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Abstract. In this chapter we focus on the epistemic concept of com-
mon belief in future rationality (Perea [37]), which describes a backward
induction type of reasoning for general dynamic games. It states that
a player always believes that his opponents will choose rationally now
and in the future, always believes that his opponents always believe that
their opponents choose rationally now and in the future, and so on, ad
infinitum. It thus involves infinitely many conditions, which might sug-
gest that this concept is too demanding for real players in a game. In
this chapter we show, however, that this is not true. For finite dynamic
games we present a finite reasoning procedure that a player can use to
reason his way towards common belief in future rationality.
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1 Introduction

If you make a choice in a game, then you must realize that the final outcome does
not only depend on your own choice, but also on the choices of your opponents. It
is therefore natural that you first reason about your opponents in order to form a
plausible belief about their choices, before you make your own choice. Now, how
can we formally model such reasoning procedures about your opponents? And
how do these reasoning procedures affect the choice you will eventually make in
the game? These questions naturally lead to epistemic game theory– a modern
approach to game theory which takes seriously the fact that the players in a
game are human beings who reason before they reach their final decision.

In our view, the most important idea in epistemic game theory is common
belief in rationality ([43], see also [12]). It states that a player, when making his
choice, chooses optimally given the belief he holds about the opponents’ choices.
Moreover, the player also believes that his opponents will choose optimally as
well, and that their opponents believe that the other players will also choose
optimally, and so on, ad infinitum. This idea really constitutes the basis for
epistemic game theory, as most – if not all – concepts within epistemic game
theory can be viewed as some variant of common belief in rationality. See [36] for
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a textbook that gives a detailed overview of most of these concepts in epistemic
game theory.

For dynamic games there is a backward induction analogue to common belief
in rationality, namely common belief in future rationality [37]. This concept
states that a player, at each of his information sets, believes that his oppo-
nents will choose rationally now and in the future. Here, by an information set
we mean a stage in the game where this player has to make a choice. However,
common belief in future rationality does not require a player to believe that his
opponents have chosen rationally in the past! On top of this, the concept states
that a player also always believes that his opponents, at each of their information
sets, believe that their opponents will choose rationally now and in the future,
and so on, ad infinitum.

For dynamic games with perfect information, various authors have used some
variant of the idea of common belief in future rationality as a possible founda-
tion for backward induction. See [2,5,19,40]. Among these contributions, the
concept of stable belief in dynamic rationality in [5] matches completely the idea
of common belief in future rationality, although they restrict attention to non-
probabilistic beliefs. Perea [32] provides an overview of the various epistemic
foundations for backward induction that have been offered in the literature.

Some people have criticized common belief in rationality because it involves
infinitely many conditions, and hence – they argue – it will be very difficult for
a player to meet each of these infinitely many conditions. The same could be
said about common belief in future rationality. The main purpose of this chapter
will be to show that this critique is actually not justified, provided we stick to
finite games. We will show, namely, that in dynamic games with finitely many
information sets, and finitely many choices at every information set, common
belief in future rationality can be achieved by reasoning procedures that use
finitely many steps only!

Let us be more precise about this statement. Suppose a player in a dynamic
game holds not only conditional beliefs about his opponents’ strategies, but
also conditional beliefs about his opponents’ conditional beliefs about the other
players’ strategies, and so on, ad infinitum. That is, this player holds a full
belief hierarchy about his opponents – an object that is needed in order to
formally define common belief in future rationality. Such belief hierarchies can
be efficiently encoded within an epistemic model with types. This is a model in
which for every player there is a set of so-called “types”, and where there is a
function that assigns to every type of player i a string of conditional beliefs about
the opponents’ strategies and types – one conditional belief for every information
set. Within such an epistemic model, we can then derive for every type a full
hierarchy of conditional beliefs about the opponents’ strategies and beliefs. So,
the “types” in this epistemic model, together with the functions that map types
to conditional beliefs on the opponents’ strategies and types, can be viewed as
encodings of the conditional belief hierarchies that we are eventually interested
in. This construction is based on Harsanyi’s [21] seminal way of encoding belief
hierarchies for games with incomplete information. If a belief hierarchy can be
derived from an epistemic model with finitely many types only, we say that this
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belief hierarchy is finitely generated. Such finitely generated belief hierarchies
will play a central role in this chapter, as we will show that they are “sufficient”
when studying common belief in future rationality in finite dynamic games.

Let us now come back to the question whether common belief in future
rationality can be achieved by finite reasoning procedures. As a first step, we
show in Sect. 3 that for a finitely generated belief hierarchy, it only takes finitely
many steps to verify whether this given belief hierarchy expresses common belief
in future rationality or not. So, although common belief in future rationality
involves infinitely many conditions, checking these conditions can be reduced to
a finite procedure whenever we consider belief hierarchies that are finitely gen-
erated. This procedure can thus be viewed as an ex-post procedure which can be
used to evaluate a given belief hierarchy, but it does not explain how a player
arrives at such a belief hierarchy.

In Sect. 4 we go one step further by asking how a player can reason his way
towards common belief in future rationality. To that purpose, we present a finite
reasoning procedure such that (a) this procedure will always lead the player,
within finitely many steps, to belief hierarchies that express common belief in
future rationality, and (b) for every strategy that is possible under common
belief in future rationality the procedure generates a belief hierarchy support-
ing this strategy. So, in a sense, the reasoning procedure yields an exhaustive
set of belief hierarchies for common belief in future rationality. This reasoning
procedure can be viewed as an ex-ante procedure, as it describes how a player
may reason before forming his eventual belief hierarchy, and before making his
eventual choice. The reasoning procedure we present in Sect. 4 is based on the
backward dominance procedure [37], which is a recursive elimination procedure
that delivers all strategies that can rationally be made under common belief in
future rationality.

So far, the epistemic game theory literature has largely focused on ex-post
procedures, but not so much on ex-ante procedures. Indeed, most concepts within
epistemic game theory can be viewed as ex-post procedures that can be used to
judge a given belief hierarchy on its reasonability, but do not explain how a player
could reason his way towards such a belief hierarchy. A notable exception is
Pacuit [28] – another chapter within this volume that also explicitly investigates
how people may reason before arriving at a given belief hierarchy. A lot of work
remains to be done in this area, and in my view this may constitute one of
the major challenges for epistemic game theory in the future: to explore how
people may reason their way towards a plausible belief hierarchy. I hope that
this volume will make a valuable contribution to this line of research.

Overall, our main contribution in this chapter is thus to (a) describe a rea-
soning process that a player can use to reason his way towards (an exhaustive
set of) belief hierarchies expressing common belief in future rationality and (b)
to show that this reasoning process only involves finitely many steps. Hence, we
see that in finite dynamic games the concept of common belief in future ratio-
nality can be characterized by finite reasoning procedures. Static games are just
a special case of dynamic games, where every player only makes a choice once,
and where all players choose simultaneously. It is clear that in static games, the
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Table 1. Overview of epistemic concepts and their recursive procedures

Epistemic concept Recursive procedure

Common belief in rationality (Tan and
Werlang [43])

Iterated elimination of strictly Dominated
choices (based on Pearce [30], Tan and
Werlang [43])

Permissibility (Brandenburger [11],
Börgers [10])

Dekel-Fudenberg procedure (Dekel and
Fudenberg [17])

Proper rationalizability
(Schuhmacher [41], Asheim [2])

Iterated addition of preference restrictions
(Perea [35])

Common assumption of rationality
(Brandenburger, Friedenberg and
Keisler [14])

Iterated elimination of weakly dominated
choices

Common belief in future rationality
(Perea [37])

Backward dominance procedure
(Perea [37])

Common strong belief in rationality
(Battigalli and Siniscalchi [8])

Iterated conditional dominance procedure
(Shimoji and Watson [42], Based on
Pearce [30], Battigalli [6])

concept of common belief in future rationality reduces to the basic concept of
common belief in rationality. As such, the results in this chapter immediately
carry over to common belief in rationality as well. Hence, also the concept of
common belief in rationality in finite static games can be characterized by finite
reasoning procedures, just by applying the reasoning procedures in this chapter
to the special case of static games.

This chapter can therefore be seen as an answer to the critique that epistemic
concepts like common belief in rationality and common belief in future rationality
would be too demanding because of the infinitely many conditions. We believe
this critique is not justified.

Similar conclusions can be drawn for various other epistemic concepts in the
literature, like permissibility [10,11], proper rationalizability [2,41] and common
assumption of rationality [14] for static games with lexicographic beliefs, and
common strong belief in rationality [8] for dynamic games. For each of these
epistemic concepts there exists a finite recursive procedure that yields all choices
(or strategies, if we have a dynamic game) that can rationally be chosen under the
concept. We list these procedures, with their references, in Table 1. An overview
of these epistemic concepts and their associated recursive procedures can be
found in my textbook [36].

Among these procedures, iterated elimination of weakly dominated choices is
an old algorithm with a long tradition in game theory, and it is not clear where
this procedure has been described for the first time in the literature. The procedure
already appears in early books by Luce and Raiffa [23] and Farquharson [18].

The concept of common strong belief in rationality by Battigalli and
Siniscalchi [8] can be seen as a counterpart to common belief in future ratio-
nality, as it establishes a forward induction type of reasoning, whereas common
belief in future rationality constitutes a backward induction type of reasoning.
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More precisely, common strong belief in rationality requires a player to believe
that his opponent has chosen rationally in the past whenever this is possible,
whereas common belief in future rationality does not require this. On the other
hand, common belief in future rationality requires a player to always believe that
his opponent will choose rationally in the future, whereas common strong belief
in rationality does not require this if the player concludes that his opponent
has made mistakes in the past. A more detailed comparison between the two
concepts can be found in [34].

The outline of the chapter is as follows. In Sect. 2 we formally define the
idea of common belief in future rationality within an epistemic model. Section 3
presents a finite reasoning procedure to verify whether a finitely generated belief
hierarchy expresses common belief in future rationality or not. In Sect. 4 we
present a finite reasoning procedure which yields, for every strategy that can
rationally be chosen under common belief in future rationality, some belief hier-
archy expressing common belief in future rationality which supports that strat-
egy. We conclude the chapter with a discussion in Sect. 5. For simplicity, we stick
to two-player games throughout this chapter. However, all ideas and results can
easily be extended to games with more than two players.

2 Common Belief in Future Rationality

In this section we present the idea of common belief in future rationality [37]
and show how it can be formalized within an epistemic model with types.

2.1 Main Idea

Common belief in future rationality [37] reflects the idea that you believe, at
each of your information sets, that your opponent will choose rationally now
and in the future, but not necessarily that he chose rationally in the past. Here,
by an information set for player i we mean an instance in the game where player
i must make a choice. In fact, in some dynamic games it is simply impossible
to believe, at certain information sets, that your opponent has chosen rationally
in the past, as this information set can only be reached through a suboptimal
choice by the opponent. But it is always possible to believe that your opponent
will choose rationally now and in the future. On top of this, common belief in
future rationality also states that you always believe that your opponent reasons
in precisely this way as well. That is, you always believe that your opponent, at
each of his information sets, believes that you will choose rationally now and in
the future. By iterating this thought process ad infinitum we eventually arrive
at common belief in future rationality.

2.2 Dynamic Games

We now wish to formalize the idea of common belief in future rationality. As
a first step, we formally introduce dynamic games. As already announced in
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the introduction, we will restrict attention to two-player games for simplicity,
although everything in this chapter can easily be generalized to games with more
than two players. At the same time, the model of a dynamic game presented here
is a bit more general than usual, as we explicitly allow for simultaneous choices
by players at certain stages of the game.

Definition 1 (Dynamic Game). A dynamic game is a tuple Γ = (I,X,Z,
(Xi, Ci,Hi, ui)i∈I) where

(a) I = {1, 2} is the set of players;
(b) X is the set of non-terminal histories. Every non-terminal history x ∈ X

represents a situation where one or more players must make a choice;
(c) Z is the set of terminal histories. Every terminal history z ∈ Z represents

a situation where the game ends;
(d) Xi ⊆ X is the set of histories at which player i must make a choice. At

every history x ∈ X at least one player must make a choice, that is, for every
x ∈ X there is at least some i with x ∈ Xi. However, for a given history x
there may be various players i with x ∈ Xi. This models a situation where
various players simultaneously choose at x. For a given history x ∈ X, we
denote by I(x) := {i ∈ I : x ∈ Xi} the set of active players at x;

(e) Ci assigns to every history x ∈ Xi the set of choice s Ci(x) from which
player i can choose at x;

(f) Hi is the collection of information sets for player i. Formally, Hi =
{h1

i , ..., h
K
i } where hk

i ⊆ Xi for every k, the sets hk
i are mutually disjoint,

and Xi = ∪kh
k
i . The interpretation of an information set h ∈ Hi is that at

h player i knows that some history in h has been realized, without knowing
precisely which one;

(g) ui is player i’s utility function, assigning to every terminal history z ∈ Z
some utility ui(z) in R.

Throughout this chapter we assume that all sets above are finite. The histories
in X and Z consist of finite sequences of choice-combinations

((c1i )i∈I1 , (c2i )i∈I2 , ..., (cKi )i∈IK ),

where I1, ..., IK are nonempty subsets of players, such that

(a) ∅ (the empty sequence) is in X,
(b) if x ∈ X and (ci)i∈I(x) ∈ ∏

i∈I(x) Ci(x), then (x, (ci)i∈I(x)) ∈ X ∪ Z,

(c) if z ∈ Z, then there is no choice combination (ci)i∈Î such that (z, (ci)i∈Î) ∈
X ∪ Z,

(d) for every x ∈ X ∪ Z, x �= ∅, there is a unique y ∈ X and (ci)i∈I(y) ∈∏
i∈I(y) Ci(y) such that x = (y, (ci)i∈I(y)).

Hence, a history x ∈ X ∪ Z represents the sequence of choice-combinations that
have been made by the players until this moment.
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Moreover, we assume that the collections Hi of information sets are such that

(a) two histories in the same information set for player i have the same set of
available choices for player i. That is, for every h ∈ Hi, and every x, y ∈ h, it
holds that Ci(x) = Ci(y). This condition must hold since player i is assumed
to know his set of available choices at h. We can thus speak of Ci(h) for a
given information set h ∈ Hi;

(b) two histories in the same information set for player i must pass through
exactly the same collection of information sets for player i, and must hold
exactly the same past choices for player i. This condition guarantees that
player i has perfect recall, that is, at every information set h ∈ Hi player
i remembers the information he possessed before, and the choices he made
before.

Say that an information set h follows some other information set h′ if there are
histories x ∈ h and y ∈ h′ such that x = (y, (c1i )i∈I1 , (c2i )i∈I2 , ..., (cKi )i∈IK ) for
some choice-combinations (c1i )i∈I1 , (c2i )i∈I2 , ..., (cKi )i∈IK . The information sets h
and h′ are called simultaneous if there is some history x with x ∈ h and x ∈ h′.
Finally, we say that information set h weakly follows h′ if either h follows h′, or
h and h′ are simultaneous.

Note that the game model is quite similar to coalition logic in [29], and
the Alternating-Time Temporal Logic in [1]. See also the chapter by Bulling,
Goranko and Jamroga [24] in this volume, which uses the Alternating-Time
Temporal Logic.

Fig. 1. Example of a dynamic game Here, ∅ and h1 are information sets for player 1,
and ∅, h2.1 and h2.2 are information sets for player 2
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To illustrate the concepts defined above, let us have a look at the example
in Fig. 1. At the beginning of the game, ∅, player 1 chooses between a and b,
and player 2 simultaneously chooses between c and d. So, ∅ is an information set
that belongs to both players 1 and 2. If player 1 chooses b, the game ends, and
the utilities are as depicted. If he chooses a, then the game moves to information
set h2.1 or information set h2.2, depending on whether player 2 has chosen c
or d. Player 1, however, does not know whether player 2 has chosen c or d,
so player 1 faces information set h1 after choosing a. Hence, h2.1 and h2.2 are
information sets that belong only to player 2, whereas h1 is an information
set that belongs only to player 1. Note that information sets h1, h2.1 and h2.2

follow ∅, and that player 2’s information sets h2.1 and h2.2 are simultaneous with
player 1’s information set h1. At h1, h2.1 and h2.2, players 1 and 2 simultaneously
make a choice, after which the game ends.

2.3 Strategies

In the literature, a strategy for player i in a dynamic game is usually defined as
a complete choice plan that specifies a choice for player i at each of his infor-
mation sets – also at those information sets that cannot be reached if player
i implements this strategy. Indeed, this is the original definition introduced by
Von Neumann [27] which has later become the standard definition of a strat-
egy in game theory. There is however a conceptual problem with this classical
definition of a strategy, namely how to interpret the specification of choices
at information sets that cannot be reached under this same strategy. Rubin-
stein [39] interprets these latter choices not as planned choices by player i, but
rather as the beliefs that i’s opponents have about i’s choices at these infor-
mation sets. Rubinstein thus proposes to separate a strategy for player i into a
choice part and a belief part : the choices for player i at information sets that can
be reached under the strategy are viewed as planned choices by player i, and
constitute what Rubinstein calls player i’s plan of action, whereas the choices at
the remaining information sets are viewed as the opponents’ beliefs about these
choices. A nice discussion of this interpretation of a strategy can be found in [9] –
another chapter in this volume. In fact, a substantial part of Bonanno’s chapter
concentrates on the concept of a strategy in dynamic games, and explores the
subtleties that arise if one wishes to incorporate this definition of a strategy into
a formal epistemic model. For more details on this issue we refer to Bonanno’s
chapter [9].

In this chapter, however, we wish to clearly distinguish between choices and
beliefs, as we think these are two fundamentally distinct objects. More precisely,
our definition of a strategy concentrates only on choices for player i at infor-
mation sets that can actually be reached if player i sticks to his plan. That is,
our definition of a strategy corresponds to what Rubinstein [39] calls a plan of
action.

Formally, for every h, h′ ∈ Hi such that h precedes h′, let ci(h, h′) be the
choice at h for player i that leads to h′. Note that ci(h, h′) is unique by perfect
recall. Consider a subset Ĥi ⊆ Hi, not necessarily containing all information sets
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for player i, and a function si that assigns to every h ∈ Ĥi some choice si(h) ∈
Ci(h). We say that si possibly reaches an information set h if at every h′ ∈ Ĥi

preceding h we have that si(h′) = ci(h′, h). By Hi(si) we denote the collection
of player i information sets that si possibly reaches. A strategy for player i is
a function si, assigning to every h ∈ Ĥi ⊆ Hi some choice si(h) ∈ Ci(h), such
that Ĥi = Hi(si).

For a given information set h, denote by Si(h) the set of strategies for player
i that possibly reach h. By S(h) we denote the set of strategy profiles (si)i∈I

that reach some history in h.
In the game of Fig. 1, the strategies for player 1 are (a, e), (a, f) and b, whereas

the strategies for player 2 are (c, g), (c, h), (d, i) and (d, j). Note that within our
terminology, b is a complete strategy for player 1 as player 1, by choosing b, will
make sure that his subsequent information set h1 cannot be reached, and hence
we do not have to specify what player 1 would do if h1 would be reached. Note
also that player 1 cannot make his choice dependent on whether h2.1 or h2.2 is
reached, since these are information sets for player 2 only, and player 1 does not
know which of these information sets is reached. As such, (a, e) is a complete
strategy for player 1. For player 2, (c, g) is a complete strategy as by choosing c
player 2 will make sure that h2.2 cannot be reached, and hence we do not have to
specify what player 2 would do if h2.2 would be reached. Similarly for his other
three strategies.

In this example, the sets of strategies that possibly reach the various infor-
mation sets are as follows:

S1(∅) = S1, S2(∅) = S2,

S1(h1) = S1(h2.1) = S1(h2.2) = {(a, e), (a, f)},

S2(h1) = S2, S2(h2.1) = {(c, g), (c, h)}, S2(h2.2) = {(d, i), (d, j)}.

2.4 Epistemic Model

We say that a strategy is rational for you at a certain information set if it is
optimal at that information set, given your conditional belief there about the
opponent’s strategy choice. In order to believe that your opponent chooses ratio-
nally at a certain information set, you must therefore not only hold conditional
beliefs about the opponent’s strategy choice, but also conditional beliefs about
the opponent’s conditional beliefs about your strategy choice. This is what we
call a second-order belief. Moreover, if we go one step further and want to model
the event that you believe that your opponent believes that you choose rationally,
we need not only your belief about the opponent’s beliefs about your strategy
choice, but also your belief about the opponent’s beliefs about your beliefs about
the opponent’s strategy choice – that is, your third-order belief. Consequently,
formally defining the idea of common belief in future rationality requires us to
consider infinite belief hierarchies, specifying your conditional beliefs about the
opponent’s strategy choice, your conditional beliefs about the opponent’s condi-
tional beliefs about your strategy choice, and so on ad infinitum.

A problem with infinite belief hierarchies is that writing them down explicitly
is an impossible task, since we would need to write down infinitely many beliefs.
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So is there a way to efficiently encode such infinite belief hierarchies without
writing too much? The answer is “yes”, as we will see right now. Note that your
belief hierarchy specifies first-order beliefs about the opponent’s strategy choice,
second-order beliefs about the opponent’s first-order beliefs about your strategy
choice, third-order beliefs about the opponent’s second-order beliefs, and so on.
Hence we conclude that your belief hierarchy specifies conditional beliefs about
the opponent’s strategy choice and the opponent’s belief hierarchy. Now let us
call every belief hierarchy a type. Then, every type can be identified with its
conditional beliefs about the opponent’s strategy choice and the opponent’s type.
This elegant and powerful idea goes back to Harsanyi (1967–1968), who used it
to model infinite belief hierarchies in games with incomplete information.

Let us now implement this idea of encoding infinite belief hierarchies formally.
Fix some finite dynamic game Γ with two players.

Definition 2 (Finite Epistemic Model). A finite epistemic model for
the game Γ is a tuple M = (T1, T2, b1, b2) where

(a) Ti is the finite set of types for player i, and
(b) bi assigns to every type ti ∈ Ti and every information set h ∈ Hi some

probabilistic belief bi(ti, h) ∈ Δ(Sj(h) × Tj) about opponent j’s strategy-type
pairs.

Remember that Sj(h) denotes the set of strategies for opponent j that possi-
bly reach h. By Δ(Sj(h) × Tj) we denote the set of probability distributions on
Sj(h) × Tj . So, within an epistemic model every type holds at each of his infor-
mation sets a conditional belief about the opponent’s strategy choice and the
opponent’s type, as we discussed above. For every type ti ∈ Ti we can now derive
its complete belief hierarchy from the belief functions bi and bj . Namely, type ti
holds at information set h ∈ Hi a conditional belief bi(ti, h) on Sj(h) × Tj . By
taking the marginal of bi(ti, h) on Sj(h) we obtain ti’s first-order belief at h on
j’s strategy choice. Moreover, ti holds at information set h ∈ Hi a conditional
belief about j’s possible types. As each of j’s types tj holds first-order conditional
beliefs on i’s strategy choices, we can thus derive from bi and bj the second-order
conditional belief that ti holds at h ∈ Hi about j’s first-order beliefs about i’s
strategy choice. By continuing this procedure we can thus deduce, for every type
ti in the model, each of its belief levels by making use of the belief functions bi
and bj . In this way, the epistemic model above can be viewed as a short and
convenient way to encode the infinite belief hierarchy of a player.

By means of this epistemic model we can in particular model the belief
revision of players during the game. Consider two different information sets h
and h′ for player i, where h′ comes after h. Note that type ti’s conditional belief
at h′ about j’s strategy choice may be different from his conditional belief at h,
and hence a type ti may revise his belief about j’s strategy choice as the game
moves from h to h′. Moreover, ti’s conditional belief at h′ about j’s type may be
different from his conditional belief at h, and hence a type ti may revise his belief
about j’s type – and hence about j’s conditional beliefs – as the game moves
from h to h′. So, all different kinds of belief revisions – about the opponent’s
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strategy, but also about the opponent’s beliefs – can be captured within this
epistemic model.

Table 2. An epistemic model for the game in Fig. 1

Types T1 = {t1, t
′
1}, T2 = {t2}

Beliefs for

player 1

b1(t1, ∅) = ((c, h), t2)

b1(t1, h1) = ((c, h), t2)

b1(t
′
1, ∅) = ((d, i), t2)

b1(t
′
1, h1) = ((d, i), t2)

Beliefs for

player 2

b2(t2, ∅) = (b, t1)

b2(t2, h2.1) = ((a, f), t′
1)

b2(t2, h2.2) = ((a, f), t′
1)

As an illustration, consider the epistemic model in Table 2, which is an epis-
temic model for the game in Fig. 1. So, we consider two possible types for player 1,
t1 and t′1, and one possible type for player 2, t2. Player 2’s type t2 believes at
the beginning of the game that player 1 chooses b and is of type t1, whereas at
h2.1 and h2.2 this type believes that player 1 chooses strategy (a, f) and is of
type t′1. In particular, type t2 revises his belief about player 1’s strategy choice if
the game moves from ∅ to h2.1 or h2.2. Note that player 1’s type t1 believes that
player 2 chooses strategy (c, h), whereas his other type t′1 believes that player
2 chooses strategy (d, i). So, type t2 believes at ∅ that player 1 believes that
player 2 chooses (c, h), whereas t2 believes at h2.1 and h2.2 that player 1 believes
that player 2 chooses (d, i). Hence, player 2’s type t2 also revises his belief about
player 1’s belief if the game moves from ∅ to h2.1 or h2.2. By continuing in this
fashion, we can derive the full belief hierarchy for type t2. Similarly for the other
types in this model.

Note that in our definition of an epistemic model we require the sets of types
to be finite. This imposes a restriction on the possible belief hierarchies we can
encode, since not every belief hierarchy can be derived from a type within an
epistemic model with finite sets of types. For some belief hierarchies we would
need infinitely many types to encode them. Belief hierarchies that can be derived
from a finite epistemic model will be called finitely generated.

Definition 3 (Finitely Generated Belief Hierarchy). A belief hierarchy
βi for player i is finitely generated if there is some finite epistemic model
M = (T1, T2, b1, b2), and some type ti ∈ Ti in that model, such that βi is the
belief hierarchy induced by ti within M.
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Throughout this chapter we will restrict attention to finite epistemic models,
and hence to finitely generated belief hierarchies. We will see in Sect. 4 that this is
not a serious restriction within the context of common belief in future rationality,
as every strategy that is optimal for some belief hierarchy – not necessarily
finitely generated – that expresses common belief in future rationality, is also
optimal for some finitely generated belief hierarchy that expresses common belief
in future rationality. Moreover, finitely generated belief hierarchies are much
easier to work with than those that are not finitely generated.

2.5 Common Belief in Future Rationality: Formal Definition

Remember that common belief in future rationality states that you always
believe that the opponent chooses rationally now and in the future, you always
believe that the opponent always believes that you choose rationally now and in
the future, and so on, ad infinitum. Within an epistemic model we can state
these conditions formally.

We first define what it means for a strategy si to be optimal for a type ti at
a given information set h. Consider a type ti, a strategy si and an information
set h ∈ Hi(si) that is possibly reached by si. By ui(si, ti | h) we denote the
expected utility from choosing si under the conditional belief that ti holds at h
about the opponent’s strategy choice.

Definition 4 (Optimality at a Given Information Set). Consider a type
ti, a strategy si and a history h ∈ Hi(si). Strategy si is optimal for type ti at h,
if ui(si, ti | h) ≥ ui(s′

i, ti | h) for all s′
i ∈ Si(h).

Remember that Si(h) is the set of player i strategies that possibly reach h.
So, not only do we require that player i’s single choice at h is optimal at this
information set, but we require that player i’s complete future choice plan from
h on is optimal, given his belief at h about the opponent’s strategies. That
is, optimality refers both to player i’s choice at h and all of his future choices
following h.

Bonanno [9] uses a different definition of optimality in his chapter, as he only
requires the choice at h to be optimal at h, without requiring optimality for the
future choices following h. Hence, Bonanno’s definition can be seen as a local
optimality condition, whereas we use a global optimality condition here.

Note that, in order to verify whether strategy si is optimal for the type ti
at h, we only need to look at ti’s first-order conditional belief at h about j’s
strategy choice, not at ti’s higher-order beliefs about j’s beliefs. In particular, it
follows that every strategy si that is optimal at h for some type ti – possibly
not finitely generated – is also optimal for a finitely generated type t′i. Take,
namely, any finitely generated type t′i that has the same first-order beliefs about
j’s strategy choices as ti. We can now define belief in the opponent’s future
rationality.

Definition 5 (Belief in the Opponent’s Future Rationality). Consider
a type ti and an information set h ∈ Hi. Type ti believes at h in j’s future
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rationality if bi(ti, h) only assigns positive probability to j’s strategy-type pairs
(sj , tj) where sj is optimal for tj at every h′ ∈ Hj(sj) that weakly follows h. Type
ti believes in the opponent’s future rationality if he does so at every information
set h ∈ Hi.

So, to be precise, a type that believes in the opponent’s future rationality
believes that the opponent chooses rationally now (if the opponent makes a
choice at a simultaneous information set), and at every information set that
follows. As such, the correct terminology would be “belief in the opponent’s
present and future rationality”, but we stick to “belief in the opponent’s future
rationality” so as to keep the name short.

Note also that belief in the opponent’s future rationality means that a player
always believes – at each of his information sets – that his opponent will choose
rationally in the future. This corresponds exactly to what Baltag, Smets and
Zvesper [5] call stable belief in dynamic rationality, although they restrict to
non-probabilistic beliefs in games with perfect information. In their terminology,
stable belief means that a player believes so at every information set in the game,
whereas dynamic rationality means that at a given information set, a player
chooses rationally from that moment on – hence mimicking our condition of
optimality at an information set. So, when we say belief in belief in the opponent’s
future rationality we actually mean stable belief in the sense of [5].

We can now formally define the other conditions in common belief in future
rationality in an inductive manner.

Definition 6 (Common Belief in Future Rationality). Consider a finite
epistemic model M = (T1, T2, b1, b2).

(Induction start) A type ti ∈ Ti is said to express 1-fold belief in future
rationality if ti believes in j’s future rationality.

(Induction step) For every k ≥ 2, a type ti ∈ Ti is said to express k-fold belief
in future rationality if at every information set h ∈ Hi, the belief bi(ti, h)
only assigns positive probability to j’s types tj that express (k − 1)-fold belief
in future rationality.

Type ti ∈ Ti is said to express common belief in future rationality if it
expresses k-fold belief in future rationality for all k.

Finally, we define those strategies that can rationally be chosen under common
belief in future rationality. We say that a strategy si is rational for a type ti if si is
optimal for ti at every h ∈ Hi(si). In the literature, this is often called sequential
rationality. We say that strategy si can rationally be chosen under common belief
in future rationality if there is some epistemic model M = (T1, T2, b1, b2), and
some type ti ∈ Ti, such that ti expresses common belief in future rationality, and
si is rational for ti.

3 Checking Common Belief in Future Rationality

Some people have criticized the concept of common belief in rationality, because
one has to verify infinitely many conditions in order to conclude that a given
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belief hierarchy expresses common belief in rationality. The same could be said
about common belief in future rationality. We will show in this section that this
is not true for finitely generated belief hierarchies. Namely, verifying whether a
finitely generated belief hierarchy expresses common belief in future rationality or
not only requires checking finitely many conditions, and can usually be done very
quickly. To that purpose we present a reasoning procedure with finitely many
steps which, for a given finitely generated belief hierarchy, tells us whether that
belief hierarchy expresses common belief in future rationality or not.

Consider an epistemic model M = (T1, T2, b1, b2) with finitely many types for
both players. For every type ti ∈ Ti, let Tj(ti) be the set of types for player j that
type ti deems possible at some of his information sets. That is, Tj(ti) contains
all types tj ∈ Tj such that bi(ti, h)(cj , tj) > 0 for some h ∈ Hi and some cj ∈ Cj .
We recursively define the sets of types T k

j (ti) and T k
i (ti) as follows.

Algorithm 1 (Relevant Types for ti) Consider a finite dynamic game Γ
with two players, and a finite epistemic model M = (T1, T2, b1, b2) for Γ. Fix a
type ti ∈ Ti.

(Induction start) Let T 1
i (ti) := {ti}.

(Induction step) For every even round k ≥ 2, let T k
j (ti) := ∪ti∈Tk−1

i (ti)
Tj(ti).

For every odd round k ≥ 3, let T k
i (ti) := ∪tj∈Tk−1

j (ti)
Ti(tj).

So, T 2
j (ti) contains all the opponent’s types that ti deems possible, T 3

i (ti) con-
tains all types for player i which are deemed possible by some type tj that ti
deems possible, and so on. This procedure eventually yields the sets of types
T ∗
i (ti) = ∪kT

k
i (ti) and T ∗

j (ti) = ∪kT
k
j (ti). These sets T ∗

i (ti) and T ∗
j (ti) con-

tain precisely those types that enter ti’s belief hierarchy in some of its levels,
and we will call these the relevant types for ti. Since there are only finitely
many types in M, there must be some round K such that T ∗

j (ti) = TK
j (ti), and

T ∗
i (ti) = TK+1

i (ti). That is, this procedure must stop after finitely many rounds.
If we would allow for infinite epistemic models, then the algorithm above

could be extended accordingly through the use of higher ordinals and transfinite
induction. But since we restrict our attention to finite epistemic models here,
usual induction will suffice for our purposes.

Now, suppose that type ti expresses common belief in future rationality.
Then, in particular, ti must believe in j’s future rationality. Moreover, ti must
only consider possible opponent’s types tj that believe in i’s future rationality,
that is, every type in T 2

j (ti) must believe in the opponent’s future rationality.
Also, ti must only consider possible types for j that only consider possible types
for i that believe in j’s future rationality. In other words, all types in T 3

i (ti)
must believe in the opponent’s future rationality. By continuing in this fashion,
we conclude that all types in T ∗

i (ti) and T ∗
j (ti) believe in the opponent’s future

rationality. So, we see that every type ti that expresses common belief in future
rationality, must have the property that all types in T ∗

i (ti) and T ∗
j (ti) believe in

the opponent’s future rationality.
However, we can show that the opposite is also true! Consider, namely, a type

ti within a finite epistemic model M = (T1, T2, b1, b2) for which all types in T ∗
i (ti)
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and T ∗
j (ti) believe in the opponent’s future rationality. Then, in particular, every

type in T 1
i (ti) believes in j’s future rationality. As T 1

i (ti) = {ti}, it follows that
ti believes in j’s future rationality. Also, every type in T 2

j (ti) believes in the
opponent’s future rationality. As T 2

j (ti) contains exactly those types for j that
ti deems possible, it follows that ti only deems possible types for j that believe
in i’s future rationality. By continuing in this way, we conclude that ti expresses
common belief in future rationality. The two insights above lead to the following
theorem.

Theorem 1 (Checking Common Belief in Future Rationality). Consider
a finite dynamic game Γ with two players, and a finite epistemic model M =
(T1, T2, b1, b2) for Γ. Then, a type ti expresses common belief in future rationality,
if and only if, all types in T ∗

i (ti) and T ∗
j (ti) believe in the opponent’s future

rationality.

Note that checking whether all types in T ∗
i (ti) and T ∗

j (ti) believe in the oppo-
nent’s future rationality can be done within finitely many steps. We have seen
above, namely, that the sets of relevant types for ti – that is, the sets T ∗

i (ti)
and T ∗

j (ti) – can be derived within finitely many steps, and only contain finitely
many types. So, within a finite epistemic model, checking for common belief in
future rationality only requires finitely many reasoning steps. Consequently, if
we take a finitely generated belief hierarchy, then it only takes finitely many
steps to verify whether it expresses common belief in future rationality or not.

4 Reasoning Towards Common Belief in Future
Rationality

In this section our goal is more ambitious, in that we wish to explore how a player
can reason his way towards a belief hierarchy that expresses common belief in
future rationality. More precisely, we offer a reasoning procedure that generates a
finite set of belief hierarchies such that, for every strategy that can rationally be
chosen under common belief in future rationality, there will be a belief hierarchy
in this set which supports that strategy. In that sense, the reasoning procedure
yields an exhaustive set of belief hierarchies.

The reasoning procedure will be illustrated in the second part of this section
by means of an example. The reader should feel free to jump back and forth
between the description of the procedure and the example while reading the
various steps of the reasoning procedure. This could certainly help to clarify
the different steps of the procedure. On purpose, we have separated the example
from the description of the procedure, so as to enhance readability.

4.1 Procedure

To see how this reasoning procedure works, let us start with exploring the con-
sequences of “believing in the opponent’s future rationality”. For that purpose,
we will heavily make use of the following lemma, which appears in [30].



78 A. Perea

Lemma 1 (Pearce’s Lemma (1984)). Consider a static two-person game
Γ = (S1, S2, u1, u2), where Si is player i’s finite set of strategies, and ui is
player i’s utility function. Then, a strategy si is optimal for some probabilistic
belief bi ∈ Δ(Sj), if and only if, si is not strictly dominated by a randomized
strategy.

Here, a randomized strategy ri for player i is a probability distribution on i’s
strategies, that is, i selects each of his strategies s′

i with probability ri(s′
i). And

we say that the strategy si is strictly dominated by the randomized strategy ri
if ri always yields a higher expected utility than si against any strategy sj of
player j.

One way to prove Pearce’s lemma is by using linear programming techniques.
More precisely, one can formulate the question whether si is optimal for some
probabilistic belief as a linear program. Subsequently, one can write down the
dual program, and show that this dual program corresponds to the question
whether si is strictly dominated by a randomized strategy. By the duality the-
orem of linear programming, which states that the original linear program and
the dual program have the same optimal value (see, for instance [16]), it follows
that si is optimal for some probabilistic belief, if and only if, it is not strictly
dominated by a randomized strategy.

Now, suppose that within a dynamic game, player i believes at some infor-
mation set h ∈ Hi that opponent j chooses rationally now and in the future.
Then, player i will at h only assign positive probability to strategies sj for player
j that are optimal, at every h′ ∈ Hj weakly following h, for some belief that j
can hold at h′ about i’s strategy choice.

Consider such a future information set h′ ∈ Hj ; let Γ 0(h′) = (Sj(h′), Si(h′))
be the full decision problem for player j at h′, at which he can only choose
strategies in Sj(h′) that possibly reach h′, and believes that player i can only
choose strategies in Si(h′) that possibly reach h′. From Lemma 1 we know that
a strategy sj is optimal for player j at h′ for some belief about i’s strategy
choice, if and only if, sj is not strictly dominated within the full decision problem
Γ 0(h′) = (Sj(h′), Si(h′)) by a randomized strategy rj .

Putting these things together, we see that if i believes at h in j’s future ratio-
nality, then i assigns at h only positive probability to j ’s strategies sj that are not
strictly dominated within any full decision problem Γ 0(h′) for player j that weakly
follows h. Or, put differently, player i assigns at h probability zero to any oppo-
nent’s strategy sj that is strictly dominated at some full decision problem Γ 0(h′)
for player j that weakly follows h. That is, we eliminate any such opponent’s strat-
egy sj from player i’s full decision problem Γ 0(h) = (Si(h), Sj(h)) at h.

We thus see that, if player i believes in j’s future rationality, then player i
eliminates, at each of his full decision problems Γ 0(h), those opponent’s strate-
gies sj that are strictly dominated within some full decision problem Γ 0(h′) for
player j that weakly follows h. Let us denote by Γ 1(h) the reduced decision prob-
lem for player i at h that remains after eliminating such opponent’s strategies
sj from Γ 0(h).
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Next, suppose that player i does not only believe in j’s future rationality, but
also believes that j believes in i’s future rationality. Take an information set h for
player i, and an arbitrary information set h′ for player j that weakly follows h.
As i believes that j believes in i’s future rationality, player i believes that player
j, at information set h′, believes that player i will only choose strategies from
Γ 1(h′). Moreover, as i believes in j’s future rationality, player i believes that
j will choose rationally at h′. Together, these two insights imply that player i
believes at h that j will only choose strategies sj that are not strictly dominated
within Γ 1(h′). Or, equivalently, player i eliminates from his decision problem
Γ 1(h) all strategies sj for player j that are strictly dominated within Γ 1(h′). As
this holds for every player j information set h′ that weakly follows h, we see that
player i will eliminate, from each of his decision problems Γ 1(h), all opponent’s
strategies sj that are strictly dominated within some decision problem Γ 1(h′)
for player j that weakly follows h.

Hence, if player i expresses up to 2-fold belief in future rationality, then he
will eliminate, from each of his decision problems Γ 1(h), all opponent’s strategies
sj that are strictly dominated within some decision problem Γ 1(h′) for player j
that weakly follows h. Let us denote by Γ 2(h) the reduced decision problem for
player i that remains after eliminating such opponent’s strategies sj from Γ 1(h).

By continuing in this fashion, we conclude that if player i expresses up to
k-fold belief in future rationality – that is, expresses 1-fold, 2-fold, ... until k-fold
belief in future rationality – then he believes at every information set h ∈ Hi

that opponent j will only choose strategies from the reduced decision problem
Γ k(h). This leads to the following reasoning procedure, known as the backward
dominance procedure [37]. The procedure is closely related to Penta’s [31] back-
wards rationalizability procedure, and is equivalent to Chen and Micali’s [15]
backward robust solution.

Algorithm 2 (Backward Dominance Procedure). Consider a finite
dynamic game Γ with two players.

(Induction start) For every information set h, let Γ 0(h) = (S1(h), S2(h)) be
the full decision problem at h.

(Induction step) For every k ≥ 1, and every information set h, let Γ k(h) =
(Sk

1 (h), Sk
2 (h)) be the reduced decision problem which is obtained from

Γ k−1(h) by eliminating, for both players i, those strategies si that are strictly
dominated at some decision problem Γ k−1(h′) weakly following h at which i
is active.

Suppose that h is an information set at which player i is active. Then, the
interpretation of the reduced decision problem Γ k(h) = (Sk

1 (h), Sk
2 (h)) is that

at round k of the procedure, player i believes at h that opponent j chooses
some strategy in Sk

j (h). As the sets Sk
j (h) become smaller as k becomes bigger,

the procedure thus puts more and more restrictions on player i’s conditional
beliefs about j’s strategy choice. However, since in a finite dynamic game there
are only finitely many information sets and strategies, this procedure must stop
after finitely many rounds! Namely, there must be some round K such that
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SK+1
1 (h) = SK

1 (h) and SK+1
2 (h) = SK

2 (h) for all information sets h. But then,
Sk
j (h) = SK

j (h) for all information sets h and every k ≥ K + 1, and hence
the procedure will not put more restrictions on i’s conditional beliefs about j’s
strategy choice after round K. This reasoning procedure is therefore a finite
procedure, guaranteed to end within finitely many steps.

Above we have argued that if player i reasons in accordance with com-
mon belief in future rationality, then his belief at information set h about j’s
strategy choice will only assign positive probability to strategies in SK

j (h). As
a consequence, he can only rationally choose a strategy si that is optimal, at
every information set h ∈ Hi, for such a conditional belief that only considers
j’s strategy choices in SK

j (h). But then, by Lemma 1, strategy si must not be
strictly dominated at any information set h ∈ Hi if we restrict to j’s strategy
choices in SK

j (h). That is, si must be in SK
i (∅), where ∅ denotes the beginning

of the game. We can thus conclude that every strategy si that can rationally
be chosen under common belief in future rationality must be in SK

i (∅) – that is,
must survive the backward dominance procedure at the beginning of the game.

We can show, however, that the converse is also true! That is, every strategy
in SK

i (∅) can be supported by a belief hierarchy that expresses common belief in
future rationality. Suppose, namely, that player i has performed the backward
dominance procedure in his mind, which has left him with the strategies SK

i (h)
and SK

j (h) at every information set h of the game. Then, by construction, every
strategy si ∈ SK

i (h) is not strictly dominated on SK
j (h′), for every information

set h′ weakly following h at which i is active. Thus, by Lemma 1, every strategy
si ∈ SK

i (h) is optimal, at every h′ ∈ Hi weakly following h, for some proba-
bilistic belief bsi,hi (h′) ∈ Δ(SK

j (h′)). Similarly, every strategy sj ∈ SK
j (h) will

be optimal, at every h′ ∈ Hj weakly following h, for some probabilistic belief
b
sj ,h
j (h′) ∈ Δ(SK

i (h′)).
First, we define the sets of types

Ti = {tsi,hi : h ∈ H and si ∈ SK
i (h)} and

Tj = {t
sj ,h
j : h ∈ H and sj ∈ SK

j (h)},

where H denotes the collection of all information sets in the game. The super-
script si, h in tsi,hi indicates that, by our construction of the beliefs that we will
give in the next paragraph, the strategy si will be optimal for the type tsi,hi at
all player i information sets weakly following h.

Subsequently, we define the conditional beliefs of the types about the opponent’s
strategy-type pairs to be

bi(t
si,h
i , h′)(sj , tj) =

{
bsi,hi (h′)(sj), if tj = t

sj ,h
′

j

0, otherwise

for every h′ ∈ Hi, and

bj(t
sj ,h
j , h′)(si, ti) =

{
b
sj ,h
j (h′)(si), if ti = tsi,h

′
i

0, otherwise
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for all h′ ∈ Hj .

This yields an epistemic model M. Hence, every type tsi,hi for player i, at every
information set h′ ∈ Hi, only considers possible strategy-type pairs (sj , t

sj ,h
′

j )
where sj ∈ SK

j (h′), and his conditional belief at h′ about j’s strategy choice is
given by bsi,hi (h′). By construction, strategy si ∈ SK

i (h) is optimal for bsi,hi (h′)
at every h′ ∈ Hi weakly following h. As a consequence, strategy si ∈ SK

i (h)
is optimal for type tsi,hi at every h′ ∈ Hi weakly following h. The same holds
for player j. Since type tsi,hi , at every information set h′ ∈ Hi, only considers
possible strategy-type pairs (sj , t

sj ,h
′

j ) where sj ∈ SK
j (h′), it follows that type

tsi,hi , at every information set h′ ∈ Hi, only considers possible strategy-type
pairs (sj , t

sj ,h
′

j ) where strategy sj is optimal for t
sj ,h

′

j at every h′′ ∈ Hj weakly
following h′. That is, type tsi,hi believes in the opponent’s future rationality.

Since this holds for every type tsi,hi in this epistemic model M, it follows
directly from Theorem 1 that every type in the epistemic model M above
expresses common belief in future rationality.

Now, take some strategy si ∈ SK
i (∅), which survives the backward dominance

procedure at the beginning of the game. Then, we know from our insights above
that si is optimal for the type tsi,∅i at every h ∈ Hi weakly following ∅ – that is,
at every h ∈ Hi in the game. As the type tsi,∅i expresses common belief in future
rationality, we thus see that every strategy si ∈ SK

i (∅) can rationally be chosen
by some type tsi,∅i that expresses common belief in future rationality. In other
words, for every strategy si ∈ SK

i (∅) that survives the backward dominance
procedure at ∅, there is a belief hierarchy expressing common belief in future
rationality – namely the belief hierarchy induced by tsi,∅i in the epistemic model
M – for which si is optimal. This insight thus leads to the following theorem.

Theorem 2 (Reasoning Towards Common Belief in Future Rational-
ity). Consider a finite dynamic game Γ with two players. Suppose we apply
the backward dominance procedure until it terminates at round K. That is,
SK+1
1 (h) = SK

1 (h) and SK+1
2 (h) = SK

2 (h) for all information sets h.
For every information set h, both players i, every strategy si ∈ SK

i (h) , and
every information set h′ ∈ Hi weakly following h, let bsi,hi (h′) ∈ Δ(SK

j (h′)) be a
probabilistic belief on SK

j (h′) for which si is optimal.
For both players i, define the set of types

Ti = {tsi,hi : h ∈ H and si ∈ SK
i (h)},

and for every type tsi,hi and every h′ ∈ Hi define the conditional belief

bi(t
si,h
i , h′)(sj , tj) =

{
bsi,hi (h′)(sj), if tj = t

sj ,h
′

j

0, otherwise

about j’s strategy-type pairs. Then, all types in this epistemic model M express
common belief in future rationality. Moreover,
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(1) for every strategy si ∈ SK
i (∅) that survives the backward dominance proce-

dure at ∅ there is a belief hierarchy in M expressing common belief in future
rationality for which si is optimal at all h ∈ Hi possibly reached by si –
namely the belief hierarchy induced by tsi,∅i ;

(2) for every strategy si /∈ SK
i (∅) that does not survive the backward dominance

procedure at ∅, there is no belief hierarchy whatsoever expressing common
belief in future rationality for which si is optimal at all h ∈ Hi possibly
reached by si.

So, whenever a strategy si is optimal for some belief hierarchy that expresses
common belief in future rationality, this reasoning procedure generates one. In
that sense, we can say that this reasoning procedure yields an “exhaustive” set
of belief hierarchies. Note also that this is a reasoning procedure with finitely
many steps, as the backward dominance procedure terminates after finitely many
rounds, after which we only have to construct finitely many types – one for each
information set h and each surviving strategy si ∈ SK

i (h) at h.
The theorem above also shows that finitely generated belief hierarchies are

sufficient when it comes to exploring common belief in future rationality within
a finite dynamic game. Suppose, namely, that some strategy si is optimal, at all
h ∈ Hi possibly reached by si, for some belief hierarchy – not necessarily finitely
generated – that expresses common belief in future rationality. Then, according
to part (2) in the theorem, strategy si must be in SK

i (∅). But in that case, the
procedure above generates a finitely generated belief hierarchy for which the
strategy si is optimal – namely the belief hierarchy induced by the type tsi,∅i

within the finite epistemic model M. So we see that, whenever a strategy si
is optimal for some belief hierarchy – not necessarily finitely generated – that
expresses common belief in future rationality, then it is also optimal for a finitely
generated belief hierarchy that expresses common belief in future rationality.

Corollary 1 (Finitely Generated Belief Hierarchies are Sufficient).
Consider a finite dynamic game Γ with two players. If a strategy si is optimal for
some belief hierarchy – not necessarily finitely generated – that expresses com-
mon belief in future rationality, then it is also optimal for a finitely generated
belief hierarchy that expresses common belief in future rationality.

Here, whenever we say that si is optimal for some belief hierarchy, we mean
that it is optimal for this belief hierarchy at every information set h ∈ Hi

possibly reached by si. This corollary thus states that, if we wish to verify which
strategies can rationally be chosen under common belief in future rationality,
then it is sufficient to stick to finite epistemic models. In that sense, the corollary
bears a close resemblance to the finite model property in modal logic (see, for
instance, [20]).

4.2 Example

We shall now illustrate the reasoning procedure above by means of an example.
Consider the dynamic game in Fig. 2. At the beginning, player 1 can choose
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Fig. 2. Example of a dynamic game ∅ denotes the beginning of the game, and h1

denotes the information set that follows the choice a

between a and b. If he chooses b, the game ends, and the utilities for players 1
and 2 will be (4, 4). If he chooses a, the game continues, and players 1 and 2 must
simultaneously choose from {c, d, e, f} and {g, h, i, j}, respectively. The utilities
for both players in that case can be found in the table following choice a. Let us
denote the beginning of the game by ∅, and the information set following choice
a by h1. Hence, ∅ and h1 are the two information sets in the game. At ∅ only
player 1 makes a choice, whereas both players 1 and 2 are active at h1.

We will first run the backward dominance procedure for this example, and
then build an epistemic model on the basis of that procedure, following the
construction in Theorem 2.

There are two information sets in this game, namely ∅ and h1. The full
decision problems at both information sets are given in Table 3.

We will now start the backward dominance procedure. In round 1, we see
that within the full decision problem Γ 0(∅) at the beginning of the game, the
strategies (a, d), (a, e) and (a, f) are strictly dominated for player 1 by b. So,
we eliminate (a, d), (a, e) and (a, f) from Γ 0(∅), but not – yet – from Γ 0(h1), as
h1 follows ∅. Moreover, within the full decision problem Γ 0(h1) at h1, player 1’s
strategy (a, f) is strictly dominated by (a, d) and (a, e), and hence we eliminate
(a, f) from Γ 0(h1) and Γ 0(∅). Note, however, that we already eliminated (a, f) at
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Table 3. Full decision problems in the game of Fig. 2

Γ 0(∅)

g h i j

(a, c) 0, 5 5, 0 3, 3 1, 0

(a, d) 3, 0 3, 5 2, 3 1, 0

(a, e) 1, 2 1, 2 1, 3 3, 0

(a, f) 0, 3 0, 3 0, 0 0, 5

b 4, 4 4, 4 4, 4 4, 4

Γ 0(h1)

g h i j

(a, c) 0, 5 5, 0 3, 3 1, 0

(a, d) 3, 0 3, 5 2, 3 1, 0

(a, e) 1, 2 1, 2 1, 3 3, 0

(a, f) 0, 3 0, 3 0, 0 0, 5

Table 4. Reduced decision problems after round 1 of backward dominance procedure

Γ 1(∅)

g h i j

(a, c) 0, 5 5, 0 3, 3 1, 0

b 4, 4 4, 4 4, 4 4, 4

Γ 1(h1)

g h i j

(a, c) 0, 5 5, 0 3, 3 1, 0

(a, d) 3, 0 3, 5 2, 3 1, 0

(a, e) 1, 2 1, 2 1, 3 3, 0

Γ 0(∅), so we only need to eliminate (a, f) from Γ 0(h1) at that step. For player 2,
no strategy is strictly dominated within Γ 0(∅) or Γ 0(h1), so we cannot yet
eliminate any strategy for player 2. This leads to the reduced decision problems
Γ 1(∅) and Γ 1(h1) in Table 4.

We now turn to round 2. Within Γ 1(h1), player 2’s strategy j is strictly
dominated by i. Hence, we can eliminate strategy j from Γ 1(h1), but also from
Γ 1(∅), as h1 follows ∅. No other strategies can be eliminated at this round. This
leads to the reduced decision problems Γ 2(∅) and Γ 2(h1) in Table 5.

In round 3, player 1’s strategy (a, e) is strictly dominated by (a, d) within
Γ 2(h1), and hence we can eliminate (a, e) from Γ 2(h1). This leads to the final
decision problems in Table 6, from which no further strategies can be eliminated.
Note, for instance, that strategy i is not strictly dominated for player 2 within
Γ 3(h1), as it is optimal for the belief that assigns probability 0.5 to (a, c) and
(a, d).
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Table 5. Reduced decision problems after round 2 of backward dominance procedure

Γ 2(∅)

g h i

(a, c) 0, 5 5, 0 3, 3

b 4, 4 4, 4 4, 4

Γ 2(h1)

g h i

(a, c) 0, 5 5, 0 3, 3

(a, d) 3, 0 3, 5 2, 3

(a, e) 1, 2 1, 2 1, 3

Table 6. Final decision problems in the backward dominance procedure

Γ 3(∅)

g h i

(a, c) 0, 5 5, 0 3, 3

b 4, 4 4, 4 4, 4

Γ 3(h1)

g h i

(a, c) 0, 5 5, 0 3, 3

(a, d) 3, 0 3, 5 2, 3

We will now build an epistemic model on the basis of the final decision
problems Γ 3(∅) and Γ 3(h1), using the construction in Theorem 2. At ∅, the
surviving strategies are (a, c) and b for player 1, and g, h and i for player 2.
That is, S3

1(∅) = {(a, c), b} and S3
2(∅) = {g, h, i}. Moreover, at h1 the surviving

strategies are given by S3
1(h1) = {(a, c), (a, d)} and S3

2(h1) = {g, h, i}. These
strategies are optimal, at ∅ and/or h1, for the following beliefs:

– strategy (a, c) ∈ S3
1(∅) is optimal, at ∅, for the belief b

(a,c),∅
1 (∅) ∈ Δ(S3

1(∅))
that assigns probability 1 to h;

– strategy (a, c) ∈ S3
1(∅) is optimal, at h1 following ∅, for the belief b

(a,c),∅
1 (h1) ∈

Δ(S3
1(h1)) that assigns probability 1 to h;

– strategy b ∈ S3
1(∅) is optimal, at ∅, for the belief bb,∅1 (∅) ∈ Δ(S3

1(∅)) that
assigns probability 1 to g;

– strategy (a, d) ∈ S3
1(h1) is optimal, at h1, for the belief b

(a,d),h1
1 (h1) ∈

Δ(S3
1(h1)) that assigns probability 1 to g;

– strategy g ∈ S3
2(∅) is optimal, at h1 following ∅, for the belief bg,∅2 (h1) ∈

Δ(S3
1(h1)) that assigns probability 1 to (a, c);

– strategy h ∈ S3
2(∅) is optimal, at h1 following ∅, for the belief bh,∅2 (h1) ∈

Δ(S3
1(h1)) that assigns probability 1 to (a, d);
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– strategy i ∈ S3
2(∅) is optimal, at h1 following ∅, for the belief bi,∅2 (h1) ∈

Δ(S3
1(h1)) that assigns probability 0.5 to (a, c) and probability 0.5 to (a, d).

On the basis of these beliefs we can now construct an epistemic model as in
Theorem 2. So, for both players i, both information sets h, and every strategy
si ∈ S3

i (h), we construct a type tsi,hi , resulting in the type sets

T1 = {t
(a,c),∅
1 , tb,∅1 , t

(a,c),h1
1 , t

(a,d),h1
1 } and T2 = {tg,∅2 , th,∅2 , ti,∅2 , tg,h1

2 , th,h1
2 , ti,h1

2 }.

The conditional beliefs for the types about the opponent’s strategy-type pairs
can then be based on the beliefs above. By using the construction in Theorem 2,
this yields the following beliefs for the types:

b1(t
(a,c),∅
1 , ∅) = (h, th,∅2 ), b1(t

(a,c),∅
1 , h1) = (h, th,h1

2 ),

b1(t
b,∅
1 , ∅) = (g, tg,∅2 ), b1(t

b,∅
1 , h1) = (g, tg,h1

2 ),

b1(t
(a,c),h1
1 , ∅) = (h, th,∅2 ), b1(t

(a,c),h1
1 , h1) = (h, th,h1

2 ),

b1(t
(a,d),h1
1 , ∅) = (g, tg,∅2 ), b1(t

(a,d),h1
1 , h1) = (g, tg,h1

2 ),

b2(t
g,∅
2 , h1) = ((a, c), t(a,c),h1

1 ),

b2(t
g,h1
2 , h1) = ((a, c), t(a,c),h1

1 ),

b2(t
h,∅
2 , h1) = ((a, d), t(a,d),h1

1 ),

b2(t
h,h1
2 , h1) = ((a, d), t(a,d),h1

1 ),

b2(t
i,∅
2 , h1) = (0.5) · ((a, c), t(a,c),h1

1 ) + (0.5) · ((a, d), t(a,d),h1
1 ),

b2(t
i,h1
2 , h1) = (0.5) · ((a, c), t(a,c),h1

1 ) + (0.5) · ((a, d), t(a,d),h1
1 ).

Here, b2(t
i,∅
2 , h1) = (0.5) · ((a, c), t(a,c),h1

1 ) + (0.5) · ((a, d), t(a,d),h1
1 ) means that

type ti,∅2 assigns at h1 probability 0.5 to the event that player 1 chooses (a, c)
while being of type t

(a,c),h1
1 , and assigns probability 0.5 to the event that player

1 chooses (a, d) while being of type t
(a,d),h1
1 .

By Theorem 2 we know that all types so constructed express common belief
in future rationality , and that for every strategy that can rationally be chosen
under common belief in future rationality there is a type in this model for which
that strategy is optimal. Indeed, the backward dominance procedure delivers the
strategies (a, c), b, g, h and i at ∅, and hence we know from [37] that these are
exactly the strategies that can rationally be chosen under common belief in future
rationality. Note that

– strategy (a, c) is optimal, at ∅ and h1, for the type t
(a,c),∅
1 ;

– strategy b is optimal, at ∅, for the type tb,∅1 ;
– strategy g is optimal, at h1, for the type tg,∅2 ;
– strategy h is optimal, at h1, for the type th,∅2 ; and
– strategy i is optimal, at h1, for the type ti,∅2 .
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So, for every strategy that can rationally be chosen under common belief in future
rationality, we have constructed – by means of the epistemic model above – a
finitely generated belief hierarchy that expresses common belief in future ratio-
nality, and that supports this strategy.

Note, however, that there is some redundancy in the epistemic model above.
Namely, it is easily seen that the types t

(a,c),∅
1 and t

(a,c),h1
1 have identical belief

hierarchies, and so do tb,∅1 and t
(a,d),h1
1 . The same holds for tg,∅2 and tg,h1

2 , for th,∅2

and th,h1
2 , and also for ti,∅2 and ti,h1

2 . Hence, we can substitute t
(a,c),∅
1 and t

(a,c),h1
1

by a single type t
(a,c)
1 , and we can substitute tb,∅1 and t

(a,d),h1
1 by a single type tb1.

Similarly, we can substitute tg,∅2 and tg,h1
2 by a single type tg2, we can substitute

th,∅2 and th,h1
2 by a single type th2 , and ti,∅2 and ti,h1

2 by ti2. This eventually leads
to the smaller – yet equivalent – epistemic model with type sets

T1 = {t
(a,c)
1 , tb1} and T2 = {tg2, t

h
2 , ti2}

and beliefs

b1(t
(a,c)
1 , ∅) = b1(t

(a,c)
1 , h1) = (h, th2 )

b1(tb1, ∅) = b1(tb1, h1) = (g, th2 )

b2(t
g
2, h1) = ((a, c), t(a,c)1 ),

b2(th2 , h1) = ((a, d), tb1),

b2(ti2, h1) = (0.5) · ((a, c), t(a,c)1 ) + (0.5) · ((a, d), tb1).

This redundancy is typical for the construction of the epistemic model in
Theorem 2. In most games, the epistemic model constructed in this way will
contain types that are “duplicates” of each other, as they generate the same
belief hierarchy.

5 Discussion

5.1 Algorithms as Reasoning Procedures

In this chapter we have presented an algorithm that leads to belief hierarchies
expressing common belief in future rationality, and it is based on the backward
dominance procedure proposed in [37]. The difference is that in this chapter we
interpret this algorithm not as a computational tool for the analyst, but rather
as a finite reasoning procedure that some player inside the game can use (a) to
verify which strategies he can rationally choose under common belief in future
rationality, and (b) to support each of these strategies by a belief hierarchy
expressing common belief in future rationality.

Hence, one of the main messages in this chapter is that the algorithm above
for common belief in future rationality does not only serve as a computational tool
for the analyst, but can also be used by a player inside the game as an intuitive
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reasoning procedure. Compare this to the concepts of Nash equilibrium [25,26]
for static games, and sequential equilibrium [22] for dynamic games. There is no
easy, finite iterative procedure to find one Nash equilibrium – let alone all Nash
equilibria – in a game. In particular, there is no clear reasoning procedure that
a player inside the game can use to reason his way towards a Nash equilibrium.
Besides, we believe that Nash equilibrium imposes some implausible conditions
on a player’s belief hierarchy, as it requires a player to believe that his opponent
is correct about the actual beliefs he holds (see [4,13,33,38] and [3, p.5]). In view
of all this, we think that Nash equilibrium is not a very appealing concept if we
wish to describe the reasoning of players about their opponents. The same actually
holds for the concept of sequential equilibrium.

5.2 Finitely Generated Belief Hierarchies

In this chapter we have restricted our attention to finitely generated belief
hierarchies – that is, belief hierarchies that can be derived from an epistemic
model with finitely many types. By doing so we actually exclude some belief
hierarchies, as not every belief hierarchy can be generated within a finite epis-
temic model. If we wish to include all possible belief hierarchies in our model,
then we must necessarily look at complete type spaces for dynamic games as
constructed in [7].

But for our purposes here it is actually sufficient to concentrate on finitely
generated belief hierarchies. Theorem 2 implies, namely, that whenever a strategy
si is optimal for some belief hierarchy – not necessarily finitely generated –
that expresses common belief in future rationality, then si is also optimal for
some finitely generated belief hierarchy that expresses common belief in future
rationality. Moreover, finitely generated belief hierarchies have the advantage
that they are particularly easy to work with, and that checking for common
belief in future rationality can be done within finitely many steps, as is shown
in Theorem 1.
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