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Abstract. We study automata as memory structure for “online” strate-
gizing in extensive form games. By online strategizing we mean a model
in which players start with potential (partial) strategies that are generic
plans for (local) subgames and dynamically compose and switch between
them. We consider such startegizing to be relevant for a theory of play.
We suggest that for sufficiently large games and resource limited players,
the game is better modelled as an infinite horizon game, and thus the
study is carried out in games of infinite duration on finite game arenas.
We show how strategy switching can be realised by finite state trans-
ducers and how they can be used to answer questions on stability of
strategies.

Keywords: Memory in strategies · Strategy specifications · Strategy
switching · Infinite games on finite graphs

1 Overview

The seminal paper of John von Neumann [45] begins with a section titled Great
Simplification. In it, he brilliantly lays down a rationale that has dominated game
theory: there is no loss of generality in assuming that a rational player chooses
his strategy before the game begins, since a strategy lets him specify a choice
for every possible historical situation he might find himself in during the game.
So von Neumann concludes that each player must choose his strategy without
being informed of the other players’ strategic choices. Indeed this is the great
simplification1 that led to normal form game representations and much of game
theory as we know it.

In the case of finite extensive form games, this abstraction works very nicely.
Even if the game is one of imperfect information, such an abstraction helps us to
ignore the extensive temporal structures of games and concentrate on outcome
based analysis. Equilibrium theory helps us predict how a rational player would
choose; in a prescriptive sense, the theory tries to give good advice to the decision
maker. The strategy in an equilibrium profile can be seen as such an advice.
1 due originally to Émile Borel [11]; von Neumann was only developing the idea.
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Difficulties arise in the case of games with multiple equilibria, and this has
been extensively discussed in the literature [35]. An entirely different kind of
trouble arises when computational considerations matter. In particular, suppose
that the advice oracle that the strategy represents is to be a computer program,
then the notion of strategy as any complete plan for all player moves needs re-
examination. To take an admittedly ridiculous example, consider a game in which
a player has a binary choice, and the strategy defined by: when it’s the player’s
turn to move and the game position is node n (under some fixed ordering of tree
nodes), play 1 if the nth Turing machine (under a fixed enumeration of Turing
machines) halts on empty input, and play 0 otherwise. This would indeed be a
strategy, and may even survive elimination of dominated strategies for particular
outcomes, but not only does this function lacks reason, it is also unimplementable
(as a computer program). The space of functions from player nodes to available
choices is indeed too rich. Taking implementability as a criterion, we can look for
algorithms that compute equilibrium strategies and such an algorithmic game
theory [34] is being developed by computer scientists.

On the other hand, epistemic game theory [38] attempts to study the rationale
underlying a strategy, examining the reasons that underlie the choice made by
a player at a game position. Such a viewpoint refuses the offer made by the
great simplification and delves into the temporal extensive game structure. This
is particularly important when a player finds the history of play on an off-
equilibrium path. Given that an opponent has deviated from a choice dictated by
an optimal strategy, how should the player expect the opponent to play in future?
Several solutions have been proposed in the literature, such as forward induction
[38] but the main point is that such solutions involve online strategizing, during
course of play, rather than the offline strategies given by the great simplification.

Aumann and Dreze [3] make a strong case for the focus of game theory to
shift from the existence of equilibria to a prescriptive theory that would advise a
player how to play in any particular situation, in light of the history that led to
the situation. In a series of articles, van Benthem [6–9] has called for a theory of
play, which includes not only the deliberative aspects of pre-game strategizing
but also reasoning in the game. This involves consideration of a range of events
that occur during play: players’ observations, information received about other
players, etc.; these cause a revision of player beliefs and expectations and affect
strategizing.

It is this thread, that of online strategizing that takes into account the tem-
poral extensive structure, that we take up in this article, with an emphasis on
computational considerations as suggested above. That is, we move away from
pre-game selection of strategies to strategies constructed during course of play by
an automaton. This leads us to a study of compositional structure in strategies.
The restriction to finite state devices highlights the memory needed by a com-
putationally limited player who must select observations to record during play
and can see only a part of the future, as opposed to an agent with unbounded
memory who has access to the entire past and future.
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When the game is given as a finite tree, it seems pointless to talk of an agent
with limited memory, since any finite state device can code up the tree in its
memory. However, if the game tree is sufficiently large, such as in the game
of Chess, the player would see only an abstraction of the tree. In general, if
the temporal extensive structure of the game is large relative to the memory
capability of players, strategizing by the player is affected by the abstraction of
the future. Indeed, as van Benthem [8] argues, in any game where we only know
top-level structure, a ‘fuzzy’ view of the future is unavoidable. In the study of
game playing programs in Artificial Intelligence, it is customary to work with
local game analysis, along with general heuristic values for unanalyzed later parts
of the game [25].

The remark about abstracting the future raises an important question: how
should such a game be represented, and how can the player strategize in such a
game? The answer we provide is in the spirit of Rubinstein [43]: a game with a
“very long horizon” is best modelled as a game with infinite horizon. According
to Rubinstein [43], a game should be seen as a description of relevant factors as
perceived by the players, and not as a presentation of the physical rules of the
game. If a player strategizes in a game as if it has an unbounded horizon, an
infinite tree represents the game better.2 Therefore we present the game arena as
a finite graph and the game as an infinite tree obtained by unfolding the graph.
The game arena can be seen as a finite presentation of a set of rules; players
look for patterns, and based on the occurrence of patterns and past information
(recorded selectively), they make choices. Such a consideration leads us to the
realm of regular infinite games.

In our model, a player enters the game arena with information on the game
structure and on other players’ skills, as well as an initial set of possible strategies
to employ. As the play progresses, she makes observations and accordingly revises
strategies, switches from one to another, perhaps even devises new strategies that
she hadn’t considered before. The dynamics of such interaction eventually leads
to some strategies being eliminated, and some becoming stable. It is this process
that we wish to study using automata.

This chapter continues the line of work initiated in [42] on a compositional
structure in strategies realised by automata. Strategy switching is emphasized
here, and the rationale for why a player following a strategy might switch to
another one online. We study another form of switching as well: a player who
cannot decide between two strategies may, rather than committing to one or the
other, choose to go back and forth between the two, following either of the two
nondeterministically. This can be seen as a nondeterministic analogue of mixed
strategies, without specifying a probability distribution. In the end, the player
is not following either of the two strategies but a nondeterministic mix of both.
Thus the central premise of this chapter is that exploring structure in strategies
is worthwhile from a logical perspective, and that automata theory is helpful in
this regard.
2 Indeed the considerations of online strategizing and compositional structure seem

more relevant for such temporally large games. Arguably, for sufficiently small games,
pre-game deliberation might suffice.
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Infinite games have a long history, and their study has led to some beautiful
set theory and topology. Regular infinite games have received attention from
theoretical computer science in the last two decades, principally due to their
relevance to game models of reactive system design and verification. Notions
such as determinacy of win/lose games, equilibria, and computation of equilib-
rium strategies have been worked out for these games [22]. A central thread of
this research is the adequacy of finite memory strategies for standard solution
concepts.

What we discuss in this article is the realisation of compositional strategies,
involving switching and response to other players’ behaviour, as finite state trans-
ducers, thus explicating their memory structure. In itself, this is not surprising,
given the limited expressive power of the specification language of strategies.
However, the construction is interesting since it shows ways by which strategies
may be combined algorithmically.

What questions can one study in such a model? Once player objectives and
preferences are specified, natural questions relate to existence of best response,
synthesis of such strategies etc., and for a logical analysis, axiomatic charac-
terizations of formulas specifying how a strategy may ensure an outcome for a
player. These questions are addressed in [40] and [42] and not taken up here.
Instead we focus only on implications of strategy switching. When players may
switch from one strategy to another, there is an associated dynamics of strategies
and patterns in game evolution. Is it the case that, after online exploration of
opponents’ behaviour, a player settles down to a specific strategy and does not
switch any further? This can be seen as a form of stability in strategizing.

In fact, when a player no longer considers a strategy at all after a point
in game evolution, this may have consequences as well. When all players stop
considering a strategy similarly, it may simply get eliminated from the game,
leading to a new game. When all strategies available to a player are eliminated,
a player may be forced out of the game. Such questions are especially relevant
in the context of bargaining and negotiations, as evidenced in many political
contexts. Questions of this nature were studied in [36]. We do not study such
dynamic game forms, but merely point out that strategy switching can lead to
many interesting stability questions and that realization of strategies by finite
state transducers can be used to answer such questions.

In what follows, we give a brief introduction to infinite games, and since
they need to be finitely specified, finite graph representation of (regular) infinite
games. Then we discuss the structure of strategy specifications, and we see that
switching introduces some conceptual difficulty. We then show how strategy
specifications can be implemented using automata. We discuss related work at
the end of the article.

2 Infinite Games

In this section we give an introduction to infinite games on finite graphs. The
main aim here is to set up the preliminaries and point to the rich literature
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on automata as strategies in regular infinite games. These automata, in turn,
provide us a tool for strategy composition that we take up later on. Automata,
Logics and Infinite Games [22] is a good source for an introduction to infinite
games on finite graphs, as well as strategies as finite state automata.

2.1 Game Model

When we consider games of unbounded duration, a natural question is how such
a game is presented. While this question is generally not easy to answer, in the
special case of regular infinite games, we can conceive of the game tree as an
unfolding of a finite graph with cycles. Thus games on finite graphs give a finite
presentation for games of unbounded duration: we call these game arenas.

Game Arena. A game arena is a structure G = (W,→, w0, λ) over a finite set
of moves (or actions) Σ, where:

– W is a finite set of game positions.
– → : W ×Σ×W is an edge relation which satisfies the condition: if (w, a,w′) ∈

→ and (w, a,w′′) ∈ → then w′ = w′′.
– w0 ∈ W is the initial game position.
– λ : W → N is the turn function which associates each game position with a

player.

We often denote (w, a, v) ∈ → by w
a→v. For a node w, let

→
w= {v ∈ W |

w
a→v for some a ∈ Σ}. For technical convenience, we assume that for all w ∈ W ,

→
w �= ∅, that is, there are no ‘dead-ends’. For i ∈ N , let W i = {w ∈ W | λ(w) = i}.
A play in the game arena G starts by placing a token on w0 and proceeds as
follows: at any stage if the token is at a position w and λ(w) = i then player i
picks an action which is enabled for her at w, and the token is moved to v where
w

a→v. Formally, a play in G is an infinite path ρ = w0a0w1a1 . . . such that for all
j ≥ 0, wj

aj→wj+1. Let Plays(G) denote the set of all plays in G. A history h is a
finite path in the arena. For a history h = w0a0w1a1 . . . wk we denote by last(h)
the last element of h that is last(h) = wk.

A subarena of G is a subgraph of G with no dead-ends.

Extensive Form Game. The (infinite) extensive form game tree TG associated
with G is obtained by the tree unfolding of G which we define below.

Given a game arena G = (W,→, w0, λ), the tree unfolding of G is the least
tree structure TG = (S,⇒, s0, ̂λ) where S ⊆ (W × Σ)∗W and ⇒ : S × Σ → S
satisfies the condition:

– w0 ∈ S.
– If s = (w0, a0) . . . wk ∈ S and wk

a→w′ then s′ = (w0, a0) . . . (wk, a)w′ ∈ S and
s

a⇒s′.
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Fig. 1. Game arena and tree unfolding

Further, for a node s = (w0, a0) . . . wk ∈ S, ̂λ(s) = λ(wk).
Figure 1 illustrates a game arena and its tree unfolding. A node s in TG

denotes a finite partial play in the arena. Thus s = w0a0w1a1 . . . wk and last(s) =
wk. Note that for any node s, last(s) ∈ W . The prefix relation s 	 s′ specifies
that the node s′ is reachable from s in the tree. For i ∈ N , let Si = {s ∈ S |
̂λ(s) = i}.

2.2 Strategies

A strategy μi for player i specifies for each partial play ending in a game position
of player i which action to choose. Thus μi is a map μi : (W × Σ)∗W i → Σ.
A play ρ : w0a0w1 · · · is said to be consistent with a strategy μi if for all j, 0 ≤ j,
we have λ(wj) = i implies μi(ρ) = aj . A strategy μi can also be viewed as
a labelled tree Tμi

G = (TG ,m) where m : Si → Σ such that for all s ∈ Si,
m(s) = μi(s). Let Strat i denote the set of all strategies of player i in G.

A strategy profile μ consists of a tuple of strategies, one for each player.
For i ∈ N , let μ−i = (μ1, . . . , μi−1, μi+1, . . . , μn). A play ρ is consistent with a
strategy profile μ if ρ is consistent with μi for all i ∈ N . It is easy to check that
for a strategy profile μ, there exists a unique play in G which is consistent with
μ. This can be thought of as the play generated by μ. We denote this play by
ρμ.

Note that according to the definition, a strategy can in principle depend
on the complete history of play and in general need not be computable. For
computationally bounded players it is not possible to implement or even choose
to play such an arbitrarily defined strategy. In this context, the following two
types of strategies are of particular interest:

– Memoryless (positional) strategies: These are strategies for which the next
move depends only on the current game position and not on the history of
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play. Thus the map μi : W i → Σ prescribes the same action for all partial
plays ending at the same game position. That is, for all ρ, ρ′ such that last(ρ) =
last(ρ′), μi(ρ) = μi(ρ′).

– Bounded memory strategies: These are strategies where the dependence of the
next move to the history of the play can be kept track of by a finite set of
states. Such strategies can be represented using finite state machines equipped
with an output function.

Once again, it needs to be noted bounded memory strategies form a sub-
class of the space of possible strategies. Their attractiveness lies in having a
presentation by way of finite state transducers.

Finite State Transducer. Given a game arena G = (W,→, w0, λ), a finite
state transducer for player i is a tuple Ai = (Q, δ, o, I) where

– Q is a finite set of states.
– δ : Q × W × Σ → 2Q is a nondeterministic transition function.
– o : Q × W i → Σ is the output function of the transducer.
– I ⊆ Q is the set of initial states.

Let μi be a strategy of player i and Tμi

G = (TG ,m) be the corresponding

strategy tree. A run of Ai on Tμi

G is a Q labelled tree T = (S,⇒, s0,m, f), where
f : S → Q is a map defined as follows: f(s0) = q0, and for any sk where sk

a⇒s′
k,

we have f(s′
k) ∈ δ(f(sk), last(sk), ak). A Q labelled tree T is accepted by Ai if

for every tree node s ∈ S where s ∈ Si, m(s) = a implies o(f(s), last(s)) = a.
We say a strategy tree Tμi

G is accepted by Ai if Ai has an accepting run on

Tμi

G . For a state q and a tree node s, we often use the notation o(q, s) to denote
o(q, last(s)). If the transition function of Ai is deterministic then it is easy to
see that the strategy generated by Ai is unique.

Given a history s = w0a0w1 . . . wk, a strategy μi[s] for player i after s is a
map μi[s] : s(W × Σ)∗W i → Σ. Let Tμi[s]

G be the strategy tree corresponding
to μi[s]. We denote the set of all strategies for player i after s by Strat i(s).
A run of Ai on Tμi[s]

G is a Q labelled tree T [s] as defined earlier, with root node
s. We say that the Q labelled tree T [s] is accepted by Ai if for every tree node
s′ where s 	 s′ and ̂λ(s′) = i, if m(s′) = a then o(f(s′), last(s′)) = a. We denote
by Lang(Ai, s) the set of all strategy trees Tμi[s]

G which are accepted by Ai.

2.3 Objectives

Players’ Objectives. In games where the outcome is binary and every player
either wins or loses, a natural way of specifying players’ objectives is to associate
with each player i ∈ N a set Φi ⊆ Plays(G) with the interpretation that a play ρ
is winning for player i iff ρ ∈ Φi. Note that the objectives could be overlapping,
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i.e., for player i and j it is possible to have Φi ∩Φj �= ∅. A game is then specified
as the pair G = (G, {Φi}i∈N ).

Given a game G = (G, {Φi}i∈N ), we call a strategy μi for player i winning if
for all plays ρ conforming to μi, ρ ∈ Φi. In other words, a strategy μi is winning
if for every profile μ−i of the other players, the play ρ generated by μ, we have:
ρ ∈ Φi.

Two player games are games in which the number of players are restricted to
two, i.e. the set of players N = {1, 2}. For such games, we often use the notation
i and ı to denote the players where ı = 2 when i = 1 and ı = 1 when i = 2.
Two player game in which the players’ objectives are strictly complementary
are called zero sum games. Formally, these are games where the set of plays can
be partitioned into disjoint sets Φ1 and Φ2. This implies that when a play ρ is
winning for player i, it is not winning for player ı.

In general, when games are not strictly winning or losing for players, we have
a preference order �i⊆ (Plays(G) × Plays(G)) for each player i ∈ N . Note that
this generalizes winning sets, since a winning set Φi defines a preference in the
obvious manner: player i prefers plays in Φi over those in Plays(G) \ Φi.

Note that the specification of objectives is infinite, and we are interested in
finitely presented objectives, to be described below.

Solution Concepts. In the case of win/lose games the natural notion of solving
a game is to determine whether a player has a winning strategy. A two player
zero sum game G is said to be determined if there exists a player i ∈ {1, 2} such
that i has a winning strategy in G.

One of the early results which helped highlight the relationship between
determinacy and the topological properties of the winning set Φ is the Gale-
Stewart theorem [17]. Here the game arena is understood to be an infinite
graph, but the other notions remain the same. The theorem asserts that every
game where Φ is an open set is determined. This result was later improved by
Martin [30] to show determinacy for games with Borel objectives: a large class
of subsets of topological spaces, of importance to mathematical analysis. The
important consequence for games on finite arenas is that all regular objectives
to be considered below are determined.

For games with overlapping objectives, a popular solution concept is that of
the Nash equilibrium.

– Given a profile μ, the strategy μi of player i is a best response to μ−i if
∀νi ∈ Strat i, ρ(νi,μ−i) �i ρμ.

– A strategy profile μ is said to be in equilibrium if for all i ∈ N , μi is a best
response to μ−i.

Existence of Nash equilibria in infinite games is much less studied. Indeed,
it is unclear whether other notions of equilibria might be more appropriate for
games of unbounded duration.
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Finitely Presented Objectives. Since we are interested in resource limited
players, the preference orders themselves need to be finitely presented. A player’s
decision to prefer one play over another is limited by her observations of the two
plays. With finite resources, a player can observe either only a finite prefix of the
infinite play, or repetitive behaviour (if any). When the game arena is finite, every
infinite play must settle down eventually within a strongly connected component
of the arena, and hence preferences over plays can be presented as an ordering
over connected components. In general, player’s preferences are associated with
loops or cycles in the arena. Since a player records her observations as play
proceeds she may remember how play arrived at a specific loop as well, or how
many times a particular loop was traversed before entering another. However,
these observations and counting are limited by the player’s resources.

These observations lead us to the notion of an evaluation automaton for each
player. We present this for winning sets: a play is in the winning set of player i
only if it is accepted by the evaluation automaton for player i.

A finite deterministic evaluation automaton over the input alphabet W × Σ
is a tuple A = (Q,Δ, r0,Acc) where

– Q is a finite set of states.
– Δ : (Q × W × Σ) → Q is the transition function.
– r0 ∈ Q is the initial state.
– Acc specifies the acceptance condition.

The run of A on an infinite sequence ρ : w0a0w1 . . . is a sequence of states
ϕρ : r0r1 . . . such that for all j ≥ 0, rj+1 = Δ(rj , wj , aj). Let Inf (ϕρ) denote the
set of states occurring infinitely often in ϕ. The most commonly used acceptance
conditions are the following requirements on Inf (ϕ):

– Reachability condition: For a set of designated states R ⊆ Q, Φi = {ρ =
w0a0w1a1 . . . | ∃k with wk ∈ R}.

– Büchi condition [12]: For a set of “good states” B ⊆ Q, Inf (ϕρ) ∩ B �= ∅. In
other words, some final state occurs infinitely often in the run ϕρ.

– Muller condition [33]: For a family F ⊆ 2Q,
∨

F∈F Inf (ϕρ) = F . This requires
that the set of states occurring infinitely often in the run ϕρ forms a set in F .

– Parity condition: Let c : Q → {1, . . . , k} (where k ∈ N). The run ρ is accepting
iff min{c(r) | r ∈ Inf (ϕρ)} is even.

In terms of expressiveness it is known that a Parity condition can be trans-
lated to a Muller condition and vice-versa but this can lead to a blow-up in
the size of the arena. The deterministic Büchi condition is strictly less expres-
sive than the Muller or the Parity condition and the Reachability condition is
strictly less expressive than the Büchi condition.

Algorithmic Questions. Now that we have finite game arenas and finite pre-
sentation of objectives, we can ask algorithmic questions on them.

– Verification question: Given a game G = (G, {Φi}i∈N ) and player i, does player
i have a winning strategy in G?
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– Synthesis question: Given a game G = (G, {Φi}i∈N ) and player i, is it possible
to construct a winning strategy for player i (when it exists)?

The determinacy of two player zero sum games with regular objectives follows
from Martin’s theorem since regular objectives fall in the second level of the Borel
hierarchy. However, this result does not suffice for algorithmic purposes since the
winning strategies employed depends on the complete history of the play, and
therefore require infinite memory. The seminal result of Büchi and Landweber
[13] showed that when players’ objectives are presented as Muller conditions,
the winner can be determined and that the winning strategy can be effectively
synthesised in bounded memory strategies. For parity games on the other hand,
memoryless strategies suffice for winning [16,31]. In other words, these results
showed that it is possible to solve the verification and synthesis questions for
games with regular objectives.

The existence of Nash equilibrium for games with regular win-lose objectives
follows from the result of [15]. The main idea here is the effective use of threat
strategies whereby a player deviating from the equilibrium profile is punished by
others to receive the outcome which she can guarantee on her own. The existence
of sub-game perfect equilibrium [44] for games with binary objectives was shown
in [23]. When we consider games with overlapping objectives, existence of Nash
equilibrium for games with Muller conditions was shown by [37].

Note that these solution concepts raise the question of existence of optimal
strategies: either winning strategies or equilibrium profiles, and perhaps realising
these (offline) strategies by automata. Returning to the motivation we presented
earlier, a natural question to consider is: given a game arena and a finite presen-
tation of player objectives, how can a player select and compose strategies online,
to achieve an outcome? This requires us to look for structure in strategies, which
is what we take up next.

The use of finite state automata to study strategies in games of unbounded
duration underlies this entire body of work, and [22] is a good source for an intro-
duction to this methodology. However, the literature focusses largely on win/lose
games, as the intended applications are for system and design and verification:
the system being designed is in a game situation against a hypothetical environ-
ment, and behaviour according to intended specification constitutes a win for
the system. Extensions to multi-player games typically consider a coordination
game: a multi-component system where all components coordinate against the
hypothetical environment.

Our departure here is the use of automata to represent the process of strate-
gizing by bounded memory players in games of unbounded duration. In a theory
of play, we need to describe how players observe play, record their observations
and strategize on-line. Automata provide a representation of this process.

3 Strategizing by Players

We now shift our focus to studying the game from the players’ viewpoint, and
look for a theory in which players start the game with an initial set of strategies
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and compose from them by switching between them depending on their inter-
pretation of course of play. In the process they generate more and more complex
strategies. We use tools from logic and automata theory for this study.

3.1 Partial Strategies

Not only do resource-bounded players strategise dynamically, their strategies are
also partial, consisting of partial plans. Players, in general, cannot conceive of
every possible situation right at the beginning of the game and hence plan only
partially. A partial strategy specifies a subset of the available moves for every
history, or in other words, it restricts some of the available moves. Formally, given
a game G = (W,→, w0, λ) a partial strategy is a function ν : (W × Σ)∗W i →
(2Σ \ ∅). Let Pstrat i denote the set of all partial strategies of player i. A partial
strategy ν of player i can also be viewed as a labelled tree T ν

G = (TG ,mν) where
mν : Si → 2Σ such that, for every node s ∈ Si, we have mν(s) = ν(s).

A partial strategy tree T ν
G = (TG ,mν) for player i may be viewed as a set

T ν
G of total strategy trees where a total strategy tree T = (TG ,m) ∈ T ν

G if and
only if for every s ∈ Si, m(s) ∈ mν(s). It is easy to see that a finite memory
partial strategy can thus be presented in terms of a transducer Aν such that
Lang(Aν) = T ν

G .
Given a history s, it is also convenient to define a partial strategy ν “after”

s, denoted ν[s] which is formally a map ν[s] : s(W × Σ)∗W i → (2Σ \ ∅). Let
Pstrat i(s) denote the set of all partial strategies after s of player i. The corre-
sponding partial strategy tree is denoted by T ν[s]

G .

3.2 Switching from One Strategy to Another

Suppose there are two players 1 and 2 and their set of actions are {a, b} and
{c, d} respectively. Consider two strategies of Player 1, μa and μb. μa specifies
the action a at every game node and μb specifies the action b at every game
node. Now suppose Player 1 plays strategy μa for the first move and then plays
strategy μb on the subtree from her next move. The resulting prescription μ
(say) is thus also a strategy for player 1. See Fig. 2.

Suppose μ1 and μ2 are two strategies of player i and suppose that she fol-
lows μ1 for at most k moves of the game (here, by convention, a move can be
either a Player 1 move or a Player 2 move) and then switches to μ2. We denote
the resulting set of strategies by μk

1μ2 and the resulting set of strategy trees by
T μ1

G
kT μ2

G . Every tree T in the set T μ1
G

kT μ2
G can be viewed to have been con-

structed as follows. Let Tμ1
G (k) be a finite subtree of Tμ1

G such that every branch
of Tμ1

G (k) is of depth at most k. Let leaves(Tμ1
G (k)) denote the set of leaves of

this tree. For every s ∈ leaves(Tμ1
G (k)), we attach Tμ2(s)

G to s. The operation can
also be lifted to an arbitrary set of strategy trees, T1 and T2 (say). We denote
the resulting set of trees as T1

kT2.
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Fig. 2. The strategy μa; the strategy μb; and μa
2μb. Note that, by definition, since the

second move is by Player 2, μa
2μb and μaμb define the same strategies

3.3 Specification of Strategy Composition

To talk about the outcomes of the game, we introduce a countable set of propo-
sitions Pi for every player i and a valuation function val i which are evaluated on
the vertices of the arena. These propositions code up the outcomes of the game
in the lines of [10]. val i is lifted on the nodes of the game tree TG in the usual
manner.
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Syntax. By an ‘atomic strategy’ of player i we mean a strategy which dictates
her to play the same action at all positions. We denote atomic strategies by
φa, a ∈ Σi.

The strategy set Φi of player i is obtained by combining her atomic strategies
using some operators. Let Φ−

i be defined as:

Φ−
i : := φa, a ∈ Σi | φ1 ∪ φ2 | φ1

�φ2 | φ1 + φ2

The intuitive meaning of the strategy building operators is explained as fol-
lows:

– φa, a ∈ Σi is the atomic strategy where player i plays the action a at each
move.

– φ1∪φ2 means that the player plays according to the strategy φ1 or the strategy
φ2.

– φ1
�φ2 means that the player plays according to the strategy φ1 and then after

some history, switches to playing according to φ2. The position at which she
makes the switch is not fixed in advance.

– φ1 + φ2 says that at every point, the player can choose to follow either φ1 or
φ2.

The Test Operator. Let Φi be the strategies built from player i’s atomic
strategies applying the operators of Φ−

i and also the test operator ψ?φ. Intu-
itively, ψ?φ says that at every history, the player tests if the property ψ holds
of that history. If it does then she plays according to φ.

What is the observable condition ψ that player i checks for? We think of
these conditions as past time formulas of a simple tense logic over the atomic
set of observables Pi. More specifically, ψ belongs to the following syntax:

Ψi: := p ∈ Pi | ¬ψ | ψ1 ∨ ψ2 | 〈a〉−ψ | 〈a〉+ψ | ψ1Sψ2 | j?φ, j �= i, φ ∈ Φ−
j

Intuitively, j?φ is the test where player i checks if player j is playing according
to φ. Now as the observables of player j, Pj and their combinations are private
to her, player i cannot reason based on them. Hence φ comes from Φ−

j rather
than the entire Φj .

The usual operators �ψ (previous), ©ψ (next), ♦- ψ (sometime in
the past) and �ψ (throughout the past) are defined as �ψ ≡
∨

a∈Σ〈a〉−ψ,©ψ ≡
∨

a∈Σ〈a〉+ψ, ♦- ψ ≡ �Sψ and �ψ ≡ ¬♦- ¬ψ.
An observable ψ ∈ Ψi is interpreted over the nodes of the game tree. Formally,

for a node s ∈ TG , s |= ψ is defined inductively as:

– s |= p iff p ∈ val i(s).
– s |= ¬ψ iff s �|= ψ.
– s |= ψ1 ∨ ψ2 iff s |= ψ1 or s |= ψ2.
– s |= 〈a〉−ψ iff s = s′a and s′ |= ψ.
– s |= 〈a〉+ψ iff for all sa ∈ T, sa |= ψ.
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– s |= ψ1Sψ2 iff ∃s′ � s such that s′ |= ψ2 and ∀s′′ : s′ � s′′ 	 s, s′′ |= ψ1.
– s |= j?φ iff there exists T ′ such that T ′ ∈ [[φ, ε]]TG and s ∈ T ′.

where [[φ, ε]]TG will be defined shortly.
Note that in the syntax of Ψi, we do not have the corresponding indefinite

future time operator U . This is to reflect our view of strategizing as memory
limited observations of the past, with bounded lookahead, as expressed by the
operator 〈a〉+ψ.

Semantics. We now give the formal semantics of the strategy specifications.
Given the game tree TG = (S,⇒, s0), the semantics of a strategy specification
φ ∈ Φi is a function [[ · ]]TG : Φi × S → 2Strati . That is, each specification at
a node s of the game tree is associated with a set of total strategy trees after
history s.

For any s ∈ S, [[ · ]]TG is defined inductively as follows:

– [[φa, s]]TG = Tφa[s] where for all s′ ∈ S such that s 	 s′ and ̂λ(s′) = i, we have
φa[s](s′) = a.

– [[φ1 ∪ φ2, s]]TG = [[φ1, s]]TG ∪ [[φ2, s]]TG .
– [[φ1

�φ2, s]]TG = [[φ1, s]]TG ∪
⋃

l≥|s|([[φ1, s]]TG
l[[φ2, ε]]TG ).

– [[(φ1 + φ2), s]]TG : T = (TG ,m) ∈ [[(φ1 + φ2), s]]TG if and only if there exists
T 1 = (TG ,m1) ∈ [[φ1, s]]TG and T 2 = (TG ,m2) ∈ [[φ2, s]]TG such that the
following condition is satisfied:

• for all s′ ∈ S such that s 	 s′ and ̂λ(s′) = i, m(s′) = m1(s′) or m(s′) =
m2(s′).

– [[ψ?φ, s]]TG : T = (TG ,m) ∈ [[ψ?φ, s]]TG if and only if s ∈ T and there exists
T ′ = (TG ,m′) ∈ [[φ, s]]TG such that the following condition is satisfied:

• for all s′ ∈ S such that s 	 s′ and ̂λ(s′) = i, if ψ holds at s′ then m(s′) =
m′(s′) and if ψ does not hold at s′ then m(s′) =

→
w where w = last(s′).

A crucial difference between the two kinds of switching operators needs
emphasis. φ�

1 φ2 specified a one-time nondeterministic switching from following
φ1 to following φ2 whereas φ1 +φ2 specifies switching nondeterministically back
and forth between the two. The latter can be seen as a qualitative specification
of a mixed strategy for extensive form games: a player mixes the two strategies
nondeterministically during course of play. The crucial difference is the lack of
any probability distribution; however, such an extension is easy to conceive of: let
φ1+r φ2 specify that at any point of time, if the player is playing φi, she switches
to φ3−i with probability r (and continues playing φi with probability 1−r). This
suggests that we can build compositional structure in mixed strategies as well.

3.4 An Example

Consider the game of tennis. A player, poised to serve, considers for a moment:
Should I serve wide, or down the ‘T’? Should I serve deep, or short? When I
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last served deep and wide, he hit it onto the net. Should I try it again, or has
he learnt now? The opponent, on his part, considers as he takes his stance: if he
serves short, should I go for a cross-court shot and reveal my strength off that
flank? If I do it too often, he will not serve such balls at all. Should I play it
safe?

Let the player’s set of atomic strategies be given as Σplayer = {σshort ,
σdeep , σwide , σT } which corresponds to serving short, deep, wide and down-the-T
respectively.

Let p(short,net) be the observable which says that the outcome of short serve
is a return into the net. Then the following specification says that the player
keeps serving short and wide till the opponent is able to return (does not hit
into the net).

– ¬♦- p(short,shot)?(σshort ∩ σwide)

The specification σshort
�σwide

�σdeep for the player says that he starts by
serving short and after some point he switches to serving wide and again switches
but this time to serving deep.

The simple specification σshort + σdeep is yet most natural and indicative of
a mixed strategy, that of occasionally serving short and serving deep but in no
fixed pattern.

3.5 Logic

Note that we have only presented a syntax for strategy composition and not a
logic for reasoning about games and strategies. Our idea is that such strategy
specifications can be embedded into modal and temporal logics, and in our con-
tention, without altering their flavour. Consider a modal logic with the modal
operator 〈i, σ〉α, interpreted at s to mean that player i has a strategy σ from that
point on to ensure the outcome α [6]. Here σ need not be a specific functional
strategy and can be a compositional specification. A presentation on these lines
is carried out in [39].

Similarly a dynamic game logic, in which we have the operator 〈i, g, σ〉α
which asserts that in game g player i has a strategy σ to ensure α [18]. Again,
these can be compositional strategies, and this is discussed in [41].

Consider a temporal logic for games such as ATL with explicit strategies.
However, since we are speaking of long term strategic abilities of players and
coalitions, we are in the context of ATL∗ [14]. We can again consider a modality
such as 〈〈C, f〉〉α, where f specifies a strategy σi for each player i ∈ C. The
intended meaning is that the coalition C, has a collective strategy given by f to
ensure α. While such explicit strategies have been studied in alternating temporal
logics, the use of structured strategies constraining the paths is the departure
advocated here. This can be seen in the spirit of extensions of temporal logic
currently used in the industry such as PSL [20] in which the until operator is
indexed: αUπβ, where π is a regular expression, and asserts the existence of an
instant reachable by π at which β holds, and until then α holds.
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However, such embeddings of structured strategies in modalities would not
in themselves lead to reasoning as envisaged by us. For instance, in the case of
game logic, strategy composition critically depends on game composition and
reasoning about them separately glosses over this. Similarly, in the context of
alternating temporal logic, in 〈〈C, f〉〉α, more than the function f , we are inter-
ested in the interdependence between f(i) and f(j), where both i and j are in
C. Such analysis opens up interesting avenues for exploration.

4 Transducer Lemma

In this section we prove a result that shows the correspondence between the
strategy specifications introduced in the previous section with finite state trans-
ducers. This helps us to do algorithmic analysis of the games.

Lemma 1. Given a strategy specification φ ∈ Φi, we can construct a finite state
transducer Aφ such that for all histories s, for all ν[s] ∈ Pstrat i(s) and for all
strategy trees Tμ[s]

G ∈ T ν[s]
G , we have Tμ[s]

G ∈ [[φ, s]]TG iff Tμ[s]
G ∈ Lang(Aφ, s).

Proof Idea. The proof proceeds in two steps. In the first step we construct the
transducer Aφ and in the second step we show that for all s, for all ν[s] ∈
Pstrat i(s) and for all strategy trees Tμ[s]

G ∈ T ν[s]
G , Tμ[s]

G ∈ [[φ, s]]TG iff Tμ[s]
G ∈

Lang(Aφ, s). Aφ is constructed inductively. Aφa
is just a one state transducer

that outputs a at every turn of player i. Aφ1∪φ is constructed as the union of
Aφ1 and Aφ2 . Aφ1∪φ2 nondeterministically chooses either Aφ1 or Aφ2 right at
the beginning and then simulates it, mirroring its output. Aφ�φ2 and Aφ1+φ2

are constructed as products of Aφ1 and Aφ2 . Both Aφ1 and Aφ2 are simulated in
parallel. In the former case, Aφ�φ2 switches from mirroring the output of Aφ1 to
that of Aφ2 nondeterministically at some point. Whereas, Aφ1+φ2 switches back
and forth between mirroring the outputs of Aφ1 and Aφ2 nondeterministically.
Aψ?φ′ has to check, at each step, if ψ holds at that history. If so then it mirrors
the output of Aφ′ and if not it outputs any move. This is achieved by taking the
states of Aψ?φ′ to be the product of Aφ′ with “logical states” (atoms of ψ) that
tell us whether a subformula of ψ holds at that history.

Step 2 is proved again by an induction on the structure of φ. The idea is
to show that a strategy tree T is in the semantics of φ iff T is in the language
defined by Aφ. The base case for φa follows from the definition. For φ1 ∪ φ2

we show that T is a strategy tree of φ1 ∪ φ2 iff it is in the language defined
by either Aφ1 or Aφ2 . For φ1

�φ2 we know that T is a strategy tree iff it can
be obtained by pruning a tree T1 at some finite depth and attaching a trees
Tm to every leaf of the resulting tree where T1 is a strategy tree of φ1 and the
Tms are strategy trees of T2. By the induction hypothesis, this holds iff T1 is in
the language defined by Aφ1 and the Tms are in the language defined by Aφ2 .
Finally, for ψ?φ′, we know that a tree T is a strategy tree of ψ?φ′ iff on every
branch of T if for a finite path, ψ holds then the move of player i corresponds
to the strategy φ′. The check for ψ is done using the ‘atom graph’ of ψ and the
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move corresponding to φ′ is verified using the transducer Aφ′ which exists by
the induction hypothesis. ��

We now present the proof in detail.

Proof. Step 1: The construction of the transducer Aφ is done inductively on
the structure of φ. Fix the input and output alphabets to be Σ.

φ ≡ φa: The transducer consists of a single state and outputs the action a at
every turn for player i. Formally, Aφ = ({q0}, δ, o, {q0}) where

– δ = {(q, b, q) | b ∈ Σ}.
– o(q, w) = a for all w such that λ(w) = i.

φ ≡ φ1 ∪ φ2: The transducer Aφ1∪φ2 should nondeterministically choose either
Aφ1 or Aφ2 right at the beginning and then simulate it, mirroring its output.
By the induction hypothesis we have transducers Aφ1 = (Q1, δ1, o1, I1) and
Aφ2 = (Q2, δ2, o2, I2). We define Aφ1∪φ2 = (Q, δ, o, I) where

– Q = Q1 ∪ Q2,
– δ = δ1 ∪ δ2,
– I = I1 ∪ I2, and
– o = o1 ∪ o2.

φ ≡ φ1
�φ2: The state space of Aφ1

�φ2
is the product space of the states of

the transducers Aφ1 and Aφ2 . Aφ1
�φ2

simulates both these transducers and
switches from mirroring the output of Aφ1 to that of Aφ2 nondeterministi-
cally at some point. By the induction hypothesis, we have transducers Aφ1 =
(Q1, δ1, o1, I

0
1 ) and Aφ2 = (Q2, δ2, o2, I

0
2 ). We define Aφ1

�φ2
= (Q, δ, o, I0)

where

– Q = Q1 × Q2 × {1, 2},
– δ = {(q1, q2, 1) a→ (q′

1, q
′
2, 1), (q1, q2, 2) a→ (q′

1, q
′
2, 2),

(q1, q2, 1) a→ (q′
1, q

′
2, 2) | q1

a→1 q′
1, q2

a→2 q′
2},

– I0 = I01 × I02 × {1} and
– o : Q × W → Σ such that o((q1, q2, 1), w) = o1(q1, w), o((q1, q2, 2), w) =

o2(q2, w).

φ ≡ φ1 + φ2: The construction of A(φ1+φ2) is similar to that of Aφ1
�φ2

. It sim-
ulates both Aφ1 and Aφ2 and keeps switching nondeterministically between
the outputs of both. By the induction hypothesis we have transducers Aφ1 =
(Q1, δ1, o1, I

0
1 ) and Aφ2 = (Q2, δ2, o2, I

0
2 ). We define A(φ1+φ2) = (Q, δ, o, I0)

where

– Q = Q1 × Q2 × {1, 2},
– δ = {(q1, q2, 1) a→ (q′

1, q
′
2, 1), (q1, q2, 2) a→ (q′

1, q
′
2, 2),

(q1, q2, 1) a→ (q′
1, q

′
2, 2), (q1, q2, 2) a→ (q′

1, q
′
2, 1) |

q1
a→1 q′

1, q2
a→2 q′

2},
– I0 = I01 × I02 × {1, 2} and
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– o : Q × W → Σ such that o((q1, q2, 1), w) = o1(q1, w), o((q1, q2, 2), w) =
o2(q2, w).

φ ≡ ψ?φ′: At each step Aψ?φ′ has to check if ψ holds at that history. We achieve
this by taking the states of Aψ?φ′ to be the product of Aφ′ with “logical
states” that tell us whether a subformula of ψ holds at that tree node.

First, some preliminaries. Let SFψ be the least set containing ψ and closed
under subformulas: if α ∈ SFψ and β is a subformula of α then β ∈ SFψ.
Further we assume that SFψ is closed under negation: β ∈ SFψ iff ¬β ∈ SFψ

where we treat ¬¬α to be the same as α; moreover, if αSβ ∈ SFψ, we have
that �αSβ ∈ SFψ as well. Such a set is called the Fischer - Ladner closure
and we denote this set by CL(ψ).
Now let v ⊆ CL(ψ). We call v an atom if it is ‘locally’ consistent and
complete: that is, for every ψ′ ∈ CL(ψ), ¬ψ′ ∈ v iff ψ′ �∈ v; for every
ψ1 ∨ψ2 ∈ CL(ψ), ψ1 ∨ψ2 ∈ v iff ψ1 ∈ v or ψ2 ∈ v; for every ψ1Sψ2 ∈ CL(ψ),
we have: if ψ2 ∈ v then ψ1Sψ2 ∈ v; otherwise {ψ1, ψ1Sψ2,�ψ1Sψ2} ⊆ v.
Let Vψ denote the set of ψ-atoms. v ∈ Vψ is said to be an initial atom if it
satisfies the conditions: ψ1Sψ2 ∈ v iff ψ2 ∈ v and there is no formula of the
form 〈a〉−α in v.
Define a relation →ψ⊆ (Vψ × Σ × Vψ) as follows: v

a→ v′ iff the following
conditions hold: for every 〈a〉−α in CL(ψ), if α ∈ v then 〈a〉−α ∈ v′ and
for every 〈a〉+α in CL(ψ), if α ∈ v′ then 〈a〉−α ∈ v. This relation gives us
Gψ = (Vψ,→ψ), the atom graph of ψ.
We can now define the transducer for this case. Let Aφ′ = (Q′, δ′, o′, I ′) which
exists by the induction hypothesis. We define Aψ?φ′ = (Q, δ, o, I) where

– Q ⊆ Q′ × Vψ,
– I ⊆ Q such that (q, v) ∈ I iff q ∈ I ′ and v is an initial atom,
– (q, v) a→ (q′, v′) iff q

a→ q′ and v
a→ v′, and

– o((q, v), w) = o(q, w) iff ψ ∈ v. Otherwise o((q, v), w) = Σ.

Note that o((q, v), w) = Σ means that the transducer outputs ‘any’ action
that is available at w.

Step 2: We now show that for all s, for all ν[s] ∈ Pstrat i(s) and for all strategy
trees Tμ[s]

G ∈ T ν[s]
G , Tμ[s]

G ∈ [[φ, s]]TG iff Tμ[s]
G ∈ Lang(Aφ, s). The proof is by

induction on the structure of φ.

φ = φa: By construction Aφ has just one state q and all transitions out of q lead
to q itself. The output function is the constant output function o(q, w) = a
for all w such that λ(w) = i. Hence by the definition of [[φa, s]]TG we have,
Tμ[s]

G ∈ [[φa, s]]TG if and only if Tμ[s]
G ∈ Lang(Aφa

, s) for all s.
φ = φ1 ∪ φ2: By the semantics, Tμ[s]

G ∈ [[φ1 ∪ φ2, s]]TG iff Tμ[s]
G ∈ [[φ1, s]]TG ∪

[[φ2, s]]TG iff Tμ[s]
G ∈ [[φ1, s]]TG or Tμ[s]

G ∈ [[φ2, s]]TG . By induction hypothe-
sis, Tμ[s]

G ∈ Lang(Aφ1 , s) or Tμ[s]
G ∈ Lang(Aφ2 , s). Since Lang(Aφ1∪φ2 , s) =
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Lang(Aφ1 , s) ∪Lang(Aφ2 , s) by the construction of Aφ1∪φ2 , we have Tμ[s]
G ∈

Lang(Aφ1 , s) ∪ Lang(Aφ2 , s) iff Tμ[s]
G ∈ Lang(Aφ1∪φ2 , s).

φ = φ1
�φ2: The labelled tree Tμ[s]

G ∈ [[φ1
�φ2, s]]TG implies by definition of

[[φ1
�φ2, s]]TG that there exists a labelled tree Tμ′[s]

G ∈ [[φ1, s]]TG and a finite

subtree Tμ′[s]
G (k) of Tμ[s]

G such that Tμ′[s]
G (k) is also a subtree of Tμ′[s]

G
and every branch of Tμ′[s]

G (k) is of depth at most k. Also by definition, for

every leaf node s′ of Tμ′[s]
G (k), there exists Tμ′′[s′]

G ∈ [[φ2, s
′]]TG such that the

labelled subtree of Tμ[s]
G rooted at s′ is the same as Tμ′′[s′]

G . By the induction

hypothesis, Tμ′[s]
G ∈ Lang(Aφ1 , s) and Tμ′′[s′]

G ∈ Lang(Aφ2 , s
′). Thus the run

of Aφ1
�φ2

where the transducer makes a switch from the output of Aφ1 to

that of Aφ2 at leaves(Tμ′[s]
G (k)) is the accepting run for Tμ[s]

G .
Conversely, suppose Tμ[s]

G ∈ Lang(Aφ1
�φ2

). Let r be an accepting run of
Aφ1

�φ2
. Then there exists a k ≥ 0 such that Aφ1

�φ2
switches from mirror-

ing the output of Aφ1 to that of Aφ2 in at most k steps on all branches of
r. Let TG(k) be the finite tree on which r is a valid run till it makes the
switch. We have that there exists a labelled tree Tμ′[s]

G ∈ Lang(Aφ1 , s) such

that TG(k) is a subtree of Tμ′[s]
G . Also, for all leaf nodes s′ ∈ leaves(TG(k)),

there exist Tμ′′[s′]
G where ∈ Lang(Aφ2 , s

′) such that μ[s](s′′) = μ′[s](s′′)
for all s′′ with |s′′| ≤ |s′| and μ[s](s′′) = μ′′[s′](s′′′) where ss′′ = s′s′′′

for all s′′ with |s′′| > |s′|. By induction hypothesis, Tμ′[s]
G ∈ [[φ1, s]]TG

and Tμ′′[s′]
G ∈ [[φ2, s

′]]TG . Hence the labelled tree Tμ[s]
G obtained by pasting

Tμ′′[s′]
G at all leaf nodes s′ of T k

G belongs to [[φ1
�φ2, s]]TG by the definition of

[[φ1
�φ2, s]]TG .

φ = (φ1 +φ2): Suppose Tμ[s]
G = (T,m) ∈ [[φ1 +φ2, s]]TG . By semantics, s ∈ Tμ[s]

G
and there exists (T1,m1) ∈ [[φ1, s]]TG and (T2,m2) ∈ [[φ2, s]]TG such that for
all s′ ∈ Tμ[s]

G , m(s′) = m1(s′) or m(s′) = m2(s′). By induction hypothesis
(T1,m1) ∈ Lang(Aφ1 , s) and (T2,m2) ∈ Lang(Aφ2 , s). By construction, at
every node s′, the transducer Aφ1+φ2 mirrors the output of either Aφ1 or
Aφ2 . Therefore we have that Tμ[s]

G ∈ Lang(Aφ1+φ2 , s).
Conversely, suppose Tμ[s]

G = (T,m) ∈ Lang(Aφ1+φ2 , s). For all s ∈ Tμ[s]
G ,

Aφ1+φ2 mirrors the the output of either Aφ1 or Aφ2 . Therefore, by con-
struction of Aφ1+φ2 , there exists (T1,m1) ∈ Lang(Aφ1 , s) and (T2,m2) ∈
Lang(Aφ2 , s) such that for all s′ we have m(s′) = m1(s′) or m(s′) = m2(s′).
By induction hypothesis, (T1,m1) ∈ [[φ1, s]]TG and (T2,m2) ∈ [[φ2, s]]TG . By
semantics, Tμ[s]

G ∈ [[φ1 + φ2, s]]TG .
φ = ψ?φ′: Let Aφ = (Q, δ, o, I), let r be a run of Aφ on Tμ[s]

G .
Claim 1. For all s′ ∈ Tμ[s]

G and for all α ∈ CL(ψ), α ∈ r(s′) iff s′ |= α.
where CL(ψ) is the subformula closure of ψ. Assume Claim 1 and sup-
pose that Tμ[s]

G = (T,m) ∈ [[φ, s]]TG . By semantics, there exists (T ′,m′) ∈
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[[φ′, s]]TG such that for all s′ ∈ T ν[s]
G , if s′ |= ψ then m(s′) = m′(s′). And if

s′ �|= ψ then m(s′) ∈ Σ. By induction hypothesis, Tμ′[s]
G ∈ Lang(Aφ′ , s) and

by Claim 1 we have s′ |= ψ implies ψ ∈ r(s′). By construction of Aφ, we
then have that Tμ[s]

G ∈ Lang(Aφ, s).
Conversely, assume Claim 1 and suppose that Tμ[s]

G = (T,m) ∈ Lang(Aφ, s).
For a node s′ ∈ Tμ[s]

G , let r(s′) = (q′, v′). If ψ ∈ v′ then Aφ mirrors the output
of Aφ′ and if ψ �∈ v′ then the transducer outputs an arbitrary action available
in Σ. Therefore, by construction of Aφ, there exits (T ′,m′) ∈ Lang(Aφ′ , s)
such that for all s′, if ψ ∈ v′ then m(s) = m′(s′). By induction hypothesis,
Tμ[s]

G ∈ [[φ′, s]]TG and by Claim 1 if ψ ∈ v′ then s′ |= ψ. By the semantics we
then have that Tμ[s]

G ∈ [[φ, s]]TG .

It now remains to prove Claim 1. We do so by a second induction on the structure
of α.

α = p ∈ Pi: Follows from definition since in the construction we ensured that
(q, v) ∈ Q iff q ∩ Pi = v ∩ Pi.

α = ¬β: s′ |= ¬β iff s′
� β iff β /∈ r(s′) = (q, v) iff ¬β ∈ (q, v) (since v is an

atom).
α = α1 ∨ α2: s′ |= α iff s′ |= α1 or s′ |= α2 iff α1 ∈ r(s′) or α2 ∈ r(s′) where

r(s′) = (q, v) iff α1 ∨ α2 ∈ r(s′) (since v is an atom).
α = 〈a〉−β: s′ |= 〈a〉−β iff s′ = s′′aw and s′′ |= β iff β ∈ r(s′′) = (q′, v′) iff

〈a〉−β ∈ r(s) = (q, v) since v is an atom and (q′, v′) a→ (q, v) iff q′ a→ q and
v′ a→ v by construction.

α = 〈a〉+β: Similar to the case for α = 〈a〉−β.
α = α1Sα2: s′ |= α1Sα2 iff there exists s1, s1 � s′ such that s1 |= α2 and

for all s2, s1 � s2 	 s′ and s2 |= α1. We do an induction on |s′| − |s1|.
When |s′| − |s1| = 0, s′ |= α2 iff α ∈ r(s′) by induction hypothesis where
r(s′) = (q, v) iff α1Sα2 ∈ r(s′) (since v is an atom). When |s′|− |s1| = k +1,
s2 |= α1Sα2 and either s′ in which case we are done (by definition of initial
atom), or s′ |= �(α1Sα2) where s′ = s2aw iff α1Sα2 ∈ r(s2) iff α1Sα2 ∈
r(s′) = (q, v) (since v is an atom).

j?φ: s′ |= j?φ iff there exists Tφ such that Tφ ∈ [[φ, ε]]TG and s′ ∈ Tφ iff
Tφ ∈ Lang(Aφ, ε) by the main induction hypothesis, iff j?φ ∈ r(s′) = (q, v)
since by construction, j?φ ∈ v and q ∈ δ′(q0, last(s′)) where q0 is an initial
state of Aφ.

5 Applications

The Transducer Lemma provides us with a tool to talk about eventual outcomes
in games and eventual behaviour of players given that they play according to
strategy specifications given in our syntax. We formalise this below.

Given a game arena, and strategy specifications for players, we are interested
in studying long-range outcomes. The strategy specifications are akin to player
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types; based on observations during play, they constrain player actions at game
positions. We would then like to know whether a given outcome is achieved. Since
these are infinite games, the natural such notion is that of stable outcomes.

5.1 Stable Outcome

Let G = (W,→, w0, λ) be a game arena and let there be n players. Suppose the
strategies of the players are given as φ1, φ2, . . . φn respectively where each φi is
from the syntax Φi as described in Sect. 3. Suppose α is a property from the
following syntax:

α: := p ∈ P | ¬α | α1 ∨ α2 | 〈a〉+α

where P is a set of ‘global’ propositions and val : W → 2P gives their valuation
at the nodes of the arena. We want to check if it is the case that eventually the
property α always holds given that the players play according to their strategy
specifications. In other words, we wish to check if α becomes ‘stable’ in the game,
where we define stability as: Given a subarena G′ of G, α is said to be stable in
G′ if s |= α for every s ∈ TG′ .

We do this as follows. We first construct transducers Aφi
, as described in

Sect. 4, for the strategy specification of each player i. We then take the ‘restric-
tion’ of the arena G with respect to each of these transducers which results in a
new arena G′. The restriction of G with respect to a transducer Aφi

= (Q, δ, o, q0)
is denoted as G �Aφi

and is defined as G �Aφi
= (W ′,→′, w′

0, λ
′) where

– W ′ ⊆ W × Q such that w′ = (w, q) ∈ W ′ iff p ∈ val(w) ⇔ p ∈ val i(q) for all
p ∈ P ∩ Pi.

– For every w′
1, w

′
2 ∈ W ′ where w′

1 = (w1, q1) and w′
2 = (w2, q2) w′

1

a

→′ w′
2 iff

w1
a→ w2 and q1

a→ q2.
– w′

0 = (w0, q0).
– λ′(w′, q′) = λ(w).

Thus the final restricted arena is G′ = (((G �Aφ1)� . . .)�Aφn
). Note that the

Transducer Lemma ensures that in the restricted arena G′, for every node w′ ∈ G′

the outgoing edges are exactly the moves prescribed by the strategy specification
φi for player i where λ′(w′) = i. Finally, to check whether α becomes eventually
stable, we check the stability of α in G′. This can be done by a simple marking
procedure on the nodes of G′ with the subformulae of α. We thus have proved
the following theorem:

Theorem 1. Given a game arena G = (W,→, w0, λ) with n players and given
that the players play according to strategy specifications φ1, φ2, . . . φn respectively
where each φi ∈ Φi, we can effectively decide if a property α becomes eventually
stable in the game.
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5.2 Solution Concepts

Apart from achieving logically specified outcomes as above, there are other appli-
cations of the transducer construction. In the study of (offline) strategies in game
theory, the standard questions relate to best response, equilibria etc. In the case
of structured strategies, similar questions can be answered using automata.

However, since a strategy specification denotes a set of strategies satisfy-
ing certain properties, notions like strategy comparison and best response with
respect to strategy specifications need to be redefined. When we have functional
strategies μ1 and μ2 for a player i, we can consider μ1 to dominate μ2 if for
every opponent strategy profile μ−i, the play (μ1, μ

−i) is preferred by i over the
play (μ2, μ

−i). But when does a set of strategies dominate another set? This is
not clear.

One notion we can define says that σ is better than σ′ if for any outcome α
if there is a strategy conforming to the specification σ′ which ensures α, then
there also exists a strategy conforming to σ which ensures α as well.

But then it’s equally reasonable to define comparison somewhat differently.
According to this, σ is better than σ′ if for any outcome α whenever there is a
strategy conforming to σ which cannot guarantee α, there also exists a strategy
conforming to σ′ which cannot guarantee α either. This can be thought of as a
soundness condition. A risk averse player might prefer this way of comparison.

We do not want to fix any comparison notion here, but merely point out that
there are different and interesting notions of comparison. But once we fix such a
notion, we can consider algorithmic questions relating to players’ best response.

– Does player i have a strategy conforming to σ to ensure outcome α as long as
the other players play according to the specifications τ−i?

– Do all strategies for player i conforming to σ constitute a best reponse against
τ−i for α?

– Given specifications τ−i for the other players, synthesize a best response for
player i as an automaton.

Now, all these questions can be answered algorithmically using the transducer
construction for strategy specifications, for appropriately defined outcomes. [40]
presents some results in that direction. In general, we can study questions like
whether a given tuple of strategy specifications constitutes a Nash equilibrium
(with respect to fixed strategy comparison notions). In some sense, the main idea
is that all the difficulties related to online strategy switching are modularised
into the transducer construction.

5.3 Game Logics

As indicated earlier, we expect strategy specifications to be embedded in logics
with assertions of the form “playing a strategy conforming to σ ensures outcome
α for player i”. The decision procedures for model checking such logics are nat-
urally constructed by tree automata that run over game trees, with transducers
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running in parallel for strategy specifications in subformulas. Thus the construc-
tion offers a generic way of algorithmically constructing strategies on the fly for
logically specified outcomes. [42] presents some results in that direction.

A more general remark would be that in any logics for reasoning about exten-
sive form games, if the embedded specifications admit a transducer construction
such as the one outlined here, the model checking algorithm for the logic con-
stitutes strategy construction in the sense envisaged in our motivation. [41] con-
stitutes one such example, but this style of automata based reasoning about
strategies needs to be expanded much further, especially for Alternating Tem-
poral Logics. An interesting challenge would be to introduce belief structure into
automata so that the considerable body of logical work on epistemic reasoning
about strategies ([8]) can be addressed. As long as epistemic assertions relate
only to the past, automaton construction seems extendable. When beliefs about
future need to be considered, the issues become indeed complex.

6 Discussion

We have presented a syntax of strategy specifications involving strategy switch-
ing and showed their realization as automata. This be seen as making a prima
facie case for considering online strategizing and the use of automata for studying
memory structure in such strategies.

Related Work

As remarked in the introduction, the motivation for considering online strategiz-
ing at all comes from the felt need for a ‘theory of play’ on the lines of [6,8,9].
The motivation for considering games as infinite trees for such a study is akin to
the discussion on games with memory in [43]. The model itself and the represen-
tation of strategies as finite state transducers, is based on the study of regular
infinite games, as in [22].

An important line of work in game theory about strategy switching is that
of Lipman and Wang in [28,29]. The framework is that of finite and infinite
repeated games, and players switch strategies during periods of the repeated
game. They look at how equilibria change when players incur a cost on every
strategy switch they make. The critical difference for our work is that switching
is not based on previous game outcomes but observations by players in the course
of play.

In general, dynamic learning has been extensively studied in game theory:
for instance, Young ([47,48]) considers a model in which each player chooses an
optimal strategy based on a sample of information about what other players
have done in the past. Similar analyses have been carried out in the context of
cooperative game theory as well: here players decide dynamically which coali-
tion to join. One asks how coalition structures change over time, and which
coalition players will eventually arrive at ([2]). Evolutionary game theory ([46])
studies how players observe payoffs of other players in their neighbourhood and
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accordingly change strategies to maximise fitness. However, these studies again
use offline strategies and deliberation between periods of repeated games rather
than online strategizing in games which is the focus here.

We have used a syntax for strategy specifications that is logical, using for-
mulas of a simple modal logic for observations of players but otherwise using
operators that can be seen as algebraic, their semantics given by operations on
trees. Note the absence of negation in strategy specifications; thus, they are closer
to programs in propositional dynamic logic (PDL) rather than logical assertions
in themselves. Indeed, like in the case of PDL, where programs are embedded
in an assertion language that speaks of postconditions, strategy specifications
would be embedded in a logical language that speaks of preferences and out-
comes, so that one can speak of σ ensuring the “best” outcome α for a player.
A programme of this sort is carried out for a more restricted class of strategy
specifications in [42] and a complete axiomatization is given. In general, we do
not see the language of specifications as a logical means rather than as an end,
and our purpose here has been to show their realization as automata.

In this context, we note that there exist a variety of logics in which strategy
specifications may be embedded in the sense above. In general, any logic that
speaks of a player (or a set of players) having a strategy to ensure an outcome
would be appropriate. Notable among these is the work on alternating temporal
logic (ATL) [1], a logic on trees with just these kind of assertions. Various exten-
sions of ATL ([26,27]) have been proposed to incorporate knowledge of players
and strategies explicitly into the logic. In particular, the logic ATL∗ ([14]) is pow-
erful enough to include changing strategy contexts and constructive concepts of
strategy as well. However, in our presentation, we focus not on reasoning about
games as in ATL but only on strategy switching and composition.

In [4,5,8] van Benthem uses dynamic logic to describe games as well as
strategies. In fact, PDL can be seen as a language for strategy specifications
as well. However, it is unclear whether the switching operator, being a kind of
‘interval’ operator, or the mixing operator +, are definable in PDL at all. Note
that these operators are much closer to those of process logic ([24]). A form of �
operator, called ‘chop’ is extensively used in interval logics ([32]) but these are
over linear orders and similar operations on trees seem to be difficult to define.

Ghosh [18] presents a complete axiomatisation of a logic describing both
games and strategies in a dynamic logic framework where assertions are made
about atomic strategies. Our earlier work [39] studies a logic in which not only
are games structured, but so also are strategies. [19] enriches strategy specifica-
tions with an interleaving based parallel composition operator. All these logics
are closely related and automata constructions can be given for the strategy
specifications in these logics. Typically, logics like PDL correspond to automata
on sequences whereas strategy logics involve automata that accept trees or act
as tree to word transducers, and hence the constructions tend to be more com-
plex. Strategy switching makes essential use of transductions which has been the
emphasis here.
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Further work

We have advocated a programme of working with ‘online constructible’ strategy
spaces in large extensive form games, but what we have provided is a mere
illustration of possibilities that such constructions can be carried out within
the framework of simple modal logics and automata. However, the programme
requires a precise delineation of such a strategy space within that of the classical
offline strategy space, or even within the computable strategy space. The work
presented here does not provide any basis for such a characterization.

The notion of strategies as constraining relations rather than functions is in
itself worthy of deeper study, and characterizing the class of relations that can
be realised as programs seems to be an interesting question. Partial strategies
are akin to heuristics that can apply to a variety of game situations. The study
here suggests that we can consider access to a library of such partial strategies
and online composition, much like software.

While we have focused on one particular aspect of online strategizing, namely
that of composition and switching, a number of aspects need incorporation for
building a theory of play. Critically, the belief structure of players about other
players’ strategies and their mutual beliefs and expectations critically affects
strategizing ([8]). While strategy specifications presented here can be viewed in
themselves as player types, the latter crucially incorporate beliefs as well, and
this needs further exploration.

The expressiveness of the specification language for strategies that we have
presented is unclear. Since the automata considered recognize regular tree lan-
guages, and hence (presumably) are equivalent to some monadic second order
logic on trees, one expects that there must be strategies implementable as
automata but not definable in this limited specification language. However, note
that switching involves taking an ‘initial fragment’ of one subtree and a ‘final
fragment’ of another subtree and gluing them together. The logical status of
such tree operations is unclear. Is this first-order definable, and if yes, with what
vocabulary? Note that characterizing first order definability on (unranked) trees
is difficult in general. What is an expressively complete set of strategy compo-
sition operators with respect to finite state transducers? This seems to be an
interesting question to answer.

Another important dimension is the algebraic structure of strategy composi-
tion ([21]). What is a natural notion of equivalence on strategies, and reductions
between them? Switching imposes an interval-like substructure on trees, and the
interaction of such structure with other operators seems worthy of further study.
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