disjunct in the reduction axiom
states. If (ii), the best χ-worlds post-update are exactly the current ϕ worlds
that become χ worlds since all of the current ϕ worlds become best overall. We
thus need to check that every ϕ world which becomes χ also becomes a ψ world.
That’s what the second disjunct in the recursiom axiom states.

Now, consider conservative contraction. [�ϕ]Bχψ says: after merging the best
ϕ worlds with the best-overall worlds, the best χ worlds are ψ worlds. We again
make a case distinction: (i) no best ϕ worlds become χ worlds or (ii) some best ϕ
worlds become χ worlds. In case (i), the best χ worlds post-update are simply the
best worlds that become χ. We need those to become ψ, which is just what the
first disjunct states. In case (ii), the best χ worlds post-update come from two
sources: (a) previous best ϕ worlds that become χ and (b) previous best-overall
worlds that become χ. The conjunct

¬Bϕ¬ [�ϕ]χ ∧Bϕ∧[�ϕ]χ [�ϕ]ψ
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handles case (a) by requiring that the best ϕ worlds that become χ also become
ψ. The conjunct

¬B¬ [�ϕ]χ → B[�ϕ]χ [�ϕ]ψ
handles case (b). ��

We can derive reduction axioms for full belief in Propositions 3 and 4 as
special cases of the above.

Corollary 1. The following reduction axioms are valid for doxastic models:

[�ϕ]Bψ ↔ (Eϕ ∧ U (ϕ → [�ϕ]ψ)) ∨ (¬Eϕ ∧B [�ϕ]ψ)

[�ϕ]Bψ ↔ B [�ϕ]ψ ∧Bϕ [�ϕ]ψ
Proof. We do the conservative contraction case and leave conservative expansion
as an exercise. Substituting � for χ in the above reduction axiom yields:

[�ϕ]Bψ ↔
(
Bϕ¬ [�ϕ]� ∧B[�ϕ]� [�ϕ]ψ

)
∨

(
¬Bϕ¬ [�ϕ]� ∧Bϕ∧[�ϕ]� [�ϕ]ψ ∧

(
¬B¬ [�ϕ]� → B[�ϕ]� [�ϕ]ψ

))

Notice that the first disjunction is a contradiction: Bϕ¬ [�ϕ]� is always false
since every world satisfies �. The conjunct ¬Bϕ¬ [�ϕ]� is always true since it
merely states the existence of a best ϕ world, which the assumption of reverse
well-foundedness ensures. The conjunct Bϕ∧[�ϕ]� [�ϕ]ψ simplifies to Bϕ [�ϕ]ψ.
Now, the antecedent of the conditional is trivially true since it merely asserts
that there are best worlds, which again holds by reverse well-foundedness. The
consequent simplifies to B [�ϕ]ψ. Thus, we are left with the desired equivalence

[�ϕ]Bψ ↔ B [�ϕ]ψ ∧Bϕ [�ϕ]ψ
as desired. ��

4 Some Welcome Consequences

Epistemic Contradictions. As emphasized by Yalcin [2007, 2011], statements
of the following form (so-called ‘epistemic contradictions’) seem defective: “John
is in his office. But it might be that John is not in his office”. Fortunately, then,
our assertability conditions immediately yield (for any information state s):

s � p ∧ ♦¬p
This does not yet entirely deal with the observation that sentences that embed
epistemic contradictions are notably defective, for a key case for Yalcin is sen-
tences of the form “supposing that p ∧ ♦¬p, then . . . ”, and our current setup
does not have resources capturing suppositional actions/operators. In the ex-
tended version of this paper, we add such operators to our language, and treat
their assertability conditions in a fashion inspired by Yalcin’s domain semantics,
yielding pleasing results.

Disagreement. Consider the following variation of (1), where Mark does not
accept Sue’s assertion.
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(9) Context: as before, except that Mark actually went out and checked Sue’s
car, where he did not find the keys.
a) M: I’m so annoyed. I must have accidentally left my keys on the bus.
b) S: They might be in my car.
c) M: No, I already checked your car.

In such a case two things must be explained: (i) How is it possible to disagree
with an assertion of ♦c? (ii) Why, when one does so disagree, are the reasons
provided about the prejacent c itself? Our story provides natural answers to
both questions. To (i): Mark’s disagreement consists in rejecting Sue’s invitation
to update his doxastic state to incorporate a c-world. To (ii): Mark rejects this
invitation because he thinks he has good reason to have already ruled out the
c worlds (for example, having already checked the car). Thus, when explaining
his disagreement, he will argue about the prejacent c itself.

Interactions with Conjunction and Disjunction. It has been observed that
conjunction and disjunction display unusual behavior when connecting ‘might’
claims (Zimmermann [2000], Ciardelli et al. [2009]). Namely, ‘or’ and ‘and’ seem
equivalent in this linguistic context: to say “John might be in his office or he
might be at home” seems equivalent to saying “John might be in his office and
he might be at home”. It may be seen as a virtue then that our assertability
conditions yield (for any information state s):

s � ♦p ∧ ♦q iff s � ♦p ∨ ♦q

This is a consequence of proposition 1, fact 3. To see this, set ψ1 := �, ψ2 := �,
m = 1 and n = 1 in the statement of the fact.

5 Conclusion and Further Work

We have developed the idea that ‘might’ fundamentally functions to express
abelief, providing a formal model which explains the doxastic state expressed by
and the update operation performed upon accepting an arbitrary assertion. Our
theory can also handle various problematic phenomena involving ‘might’ that
have proven tricky to accommodate in the context of other approaches.

Further work remains to be done. First, more needs to be said to relate our cur-
rent results to the elaborate debate on the semantics and pragmatics of ‘might’
and other epistemic modals in the philosophy and linguistics literature. Second,
there are various intriguing avenues for further technical results. It would be
of interest to identify a complete axiomatization for our assertability logic. We
also note that the motivation for our study of conservative contraction – that it
captures the idea of “coming to take a possibility seriously” – resembles that for
the suggestion operation introduced in van Benthem and Liu [2007], Liu [2011].
However, these operations have very different technical consequences. For exam-
ple, conservative contraction preserves totality, while suggestion does not. It is of
interest therefore to thoroughly contrast conservative contraction and suggestion
as alternative proposals for ‘might’ updates.



Informational Dynamics of ‘Might’ Assertions 155

References

Ciardelli, I., Groenendijk, J., Roelofsen, F.: Attention! Might in Inquisitive Semantics.
In: Proceedings of Semantics and Linguistic Theory (SALT) 19(1), pp. 91–108 (2009)

Hansson, S.O.: Logic of Belief Revision. Stanford Encyclopedia of Philosophy (Winter)
(2014), http://plato.stanford.edu/archives/win2014/entries/
logic-belief-revision/

Kratzer, A.: The Notional Category of Modality. In: Eikmeyer, H.-J., Rieser, H. (eds.)
Words, Worlds, and Context, pp. 38–74. Walter de Gruyter (1981)

Kratzer, A.: Modals and Conditionals. Oxford University Press (2012)
Lin, H.: Acceptance-Conditional Semantics & Modality-Disjunction Interaction. In:

USC Deontic Modality Workshop (2013)
Liu, F.: Reasoning About Preference Dynamics. Springer, Dordrecht (2011)
MacFarlane, J.:EpistemicModals areAssessment-Sensitive. In:Egan,A.,Weatherson,B.

(eds.) EpistemicModality, pp. 144–179. OxfordUniversity Press (2011a)
MacFarlane, J.: What Is Assertion?. In: Brown, J., Cappelen, H. (eds.) Assertion: New

Philosophical Essays, pp. 79–97. Oxford University Press (2011b)
MacFarlane, J.: Assessment Sensitivity. Oxford University Press (2014),

doi:10.1093/acprof:oso/9780199682751.001.0001
Papafragou, A.: Epistemic modality and truth conditions. Lingua 116(10), 1688–1702

(2006), doi:10.1016/j.lingua.2005.05.009
Rott, H.: Shifting Priorities: Simple Representations for Twenty-seven Iterated Theory

Change Operators. In: Makinson, D., Malinkowski, J., Wansing, H. (eds.) Towards
Mathematical Philosophy. Trends in Logic, vol. 28, pp. 269–296. Springer, Dordrecht
(2009)

van Benthem, J.: Logical Dynamics of Information and Interaction. Cambridge Uni-
versity Press, Cambridge (2011)

van Benthem, J., Liu, F.: Dynamic logic of preference upgrade. Journal of Applied
Non-Classical Logics 17(2), 157–182 (2007), doi:10.3166/jancl.17.157-182

von Fintel, K., Gillies, A.S.: Might Made Right. In: Egan, A., Weatherson, B. (eds.)
Epistemic Modality, pp. 108–130. Oxford University Press, Oxford (2011)

Yalcin, S.: Epistemic Modals. Mind 116(464), 983–1026 (2007),
doi:10.1093/mind/fzm983

Yalcin, S.: Nonfactualism About Epistemic Modality. In: Egan, A., Weatherson, B.
(eds.) Epistemic Modality, pp. 295–332. Oxford University Press, Oxford (2011)

Zimmermann, T.E.: Free Choice Disjunction and Epistemic Possibility. Natural Lan-
guage Semantics 8, 255–290 (2000)

http://plato.stanford.edu/archives/win2014/entries/logic-belief-revision/
http://plato.stanford.edu/archives/win2014/entries/logic-belief-revision/


A Poor Man’s Epistemic Logic Based
on Propositional Assignment and Higher-Order

Observation

Andreas Herzig, Emiliano Lorini, and Faustine Maffre

University of Toulouse, IRIT, 118, Route de Narbonne, F-31062 Toulouse, France

Abstract. We introduce a dynamic epistemic logic that is based on
what an agent can observe, including joint observation and observation
of what other agents observe. This generalizes van der Hoek, Wooldridge
and colleague’s logics ECL-PC(PO) and LRC where it is common knowl-
edge which propositional variables each agent observes. In our logic, facts
of the world and their observability can both be modified by assign-
ment programs. We show how epistemic operators can be interpreted in
this framework and identify the conditions under which the principles of
positive and negative introspection are valid. We also provide a sound
and complete axiomatization and prove that the satisfiability problem is
PSpace-complete. Finally, we show how public and private announce-
ments can be expressed and illustrate the latter by the gossip spreading
problem.

1 Introduction

In recent years, several authors investigated how an epistemic logic could be
grounded on the notion of visibility (or observability) of propositional variables,
most prominently Epistemic Coalition Logic of Propositional Control with Par-
tial Observability ECL-PC(PO) [12] and Logic of Revelation and Concealment
LRC [11]. The idea is that each agent has a set of propositional variables she can
observe: no different truth value is possible for her. The other way round, any
combination of truth values of the non-observable variables is possible for her.

A disadvantage of these logics is that what each agent can see is common
knowledge. This is a strong hypothesis that we are going to relax in the present
paper. While in ECL-PC(PO) and LRC, visibility information is in terms of propo-
sitional variables associated to agents, we here consider propositional variables
associated to sequences of agents. Syntactically, we represent this by means of
atomic formulas that we call visibility atoms. They take the form Si1 Si2 ...Sin p,
where p is a propositional variable and i1, i2, ..., in are agents. When n=0 then we
have nothing but a propositional variable. For n=1, the atom Si1 p reads “agent
i1 sees the value of the variable p”, and for n=2, the second-order observation
Si1 Si2 p reads “agent i1 sees whether i2 sees the value of p”; and so on.

Our models are simply sets of visibility atoms. In order to guarantee positive
and negative introspection we have to ensure that agents are always aware of
what they see: for every agent i and propositional variable p, we require Si Si p
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to be in every valuation. We say that a valuation V is introspective when it
contains every visibility atom having two consecutive Si, such as Sj Si Si Sk p.

Visibility information allows to interpret epistemic operators: for propositional
variables p, the formula Kip is true in a valuation V if V contains both p and
Si p. More generally, the truth condition for Kiϕ is based on a relation between
valuations that can be defined from our visibility atoms: V ∼i V

′ if every atom
that i sees in V has the same truth value in V and in V ′. While the relations
∼i are reflexive everywhere, they are symmetric and transitive—and therefore
equivalence relations—on the set of introspective valuations only. The truth con-
dition for the epistemic operator then takes the standard form: Kiϕ is true in
V if ϕ is true in every valuation related to V by ∼i. The positive and nega-
tive introspection axioms Kiϕ → KiKiϕ and ¬Kiϕ → Ki¬Kiϕ are valid in the
set of introspective valuations. A further novelty of our approach as compared
to existing visibility-based epistemic logics is that we also account for common
knowledge: our language includes a special atomic formula for joint attention
of the form JSp that reads “all agents jointly see the value of p”. Metaphori-
cally, joint attention about a propositional variable p can be understood as eye
contact between the agents when observing p. Just as individual visibility, we
generalize our account to higher-order visibility, adding a constraint on valua-
tions that guarantees introspection of common knowledge. We moreover require
that joint visibility implies individual visibility by imposing that Si p ∈ V when-
ever JS p ∈ V . We can then interpret a modal operator of common knowledge
CK in the same way as the modal operator of individual knowledge.

Just as several existing proposals, we take inspiration from dynamic epistemic
logics DEL [4] and add dynamics to our observation-based epistemic logic. Specif-
ically, we adapt van der Hoek et al.’s logic LRC which has two update operations
modifying visibility: revealing and concealing the value of a variable to some
agent. These two primitives can however not be taken over as they stand be-
cause the naive update of a valuation may no longer be introspective. We exclude
this by an appropriate definition of update. We relate our assignment programs
to Dynamic Logic of Propositional Assignments DL-PA [10,3], which is a dialect
of Propositional Dynamic Logic PDL [7] where PDL’s abstract atomic programs
are instantiated by assignments of truth values to atomic formulas. The benefit
of that link is a PSpace upper bound of the complexity of both satisfiability
and model checking. Moreover, visibility updates can capture public and private
announcements of visibility atoms and negations thereof.

We call our logic DEL-PAO: Dynamic Epistemic Logic of Propositional As-
signment and Observation. The paper is organized as follows: sections 2 and
3 introduce language and semantics of DEL-PAO. Sections 4 and 5 contain an
axiomatization and the complexity result. Section 6 illustrates our logic by two
applications: the embedding of announcements and a modeling of the gossip
spreading problem. Section 7 discusses related work and Section 8 concludes.1

1 A long version of this paper including proofs and a further case study (the co-
ordinated attack problem) is available at http://www.irit.fr/˜Andreas.Herzig/
P/Lori15.html.

http://www.irit.fr/~Andreas.Herzig/P/Lori15.html
http://www.irit.fr/~Andreas.Herzig/P/Lori15.html
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2 Language

Let Prop be a countable non-empty set of propositional variables and let Agt be
a finite non-empty set of agents. Atomic formulas of our language are sequences
of visibility operators followed by propositional variables. The formal definition
is as follows.

The set of observability operators is
OBS = {Si : i ∈ Agt} ∪ {JS},

where Si stands for individual visibility of agent i and JS stands for joint visi-
bility of all agents. The set of all sequences of visibility operators is noted OBS ∗

and the set of all non-empty sequences is noted OBS+. We use σ , σ ′, . . . for
elements of OBS∗. Finally, the set of atomic formulas is

ATM = {σ p : σ ∈ OBS∗, p ∈ Prop}.
The elements of that set are also called visibility atoms, or atoms for short.

For example, JS S2 q reads “all agents jointly see whether agent 2 sees the value
of q”; in other words, there is joint attention in the group of all agents concerning
2’s observation of q. We use α, α′, . . . , β, β′, . . . for elements of ATM .

The language of DEL-PAO is then defined by the following grammar:
π ::= +α | −α | π;π | π � π | ϕ?
ϕ ::= α | ¬ϕ | ϕ ∧ ϕ | Kiϕ | CKϕ | [π]ϕ

where α ranges over ATM and i over Agt .
Our atomic programs are assignments of truth values to atoms from ATM :

+α makes α true and −α makes α false. Complex programs are constructed with
dynamic logic operators: π;π′ is sequential composition, π�π′ is nondeterministic
choice, and ϕ? is test. Just as in dynamic logic, the formula [π]ϕ reads “after
every execution of π, ϕ is true”. The formula Kiϕ reads “i knows that ϕ is true
on the basis of what she observes”, and CKϕ reads “all agents jointly know that
ϕ is true on the basis of what they jointly observe”. Our epistemic operators
account for forms of individual and common knowledge that are respectively
obtained via individual observation and joint observation of facts. This differs
therefore conceptually from the classical operators of individual and common
knowledge as studied in the area of epistemic logic [5]. We will come back to this
in Section 3.4.

The other boolean operators �, ⊥, ∨, → and ↔ are defined as usual, and K̂iϕ
abbreviates ¬Ki¬ϕ . The program skip abbreviates �? and fail abbreviates ⊥?.
We also use the abbreviation πk, for k ≥ 0, inductively defined by π0 = skip and
πk+1 = πk;π.

The set of atomic formulas of ATM occurring in the formula ϕ is noted
ATM (ϕ); the set ATM (π) is defined similarly. For example, ATM (q?;+S2 p) =
{q, S2 p} and ATM ([π]S1 JS p → q) = {q, S2 p, S1 JS p}. (So JS p is not an atom
of the latter.) The length of formulas ϕ and programs π, noted length(ϕ) and
length(π), is the number of symbols used to write them down, where we do
not count [, ] and parentheses and consider that the length of JS , CK , agent
names and propositional variables is 1. For example, length(S2 S2 p) = 5 and
length([+S2 p]JS p ∧ q) = 8.
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3 Semantics

We define valuations and stipulate constraints that are motivated by the require-
ment that visibility information should be introspective and that joint visibility
should imply individual visibility. We then define indistinguishability relations
between valuations and interpret formulas and programs.

3.1 Introspective Valuations

A valuation is a subset of the set of atoms ATM . A valuation V ∈ 2ATM is
introspective if and only if the following hold, for every α ∈ ATM and i ∈ Agt :

Si Si α ∈ V (C1)
JS JS α ∈ V (C2)
JS Si Si α ∈ V (C3)
if JS α ∈ V , then Si α ∈ V (C4)
if JS α ∈ V , then JS Si α ∈ V (C5)

The set of all introspective valuations is noted INTR.
(C1) is about introspection of individual sight: an agent always sees whether

she sees the value of an atom. (C2) requires the same for joint sight; indeed, if
JS α is true then JS JS α should be true by introspection, and if JS α is false
then all agents jointly see that at least one of them has broken eye contact. (C3)
forces the first to be common knowledge. (C4) guarantees that joint visibility
implies individual visibility. Together with (C2), (C5) guarantees that JS α ∈ V
implies JS σ α ∈ V for σ ∈ OBS∗.2 The constraints (C4) and (C5) ensure that
JS α ∈ V implies σ α ∈ V for σ ∈ OBS+. This motivates the following relation
of introspective consequence between atoms: α � β iff either α = β, or α =
JS α′ and β = σ α′ for some σ ∈ OBS+.

Closure under introspective consequence characterizes introspective valua-
tions.

Proposition 1. A valuation V ⊆ ATM is introspective if and only if, for every
α, β ∈ ATM and i ∈ Agt:

σ Si Si α ∈ V for every σ ∈ OBS∗ (1)
σ JS α ∈ V for every σ ∈ OBS+ (2)
if α ∈ V and α � β then β ∈ V (3)

Call an atom α ∈ ATM is valid in INTR if and only if α belongs to every
valuation in INTR. By Proposition 1, α is valid in INTR if and only if α is of
the form either σ Si Si α with σ ∈ OBS ∗, or σ JS α with σ ∈ OBS+.

Observe that we do not impose the constraint “if σ α ∈ V for every σ ∈ OBS ∗

then JS α ∈ V ”, which corresponds to the greatest fixed point definition of the
operator of common knowledge from shared knowledge. We will comment on
this in Section 3.4.
2 We need (C2) when σ contains JS : in order to prove that JS α ∈ V implies
JS Si JS α ∈ V we use that JS JS α ∈ V by (C2) and that JS JS α ∈ V implies
JS Si JS α ∈ V by (C5).
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3.2 Indistinguishability Relations

Two valuations are related by the indistinguishability relation for agent i, noted
∼i, if every α that i sees has the same value. Similarly, we have a relation ∼Agt

for joint indistinguishability. They are defined as follows:
V∼iV

′ iff Si α ∈ V implies V (α) = V ′(α)
V∼AgtV

′ iff JS α ∈ V implies V (α) = V ′(α)
with V (α) = V ′(α) when either α ∈ V and α ∈ V ′, or α /∈ V and α /∈ V ′.

The binary relations ∼i and ∼Agt are reflexive. They are neither transitive
nor symmetric: for example, ∅ ∼i V for every V ⊆ ATM , while V �∼i ∅ as soon
as there is a p such that p and Si are in V . However, both properties hold on
valuations satisfying the introspection constraints (C1) and (C2).

Proposition 2. Therelation∼Agt andevery∼i are equivalence relations on INTR.

Lemma 1. Let V ∈ INTR, V ′ ∈ 2ATM . If V ∼i V
′ or V ∼Agt V ′ then V ′ ∈

INTR.

3.3 Truth Conditions and Validity

Given an introspective valuation V , our update operations add or remove atoms
from V . This requires some care: we want the resulting valuation to be intro-
spective. For example, removing Si Si p should be impossible. Another example
is when V does not contain Si p: then V ∪ {JS p} would violate (C4). So when
adding an atom to V we also have to add all its positive consequences. Symmetri-
cally, when removing an atom we also have to remove its negative consequences.
Let us define the following:

Eff +(α) = {β ∈ ATM : α � β}
Eff −(α) = {β ∈ ATM : β � α}

Clearly, when V is introspective then both V ∪Eff +(α) and V \Eff −(α) are so,
too (unless α is valid). Now the truth conditions are as follows:

V |= α iff α ∈ V

V |= ¬ϕ iff V �|= ϕ

V |= ϕ ∧ ψ iff V |= ϕ and V |= ψ

V |= Kiϕ iff V ′ |= ϕ for all V ′ such that V ∼i V
′

V |= CKϕ iff V ′ |= ϕ for all V ′ such that V ∼Agt V
′

V |= [π]ϕ iff V ′ |= ϕ for all V ′ such that V RπV
′

where Rπ is a binary relation on valuations that is defined (by mutual recursion
with the definition of |=) by:

V R+αV
′ iff V ′ = V ∪ Eff +(α)

V R−αV
′ iff V ′ = V \ Eff −(α) and α is not valid in INTR

V Rπ1;π2V
′ iff there is U such that V Rπ1U and URπ2V

′

V Rπ1�π2V
′ iff V Rπ1V

′ or V Rπ2V
′

V Rϕ?V
′ iff V = V ′ and V |= ϕ
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The relation Rπ is defined just as in PDL for the program operators ;, �
and ?. The interpretation of assignments is designed in a way such that we
stay in INTR: the program +α adds all the positive consequences of α; the
program −α fails if α is valid in INTR and otherwise removes all the negative
consequences of α. For example, we never have V R−S1 S1 pV

′, i.e., the program
−S1 S1 p always fails. In contrast, the program −S1 S2 p always succeeds, and we
have V R−S1 S2 p (V \ {S1 S2 p, JS S2 p, JS p}) because the only atoms—beyond
S1 S2 p itself—whose consequence is S1 S2 p are JS S2 p and JS p. Therefore V �|=
[−S1 S2 p]JS p for every V .

Lemma 2. Let V ∈ INTR and V RπV
′. Then V ′ ∈ INTR.

Proposition 3. For every V ∈ INTR, i ∈ Agt and program π, V is only related
to valuations in INTR by ∼i, ∼Agt and Rπ.

When V |= ϕ we say that V is a model of ϕ. The set of (not necessarily
introspective) models of ϕ is noted ‖ϕ‖. A formula ϕ is satisfiable in INTR if ϕ
has an introspective model, i.e., if ‖ϕ‖∩INTR �= ∅. For example, JS p∧¬Si p has
a model, but does not have an introspective model and is therefore unsatisfiable
in INTR. A formula ϕ is valid in INTR if INTR ⊆ ‖ϕ‖. We also say that ϕ is a
validity of DEL-PAO . For example, ¬[−S1 S2 p]JS p is valid in INTR. Note that
¬β → [+α]¬β is valid in INTR if and only if α �� β.

Formulas without epistemic operators only depend on atoms occurring in it.

Proposition 4. Let ϕ be without epistemic operators. Let V, V ′ ∈ 2ATM such
that V (α) = V ′(α) for every α ∈ ATM (ϕ). Then V |= ϕ if and only if V ′ |= ϕ.

This proposition will be instrumental in the rest of the paper. Observe that it
does not hold when ϕ contains epistemic operators. For example, the truth value
of Kip depends on that of Si p, which however does not occur in ATM (Kip).

3.4 Discussion

Both the operators of individual knowledge and the operator of common knowl-
edge of DEL-PAO satisfy all the principles of the standard epistemic logic S5.
There are also some further validities of DEL-PAO, for example the S5-invalid
formula Ki(p ∨ q) → (Kip ∨Kiq); cf. the axiom RedK,∨ below. This is a strong
principle: to give an example, if one knows that the butler or the gardener was
the murderer then one knows which of them it was. It is however shared by all
visibility-based epistemic logics.

Our common knowledge operator obeys the fixed point axiom: CKp → p ∧(∧
i∈AgtKiCK p

)
. This is ensured by the fact that by constraints (C2) and (C4),

the formula
∧

i∈AgtSi JS p is valid in INTR. Our notion of common knowledge is
however weaker than standard common knowledge because the induction axiom(
ϕ ∧ CK

(
ϕ → ∧

i∈AgtKiϕ
))

→ CKϕ is invalid in INTR. Beyond the tech-
nical reason for that choice (such an infinitary constraint cannot be captured
by formula built from visibility atoms) we follow [13,9] and assume that such a
principle is too strong for a logic of common knowledge.
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4 Axiomatization

The axiomatization of DEL-PAO is given by:
– the axioms of CPL (Classical Propositional Logic);
– the reduction axioms for epistemic operators:

Kiα ↔ Si α ∧ α (RedK,α)
CKα ↔ JS α ∧ α (RedCK ,α)
Ki¬α ↔ Si α ∧ ¬α (RedK,¬)
CK¬α ↔ JS α ∧ ¬α (RedCK ,¬)

Ki(ϕ ∧ ϕ′) ↔ Kiϕ ∧Kiϕ
′ (RedK,∧)

CK (ϕ ∧ ϕ′) ↔ CKϕ ∧ CKϕ′ (RedCK ,∧)

Ki

(
∨

α∈A+

α ∨
∨

α∈A−
¬α

)
↔

(
∨

α∈A+

Kiα

)
∨
(

∨

α∈A−
Ki¬α

)
(RedK,∨)

CK

(
∨

α∈A+

α ∨
∨

α∈A−
¬α

)
↔

(
∨

α∈A+

CKα

)
∨
(

∨

α∈A−
CK¬α

)
(RedCK ,∨)

– the reduction axioms for dynamic operators:
[π;π′]ϕ ↔ [π][π′]ϕ (Red ;)

[π � π′]ϕ ↔ [π]ϕ ∧ [π′]ϕ (Red�)
[ϕ?]ϕ′ ↔ ϕ → ϕ′ (Red?)

[+α]¬ϕ ↔ ¬[+α]ϕ (Red+α,¬)

[−α]¬ϕ ↔
{
� if α is valid in INTR

¬[−α]ϕ otherwise
(Red−α,¬)

[+α](ϕ ∧ ϕ′) ↔ [+α]ϕ ∧ [+α]ϕ′ (Red+α,∧)
[−α](ϕ ∧ ϕ′) ↔ [−α]ϕ ∧ [−α]ϕ′ (Red−α,∧)

[+α]β ↔
{
� if α � β

β otherwise
(Red+α)

[−α]β ↔

⎧
⎪⎨

⎪⎩

� if α is valid in INTR

⊥ if α is not valid in INTR and β � α

β otherwise
(Red−α)

– the introspection axioms:
Si Si α (VisC1)
JS JS α (VisC2)
JS Si Si α (VisC3)
JS α → Si α (VisC4)
JS α → JS Si α (VisC5)

– the rule of Modus Ponens and the rules of inference for Ki, CK, and [π]:
ϕ ↔ ϕ′

Kiϕ ↔ Kiϕ
′

ϕ ↔ ϕ′

CKϕ ↔ CKϕ′
ϕ ↔ ϕ′

[π]ϕ ↔ [π]ϕ′

Theorem 1. The axiomatization of DEL-PAO is sound and complete.
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5 Complexity

Theorem 2. The DEL-PAO satisfiability and DEL-PAO model checking prob-
lems are both Pspace-complete.

We devote the rest of the section to the proof of this result. We start by proving
that all epistemic operators can be eliminated in polynomial time. We then show
interreducibility of model and satisfiability checking. We finally establish lower
and upper bounds by embedding QBF into DEL-PAO and DEL-PAO into DL-PA.

5.1 Elimination of Epistemic Operators

Let us define the following programs:
πi,α = Si α? � (¬Si α?; (+α � −α))

πAgt ,α = JS α? � (¬JS α?; (+α � −α))

The first checks whether i sees α, and if not, varies the truth value of α; the
second does the same but for joint visibility. Then for a set of atoms A =
{α1, ..., αn}, we define:

πi,A = πi,α1 ; ...;πi,αn

πAgt,A = πAgt,α1 ; ...;πAgt,αn

We suppose that the program is skip if the set A is empty.
We did not impose any ordering on atoms in A; this will not influence the

program execution. More details can be found in the long version of the paper.

Proposition 5. Let ϕ be a DEL-PAO formula without epistemic operators. Then
Kiϕ ↔ [πi,ATM (ϕ)]ϕ

CKϕ ↔ [πAgt,ATM (ϕ)]ϕ

are valid in INTR.

Proposition 5 can be turned into a procedure eliminating epistemic opera-
tors: it suffices to iterate the application of the equivalences, starting with the
innermost operators.

Procedure 1. While there is an epistemic operator in ϕ:

1. if there exists a subformula Kiϕ
′ such that ϕ′ does not contain epistemic

operators, replace ϕ by [πi,ATM (ϕ)]ϕ
′;

2. if there exists a subformula CKϕ′ such that ϕ′ does not contain epistemic
operators, replace ϕ by [πAgt,ATM (ϕ)]ϕ.

Proposition 6. For every DEL-PAO formula ϕ, there exists a DEL-PAO for-
mula ϕ′ without epistemic operators such that ϕ ↔ ϕ′ is valid in INTR. The
length of ϕ′ is polynomial in length(ϕ).
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5.2 Model Checking and SAT Interreducible

For formulas without epistemic operators, satisfiability and model checking have
the same complexity.

Proposition 7. Let ϕ be a DEL-PAO formula without epistemic operators such
that ATM (ϕ) = {α1, . . . , αn}. Let π = (+α1 � −α1); . . . ; (+αn � −αn). Then:

– if ϕ is satisfiable in INTR, then for every V ∈ INTR, V |= 〈π〉ϕ;
– if ϕ is unsatisfiable in INTR, then for every V ∈ INTR, V �|= 〈π〉ϕ.
The length of the program (+α1�−α1); . . . ; (+αn�−αn) is linear in length(ϕ).

It follows from Proposition 7 that the satisfiability problem can be reduced in
polynomial time to model checking in a randomly chosen valuation.

Proposition 8. Let ϕ be a DEL-PAO formula without epistemic operators. For
V ∈ INTR, V |= ϕ if and only if the formula

〈+α1; . . . ; +αn;−β1; . . . ;−βm〉ϕ
is satisfiable in INTR, where ATM (ϕ) ∩ V = {α1, . . . , αn} and ATM (ϕ) \ V =
{β1, . . . , βn}.

The length of +α1; . . . ; +αn;−β1; . . . ;−βm is again linear in length(ϕ). It
follows from Proposition 8 that the model checking problem can be polynomially
reduced to the satisfiability problem.

We observe that from a practical point of view, model checking requires a
finite valuation. For formulas without epistemic operators such valuations can
always be obtained: due to Proposition 4 we have V |= ϕ iff V ∩ ATM (ϕ) |= ϕ.

5.3 Lower Bound

In DEL-PAO we can express Quantified Boolean Formulas (QBF), whose satisfi-
ability problem is Pspace-complete. Details can be found in the full version of
the paper.

5.4 Dynamic Logic of Propositional Assignments

In order to establish the upper bound we will embed our logic into the star-free
fragment of Dynamic Logic of Propositional Assignments DL-PA [10,3], whose
satisfiability problem is Pspace-complete. We briefly recall this logic.

Just as the language of DEL-PAO, the language of DL-PA has formulas and
programs. They are defined by the following grammar:

π ::= +α | −α | π;π | π � π | ϕ?
ϕ ::= α | ¬ϕ | ϕ ∧ ϕ | [π]ϕ

where α ranges over ATM and i over Agt . So the language has the same atoms
as DEL-PAO, but no epistemic operators. Formulas are interpreted in valuations
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V ∈ 2ATM in exactly the same way as in DEL-PAO, except that atomic programs
do not take introspective consequences into account. We have:

V R+αV
′ iff V ′ = V ∪ {α}

V R−αV
′ iff V ′ = V \ {α}

A counterpart of Proposition 4 holds for DL-PA.

Proposition 9 ([3], Proposition 1). Let V, V ′ ∈ 2ATM such that V (α) =
V ′(α) for every α ∈ ATM (ϕ). Then V |=DL-PA ϕ if and only if V ′ |=DL-PA ϕ.

5.5 Upper Bound

The final step is to polynomially translate non-epistemic DEL-PAO formulas and
programs into DL-PA formulas and programs. The introspection constraints will
be taken into account by translating DEL-PAO assignments into appropriate
DL-PA programs.

Given an atom α and a set of relevant atoms A ⊆ ATM , let Eff +(α) ∩
A = {β1, ..., βn} and Eff −(α) ∩ A = {β′

1, ..., β
′
m}. Translate assignments of α as

follows:
tr(+α,A) = +β1; ...; +βn

tr(−α,A) =

{
fail if α valid in INTR

−β′
1; ...;−β′

m otherwise

Again we suppose that the program is skip if the set {β1, ..., βn} is empty.
We extend tr to complex programs and formulas by stipulating tr(α) = α

and tr([π]ϕ) = [tr(π,ATM (ϕ))]tr(ϕ), and homomorphic otherwise.
Note that ATM (tr(π,A)) ⊆ A and ATM (tr(ϕ)) ⊆ ATM (ϕ).

Proposition 10. Let ϕ be a DEL-PAO formula without epistemic operators.
Then we have V |=DEL-PAO ϕ if and only if V |=DL-PA tr(ϕ).

The grande finale follows from propositions 6, 7, 8 and 10 and because tr(ϕ)
can be computed in time polynomial in length(ϕ).

Theorem 3. In DEL-PAO, both satisfiability and model checking are PSpace-
complete.

6 Private Announcements and Spreading Gossip

Public Announcement Logic PAL [14] is a logic of the DEL family extending
standard epistemic logic with an operator [ψ!], such that [ψ!]ϕ reads “after ψ is
publicly and truthfully announced, ϕ is true”. Its validities are axiomatized by
means of the reduction axioms [ψ!]p ↔ ψ→p, [ψ!]¬ϕ ↔ ψ→¬[ψ!]ϕ, [ψ!](ϕ∧ϕ′) ↔
[ψ!]ϕ ∧ [ψ!]ϕ′, and [ψ!]Kiϕ ↔ ψ→Ki[ψ!]ϕ.

We claim that we can express public announcements of literals as p! =
p?;+JS p and ¬p! = ¬p?;+JS p. We furthermore claim that we can express
the public announcement of knowledge of atoms as Kip! = Kip?;+JS p. It can
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indeed be checked that with these definitions all the reduction axioms for PAL are
valid in our logic (see the full version of the paper). Beyond that we can also eas-
ily model private announcements of the same kind of formulas. Read j : ψ! as “ψ
is privately announced to agent j”. Then: j : p! = p?;+Sj p, j : ¬p! = ¬p?;+Sj p
and j : Kip! = Kip?;+Sj p; +Sj Si p.

Let us illustrate this by the Spreading Gossip problem, of which a detailed
study can be found in [4]. Six friends each know a secret. When they call each
other, they exchange every secret that they know. The problem is to find how
many calls are necessary to spread all secrets among all friends. It was proven
([1], among others) that the minimal number of calls is 8; for example, if we
write ij the fact that i calls j (or that j calls i), the following sequence spreads
all secrets: 12, 34, 56, 13, 45, 16, 24, 35 [4]. Let us model this with private
announcements. With Agt = {i : 1 ≤ i ≤ 6} and si meaning that i has the secret
si, we define the program Call ij , for i, j ∈ Agt , as:

Call ij = ((Si s1?; j : s1!) � ¬Si s1?); ...; ((Si s6?; j : s6!) � ¬Si s6?);

((Sj s1?; i : s1!) � ¬Sj s1?); ...; ((Sj s6?; i : s6!) � ¬Sj s6?)

Our program expresses that i tells all she knows to j, and conversely; each call
makes each atom known by one agent known to both. Then the formula
[
Call12;Call34;Call56;Call13;Call45;Call16;Call24;Call35

]∧
i∈Agt

Ki

(∧
j∈Agt

sj
)

is true at the initial state V0 defined as:

V0 = {α : α is valid in INTR} ∪ {si : i ∈ Agt} ∪ {Si si : i ∈ Agt}.
This establishes that the above sequence is correct. Furthermore, the formula

〈(⊔
i,j∈Agt ,i�=j

¬Si sj?;Call ij
)8〉∧

i∈Agt
Ki

(∧
j∈Agt

sj

)

expresses that a more general protocol is correct. Finally, the formula

[(⊔
i,j∈Agt,i�=j

Call ij
)7]¬

∧
i∈Agt

Ki

(∧
j∈Agt

sj

)

expresses that only 7 calls are not enough. Both are true at V0.
Note that our modelling does not account for second-order knowledge. In

order to do so we should modify the program Call ij in a way such that when
Si s1 is true then not only j : s1! is performed, but also i : Sj s1!. With that
modelling we could check not only that everybody knows each secret, but also
that everybody knows that everybody knows each secret. In the same vein, third-
order knowledge can be attained by adding j : Si Sj s1!, and so on.

Beyond that, we may also want to model that Call ij leads to common knowl-
edge of i and j. This requires the extension of DEL-PAO by visibility atoms with
non-empty sets of agents as arguments. However, secrets can never become com-
mon knowledge of all agents. This can also be highlighted by the Two Generals’
problem where common knowledge cannot be reached. Details are in the full
version of the paper.
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7 Related Work

As said in the introduction, our logic is in the tradition of several other logics
developed in the past few years. In the logic ECL-PC(PO) [12], visibility is rep-
resented by a set of atoms for each agent, containing the variables the agent
observes. This does not allow for higher-order observations such as “i observes
whether j observes p”. Instead and as already mentioned, the observational ca-
pabilities of each agent become common knowledge among all agents. The logic
LRC [11] allows to express, as programs, that a variable is revealed to an agent or
concealed from her. Semantically, formulas are interpreted over pointed models
with a visibility set for each agent; revealing a variable p to an agent i will add
p to i’s visibility set, while concealing p will remove p from i’s set. Just as in
ECL-PC(PO), who sees what is common knowledge among all agents.

The logic of knowing whether [6] adds an operator standing for “i knows
whether ϕ” to the language of standard epistemic logic, interpreted as “ϕ has
the same value in all indistinguishable worlds for i”. This can be compared to
our visibility atoms Si which express the same notion on atoms.

In Flatland Logic [2], visibility is further grounded on geometry in order to
give semantics to epistemic operators: an agent can (or cannot) observe the
positions of other agents and can reason about what they observe. Visibility can
be higher-order and is also fully determined by geometric constraints. The main
difference with our logic is that in Flatland Logic, agents see other agents instead
of propositional variables.

8 Conclusion

We have introduced a dynamic epistemic logic of propositional assignment and
observation DEL-PAO which accounts for higher-order and joint observation as
well as updates thereof. It avoids the strong hypothesis of common knowledge
of visibility that other observation-based epistemic logics make. It is remark-
able that the addition of higher-order observability and in particular of joint
observability comes without supplementary cost: both satisfiability and model
checking remain PSpace-complete. This contrasts with standard logics of com-
mon knowledge: there, satisfiability checking is ExpTime-hard [8].

A simple extension of our logic is to generalize the operator of common knowl-
edge of all agents CK to operators taking any subset of Agt as arguments. It
suffices to introduce visibility atoms JSJα, one per group of agents J . Another
interesting generalization is to consider belief instead of knowledge. A way to
achieve this is to replace Si by two operators Oi and Ci, respectively meaning
that i has an opinion on something and that i is correct on something. This
requires other constraints on valuations that should match the properties of be-
lief. Further possible extensions concern the dynamic part: following [10], one
may add atoms representing that i controls some propositional variable p, in the
sense that i can change the truth value of p at will. One may then associate to
each assignment an author, which is the agent performing the assignment. As



168 A. Herzig, E. Lorini, and F. Maffre

shown in [10], this allows to embed Coalition Logic of Propositional Control [12].
It remains to be worked out how this combines with higher-order observations.

Acknowledgments. We would like to thank François Schwarzentruber for use-
ful comments and the anonymous reviewers for their thoughtful reading and
comments.
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Abstract. Other than relation semantics, IPDL, the extension of PDL
with intersection of actions, has a natural trace semantics where the
interpretation of an action is a set of sequences of states. IPDL in trace
semantics can describe paced concurrent games very well. Surprisingly,
IPDL can be reduced to a sublanguage of it in which intersection connects
only atomic actions.
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1 Introduction

Propositional Dynamic Logic (PDL), introduced in [4], is a formal system for
reasoning about the behavior of programs of computers, e.g. if φ holds now, then
ψ will hold after the program α is executed in whatever way. PDL is a modal
logic. The language of it is an extension of the language of propositional logic
with a set of modalities which can be intuitively viewed as programs. This set
has a structure: composite programs are generated from atomic ones by the
program constructors composition, union and iteration. The semantics of PDL
is a relation semantics : programs are binary relations and program constructors
are operations of binary relations. Modalities in PDL can also be viewed as
actions of agents, therefore, PDL has applications in other areas as well, besides
in computer science.

PDL has various variants introduced for different purposes. One of them is
IPDL, the extension of PDL with intersection of programs, which is used to
formalize the notion of concurrency in a way.

PDL deals with the input/output behavior of programs very well, but it can
not deal with their progressive behavior, e.g., φ is true at some point during
the execution of the program α. To solve this problem, process logic is developed
as a mix of PDL and the temporal logic introduced in [11]. The core idea of
process logic is that the intermediate states of computations should be taken into
consideration. There are a variety of process logics including [9], [5] and [12]. The
typical work among these is [5], which introduces a logic called Process Logic
(PL). The language of PL is an extension of PDL with some temporal operators
such as until1. In the semantics of PL, programs are not binary relations, but sets

1 Strictly speaking, it is not that the language of PL is an extension of PDL, but that
the language of PDL is definable in PL.
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of state sequences intuitively viewed as computation traces; truth of formulas is
defined at state sequences, not at states like in relation semantics. By observing
the semantics closely, it can be seen that the formulas of PDL are essentially
evaluated at states, and state sequences make sense for only temporal formulas.
Therefore, from [5], we can get such a semantics for PDL: programs are sets of
state sequences and formulas are evaluated at states. It is different from relation
semantics and may be called trace semantics.

Accordingly, IPDL has a trace semantics. This is the focus of this paper. In
the sequel, firstly, we define trace semantics for IPDL in detail and point out
where it makes a difference from relation semantics. Then we indicate by some
examples that trace semantics has applications in paced concurrent games : IPDL
in trace semantics captures the notion of concurrency better there than it does
in relation semantics. We then show that trace semantics does not make any
essential difference for PDL. At last, we show a fact which is not easy to be
seen: IPDL in trace semantics can not say more than a sublanguage of it where
intersection connects only atomic actions.

2 Trace Semantics for IPDL

2.1 Language and Relation Semantics

Let Π0 be a countable set of atomic actions and Φ0 a countable set of atomic
propositions. Let a range over Π0 and p over Φ0. The sets ΠIPDL of actions and
ΦIPDL of propositions are defined simultaneously as follows:

α ::= a | (α;α) | (α ∩ α) | (α ∪ α) | α∗ | φ?
φ ::= p | � | ¬φ | (φ ∧ φ) | 〈α〉φ

This language is the extension of PDL by adding α ∩ α, the intersection of
actions. To perform α;β is to perform α and then β. To perform α ∩ β is to
perform α and β at the same time. To perform α ∪ β is to perform α or β. To
perform α∗ is to perform α a finite number (possibly zero) of times. To perform
φ? is to test whether φ is the case, and if so, continue, or else halt. 〈α〉φ means
that there is a way to perform α s.t. φ is the case after α is done. Other routine
propositional connectives, the falsity ⊥ and the dual [α]φ of 〈α〉φ are defined in
the usual way.

A model M is a triple (W, {Ra | a ∈ Π0}, V ) where

1. W is a nonempty set of states;
2. Ra ⊆ W ×W for any atomic action a;
3. V is a function from Φ0 to the power set of W .

Given a model M = (W, {Ra | a ∈ Π0}, V ). Rα, the interpretation of α in M,
and M, w �r φ, φ being true at w in M, are defined as follows:
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1. (a) Rβ;γ = Rβ ;Rγ ;
(b) Rβ∩γ = Rβ ∩Rγ ;
(c) Rβ∪γ = Rβ ∪Rγ ;
(d) Rα∗ = {(w,w) |w ∈ W} ∪Rα ∪Rα;α ∪ . . .;
(e) Rφ? = {(w,w) |M, w �r φ}.

2. (a) M, w �r p ⇔ w ∈ V (p);
(b) M, w �r � always holds;
(c) M, w �r ¬φ ⇔ not M, w �r φ;
(d) M, w �r (φ ∧ ψ) ⇔ M, w �r φ and M, w �r ψ;
(e) M, w �r 〈α〉φ ⇔ there is a u s.t. (w, u) ∈ Rα and M, u �r φ.

Here the interpretations of actions are binary relations and the action construc-
tors composition, intersection, union and iteration are operations of relations.
This semantics is called relation semantics. A formula φ is valid iff for any model
M and any state w of M, M, w �r φ.

2.2 Trace Semantics

Let M = (W, {Ra | a ∈ Π0}, V ) be a model defined as above. Let ΔW be the set
of the nonempty finite sequences of states in W . Define a partial binary function
ext on ΔW as this: ext((u0, . . . , un), (v0, . . . , vm)) = (u0, . . . , un, v1, . . . , vm) if
un = v0, or else ext((u0, . . . , un), (v0, . . . , vm)) is undefined. Define a function ⊗,
called fusion, on the power set ofΔW as this: S⊗S′ = {ext(C,C′) |C ∈ S & C′ ∈
S′} where S and S′ are two sets of finite sequences. Here is an example of the
fusion function: S = {(u1, u2), (u3)} and S′ = {(u3, u5), (u2, u4, u6)}; S ⊗ S′ =
{(u1, u2, u4, u6), (u3, u5)}. Sα, the interpretation of α in M, and M, w �t φ, φ
being true at w in M, are defined as what follows:

1. (a) Sa = Ra;
(b) Sβ;γ = Sβ ⊗ Sγ ;
(c) Sβ∩γ = Sβ ∩ Sγ ;
(d) Sβ∪γ = Sβ ∪ Sγ ;
(e) Sα∗ = W ∪ Sα ∪ Sα;α ∪ . . .;
(f) Sφ? = {w |M, w �t φ}.

2. (a) M, w �t p ⇔ w ∈ V (p);
(b) M, w �t � always holds;
(c) M, w �t ¬φ ⇔ not M, w �r φ;
(d) M, w �t (φ ∧ ψ) ⇔ M, w �r φ and M, w �r ψ;
(e) M, w �t 〈α〉φ ⇔ there is a sequence (x0, . . . , xn) ∈ Sα s.t. x0 = w and

M, xn �t φ.

It can be verified that M, w �t [α]φ ⇔ for any sequence (x0, . . . , xn) ∈ Sα, if
x0 = w, then M, xn �t φ. Note that the interpretation of the test φ? is a set
of states, not a partial identity relation like in relation semantics. However, it
can be verified that 〈φ?〉ψ is equivalent to φ∧ψ, like in relation semantics. Here
the interpretations of actions are sets of sequences and the action constructors
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are operations of sets of sequences. This semantics is called trace semantics.
A formula φ is valid iff for any model M and any state w of M, M, w �t φ.

Strictly speaking, a structure (W, {Ra | a ∈ Π0}, V ) does not completely spec-
ify a model of relation semantics and the complete specification is (W, {Ra | a ∈
Π0}, ; ,∩,∪,∗ , V ) where ; ,∩,∪ and ∗ are operations of composition, intersection,
union and iteration. Similarly, (W, {Ra | a ∈ Π0}, V ) does not completely specify
a model of trace semantics either and the complete specification is (W, {Ra | a ∈
Π0},⊗,∩,∪,∗ , V ).

Does trace semantics make a difference from relation semantics for IPDL?
Yes. This can be illustrated by the model in Figure 1 where we do not specify
a valuation. It can be verified that R(a;b)∩(c;d) = {(w1, w4)} but S(a;b)∩(c;d) = ∅.
Then w1 �r 〈(a; b)∩ (c; d)〉� but w1 ��t 〈(a; b)∩ (c; d)〉�. The two semantics are
not equivalent.

w1

w2

a

w3

c

w4

b

d

Fig. 1. A model showing the difference of the two semantics

Technically, the constructor “;” is interpreted as the operation of fusion in
trace semantics, while in relation semantics, it is interpreted as the operation
of composition. Intuitively, trace semantics considers the intermediate states of
performing an action while relation semantics does not. This is the essential
difference between the two semantics.

3 Applications

Here are the presuppositions of trace semantics. Transiting from a state to an-
other costs one unit of time. An atomic action is a set of binary tuples; therefore,
performing it costs one unit of time. A state sequence represents a succession of
transitions. An action is a set of state sequences each of which represents a possi-
ble process of performing this action. A test is a set of states; hence, performing
it does not cost any time. Intersection in trace semantics formalizes such a type
of concurrency: cobegining and coending. The action α ∩ β is more accurately
read as this: to perform it is to start doing α and β at the same time and finish
doing them at the same time. The properties of trace semantics are coincident
with this reading. For example, doing b; c costs twice time as doing a, so there
is no way to start and finish a and b; c at the same time. It can be seen that
Sa∩(b;c) is empty in any models.
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One application area of trace semantics is what we called paced concurrent
games where players make their moves in a paced way. These games are very
common in daily life and a typical example of them is the rock-paper-scissors
(RPS) game. This game can be played in different ways and here is one way to
play it: to start the game, the two players speak the words “scissors, paper, rock”
aloud together; at “rock”, they throw their hands; during the game, they speak
“rock” aloud each time they throw their hands. Here are a few things which we
want to point out. Firstly, when the game starts, the two players throw their
hands at the same time. Speaking those words together helps them do this.
Secondly, during the game, the two players throw their hands in a fixed rhythm.
How they speak the words “scissors, paper, rock” together before the game helps
them decide the rhythm and speaking the word “rock” during the game serves
for the same purpose. Finally, the two players finish their actions at the same
time. All these are used to guarantee that the game is played fairly.

IPDL in trace semantics can abstractly describe this sort of games very well.
Suppose that 1 and 2 are the two players in the RPS game. We use ai, bi and ci
to denote the play i’s actions of showing the hand gestures of rock, paper and
scissors. We use pi to express that the player i wins. Then [(a1; b1) ∩ (a2; a2)]p1
says that the player 1 wins whenever the player 1 shows rock and then paper and
the play 2 shows rock twice. [(a1 ∩ a2); (b1 ∩ a2)]p1 says that the player 1 wins
whenever both of them show rock and then 1 shows paper and 2 shows rock.
Intuitively, these two formulas express the same meaning; it can be verified that
[(a1; b1)∩(a2; a2)]p1 ↔ [(a1∩a2); (b1∩a2)]p1 is valid in trace semantics. Note that
this formula is invalid in relation semantics. Let α = (a1∩a2)∪(b1∩b2)∪(c1∩c2).
Then [α∗](¬p1∧¬p2) says that nobody would win if the two players always show
the same hand gestures. Let β = (a1 ∩ b2)∪ (a1 ∩ c2)∪ (b1 ∩a2)∪ (b1∩ c2)∪ (c1 ∩
a2) ∪ (c1 ∩ b2). Then [α∗;β](p1 ∨ p2) says that somebody would win once they
show different hand gestures.

The language of IPDL does not contain any specific ingredients related with
games; therefore, it just describes paced games in an abstract way. However,
when augmented with some core notions of games, we think that it can say
meaningful things about them. This is a future work for us and [1] would be a
good reference object there.

4 Making No Difference for PDL

Let ΠPDL be the set of actions of PDL which does not have intersection of
actions. Let ΦPDL be the set of propositions of PDL. Actually, trace semantics
is equivalent to relation semantics w.r.t. PDL.

As ΠPDL and ΦPDL are defined in a mutually recursive way, we can not
prove that the formulas in ΦPDL have some property just by induction on the
structure of them, and we need to consider the actions in ΠPDL as well. The
function defined as follows helps us do induction on the actions and propositions
at the same time:
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Definition 1 (Complexity of Actions and Formulas). Define a function
c : ΠPDL ∪ ΦPDL → N as follows:

1. ac = 0
2. (α;β)c = αc + βc + 1
3. (α ∪ β)c = αc + βc + 1
4. (α∗)c = αc + 1
5. (φ?)c = φc + 1
6. pc = 0
7. �c = 0
8. (¬ψ)c = ψc + 1
9. (ψ ∧ χ)c = ψc + χc + 1

10. (〈α〉ψ)c = αc + ψc + 1

The following proposition gives a sufficient condition for trace semantics and
relation semantics to be equivalent w.r.t. PDL:

Proposition 1. M = (W, {Ra | a ∈ Π0}, V ) is a model. M, w �t φ ⇔ M, w �r

φ for any φ if the action constructors ; ,∪ and ∗ preserve the following proper-
ties2:

1. (x0, . . . , xn) ∈ Sα implies (x0, xn) ∈ Rα;
2. (u, v) ∈ Rα implies that there are x0, . . . , xn s.t. x0 = u, xn = v and

(x0, . . . , xn) ∈ Sα.

Proof. Suppose that the three action constructors preserve the two properties.
It suffices to show by induction on k that for any k ∈ N, the following two
statements hold:

(a) for any action α of complexity k, (i) (x0, . . . , xn) ∈ Sα implies (x0, xn) ∈ Rα

and (ii) (u, v) ∈ Rα implies that there are x0, . . . , xn s.t. x0 = u, xn = v and
(x0, . . . , xn) ∈ Sα;

(b) for any proposition φ of complexity k, M, w �t φ ⇔ M, w �r φ.

Case αc = 0. Then α = a for some atomic action a. Since Sa = Ra, the
statement (a) is the case.

Case φc = 0. Then φ = p for some atomic proposition p or φ = �. Clearly
the statement (b) is the case.

Case αc = k (0 < k). Since the action constructors ; ,∪ and ∗ preserve the
two properties, the statement (a) holds in the subcases α = β; γ, α = β ∪ γ

2 More formally, the first property should be stated as follows: for any n and x0, . . . , xn,
if (x0, . . . , xn) ∈ Sα, then there are y0 and y1 s.t. y0 = x0, y1 = xn and (y0, y1) ∈ Rα;
the second property should be stated as follows: for any u, v, if (u, v) ∈ Rα, then
there are a n and x0, . . . , xn s.t. x0 = u, xn = v and (x0, . . . , xn) ∈ Sα. By saying that
an action constructor, say ∪, preserves a property, say the first one, we mean this: if
for any x0, . . . , xn, (x0, . . . , xn) ∈ Sβ implies (x0, xn) ∈ Rβ, and for any x0, . . . , xn,
(x0, . . . , xn) ∈ Sγ implies (x0, xn) ∈ Rγ , then for any x0, . . . , xn, (x0, . . . , xn) ∈ Sβ∪γ

implies (x0, xn) ∈ Rβ∪γ .
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and α = β∗. It remains to handle the subcase α = ψ?. Suppose x ∈ Sψ?. Then
M, x �t ψ. Since ψc < k, we get M, x �r ψ by the inductive hypothesis. Then
(x, x) ∈ Rψ?. Suppose (u, v) ∈ Rψ?. Then u = v andM, u �r ψ. By the inductive
hypothesis, we have M, u �t ψ. Then u ∈ Sψ?.

Case φc = k (0 < k). The subcases φ = ¬ψ and φ = ψ ∧ χ are easy
to go through and we only give a proof for the subcase φ = 〈α〉ψ. Suppose
M, w �t 〈α〉ψ. Then there is a sequence (x0, . . . , xn) ∈ Sα s.t. x0 = w and
M, xn �t ψ. Since αc < k and ψc < k, we have (x0, xn) ∈ Rα and M, xn �r ψ
by the inductive hypothesis. Then M, w �r 〈α〉ψ. Suppose M, w �r 〈α〉ψ. Then
there is a u s.t. (w, u) ∈ Rα and M, u �r ψ. By the inductive hypothesis, there
are x0, . . . , xn s.t. x0 = w, xn = u, (x0, . . . , xn) ∈ Sα and M, u �t ψ. Then
M, w �t 〈α〉ψ.

If we add to this proposition an extra requirement that the action constructor
∩ preserves the two properties as well, we would get a sufficient condition for
the two semantics to be equivalent w.r.t. IPDL. This result will be used later at
Section 5.3.

Lemma 1. The action constructors ; ,∪ and ∗ preserve the following two prop-
erties:

1. (x0, . . . , xn) ∈ Sα implies (x0, xn) ∈ Rα;
2. (u, v) ∈ Rα implies that there are x0, . . . , xn s.t. x0 = u, xn = v and

(x0, . . . , xn) ∈ Sα.

By this lemma and Proposition 1, we know that for PDL, trace semantics does
not make a difference from relation semantics:

Proposition 2. M = (W, {Ra | a ∈ Π0}, V ) is a model. Then for any φ in
ΦPDL, M, w �t φ ⇔ M, w �r φ.

The action constructor ∩ does not generally preserve the second property men-
tioned in Proposition 1, although it does preserve the first one. This is the es-
sential reason that trace semantics is not equivalent to relation semantics w.r.t.
IPDL.

5 Reduction of IPDL to iPDL

Suppose that there is no test. Compound actions are built up from atomic ac-
tions; performing atomic actions costs the same time; therefore, the performance
of compound actions can be decomposed into a sequence of atomic steps each
of which is a performance of some atomic actions at the same time. This give
us a feeling that IPDL in trace semantics might be reduced to a sublanguage of
it in which ∩ connects only atomic actions. However, two things make us worry
whether this is the case: test behaves differently from atomic actions and the
generation power of iteration might not be strong enough. In fact, the reduction
can be done and we now are going to prove it. As we will see in the proof, our
worry makes sense: test and iteration do cause difficulties there.
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5.1 Computation Sequences

For any atomic actions a1, . . . , an, we call a1 ∩ . . . ∩ an an I-action. For any
tests φ1?, . . . , φn?, we call φ1? ∩ . . . ∩ φn? a T-action. γ1 ∩ . . . ∩ γn is called an
IT-action if each γi is an I-action or a T-action. Note that the intersection of
two IT-actions is still an IT-action.

Definition 2 (R-seqs). β1; . . . ;βn is called a rough computation sequence (a
r-seq) if each βi is an IT-action.

In computer science, a computation sequence represents a sequence of atomic
steps of computation. R-seqs can be understood in a similar way; what is special
here is that performing an IT-action should be treated as an atomic step. Note
that some r-seqs can not be performed anyway, as they might contain empty
IT-actions like a ∩ p?.

Definition 3 (Merge of R-seqs). Let α = γ1; . . . ; γn and β = δ1; . . . ; δm be
two r-seqs. α � β, the merge of α and β, is defined as this: α � β = (γ1 ∩
δ1); . . . ; (γn ∩ δn) if m = n, or else α � β is undefined.

α � β might not be equivalent to α ∩ β. For instance, (a;�?) ∩ (�?; b) is not
always empty, but (a;�?) � (�?; b), which equals to (a ∩ �?); (�? ∩ b), is. Note
that if both α and β are IT-actions, then α � β = α ∩ β.

Definition 4 (R-seqs of Actions). CS(α), the set of r-seqs of α, is defined
as follows:

1. CS(a) = {a}
2. CS(φ?) = {φ?}
3. CS(α;β) = {γ; δ | γ ∈ CS(α) & δ ∈ CS(β)}
4. CS(α ∩ β) = {γ � δ | γ ∈ CS(α) & δ ∈ CS(β)}
5. CS(α ∪ β) = CS(α) ∪CS(β)
6. CS(α∗) = {�?} ∪ CS(α) ∪ CS(α;α) ∪ . . .

The function CS defined here is an extension of the function CS defined in the
literature of PDL, for instance, in [6]. For any α of PDL, CS(α) consists of all
the ways of performing α: Sα =

⋃{Sδ | δ ∈ CS(α)} in any models. However, this
is not the case here. For example, let α = (a;�?) ∩ (�?; b). It can be verified
that CS(α) = {(a ∩ �?); (�? ∩ b)} and

⋃{Sδ | δ ∈ CS(α)} is always empty, but
Sα is not. The reason comes from the way we define the merge of r-seqs. We
define it this way for technical reasons. When merge is not essentially involved,
the result holds.

Lemma 2. CS(α) = {α} for any IT-action α.

Lemma 3. α is an action in which the occurrences of ∩ outside of any tests
connect only IT-actions. Then for any model, Sα =

⋃{Sδ | δ ∈ CS(α)}.
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Proof. We put an induction on α. Other cases can be handled easily; the special
case is α = β ∩ γ where β and γ are IT-actions. As β ∩ γ is still an IT-action,
by Lemma 2, CS(β ∩ γ) = {β ∩ γ}. Then Sβ∩γ =

⋃{Sδ | δ ∈ CS(β ∩ γ)}.
The function CS is blind to the internal structure of tests; β �γ = β ∩γ for any
IT-actions β and γ; hence, if the occurrences of ∩ in α outside any tests connect
only IT-actions, then CS(α) does not really involve the operation of merge.

There is something unnatural with r-seqs. Computation sequences defined as
follows are more intuitive:

Definition 5 (F-seqs). β1; . . . ;βn is called a fine computation sequence (f-seqs)
if each βi is either an I-action or a T-action.

In principle, f-seqs can be performed, as they have no empty actions like a∩ p?.
Note that for any r-seq β1; . . . ;βn, if Sβ1;...;βn is not empty in some model, then
β1; . . . ;βn is a f-seq. Define dep(β1; . . . ;βn), the depth of the f-seq β1; . . . ;βn, as
the number of the I-actions in β1, . . . , βn. For example, dep((a∩b); p?; (c∩d)) = 2.
It can be seen that for any f-seq β1; . . . ;βn and model, if Sβ1;...;βn is not empty,
then all the sequences in Sβ1;...;βn contain dep(β1; . . . ;βn) + 1 elements.

Definition 6 (Matching F-seqs). F-seqs α and β match if α�β is a f-seq as
well.

That two f-seqs match means that the merge of them can also be performed. In
the sequel, we use α ≡ β to denote that α and β have the same interpretation
in any models.

Lemma 4. F-seqs γ1; . . . ; γn and δ1; . . . ; δn match. Then (γ1; . . . ; γn)∩ (δ1; . . . ;
δn) ≡ (γ1; . . . ; γn) � (δ1; . . . ; δn).

This is a very important property which trace semantics does not share with
relation semantics.

Definition 7 (Cushioned Replicas of Actions). ασ, the cushioned replica
of α, is the result of replacing each atomic action a in α by (�?)∗; a; (�?)∗.

Since a ≡ (�?)∗; a; (�?)∗, α ≡ ασ. Compared to CS(α), CS(ασ) might contain
a lot of redundant r-seqs. For example, CS(a) is the single set {a}, but CS(aσ)
is the infinite set {a,�?; a, a;�?,�?; a;�?, . . .}. There are so many redundant
r-seqs in CS(ασ) that we have the following result:

Lemma 5. α and β are two actions. For any f-seqs δ in CS(ασ) and τ in
CS(βσ), if dep(δ) = dep(τ), then there are f-seqs δ′ in CS(ασ) and τ ′ in CS(βσ)
s.t. δ ≡ δ′, τ ≡ τ ′ and δ′ and τ ′ match.

We give an example to illustrate why this is the case. Suppose that a; b; p? ∈
CS(ασ) and c; q?; d ∈ CS(βσ). a; b; p? and c; q?; d do not match. a;�?; b; p? is in
CS(ασ) and c; q?; d;�? is in CS(βσ). a;�?; b; p? and c; q?; d;�? match.

Previously, we mentioned that CS(α) might not consist of all the ways of
performing α. Actually, CS(ασ) does.
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Proposition 3. Sα =
⋃{Sδ | δ ∈ CS(ασ)}.

Proof. We put an induction on α. We only handle the case α = β ∩ γ and
skip others. Then ασ = βσ ∩ γσ. By the inductive hypothesis, Sβ =

⋃{Sδ | δ ∈
CS(βσ)} and Sγ =

⋃{Sδ | δ ∈ CS(γσ)}.
Let (w0, . . . , wn) ∈ Sβ∩γ . Then (w0, . . . , wn) ∈ Sβ ∩ Sγ . Then (w0, . . . , wn) ∈⋃{Sδ | δ ∈ CS(βσ)} and (w0, . . . , wn) ∈ ⋃{Sδ | δ ∈ CS(γσ)}. There is a f-

seq δ ∈ CS(βσ) s.t. (w0, . . . , wn) ∈ Sδ and there is a f-seq τ ∈ CS(γσ) s.t.
(w0, . . . , wn) ∈ Sτ . Then dep(δ) = dep(τ) = n. By Lemma 5, there are f-seqs
δ′ in CS(βσ) and τ ′ in CS(γσ) s.t. δ ≡ δ′, τ ≡ τ ′ and δ′ and τ ′ match. Then
(w0, . . . , wn) ∈ Sδ′ and (w0, . . . , wn) ∈ Sτ ′ . Then (w0, . . . , wn) ∈ Sδ′∩τ ′. As δ′

and τ ′ match, δ′ � τ ′ is defined. Then by Lemma 4, (w0, . . . , wn) ∈ Sδ′�τ ′. Then
δ′ � τ ′ ∈ CS(βσ ∩ γσ). Then (w0, . . . , wn) ∈

⋃{Sδ | δ ∈ CS(βσ ∩ γσ)}.
Let (w0, . . . , wn) ∈ ⋃{Sδ | δ ∈ CS(βσ ∩ γσ)}. Then (w0, . . . , wn) ∈ Sδ�τ

for some δ ∈ CS(βσ) and τ ∈ CS(γσ). Then δ and τ match. By Lemma 4,
(w0, . . . , wn) ∈ Sδ∩τ . Then (w0, . . . , wn) ∈ Sδ and (w0, . . . , wn) ∈ Sτ . Then
(w0, . . . , wn) ∈

⋃{Sδ | δ ∈ CS(βσ) and (w0, . . . , wn) ∈
⋃{Sδ | δ ∈ CS(γσ). Then

(w0, . . . , wn) ∈ Sβ and (w0, . . . , wn) ∈ Sγ . Then (w0, . . . , wn) ∈ Sβ∩γ .

It is implied that α ≡ α′ if CS(ασ) = CS(α′σ).

5.2 Reduction of IPDL to itPDL

Given Π0 and Φ0 as in Section 2.1. Simultaneously define the set ΠitPDL of
actions and the set ΦitPDL of propositions as follows:

γ ::= a | φ? | (γ ∩ γ)
α ::= γ | (α;α) | (α ∪ α) | α∗

φ ::= p | � | ¬φ | (φ ∧ φ) | 〈α〉φ
The difference betweenΠitPDL andΠIPDL is that ∩ has a restricted connecting
ability in ΠitPDL: it connects only IT-actions. Actually, ΦitPDL has the same
expressivity with ΦIPDL in trace semantics. We now are going to prove it.

We are going to use the following notions in the usual sense: regular expres-
sions, regular languages and correspondence between regular expressions and reg-
ular languages. We are also going to use such a result: regular languages are
closed under intersection. For the definitions of these notions and the proof of
this result, we refer to [7]. Usually, alphabets consist of simple symbols. We in
the sequel use alphabets in a generalized sense; they may take IT-actions like
(a ∩ p?) as letters. Given an alphabet Γ . For any regular expression α over Γ ,
CS(α), defined as above, is the regular language corresponding to α.

Let Γ and Σ be two sets of actions. Define Γ �Σ = {α∩β |α ∈ Γ & β ∈ Σ}.
What follows is a crucial lemma:

Lemma 6. Γ and Σ are two finite alphabets consisting of IT-actions. For any
regular expressions α over Γ and β over Σ, there is a regular expression λ over
Γ � Σ s.t. CS(λ) = CS(α ∩ β).
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Proof. Let Γ = {γ1, . . . , γn} and Σ = {δ1, . . . , δm}. For any i ≤ n, let γ′
i =

(γi ∩ δ1) ∪ . . . ∪ (γi ∩ δm). For any i ≤ m, let δ′i = (γ1 ∩ δi) ∪ . . . ∪ (γn ∩ δi). Let
α′ be the result of replacing each γi in α by γ′

i. Let β
′ be the result of replacing

each δi in β by δ′i. Then both α′ and β′ are regular expressions over the alphabet
Γ � Σ.

It can be seen that CS(α′) =
⋃{CS(γ′

j1 ; . . . ; γ
′
jk
) | γj1 ; . . . ; γjk ∈ CS(α)} and

CS(β′) =
⋃{CS(δ′h1

; . . . ; δ′hl
) | δh1 ; . . . ; δhl

∈ CS(β)}. By Lemma 2, we know
that for any γj1 , . . . , γjk in Γ and δh1 , . . . , δhk

in Σ: (i) if (γj1 ∩ δh1); . . . ; (γjk ∩
δhk

) ∈ CS(α′), then γj1 ; . . . ; γjk ∈ CS(α); (ii) if (γj1 ∩ δh1); . . . ; (γjk ∩ δhk
) ∈

CS(β′), then δh1 ; . . . ; δhk
∈ CS(β). By Lemma 2 again, we know that for

any γj1 , . . . , γjk in Γ and δh1 , . . . , δhk
in Σ: (i) if γj1 ; . . . ; γjk ∈ CS(α), then

(γj1 ∩ δh1); . . . ; (γjk ∩ δhk
) ∈ CS(α′); (ii) if δh1 ; . . . ; δhk

∈ CS(β), then (γj1 ∩
δh1); . . . ; (γjk ∩ δhk

) ∈ CS(β′).
We claim CS(α ∩ β) = CS(α′) ∩ CS(β′). Let ζ1; . . . ; ζk ∈ CS(α ∩ β). Then

there are γj1 , . . . , γjk in Γ and δh1 , . . . , δhk
in Σ s.t. γj1 ; . . . ; γjk ∈ CS(α),

δh1 ; . . . ; δhk
∈ CS(β) and ζ1; . . . ; ζk = (γj1 ; . . . ; γjk) � (δh1 ; . . . ; δhk

) = (γj1 ∩
δh1); . . . ; (γjk ∩ δhk

). Then ζ1; . . . ; ζk ∈ CS(α′) and ζ1; . . . ; ζk ∈ CS(β′). Then
ζ1; . . . ; ζk ∈ CS(α′) ∩ CS(β′). Now suppose ζ1; . . . ; ζk ∈ CS(α′) ∩ CS(β′).
Then ζ1; . . . ; ζk ∈ CS(α′) and ζ1; . . . ; ζk ∈ CS(β′). Then there are γj1 , . . . , γjk
in Γ and δh1 , . . . , δhk

in Σ s.t. ζ1; . . . ; ζk = (γj1 ∩ δh1); . . . ; (γjk ∩ δhk
). As

ζ1; . . . ; ζk ∈ CS(α′), γj1 ; . . . ; γjk ∈ CS(α). As ζ1; . . . ; ζk ∈ CS(β′), δh1 ; . . . ; δhk
∈

CS(β). Since (γj1 ∩δh1); . . . ; (γjk ∩δhk
) = (γj1 ; . . . ; γjk)�(δh1 ; . . . ; δhk

), we know
ζ1; . . . ; ζk ∈ CS(α ∩ β).

By Lemma 2, we know that both CS(α′) and CS(β′) are regular languages
over Γ�Σ. Since regular languages are closed under intersection, CS(α′)∩CS(β′)
is a regular language over Γ �Σ. Then there is a regular expression λ over Γ �Σ
s.t. CS(λ) = CS(α′) ∩ CS(β′). Then CS(λ) = CS(α ∩ β).

For any action α, a set Σ is called the immediate ingredient set of α if Σ
consists of (i) the atomic actions of α not inside any tests, (ii) the outermost
tests in α and (iii) �?. Such a Σ is a set of IT-actions. For any set Σ of actions,
define Σn

∩ = {γ1 ∩ . . . ∩ γi | 1 ≤ i ≤ n & γ1, . . . , γi ∈ Σ}. We see Σ ⊆ Σn
∩. Note

that if Σ is a set of IT-actions, then Σn∩ is a set of IT-action as well.

Lemma 7. α is an action in ΠIPDL. n is the number of the occurrences of ∩
in α. Σ is the immediate ingredient set of α. Then there is a regular expression
α′ over the alphabet Σn∩ s.t. α ≡ α′.

Proof. We put an induction on α. We present a proof for only the case α = β∩γ.
Let m and n be the numbers of the occurrences of ∩ in β and γ respectively.
Then m+ n+1 is the number of the occurrences of ∩ in β ∩ γ. Let Δ and Γ be
the immediate ingredient sets of β and γ respectively. Then Σ = Δ ∪ Γ .

By the inductive hypothesis, there are regular expressions β′ over Δm
∩ and γ′

over Γn∩ s.t. β ≡ β′ and γ ≡ γ′. Then β′σ and γ′σ are regular expressions over
Δm

∩ and Γn
∩ . By Lemma 6, there is a regular expression λ over Δm

∩ � Γn
∩ s.t.

CS(λ) = CS(β′σ ∩ γ′σ). It can be seen that Δm∩ � Γn∩ ⊆ (Δ ∪ Γ )m+n+1
∩ . Then

λ is a regular expression over (Δ ∪ Γ )m+n+1
∩ . Then λ is an action in which the
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occurrences of ∩ not inside any tests connect only IT-actions. By Lemma 3, we
know that for any model, Sλ =

⋃{Sδ | δ ∈ CS(λ)}. Then for any model, with
the help of Proposition 3, we have such an equation: Sλ =

⋃{Sδ | δ ∈ CS(λ)} =⋃{Sδ | δ ∈ CS(β′σ ∩ γ′σ)} =
⋃{Sδ | δ ∈ CS(β′ ∩ γ′)σ} = Sβ′∩γ′ = Sβ∩γ. Then

we know that λ ≡ β ∩ γ.

Proposition 4. For any α ∈ ΠIPDL, there is a α′ ∈ ΠitPDL s.t. α ≡ α′.

Proof. Let α ∈ ΠIPDL. Let n be the number of the occurrences of ∩ in α. Let Σ
be the immediate ingredient set of α. By Lemma 7, there is a regular expression
β over Σn

∩ s.t. α ≡ β. β has such a feature: the occurrences of ∩ not inside any
tests connect only IT-actions. Then we go inside an outermost test of β and do
the same thing. And so on. Finally, we get a α′ s.t. α ≡ α′ and all the occurrences
of ∩ in α′ connect only IT-actions. Then α′ is in ΠitPDL.

The notions of rough computation sequences, defined in Definition 2, and cush-
ioned replicas, defined in Definition 7, are used to handle test. The proof of
Proposition 4 would be shorter if there is no test.

5.3 Reduction of itPDL to iPDL

There are three types of IT-actions in ΠitPDL: I-actions, T-actions and mixed
actions containing I-actions and T-actions. Here are two facts about ΠitPDL: (i)
mixed actions are always empty; (ii) the intersection of finite tests is equivalent
to a test: φ1? ∩ . . . ∩ φn? ≡ (φ1 ∧ . . . ∧ φn)?. This implies that ΦitPDL can be
reduced to ΦiPDL, which is defined as what follows:

γ ::= a | (γ ∩ γ)
α ::= γ | (α;α) | (α ∪ α) | α∗ | φ?
φ ::= p | � | ¬φ | (φ ∧ φ) | 〈α〉φ

In this language, ∩ connects only atomic actions. We call the logic of this lan-
guage in trace semantics as iPDL.

As mentioned at the end of Section 4, the reason that trace semantics makes
a difference from relation semantics w.r.t. IPDL lies in that ∩ does not preserve
the following property: (u, v) ∈ Rα implies that there are x0, . . . , xn s.t. x0 = u,
xn = v and (x0, . . . , xn) ∈ Sα. However, when connecting only I-actions, ∩
preserves it. By an extended version of Proposition 1, we have the following
result:

Proposition 5. For any φ of ΦiPDL, M, w �t φ ⇔ M, w �r φ.

This means that the logic IPDL in trace semantics can be reduced to the logic
iPDL in relation semantics.

6 Future Work

There are a few other open questions for us besides the one mentioned at Section
3. Doing α and β at the same time may mean a few different things: (i) starting
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α and β at the same time; (ii) finishing α and β at the same time; (iii) starting
and finishing α and β at the same time; (iv) doing α during doing β. We in this
paper formalize the third reading. We think that others can also be caught in
trace semantics. This is an issue we want to pursue in the future. In addition,
we want to look at this work against the backgrounds of Concurrent PDL due to
[10] and Process Algebra initiated by [8], [3] and [2], which represent two main
directions in the research of concurrency.
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Abstract. In this paper, a Gentzen-type sequent calculus STRW is in-
troduced for a new temporal relevant logic TRW which is obtained from
the positive contraction-less relevant logic by adding some temporal op-
erators. The cut-elimination and completeness theorems for STRW are
proved. STRW is shown to be decidable and to have relevance principle.

1 Introduction

Formalizing and implementing time-dependent relevant human reasoning in com-
puter systems is gaining increasing importance in the fields of computer science
because such reasoning is required for modeling and verifying sophisticated soft-
ware agents in computer systems. Such formalization and implementation require
a decidable temporal relevant logic (or deductive system) that can suitably rep-
resent time-dependency and relevancy in human reasoning. The representation
of time-dependency and relevancy in human reasoning requires a construction
of a logic that combines a temporal logic [12] and a relevant logic (or relevance
logic) [1].

In this paper, a Gentzen-type sequent calculus STRW for a new temporal
relevant logic TRW is introduced by extending a sequent calculus SRW+ for the
positive fragment RW+ of the contraction-less relevant logic RW [1,7,5,6]. Cut-
elimination theorem and completeness theorem (with respect to an extended
Routley-Meyer semantics) are proved for STRW, and STRW is also shown to be
decidable and to have relevance principle (or variable sharing property). These
theorems and properties are proved using some theorems for embedding STRW
(or TRW) into SRW+ (or RW+). The embedding-based proof method for proving
these theorems is analogous to the proof method for proving some theorems in a
paraconsistent (or inconsistency-tolerant) relevant logic RWP (and its Gentzen-
type sequent calculus SRWP) proposed in [10].

The positive contraction-less relevant logic RW+, which is a base logic for both
RWP and TRW, is known to be a typical “decidable” relevant logic [1,7,5,6]. The
logic RW+ can appropriately represent “relevant” human reasoning in the sense
that it has the relevance principle. The statement of the relevance principle in
the propositional case is presented as follows: If a formula α→β is provable,

c© Springer-Verlag Berlin Heidelberg 2015
W. van der Hoek et al. (Eds.): LORI 2015, LNCS 9394, pp. 182–194, 2015.
DOI: 10.1007/978-3-662-48561-3_15
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then there exists a propositional variable p such that p ∈ V (α) ∩ V (β) where
V (α) denotes the set of all propositional variables in α. It is known that this
principle does not hold for classical logic and intuitionistic logic. For more de-
tailed philosophical discussions on the relevance principle and relevant logics,
see e.g., [1].

As mentioned, the logic RW+ can appropriately represent “relevant” human
reasoning, but it cannot represent “time-dependent” human reasoning. Thus, we
need to extend RW+ by adding some temporal operators used in some tempo-
ral logics. One of the standard temporal logics is the linear-time temporal logic
(LTL) [12], which is known to be useful for verifying, specifying and model-
ing concurrent systems. The logic TRW (or its Gentzen-type sequent calculus
STRW) proposed in this paper adopts some “bounded time” versions of the
standard temporal operators X (next-time), G (globally in the future) and F
(eventually in the future) used in LTL. Such bounded temporal operators used
in TRW have the bounded time domain which is useful for obtaining an efficient
or decidable temporal logic.

Some motivations on the bounded time domain of TRW are explained as fol-
lows. Although the standard LTL has an infinite (unbounded) time domain, i.e.,
the set ω of all natural numbers, TRW has a bounded time domain which is
restricted by a fixed positive integer l, i.e., the set ωl := {x ∈ ω | x ≤ l}. Despite
the restriction on the time domain, TRW can prove almost all the typical tem-
poral axioms of LTL, such as a temporal induction axiom. It is also known that
to restrict the time domain is a technique that may be applied to obtain a de-
cidable or efficient fragment of LTL [8]. Restricting the time domain implies not
only some purely theoretical merits as mentioned above, but also some practical
merits for describing temporal databases [4] and for implementing an efficient
model checking algorithm, called bounded model checking [3]. These practical
merits are important due to the fact that there are problems in computer sci-
ence and artificial intelligence where only a finite fragment of the time sequence
is of interest [4].

The contents of this paper are then summarized as follows.
In Section 2, a Gentzen-type sequent calculus SRW+ for RW+ and a Gentzen-

type sequent calculus STRW for the temporal relevant logic TRW are introduced.
A theorem for syntactically embedding STRW into SRW+ is proved. The cut-
elimination theorem, decidability, and relevance principle for STRW are proved
using this syntactical embedding theorem.

In Section 3, completeness theorem with respect to an extended Routley-
Meyer semantics is proved for STRW (or TRW). A Routley-Meyer semantics for
RW+ is reviewed, and an extended Routley-Meyer semantics is introduced for
TRW. A theorem for semantically embedding TRW into RW+ is proved. The
completeness theorem (with respect to the extended semantics) for STRW is
proved using both the semantical and syntactical embedding theorems.

In Section 4, this paper is concluded, and some remarks on the idea of
bounded-time domain are given.
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2 Cut-Elimination and Decidability

The language used in this paper is introduced below. Formulas are constructed
from propositional variables, → (implication), ∧ (conjunction), ∨ (disjunction)
and the following bounded linear-time temporal operators G (globally), F (even-
tually) and X (next). Lower-case letters p, q,... are used to represent propositional
variables, Greek lower-case letters α, β, ... are used to represent formulas, and
Greek capital letters Γ,Δ, ... are used to represent finite (possibly empty) se-
quences of formulas or bunches. We write A ≡ B to indicate the syntactical
identity between A and B.

For any � ∈ {G,F,X}, an expression �Γ is used to denote the sequence 〈�γ | γ ∈
Γ 〉. The symbol ω is used to represent the set of natural numbers. The symbol
ωl with a fixed positive integer l is used to represent the set {i ∈ ω | i ≤ l}.
The symbols ≤ (or ≥) and < (or >) are respectively used to represent the linear
and strict linear orders on ω (or a finite subset of ω). An expression Xiα for any
i ∈ ω is defined inductively by X0α ≡ α and Xn+1α ≡ XnXα. Lower-case letters
i, j and k are used to denote any natural numbers. Expressions

∧{αi | i ∈ ωl}
and

∨{αi | i ∈ ωl} are used to represent α0 ∧α1 ∧ · · · ∧αl and α0 ∨α1 ∨ · · · ∨αl,
respectively.

Following [5,7], we give some definitions below. Bunches are inductively de-
fined by (1) any formula is a bunch, and (2) for n ≥ 2, if Xi is a bunch for
i = 1, ..., n, then both sequences (X1, ..., Xn) and (X1; ...;Xn) are bunches.
Bunches of the forms (X1, ..., Xn) and (X1; ...;Xn) are respectively called in-
tensional and extensional. Each bunch Xi is called an immediate constituent of
(X1, ..., Xn) and (X1; ...;Xn). For the sake of simplicity, we assume that immedi-
ate constituents of an intensional (and an extensional) bunch are not intensional
(and extensional, respectively). Thus, a bunch of the form (X ; (Y ;Z);W ) is
identified with the bunch (X ;Y ;Z;W ). In other words, intensional bunches and
extensional bunches must appear alternatingly in a given bunch. We will omit
parentheses when no confusion will occur.

In the following, capital letters X,Y and Z etc. with or without subscripts
denote bunches. Subbunches of a given bunch Z can be defined in the usual
way. We will sometimes pay special attention to a particular occurrence of a
subbunch X of Z. In such a case, the occurrence X is called a bunch occurrence
of X (in Z) which is indicated. An expression Γ (X) is used to denote a bunch
with an indicated bunch occurrence of X in it. Sequents are expressions of the
form X ⇒ γ where X is a (possibly empty) bunch and γ is a formula.

The expression of the form L  S means that the sequent S is provable in a
sequent calculus L. We will sometimes omit L in this expression. A rule R of
inference is said to be admissible in a sequent calculus L if the following condition

is satisfied: for any instance

S1 · · ·Sn

S of R, if L  Si for all i, then L  S.
A sequent calculus STRW for TRW is then defined as follows.
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Definition 1 (STRW). Let l be a fixed positive integer (called a time bound).
The initial sequents of STRW are of the form: for any propositional variable p,

Xip ⇒ Xip.

The cut rule of STRW is of the form:

X ⇒ α Γ (α) ⇒ γ

Γ (X) ⇒ γ
(cut).

The intensional and extensional structural rules of STRW are of the form:

Γ (Y,X) ⇒ γ

Γ (X,Y ) ⇒ γ
(I-ex)

Γ (Y ;X) ⇒ γ

Γ (X ;Y ) ⇒ γ
(E-ex)

Γ (X ;X) ⇒ γ

Γ (X) ⇒ γ
(E-co)

Γ (X) ⇒ γ

Γ (X ;Y ) ⇒ γ
(E-wk)

where (E-wk) has the proviso that Γ (X) is non-empty.
The logical inference rules of STRW are of the form:

Y ⇒ Xiα Γ (Xiβ) ⇒ γ

Γ (Xi(α→β), Y ) ⇒ γ
(→l)

Y,Xiα ⇒ Xiβ

Y ⇒ Xi(α→β)
(→r)

Γ (Xiα; Xiβ) ⇒ γ

Γ (Xi(α ∧ β)) ⇒ γ
(∧l) Y ⇒ Xiα Z ⇒ Xiβ

Y ;Z ⇒ Xi(α ∧ β)
(∧r)

Γ (Xiα) ⇒ γ Γ (Xiβ) ⇒ γ

Γ (Xi(α ∨ β)) ⇒ γ
(∨l)

Y ⇒ Xiα

Y ⇒ Xi(α ∨ β)
(∨r1) Y ⇒ Xiβ

Y ⇒ Xi(α ∨ β)
(∨r2).

The specific temporal inference rules of STRW are of the form: for any k ∈ ωl,

Γ (Xlα) ⇒ γ

Γ (Xi+lα) ⇒ γ
(Xl) Y ⇒ Xlα

Y ⇒ Xi+lα
(Xr)

Γ (Xi+kα) ⇒ γ

Γ (XiGα) ⇒ γ
(Gl)

{ Y ⇒ Xi+jα }j∈ωl

Y ⇒ XiGα
(Gr)

{ Γ (Xi+jα) ⇒ γ }j∈ωl

Γ (XiFα) ⇒ γ
(Fl) Y ⇒ Xi+kα

Y ⇒ XiFα
(Fr).

Some remarks concerning the definition of STRW are given as follows.

1. The sequents of the form Xiα ⇒ Xiα for any formula α are provable in
cut-free STRW. This can be shown by induction on α.
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2. (Gr) and (Fl) in STRW have l + 1 premises. By (Xl) and (Xr), the nesting
of the outermost occurrence of X in a formula can be bounded by l. In (Gl)
and (Fr), the number k is bounded by l.

3. Strictly speaking, STRW is just the sequent calculus parameterized by a fixed
positive integer l, and hence such a calculus should precisely be denoted as
STRW[l]. But, when we don’t need to specify such an integer l, we will use
the name “STRW” instead of the concrete name “STRW[l]”. Indeed, for
example, STRW[2] is different from STRW[1]: p ∧ Xp ⇒ Gp is provable in
STRW[1], but it is not provable in STRW[2].

4. Let STRW[ω] be the system obtained from STRW[l] by replacing l with
ω and deleting the inference rules (Xl) and (Xr). Then, STRW[ω] may be
regarded as a relevant logic version of Kawai’s sequent calculus LTω [11] for
(unbounded) linear-time temporal logic (LTL). It was shown in [11] that the
completeness (w.r.t. Kripke semantics) and cut-elimination theorems hold
for the first-order version of LTω.

5. Let SXRW be the system obtained from STRW[l] by deleting the specific
temporal inference rules (Xl), (Xr), (Gl), (Gr), (Fl) and (Fr). Then, SXRW
may be regarded as a relevant logic version of a sequent calculus for Prior’s
tomorrow tense logic [13,14].

Proposition 2. The following rule is admissible in cut-free STRW:

Y ⇒ γ

XY ⇒ Xγ
(Xregu).

An expression α ⇔ β means the sequents α ⇒ β and β ⇒ α.

Proposition 3. The following sequents are provable in cut-free STRW: for any
formulas α, β and any i ∈ ω,

1. Xi(α ◦ β) ⇔ Xiα ◦Xiβ where ◦ ∈ {→,∧,∨},
2. Gα ⇒ α,

3. Gα ⇒ Xα,

4. Gα ⇒ XGα,

5. Gα ⇒ GGα,

6. α; G(α→Xα) ⇒ Gα (temporal induction),

7. Xi+lα ⇔ Xlα (bounded next-time),

8. Gα ⇔ α ∧Xα ∧ · · · ∧Xlα (bounded globally),

9. Fα ⇔ α ∨Xα ∨ · · · ∨Xlα (bounded eventually).

In order to show a syntactical embedding theorem for STRW, a sequent cal-
culus SRW+ [5,6,7] for RW+ is defined below.

Definition 4 (SRW+). SRW+ is obtained from STRW by deleting the specific
temporal inference rules (Xl), (Xr), (Gl), (Gr), (Fl), (Fr) and deleting all the
occurrences Xi in the initial sequents and logical inference rules.
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We will sometimes use the same names for the inference rules of both STRW
and SRW+ if we have no confusion. If we need to distinguish the inference rules of
STRW and of SRW+, we impose a superscript notation to the objective inference
rule, e.g., (→r)STRW for the STRW inference rule and (→r)SRW

+

for the SRW+

inference rule.
Some remarks concerning the definition of SRW+ are given as follows.

1. The sequents of the form α ⇒ α for any formula α are provable in cut-free
SRW+. This can be proved by induction on α.

2. A sequent calculus for the positive fragment R+ [6] of the relevant logic R
is obtained from SRW+ by adding the following intensional structural rule
(I-co):

Γ (X,X) ⇒ γ

Γ (X) ⇒ γ
(I-co).

3. The relevant logics R+ and R are undecidable [16]. The contraction-less
relevant logics RW+ and RW are decidable [7,2]. These decidability results
for RW+ and RW were proved by Giambrone [7] and Brady [2] using some
Gentzen-type sequent calculi.

An expression V (α) denotes the set of all propositional variables in a formula
α. We then have the following theorems (see e.g., [5,6,7]).

Proposition 5. We have:

1. The rule (cut) is admissible in cut-free SRW+.
2. SRW+ is decidable.
3. If SRW+  α ⇒ β, then there exists a propositional variable p such that

p ∈ V (α) ∩ V (β).

We then define a translation of STRW into SRW+ below.

Definition 6. We fix a countable non-empty set Φ of propositional variables,
and define the sets Φi := {pi | p ∈ Φ} (i ∈ ω) of propositional variables where
p0 := p, i.e., Φ0 = Φ. The language Lt of STRW is defined using Φ, →,∧,∨, X,
G and F. The language L of SRW+ is defined using

⋃
i∈ω Φi, →, ∧ and ∨.

A mapping f from Lt to L is defined by: for any i ∈ ω,

1. f(Xip) := pi ∈ Φi for any p ∈ Φ (especially, f(p) := p ∈ Φ0),
2. f(Xi(α ◦ β)) := f(Xiα) ◦ f(Xiβ) where ◦ ∈ {→,∧,∨},
3. f(Xi+lα) := f(Xlα),
4. f(XiGα) :=

∧{f(Xi+jα) | j ∈ ωl},
5. f(XiFα) :=

∨{f(Xi+jα) | j ∈ ωl}.
Strictly speaking, the mapping f is strongly dependent on l, i.e., f should

precisely be denoted as fl. In fact, f3(Gp) and f5(Gp) are different. But, for the
sake of brevity, f is used instead of fl in the following.

An expression f(X) (or f(Γ )) denotes the result of replacing every occurrence
of a formula α in X (or Γ , respectively) by an occurrence of f(α).

We then obtain a weak theorem for syntactically embedding STRW into SRW+.
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Theorem 7 (Weak syntactical embedding). Let f be the mapping defined
in Definition 6. Then:

1. If STRW  X ⇒ γ, then SRW+  f(X) ⇒ f(γ).
2. If SRW+ − (cut)  f(X) ⇒ f(γ), then STRW − (cut)  X ⇒ γ.

Proof. • (1): By induction on the proofs P of X ⇒ γ in STRW. We distinguish
the cases according to the last inference of P , and show some cases.

1. Case (Xip ⇒ Xip for any propositional variable p): The last inference of P
is of the form: Xip ⇒ Xip. In this case, we obtain f(Xip) ⇒ f(Xip), i.e.,
pi ⇒ pi (pi ∈ Φi) by the definition of f . This is an initial sequent of SRW+.

2. Case (Xl): The last inference of P is of the form:

Γ (Xlα) ⇒ γ

Γ (Xi+lα) ⇒ γ
(Xl).

By induction hypothesis, we have SRW+  f(Γ )(f(Xlα)) ⇒ f(γ), and f(Xlα)
coincides with f(Xi+lα) by the definition of f . Thus, we obtain the required
fact: SRW+  f(Γ )(f(Xi+lα)) ⇒ f(γ).

3. Case (Fr): The last inference of P is of the form:

Y ⇒ Xi+kα

Y ⇒ XiFα
(Fr).

By induction hypothesis, we have SRW+  f(Y ) ⇒ f(Xi+kα), and hence
obtain the required fact:

....
f(Y ) ⇒ f(Xi+kα)

.... (∨r1)SRW+

, (∨r2)SRW+

f(Y ) ⇒ ∨{f(Xi+jα) | j ∈ ωl}
where

∨{f(Xi+jα) | j ∈ ωl} coincides with f(XiFα) by the definition of f ,
and f(Xi+kα) is in the multiset {f(Xi+jα) | j ∈ ωl}. The case i > l is also
included in this proof. In such a case, f(Xi+kα) and

∨{f(Xi+jα) | j ∈ ωl}

mean f(Xlα) and

l︷ ︸︸ ︷
f(Xlα) ∨ f(Xlα) ∨ · · · ∨ f(Xlα), respectively.

4. Case (Gr): The last inference of P is of the form:

{ Y ⇒ Xi+jα }j∈ωl

Y ⇒ XiGα
(Gr).

By induction hypothesis, we have SRW+  f(Y ) ⇒ f(Xi+jα) for all j ∈ ωl.
Let Φ be the multiset {f(Xi+jα) | j ∈ ωl}. We then obtain the required fact:

....
{ f(Y ) ⇒ f(Xi+jα) }f(Xi+jα)∈Φ

.... (∧r)SRW+

f(Y ) ⇒ ∧
Φ
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where
∧
Φ coincides with f(XiGα) by the definition of f .

• (2): By induction on the proofs Q of f(X) ⇒ f(γ) in SRW+. We distinguish
the cases according to the last inference of Q, and show some cases.

1. Case (→r): The last inference of Q is of the form:

f(Y ) ⇒ f(Xiα) f(Γ )(f(Xiβ)) ⇒ f(γ)

f(Γ )(f(Xi(α→β)), f(Y )) ⇒ f(γ)
(→l)SRW

+

where f(Xi(α→β)) coincides with f(Xiα)→f(Xiβ) by the definition of f . By
induction hypothesis, we have STRW  Y ⇒ Xiα and STRW  Γ (Xiβ) ⇒ γ.
Then, we obtain the required fact:

....
Y ⇒ Xiα

....
Γ (Xiβ) ⇒ γ

Γ (Xi(α→β), Y ) ⇒ γ
(→l)STRW.

2. Case (∧r): The last inference of Q is of the form:

f(Y ) ⇒ f(Xiα) f(Z) ⇒ f(Xiβ)

f(Y ); f(Z) ⇒ f(Xi(α ∧ β))
(∧r)SRW+

where f(Xi(α∧β)) coincides with f(Xiα)∧f(Xiβ) by the definition of f . By
induction hypothesis, we have STRW  Y ⇒ Xiα and STRW  Z ⇒ Xiβ.
Then, we obtain the required fact:

....
Y ⇒ Xiα

....
Z ⇒ Xiβ

Y ;Z ⇒ Xi(α ∧ β)
(∧r)STRW.

Theorem 8 (Cut-elimination). The rule (cut) is admissible in cut-free
STRW.

Proof. Suppose STRW  X ⇒ γ. Then, we have SRW+  f(X) ⇒ f(γ) by
Theorem 7 (1), and hence SRW+ − (cut)  f(X) ⇒ f(γ) by Proposition 5 (1).

By Theorem 7 (2), we obtain STRW − (cut)  X ⇒ γ.

Theorem 9 (Syntactical embedding). Let f be the mapping defined in Def-
inition 6. Then:

1. STRW  X ⇒ γ iff SRW+  f(X) ⇒ f(γ).
2. STRW − (cut)  X ⇒ γ iff SRW+ − (cut)  f(X) ⇒ f(γ).
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Proof. • (1). (=⇒): By Theorem 7 (1). (⇐=): Suppose SRW+  f(X) ⇒ f(γ).
We then have SRW+ − (cut)  f(X) ⇒ f(γ) by Proposition 5 (1). Thus, we
obtain STRW − (cut)  X ⇒ γ by Theorem 9 (2). Therefore we have STRW 
X ⇒ γ.

• (2). (=⇒): Suppose STRW − (cut)  X ⇒ γ. Then we have STRW 
X ⇒ γ. We then obtain SRW+  f(X) ⇒ f(γ) by Theorem 9 (1). Therefore
we obtain SRW+ − (cut)  f(X) ⇒ f(γ) by Proposition 5 (1). (⇐=): By

Theorem 9 (2).

Theorem 10 (Decidability). STRW is decidable.

Proof. By Proposition 5 (2), for each α, it is possible to decide if f(α) is

provable in SRW+. Then, by Theorem 9, STRW is decidable.

Theorem 11 (Relevance principle). If STRW  α ⇒ β, then there exists a
propositional variable p such that p ∈ V (α) ∩ V (β).

Proof. Suppose that STRW  α ⇒ β. Then, we have SRW+  f(α) ⇒ f(β) by
Theorem 9. By Proposition 5 (3), we have the fact that there exists a proposi-
tional variable q such that q ∈ V (f(α)) ∩ V (f(β)). In this fact, it can be seen
that q is of the form q = f(Xip) = pi. Therefore we have the required fact that

there exists a propositional variable p such that p ∈ V (α) ∩ V (β).

3 Completeness

The Routley-Meyer semantics for RW+ is presented below.

Definition 12. An RW+-frame is a structure 〈M,R, 0〉 such that

1. M is a nonempty set,
2. R is a ternary relation on M ,
3. 0 ∈ M ,
4. the following conditions hold:

(a) a ≤ a,
(b) (a ≤ b and b ≤ c) imply a ≤ c,
(c) (Rabc and a′ ≤ a) imply Ra′bc,
(d) Rabc implies Rbac,
(e) R2abcd implies R2acbd,
where the binary relation ≤ on M is defined by a ≤ b iff R0ab, and the 4-ary
relation R2 on M is defined by R2abcd iff ∃x ∈ M [Rabx and Rxcd].

Definition 13. An RW+-model is a structure 〈M,R, 0, |=〉 such that

1. 〈M,R, 0〉 is an RW+-frame,
2. |= is a relation from M to propositional variables satisfying the following

hereditary condition: for any propositional variable p, if a |= p and a ≤ b,
then b |= p.
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The relation |= on the RW+-model 〈M,R, 0, |=〉 is inductively extended to
formulas by:

1. a |= α→β iff ∀b, c ∈ M [if Rabc and b |= α, then c |= β],
2. a |= α ∧ β iff a |= α and a |= β,
3. a |= α ∨ β iff a |= α or a |= β.

A formula α is said to be true in an RW+-model 〈M,R, 0, |=〉 iff 0 |= α. A
formula α is said to be RW+-valid iff α is true in all RW+-models.

The hereditary condition can be extended to formulas: For any formula α, if
a |= α and a ≤ b, then b |= α.

We then have the following completeness theorem (see e.g., [1,5,15]).

Proposition 14 (Completeness). For any formula α,

SRW+  ⇒ α iff α is RW+-valid.

Next, we introduce an extended Routley-Meyer semantics with the timed
satisfaction relations |=i (i ∈ ω).

Definition 15. A TRW-model is a structure 〈M,R, 0, {|=i}i∈ω〉 such that

1. 〈M,R, 0〉 is an RW+-frame,
2. |=i (i ∈ ω) are relations from M to propositional variables satisfying the

following hereditary condition: for any propositional variable p and any i ∈ ω,
if a |=i p and a ≤ b, then b |=i p.

The relations |=i (i ∈ ω) on the TRW-model 〈M,R, 0, {|=i}i∈ω〉 are induc-
tively extended to formulas by:

1. a |=i α→β iff ∀b, c ∈ M [if Rabc and b |=i α, then c |=i β],
2. a |=i α ∧ β iff a |=i α and a |=i β,
3. a |=i α ∨ β iff a |=i α or a |=i β,
4. a |=i Xα iff a |=i+1 α,
5. a |=i Gα iff ∀j ≥ i with j ∈ ωl [a |=j α],
6. a |=i Fα iff ∃j ≥ i with j ∈ ωl [a |=j α],
7. for any k ∈ ω, a |=l+k α iff a |=l α.

A formula α is said to be true in a TRW-model 〈M,R, 0, {|=i}i∈ω〉 iff 0 |=0 α.
A formula α is said to be TRW-valid iff α is true in all TRW-models.

The hereditary condition can be extended to formulas: for any formula α and
any i ∈ ω, if a |=i α and a ≤ b, then b |=i α.

Lemma 16. Let f be the mapping defined in Definition 6. For any TRW-model
〈M,R, 0, {|=i}iω〉, we can construct an RW+-model 〈M,R, 0, |=〉 such that for
any formula α in Lt and any i ∈ ω,

a |=i α iff a |= f(Xiα).
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Proof. Let Φ be a non-empty set of propositional variables and Φi be the
set {pi | p ∈ Φ} of propositional variables. Suppose that 〈M,R, 0, {|=i}i∈ω〉 is
a TRW-model such that |=i (i ∈ ω) are relations from M to Φ. Suppose that
〈M,R, 0, |=〉 is a structure such that |= is a relation from M to

⋃
i∈ω Φi. Suppose

moreover that |=i (i ∈ ω) and |= satisfy the following conditions: ∀i ∈ ω. ∀p ∈ Φ
[a |=i p iff a |= pi]. Then, the lemma is proved by induction on the complexity
of α.

• Base step:

Case (α ≡ p: propositional variable): α ≡ p ∈ Φ. a |=i p iff a |= pi iff
a |= f(Xip) (by the definition of f).

• Induction step:

1. Case (α ≡ β→γ): a |=i β→γ iff ∀b, c ∈ M [if Rabc and b |=i β, then c |=i γ]
iff ∀b, c ∈ M [if Rabc and b |= f(Xiβ), then c |= f(Xiγ)] (by induction
hypothesis) iff a |= f(Xiβ)→f(Xiγ) iff a |= f(Xi(β→γ)) (by the definition
of f).

2. Case (α ≡ β ∧ γ): a |=i β ∧ γ iff a |=i β and a |=i γ iff a |= f(Xiβ) and a |=
f(Xiγ) (by induction hypothesis) iff a |= f(Xiβ)∧f(Xiγ) iff a |= f(Xi(β∧γ))
(by the definition of f).

3. Case (α ≡ β ∨ γ): m |=i β ∨ γ iff a |=i β or a |=i γ iff a |= f(Xiβ) or a |=
f(Xiγ) (by induction hypothesis) iff a |= f(Xiβ)∨f(Xiγ) iff a |= f(Xi(β∨γ))
(by the definition of f).

4. Case (α ≡ Xβ):
Subcase (i ≤ l − 1): a |=i Xβ iff a |=i+1 β iff a |= f(Xi+1β) (by induction
hypothesis) iff a |= f(XiXβ).
Subcase (i ≥ l): a |=i Xβ iff a |=l β iff a |= f(Xlβ) (by induction hypothesis)
iff a |= f(XiXβ) (by the definition of f).

5. Case (α ≡ Gβ):
Subcase (i ≤ l): a |=i Gβ iff ∀j ≥ i with j ∈ ωl [a |=j β] iff ∀j ≥ i with
j ∈ ωl [a |= f(Xjβ)] (by induction hypothesis) iff ∀k ∈ ωl [a |= f(Xi+kβ)]
iff a |= γ for all γ ∈ {f(Xi+kβ) | k ∈ ωl} iff a |= ∧{f(Xi+kβ) | k ∈ ωl} iff
a |= f(XiGβ) (by the definition of f).
Subcase (i > l): a |=i Gβ iff a |=l Gβ iff ∀j ≥ l with j ∈ ωl [a |=j β]
iff ∀j ≥ l with j ∈ ωl [a |= f(Xjβ)] (by induction hypothesis) iff ∀k ∈
ωl [a |= f(Xl+kβ)] iff a |= γ for all γ ∈ {f(Xl+kβ) | k ∈ ωl} iff a |=∧{f(Xl+kβ) | k ∈ ωl} iff a |= f(XlGβ) (by the definition of f) iff a |=
f(XiGβ) (by the definition of f with i > l).

Lemma 17. Let f be the mapping defined in Definition 6. For any RW+-model
〈M,R, 0, |=〉, we can construct a TRW-model 〈M,R, 0, {|=i}i∈ω〉 such that for
any formula α in Lt and any i ∈ ω,

a |=i α iff a |= f(Xiα).
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Proof. Similar to the proof of Lemma 16.

Theorem 18 (Semantical embedding). Let f be the mapping defined in Def-
inition 6. For any formula α,

α is TRW-valid iff f(α) is RW+-valid.

Proof. By Lemmas 16 and 17.

Theorem 19 (Completeness). For any formula α,

STRW  ⇒ α iff α is TRW-valid.

Proof. STRW  ⇒ α iff SRW+  ⇒ f(α) (by Theorem 9) iff f(α) is RW+-valid

(by Proposition 14) iff α is TRW-valid (by Theorem 18).

4 Conclusions and Remarks

In this paper, the sequent calculus STRW of the new temporal relevant logic
TRW was introduced, and the cut-elimination and decidability theorems for
STRW were proved using a theorem for syntactically embedding STRW into
a sequent calculus SRW+ of the well-known positive contraction-less relevant
logic RW+. The relevance principle for STRW was also proved using the syn-
tactical embedding theorem. The extended Routley-Meyer semantics with timed
satisfaction relations was introduced for STRW, and a theorem for semantically
embedding TRW into RW+ was proved. The completeness theorem with respect
to this extended semantics was proved using both the syntactical and semantical
embedding theorems. It was thus shown in this paper that STRW (and TRW) is
a plausible temporal relevant logic for time-dependent relevant human reasoning.

Finally in this paper, some remarks on some bounded time domain approaches
to temporal logics are given. To restrict the time domain in temporal logics is not
a new idea introduced in this paper. Such an idea was discussed in [3,4,8,9]. In
[9], Gentzen-type sequent calculi BLTL and FBLTL (for propositional and first-
order bounded linear-time temporal logics) and the corresponding Robinson-type
resolution calculi RC and FRC, respectively, were introduced based on ωl. Some
theorems for embedding BLTL and FBLTL into (propositional and first-order,
respectively) classical logic were proved in [9]. In [4], by using and introducing
a bounded time domain and the notion of bounded validity, bounded tableaux
calculi (with temporal constraints) for propositional and first-order LTLs were
studied by Cerrito, Mayer and Prand.
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Abstract. This paper explores a non-normal logic of beliefs for bound-
edly rational agents. The logic we study stems from the epistemic-doxastic
system developed by Stalnaker [1]. In that system, if knowledge is not
positively introspective then beliefs are not closed under conjunction.
They are, however, required to be pairwise consistent, a requirement
that has been called agglomerativity elsewhere. While bounded agglom-
erativity requirements, i.e., joint consistency for every n-tuple of beliefs
up to a fixed n, are expressible in that logic, unbounded agglomerativ-
ity is not. We study an extension of this logic of beliefs with such an
unbounded agglomerativity operator, provide a sound and complete ax-
iomatization for it, show that it has a sequent calculus that enjoys the
admissibility of cut, that it has the finite model property, and that it is
decidable.

Robert Stalnaker [1] has proposed a logic of knowledge and belief where the
latter turns out to be definable as the epistemic possibility of knowledge.

Bϕ ↔ 〈K〉Kϕ (BePK)

He takes knowledge to be an S4 modality, with the usual interpretation in re-
flexive and transitive Kripke frames. Beliefs, on the other hand, are essentially
defined through their relation with knowledge, except for the assumption that
beliefs are consistent, the D-axiom.1 See Table 1 for the axioms capturing that
relation. One of the crucial axioms is (KB), stating that belief implies the belief
that one knows. Thus, beliefs in this model are interpreted as absolute subjec-
tive certainty [2, 3]. We should emphasize one further property of this model:
Notably, while knowledge in this model is not introspective, belief is, both posi-
tively and negatively. The reason for this is simple: knowledge presupposes truth,
a property we don’t have direct access to. Belief, on the other hand, is a mental
state that we do have privileged and immediate access to. In particular, we know
whether we have such mental states or not.

Notably, the above formula (BePK) is a theorem of this logic. The derivation
from left to right goes as follows. Assuming that Bϕ holds, we start by invoking
(SB), Bϕ → BKϕ. From there, we arrrive at 〈B〉Kϕ and finally at 〈K〉Kϕ

1 Throughout this paper, we will refer to axioms by putting their names in parentheses.
Thus (D) stands for the D-axiom, (K) for the K-axiom and so on.
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Table 1. Stalnaker’s axioms. K is an S4 modality

PI � Bϕ → KBϕ
NI � ¬Bϕ → K¬Bϕ
KB � Kϕ → Bϕ
D � Bϕ → 〈B〉ϕ
SB � Bϕ → BKϕ

using (D) and (KB), respectively. In the other direction, we start by assuming
〈K〉Kϕ. We can derive 〈K〉Kϕ → 〈K〉Bϕ using (KB) and the fact that K is a
normal modality. One application of (NI) and our assumption then gives us Bϕ.

Finally, we finish with two observations. First, we remark that the resulting
belief in Stalnaker’s system is a KD45 operator if the underlying knowledge
modality is S4. Crucially, the 4 axiom has not been used for either direction of
the above derivation.

Our second observation is that, given that knowledge is an S4 modality, the
axiom system consisting of (BePK) and (D) is equivalent to Stalnaker’s axiom
system given in Table 1. Furthermore, under (BePK), the D-axiom for belief
translates to the .2 axiom for knowledge: � 〈K〉Kϕ → K〈K〉ϕ.

Stalnaker explicitly rejects negative introspection for knowledge. This axiom,
he argues, precludes being mistaken about what one knows. But this seems an
implausible assumption: One of the necessary conditions for knowledge is truth.
And as we don’t always have direct access to truth, it may not be irrational to
be in error regarding what one knows. On the other hand, in that very paper
Stalnaker “provisionally” accepts positive introspection for knowledge [1, p.173],
i.e. the 4 axiom, also known as the KK-principle. Yet, also this principle has been
criticized, notably by Williamson [4, chap.5] in recent years, who argues that the
axiom fails even as a requirement of rationality in contexts involving vagueness
or margins of errors.

This paper starts with observing that leaving out positive introspection for
knowledge while maintaining (BePK) results in an interesting, non-normal logic
for beliefs (Section 1). Beliefs in this logic are not closed under conjunction.
They are otherwise normal, with the additional requirement that they should
be pairwise consistent, which we show in Section 2. In Section 3 we consider
possible philosophical interpretations for this belief operator. We show that the
resulting belief notion cannot be interpreted as belief-as-high-enough credence,
even though failure of closure under conjunction has often been motivated on
that ground. We rather argue that the operator captures a plausible, baseline
rationality requirement, which we call agglomerativity. The agglomerativity re-
quirement can be strengthened incrementally. In Section 4 we show, however,
that the limit of this strengthening, which we call unbounded agglomerativity,
is not definable using only belief operators. It is, however, completely axiomati-
zable and the resulting, extended logic of belief and unbounded agglomerativity
has the finite model property. We show in Section 6 that this logic has a cut-free
sequent calculus, and that it is decidable.
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1 Non-normality from Failure of Introspection

What happens to beliefs when knowledge is not positively introspective? That
is, what logic of belief do we get when knowledge is a KT modality? Recall, first,
that (BePK) and (D) are together equivalent to the axiom system in Table 1,
given that knowledge is an S4 modality. This equivalence fails if knowledge is
only a KT.2 modality. The two systems are different. For the remaining of this
paper we will look at the second one, i.e. a KT logic for knowledge, together
with the belief operator interpreted using (BePK) and (D). In that logic (D) for
beliefs still boils down to endorsing the .2 axiom for knowledge. For reasons that
become clearer later in this paper, we will call this logic MUD logic. Further,
note that by (BePK) we can treat B as a derived operator, leaving K as the
only primitive operator. Thus, model theoretically, we are working in reflexive
frames having the Church-Rosser property.

If knowledge is not positively introspective,2 however, belief is not a normal
modality anymore. We understand normality here in the technical sense, as an
operator satisfying necessitation and distributing over conjunctions as follows:

Bϕ ∧Bψ ↔ B(ϕ ∧ ψ) (∧-Dist)

The left-to-right direction, i.e. closure under conjunction for beliefs, fails to-
gether with positive introspection for knowledge. Figure 1 illustrates this with a
simple counter-example. This model displays the knowledge relation for a KT.2
knowledge operator. At w1 we have both 〈K〉Kp and 〈K〉Kq but not 〈K〉K(p∧q),
thus the derived belief operator (via BePK) is not normal.

w1

w2

p,¬q

w3

¬p, q

w4

p, q

Fig. 1. A KT.2 model in which the corresponding belief is not closed under conjunction

This belief operator is otherwise normal. It validates necessitation and closure
under arbitrary union, that is the right-to-left direction of ∧-Dist and necessita-
tion. The latter can be encapsulated using a standard regularity rule [5, 6].

2 Note that on the level of frames, non-introspective knowledge translates to the fact
that frames need not be transitive.
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� ϕ
(NEC)� Bϕ

� ϕ → ψ
(REG)� Bϕ → Bψ

Observation 1. (NEC), (REG) and (D) are sound with respect to KT.2 models
where B is interpreted as 〈K〉K.

2 KT.2, 〈K〉K, and MUD Logic

From now on we will focus on the belief part of MUD logic. Following standard
usage of notation, we will refer to the set of formulas that only contain B as
modal operator as the “B fragment” of our logic. The first question we ask is a
technical one. Do necessitation, closure under logical implication and D give a
complete axiomatization for the belief operator defined above? The answer is no.
(NEC), (REG) and (D), together with the usual propositional logic apparatus,
are not complete for the belief part of MUD logic.

Recall the question we are asking. We are not looking at Stalnaker’s logic of
beliefs, i.e. one that starts with two primitive operators, B and K, with their
relation constrained by the axioms in Table 1. Rather, we look at an epistemic
logic where K is a KT modality, and define B as 〈K〉K, adding the (D) axiom
for B. The question we ask is then: what is the sound and complete logic of the
〈K〉K fragment?

(NEC), (REG) and (D) are sound and complete with respect to the class
of what we call MUD neighborhood frames, or MUD-frames for short3. These
are frames 〈W,n〉, where W is a set of worlds and n : W → P(P(W )) is the
neighborhood function, satisfying the following conditions:

– For all w, if X ∈ n(w) and X ⊆ Y then Y ∈ n(w). (Monotonicity)
– For all w, W ∈ n(w). (contains the Unit)
– If X ∈ n(w) then for all Y ∈ n(w), X ∩ Y �= ∅. (D)

That MUD-logic is sound but incomplete for the 〈K〉K fragment can be shown
by observing that:

�KT.2 〈B〉(p → Bp)

��NEC,REG,D 〈B〉(p → Bp)

For the proof the first claim, start with the following theorem of KT: Kp →
〈K〉〈K〉Kp. This is equivalent to 〈K〉¬p ∨ 〈K〉〈K〉Kp. K being normal, the
latter is in turn equivalent to 〈K〉(p → 〈K〉Kp). One application of necessitation
give us the required formula, using (BePK): K〈K〉(p → 〈K〉Kp). It is easy to
construct a counter-model to the validity of that formula in MUD-frames.

Observe that this counter-example to completeness is a second-order formula.
The 〈B〉 scopes over a B. We conjecture that MUD logic is complete for the
first-order, i.e. non-embedded belief fragment. What is the complete logic of
that full fragment is still open. From now on we focus on the belief operator
B in MUD-logic. This system has a cut-free sequent calculus. We will show the
latter in an extended language (Section 6), motivated by the sort of bounded
rationality requirements on beliefs this operator suggests.

3 See [6] for some background on neighborhood frames.
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3 What Kind of Belief Is This?

3.1 Not Belief with High Enough Credence

One tempting interpretation of the belief operator at hand, motivated by the
Lockean thesis [7], is in terms of high enough credence or subjective probability.
That is, a formula should be believed if its credence is above a given threshold
t > 1/2, i.e.,

Bϕ iff p(ϕ) ≥ t > 1/2

for some given probability measure p. It is well-known that such an operator
would not be closed under intersection. And such an operator would validate all
axioms and rules for the current logic of beliefs:

Observation 2. (NEC), (REG) and (D) are sound for B interpreted as “prob-
ability strictly above 1/2”.

To see this, take a probability measure over a σ-algebra and let be the set X
of measurable sets that have probability > 1/2. It is immediately clear that X
satisfies (NEC) and (REG). To see that X satisfies (D), let X and Y in X . Since
p(X) and p(Y ) are stricly larger than 0.5, we have X ∩Y �= ∅, showing that (D)
holds.

(NEC), (REG) and (D) are however not complete with respect to that in-
terpretation. There are models of that logic which cannot be equipped with a
probability measure in such a way that the belief operator respects the equiva-
lence above. We show a stronger result. Rather than focusing on a threshold of
.5, we show that for every treshold ε there is some MUD model that cannot be
equipped with a probability measure in such a way that every believed proposi-
tion has at least probability ε. Furthermore, this example will also be such that
there is some proposition of probability at least (1−ε) that the agent disbelieves.
So let us give our example. We fix a size n of the counterexample, where this n
will depend on the ε chosen. Then, we construct the following model:

– Possible worlds: All wij with 1 ≤ i < j ≤ n
– For each k ≤ n define the set Tk as

Tk = {wij |i = k or j = k}
– Each world wij has the same neighborhoods N . These are given by N =

n(wij) =↑ {T1, . . . , Tn}, the upward closed set generated by T1 . . . Tn.

To illustrate this with an example, for n = 4 we have

W =
w12 w13 w14

w23 w24

w34

.

T1 ={w12, w13, w14}
T2 ={w12, w23, w24}
T3 ={w13, w23, w34}
T4 ={w14, w24, w34}

Finally, we set N =↑ {T1, T2, T3, T4}.



200 D. Klein, N. Gratzl, and O. Roy

So let us offer some interpretation for this example. We assume a lottery with
n tickets. However, this lottery has a slight peculiarity. In this lottery, there are
always exactly two winning tickets. Thus, at the world w13, the first and the
third ticket wins. For any ticket i, let Ti be the proposition that ticket i wins.
Then any two Ti and Tj are jointly compatible. In particular, the model above
validates (REG), (NEC) and (D), thus it is a model of the belief fragment of
MUD-logic.

Yet, as there are only two winners, not every Ti can be assigned a high prob-
ability. More particularly, if n grows, we are guaranteed to find some Ti that
receives a low probability, no matter how we choose to assign probabilities. To
be a bit more explicit about this argument, assume we want to find some way
of equipping W with a probability function that makes the Ti the agent be-
lieves as probable as possible. In particular, we are interested in the probability
distribution that maximizes miniprob(Ti), that is, we want to make the most
improbable proposition that the agent still believes as probable as possible. It
is not difficult to see that the probability distribution maximizing miniprob(Ti)
assigns equal weight to all worlds. Since there are (n − 1)(n − 2) many worlds,
this probability distribution will assign a weight of 1

(n−1)(n−2) to every world

wij . Since the Ti all have cardinality n − 1, they each receive a weight of 1
n−2 .

In particular, if n becomes large, the agent will believe some proposition that is
extremely implausible.

The example shows that the notion of belief defined above is not strong enough
to enforce the “belief with high enough credence” interpretation. Now, a natural
question to ask is: What additional constraints on beliefs would be required?
We leave that question open for future work. Instead, we argue now that B
provides a plausible approximation of consistency requirements for resource-
bounded agents.

3.2 Belief with Pairwise Agglomeration

The present logic constitutes a plausible weakening of the rationality requirement
of consistency for beliefs. Resource-bounded agents may believe ϕ and believe ψ
without being thereby required to put these two together and form the belief that
ϕ ∧ ψ. The classical cluttering argument against closure can be used to support
that idea [8]. Inference might be costly in time and energy, and storing the con-
clusions of these inferences might take valuable space. Resource-bounded agents
often have better to do than closing their beliefs under conjunction, and they
are certainly not required to clutter their minds with the trivial consequences
of what they believe. So they are not necessarily irrational if they believe ϕ and
believe ψ without believing ϕ ∧ ψ.

For such agents, the constraint imposed by the axiom D is more plausible. It
merely requires a minimal level of consistency in beliefs. They should be pairwise
agglomerable.4 On this account, an agent cannot rationally believe ϕ and believe
ψ while not considering it possible for them to be jointly satisfied. To see that

4 We take this terminology from the literature on intentions, e.g. [9, 10].
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this is enforced by D in the neighborhood model, just recall that 〈B〉ϕ is true
at a state just in case ϕ is consistent with every other belief of the agent. So
D requires of that agent to be able to consistently agglomerate any pair of her
beliefs without running the risk of believing absurdities.

Pairwise agglomerativity is a plausible baseline requirement of rationality,
even for resource-bounded agents. Note that the cluttering argument itself has
no grip on pairwise agglomerativity. Agglomerativity or minimal consistency is
no closure operation. It does not require the agents to add anything to their
belief set in order to escape the charge of irrationality. So cluttering, and related
pragmatic considerations (time, energy, storage) are unlikely to undercut that
requirement. On the other hand, an agent who violates that requirement has
beliefs that are mutually contradictory. But beliefs arguably aim at truth. And
mutually contradictory believes can never be true together.

It should be emphasized that, even though the present logic provides a plau-
sible alternative to full closure under conjunction for beliefs, it does not give the
full picture of rational requirements for resource-bounded agents. Agents are by
and large logically omniscient in this system. They believe all tautologies and
all the logical consequences of each of their individual beliefs. The logic studied
here is merely a testing ground for different consistency requirements.

4 From Bounded to Unbounded Agglomerativity

Pairwise agglomeration is permissive. An agent’s belief can be pairwise agglom-
erable while only some or even no single combination of three (different) beliefs
of hers are jointly satisfiable. This holds true, for instance, in the model pre-
sented above, built to exclude the “high threshold” interpretation. There, the
intersection of any three belief sets Ti is empty.

Pairwise agglomerativity can be generalized to bounded agglomerativity, that is
agglomerativity for every n-tuple of beliefs up to a fixed n. Such a generalization
is definable in the present logic of beliefs:

(Bϕ1 ∧ ... ∧Bϕn−1) → 〈B〉(ϕ1 ∧ ... ∧ ϕn−1) (n-AGG)

In neighborhood frames bounded agglomerativity means that for any state, any
n-tuple of neighborhoods of that state is jointly consistent. (n-AGG) corre-
sponds to that frame property.

Pairwise agglomerativity is a bottom line requirement, and the demands of
bounded agglomerativity increase as n gets larger. Obviously the agent must be
able to put together larger collections of beliefs. The problem of contracting (or
revising) one’s beliefs in order to re-establish bounded agglomerativity becomes
also more intricate as n grows. In the general case the agent will be faced with
more possible options to solve failures of agglomerativity.

But the arguments in favor of seeing pairwise agglomerativity as a plausible
rational requirement for resource-bounded agents carries over to the bounded
case, even as n grows larger. Again, as this is not a closure requirement, prac-
tical considerations such as non-cluttering have much less weight. And, since
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n-tuples of non-agglomerable beliefs are not satisfiable, agglomerability seems a
reasonable rationality requirement.

5 The Logic of BAGG Frames

By the same reasoning, bounded agglomerativity for all n, or unbounded ag-
glomerativity, can thus be seen as a plausible candidate requirement too, even
for resource-bounded agents. Just as with finite agglomerativity, also the un-
bounded version is not a closure operation, thus it does not fall prey to a clut-
tering argument. On the other hand, unbounded agglomerativity is a rational
criterion to demand, since the failure of unbounded agglomerativity gets in the
way of truth, the aim of belief. In this section we study an extension of MUD
logic that can express this requirement.

First, we note that unbounded agglomerativity is not definable in MUD logic.
To see this, we define a new modal operator � and let �ϕ be true at a state w
in a neighborhood model if and only if

⋂

X∈n(w)

X ⊆ ||ϕ||

where ||ϕ|| is the extension of ϕ in that model. Thus, in a MUD-model, �ϕ
means that ϕ holds true in the intersection of all belief sets. In particular, ϕ is
compatible with every single belief the agent has.

Observation 3. � is not definable in the present logic of belief.

We relegate the proof of this observation to the full paper. So to express un-
bounded agglomerativity we need to enrich our logic of beliefs with this new
operator. As usual, we write ♦ for the dual of �, i.e. ♦ = ¬�¬. The new logic,
BAGG logic (for Belief and unbounded Agglomerativity) is axiomatized by KT.2
for the knowledge modality, (D) for belief and the two axioms displayed in table
2 for the new modality. In particular, � is a normal modality. As an intersec-
tion modality it is completely axiomatized in a similar fashion as distributed
knowledge. See Table 2.

Table 2. The additional axioms for the BAGG logic

Bϕ → �ϕ Belief Consistency
�ϕ → ♦ϕ Unbounded Agglomerativity

Theorem 1. The axioms in Table 2, together with K for �, Necessitation for
B and � and REG for B are sound and complete with respect to the class of
BAGG neighborhood frames.
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Again, due to space restrictions, we omit the proof of this theorem. As desired,
this logic is strong enough to derive all instances of (n-AGG). Indeed, fromBϕ1∧
...∧Bϕn one gets �(ϕ1∧...∧ϕn) using Belief consistency and the normality of �,
from which one application of Unbounded Agglomerativity gives ♦(ϕ1∧ ...∧ϕn),
and one more application of Belief Consistency gives 〈B〉(ϕ1 ∧ ... ∧ ϕn). So, in
particular, D for B is derivable in that system.

Finally, this logic has the finite model property. The proof is omitted for
reasons of space. We do however show in the next section that this logic is
decidable and has a cut-free sequent calculus.

6 Proof Theory of BAGG

We now present a sequent calculus formulation of BAGG.5 We base it on
Gentzen’s propositional (multiplicative) fragment LK. It has the familiar ini-
tial sequent, i.e. ϕ =⇒ ϕ, with ϕ is atomic, and the usual structural and logical
rules. The present sequent calculus follows [11]; and uses the context-free version
of Cut, i.e.

Γ =⇒ Δ,ϕ ϕ, Φ =⇒ Ψ

Γ, Φ =⇒ Δ,Ψ
Cut

For B we use the following rule. Notice the crucial constraint that the antecedent
Γ contains at most one formula. With Γ empty this rule captures (NEC), and
(REG) otherwise.

Γ =⇒ ϕ|Γ | ≤ 1 (1-Reg)
BΓ =⇒ Bϕ

The main rule of the system is the following.

Γ,Δ =⇒ Φ|Φ| ≤ 1 (B�)
BΓ,�Δ =⇒ �Φ

With Γ empty this rule gives both (NEC) and (K) for �. With Δ empty it
derives Belief Consistency, and with both Γ and Φ empty we obtain (D) for �.
Both (1-REG) and (B�) are sound, so the system is deductively equivalent to
the logic of BAGG frames. With the structural rule of contraction, we prove
so-called mix-elimination. Mix is slight modification of Cut:

Γ =⇒ Δ,Fn Fm, Φ =⇒ Ψ
(Multicut, Mix) (n,m > 0;n,m ∈ N)

Γ, Φ =⇒ Δ,Ψ

Call LK- BAGG the sequent calculus LK augmented with the rules above.

Theorem 2. LK- BAGG enjoys the cut-elimination theorem, and so has the
sub-formula property and BAGG is consistent.

5 We assume familiarity with LK, and both the standard logical and the structural
rules.
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The logic of the B alone is a fragment of LK- BAGG . With a slight modification
of the argument we get cut-elimination for this system as well. The proof for
both follows the usual “road to cut” sketched in [12]. Details are omitted for
reasons of space. We outline one case illustrating the interaction between B and
�. Here both mix-formulas are principal.

Γ =⇒ ϕ

BΓ =⇒ �ϕ

ϕ =⇒ ψ

�ϕ =⇒ ¬�¬ψ
BΓ =⇒ ¬�¬ψ

transforms to...

Γ =⇒ ϕ ϕ =⇒ ψ

Γ =⇒ ψ

Γ,¬ψ =⇒
BΓ,�¬ψ =⇒
BΓ =⇒ ¬�¬ψ

LK- BAGG is decidable. To show that we follow [13] and [14]. Suppose that
a sequent Γ =⇒ Δ is derivable in BAGG; then by the cut elimination theorem,
there is a cut-free derivation of it that also satisfies the subformula property.
Furthermore, there are no redundancies in the derivation of Γ =⇒ Δ, i.e. no
sequent of the form Φ =⇒ Ψ occurs twice in the derivation. Call a sequent is
1-reduced iff every formula in the antecedent (succedent) occurs exactly once
in the antecedent (succedent). A sequent Γ ∗ =⇒ Δ∗ is called a contraction iff
it is derivable from a sequent Γ =⇒ Δ by application(s) of contractions and
permutations.

Lemma 1. For every sequent Γ =⇒ Δ, there is a (1-)reduced sequent of Γ =⇒
Δ such that: if LK− BAGG � Γ ∗ =⇒ Δ∗ iff LK− BAGG � Γ =⇒ Δ.

The procedure for transforming such sequents in reduced sequents is effective.
Now, take any reduced sequent Γ =⇒ Δ. In view of the above lemmata, if
there is a derivation of the sequent, then the derivation consists only of reduced
sequents. The number of reduced sequents is finite; since the derivations have no
redundancies, the number of derivations is finite. Hence, the search procedure
produces all possible derivations; if there is a derivation that begins with initial
sequents, then there is a derivation of Γ =⇒ Δ, otherwise there is no derivation
of it. This gives rise to the following theorem:

Theorem 3. LK- BAGG is decidable.

7 A Probabilistic Interpretation for BAGG?

Before concluding, it is worth observing that the logic of beliefs with unbounded
agglomerativity also bars a probabilistic interpretation, but for different reasons
than the logic of beliefs alone.

First, we observe that BAGG neighborhood models are easily produced from
probabilistic measures on countable sets. In particular, comparing this with the
results in section 2.5 of Leitgeb’s [15], we see that agglomerative belief is a strictly
weaker concept than stable belief.

Lemma 2. Let W be a finite or countable set and let μ : P(W ) → [0 : 1]
be a probability function. Then W with neighborhood function n(w) = {Y ⊆
W |μ(Y ) > t} is a BAGG frame iff there is some w ∈ W with μ(w) ≥ 1− t.



Introspection, Normality and Agglomeration 205

Clearly, the set B = {Y ⊆ W |μ(Y ) > t} is upward closed. Now, it remains
to see whether we have

⋂
X∈B X �= ∅. First, assume that there is some w with

p(w) ≥ 1−t. Then we have for every Y ⊆ W that Prob(Y ) > t implies w ∈ Y . In
particular w ∈ ⋂

X∈B X . For the other direction assume that there is no such w.
Then for every y ∈ W we have Prob(y) < 1−t and therefore Prob(W −{y}) > t.
Thus, all sets of the form W − {y} are in B - but

⋂
y∈W W − {y} = ∅.

In the other direction, we get the following partial correspondence results:

Lemma 3. Let M, w be a finite or countable BAGG frame. Then for every
t ∈ (0; 1) there is a probability function Prob : W → [0; 1] such that B ∈ n(w)
implies Prob(B) > t

Notice, however, that this lemma does not generalize to an if and only if:
There are BAGG models M,w such that no possible probability function
Prob : P(W ) → [0 : 1] and no t satisfies:

Prob(X) > t ⇔ X ∈ n(w).

To see this, recall the example from section 4. There, we had a lottery with n
tickets and two winners. We modeled this with a set of worlds W = {wij |i <
j ≤ n} where wij is the world in which i and j are the winners. Further, we had
belief sets Tk = {wij |i = k or j = k} for each k. And we showed that no matter
which probability distribution we pick, there needs to be some k such that Tk

is less probable than W − Tk. Now, we expand this model to a model W ′ by
adding a further world wc in which the lottery is called off. We also expand the
Tk to T ′

K by adding the world wc to each belief set - i.e. T ′
k expresses that k

wins or the lottery is called off. That is, in M ′ we have n(w) =↑ {T ′
1, . . . , T

′
n}:

Now, clearly
⋂
T ′
i = {wc}, thus M ′ is a BAGG -model. On the other hand,

arguing as above, we can see that for every possible probability distribution on
W ′ there is some k such that Prob(T ′

k) < Prob((W ′ −T ′
k)∪{wcs}) But we have

T ′
k ∈ n(w) and (W ′ − T ′

k) ∪ {wc} �∈ n(W ), thus there can be no t such that
Prob(X) > t ⇔ X ∈ n(w).

So, taken together, these lemmas tell us that probability measures can gener-
ate BAGG frames under rather weak conditions, and that BAGG frames are
easily related to measurable algebras. In fact too easily so to sustain a plausible
probabilistic interpretation. Lemma 2 and 3 hold for arbitrary threshold t. The
starting point of this logic, however, was a notion of beliefs as absolute subjec-
tive certainty. This was embodied by Stalnaker’s (SB) axiom: Bϕ → BKϕ. We
do not see how this constraint can be made plausible except for a very high
threshold, certainly higher than 0.5. The present logic is not strong enough to
exclude this interpretation. Adding unbounded agglomerativity to the logic of
beliefs makes it more amendable to a probabilistic interpretation. But it is not
strong enough to rule out implausible ones.

8 Conclusion

We have studied a logic for beliefs stemming from from leaving out positive
introspection for knowledge in Stalnaker’s [1] system. We have argued for two
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philosophical points. First, this logic allows to formulate plausible rationality
requirements on beliefs for resource-bounded agents: pairwise, bounded and un-
bounded agglomerativity. Second, this logic is not strong enough to support a
plausible probabilistic interpretation. On the technical side, the main contribu-
tions are: sound and complete axiomatization of both the original logic of beliefs
and its extension to unbounded agglomerativity; cut-free sequent calculus for
both logics and decidability results.

Obvious next steps are applications of this logic to classical problems and
questions in game theory, for instance epistemic characterization results or agree-
ment theorems. For this we need two things. First we need to extend this logic
to multi-agent cases, and study common belief for such a non-normal modality.
Second we need to introduce dynamics. For both the work in [16] will be of
relevance.
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Abstract. Many authors have noted that a number of English modal
sentences cannot be formalized into standard first-order modal logic.
Some widely discussed examples include “There could have been things
other than there actually are” and “Everyone who’s actually rich could
have been poor.” In response, many authors have introduced an “ac-
tually” operator @ into the language of first-order modal logic. It is
occasionally noted that some of the example sentences still cannot be
formalized with @ if one allows only actualist quantifiers, and embed-
ded versions of these example sentences cannot be formalized even with
possibilist quantifiers and @. The typical justification for these claims
is to observe that none of the most plausible candidate formalizations
succeed. In this paper, we prove these inexpressibility results by using
a modular notion of bisimulation for first-order modal logic with “actu-
ally” and other operators. In doing so, we will explain in what ways these
results do or do not generalize to more expressive modal languages.

Keywords: first-order modal logic, actually, two-dimensional seman-
tics, actualist and possibilist quantification, expressivity, bisimulation.

1 Introduction

Despite all of its strengths, first-order modal logic faces fundamental limitations
in expressive power. Some classic examples demonstrating this include:

(E) There could have been things other than there actually are.1

(R) Everyone who’s actually rich could have been poor.2

The first says that there is a possible world where something exists that doesn’t
actually exist. The second, on one reading, says that there’s a possible world
where everyone that is rich in the actual world is poor in that world. It has

∗ Special thanks to Wes Holliday and anonymous reviewers for their helpful comments
and suggstions for improving this paper.

1 Originally from [11, p. 31].
2 Originally from [5, p. 34].
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been shown using (rather complicated) Henkin-style constructions that even very
simple sentences like (E) and (R) cannot be expressed in first-order modal logic
with actualist quantifiers (i.e., quantifiers ranging over existents) [13]. Using
possibilist quantifiers (i.e., quantifiers ranging over all possible objects) and an
existence predicate, (E) can be expressed, but (R) is still inexpressible [19].

In response to these expressive limitations, a number of authors have consid-
ered introducing an “actually” operator @ into the language [6,7,11,12,14]. They
then point out that in the presence of @ and possibilist quantifiers (where Π is
the universal possibilist quantifier) we can formalize (R) as:

◇Πx �@Rich�x� � Poor�x�� . (1)

However, if we replace the Π above with an actualist quantifier �, (1) would
yield the wrong result [4,8]. For then (1) would only require that there is a world
w where everyone in w who is actually rich is poor in w, whereas (R) requires
that everyone in the actual world who’s actually rich is poor in w.

It has also been noted that even with possibilist quantifiers, sentences like:

(NE) Necessarily, there could have been other things than those that existed.

(NR) Necessarily, the rich could have all been poor.

remain inexpressible [4,5,11,17]. For instance, on one reading, (NR) says that in
all possible worlds w, there’s a possible world v where everyone rich in w is poor
in v. But, for instance, formalizing (NR) as

◻◇Πx �@Rich�x� � Poor�x�� (2)

will yield the wrong result. This says that for all worlds w, there’s a world v such
that everyone that’s actually rich (not rich in w) is poor in v. One could try to
add more operators to the language, but problems keep cropping up [1,5].

These inexpressibility claims are often justified in the literature by example:
all of the most straightforward attempts at formalizing these English sentences
fail. While this style of argument may be convincing, it does not constitute a
proof of these expressive limitations. Furthermore, the only proofs known in the
literature involve quite complicated and indirect Henkin constructions that are
limited to specific languages. In this paper, we will provide a single proof method
for generating these inexpressibility proofs for a wide variety of quantified modal
languages using a suitable modular notion of bisimulation for first-order modal
logic. For concreteness, we’ll focus on the proofs for the inexpressibility of (R)
and (NR), which have proven more difficult than (E) and (NE). In passing, we
will see how these inexpressibility results do, and do not, generalize to more
powerful modal languages.

2 First-Order Modal Logic

First, we’ll need to get clear about what exactly we’re taking first-order modal
logic to be. The details below are fairly standard, with the exception that our
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semantics is two-dimensional (to account for the actuality operator @). While
we’ve picked a particularly simple formulation of first-order modal logic, these
inexpressibility results apply to a wide range of formulations.3

The signature for our first-order modal language L1M contains:

– VAR = �x1, x2, x3, . . .� (the set of (object) variables);
– PREDn = �Pn

1, P
n
2, P

n
3, . . .� for each n � 1 (the set of n-place predicates);

The set of formulas in L1M or L1M-formulas is defined recursively:

ϕ� Pn�y1, . . . , yn� � ¬ϕ � �ϕ	 ϕ� � ◻ϕ � �x ϕ

where Pn 
 PREDn for any n � 1, and x, y1, . . . , yn 
 VAR. The usual abbreviations
for �, �, �, and ◇ apply. We may drop parentheses for readability. If the free
variables of ϕ are among y1, . . . , yn, we may write “ϕ�y1, . . . , yn�” to indicate this.

Let S 1, . . . , S n be some new symbols with well-defined syntax. We’ll indicate
the language obtained from L1M by adding S 1, . . . , S n as L1M�S 1, . . . , S n�. Some
symbols that might be added include:

ϕ�    � y1 � y2 � @ϕ � �ϕ � F ϕ � �@xϕ � Πx ϕ

where � is the identity relation, @ is an “actually” operator, � is a diagonal-
ization operator [16] that does the opposite of @, F is a “fixedly” operator [7],
and �@ is a quantifier over all actual objects. In what follows, L will just be any
arbitrary L1M�S 1, . . . , S n� where S 1, . . . , S n are among the symbols above.

Definition 1 (First-Order Modal Models). An L1M-model or modal
model is an ordered tuple M = �W,R,D, δ, I� where:

– W is a nonempty set (the state space);
– R � W �W (the accessibility relation);
– D is a nonempty set (the (global) domain);
– δ : W � ℘ �D� is a function (the local domain assignment), where for
each w 
 W, δ�w� is the local domain of w;

– I is a function (the interpretation function) such that for each Pn 

PREDn, I�Pn,w� � Dn.

By convention, where M is a modal model, we’ll say that M’s state space is WM,
M’s accessibility relation is RM, etc. We’ll let R�w� � �v 
 W �wRv�.

Let M be an L1M-model. A variable assignment for M is a function
assigning members of its global domain to variables. Let the set of variable
assignments on M be VA�M�. If a variable assignment g for M agrees with a
variable assignment g� for M on every variable except possibly x, then g and g�

are x-variants, g �x g�. The variable assignment g�x �� a�, or gx
a, is the x-variant

of g that sends x to a.
Some notation: if α1, . . . , αn is a sequence (of terms, objects, etc.), we may

write “α” in place of “α1, . . . , αn”. α is assumed to be of the appropriate length,

3 See [10] for a tree of such formulations.
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whatever that is in a given context. When f is some unary function, we may
write “ f �α�” in place of “ f �α1�, . . . , f �αn�”. We’ll let �α� be the length of α.

Since we want to consider operators like @, our semantics will be two-
dimensional (as suggested in e.g., [7, pp. 4-5]). That is, indices will have to
contain two worlds. The first world is to be interpreted as the world “considered
as actual”, and the second as the world of evaluation.

Definition 2 (Satisfaction). The satisfaction relation, �, is defined recur-
sively, for all L1M-models M � �W,R,D, δ, I�, all w, v 
 W and all g 
 VA�M�:

M,w, v, g � Pn�x� � �g�x�� 
 I�Pn, v�

M,w, v, g � x � y � g�x� � g�y�

M,w, v, g � ¬ϕ � M,w, v, g � ϕ
M,w, v, g � ϕ	 ψ � M,w, v, g � ϕ and M,w, v, g � ψ
M,w, v, g � ◻ϕ � �v� 
 R�v� : M,w, v�, g � ϕ
M,w, v, g � @ϕ � M,w,w, g � ϕ
M,w, v, g � �ϕ � M, v, v, g � ϕ
M,w, v, g � F ϕ � �w� 
 R�w� : M,w�, v, g � ϕ

M,w, v, g � �xϕ � �a 
 δ�v� : M,w, v, gx
a � ϕ

M,w, v, g � �@xϕ � �a 
 δ�w� : M,w, v, gx
a � ϕ

M,w, v, g � Πxϕ � �a 
 D : M,w, v, gx
a � ϕ.

If �x� � �a�, then M,w, v � ϕ�a� if for all g 
 VA�M�, M,w, v, gx
a � ϕ�x�.

3 The Two-Sorted Language

In order to prove our inexpressibility results, we need to translate ordinary En-
glish sentences like (R) into a correspondence language. This language is just a
two-sorted first order language: one sort for objects, and one sort for worlds.

The signature for our two-sorted first-order language L2S contains VAR plus:

– SVAR = �s1, s2, s3, . . .� (the set of state variables).

– PREDn�m =
�

Pn�m
1 , P

n�m
2 , P

n�m
3 , . . .

�
for each n,m � 1 (the set of n�m-place

predicates).

For a predicate Pn�m, n is the object-arity, while m is the state-arity. Thus, Pn�m

takes exactly n object variables and m state variables as arguments.4

The set of formulas in L2S or L2S-formulas is defined recursively:

ϕ� Pn�m�y1, . . . , yn; s1, . . . , sm� � E�x; s1� � R�s1, s2� � ¬ϕ � �ϕ	 ϕ� � �x ϕ � �sϕ

where Pn�m 
 PREDn�m, x, y1, . . . , yn 
 VAR, and s, s1, . . . , sm 
 SVAR.

4 We’ll use “;” to separate object variables and state variables.
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For instance, here are the intended formalizations of (R) and (NR), where s�

is meant to be interpreted as the actual world:

�t �R�s�, t� 	 �x �Rich�x; s�� 	 Poor�x; t��� (3)

�s �R�s�, s� � �t �R�s, t� � �x �Rich�x; s� 	 Poor�x; t����. (4)

Definition 3 (Two-Sorted Models). An L2S-model or two-sorted model
is an ordered tuple M = �W,D,V� where W and D are nonempty sets, and V is
a function (the valuation function) such that:

– for each Pn�m 
 PREDn�m, V�Pn�m� � Dn �Wm;
– V�E� � D�W;
– V�R� � W �W.

We are usually interested in the correspondence between L2S and L1M-models.

Definition 4 (Model Correspondents). Let M = �W,R,D, δ, I� be a L1M-
model. A two-sorted correspondent of M is a L2S-model M = �W,D,V�
such that:

– for all P 
 PREDn�1, V�P� � ��a;w� � �a� 
 I�P,w��;
– V�E� � ��a;w� 
 D�W � a 
 δ�w� �;
– V�R� � R.

The satisfaction and consequence relations � for L2S are just the standard
ones for first-order logic with two sorts. We can now translate in the standard
way every L1M-formula into L2S.

Definition 5 (Standard Translation). Let ϕ be a L-formula, and let s, t 

SVAR. The standard translation of ϕ wrt �s, t�, STs,t �ϕ�, is defined recur-
sively:

STs,t �P
n�x�� � Pn�x; t� STs,t �@ϕ� � STs,s �ϕ�

STs,t �x � y� � x � y STs,t ��ϕ� � STt,t �ϕ�

STs,t �¬ϕ� � ¬ STs,t �ϕ� STs,t ��xϕ� � �x �E�x; t� � STs,t �ϕ��

STs,t �ϕ	 ψ� � STs,t �ϕ� 	 STs,t �ψ� STs,t ��@xϕ� � �x �E�x; s� � STs,t �ϕ��

STs,t �◻ϕ� � �t� �R�t, t�� � STs,t� �ϕ�� STs,t �Πx ϕ� � �x STs,t �ϕ�

STs,t �F ϕ� � �s� �R�s, s�� � STs�,t �ϕ��

where t� is the next state variable not occurring anywhere in STs,t �ϕ�.

Lemma 6 (Translation). Let M be an L1M-model, M a two-sorted correspon-
dent for M, w, v 
 WM, g 
 VA�M�, g 
 VA�M� (where g�x� � g�x� for x 
 VAR),
s, t 
 SVAR, and ϕ an L-formula. Then M,w, v, g � ϕ iff M, gs,t

w,v � STs,t �ϕ�.

Proof. An easy induction on formulas. � 
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With this result, we can define expressivity in the following manner:

Definition 7 (Expressivity). A set of L-formulas Γ�x� expresses an L2S-
formula α�x; s, t� if α is equivalent (in the two-sorted language) to STs,t �Γ� (=
�STs,t �ϕ� �ϕ 
 Γ �). A set of L-formulas Γ�x� diagonally expresses an L2S-
formula α�x; s� if α is equivalent to STs,s �Γ�.

In what follows, we will focus on diagonal expressivity for simplicity, noting
that the results below apply equally to the more general notion of expressibility.

4 Bisimulation

We now come to the notion of a bisimulation for ordinary first-order modal logic.
This notion can be found in, e.g., [2,9,18,20]. However, we add clauses designed
to ensure modal equivalence for formulas involving new symbols like @.

Definition 8 (Bisimulation). Let M and N be L1M-models. An L1M-
bisimulation between M and N is a nonempty multigrade relation Z (so
without a fixed arity) such that for all w, v 
 WM, all w�, v� 
 WN , all fininte
a 
 DM, and all finite b 
 DN , where �a� � �b� � n, we have that Z�w, v, a;w�, v�, b�
implies:

(Atomic) �m 
 N�Pm 
 PREDm �α, β where �α� � �β� � m, if for each i,
there is a j � n such that αi � a j and βi � b j, then: �α� 
 IM�Pm, v� iff
�β� 
 IN�Pm, v��

(Zig) �u 
 RM�v� �u� 
 RN �v�� : Z�w, u, a;w�, u�, b�
(Zag) �u� 
 RN �v�� �u 
 RM�v� : Z�w, u, a;w�, u�, b�
(Forth) �α 
 δM�v� �β 
 δN�v�� : Z�w, v, a, α;w�, v�, b, β�
(Back) �β 
 δN�v�� �α 
 δM�v� : Z�w, v, a, α;w�, v�, b, β�.

We may write “M,w, v, a� N ,w�, v�, b” to indicate that there is a bisimulation
Z between M and N such that Z�w, v, a;w�, v�, b� (where possibly �a� � �b� � 0).
The notion of an L1M�S 1, . . . , S n�-bisimulation between M and N is defined
similarly, except one must add the condition(s) below corresponding to each S i:

(Eq) �n,m � �a� : an � am iff bn � bm

(Act) Z�w,w, a;w�,w�, b�
(Diag) Z�v, v, a; v�, v�, b�
(Fixedly-Zig) �u 
 RM�w� �u� 
 RN �w�� : Z�u, v, a; u�, v�, b�
(Fixedly-Zag) �u� 
 RN �w�� �u 
 RM�w� : Z�u, v, a; u�, v�, b�
(�@-Forth) �α 
 δ

M�w� �β 
 δN�w�� : Z�w, v, a, α;w�, v�, b, β�
(�@-Back) �β 
 δN�w� �α 
 δM�w�� : Z�w, v, a, α;w�, v�, b, β�
(Π-Forth) �α 
 DM �β 
 DN : Z�w, v, a, α;w�, v�, b, β�
(Π-Back) �β 
 DN �α 
 DM : Z�w, v, a, α;w�, v�, b, β�.

The (Act), for instance, can be derived as follows. Suppose we introduced a
relation R@ � W2 � W2 into models, and that we treated @ as a normal box
operator. We could derive the truth conditions for @ by restricting to the class
of models where wvR@w�v� iff w � w� � v�. Then the usual zig-zag clauses for @
just reduce to (Act). The same method applies to the other modal operators.
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The standard results regarding bisimulations all carry over straightforwardly:

Definition 9 (Modal Equivalence). Let M and N be L1M-models, where
w, v 
 WM, w�, v� 
 WN , a 
 DM, and b 
 DN (where �a� � �b�). Then �M,w, v, a�
and �N ,w�, v�, b� are L-equivalent or modally equivalent if for all L-formulas
ϕ�x� (where �x� � �a�), M,w, v � ϕ�a� iff N ,w�, v� � ϕ�b�. In such a case, we may
write “M,w, v, a !S 1,...,S n N ,w�, v�, b”, where L � L1M�S 1, . . . , S n�.

Theorem 10 (Bisimulation Implies Modal Equivalence). Suppose M and
N are L1M-models, where w, v 
 WM, w�, v� 
 WN , a 
 DM, and b 
 DN , such
that M,w, v, a�S 1,...,S n N ,w�, v�, b. Then M,w, v, a !S 1,...,S n N ,w�, v�, b.

Corollary 11 (Translation Implies Invariance). Let ϕ�x; s, t� be an L2S-
formula. If ϕ is equivalent to the translation of some L1M�S 1, . . . , S n�-formula,
and if M,w, v, a �S 1,...,S n N ,w�, v�, b, then for any two-sorted correspondents
M and N, M � ϕ�a;w, v� iff N � ϕ�b;w�, v��. Equivalently, if �M,w, v, a� and
�N ,w�, v�, b� have two-sorted correspondents that disagree on ϕ, then ϕ is not
expressible as a L1M�S 1, . . . , S n�-formula.

5 Inexpressibility

We now turn to showing that (R) is not expressible in L1M�@�—in fact, not even
in L1M��,@, �,F �. We’ll also show that (NR) is not expressible in L1M��,@,Π�.
In both cases, we construct two bisimilar models that disagree on the two-sorted
formalization of the English sentence in question, and then invoke Corollary 11.
We start by presenting a proof that L1M�@� cannot express (3).

Let N� � Z" N. Our two models M1 and M2 are pictured in Figure 1. The
global domain of each model is just Z and the accessibility relation is universal
throughout. The world w is our actual world, where every positive integer is rich
(top half of circle), and every negative integer is poor (bottom half of circle).
For each nonempty finite subset S of N, there is a world vS where the members
of S don’t exist, and otherwise the rich and the poor are flipped with respect
to w; so at vS , the negative integers are rich, and the positive integers not in S
are poor, and the positive integers in S don’t exist. The extension of all other
predicates is empty. The only difference betweemM1 andM2 is thatM2 includes
an additional world v�, where no integer fails to exist, and where the rich and
poor are completely flipped with respect to w.
�M2,w,w� satisfies (R), but not �M1,w,w�. But it turns out that M1,w,w !@

M2,w,w. In fact, M1,w,w �@ M2,w,w. The reason is that each v-world looks
isomorphic relative to first-order logic to every other v-world since L1M�@� can
only quantify over the existent objects. So at any given stage of construction
of our bisimulation, we can treat each link between worlds and elements as if
they’re partial segments of an isomorphism between the two worlds considered
as first-order models. Of course, we need to make sure that when we shift to new
worlds, the elements linked still constitute a partial segment of an isomorphism
between the new worlds. But as we’ll see, this can be done.

Theorem 12 (Inexpressibility of (R)). M1,w,w �@ M2,w,w. But
M2,w,w � (3) even thoughM1,w,w � (3).Hence, (3) is not expressible inL1M�@�.
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Fig. 1. L1M�@�-bisimilar models disagreeing on (R). The top half of each circle satisfies
Rich, while the bottom half satisfies Poor; at each vS , the members of S do not exist.

We show explicitly in the appendix how to construct a bisimulation between
�M1,w,w� and �M2,w,w� in stages. Keeping track of the details is tedious, but
the idea is simple. Basically, bisimulations are back-and-forth games that we
might have to move to another accessible world to continue playing. So we just
need to check that no matter where we move the game in one model, we can
find a matching spot to move the game in the other model to keep playing.

Proof (Sketch). Our game starts at �M1,w,w� and �M2,w,w�. Clearly, if we
just play the back-and-forth game there, we’ll eventually build an isomorphism.
Let’s suppose, after moving the game around a bit, we’re now playing the back-
and-forth game at �M1,w, u1� and �M2,w, u2�, having linked a 
 D1 to b 
 D2,
where ai is positive iff bi is. We’ll show that no matter where we move the game
in one model, we can move the game somewhere in the other model to keep
playing. That is, we’ll make sure that, wherever we move, if we want to extend
the sequence of elements with a new a (that exists at our new location in M1),
we can find a matching b (that exists at our new location in M2) such that a
is positive iff b is (and similarly if we want to extend the sequence of elements
with a new b that exists at our new location in M2).

Suppose first we move from u1 to w in M1. It’s easy to show that we can
match that move in M2 by moving from u2 to w.

Now suppose we move from u1 to some vS in M1. We need to match the move
in M2 with some vS � , but we need to do so in such a way so that �M1,w, vS �
and �M2,w, vS �� don’t disagree over existence between a and b: we don’t want
ai to exist at vS but for bi not to exist at vS � . To get around this, let T be any
finite set with the same cardinality as S such that ai 
 S iff bi 
 T . Then it’s
straightforward to show that we can match the move to vS in M1 with a move
to vT in M2. Similarly if we move from u2 to either w or some vS in M2.
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Finally, suppose we move from u2 to v� in M2. The only way to match that
move in M1 is to move to some vS . We can do this as long as we make sure
that �M1,w, vS � and �M2,w, v�� don’t disagree over existence between a and
b. But they won’t disagree so long as we move to a vS where no ai 
 S . So if
S #�a� � $, then we can match the move from u2 to v� with a move from u1 to
vS and continue playing. At each stage, it’s easy to check that wherever we keep
playing, we’ll only match positives to positives, and negatives to negatives. � 

Again, the reason this strategy works is essentially because, modulo what
exists, the vS ’s and v� look like isomorphic first-order models, so linked elements
can be treated as partial isomorphisms between the worlds. In particular, when
we move to v�, because only finitely many elements are linked at a time, we
can always find a matching vS where all of the linked elements exist, and just
keep extending the partial isomorphism as usual. A similar strategy applies in
showing that M1,w,w��,E,@,�,F M2,w,w, though the details are messier.

However, this strategy fails when we try to show that M1,w,w ��,@,Π

M2,w,w. This shouldn’t be surprising, since (R) can be expressed as (1). But
it’s instructive to see why the proof above fails. Consider what happens when we
try to guarantee the Forth clause. When we move from u2 to v� in M2, we try
to match that move in M1 by moving from u1 to some vS where S # �a� � $.
But the Π-Forth clause says that for any object a 
 D1 that we pick, there must
be a matching b 
 D2. But if we pick a non-existent in vS , we can be forced to
end the game. Since every integer exists at v�, we must pick a b that exists at
v�. But then by the Back clause, if we picked b again, we would need to match
that pick with an a� that exists in vS . But by the Eq clause, a� � a, and a doesn’t
exist in vS . So we can’t match that pick, and the game is over.

Now we’ll show that even L1M��,@,Π� can’t express (NR). Consider the two
models N1 and N2 pictured in Figure 2. Again, the global domain of both models
is Z, and the accessibility relation is universal. This time, however, all of Z exists
at every world. Our actual world this time is z, where no integer is either rich
or poor. For every finite set S � N, there’s a world vN�S where all the positive
integers are rich except for S , and where all other integers are poor (so our old
w is now just vN). And for every nonempty finite set S � N, there’s a world
vS like before, where the rich and poor are flipped with respect to vN�S . Again,
the only difference between N1 and N2 is the presence of v� in N2, where every
negative number is rich, and every positive number is poor.
�N1, z, z� and �N2, z, z� both agree that (3) is true. But they disagree on

whether (4) is true; without the presence of v�, there is no world for vN (our old
w) where everyone rich in vN is poor. Furthermore, N1, z, z !�,@,Π N2, z, z. For
even when we take existence into account, all of the v-worlds are isomorphic to
one another. So as long as we’re careful to move to the right worlds, we can al-
ways keep playing as if we’re building an isomorphism between the worlds where
the game is taking place. Thus:

Theorem 13 (Inexpressibility of (NR)). N1, z, z ��,@,Π N2, z, z. But
N2, z, z � (4) while N1, z, z � (4). Hence, (4) is not expressible in L1M��,@,Π�.
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Fig. 2. L1M�@,Π�-bisimilar models disagreeing on (NR).

The proof is similar to the one before. For instance, suppose we’re playing the
back-and-forth game at �N1, z, u1� and �N2, z, u2�, having linked a to b, and sup-
pose we make a move in N2 from u2 to v�. Then once again, the only matching
move we can make in N1 is from u1 to some vS . But we can do this in general,
so long as we pick an S that is disjoint from �a�; since in that case, ai will be
in the extension of Rich at vS iff bi is in the extension of Rich in v�. Similar
reasoning as that above will show that matching moves can always be made no
matter where we jump in the model.

Unlike in the case of (R), however, this inexpressibility proof doesn’t extend
to languages with � or with F . We can express (4) in either language with:

◻ �◇Πx �@Rich�x� � Poor�x�� (5)

F@◇Πx �@Rich�x� � Poor�x��. (6)

But more complicated sentences can be constructed that reveal the expressive
limitations of even languages with � and F .

6 Conclusion

It has often been noted, without proof, that (R) and (NR) are not expressible in
L1M, even when one adds an actually operator [4,5,8,11,17]. Proofs of this claim
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can be found in [13,14], but involve rather complicated Henkin constructions that
don’t seem to illuminate the source of inexpressibility. In this paper, we’ve pro-
vided a simpler and more convenient method of proving inexpressibility results
in L1M using a modular notion of bisimulation. We’ve seen that inexpressibility
proofs via bisimulation are illuminating as they reveal the ways in which L1M

can be insensitive to the location of certain back-and-forth games.
Some questions naturally arise from these results. First, is there a more gen-

eral formal characterization of sentences like (E), (R), (NE), and (NR)? One
syntactic characterization was proposed in [15], but it’s open to debate whether
this characterization is an appropriate one, or whether there is also a nice model-
theoretic characterization of this class.

Second, is there a language weaker than L2S that can express these kinds of
sentences? It has been argued by [4] that adding second-order quantifiers suffices.
In [5], Cresswell defined a language (that happens to be a notational variant
of a quantified hybrid language without state variables as formulas) which he
argued also suffices to express these kinds of sentences.5 In both cases, heuristic
arguments are given in support of the claim that these languages can express
any sentence of the same kind as (E), (R), (NE), and (NR). But without an
answer to the first question, no formal proof of these claims can provided.6

A Proof of Theorem 12

To prove Theorem 12, we introduce a helpful definition:

Definition 14 (Partial Isomorphism). Let M and N be modal models, let
w, v 
 WM, and let w�, v� 
 WN . A partial L1M-isomorphism between
�M,w, v� and �N ,w�, v�� is a finite injective map ρ : D � D� such that:

(Predicate) �m�Pm 
 PREDm �a1, . . . , am 
 dom �ρ� : �a1, . . . , am� 
 IM�Pm, v�
iff �ρ�a1�, . . . , ρ�am�� 
 IN�Pm, v��

(Existence) �a 
 dom �ρ� : a 
 δM�v� iff ρ�a� 
 δN�v��.

The set of partial isomorphisms between �M,w, v� and �N ,w�, v�� will be
PARM,w,v

N ,w�,v� . When the M and N are clear, we’ll drop mention of them.

Now, at stage 0, set Z0 � ��w,w;w,w��. Next, define the following:

ZAct
i � ��w,w, a;w,w, ρ�a�� � �u, u� : �w, u, a;w, u�, ρ�a�� 
 Zi and ρ 
 PAR

w,u
w,u� �

ZZig
i �

��
��w, vS , a;w, vρ��S 	, ρ

��a��

������
�u, u� : �w, u, a;w, u�, ρ�a�� 
 Zi, where
ρ 
 PARw,u

w,u� and ρ � ρ� 
 PARw,vS
w,vρ��S �

and dom �ρ�� % S

��
	

ZZag
i �

��
�



w, vρ��1�S 	, a;w, vS , ρ
��a�

�
������

�u, u� : �w, u, a;w, u�, ρ�a�� 
 Zi, where

ρ 
 PARw,u
w,u� and ρ � ρ

� 
 PAR
w,v
ρ��1�S �

w,vS

and ran �ρ�� % S

��
	

5 However, [5] also shows that if 	 is dropped and R is universal, then this language
is as expressively powerful as L2S without 	.

6 See [15] for one possible formal answer to this question.



218 A.W. Kocurek

&
�
�w, vS , a;w, v�, ρ�a��

��� �u, u� : �w, u, a;w, u�, ρ�a�� 
 Zi and
ρ 
 PARw,u

w,u� , where S #dom �ρ� � $

�

ZForth
i �

�
�w, u, a, b;w, u�, ρ��a�, ρ��b��

��� �w, u, a;w, u�, ρ�a�� 
 Zi where ρ � ρ
� 


PARw,u
w,u� and b 
 δ1�u� # dom �ρ��

�

ZBack
i �

�

w, u, a, ρ��1

�b�;w, u�, ρ��a�, b
� ��� �w, u, a;w, u�, ρ�a�� 
 Zi, where ρ �
ρ� 
 PARw,u

w,u� and b 
 δ2�u��#ran �ρ��

�
.

Then set: Zi
1 � Zi&ZAct
i &ZZig

i &ZZag
i &ZForth

i &ZBack
i . Finally, set Z �

�
i�ω Zi.

Lemma 15 (Trivial Observations). If �w, u, a;w, u�, b� 
 Zi, then u � w iff
u� � w, and if ρ 
 PARw,u

w,u� , then ai 
 N iff ρ�ai� 
 N.

Lemma 16 (Partial Isomorphisms in Z). For all i � 0, and all
�w, u, a;w, u�, b� 
 Zi, there is a partial L1M-isomorphism ρ between �M1,w, u�
and �M2,w, u�� such that ρ�ak� � bk for 1 � k � �a�.

Proof (Sketch). By induction on i. This clearly holds for the i � 0 case. Now
suppose that every member of Zi has the stated property. Show that for each
condition C, every member of ZC

i has the property, from which it will follow that

every member of Zi
1 has the property. This is automatically guaranteed for ZZig
i ,

ZBack
i , and ZForth

i . ZZag
i is almost immediate, but elements from the second listed

set must be checked. Checking ZAct
i is tedious, but straightforward. � 

We now turn to the proof of Theorem 12.

Proof (Theorem 12). Let �w, u, a;w, u�, b� 
 Z. Then �w, u, a;w, u�, b� 
 Zi. By
Lemma 16, there’s a partial isomorphism ρ between �M1,w, u� and �M2,w, u��
such that ρ�a� � b. Hence, (Atomic) is met. As for the other conditions:

Act: By definition of ZAct
i , �w,w, a;w,w, b� 
 Zi
1. �

Zig: If u moves to w, then this case is covered by the Act-case. So suppose
instead u moves to some vS . It suffices to show that �w, vS , a;w, vρ��S 	, ρ��a�� 


ZZig
i for some suitable ρ� % ρ. If S � dom �ρ�, then let ρ� � ρ. Otherwise,

let b1, . . . , bn 
 S " dom �ρ�. Pick the least b�1, . . . , b
�
n 
 N " ran �ρ� and set

ρ� � ρ & ��bi, b�i� �1 � i � n�. It suffices to show that ρ� 
 PARw,vS
w,vρ��S �

. Let

a 
 dom �ρ��. By Lemma 15, a 
 I1�Rich, vS � iff ρ�a� 
 I2�Rich, vρ��S 	�. As for
Poor, a 
 I1�Poor, vS � iff a 
 N " S iff (by injectivity) ρ��a� 
 N " ρ��S � iff
a 
 I2�Poor, vρ��S 	�. �

Zag: We just need to check the case where u� moves to v�. But by definition,
for any S such that S #dom �ρ� � $ (which will exist since dom �ρ� is finite),

�w, vS , a;w, v�, ρ�a�� 
 ZZag
i . �

Forth: Let b 
 δ�u�. WLOG, assume b ' dom �ρ�. If b 
 N
�, then just let b� be

the least element in N
� " ran �ρ�. Otherwise, let b� be the least element in

N" ran �ρ�. There are only three cases to consider:
(i) u � u� � w. By Lemma 15, b 
 I1�Rich,w� iff b� 
 I2�Rich,w�. �
(ii) u � vS and u� � vρ�S 	. Then b ' S and thus b� ' ρ��S � (since, according to

our construction, S � dom �ρ�, and so ρ�S � � ρ��S �). So b 
 I1�Rich, vS �
iff b� 
 I2�Rich, vρ�S 	�. �
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(iii) u � vS and u� � v�. Since b 
 δ1�u�, (Existence) is still upheld. And
again, b 
 I1�Rich, vS � iff b� 
 I2�Rich, v��. �

Back: As above, except if b� 
 N, you pick the least b 
 N " dom �ρ� in all
cases except where u � vS and u� � v�, in which case, you pick the least
b 
 N" �dom �ρ� & S �. � � 
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Abstract. Counterfactuals are inherently ambiguous in the sense that the 
same counterfactual may be true under one mode of counterfactualization 
but false under the other. Many have regarded the ambiguity of 
counterfactuals as consisting in the distinction between forward-tracking and 
backtracking counterfactuals. This is incorrect since the ambiguity persists 
even in cases not involving backtracking counterfactualization. In this paper, 
I argue that causal modeling semantics has the resources enough for 
accounting for the ambiguity of counterfactuals. Specifically, we need to 
distinguish two types of causal manipulation, which I call “intervention” and 
“extrapolation” respectively. To intervene in a causal model M is to change 
M’s structural equations in some specific ways, while to extrapolate M is to 
change the value assignment of M’s variables in some specific ways. I argue 
that intervention and extrapolation offer a natural explanation for the 
ambiguity of counterfactuals. 

Keywords: Causal Model, Counterfactual Conditional, Intervention, 
Extrapolation, Backtracking. 

1 Introduction 

Counterfactual conditionals (hereafter ‘counterfactuals’) are inherently ambiguous in 
the sense that the same counterfactual may be true under one mode of 
counterfactualization but false under the other. Many have regarded the ambiguity of 
counterfactuals as consisting in the distinction between forward-tracking and 
backtracking counterfactuals. This is incorrect since the ambiguity persists even in 
cases not involving backtracking counterfactualization. In this paper, I argue that 
causal modeling semantics has the resources enough for accounting for the ambiguity 
of counterfactuals. Specifically, we need to distinguish two types of causal 
manipulation, which I call “intervention” and “extrapolation” respectively. 

The following consists of four sections. Section 2 explains the ambiguity of  
counterfactuals. Section 3 introduces the crux of the causal modeling semantics of 
counterfactuals. Section 4 introduces two types of submodels. Section 5 explains the 
ambiguity of counterfactuals in terms of these two types of submodels.  
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2 The Ambiguity of Counterfactuals 

Consider the following case: 

Ask. Jack had a quarrel with Jim yesterday, and Jack is still mad at Jim. When Jack 
is not mad, he is a generous person, who will help his friend if asked for a favor. 
Jim, on the other hand, is a prideful person, who will not ask someone for help 
after having a quarrel with this person. As a result, Jim does not ask Jack for help. 
(cf. Lewis 1979, 456; also Downing 1958)  

Let ‘>’ stand for the counterfactual-conditional connective, ‘A > C’ for the 
counterfactual If A had obtained, C would have obtained, ‘Ask > Help’ for If Jim had 
asked Jack for help, Jack would have helped him.1 “Ask > Help” is ambiguous in the 
sense that it seems true under one mode of counterfactualization but false under the 
other. Under what we may call forward-tracking counterfactualization, “Ask > Help” 
seems false: if Jim were to ask Jack for help, he would have been rejected, since Jack 
is mad at him, and Jack is not generous when he is mad. Under what we may call 
backtracking counterfactualization, by contrast, “Ask > Help” seems true: Jim is a 
prideful person; he will not ask Jack for help after quarreling with him yesterday. 
Hence, if Jim were to ask Jack for help, it must be that they did not quarrel yesterday. 
If so, Jack would not be mad at Jim, and would have helped him.  

Cases like Ask are theoretically significant, as they indicate that counterfactuals are 
inherently ambiguous, that is, the same counterfactual “A > C” can be true under one 
kind of counterfactual counterfactualization, while false under the other. The 
prominent treatment of the truth condition of counterfactuals has been relatively silent 
on its ambiguous nature.  

The Lewis-Stalnaker possible-worlds semantics, at least in its orthodox form, does 
not admit that counterfactuals are ambiguous in such a way (cf. Stalnaker 1968; 
Lewis 1973). A standard reply to the problem is to dismiss backtracking 
counterfactuals as non-standard, by contending that we do not ordinarily perform 
backtracking counterfactualization (Lewis 1979, 458). 

The possible-worlds semantics has suffered from some serious objections, which I 
will leave aside (cf. Schaffer 2004; Pruss 2003; also see Lee forthcoming). For the 
present purposes, it is important to point out that the problem of the ambiguity of 
counterfactuals cannot be evaded by arguing that we do not ordinarily reason in a 
backtracking manner. First, the contention that backtracking counterfactualization is 
non-ordinary is controversial (cf. Bennett 1984). Second, and more importantly, the 
ambiguity of counterfactuals runs deeper than the temporal aspect of counterfactuals, 
since it persists even in cases not involving backtracking counterfactuals.   

 
 

                                                           
1 Throughout this paper, propositions (events) are denoted by italic sentences. 
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As Jonathan Bennett points out, Ask can be modified so that it does not contain a 
yesterday’s quarrel: 

Ask*. Jim knows that Jack is mad at him but he has no idea why. When Jack is not 
mad, he is a generous person, who will help his friend if asked for a favor. Jim, on 
the other hand, is a prideful person, who will not ask someone for help if this 
person is mad at him. As a result, Jim does not ask Jack for help. (Cf. Bennett 
2003, 206) 

Intuitively, “Ask > Help” is as ambiguous in Ask* as in Ask. On the one hand, we may 
reason that since Jack is mad at Jim, and he is not generous when he is mad, Jack 
would not have helped Jim if Jim were to ask him for help. On the other hand, we 
may reason that if Jim were to ask Jack for help, it must be that Jack were not mad at 
him, since Jim is a prideful person, who will not ask someone for help knowing that 
this person is mad at him. If Jack were not mad at Jim, he would be his usual 
generous self and would have helped Jim.  

Hence, as in Ask, “Ask > Help” is both true and false in Ask*, depending on  
which mode of counterfactualization is in play. However, no backtracking 
counterfactualization is required in determining the truth-value of “Ask > Help” in 
Ask*, since Ask* does not presuppose a yesterday’s quarrel.  

I conclude that counterfactuals are inherently ambiguous. The distinction between 
forward-tracking and backtracking counterfactuals is in fact a special case of the 
distinction between two types of counterfactuals manifested by Ask*. Elsewhere, I 
have argued that the causal modeling semantics of counterfactuals has the resources 
enough for accounting for the distinction between forward-tracking and backtracking 
counterfactuals (Lee forthcoming). In what follows, I will further argue that the causal 
modeling semantics can handle the inherent ambiguity of counterfactuals.  

3 The Causal Modeling Semantics 

A causal model is a mathematical entity aiming at representing the causal relations of 
the events in a scenario. To illustrate, let us construct a causal model for Ask*.  

Formally speaking, a causal model M is a triple <V, S, A>. V is a finite set of 
variables, {V1, V2, … Vn}. These are variables for events in the scenario that M is 
supposed to represent. The causal model K* for Ask* naturally contains the following 
set of variables: 

 MAD represents whether or not Jack is mad at Jim.2 
 PRIDE represents whether or not Jim is a prideful person.  
 ASK represents whether or not Jim asks Jack for help. 
 HELP represents whether or not Jack helps Jim. 

Each Vi in V admits a range of values (finite or infinite). In the simplest cases  
such as K*, the variables admits only two possible values, i.e., “Yes” or “No”. It is 

                                                           
2  I use uppercase letters to stand for variables for events. 
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customary to use ‘Vi = vi’ to stand for The variable Vi has the value vi. For binary 
variables such as MAD, PRIDE, ASK, and HELP, we may use  ‘1’ and ‘0’ to stand 
for YES and NO respectively. For instance, “MAD = 1” means that Jack is mad at 
Jim, and “PRIDE = 0” means that Jim is not a prideful person.  

S, the second element of a causal model, is a set of structural equations specifying 
the causal relations among variables. For each variable Vi in V, S contains at most one 
structural equation of the following form: 

 Vi ⇐ fi(PAi).  

The meaning of ‘⇐’ is two-fold. For one thing, “X ⇐ Y” means that X is causally 
determined by Y, i.e., whether or not X obtains causally depends on whether or not Y 
obtains. For another, “X ⇐ Y” indicates that X takes on the value of Y. ‘PAi’ stands 
for the set of Vi’s parents (i.e., causes), which is a subset of V; Vi is a child (i.e., 
effect) of PAi. Fi is a function that maps PAi to {0,1}, for binary variables. We may 
further regard fi as truth functions with truth and falsity being represented by 1 and 0 
respectively. For the sake of convenience, we may even treat variables on the right-
hand side of a structural equation as propositions such that “X” means X = 1, and that 
“~X” means X = 0.  

Naturally, K*’s S* consists of: 

 ASK ⇐ (~PRIDE ᐯ ~MAD) 

 HELP ⇐ (ASK  ᐱ ~MAD) 

In words, “ASK ⇐ (~PRIDE ᐯ ~MAD)” indicates that whether or not Jim will ask 
Jack for help depends causally on whether or not Jim is a prideful person and on 
whether or not Jim is mad at Jack. Jim will ask Jack for help iff either Jim is not a 
prideful person or Jack is not mad at hm.3 “HELP ⇐ (ASK ᐱ ~MAD)” indicates that 
whether or not Jack will help Jim depends causally on whether or not Jim asks Jack 
for help and on whether or not Jim is mad at Jack. Jack will help Jim iff Jim asks Jack 
for help, and Jack is not mad at Jim.  

There is no structural equation for MAD and PRIDE, meaning that their causes 
(parents) are not specified in K*. A causal model consists of two kinds of variables: 
endogenous variables, whose causes are specified by structural equations, and 
exogenous variables, whose causes are not so specified. The values of exogenous 
variables are given to the model. For instance, in K*, both MAD and PRIDE are 
stipulated to take on the value 1.  

                                                           
3  The biconditional holds in Ask*. That is, we assume that none of the conditions sabotaging the if-

direction of the biconditional (such as Jim has temporally lost his capacity to communicate with 
others) holds. Nor does any of the condition sabotaging the only-if direction (such as Jim has been 
coerced into asking Jack for help). In Galles and Pearl’s term, these are “inhibiting” and 
“triggering abnormalities” respectively (Galles and Pearl 1998). In other words, when 
constructing causal models, we assume that such inhibiting and triggering abnormalities do not 
hold. 
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A, the third element of a causal model, is a function of assigning a value to each 
variable in the model (cf. Hiddleston 2005; Briggs 2012). For each exogenous 
variable, A simply assigns a value to it. For each endogenous variable, A assigns a 
value to it based on the value of exogenous variables and the set of structural 
equations S. For instance, K*’s A* is as follows: 

 A*(ASK) = A*(HELP) = 0, and  
 A*(MAD) = A*(PRIDE) = 1.4 

In words, in  Ask*, Jim is mad at Jack, Jim is a prideful person, Jim does not ask Jack 
for help, and Jack does not help Jim.  

Causal models are instructive in characterizing the truth condition of 
counterfactuals. Suppose that we manipulate the causal structures of M in some way. 
More precisely, we may alter either some of M’s structural equations or its value 
assignment, or both. We thus generate a certain submodel M' of M. If a causal model 
M represents a scenario s, a submodel M' of M naturally represents a “counterfactual” 
scenario s' of s, which is a scenario containing information about what would have 
happened if s had been different. Following an intuitive line, we may define the 
causal modeling account of the truth condition of counterfactuals as: 

(CM) “A > C” is true in a causal model M iff “C” is true in certain 
submodels M'. 

In what follows, I argue that the causal modeling semantics has the resources 
enough for accounting for the ambiguity of counterfactuals. The crux is that there are 
two types of submodels. “A > C” may have different truth-values provided that “C” is 
true in one type of submodel M' but false in the other type of submodel M''.  

4 Intervention vs. Extrapolation 

A submodel M' is generated from manipulating the causal structures of M. That there 
are two types of submodels implies that there are two distinct types of manipulation. I 
will call them “intervention” and “extrapolation” respectively. The distinction was 
first brought to my attention by David Galles and Judea Pearl’s distinction between 
doing and seeing (Galles and Pearl 1998, 159). But they do not develop it in the 
following way. As I will argue, the distinction between intervention and extrapolation 
offers a natural explanation for the ambiguity of counterfactuals.  

Intervention has been featured in the prominent causal modeling semantics for 
counterfactuals (cf., e.g., Galles and Pearl 1998; Pearl 2000; Briggs 2012). Let M (= 
<V, S, A>) be a causal model, B be the sentential form ‘C1 = c1 ⁄ … ⁄ Ck = ck’5, VB 

                                                           
4 Calculation: MAD = 1 and PRIDE = 1 (by assumption); if PRIDE = 1 and MAD = 1, then 

ASK = 0 (by ASK ⇐ (~PRIDE  ¤ ~MAD)); if ASK = 0 then HELP = 0 (by HELP ⇐ (ASK ᐱ 
~MAD)). 

5 I follow Galles and Pearl (1998) here. For causal modeling semantics that deals with more 
complex antecedents, see Halpern (2000) and Briggs (2012). 
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be the set of variables that are in B. An intervention in M with respect to B generates a 
submodel MB (=<VB, SB, AB>) such that: 

 (i) VB = V. 
(ii) SB = S except that for each Cj in VB, SB replaces the structural 

equation Cj ⇐ fj(PAj) of S with Cj = cj, if Cj is endogenous. 
(iii) AB = A except that (a) for each Ck in VB, AB assigns the value ck to 

Ck if C is exogenous, and that (b) for each Vl in (VB\VB), AB assigns 
the value cl to Cl based on the value of Ck and SB.  

At its core, to intervene in a causal model M with respect to B (C1 = c1 ⁄ ... ⁄ Ck = ck) 
is to set each Ci in VB to take on the value ci. Specifically, if Ci is endogenous, 
intervention disconnects the causal connections between Ci and its parents. The 
resulting submodel thus specifies the causal relations among variables differently. The 
values of B’s children (causal effects) are calculated accordingly.   

Suppose that we intervene in K* with respect to (ASK = 1). This generates the 
submodel K*(ASK=1), whose set of variables V*(ASK=1) is identical to K*’s. K*’s set of 
structural equations S*(ASK=1), by contrast, consists of the following:  

  ASK ⇐ 1 
 HELP ⇐ (ASK ⁄ ~MAD) 

“ASK ⇐ 1” means that ASK is to set to have the value 1 so that ASK no longer 
causally depends on the values of its parents (i.e., PRIDE and MAD). In other words, 
intervention disconnects the causal relations of ASK to its parents by stipulating the 
variable to take on the value 1.  

As a result, K*(ASK=1)’s value assignment A*(ASK=1) is that: 

 A*(ASK=1)(HELP) = 0, and  
 A*(ASK=1)(ASK) = A*(ASK=1)(PRIDE) = A*(ASK=1)(MAD) = 1.6 

A* and A*(ASK=1) are different, but notice that intervening in a causal model does not 
necessarily lead to different value assignments. 

Let us introduce extrapolation, which, by contrast, has received little attention from 
philosophers. Let M (=<V, S, A>) be a causal model, B be the sentential form ‘C1 = c1 
⁄ … ⁄ Cm = cm’, and VB be the set of variables that are in B. An extrapolation on M 
with respect to B generates a submodel MB

 (=<VB, SB, AB>) of M such that: 

 (i) VB = V. 
 (ii) SB = S. 

(iii) AB = A except that (a) for each Ci in VB, AB assigns the value ci to 
Ci, and that (b) for each Vi in (VB\VB), AB assigns a value vi to Vi 
based on the value of Ci and SB.  

 

                                                           
6  Calculation: MAD) = 1 and PRIDE = 1 (by assumption); ASK = 1 (by intervention); If ASK = 1 

and MAD = 1, then HELP = 0 (by HELP ⇐ (ASK ⁄ ~MAD)). 
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To extrapolate a causal model M with respect to B (C1 = c1 ⁄ … ⁄ Cm = cm) also sets 
each Ci in VB to take on the value ci. But unlike intervention, extrapolation preserves 
the causal relations between Ci and its parents. The values of Ci’s children and parents 
are calculated accordingly.  

Suppose that we extrapolate K* with respect to (MAD = 0). The extrapolation 
generates the submodel K*(MAD=0). K*(MAD=0) and K* consist of the same sets of 
variables and structural equations, namely, V*(MAD=0) = V*, and S*(MAD=0) = S*.  
A*(MAD=0), by contrast, is as follows: 

  A*(MAD=0)(MAD) = 0, and 
 A*(MAD=0)(PRIDE) = A*(MAD=0)(ASK) = A*(MAD=0)(HELP) = 1.7 

Extrapolation necessarily leads to different value assignments.  
While intervention and extrapolation give rise to two types of submodels, they do 

not always determine a unique submodel.8 Essentially, this indicates that the truth 
condition of counterfactuals is context-sensitive. That is, when more than one 
submodels are available, the context will determine which submodels are relevant to 
determining the truth-values of counterfactuals.  

Let us call the submodels M' determined by the context the relevant submodels. 
Intervention and extrapolation give rise to different types of relevant submodels. 
Therefore, CM should be disambiguated into: 

(CMIN) “A > C” is trueIN in M iff “C” is true in the relevant submodels MA. 
(CMEX) “A > C” is trueEX in M iff “C” is true in the relevant submodels MA. 

Let us introduce some terminology. On CMIN and CMEX, the truth condition of 
counterfactuals is determined by two modes of counterfactualization, related  
to intervention and extrapolation, as indicated by the subscripts. Call them “intervention-
counterfactualization” (or “IN-counterfactualization”) and “extrapolation-
counterfactualization” (or “EX-counterfactualization”) respectively. “A > C” can be  
true under IN-counterfactualization, but false under EX-counterfactualization, and vice 
verse. Hence, we distinguish counterfactuals being true by IN-counterfactualization 
(‘trueIN) from counterfactuals being true by EX-counterfactualization (‘trueEX’),  
and, correspondingly, “intervention-counterfactuals” (or “IN-counterfactual”) from 
“extrapolation-counterfactuals” (or “EX-counterfactuals”). The truth conditions  
of IN-counterfactuals and EX-counterfactuals are defined by CMIN and CMEX 
respectively. 

                                                           
7  Calculation: MAD = 0 by extrapolation; PRIDE = 1 (by assumption); if MAD = 0, then 

ASK = 1 (by ASK ⇐ (~PRIDE  ¤ ~MAD)). If ASK = 1 and MAD = 0, then HELP = 1 (by 
HELP ⇐ (ASK ⁄ ~MAD)). 

8  As noted in Footnote 9, extrapolating K* with respect to (ASK = 1) gives rise to two 
submodels. Moreover, intervening in a causal model M with respect to a disjunction 
arguably also gives rise to more than one submodels (cf. Briggs 2012). For a related 
discussion, see Hiddleston (2005, 650ff.). 
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5 Explaining the Ambiguity 

CMIN and CMEX give the correct verdicts with respect to Ask*. Intervening in K* with 
respect to (ASK = 1) gives rise to a unique submodel K*(ASK=1). On CMIN, “ASK = 1 
> HELP = 1” is trueIN in K* iff “HELP = 1” is true in K*(ASK=1). As noted above, 
A*(ASK=1)(HELP) = 0. It follows that “ASK = 1 > HELP = 1” is not trueIN in K*, as 
desired.  

By contrast, suppose that we extrapolate K* with respect to (ASK = 1). The 
extrapolation generates a submodel whose value assignments are as follows:  

A*(ASK=1)(MAD) = 1, and 
A*(ASK=1)(PRIDE) = A*(ASK=1)(ASK) = A*(ASK=1)(HELP) = 1.9 

On CMAL, “ASK = 1 > HELP = 1” is trueEX in K* iff “HELP” is true in K*(ASK=1). 
Since A*(ASK=1)(HELP) = 1, it follows that “ASK = 1 > HELP = 1” is trueEX in K*, as 
desired.  

In words, the causal modeling semantics correctly predicts that “Ask > Help” is 
ambiguous in Ask*. Interpreted as an IN-counterfactual, the counterfactual is false. 
The same counterfactual will be true, however, if interpreted as an EX-counterfactual. 

Not only does the distinction between intervention and extrapolation give the 
correct verdicts, it offers a natural explanation of the ambiguity of counterfactuals 
manifested by cases like Ask*. When counterfactualizing that “Ask > Help” is not true 
in Ask*, we focus solely on the causal effect of the event of Jim asking Jack for help 
(i.e., Ask) per se. We ignore the causal relations between Ask and its causes (parents). 
In particular, we do not attempt to rationalize how Ask could have happened in the 
first place. For instance, we ignored that the fact that Jim being a prideful person (i.e., 
Pride) prevents Ask from obtaining, and we simply stipulate that Ask holds without a 
specific story of how Ask could have happened in the first place (in many cases, such 
stories should not even be given). This mode of counterfactualization is nicely 
captured by intervention. Intervening in M with respect to (Ci = ci) generates a 
submodel MCi=ci that contains information necessary for understanding the causal 
effect of Ci (Galles and Pearl 1998). MCi=ci mutilates all the causal influences of Ci’s 

                                                           
9  Calculation: PRIDE = 1 (by assumption); ASK = 1 (by extrapolation); if ASK = 1 and 

PRIDE = 1, then MAD = 0 (by ASK ⇐ (~PRIDE ¤ ~MAD)); if ASK = 1 and MAD = 0, 
then HELP = 1 (by HELP ⇐ (ASK ⁄ ~MAD)).  

Here, we touch on issues of the context-sensitivity of CMEX. A*(ASK=1)
 as listed here has 

held (PRIDE = 1) fixed. It is by holding fixed (PRIDE = 1) that we can deduce (MAD = 0). 
If we hold fixed (MAD = 1) instead, we will have deduced (HELP = 0): MAD = 1 (by 
assumption); ASK = 1 (by extrapolation); if MAD = 1 and ASK = 1, then PRIDE = 0 (by 
ASK ⇐ (~PRIDE ¤ ~MAD)); if ASK = 1 and MAD = 1, then HELP = 0 (by HELP ⇐ 
(ASK ⁄ ~MAD)).  

In other words, extrapolating K*with respect to (ASK = 1) is context-sensitive. 
Specifically, either PRIDE = 0 or MAD = 1 needs to be held fixed. Based on the natural 
reading of Ask*, the relevant submodel in play here holds (PRIDE = 1) fixed (also see 
Footnote 10). 
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parents (i.e., PAi) have on Ci, while stipulating that Ci takes on the value ci. MCi=ci 
gives us a clear picture of (Ci = ci)’s causal effect in M.  

By contrast, when counterfactualizing that “Ask > Help” is true in Ask*, we focus 
on rationalizing how Ask could have happened in the first place. In particular, we use 
the causal relations among events to help us determine under what condition  
Ask could have happened. For instance, we reason that Jim must not be mad at Jack 
(i.e., ~Mad) if Ask is to obtain, since Pride prevents Ask from obtaining if Mad has 
obtained. This mode of counterfactualization is represented nicely by EX-
counterfactualization.10 Extrapolating a causal model M with respect to (Ci = ci) 
generates a submodel MCi=ci

 that contains all information necessary for knowing under 
what condition (Ci = ci) could have happened in M. MCi=ci assigns the values of its 
variables in a way that preserves all the causal relations among events in M. MCi=ci 
thus gives us a story of what else needs to change if Ci is to have the value of ci in M.  

 
Acknowledgements. I am grateful to three anonymous reviewers for their comments. 
The present work has received funding from the Ministry of Science and Technology 
(MOST) of Taiwan (R.O.C.) (MOST 103-2410-H-194-125). 

References 

1. Bennett, J.: Counterfactuals and Temporal Direction. The Philosophical Review 93(1),  
57–91 (1984) 

2. Bennett, J.: A Philosophical Guide to Conditionals. Clarendon Press, Oxford (2003) 
3. Briggs, R.: Interventionist Counterfactuals. Philosophical Studies 160(1), 139–166 (2012) 
4. Downing, P.B.: Subjunctive Conditionals, Time Order, and Causation. Proceedings of the 

Aristotelian Society 59, 125–140 (1958) 
5. Galles, D., Pearl, J.: An Axiomatic Characterization of Causal Counterfactuals. 

Foundations of Science 3(1), 151–182 (1998) 
6. Halpern, J.Y.: Axiomatizing Causal Reasoning. Journal of Artificial Intelligence 

Research 12(1), 317–337 (2000) 
7. Hiddleston, E.: A Causal Theory of Counterfactuals. Noûs 39(4), 632–657 (2005) 

 
 

                                                           
10  EX-counterfactualization is context-sensitive in a way parallel with the context-sensitivity of 

extrapolation. Specifically, in Ask*, there are two ways to EX-counterfactualize what would 
have happened if Jim were to ask Jack for help. On the one hand, we might EX-
counterfactualize that if Jim were to ask Jack for help, it must be that Jim had somehow 
swallowed his pride, since Jack had been mad at him, and as a prideful fellow, Jim would 
not have asked Jack for help. On the other hand, we might EX-counterfactualize that if Jim 
were to ask Jack for help, it must be that Jim was not mad at him, since as a prideful person, 
Jim would not ask Jack for help given that Jack was mad at him. In a sense, both are 
legitimate Ex-counterfactualization. But the present context demands that we adopt the 
latter, since this is the most natural way to interpret Ask*. This explains why in modeling 
Ask*, we should hold (PRIDE = 1) fixed. 



 Causal Models and the Ambiguity of Counterfactuals 229 

8. Lee, K.Y.: Motivating the Causal Modeling Semantics of Counterfactuals, or, Why We 
Should Favor the Causal Modeling Semantics over the Possible-Worlds Semantics. In: 
Yang, S.C.-M., Deng, D.-M., Lin, H. (eds.) Structural Analysis of Non-Classical Logics 
(forthcoming) 

9. Lewis, D.: Counterfactuals. Blackwell, Malden (1973) 
10. Lewis, D.: Counterfactual Dependence and Time’s Arrow. Noûs 13(4), 455–476 (1979) 
11. Pearl, J.: Causality: Models, Reasoning, and Inference. Cambridge University Press, 

Cambridge (2000) 
12. Pruss, A.R.: David Lewis’s Counterfactual Arrow of Time. Noûs 37(4), 606–637 (2003) 
13. Schaffer, J.: Counterfactuals, Causal Independence and Conceptual Circularity. 

Analysis 64(4), 299–309 (2004) 
14. Sloman, S.A.: Casual Models: How People Think about the World and Its Alternatives. 

Oxford University Press, Oxford (2009) 
15. Stalnaker, R.: A Theory of Conditional. In: Harper, W.L., Stalnaker, R., Pearce, G. (eds.) 

Ifs: Conditionals, Belief, Decision, Chance, and Time, pp. 41–55. D. Reidel Publishing 
Company, Boston (1968) 



Tableaux for Single-Agent Epistemic PDL
with Perfect Recall and No Miracles

Yanjun Li

Department of Philosophy, Peking University, China
Faculty of Philosophy, University of Groningen, The Netherlands

Y.J.Li@rug.nl

Abstract. Epistemic propositional dynamic logic (EPDL) is a combina-
tion of epistemic logic and propositional dynamic logic. The properties,
perfect recall and no miracles, capture the interactions between actions
and knowledge. In this paper, we present a tableau-based decision proce-
dure for deciding satisfiability of single-agent EPDL with perfect recall
and no miracles. We prove the soundness and completeness of the tableau
procedure with respect to models with perfect recall and no miracles.

1 Introduction

Temporal epistemic logic (TEL) [5], [10] is a logic for reasoning about informa-
tion and its development over time by virtue of the combination of temporal
and epistemic operators. When we consider reasoning about information and its
developing over programs, the natural way is to combine epistemic logic (EL)
[9] and propositional dynamic logic (PDL) [6], as in [12,13,14]. In this paper, we
call the combination of EL and PDL as epistemic propositional dynamic logic
(EPDL).

This paper focus on the single-agent EPDL with perfect recall (PR) and no
miracles (NM) [8], [16], which are properties that capture the interactions between
actions and knowledge. PR means that for each action a, if executing a at s results
in t and the agent can tell s from all such s′ that executing a at s′ can result
in t′, the agent then can also tell t from t′. In other words, the agent can tell t
from t′ since he perfectly remembers that he can tell states resulting in t from
states resulting in t′. NM means that if the agent cannot tell s and s′ apart, the
agent will not be able to distinguish states resulting from executing a at s or s′.
Intuitively, the miracle here means that the agent cannot distinguish two states
initially but nevertheless he can distinguish the states resulting from executing
the same action on these two states.

To motivate EPDL with PR and NM, we observe that it is natural to think of
certain knowledge changes over actions in terms of EPDL models with PR and
NM. Let us consider the following example (it is a simplified version of the Monty
Hall problem). There are three doors: behind one door is a car; behind the others
are goats. Initially the agent does not know what is behind the doors. Now an
action happens, that is, one door with a goat is opened. Subsequently, the agent
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Fig. 1. Knowledge development

knows that the car is not behind the opened door, but he still does not know
behind which door is the car. We use A to denote that the car is behind the first
door, and Ab to denote that the car is behind the first door and the second door
is opened. The action a means to open the first door. The others are similar.
The model pictured in Figure 1 represents the knowledge development in this
example, and it has the properties of PR and NM.
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Fig. 2. Knowledge evolution in conformant planning

Furthermore, EPDL with PR and NM is a natural way to model the conformant
planning problems (cf. [18]). Conformant planning is the problem of finding a
linear plan (a sequence of actions) that is guaranteed to achieve a goal in presence
of uncertainty about the initial state (cf. [15]). Considering the example depicted
in Figure 2a, the initial uncertainty set is {s1, s2} and the goal set is {s3, s4}.
A knowledge state is a subset of the state space, which records the uncertainty
during the execution of a plan, e.g., {s1, s2} is an initial knowledge state. In order
to make sure a goal is achieved eventually, it is crucial to track the transitions of
knowledge states during the execution of the plan. Figure 2b, which sketches an
EPDL model with PR and NM, displays the knowledge development over actions.
From Figure 2b, we can see that the action sequence aa is a solution.1 In [18], it
is shown that the existence of a solution for a conformant planning problem can
be expressed in the language of EPDL. Therefore, the satisfiability for EPDL
with PR and NM is interesting.

This paper presents a tableau-based decision procedure for deciding satisfia-
bility of single-agent EPDL in models with PR and NM. We build on methods that
is developed in [4], [7], [11], [17] and is an adaptation of the method in [1,2] which
1 All sequences b, ba and aaa are not solutions since they are not executable at s2.
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introduced a tableau-based procedure for single-agent linear TEL with perfect
recall and no learning. What is new in this paper is 1) we simplify certain al-
gorithms shown in [2]; 2) EPDL has branching actions and this combining with
the property NM adds difficulty to the tableau procedure; 3) compared to TEL
which has only one kind of temporal transition, next, and simpler eventualities,
programs in EPDL are structured and can be extremely complicated.

The paper is organized as follows. Section 2 introduces the language, model
and semantics of EPDL. Section 3 presents the tableau procedure for EPDL
with PR and NM. Section 4 proves the soundness and completeness of the tableau
procedure, and we conclude in Section 5 and point to future work.

2 Epistemic Propositional Dynamic Logic

This section will present the language, model and semantics of EPDL, and de-
fine the properties of perfect recall and no miracles. The language of EPDL is
constructed by combining knowledge and program operators.

Definition 1 (Language). Let Φ0 and Π0 be two countably infinite sets of
propositions and actions, respectively. The language of EPDL is defined in BNF
as follows:

φ ::= � | p | ¬φ | (φ ∧ φ) | [π]φ | Kφ

π ::= a |?φ | π;π | π + π | π∗

where p ∈ Φ0 and a ∈ Π0. We will often omit parentheses when doing so
ought not cause confusion. The language has expressions of two sorts: formulas
φ and programs π. The set of all programs is denoted Π, and the set of all
formulas is denoted Φ. As usual, we use the following abbreviations: ⊥ := ¬�,
φ ∨ ψ := ¬(¬φ ∧ ¬ψ), φ → ψ := ¬φ ∨ ψ, 〈a〉φ := ¬[a]¬φ, K̂φ := ¬K¬φ.
Definition 2 (Model). A model M is a tuple 〈SM, {RM

a | a ∈ Π0}, RM, V M〉,
where SM is a nonempty set of states, RM

a is a binary relation on SM, RM is
an equivalence relation on SM and V M : Φ0 → P(SM) is a function. A pointed
model is a pair (M, s) consisting of a model M and a state s ∈ SM.

Given a model M, we also write (s, t) ∈ RM
a as s

a→M t or t ∈ RM
a (s), and

write (s, t) ∈ RM as s ∼M t or t ∈ RM(s). If the model M is obvious from the
context, we omit it as an index.

Definition 3 (Semantics). Given a pointed model (M, s) and a formula φ, we
write M, s � φ to mean (M, s) satisfies φ. The satisfaction relation � is defined
as usual by combining the semantics of EL and that of PDL:

M, s � �
M, s � p ⇐⇒ s ∈ V (p)
M, s � ¬φ ⇐⇒ M, s � φ
M, s � φ ∧ ψ ⇐⇒ M, s � φ and M, s � φ
M, s � Kφ ⇐⇒ s ∼ t implies M, t � φ

M, s � [π]φ ⇐⇒ s
π→ t implies M, t � φ

a→ = RM
a

?φ→ = {(s, s) | M, s � φ}
π1+π2→ =

π1→ ∪ π2→
π1;π2→ =

π1→ ◦ π2→
π∗→ = (

π→)�
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A formula φ is satisfiable if M, s � φ for some model M and a state s ∈ SM.

Note that each program π can be viewed as a set of computation sequences,
denoted L(π), which are sequences of actions in Π0 and formulas in Φ. The
sequence set L(π) is as follows.

L(a) = {a}
L(?φ) = {φ}
L(π;π′) = {ση | σ ∈ L(π) and η ∈ L(π′)}
L(π + π′) = L(π) ∪ L(π′)
L(π∗) = {ε} ∪⋃

n>0(L(π; · · · ;π︸ ︷︷ ︸
n

)) where ε is empty sequence

Proposition 1. For each model M and each program π ∈ Π, we have that
π→=

⋃
σ∈L(π)

σ→.

Definition 4 (Properties of model). A model M has the property of

– Perfect Recall (PR) if for all a ∈ Π0 and all s, t, t′ ∈ SM, s a→ t and t ∼ t′

imply that there exists s′ ∈ SM such that s ∼ s′ and s′ a→ t′.
– No Miracles (NM) if for all a ∈ Π0 and all s, s′, t, t′ ∈ SM, s a→ t, s ∼ s′ and

s′ a→ t′ imply t ∼ t′.

Intuitively, PR means that the agent can tell t from t′ since he perfectly remem-
bers that he can tell states resulting in t from states resulting in t′. NM means
there are no such miracles that the agent cannot distinguish two states initially
but nevertheless he can distinguish the states resulting from executing the same
action on these two states.

In the rest of this paper, we will always assume that all the models have the
properties of PR and NM. Moreover, since it follows by bisimulation invariance
that EPDL has tree model property (cf. [3]), we also assume all the models have
the property that for each a ∈ Π0, s a→ t and s′ a→ t imply that s = s′. Next we
will focus on the problem whether a given formula is satisfiable in models with
PR and NM. This problem is tackled by building a tableau from an input formula
and deciding the tableau is open or not. Therefore, the key is how to build a
proper tableau from an input formula.

3 Tableaux for EPDL with PR and NM

This section will present how to construct a tableau from an input formula.
To deal with the complication arising with interacting actions and knowledge,
the tableau procedure will act on bubbles. A bubble, defined below, is such a
set of states that represents a possible epistemic cluster, and it is epistemically
sufficient and knowledge-consistent. Eventually, it turns out to be that each
relevant formula of the form ¬Kφ will be realized within bubbles. The tableau
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procedure, then, will only need to focus on the realization of formulas in the
shape of ¬[π]φ and the properties of PR and NM. Before the tableau procedure,
we introduce some terminologies.

Let FL(φ) be the Fisher-Ladner closure generated by φ. Note that FL(φ)
is finite for all φ ∈ Φ. Given a formula set Γ , we also use FL(Γ ) to mean⋃

φ∈Γ FL(φ). Next we categorise formulas as α/β-formulas, each with two com-
ponents, as shown in Table 1.

Table 1. α- and β-formulas

α ¬¬φ φ ∧ ψ [π1; π2]φ ¬[π1;π2]φ ¬[?ψ]φ [π1 + π2]φ [π∗]φ Kφ

α1 {φ} {φ} {[π1][π2]φ} {¬[π1][π2]φ} {ψ} {[π1]φ} {φ} {φ}
α2 ∅ {ψ} ∅ ∅ {¬φ} {[π2]φ} {[π][π∗]φ} ∅
β ¬(φ ∧ ψ) ¬[π1 + π2]φ ¬[?ψ]φ ¬[π∗]φ
β1 {¬φ} {¬[π1]φ} {¬ψ} {¬φ}
β2 {¬ψ} {¬[π2]φ} {φ} {φ,¬[π][π∗]φ}

Definition 5 (Fully expanded set). A finite set Δ of formulas is fully ex-
panded if it satisfies the following conditions.

– Δ is not patently inconsistent, i.e. it does not contain both φ and ¬φ;
– α ∈ Δ implies α1 ⊆ Δ and α2 ⊆ Δ;
– β ∈ Δ implies β1 ⊆ Δ or β2 ⊆ Δ;
– For each Kφ ∈ FL(ψ) where ψ ∈ Δ, either Kφ ∈ Δ or ¬Kφ ∈ Δ.

A fully expanded set will be called a state. Given a finite set of formulas Γ ,
let S(Γ ) be the set of states generated by Γ (the procedure are omitted due to
the lack of space). When Γ = {φ}, we also write it as S(φ). For each Δ ∈ S(Γ ),
we have that Δ ⊆ FL(Γ ). Given a formula set Δ, let K(Δ) = {Kφ | Kφ ∈ Δ},
Epi(Δ) = K(Δ) ∪ {¬Kφ | ¬Kφ ∈ Δ} and [a]−(Δ) = {φ | [a]φ ∈ Δ}.
Definition 6 (Bubble). Any finite and non-empty set of states is called a pre-
bubble. A bubble is a pre-bubble B such that:

– B is epistemically sufficient, i.e. for each Δ ∈ B and each ¬Kφ ∈ Δ, there
exists a set Δ′ ∈ B such that ¬φ ∈ Δ′;

– B is knowledge-consistent, i.e. K(Δ) = K(Δ′) for all Δ,Δ′ ∈ B.

Definition 7 (Satisfiability of a (pre-)bubble). Given a (pre-)bubble B and
a pointed model (M, s), let [s] be the equivalence class containing s, i.e. {s′ ∈
SM | s ∼ s′}. If there is a surjective function f : [s] → B such that M, s � f(s),
we say B is satisfied by (M, s) and f , written as M, s �f B. If there are such
a pointed model and such a function, we say B is satisfiable (or sat).

A tableau T is a graph with bubbles and labelled edges a→ with labels from
Π0. As mentioned above, a bubble is an epistemic cluster. Let B and B′ be two
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bubbles. Intuitively, B a→ B′ means that there are Δ ∈ B and Δ′ ∈ B′ such
that Δ

a→ Δ′. Thus, we annotate Δ ∈ B with Δ′ ∈ B′, indicating Δ is the
a-predecessor of Δ′. The states in the first layer will be annotated with ∅ since
they have no predecessors.

Let B and B′ be two bubbles from a tableau such that B a→ B′. The property
of PR requires that each state in B′ has an a-predecessor in B. In other words,
there must be ‘enough’ states in B. From the construction of the tableau below,
we will see that each state Δ′ ∈ B′ is annotated with a state Δ ∈ B and
[a]−(Δ) ⊆ Δ′. The property of NM requires that all formulas of the form ¬[a]φ
from B will be realized in B′, which is also guaranteed from the construction of
the tableau.

The tableau procedure for EPDL with PR and NM consists two phases: a con-
struction phase and an elimination phase. In the construction phase, a pre-
tableau with pre-bubbles and bubbles is established. In the elimination phase,
the pre-tableau is pruned to an initial tableau and then a final tableau.

3.1 Construction of the Pre-tableau

Each state Δ ∈ S(φ) is a potential expansion of φ. For any state belonging to
the same epistemic cluster as Δ, Epi(Δ) is the minimal set of formulas that it
contains, so there exists P ⊆ S(Epi(Δ)) such that {Δ} ∪ P has enough states.
The intuition of the construction from an input φ is that initially we make
{Δ} ∪ P a pre-bubble for each Δ ∈ S(φ) and each P ⊆ S(Epi(Δ)). To continue
the construction, we need to realize formulas of the forms ¬Kψ and ¬[a]ψ and
keep the properties of PR and NM. The procedure ExtendToBubbles extends
a pre-bubble to all potential bubbles, and this procedure realizes all ¬Kψ in
a bubble. The procedure SuccessorPreBubbles realizes ¬[a]ψ in a bubble.
What is more, PR and NM are guaranteed in these procedures.

The construction of the pre-tableau for φ works as follows.

1. For each Δ ∈ S(φ) and each P ⊆ S(Epi(Δ)), make the pre-bubble {Δ} ∪ P
as a node and annotate each state in it with ∅.

2. Expand each pre-bubble A into bubbles by calling the procedure Extend-

ToBubbles(A), which is presented in Algorithm 3. For each bubble B′ ∈
ExtendToBubbles(A), add B′ as a node if B′ is not already there. We
then produce an arrow A ��� B′.

3. For each bubble B, if there exists a formula ¬[a]ψ ∈ Δ for some Δ ∈ B
and some a ∈ Π0, produce successor pre-bubbles by calling the procedure
SuccessorPreBubbles(B, a), which is presented in Algorithm 4. For each
pre-bubble A ∈ SuccessorPreBubbles(B, a), add A as a node if A is not
already there. We then produce an arrow B

a→ A.
4. Repeat steps 2 and 3 until no new bubbles or pre-bubbles are created.

Since each bubble or pre-bubble in the construction is a subset of P(FL(φ)),
the pre-tableau for φ is a finite graph, and the construction of the pre-tableau
will terminate. The following are all the procedures, which are adaptations from
[2], and we will also show that each procedure functions well.
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KnowledgeConsistent. The procedure KnowledgeConsistent takes a
pre-bubble A as input and returns a set of knowledge-consistent pre-bubbles. To
make the pre-bubble A knowledge-consistent, it seems that each Δ ∈ A should
be extended to Δ ∪ Σ for some Σ ∈ S(Epi(A) \ Epi(Δ)). However, this is not
sufficient to preserve the satisfiability. For example, let M, s �f A with [s] =
{s, s′, t}, A = {Δ,Δ′} and f = {s, s′ �→ Δ, t �→ Δ′}. Let Epi(A) = Epi(Δ′). If
M, s � Σ and M, s′ � Σ′ for some different states Σ,Σ′ ∈ S(Epi(A) \Epi(Δ)),
then to make A knowledge-consistent and preserve the satisfiability of A, we need
to extend A to A′ = {Δ ∪Σ,Δ ∪Σ′, Δ′}. For Algorithm 1, it follows that A′ is
in the returned set. We then can have M, s �f ′

A′ with f ′ = {s �→ Δ ∪Σ, s′ �→
Δ ∪Σ′, t �→ Δ′}.

The algorithm is presented in Algorithm 1. It can be shown that each pre-
bubble A′ returned by KnowledgeConsistent(A) is knowledge-consistent and
that A is sat implies some returned pre-bubble is also sat.

Algorithm 1. Making a pre-bubble knowledge-consistent
input : Pre-bubble A
output: A set of pre-bubbles

1 Procedure KnowledgeConsistent(A)
2 Let Δ1, · · · ,Δn be all the sets in A where n = |A|;
3 epi ← Epi(A);
4 Γ ← {Kφ ∈ K(Δi) | 1 ≤ i ≤ n};
5 if K(Δi) = Γ for each 1 ≤ i ≤ n then return A;
6 else
7 for i ← 1 to n do
8 epi′ ← epi \Epi(Δi);
9 Alti ← {Δi ∪Σ | Σ ∈ S(epi′),Δi ∪Σ is not patently inconsistent.};

/* We annotate Δi ∪Σ with the annotation of Δi. */
10 if Alti = ∅ then return ∅;
11 Q ← ∅;
12 Let P (Alti) be the set of all non-empty subsets of Alti for each 1 ≤ i ≤ n;
13 foreach (D1, · · · , Dn) ∈ P (Alt1)× · · · × P (Altn) do
14 Add

⋃
{D1, · · · , Dn} to Q;

15 return Q;

EpistemicallySufficient. The procedure of EpistemicallySufficient
takes a pre-bubble A as input and returns a set of epistemically sufficient pre-
bubbles. To make A epistemically sufficient, it seems that for each unrealized
¬Kφ from A, we need to extend A by adding some Σ ∈ S(¬φ). However, there
are several problems.

Firstly, if A is knowledge-consistent, then to preserve the knowledge consis-
tence, it seems that we should add some Σ ∈ S(Epi(A)∪ {¬φ}) to A. Secondly,
if B a→ A it follows by PR that Σ needs to have an a-predecessor Δ ∈ B. This
means we should add Δ′ ∪Σ to A for certain Δ′ ∈ S([a]−(Δ)). We assume that
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A has enough states, which means that all such Δ′ are already in A. Therefore,
if we want to extend A with some Σ ∈ S(Epi(A)∪ {¬φ}), it seems that we only
need to add Δ′ ∪Σ to A for certain Δ′ ∈ A.

Finally, if there are more than one unrealized formulas ¬Kφ1 · · · ¬Kφn from
A such that they are realized by the same state, then to make A epistemically
sufficient and preserve the satisfiability of A, we should add Δ′ ∪ Σ for some
Δ′ ∈ A and some Σ ∈ S(Epi(A) ∪ {¬φ1 · · · ¬φ2}). For example, let M, s �f A
with [s] = {s, s′}, A = {Δ,Δ′} and f = {s �→ Δ, s′ �→ Δ′}. Let A be knowledge-
consistent, and there are formulas ¬Kφ1 ∈ Δ, ¬Kφ2 ∈ Δ′ which are unrealized
in A. If M, s � ¬φ1 ∧¬φ2 and M, s′ � φ1 ∧ φ2, we have M, s � Σ for some Σ ∈
S(Epi(A) ∪ {¬φ1,¬φ2}). To make the pre-bubble A epistemically sufficient and
preserve the satisfiability of A, we need to extend A to A′ = {Δ∪Σ,Δ′}. From
Algorithm 2, it follows that A′ is in the returned set. We then have M, s �f ′

A′

with f ′ = {s �→ Δ ∪Σ, s′ �→ Δ′}.
The algorithm is presented in Algorithm 2. It can be shown that A is

knowledge-consistent implies each pre-bubble A′ returned by Epistemically-

Sufficient(A) is a bubble and that A is sat implies some returned bubble is
also sat.

ExtendToBubbles. The procedure ExtendToBubbles(A), which is pre-
sented in Algorithm 3, extends a pre-bubble A to bubbles. We firstly make
the pre-bubble A knowledge-consistent (KnowledgeConsistent(A)) and then
make each knowledge-consistent pre-bubble A′ ∈ KnowledgeConsistent(A)
epistemically sufficient (EpistemicallySufficient(A′)). The properties of the
procedures KnowledgeConsistent and EpistemicallySufficient guaran-
tee that each B ∈ ExtendToBubblesA is a bubble extension of A and that A
is sat implies some returned bubble is also sat.

SuccessorPreBubbles. The procedure SuccessorPreBubbles takes a
bubble B and an action a ∈ Π0 as input and returns a set of a-successor pre-
bubbles for B. If a pre-bubble A is returned, it follows by NM that all ¬[a]φ from
B is realized in A. Similar to the case in EpistemicallySufficient, formulas
¬[a]φ1 · · · ¬[a]φn ∈ Δ ∈ B might be realize by the same state, so there might be
state Σ ∈ S([a]−(Δ) ∪ {¬φ1 · · · ¬φn}) in some returned successor pre-bubble.

Furthermore, the property PR requires that each epistemic cluster has enough
states. Step 1 of the construction of the pre-tableau guarantees that certain
bubble in the first layer has enough states. To preserve PR, our strategy is that
if the bubble B has enough states and {Ω1, · · · , Ωk} is the state set realizing
all ¬[a]φ from B, let the pre-bubble {Ω1, · · · , Ωk} ∪ P is in the returned set
for each P ⊆ H where H =

⋃
Δ∈B S([a]−(Δ)). This guarantees certain returned

pre-bubble has enough states.
The algorithm is presented in Algorithm 4. It can be shown that, for each

A ∈ SuccessorPreBubblesB, all ¬[a]φ-formulas from states in B is realized
in A and the annotation of each state in A is some state in B. What is more, if
B is sat then some returned A is also sat.
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Algorithm 2. Making a pre-bubble epistemically sufficient
input : Pre-bubble A
output: A set of bubbles

1 Procedure EpistemicallySufficient(A)
2 epi ← Epi(A);
3 Γ ← {¬Kφ ∈ epi | ¬φ �∈ Δ for each Δ ∈ A};
4 if Γ = ∅ then return A;
5 else
6 Let ¬Kφ1, · · · ,¬Kφn be the formulas in Γ where n = |Γ |;
7 for i ← 1 to n do
8 Alti ← {Δ ∪Σ | Σ ∈ S(epi ∪ {¬φi}), Δ ∈ A and Δ ∪Σ is not

patently inconsistent.}; /* We annotate Δ ∪Σ with the
annotation of Δ. */

9 if Alti = ∅ then return ∅;
10 EAlti ← Alti for each 1 ≤ i ≤ n;
11 foreach (Δ1 ∪Σ1, · · · , Δn ∪Σn) ∈ Alt1 × · · · × Altn do
12 foreach {i1, · · · , ik} ⊆ {1, · · · , n} do
13 if all Δij are the same where 1 ≤ j ≤ k and Δi1 ∪Σi1 · · ·Σik is not

patently inconsistent then
14 Ω ← Δi1 ∪Σi1 · · ·Σik ; /* Annotate Ω with the annotation

of Δi1. */
15 Add Ω to EAlti1 · · ·EAltik
16 Q ← ∅;
17 foreach (Ω1, · · · , Ωn) ∈ EAlt1 × · · · × EAltn do
18 foreach P ⊆ A do
19 A′ ← P ∪ {Ωi | 1 ≤ i ≤ n};
20 Add A′ to Q;
21 return Q;

Algorithm 3. Expanding a pre-bubble to bubbles
input : A pre-bubble A
output: A set of bubbles

1 Procedure ExtendToBubbles(A)
2 Q ← ∅;
3 foreach A′ ∈ KnowledgeConsistent(A) do
4 foreach A′′ ∈ EpistemicallySufficient(A′) do
5 Add A′′ to Q;
6 return Q;
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Algorithm 4. Making successor pre-bubbles for a bubble
input : A bubble B and an action a
output: A set of pre-bubbles

1 Procedure SuccessorPreBubbles(B,a)
2 Let Δ1, · · · ,Δn be all the sets in B such that there exists a ¬[a]-formula in

Δi for each 1 ≤ i ≤ n;
3 Let ¬[a]φi1 , · · · ,¬[a]φim be all the ¬[a]-formulas in Δi for each 1 ≤ i ≤ n;
4 for i ← 1 to n do
5 for j ← 1 to m do
6 Alti,j ← {Δ′ ∪ Γ | Γ ∈ S(¬φij ),Δ

′ ∈ S([a]−(Δi)),Δ
′ ∪ Γ is not

patently inconsistent.}; /* Annotate Δ′ ∪ Γ with Δi. */
7 if Alti,j = ∅ then return ∅;
8 h ← 1m + · · ·+nm; /* Then we can arrange all Alt as Alt1 · · ·Alth. */
9 EAlti ← Alti for each 1 ≤ i ≤ h;

10 foreach (Δ′
1 ∪ Γ1, · · · ,Δ′

hΓh) ∈ Alt1 × · · · ×Alth do
11 foreach {i1, · · · , ik} ⊆ {1, · · · , h} do
12 if all Δ′

ij
are the same where 1 ≤ j ≤ k and Δi1 ∪ Γi1 · · ·Γik is not

patently inconsistent then
13 Ω ← Δ′

i1 ∪ Γi1 · · ·Γik ; /* Annotate Ω with the annotation
of Δi1. */

14 Add Ω to EAlti1 · · ·EAltik
15 Let B = {Δ1 · · · ,Δk} where k = |B|;
16 for l ← 1 to k do
17 if [a]−(Δl) = ∅ then
18 AAltl = {{
}}; /* Annotate {
} with Δl. */
19 else
20 AAltl ← {S([a]−(Δl))}; /* Annotate each state in AAltl with

Δl. */
21 H ← AAlt1 ∪ · · · ∪AAltk;
22 Q ← ∅;
23 foreach (Ω1, · · · , Ωh) ∈ EAlt1 × · · · ×EAlth do
24 foreach P ⊆ H do
25 Add {Ω1, · · · , Ωh} ∪ P to Q;
26 return Q;

3.2 Construction of the Initial and Final Tableau

From the construction of the pre-tableau, we know that if the pre-bubble A is
an a-successor of a bubble B for some a ∈ Π0 and the bubble B′ is a bubble-
extension of A, namely B

a→ A ��� B′, then the annotation of each state Δ′ ∈ B′

is some state Δ ∈ B. The initial tableau is produced from the pre-tableau by
removing the pre-bubbles and redirecting the arrows. For example, if B a→ A ���
B′, we then delete the pre-bubble A and add an a-arrow from B to B′, namely
B

a→ B′.
To check the realization of the formula of the form ¬[π]φ, we add action arrows

between states in two successive bubbles, and add reflective ψ-arrows at states.
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For example, if B a→ B′ and the annotation of the state Δ′ ∈ B is some state
Δ ∈ B then we add an a-arrow Δ

a
Δ′. For each bubble B and each state

Δ ∈ B, if φ ∈ Δ then we add an arrow Δ
φ

Δ

Definition 8 (State path). Given a tableau T , a state sequence (Δi)0≤i≤n and
a computation sequence (αi)1≤i≤n, we say (Δi−1αiΔi)1≤i≤n is a state path from
T if there is a bubble sequence (Bi)0≤i≤n such that 1) Δi ∈ Bi; 2) Bi−1

αi→ Bi if
αi ∈ Π0; 3) Δi−1

αi Δi. Especially, (Δ) is also a state path for each Δ ∈ B ∈ T .

Definition 9 (Realization). Given a tableau T , a state path (Δi−1αiΔi)1≤i≤n

from T and ¬[π]φ ∈ Δ ∈ B, we say (Δi−1αiΔi)1≤i≤n realizes ¬[π]φ ∈ Δ ∈ B if
Δ0 = Δ, ¬φ ∈ Δn and (αi)1≤i≤n ∈ L(π).

The final tableau T is obtained by the following procedure.

1. Let T0 be the initial tableau.
2. If there is ¬[π]φ ∈ Δ ∈ B ∈ Tn such that it cannot be realized by any state

path from Tn, then let Tn+1 = Tn \ {B}.
3. Repeat steps 2 until no bubbles are deleted, i.e. Tn+1 = Tn.

Definition 10. The final tableau T for φ is open if there is a bubble B in T
and Δ ∈ B such that φ ∈ Δ.

4 Soundness and Completeness

In this section, we will show that the tableau constructed in the previous section
is proper, i.e. it is sound and complete. Due to the lack of space, we omit the
proofs. We leave them to a complete version of the paper.

Theorem 1 (Soundness). If φ is sat, the final tableau T for φ is open.

The sketch of the proof is that if the input formula φ is sat, then there is also
a satisfiable state Δ ∈ S(φ). Consequently there is a satisfiable bubble B in
the initial tableau such that Δ ∈ B. The nutshell is to show the bubble B will
survive in the final tableau. The idea is to prove that all satisfiable bubbles will
survive in the final tableau.

Theorem 2 (Completeness). If the final tableau T for φ is open, φ is sat.

To show the completeness, we need to construct a model on which φ is satisfied
if the final tableau for φ is open. The sketch is that we derive a deterministic
tree of bubbles from the open final tableau such that each formula of the form
¬[π]φ is realized on the tree. We then can show that this deterministic bubble
tree is a model with PR and NM and that φ is satisfied on it.
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5 Conclusion

This paper extended and adapted the incremental tableau procedure sketched
in [1,2] to work for EPDL with the properties of PR and NM which capture the
interactions between knowledge and actions. Therefore, this paper developed a
practically implementable method for deciding the satisfiability of EPDL formula
in models with PR and NM. For future directions, we could extend and adapt this
method for the other combination of the interaction properties, such as perfect
recall, no miracles and no learning. The other direction is to investigate the
complexity of the satisfiability in EPDL with these properties.
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Abstract. The existing approaches to formulate the semantics of proba-
bilistic argumentation are based on the notion of possible world. Given a
probabilistic argument graph with n nodes, 2n subgraphs are constructed
and their extensions under a given semantics are computed. Then, the
probability of a set of arguments E being an extension is equal to the
sum of the probabilities of all subgraphs each of which has the exten-
sion E. Since in many cases, computing the extensions of a subgraph
is computationally expensive, these approaches are fundamentally ineffi-
cient or infeasible. In order to cope with this problem, the present paper
proposes a novel approach to formulate the semantics of probabilistic
argumentation by charactering subgraphs w.r.t. an extension. The re-
sults show that under some semantics (admissible, complete, stable), the
probability of a set of arguments E being an extension can be obtained
without computing the extensions of subgraphs, while under some other
semantics (preferred, grounded), only partial computation of extensions
is needed.

Keywords: Probabilistic Argumentation, Semantics, Computational
Complexity, Computational Efficiency, Characterized Subgraphs.

1 Introduction

In the past two decades, argumentation has been a very active research area in
the field of knowledge representation and reasoning, as a nonmonotonic formal-
ism to handle inconsistent and incomplete information by means of constructing,
comparing and evaluating arguments. In 1995, Dung proposed a notion of ab-
stract argumentation framework [1], which can be viewed as a directed graph
(called argument graph, or defeat graph) G � �A,R�, in which A is a set of
arguments and R � A�A is a set of attacks. Given an argument graph, a fun-
damental problem is to determine which arguments can be regarded as justified.
According to [1], extension-based semantics is a formal way to answer this ques-
tion. Here, an extension represents a set of arguments that are considered to be
acceptable (i.e. able to survive the conflict) together, under a certain semantics
which is defined according to a set of evaluation criteria [2]. Dung’s abstract
argumentation theory lays a concrete foundation for the development of various
argument systems.
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However, in classical argumentation theory, the uncertainty of arguments
and/or attacks is not considered. So, it could be regarded as a purely quali-
tative formalism. But, in the real world, arguments and/or attacks are often
uncertain. So, in recent years, the importance of combining argumentation and
uncertainty has been well recognized, and probability-based argumentation is
gaining momentum [3–7]. In a probabilistic argument graph (or PrAG in brief),
each argument is assigned with a probability, denoting the likelihood of the argu-
ment appearing in the graph1. Similar to classical argumentation theory, given
a PrAG, a basic problem is to define the status of arguments. The existing ap-
proaches are based on the notion of possible world [3–5, 8]. Given a PrAG with
n nodes, 2n subgraphs are constructed (each subgraph corresponds to a possi-
ble world of arguments appearing in the graph). Then, the extensions of each
subgraph is computed according to classical argumentation semantics. Since in
many cases, computing the extensions of a subgraph is computationally expen-
sive, these approaches are fundamentally inefficient or infeasible [9, 10]. This
gives rise to the following research problem:

Research Problem. How to formulate the semantics of probabilistic argu-
mentation (i.e., the probability of a set of arguments being an extension),
such that the computation of extensions of subgraphs can be avoided or
decreased?

In order to cope with this problem, the present paper proposes a novel ap-
proach to formulate the semantics of probabilistic argumentation by character-
izing subgraphs w.r.t. an extension. In this approach, the probability of a set of
arguments E being an extension is obtained by identifying a set of subgraphs
that have the extension E according to some conditions, rather than by directly
computing the extensions of all subgraphs.

The rest of this paper is organized as follows. In Section 2, we review the
notions of abstract argumentation and probabilistic abstract argumentation. In
Section 3, we introduce a novel notion: characterized subgraphs w.r.t. an exten-
sion, with specific definitions and properties. In Section 4, semantics of proba-
bilistic argumentation is introduced on the basis of the notion of characterized
subgraphs. Then, in Section 5, we conclude the paper and point out some future
work.

2 Preliminaries

2.1 Classical Abstract Argumentation

The notions of (classical) abstract argumentation are originally introduced in [1],
including abstract argumentation framework (called argument graph, or classical
argument graph, in this paper) and extension-based semantics.

1 A probabilistic argument graph can be defined by assigning probabilities to argu-
ments [3, 4, 8], or attacks [7], or both arguments and attacks [5]. For simplicity, in this
paper, we only consider the probabilistic argument graph in which only arguments
are associated with probabilities.
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An argument graph is a directed graphG � �A,R�, in which A is a set of nodes
representing arguments and R is a set of edges representing attacks between the
arguments.

Definition 1. An argument graph is a tuple G � �A,R�, where A is a set of
arguments, and R � A � A is a set of attacks. For convenience, sometimes we
use args�G� to denote A.

As usual, we say that argument α � A attacks argument β � A iff �α, β� � R.
If E � A and α � A then we say that α attacks E iff there exists β � E such
that α attacks β, that E attacks α iff there exists β � E such that β attacks α,
and that E attacks E� iff there exist β � E and α � E� such that β attacks α.
Given G � �A,R�, for α � A we write α�

G for �β � �β, α� � R	; for E � A we
write E�

G for �β � 
α � E : �β, α� � R	 and E�
G for �β � 
α � E : �α, β� � R	.

Formally, we have the following formulas.

α�
G � �β � �β, α� � R	 (1)

E�
G � �β � 
α � E : �β, α� � R	 (2)

E�
G � �β � 
α � E : �α, β� � R	 (3)

If without confusion, we write α�, E� and E� for α�
G, E

�
G and E�

G respec-
tively.

Given an argument graph, according to certain evaluation criteria, sets of ar-
guments (called extensions) are identified as acceptable together. Two important
notions for the definitions of various kinds of extensions are conflict-freeness and
acceptability of arguments.

Definition 2. Let G � �A,R� be an argument graph, and E � A be a set of
arguments.

– E is conflict-free iff �α, β � E, such that �α, β� � R.
– An argument α � A is acceptable w.r.t. (defended by) E, iff ��β, α� � R,

γ � E, such that �γ, β� � R.

Based on the above two notions, several classes of (classical) extensions can
be defined as follows.

Definition 3. Let G � �A,R� be an argument graph, and E � A a set of
arguments.

– E is admissible iff E is conflict-free, and each argument in E is acceptable
w.r.t. E.

– E is preferred iff E is a maximal (w.r.t. set-inclusion) admissible set.
– E is complete iff E is admissible, and each argument that is acceptable w.r.t.

E is in E.
– E is grounded iff E is the minimal (w.r.t. set-inclusion) complete extension.
– E is stable iff E is conflict-free, and each argument in AE is attacked by

E.



246 B. Liao and H. Huang

In this paper, for convenience, we use σ � �ad, co, pr, gr, st	 to represent
a semantics (admissible, complete, preferred, grounded or stable). An extension
under semantics σ is called a σ-extension. The set of σ-extensions of G is denoted
as Eσ�G�. In G � �A,R�, if A � R � �, then Eσ�G� � ��	.

Example 1. Let G1 � �A1, R1� be an argument graph illustrated as follows.

a �� b�� �� c �� d�� ��

According to Definition 3, G1 has four admissible sets: �, �a	, �b	 and �a, c	,
in which �, �b	 and �a, c	 are complete extensions, �b	 and �a, c	 are pre-
ferred extensions, �a, c	 is the only stable extension, � is the unique grounded
extension.

2.2 Probabilistic Abstract Argumentation

The notions of probabilistic abstract argumentation are defined by combining
the notions of classical abstract argumentation and that of probabilistic theory,
including probabilistic argument graph and its semantics.

According to [8], we have the following definition.

Definition 4. A probabilistic argument graph (or PrAG for short) is a triple
Gp � �A,R, p� where G � �A,R� is an argument graph and p : A � �0, 1� is a
probability function assigning to every argument α � A a probability p�α� that α
appears (and hence a probability 1� p�α� that α does not).

In existing literature, the semantics of a PrAG is defined according to the
notion of possible world. Given a PrAG, a possible world represents a scenario
consisting of some subset of the arguments and attacks in the graph. So, given a
PrAG with n nodes, there are 2n subgraphs. A subgraph induced by a set A� � A
is represented as G� � �A�, R��, in which R� � R� �A� �A��. Under a semantics
σ � �ad, co, pr, gr, st	, the extensions of each subgraph are computed according
to the definition of classical argumentation semantics. Then, the probability that
a set of arguments E � A is a σ-extension, denoted as p�Eσ�, is the sum of the
probability of each subgraph for which E is a σ-extension.

In order to calculate the probability of each subgraph, it is desirable to as-
sume independence of arguments. In [8], the reason why independence can be
assumed is provided. For an argument α in a graph Gp, p�α� is treated as the
probability that α is a justified point (i.e. each is a self-contained, internally
valid, contribution) and therefore should appear in the graph, and 1 � p�α� is
the probability that α is not a justified point and so should not appear in the
graph. So, one may assume that the probability of one argument appearing in a
graph is independent of the probability of some other arguments appearing.

Throughout this paper, we assume the independence of arguments appearing
in a graph. In [11], the authors proposed an approach to relax independence
assumptions in probabilistic argumentation. However, this aspect of research is
out of the scope of the present paper.
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For simplicity, let us abuse the notation, using p�ᾱ� to denote 1�p�α�. Then,
the probability of subgraph G�, denoted p�G��, can be defined as follows.

p�G�� � �Πα�A� p�α�� � �Πα�A�A� p�ᾱ�� (4)

Given a PrAG Gp � �A,R, p�, let Qσ�E� denote the set of subgraphs of Gp,
each of which has an extension E under a given semantics σ � �ad, co, pr, gr,
st	. Based on formula (4), p�Eσ� is defined as follows [8].

p�Eσ� � ΣG��Qσ�E� p�G
�� (5)

Example 2. Let Gp
1 � �A1, R1, p� be a PrAG (illustrated as follows), where

p�a� � 0.5, p�b� � 0.8, p�c� � 0.4 and p�d� � 0.5.

a �� b�� �� c �� d�� ��

0.5 0.8 0.4 0.5

The subgraphs of Gp
1 are presented in Table 1. According to formula (5), there

are 5 preferred extensions with non-zero probability:

p��pr� � p�G15
1 � � p�G16

1 � � 0.06

p��a	pr� � p�G3
1� � p�G4

1� � p�G7
1� � p�G8

1� � 0.3

p��b	pr� � p�G1
1� � p�G2

1� � p�G3
1� � p�G4

1� � p�G9
1� � p�G10

1 �

�p�G11
1 � � p�G12

1 � � 0.8

p��c	pr� � p�G13
1 � � p�G14

1 � � 0.04

p��a, c	pr� � p�G1
1� � p�G2

1� � p�G5
1� � p�G6

1� � 0.2

This example shows that according to the existing possible world-based ap-
proach, in order to compute the probability of a set of arguments being an
extension, we have to compute the extensions of each subgraph, which in many
cases is computationally expensive.

3 Characterized Subgraphs w.r.t. an Extension

In this section, we introduce an approach to formulate the semantics of prob-
abilistic argumentation by characterizing subgraphs w.r.t. an extension, such
that the probability of a set of arguments being an extension can be evaluated
without computing (or with less computation of) the extensions of subgraphs.

First, let us introduce a novel notion σ-subgraph w.r.t. an extension: If a
subgraph has a σ-extension E, then it is called a σ-subgraph w.r.t. E. Formally,
we have the following definition.

Definition 5. Let Gp � �A,R, p� be a PrAG, G� � �A�, R�� be a subgraph of Gp

where A� � A and R� � R � �A� � A��, and E � A be a set of arguments. We
say that G� is a σ-subgraph of Gp w.r.t. E, iff G� has a σ-extension E, where
σ � �ad, co, pr, gr, st	.
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Table 1. Subgraphs of Gp
1

Subgraphs
Probability
of subgraph

Preferred
extensions

G1
1 a� b� c� d� 0.08 �b�, �a, c�

G2
1 a� b� c 0.08 �b�, �a, c�

G3
1 a� b d� 0.12 �a�, �b�

G4
1 a� b 0.12 �a�, �b�

G5
1 a c� d� 0.02 �a, c�

G6
1 a c 0.02 �a, c�

G7
1 a d� 0.03 �a�

G8
1 a 0.03 �a�

G9
1 b� c� d� 0.08 �b�

G10
1 b� c 0.08 �b�

G11
1 b d� 0.12 �b�

G12
1 b 0.12 �b�

G13
1 c� d� 0.02 �c�

G14
1 c 0.02 �c�

G15
1 d� 0.03 ��

G16
1 0.03 ��

Example 3. Consider Gp
1 in Example 2. Given E1 � �a	, G3

1, G
4
1, G

7
1 and G8

1 are
preferred subgraphs of Gp

1.

Then, given a PrAGGp � �A,R, p�, a set of argumentsE � A and a semantics
σ � �ad, co, pr, gr, st	, a function (called subgraph characterization function) is
used to map E to a set of σ-subgraphs of Gp w.r.t. E.

Definition 6. Let Gp � �A,R, p� be a PrAG. Let G � ��B,R� �B �B�� � B �
2A	 be the set of all subgraphs of Gp. A subgraph characterization function under
a semantics σ � �ad, co, pr, gr, st	 (denoted as ρσ) is defined as a mapping:

ρσ : 2A � 2G (6)

such that given E � 2A, for all G� � ρσ�E�, G� is a σ-subgraph of Gp w.r.t. E.

In Definition 6, the function ρσ can be further specified in terms of some
specific conditions.

First, under admissible semantics, we have the following theorem.
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Theorem 1. Let Gp � �A,R, p� be a PrAG, G� � �A�, R�� be a subgraph of
Gp where A� � A and R� � R � �A� � A��, and E � A be a conflict-free set
of arguments. G� is an admissible subgraph of Gp w.r.t. E, iff the following
conditions hold:

– E � A�, which means that all arguments in E appear in G�; and
– �E�E�� �A� � �, which means that every argument in E�E� does not

appear in G�.

Proof. According to Definition 5, we only need to verify that E is an admissible
extension of G�. Since �E�E�� �A� � �, every argument in E is defended by
E. Since E is conflict-free, it follows that E is admissible.

According to theorem 1, the function ρad is specified as follows:

ρad�E� � ��A�, R��A��A��� � A� � 2A : �E � A��� ��E�E���A� � ��	 (7)

Example 4. Consider Gp
1 in Example 2 again. According to formula (7), there

are eight admissible subgraphs w.r.t. �a	: G1
1, G

2
1, . . ., G

8
1 (as shown in the third

column of Table 2), i.e., ρad��a	� � �G1
1, G

2
1, . . . , G

8
1	.

Second, according to the relationship between complete extension and admis-
sible extension, it holds that w.r.t. a given conflict-free set of arguments, every
complete subgraph is an admissible subgraph, but not vice versa. However, in an
admissible subgraph w.r.t. a set E, if all arguments acceptable w.r.t. E is in E,
then the admissible subgraph is a complete subgraph, in which E is a complete
extension of the subgraph. Formally, we have the following theorem.

Theorem 2. Let Gp � �A,R, p� be a PrAG, E � A be a conflict-free set of
arguments, and G� � �A�, R�� be an admissible subgraph of Gp w.r.t. E. Let
G� � �A�, R��, where A� � args�G���E � E�� and R� � R� � �A� � A��.
Then, G� is a complete subgraph of Gp w.r.t. E iff the following condition holds:
�α � A�, α� � �.

Proof. (�:) WhenG� is a complete subgraph ofGp w.r.t. E, assume that 
α � A�

such that α� � �. It follows that α is acceptable w.r.t. E, and therefore E is
not a complete extension, contradicting G� is a complete subgraph w.r.t. E.

(�:) If E is a complete extension, according to Definition 5, G� is a complete
subgraph of Gp w.r.t. E.

According to theorem 2, the function ρco is specified as follows:

ρco�E� � �G� � ρad�E� � �α � args�G���E �E�� : α� � �	 (8)

Example 5. Continue Example 4. Among the eight admissible subgraphs, except
G2

1 and G6
1, others are complete subgraphs w.r.t. �a	 (as shown in the fourth

column of Table 2), i.e., ρco��a	� � �G1
1, G

3
1, G

4
1, G

5
1, G

7
1, G

8
1	.

With regard to G2
1, let G

�
1 � �A�

1, R
�
1�, where A�

1 � �a, b, c	��a	 � �b	� � �c	
and R�

1 � �. So, c� � �, and therefore G2
1 is not a complete subgraph w.r.t.

�a	. Similarly, G6
1 is not a complete subgraph w.r.t. �a	.
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Table 2. σ-subgraphs of Gp
1 w.r.t. �a�

subgraph
admissible
subgraph
w.r.t. �a�

comple
subgraph
w.r.t. �a�

stable
subgraph
w.r.t. �a�

preferred
subgraph
w.r.t. �a�

grounded
subgraph
w.r.t. �a�

G1
1 a� b� c� d� Yes Yes No No No

G2
1 a� b� c Yes No No No No

G3
1 a� b d� Yes Yes No Yes No

G4
1 a� b Yes Yes Yes Yes No

G5
1 a c� d� Yes Yes No No Yes

G6
1 a c Yes No No No No

G7
1 a d� Yes Yes No Yes Yes

G8
1 a Yes Yes Yes Yes Yes

G9
1 b� c� d� No No No No No

G10
1 b� c No No No No No

G11
1 b d� No No No No No

G12
1 b No No No No No

G13
1 c� d� No No No No No

G14
1 c No No No No No

G15
1 d� No No No No No

G16
1 No No No No No

Third, since every stable extension is a complete extension, and under stable
semantics no argument is undecided, we may infer that a complete subgraph is a
stable subgraph (w.r.t. a set of arguments E), iff all arguments in the subgraph
are included in E �E�. We directly have the following theorem.

Theorem 3. Let Gp � �A,R, p� be a PrAG, E � A be a conflict-free set of
arguments, and G� � �A�, R�� be a complete subgraph of Gp w.r.t. E. Then, G�

is a stable subgraph of Gp w.r.t. E iff the following condition holds: E � E� �
args�G��.

According to theorem 3, the function ρst is specified as follows:

ρst�E� � �G� � ρco�E� � E �E� � args�G��	 (9)

Example 6. Continue Example 5. According to Theorem 3, it is not difficult
to verify that among the six admissible subgraphs, only G4

1 and G8
1 are stable

subgraphs w.r.t. �a	 (as shown in the fifth column of Table 2), i.e., ρst��a	� �
�G4

1, G
8
1	.
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The above theorems and formulas show that under admissible, complete, and
stable semantics, the set of subgraphs with respect to an extension can be iden-
tified without computing the extensions of subgraphs. However, under preferred
and grounded semantics, partial computation of extensions is needed.

Theorem 4. Let Gp � �A,R, p� be a PrAG, E � A be a conflict-free set of
arguments, and G� � �A�, R�� be a complete subgraph of Gp w.r.t. E. Let G� �
�A�, R��, where A� � A��E � E�� and R� � R� � �A� � A��. Then, G� is a
preferred subgraph of Gp w.r.t. E iff the following condition holds: G� has only
one empty admissible extension.

Proof. ���: Assume the contrary, i.e., G� has a non-empty admissible extension
E� � A�. It follows that E �E� is admissible, in that:

– E�E� is conflict-free: both E and E� are conflict-free; E does not attack E�

(otherwise, E� �E� � �, contradicting E� � A� � A��E � E��); E� does
not attack E (otherwise, E attacks E�, contradiction).

– �α � E�, α is acceptable w.r.t. E �E�.

So, E � E� is an admissible extension of G�. So, E is not a preferred extension
of G�, contradicting “G� is a preferred subgraph of Gp w.r.t. E”.
���: Since G� has only one empty admissible extension, no argument in A� �

A��E � E�� is acceptable w.r.t. E or any conflict-free superset of E. It turns
out that E is a preferred extension of G�, i.e., G� is a preferred subgraph of Gp

w.r.t. E.

According to theorem 4, the function ρpr is specified as follows:

ρpr�E� � �G� � ρco�E� � Ead�G�� � ��		 (10)

Example 7. Continue Example 5. Among the six complete subgraphs, except G1
1

and G5
1, others are preferred subgraphs w.r.t. �a	 (as shown in the sixth column

of Table 2). With regard to G1
1, let G

�
1 � �A�

1, R
�
1�, where A

�
1 � �a, b, c, d	��a	�

�b	� � �c, d	 and R�
1 � ��c, d�, �d, c�, �d, d�	. So, there is an admissible set of G�

1

(i.e., �c	) which is not empty, and therefore G1
1 is not a preferred subgraph w.r.t.

�a	. Similarly, G5
1 is not a preferred subgraph w.r.t. �a	.

Theorem 5. Let Gp � �A,R, p� be a PrAG, E � A be a conflict-free set
of arguments, and G� � �A�, R�� be a complete subgraph of Gp w.r.t. E. Let
G� � �A�, R��, where A� � E � E� and R� � R� � �A� � A��. Then, G� is
a grounded subgraph of Gp w.r.t. E iff the following condition holds: E is a
grounded extension of G�.

Proof. ���: Since G� is a grounded subgraph of Gp w.r.t. E, it holds that E
is the grounded extension of G�. Since for all α � A�A�, α does not attack E
(otherwise, E attacks α, and therefore α � E�, contradicting α � A�), the status
of arguments in A�A� does not affected by the arguments in E. In other words,
E is grounded extension of G� where arguments in A�A� are not considered.
���: Since E is a grounded extension of G� and the status of arguments in

A�A� does not affected by the arguments in E, E is a grounded extension of
G�, i.e. G� is a grounded subgraph of Gp w.r.t. E.
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Example 8. Continue Example 5. Among the six complete subgraphs, G5
1 and

G7
1 and G8

1 are grounded subgraphs w.r.t. �a	 (as shown in the last column of
Table 2).

Theorems 4 and 5 show that under preferred and grounded semantics, when
identifying the set of subgraphs with respect to an extension, only partial com-
putation of extensions is needed, i.e., rather than computing the extensions of a
whole subgraph G�, the extensions of a part of G� (i.e., G�) are computed.

Finally, the relations between the characterized subgraphs under different
semantics can be formulated as follows.

Theorem 6. It hods that ρad�E� � ρco�E� � ρpr�E� � ρst�E�, and ρco�E� �
ρgr�E�.

Proof. According to Theorems 2, 4 and 5, we directly have ρad�E� � ρco�E�,
ρco�E� � ρpr�E�, and ρco�E� � ρgr�E�. Now, let us verify that ρpr�E� � ρst�E�.

According to formulas (9) and (10), the condition E�E� � args�G�� implies
Ead�G�� � ��	 where G� � ��,�	. It follows that ρpr�E� � ρst�E�.

4 Semantics of Probabilistic Argumentation

According to the approach introduced in the previous section, given a PrAG
Gp � �A,R, p�, a conflict-free set of arguments E � A and a semantics σ �
�ad, co, pr, gr, st	, we get a set of σ-subgraphs w.r.t. E, i.e., ρσ�E� without com-
puting (or with less computation of) the extensions of subgraphs.

Then, according to formula (5), semantics of probabilistic argumentation, i.e.,
the probability of E being a σ-extension (denoted as p�Eσ�), is represented as
follows.

p�Eσ� � ΣG��ρσ�E� p�G
�� (11)

Note that Qσ�E� in formula (5) is replaced by ρσ�E� in formula (11).
Furthermore, according to Theorem 1, each admissible subgraph w.r.t. an ex-

tension E is characterized by the conditions under which all arguments in E
appear, while all arguments in E�E� do not appear. In other words, the prob-
ability of a set of arguments being an admissible extension can be evaluated by
the probabilities of arguments appearing or not appearing, without constructing
the subgraphs and computing their extensions.

Formally, we have the following theorem.

Theorem 7. Let Gp � �A,R, p� be a PrAG, and E � A be a conflict-free set of
arguments. It holds that:

p�Ead� � Πα�Ep�α� �Πβ�E��E�p�β̄� (12)

Proof. Let Φ � A�E � �E�E���. For all B � 2Φ, let GE:B � �E � B,R �
��E � B� � �E � B���. According to Theorem 1 and formula (7), it holds that
GE:B � ρad�E�, and ρad�E� � �GE:B � B � 2Φ	. Then, according to formula
(11), p�Ead� � ΣG��ρad�E� p�G�� � ΣB�2Φ p�GE:B�.

Since in GE:B,
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– every argument in E appears,
– every argument in E�E� does not appear,
– every argument in B appears, and
– and every argument in ΦB do not appear,

it holds that p�GE:B� � Πα�Ep�α� �Πβ�E��E�p�β̄� �Πγ�Bp�γ� �Πη�Φ�Bp�η̄�.
Since ΣB�2Φ�Πγ�Bp�γ� �Πη�Φ�Bp�η̄�� � 1, we may conclude that:

p�Ead� � ΣB�2Φ p�GE:B�

� ΣB�2Φ�Πα�Ep�α� �Πβ�E��E�p�β̄� �Πγ�Bp�γ� �Πη�Φ�Bp�η̄��

� �Πα�Ep�α� �Πβ�E��E�p�β̄�� �ΣB�2Φ�Πγ�Bp�γ� �Πη�Φ�Bp�η̄��

� Πα�Ep�α� �Πβ�E��E�p�β̄� � 1

� Πα�Ep�α� �Πβ�E��E�p�β̄�

5 Conclustions and Future Work

In this paper, we have proposed a new approach to formulate semantics of prob-
abilistic argumentation. Given a PrAG, a set of subgraphs each of which has a
certain extension under a given semantics is characterized by defining some con-
ditions. As a result, semantics of probabilistic argumentation can be evaluated
without computing (or with less computation of) the extensions of subgraphs.
More specifically, under admissible semantics, it is neither necessary to construct
subgraphs, nor to compute the extensions of the subgraphs. Under complete and
stable semantics, it is not necessary to compute the extensions of any subgraphs.
Under preferred and grounded semantics, for each subgraph, only a part of it is
computed.

As to the best of our knowledge, our approach is the first attempt to formulate
semantics of probabilistic argumentation by characterizing subgraphs. In existing
literature, probability values are associated to arguments [3, 4, 8], or attacks [7],
or both arguments and attacks [5, 9, 10]. Although there are some differences
between the notions of PrAGs, to evaluate the probability of a set of arguments
being an extension, for a PrAG with n nodes, it is necessary to construct 2n

subgraphs, and to compute their extensions.
Future work is as follows. First, based on the theory introduced in this paper,

it is worth studying the computational complexity and developing efficient algo-
rithms for computing the semantics of probabilistic argumentation. Second, the
PrAG handled in this paper is based on Dung’s abstract argumentation. In re-
cent years, some extended argumentation frameworkshave been proposed.Among
them, the work on abstract dialectical frameworks (ADFs) [12] is increasingly ac-
tive. So, it could be interesting to formulate the semantics of probabilistic abstract
dialectical frameworks [13] by exploring the approach introduced in this paper.
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Abstract. Dynamic dynamic logic (DDL) is a generalisation of propo-
sitional dynamic logic PDL and dynamic epistemic logic. In this paper,
we develop algebraic semantics for DDL without the constant program.
We introduce inductive and continuous modal Kleene algebras for PDL
and show the validity of reduction axioms in algebraic models and hence
the algebraic completeness of DDL.

1 Introduction

Dynamic epistemic logic (DEL) is a formalism extending epistemic modal logic by
adding dynamic operations that change epistemic models (cf. e.g. [21]). Propo-
sitional dynamic logic (PDL) is the modal logic of programs. Girard, Seligman
and Liu [16] introduced a general dynamic dynamic logic (GDDL) that gener-
alises both DEL and PDL. In this logic, the update is done in two steps: first
the multiple transformations of the original epistemic model are done for each
action in the given action model, and then those multiple models are combined
into a new epistemic model. The axiomatisation of GDDL is given by providing
a computable translation of each GDDL-formula into a logically equivalent PDL-
formula. The proof involves switching between representing programs as regular
expressions and as automata.

Relational models are not unique as models for dynamic epistemic logics. Re-
cently alternative approaches, using neighbourhood models [11,20] or algebraic
models [12,8], have been proposed. The aim of this paper is to develop an alge-
braic semantics for the dynamic dynamic logic (DDL) which is also first presented
in [16]. This logic is a restricted version of GDDL which excludes the product
construction; DDL is to GDDL as public announcement logic (cf. [18]) is to DEL.
Nonetheless, it captures the essential idea behind GDDL of using program expres-
sions to define both modal operators within a model and also transformations
of the model. One further restriction we make, for economy and elegance of pre-
sentation, is to exclude the constant atomic program ε, which corresponds to the
universal modal operator. Our results can be extended to include this. Moreover,
the algebraic semantics for dynamic logics, in particular, for dynamic operators
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that represent ways of updating Kripke models, is significant for understanding
the metamathematics of dynamic logics.

The algebraic models we will use for interpreting DDL are based on modal
Kleene algebras with tests. The paper contains two parts. In the first part,
we will show that PDL with tests can be characterised by both inductive and
continuous modal Kleene algebras with tests. As far as we know, these modal
Kleene algebras with tests are presented for the first time in this paper. Their
non-modal parts, which are called Kleene algebras with tests, can be found, e.g.
in Kozen [7]. A feature of such algebras is that each Kleene algebra has a Boolean
subalgebra, and each formula stands for a Boolean term and each program for
a term in the whole algebra. In the second part, we will introduce an operation
of using a Boolean term to restrict a modal Kleene algebra with tests, as a way
of representing updates. This enables us to give an interpretation of the “PDL
transformations” described in [16]. We will give explicit reduction axioms for
DDL, and show the algebraic completeness for it. This is in contrast to [16],
which only proves the existence of such reduction axioms.

2 Preliminaries

Propositional dynamic logic with tests, PDL, is a logic of programs. The lan-
guage of PDL consists of a set Prop of propositional variables (or atomic propo-
sitions) and a set Rel of relational variables (or atomic programs). The program
constructors include unary ones ∗ (iteration) and ?ϕ (test), and binary ones ;
(composition) and ∪ (choice).

Definition 1. The set of PDL-programs π and the set of PDL-formulas ϕ are
defined simultaneously by the following inductive rules:

π ::= r | (π1;π2) | (π1 ∪ π2) | π∗ | ?ϕ
ϕ ::= p | ⊥ | ¬ϕ | (ϕ1 ∨ ϕ2) | 〈π〉ϕ

where r ∈ Rel, p ∈ Prop. The program π1;π2 is the composition of π1 and π2,
π1 ∪ π2 is the choice of π1 and π2, π

∗ is the iteration of π, and ?ϕ is the test
of ϕ. Other connectives 	,∧,→ and ↔ are defined as usual. In particular, the
dual of 〈π〉 is defined by [π]ϕ := ¬〈π〉¬ϕ.

We will introduce a Kripke-style semantics for the language of PDL, which
is slightly different from the standard one given in [17]. It will make use of
the binary operations of ◦ (relational composition) and ∪ (union), the unary
operation ∗ (reflexive transitive closure), the constant relation IW (identity),
defined for binary relations R,R1, R2 on a non-empty set W as follows: R1 ◦
R2 = {(x, y) | ∃z ∈ W (xR1z & zR2y)}; R1 ∪ R2 = {(x, y) | xR1y or xR2y};
IW = {(x, x) | x ∈ W}; R∗ =

⋃
n∈ω Rn where R0 = IW and Rn+1 = R ◦ Rn.

Also, for each x ∈ W , X ⊆ W , we define the images R(x) and R[X ], and the
unary operations 〈R〉 and [R] on subsets ofW by setting: R(x) = {y ∈ W | xRy};
R[X ] =

⋃
x∈X R(x); 〈R〉X = {x ∈ W | R(x)∩X �= ∅}; [R]X = W \ 〈R〉(W \X).



Algebraic Semantics for Dynamic Dynamic Logic 257

Definition 2. A Kripke model is a triple M = (W,VR, VP ) where W is a set,
VR : Rel → P(W 2) assigns a binary relation on W to each relational variable
and VP : Prop → P(W ) assigns a subset of W to each propositional variable.

Definition 3. For any model M = (W,VR, VP ), the denotations �π�
M, of a

PDL-program π, and �ϕ�
M, of a PDL-formula ϕ, are defined recursively by

�r�M = VR(r),
�π1;π2�

M = �π1�
M ◦ �π2�

M,

�π1 ∪ π2�
M = �π1�

M ∪ �π2�
M,

�π∗�M = (�π�M)∗,
�?ϕ�M = IW ∩ (�ϕ�M)2,

�p�M = VP (p),
�⊥�M = ∅,
�¬ϕ�M = W \ �ϕ�M,
�ϕ1 ∨ ϕ2�

M = �ϕ1�
M ∪ �ϕ2�

M,

�〈π〉ϕ�M = 〈�π�M〉�ϕ�M.

We write M, x |= ϕ if x ∈ �ϕ�M. By M |= ϕ we mean that �ϕ�M = W . We say
that ϕ is valid (notation: |= ϕ), if M |= ϕ for all models M.

Remark 1. Definition 3 of semantics for PDL-formulas is essentially the same as
the standard semantics (cf. [17]) using regular models. The only difference is
that the signature we used consists of a set of program variables and a set of
propositional variables. The validities under this semantics do not change.

PDL can be defined as the set of all valid formulas. Fischer and Ladner [3],
and Segerberg [15] proposed Hilbert-style axiomatisations for PDL. Segerberg’s
system HPDL (also see [17]) consists of the following axioms and rules:

(Tau) All instances of propositional tautologies,
(K) [π](ϕ → ψ) → ([π]ϕ → [π]ψ),

(Com) 〈π1;π2〉ϕ ↔ 〈π2〉〈π1〉ϕ,
(Choice) 〈π1 ∪ π2〉ϕ ↔ 〈π1〉ϕ ∨ 〈π2〉ϕ,

(Iteration) 〈π∗〉ϕ ↔ (ϕ ∨ 〈π〉〈π∗〉ϕ),
(Ind) [π∗](ϕ → [π]ϕ) → (ϕ → [π∗]ϕ),
(Test) 〈?ϕ〉ψ ↔ ϕ ∧ ψ,
(MP) from ϕ and ϕ → ψ infer ψ,
(Gen) from ϕ infer [π]ϕ.

By �HPDL
ϕ we mean that ϕ is a theorem in HPDL. HPDL is sound and complete,

i.e., for any PDL-formula ϕ, �HPDL
ϕ iff |= ϕ.

In 1991, Pratt [13] provided an algebraic semantics using the concept of a dy-
namic algebra with tests, defined to be a tupleB = ((B,∨,−, 0), (R,∪, ; , ∗), ?,♦),
where (B,∨,−, 0) is a Boolean algebra, and ? : B → R and ♦ : R ×B → B are
operations satisfying the following axioms for all a, b ∈ R and x, y ∈ B:

(A1) ♦(a, 0) = 0,
(A2) ♦(a, x ∨ y) = ♦(a, x) ∨ ♦(a, y),
(A3) ♦(a ∪ b, x) = ♦(a, x) ∨ ♦(b, x),
(A4) ♦(a; b, x) = ♦(a,♦(b, x)),
(A5) x ∨ ♦(a,♦(a∗, x)) ≤ ♦(a∗, x) ≤ x ∨ ♦(a∗,−x ∧ ♦(a, x)),
(A6) ♦(?x, y) = x ∧ y.

Since these axioms are obtained directly from those of HPDL, its completeness
with respect to the class of dynamic algebras with tests can be easily obtained
by the standard Lindenbaum-Tarski construction.
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3 Varieties of Modal Kleene Algebras with Tests

In this section we define several varieties of modal Kleene algebras with tests,
which will be shown to be variants of Pratt’s dynamic algebras with tests. We
will prove that PDL is sound and complete with respect to both the variety of
continuous modal Kleene algebras with tests and the variety of inductive ones.

3.1 Modal Kleene Algebras with Tests

A Kleene algebra with tests is a combination of a regular algebra for actions and
a Boolean algebra for propositions, introduced by Kozen in [7]. We first recall
the basic concepts and then extend the definition with the addition of a new
modal operator “ ↓ ” that checks if a given action can be performed.

Definition 4. An algebra (A,+, ·, 0, 1, ∗) is a Kleene algebra if A is a set (of
actions), 0, 1 ∈ A, ∗ is a unary operation and + and · are binary operations on
A satisfying the following equations:

a+ (b+ c) = (a+ b) + c (1)

a+ b = b+ a (2)

a+ 0 = a (3)

a+ a = a (4)

a(bc) = (ab)c (5)

1a = a (6)

a1 = a (7)

a(b+ c) = ab+ ac (8)

(b+ c)a = ba+ ca (9)

0a = 0 (10)

a0 = 0 (11)

1 + aa∗ = a∗ (12)

1 + a∗a = a∗ (13)

where ab = a · b and the precedence order of operations is 〈∗, ·,+〉; and the rules:

if ab ≤ b, then a∗b ≤ b. (14)

if ab ≤ a, then ab∗ ≤ a. (15)

where a ≤ b is defined as a+ b = b.

An algebra (A, T,+, ·, 0, 1, ∗,−) is a Kleene algebra with tests, if (A,+, ·, 0, 1, ∗)
is a Kleene algebra and (T,+, ·, 0, 1,−) is a Boolean algebra with T ⊆ A, where
− is a unary operator defined only on T . The elements of T are called tests. The
class of all Kleene algebras with tests is denoted by KAT.

Definition 5. An algebra A = (A, T,+, ·, 0, 1, ∗,−, ↓ ) is a modal Kleene alge-
bra with tests if (A, T,+, ·, 0, 1, ∗,−) is a Kleene algebra with tests and ↓ : A → T
is a function that satisfies the following equations for all t ∈ T and a, b ∈ A:

t↓ = t (16)

(ab)↓ = (a(b↓ ))↓ (17)

(a+ b)↓ = a↓ + b↓ . (18)

The class of all modal Kleene algebras with tests is denoted by MKAT. We also
write equations so that ↓ has precedence between · and +, i.e. ab↓= (ab)↓ and
a↓ + b↓= (a↓ ) + (b↓ ).
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Remark 2. One should think of a ↓ as a test that the action a is possible. In
that sense, we call ↓ a modal operator. In computability theory, π↓ means that
the program π is defined in the current state, i.e., that it terminates (cf. [2],
p.6). Moreover, the axioms (16)-(18) for defining the modal operator ↓ has a
natural interpretation in quantale theory. The operator ↓ is interpreted as the
domain of relations projected on the identity relation IW , i.e., for each relation
a, a ↓= {(x, x) | x ∈ dom(a)} where dom(a) is the domain of a, i.e., it is the
set {x ∈ W | ∃y(x, y) ∈ a}. Then one can easily check that axioms (16)-(18)
hold. In fact, we get a supported quantale (cf. [14], p.48). In Definition 8, we
will adopt this interpretation of the downarrow for defining Kripke models.

Lemma 1. Given a modal Kleene algebra with tests A = (A, T,+, ·, 0, 1, ∗,−, ↓
), the following holds for all a, b ∈ A and s, t ∈ T :

(i) 0↓= 0. (iv) − ((a · −t)↓ ) · −((a · −s)↓ ) = −((a · −(ts))↓ ).
(ii) − (a0↓ ) = 1. (v) if a ≤ b, then a↓≤ b↓ .

(iii) (a(s+ t))↓= as↓ + at↓ . (vi) − ((a · −t)↓ ) · as↓≤ a(ts)↓ .

Proof. (i) is an instance of (16). For (ii), −(a0↓ ) = −(0↓ ) = −0 = 1. For (iii),
(a(s+t))↓= (as+at)↓= as↓ + at↓ by (18). For (iv), −((a·−t)↓ )·−((a·−s)↓
) = −((a · −t) ↓ + (a · −s) ↓ ) = −(a(−t+ −s) ↓ ) = −((a · −(t · s)) ↓ ). For (v),
assume a ≤ b. Then b ↓= (a + b) ↓= a ↓ + b ↓ . Hence a ↓ ≤ b ↓ . For (vi),
first, we have s ≤ −t + ts. Then as ≤ a(−t + ts). By (v), as ↓≤ (a(−t + ts)) ↓
= (a · −t + a(ts)) ↓= (a · −t) ↓ + a(ts) ↓= − − ((a · −t) ↓ ) + a(ts) ↓ . Hence
−(a · −t)↓ · a(ts)↓≤ a(ts)↓ . ��

Remark 3. Modal Kleene algebras with tests are straightforward variants of dy-
namic algebras with tests in which the two sorts B and R of the latter corre-
spond to the two sorts T and A of the former, with functions ♦ : A×T → T and
? : T → A given by ?t = t and ♦(a, t) = (at)↓ . For the converse, we can define
a↓= ♦(a, 1). Note also that since T ⊆ A we can take ∨ = ∪ = + and ∧ =;= ·.
The Kleene-Kozen algebra approach is therefore somewhat more economical in
terms of operators than Pratt’s.

Definition 6. A modal Kleene model is a tuple M = (A, θP , θR) in which
A = (A, T,+, ·, 0, 1, ∗,−, ↓ ) is in MKAT, θP : Prop → T assigns a test to
each propositional variable and θR : Rel → A assigns an action to each relation
variable.

Definition 7. For each PDL-program π and each PDL-formula ϕ, define deno-
tations �π�

M and �ϕ�
M in a modal Kleene model M recursively as follows:

�p�M = θP (p),

�⊥�M = 0,
�¬ϕ�M = −�ϕ�M ,
�ϕ ∨ ψ�M = �ϕ�M + �ψ�M ,
�〈π〉ϕ�M = (�π�M · �ϕ�M )↓ ,

�r�M = θR(p),

�π1;π2�
M = �π1�

M · �π2�
M ,

�π1 ∪ π2�
M = �π1� + �π�2,

�π∗�M = (�π�M )∗,
�?ϕ�M = �ϕ�M ↓ .
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We say that a PDL-formula ϕ is valid in A (notation: A |= ϕ), if �ϕ�
M = 1 for

all models M based on A. For any C ⊆ MKAT, we say that a PDL-formula α is
valid in C (notation: C |= ϕ), if A |= ϕ for all A ∈ C.

3.2 Continuous Modal Kleene Algebras with Tests

A modal Kleene algebra A = (A, T,+, ·, 0, 1, ∗,−, ↓ ) is said to be continuous, if
it satisfies the following equation for all a ∈ A and t ∈ T :

a∗t =
∨

n∈ω

ant (19)

where an = a · . . . · a︸ ︷︷ ︸
n

; and (a∗t)↓= ∨{(ant)↓ | n ∈ ω}. Let MKATC be the class

of all continuous modal Kleene algebras with tests.

Lemma 2. For every continuous modal Kleene algebra A =
(A, T,+, ·, 0, 1, ∗,−, ↓ ), for all a ∈ A and t ∈ T ,

(a∗t)↓ ≤ t + (a∗(−t · (at↓ )))↓ . (20)

Proof. We give the sketch of the proof which similar to the proof given by Kozen
[5]. For all n ≥ 0, −(ant↓ ) · (an+1t↓ ) = −(ant↓ ) · (anat↓ ) ≤ (an · (−t · at))↓
≤ (a∗ · (−t · at))↓= (a∗ · (−t · (at↓ )))↓ , by Lemma 1 (5) and the continuous
condition. Then 1 = t+(−t·(at↓ ))+(−(at↓ )· (a2t↓ ))+(−(a2t↓ )·(a3t↓ ))+. . .+
(−(an−1t↓ ) · (ant↓ )) +−(ant↓ ). Hence 1 = t+ (a∗ · (−t · (at↓ )))↓ +− (ant↓ ).
Hence ant↓≤ t + (a∗ ·(−t ·(at↓ )))↓ . Hence (a∗t)↓≤ t+(a∗(−t ·(at↓ )))↓ . ��

For showing the completeness of PDL with respect to MKATC, we make use of
continuous modal Kleene algebras with tests constructed from Kripke models.

Definition 8. For any Kripke model M = (W,VR, VP ), the dual modal Kleene
model of M is defined as M+ = (AM, θMP , θMR ), where AM = (AM, TM,+, ·, 0, 1, ∗,
−, ↓ ) is the algebra defined as follows: (i) AM = P(W 2), TM = P(1), 0 = ∅,
1 = IW ; (ii) a + b = a ∪ b, −a = 1 \ a, a · b = a ◦ b; (iii) a∗ =

⋃
n∈N

an where
a0 = 1 and an+1 = an · a; and (iv) a ↓= {(x, x) | (x, y) ∈ a for some y ∈ W}.
Finally, let θMP (p) = {(x, x) | x ∈ VP (p)} for each p ∈ Prop, and θMR = VR.

Fact 1 For any Kripke model M, we have AM ∈ MKATC .

Proof. The definition of a∗ guarantees that AM is continuous. Other conditions
for modal Kleene algebra with tests can be easily proved. ��
Proposition 1. Given a Kripke model M = (W,VR, VP ) and x ∈ W , for any

PDL-formula ϕ, M, x |= ϕ iff (x, x) ∈ �ϕ�
M+

.

Proof. By induction on ϕ. Atomic and Boolean cases are easy. For the case
ϕ := 〈π〉ψ, assume that M, x |= 〈π〉ψ. Then there exists y ∈ W such that
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(x, y) ∈ �π�
M and M, y |= ψ. By inductive hypothesis, (y, y) ∈ �ψ�

M+

. By the

definition of θMR , we have (x, y) ∈ �π�
M+

. Thus (x, y) ∈ �π�
M+ · �ψ�

M+

. Hence

(x, x) ∈ (�π�
M+ · �ψ�

M+

) ↓ . Hence (x, x) ∈ �〈π〉ψ�
M+

. The other direction is
shown by definitions similarly. ��

Theorem 2. HPDL is sound and complete with respect to MKATC.

Proof. The equation (20) guarantees the validity of inductive axioms in HPDL.
The validity of other axioms are shown regularly. For the completeness, assume
that ��HPDL

ϕ. By relational completeness of HPDL, there exists a Kripke model
M = (W,VR, VP ) such that M, x �|= ϕ for some x ∈ W . Thus by Proposition 1,

(x, x) �∈ �ϕ�
M+

. Hence M+ �|= ϕ, while M+ ∈ MKATC. ��

3.3 Inductive Modal Kleene Algebras with Tests

Definition 9. A modal Kleene algebra A = (A, T,+, ·, 0, 1, ∗,−, ↓ ) is said to be
inductive, if it satisfies the following equation for all t ∈ T and a ∈ A:

a∗t = t+ a∗ · (−t) · at (21)

The class of all inductive modal Kleene algebras is denoted by MKATInd.

Fact 3 Every continuous modal Kleene algebra with tests is inductive.

Proof. The induction principle follows from continuity. See [5,6]. ��

The axiom (21) makes the axiom (Ind) [π∗](ϕ → [π]ϕ) → (ϕ → [π∗]ϕ) valid.
It suffices to observe that the axiom (Ind) is logically equivalent to 〈π∗〉¬ϕ →
¬ϕ ∨ 〈π∗〉(ϕ ∧ 〈π〉ϕ), the validity of which is granted by the axiom (21).

Proposition 2. For A = (A, T,+, ·, 0, 1, ∗,−, ↓ ) ∈ MKATInd, t ∈ T and a ∈ A,
the following equations hold:

t + (aa∗t)↓ = (a∗t)↓= t + (a∗ · (−t · (at↓ )))↓ . (22)

Hence the axiom (Iteration) 〈π∗〉ϕ ↔ (ϕ ∨ 〈π〉〈π∗〉ϕ) is valid in MKATInd.

Proof. For the first equation, using axioms (12), (9), (6) and (18), one gets
a∗t ↓= (1 + aa∗)t ↓= (1t + aa∗t) ↓= (t + aa∗t) ↓= t ↓ + (aa∗t) ↓=
t + (aa∗t) ↓ . For the second one, using axioms (19), (18), (16), (5) and (17),
one gets a∗t↓= (t+a∗ · (−t) ·at)↓= t↓ + (a∗ · (−t) ·at)↓= t +(a∗ · (−t) ·at)↓
= t + ((a∗ ·−t) ·at)↓= t + ((a∗ ·−t) · (at↓ ))↓= t + (a∗ · (−t · (at↓ )))↓ . ��

Theorem 4. HPDL is sound and complete with respect to MKATInd.

Proof. The soundness is shown by induction on proofs in HPDL, using Proposition
2. The completeness follows from Fact 3, and Theorem 2. ��
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4 Algebraic Semantics for Dynamic Dynamic Logic

In this section, we introduce algebraic semantics for dynamic dynamic logic
(DDL). DDL was first suggested in [16]. The algebraic approach we make use of
was first systematically presented in [12] for (intuitionistic) public announcement
logics. However, the updated algebra defined below differs from that in [12].

Definition 10. Define the sets of DDL-formulas ϕ, DDL-programs π and DDL-
dynamic operators λ as follows:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | 〈π〉ϕ | 〈λ〉ϕ
π ::= r | (π;π) | (π ∪ π) | π∗ | ϕ? | 〈λ〉π
λ ::= ϕ | p := ϕ | r := π

where p ∈ Prop and r ∈ Rel. Standard abbreviations are used, including the
definition of 	 as some arbitrarily chosen tautology.

A formula ϕ is said to be static if it contains no dynamic operators. Otherwise,
it is said to be dynamic. There are three kinds of dynamic operator:

(1) Domain restrictions 〈ϕ〉. This is understood as restricting the evaluation of
the following subformula to the case where ϕ holds. It is a kind of conditional:
given that ϕ holds, evaluate . . ..

(2) Propositional substitution 〈p := ϕ〉. This reassigns propositional variable p
to have the denotation of ϕ.

(3) Relational substitution 〈r := π〉. This reassigns relational variable r to have
the denotation of π.

The effect of applying dynamic operators λ1, . . . , λn simultaneously, writ-
ten 〈λ1, . . . , λn〉, will be defined inductively. For example, we define 〈p1 :=
ϕ1 . . . pn := ϕn〉 to be 〈q1 := p1〉 . . . 〈qn := pn〉〈p1 := ϕ′

1〉 . . . 〈pn := ϕ′
n〉, where

ϕ′
i = ϕi[pj �→ qj ]1≤j≤n and q1, . . . , qn are any distinct variables not occuring in

the formula.

Definition 11. Let A ∈ MKAT. Given s ∈ T , for each a ∈ A, let as = s·a·s. De-
fine the restriction ofA to s to be the algebra As = (As, Ts,+s, ·s, 0s, 1s, ∗s,−s, ↓s
) with actions As = {as | a ∈ A} and tests Ts = {ts | t ∈ T } and operations
defined by first performing the operation in A and then taking the image un-
der the map a �→ as, i.e., for all x, y ∈ As, 0s = s0s = 0; 1s = s1s = ss;
x+s y = (x+ y)s; x ·s y = (x · y)s; −sx = (−x)s; ∗sx = (x∗)s; x↓ s = (x↓ )s.

Although the map a �→ as is a Boolean homomorphism, it is not in general
a Kleene algebra homomophism. In particular, for a, b ∈ A, (a · b)s = sabs but
as ·s bs = s(sas · sbs)s = sasbs and it is possible that ab �= asb.

It is easy to see that xs = sxs = x, sxs = sx = xs = x for any x ∈ As.
Moreover, ss = s since s ∈ T and T forms a Boolean algebra.

Lemma 3. As is a modal Kleene algebra with tests.



Algebraic Semantics for Dynamic Dynamic Logic 263

Proof. It is easy to check that Ts is a Boolean algebra. Now we check axioms for
modal Kleene algebra with tests one by one. Given any x, y, z ∈ As, we have

(1) By definition, x+s (y+s z) = (x+(y+z))s = ((x+y)+z)s = (x+s y)+s z.
Axioms (2) and (5) are shown quite similarly.

(3) x +s 0 = (x + 0)s = xs = x, since x ∈ As is as for some a ∈ A and
(as)s = ssass = sas = as.

(4) x+s x = (x+ x)s = xs = x.
(6) 1s ·s x = (1s · x)s = ss1sxs = s1sxs = ssxs = sxs = x. The axiom (7) is

shown quite similarly.
(8) x ·s (y +s z) = (x(y + z))s = (xy + xz)s = x ·s y +s x ·s z. The axiom (9) is

shown quite similarly.
(10) 0s ·s x = (0 · x)s = 0s. The axiom (11) is shown quite similarly.
(12) 1s +s x ·s x∗s = s(s1s+ sxsx∗ss)s = s(s1s+ ssxsx∗s)s = ss(1s+ xx∗s)s =

s(1 + xx∗)s = sx∗s = x∗s . The axiom (13) is shown similarly.
(14) Assume that x ·s y ≤ y. Then ssxyss = sxys = xys ≤ y = ys. Hence

x∗ys ≤ ys. Thus ssx∗ys ≤ ssys. Then ssx∗sys ≤ y, i.e., x∗s ·s y ≤ y. The
axiom (15) is shown quite similarly.

(16) Let t ∈ Ts. Then t↓ s = (t↓ )s = ts = t.
(17) Firstly, (x ·s y) ↓ s = (xy)s ↓ s = (sxys) ↓ s = ((sxys) ↓ )s = ((xy) ↓ )s =

((x(y ↓ )) ↓ )s. On the other hand, (x(y ↓ s)) ↓ s = ((x(y ↓ s)) ↓ )s = ((xs(y ↓
s))↓ )s = ((x(y↓ ))↓ )s. Hence, (x ·s y)↓ s = (x(y↓ s))↓ s.

(18) Firstly, (x +s y)↓ s = ((s(x + y)s)↓ )s = ((sxs + sys)↓ )s = ((x + y)↓ )s =
(x↓ +y ↓ )s. On the other hand, x↓ s +s y ↓ s = ((x↓ )s + (y ↓ )s)s = (s(x↓
)s+ s(y↓ )s)s = s(s(x↓ )s+ s(y↓ )s)s = ss(x↓ + y↓ )ss = s(x↓ + y↓ )s =
(x↓ + y↓ )s. Then (x +s y)↓ s = x↓ s +s y↓ s. ��

Proposition 3. If A is inductive (continuous), then the restriction As is also
inductive (continuous).

Proof. Assume that A is inductive. Let as ∈ As and ts ∈ Ts. We calculate as
follows: (a∗s

s ) ·s ts = s(sa∗ss · ts)s = s(a∗sts)s = s[ts + sa∗s(−ts)asts]s = s[ts +
ss(sa∗sss(−ts)s · sastss)s]s = ts +s ss(sa∗sss(−ts)s · sasts)s = ts +s [s(sa∗ss ·
s(−ts)s ·s s(asts)s] = ts +s a

∗s
s ·s (−sts) ·s as ·s ts. Assume that A is continuous.

Let as ∈ As and ts ∈ Ts. We calculate as follows: (a∗s
s ·s ts) = s(sa∗ss · ts)s =

s(sa∗sts)s = s(a∗sts)s = a∗sts =
∨

n∈ω ans ts, as desired. ��
An algebraic model M = (A, θP , θR) consists of a modal Kleene algebra with

test A = (A, T,+, ·, 0, 1, ∗,−, ↓ ) and functions θP : Prop → T and θR : Rel → A.
Let K be the class of all such models.

Definition 12. The denotations �ϕ�
M and �π�

M of each formula ϕ and program
π, and the dynamic operation �λ� on algebraic models for each dynamic operator
λ are defined recursively as follows:

(1) Formulas:

�p�M = θP (p); �¬ϕ�M = −�ϕ�M ; �ϕ ∧ ψ�M = �ϕ�M · �ψ�M ;

�〈π〉ϕ�M = (�π�M · �ϕ�M )↓ ; �〈λ〉ϕ�M = �ϕ��λ�M .



264 M. Ma and J. Seligman

(2) Programs:

�r�M = θR(r); �π1;π2�
M = �π1�

M · �π2�
M ; �π1 ∪ π2�

M = �π1�
M + �π2�

M ;

�π∗�M = �π�M
∗
; �ϕ?�M = �ϕ�M ; �〈λ〉π�M = �π��λ�M .

(3) Dynamic operators:

�ϕ�M = (A�ϕ�M , θP |�ϕ�M , θR|�ϕ�M ); �p := ϕ�M = (A, θP [p �→ �ϕ�M ], θR);

�r := π�M = (A, θP , θR[r �→ �π�M ]).

The notation f |s is the function that maps x to s · f(x) · s. In particular,
θP |�ϕ�M (p) = �ϕ�

M · θP (p) · �ϕ�
M and θR|�ϕ�M (r) = �ϕ�

M · θR(r) · �ϕ�
M .

A DDL-formula ϕ is valid in a modal Kleene algebra with tests A (notation:
A |= ϕ), if �ϕ�M = 1 for any model M based on A. A DDL-formula ϕ is valid in
a class C ⊆ MKAT (notation: C |= ϕ), if A |= ϕ for all A ∈ C.

5 Reduction Axioms and Algebraic Completeness

Firstly, we will state two rules of replacement. Suppose that p and r are two
propositional and relational variables, and that ψ is a formula or a program.
Given a formula ϕ, let ψ[ϕ] be the result of replacing p by ϕ in ψ. Likewise,
given a program π, let ψ[π] be the result of replacing r by π in ψ. Our two rules
of replacement can be stated as:

REF: From ϕ1 ↔ ϕ2 and ψ[ϕ1] infer ψ[ϕ2].
RET: From 〈π1〉p ↔ 〈π2〉p and ψ[π1] infer ψ[π2], if p is not in π1,π2.

Definition 13. Let HDDL be the Hilbert-style system consisting of the axioms
and rules of HPDL, rules REF and RET, plus the following reduction axioms:

(RA1) 〈ψ〉p ↔ ψ ∧ p,
(RA2) 〈p := ψ〉p ↔ ψ,
(RA3) 〈q := ψ〉p ↔ p (p �= q),
(RA4) 〈r := π〉p ↔ p,
(RA5) 〈ψ〉¬ϕ ↔ ψ ∧ ¬〈ψ〉ϕ,
(RA6) 〈p := ψ〉¬ϕ ↔ ¬〈p := ψ〉ϕ,
(RA7) 〈r := π〉¬ϕ ↔ ¬〈r := π〉ϕ,
(RA8) 〈λ〉(ϕ ∧ ψ) ↔ 〈λ〉ϕ ∧ 〈λ〉ψ,
(RA9) 〈λ〉〈π〉ϕ ↔ 〈〈λ〉π〉〈λ〉ϕ,

(RA10) 〈〈ψ〉r〉ϕ ↔ 〈ψ?; r;ψ?〉ϕ,
(RA11) 〈〈p := ψ〉r〉ϕ ↔ 〈r〉ϕ,
(RA12) 〈〈r := π〉r〉ϕ ↔ 〈π〉ϕ,
(RA13) 〈〈s := π〉r〉ϕ ↔ 〈r〉ϕ (r �= s),
(RA14) 〈〈λ〉ψ?〉ϕ ↔ 〈(〈λ〉ψ)?〉ϕ,
(RA15) 〈〈λ〉(π1; π2)〉ϕ ↔ 〈〈λ〉π1; 〈λ〉π2〉ϕ,
(RA16) 〈〈λ〉(π1 ∪ π2)〉ϕ ↔ 〈〈λπ1〉 ∪ 〈λ〉π2〉ϕ,
(RA17) 〈〈λ〉π∗〉ϕ ↔ 〈(〈λ〉π)∗〉ϕ.

By �HDDL
ϕ we mean that ϕ is a theorem of HDDL.

Remark 4. We could formulate an axiom system without these replacement rules
but the number of axiom schemas increases significantly to cope with chains
of dynamic operators and the ∗ operation. The use of dynamic operators over
programs is partly motivated to allow for the above axiomatisation, without it
would have no simple reduction axiom for 〈〈λ〉π∗〉ϕ. An alternative is to define
the reduction directly, by induction but without using reduction axioms.
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Theorem 5 (Soundness). If �HDDL
ϕ, then MKATC |= ϕ and MKATInd |= ϕ.

Proof. It suffices to show the validity of reduction axioms. Let M = (A, θP , θR)
be a model where A = (A, T,+, ·, 0, 1, ∗,−, ↓ ) ∈ MKATC or MKATInd. The proof
is done as follows:

– (RA1) �〈ψ〉p�M = �p��ψ�M = θP |�ψ�M (p) = �ψ�
M · θ(p) · �ψ�

M = �ψ ∧ p�M .

– (RA2) �〈p := ψ〉p�M = �p��p:=ψ�M = θP [p �→ �ψ�
M ](p) = �ψ�

M .
– (RA3) �〈q := ψ〉p�M = �p��q:=ψ�M = θP [q �→ �ψ�

M ](p) = θP (p) = �p�M .
– (RA4) �〈r := π〉p�M = �p��r:=π�M = θP (p) = �p�M .
– (RA5) Let �ψ�

M = s and �ϕ�
M = t. One proof is as follows: �〈ψ〉¬ϕ�

M =
�¬ϕ�

�ψ�M = −s
�ϕ�

�ψ�M = s · −(sts) · s = s · −(sts) = s · −(�ϕ�
�ψ�M ) =

�ψ�
M · −(�ϕ�

�ψ�M ) = �ψ ∧ ¬〈ψ〉ϕ�
M .

– (RA6) �〈p := ψ〉¬ϕ�
M = −�〈p : ψ〉ϕ�

M = −�ϕ�
�p:=ψ�M = −�〈p := ψ〉ϕ�

M =
�¬〈p := ψ〉ϕ�

M .
– (RA7) �〈r := π〉¬ϕ�

M = −�〈r := π〉ϕ�
M = −�ϕ�

�r:=π�M =
−�〈r := π〉ϕ�

M = �¬〈r := π〉ϕ�
M .

– (RA8) For the cases when λ = p := ξ or λ = r := π, it is easy to check
the result. Let λ = ξ, �ξ�M = s, �ϕ�

M = t and �ψ�
M = u. One proof is as

follows: �〈ξ〉(ϕ ∧ ψ)�M = �ϕ ∧ ψ�
�ξ�M = �ϕ�

�ξ�M ·s �ψ�
�ξ�M = ssts · suss =

sts · sus = �ϕ�
�ξ�M · �ψ�

�ξ�M = �〈ξ〉ϕ ∧ 〈ξ〉ψ�
M .

– (RA9) �〈λ〉〈π〉ϕ�
M = �〈π〉ϕ�

�λ�M = (�π�
�λ�M

�ϕ�
�λ�M ) ↓=

(�〈λ〉π�
M

�〈λ〉�M )↓= �〈〈λ〉π〉〈λ〉ϕ�
M .

– (RA10) First, �〈〈ψ〉r〉ϕ�
M = �ϕ�

�〈ψ〉r�M , �〈ψ?; r := ψ?〉ϕ�
M =

�ϕ�
�ψ?;r:=ψ?�M . It suffices to show �〈ψ〉r�M = �ψ?; r;ψ?�M . One proof

is as follows: �〈ψ〉r�M = �r��ψ�M = θR|�ψ�M (r) = �ψ�
M · �r�M · �ψ�

M =

�ψ?; r;ψ?�M .
– (RA11) It suffices to show that �r�M = �〈p := ψ〉r�M . This is obtained by

the definition �p := ψ�M . Similarly, it is easy to show the validity of 〈〈p :=
ψ〉r〉ϕ ↔ 〈π〉ϕ and 〈〈s := π〉r〉ϕ ↔ 〈r〉ϕ (r �= s).

– The case of (RA12) and (RA13) is similar to the case of (RA11).
– (RA14) It suffices to show �〈λ〉ψ?�M = �(λ〉ψ)?�M . This is done as follows:

�〈λ〉ψ?�M = �ψ?��λ�M = �ψ�
�λ�M = �(λ〉ψ)?�M .

– (RA15) It suffices to show that �〈λ〉(π1;π2)�
M = �〈〈λ〉π1 ; 〈λ〉π2�

M . One
proof is as follows: �〈λ〉(π1;π2)�

M = �π1;π2�
�λ�M = �π1�

�λ�M · �π2�
�λ�M =

�〈λ〉π1�
M · �〈λ〉π2�

M = �〈λ〉π1; 〈λ〉π2�
M .

– (RA16) It suffices to show �〈λ〉π1 ∪ π2�
M = �〈〈λ〉π1 ∪ 〈λ〉π2�

M . One proof
is as follows: �〈λ〉(π1 ∪ π2)�

M = �π1 ∪ π2�
�λ�M = �π1�

�λ�M + �π2�
�λ�M =

�〈λ〉π1�
M + �〈λ〉π2�

M = �〈λ〉π1 ∪ 〈λ〉π2�
M .

– (RA17) �〈λ〉π∗
�
M = �π∗

�
�λ�M = (�π�

�λ�M )∗ = (�〈λ〉π�
M )∗ = �(〈λ〉π)∗�M .

This completes the proof. ��
Lemma 4 (Reduction). For every DDL-formula ϕ, there exists a PDL-formula
ϕ′ that is computable from ϕ, such that �HDDL

ϕ ↔ ϕ′.

Proof. By reduction axioms in Definition 13. ��
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Theorem 6 (Completeness). For any DDL-formula ϕ, the following hold: (i)
�HDDL

ϕ iff MKATC |= ϕ; and (ii) �HDDL
ϕ iff MKATInd |= ϕ.

Proof. Suppose that ϕ is valid. By Lemma 4 there is a PDL-formula ϕ′ such
that �HDDL

ϕ ↔ ϕ′, and so by Theorem 5 ϕ ↔ ϕ′ is valid. Thus ϕ′ is also valid,
and by the completeness of HPDL with respect to MKATC and MKATInd, ϕ

′ is
provable in HPDL, and so provable in �HDDL

. Hence ϕ is provable in �HDDL
. ��

One can easily get the decidability of the satisfiability in Kripke models for
DDL. As [3] proved, the satisfiability in Kripke models for PDL is decidable. The
satisfiability for DDL follows from Lemma 4 immediately.

6 Conclusion and Further Directions

We developed an algebraic semantics for propositional dynamic logic (with tests),
using continuous and inductive modal Kleene algebras with tests. Then we intro-
duced an algebraic operation of restriction to give a semantics for the dynamic
operators of dynamic dynamic logic, with a complete set of explicit reduction ax-
ioms. The result is a much cleaner formulation of the core of DDL than provided
in [16] with a new, simplified and modular syntax that makes the two senses of
‘dynamic’, i.e., PDL-transformations and epistemic updates, clearer.

The algebraic approach we develop for DDL has two novel aspects. The first
one is that the static part, PDL without the constant program, is shown to be
complete with respect to both continuous and inductive modal Kleene algebras.
The continuity or inductiveness is needed because of the property of the Kleene
star. Such algebras are more economical than Pratt’s in the sense that we save
operations. The second aspect is that we make clear the epistemic update on
modal Kleene algebras which is helpful for understanding the metamathematics
of those dynamic operators.

There are several directions for extending the present approach. One is to
consider additional programs or program constructors, such as the universal pro-
gram ε and the converse program operator. These extensions of PDL are known
to preserve decidability. For example, in [10], Lutz proved that PDL extended
with intersection and converse is decidable. Extending with program intersection
is also possible but would result in an undecidable logic with deterministic pro-
grams (cf. [4]) and a decidable logic with non-deterministic programs (cf. [1]).
Likewise, adding the converse program to PDL results a decidable logic (cf. [19]).
Adding the complement of programs to PDL will result an undecidable logic
(cf. [4]), while adding only the complement of atomic programs gives a decidable
logic (cf. [9]). So we would expect to get decidable dynamic dynamic versions.
We expect all these results to be extendable to the dynamic dynamic case via
suitable reduction axioms.

The second direction is to extend our algebraic approach to cover the general
dynamic dynamic logic developed in [16], which involves a product construction
similar to that of DEL. For each element in an action model, we can get a updated
(restricted) model. The problem is to consider how to add the action structure
to those updated algebraic models.
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Abstract. The paper investigates the way norms relate to and affect
agents’ intentions and actions. Current work in deontic logic dealing with
agency mainly falls within two different groups: a variety of frameworks
which adopt a purely external approach and represent agency in terms of
possible outcomes of actions, and frameworks which instead endorse an
internal approach and focus exclusively on the agent’s intentions. The
paper argues that neither of these models alone can produce a satis-
factory analysis. An integrated model which combines the internal and
external approaches is therefore put forward. The model is dynamic and
represents the change that accepting a goal norm triggers in an agent’s
intentions (especially the so-called “prior-intentions”) and actions.

1 Introduction

While there exists an extensive philosophical literature developing, analyzing
and connecting theories of norms, intentions and actions,1 the interplay between
these notions has yet received little attention on the side of formal logic. Several
logical models have been proposed to reason about intentions,2 and even more
to reason about actions,3 and about norms concerning what an agent ought to
do or what ought to be the case.4 To the best of our knowledge, however, just
very few logical models take all three notions into account jointly and, if they

1 See the seminal works of Bratman [1], Gibbard [9] and Searle [20].
2 See Cohen&Levesque [5], van Ditmarsch et al. [8], van der Hoek et al. [12], Icard et
al. [15], Lorini&Herzig [17], Roy [19], Shoham [21] and van Zee et al. [23].

3 See the development of dynamic logics in van Ditmarsch et al. [7].
4 For an overview, see Hilpinen [10] and Hilpinen&McNamara [11].
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do so, they are not concerned with explicitly representing how norms, intentions
and actions relate to each other.5

It is especially from the perspective of deontic logic, i.e., the logic which
deals with what ought to be done and what ought to be the case, that having
an integrated model for norms, intentions and actions would be conceptually
beneficial. When it comes to reasoning about norms concerning what an agent
ought to do or about what ought to be the case, considerations about an agent’s
intentions and possible actions play indeed a central role. Some examples may
illustrate the situations we have in mind:

1. Ann, a practicing Christian, invites her friend Julia to have dinner at a
restaurant on Friday. Following the corresponding Christian norm, Ann re-
frains from eating meat on Fridays. She takes fish for dinner and Julia,
finding the idea of eating fish compelling, does likewise.

2. A doctor tells Carla that, given her health conditions, she ought to drink
milk or apple juice. Both are fine, so she is in principle free to pick any.
However, once at home, Carla sees that there is no apple juice in her fridge,
just milk. Therefore, she ought to drink milk.

As scenario 1 shows, an agent’s intentions have a relevant role: both Ann and
Julia happen to eat fish on Friday, but only Ann can be said to have accepted and
fulfilled the Christian norm. Looking simply at the outcomes of an agent’s actions
would not be sufficient to discriminate between those two cases. Scenario 2, on
the other hand, illustrates that focusing exclusively on an internal dimension
(constituted by an agent’s intentions) would not be enough to represent Carla’
s situation. The external properties of the world (or the agent’s belief thereof)
and the possible actions an agent can undertake play indeed a predominant role:
Carla’s initial possibility of choosing freely between milk and apple juice is lost
given what the external world looks like.

The paper aims to provide a formal model of deontic logic which integrates
those two dimensions: the internal one, constituted by an agent’s intentions, and
the external one, which is given by the external properties of the world, an agent’s
possible actions and their outcomes. In particular, such an integration is brought
about by focusing on the role of norms in the formation of an agents’ intentions
(especially the so-called “prior intentions”) and, consequently, on the effects on
the agent’s possible actions. The formal model, which makes use of tools from
Stit-logics [13,14] combined with Veltman’s [22] internal approach, not only can

5 See, for instance, Dignum et al. [6] for an analysis of the notions of intentions,
commitments and obligations in modal logic, Broersen et al. [2] for a BOID logic
which deals with conflicts between beliefs, obligations, intentions and desires, and
Broersen [4] for an analysis of the so-called “intentional actions” in Stit-logics. All
those works take the notion of intention as primitive, and then impose external
constraints or axioms to deal with the interplay between intentions, other mental
states and actions. By doing so, however, the relation between norms, intentions and
actions rests, at best, implicit. In particular, those works remain silent on the role of
norms in the process of intentions’ formation, and on how intentions affect (possible)
actions. This is, indeed, the focus of the present paper.
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be used to represent situations like 1 and 2 but can also be seen as a first step to
fill in the gap between the philosophical work on norms, intentions and actions
and their logical analysis as provided by current approaches in deontic logic.

The paper has the following structure. In §2 we have a closer look at other
current works in deontic logic that deal with agency, and discuss in particular the
external approach underlying Stit logics [13,14], and the internal one proposed
by Veltman [22]. Moreover, some basic concepts such as “goal norms” and “prior
intentions” are introduced. In §3 we present our integrated model, called NIA for
Norms, Intentions and Actions. We introduce our formal language, discuss the
main components of NIA (§3.1), show how the model can dynamically change
every time a new norm is accepted by an agent (§3.2), and provide a formal
representation of the examples 1 and 2 (§3.3). Finally, §4 concludes.

2 Conceptual Foundation

There are currently two main traditions in deontic logics dealing with agency:
frameworks that adopt a purely external approach and exclusively model agents’
actions and their outcomes, and frameworks which endorse an internal approach
and represent only agents’ intentions. Stit logics [13,14] are a prominent ex-
ample of the first tradition,6 while Veltman’s model [22] is an example of the
second. Before discussing how those two approaches can be bridged, we provide
an overview of their main characteristics.

2.1 External and Internal Approaches

Stit logics concentrate on sentences of the form “agent α ought to see to it
that Φ”, where the basic construct “agent α sees to it that Φ” indicates that the
agent’s actions ensure that Φ is the case in the resulting state. Stit models provide
an indeterministic, temporal representation of the external world: a tree-like
structure indicates the temporal evolution of the world, its past, its present and
the possible states of affairs that can be realized in the future. The main intuition
behind the notion of agency as it is represented by Stit logics is that, by acting in
the world, agents constrain the course of events: when an agent α sees to it that Φ,
her actions have the effect of forcing the possible course of events to lie within the
states of affairs in which Φ is realized.7 For the purposes of this paper, it is worth
mentioning some characteristics of Stit logics. First, the tree-like structure at the
basis of Stit models is meant to exclusively represent the external properties of
the world as shaped by nature and agents’ actions. Second, as we have mentioned
above, Stit logics endorse a purely external representation of agency: agency

6 Another example is given, for instance, by Meyer’s [18] dynamic logic. In this paper,
however, we focus our attention only on the more recent Stit-logics.

7 For a detailed presentation of Stit models, we refer the reader to Horty&Belnap [13]
and Horty [14]. For the present paper, we limit ourselves to a deterministic fragment,
where the agent’s action uniquely determines the immediate future. We leave the
treatment of the general case for future work.
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is analyzed in terms of the outcomes of agents’ actions, abstracting from any
internal component. Finally, on a more technical note, given that Stit logics
concentrate on the states of affairs that are brought about by agents’ actions,
rather than on the specific actions themselves, the formal language used by Stit
logics does not contain any names for actions.

The deontic logic developed by Veltman [22] takes a completely different ap-
proach. While Stit models are based on an external representation of the world,
Veltman’s models represent exclusively an agent’s internal, cognitive state. In
particular, Veltman concentrates on the relation between norms and an agent’s
intentions, where the latter are represented by using “to-do lists” that indicate
what an agent is committed to carry out in the future.8 When an agent accepts
a new norm, Veltman argues, that acceptance induces a change of intentions in
the cognitive state of the agent in such a way that the agent intends to carry
out what the norm requires.

Even though Veltman is not explicit about the nature of intentions considered
in his models, it is clear that he is referring to what in the literature are usually
called prior, future-looking intentions.9 Prior intentions differ from the so-called
“intentions in action” in that they anticipate and cause actions but are not parts
of the actions themselves. More precisely, while prior intentions are intentions
to do something, to perform a certain action (for instance, taking a picture
with a camera), intentions in action are events responsible for the simple bodily
movements (for instance, pressing the shutter bottom) which make up the action
and therefore occur during the action, not prior to it.10 Moreover, prior future-
looking intentions are intentions to do something in the future,11 and differ from
prior present-directed intentions which, in turn, are intentions to perform an
action here and now.

Another notion which is assumed but not explicitly mentioned by Veltman
is that of goal norm.12 Goal norms are norms about the results or outcomes of
actions. They require that a certain state of affairs should obtain, but do not
deal with the entire process of reaching that state of affairs. Different from goal
norms are the so called “process norms” which also concern the single sequential
actions whose execution is needed to reach a certain state of affairs. In the same
line as Stit logics, the formal language used by Veltman does not contain names
for actions, and the norms he considers in his framework are exclusively goal
norms which require a certain state of affairs to be brought about.13

8 We refer the reader to Veltman [22] for the formal details.
9 See Searle [20], Lorini and Herzig [17] and Roy [19].

10 For a detailed discussion on the difference between prior intentions and intentions
in action, see Bratman [1] and Searle [20].

11 Veltman [22], pp.29,33, indeed talks about “successor worlds”, possible future evo-
lutions of the current world in which an agent’s intentions are realized.

12 Here we are using Broersen’s [3] terminology.
13 Veltman’s (ibid.) framework concentrates on norms in the form of imperatives.
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2.2 The NIA Principle

In §1, we have seen that there exist situations which neither of the two ap-
proaches alone, the external one and the internal one, can satisfactorily deal
with. The external approach fails to distinguish between Ann not eating meat
with the intention to follow the Christian norm and Julia accidentally behaving
in accordance with that norm without being aware of it. The internal approach
of Veltman, on the the other hand, cannot deal with the case of Carla realizing
that contingent factors about the content of her fridge limit her choice options,
while being still committed to follow her doctor’s prescription. These limitations,
we have seen, call for an integration between the two frameworks. But how do
Stit-logics’ and Veltman’s approaches relate to each other? More generally, which
kind of relation between norms, intentions and actions is in place?

Bratman [1] extensively argues that prior future-looking intentions carry a
distinctive element of commitment, which allows them to not only influence, but
even guide and control actions. Forming a prior intention to do a certain action
in the future motivates and engages the agent to act upon that intention and,
normally, also moves her to act.14 Generalizing Bratman’s analysis a bit, we
can say the following: If it is a norm the agent intends to follow, the agent’s
prior future-looking intentions control her actions at least in the sense that,
in considering what to do in the future, the agent discriminates between those
actions which permit her to fulfill the norm and those which do not.15 Following
Gibbard [9], we can then say that the agent’s possible actions get divided between
those which are admissible, or okay, and those which are not admissible, or not
okay.16 Then, if the agent intends to follow the norm, she is committed to those
actions that are admissible.

We have seen that the relation between prior future-looking intentions and an
agent’s actions is spelled out in terms of commitment by Bratman, that is, in
terms of an element which is intrinsic to those intentions themselves. However,
when it comes to the relation between norms and the formation of prior future-
looking intentions, Searle [20] notices there seems to be a gap. Norms, which
Searle recognizes as reasons for actions, are indeed not causally sufficient to
force the formation of those intentions in an agent.17 For a norm to impact an
agent’s intentions, it is necessary that the agent recognizes the norm. In other
words, the norm should be accepted by the agent.

14 In particular, Bratman identifies two dimensions of commitment in prior intentions:
(i) the so-called “volitional dimension”, according to which prior intentions control
an agent’s conduct, and (ii) the so called “reasoning centered dimension” which
concerns the role that prior intentions, thanks to their characteristic stability, play
in the agent’s reasoning in the period between their formation and their eventual
execution. See Bratman [1], pp. 15-18, 107-110.

15 More precisely: the agent discriminate between those actions she believes permit her
to fulfill the norm, and those she believes do not. However, for the sake of the present
paper, we abstract from issues related to ignorance and uncertainty. We leave them
for future work.

16 The “okay/not okay” is the original terminology used by Gibbard, see [9] pp.19,20.
17 See Searle [20] pp. 40-41 and p.131.
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From this discussion, it emerges that there is indeed a conceptual relation
between norms, intentions and actions. And it is such a relation which permits
the integration between Stit-logics’ and Veltman’s approaches. The model we
present in the paper bridges the two approaches through the following principle:

NIA Principle: An agent’s acceptance of a goal norm triggers a change in
her prior future-looking intentions in such a way that the agent is committed to
bring about what the norm requires. Consequently, the agent’s admissible future
actions get restricted to the ones permitting her to fulfill the goal norm, i.e., to
reach the required state of affairs.

3 An Integrated Model: NIA

We start by introducing the formal languages on which NIA models are based.
We make use of a descriptive language, to provide descriptions of the facts of
the world, and a normative language, to talk about goal norms. As descriptive
language we adopt the standard language of propositional logic, while we define
the normative language as follows:

Definition 1 (Normative Language). Let At = {p1 . . . pn} be a set of
atomic propositions. The normative language Lnorm is given by the BNF:

ϕ := p∃|p∀|¬p∃|¬p∀|ϕ ∧ ϕ|ϕ ∨ ϕ

In this definition, p∃ and ¬p∃ refer to one-time goal norms, requiring p (resp.
¬p) to be true once, while p∀ and ¬p∀ indicate standing goal norms, requiring p
(resp. ¬p) to be always true.18 The difference is crucial, especially when it comes
to fulfillment: one-time goal norms expire once fulfilled (like: write your PhD
thesis), while standing goal norms are always active and cannot be completely
discharged (like: respect your parents).

3.1 NIA Models: Trees, Obligations and To-Do Lists

As mentioned above, the NIA model integrates external and internal approaches
to agency by making use of tools from Stit logics’ and Veltman’s framework.
Just like in Stit logics, we adopt a tree-like structure to represent the temporal
evolution of the world; moreover, as in Veltman’s framework, we make use of
to-do lists to represent an agent’s prior future-looking intentions. Finally, just as
Stit logics and Veltman, we talk about actions in terms of their outcomes, and
formalize actions as propositions, i.e., as sets of states of affairs in which those
actions are realized (see [13], p.558).

We introduce the NIA models in a step to step approach. To begin with, we
introduce the underlying temporal tree, as taken from Stit logic. But first, let
us clarify some notation about trees.

18 The terminology is taken from Lindström&Segerberg [16], p.1208.
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In this paper, we take a tree to be a finite set W together with a tree-order
≺.19 If x comes before y in the tree, i.e., x ≺ y, we say that x is a predecessor
of y and y is a successor of x. The root r of a tree 〈W,≺〉 is the element r that
lies below all other elements, i.e., r ≺ x for all x �= r ∈ W . The leaves of a tree
are nodes without successors, i.e., l is a leaf if l ⊀ y for all y ∈ W . Finally, a
history is a maximal branch in a tree, i.e., a sequence of immediate successors
r ≺ x1, . . . ,≺ xn ≺ l where r is the root of the tree and l a leaf.

Definition 2 (Tree model). A tree model is a 4-tuple T = 〈W,w0,≺, V 〉
where:

– W is a set of worlds with w0 ∈ W
– ≺ is a tree-order on W with root w0

– V : At → P(W ) is the atomic valuation.

Next, we add norms to our model. To be precise, we want to incorporate the
obligations arising upon accepting a norm. For a given tree T and each possible
norm ϕ ∈ Lnorm, we want to identify the subtree Oϕ (called “obligation set”)
of T of possible histories compatible with satisfying ϕ.20 The subtree Oϕ is the
formal representation of the admissible actions described in Sec.2.2.

Crucially, we impose some consistency conditions on the concept of admissi-
bility. For a possible state w ∈ W to be admissible for an agent, it is not enough
to ensure that, at w, she does not violate any of the norms she has accepted.
We furthermore demand that w is compatible with the agent not running into
a violation in the future. That is, we want to exclude those states where the
agent has not yet violated any norm, but will inevitably violate such a norm
in the future, no matter what she does. To state these conditions formally, we
introduce the following notation: For S ⊆ W , we define:

S =
⋃{h ⊆ S|h is a history of T }

With other words, S is the set of all s ∈ S that are part of a branch that lies
completely in S.

Now, we can give the inductive definition of obligations sets.

Definition 3 (Obligation Sets, Oϕ). Let T be a tree-model. The obligation
set Oϕ for ϕ ∈ Lnorm is inductively defined as follows:

– Op∃ =
⋃{h|h is a history of T and some world in h satisfies p}

– O¬p∃ =
⋃{h|h is a history of T and some world in h satisfies ¬p}

– Op∀ =
⋃{h|h is a history of T and every world in h satisfies p}

– O¬p∀ =
⋃{h|h is a history of T and every world in h satisfies ¬p}

– Oϕ∨ψ = Oϕ ∪ Oψ

– Oϕ∧ψ = Oϕ ∩ Oψ

Finally, as a third element, we introduce our representation of an agent’s in-
tentions. In our approach, we follow Veltman [22] in using consistent to do-lists

19 That is, for any w1 ∈ W , the set {w|w ≺ w1} is linearly ordered by ≺.
20 Norms and obligations are therefore distinct: while a norm is a linguistic item (part

of the Lnorm language), an obligation is a semantic item (subset of the tree T ).
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and plans, sets of to-do lists, to model an agent’s prior future-looking intentions.
Intuitively, a to-do list is a list of all basic commitments of an agent, and con-
tains elements of the form 〈p∃, true〉 (read as: “make p true once”) or 〈p∀, false〉
(“make q false always”). The relation between prior-future looking intentions
and commitments is the one discussed in Sec.2.2. In listing what the agent is
committed to realize, to-do lists then serve to represent and keep track of what
the agent intends to bring about.

Definition 4 (To-Do List, Plan). 21

– A to-do list is a set D ⊆ At{∀,∃} × {true, false}.
– A to-do list is consistent if it does not contain contradicting commitments,

that is, pairs of commitments of the form:22

• 〈p∀, true〉 and 〈p∀, false〉
• 〈p∀, true〉 and 〈p∃, false〉
• 〈p∀, false〉 and 〈p∃, true〉

– A plan P is a set of consistent to-do lists such that for all D,D′ ∈ P it holds
that D � D′.

A to-do list is the set of basic commitments the agent aims to jointly
realize. For instance, the to-do list of Ann in our first example is
{〈eat meat on friday∀, false〉}. Now, it can happen that an agent accepts a norm
that allows her to choose between different courses of action. This is indeed the
case of Carla in our second example. This freedom of choice is reflected in plans:
A plan contains several to-do lists, and indicates the agent’s alternative possi-
ble commitments.23 Thus, Carla’s plan consists of two to-do lists, one saying
〈drink milk∃, true〉, the other one stating 〈drink apple juice∃, true〉.

Before proceeding, we should emphasize the crucial difference between an
empty to-do list (or, equivalently, the plan containing only the empty to-do
list, P = {∅}) and an empty plan (P = ∅).24 The first case, the empty to-
do list, describes an agent that has not accepted any norms yet. The agent
has no commitments to carry out, and, in this sense, any action she chooses is
admissible. In the second case, the empty plan, the set of admissible courses of
actions she could choose from is empty – whatever she does she will be in a state
of violation. Consequentially, we call the case P = ∅ a state of violation.

As a next step, we show how the norms an agent accepts translate into her
to-do lists. To be a bit more precise, we give a formal definition of how newly
accepting a norm changes the agent’s to-do lists.

21 We adapt Veltman’s definition to the normative language of NIA, which contains
both standing and one-time norms. Cf. Veltman [22], pp.12-13.

22 Notably, pairs of commitments like 〈p∃, true〉 (“make p true once”) and 〈p∃, false〉
(“make p false once”) are consistent.

23 It is worth pointing to the fact that the notion of plan here differs from the one
adopted by Bratman [1]. While in Bratman plans are typically partial and hierar-
chical, here plans are simply meant to illustrate the alternative actions an agent is
committed to perform. Cf. Bratman [1], pp. 28-32, and Veltman [22], pp. 13,29.

24 See Veltman [22] p.13
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Definition 5 (Updating a plan, P ↑ ϕ). Let P be a plan. The update of P
by accepting some formula ϕ ∈ Lnorm (written P ↑ ϕ) is defined inductively as
follows:25

– For ϕ of the form p∃ (resp. p∀, ¬p∃, ¬p∀)
P ↑ ϕ = min{D′ | D′ consistent D′ = D ∪ {〈p∃, true〉} for some D ∈ P}
(resp. 〈p∀, true〉/〈p∃, false〉/〈p∀, false〉)

– ϕ of the form ψ ∨ χ
P ↑ ϕ = min(P ↑ ψ ∪ P ↑ χ)

– ϕ of the form ψ ∧ χ
P ↑ ϕ = min{D ∪D′|D ∈ P ↑ ψ,D′ ∈ P ↑ χ,D ∪D′ consistent}

Where min(P ) denotes the ⊆-minimal elements of P . In particular, upon updat-
ing with some ϕ that is incompatible with the current plans, we have P ↑ ϕ = ∅,
the state of violation, not to be confused with the empty to-do list P = {∅}.

Now, we have introduced all necessary components for defining a NIA model.
For convenience, we start by first introducing a pre-NIA model. We later expand
this to a NIA-model by adding some further coherence constraints.

Definition 6 (pre-NIA model). A pre-NIAmodel is a 6-tupleM = 〈W,w0,≺
, V,O, F 〉 where
– 〈W,w0 ≺, V 〉 is a tree model
– O ⊆ W with O = O is the obligation set
– F : W → P(P(At{∃,∀} × {true, false})) is the planning function which

attaches a plan to each world.

Of course, the intended interpretation is that w0 is the current moment in
time. In particular, the agent decides to accept or reject new norms and forms
her to-do list at moment w0. To-do lists and plans at all subsequent nodes are
meant to keep track of which commitments have already been fulfilled, and which
are still open. Some coherence constraints concerning individual plans, and the
relation between different plans are in place. Before we can define these, we need
to fix one piece of notation: If v is the immediate predecessor of w andD ∈ F (w),
then we call D′ ∈ F (v) a source of D if D ⊆ D′ and every item in D′ −D is of
the form 〈p∃, true〉 for w ∈ V (p) or 〈p∃, false〉 for w �∈ V (p).

Definition 7 (Coherence of F). Let M be a NIA model with planning func-
tion F . Then we call F coherent iff:

i) Success: If w is a leaf of NIA then no D ∈ F (w) contains commitments of
the form “〈p∃, true/false〉”

ii) Non-redundancy: If w ∈ W with w ∈ V (p), then no D ∈ F (w) contains
〈p∃, true〉. Similarly for w �∈ V (p) and 〈p∃, false〉.

iii) Non-violation of standing norms: If w ∈ W with w ∈ V (p), then no D ∈
F (w) contains 〈p∀, false〉. Similarly, for w �∈ V (p) and 〈p∀, true〉.

25 These definitions are adaptions of Veltman’s [22], p.15.
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iv) Conservativity: Let v be the immediate predecessor of w. Then for every
D ∈ F (w), there is a source D′ of D in F (v).

v) Free Choice: For every D ∈ F (w) there is some immediate successor v of w
and some D′ ∈ F (v) such that D is a source of D′.

Before we proceed, we should elaborate a bit on the above definition. The first
item, success, expresses the fact that the tree in M constitutes the agent’s time
horizon, and every one-time norm has to be satisfied within that horizon. Next,
the non-redundancy condition states that one-time norms get discharged once
satisfied. Third, the non-violation condition expresses that the plan F (w) cannot
contain any to-do lists that are incompatible with w. Fourth, the conservativity
condition expresses that no new commitments are introduced along the way.
The agent can only form new commitments in her starting state w0. All to-do
lists at subsequent nodes can only track how these commitments are gradually
satisfied. Finally, the last condition, free choice, states that every to-do list in
F (w) is compatible with some future state of affairs. That is, no matter which
to-do list the agent picks at some node, that list is guaranteed to be satisfiable
in some successor of the current world. Thus, taken together, the five conditions
express that the different F (w) cohere and that every to-do list in every plan is
satisfiable. Now, we can finally define a NIA model.

Definition 8 (NIA-model). A NIA-model is a pre-NIA model in which the
planing function F is coherent.

With those definitions at hand, we can now turn to the dynamics of the NIA
model, and give a formal representation of the NIA Principle.

3.2 Dynamics

In this section we define the update operation induced by an agent’s acceptance
of a goal norm.26 The update operation formalizes the NIA Principle: accept-
ing a goal norm φ triggers a change in the agent’s prior future-looking intentions
(i.e, φ is added, as a commitment, to the agent’s to do-lists) and, consequently,

26 In the current paper, we focus exclusively on updates, and do not deal with the
revision of norms or intentions. In particular, we are interested in the process of
intention formation, as triggered by the acceptance of a goal norm, and its coher-
ence requirements, rather than with reconsidering about norms/intentions that are
already in place. This will, however, be important for future work. For works dealing
with intentions’ update and revision, see van der Hoek et al. [12], van Ditmarsch et
al. [8] and Icard et al. [15]. Similar to our approach on intentions’ update are van
der Hoek et al. [12], also inspired by Bratman [1], and Icard et al. [15]. However,
Icard et al. [15]’s approach differs from ours in two crucial ways. For once, their ap-
proach cannot deal with intentions triggered by what we call one-time norms. Also,
our construction of temporal trees is more general than theirs. Finally, it should
be noted that all those works on intentions’ update and revision do not treat the
relation between norms and intentions which is, on the other hand, at the core of
the present paper.
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it also affects the agent’s actions by restricting the set O to that subtree Oφ

which is compatible with fulfilling the norm φ.
In Def.5, we have seen how newly accepted norms change the agent’s to-do

lists. We now define an Upward-Downward Algorithm that will be used for
updating the entire planning function F , following an update of the agent’s
current plan at w0. Basically, this algorithm is needed to ensure that, after a
new norm is accepted, the F -function is coherent.27

– do F (w0) ↑ ϕ
– do upward(w0)
– For all w ∈ W , do : F (w) = min(F (w))
– For all leaves l ∈ W , do : downward(l)
end

def upward(x):

– if x �= w0 and y ImPred(x)
let F (x) = F (y)

– For all D ∈ F (x) and p ∈ At:
If x ∈ V (p):

do D − {〈p∃, true〉}
Else:
do D − {〈p∃, false〉}

– For all D ∈ F (x) and p ∈ At:
If x ∈ V (p) and 〈p∀, false〉 ∈

D:
do F (x)−D

If x �∈ V (p) and 〈p∀, true〉 ∈ D:
do F (x)−D

– For all z ImSucc(x):
do upward(z)

end

def downward(x):

– If x is a leaf:
do F (x) − {D ∈ F (x) |
∃ϕ ∈ D with ϕ ∈ At{∃} ×
{true, false}}

– for y ImPred(x):
do F (y) = {D ∈ F (y) | ∃j
ImSucc(y) ∃D′ ∈ F (j) :
D − D′ ⊆ {〈p∃, true, 〉|j ∈
V (p)} ∪ {〈p∃, false〉|j �∈
V (p)}

do downward(y)
end

Intuitively, the working of the algorithm is the following: First, the agent’s initial
plan at w0 is updated. In the upward part of the algorithm, the gradual fulfill-
ment of this plan is successively traced throughout the tree: At each world, ful-
filled commitments generated by one-time norms get removed. Also, the upward
algorithm tracks the non-violation of standing norms by removing all to-do lists
that violate standing norms. The downward part of the algorithm then checks
whether all one-time norms will be satisfied eventually. For each leaf, we remove
those to-do lists which contain open commitments generated by one-time norms,
backtrack and remove the corresponding to-do lists down to the root.

The following lemmas show that the upward-downward algorithm functions as
desired, that is, it terminates in finite time and guarantees that the F -function
obeys to the constraints described in Def.7:28

27 In what follows, ImPred(x) and ImSucc(x) stand for the the immediate Predeces-
sors/Successors of x.

28 Due to the limited space, we omit all proofs.
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Lemma 1. The upward-downward algorithm terminates in finite time.

Lemma 2. Let M be a pre-NIA model and let ϕ ∈ Lnorm. Then applying the
upward-downward algorithm to M and ϕ makes the function F coherent. It even
does so with the minimal necessary changes to F .

Now, we can finally define the update with a norm:

Definition 9 (NIA Model Update). Let M = 〈W,w0,≺, V,O, F 〉 be a NIA
model and ϕ ∈ Lnorm. Accepting the norm ϕ updates M to a new model M ′ =
〈W,w0,≺, V,O′, F ′〉 such that:

– F ′ is obtained by upward-downward algorithm starting with F and ϕ at M

– O′ = O ∩Oϕ

The definition of update operation provides then a formal characterization of the
NIA Principle we have introduced and discussed in §2. Notably, our approach
generates the following agreement between an agent’s prior future-looking inten-
tions and her obligation set, that is, the set of admissible actions.

Theorem 1. Let M be a NIA-model and let ϕ ∈ Lnorm. Then the updated
model M′ satisfies the following:

i) If {x ∈ W |F (x) �= ∅} = O, then also {x ∈ W |F ′(x) �= ∅} = O′

ii) Every world in O′ is compatible with satisfying ϕ

Notably, i) implies that, if an agent’s commitments are derived by starting with
an empty to-do list and O = W and repeatedly accepting new norms, we are
guaranteed that her obligation set is exactly the set of all nodes compatible with
her fulfilling all accepted commitments. Point ii) follows from i).

3.3 Examples

We can now return to our examples from section 1. Example 1: Given that
NIA models take into account both an internal (an agent’s intentions) and an
external dimension (the world as shaped by nature and an agent’s actions), it is
possible to distinguish between Ann’s and Julia’s cases. While the state of affairs
resulting from Ann’s and Julia’s actions is the same (having fish for dinner), only
in Ann’s case that state of affairs is reached through incorporating the Christian
norm “¬ eat-meat-on-Friday∀” in her to-do lists. In particular, Ann and Julia
differ in the content of their respective to-do lists and obligation sets.

Example 2: The norm “drink milk or apple juice” generates a set containing
two to-do lists, D = {〈milk∃, true〉} and D′ = {〈apple juice∃, true〉}. Thus,
Carla is free to choose between bringing about D or D′. However, since there is
no apple juice available (i.e., all the nodes in the NIA model are such that “apple
juice” is false), the to-do list D′ gets eliminated by the Upward-Downward
Algorithm. In particular, D′ gets eliminated in the downward procedure.
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4 Conclusion

The present paper aimed to propose a formal model in which the interplay
between goal norms, prior future-looking intentions and possible actions could
be represented. Motivated by the philosophical works on those topics, the paper
proposed a so-called NIA Principle and formalized it in a dynamic model which
combined tools from Stit logics and Veltman’s models. It was shown that such
an integrated model allowed to treat some relevant examples which would have
remained problematic with external and internal approaches kept apart.
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Abstract. We introduce a unified framework for dynamic epistemic log-
ics, which in particular encompasses Public Announcement Logic (PAL),
Epistemic Action (EA) and Preference Upgrade (PU). Our framework
consists of a generic language, in which some of the known reduction
axioms are expressible, together with relational and algebraic semantics.
We then establish correspondences between generic reduction axioms and
semantic properties, in both relational and algebraic settings. This leads
to alternative proofs of the completeness of PAL, EA, PU with respect
to their relational semantics and algebraic semantics (for the former two).

1 Introduction

Dynamic Epistemic Logic (DEL) is a branch of modal logic for reasoning about
knowledge changes or belief revisions caused by communication. This is techni-
cally materialised by adding, to a static epistemic logic, dynamic operators that
express actions of communication. These operators are interpreted as transfor-
mations of Kripke models (model transformations). The pioneer study on DEL
is Public Announcement Logic (PAL) [5]. Then Epistemic Action (EA) [2] was
proposed for reasoning about a greater variety of communication, including pub-
lic announcements, and this has made the research area much more active. Until
now, many DELs for various kinds of actions of communications have been pro-
posed and studied: Update Model [11], Command Logic [14], Belief Change [6],
Preference Upgrade (PU) [8], Evidence Dynamics [9] and Manipulative Update
[12]. PAL and EA, among others, have been studied well: recently, algebraic
counterparts of model transformations were proposed as the algebraic semantics
of PAL [4] and EA [3].

Modal Correspondence in DEL: We aim at developing a modal correspon-
dence theory for DEL in general, which establishes a link between axioms and
properties of model transformations. There are some precedents in the literature
[6–8]. Among these, van Benthem [7] gives a quite comprehensive account based
on the concept of update universe to PAL, EA, Belief Change and Evidence Dy-
namics. In this paper we further this line of research, proposing a more general
framework. We consider a wider class of dynamic operators than those studied
in [7], which are generally expressed by formulas. In addition, we give not only

c© Springer-Verlag Berlin Heidelberg 2015
W. van der Hoek et al. (Eds.): LORI 2015, LNCS 9394, pp. 282–294, 2015.
DOI: 10.1007/978-3-662-48561-3_23
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frame/model correspondences but also soundness-completeness-type correspon-
dences for model transformations in general.

Organisation and Novel Contribution: The main contribution of our pa-
per is in proposing a general framework for modal correspondence in DEL. We
proceed as follows:
– Section 2: Language. We first propose a generic DEL language that is defined

by using abstract action expressions. The languages of PAL, EA and PU
(without the auxiliary universal modality) can be obtained by substituting
their action expressions for abstract ones.

– Section 3: Relational Semantics. We then propose the notion of a two-layered
relational model in which model transformations are expressed by abstract
update relations instead of ordinary operational ways. The language and
the two-layered models allow us to develop a general modal correspondence
theory for the generic fragment. We then give correspondence results spe-
cific to PAL, EA and PU. As corollaries, we obtain alternative proofs of
completeness of these logics. While the ordinary proofs are based on trans-
lation of dynamic formulas into purely static ones by reduction axioms, our
new proofs consist in matching each reduction axiom with a corresponding
semantic property. Thus our proofs are modular.

– Section 4: Algebraic Semantics. We undertake a similar analysis in an al-
gebraic setting: we propose an algebraic notion of model; give general cor-
respondence results and ones specific to PAL and EA; and also obtain
alternative modular proofs of the completeness of these two logics.

– Section 5: Duality. To conclude the paper, we give several results on the
duality between our relational and algebraic models.

2 Generic DEL Language

Let us begin by proposing a generic language for DEL.

Definition 1 (Generic DEL Language). Let P be a set of atomic proposi-
tions, E a set of epistemic expressions and A a set of action expressions. We
define a generic DEL language L(E,A) by the following rule:

ϕ ::= � | p | ¬ϕ | ϕ ∨ ψ | 〈e〉ϕ | 〈〈α〉〉ϕ
where p ranges over P, e over E and α over A.

In other words, the language L(E,A) is the multimodal language with modalities
〈e〉 and 〈〈α〉〉 (e ∈ E, α ∈ A). The individual languages of Public Announcement
Logic (PAL), Epistemic Action (EA) and Preference Upgrade (excluding the
universal modality) (PU) can be seen as special cases of L(E,A):

Example 1 (Specific DEL Languages). Let Ag be a given set of agents.
– The language of PAL can be expressed as LPAL = L(Ag,APAL), where

APAL = {!ϕ | ϕ ∈ LPAL}. As APAL depends on LPAL, these two sets are actu-
ally defined by simultaneous induction; however, the resulting language fits
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the pattern of L(E,A). The same remark applies to the other two examples
below. The intended meaning of [n]ϕ := ¬〈n〉¬ϕ is ‘agent n knows ϕ’, while
[[!ϕ]]ψ := ¬〈〈!ϕ〉〉¬ψ means ‘ψ holds after a truthful public announcement of
ϕ’.

– The language of EA is LEA = L(Ag,AEA) where AEA is the set of action
models (U, s) [2]. An action model (U, s) consists of a finite Kripke frame
(U, {→n}n∈Ag) together with a precondition function Pre : U → LEA and
s is a state of U : [[(U, s)]]ϕ := ¬〈〈(U, s)〉〉¬ψ is read as ‘ϕ holds after an
epistemic action (U, s)’, and [n]ϕ is as in PAL.

– The language LPU of PU can also be expressed as LPU = L(EPU,APU)
where EPU = {n, n̄ | n ∈ Ag} and APU = {ϕ!, �ϕ | ϕ ∈ LPU}. [n]ϕ and
[[ϕ!]]ψ := ¬〈〈ϕ!〉〉¬ϕ are as [n]ϕ and [[!ϕ]]ψ in PAL, while [n̄]ϕ := ¬〈n̄〉¬ϕ
and [[�ϕ]]ψ := ¬〈〈�ϕ〉〉¬ψ express ‘all the worlds which agent n considers at
least as good as the current one satisfy ϕ’ ([8]) and ‘ψ holds after suggestion
of ϕ’, respectively.

A common feature of dynamic epistemic logics is the use of reduction ax-
ioms, which are intended to transform any dynamic formula (involving dynamic
modalities 〈〈α〉〉) into a purely static one. Some reduction axioms are already
expressible in the generic DEL language L(E,A):

Definition 2 (Generic Reduction Axioms). We call the following axioms
generic reduction axioms:

RN : 〈〈α〉〉¬ϕ ↔ 〈〈α〉〉� ∧ ¬〈〈α〉〉ϕ RP : 〈〈α〉〉p ↔ 〈〈α〉〉� ∧ p
RK : 〈〈α〉〉〈e〉ϕ ↔ 〈〈α〉〉� ∧ 〈e〉〈〈α〉〉ϕ RA : 〈〈α〉〉� ↔ �

Notice that RP refers to atomic propositions p, thus logics involving RP are not
closed under uniform substitution.

We can give proof systems PAL,EA and PU to the above three logics—PAL,
EA, PU—by choosing a suitable set of generic reduction axioms and adding
some extra ones: here we consider the multimodal logic K (without the substi-
tution rule) in the language L(E,A) as the base logic and use the symbol ⊕ for
the addition of axiom schemata.

Example 2
– PAL = K⊕ RNRKRP ⊕ RT : 〈〈!ϕ〉〉� ↔ ϕ.
– EA = K ⊕ RNRP ⊕ Pre : 〈〈(U, s)〉〉� ↔ Pre(s) ⊕ AEA : 〈〈(U, s)〉〉〈n〉ϕ ↔

〈〈(U, s)〉〉� ∧∨{〈n〉〈〈(U, t)〉〉ϕ | s →n t}.
– PU = K⊕ RN (for ϕ! and �ϕ)⊕ RP (for ϕ! and �ϕ)⊕ RK (for (ϕ!, n), (ϕ!, n̄),

(�ϕ, n))⊕RT (for ϕ!)⊕RA (for �ϕ)⊕APU : 〈〈�ϕ〉〉〈n̄〉ψ ↔ (¬ϕ ∧ 〈n̄〉〈〈�ϕ〉〉ψ) ∨
(〈n̄〉(ϕ ∧ 〈〈�ϕ〉〉ψ)).

We can easily see that these proof systems are equivalent to the original ones in
[2, 5, 8].

3 Relational Semantics

3.1 Model Transition System

Usually, the language of a DEL is interpreted by using a Kripke model M =
(S, {Re}e∈E , V ). The effect of an action α is explained in terms of model
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transformation: M is transformed into another model Mα and a state v in M
is sent to a state w in Mα (cf. Baltag [1]). Since we want to treat a family
(property) of model transformations in one general framework, it is convenient
to consider a family of Kripke models, linked to each other by dynamic action
relations. Hence, we consider the following novel system, which modifies the
update universe (see Remark 1 infra) in [7]:

Definition 3 (Model Transition System). A model transition system (MTS)
for L(E,A) is a triple M = (MI , Φ,R) such that
1. MI is a family of Kripke models Mi = (S, {Re}e∈E , V ) indexed by i ∈ I

(Mi is allowed to be an empty structure),
2. Φ : I × A → I is a function (notation: Mα

i := MΦ(i,α)),
3. R assigns a binary relation Rα

i ⊆ Mi ×Mα
i to each (i, α) ∈ I × A.

Analogously, a frame transition system (FTS) F = (FI , Φ,R) is defined by using
indexed Kripke frames instead of indexed Kripke models. We say that F =
(FI , Φ,R) is the underlying FTS of an MTS M = (MI , Φ,R) and write F =
U(M) if Fi is the underlying frame of Mi for each i ∈ I. An MTS expresses
model transformations: a model Mi is transformed into Mα

i by action α, and
the state v in Mi is sent to w in Mα

i if vRα
i w. As a result, a pointed model

(Mi, v) is transformed into (Mα
i , w) that satisfies vR

α
i w, if such a w exists.

The generic DEL language L(E,A) is interpreted by an MTS:

Definition 4. Suppose that Mi = (S, {Re}e∈E , V ) is a Kripke model in an MTS
M = (MI , Φ,R) and v is a state in Mi. We inductively define the notion of a
formula ϕ being satisfied at state v in Mi ∈ MI (notation: M,Mi, v |= ϕ) as
follows:

M,Mi, v |= � iff always
M,Mi, v |= p iff v ∈V (p)
M,Mi, v |= ¬ϕ iff M,Mi, v �|= ϕ
M,Mi, v |= ϕ ∨ ψ iff M,Mi, v |= ϕ or M,Mi, v |= ψ
M,Mi, v |= 〈e〉ϕ iff for some w ∈ S, vRew and M,Mi, w |= ϕ
M,Mi, v |= 〈〈α〉〉ϕ iff for some w ∈ Mα

i , vR
α
i w and M,Mα

i , w |= ϕ

We say that M validates ϕ if M,Mi, v |= ϕ for any Kripke model Mi in M and
state v in Mi. Validity in an FTS is defined analogously.

The model transformations of the three logics—PAL, EA, PU—are ex-
pressed by MTSs (MI , Φ,R) by defining Φ and R as follows (the families MI

have to be given so that Φ and R are well-defined):

Example 3 (Specific Model Transition Systems)

– PAL-MTS: for every !ϕ ∈ APAL and Mi = (S, {Rn}n∈Ag, V ) ∈ MI ,

• M!ϕ
i = (S′, {R′

n}n∈Ag, V
′) is the submodel of Mi whose carrier set is

S′ = {v ∈ S | M,Mi, v |= ϕ}, and
• R!ϕ

i = {(v, v) ∈ Mi ×M!ϕ
i | v ∈ M!ϕ

i }.
– EA-MTS: for every action model (U, s) ∈ AEA with U = (U, {→n}n∈Ag) and

Mi = (S, {Rn}n∈Ag, V ) ∈ MI ,
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• M
(U,s)
i = (S′, {R′

n}n∈Ag, V
′) is given by

∗ S′ = {(v, t) | v ∈ Mi, t ∈ U and M,Mi, v |= Pre(t)},
∗ (v, t)R′

n(w, u) iff vRnw and t→nu for any n ∈ Ag,
∗ (v, t) ∈ V ′(p) iff v ∈ V (p),

• Φ(i, (U, s)) = Φ(i, (U, t)) for any i ∈ I and (U, s), (U, t) ∈ AEA, and

• R
(U,s)
i = {(v, (v, s)) ∈ Mi ×M

(U,s)
i | (v, s) ∈ M

(U,s)
i }.

– PU-MTS: for every ϕ!, �ϕ ∈ APU, and Mi = (S, {Rn, Rn̄}n̄∈Ag, V ) ∈ MI ,

• Mϕ!
i = (S, {R′

n, Rn̄}n∈Ag, V ) is given by

∗ R′
n = {(v, w) ∈ Rn | M,Mi, v |= ϕ iff M,Mi, w |= ϕ},

• M�ϕ
i = (S, {Rn, R

′
n̄}n∈Ag, V ) is given by

∗ R′̄
n = {(v, w) ∈ Rn̄ | M,Mi, v |= ¬ϕ or M,Mi, w |= ϕ},

• Rϕ!
i = {(v, v) ∈ Mi × Mϕ!

i | M,Mi, v |= ϕ}, and R�ϕ
i = {(v, v) ∈

Mi ×M�ϕ
i | v ∈ M�ϕ

i }.

Usually bounded morphisms are defined between Kripke models. We extend
them to morphisms between MTSs as follows:

Definition 5. Let M = (MI , Φ,R) and N = (NJ , Ψ,Q) be MTSs. A bounded
morphism f : M → N is a pair (f, {fi}i∈I) of a function f : I → J and bounded
morphisms (in the ordinary sense) fi : Mi → Nf(i) that satisfies the following
conditions for any i ∈ I and action expression α ∈ A: (Here fα

i denotes fΦ(i,α).)
1. f(Φ(i, α)) = Ψ(f(i), α), 2. if vRα

i w then fi(v) Qα
f(i) fα

i (w),

3. if fi(v) Qα
f(i) w′ then vRα

i w and fα
i (w) = w′ for some w ∈ Mα

i .

Items 2 and 3 in the definition correspond to the homomorphic condition and
the back condition in the definition of ordinary bounded morphisms. Item 1 is
their precondition. As expected, we have:

Proposition 1. Let (f, {fi}i∈I) : M → N be a boundedmorphism betweenMTSs.
Then, for anyMi inM and state v inMi, (M,Mi, v) and (N,Nf(i), fi(v)) satisfy
exactly the same formulas.

We call a bounded morphism (f, {fi}i∈I) : (MI , Φ,R) → (NJ , Ψ,Q) surjective if
for any j ∈ J there is an i ∈ I such that f(i) = j and fi : Mi → Nj is surjective,
and we say that N is a bounded morphic image of M if there is a surjective
bounded morphism from M to N. Similar notions are defined for FTSs.

Remark 1. Our MTSs generalise the idea of update universe [7] to the generic
DEL language L(E,A). In particular, PAL-MTSs for the specific language LPAL

(Example 3) roughly correspond to the original. The difference is that [7] con-
siders relations (M, s)RP (N, t) with P a subset of the carrier set of M. These
relations, for example, interpret an announcement !ϕ as R[[ϕ]], which may be
called ‘extensional’ in the sense that R[[ϕ]] = R[[ψ]] whenever [[ϕ]] = [[ψ]]. In com-

parison with this interpretation, our interpretation is ‘intensional’, since R!ϕ
i

does not necessarily coincide with R!ψ
i , even if ϕ and ψ are logically equivalent.
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3.2 General Correspondence Results

We now give a correspondence between classes of MTSs (or FTSs) and the
generic reduction axioms. The results below extend some of the observations
made in [7].

Definition 6 (Deterministic FTS). AnFTS (FI , Φ,R) [oranMTS (MI , Φ,R)]
is deterministic if for each (i, α) ∈ I × A,Rα

i is a partial function.

This means that the result of each action is completely determined by the current
state.

Proposition 2. An FTS validates RN iff it is deterministic.

Definition 7 (Epistemic MTS). An MTS M = (MI , Φ,R) is epistemic if for
each (i, α) ∈ I ×A, vRα

i w implies that v and w satisfy exactly the same atomic
propositions.

Proposition 3. An MTS M validates RP and U(M) validates RN iff M is de-
terministic and epistemic.

Proposition 3 indicates that RNRP corresponds to the model transformations
that are deterministic and preserve the facts (the valuations). Examples of this
kind of action include suggestion [8], lying [12] and commanding [14].

Definition 8 (Eliminative FTS). An FTS F = (FI , Φ,R) is called eliminative
if for any (i, α) ∈ I×A, Fα

i is a subframe of Fi and the inverse relation (Rα
i )

−1

embeds Fα
i into Fi.

Proposition 4. An FTS validates RN and RK iff it is a bounded morphic image
of an eliminative FTS.

Proof. For convenience, we assume that E is a singleton. Suppose that FTS
F = (FI , Φ,R) validates RN and RK. It is easy to see that for each (i, α) ∈ I ×A,
Rα

i of F is a partial bounded morphism between Kripke frames.
However, F may not be an eliminative FTS. We construct an eliminative FTS

F′ = (FI×A∗ , Φ′,R′) from F thus: let us denote each Kripke frame Fi in FI by
(Si, Ri). We first extend the notation Φ(i, α) and Rα

i (α ∈ A) (cf. Definition 3)
to Φ(i, γ) and Rγ

i for each string γ ∈ A∗; Φ(i, ε) = i and Φ(i, γα) = Φ(Φ(i, γ), α)
for γ ∈ A∗ and α ∈ A, and Rε

i = {(x, x) | x ∈ Fi} and Rγα
i = Rγ

i ◦Rα
Φ(i,γ).

Then, each Kripke frame F(i,γ) = (S(i,γ), R(i,γ)) in FI×A∗ is defined as follows:
S(i,γ) := {v ∈ Fi | there exists a state w ∈ FΦ(i,γ) such that vRγ

i w}; R(i,γ) :=
Ri ∩ (S(i,γ) × S(i,γ)). Lastly, Φ

′ and R′ are defined to be Φ′((i, γ), α) = Φ(i, γα)
and R′α

(i,γ) = {(v, v) | v ∈ F(i,γα)}.
A surjective bounded morphism f = (f, {f(i,γ)}(i,γ)∈I×A∗) from F′ to F can be

defined as follows: f : I × A∗ → I maps (i, γ) to Φ(i, γ); f(i,γ) : F(i,γ) → FΦ(i,γ)

maps v ∈ S(i,γ) ⊆ Si to w ∈ SΦ(i,γ) such that vRγ
i w. Since each Rα

i is a partial
bounded morphism, f is indeed a bounded morphism. ��
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Proposition 4 means that RNRK corresponds to the actions that eliminate several
possible states as PAL actions do, but may cause change of truth values of
atomic propositions.

In the context of DEL, we often restrict our attention to epistemic actions,
which do not change the truth values of atomic propositions. Thus here we
name an epistemic MTS M whose underlying FTS U(M) is eliminative, an
eliminative MTS. Eliminative updates appear in the literature not only in this
state-eliminating style [5, 6] but in the link-cutting style as in PU-MTSs [6, 8].
By Proposition 3 and the construction of the proof in Proposition 4, this class
is captured by RN, RK and RP:

Proposition 5. An MTS M validates RP and U(M) validates RN and RK iff
M is a bounded morphic image of an eliminative MTS.

Proposition 5 means that RNRKRP corresponds to the actions that eliminate
possible states, i.e. increase agents’ knowledge in the epistemic case. Public an-
nouncements are a typical example of such actions, but these do not always
have to be expressed by a formula. For example, think of the computer game
Minesweeper. Each time the player clicks on a cell on the board, the player’s
knowledge about the mines’ locations is updated. Thus 〈〈click〉〉 can be equally
considered an action. The logic K ⊕ RNRKRP could be useful to model such a
situation.

Definition 9 (Unconditional FTS). An FTS F = (FI , Φ,R) [or an MTS
(MI , Φ,R)] is called unconditional if for each (i, α) ∈ I × A, Rα

i satisfies the
condition that for any v ∈ Fi, there exists w ∈ Fα

i such that vRα
i w.

If we were to express this differently, there is no precondition to the action α
and therefore α is always possible. RA expresses this property:

Proposition 6. An FTS validates RA iff it is unconditional.

Note that Propositions 2, 3 and 6 do not involve the construction of a bounded
morphism, thus they can be freely combined.

We know that all the above combinations of generic reduction axioms are
canonical in the ordinary sense, that is, their canonical models of the form
(S, {Re}e∈E , {Rα}α∈A, V ) satisfy their corresponding frame/model properties.
Given this and all the correspondence results above, soundness and complete-
ness hold for each of the following pairs:

1. K⊕RN and the class of deterministic FTSs
2. K⊕RNRP and the class of deterministic and epistemic MTSs
3. K⊕RNRK and the class of eliminative FTSs
4. K⊕RNRKRP and the class of eliminative MTSs
5. K⊕RA and the class of unconditional FTSs
6. K⊕RARN and the class of unconditional and deterministic FTSs
7. K⊕RARNRP and the class of unconditional, deterministic and epistemic MTSs

Remark 2. RN plays an important role; for example, without RN we cannot even
prove that RP is linked to the class of epistemic MTSs.
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3.3 Specific Correspondence Results

So far we have been concerned with the generic DEL language L(E,A) and
MTSs/FTSs in general. We now proceed to the extra reduction axioms in Ex-
ample 2, which are specific to the languages of PAL, EA and PU. Our modu-
lar approach leads to an alternative proof of completeness for each of the three
logics.

Proposition 7
1. Let M be a deterministic and epistemic MTS for LPAL. M validates RT and

U(M) validates RK iff M is a bounded morphic image of an eliminative MTS

N where each transformed model N!ϕ
i is the submodel of Ni whose carrier

set is {v ∈ Ni | N,Ni, v |= ϕ}, i.e. M is a bounded morphic image of a
PAL-MTS.

2. PAL is sound and complete with respect to the class of PAL-MTSs.

As a PAL-MTS precisely expresses the intended model transformation of PAL,
we obtain an alternative proof of the completeness of PAL with respect to the
original semantics in [5].

Remark 3. An alternative and modular proof of the completeness of PAL has
already been given in [13]. It also uses a canonical Kripke model of the form
(S, {Rn}n∈Ag, {R!ϕ}!ϕ∈APAL

, V ). However, our approach stresses the modular na-
ture of the argument by starting from the generic framework.

For EA, we have the following result:

Proposition 8
1. Let M = (M, Φ,R) be an MTS for LEA that satisfies Φ(i, (U, s)) = Φ(i, (U, t))

for any i ∈ I and (U, s), (U, t) ∈ AEA. Then, M validates RP and Pre while
U(M) validates RN and AEA iff M is a bounded morphic image of an EA-
MTS.

2. EA is complete with respect to the class of EA-MTSs.

From these two results, we obtain an alternative proof of the completeness with
respect to the semantics in [2], in a way analogous to the case of PAL.

For PU, we do not yet have an adequate characterisation of APU. Nevertheless,
the previous generic results turn out to be useful when proving the following
result:

Proposition 9. PU is complete with respect to the class of PU-MTSs.

This also leads to an alternative proof of the completeness of PU with respect
to the semantics in [8].

4 Algebraic Semantics

We discuss algebraic semantics of DEL and develop a similar correspondence
theory as above.
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4.1 Algebraic Model Transition System

We first introduce an algebraic counterpart of the notion of MTS (Definition 3).
By algebraic model, we mean M = (A, θ), where A = (A,+,−, 1, {fe}e∈E) is a
Boolean algebra with operators (BAO) and θ : P → A is an assignment.

Definition 10 (Algebraic Model Transition System). An algebraic model
transition system (AMTS) for L(E,A) is a triple M = (MI , Φ,F) such that
1. MI is a family of algebraic models Mi indexed by i ∈ I,
2. Φ : I × A → I is a function (notation: Mα

i := MΦ(i,α)),
3. F assigns a 0-preserving additive function1 Fα

i from the carrier set of Mα
i

to that of Mi for each (i, α) ∈ I × A (notation: Fα
i : Mα

i → Mi).

Analogously, an algebra transition system (ATS) A = (AI , Φ,F) is also defined
by using indexed BAOs instead of indexed algebraic models. We say that A =
(AI , Φ,F) is the underlying ATS of an AMTSM = (MI , Φ,F) and write A = U(M)
if Ai ∈ AI is the underlying BAO of algebraic model Mi for each i ∈ I.

Definition 11. Let M = (MI , Φ, F ) be an AMTS for L(E,A) and Mi =
(A,+,−, 1, {fe}e∈E , θ) in MI. The meaning [ϕ]Mi,M of an L(E,A)-formula ϕ
is inductively defined as follows:

[�]Mi,M = 1 [p]Mi,M = θ(p)
[¬ϕ]Mi,M = −[ϕ]Mi,M [ϕ ∨ ψ]MiM = [ϕ]Mi,M + [ψ]Mi,M

[〈e〉ϕ]Mi,M = fe([ϕ]Mi,M) [〈〈α〉〉ϕ]Mi ,M = Fα
i ([ϕ]Mα

i ,M)

We say that an AMTS M validates ϕ if [ϕ]Mi,M = 1 for any Mi in M. Validity
in an ATS is defined analogously.

The algebraic semantics of PAL [4] and of EA [3] can be rephrased in terms of
our AMTSs as follows. An algebraic semantics of PU has not been established.
This shall be dealt with in our forthcoming work.

Example 4 (Specific Algebraic Model Transition Systems)
PAL: Let A = (A,+,−, 1, {fe}e∈E) be a BAO and M = (A, θ) an algebraic

model. For each a ∈ A, we define A↓a = (A↓a,+′,−′, 1′, {f ′
e}e∈E) and M↓a =

(A↓a, θa) as follows:
A↓a = {x ∈ A | x ≤ a} x+′ y = a · (x + y) = x+ y

−′(x) = a · (−x) 1′ = a · 1 = a
f ′
e(x) = a · fe(x) θa(p) = a · θ(p)

A PAL-AMTS (for the language LPAL) is then given as follows: for every Mi =

(A,+,−, 1, {fn}n∈Ag) and !ϕ ∈ APAL, let M!ϕ
i = M↓[ϕ]Mi,M, and F!ϕ

i be the

set inclusion function from A↓[ϕ]Mi,M to A. It is easy to see that F!ϕ
i is indeed

0-preserving and additive.
EA: Suppose that M = (A,+,−, 1, {fn}n∈Ag, θ) is an algebraic model and

that (U, s) is an action model with U = (U, {→n}n∈Ag). We define
∏

U M =
(
∏

U A,+′,−′, 1′, {f ′
n}n∈Ag, θ

′):
∏

U A is the |U |-colored product (i.e. the power
of A with each coordinate indexed by u ∈ U); +′, −′, 1′ and θ′ are defined

1 That is, Fα
i such that Fα

i (0) = 0 and Fα
i (x+ y) = Fα

i (x) + Fα
i (y).
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coordinatewise; and f ′
n :

∏
U A → ∏

U A is defined by f ′
n(k)(s) =

∨{fn(k(t)) |
s→nt} for any k ∈ ∏

U A and s ∈ U . An EA-AMTS M is then given as follows
(here [Pre]Mi,M denotes the element 〈[Pre(s)]Mi,M〉s∈U of

∏
U M): each trans-

formed model M(U,s)
i is given by (

∏
U Mi)↓[Pre]Mi,M; F

(U,s)
i : M(U,s)

i → Mi is

defined to be the composition of the set inclusion M(U,s)
i ↪→ ∏

U Mi and the
s-th projection

∏
U Mi → Mi; and we impose the condition that Φ(i, (U, s)) =

Φ(i, (U, t)) for any i ∈ I and (U, s), (U, t) ∈ AEA.

Homomorphisms for AMTSs are defined as follows:

Definition 12. Let M = (MI , Φ,F) and N = (NJ , Ψ,G) be AMTSs. A homomor-
phism h from M to N is a pair (h, {hj}j∈J ) of a function h : J → I and algebraic
model homomorphisms2 hj : Mh(j) → Nj, such that for any j ∈ J and action
expression α ∈ A, 1. Φ(h(j), α) = h(Ψ(j, α)) and 2. hj ◦ Fα

h(j) = Gα
j ◦ hΨ(j,α).

Proposition 10. Let (h, {hj}j∈J) : M → N be a homomorphismbetweenAMTSs.
Then, for anyNj in N and L(E,A)-formula ϕ, hj([ϕ]Mh(j) ,M) = [ϕ]Nj ,N.

We call a homomorphism (h, {hj}j∈j) : (MI , Φ,F) → (NJ , Ψ,G) injective if for
any i ∈ I there is a j ∈ J such that h(j) = i and hj : Mi → Nj is an injective
homomorphism, and we say that M can be embedded into N if there is an injective
homomorphism from M to N. Similar notions are defined for ATSs.

4.2 General Algebraic Correspondence Results

Let us now discuss correspondences between reduction axioms and algebraic
properties.

Definition 13. An ATS A = (AI , Φ,F) is deterministic if each Fα
i : Aα

i → Ai

preserves all meets (i.e. Fα
i (x · y) = Fα

i (x) · Fα
i (y)).

Proposition 11. An ATS validates RN iff it is deterministic.

Correspondence results concerning RK are expressed by the following notions:

Definition 14. An ATS A = (AI , Φ,F) is eliminative if for any algebraic model
Ai ∈ AI and α ∈ A, the transformed model Aα

i is given by Ai ↓ a for some
a ∈ Ai, and Fα

i : Aα
i → Ai the set inclusion function. An eliminative AMTS is

analogously defined by using Mi↓a instead of Ai↓a.

Proposition 12. Let A be an ATS and M an AMTS.
1. A validates RN and RK iff it can be embedded into an eliminative ATS.
2. M validates RP and U(M) validates RN and RK iff M can be embedded into

an eliminative AMTS.

2 These are BAO homomorphisms that preserve assignments.
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As a corollary, soundness and completeness hold for each of the following
pairs:

1. K⊕RN and the class of deterministic ATSs
2. K⊕RNRK and the class of eliminative ATSs
3. K⊕RNRKRP and the class of eliminative AMTSs

4.3 Specific Correspondence Results

We next turn to correspondence results specific to PAL and EA.

Proposition 13
1. An AMTS M for LPAL validates RP and RT while U(M) validates RN and RK

iff M can be embedded into a PAL-AMTS.
2. PAL is sound and complete with respect to the class of PAL-AMTSs.

The above results lead to an alternative and modular proof of the completeness of
PAL with respect to the algebraic semantics in [4] since a PAL-AMTS expresses
the intended algebraic model transformations of PAL.

Analogously, in the case of EA, the following results give its completeness
with respect to the algebraic semantics in [3]:

Proposition 14
1. LetM = (MI , Φ,F) be an AMTS for LEA that satisfies Φ(i, (U, s)) = Φ(i, (U, t))

for any i ∈ I and (U, s), (U, t) ∈ AEA. Then,M validates RP andPrewhileU(M)
validates RN and AEA iff M can be embedded into an EA-AMTS.

2. EA is sound and complete with respect to the class of EA-AMTSs.

5 On Duality between MTSs and AMTSs

The correspondence results in Section 4 were generated by the duality between
MTSs and AMTSs. This can be summarised as follows.

First of all, all MTSs and all bounded morphisms, and all AMTSs and all ho-
momorphisms constitute categories MT S and AMT S . Here, the composi-
tion of morphisms is defined as follows: for bounded morphisms f = (f, {fi}i∈I) :
(LI , Φ,P) → (MJ , Ψ,Q) and g = (g, {gj}j∈J) : (MJ , Ψ,Q) → (NK , X,R), their
composition g ◦ f is given by (g ◦ f, {gf(i) ◦ fi}i∈I); and for homomorphisms
f = (f, {fj}j∈J) : (LI , Φ,F) → (MJ , Ψ,G) and g = (g, {gk}k∈K) : (MJ , Ψ,G) →
(NK , X,H), their composition g ◦ f is defined by (f ◦ g, {gk, ◦fg(k)}k∈K).

Between these two categories, there are contravariant functors as follows:
(Here, M+ and M+ denote the full complex algebra with the assignment of
an ordinary Kripke model M and the ultrafilter model of an algebraic model
M.)
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Definition 15
1. A contravariant functor (−)+ : MT S → AMT S is given as follows: its

object function assigns to each MTS M = ({Mi}i∈I , Φ,R) the AMTS M+ =
({M+

i }i∈I , Φ,R
+) where R+(i, α) is given by (Rα

i )
−1 : (Mα

i )
+ → M+

i ; its
arrow function assigns to each bounded morphism (f, {fi}i∈I) : M → N the
homomorphisms (f, {f−1

i : M+
f(i) → M+

i }i∈I) : N
+ → M+.

2. A contravariant functor (−)+ : AMT S → MT S is given as follows: its
object function assigns to each AMTS M = ({Mi}i∈I , Φ,F) the MTS M+ =
({Mi+}i∈I , Φ,F+) where F+(i, α) is defined by vF+

α
i w ⇔ Fα

i [w] ⊆ v; its
arrow function assigns to each homomorphism (f, {fj : Mf(j) → Nj}j∈J) :

M → N the bounded morphism (f, {f−1
j : Nj+ → Mf(j)+}j∈J) : N+ → M+.

In particular, surjective bounded morphisms of MTSs and injective homomor-
phisms of AMTSs are ‘dual’ via the above contravariant functors.

On the relationship between these two functors (−)+ and (−)+, the following
result is immediate:
1. An MTSM = (MI , Φ,R) is ‘embedded’ into (M+)

+ by εM = (IdI , {Πi}i∈I) :
M → (M+)+ where each embeddingΠi : Mi → (M+

i )+ assigns the principal
ultrafilter πx to x ∈ Mi.

2. An AMTS M = (MI , Φ,F) is ‘embedded’ into (M+)
+ by ηM = (IdI , {ri}i∈I) :

M → (M+)
+ where ri : Mi → (Mi+)

+ is the canonical embedding.
All the εM meet the condition of a natural transformation from IdMT S to
(−)+◦(−)+and all the ηM meet that of a natural transformation from IdAMT S

to (−)+ ◦ (−)+. However, placing a condition on M and M is necessary for εM
and ηM to be arrows in the categories MT S and AMT S , and to obtain
natural transformations ε and η. For instance, as an easy example, let us take
the condition that all Mi ∈ M and all Mi ∈ M are finite. Those objects satisfy-
ing this condition constitute full subcategories FinMT S and FinAMT S of
MT S and AMT S , which are equivalent via the restricted functors of (−)+

and (−)+ as η and ε become natural isomorphisms in this case. It is this duality
that underlies our algebraic development: for example, the algebraic character-
isation of the axiom RN (Proposition 4.2) is obtained by the fact that Rα

i is a
partial function (i.e. deterministic) iff (Rα

i )
−1 preserves intersections (i.e. meets).

6 Conclusion

We have proposed a general framework for modal correspondence in Dynamic
Epistemic Logic (DEL) in both relational and algebraic semantics. (i) We first
introduced a generic DEL language and (ii) accordingly introduced model transi-
tion systems (MTSs) and algebraic model transition systems (AMTSs) as ‘static’
formalisations of model transformations. Using our framework, (iii) we gave gen-
eral correspondence results for generic reduction axioms and (iv) extended them
to specific reduction axioms defining PAL, EA and PU. (v) All these consti-
tute modular proofs to the completeness of the three logics with respect to both
relational and algebraic semantics.
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An exception is the algebraic study of PU, which shall be addressed in our
future work. It would be also interesting to study other DELs, such as LCC [10],
and other operators, like common knowledge operators. In this paper we have
only considered reduction axioms that already exist in the literature. However,
since our language is generic, it is perhaps possible to treat a more general class
of axioms and develop a ‘dynamic’ Sahlqvist theory for them. This too shall
form the object of our future studies.
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Abstract. The language of intuitionistic epistemic logic, IEL [3], captures
basic reasoning about intuitionistic knowledge and belief, but its language
has expressive limitations. Following Gödel’s explication of IPC as a frag-
ment of themore expressive system of classical modal logic S4 we present a
faithful embedding of IEL intoS4V – S4 extendedwith a verificationmodal-
ity.The classicalmodal framework is finer-grained andmore flexible, allow-
ing us to make explicit various properties of verification.

1 Introduction

Intuitionistic epistemic logic, IEL, was introduced in [3]. The systems developed
there provide a formal foundation for intuitionistic epistemology based on the
Brouwer-Heyting-Kolmogorov (BHK) semantics. Our purpose here is to study
intuitionistic knowledge and belief from a classical modal perspective. The classi-
cal modal language is more expressive, enabling us to make explicit assumptions
which the intuitionistic epistemic language cannot express, thereby gaining us a
more nuanced understanding of intuitionistic knowledge and belief.

Intuitionistic knowledge is the product of verification, not necessarily of proof.
IEL extends intuitionistic propositional logic, IPC, by adding an epistemic modal-
ityK asserting a proposition is known on the basis of verification. Just as Gödel’s
translation [12] faithfully embeds IPC into S4, likewise IEL faithfully embeds into
S4V, the result of extending S4 with a verification modality V.
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The same relationships hold of the logics of intuitionistic belief and strong
knowledge presented below.

2 Intuitionistic Epistemic Logic

According to the BHK semantics a proposition, A, is true if there is a proof of
it and false if the assumption that there is a proof of A yields a contradiction.
This is extended to complex propositions by the following clauses:

– a proof of A ∧B consists in a proof of A and a proof of B;
– a proof of A ∨B consists in giving either a proof of A or a proof of B;
– a proof of A → B consists in a construction which given a proof of A returns

a proof of B;
– ¬A is an abbreviation for A → ⊥, and ⊥ is a proposition that has no proof.

The fundamental principle of verification-based intuitionistic knowledge, and
belief, is that

A → KA (Co-Reflection)

is valid on a BHK reading. Intuitionistic truth is based on proof; since any proof
is a verification, the intuitionistic truth of a proposition yields a verification and
hence knowledge/belief.

By similar reasoning the converse principle,

KA → A, (Reflection)

is not valid on a BHK reading. A verification may warrant knowledge, but need
not be, or yield a method for obtaining, a proof.1 Co-reflection, along with the
distributivity of K over implication K(A → B) → (KA → KB), forms the basic
logic of intuitionistic belief, IEL−.

Definition 1 (IEL−). The list of axioms and rules of IEL− consists of:

IA0. Axioms of propositional intuitionistic logic;
IA1. K(A → B) → (KA → KB);
IA2. A → KA;

IR0. Modus Ponens.

The difference between intuitionistic knowledge and belief, as in the classical
case, is that knowledge obeys the truth condition: falsehoods cannot be known, or
only truths can be known. Classically the reflection principle expresses this idea;
intuitionistically a weaker principle is required. The minimal intuitionistically
acceptable formulation of this is

¬K⊥, (Truth Condition)

adding this yields the basic intuitionistic logic of knowledge, IEL.2

1 For example, interpreting KA as a ‘truncated’ or ‘squash’ type of Intuitionistic Type
Theory, [19,6] yields the invalidity of reflection.

2 Other acceptable formulations of the truth condition are ¬A → ¬KA and ¬(KA ∧
¬A). Adding these as axioms to IEL− yields equivalent systems, see [3].
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Definition 2 (IEL). IEL is the system IEL− with the additional axiom:

IA3. ¬K⊥.

One might argue that a weak form of reflection is acceptable, namely that a
verification of a verification of A yields a verification of A, though not necessarily
a proof of A:3

KKA → KA. (Weak Reflection)

Since positive introspection KA → KKA (and negative introspection ¬KA →
K¬KA) is simply an instance of co-reflection this immediately yields that knowl-
edge or belief is idempotent, KKA ↔ KA. Adding weak reflection yields the
logic of strong intuitionistic knowledge, IEL+.

Definition 3 (IEL+). IEL+ is the system IEL with the additional axiom:

IA4. KKA → KA.

Definition 4 (Semantics for L ∈ {IEL−, IEL, IEL+}). Models for L are intu-
itionistic Kripke models, 〈W,R,�〉, with an additional accessibility relation E.

IEL−: An IEL− model satisfies the following conditions on E, for states u, v, w

IM1. uEv yields uRv;
IM2. uRv and vEw yield uEw;
IM3. u � KA iff v � A for all v such that uEv.

IEL: An IEL model is an IEL− model with the additional condition on E that:

IM4. E is serial, for all u, there is a v such that uEv.

IEL+: An IEL+ model is an IEL model with the additional condition on E that:

IM5. E is dense, uEv implies there is a w such that uEw and wEv.

IEL−, IEL, IEL+ are each sound and complete, satisfy monotonicity, have the
disjunction property, and the rule of K-necessitation is derivable, see [3].

For other formulations of an intuitionistic epistemic logic, though not neces-
sarily from a BHK perspective, see [20,17,14]. All these endorse reflection and
are arguably too classical in their view of knowledge as a result.

As intuitionistic modal logics IEL−, IEL and IEL+ (e.g. [7,8,21,22]) are similar
to Došen’s [9] in that reflection fails and co-reflection holds, but his � is rather
a simulation of classical logic inside intuitionistic logic rather than an epistemic
modality.

3 E.g. this holds in the intuitionistic type theoretical interpretation of K, see Foot-
note 1, and [3].
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2.1 Two Readings of Intuitionistic Knowledge

Within a BHK context KA can be read in two ways. On the first reading KA
asserts that:

it is verified that A holds intuitionistically, i.e. that A has a proof, not
necessarily specified in the process of verification.

This kind of knowledge amounts to checking for the existence of a proof of A,
not necessarily by an explicit BHK-proof. For instance, the existence of a proof
of A may be checked by a zero-knowledge protocol, or a probabilistic procedure
known to yield correct results with a very small probability of error.

However, the intuitionistic epistemic language supports another reading, which
considers non-proof verification as another means of constructively establishing
the truth of a proposition, along-side proof. On this readings KA asserts that:

it is verified in some ‘non-proof’ constructive sense that A holds.

On such a reading a proposition may be either true in the sense of having a
proof, or true in the weaker sense of being constructively verified. The intuition-
istic epistemic language does not distinguish these readings; a classical modal
framework does, and so enables us to choose which reading to work with.

2.2 Stability of Truth and Knowledge

Intuitionistic knowledge and belief are monotonic with respect to truth, this
means that both are indefeasible, once KA is true it can never become false.
This is due to the stability of intuitionistic truth, i.e. proof; once a proposition is
proved it can never become ‘unproved’. The stability of truth is encoded by the
definition of �. This stability is extended to K by Condition IM2, and accounts
for the indefeasibility of knowledge and belief, as well as positive and negative
introspection. These are essential properties of intuitionistic knowledge and belief
precisely because they are aspects of the intuitionistic notion of truth.

In a classical modal framework truth and knowledge are not stable by default,
offering the flexibility to assume explicitly the stability of knowledge.4

3 Modal Logics of Verification and Proof

The well-known Gödel translation yields a faithful embedding of the intuitionistic
propositional calculus, IPC, into the classical modal logic S4 (see [12,16,5,18]).

Following Gödel [12] we interpret the � of S4 as provability; this reading
has been made precise within the framework of the Logic of Proofs [1]. On this
reading appending a � to a proposition is a way of expressing in a classical
language that it is constructively true. The translation takes a formula, A, of
IPC and returns a formula of S4, tr(A), according to the rule

4 For the role of stability in a constructive resolution of the ‘knowability paradox’ see
[2].
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box every subformula of A.

By extending S4 with a verification modality V, the translation can be extended
to each of the logics IEL−, IEL, IEL+. We will define the systems S4V−, S4V,
S4V+ and show that the Gödel translation yields a faithful embedding of each
intuitionistic system into its classical modal companion. In this way we interpret
intuitionistic truth in a setting where we can make explicit when (and if) a
proposition is intuitionistically true, or verified, or some combination of them.

IntuitionisticK represents verifications which are not necessarily proofs, which
is why intuitionistic reflection can fail. Similarly, V represents a verification
procedure which is not necessarily factive (unlike �, which represents proof).
This is a realistic assumption given many, if not most, of our justifications are
fallible, and hence so is the knowledge based on them.5 The systems S4V−, S4V,
and S4V+ may be regarded as systems of proof and verification-based belief
or fallible knowledge. VA → A could be added to the systems in question to
yield systems of verification-based infallible, i.e. factive, knowledge and proof.
The embedding results below do not require reflection for V, nor would adding
reflection alter them.

3.1 Modal Logics S4V−, S4V, S4V+

Definition 5 (S4V−). The list of axioms and rules of S4V− consists of

A0. Axioms of S4;
A1. V(A → B) → (VA → VB);
A2. �A → VA;

R0. Modus Ponens;
R1. �-Necessitation.

S4V− represents basic, not necessarily consistent, verification, the only re-
quirement of which is that anything which is proved be regarded as verified.

Definition 6 (S4V). S4V is S4V− with the additional axiom:

A3. ¬V⊥.

S4V represents consistent verification, which does not guarantee the truth of
the proposition verified.

Definition 7 (S4V+). S4V+ is S4V with the additional axiom:

A4. VVA → VA.

S4V+ represents verifications which can correctly evaluate the fact of verifi-
cation.

5 Fallibilism is a position which “. . . contemporary [mainstream] epistemologists al-
most universally agree in endorsing” [15]. See e.g. [13] for an opposing view.
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Proposition 1. The rule of V-Necessitation is derivable in L�.

Proof. Assume 
 A, by �-necessitation 
 �A follows, hence by Axiom A2 
 VA.

Definition 8 (Semantics for L� ∈ {S4V−, S4V, S4V+}). Models for L� are
S4 Kripke models, 〈W,R�,�〉, with an additional accessibility relation RV.

S4V−: An S4V−-model satisfies the following conditions on RV, for states x, y, z

M1. xRVy yields xR�y;
M2. x � VA iff y � A for all y such that xRVy.

S4V: An S4V-model is an S4V−-model with the additional condition on RV

that:

M3. RV is serial, for all x there is a y such that xRVy.

S4V+: An S4V+-model is an S4V-model with the additional condition on RV

that:

M4. RV is dense, xRVy implies there is a z such that xRVz and zRVy.

Proposition 2. The inclusions S4V− ⊂ S4V ⊂ S4V+ are strict.

Proof. See [3, Theorem 3], the models there can be regarded, respectively, as
an S4V−-model in which Axiom A3 is not valid, and an S4V-model in which
Axiom A4 in not valid.

Theorem 1 (L� Soundness and Completeness). For L� ∈ {S4V−, S4V,
S4V+},

L� 
 A ⇔ L� � A.

Proof. Soundness is shown by induction on derivations in L�, with respect to
the appropriate class of models. As an example let us check that Axiom A2,
�A → VA, holds in any S4V−-model. Let x � �A for some x in an S4V−-
model. Hence for all y such that xR�y y � A holds. By Condition M1 for any z
such that xR�z xRVz also holds, hence z � A, in which case x � VA also.

Completeness is proved by the standard maximal consistent set/canonical
model/truth lemma construction (see e.g. [4,5,11]). The canonical relations Rc

�

and Rc
V are defined as follows: for maximal consistent sets Γ and Δ, ΓRc

�Δ iff
Γ� = {X |�X ∈ Γ} ⊆ Δ, and ΓRc

VΔ iff ΓV = {X |VX ∈ Γ} ⊆ Δ.
The key thing to show is that the canonical L�-model is an L�-model, which

comes down to showing thatRc
� and Rc

V have the right properties. As an example
let us show Condition M1, Rc

V yields Rc
�, which holds for each L�. Let Γ and

Δ be maximal consistent sets of formulas. Assume ΓRc
VΔ and that �X ∈ Γ .

Since �X → VX ∈ Γ by maximal consistency, VX ∈ Γ also, hence X ∈ Δ. So
{X |�X ∈ Γ} ⊆ Δ, i.e. ΓRc

�Δ.
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Theorem 2 (Conservativity).

1. For each L� ∈ {S4V−, S4V, S4V+} its �-fragment is S4.
2. The V-fragment of S4V− is K.
3. The V-fragment of S4V is KD.
4. The V-fragment of S4V+ is KDWR.6

Proof.
1) Suppose S4 � A, hence there is an S4-model, M = 〈W,R�,�〉, such that

M � A. M can be turned into an L�-model M′ = 〈W,R�, RV �〉 by defining
RV so that for all x ∈ W xRVx. So RV is serial and dense, hence in each case
M′ is an L�-model, and M′

� A, hence L� � A.

2) Suppose K � A, so there is a K-model, M = 〈W,RV,�〉, such that M � A.
M can be turned into an L�-model M′ = 〈W,R�, RV �〉 where for all x, y ∈ W
xR�y. R� is transitive and reflexive, hence M′ is an L�-model, and M′

� A,
hence S4V−

� A

3) and 4) We can define S4V and S4V+ models, respectively, on the basis of
KD and KDWR models in the same fashion as 2) above. Hence if KD � A then
S4V � A, and if KDWR � A then S4V+

� A.

3.2 Embedding Intuitionistic Epistemic Logics into Modal Logics of
Provability and Verification

For L ∈ {IEL−, IEL, IEL+} and L� ∈ {S4V−, S4V, S4V+}, respectively, we will
show that

L 
 F ⇔ L� 
 tr(F )

where for each F of the appropriate L tr(F ) is the result of prefixing each sub-
formula of F with �.

Lemma 1
L 
 F ⇒ L� 
 tr(F ).

Proof By induction on derivations in L.
The case of the propositional intuitionistic axioms IA0 and modus ponens

is the embedding of IPC into S4. The cases for each of Axioms IA1 to IA4
are all quite similar involving repeated use of necessitation and distribution; as
an example let us check S4V− 
 �(�A → �V�A) = tr(A → KA). To keep
notation simple we assume that A is an atomic formula.

1. ��A → ���A, S4 Axiom A0;
2. ��A → V�A, Axiom A2;
3. ���A → �V�A, from 2 �-necessitation and distribution;
4. ��A → �V�A, from 1,3 by propositional reasoning;
5. �A → ��A, S4 Axiom A0;

6 I.e. weak reflection, also known as converse-4 C4.
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6. �A → �V�A, from 4,5 by propositional reasoning;
7. �(�A → �V�A), from 6 by necessitation.

To show the converse, consider an L-model M = 〈W,R,E,�〉. We can con-
sider M to be an L�-model M′ = 〈W,R�, RV,�′〉 by taking R = R�, E = RV

and treating � as a classical forcing �′.
Clearly for all L� R� is transitive and reflexive and RV yields R�, hence all

axioms of S4V− hold in M′. Where M is an IEL-model it is additionally the
case that RV is serial, hence all axioms of S4V hold in M′. Where M is an
IEL+-model furthermore RV is dense, hence all axioms of S4V+ hold in M′.

Lemma 2. For each formula F of L and each u ∈ W ,

M′, u �′ tr(F ) ⇔ M, u � F

Proof. By induction on F .

Case 1 (F is atomic p). Assume M, u � p, then for all v such that uRv M, v �
p, hence for all v such that uR�v v � p, so u � �p, i.e. tr(p).

Conversely, assume M, u � p, then M′, u �
′ �p since R� is reflexive, hence

M′, u �
′ tr(p).

Case 2 (Boolean cases F = A ∧B and F = A ∨B are standard).

Case 3 (F = A → B). Assume M, u � A → B, hence for all v such that uRv
either M, v � A or v � B. By the induction hypothesis M′, v �

′ tr(A) or
M′, v,�′ tr(B), hence M′, u �′ �(tr(A) → tr(B)), and M′, u �′ tr(A → B).

Conversely, assume M, u � A → B, hence there is a v such that uRv in which
M, v � A and v � B. By the induction hypothesis M′, v �′ tr(A) and M′, v,�′

tr(B), hence M′, v �
′ tr(A) → tr(B). Since R = R� M′, u �

′ �(tr(A) →
tr(B)), hence M′, u �

′ tr(A → B).

Case 4 (F = KA). Assume M, u � KA; for any u such that uRv and any w
such that vEw uEw holds by Condition IM2, hence M, w � A. By the induction
hypothesis M′, w �′ tr(A), hence v �′ Vtr(A) and M′, u �′ �Vtr(A), hence
M′, u �′ tr(KA)

Conversely, assume M, u � KA so there is a v such that uEv in which v � A.
By induction hypothesis M′, v �

′ tr(A). Since E = RV M′, u �
′ Vtr(A). Since

R� is reflexive M′, u �
′ �Vtr(A), hence M′, u �

′ tr(KA).

Lemma 3
L� 
 tr(F ) ⇒ L 
 F.

Proof Assume L � F . By L-completeness, there is an L-model M =
〈W,R,E,� 〉 and a state u ∈ W such that u � F . By Lemma 2, u �

′ tr(F ) in
an L�-model M′. By L�-soundness, L� � tr(F ).

Hence for each of IEL−, IEL, and IEL+, their embedding into S4V−, S4V, and
S4V+ respectively, is faithful. Lemma 1 and Lemma 3 yield:

Theorem 3 (Embedding). The Gödel translation faithfully embeds each L ∈
{IEL−, IEL, IEL+} into each L� ∈ {S4V−, S4V, S4V+} respectively:

L 
 F ⇔ L� 
 tr(F ).
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4 Making Explicit Properties of Intuitionistic Knowledge

There are several assumptions about verification-based knowledge implicit in the
intuitionistic epistemic framework; verification is only of provability; truth, hence
knowledge and belief, is stable, and consequently both positive and negative
introspection hold. These properties do not necessarily hold for the classical
modal counterparts in L�. If we wish to model a view of knowledge or belief
which has any one of these properties then we must assume each explicitly. The
greater expressive strength of the modal language gives us more control over our
assumptions.

4.1 The Two Readings of Intuitionistic Knowledge

Section 2.1 outlined two ways in which intuitionistic verification, K, can be un-
derstood. According to the first verification amounts to a kind of proof-checking
– a verification of A is a verification of a proof of A. This reading is reflected by
the Gödel translation of KA which is �V�A. According to the second reading
of verification a proposition can be verified directly by a non-proof justificatory
procedure. In accepting a proposition as known such evidence may be perfectly
adequate, or the only kind practically available.

The modal framework can accommodate this latter understanding of verifi-
cation by extending L� with the additional principle

VA → V�A (P)

which states that a non-proof verification is sufficiently robust to guarantee
the existence of a proof. We often accept informal arguments based on gen-
eral theoretical reasons or clear examples in place of specific proofs when it
is clear that such proofs can be obtained. For instance, we might justify that
IPC 
 ¬¬(A ∨ ¬A) by reasoning informally on the basis of the BHK interpre-
tation, rather than exhibiting a derivation in IPC (see e.g. [10, Section 1.3] for
examples).

Definition 9 (L�+ P). L�+P is L� ∈ {S4V−, S4V, S4V+} with the additional
axiom:

A5. VA → V�A.

Definition 10. A model for L�+P is an L�-model with the additional condition

M5. For states x, y, z in a model xRVy and yR�z yield xRVz.

Proposition 3. Let F = 〈W,R�, RV〉 be a frame. P holds at all states of a
model based on F iff F satisfies Condition M5.

Proof. ⇐: Assume F satisfies Condition M5 and there is some state a ∈ W s.t.
a � VA, in which case for all b s.t. aRVb b � A. Assume further that bR�c for
an arbitrary c; by M5 aRVc, so c � A also. Hence a � V�A.
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⇒: By contrapositive. Assume F does not satisfy Condition M5. Hence there
are states a, b, c ∈ W such that aRVb and bR�c but ¬aRVc. Define a valuation
V (p) = {x ∈ W | aRVx}. In the resulting model a � Vp but c � p, hence b � �p
and so a � V�p.

Theorem 4 (L� + P Soundness and Completeness).

L� + P � A ⇔ L� + P 
 A.

Proof. Soundness follows from Proposition 3. For completeness we verify that
the L� + P canonical model satisfies Condition M5.

Assume ΓRc
VΔ and ΔRc

�Ω, and that VX ∈ Γ . By maximal consistency
VX → V�X ∈ Γ , hence V�X ∈ Γ . Since ΓRc

VΔ it follows that �X ∈ Δ and
hence X ∈ Ω. So VX ∈ Γ yields that X ∈ Ω, i.e. ΓRc

VΩ.

Given the equivalence of VA and V�A in L� + P we can simplify the
translations of IEL formulas by substituting VA for V�A, hence for example
tr(A → KA) = �(�A → �VA). With this observation and Lemma 1 it is clear
that this modified translation holds in the respective systems L� + P.

4.2 Stability of Knowledge

Intuitionistic truth, hence intuitionistic K, is stable, but V in L� is not.

Theorem 5. Neither truth nor V are monotonic with respect to R� for any
L� ∈ {S4V−, S4V, S4V+}, i.e. if xR�y then 1) x � A does not necessarily yield
y � A and 2) x � VA does not necessarily yield y � VA.

Proof. Consider the S4V+-model (hence S4V−- and S4V-) 2:

1 2

p
• •

R�

��

RV

��

RV

��

Fig. 2. S4V+-model M2

1) holds by definition of 2. For 2) since 1 � p then 1 � Vp, and since 2 � p
2 � Vp. Hence Vp does not hold at all the R�-successors of 1 where Vp holds.

To ensure V is monotonic we can adopt the principle

VA → �VA, (M)

which says that whenever we have a verification we can prove it to be correct,
but such a proof guarantees the verification can never be defeated, so can never
be lost. Adding M to a system in L� yields a logic in which V is monotonic with
respect to R�.



Intuitionistic Epistemology and Modal Logics of Verification 305

Definition 11 (L� +M). L� +M is any system L� with the additional axiom:

A6. VA → �VA.

Definition 12 (V-Monotonic Models). A V-Monotonic model is an L�-
model with the additional condition:

M6. For states x, y, z in a model xR�y and yRVz yield xRVz.

Proposition 4. Let F = 〈W,R�, RV〉 be a frame. M holds at all states of a
model based on F iff F satisfies Condition M6.

Proof. Virtually identical to the proof of Proposition 3.

Theorem 6 (Monotonicity). If a model satisfies Condition M6 then x � VA
yields that for any y such that xR�y y � VA holds.

Proof. Assume there is a state a ∈ W such that a � VA. Take an arbitrary b
such that aR�b, and an arbitrary c such that bRVc; by M6 aRVc, hence c � A.
Hence b � VA, since c is arbitrary.

Theorem 7 (L� +M Soundness and Completeness).

L� +M 
 A ⇔ L� +M � A.

Proof. Soundness follows from Proposition 4 and the soundness of L�. The
canonicity of Condition M6 is shown in an identical manner to that of The-
orem 4.

4.3 Positive Introspection and Negative Introspection

In L positive and negative introspection are instances of the ‘proof yields verifi-
cation’ co-reflection principle IA2.

For positive introspection in L� the principle (M) suffices for the stability of
positive verification statements VA, hence yields positive introspection.

Theorem 8. L� +M 
 VA → VVA.

Proof. Argue in S4V−+ M:

1. �VA → VVA, Axiom A2;
2. VA → �VA, Axiom A6;
3. VA → VVA, propositional reasoning.

We note in passing that positive introspection also holds in L� + P, conse-
quently adding M or P to S4V+ yields idempotency of V.

(M) asserts only that positive verification statements, VA, are stable. To
ensure that negative verification statements, ¬VA, are also stable we can adopt
the principle

¬VA → �¬VA. (N)

which says that the failure of verification is provable, hence where a verification
has not succeeded it can never succeed.
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Definition 13 (L� +N). L� + N is any system L� with the additional axiom:

A7. ¬VA → �¬VA

L�+N yields negative introspection by an obvious modification of Theorem 8.

Definition 14. A model for L�+N is an L� model with the additional condition

M7. For states x, y, z in a model xR�y and xRVz yield yRVz.

Proposition 5. Let F = 〈W,R�, RV〉 be a frame. N holds at all states of a
model based on F iff F satisfies Condition M7.

Proof. ⇐: Assume F satisfies Condition M7 and there is some a ∈ W such that
a � ¬VA holds, hence there is a c ∈ W such that aRVc and c � A. Let b be an
arbitrary state such that aR�b, by M7 bRVc holds, hence b � VA, i.e. b � ¬VA.
Since b is arbitrary, a � �¬VA.

⇒: Assume F does not satisfy Condition M7, hence there is a model based on
F with states a, b and c such that aR�b and aRVc, but ¬bRVc. Define a valuation
such that V (p) = {x ∈ W |x �= c}; hence b � Vp, hence b � ¬Vp, in which case
a � �¬Vp. Since c � p then a � Vp, hence a � ¬Vp, so a � ¬Vp → �¬Vp.

Theorem 9 (L� + N Soundness and Completeness).

L� + N 
 A ⇔ L� + N � A

Proof. Soundness follows from Proposition 5 and the soundness of L�. For com-
pleteness we check that the L� + N canonical model satisfies Condition M7.

Assume ΓRc
�Δ and ΓRc

VΩ. Suppose VA ∈ Δ but A /∈ Ω. Hence VA /∈ Γ , so
¬VA ∈ Γ ; by maximal consistency ¬VA → �¬VA ∈ Γ so �¬VA ∈ Γ , and so
¬VA ∈ Δ, which is a contradiction. Hence if VA ∈ Δ then A ∈ Ω, i.e. ΔRc

VΩ.

5 Conclusion – Further Applications

The logics in L� and their extensions offer a more nuanced way of understand-
ing verification-based epistemic-doxastic states than do the logics in L. The logic
S4V− can be regarded as a logic of verification-based belief, like IEL−, but with-
out the assumption that belief is indefeasible, allowing for the possibility that
one’s beliefs may change. The logic S4V− with (M), on the other hand, can
be regarded as the logic of provably correct, hence indefeasible, beliefs – though
reflection does not hold such beliefs might still qualify as a form of fallible knowl-
edge.

This points to a more general application for the logics outlined above as
calculi of conclusive vs. non-conclusive justification. Many epistemologists hold
some form of fallibilism to be true, according to which it is possible to know,
or at least have rational belief, on the basis of non-conclusive justification. The
logics in L� can model different versions of the distinction between conclusive
and non-conclusive justifications – VA is not factive, hence it does not guarantee
truth, whereas �A does.
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Abstract. I present an argument against the thesis of Uniqueness and in favour 
of Permissivism. Counterexamples to Uniqueness are provided, based on 
‘Safespot’ propositions – i.e. a proposition that is guaranteed to be true 
provided the subject adopts a certain attitude towards it. The argument relies on 
the following plausible principle:  If S knows that her believing p would be a 
true belief, then it is rationally permitted for S to believe p. One motivation for 
denying this principle – viz. opposition to ‘epistemic consequentialism’ – is 
briefly discussed. 

Keywords: Uniqueness, Permissivism, Blindspots, Rationality, Belief, 
Epistemic Consequentialism, Evidence, Epistemology, Philosophy. 

 
Take UNIQUENESS1 to be the following thesis: 

• For any subject S, proposition p and set of evidence E, exactly one of the 3 
doxastic attitudes to p – Belief, Disbelief 2  or Suspension – is rationally 
permitted for S on the basis of E. 

Take A.B.U. (At Best Unique) to be the following thesis: 

• For any subject S, proposition p and set of evidence E, at most one of the 3 
doxastic attitudes to p is rationally permitted for S on the basis of E. 

The negation of A.B.U. then is PERMISSIVISM3: 

• It is possible that there could be some subject S, proposition p and set of 
evidence E such that more than one of the 3 doxastic attitudes to p is 
rationally permitted for S on the basis of E. 

                                                           
1  Recent advocates of Uniqueness include: White [1], Christensen [2], Feldman [3], Sosa [4]. 
2  I assume, as I take to be standard, that disbelieving a proposition is equivalent to believing 

its negation. I.e. DBp = B¬p. However, see Sturgeon (forthcoming) for a denial of this 
equivalence. 

3  Recent advocates of Permissivism include: Douven [5], Kelly [6], Schoenfield [7]. 
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As they stand, these might be thought somewhat imprecise formulations in (at least) a 
couple of respects. Firstly, in addition to belief, disbelief and suspension, there is also, 
you might think, a fourth possible option of forming no opinion whatsoever – or 
‘withdrawing’4. Secondly, one might wonder whether it is best to formulate these 
theses in an inter-subjective or intra-subjective way5 – i.e. if UNIQUENESS is true, 
might it nevertheless be that different subjects with the same evidence could each be 
permitted to have a different uniquely permitted attitude to p? However, these 
complications will make no difference in what follows. The argument I will present, 
if sound, shows that a single subject can be permitted on the basis of her evidence 
both to believe or to disbelieve a proposition. No matter how advocates of 
UNIQUENESS or A.B.U. want to incorporate the possibility of ‘withholding’ into 
their preferred thesis, this is still going to be a problem. And it looks extremely 
plausible that if a single subject is permitted both to believe or to disbelieve a 
proposition, then a fortiori 2 different subjects with the same evidence could be 
permitted to each adopt different doxastic attitudes to it. For ease of presentation then, 
we can safely leave the three theses above as they stand. 

At the risk of stating the obvious, for PERMISSIVISM to be true, all that is 
required is one counterexample to A.B.U. I will suggest that, given a plausible 
assumption, counterexamples can be formed, based on the kind of Moorean 
propositions that Roy Sorensen [10] labelled ‘Blindspots’6 or on their opposite kind, 
which I will label ‘Safespots’7. 

An attitude A-blindspot for some subject S is a proposition that can be true and that 
S can take some propositional attitude, A, towards; but not both – i.e. it is bound to be 
false if S adopts attitude A to it. 

An attitude A-safespot for some subject S is a proposition that can be false and that 
S can take some propositional attitude, A, towards; but not both – i.e. it is bound to be 
true if S adopts attitude A to it. 

Some examples: 
The proposition: ‘It is raining & S does not believe that it is raining’ is a belief-

blindspot for S. (I assume here that it is possible to both Believe that p and Believe 

                                                           
4  The term ‘withdrawing’ is used by Turri [8]. In fact, it is not clear to me that refusing to 

adopt any of the 3 doxastic attitudes, so not even suspending judgement, is a state of mind 
that is subject to the demands of theoretical/epistemic rationality (as opposed to practical 
rationality). It may be a more or less prudent option to ‘withdraw’, but just refusing to think 
any further about a certain proposition is not obviously evaluable at all as an intellectual or 
theoretical move that could be rationally correct or incorrect in light of the available 
evidence. 

5  For discussion of the distinction between inter-subjective and intra-subjective versions of 
these theses, see Kelly [9]. 

6  Bykvist & Hattiangadi [11] argue that blindspot propositions provide a counter-example to 
the following ‘truth-norm’ for beliefs: For any S, p: if S considers p, then S ought to 
(believe that p) iff p is true. 

7  In Raleigh [12], I labelled such propositions ‘true-turns’. I now prefer the label ‘safespot’, 
which makes clearer their relation to blindspot propositions. 
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that one does not Believe that p.) But it is not a hope-blindspot nor a desire-blindspot. 
And, on the assumption that it is possible for a subject to both disbelieve a 
proposition and disbelieve that they disbelieve it, nor is this a disbelief-blindspot.  

Conversely, ‘2+2=4 & S believes that 2+2 = 4’ is a belief-safespot for S, but not a 
disbelief safespot for S. (Nor, of course, a hope-safespot or a desire-safespot etc.) 

Whereas, the proposition: ‘S is dead’ is both a belief-blindspot and a disbelief-
blindspot for S (and a hope-blindspot and a desire-blindspot etc.) And conversely, ‘S 
is alive’ is both a belief-safespot and a disbelief-safespot – and so on for other 
attitudes – for S. (I assume here that only the living can have propositional attitudes.) 

Notice also that there can be more specific kinds of belief-blindspots and belief-
safespots. E.g. a proposition of the form: ‘p & S cannot justifiably believe that p’ is 
not a belief-blindspot for S, but it is a justified-belief-blindspot for S. (It can be truly 
but unjustifiedly believed by S, but it cannot be truly and justifiably believed by S.) 
The existence of Safespots and Blindspots becomes a problem for A.B.U. once we 
grant the following principle: 

• If S knows that her believing p would be a true belief, then it is rationally 
permitted for S to believe p.  

Or in semi-formal terms: 

• PRINCPLE: [SK (SBp → p)] → Rationally Permitted: SBp  

I will not provide any further support for this principle other than to simply state that 
it has, I take it, a very large measure of prima facie plausibility. After all, if you know 
that it is impossible that your forming a belief in a particular proposition could result 
in a false belief, it looks like you have a pretty good rational basis to hold that belief. 
(Of course, that you have a rational basis to believe some proposition, does not 
guarantee that your actual belief in that proposition is a rational belief, for you might 
have formed the belief on some other irrational basis8.) 
A slightly over-simple formulation of a special case of PRINCIPLE is the following: 

• If S knows that a belief of some specific type that p (by S) is bound to be a 
true belief, then S is rationally permitted to have a belief that p of that 
specific type. 

E.g. If S knows that a belief in p which has been formed on a Tuesday, is bound to be 
a true belief, then S is rationally permitted to have a belief formed on a Tuesday  
that p.  
Taking ‘SBtp’ to mean that S has a belief that p is of type t, we could put this in semi-
formal terms: 

•  [SK (SBtp → p)] → Rationally Permitted: SBtp  

                                                           
8  Compare the familiar distinction in epistemology between doxastic and propositional 

justification – a subject’s having justification for some belief, does not entail that the 
subject’s belief is actually justified. 
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As it stands this is not quite right, for S may not know whether she is currently in a 
position to form beliefs of the specific type in question. E.g. when the type of belief in 
question is: formed on a Tuesday, S may not know which day of the week it is. Even 
if it is in fact Tuesday, if S has no idea what day of the week it is, then it would be 
rationally amiss of her to go ahead and form a belief that p solely on the basis of her 
knowledge that a belief formed on a Tuesday would be a true belief. What is required, 
in addition, is that the subject knows that she is in a position to form the specific type 
of belief in question – i.e. she must know in addition that it is indeed a Tuesday9. This 
additional requirement was not needed in the original, general formulation of 
PRINCIPLE, as when the belief that p in question need not be of any specific type, 
we assume that there are no specific circumstances, which the subject might be 
ignorant of, that need to obtain in order for her to be able to form such a belief that p 
(of no specific type). I.e. we assume that a subject always knows that she is in a 
position to form a belief that p where this belief need not be of any further specific 
type. 
So a better formulation of this special case of PRINCIPLE is: 

• If S knows that a belief of some specific type that p (by S) is bound to be a 
true belief, AND S knows that she is in a position to form a belief that p of 
that specific type, then S is rationally permitted to have a belief that p of that 
specific type in these given circumstances. 

Or in semi-formal terms: 

• SPECIAL CASE: [SK (SBtp → p) & SK (S is in a position to Btp)] → 
Rationally Permitted: SBtp  

The problem for A.B.U. and UNIQUENESS now arises as there can be a proposition 
that one can know to be a kind of belief-safespot for oneself without actually (yet) 
believing it to be true – indeed, whilst knowing that it is (currently) false. For 
example, consider the following proposition: 

q: S has at least one non-innate belief. 

Notice that this is not a belief-safespot for S, as if all of S’s beliefs are innate, 
including her belief in q, then q would be both false and believed by S. But q is a non-
innate-belief-safespot for S. For q can be false and q can be non-innately believed by 
S, but it cannot be falsely and non-innately believed by S. 

 
                                                           
9  Here’s another way of seeing the shortcomings of the over-simple formulation. For any 

proposition whatever, we know a priori the tautology that: a true belief that p is bound to be 
a true belief. But we don’t want to say that a subject is thereby rationally permitted to 
believe any proposition that happens to be true, even those for which the subject has no 
evidence. I.e. we need to rule out that it is rationally permitted for a subject to form a belief 
that happens to be true by sheer lucky guess. This is ruled out by the additional requirement, 
as a subject who forms a true belief that p by sheer luck does not know that she is in a 
position to form a belief of the type in question – i.e. a true belief. Thanks to an anonymous 
referee for pressing me to consider this issue. 
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Now, it seems that S could innately know that q is a non-innate-belief-safespot for 
her – i.e. SKi (SBniq → q), where Ki = innate knowledge and Bni = non-innate belief. 
Moreover, S can know innately that any new belief she forms will be non-innate – so 
she knows that she is in a position to form a belief that q of that specific type. And so, 
by SPECIAL CASE, S is rationally permitted to Bniq – i.e. to have a non-innate belief 
that q. 

But it seems possible that S could have excellent overall evidence10 that q is 
(currently) false. S might have excellent evidence that all her current beliefs are innate 
(including her belief that q is a non-innate-belief-safespot for her). Indeed, S might 
innately know that q is false. E.g. perhaps S is an android, furnished with many innate 
beliefs, who has the ability to form new non-innate beliefs but who has only just been 
turned on for the first time innately knowing both that q is (currently) false and that q 
is a non-innate-belief-safespot for her. And so it seems that S is also rationally 
permitted to innately disbelieve that q (i.e. to Bi¬q, i.e. to DBiq). So S is rationally 
permitted to adopt 2 different doxastic attitudes to p – an innate disbelief or a non-
innate belief. Hence A.B.U. and UNIQUENESS are both false, PERMISSIVISM is 
true. 

Nothing in the foregoing hinges on the specifics of the innate vs. non-innate 
distinction. For it seems clear that further examples of this kind could be 
manufactured by appeal to other pairs of contrasting belief types. E.g. S could know 
since before she turned 20 years old that: S has formed no beliefs after coming to 
know that she is over 20 years old. But S could also know, again since before the age 
of 20, that the negation of this proposition – S has formed at least one belief after 
coming to know that she is 20 years old – would be true if first believed by S after 
learning that she is over 20 years old. And so, assuming that S knows that she has 
turned 20 and so knows that she is in a position to form beliefs of the type: believed-
only-since-learning-I-am-over-twenty, it seems that S is rationally permitted (at a 
single time) both to disbelieve-since-before-the-age-of-twenty that p, and also to 
believe-only-since-learning-I-am-over-twenty that p. 

I presented the argument above in terms of the safespot proposition q. But it could 
equally have been presented in terms of a blindspot. The negation of q is a non-
innate-belief blindspot for S 

¬q: S has no non-innate beliefs.  

S could have excellent (innate) evidence that ¬q is true, and indeed innately know 
that ¬q. So it seems S is rationally permitted to innately believe ¬q. But S could also 
innately know that a non-innate disbelief in ¬q – i.e. a non-innate belief that ¬¬q – 
would bound to be true. So, by SPECIAL CASE, S is rationally permitted to non-
innately believe that ¬¬q – i.e. disbelieve that ¬q. 

 

                                                           
10  I do not wish to assume the truth of ‘evidentialism’ here. If you think that the rational 

permissibility of belief can be partially determined by non-evidential factors, then we can 
just stipulate that these extra factors also obtain in this case. 
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In general and semi-formal terms then, the issue is that safespots and blindspots 
allow for the possibility that both of the following conditions obtain: 

SKt1¬p 
So, Rationally Permitted: SDBt1p 

SKt1 (SBt2p → p) & SKt1 (S is in a position to Bt2p) 
So, Rationally Permitted: SBt2p  (by SPECIAL CASE) 

We can have a situation then where a subject is both rationally permitted to believe a 
proposition and is rationally permitted to believe its negation.  

Of course, this does not mean that the subject is rationally permitted to believe a 
contradiction. Permissivists who think that both belief or disbelief in some 
proposition, p, can be rationally permitted, will presumably wish to deny that this 
entails it is rationally permitted to believe (p & ¬p), and so they will presumably want 
to deny that the rational permissibility of belief is closed under conjunction. I.e. they 
will need to deny that: 

Rationally Permitted (SBp) & Rationally Permitted (SBq) → Rationally Permitted 
(SBp & SBq) 

But of course the following sort of closure principle for permissibility in general is 
clearly invalid: 

It is permitted to: (do X) & it is permitted to: (do Y) → it is permitted to: (do X & 
do Y) 

E.g. that S is allowed to marry Jack and S is allowed to marry Jill does not entail 
that S is allowed to be married to both Jack and to Jill! So there seems to be no 
obvious theoretical cost for denying this kind of closure principle in the specific case 
of rationally permitted doxastic attitudes. 

Advocates of A.B.U. or of UNIQUENESS then apparently need to deny 
PRINCIPLE. I will now briefly consider one possible motivation for such a denial. 

It might be objected that by tying rational permissibility to a subject’s knowledge 
that a belief would be true, PRINCIPLE assumes, or at least is motivated and made 
plausible by, a form of epistemic consequentialism that advocates of UNIQUENESS 
(or ABU) might want to reject. 

(EC) EPISTEMIC CONSEQUENTIALISM: The ultimate epistemic goals/values, 
in virtue of which the epistemic rationality of holding any particular belief, on the 
basis of any particular set of evidence, is to be determined are: (i) acquiring true 
beliefs, (ii) avoiding false beliefs. 

An anti-consequentialist about epistemic rationality will insist, against (EC), that 
the norms imposed by evidence are fundamentally concerned simply that the subject 
believes what the evidence indicates is (now, actually) true. Such norms are not 
means to some further end concerning one’s set of beliefs; they are not concerned 
with the results of respecting one’s evidence in this way. So in particular the 
rationality of forming a belief in accord with one’s evidence is not fundamentally to 
be explained in terms of its promoting the goals of gaining accurate beliefs and 
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avoiding inaccurate ones; rather, the epistemic rationality of forming some belief just 
is determined simply by whether (and the extent to which) the evidence indicates that 
the proposition in question is true. 

(AC) EPISTEMIC ANTI-CONSEQUENTIALISM: The epistemic rationality of 
holding any particular belief, on the basis of any particular set of evidence, is 
determined solely by which propositions the evidence indicates (more or less 
strongly) to be (currently/actually) true or false.  

[Hence rationality is not fundamentally determined by reference to the promotion 
of the doxastic goals/values (i) or (ii), in the statement of (EC) above.] 

This is not the place to mount a full discussion of epistemic consequentialism. But 
I will note that blindspots seem to yield a particularly unintuitive result for the sort of 
anti-consequentialism just sketched. For your evidence could very strongly indicate 
that some blindspot proposition is (now, actually) true. But this same evidence could 
also clearly indicate that a belief in the proposition is bound to be false. It sounds very 
strange then to say that your evidence here rationally permits belief in the blindspot, 
when it manifestly indicates to you that the proposition is bound to be false if you 
believe it. 

In other words, if one rejects PRINCIPLE on general anti-consequentialist 
grounds, it would seem that one should also be committed to rejecting the following: 

CONVERSE PRINCIPLE: [SK (SBp → ¬p)] → ¬Rationally Permitted: SBp 

If anything, this CONVERSE PRINCIPLE seems, to me, even more plausible than 
the original PRINCIPLE. When you know that your believing something would 
bound to be a false belief, then it is not rationally permitted for you to form that 
belief. But if, in adherence to (AC), one insists that one’s evidence rationalises one’s 
beliefs solely in virtue of what it indicates is actually true/false, then so long as your 
evidence indicates strongly enough that a blindspot is currently true, you should be 
permitted to believe it even though you know this belief would be false. 

We have seen then how PRINCIPLE is in conflict with (AC) – safespots can 
provide examples where the evidence can indicate both that a proposition is false and 
that it would be true if believed. In these cases PRINCIPLE insists, against (AC), that 
what is rationally permitted to believe is not determined solely by what the evidence 
indicates to be true/false. And likewise, blindspots can provide examples where the 
evidence can indicate both that a proposition is true and that it would be false if 
believed. In these cases CONVERSE PRINCIPLE insists, against (AC), that what is 
rational to believe is not determined solely by what the evidence indicates to be 
true/false. 

But notice, accepting PRINCIPLE (or CONVERSE PRINCIPLE) does not 
obviously require going so far as endorsing (EC). I.e. accepting that there are some 
cases in which the consequences of forming a belief are relevant to assessing 
epsitemic rationality, does not obviously require accepting that in every case such 
consequences are the sole or ultimate determinants of epistemic rationality. And this 
may be just as well for the plausibility of PRINCIPLE and CONVERSE PRINCIPLE, 
because consequentialism may well have its own problems – see e.g. Berker [13] for 
arguments against (EC).  
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Finally, advocates of UNIQUENESS have, of course, given their own arguments 
in favour of the thesis and against PERMISSIVISM (see [1], [2], [3], [4], below); 
nothing I have said is supposed to indicate what flaws there are, if any, in  
those arguments. And so if one were sufficiently strongly convinced on independent 
grounds that UNIQUENESS must be correct, one could treat the foregoing argument 
of this paper as providing a reason to reject PRINCIPLE. But in any case, whatever 
the ultimate theoretical costs or benefits of denying PRINCIPLE, I hope that the need 
to deny it is at least an interestingly non-obvious and prima facie implausible 
consequence of UNIQUENESS and of A.B.U. 
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Abstract. This paper takes a dynamical systems perspective on the se-
mantic structures of dynamic epistemic logic (DEL) and asks the ques-
tion which orbits DEL-based dynamical systems may produce. The class
of dynamical systems based directly on action models produce very lim-
ited orbits. Three types of more complex model transformers are equiva-
lent and may produce a large class of orbits, suitable for most modeling
purposes.
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1 Introduction

When modeling socio-epistemic phenomena, working with the temporally local
models of dynamic epistemic logic (DEL) is both a blessing and a bane. It is a
blessing as both epistemic state models and their updates are small relative to a
fully explicated epistemic temporal structure. This eases both model construc-
tion and comprehension. It is a bane as the small models are incomplete: each
is an individual time-step while we seek to model temporally extended dynam-
ics. To form a ‘complete model’, we must specify the ‘temporal glue’ that ties
individual epistemic states together to dynamics.

This ‘temporal glue’ is often presented informally in the DEL literature by
way of a natural language problem description, typically involving conditional
tests to determine which update to apply. Methodologically, this leaves modelers
with a small gap: when modeling information dynamics using the semantic tools
of DEL, what mathematical object shall we identify as the model of our target
phenomenon?

It is an advantage of the DEL approach that a full sequential model need
not be specified from the outset, but a drawback that a complete formalization
of the problem under investigation is missing. Ideally, such ‘complete models’
should be both

1. Computably tractable (for each step), and
2. Informative (model the problem, not just describe the solution).
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The first desideratum is for implementation purposes. By the second, it is sought
that eventual implementations are interesting: models that formalize problems
without requiring they be solved first, allows one to draw informative conclusions
about the modeled phenomena. The informal approach is typically informative.

This paper suggests a dynamical systems approach to specifying ‘complete
models’ of information dynamics and provides some preliminary results.1 As a
(discrete time) dynamical system consists of only a state space X and a map
τ : X −→ X iteratively applied, the future development of the dynamics depend
only on the current state and the map τ . Dynamical systems thus provide a
formal container for dynamical models in the local spirit of DEL. This stands in
contrast to the only formal alternative, DEL protocols [3], which define dynamics
globally. This approach is discussed in Section 3.

Dynamical systems are simple but may therefore also be limiting. E.g., if
one’s chosen model transformer class contains only action models, then the set
of scenarios that can be modeled is very narrow: the same action model will
be reapplied by the dynamical system, scenarios such as the well-known Muddy
Children example [10] are among the unrepresentable phenomena. This provides
a motivation for seeking broader classes of model transformers, the topic of
Section 5. Three methods for defining complex model transformers are defined,
being multi-pointed action models, programs and problems. The main technical
results compare these approaches with respect to the orbits they can produce
when used in dynamical systems.

2 DEL Preliminaries

Let be given a finite, non-empty set of propositional atoms Φ and a finite, non-
empty set of agents, A.

Definition 1 (Kripke Model). A Kripke model is a tuple M = (�M� , R, �·�)
where

�M� is a non-empty set of states;
R : A −→ P(S × S) is an accessibility function;
�·� : Φ −→ P(S) is a valuation function.

A pair (M, s) with s ∈ �M� is called an epistemic state.

Definition 2 (Language, Semantics). Where p ∈ Φ and i ∈ A, define a
language L by

ϕ := � | p | ¬ϕ | ϕ ∧ ϕ | Kiϕ

with non-propositional formulas evaluated over epistemic state (M, s) by

(M, s) |= Kiϕ iff ∀t ∈ Ri(s), (M, t) |= ϕ.
1 The approach to dynamical systems taken here thus differs from that [14], which

mainly seeks modal logical descriptions of dynamical system concepts.
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With a normal modal logical language like L, the natural notion of equality
of epistemic states is bisimulation:

Theorem 1 (Hennessy-Milner, [4], Thm.2.24). Let M and M ′ be image-
finite, i.e., ∀s ∈ �M� , ∀i ∈ A, the set {t : (s, t) ∈ Ri} is finite. Then for all
s ∈ �M� , s′ ∈ �M ′

�, s and s′ are modally equivalent iff (M, s) and (M ′, s′) are
bisimilar.

When working with finite models, L is strong enough to distinguish any two
non-bisimilar models:

Theorem 2 ([11], Thm.32). Let (M, s) and (M ′, s′) be finite epistemic states
that are not n-bisimilar. Then there exists δ ∈ L such that (M, s) |= δ and
(M ′, s′) �|= δ.

Dynamics are introduced by transitioning from one epistemic state to the
next:

Definition 3 (Model Transformer). Let M be the set of epistemic states
based on A. A model transformer is a (possibly partial) function τ : M −→M.

Several model transformers have been suggested in the literature, the most
well-known being public announcement, !ϕ [12]. Primary to this paper is the rich
class of action models [2] with postconditions [8].

Definition 4 (Action Model). An action model is a tuple Σ=(�Σ�,R,pre,post)
where

�Σ� is a finite, non-empty set of actions;
R : A −→ P(�Σ� × �Σ�) is an accessibility function;
pre : �Σ� −→ L is a precondition function;
post : �Σ� −→ {∧n

i=0 ϕi � ⊥ : ϕi ∈ {�, p,¬p : p ∈ Φ}} is a postcondition
function.

A pair (Σ, σ) with σ ∈ �Σ� is called an epistemic action.

The precondition of an action σ specifies the conditions under which σ is ex-
ecutable; the postconditions specify how σ sets the values of select atoms. If
post(σ) = �, then σ changes nothing.

An epistemic state is informationally updated with an epistemic action by
taking their product:

Definition 5 (Product Update). The product update of epistemic state
(M, s) = (�M� , R, �·� , s) with epistemic action (Σ, σ) = (�Σ� ,R, pre, post, σ)
is the epistemic state

(M ⊗Σ, (s, σ)) = (�M ⊗Σ� , R′, �·�′ , (s, σ))
where

�M ⊗Σ� = {(s, σ) ∈ �M� × �Σ� : (M, s) |= pre(σ)}
R′

i = {((s, σ), (t, τ)) : (s, t) ∈ Ri and (σ, τ) ∈ Ri}
�p�

′
= {(s, σ) :s ∈ �p�, post(σ) � ¬p} ∪ {(s, σ) :post(σ) � p}.
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In combination, an epistemic action (Σ, σ) and product update ⊗ thus define a
model transformer. Denote the class of such transformers by Σ. Each τ ∈ Σ has
the following pleasant property:
Fact (Bisimulation Preservation). ∀τ ∈ Σ, if (M, s) and (M ′, s′) are bisim-
ilar, then so are τ(M, s) and τ(M ′, s′).

Σ is a very powerful class: for any finite epistemic state (M, s), it contains a
transformer that will map (M, s) to any other finite epistemic state (M ′, s′), as
long as no agents with empty access in M has non-empty access in M ′ and as
long as M and M ′ differ only in the truth value of a finite number of atoms. The
restrictions are due to the ‘and’-condition used in defining R′

i in product update
and the finite conjunction used in defining postcondition maps. If the directed
relation given by these restrictions holds from (M, s) to (M ′, s′), then call the
transition from the first to the second reasonable:

Definition 6 (Reasonable Transition). Let (M, s)= (�M� , R, V, s) and
(M ′, s′) = (�M ′

� , R′, V ′, s′) be two epistemic states. Then the transition from
(M, s) to (M ′, s′) is reasonable iff

1. it preserves insanity: there exists a submodel M s of M such that s ∈ �M s
�

and ∀i ∈ A, if R′
i �= ∅, then Ri is serial in M s, and

2. it invokes finite ontic change:

{p : �p� �= ∅ and �p� �= �M�}
∪ {p : �p� = ∅} \{p : �p�′ = ∅}

∪{p : �p� = �M�} \{p : �p�
′
= �M ′

�

}

is finite.

Theorem 3 (Arbitrary Change, [8], Prop.3.2). Let the transition from fi-
nite (M, s) to finite (M ′, s′) be reasonable. Then there exists a (Σ, σ) ∈ Σ such
that (M, s)⊗ (Σ, σ) and (M ′, s′) are bisimilar.

3 DEL Protocols

One framework which could be used to construct ‘complete models’ is DEL
protocols [3,7,13,15].

Definition 7 (DEL Protocol). Let Σ∗ be the set of all finite sequences of
transformers τ ∈ Σ. A set P ⊆ Σ∗ is a (uniform) DEL protocol iff P is closed
under non-empty prefixes.

A DEL protocol specifies which model transformers may be executed at a
given time—whether they can be executed depends on the model transformers,
e.g. their preconditions.

Where P is a DEL protocol and σ = (τ1, ..., τn) ∈ P, set
(M, s)σ := τn◦· · ·◦τ1(M). From an initial model (M, s) and time 0, a DEL proto-
col P produces a set of possible evolutions to each time n, namely
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{(M, s)σ : len(σ) = n}. Notice that len(σ) = n does not imply that (M, s)σ ex-
ists: one of the transformers from σ may have been unexecutable at some earlier
stage.

DEL protocols are dismissed as suitable for constructing ‘complete models’ as
the results will be unexecutable, incorrect or uninformative. To see this, assume
that some phenomenon that involves multiple model transformers
T = {τ1, ..., τn}, as e.g. Muddy Children does.

If the DEL protocol used is T ∗ (the set of all finite strings sequences of trans-
formers from T ) a very nice model is obtained: it is applicable to multiple initial
states with varying mud distributions, and it may accordingly be used to obtain
answers to questions about e.g. how the scenario unfolds as a function of the
number of muddy children. Alas, T ∗ is infinite and as a model therefore un-
executable: given some initial state (M, s) it will not be possible to run T ∗ on
(M, s) in finite time as the input to any function that is to determine the set
{(M, s)σ : len(σ) = 1} will be infinite.

To obtain an executable model, T ∗ could be pruned to obtain a finite DEL
protocol T ⊆ T ∗, e.g. by setting some upper bound on the length of σ ∈ T. The
risk associated with this move (pruning) is that the model becomes useless or
uninformative: if the upper bound is set too low, the model will terminate too
soon and not provide a correct output; to ensure the upper bound high enough,
the problem must have been solved beforehand, leading to an uninformative
model. In the extreme case where the only included maximal σ is ‘the correct
one’ given some natural language protocol and initial state, a descriptive model
is produced, but such a ‘gold in, gold out’ model is of little interest from an
investigative perspective.

4 DEL and Dynamical Systems

Given Theorem 3, one might expect that dynamical systems based on the class
of action models Σ would allow modeling of a plethora of phenomena. Surpris-
ingly, not even even simple and well-known epistemic puzzles such as Muddy
Children can be modeled by this class. To see this, let us first clarify the notion
of dynamical system.

As standardly defined [6], a dynamical system is a tuple D = (X,T, E) where
X is set, called the state space, T ⊆ R is a time set which forms an additive
semi-group (t1, t2 ∈ T ⇒ t1 + t2 ∈ T ) and E : X × T → X is an evolution map
satisfying that E(x, 0) = 0 and E(E(x, t1), t2) = E(x, t1 + t2).

To obtain a state space for DEL-based dynamical systems, it is natural, given
Theorem 1, to equate bisimilar epistemic states, and let the state space con-
sist of each bisimulation type’s smallest representative. For an epistemic state
(M, s), this representative is given by (M, s)’s generated submodel rooted at s’s
bisimulation quotient (M [s]/ρM , [s]Mρ ), see [11], Sec. 3.6. Setting

M := {(M [s]/ρM , [s]Mρ ) : (M, s) is an epistemic state},
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a class is obtained that contains a canonical representative of each epistemic
state, each unique up to isomorphism.

As DEL updates are discrete and non-invertible, the suitable time set for a
DEL-based dynamical system is Z+. The evolution function of any dynamical
system D = (X,Z+, E) with time set Z+ may be defined by the iterations of
a function e : X → X by E(x, n) = en(x). Given the chosen state space, the
suitable class of such functions e is the set of model transformers τ : M → M,
denoted by T.

Given these considerations, the following definition of DEL-based dynamical
systems is obtained:

Definition 8 (DEL-based Dynamical System). A DEL-based dynamical
system is a pair D = (X, τ) where X ⊆ M and τ : X → X.
The orbit of D from initial state x0 ∈ X is the sequence o(D, xo) = (τn(x0))n∈Z+ .

Remark. Given an epistemic action τ ∈ Σ, x ∈ M does not imply that
τ(x) ∈ M. There will however be a x′ ∈ M that is bisimilar to τ(x). Given
Fact 1, each τ ∈ Σ may be identified with a τ ′ ∈ T by if τ(x) = (M, s), then
τ ′(x) = (M [s]/ρM , [s]Mρ ). Henceforth, when executing an epistemic action (Σ, σ)
in x ∈ M, it is thus assumed that x⊗ (Σ, σ) ∈ M.

It is immediately clear that any dynamical system D = (X, τ) with τ ∈ Σ will
be limited in its orbits. In particular, where s0 is the actual state in the initial
epistemic state x0 and σ0 is the actual state of τ , then for any n, the actual state
of τn(x0) will be of the form (...(s0, σ0), ..., σ0). Consequently, any phenomenon
that involves the occurrence of more than one actual action is unmodelable. As
most phenomena do involve shift in the performed action, e.g. by a shift in the
announcement made, there is a motivation for seeking out a more general class
of model transformers.

5 Complex Model Transformers

The limitation of DEL-based dynamical systems does not stem from action mod-
els, but rather from the fact that their usage is not controlled. This problem is
solved by DEL protocols or update streams; simply specify at which time which
action model should be executed. However, this requires a description of the
evolution before execution, leaving little of the local DEL spirit intact.

A natural way to specify which transformer should be applied next that still
remains local in spirit is by using a map π : M −→ T. Composing such a π with
the model transformers it picks at each epistemic state is then again a model
transformer τπ : M −→ M given by τπ(x) = π(x)(x).

To be interesting from modeling and implementation perspectives, such π
must be finitely representable. This puts constraints on the dynamical systems
definable, but, as will be shown, the restriction is still to a vast class of such
systems.

We focus on three ways of specifying maps π, each picking model transformers
from Σ. The choice to restrict attention to maps picking transformers from
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Σ is warranted by Theorem 3: As basic transformers, this class has sufficient
transformational power to construct a rich class of dynamical systems.

The first type is closely related to the (knowledge-based) programs known
from interpreted systems [10], though defined to specify transformers based on
the global, epistemic state rather than specifying sub-actions based on agents’
local states:2

Definition 9 (Program). A (finite, deterministic,(L,Σ)) program is a finite
set of formula-transformer pairs

P = {(ϕi, τi) : ϕi ∈ L, τi ∈ Σ}

where ∀i, j if ϕi �= ϕj and (ϕi, τj), (ϕj , τj) ∈ P , then M |= ϕi ∧ ϕj → ⊥.
Each program P gives rise to a model transformer τP given by τP (x) = τi(x)

if x |= ϕi and (ϕi, τi) ∈ P . Denote this class by P.

Each program may be read as a set of conditional tests of the form if ϕi, do τi,
in form similar to the informal specifications often used in DEL literature.

The explicit specification of programs stands in contrast with the implicit
specification of the second transformer type, problems, where each instruction
may be read if ϕi, obtain ψi. Problems as defined here are related to epistemic
planning problems, also know from the DEL literature [5].

Definition 10 (Problem). A (finite (L,Σ)) problem is a pair

Π = (Q,ΣΠ)

where Q = {(ϕi, ψi) : ϕi, ψi ∈ L} is a finite set of formula-formula pairs and
ΣΠ ⊂ Σ is a finite set of model transformers with an associated strict order <.

A solution to Π = (Q, T ) at epistemic state x is a model transformer τ ∈ T
such that ∀(ϕi, ψi) ∈ Q, if x |= ϕi, then τ(x) |= ψi. Denote the set of solution to
Π at x by Π(x).

Each problem Π gives rise to a model transformer τΠ given by
τΠ(x) = min< Π(x). Denote this class by Π.

The model transformer τΠ is defined using the strict order < on ΣΠ to ensure
that τΠ is a function: nothing in the definition ensures that |Π(x)| ≤ 1.

The last model transformer type to be considered is a slight generalization
of action models [1], where each such may have multiple actual states. In the
definition it is required, non-standardly, that the preconditions of the actual
states must be mutually exclusive. This is to ensure that executing a multi-
pointed action model using product update remains a single-pointed epistemic
state.

2 Programs based on agents’ local states is also at least to some degree feasible in a
DEL setting, using parallel action model composition [9].
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Definition 11 (Multi-Pointed Epistemic Actions). A (finite, determinis-
tic) multi-pointed epistemic action is an epistemic action (Σ, σ) with σ replaced
by a finite, non-empty set S ⊆ �Σ�, where for each σ, σ′ ∈ S, if σ �= σ′, then
M |= pre(σ) ∧ pre(σ′) → ⊥.

Applied using product update, each (Σ,S) is a model transformer
τ : (M⊗Σ, (s, S)) �→ (�M ⊗Σ� , R′, �·�′ , (s, σi)) where (M, s) |= pre(σi). Denote
this class by Σ+.

With mutually exclusive preconditions, a multi-pointed action model (Σ,S) en-
codes a map π : M −→ T with image {(Σ, σ) : σ ∈ S} by π(x) = (Σ, σ),
x |= pre(σ).

6 Results

Note initially that DEL-based dynamical systems fair better than DEL proto-
cols in regard to executability and informativity. DEL-based dynamical systems
resting on either a program or a multi-pointed action model are step-wise com-
putable, as both transformer types are finite and therefore require only check of
a finite set of formulas at each (M, s). The case for problems must be checked
against [5]. Moreover, DEL-based dynamical systems will provide informative
models: once a system is defined, one may start investigating how its orbits be-
have as a function of initial state without having pre-solved the encoded problem.

The first main result shows that dynamical systems based on the class Π
of problem-based model transformers can model any reasonable, deterministic,
finite or cyclic sequence of finite epistemic states. Problem-based dynamical sys-
tems can thus model a large class of phenomena.

The proof of Proposition 1 is by brute force. The construction results in a
large, cumbersome problem fully pre-encoding the target orbit. For many mod-
eling purposes, far more economical complex model transformers will do.

Definition 12 (Finite Variation, Deterministic). Let x = (x0, x1, ...) be a
sequence of epistemic states from M. x has finite variation iff

1. x is finite, or
2. ∃n,m, k∈ Z+\{0} : xk = xk+m for all k ≥ n.

x is deterministic iff if xk, xk+1, xm ∈ x and xk = xm, then xm+1 ∈ x and
xk+1 = xm+1.

Proposition 1 (Arbitrary Orbits). Let the sequence x = (x0, x1, ...) of finite
epistemic states be deterministic, with finite variation and where the transition
between each xi and xi+1 is reasonable. Then there exists a dynamical system
D = (M, τΠ) with τΠ ∈ Π such that o(D, x0) = x.

Proof. By constructing a problem Π = (Q,ΣΠ) that gives rise to the sought τΠ .
For each xi, xj ∈ x, xi �= xj , let δi,j be a formula that distinguishes xi from

xj such that xi |= δi,j and xj �|= δi,j ; this δi,j exists by Theorem 2. As x has
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finite variation, δi :=
∧

j:xj∈x\{xi} δi,j is a formula that distinguishes xi from all
other xj ∈ x. For each xi, xi+1 ∈ x, let τi ∈ Σ be a model transformer such that
τi(xi) = xi+1; this exists by Theorem 3.

Let Q be the smallest set that for each xi, xi+1 ∈ x contains (δi, δi+1). Let ΣΠ

be the smallest set that for each xi, xi+1 ∈ x contains τi. Both Q and ΣΠ are
finite by the assumption of finite variation, so Π = (Q,ΣΠ) is a finite program,
so τΠ is a model transformer.

That o(D, x0) = x when D = (M, τΠ) is shown by induction on xn:
Base: τΠ

0(x0) = x0. Step: Assume τΠ
n(x0) = xn. If x = (x0, ..., xn), then

o(D, x0) = x as (δn, ϕ) �∈ Q for any ϕ, by determinism of x, so τΠ(xn) is
undefined. If xn+1 ∈ x, then (δn, δn+1) ∈ Q and τn ∈ ΣΠ . By construction,
Π(xn) = τn, so τΠ(x) = xn+1. ��
Proposition 2 (Problem Orbit Properties). Let o(D, x0) = x with
D = (M, τΠ), τΠ ∈ Π. Then x is deterministic and for each xi, xi+1 ∈ x,
the transition from xi to xi+1 is reasonable.

Proof. x is deterministic as τΠ is a function; each transition is reasonable as
xi+1 = τ(xi) for some τ ∈ Σ.

Propositions 1 and 2 cannot be strengthened to a characterization result as not
all problem-based dynamical system have finite variation:

Proposition 3 (Infinite Variation). There exists a dynamical system
D = (M, τΠ) with τΠ ∈ Π such that o(D, x0) does not have finite variation.

Proof. Let D = (M, τΠ) with problem Π = ({(�,�)}, {(Σ, σ1)}). This trivial
problem has unique solution (Σ, σ1) for all (M, s) ∈ M. Hence, for all x ∈ M,
τΠ(x) = (M, s)⊗ (Σ, σ1).

Let M and Σ given by

Then o(D, (M, s)) does not have finite variation: for each iteration of τΠ , the
state not satisfying p will split, inserting a new p state as it’s child with σ2:

All other states have only one child, with σ3.
In all further applications of (Σ, σ1), the circular structure seen in (M, s) ⊗

(Σ, σ1) is preserved, only with an additional p state. No two such models are
bisimilar, and hence the orbit does not have finite variation. ��

The second main result shows that also program-based dynamical systems
and dynamical systems based on multi-pointed action models can produce a
vast class of orbits.
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Proposition 4 (Equivalence). Let x = (x0, x1, ...) be a sequence of epistemic
states. Then

1. ∃τΠ ∈ Π such that for D = (M, τΠ), o(D, x0) = x.
⇑

2. ∃τP ∈ P such that for D = (M, τP ), o(D, x0) = x.
�

3. ∃τΣ+ ∈ Σ+ such that for D = (M, τΣ+), o(D, x0) = x.

If x = (x0, x1, ...) has finite variation and x0 is finite, then the three statements
are equivalent.

Proof.
Case: 2. ⇒ 1. Let D = (M, τP ), τP ∈ P with o(D, x0) = x = (x0, x1, ...) be
given.

Construct a problem Π = (Q,ΣΠ) as follows: Let Q be the smallest set that
for each (ϕi, τi) ∈ P contains (ϕi,�). Let ΣΠ be the smallest set that for each
(Σ, σ) ∈ ΣP contains (Σ, σ∗) identical to (Σ, σ) in all respects except that
pre(σ∗) = pre(σ) ∧ ϕi. As P is finite, Π = (Q,ΣΠ) is a finite problem; τΠ is a
model transformer as the ϕi’s of P are mutually exclusive.

Then o((M, τΠ), x0) = o((M, τP ), x0): Assume xi, xi+1 ∈ x. Then
xi+1 = τ(xi) for some τ = (Σ, σ) such that for some ϕ, (τ, ϕ) ∈ P . Hence
for some ϕ, (τ, ϕ) ∈ P, it holds that xi |= ϕ. Given the preconditions and that
(ϕ,�) ∈ Q, τ∗ = (Σ, σ∗) ∈ ΣΠ will be the only solution to Π at xi. As xi |= ϕ,
τ∗(xi) = τ(xi).

Assume x = (x0, ..., xn) is finite. Then either xn �|= ϕi for all (ϕi, τi) ∈ P or if
xn |= ϕi for (ϕi, (Σ, σ)) ∈ P , then xn �|= pre(σ). In the first case, xn �|= ϕi for all
(ϕi,�) ∈ Q; in the second, xn �|= pre(σ∗). In either case, τΠ(xn) is undefined.

Case: 2. ⇒ 3. Let D = (M, τP ), τP ∈ P with o(D, x0) = x = (x0, x1, ...) be
given. Let ΣΠ be as in the case 2. ⇒ 1. Define a multi-pointed action model
(Σ+, S) by Σ+ =

⊎ {Σ : (Σ, σ∗) ∈ ΣΠ} and S = {σ∗ : (Σ, σ∗) ∈ ΣΠ}. Let τΣ+

be the associated model transformer.
Then o((M, τΣ+), x0) = o((M, τP ), x0): Assume xi, xi+1 ∈ x. Then

xi+1 = τ(xi) for some τ = (Σ, σ) such that for some ϕ, (τ, ϕ) ∈ P . Hence
for some ϕ, (τ, ϕ) ∈ P, it holds that xi |= ϕ ∧ pre(σ), so by construction,
xi |= pre(σ∗). Hence only the submodel (Σ, σ∗) of Σ+ is executable at xi, so
τΣ+(xi) = τP (xi).

If x = (x0, ..., xn) is finite, then either xn �|= ϕi for all (ϕi, τi) ∈ P or if xn |= ϕi

for (ϕi, (Σ, σ)) ∈ P , then xn �|= pre(σ). In the first case, xn �|= pre(σ∗) for all
(Σ, σ∗) ∈ Σ+; in the second, xn �|= pre(σ∗). In either case, τΣ+(xn) is undefined.

Case: 3. ⇒ 2. Let D = (M, τΣ+), τΣ+ ∈ Σ+ with o(D, x0) = x = (x0, x1, ...)
be given. Let the Σ+ of τΣ+ be Σ+ = (Σ,S) and create from it a set of |S| single-
pointed action models A = {(Σ, σ) : σ ∈ S}. Create a program
P = {(pre(σ), (Σ, σ)) : (Σ, σ) ∈ A}. P is both finite and deterministic.

Then o((M, τP ), x0) = o((M, τΣ+), x0): Assume xi, xi+1 ∈ x. Then
xi |= pre(σ) for exactly one σ ∈ S. As (pre(σ), (Σ, σ)) ∈ P , τP (xi) = τΣ+(xi).
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If If x = (x0, ..., xn) is finite, then xn �|= pre(σ) for all σ ∈ S. Hence for all
(ϕ, τ) ∈ P , xn �|= ϕ, so τP (xn) is undefined.

Case: 1. ⇒ 2., if x = (x0, x1, ...) has finite variation and x0 is finite: Let
D = (M, τΠ), τΠ ∈ Π = (Q,ΣΠ) with o(D, x0) = x = (x0, x1, ...) having finite
variation. Brute force construct a program using characteristic formulas: let δi
be the characteristic formula of xi ∈ x. For each pair xi, xi+1 ∈ x, there is a
unique τi ∈ ΣΠ such that τi(xi) = xi+1. Let P = {(δi, τi) : xi ∈ x}. As x has
finite variation, P is finite and gives rise to a model transformer τP .

Then o((M, τP ), x0) = o((M, τΠ), x0): Assume xi, xi+1 ∈ x. Then
(δi, τi) ∈ P , so τP (xi) = xi+1. If x = (x0, ..., xn) is finite, then by Proposi-
tion 2, for no xi, i < n is xi = xn. Hence (δn, τ) �∈ P , for any τ . Hence τP (xn) is
undefined. ��
Corollary 1 (Orbit Properties). For any dynamical system D = (M, τ) with
τ ∈ P∪Σ+ and any x0 ∈ M, o(D, x0) is deterministic and for each xi, xi+1 ∈ x,
the transition from xi to xi+1 is reasonable.

Proof. Let D be as described. By Proposition 4 there exists a D′ = (M, τΠ),
τΠ ∈ Π, that recreates o(D, x0). The corollary then follows from Proposition 2.

7 Conclusion

The main contributions are

� that although dynamical systems defined using epistemic action models can
produce only very limited orbits, dynamical systems that control when par-
ticular action models are used may produce orbits sufficient for most mod-
eling purposes, and

� that the three methods for controlling which action models are applied are
equivalent under the presented conditions.

The first result shows that DEL-based dynamical systems provide a rich frame-
work for producing mathematically specified models of information dynamics.
The latter shows that there are multiple ways of extending the DEL toolbox
compatible with modeling using dynamical systems.

It would be interesting to make an in-depth comparison between DEL proto-
cols and DEL-based dynamical systems, comparing the orbits they may produce
and under which conditions such might be equivalent. Two considerations here
involve the finite nature of DEL protocols, guaranteeing finite variation not
guaranteed by DEL-based dynamical systems, and the ‘bisimulation respecting’
behavior of DEL-based dynamical systems, which is not necessarily followed by
DEL protocols. Obtaining such results could be used to link DEL-based dynam-
ical systems with Epistemic Temporal Logic via the results in [3].

Moreover, it would be interesting to investigate any deeper relationship be-
tween dynamic epistemic logic and dynamical systems; the latter field is well-
developed, and one could envision that methods and results may be transferable.
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‘Transitivity’ of Consequence Relations

David Ripley

University of Connecticut, Storrs CT 06268, USA

Abstract. A binary relation R on a set S is transitive iff for all a, b, c ∈
S, if aRb and bRc, then aRc. This almost never applies to the relations
logicians tend to think of as consequence relations; where such relations
are relations on a set at all, they are rarely transitive. Yet it is common
to hear consequence relations described as ‘transitive’, and to see rules
imposed to ensure ‘transitivity’ of these relations. This paper attempts
to clarify the situation.

1 Introduction

After briefly substantiating the claims in the abstract, this paper focuses on
exploring a number of different properties of consequence relations that have
traveled under the name ‘transitivity’, mapping the implications among them.
From here forward, I will use ‘transitive’ and ‘transitivity’ very little, and only in
their standard relation-theoretic sense. To reiterate: to be transitive, a relation R
must be a binary relation on a set S, and it must be such that for any a, b, c ∈ S,
if aRb and bRc, then aRc.

Many familiar consequence relations are not relations on a set at all, but
instead relate sets of formulas (collections of premises) to single formulas (con-
clusions). That is, where F is the set of formulas under consideration, such a
relation is a relation between ℘(F) and F . Following [6], I’ll say these relations
work in the ‘Set-Form framework’. Such a relation is not the right kind of
thing to be transitive. Of course, these relations can, and frequently do, exhibit
a number of properties more and less closely connected to transitivity. But I will
not explore this here; I mention Set-Form relations to set them aside.

In what follows, I work entirely in the Set-Set framework. In this framework,
consequence relations really are binary relations on a single set: the set ℘(F).
That is, they relate sets of formulas to sets of formulas. So they are at least the
right kind of relation to be transitive.

Much research into Set-Set consequence relations (see eg [4, 13, 7, 11, 14, 6])
interprets the members of the set of conclusions as (in some sense) different pos-
sibilities. On this interpretation, arguments with fewer conclusions are stronger
than those with more, since they narrow down more finely on a result. This is
the interpretation I’ll focus on in what follows.

These relations, too, are almost never transitive. Consider, for example, the
Set-Set consequence relation � determined by classical logic, explored and de-
fended in [7], among other places. This relation relates {A ∨B} to {A,B}, and
relates {A,B} to {A ∧ B}, but does not relate {A ∨ B} to {A ∧ B}; it is thus
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not transitive. The reason is nothing particularly to do with classical logic; it
is instead to do with how sets of formulas are interpreted. As premises, they
are meant conjunctively: as all available to be drawn on together in establishing
conclusions. As conclusions, they are meant disjunctively: as jointly exhausting
the space where the truth must lie, given the premises. This difference in inter-
pretation prevents linking valid Set-Set arguments together in the simple way
guaranteed by transitivity.

2 A Catalog of Linking Properties

In this section, I lay out the assumptions that will frame the paper, and then
present a catalog of ten properties that a Set-Set consequence relation might
exhibit, all of which, I think, are recognizable as related to what logicians often
mean by ‘transitivity’. These ten properties form the basis of the paper, which
fully maps the implications among arbitrary conjunctions of these properties.

Some notational preliminaries: I use capital Roman letters for formulas, and
capital Greek letters (that are not also capital Romans) for sets of formulas.
F is the set of formulas in the language under consideration; each Set-Set
consequence relation, then, is a binary relation on ℘(F). (As above, I restrict
attention entirely to Set-Set relations.) I abbreviate freely in usual sequent-
calculus ways, so, for example, ‘Γ,A,Σ �’ abbreviates ‘Γ ∪{A}∪Σ � ∅’. When I
talk of ‘partitions’ of a set, this should be understood to include partitions with
an empty entry; for example, 〈∅, Σ〉 is a partition of Σ, on this usage.

2.1 Assumptions

I assume in places that the language F contains infinitely many formulas; its
cardinality does not otherwise matter. I make no assumptions about the nature
or structure of formulas; F can be any infinite set.

Consequence relations are often defined as relations that are ‘reflexive, mono-
tonic, and transitive’. The final condition, of course, is the subject of this paper,
so I am certainly not assuming it. Nor will I assume reflexivity, although this
turns out not to matter; all the results of the paper remain unchanged with such
an assumption in place.1

1 ‘Reflexive’ here is like ‘transitive’; it does not have, in its usual application to Set-
Set consequence relations, its usual relation-theoretic sense. In the usual sense, a
relation R on a set S is reflexive iff for all x ∈ S, xRx. For consequence relations,
this would require that for every set Γ of formulas, Γ � Γ . As it happens, this is
almost never the case; at the very least, the empty set does not entail itself in any
familiar setting. There are two usual things one might mean by ‘reflexivity’ here:
that Γ � Γ for all singleton Γ , or all nonempty Γ ; these are the assumptions that
would not change anything in what follows. To show this, I take care to make sure
that all the examples I discuss are reflexive (in both of these senses), and that no
proof of any claim depends on reflexivity (in any sense).
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I will, however, assume throughout the paper that all consequence relations
are monotonic: that whenever Γ � Δ, then Γ, Γ ′ � Δ,Δ′.2 This matters a great
deal; the situation is very different if this assumption is not imposed, and many
of the results to follow would not hold without it.

A consequence relation � is compact iff whenever Γ � Δ, then there are finite
Γfin ⊆ Γ and Δfin ⊆ Δ such that Γfin � Δfin. In what follows, I will not require
compactness in general, but I will keep track of compactness, and show what
the effects of requiring compactness are.

2.2 The Catalog

Table 1 gives ten properties that a consequence relation � may or may not
exhibit. Each of the properties is a closure property: they are all of the form
‘if these things stand in the relation, then those things must also stand in the
relation’. These should be understood as universally quantified; for example, �
has the property ks iff whenever Γ � A and A � Δ, then Γ � Δ, for all choices of
Γ,Δ, and A. The properties to be considered in this paper are the ten in Table
1, and arbitrary conjunctions of these.

Table 1. Linking properties

Name: If and then
s C � A A � D C � D
ks Γ � A A � Δ Γ � Δ

/f Γ � A A,Γ � Δ Γ � Δ
f/ Γ � Δ,A A � Δ Γ � Δ
fg Γ � Δ,A A, Γ � Δ Γ � Δ

/c Γ � A for all A ∈ Σ Σ,Γ � Δ Γ � Δ
c/ Γ � Δ,Σ A � Δ for all A ∈ Σ Γ � Δ
/c+ Γ � Δ,A for all A ∈ Σ Σ,Γ � Δ Γ � Δ
c+/ Γ � Δ,Σ A, Γ � Δ for all A ∈ Σ Γ � Δ

cg Σ+, Γ � Δ,Σ− for all partitions 〈Σ+, Σ−〉 of Σ Γ � Δ

Each allows valid arguments to be linked in a specific way; in the antecedent
of these properties, the formula A and/or the set Σ of formulas figures among
the conclusions of the left conjunct and the premises of the right conjunct, but
does not appear in the consequent at all. (cg is the only exception to this, as its
antecedent does not have left and right conjuncts.) Two of these properties—s
and ks—are special cases of transitivity. The others, however, are not.

The abbreviations for the properties are intended to be (at least somewhat)
mnemonic without taking up too much space. The properties that have received
the most attention are s for ‘simple’, fg for ‘finite generalized’, and cg for ‘com-
plete generalized’.3 The remaining properties are lopsided; each focusses in on
2 Unlike ‘reflexive’ and ‘transitive’, ‘monotonic’ here does have its usual relation-

theoretic sense, w/r/t the order ⊆ on sets of formulas.
3 I take the terms ‘simple’ and ‘generalized’ from [16]. Weir’s ‘simple transitivity’ is

my s; his ‘generalized transitivity’ is my fg. (He does not consider cg.)
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either the premise or conclusion side of the relation in question. The abbre-
viations for these properties include a ‘/’; where the property focusses on the
premise side, a letter appears before ‘/’, and where it focusses on the conclusion
side, a letter appears after ‘/’. The ‘f’ and ‘c’ are for ‘finite’ and ‘complete’.

Each property on the list has a dual also on the list. Properties P and P ′ are
duals, in the sense relevant here, iff: for a consequence relation � to have P is
for its converse � to have P ′. The properties s, ks, fg, and cg are all self-dual.
For the remaining properties, the names indicate duality; for example, /f and
f/ are duals. Also, the assumptions in play about consequence relations (that
they are monotonic Set-Set relations) are self-dual; a relation � meets them iff
its converse � does. So too is compactness self-dual, in this sense. Noting these
symmetries will allow for some of the following proofs to get away with only half
the work they would otherwise take. For example, once we see that fg implies
/f, we can immediately conclude that it implies f/ as well; and once we see that
/c+ does not imply c+/, we can immediately conclude that c+/ does not imply
c+/ either. I will use this style of reasoning frequently in what follows.

3 Previous Work

3.1 fg and Cut

In the present setting, fg is equivalent to the following property: if Γ � Δ,A
and A,Γ ′ � Δ, then Γ, Γ ′ � Δ,Δ′. This property, in turn, is closely connected to
[4]’s rule of cut in the sequent calculus LK. (Just like ‘transitivity’, ‘cut’ means
many different things in different contexts. Most of them, however, are related
to Gentzen’s use of ‘cut’.)

Cut looms large in many proof-theoretic investigations; fg, then, has real
proof-theoretic import. But it also, at times, has philsophical import. For exam-
ple, [7, 8] understand fg (as a condition on a particular consequence relation) as
encoding the following constraint on certain conversational norms: if a certain
combination of assertions and denials is within the norms, then for any formula
A, either adding an assertion of A to that combination remains within the norms,
or else adding a denial of A to that combination remains within the norms. [7, 8]
endorse this constraint; [9, 10] dispute it.

3.2 cg and Bivaluations

One way to present a consequence relation on a language F is via bivaluations:
binary partitions 〈T, F 〉 of F . By specifying a set M of such partitions, one
specifies a consequence relation �M in the following way: Γ �M Δ iff there is
no 〈T, F 〉 ∈ M such that Γ ⊆ T and Δ ⊆ F . (Informally, you might think: the
argument is valid iff there is no model on which all the premises are true and
all the conclusions false.) This way of thinking is stressed in [13, 6], but even
where it is not stressed it is often applicable. For example, any way of presenting
a consequence relation using models with designated values in the usual way fits



332 D. Ripley

this mould directly: we can understand each model as partitioning the language
into those formulas that receive a designated value and those that do not.

Any consequence relation arrived at in this way will have certain structural
properties: it will be reflexive (in the senses of footnote 1), monotonic, and it will
have the property cg. (For proof, see [13, p. 30].) As we will shortly see, cg in
fact implies all the other properties in Table 1. This means that bivaluations will
not prove useful in what follows; they obscure the relations between the linking
properties under consideration, by forcing them all to hold.4

Many monotonic Set-Set consequence relations encountered in the wild can
be presented in terms of bivaluations, and so exhibit cg and thus all the linking
properties to be considered here. (Note, however, that [11, p. 83] complains that
cg is overstrong, claiming that it requires “much more than the transitivity of
consequence”.) It is only in cases where cg fails that the distinctions explored
here are revealed.

3.3 Quantum Logic

[3, p. 44] and [1] both consider forms of quantum logic, and attribute to it the
conjunction of /f and f/, which I will call f/f. In quantum logic, distribution of
conjunction over disjunction fails; as it happens, there are important connections
between distribution and fg, which I do not have space to explore here (but see
[6, p. 10], particularly Exercise 0.13.7(i)). In these authors’ settings, quantum
logic does not obey fg, which they take to be a default expression of transitivity;
f/f is substituted to “reflect the transitivity of implication” [1, p. 247].

In both cases, the authors restrict their attention to compact relations, for
which the conjunction of /c and c/, which I will call c/c, is equivalent to f/f.5
(More on compactness presently.) Neither source discusses /f or f/ on their
own.

3.4 Neo-Classical Logic

The ‘neo-classical’ logic explored in [15, 16], among other places, is another
consequence relation that exhibits some of these properties but not others. As
[16, p. 100] points out, this consequence relation obeys s. In fact it also obeys
ks; as we will see, this is stronger. However, it does not exhibit any of the other
properties in Table 1. Weir claims that s “should be incorporated in any genuine
notion of logical consequence”, but does not elaborate.

3.5 Cut3

There is one other property not listed in Table 1 I’m aware of that has been
considered a form of ‘transitivity’ for Set-Set consequence relations. This is
4 Related techniques from [5], however, can avoid imposing cg.
5 In fact, Dummett (but not Cutland & Gibbins) only considers finite sequents. Note

as well that the discussion in [3] in support of f/f, if cogent, in fact supports the
full strength of c/c, even for noncompact relations.
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the property called ‘Cut3’ in [13, p. 32]. A consequence relation � has Cut3
iff whenever Γ � Δ,A for all A ∈ Σ1, and B,Γ � Δ for all B ∈ Σ2, and
Σ1, Γ � Δ,Σ2, then Γ � Δ. But as Shoesmith and Smiley immediately show,
Cut3 is equivalent to the conjunction of /c+ and c+/; I will later call this
conjunction c+/c+. (Their proof depends on monotonicity.)6

[12, p. 37], oddly, calls this property (there defined directly as the conjunction
of /c+ and c+/) ‘Cut’, and takes it to be of some import. In particular, Segerberg
points to fg, claims that it is not sufficient when infinite sets of premises and
conclusions are considered, and then offers this property as the appropriate re-
placement. (He also points out that s, which he calls ‘transitivity’, is a ‘very
special case’ of this property (p. 38).) I know of no other sources that have
attended to this property.

4 Implications

There are ten properties listed in Table 1, and this paper will consider arbitrary
conjunctions of these. Our exploration begins, then, with 210 = 1024 property-
specifications to consider. Fortunately, there are many fewer distinct properties
actually in play. In this section, I explore implications among these properties,
and show that from our 1024, there are at most 21 distinct properties, and
at most 7 if compactness is assumed. (I identify properties iff they imply each
other.) In fact, these counts are exact, but the ‘at least’ part of the claim will
not be proved until §5. First, I will lay out these implications in three categories:
implications by special case, implications by monotonicity, and implications by
semilattice properties. Then, I will consider the effects of compactness, and show
additional implications among our properties that hold when compactness is
assumed.

4.1 Three Kinds of Implications

Some implications from one property to another happen in the easiest possible
way: when one property covers only certain special cases of another. These im-
plications can be verified directly by inspection. In this way, five implications
are secured: ks implies s; /c implies /f; c/ implies f/; and each of /c+ and
c+/ implies fg.

Other implications are not so direct; these require some appeal to monotonic-
ity. The needed appeals to monotonicity, however, are quite formulaic: when
one property’s antecedent follows by monotonicity from another property’s an-
tecedent, then the first property implies the second. This gives eight more impli-
cations: each of /f and f/ implies ks; fg implies both /f and f/; /c+ implies
/c; c+/ implies c/; and cg implies both /c+ and c+/.

6 [13, p. 30ff.] considers fg, /c+, c+/, Cut3, and cg; the implications and nonimpli-
cations among these properties shown there are among what is shown in the present
paper.
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Finally, implication among properties forms a semilattice with conjunction as
the meet.7 That is, implication is transitive, and the conjunction of two proper-
ties is their greatest lower bound w/r/t the implication order. Together with the
implications recorded above, this secures a large range of additional implications
among the properties under consideration. For example, since fg implies both
/f and f/, it follows that it implies their conjunction. Since /c+ implies /c, and
/c implies /f, then /c+ implies /f. And so on.

4.2 Twenty-One Properties

These implications narrow the space of properties under consideration to twenty-
one: the ten properties that appear in Table 1, plus the eleven additional prop-
erties given in Table 2, generated from the original ten by conjunction.

Table 2. Additional linking properties formed by conjunction

Name: Definition: Name: Definition:
f/f f/ and /f. c/c c/ and /c.
f/c f/ and /c. c/f c/ and /f.
/fg/c /c and fg. c/fg/ c/ and fg.
c/fg/c c/, /c, and fg. c+/c+ c+/ and /c+.
c/c+ c/ and /c+. c+/c c+/ and /c.
� The empty conjunction, exhibited by every consequence relation.

Given the implications already recorded, each of the 210 = 1024 property-
specifications we can generate from Table 1 by conjunction specifies one of these
twenty-one properties. For example, for a consequence relation to exhibit the
properties fg, f/, and /c is just for it to exhibit /fg/c, since fg already implies
f/. Similarly, for a consequence relation to exhibit ks, /c+, and f/ is just for
it to exhibit /c+, which implies the other two properties. And so on, for every
combination.

4.3 Compactness

For compact relations, there are more implications to take account of among the
properties in play; this section records these and takes account of their impact.

Proposition 1. If � is compact and has fg, then it has cg.

Proof. See [13, p. 37] for proof. (Their ‘cut for formulae’ is exactly fg, and their
‘cut for sets’ is exactly cg.)

Proposition 2. If � is compact and has /f, then it has /c.

7 For semilattices (and lattices), see [2].
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Proof. Suppose � is compact and has /f, that Γ � A for all A ∈ Σ, and that
Σ,Γ � Δ. Since � is compact, this gives Σfin, Γfin � Δfin for some finite Σfin ⊆ Σ,
Γfin ⊆ Γ , and Δfin ⊆ Δ. By monotonicity, Σfin, Γ � Δ. Since Σfin ⊆ Σ, we have
Γ � A for all A ∈ Σfin. Now, where n is the cardinality of Σfin, let Σfin =
{σ0, . . . , σn−1}, and for m ≤ n, let Σm

fin = {σm, . . . , σn−1}. Thus, Σ0
fin = Σfin,

and Σn
fin = ∅.

I claim that for any i from 0 to n (inclusive), Σi
fin, Γ � Δ; when i = n, this

is Γ � Δ, and the proposition follows. This can be shown by induction. The
case where i = 0 is already shown. So suppose the claim is true for i < n; then
Σi, Γ � Δ, which is to say σi, Σi+1, Γ � Δ. By assumption, Γ � σi; monotonicity
gives Σi+1, Γ � σi. Now, applying /f, Σi+1, Γ � Δ.

Proposition 3. If � is compact and has f/, then it has c/.

Proof. From Proposition 2, by duality.

For compact relations, then, /f and /c are equivalent to each other, as are
f/ and c/. This also means that f/f, f/c, c/f, and c/c are all equivalent
to each other for such relations. In addition, Since fg implies every property
under consideration for compact relations, all of fg, /c+, c+/, cg, /fg/c,
c/fg/, c/fg/c, c+/c, c/c+, and c+/c+ are equivalent to each other for these
relations. This leaves (at most) seven distinct properties: , s, ks, /f (= /c),
f/ (= c/), f/f (= c/c), and fg (= cg).

The situation so far is recorded in Figure 1. In this figure, each arrow is an
implication already recorded; the double-thickness arrows are implications that
we have seen become equivalences in the presence of compactness. (For now,
you can ignore the letters that label the arrows.) When compactness is assumed,
only fg and the six other nodes implied by it remain distinct; each of the other
fourteen nodes is connected to one of these seven by a path containing only
double-thickness arrows.

5 Nonimplications

So far, only implications have been recorded. So while we know there are at most
twenty-one distinct properties in play here, and at most seven if compactness is
assumed, it’s still possible, for all I’ve said so far, that there are fewer. In fact,
there are not; the implications so far recorded exhaust the implications among
these properties. This section shows that the remaining potential implications
do not hold. In each case, I will show this by counterexample.

5.1 Presenting Consequence Relations

I will present consequence relations using a very simple kind of ‘proof system’. I
work with sequents; a sequent for a language F is a pair 〈Γ,Δ〉 of subsets of F ;
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Fig. 1. Implications

I will write such a pair [Γ ∴ Δ]. It is handy to consider the subsequent relation
�, defined: [Γ ′ ∴ Δ′] � [Γ ∴ Δ] iff Γ ′ ⊆ Γ and Δ′ ⊆ Δ.

A sequent-based proof system involves two components: some set of initial
sequents, which are simply given as valid, and some rules that allow new validities
to be generated from old. The proof systems I will draw on here are all quite
simple. For each of them, I will specify a set P of sequents; the initial sequents
of the system are then all those sequents in P, together with all sequents of the
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form [A ∴ A], for any A ∈ F . There is only a single rule in any of these systems:
the rule of infinitary weakening, which allows us to derive [Γ, Γ ′ ∴ Δ,Δ′] from
[Γ ∴ Δ], for any Γ, Γ ′, Δ,Δ′ ⊆ F .

So for any set P of sequents, we have a consequence relation �P determined
as follows: Γ �P Δ iff either 1) Γ ∩Δ �= ∅, or 2) there is some [Γ ′ ∴ Δ′] ∈ P
such that [Γ ′ ∴ Δ′] � [Γ ∴ Δ]. A binary relation on ℘(F) is �P for some P iff
it is monotonic and reflexive (in the senses of footnote 1, which are equivalent
given monotonicity), so this approach works at the right level of generality for
present purposes. It also gives a tractable way to explore compactness: note that
�P is compact iff every infinite sequent in P has a finite subsequent in P.

5.2 A Menagerie of Consequence Relations

Table 3 presents seven distinct consequence relations, a–g. For each, it notes
two of the twenty-one properties: one that the consequence relation has and one
that it lacks. These two properties are chosen so that the implications already
recorded suffice to settle the situation as regards the remaining nineteen: each
other property is either implied by the property the relation has, or else implies
the property the relation lacks. (I find this easiest to see by referring to Figure
1.) Let B,C,D,E, F be five distinct formulas, and let Θ ⊆ F be infinite. For
each of these, Table 4 gives a counterexample to the property that it is listed in
Table 3 as lacking; these are easy to check.8

Table 3. Seven consequence relations

Name: P Has: Lacks:
a {[B ∴ C], [C ∴ D]} � s
b {[Γ ∴ Δ] : max(|Γ |, |Δ|) > 2 and B ∈ Γ ∪Δ} s ks
c {[E ∴ B,C,D], [B ∴ C,D]} /c f/
d {[C ∴ D,B], [B,C ∴ D]} c/c fg
e {[Γ ∴ Δ] : Δ is infinite or Γ ∩Θ 
= ∅} /c+ c/
f {[Γ ∴ Δ] : Δ is infinite or |Γ | ≥ 2} c/c+ c+/
g {[Γ ∴ Δ] : Γ ∪Δ is infinite} c+/c+ cg

For space reasons, I do not prove here that every relation in Table 3 has the
property it is there claimed to have; none of the needed proofs is particularly
devious. Here are two examples to give the flavour.

Proposition 4. Relation d has c/c.

Proof. Suppose it lacks /c; then there are Γ,Δ,Σ such that Γ ��d Δ while
Γ �d A for every A ∈ Σ and Σ,Γ �d Δ. If Σ ⊆ Γ , then Γ �d Δ, contrary
8 [13, p. 31] gives the relation here called g, for the same purpose: to show that c+/c+

and cg are distinct. See their Theorem 2.7 (p. 32).
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Table 4. Counterexamples

Name: Lacks: Validates: And: But:
a s B � C C � D B 
� D
b ks C,D � B B � E,F C,D 
� E,F
c f/ E � B,C,D B � C,D E 
� C,D
d fg C � D,B B,C � D C 
� D
e c/ � Θ A � for all A ∈ Θ 
�
f c+/ B � F \ {B} B,A � for all A ∈ F \ {B} B 
�
g cg F+ � F− for every partition 〈F+,F−〉 of F 
�

to supposition. So there must be some A ∈ Σ with A �∈ Γ . Since Γ �d A and
A �∈ Γ , it must be that B,C ∈ Γ and A = D. Since Γ ��d Δ while B,C ∈ Γ , it
must be that D �∈ Δ. Now, suppose E ∈ Σ ∩Δ; since Γ �d E and E is not D,
we must have E ∈ Γ . Then Γ �d Δ, contrary to supposition. So Σ∩Δ is empty.
But then (Σ ∪ Γ ) ∩ Δ is empty, and since D �∈ Δ, it follows that Σ,Γ ��d Δ.
Contradiction.

For c/, the argument is dual, reversing the roles of C and D.

Proposition 5. Relation f has c/c+.

Proof. First, that it has c/. If A �f Δ for each A ∈ Σ, then either Δ is infinite,
in which case Γ �f Δ directly, or else Σ ⊆ Δ; the only valid arguments with
finitely many conclusions and a single premise are those where the premise is
among the conclusions. But if Σ ⊆ Δ, then if Γ �f Δ,Σ, this is already Γ �f Δ.

Second, that it has /c+. Suppose Σ,Γ �f Δ and Γ �f Δ,A for each A ∈ Σ,
to show Γ �f Δ. If Δ is infinite, we’re done; if |Γ | ≥ 2 we’re done; if Γ ∩Δ �= ∅
we’re done. So suppose Δ is finite, |Γ | < 2, and Γ ∩ Δ = ∅. Since Σ,Γ �f Δ,
either Σ ∩Δ �= ∅ or |Σ ∪ Γ | ≥ 2. In the first case, take some A ∈ Σ ∩Δ; since
Γ �f Δ,A and Δ∪{A} = Δ, we’re done. In the second case, there must be some
A ∈ Σ but A �∈ Γ ; we then have Γ �f Δ,A. But |Γ | < 2 and Γ ∩ (Δ∪{A}) = ∅,
so this is impossible.

5.3 No Further Implications

To see that there are no further implications, return to Figure 1, now attending
to the letters that label the arrows. These letters correspond to consequence
relations from §5.2; letters with ′ pick out converse relations. The indicated
consequence relation, in each case, is a counterexample to the claim that the
implication in question is an equivalence. Moreover, where the implication is a
single-line arrow—that is, where it is not already known to become an equiva-
lence in the presence of compactness—the indicated counterexample is compact;
this shows that no additional implications collapse to equivalences in the pres-
ence of compactness.9

9 a–d are compact. For a, c, and d, P contains only finite sequents. For b, P contains
a finite subsequent of each infinite sequent it contains. (e–g are not compact, and
could not be, given the combinations of properties they exhibit.)
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Because the properties under consideration are closed under conjunction, this
suffices to rule out any additional implications. Any additional implication would
bring with it an additional equivalence (if P implies Q, then P is equivalent to
the conjunction of P and Q; this conjunction is already known to imply P); so
the fact that there are no additional equivalences suffices to show that there are
no additional implications.

As a result, the implications between these properties are now completely
characterized. By taking arbitrary conjunctions of the ten properties in Table 1,
there are exactly twenty-one distinct properties we can reach, twenty of which
(all but ) are linking properties, properties of the sort that can plausibly travel
under the name ‘transitivity’. For compact relations, these twenty-one collapse
to seven, six of which (again, all but ) are such linking properties.

6 Conclusion

‘Transitivity’, as applied to consequence relations, can conceal more than it
reveals. When someone says a consequence relation is ‘transitive’, then, it is
worth asking just what is meant. It is almost never the case that they mean that
it is transitive, in the usual relation-theoretic sense. But then what can they
mean?

This paper has explored some possible answers. It’s a safe bet that nobody
means  by ‘transitivity’, but the remaining twenty properties (in the general
case) or six properties (in the presence of compactness) are all possible ways to
fill in the idea. When we call consequence relations ‘transitive’, then, it behooves
us to make clear exactly what we are saying; there is no single thing we must
obviously mean.

Acknowledgements. For helpful discussion and comments, thanks to the Mel-
bourne Logic Group (especially Rohan French and Lloyd Humberstone), audi-
ences at the University of Groningen (GroLog) and the Australasian Association
for Logic 2015 meeting, and three anonymous referees for LORI. This research
was partially supported by the grant “Non-Transitive Logics”, number FFI2013-
46451-P, from the Ministerio de Economía y Competitividad, Government of
Spain.

References

[1] Cutland, N.J., Gibbins, P.F.: A regular sequent calculus for quantum logic in
which ∧ and ∨ are dual. Logique et Analyse 25(99), 221–248 (1982)

[2] Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge Uni-
versity Press, Cambridge (2002)

[3] Dummett, M.: The Logical Basis of Metaphysics. Duckworth, London (1991)
[4] Gentzen, G.: Investigations into logical deduction. In: Szabo, M.E. (ed.) The Col-

lected Papers of Gerhard Gentzen, pp. 68–131. North-Holland Publishing Com-
pany, Amsterdam (1969)



340 D. Ripley

[5] Humberstone, L.: Heterogeneous logic. Erkenntnis 29, 395–435 (1988)
[6] Humberstone, L.: The Connectives. MIT Press, Cambridge (2012)
[7] Restall, G.: Multiple conclusions. In: Hajek, P., Valdes-Villanueva, L., Wester-

ståhl, D. (eds.) Logic, Methodology, and Philosophy of Science: Proceedings of the
Twelfth International Congress, pp. 189–205. Kings’ College Publications, London
(2005)

[8] Restall, G.: Truth values and proof theory. Studia Logica 92(2), 241–264 (2009)
[9] Ripley, D.: Paradoxes and failures of cut. Australasian Journal of Philosophy 91(1),

139–164 (2013)
[10] Ripley, D.: Anything goes. Topoi 34(1), 25–36 (2015)
[11] Rumfitt, I.: Knowledge by deduction. Grazer Philosophische Studien 77(1), 61–84

(2008)
[12] Segerberg, K.: Classical Propositional Operators: An Exercise in the Foundations

of Logic. Clarendon Press, Oxford (1982)
[13] Shoesmith, D.J., Smiley, T.J.: Multiple-conclusion Logic. Cambridge University

Press, Cambridge (1978)
[14] Steinberger, F.: Why conclusions should remain single. Journal of Philosophical

Logic 40(3), 333–355 (2011)
[15] Weir, A.: Naive truth and sophisticated logic. In: Beall, J.C., Armour-Garb, B.

(eds.) Deflationism and Paradox, pp. 218–249. Oxford University Press, Oxford
(2005)

[16] Weir, A.: A robust non-transitive logic. Topoi 34(1), 99–107 (2015)



Boolean Game with Prioritized Norms

Xin Sun

Faculty of Science, Technology and Communication, University of Luxembourg
xin.sun@uni.lu

Abstract. In this paper we study boolean game with prioritized norms.
Norms distinguish illegal strategies from legal strategies. Notions like le-
gal strategy and legal Nash equilibrium are introduced. Our formal model
is a combination of (weighted) boolean game and so called (prioritized)
input/output logic. After formally presenting the model, we use examples
to show that non-optimal Nash equilibrium can be avoided by making
use of norms. We study various complexity issues related to legal strategy
and legal Nash equilibrium.

Keywords: Boolean game, norm, input/output logic.

1 Introduction

The study of the interplay of games and norms can be divided into two main
branches: the first, mostly originating from economics and game theory [11,19,20],
treats norms as mechanisms that enforce desirable properties of social interac-
tions; the second, that has its roots in social sciences and evolutionary game
theory [29,12] views norms as (Nash or correlated) equilibrium that results from
the interaction of rational agents. A survey of the interaction between games and
norms can be found in Grossi et al [15]. This paper belongs to the first branch.

In this paper we study the combination of boolean games and norms. Boolean
game is a class of games based on propositional logic. It was firstly intro-
duced by Harrenstein et al. [17] and further developed by several researchers
[16,23,13,9,7,26]. In a boolean game, each agent i is assumed to have a goal, rep-
resented by a propositional formula φi over some set of propositional variables P.
Each agent i is associated with some subset Pi of the variables, which are under
the unique control of agent i. The choices, or strategies, available to i correspond
to all the possible assignment of truth or falsity to the variables in Pi. An agent
will try to choose an assignment so as to satisfy his goal φi. Strategic concerns
arise because whether i’s goal is in fact satisfied will depend on the choices made
by other agents.

Norms are social rules regulating agents’ behavior by prescribing which ac-
tions are obligatory, forbidden or permitted. In the game theoretical setting,
norms distinguish illegal strategies form legal strategies. By designing norms ap-
propriately, non-optimal equilibrium might be avoided. To represent norms in
boolean games, we need a logic of norms, which has been extensively studied in
the deontic logic community.

c© Springer-Verlag Berlin Heidelberg 2015
W. van der Hoek et al. (Eds.): LORI 2015, LNCS 9394, pp. 341–352, 2015.
DOI: 10.1007/978-3-662-48561-3_28
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Various deontic logic has been developed since von Wright’s first paper [30] in
this area. In the first volume of the handbook of deontic logic [14], input/output
logic [21,22] appears as one of the new achievement in deontic logic in recent
years. Input/output logic takes its origin in the study of conditional norms. The
basic idea is: norms are conceived as a deductive machine, like a black box which
produces normative statements as output, when we feed it factual statements as
input.

In this paper we use a simplification of Parent’s prioritized input/output logic
[25] as the logic of norms. Given a normative multi-agent system, which con-
tains a boolean game, a set of prioritized norms and certain environment. Every
strategy of every agent is classified as legal or illegal. Notions like legal Nash
equilibrium are then naturally defined.

The structure of this paper is the following: We present some background
knowledge, including boolean game, input/output logic and complexity theory
in Section 2. Normative multi-agent system are introduced and its complexity
issues are studied in Section 3. We conclude this paper in Section 4.

2 Background

2.1 Propositional Logic

Let P = {p0, p1, . . .} be a finite set of propositional variables and let LP be the
propositional language built from P and boolean constants� (true) and ⊥ (false)
with the usual connectives ¬,∨,∧,→ and ↔. Formulas of LP are denoted by φ, ψ
etc. A literal is a variable p ∈ P or its negation. 2P is the set of the valuations
for P, with the usual convention that for V ∈ 2P and p ∈ V , V gives the value
true to p if p ∈ V and false otherwise. � denotes the classical logical consequence
relation.

Let X ⊆ P, 2X is the set of X-valuations. A partial valuation (for P) is an X-
valuation for some X ⊆ P. Partial valuations are denoted by listing all variables
of X , with a “+” symbol when the variable is set to be true and a “− ” symbol
when the variable is set to be false: for instance, let X = {p, q, r}, then the
X-valuation V = {p, r} is denoted {+p,−q,+r}. If {P1, . . . ,Pn} is a partition
of P and V1, . . . , Vn are partial valuations, where Vi ∈ 2Pi, (V1, . . . , Vn) denotes
the valuation V1 ∪ . . . ∪ Vn.

2.2 Boolean Game

Boolean games introduced by Harrenstein et al [17] are zero-sum games with
two players, where the strategies available to each player consist in assigning
a truth value to each variable in a given subset of P. Bonzon et al [8] give a
more general definition of a boolean game with any number of players and not
necessarily zero-sum. In this paper we further generalizes boolean games such
that the utility of each agent is not necessarily in {0, 1}. Such generalization is
reached by representing the goals of each agent as a set of weighted formulas.
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We call such boolean game weighted boolean game. The idea of using weighted
formulas to define utility can be found in many work among which we mention
satisfiability game [5] and weighted boolean formula game [23].

Definition 1 (boolean game). A weighted boolean game is a 4-tuple
(Agent,P, π,Goal), where

1. Agent = {1, . . . , n} is a set of agents.
2. P is a finite set of propositional variables.
3. π : Agent �→ 2P is a control assignment function such that {π(1), . . . , π(n)}

forms a partition of P. For each agent i, 2π(i) is the strategy space of i.
4. Goal = {Goal1, . . . , Goaln} is a set of weighted formulas of LP. That is, each

Goali is a finite set {〈φ1,m1〉, . . . , 〈φk,mk〉} where φj ∈ LP and mj is a real
number.

A strategy for agent i is a partial valuation for all the variables i controls.
Note that since {π(1), . . . , π(n)} forms a partition of P, a strategy profile S is a
valuation for P. In the rest of the paper we make use of the following notation,
which is standard in game theory. Let G = (Agent,P, π,Goal) be a weighted
boolean game with Agent = {1, . . . , n}, S = (s1, . . . , sn) be a strategy profile.
s−i denotes the projection of S on Agent−{i}: s−i = (s1, . . . , si−1, si+1, . . . , sn).

Agents’ utilities in weighted boolean games are induced by their goals. For
every agent i and every strategy profiles S, ui(S) = Σ{mj : 〈φj ,mj〉 ∈ Goali, S �
φj}. Dominating strategies and pure-strategy Nash equilibria are defined as usual
in game theory [24].

Example 1. Let G = (Agent,P, π,Goal) where Agent = {1, 2}, P = {p, q, s},
π(1) = {p}, π(2) = {q, s}, Goal1 = {〈p ↔ q, 1〉, 〈s, 2〉}, Goal2 = {〈p ∧
q, 2〉, 〈¬s, 1〉, }. This boolean game is depicted as follows:

+q,+s +q,−s −q,+s −q,−s

+p (3, 2) (1, 3) (2, 0) (0, 1)

−p (2, 0) (0, 1) (3, 0) (1, 1)

2.3 Input/Output Logic

In input/output logic, a norm is an ordered pair of formulas (φ, ψ) ∈ LP × LP,
which is read as “given φ, it is obligatory to be ψ”. A set of norm N can
be viewed as a function from 2LP to 2LP such that for a set Φ of formulas,
N(Φ) = {ψ ∈ LP : (φ, ψ) ∈ N for some φ ∈ Φ}. A finite set of norms is called a
(plain) normative system.

Definition 2 (Semantics of input/output logic [21]). Given a normative
system N and a finite set of formulas Φ, out(N,Φ) = Cn(N(Cn(Φ))), where Cn
is the consequence relation of propositional logic.1

1 In Makinson and van der Torre [21], this logic is called simple-minded input/output
logic. Different input/output logics are developed in Makinson and van der Torre
[21] as well. A technical introduction of input/output logic can be found in Sun [28].
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Intuitively, the procedure of the semantics is as follows: We first have in hand a
set of formulas Φ (call it the input) as a description of the current state. We then
close it by logical consequence Cn(Φ). The set of norms, like a deductive machine,
accepts this logically closed set and produces a set of formulas N(Cn(Φ)). We
finally get the output Cn(N(Cn(Φ))) by applying the logical closure again. ψ ∈
out(N,Φ) is understood as “ψ is obligatory given facts Φ and norms N”.

Example 2. Let p, q, r are propositional variables. Let N = {(p, q), (p ∨
q, r), (r, p)}. Then out(N, {p}) = Cn(N(Cn({p}))) = Cn({q, r}).

Input/output logic is given a proof theoretic characterization. We say that an
ordered pair of formulas is derivable from a set N iff (a, x) is in the least set
that extends N and is closed under a number of derivation rules. The following
are the rules we need:

– SI (strengthening the input): from (φ, ψ) to (χ, ψ) whenever χ � φ.
– WO (weakening the output): from (φ, ψ) to (φ, χ) whenever ψ � χ.
– AND (conjunction of output): from (φ, ψ) and (φ, χ) to (φ, ψ ∧ χ).

The derivation system based on the rules SI, WO and AND is denoted as
deriv(N).

Example 3. Let N = {(p∨ q, r), (q, r → s)}, then (q, s) ∈ deriv(N) because we
have the following derivation

1. (p ∨ q, r) Assumption
2. (q, r) 1, SI
3. (q, r → s) Assumption
4. (q, r ∧ (r → s)) 2,3, AND
5. (q, s) 4, WO

In Makinson and van der Torre [21], the following soundness and completeness
theorem is proved:

Theorem 1 ([21]). Given a set of norms N ,

ψ ∈ out(N, {φ}) iff (φ, ψ) ∈ deriv(N).

Prioritized Input/Output Logic. A prioritized normative system N≥ =
(N,≥) is a finite set of norms together with a priority relation over norms. We
assume ≥ to be reflexive and transitive and understand (φ, ψ) ≥ (φ′, ψ′) as
(φ, ψ) has higher priority than (φ′, ψ′). The priority relation is further lifted to
priority over sets of norms. Following Parent [25], we define the lifting as follows:
N1 � N2 iff for all (φ2, ψ2) ∈ N2 − N1 there is (φ1, ψ1) ∈ N1 − N2 such that
(φ1, ψ1) ≥ (φ2, ψ2).

Definition 3 (output with priorities2). Let N≥ be a prioritized normative
system and Φ be a set of formulas.

2 Here our prioritized input/output logic is a simplification of the original version of
Parent [25].
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ψ ∈ outp(N
≥, Φ) iff ψ ∈ ⋂{out(N ′, Φ) : N ′ ∈ preffamily(N≥, Φ)}.

Here preffamily(N≥, Φ) is defined via the following steps:

1. maxfamily(N≥, Φ) is the set of ⊆-maximal subsets N ′ of N such that
out(N ′, Φ) is consistent. That is, out(N ′, Φ) is consistent and for all N ′′

such that N ′ ⊂ N ′′, out(N ′′, Φ) is not consistent
2. filterfamily(N≥, Φ) is the set of norms N ′ ∈ maxfamily(N≥, Φ) that max-

imize the output, i.e., that are such that out(N ′, Φ) ⊂ out(N ′′, Φ) for no
N ′′ ∈ maxfamily(N≥, Φ).

3. preffamily(N≥, Φ) is the set of �-maximal elements of
filterfamily(N≥, Φ).

Permission in Input/Output Logic. Philosophically, it is common to distin-
guish between two kinds of permission: negative permission and positive permis-
sion. Negative permission is straightforward to describe: something is negatively
permitted according to certain norms iff it is not prohibited by those norms. That
is, iff there is no obligation to the contrary. Positive permission is more elusive.
For the sake of simplicity, in this paper when only discuss negative permission
and leave other types of permission as future work.

Definition 4 (permission). Given a prioritized normative system N≥ and a
finite set of formulas Φ, Perm(N≥, Φ) = {ψ ∈ LP : ¬ψ �∈ outp(N

≥, Φ)}.
Intuitively, φ is permitted iff φ is not forbidden. Since a formula is forbidden iff

its negation is obligatory, φ is not forbidden is equivalent to ¬φ is not obligatory.

2.4 Complexity Theory

Complexity theory is the theory to investigate the time, memory, or other re-
sources required for solving computational problems. In this subsection we briefly
review those concepts and results from complexity theory which will be used in
this paper. More comprehensive introduction of complexity theory can be found
in [4]

We assume the readers are familiar with notions like Turing machine and the
complexity class P, NP and coNP. Oracle Turing machine and two complexity
classes related to oracle Turing machine will be used in this paper.

Definition 5 (oracle Turing machine [4]). An oracle for a language L is a
device that is capable of reporting whether any string w is a member of L. An
oracle Truing machine ML is a modified Turing machine that has the additional
capability of querying an oracle. Whenever ML writes a string on a special oracle
tape it is informed whether that string is a member of L, in a single computation
step.

PNP is the class of problems solvable by a deterministic polynomial time
Turing machine with an NP oracle. PNP [O(log n)] only allows O(log n) oracle



346 X. Sun

queries instead of polynomially-many. PNP
‖ is the class of problems which can

be solved by using the NP oracle only in parallel. Buss and Hay [10] show that
PNP
‖ coincide with PNP

‖O(1), where a fixed number of parallel rounds is allowed.

NPNP is the class of problems solvable by a non-deterministic polynomial
time Turing machine with an NP oracle. Another name for the class NPNP is
Σp

2 . Σ
p
i+1 is the class of problems solvable by a non-deterministic polynomial

time Turing machine with a Σp
i oracle. Πp

i is the class of problems of which the
complement is in Σp

i .

3 From Boolean Game to Normative Multi-agent System

In recent years, normative multi-agent system [6,3] arises as a new interdis-
ciplinary academic area bringing together researchers from multi-agent sys-
tem [27,32,31], deontic logic [14] and normative system [1,18,2]. By combining
boolean games and norms, we here develop a new approach to normative multi-
agent system.

Definition 6 (normative multi-agent system). A normative multi-agent
system is a triple (G,N≥, E) where

– G = (Agent,P, π,Goal) is a weighted boolean game.
– N≥ is a prioritized normative system.
– E ⊆ LP is a finite set of formulas representing the environment.

3.1 Legal Strategy

In a normative multi-agent system, agent’s strategies are classified as either
legal or illegal. The basic idea is viewing strategies as formulas and using the
mechanism of input/output logic to decide whether a formula is permitted.

Definition 7 (legal strategy). Given a normative multi-agent system
(G,N≥, E), for each agent i, a strategy (+p1, . . . ,+pm,−q1, . . . ,−qn) is legal
if

p1 ∧ . . . ∧ pm ∧ ¬q1 ∧ . . . ∧ ¬qn ∈ Perm(N≥, E).

Example 4. Consider the prisoner’s dilemma augmented with norms. Let
(G,N≥, E) be a normative multi-agent system as following:

– G = (Agent,P, π,Goal) is a weighted boolean game with
• Agent = {1, 2},
• P = {p, q},
• π(1) = {p}, π(2) = {q},
• Goal1 = {〈p, 2〉, 〈¬q, 3〉}, Goal2 = {〈q, 2〉, 〈¬p, 3〉}.

– N≥ = (N,≥) where N = {(�,¬p), (�,¬q), (�, q)}, (�,¬q) ≥ (�, q).
– E = ∅.
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+q −p

+p (2, 2) (5, 0)

−p (0, 5) (3, 3)

Then out(N,E) = Cn({¬p,¬q, q}), maxfamily(N≥, E) =
{{(�,¬p), (�,¬q)}, {(�,¬p), (�, q)}}, filterfamily(N≥, E) =
maxfamily(N≥, E), preffamily(N≥, E) = {{(�,¬p), (�,¬q)}}. There-
fore outp(N

≥, E) = out({(�,¬p), (�,¬q)}, E) = Cn({¬p,¬q}).
Therefore {−p} and {−q} are legal while {+p} and {+q} are not. �
Having defined the notion legal strategy, a natural question to ask is how

complex is it to decide whether a strategy is legal. Theorem 2 gives a first
answer to this question. To prove Theorem 2, we need the following lemmas.

Lemma 1. Given a normative system N , a finite set of formulas Φ and a for-
mula φ, deciding whether φ ∈ out(N,Φ) is coNP hard and in PNP

‖ .

Proof. Concerning the coNP hardness, we prove by reducing the validity problem
of propositional logic to our problem. Let φ be an arbitrary formula. Let N = ∅
and Φ = ∅, then φ is a tautology iff φ ∈ Cn(�) iff φ ∈ Cn(N(Cn(Φ))) iff
φ ∈ out(N,Φ)

Concerning the PNP
‖ membership, we prove by giving an oracle Turing ma-

chine with oracle SAT , the set of all satisfiable propositional formulas, to solve
this problem.

Let N = {(φ1, ψ1), . . . , (φn, ψn)}.
1. for each φi ∈ {φ1, . . . , φn}, use the oracle to test if Φ � φi.

(a) If yes, then mark ψi,
(b) Otherwise do nothing.

2. Let ψi1 , . . . ψik be all those ψi which are marked in step 1.
3. Use the oracle to test if {ψi1 , . . . , ψik} � φ.

(a) If yes, then return “accept”
(b) Otherwise return “reject”.

It can be verified that φ ∈ Cn(N(Cn(Φ))) iff the Turing machine returns “ac-
cept” and the time complexity of the oracle Turing machine runs in polynomial
time and calls the oracle in parallel for 2 rounds. Therefore the problem is in
PNP
‖O(1), which coincides with PNP

‖ . �

Lemma 2. Given a prioritized normative system N≥, a finite set of norms
N ′ ⊆ N , a finite set of formulas Φ, deciding whether N ′ ∈ maxfamily(N≥, Φ)
is coNP hard and in PNP .

Proof. The coNP hardness is easy to prove. Here we focuses on the PNP mem-
bership. We prove by giving an oracle Turing machine with oracle SAT to solve
this problem.

Let N −N ′ = {(φ1, ψ1), . . . , (φn, ψn)}.
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1. Test if ⊥ ∈ out(N ′, Φ).
2. If yes, return “reject”. Otherwise continue.

3. For all i ∈ {1, . . . , n}, test if ⊥ ∈ out(N ′ ∪ {(φi, ψi)}, Φ).
4. Return “accept” if ⊥ ∈ out(N ′ ∪ {(φi, ψi)}, Φ) for all i ∈ {1, . . . , n}. Other-

wise return “reject”.

It can be verified that N ′ ∈ maxfamily(N≥, Φ) iff the Turing machine returns
“accept” and the time complexity of the oracle Turing machine is polynomial. �

Lemma 3. Given a prioritized normative system N≥, a finite set of norms
N ′ ⊆ N , a finite set of formulas Φ, deciding whether N ′ ∈ filterfamily(N≥, Φ)
is coNP hard and in coNPNP = Πp

2 .

Proof. The coNP hardness is easy to prove. Here we focuses on the coNPNP

membership.
We prove by giving a non-deterministic oracle Turing machine with oracle

SAT to solve the complement of this problem.

1. Test if N ′ ∈ maxfamily(N≥, Φ). If no, return “accept”. Otherwise continue.

2. Guess a set of norms N ′′ ⊆ N .

3. Test if N ′′ ∈ maxfamily(N≥, Φ). If no, return “reject” on this branch.
Otherwise continue.

4. Test if �
∧
N ′′(Cn(Φ)) → ∧

N ′(Cn(Φ)) meanwhile �� ∧
N ′(Cn(Φ)) →∧

N ′′(Cn(Φ)). If yes, return “accept” on this branch. Otherwise return “re-
ject” on this branch.

It can be verified that N ′ �∈ filterfamily(N≥, Φ) iff the non-deterministic
Turing machine returns “accept” on some branches. The time complexity of the
non-deterministic Turing machine is polynomial because with the help of an NP
oracle SAT , the test in step 1,3 and 4 can be done in polynomial time. �

Lemma 4. Given a prioritized normative system N≥, a finite set of norms
N ′ ⊆ N , a finite set of formulas Φ, deciding whether N ′ ∈ preffamily(N≥, Φ)
is coNP hard and in Πp

3 .

Proof. The hardness is easy to prove. Here we focus on the membership. We
prove by giving a non-deterministic oracle Turing machine with a Σp

2 oracle to
solve the complement of this problem.

1. Test if N ′ ∈ filterfamily(N≥, Φ). If no, return “accept” on this branch.
Otherwise continue.

2. Guess a set of norms N ′′ ⊆ N .

3. Test if N ′′ ∈ filterfamily(N≥, Φ). If no, return “reject” on this branch.
Otherwise continue.

4. Test if N ′′ � N ′. If yes, return “accept” on this branch. Otherwise return
“reject” on this branch.
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It can be verified that N ′ �∈ preffamily(N≥, Φ) iff the non-deterministic
Turing machine returns “accept” on some branch. The time complexity of the
non-deterministic Turing machine is polynomial because with the help of an Σp

2

oracle, the test in step 1 and 3 can be done in polynomial time.
�

Theorem 2. Given a normative multi-agent system (G,N≥, E) and a strategy
(+p1, . . . , +pm,−q1, . . . ,−qn), deciding whether this strategy is legal is NP hard
and in Πp

4 .

Proof. To show that this problem is NP hard, we provide a reduction from the
satisfiability problem of propositional logic to the problem of deciding whether
a strategy is legal.

Let φ be a formula. Let s = {+p} be a strategy, N = {(¬φ,¬p)}, E = ∅. We
will show φ is satisfiable iff s is legal.

Recall that p ∈ Perm(N,E) iff ¬p �∈ outp(N,E). In this case we have
outp(N,E) = out(N,E) = Cn(N(Cn(E))).

From E = ∅ we know that Cn(N(Cn(E))) = Cn(N(Cn(�))). Therefore if
φ is satisfiable, then ¬φ is not a tautology. Therefore N(Cn(E)) = ∅. Hence
¬p �∈ Cn(N(Cn(E))) = out(O,E), p ∈ Perm(N,E). If φ is not satisfiable, then
¬φ is a tautology. Hence ¬p ∈ N(Cn(E)) ⊆ Cn(N(Cn(E))) = out(N,E), which
means p �∈ Perm(N,E).

For the Πp
4 membership, we prove by giving a non-deterministic oracle Turing

machine with an Σp
3 oracle to solve the complement of this problem.

1. Guess a set of norms N ′ ⊆ N .
2. Test if N ′ ∈ preffamily(N≥, Φ). If no, return “reject” on this branch. Oth-

erwise continue.
3. Test if ¬(p1∧ . . .∧pm∧¬q1 ∧ . . .∧¬qn) ∈ out(N ′, E). If yes, return “accept”

on this branch.

It can be verified that p1 ∧ . . . ∧ pm ∧ ¬q1 ∧ . . . ∧ ¬qn �∈ outp(N,E) iff the
non-deterministic Turing machine returns “accept” on some branch and the time
complexity of the Turing machine is polynomial. �

3.2 Legal Nash Equilibrium

A (pure-strategy) legal Nash equilibrium is a strategy profile which contains only
legal strategies and no agent can improve his utility by choosing another legal
strategy, given others do not change their strategies.

Definition 8 (Legal Nash equilibrium). Given a normative multi-agent sys-
tem (G,N,E), A strategy profile S = (s1, . . . , sn) is a legal Nash equilibrium if

– for every agent i, si is a legal strategy
– for every agent i, for every legal strategy s′i ∈ Si, ui(S) ≥ ui(s

′
i, s−i).

Example 5. In the normative multi-agent system presented in Example 4,
(−p,−q) is the unique legal Nash equilibria.
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Example 6. Let (G,N≥, E) be a normative system as following:

– G = (Agent,P, π,Goal) is a weighted boolean game with
• Agent = {1, 2},
• P = {p, q},
• π(1) = {p}, π(2) = {q},
• Goal1 = Goal2 = {〈p ∧ q, 2〉, 〈¬p ∧ ¬q, 3〉}.

– N≥ = (N,≥), N = {(�,¬p), (�,¬q)}, (�,¬p) ≥ (�,¬q), (�,¬q) ≥
(�,¬p).

– E = ∅.

+q −p

+p (2, 2) (0, 0)

−p (0, 0) (3, 3)

Without normative system there are two Nash equilibrium: (+p,+q) and
(−p,−q). There is only one legal Nash equilibria: (−p,−q). From the perspective
of social welfare, (+p,+q) is not an optimal equilibria because its social welfare
is 2 + 2 = 4, while the social welfare of (−p,−q) is 3 + 3 = 6. Therefore this
example shows that by designing norms appropriately, non-optimal equilibrium
might be avoided

Theorem 3. Given a normative multi-agent system (G,N≥, E) and a strategy
profile S = (s1, . . . , sn). Deciding whether S is a legal Nash equilibrium is NP
hard and in Πp

5 .

Proof. The NP hardness is trivial. For the Πp
5 membership, we prove by giv-

ing a non-deterministic oracle Turing machine with a Σp
4 oracle to solve the

complement of this problem.

1. Test if S is legal. If no, return “accept”. Otherwise continue.
2. Guess a strategy profile S′

3. Test if S′ is legal. If no, return “reject” on this branch. Otherwise continue.
4. For each agent i, test if ui(S) < ui(S

′). Return “accept” on this branch if
for some i, ui(S) < ui(S

′). Otherwise return “reject” on this branch.

It can be verified that S is not a legal Nash equilibrium iff the non-
deterministic Turing machine returns “accept” on some branch and the time
complexity of the Turing machine is polynomial. �
Theorem 4. Given a normative multi-agent system (G,N,E). Deciding
whether there is a legal Nash equilibrium of G is ΣP

2 hard and in ΣP
6 .

Proof. The lower bound follows from the fact that deciding whether there is a
Nash equilibria for boolean games without norms is ΣP

2 complete [8]. Concerning

the upper bound, recall that ΣP
6 = NPΣP

5 . The problem can be solved by a
polynomial time non-deterministic Turing machine with an ΣP

5 oracle. �
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4 Conclusion

In the present paper we introduce weighted boolean game with prioritized norms.
Norms distinguish illegal strategies from legal strategies. Using ideas from (pri-
oritized) input/output logic, legal strategies and legal Nash equilibrium are dis-
cussed. After formally presenting the model, we use examples to show that non-
optimal Nash equilibrium can be avoided by making use of norms. We study
the complexity issues related to legal strategy and legal Nash equilibrium. Our
complexity results are not complete, which leaves rooms for future work. Other
natural future work includes using a different input/output logic to reason about
norms and using positive permission to define legal strategy.
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Abstract. A Boolean Network Game is a game played on a network
structure. Players choose actions depending on the actions of those in
their neighbourhood and attempt to achieve some goal expressed in a
modification of Linear Temporal Logic over an infinite run. Iterated
Boolean Games are similar, but lack network structure. We define and
give translations between these models, and give some complexity results.

1 Introduction

Network games are used to model numerous phenomena in social psychology
and economics, such as voting, distribution of public goods, negotiation, etc. [6]
is a recent survey. Players are represented as nodes on a graph, with payoffs
that depend on their connections to other player, typically only their nearest
neighbours. Boolean games, introduced by Harrenstein et al [5] and extended to
an iterated version in [3,4], provide a nice interface between game theory and
logic. Players get to control the value of disjoint sets of propositional variables,
with the goal of satisfying a Boolean formula which may depend on variables
controlled by other players.

We introduce the concept of a Boolean network game which combines these
ideas. Players are represented as nodes of a graph, each of which may or may not
satisfy each propositional variable. They can control only the value of variables
at their own nodes, with the goal of satisfying a modal formula, describing their
position in the network. This allows us to use logic to describe many network
games and thereby to reason about which strategies are rational, the properties
of equilibria, etc.

As a simple example, consider the Colouring Game of [7], which was studied
experimentally as a model of social coordination problems. In this game, players
get to choose repeatedly one of a number of colours with the goal of having a colour
that differs from every neighbour.This can bemodelled as aBooleannetwork game
in which colours are represented by propositional variables p1, p2, . . . pn, with the
constraint that only one of these can be satisfied by each player. Each then has
the goal

∨
i(pi ∧ �¬pi), where � is the modality over the network relation. One

motivation for the present work is to develop a logical theory that can be applied
to reasoning about Nash equilibria in such games. The present paper constitutes
an initial investigation, exploring the relationship betweenBooleannetwork games
and the existing literature on iterated Boolean games.

c© Springer-Verlag Berlin Heidelberg 2015
W. van der Hoek et al. (Eds.): LORI 2015, LNCS 9394, pp. 353–365, 2015.
DOI: 10.1007/978-3-662-48561-3_29
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2 Boolean Games

2.1 Iterated Boolean Games

Iterated Boolean Games (IBGs) were introduced in [3] where they were used to
show how Nash equilibria can be affected by repeated plays of certain games,
where each player’s strategy can depend upon the choices of other players in the
past. Here we summarise the notion of an iterated Boolean game.

Language. IBGs use the language of Linear Temporal Logic (LTL):

ϕ ::= p | ¬ϕ | (ϕ ∨ ϕ) | Xϕ | ϕUϕ

where p ∈ Φ, a finite set of Boolean variables. We call this language LIBG.
A run is a function1 ρ : N → P(Φ) that assigns a valuation ρ[i] to every

timestep i. LIBG formulas are interpreted with respect to pairs (ρ, i) where ρ
is a run and i ∈ N. Satisfaction for formulas is defined as in standard LTL:
(ρ, i) � Xϕ iff (ρ, i + 1) � ϕ; and (ρ, i) � ϕUψ iff (ρ, k) � ψ for some i ≤ k and
(ρ, j) � ϕ for all i ≤ j < k. We say ρ � ϕ iff (ρ, 0) � ϕ.

Games. An Iterated Boolean Game (IBG) is a structure

G = (A,Φ, Φ1, . . . Φn, γ1, . . . γn)

where A = {1, . . . n} is a set of agents, Φ is a finite set of Boolean variables,
Φa ⊆ Φ is the set of Boolean variables controlled by agent a and γa ∈ LIBG is
the goal of player a. We require that the sets Φ1, . . . Φn partition Φ.

Strategies. Given an IBG G = (A,Φ, Φ1, . . . Φn, γ1, . . . γn), a machine strategy
σa for player a is an automaton σa = (Qa, q

0
a, δa, τa) where Qa is a finite non-

empty set of nodes, q0a is the start node, δa : Qa × P(Φ) → Qa is a transition
function and τa : Qa → P(Φa) is a choice function.

A strategy profile is an n-tuple of strategies, one for each player. We denote
strategy profiles as σ = (σ1, . . . σn), where σa is the strategy for player a.

Strategy Induced Runs. A node vector of σ is an n-tuple q = (q1, . . . qn)
where qa ∈ Qa for every a ∈ A. We denote the node vector at timestep i by
q[i] = (q1[i], . . . qn[i]). Associated with each node vector q[i] is a valuation vector
v[i] = (v1[i], . . . vn[i]). These vectors are defined for all timesteps i as follows:

q[0] = (q01 , . . . q
0
n) v[0] = (τ1(q

0
1), . . . τn(q

0
n))

q[i+ 1] = (δ1(q1[i],v[i]), . . . δn(qn[i],v[i])) v[i+ 1] = (τ1(q1[i]), . . . τn(qn[i]))

The run induced by σ is defined as ρ(σ)[i] =
⋃

1≤a≤n va[i], the set of Boolean
variables chosen by all the players at each timestep.

1 We take P(A) to denote the powerset of A.
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Preferences and Nash Equilibrium. For each player a we have a preference
relation between possible runs given by

ρ �a ρ′ iff ρ′ � γa implies ρ � γa

If σ = (σ1, . . . σa, . . . σn) and σ′
a is an alternative strategy for a then let

(σ−a, σ
′
a) denote the strategy profile (σ−a, σ

′
a) = (σ1, . . . σ

′
a, . . . σn).

A strategy profile σ is a Nash Equilibrium if for every player a and every
possible strategy σ′

a ∈ Σa we have ρ(σ) �a ρ(σ−a, σ
′
a). Informally, a cannot

do better by changing strategy (assuming all other players’ strategies are held
constant). In this case, we write σ ∈ NE(G).

2.2 Boolean Network Games

A Boolean Network Game (BNG) is a similar model to an IBG but with a net-
work structure on the agents. BNGs are useful for modelling situations in which
agents are attempting to find responses to situations with restricted information.
For example, agents may be choosing times for a party. They want as many of
their friends to attend as possible, but they have no knowledge of their friends’
friends party times. Is there a good strategy for determining a party time?

Networks. A network 〈A,R〉 is a set A of agents and a binary accessibility
relation R on A. For each a ∈ A, the social neighbourhood of a is the set Ra =
{b | Rab}. We take a finite set of properties PROP. We require that Ra is finite
for all a ∈ A. A local state is a subset of PROP. A global state is a function
g : A → P(PROP). The environment of a, ga, is the restriction of g to Ra.
Intuitively, a local state is the variables a player sets true, and the environment
is the variables a player’s neighbours have chosen.

Strategies. A strategy for a ∈ A is a Moore automaton 〈N, T, I, O〉 where N is
a finite set of nodes, I ∈ N is the start node, T is a transition function mapping
nodes and environments of a to nodes and O : N → P(PROP) is an output
function mapping nodes to local states of a (subsets of PROP).

A strategy profile s is a function mapping each agent a to a strategy
〈Nsa, Tsa, Isa, Osa〉. A node profile ξ for s is a function mapping each agent
a to a node of Nsa. The initial node profile ξIs for s is the node profile mapping
each agent a to Isa. The initial global state gIs is the global state mapping each
agent a to Osa(Isa).

Suppose s is a strategy profile and s is a strategy for a. The modification of
s with s for a is the function

sa:s(b) =

{
s b = a

s(b) b 
= a
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Outcomes. Given a global state g and a state profile ξ for s, the next node
profile ξs,g and the next global state are given by

ξs,g(a) = Tsa(ξ(a), ga) gs,ξ(a) = Osa(Tsa(ξ(a), ga))

These are the profiles after a single round of interaction between the agents. The
outcome behaviour of s is the infinite sequence {〈gi, ξi〉}i∈N defined by

〈g0, ξ0〉 = 〈gIs, ξIs〉 〈gi+1, ξi+1〉 = 〈gis,ξi , ξis,gi〉

The sequence g0, g1, g2 . . . describes the evolution of the agents’ properties over
time. The sequence ξ0, ξ1, ξ2, . . . describes the evolution of the agents’ internal
nodes over time.

Language. We use an extension of Linear Temporal Logic (LTL) called LBNG

to allow us to describe the network relation over time.

ϕ ::= p | ¬ϕ | (ϕ ∨ ϕ) | �ϕ | Xϕ | ϕUϕ

where p ∈ PROP. These propositions express properties at each agent. For ex-
ample, �p says that all my neighbours have property p.

A network model M = 〈A,R, g〉 is a network 〈A,R〉 with a global state g.
Formulas are evaluated with respect to a strategy profile s for the network, an
agent a ∈ A and a timestep i as follows:

M, s, a, i � p iff p ∈ gi(a)
M, s, a, i � ¬ϕ iff M, s, a, i 
� ϕ
M, s, a, i � (ϕ ∨ ψ) iff M, s, a, i � ϕ or M, s, a, i � ψ
M, s, a, i � �ϕ iff M, s, b, i � ϕ for all b ∈ Ra

M, s, a, i � Xϕ iff M, s, a, i+ 1 � ϕ
M, s, a, i � ϕUψ iff M, s, a, k � ψ for some i ≤ k

and M, s, a, j � ϕ for all i ≤ j < k.

We say that M, s, a � ϕ iff M, s, a, 0 � ϕ.

Games. Given a network model M = 〈A,R, g〉, a goal profile is a function
γ : A → LBNG. A Boolean network game (BNG) is a pair G = 〈M,γ〉. For any
player a ∈ A, a strategy for a 〈N, T, I, O〉 is available to a iff O(I) = g(a).

The utility of a strategy profile s for a is given by

ua(s) =

{
1 if M, s, a � γ(a)

0 otherwise

A strategy profile s is a Nash Equilibrium if there is no player a and strategy
s for a such that ua(sa:s) > ua(s). That is, if no player can do better by choosing
a different strategy (while all other players’ strategies are kept constant). In this
case, we write s ∈ NE(G).
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3 Expressivity of Boolean Network Games

Boolean network games and iterated Boolean games are similar structures with
a differing basis. Where IBGs add a temporal structure to what is essentially a
propositional base, BNGs add this temporality to a modal base.

Standard results allow us to model basic modal logics inside predicate logic
(see, for example, the discussion on the Standard Translation in [2, pp83-90]).
Propositional logic is ill-suited to this task however, with its lack of a relational
structure. Even so, the similarity of BNGs to IBGs presents a natural question:
Can BNGs be modelled by IBGs? That is, can we translate any BNG into an IBG
in a way which preserves the impact the accessibility relation has on the inter-
action of the agents? In practice, the accessibility relation imposes a restriction
on the transition functions of players’ strategies. While a propositional setting
cannot encode modal relations on its own, perhaps a restriction of transition
functions can achieve the same ends.

We can also ask the converse question. Given an IBG, can we model it as
a BNG? At first this seems an easy prospect. Take a complete graph for the
relation, ensuring every player can see every other, and proceed as normal. But
we quickly encounter problems. In a BNG every player has control over all the
propositional variables; in an IBG, each player has control over only a subset,
and different players may control different numbers of propositional variables.
Perhaps a player can do more by controlling variables it shouldn’t be able to?

In this section we propose two translations, first from BNGs to IBGs and
second from IBGs to BNGs. For each translation, we consider what properties
of games are preserved. Finally, we give some results on the complexity of certain
decision problems related to BNGs.

3.1 Translation from BNGs to IBGs

In this section, we give a translation from Boolean network games to iterated
Boolean games. By abuse of notation, we use T for all functions related to the
translation; which function is intended will be clear from context.

Game Translation. Suppose we have a BNG G = 〈M,γ〉 where M = 〈A,R, g〉
and A = {1, 2, . . . n}, and that PROP = {p, p′, . . . p(k)}.

– Define Φ = {pa : p ∈ PROP, 1 ≤ a ≤ n} = {p1, p′1, . . . p(k)1 , p2, p
′
2, . . . p

(k)
n }.

– For each a ∈ A define Φa = {pa : p ∈ PROP} ⊆ Φ. It is easy to see that this
will give a partition of Φ.

– For each agent a ∈ A, define a translation Ta : LBNG → LIBG inductively
as follows.

pTa = pa (ϕ ∨ ψ)Ta = ϕTa ∨ ψTa (Xϕ)Ta = XϕTa

(¬ϕ)Ta = ¬ϕTa (�ϕ)Ta =
∧

b∈Ra

ϕTb (ϕUψ)Ta = ϕTaUψTa
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where p ∈ PROP. This translation accounts for the change to indexed propo-
sitions. Note that the replacement of �ϕ with a conjunction indicating ϕ
should be true at all the neighbours of a implicitly encodes R.

– Define Tg : A → LIBG by Tg(a) =
∧

p∈g(a) p
Ta ∧ ∧

p/∈g(a) ¬pTa . Recall that

BNGs specify a start state (g) where IBGs do not. This function is used to
ensure the start state is (weakly) met in the IBG.

– Define the iterated boolean game T (G) as:

T (G) =
(
A,Φ, Φ1, . . . Φn, γ(1)

T1 ∧ Tg(1), . . . γ(n)Tn ∧ Tg(n)
)

Here each player has the translation of its BNG goal and also its required
start state as its goal for T (G).

Thus we have the same agents in T (G) as in G. The set of propositional variables
of T (G) is the set PROP, indexed by the agents in A. Each agent controls exactly
those variables indexed by it, and so the sets Φa are all disjoint. Intuitively, we
are using the sets Φa as the propositions at a’s location in 〈A,R〉.

Strategy Translation. For strategy s(a) = 〈Nsa, Tsa, Isa, Osa〉 define

T (s(a)) = (Nsa, Isa, T
T
sa, O

T
sa)

where T T
sa : Nsa × P(Φ) → Nsa is defined by

T T
sa(v, V ) = Tsa(v, {〈b, {p ∈ PROP | pTb ∈ V }〉 | b ∈ Ra})

(we ignore elements of V not in the neighbourhood of a and treat pb as being p
at b) and where OT

sa : Nsa → P(Φa) is defined as

OT
sa(v) = {pTa | p ∈ Osa(v)}

We define the translation of the strategy profile s as

sT = (T (s(1)), . . . T (s(n)))

So a strategy is translated by keeping the same nodes, using the same tran-
sition function (by restricting inputs to those acceptable for that function) and
translating outputs.

3.2 Properties of T
We now consider which properties are preserved under T . We specifically con-
sider translations of games with strategies, as this allows us to consider questions
of Nash equilibria. Due to limited space, some proofs have been omitted, but we
have given brief description of them where possible.

We begin by showing that T (G) gives the same outcomes as G. This estab-
lishes that truth of formulas is preserved by T .
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Lemma 1 (Preservation of Outcomes). Let G = 〈M,γ〉 be a BNG where
M = 〈A,R, g〉 and let s be a strategy profile for G. Then

M, s, a, i � ϕ iff (ρ(sT ), i) � ϕTa

for every a ∈ A, formula ϕ ∈ LBNG and timestep i, where the right hand side
is taken with respect to T (G). In particular, M, s, a � ϕ iff ρ(sT ) � ϕTa .

Proof. By induction on the complexity of ϕ. The case ϕ = p can be proved by
an induction on i. The propositional and LTL cases are trivial. The case for �ϕ
remains.

M, s, a, i � �ϕ iff M, s, b, i � ϕ for all b ∈ Ra

iff (ρ(T (s)), i) � ϕTb for all b ∈ Ra by inductive hypothesis

iff (ρ(T (s)), i) � (�ϕ)Ta

For the particular result, recall that M, s, a � ϕ is defined as M, s, a, 0 � ϕ
and ρ(sT ) � ϕTa as (ρ(sT ), 0) � ϕTa . ��

We can conclude that the truth of all LBNG formulas is preserved under
T , where formulas are translated relative to an agent. We have successfully
simulated G as an IBG, using a BNG strategy. It can be seen that the formula
translation functions Ta have inverses. Hence we can translate back any outcomes
we reach in T (G).

The translation of formulas has been successful, but what about our translated
goals? Recall that in T (G), agent a’s goal is γ(a) ∧ Tg(a), where Tg(a) is the
conjunction of the propositions in a’s start state. If a obtains its goal in G
with s, does it in T (G) with T (s)? Using Lemma 1, this reduces to asking if
ρ(sT ) � Tg(a) for every agent a. This can be shown by noting that a must use an
available strategy. It follows that agents’ utilities are preserved under T . That
is, a obtains its goal with s in G iff a obtains its goal with T (s) in T (G).

Let us now consider how Nash equilibria are affected by T . If s is not a Nash
equilibrium for G could T (s) be an Nash equilibrium for T (G)? No. If s is not
a Nash equilibrium, then some player a can do better with a different strategy
sa:s. By Lemma 1, a can do better with T (s) in T (G). Hence we have Lemma 2.

Lemma 2. Let G be a BNG. Then T (NE(G)) ⊆ NE(T (G)).

But what if s is a Nash equilibrium in G? Will T (s) be a Nash equilibrium of
T (G)? In order to answer this question, we will make use of the notion of myopic
strategies, as used in [4]. A myopic strategy is a strategy in which every node
has a unique successor; for IBGs, a strategy (Q, q0, δ, τ) is myopic iff δ(q,v1) =
δ(q,v2) for every node q and valuation v1,v2. For myopic strategies, we write
the transition function as δ(q) since the valuation does not matter.

Since IBGs have finitely many players, and each strategy has finitely many
nodes, there are finitely many possible configurations of players in nodes, given
a strategy profile. Each configuration gives a unique subsequent configuration,
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so since runs are infinite they must loop. We can utilise this to build a myopic
strategy which impersonates any player’s strategy (assuming the other strategies
are kept constant). This is summarised as Lemma 3.

Lemma 3. Let G be an IBG and σ be a strategy profile for G. Then for every
player a there is a myopic strategy σ′

a such that ρ(σ) = ρ(σ−a, σ
′
a).

We are now ready to answer our question: if s is a Nash equilibrium for G, is
T (s) a Nash equilibrium for T (G)?

Lemma 4. Let G be a BNG. Then T (NE(G)) ⊆ NE(T (G)).

Proof. By contradiction. Suppose s ∈ NE(G) but sT /∈ NE(T (G)). So there is

a player a and a strategy σ′
a = (Q′

a, q
0
a
′
, δ′a, τ

′
a) such that ρ(sT ) 
� γ(a)Ta ∧ Tg(a)

and ρ(sT−a, σ
′
a) � γ(a)Ta ∧ Tg(a). By Lemma 3 we can assume σ′

a is myopic.

Define a myopic BNG strategy s = 〈Q′
a, T

′
a, q

0
a
′
, O′

a〉 for a such that T ′
a(v, ga) =

δ′a(v) and O′
a(v) = {p ∈ PROP | pTa ∈ τ ′a(v)}. Now T (s) = (Q′

a, q
0
a
′
, T ′

a
T
, O′

a
T
),

where

T ′
a
T
(v, V ) = T ′

a(v, {〈b, {p ∈ PROP | pTb ∈ V }〉 | b ∈ Ra}) = δ′a(v)

O′
a
T
(v) = {pTa | p ∈ O′

a(v)} = τ ′a(v)

So T (s) = σ′
a. We know s is available for a since ρ(sT−a, σ

′
a) � Tg(a). It follows

that ρ(sa:s
T ) = ρ(sT−a, σ

′
a). Since ρ(sT−a, σ

′
a) � γ(a)Ta ∧ Tg(a) it must be that

M, sa:s, a � γ(a) by Lemma 1. Similarly, since ρ(sT ) 
� γ(a)Ta ∧Tg(a) it must be
that M, s, a 
� γ(a). But then ua(sa:s) > ua(s) so s /∈ NE(G), a contradiction.

��
So Nash equilibria are preserved and non-Nash equilibria are preserved. We

can summarise these results with the following theorem.

Theorem 1. Let G be a BNG. Then s ∈ NE(G) iff T (s) ∈ NE(T (G))

Proof. Left to right is by Lemma 4. Right to left is by contrapositive, using
Lemma 2. ��

The reader should take care to note that Theorem 1 does not say T (NE(G)) =
NE(T (G)). Indeed, if s ∈ NE(G) and there are players a, b with b /∈ Ra then sTa
has no transitions depending on the state of b. So we can modify sTa to sTa

′
by

duplicating some node, and modifying the transition function so that it goes to
a different duplicate depending on the state of b. We still have sT ′ ∈ NE(T (G))
so in this case T (NE(G)) � NE(T (G)).

3.3 Translation from Iterated Boolean Games to Boolean Network
Games

Now we consider the opposite direction. Given an IBG G, how can we simulate
it as a BNG? Again, by abuse of notation, we use � to represent any functions
used in the translation.
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Game Translation. Suppose G = (A,Φ, Φ1, . . . Φn, γ1, . . . γn) is an IBG. Set
R = {〈a, b〉 | a 
= b}. Thus every player can see every other player. Use Φ for
PROP. Define a translation �a : LIBG → LBNG for each player a as follows:

p�a =

{
p if p ∈ Φa

♦p if p /∈ Φa

(Xϕ)�a = Xϕ�a

(¬ϕ)�a = ¬ϕ�a

(ϕ ∨ ψ)�a = ϕ�a ∨ ψ�a

(ϕUψ)�a = ϕ�aUψ�a

Define a goal profile γ as
γ(a) = γ�a

a

Since BNGs require a specified initial state, and IBGs do not, we cannot define
�(G) further until we have defined translation for strategies.

Strategy Translation. Consider the strategy σa = (Qa, q
0
a, δa, τa).

In the translated game, each player has control over all the variables in
PROP = Φ, including those they do not control in the IBG. In the transla-
tion, each player’s strategy sets all the variables they “should not control” to
false. That is,

τ�a (q
k
a) = τa(q

k
a)

This explains our translation of formulas �a. If player a wants p in the IBG,
then they want the player controlling p to set it true. So if a controls p, then
in the translation a wants p. If a does not control p, they want the player who
controls p to set it true. Every player who does not control p will set it false, so
a wants ♦p.

The transition function only considers the value of the variables at the players
who “should be” controlling them. So we should evaluate using only values from
correct players. Hence define the translation of δa as

δ�a (q
k
a , ga) = δa

(
qka ,

⋃

b∈A

g(b) ∩ Φb

)

We can now define the translation of σa.

�(σa) = 〈Qa, δ
�

a , q
0
a, τ

�

a 〉
If σ = (σ1, . . . σn) is a strategy profile, define σ� such that σ�(a) = �(σa).

Game Translation (continued). Take G from above and a strategy profile
σ = (σ1, . . . σn), where σa = (Qa, q

0
a, δa, τa) for all a. Define a global state gσ

where
gσ(a) = τa(q

0
a)

That is, each player’s initial state is the initial state of its strategy.
Now take �(G,σ) = 〈〈A,R, gσ〉, γ〉, where R, γ are defined as above. This

gives us a BNG corresponding to both G, with start state corresponding to σ.
We write �(G) for the set of possible translations of G, and also when it is clear
which strategy is being used for translation.
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3.4 Properties of �

We now consider properties of �. Our goal is to show similar properties to those
we proved for T , namely that game outcomes, player utilities and Nash equilibria
are all preserved under �.

The parallel of Lemma 1 becomes trickier for � since p’s translation depends
on which agent we are evaluating at. To help the proof, we have the following
lemma.

Lemma 5. Given an IBG G and a strategy profile σ for G and a timestep i.
For every agent a and p ∈ Φa, we have p ∈ ρ(σ)[i] iff p ∈ gi(a), where gi is the
corresponding global state in the translation.

Proof. By induction on i. ��

We build on this result to show that truth of formulas is preserved under �.

Lemma 6 (Preservation of Outcomes). Let G = (A,Φ, Φ1, . . . Φn, γ1, . . . γn)
be an IBG and σ a strategy profile for G. Suppose �(G,σ) = 〈M�, γ�〉 Then

(ρ(σ), i) � ϕ iff M�,σ
�, a, i � ϕ�a

for every a ∈ A, formula ϕ ∈ LIBG and timestep i.

Proof. By induction on the complexity of ϕ. For the case ϕ = p there are two
subcases. If p ∈ Φa then the case follows from Lemma 5. So suppose p 
∈ Φa.
There is a b ∈ A such that p ∈ Φb since the agent-indexed sets partition Φ.
By Lemma 5, M�,σ

�, b, i � p. By the structure of �(G), Rab and so we have
M�,σ

�, b, i � ♦p. So M�,σ
�, b, i � p�a . The other direction is similar. The cases

when ϕ 
= p are routine. ��

We have established that truth of formulas is preserved under translation.
Since players’ goals in �(G) are simply translations of their goals in G it follows
that players’ utilities are preserved under translation.

Let us now consider Nash equilibria. First, if σ is not a Nash equilibrium for
G, can we be sure that �(σ) is not a Nash equilibrium for �(G)? Yes. As with
Lemma 2, if a can do better by changing its strategy to σ′

a in G, then a can do
better by changing its strategy to �(σ′

a) in �(G).

Lemma 7. Let G be an IBG. Then �(NE(G)) ⊆ NE(�(G)).

Non-Nash equilibria are preserved, but what about Nash equilibria? We make
use of myopic strategies once again. We are still dealing with finitely many
configurations over an infinite run, so we have the following lemma.

Lemma 8. Let G be a BNG and s a strategy profile for G. Then for every player
a there is a myopic strategy s for a such that M, sa:s, b, i � ϕ iff M, s, b, i � ϕ for
every player b and timestep i.
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In the parallel argument for T , we next showed that T (NE(G)) ⊆ NE(T (G))
(Lemma 4). The proof hinged on our being able to find a BNG strategy s to map
onto the myopic σ′

a. This was a straightforward exercise. If we attempt the same
for �, we reach a problem: we do not know that the myopic strategy only outputs
allowable valuations. Since players in �(G) have control over all propositions,
perhaps a’s better strategy involves changing a proposition it can’t change in G.
In order to account for this problem, we provide the following lemma.

Lemma 9. Let G be an IBG and σ a strategy profile for G. Then for every
BNG strategy s = 〈N, T, I, O〉 for a there is an IBG strategy σ′

a for a such that

M�,σ
�

a:s, a, i � ϕ�a iff M ′
�
, (σ−a, σ

′
a)
�, a, i � ϕ�a

for every timestep i.

Proof. By Lemma 8 we can assume s is myopic. Define σ′
a = (N, I, T ′, O′) where

T ′(q,v) = T (q) for all v and O′(q) = O(q)∩Φa So σ′
a is s with outputs restricted

to Φa. We claim that σ′
a satisfies the requirements of the lemma. Let the outcome

behaviour of M� with σ�

a:s′ be {〈gi, ξi〉}i∈N and the outcome behaviour of M ′
�
with

(σ−a, σa)
� be {〈g′i, ξ′i〉}i∈N. An induction on i establishes that

gi(a) ∩ Φa = g′i(a) ξi(a) = ξ′i(a) (1)

gi(b) = g′i(b) ξi(b) = ξ′i(b) (2)

for every b ∈ A \ {a} and timestep i. We now proceed by induction on the
complexity of ϕ to show that

M�,σ
�

a:s, a, i � ϕ�a iff M ′
�
, (σ−a, σ

′
a)
�, a, i � ϕ�a

First suppose ϕ = p. If p ∈ Φa then p�a = p and M�,σ
�

a:s, a, i � p iff

p ∈ gi(a). By 1, this is the case iff p ∈ g′i(a) since p ∈ Φa. But this
means M ′

�
, (σ−a, σ

′
a)
�, a, i � p. If p /∈ Φa then p�a = ♦p. Again we have

M�,σ
�

a:s, a, i � ♦p iff p ∈ gi(b) for some b with Rab. By 2 this means p ∈ g′i(b)
and so M ′

�
, (σ−a, σ

′
a)
�, a, i � ♦p.

The propositional and temporal cases follow by routine arguments. Thus σ′
a

fulfils our requirements and we have our result. ��
With Lemma 9 proved it is now straightforward to obtain the parallel of

Lemma 4.

Lemma 10. Let G be an IBG. Then �(NE(G)) ⊆ NE(�(G)).

Proof. Suppose σ ∈ NE(G). Suppose for contradiction that σ� /∈ NE(�(G)).
Then there is a player a ∈ A and a BNG strategy s for a such that ua(σ

�

a:s) >
ua(σ

�).
We must have M�,σ

�

a:s, a � γ(a) and M�,σ
�, a 
� γ(a) by the definition of ua.

Since γ(a) = γa
�a , by Lemma 6 (Preservation of Outcomes) we have ρ(σ) 
� γa.

By Lemma 9 there is a strategy σ′
a for a such that

M�,σ
�

a:s, a � ϕ�a iff M ′
�
, (σ−a, σ

′
a)
�, a � ϕ�a
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Since M�,σ
�

a:s, a � γ(a) we have M ′
�
, (σ−a, σ

′
a)
�, a � γ(a). So by Lemma 6,

ρ(σ−a, σ
′
a) � γa.

But now we have ρ(σ−a, σ
′
a) � γa and ρ(σ) 
� γa, so ρ(σ) 
�a ρ(σ−a, σ

′
a) and

hence σ /∈ NE(G), a contradiction. ��
Finally we are ready to prove the parallel of Theorem 1.

Theorem 2. Let G be an IBG. Then σ ∈ NE(G) iff �(σ) ∈ NE(�(G))

Proof. Left to right is by Lemma 10. Right to left is by contrapositive, using
Lemma 7.

As with Theorem 1, we note that this does not mean �(NE(G)) = NE(�(G))
and indeed basic changes to strategies can show this is the case.

It is crucial to realise that � is not an inverse of T . Indeed, it is the case that
�(T (G)) 
= G and T (�(G)) 
= G. Since T indexes propositions by agent and �
allows all agents control over every proposition, iterated applications of T and
� will increase the number of propositions in the game.

3.5 Computational Complexity of Decision Problems for Boolean
Network Games

The translation � allows us to make conclusions about the complexity of decision
problems for Boolean network games by way of reductions to IBGs. An exami-
nation of � shows that it can be accomplished in polynomial time. Consider the
following problem for testing Nash equilibria.

BNG Membership
Given: BNG game G, strategy profile s.
Question: Is it the case that s ∈ NE(G)?

From [4] we have that IBG Membership is PSPACE-complete. By Theorem 2
there is a polynomial time reduction from BNG Membership to IBG Mem-
bership, using �. Hence, we have the following proposition.

Proposition 1. BNG Membership is PSPACE-hard.

Note that since the translation T is exponential due to the translation of �,
we do not have a PSPACE-completeness result. However, if the degree of the
players’ goals is bounded (that is, the maximum depth of nested modalities),
then we get PSPACE-completeness for each fixed bound.

4 Conclusion and Further Work

We introduced the concept of a Boolean network game and proved a two-way
reduction to iterated Boolean games. This enabled us to prove theorems about
determining whether a given strategy profile is a Nash equilibrium.



Boolean Network Games and Iterated Boolean Games 365

The problem of determining the existence of an equilibrium is also interest-
ing. Unfortunately a reduction to IBG will not help here. Recall that while
T (NE(G)) ⊆ NE(T (G)), we do not have that T (NE(G)) = NE(T (G)). T
does not suggest an obvious method for translating strategy profiles for T (G)
into those for G - we achieved this for individual strategies given fixed oth-
ers, but not for strategy profiles. Perhaps it is the case that NE(G) = ∅ and
NE(T (G)) 
= ∅. Whether this is possible remains an open question, as do similar
questions for �.

A further step is to study the logic of Nash equilibria: those formulas of
LTL that hold at all Nash equilibria, so as to account for social reasoning in
equilibrium situations. [3] contains some initial results in this direction for IBGs.

Finally, [1] extends the Boolean game framework to epistemic games, in which
the goal formula of an agent may concern the epistemic states of other agents,
and the actions of players are announcements. The theory of Boolean network
games promises to be a useful base from which to study epistemic Boolean games
within the context of social epistemic logic [8].
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Abstract. Dynamic Epistemic Logic (DEL) can model complex infor-
mation scenarios in a way that appeals to logicians. However, existing
DEL implementations are ad-hoc, so we do not know how the frame-
work really performs. For this purpose, we want to hook up with the
best available model-checking and SAT techniques in computational logic.
We do this by first providing a bridge: a new faithful representation of
DEL models as so-called knowledge structures that allow for symbolic
model checking. Next, we show that we can now solve well-known bench-
mark problems in epistemic scenarios much faster than with existing
DEL methods. Finally, we show that our method is not just a matter of
implementation, but that it raises significant issues about logical repre-
sentation and update.

1 Introduction

We bring together two strains in the area of epistemic model checking. On one
side, there are many frameworks for symbolic model checking on interpreted
systems using temporal logics [24,30]. On the other hand, there are explicit
model checkers for variants of Dynamic Epistemic Logic (DEL) like DEMO [15]
with inferior performance but superior usability as they allow specification in
dynamic languages directly. The goal of our work is to connect the two worlds of
symbolic model checking and DEL in order to gain new insights on both sides.

Existing work on model checking DEL mainly focuses on specific examples,
for example the Dining Cryptographers [28], the Sum and Product riddle [26]
or Russian Cards [12]. Given these specific approaches, a general approach to
symbolic model checking the full DEL language is desirable. A first step is [30]
which presents symbolic model checking for temporal logics of knowledge. How-
ever, it does not cover announcements or other dynamics. The framework here
extends these ideas with dynamic operators and a twist on the semantics.

Our knowledge structures are similar in spirit to hypercubes from [25], but
of a different type: We do not use interpreted systems and temporal relations
are not part of our models. Hence also our language does not contain temporal
operators but primitives for epistemic events like announcements.
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W. van der Hoek et al. (Eds.): LORI 2015, LNCS 9394, pp. 366–378, 2015.
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Related to our work is also [13] where DEL is translated into temporal epis-
temic logics for which symbolic model checkers exist. However, this method has
not been implemented and the complexity and performance are not known. We
do not translate to a temporal logic but check DEL formulas directly.

The paper is structured as follows. In Section 2 we recall standard semantics
of DEL as in [11]. We then present knowledge structures in Section 3 and discuss
the famous Muddy Children example in Section 4, together with experimental
results in Section 5. Section 6 is a case study of the Russian Cards problem. Our
main theoretical results are in Section 7: Knowledge structures are equivalent to
S5 Kripke models. Moreover, S5 action models from [1] can be described in the
same way. Section 8 gives a conclusion and suggestions for further research.

All source code can be found at https://github.com/jrclogic/SMCDEL.

2 Dynamic Epistemic Logic on Kripke Models

Definition 1. Fix a set of propositions V and a finite set of agents I. The DEL
language L(V ) is given by

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kiϕ | CΔϕ | [ϕ]ϕ | [ϕ]Δϕ

where p ∈ V , i ∈ I and Δ ⊆ I. We also use the abbreviations ϕ∨ψ := ¬(¬ϕ∧¬ψ)
and ϕ → ψ := ¬(ϕ ∧ ¬ψ). The boolean formulas are ϕ ::= p | ¬ϕ | ϕ ∧ ϕ.

The formula Kiϕ is read as “agent i knows ϕ” while CΔϕ says that ϕ is
common knowledge among agents in Δ. The formula [ψ]ϕ indicates that after a
public announcement of ψ, ϕ holds. In contrast, [ψ]Δϕ says that after announcing
ψ to the agents in Δ, ϕ holds. The standard semantics for L(V ) are given by
means of Kripke models as follows.

Definition 2. A Kripke model for n agents is a tuple M = (W,π,K1, · · · ,Kn),
where W is a set of worlds, π associates with each world a truth assignment
to the primitive propositions, so that π(w)(p) ∈ {�,⊥} for each world w and
primitive proposition p, and K1, · · · ,Kn are binary accessibility relations on W .
By convention, WM , KM

i and πM are used to refer to the components of M .
We omit the superscript M if it is clear from context. Finally, let CM

Δ be the
transitive closure of

⋃
i∈Δ KM

i .
A pointed Kripke model is a pair (M,w) consisting of a Kripke model and a

world w ∈ WM . A model M is called an S5 Kripke model iff, for every i, KM
i

is an equivalence relation. A model M is called finite iff WM is finite.

Definition 3. Semantics for L(V ) on pointed Kripke models are given induc-
tively as follows.

1. (M,w) |= p iff πM (w)(p) = �.
2. (M,w) |= ¬ϕ iff not (M,w) |= ϕ
3. (M,w) |= ϕ ∧ ψ iff (M,w) |= ϕ and (M,w) |= ψ
4. (M,w) |= Kiϕ iff for all w′ ∈ W , if wKM

i w′, then (M,w′) |= ϕ.

https://github.com/jrclogic/SMCDEL
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5. (M,w) |= CΔϕ iff for all w′ ∈ W , if wCM
Δ w′, then (M,w′) |= ϕ.

6. (M,w) |= [ψ]ϕ iff (M,w) |= ψ implies (Mψ, w) |= ϕ where Mψ is a new
Kripke model defined by the set WMψ

:= {w ∈ WM | (M,w) |= ψ}, the
relations KMψ

i := KM
i ∩ (WMψ

)2 and the valuation πMψ

(w) := πM (w).
7. (M,w) |= [ψ]Δϕ iff (M,w) |= ψ implies that (MΔ

ψ , (1, w)) |= ϕ where

(a) WMΔ
ψ := {(1, w) | w ∈ WM and (M,w) |= ψ} ∪ {(0, w) | w ∈ WM}

(b) For (b, w) and (b′, w′) in WMΔ
ψ , if i ∈ Δ, let (b, w)KMΔ

ψ

i (b′, w′) iff b = b′

and wKM
i w′. If i /∈ Δ, then let (b, w)KMΔ

ψ

i (b′, w′) iff wKM
i w′.

(c) For each (b, w) ∈ WMΔ
ψ , πMΔ

ψ ((b, w)) := πM (w).

Note that a group announcement [ψ]Δϕ is private in the sense that only the
agents in Δ obtain knowledge about ψ. However, the announcement is not secret
because the other agents still learn that the agents in Δ might have learned ψ.

3 Knowledge Structures

While the preceding semantics is standard in logic, it cannot serve directly as an
input to current sophisticated model-checking techniques. For this purpose, in
this section we introduce a new format, knowledge structures. Their main advan-
tage is that also knowledge and results of announcements can be computed via
purely boolean operations. We first recapitulate some notions and abbreviations.

Given a set of propositional variables P , we identify a truth assignment over P
with a subset of P . We say a formula ϕ is a formula over P if each propositional
variable occurring in ϕ is in P . For convenience, we use the logical constants �
and ⊥ which are always true and always false, respectively. We also use |= to
denote the usual satisfaction relation between a truth assignment and a formula.

We use substitution and quantification as follows. For any formula ϕ and ψ ∈
{�,⊥}, and any propositional variable p, let ϕ( p

ψ ) denote the result of replacing
every p in ϕ by ψ. For any A = {p1, . . . , pn}, let ϕ(Aψ ) := ψ(p1

ψ )(p2

ψ ) . . . (pn

ψ ),
i.e. the result of substituting ψ for all elements of A. We use ∀pϕ to denote
ϕ
(
p
�
) ∧ ϕ

(
p
⊥
)
. For any A = {p1, . . . , pn}, let ∀Aϕ := ∀p1∀p2 . . . ∀pnϕ.

Definition 4. Suppose we have n agents. A knowledge structure is a tuple F =
(V, θ,O1, . . . , On) where V is a finite set of propositional variables, θ is a boolean
formula over V and for each agent i, Oi ⊆ V .

Set V is the vocabulary of F . Formula θ is the state law of F . It determines
the set of states of F and may only contain boolean operators. The variables in
Oi are called agent i’s observable variables. An assignment over V , given as the
set of true propositions, that satisfies θ is called a state of F . Any knowledge
structure only has finitely many states. Given a state s of F , we say that (F , s)
is a scene and define the local state of an agent i at s as s ∩Oi.

Given a knowledge structure (V, θ,O1, · · · , On) and a set V of subsets of V ,
we use EV to denote a relation between two assignments s, s′ on V satisfying θ
such that (s, s′) ∈ EV iff there exists a P ∈ V with s ∩ P = s′ ∩ P . We use E∗

V
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to denote the transitive closure of EV . Let VΔ = {Oi | i ∈ Δ}. We then have
(s, s′) ∈ EVΔ iff there exists an i ∈ Δ with s ∩Oi = s′ ∩Oi.

We now give alternative semantics for L(V ) on knowledge structures. Defini-
tions 5 and 6 run in parallel, both proceeding by the structure of ϕ.

Definition 5. Semantics for DEL on scenes are defined inductively as follows.

1. (F , s) |= p iff s |= p.
2. (F , s) |= ¬ϕ iff not (F , s) |= ϕ
3. (F , s) |= ϕ ∧ ψ iff (F , s) |= ϕ and (F , s) |= ψ
4. (F , s) |= Kiϕ iff for all s′ of F , if s ∩Oi = s′ ∩Oi, then (F , s′) |= ϕ.
5. (F , s) |= CΔϕ iff for all s′ of F , if (s, s′) ∈ E∗

VΔ
, then (F , s′) |= ϕ.

6. (F , s) |= [ψ]ϕ iff (F , s) |= ψ implies (Fψ, s) |= ϕ where ‖ψ‖F is given by
Definition 6 and

Fψ := (V, θ ∧ ‖ψ‖F , O1, · · · , On)

7. (F , s) |= [ψ]Δϕ iff (F , s) |= ψ implies (FΔ
ψ , s∪{pψ}) |= ϕ where pψ is a new

propositional variable, ‖ψ‖F is given by Definition 6 and

FΔ
ψ := (V ∪ {pψ}, θ ∧ (pψ → ‖ψ‖F), O′

1, · · · , O′
n)

where O′
i := Oi ∪ {pψ} if i ∈ Δ and O′

i := Oi otherwise.

Before defining the boolean equivalents of formulas, we can already explain some
similarities and differences between Definitions 3 and 5. The semantics of the
boolean connectives are the same. For the knowledge operators, on Kripke models
we use an accessibility relation Ki. On knowledge structures this is replaced with
the condition s ∩ Oi = s′ ∩ Oi, inducing an equivalence relation on the states.
We can already guess that knowledge structures encode S5 Kripke models.

Definition 6. For any knowledge structure F = (V, θ,O1, · · · , On) and any
DEL formula ϕ, we define a boolean formula ‖ϕ‖F .

1. For any primitive formula, let ‖p‖F := p.
2. For negation, let ‖¬ψ‖F := ¬‖ψ‖F .
3. For conjunction, let ‖ψ1 ∧ ψ2‖F := ‖ψ1‖F ∧ ‖ψ2‖F .
4. For knowledge, let ‖Kiψ‖F := ∀(V \Oi)(θ → ‖ψ‖F).
5. For common knowledge, let ‖CΔψ‖F := gfpΛ where Λ is the following oper-

ator on boolean formulas given and gfpΛ denotes its greatest fixed point:

Λ(α) := ‖ψ‖F ∧
∧

i∈Δ

∀(V \Oi)(θ → α)

6. For public announcements, let ‖[ψ]ξ‖F := ‖ψ‖F → ‖ξ‖Fψ .
7. For group announcements, let ‖[ψ]Δξ‖F := ‖ψ‖F → (‖ξ‖FΔ

ψ
)(

pψ

� ).

where Fψ and Fψ
Δ are as given by Definition 5.
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Given these definitions, a simple induction on ϕ gives us the following Theorem.

Theorem 1. Definition 6 preserves and reflects truth. That is, for any formula
ϕ and any scene (F , s) we have that (F , s) |= ϕ iff s |= ‖ϕ‖F .

We can now explain the public and group announcements. First observe that
public announcements only modify the state law of the knowledge structure.
Moreover, the new state law is always a conjunction containing the previous
one. Hence the set of states is restricted, just like public announcements on
Kripke models restrict the set of possible worlds. Second, note that a group
announcement adds a single observational variable and can therefore at most
double the number of states, just like in the Kripke semantics in Definition 3.

4 Example 1: Muddy Children

How does our new format do in practice? For this purpose, we consider some
well-known benchmarks in the epistemic agency literature. We start with how
their new representations looks like. After that, we go on to actual computa-
tional experiments. The famous Muddy Children example will illustrate how
announcements, both of propositional and of epistemic facts, work on knowl-
edge structures. An early version of the puzzle are the three ladies on a train
in [23]. For a standard analysis with Kripke models, see [17, p. 24-30] or [11,
p. 93-96].

Let pi stand for “child i is muddy”. We consider the case of three children
I = {1, 2, 3} who are all muddy, i.e. the actual state is {p1, p2, p3}. At the
beginning the children do not have any information, hence the initial knowledge
structure F0 in Figure 1 has the state law θ0 = �. All children can observe
whether the others are muddy but do not see their own face. This is represented
with observational variables: Agent 1 observes p2 and p3, etc. Now the father
says: “At least one of you is muddy.” This public announcement limits the set of
states by adding this statement to the state law. Note that it already is a purely
boolean statement, hence the formula is added as it is, leading to F1.

F0 =

⎛

⎝V = {p1, p2, p3}, θ0 = �,
O1 = {p2, p3}
O2 = {p1, p3}
O3 = {p1, p2}

⎞

⎠

F1 =

⎛

⎝V = {p1, p2, p3}, θ1 = (p1 ∨ p2 ∨ p3),
O1 = {p2, p3}
O2 = {p1, p3}
O3 = {p1, p2}

⎞

⎠

Fig. 1. Knowledge structures before and after the first announcement.

The father now asks “Do you know if you are muddy?” but none of the children
does. As it is common in the literature, we understand this as a public announce-
ment of “Nobody knows their own state.”:

∧
i∈I(¬(Kipi ∨ Ki¬pi)). This is not
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a purely boolean formula, hence the public announcement is slightly more com-
plicated: Using Definition 6 and Theorem 1 we find a boolean formula which
on the current knowledge structure F1 is equivalent to the announced formula.
Then this boolean equivalent is added to θ. We have

‖K1p1‖F1 = ∀(V \O1)(θ1 → ‖p1‖F1) = ∀p1((p1 ∨ p2 ∨ p3) → p1)
= ((� ∨ p2 ∨ p3) → �) ∧ ((⊥ ∨ p2 ∨ p3) → ⊥) = ¬(p2 ∨ p3)

‖K1¬p1‖F1 = ∀(V \O1)(θ1 → ‖¬p1‖F1) = ∀p1((p1 ∨ p2 ∨ p3) → ¬p1)
= ((� ∨ p2 ∨ p3) → ¬�) ∧ ((⊥ ∨ p2 ∨ p3) → ¬⊥) = ⊥

and analogous for K2p2, K2¬p2, K3p3 and K3¬p3. These results make intuitive
sense: In our situation where all children are muddy, a child knows it is muddy
iff it sees that the other two children are clean. It can never know that it is clean
itself. The announced formula becomes

‖ ∧
i∈I

(¬(Kipi ∨Ki¬pi))‖F1 =
∧
i∈I

‖¬(Kipi ∨Ki¬pi)‖F1

= ¬(¬(p2 ∨ p3)) ∧ ¬(¬(p1 ∨ p3)) ∧ ¬(¬(p1 ∨ p2))
= (p2 ∨ p3) ∧ (p1 ∨ p3) ∧ (p1 ∨ p2)

The announcement essentially says that at least two children are muddy. We
get a knowledge structure F2 with the following more restrictive state law θ2.
Vocabulary and observational variables do not change, so we do not repeat them.

θ2 = (p1 ∨ p2 ∨ p3) ∧ ((p2 ∨ p3) ∧ (p1 ∨ p3) ∧ (p1 ∨ p2))

Now the same announcement (“Nobody knows their own state.”) is made again.
It is important that again we start with the epistemic formula

∧
i∈I(¬(Kipi ∨

Ki¬pi)) and compute an equivalent formula with respect to F2. For reasons of
space we skip tedious boolean reasoning and just note that

‖K1p1‖F2 = ∀(V \O1)(θ2 → ‖p1‖F2) = ¬(p3 ∧ p2)

‖K1¬p1‖F2 = ∀(V \O1)(θ2 → ‖¬p1‖F2) = ¬(p2 ∨ p3)

which gives us ‖¬(K1p1 ∨K1¬p1)‖F2 = p3 ∧ p2 and analogous formulas for chil-
dren 2 and 3. Hence with respect to F2 we get the following boolean equivalent
of the announcement, essentially saying that everyone is muddy.

‖ ∧
i∈I

(¬(Kipi ∨Ki¬pi))‖F2 = (p3 ∧ p2) ∧ (p3 ∧ p1) ∧ (p2 ∧ p1)

= p1 ∧ p2 ∧ p3

The resulting knowledge structure thus has the state law θ3 = θ2 ∧ (p1 ∧ p2 ∧ p3)
which is in fact equivalent to p1 ∧ p2 ∧ p3 and marks the end of the story: The
only state left is the situation in which all three children are muddy.



372 J. van Benthem et al.

5 Symbolic Model Checking: Implementation and
Benchmarking

The previous section showed how epistemic operators get replaced by booleans
when a new state law is computed. We could see that syntactically the state law
becomes more and more complex, but semantically the same boolean function
can be represented with a much shorter formula. This is where Binary Decision
Diagrams (BDDs) come in extremely handy.

First presented in [5], BDDs provide an elegant data structure for boolean
functions. In many cases they are less redundant and thus smaller than a corre-
sponding truth table. Additionally, they can be manipulated efficiently: Given
BDDs for ϕ and ψ we can compute the BDD for ϕ ∧ ψ, ϕ → ψ etc. Moreover,
BDDs are canonical: Two formulas are equivalent iff their BDDs are identical.
For an in-depth introduction, see [22, p. 202-280]. To see how BDDs can be used
to describe knowledge structures, Figure 2 shows the BDDs for θ0 to θ3.

�

p1

p2

p3

⊥ �

p1

p2 p2

p3

⊥ �

p1

p2

p3

⊥ �

Fig. 2. Four BDDs representing the state laws θ0 to θ3.

Our new symbolic model checker SMCDEL works as follows: It takes two
inputs, a scene (F , s) where the state law is given as a BDD, and a DEL formula
ϕ. To check whether ϕ holds at state s we first compute the equivalent boolean
formula ‖ϕ‖F according to Definition 6 and then check the boolean satisfaction
s � ‖ϕ‖F . Alternatively, we can check whether a formula is valid on F , i.e. true
at all states, by checking whether θ → ‖ϕ‖F is a tautology. The full set of states
does not have to be generated and events are not executed explicitly.

We compared the performance of this method to DEMO-S5, an explicit model
checker optimized for multi-agent S5 [15]. As a benchmark we used the question
“For n muddy children, how many announcements of »Nobody knows their own
state.« are needed until they do know their own state?”. We measured how long
each method takes to find and verify the correct answer, namely n− 1.

Figure 3 shows the results on a logarithmic scale: Explicit model checking
with DEMO-S5 quickly becomes unfeasible whereas our symbolic model checker
SMCDEL can deal with scenarios up to 40 agents in less than a second.

The model checker is implemented in Haskell and can be used similarly to
DEMO-S5. To represent BDDs we use CacBDD [27] via the binding library
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Fig. 3. Benchmark Results on a logarithmic scale.

HasCacBDD [19]. The program can also be used with CUDD [18,29] which pro-
vides very similar performance. All experiments were done using 64-bit Debian
GNU/Linux 8.0 with kernel 3.16.0-4, GHC 7.8.3 and g++ 4.9 on an Intel Core
i3-2120 3.30 GHz processor and 4 GB of memory.

Muddy Children has also been used to benchmark MCMAS [24] but the for-
mula checked there concerns the correctness of behavior and not how many
rounds are needed. Moreover, the interpreted system semantics of model check-
ers like MCMAS are very different from DEL. Still, connections between DEL
and temporal logics have been studied and translations are available [3,13].

A scenario which fits nicely into both frameworks is the dining cryptographers
protocol [7]. The statement “If cryptographer 1 did not pay the bill, then after
the announcements are made, he knows that no cryptographers paid, or that
someone paid, but in this case he does not know who did.” is also checked in [24].
It can be formalized in DEL as follows where pi says that agent i paid and ψ
is the announcement: ¬p1 → [ψ](K1(

∧n
i=1 ¬pi)∨ (K1(

∨n
i=2 pi) ∧

∧n
i=2(¬K1pi))).

SMCDEL can check this for n = 50 in less than a second. Proper benchmarks
and comparisons of all parameters will be done in the future.

6 Example 2: Russian Cards

As a second case study we applied our symbolic model checker to the Russian
Cards Problem. One of its first logical analyses is [10] and the problem has since
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gained notable attention as an intuitive example of information-theoretically (in
contrast to computationally) secure cryptography [9,14].

The basic version of the problem is this: Seven cards, enumerated from 0 to
6, are distributed between Anne, Bob and Crow such that Anne and Bob both
receive three cards and Crow one card. It is common knowledge which cards
exist and how many cards each agent has. Everyone knows their own but not the
others’ cards. The goal of Anne and Bob now is to learn each others cards without
Crow learning them. They can only communicate via public announcements.

Many different solutions exist but here we will focus on the so-called five-hands
protocols (and their extensions with six or seven hands): First Anne makes an
announcement of the form “My hand is one of these: ...”. If her hand is 012 she
could for example take the set {012, 034, 056, 135, 146, 236}. It can be checked
that this announcement does not tell Crow anything, independent of which card
it has. In contrast, Bob will be able to rule out all but one of the hands in the
list depending on his own hand. Hence the second and last step of the protocol
is an announcement by Bob about which card Crow has. For example, if Bob’s
hand is 345 he would finish the protocol with “Crow has card 6.”.

Verifying this protocol for the fixed deal 012|345|6 with our symbolic model
checker takes less than a second. Moreover, checking multiple protocols in a row
does not take much longer because the BDD package caches results. Compared
to that, a DEMO implementation [12] needs 4 seconds to check one protocol.

We can not just verify but also find all 5/6/7-hands protocols, using a com-
bination of manual reasoning and brute-force. By Proposition 32 in [10] safe
announcements from Anne never contain “crossing” hands, i.e. two hands with
multiple card in common. If we also assume that the hands are lexicographically
ordered, this leaves us with 1290 possible lists of five, six or seven hands of three
cards. Only some of them are safe announcements which can be used by Anne.
We can find them by checking all the corresponding 1290 formulas. Our model
checker can filter out the 102 safe announcements within 1.6 seconds, generating
and verifying the same list as in [10] where it was manually generated.

7 Equivalence of S5 Kripke Models and Knowledge
Structures

Having shown the computational advantage of our new knowledge models, we
now look more deeply into the foundations of what we have been doing. For
a start, we show that knowledge structures and standard models for DEL are
equivalent from a semantic point of view. Lemma 1 gives us a canonical way
to show that a knowledge structure and an S5 Kripke model satisfy the same
formulas. Theorems 2 and 3 say that such equivalent models and structures can
always be found. These translations are also implemented in SMCDEL.

Lemma 1. Suppose we have a knowledge structure F = (V ′, θ, O1, · · · , On) and
a finite S5 Kripke model M = (W,π,K1, · · · ,Kn) with a set of primitive propo-
sitions V ⊆ V ′. Furthermore, suppose we have a function g : W → P(V ′) such
that
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C1 For all w1, w2 ∈ W , and all i such that 1 ≤ i ≤ n, we have that g(w1)∩Oi =
g(w2) ∩Oi iff w1Kiw2.

C2 For all w ∈ W and v ∈ V , we have that v ∈ g(w) iff π(w)(v) = true.
C3 For every s ⊆ V ′, s is a state of F iff s = g(w) for some w ∈ W.

Then, for every formula ϕ over V we have (F , g(w)) |= ϕ iff (M,w) |= ϕ.

Proof. By induction on ϕ: Use C2 for atomic propositions, note that the boolean
semantics are the same, use C1 and C3 for the knowledge operator and show
that the conditions carry over to the results of announcements.

We do not give details here because the proof does not provide any new
insights: Conditions C1 to C3 describe a special case of a p-morphism between
M and the Kripke model encoded by F , see Definition 7 below. Hence their
equivalence with respect to the modal language already follows from general
invariance results in modal logic [4, §2.1]. The following definition and theorem
show that for every knowledge structure there is an equivalent Kripke model.

Definition 7. For any F = (V, θ,O1, · · · , On), we define the Kripke model
M(F) := (W,π,K1, · · · ,Kn) as follows

1. W is the set of all states of F ,
2. for each w ∈ W , let the assignment π(w) be w itself and
3. for each agent i and all w,w′ ∈ W , let wKiw

′ iff w ∩Oi = w′ ∩Oi.

Theorem 2. For any knowledge structure F , any state s of F , and any ϕ we
have (F , s) |= ϕ iff (M(F), s) |= ϕ.

Proof. By Lemma 1 using the identity function as g.

Vice versa, for any S5 Kripke model we can find an equivalent knowledge struc-
ture. The essential idea is to add propositions as observational variables to encode
the relations of each agent. To obtain a simple knowledge structure we should
add as few propositions as possible. The method below adds

∑
i∈I ceiling(log2 ki)

propositions where ki is the number of Ki-equivalence classes and ceiling(·) de-
notes the smallest integer not less than the argument. This could be further
improved if one were to find a general way of using the propositions already
present in the Kripke model as observational variables directly.

Definition 8. For any S5 model M = (W,π,K1, · · · ,Kn) we define a knowl-
edge structure F(M) as follows. For each i, write γ1, . . . , γki for the equivalence
classes given by Ki and let li := ceiling(log2 ki). Let Oi be a set of li many
fresh propositions. This yields the sets of observational variables O1, . . . , On, all
disjoint to each other. If agent i has a total relation, i.e. only one equivalence
class, then we have Oi = ∅. Enumerate ki many subsets of Oi as Oγ1 , . . . , Oγki

and define the function gi : W → P(Oi) by gi(w) := Oγ(w) where γ(w) is the
equivalence class of w. Let V ′ := V ∪⋃

0<i≤n Oi and define g : W → P(V ′) by

g(w) := {v ∈ V | π(w)(v) = �} ∪
⋃

0<i≤n

gi(w)
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Let V ′ be the set of atomic propositions and their negations from V ′. Finally, let
F(M) := (V ′, θM , O1, . . . , On) where

θM :=
∧{∨

Q | Q ⊆ V ′ and g(w) |= ∨
Q for all w ∈ W

}

Theorem 3. For any finite S5 pointed Kripke model (M,w) and every formula
ϕ, we have that (M,w) |= ϕ iff (F(M), g(w)) |= ϕ.

Proof. By Definition 8, gi is such that for all w1, w2 ∈ W , gi(w1) and gi(w2)
are the same subset of Oi iff w1 and w2 are in the same equivalence class of
Ki. It is therefore easy to check the first two conditions of Lemma 1. For the
“if” part of C3: If s = g(w′) for some w′ ∈ W , then by the definition of θM ,
we have that g(w′) |= θM and hence g(w′) is a state of F(M). For the “only if”
part, assume that for every w ∈ W , s �= g(w). Then, for every w ∈ W , there is
an atomic formula ϕw over V ′ such that s |= ϕw but g(w) |= ¬ϕw. Therefore,
s |= ∧

w∈W ϕw. Moreover, we have for every w′ ∈ W , g(w′) |= ∨
w∈W ¬ϕw, and

hence
∨

w∈W ¬ϕw ∈ ΓM . Consequently, we have s �|= ΓM and hence s is not a
state of F(M). Now the theorem follows from Lemma 1.

What we have seen is how the two ways of modeling in this paper, though
computationally different, are semantically equivalent. This leads us to consider
how their interplay will work in more complex settings. The obvious direction
to probe this is the area where DEL unleashes its full power: We now give an
outlook how knowledge structures can be generalized to action models. They
were first described in [1] and we do not repeat definitions here but refer to
[11] for a textbook treatment. What action models are to Kripke frames, the
following knowledge transformers are to knowledge structures.

Definition 9. A knowledge transformer for a given vocabulary V is a tuple
X = (V +, θ+, O1, . . . , On) where V + is a set of atomic propositions such that
V ∩ V + = ∅, θ+ is a possibly epistemic formula over V ∪ V + and Oi ⊆ V + for
all agents i. An event is a knowledge transformer together with a subset x ⊆ V +,
written as (X , x).

The knowledge transformation of a knowledge structure F = (V, θ,O1, . . . , On)
with a knowledge transformer X = (V +, θ+, O+

1 , . . . , O
+
n ) for V is defined by:

FX := (V ∪ V +, θ ∧ ||θ+||F , O1 ∪O+
1 , . . . , On ∪O+

n )

Given a scene (F , s) and an event (X , x) we define (F , s)(X ,x) := (FX , s ∪ x).

The two kinds of events discussed above fit well into this general definition:
The public announcement of ϕ is the event ((∅, ϕ,∅, . . . ,∅),∅) and the an-
nouncement of ϕ to Δ is given by (({pϕ}, pϕ → ϕ,O+

1 , . . . , O
+
n ), {pϕ}) where

O+
i = {pϕ} if i ∈ Δ and O+

i = ∅ otherwise.

Theorem 4. For any S5 action model there is an equivalent knowledge trans-
former and vice versa.

Proof. Define translations similar to Definitions 7 and 8. Then use Lemma 1.

Finally, Definition 6 can be extended to cover event operators: Let ‖[X , x]ϕ‖F :=

‖θ+x ‖F → ‖ϕ′‖FX where θ+x := θ+
(
x
�
) (V +\x

⊥
)

and ϕ′ := ϕ
(
x
�
) (V +\x

⊥
)
.
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8 Conclusion and Future Work

We have achieved our goal of putting a new engine into DEL by a suitable seman-
tic model transformation. This was shown to work well in various benchmarks,
for example the Muddy Children and Russian cards. But there is obviously more
to be explored now that we know this. In future work we aim to extend our the-
oretical framework and the implementation in different directions.

One line would be to use the same models with richer languages, and see
whether the parallels that we found still persist. For example, action models
with factual change [2] should also be representable as knowledge transformers.
They also motivate a new notion of action equivalence which might help to solve
a problem with action models where bisimulation had to be replaced with the
more complicated notion of action emulation [16].

Another direction would be to extend the framework to other dynamic phe-
nomena such as belief change or preference change which are usually non-S5. For
this we can use the literature on abstraction for transition systems, starting with
the seminal [8]. Moreover, BDDs have already been used to model belief change
in [21]. Also abstraction ideas from the DEL literature could be implemented and
their performance compared, for example the very compact modeling of Muddy
Children in [20] and the mental programs from [6].

But perhaps the deepest issue that we see emerging in our approach is this.
While standard logical approaches to information flow assume a sharp distinction
between syntax and semantic models, our BDD-oriented approach suggests the
existence of a third intermediate level of representation combining features of
both that may be the right level to be at, also from a cognitive viewpoint. We
leave the exploration of the latter grander program to another occasion.

Acknowledgements. ThisworkwaspartiallysupportedbyNSFCgrant61472369
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our anonymous referees for useful comments and suggestions.
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Abstract. Disagreeing with most authors on vagueness, the author pro-
poses a solution that he calls “three-valued plurivaluationism” to the
age-old sorites paradox. In essence, it is a three-valued semantics for a
first-order language with identity with the additional suggestion that a
vague language has more than one correct interpretation. Unlike the tra-
ditional three-valued approach to a vague language, the so-called three-
valued plurivaluationism, so the author argues, can accommodate the
phenomenon of higher-order vagueness. And, unlike the traditional three-
valued approach to a vague language, the so-called three-valued purival-
uationism, so the author argues, can also accommodate the phenomenon
of penumbral connection when equipped with “suitable conditionals”.
The author also shows that this three-valued purivaluationism is a nat-
ural consequence of a restricted form of Tolerance Principle (TR) and a
few related ideas, and argues that (TR) is well-motivated by considera-
tions of how we learn, teach, and use vague predicates.

Keywords: vagueness, sorites paradox, tolerance principle, three-valued
semantics, plurivationism, conditionals.

1 Vague Predicates and the Sorites Paradox

A vague predicate is a predicate that has possible borderline cases, i.e., possible
cases such that it is semantically indeterminate whether or not the predicate
applies. Examples of vague predicates abound in natural languages. Here is just a
short list of examples in English: “bald”, “heap”, “tall”, “red”, “table”, “a small
portion of C” (where C is a class of, say, 50 students), “similar to”, “identical
with”, and so on.

A problem about vague predicates is that they give rise to the sorites paradox.
Let “ai” be a name of someone with i hairs. Then from the apparently plausible
premises “a0 is bald” and “if an is bald, so is an+1, for whatever number n”,
one can infer the absurd conclusion that “a100,000 is bald”. Or, to take another
example from [18], let b0 be me, and suppose that there are n molecules in my
body. Let b0, b1, ..., bn be a sequence of objects each of which is obtained from its
predecessor by replacing one molecule of me with a molecule of scrambled egg,
so that bn is all scrambled egg. Let βi be the statement that “bi−1 = bi”. Then

c© Springer-Verlag Berlin Heidelberg 2015
W. van der Hoek et al. (Eds.): LORI 2015, LNCS 9394, pp. 379–391, 2015.
DOI: 10.1007/978-3-662-48561-3_31



380 W.-F. Wang

each βi, where 1 ≤ i ≤ n, seems to be true. Yet, by n applications of the rule
of transitivity of identity, we reach the absurd conclusion that I am scrambled
egg. From the fact that one can “prove” almost everything s/he wants to prove
by a sorties argument, of course we should conclude that some of these sorites
arguments must be unsound. However, it has been proved very difficult both to
pinpoint the problem(s) of these arguments and to give a plausible explanation
of why we are taken in.

In the past 40 years, philosophers have witnessed a bunch of theories aiming
at solving the sorites paradox1. A benefit/cost analysis of even a small portion
of these theories will be an impossible task for a short paper like the present
one. This paper suggests that we start from scratch to re-think about how we
learn, teach, and use vague predicates and hopes that we will gain some insights
from such an inspection.

2 Start from Scratch

Before we start, however, let me give a few preliminary comments. In the very
beginning of this paper, I defined “a vague predicate” to be a predicate “hav-
ing possible borderline cases”, but why possible cases? Why not define a vague
perdicate in terms of its actual borderline cases? Here is the reason. If we call
a predicate “vague” only when it actually has some borderline cases, then some
predicates that are intuitively vague will not be “vague” in the defined sense,
and this seems undesirable. For example, if we define an F-snail to be a snail
that walks much faster than most slow turtles, then intuitively this notion of F-
snails is a vague one so long as notions of much faster than, most, and slow are.
Yet, surely nothing in the world is an F-snail (or, if this is not the case, replace
the word “turtle” by “panther”), so there is no actual borderline case for this
intuitively vague predicate. As a result, the notion of F-snails turns out not to
be “vague” in the new, defined sense, and this seems undesirable. Here is another
example. If we define a baldsome male to be a male who is both very bald and
very handsome, then, again, intuitively this notion of baldsome males is a vague
one so long as both the notion of very bald and that of very handsome are. How-
ever, it may happen that there are a few men that are clearly both very bald and
clearly very handsome while all others are either clearly not-very-bald (though
some of them may be vaguely very handsome) or clearly not-very-handsome
(though some of them may be vaguely very bald), so there will be, in this case,
no actual borderline case for this intuitively vague predicate.2 As a result, the

1 To name just a few: epistemicism proposed by [3], [2], [28], and [23], gap theories
proposed by [8] and [13], glut theories proposed by [18] and [10], supervaluationism
proposed by [6], [14], [11], [4], [19], [1], and [12], fuzzy theories proposed by [17] and
[22], plurivaluationism proposed by [27] and [16], and contextualist theories proposed
by [25], [20], [5], and [21].

2 On the other hand, it is not clear that predicates like “bald but not self-identical”,
“bald or self-identical”, and “tall or greater-than-or-equal-to exactly four feet in
height” are vague predicates, for it is impossible for these predicates to have border-
line cases.
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notion of baldsome males turns out not to be “vague” in the new, defined sense
either, and this seems equally undesirable. So, if we want to characterize vague
predicates as predicates having borderline cases, it seems better that we take
into account all possible cases as well as all actual ones of these predicates. Or,
I may even put things in this way: what I will call “the extension” of a vague
predicate in this paper may be called by other philosophers its “intension”, but I
don’t think that there will be anything important that hinges on this difference.

There are different kinds of vague predicates; especially, there are primitive
ones as well as defined ones, and, among each category, there are perceptual
ones as well as non-perceptual ones. So which ones will I be talking about in this
paper? I intend the semantics proposed in sections 3 and 4 to be applicable to
vague predicates in general, but I will restrict my discussion in this section to
primitive ones to make my exposition simpler. As examples of primitive vague
predicates, I take “red”, “bald”, “soft” (these are vague perceptual predicates),
“a small portion of C” (where C is a class of 50 students), and “identity” (these
are non-perceptual ones). Examples of non-primitive vague predicates include,
on the other hand, “4-tall” (exactly 4 feet in height or is tall), “baldsome”
(very bald but very handsome), and “F-snails” (snails that walks much faster
than most slow turtles). If you think that some of these examples are wrongly
classified, be my guest to adjust the classification by yourself. Again, I do not
think that there will be anything important that hinges on the choice.

The notion of F-relevant respects of a vague predicate F will play an important
role in what follows, so we’d better get a good grip of it now. Let me begin with
the notion of determination. A set of respects (properties or relations) R1, ..., Rn

determines a certain respect R (property or relation) iff, for all possible objects
(or sequences of possible objects) α and β, it is necessarily the case that if α and
β are exactly the same with respect to R1, ..., Rn then they are exactly the same
with respect to R (and so the two sentences “Ra” and “Rb” will have the same
truth value (either both are true, or both are false, or both are neither), where
“a” and “b” are names of α and β (or are sequences of names of objects in α and
β)). It can easily be proved that if a set S of respects determines a respect R,
so does any superset S′ of S, so the notion of determination is not a very useful
one. For the purpose of defining “F-relevant respects” of a vague predicate F,
we need a tighter notion than that of determination: m-determination (short for
“minimal determination”). A set S of respects (properties or relations)R1, ..., Rn

m-determines a certain respect R (property or relation) iff (a) S determines R,
and (b) for any set T = {R′

1, ..., R
′
m} that also determines R, the set T “entails”

the set S in the sense that, for any possible object (or sequence of possible
objects) α, it is necessarily true that if α has every respect in T then it also has
every respect in S. An F-relevant respect of a vague predicate F is then a respect
in any set S that m-determines whether something is F. Given this definition of a
relevant respect of a vague predicate, it is easy to see that even a primitive vague
predicate, such as “red”, may have multiple relevant respects, such as hue, value,
and chroma. A semantically primitive vague predicate may therefore stand for
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an ontologically complex property, i.e., a property whose existence ontologically
depends on the existence of several simpler properties.

With these preliminaries in mind, we are now in a position to investigate
how we learn, teach, and use vague predicates. In general, I believe that the
following story is a rough but faithful picture about how we learn and teach vague
predicates. When learning or teaching how to use a primitive vague predicate
F, we do so by means of ostension (what else can we do?), i.e., by giving or
by being given examples or “paradigms”, both positive and negative ones, of F.
Moreover, some paradigms are introduced explicitly by pointing to them or by
showing them, while others are introduced implicitly by hints or by implicatures.
For examples, we may point to a few heads and call them “bald”, at the same
time implicitly implying or implicating that heads with fewer hairs or heads
whose numbers of hairs are between those of the paradigms are also paradigms
of bald heads. Another example: we may illustrate the use of “a small portion
of C”, where C is a class of 50 students, by saying loud that “a subset of C with
5 or less members is a small portion of C”, at the same time implicitly implying
or implicating that a set of C with 45 or more members are negative paradigms
of the predicate. Because we all teach and learn a primitive vague predicate
F in this standard ostensive way, each competent speaker of F, i.e., one who
understands how to use F correctly, will have both some positive paradigms
and some negative paradigms of F in his or her mind. Moreover, it seems that
nothing in the process of teaching and learning F can be both a positive and a
negative paradigm of F on pain of confusion.

However, in order for the teaching and learning process of a vague predicate
F to be successful, the difference in F-relevant respects between any positive
paradigm and any negative paradigm of F must be “salient” to the learner.
Otherwise, it is hard to imagine how the learner can even re-identify a positive
(or negative) paradigm of F as a positive (or negative) paradigm of F again, let
alone has an idea about how to make further applications of the predicate F. We
say that two paradigms of F differ saliently in F-relevant respects to a subject S
in an occasion O iff the overall dissimilarity between them in F-relevant respects
is easily observable for S in O or is intellectually significant for S in O. The
requirement that it is easily observable for S in O is tailored especially for vague
perceptual predicates, such as “red”, so that, according to this requirement, the
overall difference in red-relevant respects between a paradigm red patch and a
paradigm not-red one must be easily observable to the learner when the predicate
is learned. The requirement that it is intellectually significant for S in O, on the
other hand, is tailored especially for non-perceptual vague predicates, such as
“is a small portion of C”, so that, according to this requirement, the overall
difference in a-small-portion-of-C-relevant respects between, say, a 5-membered
subset of C and a 45-membered subset of C must be intellectually significant to
the learner, and presumably the intellectual significance in this case may simply
consist in the fact that the difference between the ratios of the two subsets to C
is close to 1 or at least much greater than a half.
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So far, there is no guarantee that two competent speakers of a vague predicate
F will have any common positive paradigm or any common negative paradigm
in their minds, and this seems to make the publicity of a vague language prob-
lematic. Fortunately, because people have roughly, though not exactly, the same
perceptual and intellectual capacities, and also because many positive and nega-
tive paradigms of a vague predicate F are implicitly introduced when teaching or
learning F, all competent speakers of F ultimately share at least some common
paradigms, both positive and negative ones, of F in their minds. This is not
to deny that the perceptual and intellectual capacities that one has differ from
person to person and from occasion to occasion. But this fact should not lead us
to overlook another equally important fact that our perceptual and intellectual
capacities are very similar after all. (Another important fact about our percep-
tual and intellectual capacities is this: we are all limited creatures; our abilities
of discernment and our intellectual swiftness and astuteness are all very limited,
so that, for example, no one can really discriminate a large number of “border-
line shades of colors” between a positive paradigm and a negative paradigm of
redness. I will not emphasize this important fact here, but I will come back to
it when I consider the problem of “gradual transition” in next section.) Thus,
if it makes sense at all to assign an extension F+ and an anti-extension F− to
a vague predicate F, at least these common positive paradigms of F should be
included in the extension F+, and at least these common negative paradigms of
F should be included in the anti-extension of F−. And, from what we have said
two paragraphs ago, it is also reasonable to assume that these two extensions of
a vague predicate are mutually exclusive.

As I see it, the most distinguished feature of any vague predicate, in contrast
with a precise predicate, is the existence of a “sorites sequence” for the predicate:
for any occasion O and any two paradigms a1 and an of a vague predicate F,
and for any competent speaker S of F, there always is a sequence of possible
cases < a1, ..., an > between a1 and an such that any two adjacent cases in the
sequence are “very similar” to S in F-relevant respects in O in the sense that
the overall dissimilarity in F-relevant respects between them is not observable
or is intellectually insignificant for S in O.3 Now, a vague predicate F must
allow its competent users to be able to apply and re-apply it, not only to those
positive and negative paradigms that are introduced in the learning and teaching
process, but also to possible cases beyond these paradigms (this is also true of
most precise predicates), otherwise, it will not be a vague predicate at all but
belongs to a very special kind of precise predicates. (Consider Fine’s example:

3 This feature does not seem to me to be owned by any precise predicate, perhaps be-
cause the F-relevant respects of a precise predicate F are just those respects specified
in the definition of F, so everything falling within F differs saliently, observationally
or intellectually, in F-relevant respects from everything falling out of F. (Consider
the case of the precise predicate “is an even number”. ) As a result, even if one can
fine a sequence of possible cases < a1, ..., an > between a positive paradigm a1 and
a negative one an such that any two adjacent cases in it are very similar in some
respects, there still will be two adjacent cases in the sequence that differ saliently in
F-relevant respects.
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a number is an F if it is smaller than or equal to 13 and is not an F if it is
greater than or equal to 15. Defined in this way, this predicate F will have no
further possible application beyond those paradigms that are introduced in this
definition, but it will not be regarded as a vague predicate by most philosophers
either.) For precise predicates, the possibility of further applications is given by
their definitions. But this is obviously not the case for primitive vague predicates.
So, by what rule (or rules) does a competent speaker of a vague predicate F
extend its use to cases other than those introduced in the learning process? To
this question, I suggest4 the following answer: every competent speaker S of a
vague predicate F tacitly accepts the following “restricted tolerance principle”
(TR):

(TR): If it is correct for a subject S to classify x as a member of F+ (or
F−) in an occasion O and y and x are “very similar” for S in O, then
it is also correct for S to classify y as a member of F+ (or F−) in O, so
long as, after so classified, the difference in F-relevant respects between
any member of F+ and any member of F− remains observationally or
intellectually salient for S in O.

In short, I believe that the following statements 1-7 jointly constitute a roughly
true story about how we learn, teach and use primitive vague predicates:

1. We learn and teach how to use a vague predicate F by ostension. Some
paradigms of F are introduced explicitly by pointing to them or by showing
them, while others are introduced implicitly by hints or by implicatures.

2. Due to the way we learn and teach a vague predicate F, each competent
speaker of F will have in mind some positive paradigms and some negative
paradigms of F.

3. For any competent speaker of F, the difference in F-relevant respects be-
tween any positive paradigm and any negative paradigm of F must be either
perceptually or intellectually salient.

4. We have roughly, though not exactly, the same perceptual and intellectual
capacities.

5. Due to facts 1 and 4, all competent speakers of a vague predicate F share at
least some common positive paradigms that belong to the extension F+ of

4 I do not just suggest (TR), but also think that it is supported by at least three
arguments. First, not only is (TR) true of vague predicates, it is also true of precise
predicates if we interpret “very similar” in it as “having or lacking the same defining
properties”. So (TR) seems to be a principle for predicates in general. Second, (TR)
is a logically weaker principle than Wright’s tolerance principle (T): If it is correct
for S to classify x as a member of F+ (or F−) in O and y and x are “very similar” in
F-relevant respects, then it is also correct to classify y as a member of F+ (or F−) in
O. So evidences for (T) are automatically evidences for (TR), and [29] did provide
a few good evidences for (T). Finally, I believe that (TR) can better explain, while
(T) cannot, the phenomenon that is found in the “forced march sorites paradox” [9],
but I will leave the justification of this explanatory power of (TR) to another paper
due to its complicated nature.
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F and some common negative paradigms that belong to the anti-extension
F− of F.

6. For any occasion O and any two paradigms a1 and an of a vague predicate F,
and for any competent speaker S of F, there always is a sequence of possible
cases < a1, ..., an > between a1 and an such that any two adjacent cases
in the sequence are “very similar” to S in F-relevant respects in O in the
sense that the overall dissimilarity in F-relevant respects between them is
not observable or is intellectually insignificant for S in O.

7. Every competent speaker S of a vague predicate F tacitly accepts the re-
stricted tolerance principle (TR): If it is correct for a subject S to classify x
as a member of F+ (or F−) in an occasion O and y and x are “very similar”
for S in O, then it is also correct for S to classify y as a member of F+ (or
F−) in O, so long as, after so classified, the difference in F-relevant respects
between any member of F+ and any member of F− remains observationally
or intellectually salient for S at O.

However, if statements 1-7 are correct, then it follows that:

8. For any vague predicate F, F+∪F− is not equal to the set of everything that
the predicate F can meaningfully apply, for any competent speaker S of F.

9. Due to 4 and 7, the extension F+ and the anti-extension F−of F may be
different for different competent speakers of F, though there is a common
“core” for all competent speakers.

10. Although 9, so long as one’s assignment of F+ and F− to F obeys (TR) and
some other “natural restrictions”, his or her interpretation of F is correct.

11. Due to 8, a correct interpretation of a vague language L must be a three-
valued interpretation and there seems to be no reason for having more than
three values. Due to 10, there can be more than one correct interpretation
of a vague language L.

3 Let’s Get a Bit Formal

Let L be a first-order language with identity sign, vague predicates, and connec-
tives “¬”, “∧” and “∨”. A model M=<DM , VIM , vM> for L is a triple that
satisfies the following conditions:

1. DM is a non-empty set.
2. VIM is a subset of DM

2, where (i) for any < α, β > that belongs to VIM , α is
not the same as β, (ii) if < α, β > belongs to VIM , so does < β, α >, and (iii)
if < α1, ..., αi−1, α, αi+1, ..., αn >∈FM

+ while< α1, ..., αi−1, β, αi+1, ..., αn >
∈FM

− for some n-place predicate F, < α, β > �∈ VIM .
3. vM assigns to each constant of L a member of DM to be its value and

assigns to each n-place predicate F a pair of sets <FM
+, FM

−> of n-tuples
of members of DM such that FM

+∩FM
−= ∅

Intuitively, VIM specifies a relation of “vague identity” that is both irreflexive
and symmetric on the domain DM and never invalidates Leibiz’s Law. Given
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a model M , we define the concept of true-in-M (vM (A) = 1 in symbol), that
of false-in-M (vM (A) = 0 in symbol), and that of neither-true-nor-false-in-M
(vM (A) = n in symbol) in the usual way:

1. vM (Fc1...cn) = 1 if < vM (c1), ..., vM (cn) > belongs to FM
+. vM (Fc1...cn) =

0 if < vM (c1), ..., vM (cn) > belongs to FM
−. Otherwise, vM (Fc1...cn) = n.

2. vM (c1 = c2) = 1 if vM (c1) = vM (c2). vM (c1 = c2) = n if < vM (c1), vM (cn) >
belongs to VIM . Otherwise, vM (c1 = c2) = 0.

3. Truth-values of compound sentences are determined by the following strong
K3 charts:

p ¬p
1 0
n n
0 1

∧ 1 n 0
1 1 n 0
n n n 0
0 0 0 0

∨ 1 n 0
1 1 1 1
n 1 n n
0 1 n 0

4. vM (∀xiφ) = 1 if vM (φ(ci)) = 1 for every constant ci. vM (∀xiφ) = 0 if
vM (φ(ci)) = 0 for some constant ci. Otherwise vM (∀xiφ) = n. (For simplic-
ity, we assume that everything in the domain has a name.)

Again, the notion of validity is defined in the usual way: an argument is valid iff
it preserves truth-in-M for every model M .

However, the present approach differs frommost semantic theories of vagueness
in that it proposes that there is more than one correct (or intended) interpretation
of a vague language L, all of which differ only in how vague predicates are to be
interpreted. According to what we have said in the previous section, while these
intended interpretations may differ in assigning different pairs<FM

+, FM
−> to a

vague predicate F, these different pairs nevertheless share a “common core”. Now,
let S be the set of all correct interpretations of a vague languageL, it is plausible to
assume (call this “Assumption (A)”) that S is closed under the following relation:

Assumption (A): Let A and B be any sentences of L. If there is a model
M ∈S s.t. vM (A) = n and there is a model M ′ ∈S s.t. vM ′(B) = n, then
there is a model M∗ ∈S s.t. vM∗(A) = vM∗(B) = n.

In words: if it is correct to classify A as a borderline sentence and it is also correct
to classify B as a borderline sentence, then it is correct both to classify A and B
as borderline sentences. For the record, I also list below two more assumptions
about the set S of all correct interpretations of a vague language L:

Assumption (B): For any atomic sentence A, if there is a model M ∈S
s.t. vM (A) �= 1 and there is a model M ′ ∈S s.t. vM ′(A) �= 0, then there
is a model M∗ ∈S s.t. vM∗(A) = n.

Assumption (C): The cardinality of S is some finite number. (Or, at least,
for any vague predicate F, there are only finite numbers of subsets of S
such that the difference in the assignment to F between any two members
of the same subset is perceptually or intellectually indistinguishable to
everyone.)
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Assumption (B) says that, in terms of the terminologies that I am about to in-
troduce, if an atomic sentence is neither true simpliciter nor false simpliciter,
then it is correct to interprete it as having no truth value, and I think that it
is wholly justified by what we have said in the previous section. As to Assump-
tion D, I think it can also be justified by the fact that our discriminatory and
intellectual powers are very limited.

Given a vague language L and the set S of all its correct interpretations, we
can define the notions of “true simpliciter” and “false simpliciter” as follows:

A sentence is true simpliciter, iff it is true-in-M for every M in S.
A sentence is false simpliciter, iff it is false-in-M for every M in S.

Borderline sentences are then sentences that are neither true simpliciter nor false
simpliciter. (For a further classification of borderline sentences, see below.)

Notice that, even though the definition of the notion of truth simpliciter (or
falsity simpliciter) is similar to that of the notion of supertruth (or superfalsity)
of supervaluationism, these two notions differ significantly in at least two re-
spects. First, the former does not, while the latter does, appeal to the notion of
a classical precisification of a three-valued model for its definition. Second and
more importantly, with Assumption (A) and (B), we can prove that all operators
that we have met so far are truth-functional in the sense that, e.g., a disjunction
is true simpliciter iff one of its disjunct is true simpliciter. (The proof is left as
an exercise to readers.5) As a further result, the definition of truth (or falsity)
simpliciter given here does not, while the notion of supertruth (and superfalsity)
does, suffer from the problem of missing witness. For example, with Assumption
(A) and (B) in hands, we can show that an existential statement is true sim-
pliciter iff one of its instance is true simpliciter and that a conjunction is false
simpliciter iff one of its conjunct is false simpliciter.

We can make a further distinction among borderline sentences if we want to.
It may or may not happen that a borderline sentence is neither-true-in-M -nor-
false-in-M for everyM of S. When it happens in this way, we call such a sentence
“a pure borderline sentence” and the object it mentions “a pure borderline case”
of the vague predicate. We say that the kind of vagueness that these sentences
and cases have is first-order. However, it may also happen that a borderline
sentence is true-in-M for some but not all M of S, or false-in-M for some but
not all M of S, or both. When a sentence is true-in-M for some but not all M of
S, or false-in-M for some but not all M of S, or both, we call such a sentence “an
impure borderline sentence” and the object it mentions “an impure borderline
case”. We also say that the kind of vagueness that these sentences and cases have
is higher-order. Of course, we can make a further distinction among sentences of
higher-order vagueness according to their fate in the set S, but there is no need
to pursue this line of thought here.

5 I briefly indicate how the proof should go here. With the help of Assumption (A), one
can prove by induction that Assumption (B) is true not only for atomic sentences
but for all sentences in general. With this general result and Assumption (A) in
hands, one can then easily prove that a disjunction is true simpliciter iff one of its
disjuncts is true simpliciter.
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The following, then, is my formal “solution” to the sorites paradox, and I
suggest the name “three-valued plurivaluationism” for it. In short, three-valued
plurivaluationism asserts that a vague language L has more than one correct
three-valued interpretation, and it diagnoses the fallacy of a paradoxical sorites
argument as follows: in each correct interpretation M of L, there is a premise in
the sorites argument that is neither-true-nor-false-in-M ; so one of the premises
of the sorites argument is not true simpliciter. The argument is still valid, as
one can easily verify, but it is unsound. Why are we taken in by a paradoxical
sorites argument? Traditionally, the reply to this question from a three-valued
theorist is mainly this: even though one of its premises is not true simpliciter,
none of its premises are false simpliciter either. Because none of the premises of
a paradoxical sorites argument is false simpliciter, we are thereby led to think
that all of them are true simpliciter, and this is how we are taken in. A three-
valued plurivaluationist would agree with this reply, but s/he would also add
to it: we are led to take the premises of a paradoxical sorites argument to be
true, not only because none of them is false simpliciter, but also because they
are often true-in-M in some, perhaps even in many or most though not in all,
correct interpretation M .

4 Objections and Replies

There are two main objections to a three-valued solution to the sorites paradox.
First, it may be argued that a three-valued solution overlooks what [6] called
the phenomenon of “penumbral connection”: logical relations exist between bor-
derline sentences, as illustrated by the following “intuitively true sentences”:
“Every head is either bald or not bald”, “No head is both bald and not bald”,
“Every head is such that if it is bald then it is bald, and if it is bald then it
is either bald or shining”. But this penumbral connection, says the objector,
is missing in a standard three-valued semantics. Second, it may be said that a
three-valued solution faces what [22] called “the jolt problem”: vague predicates
force a “gradual transition” from truth to falsity, but such a gradual transition
cannot be accommodated in a three-valued semantics. I’ll begin with the second
objection first.

It is not clear to me that a three-valued semantics cannot accommodate a
gradual transition from truth to falsity. After all, there are different orders, i.e.,
first-order and higher-order, of vagueness between truth and falsity as we have
seen, so that one cannot directly jump from truth to falsity without passing by
all these intermediate borderline sentences. But a three-valued plurivaluationist
can actually do better than just having a few intermediaries between truth and
falsity. Let S be the set of all correct interpretations of a vague language L.
Let SA+ (SA−) be the subset of S containing all and only those models such
that A is true (false) in them. We define the degree of closeness to truth (or
to falsity) of a sentence A c+(A) (or c−(A)) simply as |SA+|/|S|(or|SA−|/|S|).
By these definitions, every sentence A will receive a pair of rational numbers
<c+(A), c−(A)> between 0 and 1 that measure its degree of closeness to truth
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and its degree of closeness to falsity separately. A first-order vague sentence A
will then be one such that c+(A)=c−(A)=0, while a higher-order vague sentence
may receive any rational number between 0 and 1 as its degree of closeness
to truth (or to falsity). This already gives us both a gradual transition from
truth to pure borderline cases and a gradual transition from the latter to falsity.
However, if one insists that we should have a unique number for “the degree
of truth” of a sentence, we may define the degree of truth* of a sentence A to
be (1+c+(A)-c−(A))/2. By this final definition (or any other equally plausible
definition), three-valued plurivaluationism will then allow sentences to have a
gradual transition from truth* of degree 1 (positive cases) to truth* of degree
0, i.e., falisity* (negative cases). Either way, we will have an explanation of
why some people, such as Smith, think that vague predicates force a gradual
transition from truth to falsity. (Thank Assumption C, we don’t need to worry
about the troublesome possibility that |S| may be an infinite cardinal number.)

Turning now to the problem of penumbral connection, the first thing to notice
is that what seems to be a datum for penumbral connection to Fine may not
seem so to other philosophers. As Smith points out in [21] p.86:6

...Consider ‘red’. If one indicates a point on a rainbow midway between
clear red and clear orange and asks an ordinary speaker the following
questions, then in my experience the responses are along the lines indi-
cated:
– “Is the point red?” Umm, well, sort of.
– “Is the point orange?” Umm, well, sort of.
– “But it’s certainly not red and orange, right?” Well, no, it sort of is

red and orange.
– “OK, well it’s definitely red or orange, right?” No, that’s what I’ve

been saying, it’s a bit of both, the colours blend into one another.
These reactions fit with the recursive assignments of truth values, not
the supervaluationist assignments.

The right thing to conclude from these remarks, I think, is that some of
the claimed data for penumbral connection, especially those involving truth-
functional connectives, are not genuine data at all. But this is not to deny that
some data are still genuine, especially those involving conditionals, such as “Ev-
ery head is such that if it is bald then it is bald” and “Every head is such that if it
is bald then it is either bald or shining”. However, the fact that these conditionals
are indeed true shows only that the connective “if ... then ...” should, as many
philosophers think it should, be construed as a non-truth-functional connective
for a theorist who prefers a three-valued treatment of a vague language.

[24] and [15] have proposed a very popular way of treating the connective
“if ... then ...” as a non-truth-functional connective. According to this line of
treatment, a conditional “if A then B” asserts that, to simplify a bit, every closest
A-world is also a B-worlds. Following this line of thought, we can define a model
for a vague language L to be a 5-tuple <WM , DM , fM , VIM , vM>, where WM

6 I also found such a reaction in [26].
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is a non-empty set of possible worlds and fM is a selection function from a world
and a sentence (or a proposition) to a set of worlds satisfying a few conditions.
What kind of logic we will have for conditionals will then depend on the formal
properties we put on the selection function fM . In most semantic systems that
have been proposed, sentences of the forms “If A then A” and “If A then A or B”
are valid, as desired. However, here is another simpler suggestion: we may take
a conditional to be a claim not in the object language but in the meta-language,
so leave the object language L intact. According to this suggestion, a meta-claim
“if A then B” (“A → B” in symbol) is true simpliciter (or false simpliciter) iff
SA+ is a subset of SB+ (or a subset of SB−). Otherwise, “A→ B” is a borderline
sentence. Either way, we will have the desired penumbral connection.
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Abstract. In this paper, we propose a single-agent modal logic frame-
work for reasoning about goal-direct “knowing how” based on ideas from
linguistics, philosophy, modal logic and automated planning. We first de-
fine a modal language to express “I know how to guarantee ϕ given ψ”
with a semantics not based on standard epistemic models but labelled
transition systems that represent the agent’s knowledge of his own abil-
ities. A sound and complete proof system is given to capture the valid
reasoning patterns about “knowing how” where the most important ax-
iom suggests its compositional nature.

1 Introduction1

1.1 Background: Beyond “Knowing That”

Von Wright and Hinttika laid out the syntactic and semantic foundations of
epistemic logic respectively in their seminal works [1] and [2]. The standard pic-
ture of epistemic logic usually consists of: a modal language which can express
“an agent knows that ϕ”; a Kripke semantics incarnates the slogan “knowl-
edge (information) as elimination of uncertainty”; a proof system syntactically
characterizes a normal modal logic somewhere between S4 and S5 subjective to
different opinions about the so-called introspection axioms. Despite the suspi-
cions from philosophers in its early days, the past half-century has witnessed the
blossom of this logical investigation of propositional knowledge with applications
in epistemology, theoretical computer science, artificial intelligence, economics,
and many other disciplines besides its birth place of modal logic.2

However, the large body of research on epistemic logic mainly focuses on
propositional knowledge expressed by “knowing that ϕ”, despite the fact that
in everyday life knowledge is expressed by also “knowing how”, “knowing why”,
“knowing what”, “knowing whether”, and so on (knowing?X below for brevity).

� The author thanks Frank Veltman for his insightful comments on an earlier version
of this paper. The author is also gratful to the support from NSSF key projects
12&ZD119 and 15AZX020.

1 To impatient technical readers: this rather philosophical introduction will help you
to know how the formalism works in the later sections. A bit of philosophy can lead
us further.

2 For an excellent survey of the early history of epistemic logic, see [3, Chapter 2]. For
a contemporary comprehensive introduction to its various topics, see [4].
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Linguistically, these expressions of knowledge share the common form consisting
of the verb “know” followed by some embedded questions.3 It is natural to
assign a high-level uniform truth condition for these knowledge expressions in
terms of knowing an answer of the corresponding question [6]. In fact, in the
early days of epistemic logic, Hinttika has elaborate discussions on knowing?X
and its relation with questions in terms of first-order modal logic [2], which also
shapes his later work on Socratic Epistemology [7]. For example, “knowing who
Frank is” is rendered as ∃xK(Frank = x) in [2]. However, partly because of
the then-infamous philosophical and technical issues regarding the foundation
of first-order modal logic (largely due to Quine), the development of epistemic
logics beyond “knowing that” was hindered.4 In the seminal work [10], the first-
order epistemic logic is just briefly touched without specific discussion of those
expressions using different embedded questions. A promising recent approach is
based on inquisitive semantics where propositions may have both informative
content and inquisitive content (cf. e.g.,[11]). An inquisitive epistemic logic which
can handle “knowing that” and “knowing whether” is proposed in [12].

Departing from the linguistically motivated compositional analysis on know-
ing?X, some researchers took a knowing?X construction as a whole, and in-
troduce a new modality instead of breaking it down by allowing quantifiers,
equalities and other logical constants to occur freely in the language [13,14,15].
For example, “knowing what a password is” is rendered by “Kv password” in [13]
instead of ∃xK password = x, where Kv is the new modality. This move seems
promising since by restricting the language we may avoid some philosophical
issues of first-order modal logic, retain the decidability of the logic, and focus on
special logical properties of each particular knowing-?X construction at a high
abstraction level. A recent line of work results from this idea [16,17,18,19,20].
Besides the evident non-nomality of the resulting logics,5 a ‘signature’ technical
difficulty in such an approach is the apparent mismatch of syntax and seman-
tics: the modal language is relatively weak compared to the models which contain
enough information to facilitate a reasonable semantics of knowing?X, and this
requires new techniques.

3 There is a cross-lingual fact: such knowing?X sentences become meaningless if the
verb “know” is replaced by “believe”, e.g., I believe how to swim. This may shed some
shadow on philosophers’ usual conception of knowledge in terms of strengthened
belief. Linguistically, this phenomenon occurs to many other verbs which can be
roughly categorized using factivity, cf., e.g, [5].

4 Nevertheless Hintikka addressed some of those issues about first-order modal logic
insightfully in the context of epistemic logic, see, e.g., a wonderful survey paper [8].
Many of those issues are also elegantly addressed in intensional first-order modal
logic cf. e.g., [9].

5 For example, knowing whether p → q and knowing whether p together does not
entail knowing whether q. Likewise, knowing how to p and knowing how to q does
not entail knowing how to p ∧ q. Moreover, you may not know why a tautology is a
tautology which contradicts necessitation.
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1.2 Knowing How

Among all the knowing?X expressions, the most discussed one in philosophy
and AI is “knowing how”. Indeed, it sounds the most distant from propositional
knowledge (knowledge-that): knowing how to swim seems distinctly different
from knowing that it is raining outside. One question that keeps philosophers
busy is whether knowledge-how (the knowledge expressed by “knowing how”)
is reducible to knowledge-that. Here philosophers split into two groups: the in-
tellectualists who think knowledge-how is a subspecies of knowledge-that (e.g.,
[21]), and the anti-intellectuallists who do not think so (e.g., [22]). The anti-
intellectualism may win your heart at the first glance by equating knowledge-how
to certain ability, but the linguistically and logically well-versed intellectualists
may have their comebacks at times (think about the previously mentioned inter-
pretation of knowing?X as knowing an answer).6 In AI, starting from the early
days [24,25,26], people have been studying about representation and reasoning
of procedural knowledge which is often treated as synonym for knowledge-how in
AI, in particular about knowledge-how based on specifiable procedures such as
coming out of a maze or winning a game. However, there is no common consensus
on how to capture the logic of “knowing how” formally (cf. the excellent surveys
[27,28]). In this paper we presents an attempt to formalize an important kind of
“knowing how” and lay out its logic foundation, inspired by the aforementioned
perspectives of linguistics, philosophy, and AI.

Some clarifications have to be made before mentioning our ideas and their
sources:

– We will focus on the logic of goal-direct “knowing how” as Gochet puts it
[27], such as knowing how to prove a theorem, how to open the door, how
to bake a cake, and how to cure the disease, i.e., linguistically, mainly about
knowing how followed by a achievement verb or an accomplishment verb
according to the classification of Vendler [29].7 On the other hand, we will
not talk about the following “knowing how”: I know how the computer works
(explanation), I know how happy she is (degree of emotion), I know how to
speak English (rule-direct) and so on.

– The goal of this paper is not to address the philosophical debate between
intellectualism and anti-intellectualism which we did discuss in [30,31]. How-
ever, to some extent, we are inspired by the ideas from both stands,

6 See [23] for a survey of the debate. A comprehensive collection of the related papers
(200+) can be found at http://philpapers.org/browse/knowledge-how, edited by
John Bengson.

7 Here knowing how to maintain something or to do an activity (like swimming) are
not typical examples for our treatment, although we hope our formalism captures
some common features shared also by them. As discussed in [27], “knowing how”
plus activities, though more philosophically interesting, is less demanding in logic
rendering than others.

http://philpapers.org/browse/knowledge-how
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and combine them in the formal work which may in turn shed new light on
this philosophical issue. 8

– We focus on the single-agent case without probability, as the first step.

1.3 Basic Ideas Behind the Syntax and Semantics

Different from the cases on “knowing whether” and “knowing what”, there is
nothing close to a consensus on what would be the syntax and semantics of
the logic of “knowing how”. Various attempts were made using Situation Cal-
culus, ATL, or STIT logic to express different versions of “knowing how”, cf.
e.g., [26,32,33,34,35,27]. However, as we mentioned before, we do not favour a
compositional analysis using powerful logical languages. Instead, we would like
to take the “knowing how” construction as a single (and only) modality in our
language. It seems natural to introduce a modality Khϕ to express the goal-
direct “knowing how to achieve the goal ϕ”. It sounds similar to “having the
ability to achieve the goal ϕ”, as many anti-intellectualists would agree. It seems
harmless to go one step further as in the AI literature to interpret this type of
“knowing how” as that the agent can achieve ϕ. However, it is crucial to note
the following problems of such an anti-intelectualistic ability account:

1. Knowing how to achieve a goal may not entail that you can realize the goal
now. For example, as intellectualists would remark, a broken-arm pianist
may still know how to play piano even if he cannot play right now, and a
chef may still know how to make cakes even when the sugar is run out (cf.
e.g., [21]).

2. Even when you have the ability to win a lottery by luckily buying the right
ticket (and indeed win it in the end), it does not mean you know how to win
the lottery, since you cannot guarantee the result (cf. e.g., [36]).

To reconcile our intuition about the ability involved in “knowing how” and the
first problem above, it is observed in [30] that “knowing how” expressions in
context often come with implicit preconditions.9 For example, when you claim
that you know how to go to the city center of Taipei from the airport, you are
talking about what you can do under some implicit preconditions: e.g., the public
transportation is still running or there is no strike of the taxi drivers. Likewise,
it sounds all right to say that you know how to bake a cake even when you
do not have all the ingredients right now: you can do it given you have all the
ingredients. In our logical language, we make such context-dependent precondi-
tions explicit by introducing the modality Kh(ψ, ϕ) expressing that the agent
knows how to achieve ϕ given the precondition ψ.10 Actually, we used a similar

8 Our logic is more about knowing how than knowledge-how though they are clearly
related and often discussed interchangeably in the philosophy literature. The full
nature of knowledge-how may not be revealed by the inference structure of the
linguistic construction of knowing how.

9 Such conditions are rarely discussed in the philosophical literature of “knowing how”
with few exceptions such as [37].

10 By using the condition, one can be said to know better how to swim than another
if he can do it in a more hostile environment (thus weakening the condition) [30].
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conditional knowing what operator in [17] to capture the conditional knowledge
such as “I would know what my password for this website is, given it is 4-digit”
(since I only have one 4-digit password ever).11 In [17], this conditionaliztion is
proved to be also useful to encode the potential dynamics of knowledge. We will
come back to this at the end of the paper.

Now, to reconcile the intuition of ability with the second problem above, we
need to interpret the ability more precisely to exclude the lucky draws. Our
main idea comes from conformant planning in AI which is exactly about how to
achieve a goal by a linear plan which can never fail given some initial uncertainty
(cf. e.g., [39]). For example (taken from [40,41]), consider the following map of
a floor, and suppose that you know you are at a place marked by p but do not
know exactly where you are. Do you know how to reach a safe place (marked by
q)? Note that the marks are only on the map.

Example 1.

s6 s7 : q s8 : q

s1 r �� s2 : p r ��

u

��

s3 : p r ��

u

��

s4 : q r ��

u

��

s5
�

�
� � � � � � �

�
�

�� ���
�� � � � � � �� �

It is not hard to see that there exists a plan to guarantee your safety from any
place marked by p, which is to move r first then move u. On the contrary, the
plan rr and the plan u may fail sometimes depending on where you are actually.
The locations in the map can be viewed as states of affairs and the labelled
directional edges between the states can encode your own “knowledge map”
of the available actions and their effects.12 Intuitively, to know how to achieve
ϕ requires that you can guarantee ϕ. Consider the following examples which
represent the agent’s knowledge about his own abilities.

Example 2.

s2 b �� s4 : q

s1 : p
a��

�����

a
��

�����
s3

s1 : p a �� s3 b �� s5 : q

s2 : p b �� s4 a �� s6 : q

The graph on the left denotes that you know you can do a at the p-state s1 but
you are not sure what the consequence is: it may lead to either s2 or s3, and the
exact outcome is out of your control. Therefore, this action is non-deterministic
to you. In this case, ab is not a good plan since it may fail to be executable.
Thus it sounds unreasonable to claim that you know how to reach q given p.

11 Such conditionals are clearly not simple (material) implications and they are closely
related to conditional probability and conditional belief (cf. e.g., [38]).

12 The agent may have more abilities de facto than what he may realize. It is important
to make sure the agent can knowingly guarantee the goal in terms of the ability he
is aware of, cf. [24,34,28].
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Now consider the graph on the right. Let ab and ba be two treatments for the
same symptom p depending on the exact cause (s1 or s2). As a doctor, it is
indeed true that you can cure the patient (to achieve q) if you are told the exact
cause. However, responsible as you are, can you say you know how to cure the
patient given only the symptom p? A wrong treatment may kill the patient.
These planning examples suggest the following truth condition for the modal
formula Kh(ψ, ϕ) w.r.t. a graph-like model representing the agent’s knowledge
about his or her abilities (available actions and their possibly non-deterministic
effects):

There exists a sequence σ of actions such that from all the ψ-states in
the graph, σ will always succeed in reaching ϕ-states.

Note that the nesting structure of quantifiers in the above truth condition is
∃∀∀.13 The first ∃ fixes a unique sequence, the first ∀ checks all the possible states
satisfying the condition ψ, and the second ∀ make sure the goal is guaranteed.

There are several points to be highlighted: 1. ∃ cannot be swapped with the
first ∀: see the discussion about the second graph in Example 2, which amounts
to the distinction between de re and de dicto in the setting of “knowing how”
(cf. also [26,35,33,28] and uniform strategies in imperfect information games); 2.
There is no explicit “knowing that” in the above truth condition, which differs
from the truth conditions advocated by intellectualism [43] and the linguistically
motivated ∃xKϕ(x) rendering.14 On the other hand, the graph model represents
the agent’s knowledge of his actions and their effects (cf. [44]). 3. The truth
condition is based on a Kripke-like model without epistemic relations as in the
treatment of (imperfect) procedure information in [44]. As it will become more
clear later on, it is not necessary to go for neighbourhood or topological models
to accommodate non-normal modal logics if the truth condition of the modality
is non-standard (cf. also [45,19,16]); 4. Finally, our interpretation of “knowing
how” does not fit the standard scheme “knowledge as elimination of uncertainty”,
and it is not about possible worlds indistinguishable from the “real world”. The
truth of Kh(ψ, ϕ) does not depend on the actual world: it is “global” in nature.

In the next section, we will flesh out the above ideas in precise definitions
and proofs: first a simple formal language, then the semantics based on the
idea of planning, and finally a sound and complete proof system. We hope our
formal theory can clarify the above informal ideas further. In the last section,
we summarize our novel ideas beyond the standard schema of epistemic logic,
and point out many future directions.

Note: Due to the lack of space, we omit the proofs.15

13 In [42], the author introduced a modality for can ϕ with the following ∃∀ schema
over neighbourhood models: there is a relevant cluster of possible worlds (as the
outcomes of an action) where ϕ is true in all of them.

14 This also distinguishes this work from our earlier philosophical discussion [30] where
intellectualism was defended by giving an ∃xKϕ(x)-like truth condition informally.

15 For detailed proofs, see http://arxiv.org/abs/1505.06651.

http://arxiv.org/abs/1505.06651
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2 The Logic

Definition 1. Given a countable non-empty set of proposition letters P, the
language LKh is defined as follows:

ϕ ::= � | p | ¬ϕ | (ϕ ∧ ϕ) | Kh(ϕ, ϕ)

where p ∈ P. As discussed in the previous section, Kh(ψ, ϕ) expresses that the
agent knows how to achieve ϕ given ψ. We use the standard abbreviations ⊥, ϕ∨ψ
and ϕ → ψ, and define Uϕ as Kh(¬ϕ,⊥). The meaning of U will become more
clear after the semantics is defined.

Definition 2. Given the set of proposition letters P and a countable non-empty
set of action symbols Σ. An ability map is essentially a labelled transition system
(S,R,V) where:

– S is a non-empty set of states;

– R : Σ → 2S×S is a collection of transitions labelled by actions in Σ;

– V : S → 2P is a valuation function.

We write s
a→ t if (s, t) ∈ R(a). For a sequence σ = a1 . . . an ∈ Σ∗, we write

s
σ→ t if there exist s2 . . . sn such that s

a1→ s2
a2→ · · · an−1→ sn

an→ t. Note that σ
can be the empty sequence ε (when n = 0), and we set s

ε→ s for any s. Let σk

be the initial segment of σ up to ak for k ≤ |σ|. In particular let σ0 = ε. We say
that σ = a1 . . . an is strongly executable at s if: for any 0 ≤ k < n and any t,
s

σk→ t implies that t has at least one ak+1-successor. It is not hard to see that if

σ is strongly executable at s then it is executable at s, i.e., s
σ→ t for some t.

Note that, according to our above definition, ab is not strongly executable
from s1 in the left-hand-side model of Example 2, since s3 has no b-successor
but it can be reached from s1 by a = (ab)1.

Definition 3 (Semantics of LKh)

M, s � � always
M, s � p ⇔ p ∈ V (s)

M, s � ¬ϕ ⇔ M, s � ϕ
M, s � ϕ ∧ ψ ⇔ M, s � ϕ and M, s � ψ

M, s � Kh(ψ,ϕ) ⇔ there exists a σ ∈ Σ∗ such that for all s′ such that M, s′ � ψ :

σ is strongly executable at s′ and for all t such that s′ σ→ t,M, t � ϕ

Note that the modality Kh is not local in the sense that its truth does not
depend on the designated state where it is evaluated. Thus it either holds on all
the states or none of them. It is not hard to see that the schema of ∃∀∀ appears
in the truth condition for Kh where the last ∀ actually consists of two parts:
the strong executability (there is a ∀ in its definition) and the guarantee of the
goal. These two together make sure the plan will never fail to achieve ϕ. It is a
simple exercise to see that Kh(p, q) holds in the model of Example 1, but not in
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the models of Example 2. Moreover, the operator U defined by Kh is actually a
universal modality:16

M, s � Uϕ ⇔ for all t ∈ S,M, t � ϕ

To see this, check the following:

M, s � Kh(¬ψ,⊥) ⇔ there exists a σ ∈ Σ∗ such that for every M, s′ � ¬ψ :

σ is strongly executable at s′ and if s′ σ→ t then M, t � ⊥
⇔ there exists a σ ∈ Σ∗ such that for every M, s′ � ¬ψ :

σ is strongly executable at s′ and there is no t such that s′ σ→ t
⇔ there exists a σ ∈ Σ∗ such that for every M, s′ � ¬ψ : ⊥ holds
⇔ there exists a σ ∈ Σ∗ such that there is no s′ such that M, s′ � ψ
⇔ for all t ∈ S,M, t � ψ

Proposition 1. The following are valid:

1 Up ∧ U(p → q) → Uq 2 Kh(p, r) ∧ Kh(r, q) → Kh(p, q)
3 U(p → q) → Kh(p, q) 4 Up → p
5 Kh(p, q) → UKh(p, q) 6 ¬Kh(p, q) → U¬Kh(p, q)

The validity of (2) above actually captures the intuitive compositionality of
“knowing how”, as desired. Note that Kh(p, q) ∧ Kh(p, r) → Kh(p, q ∧ r) is not
valid, as desired.

Based on the above axioms, we propose the following proof system SKH for
LKh (where ϕ[ψ/p] is obtained by uniformly substituting p in ϕ by ψ):

System SKH

Axioms Rules

TAUT all axioms of propositional logic MP
ϕ, ϕ → ψ

ψ

DISTU Up ∧ U(p → q) → Uq NECU
ϕ

Uϕ
COMPKh Kh(p, r) ∧ Kh(r, q) → Kh(p, q) SUB

ϕ(p)

ϕ[ψ/p]

EMP U(p → q) → Kh(p, q)

TU Up → p

4KU Kh(p, q) → UKh(p, q)

5KU ¬Kh(p, q) → U¬Kh(p, q)

Proposition 1 plus some reflection on the usual inference rules should establish
the soundness of SKH. For completeness, we first get a taste of the deductive
power of SKH by proving the following formulas which play important roles in
the later completeness proof. In the rest of the paper we use � to denote �SKH .

16 Note that U is a very powerful modality in its expressiveness when combined with
the standard � modality, cf. [46].
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Proposition 2. We can derive the following in SKH (names are given to be
used later in the proofs):

TRI Kh(p, p)
WSKh U(p → r) ∧ U(o → q) ∧Kh(r, o) → Kh(p, q)
4U Up → UUp
5U ¬Up → U¬Up

COND Kh(⊥, p)
UCONJ U(ϕ ∧ ψ) ↔ (Uϕ ∧ Uψ).
PREKh Kh(Kh(p, q) ∧ p, q).
POSTKh Kh(r,Kh(p, q) ∧ p) → Kh(r, q)

Moreover, the following rule NECKh is admissible: � ϕ =⇒ � Kh(ψ, ϕ).

Interestingly, PREKh says that you know how to guarantee q given both p and
the fact that you know how to guarantee q given p. POSTKh says that you know
how to achieve q given r if you know how to achieve a state where you know
how to continue to achieve q.17

Remark 1. From the above proposition and the system SKH, we see that U is
indeed an S5 modality which can be considered as a version of “knowing that”:
you know that ϕ iff it holds on all the relevant possible states under the current
restriction of attention (not just the epistemic alternatives to the actual one).
The difference is that here the knowledge-that expressed by Uϕ refers to the
“background facts” that you take for granted for now, rather than contingent
but epistemically true facts in the standard epistemic logic. Another interesting
thing to notice is that WSKh actually captures an important connection between
“knowing that” and “knowing how”, e.g., you know how to cure a disease if you
know that it is of a certain type and you know how to cure this type of the
disease in general. We will come back to the relation between “knowing how”
and “knowing that” at the end of the paper.

It is crucial to establish the following replacement rule to ease the later proofs.

Proposition 3. The replacement of equivalents (� ϕ ↔ ψ =⇒ � χ ↔ χ[ψ/
ϕ])18 is an admissible rule in SKH.

In the rest of the paper we often use the above rule of replacement implicitly.

Here are some notions before we prove the completeness. Given a set of LKh

formulas Δ, let Δ|Kh be the collection of its Kh formulas:

Δ|Kh = {χ | χ = Kh(ψ, ϕ) ∈ Δ}.

Now for each maximal consistent set of LKh formulas we build a canonical model.

17 This is an analog of a requirement of the modality Can in [26].
18 Here the substitution can apply to some (not necessarily all) of the occurrences.
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Definition 4. Given a maximal consistent set Γ w.r.t. SKH, let ΣΓ = {〈ψ, ϕ〉 |
Kh(ψ, ϕ) ∈ Γ}, the canonical model for Γ is Mc

Γ = 〈Sc
Γ ,Rc,Vc〉 where:

– Sc
Γ = {Δ | Δ is a maximal consistent set w.r.t. SKH and Γ |Kh = Δ|Kh};

– Δ
〈ψ,ϕ〉−→ c Θ iff Kh(ψ, ϕ) ∈ Γ ,ψ ∈ Δ, and ϕ ∈ Θ;

– p ∈ V c(Δ) iff p ∈ Δ.

Clearly Γ is a state in Mc
Γ . We say that Δ ∈ Sc

Γ is a ϕ-state if ϕ ∈ Δ.

The following two propositions are immediate:

Proposition 4. For any Δ,Δ′ in Sc
Γ , any Kh(ψ, ϕ) ∈ LKh, Kh(ψ, ϕ) ∈ Δ iff

Kh(ψ, ϕ) ∈ Δ′ iff Kh(ψ, ϕ) ∈ Γ.

Proposition 5. If Δ
〈ψ,ϕ〉−→ Θ for some Δ,Θ ∈ Sc

Γ then Δ
〈ψ,ϕ〉→ Θ′ for any Θ′

such that ϕ ∈ Θ′.

Based on Proposition 4 and S5 axioms for U , we can prove a crucial proposition
to be used later.

Proposition 6. If ϕ ∈ Δ for all Δ ∈ Sc
Γ then Uϕ ∈ Δ for all Δ ∈ Sc

Γ .

Now we are ready to establish another key proposition for the truth lemma.

Proposition 7. Suppose that there are ψ′, ϕ′ ∈ LKh such that for each ψ-state

Δ ∈ Sc
Γ we have Δ

〈ψ′,ϕ′〉−→ Θ for some Θ ∈ Sc
Γ , then U(ψ → ψ′) ∈ Δ for all

Δ ∈ Sc
Γ .

Now we are ready to prove the truth lemma based on the above two proposi-
tions.19

Lemma 1 (Truth lemma). For any ϕ ∈ Γ : Mc
Γ , Δ � ϕ ⇐⇒ ϕ ∈ Δ

Now due to a standard Lindenbaum-like argument, each SKH-consistent set of
formulas can be extended to a maximal consistent set Γ . Due to the truth lemma,
Mc

Γ , Γ � Γ. The completeness of SKH follows immediately.

Theorem 1. SKH is sound and strongly complete w.r.t. the class of all models.

3 Conclusions and Future Work

In this paper, we propose and study a modal logic of goal-direct “knowing how”.
The highlights of our framework are summarized below with connections to our
earlier ideas on non-standard epistemic logics:

19 The proof is quite non-trivial. Please refer to the online version:
http://arxiv.org/abs/1505.06651.

http://arxiv.org/abs/1505.06651
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– The “knowing how” construction is treated as a whole similar to our works
on “knowing whether” and “knowing what” [16,19]. We would like to keep
the language neat.

– Semantically, “knowing how” is treated as a special conditional: being able
to guarantee a goal given a precondition, partly inspired by the conditional-
ization in [17].

– The ability involved is further interpreted as having a plan that never fails to
achieve the goal under the precondition, inspired by the work on conformant
planning [41] where we used the epistemic PDL language to encode the
planning problem.

– The semantics is based on labelled transition systems representing the agent’s
knowledge of his own abilities, inspired by the framework experimented in
[44].

– Compared to the standard semantic schema of knowledge-that: true in all
indistinguishable alternatives, our work has a more existential flavour: know-
ing how as having at least one good plan. Our modal operator is not local
to the indistinguishable alternatives but it is about all the possible states
even when they are distinguishable from the current world. Thus a cook can
still be said to know how to cook a certain dish even if he knows that the
ingredients are not available right now.

There are a lot more to explore. We conjecture the logic is decidable and leave
the model-theoretical issues to the full version of this paper. Moreover, it is a
natural extension to introduce the standard knowing-that operator K into the
language and correspondingly add a set E ⊆ S in the model to capture the agent’s
local epistemic alternatives. Then we can define the local version of “knowing
how” Khϕ as Kψ ∧ Kh(ψ, ϕ) for some ψ. Other obvious next steps include
probabilistic and multi-agent versions of Kh. It also makes good sense to consider
group notions of “knowing how” which may bring it closer to the framework of
ATEL where a group of agents may achieve a lot more together (cf. [28]). More
generally, we may consider program-based “knowing how” where conditional
plans and iterated plans are allowed, which can be used to maintain a goal. It
is also interesting to add the dynamic operators to the picture, i.e., the public
announcements [ϕ]. In particular, it is interesting to see how new knowledge-how
is obtained by learning new knowledge-that e.g., Kh(p, q) → [p](Up ∧ Kh(�, q))
may be a desired valid formula.20

There are also interesting philosophical questions related to our formal theory.
For example, a new kind of logical omniscience may occur: if there is indeed a
good plan to achieve ϕ according to the agent’s abilities then he knows how to
achieve ϕ. To the taste of philosophers, maybe an empty plan is not acceptable
to witness knowledge-how, e.g., people would not say I know how to digest (by
doing nothing). We can define a stronger modality Kh+(ψ, ϕ) as Kh(ψ, ϕ) ∧
20 Note that LKh may not have the enough pre-encoding power for announcements in

itself, similar to the case of PALC discussed in [47]. In particular, [χ]Kh(ψ, ϕ) ↔
Kh([χ]ψ, [χ]ϕ) may not be valid due to the lack of control in the syntax for the
intermediate stages of the execution path of a plan.
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¬U(ψ → ϕ) to rule out such cases.21 Note that although U is definable by Kh in
our setting, it does not have the philosophical implication that knowledge-that
is actually a subspecies of knowledge-how, as strong anti-intellectulism would
argue. Nevertheless, our axioms do tell us something about the interactions
between “knowing how” and “knowing that”, e.g., WSKh says some background
knowledge may let us know better how to reach our goal.
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Abstract. A dynamic epistemic logic is presented in which the single
agent can reason about his knowledge stages before and after announce-
ments. The logic is generated by reinterpreting multi agent private an-
nouncements in a single agent environment. It is shown that a knowa-
bility principle is valid for such logic: any initially true ϕ can be known
after a certain number of announcements.

In recent years a novel explication of knowability has been studied in the frame-
work of dynamic epistemic logic (DEL) [4], in which ‘knowable’ is read as ‘can
be known after an announcement’ [1], [5]. Under this explication it has been
shown that the knowability principle (KP), the principle according to which all
truths are knowable, does not hold in public announcement logic (PAL) [1] nor in
its extension arbitrary public announcement logic (APAL) [5]. Instead of using
public announcements, this contribution focuses on the investigation of knowa-
bility using the logical structure of private announcements [4]. For this purpose,
private announcements are reinterpreted in a single agent environment.

1 Agents in Private Announcements as Stages
of Knowledge

One can reinterpret the logical structure of private announcements to a set of
epistemic agents as an update of a single agent who can reason about past and
present stages of knowledge.

For instance, consider the situation in which two agents, 0 and 1, don’t know
p, and the private announcement of p which is given to agent 1. Let [E , e] denote
this action of private announcement. Then M, w |= [E , e]K1(p ∧ ¬K0p) is the
case, which says that after the private announcement, agent 1 knows p and she
also knows that agent 0 does not know p. This situation can be reinterpreted as
one containing a single agent with two sequential stages of knowledge, stage 0 as
the initial stage, and stage 1 as the stage after the first announcement. Then K0

and K1 represent the knowledge stages before and after the first announcement,
respectively. Under this interpretation, [E , e]K1(p∧¬K0p) is read ‘after the first
update, the agent knows (K1) that p and that before the update she didn’t know
(¬K0) p’. The above example is depicted in Fig. 1. For a proper exposition of
private announcements in DEL, see ([4], p. 173).

c© Springer-Verlag Berlin Heidelberg 2015
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w : p v : ¬p0,1

0,1 0,1

e : p t : �
0

1 0,1

⇒

(w, e) : p

(w, t) : p (v, t) : ¬p

0 0

0, 1

1

0, 1 0, 1

Fig. 1. An example of a private announcement to agent 1 in action model logic (AML).
The upper left epistemic model M describes the initial ignorance of agents 0 and 1;
the lower left model E describes the private announcement of p to 1; the right model
M × E is the epistemic model after the announcement. 0 and 1 can be reinterpreted
as stages of knowledge of a single agent.

The aim below is to present such a dynamic epistemic logic of stages of knowl-
edge, as a modification of PAL.

2 Stages of Knowledge Logic SKL

The alphabet of stages of knowledge logic (SKL) is the same as of PAL. For
the inductive definition of the language of SKL LSKL, we have the following
restricted form of a PAL language

ϕ := | p | ¬ϕ | ϕ ∧ ψ | Kiϕ | [α]ψ s.t.

α := | p | ¬α | α1 ∧ α2 | Kiα | α1 ∧ [α1]α2

Let LEL and LPL denote the languages of epistemic logic without announce-
ments and of propositional logic, respectively. In SKL, theKi operator represents
the single agent’s knowledge after the i-th announcement. For that we define a
degree function d that assigns a natural number to each occurrence of [ϕ]ψ in
an SKL formula, s.t. d([ϕ]ψ) = i is read as ‘ϕ is the ith announcement’. When
clear by context, instead of writing d([ϕ]ψ), we write d(ϕ).

Definition 1. Let d : LSKL → IN, be a degree function, assigning every formula
and sub-formula in LSKL a natural number. Let dmax(α) assign for each α of the
language the highest d of its sub-formulae. To determine the d of α ∈ LSKL and
all of its sub-formulae, one applies the following tree rules, where at each node
d is applied according to the below specification. For the root of the tree let n = 0.

ϕ ∧ ψ n

ϕ n′ = n + m(ϕ ∧ ψ) ψ n′ = n + m(ϕ ∧ ψ)

�ϕ n

ϕ n′ = n + m(�ϕ)

[ψ]ϕ n

ψ n′ = n ϕ n′ = n + m([ψ]ϕ)
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(Where � = ¬,Ki)
d(α) = n+m(α). m(α) = 0 if α �= [ϕ]ψ. Otherwise, m([ϕ]ψ) = 1 + dmax(ϕ)

Definition 2. Given an announcement [ϕ]ψ s.t. d(ϕ) = n define its ϕ-list to be
a list < α′

1...ϕ > s.t. the i-th member (1 ≤ i ≤ n) of the list is the announcement
of degree i that has, or is within an announcement that has, ψ in its scope. Given
a ϕ-list, a ϕ-sequence is obtained by replacing any member αi in the ϕ-list of the
form β ∧ [β]γ to γ s.t. the ϕ sequence contains only formulae of epistemic logic.

The semantics of SKL can be seen as a modification of PAL semantics (for an
exposition of the latter, see [4]). Given a model M, after the announcement of
ϕ, instead of moving to the model M|ϕ in which all the ϕ states are eliminated
as we do in PAL, in SKL we move to a certain union of the existing model M
and its PAL update M|ϕ. This requires defining an initial SKL model, its PAL
update model, and the union of the two.

Definition 3. Given a single agent S5 epistemic model M = (W,R, V ) its SKL
initial model is a structure M0 = 〈W 0, {R0

i | i ≤ n}, V 0〉, where:
W 0 = {(w, 0)|w ∈ W}.
R0

i = R for any 0 ≤ i ≤ n.
(w, 0) ∈ V 0(p) iff w ∈ V (p).

Definition 4. Given a model Mi and an announcement ϕ s.t. d(ϕ) = i+1, the
PAL’ model of Mi, written Mi|ϕ is:
W i

|ϕ = {(w, i+ 1) : w ∈ W and Mi, (w, i) |= ϕ}
(w, i + 1)Ri

j|ϕ(v, i+ 1) iff j ≥ d(ϕ) and (w, i)Ri
j(v, i)

(w, i + 1) ∈ V i
|ϕ(p) iff w ∈ V (p).

We abbreviate (w, i) as wi.

Definition 5. Given an initial M0 model and an announcement ϕ s.t. d(ϕ) = n
and < α1...αn > is the sequence of ϕ, define the model Mn to be:
Wn = Wn−1 ∪Wn−1

|αn

Rn
j = Rn−1

j ∪Rn−1
j|αn

and if j < n, then wnR
n
j vj iff wjR

j
jvj

V n = V n−1 ∪ V n−1
|αn

We read wxR
j
iuy as ‘in the model Mj , wx is related to uy with relation i’. In

the R clause of the definition we specify that a state wn can ‘look down’ at a
state uj (j < n) only with the relation j: wnR

n
j uj .

Definition 6. Given an SKL model Mi we define satisfaction as usual with the
following change
Mi, wj |= [ϕ]ψ iff, if Mi, wj |= ϕ, then Md(ϕ), wd(ϕ) |= ψ
Mi, wj |= 〈ϕ〉ψ iff Mi, wj |= ϕ, and Md(ϕ), wd(ϕ) |= ψ

For a simple example of the SKL semantics, consider an agent who initially
does not know p. After announcing p the agent knows p and that before the
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announcement he didn’t know p: M0, w0 |= [p]K1(p ∧ ¬K0p). This update is
depicted in Fig. 2. Note that d(p) = 1. As was implied earlier, SKL can be
reinterpreted as a multi agent logic with n agents s.t. the first announcement
is given to agents 1 to n and excludes agent 0, the second is given to agents 2
to n and excludes agents 0 and 1, and so on. Similarly to PAL, SKL contains
reduction axioms for announcements which allow the translation of each SKL
formula to an epistemic logic formula, and which make the system complete [3].

w0 : p v0 : ¬p0,1
0,1 0,1

[p] ⇒

w1 : p

w0 : p v0 : ¬p

0 0

0, 1

1

0, 1 0, 1

Fig. 2. The single agent who initially does not know p learns p. The left model is M0,
the initial model. The right model is M1, the model after the first announcement. Note
that in M1 relation R1 is reflexive. In general, Ri is always reflexive in Mi [3].

3 SKL and the Knowability Principle

In the philosophical literature the KP is regularly formulated as ϕ → ♦Kϕ.
The knowability paradox connected to this formulation is the modal derivation
showing that if the KP holds, then all truths are actually known: ϕ → Kϕ [2].
The KP in PAL is formulated as ϕ → 〈ψ〉Kϕ for some ψ, and it is invalid in the
latter logic and in its relevant extensions [1], [5]. In this section, we show that
for any ϕ, the formula ϕ → 〈ψ〉Knϕ is true for a ‘high enough’ n. To prove so,
we first define the notion of bisimilarity (relevant to SKL).

Definition 7. A non-empty relation Z ⊆ Wn × Wm is called a bisimulation
from 0 to k between Mn and Mm iff the following conditions are satisfied:
Atoms: If wiZwj then wi and vj satisfy the same propositional letters.
Forth: If wiZwj and wiR

n
l vh (s.t. l ≤ k), then there is a vx ∈ Wm s.t. vhZvx

and wjR
m
l vx.

Back: If wiZwj and wjR
m
l vh (s.t. l ≤ k), then there is a vx ∈ Wn s.t. vxZvh

and wiR
n
l vx. We write (Mn, wi) � (Mm, wj) for bisimilar states. If (Mn, wi) �

(Mm, wj) from 0 to k, then Mn, wi |= ϕ iff Mm, wj |= ϕ for any ϕ ∈ LEL with
epistemic modalities K0...Kk.

Lemma 1. (Mn, wn) � (Mn+1, wn+1) from 0 to n.

proof sketch: Define a relation Z ⊆ Wn × Wn+1 s.t. for any wi in Wn and
Wn+1 (i ≤ n) respectively, wiZwi, and for wn+1 ∈ Wn+1, let wnZwn+1. Then
Z is bisimulation for the modalities K0...Kn. For a full proof, see the extended
version of this contribution ([3], p. 61).

Given the bisimilarity result one can show that a KP is valid in SKL.
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Theorem 1. For an arbitrary initial SKL model (M0, w0),

M0, w0 |= ϕ → 〈ψ〉Knϕ

for some ψ and a Kn s.t. n ≥ 1.

Proof. The proof goes by the construction of a formula ψ and stage n for each
given ϕ of the language of SKL. If ϕ ∈ LPL then let ϕ = ψ and n = 1. Then
for such ϕ, M0, w0 |= ϕ → 〈ϕ〉K1ϕ can be easily checked to be true. Otherwise,
assume ϕ′ ∈ LSKL s.t. the highest knowledge modality Km in ϕ′ is m. Start
by translating ϕ′ using the SKL announcement axioms to a formula ϕ ∈ LEL.
Let ψ be identical to a sequence of m announcements of � followed by an an-
nouncement of ϕ, i.e. ψ = 〈�〉...〈�〉〈ϕ〉 s.t. d(ϕ) = m+1. Consider the following
KP for ϕ: M0, w0 |= ϕ → 〈�〉...〈�〉〈ϕ〉Km+1ϕ. Assume M0, w0 |= ϕ. Then
Mm wm |= ϕ as the announcements of � do not change the truth value of ϕ
[3]. Hence, in order to show that Mm, wm |= 〈ϕ〉Km+1ϕ it remains to show
that Mm+1, wm+1 |= Km+1ϕ. Pick an arbitrary ux s.t. wm+1R

m+1
m+1ux. By Def-

inition 5 it must be that ux = um+1 and by the assumption of the existence of
um+1 it follows that Mm, um |= ϕ. By Lemma 1 (Mm, um) � (Mm+1, um+1)
from 0 to m, and since by assumption ϕ contains modalities up to m, it follows
that Mm+1, um+1 |= ϕ. Therefore, Mm+1, wm+1 |= Km+1ϕ and so Mm, wm |=
〈ϕ〉Km+1ϕ. Note that sequence of announcements 〈�〉...〈�〉〈ϕ〉 is equivalent to
one nested announcement 〈ψ′〉 in SKL as in PAL.

Unlike other epistemic logics that can express a KP, SKL avoids the knowa-
bility paradox: all truths are knowable but not all truths are known. I note that
while the standard exposition of the paradox assumes the necessitation rule for
the possibility operator ♦ to derive the paradox [2], the necessitation rule for
announcements is unsound in SKL [3].

References

1. van Benthem, J.: What one come to know. Analysis 64(282), 95–105 (2004)
2. Brogaard, B., Salerno, J.: Fitch’s Paradox of Knowability. In: Zalta,

E.N. (ed.) The Stanford Encyclopedia of Philosophy (2013), http://plato.

stanford.edu/archives/win2013/entries/fitch-paradox

3. Cohen, M.: Dynamic Knowability: The Knowability Paradox in Dynamic Epistemic
logic. MA Thesis, LMU Munich (2015)

4. van Ditmarsch, H.P., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic.
Springer, Heidelberg (2007)

5. van Ditmarsch, H.P., van der Hoek, W., Iliev, P.: Everything is knowable – How to
Get to Know Whether a Proposition Is True. Theoria 78(2), 93–114 (2012)

http://plato.stanford.edu/archives/win2013/entries/fitch-paradox
http://plato.stanford.edu/archives/win2013/entries/fitch-paradox


Reflective Oracles: A Foundation

for Game Theory in Artificial Intelligence�

Benja Fallenstein1, Jessica Taylor1, and Paul F. Christiano2

1 Machine Intelligence Research Institute, Berkeley, USA
{benja,jessica}@intelligence.org

2 UC Berkeley, Berkeley, USA
paulfchristiano@eecs.berkeley.edu

Abstract. Game theory treats players as special: A description of a
game contains a full, explicit enumeration of all players. This isn’t a re-
alistic assumption for autonomous intelligent agents. In this paper, we
propose a framework in which agents and their environments are both
modelled as probablistic oracle machines with access to a “reflective”
oracle, which is able to answer questions about the outputs of other ma-
chines with access to the same oracle. These oracles avoid diagonalization
problems by answering some queries randomly. Agents make decisions by
asking the oracle questions about their environment, which they model
as an arbitrary oracle machines. Since agents are themselves oracle ma-
chines, the environment can contain other agents as non-distinguished
subprocesses, removing the special treatment of players in the classical
theory. We show that agents interacting in this way play Nash equilibria.

1 Introduction

Classical game theory treats players as special: A description of a game contains
a full, explicit enumeration of all players [5]. This isn’t a realistic assumption
for autonomous intelligent agents. Ideally, such agents would be based on a
decision-theoretic foundation for game theory in which their coplayers are a non-
distinguished part of the agent’s environment, but it is non-trivial to find such
a foundation. Attempts to model both players and the environment as Turing
machines, for example, fail for standard diagonalization reasons [1].

In this paper, we consider oracle machines with access to a “reflective” oracle,
which is able to answer questions about the outputs of other machines with
access to the same oracle. These oracles avoid diagonalization by answering some
queries randomly. We show that machines with access to a reflective oracle can
be used to define rational agents using causal decision theory [8]. These agents
model their environment as a probabilistic oracle machine, which may contain
other agents as a non-distinguished part.

We show that if such agents interact, they will play a Nash equilibrium, with
the randomization in mixed strategies coming from the randomization in the

� An extended version of this paper is available as a technical report [3].
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oracle’s answers. This can be seen as providing a foundation for classical game
theory in which players aren’t special.

This method can be applied to Solomonoff induction [7], a method for se-
quence prediction that can learn sequences generated by arbitrary computer
programs, and Marcus Hutter’s AIXI [4], a “universally intelligent” agent that
can learn to interact with arbitrary computable environments. Using reflective
oracles, it is possible to define variants of Solomonoff induction and AIXI whose
hypothesis space contains environments inhabited by other predictors or agents
of the same type [2]. This is not true of the original versions, since they are
uncomputable but consider only computable hypotheses.

Let M be the set of probabilistic oracle machines, defined here as Turing
machines which can execute special instructions to (i) flip a coin that has an
arbitrary rational probability of coming up heads, and to (ii) call an oracle O,
whose behavior might itself be probabilistic.

Roughly speaking, the oracle answers questions of the form: “Is the probability
that machine M returns 1 greater than p?” Thus, O takes two inputs, a machine
M ∈ M and a rational probability p ∈ [0, 1] ∩ Q, and returns either 0 or 1. If
M is guaranteed to halt and to output either 0 or 1 itself, we want O(M,p) = 1
to mean that the probability that M returns 1 (when run with O) is at least p,
and O(M,p) = 0 to mean that it is at most p; if it is equal to p, both conditions
are true, and the oracle may answer randomly. In summary,

P(MO() = 1) > p =⇒ P(O(M,p) = 1) = 1

P(MO() = 1) < p =⇒ P(O(M,p) = 0) = 1
(1)

where we write P(MO() = 1) for the probability that M returns 1 when run
with oracle O, and P(O(M,p) = 1) for the probability that the oracle returns 1
on input (M,p). We assume that different calls to the oracle are stochastically
independent events (even if they are about the same pair (M,p)); hence, the
behavior of an oracle O is fully specified by the probabilities P(O(M,p) = 1).

Definition 1. A query (with respect to a particular oracle O) is a pair (M,p),
where p ∈ [0, 1] ∩ Q and MO() is a probabilistic oracle machine which almost
surely halts and returns an element of {0, 1}. An oracle is called reflective on R,
where R is a set of queries, if it satisfies the two conditions displayed above for
every (M,p) ∈ R. It is called reflective if it is reflective on the set of all queries.

Theorem 1. (i) There is a reflective oracle. (ii) For any oracle O and every
set of queries R, there is an oracle O′ which is reflective on R and satisfies
P(O′(M,p) = 1) = P(O(M,p) = 1) for all (M,p) /∈ R.

Proof. For the proof of (ii), see Appendix B of the extended version of this
paper [3]; see also Theorem 5.1 in [3], which gives a more elementary proof of
a special case. Part (i) follows from part (ii) by choosing R to be the set of all
queries and letting O be arbitrary.

As an example, consider the machine given by MO() = 1−O(M, 0.5), which
implements a version of the liar paradox by asking the oracle what it will return
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and then returning the opposite. By the existence theorem, there is an oracle
which is reflective on R = {(M, 0.5)}. This is no contradiction: We can set
P(O(M, 0.5) = 1) = P(O(M, 0.5) = 0) = 0.5, leading the program to output 1
half the time and 0 the other half of the time.

2 From Reflective Oracles to Causal Decision Theory

We now show how reflective oracles can be used to implement a perfect Bayesian
reasoner. We assume that each possible environment that this agent might find
itself in can likewise be modeled as an oracle machine; that is, we assume that
the laws of physics are computable by a probabilistic Turing machine with access
to the same reflective oracle as the agent. For example, we might imagine our
agent as being embedded in a Turing-complete probabilistic cellular automaton,
whose laws are specified in terms of the oracle.

Here, we consider agents implementing causal decision theory (CDT) [8],
which evaluates actions according to the consequences they cause: For exam-
ple, if the agent is a robot embedded in a cellular automaton, it might evaluate
the expected utility of taking action 0 or 1 by simulating what would happen
in the environment if the output signal of its decision-making component were
replaced by either 0 or 1. We will assume that the agent’s model of the coun-
terfactual consequences of taking different actions a is described by a machine
WO

A (a); e.g.,

WO
A (a) =

{
$20 if a = 0

$15 otherwise
(2)

We assume that the agent has a utility function over outcomes, u(·), imple-
mented as a lookup table, which takes rational values in [0, 1].1 Furthermore, we
assume that both WO

A (0) and WO
A (1) halt almost surely and return a value in

the domain of u(·). Causal decision theory then prescribes choosing the action
that maximizes expected utility; in other words, we want to the agent to be a
machine AO(), returning the agent’s action, such that

AO() = argmax
a

E
[
u
(
WO

A (a)
)]

(3)

In the case of ties, any action maximizing utility is allowed, and it is acceptable
for AO() to randomize.

We cannot compute this expectation by simply running u(WO
A (a)) many times

to obtain samples, since the environment might contain other agents of the same
type, potentially leading to infinite loops. However, we can find an optimal action
by making use of a reflective oracle. This is easiest when the agent has only two

1 Since the meaning of utility functions is invariant under affine transformations, the
choice of the particular interval [0, 1] is no restriction.
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actions (0 and 1), but similar analysis extends to any number of actions. Define
a machine

EO() := flip
((
u(WO

A (1))− u(WO
A (0)) + 1

)/
2
)

(4)

where flip(p) is a probabilistic function that returns 1 with probability p and 0
with probability 1− p.

Theorem 2. O is reflective on {(E, 1/2)} if and only if AO() := O(E, 1/2)
returns a utility-maximizing action.

Proof. The demand that AO() return a utility-maxmizing action is equivalent
to

E[u(WO
A (1))] > E[u(WO

A (0))] =⇒ AO() = 1

E[u(WO
A (1))] < E[u(WO

A (0))] =⇒ AO() = 0
(5)

We have

P(EO() = 1) = E
[(
u(WO

A (1))− u(WO
A (0)) + 1

)/
2
]

(6)

It is not difficult to check that E[u(WO
A (1))] ≷ E[u(WO

a (0))] iff P(EO() = 1) ≷
1/2. Together with the definition of AO(), we can use this to rewrite the above
conditions as P(EO() = 1) > 1/2 =⇒ O(E, 1/2) = 1 and similarly, P(EO() =
1) < 1/2 =⇒ O(E, 1/2) = 0. But this is precisely the definition of “O is reflective
on {(E, 1/2)}”.

In order to handle agents which can choose between more than two actions,
we can compare action 0 to action 1, then compare action 2 to the best of actions
0 and 1, then compare action 3 to the best of the first three actions, and so on.
Adding more actions in this fashion does not substantially change the analysis.

3 From Causal Decision Theory to Nash Equilibria

Since we have taken care to define our agents’ world models WO
A (a) in such

a way that they can embed other agents,2 we need not do anything special to
pass from single-agent to multi-agent settings. We represent the environment as a
machine FO(a1, . . . , an) which takes each agent’s action and returns an outcome.
Then, the true distribution of outcomes is given by FO(AO

1 (), . . . , A
O
n ()), and

the causal counterfactuals of agent i are given by WO
i (ai) := FO(ai, A

O
−i()) :=

F (AO
1 (), . . . , A

O
i−1(), ai, A

O
i+1(), . . . , A

O
n ()).

We assume that each agent has a utility function ui(·) of the same type as in
the previous subsection. Hence, we can define the agent programs AO

i () just as
before: We set AO

i () = O(Ei, 1/2), where

EO
i () = flip

((
ui(W

O
i (1))− ui(W

O
i (0)) + 1

)/
2
)

(7)

2 More precisely, we have only required that WO
A (a) always halt and produce a value

in the domain of the utility function u(·). Since all our agents do is to perform a
single oracle call, they always halt, making them safe to call from WO

A (a).
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Here, each EO
i () calls WO

i (), which calls AO
j () for each j �= i, which refers to

the source code of EO
j (), but Kleene’s second recursion theorem shows that this

kind of self-reference poses no theoretical problem [6].
This setup very much resembles the setting of normal-form games. In fact:

Theorem 3. Given an oracle O, consider the n-player normal-form game in
which the payoff of player i, given the pure strategy profile (a1, . . . , an), is
E[ui(F

O(a1, . . . , an))]. The mixed strategy profile given by si := P(AO
i () = 1)

is a Nash equilibrium of this game if and only if O is reflective on
{(E1, 1/2), . . . , (En, 1/2)}.
Proof. (s1, . . . , sn) is a Nash equilibrium iff a pure strategy ai is only assigned
positive probability if it maximizes E[ui(F

O(ai, A
O
−i()))] = E[ui(W

O
i (ai))]. By

Theorem 2, this is equivalent to O being reflective on {(Ei, 1/2)}.
Note that, in particular, any normal-form game with rational-valued payoffs

can be represented in this way. The theorem shows that then, every reflective
oracle (which exists by Theorem 1) gives rise to a Nash equilibrium. Theorem 3
together with Theorem 1(ii) show that for any Nash equilibrium (s1, . . . , sn) of
the normal-form game, there is a reflective oracle such that P(AO

i () = 1) = si.

4 Conclusions

In this paper, we have introduced reflective oracles, which are able to answer
questions about the behavior of oracle machines with access to the same oracle.
We’ve shown that such oracle machines can implement a version of causal deci-
sion theory. We have focused on answering queries about oracle machines that
halt with probability 1, but the reflection principle presented in Section 1 can
be modified to apply to machines that do not necessarily halt [3]. This can be
used to define reflective variants of Solomonoff induction and AIXI [2].
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Abstract. Ordinal Conditional Functions assign every state an ordi-
nal value representing its plausibility. In most existing work, plausibility
values are restricted to the set of natural numbers; however, the fully gen-
eral theory allows infinite values as well. In this paper, we explore simple
arithmetical approaches to belief revision with ordinal conditional func-
tions that might take infinite plausibility values. We suggest that infinite
values need not be seen as a mathematical artifact of the theory; they
provide a natural tool for a generalized form of conditional reasoning.

1 Introduction

The theory of belief change is concerned with the way agents incorporate new
information. Many formal models of belief change require an agent to have some
form of ordering or ranking that gives the relative plausibility of possible states.
One well-known tool for representing plausibility is an Ordinal Conditional Func-
tion (OCF), which is just a function from states to ordinals [Spo88, Wil94]. While
the original definition allows the range of an OCF to be any ordinal, in existing
work it is common to restrict the range to the natural numbers, possibly with an
additional symbol ∞ representing impossibility. In this paper, we demonstrate
the utility of a wider range of ordinal plausibility values.

2 Preliminaries

Belief revision is the form of belief change that occurs when new information
is presented to an agent with some a priori beliefs. We assume an underlying
propositional signature P. An interpretation over P is called a state, while a
logically closed set of formulas over P is called a belief set. A belief revision
operator is a function that combines the initial belief set and a formula to produce
a new belief set. While OCFs use a quantitiative ranking function to represent
plausibility, other formal approaches often rely on an underlying ordering over
states [AGM85, KM92, DP97].

We refer the reader to [Dev93] for an excellent introduction to infinite ordinals
and ordinal arithmetic. For our purposes, it is sufficient to note that ordinals
are sets defined by an “order type.” The finite ordinals are the natural numbers,
and the first infinite ordinal is the set ω of all natural numbers. It is easy to
construct a countably infinite set that is not order isomorphic to ω: just add
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another symbol ∞ at the end that is larger than every natural number. The
ordinal that defines the order type of this set is written ω + 1. Similarly, there
exists a distinct ordinal ω + n for any natural number n. If we add a complete
copy of the natural numbers, then we have the ordinal ω + ω which is normally
written as ω · 2. By taking powers, we can get even more order types; we will
not delve further into this topic.

There has been some recent work on the use of infinite valued ordinals in
OCFs [Kon09]. Our approach is different in that we explicitly use the ordering
on limit ordinals to represent infinite leaps in plausibility.

3 Algebra on Ordinal Conditional Functions

The following definition allows us to define conditional functions over sets of
ordinals.

Definition 1. Let Γ be a collection of ordinals. A Γ -CF (Γ conditional func-
tion) over a set S is a function r : S → Γ such that r(s) = 0 for some state s.

In this paper, we are primarily interested in the class of ω2-CFs. Every element
of ω2 can be written as ω · k + c for some k and c.

Definition 2. Let r be an ω2 ranking with min(f) = ω · k + c. Then k is the
degree of f and c is the finite shift, written deg(f) and fin(f) respectively.

We think of these conditional functions as having countably many infinite levels
of implausibility. If r is a Γ -CF, we define Bel(r) = {x | r(x) = 0}.

We use the term Γ ranking to refer to an arbitrary function from S to Γ . For Γ
rankings r1 and r2, we write r1 ∼ r2 just in case r1(s) < r1(t) ⇐⇒ r2(s) < r2(t)
holds for all s, t. Clearly ∼ is an equivalence relation.

Definition 3. Let r be an ω2 ranking with deg(r) = k and fin(r) = c. Define
r̄ as follows. Let s be a state with r(s) = ω ·m+ p.

1. If m > k, then r̄(s) = ω · (m− k) + c.
2. If m = k, then r̄(s) = (p− c).

We call r̄ the finite zeroing of r. Intuitively, elements at the “lowest level” are
normalized to zero and elements at higher levels are shifted down by the degree
of r. The following result is easy to prove.

Proposition 1. If r is an ω2 ranking, then r̄ is a ω2-CF and r ∼ r̄.

Hence, the finite zeroing of any ranking is an equivalent ω2-CF.

Definition 4. Let r1, r2 be ω2-CFs. Then r1 ∗ r2 = r1 + r2.

We think of ∗ as a revision operator. Let r1 be a ω-CF representing the initial
beliefs of an agent. Let φ be a formula, let d be a positive integer, and let r2 be
the ranking function defined as follows:

r2(s) =

{
0 if s |= φ
d otherwise
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Then r1 ∗ r2 is equivalent to Spohn’s conditionalization of r1 by φ with strength
d. Similarly, if r2 takes only two values and the degree of strength of r2 is strictly
larger than the degree of strength of r1, then r1+̄r2 is AGM revision. Morever,
in the ω-CF case, ∗ is equivalent to addition followed by minimization; hence
the algebra defined by ∗ for finite valued functions is an abelian group. In the
ω2 case, the algebra is different.

Proposition 2. The class of ω2-CFs is a non-abelian group under ∗. (i.e. it is
closed, associative, and every element has an inverse, but it is not commutative).

The fact that ∗ is not commutative has interesting consequences, notably the
fact that infinite jumps in plausibility outweigh concerns of primacy and recency.

We consider the relationship with the improvement operators of [KP08], which
are belief change operators that satisfy a set of postulates that includes the
following:

(I1) There exists n ∈ N such that B(Ψ ◦n φ) 
 φ.

Here Ψ is an epistemic state, and B(·) maps an epistemic state to the minimal
elements of the underlying ordering. An analogous statement can be formulated
in our context.

We say that an OCF r is a φ-strengthening iff Bel(r) = {s | s |= φ}. If rφ
denotes a φ-strengthening, we can express the content of (I1) as follows.

(I∗) There exists n ∈ N such that Bel(r ∗n rφ) |= φ.

It turns out that this property holds for ω-CFs.

Proposition 3. If r is an ω-CF and rφ is a φ-strengthening with finite strength,
then I∗ holds.

In fact, it turns out that finite strengthenings define so-called weak improvement
operators in this context. However, if we move to ω2-CFs, this is no longer the
case.

Proposition 4. If r is an ω2-CF and rφ is a φ-strengthening with finite strength,
then I∗ need not hold.

This result essentially states that no finite sequence of improvements at level d
will ever impact the actual beliefs at lower levels.

4 Nearly Counterfactual Reasoning

Suppose that we initially believe that it is impossible for dogs to fly. Now suppose
we are told that flying things have hollow bones. This does not give us any
new information about dogs. Suppose we subsequently become convinced of the
existence of flying dogs. Ideally, we should incorporate the fact about hollow
bones: we should believe that flying dogs, unlike regular dogs, have hollow bones.
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We refer to the reasoning in the preceding example as nearly-counterfactual
reasoning. This kind of reasoning falls somewhere between conditional reason-
ing and counterfactual reasoning. Kern-Isberner has previously addressed condi-
tional reasoning with (finite-valued) OCFs [Ker99]. In this section, we discuss the
way that infinite values can help when reasoning about highly unlikely states. In
our example, we would like to keep the information about flying dogs (that they
have hollow bones), for the unlikely case where they happen to exist. Hence, we
suggest that our beliefs should not be unchanged; they should be changed in sort
of an infinitesimally small way. While our beliefs about the actual world do not
change, our beliefs about some (nearly) impossible worlds do, in fact, change.

In order to capture nearly counterfactual reasoning, We follow the basic intu-
ition of Lewis: the truth of a counterfactual sentence is determined by its truth
in alternative worlds [Lew73]. We can represent this idea with ω2-CFs. At each
limit ordinal ω ·k, we essentially have an entirely new plausibility ordering. As k
increases, each such ordering represents an increasingly implausible world. How-
ever, a sufficiently strong observation can force our beliefs to jump to any of
these unlikely worlds. As such, these are not counterfactual worlds, because we
admit the possibility that they may eventually be believed possible.

The important property that we can capture with ω2-CFs is the following:
there are some formulas that may be true, yet we can not be convinced to believe
them based on any finite number of pieces of “weak evidence.”

Definition 5. If r is an ω2-CF, a formula φ is nearly counterfactual with respect
to r just in case there is no ω-CF r′ such that Bel(r ∗ r′) |= φ.

The following is an immediate consequence of this definition.

Proposition 5. If φ is nearly counterfactual with respect to r, then there is no
finite sequence r1, . . . , rn of ω-CFs such that Bel(r ∗ r1 ∗ · · · ∗ rn) |= φ.

We are interested in modelling revision by nearly counterfactual conditionals.
Let r be an ω2-CF and let B,A be formulas. Let deg(A) be the least natural
number k such that there is some state s such that s |= A and r(s) = ω · k + c.
For any natural number n let r(n,B|A) be the function defined as follows:

r(n,B|A)(s) =
{
r(s), if deg(s) �= k
rk ∗ r(B, n) otherwise

We call this function the n-stengthening of B conditioned on A. This function
finds the least level of r containing an A-state, and then essentially revises that
level by B. In the flying-dog example, this approach allows us to conclude that
hollow bones are more possible in cases where dogs can fly. This may be impor-
tant for counterfactual reasoning, and it may be important if we actually find
a flying dog. Roughly speaking, after revising by (hollow|fly), we now believe
that hollow bones are more plausible in all states where a dog can fly. However,
our beliefs about the actual world have not changed.
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5 Conclusion

We have explored the use of infinite ordinals for reasoning about belief change,
focusing on the case where plausibility values are drawn from ω2. Here we have
multiple infinite levels of implausibility that can represent situations where stub-
bornly held beliefs are resistant to evidence. This allows us to capture a notion
of belief improvement, in which no finite number of improvements will actually
lead to a change in the belief state. We also discussed the suitability of this
model for “nearly counterfactual” revision, where we incorporate information
that is conditional on a highly unlikely statement. In future work, we intend to
move beyond ω2-CFs, to completely characterize the relationship with improve-
ment operators, and to consider practical applications of nearly counterfactual
reasoning.
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Solving the HI-LO Puzzle
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Abstract. I defend classical decision theory from the challenge posed
to it by the HI-LO game.

The HI-LO game poses a problem for classical decision theory and game theory.
In the two player game, both players have the option of selecting either HI or LO.
If both select HI, they both receive a higher payoff than if they both select LO. If
the two players select different options, they receive nothing. For the discussion
that follows, let’s assume a version of the game with a 10:1 ratio between payoffs.

When faced with this game, human players will almost always select HI.1 And
it is also clear that if playing this game, one ought to select HI. Unfortunately,
traditional decision theory and game theory has no obvious explanation of why
HI is the uniquely rational choice. And some have gone so far as to argue that
with its focus on individual rationality and reasoning, the traditional views are
simply unable to produce the right result.2. In defense of the traditional account,
I will propose one explanation of why HI is the uniquely rational choice from
a traditional point of view. And since HI appears to not only be the uniquely
rational choice but also a dominant choice, my aim will be to provide this type
of solution.

The challenge posed by the HI-LO game is to provide some explanation of
how players, who only possess a common knowledge of rationality and whose
only aim is to maximize their own payoffs, can reason to the conclusion that
they both ought to choose HI. The task is made all the more difficult because
when restricted to a common knowledge of rationality, each player is initially
completely ignorant of what the other player is going to do. For assigning any
determinate probability to the other player’s choice is tantamount to deciding
what one ought to do.3 And so one cannot assume such a probability assignment
without already possessing an argument for what one ought to do. So whatever
the argument for choosing HI is, it must begin with an assumption of ignorance.
But how can we come to the judgment that some action is best when we are
operating under such massive uncertainty? To solve this problem, I will appeal
to the principle of strong dominance. After all, this principle is one of the least
controversial principles governing decisions under uncertainty.

To capture how Player 1 could reason, we begin at the initial state where he
is ignorant of how Player 2 will choose. And while Player 1 lacks any evidence

1 [3], fn. 3
2 [1]
3 See [2] for further discussion.
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about how and what Player 2 will choose, he does know that a choice must made.
This is, after all, a forced choice scenario. So if Player 2 must make a choice,
then there must be some way that she chooses.4

I believe the key to solving the puzzle is by considering how one might reason
about what to do given that the other player adopts some way or other of
choosing. So Player 1 can start by imagining a variety of choice procedures that
Player 2 uses. A choice procedure is any procedure that someone can use to
choose between options. For the sake of simplicity, I will only consider choice
procedures for picking between HI and LO. For example, Player 2 might pick
the option that is mentioned first. Alternatively, she can ask her aunt, pick the
option that is aesthetically pleasing, or draw straws.

We can abstract away from the particular details of choice procedures since
the only feature of a choice procedure that matters for determining what one
ought to do is the likelihood that such a procedure will result in the choice of
HI or LO. Thus, for any choice procedure c, let us define Pc(HI) and Pc(LO) as
the probability that a player’s use of c will result in respectively selecting HI or
LO. Therefore, choice procedures can be understood as flips of coins whose bias
determines Pc. Of course, I am not proposing that we imagine Player 2 actually
uses a coin. Rather, I am proposing to model all possible choice procedures that
Player 2 could use as if they were flips of a biased coin.

Suppose that Player 1 begins by imagining that Player 2 chooses as if she is
flipping some particular coin. On this supposition, he can judge the likelihood
of HI and LO by considering the bias of the coin and then calculate the ex-
pected payoff of his own choices. Of course, while Player 1 can engage in such
suppositional reasoning, he would not be justified in assuming that Player 2 has
selected one or another choice procedure. After all, Player 1 does not yet possess
any information about how Player 2 will choose. Furthermore, in our modeling,
it is clear that Player 1’s ignorance should extend to how the coin is used as a
choice procedure. Suppose that C is a choice procedure that uses this particular
coin. In order to use a coin flip to make a choice, the two sides of the coin must
be associated with the two choices. So let us suppose that C is the choice pro-
cedure where HEADS is associated with HI and TAILS is associated with LO.
Of course, Player 1 has no reason to think that the coin would be used in one
way rather than another. After all, Player 2 could have associated HEADS with
LO and TAILS with HI. Thus, given Player 1’s ignorance and uncertainty when
considering the possibility that Player 2 uses some arbitrary choice procedure
c, he also ought to consider the possibility that Player 2 uses the mirror image
of c – the procedure in which the two sides of the coin are associated with dif-
ferent options. Let us call this c* – the choice procedure whose probabilities are
given by Pc∗ , where Pc∗(HI)=Pc(LO). Call c and c* a matching pair of choice
procedures.

4 I am not assuming that there is a reason Player 2 chooses one option rather than
the other. Player 2 may simply pick. Paradigmatic cases of picking are those where
one picks between indistinguishable options (c.f. [4]).
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It may at first seem as though the appeal to matching pairs makes sense only
if we are talking about coin flips. However, it’s easy to see how the notion of
matching pairs applies to any type of choice procedure. For example, suppose
I decide to ask my aunt whether to choose HI or LO. I could choose HI if she
asserts HI but I could also choose LO if she asserts HI. To construct a matching
pair, one first identifies a way of differentiating the two choices - in terms of flips
of a coin, assertions of an aunt, lexical ordering, etc. And then one can identify
two ways of using this differentiation to make one’s choice. Choosing the HI side
of the coin if it lands face up or face down. Choosing what one’s aunt says or the
opposite. Choosing what alphabetically comes first or second. Thus, the notion
of matching pairs applies to all choice procedures.

In order to capture Player 1’s initial ignorance of Player 2’s choice, I propose
that Player 1 must always consider matching pairs of choice procedures together.
Now how might Player 1 reason given this way of considering his ignorance of
Player 2’s choice? As I noted above, the least controversial principles that are
relevant in cases of uncertainty are dominance principles. For our purposes, we
will only need a strong dominance principle, and for the sake of simplicity, I
will only discuss a principle that applies in the HI-LO game. The following, of
course, can easily be generalized.

Strong Dominance*: HI�LO if (1) for all matching pairs of choice procedures,
EUc(HI)> EUc(LO) or EUc∗(HI)> EUc∗(LO) and (2) for some matching
pair of choice procedures, EUc(HI)> EUc(LO) and EUc∗(HI)> EUc∗(LO)

Strong dominance states that HI is strictly better than LO if for every possible
matching pair of choice procedures that one can consider, HI expects a better
outcome than LO according to at least one of the pair and there is at least one
matching pair that one can consider where HI expects a greater payoff then LO
according to both choice procedures in a matching pair.

If this is a valid principle for decision making under uncertainty, then we may
conclude that HI is strictly preferable to LO. After all, for all coins with a bias
of less than 10

11 , both ways of labeling the coin will result in the expected payoff
of HI being greater than that of LO. If the coin’s bias is greater than or equal to
10
11 , then for one of the matching pair of choice procedures, the expected payoff
of HI is greater. Therefore, HI strongly dominates* LO.

In order to defend the proposed solution, I must defend Strong Dominance*.
To do so, I will show that given two assumptions, Strong Dominance* is just a
special case of the standard strong dominance principle in decision theory. Along
the way, I will defend the two assumptions.

The first assumption is that Player 1’s decision problem may be framed such
that the set of states are represented by an exhaustive and exclusive set of match-
ing pairs of choice procedures. Let us use {MP1, MP2,. . . , MPn} to represent
this set. In addition, {O1, O2, . . . , On} and {O′

1, O
′
2, . . . , O

′
n} respectively rep-

resent the outcomes of choosing HI or LO. As I argued above, given Player 1’s
ignorance, he cannot differentiate matching pairs of choice procedures. That is,
for any way one can distinguish the two choices, Player 1 has no reason to think
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that Player 2 uses one or another way of using this distinction to make a choice.
Thus, matching pairs should always be considered together.

The second assumption makes explicit how we are determining our preference
over outcomes in the special cases where states are individuated by matching
pairs of choice procedures. We can state the assumption with the following two
principles (where c and c* are the relevant matching pair of choice procedures
in any given state).5

Weak Preference: Oi � O′
i just in case EUc(HI)> EUc(LO) or EUc∗(HI)>

EUc∗(LO)

Strong Preference: Oi � O′
i just in case EUc(HI)> EUc(LO) and EUc∗(HI)>

EUc∗(LO)

Given the two assumptions that we have made, it can easily be shown that
our principle of strong dominance can be derived from the standard principle
of strong dominance. The standard principle of strong dominance entails that
HI�LO just in case for every i , Oi � O′

i and for some i, Oi � O′
i. So if each state

of the world is a matching pair of choice procedures and Player 2’s preferences
over the possible outcomes is defined in terms of the expected utilities relative
to these matching pairs, then strong dominance* is simply a special case of
standard strong dominance.

Why should we accept weak and strong preference? I propose that we can
derive these from standard expected utility theory given a certain judgment of
symmetry. Let me explain.

I mentioned above that Player 1 has no reason to differentiate Player 2s la-
beling of the coin in one way or the other. And for that reason, Player 1 cannot
differentiate choice procedures within a matching pair. This means, in part, that
one does not have any evidence that a player would use one or another of a
matching pair. As we have seen, such ignorance does not provide any useful in-
formation. However, there is an intuitive symmetry judgment that one may have
about matching pairs of choice procedures. When we consider matching pairs,
we not only think that we don’t know how a player picks between one or the
other of a pair, but we also think that the question of determining whether to use
on or another of a matching pair of choice procedures is perfectly symmetrical.
Or to put the point more concretely, we think that insofar as a player is just
trying to pick a way of choosing, the question of determining how to label the
two sides of a coin is perfectly symmetrical.

This symmetry judgment is akin to the symmetry judgments that underlie
many of our probability judgments.6 For example, when it comes to the flip of
certain coins, it is not sufficient to simply state that we do not know whether
the coin will land heads or tails. After all, we often think that the question of
how likely it is that the coin lands heads is in every respect the same as the
question of how likely it is that the coin lands tails. And if we think that these

5 Since the players’ aims are solely to maximize their own payoffs, I will assume that
their utilities are identical to their payoffs.

6 For a nice discussion of probability judgments and symmetry judgments, see [5].
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questions are alike in every respect, then these questions must have the same
answer. Thus, we judge that it is equally likely that the coin lands heads or tails.

Similarly, if we judge that the question of how likely it is that HEADS is
associated with HI is just like the question of how likely it is that HEADS is
associated with LO, then we must think that these two question have the same
answer. And if they have the same answer, then the likelihood of using one or
another of a matching pair of choice procedures is identical.7

If the use of c or c* is equiprobable for every matching pair, then it is clear to
see why Weak and Strong Preference are valid principles. If the use of c and c*
is equiprobable and according to one HI is strictly better and according to the
other LO is strictly better, then there is an equal chance at doing better with
HI or LO. Thus, HI is at least as good as LO, and LO is at least as good as HI.
If according to both, HI is strictly better, then HI ought to be strictly preferred.

In providing an explanation of why HI is the uniquely rational choice, I have
been motivated by the intuition that HI dominates LO even for players who are
motivated solely to maximize their own payoffs. On my view, what an adequate
solution to this game requires is an explanation of how players might frame their
decision problems in a way that, despite their uncertainty, HI is nevertheless the
dominant choice. I hope to have offered one such framing and line of reasoning.
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The Logic of Epistemic Actions and Knowledge (EAK) has been introduced by
Baltag, Moss and Solecki [1] as a framework for reasoning about knowledge in
a dynamic setting. It is thus a language expansion of (classical) modal logic
having, besides the usual modal operators that represent knowledge and beliefs
of agents, dynamic operators used to represent the epistemic change that can be
brought about by epistemic actions such as, e.g., announcements.

Formally, epistemic changes are modeled via the so-called product update con-
struction on the Kripke-style models that constitute the relational semantics of
EAK. Through the product update, a Kripke model encoding the current epis-
temic setup of a group of agents is replaced by an updated model, which encodes
the setup of the agents after an epistemic action has taken place.

In [3,4] product updates are dually characterized as a construction (called
epistemic update) that transforms the complex algebra associated with a given
Kripke model into the complex algebra associated with the model updated by
means of an action structure; in this way EAK is endowed with an algebraic
semantics that is dual to the relational one via a Jónsson-Tarski-type duality.
Moreover, the methods of [3,4] can be used to define a logic of Epistemic Actions
and Knowledge on a propositional basis that is weaker than classical logic. This
provides us with a more flexible logical formalism, which can be applied to a
variety of contexts where classical reasoning is not suitable. This line of research
has been further pursued in [5,6], which extends the mechanism of updates to
the bilattice modal logic of [2], obtaining a bilattice public announcement logic.

In the present contribution we report on ongoing research that aims at further
extending the methods of [5,6] to introduce a suitable notion of product update
on relational and algebraic models of bilattice modal logic, thus providing a
semantics and a complete axiomatization for a bilattice-based Logic of Epistemic
Action and Knowledge (BEAK).

Bilattice modal logic is a logic defined by Kripke models 〈W,R, v〉 in which
both valuations and the accessibility relation R : W × W → FOUR take values
into the four-element Belnap bilattice FOUR. The language of bilattice modal
logic 〈∧,∨,→,¬,♦, t,�, f,⊥〉 is essentially the same as that of classical modal
logic (augmented with constants representing elements of FOUR), but the propo-
sitional connectives as well as the modal operator ♦ are interpreted using the
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algebraic operations of FOUR. This logic can be extended to define bilattice-
based epistemic logics, for example a four-valued analogue of modal logic S5 (we
refer to [2] for further details and motivation on bilattice modal logic).

We obtain the language of (single-agent)1 BEAK by expanding that of bi-
lattice modal logic with a dynamic modal operator 〈α〉, where α is an ac-
tion structure defined as below. Thus, for every formula ϕ ∈ Fm, we have
that 〈α〉ϕ is also a formula. In our four-valued setting, an epistemic action is
a structure α = (K, k,Rα,Preα) where K is a finite non-empty set, k ∈ K,
Rα : K ×K → FOUR and Preα : K → Fm is a map taking each point in K to
a formula of BEAK (the precondition of the action).

Drawing inspiration from [3,4], we introduce an algebraic semantics for BEAK
via intermediate structures. For every modal bilattice B (modal bilattices are
the algebraic semantics of the bilattice modal logic introduced in [2]) and every
action structure α = (K, k,Rα,Preα), the intermediate structure

∏
α B is given

by the direct power BK , which is obviously an algebra in the same variety. A
special quotient of

∏
α B is then taken, as an instance of the general construction

introduced in [5,6] to account for public announcements in a bilattice setting.
This is called pseudo-quotient, because it is obtained by means of a relation that
is compatible with all the bilattice connectives except for the ♦ operator. We
note that the pseudo-quotient definition from [3] does not work in the bilattice
setting, for produces a relation that is already not compatible with one non-
modal connective (the bilattice negation), and has therefore to be adapted as
indicated in [5,6].

The above product and pseudo-quotient constructions allow us to define a
suitable notion of algebraic models of BEAK. We then use the duality developed
in [2] to obtain a relational semantics for the logic. Given a four-valued Kripke
model M = (W,R, V ) and an action structure α, the intermediate structure
M×α is given by the coproduct

∐
α M := (

∐
K W,R×Rα,

∐
K V ), where

∐
K W

is the |K|-fold coproduct of W (which is set-isomorphic to W ×K), R × Rα is
a four-valued relation on

∐
K W and (

∐
K V )(p) :=

∐
K V (p) for every atomic

formula p. Finally, the update of M with the action structure α is the submodel
Mα := (Wα, Rα, V

α) of
∐

α M the domain of which is the subset

Wα := {(w, j) ∈
∐

K

W : M,w |= Preα(j)}.

The constructions sketched above allow us to devise suitable interaction ax-
ioms between the dynamic modality and the other connectives of bilattice modal
logic, which give us a Hilbert-style axiomatization of BEAK. Completeness with
respect to algebraic models is obtained, as in [3,4], via reduction to the static
fragment of the logic; completeness with respect to the relational models then
follows by duality.

1 The multi-agent version of BEAK results from indexing modal operators with agents
and interpreting relations (both on models and on action structures) over a set of
agents.
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Abstract. The complexity of input/output logic has been sparsely de-
veloped. In this paper we study the complexity of four existing in-
put/output logics. We show that the lower bound of the complexity of
the fulfillment problem of these input/output logics is coNP, while the
upper bound is either coNP, or PNP .

1 Introduction

In the first volume of the handbook of deontic logic and normative systems [4],
input/output logic [6,7,8,9] appears as one of the new achievements in deontic
logic in recent years. Input/output logic takes its origin in the study of con-
ditional norms. Unlike the modal logic framework, which usually uses possible
world semantics, input/output logic adopts mainly operational semantics: a nor-
mative system is conceived in input/output logic as a deductive machine, like a
black box which produces normative statements as output, when we feed it de-
scriptive statements as input. For a comprehensive introduction to input/output
logic, see Parent and van der Torre [9]. A technical toolbox to build input/output
logic can be found in Sun [12].

While the semantics and application of input/output logic has been well devel-
oped in recent years, the complexity of input/output logic has not been studied
yet. In this paper we fill this gap. We show that the lower bound of the com-
plexity for the fulfillment problem of four input/output logics is coNP, while the
upper bound is either coNP or PNP .

The structure of this paper is as follows: we present a summary of basic
concepts and results in input/output logic and some notes in complexity theory,
in Section 2. In Section 3 we study the complexity of input/output logic. We
point out some directions for future work and conclude this paper in Section 4.

2 Background

2.1 Input/Output Logic

Makinson and van der Torre introduce input/output logic as a general framework
for reasoning about the detachment of obligations, permissions and institutional
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facts from conditional norms. Strictly speaking input/output logic is not a single
logic but a family of logics, just like modal logic is a family of logics containing
systems K, KD, S4, S5, ... We refer to the family as the input/output framework.
The proposed framework has been applied to domains other than normative
reasoning, for example causal reasoning, argumentation, logic programming and
non-monotonic logic, see Bochman [2].

Let P = {p0, p1, . . .} be a countable set of propositional letters and PL be the
propositional language built upon P. Let N ⊆ PL×PL be a set of ordered pairs
of formulas of PL. We call N a normative system. A pair (a, x) ∈ N , call it a
norm, is read as “given a, it ought to be x”. N can be viewed as a function from
2PL to 2PL such that for a set A of formulas, N(A) = {x ∈ PL : (a, x) ∈ N for
some a ∈ A}. Intuitively, N can be interpreted as a normative code composed
of conditional norms and the set A serves as explicit input representing factual
statements.

Makison and van der Torre [6] define the semantics of input/output logics
from O1 to O4 as follows:

– O1(N,A) = Cn(N(Cn(A))).
– O2(N,A) =

⋂{Cn(N(V )) : A ⊆ V, V is complete}.
– O3(N,A) =

⋂{Cn(N(B)) : A ⊆ B = Cn(B) ⊇ N(B)}.
– O4(N,A) =

⋂{Cn(N(V ) : A ⊆ V ⊇ N(V )), V is complete}.
Here Cn is the classical consequence operator of propositional logic, and

a set of formulas is complete if it is either maximal consistent or equal to
PL. These four operators are called simple-minded output, basic output, simple-
minded reusable output and basic reusable output respectively. For each of these
four operators, a throughput version that allows inputs to reappear as outputs,
defined as O+

i (N,A) = Oi(Nid, A), where Nid = N ∪ {(a, a) | a ∈ PL}. When A
is a singleton, we write Oi(N, a) for Oi(N, {a}).

Input/output logics are given a proof theoretic characterization. We say that
an ordered pair of formulas is derivable from a set N iff (a, x) is in the least set
that extends N ∪{(�,�)} and is closed under a number of derivation rules. The
following are the rules we need to define O1 to O+

4 :

– SI (strengthening the input): from (a, x) to (b, x) whenever b � a. Here � is
the classical entailment relation of propositional logic.

– OR (disjunction of input): from (a, x) and (b, x) to (a ∨ b, x).
– WO (weakening the output): from (a, x) to (a, y) whenever x � y.
– AND (conjunction of output): from (a, x) and (a, y) to (a, x ∧ y).
– CT (cumulative transitivity): from (a, x) and (a ∧ x, y) to (a, y).
– ID (identity): from nothing to (a, a).

The derivation system based on the rules SI, WO and AND is called D1.
Adding OR to D1 gives D2. Adding CT to D1 gives D3. The five rules together
give D4. Adding ID to Di gives D

+
i for i ∈ {1, 2, 3, 4}. (a, x) ∈ Di(N) is used to

denote the norms (a, x) derivable from N using rules of derivation system Di.
In Makinson and van der Torre [6], the following soundness and completeness
theorems are given:
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Theorem 1 ([6]). Given an arbitrary normative system N and formula a,

– x ∈ Oi(N, a) iff (a, x) ∈ Di(N), for i ∈ {1, 2, 3, 4}.
– x ∈ O+

i (N, a) iff (a, x) ∈ D+
i (N), for i ∈ {1, 2, 3, 4}.

2.2 Complexity Theory

Complexity theory is the theory to investigate the time, memory, or other re-
sources required for solving computational problems. In this subsection we briefly
review those concepts and results from complexity theory which will be used in
this paper. More comprehensive introduction of complexity theory can be found
in [11,1]

We assume the readers are familiar with notions like Turing machine and the
complexity class P, NP and coNP. Oracle Turing machine and one complexity
class related to oracle Turing machine will be used in this paper.

Definition 1 (oracle Turing machine). An oracle for a language L is de-
vice that is capable of reporting whether any string w is a member of L. An
(resp. non-deterministic) oracle Truing machine ML is a modified (resp. non-
deterministic) Turing machine that has the additional capability of querying an
oracle. Whenever ML writes a string on a special oracle tape it is informed
whether that string is a member of L, in a single computation step.

Definition 2 (PNP ). PNP is the class of languages decidable with a polynomial
time oracle Truing machine that uses oracle L ∈ NP.

3 Complexity of Input/Output Logic

The complexity of input/output logic has been sparsely studied in the past.
Although the reversibility of derivations rules as a proof re-writing mechanism
has been studied for input/output logic framework [6], the length or complex-
ity of such proofs have not been developed. We approach the complexity of
input/output logic from a semantic point of view.

We now start to study the complexity of the following input/output logics:
O1, O

+
1 , O3, and O+

3 . We focus on three different problems:
Given a finite set of norms N , a finite set of formulas A and a formula x:

(1) Fulfillment problem: is x ∈ O(N,A)?
(2) Violation problem: is ¬x ∈ O(N,A)?
(3) Compatibility problem: is ¬x 
∈ O(N,A)?

The aim of the fulfillment problem is to check whether the formula x appears
among the obligations detached from the normative system N and facts A.
The intuitive reading of the violation problem is: if the obligation to fulfill ¬x
exists, then x is a violation. Finally, the compatibility problem says if ¬x is not
obligatory, then x is compatible with the normative system N , given facts A.
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The compatibility problem is often referred as a negative permission [8,3], and
corresponds to what is called weak permission.1 It can be proven that the other
two problems can be reduced to the comliance problem. Therefore we focus on
the compliance problem.

3.1 Simple-Minded O1

Theorem 2. The fulfillment problem of simple-minded input/output logic is
coNP-complete.

Corollary 1. The violation problem of simple-minded input/output logic is
coNP-complete. The compatibility problem of simple-minded input/output logic
is NP-complete.

3.2 Simple-Minded Throughput O+
1

Theorem 3. The fulfillment problem of simple-minded throughput input/output
logic is coNP-complete.

Corollary 2. The violation problem of simple-minded throughput input/output
logic is coNP-complete. The compatibility problem of simple-minded throughput
input/output logic is NP-complete.

3.3 Simple-Minded Reusable O3

Theorem 4. The fulfillment problem of simple-minded reusable input/output
logic is between coNP and PNP .

Corollary 3. The violation problem of simple-minded reusable input/output
logic is between coNP and PNP . The compatibility problem of simple-minded
reusable input/output logic is between NP and PNP .

3.4 Simple-Minded Reusable Throughput O+
3

Theorem 5. The fulfillment problem of simple-minded reusable throughput in-
put/output logic is between coNP and PNP .

Corollary 4. The violation problem of simple-minded reusable throughput in-
put/output logic is between coNP and PNP . The compatibility problem of simple-
minded reusable throughput input/output logic is between NP and PNP .

1 “An act will be said to be permitted in the weak sense if it is not forbidden . . . ”
[13].
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4 Conclusion and Future Work

In this paper we develop complexity results of input/output logic. We show that
four input/output logics (O1, O

+
1 , O3, O

+
3 ) have lower bound coNP and upper

bound either coNP or PNP . There are several natural directions for future work:

1. What is the complexity of other input/output logic?
2. What is the complexity of constraint input/output logic? Constraint in-

put/output logic [7] is developed to deal with the inconsistency of output.
The semantics of constraint input/output logic is more complex than those
input/output loic discussed in this paper. This might increase the complex-
ity of the compliance problem. Constraint input/output logic based on O+

3

has close relation with Reiter’s default logic [10]. Gottlob [5] presents some
complexity results of Reiter’s default logic, which will give us insights on the
complexity of constraint input/output logic.

3. What is the complexity of different types of permission? three different of
permissions are introduced in Makinson and van der Torre [8]. In this paper
we study the complexity of only one of them (namely, negative permissions)
as the compatibility problem. The semantics of these three logics are dif-
ferent, which suggests different complexity for the new problems related to
permissions.
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Abstract. Following Fitting’s method, a translation of a Lewis-style
counterpart theory in the language L(NI) into the language L(NId) is
provided.

Keywords: singular term, quantified modal logic, rigidity, counterpart
theory.

We start from L(NI)1. L(NI) is a quantified modal logic language, which has its
variables, constants, quantifiers, connectives, modal operators, and formation
rules in a standard way.

Definition 1. A counterpart frame or a cF is 〈W,D,R,C〉 in which W is a non-
empty set of worlds, D is a non-empty domain, and R is a binary accessibility
relation on W . C is a function mapping each member of W×W to a counterpart
relation on D.

David Lewis in [1] accepts possible worlds but he argues against transworld
identity for the reason that objects cannot have being or be identifiable across
possible worlds, just as an object cannot exist in different places at the same
time. He develops the counterpart theory: an object in a possible world has
counterparts in other worlds rather than existing by itself in them. In order to
capture his idea, we have C in the counterpart frame. For example, if 〈x, y〉 ∈
C(w,w′), then y in w′ is a counterpart of x in w.2

Definition 2. A counterpart model on a counterpart frame or a cF -model is
〈W,D,R,C, v〉. v is a function such that: if c is a constant, v(c) ∈ D; if Pw is
an n-place predicate for a world w, vw(P ) ⊆ Dn.

As to the semantics, truth values are assigned to all closed formulas. We
consider non-modal cases first. For atomic sentence, vw(Pa1...an) = 1 iff

1 I use this notation because this language works well with the notion of rigid designa-
tors to validate necessary identity. Although necessary identity does not hold with
respect to the semantics for the counterpart theory I introduced later.

2 I also suggest that we make R follow C in the sense that if there is a counterpart
relation between objects of two worlds, then there is a accessibility relation between
these two worlds.
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〈v(a1)...v(an)〉 ∈ vw(P ). We expand the language to ensure that every mem-
ber of D has a name; for all d ∈ D, we add a constant kd to the language. For
the quantifiers, vw(∀xΨ(x)) = 1 iff for all d ∈ D, vw(Ψ(kd) = 1); vw(∃xΨ(x)) = 1
iff for some d ∈ D, vw(Ψ(kd) = 1. The truth conditions for the connectives are
in a standard way. For modal cases, we define counterpart-sentences first.

Definition 3. For each d ∈ D, we add a constant kd as usual. We pick up all
n-tuples of kd such that {v(ai), v(kdi)} ∈ C(w,w′) for every kdi in Φw′ and its
corresponding ai in Φw, and for all w′ ∈ W such that wRw′. For each of these
n-tuples, Φw′(kd1 ...kdn) is a counterpart-sentence of Φw(a1...an).

Hence, vw(�Φ) = 1 iff every counterpart-sentence of Φ is true; vw(♦Φ) = 1
iff some counterpart-sentence of Φ is true. Notice that we might have different
objects in the domain as candidates for kdi in different n-tuples, because an
object might have two counterparts in one possible world.

Now let us turn to the language L(NId) which is based on L(NI) and extended
by adding descriptors.We need more definitions before we go further.

Definition 4. 〈W,D,R〉 is a L(NId) frame or dF ; 〈W,D,R, v〉 is a dF -model.

Descriptors are non-rigid. We assign each descriptor a denotation vw(α) at
each world. Hence, the truth conditions of closed atomic sentences would be
vw(Pt1...tn) = 1 iff 〈vw(t1)...vw(tn)〉 ∈ vw(P ), and a term t is either a rigid con-
stant or a descriptor. For modal formulae, vw(�Φ(α)) = 1 iff for any world w′

such that wRw′, the denotation of α in w′ satisfies Φ. And similarly for ♦.
In order to do the translation, we need to collect some special functions. Here

we consider a loop-free case in which our collecting would not lead to many-
valued functions.

Definition 5. A frame is simply connected if there is only one path, if any,
between any two worlds. A path in the frame is a sequence of worlds (with no
repetition) such that each of them is related to the next. w and w′ is related if
wRw′ or w′Rw.

Definition 6. Let f be a function defined on a frame, mapping worlds to mem-
bers of D. f is counterpart frame compatible or cF-compatible if for any w and
w′ such that wRw′, f(w′) is a counterpart of f(w).

If a cF is simply connected and we have a cF -model for the cF , then we have
a corresponding dF -model which has the same W,D,R with the cF -model, and
has v expanded by adding valuations of descriptors such that each descriptor
corresponds to each cF -compatible function. I explain this by an example. (Cf.
Fig. 1.) Suppose there is a cF :
W : {w0, w1, w2},
D : {O01, O02, O11, O12 O21, O22},
R : {〈w0, w1〉 〈w0, w2〉, 〈w0, w0〉, 〈w1, w1〉, 〈w2, w2〉},
C(w0, w1) : {〈O01, O11〉, 〈O02, O12〉},
C(w0, w2) : {〈O01, O21〉, 〈O01, O22〉, 〈O02, O22〉},
Also for any w, C(w,w) is an identity function {〈O,O〉} for all objects. 3

3 I assume that an object is the counterpart of itself in its world.
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Fig. 1.

Then we have a corresponding dF -model:
W,D,R is the same, and we add the following valuations into v. (Since v in cF -
model is only about rigid constants and predicates, this adding does not cause
contradiction.)
v(α1) is a function: {〈w0, O01〉, 〈w1, O11〉, 〈w2, O21〉}
v(α2) is a function: {〈w0, O01〉, 〈w1, O11〉, 〈w2, O22〉}
v(α3) is a function: {〈w0, O02〉, 〈w1, O12〉, 〈w2, O22〉}

I suggest that for any Φ in a counterpart theory in the language L(NI), there is
a corresponding Φ∗ in the language L(NId) such that Φ is true in a cF -model iff
Φ∗ is true in a corresponding dF -model. The translation from Φ to Φ∗ is defined
in this way,

1. If A is atomic, A∗ = A.
2. (A ∧B)∗ = (A∗ ∧B∗), and similarly for other connectives.
3. (∀xA)∗ = ∀xA∗, and similarly for existential quantifiers.
4. Suppose that constants of A are a1...an. For each cF -compatible function

we add a descriptor into the language, so we got a set of these descriptors
Δ and the Cartesian productΔn. We collect every n-tuple {αi1...αin} ⊆ Δn

such that a1 = αi1 is true, a2 = αi2 is true, and etc. The number of this kind
of n-tuple is i, (�A(a1...an))

∗ =
∧

1≤j≤i

�A∗(αj1...αjn). And similarly for ♦.

For example, using the previous cF -frame, suppose Φ is �Pa which is true in
w0 in a cF -model when v(a) = O01, then we have �Pα1 ∧ �Pα2 which is true
in w0 in a corresponding dF -model.

Remark 1. For the translation, a crucial point is to make the non-rigid descrip-
tors in a dF -model play the role of C in a cF model.
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Remark 2. Modal operators for the counterpart theory still works locally. If we
just want to do the translation for modal formulae which do not contain iterated
modal operators, then we do not need to assume that the cF frame is simple
connected.

Remark 3. If we want to do the translation at the level of cF frames and dF
frames without assuming a simple connected cF , we need to avoid assigning
many-valued functions to descriptors. Fitting suggests that we can ‘duplicate’
possible worlds. For modal realists4, it might be more reasonable, even not easier
in technical details, to duplicate functions and descriptors (unless you also accept
the existence of individual concepts or intensional objects).
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