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    Chapter 6   
 Multifunctional Quantum Dot-Based 
Nanoscale Modalities for Theranostic 
Applications                     

       Bowen     Tian    

    Abstract     Quantum dots (QD) have shown unprecedented fl uorescent properties 
that are capable of revolutionising the fi eld of optical imaging. Due to its unique 
fl uorescent properties, QD have been extensively explored as imaging reagents for 
the investigation of various biological behaviours in vitro and in vivo. The design 
and engineering of multifunctional, QD-based modalities have recently attracted 
enormous interest for simultaneous imaging and therapy. The presence of QD as 
imaging agent in the theranostic modalities allows for the visualisation of their 
behaviour in real time and, thus, allows the monitoring of biodistribution, the per-
centage of drugs in the target site and regional uptake of the drug, as well as clear-
ance from the body in real time, after systematic administration. All this information 
obtained from QD-based theranostic modalities is believed to be greatly helpful for 
the better understanding of biological behaviours and further optimization of novel 
therapeutic modalities, in preclinical and clinical investigations. This chapter 
attempts to give a brief overview of QD ranging from fundamental knowledge to 
multifunctional QD-based theranostic modalities for gene therapy, chemotherapy 
and photodynamic therapy.  
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6.1         Quantum Dot 

6.1.1     Optical Imaging 

 Optical imaging is a non-invasive, reliable and highly sensitive technique, with 
nanometre-scale resolution for exploring various biological activities in the life sci-
ences [ 1 – 4 ]. Fluorescent imaging methods rely on the detection of emission light 
from fl uorophores, when the fl uorophores are excited by using a light source with 
specifi c wavelength. Therefore, the fl uorescent properties of the fl uorophores are of 
utmost importance in the successful application of such techniques. Ideal fl uoro-
phores require strong emission, high photostability, no toxicity and ease of chemical 
modifi cation (e.g. conjugation with targeting ligands). Furthermore, for in vivo 
imaging, both excitation and emission light require effi cient penetration through the 
tissues. NIR (near infrared, 700–1000 nm) imaging [ 5 ,  6 ] has recently attracted 
enormous interest, due to deep-tissue fl uorescence imaging, compared to short light 
(<700 nm). NIR offers image-guided operation in the clinic [ 6 – 8 ]. The recent devel-
opment of fl uorescence molecular tomography [ 9 ] and photoacoustic tomography 
[ 10 ] will promote the applications of optical imaging in the life sciences. 

 The fl uorophores are divided into inorganic (QD [ 11 ], graphene QD [ 12 ], gold 
nanoparticles [ 13 ]), carbon nanotube [ 14 ], hybrids (lanthanide chelates [ 15 ]) and 
organic dyes (cyanine [ 16 ]). One of the most promising fl uorescent probes is the 
quantum dot, which can revolutionise the fl uorescent detection techniques given 
QD’s unprecedented superior fl uorescent properties, compared to traditionally used 
fl uorescent dyes.  

6.1.2     Quantum Dot Fluorescence Characteristics 

 QD are fl uorescent, semiconductor, nanocrystals with typical diameters ranging 
from 1 to 10 nm [ 17 ]. Due to their superior fl uorescence characteristics in compari-
son with traditionally used organic dyes, QD have been extensively used for a vari-
ety of biological investigations in vitro and in vivo [ 18 – 23 ]. Their unique fl uorescent 
properties are characterised by size-dependent colour, pronounced photostability 
and sharper emission spectra and much broader absorption spectra.

•    First, QD are characterised by their unique size and/or composition-dependent 
colour. This allows the design and synthesis of QD with customised colour, such 
that it is visible to infrared for specifi c applications [ 24 – 27 ].  

•   Second, QD have shown pronounced photostability. The growth of a passivation 
shell (e.g. zinc sulphur) around it can further improve their photostability for 
long-term and stable fl uorescent imaging [ 17 ,  28 ,  29 ]. These core/shell QD, for 
example, CdSe/ZnS, are excellent fl uorescent probes for long-term fl uorescence 
imaging applications.  
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•   Third, QD possess sharper emission spectra and much broader absorption spec-
tra, compared to organic dyes. This unique fl uorescent characteristic enables 
simultaneous imaging of QD of different colours, using one single excitation 
light source [ 26 ,  30 – 32 ]. In practice, this has been used for multiplex imaging to 
track cancer cell metastasis [ 33 ,  34 ] and differentiate tumour tissue [ 35 ] in vivo.  

•   Fourth, QD are much brighter and robust against photobleaching [ 36 ,  37 ]. Under 
the exposure of excitation light, QD can maintain stable fl uorescence for a much 
longer time than organic dyes.    

 All these fl uorescent characteristics form the basis for QD-based imaging appli-
cations for various biological studies; for example, for cell tracking [ 38 – 40 ], tumour 
vessels [ 41 ,  42 ], lymph nodes [ 43 ,  44 ] and solid tumours [ 19 ,  45 ,  46 ] in vivo.  

6.1.3     Quantum Dot Synthesis and Composition 

 High-quality monodisperse QD was fi rst reported by Bawendi and co-workers in 
1993 [ 47 ]. Their synthetic method controlled well the colloidal stability of QD to 
maintain its monodispersed status and, therefore, elucidated its unique fl uorescent 
characteristics, including size-dependent fl uorescence for the fi rst time. CdSe QD 
are the mostly widely used in biological applications due to a well-established syn-
thetic chemistry [ 21 ]. In a typical CdSe QD synthesis, selenium (commonly trioc-
tylphosphine selenide or tributylphosphine selenide) and cadmium precursors 
(dimethylcadmium or cadmium oleate) are injected into a high-temperature (300 °C) 
organic solvent containing coordinating polymers (trioctylphosphine oxide or hexa-
decylamine) [ 28 ,  47 ,  48 ]. Selenium and cadmium precursors are fast reacting to 
form the CdSe nucleus, and, in the meantime, coordinating ligands are attached to 
the CdSe nucleus surface to maintain colloidal stability. Cadmium and selenium 
continuously grow on the existing CdSe core, until the growth of QD reaches a 
desired size as monitored by the absorption spectrum [ 49 ]. A ZnS shell can be 
grown on the CdSe surface to enhance QD photoluminescence effi ciency [ 17 ], sta-
bility against oxidative photobleaching [ 17 ,  28 ,  29 ] and colloidal stability [ 50 ]. Due 
to coordinating polymer coating (e.g. trioctylphosphine oxide, TOPO), QD are 
extremely hydrophobic and require further engineering to be dispersible in water. 

 With the development of QD synthetic chemistry, QD have been synthesised in 
aqueous solutions, high-temperature organic solvents and solid substrates [ 21 ] 
using various materials, mainly from II–IV (e.g. ZnS and CdS) and III–V (e.g. InP 
and InAs) group semiconductor materials. Alloyed QD tunes emission wavelengths 
by manipulating compositions [ 24 ,  26 ]. Cadmium-free QD of CuInS 2  emits fl uores-
cence in the NIR range and greatly minimises toxicity compared to traditionally 
used cadmium containing QD (e.g. CdSe) [ 51 ]. Many more novel types of QD, with 
different properties, are under development, including graphene QD [ 52 ,  53 ] and 
nitrogen-rich QD [ 54 ].  
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6.1.4     Quantum Dot Solubilisation and Functionalisation 

 Both Nie and Alivisatos groups fi rst engineered water-soluble QD for biological 
applications. This was achieved by coating hydrophobic QD with mercaptoacetic 
acid [ 55 ] or silica [ 56 ]. For the engineering of water-soluble QD, two typical meth-
ods have been developed, namely, ligand exchange and amphiphilic polymer 
coating. 

 For ligand exchange, bifunctional ligands composed of a thiol group at one end 
are used. The thiol group is used to replace hydrophobic coordinating polymers 
(e.g. trioctylphosphine oxide (TOPO)), due to a stronger binding affi nity to cad-
mium. The other end of the bifunctional ligand is normally composed of a hydro-
philic group, which is exposed outside to interact with hydrophilic molecules (e.g. 
water) [ 36 ,  55 ,  56 ]. A variety of thiol-containing molecules have been used to make 
water-soluble QD following the ligand-exchange strategy, including (1) thiol- 
containing chemical molecules, such as mercaptoacetic acid (MAA), dihydrolipoic 
acid and mercaptopropyltris (methoxy) silane (MPS) [ 36 ,  55 ,  56 ], (2) peptides [ 57 ], 
(3) dendron [ 58 ], (4) oligomeric phosphine [ 59 ] and (5) silica [ 60 ]. It is notable that 
the replacement of TOPO coating successfully makes water-soluble QD, but it has 
been found to result in unfavourable effects on QD fl uorescence and colloidal stabil-
ity [ 55 ,  56 ,  61 ]. 

 For amphiphilic polymer coating, their hydrophobic domain is used to interact 
with hydrophobic coordinating polymers, leading to the formation of an amphiphi-
lic polymer coating around TOPO-capped QD. A variety of amphiphilic polymers 
have been used following this strategy, such as phospholipid micelles, triblock 
copolymer and amphiphilic diblock. Moreover, amphiphilic polymer coating has 
shown minimal effect on QD fl uorescence and colloidal stability, compared to 
ligand exchange [ 19 ,  39 ,  62 ,  63 ] and, thus, has been the most commonly adopted 
approach for engineering stable, water-soluble QD. However, it is also notable that 
the formation of amphiphilic polymer coating around QD leads to a size increase 
[ 21 ]. 

 For the functionalisation of QD, a variety of methods have been utilised, such as 
electrostatic absorption, covalent conjugation and streptavidin-biotin linking [ 21 , 
 55 ,  64 ]. QD have been functionalised using various molecules for biological appli-
cations, such as antibodies [ 65 – 69 ], peptides [ 41 ,  42 ,  70 ], endosome-disruptive 
polymers [ 71 ], aptamers [ 72 – 75 ], radionuclides [ 76 – 78 ], magnetic resonance imag-
ing (MRI) agents [ 79 ,  80 ] and therapeutic molecules [ 81 – 84 ]. Moreover, polyethyl-
ene glycol (PEG) has been successfully used to prolong QD blood circulation 
half-life in vivo and minimise immunogenicity and cytotoxicity [ 43 ,  85 – 87 ]. 
Figure  6.1  shows a schematic structure of functionalised QD for in vivo targeted 
imaging.
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6.1.5        Quantum Dot in Biomedical Application 

 QD have been successfully used in fl uorescent-based imaging and diagnostic appli-
cations in vitro and in vivo, for instance, (a) in vitro cell labelling [ 38 ,  39 ], fl uores-
cent nanoprobes [ 88 ,  89 ] and biosensors based on the fl uorescence resonance energy 
transfer (FRET) [ 90 ,  91 ] and (b) in vivo tumour vascular imaging [ 41 ,  92 ], tracking 
cells [ 40 ,  62 ,  93 ], lymph nodes [ 43 ,  44 ,  94 ] and solid tumours [ 95 – 97 ]. Due to the 
broad excitation spectra of QD, simultaneous detection using different coloured QD 
has enabled multiplex imaging to be used for tracking cancer cell metastasis [ 33 , 
 34 ] and differentiating tumour tissue [ 35 ] in vivo. 

 Nowadays, fl uorescent imaging using QD in vivo offers direct visualised evi-
dence, but is mostly semi-quantitative. For accurate quantitative analysis, QD 
require the combination of fl uorescence with other detection methods (e.g. radiola-
belling). Recently, QD have been engineered such that they are equipped with mag-
netic [ 80 ,  98 ], paramagnetic [ 99 ] or radioactive properties [ 76 ,  78 ,  100 ], for more 
sensitive and quantitative diagnostic applications. Such dual-function nanoprobes 

  Fig. 6.1    The structure of a multifunctional QD. Schematic illustration showing the capping ligand 
TOPO, encapsulating copolymer layer, tumour-targeting ligands (such as peptides, antibodies or 
small-molecule inhibitors) and polyethylene glycol (PEG) (Reprinted from Ref. [ 87 ], copyright 
2005, with the permission from Elsevier)       
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allow detection using multiple techniques, such as magnetic resonance imaging 
(MRI), positron emission tomography (PET) and single-photon emission computed 
tomography (SPET), along with fl uorescence techniques such as IVIS camera [ 76 , 
 99 ,  101 ]. For instance, tumour targeting of  64 Cu-labelled QD was directly visualised 
by NIR fl uorescence imaging of QD. With radiolabelling of  64 Cu, the tumour- 
targeting effi ciency of the QD was accurately quantifi ed by the means of ultrahigh 
sensitivity of the radionuclide using PET [ 77 ]. Interestingly, Cai et al. (2007) further 
found that the tumour-to-muscle ratios obtained from NIR imaging were in agree-
ment with PET analysis for certain organs, for example, the liver and spleen [ 77 ].  

6.1.6     Quantum Dot Biodistribution and Pharmacokinetics 
In Vivo 

 Most studies have shown that QD are rapidly taken up by the reticuloendothelial 
system (RES), with high accumulation in the liver and spleen after systemic admin-
istration [ 100 ,  102 – 106 ]. Studies, so far, have shown that PEGylation, size and sur-
face coating are the three critical factors which determine QD biodistribution and 
pharmacokinetics. 

 With respect to PEGylation, Ballou et al. have reported, by non-invasive fl uores-
cent imaging, that the QD surface modifi ed with PEG 5000  (5,000 Da) greatly pro-
longs blood circulation half-life (t 1/2  = 140 min), compared to short PEG 750  and 
PEG 3400  (t 1/2  < 12 min) [ 102 ]. However, high uptake by the liver, spleen, lymph nodes 
and bone marrow was observed up to 4 months [ 102 ]. Consistently, PEG 5000 - 
conjugated QD achieved long blood circulation half-life and, thus, facilitated target-
ing to the desired tissues in vivo [ 19 ,  45 ]. In 2009, Choi and co-workers reported 
that the biodistribution and pharmacokinetics of QD can be manipulated by surface 
modifi cation using different lengths of PEG [ 103 ]. Choi et al. (2009) found that QD 
conjugated with PEG2 (two monomers) primarily accumulate in the liver; PEG8 
accumulate in the pancreas; PEG3 and PEG4 are excreted via renal clearance and 
PEG22 circulate in the vasculature. 

 With respect to QD size, Fischer et al. (2006) have reported that QD linked to 
proteins (bovine serum albumin, BSA), 80 nm in diameter, were prominently accu-
mulated in the liver compared to small QD (cross-linked with lysine, 25 nm in diam-
eter) (99 % ID/g vs. 36 % ID/g, respectively) after 90 min postinjection [ 104 ]. This 
fi nding indicates that the interaction between QD and blood proteins leads to QD 
size increase and thus would result in rapid clearance by the RES system in vivo, 
similar to QD-BSA conjugates. In 2007, Choi et al. reported that zwitterionic QD 
showed biodistribution and clearance in a size-dependent manner. QD of 5.5 nm in 
hydrodynamic diameter can be effi ciently excreted via urine, whereas larger QD 
(8.65 nm in diameter) showed high liver uptake but no urine clearance [ 105 ]. 

 Moreover, it is evident that the extent of QD migration in the lymphatic system 
depends on QD size. QD with an average diameter of 15–20 nm migrate rapidly to 
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the sentinel lymph nodes (SLN), but primarily accumulate in the fi rst lymph node, 
when administrated through subcutaneous, intradermal, intraperitoneal and intrapa-
renchymal routes [ 20 ,  107 – 112 ]. In comparison, smaller QD with mean diameter of 
9 nm migrate further into the lymphatic system up to fi ve nodes [ 112 ]. 

 Very recently, Schipper et al. (2009) attempted to investigate the effect of particle 
size, surface coating and PEGylation on QD biodistribution and pharmacokinetics 
in nude mice after intravenous administration [ 106 ]. Schipper et al. (2009) injected 
polymer- or peptide-coated  64 Cu-labelled QD, 2 and 12 nm in diameter, with or 
without surface-conjugated PEG 2000 , and did the analysis using both PET and 
ICP-MS (inductively coupled plasma mass spectrometry). It was found that PEG 2000  
conjugation to the large QD (12 nm) surface delayed accumulation in the liver and 
spleen, whereas such delayed uptake by the RES system was not observed from 
PEG 2000 -conjugated small QD (2 nm). Moreover, unlike polymer coating, peptide 
coating enhanced QD excretion, with higher accumulation in the bladder observed 
from small QD compared to large QD (7.6 % ID/g vs. 2.5 % ID/g, respectively). 

 Overall, it can be seen that QD biodistribution and pharmacokinetics in living 
animals are affected by many factors, such as hydrodynamic diameter, surface 
charge, PEG length and the route of administration. Furthermore, it has been shown 
that only very small neutral and zwitterionic QD (<5.5 nm in diameter) can be 
excreted effi ciently via urine [ 103 ,  105 ], while larger QD have a tendency to accu-
mulate in the body [ 104 ,  113 ], which will consequently raise the toxicity issue of 
QD.  

6.1.7     Toxicity Profi les of Non-functionalised Quantum Dot 

 The concern over QD toxicity is mainly derived from their intrinsic core composi-
tions, such as cadmium (e.g. CdSe and CdTe). The correlation between cytotoxicity 
and free Cd 2+  ions has been established [ 60 ,  114 ,  115 ] with the occurrence of signifi -
cant cell death in the range of 100–400 μM Cd 2+  ions [ 43 ]. Derfus et al. reported that 
CdSe QD are toxic due to the release of cadmium ions (Cd +2 ) initiated upon pho-
tolysis and/or oxidation. This was evidenced by the blue shift in QD absorbance 
spectra due to size deduction and subsequent release of Cd +2  [ 114 ]. Furthermore, the 
process in the production of Cd +2  ions has been found to be accompanied by the 
formation of reactive oxygen species (ROS), such as singlet oxygen (O 2  − ), due to 
QD electron donation to oxygen [ 105 ,  116 ,  117 ]. Cho et al. observed signifi cant 
lysosomal damage due to the presence of both Cd +2  ions and ROS after a 24-h cell 
incubation [ 118 ]. 

 So far, studies have demonstrated that QD cytotoxicity is attributed to the use of 
core QD (e.g. CdTe), without ZnS coating, especially those solubilised by the 
ligand-exchange method, such as mercaptopropionic acid (MPA-QD) [ 77 ,  117 , 
 119 – 121 ], mercaptoacetic acid (MAA-QD) [ 114 ], mercaptoundecanoic acid 
(MUA-QD) [ 121 ], cysteamine (QD-NH 2 ) [ 118 ,  119 ] and thioglycerol (QD-OH) 
[ 115 ]. These ligands have weak electrostatic interactions with QD and are found to 
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detach from the QD surface [ 122 ,  123 ]. Such ligand detachment may be worse in 
harsh conditions like endosomal compartment [ 56 ] leading to severe cell death [ 60 , 
 105 ,  117 ,  119 ,  120 ]. 

 In comparison, QD coated with ZnS shell (CdSe/ZnS [ 114 ] and CdTe/ZnS [ 118 ]) 
can protect the QD core from oxidation, thereby minimising Cd +2  leakage and sub-
sequently reducing the QD-induced cytotoxicity [ 60 ,  118 ,  119 ]. Moreover, QD 
solubilised with a stable coating, such as silica, were shown to be non-toxic up to a 
high Cd +2  surface concentration [ 60 ] and highly resistant to chemical and metabolic 
degradation [ 124 ], as well as non-toxic even if translocated to the cell nucleus [ 125 ], 
or at the gene level [ 86 ]. 

 Nowadays, most biological investigations have selected core/shell QD with sta-
ble amphiphilic polymer coating, used at relatively low concentrations (nmol to 
pmol). Therefore, no obvious toxicity has been observed from QD. For example, 
 Xenopus  embryos [ 62 ] and zebrafi sh embryos [ 126 ] microinjected with QD did not 
exhibit any sign of toxicity until a high concentration was used, leading to abnor-
malities in the embryos. Furthermore, QD injected systemically in mice and rats has 
shown no apparent toxicity in pmol-nmol range, even after 4 months [ 43 ,  104 ,  127 , 
 128 ]. Moreover, large animals (e.g. Yorkshire pigs) injected with 200–400 pmol of 
QD for the sentinel lymph node (SLN) mapping showed no physiological changes 
in the heart rate, blood pressure and oxygen level even after several hours [ 20 , 
 109 – 111 ]. 

 Overall, cytotoxicity studies have shown that the toxicity of QD can be mini-
mised by coating with ZnS shell and solubilising using amphiphilic polymer coat-
ing, especially when a low dose is used during the period of the experiment. 
However, heavy metal containing (e.g. cadmium) QD composition would be a 
major obstacle for clinical use.   

6.2     Quantum Dot for Theranostic Applications 

6.2.1     Quantum Dot-Based Gene Therapy Modalities 

 Gene therapy is one of the most promising solutions to various formidable diseases, 
including cancer. However, to achieve effective gene therapy requires the effi cient 
and specifi c delivery of nucleic acid inside of cellular compartments (e.g. nucleus). 
Various biological barriers, therefore, need to be overcome to deliver nucleic acid 
inside of cells. Moreover, the release of nucleic acid from delivery vectors inside of 
the cells is guaranteed. This is a complicated process, which is currently not yet 
fully understood. QD offers excellent fl uorescent properties in studying various pro-
cesses associated with nucleic acid delivery, including complexation, and the release 
and intracellular traffi cking of nucleic acid complexation. The fl uorescence reso-
nance energy transfer (FRET) phenomenon is used to construct the QD-FRET pair 
for the investigation of nucleic acid delivery. 
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 The FRET effect is used to monitor fl uorescent changes in a fl uorescent mole-
cule pair, including a donor and an acceptor. Fluorescent changes are due to the 
distance alteration in nanoscale (called the Forster radius, typically several nanome-
tres) between the pair. For example, when a donor molecule and an acceptor mole-
cule are approaching each other within Forster radius, the receptor starts to absorb 
energy from the donor, and as a result, the donor loses its fl uorescence. When the 
two molecules are separating from each other (beyond Forster radius), the receptor 
cannot absorb energy from the donor, and as a result, the donor recovers fl uores-
cence to a normal level. 

 The advantage of constructing the QD-FRET pairs is that QD stable fl uorescent 
properties, against photobleaching, allows stable and long-term fl uorescent imaging 
of nucleic acid delivery, release and related behaviours. In a typical example of 
QD-FRET pairs, QD-labelled pDNA forms complexation with fl uorescently Cys5- 
labelled chitosan [ 129 ]. The FRET effect allows the monitoring of the integrity of 
the complexation inside of cells (by observing Cys5 fl uorescence due to energy 
transfer from QD-labelled pDNA), whereas released pDNA only shows QD fl uores-
cence. Moreover, intracellular traffi cking was conducted in a highly sensitive and 
quantitative way. Following the same FRET strategy, similar studies have been car-
ried out to investigate DNA condensation and stability [ 130 ], as well as DNA poly-
mer complexation [ 131 ]. It is notable that photoactivation of QD is often 
accompanied with the production of reactive oxygen species (ROS), which leads to 
the breakage of DNA in QD-DNA conjugates [ 132 ]. This could offer a novel strat-
egy to induce the release of DNA from QD upon light activation for controlled 
delivery of DNA inside of cells. 

 Apart from constructing QD-FRET pairs with DNA, QD is also explored as a 
delivery vector for DNA delivery. QD-loaded micelles carrying functional groups 
(e.g. maleimide) have been directly conjugated with pDNA molecules [ 133 ]. Such 
pDNA-QD micelle conjugates allow stable monitoring of pDNA intracellular traf-
fi cking, by QD fl uorescence, for a long period of time. Moreover, pDNA-QD con-
jugates can successfully deliver pDNA inside of cells and result in the expression of 
reporter proteins, relevant to pDNA control. Positively charged QD have been used 
to complex with DNA due to electrostatic interactions [ 134 ]. Such a QD-DNA com-
plex demonstrated a DNA release induced by glutathione in a concentration- 
dependent manner. This is probably due to the fact that glutathione has preferential 
interactions with the QD surface, leading to QD’s surface charge change and, thus, 
release of DNA [ 134 ]. Near-infrared QD has been used to track the biodistribution 
of QD-DNA complexes in vivo [ 135 ]. The QD-DNA complex demonstrated a high 
accumulation in the lung, initially, followed by fast redistribution from the lung to 
the liver. QD control, however, showed a predominant accumulation in the liver 
straightaway. Furthermore, after weeks postinjection, QD fl uorescent signals were 
still detectable due to QD’s excellent photostability. 

 QD has been explored to investigate the process of small interference RNA 
(siRNA) delivery. The typical process for siRNA delivery, including delivery siRNA 
into cells, release siRNA and gene knockdown, normally takes longer than 24 h 
since post-administration. Over this period of time, traditionally used organic dye 
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could suffer from signifi cant fl uorescence loss due to photobleaching and is, thus, 
not suitable for long-term monitoring of siRNA delivery [ 136 ]. In comparison, QD 
offers signifi cant improvement in terms of photostability and, thus, has been exten-
sively used to explore various processes related to siRNA delivery. 

 Cationic liposomes have been used to co-complex both QD and siRNA by sim-
ple mixing [ 137 ]. This study demonstrates the monitoring of siRNA delivery inside 
of cells, as well as an improvement in gene silencing, but suffers from an adverse 
effect on the size increase of the complex in comparison to the liposome control. 
Both siRNA and a tumour-targeting peptide have been covalently conjugated to the 
surface of PEGylated QD [ 136 ]. Such targeted nanoconstructs can be internalised 
by cancer cells and achieve effi cient gene silencing. Moreover, siRNA conjugation 
to QD, using a cleavable linker, was found to improve the gene silencing effect due 
to the enhanced release of siRNA inside of cells, compared to a non-cleavable 
linker. Antibody-targeted chitosan nanoparticles encapsulating QD inside was com-
plex with siRNA on the surface [ 138 ]. By monitoring QD fl uorescence, such a mul-
tifunctional delivery system demonstrated an enhanced cellular uptake in cancer 
cell lines that overexpressed certain receptors. The siRNA-QD conjugates have 
been engineered by two different linking strategies: (a) a disulphide bond, which 
allows cleavage to release siRNA inside of cells, and (b) a covalent bond, to form 
stable siRNA-QD conjugates for monitoring siRNA delivery [ 139 ]. Two targeting 
ligands are conjugated on the surface of siRNA-QD conjugates, to ensure effi cient 
cellular uptake (e.g. RGD peptide targeting) and effective gene silencing through 
HIV-Tat peptide. By monitoring QD fl uorescence, intracellular traffi cking can be 
monitored in real time, and, more importantly, such targeted siRNA-QD conjugates 
achieved therapeutic knockdown of specifi c proteins in brain tumour cells. 

 Peptide-QD conjugates have been explored as delivery vectors for simultane-
ously monitoring intracellular transportation and delivery of siRNA into cells. Cell- 
penetrating peptide conjugated QD are used to complex with cy3-labelled siRNA 
[ 140 ]. This study demonstrated successful intracellular delivery and cellular distri-
bution of siRNA in the cells. However, the complex was found to be entrapped in 
the endosome. To release siRNA from the endosome, acid neutralisation of the 
endosome as well as destabilisation of such peptide-QD-siRNA complexes were 
achieved by the addition of chloroquine to the cell culture environment. The addi-
tion of chloroquine was found to lead to a successful redistribution of siRNA to the 
cytoplasm from the endosome. The engineering of QD-based delivery systems for 
siRNA delivery can improve gene silencing by up to 20-fold, compared to tradition-
ally used transfection agents [ 141 ]. It is also notable that such QD-siRNA com-
plexes can achieve gene silencing in the presence of serum, whereas traditionally 
used gene transfection agents need to work in serum-free environments. Such dra-
matic improvement is owing to a proton sponge effect, which is achieved by graft-
ing equal amounts of carboxylic and amine groups on the QD surface. Moreover, 
fl uorescence microscopy study has revealed that QD-siRNA complexes fast stick to 
the cell membrane, followed by internalisation and accumulation in the area outside 
of the cell nucleus, by monitoring QD fl uorescence. The same group reported that 
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amphiphilic polymer amphipol-coated QD (with both carboxylic and amine groups) 
can achieve effi cient siRNA delivery, irrespective of the presence of serum [ 142 ].  

6.2.2     Quantum Dot-Based Chemotherapy Modalities 

 The engineering of theranostic modalities integrated with imaging and therapy into 
one unit has attracted enormous interest for cancer [ 143 – 146 ]. The presence of QD 
as an imaging agent in the theranostic modalities allows for the visualisation of their 
behaviour in real time. QD could allow the monitoring of biodistribution, the per-
centage of drugs in the target site, the regional uptake of the drug as well as the 
clearance from the body in real time, after systematic administration. All this infor-
mation is believed to be greatly helpful for better understanding biological behav-
iours and for the further optimization of novel therapeutic modalities, in preclinical 
and clinical investigations. 

 For the engineering of QD theranostic modalities, QD can be directly surface 
conjugated with therapeutic molecules and targeting ligands [ 143 – 145 ]. One of the 
most successful QD-based theranostic modalities is reported by Bagalkot et al. in 
2007, who covalently conjugated PSMA-targeted aptamers to the surface of hydro-
philic QD and allowed doxorubicin loading through intercalation with the aptamers 
[ 145 ]. In this QD-aptamer(Apt)-doxorubicin(Dox) conjugates, QD and Dox formed 
a FRET pair (donor-receptor) and the loading of Dox quenched the QD fl uores-
cence. This multifunctional QD demonstrated enhanced therapeutic effect in the 
targeted cells (LNCAP), and the gradual recovery of QD fl uorescence inside of the 
cells indicated Dox release. Such theranostic modality showed promise for cancer 
targeting, imaging, therapy and traceable drug delivery simultaneously in vitro. 

 Alternatively, nanoscaled delivery systems (e.g. liposomes [ 96 ,  147 – 150 ], 
micelles [ 62 ,  151 ] and carbon nanotubes [ 152 ,  153 ]) can be used as a platform for 
the construction of QD theranostic modalities [ 144 ,  146 ]. Liposomes are the most 
established nanoscaled delivery systems. By the use of liposomes as a platform, 
various targeting ligands, diagnostic and therapeutic agents of interests can be inte-
grated into liposomes for cancer imaging and therapy. This is particularly the case 
when liposome-QD hybrid constructs are successfully engineered. For example, 
Weng et al. (2008) covalently conjugated both anti-HER2-targeted scFv and hydro-
philic QD to the liposome surface and loaded doxorubicin into the aqueous core of 
the liposomes for cancer imaging and therapy [ 146 ]. By tracking QD fl uorescence, 
high drug delivery into (MCF-7/HER2) tumour in vivo was evidenced by the visu-
alisation of strong QD fl uorescence (14 % of total body fl uorescence) in the tumour 
site after systemic administration. However, the conjugation of QD directly to the 
liposome surface has an adverse effect on the size of the whole structure. This was 
evidenced by the fact that QD-conjugated liposomes showed a decrease in blood 
circulation half-life, compared to liposome control (without QD). 

 Both Vogel and Kostarelos have proposed the engineering of lipid-QD hybrid, by 
the incorporation of hydrophobic QD (2 nm in diameter) into the lipid bilayer of 
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liposomes [ 147 ,  148 ,  150 ]. This is a straightforward method to make water-soluble 
QD. The lipid-QD hybrid engineered using cationic lipids has been used to label 
cells effectively in vitro and in vivo. Moreover, the lipid-QD hybrid can be used as 
a modular platform to load anticancer drugs (e.g. doxorubicin) into the aqueous 
core, and their surface can be further functionalised with targeting ligands for tar-
geted cancer theranostics. The successful engineering of lipid-QD hybrids repre-
sents a feasible way to engineer multimodal nanoconstructs, for the development of 
personalised medicine. Such hybrids not only combine the unique fl uorescent prop-
erties of QD with the physicochemical and pharmacokinetics of liposomes into one 
single vesicle but also allow further surface modifi cation with polyethylene glycol 
and various targeting ligands (e.g. antibody). 

 Alternative multifunctional modalities can be engineered by simultaneous 
encapsulation of Dox, QD and magnetic nanoparticles into PEG-lipid micelles, for 
combined MRI and fl uorescent imaging as well as cancer therapy [ 154 ]. Tumour 
accumulation of such modalities was confi rmed by both fl uorescent and MRI imag-
ing after 20-h administration. Recently, the anticancer drug daunorubicin was 
reported to complex with anionic QD (3-mercaptopropionic acid coated) inside of 
cells, which could overcome multidrug resistance and improve the therapeutic 
effect in leukaemia cell lines [ 155 ].  

6.2.3     Quantum Dot-Based Photodynamic Therapy Modalities 

 Photodynamic therapy (PDT) is the use of a specifi c light to activate photosensitis-
ers (PS), in order to produce a toxic effect on certain cells and organs (e.g. tumour). 
For quantum dot, the exposure of excitation light produces both QD fl uorescences 
and, in the meanwhile, leads to the production of reactive oxygen intermediates 
(ROI) to cause cell toxicity for simultaneous photodynamic therapy and imaging 
[ 156 – 158 ]. Photoactivation of QD is often accompanied by the production of ROI, 
which could lead to the breakage of DNA in the QD-DNA conjugates [ 132 ]. In the 
presence of antioxidant scavengers (e.g. N-acetylcysteine), such ROI-induced cell 
toxicity can be suppressed signifi cantly [ 120 ]. It is also notable that QD by itself as 
photosensitisers cannot produce ROI for effi cient cell toxicity. 

 An alternative strategy has been explored to use QD to enhance the toxicity of 
conventional photosensitisers, by taking advantage of the fl uorescence resonance 
energy transfer (FRET) effect. QD can be used as a delivery platform for photosen-
sitisers due to large surface area, effi cient energy transfer and photostability, for 
improved photodynamic therapy. For example, the complexation between QD and 
photosensitiser (e.g. chlorin e6) increases the photodynamic therapy by twofold 
compared to chlorin e6 alone [ 157 ]. This was thought to be due to enhanced energy 
transfer from QD to the photosensitiser through the FRET effect.   
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6.3     Conclusion 

 QD has been used for the engineering of multifunctional theranostic modalities, for 
the investigation of various biological behaviours, including gene therapy, chemo-
therapy and photodynamic therapy. For gene therapy, QD allows the monitoring of 
complexation stability, release and intracellular traffi cking inside of cells. For che-
motherapy, QD allows the monitoring of the release of the drug inside of the cells 
and tracing nanoscaled delivery vectors’ (e.g. liposome) behaviours, in vivo, includ-
ing biodistribution and tumour accumulation. For photodynamic therapy, QD can be 
successfully used as an energy donor to enhance the toxicity of conventional photo-
sensitisers. All these successes are attributable to QD’s superior fl uorescent proper-
ties. Although the concerns regarding QD toxicity could delay their clinical 
applications, QD as imaging agents are very useful for various biological studies 
and in vitro sample analysis. With the development of novel water-soluble and 
cadmium- free QD, the applications of QD-based theranostic modalities could offer 
useful tools for the investigation and optimization of novel therapeutic agents in 
clinical applications.     
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