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Abstract. There is a growing body of literature that analyzes games
in terms of the “process of deliberation” that leads the players to select
their component of a rational outcome. Although the details of the var-
ious models of deliberation in games are different, they share a com-
mon line of thought: The rational outcomes of a game are arrived at
through a process in which each player settles on an optimal choice given
her evolving beliefs about her own choices and the choices of her oppo-
nents. The goal is to describe deliberation in terms of a sequence of belief
changes about what the players are doing or what their opponents may
be thinking. The central question is: What are the update mechanisms
that match different game-theoretic analyses? The general conclusion is
that the rational outcomes of a game depend not only on the structure of
the game, but also on the players’ initial beliefs, which dynamical rule is
being used by the players to update their inclinations (in general, differ-
ent players may be using different rules), and what exactly is commonly
known about the process of deliberation.

Keywords: Epistemic game theory · Dynamic epistemic logic · Belief
revision

1 Introduction and Motivation

Strategies are the basic objects of study in a game-theoretic model. The standard
interpretation is that a strategy represents a player’s general plan of action. That
is, player i’s strategy describes the action that player i will choose whenever she
is required to make a decision according to the rules of the game.

Traditionally, game theorists have focused on identifying profiles of strategies
that constitute an “equilibrium” (e.g., the Nash equilibrium and its refinements).
A typical game-theoretic analysis runs as follows: Given a game G, there is an
associated solution space SG describing all the possible outcomes of G. In a one-
shot game (called a strategic game; see Sect. 2.1 for details), this is the set
of all tuples of strategies (a tuple of strategies, one for each player, is called
a strategy profile)1. Abstractly, a solution for a game G is a subset of the
1 The assumption is that once each player settles on a strategy, this identifies a unique

outcome of the game. This is a simplifying assumption that can be dropped if neces-
sary. However, for this chapter, it is simpler to follow standard practice and identify
the set of “outcomes” of a game with the set of all tuples of actions.
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solution space SG. The subset of SG identified by a solution concept is intended
to represent the “rational outcomes” of the game G.

Suppose that S ⊆ SG is a solution for the game G. The elements of S are
privileged outcomes of G, but what, exactly, distinguishes them from the other
outcomes in SG? The standard approach is to require that for each profile in
S, players should not have an incentive to deviate from their prescribed strat-
egy, given that the other players follow their own prescribed strategies. This is
an internal constraint on the elements of a solution set since it requires that
the strategies in a profile are related to each other in a particular way. This
chapter takes a different perspective on the above question by imposing a differ-
ent constraint on the profiles in S: Each player’s prescribed strategy should be
“optimal” given her beliefs about what the other players are going to do. This
constraint is external since it refers to the players’ “beliefs”, which are typically
not part of the mathematical representation of the game.

It is not hard to think of situations in which the internal and external con-
straints on solution concepts discussed above are not jointly satisfied. The point
is that players may have very good reasons to believe that the other players are
choosing certain strategies, and so, they choose an optimal strategy based on
these beliefs. There is no reason to expect that the resulting choices will satisfy
the above internal constraint unless one makes strong assumptions about how
the players’ beliefs are related2. The external constraint on solution concepts can
be made more precise by taking a “Bayesian” perspective on game theory [46]: In
a game-theoretic situation, as in any situation of choice, the rational choice for a
player is the one that maximizes expected utility with respect to a (subjective)
probability measure over the other players’ strategy choices. A sophisticated
literature has developed around this simple idea: it focuses on characterizing
solution concepts in terms of what the players know and believe about the other
players’ strategy choices and beliefs (see, for example, [7,22,26,60] and [63] for
a textbook presentation).

In this chapter, I shift the focus from beliefs about the other players’ choices
to the underlying processes that lead (rational) players to adopt certain strate-
gies. An early formulation of this idea can found in John C. Harsanyi’s seminal
paper [42], in which he introduced the tracing procedure to select an equilibrium
in any finite game:

The n players will find the solution s of a giving game G through an
intellectual process of convergent expectations, to be called the solution
process....During this process, they will continually and systematically
modify [their] expectations—until, at the end of this process, their expec-
tations will come to converge on one particular equilibrium point s in
the game G. (original italics) [42, pg. 71]

The goal of the tracing procedure is to identify a unique Nash equilibrium
in any finite strategic game. The idea is to define a continuum of games in
2 For example, one can assume that each player knows which strategies the other

players are going to choose. Robert Aumann and Adam Brandenburger use this
assumption to provide an epistemic characterization of the Nash equilibrium [10].
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such a way that each of the games has a unique Nash equilibrium. The tracing
procedure identifies a path through this space of games ending at a unique Nash
equilibrium in the original game. Harsanyi thought of this procedure as “being a
mathematical formalization of the process by which rational players coordinate
their choices of strategies.”

Harsanyi, in collaboration with Reinhard Selten [43], turned these basic ideas
into a beautiful theory of equilibrium selection. This theory is now part of the
standard education for any game theorist. Nonetheless, it is not at all clear that
this theory of equilibrium selection is best interpreted as a formalization of the
players’ processes of “rational deliberation” in game situations (see [72, pgs. 154–
158] for a discussion of this point). In this chapter, I will critically discuss three
recent frameworks in which the players’ process of “rational deliberation” takes
center stage:

1. Brian Skyrms’ model of “dynamic deliberation,” in which players deliberate
by calculating their expected utility and then use this new information to
recalculate their probabilities about the states of the world and their expected
utilities [72].

2. Robin Cubitt and Robert Sugden’s recent contribution that develops a
“reasoning-based expected utility” procedure for solving games (building on
David Lewis’ “common modes of reasoning”) [31,33].

3. Johan van Benthem et col.’s analysis of solution concepts as fixed-points of
iterated “(virtual) rationality announcements” [3,15,18,20,21].

Although the details of these frameworks are quite different, they share a
common line of thought: In contrast to classical game theory, solution concepts
are no longer the basic object of study. Instead, the “rational solutions” of a
game are arrived at through a process of “rational deliberation”. My goal in this
chapter is to provide a (biased) overview of some key technical and conceptual
issues that arise when developing mathematical models of players deliberating
about what to do in a game situation.

2 Background

I assume that the reader is familiar with the basics of game theory (see [52] and
[2] for concise discussions of the key concepts, definitions and theorems) and
formal models of knowledge and belief (see [19,57] for details). In this section, I
introduce some key definitions in order to fix notation.

2.1 Strategic Games

A strategic game is a tuple 〈N, {Si}i∈N , {ui}i∈N 〉 where N is a (finite) set of
players; for each i ∈ N , Si is a finite set (elements of which are called actions or
strategies); and for each i ∈ N , ui : Πi∈NSi → R is a utility function assigning
real numbers to each outcome of the game (i.e., tuples consisting of the choices for
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each player). Strategic games represent situations in which each player makes
a single decision, and all the players make their decisions simultaneously. If
s ∈ Πi∈NSi is a strategy profile, then write si for the ith component of s and
s−i for the sequence consisting of all components of s except for si (let S−i

denote all such sequences of strategies).
Recall from the introduction that the solution space SG for a game G is the

set of all outcomes of G. Since we identify the outcomes of a game with the set
of strategy profiles, we have SG = Πi∈NSi. This means that a “solution” to a
strategic game is a distinguished set of strategy profiles. In the remainder of this
section, I will define some standard game- and decision-theoretic notions that
will be used throughout this chapter.

Mixed Strategies. Let Δ(X) denote the set of probability measures over the
finite3 set X. A mixed strategy for player i, is an element mi ∈ Δ(Si). If mi ∈
Δ(Si) assigns probability 1 to an element si ∈ Si, then mi is called a pure strat-
egy (in such a case, I write si for mi). Mixed strategies are incorporated into a
game-theoretic analysis as follows. Suppose that G = 〈N, {Si}i∈N , {ui}i∈N 〉 is a
finite strategic game. The mixed extension of G is the strategic game in which
the strategies for player i are the mixed strategies in G (i.e., Δ(Si)), and the util-
ity for player i (denoted Ui) of the joint mixed strategy m ∈ Πi∈NΔ(Si) is calcu-
lated in the obvious way (let m(s) = m1(s1) ·m2(s2) · · · mn(sn) for s ∈ Πi∈NSi):

Ui(m) =
∑

s∈Πi∈NSi

m(s) · ui(s).

Thus, the solution space of a mixed extension of the game G is the set
Πi∈NΔ(Si).

Mixed strategies play an important role in many game-theoretic analyses.
However, the interpretation of mixed strategies is controversial, as Ariel Rubin-
stein notes: “We are reluctant to believe that our decisions are made at random.
We prefer to be able to point to a reason for each action we take. Outside of Las
Vegas we do not spin roulettes” [69, pg. 913]. For the purposes of this chapter, I
will assume that players choose only pure strategies. Mixed strategies do play a
role in Sect. 3, where they describe each players’ beliefs about what they will do
(at the end of deliberation).

Nash Equilibrium. The most well-known and extensively studied solution
concept is the Nash equilibrium. Let G = 〈N, {Si}i∈N , {ui}i∈N 〉 be a finite
strategic game. A mixed strategy profile m = (m1, . . . , mn) ∈ Πi∈NΔ(Si) is a
Nash equilibrium provided for all i ∈ N ,

Ui(m1, . . . , mi, . . . , mn) ≥ Ui(m1, . . . , m
′
i, . . . , mn), for all m′

i ∈ Δ(Si).

This definition is an example of the internal constraint on solutions discussed
in the introduction. Despite its prominence in the game theory literature, the
3 Recall that I am restricting attention to finite strategic games.
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Nash equilibrium faces many foundational problems [68]. For example, there
are theoretical concerns about what the players need to know in order to play
their component of a Nash equilibrium [10,62]; questions about how players
choose among multiple Nash equilibria; and many experiments purporting to
demonstrate game-theoretic situations in which the player’s choices do not form
a Nash equilibrium. Nash equilibrium does not play an important role in this
chapter. I focus, instead, on the outcomes of a game that can be reached through
a process of “rational deliberation”.

Iteratively Removing Strategies. A strategy s ∈ Si strictly dominates
strategy s′ ∈ Si provided that

∀s−i ∈ S−i ui(s, s−i) > ui(s′, s−i).

A strategy s ∈ Si weakly dominates strategy s′ ∈ Si provided that

∀s−i ∈ S−i ui(s, s−i) ≥ ui(s′, s−i) and ∃s−i ∈ S−i ui(s, s−i) > ui(s′, s−i).

More generally, the strategy s strictly/weakly dominates s′ with respect
to a set X ⊆ S−i if S−i is replaced with X in the above definitions4. Suppose
that G = 〈N, {Si}i∈N , {ui}i∈N 〉 and G′ = 〈N, {S′

i}i∈N , {u′
i}i∈N 〉 are strategic

games. The game G′ is a restriction of G provided that for each i ∈ N , S′
i ⊆ Si

and u′
i is the restriction of ui to Πi∈NS′

i. To simplify notation, write Gi for
the set of strategies for player i in game G. Strict and weak dominance can be
used to reduce a strategic game. Write H −→SD H ′ whenever H 
= H ′, H ′ is a
restriction of H and

∀i ∈ N,∀si ∈ Hi \ H ′
i ∃s′

i ∈ Hisi is strictly dominated in H by s′
i

So, if H −→SD H ′, then H ′ is the result of removing some of the strictly domi-
nated strategies from H. We can iterate this process of removing strictly domi-
nated strategies. Formally, H is the result of iteratively removing strictly domi-
nated strategies (IESDS) provided that G −→∗

SD H, where −→∗ is the reflexive
transitive closure5 of a relation −→.

The above definition can be easily adapted to other choice rules, such as weak
dominance. Let −→WD denote the relation between games defined as above
using weak dominance instead of strict dominance6. Furthermore, the above
4 Furthermore, the definitions of strict and weak dominance can be extended so that

strategies may be strictly/weakly dominated by mixed strategies. This is important
for the epistemic analysis of iterative removal of strictly/weakly dominated strate-
gies. However, for my purposes in this chapter, I can stick with the simpler definition
in terms of pure strategies.

5 The reflexive transitive closure of a relation R is the smallest relation R∗ containing
R that is reflexive and transitive.

6 Some interesting issues arise here: It is well-known that, unlike with strict domi-
nance, different orders in which weakly dominated strategies are removed can lead
to different outcomes. Let us set aside these issues in this chapter.
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definition of iterated removal of strictly/weakly dominated strategies can be
readily adapted to the mixed extensions of a strategic game.

There are a number of ways to interpret the iterative process of remov-
ing strategies, defined above. The first is that it is an algorithm that a game
theorist can use to find an equilibrium in a game. The second interpretation
views the successive steps of the removal process as corresponding to the play-
ers’ higher-order beliefs (i.e., player i believes that player j believes that player
i believes that...that player i will not play such-and-such strategy). Finally, the
third interpretation is that the iterative process of removing strategies tracks
the “back-and-forth reasoning” players engage in as they decide what to do in
a game situation (i.e., if player i does not play such-and-such a strategy, then
player j will not play such-and-such a strategy, and so on).

Bayesian Rationality. In this chapter, I am interested not only in solutions to
a game, but also what the players believe about the outcomes of a game. Let G =
〈N, {Si}i∈N , {ui}i∈N 〉 be a strategic game. A probability measure π ∈ Δ(S−i)
is called a conjecture for player i. The expected utility of s ∈ Si for player i
with respect to π ∈ Δ(S−i) is:

EUπ(s) =
∑

σ−i∈S−i

π(σ−i) · ui(s, σ−i).

We say that s ∈ Si maximizes expected utility with respect to π ∈ Δ(S−i),
denoted MEU(s, π), if for all s′ ∈ Si, EUπ(s) ≥ EUπ(s′).

∗ ∗ ∗ ∗ ∗ ∗ ∗
One conclusion to draw from the discussion in this section is that much can

be said about the issues raised in this chapter using standard game-theoretic
notions. Indeed, it is standard for a game theorist to distinguish between the
ex ante and ex interim stages of decision making7. In the former, the players
have not yet decided what strategy they will choose, while, in the latter, the
players know their own choices but not their opponents’. However, the process
by which the players form their beliefs in the ex interim stage is typically not
discussed. The frameworks discussed in the remainder of this chapter are focused
on making this process explicit.

2.2 Game Models

A game model describes a particular play of the game and what the players
think about the other players. That is, a game model represents an “informa-
tional context” of a given play of the game. This includes the “knowledge” the
players have about the game situation and what they think about the other
7 There is also an ex post analysis when all choices are “out in the open,” and the only

remaining uncertainties are about what the other players are thinking.
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players’ choices and beliefs. Researchers interested in the foundations of decision
theory, epistemic and doxastic logic and formal epistemology have developed
many different formal models to describe the variety of informational attitudes
important for assessing decision maker’s choices in a decision- or game-theoretic
situation. See [19] for an overview and pointers to the relevant literature. In this
section, I present the details of a logical framework that can be used to reason
about the informational context of a game.

Syntactic issues do not play an important role in this chapter. Nonetheless,
I will give the definition of truth for a relevant formal language, as it makes
for a smoother transition from the game theory literature to the literature on
dynamic epistemic logic and iterated belief change discussed in Sect. 5.1. Consult
[19,57,58] for a discussion of the standard logical questions about axiomatics,
definability, decidability of the satisfiability problem, and so on.

Epistemic-Plausibility Models. Variants of the models presented in this
section have been studied extensively by logicians [13,17,19], game theorists [23],
philosophers [51,74] and computer scientists [25,48]. The models are intended
to describe what the players know and believe about an outcome of the game.

The first component of an epistemic-plausibility model is a nonempty set W
of states (also called worlds). Each state in a game model will be associated
with an outcome of a game G via a function σ, called the outcome map. So,
for a state w, σ(w) is the element of SG realized at state w. Let σi(w) denote
the ith component of σ(w) (so, σi(w) is the strategy played by i at state w).
The atomic propositions are intended to describe different aspects of the the
outcomes of a game. For example, they could describe the specific action chosen
by a player or the utility assigned to the outcome by a given player. There are
a number of ways to make this precise. Perhaps the simplest is to introduce, for
each player i and strategy a ∈ Si, an atomic proposition playi(a) intended to
mean “player i is playing strategy a.” For a game G = 〈N, {Si}i∈N , {ui}i∈N 〉,
let At(G) = {playi(a) | i ∈ N and a ∈ Si} be the set of atomic propositions for
the game G.

There are two additional components to an epistemic-plausibility model. The
first is a set of equivalence relations ∼i, one for each player. The intended reading
of w ∼i v is that “everything that i knows at w is true at v”. Alternatively, I
will say that “player i does not have enough information to distinguish state w
from state v.”

The second component is a plausibility ordering for each player: a pre-order
(reflexive and transitive) w i v that says “agent i considers world w at least
as plausible as v.” As a convenient notation, for X ⊆ W , set Min�i

(X) =
{v ∈ X | v i w for all w ∈ X}, the set of minimal elements of X according
to i. This is the subset of X that agent i considers the “most plausible”.
Thus, while the ∼i partitions the set of possible worlds according to i’s “hard
information”, the plausibility ordering i represents which of the possible worlds
agent i considers more likely (i.e., it represents i’s “soft information”).
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Putting everything together, the definition of an epistemic-plausibility model
is as follows:

Definition 1. Suppose that G = 〈N, {Si}i∈N , {ui}i∈N 〉 is a strategic game. An
epistemic-plausibility model for G is a tuple M = 〈W, {∼i}i∈A, {i}i∈A, σ〉
where W 
= ∅; for each i ∈ A, ∼i⊆ W × W is an equivalence relation (each ∼i

is reflexive: for each w ∈ W , w ∼i w; transitive: for each w, v, u ∈ W , if w ∼i v
and v ∼i u then w ∼i u; and Euclidean: for each w, v, u ∈ W , if w ∼i v and
w ∼i u, then v ∼i u); for each i ∈ A, i is a well-founded (every non-empty set
of states has a minimal element)8 reflexive and transitive relation on W ; and σ
is an outcome map. In addition, the following two conditions are imposed for all
w, v ∈ W :

1. if w i v then w ∼i v (plausibility implies possibility), and
2. if w ∼i v then either w i v or v i w (locally-connected). �

Models without plausibility relations are called epistemic models.

Remark 1. Note that if w 
∼i v, then, since ∼i is symmetric, I also have v 
∼i w,
and so by property 1, w 
i v and v 
i w. Thus, I have the following equivalence:
w ∼i v iff w i v or v i w. In what follows, unless otherwise stated, I will
assume that ∼i is defined as follows: w ∼i v iff w i v or v i w.

For each strategic game G, let LKB(G) be the set of sentences generated by
the following grammar9:

ϕ := playi(a) | ¬ϕ | ϕ ∧ ψ | Bϕ
i ψ | Kiϕ

where i ∈ N and playi(a) ∈ At(G). The additional propositional connectives
(→,↔,∨) are defined as usual and the dual of Ki, denoted Li, is defined as
follows: Liϕ := ¬Ki¬ϕ. The intended interpretation of Kiϕ is “agent i knows
that ϕ”10. The intended interpretation of Bϕ

i ψ is “agent i believes ψ under the
supposition that ϕ is true”.

Truth for formulas in LKB(G) is defined as usual. Let [w]i be the equivalence
class of w under ∼i. Then, local connectedness implies that i totally orders [w]i,
and well-foundedness implies that Min�i

([w]i ∩ X) is nonempty if [w]i ∩ X 
= ∅.

8 Well-foundedness is only needed to ensure that for any set X, Min�i(X) is nonempty.
This is important only when W is infinite – and there are ways around this in current
logics. Moreover, the condition of connectedness can also be lifted, but I use it here
for convenience.

9 There are other natural modal operators that can. See [57] for an overview and
pointers to the relevant literature.

10 This is the standard interpretation of Kiϕ in the game theory literature. Whether
this captures any of the many different definitions of knowledge found in the episte-
mology literature is debatable. A better reading of Kiϕ is “given all of the available
evidence and everything i has observed, agent i is informed that ϕ is true”.
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Definition 2 (Truth for LKB(G)). Given an epistemic-plausibility model
M = 〈W, {∼i}i∈A, {i}i∈A, σ〉. Truth for formulas from LKB(G) is defined
recursively:

– M, w |= playi(a) iff σi(w) = a
– M, w |= ¬ϕ iff M, w 
|= ϕ
– M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ
– M, w |= Kiϕ iff for all v ∈ W , if w ∼i v then M, v |= ϕ
– M, w |= Bϕ

i ψ iff for all v ∈ Min�i
([w]i ∩ [[ϕ]]M), M, v |= ϕ

Thus, i believes ψ conditional on ϕ, Bϕ
i ψ, if i’s most plausible ϕ-worlds (i.e.,

the states satisfying ϕ that i has not ruled out and considers most plausible) all
satisfy ψ. Full belief is defined as follows: Biϕ := B�ϕ. Then, the definition of
plain belief is:

M, w |= Biϕ iff for each v ∈ Min�i
([w]i),M, v |= ϕ.

I illustrate the above definition with the following coordination game:

Ann

Bob
l r

u 3, 3 0, 0

d 0, 0 1, 1

The epistemic-plausibility model below describes a possible configuration of
ex ante beliefs of the players (i.e., before the players have settled on a strategy):
I draw an i-labeled arrow from v to w if w i v (to keep minimize the clutter,
I do not include all arrows; the remaining arrows can be inferred by reflexivity
and transitivity).

d, r

w1

u, r

w3

d, l

w2

u, l

w4

b

a

b

b

a

aa

a, b

Following the convention discussed in Remark 1, we have [w1]a = [w1]b =
{w1, w2, w3, w4}, and so, neither Ann nor Bob knows how the game will end.
Furthermore, both Ann and Bob believe that they will coordinate with Ann
choosing u and Bob choosing l:

Ba(playa(u) ∧ playb(l)) ∧ Bb(playa(u) ∧ playb(l))
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is true at all states. However, Ann and Bob do have different conditional beliefs.
On the one hand, Ann believes that their choices are independent; thus, she
believes that playb(l) is true even under the supposition that playa(d) is true
(i.e., she continues to believe that Bob will play l even if she decides to play d).
On the other hand, Bob believes that their choices are somehow correlated; thus,
under the supposition that playb(r) is true, Bob believes that Ann will choose
d. Conditional beliefs describe an agent’s disposition to change her beliefs in the
presence of (perhaps surprising) evidence (cf. [49]).

Common Knowledge and Belief. States in an epistemic-plausibility model
not only represent the players’ beliefs about what their opponents will do,
but also their higher-order beliefs about what their opponents are thinking.
Both game theorists and logicians have extensively discussed different notions of
knowledge and belief for a group, such as common knowledge and belief. These
notions have played a fundamental role in the analysis of distributed algorithms
[40] and social interactions [28]. In this section, I briefly recount the standard
definition of common knowledge11.

Consider the statement “Everyone in group X knows that ϕ.” With finitely
many agents, this can be easily defined in the epistemic language LKB :

KXϕ :=
∧

i∈X

Kiϕ,

where X ⊆ N is a finite set. The first nontrivial informational attitude for a
group that I study is common knowledge. If ϕ is common knowledge for the
group G, then not only does everyone in the group know that ϕ is true, but this
fact is completely transparent to all members of the group. Following [6], the
idea is to define common knowledge of ϕ as the following iteration of everyone
knows operators:

ϕ ∧ KNϕ ∧ KNKNϕ ∧ KNKNKNϕ ∧ · · ·
The above formula is an infinite conjunction and, so, is not a formula in our
epistemic language LKB (by definition, there can be, at most, finitely many
conjunctions in any formula). In order to express this, a modal operator CGϕ
with the intended meaning “ϕ is common knowledge among the group G” must
be added to our modal language. Formally:

Definition 3 (Interpretation of CG). Let M = 〈W, {∼i}i∈A, V 〉 be an epis-
temic model12 and w ∈ W . The truth of formulas of the form CXϕ is:

M, w |= CXϕ iff for all v ∈ W, if wRC
Xv then M, v |= ϕ

where RC
X := (

⋃
i∈X ∼i)∗ is the reflexive transitive closure of

⋃
i∈X ∼i.

11 I assume that the formal definition of common knowledge is well-known to the reader.
For more information and pointers to the relevant literature, see [34,36,57,76].

12 The same definition will, of course, hold for epistemic-plausibility and epistemic-
probability models.
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It is well-known that for any relation R on W , if wR∗v then there is a finite
R-path starting at w ending in v. Thus, M, w |= CXϕ iff every finite path for
X from w ends with a state satisfying ϕ.

This approach to defining common knowledge can be viewed as a recipe
for defining common (robust) belief. For example, suppose that wRB

i v iff v ∈
Min�i

([w]i), and define RB
G to be the transitive closure13 of ∪i∈GRB

i . Then,
common belief of ϕ, denoted CB

Gϕ, is defined in the usual way:

M, w |= CB
Gϕ iff for each v ∈ W, if wRB

Gv then M, v |= ϕ.

A probabilistic variant of common belief was introduced in [55].

3 Reasoning to an Equilibrium

Brian Skyrms presents a model of the players’ process of deliberation in a game in
his important book The Dynamics of Rational Deliberation [72]. In this section,
I introduce and discuss this model of deliberation, though the reader is referred
to [72] for a full discussion (see, also, [1,45] for analyses of this model).

To simplify the exposition, I restrict attention to a two-person finite
strategic game. Everything discussed below can be extended to situations
with more than two players14 and to extensive games15. Suppose that G =
〈{a, b}, {Sa, Sb}, {ua, ub}〉 is a strategic game in which Sa = {s1, . . . , sn} and
Sb = {t1, . . . , tm} are the players’ strategies, and ua and ub are utility functions.
In the simplest case, deliberation is trivial: Each player calculates the expected
utility given her belief about what her opponent is going to do and then chooses
the action that maximizes these expected utilities. One of Skyrms’ key insights
is that this calculation may be informative to the players, and if a player believes
that there is any possibility that the process of deliberation may ultimately lead
her to a different decision, then she will not act until her deliberation process
has reached a stable state16.

Deliberation is understood as an iterative process that modifies the players’
opinions about the strategies that they will choose (at the end of the delib-
eration). For each player, a state of indecision is a probability measure on
that player’s set of strategies—i.e., an element of Δ(Si) for i = a, b. Note that
each state of indecision is a mixed strategy. However, the interpretation of the
mixed strategies differs from the one discussed in Sect. 2.1. In this model, the
interpretation is that the state of indecision for a player i at any given stage
of the deliberation process is the mixed strategy that player i would choose if
the player stopped deliberating. It is the players’ states of indecision that evolve
during the deliberation process.
13 Since beliefs need not be factive, I do not force RB

G to be reflexive.
14 However, see [1] for interesting new issues that arise with more than two players.
15 See [72], pgs. 44 – 52 and Chap. 5.
16 See [72], Chap. 4.
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Let pa ∈ Δ(Sa) and pb ∈ Δ(Sb) be states of indecision for a and b, respec-
tively, and assume that the states of indecision are common knowledge. One
consequence of this assumption is that the players can calculate the expected
utilities of their strategies (using their opponent’s state of indecision). For exam-
ple, for sj ∈ Sa, we have

EUa(sj) =
∑

tk∈Sb

pb(tk)ui(sj , tk),

and similarly for b. The status quo is the expected utility of the current state
of indecision:

SQa =
∑

sj∈Sa

pa(sj) · EUa(sj) SQb =
∑

tk∈Sb

pb(tk) · EUb(tk).

Once the expected utilities are calculated, the players modify their states of
indecision so that they believe more strongly that they will choose strategies
with higher expected utility than the status quo. Players can use various rules
to update their states of indecision accordingly. In general, any dynamical rule
can be used so long as the rule seeks the good in the following sense:

1. The rule raises the probability of a strategy only if that strategy has expected
utility greater than the status quo.

2. The rule raises the sum of the probabilities of all strategies with expected
utility greater than the status quo (if any).

Deliberation reaches a fixed-point when the dynamical rule no longer changes
the state of indecision. It is not hard to see that all dynamical rules that seek
the good have, as fixed-points, states of indecision in which the expected utility
of the status quo is maximal. To illustrate Skyrms’ model of deliberation with
an example, I give the details of one of the rules discussed in [72]:

Nash dynamics. The covetability of a strategy s for player i is calculated as
follows: covi(s) = max(EUi(s) − SQi, 0). Then, Nash dynamics transform a
probability p ∈ Δ(Si) into a new probability p′ ∈ Δ(Si) as follows. For each
s ∈ Si:

p′(s) =
k · p(s) + covi(s)
k +

∑
s∈Si

cov(s)
,

where k > 0 is the “index of caution” (the higher the k, the more slowly the
decision maker raises the probability of strategies that have higher expected
utility than the status quo).

In addition to assuming that the initial states of indecision are common
knowledge, it is assumed that each player can emulate the other’s calculations,
and that each player is, in fact, using the same dynamical rule to modify her
state of indecision. Given that all of this is common knowledge, the states of
indecision resulting from one round of the deliberation process will, again, be
common knowledge and the process can continue until a fixed-point is reached.
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A simple example will make this more concrete. Consider the following game
between two players, Ann (a) and Bob (b)17.

Ann

Bob
l r

u 2, 1 0, 0

d 0, 0 1, 2

There are two pure Nash equilibria ((u, l) and (d, r)) and one mixed-strategy
Nash equilibrium where Ann plays u with probability 2/3 and Bob plays l with
probability 1/3. Suppose that the initial state of indecision is:

pa(u) = 0.2, pa(d) = 0.8 and pb(l) = 0.9, pb(r) = 0.1.

Since both players have access to each other’s state of indecision, they can cal-
culate the expected utilities of each of their strategies:

EUa(u) = 2 · 0.9 + 0 · 0.1 = 1.8
EUa(d) = 0 · 0.9 + 1 · 0.1 = 0.1
EUb(l) = 1 · 0.2 + 0 · 0.8 = 0.2
EUb(r) = 0 · 0.2 + 2 · 0.8 = 1.6

If the players simply choose the strategy that maximizes their expected utilities,
then the outcome of the interaction will be the off-equilibrium profile (u, r).
However, the process of deliberation will pull the players towards an equilibrium.
The status quo for each player is:

SQa = 0.2 · EUa(u) + 0.8 · EUa(d) = 0.2 · 1.8 + 0.8 · 0.1 = 0.44
SQb = 0.4 · EUb(l) + 0.6 · EUb(r) = 0.9 · 0.2 + 0.1 · 1.6 = 0.34

The covetabilities for each of the strategies are:

cova(u) = max(1.8 − 0.44, 0) = 1.36
cova(d) = max(0.34 − 0.44, 0) = 0
covb(l) = max(0.2 − 0.34, 0) = 0
covb(r) = max(1.6 − 0.34, 0) = 1.26

Now, the new states of indecision p′
a and p′

b are calculated using Nash dynamics
(for simplicity, I assume that the index of caution is k = 1):

17 This game is called the “Battle of the Sexes”. The underlying story is that Ann
and Bob are married and are deciding where to go for dinner. Ann would rather eat
Indian food than French food, whereas Bob prefers French food to Indian food. They
both prefer to eat together rather than separately. The outcome (u, l) is that they
go to an Indian restaurant together; (d, r) is the outcome that they go to a French
restaurant together; and (u, r) and (d, l) are outcomes where they go to different
restaurants.
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p′
a(u) = pA(u)+cova(u)

1+(cova(u)+cova(d))
= 0.2+1.36

1+1.36 = 0.221183800623

p′
a(d) = pa(d)+cova(d)

1+(cova(u)+cova(d))
= 0.8+0

1+1.36 = 0.778816199377

p′
b(l) = pb(l)+covb(l)

1+(covb(l)+covb(r))
= 0.9+0

1+1.26 = 0.87787748732

p′
b(r) = pb(r)+covb(r)

1+(covb(l)+covb(r))
= 0.1+1.26

1+1.26 = 0.12212251268

The new states of indecision are now p′
a and p′

b, and we can continue this process.
On can visualize this process by the following graph, in which the x-axis is the
probability that Bob will choose r and the y-axis is the probability that Ann
will choose u18.

The deliberation reaches a fixed-point with Ann and Bob deciding to play their
part of the Nash equilibrium (u, l). In fact, Skyrms shows that under the strong
assumptions of common knowledge noted above and assuming that all players
use dynamical rules that seek the good, when the process of deliberation reaches
a fixed-point, the states of indecision will form a Nash equilibrium19.

4 Strategic Reasoning as a Solution Concept

A key aspect of the iterative removal of dominated strategies is that at each stage
of the process, strategies are identified as either “good” or “bad”. The “good”
strategies are those that are not strictly/weakly dominated, while the “bad” ones
are weakly/strictly dominated. If the intended interpretation of the iterative
procedure that removes weakly/strictly dominated strategies is to represent the
players “deliberation” about what they are going to do, then this is a significant
assumption. The point is that while a player is deliberating about what to do in a
18 This graph was produced by a python program with an index of caution k = 25

and a satisficing value of 0.01. A satisficing value of 0.01 means that the process
stops when the covetabilities fall below 0.01. Contact the author for the code for
this simulation.

19 The outcome may end in a mixed-strategy Nash equilibrium.
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game situation, there may be strategies that cannot yet be classified as “good” or
“bad”. These are the strategies that the player needs to think about more before
deciding how to classify them. Building on this intuition, the reasoning-based
expected utility procedure of [32] is intended to model the reasoning procedure
that a Bayesian rational player would follow as she decides what to do in a game.

At each stage of the procedure, strategies are categorized. A categoriza-
tion is a ternary partition of the players’ strategies Si, rather than the usual
binary partition in terms of which strategies are strictly/weakly dominated and
which are not. The key idea is that during the reasoning process, strategies
are accumulated, deleted or neither. Formally, for each player i, let S+

i ⊆ Si

denote the set of strategies that have been accumulated and S−
i ⊆ Si the set of

strategies that have been deleted. The innovative aspect of this procedure is that
S+

i ∪ S−
i need not equal Si. So, strategies in Si but not in S+

i ∪ S−
i are classi-

fied as “neither accumulated nor deleted”. The reasoning-based expected utility
procedure proceeds as follows: The procedure is defined by induction. Initially,
let Di,0 = Δ(S−i), the set of all probability measures over the strategies of i’s
opponents, and let S+

i,0 = S−
i,0 = ∅. Then, for n ≥ 0, we have:

– Accumulate all strategies for player i that maximize expected utility for every
probability in Di. Formally,

S+
i,n+1 = {si ∈ Si,n | MEU(si, π) for all π ∈ Di,n}.

– Delete all strategies for player i that do not maximize probability against any
probability distribution

S−
i,n+1{si ∈ Si,n | there is no π ∈ Di,n such that MEU(si, π)}.

– Keep all probability measures that assign positive probability to opponents
playing accumulated strategies and zero probability to deleted strategies. For-
mally, let Di,n+1 be all the probability measures from Di,n that assign positive
probability to any strategy profile from Πj �=iS

+
i,n+1 and 0 probability to any

strategy profile from Πj �=iS
−
i,n+1.

The following example from [32] illustrates this procedure:

Ann

Bob
l r

u 1, 1 1, 1

m1 0, 0 1, 0

m2 2, 0 0, 0

d 0, 2 0, 0

For Bob, strategy l is accumulated since it maximizes expected utility with
respect to every probability on Ann’s strategies (note that l weakly dominates r).
For Ann, d is deleted, as it does not maximize probability with respect to any
probability measure on Bob’s strategies (note that d is strictly dominated by u).
Thus, we have
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S+
a,1 = ∅

S−
a,1 = {d}

S+
b,1 = {l}

S−
b,1 = ∅

In the next round, Ann must consider only probability measures that assign
positive probability to Bob playing l, and Bob must consider only probability
measures assigning probability 0 to Ann playing d. This means that r is accu-
mulated for Bob20 and m1 is deleted21 for Ann:

S+
a,2 = ∅

S−
a,2 = {b,m1}

S+
b,2 = {l, r}

S−
b,2 = ∅

At this point, the procedure reaches a fixed-point with Bob accumulating
l and r and Ann deleting d and m1. The interpretation is that Bob has good
reason to play either l or r and, thus, must pick one of them. All that Ann was
able to conclude is that d and m1 are not good choices.

The general message is that players may not be able to identify a unique
rational strategy by strategic reasoning alone (as represented by the iterative
procedure given above). There are two reasons why this may happen. First, a
player may accumulate more than one strategy, and so the player must “pick”22

one of them. This is what happened with Bob. Given the observation that Ann
will not choose b, both of the choices l and r give the same payoff, and so Bob
must pick one of them23. Second, players may not have enough information to
identify the “rational” choices. Without any information about which of l or r
Bob will pick, Ann cannot come to a conclusion about which of u or m2 she
should choose. Thus, neither of these strategies can be accumulated. Ann and
Bob face very different decision problems. No matter which choice Bob ends up
picking, his choice will be rational (given his belief that Ann will not choose
irrationally). However, since Ann lacks a probability over how Bob will pick, she
cannot identify a rational choice.

5 Reasoning to a Game Model

The game models introduced in Sect. 2.2 can be used to describe the infor-
mational context of a game. A natural question from the perspective of this
20 If Bob assigns probability 0 to Ann playing d, then the strategies l and r give exactly

the same payoffs.
21 The only probability measures such that m1 maximizes expected utility are the ones

that assign probability 1 to Bob playing r.
22 See [56] for an interesting discussion of “picking” and “choosing” in decision theory.
23 Of course, Bob may think it is possible that Ann is irrational, and so she could

choose the strictly dominated strategy d. Then, depending on how likely Bob thinks
it is that Ann will choose irrationally, l may be the only rational choice for him. In
this chapter, we set aside such considerations.
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chapter is: How do the players arrive at a particular informational context? In
this section, I introduce different operations that transform epistemic-plausibility
models. These operations are intended to represent different ways a rational
agent’s knowledge and beliefs can change over time. Then, I show how to use
these operations to describe how the players’ knowledge and beliefs change as
they each deliberate about what they are going to do in a game situation.

5.1 Modeling Information Changes

The simplest type of informational change treats the source of the information as
infallible. The effect of finding out from an infallible source that ϕ is true should
be clear: Remove all states that do not satisfy ϕ. In the epistemic logic literature,
this operation is called a public announcement [37,65]. However, calling this an
“announcement” is misleading since, in this chapter, I am not modeling any
form of “pre-play” communication. The “announcements” are formulas that the
players incorporate into the current epistemic state.

Definition 4 (Public Announcement). Suppose that M = 〈W, {∼i}i∈A, V 〉
is an epistemic model and ϕ is a formula (in the language LK). After all the
agents find out that ϕ is true (i.e., ϕ is publicly announced), the resulting
model is M!ϕ = 〈W !ϕ, {∼!ϕ

i }, V !ϕ〉, where W !ϕ = {w ∈ W | M, w |= ϕ}; ∼!ϕ
i =∼i

∩ W !ϕ × W !ϕ for all i ∈ A; and σ!ϕ is the restriction of σ to W !ϕ.

The models M and Mϕ describe two different moments in time, with M describ-
ing the current or initial information state of the agents and M!ϕ the information
state after all the agents find out that ϕ is true. This temporal dimension can
also be represented in the logical language with modalities of the form [!ϕ]ψ.
The intended interpretation of [!ϕ]ψ is “ψ is true after all the agents find out
that ϕ is true”, and truth is defined as

– M, w |= [!ϕ]ψ iff [if M, w |= ϕ then M!ϕ, w |= ψ].

A public announcement is only one type of informative action. For the other
transformations discussed in this chapter, while the agents do trust the source of
ϕ, they do not treat it as infallible. Perhaps the most ubiquitous policy is con-
servative upgrade (↑ϕ), which lets the agent only tentatively accept the incoming
information ϕ by making the best ϕ-worlds the new minimal set and keeping
the old plausibility ordering the same on all other worlds. A second operation
is radical upgrade (⇑ϕ), which moves all the ϕ worlds before all the ¬ϕ worlds
and otherwise keeps the plausibility ordering the same. Before giving the formal
definition, we need some notation: Given an epistemic-plausibility model M, let
[[ϕ]]wi = {x | M, x |= ϕ} ∩ [w]i denote the set of all ϕ-worlds that i considers
possible at state w and besti(ϕ,w) = Min�i

([[ϕ]]wi ) be the best ϕ-worlds at state
w, according to agent i.

Definition 5 (Conservative and Radical Upgrade). Given an epistemic-
plausibility model M = 〈W, {∼i}i∈A, {i}i∈A, σ〉 and a formula ϕ ∈ LKB, the
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conservative/radical upgrade of M with ϕ is the model M∗ϕ = 〈W ∗ϕ, {∼∗ϕ
i

}i∈N , {∗ϕ
i }i∈N , V ∗ϕ〉 10:44 AM 9/11/2015 with W ∗ϕ = W , for each i,

∼∗ϕ
i =∼i, V ∗ϕ = V where ∗ =↑,⇑. The relations ↑ϕ

i and ⇑ϕ
i are the smallest

relations satisfying:

Conservative Upgrade

1. If v ∈ besti(ϕ,w) then v ≺↑ϕ
i x for all x ∈ [w]i; and

2. for all x, y ∈ [w]i − besti(ϕ,w), x ↑ϕ
i y iff x i y.

Radical Upgrade

1. for all x ∈ [[ϕ]]wi and y ∈ [[¬ϕ]]wi , set x ≺⇑ϕ
i y;

2. for all x, y ∈ [[ϕ]]wi , set x ⇑ϕ
i y iff x i y; and

3. for all x, y ∈ [[¬ϕ]]wi , set x ⇑ϕ
i y iff x i y. �

As the reader is invited to check, a conservative upgrade is a special case of
a radical upgrade: the conservative upgrade of ϕ at w is the radical upgrade of
besti(ϕ,w). A logical analysis of these operations includes formulas of the form
[↑ϕ]ψ intended to mean “after everyone conservatively upgrades with ϕ, ψ is
true” and [⇑ϕ]ψ intended to mean “after everyone radically upgrades with ϕ, ψ
is true”. The definition of truth for these formula is as expected:

– M, w |= [↑ϕ]ψ iff M↑ϕ, w |= ψ
– M, w |= [⇑ϕ]ψ iff M⇑ϕ, w |= ψ

The main issue of interest in this chapter is the limit behavior of iterated
sequences of announcements. That is, what happens to the epistemic-plausibility
models in the limit? Do the players’ knowledge and beliefs stabilize or keep
changing in response to the new information?

An initial observation is that iterated public announcement of any formula
ϕ in an epistemic-plausibility model must stop at a limit model where either
ϕ or its negation is true at all states (see [14] for a discussion and proof). In
addition to the limit dynamics of knowledge under public announcements, there
is the limit behavior of beliefs under soft announcements (radical/conservative
upgrades). See [14] and [21, Sect. 4] for general discussions. I conclude this brief
introduction to dynamic logics of knowledge and beliefs with an example of the
type of dynamics that can arise.

Let M1 be an initial epistemic-plausibility model (for a single agent) with
three states w1, w2 and w3 satisfying r, q and p, respectively. Suppose that the
agent’s plausibility ordering is w1 ≺ w2 ≺ w3. Then, the agent believes that r.
Consider the formula

ϕ := (r ∨ (B¬rq ∧ p) ∨ (B¬rp ∧ q)).

This is true at w1 in the initial model. Since [[ϕ]]M1 = {w3, w1}, we have M⇑ϕ
1 =

M2. Furthermore, [[ϕ]]M2 = {w2, w1}, so M⇑ϕ
2 = M3. Since M3 is the same

model as M1, we have a cycle:
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M

rw1

qw2

pw3

M1

⇑ϕ
=⇒

rw1

pw3

qw2

M2

⇑ϕ
=⇒

rw1

qw2

pw3

M3

⇑ϕ
=⇒ · · ·

In the above example, the player’s conditional beliefs keep changing during
the update process. However, the player’s non-conditional beliefs remain fixed
throughout the process. In fact, Baltag and Smets have shown that every iterated
sequence of truthful radical upgrades stabilizes all non-conditional beliefs in the
limit [14]. See [12,38,58] for generalizations and broader discussions about the
issues raised in this section.

5.2 Rational Belief Change During Deliberation

This section looks at the operations that transform the informational context
of a game as the players deliberate about what they should do in a game situa-
tion. The main idea is that in each informational context (viewed as describing
one stage of the deliberation process), the players determine which options are
“optimal” and which options the players ought to avoid (guided by some choice
rule). This leads to a transformation of the informational context as the players
adopt the relevant beliefs about the outcome of their practical reasoning. The
different types of transformation mentioned above then represent how confident
the player(s) (or modeler) is (are) in their assessment of which outcomes are
rational. In this new informational context, the players again think about what
they should do, leading to another transformation. The main question is: Does
this process stabilize?

The answer to this question will depend on a number of factors. The general
picture is

M0
τ(D0)=⇒ M1

τ(D1)=⇒ M2
τ(D2)=⇒ · · · τ(Dn)=⇒ Mn+1=⇒· · ·

where each Di is some proposition describing the “rational” options and τ is a
model transformer (e.g., public announcement, radical or conservative upgrade).
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Two questions are important for the analysis of this process. First, what type
of transformations are the players using? Second, where do the propositions Di

come from?
Here is a baseline result from [18]. Consider a propositional formula Rati

that is intended to mean “i’s current action is not strictly dominated in the set
of actions that the agent currently considers possible”. This is a propositional
formula whose valuation changes as the model changes (i.e., as the agent removes
possible outcomes that are strictly dominated). An epistemic model is full for a
game G provided the map σ from states to profiles is onto. That is, all outcomes
are initially possible.

Theorem 1 (van Benthem [18]). The following are equivalent for all states
w in an epistemic model that is full for a finite game G:

1. The outcome σ(w) survives iterated removal of strictly dominated strategies.
2. Repeated successive public announcements of

∧
i Rati for the players sta-

bilize at a submodel whose domain contains w.

This theorem gives a precise sense of how the process of iteratively removing
strictly dominated strategies can be viewed as a process of deliberation (cf.
the discussion in Sect. 2.1). See [4] for a generalization of this theorem focusing
on arbitrary “optimality” propositions satisfying a monotonicity property and
arbitrary games. A related analysis can be found in [59], which provides an
in-depth study of the upgrade mechanisms that match game-theoretic analyses.

5.3 Rational Belief Change During Game Play

The importance of explicitly modeling belief change over time becomes even more
evident when considering extensive games. An extensive game makes explicit the
sequential structure of the choices in a game. Formally, an extensive game is a
tuple 〈N,T, τ, {ui}i∈N 〉, where

– N is a finite set of players;
– T is a tree describing the temporal structure of the game situation: Formally,

T consists of a set of nodes and an immediate successor relation �. Let O
denote the set of leaves (nodes without any successors) and V the remaining
nodes. The edges at a decision node v ∈ V are each labeled with an action.
Let A(v) denote the set of actions available at v. Let � be the transitive
closure of �.

– τ is a turn function assigning a player to each node v ∈ V (let Vi = {v ∈
V | τ(v) = i}.

– ui : O → R is the utility function for player i assigning real numbers to
outcome nodes.



Dynamic Models of Rational Deliberation in Games 23

The following is an example of an extensive game:

1
v1

2
v2

1
v3

1, 1
o1

0, 3
o2

5, 2
o3

4, 4
o4

I1 I2 I3

O
1

O
2

O
3

This is an extensive game with V = {v1, v2, v3}, O = {o1, o2, o3, o4}, τ(v1) =
τ(v3) = 1 and τ(v2) = 2, and, for example, u1(o2) = 0 and u2(o2) = 3. Further-
more, we have, for example, v1 � o1, v1 � o4, and A(v1) = {I1, O1}.

A strategy for player i in an extensive game is a function σ from Vi to
nodes such that v �→ σ(v). Thus, a strategy prescribes a move for player i at
every possible node where i moves. For example, the function σ with σ(v1) = O1

and σ(v3) = I3 is a strategy for player i, even though, by following the strategy, i
knows that v3 will not be reached. The main solution concept for extensive games
is the subgame perfect equilibrium [71], which is calculated using the “backward
induction (BI) algorithm”:

BI Algorithm: At terminal nodes, players already have the nodes marked with
their utilities. At a non-terminal node n, once all daughters are marked, the
node is marked as follows: determine whose turn it is to move at n and find the
daughter d that has the highest utility for that player. Copy the utilities from d
onto n.

In the extensive game given above, the BI algorithm leads to the following mark-
ings:

1

1, 1
v1

2

0, 3
v2

1

5, 2
v3

1, 1
o1

0, 3
o2

5, 2
o3

4, 4
o4

I1 I2 I3

O
1

O
2

O
3

The BI strategy for player 1 is σ(v1) = O1, σ(v3) = O3 and for player 2 it is
σ(v2) = O2. If both players follow their BI strategy, then the resulting outcome
is o1 (v1 �→ o1 is called the BI path).

Much has been written about backward induction and whether it follows from
the assumption that there is common knowledge (or common belief) that all
players are rational24. In the remainder of this section, I explain how epistemic-
plausibility models and the model transformations defined above can make this
24 The key papers include [8,9,16,39,75]. See [61] for a complete survey of the literature.
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more precise. The first step is to describe what the players believe about the
strategies followed in an extensive game and how these beliefs may change during
the play of the game. I sidestep a number of delicate issues in the discussion below
(see [24] for a clear exposition). My focus is on the players’ beliefs about which
outcome of the game (i.e., the terminal nodes) will be realized.

Suppose that a, a′ ∈ A(v) for some v ∈ Vi. We say move a strictly domi-
nates move a′ in beliefs (given some epistemic-plausibility model), provided
that all of the most plausible outcomes reachable by playing a at v are pre-
ferred to all the most plausible outcomes reachable by playing a′. Consider an
initial epistemic-plausibility model in which the states are the four outcomes
{o1, o2, o3, o4}, and both players consider all outcomes equally plausible (I write
w ≈ v if w and v are equally plausible—i.e., w � v and v � w). Then, at v2, O2

is not strictly dominated over I2 in beliefs since the nodes reachable by I2 are
{o3, o4}, both are equally plausible, and player 2 prefers o4 over o2, but o2 over
o3. However, since player 1 prefers o3 to o4, O3 strictly dominates I3 in beliefs.
Suppose that R is interpreted as “no player chooses an action that is strictly
dominated in beliefs”. Thus, in the initial model, in which all four outcomes are
equally plausible, the interpretation of R is {o1, o2, o3}. We can now ask what
happens to the initial model if this formula R is iteratively updated (for example,
using radical upgrade).

o1 ≈ o2 ≈ o3 ≈ o4 o1 ≈ o2 ≈ o3 ≺ o4 o1 ≈ o2 ≺ o3 ≺ o4

o1 ≺ o2 ≺ o3 ≺ o4

⇑R=⇒ ⇑R=⇒
⇑R⇐=

This sequence of radical upgrades is intended to represent the “pre-play” delib-
eration leading to a model in which there is common belief that the outcome of
the game will be o1. But, what justifies both players deliberating in this way to
a common epistemic-plausibility model?

The correctness of the deliberation sequence is derived from the assump-
tion that there is common knowledge that the players are “rational” (in the
sense, that players will not knowingly choose an option that will give them lower
payoffs). But there is a potential problem: Under common knowledge that the
players are rational (i.e., make the optimal choice when given the chance), player
1 must choose O1 at node v1. The backward induction argument for this is based
on what the players would do if player 1 chose I1. But, if player 1 did, in fact,
choose I1, then common knowledge of rationality is violated (player 1’s choice
would be “irrational”). Thus, it seems that common knowledge of rationality,
alone, cannot be used to show that the players will make choices consistent with
the backward induction path. An additional assumption about how the players’
beliefs may change during the course of the game is needed. The underlying
assumption is that the players are assumed to be unwaveringly optimistic: No
matter what is observed, players maintain the belief that everyone is rational at
future nodes.

There are many ways to formalize the above intuition that players are “unwa-
veringly optimistic”. I briefly discuss the approach from [15] since it touches on
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a number of issues raised in this chapter. The key idea is to encode the players’
strategies as conditional beliefs in an epistemic-plausibility model. For example,
consider the following epistemic-plausibility model on the four outcomes of the
above extensive game:

o4

w1

o2

w3

o3

w2

o1

w4

2

1

2

2

1

11

12

It is assumed that there are atomic propositions for each possible outcome.
Formally, suppose that there is an atomic proposition oi for each outcome oi

(assume that oi is true only at state oi). The non-terminal nodes v ∈ V are then
identified with the set of outcomes reachable from that node:

v :=
∨

v�o

o.

In the above model, both players 1 and 2 believe that o1 is the outcome that
will be realized, and the players initially rule out none of the possible outcomes.
That is, the model satisfies the “open future” assumption of [15] (none of the
players have “hard” information that an outcome is ruled out). The fact that
player 1 is committed to the BI strategy is encoded in the conditional beliefs
of the player: both Bv1

1 o1 and Bv3
1 o3 are true in the above model. For player 2,

Bv2
2 (o3 ∨ o4) is true in the above model, which implies that player 2 plans to

choose action I2 at node v2.
The dynamics of actual play is then modeled as a sequence of public

announcements (cf. Definition 4). The players’ beliefs change as they learn (irrev-
ocably) which of the nodes in the game are reached. This process produces a
sequence of epistemic-plausibility models. For example, a possible sequence of
the above game starting with the initial model M given above is:

M = M!v1 ;M!v2 ;M!v3 ;M!o4

The assumption that the players are “incurably optimistic” is represented as
follows: No matter what true formula is publicly announced (i.e., no matter how
the game proceeds), there is common belief that the players will make a rational
choice (when it is their turn to move). Formally, this requires introducing an
arbitrary public announcement operator [11]: M, w |= [ ! ]ϕ provided that, for
all formulas25 ψ, if M, w |= ψ then M, w |= [!ψ]ϕ. Then, there is common stable
25 Strictly speaking, it is all epistemic formulas. The important point is to not include

formulas with the [ ! ] operator in them.
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belief in ϕ provided that [ ! ]CBϕ is true, where CBϕ is intended to mean that
there is common belief in ϕ (cf. Sect. 2.2). The key result is:

Theorem 2 (Baltag, Smets and Zvesper [15]). Common knowledge of the
game structure, and of open future and common stable belief in dynamic ratio-
nality, together, imply common belief in the backward induction outcome.

6 Concluding Remarks

This chapter has not focused on strategies per se, but, rather, on the process of
“rational deliberation” that leads players to adopt a particular “plan of action”.
Developing formal models of this process is an important and rich area of research
for anyone interested in the foundations of game theory.

The economist’s predilection for equilibria frequently arises from the
belief that some underlying dynamic process (often suppressed in formal
models) moves a system to a point from which it moves no further.
fdsasdf [22, pg. 1008]

Many readers may have been expecting a formal account of the players’
practical reasoning in game-theoretic situations. Instead, this chapter presented
three different frameworks in which the “underlying dynamic process” men-
tioned in the above quote is made explicit. None of the frameworks discussed
in this chapter are intended to model the players’ practical reasoning. Rather,
they describe deliberation in terms of a sequence of belief changes about what
the players are doing or what their opponents may be thinking. This raises an
important question: In what sense do the frameworks introduced in this chapter
describe the players’ strategic reasoning? I will not attempt a complete answer
to this question here. Instead, I conclude with brief discussions of two related
questions.

6.1 What Are the Differences and Similarities Between the
Different Models of Strategic Reasoning?

The three frameworks presented in this paper offer different perspectives on the
standard game-theoretic analysis of strategic situations. To compare and con-
trast these different formal frameworks, I will illustrate the different perspectives
on the following game from [70, Example 8, pg. 305]:

Ann

Bob
l r

u 1, 1 1, 0

d 1, 0 0, 1
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In the above game, d is weakly dominated by u for Ann. If Bob knows that
Ann is rational (in the sense that she will not choose a weakly dominated strat-
egy), then he can rule out option d. In the smaller game, action r is now strictly
dominated by l for Bob. If Ann knows that Bob is rational and that Bob knows
that she is rational (and so, rules out option d), then she can rule out option r.
Assuming that the above reasoning is transparent to both Ann and Bob, it is
common knowledge that Ann will play u and Bob will play l. But now, what is
the reason for Bob to rule out the possibility that Ann will play d? He knows
that Ann knows that he is going to play l, and both u and d maximize Ann’s
expected utility with respect to the belief that Bob will play l.

Many authors have pointed out puzzles surrounding an epistemic analysis
of iterated removal of weakly dominated strategies [5,27,70]. The central issue
is that the assumption of common knowledge of rationality seems to conflict
with the logic of iteratively removing weakly dominated strategies. The models
introduced in this paper each provide a unique perspective on this issue. Note
that the idea is not to provide a new “epistemic foundation” for iterated removal
of weakly dominated strategies. Both [27] and [41] have convincing results here.
Rather, the goal is to offer a different perspective on the existing epistemic
analyses.

I start with Skyrms’ model of rational deliberation from Sect. 3. There are
two Nash equilibria: the pure strategy Nash equilibrium (u, l) and the mixed
Nash equilibrium, where Ann plays u and d each with probability 0.5 and Bob
plays strategy l. Rational deliberation with any dynamical rule that “seeks the
good” (such as the Nash dynamics) is guaranteed to lead the players to one of the
two equilibria. However, there is an important difference between the two Nash
equilibria from the point of view of rational deliberators. Through deliberation,
the players will almost always end up at the pure-strategy equilibrium. That
is, unless the players start deliberating at the mixed-strategy Nash equilibrium,
deliberation will lead the players to the pure-strategy equilibrium. This makes
sense since playing u will always give a greater expected utility for Ann than
any mixed strategy, as long as there is a chance (no matter how small) that Bob
will play r. I can illustrate this point by showing the deliberational path that
is generated if the players start from the following states of indecision: (1) Ann
is playing d with probability 1 and Bob is playing l with probability 1; (2) Ann
is playing u and l with probability 0.5 and Bob is playing l with probability
0.95; and (3) Ann is playing u with probability 0.5 and Bob is playing r with
probability 0.526.
26 These graphs were generated by a python program using a satisficing value of 0.001

and an index of caution of 50. The reason that the simulations stopped before reach-
ing the pure Nash equilibrium is because the simulation is designed so that deliber-
ation ends when the covetabilities fall below the satisficing value.
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The second perspective comes from the reasoning-based expected utility pro-
cedure discussed in Sect. 4. For Ann, u is accumulated in the first round since
it maximizes expected utility with respect to all probability measures on Bob’s
strategies. No other strategies are deleted or accumulated. Thus, the procedure
stabilizes in the second round without categorizing any of Bob’s strategies or
Ann’s strategy d. So, u is identified as a “good” strategy, but d is not classified
as a “bad” strategy. Furthermore, neither of Bob’s strategies can be classified as
“good” or “bad”.

Finally, I turn to the approach outlined in Sect. 5. An analysis of this game is
discussed in [59]. In that paper, it is shown that certain deliberational sequences
for the above game do not stabilize. Of course, whether a deliberational sequence
stabilizes depends crucially on which model transformations are used. Indeed, a
new model transformation, “suspend judgement”, is used in [59] to construct a
deliberational sequence that does not stabilize. The general conclusion is that
the players may not be able to deliberate their way to an informational context
in which there is common knowledge of rationality (where rationality includes
the assumption that players do not play weakly dominated strategies).

Each of the different frameworks offers a different perspective on strategic
reasoning in games. The perspectives are not competing; rather, they highlight
different aspects of what it means to reason strategically. However, more work
is needed to precisely characterize the similarities and differences between these
different models of rational deliberation in games. Such a comprehensive com-
parison will be left for another paper.

6.2 What Role Do Higher-Order Beliefs Play in a General Theory
of Rational Decision Making in Game Situations?

Each model of deliberation discussed in this chapter either implicitly or explicitly
made assumptions about the players’ higher-order beliefs (see Sect. 2.2). In the
end, I am interested only in what (rational) players are going to do. This, in
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turn, depends only on what the players believe the other players are going to do.
A player’s belief about what her opponents are thinking is relevant only because
they shape the players first-order beliefs about what her opponents are going to
do. Kadane and Larkey explain the issue nicely:

“It is true that a subjective Bayesian will have an opinion not only
on his opponent’s behavior, but also on his opponent’s belief about his
own behavior, his opponent’s belief about his belief about his oppo-
nent’s behavior, etc. (He also has opinions about the phase of the moon,
tomorrow’s weather and the winner of the next Superbowl). However,
in a single-play game, all aspects of his opinion except his opinion about
his opponent’s behavior are irrelevant, and can be ignored in the analysis
by integrating them out of the joint opinion.”
as [46, pg. 239, my emphasis]

A theory of rational decision making in game situations need not require
that a player considers all of her higher-order beliefs in her decision-making
process. The assumption is only that the players recognize that their opponents
are “actively reasoning” agents. Precisely “how much” higher-order information
should be taken into account in such a situation is a very interesting, open
question (cf. [47,64]).

There is quite a lot of experimental work about whether or not humans
take into account even second-order beliefs (e.g., a belief about their opponents’
beliefs) in game situations (see, for example, [30,44,73]). It is beyond the scope
of this chapter to survey this literature here (see [29] for an excellent overview).
Of course, this is a descriptive question, and it is very much open how such
observations should be incorporated into a general theory of rational deliberation
in games (cf. [53,54,77]).

∗ ∗ ∗ ∗ ∗ ∗ ∗
A general theory of rational deliberation for game and decision theory is a

broad topic. It is beyond the scope of this chapter to discuss the many different
aspects and competing perspectives on such a theory27. A completely devel-
oped theory will have both a normative component (What are the normative
principles that guide the players’ thinking about what they should do?) and a
descriptive component (Which psychological phenomena best explain discrepan-
cies between predicted and observed behavior in game situations?). The main
challenge is to find the right balance between descriptive accuracy and norma-
tive relevance. While this is true for all theories of individual decision making
and reasoning, focusing on game situations raises a number of compelling issues.
Robert Aumann and Jacques Dreze [2, pg. 81] adeptly summarize one of the
most pressing issues when they write: “[T]he fundamental insight of game the-
ory [is] that a rational player must take into account that the players reason

27 Interested readers are referred to [72] (especially Chap. 7), and [35,50,67] for broader
discussions.
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about each other in deciding how to play”. Exactly how the players (should)
incorporate the fact that they are interacting with other (actively reasoning)
agents into their own decision-making process is the subject of much debate.
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Benthem, J., Gabbay, D., Löwe, B. (eds.) Proceedings of the 7th Augustus de
Morgan Workshop, pp. 159–193. Texts in Logic and Games, Amsterdam University
Press (2007)

62. Perea, A.: A one-person doxastic characterization of Nash strategies. Synthese 158,
251–271 (2007)

63. Perea, A.: Epistemic Game Theory: Reasoning and Choice. Cambridge University
Press, Cambridge (2012)

64. Perea, A.: Finite reasoning procedures for dynamic games. In: van Benthem, J.,
Ghosh, S., Verbrugge, R. (eds.) Models of Strategic Reasoning. LNCS, vol. 8972,
pp. 63–90. Springer, Heidelberg (2015)

65. Plaza, J.: Logics of public communications. In: Emrich, M.L., Pfeifer, M.S.,
Hadzikadic, M., Ras, Z.W. (eds.) Proceedings, 4th International Symposium on
Methodologies for Intelligent Systems, pp. 201–216 (republished as [66]) (1989)

66. Plaza, J.: Logics of public communications. Synthese 158(2), 165–179 (2007)
67. Rabinowicz, W.: Does practical deliberation crowd out self-prediction? Erkenntnis

57, 91–122 (2002)



Dynamic Models of Rational Deliberation in Games 33

68. Risse, M.: What is rational about Nash equilibrium? Synthese 124(3), 361–384
(2000)

69. Rubinstein, A.: Comments on the interpretation of game theory. Econometrica
59(4), 909–924 (1991)

70. Samuelson, L.: Dominated strategies and common knowledge. Games Econ. Behav.
4, 284–313 (1992)

71. Selten, R.: Reexamination of the perfectness concept for equilibrium points in
extensive games. Int. J. Game Theor. 4(1), 25–55 (1975)

72. Skyrms, B.: The Dynamics of Rational Deliberation. Harvard University Press,
Cambridge (1990)

73. Stahl, D.O., Wilson, P.W.: On players’ models of other players: theory and exper-
imental evidence. Games Econ. Behav. 10, 218–254 (1995)

74. Stalnaker, R.: Knowledge, belief, and counterfactual reasoning in games. Econ.
Philos. 12, 133–163 (1996)

75. Stalnaker, R.: Belief revision in games: Forward and backward induction. Math.
Soc. Sci. 36, 31–56 (1998)

76. Vanderschraaf, P., Sillari, G.: Common knowledge. In: Zalta, E.N. (ed.) The Stan-
ford Encyclopedia of Philosophy. Spring 2009 edition (2009)

77. Verbrugge, R.: Logic and social cognition: the facts matter, and so do computa-
tional models. J. Philos. Log. 38(6), 649–680 (2009)


	Dynamic Models of Rational Deliberation in Games
	1 Introduction and Motivation
	2 Background
	2.1 Strategic Games
	2.2 Game Models

	3 Reasoning to an Equilibrium
	4 Strategic Reasoning as a Solution Concept
	5 Reasoning to a Game Model
	5.1 Modeling Information Changes
	5.2 Rational Belief Change During Deliberation
	5.3 Rational Belief Change During Game Play

	6 Concluding Remarks
	6.1 What Are the Differences and Similarities Between the Different Models of Strategic Reasoning?
	6.2 What Role Do Higher-Order Beliefs Play in a General Theory of Rational Decision Making in Game Situations?

	References


