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Preface

Strategic behavior is the key to social interaction, from the ever-evolving world of
living beings to the modern theater of designed computational agents. Several crucial
dimensions come together in acting strategically. One dimension is that of agents
having individual goals and intentions that they try to realize by taking decisions based
on their current information and preferences, which may involve influencing others as
well. A second dimension of strategies is the longer temporal horizon of agents having
plans for dealing with complex scenarios of events unfolding over time, where, in
particular, it is essential to respond in an optimal manner to what others do, or
sometimes also to lead the way. Merging all these individual strategies results in forms
of group behavior in which stable patterns of behavior may emerge representing some
sort of equilibrium that is optimal for all. More generally, what we see at work here is a
third, social dimension of group structure and collective goals and actions.

Strategies are often associated with recreational games such as chess and bridge.
Strategies can also be associated with games in the sense of economic game theory,
covering many social interactions such as selling one’s house or playing the stock
market. Finally, strategies play a role in using or even designing social software such as
proper protocols for holding meetings or working toward a treaty that limits global
warming. In the course of such scenarios, optimal strategies may involve the most
delicate phenomena, for example, a balance between public and private information or
between public and private goals.

Given this variety of games and strategic behavior across so many different spheres
of life, studies of strategies can be found in many disciplines. Game theory is one major
source of insights, but there are others. Strategies occur as generalized algorithms in
computer science, where games have become an influential model for multi-agent
systems for interactive computation by large networks of processors. In logic, strategies
have supplied new models for valid reasoning or successful model checking. In phi-
losophy, strategies for planned intentional behavior have entered the realm of ethics,
philosophy of action, and social philosophy. In mathematics, intuitions about strategies
in infinite games fuel the search for new axioms in the foundations of set theory. And
the list keeps growing. Strategies in evolutionary games are a powerful model in
biology, and combinations of ideas from both classic and evolutionary games are
making their way into the study of meaning in linguistics as a communicative equi-
librium, and into cognitive science, where strategies provide the link between knowing
that and knowing how, and, more generally, learnability of cognitive skills.

This book aims at understanding the phenomenon of strategic behavior in its proper
width and depth. It is based on a workshop held at the Lorentz Center in Leiden in
2012, emanating from the NWO project “Strategies in Multi-agent Systems: From
Implicit to Implementable” on strategies as a unifying interdisciplinary theme. The aim
of the workshop was, by bringing together congenial experts, to create a comparative
view of the different frameworks for strategic reasoning in social interactions occurring



in game theory, computer science, logic, linguistics, philosophy, and the cognitive and
social sciences. The workshop participants were (and are) active researchers in these
areas, and they engaged in wide-ranging outreach discussions. The authors of this book
represent a fair sample of the people involved and the themes that emerged. We have
grouped their contributions as follows.

Reasoning About Games

Part 1 of this book is concerned with reasoning about information and rational inter-
action in the paradigmatic arena of games, with ideas coming mainly from the con-
temporary interface of game theory and logic. Eric Pacuit, in his chapter “Dynamic
Models of Rational Deliberation in Games” develops an interesting perspective on
strategic reasoning in dynamic games, in which players take turns. Pacuit shifts the
focus from the usual solution concepts and players’ beliefs about other players’
choices, to the processes of deliberation that underlie the participants’ strategic choices
in such dynamic games.

Next we have two chapters presenting distinct perspectives on strategies in dynamic
games. In his chapter “Reasoning About Strategies and Rational Play in Dynamic
Games,” Giacomo Bonanno focuses on the counterfactual considerations implicit in the
definition of a strategy of a player: What would the player do at information sets that
are actually never reached? Bonanno highlights the implications of such counterfactual
beliefs on the belief revision of players in dynamic games. In the process, he provides a
fresh look at what is meant by the rationality of a player in terms of her choices and
beliefs.

Andrés Perea, on the other hand, considers strategies as plans of actions, concen-
trating on the choice part only, rather than the belief part. Assuming such a notion of
strategy in his chapter “Finite Reasoning Procedures for Dynamic Games,” he shows
that for finite dynamic games, the infinitely many conditions associated with the
concept of common belief in future rationality can be tackled using a finitary proce-
dure. In all, Part I provides the reader with the flavors of the various notions of
strategies discussed in the literature on game theory.

Formal Frameworks for Strategies

Next, Part 2 of this book is concerned with formal frameworks for representing
strategies, geared toward an analysis of their laws and their behavioral complexity, with
an emphasis on combining techniques from logic, philosophy, computation, and
automata theory. Nils Bulling, Valentin Goranko, and Wojciech Jamroga, in their
chapter “Logics for Reasoning About Strategic Abilities in Multi-player Games,”
provide a rich description of an approach to strategies from an external observer’s
perspective, which has proved to be very useful in programming and verifying
multi-agent systems. This approach, based on alternating-time temporal logic
(ATL) and its variants, does not focus on players who reason based on the presumed
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rationality of other players. Instead, the objects of analysis are the players’ and groups’
objective abilities to apply strategies guaranteeing that their goals are achieved,
regardless of whether their opponents are rational and independently of the strategies
applied by their opponents.

In their chapter “Using STIT Theory to Talk About Strategies,” Jan Broersen and
Andreas Herzig provide a detailed account of seeing-to-it-that (STIT) frameworks used
in the analysis of strategies. They also investigate the connections between the STIT
frameworks and the ATL frameworks described in the previous chapter, focusing on
various properties of strategic reasoning.

The reader will encounter automata-theoretic approaches to strategies in the context
of large dynamic games in the chapter “Automata and Compositional Strategies in
Extensive Form Games,” authored by Soumya Paul, R. Ramanujam, and Sunil Simon.
They consider on-the-fly strategizing in games where the players only have a limited
view of the game structures and hence need to resort to partial strategies for the relevant
subgames.

This second part of the book ends with the chapter “Languages for Imperfect
Information” by Gabriel Sandu, in which he looks into the game-theoretical semantics
for different logics. The chapter mainly focuses on independence-friendly (IF) logics.
Distinctive features of semantical games are considered, in accordance with different
game-theoretical concepts, aiding in a logical analysis of games of imperfect
information.

Strategies in Social Situations

Finally, Part 3 of this book explores current uses of strategies in social situations with a
range of examples coming from natural language use and scenarios in cognitive psy-
chology and in the social sciences. Michael Franke and Robert van Rooij explore
strategic aspects of communication in their chapter “Strategies of Persuasion, Manip-
ulation, and Propaganda: Psychological and Social Aspects.” Using decision theory
and game theory, they first shine a light on the psychological question of what a
communicator should undertake in order to manipulate someone else to adopt a certain
opinion: Which information should she convey, and in which manner? Subsequently,
the authors adapt DeGroot’s model of opinion dynamics to tackle a more sociological
question: Which individual agents should the manipulator address in order to effec-
tively influence certain groups in society?

Jan van Eijck, in his chapter “Strategies in Social Software,” shows how knowledge
of design and analysis of algorithms in computer science may be fruitfully applied to
mechanism design in social situations, taking into account that the participants in
society may be aware of the mechanisms and may attempt to strategically turn these
mechanisms to their own advantage. He illustrates his points by presenting various
examples of strategic situations, such as a prisoner’s dilemma with punishment for
cheaters, the tragedy of the commons, and voting procedures.
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Wrapping Up

The book rounds off with Johan van Benthem’s chapter “Logic of Strategies: What and
How?,” which presents some perspectives on the future of logical studies of strategies
in the width suggested by this book.

Many common themes and working habits tie together the various chapters in this
book, with logic often serving as the lingua franca that facilitates communication
between fields. Moreover, many of the themes addressed by our authors cross between
disciplines, where they often raise fundamental issues, such as the delicate interfaces of
deliberate versus automated behavior, or of short-term versus long-term behavior, and
more broadly, the interplay of theory and empirical reality, including the mixed world
of today, where theory-driven design of social software and ICT hardware can lead to
new forms of behavior.

We hope that this book will show the reader that strategies are a worthy subject of
study in their own right, that they provide a common thread that connects many
academic fields, from the humanities to the sciences, and that an improved under-
standing of strategies can also impact directly on how we behave and how we shape the
social world around us.
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Dynamic Models of Rational
Deliberation in Games

Eric Pacuit(B)

Department of Philosophy, University of Maryland, College Park, USA
epacuit@umd.edu

Abstract. There is a growing body of literature that analyzes games
in terms of the “process of deliberation” that leads the players to select
their component of a rational outcome. Although the details of the var-
ious models of deliberation in games are different, they share a com-
mon line of thought: The rational outcomes of a game are arrived at
through a process in which each player settles on an optimal choice given
her evolving beliefs about her own choices and the choices of her oppo-
nents. The goal is to describe deliberation in terms of a sequence of belief
changes about what the players are doing or what their opponents may
be thinking. The central question is: What are the update mechanisms
that match different game-theoretic analyses? The general conclusion is
that the rational outcomes of a game depend not only on the structure of
the game, but also on the players’ initial beliefs, which dynamical rule is
being used by the players to update their inclinations (in general, differ-
ent players may be using different rules), and what exactly is commonly
known about the process of deliberation.

Keywords: Epistemic game theory · Dynamic epistemic logic · Belief
revision

1 Introduction and Motivation

Strategies are the basic objects of study in a game-theoretic model. The standard
interpretation is that a strategy represents a player’s general plan of action. That
is, player i’s strategy describes the action that player i will choose whenever she
is required to make a decision according to the rules of the game.

Traditionally, game theorists have focused on identifying profiles of strategies
that constitute an “equilibrium” (e.g., the Nash equilibrium and its refinements).
A typical game-theoretic analysis runs as follows: Given a game G, there is an
associated solution space SG describing all the possible outcomes of G. In a one-
shot game (called a strategic game; see Sect. 2.1 for details), this is the set
of all tuples of strategies (a tuple of strategies, one for each player, is called
a strategy profile)1. Abstractly, a solution for a game G is a subset of the
1 The assumption is that once each player settles on a strategy, this identifies a unique

outcome of the game. This is a simplifying assumption that can be dropped if neces-
sary. However, for this chapter, it is simpler to follow standard practice and identify
the set of “outcomes” of a game with the set of all tuples of actions.

c© Springer-Verlag Berlin Heidelberg 2015
J. van Benthem et al. (Eds.): Models of Strategic Reasoning, LNCS 8972, pp. 3–33, 2015.
DOI: 10.1007/978-3-662-48540-8 1



4 E. Pacuit

solution space SG. The subset of SG identified by a solution concept is intended
to represent the “rational outcomes” of the game G.

Suppose that S ⊆ SG is a solution for the game G. The elements of S are
privileged outcomes of G, but what, exactly, distinguishes them from the other
outcomes in SG? The standard approach is to require that for each profile in
S, players should not have an incentive to deviate from their prescribed strat-
egy, given that the other players follow their own prescribed strategies. This is
an internal constraint on the elements of a solution set since it requires that
the strategies in a profile are related to each other in a particular way. This
chapter takes a different perspective on the above question by imposing a differ-
ent constraint on the profiles in S: Each player’s prescribed strategy should be
“optimal” given her beliefs about what the other players are going to do. This
constraint is external since it refers to the players’ “beliefs”, which are typically
not part of the mathematical representation of the game.

It is not hard to think of situations in which the internal and external con-
straints on solution concepts discussed above are not jointly satisfied. The point
is that players may have very good reasons to believe that the other players are
choosing certain strategies, and so, they choose an optimal strategy based on
these beliefs. There is no reason to expect that the resulting choices will satisfy
the above internal constraint unless one makes strong assumptions about how
the players’ beliefs are related2. The external constraint on solution concepts can
be made more precise by taking a “Bayesian” perspective on game theory [46]: In
a game-theoretic situation, as in any situation of choice, the rational choice for a
player is the one that maximizes expected utility with respect to a (subjective)
probability measure over the other players’ strategy choices. A sophisticated
literature has developed around this simple idea: it focuses on characterizing
solution concepts in terms of what the players know and believe about the other
players’ strategy choices and beliefs (see, for example, [7,22,26,60] and [63] for
a textbook presentation).

In this chapter, I shift the focus from beliefs about the other players’ choices
to the underlying processes that lead (rational) players to adopt certain strate-
gies. An early formulation of this idea can found in John C. Harsanyi’s seminal
paper [42], in which he introduced the tracing procedure to select an equilibrium
in any finite game:

The n players will find the solution s of a giving game G through an
intellectual process of convergent expectations, to be called the solution
process....During this process, they will continually and systematically
modify [their] expectations—until, at the end of this process, their expec-
tations will come to converge on one particular equilibrium point s in
the game G. (original italics) [42, pg. 71]

The goal of the tracing procedure is to identify a unique Nash equilibrium
in any finite strategic game. The idea is to define a continuum of games in
2 For example, one can assume that each player knows which strategies the other

players are going to choose. Robert Aumann and Adam Brandenburger use this
assumption to provide an epistemic characterization of the Nash equilibrium [10].
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such a way that each of the games has a unique Nash equilibrium. The tracing
procedure identifies a path through this space of games ending at a unique Nash
equilibrium in the original game. Harsanyi thought of this procedure as “being a
mathematical formalization of the process by which rational players coordinate
their choices of strategies.”

Harsanyi, in collaboration with Reinhard Selten [43], turned these basic ideas
into a beautiful theory of equilibrium selection. This theory is now part of the
standard education for any game theorist. Nonetheless, it is not at all clear that
this theory of equilibrium selection is best interpreted as a formalization of the
players’ processes of “rational deliberation” in game situations (see [72, pgs. 154–
158] for a discussion of this point). In this chapter, I will critically discuss three
recent frameworks in which the players’ process of “rational deliberation” takes
center stage:

1. Brian Skyrms’ model of “dynamic deliberation,” in which players deliberate
by calculating their expected utility and then use this new information to
recalculate their probabilities about the states of the world and their expected
utilities [72].

2. Robin Cubitt and Robert Sugden’s recent contribution that develops a
“reasoning-based expected utility” procedure for solving games (building on
David Lewis’ “common modes of reasoning”) [31,33].

3. Johan van Benthem et col.’s analysis of solution concepts as fixed-points of
iterated “(virtual) rationality announcements” [3,15,18,20,21].

Although the details of these frameworks are quite different, they share a
common line of thought: In contrast to classical game theory, solution concepts
are no longer the basic object of study. Instead, the “rational solutions” of a
game are arrived at through a process of “rational deliberation”. My goal in this
chapter is to provide a (biased) overview of some key technical and conceptual
issues that arise when developing mathematical models of players deliberating
about what to do in a game situation.

2 Background

I assume that the reader is familiar with the basics of game theory (see [52] and
[2] for concise discussions of the key concepts, definitions and theorems) and
formal models of knowledge and belief (see [19,57] for details). In this section, I
introduce some key definitions in order to fix notation.

2.1 Strategic Games

A strategic game is a tuple 〈N, {Si}i∈N , {ui}i∈N 〉 where N is a (finite) set of
players; for each i ∈ N , Si is a finite set (elements of which are called actions or
strategies); and for each i ∈ N , ui : Πi∈NSi → R is a utility function assigning
real numbers to each outcome of the game (i.e., tuples consisting of the choices for
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each player). Strategic games represent situations in which each player makes
a single decision, and all the players make their decisions simultaneously. If
s ∈ Πi∈NSi is a strategy profile, then write si for the ith component of s and
s−i for the sequence consisting of all components of s except for si (let S−i

denote all such sequences of strategies).
Recall from the introduction that the solution space SG for a game G is the

set of all outcomes of G. Since we identify the outcomes of a game with the set
of strategy profiles, we have SG = Πi∈NSi. This means that a “solution” to a
strategic game is a distinguished set of strategy profiles. In the remainder of this
section, I will define some standard game- and decision-theoretic notions that
will be used throughout this chapter.

Mixed Strategies. Let Δ(X) denote the set of probability measures over the
finite3 set X. A mixed strategy for player i, is an element mi ∈ Δ(Si). If mi ∈
Δ(Si) assigns probability 1 to an element si ∈ Si, then mi is called a pure strat-
egy (in such a case, I write si for mi). Mixed strategies are incorporated into a
game-theoretic analysis as follows. Suppose that G = 〈N, {Si}i∈N , {ui}i∈N 〉 is a
finite strategic game. The mixed extension of G is the strategic game in which
the strategies for player i are the mixed strategies in G (i.e., Δ(Si)), and the util-
ity for player i (denoted Ui) of the joint mixed strategy m ∈ Πi∈NΔ(Si) is calcu-
lated in the obvious way (let m(s) = m1(s1) ·m2(s2) · · · mn(sn) for s ∈ Πi∈NSi):

Ui(m) =
∑

s∈Πi∈NSi

m(s) · ui(s).

Thus, the solution space of a mixed extension of the game G is the set
Πi∈NΔ(Si).

Mixed strategies play an important role in many game-theoretic analyses.
However, the interpretation of mixed strategies is controversial, as Ariel Rubin-
stein notes: “We are reluctant to believe that our decisions are made at random.
We prefer to be able to point to a reason for each action we take. Outside of Las
Vegas we do not spin roulettes” [69, pg. 913]. For the purposes of this chapter, I
will assume that players choose only pure strategies. Mixed strategies do play a
role in Sect. 3, where they describe each players’ beliefs about what they will do
(at the end of deliberation).

Nash Equilibrium. The most well-known and extensively studied solution
concept is the Nash equilibrium. Let G = 〈N, {Si}i∈N , {ui}i∈N 〉 be a finite
strategic game. A mixed strategy profile m = (m1, . . . , mn) ∈ Πi∈NΔ(Si) is a
Nash equilibrium provided for all i ∈ N ,

Ui(m1, . . . , mi, . . . , mn) ≥ Ui(m1, . . . , m
′
i, . . . , mn), for all m′

i ∈ Δ(Si).

This definition is an example of the internal constraint on solutions discussed
in the introduction. Despite its prominence in the game theory literature, the
3 Recall that I am restricting attention to finite strategic games.
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Nash equilibrium faces many foundational problems [68]. For example, there
are theoretical concerns about what the players need to know in order to play
their component of a Nash equilibrium [10,62]; questions about how players
choose among multiple Nash equilibria; and many experiments purporting to
demonstrate game-theoretic situations in which the player’s choices do not form
a Nash equilibrium. Nash equilibrium does not play an important role in this
chapter. I focus, instead, on the outcomes of a game that can be reached through
a process of “rational deliberation”.

Iteratively Removing Strategies. A strategy s ∈ Si strictly dominates
strategy s′ ∈ Si provided that

∀s−i ∈ S−i ui(s, s−i) > ui(s′, s−i).

A strategy s ∈ Si weakly dominates strategy s′ ∈ Si provided that

∀s−i ∈ S−i ui(s, s−i) ≥ ui(s′, s−i) and ∃s−i ∈ S−i ui(s, s−i) > ui(s′, s−i).

More generally, the strategy s strictly/weakly dominates s′ with respect
to a set X ⊆ S−i if S−i is replaced with X in the above definitions4. Suppose
that G = 〈N, {Si}i∈N , {ui}i∈N 〉 and G′ = 〈N, {S′

i}i∈N , {u′
i}i∈N 〉 are strategic

games. The game G′ is a restriction of G provided that for each i ∈ N , S′
i ⊆ Si

and u′
i is the restriction of ui to Πi∈NS′

i. To simplify notation, write Gi for
the set of strategies for player i in game G. Strict and weak dominance can be
used to reduce a strategic game. Write H −→SD H ′ whenever H 
= H ′, H ′ is a
restriction of H and

∀i ∈ N,∀si ∈ Hi \ H ′
i ∃s′

i ∈ Hisi is strictly dominated in H by s′
i

So, if H −→SD H ′, then H ′ is the result of removing some of the strictly domi-
nated strategies from H. We can iterate this process of removing strictly domi-
nated strategies. Formally, H is the result of iteratively removing strictly domi-
nated strategies (IESDS) provided that G −→∗

SD H, where −→∗ is the reflexive
transitive closure5 of a relation −→.

The above definition can be easily adapted to other choice rules, such as weak
dominance. Let −→WD denote the relation between games defined as above
using weak dominance instead of strict dominance6. Furthermore, the above
4 Furthermore, the definitions of strict and weak dominance can be extended so that

strategies may be strictly/weakly dominated by mixed strategies. This is important
for the epistemic analysis of iterative removal of strictly/weakly dominated strate-
gies. However, for my purposes in this chapter, I can stick with the simpler definition
in terms of pure strategies.

5 The reflexive transitive closure of a relation R is the smallest relation R∗ containing
R that is reflexive and transitive.

6 Some interesting issues arise here: It is well-known that, unlike with strict domi-
nance, different orders in which weakly dominated strategies are removed can lead
to different outcomes. Let us set aside these issues in this chapter.
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definition of iterated removal of strictly/weakly dominated strategies can be
readily adapted to the mixed extensions of a strategic game.

There are a number of ways to interpret the iterative process of remov-
ing strategies, defined above. The first is that it is an algorithm that a game
theorist can use to find an equilibrium in a game. The second interpretation
views the successive steps of the removal process as corresponding to the play-
ers’ higher-order beliefs (i.e., player i believes that player j believes that player
i believes that...that player i will not play such-and-such strategy). Finally, the
third interpretation is that the iterative process of removing strategies tracks
the “back-and-forth reasoning” players engage in as they decide what to do in
a game situation (i.e., if player i does not play such-and-such a strategy, then
player j will not play such-and-such a strategy, and so on).

Bayesian Rationality. In this chapter, I am interested not only in solutions to
a game, but also what the players believe about the outcomes of a game. Let G =
〈N, {Si}i∈N , {ui}i∈N 〉 be a strategic game. A probability measure π ∈ Δ(S−i)
is called a conjecture for player i. The expected utility of s ∈ Si for player i
with respect to π ∈ Δ(S−i) is:

EUπ(s) =
∑

σ−i∈S−i

π(σ−i) · ui(s, σ−i).

We say that s ∈ Si maximizes expected utility with respect to π ∈ Δ(S−i),
denoted MEU(s, π), if for all s′ ∈ Si, EUπ(s) ≥ EUπ(s′).

∗ ∗ ∗ ∗ ∗ ∗ ∗
One conclusion to draw from the discussion in this section is that much can

be said about the issues raised in this chapter using standard game-theoretic
notions. Indeed, it is standard for a game theorist to distinguish between the
ex ante and ex interim stages of decision making7. In the former, the players
have not yet decided what strategy they will choose, while, in the latter, the
players know their own choices but not their opponents’. However, the process
by which the players form their beliefs in the ex interim stage is typically not
discussed. The frameworks discussed in the remainder of this chapter are focused
on making this process explicit.

2.2 Game Models

A game model describes a particular play of the game and what the players
think about the other players. That is, a game model represents an “informa-
tional context” of a given play of the game. This includes the “knowledge” the
players have about the game situation and what they think about the other
7 There is also an ex post analysis when all choices are “out in the open,” and the only

remaining uncertainties are about what the other players are thinking.
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players’ choices and beliefs. Researchers interested in the foundations of decision
theory, epistemic and doxastic logic and formal epistemology have developed
many different formal models to describe the variety of informational attitudes
important for assessing decision maker’s choices in a decision- or game-theoretic
situation. See [19] for an overview and pointers to the relevant literature. In this
section, I present the details of a logical framework that can be used to reason
about the informational context of a game.

Syntactic issues do not play an important role in this chapter. Nonetheless,
I will give the definition of truth for a relevant formal language, as it makes
for a smoother transition from the game theory literature to the literature on
dynamic epistemic logic and iterated belief change discussed in Sect. 5.1. Consult
[19,57,58] for a discussion of the standard logical questions about axiomatics,
definability, decidability of the satisfiability problem, and so on.

Epistemic-Plausibility Models. Variants of the models presented in this
section have been studied extensively by logicians [13,17,19], game theorists [23],
philosophers [51,74] and computer scientists [25,48]. The models are intended
to describe what the players know and believe about an outcome of the game.

The first component of an epistemic-plausibility model is a nonempty set W
of states (also called worlds). Each state in a game model will be associated
with an outcome of a game G via a function σ, called the outcome map. So,
for a state w, σ(w) is the element of SG realized at state w. Let σi(w) denote
the ith component of σ(w) (so, σi(w) is the strategy played by i at state w).
The atomic propositions are intended to describe different aspects of the the
outcomes of a game. For example, they could describe the specific action chosen
by a player or the utility assigned to the outcome by a given player. There are
a number of ways to make this precise. Perhaps the simplest is to introduce, for
each player i and strategy a ∈ Si, an atomic proposition playi(a) intended to
mean “player i is playing strategy a.” For a game G = 〈N, {Si}i∈N , {ui}i∈N 〉,
let At(G) = {playi(a) | i ∈ N and a ∈ Si} be the set of atomic propositions for
the game G.

There are two additional components to an epistemic-plausibility model. The
first is a set of equivalence relations ∼i, one for each player. The intended reading
of w ∼i v is that “everything that i knows at w is true at v”. Alternatively, I
will say that “player i does not have enough information to distinguish state w
from state v.”

The second component is a plausibility ordering for each player: a pre-order
(reflexive and transitive) w i v that says “agent i considers world w at least
as plausible as v.” As a convenient notation, for X ⊆ W , set Min�i

(X) =
{v ∈ X | v i w for all w ∈ X}, the set of minimal elements of X according
to i. This is the subset of X that agent i considers the “most plausible”.
Thus, while the ∼i partitions the set of possible worlds according to i’s “hard
information”, the plausibility ordering i represents which of the possible worlds
agent i considers more likely (i.e., it represents i’s “soft information”).
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Putting everything together, the definition of an epistemic-plausibility model
is as follows:

Definition 1. Suppose that G = 〈N, {Si}i∈N , {ui}i∈N 〉 is a strategic game. An
epistemic-plausibility model for G is a tuple M = 〈W, {∼i}i∈A, {i}i∈A, σ〉
where W 
= ∅; for each i ∈ A, ∼i⊆ W × W is an equivalence relation (each ∼i

is reflexive: for each w ∈ W , w ∼i w; transitive: for each w, v, u ∈ W , if w ∼i v
and v ∼i u then w ∼i u; and Euclidean: for each w, v, u ∈ W , if w ∼i v and
w ∼i u, then v ∼i u); for each i ∈ A, i is a well-founded (every non-empty set
of states has a minimal element)8 reflexive and transitive relation on W ; and σ
is an outcome map. In addition, the following two conditions are imposed for all
w, v ∈ W :

1. if w i v then w ∼i v (plausibility implies possibility), and
2. if w ∼i v then either w i v or v i w (locally-connected). �

Models without plausibility relations are called epistemic models.

Remark 1. Note that if w 
∼i v, then, since ∼i is symmetric, I also have v 
∼i w,
and so by property 1, w 
i v and v 
i w. Thus, I have the following equivalence:
w ∼i v iff w i v or v i w. In what follows, unless otherwise stated, I will
assume that ∼i is defined as follows: w ∼i v iff w i v or v i w.

For each strategic game G, let LKB(G) be the set of sentences generated by
the following grammar9:

ϕ := playi(a) | ¬ϕ | ϕ ∧ ψ | Bϕ
i ψ | Kiϕ

where i ∈ N and playi(a) ∈ At(G). The additional propositional connectives
(→,↔,∨) are defined as usual and the dual of Ki, denoted Li, is defined as
follows: Liϕ := ¬Ki¬ϕ. The intended interpretation of Kiϕ is “agent i knows
that ϕ”10. The intended interpretation of Bϕ

i ψ is “agent i believes ψ under the
supposition that ϕ is true”.

Truth for formulas in LKB(G) is defined as usual. Let [w]i be the equivalence
class of w under ∼i. Then, local connectedness implies that i totally orders [w]i,
and well-foundedness implies that Min�i

([w]i ∩ X) is nonempty if [w]i ∩ X 
= ∅.

8 Well-foundedness is only needed to ensure that for any set X, Min�i(X) is nonempty.
This is important only when W is infinite – and there are ways around this in current
logics. Moreover, the condition of connectedness can also be lifted, but I use it here
for convenience.

9 There are other natural modal operators that can. See [57] for an overview and
pointers to the relevant literature.

10 This is the standard interpretation of Kiϕ in the game theory literature. Whether
this captures any of the many different definitions of knowledge found in the episte-
mology literature is debatable. A better reading of Kiϕ is “given all of the available
evidence and everything i has observed, agent i is informed that ϕ is true”.
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Definition 2 (Truth for LKB(G)). Given an epistemic-plausibility model
M = 〈W, {∼i}i∈A, {i}i∈A, σ〉. Truth for formulas from LKB(G) is defined
recursively:

– M, w |= playi(a) iff σi(w) = a
– M, w |= ¬ϕ iff M, w 
|= ϕ
– M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ
– M, w |= Kiϕ iff for all v ∈ W , if w ∼i v then M, v |= ϕ
– M, w |= Bϕ

i ψ iff for all v ∈ Min�i
([w]i ∩ [[ϕ]]M), M, v |= ϕ

Thus, i believes ψ conditional on ϕ, Bϕ
i ψ, if i’s most plausible ϕ-worlds (i.e.,

the states satisfying ϕ that i has not ruled out and considers most plausible) all
satisfy ψ. Full belief is defined as follows: Biϕ := B�ϕ. Then, the definition of
plain belief is:

M, w |= Biϕ iff for each v ∈ Min�i
([w]i),M, v |= ϕ.

I illustrate the above definition with the following coordination game:

Ann

Bob
l r

u 3, 3 0, 0

d 0, 0 1, 1

The epistemic-plausibility model below describes a possible configuration of
ex ante beliefs of the players (i.e., before the players have settled on a strategy):
I draw an i-labeled arrow from v to w if w i v (to keep minimize the clutter,
I do not include all arrows; the remaining arrows can be inferred by reflexivity
and transitivity).

d, r

w1

u, r

w3

d, l

w2

u, l

w4

b

a

b

b

a

aa

a, b

Following the convention discussed in Remark 1, we have [w1]a = [w1]b =
{w1, w2, w3, w4}, and so, neither Ann nor Bob knows how the game will end.
Furthermore, both Ann and Bob believe that they will coordinate with Ann
choosing u and Bob choosing l:

Ba(playa(u) ∧ playb(l)) ∧ Bb(playa(u) ∧ playb(l))
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is true at all states. However, Ann and Bob do have different conditional beliefs.
On the one hand, Ann believes that their choices are independent; thus, she
believes that playb(l) is true even under the supposition that playa(d) is true
(i.e., she continues to believe that Bob will play l even if she decides to play d).
On the other hand, Bob believes that their choices are somehow correlated; thus,
under the supposition that playb(r) is true, Bob believes that Ann will choose
d. Conditional beliefs describe an agent’s disposition to change her beliefs in the
presence of (perhaps surprising) evidence (cf. [49]).

Common Knowledge and Belief. States in an epistemic-plausibility model
not only represent the players’ beliefs about what their opponents will do,
but also their higher-order beliefs about what their opponents are thinking.
Both game theorists and logicians have extensively discussed different notions of
knowledge and belief for a group, such as common knowledge and belief. These
notions have played a fundamental role in the analysis of distributed algorithms
[40] and social interactions [28]. In this section, I briefly recount the standard
definition of common knowledge11.

Consider the statement “Everyone in group X knows that ϕ.” With finitely
many agents, this can be easily defined in the epistemic language LKB :

KXϕ :=
∧

i∈X

Kiϕ,

where X ⊆ N is a finite set. The first nontrivial informational attitude for a
group that I study is common knowledge. If ϕ is common knowledge for the
group G, then not only does everyone in the group know that ϕ is true, but this
fact is completely transparent to all members of the group. Following [6], the
idea is to define common knowledge of ϕ as the following iteration of everyone
knows operators:

ϕ ∧ KNϕ ∧ KNKNϕ ∧ KNKNKNϕ ∧ · · ·
The above formula is an infinite conjunction and, so, is not a formula in our
epistemic language LKB (by definition, there can be, at most, finitely many
conjunctions in any formula). In order to express this, a modal operator CGϕ
with the intended meaning “ϕ is common knowledge among the group G” must
be added to our modal language. Formally:

Definition 3 (Interpretation of CG). Let M = 〈W, {∼i}i∈A, V 〉 be an epis-
temic model12 and w ∈ W . The truth of formulas of the form CXϕ is:

M, w |= CXϕ iff for all v ∈ W, if wRC
Xv then M, v |= ϕ

where RC
X := (

⋃
i∈X ∼i)∗ is the reflexive transitive closure of

⋃
i∈X ∼i.

11 I assume that the formal definition of common knowledge is well-known to the reader.
For more information and pointers to the relevant literature, see [34,36,57,76].

12 The same definition will, of course, hold for epistemic-plausibility and epistemic-
probability models.
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It is well-known that for any relation R on W , if wR∗v then there is a finite
R-path starting at w ending in v. Thus, M, w |= CXϕ iff every finite path for
X from w ends with a state satisfying ϕ.

This approach to defining common knowledge can be viewed as a recipe
for defining common (robust) belief. For example, suppose that wRB

i v iff v ∈
Min�i

([w]i), and define RB
G to be the transitive closure13 of ∪i∈GRB

i . Then,
common belief of ϕ, denoted CB

Gϕ, is defined in the usual way:

M, w |= CB
Gϕ iff for each v ∈ W, if wRB

Gv then M, v |= ϕ.

A probabilistic variant of common belief was introduced in [55].

3 Reasoning to an Equilibrium

Brian Skyrms presents a model of the players’ process of deliberation in a game in
his important book The Dynamics of Rational Deliberation [72]. In this section,
I introduce and discuss this model of deliberation, though the reader is referred
to [72] for a full discussion (see, also, [1,45] for analyses of this model).

To simplify the exposition, I restrict attention to a two-person finite
strategic game. Everything discussed below can be extended to situations
with more than two players14 and to extensive games15. Suppose that G =
〈{a, b}, {Sa, Sb}, {ua, ub}〉 is a strategic game in which Sa = {s1, . . . , sn} and
Sb = {t1, . . . , tm} are the players’ strategies, and ua and ub are utility functions.
In the simplest case, deliberation is trivial: Each player calculates the expected
utility given her belief about what her opponent is going to do and then chooses
the action that maximizes these expected utilities. One of Skyrms’ key insights
is that this calculation may be informative to the players, and if a player believes
that there is any possibility that the process of deliberation may ultimately lead
her to a different decision, then she will not act until her deliberation process
has reached a stable state16.

Deliberation is understood as an iterative process that modifies the players’
opinions about the strategies that they will choose (at the end of the delib-
eration). For each player, a state of indecision is a probability measure on
that player’s set of strategies—i.e., an element of Δ(Si) for i = a, b. Note that
each state of indecision is a mixed strategy. However, the interpretation of the
mixed strategies differs from the one discussed in Sect. 2.1. In this model, the
interpretation is that the state of indecision for a player i at any given stage
of the deliberation process is the mixed strategy that player i would choose if
the player stopped deliberating. It is the players’ states of indecision that evolve
during the deliberation process.
13 Since beliefs need not be factive, I do not force RB

G to be reflexive.
14 However, see [1] for interesting new issues that arise with more than two players.
15 See [72], pgs. 44 – 52 and Chap. 5.
16 See [72], Chap. 4.
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Let pa ∈ Δ(Sa) and pb ∈ Δ(Sb) be states of indecision for a and b, respec-
tively, and assume that the states of indecision are common knowledge. One
consequence of this assumption is that the players can calculate the expected
utilities of their strategies (using their opponent’s state of indecision). For exam-
ple, for sj ∈ Sa, we have

EUa(sj) =
∑

tk∈Sb

pb(tk)ui(sj , tk),

and similarly for b. The status quo is the expected utility of the current state
of indecision:

SQa =
∑

sj∈Sa

pa(sj) · EUa(sj) SQb =
∑

tk∈Sb

pb(tk) · EUb(tk).

Once the expected utilities are calculated, the players modify their states of
indecision so that they believe more strongly that they will choose strategies
with higher expected utility than the status quo. Players can use various rules
to update their states of indecision accordingly. In general, any dynamical rule
can be used so long as the rule seeks the good in the following sense:

1. The rule raises the probability of a strategy only if that strategy has expected
utility greater than the status quo.

2. The rule raises the sum of the probabilities of all strategies with expected
utility greater than the status quo (if any).

Deliberation reaches a fixed-point when the dynamical rule no longer changes
the state of indecision. It is not hard to see that all dynamical rules that seek
the good have, as fixed-points, states of indecision in which the expected utility
of the status quo is maximal. To illustrate Skyrms’ model of deliberation with
an example, I give the details of one of the rules discussed in [72]:

Nash dynamics. The covetability of a strategy s for player i is calculated as
follows: covi(s) = max(EUi(s) − SQi, 0). Then, Nash dynamics transform a
probability p ∈ Δ(Si) into a new probability p′ ∈ Δ(Si) as follows. For each
s ∈ Si:

p′(s) =
k · p(s) + covi(s)
k +

∑
s∈Si

cov(s)
,

where k > 0 is the “index of caution” (the higher the k, the more slowly the
decision maker raises the probability of strategies that have higher expected
utility than the status quo).

In addition to assuming that the initial states of indecision are common
knowledge, it is assumed that each player can emulate the other’s calculations,
and that each player is, in fact, using the same dynamical rule to modify her
state of indecision. Given that all of this is common knowledge, the states of
indecision resulting from one round of the deliberation process will, again, be
common knowledge and the process can continue until a fixed-point is reached.
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A simple example will make this more concrete. Consider the following game
between two players, Ann (a) and Bob (b)17.

Ann

Bob
l r

u 2, 1 0, 0

d 0, 0 1, 2

There are two pure Nash equilibria ((u, l) and (d, r)) and one mixed-strategy
Nash equilibrium where Ann plays u with probability 2/3 and Bob plays l with
probability 1/3. Suppose that the initial state of indecision is:

pa(u) = 0.2, pa(d) = 0.8 and pb(l) = 0.9, pb(r) = 0.1.

Since both players have access to each other’s state of indecision, they can cal-
culate the expected utilities of each of their strategies:

EUa(u) = 2 · 0.9 + 0 · 0.1 = 1.8
EUa(d) = 0 · 0.9 + 1 · 0.1 = 0.1
EUb(l) = 1 · 0.2 + 0 · 0.8 = 0.2
EUb(r) = 0 · 0.2 + 2 · 0.8 = 1.6

If the players simply choose the strategy that maximizes their expected utilities,
then the outcome of the interaction will be the off-equilibrium profile (u, r).
However, the process of deliberation will pull the players towards an equilibrium.
The status quo for each player is:

SQa = 0.2 · EUa(u) + 0.8 · EUa(d) = 0.2 · 1.8 + 0.8 · 0.1 = 0.44
SQb = 0.4 · EUb(l) + 0.6 · EUb(r) = 0.9 · 0.2 + 0.1 · 1.6 = 0.34

The covetabilities for each of the strategies are:

cova(u) = max(1.8 − 0.44, 0) = 1.36
cova(d) = max(0.34 − 0.44, 0) = 0
covb(l) = max(0.2 − 0.34, 0) = 0
covb(r) = max(1.6 − 0.34, 0) = 1.26

Now, the new states of indecision p′
a and p′

b are calculated using Nash dynamics
(for simplicity, I assume that the index of caution is k = 1):

17 This game is called the “Battle of the Sexes”. The underlying story is that Ann
and Bob are married and are deciding where to go for dinner. Ann would rather eat
Indian food than French food, whereas Bob prefers French food to Indian food. They
both prefer to eat together rather than separately. The outcome (u, l) is that they
go to an Indian restaurant together; (d, r) is the outcome that they go to a French
restaurant together; and (u, r) and (d, l) are outcomes where they go to different
restaurants.



16 E. Pacuit

p′
a(u) = pA(u)+cova(u)

1+(cova(u)+cova(d))
= 0.2+1.36

1+1.36 = 0.221183800623

p′
a(d) = pa(d)+cova(d)

1+(cova(u)+cova(d))
= 0.8+0

1+1.36 = 0.778816199377

p′
b(l) = pb(l)+covb(l)

1+(covb(l)+covb(r))
= 0.9+0

1+1.26 = 0.87787748732

p′
b(r) = pb(r)+covb(r)

1+(covb(l)+covb(r))
= 0.1+1.26

1+1.26 = 0.12212251268

The new states of indecision are now p′
a and p′

b, and we can continue this process.
On can visualize this process by the following graph, in which the x-axis is the
probability that Bob will choose r and the y-axis is the probability that Ann
will choose u18.

The deliberation reaches a fixed-point with Ann and Bob deciding to play their
part of the Nash equilibrium (u, l). In fact, Skyrms shows that under the strong
assumptions of common knowledge noted above and assuming that all players
use dynamical rules that seek the good, when the process of deliberation reaches
a fixed-point, the states of indecision will form a Nash equilibrium19.

4 Strategic Reasoning as a Solution Concept

A key aspect of the iterative removal of dominated strategies is that at each stage
of the process, strategies are identified as either “good” or “bad”. The “good”
strategies are those that are not strictly/weakly dominated, while the “bad” ones
are weakly/strictly dominated. If the intended interpretation of the iterative
procedure that removes weakly/strictly dominated strategies is to represent the
players “deliberation” about what they are going to do, then this is a significant
assumption. The point is that while a player is deliberating about what to do in a
18 This graph was produced by a python program with an index of caution k = 25

and a satisficing value of 0.01. A satisficing value of 0.01 means that the process
stops when the covetabilities fall below 0.01. Contact the author for the code for
this simulation.

19 The outcome may end in a mixed-strategy Nash equilibrium.
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game situation, there may be strategies that cannot yet be classified as “good” or
“bad”. These are the strategies that the player needs to think about more before
deciding how to classify them. Building on this intuition, the reasoning-based
expected utility procedure of [32] is intended to model the reasoning procedure
that a Bayesian rational player would follow as she decides what to do in a game.

At each stage of the procedure, strategies are categorized. A categoriza-
tion is a ternary partition of the players’ strategies Si, rather than the usual
binary partition in terms of which strategies are strictly/weakly dominated and
which are not. The key idea is that during the reasoning process, strategies
are accumulated, deleted or neither. Formally, for each player i, let S+

i ⊆ Si

denote the set of strategies that have been accumulated and S−
i ⊆ Si the set of

strategies that have been deleted. The innovative aspect of this procedure is that
S+

i ∪ S−
i need not equal Si. So, strategies in Si but not in S+

i ∪ S−
i are classi-

fied as “neither accumulated nor deleted”. The reasoning-based expected utility
procedure proceeds as follows: The procedure is defined by induction. Initially,
let Di,0 = Δ(S−i), the set of all probability measures over the strategies of i’s
opponents, and let S+

i,0 = S−
i,0 = ∅. Then, for n ≥ 0, we have:

– Accumulate all strategies for player i that maximize expected utility for every
probability in Di. Formally,

S+
i,n+1 = {si ∈ Si,n | MEU(si, π) for all π ∈ Di,n}.

– Delete all strategies for player i that do not maximize probability against any
probability distribution

S−
i,n+1{si ∈ Si,n | there is no π ∈ Di,n such that MEU(si, π)}.

– Keep all probability measures that assign positive probability to opponents
playing accumulated strategies and zero probability to deleted strategies. For-
mally, let Di,n+1 be all the probability measures from Di,n that assign positive
probability to any strategy profile from Πj �=iS

+
i,n+1 and 0 probability to any

strategy profile from Πj �=iS
−
i,n+1.

The following example from [32] illustrates this procedure:

Ann

Bob
l r

u 1, 1 1, 1

m1 0, 0 1, 0

m2 2, 0 0, 0

d 0, 2 0, 0

For Bob, strategy l is accumulated since it maximizes expected utility with
respect to every probability on Ann’s strategies (note that l weakly dominates r).
For Ann, d is deleted, as it does not maximize probability with respect to any
probability measure on Bob’s strategies (note that d is strictly dominated by u).
Thus, we have
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S+
a,1 = ∅

S−
a,1 = {d}

S+
b,1 = {l}

S−
b,1 = ∅

In the next round, Ann must consider only probability measures that assign
positive probability to Bob playing l, and Bob must consider only probability
measures assigning probability 0 to Ann playing d. This means that r is accu-
mulated for Bob20 and m1 is deleted21 for Ann:

S+
a,2 = ∅

S−
a,2 = {b,m1}

S+
b,2 = {l, r}

S−
b,2 = ∅

At this point, the procedure reaches a fixed-point with Bob accumulating
l and r and Ann deleting d and m1. The interpretation is that Bob has good
reason to play either l or r and, thus, must pick one of them. All that Ann was
able to conclude is that d and m1 are not good choices.

The general message is that players may not be able to identify a unique
rational strategy by strategic reasoning alone (as represented by the iterative
procedure given above). There are two reasons why this may happen. First, a
player may accumulate more than one strategy, and so the player must “pick”22

one of them. This is what happened with Bob. Given the observation that Ann
will not choose b, both of the choices l and r give the same payoff, and so Bob
must pick one of them23. Second, players may not have enough information to
identify the “rational” choices. Without any information about which of l or r
Bob will pick, Ann cannot come to a conclusion about which of u or m2 she
should choose. Thus, neither of these strategies can be accumulated. Ann and
Bob face very different decision problems. No matter which choice Bob ends up
picking, his choice will be rational (given his belief that Ann will not choose
irrationally). However, since Ann lacks a probability over how Bob will pick, she
cannot identify a rational choice.

5 Reasoning to a Game Model

The game models introduced in Sect. 2.2 can be used to describe the infor-
mational context of a game. A natural question from the perspective of this
20 If Bob assigns probability 0 to Ann playing d, then the strategies l and r give exactly

the same payoffs.
21 The only probability measures such that m1 maximizes expected utility are the ones

that assign probability 1 to Bob playing r.
22 See [56] for an interesting discussion of “picking” and “choosing” in decision theory.
23 Of course, Bob may think it is possible that Ann is irrational, and so she could

choose the strictly dominated strategy d. Then, depending on how likely Bob thinks
it is that Ann will choose irrationally, l may be the only rational choice for him. In
this chapter, we set aside such considerations.
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chapter is: How do the players arrive at a particular informational context? In
this section, I introduce different operations that transform epistemic-plausibility
models. These operations are intended to represent different ways a rational
agent’s knowledge and beliefs can change over time. Then, I show how to use
these operations to describe how the players’ knowledge and beliefs change as
they each deliberate about what they are going to do in a game situation.

5.1 Modeling Information Changes

The simplest type of informational change treats the source of the information as
infallible. The effect of finding out from an infallible source that ϕ is true should
be clear: Remove all states that do not satisfy ϕ. In the epistemic logic literature,
this operation is called a public announcement [37,65]. However, calling this an
“announcement” is misleading since, in this chapter, I am not modeling any
form of “pre-play” communication. The “announcements” are formulas that the
players incorporate into the current epistemic state.

Definition 4 (Public Announcement). Suppose that M = 〈W, {∼i}i∈A, V 〉
is an epistemic model and ϕ is a formula (in the language LK). After all the
agents find out that ϕ is true (i.e., ϕ is publicly announced), the resulting
model is M!ϕ = 〈W !ϕ, {∼!ϕ

i }, V !ϕ〉, where W !ϕ = {w ∈ W | M, w |= ϕ}; ∼!ϕ
i =∼i

∩ W !ϕ × W !ϕ for all i ∈ A; and σ!ϕ is the restriction of σ to W !ϕ.

The models M and Mϕ describe two different moments in time, with M describ-
ing the current or initial information state of the agents and M!ϕ the information
state after all the agents find out that ϕ is true. This temporal dimension can
also be represented in the logical language with modalities of the form [!ϕ]ψ.
The intended interpretation of [!ϕ]ψ is “ψ is true after all the agents find out
that ϕ is true”, and truth is defined as

– M, w |= [!ϕ]ψ iff [if M, w |= ϕ then M!ϕ, w |= ψ].

A public announcement is only one type of informative action. For the other
transformations discussed in this chapter, while the agents do trust the source of
ϕ, they do not treat it as infallible. Perhaps the most ubiquitous policy is con-
servative upgrade (↑ϕ), which lets the agent only tentatively accept the incoming
information ϕ by making the best ϕ-worlds the new minimal set and keeping
the old plausibility ordering the same on all other worlds. A second operation
is radical upgrade (⇑ϕ), which moves all the ϕ worlds before all the ¬ϕ worlds
and otherwise keeps the plausibility ordering the same. Before giving the formal
definition, we need some notation: Given an epistemic-plausibility model M, let
[[ϕ]]wi = {x | M, x |= ϕ} ∩ [w]i denote the set of all ϕ-worlds that i considers
possible at state w and besti(ϕ,w) = Min�i

([[ϕ]]wi ) be the best ϕ-worlds at state
w, according to agent i.

Definition 5 (Conservative and Radical Upgrade). Given an epistemic-
plausibility model M = 〈W, {∼i}i∈A, {i}i∈A, σ〉 and a formula ϕ ∈ LKB, the
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conservative/radical upgrade of M with ϕ is the model M∗ϕ = 〈W ∗ϕ, {∼∗ϕ
i

}i∈N , {∗ϕ
i }i∈N , V ∗ϕ〉 10:44 AM 9/11/2015 with W ∗ϕ = W , for each i,

∼∗ϕ
i =∼i, V ∗ϕ = V where ∗ =↑,⇑. The relations ↑ϕ

i and ⇑ϕ
i are the smallest

relations satisfying:

Conservative Upgrade

1. If v ∈ besti(ϕ,w) then v ≺↑ϕ
i x for all x ∈ [w]i; and

2. for all x, y ∈ [w]i − besti(ϕ,w), x ↑ϕ
i y iff x i y.

Radical Upgrade

1. for all x ∈ [[ϕ]]wi and y ∈ [[¬ϕ]]wi , set x ≺⇑ϕ
i y;

2. for all x, y ∈ [[ϕ]]wi , set x ⇑ϕ
i y iff x i y; and

3. for all x, y ∈ [[¬ϕ]]wi , set x ⇑ϕ
i y iff x i y. �

As the reader is invited to check, a conservative upgrade is a special case of
a radical upgrade: the conservative upgrade of ϕ at w is the radical upgrade of
besti(ϕ,w). A logical analysis of these operations includes formulas of the form
[↑ϕ]ψ intended to mean “after everyone conservatively upgrades with ϕ, ψ is
true” and [⇑ϕ]ψ intended to mean “after everyone radically upgrades with ϕ, ψ
is true”. The definition of truth for these formula is as expected:

– M, w |= [↑ϕ]ψ iff M↑ϕ, w |= ψ
– M, w |= [⇑ϕ]ψ iff M⇑ϕ, w |= ψ

The main issue of interest in this chapter is the limit behavior of iterated
sequences of announcements. That is, what happens to the epistemic-plausibility
models in the limit? Do the players’ knowledge and beliefs stabilize or keep
changing in response to the new information?

An initial observation is that iterated public announcement of any formula
ϕ in an epistemic-plausibility model must stop at a limit model where either
ϕ or its negation is true at all states (see [14] for a discussion and proof). In
addition to the limit dynamics of knowledge under public announcements, there
is the limit behavior of beliefs under soft announcements (radical/conservative
upgrades). See [14] and [21, Sect. 4] for general discussions. I conclude this brief
introduction to dynamic logics of knowledge and beliefs with an example of the
type of dynamics that can arise.

Let M1 be an initial epistemic-plausibility model (for a single agent) with
three states w1, w2 and w3 satisfying r, q and p, respectively. Suppose that the
agent’s plausibility ordering is w1 ≺ w2 ≺ w3. Then, the agent believes that r.
Consider the formula

ϕ := (r ∨ (B¬rq ∧ p) ∨ (B¬rp ∧ q)).

This is true at w1 in the initial model. Since [[ϕ]]M1 = {w3, w1}, we have M⇑ϕ
1 =

M2. Furthermore, [[ϕ]]M2 = {w2, w1}, so M⇑ϕ
2 = M3. Since M3 is the same

model as M1, we have a cycle:
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M

rw1

qw2

pw3

M1

⇑ϕ
=⇒

rw1

pw3

qw2

M2

⇑ϕ
=⇒

rw1

qw2

pw3

M3

⇑ϕ
=⇒ · · ·

In the above example, the player’s conditional beliefs keep changing during
the update process. However, the player’s non-conditional beliefs remain fixed
throughout the process. In fact, Baltag and Smets have shown that every iterated
sequence of truthful radical upgrades stabilizes all non-conditional beliefs in the
limit [14]. See [12,38,58] for generalizations and broader discussions about the
issues raised in this section.

5.2 Rational Belief Change During Deliberation

This section looks at the operations that transform the informational context
of a game as the players deliberate about what they should do in a game situa-
tion. The main idea is that in each informational context (viewed as describing
one stage of the deliberation process), the players determine which options are
“optimal” and which options the players ought to avoid (guided by some choice
rule). This leads to a transformation of the informational context as the players
adopt the relevant beliefs about the outcome of their practical reasoning. The
different types of transformation mentioned above then represent how confident
the player(s) (or modeler) is (are) in their assessment of which outcomes are
rational. In this new informational context, the players again think about what
they should do, leading to another transformation. The main question is: Does
this process stabilize?

The answer to this question will depend on a number of factors. The general
picture is

M0
τ(D0)=⇒ M1

τ(D1)=⇒ M2
τ(D2)=⇒ · · · τ(Dn)=⇒ Mn+1=⇒· · ·

where each Di is some proposition describing the “rational” options and τ is a
model transformer (e.g., public announcement, radical or conservative upgrade).
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Two questions are important for the analysis of this process. First, what type
of transformations are the players using? Second, where do the propositions Di

come from?
Here is a baseline result from [18]. Consider a propositional formula Rati

that is intended to mean “i’s current action is not strictly dominated in the set
of actions that the agent currently considers possible”. This is a propositional
formula whose valuation changes as the model changes (i.e., as the agent removes
possible outcomes that are strictly dominated). An epistemic model is full for a
game G provided the map σ from states to profiles is onto. That is, all outcomes
are initially possible.

Theorem 1 (van Benthem [18]). The following are equivalent for all states
w in an epistemic model that is full for a finite game G:

1. The outcome σ(w) survives iterated removal of strictly dominated strategies.
2. Repeated successive public announcements of

∧
i Rati for the players sta-

bilize at a submodel whose domain contains w.

This theorem gives a precise sense of how the process of iteratively removing
strictly dominated strategies can be viewed as a process of deliberation (cf.
the discussion in Sect. 2.1). See [4] for a generalization of this theorem focusing
on arbitrary “optimality” propositions satisfying a monotonicity property and
arbitrary games. A related analysis can be found in [59], which provides an
in-depth study of the upgrade mechanisms that match game-theoretic analyses.

5.3 Rational Belief Change During Game Play

The importance of explicitly modeling belief change over time becomes even more
evident when considering extensive games. An extensive game makes explicit the
sequential structure of the choices in a game. Formally, an extensive game is a
tuple 〈N,T, τ, {ui}i∈N 〉, where

– N is a finite set of players;
– T is a tree describing the temporal structure of the game situation: Formally,

T consists of a set of nodes and an immediate successor relation �. Let O
denote the set of leaves (nodes without any successors) and V the remaining
nodes. The edges at a decision node v ∈ V are each labeled with an action.
Let A(v) denote the set of actions available at v. Let � be the transitive
closure of �.

– τ is a turn function assigning a player to each node v ∈ V (let Vi = {v ∈
V | τ(v) = i}.

– ui : O → R is the utility function for player i assigning real numbers to
outcome nodes.
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The following is an example of an extensive game:

1
v1

2
v2

1
v3

1, 1
o1

0, 3
o2

5, 2
o3

4, 4
o4

I1 I2 I3

O
1

O
2

O
3

This is an extensive game with V = {v1, v2, v3}, O = {o1, o2, o3, o4}, τ(v1) =
τ(v3) = 1 and τ(v2) = 2, and, for example, u1(o2) = 0 and u2(o2) = 3. Further-
more, we have, for example, v1 � o1, v1 � o4, and A(v1) = {I1, O1}.

A strategy for player i in an extensive game is a function σ from Vi to
nodes such that v �→ σ(v). Thus, a strategy prescribes a move for player i at
every possible node where i moves. For example, the function σ with σ(v1) = O1

and σ(v3) = I3 is a strategy for player i, even though, by following the strategy, i
knows that v3 will not be reached. The main solution concept for extensive games
is the subgame perfect equilibrium [71], which is calculated using the “backward
induction (BI) algorithm”:

BI Algorithm: At terminal nodes, players already have the nodes marked with
their utilities. At a non-terminal node n, once all daughters are marked, the
node is marked as follows: determine whose turn it is to move at n and find the
daughter d that has the highest utility for that player. Copy the utilities from d
onto n.

In the extensive game given above, the BI algorithm leads to the following mark-
ings:

1

1, 1
v1

2

0, 3
v2

1

5, 2
v3

1, 1
o1

0, 3
o2

5, 2
o3

4, 4
o4

I1 I2 I3

O
1

O
2

O
3

The BI strategy for player 1 is σ(v1) = O1, σ(v3) = O3 and for player 2 it is
σ(v2) = O2. If both players follow their BI strategy, then the resulting outcome
is o1 (v1 �→ o1 is called the BI path).

Much has been written about backward induction and whether it follows from
the assumption that there is common knowledge (or common belief) that all
players are rational24. In the remainder of this section, I explain how epistemic-
plausibility models and the model transformations defined above can make this
24 The key papers include [8,9,16,39,75]. See [61] for a complete survey of the literature.
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more precise. The first step is to describe what the players believe about the
strategies followed in an extensive game and how these beliefs may change during
the play of the game. I sidestep a number of delicate issues in the discussion below
(see [24] for a clear exposition). My focus is on the players’ beliefs about which
outcome of the game (i.e., the terminal nodes) will be realized.

Suppose that a, a′ ∈ A(v) for some v ∈ Vi. We say move a strictly domi-
nates move a′ in beliefs (given some epistemic-plausibility model), provided
that all of the most plausible outcomes reachable by playing a at v are pre-
ferred to all the most plausible outcomes reachable by playing a′. Consider an
initial epistemic-plausibility model in which the states are the four outcomes
{o1, o2, o3, o4}, and both players consider all outcomes equally plausible (I write
w ≈ v if w and v are equally plausible—i.e., w � v and v � w). Then, at v2, O2

is not strictly dominated over I2 in beliefs since the nodes reachable by I2 are
{o3, o4}, both are equally plausible, and player 2 prefers o4 over o2, but o2 over
o3. However, since player 1 prefers o3 to o4, O3 strictly dominates I3 in beliefs.
Suppose that R is interpreted as “no player chooses an action that is strictly
dominated in beliefs”. Thus, in the initial model, in which all four outcomes are
equally plausible, the interpretation of R is {o1, o2, o3}. We can now ask what
happens to the initial model if this formula R is iteratively updated (for example,
using radical upgrade).

o1 ≈ o2 ≈ o3 ≈ o4 o1 ≈ o2 ≈ o3 ≺ o4 o1 ≈ o2 ≺ o3 ≺ o4

o1 ≺ o2 ≺ o3 ≺ o4

⇑R=⇒ ⇑R=⇒
⇑R⇐=

This sequence of radical upgrades is intended to represent the “pre-play” delib-
eration leading to a model in which there is common belief that the outcome of
the game will be o1. But, what justifies both players deliberating in this way to
a common epistemic-plausibility model?

The correctness of the deliberation sequence is derived from the assump-
tion that there is common knowledge that the players are “rational” (in the
sense, that players will not knowingly choose an option that will give them lower
payoffs). But there is a potential problem: Under common knowledge that the
players are rational (i.e., make the optimal choice when given the chance), player
1 must choose O1 at node v1. The backward induction argument for this is based
on what the players would do if player 1 chose I1. But, if player 1 did, in fact,
choose I1, then common knowledge of rationality is violated (player 1’s choice
would be “irrational”). Thus, it seems that common knowledge of rationality,
alone, cannot be used to show that the players will make choices consistent with
the backward induction path. An additional assumption about how the players’
beliefs may change during the course of the game is needed. The underlying
assumption is that the players are assumed to be unwaveringly optimistic: No
matter what is observed, players maintain the belief that everyone is rational at
future nodes.

There are many ways to formalize the above intuition that players are “unwa-
veringly optimistic”. I briefly discuss the approach from [15] since it touches on
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a number of issues raised in this chapter. The key idea is to encode the players’
strategies as conditional beliefs in an epistemic-plausibility model. For example,
consider the following epistemic-plausibility model on the four outcomes of the
above extensive game:

o4

w1

o2

w3

o3

w2

o1

w4

2

1

2

2

1

11

12

It is assumed that there are atomic propositions for each possible outcome.
Formally, suppose that there is an atomic proposition oi for each outcome oi

(assume that oi is true only at state oi). The non-terminal nodes v ∈ V are then
identified with the set of outcomes reachable from that node:

v :=
∨

v�o

o.

In the above model, both players 1 and 2 believe that o1 is the outcome that
will be realized, and the players initially rule out none of the possible outcomes.
That is, the model satisfies the “open future” assumption of [15] (none of the
players have “hard” information that an outcome is ruled out). The fact that
player 1 is committed to the BI strategy is encoded in the conditional beliefs
of the player: both Bv1

1 o1 and Bv3
1 o3 are true in the above model. For player 2,

Bv2
2 (o3 ∨ o4) is true in the above model, which implies that player 2 plans to

choose action I2 at node v2.
The dynamics of actual play is then modeled as a sequence of public

announcements (cf. Definition 4). The players’ beliefs change as they learn (irrev-
ocably) which of the nodes in the game are reached. This process produces a
sequence of epistemic-plausibility models. For example, a possible sequence of
the above game starting with the initial model M given above is:

M = M!v1 ;M!v2 ;M!v3 ;M!o4

The assumption that the players are “incurably optimistic” is represented as
follows: No matter what true formula is publicly announced (i.e., no matter how
the game proceeds), there is common belief that the players will make a rational
choice (when it is their turn to move). Formally, this requires introducing an
arbitrary public announcement operator [11]: M, w |= [ ! ]ϕ provided that, for
all formulas25 ψ, if M, w |= ψ then M, w |= [!ψ]ϕ. Then, there is common stable
25 Strictly speaking, it is all epistemic formulas. The important point is to not include

formulas with the [ ! ] operator in them.
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belief in ϕ provided that [ ! ]CBϕ is true, where CBϕ is intended to mean that
there is common belief in ϕ (cf. Sect. 2.2). The key result is:

Theorem 2 (Baltag, Smets and Zvesper [15]). Common knowledge of the
game structure, and of open future and common stable belief in dynamic ratio-
nality, together, imply common belief in the backward induction outcome.

6 Concluding Remarks

This chapter has not focused on strategies per se, but, rather, on the process of
“rational deliberation” that leads players to adopt a particular “plan of action”.
Developing formal models of this process is an important and rich area of research
for anyone interested in the foundations of game theory.

The economist’s predilection for equilibria frequently arises from the
belief that some underlying dynamic process (often suppressed in formal
models) moves a system to a point from which it moves no further.
fdsasdf [22, pg. 1008]

Many readers may have been expecting a formal account of the players’
practical reasoning in game-theoretic situations. Instead, this chapter presented
three different frameworks in which the “underlying dynamic process” men-
tioned in the above quote is made explicit. None of the frameworks discussed
in this chapter are intended to model the players’ practical reasoning. Rather,
they describe deliberation in terms of a sequence of belief changes about what
the players are doing or what their opponents may be thinking. This raises an
important question: In what sense do the frameworks introduced in this chapter
describe the players’ strategic reasoning? I will not attempt a complete answer
to this question here. Instead, I conclude with brief discussions of two related
questions.

6.1 What Are the Differences and Similarities Between the
Different Models of Strategic Reasoning?

The three frameworks presented in this paper offer different perspectives on the
standard game-theoretic analysis of strategic situations. To compare and con-
trast these different formal frameworks, I will illustrate the different perspectives
on the following game from [70, Example 8, pg. 305]:

Ann

Bob
l r

u 1, 1 1, 0

d 1, 0 0, 1
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In the above game, d is weakly dominated by u for Ann. If Bob knows that
Ann is rational (in the sense that she will not choose a weakly dominated strat-
egy), then he can rule out option d. In the smaller game, action r is now strictly
dominated by l for Bob. If Ann knows that Bob is rational and that Bob knows
that she is rational (and so, rules out option d), then she can rule out option r.
Assuming that the above reasoning is transparent to both Ann and Bob, it is
common knowledge that Ann will play u and Bob will play l. But now, what is
the reason for Bob to rule out the possibility that Ann will play d? He knows
that Ann knows that he is going to play l, and both u and d maximize Ann’s
expected utility with respect to the belief that Bob will play l.

Many authors have pointed out puzzles surrounding an epistemic analysis
of iterated removal of weakly dominated strategies [5,27,70]. The central issue
is that the assumption of common knowledge of rationality seems to conflict
with the logic of iteratively removing weakly dominated strategies. The models
introduced in this paper each provide a unique perspective on this issue. Note
that the idea is not to provide a new “epistemic foundation” for iterated removal
of weakly dominated strategies. Both [27] and [41] have convincing results here.
Rather, the goal is to offer a different perspective on the existing epistemic
analyses.

I start with Skyrms’ model of rational deliberation from Sect. 3. There are
two Nash equilibria: the pure strategy Nash equilibrium (u, l) and the mixed
Nash equilibrium, where Ann plays u and d each with probability 0.5 and Bob
plays strategy l. Rational deliberation with any dynamical rule that “seeks the
good” (such as the Nash dynamics) is guaranteed to lead the players to one of the
two equilibria. However, there is an important difference between the two Nash
equilibria from the point of view of rational deliberators. Through deliberation,
the players will almost always end up at the pure-strategy equilibrium. That
is, unless the players start deliberating at the mixed-strategy Nash equilibrium,
deliberation will lead the players to the pure-strategy equilibrium. This makes
sense since playing u will always give a greater expected utility for Ann than
any mixed strategy, as long as there is a chance (no matter how small) that Bob
will play r. I can illustrate this point by showing the deliberational path that
is generated if the players start from the following states of indecision: (1) Ann
is playing d with probability 1 and Bob is playing l with probability 1; (2) Ann
is playing u and l with probability 0.5 and Bob is playing l with probability
0.95; and (3) Ann is playing u with probability 0.5 and Bob is playing r with
probability 0.526.
26 These graphs were generated by a python program using a satisficing value of 0.001

and an index of caution of 50. The reason that the simulations stopped before reach-
ing the pure Nash equilibrium is because the simulation is designed so that deliber-
ation ends when the covetabilities fall below the satisficing value.
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The second perspective comes from the reasoning-based expected utility pro-
cedure discussed in Sect. 4. For Ann, u is accumulated in the first round since
it maximizes expected utility with respect to all probability measures on Bob’s
strategies. No other strategies are deleted or accumulated. Thus, the procedure
stabilizes in the second round without categorizing any of Bob’s strategies or
Ann’s strategy d. So, u is identified as a “good” strategy, but d is not classified
as a “bad” strategy. Furthermore, neither of Bob’s strategies can be classified as
“good” or “bad”.

Finally, I turn to the approach outlined in Sect. 5. An analysis of this game is
discussed in [59]. In that paper, it is shown that certain deliberational sequences
for the above game do not stabilize. Of course, whether a deliberational sequence
stabilizes depends crucially on which model transformations are used. Indeed, a
new model transformation, “suspend judgement”, is used in [59] to construct a
deliberational sequence that does not stabilize. The general conclusion is that
the players may not be able to deliberate their way to an informational context
in which there is common knowledge of rationality (where rationality includes
the assumption that players do not play weakly dominated strategies).

Each of the different frameworks offers a different perspective on strategic
reasoning in games. The perspectives are not competing; rather, they highlight
different aspects of what it means to reason strategically. However, more work
is needed to precisely characterize the similarities and differences between these
different models of rational deliberation in games. Such a comprehensive com-
parison will be left for another paper.

6.2 What Role Do Higher-Order Beliefs Play in a General Theory
of Rational Decision Making in Game Situations?

Each model of deliberation discussed in this chapter either implicitly or explicitly
made assumptions about the players’ higher-order beliefs (see Sect. 2.2). In the
end, I am interested only in what (rational) players are going to do. This, in
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turn, depends only on what the players believe the other players are going to do.
A player’s belief about what her opponents are thinking is relevant only because
they shape the players first-order beliefs about what her opponents are going to
do. Kadane and Larkey explain the issue nicely:

“It is true that a subjective Bayesian will have an opinion not only
on his opponent’s behavior, but also on his opponent’s belief about his
own behavior, his opponent’s belief about his belief about his oppo-
nent’s behavior, etc. (He also has opinions about the phase of the moon,
tomorrow’s weather and the winner of the next Superbowl). However,
in a single-play game, all aspects of his opinion except his opinion about
his opponent’s behavior are irrelevant, and can be ignored in the analysis
by integrating them out of the joint opinion.”
as [46, pg. 239, my emphasis]

A theory of rational decision making in game situations need not require
that a player considers all of her higher-order beliefs in her decision-making
process. The assumption is only that the players recognize that their opponents
are “actively reasoning” agents. Precisely “how much” higher-order information
should be taken into account in such a situation is a very interesting, open
question (cf. [47,64]).

There is quite a lot of experimental work about whether or not humans
take into account even second-order beliefs (e.g., a belief about their opponents’
beliefs) in game situations (see, for example, [30,44,73]). It is beyond the scope
of this chapter to survey this literature here (see [29] for an excellent overview).
Of course, this is a descriptive question, and it is very much open how such
observations should be incorporated into a general theory of rational deliberation
in games (cf. [53,54,77]).

∗ ∗ ∗ ∗ ∗ ∗ ∗
A general theory of rational deliberation for game and decision theory is a

broad topic. It is beyond the scope of this chapter to discuss the many different
aspects and competing perspectives on such a theory27. A completely devel-
oped theory will have both a normative component (What are the normative
principles that guide the players’ thinking about what they should do?) and a
descriptive component (Which psychological phenomena best explain discrepan-
cies between predicted and observed behavior in game situations?). The main
challenge is to find the right balance between descriptive accuracy and norma-
tive relevance. While this is true for all theories of individual decision making
and reasoning, focusing on game situations raises a number of compelling issues.
Robert Aumann and Jacques Dreze [2, pg. 81] adeptly summarize one of the
most pressing issues when they write: “[T]he fundamental insight of game the-
ory [is] that a rational player must take into account that the players reason

27 Interested readers are referred to [72] (especially Chap. 7), and [35,50,67] for broader
discussions.
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about each other in deciding how to play”. Exactly how the players (should)
incorporate the fact that they are interacting with other (actively reasoning)
agents into their own decision-making process is the subject of much debate.
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in Game Theory for Computer Scientists, pp. 1–33. Cambridge University Press,
Cambridge (2011)

3. Apt, K.R., Zvesper, J.A.: Public announcements in strategic games with arbitrary
strategy sets. In: Proceedings of LOFT 2010 (2010)

4. Apt, K.R., Zvesper, J.A.: Public announcements in strategic games with arbitrary
strategy sets. CoRR (2010). http://arxiv.org/abs/1012.5173

5. Asheim, G., Dufwenberg, M.: Admissibility and common belief. Games Econ.
Behav. 42, 208–234 (2003)

6. Aumann, R.: Agreeing to disagree. Ann. Stat. 4, 1236–1239 (1976)
7. Aumann, R.: Correlated equilibrium as an expression of Bayesian rationality.

Econometrica 55(1), 1–18 (1987)
8. Aumann, R.: Backward induction and common knowledge of rationality. Game

Econ. Behav. 8, 6–19 (1995)
9. Aumann, R.: On the centipede game. Game Econ. Behav. 23, 97–105 (1998)

10. Aumann, R., Brandenburger, A.: Epistemic conditions for Nash equilibrium.
Econometrica 63, 1161–1180 (1995)

11. Balbiani, P., Baltag, A., van Ditmarsch, H., Herzig, A., Hoshi, T., De Lima, T.:
‘Knowable’ as ‘known after an announcement’. Rev. Symb. Log. 1(3), 305–334
(2008)

12. Baltag, A., Gierasimczuk, N., Smets, S.: Belief revision as a truth-tracking process.
In: Proceedings of the 13th Conference on Theoretical Aspects of Rationality and
Knowledge, TARK XIII, pp. 187–190, ACM (2011)

13. Baltag, A., Smets, S.: ESSLLI 2009 course: dynamic logics for interactive belief
revision (2009). Slides available online at http://alexandru.tiddlyspot.com/#
%5B%5BESSLLI09%20COURSE%5D%5D

14. Baltag, A., Smets, S.: Group belief dynamics under iterated revision: Fixed points
and cycles of joint upgrades. In: Proceedings of Theoretical Aspects of Rationality
and Knowledge (2009)

15. Baltag, A., Smets, S., Zvesper, J.A.: Keep ‘hoping’ for rationality: A solution to
the backwards induction paradox. Synthese 169, 301–333 (2009)

16. Battigalli, P., Siniscalchi, M.: Strong belief and forward induction reasoning. J.
Econ. Theor. 105, 356–391 (2002)

17. van Benthem, J.: Dynamic logic for belief revision. J. Appl. Non-Class. Log. 14(2),
129–155 (2004)

18. van Benthem, J.: Rational dynamics and epistemic logic in games. Int. Game
Theor. Rev. 9(1), 13–45 (2007)

19. van Benthem, J.: Logical Dynamics of Information and Interaction. Cambridge
University Press, Cambridge (2011)

20. van Benthem, J., Gheerbrant, A.: Game solution, epistemic dynamics and fixed-
point logics. Fundam. Inform. 100, 1–23 (2010)

http://arxiv.org/abs/1012.5173
http://alexandru.tiddlyspot.com/#%5B%5BESSLLI09%20COURSE%5D%5D
http://alexandru.tiddlyspot.com/#%5B%5BESSLLI09%20COURSE%5D%5D


Dynamic Models of Rational Deliberation in Games 31

21. van Benthem, J., Pacuit, E., Roy, O.: Towards a theory of play: A logical perspec-
tive on games and interaction. Games 2(1), 52–86 (2011)

22. Bernheim, B.D.: Rationalizable strategic behavior. Econometrica 52(4), 1007–1028
(1984)

23. Board, O.: Dynamic interactive epistemology. Games Econ. Behav. 49, 49–80
(2004)

24. Bonanno, G.: Reasoning about strategies and rational play in dynamic games. In:
van Benthem, J., Ghosh, S., Verbrugge, R. (eds.) Models of Strategic Reasoning.
LNCS, vol. 8972, pp. 34–62. Springer, Heidelberg (2015)

25. Boutilier, C.: Conditional logics for default reasoning and belief revision. Ph.D.
thesis, University of Toronto (1992)

26. Brandenburger, A.: The power of paradox: some recent developments in interactive
epistemology. Int. J. Game Theor. 35, 465–492 (2007)

27. Brandenburger, A., Friedenberg, A., Keisler, H.J.: Admissibility in games. Econo-
metrica 76(2), 307–352 (2008)

28. Chwe, M.S.-Y.: Rational Ritual. Princeton University Press, Princeton (2001)
29. Colman, A.: Cooperation, psychological game theory, and limitations of rationality

in social interactions. Behav. Brain Sci. 26, 139–198 (2003)
30. Colman, A.: Depth of strategic reasoning in games. TRENDS Cogn. Sci. 7(1), 2–4

(2003)
31. Cubitt, R.P., Sugden, R.: Common knowledge, salience and convention: A recon-

struction of David Lewis’ game theory. Econ. Philos. 19(2), 175–210 (2003)
32. Cubitt, R.P., Sugden, R.: The reasoning-based expected utility procedure. Games

Econ. Behav. 71(2), 328–338 (2011)
33. Cubitt, R.P., Sugden, R.: Common reasoning in games: A Lewisian analysis of

common knowledge of rationality. Econ. Philos. 30(03), 285–329 (2014)
34. van Ditmarsch, H., van Eijck, J., Verbrugge, R.: Common knowledge and common

belief. In: van Eijck, J., Verbrugge, R. (eds.) Discourses on Social Software, pp.
99–122. Amsterdam University Press, Amsterdam (2009)

35. Douven, I.: Decision theory and the rationality of further deliberation. Econ. Phi-
los. 18(2), 303–328 (2002)

36. Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning about Knowledge. The
MIT Press, Cambridge (1995)

37. Gerbrandy, J.: Bisimulations on planet Kripke. Ph.D. thesis, University of Ams-
terdam (1999)

38. Gierasimczuk, N.: Knowing one’s limits: Logical analysis of inductive inference.
Ph.D. thesis, Institute for Logic, Language and Information, University of Ams-
terdam (2011)

39. Halpern, J.: Substantive rationality and backward induction. Games Econ. Behav.
37(2), 425–435 (2001)

40. Halpern, J., Moses, Y.: Knowledge and common knowledge in a distributed envi-
ronment. J. ACM 37(3), 549–587 (1990)

41. Halpern, J., Pass, R.: A logical characterization of iterated admissibility. In:
Heifetz, A. (ed.) Proceedings of the Twelfth Conference on Theoretical Aspects
of Rationality and Knoweldge, pp. 146–155 (2009)

42. Harsanyi, J.: The tracing procedure: a Bayesian approach to defining a solution
for n-person noncooperative games. Int. J. Game Theor. 4, 61–94 (1975)

43. Harsanyi, J., Selten, R.: A General Theory of Equilibrium Selection in Games. The
MIT Press, Cambridge (1988)

44. Hedden, T., Zhang, J.: What do you think I think you think? strategic reasoning
in matrix games. Cognition 85, 1–36 (2002)



32 E. Pacuit

45. Jeffrey, R.: Review of the dynamics of rational deliberation by Brian Skyrms.
Philos. Phenomenol. Res. 52(3), 734–737 (1992)

46. Kadane, J.B., Larkey, P.D.: Subjective probability and the theory of games. Manag.
Sci. 28(2), 113–120 (1982)

47. Kets, W.: Bounded reasoning and higher-order uncertainty. Working paper (2010)
48. Lamarre, P., Shoham, Y.: Knowledge, certainty, belief and conditionalisation. In:

Proceedings of the International Conference on Knowledge Representation and
Reasoning, pp. 415–424 (1994)

49. Leitgeb, H.: Beliefs in conditionals vs. conditional beliefs. Topoi 26(1), 115–132
(2007)

50. Levi, I.: Feasibility. In: Bicchieri, C., Chiara, L.D. (eds.) Knowledge, Belief and
Strategic Interaction, pp. 1–20. Cambridge University Press, Cambridge (1992)

51. Lewis, D.K.: Counterfactuals. Harvard University Press, Cambridge (1973)
52. Leyton-Brown, K., Shoham, Y.: Essentials of Game Theory: A Concise Multidis-

ciplinary Introduction. Morgan & Claypool Publishers, San Rafael (2008)
53. Meijering, B., van Rijn, H., Taatgen, N., Verbrugge, R.: I do know what you think

I think: Second-order social reasoning is not that difficult. In: Proceedings of the
33rd Annual Meeting of the Cognitive Science Society, pp. 1423–1428 (2010)

54. Meijering, B., van Rijn, H., Taatgen, N., Verbrugge, R.: What eye movements can
tell about theory of mind in a strategic game. PLoS ONE 7(9), e45961 (2012)

55. Monderer, D., Samet, D.: Approximating common knowledge with common beliefs.
Games Econ. Behav. 1, 170–190 (1989)

56. Morgenbesser, S., Ullmann-Margalit, E.: Picking and choosing. Soc. Res. 44(4),
757–785 (1977)

57. Pacuit, E.: Dynamic epistemic logic I: Modeling knowledge and beliefs. Philos.
Compass 8(9), 798–814 (2013)

58. Pacuit, E.: Dynamic epistemic logic II: Logics of information change. Philos. Com-
pass 8(9), 815–833 (2013)

59. Pacuit, E., Roy, O.: A dynamic analysis of interactive rationality. In: Ju, S., Lang,
J., van Ditmarsch, H. (eds.) LORI 2011. LNCS, vol. 6953, pp. 244–257. Springer,
Heidelberg (2011)

60. Pearce, D.G.: Rationalizable strategic behavior and the problem of perfection.
Econometrica 52(4), 1029–1050 (1984)

61. Perea, A.: Epistemic foundations for backward induction: An overview. In: van
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Abstract. We discuss the issues that arise in modeling the notion of
common belief of rationality in epistemic models of dynamic games, in
particular at the level of interpretation of strategies. A strategy in a
dynamic game is defined as a function that associates with every infor-
mation set a choice at that information set. Implicit in this definition is
a set of counterfactual statements concerning what a player would do at
information sets that are not reached, or a belief revision policy concern-
ing behavior at information sets that are ruled out by the initial beliefs.
We discuss the role of both objective and subjective counterfactuals in
attempting to flesh out the interpretation of strategies in epistemic mod-
els of dynamic games.

Keywords: Rationality · Dynamic games · Common belief · Belief revi-
sion · Counterfactual reasoning

1 Introduction

Game theory provides a formal language for the representation of interactive sit-
uations, that is, situations where several “entities” - called players - take actions
that affect each other. The nature of the players varies depending on the context
in which the game theoretic language is invoked: in evolutionary biology (see, for
example, [47]) players are non-thinking living organisms;1 in computer science
(see, for example, [46]) players are artificial agents; in behavioral game theory
(see, for example, [26]) players are “ordinary” human beings, etc. Traditionally,
however, game theory has focused on interaction among intelligent, sophisticated
and rational individuals. For example, Aumann describes game theory as follows:

“Briefly put, game and economic theory are concerned with the interac-
tive behavior of Homo rationalis - rational man. Homo rationalis is the
species that always acts both purposefully and logically, has well-defined
goals, is motivated solely by the desire to approach these goals as closely
as possible, and has the calculating ability required to do so.” ([3], p. 35)

1 Evolutionary game theory has been applied not only to the analysis of animal and
insect behavior but also to studying the “most successful strategies” for tumor and
cancer cells (see, for example, [32]).
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This chapter is concerned with the traditional interpretation of game theory,
in particular, with what is known as the epistemic foundation program, whose
aim is to characterize, for any game, the behavior of rational and intelligent
players who know the structure of the game and the preferences of their oppo-
nents and who recognize each other’s rationality and reasoning abilities. The
fundamental problem in this literature is to answer the following two questions:
(1) under what circumstances can a player be said to be rational? and (2) what
does ‘mutual recognition’ of rationality mean? While there seems to be agree-
ment in the literature that ‘mutual recognition’ of rationality is to be interpreted
as ‘common belief’ of rationality, the issue of what it means to say that a player
is rational is not settled. Everybody agrees that the notion of rationality involves
two ingredients: choice and beliefs. However, the precise nature of their relation-
ship involves subtle issues which will be discussed below, with a focus on dynamic
games. We shall restrict attention to situations of complete information, which
are defined as situations where the game being played is common knowledge
among the players.2

There is a bewildering collection of claims in the literature concerning the
implications of rationality in dynamic games with perfect information: [4] proves
that common knowledge of rationality implies the backward induction solution,
[11] and [50] prove that common belief/certainty of rationality is not sufficient
for backward induction, [45] proves that what is needed for backward induction
is common hypothesis of rationality, [31] shows that common confidence of
rationality logically contradicts the knowledge implied by the structure of the
game, etc. The purpose of this chapter is not to review this literature3 but to
highlight some of the conceptual issues that have emerged.

In Sect. 2 we start with a brief exposition of one of the essential components
of a definition of rationality, namely the concept of belief, and we review the
notions of a model of a game and of rationality in the context of simultaneous
games. We also discuss the role of counterfactuals in the analysis of simultaneous
games. In the context of dynamic games there is a new issue that needs to be
addressed, namely what it means to choose a strategy and what the proper
interpretation of strategies is. This is addressed in Sect. 3 where we also discuss
the subtle issues that arise when attempting to define rationality in dynamic
games.4 In Sect. 4 we turn to the topic of belief revision in dynamic games and
explore the use of subjective counterfactuals in the analysis of dynamic games
with perfect information. Section 5 concludes.

The formalism is introduced gradually throughout the chapter and only to
the extent that is necessary to give precise content to the concepts discussed.
2 On the other hand, in a situation of incomplete information at least one player

lacks knowledge of some of the aspects of the game, such as the preferences of her
opponents, or the actions available to them, or the possible outcomes, etc.

3 Surveys of the literature on the epistemic foundations of game theory can be found
in [8,25,30,39,40].

4 The notion of rationality in dynamic games is also discussed in [41].
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For the reader’s convenience a table in the Appendix summarizes the notation
used and the corresponding interpretation.

The analysis is carried out entirely from a semantic perspective.5

2 Belief, Common Belief and Models of Games

For simplicity, we shall restrict attention to a qualitative notion of belief, thus
avoiding the additional layer of complexity associated with probabilistic or
graded beliefs.

Definition 1. An interactive belief structure (or multi-agent Kripke structure)
is a tuple

〈
N,Ω, {Bi}i∈N

〉
where N is a finite set of players, Ω is a set of states

and, for every player i ∈ N , Bi is a binary relation on Ω representing doxastic
accessibility: the interpretation of ωBiω

′ is that at state ω player i considers
state ω′ possible.

We denote by Bi(ω) the set of states that are compatible with player i’s beliefs
at state ω,6 that is,

Bi(ω) = {ω′ ∈ Ω : ωBiω
′}. (1)

We assume that each Bi is serial (Bi(ω) �= ∅, ∀ω ∈ Ω), transitive (if ω′ ∈ Bi(ω)
then Bi(ω′) ⊆ Bi(ω)) and euclidean (if ω′ ∈ Bi(ω) then Bi(ω) ⊆ Bi(ω′)). Seri-
ality captures the notion of consistency of beliefs, while the last two properties
correspond to the notions of positive and negative introspection of beliefs.7

Subsets of Ω are called events. We shall use E and F as variables for events.
Associated with the binary relation Bi is a belief operator on events Bi : 2Ω → 2Ω

defined by
BiE = {ω ∈ Ω : Bi(ω) ⊆ E}. (2)

Thus BiE is the event that player i believes E.8

Figure 1 shows an interactive belief structure with two players, where each
relation Bi is represented by arrows: ω′ ∈ Bi(ω) if and only if there is an arrow, for
player i, from ω to ω′. Thus, in Fig. 1, we have that B1 = {(α, α), (β, γ), (γ, γ)}
and B2 = {(α, α), (β, α), (γ, γ)}, so that, for example, B1(β) = {γ} while B2(β) =

5 For a syntactic analysis see [12,17,22,27–29]. See also [37].
6 Thus Bi can also be viewed as a function from Ω into 2Ω (the power set of Ω).

Such functions are called possibility correspondences (or information functions) in
the game-theoretic literature.

7 For more details see the survey in [8].
8 In modal logic belief operators are defined as syntactic operators on formulas. Given

a (multi-agent) Kripke structure, a model based on it is obtained by associating with
every state an assignment of truth value to every atomic formula (equivalently, by
associating with every atomic formula the set of states where the formula is true).
Given an arbitrary formula φ, one then stipulates that, at a state ω, the formula
Biφ (interpreted as ‘agent i believes that φ’) is true if and only if φ is true at every
state ω′ ∈ Bi(ω) (that is, Bi(ω) is a subset of the truth set of φ). If event E is the
truth set of formula φ then the event BiE is the truth set of the formula Biφ.
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Fig. 1. An interactive belief structure

{α}. In terms of belief operators, in this structure we have that, for instance,
B1{γ} = {β, γ}, that is, at both states β and γ Player 1 believes event {γ},
while B2{γ} = {γ}, so that Player 2 believes event {γ} only at state γ.

Let B∗ be the transitive closure of
⋃

i∈N Bi
9 and define the corresponding

operator B
∗ : 2Ω → 2Ω by

B
∗E = {ω ∈ Ω : B∗(ω) ⊆ E}. (3)

B
∗ is called the common belief operator and when ω ∈ B

∗E then at state ω
every player believes E and every player believes that every player believes E,
and so on, ad infinitum.

Figure 1 shows the relation B∗ (the transitive closure of B1 ∪ B2): in this
case we have that, for example, B

∗{γ} = {γ} and thus B1B
∗{γ} = {β, γ}, that

is, event {γ} is commonly believed only at state γ, but at state β Player 1
erroneously believes that it is common belief that {γ} is the case.10

When the relations Bi (i ∈ N) are also assumed to be reflexive (ω ∈ Bi(ω),
∀ω ∈ Ω), then they become equivalence relations and thus each Bi gives rise to a
partition of Ω. In partitional models, beliefs are necessarily correct and one can
speak of knowledge rather than belief. As [49] points out, it is methodologically
preferable to carry out the analysis in terms of (possibly erroneous) beliefs and
then - if desired - add further conditions that are sufficient to turn beliefs into
9 That is, ω′ ∈ B∗(ω) if and only if there is a sequence 〈ω1, ..., ωm〉 in Ω and a sequence

〈j1, ..., jm−1〉 in N such that (1) ω1 = ω, (2) ωm = ω′ and (3) for all k = 1, ..., m−1,
ωk+1 ∈ Bjk(ωk).

10 As can be seen from Fig. 1, the common belief relation B∗ is not necessarily euclidean,
despite the fact that the Bi’s are euclidean. In other words, in general, the notion
of common belief does not satisfy negative introspection (although it does satisfy
positive introspection). It is shown in [24] that negative introspection of common
belief holds if and only if no agent has erroneous beliefs about what is commonly
believed.
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knowledge. The reason why one should not start with the assumption of neces-
sarily correct beliefs (that is, reflexivity of the Bi’s) is that this assumption has
strong intersubjective implications:

“The assumption that Alice believes (with probability one) that Bert
believes (with probability one) that the cat ate the canary tells us nothing
about what Alice believes about the cat and the canary themselves. But
if we assume instead that Alice knows that Bert knows that the cat ate
the canary, it follows, not only that the cat in fact ate the canary, but
that Alice knows it, and therefore believes it as well.” ([49], p. 153.)

One can express locally (that is, at a state ω) the properties of knowledge by
means of the double hypothesis that, at that state, at least one player has correct
beliefs (for some i ∈ N , ω ∈ Bi(ω)) and that there is common belief that nobody
has erroneous beliefs (for all ω′ ∈ B∗(ω) and for all i ∈ N , ω′ ∈ Bi(ω′)).11 Adding
such hypotheses introduces strong forms of agreements among the players (see
[23]) and is, in general, not realistic.

Interactive belief structures can be used to model particular contexts in which
a game is played. Let us take, as a starting point, strategic-form games (also
called normal-form games), where players make their choices simultaneously (an
example is a sealed-bid auction).12

Definition 2. A strategic-form game with ordinal payoffs is a tuple〈
N, {Si,�i}i∈N

〉
where N is a set of players and, for every i ∈ N , Si is a set of

choices or strategies available to player i and �i is i’s preference relation over
the set of strategy profiles S = ×

i∈N
Si.13

11 This is a local version of knowledge (defined as true belief) which is compatible with
the existence of other states where some or all players have erroneous beliefs (see
[23], in particular Definition 2 on page 9 and the example of Fig. 2 on page 6). Note
that philosophical objections have been raised to defining knowledge as true belief;
for a discussion of this issue see, for example, [52].

12 Strategic-form games can also be used to represent situations where players move
sequentially, rather than simultaneously. This is because, as discussed later, strate-
gies in such games are defined as complete, contingent plans of action. However, the
choice of a strategy in a dynamic game is thought of as being made before the game
begins and thus the strategic-form representation of a dynamic game can be viewed
as a simultaneous game where all the players choose their strategies simultaneously
before the game is played.

13 A preference relation over a set S is a binary relation � on S which is complete or
connected (for all s, s′ ∈ S, either s � s′ or s′ � s, or both) and transitive (for all
s, s′, s′′ ∈ S, if s � s′ and s′ � s′′ then s � s′′). We write s � s′ as a short-hand
for s � s′ and s′ �� s and we write s ∼ s′ as a short-hand for s � s′ and s′ � s.
The interpretation of s �i s′ is that player i considers s to be at least as good as
s′, while s �i s′ means that player i prefers s to s′ and s ∼i s′ means that she is
indifferent between s and s′. The interpretation is that there is a set Z of possible
outcomes over which every player has a preference relation. An outcome function
o : S → Z associates an outcome with every strategy profile, so that the preference
relation over Z induces a preference relation over S.
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We shall throughout focus on ordinal preferences (rather than cardinal prefer-
ences with associated expected utility comparisons)14 for two reasons: (1) since
the game is usually hypothesized to be common knowledge among the players, it
seems far more realistic to assume that each player knows the ordinal rankings
of her opponents rather than their full attitude to risk (represented by a cardinal
utility function) and (2) our aim is to point out some general conceptual issues,
which are independent of the notion of expected utility.

The definition of a strategic-form game specifies the choices available to the
players and what motivates those choices (their preferences over the possible
outcomes); however, it leaves out an important factor in the determination of
players’ choices, namely what they believe about the other players. Adding a
specification of the players’ beliefs determines the context in which a particu-
lar game is played and this can be done with the help of an interactive belief
structure.

Definition 3. Fix a strategic-form game G =
〈
N, {Si,�i}i∈N

〉
. A model of

G is a tuple
〈
N,Ω, {Bi}i∈N , {σi}i∈N

〉
, where

〈
N,Ω, {Bi}i∈N

〉
is an interactive

belief structure (see Definition 1) and, for every i ∈ N , σi : Ω → Si is a function
that assigns to each state ω a strategy σi(ω) ∈ Si of player i.

Let σ(ω) = (σi(ω))i∈N denote the strategy profile associated with state ω. The
function σ : Ω → S gives content to the players’ beliefs. If ω ∈ Ω, x ∈ Si and
σi(ω) = x then the interpretation is that at state ω player i “chooses” strategy x.
The exact meaning of ‘choosing’ is not elaborated further in the literature: does
it mean that player i has actually played x, or that she is committed to playing
x, or that x is the output of her deliberation process? Whatever the answer, the
assumption commonly made in the literature is that player i has correct beliefs
about her chosen strategy, that is, she chooses strategy x if and only if she
believes that her chosen strategy is x. This can be expressed formally as follows.
For every x ∈ Si, let [σi = x] be the event that player i chooses strategy x, that
is, [σi = x] = {ω ∈ Ω : σi(ω) = x}. Then the assumption is that

[σi = x] = Bi [σi = x] . (4)

We will return to this assumption later on, in our discussion of dynamic
games. Figure 2 shows a strategic-form game in the form of a table, where the
preference relation �i of player i is represented numerically by an ordinal utility
function ui : S → R, that is, a function satisfying the property that ui(s) ≥
ui(s′) if and only if s �i s′. In each cell of the table the first number is the
utility of Player 1 and the second number the utility of Player 2. A model of
this game can be obtained by adding to the interactive belief frame of Fig. 1 the
following strategy assignments:

σ1(α) = b, σ1(β) = σ1(γ) = t

σ2(α) = σ2(β) = r, σ2(γ) = l. (5)

14 Cardinal utility functions are also called Bernoulli utility functions or von Neumann-
Morgenstern utility functions.
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l r

t 2 , 1 0 , 0

b 1 , 2 1 , 2

Player  2

Player
1

Fig. 2. A strategic form game

How can rationality be captured in a model? Consider the following - rather
weak - definition of rationality: player i is rational at state ω̂ if - given that she
chooses the strategy ŝi ∈ Si at state ω̂ (that is, given that σi(ω̂) = ŝi) - there is
no other strategy si ∈ Si which player i believes, at state ω̂, to be better (that is,
to yield a higher payoff) than ŝi. This can be stated formally as follows. First of
all, for every state ω, denote by σ−i(ω) the strategy profile of the players other
than i, that is, σ−i(ω) = (σ1(ω), ..., σi−1(ω), σi+1(ω), ..., σn(ω)) (where n is the
number of players). Then (recall that - since σi(ω̂) = ŝi - by (4) σi(ω) = ŝi, for
all ω ∈ Bi(ω̂)):

Player i is rational at ω̂ if, ∀si ∈ Si, it is not the case
that, ∀ω ∈ Bi(ω̂), ui (si, σ−i(ω)) > ui (ŝi, σ−i(ω))
(where ŝi = σi(ω̂)). (6)

Equivalently, let [ui(si) > ui(ŝi)] = {ω ∈ Ω : ui (si, σ−i(ω)) > ui (ŝi, σ−i(ω))} .
Then

Player i is rational at ω̂ if, ∀si ∈ Si, ω̂ /∈ Bi [ui(si) > ui(ŝi)]
(where ŝi = σi(ω̂)). (7)

For example, in the model of the strategic-form game of Fig. 2 obtained by
adding to the interactive belief structure of Fig. 1 the strategy assignments given
above in (5), we have that both players are rational at every state and thus there
is common belief of rationality at every state. In particular, there is common
belief of rationality at state β, even though the strategy profile actually chosen
there is (t, r) (with payoffs (0, 0)) and each player would do strictly better with
a different choice of strategy. Note also that, in this model, at every state it
is common belief between the players that each player has correct beliefs,15

although at state β neither player does in fact have correct beliefs.
It is well known that, in any model of any finite strategic-form game, a

strategy profile s = (si)i∈N is compatible with common belief of rationality if
and only if, for every player i, the strategy si survives the iterated deletion of
strictly dominated strategies.16

15 That is, ∀ω ∈ Ω, ∀ω′ ∈ B∗(ω), ω′ ∈ B1(ω
′) and ω′ ∈ B2(ω

′).
16 Thus, if at a state ω there is common belief of rationality then, for every player

i, σi(ω) survives the iterated deletion of strictly dominated strategies. For more
details on this result, which originates in [13] and [38], and relevant references, see
[8,22,30,40].
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What is the conceptual content of the definition given in (7)? It is widely
claimed that the notion of rationality involves the use of counterfactual reason-
ing. For example, Aumann writes:

“[O]ne really cannot discuss rationality, or indeed decision making, with-
out substantive conditionals and counterfactuals. Making a decision
means choosing among alternatives. Thus one must consider hypotheti-
cal situations - what would happen if one did something different from
what one actually does. [. . . ] In interactive decision making - games - you
must consider what other people would do if you did something different
from what you actually do.” ([4], p. 15)

Yet the structures used so far do not incorporate the tools needed for coun-
terfactual reasoning. The definition of rationality given in (7) involves comparing
the payoff of a strategy different from the one actually chosen with the payoff of
the chosen strategy. Can this counterfactual be made explicit?

First we review the standard semantics for counterfactuals.17

Definition 4. Given a set of states Ω and a set E ⊆ 2Ω\∅ of events, interpreted
as admissible hypotheses, a counterfactual selection function is a function f :
Ω × E → 2Ω that satisfies the following properties: ∀ω ∈ Ω, ∀E,F ∈ E,

1 .f(ω,E) �= ∅.

2 .f(ω,E) ⊆ E.

3 .Ifω ∈ E then f(ω,E) = {ω}.

4 .IfE ⊆ F and f(ω, F ) ∩ E �= ∅ then f(ω,E) = f(ω, F ) ∩ E. (8)

The event f(ω,E) is interpreted as “the set of states closest to ω where E
is true”. Condition 1 says that there indeed exist states closest to ω where E is
true (recall that if E ∈ E then E �= ∅). Condition 2 is a consistency condition
that says that the states closest to ω where E is true are indeed states where
E is true. Condition 3 says that if E is true at ω then there is only one state
closest to ω where E is true, namely ω itself. Condition 4 says that if E implies
F and some closest F -states to ω are in E, then the closest E-states to ω are
precisely those states in E that are also the closest F -states to ω.18

Given a hypothesis E ∈ E and an event F ⊆ Ω, a counterfactual statement
of the form “if E were the case then F would be the case”, which we denote by
E ⇒ F , is considered to be true at state ω if and only if f(ω,E) ⊆ F , that is,

17 For an extensive discussion see [34]. In the game-theoretic literature (see, for example
[16] and [56]) a simpler approach is often used (originally introduced by [48]) where
f(ω, E) is always a singleton.

18 When E coincides with 2Ω\∅, Condition 4 implies that, for every ω ∈ Ω, there
exists a complete and transitive “closeness to ω” binary relation 
ω on Ω such that
f(ω, E) = {ω′ ∈ E : ω′ 
ω x, ∀x ∈ E} (see Theorem 2.2 in [54]) thus justifying the
interpretation suggested above: ω1 
ω ω2 is interpreted as ‘state ω1 is closer to ω
than state ω2 is’ and f(ω, E) is the set of states in E that are closest to ω.
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if F is true in the closest states to ω where E is true. Thus, one can define the
operator ⇒ : E × 2Ω → 2Ω as follows:

E ⇒ F = {ω ∈ Ω : f(ω,E) ⊆ F}. (9)

Adding a counterfactual selection function to an interactive belief structure
allows one to consider complex statements of the form “if E were the case then
player i would believe F ” (corresponding to the event E ⇒ BiF ), or “player i
believes that if E were the case then F would be the case” (corresponding to
Bi(E ⇒ F )), or “Player 1 believes that if E were the case then Player 2 would
believe F” (corresponding to B1(E ⇒ B2F )), etc.

Now, returning to models of strategic-form games and the definition of ratio-
nality given in (7), the addition of a counterfactual selection function to a model
allows one to compare player i’s payoff at a state ω̂, where she has chosen strategy
ŝi, with her payoff at the states closest to ω̂ where she chooses a strategy si �= ŝi.
Implicit in (7) is the assumption that in those counterfactual states player i’s
beliefs about her opponents’ choices are the same as in ω̂. This is an assumption:
it may be a sensible one to make (indeed Stalnaker [50,51] argues that it would
be conceptually wrong not to make this assumption) but nonetheless it may be
worthwhile bringing it to light in a more complete analysis where counterfactuals
are explicitly modeled. Within the context of strategic-form games, this is done
in [16] and [56], where counterfactuals are invoked explicitly in the definition of
rationality.19

3 Models of Dynamic Games

In dynamic games (also called extensive-form games) players make choices
sequentially, having some information about the moves previously made by their
opponents. If information is partial, the game is said to have imperfect informa-
tion, while the case of full information is referred to as perfect information. We
shall focus on perfect-information games, which are defined as follows. If A is a
set, we denote by A∗ the set of finite sequences in A. If h = 〈a1, ..., ak〉 ∈ A∗ and
1 ≤ j ≤ k, the sequence 〈a1, ..., aj〉 is called a prefix of h. If h = 〈a1, ..., ak〉 ∈ A∗

and a ∈ A, we denote the sequence 〈a1, ..., ak, a〉 ∈ A∗ by ha.

Definition 5. A finite dynamic game with perfect information and ordinal pay-
offs is a tuple

〈
A,H,N, ι, {�i}i∈N

〉
whose elements are:

– A finite set of actions A.
– A finite set of histories H ⊆ A∗ which is closed under prefixes (that is, if

h ∈ H and h′ ∈ A∗ is a prefix of h, then h′ ∈ H). The null history 〈〉 , denoted
by ∅, is an element of H and is a prefix of every history. A history h ∈ H
such that, for every a ∈ A, ha /∈ H, is called a terminal history. The set of

19 As remarked in Footnote 17, both authors use the less general definition of selection
function where f : Ω × E → Ω, that is, for every state ω and event E, there is a
unique state closest to ω where E is true.
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terminal histories is denoted by Z. D = H\Z denotes the set of non-terminal
or decision histories. For every decision history h ∈ D, we denote by A(h) the
set of actions available at h, that is, A(h) = {a ∈ A : ha ∈ H}.

– A finite set N of players.
– A function ι : D → N that assigns a player to each decision history. Thus

ι(h) is the player who moves at history h. For every i ∈ N , let Di = ι−1(i) be
the set of histories assigned to player i.

– For every player i ∈ N , �i is an ordinal ranking of the set Z of terminal
histories.

The ordinal ranking of player i is normally represented by means of an ordinal
utility (or payoff ) function Ui : Z → R satisfying the property that Ui(z) ≥
Ui(z′) if and only if z �i z′.

Histories will be denoted more succinctly by listing the corresponding
actions, without angled brackets and without commas; thus instead of writing
〈∅, a1, a2, a3, a4〉 we simply write a1a2a3a4.

1

2 2

1

1a 2a

2b1b 1c 2c

2d1d
1z 2z 3z

4z 5z

Fig. 3. A perfect information game

An example of a perfect-information game is shown in Fig. 3 in the form of
a tree. Each node in the tree represents a history of prior moves and is labeled
with the player whose turn it is to move. For example, at history a2c2 it is Player
1’s turn to move (after his initial choice of a2 followed by Player 2’s choice of c2)
and he has to choose between two actions: d1 and d2. The terminal histories (the
leaves of the tree, denoted by zj , j = 1, ..., 5) represent the possible outcomes
and each player i is assumed to have a preference relation �i over the set of
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terminal histories (in Fig. 3 the players’ preferences over the terminal histories
have been omitted).

In their seminal book, [55] showed that a dynamic game can be reduced
to a normal-form (or strategic-form) game by defining strategies as complete,
contingent plans of action. In the case of perfect-information games a strategy
for a player is a function that associates with every decision history assigned
to that player one of the choices available there. For example, a possible strat-
egy of Player 1 in the game of Fig. 3 is (a1, d2). A profile of strategies (one for
each player) determines a unique path from the null history (the root of the
tree) to a terminal history (a leaf of the tree). Figure 4 shows the strategic-form
corresponding to the extensive form of Fig. 3.

Player 2

P
la

ye
r 

 1

1 1a d

1 2a d

2 2a d

2 1a d

1 1b c 1 2b c 2 1b c 2 2b c

1z 1z 2z 2z

1z 1z 2z 2z

3z 4z 3z 4z

3z 5z 3z 5z

Fig. 4. The strategic form corresponding to the game of Fig. 3

How should a model of a dynamic game be constructed? One approach in
the literature (see, for example, [4]) has been to consider models of the corre-
sponding strategic-form (the type of models considered in Sect. 2: see Definition
3). However, there are several conceptual issues that arise in this context. Recall
that the interpretation of si = σi(ω) suggested in Sect. 2 is that at state ω player
i “chooses” strategy si. Now consider a model of the game of Fig. 3 and a state
ω where σ1(ω) = (a1, d2). What does it mean to say that Player 1 “chooses”
strategy (a1, d2)? The first part of the strategy, namely a1, can be interpreted
as a description of Player 1’s actual choice to play a1, but the second part of the
strategy, namely d2, has no such interpretation: if Player 1 in fact plays a1 then
he knows that he will not have to make any further choices and thus it is not
clear what it means for him to “choose” to play d2 in a situation that is made
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impossible by his decision to play a1.20 Thus it does not seem to make sense to
interpret σ1(ω) = (a1, d2) as ‘at state ω Player 1 chooses (a1, d2)’. Perhaps the
correct interpretation is in terms of a more complex sentence such as ‘Player 1
chooses to play a1 and if - contrary to this - he were to play a2 and Player 2 were
to follow with c2, then Player 1 would play d2’. Thus while in a simultaneous
game the association of a strategy of player i to a state can be interpreted as
a description of player i’s actual behavior at that state, in the case of dynamic
games this interpretation is no longer valid, since one would end up describing
not only the actual behavior of player i but also his counterfactual behavior.
Methodologically, this is not satisfactory: if it is considered to be necessary to
specify what a player would do in situations that do not occur in the state
under consideration, then one should model the counterfactual explicitly. But
why should it be necessary to specify at state ω (where Player 1 is playing a1)
what he would do at the counterfactual history a2c2? Perhaps what matters is
not so much what Player 1 would actually do there but what Player 2 believes
that Player 1 would do: after all, Player 2 might not know that Player 1 has
decided to play a1 and needs to consider what to do in the eventuality that
Player 1 actually ends up playing a2. So, perhaps, the strategy of Player 1 is to
be interpreted as having two components: (1) a description of Player 1’s behavior
and (2) a conjecture in the mind of Player 2 about what Player 1 would do.21 If
this is the correct interpretation, then one could object - from a methodological
point of view - that it would be preferable to disentangle the two components
and model them explicitly.

In order to clarify these issues it seems that, in the case of dynamic games,
one should not adopt the models of Sect. 2 and instead consider a more general
notion of model, where states are described in terms of players’ actual behavior
and any relevant counterfactual propositions are modeled explicitly.

We shall first consider models obtained by adding a counterfactual selection
function (see Definition 4) to an interactive belief structure (see Definition 1)
and show that such models are not adequate.

Fix a dynamic game Γ with perfect information and consider the following
candidate for a definition of a model of Γ : it is a tuple

〈
N,Ω, {Bi}i∈N , f, ζ

〉

where
〈
N,Ω, {Bi}i∈N

〉
is an interactive belief structure, f : Ω × E → 2Ω is a

counterfactual selection function and ζ : Ω → Z is a function that associates
20 For this reason, some authors (see, for example, [40]), instead of using strategies,

use the weaker notion of “plan of action” introduced by [44]. A plan of action
for a player only contains choices that are not ruled out by his earlier choices. For
example, the possible plans of action for Player 1 in the game of Fig. 3 are a1, (a2, d1)
and (a2, d2). However, most of the issues raised below apply also to plans of action.
The reason for this is that a choice of player i at a later decision history of his may
be counterfactual at a state because of the choices of other players (which prevent
that history from being reached).

21 This interpretation of strategies has in fact been put forward in the literature for
the case of mixed strategies (which we do not consider in this chapter, given our
non-probabilistic approach): see, for example, [6] and the references given there in
Footnote 7.
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with every state ω ∈ Ω a terminal history (recall that Z denotes the set of
terminal histories in Γ ).22 Given a history h in the game, we denote by [h] the
set of states where h is reached, that is, [h] = {ω ∈ Ω : h is a prefix of ζ(ω)}.
We take the set of admissible hypotheses E (the domain of f(ω, ·)) to be the set
of propositions of the form “history h is reached”, that is, E = {[h] : h ∈ H}
(where H is the set of histories in the game). We now discuss a number of issues
that arise in such models.

In the models of Sect. 2 it was assumed that a player always knows his own
strategy (see (4) above). Should a similar assumption be made within the context
of dynamic games? That is, suppose that at state ω player i takes action a; should
we assume that player i believes that she takes action a? For example, consider
a model of the game of Fig. 3 in which there are two states, ω and ω′, such
that B2(ω) = {ω, ω′} and ζ(ω) = a1b1. Then at state ω Player 2 takes action b1.
Should we require that Player 2 take action b1 also at ω′ (since ω′ ∈ B2(ω))? The
answer is negative: the relation B2 represents the prior or initial beliefs of Player
2 (that is, her beliefs before the game begins) and Player 2 may be uncertain as
to whether Player 1 will play a1 or a2 and plan to play herself b1 in the former
case and c1 in the latter case. Thus it makes perfect sense to have ζ(ω′) = a2c1.
If we want to rule out uncertainty by a player about her action at a decision
history of hers, then we need to impose the following restriction:

If h is a decision history of player i, a an action available to i at h

and ha a prefix of ζ(ω) then, ∀ω′ ∈ Bi(ω),
if h is a prefix of ζ(ω′) then ha is a prefix of ζ(ω′). (10)

The above definition can be stated more succinctly in terms of events. If E
and F are two events, we denote by E → F the event ¬E ∪ F (we use the
negation symbol ¬ to denote the set-theoretic complement, that is, ¬E is the
complement of event E). Thus E → F captures the material conditional. Recall
that, given a history h in the game, [h] = {ω ∈ Ω : h is a prefix of ζ(ω)}; recall
also that Di denotes the set of decision histories of player i and A(h) the set of
choices available at h. Then (10) can be stated as follows:

∀h ∈ Di,∀a ∈ A(h),
[ha] ⊆ Bi([h] → [ha]). (11)

In words: if, at a state, player i takes action a at her decision history h, then she
believes that if h is reached then she takes action a.23

A more subtle issue is whether we should require (perhaps as a condition
of rationality) that a player have correct beliefs about what she would do in
a situation that she believes will not arise. Consider, for example, the (part of
22 [45] was the first to propose models of perfect-information games where states are

described not in terms of strategies but in terms of terminal histories.
23 Note that, if at state ω player i believes that history h will not be reached (∀ω′ ∈

Bi(ω), ω′ /∈ [h]) then Bi(ω) ⊆ ¬[h] ⊆ [h] → [ha], so that ω ∈ Bi ([h] → [ha]) and
therefore (11) is trivially satisfied (even if ω ∈ [h]).
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Fig. 5. Part of a model of the game of Fig. 3

a) model of the game of Fig. 3 illustrated in Fig. 5. The first line gives B2, the
doxastic accessibility relation of Player 2, the second line the function ζ (which
associates with every state a terminal history) and the third line is a partial
illustration of the counterfactual selection function: the arrow from state β to
state α labeled with the set {α, δ} represents f(β, {α, δ}) = {α} and the arrow
from γ to δ labeled with the set {α, δ} represents f(γ, {α, δ}) = {δ}.24 Note that
the event that Player 1 plays a2 is the set of states ω where a2 is a prefix of ζ(ω):
[a2] = {α, δ}. Recall that E ⇒ F denotes the counterfactual conditional ‘if E
were the case then F would be the case’. Now, [a2] ⇒ [a2c1] = {γ, δ} and [a2] ⇒
[a2c2] = {α, β}.25 Thus β ∈ [a2] ⇒ [a2c2] and also β ∈ B2 ([a2] ⇒ [a2c1]).26 That
is, at state β it is actually the case that if Player 1 were to play a2 then Player 2
would respond with c2, but Player 2 erroneously believes that (if Player 1 were
to play a2) she would respond with c1.

As a condition of rationality, should one rule out situations like the one illus-
trated in Fig. 5? Shouldn’t a rational player have introspective access to what
24 On the other hand, we have not represented the fact that f(α, {α, δ}) = {α}, which

follows from point 3 of Definition 4 (since α ∈ {α, δ}) and the fact that f(δ, {α, δ}) =
{δ}, which also follows from point 3 of Definition 4. We have also omitted other values
of the selection function f , which are not relevant for the discussion below.

25 Recall that, by Definition 4, since α ∈ [a2], f(α, [a2]) = {α}, so that, since α ∈ [a2c2]
(because a2c2 is a prefix of ζ(α) = a2c2d2), α ∈ [a2] ⇒ [a2c2]. Furthermore, since
f(β, [a2]) = {α}, β ∈ [a2] ⇒ [a2c2]. There is no other state ω where f(ω, [a2]) ⊆
[a2c2]. Thus [a2] ⇒ [a2c2] = {α, β}. The argument for [a2] ⇒ [a2c1] = {γ, δ} is
similar.

26 Since B2(β) = {γ} and γ ∈ [a2] ⇒ [a2c1], β ∈ B2 ([a2] ⇒ [a2c1]). Recall that the
material conditional ‘if E is the case then F is the case’ is captured by the event
¬E ∪ F , which we denote by E → F . Then [a2] → [a2c1] = {β, γ, δ} and [a2] →
[a2c2] = {α, β, γ}, so that we also have, trivially, that β ∈ B2 ([a2] → [a2c1]) and
β ∈ B2 ([a2] → [a2c2]).
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she would do in all the relevant hypothetical situations? In general, it seems
that the answer should be negative, since what an individual would do in coun-
terfactual situations may depend on external circumstances (e.g. states of the
world or actions of other individuals) which the player might be unaware of (or
have erroneous beliefs about). In such circumstances no amount of introspec-
tion can aid the individual in acquiring awareness of, or forming correct beliefs
about, these external circumstances. This observation might not be applicable to
games of complete information, but might be relevant in situations of incomplete
information.27

There are further issues to be examined. Consider, again, the perfect infor-
mation game of Fig. 3 and a model of this game in which there is a state, say
α, where Player 1 plays a2. Is a2 a rational choice for Player 1? Answering this
question requires answering the following two questions:

Q1. What will Player 2 do next?
Q2. What would Player 2 do if, instead, a1 had been chosen?

Let us start with Q1. Consider a model (different from the one described in
Fig. 5) where at state α the play of the game is a2c2d1 (that is, ζ(α) = a2c2d1).
If there is “common recognition” of rationality, Player 1 will ask himself how a
rational Player 2 will respond to his initial choice of a2. In order to determine
what is rational for Player 2 to do at state α, we need to examine Player 2’s
beliefs at α. Suppose that Player 2 mistakenly believes that Player 1 will play
a1 (α ∈ B2[a1]); for example, B2(α) = {β} and β ∈ [a1]. Furthermore, suppose
that f(β, [a2]) = {γ} and γ ∈ [a2c2d2]. Then at α Player 2 believes that if it
were the case that Player 1 played a2 then the play of the game would be a2c2d2
(α ∈ B2([a2] ⇒ [a2c2d2])), in particular, she believes that Player 1 would play
d2. Since, at state α, Player 1 in fact plays a2, Player 2 will be surprised: she will
be informed that Player 1 played a2 and that she herself has to choose between
c1 and c2. What choice she will make depends on her beliefs after she learns that
(contrary to her initial expectation) Player 1 played a2, that is, on her revised
beliefs. In general, no restrictions can be imposed on Player 2’s revised beliefs
after a surprise: for example, it seems perfectly plausible to allow Player 2 to
become convinced that the play of the game will be a2c2d1; in particular, that
Player 1 will play d1. The models that we are considering do not provide us
with the tools to express such a change of mind for Player 2: if one takes as her
revised beliefs her initial beliefs about counterfactual statements that have a2

as an antecedent, then - since α ∈ B2([a2] ⇒ [a2c2d2]) - one is forced to rule out
the possibility that after learning that Player 1 played a2 Player 2 will believe
that the play of the game will be a2c2d1. Stalnaker argues that imposing such
27 Recall that a game is said to have complete information if the game itself is com-

mon knowledge among the players. On the other hand, in a situation of incomplete
information at least one player lacks knowledge of some of the aspects of the game,
such as the preferences of her opponents, or the actions available to them, or the
possible outcomes, etc.
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restrictions is conceptually wrong, since it is based on confounding causal with
epistemic counterfactuals:

“Player 2 has the following initial belief: Player 1 would choose d2 on his
second move [after his initial choice of a2] if he had a second move. This
is a causal ‘if’ – an ‘if’ used to express 2’s opinion about 1’s disposition
to act in a situation that she believes will not arise. [...] But to ask what
Player 2 would believe about Player 1 if she learned that she was wrong
about 1’s first choice is to ask a completely different question – this ‘if’ is
epistemic; it concerns Player 2’s belief revision policies, and not Player
1’s disposition to act.” ([50], p. 48; with small changes to adapt the quote
to the game of Fig. 3.)

Let us now turn to question Q2. Suppose that, as in the previous example,
we are considering a model of the game of Fig. 3 and a state α in that model
where

α ∈ [a2c2d1] ∩ B1[a2] ∩ B2[a1b1] ∩ B1B2[a1b1] (12)

(for example, (12) is satisfied if B1(α) = {α},B2(α) = {β} and β ∈ [a1b1]).
Thus at α Player 1 plays a2. Is this a rational choice? The answer depends on
how Player 2 would respond to the alternative choice of a1. However, since the
rationality of playing a2 has to be judged relative to Player 1’s beliefs, what
matters is not what Player 2 would actually do (at state α) if a1 were to be
played, but what Player 1 believes that Player 2 would do. How should we
model such beliefs of Player 1? Again, one possibility is to refer to Player 1’s
beliefs about counterfactuals with [a1] as antecedent. If we follow this route,
then we restrict the possible beliefs of Player 1; in particular, it cannot be the
case that Player 1 believes that if he were to play a1 then Player 2 would play
b2, that is, we cannot have α ∈ B1([a1] ⇒ [a1b2]). Intuitively, the reason is as
follows (the formal proof will follow). The counterfactual selection function is
meant to capture causal relationships between events. As Stalnaker points out,
in the counterfactual world where a player makes a choice different from the one
that he is actually making, the prior beliefs of the other players must be the
same as in the actual world (by changing his choice he cannot cause the prior
beliefs of his opponents to change):

“I know, for example, that it would be irrational to cooperate in a one-
shot prisoners’ dilemma because I know that in the counterfactual situa-
tion in which I cooperate, my payoff is less than it would be if I defected.
And while I have the capacity to influence my payoff (negatively) by mak-
ing this alternative choice, I could not, by making this choice, influence
your prior beliefs about what I will do; that is, your prior beliefs will be
the same, in the counterfactual situation in which I make the alternative
choice, as they are in the actual situation.” ([52], p. 178)

The formal proof that it cannot be the case that α ∈ B1([a1] ⇒ [a1b2]) goes
as follows. Suppose that α ∈ B1([a1] ⇒ [a1b2]) and fix an arbitrary ω ∈ B1(α).
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By (12), since α ∈ B1[a2], ω ∈ [a2]. Fix an arbitrary δ ∈ f(ω, [a1]). Since α ∈
B1([a1] ⇒ [a1b2]), and ω ∈ B1(α), ω ∈ [a1] ⇒ [a1b2], that is, f(ω, [a1]) ⊆ [a1b2].
Thus

δ ∈ [a1b2]. (13)

Since ω ∈ B1(α) and α ∈ B1B2([a1b1]), ω ∈ B2[a1b1]. By the above remark, at δ
the initial beliefs of Player 2 must be the same as at ω.28 Hence δ ∈ B2[a1b1]. By
definition, δ ∈ B2[a1b1] if and only if B2(δ) ⊆ [a1b1]. Thus, since [a1b1] ⊆ ¬[a1]∪
[a1b1] = [a1] → [a1b1], B2(δ) ⊆ [a1] → [a1b1], that is, δ ∈ B2([a1] → [a1b1]).
Now, (11) requires that, since δ ∈ [a1b2], δ ∈ B2([a1] → [a1b2]). Hence, since
δ ∈ B2[a1], δ ∈ B2[a1b2], contradicting (13).

In words, since α ∈ B1B2[a1b1], at every state ω that Player 1 considers
possible at α (ω ∈ B1(α)) Player 2 believes that the play of the game is a1b1, that
is, that she herself will play b1. If α ∈ B1([a1] ⇒ [a1b2]) then ω ∈ [a1] ⇒ [a1b2];
thus, if δ is a state closest to ω where Player 1 plays a1, then (by the second
property of counterfactual selection functions) at δ Player 2 will actually play b2.
Since Player 1, by changing his choice, cannot cause the initial beliefs of Player
2 to change, Player 2 must have at δ the same beliefs that she has at ω, namely
that she will play b1. Thus at state δ Player 2 believes that she will take action
b1 at her decision history a1 while in fact she will take action b2, contradicting
the requirement expressed in (11).

Thus we have shown that adding a counterfactual selection function to an
interactive belief structure does not provide an adequate notion of model of a
dynamic game. The approach followed in the literature29 has been to do without
an “objective” counterfactual selection function f and to introduce in its place
“subjective” counterfactual functions fi (one for each player i ∈ N) representing
the players’ dispositions to revise their beliefs under various hypotheses.30 This
is the topic of the next section.

4 Belief Revision

We will now consider models of dynamic games defined as tuples〈
N,Ω, {Bi}i∈N , {Ei, fi}i∈N , ζ

〉
where - as before -

〈
N,Ω, {Bi}i∈N

〉
is an interac-

tive belief structure and ζ : Ω → Z is a function that associates with every state
ω ∈ Ω a terminal history. The new element is {Ei, fi} (for every player i ∈ N),
which is a subjective counterfactual selection function, defined as follows.

28 As shown above, at state ω Player 1 chooses a2; f(ω, [a1]) is the set of states closest
to ω where Player 1 chooses a1; in these states Player 2’s prior beliefs must be the
same as at ω, otherwise by switching from a2 to a1 Player 1 would cause a change
in Player 2’s prior beliefs.

29 See, for example, [2,7,9,14,19,28,33,45].
30 In [28] there is also an objective counterfactual selection function, but it is used only

to encode the structure of the game in the syntax.
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Definition 6. For every i ∈ N , let Ei ⊆ 2Ω\∅ be a set of events representing
potential items of information or admissible hypotheses for player i.31 A subjec-
tive counterfactual selection function is a function fi : Ω×Ei → 2Ω that satisfies
the following properties: ∀ω ∈ Ω, ∀E,F ∈ Ei,

1 . fi(ω,E) �= ∅,

2 . fi(ω,E) ⊆ E,

3 . ifBi(ω) ∩ E �= ∅ then fi(ω,E) = Bi(ω) ∩ E,

4 . ifE ⊆ F and fi(ω, F ) ∩ E �= ∅ then fi(ω,E) = fi(ω, F ) ∩ E.

The event fi(ω,E) is interpreted as the set of states that player i would
consider possible, at state ω, under the supposition that (or if informed that) E
is true. Condition 1 requires these suppositional beliefs to be consistent. Con-
dition 2 requires that E be indeed considered true. Condition 3 says that if E
is compatible with the initial beliefs then the suppositional beliefs coincide with
the initial beliefs conditioned on event E.32 Condition 4 is an extension of 3: if
E implies F and E is compatible (not with player i ’s prior beliefs but) with
the posterior beliefs that she would have if she supposed (or learned) that F
were the case (let’s call these her posterior F -beliefs), then her beliefs under the
supposition (or information) that E must coincide with her posterior F -beliefs
conditioned on event E.33

Remark 1. If Ei = 2Ω\∅ then Conditions 1–4 in Definition 6 imply that, for
every ω ∈ Ω, there exists a “plausibility” relation Qω

i on Ω which is complete
(∀ω1, ω2 ∈ Ω , either ω1Q

ω
i ω2 or ω2Q

ω
i ω1 or both) and transitive (∀ω1, ω2, ω3 ∈

Ω, if ω1Q
ω
i ω2 and ω2Q

ω
i ω3 then ω1Q

ω
i ω3) and such that, for every non-empty

E ⊆ Ω, fi(ω,E) = {x ∈ E : xQω
i y, ∀y ∈ E}. The interpretation of αQω

i β is that
- at state ω and according to player i - state α is at least as plausible as state
β. Thus fi(ω,E) is the set of most plausible states in E (according to player i
at state ω). If Ei �= 2Ω\∅ then Conditions 1–4 in Definition 6 are necessary but
not sufficient for the existence of such a plausibility relation. The existence of a
plausibility relation that rationalizes the function fi(ω, ·) : Ei → 2Ω is necessary
and sufficient for the belief revision policy encoded in fi(ω, ·) to be compatible
with the theory of belief revision introduced in [1], known as the AGM theory
(see [18]).

31 For example, in a perfect-information game one can take Ei = {[h] : h ∈ Di}, that
is, the set of propositions of the form “decision history h of player i is reached” or
Ei = {[h] : h ∈ H}, the set of propositions corresponding to all histories (in which
case Ei = Ej for any two players i and j).

32 Note that it follows from Condition 3 and seriality of Bi that, for every ω ∈ Ω,
fi(ω, Ω) = Bi(ω), so that one could simplify the definition of model by dropping the
relations Bi and recovering the initial beliefs from the set fi(ω, Ω). We have chosen
not to do so in order to maintain continuity in the exposition.

33 Although widely accepted, this principle of belief revision is not uncontroversial (see
[42] and [53]).
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One can associate with each function fi an operator ⇒i : Ei × 2Ω → 2Ω as
follows:

E ⇒i F = {ω ∈ Ω : fi(ω,E) ⊆ F}. (14)

Possible interpretations of the event E ⇒i F are “according to player i, if E
were the case, then F would be true” [33] or “if informed that E, player i would
believe that F” [50] or “under the supposition that E, player i would believe
that F” [2].34

Thus the function fi can be used to model the full epistemic state of player
i; in particular, how player i would revise her prior beliefs if she contemplated
information that contradicted those beliefs. However, as pointed out by Stal-
naker,

“It should be noted that even with the addition of the belief revision
structure to the epistemic models [...], they remain static models. A
model of this kind represents only the agent’s beliefs at a fixed time
[before the game is played], together with the policies or dispositions
to revise her beliefs that she has at that time. The model does not
represent any actual revisions that are made when new information is
actually received.”([52], p. 198.)35

Condition (11) rules out the possibility that a player may be uncertain about
her own choice of action at decision histories of hers that are not ruled out by
her initial beliefs. Does a corresponding restriction hold for revised beliefs? That
is, suppose that at state ω player i erroneously believes that her decision history
h will not be reached (ω ∈ [h] but ω ∈ Bi¬[h]); suppose also that a is the action
that she will choose at h (ω ∈ [ha]). Is it necessarily the case that, according
to her revised beliefs on the suppositions that h is reached, she believes that
she takes action a ? That is, is it the case that ω ∈ [h] ⇒i [ha]? In general,
the answer is negative. For example, consider a model of the game of Fig. 3 in
which there are states α, β and γ such that α ∈ [a1b1], B2(α) = {β}, β ∈ [a2c1],
f2(α, [a1]) = {γ} and γ ∈ [a1b2]. Then we have that at state α Player 2 will
in fact take action b1 (after being surprised by Player 1’s choice of a1) and yet,
according to her revised beliefs on the supposition that Player 1 plays a1, she
does not believe that she would take action b1 (in fact she believes that she

34 Equivalently, one can think of ⇒i as a conditional belief operator Bi(·|·) with the
interpretation of Bi(F |E) as ‘player i believes F given information/supposition E’
(see, for example, [15] who uses the notation B

E
i (F ) instead of Bi(F |E)).

35 The author goes on to say that “The models can be enriched by adding a temporal
dimension to represent the dynamics, but doing so requires that the knowledge and
belief operators be time indexed...” For a model where the belief operators are
indeed time indexed and represent the actual beliefs of the players when actually
informed that it is their turn to move, see [20].
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would take action b2): α /∈ [a1] ⇒i [a1b1]. In order to rule this out we need to
impose the following strengthening of (11):36

∀h ∈ Di, ∀a ∈ A(h),
[ha] ⊆ ([h] ⇒i [ha]) . (15)

Should (15) be considered a necessary component of a definition of rational-
ity? Perhaps so, if the revised beliefs were the actual beliefs of player i when
she is actually informed (to her surprise) that her decision history h has been
reached. In that case it may be reasonable to assume that - as the player makes
up her mind about what to do - she forms correct beliefs about what she is going
to do. However, we stressed above that the models we are considering are static
models: they represent the initial beliefs and disposition to revise those beliefs
at the beginning of the game. Given this interpretation of the revised beliefs as
hypothetical beliefs conditional on various suppositions, it seems that violations
of (15) might be perfectly rational. To illustrate this point, consider the above
example with the following modification: f2(α, [a1]) = {α, γ}. It is possible that
if Player 1 plays a1 , Player 2 is indifferent between playing b1 or b2 (she gets
the same payoff). Thus she can coherently form the belief that if - contrary to
what she expects - Player 1 were to play a1, then she might end up choosing
either b1 or b2: α ∈ [a1] ⇒i ([a1b1] ∪ [a1b2]). Of course, when actually faced with
the choice between b1 and b2 she will have to break her indifference and pick one
action (perhaps by tossing a coin): in the example under consideration (where
α ∈ [a1b1]) she will pick b1 (perhaps because the outcome of the coin toss is
Heads: something she will know then but cannot know at the beginning).

How can rationality of choice be captured in the models that we are consid-
ering? Various definitions of rationality have been suggested in the literature,
most notably material rationality and substantive rationality [4,5]. The former
notion is weaker in that a player can be found to be irrational only at decision
histories of hers that are actually reached. The latter notion, on the other hand,
is more stringent since a player can be judged to be irrational at a decision his-
tory h of hers even if she knows that h will not be reached. We will focus on the
weaker notion of material rationality. We want to define a player’s rationality as
a proposition, that is, an event. Let ui : Z → R be player i’s ordinal utility func-
tion (representing her preferences over the set of terminal histories Z) and define
πi : Ω → R by πi(ω) = ui(ζ(ω)). For every x ∈ R, let [πi ≤ x] be the event that

36 (15) is implied by (11) whenever player i’s initial beliefs do not rule out h. That is,
if ω ∈ ¬Bi¬[h] (equivalently, Bi(ω) ∩ [h] �= ∅) then, for every a ∈ A(h),

if ω ∈ [ha] then ω ∈ ([h] ⇒i [ha]) . (F1)

In fact, by Condition 3 of Definition 6 (since, by hypothesis, Bi(ω) ∩ [h] �= ∅),

fi(ω, [h]) = Bi(ω) ∩ [h]. (F2)

Let a ∈ A(h) be such that ω ∈ [ha]. Then, by (11), ω ∈ Bi([h] → [ha]), that is,
Bi(ω) ⊆ ¬[h] ∪ [ha] . Thus Bi(ω) ∩ [h] ⊆ (¬[h] ∩ [h]) ∪ ([ha] ∩ [h]) = ∅ ∪ [ha] = [ha]
(since [ha] ⊆ [h]) and therefore, by (F2), fi(ω, [h]) ⊆ [ha], that is, ω ∈ [h] ⇒i [ha].
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player i’s payoff is not greater than x, that is, [πi ≤ x] = {ω ∈ Ω : πi(ω) ≤ x}
and, similarly, let [πi > x] = {ω ∈ Ω : πi(ω) > x}. Then we say that player i
is materially rational at a state if, for every decision history h of hers that is
actually reached at that state and for every real number x, it is not the case
that she believes – under the supposition that h is reached – that (1) her payoff
from her actual choice would not be greater than x and (2) her payoff would be
greater than x if she were to take an action different from the one that she is
actually taking (at that history in that state).37

Formally this can be stated as follows (recall that Di denotes the set of
decision histories of player i and A(h) the set of actions available at h):

Player i is materially rational at ω ∈ Ω if ,∀h ∈ Di,∀a ∈ A(h)
if ha is a prefix of ζ(ω) then, ∀b ∈ A(h),∀x ∈ R,

([ha] ⇒i [πi ≤ x]) → ¬ ([hb] ⇒i [πi > x]) . (16)

Note that, in general, we cannot replace the antecedent [ha] ⇒i [πi ≤ x] with
Bi([ha] → [πi ≤ x]), because at state ω player i might initially believe that h
will not be reached, in which case it would be trivially true that ω ∈ Bi([ha] →
[πi ≤ x]). Thus, in general, her rationality is judged on the basis of her revised
beliefs on the supposition that h is reached. Note, however, that if ω ∈ ¬Bi¬[h],
that is, if at ω she does not rule out the possibility that h will be reached and
a ∈ A(h) is the action that she actually takes at ω (ω ∈ [ha]), then, for every
event F , ω ∈ Bi([ha] → F ) if and only if ω ∈ ([ha] ⇒i F ).38 Note also that,
according to (16), a player is trivially rational at any state at which she does
not take any actions.

The solution concept which is normally used for perfect-information games
is the backward-induction solution, which is obtained as follows. Start from a
37 This is a “local” definition in that it only considers, for every decision history of

player i, a change in player i’s choice at that decision history and not also at later
decision histories of hers (if any). One could make the definition of rationality more
stringent by simultaneously considering changes in the choices at a decision history
and subsequent decision histories of the same player (if any).

38 Proof. Suppose that ω ∈ [ha] ∩ ¬Bi¬[h]. As shown in Footnote 36 (see (F2)),

Bi(ω) ∩ [h] = fi(ω, [h]). (G1)

Since [ha] ⊆ [h],

Bi(ω) ∩ [h] ∩ [ha] = Bi(ω) ∩ [ha]. (G2)

As shown in Footnote 36, fi(ω, [h]) ⊆ [ha] and, by Condition 1 of Definition 6,
fi(ω, [h]) �= ∅. Thus fi(ω, [h]) ∩ [ha] = fi(ω, [h]) �= ∅. Hence, by Condition 4 of
Definition 6,

fi(ω, [h]) ∩ [ha] = fi(ω, [ha]). (G3)

By intersecting both sides of (G1) with [ha] and using (G2) and (G3) we get that
Bi(ω) ∩ [ha] = fi(ω, [ha]).
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decision history followed only by terminal histories (such as history a1a2 in
the game of Fig. 6) and pick an action there that is payoff-maximizing for the
corresponding player; delete the selected decision history, turn it into a terminal
history and associate with it the payoff vector corresponding to the selected
choice; repeat the procedure until all the decision histories have been exhausted.
For example, the backward-induction solution of the game of Fig. 6 selects actions
d3 and d1 for Player 1 and d2 for Player 2, so that the corresponding outcome
is d1.

Does initial common belief that all the players are materially rational (accord-
ing to (16)) imply backward induction in perfect-information games? The answer
is negative.39 To see this, consider the perfect-information game shown in Fig. 6
and the model of it shown in Fig. 7.40 First of all, note that the common belief
relation B∗ is obtained by adding to B2 the pair (β, β); thus, in particular,
B∗(β) = {β, γ}. We want to show that both players are materially rational at
both states β and γ, so that at state β it is common belief that both players are
materially rational, despite that fact that the play of the game at β is a1a2d3,
while the outcome associated with the backward-induction solution is d1 (fur-
thermore, there is no Nash equilibrium whose associated outcome is a1a2d3).
Clearly, Player 1 is materially rational at state β (since he obtains his largest
possible payoff); he is also rational at state γ because he knows that he plays
d1, obtaining a payoff of 1, and believes that if he were to play a1 Player 2
would respond with d2 and give him a payoff of zero: this belief is encoded in
f1(γ, [a1]) = {δ} (where [a1] = {α, β, δ}) and ζ(δ) = a1d2. Player 2 is trivially
materially rational at state γ since she does not take any actions there. Now
consider state β. Player 2 initially erroneously believes that Player 1 will end
the game by playing d1; however, Player 1 is in fact playing a1 and thus Player 2
will be surprised. Her initial disposition to revise her beliefs on the supposition
that Player 1 plays a1 is such that she would believe that she herself would play
a2 and Player 1 would follow with a3, thus giving her the largest possible payoff
(this belief is encoded in f2(β, [a1]) = {α} and ζ(α) = a1a2a3). Hence she is
rational at state β, according to (16).

In order to obtain the backward-induction solution, one needs to go beyond
common initial belief of material rationality. Proposals in the literature include
the notions of epistemic independence [50], strong belief [10], stable belief [7],

39 In fact, common belief of material rationality does not even imply a Nash equilib-
rium outcome. A Nash equilibrium is a strategy profile satisfying the property that
no player can increase her payoff by unilaterally changing her strategy. A Nash equi-
librium outcome of a perfect-information game is a terminal history associated with
a Nash equilibrium. A backward-induction solution of a perfect-information game
can be written as a strategy profile and is always a Nash equilibrium.

40 In Fig. 6, for every terminal history, the top number associated with it is Player
1’s utility and the bottom number is Player 2’s utility. In Fig. 7 we have only rep-
resented parts of the functions f1 and f2, namely that f1(γ, {α, β, δ}) = {δ} and
f2(β, {α, β, δ}) = f2(γ, {α, β, δ}) = {α} (note that [a1] = {α, β, δ}). Similar exam-
ples can be found in [15,28,43,50].
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Fig. 6. A perfect information game

Fig. 7. A model of the game of Fig. 6
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substantive rationality [4,35]. For an overview of this literature the reader is
referred to [25] and [39].

It is worth stressing that in the models considered above, strategies do not
play any role: states are described in terms of the players’ actual behavior along
a play of the game.41 One could view a player’s strategy as her (conditional)
beliefs about what she would do under the supposition that each of her decision
histories is reached. However, the models considered so far do not guarantee
that a player’s revised beliefs select a unique action at each of her decision
histories. For example, consider a model of the game of Fig. 3 in which there
are states α, β and γ such that α ∈ [a2c1], B2(α) = {α}, β ∈ [a1b1], γ ∈ [a1b2]
and f2(α, [a1]) = {β, γ}. Then, at state α, Player 2 knows that she will take
action c1 and, according to her revised beliefs on the supposition that Player 1
plays a1, she is uncertain as to whether she would respond to a1 by playing b1
or b2 (perhaps she is indifferent between b1 and b2, because she would get the
same payoff in either case). One could rule this possibility out by imposing the
following restriction:

∀h ∈ Di,∀a, b ∈ A(h),∀ω, ω′, ω′′ ∈ Ω, ifω′, ω′′ ∈ fi(ω, [h])
and ha is a prefix of ζ(ω′) and hb is a prefix of ζ(ω′′) then a = b. (17)

If (17) is imposed then one can associate with every state a unique strategy
for every player. However, as [45] points out, in this setup strategies would be
cognitive constructs rather than objective counterfactuals about what a player
would actually do at each of her decision histories.

5 Conclusion

Roughly speaking, a player’s choice is rational if, according to what the player
believes, there is no other choice which is better for her. Thus, in order to be able
to assess the rationality of a player, one needs to be able to represent both the
player’s choices and her beliefs. The notion of a model of a game does precisely
this. We have discussed a number of conceptual issues that arise in attempting to
represent not only the actual beliefs but also the counterfactual or hypothetical
beliefs of the players. These issues highlight the complexity of defining the notion
of rationality in dynamic games and of specifying an appropriate interpretation
of the hypothesis that there is “common recognition” of rationality.

A strategy of a player in a dynamic game with perfect information, accord-
ing to the definition first proposed by von Neumann and Morgenstern [55], is a
complete contingent plan specifying a choice of action for every decision history
that belongs to that player.42 We have argued that using the notion of strategy
41 For an example of epistemic models of dynamic games where strategies do play a

role see [41].
42 In general dynamic games, a strategy specifies a choice for every information set of

the player.
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in models of dynamic games is problematic, since it implicitly introduces coun-
terfactual considerations, both objective (in terms of statements about what a
player would do in situations that do not arise) and subjective (in terms of the
hypothetical or conditional beliefs of the players). Such counterfactuals ought
to be modeled explicitly. We first considered the use of objective counterfac-
tuals in models of dynamic games, but concluded that such counterfactuals are
inadequate, since they express causal relationships, while it is epistemic counter-
factuals that seem to be relevant in terms of evaluating the rationality of choices.
We then considered models that make exclusive use of subjective (or epistemic)
counterfactuals and showed that in these models strategies do not play any role
and can thus be dispensed with.

The models of dynamic games considered above, however, are not the only
possibility. Instead of modeling the epistemic states of the players in terms of
their prior beliefs and prior dispositions to revise those beliefs in a static frame-
work, one could model the actual beliefs that the players hold at the time at
which they make their choices. In such a framework the players’ initial belief
revision policies (or dispositions to revise their initial beliefs) can be dispensed
with: the analysis can be carried out entirely in terms of the actual beliefs at
the time of choice. This alternative approach is put forward in [20], where an
epistemic characterization of backward induction is provided that does not rely
on (objective or subjective) counterfactuals.43,44
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Workshop on Modeling Strategic Reasoning (Lorentz Center, Leiden, February 2012)
and for offering several constructive comments. I am also grateful to two anonymous
reviewers and to the participants in the workshop for many useful comments and
suggestions.

43 [20] uses a dynamic framework where the set of “possible worlds” is given by state-
instant pairs (ω, t). Each state ω specifies the entire play of the game (that is, a
terminal history) and, for every instant t, (ω, t) specifies the history that is reached
at that instant (in state ω). A player is said to be active at (ω, t) if the history
reached in state ω at date t is a decision history of his. At every state-instant pair
(ω, t) the beliefs of the active player provide an answer to the question “what will
happen if I take action a?”, for every available action a. A player is said to be rational
at (ω, t) if either he is not active there or the action he ends up taking at state ω is
optimal given his beliefs at (ω, t). Backward induction is characterized in terms of
the following event: the first mover (at date 0) (i) is rational and has correct beliefs,
(ii) believes that the active player at date 1 is rational and has correct beliefs, (iii)
believes that the active player at date 1 believes that the active player at date 2 is
rational and has correct beliefs, etc.

44 The focus of this chapter has been on the issue of modeling the notion of rationality
and “common recognition” of rationality in dynamic games with perfect information.
Alternatively one can use the AGM theory of belief revision to provide foundations
for refinements of Nash equilibrium in dynamic games. This is done in [19,21] where
a notion of perfect Bayesian equilibrium is proposed for general dynamic games
(thus allowing for imperfect information). Perfect Bayesian equilibria constitute a
refinement of subgame-perfect equilibria and are a superset of sequential equilibria.
The notion of sequential equilibrium was introduced by [36].
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A Summary of Notation

The following table summarizes the notation used in this chapter.

Notation Interpretation

Ω Set of states

Bi Player i’s binary “doxastic accessibility” relation
on Ω. The interpretation of ωBiω

′ is that at
state ω player i considers state ω′ possible:
see Definition 1

Bi(ω) = {ω′ ∈ Ω : ωBiω
′} Belief set of player i at state ω

Bi : 2Ω → 2Ω Belief operator of player i. If E ⊆ Ω then BiE is
the set of states where player i believes E,
that is, BiE = {ω ∈ Ω : Bi(ω) ⊆ E}

B∗ Common belief relation on the set of states Ω
(the transitive closure of the union of the Bi’s)

B
∗ : 2Ω → 2Ω Common belief operator
〈
N, {Si, �i}i∈N

〉
Strategic-form game: see Definition 2

f : Ω × E → 2Ω Objective counterfactual selection function. The
event f(ω, E) is interpreted as “the set of
states closest to ω where E is true”: see
Definition 4

E ⇒ F = {ω ∈ Ω : f(ω, E) ⊆ F} The interpretation of E ⇒ F is “the set of states
where it is true that if E were the case then F
would be the case.”

〈
A, H, N, ι, {�i}i∈N

〉
Dynamic game with perfect information. See

Definition 5

fi : Ω × Ei → 2Ω Subjective counterfactual selection function. The
event fi(ω, E) is interpreted as the set of
states that player i would consider possible,
at state ω, under the supposition that (or if
informed that) E is true: see Definition 6

E ⇒i F = {ω ∈ Ω : fi(ω, E) ⊆ F} The event E ⇒i F is interpreted as “the set of
states where, according to player i, if E were
the case, then F would be true”
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Abstract. In this chapter we focus on the epistemic concept of com-
mon belief in future rationality (Perea [37]), which describes a backward
induction type of reasoning for general dynamic games. It states that
a player always believes that his opponents will choose rationally now
and in the future, always believes that his opponents always believe that
their opponents choose rationally now and in the future, and so on, ad
infinitum. It thus involves infinitely many conditions, which might sug-
gest that this concept is too demanding for real players in a game. In
this chapter we show, however, that this is not true. For finite dynamic
games we present a finite reasoning procedure that a player can use to
reason his way towards common belief in future rationality.

Keywords: Epistemic game theory · Reasoning · Dynamic games ·
Beliefs

1 Introduction

If you make a choice in a game, then you must realize that the final outcome does
not only depend on your own choice, but also on the choices of your opponents. It
is therefore natural that you first reason about your opponents in order to form a
plausible belief about their choices, before you make your own choice. Now, how
can we formally model such reasoning procedures about your opponents? And
how do these reasoning procedures affect the choice you will eventually make in
the game? These questions naturally lead to epistemic game theory– a modern
approach to game theory which takes seriously the fact that the players in a
game are human beings who reason before they reach their final decision.

In our view, the most important idea in epistemic game theory is common
belief in rationality ([43], see also [12]). It states that a player, when making his
choice, chooses optimally given the belief he holds about the opponents’ choices.
Moreover, the player also believes that his opponents will choose optimally as
well, and that their opponents believe that the other players will also choose
optimally, and so on, ad infinitum. This idea really constitutes the basis for
epistemic game theory, as most – if not all – concepts within epistemic game
theory can be viewed as some variant of common belief in rationality. See [36] for
c© Springer-Verlag Berlin Heidelberg 2015
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a textbook that gives a detailed overview of most of these concepts in epistemic
game theory.

For dynamic games there is a backward induction analogue to common belief
in rationality, namely common belief in future rationality [37]. This concept
states that a player, at each of his information sets, believes that his oppo-
nents will choose rationally now and in the future. Here, by an information set
we mean a stage in the game where this player has to make a choice. However,
common belief in future rationality does not require a player to believe that his
opponents have chosen rationally in the past! On top of this, the concept states
that a player also always believes that his opponents, at each of their information
sets, believe that their opponents will choose rationally now and in the future,
and so on, ad infinitum.

For dynamic games with perfect information, various authors have used some
variant of the idea of common belief in future rationality as a possible founda-
tion for backward induction. See [2,5,19,40]. Among these contributions, the
concept of stable belief in dynamic rationality in [5] matches completely the idea
of common belief in future rationality, although they restrict attention to non-
probabilistic beliefs. Perea [32] provides an overview of the various epistemic
foundations for backward induction that have been offered in the literature.

Some people have criticized common belief in rationality because it involves
infinitely many conditions, and hence – they argue – it will be very difficult for
a player to meet each of these infinitely many conditions. The same could be
said about common belief in future rationality. The main purpose of this chapter
will be to show that this critique is actually not justified, provided we stick to
finite games. We will show, namely, that in dynamic games with finitely many
information sets, and finitely many choices at every information set, common
belief in future rationality can be achieved by reasoning procedures that use
finitely many steps only!

Let us be more precise about this statement. Suppose a player in a dynamic
game holds not only conditional beliefs about his opponents’ strategies, but
also conditional beliefs about his opponents’ conditional beliefs about the other
players’ strategies, and so on, ad infinitum. That is, this player holds a full
belief hierarchy about his opponents – an object that is needed in order to
formally define common belief in future rationality. Such belief hierarchies can
be efficiently encoded within an epistemic model with types. This is a model in
which for every player there is a set of so-called “types”, and where there is a
function that assigns to every type of player i a string of conditional beliefs about
the opponents’ strategies and types – one conditional belief for every information
set. Within such an epistemic model, we can then derive for every type a full
hierarchy of conditional beliefs about the opponents’ strategies and beliefs. So,
the “types” in this epistemic model, together with the functions that map types
to conditional beliefs on the opponents’ strategies and types, can be viewed as
encodings of the conditional belief hierarchies that we are eventually interested
in. This construction is based on Harsanyi’s [21] seminal way of encoding belief
hierarchies for games with incomplete information. If a belief hierarchy can be
derived from an epistemic model with finitely many types only, we say that this
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belief hierarchy is finitely generated. Such finitely generated belief hierarchies
will play a central role in this chapter, as we will show that they are “sufficient”
when studying common belief in future rationality in finite dynamic games.

Let us now come back to the question whether common belief in future
rationality can be achieved by finite reasoning procedures. As a first step, we
show in Sect. 3 that for a finitely generated belief hierarchy, it only takes finitely
many steps to verify whether this given belief hierarchy expresses common belief
in future rationality or not. So, although common belief in future rationality
involves infinitely many conditions, checking these conditions can be reduced to
a finite procedure whenever we consider belief hierarchies that are finitely gen-
erated. This procedure can thus be viewed as an ex-post procedure which can be
used to evaluate a given belief hierarchy, but it does not explain how a player
arrives at such a belief hierarchy.

In Sect. 4 we go one step further by asking how a player can reason his way
towards common belief in future rationality. To that purpose, we present a finite
reasoning procedure such that (a) this procedure will always lead the player,
within finitely many steps, to belief hierarchies that express common belief in
future rationality, and (b) for every strategy that is possible under common
belief in future rationality the procedure generates a belief hierarchy support-
ing this strategy. So, in a sense, the reasoning procedure yields an exhaustive
set of belief hierarchies for common belief in future rationality. This reasoning
procedure can be viewed as an ex-ante procedure, as it describes how a player
may reason before forming his eventual belief hierarchy, and before making his
eventual choice. The reasoning procedure we present in Sect. 4 is based on the
backward dominance procedure [37], which is a recursive elimination procedure
that delivers all strategies that can rationally be made under common belief in
future rationality.

So far, the epistemic game theory literature has largely focused on ex-post
procedures, but not so much on ex-ante procedures. Indeed, most concepts within
epistemic game theory can be viewed as ex-post procedures that can be used to
judge a given belief hierarchy on its reasonability, but do not explain how a player
could reason his way towards such a belief hierarchy. A notable exception is
Pacuit [28] – another chapter within this volume that also explicitly investigates
how people may reason before arriving at a given belief hierarchy. A lot of work
remains to be done in this area, and in my view this may constitute one of
the major challenges for epistemic game theory in the future: to explore how
people may reason their way towards a plausible belief hierarchy. I hope that
this volume will make a valuable contribution to this line of research.

Overall, our main contribution in this chapter is thus to (a) describe a rea-
soning process that a player can use to reason his way towards (an exhaustive
set of) belief hierarchies expressing common belief in future rationality and (b)
to show that this reasoning process only involves finitely many steps. Hence, we
see that in finite dynamic games the concept of common belief in future ratio-
nality can be characterized by finite reasoning procedures. Static games are just
a special case of dynamic games, where every player only makes a choice once,
and where all players choose simultaneously. It is clear that in static games, the
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Table 1. Overview of epistemic concepts and their recursive procedures

Epistemic concept Recursive procedure

Common belief in rationality (Tan and
Werlang [43])

Iterated elimination of strictly Dominated
choices (based on Pearce [30], Tan and
Werlang [43])

Permissibility (Brandenburger [11],
Börgers [10])

Dekel-Fudenberg procedure (Dekel and
Fudenberg [17])

Proper rationalizability
(Schuhmacher [41], Asheim [2])

Iterated addition of preference restrictions
(Perea [35])

Common assumption of rationality
(Brandenburger, Friedenberg and
Keisler [14])

Iterated elimination of weakly dominated
choices

Common belief in future rationality
(Perea [37])

Backward dominance procedure
(Perea [37])

Common strong belief in rationality
(Battigalli and Siniscalchi [8])

Iterated conditional dominance procedure
(Shimoji and Watson [42], Based on
Pearce [30], Battigalli [6])

concept of common belief in future rationality reduces to the basic concept of
common belief in rationality. As such, the results in this chapter immediately
carry over to common belief in rationality as well. Hence, also the concept of
common belief in rationality in finite static games can be characterized by finite
reasoning procedures, just by applying the reasoning procedures in this chapter
to the special case of static games.

This chapter can therefore be seen as an answer to the critique that epistemic
concepts like common belief in rationality and common belief in future rationality
would be too demanding because of the infinitely many conditions. We believe
this critique is not justified.

Similar conclusions can be drawn for various other epistemic concepts in the
literature, like permissibility [10,11], proper rationalizability [2,41] and common
assumption of rationality [14] for static games with lexicographic beliefs, and
common strong belief in rationality [8] for dynamic games. For each of these
epistemic concepts there exists a finite recursive procedure that yields all choices
(or strategies, if we have a dynamic game) that can rationally be chosen under the
concept. We list these procedures, with their references, in Table 1. An overview
of these epistemic concepts and their associated recursive procedures can be
found in my textbook [36].

Among these procedures, iterated elimination of weakly dominated choices is
an old algorithm with a long tradition in game theory, and it is not clear where
this procedure has been described for the first time in the literature. The procedure
already appears in early books by Luce and Raiffa [23] and Farquharson [18].

The concept of common strong belief in rationality by Battigalli and
Siniscalchi [8] can be seen as a counterpart to common belief in future ratio-
nality, as it establishes a forward induction type of reasoning, whereas common
belief in future rationality constitutes a backward induction type of reasoning.
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More precisely, common strong belief in rationality requires a player to believe
that his opponent has chosen rationally in the past whenever this is possible,
whereas common belief in future rationality does not require this. On the other
hand, common belief in future rationality requires a player to always believe that
his opponent will choose rationally in the future, whereas common strong belief
in rationality does not require this if the player concludes that his opponent
has made mistakes in the past. A more detailed comparison between the two
concepts can be found in [34].

The outline of the chapter is as follows. In Sect. 2 we formally define the
idea of common belief in future rationality within an epistemic model. Section 3
presents a finite reasoning procedure to verify whether a finitely generated belief
hierarchy expresses common belief in future rationality or not. In Sect. 4 we
present a finite reasoning procedure which yields, for every strategy that can
rationally be chosen under common belief in future rationality, some belief hier-
archy expressing common belief in future rationality which supports that strat-
egy. We conclude the chapter with a discussion in Sect. 5. For simplicity, we stick
to two-player games throughout this chapter. However, all ideas and results can
easily be extended to games with more than two players.

2 Common Belief in Future Rationality

In this section we present the idea of common belief in future rationality [37]
and show how it can be formalized within an epistemic model with types.

2.1 Main Idea

Common belief in future rationality [37] reflects the idea that you believe, at
each of your information sets, that your opponent will choose rationally now
and in the future, but not necessarily that he chose rationally in the past. Here,
by an information set for player i we mean an instance in the game where player
i must make a choice. In fact, in some dynamic games it is simply impossible
to believe, at certain information sets, that your opponent has chosen rationally
in the past, as this information set can only be reached through a suboptimal
choice by the opponent. But it is always possible to believe that your opponent
will choose rationally now and in the future. On top of this, common belief in
future rationality also states that you always believe that your opponent reasons
in precisely this way as well. That is, you always believe that your opponent, at
each of his information sets, believes that you will choose rationally now and in
the future. By iterating this thought process ad infinitum we eventually arrive
at common belief in future rationality.

2.2 Dynamic Games

We now wish to formalize the idea of common belief in future rationality. As
a first step, we formally introduce dynamic games. As already announced in
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the introduction, we will restrict attention to two-player games for simplicity,
although everything in this chapter can easily be generalized to games with more
than two players. At the same time, the model of a dynamic game presented here
is a bit more general than usual, as we explicitly allow for simultaneous choices
by players at certain stages of the game.

Definition 1 (Dynamic Game). A dynamic game is a tuple Γ = (I, X, Z,
(Xi, Ci,Hi, ui)i∈I) where

(a) I = {1, 2} is the set of players;
(b) X is the set of non-terminal histories. Every non-terminal history x ∈ X

represents a situation where one or more players must make a choice;
(c) Z is the set of terminal histories. Every terminal history z ∈ Z represents

a situation where the game ends;
(d) Xi ⊆ X is the set of histories at which player i must make a choice. At

every history x ∈ X at least one player must make a choice, that is, for every
x ∈ X there is at least some i with x ∈ Xi. However, for a given history x
there may be various players i with x ∈ Xi. This models a situation where
various players simultaneously choose at x. For a given history x ∈ X, we
denote by I(x) := {i ∈ I : x ∈ Xi} the set of active players at x;

(e) Ci assigns to every history x ∈ Xi the set of choice s Ci(x) from which
player i can choose at x;

(f) Hi is the collection of information sets for player i. Formally, Hi =
{h1

i , ..., h
K
i } where hk

i ⊆ Xi for every k, the sets hk
i are mutually disjoint,

and Xi = ∪kh
k
i . The interpretation of an information set h ∈ Hi is that at

h player i knows that some history in h has been realized, without knowing
precisely which one;

(g) ui is player i’s utility function, assigning to every terminal history z ∈ Z
some utility ui(z) in R.

Throughout this chapter we assume that all sets above are finite. The histories
in X and Z consist of finite sequences of choice-combinations

((c1i )i∈I1 , (c2i )i∈I2 , ..., (cKi )i∈IK ),

where I1, ..., IK are nonempty subsets of players, such that

(a) ∅ (the empty sequence) is in X,
(b) if x ∈ X and (ci)i∈I(x) ∈ ∏

i∈I(x) Ci(x), then (x, (ci)i∈I(x)) ∈ X ∪ Z,

(c) if z ∈ Z, then there is no choice combination (ci)i∈Î such that (z, (ci)i∈Î) ∈
X ∪ Z,

(d) for every x ∈ X ∪ Z, x �= ∅, there is a unique y ∈ X and (ci)i∈I(y) ∈∏
i∈I(y) Ci(y) such that x = (y, (ci)i∈I(y)).

Hence, a history x ∈ X ∪ Z represents the sequence of choice-combinations that
have been made by the players until this moment.
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Moreover, we assume that the collections Hi of information sets are such that

(a) two histories in the same information set for player i have the same set of
available choices for player i. That is, for every h ∈ Hi, and every x, y ∈ h, it
holds that Ci(x) = Ci(y). This condition must hold since player i is assumed
to know his set of available choices at h. We can thus speak of Ci(h) for a
given information set h ∈ Hi;

(b) two histories in the same information set for player i must pass through
exactly the same collection of information sets for player i, and must hold
exactly the same past choices for player i. This condition guarantees that
player i has perfect recall, that is, at every information set h ∈ Hi player
i remembers the information he possessed before, and the choices he made
before.

Say that an information set h follows some other information set h′ if there are
histories x ∈ h and y ∈ h′ such that x = (y, (c1i )i∈I1 , (c2i )i∈I2 , ..., (cKi )i∈IK ) for
some choice-combinations (c1i )i∈I1 , (c2i )i∈I2 , ..., (cKi )i∈IK . The information sets h
and h′ are called simultaneous if there is some history x with x ∈ h and x ∈ h′.
Finally, we say that information set h weakly follows h′ if either h follows h′, or
h and h′ are simultaneous.

Note that the game model is quite similar to coalition logic in [29], and
the Alternating-Time Temporal Logic in [1]. See also the chapter by Bulling,
Goranko and Jamroga [24] in this volume, which uses the Alternating-Time
Temporal Logic.

Fig. 1. Example of a dynamic game Here, ∅ and h1 are information sets for player 1,
and ∅, h2.1 and h2.2 are information sets for player 2
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To illustrate the concepts defined above, let us have a look at the example
in Fig. 1. At the beginning of the game, ∅, player 1 chooses between a and b,
and player 2 simultaneously chooses between c and d. So, ∅ is an information set
that belongs to both players 1 and 2. If player 1 chooses b, the game ends, and
the utilities are as depicted. If he chooses a, then the game moves to information
set h2.1 or information set h2.2, depending on whether player 2 has chosen c
or d. Player 1, however, does not know whether player 2 has chosen c or d,
so player 1 faces information set h1 after choosing a. Hence, h2.1 and h2.2 are
information sets that belong only to player 2, whereas h1 is an information
set that belongs only to player 1. Note that information sets h1, h2.1 and h2.2

follow ∅, and that player 2’s information sets h2.1 and h2.2 are simultaneous with
player 1’s information set h1. At h1, h2.1 and h2.2, players 1 and 2 simultaneously
make a choice, after which the game ends.

2.3 Strategies

In the literature, a strategy for player i in a dynamic game is usually defined as
a complete choice plan that specifies a choice for player i at each of his infor-
mation sets – also at those information sets that cannot be reached if player
i implements this strategy. Indeed, this is the original definition introduced by
Von Neumann [27] which has later become the standard definition of a strat-
egy in game theory. There is however a conceptual problem with this classical
definition of a strategy, namely how to interpret the specification of choices
at information sets that cannot be reached under this same strategy. Rubin-
stein [39] interprets these latter choices not as planned choices by player i, but
rather as the beliefs that i’s opponents have about i’s choices at these infor-
mation sets. Rubinstein thus proposes to separate a strategy for player i into a
choice part and a belief part : the choices for player i at information sets that can
be reached under the strategy are viewed as planned choices by player i, and
constitute what Rubinstein calls player i’s plan of action, whereas the choices at
the remaining information sets are viewed as the opponents’ beliefs about these
choices. A nice discussion of this interpretation of a strategy can be found in [9] –
another chapter in this volume. In fact, a substantial part of Bonanno’s chapter
concentrates on the concept of a strategy in dynamic games, and explores the
subtleties that arise if one wishes to incorporate this definition of a strategy into
a formal epistemic model. For more details on this issue we refer to Bonanno’s
chapter [9].

In this chapter, however, we wish to clearly distinguish between choices and
beliefs, as we think these are two fundamentally distinct objects. More precisely,
our definition of a strategy concentrates only on choices for player i at infor-
mation sets that can actually be reached if player i sticks to his plan. That is,
our definition of a strategy corresponds to what Rubinstein [39] calls a plan of
action.

Formally, for every h, h′ ∈ Hi such that h precedes h′, let ci(h, h′) be the
choice at h for player i that leads to h′. Note that ci(h, h′) is unique by perfect
recall. Consider a subset Ĥi ⊆ Hi, not necessarily containing all information sets
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for player i, and a function si that assigns to every h ∈ Ĥi some choice si(h) ∈
Ci(h). We say that si possibly reaches an information set h if at every h′ ∈ Ĥi

preceding h we have that si(h′) = ci(h′, h). By Hi(si) we denote the collection
of player i information sets that si possibly reaches. A strategy for player i is
a function si, assigning to every h ∈ Ĥi ⊆ Hi some choice si(h) ∈ Ci(h), such
that Ĥi = Hi(si).

For a given information set h, denote by Si(h) the set of strategies for player
i that possibly reach h. By S(h) we denote the set of strategy profiles (si)i∈I

that reach some history in h.
In the game of Fig. 1, the strategies for player 1 are (a, e), (a, f) and b, whereas

the strategies for player 2 are (c, g), (c, h), (d, i) and (d, j). Note that within our
terminology, b is a complete strategy for player 1 as player 1, by choosing b, will
make sure that his subsequent information set h1 cannot be reached, and hence
we do not have to specify what player 1 would do if h1 would be reached. Note
also that player 1 cannot make his choice dependent on whether h2.1 or h2.2 is
reached, since these are information sets for player 2 only, and player 1 does not
know which of these information sets is reached. As such, (a, e) is a complete
strategy for player 1. For player 2, (c, g) is a complete strategy as by choosing c
player 2 will make sure that h2.2 cannot be reached, and hence we do not have to
specify what player 2 would do if h2.2 would be reached. Similarly for his other
three strategies.

In this example, the sets of strategies that possibly reach the various infor-
mation sets are as follows:

S1(∅) = S1, S2(∅) = S2,

S1(h1) = S1(h2.1) = S1(h2.2) = {(a, e), (a, f)},

S2(h1) = S2, S2(h2.1) = {(c, g), (c, h)}, S2(h2.2) = {(d, i), (d, j)}.

2.4 Epistemic Model

We say that a strategy is rational for you at a certain information set if it is
optimal at that information set, given your conditional belief there about the
opponent’s strategy choice. In order to believe that your opponent chooses ratio-
nally at a certain information set, you must therefore not only hold conditional
beliefs about the opponent’s strategy choice, but also conditional beliefs about
the opponent’s conditional beliefs about your strategy choice. This is what we
call a second-order belief. Moreover, if we go one step further and want to model
the event that you believe that your opponent believes that you choose rationally,
we need not only your belief about the opponent’s beliefs about your strategy
choice, but also your belief about the opponent’s beliefs about your beliefs about
the opponent’s strategy choice – that is, your third-order belief. Consequently,
formally defining the idea of common belief in future rationality requires us to
consider infinite belief hierarchies, specifying your conditional beliefs about the
opponent’s strategy choice, your conditional beliefs about the opponent’s condi-
tional beliefs about your strategy choice, and so on ad infinitum.

A problem with infinite belief hierarchies is that writing them down explicitly
is an impossible task, since we would need to write down infinitely many beliefs.
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So is there a way to efficiently encode such infinite belief hierarchies without
writing too much? The answer is “yes”, as we will see right now. Note that your
belief hierarchy specifies first-order beliefs about the opponent’s strategy choice,
second-order beliefs about the opponent’s first-order beliefs about your strategy
choice, third-order beliefs about the opponent’s second-order beliefs, and so on.
Hence we conclude that your belief hierarchy specifies conditional beliefs about
the opponent’s strategy choice and the opponent’s belief hierarchy. Now let us
call every belief hierarchy a type. Then, every type can be identified with its
conditional beliefs about the opponent’s strategy choice and the opponent’s type.
This elegant and powerful idea goes back to Harsanyi (1967–1968), who used it
to model infinite belief hierarchies in games with incomplete information.

Let us now implement this idea of encoding infinite belief hierarchies formally.
Fix some finite dynamic game Γ with two players.

Definition 2 (Finite Epistemic Model). A finite epistemic model for
the game Γ is a tuple M = (T1, T2, b1, b2) where

(a) Ti is the finite set of types for player i, and
(b) bi assigns to every type ti ∈ Ti and every information set h ∈ Hi some

probabilistic belief bi(ti, h) ∈ Δ(Sj(h) × Tj) about opponent j’s strategy-type
pairs.

Remember that Sj(h) denotes the set of strategies for opponent j that possi-
bly reach h. By Δ(Sj(h) × Tj) we denote the set of probability distributions on
Sj(h) × Tj . So, within an epistemic model every type holds at each of his infor-
mation sets a conditional belief about the opponent’s strategy choice and the
opponent’s type, as we discussed above. For every type ti ∈ Ti we can now derive
its complete belief hierarchy from the belief functions bi and bj . Namely, type ti
holds at information set h ∈ Hi a conditional belief bi(ti, h) on Sj(h) × Tj . By
taking the marginal of bi(ti, h) on Sj(h) we obtain ti’s first-order belief at h on
j’s strategy choice. Moreover, ti holds at information set h ∈ Hi a conditional
belief about j’s possible types. As each of j’s types tj holds first-order conditional
beliefs on i’s strategy choices, we can thus derive from bi and bj the second-order
conditional belief that ti holds at h ∈ Hi about j’s first-order beliefs about i’s
strategy choice. By continuing this procedure we can thus deduce, for every type
ti in the model, each of its belief levels by making use of the belief functions bi
and bj . In this way, the epistemic model above can be viewed as a short and
convenient way to encode the infinite belief hierarchy of a player.

By means of this epistemic model we can in particular model the belief
revision of players during the game. Consider two different information sets h
and h′ for player i, where h′ comes after h. Note that type ti’s conditional belief
at h′ about j’s strategy choice may be different from his conditional belief at h,
and hence a type ti may revise his belief about j’s strategy choice as the game
moves from h to h′. Moreover, ti’s conditional belief at h′ about j’s type may be
different from his conditional belief at h, and hence a type ti may revise his belief
about j’s type – and hence about j’s conditional beliefs – as the game moves
from h to h′. So, all different kinds of belief revisions – about the opponent’s
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strategy, but also about the opponent’s beliefs – can be captured within this
epistemic model.

Table 2. An epistemic model for the game in Fig. 1

Types T1 = {t1, t
′
1}, T2 = {t2}

Beliefs for

player 1

b1(t1, ∅) = ((c, h), t2)

b1(t1, h1) = ((c, h), t2)

b1(t
′
1, ∅) = ((d, i), t2)

b1(t
′
1, h1) = ((d, i), t2)

Beliefs for

player 2

b2(t2, ∅) = (b, t1)

b2(t2, h2.1) = ((a, f), t′
1)

b2(t2, h2.2) = ((a, f), t′
1)

As an illustration, consider the epistemic model in Table 2, which is an epis-
temic model for the game in Fig. 1. So, we consider two possible types for player 1,
t1 and t′1, and one possible type for player 2, t2. Player 2’s type t2 believes at
the beginning of the game that player 1 chooses b and is of type t1, whereas at
h2.1 and h2.2 this type believes that player 1 chooses strategy (a, f) and is of
type t′1. In particular, type t2 revises his belief about player 1’s strategy choice if
the game moves from ∅ to h2.1 or h2.2. Note that player 1’s type t1 believes that
player 2 chooses strategy (c, h), whereas his other type t′1 believes that player
2 chooses strategy (d, i). So, type t2 believes at ∅ that player 1 believes that
player 2 chooses (c, h), whereas t2 believes at h2.1 and h2.2 that player 1 believes
that player 2 chooses (d, i). Hence, player 2’s type t2 also revises his belief about
player 1’s belief if the game moves from ∅ to h2.1 or h2.2. By continuing in this
fashion, we can derive the full belief hierarchy for type t2. Similarly for the other
types in this model.

Note that in our definition of an epistemic model we require the sets of types
to be finite. This imposes a restriction on the possible belief hierarchies we can
encode, since not every belief hierarchy can be derived from a type within an
epistemic model with finite sets of types. For some belief hierarchies we would
need infinitely many types to encode them. Belief hierarchies that can be derived
from a finite epistemic model will be called finitely generated.

Definition 3 (Finitely Generated Belief Hierarchy). A belief hierarchy
βi for player i is finitely generated if there is some finite epistemic model
M = (T1, T2, b1, b2), and some type ti ∈ Ti in that model, such that βi is the
belief hierarchy induced by ti within M.
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Throughout this chapter we will restrict attention to finite epistemic models,
and hence to finitely generated belief hierarchies. We will see in Sect. 4 that this is
not a serious restriction within the context of common belief in future rationality,
as every strategy that is optimal for some belief hierarchy – not necessarily
finitely generated – that expresses common belief in future rationality, is also
optimal for some finitely generated belief hierarchy that expresses common belief
in future rationality. Moreover, finitely generated belief hierarchies are much
easier to work with than those that are not finitely generated.

2.5 Common Belief in Future Rationality: Formal Definition

Remember that common belief in future rationality states that you always
believe that the opponent chooses rationally now and in the future, you always
believe that the opponent always believes that you choose rationally now and in
the future, and so on, ad infinitum. Within an epistemic model we can state
these conditions formally.

We first define what it means for a strategy si to be optimal for a type ti at
a given information set h. Consider a type ti, a strategy si and an information
set h ∈ Hi(si) that is possibly reached by si. By ui(si, ti | h) we denote the
expected utility from choosing si under the conditional belief that ti holds at h
about the opponent’s strategy choice.

Definition 4 (Optimality at a Given Information Set). Consider a type
ti, a strategy si and a history h ∈ Hi(si). Strategy si is optimal for type ti at h,
if ui(si, ti | h) ≥ ui(s′

i, ti | h) for all s′
i ∈ Si(h).

Remember that Si(h) is the set of player i strategies that possibly reach h.
So, not only do we require that player i’s single choice at h is optimal at this
information set, but we require that player i’s complete future choice plan from
h on is optimal, given his belief at h about the opponent’s strategies. That
is, optimality refers both to player i’s choice at h and all of his future choices
following h.

Bonanno [9] uses a different definition of optimality in his chapter, as he only
requires the choice at h to be optimal at h, without requiring optimality for the
future choices following h. Hence, Bonanno’s definition can be seen as a local
optimality condition, whereas we use a global optimality condition here.

Note that, in order to verify whether strategy si is optimal for the type ti
at h, we only need to look at ti’s first-order conditional belief at h about j’s
strategy choice, not at ti’s higher-order beliefs about j’s beliefs. In particular, it
follows that every strategy si that is optimal at h for some type ti – possibly
not finitely generated – is also optimal for a finitely generated type t′i. Take,
namely, any finitely generated type t′i that has the same first-order beliefs about
j’s strategy choices as ti. We can now define belief in the opponent’s future
rationality.

Definition 5 (Belief in the Opponent’s Future Rationality). Consider
a type ti and an information set h ∈ Hi. Type ti believes at h in j’s future
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rationality if bi(ti, h) only assigns positive probability to j’s strategy-type pairs
(sj , tj) where sj is optimal for tj at every h′ ∈ Hj(sj) that weakly follows h. Type
ti believes in the opponent’s future rationality if he does so at every information
set h ∈ Hi.

So, to be precise, a type that believes in the opponent’s future rationality
believes that the opponent chooses rationally now (if the opponent makes a
choice at a simultaneous information set), and at every information set that
follows. As such, the correct terminology would be “belief in the opponent’s
present and future rationality”, but we stick to “belief in the opponent’s future
rationality” so as to keep the name short.

Note also that belief in the opponent’s future rationality means that a player
always believes – at each of his information sets – that his opponent will choose
rationally in the future. This corresponds exactly to what Baltag, Smets and
Zvesper [5] call stable belief in dynamic rationality, although they restrict to
non-probabilistic beliefs in games with perfect information. In their terminology,
stable belief means that a player believes so at every information set in the game,
whereas dynamic rationality means that at a given information set, a player
chooses rationally from that moment on – hence mimicking our condition of
optimality at an information set. So, when we say belief in belief in the opponent’s
future rationality we actually mean stable belief in the sense of [5].

We can now formally define the other conditions in common belief in future
rationality in an inductive manner.

Definition 6 (Common Belief in Future Rationality). Consider a finite
epistemic model M = (T1, T2, b1, b2).

(Induction start) A type ti ∈ Ti is said to express 1-fold belief in future
rationality if ti believes in j’s future rationality.

(Induction step) For every k ≥ 2, a type ti ∈ Ti is said to express k-fold belief
in future rationality if at every information set h ∈ Hi, the belief bi(ti, h)
only assigns positive probability to j’s types tj that express (k − 1)-fold belief
in future rationality.

Type ti ∈ Ti is said to express common belief in future rationality if it
expresses k-fold belief in future rationality for all k.

Finally, we define those strategies that can rationally be chosen under common
belief in future rationality. We say that a strategy si is rational for a type ti if si is
optimal for ti at every h ∈ Hi(si). In the literature, this is often called sequential
rationality. We say that strategy si can rationally be chosen under common belief
in future rationality if there is some epistemic model M = (T1, T2, b1, b2), and
some type ti ∈ Ti, such that ti expresses common belief in future rationality, and
si is rational for ti.

3 Checking Common Belief in Future Rationality

Some people have criticized the concept of common belief in rationality, because
one has to verify infinitely many conditions in order to conclude that a given



76 A. Perea

belief hierarchy expresses common belief in rationality. The same could be said
about common belief in future rationality. We will show in this section that this
is not true for finitely generated belief hierarchies. Namely, verifying whether a
finitely generated belief hierarchy expresses common belief in future rationality or
not only requires checking finitely many conditions, and can usually be done very
quickly. To that purpose we present a reasoning procedure with finitely many
steps which, for a given finitely generated belief hierarchy, tells us whether that
belief hierarchy expresses common belief in future rationality or not.

Consider an epistemic model M = (T1, T2, b1, b2) with finitely many types for
both players. For every type ti ∈ Ti, let Tj(ti) be the set of types for player j that
type ti deems possible at some of his information sets. That is, Tj(ti) contains
all types tj ∈ Tj such that bi(ti, h)(cj , tj) > 0 for some h ∈ Hi and some cj ∈ Cj .
We recursively define the sets of types T k

j (ti) and T k
i (ti) as follows.

Algorithm 1 (Relevant Types for ti) Consider a finite dynamic game Γ
with two players, and a finite epistemic model M = (T1, T2, b1, b2) for Γ. Fix a
type ti ∈ Ti.

(Induction start) Let T 1
i (ti) := {ti}.

(Induction step) For every even round k ≥ 2, let T k
j (ti) := ∪ti∈Tk−1

i (ti)
Tj(ti).

For every odd round k ≥ 3, let T k
i (ti) := ∪tj∈Tk−1

j (ti)
Ti(tj).

So, T 2
j (ti) contains all the opponent’s types that ti deems possible, T 3

i (ti) con-
tains all types for player i which are deemed possible by some type tj that ti
deems possible, and so on. This procedure eventually yields the sets of types
T ∗
i (ti) = ∪kT

k
i (ti) and T ∗

j (ti) = ∪kT
k
j (ti). These sets T ∗

i (ti) and T ∗
j (ti) con-

tain precisely those types that enter ti’s belief hierarchy in some of its levels,
and we will call these the relevant types for ti. Since there are only finitely
many types in M, there must be some round K such that T ∗

j (ti) = TK
j (ti), and

T ∗
i (ti) = TK+1

i (ti). That is, this procedure must stop after finitely many rounds.
If we would allow for infinite epistemic models, then the algorithm above

could be extended accordingly through the use of higher ordinals and transfinite
induction. But since we restrict our attention to finite epistemic models here,
usual induction will suffice for our purposes.

Now, suppose that type ti expresses common belief in future rationality.
Then, in particular, ti must believe in j’s future rationality. Moreover, ti must
only consider possible opponent’s types tj that believe in i’s future rationality,
that is, every type in T 2

j (ti) must believe in the opponent’s future rationality.
Also, ti must only consider possible types for j that only consider possible types
for i that believe in j’s future rationality. In other words, all types in T 3

i (ti)
must believe in the opponent’s future rationality. By continuing in this fashion,
we conclude that all types in T ∗

i (ti) and T ∗
j (ti) believe in the opponent’s future

rationality. So, we see that every type ti that expresses common belief in future
rationality, must have the property that all types in T ∗

i (ti) and T ∗
j (ti) believe in

the opponent’s future rationality.
However, we can show that the opposite is also true! Consider, namely, a type

ti within a finite epistemic model M = (T1, T2, b1, b2) for which all types in T ∗
i (ti)
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and T ∗
j (ti) believe in the opponent’s future rationality. Then, in particular, every

type in T 1
i (ti) believes in j’s future rationality. As T 1

i (ti) = {ti}, it follows that
ti believes in j’s future rationality. Also, every type in T 2

j (ti) believes in the
opponent’s future rationality. As T 2

j (ti) contains exactly those types for j that
ti deems possible, it follows that ti only deems possible types for j that believe
in i’s future rationality. By continuing in this way, we conclude that ti expresses
common belief in future rationality. The two insights above lead to the following
theorem.

Theorem 1 (Checking Common Belief in Future Rationality). Consider
a finite dynamic game Γ with two players, and a finite epistemic model M =
(T1, T2, b1, b2) for Γ. Then, a type ti expresses common belief in future rationality,
if and only if, all types in T ∗

i (ti) and T ∗
j (ti) believe in the opponent’s future

rationality.

Note that checking whether all types in T ∗
i (ti) and T ∗

j (ti) believe in the oppo-
nent’s future rationality can be done within finitely many steps. We have seen
above, namely, that the sets of relevant types for ti – that is, the sets T ∗

i (ti)
and T ∗

j (ti) – can be derived within finitely many steps, and only contain finitely
many types. So, within a finite epistemic model, checking for common belief in
future rationality only requires finitely many reasoning steps. Consequently, if
we take a finitely generated belief hierarchy, then it only takes finitely many
steps to verify whether it expresses common belief in future rationality or not.

4 Reasoning Towards Common Belief in Future
Rationality

In this section our goal is more ambitious, in that we wish to explore how a player
can reason his way towards a belief hierarchy that expresses common belief in
future rationality. More precisely, we offer a reasoning procedure that generates a
finite set of belief hierarchies such that, for every strategy that can rationally be
chosen under common belief in future rationality, there will be a belief hierarchy
in this set which supports that strategy. In that sense, the reasoning procedure
yields an exhaustive set of belief hierarchies.

The reasoning procedure will be illustrated in the second part of this section
by means of an example. The reader should feel free to jump back and forth
between the description of the procedure and the example while reading the
various steps of the reasoning procedure. This could certainly help to clarify
the different steps of the procedure. On purpose, we have separated the example
from the description of the procedure, so as to enhance readability.

4.1 Procedure

To see how this reasoning procedure works, let us start with exploring the con-
sequences of “believing in the opponent’s future rationality”. For that purpose,
we will heavily make use of the following lemma, which appears in [30].
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Lemma 1 (Pearce’s Lemma (1984)). Consider a static two-person game
Γ = (S1, S2, u1, u2), where Si is player i’s finite set of strategies, and ui is
player i’s utility function. Then, a strategy si is optimal for some probabilistic
belief bi ∈ Δ(Sj), if and only if, si is not strictly dominated by a randomized
strategy.

Here, a randomized strategy ri for player i is a probability distribution on i’s
strategies, that is, i selects each of his strategies s′

i with probability ri(s′
i). And

we say that the strategy si is strictly dominated by the randomized strategy ri
if ri always yields a higher expected utility than si against any strategy sj of
player j.

One way to prove Pearce’s lemma is by using linear programming techniques.
More precisely, one can formulate the question whether si is optimal for some
probabilistic belief as a linear program. Subsequently, one can write down the
dual program, and show that this dual program corresponds to the question
whether si is strictly dominated by a randomized strategy. By the duality the-
orem of linear programming, which states that the original linear program and
the dual program have the same optimal value (see, for instance [16]), it follows
that si is optimal for some probabilistic belief, if and only if, it is not strictly
dominated by a randomized strategy.

Now, suppose that within a dynamic game, player i believes at some infor-
mation set h ∈ Hi that opponent j chooses rationally now and in the future.
Then, player i will at h only assign positive probability to strategies sj for player
j that are optimal, at every h′ ∈ Hj weakly following h, for some belief that j
can hold at h′ about i’s strategy choice.

Consider such a future information set h′ ∈ Hj ; let Γ 0(h′) = (Sj(h′), Si(h′))
be the full decision problem for player j at h′, at which he can only choose
strategies in Sj(h′) that possibly reach h′, and believes that player i can only
choose strategies in Si(h′) that possibly reach h′. From Lemma 1 we know that
a strategy sj is optimal for player j at h′ for some belief about i’s strategy
choice, if and only if, sj is not strictly dominated within the full decision problem
Γ 0(h′) = (Sj(h′), Si(h′)) by a randomized strategy rj .

Putting these things together, we see that if i believes at h in j’s future ratio-
nality, then i assigns at h only positive probability to j ’s strategies sj that are not
strictly dominated within any full decision problem Γ 0(h′) for player j that weakly
follows h. Or, put differently, player i assigns at h probability zero to any oppo-
nent’s strategy sj that is strictly dominated at some full decision problem Γ 0(h′)
for player j that weakly follows h. That is, we eliminate any such opponent’s strat-
egy sj from player i’s full decision problem Γ 0(h) = (Si(h), Sj(h)) at h.

We thus see that, if player i believes in j’s future rationality, then player i
eliminates, at each of his full decision problems Γ 0(h), those opponent’s strate-
gies sj that are strictly dominated within some full decision problem Γ 0(h′) for
player j that weakly follows h. Let us denote by Γ 1(h) the reduced decision prob-
lem for player i at h that remains after eliminating such opponent’s strategies
sj from Γ 0(h).
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Next, suppose that player i does not only believe in j’s future rationality, but
also believes that j believes in i’s future rationality. Take an information set h for
player i, and an arbitrary information set h′ for player j that weakly follows h.
As i believes that j believes in i’s future rationality, player i believes that player
j, at information set h′, believes that player i will only choose strategies from
Γ 1(h′). Moreover, as i believes in j’s future rationality, player i believes that
j will choose rationally at h′. Together, these two insights imply that player i
believes at h that j will only choose strategies sj that are not strictly dominated
within Γ 1(h′). Or, equivalently, player i eliminates from his decision problem
Γ 1(h) all strategies sj for player j that are strictly dominated within Γ 1(h′). As
this holds for every player j information set h′ that weakly follows h, we see that
player i will eliminate, from each of his decision problems Γ 1(h), all opponent’s
strategies sj that are strictly dominated within some decision problem Γ 1(h′)
for player j that weakly follows h.

Hence, if player i expresses up to 2-fold belief in future rationality, then he
will eliminate, from each of his decision problems Γ 1(h), all opponent’s strategies
sj that are strictly dominated within some decision problem Γ 1(h′) for player j
that weakly follows h. Let us denote by Γ 2(h) the reduced decision problem for
player i that remains after eliminating such opponent’s strategies sj from Γ 1(h).

By continuing in this fashion, we conclude that if player i expresses up to
k-fold belief in future rationality – that is, expresses 1-fold, 2-fold, ... until k-fold
belief in future rationality – then he believes at every information set h ∈ Hi

that opponent j will only choose strategies from the reduced decision problem
Γ k(h). This leads to the following reasoning procedure, known as the backward
dominance procedure [37]. The procedure is closely related to Penta’s [31] back-
wards rationalizability procedure, and is equivalent to Chen and Micali’s [15]
backward robust solution.

Algorithm 2 (Backward Dominance Procedure). Consider a finite
dynamic game Γ with two players.

(Induction start) For every information set h, let Γ 0(h) = (S1(h), S2(h)) be
the full decision problem at h.

(Induction step) For every k ≥ 1, and every information set h, let Γ k(h) =
(Sk

1 (h), Sk
2 (h)) be the reduced decision problem which is obtained from

Γ k−1(h) by eliminating, for both players i, those strategies si that are strictly
dominated at some decision problem Γ k−1(h′) weakly following h at which i
is active.

Suppose that h is an information set at which player i is active. Then, the
interpretation of the reduced decision problem Γ k(h) = (Sk

1 (h), Sk
2 (h)) is that

at round k of the procedure, player i believes at h that opponent j chooses
some strategy in Sk

j (h). As the sets Sk
j (h) become smaller as k becomes bigger,

the procedure thus puts more and more restrictions on player i’s conditional
beliefs about j’s strategy choice. However, since in a finite dynamic game there
are only finitely many information sets and strategies, this procedure must stop
after finitely many rounds! Namely, there must be some round K such that
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SK+1
1 (h) = SK

1 (h) and SK+1
2 (h) = SK

2 (h) for all information sets h. But then,
Sk
j (h) = SK

j (h) for all information sets h and every k ≥ K + 1, and hence
the procedure will not put more restrictions on i’s conditional beliefs about j’s
strategy choice after round K. This reasoning procedure is therefore a finite
procedure, guaranteed to end within finitely many steps.

Above we have argued that if player i reasons in accordance with com-
mon belief in future rationality, then his belief at information set h about j’s
strategy choice will only assign positive probability to strategies in SK

j (h). As
a consequence, he can only rationally choose a strategy si that is optimal, at
every information set h ∈ Hi, for such a conditional belief that only considers
j’s strategy choices in SK

j (h). But then, by Lemma 1, strategy si must not be
strictly dominated at any information set h ∈ Hi if we restrict to j’s strategy
choices in SK

j (h). That is, si must be in SK
i (∅), where ∅ denotes the beginning

of the game. We can thus conclude that every strategy si that can rationally
be chosen under common belief in future rationality must be in SK

i (∅) – that is,
must survive the backward dominance procedure at the beginning of the game.

We can show, however, that the converse is also true! That is, every strategy
in SK

i (∅) can be supported by a belief hierarchy that expresses common belief in
future rationality. Suppose, namely, that player i has performed the backward
dominance procedure in his mind, which has left him with the strategies SK

i (h)
and SK

j (h) at every information set h of the game. Then, by construction, every
strategy si ∈ SK

i (h) is not strictly dominated on SK
j (h′), for every information

set h′ weakly following h at which i is active. Thus, by Lemma 1, every strategy
si ∈ SK

i (h) is optimal, at every h′ ∈ Hi weakly following h, for some proba-
bilistic belief bsi,hi (h′) ∈ Δ(SK

j (h′)). Similarly, every strategy sj ∈ SK
j (h) will

be optimal, at every h′ ∈ Hj weakly following h, for some probabilistic belief
b
sj ,h
j (h′) ∈ Δ(SK

i (h′)).
First, we define the sets of types

Ti = {tsi,hi : h ∈ H and si ∈ SK
i (h)} and

Tj = {t
sj ,h
j : h ∈ H and sj ∈ SK

j (h)},

where H denotes the collection of all information sets in the game. The super-
script si, h in tsi,hi indicates that, by our construction of the beliefs that we will
give in the next paragraph, the strategy si will be optimal for the type tsi,hi at
all player i information sets weakly following h.

Subsequently, we define the conditional beliefs of the types about the opponent’s
strategy-type pairs to be

bi(t
si,h
i , h′)(sj , tj) =

{
bsi,hi (h′)(sj), if tj = t

sj ,h
′

j

0, otherwise

for every h′ ∈ Hi, and

bj(t
sj ,h
j , h′)(si, ti) =

{
b
sj ,h
j (h′)(si), if ti = tsi,h

′
i

0, otherwise
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for all h′ ∈ Hj .

This yields an epistemic model M. Hence, every type tsi,hi for player i, at every
information set h′ ∈ Hi, only considers possible strategy-type pairs (sj , t

sj ,h
′

j )
where sj ∈ SK

j (h′), and his conditional belief at h′ about j’s strategy choice is
given by bsi,hi (h′). By construction, strategy si ∈ SK

i (h) is optimal for bsi,hi (h′)
at every h′ ∈ Hi weakly following h. As a consequence, strategy si ∈ SK

i (h)
is optimal for type tsi,hi at every h′ ∈ Hi weakly following h. The same holds
for player j. Since type tsi,hi , at every information set h′ ∈ Hi, only considers
possible strategy-type pairs (sj , t

sj ,h
′

j ) where sj ∈ SK
j (h′), it follows that type

tsi,hi , at every information set h′ ∈ Hi, only considers possible strategy-type
pairs (sj , t

sj ,h
′

j ) where strategy sj is optimal for t
sj ,h

′

j at every h′′ ∈ Hj weakly
following h′. That is, type tsi,hi believes in the opponent’s future rationality.

Since this holds for every type tsi,hi in this epistemic model M, it follows
directly from Theorem 1 that every type in the epistemic model M above
expresses common belief in future rationality.

Now, take some strategy si ∈ SK
i (∅), which survives the backward dominance

procedure at the beginning of the game. Then, we know from our insights above
that si is optimal for the type tsi,∅i at every h ∈ Hi weakly following ∅ – that is,
at every h ∈ Hi in the game. As the type tsi,∅i expresses common belief in future
rationality, we thus see that every strategy si ∈ SK

i (∅) can rationally be chosen
by some type tsi,∅i that expresses common belief in future rationality. In other
words, for every strategy si ∈ SK

i (∅) that survives the backward dominance
procedure at ∅, there is a belief hierarchy expressing common belief in future
rationality – namely the belief hierarchy induced by tsi,∅i in the epistemic model
M – for which si is optimal. This insight thus leads to the following theorem.

Theorem 2 (Reasoning Towards Common Belief in Future Rational-
ity). Consider a finite dynamic game Γ with two players. Suppose we apply
the backward dominance procedure until it terminates at round K. That is,
SK+1
1 (h) = SK

1 (h) and SK+1
2 (h) = SK

2 (h) for all information sets h.
For every information set h, both players i, every strategy si ∈ SK

i (h) , and
every information set h′ ∈ Hi weakly following h, let bsi,hi (h′) ∈ Δ(SK

j (h′)) be a
probabilistic belief on SK

j (h′) for which si is optimal.
For both players i, define the set of types

Ti = {tsi,hi : h ∈ H and si ∈ SK
i (h)},

and for every type tsi,hi and every h′ ∈ Hi define the conditional belief

bi(t
si,h
i , h′)(sj , tj) =

{
bsi,hi (h′)(sj), if tj = t

sj ,h
′

j

0, otherwise

about j’s strategy-type pairs. Then, all types in this epistemic model M express
common belief in future rationality. Moreover,
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(1) for every strategy si ∈ SK
i (∅) that survives the backward dominance proce-

dure at ∅ there is a belief hierarchy in M expressing common belief in future
rationality for which si is optimal at all h ∈ Hi possibly reached by si –
namely the belief hierarchy induced by tsi,∅i ;

(2) for every strategy si /∈ SK
i (∅) that does not survive the backward dominance

procedure at ∅, there is no belief hierarchy whatsoever expressing common
belief in future rationality for which si is optimal at all h ∈ Hi possibly
reached by si.

So, whenever a strategy si is optimal for some belief hierarchy that expresses
common belief in future rationality, this reasoning procedure generates one. In
that sense, we can say that this reasoning procedure yields an “exhaustive” set
of belief hierarchies. Note also that this is a reasoning procedure with finitely
many steps, as the backward dominance procedure terminates after finitely many
rounds, after which we only have to construct finitely many types – one for each
information set h and each surviving strategy si ∈ SK

i (h) at h.
The theorem above also shows that finitely generated belief hierarchies are

sufficient when it comes to exploring common belief in future rationality within
a finite dynamic game. Suppose, namely, that some strategy si is optimal, at all
h ∈ Hi possibly reached by si, for some belief hierarchy – not necessarily finitely
generated – that expresses common belief in future rationality. Then, according
to part (2) in the theorem, strategy si must be in SK

i (∅). But in that case, the
procedure above generates a finitely generated belief hierarchy for which the
strategy si is optimal – namely the belief hierarchy induced by the type tsi,∅i

within the finite epistemic model M. So we see that, whenever a strategy si
is optimal for some belief hierarchy – not necessarily finitely generated – that
expresses common belief in future rationality, then it is also optimal for a finitely
generated belief hierarchy that expresses common belief in future rationality.

Corollary 1 (Finitely Generated Belief Hierarchies are Sufficient).
Consider a finite dynamic game Γ with two players. If a strategy si is optimal for
some belief hierarchy – not necessarily finitely generated – that expresses com-
mon belief in future rationality, then it is also optimal for a finitely generated
belief hierarchy that expresses common belief in future rationality.

Here, whenever we say that si is optimal for some belief hierarchy, we mean
that it is optimal for this belief hierarchy at every information set h ∈ Hi

possibly reached by si. This corollary thus states that, if we wish to verify which
strategies can rationally be chosen under common belief in future rationality,
then it is sufficient to stick to finite epistemic models. In that sense, the corollary
bears a close resemblance to the finite model property in modal logic (see, for
instance, [20]).

4.2 Example

We shall now illustrate the reasoning procedure above by means of an example.
Consider the dynamic game in Fig. 2. At the beginning, player 1 can choose
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Fig. 2. Example of a dynamic game ∅ denotes the beginning of the game, and h1

denotes the information set that follows the choice a

between a and b. If he chooses b, the game ends, and the utilities for players 1
and 2 will be (4, 4). If he chooses a, the game continues, and players 1 and 2 must
simultaneously choose from {c, d, e, f} and {g, h, i, j}, respectively. The utilities
for both players in that case can be found in the table following choice a. Let us
denote the beginning of the game by ∅, and the information set following choice
a by h1. Hence, ∅ and h1 are the two information sets in the game. At ∅ only
player 1 makes a choice, whereas both players 1 and 2 are active at h1.

We will first run the backward dominance procedure for this example, and
then build an epistemic model on the basis of that procedure, following the
construction in Theorem 2.

There are two information sets in this game, namely ∅ and h1. The full
decision problems at both information sets are given in Table 3.

We will now start the backward dominance procedure. In round 1, we see
that within the full decision problem Γ 0(∅) at the beginning of the game, the
strategies (a, d), (a, e) and (a, f) are strictly dominated for player 1 by b. So,
we eliminate (a, d), (a, e) and (a, f) from Γ 0(∅), but not – yet – from Γ 0(h1), as
h1 follows ∅. Moreover, within the full decision problem Γ 0(h1) at h1, player 1’s
strategy (a, f) is strictly dominated by (a, d) and (a, e), and hence we eliminate
(a, f) from Γ 0(h1) and Γ 0(∅). Note, however, that we already eliminated (a, f) at
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Table 3. Full decision problems in the game of Fig. 2

Γ 0(∅)

g h i j

(a, c) 0, 5 5, 0 3, 3 1, 0

(a, d) 3, 0 3, 5 2, 3 1, 0

(a, e) 1, 2 1, 2 1, 3 3, 0

(a, f) 0, 3 0, 3 0, 0 0, 5

b 4, 4 4, 4 4, 4 4, 4

Γ 0(h1)

g h i j

(a, c) 0, 5 5, 0 3, 3 1, 0

(a, d) 3, 0 3, 5 2, 3 1, 0

(a, e) 1, 2 1, 2 1, 3 3, 0

(a, f) 0, 3 0, 3 0, 0 0, 5

Table 4. Reduced decision problems after round 1 of backward dominance procedure

Γ 1(∅)

g h i j

(a, c) 0, 5 5, 0 3, 3 1, 0

b 4, 4 4, 4 4, 4 4, 4

Γ 1(h1)

g h i j

(a, c) 0, 5 5, 0 3, 3 1, 0

(a, d) 3, 0 3, 5 2, 3 1, 0

(a, e) 1, 2 1, 2 1, 3 3, 0

Γ 0(∅), so we only need to eliminate (a, f) from Γ 0(h1) at that step. For player 2,
no strategy is strictly dominated within Γ 0(∅) or Γ 0(h1), so we cannot yet
eliminate any strategy for player 2. This leads to the reduced decision problems
Γ 1(∅) and Γ 1(h1) in Table 4.

We now turn to round 2. Within Γ 1(h1), player 2’s strategy j is strictly
dominated by i. Hence, we can eliminate strategy j from Γ 1(h1), but also from
Γ 1(∅), as h1 follows ∅. No other strategies can be eliminated at this round. This
leads to the reduced decision problems Γ 2(∅) and Γ 2(h1) in Table 5.

In round 3, player 1’s strategy (a, e) is strictly dominated by (a, d) within
Γ 2(h1), and hence we can eliminate (a, e) from Γ 2(h1). This leads to the final
decision problems in Table 6, from which no further strategies can be eliminated.
Note, for instance, that strategy i is not strictly dominated for player 2 within
Γ 3(h1), as it is optimal for the belief that assigns probability 0.5 to (a, c) and
(a, d).
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Table 5. Reduced decision problems after round 2 of backward dominance procedure

Γ 2(∅)

g h i

(a, c) 0, 5 5, 0 3, 3

b 4, 4 4, 4 4, 4

Γ 2(h1)

g h i

(a, c) 0, 5 5, 0 3, 3

(a, d) 3, 0 3, 5 2, 3

(a, e) 1, 2 1, 2 1, 3

Table 6. Final decision problems in the backward dominance procedure

Γ 3(∅)

g h i

(a, c) 0, 5 5, 0 3, 3

b 4, 4 4, 4 4, 4

Γ 3(h1)

g h i

(a, c) 0, 5 5, 0 3, 3

(a, d) 3, 0 3, 5 2, 3

We will now build an epistemic model on the basis of the final decision
problems Γ 3(∅) and Γ 3(h1), using the construction in Theorem 2. At ∅, the
surviving strategies are (a, c) and b for player 1, and g, h and i for player 2.
That is, S3

1(∅) = {(a, c), b} and S3
2(∅) = {g, h, i}. Moreover, at h1 the surviving

strategies are given by S3
1(h1) = {(a, c), (a, d)} and S3

2(h1) = {g, h, i}. These
strategies are optimal, at ∅ and/or h1, for the following beliefs:

– strategy (a, c) ∈ S3
1(∅) is optimal, at ∅, for the belief b

(a,c),∅
1 (∅) ∈ Δ(S3

1(∅))
that assigns probability 1 to h;

– strategy (a, c) ∈ S3
1(∅) is optimal, at h1 following ∅, for the belief b

(a,c),∅
1 (h1) ∈

Δ(S3
1(h1)) that assigns probability 1 to h;

– strategy b ∈ S3
1(∅) is optimal, at ∅, for the belief bb,∅1 (∅) ∈ Δ(S3

1(∅)) that
assigns probability 1 to g;

– strategy (a, d) ∈ S3
1(h1) is optimal, at h1, for the belief b

(a,d),h1
1 (h1) ∈

Δ(S3
1(h1)) that assigns probability 1 to g;

– strategy g ∈ S3
2(∅) is optimal, at h1 following ∅, for the belief bg,∅2 (h1) ∈

Δ(S3
1(h1)) that assigns probability 1 to (a, c);

– strategy h ∈ S3
2(∅) is optimal, at h1 following ∅, for the belief bh,∅2 (h1) ∈

Δ(S3
1(h1)) that assigns probability 1 to (a, d);
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– strategy i ∈ S3
2(∅) is optimal, at h1 following ∅, for the belief bi,∅2 (h1) ∈

Δ(S3
1(h1)) that assigns probability 0.5 to (a, c) and probability 0.5 to (a, d).

On the basis of these beliefs we can now construct an epistemic model as in
Theorem 2. So, for both players i, both information sets h, and every strategy
si ∈ S3

i (h), we construct a type tsi,hi , resulting in the type sets

T1 = {t
(a,c),∅
1 , tb,∅1 , t

(a,c),h1
1 , t

(a,d),h1
1 } and T2 = {tg,∅2 , th,∅2 , ti,∅2 , tg,h1

2 , th,h1
2 , ti,h1

2 }.

The conditional beliefs for the types about the opponent’s strategy-type pairs
can then be based on the beliefs above. By using the construction in Theorem 2,
this yields the following beliefs for the types:

b1(t
(a,c),∅
1 , ∅) = (h, th,∅2 ), b1(t

(a,c),∅
1 , h1) = (h, th,h1

2 ),

b1(t
b,∅
1 , ∅) = (g, tg,∅2 ), b1(t

b,∅
1 , h1) = (g, tg,h1

2 ),

b1(t
(a,c),h1
1 , ∅) = (h, th,∅2 ), b1(t

(a,c),h1
1 , h1) = (h, th,h1

2 ),

b1(t
(a,d),h1
1 , ∅) = (g, tg,∅2 ), b1(t

(a,d),h1
1 , h1) = (g, tg,h1

2 ),

b2(t
g,∅
2 , h1) = ((a, c), t(a,c),h1

1 ),

b2(t
g,h1
2 , h1) = ((a, c), t(a,c),h1

1 ),

b2(t
h,∅
2 , h1) = ((a, d), t(a,d),h1

1 ),

b2(t
h,h1
2 , h1) = ((a, d), t(a,d),h1

1 ),

b2(t
i,∅
2 , h1) = (0.5) · ((a, c), t(a,c),h1

1 ) + (0.5) · ((a, d), t(a,d),h1
1 ),

b2(t
i,h1
2 , h1) = (0.5) · ((a, c), t(a,c),h1

1 ) + (0.5) · ((a, d), t(a,d),h1
1 ).

Here, b2(t
i,∅
2 , h1) = (0.5) · ((a, c), t(a,c),h1

1 ) + (0.5) · ((a, d), t(a,d),h1
1 ) means that

type ti,∅2 assigns at h1 probability 0.5 to the event that player 1 chooses (a, c)
while being of type t

(a,c),h1
1 , and assigns probability 0.5 to the event that player

1 chooses (a, d) while being of type t
(a,d),h1
1 .

By Theorem 2 we know that all types so constructed express common belief
in future rationality , and that for every strategy that can rationally be chosen
under common belief in future rationality there is a type in this model for which
that strategy is optimal. Indeed, the backward dominance procedure delivers the
strategies (a, c), b, g, h and i at ∅, and hence we know from [37] that these are
exactly the strategies that can rationally be chosen under common belief in future
rationality. Note that

– strategy (a, c) is optimal, at ∅ and h1, for the type t
(a,c),∅
1 ;

– strategy b is optimal, at ∅, for the type tb,∅1 ;
– strategy g is optimal, at h1, for the type tg,∅2 ;
– strategy h is optimal, at h1, for the type th,∅2 ; and
– strategy i is optimal, at h1, for the type ti,∅2 .
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So, for every strategy that can rationally be chosen under common belief in future
rationality, we have constructed – by means of the epistemic model above – a
finitely generated belief hierarchy that expresses common belief in future ratio-
nality, and that supports this strategy.

Note, however, that there is some redundancy in the epistemic model above.
Namely, it is easily seen that the types t

(a,c),∅
1 and t

(a,c),h1
1 have identical belief

hierarchies, and so do tb,∅1 and t
(a,d),h1
1 . The same holds for tg,∅2 and tg,h1

2 , for th,∅2

and th,h1
2 , and also for ti,∅2 and ti,h1

2 . Hence, we can substitute t
(a,c),∅
1 and t

(a,c),h1
1

by a single type t
(a,c)
1 , and we can substitute tb,∅1 and t

(a,d),h1
1 by a single type tb1.

Similarly, we can substitute tg,∅2 and tg,h1
2 by a single type tg2, we can substitute

th,∅2 and th,h1
2 by a single type th2 , and ti,∅2 and ti,h1

2 by ti2. This eventually leads
to the smaller – yet equivalent – epistemic model with type sets

T1 = {t
(a,c)
1 , tb1} and T2 = {tg2, t

h
2 , ti2}

and beliefs

b1(t
(a,c)
1 , ∅) = b1(t

(a,c)
1 , h1) = (h, th2 )

b1(tb1, ∅) = b1(tb1, h1) = (g, th2 )

b2(t
g
2, h1) = ((a, c), t(a,c)1 ),

b2(th2 , h1) = ((a, d), tb1),

b2(ti2, h1) = (0.5) · ((a, c), t(a,c)1 ) + (0.5) · ((a, d), tb1).

This redundancy is typical for the construction of the epistemic model in
Theorem 2. In most games, the epistemic model constructed in this way will
contain types that are “duplicates” of each other, as they generate the same
belief hierarchy.

5 Discussion

5.1 Algorithms as Reasoning Procedures

In this chapter we have presented an algorithm that leads to belief hierarchies
expressing common belief in future rationality, and it is based on the backward
dominance procedure proposed in [37]. The difference is that in this chapter we
interpret this algorithm not as a computational tool for the analyst, but rather
as a finite reasoning procedure that some player inside the game can use (a) to
verify which strategies he can rationally choose under common belief in future
rationality, and (b) to support each of these strategies by a belief hierarchy
expressing common belief in future rationality.

Hence, one of the main messages in this chapter is that the algorithm above
for common belief in future rationality does not only serve as a computational tool
for the analyst, but can also be used by a player inside the game as an intuitive
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reasoning procedure. Compare this to the concepts of Nash equilibrium [25,26]
for static games, and sequential equilibrium [22] for dynamic games. There is no
easy, finite iterative procedure to find one Nash equilibrium – let alone all Nash
equilibria – in a game. In particular, there is no clear reasoning procedure that
a player inside the game can use to reason his way towards a Nash equilibrium.
Besides, we believe that Nash equilibrium imposes some implausible conditions
on a player’s belief hierarchy, as it requires a player to believe that his opponent
is correct about the actual beliefs he holds (see [4,13,33,38] and [3, p.5]). In view
of all this, we think that Nash equilibrium is not a very appealing concept if we
wish to describe the reasoning of players about their opponents. The same actually
holds for the concept of sequential equilibrium.

5.2 Finitely Generated Belief Hierarchies

In this chapter we have restricted our attention to finitely generated belief
hierarchies – that is, belief hierarchies that can be derived from an epistemic
model with finitely many types. By doing so we actually exclude some belief
hierarchies, as not every belief hierarchy can be generated within a finite epis-
temic model. If we wish to include all possible belief hierarchies in our model,
then we must necessarily look at complete type spaces for dynamic games as
constructed in [7].

But for our purposes here it is actually sufficient to concentrate on finitely
generated belief hierarchies. Theorem 2 implies, namely, that whenever a strategy
si is optimal for some belief hierarchy – not necessarily finitely generated –
that expresses common belief in future rationality, then si is also optimal for
some finitely generated belief hierarchy that expresses common belief in future
rationality. Moreover, finitely generated belief hierarchies have the advantage
that they are particularly easy to work with, and that checking for common
belief in future rationality can be done within finitely many steps, as is shown
in Theorem 1.
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Abstract. We introduce and discuss basic concepts, ideas, and logical
formalisms used for reasoning about strategic abilities in multi-player
games. In particular, we present concurrent game models and the alter-
nating time temporal logic ATL∗ and its fragment ATL. We discuss vari-
ations of the language and semantics of ATL∗ that take into account
the limitations and complications arising from incomplete information,
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changing strategy contexts, or using stronger, constructive concepts of
strategy. Finally, we briefly summarize some technical results regarding
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1 Introduction: Strategic Reasoning

Strategic reasoning is ubiquitous in the modern world. Our entire lives comprise
a complex flux of diverse yet interleaved games that we play in different social
contexts with different sets of other players, different rules, objectives and pref-
erences. The outcomes of these games determine not only our sense of success
(winning) or failure (losing) in life but also what games we engage to play fur-
ther, and how. In this process we adopt, consciously or not, and follow, commit,
abandon, modify and re-commit again to a stream of local strategies. Thus, we
are gradually composing and building a big strategy which, together with all
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that happens in the surrounding environment and the ‘butterfly effects’ coming
from the rest of the world, determines a unique play called Life . . .1

After this lyrical-philosophical overture, let us make some more analytic
introductory notes on our view of strategic reasoning.

To begin with, one can distinguish two, related yet different, perspectives on
strategic reasoning depending on the position of the reasoner2:

– Reasoning of the agents (players) from within the game on what strategy to
adopt in order to best achieve their objectives. This starts with ‘zero-order’
reasoning from the player’s own perspective, but not taking into account the
other players’ strategic reasoning. Then it evolves into ‘first-order’ reasoning
by only taking into account the other players’ zero-order strategic reasoning;
then likewise second-, third-, etc. higher-order strategic reasoning, eventually
converging to the concept of ‘common belief/knowledge of rationality’, funda-
mental in game theory.

– Reasoning of an external observer, from outside the game, on what strategies
the playing agents can objectively adopt in trying to achieve their objectives.
This reasoning can again be stratified into conceptual layers by taking into
account the players’ observational, informational, memory, and reasoning lim-
itations in the game, but also their knowledge or ignorance about the other
players’ limitations, their objectives, etc. Eventually, a complex hierarchy of
levels of ‘objective’ or ‘external’ strategic reasoning emerges, that essentially
embeds the ‘internal’ one above.

One can also distinguish different threads of strategic reasoning depending on
the rationality assumptions, both for the proponents and the opponents. As we
noted, the game-theoretic tradition emphasizes reasoning about rational players’
strategic behaviour under the assumption of common belief or knowledge of ratio-
nality. Depending on how this assumption is perceived various solution concepts
emerge, describing or prescribing the players’ rational strategic behaviour. For
the epistemic and doxastic foundations of strategic behaviour of rational agents,
focusing on the internal perspective of strategic reasoning, we refer to other chap-
ters in this volume: Bonanno [18], Perea [74] and Pacuit [68]. Another active and
promising direction of current research on strategic reasoning, presented in this
chapter, does not consider players taking into account any assumptions about
the rationality of the other players but analyzes, from an external observer’s
perspective, the players’ objective abilities to adopt and to apply strategies that
guarantee the achievement of their goals regardless of the rationality level and
strategic behaviour of the opponents. Thus, when assessing objectively the strate-
gic abilities of individual players or coalitions of players – generically called the
‘proponents’ – to achieve a specific goal we essentially assume that the remaining
1 While ‘strategy’ is commonly defined as a complete conditional plan, we cannot

resist noting here John Lennon’s famous quote: “Life is what happens while you are
busy making other plans”.

2 Roughly corresponding to ‘first-person deliberation’ vs. ‘third-person assessment of
strategic action in games’ in van Benthem [16].
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players – the ‘opponents’ – play a collective adversary in a strictly competitive
game between the proponents and the opponents.

One can also regard the framework presented in this chapter as analyzing
the objective strategic abilities of players – possibly impaired by imperfect or
incomplete knowledge about the game – to achieve qualitative goals using zero-
order reasoning only in concurrent extended multi-player games3.

2 Concurrent Game Models and Strategic Abilities

Logics of strategic reasoning build upon several fundamental concepts from game
theory, the most important being that of a ‘strategy’. The notion of strategy
adopted in this chapter is classical: a conditional plan that prescribes what
action a given agent (or, a coalition of agents) should take in every possible
situation that may arise in the system (game) in which they act. This notion
will be made mathematically more precise in this chapter, where strategies will
be used to provide formal logical semantics.

We start with a technical overview of the basic game-theoretic concepts used
later on in this chapter. For more details we refer the reader to e.g. [51,65].

Throughout this chapter we use the terms ‘agent’ and ‘player’ as synonyms
and consider an arbitrarily fixed nonempty finite4 set of players/agents Agt. We
also fix a nonempty set of atomic propositions Prop that encode basic properties
of game states.

2.1 One-Round Multi-player Strategic Games

The abstract games studied in traditional non-cooperative game theory are usu-
ally presented either in extensive or in strategic form (also known as normal
form). We first focus on the latter type of games here.

Strategic Games

Definition 1 (Strategic Game Forms and Strategic Games). A strategic
game form is a tuple (Agt, {Acta | a ∈ Agt},Out, out) that consists of a nonempty
finite set of players Agt, a nonempty set of actions (also known as moves or
choices) Acta for each player a ∈ Agt, a nonempty set of outcomes Out, and
an outcome function out :

∏
a∈Agt Acta → Out, that associates an outcome with

every action profile; that is, tuple of actions, one for each player5.
A strategic game is a strategic game form endowed with preference orders

≤a on the set of outcomes, one for each player. Often, players’ preferences are

3 We do, however, discuss briefly in Sect. 5.2 how some concepts of rationality can be
expressed in logical languages considered here.

4 We have no strong reason for this finiteness assumption, other than common sense
and technical convenience.

5 We assume that there is an ordering on Agt which is respected in the definition of
tuples etc.
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expressed by payoff functions ua : Out → R. Then, the preference relations are
implicitly defined as follows: o ≤a o′ iff ua(o) ≤ ua(o′). Thus, strategic games
can be represented either as tuples (Agt, {Acta | a ∈ Agt},Out, out, (≤a)a∈Agt) or
(Agt, {Acta | a ∈ Agt},Out, out, (ua)a∈Agt).

In traditional game theory outcomes are usually characterized quantitatively
by real values called utilities or payoffs. More generally, outcomes can be abstract
objects, ordered by relations ≤a which represent preferences of players, as in the
definition above. Here we abstract from the actual preferences between outcomes
and focus on the players’ powers to enforce particular properties (sets) of out-
come states. Thus, we will use the terms “strategic game” and “strategic game
form” interchangeably, assuming that game forms come equipped with some
preference orders that have no direct bearing on our discussion.

The intuition behind a strategic game is simple: each player chooses an action
from her set of possible actions. All actions are performed independently and
simultaneously. Thus, all players perform a collective action based on which the
outcome function determines the (unique) outcome. Hence, a strategic game
typically represents a one-shot interaction.

1\2 coop defect

coop (3, 3) (0, 5)

defect (5, 0) (1, 1)

Fig. 1. Prisoner’s Dilemma.

Example 1 (Prisoner’s Dilemma as a Strategic Game). We will use a version of
the well-known Prisoner’s Dilemma game, given in Fig. 1, to illustrate the basic
concepts introduced in this section. Each of the two players in the game can
choose to cooperate (play action coop) or to defect (play action defect). For-
mally, the game is defined as ({1, 2}, {Act1,Act2}, {o1, o2, o3, o4}, out, (≤1,≤2))
with Act1 = Act2 = {coop, defect}, out(coop, coop) = o1, out(coop, defect) = o2,
out(defect , coop) = o3, and out(defect , defect) = o4. Moreover, we define ≤1

and ≤2 as the smallest transitive relations with o2 ≤1 o4 ≤1 o1 ≤1 o3 and
o3 ≤2 o4 ≤2 o1 ≤2 o2. In the figure we have shown the value of the payoff func-
tions u1 and u2 defined as follows: u1(o1) = u2(o1) = 3, u1(o4) = u2(o4) = 1,
u1(o2) = u2(o3) = 0, and u1(o3) = u2(o2) = 5.

2.2 Effectivity Functions and Models for Strategic Games

It is important to note that in strategic games none of the players knows in
advance the actions chosen by the other players, and therefore has no definitive
control on the outcome of the game. So, what power does an individual player
or a coalition of players have to influence the outcome in such a game? We will
address this fundamental question below in terms of effectivity functions, first
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introduced in cooperative6 game theory in Moulin and Peleg [64] and in social
choice theory in Abdou and Keiding [1], to provide an abstract representation
of powers of players and coalitions.

Definition 2 (Effectivity Functions and Models). Given a set of players
Agt and a set of outcomes Out, a (coalitional) effectivity function (EF) over Agt
and Out is a mapping E : P(Agt) → P(P(Out)) that associates a family of sets
of outcomes with each coalition of players.

A (coalitional) effectivity model (EM) is a coalitional effectivity function
endowed with a labelling V : Out → P(Prop) of outcomes with sets of atomic
propositions from Prop. The labeling prescribes which atomic propositions are
true in a given outcome state.

Intuitively, for a group of agents A ⊆ Agt every element of E(A) is the set
of all possible outcomes that can result from a given joint action of players in
A, depending on how the remaining players from Agt decide to act. In other
words, for every set X in E(A) the coalition A has a collective action that is
guaranteed to yield an outcome in X, regardless of the actions taken by the
players in A = Agt \ A. Therefore, every element of E(A) can be regarded as
representing a possible joint action of coalition A.

Every strategic game G naturally defines an effectivity function called the
α-effectivity function of G and denoted by Eα

G, which is defined as follows.

Definition 3 (Effectivity in Strategic Games, Pauly [71]). For a strategic
game G, the α-effectivity function Eα

G : P(Agt) → P(P(Out)) is defined as
follows: X ∈ Eα

G(A) if and only if there exists a joint action σA for A such that
for every joint action σA of A we have out(σA, σA) ∈ X.

Respectively, the β-effectivity function for G is Eβ
G : P(Agt) → P(P(Out)),

defined as follows: X ∈ Eβ
G(A) if and only if for every joint action σA of A

there exists a joint action σA of A (generally, depending on σA) such that
out(σA, σA) ∈ X.

Intuitively, α-effectivity functions describe the powers of coalitions to guaran-
tee outcomes satisfying desired properties while β-effectivity functions describe
the abilities of coalitions to prevent outcomes satisfying undesired properties.

Since strategic games are determined, α-effectivity and β-effectivity of coali-
tions are dual to each other in a sense that for every coalition A and X ⊆ Out:

X ∈ Eα
G(A) iff X /∈ Eβ

G(A)

where X = Out\X. That is, a coalition A can guarantee an outcome with a
property X precisely when its complementary coalition A cannot prevent it.

6 Coalitional effectivity can be regarded as a concept of cooperative game theory from
the internal perspective of the coalition, but from the external perspective of the
other players it becomes a concept of non-cooperative game theory. We will not
dwell into this apparent duality here.



98 N. Bulling et al.

Example 2 (Prisoner’s Dilemma as Effectivity Model). The Prisoner’s Dilemma
from Example 1 can also be represented by the following effectivity function
over ({1, 2}, {o1, . . . , o4}): E(∅) = {Out}, E({1}) = {{o1, o2}, {o3, o4}} ∪ {X ⊆
{o1, . . . , o4} | {o1, o2} ⊆ X or {o3, o4} ⊆ X}, E({2}) = {{o1, o3}, {o2, o4}} ∪
{X ⊆ {o1, . . . , o4} | {o1, o3} ⊆ X or {o2, o4} ⊆ X}, and E({1, 2}) =
{{o1}, {o2}, {o3}, {o4}} ∪ {∃i ∈ {1, 2, 3, 4} s.t. oi ∈ X} = P({o1, o2, o3, o4})\{∅}.

Let us adopt atomic propositions representing the payoff values for each agent
{pja | a ∈ Agt, j ∈ {0, 1, 3, 5}} and label the outcomes appropriately. Then, for
example, we have V (o1) = {p31, p32} and V (o2) = {p01, u52}.

2.3 Characterization of Effectivity Functions of Strategic Games

Clearly, not every abstract effectivity function defined as above corresponds to
strategic games. The following notion captures the properties required for such
correspondence.

Definition 4 (True Playability (Pauly [71], Goranko et al. [45]). An
effectivity function E : P(Agt) → P(P(Out)) is truly playable iff the following
conditions hold:

Outcome monotonicity: X ∈ E(A) and X ⊆ Y implies Y ∈ E(A);
Liveness: ∅ /∈ E(A);
Safety: St ∈ E(A);
Superadditivity: if A1 ∩ A2 = ∅, X ∈ E(A1) and Y ∈ E(A2), then X ∩ Y ∈

E(A1 ∪ A2);
Agt-maximality: X 
∈ E(∅) implies X ∈ E(Agt);
Determinacy: if X ∈ E(Agt) then {x} ∈ E(Agt) for some x ∈ X.

It is easy to see that every α-effectivity function of a strategic game is truly
playable. The converse holds too as stated below.

Representation theorem for effectivity functions.7 An effectivity func-
tion E for (Agt,Out) is truly playable if and only if there exists a strategic game
G = (Agt, {Acti | i ∈ Agt},Out, out) such that Eα

G = E, see [45,71].

Actual α-effectivity in Strategic Games. The notion of effectivity in game
G can be refined to the “actual” α-effectivity function of G that collects precisely
the sets of outcomes of collective actions available to the coalition without closing
the sets under outcome monotonicity. Formally, given a strategic game G =
(Agt, {Acti | i ∈ Agt},Out, out), a coalition A and a joint action σA we define
outcome states(σA) as the set of all possible outcomes that can result from σA:

outcome states(σA) = {out(σA, σA) | σA is a joint action for A}.

7 This representation theorem was first proved in Pauly [71] for so called “playable”
effectivity functions, without the Determinacy requirement. It has been recently
shown in [45] that, for games with infinite outcome spaces, “playability” is not suffi-
cient. The Determinacy condition was identified and added to define “truly playable”
effectivity functions and prove a correct version of the representation theorem.
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We define the actual α-effectivity function ÊG : P(Agt) → P(P(Out)) as the
family of all outcome sets effected by possible joint actions of A:

ÊG(A) = {outcome states(σA) | σA is a joint action for A}.

Clearly, the standard α-effectivity function for G can now be obtained by closure
under outcome-monotonicity:

EG(A) = {Y | X ⊆ Y for some X ∈ ÊG(A)}.

Conversely, obtaining ÊG from EG for games with infinite outcome states is not
so straightforward because ÊG may not be uniquely determined by EG, so the
notion of actual effectivity is at least as interesting and perhaps more important
than “standard”, outcome-monotone effectivity. We refer the interested reader
for further discussion and details to [44].

2.4 Strategic Abilities in Concurrent Game Models

Extensive game forms allow to model turn-based games, where at every non-
terminal position only one player is allowed to make a move. In this section we
discuss more general (as we explain further) “concurrent” games, where at every
position all players make their moves simultaneously.

Extensive Games meet Repeated Games: Concurrent Game Struc-
tures. Strategic games are usually interpreted as one-step games. Especially
in evolutionary game theory, they are often considered in a repeated setting:
game G is played a number of times, and the payoffs from all rounds are aggre-
gated. Concurrent game structures from [8], which are essentially equivalent to
multi-player game frames from [71] (see Goranko [42]), generalize the setting
of repeated games by allowing different strategic games to be played at dif-
ferent stages. This way we obtain multi-step games that are defined on some
state space, in which every state is associated with a strategic game with out-
comes being states again. The resulting game consists of successive rounds of
playing one-step strategic games where the outcome of every round determines
the successor state, and therefore the strategic game to be played at the next
round. Alternatively, one can see concurrent game structures as a generaliza-
tion of extensive game forms where simultaneous moves of different players are
allowed, as well as loops to previously visited states.

Definition 5 (Concurrent Game Structures and Models). A concurrent
game structure (CGS) is a tuple

S = (Agt,St,Act, act, out)

which consists of a non-empty finite set of players Agt = {1, . . . , k}, a non-
empty set of states8 St, a non-empty set of atomic actions Act, a function act :
8 The set of states is assumed finite in [8] but that restriction is not necessary for our

purposes. In Sect. 6.3 we even rely on the fact that the set of states can be infinite.
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Agt × St → P(Act) \ {∅} that defines the set of actions available to each player
at each state, and a (deterministic) transition function out that assigns a unique
successor (outcome) state out(q, α1, . . . , αk) to each state q and each tuple of
actions 〈α1, . . . , αk〉 such that αa ∈ act(a, q) for each a ∈ Agt (i.e., each αa that
can be executed by player a in state q).

A concurrent game model (CGM) over a set of atomic propositions Prop is
a CGS endowed with a labelling V : St → P(Prop) of game states with subsets
of Prop, thus prescribing which atomic propositions are true at a given state.

Thus, all players in a CGS execute their actions synchronously and the combi-
nation of these actions together with the current state determines the transition
to a successor state in the CGS.

Note that turn-based extensive form games can be readily represented as
concurrent game structures by assigning at each non-leaf state the respective set
of actions to the player whose turn it is to move from that state, while allowing
a single action ‘pass’ to all other players at that state. At leaf states all players
are only allowed to ‘pass’ and the result of such collective pass action is the same
state, thus looping there forever.

Example 3 (Prisoner’s Escape). A CGM Mesc is shown in Fig. 2 modeling the
following scenario. A prison has two exits: the rear exit guarded by the guard
Alex and the front exit guarded by the guard Bob. The prison is using the
following procedure for exiting (e.g., for the personnel): every person authorized
to exit the prison is given secret passwords, one for every guard. When exiting

q1

q3

q2
(move, )

(move, )

(pwA, coop)

escaped

BobAlex

q4

(pwA, coop)

caught

(pwB , coop)

(pwB , coop)
(pwB , defect) (pwB , defect)

(nop,nop)

(nop,nop)

(pwA, defect) (pwA, defect)

Fig. 2. Prisoner’s escape modelled as CGM Mesc . An action tuple (a1, a2) consists of
an action of Frank (a1) and Charlie (a2). � is a placeholder for any action available at
the very state; e.g., the tuple (move, �) leading from state q1 to q2 is a shortcut for the
tuples (move, defect) and (move, coop). Loops are added to the “final states” q3 and
q4 where action nop is the only available action for both players. We leave the formal
definition to the reader.
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the prison the guard must be given the password associated with him/her. If a
person gives a wrong password to any guard, he is caught and arrested. Now,
Frank is a prisoner who wants to escape, of course. Somehow Frank has got a key
for his cell and has learned the passwords for each of the guards. Charlie is an
internal guard in the prison and can always see when Frank is going to any of the
exits. Frank has bribed Charlie to keep quiet and not to warn the other guards.
Charlie can cooperate (actions coop), by keeping quiet, or can defect (action
defect), by alerting the guards. Thus, the successful escape of Frank depends on
Charlie’s cooperation.

Global Coalition Effectivity Functions and Models. Every CGS S can
be associated with a global effectivity function E : St × P(Agt) → P(P(St))
that assigns a (local) α-effectivity function Eq = E(q, ·) to every state q ∈ St,
generated by the strategic game associated with q in S. These can be accord-
ingly extended to global effectivity models by adding valuation of the atomic
propositions.

Global effectivity functions and models have been introduced abstractly in
[71–73] (called there ‘effectivity frames and models’). The global effectivity func-
tions generated by concurrent game structures are characterized in [45,71] by
the true playability conditions listed in Sect. 2.3, applied to every Eq.

The idea of effectivity functions has also been extended to path effectivity
functions in [44]. They will not be discussed here; the reader is referred to that
paper for more details.

2.5 Strategies and Strategic Ability

Strategies in Concurrent Game Models. A path in a CGS/CGM is an
infinite sequence of states that can result from subsequent transitions in the
structure/model. A strategy of a player a in a CGS/CGM M is a conditional
plan that specifies what a should do in each possible situation. Depending on the
type of memory that we assume for the players, a strategy can be memoryless
(alias positional), formally represented with a function sa : St → Act, such that
sa(q) ∈ acta(q), or memory-based (alias perfect recall), represented by a function
sa : St+ → Act such that sa(〈. . . , q〉) ∈ acta(q), where St+ is the set of histories,
i.e., finite sequences of states in M. The latter corresponds to players with perfect
recall of the past states; the former corresponds to players whose memory, if any,
is entirely encoded in the current state of the system. Intermediate options, where
agents have bounded memory, have been studied by Ågothes and Walther [5],
but will not be discussed here.

A joint strategy of a group of players A = {a1, ..., ar} is simply a tuple of
strategies sA = 〈sa1 , ..., sar

〉, one for each player from A. We denote player a’s
component of the joint strategy sA by sA[a]. Then, in the case of positional joint
strategy sA, the action that sA[a] prescribes to player a at state q is sA[a](q);
respectively, sA[a](π) is the action that a memory-based joint strategy sA pre-
scribes to a from the finite path (i.e., history) π. By a slight abuse of notation, we
will use sA(q) and sA(π) to denote the joint actions of A in state q and history
π, respectively.
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Outcomes of Strategies and Strategic Abilities. The outcome set func-
tion outcome states can be naturally extended from joint actions to all strat-
egy profiles applied at a given state (respectively, history) in a given CGS (or
CGM). Then outcome states(q, sA) (respectively, outcome states(π, sA)) returns
the set of all possible successor states that can result from applying a given posi-
tional (respectively, memory-based) joint strategy sA of the coalition A at state
q (respectively, at history π). Formally,

outcome states(q, sA) = {out(q, sA(q), sA(q)) | sA is a joint strategy of A}.

The local actual effectivity function ÊS , defining the coalitional powers at every
state q in S, is defined explicitly as

ÊS(q,A) = {outcome states(q, sA) | sA is a memoryless joint strategy of A}.

As before, the standard α-effectivity functions for S can be obtained by closure
under outcome-monotonicity:

ES(q,A) = {Y | X ⊆ Y for some X ∈ ÊS(q, A)}.

Likewise for outcome states(π, sA), ÊS(π, A), and ES(π, A) which we will not
further discuss here.

Example 4 (Prisoner’s Escape Continued). ÊS(q1, {Frank}) = {{q2}, {q4},
{q3, q4}}, where S denotes the underlying CGS of Mesc .

We extend the function outcome states to a function outcome plays that
returns the set of all plays, i.e., all paths λ ∈ Stω that can be realised when
the players in A follow strategy sA from a given state q (respectively, history π)
onward. Formally, for memoryless strategies this is defined as:

outcome plays(q, sA) = {λ = q0, q1, q2... | q0 = q and for each j ∈ N there exists
an action profile for all players 〈αj

1, ..., α
j
k〉 such that αj

a ∈ acta(qj) for every
a ∈ Agt, αj

a = sA[a](qj) for every a ∈ A, and qj+1 = out(qj , α
j
a1 , ..., α

j
ak

)}.

The definition for memory-based strategies is analogous: outcome plays(q, sA)
consists of all plays of the game that start in q and can be realised as a result
of each player in A following its individual memory-based strategy in sA, while
the remaining players act in any way that is admissible by the game structure.

Example 5 (Prisoner’s Escape Continued). Suppose the guard Charlie, who is
a friend with the guard Bob and does not want to cause him trouble, adopts the
memoryless strategy to cooperate with Frank if he goes to the rear exit (i.e., at
state q1) by not warning Alex, but to defect and warn Bob if Frank decides to
go to the front exit, i.e. at state q2. Naturally, Frank does not know that. The
set of possible outcome plays enabled by this strategy and starting from state
q1 is:

{(q1q2)ω, q1(q2q1)nqω
3 , (q1q2)nqω

4 | n ∈ N}.
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Suppose now being at q1 Frank decides, for his own reasons, to try to escape
through the front exit. Frank’s strategy is to move at q1 and to give the password
to the guard at q2. The resulting play from that strategy profile is the play q1q2q

ω
4 .

Memory-based strategies are more flexible. For instance, a memory-based
strategy for Charlie could be one where he defects the first time Frank appears
at any given exit, but thereafter cooperates at the rear exit (say, because he was
then given more money by Frank) and defects at the front exit. That strategy
enables the following set of plays from q1:

{(q1q2)ω, q1q
ω
4 , (q1q2)nqω

4 , q1(q2q1)n+1qω
3 | n ∈ N}.

So, if Frank tries to escape as soon as possible with Charlie’s support, he will
fail; however, if he decides to first move to the front exit (and to pay Charlie
extra money) and tries to escape the second time he appears at the front exit,
he may succeed.

Note that there is no memoryless strategy that would allow Frank to escape if
Charlie adopts the strategy specified above. This is because Frank’s memoryless
strategy must specify the same action in each state every time he is at that
state, regardless of the history of the game up to that point. Thus, either Frank
tries to escape through one of the exits right away, or he executes move forever,
or gets caught.

A fundamental question regarding a concurrent game model is: what can a
given player or coalition achieve in that game? So far the objectives of players
and coalitions are not formally specified, but a typical objective would be to
reach a state satisfying a given property, e.g. a winning state. Generally, an
objective is a property of plays, for instance one can talk about winning or
losing plays for the given player or coalition. More precisely, if the current state
of the game is q we say that a coalition of players A can (is sure to) achieve an
objective O from that state if there is a joint strategy sA for A such that every
play from outcome plays(q, sA) satisfies the objective O. The central problem
that we discuss in the rest of this chapter is how to use logic to formally specify
strategic objectives of players and coalitions and how to formally determine their
abilities to achieve such objectives.

3 Logics for Strategic Reasoning and Coalitional Abilities

Logic and game theory have a long and rich history of interaction which we
will not discuss here and refer the reader to e.g. [15]. Here, we will focus on the
role of logic in formalizing and structuring reasoning about strategic abilities in
multi-player games.

3.1 Expressing Local Coalitional Powers: Coalition Logic

The concept of α-effectivity in strategic games (Definition 3) has the distinct
flavour of a non-normal modal operator with neighbourhood semantics, see [33],
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and this observation was utilized by Pauly who introduced in [71,73] a multi-
modal logic capturing coalitional effectivity in strategic games, called Coalition
Logic (CL). CL extends classical propositional logic with a family of modal oper-
ators [A] parameterized with coalitions, i.e. subsets of the set of agents Agt.
Intuitively, the formula [A]ϕ says that coalition A has, at the given game state,
the power to guarantee an outcome satisfying ϕ. Formally, operator [A] is inter-
preted in global effectivity models M = (E, V ) as follows:

M, q |= [A]ϕ iff ‖ϕ‖M ∈ Eq(A),

where ‖ϕ‖M := {s ∈ St | M, s |= ϕ}.
This implicitly defines the semantics of CL in every concurrent game

model M, in terms of the generated global α-effectivity function EM.
Coalition logic is a very natural language to express local strategic abilities

of players and coalitions; that is, their powers to guarantee desired properties in
the successor states.

Example 6 In the following we state some properties expressed in CL.

1. “If Player 1 has an action to guarantee a winning successor state, then Player
2 cannot prevent reaching a winning successor state.”

[1]Win1 → ¬[2]¬Win1 .

2. “Player 1 has an action to guarantee a successor state where she is rich, and
has an action to guarantee a successor state where she is happy, but has no
action to guarantee a successor state where she is both rich and happy.”

[1]Rich ∧ [1]Happy ∧ ¬[1](Rich ∧ Happy).

3. “None of players 1 and 2 has an action ensuring an outcome state satisfying
Goal, but they have a collective action ensuring such an outcome state.”

¬[1]Goal ∧ ¬[2]Goal ∧ [1, 2]Goal .

Example 7 (Prisoner’s Escape: Example 3 Continued). Let us denote hereafter
Frank by f and Charlie by c. Then we have Mesc , q1 |= ¬[f ]escaped and
Mesc , q1 |= [f, c]escaped.

3.2 Expressing Long-Term Strategic Abilities in the Logic ATL∗

While CL is suitable for expressing local properties and immediate abilities, it
cannot capture long-term strategic abilities of players and coalitions. For these,
we need to extend the language of CL with more expressive temporal operators.
That was done in [71,72] where Pauly introduced the Extended Coalition Logic
ECL, interpreted essentially (up to notational difference) on concurrent game
models. Independently, a more expressive logical system called Alternating-Time
Temporal Logic, ATL∗ (and its syntactic fragment ATL) was introduced and
studied by Alur, Henzinger and Kupferman in a series of papers, see [6–8] as a
logic for reasoning about open systems. The main syntactic construct of ATL∗

is a formula of type 〈〈A〉〉γ, intuitively meaning:
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“The coalition A has a collective strategy to guarantee the satisfaction of
the objective γ on every play enabled by that strategy”9.

As shown in [42,43] Pauly’s ECL is directly embeddable into ATL, so we will
not discuss ECL further, but will focus on ATL and ATL∗ interpreted over con-
current game models.

ATL∗ and its Fragment ATL: Syntax and Semantics. Formally, the
alternating-time temporal logic ATL∗ is a multimodal logic extending the lin-
ear time temporal logic LTL– comprising the temporal operators X (“at the
next state”), G (“always from now on”) and U (“until”) – with strategic path
quantifiers 〈〈A〉〉 indexed with coalitions A of players. There are two types of for-
mulae of ATL∗: state formulae that constitute the logic, and which are evaluated
at game states, and path formulae, which are evaluated on game plays. These
are respectively defined by the following grammars, where A ⊆ Agt, p ∈ Prop:

State formulae: ϕ:: = p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉γ,
Path formulae: γ:: = ϕ | ¬γ | γ ∧ γ | Xγ | Gγ | γ U γ.

The formal semantics of ATL∗ was initially based on alternating transition
systems in [6,7], and subsequently reworked for concurrent game models, as
follows10. Let M be a CGM, q a state in M, and λ = q0q1 . . . be a path in M.
For every i ∈ N we define λ[i] = qi, and denote by λ[0..i] the prefix q0q1 . . . qi,
and by λ[i..∞] the suffix qiqi+1 . . . of λ. The semantics of ATL∗ is given as follows
(cf. [8]). For state formulae:

M, q |= p iff q ∈ V (p), for p ∈ Prop;
M, q |= ¬ϕ iff M, q 
|= ϕ;
M, q |= ϕ1 ∧ ϕ2 iff M, q |= ϕ1 and M, q |= ϕ2;
M, q |= 〈〈A〉〉γ iff there is a joint strategy sA for A such that M, λ |= γ for every

play λ ∈ outcome plays(q, sA);

and for path formulae:
M, λ |= ϕ iff M, λ[0] |= ϕ for any state formula ϕ;
M, λ |= ¬γ iff M, λ 
|= γ;
M, λ |= γ1 ∧ γ2 iff M, λ |= γ1 and M, λ |= γ2;
M, λ |= Xγ iff M, λ[1,∞] |= γ;
M, λ |= Gγ iff M, λ[i,∞] |= γ for every i ≥ 0; and
M, λ |= γ1 U γ2 iff there is i such that M, λ[i,∞] |= γ2 and M, λ[j,∞] |= γ1 for

all 0 ≤ j < i.

The other Boolean connectives and constants � and ⊥ are defined as usual.
The operator F (“sometime in the future”) is defined as Fϕ ≡ �U ϕ.11

9 We use the terms objective and goal of a coalition A as synonyms, to indicate the
subformula γ of the formula 〈〈A〉〉γ. In doing so, we ignore the issue of whether agents
may have (common) goals, how these goals arise, etc.

10 As proved in [42,43], under natural assumptions the two semantics are equivalent.
11 Of course, G is definable as ¬F¬, but keeping it as a primitive operator in the

language is convenient when defining the sublanguage ATL.
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The logic ATL∗ is very expressive, often more than necessary. This expres-
siveness comes at a high computational price which can be avoided if we settle
for a reasonably designed fragment which is still sufficient in many cases. The
key idea is to restrict the combination of temporal operators in the language.
That can be achieved by imposing a syntactic restriction on the construction of
formulae: occurrences of temporal operators must be immediately preceded by
strategic path quantifiers. The result is the logic ATL defined by the following
grammar, for A ⊆ Agt, p ∈ Prop:

ϕ:: = p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉Xϕ | 〈〈A〉〉Gϕ | 〈〈A〉〉(ϕU ϕ).

For example, 〈〈A〉〉G F p is an ATL∗ formula but not an ATL formula whereas
〈〈A〉〉G 〈〈B〉〉F p is also an ATL formula. Thus, the coalitional objectives in ATL
formulae are quite simple. As a consequence, it turns out that for the formulae
of ATL the two notions of strategy, memoryless and memory-based, yield the
same semantics [8,47].

Note that CL can be seen as the fragment of ATL involving only Booleans
and operators 〈〈A〉〉X , whereas ECL also involves the operator 〈〈A〉〉G (denoted in
[71,72] by [A∗]). Both logics inherit the semantics of ATL on concurrent game
models.

Example 8 (Prisoner’s Escape Continued). We express some properties of the
escape scenario from Example 3 in ATL∗. (We recall that we denote Frank by f
and Charlie by c.) We remark that all but the last formula belong to ATL.

1. Mesc , q1 |= ¬〈〈f〉〉F escaped: Frank cannot guarantee to escape on his own
(from q1).

2. Mesc , q1 |= 〈〈f, c〉〉F escaped: if Frank and Charlie cooperate then they can
ensure that Frank eventually escapes.

3. Mesc , q1 |= 〈〈c〉〉G ¬escape: Charlie can guarantee that Frank never escapes.
4. Mesc , q1 |= ¬〈〈c〉〉F caught: Charlie cannot guarantee that Frank is caught.
5. Mesc , q1 |= 〈〈f〉〉X (Bob∧ 〈〈f, c〉〉X escaped): Frank has a strategy to reach the

front exit guarded by Bob in the next step and then escape with the help of
Charlie.

6. Mesc , q1 |= 〈〈f〉〉G F Alex: Frank can guarantee to reach the rear exit guarded
by Alex infinitely many times.

3.3 From Branching-Time Temporal Logics to ATL∗

We have introduced ATL∗ from a game-theoretic perspective as a logic for rea-
soning about players’ strategic abilities. An alternative approach, in fact the one
adopted by its inventors in [8], is to introduce ATL/ATL∗ as a generalization of
the branching-time temporal logic CTL/CTL∗ to enable reasoning about open
systems. Indeed, CTL/CTL∗ can be regarded as a 1-player version of ATL/ATL∗

where – assuming the singleton set of agents is {i} – the existential path quan-
tifier E is identified with 〈〈i〉〉 and the universal path quantifier A is identified
with 〈〈∅〉〉. Indeed, we leave it to the reader to check that the semantics of 〈〈i〉〉ϕ
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and 〈〈∅〉〉ϕ in any single-agent CGM M coincide with the semantics of Eϕ and
Aϕ in M regarded as a transition system with transitions determined by the
possible actions of the agent i, respectively.

ATL/ATL∗ can be regarded – at least formally, but see a discussion further –
as a multi-agent extension of CTL/CTL∗ resulting into a more refined quan-
tification scheme over the paths, respectively computations, enabled by some
collective strategy of the given coalition.

4 Variations in Reasoning About Strategies

In this section, we discuss two interesting and important directions of extending
the basic pattern of reasoning about agents’ strategies and abilities. First, we
investigate limitations and inadequacies stemming from the compositionality of
the semantics of CL and ATL∗ that seem to be in conflict with the concept
of strategy commitment. We discuss variant notions of strategic ability that
attempt to resolve these problems. Then, we briefly summarize some attempts at
reasoning about outcomes of particular strategies, rather than the mere existence
of suitable plans.

4.1 Persistence of Strategic Committments

Strategic Commitment and Persistence in the Semantics of ATL∗.
Agents in actual multi-agent systems commit to strategies and relinquish their
commitments in pursuit of their individual and collective goals in a dynamic,
pragmatic, and often quite subtle way. While the semantics of ATL∗ is based on
the standard notion of strategy, it appears that it does not capture adequately
all aspects of strategic behaviour. For instance, the meaning of the ATL∗ for-
mula 〈〈A〉〉γ is that the coalition A has a collective strategy, say sA, to bring
about the truth of γ if the agents in A follow that strategy. However, accord-
ing to the formal semantics of ATL∗, as introduced in [8], the evaluation of γ
in the possible plays of the system enabled by sA does not take that strategy
into account anymore. That is, if γ contains a subformula 〈〈B〉〉ψ, then in the
evaluation of 〈〈B〉〉ψ the agents in A ∩ B are free to choose any (other) strategy
as part of the collective strategy of B claimed to exist to justify the truth of ψ.
Thus, the semantics of ATL∗ does not commit the agents in A to the strategies
they adopt in order to bring about the truth of the formula 〈〈A〉〉γ. This is in
agreement with the semantics of path quantifiers in CTL∗, where it is natural to
express claims like EG Eϕ read as “there is a path, such that from any state of
that path the system can deviate to another path which satisfies ϕ”. One may
argue that this feature disagrees with the game-theoretic view of a strategy as
a full conditional plan that completely specifies the agent’s future behavior. To
see the problem more explicitly, consider the ATL formula 〈〈i〉〉G (γ ∧ 〈〈i〉〉X ¬γ).
Depending on how orthodoxly or liberally one adopts the concept of strategic
commitment, the requirement expressed – that agent i has a strategy to ensure
both that γ holds forever and that it can always alter that strategy to reach a
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non-γ state – may be considered satisfiable or not. This issue has been indepen-
dently addressed in different ways in [3,4,19,75,81], where various proposals
have been made in order to incorporate strategic commitment and persistent
strategies in the syntax and semantics of ATL∗.
Paradoxes of Non-persistence. We continue with two more similar examples
to argue that non-persistent strategies can lead to apparently counterintuitive
descriptions of strategic ability.

Example 9 (Non-renewable Resource). Consider a system with a shared resource,
where we are interested in reasoning about whether agent a has access to the
resource. Let p denote the fact that agent a controls the resource. The ATL
formula 〈〈a〉〉X p expresses the claim that a is able to obtain control of the resource
in the next moment, if it chooses to. Now imagine that agent a does not need
to access the resource all the time, but it would like to be able to control the
resource any time it needs it. Intuitively, this is expressed in ATL by the formula
〈〈a〉〉G 〈〈a〉〉X p, saying that a has a strategy which guarantees that, in any future
state of the system, a can always force the next state to be one where a controls
the resource.

Now, consider the single-agent system M0 from Fig. 3. We have that
M0, q1 |= 〈〈a〉〉X p: a can choose action α2, which guarantees that p is true next.
But we also have that M0, q1 |= 〈〈a〉〉G 〈〈a〉〉X p: a’s strategy in this case is to
always choose α1, which guarantees that the system will stay in q1 forever and,
as we have seen, M0, q1 |= 〈〈a〉〉X p. However, this system does not have exactly
the property we had in mind because by following that strategy, agent a dooms
itself to never access the resource – in which case it is maybe counter-intuitive
that 〈〈a〉〉X p should be true. In other words, a can ensure that it is forever able
to access the resource, but only by never actually accessing it.12 Indeed, while a
can force the possibility of achieving p to be true forever, the actual achievement
of p destroys that possibility.

q1 q3q2

p
α1

α1
α1α2

Fig. 3. Having the cake or eating it: model M0 with a single agent a. The transitions
between states are labeled by the actions chosen by agent a.

Example 10 (Nested Strategic Operators). Non-persistence of strategic commit-
ments in nested strategic formulas (like in 〈〈a〉〉G 〈〈a〉〉X p) also contradicts the

12 This is the famous “have the cake or eat it” dilemma. One can keep being able to
eat the cake, but only by never eating the cake.
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observation that a player’s choice constrains the outcomes that can be achieved
by other players. Consider the ATL∗ formula 〈〈A〉〉〈〈B〉〉γ. It is easy to see that,
according to the semantics of ATL∗, the formula is equivalent to 〈〈B〉〉γ for any
pair A,B of coalitions (intersecting or not). Thus, none of A’s strategy can influ-
ence the outcome of B’s play, which is opposite to what we typically assume in
strategic reasoning.

Alternative Semantics of Strategic Play. What are the alternatives? Let
us analyze them using the example formula 〈〈1, 2〉〉G 〈〈2, 3〉〉X p.

1. Irrevocable Strategies. At the point of evaluation of 〈〈1, 2〉〉G 〈〈2, 3〉〉X p
the strategies of agents 1 and 2 are selected and fixed. When evaluating
the subformula 〈〈2, 3〉〉X p only the strategy of agent 3 can vary. A natural,
straightforward way of obtaining this semantics with minimal change to the
standard semantics of ATL∗ is to update the model when agents choose a
strategy, so that their future choices must be consistent with that strategy,
but otherwise keeping semantics (definition of strategies, etc.) as is. We call
these irrevocable strategies (see [3]), since a commitment to a strategy can
never be revoked in this semantics, and denote by IATL the version of ATL
adopting (memoryless) irrevocable strategies in its semantics.

2. Strategy Contexts. At the point of evaluation of 〈〈1, 2〉〉G 〈〈2, 3〉〉X p the
strategies of agents 1 and 2 are selected and fixed, but when evaluating the
subformula 〈〈2, 3〉〉X p agent 2 is granted the freedom to change its strategy
in order to achieve the current goal, i.e. X p. Thus, both agents 2 and 3 can
choose new strategies, and moreover they can do that under the assumption
that agent 1 remains committed to his strategy selected at the point of eval-
uation of 〈〈1, 2〉〉G 〈〈2, 3〉〉X p. This is a simple case of what we will later call
strategy contexts.

ATL with Irrevocable Strategies. A strategy in game theory is usually
understood as a plan that completely prescribes the player’s behaviour, in all
conceivable situations and for all future moments. An alternative semantics for
strategic quantifiers takes this into account by adopting irrevocable strategies,
implemented through the mechanism of model update.

Definition 6 (Model Update). Let M be a CGM, A a coalition, and sA a
strategy for A. The update of M by sA, denoted M † sA, is the model M where
the choice of each agent i ∈ A is fixed by the strategy sA[i]; that is, di(q) = {si(q)}
for each state q.

The semantics of ATL∗ with irrevocable strategies (IATL∗) is now defined as
follows, where q is a state in a CGS M:

[M, q |= 〈〈A〉〉γ iff there is a joint strategy sA such that for every path λ ∈
outcome playsM(q, sA) we have M † sA, λ |= γ.

Depending on whether memory-based strategies, or only memoryless strate-
gies, are allowed two different versions of ATL with irrevocable strategies emerge:
MATL and IATL. For further details on these, we refer the reader to [3,4].
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ATL with Strategy Contexts. A somewhat different and more flexible app-
roach has been proposed by Brihaye et al. [19]. Instead of a “hard” model update
that transforms the CGM according to the chosen strategy, the model is kept
intact and the strategy is only added to the strategy context. The context col-
lects strategies being currently executed, and hence influences the outcome paths
that can occur. On the other hand, since the model itself does not change, each
strategy can be revoked – in particular when an agent chooses another strategy
in a nested cooperation modality. Formally, let sA be a joint strategy of agents
A (the current strategy context), and let tB be a new joint strategy of agents B.
We define the context update sA ◦ tB as the joint strategy f for agents in A ∪ B
such that f [i] = tB[i] for i ∈ B and f [i] = sA[i] for i ∈ A \ B. That is, the
new strategies from tB are added to the context, possibly replacing some of the
previous ones. The semantic rule for strategic modalities becomes:

M, q, f |= 〈〈A〉〉γ iff there is a joint strategy sA for the agents in A such that for
every path λ ∈ outcome plays(q, f ◦ sA) we have that M, λ, f ◦ sA |= γ.

Additionally, M, q |= ϕ iff M, q, f∅ |= ϕ where f∅ is the only joint strategy of
the empty coalition (i.e., the empty tuple).

For more details and a thorough analysis of the model checking problem for
ATL with strategy contexts, we refer the reader to [19]. A proof of the undecid-
ability of the satisfiability problem for ATL with strategy contexts can be found
in [79].

4.2 Making Strategies Explicit

In this section, we discuss several proposed variations of ATL with explicit ref-
erences to strategies in the logical language.

Counterfactual ATL (CATL), proposed by van der Hoek et al. [52], extends
ATL with operators of “counterfactual commitment” Ci(σ, ϕ) where i is an agent,
σ is a term symbol standing for a strategy, and ϕ is a formula. The informal
reading of Ci(σ, ϕ) is: “if it were the case that agent i committed to strategy σ,
then ϕ would hold”. The semantics is based on model updates, like the IATL
semantics presented in Sect. 4.1:

M, q |= Ci(σ, ϕ) iff M † [[σ]]i, q |= ϕ

where [[σ]]i is the strategy of agent i denoted by the strategy term σ.
ATL with intentions (ATLI), proposed by Jamroga et al. [59], is similar to

CATL, but its counterfactual operators have a different flavour: (striσ)ϕ reads
as “suppose that agent i intends to play strategy σ, then ϕ holds”. An intention
is a kind of commitment – it persists – but it can be revoked by switching
to another intention. Semantically, this is done by an additional “marking” of
the intended actions in the concurrent game model. Moreover, strategies can
be nondeterministic, which provides semantic tools for e.g. partial strategies as
well as explicit release of commitments. Thus, Jamroga et al. [59] provide in
fact the semantics of ATL based on strategy contexts (here called intentions).
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However, ATLI does not allow to quantify over intentions, and hence allows only
for limited context change. ATLI and its richer variant called ATLP (“ATL with
plausibility” see [29]) have been used to e.g. characterize game-theoretic solution
concepts and outcomes that can be obtained by rational agents. We discuss this
and show some examples in Sect. 5.

Alternating-time temporal logic with explicit strategies (ATLES), see [81], is
a revised version of CATL which dispenses with the counterfactual operators.
Instead, strategic modalities are subscripted by commitment functions which
are partial functions of the form ρ = {a1 �→ σ1, . . . , al �→ σl} where each aj is
an agent and σj is a strategy term. The meaning of a formula such as 〈〈A〉〉ρG ϕ
is that there exists a strategy for A ∪ {a1, . . . , al} where each aj is required to
play [[σj ]] such that ϕ will hold. Note, that ATLES formulae also involve strategy
commitment. Consider, for instance, formula 〈〈A〉〉ρG 〈〈A〉〉

ρ
F ϕ. If A is a subset of

the domain of ρ then in the evaluation of the subformula 〈〈A〉〉ρF ϕ, A is bound
to play the same joint strategy it selected for the outer modality 〈〈A〉〉ρG .

Alternating-time temporal epistemic logic with actions (ATEL − A), proposed
by Ågotnes [2], enables reasoning about the interplay between explicit strategies
of bounded length and agents’ knowledge.

Strategy Logic, introduced by Chatterjee et al. [31,32], treats strategies in
two-player turn-based games as explicit first-order objects and enables specifying
important properties of non-zero-sum games in a simple and natural way. In
particular, the one-alternation fragment of strategy logic subsumes ATL∗ and is
strong enough to express the existence of Nash equilibria and secure equilibria.

The idea of treating strategies explicitly in the language and quantifying
over them is subsequently followed up in a series of papers, e.g. in [61–63] where
strategy logic is extended and generalized to concurrent games, and a decidable
fragment (as complex as ATL∗) of it is identified and studied.

5 Reasoning About Games

ATL∗ and its variations are closely related to basic concepts in game theory.
Firstly, their models are derived from those used in game theory. Secondly, their
semantics are based on the notions of strategies and their outcomes, central in a
game-theoretic analysis. In this section we give a brief overview of how to relate
game theory and strategic logics. We begin with the relation between games (as
viewed and analyzed in game theory) and concurrent game models. Then, we
present logics which can be used to characterize solution concepts and logics
which can use such solution concepts to reason about the outcome of games
and the ability of rational players. For a more substantial treatment on solution
concepts we refer the reader to the chapters by Bonanno [18], Pacuit [68], and
Perea [74] in this book.

5.1 Representing Games as Concurrent Games Models

Standard models of modal logics correspond to strategic games, as shown in
[9,52].Moreover, concurrent gamemodels have a close relationship to strategic and
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Fig. 4. Prisoner’s Dilemma modelled as CGM Mpris .

extensive form games, cf. [59]. We illustrate the correspondence with two examples
of how strategic and extensive game frames compare to concurrent game models.
The major difference is that CGMs lack the notion of payoff/outcome. However,
we recall after [9,59] that CGMs can embed strategic games (cf. Example 11) and
extensive games with perfect information (cf. Example 12) in a natural way. This
can be done, e.g., by adding auxiliary propositions to the leaf nodes of tree-like
CGMs that describe the payoffs of agents. Under this perspective, concurrent game
structures can be seen as a strict generalisation of extensive form games.

In formal terms, consider first any strategic game and let U be the set of
all possible utility values in it. For each value v ∈ U and agent a ∈ Agt, we
introduce a proposition uva and put uva ∈ V (q) iff a gets a payoff v in state q.

Example 11 (Prisoner’s Dilemma as CGM). The Prisoner’s Dilemma (Exam-
ple 1) can also be represented by the following CGM:

({1, 2}, {q0, . . . , q4}, {defect , coop},Act, out, V )

with Act(a, q) = {defect , coop} for all players a and states q, out(q0, coop, coop) =
q1, out(q0, coop, defect) = q2, out(q0, defect , coop) = q3, out(q0, defect , defect) =
q4, and out(qi, a1, a2) = qi for i = 1, . . . , 4 and a1, a2 ∈ {defect , coop}. The
CGM is shown in Fig. 4 where the labeling function V is defined over Prop =
{start} ∪ {uva | a ∈ Agt, v ∈ {0, 1, 3, 5}} as shown in the figure; e.g., we have
V (q2) = {u01, u52} representing that players 1 and 2 receive utility of 0 and 5,
respectively, if strategy profile (coop, defect) is played.

Example 12 (Bargaining). This example shows that CGMs are also rich enough
to model (possibly infinite) extensive form games. Consider bargaining with time
discount (cf. [65,76]). Two players, a1 and a2, bargain over how to split goods
worth initially w0 = 1 euro. After each round without agreement, the subjective
worth of the goods reduces by discount rates δ1 (for player a1) and δ2 (for player
a2). So, after t rounds the goods are worth 〈δt

1, δ
t
2〉, respectively. Subsequently,

a1 (if t is even) or a2 (if t is odd) makes an offer to split the goods in proportions



Logics for Reasoning About Strategic Abilities in Multi-player Games 113

q0

[1, 0]

[
1, 0
acc

] [
1, 0
1, 0

]

⎡
⎣ 1, 0

1, 0
acc

⎤
⎦

⎡
⎣ 1, 0

1, 0
1, 0

⎤
⎦ ...

⎡
⎣ 1, 0

1, 0
0, 1

⎤
⎦

...
[
1, 0
0, 1

]

... [0, 1]

[
0, 1
acc

] [
0, 1
1, 0

]

⎡
⎣ 0, 1

1, 0
acc

⎤
⎦

⎡
⎣ 0, 1

1, 0
1, 0

⎤
⎦ ...

⎡
⎣ 0, 1

1, 0
0, 1

⎤
⎦

...
[
0, 1
0, 1

]

...
...

...
...

...
...

(1,0)1
(0,1)1

ac
c2

(1
,0

) 2

(0,1)2 ac
c2

(1
,0

) 2

(0,1)2

ac
c1

(1
,0

) 1

(0,1)1 ac
c1

(1
,0

) 1

(0,1)1

start

u11, u02

u01, u12

u
δ1
1 , u02 u01, u

δ2
2

Fig. 5. CGM Mbarg modeling the bargaining game.

〈x, 1 − x〉, and the other player accepts or rejects it. If the offer is accepted, then
a1 takes xδt

1, and a2 gets (1 − x)δt
2; otherwise the game continues.

The CGM corresponding to this extensive form game is shown in Fig. 5.
Note that the model has a tree-like structure with infinite depth and an infinite
branching factor. Nodes represent various states of the negotiation process, and
arcs show how agents’ moves change the state of the game. A node label refers
to the history of the game for better readability. For instance,

⎡
⎣

0, 1
1, 0
acc

⎤
⎦ has the

meaning that in the first round 1 offered 〈0, 1〉 which was rejected by 2. In the
next round 2’s offer 〈1, 0〉 has been accepted by 1 and the game has ended.

5.2 Characterization of Solution Concepts and Abilities

Rationality can be approached in different ways. Research within game theory
understandably favours work on the characterization of various types of ratio-
nality (and defining most appropriate solution concepts). Applications of game
theory, also understandably, tend toward using the solution concepts in order
to predict the outcome in a given game; in other words, to “solve” the game.
In this section we discuss logics which address both aspects. A natural question
is why we need logics for describing and using solution concepts. In our opinion
there are at least three good reasons: (i) Logical descriptions of solution concepts
help for better understanding of their inner structures; e.g. interrelations can be
proven by means of logical reasoning. (ii) Model checking provides an automatic
way to verify properties of games and strategy profiles; e.g. whether a given pro-
file is a Nash equilibrium in a given game or whether there is a Nash equilibrium
at all. (iii) Often, the logical characterization of solution concepts is a necessary
first step for using them to reason about rational agents in a flexible way, i.e. for
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allowing a flexible description of rational behavior rather than having a static
pre-defined notion, hard-coded in the semantics of a logic.

We first give an overview of logics able to characterize solution concepts
before we consider logics to reason about rational agents using characterizations
of solution concepts.

Characterizing Solution Concepts in Strategic Games. In [50], a modal
logic for characterizing solution concepts was presented. The main construct
of the logic is [β]ϕ where β ranges over preference relations, and complete and
partial strategy profiles. The three kinds of operators have the following meaning,
where i, pref i, and σ, represent a player, her preference relation, and a complete
strategy profile, respectively:

[pref i]ϕ: ϕ holds in all states at least as preferred to i as the current one.
[σ]ϕ: ϕ will hold in the final state if all players follow σ.
[σ−i]ϕ: ϕ will hold in all final states if all players, apart from i, follow σ.

These basic operators can be used to describe solution concepts. For instance,
the formula BRi(σ) ≡ (¬[σ−i]¬[pref i]ϕ) → [σ]ϕ expresses that σi is a best
response to σ−i with respect to ϕ: if there is a strategy for i (note that σ−i does
not fix a strategy for i) such that the reachable state satisfies ϕ and is among
the most preferred ones for player i; then, the strategy σi (which is included in
σ) does also bring about ϕ. Then, the property that σ is a Nash equilibrium can
be captured with the formula NE(σ) ≡ ∧

i∈Agt BRi(σ).
The above characterization of Nash equilibrium illustrates that, in order to

assign properties to specific strategies, the strategies (or better: associated syn-
tactic symbols) must be explicit in the object language. In Sect. 4.2 we have
discussed some ATL-like logics of this kind that allow to reason about the out-
come of specific strategies.

In ATLI, proposed by Jamroga et al. [59] (cf. Sect. 4.2) for example, best
response strategies can be characterized as follows (where U is assumed to be
a finite set of utility values, and u≥v

a ≡ ∨
v∈U uva expresses that agent a gets a

utility value of at least v):

BRa(σ) ≡ (strAgt\{a}σ[Agt \ {a}])
∧

v∈U

(
(〈〈a〉〉F uva) → ((straσ[a])〈〈∅〉〉F u≥v

a )
)
.

BRa(σ) refers to σ[a] being a best response strategy for a against σ[Agt \ {a}].
The first counterfactual operator occurring in BRa(σ) fixes the strategies for
all players except a. Then, each conjunct corresponds to a utility value v and
expresses that if player a has a strategy to eventually achieve v (given the fixed
strategies of the other players); then, a’s strategy σ[a] does eventually guarantee
at least v. That is, σ[a] is at least as good as any other strategy of a against
the other players’ strategies σ[Agt\{a}]. The best response strategy allows to
characterize Nash equilibria and subgame perfect Nash equilibria:

NE(σ) ≡
∧

a∈Agt

BRa(σ) and SPN(σ) ≡ 〈〈∅〉〉G NE(σ).
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Example 13 (Prisoner’s Dilemma Continued). We continue Example 11. Sup-
pose the strategy term σ represents the strategy profile in which both players
execute coop in q0 and an arbitrary action in the “final” states q1, q2, q3, q4. Let
us now justify Mdil, q0 |= BR1(σ). The first operator (strAgt\{1}σ[Agt \ {1}])
fixes the strategy of player 2, i.e. to cooperate. Then, player 1 has a strategy to
obtain payoff u31 and u01 (expressed by 〈〈1〉〉F uv1) by playing coop and defect in q0,
respectively. Hence, player 1’s strategy contained in σ also guarantees a payoff
of u31 (expressed by (str1σ[1])〈〈∅〉〉F u≥v

1 ). This shows that player 1’s strategy
contained in σ is indeed a best response to player 2’s strategy contained in σ.

We have another look at the given characterization of a best response strat-
egy; in particular, at the temporal operator F used in the characterization. The
antecedent 〈〈a〉〉F uva requires that player a achieves v somewhere along every
resulting path; it is true for the greatest value v along the path. In contrast, if
we replace F by G the antecedent is only satisfied for the smallest value v; for, it
has to be true in every state along a path. In general, we can use any of the unary
temporal operators X ,G ,F , U ψ, ψ U and define variants BRT

a , NET , SPNT

where T stands for any of these temporal operators and replaces F everywhere
in the characterizations above. We refer to them as T -best response etc., each
corresponding to a different temporal pattern of utilities. For example, we may
assume that agent a gets v if a utility of at least v is guaranteed for every time
moment (T = G ), or if it is eventually achieved (T = F ), and so on. In [59] it
is shown that the F -Nash equilibrium corresponds to its game-theoretic coun-
terpart. This is obvious from the way games were encoded into CGMs: utility
values were added to terminal states.

In Bulling et al. [29], these concepts are further generalized to general solution
concepts. They evaluate strategies with respect to path formulae: the utility of a
strategy depends on the truth of specific path formula. Furthermore, ATL with
plausibility is introduced which extends ATL with intentions in several respects.

Further approaches for characterizing solution concepts, which we cannot
discuss in detail due to lack of space, are proposed in [9,14,52].

Reasoning about the Outcome of Rational Play. The logics discussed in
the previous paragraph allow to characterize game-theoretic solution concepts.
It is also interesting to use game-theoretic solution concepts to reason about
rational players. Although players have limited ability to predict the future often
some lines of action seem more sensible or realistic than others. If a rationality
criterion is available, we obtain means to focus on a proper subset of possible
plays and to reason about the abilities of players.

Game logic with preferences (GLP), proposed by van Otterloo et al. [53],
was designed to address the outcome of rational play in extensive form games
with perfect information. The central idea of GLP is facilitated by the preference
operator [A : ϕ], interpreted as follows: If the truth of ϕ can be enforced by group
A, then we remove from the model all the actions of A that do not enforce it
and evaluate ψ in the resulting model. Thus, the evaluation of GLP formulae
is underpinned by the assumption that rational agents satisfy their preferences
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whenever they can. This is a way of using solution concepts to reason about
rational outcome.

The ideas behind ATLI and GLP were combined and extended in ATL with
plausibility (ATLP), proposed by Bulling et al. [29]. The logic allows to reason
about various rationality assumptions of agents in a flexible way. For this pur-
pose, sets of rational strategy profiles can be specified in the object language
in order to analyze agents’ play if only these strategy profiles were allowed. For
example, if we again consider the Prisoner’s Dilemma CGM from Example 13, a
typical formula has the following form: set - pl σ.NEF (σ)Pl 〈〈{1}〉〉X ((u31∧u32)∨
(u11∧u12)). The formula expresses that if it is supposed to be rational to follow F -
Nash equilibrium strategy profiles; then, player 1 can guarantee that the players
will both get a payoff of 1 or both get a payoff of 3. Similar to ATLI, NEF (σ)
describes all Nash equilibrium strategies. The term σ.NEF (σ) collects all these
strategy profiles and the operator set - pl· assumes that they describe rational
behavior. Finally, operator Pl assumes that all agents play indeed rationally,
and restricts their choices to rational ones; that is, Nash equilibria in this exam-
ple. The restriction to rational behavior rules out all other alternatives. The
logic also allows to characterize generalized versions of classical solution con-
cepts through the characterization of patterns of payoffs by temporal formulae
and quantification over strategy profiles. For further details, we refer to [24,29].
In [26] ATLP was enriched with an epistemic dimension, more precisely combined
with the logic CSL discussed in Sect. 6.4, to reason about rational players under
incomplete information.

Game Logic (GL) from Parikh [69] is another logic to reason about games,
more precisely about determined two-player games. It builds upon propositional
dynamic logic (PDL) and extends it with new operators. The work in [53,66,67]
commits to a particular view of rationality (Nash equilibria, undominated strate-
gies etc.). Finally, we would also like to mention the related work in [14] on
rational dynamics and in [17] on modal logic and game theory.

6 Strategic Reasoning Under Incomplete Information

6.1 Incomplete Information Models and Uniform Strategies

The decision making capabilities and abilities of strategically reasoning players
are influenced by the knowledge they possess about the world, other players,
past actions, etc. So far we have considered structures of complete and (almost)
perfect information in the sense that players are completely aware of the rules
and structure of the game system and of the current state of the play. The
only information they lack is the choice of actions of the other players at the
current state. However, in reality this is rarely the case: usually players have only
partial information about the structure and the rules of the game, as well as the
precise history and the current state of the game. It is important to note that
strategic ability crucially depends on the players’ knowledge. In the following we
are concerned with the following question: What can players achieve in a game
if they are only partially informed about its structure and the current state?
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Following the tradition of epistemic logic, we model the players’ incomplete
information13 by indistinguishability relations ∼⊆ St × St on the state space.
We write q ∼a q′ to describe player a’s inability to discern between states q and
q′. Both states appear identical from a’s perspective. The indistinguishability
relations are traditionally assumed to be equivalence relations. The knowledge
of a player is then determined as follows: a player knows a property O in a state
q if O is the case in all states indistinguishable from q for that player.

How does the incomplete information, modelled by an indistinguishability
relation, affect the abilities of players? In the case of ATL∗ with complete infor-
mation, abilities to achieve goals were modeled by strategies defined on states or
(play) histories, i.e. memoryless and memory-based strategies. A basic assump-
tion in the case of incomplete information is that a player has the same choices in
indistinguishable states, otherwise he/she would have a way to discern between
these states.

Formally, a concurrent game with incomplete information is modelled by a
concurrent epistemic game structure (CEGS), which is a tuple

S = (Agt,St, {∼a| a ∈ Agt},Act, act, out)

where (Agt,St,Act, act, out) is a CGS (cf. Definition 5) and ∼a is the indistin-
guishability relation of player a over St, one per agent in Agt, such that if q ∼a q′

then acta(q) = acta(q′).
Just like a CGM, a concurrent epistemic game model (CEGM) is defined by

adding to a CEGS a labeling of game states with sets of atomic propositions.
Note that models of perfect information (CGMs) can be seen as a special case of
CEGMs where each ∼a is the smallest reflexive relation (i.e., such that q ∼a q′

iff q = q′).

Example 14 (Prisoner’s Escape with Incomplete Information). We now explore
the consequences of incomplete information in the Prisoner’s escape scenario
from Example 3. Recall that Frank knows the two passwords but suppose now
that he does not know which one is for which guard. Equivalently, we can assume
that he does not know how the guards look and which guard is at which exit.
Hence, Frank does not know which password to use where. Surely, Charlie knows
the guards and who is at which exit. In this setting, Frank is still able to escape
with Charlie’s active help. That is, Frank asks Charlie about the guards, which
we now model explicitly with the action ask. When asked, Charlie replies by
telling the truth. But at states q1 and q2 Charlie still has the choice of cooperating
by keeping quiet or defecting by warning the guards when he sees Frank going
to the respective exit. A CEGM M′

esc modelling this scenario is shown in Fig. 6.

13 Traditionally in game theory two different terms are used to indicate lack of infor-
mation: “incomplete” and “imperfect”. Usually, the former refers to uncertainties
about the game structure and rules, while the latter refers to uncertainties about
the history, current state, etc. of the specific play of the game. Here we will use the
latter term in about the same sense, whereas we will use “incomplete information”
more loosely, to indicate any possible relevant lack of information.
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Fig. 6. Prisoner’s escape with incomplete information.

The relation q1 ∼1 q2 represents that player 1 (Frank), does not know which
guard is at which entrance.

How do these perceptual limitations affect the agents’ abilities? Under the
assumption of complete information, Frank and Charlie can guarantee that Frank
will eventually escape from q1 and q2 by a simple memoryless strategy for both:
s{1,2}(q1) = (pwA, coop), s{1,2}(q2) = (pwB , coop), and arbitrarily defined for the
other states in Mesc . This strategy, however, is not feasible if Frank’s incomplete
information is taken into account because it prescribes to him different actions
in the indistinguishable states q1 and q2. Actually, it is easy to see that in that
sense there is no feasible memoryless strategy which achieves the property from
q1 or q2. This is so because a strategy must be successful from all epistemic
alternatives for the player (Frank). For example, his action prescribed by the
strategy at q2 must also be successful from q1 and vice versa. This claim will
become precise later, when we present the formal semantics.

However, Frank has a feasible memory-based strategy which guarantees that
he can eventually escape, again in cooperation with Charlie. Firstly, from state
q1 or q2 Frank asks Charlie about the guards, thus learns about the environ-
ment, and then goes back to use the correct password and to escape if Charlie
cooperates. Formally, the reason for a successful memory-based strategy is that
the histories q1q5q1 and q2q6q2 can be distinguished by Frank.

We will analyze the interaction between memory and information more for-
mally in Sect. 6.3.

The above example indicates that the notion of strategy must be refined
in order to be consistent with the incomplete information setting. An exe-
cutable strategy must assign the same choices to indistinguishable situations.
Such strategies are called uniform, e.g. see [58].
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Definition 7 (Uniform Strategies). Let M be a CEGM over sets of states
St. A memoryless strategy sa (over M) is uniform if the following condition is
satisfied:

for all states q, q′ ∈ St, if q ∼a q′ then sa(q) = sa(q′).

For memory-based strategies we lift the indistinguishability between states to
indistinguishability between (play) histories. Two histories π = q0q1 . . . qn and
π′ = q′

0q
′
1 . . . q′

n′ are said to be indistinguishable for agent a, denoted by π ≈a π′,
if and only if, n = n′ and qi ∼a q′

i for i = 0, . . . , n.14

A memory-based strategy sa is uniform if the following condition holds:

for all histories π, π′ ∈ St+, if π ≈a π′ then sa(π) = sa(π′).

Analogously to perfect information, a uniform joint strategy for a group A is
a tuple of individual uniform strategies, one per member of A.15

6.2 Expressing Strategic Ability Under Uncertainty in ATL∗

Agents’ incomplete information and use of memory can be incorporated into
ATL∗ in different ways, see e.g. [8,56–58,78]. In [78] a natural taxonomy of four
strategy types was proposed: I (respectively i) stands for complete (respectively
incomplete) information, and R (respectively r) refers to perfect recall (respec-
tively no recall). The approach of Schobbens et al. [78] was syntactic in the sense
that cooperation modalities were extended with subscripts: 〈〈A〉〉xy where x indi-
cates the use of memory in the strategies (memory-based if x = R / memoryless
if x = r) and y indicates the information setting (complete information if y = I
and incomplete information if y = i).

Here, we take a semantic approach. We assume that the object language of
ATL/ATL∗ stays the same, but the semantics is parameterized with the strategy
type – yielding four different semantic variants of the logic, labeled accordingly
(ATLIR, ATLIr, ATLiR, ATLir). As a consequence, we obtain the following semantic
relations:

|=IR: complete information and memory-based strategies;
|=Ir: complete information and memoryless strategies;
|=iR: incomplete information and memory-based strategies;
|=ir: incomplete information and memoryless strategies.

Given a CEGM M, the two complete information semantic variants are
obtained by updating the main semantic clause from Sect. 3.2 as follows:
14 This corresponds to the notion of synchronous perfect recall according to [41].
15 Note that uniformity of a joint strategy is based on individual epistemic relations,

rather than any collective epistemic relation (representing, e.g., A’s common, mutual,
or distributed knowledge, cf. Sect. 6.4). This is because executability of agent a’s
choices within strategy sA should only depend on what a can observe and deduce.

Alternative semantics where uniformity of joint strategies is defined in terms of
knowledge of the group as a whole have been discussed in [36,48].
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M, q |=IR 〈〈A〉〉γ iff there is a memory-based joint strategy sA for A such that
M, λ |= γ for every play λ ∈ outcome plays(q, sA);

M, q |=Ir 〈〈A〉〉γ iff there is a memoryless joint strategy sA for A such that
M, λ |= γ for every play λ ∈ outcome plays(q, sA).

For the imperfect information variants we have:

M, q |=iR 〈〈A〉〉γ iff there is a uniform memory-based joint strategy sA for A
such that M, λ |= γ for every play λ ∈ ⋃

q′∈St s.t. q∼Aq′ outcome plays(q′, sA);
M, q |=ir 〈〈A〉〉γ iff there is a uniform memoryless joint strategy sA for A such

that M, λ |= γ for every play λ ∈ ⋃
q′∈St s.t. q∼Aq′ outcome plays(q′, sA);

where ∼A:=
⋃

a∈A ∼a is used to capture the collective knowledge of coalition
A. It is clear from the definition that this particular notion of collective knowl-
edge refers to what everybody in A knows, e.g. [41]. For a discussion of other
possibilities, we refer the reader to Sect. 6.4.

Example 15 (Prisoner’s Escape: Example 14 Continued). We formalize some
properties from Example 14.

1. For all q ∈ St\{q4} we have M′
esc , q |=Ir 〈〈f, c〉〉F escaped: under the assump-

tion of complete information coalition {f, c} can guarantee that Frank can
escape by using a memoryless strategy.

2. M′
esc , q1 
|=ir 〈〈f, c〉〉(¬asked)U escaped: under the assumption of incomplete

information Frank and Charlie cannot guarantee that Frank will eventually
escape without asking Charlie about the identity of the guards. This is true
even in the case of memory-based strategies:
M′

esc , q1 
|=iR 〈〈f, c〉〉(¬asked)U escaped.
3. M′

esc , q1 |=iR 〈〈f, c〉〉F escaped: under the assumption of incomplete informa-
tion Frank and Charlie can guarantee that Frank will eventually escape by
using a uniform memory-based strategy.

In [28] incomplete information has been additionally classified according to
objective and subjective ability. Here, we only consider subjective ability; that
is, 〈〈A〉〉γ means that A is not only able to execute the right strategy but A can
also identify the strategy. The mere existence of a winning strategy (without A
being able to find it) is not sufficient under this interpretation. This is why, when
evaluating 〈〈A〉〉γ in state q, all epistemic alternatives of q with respect to ∼A are
taken into account. Again, we will discuss some other possibilities in Sect. 6.4.

Finally, we would like to add a note on the treatment of nested strategic
modalities in ATL. When a nested strategic modality is interpreted, the new
strategy does not take into account the previous sequence of events: Agents are
effectively forgetting what they have observed before. This can lead to counter-
intuitive behaviors in the presence of perfect recall and incomplete information.
To overcome this, just recently a “no-forgetting semantics” for ATL has been
proposed in Bulling et al. [30].
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6.3 Comparing Semantics of Strategic Ability

Semantic variants of ATL are derived from different assumptions about agents’
capabilities. Can the agents “see” the current state of the system, or only a part
of it? Can they memorize the whole history of observations in the game? Different
answers to these questions induce different semantics of strategic ability, and they
clearly give rise to different analysis of a given game model. However, it is not
entirely clear to what extent they give rise to different logics. One natural question
that arises is whether the semantic variants generate different sets of valid (and
dually satisfiable) sentences. In this section, we show a comparison of the validity
sets for ATL∗ with respect to the four semantic variants presented in the previous
section. A detailed analysis and technical results can be found in [28].

The comparison of the validity sets is important for at least two reasons.
Firstly, many logicians identify a logic with the set of sentences that are valid
in the logic. Thus, by comparing validity sets we compare the respective logics
in the traditional sense. Perhaps more importantly, validities of ATL capture
general properties of games under consideration: if, e.g., two variants of ATL
generate the same valid sentences then the underlying notions of ability induce
the same kind of games. All the variants studied here are defined over the same
class of models (CEGS). The difference between games “induced” by different
semantics lies in available strategies and the winning conditions for them.

We recall that we use superscripts (e.g., ‘*’) to denote the syntactic variant
of ATL, and subscripts to denote the semantic variant being used. For example,
ATL∗

ir denotes the language of ATL∗ interpreted with the semantic relation |=ir,
that is, the one which assumes incomplete information and memoryless strate-
gies. Moreover, we will use Valid(L) to denote the set of validities of logic L,
and Sat(L) to denote the set of satisfiable formulas in L.

Perfect vs. Incomplete Information. We begin by comparing properties of
games with limited information to those where players can always recognize
the current state of the world. Firstly, we recall that complete information can
be seen as a special case of incomplete information: each CGM can be seen
as a CEGM in which each indistinguishability relation is taken as the smallest
reflexive relation. Hence, every valid formula of ATL∗

ir is also a validity of ATL∗
Ir:

if there were a CEGM M with M 
|=Ir ϕ then also M 
|=ir ϕ would be the case.
On the other hand, the formula 〈〈A〉〉F ϕ ↔ ϕ ∨ 〈〈A〉〉X 〈〈A〉〉F ϕ is a validity of
ATLIr but not of ATLir, which shows that the containment is strict even in the
limited syntactic fragment of ATL.16

The argument for ATLiR vs. ATLIR is analogous. Thus, we get that
Valid(ATLir) � Valid(ATLIr) and Valid(ATLir) � Valid(ATLIr), and the same
for the broader language of ATL∗.

16 The equivalence between 〈〈A〉〉F ϕ and ϕ ∨ 〈〈A〉〉X 〈〈A〉〉F ϕ is extremely important
since it provides a fixpoint characterization of 〈〈A〉〉F ϕ. The fact that 〈〈A〉〉F ϕ ↔
ϕ ∨ 〈〈A〉〉X 〈〈A〉〉F ϕ is not valid under incomplete information is one of the main
reasons why constructing verification and satisfiability checking algorithms is so
difficult for incomplete information strategies.
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Memory-based vs. Memoryless Strategies. The comparison of memory-
based and memoryless strategies is technically more involved. Firstly, we observe
that for any tree-like CGM M the sets of memory-based and memoryless strate-
gies coincide. Secondly, one can show that every CGM M and state q in M can
be unfolded into an equivalent (more precisely, bisimilar) tree-like CGM T (M, q)
as in [3]. These two observations imply that ATL∗

Ir ⊆ ATL∗
IR; for, if M, q 
|=IR ϕ

then T (M, q), q 
|=IR ϕ (by the latter observation) and T (M, q), q 
|=Ir ϕ
(by the first observation). Moreover, the formula ϕ ≡ 〈〈A〉〉(F ϕ1 ∧ F ϕ2) ↔
〈〈A〉〉F ((ϕ1 ∧ 〈〈A〉〉F ϕ2) ∨ (ϕ2 ∧ 〈〈A〉〉F ϕ1)) is a validity of ATL∗

IR but not of
ATL∗

Ir, which shows that the inclusion is strict.17 Note, however, that ϕ is
not a formula of ATL. Indeed, it is well known that the semantics given by
|=IR and |=Ir coincide in ATL, cf. [8,78]. As a consequence, we obtain that
Valid(ATL∗

Ir) � Valid(ATL∗
IR) and Valid(ATLIr) = Valid(ATLIR).

We observe that strict subsumption holds already for the language of ATL+

which allows cooperation modalities to be followed by a Boolean combination of
simple path formulae.

Finally, we consider the effect of memory in the incomplete information set-
ting. The idea is the same as for perfect information, but the unfolding of a
CEGM into an equivalent tree-like CEGM is technically more complex, as one
has to take into account the indistinguishability relations (see [28] for details).
To show that the inclusion is strict, we use 〈〈A〉〉X 〈〈A〉〉F ϕ → 〈〈A〉〉F ϕ which is
valid in ATLiR but not in ATLir.18 Thus, we get that Valid(ATLir) � Valid(ATLiR),
and analogously for the broader language of ATL∗.

Summary. We have obtained above the following hierarchy of logics:

Valid(ATL∗
ir) � Valid(ATL∗

iR) � Valid(ATL∗
Ir) � Valid(ATL∗

IR),
and Valid(ATLir) � Valid(ATLiR) � Valid(ATLIr) = Valid(ATLIR).

Equivalently, we can observe the following pattern in the sets of satisfiable
sentences:

Sat(ATL∗
IR) � Sat(ATL∗

Ir) � Sat(ATL∗
iR) � Sat(ATL∗

ir),
and Sat(ATLIR) = Sat(ATLIr) � Sat(ATLiR) � Sat(ATLir).

The first, and most important, conclusion is that all four semantic variants
of ability are different with respect to the properties of games they induce.
Moreover, the results capture formally the usual intuition: complete information
is a particular case of incomplete information, memory-based games are special
17 The formula expresses decomposability of conjuctive goals: being able to achieve

ϕ1 ∧ϕ2 must be equivalent to having a strategy that achieves first ϕ1 and ϕ2, or vice
versa. It is easy to see that the requirement holds for agents with perfect memory,
but not for ones bound to use memoryless strategies (and hence to play the same
action whenever the game comes back to a previously visited state).

18 The formula states that, if A has an opening move and a follow-up strategy to
achieve eventually ϕ, then both strategies can be combined into a single strategy
enforcing eventually ϕ already from the initial state.
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cases of memoryless games, and information is a more distinguishing factor than
memory.

On a more general level, the results show that what agents can achieve is more
sensitive to the strategic model of an agent (and a precise notion of achievement)
than it was generally realized. No less importantly, the study reveals that some
natural properties – usually taken for granted when reasoning about actions –
may cease to be universally true if we change the strategic setting. Examples
include fixpoint characterizations of temporal/strategic operators (that enable
incremental synthesis and iterative execution of strategies), decomposability of
conjunctive goals, and the duality between necessary and obtainable outcomes
in a game (cf. [28] for an example). The first kind of property is especially
important for practical purposes, since fixpoint equivalences provide the basis
for most model checking and satisfiability checking algorithms. Last but not
least, the results show that the language of ATL∗ is sufficiently expressive to
distinguish the main notions of ability.

6.4 Epistemic Extensions of ATL

Reasoning about Knowledge. In this section we consider how the language
of ATL can be combined with that of epistemic logic, in order to reason about
the interplay of knowledge and ability more explicitly. The basic epistemic logic
involves modalities for individual agent’s knowledge Ki, with Kiϕ interpreted as
“agent i knows that ϕ”. Additionally, one can consider modalities for collective
knowledge of groups of agents: mutual knowledge (EAϕ: “everybody in group A
knows that ϕ”), common knowledge (CAϕ: “all the agents in A know that ϕ,
and they know that they know it etc.”), and distributed knowledge (DAϕ: “if the
agents could share their individual information, they would be able to recognize
that ϕ”).

The formal semantics of epistemic operators is defined in terms of indis-
tinguishability relations ∼1, ...,∼k, given for instance in a concurrent epistemic
game model:

M, q |= Kiϕ iff M, q′ |= ϕ for all q′ such that q ∼i q′.

The accessibility relation corresponding to EA is defined as ∼E
A=

⋃
i∈A ∼i, and

the semantics of EA becomes

M, q |= EAϕ iff M, q′ |= ϕ for all q′ such that q ∼E
A q′.

Likewise, common knowledge CA is given semantics in terms of the relation ∼C
A

defined as the transitive closure of ∼E
A:

M, q |= CAϕ iff M, q′ |= ϕ for all q′ such that q ∼C
A q′.

Finally, distributed knowledge DA is based on the relation ∼D
A=

⋂
i∈A ∼i, with

the semantic clause defined analogously. For a more extensive exposition of epis-
temic logic, we refer the reader to [41,49,54].
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Bringing Strategies and Knowledge Together: ATEL. The alternating-time
temporal epistemic logic ATEL was introduced in [55,56] as a straightforward
combination of the multi-agent epistemic logic and ATL in order to formalize rea-
soning about the interaction of knowledge and abilities of agents and coalitions.
ATEL enables specification of various modes and nuances of interaction between
knowledge and strategic abilities, e.g.: 〈〈A〉〉ϕ → EA〈〈A〉〉ϕ (if group A can bring
about ϕ then everybody in A knows that they can), EA〈〈A〉〉ϕ ∧ ¬CA〈〈A〉〉ϕ (the
agents in A have mutual knowledge but not common knowledge that they can
enforce ϕ); 〈〈i〉〉ϕ → Ki¬〈〈Agt \ {i}〉〉¬ϕ (if i can bring about ϕ then she knows
that the rest of agents cannot prevent it), etc.

Models of ATEL are concurrent epistemic game models (CEGM): M =
(Agt,St,Act, act, out, V,∼1, ...,∼k) combining the CGM-based models for ATL
and the multi-agent epistemic models. That is, the same models are used for
ATEL and the Schobbens’ ATLxy variants of ATL as those presented in Sect. 6.2.
The semantics of ATEL simply combines the semantic clauses from ATL and
those from epistemic logic.

While ATEL extends both ATL and epistemic logic, it also raises a number of
conceptual problems. Most importantly, one would expect that an agent’s ability
to achieve property ϕ should imply that the agent has enough control and knowl-
edge to identify and execute a strategy that enforces ϕ. Unfortunately, neither of
these can be expressed in ATEL.19 A number of approaches have been proposed
to overcome this problem. Most of the solutions agree that only uniform strate-
gies (i.e., strategies that specify the same choices in indistinguishable states) are
really executable, cf. our exposition of ATL variants for incomplete information
in Sect. 6.2. However, in order to identify a successful strategy, the agents must
consider not only the courses of action, starting from the current state of the sys-
tem, but also from states that are indistinguishable from the current one. There
are many cases here, especially when group epistemics is concerned: the agents
may have common, ordinary, or distributed knowledge about a strategy being
successful, or they may be hinted the right strategy by a distinguished member
(the “leader”), a subgroup (“headquarters committee”) or even another group
of agents (“consulting company”).

Epistemic Levels of Strategic Ability. There are several possible interpre-
tations of A’s ability to bring about property γ, formalized by formula 〈〈A〉〉γ,
under imperfect information:

1. There exists a behavior specification σA (not necessarily executable!) for
agents in A such that, for every execution of σA, γ holds;

2. There is a uniform strategy sA such that, for every execution of sA, γ holds
(A has objective ability to enforce γ);

3. A knows that there is a uniform sA such that, for every execution of sA, γ
holds (A has a strategy “de dicto” to enforce γ);

4. There is a uniform sA such that A knows that, for every execution of sA, γ
holds (A has a strategy “de re” to enforce γ).

19 For a formal argument, see [2,57].
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Note that the above interpretations form a sequence of increasingly stronger
levels of ability – each next one implies the previous ones.

Case 4 is arguably most interesting, as it formalizes the notion of agents in
A knowing how to play in order to enforce γ. However, the statement “A knows
that every execution of sA satisfies γ” is precise only if A consists of a single agent
a. Then, we take into account the paths starting from states indistinguishable
from the current one according to a (i.e.,

⋃
q′ with q∼aq′ outcome plays(q′, sa)). In

case of multiple agents, there are several different “modes” in which they can
know the right strategy. That is, given strategy sA, coalition A can have:

– Common knowledge that sA is a winning strategy. This requires the least
amount of additional communication when coordinating a joint strategy: it
is sufficient that agents in A agree upon a total order over their collective
strategies before the game; then, during the game, they always choose the
maximal strategy (with respect to this order) out of all the strategies that
they commonly identify as winning;

– Mutual knowledge that sA is a winning strategy: everybody in A knows that
sA is winning;

– Distributed knowledge that sA is a winning strategy: if the agents share their
knowledge at the current state, they can identify the strategy as winning;

– “Leader”: the strategy can be identified by an agent a ∈ A;
– “Headquarters committee”: the strategy can be identified by a subgroup A′ ⊆

A;
– “Consulting company”: the strategy can be identified by another group B;
– ...other cases are also possible.

Expressing Levels of Ability: Constructive Knowledge. The issue of
expressing various knowledge-related levels of ability through a suitable com-
bination of strategic and epistemic logics has attracted significant attention.
Most extensions (or refinements) of ATL, proposed as solutions, cover only some
of the possibilities, albeit in an elegant way [2,66,78]. Others, such as [58,60],
offer a more general treatment of the problem at the expense of an overblown
logical language. Constructive Strategic Logic (CSL), proposed by Jamroga and
Ågotnes [57], aims at a solution which is both general and elegant. However,
there is a price to pay. In CSL, formulae are interpreted over sets of states rather
than single states. We write M, Q |= 〈〈A〉〉ϕ to express the fact that A must
have a strategy which is successful for all “opening” states from Q. New epis-
temic operators Ki, EA, CA, DA for “practical” or “constructive” knowledge yield
the set of states for which a single evidence (i.e., a successful strategy) should
be presented (instead of checking if the required property holds in each of the
states separately, like standard epistemic operators do).

Formally, the semantics of CSL (in its broadest syntactic variant CSL∗) over
concurrent epistemic game models is defined by the following clauses:

M, Q |= p iff p ∈ π(q) for every q ∈ Q;
M, Q |= ¬ϕ iff M, Q 
|= ϕ;
M, Q |= ϕ ∧ ψ iff M, Q |= ϕ and M, Q |= ψ;
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M, Q |= 〈〈A〉〉ϕ iff there is a uniform strategy sA such that M, λ |= ϕ for every
λ ∈ ∪q∈Q outcome plays(q, sA);

M, Q |= Kiϕ iff M, {q′ | ∃q∈Q q ∼i q′} |= ϕ;
M, Q |= CAϕ iff M, {q′ | ∃q∈Q q ∼C

A q′} |= ϕ;
M, Q |= EAϕ iff M, {q′ | ∃q∈Q q ∼E

A q′} |= ϕ;
M, Q |= DAϕ iff M, {q′ | ∃q∈Q q ∼D

A q′} |= ϕ.

The semantic clauses for path subformulae are the same as in ATL∗. Additionally,
we define that M, q |= ϕ iff M, {q} |= ϕ.

A nice feature of CSL is that standard knowledge operators can be defined
using constructive knowledge, e.g., as Kaϕ ≡ Ka〈〈∅〉〉ϕU ϕ20. It is easy to see
that M, q |= Ka〈〈∅〉〉ϕU ϕ iff M, q′ |= ϕ for every q′ such that q ∼a q′.

We point out that in CSL:

1. Ka〈〈a〉〉ϕ refers to agent a having a strategy “de re” to enforce ϕ (i.e. having
a successful uniform strategy and knowing the strategy);

2. Ka〈〈a〉〉ϕ refers to agent a having a strategy “de dicto” to enforce ϕ (i.e.
knowing only that some successful uniform strategy is available);

3. 〈〈a〉〉ϕ expresses that agent a has a uniform strategy to enforce ϕ from the
current state (but not necessarily even knows about it).

Thus, Ka〈〈a〉〉ϕ captures the notion of a’s knowing how to play to achieve ϕ,
while Ka〈〈a〉〉ϕ refers to knowing only that a successful play is possible. This
extends naturally to abilities of coalitions, with CA〈〈A〉〉ϕ, EA〈〈A〉〉ϕ, DA〈〈A〉〉ϕ
formalizing common, mutual, and distributed knowledge how to play, Ka〈〈A〉〉ϕ
capturing the “leader” scenario, and so on (and similarly for different levels of
knowledge “de dicto”). We conclude this topic with the following example.

Example 16 (Market Scenario). Consider an industrial company that wants to
start production, and looks for a good strategy when and how it should do
it. The market model is depicted in Fig. 7. The economy is assumed to run in
simple cycles: after the moment of bad economy (bad-market), there is always
a good time for small and medium enterprises (s&m), after which the market
tightens and an oligopoly emerges. At the end, the market gets stale, and we
have stagnation and bad economy again.

The company c is the only agent whose actions are represented in the model.
The company can wait (action wait) or decide to start production: either on
its own (own-production), or as a subcontractor of a major company (subpro-
duction). Both decisions can lead to either loss or success, depending on the
current market conditions. However, the company management cannot recog-
nize the market conditions: bad market, time for small and medium enterprises,
and oligopoly market look the same to them, as the epistemic links for c indicate.

The company can call the services of two marketing experts. Expert 1 is a spe-
cialist on oligopoly, and can recognize oligopoly conditions (although she cannot

20 We cannot replace ϕ U ϕ by ϕ when the latter is a path formula, as then 〈〈∅〉〉ϕ would
not be a formula of CSL.
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Fig. 7. Simple market: model Mmark

distinguish between bad economy and s&m market). Expert 2 can recognize bad
economy, but he cannot distinguish between other types of market. The experts’
actions have no influence on the actual transitions of the model, and are omitted
from the graph in Fig. 7. It is easy to see that the company cannot identify a
successful strategy on its own: for instance, for the small and medium enterprises
period, we have that Mmark, q1 |= ¬Kc〈〈c〉〉F success. It is not even enough to call
the help of a single expert: Mmark, q1 |= ¬K1〈〈c〉〉F success∧¬K2〈〈c〉〉F success, or
to ask the experts to independently work out a common strategy: Mmark, q1 |=
¬E{1,2}〈〈c〉〉F success. Still, the experts can propose the right strategy if they join
forces and share available information: Mmark, q1 |= D{1,2}〈〈c〉〉F success.

This is not true anymore for bad market, i.e., Mmark, q0 |= ¬D{1,2}〈〈c〉〉
F success, because c is a memoryless agent, and it has no uniform strategy to
enforce success from q0 at all. However, the experts can suggest a more complex
scheme that involves consulting them once again in the future, as evidenced by
Mmark, q0 |= D{1,2}〈〈c〉〉X D{1,2}〈〈c〉〉F success.

7 Deductive Systems and Logical Decision Problems

7.1 Validity and Satisfiability in ATL and ATL∗

Characterizing the valid and, dually, the satisfiable formulae of a given logic
by means of sound and complete deductive systems is a fundamental logical
problem. Few such deductive systems have been developed so far for the logics
discussed here, and these are mostly axiomatic systems. We will briefly present
the one for ATL.

Axiomatic Systems for CL and ATL. In Pauly [71–73] it was shown that the
conditions of liveness, safety, superadditivity, and Agt-maximality in Definition 4
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can be captured by a few simple axiom schemes presented below, where A1, A2 ⊆
Agt are any coalitions of players:

1. Complete set of axioms for classical propositional logic.
2. 〈〈Agt〉〉X�
3. 〈〈A〉〉X⊥
4. ¬〈〈∅〉〉Xϕ → 〈〈Agt〉〉X¬ϕ
5. 〈〈A1〉〉Xϕ ∧ 〈〈A2〉〉Xψ → 〈〈A1 ∪ A2〉〉X (ϕ ∧ ψ) for any disjoint A1, A2 ⊆ Agt

These, together with the inference rules Modus Ponens and monotonicity:

ϕ → ψ

〈〈A〉〉Xϕ → 〈〈A〉〉Xψ

provide a sound and complete axiomatization of the valid formulae of CL, see
[71,73].

The temporal operators G and U satisfy the following validities in ATL that
define them recursively as fixed points of certain monotone operators:

(FPG) 〈〈A〉〉Gϕ ↔ ϕ ∧ 〈〈A〉〉X 〈〈A〉〉Gϕ,
(GFPG) 〈〈∅〉〉G(θ → (ϕ ∧ 〈〈A〉〉X θ)) → 〈〈∅〉〉G(θ → 〈〈A〉〉Gϕ),
(FPU ) 〈〈A〉〉ψ U ϕ ↔ ϕ ∨ (ψ ∧ 〈〈A〉〉X 〈〈A〉〉ψ U ϕ),
(LFPU ) 〈〈∅〉〉G((ϕ ∨ (ψ ∧ 〈〈A〉〉X θ)) → θ) → 〈〈∅〉〉G(〈〈A〉〉ψ U ϕ → θ).

It was proved in Goranko and van Drimmelen [47] that these axioms added
to Pauly’s axioms for CL, plus the rule 〈〈∅〉〉G-Necessitation:

ϕ

〈〈∅〉〉Gϕ
.

provide a sound and complete axiomatization for the validities of ATL.
No explicit complete axiomatizations for ATL∗, nor for any of the variations

of ATL with incomplete information, are known yet.

Decidability and Decision Methods for ATL and ATL∗. A fundamental
algorithmic problem in logic is whether a given logical formula is satisfiable in
any model for the given logic, or dually, whether its negation is valid in the
given semantics. A constructive procedure for testing satisfiability is of practical
importance because it can be used to construct (to synthesize) models from for-
mal logical specifications. Sound and complete axiomatic systems provide only
semi-decision methods for testing validity, respectively non-satisfiability, while
complete algorithmic decision methods exist only for logics with a decidable
validity/satisfiability problem. The decidability of that problem in ATL, with
EXPTIME-complete worst-case complexity of the decision algorithm, was first
proved in van Drimmelen [39] (see also Goranko and van Drimmelen [47] for
detailed proofs) by proving a bounded-branching tree-model property and using
alternating tree automata, under the assumption that the number of agents
is fixed. The EXPTIME-completeness of ATL satisfiability was later re-proved
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in Walther et al. [80] without the assumption of fixed number of agents. An opti-
mal and practically implementable tableau-based constructive decision method
for testing satisfiability in ATL was developed in Goranko and Shkatov [46].
Later, the decidability and 2EXPTIME-complete complexity of the satisfiabil-
ity problem for ATL∗ was proved in Schewe [77] using alternating tree automata.

7.2 Model Checking of ATL and ATL∗

Model checking is another fundamental logical decision problem. It calls for a
procedure that determines whether a given formula is true in a given model. For
such procedures to be algorithmically implementable, the model must be finite,
or effectively (finitely) presented. We briefly discuss model checking ATL and
ATL∗ under the different semantic variants considered in this chapter. We focus
on the main technical issues that arise in that area, namely the computational
complexity of the model checking algorithms, as a measure of the inherent com-
plexity of the underlying semantics of the logic. The relevant complexity results
are summarized in Fig. 8.

Ir IR ir iR

ATL P P ΔP
2 Undecidable†

ATL∗ PSPACE 2EXPTIME PSPACE Undecidable

Fig. 8. Overview of the exact complexity results for model checking in explicit models
of formulae from the logic in the respective row with the semantics given in the column.

A deterministic polynomial-time model checking algorithm for ATLir (and
thus ATLiR) is presented in Alur et al. [8]. The algorithm is based on the fixpoint
characterizations of strategic-temporal modalities:

〈〈A〉〉G ϕ ↔ ϕ ∧ 〈〈A〉〉X 〈〈A〉〉G ϕ

〈〈A〉〉ϕ1 U ϕ2 ↔ ϕ2 ∨ (ϕ1 ∧ 〈〈A〉〉X 〈〈A〉〉ϕ1 U ϕ2).

The perfect information assumption allows to compute a winning strategy step-
by-step (if it exists). In the case of 〈〈A〉〉G ϕ, for example, the procedure starts
with all states in which ϕ holds and subsequently removes states in which there
is no joint action for team A to guarantee to end up in one of the states in which
ϕ holds. Let us refer to the resulting set of states as Q1. In the next step it is
checked whether for each state in Q1 there is a joint action of team A which
guarantees to remain in Q1. States in which such a joint action does not exist
are removed from Q1. This procedure is applied recursively until a fixed point
is reached. The formula 〈〈A〉〉G ϕ is true in all the remaining states.

The deterministic 2EXPTIME algorithm for model checking ATL∗
IR makes

use of a sophisticated tree automaton construction, see [8].
Algorithms for the the remaining settings based on memoryless strategies

employ model checking algorithms for CTL and CTL∗ (model checking is P-
complete and PSPACE-complete, respectively, see Clarke et al. [35]). The key
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observation is that there are only finitely many memoryless strategies and that a
strategy can be guessed in non-deterministic polynomial time. Then, all transi-
tions not possible given the guessed strategy profile are removed from the model
and the resulting temporal model checking problem is solved (cf. [78]). For illus-
tration, consider ATLiR and the formula 〈〈A〉〉G ϕ. First, we guess a memoryless
uniform strategy sA of coalition A. It is easy to see that the validation whether
the strategy profile is uniform or not can be done in deterministic polynomial-
time. Afterwards, all transitions not possible according to sA are removed from
the model as well as all transition labels. It remains to check whether G ϕ holds
on all possible behaviors/paths in the resulting purely temporal model. The lat-
ter corresponds to CTL model checking of AG ϕ. However, since ϕ may contain
nested cooperation modalities we need to proceed bottom-up which shows that
the problem is contained in PNPP

= ΔP
2 . Similarly, we obtain PSPACE algo-

rithms for ATL∗
Ir and ATL∗

ir: guess strategies and solve the CTL∗ model checking
problem, which can be done in PNPPSPACE

= PSPACE.
We note that model checking of ATL in the case of imperfect information

and memory-based strategy is undecidable, cf. [8,37].
For a more detailed overview of the complexities of model checking of these

logics we refer the reader to [8,25] for ATL and ATL∗, [27] for ATL+, a computa-
tionally better behaved fragment of ATL∗, and to [32,61–63] for more powerful
and recent extensions of ATL∗.

8 Concluding Remarks: Brief Parallels with Other
Logical Approaches to Strategic Reasoning

While strategic reasoning is a highly involved and complex form of reasoning,
requiring strong logical and analytic skills, its seems rather surprising that until
the 1980 s formal logic was seldom employed to either analyze or facilitate strate-
gic reasoning. However, with the ongoing invasion of logic into game theory and
multi-agent systems over the past 20 years, its role in both doing and analyzing
strategic reasoning has become increasingly more instrumental and recognized.
Logic has been successfully applied to several rather different aspects of strategic
reasoning and the variety of logical systems presented and discussed here gives a
good overall picture of only one of the logical approaches to strategic reasoning,
viz. reasoning about objective strategic abilities of players and coalitions pursuing
a specific goal, in competitive concurrent multi-player games where the remaining
players are regarded as (temporary) adversaries as far as achieving of that goal
is concerned. As mentioned in the introduction, there are several other related
logic-based approaches to strategic reasoning and most of them are treated in
other chapters of this book.

– Logics of agencies, abilities and actions. Philosophical approaches to develop-
ing logics of agency and ability, include early works of von Wright and Kanger
and more recent ones by Brown [23], Belnap and Perloff [13], and Chellas
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[34]. In particular, Brown [23] proposes a modal logic with non-normal modal-
ities formalising the idea that the modality for ability has a more complex,
existential-universal meaning (the agent has some action or choice, such that
every outcome from executing that action (making that choice) achieves the
aim), underlying the approaches to formalizing agents’ ability presented here.

– STIT logics. These originate from the work of Belnap [13] introducing the
operator seeing to it that, abbreviated to “STIT”. The approach to strategic
reasoning taken in the STIT family of logics of agency, discussed in Broersen
and Herzig [21], is the closest to the one presented in this chapter and we
will provide a more detailed parallel with it now. To begin with, both the
STIT-based and the ATL-based approaches assume that agents act simultane-
ously and independently. The main conceptual difference between the family
of STIT logics of agency and ATL-like logics is that the former delve into more
philosophical issues of agency and emphasize the intentional aspect of the
agents’ strategies, whereas the latter take a more pragmatic view on agents
and focus on the practical effects of their strategic abilities and choices, disre-
garding desires, intentions, and other less explicit attitudes. The basic STIT
operator is similar to the one-step strategic modality of CL while the intended
meaning of the “strategic” version of the STIT operator, SSTIT, comes very
close to the intended meaning of the strategic operator 〈〈〉〉 in ATL. The main
technical difference between these logics is in the semantics, which is rather
more general and abstract in the case of STIT as compared to ATL. Strategies
in ATL models are explicit rules mapping possible game configurations to pre-
scribed actions, whereas strategies in STIT models are implicit and essentially
represented by the respective plays (‘histories’) that they can enable. More
precisely, the formal semantics of the SSTIT operator defines ‘histories’ as
abstract objects representing the possible courses of events. Agents’ strategies
are abstract sets of histories satisfying some requirements, of which the most
essential one is that every strategy profile of the set of all agents intersects in
a single history. This semantics essentially extends the original semantics for
ATL based on “alternating transition systems”, subsequently replaced by the
more concrete and – in our view – more realistic semantics based on concur-
rent game models, presented here21. Due to the expressiveness of the language
of STIT/SSTIT and the generality of its semantics, it naturally embeds ATL∗

with complete information, as well as a number of its variations considered
here, as demonstrated in [20,22]. The price to pay for that expressiveness,
as it should be expected, is the generally intractable and usually undecidable
complexity of STIT logics.

– Logics for compositional reasoning about strategies, initiated by Parikh [69] and
discussed and extended in this book by Paul, Ramanujam and Simon [70],
is another approach, conceptually close to the present, where strategies are
treated as first-class citizens to which an endogenous, structural view is

21 Yet, the SSTIT semantic structures relate quite naturally to path effectivity mod-
els introduced and characterized in [44], and these could provide a more feasible
semantics for SSTIT.
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applied, and “the study of rationality in extensive form games largely takes a
functional view of strategies”. In a way, this approach relates to the ATL-based
one like the Propositional Dynamic Logic PDL relates to the temporal logics
LTL and CTL as alternative approaches to reasoning about programs.

– Logics of knowledge and beliefs. As we have noted repeatedly, strategic rea-
soning is intimately related to players’ knowledge and information. One of
the deepest and most successful manifestations of logical methods in strate-
gic reasoning is the doxastic-epistemic treatment of the concepts of individual
and common rationality in game theory. This approach is treated in-depth
and from different perspectives in the chapters by Bonanno [18], Pacuit [68]
and Perea [74] of this book, as well as in Baltag, Smets et al. [11,12], etc.
As stated in the chapter by Pacuit [68], this approach is not so focused on
strategies and strategic abilities per se, but rather on the process of rational
deliberation that leads players to their strategic choices and the latter are cru-
cially dependent on the players’ mutual rationality assumptions, rather than
on demand for success against any – rational, adversarial, or simply random –
behaviour of the others.

– Logics for social choice theory, discussed in the chapter by van Eijck [40] of
this book, focuses on logical modeling of specific strategic abilities that arise
on social choice scenarios such as voting.

– Dynamic epistemic logic. The relation of the ATL-based family of logics with
Dynamic epistemic logic (DEL) [10,38] is more distant and implicit. DEL does
not purport to reason explicitly about strategic abilities of agents, but it does
provide a framework for such reasoning, in terms of which epistemic objectives
agents can achieve by performing various epistemic actions, represented by
action models.

– Lastly, for broader and more conceptual perspectives on the subject we refer
the reader to the rest of this book and to van Benthem [15].
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Toulouse.

References

1. Abdou, J., Keiding, H.: Effectivity Functions in Social Choice Theory. Kluwer,
Netherlands (1991)
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Abstract. This chapter gives an overview of logical theories of ‘seeing-
to-it-that’, commonly abbreviated stit, and focusses on the notion of
‘strategy’ as used in their semantics. The chapter covers both ‘one-step’
strategies (i.e., atomic actions) and long-term strategies and explains how
they give semantics to different stit languages. Furthermore, the chapter
discusses how extensions with epistemic operators can be used to clarify
the problem of uniform strategies. Finally, it is shown how strategic stit
theories disambiguate some seemingly paradoxical observations recently
made in the context of logics of strategic ability (ATL).

Keywords: Logics of agency · Extensive form games · Theory of
action · Processes and strategies

1 Introduction

The theory of ‘seeing-to-it-that’, abbreviated stit, is one of the main theories in
the philosophy of action. There is no single monolithic stit theory but rather a
variety of theories that differ in logical language and semantics. The most well-
known are the Chellas stit, the deliberative stit, the achievement stit, and the
strategic (Chellas) stit. All of them can be built on very different views on time;
for instance, time may be discrete or not.

Stit theories are relevant for the analysis of strategies, both at the short-
term (one-step) level and on the long-term (extensive) level. For instance, in the
strategic (extensive) variants of stit theory one may express that an agent has
a strategy ensuring that some property is eventually true, is henceforth true,
or is true until some other property is obtained. Here, the agent has a strategy
if there exists a ‘plan’ of appropriate future choices guaranteeing that a given
outcome obtains independent of what other agents do if the plan is executed. In
short-term versions of stit formalisms, e.g., versions based on a temporal ‘next’
operator or instantaneous versions, one reasons about one-step strategies, alias
(atomic) actions.

The relation with strategies in game theory is somewhat confusing. The
semantics of stit-logics that concern one-step actions (e.g., ‘turning the switch to
c© Springer-Verlag Berlin Heidelberg 2015
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put on the light’) is based on situations that in game theory are called ‘strategic’:
an agent performs a one step action that guarantees a condition independent of
the actions of other agents at the same moment. So, in stit-theory we can view
the one-step actions of agents as ‘winning’ strategic moves these agents play
against the non-determinism in their world; the non-determinism resulting from
choices of other agents and from ‘nature’ performing moves concurrently (in the
turning on the light scenario: maybe more switches, agents or non-deterministic
components are involved). To add to the confusion, the strategic versions of stit-
theory concern operators that are given semantics by what in game theory are
called ‘extensive game forms’.

This chapter is organised as follows. We start by giving a brief overview of the
different stit theories (Sect. 2) that are aimed at the modelling of one-step agency.
After that we examine extensive strategies within the strategic Chellas stit ; in
particular we shall clarify the relation with other strategic logics by embedding
Alternating-time Temporal Logic (ATL and ATL*) into the logic of the strategic
Chellas stit operator (Sect. 3). We then investigate micro level strategies within a
discrete version of the Chellas stit ; we show that if one extends stit theories by an
epistemic operator one can elegantly reason about uniform strategies (Sect. 4).
Finally (Sect. 5), we briefly discuss some problems with the interpretation of
nested strategic ability operators and show that by a translation to strategic stit
formulas, the conceptual problems disappear.

2 A Brief Introduction to Stit Theory

Consider a simple scenario where there is an agent i in a room with a light
bulb. Our agent may either do nothing or toggle the light switch. Toggling the
switch will switch the light on if it was off before, and will switch the light off
if it was on before. Suppose the light is off and i toggles the switch. We may
describe what i does by saying “i brings it about that the light is on at the
next time step”. Moreover, regardless whether i decides to toggle the switch or
not, we may also say that i has a strategy to ensure that the light in the room
is on: it simply consists in toggling the switch. The strategy gets a bit more
complex if we suppose that i is standing outside the room and is able to enter
it. Then i’s strategy gets: first enter, then toggle. Can we say that i still has a
strategy if i is blind and does not know whether the light is on or not? Well, one
could then say that the agent has a strategy but does not know this : he does not
have what is called a uniform strategy. We may also consider multiple agents,
such as a blind and a lame agent outside the room, or we may consider multiway
switching where each of the two agents has his own toggle switch each of which is
connected to the light bulb. In both cases, neither agent has a strategy to ensure
an outcome independent of what the other agent does. However, the coalition of
the two agents together has a (joint) strategy guaranteeing that the light is on.

In the literature we can find different kinds of formal action theories that
can represent scenarios like these. In this section we introduce a theory that is
firmly rooted in a non-deterministic world-view: the theory of seeing-to-it-that,
abbreviated stit.
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One view on agency is that an action can be identified with an event that is
brought about by an agent [20,39]. The philosophical literature describes this as
an agent being agentive for an event. Examples of such events are an arm being
raised, a computer starting, a person being killed, etc. So, my action of switching
the computer on is identified with me bringing about the event that the computer
starts. The literature gives several semantical accounts of the event-based view.
The most prominent one in computer science is the one associated with dynamic
logic. In dynamic logic events (or, to be more precise, ‘event types’) are associated
with a binary relation between possible worlds, also called a ‘transition relation’.
Transition relations for atomic events can be combined by operations of relation
algebra such as sequential or nondeterministic composition in order to build
transition relations for complex events (event types).

The stit view on agency does not depart from a metaphysics involving events.
One can even argue that it was developed in opposition to Davidson’s event-
based view on agency (see the comments on this in [5])1. In stit logic the relation
between agents and the effects these agents bring about are central; if there
are events that somehow are responsible for this relation, then this process of
‘agentive causation’ is abstracted away from entirely. According to Belnap and
Perloff’s stit-thesis, every agentive sentence can be transformed into a sentence
of the form “i sees to it that ϕ”, where i is an agent and ϕ is a proposition.
In other words, an action is characterized as the relation between an agent and
the effect (proposition) the agent brings about by performing that action. This
modelling choice results in the sentence “agent i sees to it that ϕ” also being a
proposition.

The two views on the semantics of agency described above characterise two
traditions for logics of action. Dynamic logics were introduced and studied in
theoretical computer science, but were also investigated by philosophers [37]. The
logics of ‘seeing-to-it-that’ (stit) [4,5] and the logics of ‘bringing-it-about-that’
[21,22,35] are two closely related sub-families in the other tradition. These logics
are studied in philosophy of action and more recently in multi-agent systems; for
a recent overview, see [27]. The logics of the stit operator have in common that
they are built on branching-time structures and that they make the hypothesis
that agents act independently. This distinguishes them from the bringing-it-
about logics.

In the rest of the present section we briefly recall the four classical stit oper-
ators and their models. Throughout this chapter p, q, . . . denote propositional
variables from a countable set P and ϕ,ψ, . . . denote formulas; natural numbers
1, 2, 3, . . . , n are used to denote agents2 (individuals) populating the world, while
arbitrary agents are referred to by agent variables i, j, . . . that range over this
set. The agent set as a whole is denoted by Ags. Finally, we use A1, A2 . . . as
variables over sets of agents, often also called ‘groups’ or ‘coalitions’ (we drop

1 Here we will not elaborate on the relation between Davidson’s event-based theory
and dynamic logic’s event-type-based view.

2 Of course, not any natural number in the paper denotes an agent; numbers are also
used in their standard interpretation.
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m3 m4

m2

m1

Choices agent 1: columns

Choices agent 2: rows

Fig. 1. visualisation of a two-agent BT+AC structure (histories are not pictured, but
they run from the back to the front, within the boundaries of the game forms)

the index and write A if the context is such that we only need to refer to one
group).

2.1 Branching-Time Models with Agents’ Choices: The Basics

The semantics of the various stit operators is in terms of branching-time (BT)
models that are equipped with information about the agents’ choices (AC).
Figure 1 gives a visualisation of a two agent BT+AC structure where at any
moment mi agent 1 choses between the columns and agent 2 choses between the
rows. Agents are allowed to choose simultaneously. This contrasts with extensive
form game trees where agents act in turns.

Branching-time models inherit the Ockhamist view of time [41] where the
truth of statements is evaluated with respect to a moment that is situated on
a particular history through time [5,31,32]. A BT structure is a tree whose
vertices are called moments. The edges of the tree correspond to the course of
time. A history is a maximal path in the tree. In our example scenarios from the
beginning of this section where there is only one agent i, the possible histories are
the different sequences of moments that can be obtained by i performing some
sequences of actions from his repertoire. When a moment belongs to a history
we say that the history passes through that moment. So the world evolves non-
deterministically, and the possible futures of a given moment are represented by
the histories passing through it.

Indeterminism of time is partially due to the agents’ choices: at every moment
m, each agent has a repertoire of choices, and each of these choices consists in
selecting a subset of the set of histories passing through m. In Fig. 1 the choices
of agent 1 are visualised as the columns of the game forms representing moments;
agent 2 can choose between the rows in the game forms. Note that at moment
m2, whether m3 or m4 will occur is not under control of any agent and also
not under the combined control of the two agents involved; whether one of these
moments occurs is in the hands of nature. Figure 1 does not picture histories,
but they are easily imagined to run through the moments within the boundaries
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of the cells in the game forms. Also Fig. 1 gives a very ‘partial’ view: for every
moment only the continuation relative to one particular choice profile of the two
agents is pictured.

In the initial version of our example scenario where the light is off at m, by
choosing to toggle i selects the set of histories passing through m where the light
is on at the next time point, and by choosing to do nothing i selects the set of
histories passing through m where the light remains off. It is understood that
for each of his choices, the agent can guarantee the future to be in the subset
he selects. It is also understood that the agents choose independently: whatever
each of the agents chooses, the intersection of all the agents’ choices must be
non-empty. This is the independence constraint, and Belnap et al. assume that
independence is always appropriate.3

Formally, a branching time structure (BT structure) is a couple 〈Mom, <〉
where:

– Mom is a non-empty set of moments;
– < is an irreflexive tree-like partial order4.

Note that Mom is an arbitrary set; in particular it may be infinite, and if so it
might be countable or not. Depending on that, the ordering < may be discrete,
dense, or even continuous.

A history is a maximal linearly ordered set of moments complying with the
< ordering. We use H to denote the set of all histories, and we use Hm to denote
the set of histories passing through the moment m, i.e., the set of histories h
such that m ∈ h. Two histories h1, h2 ∈ Hm are undivided at m if and only if
there is some m′ such that m < m′ and m′ belongs to both h1 and h2.

A model of branching time and agents’ choices (for short: a BT+AC model)
is a 4-tuple of the form M = 〈Mom, <, C, π〉 where

– 〈Mom, <〉 is a BT structure;
– C is a function from Ags × Mom to 2H×H such that each C(i,m) is an equiv-

alence relation on Hm, where C(i,m) is agent i’s set of choices at m; the
elements of C(i,m) are called i’s choice cells at m;5

3 The same independence assumption is made in games in strategic form where the
outcomes of the agents’ actions are represented by a matrix. The independence
constraint was questioned by researchers in the tradition of bringing-it-about-that
logics, who have argued that it is too strong.

4 A tree-like partial order is a relation such that
• if m1 ≤ m2 and m2 ≤ m3 then m1 ≤ m3;
• if m1 ≤ m2 and m2 ≤ m1 then m1 = m2;
• if m1 ≤ m3 and m2 ≤ m3 then m1 ≤ m2 or m2 ≤ m1;
• for every m1 and m2 there is a m0 such that m0 ≤ m1 and m0 ≤ m2.
where ≤ is defined by m1 ≤ m2 if either m1 < m2 or m1 = m2.

5 The original definition in [5] is equivalent: there, C is function from Ags × Mom to

22H mapping each agent and each moment into a partition of Hm.
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– π is a function from Mom×H to 2P associating to every propositional variable
p ∈ P the set of moment-history pairs where p is true.6

It is assumed that C satisfies the following constraints of independence of agents
and of no choice between undivided histories.

1. for every moment m and for every mapping Hm associating agents i with one
of their choice cells Hm(i) ⊆ C(i,m) we have

⋂
i∈Ags Hm(i) �= ∅;

2. if two histories h1 and h2 are undivided at m then 〈h1, h2〉 ∈ C(i,m) for every
agent i.

The constraint of independence of agents says that any individual choice is
compatible with the other agents’ choices: if at m, agent i chooses Hm(i) and
agent j chooses Hm(j), then these choices do not conflict, in the sense that there
is at least one history in the intersection Hm(i) ∩ Hm(j) of these choices. The
constraint of no choice between undivided histories says that if two histories
h1 and h2 are undivided at m, then no possible choice for any agent at m
distinguishes between the two histories: for each agent i, the histories h1 and h2

must belong to the same choice cell at m.
The above BT+AC models are just what is needed to interpret the so-called

Chellas stit operator in the individual case and without the temporal ‘next’. In
the next section we list the various items to be added in order to account for the
other operators.

2.2 Branching-Time Models with Agents’ Choices: Various
Extensions

Up to now we have only interpreted operators of individually seeing-to-it-that.
One can as well extend choice functions from agents to groups of agents by
stipulating the following:

C(A,m) =
⋂

i∈A

C(i,m)

Note that this is in line with the assumption of independence of agents. Note
also that with this definition the above ‘no choice between undivided histories’
constraint can be formulated as: if m ∈ h1 ∩ h2 and m0 < m then 〈h1, h2〉 ∈
C(Ags,m0).

If the language has a temporal ‘next’ operator then the ordering < has to be
discrete. Recall that an ordering < is discrete if and only if for every m ∈ Mom
there is a set of closest moments succ(m) such that for every m′ ∈ succ(m),
m < m′ and there is no m′′ ∈ Mom with m < m′′ < m′. The successor function
can be extended to moment-history pairs: succ(m,h) is the moment m′ such
that succ(m) ∩ h = {m′}. Then the constraint of independence of agents can

6 So p’s truth value at a given moment m may differ depending on the history. This
allows a natural evaluation of statements about the future.
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be formulated equivalently as: for every moment m and for all sets of agents
A1, A2 such that A1 ∩ A2 = ∅, if U1 ∈ C(A1,m) and U2 ∈ C(A2,m) then if
U1 ∩ U2 ∈ C(A1 ∪ A2,m). This constraint is called superadditivity [34].

In order to interpret the achievement stit operator [i AStit] we have to add
further temporal information to BT structures: we have to suppose that every
moment is situated at a particular instant in time. Formally, this is achieved
by a function mapping the set of moments Mom into a totally ordered set of
instants. This enables comparison of moments that are not on the same history:
it enables us to say that two moments in the future of m are at the same instant.
Moreover, it is assumed that an agent does not perform an infinite number of
non-vacuous choices during a finite interval of time (known as the absence of
‘busy choosers’). This allows to validate a principle saying that refraining from
refraining is doing, see below.

In order to interpret the strategic Chellas stit operator [i sstit] we have to
add to our BT+AC structures information about the agents’ strategies. This is
what we will do in Sect. 3.

2.3 Various Modal Operators and Some Fused Versions

In the literature the sentence “agent i sees to it that ϕ” is formally written
[i : stit ϕ]. We here prefer to write this as [i Stit]ϕ in order to be more
in line with standard modal logic notation. We shall use that notation when
we talk about general properties that are shared by all the stit operators. When
we write down principles that are specifically satisfied by the Chellas stit then we
use the modal operator [i CStit]. Similarly, we use [i DStit] for the deliberative
stit, [i AStit] for the achievement stit, and [i sstit] for the strategic Chellas
stit.

The achievement stit is the original stit modality as proposed by Belnap and
Perloff [4]. Its semantics was rather complex and was modified and simplified
later by Horty and Belnap [32], resulting in a different stit modality that is called
the deliberative stit. In the case of the achievement stit, the decisive choice of
the action is in the past, while in the case of the deliberative stit, the decisive
choice of the action is at the current moment. So the idea of deliberativeness
resides in that an agent is currently seeing to something but could as well see to
something else. While the achievement stit operator is perhaps most satisfactory
from a backwards looking perspective on agency and responsibility for outcomes,
the other forms of stit take a more decision theoretic and forward looking stance.

Some stit theories allow not only individual agents as arguments of stit oper-
ators, but also sets of agents. They have operators [A Stit], one per subset A
of the set of agents Ags.

Stit theories come also with an operator of historical possibility ♦. The
formula ♦ϕ reads “there is a possible history passing through the current
moment such that ϕ”. We can define the dual modal operator � by stipulating
�ϕ

def= ¬♦¬ϕ. The formula �ϕ reads “ϕ is settled true at the current moment”.
We moreover use the temporal operators ‘henceforth’ G, ‘eventually’ F, and

‘next’ X. We take F as basic and stipulate that the dual Gϕ abbreviates ¬F¬ϕ.



144 J. Broersen and A. Herzig

In some stit logics, the grammar of the language is constrained in a way
such that the different modal operators cannot be nested arbitrarily: the stit
operator must be immediately followed by a temporal operator; and the other
way round, the temporal operator must always be preceded by the stit operator.
For example, formulas such as [i sstit]p or Xp are forbidden. We say that in
these languages, the stit operator and the temporal operators are fused. The logic
of the strategic Chellas stit operator moreover fuses historical possibility with
the operators [A sstit]. Anticipating a bit we note that such fused operators are
also found in the language of other temporal logics with branching-time such as
Alternating-time Temporal Logic ATL (see [17] in this volume) and Computation
Tree Logic CTL, where the operator of quantification over branches has to be
followed by a temporal operator. Actually ATL operators such as 〈〈A〉〉X can be
understood as the fusion of the the strategic Chellas stit operator [A sstit]
and the temporal operator X. We will explain this in detail in the next section
(Sect. 3.2).

Just as in every modal logic, the stit operators can be nested:
[i Stit][j Stit]ϕ says that agent i makes agent j see to it that ϕ. However,
it will turn out that for each stit logic such nestings are trivial (and are so
in different ways). This is due to a fundamental hypothesis underlying all stit
theories: the agents are independent, so there can be no coercion.

2.4 Various Truth Conditions

A significant variety of modalities of agency has been studied within stit theories.
We are going to introduce here four of them that have rather different proper-
ties: the Chellas stit operator [i CStit], the deliberative stit operator [i DStit],
the achievement stit operator [i AStit], and the strategic Chellas stit operator
[i sstit].

Formulas are evaluated in a BT+AC model M with respect to moment-
history pairs (m,h) such that m is on h.

Let us start with the simple cases. The operator of historical possibility ♦
and the temporal operators are interpreted as follows:

M, h,m |= ♦ϕ iff M, h′,m |= ϕ for some history h′ such that m ∈ h′;
M, h,m |= Fϕ iff M, h,m′ |= ϕ for some moment m′ such that m ≤ m′;
M, h,m |= Xϕ iff M, h, succ(m,h) |= ϕ.

The latter operator requires discrete BT+AC models.
Among the stit operators it is Chellas’s [A CStit] that has the simplest truth

condition:

M, h, m |= [A CStit]ϕ iff M, h′, m |= ϕ for every h′ such that 〈h, h′〉 ∈ C(A, m).

Hence the formula [i CStit]ϕ is true at a moment-history pair (m,h) if and
only if ϕ is true at every (m,h′) such that h′ and h are in the same choice of i
at m. So the Chellas stit operator amounts to a simple quantification over the
histories that the current choice of the agent allows.

The deliberative stit operator [A DStit] adds a negative condition to the
truth condition for the Chellas stit operator:
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M, h, m |= [A DStit]ϕ iff M, h′, m |= ϕ for every h′ such that 〈h, h′〉 ∈ C(A, m)
and there is a h′′ such that m ∈ h′′ and M, h′′, m �|= ϕ.

As the reader may have observed, [A DStit]ϕ has the same truth condition
as [A CStit]ϕ ∧ ♦¬ϕ. The other way round, the Chellas stit operator can be
expressed with [i DStit] as [i DStit]ϕ ∨ �ϕ.

The achievement stit operator [i AStit] is about a choice in the past. For
ease of exposition we do not consider coalitions of agents. An agent i sees to it
that ϕ if a previous choice of i made sure that ϕ is true at the current instant,
and ϕ could have been false at this instant had i done otherwise. We state the
truth condition in a rather informal way in order to make it easier to understand.
The precise definition requires to spell out what it means that two moments are
at the same instant.

M, h,m |= [i AStit]ϕ iff there is a moment m0 preceding m on h such that
(1) M, h′,m′ |= ϕ for every h′ and m′ such that
(1) (i) 〈h, h′〉 ∈ C(i,m0),
(1) (ii) m′ is on h′ at the same instant as m;
(2) there is a history h′′ and a moment m′′ at the
(2) same instant as m with M, h′′,m′′ �|= ϕ.

We recall that 〈h, h′〉 ∈ C(i,m0) means that h and h′ are in the same choice
cell of i at m0.

2.5 Principles Common to All Three Stit Operators

We start by formulating several principles that the logics of each of the stit
operators satisfy. Table 1 summarises them.

Axiom schema 1 says that the modal operator of historical necessity is a
normal modal ‘box’ operator, moreover satisfying the T axiom schema �ϕ → ϕ,
the 4 axiom schema �ϕ → ��ϕ, and the 5 axiom schema ¬�ϕ → �¬�ϕ.

As to the operators of agency, first, a bringing-about-of-a-proposition is not
sensitive to the syntactical formulation of that proposition. This is the principle
of equivalents for actual agency (rule 2).

Table 1. Principles valid for of all three stit operators

the S5 axioms for � (1)

ϕ ↔ ψ

[i Stit]ϕ ↔ [i Stit]ψ
(2)

[i Stit]ϕ → ϕ (3)

([i Stit]ϕ ∧ [i Stit]ψ) → [i Stit](ϕ ∧ ψ) (4)

[i Stit]ϕ → [i Stit][i Stit]ϕ (5)

[i Stit]ϕ ↔ [i Stit]¬[i Stit]¬[i Stit]ϕ (6)

(♦[1 Stit]ϕ1 ∧ . . . ∧ ♦[n Stit]ϕn) → ♦([1 Stit]ϕ1 ∧ . . . ∧ [n Stit]ϕn) (7)
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Second, if we view agentive sentences as propositions then it is natural to
require that the set of worlds where ϕ is true contains the set of worlds where i
is agentive for ϕ. This is a principle of success (axiom schema 3): the proposition
“i sees to it that ϕ” should imply the proposition ϕ. In other words, it should
be valid that if i sees to it that ϕ then ϕ is true. Note that it follows from this
principle that an agent can never see to a contradiction.

Third, the different approaches agree about the principle of aggregation
(axiom schema 4): “if i sees to it that ϕ and i sees to it that ψ then i sees
to it that ϕ ∧ ψ”.

Fourth, all versions of the stit operator satisfy that if i sees to it that ϕ then
i sees to it that i sees to it that ϕ (axiom schema 5).

Fifth, the Chellas stit operator, the deliberative stit operator, and the
achievement stit all satisfy (axiom schema 6): “refraining from refraining from
seeing to is seeing to” [5]; for the case of the achievement stit the validity relies
on the assumption that an agent does not perform an infinite number of non-
vacuous choices during a finite interval of time.

Finally, the feature distinguishing stit theory from bringing-it-about theory
is that the agents’ choices are independent. Independence between pairs of agents
can be written as:

(♦[i Stit]ϕ ∧ ♦[j Stit]ψ) → ♦([i Stit]ϕ ∧ [j Stit]ψ), for i �= j (8)

It follows that when i and j are different then ♦[i Stit]ϕ ∧ ♦[j Stit]¬ϕ is
unsatisfiable (because by the success principle [i Stit]ϕ → ϕ is valid and because
♦ is a normal modal diamond). This axiom schema can straightforwardly be
extended from pairs of agents i, j to the set of all n agents, yielding the axiom
schema 7 of Table 1. A version of the independence axiom is central in Xu’s
axiomatisation of the Chellas stit operator ([5, Chap. 17]).

Finally, the Chellas stit and the deliberative stit are mutually reducible:

[A DStit]ϕ ↔ [A CStit]ϕ ∧ ♦¬ϕ (9)

[i CStit] ↔ [i DStit]ϕ ∨ �¬ϕ (10)

Beyond these principles common to all the stit operators there are quite some
differences between the respective logics. We shall overview these in the rest of
the section.

2.6 The Logic of the Individual Chellas Stit Operator

The Chellas stit operator is interpreted as ‘truth at all moment-history pairs in
the same choice cell’. Such a truth condition makes the Chellas stit operator a
normal modal operator. Such operators enjoy the rule of equivalents (rule 2),
the aggregation axiom (schema 4), and the axiom of normality [i CStit]� and
moreover the axiom of monotony [i CStit](ϕ ∧ ψ) → ([i CStit]ϕ ∧ [i CStit]ψ).
The normality axiom says that agents are agentive for a tautology. The aggre-
gation axiom tells us that the implication of the monotony axiom is actually an
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Table 2. Complete axiomatisation of the individual Chellas stit operator [5]

the common principles of Table 1 (11)

[i CStit]
 (12)

[i CStit](ϕ ∧ ψ) → ([i CStit]ϕ ∧ [i CStit]ψ) (13)

¬[i CStit]ϕ → [i CStit]¬[i CStit]ϕ (14)

�ϕ → [i CStit]ϕ (15)

equivalence. None of the latter two axioms is valid for the deliberative and the
achievement stit operator.

As ‘being in the same choice cell’ is an equivalence relation, every operator
[i CStit] obeys the principles of modal logic S5: the two common axiom schemas
T and 4 (schemas 3 and 5 of Table 1) and axiom schema 5 (schema 15 of Table 2).

Another principle of the Chellas stit not shared by the other operators is:
�ϕ → [i CStit]ϕ (schema 14 of Table 2). In words, an agent cannot avoid what
is settled; in particular he brings about every tautology.

In Table 2 we give Xu’s complete axiomatisation of the logic of the individ-
ual Chellas stit operator and the operator of historical necessity (but without
any temporal operator) [5]. Decidability of that logic follows from completeness
together with the finite model property. It was proved in [3] that the satisfiability
problem is NExpTime complete.

A somewhat surprising consequence of the independence of agents in the
logic of the Chellas stit is the validity of the following ‘make do implies settled’
principle:

[i CStit][j CStit]ϕ → �ϕ, for i �= j (16)

In words, i can make j see to it that ϕ only if ϕ is settled. This highlights that
unlike in the logic of bringing it about, in stit logics we cannot reason about the
power of agents over others. While this principle may be felt to be unfortunate
from the point of view of common sense, it accommodates well with social choice
theory and game theory. In [3] it is shown that the axiom schema 16 is actually
equivalent to axiom schema 8 and that its generalisation to any finite number of
agents can substitute Xu’s axiom of independence in the axiomatisation. Based
on this and the above observation that the modal logic of both the Chellas stit
operator [i CStit] and the historical necessity operator � is S5, an equivalent
Kripke-style semantics is defined there, where the modal operators [i CStit] and
� are interpreted by means of equivalence relations Ri and R�. These relations
are not independent: we have for instance Ri ⊆ R�, ensuring that axiom schema
15 is valid.

2.7 The Logic of the Group Chellas Stit Operator

The logic of the group version of the Chellas stit operator was investigated in
[15,16,28]. That logic inherits all the principles of the Chellas stit setting.
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A quite straightforward property of the group version is coalition monotony,
viz. that a supergroup sees to at least as much as any of its subgroups sees to:

[A1 CStit]ϕ → [A1∪A2 CStit]ϕ (17)

The stit counterpart of the superadditivity principle of coalition logic [34] is:

(♦[A1 CStit]ϕ1 ∧♦[A2 CStit]ϕ2) → ♦[A1∪A2 CStit](ϕ1 ∧ϕ2), for A1∩A2 = ∅
(18)

So disjoint coalitions can combine their forces.
This principle follows from a more general principle of coalitional interaction:

[A1 CStit][A2 CStit]ϕ ↔ [A1∩A2 CStit]ϕ (19)

The above principles are not complete. This follows from the proof in [28]
that the logic of the group Chellas stit operator is non-axiomatisable. Moreover,
it was proved there that the satisfiability problem is undecidable. The temporal
dimension plays no role in these results. The proof is by reduction of the group
stit satisfiability problem to the satisfiability problem of the product logic S5n.
For the strategic stit setting an analogous proof will be given in Sect. 3.4.

2.8 The Logic of the Deliberative Stit Operator

It has been a source of disagreement in the literature whether an agent may
bring about a logical tautology. The logic of the deliberative stit operator rules
it out:

¬[i DStit]� (20)

is valid. That is, no agent is agentive for a tautology.
Somewhat surprisingly, the axiom of monotony [i Stit](ϕ∧ψ) → ([i Stit]ϕ∧

[i Stit]ψ) is invalid: i may bring it about that ϕ∧ψ without necessarily bringing
it about that ϕ. [i Stit] is therefore not a normal modal ‘box’ operator.

While for the Chellas stit operator we had that [i CStit][j CStit]ϕ implies
that ϕ is settled —alias historically necessary—, for the deliberative stit operator
[i DStit][j DStit]ϕ can never be the case: we have the validity

[i DStit][j DStit]ϕ → ⊥, for i �= j (21)

The logic of the deliberative stit was not specifically investigated in the lit-
erature. Note that axiomatisability results for (the individual and group version
of) the Chellas stit immediately transfer to the deliberative stit via the reduction
principle of axiom schema 10.

2.9 The Logic of the Achievement Stit Operator

The idea of achievement is conveyed by the principle of success (axiom schema
3 of Table 1) and by the following principle that no agent sees to a tautology
(that is shared by the deliberative stit):

¬[i AStit]� (22)
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Xu axiomatised the logic of the achievement stit for the case of a single agent,
without the operator of historical possibility and without temporal operators.
His axiomatisation comprises the common principles of Table 1 (in particular the
much emphasised “refraining from refraining” axiom, which is in the focus of his
work), the above schema 22, plus some rather complex principles [40] that we
do not render here.

3 The Generalisation to Strategic Stit

The stit formalisms discussed so far all departed from the idea that an agentive
effort is something that requires only one choice, one step. However, we now
want to apply the idea of agency to full strategies for which the outcomes do not
necessarily depend on one choice but possibly on a series of choices (steps) to
be taken successively. In this section we discuss a general setup for a semantics
that achieves this goal.

3.1 Stit Theory Applied to Strategies: G.STRAT

In Sect. 2 we used BT+AC structures that for each moment m determine a set
of choices each corresponding to separate sets of histories running through that
moment. We used this choice information in the structures to give semantics to
agency operators that model what can be achieved through the execution of indi-
vidual choices. In this section we will basically use the same structures7 to define
the semantics of agency operators that model what can be achieved through suc-
cessive executions of choices. An immediate consequence of this change in focus
is that the type of properties an agent can achieve is broadened. For instance, by
performing a sequence of choices, it may be possible for an agent to guarantee
a safety property (a certain condition is preserved over time, by continuously
making the right choices along the way). Or, by performing the right strategy
it may be possible for an agent to guarantee, independently of choices made by
other agents along the way, that a condition is eventually guaranteed. Such a
situation would be an example of an agent performing a winning strategy.

Over the past 10 years, finding a good semantics for strategic stit turned
out to be a difficult task. The quest for such a semantics began with part V of
‘Facing the Future’ [5], and Horty provided some valuable suggestions in his book
[31], without giving much details or worked out definitions8. One main problem
for defining a semantics is to decide against what elements of choice structures
7 One difference is that instead of trees we will use bundles of histories. The difference

is that in a tree-based semantics histories are defined relative to trees (see Sect. 2.1)
whereas in a bundled semantics tree-like structures are built from histories. So in
tree semantics the trees are the elementary constituent objects whereas in bundled
semantics the histories are. Both views are largely compatible; only for rather strong
temporal languages the difference becomes expressible.

8 Horty does provide worked-out definitions for the notion of strategic ability, but that
is not the notion we are looking for here.
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to evaluate the truth of formulas. For the standard stit theories we defined in
Sect. 2 truth is evaluated against moment-history pairs. As Horty points out
[31] this is not correct for a strategic version of stit theory. One and the same
history can be the result of many different possible strategies. This means that a
single history cannot provide the evaluation context for assessing what strategy
an agent or a group of agents performs. So, a semantics that evaluates truth of
formulas against moment-history pairs, as in Sect. 2, cannot be correct for a logic
of strategic action; we need to be able to evaluate against complete strategies.
In [14] we have tried to define a strategic stit semantics where we took strategy-
state pairs for the units of evaluation. Although this semantics is correct (for
instance, it embeds ATL), it is both technically and conceptually complicated.
The reason for this lack of clarity is that the strategies in the strategy-state pairs
of the units of evaluation are strategies of arbitrary coalitions A. This means it
has to be defined how strategic formulas containing coalitions different from A
are to be evaluated against a context where the coalition A performs a given fixed
strategy. This is possible, as the paper shows, but the definitions are complex.

The crucial step was taken in [9], where it was proposed to evaluate against
tuples of the form 〈s, h, α1, α2, . . . αn〉, where s is a state, h a history, and
α1, α2, . . . αn a strategy profile (s is on h and h is part of any strategy αi).
To be consistent with the terminology in Sect. 2 we will slightly correct the ter-
minology of [9] and speak of ‘moments’ instead of ‘states’. So the evaluation
context for the formulas of our strategic stit logic will be provided by profiles
〈m,h, α1, α2, . . . αn〉, where m is a moment, h a history, and α1, α2, . . . αn a
strategy profile. The history h is the history currently under consideration (like
in the semantics of temporal logics). This should not be interpreted as h being
the unique ‘actual’ history; we might be evaluating a formula as part of a big-
ger and more complex formula involving quantifiers or epistemic operators, and
within such a context it is inappropriate to call h ‘actual’. The strategy profile
records what strategies are performed relative to the current m and the current
h. We need this information to evaluate truths concerning the current execution
of strategies by arbitrary groups of agents. A strategy profile �α = α1, α2, . . . αn

encodes the strategies of individual agents as bundles of histories through time.
The bundle of strategy α for agent i at moment m represents the choice the
agent makes according to strategy α at that moment. The range of histories
allowed by the bundle at m represents non-determinism of i’s choice; separate
histories in the bundle reflecting i’s α-choice at m can be linked to simultaneous
influence of other agents and nature at that moment. Note that this conceptu-
alisation of strategies as bundles of histories �α does not make explicit what the
strategy actually achieves or what names are given to the choices and actions
taken according to the strategy in the moments along the way. What the strategy
achieves depends on what properties it ensures along the way (that is, the tem-
poral properties that hold on the intersection of all the histories in a profile, and
in particular, on the history h). Furthermore, whether or not the strategy can
be encoded as a little finite state machine or regular action expression, depends
on the action names we might be able to give to the choices and the relation
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between those actions and their effects in the states along the way. The advan-
tage (or disadvantage, depending on the perspective and application domain) of
this stit view on strategies is that it abstracts away from all this detail, enabling
an appropriate abstract view on reasoning about strategies.

Below we present the formal syntax and semantics of G.STRAT, a logic that
was first presented in [9]9. The G in the acronym G.STRAT stands for ‘Group’
and STRAT stands for ‘strategic’.

Definition 1 (Syntax). Well-formed formulas of the language LG.STRAT are
defined by:

ϕ := p | ¬ϕ | ϕ ∧ ϕ | [A sstit]ϕ | Xϕ | ϕUϕ

The p are elements from a countable infinite set of propositional symbols P,
and A is a subset of a finite set of agents Ags. We will often use natural numbers
as agent names, and sometimes use i to refer to an arbitrary agent in this set.
We use the notation A to refer to the complementary agent set Ags\A. We
use ϕ,ψ, . . . to represent arbitrary well-formed formulas. We use the standard
propositional abbreviations, the standard notation for the duals of modal boxes
(i.e., diamonds) and the following:

Definition 2 (Syntactic abbreviations).

Fϕ ≡def �Uϕ
Gϕ ≡def ¬F¬ϕ
�ϕ ≡def [∅ sstit]ϕ

We now go on to define the semantic structures for G.STRAT. In the literature
[2,25], strategies are most often defined as mappings from states to choices in
states. The choices can have names (multi-player game models), or not (alternat-
ing transition systems) [25]. Here we take an equivalent, though slightly different
viewpoint: strategies are sets of histories obeying certain structural properties.
This is nothing more than a convenient shift of viewpoint and does not result
in a fundamentally new type of strategies. If we define strategies as mappings
from states/moments to choices, we have to define ‘compliance’ of a history to a
strategy as a secondary concept. By defining strategies as sets of histories with
a certain structure there is no need anymore to define a notion of ’compliance’.

As explained above we introduce ‘profiles’ as the units of evaluation. A ‘pro-
file’ records the dynamic aspects of a system of agents. The profiles of our seman-
tics take a moment, a history and a strategy profile (a list of strategies, one for
each agent in the system) as components. So, the formulas of G.STRAT are eval-
uated against tuples 〈m,h, α1, α2, . . . αn〉, where m is a moment, h a history,
and α1, α2, . . . αn a strategy profile. Then, the truth of formulas is evaluated
against the background of a current moment, a current history, and a current
strategy-profile. If, under this semantics, we want to consider truths that do not

9 Here we make minor modifications to the presentation of the semantics.
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epend on dynamic aspects as represented by the histories and the strategies, we
can use the historical necessity operator �. In particular, if �ϕ holds, ϕ can be
said to hold ‘statically’. In stit-theory, one says that ϕ is ‘moment determinate’.
We also say that ϕ is ‘settled’10, which refers to the fact that it is completely
independent of any action currently taken by any agent in the system.

We now first give the definition of the modal frames. Then afterwards, we
explain the different items of the definition using the frame visualisation in Fig. 1.

Definition 3 (Strategic frames). A frame is a tuple F = 〈M,H, {St(i) | i ∈
Ags}, {RA | A ⊆ Ags}〉 such that:

1. M is a non-empty set of moments. Elements of M are denoted m, m′, . . .
2. H is a non-empty set of ‘backwards bundled’ histories. A history h ∈ H

is a sequence . . . m,m′,m′′ . . . of mutually different elements from M . For
m appearing strictly before m′ on the history h we write m <h m′. To
denote that m′ succeeds m on h we use a successor function succ and write
m′ = succ(m,h). Histories h ∈ H and successor functions succ are isomor-
phic with (Z,+1) by a bijective function f : M × H �→ Z that ensures that
m′ = succ(m,h) and f(m,h) = x if and only if f(m′, h) = y and y = x + 1.
Furthermore, let Hn = {h | h ∈ H and n on h} (as in Sect. 2.1). The follow-
ing constraint on the set H ensures a deterministic past:
a. for all h ∈ H, if m = succ(n, h) then Hm ⊆ Hn

3. St(i) yields for each i ∈ Ags a non-empty set of strategies. Strategies are non-
empty sets of histories obeying properties that follow from the constraints a.,
b., c., d. and e. below. For agent 1, the strategies St(1) are denoted α1, β1,
etc. A strategy profile11 relative to St(i) is a list of strategies α1, α2, . . . αn,
where {1, 2, . . . , n} = Ags and αi ∈ St(i) for any i. For strategy profiles
we will use the vector notation ‘�α’ when we need to be more concise. Tuples
〈m,h, α1, α2, . . . αn〉 such that m belongs to h and for all i ∈ Ags, h ∈ αi

we call ‘profiles’. Profiles of the form 〈m,h, α1, α2, . . . αn〉 will be the units of
evaluation (possible worlds) of our modal semantics. We impose the following
constraints on profiles (and, implicitly, the strategies in them).
a. for all m ∈ M , there is a profile 〈m,h, α1, α2, . . . αn〉
b. for any i ∈ Ags, if 〈m,h, α1, . . . , αi, . . . , αn〉 is a profile at m, and if for a

history h′ ∈ H through m and the strategy αi in the profile it holds that
for all x on h′ there is a h′′ ∈ αi such that x is on h′′, then h′ ∈ αi

10 Settledness does not necessarily mean that a property is always true in the future
(as often thought). Settledness may also apply to the condition that ϕ occurs ‘some’
time in the future, now, or indeed any condition expressible as linear time temporal
formula. So, settledness is a universal quantification over the branching dimension
of time, and not over the dimension of duration.

11 In the game forms of game theory strategy profiles are referred to by means of
names associated with the choices of agents in states. Here we abstract from names
of choices, as explained.
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Fig. 2. Visualisation (from [10]) of a strategy profile in a partial two agent G.STRAT
structure. The choices each agent performs are shown in light grey. The unique pattern
of joint choices determined by the joint strategy is shown in dark grey.

c. for any i ∈ Ags, if 〈m,h, α1, . . . , αi, . . . , αn〉 is a profile at m, and there
is a profile 〈n, h′, β1, . . . , βi, . . . , βn〉 at n such that n = succ(h,m),
then there is a profile 〈m,h′′, α1, . . . , γi, . . . , αn〉 at m such that γi =
(αi\Hn) ∪ (βi ∩ Hn)

d. if 〈m,h, α1, α2, . . . , αn〉 and 〈m,h′, β1, β2, . . . , βn〉 are profiles at m, then
any 〈m,h′′, γ1, γ2, . . . , γn〉 such that for any i, γi = αi or γi = βi, is also
a profile at m

e. if 〈m,h, α1, α2, . . . αn〉 is a profile at m and for some h′, for all i ∈ Ags,
h′ ∈ αi then h′ = h

4. The relations RA are ‘effectivity’ equivalence classes over profiles such that
〈m,h, α1, α2, . . . αn〉RA〈m′, h′, β1, β2, . . . βn〉 if and only if m = m′, and for
all i ∈ A,αi = βi

Item 1 gives the basic elements of the frames: the set of moments M .
Item 2 defines histories to be linearly ordered sets of moments. Also it defines

a bundling structure for the set H of all histories: histories that come together
when going in the past direction will stay together in that direction. This implies
that in the future direction, once bundles have separated they will never come
together again.

Item 3 defines strategies. Strategies are sets of histories with certain prop-
erties. A strategy profile is a choice of strategy for each agent in the system.
Figure 2 visualises a (partial) frame and a strategy profile in it, from the view-
point of moment m0. Note that there is an important difference with Fig. 1: in
the present picture moments are no longer associated with game forms but with
the cells inside game forms. This is not an essential difference: we can say that
in the present picture the partitioning of histories into choices is pictured at
subsequent moments. Formally there is no difference: the difference is only in
the visualisation.
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Columns that are grey represent choices of agent 1, rows that are grey rep-
resent choices of agent 2. No m2-choice is depicted for agent 1, because in the
pictured strategy profile, agent 1 can be sure that m2 will not be reached as the
result of his choice at m0. Agent 1 cannot be sure that this is this case, so his
strategy (his strategy contribution to the strategy profile in the picture) does
specify a choice at m2.

Condition 3(a) ensures that for each moment, for each agent, its strategy at
that moment is defined by some bundle of histories.

Condition 3(b) ensures that our bundled histories semantics behaves as a
tree semantics on aspects relevant for the comparison with ATL. We need to
impose this condition because our bundled histories semantics allows for a more
fine grained analysis of the interaction between choice and time than a tree
semantics12. In particular, the property ensures that G.STRAT obeyes ATL’s
induction axiom.

Condition 3(c) ensures that if an agent has two different strategies in his
repertoire, recombinations of these strategies where first one strategy is followed
and later on (next) the other, are always also in the repertoire of that agent13.

Condition 3(d) ensures that we can always recombine strategies of individual
agents contributing to a group strategy into a new joint strategy. This imple-
ments the stit-requirement of independence of agency (no agent can choose in
such a way that some other agent is deprived of one of its choices). Note that
independence is not a local property of strategies but a global one. This corre-
sponds to the notion of independence in ATL (Sect. 3.2 below).

Condition 3(e) ensures that there is exactly one history complying to all
strategies of a strategy profile. This reflects the idea, also assumed in ATL (Alter-
nating Time Temporal Logic, see Sect. 3.2) and CL (Coalition Logic [34]), that a
choice of strategy for each agent in the system completely determines the entire
future. This means that, strictly speaking, we do not have to introduce h here as
an independent element of the evaluation context, since we can define it as the
intersection of the strategies in the strategy profile. The reason that we do this
anyway is that it facilitates an easy definition of the semantics and leaves open
the possibility to drop condition 3(e) and allow for non-determinism introduced
by the agents’ environment. In Fig. 1 the bundle of histories Hb3 through the
darker grey little squares is the bundle of histories containing the unique history
through m0 that is determined by the intersection of the strategies of agents 1
and 2 in the profile. Note that if we view these frames as a setup for the dynamics
of the world we live in, we have to buy in to the idea that non-determinism is
only due to choices of agents, and that the rest of nature is deterministic. This
is exactly why we may want to drop the constraint 3(e).

We could have added the following extra constraint on strategies. To for-
mulate the constraint we need some extra notation. Let C(m,α) denote the

12 There are infinite sets of histories that cannot be characterised as the histories
running through an infinite tree; the condition ensures that such infinite sets are
excluded.

13 We thank Hein Duijf for pointing us to this constraint.
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choice specified by strategy α at moment m, that is C(m,α) = {m′ | m′ =
succ(m,h), h ∈ α}14. The extra constraint we could impose is:

3(f) For two different strategies αi and βi of an agent i for any moment m
we always have that C(m,αi) ∩ C(m,βi) = ∅.

This expresses that different choices of an agent at a moment m do not
‘overlap’. However, since modal truth is invariant under bisimulation [6] (see the
proof sketch of Theorem 1), this constraint has no effect on the logic, and we do
not add it.

Finally, item 4 defines the basic units of evaluation and the agency rela-
tion over them. Note that the difference with classical multi-agent or group
stit-models [5] is that moments are not partitioned by one-shot actions, but by
strategies. This generalisation is the essential step for defining our strategic ver-
sion of the stit-operator. Now 4 defines RA to be a relation reaching all profiles
that only deviate from the current profile in the sense that agents not among
A perform a choice different from the current one. This reflects the basic idea
of agency saying that acting or choosing is ensuring a condition irrespective of
what other agents do or choose.

Now we are ready to define the formal semantics of the language LG.STRAT.
The semantics is multi-dimensional, and the truth conditions are quite standard.
First we define models based on the frames of the previous definition.

Definition 4 (Strategic models). A frame F = 〈M,H, {St(a) | a ∈
Ags}, {RA | A ⊆ Ags}〉 is extended to a model M = 〈M,H, {St(a) | a ∈
Ags}, {RA | A ⊆ Ags}, π〉 by adding a valuation π of atomic propositions:

– π is a valuation function π : P −→ 2M×H×St(a) assigning to each atomic
proposition the set of evaluation tuples (or ‘profiles’, see Definition 3) in which
they are true.

Definition 5 (Truth, validity, logic). Truth M, 〈m,h, �α〉 |= ϕ, of a
G.STRAT-formula ϕ in a profile 〈m,h, �α〉 of a model M = 〈M,H, {St(a) | a ∈
Ags}, {RA | A ⊆ Ags}, π〉 is defined as (suppressing the model denotation ‘M’):

〈m, h, �α〉 |= p ⇔ 〈m, h, �α〉 ∈ π(p)

〈m, h, �α〉 |= ¬ϕ ⇔ not 〈m, h, �α〉 |= ϕ

〈m, h, �α〉 |= ϕ ∧ ψ ⇔ 〈m, h, �α〉 |= ϕ and 〈m, h, �α〉 |= ψ

〈m, h, �α〉 |= [A sstit]ϕ ⇔ for all h′, �β such that

〈m, h, �α〉RA〈m, h′, �β〉
it holds that 〈m, h′, �β〉 |= ϕ

〈m, h, �α〉 |= Xϕ ⇔ for all m′ such that m′ = succ(m, h)

it holds that 〈m′, h, �α〉 |= ϕ

〈m, h, �α〉 |= ψUϕ ⇔ there is a m′ such that

(1) m ≤h m′ and

(2) 〈m′, h, �α〉 |= ϕ and

(3) for all m′′ with m ≤h m′′ <h m′ we have 〈m′′, h, �α〉 |= ψ

14 Note that choices of a strategy can be empty at a given moment m.
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Validity on a G.STRAT-model M is defined as truth in all profiles of the
G.STRAT-model. General validity of a formula ϕ is defined as validity on all
possible G.STRAT-models. The logic G.STRAT is the subset of all general validi-
ties of LG.STRAT over the class of G.STRAT-models.

One important class of properties expressible in G.STRAT are properties of
strategies that are conditional on the execution of other strategies. For instance,
we can express that a strategy of agent 2 for guaranteeing a certain interest-
ing position with Chess is only possible if the opponent, agent 1, plays the
Sicilian opening: [1 sstit]GSicilian → ♦[2 sstit]FPosition I (where we may
think of the proposition Sicilian as a set of condition-choice rules specifying
the moves that constitute the Sicilian opening). The consequence of this impli-
cation is also expressible in ATL (to be discussed in the next section) but the
antecedent is not. Properties like these have the same structure as ‘assumption-
guarantee’ properties which are known from the compositional formal verifica-
tion of concurrent systems (see [10]). Also G.STRAT enables one to zoom in
and specify abstract strategies by filling in their details. If we want to specify
that the Sicilian defence always answers the move e4 with c5, we may specify:
[1 sstit]GSicilian → ([2 sstit]X@e4 → [1 sstit]XX@c5 ).

We do not have an axiomatic way yet to characterise the validities of this
logic. Such a characterisation would be more than welcome, since it would shed
light on the axiomatisation of many related formalisms (see Sect. 3.5). One point
where the absence of an axiomatisation comes to the fore quite clearly is in Sect. 5
where we see examples of formulas that are valid and invalid for G.STRAT; it
would have been good to show this using an axiomatisation.

3.2 Embedding ATL

In this section we show that G.STRAT embeds ATL [2,17] and thus also CTL [23]
and CL [34]. Also we mention validities for G.STRAT that do not hold for ATL.
Let us first give a brief exposition of ATL in its most common form defined on
concurrent game structures (CGSs). The syntax of ATL formulas is:

Definition 6. Given that p ranges over P , and that A ranges over 2Ags, the
language of ATL is defined by:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉Xϕ | 〈〈A〉〉Gϕ | 〈〈A〉〉ϕUϕ

The intended reading of 〈〈A〉〉η, with η a temporal formula as allowed by
the above syntax, is that “group A can perform a strategy that ensures η what-
ever agents in Ags\A do”. In other words: group A has some winning strategy
for η. The syntax of ATL is constrained such that cooperation modalities 〈〈A〉〉
are always followed by a standard temporal operator: X (next), G (always), U
(until). Most commonly, the semantics of ATL is defined in terms of transition
systems where transitions are labeled with combinations of action names, one
for each agent acting at that transition. These structures are called ‘concur-
rent game structures’. Formally, a concurrent game structure (CGS) is a tuple
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M = 〈Ag, S, V,Act, d, o〉 where Ag = {1, ..., k} is the nonempty finite set of all
agents, S a nonempty set of states, V : Prop �→ 2S a valuation of atomic proposi-
tions, and Act a nonempty set of (atomic) actions15. A function d : Ag×S �→ 2Act

defines nonempty sets of actions agents can opt to choose at a given state, and
o is a (deterministic) transition function that assigns a unique outcome state
q′ = o(q, a1, ..., ak) to state q and a tuple of actions 〈a1, ..., ak〉 with ai ∈ d(i, q)
that can be executed by Ag in q. A strategy of agent i is a conditional plan that
for each state specifies what i is going to do in that state. Thus, a strategy of
agent i is represented by a function si : S �→ Act, such that si(q) ∈ d(i, q). A
collective strategy for a group of agents C = {1, . . . , r} is a tuple of strategies
sC = 〈s1, . . . , sr〉, one for each agent from C. C’s set of collective strategies is
denoted by ΣC . Also, by sC [i], we denote agent i’s contribution to the collective
strategy sC . The function out(q, sC) yields the set of all paths that are allowed
by the execution in state q of strategy sC by coalition C. With these provisions
we can now semantically define the logic ATL using concurrent game structures.

In ATL truth is defined relative to states. Strategic stit, as defined in the previ-
ous section, defines truth relative to profiles. This reflects two crucial differences.
The states featuring in the semantics of ATL are different from the moments
taken up as part of the profiles that form the evaluation context of strategic stit
formulas. The difference between states and moments is that states may occur
more than once on a history, while moments may not. The second, more funda-
mental difference is the one between evaluation relative to states and evaluation
relative to profiles; the first is what Arthur Prior called the Peircean solution to
the temporal logic conceptual problem of future contingencies, the second is a
suitable generalisation of the stit solution to this same problem. Before explain-
ing that despite these differences, ATL can be embedded in strategic stit, we give
the formal semantics of ATL.

Definition 7 (Truth, validity ATL). Truth M, q |= ϕ, of an ATL-formula ϕ
at a state q of a concurrent game structure M = 〈Ag, S, V,Act, d, o〉 is defined
as:

M, q |= 〈〈C〉〉Xϕ iff there is a sC ∈ ΣC such that, for each path λ ∈ out(sC , q), we have

M, λ[1] |= ϕ

M, q |= 〈〈C〉〉Gϕ iff there is a sC ∈ ΣC such that, for each λ ∈ out(sC , q), we have

M, λ[i] |= ϕ for every i ≥ 0

M, q |= 〈〈C〉〉ϕUψ iff there is a sC ∈ ΣC such that, for each λ ∈ out(sC , q), there is an i ≥ 0

for which M, λ[i] |= ψ, and M, λ[j] |= ϕ for each 0 ≤ j ≤ i

General ATL validity of a formula ϕ is defined as validity in all states of all
possible concurrent game structures. The logic ATL is the subset of all general
validities of LATL over the class of concurrent game structures.

We now define a translation from ATL formulas to G.STRAT formulas. This
translation determines an embedding of ATL in G.STRAT, as we will show.

15 It would be more correct to call these ‘action types’.
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Definition 8 (Mapping ATL to G.STRAT [9]). We define a mapping T
from ATL formulas to G.STRAT formulas. The central modalities are mapped as
follows:

〈〈A〉〉Xϕ maps to ♦[A sstit]Xϕ,
〈〈A〉〉Gϕ maps to ♦[A sstit]Gϕ,
〈〈A〉〉(ϕUψ) maps to ♦[A sstit](ϕUψ).

Modality-free formula parts of ATL formulas are mapped to identical modality-
free formula parts of G.STRAT formulas.

Theorem 1. The mapping of Definition 8 embeds the logic ATL in the logic
G.STRAT.

Proof Sketch. We need to prove that the mapping of Definition 8 preserves
the logic in both directions. We will take the most straightforward approach of
showing that an ATL formula ϕ is satisfiable on some concurrent game structure
if an only if the related G.STRAT formula T (ϕ) is satisfiable on a strategic model.
For the ‘only if’ direction we map a satisfying concurrent game structure to a
strategic model. For this we take the following steps.

(1) From the state s which satisfies the ATL formula ϕ unravel the concurrent
game structure into a tree. By the unravelling, unique states of the concur-
rent game structures are possibly mapped to multiple moments in the tree.
The tree determines a set of histories H satisfying the backwards bundling
constraint of item 2 in Definition 3. For each moment m in the unravelled
tree we will build a profile 〈m,h, �α〉 in the next step.

(2) For each agent i construct the set of all its possible strategies St(i) by col-
lecting the right histories as determined by the functions d and o in the
concurrent game structure. It is not too difficult to assess that this construc-
tion guarantees that the conditions on strategies and profiles as defined for
strategy frames (Definition 3, conditions 3.a, 3.b, 3.c, 3.d and 3.e) are met
(but, see e.g. footnote 12). After this step in the construction, we no longer
need the names for actions. They can be discarded. With St(i) we know all
the possible strategy profiles relative to a moment m in the tree. We con-
struct all the possible profiles 〈m,h, �α〉 relative to m by considering all the
possible profiles and by taking h to be the unique intersection of a profile.
Uniqueness is guaranteed by the output function o of the originating concur-
rent game structure. Given the structure of profiles, item 4 of Definition 3
defines the relations RA.

(3) For all profiles 〈m,h, �α〉 in the constructed frame make the valuation of
atomic propositions P identical to the valuation in the unique state s in the
originating concurrent game structure that is associated to the moment m.

The above steps make clear what the differences and similarities between concur-
rent game structures and strategic models are. Now we can prove preservation
of satisfiability by this mapping by induction over the general structure of for-
mulas. However, the crucial element to be checked is the equivalence of the truth
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conditions of the ATL operators and the combined truth conditions of the combi-
nation of G.STRAT operators we translate to (Definition 8). But it is quite clear
that they are just two different ways of writing exactly the same conditions.

For the ‘if’ direction we make a similar construction; we map a strategic
model to a concurrent game structure. This construction encompasses the fol-
lowing steps.

(1) From the moment m where the G.STRAT formula ϕ is satisfied, look at
the strategies in St(i) and give all different bundles of histories through the
moment m appearing in one of the strategies an arbitrary but unique action
name (however, names may be reused at other moments, and it does not
matter at all for which bundles). This constructs the set Act of actions. If
it happens to be that there is a history through m that belongs to more
than one named bundle relative to m (note that this is not disallowed for
strategy models; see the remark in the discussion of the set St(i) after the
definition of the strategic frames), make a copy of the subtree pointed at by
that history, and assign a separate copy to each of the two named bundles
(actions). From this point on, refer to the moments as ‘states’. Now construct
the functions d and o based on the action names given to the bundles relative
to the states. That the function d exists and can be constructed is guaranteed
by condition 3.a in Definition 3. That the (infinite) set of histories allowed
by an ATL strategy is closed under recomposition of histories using the first
parts of other histories is guaranteed by 3.b. That the set of possible ATL
strategies available to an agent in an ATL model is closed under switching to
other possible strategies in a next state is guaranteed by condition 3.c. That
o yields an outcome for every combination of actions (any action profile) is
guaranteed by 3.d. That o maps to a single output state is guaranteed by
condition 3.e.

(2) For the construction of the valuation function V in states s we look at
the valuation π of atoms in profiles 〈m,h, �α〉 of the originating strategic
model. The problem is that these might be different for different histories
and different strategies relative to the same moment m. But if that is the
case, we can make different copies s and s′ associated with the moment
m for any two profiles based on m having different valuations of atomic
propositions and accordingly add branches to the state associated with the
moment preceding m. Making copies of states in this way blows up the
branching factor of the game structures, but does not affect truth or validity
on structures because modal logic truth is invariant under bisimulation.

This procedure results in a concurrent game structure that is a tree. It might
be that the tree can be made finite by identifying bisimilar states, but that
is not important for showing satisfiability. Again, by inspection of the truth
conditions, we establish that satisfiability is preserved under this mapping from
strategy models to concurrent game structures. �

As a corollary we get that the translation of the Hilbert style axioms and
derivation rules of the ATL axiomatisation [26] results in sound axioms and
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sound rules for G.STRAT. It will be instructive to check this for ATL’s maximal-
ity axiom: (N) ¬〈〈∅〉〉X¬ϕ → 〈〈Ags〉〉Xϕ. In the translation to G.STRAT we get
¬♦[∅ sstit]X¬ϕ → ♦[Ags sstit]Xϕ. This is equivalent with �〈∅ sstit〉Xϕ →
♦[Ags sstit]Xϕ. The � operator is an abbreviation in G.STRAT and it is
interpreted by the equivalence class R∅. Therefore the schema is equivalent to
♦Xϕ → ♦[Ags sstit]Xϕ. Now this is only true for every ϕ on strategy models
if the strategy frames obey the property that the intersection of all strategies in
a profile contains exactly one history (condition 3.e in Definition 3). If we drop
that condition of the frames, the maximality condition would not hold and ATL
would not be a fragment. However, we would still have an interesting logic of
strategies; one that allows for non-determinism of a non-agentive source.

It is clear that we cannot have an embedding of G.STRAT in ATL: satisfia-
bility is undecidable for G.STRAT (see Sect. 3.4) while it is not for ATL.

3.3 Embedding ATL∗

The logic ATL* generalizes ATL by partly breaking the syntactic connection
between the ability operator 〈〈A〉〉 and the temporal operators: within the scope
of 〈〈A〉〉 operators, temporal operators may occur nested, without being imme-
diately preceded by another 〈〈A〉〉 operator. Note however that we are still two
steps removed from the more general syntax of G.STRAT: temporal operators
are not yet allowed to occur outside the scope of an 〈〈A〉〉 operator and 〈〈A〉〉 is
not decomposed into ♦[A sstit]ϕ.

Definition 9. Given that p ranges over P , and that A ranges over 2Ags, the
language of ATL* is defined by:

ϕ :: = p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉σ
σ :: = ϕ | ¬σ | σ ∧ σ | Xσ | σUσ

Since the temporal operators still only occur in the scope of a strategy oper-
ator, which means that the context of temporal operators is always one where
there is a quantification over histories (the Peircean solution to the problem
of future contingencies [36]), the formulas σ are commonly referred to as path
formulas. Also in the semantics the two types of formulas are treated separately.

We can reuse the concurrent game structures defined for ATL, but we have
to make one generalisation concerning the strategies. In ATL a strategy can be a
function si : S �→ Act, such that si(q) ∈ d(i, q). For ATL* we have to generalise
this to a function msi : S+ �→ Act, such that si(q) ∈ d(i, q). A strategy ms is
said to be a strategy with memory. Accordingly we will use msC to denote a
strategy with memory for coalition C and mΣC to denote all such strategies for
C. Now the truth conditions are as follows.

Definition 10 (Truth, validity ATL*). Truth M, q |= ϕ, of an ATL*-formula
ϕ at a state q of concurrent game structure M = 〈Ag, S, V,Act, d, o〉 is defined as:
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M, q |= 〈〈C〉〉ϕ iff there is an msC ∈ mΣC such that, for each path λ ∈ out(msC , q), we have

M, λ |= ϕ

M, λ |= ϕ iff M, λ[0] |= ϕ, for ϕ a state formula

M, λ |= ¬ϕ iff not M, λ |= ϕ

M, λ |= ϕ ∧ ψ iff M, λ |= ϕ and M, λ |= ψ

M, λ |= Xϕ iff M, λ[1] |= ϕ

M, λ |= ϕUψ iff there is an i ≥ 0 for which M, λ[i] |= ψ, and M, λ[j] |= ϕ for each 0 ≤ j ≤ i

General ATL* validity of a formula ϕ is defined as validity in all states of all
possible concurrent game structures. The logic ATL* is the subset of all general
validities of LATL* over the class of concurrent game structures.

Definition 11 (Mapping ATL* to G.STRAT). We define a mapping from
ATL* formulas to G.STRAT formulas. The central ATL*-modality is mapped as
follows:

〈〈A〉〉ϕ maps to ♦[A sstit]ϕ

Other modal and non-modal logic operators of ATL* are mapped to their identical
G.STRAT companion.

Theorem 2. The mapping of Definition 11 embeds the logic ATL* in the logic
G.STRAT.

Proof Sketch. The proof deviates only marginally from the one for ATL. We
only need to pay attention to the generalised form of strategies in ATL*. In
the mapping that proves preservation of satisfiability from ATL* formulas to
G.STRAT formulas, the first step is to unravel the satisfying concurrent game
structure. After unravelling, the structure is a tree. Now, for trees the distinction
between strategies with memory and strategies without memory is irrelevant
since the information that is thought to have been stored in the ‘memory’ of
states (i.e., the states that have been visited before) can now be thought to be
encoded in the moments of the tree (each moment in a tree has a unique past
in the tree). If in the originating concurrent game structure there is a strategy
with memory (choices depend on which states have been visited before), then
by unraveling, this strategy is transformed into an equivalent strategy without
memory (choices do not depend on past moments, because those moments are
uniquely determined by the present moment). This means that exactly the same
proof strategy works for ATL*16. �

As mentioned in the proof sketch above, any ATL* strategy with memory
within a non-tree model can be related to an ATL* strategy without memory on
the associated unravelled tree model. So, if for ATL* we would stick to trees as the
structures of interpretation, the issue of memory (and other issues) is avoided.
However, much effort has been spent on studying ATL* and endogenous epis-
temic versions of ATL (versions talking about epistemic indistinguishability, but
without introducing separate epistemic modalities in the object language) where
16 We are neglecting here the possibility of a significant difference resulting from the

difference between bundle semantics and tree semantics; it will always be possible to
find a condition on G.STRAT frames that eliminates this difference relative to ATL*.
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the structures are not necessarily trees. And then it makes a difference what type
of strategies are used for the semantics: strategies with or without memory. The
resulting semantics can be seen to consist of two layers. For instance, if we want
to check satisfiability of an ATL* formula for a semantics where strategies do not
come with a memory, we have to perform two steps: first find a concurrent game
structure where loops can be used to represent infinite paths, and second, check
if within this structure the formula can be satisfied by strategies that forget if
they have have been in some state before and ignorantly do the same action
again each time they come to the same state after completing a loop. Much is
known about the complexity of model checking of such semantics, however, there
are no axiomatisations of the logics. We believe the non-standard, two layered
structure of the semantics in combination with the slightly contrived syntax is
to blame for this.

3.4 Embedding Chellas Group Stit

In Sect. 2.7 we discussed Chellas group stit. Here we show that it is embedded
in G.STRAT. Group stit does not encompass any temporal operators, so we may
directly map the group stit operator to the strategic stit operator and leave the
temporal operators out of the discussion.

Definition 12 (Mapping GroupSTIT to G.STRAT). We define a mapping
from GroupSTIT formulas to G.STRAT formulas. The central GroupSTIT modal-
ity is mapped as follows:

[A CStit]ϕ maps to [A sstit]ϕ

Modality-free (sub)formulas of GroupSTIT formulas are mapped to identical
modality-free (sub)formulas of G.STRAT formulas.

Theorem 3. The mapping of Definition 12 embeds the logic GroupSTIT in the
logic G.STRAT.

Proof Sketch. Again we consider two mappings. The mapping from GroupSTIT
structures to G.STRAT structures maps moment-history indexes m,h of group
BT+AC structures (Sect. 2.2) to profiles 〈m,h, �α〉 of strategy structures by mak-
ing up arbitrary strategies �α with the only precaution that we ensure that the
first ‘step’ of strategies corresponds to the choice cells in the originating BT+AC
structure (that BT+AC structures are based on a tree ordering, while strategic
structures are based on backwards bundled sets of histories, is not an essen-
tial difference). The mapping from G.STRAT structures to GroupSTIT structures
simply discards all the structure encoded for the strategies and reduces profiles
〈m,h, �α〉 to moment-history indexes m,h and associates choice cells with the ini-
tial steps of the strategies. Both directions preserve satisfiability since strategy
structures obey all the conditions specified for BT+AC structures as defined in
Sect. 2.1. �
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As discussed in the introduction, satisfiability checking for Chellas group stit
logic formulas is undecidable and also a finite axiomatisation is not possible [28].
The reason is that Chellas group stit itself embeds S5 product logics [24] where
the number of members in the product corresponds with the number of agents
of the logic. It will be instructive to point to this fragment also in G.STRAT.

Definition 13 (the sub-logic AIVatemp [9,28]). AIV atemp is the logic such
that AIVatemp ⊂ G.STRAT that results from restricting the syntax of Definition 1
by (1) dropping the until and next operators (‘atemp’ stands for ‘atemporal’),
and (2) restricting the set of operators [A sstit]ϕ with A ⊆ Ags, to the set
{[P sstit]ϕ | P = Ags\{a} and a ∈ Ags}. The groups P are called ‘anti-
individuals’ in [28], hence the acronym ‘AIV’ in the name of this fragment.

Theorem 4. For |Ags | ≥ 3, the satisfiability problem of the fragment AIVatemp

is undecidable, and there is no standard finite Hilbert-style axiomatisation.

Proof Sketch. To give semantics the fragment AIVatemp we can ignore most
interaction conditions on strategies in profiles 〈m,h, �α〉. We can even ignore all of
the temporal structure in profiles. Now item 4 in Definition 3 defines the relations
RA as equivalence classes over profiles, which leads to S5 also for the logics of the
modalities [P sstit]ϕ. Furthermore, with Definition 3 item 4 we can recognize a
standard multi-dimensional product of S5 logics where the modalities [P sstit]ϕ
form the dimensions of the product. Now the properties of the theorem are
standard results for such logics. See e.g. [24]. �

The implication of the theorem is that reasoning about agency of groups is
not feasible without restrictions of some kind. Of course, if we go to smaller frag-
ments, we can expect better properties. For instance, following [28], we conclude
that the complexity of the fragment determined by the operators “[a sstit]ϕ
with a ∈ Ags” is NEXPTIME-complete. Another fragment, called CTL.STIT,
was considered in [10]. The logic CTL.STIT is in between G.STRAT and ATL. It
links agency operators to temporal operators, thereby avoiding the undecidable
group stit fragment discussed above. But, it generalizes ATL by allowing talking
about agency explicitly, where ATL only talks about ability (i.e., in ATL also
the ♦ operator is not separable from the agency operators). We believe that
CTL.STIT is decidable and axiomatisable, but proofs still have to be provided.

3.5 An Overview of Fragments of G.STRAT

In this section we discuss Fig. 3 that gives an overview of fragments of G.STRAT.
The figure emphasises that the semantics of G.STRAT unifies all the well known
logics appearing in the figure: the only differences between the logics are due to
language restrictions on the general G.STRAT syntax.

It will be interesting to see which logics cannot be brought under the same
picture. First of all there are the variants of ATL* (and ATEL) interpreted on
structures that are not necessarily trees and where the ‘memory’ of strategies
is limited [18]. These do not fall into the same picture, since they concern a
genuinely different semantics. So, they embody a move to a different semantics
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Fig. 3. Simultaneous language/logic inclusions under the G.STRAT semantics

for the same language, while the picture of Fig. 3 shows moves to sublanguages
over the same semantics.

The logic XSTIT [8,11] also does not fit into the scheme. We get its syntax
by restricting G.STRAT’s temporal operators to only the next operator, and by
applying the restriction that it is always preceded by a collective stit modality.
If XSTIT would be a fragment under the same semantics, in Fig. 3 it would
appear as a separate link between PL and CTL.STIT. The reason that XSTIT
does not fit in is that it does not obey the maximality axiom �〈∅ sstit〉Xϕ →
♦[Ags sstit]Xϕ. In stead, XSTIT obeys the weaker axiom 〈∅ sstit〉X�ϕ →
♦[Ags sstit]Xϕ. Actually we feel that maximality is a very strong property,
since it leaves no room for non-determinism of a non-agentive source. The weaker
XSTIT property is more cautious and does leave room for conditions whose
coming about is not due to the involvement of agents. However, without assuming
maximality for G.STRAT, the inclusions in the figure could not have been made.

Finally there is the version of stit logic that is central in Horty’s book on
deontic stit [31]. This version encompasses both future and past temporal modal-
ities, which means that irrespective of its semantics, it does not fit into the pic-
ture sketched here. However, if in Horty’s version of stit we leave out the past
modality, we are left with a syntax that combines GroupSTIT with a subset of
the temporal LTL operators. On the basis of these syntactic characteristics it
would form a link between GroupSTIT and G.STRAT. With this provision to its
syntax we conjecture that Horty’s stit logic can indeed be seen as a fragment
of G.STRAT. To assess the truth of this conjecture, we would have to study
mappings from Horty’s models to G.STRAT models.

4 Epistemic Extensions and Uniform Strategies

One may express that agent i has the capability to achieve ϕ by the for-
mula ♦[i CStit]ϕ.17 When an agent does not have perfect knowledge of his
17 Actually Chellas’s original version of his logic was only about capabilities.
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environment then it might happen that he has the capability to achieve ϕ but
does not know this. The dedicated term in the game theory literature is that the
agent does not have a uniform strategy to achieve ϕ (although he has a strategy
tout court to do so). In Castelfranchi’s terms, the agent does not have the power
to achieve ϕ [19,33]. In this section we sketch an epistemic extension of the
logic of the Chellas stit that allows to account for uniform strategies, following
a proposal in [15,16,29].

In order to distinguish what an agent can do from what an agent knows
he can do we add epistemic operators Knowi to the language. We first show
that the resulting logic allows distinguishing the de re ♦Knowi[i CStit]ϕ (“there
is a strategy of which i knows that it achieves ϕ”) from the weaker de dicto
Knowi♦[i CStit]Xϕ (“i knows that there is a strategy achieving ϕ”). We then
argue that other logics of strategic ability such as ATL and CL—or rather, their
epistemic extensions—do not have enough linguistic resources in order to account
for the above distinction.

The problem of uniform strategies can be explained for a single individual
agent and on the one-step level. The latter means that we do not need the
temporal operators G and U , but only the temporal ‘next’ operator X.

4.1 An Epistemic Extension of the Logic of the Chellas Stit

Consider a language with the historical possibility operator ♦, the temporal
operator X, and the Chellas stit operators [i CStit] and the epistemic operators
Knowi, one per agent i. How should one interpret the epistemic operator Knowi

in BT+AC structures? The question boils down to the question of how to define
a relation of indistinguishability i∼ in BT+AC structures. We basically have two
choices: either i∼ relates moments, or it relates moment-history pairs. We choose
the latter; that the former is not a good choice will become clear later on when
we are going to discuss uniform strategies in CL and ATL.

An epistemic BT+AC model is a 5-tuple of the form M = 〈Mom, <, C,∼, π〉
where 〈Mom, <, C, π〉 is a discrete BT+AC model and where ∼ is a function from
Ags to (Mom × H) × (Mom × H).18

Let us come back to our scenario where there is an agent i in some room
with a switch and a light bulb. Let us suppose the light is on but that the agent
18 In the papers [15,16,29] it is supposed that models satisfy the following constraints.

– If h1, h2 ∈ Hm and 〈m, h1〉 i∼ 〈m′, h′
1〉 then there is h′

2 ∈ Hm′ such that 〈m, h2〉 i∼
〈m′, h′

2〉.
– If 〈m, h1〉 i∼ 〈m′, h′

1〉 and h′
1, h

′
2 ∈ Hm′ then there is h2 ∈ Hm such that 〈m, h2〉 i∼

〈m′, h′
2〉.

– If succ(m1, h) = m2 and 〈m2, h〉 i∼ 〈m′
2, h

′〉 then there is a moment m′
1 such that

〈m1, h〉 i∼ 〈m′
1, h

′〉 and succ(m′
1, h) = m′

2 (no forgetting).

However, they are not needed in order to explain the solution the epistemic extension
of the Chellas stit provides to the problem of uniform strategies.
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is blind and does not know whether this is the case or not. Intuitively, the agent
has a strategy to ensure that the light is on next (viz. to do nothing) but does
not know this. He therefore does not have a uniform strategy to ensure that the
light is on in the next state.

Our BT+AC structure is 〈Mom, <〉 where Mom = {on, off}+ is the set of
all finite sequences of on and off and where < is the prefix relation. So there
are two roots of our BT+AC structure: 〈on〉 and 〈off〉. The set C(i, on) of i’s
choices at on is {Hon,skip,Hon,toggle} where Hon,skip is the set of all histories of the
form 〈on, 〈on, on〉, . . .〉 and where Hon,toggle is the set of all histories of the form
〈on, 〈on, off〉, . . .〉. The set C(i, off) = {Hoff,skip,Hoff,toggle} of i’s choices at off is
defined similarly. Suppose the propositional variable light stands for “the light
is on”. The valuation is such that π(m,h) is empty if the last element of the
sequence m is off and is {light} if the last element of the sequence m is on.

The above makes up a BT+AC model, and it remains to define the indis-
tinguishability relation. We model that i is aware of the action he is going to
do next (but not beyond) by stipulating that i∼ is the reflexive and symmetric
closure of the following relation:

({〈on, h〉, 〈off, g〉 : h1 �= g1 and (h2)2 �= (g2)2}}
where h1 is the first element of the sequence h, h2 is its second element (which
is itself a sequence), (h2)2 is the second element of the latter, etc. For example
we have

〈on, 〈on, 〈on, on〉, . . .〉〉 i∼ 〈off, 〈off, 〈off, off〉, . . .〉〉
〈on, 〈on, 〈on, off〉, . . .〉〉 i∼ 〈off, 〈off, 〈off, on〉, . . .〉〉

In the first line the agent knows that he will do nothing and in the second line
he knows that he will toggle.

Let M = 〈Mom, <, C,∼, π〉 be the epistemic BT+AC model defined in that
way. As the reader may check, we have

M, 〈on〉, h |= Knowi♦[i CStit]Xlight

for every history h: the agent knows that there is a strategy to achieve that the
light is on next. But we also have

M, 〈on〉, h �|= ♦Knowi[i CStit]Xlight

which expresses that no such strategy is uniform.

4.2 Uniform Strategies and ATEL

Other logics of agent capability exist. Most prominent are Coalition Logic (CL)
and Alternating-time Temporal Logic (ATL) (see Sect. 3.2). We also refer to the
chapter on ATL in this volume [17] for an introduction to CL and ATL. We just
recall here that both have modal operators of capability 〈〈i〉〉X that allow to
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talk about what i is capable to achieve in the next state: 〈〈i〉〉Xϕ reads “agent
i is able to achieve that ϕ holds next, whatever the other agents do”. This is
a non-normal modal operator (neither the necessity nor the aggregation axiom
schemas are valid). It was shown in [25] that CL is a fragment of ATL: the concept
of capability of a coalition A to achieve ϕ of Coalition Logic CL can be expressed
by the ATL formula 〈〈A〉〉Xϕ.

It was also shown that CL can be embedded into the discrete version of the
logic of the Chellas stit [13] and that ATL can be embedded into a strategic
version of the latter [12]. Also in Sect. 3.2 we have provided an embedding into
a variant of BT+AC structures.

ATL has been extended with epistemic operators Knowi, yielding Alternating-
time Epistemic Temporal Logic ATEL [30]. In terms of BT+AC structures,
the indistinguishability relation in ATEL models is between moments, and
not between moment-history pairs. However, the latter was crucial in our
‘stit-based’ solution to the problem of uniform strategies. It is a consequence
of this limitation that in ATEL one can only reason about formulas of the
form Knowi♦[i CStit]Xlight , written Knowi〈〈i〉〉Xlight in the language of ATEL.
However, in the language of ATEL there is no counterpart for the formula
♦Knowi[i CStit]Xlight .

5 Strategy Contexts, Commitments, and Bindings

In this section we discuss how the embedding of ATL and ATL* sheds light on
some possible problems in the interpretation of nested ATL and ATL* formu-
las. Our main claim will be that in the more general and expressive context of
G.STRAT the conceptual problems concerning ‘committing’ to strategies, and
reasoning in ‘strategy contexts’ disappear.

5.1 Having a Strategy Not to Have a Strategy

In relation to recent discussions on ATL [1,7,38], objections have been raised
concerning the interpretation of nested strategic ability formulas. Let us for
instance consider the following formula that expresses that i has a strategy such
that in the next state it does not have a strategy for p:

〈〈i〉〉X¬〈〈i〉〉Xp

It is tempting to believe there is a conceptual problem in the interpretation of
this formula19. It may seem to express something that is impossible: one cannot
have a strategy for not to have that same strategy. It seems that such strategies
would bite their own tail, so to speak. However, if it would be true that indeed
this formula would constitute a strategic situation that is logically impossible,
then it should be logically inconsistent and its negation should be a validity of
19 For instance, such claims have been made in discussions during workshops connected

to this volume.
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ATL. But, that is not the case. The formula is satisfiable in ATL. And the models
satisfying the formula constitute possible strategic situations an agent can be in.
An example is from Greek mythology: Ulysses can have a strategy now not to
have a strategy later (next) to give in to the seductive song of the Sirens: he ties
himself to the mast of his boat. Or, one can have a strategy now not to have a
strategy tomorrow (next) to keep ones promise of giving a talk, by sabotaging
the projector.

So a strategy witness to the truth of 〈〈i〉〉X¬〈〈i〉〉Xp does not bite its own
tail, since there is a temporal separation between the validity time of the first
〈〈i〉〉-operator (that is, ‘now’) and the validity time of the second 〈〈i〉〉-operator
(that is, ‘next’). For the strategies being witness to the validity of the first
〈〈i〉〉-operator, all that counts is that the first step in such a strategy ensures a
situation where it is true what is expressed by the second 〈〈i〉〉-operator: that
there is no winning strategy to ensure p one step further down the road. Note
that the quantifications over strategies in the two states (the initial state where
the first 〈〈i〉〉-operator is evaluated, and the second state where the second 〈〈i〉〉-
operator is evaluated) are entirely independent.

One may suspect however, that things go wrong after all if one uses tem-
poral operators other than the next operator. But that is not true. Even the
suspiciously looking formula 〈〈i〉〉G¬〈〈i〉〉Gp is satisfiable and admits intuitive
interpretations. Again, the scopes of both 〈〈i〉〉-operators are not the same. The
scope of the first is the tree as it stretches out from the current state. The scope
of the second operator is the tree as it stretches out from any of the states
somewhere in the future of the current state.

The ATL formula discussed above admits intuitive interpretations because
strategy operators 〈〈i〉〉 are always followed by a temporal operator X, or G,
which ensure that the validity time of the first occurrence of the 〈〈i〉〉-operator is
different from the validity time of the second occurrence of the 〈〈i〉〉-operator. But
what would happen if we go to ATL* where temporal operators are not strictly
preceded by strategy operators? It seems that this gives us an opportunity to
write formulas where a temporal separation of the validity times of both strategy
operators is absent. The following are examples of such formulas:

〈〈i〉〉¬〈〈i〉〉Xp 〈〈i〉〉¬〈〈i〉〉Fp 〈〈i〉〉¬〈〈i〉〉Gp

If we carefully look at the semantics of ATL*, as given in Definition 10, we see
that also in these examples the quantifications over strategies for both strategy
operators in the formulas are independent. This means that, for instance, the
following schemas are valid for ATL*

〈〈i〉〉¬〈〈i〉〉Xp ↔ ¬〈〈i〉〉Xp

¬〈〈i〉〉¬〈〈i〉〉Xp ↔ 〈〈i〉〉Xp
We may recognise here that the 〈〈i〉〉 operator behaves as an S5 operator,

which means that any number of nested strategy operators is reducible to a
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single strategy operator20. For the single operator there are no interpretation
problems. This reduction also makes intuitive sense. A strategy for not having a
strategy for p at the current state should indeed be the same as simply not having
a strategy for p in the current state, since if the validity time of both operators
is indeed the current state, the agent simply has no time for his strategy not to
have the strategy. The only way then to satisfy 〈〈i〉〉¬〈〈i〉〉Xp, is to already not
have the strategy for p, that is ¬〈〈i〉〉Xp.

In the stit literature, for the related concept of ‘refraining’, questions like
these are discussed already quite some time. In particular it is discussed whether
refraining from refraining to see to it that p is the same as seeing to it that p.
Modeling refraining is essential to any theory of agency. We can describe agency
as the theory that defines the difference between (1) pure events and (2) actions.
Now this difference comes out most clearly in case of the absence of anything
happening; in the theory of events that is just absence of any event. But in a
theory of agency it must be more than that; the agent chooses actively to refrain
from doing something, and somehow this ‘effort’, how ever little it is, has to be
accounted for in the theory.

5.2 Having a Strategy in the Context of Commitment to Another
Strategy

But let us now complicate things a little further. In the previous section we
talked about strategies for not having a strategy. Here we will discuss having
a strategy in the context of another strategy. In such a case it can be that the
contextual strategy specifies conditions that seem to conflict with the strategy
considered within that context. An example is given by the following formula:

〈〈i〉〉G(p ∧ 〈〈i〉〉X¬p)

This says that i has a strategy such that globally p while at the same time,
also globally, it has a strategy for not p in the next state. This seems to compli-
cate things because some temporal conflict may be suspected between p and ¬p.
Formulas like these have recently triggered several investigations [1,7,38] based
on the idea that the strategy that is witness to the truth of the second operator
in the formula is somehow restricted or partly/fully determined by the strategy
being witness to the truth of the first operator appearing in the formula. But
there is no reason whatsoever to assume such a conflict. The formula is satisfi-
able and the quantifications over strategies in the first operator are completely
independent of the quantifications over strategies in the second operator. Things
become clearer, we suspect, if we switch to the G.STRAT representation of the
formula. That representation is ♦[i sstit]G(p ∧ ♦[i sstit]X¬p). If we see ¬p as
20 Note that similar formulas can be formulated in plain CTL*. Take for instance the

CTL* formula A¬AXp, where the A’s are universal path quantifiers. For both occur-
rences of A in the formula, the quantification scope is the same. The only sensible
interpretation is to treat the quantifiers as S5 modalities, which then gives rise to,
for instance, the following logical equivalence: A¬AXp ↔ ¬AXp for CTL*.
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the possibility to ‘escape from p’, we can describe this is having a strategy that
guards p in any future state, but at the same time guards that there is always
the escape route ¬p. Guarding that there is an escape route does not imply
that the strategy actually prescribes to take the escape route. So, guaranteeing
globally that p and at the same time guaranteeing globally a possibility for ¬p
is perfectly consistent.

Now we believe that when other authors mention that the second (trans-
lated) 〈〈i〉〉-operator could be interpreted differently, namely, under the commit-
ment already made by the choices specified by the strategy being witness to the
first (translated) 〈〈i〉〉-operator in the formula, they can mean only one thing.
And what they mean is expressed, we believe, by the formula ♦[i sstit]G(p ∧
[i sstit]X¬p). The difference with the formula ♦[i sstit]G(p∧♦[i sstit]X¬p) is
that there is no existential quantification over strategies in the second part.
So, indeed, the second part of the formula should be evaluated under the
choice of strategy for satisfying the first part. The problem with this is that
it indeed gives conflicting semantic requirements. We can see that the formula
♦[i sstit]G(p ∧ [i sstit]X¬p) is inconsistent in G.STRAT: there cannot be a
model satisfying it because of the conflicting semantic demands about strate-
gies. In terms of p: agent i cannot guard that p is true henceforth and at the
same time guard that it does that by a strategy that forces it to take the escape
route ¬p.

This shows how strategic stit disambiguates the seemingly problematic for-
mula 〈〈i〉〉G(p ∧ 〈〈i〉〉X¬p). And we also see why attempts to solve the problem
by not decomposing the ATL operators have to take refuge to giving the same
〈〈i〉〉-operator a different meaning depending on whether or not it appears in the
context of another occurrence of the 〈〈i〉〉-operator. Let us indeed assume that
we want to interpret the first occurrence of the 〈〈i〉〉-operator in the formula
as a ♦[i sstit] combination while our view on the interpretation of the second
occurrence of the 〈〈i〉〉-operator is that it corresponds with [i sstit]. Now, if we
commit ourselves to not decomposing the 〈〈i〉〉-operator, the only thing we can
do is to give the 〈〈i〉〉-operator another meaning if it occurs in the context of
another 〈〈i〉〉-operator. So, this leads to non-uniformity of the semantics, such
as in the work of Brihaye et al. [7].

Since the truth in G.STRAT is evaluated relative to (strategy) profiles, a
context or commitment is simply expressible as a standard conditional using the
material implication: for two G.STRAT formulas ϕ and ψ, the conditional ϕ → ψ
expresses that strategic property ψ holds in the strategic context ϕ. We already
saw an example of this at the end of Sect. 3.1.

6 Conclusion

In this chapter we started by giving a brief overview of traditional stit logics
as applied to one step strategies/actions. Then we discussed a semantics that
generalised the stit ideas to the truly strategic setting where reaching or guar-
anteeing a condition may take more than one step. We have shown that the
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semantics embeds well known logics such as ATL and ATL*. More in particular
we have explained how a whole range of well-known temporal logic and logics
for agency and ability can all be seen as fragments of strategic stit under one
uniform semantics. Then we discussed how the strategic stit semantics sheds
light on the issue of uniform strategies, and finally, how the general semantics
for strategic stit explains the conceptual difficulties recently encountered in the
semantics of ATL concerning the interpretation of strategic ability and strategic
action within a context of other strategies already committed to.

We believe that strategic stit is a valuable addition to the range of formalisms
available for reasoning about strategies. Strategic stit enables one to specify
properties of agentive strategy performance without explicitly representing the
programs or processes by which an agentive strategic effort achieves or ensures
certain conditions. Furthermore, we believe that strategic stit can function as
a basis to clarify further conceptual problems in the interpretation of epistemic
strategic logics. We have seen some of this potential already in Sects. 4 and 5
where we showed how to shed light on the problem of uniformity of strategies
and the problems induced by the interpretation of nestings of strategic formulas.
But, we believe that this is only the start of further and more detailed investiga-
tions into complex concepts such as ‘knowing how’ and ‘knowingly performing
a strategy’ that require careful further analysis.

Acknowledgements. Thanks are due to the two reviewers of the present chapter
as well as to Valentin Goranko and Hein Duijf for careful readings that helped to
improve the chapter. Jan Broersen gratefully acknowledges financial support from the
ERC-2013-CoG project REINS, nr. 616512.

References
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Abstract. We study automata as memory structure for “online” strate-
gizing in extensive form games. By online strategizing we mean a model
in which players start with potential (partial) strategies that are generic
plans for (local) subgames and dynamically compose and switch between
them. We consider such startegizing to be relevant for a theory of play.
We suggest that for sufficiently large games and resource limited players,
the game is better modelled as an infinite horizon game, and thus the
study is carried out in games of infinite duration on finite game arenas.
We show how strategy switching can be realised by finite state trans-
ducers and how they can be used to answer questions on stability of
strategies.

Keywords: Memory in strategies · Strategy specifications · Strategy
switching · Infinite games on finite graphs

1 Overview

The seminal paper of John von Neumann [45] begins with a section titled Great
Simplification. In it, he brilliantly lays down a rationale that has dominated game
theory: there is no loss of generality in assuming that a rational player chooses
his strategy before the game begins, since a strategy lets him specify a choice
for every possible historical situation he might find himself in during the game.
So von Neumann concludes that each player must choose his strategy without
being informed of the other players’ strategic choices. Indeed this is the great
simplification1 that led to normal form game representations and much of game
theory as we know it.

In the case of finite extensive form games, this abstraction works very nicely.
Even if the game is one of imperfect information, such an abstraction helps us to
ignore the extensive temporal structures of games and concentrate on outcome
based analysis. Equilibrium theory helps us predict how a rational player would
choose; in a prescriptive sense, the theory tries to give good advice to the decision
maker. The strategy in an equilibrium profile can be seen as such an advice.
1 due originally to Émile Borel [11]; von Neumann was only developing the idea.
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Difficulties arise in the case of games with multiple equilibria, and this has
been extensively discussed in the literature [35]. An entirely different kind of
trouble arises when computational considerations matter. In particular, suppose
that the advice oracle that the strategy represents is to be a computer program,
then the notion of strategy as any complete plan for all player moves needs re-
examination. To take an admittedly ridiculous example, consider a game in which
a player has a binary choice, and the strategy defined by: when it’s the player’s
turn to move and the game position is node n (under some fixed ordering of tree
nodes), play 1 if the nth Turing machine (under a fixed enumeration of Turing
machines) halts on empty input, and play 0 otherwise. This would indeed be a
strategy, and may even survive elimination of dominated strategies for particular
outcomes, but not only does this function lacks reason, it is also unimplementable
(as a computer program). The space of functions from player nodes to available
choices is indeed too rich. Taking implementability as a criterion, we can look for
algorithms that compute equilibrium strategies and such an algorithmic game
theory [34] is being developed by computer scientists.

On the other hand, epistemic game theory [38] attempts to study the rationale
underlying a strategy, examining the reasons that underlie the choice made by
a player at a game position. Such a viewpoint refuses the offer made by the
great simplification and delves into the temporal extensive game structure. This
is particularly important when a player finds the history of play on an off-
equilibrium path. Given that an opponent has deviated from a choice dictated by
an optimal strategy, how should the player expect the opponent to play in future?
Several solutions have been proposed in the literature, such as forward induction
[38] but the main point is that such solutions involve online strategizing, during
course of play, rather than the offline strategies given by the great simplification.

Aumann and Dreze [3] make a strong case for the focus of game theory to
shift from the existence of equilibria to a prescriptive theory that would advise a
player how to play in any particular situation, in light of the history that led to
the situation. In a series of articles, van Benthem [6–9] has called for a theory of
play, which includes not only the deliberative aspects of pre-game strategizing
but also reasoning in the game. This involves consideration of a range of events
that occur during play: players’ observations, information received about other
players, etc.; these cause a revision of player beliefs and expectations and affect
strategizing.

It is this thread, that of online strategizing that takes into account the tem-
poral extensive structure, that we take up in this article, with an emphasis on
computational considerations as suggested above. That is, we move away from
pre-game selection of strategies to strategies constructed during course of play by
an automaton. This leads us to a study of compositional structure in strategies.
The restriction to finite state devices highlights the memory needed by a com-
putationally limited player who must select observations to record during play
and can see only a part of the future, as opposed to an agent with unbounded
memory who has access to the entire past and future.
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When the game is given as a finite tree, it seems pointless to talk of an agent
with limited memory, since any finite state device can code up the tree in its
memory. However, if the game tree is sufficiently large, such as in the game
of Chess, the player would see only an abstraction of the tree. In general, if
the temporal extensive structure of the game is large relative to the memory
capability of players, strategizing by the player is affected by the abstraction of
the future. Indeed, as van Benthem [8] argues, in any game where we only know
top-level structure, a ‘fuzzy’ view of the future is unavoidable. In the study of
game playing programs in Artificial Intelligence, it is customary to work with
local game analysis, along with general heuristic values for unanalyzed later parts
of the game [25].

The remark about abstracting the future raises an important question: how
should such a game be represented, and how can the player strategize in such a
game? The answer we provide is in the spirit of Rubinstein [43]: a game with a
“very long horizon” is best modelled as a game with infinite horizon. According
to Rubinstein [43], a game should be seen as a description of relevant factors as
perceived by the players, and not as a presentation of the physical rules of the
game. If a player strategizes in a game as if it has an unbounded horizon, an
infinite tree represents the game better.2 Therefore we present the game arena as
a finite graph and the game as an infinite tree obtained by unfolding the graph.
The game arena can be seen as a finite presentation of a set of rules; players
look for patterns, and based on the occurrence of patterns and past information
(recorded selectively), they make choices. Such a consideration leads us to the
realm of regular infinite games.

In our model, a player enters the game arena with information on the game
structure and on other players’ skills, as well as an initial set of possible strategies
to employ. As the play progresses, she makes observations and accordingly revises
strategies, switches from one to another, perhaps even devises new strategies that
she hadn’t considered before. The dynamics of such interaction eventually leads
to some strategies being eliminated, and some becoming stable. It is this process
that we wish to study using automata.

This chapter continues the line of work initiated in [42] on a compositional
structure in strategies realised by automata. Strategy switching is emphasized
here, and the rationale for why a player following a strategy might switch to
another one online. We study another form of switching as well: a player who
cannot decide between two strategies may, rather than committing to one or the
other, choose to go back and forth between the two, following either of the two
nondeterministically. This can be seen as a nondeterministic analogue of mixed
strategies, without specifying a probability distribution. In the end, the player
is not following either of the two strategies but a nondeterministic mix of both.
Thus the central premise of this chapter is that exploring structure in strategies
is worthwhile from a logical perspective, and that automata theory is helpful in
this regard.
2 Indeed the considerations of online strategizing and compositional structure seem

more relevant for such temporally large games. Arguably, for sufficiently small games,
pre-game deliberation might suffice.
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Infinite games have a long history, and their study has led to some beautiful
set theory and topology. Regular infinite games have received attention from
theoretical computer science in the last two decades, principally due to their
relevance to game models of reactive system design and verification. Notions
such as determinacy of win/lose games, equilibria, and computation of equilib-
rium strategies have been worked out for these games [22]. A central thread of
this research is the adequacy of finite memory strategies for standard solution
concepts.

What we discuss in this article is the realisation of compositional strategies,
involving switching and response to other players’ behaviour, as finite state trans-
ducers, thus explicating their memory structure. In itself, this is not surprising,
given the limited expressive power of the specification language of strategies.
However, the construction is interesting since it shows ways by which strategies
may be combined algorithmically.

What questions can one study in such a model? Once player objectives and
preferences are specified, natural questions relate to existence of best response,
synthesis of such strategies etc., and for a logical analysis, axiomatic charac-
terizations of formulas specifying how a strategy may ensure an outcome for a
player. These questions are addressed in [40] and [42] and not taken up here.
Instead we focus only on implications of strategy switching. When players may
switch from one strategy to another, there is an associated dynamics of strategies
and patterns in game evolution. Is it the case that, after online exploration of
opponents’ behaviour, a player settles down to a specific strategy and does not
switch any further? This can be seen as a form of stability in strategizing.

In fact, when a player no longer considers a strategy at all after a point
in game evolution, this may have consequences as well. When all players stop
considering a strategy similarly, it may simply get eliminated from the game,
leading to a new game. When all strategies available to a player are eliminated,
a player may be forced out of the game. Such questions are especially relevant
in the context of bargaining and negotiations, as evidenced in many political
contexts. Questions of this nature were studied in [36]. We do not study such
dynamic game forms, but merely point out that strategy switching can lead to
many interesting stability questions and that realization of strategies by finite
state transducers can be used to answer such questions.

In what follows, we give a brief introduction to infinite games, and since
they need to be finitely specified, finite graph representation of (regular) infinite
games. Then we discuss the structure of strategy specifications, and we see that
switching introduces some conceptual difficulty. We then show how strategy
specifications can be implemented using automata. We discuss related work at
the end of the article.

2 Infinite Games

In this section we give an introduction to infinite games on finite graphs. The
main aim here is to set up the preliminaries and point to the rich literature
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on automata as strategies in regular infinite games. These automata, in turn,
provide us a tool for strategy composition that we take up later on. Automata,
Logics and Infinite Games [22] is a good source for an introduction to infinite
games on finite graphs, as well as strategies as finite state automata.

2.1 Game Model

When we consider games of unbounded duration, a natural question is how such
a game is presented. While this question is generally not easy to answer, in the
special case of regular infinite games, we can conceive of the game tree as an
unfolding of a finite graph with cycles. Thus games on finite graphs give a finite
presentation for games of unbounded duration: we call these game arenas.

Game Arena. A game arena is a structure G = (W,→, w0, λ) over a finite set
of moves (or actions) Σ, where:

– W is a finite set of game positions.
– → : W ×Σ×W is an edge relation which satisfies the condition: if (w, a,w′) ∈

→ and (w, a,w′′) ∈ → then w′ = w′′.
– w0 ∈ W is the initial game position.
– λ : W → N is the turn function which associates each game position with a

player.

We often denote (w, a, v) ∈ → by w
a→v. For a node w, let

→
w= {v ∈ W |

w
a→v for some a ∈ Σ}. For technical convenience, we assume that for all w ∈ W ,

→
w �= ∅, that is, there are no ‘dead-ends’. For i ∈ N , let W i = {w ∈ W | λ(w) = i}.
A play in the game arena G starts by placing a token on w0 and proceeds as
follows: at any stage if the token is at a position w and λ(w) = i then player i
picks an action which is enabled for her at w, and the token is moved to v where
w

a→v. Formally, a play in G is an infinite path ρ = w0a0w1a1 . . . such that for all
j ≥ 0, wj

aj→wj+1. Let Plays(G) denote the set of all plays in G. A history h is a
finite path in the arena. For a history h = w0a0w1a1 . . . wk we denote by last(h)
the last element of h that is last(h) = wk.

A subarena of G is a subgraph of G with no dead-ends.

Extensive Form Game. The (infinite) extensive form game tree TG associated
with G is obtained by the tree unfolding of G which we define below.

Given a game arena G = (W,→, w0, λ), the tree unfolding of G is the least
tree structure TG = (S,⇒, s0, λ̂) where S ⊆ (W × Σ)∗W and ⇒ : S × Σ → S
satisfies the condition:

– w0 ∈ S.
– If s = (w0, a0) . . . wk ∈ S and wk

a→w′ then s′ = (w0, a0) . . . (wk, a)w′ ∈ S and
s

a⇒s′.
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Fig. 1. Game arena and tree unfolding

Further, for a node s = (w0, a0) . . . wk ∈ S, λ̂(s) = λ(wk).
Figure 1 illustrates a game arena and its tree unfolding. A node s in TG

denotes a finite partial play in the arena. Thus s = w0a0w1a1 . . . wk and last(s) =
wk. Note that for any node s, last(s) ∈ W . The prefix relation s 	 s′ specifies
that the node s′ is reachable from s in the tree. For i ∈ N , let Si = {s ∈ S |
λ̂(s) = i}.

2.2 Strategies

A strategy μi for player i specifies for each partial play ending in a game position
of player i which action to choose. Thus μi is a map μi : (W × Σ)∗W i → Σ.
A play ρ : w0a0w1 · · · is said to be consistent with a strategy μi if for all j, 0 ≤ j,
we have λ(wj) = i implies μi(ρ) = aj . A strategy μi can also be viewed as
a labelled tree Tμi

G = (TG ,m) where m : Si → Σ such that for all s ∈ Si,
m(s) = μi(s). Let Strat i denote the set of all strategies of player i in G.

A strategy profile μ consists of a tuple of strategies, one for each player.
For i ∈ N , let μ−i = (μ1, . . . , μi−1, μi+1, . . . , μn). A play ρ is consistent with a
strategy profile μ if ρ is consistent with μi for all i ∈ N . It is easy to check that
for a strategy profile μ, there exists a unique play in G which is consistent with
μ. This can be thought of as the play generated by μ. We denote this play by
ρμ.

Note that according to the definition, a strategy can in principle depend
on the complete history of play and in general need not be computable. For
computationally bounded players it is not possible to implement or even choose
to play such an arbitrarily defined strategy. In this context, the following two
types of strategies are of particular interest:

– Memoryless (positional) strategies: These are strategies for which the next
move depends only on the current game position and not on the history of
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play. Thus the map μi : W i → Σ prescribes the same action for all partial
plays ending at the same game position. That is, for all ρ, ρ′ such that last(ρ) =
last(ρ′), μi(ρ) = μi(ρ′).

– Bounded memory strategies: These are strategies where the dependence of the
next move to the history of the play can be kept track of by a finite set of
states. Such strategies can be represented using finite state machines equipped
with an output function.

Once again, it needs to be noted bounded memory strategies form a sub-
class of the space of possible strategies. Their attractiveness lies in having a
presentation by way of finite state transducers.

Finite State Transducer. Given a game arena G = (W,→, w0, λ), a finite
state transducer for player i is a tuple Ai = (Q, δ, o, I) where

– Q is a finite set of states.
– δ : Q × W × Σ → 2Q is a nondeterministic transition function.
– o : Q × W i → Σ is the output function of the transducer.
– I ⊆ Q is the set of initial states.

Let μi be a strategy of player i and Tμi

G = (TG ,m) be the corresponding

strategy tree. A run of Ai on Tμi

G is a Q labelled tree T = (S,⇒, s0,m, f), where
f : S → Q is a map defined as follows: f(s0) = q0, and for any sk where sk

a⇒s′
k,

we have f(s′
k) ∈ δ(f(sk), last(sk), ak). A Q labelled tree T is accepted by Ai if

for every tree node s ∈ S where s ∈ Si, m(s) = a implies o(f(s), last(s)) = a.
We say a strategy tree Tμi

G is accepted by Ai if Ai has an accepting run on

Tμi

G . For a state q and a tree node s, we often use the notation o(q, s) to denote
o(q, last(s)). If the transition function of Ai is deterministic then it is easy to
see that the strategy generated by Ai is unique.

Given a history s = w0a0w1 . . . wk, a strategy μi[s] for player i after s is a
map μi[s] : s(W × Σ)∗W i → Σ. Let Tμi[s]

G be the strategy tree corresponding
to μi[s]. We denote the set of all strategies for player i after s by Strat i(s).
A run of Ai on Tμi[s]

G is a Q labelled tree T [s] as defined earlier, with root node
s. We say that the Q labelled tree T [s] is accepted by Ai if for every tree node
s′ where s 	 s′ and λ̂(s′) = i, if m(s′) = a then o(f(s′), last(s′)) = a. We denote
by Lang(Ai, s) the set of all strategy trees Tμi[s]

G which are accepted by Ai.

2.3 Objectives

Players’ Objectives. In games where the outcome is binary and every player
either wins or loses, a natural way of specifying players’ objectives is to associate
with each player i ∈ N a set Φi ⊆ Plays(G) with the interpretation that a play ρ
is winning for player i iff ρ ∈ Φi. Note that the objectives could be overlapping,
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i.e., for player i and j it is possible to have Φi ∩Φj �= ∅. A game is then specified
as the pair G = (G, {Φi}i∈N ).

Given a game G = (G, {Φi}i∈N ), we call a strategy μi for player i winning if
for all plays ρ conforming to μi, ρ ∈ Φi. In other words, a strategy μi is winning
if for every profile μ−i of the other players, the play ρ generated by μ, we have:
ρ ∈ Φi.

Two player games are games in which the number of players are restricted to
two, i.e. the set of players N = {1, 2}. For such games, we often use the notation
i and ı to denote the players where ı = 2 when i = 1 and ı = 1 when i = 2.
Two player game in which the players’ objectives are strictly complementary
are called zero sum games. Formally, these are games where the set of plays can
be partitioned into disjoint sets Φ1 and Φ2. This implies that when a play ρ is
winning for player i, it is not winning for player ı.

In general, when games are not strictly winning or losing for players, we have
a preference order �i⊆ (Plays(G) × Plays(G)) for each player i ∈ N . Note that
this generalizes winning sets, since a winning set Φi defines a preference in the
obvious manner: player i prefers plays in Φi over those in Plays(G) \ Φi.

Note that the specification of objectives is infinite, and we are interested in
finitely presented objectives, to be described below.

Solution Concepts. In the case of win/lose games the natural notion of solving
a game is to determine whether a player has a winning strategy. A two player
zero sum game G is said to be determined if there exists a player i ∈ {1, 2} such
that i has a winning strategy in G.

One of the early results which helped highlight the relationship between
determinacy and the topological properties of the winning set Φ is the Gale-
Stewart theorem [17]. Here the game arena is understood to be an infinite
graph, but the other notions remain the same. The theorem asserts that every
game where Φ is an open set is determined. This result was later improved by
Martin [30] to show determinacy for games with Borel objectives: a large class
of subsets of topological spaces, of importance to mathematical analysis. The
important consequence for games on finite arenas is that all regular objectives
to be considered below are determined.

For games with overlapping objectives, a popular solution concept is that of
the Nash equilibrium.

– Given a profile μ, the strategy μi of player i is a best response to μ−i if
∀νi ∈ Strat i, ρ(νi,μ−i) �i ρμ.

– A strategy profile μ is said to be in equilibrium if for all i ∈ N , μi is a best
response to μ−i.

Existence of Nash equilibria in infinite games is much less studied. Indeed,
it is unclear whether other notions of equilibria might be more appropriate for
games of unbounded duration.
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Finitely Presented Objectives. Since we are interested in resource limited
players, the preference orders themselves need to be finitely presented. A player’s
decision to prefer one play over another is limited by her observations of the two
plays. With finite resources, a player can observe either only a finite prefix of the
infinite play, or repetitive behaviour (if any). When the game arena is finite, every
infinite play must settle down eventually within a strongly connected component
of the arena, and hence preferences over plays can be presented as an ordering
over connected components. In general, player’s preferences are associated with
loops or cycles in the arena. Since a player records her observations as play
proceeds she may remember how play arrived at a specific loop as well, or how
many times a particular loop was traversed before entering another. However,
these observations and counting are limited by the player’s resources.

These observations lead us to the notion of an evaluation automaton for each
player. We present this for winning sets: a play is in the winning set of player i
only if it is accepted by the evaluation automaton for player i.

A finite deterministic evaluation automaton over the input alphabet W × Σ
is a tuple A = (Q,Δ, r0,Acc) where

– Q is a finite set of states.
– Δ : (Q × W × Σ) → Q is the transition function.
– r0 ∈ Q is the initial state.
– Acc specifies the acceptance condition.

The run of A on an infinite sequence ρ : w0a0w1 . . . is a sequence of states
ϕρ : r0r1 . . . such that for all j ≥ 0, rj+1 = Δ(rj , wj , aj). Let Inf (ϕρ) denote the
set of states occurring infinitely often in ϕ. The most commonly used acceptance
conditions are the following requirements on Inf (ϕ):

– Reachability condition: For a set of designated states R ⊆ Q, Φi = {ρ =
w0a0w1a1 . . . | ∃k with wk ∈ R}.

– Büchi condition [12]: For a set of “good states” B ⊆ Q, Inf (ϕρ) ∩ B �= ∅. In
other words, some final state occurs infinitely often in the run ϕρ.

– Muller condition [33]: For a family F ⊆ 2Q,
∨

F∈F Inf (ϕρ) = F . This requires
that the set of states occurring infinitely often in the run ϕρ forms a set in F .

– Parity condition: Let c : Q → {1, . . . , k} (where k ∈ N). The run ρ is accepting
iff min{c(r) | r ∈ Inf (ϕρ)} is even.

In terms of expressiveness it is known that a Parity condition can be trans-
lated to a Muller condition and vice-versa but this can lead to a blow-up in
the size of the arena. The deterministic Büchi condition is strictly less expres-
sive than the Muller or the Parity condition and the Reachability condition is
strictly less expressive than the Büchi condition.

Algorithmic Questions. Now that we have finite game arenas and finite pre-
sentation of objectives, we can ask algorithmic questions on them.

– Verification question: Given a game G = (G, {Φi}i∈N ) and player i, does player
i have a winning strategy in G?
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– Synthesis question: Given a game G = (G, {Φi}i∈N ) and player i, is it possible
to construct a winning strategy for player i (when it exists)?

The determinacy of two player zero sum games with regular objectives follows
from Martin’s theorem since regular objectives fall in the second level of the Borel
hierarchy. However, this result does not suffice for algorithmic purposes since the
winning strategies employed depends on the complete history of the play, and
therefore require infinite memory. The seminal result of Büchi and Landweber
[13] showed that when players’ objectives are presented as Muller conditions,
the winner can be determined and that the winning strategy can be effectively
synthesised in bounded memory strategies. For parity games on the other hand,
memoryless strategies suffice for winning [16,31]. In other words, these results
showed that it is possible to solve the verification and synthesis questions for
games with regular objectives.

The existence of Nash equilibrium for games with regular win-lose objectives
follows from the result of [15]. The main idea here is the effective use of threat
strategies whereby a player deviating from the equilibrium profile is punished by
others to receive the outcome which she can guarantee on her own. The existence
of sub-game perfect equilibrium [44] for games with binary objectives was shown
in [23]. When we consider games with overlapping objectives, existence of Nash
equilibrium for games with Muller conditions was shown by [37].

Note that these solution concepts raise the question of existence of optimal
strategies: either winning strategies or equilibrium profiles, and perhaps realising
these (offline) strategies by automata. Returning to the motivation we presented
earlier, a natural question to consider is: given a game arena and a finite presen-
tation of player objectives, how can a player select and compose strategies online,
to achieve an outcome? This requires us to look for structure in strategies, which
is what we take up next.

The use of finite state automata to study strategies in games of unbounded
duration underlies this entire body of work, and [22] is a good source for an intro-
duction to this methodology. However, the literature focusses largely on win/lose
games, as the intended applications are for system and design and verification:
the system being designed is in a game situation against a hypothetical environ-
ment, and behaviour according to intended specification constitutes a win for
the system. Extensions to multi-player games typically consider a coordination
game: a multi-component system where all components coordinate against the
hypothetical environment.

Our departure here is the use of automata to represent the process of strate-
gizing by bounded memory players in games of unbounded duration. In a theory
of play, we need to describe how players observe play, record their observations
and strategize on-line. Automata provide a representation of this process.

3 Strategizing by Players

We now shift our focus to studying the game from the players’ viewpoint, and
look for a theory in which players start the game with an initial set of strategies
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and compose from them by switching between them depending on their inter-
pretation of course of play. In the process they generate more and more complex
strategies. We use tools from logic and automata theory for this study.

3.1 Partial Strategies

Not only do resource-bounded players strategise dynamically, their strategies are
also partial, consisting of partial plans. Players, in general, cannot conceive of
every possible situation right at the beginning of the game and hence plan only
partially. A partial strategy specifies a subset of the available moves for every
history, or in other words, it restricts some of the available moves. Formally, given
a game G = (W,→, w0, λ) a partial strategy is a function ν : (W × Σ)∗W i →
(2Σ \ ∅). Let Pstrat i denote the set of all partial strategies of player i. A partial
strategy ν of player i can also be viewed as a labelled tree T ν

G = (TG ,mν) where
mν : Si → 2Σ such that, for every node s ∈ Si, we have mν(s) = ν(s).

A partial strategy tree T ν
G = (TG ,mν) for player i may be viewed as a set

T ν
G of total strategy trees where a total strategy tree T = (TG ,m) ∈ T ν

G if and
only if for every s ∈ Si, m(s) ∈ mν(s). It is easy to see that a finite memory
partial strategy can thus be presented in terms of a transducer Aν such that
Lang(Aν) = T ν

G .
Given a history s, it is also convenient to define a partial strategy ν “after”

s, denoted ν[s] which is formally a map ν[s] : s(W × Σ)∗W i → (2Σ \ ∅). Let
Pstrat i(s) denote the set of all partial strategies after s of player i. The corre-
sponding partial strategy tree is denoted by T ν[s]

G .

3.2 Switching from One Strategy to Another

Suppose there are two players 1 and 2 and their set of actions are {a, b} and
{c, d} respectively. Consider two strategies of Player 1, μa and μb. μa specifies
the action a at every game node and μb specifies the action b at every game
node. Now suppose Player 1 plays strategy μa for the first move and then plays
strategy μb on the subtree from her next move. The resulting prescription μ
(say) is thus also a strategy for player 1. See Fig. 2.

Suppose μ1 and μ2 are two strategies of player i and suppose that she fol-
lows μ1 for at most k moves of the game (here, by convention, a move can be
either a Player 1 move or a Player 2 move) and then switches to μ2. We denote
the resulting set of strategies by μk

1μ2 and the resulting set of strategy trees by
T μ1

G
kT μ2

G . Every tree T in the set T μ1
G

kT μ2
G can be viewed to have been con-

structed as follows. Let Tμ1
G (k) be a finite subtree of Tμ1

G such that every branch
of Tμ1

G (k) is of depth at most k. Let leaves(Tμ1
G (k)) denote the set of leaves of

this tree. For every s ∈ leaves(Tμ1
G (k)), we attach Tμ2(s)

G to s. The operation can
also be lifted to an arbitrary set of strategy trees, T1 and T2 (say). We denote
the resulting set of trees as T1

kT2.
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Fig. 2. The strategy μa; the strategy μb; and μa
2μb. Note that, by definition, since the

second move is by Player 2, μa
2μb and μaμb define the same strategies

3.3 Specification of Strategy Composition

To talk about the outcomes of the game, we introduce a countable set of propo-
sitions Pi for every player i and a valuation function val i which are evaluated on
the vertices of the arena. These propositions code up the outcomes of the game
in the lines of [10]. val i is lifted on the nodes of the game tree TG in the usual
manner.
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Syntax. By an ‘atomic strategy’ of player i we mean a strategy which dictates
her to play the same action at all positions. We denote atomic strategies by
φa, a ∈ Σi.

The strategy set Φi of player i is obtained by combining her atomic strategies
using some operators. Let Φ−

i be defined as:

Φ−
i : := φa, a ∈ Σi | φ1 ∪ φ2 | φ1

�φ2 | φ1 + φ2

The intuitive meaning of the strategy building operators is explained as fol-
lows:

– φa, a ∈ Σi is the atomic strategy where player i plays the action a at each
move.

– φ1∪φ2 means that the player plays according to the strategy φ1 or the strategy
φ2.

– φ1
�φ2 means that the player plays according to the strategy φ1 and then after

some history, switches to playing according to φ2. The position at which she
makes the switch is not fixed in advance.

– φ1 + φ2 says that at every point, the player can choose to follow either φ1 or
φ2.

The Test Operator. Let Φi be the strategies built from player i’s atomic
strategies applying the operators of Φ−

i and also the test operator ψ?φ. Intu-
itively, ψ?φ says that at every history, the player tests if the property ψ holds
of that history. If it does then she plays according to φ.

What is the observable condition ψ that player i checks for? We think of
these conditions as past time formulas of a simple tense logic over the atomic
set of observables Pi. More specifically, ψ belongs to the following syntax:

Ψi: := p ∈ Pi | ¬ψ | ψ1 ∨ ψ2 | 〈a〉−ψ | 〈a〉+ψ | ψ1Sψ2 | j?φ, j �= i, φ ∈ Φ−
j

Intuitively, j?φ is the test where player i checks if player j is playing according
to φ. Now as the observables of player j, Pj and their combinations are private
to her, player i cannot reason based on them. Hence φ comes from Φ−

j rather
than the entire Φj .

The usual operators �ψ (previous), ©ψ (next), ♦- ψ (sometime in
the past) and �ψ (throughout the past) are defined as �ψ ≡∨

a∈Σ〈a〉−ψ,©ψ ≡ ∨
a∈Σ〈a〉+ψ, ♦- ψ ≡ �Sψ and �ψ ≡ ¬♦- ¬ψ.

An observable ψ ∈ Ψi is interpreted over the nodes of the game tree. Formally,
for a node s ∈ TG , s |= ψ is defined inductively as:

– s |= p iff p ∈ val i(s).
– s |= ¬ψ iff s �|= ψ.
– s |= ψ1 ∨ ψ2 iff s |= ψ1 or s |= ψ2.
– s |= 〈a〉−ψ iff s = s′a and s′ |= ψ.
– s |= 〈a〉+ψ iff for all sa ∈ T, sa |= ψ.
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– s |= ψ1Sψ2 iff ∃s′ � s such that s′ |= ψ2 and ∀s′′ : s′ � s′′ 	 s, s′′ |= ψ1.
– s |= j?φ iff there exists T ′ such that T ′ ∈ [[φ, ε]]TG and s ∈ T ′.

where [[φ, ε]]TG will be defined shortly.
Note that in the syntax of Ψi, we do not have the corresponding indefinite

future time operator U . This is to reflect our view of strategizing as memory
limited observations of the past, with bounded lookahead, as expressed by the
operator 〈a〉+ψ.

Semantics. We now give the formal semantics of the strategy specifications.
Given the game tree TG = (S,⇒, s0), the semantics of a strategy specification
φ ∈ Φi is a function [[ · ]]TG : Φi × S → 2Strati . That is, each specification at
a node s of the game tree is associated with a set of total strategy trees after
history s.

For any s ∈ S, [[ · ]]TG is defined inductively as follows:

– [[φa, s]]TG = Tφa[s] where for all s′ ∈ S such that s 	 s′ and λ̂(s′) = i, we have
φa[s](s′) = a.

– [[φ1 ∪ φ2, s]]TG = [[φ1, s]]TG ∪ [[φ2, s]]TG .
– [[φ1

�φ2, s]]TG = [[φ1, s]]TG ∪ ⋃
l≥|s|([[φ1, s]]TG

l[[φ2, ε]]TG ).
– [[(φ1 + φ2), s]]TG : T = (TG ,m) ∈ [[(φ1 + φ2), s]]TG if and only if there exists

T 1 = (TG ,m1) ∈ [[φ1, s]]TG and T 2 = (TG ,m2) ∈ [[φ2, s]]TG such that the
following condition is satisfied:

• for all s′ ∈ S such that s 	 s′ and λ̂(s′) = i, m(s′) = m1(s′) or m(s′) =
m2(s′).

– [[ψ?φ, s]]TG : T = (TG ,m) ∈ [[ψ?φ, s]]TG if and only if s ∈ T and there exists
T ′ = (TG ,m′) ∈ [[φ, s]]TG such that the following condition is satisfied:

• for all s′ ∈ S such that s 	 s′ and λ̂(s′) = i, if ψ holds at s′ then m(s′) =
m′(s′) and if ψ does not hold at s′ then m(s′) =

→
w where w = last(s′).

A crucial difference between the two kinds of switching operators needs
emphasis. φ�

1 φ2 specified a one-time nondeterministic switching from following
φ1 to following φ2 whereas φ1 +φ2 specifies switching nondeterministically back
and forth between the two. The latter can be seen as a qualitative specification
of a mixed strategy for extensive form games: a player mixes the two strategies
nondeterministically during course of play. The crucial difference is the lack of
any probability distribution; however, such an extension is easy to conceive of: let
φ1+r φ2 specify that at any point of time, if the player is playing φi, she switches
to φ3−i with probability r (and continues playing φi with probability 1−r). This
suggests that we can build compositional structure in mixed strategies as well.

3.4 An Example

Consider the game of tennis. A player, poised to serve, considers for a moment:
Should I serve wide, or down the ‘T’? Should I serve deep, or short? When I
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last served deep and wide, he hit it onto the net. Should I try it again, or has
he learnt now? The opponent, on his part, considers as he takes his stance: if he
serves short, should I go for a cross-court shot and reveal my strength off that
flank? If I do it too often, he will not serve such balls at all. Should I play it
safe?

Let the player’s set of atomic strategies be given as Σplayer = {σshort ,
σdeep , σwide , σT } which corresponds to serving short, deep, wide and down-the-T
respectively.

Let p(short,net) be the observable which says that the outcome of short serve
is a return into the net. Then the following specification says that the player
keeps serving short and wide till the opponent is able to return (does not hit
into the net).

– ¬♦- p(short,shot)?(σshort ∩ σwide)

The specification σshort
�σwide

�σdeep for the player says that he starts by
serving short and after some point he switches to serving wide and again switches
but this time to serving deep.

The simple specification σshort + σdeep is yet most natural and indicative of
a mixed strategy, that of occasionally serving short and serving deep but in no
fixed pattern.

3.5 Logic

Note that we have only presented a syntax for strategy composition and not a
logic for reasoning about games and strategies. Our idea is that such strategy
specifications can be embedded into modal and temporal logics, and in our con-
tention, without altering their flavour. Consider a modal logic with the modal
operator 〈i, σ〉α, interpreted at s to mean that player i has a strategy σ from that
point on to ensure the outcome α [6]. Here σ need not be a specific functional
strategy and can be a compositional specification. A presentation on these lines
is carried out in [39].

Similarly a dynamic game logic, in which we have the operator 〈i, g, σ〉α
which asserts that in game g player i has a strategy σ to ensure α [18]. Again,
these can be compositional strategies, and this is discussed in [41].

Consider a temporal logic for games such as ATL with explicit strategies.
However, since we are speaking of long term strategic abilities of players and
coalitions, we are in the context of ATL∗ [14]. We can again consider a modality
such as 〈〈C, f〉〉α, where f specifies a strategy σi for each player i ∈ C. The
intended meaning is that the coalition C, has a collective strategy given by f to
ensure α. While such explicit strategies have been studied in alternating temporal
logics, the use of structured strategies constraining the paths is the departure
advocated here. This can be seen in the spirit of extensions of temporal logic
currently used in the industry such as PSL [20] in which the until operator is
indexed: αUπβ, where π is a regular expression, and asserts the existence of an
instant reachable by π at which β holds, and until then α holds.
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However, such embeddings of structured strategies in modalities would not
in themselves lead to reasoning as envisaged by us. For instance, in the case of
game logic, strategy composition critically depends on game composition and
reasoning about them separately glosses over this. Similarly, in the context of
alternating temporal logic, in 〈〈C, f〉〉α, more than the function f , we are inter-
ested in the interdependence between f(i) and f(j), where both i and j are in
C. Such analysis opens up interesting avenues for exploration.

4 Transducer Lemma

In this section we prove a result that shows the correspondence between the
strategy specifications introduced in the previous section with finite state trans-
ducers. This helps us to do algorithmic analysis of the games.

Lemma 1. Given a strategy specification φ ∈ Φi, we can construct a finite state
transducer Aφ such that for all histories s, for all ν[s] ∈ Pstrat i(s) and for all
strategy trees Tμ[s]

G ∈ T ν[s]
G , we have Tμ[s]

G ∈ [[φ, s]]TG iff Tμ[s]
G ∈ Lang(Aφ, s).

Proof Idea. The proof proceeds in two steps. In the first step we construct the
transducer Aφ and in the second step we show that for all s, for all ν[s] ∈
Pstrat i(s) and for all strategy trees Tμ[s]

G ∈ T ν[s]
G , Tμ[s]

G ∈ [[φ, s]]TG iff Tμ[s]
G ∈

Lang(Aφ, s). Aφ is constructed inductively. Aφa
is just a one state transducer

that outputs a at every turn of player i. Aφ1∪φ is constructed as the union of
Aφ1 and Aφ2 . Aφ1∪φ2 nondeterministically chooses either Aφ1 or Aφ2 right at
the beginning and then simulates it, mirroring its output. Aφ�φ2 and Aφ1+φ2

are constructed as products of Aφ1 and Aφ2 . Both Aφ1 and Aφ2 are simulated in
parallel. In the former case, Aφ�φ2 switches from mirroring the output of Aφ1 to
that of Aφ2 nondeterministically at some point. Whereas, Aφ1+φ2 switches back
and forth between mirroring the outputs of Aφ1 and Aφ2 nondeterministically.
Aψ?φ′ has to check, at each step, if ψ holds at that history. If so then it mirrors
the output of Aφ′ and if not it outputs any move. This is achieved by taking the
states of Aψ?φ′ to be the product of Aφ′ with “logical states” (atoms of ψ) that
tell us whether a subformula of ψ holds at that history.

Step 2 is proved again by an induction on the structure of φ. The idea is
to show that a strategy tree T is in the semantics of φ iff T is in the language
defined by Aφ. The base case for φa follows from the definition. For φ1 ∪ φ2

we show that T is a strategy tree of φ1 ∪ φ2 iff it is in the language defined
by either Aφ1 or Aφ2 . For φ1

�φ2 we know that T is a strategy tree iff it can
be obtained by pruning a tree T1 at some finite depth and attaching a trees
Tm to every leaf of the resulting tree where T1 is a strategy tree of φ1 and the
Tms are strategy trees of T2. By the induction hypothesis, this holds iff T1 is in
the language defined by Aφ1 and the Tms are in the language defined by Aφ2 .
Finally, for ψ?φ′, we know that a tree T is a strategy tree of ψ?φ′ iff on every
branch of T if for a finite path, ψ holds then the move of player i corresponds
to the strategy φ′. The check for ψ is done using the ‘atom graph’ of ψ and the
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move corresponding to φ′ is verified using the transducer Aφ′ which exists by
the induction hypothesis. ��

We now present the proof in detail.

Proof. Step 1: The construction of the transducer Aφ is done inductively on
the structure of φ. Fix the input and output alphabets to be Σ.

φ ≡ φa: The transducer consists of a single state and outputs the action a at
every turn for player i. Formally, Aφ = ({q0}, δ, o, {q0}) where

– δ = {(q, b, q) | b ∈ Σ}.
– o(q, w) = a for all w such that λ(w) = i.

φ ≡ φ1 ∪ φ2: The transducer Aφ1∪φ2 should nondeterministically choose either
Aφ1 or Aφ2 right at the beginning and then simulate it, mirroring its output.
By the induction hypothesis we have transducers Aφ1 = (Q1, δ1, o1, I1) and
Aφ2 = (Q2, δ2, o2, I2). We define Aφ1∪φ2 = (Q, δ, o, I) where

– Q = Q1 ∪ Q2,
– δ = δ1 ∪ δ2,
– I = I1 ∪ I2, and
– o = o1 ∪ o2.

φ ≡ φ1
�φ2: The state space of Aφ1

�φ2
is the product space of the states of

the transducers Aφ1 and Aφ2 . Aφ1
�φ2

simulates both these transducers and
switches from mirroring the output of Aφ1 to that of Aφ2 nondeterministi-
cally at some point. By the induction hypothesis, we have transducers Aφ1 =
(Q1, δ1, o1, I

0
1 ) and Aφ2 = (Q2, δ2, o2, I

0
2 ). We define Aφ1

�φ2
= (Q, δ, o, I0)

where

– Q = Q1 × Q2 × {1, 2},
– δ = {(q1, q2, 1) a→ (q′

1, q
′
2, 1), (q1, q2, 2) a→ (q′

1, q
′
2, 2),

(q1, q2, 1) a→ (q′
1, q

′
2, 2) | q1

a→1 q′
1, q2

a→2 q′
2},

– I0 = I01 × I02 × {1} and
– o : Q × W → Σ such that o((q1, q2, 1), w) = o1(q1, w), o((q1, q2, 2), w) =

o2(q2, w).

φ ≡ φ1 + φ2: The construction of A(φ1+φ2) is similar to that of Aφ1
�φ2

. It sim-
ulates both Aφ1 and Aφ2 and keeps switching nondeterministically between
the outputs of both. By the induction hypothesis we have transducers Aφ1 =
(Q1, δ1, o1, I

0
1 ) and Aφ2 = (Q2, δ2, o2, I

0
2 ). We define A(φ1+φ2) = (Q, δ, o, I0)

where

– Q = Q1 × Q2 × {1, 2},
– δ = {(q1, q2, 1) a→ (q′

1, q
′
2, 1), (q1, q2, 2) a→ (q′

1, q
′
2, 2),

(q1, q2, 1) a→ (q′
1, q

′
2, 2), (q1, q2, 2) a→ (q′

1, q
′
2, 1) |

q1
a→1 q′

1, q2
a→2 q′

2},
– I0 = I01 × I02 × {1, 2} and
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– o : Q × W → Σ such that o((q1, q2, 1), w) = o1(q1, w), o((q1, q2, 2), w) =
o2(q2, w).

φ ≡ ψ?φ′: At each step Aψ?φ′ has to check if ψ holds at that history. We achieve
this by taking the states of Aψ?φ′ to be the product of Aφ′ with “logical
states” that tell us whether a subformula of ψ holds at that tree node.

First, some preliminaries. Let SFψ be the least set containing ψ and closed
under subformulas: if α ∈ SFψ and β is a subformula of α then β ∈ SFψ.
Further we assume that SFψ is closed under negation: β ∈ SFψ iff ¬β ∈ SFψ

where we treat ¬¬α to be the same as α; moreover, if αSβ ∈ SFψ, we have
that �αSβ ∈ SFψ as well. Such a set is called the Fischer - Ladner closure
and we denote this set by CL(ψ).
Now let v ⊆ CL(ψ). We call v an atom if it is ‘locally’ consistent and
complete: that is, for every ψ′ ∈ CL(ψ), ¬ψ′ ∈ v iff ψ′ �∈ v; for every
ψ1 ∨ψ2 ∈ CL(ψ), ψ1 ∨ψ2 ∈ v iff ψ1 ∈ v or ψ2 ∈ v; for every ψ1Sψ2 ∈ CL(ψ),
we have: if ψ2 ∈ v then ψ1Sψ2 ∈ v; otherwise {ψ1, ψ1Sψ2,�ψ1Sψ2} ⊆ v.
Let Vψ denote the set of ψ-atoms. v ∈ Vψ is said to be an initial atom if it
satisfies the conditions: ψ1Sψ2 ∈ v iff ψ2 ∈ v and there is no formula of the
form 〈a〉−α in v.
Define a relation →ψ⊆ (Vψ × Σ × Vψ) as follows: v

a→ v′ iff the following
conditions hold: for every 〈a〉−α in CL(ψ), if α ∈ v then 〈a〉−α ∈ v′ and
for every 〈a〉+α in CL(ψ), if α ∈ v′ then 〈a〉−α ∈ v. This relation gives us
Gψ = (Vψ,→ψ), the atom graph of ψ.
We can now define the transducer for this case. Let Aφ′ = (Q′, δ′, o′, I ′) which
exists by the induction hypothesis. We define Aψ?φ′ = (Q, δ, o, I) where

– Q ⊆ Q′ × Vψ,
– I ⊆ Q such that (q, v) ∈ I iff q ∈ I ′ and v is an initial atom,
– (q, v) a→ (q′, v′) iff q

a→ q′ and v
a→ v′, and

– o((q, v), w) = o(q, w) iff ψ ∈ v. Otherwise o((q, v), w) = Σ.

Note that o((q, v), w) = Σ means that the transducer outputs ‘any’ action
that is available at w.

Step 2: We now show that for all s, for all ν[s] ∈ Pstrat i(s) and for all strategy
trees Tμ[s]

G ∈ T ν[s]
G , Tμ[s]

G ∈ [[φ, s]]TG iff Tμ[s]
G ∈ Lang(Aφ, s). The proof is by

induction on the structure of φ.

φ = φa: By construction Aφ has just one state q and all transitions out of q lead
to q itself. The output function is the constant output function o(q, w) = a
for all w such that λ(w) = i. Hence by the definition of [[φa, s]]TG we have,
Tμ[s]

G ∈ [[φa, s]]TG if and only if Tμ[s]
G ∈ Lang(Aφa

, s) for all s.
φ = φ1 ∪ φ2: By the semantics, Tμ[s]

G ∈ [[φ1 ∪ φ2, s]]TG iff Tμ[s]
G ∈ [[φ1, s]]TG ∪

[[φ2, s]]TG iff Tμ[s]
G ∈ [[φ1, s]]TG or Tμ[s]

G ∈ [[φ2, s]]TG . By induction hypothe-
sis, Tμ[s]

G ∈ Lang(Aφ1 , s) or Tμ[s]
G ∈ Lang(Aφ2 , s). Since Lang(Aφ1∪φ2 , s) =
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Lang(Aφ1 , s) ∪Lang(Aφ2 , s) by the construction of Aφ1∪φ2 , we have Tμ[s]
G ∈

Lang(Aφ1 , s) ∪ Lang(Aφ2 , s) iff Tμ[s]
G ∈ Lang(Aφ1∪φ2 , s).

φ = φ1
�φ2: The labelled tree Tμ[s]

G ∈ [[φ1
�φ2, s]]TG implies by definition of

[[φ1
�φ2, s]]TG that there exists a labelled tree Tμ′[s]

G ∈ [[φ1, s]]TG and a finite

subtree Tμ′[s]
G (k) of Tμ[s]

G such that Tμ′[s]
G (k) is also a subtree of Tμ′[s]

G
and every branch of Tμ′[s]

G (k) is of depth at most k. Also by definition, for

every leaf node s′ of Tμ′[s]
G (k), there exists Tμ′′[s′]

G ∈ [[φ2, s
′]]TG such that the

labelled subtree of Tμ[s]
G rooted at s′ is the same as Tμ′′[s′]

G . By the induction

hypothesis, Tμ′[s]
G ∈ Lang(Aφ1 , s) and Tμ′′[s′]

G ∈ Lang(Aφ2 , s
′). Thus the run

of Aφ1
�φ2

where the transducer makes a switch from the output of Aφ1 to

that of Aφ2 at leaves(Tμ′[s]
G (k)) is the accepting run for Tμ[s]

G .
Conversely, suppose Tμ[s]

G ∈ Lang(Aφ1
�φ2

). Let r be an accepting run of
Aφ1

�φ2
. Then there exists a k ≥ 0 such that Aφ1

�φ2
switches from mirror-

ing the output of Aφ1 to that of Aφ2 in at most k steps on all branches of
r. Let TG(k) be the finite tree on which r is a valid run till it makes the
switch. We have that there exists a labelled tree Tμ′[s]

G ∈ Lang(Aφ1 , s) such

that TG(k) is a subtree of Tμ′[s]
G . Also, for all leaf nodes s′ ∈ leaves(TG(k)),

there exist Tμ′′[s′]
G where ∈ Lang(Aφ2 , s

′) such that μ[s](s′′) = μ′[s](s′′)
for all s′′ with |s′′| ≤ |s′| and μ[s](s′′) = μ′′[s′](s′′′) where ss′′ = s′s′′′

for all s′′ with |s′′| > |s′|. By induction hypothesis, Tμ′[s]
G ∈ [[φ1, s]]TG

and Tμ′′[s′]
G ∈ [[φ2, s

′]]TG . Hence the labelled tree Tμ[s]
G obtained by pasting

Tμ′′[s′]
G at all leaf nodes s′ of T k

G belongs to [[φ1
�φ2, s]]TG by the definition of

[[φ1
�φ2, s]]TG .

φ = (φ1 +φ2): Suppose Tμ[s]
G = (T,m) ∈ [[φ1 +φ2, s]]TG . By semantics, s ∈ Tμ[s]

G
and there exists (T1,m1) ∈ [[φ1, s]]TG and (T2,m2) ∈ [[φ2, s]]TG such that for
all s′ ∈ Tμ[s]

G , m(s′) = m1(s′) or m(s′) = m2(s′). By induction hypothesis
(T1,m1) ∈ Lang(Aφ1 , s) and (T2,m2) ∈ Lang(Aφ2 , s). By construction, at
every node s′, the transducer Aφ1+φ2 mirrors the output of either Aφ1 or
Aφ2 . Therefore we have that Tμ[s]

G ∈ Lang(Aφ1+φ2 , s).
Conversely, suppose Tμ[s]

G = (T,m) ∈ Lang(Aφ1+φ2 , s). For all s ∈ Tμ[s]
G ,

Aφ1+φ2 mirrors the the output of either Aφ1 or Aφ2 . Therefore, by con-
struction of Aφ1+φ2 , there exists (T1,m1) ∈ Lang(Aφ1 , s) and (T2,m2) ∈
Lang(Aφ2 , s) such that for all s′ we have m(s′) = m1(s′) or m(s′) = m2(s′).
By induction hypothesis, (T1,m1) ∈ [[φ1, s]]TG and (T2,m2) ∈ [[φ2, s]]TG . By
semantics, Tμ[s]

G ∈ [[φ1 + φ2, s]]TG .
φ = ψ?φ′: Let Aφ = (Q, δ, o, I), let r be a run of Aφ on Tμ[s]

G .
Claim 1. For all s′ ∈ Tμ[s]

G and for all α ∈ CL(ψ), α ∈ r(s′) iff s′ |= α.
where CL(ψ) is the subformula closure of ψ. Assume Claim 1 and sup-
pose that Tμ[s]

G = (T,m) ∈ [[φ, s]]TG . By semantics, there exists (T ′,m′) ∈
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[[φ′, s]]TG such that for all s′ ∈ T ν[s]
G , if s′ |= ψ then m(s′) = m′(s′). And if

s′ �|= ψ then m(s′) ∈ Σ. By induction hypothesis, Tμ′[s]
G ∈ Lang(Aφ′ , s) and

by Claim 1 we have s′ |= ψ implies ψ ∈ r(s′). By construction of Aφ, we
then have that Tμ[s]

G ∈ Lang(Aφ, s).
Conversely, assume Claim 1 and suppose that Tμ[s]

G = (T,m) ∈ Lang(Aφ, s).
For a node s′ ∈ Tμ[s]

G , let r(s′) = (q′, v′). If ψ ∈ v′ then Aφ mirrors the output
of Aφ′ and if ψ �∈ v′ then the transducer outputs an arbitrary action available
in Σ. Therefore, by construction of Aφ, there exits (T ′,m′) ∈ Lang(Aφ′ , s)
such that for all s′, if ψ ∈ v′ then m(s) = m′(s′). By induction hypothesis,
Tμ[s]

G ∈ [[φ′, s]]TG and by Claim 1 if ψ ∈ v′ then s′ |= ψ. By the semantics we
then have that Tμ[s]

G ∈ [[φ, s]]TG .

It now remains to prove Claim 1. We do so by a second induction on the structure
of α.

α = p ∈ Pi: Follows from definition since in the construction we ensured that
(q, v) ∈ Q iff q ∩ Pi = v ∩ Pi.

α = ¬β: s′ |= ¬β iff s′
� β iff β /∈ r(s′) = (q, v) iff ¬β ∈ (q, v) (since v is an

atom).
α = α1 ∨ α2: s′ |= α iff s′ |= α1 or s′ |= α2 iff α1 ∈ r(s′) or α2 ∈ r(s′) where

r(s′) = (q, v) iff α1 ∨ α2 ∈ r(s′) (since v is an atom).
α = 〈a〉−β: s′ |= 〈a〉−β iff s′ = s′′aw and s′′ |= β iff β ∈ r(s′′) = (q′, v′) iff

〈a〉−β ∈ r(s) = (q, v) since v is an atom and (q′, v′) a→ (q, v) iff q′ a→ q and
v′ a→ v by construction.

α = 〈a〉+β: Similar to the case for α = 〈a〉−β.
α = α1Sα2: s′ |= α1Sα2 iff there exists s1, s1 � s′ such that s1 |= α2 and

for all s2, s1 � s2 	 s′ and s2 |= α1. We do an induction on |s′| − |s1|.
When |s′| − |s1| = 0, s′ |= α2 iff α ∈ r(s′) by induction hypothesis where
r(s′) = (q, v) iff α1Sα2 ∈ r(s′) (since v is an atom). When |s′|− |s1| = k +1,
s2 |= α1Sα2 and either s′ in which case we are done (by definition of initial
atom), or s′ |= �(α1Sα2) where s′ = s2aw iff α1Sα2 ∈ r(s2) iff α1Sα2 ∈
r(s′) = (q, v) (since v is an atom).

j?φ: s′ |= j?φ iff there exists Tφ such that Tφ ∈ [[φ, ε]]TG and s′ ∈ Tφ iff
Tφ ∈ Lang(Aφ, ε) by the main induction hypothesis, iff j?φ ∈ r(s′) = (q, v)
since by construction, j?φ ∈ v and q ∈ δ′(q0, last(s′)) where q0 is an initial
state of Aφ.

5 Applications

The Transducer Lemma provides us with a tool to talk about eventual outcomes
in games and eventual behaviour of players given that they play according to
strategy specifications given in our syntax. We formalise this below.

Given a game arena, and strategy specifications for players, we are interested
in studying long-range outcomes. The strategy specifications are akin to player
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types; based on observations during play, they constrain player actions at game
positions. We would then like to know whether a given outcome is achieved. Since
these are infinite games, the natural such notion is that of stable outcomes.

5.1 Stable Outcome

Let G = (W,→, w0, λ) be a game arena and let there be n players. Suppose the
strategies of the players are given as φ1, φ2, . . . φn respectively where each φi is
from the syntax Φi as described in Sect. 3. Suppose α is a property from the
following syntax:

α: := p ∈ P | ¬α | α1 ∨ α2 | 〈a〉+α

where P is a set of ‘global’ propositions and val : W → 2P gives their valuation
at the nodes of the arena. We want to check if it is the case that eventually the
property α always holds given that the players play according to their strategy
specifications. In other words, we wish to check if α becomes ‘stable’ in the game,
where we define stability as: Given a subarena G′ of G, α is said to be stable in
G′ if s |= α for every s ∈ TG′ .

We do this as follows. We first construct transducers Aφi
, as described in

Sect. 4, for the strategy specification of each player i. We then take the ‘restric-
tion’ of the arena G with respect to each of these transducers which results in a
new arena G′. The restriction of G with respect to a transducer Aφi

= (Q, δ, o, q0)
is denoted as G �Aφi

and is defined as G �Aφi
= (W ′,→′, w′

0, λ
′) where

– W ′ ⊆ W × Q such that w′ = (w, q) ∈ W ′ iff p ∈ val(w) ⇔ p ∈ val i(q) for all
p ∈ P ∩ Pi.

– For every w′
1, w

′
2 ∈ W ′ where w′

1 = (w1, q1) and w′
2 = (w2, q2) w′

1

a

→′ w′
2 iff

w1
a→ w2 and q1

a→ q2.
– w′

0 = (w0, q0).
– λ′(w′, q′) = λ(w).

Thus the final restricted arena is G′ = (((G �Aφ1)� . . .)�Aφn
). Note that the

Transducer Lemma ensures that in the restricted arena G′, for every node w′ ∈ G′

the outgoing edges are exactly the moves prescribed by the strategy specification
φi for player i where λ′(w′) = i. Finally, to check whether α becomes eventually
stable, we check the stability of α in G′. This can be done by a simple marking
procedure on the nodes of G′ with the subformulae of α. We thus have proved
the following theorem:

Theorem 1. Given a game arena G = (W,→, w0, λ) with n players and given
that the players play according to strategy specifications φ1, φ2, . . . φn respectively
where each φi ∈ Φi, we can effectively decide if a property α becomes eventually
stable in the game.
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5.2 Solution Concepts

Apart from achieving logically specified outcomes as above, there are other appli-
cations of the transducer construction. In the study of (offline) strategies in game
theory, the standard questions relate to best response, equilibria etc. In the case
of structured strategies, similar questions can be answered using automata.

However, since a strategy specification denotes a set of strategies satisfy-
ing certain properties, notions like strategy comparison and best response with
respect to strategy specifications need to be redefined. When we have functional
strategies μ1 and μ2 for a player i, we can consider μ1 to dominate μ2 if for
every opponent strategy profile μ−i, the play (μ1, μ

−i) is preferred by i over the
play (μ2, μ

−i). But when does a set of strategies dominate another set? This is
not clear.

One notion we can define says that σ is better than σ′ if for any outcome α
if there is a strategy conforming to the specification σ′ which ensures α, then
there also exists a strategy conforming to σ which ensures α as well.

But then it’s equally reasonable to define comparison somewhat differently.
According to this, σ is better than σ′ if for any outcome α whenever there is a
strategy conforming to σ which cannot guarantee α, there also exists a strategy
conforming to σ′ which cannot guarantee α either. This can be thought of as a
soundness condition. A risk averse player might prefer this way of comparison.

We do not want to fix any comparison notion here, but merely point out that
there are different and interesting notions of comparison. But once we fix such a
notion, we can consider algorithmic questions relating to players’ best response.

– Does player i have a strategy conforming to σ to ensure outcome α as long as
the other players play according to the specifications τ−i?

– Do all strategies for player i conforming to σ constitute a best reponse against
τ−i for α?

– Given specifications τ−i for the other players, synthesize a best response for
player i as an automaton.

Now, all these questions can be answered algorithmically using the transducer
construction for strategy specifications, for appropriately defined outcomes. [40]
presents some results in that direction. In general, we can study questions like
whether a given tuple of strategy specifications constitutes a Nash equilibrium
(with respect to fixed strategy comparison notions). In some sense, the main idea
is that all the difficulties related to online strategy switching are modularised
into the transducer construction.

5.3 Game Logics

As indicated earlier, we expect strategy specifications to be embedded in logics
with assertions of the form “playing a strategy conforming to σ ensures outcome
α for player i”. The decision procedures for model checking such logics are nat-
urally constructed by tree automata that run over game trees, with transducers
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running in parallel for strategy specifications in subformulas. Thus the construc-
tion offers a generic way of algorithmically constructing strategies on the fly for
logically specified outcomes. [42] presents some results in that direction.

A more general remark would be that in any logics for reasoning about exten-
sive form games, if the embedded specifications admit a transducer construction
such as the one outlined here, the model checking algorithm for the logic con-
stitutes strategy construction in the sense envisaged in our motivation. [41] con-
stitutes one such example, but this style of automata based reasoning about
strategies needs to be expanded much further, especially for Alternating Tem-
poral Logics. An interesting challenge would be to introduce belief structure into
automata so that the considerable body of logical work on epistemic reasoning
about strategies ([8]) can be addressed. As long as epistemic assertions relate
only to the past, automaton construction seems extendable. When beliefs about
future need to be considered, the issues become indeed complex.

6 Discussion

We have presented a syntax of strategy specifications involving strategy switch-
ing and showed their realization as automata. This be seen as making a prima
facie case for considering online strategizing and the use of automata for studying
memory structure in such strategies.

Related Work

As remarked in the introduction, the motivation for considering online strategiz-
ing at all comes from the felt need for a ‘theory of play’ on the lines of [6,8,9].
The motivation for considering games as infinite trees for such a study is akin to
the discussion on games with memory in [43]. The model itself and the represen-
tation of strategies as finite state transducers, is based on the study of regular
infinite games, as in [22].

An important line of work in game theory about strategy switching is that
of Lipman and Wang in [28,29]. The framework is that of finite and infinite
repeated games, and players switch strategies during periods of the repeated
game. They look at how equilibria change when players incur a cost on every
strategy switch they make. The critical difference for our work is that switching
is not based on previous game outcomes but observations by players in the course
of play.

In general, dynamic learning has been extensively studied in game theory:
for instance, Young ([47,48]) considers a model in which each player chooses an
optimal strategy based on a sample of information about what other players
have done in the past. Similar analyses have been carried out in the context of
cooperative game theory as well: here players decide dynamically which coali-
tion to join. One asks how coalition structures change over time, and which
coalition players will eventually arrive at ([2]). Evolutionary game theory ([46])
studies how players observe payoffs of other players in their neighbourhood and
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accordingly change strategies to maximise fitness. However, these studies again
use offline strategies and deliberation between periods of repeated games rather
than online strategizing in games which is the focus here.

We have used a syntax for strategy specifications that is logical, using for-
mulas of a simple modal logic for observations of players but otherwise using
operators that can be seen as algebraic, their semantics given by operations on
trees. Note the absence of negation in strategy specifications; thus, they are closer
to programs in propositional dynamic logic (PDL) rather than logical assertions
in themselves. Indeed, like in the case of PDL, where programs are embedded
in an assertion language that speaks of postconditions, strategy specifications
would be embedded in a logical language that speaks of preferences and out-
comes, so that one can speak of σ ensuring the “best” outcome α for a player.
A programme of this sort is carried out for a more restricted class of strategy
specifications in [42] and a complete axiomatization is given. In general, we do
not see the language of specifications as a logical means rather than as an end,
and our purpose here has been to show their realization as automata.

In this context, we note that there exist a variety of logics in which strategy
specifications may be embedded in the sense above. In general, any logic that
speaks of a player (or a set of players) having a strategy to ensure an outcome
would be appropriate. Notable among these is the work on alternating temporal
logic (ATL) [1], a logic on trees with just these kind of assertions. Various exten-
sions of ATL ([26,27]) have been proposed to incorporate knowledge of players
and strategies explicitly into the logic. In particular, the logic ATL∗ ([14]) is pow-
erful enough to include changing strategy contexts and constructive concepts of
strategy as well. However, in our presentation, we focus not on reasoning about
games as in ATL but only on strategy switching and composition.

In [4,5,8] van Benthem uses dynamic logic to describe games as well as
strategies. In fact, PDL can be seen as a language for strategy specifications
as well. However, it is unclear whether the switching operator, being a kind of
‘interval’ operator, or the mixing operator +, are definable in PDL at all. Note
that these operators are much closer to those of process logic ([24]). A form of �
operator, called ‘chop’ is extensively used in interval logics ([32]) but these are
over linear orders and similar operations on trees seem to be difficult to define.

Ghosh [18] presents a complete axiomatisation of a logic describing both
games and strategies in a dynamic logic framework where assertions are made
about atomic strategies. Our earlier work [39] studies a logic in which not only
are games structured, but so also are strategies. [19] enriches strategy specifica-
tions with an interleaving based parallel composition operator. All these logics
are closely related and automata constructions can be given for the strategy
specifications in these logics. Typically, logics like PDL correspond to automata
on sequences whereas strategy logics involve automata that accept trees or act
as tree to word transducers, and hence the constructions tend to be more com-
plex. Strategy switching makes essential use of transductions which has been the
emphasis here.
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Further work

We have advocated a programme of working with ‘online constructible’ strategy
spaces in large extensive form games, but what we have provided is a mere
illustration of possibilities that such constructions can be carried out within
the framework of simple modal logics and automata. However, the programme
requires a precise delineation of such a strategy space within that of the classical
offline strategy space, or even within the computable strategy space. The work
presented here does not provide any basis for such a characterization.

The notion of strategies as constraining relations rather than functions is in
itself worthy of deeper study, and characterizing the class of relations that can
be realised as programs seems to be an interesting question. Partial strategies
are akin to heuristics that can apply to a variety of game situations. The study
here suggests that we can consider access to a library of such partial strategies
and online composition, much like software.

While we have focused on one particular aspect of online strategizing, namely
that of composition and switching, a number of aspects need incorporation for
building a theory of play. Critically, the belief structure of players about other
players’ strategies and their mutual beliefs and expectations critically affects
strategizing ([8]). While strategy specifications presented here can be viewed in
themselves as player types, the latter crucially incorporate beliefs as well, and
this needs further exploration.

The expressiveness of the specification language for strategies that we have
presented is unclear. Since the automata considered recognize regular tree lan-
guages, and hence (presumably) are equivalent to some monadic second order
logic on trees, one expects that there must be strategies implementable as
automata but not definable in this limited specification language. However, note
that switching involves taking an ‘initial fragment’ of one subtree and a ‘final
fragment’ of another subtree and gluing them together. The logical status of
such tree operations is unclear. Is this first-order definable, and if yes, with what
vocabulary? Note that characterizing first order definability on (unranked) trees
is difficult in general. What is an expressively complete set of strategy compo-
sition operators with respect to finite state transducers? This seems to be an
interesting question to answer.

Another important dimension is the algebraic structure of strategy composi-
tion ([21]). What is a natural notion of equivalence on strategies, and reductions
between them? Switching imposes an interval-like substructure on trees, and the
interaction of such structure with other operators seems worthy of further study.
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Abstract. This chapter gives a self-contained introduction to game-
theoretical semantics (GTS) both for classical first-order logic and for
one of its extensions, Independence-Friendly Logic (IF logic). The games
used for the interpretation of IF logic are 2-player win-lose extensive
games of imperfect information. Several game-theoretical phenomena will
be discussed in this context, including signaling and indeterminacy. To
overcome indeterminacy, we introduce mixed strategies and apply Von
Neumann’s Minimax Theorem. This results in a probabilistic interpre-
tation of IF sentences (equilibrium semantics). We shall use IF logic
and its equilibrium semantics to model some well known examples which
involve games with imperfect information: Lewis’ signaling games and
Monty Hall.

Keywords: Game-theoretical semantics · IF logic · Nash equilibrium ·
Signalling games · Monty Hall

1 Introduction

Evaluation games for first-order logic have arisen from the work of Hintikka
in the 1970s. They led to various applications to natural language phenomena
(e.g., pronominal anaphora) in a single framework which is now known as game-
theoretical semantics (GTS). Van Benthem [6] is right in emphasizing that these
games analyze the ‘logical skeleton’ of sentence construction: connectives, quan-
tifiers, and anaphoric referential relationships, with logic being the driver of the
analysis here. Hintikka and Kulas [29,30] and Hintikka and Sandu [31–34] syn-
thesize some of the work done in this area. This paradigm was amplified in the
years that followed but since the late 1980s and during the 1990s there was a
switch of interest: logic was still the driving force but the emphasis was on the
role of evaluation games for the foundations of mathematics. Drawing on some
earlier work by Henkin [26], Hintikka [27] observed that the connection between
quantifier dependence and choice functions could be naturally extended to go
beyond the patterns allowed by traditional first-order logic. Hintikka and Sandu
[31] sketch the general lines of the programme and Hintikka [28] explores the con-
nections between quantifier-independence, choice functions, games of imperfect
information and expressive power (descriptive completeness) in the foundations
of mathematics. Since the very beginning, Hintikka conceived evaluation games
as a challenge to the more traditional compositional paradigm which arose from
c© Springer-Verlag Berlin Heidelberg 2015
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the work of Tarski and Montague and constituted the underlying methodology
in the model-theoretical tradition. The seminal paper by Hodges [35] showed,
nevertheless, that compositional and game-theoretical methods can go hand in
hand. Hodges’ compositional interpretation has stimulated much of the recent
work where quantifier-dependence and independence are replaced with depen-
dence and independence between terms [1,21,23,50].

The present contribution focuses on the interpretation of quantifier-
dependence and independence by games of imperfect information. Imperfect
information gives rise to two phenomena well known to game theorists: inde-
terminacy and signaling. As we will see, the former should not be regarded as
pathological in logic: we follow a suggestion by Ajtai (reported in [10]) and
apply Von Neumann’s Minimax Theorem to the underlying games. We will see
how the resulting “equilibrium semantics” replaces logic with game theory as
the driving force of the analysis. We give several applications (Lewis signaling
games, Monty Hall) which show how the value of the corresponding IF sentences
are obtained through the iterative elimination of dominated strategies. We also
compare the game-theoretical solution to the Monty Hall puzzle to solutions
which conditionalize on propositions and actions (update product models with
probabilities [7,9]). The chapter will be structured as follows. In Sect. 2 we dis-
cuss some of the motivations for introducing patterns of quantifier dependence
and independence that go beyond those allowed by ordinary first-order logic
(Independence-Friendly Logic, or IF logic, for short). Section 3 contains a short
introduction to the semantics of ordinary first-order logic. Section 4 contains a
self-contained introduction to the game-theoretical semantics for ordinary first-
order logic (semantical games of perfect information). We also discuss alterna-
tive frameworks (Skolem semantics). Section 5 introduces the game-theoretical
semantics for IF logic (semantical games of imperfect information). In Sect. 6 we
discuss some typical examples of game-theoretical phenomena with imperfect
information, like signaling, coordination and indeterminacy. Section 7 considers
mixed strategies and mixed strategy equilibria which lead to an “equilibrium
semantics” for indetermined IF sentences. In Sect. 8 we return to Lewis’ signal-
ing games and re-analyse them in IF logic with equilibrium semantics. Section 9
considers some meta-properties of IF strategic games related to expressive power
and complexity of finding equilibria. Section 10 contains an analysis of Monty
Hall and its modeling in IF logic. Section 11 discusses IF languages as specifi-
cation languages for games of imperfect information. Finally Sect. 12 mentions
some open problems and discusses some of the items on the agenda of future
research.

2 Dependence and Independence of Quantifiers

In a seminal paper, Goldfarb tells us that

“The connection between quantifiers and choice functions or, more pre-
cisely, between quantifier-dependence and choice functions, is at the
heart of how classical logicians in the twenties viewed the nature of quan-
tification” [22].
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A typical illustration is the so-called epsilon-delta definition of a continuous
function. A function f is continuous at a point x0 if given any ε > 0 one can
choose δ > 0 so that for all y, when x0 is within distance δ from y, then f(x0)
is within distance ε from f(y). Ignoring the restrictions on the quantifiers, this
definition states the dependence of δ on both x0 and ε and its independence of
y. It is standardly rendered in the logical symbolism by

∀x0∀ε∃δ∀y[|x0 − y| < δ → |f(x0) − f(y)| < ε].

It sometimes turns out that one can find a δ which works no matter what x0

is. In this case the choice of δ depends only on ε but is independent of x0.
This is known in mathematics as uniform continuity. To express it in the logical
formalism we have to rearrange the four quantifiers in a different way:

∀ε∃δ∀x0∀y[|x0 − y| < δ→ |f(x0) − f(y)| < ε].

However, there are patterns of quantifiers for which this kind rearrangement
does not work any longer. One of them, known to logicians for more than half a
century is the following:

1. For every x and x′, there exists a y depending only on x and a y′ depending
only on x′ such that Q(x, x′, y, y′) is true.

Several formalisms have been invented to cope with this limitation. In Henkin
[26], (1) is represented by a block of branching (Henkin) quantifiers

( ∀x ∃y
∀x′ ∃y′

)
Q(x, x′, y, y′)

whose truth-conditions are given by:
( ∀x ∃y

∀x′ ∃y′

)
Q(x, x′, y, y′) ⇔ ∃f∃g∀x∀x′Q(x, x′, f(x), g(x′)).

Here f and g range over unary functions of the universe.
Ehrenfeucht noticed that the “Ehrenfeucht sentence” ϕeh

∃w

( ∀x ∃y
∀x′ ∃y′

)
R(x, x′, y, y′, w)

where R(x, x′, y, y′, w) is the formula

w �= y ∧ (x = x′ ↔ y = y′)

defines (Dedekind) infinity. Indeed, the truth-conditions of the branching quan-
tifiers render ϕeh equivalent with

∃w∃f∃g∀x∀x′(w �= f(x) ∧ x = x′ ↔ f(x) = g(y)).

Notice that the formula x = x′ → f(x) = g(x) states that f = g whereas
the other direction asserts that f is injective. Thus ϕeh asserts that there is an
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injective function f whose range is not the whole universe, i.e., the universe is
infinite. Enderton [15] and Walkoe [53] collect the basic results about Henkin
quantifiers and its variants. Krynicki and Mostowski [39] collect the basic results
on Henkin quantifiers up to 1995.

Hintikka [27] discusses natural languages examples which match the structure
of the branching quantifier, like

2. Some relative of each villager and some relative of each townsman hate each
other.

3. Some book by every author is referred to in some essay by every critic.

His conclusion is that one needs a more expressive logic than ordinary first-
order logic to serve as a framework of regimentation for natural language. The
issue of whether Hintikka’s sentences provide genuine examples of branching
quantification which exceed the expressive power of first-order logic has been
extensively debated. Barwise [5] discusses these matters in details.

Sandu and Hintikka [31] replaced branching quantifiers with a more general
linear formalism capable to express arbitrary patterns of quantifier dependence
and independence in logic. In the resulting logic, Independence-friendly logic,
(IF logic for short), (1) is regimented by making explicit the independence of y
from x′ and that of y′ from both x and y:

∀x∀x′(∃y/ {x′})(∃y′/ {x, y})Q(x, x′, y, y′).

IF logic has a game-theoretical semantics which makes it tailor-made for express-
ing signaling phenomena typically associated with games of imperfect informa-
tion. It has also been given an alternative compositional interpretation due
to Hodges [35] which has recently stimulated various formalisms for express-
ing dependencies and independencies between variables. One such formalism is
Väänänen’s Dependence logic [50]. It keeps the linear ordering of the first-order
quantifiers intact but introduces new atomic formulas which expresses the rele-
vant dependencies at the level of terms, e.g.

∀x∀x′∃y∃y′(= (x, y)∧ = (x′, y′) ∧ Q(x, x′, y, y′)).

Here = (x, y) means: y functionally depends on x.
In this chapter we shall focus on Independence-friendly logic and its inter-

pretation in terms of semantical games of imperfect information. We start by
shortly reviewing Hintikka’s game-theoretical interpretation (GTS) for standard
first-order logic.

3 First-Order Languages

Our presentation here will follow quite closely [42]. We recall that a vocabulary
is a set of relation symbols and constant symbols, each endowed with a natural
number (arity) which indicates the number of arguments the symbol accepts.
Function symbols of arity 0 are called individual constants. In addition to the



206 G. Sandu

vocabulary, we have a countably infinite set {x0, x1, . . .} of variables. Function
symbols combine with variables and individual constants to form more complex
terms in the usual way. Relation symbols combine with terms to form atomic
formulas which, in turn, combine with the quantifiers ∃x and ∀x and with the
connectives ¬, ∨ and ∧ to form compound formulas. A first-order formula is thus
always defined relatively to an underlying vocabulary L that we shall often leave
unspecified. Formulas of the form t1 = t2 or R(t1, . . . , tn) are called atomic. A
literal is either an atomic formula or its negation.

A particular occurrence of a variable x is free in the formula ϕ if it does
not lie within the scope of any quantifier of the form ∃x or ∀x. This can be
made more precise through an inductive definition. For atomic formulas ϕ, all
its variables are free. For compound formulas we have:

Free(¬ϕ) = Free(ϕ)
Free(ϕ ∧ ψ) = Free(ϕ ∨ ψ) = Free(ϕ) ∪ Free(ψ)
Free(∃xϕ) = Free(∀xϕ) = Free(ϕ) − {x} .

An occurrence of a variable is bound if it is not free. Notice that a variable is
bound by the innermost quantifier in whose scope it lies. A formula with no
free variables is called a sentence. A formula is in negation normal form if all
occurrences of the negation symbol ¬ are infront of atomic formulas.

3.1 Models

First-order formulas receive an interpretation through models. A model M for a
vocabulary L = {R, . . . , f, ...c, . . .}, or an L-model, has the form

M = (M ;RM, . . . , fM, . . . , cM, . . .)

where M is a non-empty set called the universe of M. If R is an n-ary relation
symbol, then its interpretation RM is an n-ary relation on M ; if f is an n-ary
function symbol, then its interpretation fM is an n-ary function on M ; and if c is
an individual constant, then its interpretation cM is a member (0-place function)
of M . Let M be an L-model, M

′ an L′-model, and L ⊆ L′. If M and M
′ have the

same universe, and in addition, for every relation symbol R in L, RM = RM
′
, for

every function symbol f in L, fM = fM
′
, then M

′ is called an expansion of M

to L′.

3.2 Assignments

A model gives an interpretation for the relation and function symbols of a given
vocabulary, but not for variables. This job is done by assignments. Let M be a
model. An assignment in M is a partial function from a (finite) set of variables to
M. If s is an assignment in M, and a ∈ M , then s(xi/a) is the assignment with
domain dom(s)∪{xi} defined by: s(xi/a)(xj) = s(xj) if i �= j; and s(xi/a)(xj) =
a if i = j. That is, s′ = s(x/a) is exactly like s except that s′(x) = a. Notice
that if x ∈dom(s), then the value that s assigns to x is overwritten when we
assign it a new value.
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3.3 Satisfaction of Atomic Formulas

Once an assignment s in a model M is fixed, every term t in the underlying
language receives an interpretation s(t) under that assignment:

s(c) = cM

s(f(t1, . . . , tn)) = fM(s(t1), . . . , s(tn)).

We are now ready for the definition of satisfaction in a model M of an atomic
formula relative to an assignment s to its free variables:

Definition. Let L be a vocabulary, M an L-model, and s an assignment in M .
Then

M, s |= t1 = t2 iff s(t1) = s(t2)
M, s |= R(t1, . . . , tn) iff (s(t1), . . . , s(tn)) ∈ RM.

It may be useful to give an example at this stage. Let N =
{
ω; +N, ·N,≤N

}
be

the standard model of the language of arithmetics, i.e., its universe ω is the set
of natural numbers, +N and ·N are the usual operations of multiplication and
addition on the natural numbers and ≤N is the standard ordering relation. Let
s be an assignment such that s(x) = 2 and s(y) = 5. Then

N, s |= x ≤ y N, s � y ≤ x
N, s |= x + y = y + x N, s � (x · y) + x = (x + y) · x

4 Game-Theoretical Semantics

A semantical game is played by two players, ∃ (Eloise) and ∀ (Abelard). They
consider a first-order formula ϕ in negation normal form, model M, which inter-
prets the vocabulary of ϕ, and an assignment s in M which includes the free
variables of ϕ. ∃ tries to show that ϕ is true in M (relative to the assignment
s), and ∀ tries to show that ϕ is false in M. The game starts from the initial
position (ϕ, s), and after each move the players reach a position (ψ, r), where ψ
is a subformula of ϕ and r is an assignment which eventually extends or modify
s. Here are the rules of the game:

1. (ψ, r), where ψ is a literal. The game stops. If M, r |= ψ then ∃ wins. Other-
wise ∀ wins. Notice that the notion M, r |= ψ has been defined in Sect. 3.3.

2. (ψ ∨ ψ′, r): ∃ chooses θ ∈{ψ,ψ′} and players move to (θ, r).
3. (ψ ∧ ψ′, r): ∀ chooses θ ∈{ψ,ψ′} and players move to (θ, r).
4. (∃xψ, r) : ∃ chooses a ∈ M and players move to (ψ, r(x/a)).
5. (∀xψ, r) : ∀ chooses a ∈ M and players move to (ψ, r(x/a)).

We denote this game by G(M, s, ϕ). It may be easily reformulated as a finite
two-player, win-lose extensive game with perfect information,

G(M, s, ϕ) = (N,H,Z, P, (up)p∈N )
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where

– N is the set of players, N = {∃,∀} ,
– H is the set of histories of the game,
– Z is the set of maximal histories (plays),
– P : H \ Z → N is the player function which tells whose player’s turn is to

move, and finally
– up: Z → {0, 1} is the payoff function for player p such that for each h ∈ Z :

up(h) = 0 or up(h) = 1 (but not both).

The last condition makes the win-lose property of the game explicit. When
up(h) = 1 we say that p wins the play h; and when up(h) = 0, we say that
p loses h.

Example. Let ϕ be the sentence ∀x∃y x = y and M = {a, b}. In the initial
position (ϕ, ∅) (∅ is the empty assignment), Abelard can choose either a or
b which generates the histories

ha = ((ϕ, ∅), (ψ, {(x, a)}))
hb = ((ϕ, ∅), (ψ, {(x, b)})).

Each of them is a choice point for Eloise, who can choose either a or b. This
results in four maximal histories (plays):

haa = ((ϕ, ∅), (∃y x = y, {(x, a)}), (x = y, {(x, a), (y, a)}))
hab = ((ϕ, ∅), (∃y x = y, {(x, a)}), (x = y, {(x, a), (y, b)}))
hba = ((ϕ, ∅), (∃y x = y, {(x, b)}), (x = y, {(x, b), (y, a)}))
hbb = ((ϕ, ∅), (∃y x = y, {(x, b)}), (x = y, {(x, b), (y, b)}))

Eloise wins both haa and hbb, that is, u∃(haa) = u∃(hbb) = 1 (and thereby
u∀(haa) = u∀(hbb) = 0); on the other side, Abelard wins both hab and hba. In
the game-theoretical literature, it is customary to represent extensive games in
the form of a tree: the initial history (ϕ, s) is the root of the tree and a play
proceeds down the branches. An extensive game has finite horizon if each of its
histories is finite. The extensive game in our example can be presented in a tree
form, as shown in Fig. 1.

Here the payoffs of the payers are indicated by the corresponding quantifiers:
e.g. the existential quantifier indicates the payoff (1,0), etc.

4.1 Game-Theoretical Truth and Falsity

When making choices as prescribed by the rules of the game, each player follows
a (deterministic) strategy which gives him or her the next move to make. A
strategy for player p in the game G(M, s, ϕ) is a function σ defined on all (non-
maximal) histories h where p is to move; σ(h) is the next position to be reached
in the game. The strategy σ is winning for p if p wins every maximal history
(play) where he or she follows σ. In the last example there are four strategies
for Eloise, but only one is winning, σab defined by (Fig. 1):
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Fig. 1. The semantic game for ∀x∃y(x = y) in the structure M = {a, b}

σab(ha) = (y, a) and σab(hb) = (y, b)

Eloise follows it in haa and hbb that she both wins. On the other side, Abelard
has two possible strategies, τa and τb,

τa(ϕ, ∅) = (x, a) and τa(ϕ, ∅) = (x, b)

He follows the former in haa and hab and the latter in hba and hbb. None of them
is winning.

We are now ready to define game-theoretical truth, M, s |=+
GTS ϕ, and game-

theoretical falsity, M, s |=−
GTS ϕ.

Definition. Let ϕ be a first-order L-formula, M an L-model and s an assignment
in M whose domain contains Free(ϕ). Then

– M, s |=+
GTS ϕ iff there is a winning strategy for Eloise in G(M, s, ϕ)

– M, s |=−
GTS ϕ iff there is a winning strategy for Abelard in G(M, s, ϕ).

The principle of determinacy, stated below and known as Zermelo Theorem,
ensures us that the principle of bivalence holds:

Theorem (Zermelo [54]). Every win-lose game with finite horizon and one initial
root is determinate.

An advantage of rephrasing truth and falsity in game-theoretical terms is that
many of the logical equivalences of ordinary first-order logic like

– Commutativity

ϕ ∧ ψ ≡ ψ ∧ ϕ

– Associativity

ϕ ∨ (ψ ∨ θ) ≡ (ϕ ∨ ψ) ∨ θ
ϕ ∧ (ψ ∧ θ) ≡ (ϕ ∧ ψ) ∧ θ
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– Absorption

ϕ ∨ (ϕ ∧ ψ) ≡ ϕ
ϕ ∧ (ϕ ∨ ψ) ≡ ϕ

– Distributivity

ϕ ∨ (ψ ∧ θ) ≡ (ϕ ∨ ψ) ∧ (ϕ ∨ θ)
ϕ ∧ (ψ ∨ θ) ≡ (ϕ ∧ ψ) ∨ (ϕ ∧ θ)

may be interpreted as recipes for converting one winning strategy into another in
any underlying model. (For further discussions on this point we refer the reader
to [8,42]). We show this for distributivity [42].

Suppose Eloise has a winning strategy σ in the game G(M, s, ϕ ∨ (ψ ∧ θ)).
Suppose the first choice of Eloise according to σ is ϕ. Define a winning strategy
τ for Eloise in G(M, s, (ϕ ∨ ψ) ∧ (ϕ ∨ θ)) as follows. If Abelard chooses ϕ ∨ ψ,
then let τ pick up ϕ and then mimic σ for the rest of the game in ϕ. If Abelard
chooses ϕ ∨ θ, then let τ pick up ϕ and mimic σ for the rest of the game in ϕ.

Suppose now that the first choice of Eloise according to σ is (ψ ∧ θ). Then
σ must be a winning strategy in both ψ and θ. Define a winning strategy τ for
Eloise in G(M, s, (ϕ ∨ ψ) ∧ (ϕ ∨ θ)) as follows. If Abelard chooses ϕ ∨ ψ, then let
τ pick up ψ and mimic σ for the rest of the game in ψ. If Abelard chooses ϕ∨ θ,
then let τ pick up θ and mimic σ for the rest of the game in θ. The converse is
shown in a similar way.

4.2 Game-Theoretical Negation

We relax the assumption that negation occurs only in front of atomic formulas.
Then we need a game-rule for negation. It will be given in terms of the players
“switching roles”. This in turn justifies the need for introducing roles for the two
players.

– At the beginning of the game ∃ is (has the role of) the Verifier (V ) and ∀ is
the Falsifier (F )

The rules of the game G(M, s, ϕ) are now restated as:

– (P (t1, . . . , tn), r): The game stops. If r satisfies P (t1, . . . , tn), then V wins.
Otherwise F wins.

– (¬ψ, r): Players move to (B, r) with roles inversed.
– (ψ ∨ ψ′, r): V chooses θ ∈{ψ,ψ′} and players move to (θ, r).
– (ψ ∧ ψ′, r) : F chooses θ ∈ {ψ,ψ′} and players move to (θ, r).
– (∃xψ, r) : V chooses a ∈ M and players move to (ψ, r(x/a)).
– (∀xψ, r) : F chooses a ∈ M and players move to (ψ, r(x/a)).

Obviously we are still inside the class of finite, 2-player, win-lose extensive games
of perfect information. The notion of strategy for a player p is defined exactly as
before, as are game-theoretical truth and falsity. Zermelo’s theorem still applies.
The switching role interpretation of negation justifies the following fact:
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Proposition. Let ϕ be a first-order L-formula, M an L-model and s an assign-
ment in M whose domain contains Free(ϕ). Then

M, s |=+
GTS ¬ϕ iff M, s |=−

GTS ϕ
M, s |=-

GTS ¬ϕ iff M, s |=+
GTS ϕ.

It follows from Zermelo’s theorem that for first-order logic game-theoretical nega-
tion is contradictory negation [42].

Proposition. Let ϕ be a first-order L-formula, M an L-model and s an assign-
ment in M whose domain contains Free(ϕ). Then

M, s |=+
GTS ¬ϕ iff M, s �

+
GTS ϕ.

Proof. Suppose that M, s |=+
GTS ¬ϕ. By the previous proposition, Abelard has a

winning strategy in G(M, s, ϕ). But then Eloise cannot have one (G(M, s, ϕ)
is a win-lose game). Conversely, suppose that Eloise does not have a winning
strategy in G(M, s, ϕ). Then by Zermelo’s theorem, Abelard has one, i.e.
M, s |=−

GTS ϕ which by the previous proposition implies M, s |=+
GTS ¬ϕ.

There is another property of game-theoretical negation that is worth mentioning:
it is dual negation, that is, it travels through the quantifiers and connectives in
its scope, changes them into their duals (i.e. it changes ∃x, ∀x, ∨, and ∧ into ∀x,
∃x, ∧, and ∨ respectively) until it reaches an atomic formula. Instead of giving
a formal definition we prefer an example:

M, s |=±
GTS ¬∃x∀y∃z∀wR(x, y, z, w) iff M, s |=±

GTS ∀x∃y∀z∃w¬R(x, y, z, w).

4.3 Decomposing Strategies: Skolem Functions and Kreisel
Counterexamples

Strategies in extensive games are “global”: they are defined for every history
which is a choice point for the relevant player. Every such strategy can be
decomposed into “local” strategies, one for every move of the given player. Local
strategies are completely determined by the syntax of the given formula and the
underlying model [42].

Definition. Let ϕ be an ordinary first-order formula in negation normal form
in a given vocabulary L. The skolemized form or skolemization of ϕ, with
free variables in the set U, SkU (ϕ), is given by the following clauses:

1. SkU (ψ) = ψ, for ψ a literal
2. SkU (ψ ◦ θ) = SkU (ψ) ◦ SkU (θ), for ◦ ∈ {∨,∧}
3. SkU (∀xψ) = ∀xSkU∪{x}(ψ)
4. SkU (∃xψ) = Sub(SkU∪{x}(ψ), x, f(y1, . . . , yn)),
where y1, . . . , yn are all the variables in U and f is a new function symbol of

appropriate arity. Here Sub(SkU∪{x}(ψ), x, f(y1, . . . , yn)) denotes the formula
which is the result of the substitution of the Skolem term f(y1, . . . , yn) for the
variable x in the formula ψ. We abbreviate Sk∅(ϕ) by Sk(ϕ).

Skolemizing a first-order sentence makes explicit the dependencies of vari-
ables, as Goldfarb pointed out. We obtain an alternative definition of truth.
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Definition. Let ϕ be a first-order L-formula, M an L-model and s an assignment
in M whose domain contains Free(ϕ). Then M, s �+

Sk ϕ if and only if there
exist functions g1, . . . , gn of appropriate arity in M to be the interpretations
of the new function symbols in SkU (ϕ) such that

M, g1, . . . , gn, s � Skdom(s)(ϕ)

where U is the domain of s and M, g1, . . . , gn is the expansion of M to the
new vocabulary which includes the new function symbols in SkU (ϕ). The
functions g1, . . . , gn are called Skolem functions.

Global strategies can be converted into local ones and vice versa.

Theorem. Let ϕ be a first-order sentence in negation normal form. Then for
any model M:

M �+
GTS ϕ iff M �+

Sk ϕ

Proof. A model-theoretical proof for particular first-order games is given in
Mann et al. (2011). For game theorists this is a dejà vu result. First-
order games G(M, s, ϕ) are extensive 2-player win-lose games with perfect
information. Look at the associated strategic game. After deleting all the
weakly dominated strategies one gets the solution of the game. This obser-
vation follows from Ewerhart [16,17] who shows that any perfect informa-
tion extensive-form strictly competitive game with n different payoffs can
be solved in n − 1 rounds. Thus first-order games, having two distinct pay-
offs, are solvable in one round. The notions of strategic game and weakly
dominated strategy will be introduced in Sect. 7.1.

We now define the dual procedure of Skolemization.

Definition. Let ϕ be an ordinary first-order formula in negation normal form
in a given vocabulary L with free variables in U . The Kreisel form KrU (ϕ)
of ϕ is defined by:

1. KrU (ψ) = ¬ψ, for ψ a literal
2. KrU (ψ ∨ θ) = KrU (ψ) ∧ KrU (θ),
3. KrU (ψ ∧ θ) = KrU (ψ) ∨ KrU (θ)
4. KrU (∃xψ) = ∀xKrU∪{x}(ψ)
5. KrU (∀xψ) =Sub(KrU∪{x}(ψ), x, g(y1, . . . , ym))

where y1, . . . , ym are all the variables in U .

Definition. Let ϕ be a first-order L-formula, M an L-model and s an assignment
in M whose domain contains Free(ϕ). Then M, s �−

Sk ϕ if and only if there
exist h1, . . . , hm in M to be the interpretations of the new function symbols
in Kr(ϕ) such that

M, h1, . . . , hm, s � Krdom(s)(ϕ)

where U is the domain of s. We call h1, . . . , hm Kreisel counterexamples.
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The illustrate the relation between Skolem functions and Kreisel’s counterex-
amples, let’s look at the following example [49, p. 224]. Let ϕ be the first-order
formula

∃x∀y∃z∀wR(x, y, z, w).

The Kreisel form of ϕ is ∀x∀z¬R(x, f(x), z, g(x, f(x), z)). We pointed out in
Sect. 4.2 that ¬ϕ is game-theoretically equivalent to ∀x∃y∀z∃w¬R(x, y, z, w).
The Skolem form Sk(¬ϕ) is ∀x∀z¬R(x, f(x), z, g(x, f(x), z)) (actually in first-
order logic, ϕ is equivalent to ∀x∀z¬R(x, f(x), z, g(x, z))). In addition, from the
first proposition in Sect. 4.2 we know that for any model M we have

M |=+
GTS ¬ϕ iff M |=−

GTS ϕ.

It follows that M |=−
GTS ϕ if and only if M |=+

GTS ¬ϕ if and only if M |=+
GTS

∀x∃y∀z∃w¬R(x, y, z, w). The last statement is equivalent, by the definition of
truth under Skolem semantics and its equivalence with game-theoretical truth,
to the existence of appropriate Skolem functions h, k such that

M,h, k |= ∀x∀z¬R(x, f(x), z, g(x, f(x), z)).

We have abusively followed Shoenfield and called h and k (Kreisel) counterex-
amples (to ϕ). We see that the falsity of ϕ amounts to the existence of certain
counterexamples to ϕ which in turn become the appropriate Skolem functions
witnessing the truth of ¬ϕ. By the second proposition of Sect. 4.2. we also know
that

M |=+
GTS ¬ϕ iff M �

+
GTS ϕ.

Then M |=+
GTS ϕ if and only if M �

−
GTS ϕ . In other words, ϕ is true if and only

if there are no counterexamples h and k to ϕ. (Shoenfield’s main interest is in
Kreisel’s No Counterexample Interpretation: the connection between the non-
existence of counterexamples to ϕ and the existence of higher-order functionals
F (f, g) and G(f, g) useful in proving the consistency of arithmetic. That has not
been our concern here).

One can show, as in the Skolemization case, that global strategies for Abelard
can be converted into Kreisel counterexamples and vice versa.

Theorem ([42]). Let ϕ be a first-order sentence in negation normal form. Then
for every model M:

M �−
GTS ϕ iff M �−

Sk ϕ.

The game-theoretical semantics and the alternative Skolem semantics for
first-order logic that we presented in this section have natural extensions when
we switch to Independence-Friendly Logic in the next section.
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5 Independence-Friendly Logic (IF Logic)

Independence-Friendly Logic (IF logic) will turn out to offer a handy tool for
modeling various phenomena of imperfect information. After presenting its syn-
tax, we shall present a game-theoretical interpretation (games of imperfect infor-
mation) and alternative Skolem semantics we will follow the presentation in [42].

5.1 The Syntax

The independence-friendly language IFL is obtained from a basic vocabulary L
through the following rules:

– If t1 and t2 are L-terms, then (t1 = t2) ∈ IFL and ¬(t1 = t2) ∈ IFL.
– If R is an n-ary relation symbol in L and t1, . . . , tn are L-terms, then

R(t1, . . . , tn) ∈ IFL and ¬R(t1, . . . , tn) ∈ IFL.
– If ϕ,ψ ∈ IFL and W is a finite set of variables, then (ϕ (∨/W ) ψ) ∈ IFL and

(ϕ (∧/W ) ψ) ∈ IFL.
– If ϕ ∈ IFL, x is a variable and W is a finite set of variables, then

(∃x/W )ϕ ∈ IFL and (∀x/W )ϕ ∈ IFL.

The interpretation of e.g. (∃x/W ) is: “the choice of x is independent of the values
of the variables in W”. When W = ∅, we recover the standard quantifiers
and connectives. Notice that we restrict attention to IF formulas in negation
normal form. In this chapter we shall consider only standard disjunctions and
conjunctions.

The set of free variables of an IF formula ϕ is defined as in ordinary first-order
logic, except for the clauses for the quantifiers which are now replaced by:

Free((∃x/W )ϕ) = Free(∀x/W )ϕ) = (Free(ϕ) − {x}) ∪ W.

5.2 Semantical Games: Extensive Games of Imperfect Information

The notions of models, assignments and the satisfaction clauses for atomic for-
mulas are the same as for ordinary first-order languages. The game-theoretical
interpretation of the latter naturally extends to the present case: the assump-
tion of the players’ information in finite 2-player, win-lose extensive games is
now relaxed to imperfect information.

The rules of a semantical game G(M, s, ϕ) where ϕ is an IF formula in nega-
tion normal form, M is a model which interprets the vocabulary of ϕ, and s is
an assignment in M which includes the free variables of ϕ are identical with the
five rules given earlier: in the last two clauses (∃xψ, r) and (∀xψ, r) are replaced
with ((∃x/W )ψ, r) and ((∀x/W )ψ, r), respectively. The changes will affect only
the information sets and thereby the strategies of the players. The imperfect
information comes in the form of the players’ restricted access to the current
assignment in the game.
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Let W be a set of finite variables, s and s′ be two assignments in a model
M with the same domain which includes W . We say that that s and s′ are W -
equivalent, s ≈W s′, if for every variable x ∈ dom(s) \ W we have s(x) = s′(x).

Every history h in G(M, s, ϕ) induces an assignment sh in the model M,
which extends or modifies the initial assignment s. We are going to define two
indistinguishable relations ∼∃ and ∼∀ on the set of non-maximal histories of the
game.

For ∼∃ there are two cases:

– It is Eloise’s turn to move corresponding to a disjunction ψ∨ψ′. In the context
of the extensive game, let h and h′ be two histories in the game where such a
move is supposed to happen. Then we stipulate that

h ∼∃ h′ ⇔ sh = sh′ .

– It is Eloise’s turn to move corresponding to (∃x/W )ψ. Then for any two
histories h, h′ where such a move is about to happen, we stipulate:

h ∼∃ h′ ⇔ sh ≈W sh′ .

The relation ∼∀ is specified completely analogously.
The relations ∼∃ and ∼∀ specify exactly how much information the players

have at their disposal at a given decision point.
A strategy σp for player p in the semantical game G(M, s, ϕ) is defined exactly

as in the games of perfect information, except for the requirement of uniformity:
for every h, h′

h ∼p h′ ⇒ σp(h) = σp(h′).

5.3 Game-Theoretical Truth and Falsity

Truth and falsity of an IF formula in a model are defined exactly as before,
keeping in mind, of course, that strategies are now uniform:

Definition. Let ϕ be an IF formula, M a model and s an assignment in M whose
domain includes Free(ψ). Then

– M, s |=+
GTS ψ iff there is a winning strategy for ∃ in G(M, s, ψ)

– M, s |=−
GTS ψ iff there is a winning strategy for ∀ in G(M, s, ψ).

Imperfect information introduces indeterminacy into the logic, as the next exam-
ple shows.

Example (MatchingPennies). This is a well known game played by two players,
who turn secretly a coin to Heads or Tails. The coins are revealed simulta-
neously. The first player wins if the outcomes match; the second player wins
if they differ. We can express this game in IF logic using a variant ϕMP of
our earlier example, ϕMP = ∀x(∃y/ {x}) x = y interpreted in a two element
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∀x

∃y/{x}

a

∃y/{x}

b

∃

a

∀

b

∀

a

∃

b

Fig. 2. The semantic game for ∀x
(∃y
/{x})x = y in the structure M = {a, b}

model M = {a, b}. The extensive game can be represented in a tree form
(Fig. 2)
where the dots indicate that the two histories

ha = ((ϕMP , ∅), ((∃y/ {x}) x = y, {(x, a)}))
hb = ((ϕMP , ∅), ((∃y/ {x}) x = y, {(x, b)}))

are equivalent for Eloise, i.e., ha ∼∃ hb. (Note that the corresponding assign-
ments {(x, a)} and {(x, b)} are trivially {x}-equivalent). Let σ be a strategy
for Eloise. Given the uniformity requirement, Eloise must choose the same
value c for y in both cases:

σ(ha) = σ(hb) = (y, c).

There are two maximal plays

((ϕMP , ∅), ((∃y/ {x}) x = y, {(x, a)}), (x = y, {(x, a), (y, c)}))
((ϕMP , ∅), ((∃y/ {x}) x = y, {(x, b)}), (x = y, {(x, b), (y, c)}))

where this strategy is followed, of which Eloise wins only one. Let τ be a
strategy for Abelard such that τ(ϕMP , ∅) = (x, c). Then τ is a winning
strategy iff Abelard wins both maximal plays

((ϕMP , ∅), ((∃y/ {x}) x = y, {(x, c)}), (x = y, {(x, c), (y, a)}))
((ϕMP , ∅), ((∃y/ {x}) x = y, {(x, c)}), (x = y, {(x, c), (y, b)}))

which is again impossible. Thus neither Eloise nor Abelard has a winning
strategy in the game.

5.4 Skolem Semantics

As in the case of first-order logic, we give also an alternative interpretation in
terms of Skolem functions and Kreisel counterexamples which will turn out tobe
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useful later on. The Skolem form of an IF formula in negation normal form is
defined exactly as in the first-order case, except for the clauses:

SkU ((∀x/W )ψ) = ∀xSkU∪{x}(ψ)
SkU ((∃x/W )ψ) = Sub(SkU∪{x}(ψ), x, f(y1, . . . , yn))

where y1, . . . , yn are all the variables in U \ W and f is a new function symbol
of appropriate arity.

In a similar spirit, the Kreisel form is defined exactly as in the first-order
case, except for the clauses:

KrU ((∃x/W )ψ) = ∀xKrU∪{x}(ψ)
KrU ((∀x/W )ψ) = Sub(KrU∪{x}(ψ), x, g(y1, . . . , ym))

where y1, . . . , ym are all the variables in U \ W .
Truth and falsity in the Skolem semantics is defined analogously with the

first-order case.

Definition. Let ϕ be an IF formula in negation normal form, M a model, and
s an assignment in M whose domain includes the free variables of ϕ. Then

(i) M, s �+
Sk ϕ if and only if there exist functions g1, . . . , gn of appropriate arity

in M to be the interpretations of the new function symbols in Skdom(s)(ϕ)
such that

M, g1, . . . , gn, s � Skdom(s)(ϕ)

(ii) M, s �−
Sk ϕ if and only if there exist functions g1, . . . , gm of appropriate arity

in M to be the interpretations of the new function symbols in Krdom(s)(ϕ)
such that

M, g1, . . . , gm, s � Krdom(s)(ϕ).

Like in the first-order case, global strategies can be converted into local ones and
vice versa.

Theorem ([42]). Let ϕ be an IF sentence in negation normal form. Then for
any model M:
(i) M �+

GTS ϕ if and only if M �+
Sk ϕ.

(ii) M �−
GTS ϕ if and only if M �−

Sk ϕ.

Proof. This is Theorem 4.13 in [42]. The proof exploits the fact that the uni-
formity of the strategies of e.g. Eloise in the extensive game of imperfect
information has a clear counterpart in the relevant Skolem functions taking
as arguments only the values of those quantified variables that she “sees”.
We shall give several examples.
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Example. Hodges [35] discusses the following sentence ϕH (Hodges sentence)

∀x∃z(∃y/{x})x = y

which is formed from the Matching Pennies sentence ϕMP by inserting the
dummy quantifier ∃z. Surprisingly Eloise has a winning strategy (on any
model M with at least two elements) whereas she does not have one in the
game G(M, ∅, ϕMP ), as shown earlier. For convenience, let ψ abbreviate the
subformula ∃z(∃y/{x})x = y and χ abbreviate the subformula (∃y/{x})x =
y. Note that corresponding to ∃z there are two histories where Eloise is to
move

ha = ((ϕMP , ∅), (ψ, {(x, a)}))
hb = ((ϕMP , ∅), (ψ, {(x, b)})).

and corresponding to (∃y/{x}) there are four histories where she is to move:

haa = ((ϕMP , ∅), (ψ, {(x, a)}), (χ, {(x, a), (z, a)}))
hba = ((ϕMP , ∅), (ψ, {(x, b)}), (χ, {(x, b), (z, a)}))
hab = ((ϕMP , ∅), (ψ, {(x, a)}), (χ, {(x, a), (z, b)}))
hbb = ((ϕMP , ∅), (ψ, {(x, b)}), (χ, {(x, b), (z, b)})).

We can represent the game in the following tree form (Fig. 3):

∀x

∃z

a

∃z

b

∃y/{x}

a

∃y/{x}

b

∃y/{x}

a

∃y/{x}

b

∃

a

∀

b

∃

a

∀

b

∀

a

∃

b

∀

a

∃

b

Fig. 3. The semantic game for ∀x∃z
(∃y
/{x})x = y in M = {a, b}

We observe that the corresponding assignments are such that sa ∼∅ sa, and
sb ∼∅ sb. In addition, saa ≈{x} sba, and sab ≈{x} sbb, hence haa ∼∃ hba and
hab ∼∃ hbb. Therefore by the uniformity requirement, Eloise’s strategies σ
must be such that σ(haa) = σ(hba) and σ(hab) = σ(hbb). Here is a winning
strategy:

σ(ha) = (y, a) and σ(haa) = σ(hba) = (y, a)
σ(hb) = (y, b) and σ(hab) = σ(hbb) = (y, b).
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There are two maximal histories in which Eloise follows this strategy

(ϕMP , ∅), (ψ, {(x, a)}), (χ, {(x, a), (z, a)}), (x = y, {(x, a), (z, a), (y, a)}))
(ϕMP , ∅), (ψ, {(x, b)}), (χ, {(x, b), (z, b)}), (x = y, {(x, b), (z, b), (y, b)}))

and she wins both of them. The Skolem form of ϕH is obtained in the
following steps:

Sk{x,y,z}(x = y) = (x = y)
Sk{x,z}((∃y/{x}) x = y) = (x = g(z))
Sk{x}(∃z(∃y/{x}) x = y) = (x = g(f(x))
Sk∅(∀x∃z(∃y/{x}) x = y) = ∀x(x = g(f(x)).

Note that the {x}-uniformity of σ corresponds to the interpretation of f
being a unary function. It is straightforward do find two functions h, k : M →
M to be the interpretation of f and g such that M,h, k |= ∀x(x = g(f(x)):
let h(a) = k(a) = a. For comparison, the Skolem form of the Matching
Pennies sentence ϕMP is

Sk(ϕMP = ∀x(∃y/ {x}) x = y) = ∀x x = c.

Example (Dedekind Infinity). We prefer to use the following IF sentence ϕinf

for defining (Dedekind) infinity:

∃w∀x(∃y/ {w})(∃z/ {w, x})(w �= y ∧ z = x).

It may be checked that Sk(ϕinf ) is

∀x [g(f(x)) = x ∧ f(x) �= c]

where f and g are new unary function symbols and c is a new constant
symbol. This sentence asserts that f is an injection whose range is not the
entire universe. Thus Sk(ϕinf ) is true in an expansion M of a given model
if and only if the universe of M is (Dedekind) infinite.

5.5 Signaling and Coordination

We have considered the sentences:

(ϕMP ) ∀x(∃y/{x})x = y
(ϕH) ∀x∃z(∃y/{x})x = y.

We pointed out that ϕMP is logically indeterminate, unlike the Hodges sentence
ϕH which is logically true. It makes sense in the second case, as suggested by
Hodges [35], to think of Eloise as a team consisting of two existential players:
∃z copies Abelard’s move (that she sees) and the second player ∃y copies her
partner’s choice (that she sees).

The successful coordination of the two existential players in this case may be
seen as a case of signaling: Any convention of play whereby one partner properly
informs the other of his holdings or desires [43].
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Signaling in IF logic has been extensively discussed [3,4,13,35,37,42]. Here
we give one more example of a logical falsehood which involves signaling among
the players in Abelard’s team (a variation of an example from [37]). Consider
the sentence

∃x∃y∃z[x = y ∧ ∀v(∀u/{x})(u �= x ∨ v �= z)]

played on an arbitrary model M which contains at least two elements. We may
think of ∧, ∀v and ∀u as a team of universal players. Here is a winning strategy
for this team for any choices a, b, c ∈ M of Eloise as the values of x, y, and z,
respectively:

– If a �= b then ∀1 chooses Left; If a = b then ∀1 chooses Right. After this ∀2

chooses c to be the value of v; finally ∀3 chooses b to be the value of u.

Note that ∀2 “sees” the value of x; and ∀3 sees the value of y. The Kreisel form
of this sentence

∀x∀y∀z[x �= y ∨ (f(y, z) = x ∧ g(x, y, z) = z)]

makes the above strategy explicit.

5.6 Independence from Existential Quantifiers

Perhaps surprisingly, the sentence

∃x(∃y/ {x})x = y

is game-theoretically strongly equivalent (both truth and falsity equivalent) with
the sentence

∃x∃yx = y.

For another example, notice also that the IF formulas

(a) ∀x(∃z/ {x})(∃y/ {x, z})x = y

and

(b) ∀x(∃z/ {x})(∃y/ {x})x = y

are strongly equivalent (both indeterminate on all structures with at least two
elements). The question legitimately arises whether this is always the case, i.e.
whether one can always remove the independence from an existential quanti-
fier without affecting the truth-conditions of a given sentence. The answer is
negative, as the following example [41] shows:

(c) ∀x∃z(∃y/ {x, z})x = y.

This sentence is logically indeterminate, but removing the independence from z
leads to the Hodges sentence

(d) ∀x∃z(∃y/ {x})x = y

which is, as pointed out earlier, logically true.



Languages for Imperfect Information 221

Now it is interesting to compare the two pairs of examples: (a) and (b) on
one side, with (b) and (c) on the other. Removing the independence of y from
z in (c) creates the possibility of signaling the value of x in (d). On the other
side, the same move in (a) still blocks the signaling of the value of x in (b).
Barbero [3] investigates systematically the conditions in which the removal of
the independence from an existential quantifier matters for the truth-value of a
given sentence.

5.7 Lewis’ Signaling Systems

The property of IF logic to express signaling phenomena opens the door to the
definability of signaling problems in this logic. In fact for a very restricted variant
of Lewis’ signaling problems, this may be achieved by a variant of the Hodges’
sentence as we will show now.

Lewis [40] defines a signaling problem as a situation which involves a com-
municator (C) and an audience (A). C observes one of several states m which
he tries to communicate or “signal” to A, who does not see m. After receiving
the signal, A performs one of several alternative actions, called responses. For
every situation m there is a corresponding best response b(m). This is primi-
tive information which comes with the specification of the system. Lewis argues
that a word acquires its meaning in virtue of its role in the solution of various
signaling problems.

To model a Lewisian coordination problem we fix the following elements:

– A set W of situations or states of affairs, a set Σ of signals, and a set R of
responses.

– A function b : W → R which maps each situation to its best response.
– An encoding function f : W → Σ employed by C to choose a signal for every

situation
– A decoding function g : Σ → R employed by A to decide which action to

perform in response to the signal it receives.

A signaling system is a pair (f, g) of encoding and decoding functions such that
g ◦ f = b.

The standard example of a signaling problem is that of a driver who is trying
to back into a parking space. She has an assistant who gets out of the car and
stands in a location where she can simultaneously see how much space there is
behind the car and be seen by the driver. There are two states of affairs the
assistant wishes to communicate, i.e., whether there is enough space behind the
car for the driver to continue to back up. The assistant has two signals at her
disposal: she can stand palms facing in or palms facing out. The driver has two
possible responses: she can back up or she can stop.

There are two solutions to this signaling problem. The assistant can stand
palms facing in when there is space, and palms facing out when there is no space,
and vice versa. In the first case, the driver should continue backing up when she
sees the assistant stand palms facing in, and back up when the assistant stands
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palms facing out. In the second case, the driver should stop when he sees the
assistant stands palms facing in, and back up when the assistant stands palms
facing out. Both systems work equally well in the sense that the composition of
the two communicating and responding strategies realize the best response: the
driver backs up when there is space, and he stops when there is not.

We express a Lewisian signaling system in IF logic using the following variant
of the Hodges sentence:

∀x∃z(∃y/{x}){(W (x) → (Σ(z) ∧ R(y) ∧ y = b(x)))}.

The symbolism is self-explanatory: W stands for the set of states, Σ for the set
of signals, R for the set of responses, and b for the best action function.

We prefer yet another variant of this sentence which expresses the fact that
A’s task is not to do the best action, but simply to identify the situation from
which the message was sent:

ϕsig = ∀x∃z(∃y/{x}){(W (x) → (Σ(z) ∧ R(y) ∧ y = x))}

We consider the class of models of the form

M = (M,WM , ΣM , RM )

where

M = {s1, . . . , sn, t1, . . . , tm}
WM = RM = {s1, . . . , sn}

ΣM = {t1, . . . , tm}
Lewis considered only signaling systems in which the number m of signals equals
the number n of states. In this case, there is a simple way for the two existential
players to achieve successful coordination: The first existential player (C) uses
the signal ti to signal the state si; and the second existential player (A) decodes
the signal ti back into the state si. The pair of functions h(si) = ti and k(ti) = si

(the other values do not matter) serve as verifying instances for the Skolem form
of ϕsig

Sk(ϕsig) = ∀x{(W (x) → (Σ(f(x)) ∧ R(g(f(x))) ∧ g(f(x)) = x)}.

6 Indeterminacy

Imperfect information introduces indeterminacy into the games. Our favourite
example was the Matching Pennies sentence ϕMP = ∀x(∃y/{x})x = y which is
logically indeterminate (we exclude one-element models). It will turn out to be use-
ful to look at the indeterminacy of this sentence by considering its Skolem ∀x x = c
and Kreisel form ∀y d �= y. There is no way to interpret the constant c (d) in such
a way that ∀x x = c (∀y d �= y) is true. It is interesting to compare this example
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with another logically indeterminate sentence, the “Inverted Matching Pennies”
ϕIMP

∀x(∃y/{x})x �= y

whose Skolem and Kreisel forms are ∀xx �= c and ∀yd = y, respectively.
Another example of an indeterminate sentence is the signaling sentence ϕsig.

We pointed out that this sentence is determinate (true) in all models M =
(M,W M, ΣM, RM) where the number m of signals equals the number of states,
that is, | W M |= n =| ΣM |= m. This sentence is false when there are no signals,
i.e. ΣM = ∅ (hence there are at least two states in WM ): it is enough to consider
Kr(ϕsig)

Kr(ϕsig) = ∀z∀y{(W (c) ∧ ¬(Σ(z) ∧ R(y) ∧ y = x)}

and take the interpretation of c to be one of the states. All the objects in M are
states, and each of them renders Kr(ϕsig) true.

Fact. Let M = (M,W M, ΣM, RM) be such that the number m of signals is
strictly less than the number of states, that is, 0 < m < n. Then ϕsig is
indeterminate.

Proof. Suppose, for a contradiction, that M �+ ϕ, that is, M, h, k � Sk(ϕsig) for
some functions h, k : M → M to be the interpretations of the new function
symbols f, g in Sk(ϕsig). Given that m < n and for every s ∈ WM it holds
that h(s) ∈ ΣM , there must exist distinct si, sj such that h(si) = h(sj) = t,
for some t ∈ ΣM . But then we must also have k(h(si)) = si and k(h(sj)) =
sj , a contradiction. Suppose now that M �− ϕ, that is, M,a � Kr(ϕsig)
for some individual a ∈ M to be the interpretation of the new constant
symbol c in Kr(ϕsig). Pick up z = ti ∈ ΣM and y = a. Then we have
ti ∈ ΣM , a ∈ RM and y = a, again a contradiction. Note that for ϕsig to
be indeterminate, M has to have at least three elements: at least one signal
and at least two states.

Although Eloise (the existential team) does not have a winning strategy when
m < n, it is easy to see that the pair of functions (h, k) defined as above gives
Eloise a win in m cases. We will see later on that this is the “best” result she
can achieve.

Fact. The sentence ϕinf

∃w∀x(∃y/ {w})(∃z/ {w, x})(w �= y ∧ z = x)

which defines infinity in IF logic is indeterminate on all finite models.

Proof. Recall that Sk(ϕinf )

∀x [g(f(x)) = x ∧ f(x) �= c]
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asserts that f is an injection whose range is not the entire universe. Thus
Sk(ϕinf ) cannot be true in a finite model. On the other side, Kr(ϕinf )

∀w∀y∀z(w = y ∨ z �= h(w))

where h is a new function symbol can be true in a model M only if the
universe of M has one element. As we excluded one element models, Kr(ϕinf )
is false on all finite models.

7 Equilibrium Semantics

7.1 From Extensive to Strategic Games

There is a way to resolve the indeterminacy of IF sentences by following a sug-
gestion due to Ajtai (reported in [10]) in the context of branching quantifiers:

. . . a formula might neither hold nor fail; that is, there might be no win-
ning strategy for either player. The simplest example of this phenomenon
is given by

(∀x
∃y

)
x = y

in any structure with at least two elements. Although unpleasant, this
lack of determinacy should not be viewed as pathological; it is the usual
situation for games of imperfect information. Miklos Ajtai has suggested
applying the Von Neumann minimax theorem to these games . . . In this
approach, formulas which neither hold nor fail have intermediate truth
values; the example

(∀x
∃y

)
x = y

has truth value 1/n in structures of cardinality n.

Given the representation of the sentence
(∀x

∃y

)
x = y in the IF formalism as

the Matching Pennies sentence ϕMP , the above suggestion amounts to taking
the value of this sentence on a finite model M of cardinality n to be 1/n. The
suggestion has been worked out in details for the first time in [47], and generalized
in [42,48]. We sketch its main lines, using Ajtai’s example.

In the extensive game G(M, ϕMP ), with M = {1, . . . , n}, let S∃ and S∀
denote the set of strategies of Eloise and Abelard, respectively. The members of
S∃ are completely determined by M and Sk(ϕMP ), which is ∀x x = c. Likewise,
the composition of S∀ is completely determined by M and Kr(ϕMP ) which is
∀y¬d = y. Thus S∃ consists of all the possible values in M of the constant c,
i.e., S∃ = M; and S∀ consists of all the possible values in M of the constant d,
i.e. S∀ = M. The outcome of playing any strategy s ∈ S∃ against any strategy
t ∈ S∀ is a play (maximal history) of G(M, ϕMP ), which results in a win for
Eloise or a win for Abelard. In other words,
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– We let u∃, the utility function of player ∃, be defined by: u∃(s, t) = 1 if playing
s ∈ S∃ against t ∈ S∀ in G(M, ϕMP ) yields a win for ∃; and u∃(s, t) = 0,
otherwise.

– u∀ is defined analoguously.

We have converted the extensive game G(M, ϕMP ) into a strategic game

Γ (M, ϕMP ) = (S∃, S∀, u∃, u∀).

It may be displayed, as usual, in a matrix form:

1 2 · · · n
1 (1, 0) (0, 1) · · · (0, 1)
2 (0, 1) (1, 0) · · · (0, 1)
...

...
...

. . . (0, 1)
n (0, 1) (0, 1) · · · n

The same procedure can be used to convert any extensive semantical game
G(M, ϕ) into a strategic IF game Γ (M, ϕ) for an arbitrary IF sentence ϕ and
finite model M.

Obviously strategic IF games are 2-player, finite win-lose games. One can
then define the notion of equilibrium in the standard way.

We can check that in the IF strategic games Γ (M, ϕMP ) and Γ (M, ϕIMP )
with M = {1, . . . , n}, there is no equilibrium. Actually this is just another facet
of the indeterminacy of the semantical games G(M, ϕMP ) and G(M, ϕIMP ).

7.2 Mixed Strategy Equilibria in Two Player Win-Lose Finite
Strategic Games

After converting semantical games into strategic games, we are ready to imple-
ment Ajtai’s suggestion. It is based on a procedure well known to game theorists:
mixed strategy equilibria and Von Neumann’s Theorem. We give a short presen-
tation of the basic definitions and results [42,48]. Let

Γ (M, ϕ) = (S∃, S∀, u∃, u∀)

be a two player finite strategic game. A mixed strategy ν for player p is a
probability distribution over Sp, that is, a function ν : Sp → [0, 1] such that∑

τ∈Sp
ν(τ) = 1. ν is uniform over S′

p ⊆ Sp if it assigns equal probability to all
strategies in S′

p and zero probability to all the strategies in Sp −S′
p. The support

of ν is the set of strategies to which ν assigns non-zero probability. Obviously
we can simulate a pure strategy σ with a mixed strategy ν such that ν assigns
σ probability 1. Given a mixed strategy μ for player ∃ and a mixed strategy ν
for player ∀, the expected utility for player p is given by:

Up(μ, ν) =
∑

σ∈S∃

∑

τ∈S∀

μ(σ)ν(τ)up(σ, τ)
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When σ ∈ S∃ and ν is a mixed strategy for player ∀, we let

Up(σ, ν) =
∑

τ∈S∀

ν(τ)up(σ, τ)

Similarly if τ ∈ S∀ and μ is a mixed strategy for player ∃, we let

Up(μ, τ) =
∑

σ∈S∃

μ(σ)up(σ, τ)

The notion of mixed strategy equilibrium is defined exactly as in the pure
strategies case.

The following two results are well known.

Theorem (Von Neuman’s Minimax Theorem [52]). Every finite, two-person,
constant-sum game has an equilibrium in mixed strategies.

Corollary. Let (μ, ν) and (μ′, ν′) be two mixed strategy equilibria in a constant
sum game. Then Up(μ, ν) = Up(μ′, ν′).

These two results guarantee that we can talk about the value V (Γ ) of a strategic
IF game Γ : it is the expected utility returned to player ∃ by any equilibrium in
the relevant strategic game.

The next result will help us to identify equilibria.

Proposition. Let μ∗ be a mixed strategy for player ∃ and ν∗ a mixed strategy
for player ∀ in a finite strategic, two player win-lose game Γ . The pair (μ∗, ν∗)
is an equilibrium in Γ if and only if the following conditions hold:

1. U∃(μ∗, ν∗) = U∃(σ, ν∗) for every σ ∈ S∃ in the support of μ∗

2. U∀(μ∗, ν∗) = U∀(μ∗, τ) for every τ ∈ S∀ in the support of ν∗

3. U∃(μ∗, ν∗) ≥ U∃(σ, ν∗) for every σ ∈ S∃ outside the support of μ∗

4. U∀(μ∗, ν∗) ≥ U∀(μ∗, τ) for every τ ∈ S∀ outside the support of ν∗.

Proof. (See [44], p. 116)

Example. We apply this proposition to calculate the values of the strategic
games Γ (M, ϕMP ) and Γ (M, ϕIMP ) on a model M which contains n ele-
ments. The picture below illustrates the case in which n = 4:

1 2 3 4
1 (1, 0) (0, 1) (0, 1) (0, 1)
2 (0, 1) (1, 0) (0, 1) (0, 1)
3 (0, 1) (1, 0) (1, 0) (0, 1)
4 (0, 1) (0, 1) (0, 1) (1, 0)

1 2 3 4
1 (0, 1) (1, 0) (1, 0) (1, 0)
2 (1, 0) (0, 1) (1, 0) (1, 0)
3 (1, 0) (1, 0) (0, 1) (1, 0)
4 (1, 0) (1, 0) (1, 0) (0, 1)

The above proposition can be applied to show that the strategy pair (μ∗, ν∗)
where both μ∗ and ν∗ are uniform strategies with support M = {1, ..., n},
forms an equilibrium in both games which returns to Eloise an expected
utility of 1/n in the first game and n−1/n in the second.
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Our new framework guarantees a probabilistic value for any IF sentence ϕ on any
given finite structure M. Actually we can introduce a satisfaction relation |=ε

between IF sentences ϕ and models M, with ε such that 0 ≤ ε ≤ 1 defined by:

– M |=ε ϕ iff the value of the strategic game Γ (M, ϕ) is ε.

It can be shown that the new interpretation is a conservative extension over the
GTS interpretation, in the following sense:

Proposition ([42], Proposition 7.4). Let ϕ be an arbitrary IF sentence and M

a finite model. Then:

(i) M |=+ ϕ iff M |=1 ϕ
(ii) M |=− ϕ iff M |=0 ϕ.

To identify equilibria we shall make use of few other well known results.

Definition. Let Γ (M, ϕ) be a strategic IF game. For σ, σ′ ∈ S∃, we say that σ′

weakly dominates σ if the following two conditions hold:

(i) For every τ ∈ S∀ : u∃(σ′, τ) ≥ u∃(σ, τ)
(ii) For some τ ∈ S∀ : u∃(σ′, τ) > u∃(σ, τ).

A similar notion is defined for Abelard.
The following result enables us to eliminate weakly dominated strategies.

Proposition. Let Γ (M, ϕ) be a strategic IF game. Then Γ has an equilibrium
(σ∃, σ∀) such that for each player p none of the strategies in the support of
σp is weakly dominated in Γ .

Proof See [44]. An anonymous referee has pointed out that this result is an
immediate consequence of Selten [46] who proved that every finite game
has an undominated equilibrium (so in particular our IF games have this
property). The proof requires the finiteness of the game.

Definition. Let Γ (M, ϕ) be a strategic IF game. For σ, σ′ ∈ S∃, we say that σ′

is payoff equivalent to σ if for every τ ∈ S∀ : u∃(σ′, τ) = u∃(σ, τ).

A similar notion is defined for Abelard.
We list another result which allows the elimination of payoff equivalent strate-

gies.

Proposition. Let Γ (M, ϕ) be a strategic IF game. Then Γ has equilibrium
(σ∃, σ∀) such that for each player p there are no strategies in the support of
σp which are payoff equivalent.

Proof. An anonymous referee pointed out that this is a well known result in
game theory (it follows from interchangeability in Nash (1951). Mann et al.
([42]; Proposition 7.22) proves this result in the context of IF logic.

We now apply the framework developed so far to two case studies.
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8 Lewis’ Signaling Problem Revisited

It is known that (i) every win-lose game has a value in Q (the rational numbers)
and that, conversely, (ii) for every q ∈ Q, there is a win-lose game with value
q [45]. We will use the Lewis signaling sentence and its models to show that
the class of IF games, which is only a subclass of the of the class of winn-lose
two-player games, realize also precisely the rationals in [0, 1].

Recall the game G(M, ϕsig) associated with the sentence ϕsig and a given
structure M = (M,SM , ΣM , RM ) as specified in Sect. 5.7. Let

Γ (M, ϕsig) = (S∃, S∀, u∃, u∀)

be the corresponding IF game. (Note that the set of states SM here is the same
as the set W in Sect. 5.7). From the Skolem form of ϕsig, we gather that S∃
consists of all pairs (h, k) of functions h, k : M → M . On the basis of the Kreisel
form of ϕsig we take S∀ to be the entire universe M = {s1, . . . , sn, t1, . . . , tm}.
The strategic game may be displayed in the matrix form:

s1 · · · sn t1 · · · tm
(h1, k1) (1, 0) · · · (1, 0)
(h2, k2) (1, 0) · · · (1, 0)

...
...

...
...

(hp, kp) (1, 0) · · · (1, 0)

The first observation is that any strategy of Abelard that chooses from outside
SM is weakly dominated by every strategy that chooses from SM . Thus the
value of the game is the same as that of the smaller game:

s1 · · · sn

(h1, k1)
(h2, k2)

...
(hp, kp)

In this game, let B = {B ⊆ SM and | B |= m}. Given that m < n, then for
every B ⊆ B, there must exist at least one pair (h, k) of functions such that

A1 h � B : B → ΣM is one-one and onto
A2 k(h(s)) = s, for every s ∈ B.

Obviously when (h, k) is played against s ∈ SM , the payoffs are (1, 0) whenever
s ∈ B, and (0, 1) when s /∈ B.

For any B ⊆ B, let TB be the collection of all pairs (h, k) that satisfy condi-
tions (A1) and (A2). Every strategy that violates conditions A1 and A2 is weakly
dominated by all strategies in some TB . Thus the value of the game is the same
as the value of the smaller game in which the strategies of Eloise are restricted to
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those in the sets TB . All the strategies in the same set TB are payoff equivalent
for Eloise. Thus we can further reduce the game to a smaller one in which the
strategies of Eloise are limited to one arbitrarily chosen member (h, k)B from
each TB . Let collect all of them into the class TB.

We now compute the value of the game. Let μ be the uniform probability
distribution with support TB and ν the uniform probability distribution with
support SM . We claim that the pair (μ, ν) is an equilibrium with value m/n.

First we observe that

U∃(μ, ν) =
∑

s∈SM

∑
B∈B

ν(s)μ((h, k)B)u∃((h, k)B , s) =
∑

B∈Bs
ν((h, k)B)

where Bs = {B ⊆ B : s ∈ B} , for any s ∈ SM .
Second observe that

∑
B∈Bs

ν((h, k)B) denotes the probability m/n that a
randomly drawn set B of m objects contains s.

Our analysis of the Lewis games can be stated in the form of the following
theorem.

Theorem [4]. Let M = (M,SM , ΣM , RM ) be a structure as specified earlier,
0 ≤ m < n be integers and q = m/n. The sentence ϕsig has the value q on
the structure M.

One remark is in order. Our earlier fact established the indeterminacy of ϕsig in
every model with at least three elements (0 < m < n). But we noticed earlier
that when m = 0 then ϕsig is false, hence its value is 0 in conformity with the
statement of the theorem.

9 Strategic IF Games Realize All Rationals

We aim to show that the expressive power of IF logic under the equilibrium
semantics is independent from the threshold operator ε, roughly in the sense
that if ε, ε′ are rational numbers (satisfying some constraints), then for every IF
sentence ϕ there is another IF sentence ϕ′ in the same vocabulary such that for
all models M, ϕ has the value ε on M iff ϕ′ has the value ε′ on M. For this we
need to consider another proof of the fact that IF logic realize all rationals. This
result will turn ut to be important for some complexity results.

Theorem [48]. Let 0 ≤ m < n be integers and q = m/n. There exists an IF
sentence that has value q on every model with at least two elements.

Proof. The IF sentence ϕrat used to prove this theorem is in the empty vocab-
ulary but varies with the numbers m and n:

∀x1(∀x2/ {x1}) . . . (∀xm/ {x1, . . . , xm−1})(∃y/{x1, . . . , xm})[β1 ∨ β2 ∨ β3]

where β1 is
∨

i∈{1,...,m}

∨

j∈{1,...,m}−{i}
xi = xj
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β2 is
∨

i∈{1,...,m}

∧

j∈{1,...,n}
xi �= cj

and β3 is
∨

i∈{1,...,m}
xi = y.

This sentence describes the following game, where M is is a finite set con-
sisting of at least n elements and C is a subset of M of cardinality n (whose
elements are named by the constants cj) :

– Abelard picks up m elements from the universe.
– Eloise picks up one element without knowing the elements chosen by Abelard.
– Eloise wins if: (a) Abelard chose twice the same element; or (b) Abelard chose

an element outside the set C = {c1, . . . , cn}; or (c) Eloise chose one of the
elements chosen by Abelard.

The first two conditions force Abelard to choose m distinct objects from C.
This game is resolved in very much the same way as we resolved the Lewis

signaling game G(M, ϕsig). Note first that any strategy of Eloise that chooses c
from outside C is weakly dominated by every strategy that chooses from C. So
we reduce the game to the smaller one in which the set of strategies of Eloise is
C. Let B = {B ⊆ C and | B |= m} and TB be the set of strategies of Abelard
that pick the objects in B in any order. All the strategies in the same TB are
payoff equivalent. Any strategy that is not in some set TB violates one of the
conditions (a) and (b) (or both) and will result in a loss for Abelard. Every such
strategy is weakly dominated by a strategy in some TB . Pick up arbitrarily one
strategy τB from each set TB . Collect all of them into a set T ∗. We reduce the
game to the smaller one in which Abelard chooses from T ∗. Let μ be a uniform
mixed strategy with support C and ν a uniform mixed strategy with support T ∗.
We claim that (μ, ν) is an equilibrium with value m/n. As in the Lewis signaling
game, we observe that

U∃(μ, ν) =
∑

c∈C

∑
B∈B

μ(c)ν(τB)u∃(c, τB) =
∑

B∈Bc
ν(τB)

where Bc = {B ⊆ B : c ∈ B} , for any c ∈ C. The expression
∑

B∈Bc
ν(τB) denotes

the probability m/n that a randomly drawn set B of m objects contains c.
The proof has assumed that | M |≥ n and that we have available n distinct

objects at our disposal. In [48] it is shown that we can drop both assumptions
so that at the end we need only two dedicated letters which can also be chosen
by Eloise.

Notice that the sentence produced by this theorem varies with the numbers
m and n. In the previous theorem we showed that there is a single IF sentence
which, for every m,n such that 0 ≤ m ≤ n, it gets value q = m/n. The result of
the present theorem has been also proved independently in [20].

In the next result we use the “rationals game” to obtain new IF games with
a desired value.
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Proposition [48]. Let ϕ be an arbitrary IF sentence and let 0 ≤ q ≤ 1 be a
rational number. Then
1. There is an IF sentence ψ such that for every structure M we have:

V (Γ ′) = q + (1 − q)V (Γ ).
2. There is an IF sentence ψ such that for every structure M we have:

V (Γ ′) = qV (Γ ).
where Γ is the strategic game Γ (M, ϕ) and Γ ′ = Γ (M, ψ).

Proof. Let v = V (Γ ). Consider the following variation of the “rationals” game.
We let the play from the last theorem be played (on M) until all the quanti-
fiers moves have been handled. Then Eloise is shown all objects which have
been chosen so far, and she is offered a choice between: (a) continuing to
play that game to the end, or, (b) playing instead the game of ϕ on M.
Notice that in any play of the game, either the selected assignment satisfies
γ = β1∨β2∨β3 in which case Eloise will get payoff 1 by choosing (a). Or the
selected assignment makes γ false in which case Eloise would get payoff 0 if
she chose (a). So if the first alternative occurs, let Eloise choose (a) and get
payoff 1. If the second alternative occurs, let her choose (b) and get payoff v.
By the reasoning of the previous theorem, Eloise will get payoff 1 in q cases,
and payoff v in (1 − q) cases. Hence the value of this game is q + (1 − q)v.
The IF sentence ψ we are looking for is

∀x1(∀x2/ {x1}) . . . (∀xm/ {x1, . . . , xm−1})(∃y/{x1, . . . , xm}) {[β1 ∨ β2 ∨ β3] ∨ φ}

(2) is proved in the same way using the IF sentence

∀x1(∀x2/ {x1}) . . . (∀xm/ {x1, . . . , xm−1})(∃y/{x1, . . . , xm}) {[β1 ∨ β2 ∨ β3] ∧ φ} .

Theorem [48]. Let 0 < ε, ε′ ≤ 1 be rationals such that if ε′ is 1 then ε = 1.
Then for every IF sentence ϕ in the vocabulary L there is an IF sentence ψ
in the same vocabulary such that for every L-model M, ϕ has the value ε on
M iff ψ has the value ε′ on M.

Proof. There are two cases. For the case ε < ε′ ≤ 1 we let q be the rational
ε′−ε/1−ε. By the previous Proposition (1) we know there is an IF sentence
in the same vocabulary for which for every model M we have: V (Γ ′) =
q + (1 − q)V (Γ ). An elementary algebraic argument shows that M |=ε ϕ iff
M |=ε′ ψ. For the case ε > ε′ it is enough to take q = ε′

/ε.

9.1 Complexity of Finding Equilibria

The satisfaction relation |=ε between IF sentences ϕ and finite models M intro-
duces a new form of definability: we let

Modε(ϕ) = {M : M |=ε ϕ}
and IFε to be the class of all Modε(ϕ) where ϕ is an IF sentence.
In the classical framework in which a logic is associated with the class Str(ϕ)

of models in which a sentence ϕ is true, Fagin has shown that NP = Σ1
1 , that is,
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every NP-solvable problem is definable in Σ1
1 and conversely, every Σ1

1 -definable
property is solvable in NP. Here Σ1

1 denotes the existential subfragment of
second-order logic.

The previous results give a lower bound for IFε.

Fact. [48] Let 0 < ε ≤ 1 be rational. Then NP ⊆ IFε.

Proof. The result NP = IF1 follows from Fagin’s result mentioned above
together with the fact that Σ1

1 coincides in expressive power with IF logic
and our earlier proposition to the effect that M |=+

GTS ϕ iff M |=1 ϕ on
any finite model M. To show that NP ⊆ IFε for any ε satisfying the above
constraints, it is enough to show that for every Mod1(ϕ) ∈ IF1 there is a
Modε(ϕ′) ∈ IFε such that Mod1(ϕ) = Modε(ϕ′). This is implied by our last
theorem.

For an upper bound, see [42, Sect. 7].

10 Monty Hall

10.1 Formulation of the Problem

There are various formulations of the problem. Here is one of them:

Suppose you are on a Monty Hall’s Let’s Make a Deal ! You are given
the choice of three doors, behind one door is a car, the others goats. You
pick up a door, say 1, Monty Hall opens another door, say 3, which has
a goat. Monty says to you “Do you want to pick door 2?” Is it to your
advantage to switch your choice of doors? [24, Example 4.6, p. 136],

This formulation should be compared to the following one:

We say that C is using the “stay” strategy if she picks a door, and, if
offered a chance to switch to another door, declines to do so (i.e., he stays
with his original choice). Similarly, we say that C is using the “switch”
strategy if he picks a door, and, if offered a chance to switch to another
door, takes the offer. Now suppose that C decides in advance to play
the “stay” strategy. Her only action in this case is to pick a door (and
decline an invitation to switch, if one is offered). What is the probability
that she wins a car? The same question can be asked about the “switch”
strategy (Idem, p. 137).

Grinstead and Snell [24] remark that the first formulation of the problem “asks
for the conditional probability that C wins if she switches doors, given that she
has chosen door 1 and that Monty Hall has chosen door 3” whereas the second
formulation is about the comparative probabilities of two kinds of strategies for
C, the “switch” strategy and the “stay” strategy:
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Using the “stay” strategy, a contestant will win the car with probability
1/3, since 1/3 of the time the door he picks will have the car behind it.
On the other hand, if C plays the “switch” strategy, then he will win
whenever the door he originally picked does not have the car behind it,
which happens 2/3 of the time (Idem, p. 137).

A similar formulation of the general problem and its solution may be found also
in [36].

10.2 Solution: Conditional Probabilities

We give the solution to the first formulation of the problem as described in [24].
It is formulated in terms of trees and it is easily comparable the other two
approaches we will be considering. Here is the tree that represents all the possible
sequences of choices of MH and C (Fig. 4):

Fig. 4. The Monty Hall problem
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Each maximal branch has the form (x, y, z), where x stands for the door
where the prize is hidden, y for the door chosen be C, and z for the door open
by MH. From the description of the game it is clear that if x = y, then z takes
two possible values; and if x �= y, then z can take only one value. Thus there are
all in all 12 maximal branches. In this setting the event D1 of the prize being
hidden behind door 1 is to be identified with the subtree (set) consisting of the
histories:

O1 = (1, 1, 2)
O2 = (1, 1, 3)
O3 = (1, 2, 3)
O4 = (1, 3, 2).

It is assumed that the events of the car being hidden behind door 1, door 2, and
door 3 are equiprobable and so are the events of C’s choosing door 1, door 2,
or door 3. Likewise, it is reasonable to assume that whenever Monty Hall has a
choice to open one of two doors, the two events are equiprobable; and when he
can open only one door, the probability is 1. Thus

P (O1) = 1/3 × 1/3 × 1/2 = 1/18
P (O2) = 1/3 × 1/3 × 1/2 = 1/18
P (O3) = 1/3 × 1/3 × 1 = 1/9
P (O4) = 1/3 × 1/3 × 1 = 1/9.

Similarly for all the other branches in the tree.
Now the original puzzle concerns only the event in which C chooses door 1,

and MH opens door 3. The event of C choosing door 1 consists of the histories:

O1 = (1, 1, 2)
O2 = (1, 1, 3)
O5 = (2, 1, 3)
O9 = (3, 1, 2).

The event of MH opening door 3 consists of the histories:

O2 = (1, 1, 3)
O3 = (1, 2, 3)
O5 = (2, 1, 3)
O7 = (2, 2, 3)

Let us denote by B the event in which C chooses door 1, and MH opens door 3.
It consists of the intersection of the two events listed above, that is, the set of
histories histories O5 and O2. Here is a list of our abbreviations:

B for “C chooses door 1 and Monty Hall opens door 3”
D1 for “the prize is behind Door 1”
D2 for “the prize is behind Door 2”
D3 for “the prize is behind Door 3”.
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We can check that P (O5) = 1/19 and P (O2) = 1/18. Hence

P (B) = P ({O2, O5}) = P (O2) + P (O5) = 1/6.

We are now in a position to compute the conditional probabilities. We apply
Bayes’ law which says that the probability of an event A conditional on an event
E is the probability of the event A and E divided by the probability of the event
E. In our case this means:

P (D1/B) = P (O2)/P (B) = 1/18/1/6 = 1/3
P (D2/B) = P (O5)/P (B) = 1/9/1/6 = 2/3.

Thus the answer to the original question is: Yes, it is in C’s interest to switch
doors.

10.3 Product Updates and Dynamic Logic

Information models for groups of agents G are Kripke structures M consisting
of a universe W of possible worlds and equivalence relations Ri between these
worlds which indicate the uncertainty of agents i ∈ G. The language contains
an epistemic operator Ki, one for each individual agent i ∈ G [18].

New information obtained through public actions such as truthful public
announcement change such models by removing all worlds from the current
model which are incompatible with the new information. The state elimination
is the simplest update procedure. Atomic facts are ‘persistent’ under update,
retaining their truth but the truth value of epistemic assertions may change
because we have to re-evaluate formulas with epistemic operators in the new
smaller models [14].

The update mechanism has two components. An epistemic multiagent model
M as described above, and an action model A consisting of the set of all actions
and the action indistinguishable relations Ai between them, one for each agent
i. Compared to the epistemic models, action models have one additional partic-
ularity: they indicate, for each action a, its precondition PREa, that is, the set
of possible worlds where a can be performed.

The product models M × A is a Kripke model whose universe is

{(s, a) : s ∈ W , a is an action in A, (M, s) � PREa}

and whose accessibility relations are obtained through the principle:

Ri(s, a)(t, b) iff both Rist (in M) and Aiab (in A).

In other words, the uncertainty among new states can only come from existing
uncertainty via indistinguishable actions.
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After these preliminaries we can turn to the particular version of Monty Hall
in which C chooses door 1 [7,38]. In the tree approach we have seen that this
version corresponds to the four branches {O1, O2, O5, O9} tree we analyzed in
the previous section. In update logic this tree is reconceptualized as a series of
product updates:

– First MH put the prize behind one of the three doors. This generates an
epistemic model M1

– M1 is then updated with C’s action a1: C chooses door 1. The result is the
product model M2

– Finally MH publicly opens some door. This updates M2 with two possible
actions, a2 (MH opens door 2), and a3 (MH opens door 3). The result is the
product model M3.

C’s and MH’s actions are governed by the following principles which determine
their preconditions:

1. C may choose any of the three doors.
2. MH can open only a door that C did not choose, and where the car is not

hidden.

Now, some of the details.
The epistemic model M1 = (W1, R

1
C , R1

MH) corresponds to the tree (Fig. 5):

Fig. 5.

Here W1 = {w1, w2, w3}, (w1 represents the world where the car is behind
door 1, etc.) and the accessibility relations are obvious: MH’s actions are acces-
sible to himself, but not to the contestant C (the dots indicate the accessibility
relations of C).

M1 is updated with the action model A1 = (V1, Q
1
C , Q1

MH), where V1 = {a1}
and the accessibility relations Q1

C and Q1
MH are V1×V1 reflecting the fact that a1

is a public action. From condition (1) we know that Pre(a1) = W . The product
model (Fig. 6)

M2 = M1 × A1 = (W2, R
2
C , R2

MH)

can be represented as the tree with three possible worlds

v1 = (w1, a1)
v2 = (w2, a1)
v3 = (w3, a1).
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Fig. 6.

All the worlds in W2 remain indistinguishable to C, i.e. R2
C = W2 × W2

whereas Monty Hall knows exactly where she is.
FinallyM2 is updated with the action model A2 = (V2, Q

2
C , Q2

MH) where
V2 = {a2, a3}, (a2: MH opens door 2, etc.) and

Q2
C = Q2

MH = {(a2, a2), (a3, a3)}.

From condition (2) we know that Pre(a2) = {v1,v3} and Pre(a3) = {v1, v2}.
The result of this update is the product model

M3 = M2 × A2 = (W3, R
3
C , R3

MH)

which can be represented as the tree (Fig. 7):

Fig. 7.
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with four possible worlds:

x = (v1, a2)
y = (v1, a3)
z = (v2, a3)
u = (v3, a2).

Given that a2 and a3 are public actions, C knows, after a2 is performed, that
she could be either in x or in u, i.e. R3

Cxu and R3
Cux (plus the corresponding

reflexivity conditions). And after a3 is performed, she knows she can be either in
y or in z, that is, R3

Cyz and R3
Czy (plus the corresponding reflexivity conditions).

Product Updates with Probabilities. We follow [7] and show how product
update models may be endowed with a probability structure.

For epistemic models M , we consider, for each agent i, the equivalence classes
Di,s = {t : Rist}. Probability functions Pi,s are then defined over the probability
space Di,s. For simplicity, it is assumed that these functions are the same for
every world in the set Di,s. We simplify matters even more in finite models and
assume that the functions Pi,s assign probabilities Pi,s(w) to single worlds w.
We can then use sums of these values to assign probabilities to propositions,
viewed as the set of worlds where they are true. Then we can interpret Pi,s(ϕ)
as assigning a probabilistic value φ. In case this value is 1, this will correspond
to the assertion Kiϕ.

Next, we assign probabilities to actions in the universe of the action models
A. This is done relatively to a state s. The basic notion is:

– Pi,s(a), the probability that the agent i assigns to action a in the world s.

In our example we assume that all this has been done in some way, giving us
agents’ probabilities for worlds, and also for actions at worlds.

In the Monty Hall problem we are interested in the last update. Given that
Monty Hall’s action of opening a door is a public one, reference to the agent i
does not matter, and we shall be concerned with probabilities functions of the
form Ps(a). We are interested in computing the relevant probabilities in the last
product model

M3 = M2 × A2 = (W3, R
3
C , R3

MH)

and in particular in the probabilities the agents assign to the possible worlds
in W3. Given that these worlds have the form (v, a), we need to compute
Pc,(v,a)(v′, b): the probability agent C assigns to the world (v′, b) in the world
(v, a). For this, we need:

– the probability Pi,v(v′) that C assigns to the world v′ in v, and
– the probability Pv′(b) assigned to the action b in the world v′.

In computing Pv′(b) we have to keep in mind that action b could have been
performed from any other world u indistinguishable (for agent C) from v. So we
also need:
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– the probabilities PC,v(u) for every u such that RCvu together with the prob-
abilities Pu(b).

To compute Pc,(v,a)(v′, b) we use the formula:

Pc,(v,a)(v′, b) =
Pi,v(v′) × Pv′(b)∑

RCvu PC,v(u) × Pu(b)

Skipping over some details, we obtain as expected

PC,v1(v1) = Pc,(w1,a1)(w1, a1) = 1/3
PC,v1(v2) = Pc,(w1,a1)(w2, a1) = 1/3.

Finally we use the same formula to compute

Pc,x(y) = Pc,(v1,a3)(v1, a3) = 1/3
Pc,x(z) = Pc,(v1,a3)(v2, a3) = 2/3.

To understand where the difference lies, notice thatPc,(v1,a3)(v1, a3) is obtained
by dividing

PC,v1(v1) × Pv1(a3)

by

PC,v1(v1) × Pv1(a3) + PC,v1(v2) × Pv2(a3)

whereas Pc,(v1,a3)(v2, a3) is obtained by dividing

PC,v1(v2) × Pv2(a3)

by

PC,v1(v1) × Pv1(a3) + PC,v1(v2) × Pv2(a3).

What makes the difference is that Pv1(a3) = 1/2 and Pv2(a3) = 1.
This result tells us that the probability Pc,(v1,a3)(v2, a3) that C assigns in the

actual world (v1, a3) to the world (v2, a3) in which the car is behind door 2 is
2/3 whereas the probability Pc,(v1,a3)(v1, a3) that C assigns in the actual world
to the car being hidden behind door 1 is 1/3. So it is rational for C to switch
these two doors.

10.4 A Game-Theoretical Solution

Monty Hall as an Extensive Game of Imperfect Information. We give a
game-theoretical analysis of the puzzle [51]. For other game-theoretical solutions
the reader is referred to (http://leeps.ucsc.edu/misc/page/monty-hall-puzzle/
and Friedman, [19]). We represent the puzzle in the form of a finite win-lose
game of imperfect information played by two players. C (the counterpart of

http://leeps.ucsc.edu/misc/page/monty-hall-puzzle/
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Fig. 8. The Monty Hall problem
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Eloise) tries to identify the door with the prize whereas her opponent MH (the
counterpart of Abelard) tries to deceive her. The tree which constitutes the
extensive form of the game is identical with the tree in the previous section,
except for containing one more layer of representations (Fig. 8).

Maximal branches represent possible plays of the game, and have the form
(x, y, z, t) with a new extra term t to stand for the final choice of C.

The rules of the game dictate that z must be distinct from x and y and that t
is either y or, otherwise, it must be distinct from z. Thus the sequence (1, 1, 2, 1)
represents the possible play:

MH hides the prize behind door 1; C chooses door 1; MH opens door 2;
C chooses door 1.

Thus there are 24 plays. C wins every play in which she identifies the door which
hides the prize. MH wins the remaining ones.

The imperfect information of the game is manifest in some of its histories
being indistinguishable (equivalent). This holds only for player C. The indistin-
guishable histories are determined by the following two clauses:

C1 Any two histories (x) and (x′) are equivalent for player C.
C2 Any histories (x, y, z) and (x′, y′, z′) such that y = y′ and z = z′ are

equivalent for player C.

(C1) expresses the fact that C does not know the door where the prize is hidden
when making her first choice. And (C2) expresses the fact that she does not
know the door where the prize is hidden, when she makes her second choice.

Strategies. A strategy for player C is any function F which gives her a choice
for any history where she is to move. Thus F will give her, for every choice of x,
a value for y and for every sequence (x, y, z), a value for t. Imperfect information
will impose the following restriction (uniformity) on any strategy F :

– If the histories h and h′ are equivalent, then F (h) = F (h′).

We prefer to decompose any F into two “local” strategies, that is, two functions
f and f ′ such that f yields a value for y and f ′ yields a value for t. Given (C1),
f will be have to be a constant function, that is, a door i. Given (C2), f ′ will
take only y and z as arguments.

To conclude, player C’s set SC of strategies will consist of pairs (i, hi), where
i stands for a door and hi for a function of two arguments (y, z). A strategy (i, hi)
is winning if C wins every play where she follows it. The notion of “following a
strategy” is standard in game theory and could be given a formal definition. It
will become, however, clear from examples.

We focus on two kinds of strategies for player C.

– The “stay” strategy, SStay
C : choose a door, then stick to the initial guess no

matter what MH does.
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It is encoded by three strategy pairs, i.e.,

SStay
C = {(i, hi) : i = 1, 2, 3},

where

hi(y, z) = i

Each strategy (i, hi) is followed in the play

(x, i, z, hi(i, z))

for any x and z. It is winning whenever C’s initial guess is correct (i.e., i = x)
and losing, otherwise. Obviously none of these strategies is winning simpliciter
(i.e., against any move of the opponent).

– The “switch” strategy, SSwitch
C : choose a door, and then after MH opens a

door, switch doors.

Thus

SSwitch
C = {(1, f1), (2, f2), (3, f3)}

where

f1(1, 2) = 3f1(1, 3) = 2
f2(2, 3) = 1f2(2, 1) = 3
f3(3, 2) = 1f3(3, 1) = 2 .

Each of the three strategies wins in two cases in which the initial choice is
incorrect, i �= x, and loses in the remaining case.

MH’s strategies consists also of pairs (j, g): the first corresponds to a value
for x; the function g associates to each argument (x, y) a value for z.

The only strategy available to MH (given the rules of the game) is: “hide the
prize behind a door, and after C chooses a door, open any other door”. Thus
SMH is encoded by the following strategy pairs:

(1, g1) : g1(1, 1) = 2 g1(1, 2) = 3 g1(1, 3) = 2
(1, g

′
1) : g

′
1(1, 1) = 3 g

′
1(1, 2) = 3 g

′
1(1, 3) = 2

(2, g2) : g2(2, 1) = 3 g2(2, 2) = 1 g2(2, 3) = 1
(2, g

′
2) : g

′
2(2, 1) = 3 g

′
2(2, 2) = 3 g

′
2(2, 3) = 1

(3, g3) : g3(3, 1) = 2 g3(3, 2) = 1 g3(3, 3) = 1
(3, g

′
3) : g

′
3(3, 1) = 2 g

′
3(3, 2) = 1 g

′
3(3, 3) = 2

Each of the strategy pair (j, gj) is followed in every play of the form

(j, y, gj(j, y), t)
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for any y and t. It is winning whenever j �= t and losing otherwise. None of these
strategies is winning simpliciter.

The Monty Hall game is indeterminate: this should come as no surprise, for
imperfect information often introduces indeterminacy in games. To resolve it,
we apply the same technique as above by moving to the strategic form of the
game. Afterwards we find an equilibrium in mixed strategies.

Whenever MH follows one of his strategies in SMH , and C follows one of her
strategies in SC , a play of the extensive game is generated which is a win for
either one of the players. For instance, when MH follows (3, g3) and C follows
(1, h1), the result is the play (3, 1, 2, 1) which is a win for MH.

The following table registers the payoffs of the players for all the strategy
pairs the players might play:

(1, g1) (1, g
′
1) (2, g2) (2, g

′
2) (3, g3) (3, g

′
3)

(1, h1) (1, 0) (1, 0) (0, 1) (0, 1) (0, 1) (0, 1)
(2, h2) (0, 1) (0, 1) (1, 0) (1, 0) (0, 1) (0, 1)
(3, h3) (0, 1) (0, 1) (0, 1) (0, 1) (1, 0) (1, 0)
(1, f1) (0, 1) (0, 1) (1, 0) (1, 0) (1, 0) (1, 0)
(2, f2) (1, 0) (1, 0) (0, 1) (0, 1) (1, 0) (1, 0)
(3, f3) (1, 0) (1, 0) (1, 0) (1, 0) (0, 1) (0, 1)

This matrix is nothing else but the Monty Hall puzzle represented as a finite,
two players, win-loss strategic game

ΓMH = (SC , SMH , uC , uMH)

where uMH and uC are the payoffs of the two players as depicted in the matrix.
We notice that each strategy (i, hi) is weakly dominated by some strategy (j, fj),
and that the strategies (i, g

′
i) and (i, gi) are payoff equivalent for Abelard. We

apply the last two propositions of the sect. 7.2 and reduce the game to the smaller
one:

(1, g1) (2, g2) (3, g3)
(1, f1) (0, 1) (1, 0) (1, 0)
(2, f2) (1, 0) (0, 1) (1, 0)
(3, f3) (1, 0) (1, 0) (0, 1)

Let μ be the uniform probability distribution μ(1, fi) =
1
3

and ν the uniform

probability distribution ν(j, gj) =
1
3
. It is straightforward to check that this is

an equilibrium using the Proposition in Sect. 7.3. The expected utility of player
C for this equilibrium is 2/3.

Notice that μ assigns an equal probability to each of the pure strategies which
implement the “switch” strategy. The important thing is not that it returns to
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player C an expected utility of 2/3 but rather that it weakly dominates the “stay”
strategy. If we want to compute the expected utility returned to C by the latter
strategy, we should return to the bigger game in the above table where both
the “switch” and the “stay” strategies are listed. We know that the value of the
game described in the table is the same as that delivered by the equilibrium
pair (μ, ν). In the game of the table, let ν∗ be the same as ν, and let μ∗ be

the probability distribution such that: μ∗(i, fi) =
1
3

and μ∗(i, hi) = 0. The pair

(μ∗, ν∗) is an equilibrium in this larger game. We compute Up((i, hi), ν∗):

Up((i, hi), ν∗) =
∑

tau∈SMH

ν∗(τ)up((i, hi), t) = 2 × 1
6

× 1 =
1
3

In other words, the “stay” strategy returns an expected utility of
1
3
.

Monty Hall in IF Logic. The Monty Hall game is expressed in IF logic by
the sentence

∀x(∃y/{x})∀z[x �= z ∧ y �= z → (∃t/{x})x = t]

or equivalently by the sentence ϕMH

∀x(∃y/{x})∀z[x = z ∨ y = z ∨ (∃t/{x})x = t].

We can think of the Contestant, C, as the existential quantifier and disjunc-
tion, and of Monty Hall as the universal quantifier. We do not want to push the
formalization too far. The intuitive reading of our sentence should be clear: For
any door x where the prize is hidden by Monty Hall, for every door y guessed
by C, for every door z opened by Monty Hall, if z is distinct from x and from
y, then C has one more choice to identify the door where the prize is.

We can also represent explicitly the variant in which C uses the “stay” strat-
egy by the IF sentence ϕ1

MH

∀x(∃y/{x})∀z[x = z ∨ y = z ∨ (∃t/{x})(x = t ∧ t = y)]

as well as the variant in which C uses the “switch” strategy by ϕ2
MH

∀x(∃y/{x})∀z[x = z ∨ y = z ∨ (∃t/{x})(x = t ∧ t �= y)].

Under the equilibrium semantics the value of ϕ1
MH turns out to be 1/3 and

that of ϕ2
MH turns out to be 2/3. We have thus recovered in IF logic both Isaacs’s

and Grinstead and Snell’s solution to the general version of the puzzle expressed
in the earlier quotation. Still the game-theoretical conceptualization of the puzzle
and its representation as ϕMH goes beyond their analysis. It is a “qualitative
solution”: the “switch” weakly dominates the “stay” strategy.

We take stock. The updated account gave the same solution to the Monty
Hall problem as the classical account based on conditional probabilities. Both
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approaches conditionalize, the former on actions, the second on propositions and
yield two posterior probabilities. I take both approaches to provide a solution to a
particular, local, decision theoretical problem, that of explaining why a particular
action is more rational than another in certain particular circumstances. The
reader is referred to [7] for the differences between the two approaches.

I take the game-theoretical account to provide an explanation to a general,
global problem: why it is rational for an agent to play one strategy against
another. The relevant notion of rationality is game - not decision - theoretical:
one strategy weakly dominates another. There is no need for conditionalization
and no need for prior probabilities. Velica and Sandu [51] provides a detailed
game-theoretical analysis of the puzzle and comparisons to other approaches.

11 IF Logic and Game Specification

(I am very grateful to Pietro Galliani for this section). As we saw, IF Logic
can be used to represent games (such as the Monty Hall game, or the signaling
games) and reason about their properties. From this point of view, IF Logic
can be thought of as a Game Specification Language. Indeed, the methodology
displayed in the above examples has been the following:

1. First, we selected a “target” game G0 of independent interest, such as Match-
ing Pennies, a signaling game or the Monty Hall puzzle;

2. Then we encoded this game in terms of a first-order structure M and a IF
Logic formula ϕ such that Γ (M,ϕ) = G0.

Of course, this is certainly not the only possible motivation for the study of IF
Logic; however, as one possible area of application, game specification can be
thought of as a useful testbed for the development and study of variants and
extensions of this framework. I am following closely Galliani’s suggestions here.

A first, easy observation is that a game specification language can be natu-
rally coupled with a game query language. As an example, consider the following
(extremely simple) game query language:

γ ::=WS(ϕ) | NE(ϕ) = r | NE(ϕ) = NE(ϕ) | ¬γ | γ ∨ γ

where v ranges over all variable symbols, ϕ ranges over all IF Logic sentences
and r ranges over the interval [0, 1].

The semantic conditions for the WS and NE operators are of course

– M |= WS(ϕ) if and only if the existential player has a winning strategy in
the strategic two-player game Γ (M,ϕ);

– M |= NE(ϕ) = r if and only if the Nash equilibria of the game Γ (M,ϕ) have
value r.

– M |= NE(ϕ1) = NE(ϕ2) if and only if the values of the Nash equilibria for
the games Γ (M,ϕ1) and Γ (M,ϕ2) are the same.
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Clearly, both game-theoretic semantics and equilibrium semantics can be inter-
preted in this formalism. Moreover, we can use it to describe fairly complex
statements concerning the properties of games. For example, in the Monty Hall
puzzle, the “switch” strategy is the optimal one for the contestant. This corre-
sponds precisely to the validity of the formula

NE(∀x(∃y/x)∀z(x = z ∨ y = z ∨ (∃t/x)x = t)) = NE(∀x(∃y/x)∀z(x = z ∨
y = z ∨ (∃t/x)(x = t ∧ t �= y))).

The left hand of this equality describes the Monty Hall puzzle, as before; the
right one, on the other hand, describes a solution of this puzzle. The additional
condition “t �= y” constrains Eloise’s second choice to be different from her first
one; and the fact that these two expressions have the same value means precisely
that Eloise obtains her maximum possible average payoff when she adopts this
strategy.

The “game query language” that we described is of extremely limited inter-
est, of course, and will not be examined any further in this work. What we want
to emphasize here is that IF Logic and its variants can indeed be thought of as
languages for describing games. In this spirit, we will now present a simple exten-
sion of IF Logic which allows for the specification of some interesting variants of
the games seen so far. I am talking about probabilistic quantifiers.

The idea is as follows: let M be a finite model, and let μ : M → [0, 1] be a
probability distribution over its domain. Then the quantifier μx(ϕ) corresponds
to a move in which the value of the variable x is selected according to the
distribution μ. (The same idea appears, in a different context, in [2,25,39], among
others.) It is unproblematic to extend our definition of semantic games to this
case: the resulting games are still zero-sum, but now the payoffs may be between
0 and 1, as they represent the expected outcome of the game for the players’
choices of strategies. As a simple example, consider the following variant of
ϕMP :

ϕlot = (μx)(∃y/{x})(x = t).

This formula expresses a lottery : the value of x is selected according to a fixed
distribution μ, then Eloise selects the value of y without examining the value of
x, and wins the game only if x = y. Clearly, if M has n elements and μ stands
for the uniform distribution, the value of the semantic game is still 1/n; and if
μ is not uniform, the value of the game is precisely max{μ(a) : a ∈ M} and the
optimal strategy for Eloise consists in selecting the most likely element.

So far so good. What else can we do with these probabilistic quantifiers? Let
us reconsider the signaling game sentence

ϕsig = ∀x∃z(∃y/{x})(S(x) → (Σ(z) ∧ R(y) ∧ y = x)).

In its semantic game Abelard represents the source of the signal and Eloise
represents both the encoder and the decoder of the signal. Hence, the source is
assumed to be adversarial, and to aim to cause as much difficulty as possible to
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the encoder/decoder. This form of worst-case analysis has its uses, of course; but
not all sources of data need to behave in this way. What if some of the states are
less likely, or more likely, than others? If we want to use IF Logic to modeling
signaling games in a more general setting, and to connect it to the vast amount
of work done on such topics within Information and Coding Theory, this is easily
of the first questions which we should ask.

Using probabilistic quantifiers, this variant of the signaling game may be
represented as

(μx)∃z(∃y/{x})(S(x) → (Σ(z) ∧ R(y) ∧ y = x)).

Given a model M for which SM = RM = {s1 . . . sn}, ΣM = {t1 . . . tm}, and
m < n, and given a distribution μ such that μ(a) > 0 ⇒ a ∈ {s1 . . . sn}, it is
easy to see that the value of the formula is

max

{
∑

a∈A

μ(a) : A ⊆ {s1 . . . sn}, |A| = m

}

corresponding to the strategy of the existential player in which she attempts to
encode and decode faithfully the m most likely possible states; and a special
case of this, we have that if μ(a) = 1/n for all a ∈ {s1 . . . sn}, the value of the
formula is m/n.

Finally, let us reconsider the Monty Hall game. Its analysis in terms of IF
Logic represents, faithfully, the case in which Monty Hall personally chooses
where to place the prize before the start of the game; but as we said, there also
exist variants of the puzzle in which the prize is assumed to have been placed
behind each door according to a specific distribution (generally, the uniform
one). This, of course, can be modeled by the expression

(μUx)(∃y/{x})∀z[x = z ∨ y = z ∨ (∃t/{x})x = t]

As these two simple examples show, adding probabilistic quantifiers to the lan-
guage of IF Logic radically increases its potential as a game specification lan-
guage. We will not discuss this example further here; but we present it as one of
the possible avenues for the development of variants and extensions of IF Logic.

12 Some Open Problems

– IF quantifiers and natural language. The connection between IF logic and
scope phenomena in natural language has not been systematically investi-
gated. Some promising new lines are Brasoveanu and Farkas [12] who propose
a novel account of “selective” covariation (imperfect information) involving
universal quantifiers and indefinites in natural language. The authors use the
syntax of IF logic to mark the constraints on the choice of indefinites and use
a semantical mechanism that relies on sets of variable assignments.
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– Interpretation of the probabilistic values. What does it actually mean to say
that an IF sentence ϕ has the value ε on a model M? It would be worthwhile
to connect this notion to other notions which seem to belong to the same
family such as many-valued logics.

– Motivation of the framework. The way we combine logic and games is different
from the mainstream combination which brings logic in (e.g. epistemic logic) in
order to make explicit and characterize implicit assumptions about the players’
knowledge and behaviour. We use IF logic to attain greater expressive power,
for instance, to express certain games (Matching Pennies, Lewis signaling
games, Monty Hall, etc.). As in the rise of the “semantic tradition” in the old
times, we aim at finding a logical language in which games, strategies, etc.
may be precisely expressed. But once we have done that, it would be of course
desirable to derive some of the solutions to different puzzles by exploiting some
syntactical properties of the formalism.

– The relation with coordination games. (I am grateful to an anonymous ref-
eree for suggesting this.) We have provided an independence-friendly game-
theoretic formalization of Lewis’ signaling problem. There is also a well-known
game-theoretic formalization of this problem as coordination games. Is there
a deeper connection between the two? Can we associate with every coordina-
tion game an independence-friendly game the solution of which relates to the
solution of the coordination game as in the Lewis example?

– Toolkits for computing values. So far all our examples have been relatively
simple: they involve only the identity relation and/or unary predicates. The
underlying problem is that it is too hard, not only practically but also com-
putationally, to compute the values of a given IF game in a more complex
vocabulary with relation symbols with 2 or higher arity.

– Uniform strategies. In all our examples, all equilibrium strategies are uniform.
This statement cannot be generalized to arbitrary games: The games of the
formula ∀x(∃y/ {x})R(x, y) span the entire space of win-lose zero-sum two
player games, which includes games that do not have equilibria in uniform
strategies. However, it would be interesting to know whether such a theo-
rem could be proved for IF sentences with restricted vocabulary, e.g., only
sentences with the identity symbol.

– Computational aspects. Equilibria presuppose that we have a “source of ran-
domness”available. It would be interesting if we could show somehow that
this source of randomness can be used to simulate random computations. In
the computer science literature such algorithms are well known (e.g., Monte
Carlo algorithms).

– Definability results. Given a value 0 < ε < 1 and an IF sentence ϕ, what kind
of classes of models M can be defined by the property “ϕ has value ε in M”?
We have seen earlier in Sect. 9 that there are IF sentences which assume all
the values in Q as the model varies. It could be interesting to see which other
subsets of Q could be defined in this sense by an IF sentence.

– Philosophical aspects. An anonymous referee pointed out that we have not
given any justification for the selection of equilibria among strategies which
are not weakly dominated. In other words, there are no further explicit
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theoretical assumptions from which this selection principle could follow. In
standard game theory such principle codifies implicit assumptions about the
behaviour of the players. They are made explicit in epistemic game theory.
According to the referee, weak dominance is motivated by trembles, which
in turn are made explicit by lexicographic expected utility [11]. A player has
a sequence of beliefs (over the strategies of the other player). He employs
his first-order belief unless hypothetically contradicted, then his second-order
belief, etc. The union of support of these beliefs cover the entire space. I agree
that weak dominance can be made explicit but I do not think it can be jus-
tified, but this is something which requires further thought. The referee has
an interesting suggestion: one would expect Abelard (the universal quantifier)
and Eloise (the existential quantifier) to display the same kind of rationality
when they play IF games as when they play ordinary first-order games. Or, as
the referee pointed out (Sect. 4.4), first-order logic games are solvable by one
round of weak dominance. Hence weak dominance (relativized to preferences
over lotteries) should be a guiding principle in IF logic too.
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Institute of Philosophy of the Academy of Sciences of the Czech Republic, which has
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Abstract. How can one influence the behavior of others? What is a good
persuasion strategy? It is obviously of great importance to determine
what information best to provide and also how to convey it. To delin-
eate how and when manipulation of others can be successful, the first
part of this chapter reviews basic findings of decision and game theory
on models of strategic communication. But there is also a social aspect
to manipulation, concerned with determining who we should address so
as best to promote our opinion in a larger group or society as a whole.
The second half of this chapter therefore looks at a novel extension of
DeGroot’s [19] classical model of opinion dynamics that allows agents to
strategically influence some agents more than others. This side-by-side
investigation of psychological and social aspects enables us to reflect on
the general question what a good manipulation strategy is. We submit
that successful manipulation requires exploiting critical weaknesses, such
as limited capability of strategic reasoning, limited awareness, suscepti-
bility to cognitive biases or to potentially indirect social pressure.

Keywords: Pragmatic reasoning · Bounded rationality · Opinion
dynamics · Persuasion · Heuristics

You might be an artist, politician, banker, merchant, terrorist, or, what is likely
given that you are obviously reading this, a scientist. Whatever your profession
or call of heart, your career depends, whether you like it or not, in substantial
part on your success at influencing the behavior and opinions of others in ways
favorable to you (but not necessarily favorable to them). Those who aspire to be
successful manipulators face two major challenges. The first challenge is the most
fundamental and we shall call it pragmatic or one-to-one: a single manipulator
faces a single decision maker whose opinion or behavior the former seeks to
influence. The one-to-one challenge is mostly, but not exclusively, about rhetoric,
i.e., the proper use of logical arguments and other, less normatively compelling,
but perhaps even more efficiently persuasive communication strategies (e.g. [80]).
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But if manipulation is to be taken further, also a second challenge arises and
that is social or many-to-many. Supposing that we know how to exert efficient
influence, it is another issue whom to influence in a group of decision makers, so
as to efficiently propagate an opinion in a society.

This chapter deals with efficient strategies for manipulation at both levels.
This is not only relevant for aspiring master manipulators, but also for those
who would like to brace themselves for a life in a manipulative environment.
Our main conclusions are that successful manipulation requires the exploitation
of weaknesses of those to be manipulated. So in order to avoid being manipulated
against one’s own interest, it is important to be aware of the possibility of malign
manipulation and one’s own weaknesses.

The chapter is divided into two parts. The first is addressed in Sect. 1 and
deals with the pragmatic perspective. It first shows that standard models from
decision and game theory predict that usually an ideally rational decision maker
would see through any malign manipulative effort. But if this is so, there would
not be much successful manipulation, and also not many malign persuasive
attempts from other ideally rational agents. Since this verdict flies in the face of
empirical evidence, we feel forced to extend our investigation to more psycho-
logically adequate models of boundedly rational agency. Towards this end, we
review models of (i) unawareness of the game/context model, (ii) depth-limited
step-by-step reasoning, and (iii) descriptive decision theory. We suggest that it
is cognitive shortcomings of this sort that manipulators have to exploit in order
to be successful.

Whereas Sect. 1 has an overview character in that it summarizes key notions
and insights from the relevant literature, Sect. 2 seeks to explore new territory.
Following the gradient of recent interest in information dynamics in possibly
structured groups of agents (cf. [4,50,71]), we investigate a model of social opin-
ion dynamics, i.e., a model of how opinions spread and develop in a population
of agents, which also allows agents to choose whom to influence and whom
to neglect. Since the complexity of this social dimension of manipulation is
immense, the need for simple yet efficient heuristics arises. We try to delineate in
general terms what a good heuristic strategy is for social manipulation of opin-
ions. For that reason, we report on a case study simulating the behavior of four
concrete heuristics in different kinds of social interaction structures. Two inter-
esting conclusions can be drawn from this case study. Firstly, strategies that aim
at easily influenceable targets are efficient on a short time scale, while strategies
that aim at influential targets are efficient on a longer time scale. Secondly, it
helps to play a coalition strategy together with other likeminded manipulators,
in particular so as not to get into one another’s way. Taken together, these con-
clusions corroborate the general conclusion that effective social propaganda, like
one-to-one strategic manipulation, requires making strategic use of particularly
weak spots in the flow patterns of information within a society.

Another final contribution of this chapter is in what it is not about. To the
best of our knowledge, there is little systematic work in the tradition of logic
and game theory that addresses both the psychological and the social dimension
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of strategic manipulation at once. We therefore conclude the chapter with a
brief outlook at the many vexing open issues that arise when this integrative
perspective is taken seriously.

A Note on Terminology. Although the term “manipulation” usually has a nega-
tive connotation, we frequently use it here more broadly to include cases where
the target of manipulation might benefit from being manipulated as well, or
is at least indifferent. We consider any act of purpose-driven act of influenc-
ing another agent or group of agents as a manipulative act irrespective of any
potential conflicts of interest. Still, the main challenge, especially from the prag-
matic perspective, is how to be able to manipulate agents against their own
self-interests.

When we speak of a “strategy” here, what we have in mind is mostly a
very loose and general notion, much like the use of the word “strategy” in non-
technical English, when employed by speakers merrily uninterested in any geeky
meaning contrast between “strategy” and “tactic”. When we talk about a “good
strategy”, we mean a communication strategy that influences other agents to act,
or have an opinion, in accordance with the manipulator’s preferences. This notion
of communication strategy is different from the one used in other contributions
to this volume.

Within game theory, the standard notion of a strategy is that of a full con-
tingency plan that specifies at the beginning of a game which action an agent
chooses whenever she might be called to act. When we discuss strategies of
games in Sect. 1 as a formal specification of an agent’s behavior, we do also
use the term in this specific technical sense. In general, however, we talk about
strategic manipulation from a more God’s-eye point of view, referring to a good
strategy as what is a good general principle which, if realized in a concrete sit-
uation, would give rise to a “strategy” in the formal, game-theoretic sense of
the term.

1 Pragmatic Aspects of Persuasion and Manipulation

The pragmatic dimension of persuasion and manipulation chiefly concerns the
use of language. Persuasive communication of this kind is studied in rhetoric,
argumentation theory, politics, law, and marketing (cf. [80]). But more recently
also pragmatics, the linguistic theory of language use, has turned its eye towards
persuasive communication, especially in the form of game-theoretic pragmatics.
This is a very welcome development, for two main reasons. Firstly, persuasive
communication can learn from pragmatics: a widely used misleading device in
advertisements—a paradigmatic example of persuasion—is false implication (e.g.
[44]). A certain quality is claimed for the product without explicitly asserting its
uniqueness, with the intention to make you assume that only that product has
the relevant quality. Persuasion by false implication is reminiscent of conversa-
tional implicature, a central notion studied in linguistic pragmatics (e.g. [48]).
Secondly, the study of persuasive communication should really be a natural part
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of linguistic pragmatics. The only reason why persuasion has been neglected for
long is due to the fact that the prevalent theory of language use in linguistics
is based on the Gricean assumption of cooperativity [34]. Though game theory
can formalize Gricean pragmatics, its analysis of strategic persuasive communi-
cation is suitable for non-cooperative situations as well. Indeed, game theory is
the natural framework for studying strategic manipulative communication.

To show this, the following Sects. 1.1 and 1.2 introduce the main setup of
decision and game-theoretic models of one-to-one communication. Unfortunately,
as we will see presently, standard game theory counterintuitively predicts that
successful manipulation is rare if not impossible. This is because ideally ratio-
nal agents would basically see through attempts of manipulation. Hence ideally
rational manipulators would not even try to exert malign influence. In reac-
tion to this counterintuitive predicament, Sect. 1.3 looks at a number of models
in which some seemingly unrealistic assumptions of idealized rational agency
are levelled. In particular, we briefly cover models of (i) language use among
agents who are possibly unaware of relevant details of the decision-making con-
text, (ii) language use among agents who are limited in their depth of strategic
thinking, and (iii) the impact that certain surprising features and biases of our
cognitive makeup, such as framing effects [45], have on decision making.

1.1 Decisions and Information Flow

On first thought it may seem that it is always helpful to provide truthful informa-
tion and mischievous to lie. But this first impression is easily seen to be wrong.
For one thing, it can sometimes be helpful to lie. For another, providing truthful
but incomplete information can sometimes be harmful.

Here is a concrete example that shows this. Suppose that our decision maker
is confronted with the decision problem whether to choose action a1 or a2 , while
uncertain which of the states t1 , . . . , t6 is actual:

U(ai , tj ) t1 t2 t3 t4 t5 t6
a1 -1 1 3 7 -1 1
a2 2 2 2 2 2 2

By definition, rational decision makers choose their actions so as to maximize
their expected utility. So, if a rational agent considers each state equally prob-
able, it is predicted that he will choose a2 because that has a higher expected
utility than a1 ; namely, a2 gives a sure outcome of 2, but a1 only gives an
expected utility of 5/3 = 1/6 × ∑

iu(a1 , ti). If t1 is the actual state, the decision
maker has made the right decision. This is not the case, however, if, for instance,
t3 were the actual state. It is now helpful for the decision maker to receive the
false information that t4 is the actual state: falsely believing that t4 is actual,
the decision maker would choose the action which is in fact best in the actual
state t3 . And of course, we all make occasional use of white lies: communicating
something that is false in the interest of tact or politeness.

Another possibility is providing truthful but misleading information. Sup-
pose that the agent receives the information that states t5 and t6 are not the
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case. After updating her information state (i.e., probability function) by stan-
dard conditionalization, rationality now dictates our decision maker to choose
a1 because that now has the highest expected utility: 5/2 versus 2. Although
a1 was perhaps the most rational action to choose given the decision maker’s
uncertainty, he still made the wrong decision if it turns out that t1 is the actual
state. One can conclude that receiving truthful information is not always helpful,
and can sometimes even hurt.

Communication helps to disseminate information. In many cases, receiving
truthful information is helpful: it allows one to make a better informed deci-
sion. But we have just seen that getting truthful information can be harmful as
well, at least when it is partial information. As a consequence, there is room for
malign manipulation even with the strategic dissemination of truthful informa-
tion, unless the decision maker would realize the potentially intended deception.
Suppose, for instance, that the manipulator prefers the decision maker to per-
form a1 instead of a2 , independently of which state actually holds. If the decision
maker and the manipulator are both ideally rational, the informer will realize
that it doesn’t make sense to provide, say, information {t1 , t2 , t3 , t4} with mis-
leading intention, because the decision maker won’t fall for this and will consider
information to be incredible. A new question comes up: how much can an agent
credibly communicate in a situation like that above? This type of question is
studied by economists making use of signaling games.

1.2 Signaling Games and Credible Communication

Signaling games are the perhaps simplest non-trivial game-theoretic models of
language use. They were invented by David Lewis to study the emergence of
conventional semantic meaning [49]. For reasons of exposition, we first look at
Lewisean signaling games where messages do not have a previously given con-
ventional meaning, but then zoom in on the case where a commonly known
conventional language exists.

A signaling game proceeds as follows. A sender S observes the actual state of
the world t ∈ T and chooses a message m from a set of alternatives M . In turn,
R observes the sent message and chooses an action a from a given set A. The
payoffs for both S and R depend in general on the state t, the sent message m
and the action a chosen by the receiver. Formally, a signaling game is a tuple
〈{S,R} , T,Pr,M,A,US ,UR〉 where Pr ∈ Δ(T ) is a probability distribution over
T capturing the receiver’s prior beliefs about which state is actual, and US ,R :
M × A × T → R are utility functions for both sender and receiver. We speak of
a cheap-talk game, if message use does not influence utilities.1

It is clear to see that a signaling game embeds a classical decision problem,
such as discussed in the previous section. The receiver is the decision maker
and the sender is the manipulator. It is these structures that help us to study
manipulation strategies and assess their success probabilities.
1 For simplicity we assume that T , M and A are finite non-empty sets, and that

Pr(t) > 0 for all t ∈ T .
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To specify player behavior, we define the notion of a strategy. (This is now
a technical use of the term, in line with the remarks above). A sender strategy
σ ∈ MT is modelled as a function from states to messages. Likewise, a receiver
strategy ρ ∈ AM is a function from messages to actions. The strategy pair 〈σ∗, ρ∗〉
is an equilibrium if neither player can do any better by unilateral deviation. More
technically, 〈σ∗, ρ∗〉 is a Nash equilibrium iff for all t ∈ T :

(i) US (t, σ∗(t), ρ∗(σ∗(t))) ≥ US (t, σ(t), ρ∗(σ(t))) for all σ ∈ MT , and
(ii) UR(t, σ∗(t), ρ∗(σ∗(t))) ≥ UR(t, σ∗(t), ρ(σ∗(t))) for all ρ ∈ AM .

A signaling game typically has many equilibria. Suppose we limit ourselves to
a cooperative signaling game with only two states T = {t1 , t2} that are equally
probable Pr(t1 ) = Pr(t2 ), two messages M = {m1 ,m2}, and two actions A =
{a1 , a2}, and where U(ti ,mj , ak ) = 1 if i = k, and 0 otherwise, for both sender
and receiver. In that case the following combination of strategies is obviously a
Nash equilibrium:2

(1)

State Message Action

t1 � m1

�

a1

t2 � m2

�

a2

The following combination of strategies is an equally good equilibrium:

(2)

State Message Action

t1 ���������

m1

���������
a1

t2 ���������
m2

��������� a2

In both situations, the equilibria make real communication possible. Unfor-
tunately, there are also Nash equilibria where nothing is communicated about
the actual state of affairs. In case the sender’s prior probability of t2 exceeds
that of t1 , for instance, the following combination is also a Nash equilibrium:

(3)

State Message Action

t1 � m1

�

a1

t2 ���������
m2

��������� a2

Until now we assumed that messages don’t have an a priori given conven-
tional language is already in place that can be used or abused by speakers to
influence their hearers for better or worse? Formally, we model this by a semantic
denotation function [[·]] : M → P(T ) such that t ∈ [[m]] iff m is true in t.3

2 Arrows from states to messages depict sender strategies; arrows from messages to
actions depict receiver strategies.

3 We assume for simplicity that for each state t there is at least one message m which
is true in that state; and that no message is contradictory, i.e., there is no m for
which [[m]] = ∅.
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Assuming that messages have a conventional meaning can help filter out
unreasonable equilibria. In seminal early work, Farrell [22] (the paper goes back
to at least 1984) proposed to refine the equilibrium set for cheap-talk signaling
games by a notion of message credibility, requiring that R believe what S says
if it is in S’s interest to speak the truth (cf. [23]). Farrell’s solution is rather
technical and can be criticized for being unrealistic, but his general idea has
been picked up and refined in many subsequent contributions, as we will also
see below (cf. [28,52,58,67,76,81]). Essentially, Farrell assumed that the set of
available messages is infinite and expressively rich: for any given reference equi-
librium and every subset X ⊆ T of states, there is always a message mX with
[[mX ]] = X that is not used in that equilibrium.4 Such an unused message m
is called a credible neologism if, roughly speaking, it can overturn a given refer-
ence equilibrium. Concretely, take an equilibrium 〈σ∗, ρ∗〉, and let US

∗(t) be the
equilibrium payoff of type t for the sender. The types in [[m]] can send a credible
neologism iff [[m]] = {t ∈ T : US (t, BR([[m]])) > US

∗(t)}, where BR([[m]]) is R’s
(assumed unique, for simplicity) optimal response to the prior distribution con-
ditioned on [[m]]. If R interprets a credible neologism literally, then some types
would send the neologism and destroy the candidate equilibrium. A neologism
proof equilibrium is an equilibrium for which no subset of T can send a credible
neologism. For example, the previous two fully revealing equilibrias in (1) and
(2) are neologism proof, but the pooling equilibrium in (3) is not: there is a
message m∗ with [[m∗]] = {t2} which only t2 would prefer to send over the given
pooling equilibrium.

Farrell defined his notion of credibility in terms of a given reference equi-
librium. Yet for accounts of online pragmatic reasoning about language use, it
is not always clear where such an equilibrium should come from. In that case
another reference point for pragmatic reasoning is ready-at-hand, namely a situ-
ation without communication entirely. So another way of thinking about US

∗(t)
is just as the utility of S in t if R plays the action with the highest expected util-
ity of R’s decision problem. In this spirit, Van Rooij [69] determines the relevance
of information against the background of the decision maker’s decision problem.
Roughly speaking, the idea is that message m is relevant with respect to a deci-
sion problem if the hearer will change his action upon hearing it.5 A message is
considered credible in case it is relevant, and cannot be used misleadingly. As
an example, let’s look at the following cooperative situation:
4 This rich language assumption might be motivated by evolutionary considerations,

but is unsuitable for applications to online pragmatic reasoning about natural lan-
guage, which, arguably, is not at the same time cheap and fully expressive: some
things are more cumbersome to express than others (cf. [28]).

5 Benz [10] criticizes this and other decision-theoretic approaches, arguing for the
need to take the speaker’s perspective into account (cf. [9,11] for models where
this is done). In particular, Benz [9,10] proved that any speaker strategy aiming
at the maximization of relevance necessarily produces misleading utterances. This,
according to Benz, entails that relevance maximization alone is not sufficient to
guarantee credibility.
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(4)
U(ti , aj ) a1 a2

t1 1,1 0,0
t2 0,0 1,1

If this was just a decision problem without possibility of communication and
furthermore Pr(t2 ) > Pr(t1 ), then R would play a2 . But that would mean that
US

∗(t1 ) = 0, while US
∗(t2 ) = 1. In this scenario, message “I am of type t1” is

credible, under van Rooij’s [69] notion, but “I am of type t2” is not, because it
is not relevant. Notice that if a speaker is of type t2 , he wouldn’t say anything,
but the fact that the speaker didn’t say anything, if taken into account, must
be interpreted as S being of type t2 (because otherwise S would have said “I
am t1”). Assuming that saying nothing is saying the trivial proposition, R can
conclude something more from some messages than is literally expressed. This
is not unlike conversational implicatures [34].

So far we have seen that if preferences are aligned, a notion of credibility helps
predict successful communication in a natural way. What about circumstances
where this ideal condition is not satisfied? Look at the following table:

(5)
U(ti , aj ) a1 a2

t1 1,1 0,0
t2 1,0 0,1

In this case, both types of S want R to play a1 and R would do so, in case he
believed that S is of type t1 . However, R will not believe S’s message “I am of
type t1”, because if S is of type t2 she still wants R to believe that she is of
type t1 , and thus wants to mislead the receiver. Credible communication is not
possible now. More in general, it can be shown that costless messages with a
pre-existing meaning can be used to credibly transmit information only if it is
known by the receiver that it is in the sender’s interest to speak the truth.6 If
communicative manipulation is predicted to be possible at all, its successful use
is predicted to be highly restricted.

We also must acknowledge that a proper notion of messages credibility is more
complicated than indicated so far. Essentially, Farrell’s notion and the slight
amendment we introduced above use a forward induction argument to show
that agents can talk themselves out of an equilibrium (cf. [18,75] for accessible
discussions of forward induction). But it seems we didn’t go far enough. To show
this, consider the following game where states are again assumed equiprobable:

(6)

U(ti , aj ) a1 a2 a3 a4

t1 10,5 0,0 1,4.1 -1,3
t2 0,0 10,5 1,4.1 -1,3
t3 0,0 0,0 1,4.1 -1,6

6 The most relevant game-theoretic contributions are by Farrell [21,22], Rabin [67],
Matthews [52], and Zapater [81]. More recently, this topic has been reconsidered
from a more linguistic point of view, e.g., by Stalnaker [76], Franke [28] and Franke,
de Jager and van Rooij [31].
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Let’s suppose again that we start with a situation with only the decision problem
and no communication. In this case, R responds with a3 . According to Farrell,
this gives rise to two credible announcements: “I am of type t1” and “I am of
type t2”, with the obvious best responses. This is because both types t1 and
t2 can profit from having these true messages believed: a credulous receiver will
answer with actions a1 and a2 respectively. A speaker of type t3 cannot make
a credible statement, because revealing her identity would only lead to a payoff
strictly worse than what she obtains if R plays a3 . Consequently, R should
respond to no message with the same action as he did before, i.e., a3 . But once
R realizes that S could have made the other statements credibly, but didn’t, she
will realize that the speaker must have been of type t3 and will respond with
a4 , and not with a3 . What this shows is that to account for the credibility of
a message, one needs to think of higher levels of strategic sophistication. This
also suggests that if either R or S do not believe in common belief in rationality,
then misleading communication might again be possible. This is indeed what we
will come back to presently in Sect. 1.3.

But before turning to that, we should address one more general case. Suppose
we assume that messages not only have a semantic meaning, but that speakers
also obey Grice’s Maxim of Quality and do not assert falsehoods [34].7 Do we
predict more communication now? Milgrom and Roberts [55] demonstrate that
in such cases it is best for the decision maker to “assume the worst” about what
S reports and that S has omitted information that would be useful. Milgrom
and Roberts [55] show that the optimal equilibrium strategy will always be the
sceptical posture. In this situation, S will know that, unless the decision maker
is told everything, the decision maker will take a stance against both his own
interests (had he had full information) and the interests of S. Given this, S
could as well reveal all she knows.8 This means that when speakers might try to
manipulate the beliefs of the decision maker by being less precise than they could
be, this won’t help because an ideally rational decision maker will see through
this attempt at manipulation. In conclusion, manipulation by communication is
impossible in this situation; a result that is very much in conflict with what we
perceive daily.9

7 It is very frequently assumed in game-theoretic models of pragmatic reasoning that
the sender is compelled to truthful signaling by the game model. This assumption
is present, for instance, in the work of Parikh [63–65], but also assumed by many
others. As long as interlocutors are cooperative in the Gricean sense, this assumption
might be innocuous enough, but, as the present considerations make clear, are too
crude a simplification when we allow conflicts of interest.

8 The argument used to prove the result is normally called the unraveling argument.
See [31] for a slightly different version.

9 Shin [73] proves a generalization of Milgrom and Robert’s result [55], claiming that
there always exists a sequential equilibrium (a strengthened notion of Nash equilib-
rium by Kreps and Wilson [46] which we have not introduced here) of the persuasion
game in which the sender’s strategy is perfectly revealing in the sense that the sender
will say exactly what he knows.
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1.3 Manipulation and Bounded Rationality

Many popular and successful theories of meaning and communicative behaviour
are based on theories of ideal reasoning and rational behavior. But there is a lot of
theoretical and experimental evidence that human beings are not perfectly ratio-
nal reasoners. Against the assumed idealism it is often held, for instance, that
we sometimes hold inconsistent beliefs, and that our decision making exhibits
systematic biases that are unexplained by the standard theory (e.g. [74,77]).
From this point of view, standard game theory is arguably based on a number
of unrealistic assumptions. We will address two of such assumptions below, and
indicate what might result if we give these up. First we will discuss the assump-
tion that the game being played is common knowledge. Then we will investigate
the implications of giving up the hypothesis that everybody is ideally rational,
and that this is common knowledge. Finally, we will discuss what happens if our
choices are systematically biased. In all three cases, we will see more room for
successful manipulation.

Unawareness of the game being played. In standard game theory it is usually
assumed that players conceptualize the game in the same way, i.e., that it is
common knowledge what game is played. But this seems like a highly ideal-
ized assumption. It is certainly the case that interlocutors occasionally operate
under quite different conceptions of the context of conversation, i.e., the ‘lan-
guage game’ they are playing. This is evidenced by misunderstandings, but also
by the way we talk: cooperative speakers must not only provide information
but also enough background to make clear how that information is relevant. To
cater for these aspects of conversation, Franke [30] uses models for games with
unawareness (cf. [25,36,39]) to give a general model for pragmatic reasoning in
situations where interlocutors may have variously diverging conceptualizations of
the context of utterance relevant to the interpretation of an utterance, different
beliefs about these conceptualizations, different beliefs about these beliefs and so
on. However, Franke [30] only discusses examples where interlocutors are well-
behaved Gricean cooperators [34] with perfectly aligned interests. Looking at
cases where this is not so, Feinberg [24,26] demonstrates that taking unaware-
ness into account also provides a new rationale for communication in case of
conflicting interests. Feinberg gives examples where communicating one’s aware-
ness of the set of actions which the decision maker can choose from might be
beneficial for both parties involved. But many other examples exist (e.g. [61]).
Here is a very simple one that nonetheless demonstrates the relevant conceptual
points.

Reconsider the basic case in (5) that we looked at previously. We have two
types of senders: t1 wants his type to be revealed, and t2 wishes to be mistaken
for a type t1 . As we saw above, the message “I am of type t1” is not credible
in this case, because a sender of type t2 would send it too. Hence, a rational
decision maker should not believe that the actual type is t1 when he hears that
message. But if the decision maker is not aware that there could be a type t2 that
might want to mislead him, then, although incredible from the point of view of a



Strategies of Persuasion, Manipulation and Propaganda 265

perfectly aware spectator, from the decision maker’s subjective point of view, the
message “I’m of type t1” is perfectly credible. The example is (almost) entirely
trivial, but the essential point nonetheless significant. If we want to mislead,
but also if we want to reliably and honestly communicate, it might be the very
best thing to do to leave the decision maker completely in the dark as to any
mischievous motivation we might pursue or, contrary to fact, might have been
pursuing.

This simple example also shows the importance of choosing, not only what to
say, but also how to say it. (We will come back to this issue in more depth below
when we look at framing effects). In the context of only two possible states, the
messages “I am of type t1” and “I am not of type t2” are equivalent. But, of
course, from a persuasion perspective they are not equally good choices. The
latter would make the decision maker aware of the type t2 , the former need not.
So although contextually equivalent in terms of their extension, the requirements
of efficient manipulation clearly favor the one over the other simply in terms of
surface form, due to their variable effects on the awareness of the decision maker.

In a similar spirit, van Rooij and Franke [70] use differences in awareness-
raising of otherwise equivalent conditionals and disjunctions to explain why there
are conditional threats (7a) and promises (7b), and also disjunctive threats (7c),
but, what is surprising from a logical point of view, no disjunctive promises (7d).

(7) a. If you don’t give me your wallet, I’ll punish you severely. threat
b. If you give me your wallet, I’ll reward you splendidly. promise
c. You will give me your wallet or I’ll punish you severely. threat
d. ? You will not give me your wallet or I’ll reward you splendidly. threat

Sentence (7d) is most naturally read as a threat by accommodating the admit-
tedly aberrant idea that the hearer has a strong aversion against a splendid
reward. If that much accommodation is impossible, the sentence is simply prag-
matically odd. The general absence of disjunctive threats like (7d) from natural
language can be explained, van Rooij and Franke [70] argue, by noting that these
are suboptimal manipulation strategies because, among other things, they raise
the possibility that the speaker does not want the hearer to perform. Although
conditional threats also might make the decision maker aware of the “wrong”
option, these can still be efficient inducements because, according to van Rooij
and Franke [70], the speaker can safely increase the stakes, by committing to
more severe levels of punishment. If the speaker would do that for disjunctive
promises, she would basically harm herself by expensive promises.

These are just a few basic examples that show how reasoning about the
possibility of subjective misconceptions of the context/game model affects what
counts as an optimal manipulative technique, but limited awareness of the con-
text model is not the only cognitive limitation that real-life manipulators may
wish to take into consideration. Limited reasoning capacity is another.

No common knowledge of rationality. A number of games can be solved by (iter-
ated) elimination of dominated strategies. If we end up with exactly one (ratio-
nalizable) strategy for each player, this strategy combination must be a Nash
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equilibrium [60]. Even though this procedure seems very appealing, it crucially
depends on a very strong epistemic assumption: common knowledge of rational-
ity; not only must every agent be ideally rational, everybody must also know of
each other that they are rational, and they must know that they know it, and so
on ad infinitum.10 However, there exists a large body of empirical evidence that
the assumption of common knowledge of rationality is highly unrealistic (cf. [13,
Chapter 5]). Is it possible to explain deception and manipulation if we give up
this assumption?

Indeed, it can be argued that whenever we do see attempted deceit in real life
we are sure to find at least a belief of the deceiver (whether justified or not) that
the agent to be deceived has some sort of limited reasoning power that makes
the deception at least conceivably successful. Some agents are more sophisticated
than others, and think further ahead. To model this, one can distinguish different
strategic types of players, often also referred to as cognitive hierarchy models
within the economics literature (e.g. [14,68]) or as iterated best response models
in game-theoretic pragmatics (e.g. [29,42,43]). A strategic type captures the
level of strategic sophistication of a player and corresponds to the number of
steps that the agent will compute in a sequence of iterated best responses. One
can start with an unstrategic level-0 players. An unstrategic level-0 hearer (a
credulous hearer), for example, takes the semantic content of the message he
receives literally, and doesn’t think about why a speaker used this message.
Obviously, such a level-0 receiver can sometimes be manipulated by a level-1
sender. But such a sender can in turn be outsmarted by a level-2 receiver, etc.
In general, a level-(k+1) player is one who plays a best response to the behavior
of a level-k player. (A best response is a rationally best reaction to a given belief
about the behavior of all other players). A fully sophisticated agent is a level-ω
player who behaves rationally given her belief in common belief in rationality.

Using such cognitive hierarchy models, Crawford [16], for instance, showed
that in case sender and/or receiver believe that there is a possibility that the
other player is less sophisticated than he is himself, deception is possible (cf.
[17]). Moreover, even sophisticated level-ω players can be deceived if they are
not sure that their opponents are level-ω players too. Crawford assumed that
messages have a specific semantic content, but did not presuppose that speakers
can only say something that is true.

Building on work of Rabin [67] and Stalnaker [76], Franke [28] offers a notion
of message credibility in terms of an iterated best response model (see also [27,
Chapter 2]). The general idea is that the conventional meaning of a message is
a strategically non-binding focal point that defines the behavior of unstrategic
level-0 players. For instance, for the simple game in (5), a level-0 receiver would
be credulous and believe that message “I am of type t2” is true and honest. But
then a level-1 sender of type t2 would exploit this näıve belief and also believe
that her deceit is successful. Only if the receiver in fact is more sophisticated
10 We are rather crudely glossing here over many interesting subtleties in the notion

of rationality and (common) belief in it. See, for instance, the contributions by
Bonanno [12], Pacuit [62] and Perea [66] to this volume.
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than that, would he see through the deception. Roughly speaking, a message
is then considered credible iff no strategic sender type would ever like to use it
falsely. In effect, this model not only provably improves on the notion of message
credibility, but also explains when deceit can be (believed to be) successful.

We can conclude that (i) it might be unnatural to assume common knowl-
edge of rationality, and (ii) by giving up this assumption, we can explain much
better why people communicate the way they do than standard game theory
can: sometimes we communicate to manipulate others on the assumption that
the others don’t see it through, i.e., that we are smarter than them (whether
this is justified or not).

Framing. As noted earlier, there exists a lot of experimental and theoretical
evidence that we do not, and even cannot, always pick our choices in the way
we should do according to the standard normative theory. In decision theory
it is standardly assumed, for instance, that preference orders are transitive and
complete. Still, already May [53] has shown that cyclic preferences were not
extraordinary (violating transitivity of the preference relation), and Luce [51]
noted that people sometimes seem to choose one alternative over another with
a given consistent probability not equal to one (violating completeness of the
preference relation). What is interesting for us is that due to the fact that peo-
ple don’t behave as rationally as the standard normative theory prescribes, it
becomes possible for smart communicators to manipulate them: to convince them
to do something that goes against their own interest. We mentioned already the
use of false implication. Perhaps better known is the money pump argument: the
fact that agents with intransitive preferences can be exploited because they are
willing to participate in a series of bets where they will lose for sure. Similarly,
manipulators make use of false analogies. According to psychologists, reasoning
by analogy is used by boundedly rational agents like us to reduce the evaluation
of new situations by comparing them with familiar ones (cf. [33]). Though nor-
mally a useful strategy, it can be exploited. There are many examples of this.
Just to take one, in an advertisement for Chanel No. 5, a bottle of the perfume is
pictured together with Nicole Kidman. The idea is that Kidman’s glamour and
beauty is transferred from her to the product. But perhaps the most common
way to influence a decision maker making use of the fact that he or she does not
choose in the prescribed way is by framing.

By necessity, a decision maker interprets her decision problem in a particular
way. A different interpretation of the same problem may sometimes lead to a
different decision. Indeed, there exists a lot of experimental evidence, that our
decision making can depend a lot on how the problem is set. In standard decision
theory it is assumed that decisions are made on the basis of information, and that
it doesn’t matter how this information is presented. It is predicted, for instance,
that it doesn’t matter whether you present this glass as being half full, or as half
empty. The fact that it sometimes does matter is called the framing effect. This
effect can be used by manipulators to present information such as to influence the
decision maker in their own advantage. An agent’s choice can be manipulated,
for instance, by the addition or deletion of other ‘irrelevant’ alternative actions
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to choose between, or by presenting the action the manipulator wants to be
chosen in the beginning of, or at multiple times in, the set of alternative actions.

Framing is possible, because we apparently do not always choose by max-
imizing utility. Choosing by maximizing expected utility, the decision maker
integrates the expected utility of an action with what he already has. Think-
ing for simplicity of utility just in terms of monetary value, it is thus predicted
that someone who starts with 100 Euros and gains 50, ends up being equally
happy as one who started out with 200 Euros and lost 50. This prediction is
obviously wrong, and the absurdity of the prediction was highlighted especially
by Kahneman and Tversky. They pointed out that decision makers think in
terms of gains and losses with respect to a reference point, rather than in terms
of context-independent utilities as the standard theory assumes. This reference
point typically represents what the decision maker currently has, but—and cru-
cial for persuasion—it need not be. Another, in retrospect, obvious failure of
the normative theory is that decision makers systematically overestimate low-
probability events. How else can one explain why people buy lottery tickets and
pay quite some money to insure themselves against very unlikely losses?

Kahneman and Tversky brought to light less obvious violations of the norma-
tive theory as well. Structured after the well-known Allais paradox, their famous
Asian disease experiment [78], for instance, shows that in most people’s eyes, a
sure gain is worth more than a probable gain with an equal or greater expected
value. Other experiments by the same authors show that the opposite is true for
losses. People tend to be risk-averse in the domain of gains, and risk-taking in
the domain of losses, where the displeasure associated with the loss is greater
than the pleasure associated with the same amount of gains.

Notice that as a result, choices can depend on whether outcomes are seen as
gains or losses. But whether something is seen as a gain or a loss depends on the
chosen reference-point. What this reference-point is, however, can be influenced
by the manipulator. If you want to persuade parents to vaccinate their children,
for instance, one can set the outcomes either as losses, or as gains. Experimental
results show that persuasion is more successful by loss-framed than by gain-
framed appeals [59].

Framing effects are predicted by Kahneman and Tversky’s Prospect Theory :
a theory that implements the idea that our behavior is only boundedly rational.
But if correct, it is this kind of theory that should be taken into account in any
serious analysis of persuasive language use.

Summary. Under idealized assumptions about agents’ rationality and knowledge
of the communicative situation, manipulation by strategic communication is by
and large impossible. Listeners see through attempts of deception and speakers
therefore do not even attempt to mislead. But manipulation can prosper among
boundedly rational agents. If the decision maker is unaware of some crucial
parts of the communicative situation (most palpably: the mischievous intentions
of the speaker) or if the decision maker does not apply strategic reasoning deeply
enough, deception may be possible. Also if the manipulator, but not the decision
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maker, is aware of the cognitive biases that affect our decision making, these
mechanism can be exploited as well.

2 Opinion Dynamics and Efficient Propaganda

While the previous section focused exclusively on the pragmatic dimension of
persuasion, investigating what to say and how to say it, there is a wider social
dimension to successful manipulation as well: determining whom we should
address. In this section, we will assume that agents are all part of a social
network, and we will discuss how to best propagate one’s own ideas through
a social network. We focus on this perspective, because it complements nicely
recent investigations into the logic of information flow in structured societies (cf.
[4,50,71] inter alia) and the exploration of evolutionary dynamics of language
games on social networks (cf. [56,57,79,82] inter alia).

We present a novel variant of DeGroot’s classical model of opinion dynamics
[19] that allows us to address the question how an agent, given his position in a
social web of influenceability, should try to strategically influence others, so as
to maximally promote her opinion in the relevant population. More concretely,
while DeGroot’s model implicitly assumes that agents distribute their persua-
sion efforts equally among the neighbors in their social network, we consider
a new variant of DeGroot’s model where a small fraction of players is able to
re-distribute their persuasion efforts strategically. Using numerical simulations,
we try to chart the terrain of more or less efficient opinion-promoting strategies
and conclude that in order to successfully promote your opinion in your social
network you should: (i) spread your web of influence wide (i.e., not focussing all
effort on a single or few individuals), (ii) choose “easy targets” for quick success
and “influential targets” for long-term success, and (iii), if possible, coordinate
your efforts with other influencers so as to get out of each other’s way. Which
strategy works best, however, depends on the interaction structure of the popu-
lation in question. The upshot of this discussion is that, even if computing the
theoretically optimal strategy is out of the question for a resource-limited agent,
the more an agent can exploit rudimentary or even detailed knowledge of the
social structure of a population, the better she will be able to propagate her
opinion.

Starting Point: The DeGroot Model. DeGroot [19] introduced a simple model
of opinion dynamics to study under which conditions a consensus can be
reached among all members of a society (cf. [47]). DeGroot’s classical model
is a round-based, discrete and linear update model.11 Opinions are considered
at discrete time steps t ∈ N≥0 . In the simplest case, an opinion is just a
real number, representing, e.g., to what extent an agent endorses a position.
For n agents in the society we consider the row vector of opinions x(t) with
x(t)T = 〈x1 (t), . . . , xn(t)〉 ∈ Rn where xi(t) is the opinion of agent i at time
11 DeGroot’s model can be considered as a simple case of Axelrod’s [3] famous model

of cultural dynamics (cf. [15] for overview).
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t.12 Each round all agents update their opinions to a weighted average of the
opinions around them. Who influences whom how much is captured by influ-
ence matrix P , which is a (row) stochastic n × n matrix with P ij the weight
with which agent i takes agent j’s opinion into account. DeGroot’s model then
considers the simple linear update in (1):13

x(t + 1) = P x(t) . (1)

For illustration, suppose that the society consists of just three agents and
that influences among these are given by:

P =

⎛

⎝
.7 .3 0
.2 .5 .3
.4 .5 .1

⎞

⎠. (2)

The rows in this influence matrix give the proportions with which each agent
updates her opinions at each time step. For instance, agent 3’s opinion at time
t + 1 is obtained by taking .4 parts of agent 1’s opinion at time t, .5 parts of
agent 2’s and .1 parts of her own opinion at time t. For instance, if the vector
of opinions at time t = 0 is a randomly chosen x(0)T = 〈.6, .2, .9〉, then agent
3’s opinion at the next time step will be .4 × .6 + .5 × .2 + .1 × .9 ≈ .43. By
equation (1), we compute these updates in parallel for each agent, so we obtain
x(1)T ≈ 〈.48, .49, .43〉, x(2)T ≈ 〈.48, .47, .48〉 and so on.14

DeGroot’s model acknowledges the social structure of the society of agents
in its specification of the influence matrix P . For instance, if pij = 0, then agent
i does not take agent j’s opinion into account at all; if pii = 1, then agent i does
not take anyone else’s opinion into account; if pij < pik , then agent k has more
influence on the opinion of agent i than agent j.

It is convenient to think of P as the adjacency matrix of a fully-connected,
weighted and directed graph, as shown in Fig. 1. As usual, rows specify the
weights of outgoing connections, so that we need to think of a weighted edge in
a graph like in Fig. 1 as a specification of how much an agent (represented by
a node) “cares about” or “listens to” another agent’s opinion. The agents who
agent i listens to, in this sense, are the influences of i:

I(i) = {j | pij > 0 ∧ i 
= j} .

12 We write out that transpose x(t)T of the row vector x(t), so as not to have to write
its elements vertically.

13 Recall that if A and B are (n,m) and (m, p) matrices respectively, then AB is the
matrix product with (AB)ij =

∑
k=1
m AikBki .

14 In this particular case, opinions converge to a consensus where everybody holds the
same opinion. In his original paper DeGroot showed that, no matter what x(0), if
P has at least one column with only positive values, then, as t goes to infinity, x(t)
converges to a unique vector of uniform opinions, i.e., the same value for all xi(t).
Much subsequent research has been dedicated to finding sufficient (and necessary)
conditions for opinions to converge or even to converge to a consensus (cf. [1,41] for
overview). Our emphasis, however, will be different, so that we sidestep these issues.
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Fig. 1. Influence in a society represented as a (fully connected, weighted and
directed) graph.

Inversely, let’s call all those agents that listen to agent i as the audience of i:

A(i) = {j | pji > 0 ∧ i 
= j} .

One more notion that will be important later should be mentioned here
already. Some agents might listen more to themselves than others do. Since how
much agent i holds on to her own opinion at each time step is given by value
pii , the diagonal diag(P ) of P can be interpreted as the vector of the agents’
stubbornness. For instance, in example (2) agent 1 is the most stubborn and
agent 3 the least convinced of his own views, so to speak.

Strategic Promotion of Opinions. DeGroot’s model is a very simple model of
how opinions might spread in a society: each round each agent simply adopts the
weighted average of the opinions of his influences, where the weights are given
by the fixed influence matrix. More general update rules than (1) have been
studied, e.g., ones that make the influence matrix dependent on time and/or the
opinions held by other agents, so that we would define x(t + 1) = P (t,x(t))x(t)
(cf. [38]). We are interested here in an even more liberal variation of DeGroot’s
model in which (some of the) agents can strategically determine their influence,
so as to best promote their own opinion. In other terms, we are interested in
opinion dynamics of the form:

x(t + 1) = P (S)x(t) , (3)

where P depends on an n × n strategy matrix S where each row Si is a strategy
of agent i and each entry Sij specifies how much effort agent i invests in trying
to impose her current opinion on each agent j.
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Eventually we are interested in the question when Si is a good strategy for
a given influence matrix P , given that agent i wants to promote her opinion as
much as possible in the society. But to formulate and address this question more
precisely, we first must define (i) what kind of object a strategy is in this setting
and (ii) how exactly the actual influence matrix P (S) is computed from a given
strategy S and a given influence matrix P .

Strategies. We will be rather liberal as to how agents can form their strategies: S
could itself depend on time, the current opinions of others etc. We will, however,
impose two general constraints on S because we want to think of strategies
as allocations of persuasion effort. The first constraint is a mere technicality,
requiring that Sii = 0 for all i: agents do not invest effort into manipulating
themselves. The second constraint is that each row vector Si is a stochastic
vector, i.e., Sij ≥ 0 for all i and j and

∑
j=1

nSij = 1 for all i. This is to make
sure that strengthening one’s influence on some agents comes at the expense of
weakening one’s influence on others. Otherwise there would be no interesting
strategic considerations as to where best to exert influence. We say that Si is a
neutral strategy for P if it places equal weight on all j that i can influence, i.e.,
all j ∈ A(i).15 We call S neutral for some P , if S consists entirely of neutral
strategies for P . We write S∗ for the neutral strategy of an implicitly given
matrix P .

Examples of strategy matrices for the influence matrix P in (2) are:

S =

⎛

⎝
0 .9 .1
.4 0 .6
.5 .5 0

⎞

⎠ S′ =

⎛

⎝
0 .1 .9
.5 0 .5
0 1 0

⎞

⎠ S∗ =

⎛

⎝
0 .5 .5
.5 0 .5
0 1 0

⎞

⎠.

According to strategy matrix S, agent 1 places .9 parts of her available persuasion
effort on agent 2, and .1 on agent 3. Notice that since in our example in (2) we
had P 13 = 0, agent 3 cannot influence agent 1. Still, nothing prevents her from
allocating persuasion effort to agent 1. (This would, in a sense, be irrational but
technically possible). That also means that S3 is not the neutral strategy for
agent 3. The neutral strategy for agent 3 is S′

3 where all effort is allocated to
the single member in agent 3’s audience, namely agent 2. Matrix S′ also includes
the neutral strategy for agent 2, who has two members in her audience. However,
since agent 1 does not play a neutral strategy in S′, S′ is not neutral for the
matrix P in (2), but S∗ is.

Actual Influence. Intuitively speaking, we want the actual influence matrix P (S)
to be derived by adjusting the influence weights in P by the allocations of effort
given in S. There are many ways in which this could be achieved. Our present
approach is motivated by the desire to maintain a tight connection with the
original DeGroot model. We would like to think of (1) as the special case of (3)
where every agent plays a neutral strategy. Concretely, we require that P (S∗) =
P . (Remember that S∗ is the neutral strategy for P .) This way, we can think
15 We assume throughout that A(i) is never empty.
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of DeGroot’s classical model as a description of opinion dynamics in which no
agent is a strategic manipulator, in the sense that no agent deliberately tries to
spread her opinion by exerting more influence on some agents than on others.

We will make one more assumption about the operation P (S), which we
feel is quite natural, and that is that diag(P (S)) = diag(P ), i.e., the agents’
stubbornness should not depend on how much they or anyone else allocates
persuasion effort. In other words, strategies should compete only for the resources
of opinion change that are left after subtracting an agent’s stubbornness.

To accommodate these two requirements in a natural way, we define P (S)
with respect to a reference point formed by the neutral strategy S∗. For any given
strategy matrix S, let S be the column-normalized matrix derived from S. Sij

is i’s relative persuasion effort affecting j, when taking into account how much
everybody invests in influencing j. We compare S to the relative persuasion
effort S∗ under the neutral strategy: call R = S/S∗ the matrix of relative net
influences given strategy S.16 The actual influence matrix P (S) = Q is then
defined as a reweighing of P by the relative net influences R:

Qij =

{
P ij if i = j

P ijRji∑
kP ikRki

(1 − P ii) otherwise.
(4)

Here is an example illustrating the computation of actual influences. For
influence matrix P and strategy matrix S we get the actual influences P (S) as
follows:

P =

⎛

⎝
1 0 0
.2 .5 .3
.4 .5 .1

⎞

⎠ S =

⎛

⎝
0 .9 .1
0 0 1
0 1 0

⎞

⎠ P (S) ≈
⎛

⎝
1 0 0

.27 .5 .23

.12 .78 .1

⎞

⎠.

To get there we need to look at the matrix of relative persuasion effort S given
by S, the neutral strategy S∗ for this P and the relative persuasion effort S∗
under the neutral strategy:

S =

⎛

⎝
0 9/19 1/11
0 0 10/11
0 10/19 0

⎞

⎠ S∗ =

⎛

⎝
0 .5 .5
0 0 1
0 1 0

⎞

⎠ S∗ =

⎛

⎝
0 1/3 1/3
0 0 2/3
0 2/3 0

⎞

⎠.

That S∗
12 = 1/3, for example, tells us that agent 1’s influence on agent 2 P 21 =

1/5 comes about in the neutral case where agent 1 invests half as much effort into
influencing agent 2 as agent 3 does. To see what happens when agent 1 plays
a non-neutral strategy, we need to look at the matrix of relative net influences
R = S/S∗, which, intuitively speaking, captures how much the actual case S
deviates from the neutral case S∗:

R =

⎛

⎝
0 27/19 3/11
0 0 15/11
0 15/19 0

⎞

⎠.

16 Here and in the following, we adopt the convention that x/0 = 0.
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This derives P (S) = Q by equation (4). We spell out only one of four non-trivial
cases here:

Q21 =
P 21R12

P 11R11 + P 12R21 + P 13R31
(1 − P 22 )

=
2/10 × 27/19

1/5 × 27/19 + 1/2 × 0 + 3/10 × 15/19
(1 − 1/2)

≈ 0.27

In words, by investing 9 times as much into influencing agent 2 than into influ-
encing agent 3, agent 1 gains effective influence of ca. .27 − .2 = .07 over agent
2, as compared to when she neutrally divides effort equally among her audience.
At the same time, agent 1 loses effective influence of ca. .4 − .12 = .28 on agent
3. (This strategy might thus seem to only diminish agent 1’s actual influence in
the updating process. But, as we will see later on, this can still be (close to) the
optimal choice in some situations).

It remains to check that the definition in (4) indeed yields a conservative
extension of the classical DeGroot-process in (1):
Fact 1 P (S) = P .

Proof. Let Q = P (S). Look at arbitrary Qij . If i = j, then trivially Qij = P ij .
If i 
= j, then

Qij =
P ijRji∑
kP ikRki

(1 − P ii) ,

with R = S∗/S∗. As Sii = 0 by definition of a strategy, we also have Rii = 0. So
we get:

Qij =
P ijRji∑
k �=iP ikRki

(1 − P ii) .

Moreover, for every k 
= i, Rkl = 1 whenever P lk > 0, otherwise Rkl = 0.
Therefore:

Qij =
P ij∑
k �=iP ik

(1 − P ii) = P ij .

The Propaganda Problem. The main question we are interested in is a very
general one:

(8) Propaganda problem (full): Which individual strategies Si are good or
even optimal for promoting agent i’s opinion in society?

This is a game problem because what is a good promotion strategy for agent i
depends on what strategies all other agents play as well. As will become clear
below, the complexity of the full propaganda problem is daunting. We therefore
start first by asking a simpler question, namely:
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(9) Propaganda problem (restricted, preliminary): Supposing that most
agents behave non-strategically like agents in DeGroot’s original model
(call them: sheep), which (uniform) strategy should a minority of strate-
gic players (call them: wolves) adopt so as best to promote their minority
opinion in the society?

In order to address this more specific question, we will assume that initially
wolves and sheep have opposing opinions: if i is a wolf, then xi(0) = 1; if i is a
sheep, then xi(0) = −1. We could think of this as being politically right wing
or left wing; or of endorsing or rejecting a proposition, etc. Sheep play a neutral
strategy and are susceptible to opinion change (P ii < 1 for sheep i). Wolves are
maximally stubborn (P ii = 1 for wolves i) and can play various strategies. (For
simplicity we will assume that all wolves in a population play the same strategy).
We are then interested in ranking wolf strategies with respect to how strongly
they pull the community’s average opinion x̄(t) = 1/n × ∑

i=1
nxi(t) towards

the wolf opinion.
This formulation of the propaganda problem is still too vague to be of any

use for categorizing good and bad strategies. We need to be more explicit at least
about the number of rounds after which strategies are evaluated. Since we allow
wolf strategies to vary over time and/or to depend on other features which might
themselves depend on time, it might be that some strategies are good at short
intervals of time and others only after many more rounds of opinion updating.
In other words, the version of the propaganda problem we are interested in here
is dependent on the number of rounds k. For fixed P and x(0), say that x(k)
results from a sequence of strategy matrices

〈
S(1), . . . , S(k)

〉
if for all 0 < i ≤ k:

x(i) = P (S(i))x(i − 1).

(10) Propaganda problem (restricted, fixed P ): For a fixed P , a fixed x(0)
as described and a number of rounds k > 0, find a sequence of k
strategy matrices

〈
S(1), . . . , S(k)

〉
, with wolf and sheep strategies as

described above, such that x̄(k) is maximal for the x(k) that results
from

〈
S(1), . . . , S(k)

〉
.

What that means is that the notion of a social influencing strategy we are inter-
ested in here is that of an optimal sequence of k strategies, not necessarily a
single strategy. Finding a good strategy in this sense can be computationally
hard, as we would like to make clear in the following by a simple example. It is
therefore that, after having established a feeling for how wolf strategies influence
population dynamics over time, we will rethink our notion of a social influence
strategy once more, arguing that the complexity of the problem calls for heuris-
tics that are easy to apply yet yield good, if sub-optimal, results. But first things
first.

Example: Lone-Wolf Propaganda. Although simpler than the full game problem,
the problem formulated in (10) is still a very complex affair. To get acquainted
with the complexity of the situation, let’s look first at the simplest non-trivial
case of a society of three agents with one wolf and two sheep: call it a lone-wolf
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problem. For concreteness, let’s assume that the influence matrix is the one we
considered previously, where agent 1 is the wolf:

P =

⎛

⎝
1 0 0
.2 .5 .3
.4 .5 .1

⎞

⎠. (5)

Since sheep agents 2 and 3 are assumed to play a neutral strategy, the space
of feasible strategies for this lone-wolf situation can be explored with a single
parameter a ∈ [0; 1]:

S(a) =

⎛

⎝
0 a 1-a
0 0 1
0 1 0

⎞

⎠.

We can therefore calculate:

S∗ =

⎛

⎝
0 1/3 1/3
0 0 2/3
0 2/3 0

⎞

⎠ S(a) =

⎛

⎝
0 a/a+1 1−a/2−a

0 0 1/2−a

0 1/a+1 0

⎞

⎠

R =

⎛

⎝
0 3a/a+1 3−3a/2−a

0 0 3/4−2a

0 3/2a+2 0

⎞

⎠ P (S(a)) =

⎛

⎝
1 0 0

4a/8a+6 1/2 3/8a+6

36−36a/65−40a 9/26−16a 1/10

⎞

⎠

Let’s first look at the initial situation with x(0)T = 〈1,−1,−1〉, and ask what
the best wolf strategy is for boosting the average population in just one time
step k = 1. The relevant population opinion can be computed as a function of
a, using basic algebra:

x(1)(a) =
−224a2 + 136a − 57
−160a2 + 140a + 195

. (6)

This function is plotted in Fig. 2.
Another chunk of basic algebra reveals that this function has a local maxi-

mum at a = .3175 in the relevant interval a ∈ [0; 1]. In other words, the max-
imal shift towards wolf opinion in one step is obtained for the wolf strategy
〈0, .3175, .6825〉. This, then, is an exact solution to the special case of the pro-
paganda problem state in (10) where P is given as above and k = 1.

How about values k > 1? Let’s call any k-sequence of wolf strategies that
maximizes the increase in average population opinion at each time step the
greedy strategy. Notice that the greedy strategy does not necessarily select the
same value of a in each round because each greedy choice of a depends on the
actual sheep opinions x2 and x3 . To illustrate this, Fig. 3 shows (a numerical
approximation of) the greedy values of a for the current example as a function
of all possible sheep opinions. As is quite intuitive, the plot shows that the more,
say, agent 3 already bears the wolf opinion, the better it is, when greedy, to focus
persuasion effort on agent 2, and vice versa.
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Fig. 2. Population opinion after one round of updating with a strategy
matrix S(a) for all possible values of a, as described by the function in Equa-
tion (6).
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Fig. 3. Dependency of the greedy strategy on the current sheep opinion for
the lone-wolf problem given in (5). The graph plots the best choice of effort
a to be allocated to persuading agent 2 for maximal increase of population
opinion in one update step, as a function of all possible pairs of sheep opinions
x2 and x3 .

It may be tempting to hypothesize that strategy greedy solves the lone-
wolf version of (10) for arbitrary k. But that’s not so. From the fourth round
onwards even playing the neutral strategy sheep (a constant choice of a = 1/2 in
each round) is better than strategy greedy. This is shown in Fig. 4, which plots
the temporal development over 20 rounds of what we will call relative opinion
for our current lone-wolf problem. Relative opinion of strategy X is the average
population opinion as it develops under strategy X minus the average population
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Fig. 4. Temporal development of relative opinion (i.e., average population
opinion relative to average population opinion under baseline strategy sheep)
for several wolf strategies for the influence matrix in (5).

opinion as it develops under baseline strategy sheep. Crucially, the plot shows
that the relative opinion under greedy choices falls below the baseline of non-
strategic DeGroot play already very soon (after 3 rounds). This means that the
influence matrix P we are looking at here provides a counterexample against
the prima facie plausible conjecture that playing greedy solves the propaganda
problem in (10) for all k.

The need for heuristics. Of course, it is possible to calculate a sequence of a
values for any given k and P that strictly maximizes the population opinion.
But, as the previous small example should have made clear, the necessary com-
putations are so complex that it would be impractical to do so frequently under
“natural circumstances”, such as under time pressure or in the light of uncer-
tainty about P , the relevant k, the current opinions in the population etc. This
holds in particular when we step beyond the lone-wolf version of the propaganda
problem: with several wolves the optimization problem is to find the set of wolf
strategies that are optimal in unison. Mathematically speaking, for each fixed
P , this is a multi-variable, non-linear, constrained optimization problem. Often-
times this will have a unique solution, but the computational complexity of the
relevant optimization problem is immense. This suggests the usefulness, if not
necessity, of simpler, but still efficient heuristics.17 For these reasons we focus
in the following on intuitive and simple ways of playing the social manipulation
17 Against this it could be argued that processes of evolution, learning and gradual

optimization might have brought frequent manipulators at least close to the analyt-
ical optimum over time. But even then, it is dubious that the agents actually have
the precise enough knowledge (of influence matrix P , current population opinion,
etc.) to learn to approximate the optimal strategy. Due to reasons of learnability
and generalizability, what evolves or is acquired and fine-tuned by experience, too,
is more likely a good heuristic.
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game that make, for the most part, more innocuous assumptions about agents’
computational capacities and knowledge of the social facts at hand. We try to
demonstrate that these heuristics are not only simple, but also lead to quite
good results on average, i.e., if uniformly applied to a larger class of games.

To investigate the average impact of various strategies, we resort to numerical
simulation. By generating many random influence matrices P and recording the
temporal development of the population opinion under different strategies, we
can compare the average success of these strategies against each other.

Towards efficient heuristics. For reasons of space, we will only look at a small
sample of reasonably successful and resource-efficient heuristics that also yield
theoretical insights into the nature of the propaganda problem. But before going
into details, a few general considerations about efficient manipulation of opinions
are in order. We argue that in general for a manipulation strategy to be efficient
it should: (i) not preach to the choir, (ii) target large groups, not small groups
or individuals, (iii) take other manipulators into account, so as not to get into
one another’s way, and (iv) take advantage of the social structure of society (as
given by P ). Let’s look at all of these points in turn.

Firstly, it is obvious that any effort spent on a sheep which is already con-
vinced, i.e., holds the wolf opinion one, is wasted.18 A minimum standard for a
rational wolf strategy would therefore be to spend no effort on audience mem-
bers with opinion one as long as there are audience members with opinion lower
than one. All of the strategies we look at below are assumed to conform to this
requirement.

Secondly, we could make a distinction between strategies that place all effort
onto just one audience member and strategies that place effort on more than
one audience member (in the most extreme case that would be all of the non-
convinced audience members). Numerical simulations show that, on average,
strategies of the former kind clearly prove inferior to strategies of the latter
kind. An intuitive argument why that is so is the following. For concreteness,
consider the lone-wolf greedy maximization problem plotted in Fig. 2. (The argu-
ment holds in general). Since the computation of P (S) relies on the relative net
influence R, playing extreme values (a = 0 or a = 1) is usually suboptimal
because the influence gained on one agent is smaller than the influence lost on
the other agent. This much concerns just one round of updating, but if we look
at several rounds of updating, then influencing several agents to at least some
extent is beneficial, because the increase in their opinion from previous rounds
will lead to more steady increase in population opinion at later rounds too. All
in all, it turns out that efficient manipulation of opinions, on a short, medium
and long time scale, is achieved better if the web of influence is spread wide,
i.e., if many or all suitable members of the wolves’ audience are targeted with at
18 Strictly speaking, this can only happen in the limit, but this is an issue worth

addressing, given (i) floating number imprecision in numerical simulations, and (ii)
the general possibility (which we do not explicitly consider) of small independent
fluctuations in agents’ opinions.
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least some persuasion effort. For simplicity, the strategies we consider here will
therefore target all non-convinced members of each wolf’s audience, but variably
distribute persuasion effort among these.

Thirdly, another relevant distinction of wolf strategies is between those that
are sensitive to the presence and behavior of other wolves and those that are not.
The former may be expected to be more efficient, if implemented properly, but
they are also more sophisticated. This is because they pose stronger requirements
on the agents that implement these strategies: wolves who want to hunt in a pack
should be aware of the other wolves and adapt their behavior to form an efficient
coalition strategy. We will look at just one coalition strategy here, but find that,
indeed, this strategy is (one of) the best from the small sample that is under
scrutiny here. Surprisingly, the key to coalition success is not to join forces,
but rather to get out of each other’s way. Intuitively, this is because if several
manipulators invest in influencing the same sheep, they thereby decrease their
relative net influence unduly. On the other hand, if a group of wolves decides
who is the main manipulator, then by purposefully investing little effort the
other wolves boost the main manipulator’s relative net influence.

Fourthly and finally, efficient opinion manipulation depends heavily on the
social structure of the population, as given by P . We surely expect that a strategy
which uses (approximate) knowledge of P in a smart way will be more effective
than one that does not. The question is, of course, what features of the social
structure to look at. Below we investigate two kinds of socially-aware heuristics:
one that aims for sheep that can be easily influenced, and one that aims for
sheep that are influential themselves. We expected that the former do better in
the short run, while the latter might catch up after a while and eventually do
better in the long run. This expectation is borne out, but exactly how successful
a given strategy (type) is also depends on the structure of the society.

The cast. Next to strategy sheep, the strategies we look at are called influence,
impact, eigenvector and communication. We describe each in turn and then
discuss their effectiveness, merits and weaknesses.

Strategy influence chooses a fixed value of a in every round, unlike the
time-dependent greedy. Intuitively speaking, the strategy influence allocates
effort among its audience proportional to how much influence the wolf has on
each sheep: the more a member of an audience is susceptible to being influenced,
the more effort is allocated to her. In effect, strategy influence says: “allocate
effort relatively to how much you are being listened to”. In our running example
with P as in Equation (5) the lone wolf has an influence on (sheep) agent 2 of
P 12 = 1/5 and of P 13 = 2/5 on agent 3. Strategy influence therefore chooses
a = 1/3, because the wolf’s influence over agent 2 is half as big as that over
agent 3.

Intuitively speaking, strategy impact says: “allocate effort relatively to how
much your audience is being listened to.” The difference between influence and
impact is thus that the former favors those the wolf has big influence over, while
the latter favors those that have big influence themselves. To determine influence,
strategy impact looks at the column vector PT

j for each agent j ∈ A(i) in wolf



Strategies of Persuasion, Manipulation and Propaganda 281

i’s audience. This column vector PT
j captures how much direct influence agent

j has. We say that sheep j has more direct influence than sheep j′ if the sum of
the j-th column is bigger than that of the j′-th. (Notice that the rows, but not
the columns of P must sum to one, so that some agents may have more direct
influence than others). If we look at the example matrix in equation (5), for
instance, agent 2 has more direct influence than agent 3. The strategy impact
then allocates persuasion effort proportional to relative direct influence among
members of an audience. In the case at hand, this would lead to a choice of

a =
∑

kP k2∑
kP k2 +

∑
kP k3

= 5/12 .

Strategy eigenvector is very much like impact, but smarter, because it
looks beyond direct influence. Strategy eigenvector for wolf i also looks at
how influential the audience of members of i’s audience is, how influential their
audience is and so on ad infinitum. This transitive closure of social influence of
all sheep can be computed with the (right-hand) eigenvector of the matrix P ∗,
where P ∗ is obtained by removing from P all rows and columns belonging to
wolves.19,20 For our present example, the right-hand unit eigenvector of matrix

P ∗ =
(

.5 .3

.5 .1

)

is approximately 〈.679, .321〉. So the strategy eigenvector would choose a value
of approximately a = .679 at each round.

Finally, we also looked at one coalition strategy, where wolves coordinate
their behavior for better effect. Strategy communication is such a sophisticated
coalition strategy that also integrates parts of the rationale behind strategy
influence. Strategy communication works as follows. For a given target sheep
i, we look at all wolves among the influences I(i) of i. Each round a main manip-
ulator is drawn from that group with a probability proportional to how much
influence each potential manipulator has over i. Wolves then allocate 100 times
more effort to each sheep in their audience for which they are the main manip-
ulator in that round than to others. Since this much time-variable coordination
seems only plausible, when wolves can negotiate their strategies each round, we
refer to this strategy as communication.

We expect strategy influence and communication to outperform baseline
strategy sheep in early rounds of play. Communication could be expected to be
better than influence because it is the more sophisticated coalition strategy.
On the other hand, strategies impact and eigenvector should be better at later
rounds of updating because they invest in manipulating influential or “central”
19 Removing wolves is necessary because wolves are the most influential players; in

fact, since they are maximally stubborn, sheep would normally otherwise have zero
influence under this measure.

20 The DeGroot-process thereby gives a motivation for measures of eigenvector cen-
trality, and related concepts such as the Google page-rank (cf. [41]). Unfortunately,
the details of this fascinating issue are off-topic in this context.
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agents of the society, which may be costly at first, but should pay off later
on. We expect eigenvector to be better than impact because it is the more
sophisticated social strategy that looks beyond direct influence at the global
influence that agents have in the society.

Experimental set-up. We tested these predictions by numerical simulation in
two experiments, each of which assumed a different interaction structure of the
society of agents. The first experiment basically assumed that the society is
homogeneous, in the sense that (almost) every wolf can influence (almost) every
sheep and (almost) every sheep interacts with (almost) every sheep. The second
experiment assumed that the pattern of interaction is heterogeneous, in the sense
that who listens to whom is given by a scale-free small-world network. The latter
may be a more realistic approximation of human society, albeit still a strong
abstraction from actual social interaction patterns.

Both experiments were executed as follows. We first generated a random
influence matrix P , conforming to either basic interaction structure. We then
ran each of the four strategies we described above on each P and recorded the
population opinion at each of 100 rounds of updating.

Interaction networks. In contrast to the influence matrix P , which we can think
of as the adjacency matrix of a directed and weighted graph, we model the
basic interaction structure of a population, i.e., the qualitative structure that
underlies P , as an undirected graph G = 〈N,E〉 where N = {1, . . . , n}, with
n ≥ 2, is the set of nodes, representing the agents, and E ⊆ N × N is a reflexive
and symmetric relation on N .21 If 〈i, j〉 ∈ E, then, intuitively speaking, i and j
know each other, and either agent could in principle influence the opinion of the
other. For each agent i, we consider N(i) = {j ∈ N | 〈i, j〉 ∈ E} the set of i’s
neighbors. The number of i’s neighbors is called agent i’s degree di = |N(i)|. For
convenience, we will restrict attention to connected networks, i.e., networks all
of whose nodes are connected by some sequences of transitions along E. Notice
that this also rules out agents without neighbors.

For a homogeneous society, as modelled in our first experiment, we assumed
that the interaction structure is given by a totally connected graph. For hetero-
geneous societies, we considered so-called scale-free small-world networks [2,5].
These networks are characterized by three key properties which suggest them as
somewhat realistic models of human societies (cf. [41]):

(1.) scale-free: at least some part of the distribution of degrees has a power law
character (i.e., there are very few agents with many connections, and many
with only a few);

(2.) small-world :

21 Normally social network theory takes E to be an irreflexive relation, but here we
want to include all self-connections so that it is possible for all agents to be influenced
by their own opinion as well.



Strategies of Persuasion, Manipulation and Propaganda 283

(a.) short characteristic-path length: it takes relatively few steps to connect
any two nodes of the network (more precisely, the number of steps nec-
essary increases no more than logarithmically as the size of the network
increases);

(b.) high clustering coefficient : if j and k are neighbors of i, then it is likely
that j and k also interact with one another.

We generated random scale-free small-world networks using the algorithm of
Holme and Kim [40] with parameters randomly sampled from ranges suitable
to produce networks with the above-mentioned properties. (We also added all
self-edges to these graphs; see Footnote 21).

For both experiments, we generated graphs of the appropriate kind for popu-
lation sizes randomly chosen between 100 and 1000. We then sampled a number
of wolves averaging around 10 % of the total number of agents (with a minium
of 5) and randomly placed the wolves on the network. Subsequently we sam-
pled a suitable random influence matrix P that respected the basic interaction
structure, in such a way that P ij > 0 only if 〈i, j〉 ∈ E. In particular, for each
sheep i we independently sampled a random probability distribution (using the
r-Simplex algorithm) of size di and assigned the sampled probability values as
the influence that each j ∈ N(i) has over i. As mentioned above, we assumed
that wolves are unshakably stubborn (P ii = 1).

Results. For the most part, our experiments vindicated our expectations about
the four different strategies that we tested. But there were also some interesting
surprises.

The temporal development of average relative opinions under the relevant
strategies is plotted in Fig. 5 for homogeneous societies and in Fig. 6 for het-
erogeneous societies. Our general expectation that strategies influence and
communication are good choices for fast success after just a few rounds of play
is vindicated for both types of societies. On the other hand, our expectation
that targeting influential players with strategies impact and eigenvector will
be successful especially in the long run did turn out to be correct, but only for
the heterogeneous society, not for the homogeneous one. As this is hard to see
from Figs. 5 and 6, Fig. 7 zooms in on the distribution of relative opinion means
at the 100th round of play.

At round 100 relative means are very close together because population opin-
ion is close to wolf opinion already for all strategies. But even though the relative
opinions at the 100th round are small, there are nonetheless significant differ-
ences. For homogeneous societies we find that all means of relative opinion at
round 100 are significantly different (p < .05) under a paired Wilcoxon test.
Crucially, the difference between influence and impact is highly significant
(V = 5050, p < .005). For the heterogeneous society, the difference between
influence and impact is also significant (V = 3285, p < 0.01). Only the means
of communication and influence turn out not significantly different here.

Indeed, contrary to expectation, in homogeneous societies strategies prefer-
entially targeting influenceable sheep were more successful on average for every
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Fig. 5. Development of average population opinion in homogeneous societies
(averaged over 100 trials). The graph in Fig. 5a shows the results for strategies
targeting influenceable sheep, while one in Fig. 5b shows strategies targeting
influential sheep. Although curves are similarly shaped, notice that the y-axes
are scaled differently. Strategies influence and communication are much
better than impact and eigenvector in the short run.
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Fig. 6. Development of average relative opinion in heterogeneous societies
(averaged over 100 trials).

0 < k ≤ 100 than strategies preferentially targeting influential sheep. In other
words, the type of basic interaction structure has a strong effect on the suc-
cess of a given (type of) manipulation strategy. Although we had expected such
an effect, we had not expected it to be that pronounced. Still, there is a plau-
sible post hoc explanation for this observation. Since in homogeneous societies
(almost) every wolf can influences (almost) every sheep, wolves playing strategies
impact and eigenvector invest effort (almost) exactly alike. But that means
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Fig. 7. Means of relative opinion at round 100 for heterogeneous and homo-
geneous societies. Strategies impact and eigenvector are efficient in the long
run in heterogeneous societies with a pronounced contrast between more and
less influential agents.

that most of the joint effort invested in influencing the same targets is averaged
out, because everybody heavily invests in these targets. In other words, espe-
cially for homogeneous societies, playing a coalition strategy where manipulators
do not get into each other’s way is important for success. If this explanation is
correct, then a very interesting practical advice for social influencing is ready at
hand: given the ever more connected society that we live in, with steadily growing
global connectedness through telecommunication and social media, it becomes
more and more important for the sake of promoting one’s opinion within the
whole of society to team-up and join a coalition with like-minded players.

3 Conclusions, Related Work and Outlook

This chapter investigated strategies of manipulation, both from a pragmatic and
from a social point of view. We surveyed key ideas from formal choice theory
and psychology to highlight what is important when a single individual wants
to manipulate the choice and opinion of a single decision maker. We also offered
a novel model of strategically influencing social opinion dynamics. Important
for both pragmatic and social aspects of manipulation were heuristics, albeit in
a slightly different sense here and there: in order to be a successful one-to-one
manipulator, it is important to know the heuristics and biases of the agents one
wishes to influence; in order to be a successful one-to-many manipulator, it may
be important to use heuristics oneself. In both cases, successful manipulation
hinges on exploiting weaknesses in the cognitive make-up of the to-be-influenced
individuals or, more abstractly, within the pattern of social information flow.
To promote an opinion in a society on a short time scale, one would preferably
focus on influenceable individuals; for long-term effects, the focus should be on
influential targets.
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The sensitivity to framing discussed in Sect. 1.3 is akin to traditional fallacies
of argumentation [37]: hearers will be influenced not by the content of the mes-
sage, but by the way it is communicated. In contrast to the standard literature
on fallacies, our focus in this chapter was not on their invalidity, but on the
question what it is about us that makes these fallacious inferences so common.
We have argued in this chapter that this is to a large extent due to agents’ lim-
ited abilities. Hahn and Oaksford [35] as well as Mercier and Sperber [54] argue
instead that although we are able to reason very well (to persuade ourselves or
others of a particular position), our reasoning is imperfect especially when stakes
and targets are low. In that case, it seems, the reasoning is not really fallacious,
but rather is one that normally will do. In fact, this is not so different from the
reasons we mentioned why agents might sometimes be manipulated: they reason
in a way that normally works well. Non-monotonic logics (including probabilis-
tic logic) are natural tools to account for these types of inferences [32]. Indeed,
non-monotonic reasoning seems a natural resource-compensation strategy, next
to approximation and the division of the world into natural kinds. Although
this reasoning is not always accurate, it makes perfect sense when balancing the
cost of calculation versus the potential benefit of the result. In contrast to these
reasons, however, we pointed out that even in argumentative situations, where
hearers reason well, speakers can still manipulate by obfuscating states of the
world that are to the speaker’s disadvantage, and of which the hearer is unaware;
or by making the hearer selectively aware of states of the world of which he was
previously unaware, i.e., only of those which are to the sender’s advantage.

Many important features of strategic manipulation have not been addressed
and must be left for future work. Most strikingly, the model of social influencing
given in the second part of the chapter is heavily simplistic in a number of ways.
We have not at all addressed the case where several manipulators with different
motives compete for influence over the population opinion. In that case, we would
really consider a full game problem where what is a good manipulation strategy
also depends on what competing manipulators do. We have also assumed that
the pragmatic one-to-one aspect of opinion manipulation does not play a role
when it comes to the social problem of opinion manipulation. Of course, there are
obvious interactions: the social structure of the population will likely also affect
which information to present to whom and how to present information to this
or that guy. To the best of our knowledge, this is largely uncharted terrain for
formal theories of strategic manipulation. Adding the broader social perspective
to models of social influencing in formal choice models seems a very promising
field for future research. A lot of work would need to be done here to tackle the
immense complexity of this subject. The model presented in the second half of
this chapter might be a first step in this direction.

Relation to other work presented in this volume. Gabriel Sandu’s work that
is presented in this volume [72] appears to be closely related to our own, but
there are fundamental conceptual differences. Sandu works in the tradition of
Hintikka’s game semantics. Game semantics is an approach to formal semantics
that seeks to ground the concepts of truth, meaning, and validity in terms of
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a dialogical view of communication and of winning strategies. While Sandu’s
approach is primarily about semantics, and the grounding of truth, we focus on
(perhaps non-Gricean) pragmatics, on how agents can be influenced by means
of communication. Whereas in Sandu’s tradition the dialogues can be very long,
but the meaning of the dialogue moves is always clear, the dialogues we studied
were typically short, but vague, in that it might be hard to determine what was
meant by a dialogue move. The roles of the participants of the dialogues are
very different as well. In Sandu’s semantic games, there are only two partici-
pants with fixed goals: either to verify or falsify a given formula. It is common
knowledge between the participants that their goals are diametrically opposed.
Although when we talk about one-to-one communication, we also limit ourselves
to communication games with only two participants involved, the emphasis of
the later part of our chapter is on influencing whole groups of agents. Equally
important, the goals of our agents are not necessarily diametrically opposed but
can show various degrees of alignment.

There are other interesting connections between this chapter and others pre-
sented in this volume. Eric Pacuit [62] explores a number of ways to reason
strategically about a game situation. This links directly to the first part of this
chapter, where we argued that knowing a decision maker’s cognitive make-up
opens possibilities of exploitation by a malignant communicator. Taking Pacuit’s
and our perspective together, a very interesting open question arises, namely
which reasoning strategies (in the sense of Pacuit) are more or less vulnerable
to malign influence by a strategic self-interested communicator.

Andrés Perea [66] acknowledges, like we do, the intuitive necessity to look
for more cognitively realistic ways of solving games. But Perea’s conceptual app-
roach is a slightly different one from ours. While we are interested in integrating
concrete psychological aspects of reasoning, Perea’s contribution remains more
conceptual in that it shows, roughly speaking, that a normatively compelling
solution of a game problem can be reached at less cognitive effort than frequently
assumed.

Indeed, both Perea’s and Pacuit’s contributions fit well with the work on
reasoning in games and strategic interaction in Johan van Benthem’s chapter in
this book [7]. The logics discussed there feed into the general “Theory of Play”
of [6], and so there is an interesting general question of how our approach to
strategic reasoning relates to current dynamic-epistemic logics of games.

Finally, Jan van Eijck [20] discusses many different aspects of how the strate-
gic reasoning of individuals can impact the well-fare of society as a whole. Our
second model can well be seen as one special case of this more general perspec-
tive. Adding his approach to social strategizing to ours raises another interesting
open issues that we have not explicitly addressed. The model of strategic influ-
encing that we presented here did not actually specify whether the influence
exerted by the strategic manipulators was beneficial or detrimental to society as
a whole. Another related issue, brought up by Gabriel Sandu (p.c.), relates to
the question of truth. What if the social opinion dynamics are not only affected
by what others believe, but also by what is good and/or true?
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In summary, unifying psychological and social aspects of manipulative strate-
gizing in a unified framework is a giant’s task that has close bearing on many
central concerns raised in other chapters of this volume. We see a lot of potential
for future research in this area, especially where it brings formal modelling and
empirical research closer together.
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Abstract. Viewing the way society has defined its rules and mechanisms
as “social software”, we want to understand how people behave given
their understanding of the societal rules and given their wish to further
their interest as they conceive it, and how social mechanisms should be
designed to suit people furthering their interest as they conceive it. This
chapter is written from the perspective of strategic game theory, and uses
strategic game scenarios and game transformations to analyze societal
mechanisms.
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Know the enemy and know
yourself; in a hundred battles you
will never be in peril.
When you are ignorant of the
enemy but know yourself, your
chances of winning and losing are
equal.
If ignorant both of your enemy
and of yourself, you are certain in
every battle to be in peril.

Sun Tzu, The Art of War [37]

1 What Is Social Software?

Social software is a term coined by Parikh [42] for social procedures designed to
regulate societal behaviour. Many of these mechanisms are connected to strategic
reasoning. Parikh’s paper is a plea to view social procedures as algorithms, and
to study them with the methods of logic and theoretical computer science. See
[14] for illuminating use of this methodology to explain rituals in societies. The
discourses in Van Eijck and Verbrugge [18] give further informal introduction.
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In fact, design and analysis of social software is at the intersection of various
academic disciplines. It is related to what is called mechanism design in game
theory and economics [26], to behavioral architecture in political theory [53],
to rational decision making in decision theory [22,30], to multi-agent theory in
artificial intelligence [47], and to auction theory in economics [32,38], to name but
a few. If it is different from any of these, then the difference lies in the emphasis
on the use of tools from logic and theoretical computer science, while bearing in
mind that the objects of study are humans rather than microprocessors.

Indeed, the human participants in a social procedure are quite different from
microprocessors interacting in a calculation. Unlike microprocessors, humans
are, to some extent at least, aware of the social mechanisms they are involved
in. This awareness may inspire them to act strategically: to use their knowledge
of the mechanism to improve their welfare. Conversely, social mechanisms may
be designed with this behaviour in mind. Ideally, the design of the mechanism
should ensure that it cannot be exploited, or at least that the mechanism is
resistant to exploitation attempts.

A central topic in economics, and in a branch of game theory called evolu-
tionary game theory, is to explain how selfish behaviour can lead to beneficial
outcomes on the societal level [48]. On the other hand, some economists have
argued convincingly that modelling human beings as selfish misses a point: the
scope of economics should be broadened to the study of interacting agents max-
imizing welfare as they conceive it [7].

Undoubtedly the most famous social mechanism that employs strategic
behaviour is the mechanism of the free market, supposedly guided by Adam
Smith’s invisible hand, the hidden mechanism that fuses actions motivated by
individual interests into a self-regulating social mechanism beneficent to all. In
Smith’s famous words:

It is not from the benevolence of the butcher, the brewer or the baker
that we expect our dinner, but from their regard to their own interest.
We address ourselves not to their humanity but to their self-love, and
never talk to them of our necessities but of their advantages. Nobody
but a beggar chooses to depend chiefly upon the benevolence of their
fellow-citizens. [49, Book 1,Chapter II]

The mechanism of the free market is designed, so to speak, to put individual self-
interest at the service of society. But in other cases, social mechanism design has
as one of its goals to discourage ‘strategic behaviour’, which now is taken to mean
misuse of the mechanism to guarantee a better individual outcome. An example
of this is auction design. Vickrey auctions, where bids are made simultaneously,
bidders do not know the values of the other bids, and the highest bidder wins but
pays the second-highest bid [55], are an example. The design of the procedure
discourages the bidders from making bids that do not reflect their true valuation.
Google and Yahoo use variations on this when auctioning advertisement space.

Many societal mechanisms are set up so as to ensure a desirable outcome for
society. What is the social procedure that ensures that soldiers that are sent into
battle actually fight? One force is the fact that the other soldiers are fighting — a
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chain-effect. An additional factor may be the public announcement to the effect
that deserters will be shot. This reduces the choice that a soldier has to that
between facing the risk of death while engaging in battle versus certain death
when avoiding to fight. Surely, other factors are involved, having to do with how
soldiers perceive their own behaviour and their relationship to each other and
to the community they fight for: comradeship, the desire to return home as a
hero rather than a coward. The point is that society has mechanisms in play to
ensure that individuals behave in ways that, at first sight, are squarely against
their self-interest.

Some societies stage public executions of criminals. Such stagings serve a
strategic social goal: to inspire terror in aspiring criminals. Or maybe, to inspire
terror in the population at large, in case the victims are convicted for political
crimes. Some societies keep their citizens in check with the threat of corporal
punishment — in Singapore you risk a blow with the stick for a relatively minor
offence — while other societies consider such methods off-limits and barbarian.
Someone interested in design and analysis of social software will want to under-
stand such radical differences in attitude.

The mechanisms of performance-related pay and of investment bankers’
bonuses are other examples of social procedures designed with the goal of influ-
encing the strategies of workers, in order to increase productivity or profitability.
While the current financial crisis is evidence of the dangers of this system, exper-
imental economics also points out that very high rewards are in fact detrimental
to performance [2].

On the other hand, in another setting such a mechanism may have consider-
able advantages. The bonus-malus system (BMS) used in the insurance industry
adjusts the premium that a customer has to pay to insure a certain risk according
to the individual claim history of the customer. This inspires caution in claiming
damage on an insured vehicle, for instance, for a claim means that the customer
loses her no-claim discount. Thus, the system is designed to induce strategic
behaviour in the customers, for it now makes sense to not report minor damages
to your car to the insurance company, as the loss of the no-claim discount out-
weighs the cost of the damage. This is in the interest of the insurance company,
and indirectly in the interest of the public in need of car insurance, for it helps
to keep premiums low. So why does the bonus system work well in this situation
while creating disaster in other settings?

A general problem with social mechanism design is that technological fixes to
societal problems have a tendency to misfire and create new problems, because
the technological solution leads to paradoxical and unintended consequences.
New roads lead to bigger traffic jams and uncontrolled growth of suburbia. Rent
regulation, intended to protect tenants, may lead to poorer housing conditions
for the less affluent. Worker protection laws may be a factor in causing unem-
ployment because they make employers reluctant to hire new staff. Performance-
related pay may induce bankers to take unreasonable risks. Tenner [52] gives
many other examples, with insightful comments.



Strategies in Social Software 295

Still, insights from the design and analysis of algorithms can and should be
applied to analysis and design in social interaction, all the time bearing in mind
that agents involved in social interaction are aware of the societal mechanisms.
This awareness often takes the form of strategic reasoning by people about how
to further their best interest, as they conceive it, given the way society has defined
its rules and mechanisms. The analysis and design of social software should take
this awareness of participants into account.

The focus of this chapter is on strategic games rather than dynamic games.
The structure of the chapter is as follows. In Sect. 2 we distinguish three levels
at which strategizing might occur. In Sect. 3, we use the situation of the well-
known prisoner’s dilemma as a starting point for a discussion of what goes on
in social software design and analysis. Section 4 discusses, in a game-theoretic
setting, how strategies are affected by punishment, and Sect. 5 focusses on the
influence of rewards on strategies. In Sect. 6, these same topics return in the
tragedy of the commons scenario, closely related to the prisoner’s dilemma. The
theme of individual versus collective is brought out even more poignantly in
renunciation games, presented in Sect. 7. Section 8 discusses the use of game
scenarios in experiments about knowledge and trust in social protocols, and
Sect. 9 concludes with a mention of logics for strategic games, together with
some remarkable arguments for democracy.

2 Strategizing at Various Levels

The social problem of collective decision making involves strategizing at various
levels. Consider as an example a scientific advisory board that has to rank a
number of research proposals in order of quality. Participants in such a meeting
strategize at various levels, and strategizing also takes place at the level of the
scientific community at large.

Strategizing at the Micro-Level. How much should I, as a participant in such
a meeting, reveal about my own true preferences (or: of my own knowledge
and ignorance), in order to make me maximally effective in influencing the
other participants?

Strategizing at Intermediate Level. How should the chair structure the
decision making process, so as to ensure that consensus is reached and that
the meeting terminates within a reasonable period of time? The chair could
propose rules like “For any two proposals X and Y, once we have reached a
decision on their relative merit, this order will remain fixed.” Or: “A meeting
participant who has close working relationships with the writer of a research
proposal should leave the room when the merit of that proposal is discussed.”
Slightly more general, but still at the intermediate level: How should the
general rules for ranking research proposals be designed? E.g., collect at
least three independent reviews per proposal, and use the reviews to get at a
preliminary ranking. Ask participants to declare conflicts of interest before
the meeting starts. And so on.
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Strategizing at the Macro-Level. How does the scientific community at
large determine quality of research? How do the peer review system and
the impact factor rankings of scientific journals influence the behaviour of
researchers or research groups?

In other cases we can make similar distinctions. Take the case of voting as a
decision making mechanism.

Micro-Level. At the micro level, individual voters decide what to do, given a
particular voting rule, given their true preferences, and given what they know
about the preferences of the other voters. The key question here is: “Should
I vote according to my true preferences or not?” This is the question of
strategic voting: deviating from one’s true preference in the hope of a better
outcome. In a school class, during an election for a football captain, excellent
sportsmen may cast a strategic vote on a mediocre player to further their
own interests.

Intermediate Level. At the intermediate level, organizers of meetings decide
which voting procedures to adopt in particular situations. How to fix the
available set of alternatives? Does the situation call for secret ballots or not?
How to settle the order for reaching decisions about sub-issues?

Macro-Level. At the macro-level, there is the issue of the design and analysis
of voting procedures, or the improvement of voting procedures that fail to
serve their political goal of rational collective decision making in a changing
society. Think of the discussion of the merits of “first past the post” election
systems in single-member districts, which favour the development of a small
number of large parties, versus proportional representation systems which
make it possible for smaller parties to survive in the legislature, but also
engender the need for coalitions of several parties to aggregate in a working
majority.

Writers about strategizing in warfare make similar level distinctions. Carl von
Clausewitz, who defines war as “an act of violence or force intended to compel
our enemy to do our will,” makes a famous distinction between tactics, the
doctrine of the use of troops in battle, and strategy, the doctrine of the use of
armed engagements to further the aims of the war [56]. In our terminology, these
issues are at the micro- and at the intermediate level, while the political choices
between war and peace are being made at the macro-level.

3 The Prisoner’s Dilemma as an Exemplar

The game known as the “prisoner’s dilemma” is an evergreen of game theory
because it is a top-level description of the plight of two people, or countries, who
can either act trustfully or not, with the worst outcome that of being a sucker
whose trust gets exploited by the other player.

One particular choice for a player in such a situation is called a strategy.
Further on, we will discuss how the choice of strategies in this sense is affected
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by redesign of the scenario, thus shifting attention to possible strategies for the
social mechanism designer, so to speak.

But first, here is a brief recap. Agents I and II are imprisoned, in different
cells, and are faced with a choice between cooperating with each other or defect-
ing. If the two cooperate they both benefit, but, unfortunately, it pays to defect
if the other cooperates. If they both defect they both lose. This situation can be
described in the following payoff matrix.

II cooperates II defects

I cooperates 3, 3 0, 4

I defects 4, 0 1, 1

This table displays a two person non-zero-sum game. The first member of
each payoff pair gives I’s payoff, the second member II’s payoff. The table out-
come 4, 0 indicates that if I defects while II cooperates, the payoff for I is 4 and
the payoff for II is 0. This indicates that for I it is profitable to cheat if II stays
honest. In fact it is more profitable for I to cheat than to stay honest in this
case, for honesty gives him a payoff of only 3.

For the prison setting, read the two options as ‘keep silent’ or ‘betray (by
talking to the prison authorities)’. For an armament race version, read the two
options as ‘disarm’ or ‘arm’.

What matters for the payoffs is the preference order that is implied by the
numbers in the payoff matrix. Abbreviate the strategy pair where I cooperates
and II defects as (c, d), and so on. Then the preference order for I can be given
as (d, c), (c, c), (d, d), (c, d), while the preference order for II swaps the elements
of the pairs: (c, d), (c, c), (d, d), (d, c). Replacing the payoffs by different numbers
reflecting the same preference order does not change the nature of the game.

Suppose player I decides to follow a particular strategy. If player II has also
made up her mind about what to do, this determines the outcome. Does player I
get a better payoff if he changes his strategy, given that II sticks to hers? Player
II can ask the same question. A situation where neither player can improve his
outcome by deviating from his strategy while it is given that the other player
sticks to hers is called a Nash equilibrium, after John Nash [33].

Observe that the strategy pair (d, d) is a Nash equilibrium, and no other
strategy pair is. This is what makes the situation of the game a dilemma, for
the outcome (c, c) would have been better for both.

Not only is (d, d) a Nash equilibrium of the game, but it holds that (d, d) is
the only Nash equilibrium. What follows is that for each player, d is the optimal
action, no matter what the other player does. Such a strategy is called a dominant
strategy.

Using uI for I’s utility function, and uII for II’s utility function, we can say
that what makes the game into a dilemma is the fact that uI(d, d) > uI(c, d)
and uI(d, c) > uI(c, c), and similarly for II: uII(d, d) > uII(d, c) and uII(c, d) >
uII(c, c).
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The two-player prisoner’s dilemma can be generalized to an n player pris-
oner’s dilemma (NPD), which can be used to model situations where the invisible
hand does not work to the benefit of all. See Sect. 6 below.

Here we remind the reader of some formal terminology for strategic n-person
games. A strategic game G is a tuple

({1, . . . , n}, {Si}i∈{1,...,n}, {ui}i∈{1,...,n}),

where {1, . . . , n} with n > 1 is the set of players, each Si is a set of strategies,
and each ui is a function from S1 × · · · × Sn to R (the utility function for player
i). I use N for {1, . . . , n}, S for S1 × · · · × Sn and u for {ui}i∈{1,...,n}, so that I
can use (N,S, u) to denote a game.

A member of S1 × · · · × Sn is called a strategy profile: each player i picks a
strategy si ∈ Si. I use s to range over strategy profiles, and s−i for the strategy
profile that results by deleting strategy choice si of player i from s. Let (s′

i, s−i)
be the strategy profile that is like s for all players except i, but has si replaced
by s′

i. Let S−i be the set of all strategy profiles minus the strategy for player i
(the product of all strategy sets minus Si). Note that s−i ∈ S−i. A strategy si

is a best response in s if

∀s′
i ∈ Si ui(s) ≥ ui(s′

i, s−i).

A strategy profile s is a (pure) Nash equilibrium if each si is a best response
in s:

∀i ∈ N ∀s′
i ∈ Si ui(s) ≥ ui(s′

i, s−i).

Let nash(G) = {s ∈ S | s is a Nash equilibrium of G}.
A game G is Nash if G has a (pure) Nash equilibrium.
A strategy s∗ ∈ Si weakly dominates another strategy s′ ∈ Si if

∀s−i ∈ S−i ui(s∗, s−i) ≥ ui(s′, s−i).

A strategy s∗ ∈ Si strictly dominates another strategy s′ ∈ Si if

∀s−i ∈ S−i ui(s∗, s−i) > ui(s′, s−i).

If a two-player game has a strictly dominant strategy for each player, both
players will play that strategy no matter what the other player does, and the
dominant strategy pair will form the only Nash equilibrium of the game. This is
what happens in the prisoner’s dilemma game.

Define a social welfare function W : S1 × · · · × Sn → R by setting

W (s) =
n∑

i=1

ui(s).

A strategy profile s of a game G = (N,S, u) is a social optimum if

W (s) = sup{W (t) | t ∈ S}.
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For a finite game, s is a social optimum if W (s) is the maximum of the welfare
function for that game.

In the case of the prisoner’s dilemma game, the social optimum is reached at
(c, c), with outcome W (c, c) = 3 + 3 = 6.

We can turn the prisoner’s dilemma setting into a playground for social soft-
ware engineering, in several ways. In Sect. 4 we explore punishment mechanisms,
while in Sect. 5 we look at welfare redistribution.

4 Appropriate Punishment

Suppose the social software engineer is confronted with a PD situation, and has
to design a policy that makes defection less profitable. One way of doing that is
to put a penalty P on defection. Notice that we now talk about engineering a
strategy at a level different from the level where I and II choose their strategies
in the game.

A penalty P on cheating does not have an immediate effect, for it can only
be imposed if the one who cheats gets caught. Suppose the probability of getting
caught is p. In case the cheater gets caught, she gets the penalty, otherwise she
gets what she would have got in the original game.

Then adopting the policy amounts to a change in the utility functions. In
other words, the policy change can be viewed as a game transformation that
maps strategic game G to strategic game GpP , where GpP is like G except for
the fact that the utility function is replaced by:

upP
I (c, c) = uI(c, c),

upP
I (d, c) = pP + (1 − p)uI(d, c),

upP
I (c, d) = uI(c, d),

upP
I (d, d) = pP + (1 − p)uI(d, d),

and similarly for upP
II . The utility for behaving honestly if the other player is

also honest does not change. The new utility of cheating if the other is honest
amounts to P in case you get caught, and to the old utility of cheating in case
you can get away with it. The probability of getting caught is p, that of getting
away unpunished is 1 − p. Hence upP

I = pP + (1 − p)uI(d, c).
This allows us to compute the ‘right’ amount of punishment as a function

of the utilities of being honest and of cheating without being caught, and the
probability of being caught. Recall the assumption that the utility of staying
honest while the other player cheats has not changed. Call this H. Let C be
the reward for cheating without being caught. Let p is the probability of getting
caught. Then a punishment of H+pC−C

p is “just right” for making cheating lose
its appeal. Technically, this is the least amount of punishment that turns the
social optimum of the game into a Nash equilibrium.

For example, suppose the probability of getting caught cheating is 1
9 . Then

the punishment that ensures that cheating loses its appeal in case the other



300 J. van Eijck

player is honest, for the utilities shown above, equals 3+(1/9)4−4
1/9 = −5. This

amounts to the following transformation of the prisoner’s dilemma game:

c d
c 3, 3 0, 4
d 4, 0 1, 1

⇒ (−5,
1
9
) ⇒

c d
c 3, 3 0, 3
d 3, 0 1

3 , 1
3

The new game has two Nash equilibria: (c, c) with payoff (3, 3), and (d, d), with
payoff (13 , 1

3 ). If the other player is honest, cheating loses its appeal, but if the
other player cheats, cheating still pays off.

The punishment that ensures that cheating loses its appeal in case the other
player is cheating (assuming the probability of getting caught is still the same)
is higher. It equals (1/9)−1

1/9 = −8. This corresponds to the following game trans-
formation:

c d
c 3, 3 0, 4
d 4, 0 1, 1

⇒ (−8,
1
9
) ⇒

c d
c 3, 3 0, 2 2

3
d 2 2

3 , 0 0, 0

In the result of this new transformation, the social optimum (c, c) is the only
Nash equilibrium.

There are many possible variations on this. One reviewer suggested that in
the case where cheating gets detected, there should also be an implication for
the honest player. The cheating player should get the penalty indeed, but maybe
the honest player should get what she would get in case both players are honest.

Another perspective on this is that punishment presupposes an agent who
administers it, and that doling out punishment has a certain cost. Think of real-
life examples such as confronting a queue jumper in a supermarket line. The
act of confrontation takes courage, but if it succeeds all people in the queue
benefit [19].

Game theory does not directly model what goes on in society, but game-
theoretical scenarios can be used to illuminate what goes on in society. The
transformation mechanism for the prisoner’s dilemma scenario illustrates, for
example, why societies with widespread crime need more severe criminal laws
than societies with less crime. Also, the calculations suggest that if a society
wants to avoid severe punishments, it has to invest in measures that ensure a
higher probability of getting caught.

A game-theoretical perspective on crime and punishment is in line with ratio-
nal thinking about what constitutes ‘just punishment’, which goes back (at least)
to Beccaria [6]. What the analysis is still missing is the important principle that
the punishment should somehow be in proportion to the severity of the crime.
Such proportionality is important:

If an equal punishment be ordained for two crimes that injure society
in different degrees, there is nothing to deter men from committing the
greater as often as it is attended with greater advantage. [6, Ch6]

Let us define a measure for social harm caused by the strategy of an individual
player. Let a game G = (N,S, u) be given. For any i ∈ N , define the individual
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harm function Hi : S → R, as follows:

Hi(s) = sup
s′
i∈Si

W (s′
i, s−i) − W (s).

This gives the difference between the best outcome for society as i unilaterally
deviates from her current strategy and the present outcome for society. Assuming
that the set Si is finite, we can replace this by:

Hi(s) = max
s′
i∈Si

W (s′
i, s−i) − W (s).

That is, Hi(s) gives a measure for how much player i harms society by playing si

rather than the alternative s′
i that ensures the maximum social welfare. Clearly,

in case s is a social optimum, Hi(s) = 0 for any i.
In the case of the prisoner’s dilemma, if player II is honest, the cheating

behaviour of player I causes 2 units of societal harm:

HI(c, c) = 0,HI(d, c) = W (c, c) − W (d, c) = 6 − 4 = 2.

Also in case II cheats, the cheating behaviour of I causes 2 units of societal harm:

HI(d, d) = H(c, d) − H(d, d) = 4 − 2 = 2.

Finally, HI(c, d) = 0, for playing honest if the other player is cheating is better
for society than cheating when the other player is cheating.

Punishment can now be made proportional to social harm, as follows. If
G = (N,S, u) is a strategic game, p ∈ [0, 1], β ∈ R≥0, then Gpβ is the game
(N,S, upβ), where upβ is given by:

upβ
i (s) := ui(s) − pβHi(s).

To see what this means, first consider cases of s and i with Hi(s) = 0. In these
cases we get that upβ

i (s) = ui(s). In cases where Hi(s) > 0 we get that the
penalty for harming society is proportional to the harm. Observe that

ui(s) − pβHi(s) = (1 − p)ui(s) + p(ui(s) − βHi(s)).

So, with probability 1 − p the crime gets undetected, and the player gets ui(s).
With probability p, the crime gets detected, and the player gets ui(s) − βHi(s),
the original reward minus the penalty.

Now we have to find the least β that deters players from harming society.
Games where no player has an incentive for harming society are the games that
have a social optimum that is also a Nash equilibrium. For any game G it holds
that G0β = G, for all β, for if there is no possibility of detection, it does not
matter what the penalty is. If the probability p of detection is non-zero, we can
investigate the class of games {Gpβ | β ∈ R≥0}.

Note that G and Gpβ have the same social optima, for in a social optimum
s it holds for any player i that Hi(s) = 0. Moreover, if s is a social optimum of
G, then W (s) = W pβ(s).
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As an example, consider the prisoner’s dilemma again. We get:

upβ
I (d, c) = uI(d, c) − pβHI(d, c) = 4 − 2pβ.

To make (c, c) Nash, we need 4 − 2pβ ≤ 3, whence β ≥ 1
2p (recall that p > 0).

Nash equilibrium can be viewed as the outcome of the agents’ strategic rea-
soning. It is the most commonly used notion of equilibrium in game theory, but
that does not mean that this is the obviously right choice in any application.
Here is one example of a modification. Call a strategy si a social best response
in s if

∀s′
i ∈ Si (W (s) ≤ W (s′

i, s−i) → ui(s) ≥ ui(s′
i, s−i)).

What this means is that no other response for i from among the responses that
do not harm the social welfare payoff is strictly better than the current response
for i.

Call a strategy profile a social equilibrium if each si is a social best response
in s:

∀i ∈ {1, . . . , n} ∀s′
i ∈ Si (W (s) ≤ W (s′

i, s−i) → ui(s) ≥ ui(s′
i, s−i)).

The PD game has two social equilibria: (c, c) and (d, d). The strategy pair
(c, c) is a social equilibrium because for each of the players, deviating from
this profile harms the collective. The strategy pair (d, d) is a social equilibrium
because it holds for each player that deviating from it harms that player.

A strategy profile is called Pareto optimal if it is impossible in that state to
make a player better off without making at least one other player worse off. The
profiles (c, c), (c, d) and (d, c) in the PD game are Pareto optimal, while (d, d) is
Pareto-dominated by (c, c). This shows that Pareto optimality is different from
being a social equilibrium.

If one would be allowed to assume that players are ‘social’ in the sense that
they would always refrain from actions that harm society as a whole, then meting
out punishment proportional to the social harm that is caused would make no
sense anymore, for players would not cause any social harm in the first place. In a
more realistic setting, one would assume a certain mix of socially responsible and
socially irresponsible players, and study what happens in repeated game play-
ing for populations of such player types [48]. If the distinction between socially
responsible players and selfish players makes sense, the distinction between Nash
equilibria and social equilibria may be useful for an analysis of social responsi-
bility. I must leave this for future work.

5 Welfare Redistribution

For another variation on the prisoner’s dilemma game, we can think of reward
rather than punishment. The idea of using welfare redistribution to make a game
more altruistic can be found in many places, and has made it to the textbooks.
Consider the following exercise in Osborne [39], where the student is invited to
analyze a variation on the prisoner’s dilemma:
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The players are not “selfish”; rather the preferences of each player i are
represented by the payoff function mi(a) + αmj(a), where mi(a) is the
amount of money received by player i when the action profile is a, j is
the other player, and α is a given non-negative number.
[39, Exercise 27.1 on page 27]

This idea is worked out in Apt and Schaefer [1] for the general case of n player
strategic games, where the selfishness level of a game is computed by transform-
ing a game G to a different game G(α), with α a positive real number, and G(α)
the result of modifying the payoff function of G by adding αW (s) to each utility
(W (s) is the social welfare outcome for the strategy profile s).

As an example, using α = 1, we can transform the prisoner’s dilemma game
PD into PD(1), as follows:

c d
c 3, 3 0, 4
d 4, 0 1, 1

⇒ (α = 1) ⇒
c d

c 9, 9 4, 8
d 8, 4 3, 3

This gives a new game, and in this modified game, the only Nash equilibrium
is (c, c). This means that the social optimum now is a Nash equilibrium. The
selfishness level of a game G is defined as the least α for which the move from G
to G(α) yields a game for which a social optimum is a Nash equilibrium. For the
prisoner’s dilemma game with the payoffs as given in the table on page 6, the
selfishness level α can be computed by equating the payoff in the social optimum
with the best payoff in the Nash equilibrium: 3+6α = 4+4α, which gives α = 1

2 .
There are also games G that have at least one social optimum, but that

cannot be turned into a game G(α) with a socially optimal Nash equilibrium for
any α. Apt and Schaefer [1] stipulate that such games have a selfishness level
equal to ∞.

Instead of the selfishness level, I will use a reformulation of this idea which
consists in computing what is the least amount of welfare redistribution that is
necessary to convert a social optimum into a Nash equilibrium. In other words:
how far do you have to move on the scale from pure capitalism to pure com-
munism to ensure that a social optimum is a Nash equilibrium? (But whether
this is more perspicuous remains a matter of taste, for I have tried in vain to
convince the authors to adjust their definition).

The map for welfare redistribution is G 	→ G[γ], where γ ∈ [0, 1] (our γ is
a proportion), and the payoff uγ

i in the new game G[γ] is computed from the
payoff ui in G (assuming there are n players) by means of:

uγ
i (s) = (1 − γ)ui(s) + γ

W (s)
n

.

Here W (s) gives the result of the welfare function on s in G.
Thus, player i is allowed to keep 1 − γ of her old revenue ui(s), and gets an

equal share 1
n of γW (s), which is the part of the welfare that gets redistributed.

This definition is mentioned (but not used) in Chen and Kempe [12].
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Notice the similarity to the probability of punishment computation on page
8. Also notice that if γ = 0, no redistribution of wealth takes place (pure capi-
talism), and if γ = 1, all wealth gets distributed equally (pure communism).

The civilization cost of a game G is the least γ for which the move from G
to G[γ] turns a social optimum into a Nash equilibrium. In case G has no social
optimum, the civilization cost is undefined.

Note the difference with the notion of the selfishness level of a game, com-
puted by means of uα

i (s) = ui(s) + αW (s). Summing over all the players this
gives a new social welfare W ′ = (1 + nα)W . If we rescale by dividing all new
payoffs by 1 + nα, we see that this uses a different recipe: qi(s) = ui(s)+αW

1+nα .
Thus, the definitions of selfishness level and civilisation cost are not related by
rescaling (linear transformation). Rather, they are related, for the case where
γ ∈ [0, 1), by the nonlinear transformation α = γ

n(1−γ) . This transformation is
undefined for γ = 1. Note that the map G, γ 	→ G[γ] is more general than the
map G,α 	→ G(α), for the game G[1] where all welfare gets distributed equally
has no counterpart G(·). Setting α equal to ∞ would result in a ‘game’ with
infinite payoffs.

An example of a game for which the selfishness level and the civilization cost
are 0 is the stag hunting game (first mentioned in the context of the establishment
of social convention, in Lewis [34], but the example goes back to Rousseau [46]),
with s for hunting stag and h for hunting hare.

s h
s 2, 2 0, 1
h 1, 0 1, 1

These payoffs are meant to reflect the fact that stag hunting is more rewarding
than hunting hare, but one cannot hunt stag on one’s own.

Note the difference in payoffs with the prisoner’s dilemma game: if your
strategy is to hunt hare on your own, it makes no difference for your payoff
whether the others also hunt hare or not. This game has two Nash equilibria,
one of which is also a social optimum. This is the strategy tuple where everyone
joins the stag hunt. So the selfishness level and the civilisation cost of this game
are 0.

Here is how the result of redistribution of proportion γ of the social welfare is
computed for the PD game, for the case of I (the computation for II is similar):

uγ
I (c, c) = uI(c, c),

uγ
I (d, c) = (1 − γ)uI(d, c) + γ

W (d, c)
2

uγ
I (c, d) = (1 − γ)uI(c, d) + γ

W (c, d)
2

uγ
I (d, d) = uI(d, d).

In the cases uγ
I (c, c) and uγ

I (d, d) nothing changes, for in these cases the payoffs
for I and II were already equal.
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The civilisation cost of the prisoner’s dilemma, with the payoffs of the exam-
ple, is computed by means of 3 = 4(1 − γ) + γ

2 4, which yields γ = 1
2 . This is the

same value as that of the selfishness level, because substitution of 1
2 for γ in the

equation α = γ
2−2γ yields α = 1

2 .
If we change the payoffs by setting uI(d, c) = uII(c, d) = 5, while leaving

everything else unchanged, the cost of civilization is given by 3 = 5(1−α)+ α
2 5,

which yields α = 4
5 . The selfishness level in this case is given by 3+6α = 5+5α,

which yields α = 2.
These were mere illustrations of how the effects of welfare redistribution

can be studied in a game-theoretic setting. This analysis can help to under-
stand social interaction in real life, provided of course that the game-theoretic
model fits the situation. In the next section we will look at a more sophisticated
model for the conflict between individual and societal interest than the prisoner’s
dilemma game model.

6 Tragedy-of-the-Commons Scenarios and Social
Engineering

The tragedy of the commons game scenario that applies to games of competition
for shares in a commonly owned resource was first analyzed in Gordon [23] and
was made famous in an essay by Garrett Hardin:

The tragedy of the commons develops in this way. Picture a pasture
open to all. It is to be expected that each herdsman will try to keep as
many cattle as possible on the commons. Such an arrangement may work
reasonably satisfactorily for centuries because tribal wars, poaching, and
disease keep the numbers of both man and beast well below the carrying
capacity of the land. Finally, however, comes the day of reckoning, that
is, the day when the long-desired goal of social stability becomes a reality.
At this point, the inherent logic of the commons remorselessly generates
tragedy. [25]

Bringing more and more goats to the pasture will in the end destroy the
commodity for all. Still, from the perspective of an individual herdsman it is
profitable until almost the very end to bring an extra goat.

The tragedy of the commons can be analyzed as a multi-agent version of the
prisoner’s dilemma. The players’ optimal selfish strategies depend on what the
other players do, and the outcome if all players pursue their individual interest
is detrimental to the collective. One can also view this as a game of an individual
herdsman I against the collective II. Then the matrix is:

m g
m 2, 2 0, 3
g 3, 0 −1,−1
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Each player has a choice between g (adding goats) and m (being moderate).
Assuming that the collective is well-behaved, it pays off to be a free rider. But
if everyone acts like this, system breakdown will result.

In a more sophisticated multi-player version, assume there are n players. I
use the modelling of Chap. 1 of Vazirani et al. [54]. The players each want to
have part of a shared resource. Setting the value of the resource to 1, each player
i has to decide on the part of the resource xi to use, so we can assume that
xi ∈ [0, 1]. Note that in this model, each player can choose from an infinite
number of possible strategies.

Let us stipulate the following payoff function. Let N be the set of agents. If∑
j∈N xj < 1 then the value for player i is ui = xi(1−∑

j∈N xj): the benefit for
i decreases as the resource gets exhausted. If

∑
j∈N xj ≥ 1 (the demands on the

resource exceed the supply), the payoff for the players becomes 0.
So what are equilibrium strategies? Take the perspective of player i. Let D

be the total demand of the other players, i.e., D =
∑

j∈N,j �=i xj < 1. Then
strategy xi gives payoff ui = xi(1 − (D + xi)), so the optimal solution for i is
xi = (1−D)/2. Since the optimal solution for each player is the same, this gives
x = 1−(n−1)x

2 , and thus x = 1
n+1 as the optimal strategy for each player. This

gives D + x = n
n+1 , and payoff for x of u = 1

n+1 (1 − n
n+1 ) = 1

(n+1)2 , and a total
payoff of n

(n+1)2 , which is roughly 1
n . This means that the social welfare in the

Nash equilibrium for this game depends inversely on the number of players.
If the players had agreed to leave the resource to a single player, the total

payoff would have been u = x(1−x), which is optimal for x = 1
2 , yielding payoff

u = 1
4 . If the players had agreed to use only 1

2 of the resource, they would have
had a payoff of 1

4n each, which is much more than 1
(n+1)2 for large n. Tragedy

indeed.
Can we remedy this by changing the payoff function, transforming the ToC

into ToC[γ] with a Nash equilibrium which also is a social optimum? It turns out
we can, but only at the cost of complete redistribution of welfare. The civilization
cost of the ToC is 1. Here is why. If all players decide to leave the resource to a
single player i, the payoff for i is given by ui = xi(1 − xi). This is optimal for
xi = 1

2 , and the payoff for this strategy, in the profile where all other players
play 0, is 1

4 . This is the social optimum.
Suppose we are in a social optimum s. Then W (s) = 1

4 . Player i deviates by
moving from xi to xi+y. The new payoff is (xi+y)(12 −y) = 1

2 (xi+y)−y(xi+y).
The deviation is tempting if (xi + y)(12 − y) > 1

2xi. Solving for y gives: y < 1
2 .

Let s′ be the profile where i plays xi+y. Then W (s′) = (12+y)(12−y) = 1
4−y2,

so W (s) − W (s′) = y2.

ui(s′) − ui(s) =
1
2
(xi + y) − y(xi + y) − 1

4
= y(

1
2

− xi − y).

We can now calculate just how much welfare we have to distribute for a given
alternative to social optimum s to lose its appeal for i. A tempting alternative
s′ for i in s loses its appeal for i in s when the following holds:

uγ
i (s′) ≤ uγ

i (s).
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Write out the definition of uγ
i :

(1 − γ)ui(s′) + γ
W (s′)

n
≤ (1 − γ)ui(s) + γ

W (s)
n

.

Solve for γ:
n(ui(s′) − ui(s))

n(ui(s′) − ui(s)) + W (s) − W (s′)
≤ γ.

In our particular case, this gives:

ny( 12 − xi − y)
ny( 12 − xi − y) + y2

=
nxi + ny − n

nxi + ny − n − y2
.

We have that 0 ≤ xi ≤ 1
2 , 0 ≤ y < 1

2 , Plugging these values in, we get:

sup
0≤xi≤ 1

2 ,0≤y< 1
2

nxi + ny − n

nxi + ny − n − y2
= 1.

Since the social optimum s was arbitrary, it follows that the cost of civilization
for the tragedy of the commons game is 1. (This corresponds to selfishness level
∞.)

Now for the key question: what does this all mean for policy making in
ToC situations? One can ask what a responsible individual should do in a ToC
situation to optimize social welfare. Let D =

∑
i∈N xi, i.e., D is the total demand

on the resource. Suppose j is a new player who wants to act responsibly. What
should j do? If D < 1

2 , j should demand

xj =
1
2

− D.

This will make the new demand equal to 1
2 , and the welfare equal to D−D2 = 1

4 ,
which is the social optimum.

If D = 1
2 , any positive demand of j would harm the social welfare, so in

this case j should put xj = 0. An alternative would be to persuade the n other
players to each drop their individual demands from 1

2n (on average) to 1
2n+2 . If

this plea succeeds, j can also demand 1
2n+2 , and the new total demand becomes

n+1
2n+2 = 1

2 , so that again the social optimum of 1
4 is reached.

If D > 1
2 , any positive demand of j would harm the social welfare, so again j

should put xj = 0. In this case, the prospect of persuading the other players to
lower their demands may be brighter, provided the players agree that they all
have equal rights. Once this is settled, it is clear what the individual demands
should be for optimum welfare. The optimum individual demand is 1

2n if there
are n players, and 1

2n+2 if there are n + 1 players. Allowing in one extra player
would cost each player 1

4n − 1
4n+4 .

To change to the punishment perspective, suppose D is the demand in the
old situation s. A new player comes in and demands x. Call the new situation
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s′. Let D be the total demand in s. Then W (s) = D − D2. If D + x > 1 then
W (s′) = 0. So in this case, the social damage equals the original welfare, and
the appropriate punishment is −W (s).

In the case where x + D ≤ 1, the excess demand is anything in excess of 1
2 ,

so the appropriate punishment is the welfare deterioration caused by the excess
demand y. Thus, the appropriate punishment is given by:

1
4

− W (s′) =
1
4

− (
1
2

+ y)(
1
2

− y) = y2.

If this is combined with the probability p of catching offenders, the penalty for
excess demand y should be y2

p .
Take an example case. Two players each demand 1

5 , so each gets 1
5 (1− 2

5 ) = 3
25 .

We have D = 2
5 , and W = D − D2 = 6

25 . A third player comes along and
demands 1

3 . Then the new demand D′ becomes 11
15 , which results in new welfare

W ′ = D′−D′2 = 44
225 . The welfare in the social optimum is 1

4 . The excess demand
is ( 25 + 1

3 ) − 1
2 = 7

30 . The deterioration in welfare is 1
4 − W ′ = 1

4 − 44
225 = 49

900 .
This is exactly equal to the square of the excess demand 7

30 .
A modern and pressing case of the tragedy of the commons is presented in

the Fourth IPCC Assessment report:

The climate system tends to be overused (excessive GHG concentrations)
because of its natural availability as a resource whose access is open to all
free of charge. In contrast, climate protection tends to be underprovided.
In general, the benefits of avoided climate change are spatially indivisible,
freely available to all (non-excludability), irrespective of whether one
is contributing to the regime costs or not. As regime benefits by one
individual (nation) do not diminish their availability to others (non-
rivalry), it is difficult to enforce binding commitments on the use of the
climate system [27,28]. This may result in “free riding”, a situation in
which mitigation costs are borne by some individuals (nations) while
others (the “free riders”) succeed in evading them but still enjoy the
benefits of the mitigation commitments of the former. [45, page 102]

The problem of collective rationality has been a key issue in practical philos-
ophy for more than two millennia. Aristotle discusses it at length, in the Politics:

For that which is common to the greatest number has the least care
bestowed upon it. Every one thinks chiefly of his own, hardly at all
of the common interest; and only when he is himself concerned as an
individual. For besides other considerations, everybody is more inclined
to neglect the duty which he expects another to fulfill; as in families
many attendants are often less useful than a few. [3, paragraph 403,
Book II]

What is important about the game-theoretical analysis is the insight that
there are situations where lots of individual actions of enlightened self-interest
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may endanger the common good. There is not always an invisible hand to ensure
a happy outcome.

The phenomenon that Aristotle alludes to is called the ‘bystander effect’ in
Darley and Letane [16]: solitary people usually intervene in case of an emergency,
whereas a large group of bystanders may fail to intervene — everyone thinks that
someone else is bound to have called the emergency hotline already (pluralistic
ignorance), or that someone else is bound to be more qualified to give medical
help (diffused responsibility). See Osborne [39] for an account of this social phe-
nomenon in terms of game theory, Pacuit, Parikh and Cogan [41] for a logical
analysis, and Manning, Levine and Collins [36] for historical nuance about the
often quoted and much discussed case of Kitty Genovese (who, according to the
story, was stabbed to death in 1964 while 38 neighbours watched from their
windows but did nothing).

Garrett Hardin, in his famous essay, also discusses how tragedy of the com-
mons situations can be resolved. He makes a plea for the collective (or perhaps:
enlightened individuals within the collective) to impose “mutual constraints,
mutually agreed upon,” and he quotes Sigmund Freud’s Civilisation and its Dis-
contents [20] to put the unavoidable tension between civilisation and the desires
or inclinations of individuals in perspective.

On the other hand, Ostrom [40] warns against the temptation to get carried
away by the game-theoretical analysis of ToC situations, and shows by careful
study of real-world cases of institutions (fisheries, irrigation water allocation
schemes) how — given appropriate circumstances — effective collective action
can be organized for governing common pool resources without resorting to a
central authority. See Baden and Noonan [5] for further discussion.

7 Renunciation Games

Let me depart now from the standard game theory textbook fare, and introduce
three new games where an individual is pitted against a collective. The setup
of the games is such that the social optimum of the game can only be reached
at the expense of one single individual. I call such games renunciation games.
When will an individual sacrifice his or her own interest to save society? It turns
out that the nature of the renunciation game changes crucially depending on the
temptation offered to the renouncer.

Pure Renunciation Game. The pure renunciation game has n players, who each
choose a strategy in [0, 1], which represents their demand. If at least one player
renounces (demands 0), then all other players get as payoff what they demand.
Otherwise, nobody gets anything. The payoff function for i is given by:

ui(s) =
{

si if ∃j �= i : sj = 0
0 otherwise.

This game has n social optima (0, 1, . . . , 1), (1, 0, 1, . . . , 1), . . . , (1, . . . , 1, 0), where
the social welfare W equals n − 1. The social optima are also Nash equilibria.
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No need for welfare redistribution, no need for punishment. The situation changes
if there is a temptation for the renouncer in the game.

Renunciation Game with Mild Temptation. This renunciation game has n play-
ers, who each choose a strategy in [0, 1], which represents their demand. If at
least one player renounces (demands 0), then all other players get as payoff what
they demand. Otherwise, if there is one player i who demands less than any other
player, i gets what she demands, and the others get nothing. In all other cases
nobody gets anything. The payoff function for i is given by:

ui(s) =

⎧
⎨

⎩

si if ∃j �= i : sj = 0
or ∀j �= i : 0 < si < sj

0 otherwise.

This game has n social optima. There are no Nash equilibria. The cost of civi-
lization for the Renunciation Game is γ = 1

2n−2 . Indeed, this game has n social
optima (0, 1, . . . , 1), (1, 0, 1, . . . , 1), . . . , (1, . . . , 1, 0), where the social welfare W
equals n − 1. In particular, the social optima are not Nash equilibria. For in a
social optimum, the player who renounces (and receives nothing) can get any q
with 0 < q < 1 by playing q. That’s the temptation.

Now focus on player 1 and compute the least γ for which the social optimum
(0, 1, . . . , 1) turns into a Nash equilibrium in G[γ]. The payoff function for player
1 in G[γ] satisfies:

uγ
1(0, 1, . . . , 1) = γ

n − 1
n

.

For the social optimum to be Nash, this value has to majorize

uγ
1(q, 1, . . . , 1) = (1 − γ)q +

γ

n
q.

Since q can be arbitrarily close to 1, we get uγ
1(q, 1, . . . , 1) < (1−γ)+ γ

n , Therefore
(0, 1, . . . , 1) is a social optimum in G[γ] iff γ n−1

n ≥ (1 − γ) + γ
n . Solving this for

γ gives γ ≥ 1
2n−2 .

The situation changes drastically if there is heavy temptation.

Renunciation Game with Heavy Temptation. This renunciation game has n play-
ers, who each choose a strategy q in [0, 1], which represents their demand. If at
least one player renounces (demands 0), then all other players get as payoff what
they demand. Otherwise, if there is one player i who demands less than any other
player, i gets n − 1 times what she demands, and the others get nothing. In all
other cases nobody gets anything. The payoff function for i is given by:

ui(s) =

⎧
⎨

⎩

si if ∃j �= i : sj = 0
(n − 1)si if ∀j �= i : 0 < si < sj

0 otherwise.

The civilization cost for Renunciation With Heavy Temptation is 1. Social
optima are the same as before. We have to compute the least γ that turns
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social optimum (0, 1, . . . , 1) into a Nash equilibrium in G[γ]. The constraint on
the payoff function for player 1 is:

uγ
1(q, 1, . . . , 1) = (1 − γ)(n − 1)q +

γ

n
(n − 1)q.

Since q can be arbitrarily close to 1, this gives

uγ
1(q, 1, . . . , 1) < (1 − γ)(n − 1) +

γ

n
(n − 1).

This puts the following constraint on γ:

γ
n − 1

n
≥ (1 − γ)(n − 1) +

γ

n
(n − 1).

Solving for γ gives nγ ≥ n, and it follows that γ = 1.

These games are offered here as examples of new metaphors for social inter-
action, showing that the store-room of game-theoretic metaphors is far from
exhausted. I hope to analyse renunciation games in future work.

8 Experiments with Knowledge and Trust

In many social protocols (scenarios for social interaction) the knowledge that the
participants have about each other and about the protocol itself play a crucial role.

The prisoner’s dilemma scenario, e.g., assumes that there is common knowl-
edge among the players about the utilities. Also, it is assumed that there is
common knowledge that the players cannot find out what the other player is
going to do. If we change the scenario, by letting the players move one by one,
or by communicating the move of the first player to the second player, this
changes the nature of the game completely.

Suppose two players meet up with a host, who hands over a bill of ten euros
to each of them, and then explains that they will each be asked whether they
are willing to donate some or all of the money to the other player. The host adds
the information that donated amounts of money will be doubled.

What will happen now depends on the set-up. If each player communicates
in private to the host, we are back with the prisoner’s dilemma situation. If the
players are allowed to coordinate their strategies, and if they act under mutual
trust, they will each donate all of their money to the other player, so that they
each end up with 20 euros. If the first player is asked in public what she will do, it
depends on what she believes the other player will do if it is his turn, and so on.

Experiments based on this kind of scenario have been staged by game theo-
rists, to explain the emergence of trust in social situations. A relevant game is the
so-called ultimatum game, first used in Güth, Schmittberger and Schwarze [24].

Player I is shown a substantial amount of money, say 100 euros. He is asked to
propose a split of the money between himself and player II. If player II accepts
the deal, they both keep their shares, otherwise they both receive nothing. If
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this game is played once, a split (99, 1) should be acceptable for II. After all,
receiving 1 euro is better than receiving nothing. But this is not what we observe
when this game is played. What we see is that II rejects the deal, often with
great indignation [11].

Evidence from experiments with playing the ultimatum game and repeated
prisoner’s dilemma games suggests that people are willing to punish those who
misbehave, even if this involves personal cost.

Another game that was used in actual experiments, the investment game,
suggests that people are also willing to reward appropriate behaviour, even if
there is no personal benefit in giving the reward.

The investment game is played between a group of people in a room A and
another group of people in a room B, and can be summarized as follows. Each
person in room A and each person in room B has been given 10 euros as show
up money. The people in room A will have the opportunity to send some or all
of their money to an anonymous receiver in group B. The amount of money sent
will be tripled, and this is common knowledge. E.g., an envelope sent with 9
euros will contain 27 euros when it reaches its recipient in room B. The recipient
in group B, who knows that someone in group A parted with one third of the
amount of money she just received, will then decide how much of the money to
keep and how much to send back to the giver in room A. Consult Berg, Dickhaut
and McCabe [9] for the results of the experiment.

Reputation systems such as those used in Ebay are examples of engineered
social software. The design aim of these public ratings of past behaviour is to
make sure that trust can emerge between players that exchange goods or ser-
vices. Reputation can be computed: Kleinberg [29] gives a now-famous algorithm
which ranks pages on the internet for authoritativeness in answering informa-
tive questions. One of the ways to strategically misuse reputation systems is by
creating so-called “sybils”: fake identities which falsely raise the reputation of
an item by means of fake links. So a design aim can be to create reputation
mechanisms that are sybil proof; see Cheng [13]. For further general information
on reputation systems, consult Resnick [44].

These systems can also be studied empirically: how does the designed repu-
tation system influence social behaviour? The same holds for the renunciation
game scenarios from the previous section. Empirical studies using these scenarios
might yield some revealing answers to the question “What do people actually
do when being asked to renounce for the benefit of society?”

9 Conclusion

Several chapters in this book present relevant logics for strategic reasoning. Van
Benthem [8] makes a plea for applying the general perspective of action logic
to reasoning about strategies in games. In Van Eijck [17] it is demonstrated
how propositional dynamic logic or PDL [31,43] can be turned into a logic for
reasoning about finite strategic games. Such logics can be used to study, e.g.,
voting rules or auction protocols from a logical point of view. In voting, think
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of casting an individual vote as a strategy. Now fix a voting rule and determine
a payoff function, and you have an n player voting game. Next, represent and
analyze this in PDL, or in any of the logic formalisms taken from this book.

Voting is a form of collective decision making. A key distinction in decision
making is between cases where there is a correct outcome, and the challenge for
the collective is to find that outcome, and cases where the notion of correctness
does not apply, and the challenge for the collective is to arrive at a choice that
everyone can live with.

A famous result from the early days of voting theory is Condorcet’s jury
theorem [15]. The case of a jury that has to reach a collective decision ‘guilty
or not’, say in a murder trial, has a correct answer. For either the accused has
committed the murder, or he has not. The trouble is that no member of the
jury knows for sure what the answer is. Condorcet’s jury theorem states the
following:

Suppose each voter has an independent probability p of arriving at the
correct answer. If p is greater than 1

2 then adding more voters increases
the probability of a correct majority decision. If p is smaller than 1

2 then
it is the other way around, and an optimal jury consists of a single voter.

To see why this is true, assume there are n voters. For simplicity, we assume n
is odd. Assume that m voters have made the correct decision. Consider what
happens when we add two new voters. Then the majority vote outcome changes
in only two cases.

1. m was one vote short to get a majority of the n votes, and both new vot-
ers voted correctly. In this case the vote outcome changes from incorrect to
correct.

2. m was just equal to a majority of the n votes, but both new voters voted
incorrectly. In this case the vote outcome changes from correct to incorrect.

In both of these cases we can assume that it is the last of the n voters who
casts the deciding vote. In the first case, voter n voted correctly, in the second
case voter n voted incorrectly. But we know that voter n has probability p of
arriving at a correct decision, so we know that in case there is just a difference of
a single vote between the correct and the incorrect decision among n voters, the
probability of the n voters arriving at a correct decision is p. Now add the two
new voters. The probability of case (1), from incorrect to correct, is (1 − p)p2,
and the probability of case (2), from correct to incorrect, is p(1 − p)2. Observe
that (1 − p)p2 > p(1 − p)2 iff p > 1

2 . The case where there is an even number of
voters is similar, but in this case we have to assume that ties are broken by a
fair coin flip, with probability equal to 1

2 of arriving at the correct decision.
Condorcet’s jury theorem is taken by some as an argument for democracy;

whether the argument cuts wood depends of course on whether one believes in
the notion of ‘correct societal decisions’. See List and Goodin [35] for further
discussion.
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Let me finish, light-heartedly, with another famous argument for democracy,
by Sir Francis Galton, in an amusing short paper ‘Vox Populi’ in Nature. Galton’s
narrative is one of the key story lines in Surowiecki [50]. Galton [21] starts as
follows:

In these democratic days, any investigation into the trustworthiness and
peculiarities of popular judgments is of interest. The material about to
be discussed refers to a small matter, but is much to the point.
A weight-judging competition was carried on at the annual show of the
West of England Fat Stock and Poultry Exhibition recently held at Ply-
mouth (England). A fat ox having been selected, competitors bought
stamped and numbered cards, for 6d. each, on which to inscribe their
respective names, addresses, and estimates of what the ox would weigh
after it had been slaughtered and “dressed.” Those who guessed most
successfully received prizes. About 800 tickets were issued, which were
kindly lent me for examination after they had fulfilled their immediate
purpose.

Galton then goes on to tell what he found. As it turned out, 13 tickets were
defective or illegible, but the median of the 787 remaining ones contained the
remarkably accurate guess of 1207 pounds, which was only 9 pounds above the
actual weight of the slaughtered ox: 1198 pounds. The majority plus one rule
gave the approximately correct answer.

What does this have to do with strategies and strategic reasoning, the reader
might ask. The strategic reasoning is lifted to the meta-level now: Are we in a
decision-making situation that is like weight-judging, or are we not? Is this a
social situation where many know more than one, or isn’t it? Does the optimal
jury for this consist of a single person, or does it not? Which brings us to the
key strategic question we all face when about to make the decisions in life that
really matter: “Should I take this decision on my own, or is it better to consult
others before making my move?”

Acknowledgement. Johan van Benthem, Robin Clark and Rainer Kessler sent their
written comments on an early draft, in which Floor Sietsma was also involved. Later,
I received helpful comments from Barteld Kooi.

The final version has benefitted from extensive reports by two anonymous reviewers.
Since these reports were excellent, I have tried to implement almost all referee sugges-
tions. Inspiring conversations with Mamoru Kaneko have led to further improvements.

Thanks are also due to book editors Rineke Verbrugge and Sujata Ghosh for
detailed comments on the final version and for help with proof-reading, and to the
other participants in the Lorentz workshop on Modeling Strategic Reasoning for inspir-
ing feedback. Finally, I acknowledge communication with Krzysztof Apt and Guido
Schaefer.

References
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Abstract. This piece is not a paper reporting on original research, but
rather a slightly expanded write-up of some notes for a concluding dis-
cussion at the 2012 Workshop on ‘Modeling Strategic Reasoning’ at the
Lorentz Center in Leiden, an interdisciplinary meeting on the importance
of strategies in many fields, from game theory to linguistics, computer
science, and cognitive science, that was the incubator for the present
volume on the logic-based analysis of strategies and how we reason with,
and about them. My modest purpose here is to highlight a few general,
somewhat unresolved, decision points about this proposed program that
seemed to resonate with the audience at the Workshop, but that may
also present food for thought to a more general reader of this book. The
emphasis in the presentation that follows is on logic, a view of strate-
gies that figures prominently in my own work on logic and games, cf.
[9]. Still, there are certainly other equally viable and illuminating for-
mal viewpoints on the study of strategies, coming, for instance, from
automata theory or dynamical systems, cf. [16,31].

Keywords: Strategy · Dynamic logic · Knowledge · Preference ·
Revision

1 What to Study in a Logic of Strategies?

If we take strategies seriously, what sort of logical analysis will make most sense?
The workshop title mentioned in the Abstract looks harmless as titles go, but it
hides some serious questions of what it is all about. Should the subject of the
logical analysis be strategies themselves, or the way we reason about strategies
(surely, not the same thing), or even just modeling reasoning about strategies, as
done by real agents in games, thereby placing two layers of intellectual distance:
‘reasoning’ and ‘modeling’, on top of the original phenomenon itself?

In fact, several perspectives need to come together in logical analysis: the
structure of strategies themselves and the agents using them, in what is some-
times called the internal ‘first-person mode’ of participants in a game or social
activity, but also reasoning about strategies as an important external ‘third-
person’ perspective on that same activity.1 Though related, these levels are sep-
arate. The difference between the first- and third-person stance shows up, for
1 I will leave the further ‘modeling’ layer in the title out of consideration altogether.
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instance, in current discussions of computational complexity of logics for agency.
One often sees claims that complexity results about logics of multi-agent activi-
ties tell us something about the complexity of these activities, cf. [14]. But such
claims may involve a confusion of the above levels. For instance, solving extensive
games with perfect recall may involve simple moves and strategies, even though
the epistemic-temporal logic of agents with perfect recall is extremely complex,
cf. [32]. More generally, the theory of a simple activity may well be difficult.2

Even when we decide to give strategies themselves their due, another issue
arises. The core meaning of the very term ‘strategy’ is contentious, reflecting a
broader issue of where to locate the essence of this notion. Some people think
of what is strategic in behavior as typically involving some structured plan for
the longer term, in line with the crucial role of programs in computer science, or
plans in AI [3] and philosophy [20]. But others, for instance, cognitive scientists
and social scientists [21,30] see the heart of strategic behavior in interest- or
preference-driven action, often with ulterior goals beyond what is immediately
observable.3 In the latter case, standard computational logics, no matter how
sophisticated (cf. the survey of modern fixed-point logics in [55]) may not suffice
as a paradigm for studying strategies, as agents’ preferences between runs of
the system now become of the essence, something that has not been integrated
systematically into computation (but see [51,53] for some attempts).

My own advocacy of the explicit logical study of strategies has mainly focused
on the former structured plan aspect [7], and I will continue do so in this note –
but the above two dimensions of strategic behavior are evidently not in conflict.
They just need to be distinguished, and then brought into contact.

2 Locating Key Notions and Core Language

Logicians like to believe, and their methodology also tends to require, that their
analysis starts with some stable practice of language use and reasoning patterns
concerning the phenomenon at issue. But do strategies form such a natural
practice that can bear the weight of the logical machinery that one would want
to apply? At least, there is an issue of what would be natural boundaries for the
theme. In serious logical analysis, one wants to find core families of notions that
naturally belong together. For instance, to take another notion important to the
agency in strategies, in epistemology, it makes little sense to study knowledge
by itself without at the same time studying belief, and perhaps also the notion
of evidence [28,34]. These notions form a natural trinity of what seem the basic
epistemic notions tied up with the information that agents have about the world.
Likewise, we may ask whether strategies should be an exclusive focus for the
study envisioned here, or whether logical analysis only gets a proper perspective
by taking on board further notions from the start.
2 For this level distinction in dynamic-epistemic logics of agency, and what is ‘easy’

and ‘hard’ for acting agents versus for theorists, see also the discussion in [6].
3 Sometimes this is seen as high rationality, but sometimes also as self-serving and not

really nice, mirroring the pejorative meaning of ‘strategizing’ in common parlance.
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It may be significant here that the linguistic terminology used around the
notion of strategy shows a great variety, both in ordinary language and in acad-
emic research. People talk of strategies, tactics, plans, protocols, methods, agent
types, and the like, which often amount to similar things. For instance, is a ‘Liar’
a type of person, a program producing a certain behavior, a method for deal-
ing with other people, or a strategy? One can find instances of all these views
in the literature, and in professional talk. Clearly, these terms are not all for-
mally well-defined, though some cues for their use might be culled from natural
language. In daily discourse, tactics means strategy writ small (a ‘strategette’),
while strategy is tactics writ large – and one feels that they are similar notions of
modus operandi, but operating at different levels of describing activities. It might
be worth aiming for further conceptual clarification here, and reserve terms for
various uses in a natural family of descriptions for interactive behavior.4

In my own work on logic and games, [9], I have sometimes found a need for
several related notions that all have their own place – though I do not claim they
are standard. A protocol is a persistent style of behavior over a longer period of
time, say, a linguistic practice such as cooperative answering. Such a practice is
like an operating system, which then admits of running different strategies inside
its compass for particular short-term purposes, such as conveying a message, or
convincing your audience of a claim in argumentation. Moreover, these strategies
are used by agents, viewed as embodied devices that can run different strategies,
conforming to protocols that set up the space of possible behavior. But I admit
that I often switch terms, much like other colleagues in my trade.5

Our common vocabulary around the notion of a strategy seems less stable
than for, say, knowledge or belief. While I do not expect that plunging into lin-
guistic semantics or philosophy is a magic key resolving these issues, a systematic
look at natural language might be worth-while.6 For now, however, we may just
have to make do with fixing terms locally when communicating with colleagues.
But I do think the variety of interactive notions mentioned above, operative at
different levels of agency, is worth studying together under any name.

3 Starting from Best Practices

In addition to finding core notions as discussed above, what is the further raw
material for a logical analysis of strategies? In addition to top-down worrying
about conceptual structure and clean terminology, there is the more empirical
4 In fact, this is exactly what happens when certain sub-communities of game theory,

computer science, or AI do attach fixed meanings to some of these terms. Cf. [52].
5 I freely use even further terms, such as ‘plans’ as being more open-ended than strate-

gies, and also, as something one is aware of and commits to, more than strategies.
6 Compare the not wholly unrelated case of epistemology and informational action,

where natural language has a rich and telling repertoire of common expressions such
as ‘know’, ‘suspect’, ‘learn’, ‘note’, ‘discover’, ‘tell’ that we use with a certain amount
of stability and even sophistication when engaging in actions of our own, or reporting
and reflecting on actions by others. For more on this theme, cf. [10].
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approach of looking at best practice. Consider the somewhat related question of
‘What is an algorithm?’. Perhaps the best way of approaching this issue is by
giving a set of concrete examples, exemplars that we see as characteristic of the
notion, and that help nurture our intuitions. Think of famous sorting algorithms,
geometrical constructions, or algebraic procedures. Can we do something similar
for our topic of strategies? Is there a core range of evergreens that attract our
attention, and could serve as benchmarks for logical theorizing?

On various occasions, I have tried to collect concrete examples that col-
leagues around me find particularly motivating. But I never found a large set,
and the items that recur are often abstract and logical in nature – perhaps due
to a filter inherent to logicians’ channels of thought. Elegant ubiquitous items
giving strong effects for small effort are surprisingly simple copying strategies:
Copy-Cat in linear game semantics [1], Tit-for-Tat in evolutionary games [5], or
‘strategy stealing’ in classical game theory [17,42]. These strategies are not quite
the same, if you think them through, but what they have in common is a sim-
ple way of copying useful moves from somewhere else. At the above-mentioned
Lorentz workshop, I became aware of new strategies of this kind. For instance,
the most sophisticated examples of signaling strategies in ‘IF logic’ [35,50] are
not concrete Skolem functions, the usual paradigm in that field, but generic
identifying strategies like ‘take the same object’, ‘take some other object’.

Perhaps surprisingly, much can be built from a modest copying repertoire
for agents once we allow further game constructions. Game semantics for linear
logic builds all its strategies in this way (cf. [2]), suggesting that copying plus
compositionality might be a major part of understanding the working of complex
strategies. Moreover, automata-based strategies in computational logic achieve
significant mathematical proofs and results using ‘shadow matches’ and copying
behavior from virtual games into one’s actual play (cf. [31,55]).

And in the end, this may not just be logic-internal. Maybe the best practical
game paradigm around is Judo, using one’s opponent’s moves to win it all.

4 Core Logic of Strategies

But here is yet another take on our program of studying strategies. In addition
to designing formal languages, logicians have their own approach to zooming in
on a notion, no matter what stable terminology or exemplars trail along with
it. We think a notion is stable if there are some basic reasoning principles at its
core, shedding light on a broad range of uses. I myself indeed like to believe that
there is a core calculus of reasoning about strategic patterns in behavior, from
first-person deliberation to third-person assessment of action in games.

One obvious candidate for such a calculus of reasoning about strategies has
in fact long existed: namely, propositional dynamic logic PDL of programs with
sequential operations [33]. The compositional structure of strategies often has
a typical program-like IF ... THEN ... ELSE and WHILE ... DO ... character,
and also, PDL’s way of generalizing from strategies as unique-valued functions
defined on turns of players to possibly many-valued binary relations makes a
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lot of sense when we generalize from strategies as unique-valued functions to
plans offering choices.7 What PDL delivers is a general way of reasoning about
generic strategies (cf. [7,9,27,47,48] on various versions of this), though it can
also handle specific functions or relations in single games. But is it enough?

One way of testing this might be quasi-empirical, cataloguing relevant basic
results in game theory, computer science, and logic, toward a repertoire of ubiqui-
tous proofs concerning strategies. What is a stable set of paradigmatic arguments
that can be mined for recurring logical patterns, and serve as a benchmark for
logics of strategies? My favorite sources are standard proofs of major results such
as the Gale-Stewart theorem or the Von Neumann-Morgenstern-Nash fixed-point
theorem (cf. [42]) – and one could add recent proofs from computer science, e.g.,
for the Positional Determinacy Theorem and related results in work on strate-
gies in automata theory [29], or in the modal µ–calculus [31,55]. If you look
at the details of what happens in such mathematical arguments, you will see
a rich amount of logical finesse concerning strategies, including sophisticated
simulation techniques that generalize far beyond these results themselves.

Of course, this still does not tell us what framework would be best for a base
calculus of strategies. Propositional dynamic logic as above is one option favored
by many authors, linear logic for game semantics is another major paradigm,
more proof-theoretic or category-theoretic in nature [2], but one may also want
to consider more recent paradigms such as the co-algebra of strategies in infinite
games.8 I will not pursue these various approaches here, but refer to [8] for more
detailed case studies of calculi of strategies that fit basic proofs and counter-
examples about games.9 So far, however, none of these calculi have dealt with
the preference-based sense of strategic action in terms of pursuing goals.10

5 Plans Across Changing Situations

So far, I have emphasized one key desideratum for a logical understanding of
strategies, a grasp of fundamental valid patterns in reasoning about them. But
there are further relevant intuitions that invite a logical angle. What seems par-
ticularly important to me is that a good strategy, or plan, should still work
when circumstances change: its should be robust under, at least, small changes.
7 As noted before, intuitively, a plan restricts my choices in helpful ways, but it need

not fix my behavior uniquely: cf. [20] on the conceptual importance of this ‘slack’.
8 Coalgebraic strategies [54] are typically top-down objects that can be used by making

an observation of their head after which an infinite tail of the strategy remains
available. This never-ending feature is very different from the bottom-up behavior
of terminating programs highlighted in PDL.

9 [11] explores a follow-up to this concrete style of proof analysis for strategic reasoning
in infinite games with simultaneous moves.

10 Much further background, including game constructions associated with a strategy
calculus in our sense, is found in [9]. That book also discusses how strategies can
change our view of logic itself when we move from logic of games to logic as games,
reading formulas as complex game expressions.
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Of course, one can quibble about what is ‘small’ here, measured in what space,
but the intuition seems clear, and it led to lively discussion at the Lorentz Work-
shop for this book, raising serious issues of implementation for these ideas.

Many strategies in the literature are very local. They fall apart under small
changes in a game, and may not do anything useful any more. One sees this easily
when computing the Backward Induction strategy, perhaps the most basic game-
theoretic solution procedure. Its optimal path can shift wildly with addition or
deletion of moves, but also with slight changes in preferences. For an analogy,
consider computation or planning in AI: programs meeting certain specifications
may quickly stop working under even slight changes in the model.11

Two options seem to arise for coping at this stage: ‘recomputation’ and
‘repair’. Should we just create a new strategy in a new game, or gently revise
a given strategy? Looking at practice, we often seem to start with the latter
scenario, and only go the former route when forced by circumstances. But what
would be a serious theory of strategy revision? For instance, along what compar-
ison order should that take place? And can we say more precisely when gradual
changes are sufficient, and when they have to be drastic? I think all this raises
interesting issues of strategy structure, definability and model-theoretic preser-
vation behavior that we logicians have not yet begun to address systematically.12

What I find intriguing is how, in modern epistemology, similar intuitions of
robustness have led to powerful ‘tracking theories’ [37,41] viewing knowledge as
true belief that stays correct under small counterfactual variations in the world.
My hunch is that similar techniques may work for the notion of a strategy.

6 Plans, Knowledge and Understanding

My discussion so far fits a conception of strategies as pure algorithms composed
out of atomic actions and factual tests. But in most topics of interest to agency,
pure action is not enough. Information plays a crucial role in strategic behavior
by the more interesting sorts of agents that logicians study. This topic has been
studied for quite a while, and we know a lot about how to extend pure com-
putational approaches. In particular, in the PDL format with epistemic logic
added, one can get a long way with epistemic dynamic logics for planning [40]
or ‘knowledge programs’ [28].13 I cannot discuss these lines of work in this brief
note, but they are highly relevant to any eventual logic of strategies.
11 One might seek the robustness already in the standard game-theoretic notion of a

strategy, that has to work under every eventuality. One can turn all relevant forms
of change into moves in a ‘supergame’, asking for one strategy there. But the latter
‘pre-encoding’ seems far removed from our ordinary understanding of agency.

12 Compare the nice example of repairing programs discussed in [38]. We know very
little by way of relevant systematic results in logic. Thus, I am not even aware of
model-theoretic preservation theorem under submodels or model extensions for such
a simple logic as PDL with programs. However, re-planning in multi-agent systems
has been investigated in computer science, cf. [25,26].

13 Such natural extensions with explicit epistemic features do not seem to exist yet for
other logical formats for strategies, such as linear game semantics.
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Instead, I just want to point out that, despite this success, basic questions
remain about the entanglement of information and action. In addition to plans
having to refer to knowledge, there is also a further fundamental notion of know-
ing a strategy, or a plan that seems crucial to rational agency. This is not
just a higher-order philosophical desideratum. Consider what we want a gen-
uine process of learning to achieve for students: not just correct propositional
knowledge that something is the case, but also the ability to engage in a cer-
tain practice based on the methods learned. In education, we teach know-how
at least as much as ‘know-that’. How can we add the latter notion to logics of
strategies and information? There is no generally accepted current explication
of what knowing a strategy means. One common line is to ask for a sufficient
amount of propositional knowledge about what effects the plan, and remaining
parts of it, will achieve.14 But intuitively, much more seems involved.

The surplus might be highlighted intuitively in terms of understanding a
strategy versus merely knowing it. What is the intuitive extra of understanding
over knowledge? This issue has emerged in recent discussions in epistemology
[46], and it also resonated with the audience at the Lorentz Workshop, where it
triggered interesting discussion about what understanding involves. In addition
to propositional knowledge of what a strategy, and parts of it, actually achieves
as it unfolds, people mentioned more modal desirable features such as the earlier
epistemic robustness: counterfactually knowing the effects of a strategy under
changed circumstances, or the ability to modify a strategy on the fly as needed.
Other desiderata included an ability to describe a strategy at different levels of
detail, moving up or down as needed. There may be other key aspects, but my
purpose here is just to raise the issue for the reader’s consideration.15

7 Entanglement with Preferences and Goals

Having looked at combining action and information, let us briefly consider the
other sense of strategic behavior mentioned in our introduction, that of being
based on motives and goals. As a concrete instance, consider how action and
preference are entangled in game theory and practical reasoning in general. Many
of the issues discussed earlier return then in a much richer way.

A benchmark in the area that has kept generating surprising new angles is
the Backward Induction algorithm [4,13,18]. Many current logics of strategies
can define how this works, but there are intriguing issues in interpreting what the
mixture of action and preference in these logics achieves, and what becomes of
the notion of a strategy in this setting. Proposals range from generating strategies
as advice for best behavior to viewing strategies as beliefs about the behavior of
other agents. All this gets even more complex when we go to techniques such as
14 This issue plays in the area of epistemic planning (cf. [3]), where different kinds

of knowledge or beliefs become important: about where we are in following some
current plan, but also beliefs about how we expect the process to develop over time.

15 Similar issues arise in analyzing what it means to understand a formal proof, and
useful intuitions might be drawn from our experience with mathematical practice.
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Forward Induction that also take into account what history of play has gone on
up until the present moment, and how to interpret observed moves.16 For more
on the state of the art in logical models of such reasoning styles, see [9].

8 Zooming in and Zooming Out

This may be a good place for a small digression clarifying what I am advocat-
ing for a logical study of strategies. Current work on game solution methods
like Backward Induction may suggest that logics of strategies must get ever
more expressively powerful, making everything explicit, zooming in on the tini-
est details – turning simple intuitive arguments into elaborate arrays of logical
formulas. But that would be only one half of the story. Often, logical analysis
does just the opposite to achieve greater clarity in a given reasoning practice,
zooming out to an abstraction level that hides details of a given type of strategy
to see the laws of a bigger picture. In particular, it has been argued that prac-
tical reasoning needs coarse-grained modal top-level logics of ‘best action’ as a
subset of all available moves in a game (cf. [43]), and similar ideas have occurred
in recent logics that merge ideas from game theory and deontic logic toward a
global theory of action (cf. [39,49]). Indeed, several logical abstraction levels can
make sense for one and the same reasoning practice, and the case of strategies
is no exception.17

9 Architecture of Diversity

I conclude with two points that return to my concern in this paper, the coherence
of the area represented at our Workshop, and indeed the topic of this book.

The first is the striking diversity of the available logical paradigms clamoring
for attention as candidates for a logic of strategies, and sometimes competing for
our allegiance as if they were alternative religions. I myself am a firm believer
in framework compatibility and convergence in the area of agency (and logic in
general), though I will not argue for this here (cf. [12,15]). I believe that the
study of strategies will benefit from a similar relaxed attitude.

The second point is the architecture of the phenomena we are after. A grand
unification into one strategic format, may not be possible, or even desirable. But
even without such a unification, there is the challenge of achieving beneficial
coexistence. It has often been noted that the reality of many activities that
humans engage in consists of a number of different games played at the same
time, that allow for passing information, and indeed switches of scenarios. A
telling example of such a setting is the array of different games that constitute
(or at least, model) the different aspects of natural language use, from finite
conversational scenarios to the infinite operating system of linguistic conventions.
16 Some game-theoretic sources for Forward Induction are [19,44,45].
17 In cognitive reality, zooming out and hiding procedural detail mirror processes of

automation turning explicit skills into unconscious routines in the brain, cf. [21].
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Accordingly, given that we tend to use strategies (pure, or entangled with
information and preferences) in a complex array of differently structured tasks,
what is the overall architecture that allows these plans to mesh and collaborate?
We need a better understanding of ways of interfacing and connecting strategies
for different tasks, making them work in parallel when on the same time-scale.
But also, in line with what what was just said, we need to harmonize strategies
for short-term terminating tasks (like the ones usually found in classical game
theory) with those for long-term tasks (as in evolutionary game theory, cf. [36]).
There may be hidden complexities in this connecting up of different strategies
and their logics, as is known from long experience with combining logical sys-
tems.18 And even beyond that, understanding the total architecture of strategies
at these various levels may call for interfacing different mathematical paradigms,
such as the PDL-style dynamic logic of programs that we have highlighted earlier
with the probabilistic dynamical systems that underlie infinite games.

10 The Final Word for Reality

I have raised a number of theoretical issues that run through the logical study
of strategies as an emerging area. Many of them may seem challenging common
problems for the community in this book, rather than shared solutions. Let me
add on a positive note all the same. Sometimes, when theoretical analysis seems
to make things more, rather than less complex, there is a last resort: consulting
the empirical facts. I feel that strategies reflect an undeniable human practice:
social interaction has been claimed to be the human evolutionary feature par
excellence [23,24,57]. It would be good then to also listen to cognitive studies
of strategic behavior [56], since that is where our subject is anchored eventually.
Now, making a significant connection with cognitive psychology may not be easy,
since strategic structure with its delicate compositional, generic, and counter-
factual aspects is not immediately visible and testable in actual psychological
experiments. But that just means that, in addition to its logical, computational,
and philosophical dimensions that have been mentioned here, the study of strate-
gies also invites sophisticated empirical fact gathering.
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