
Chapter 4
Special Topics

4.1 Deep Potentials Falling off Faster than 1/r2 Asymptotically

As already discussed in Chap. 2, the characteristic features of scattering by a poten-
tial, in particular at near-threshold energies, depend crucially on whether its fall-off
at large distances is faster or slower than 1/r2. In contrast to long-range Coulombic
potentials, which support infinite Rydberg series of bound states if the Coulombic
tail is attractive, potentials falling off faster than 1/r2 support at most a finite num-
ber of bound states. A special situation arises if the potential falls off faster than
1/r2, while being so deep that the number of bound states is very large. In this
case, there is a range of energies around threshold, excluding the immediate near-
threshold regime, where semiclassical approximations are quite accurate and able
to describe the systematics of scattering phase shifts and bound-state energy pro-
gressions. In the immediate near-threshold regime, however, quantum mechanical
effects, as typically expressed in Wigner’s threshold law, are dominant. An accu-
rate treatment of deep potentials falling off faster than 1/r2 must include a reliable
account of this extreme quantum regime in the immediate vicinity of the threshold.

Since the transition between the semiclassical regime away from threshold and
the extreme quantum regime at threshold is most easily demonstrated for the bound
states below threshold, we start with the theory of near-threshold quantization in
Sect. 4.1.1. Above-threshold continuum states are treated in the subsequent subsec-
tions on quantum reflection (Sect. 4.1.2) and scattering (Sect. 4.1.3). The treatment
in Sects. 4.1.1 to 4.1.3 is restricted to the case of vanishing angular momentum. The
implications of nonvanishing angular momentum are explained in Sect. 4.1.4.

4.1.1 Near-Threshold Quantization

Consider a potential V (r) which falls off faster than 1/r2 at large distances and is
so deeply attractive at small distances that it supports a large, albeit finite number
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Fig. 4.1 Deep potential falling off faster than 1/r2 at large distances. The example is ac-
tually the Lennard–Jones potential (2.298) with BLJ = 104, which supports 24 bound states,
υ = 0,1,2, . . . ,23. The brown shaded area in the left-hand panel schematically indicates where
the WKB approximation is accurate at near-threshold energies

of bound states. An example with 24 bound states is shown in Fig. 4.1. Since such
potentials typically describe the interatomic interaction in diatomic molecules, we
adopt the molecular physics notation and use the letter “υ” for “vibrational” to label
the bound states. The potential in Fig. 4.1 actually corresponds to the Lennard–Jones
potential (2.298) already discussed in Sect. 2.6.5, and the dimensionless parame-
ter BLJ, which is defined by Eq. (2.299) and determines the quantum mechanical
properties of the potential, is BLJ = 104 in the present case. The theory below is,
however, very general and does not rely on any special properties of the potential,
except that it should be deep and fall off faster than 1/r2 at large distances.

In the bound-state regime, the total energy is negative and related to the asymp-
totic inverse penetration depth κ by

E = −�
2κ2

2μ
. (4.1)

Since the potential is deep, a total energy near threshold implies that the kinetic en-
ergy is large in a region of r-values between the inner classical turning point rin(E)

and the outer classical turning point rout(E). This justifies the assumption, that there
is a “WKB region” between rin(E) and rout(E), where the condition formulated as
Eq. (2.141) in Sect. 2.4.1 is well fulfilled, so the solution of the radial Schrödinger
equation is accurately given by the WKB representation,

u(r) ∝ 1√
p(E; r) cos

[
1

�

∫ r

rin(E)

p
(
E; r ′)dr ′ − φin(E)

2

]
. (4.2)
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For vanishing angular momentum, the local classical momentum (2.136) is

p(E; r) =
√

2μ
[
E − V (r)

]; (4.3)

it is real and positive in the classically allowed region V (r) < E. The phase
φin(E) is the reflection phase at the classical turning point rin(E), as introduced
in Sect. 2.4.2, see Eq. (2.145). Reflection phases are chosen to be π

2 in conventional
WKB theory [11, 55], but allowing them to depend on energy makes it possible to
use WKB wave functions to derive results which are highly accurate, or even exact,
far away from the semiclassical limit [35]. The condition that the right-hand side
of (4.2) accurately represents the exact wave function u(r) for r-values in the WKB
region defines φin(E).

An alternative and equally valid WKB representation of u(r) is obtained by
choosing the outer classical turning point rout(E) as point of reference:

u(r) ∝ 1√
p(E; r) cos

[
1

�

∫ rout(E)

r

p
(
E; r ′)dr ′ − φout(E)

2

]
, (4.4)

and φout(E) is the reflection phase at rout(E). Compatibility of (4.2) and (4.4) re-
quires that the argument of the cosines be equal modulo π , up to a sign, for all
r-values in the WKB region. This leads to a quantization condition for the bound-
state energies Eυ :

1

�

∫ rout(Eυ)

rin(Eυ)

p(Eυ; r)dr = υπ + φin(Eυ)

2
+ φout(Eυ)

2
, υ integer. (4.5)

If we take both reflection phases to be equal to π
2 , then the right-hand side of

(4.5) becomes (υ + 1
2 )π , as in the conventional Bohr-Sommerfeld quantization

rule [55].
At threshold, E = 0, the condition (4.5) with integer υ is fulfilled only if there is

a bound state exactly at threshold. For the general case, we write

1

�

∫ ∞

rin(0)

p(E = 0; r)dr = υDπ + φin(0)

2
+ φout(0)

2
, (4.6)

where υD is the threshold quantum number, which is in general non-integer. The
present theory is especially suited for the description of diatomic molecules or
molecular ions, where the bound-to-continuum threshold is the dissociation thresh-
old, hence the subscript “D”.

Subtracting Eq. (4.5) from (4.6) yields the quantization rule,

υD − υ = F(Eυ), (4.7)
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with the quantization function F(E) given by

F(E) = 1

π�

[∫ ∞

rin(0)

p(0; r)dr −
∫ rout(E)

rin(E)

p(E; r)dr

]

− φin(0) − φin(E)

2π
− φout(0) − φout(E)

2π
. (4.8)

By definition, F(E) vanishes at threshold,

F(E = 0) = 0. (4.9)

Since the bound-state energies form a discrete finite set, it is always possible to
find a smooth function F(E) with (4.9) such that (4.7) is fulfilled at all bound-state
energies Eυ . The explicit expression (4.8) is trivially valid, if we allow appropri-
ate values of φin(E) and φout(E). If, at a given energy E, there is a WKB region
between the inner and outer classical turning points where the WKB approxima-
tion is sufficiently accurate, then the reflection phases φin(E) and φout(E) can be
determined precisely via (4.2) and (4.4), respectively.

The leading near-threshold energy dependence of the quantization function (4.8)
is a property of the large-distance behaviour of the potential. To be specific, we as-
sume that the potential is accurately given at large distances by a reference potential,
the “tail potential” Vtail(r),

V (r)
r large∼ Vtail(r). (4.10)

As reference potential, Vtail(r) is defined for all r > 0, but it only represents the true
interaction for large distances. The phrase “r large” over the “∼” sign in (4.10) has
been chosen deliberately in order to emphasize that, in general, it is not just the lead-
ing asymptotic behaviour of V (r) that is important. The radial Schrödinger equation
with the reference potential Vtail(r) alone and vanishing angular momentum reads

− �
2

2μ

d2u

dr2
+ Vtail(r)u(r) = Eu(r). (4.11)

Being an approximation to the full potential at large distances, the reference po-
tential Vtail(r) falls off faster than 1/r2 for r → ∞. At small distances, the full
interaction is not well described by the reference potential Vtail(r), and its precise
form is usually not well known anyhow. In the following we choose Vtail(r) such
that it diverges to −∞ more rapidly than −1/r2 for r → 0. This has the advantage
that the WKB representations of the solutions of (4.11), at any energy E, become
increasingly accurate for decreasing r and are, in fact, exact in the limit r → 0.
This can be confirmed by verifying that the quantality function (2.139) vanishes for
r → 0 when the potential is more singular than 1/r2 in this limit.

As for the repulsive inverse-power potentials discussed in Sect. 2.4.2, the prox-
imity to the semiclassical or anticlassical limits can be estimated via the value of a
typical classically defined action in units of �. Such a classical action is provided by



4.1 Deep Potentials Falling off Faster than 1/r2 Asymptotically 189

the product of the momentum-like quantity �κ and the outer classical turning point
rout(E), which is the same for the full interaction and for the reference potential
Vtail(r) at near-threshold energies and diverges to infinity at threshold,

rout(E)
κ→0−→ ∞. (4.12)

The typical action �κrout(E) in units of � is thus κrout(E), a quantity that has been

called the “reduced classical turning point” [85]. With r2Vtail(r)
r→∞−→ 0 it follows

from (4.12) that

∣∣Vtail
(
rout(E)

)∣∣rout(E)2 = �
2κ2

2μ
rout(E)2 κ→0−→ 0

=⇒ κrout(E)
κ→0−→ 0. (4.13)

The threshold E = 0 represents the anticlassical or extreme quantum limit of the
Schrödinger equation (4.11). For the singular attractive reference potential Vtail(r),
the outer classical turning point moves towards the origin for E → −∞,

rout(E)
κ→∞−→ 0, (4.14)

and with r2Vtail(r)
r→0−→ −∞ it follows that

∣∣Vtail
(
rout(E)

)∣∣rout(E)2 = �
2κ2

2μ
rout(E)2 κ→∞−→ ∞ =⇒ κrout(E)

κ→∞−→ ∞.

(4.15)
The semiclassical limit of the Schrödinger equation (4.11) is at κ → ∞, i.e. for
large binding energies. How close the semiclassical limit is approached in a realistic
potential well depends on its depth.

The quantization function (4.8) contains a contribution Ftail(E), which is deter-
mined solely by the reference potential Vtail(r),

Ftail(E) = lim
rin→0

1

π�

[∫ rout(0)

rin

ptail(0; r)dr −
∫ rout(E)

rin

ptail(E; r)dr

]

− φout(0) − φout(E)

2π
, (4.16)

where ptail is the local classical momentum defined with Vtail(r),

ptail(E; r) =
√

2μ
[
E − Vtail(r)

]
. (4.17)

As the inner classical turning point rin tends to zero, the action integrals in (4.16)
actually diverge, but their difference remains well defined in the limit. The tail part
(4.16) of the quantization function contains no contribution from the inner reflection
phases, because the wave functions become independent of energy for r → 0 so the
difference φin(0) − φin(E) vanishes for rin → 0.
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In addition to the tail contribution Ftail(E), the quantization function contains
a contribution Fsr(E) arising from the deviation of the full interaction from the
reference potential Vtail(r) at small distances:

F(E) = Ftail(E) + Fsr(E). (4.18)

Since the full quantization function F(E) vanishes at threshold according to (4.9),
and since Ftail(E = 0) is obviously zero, the same must hold for Fsr(E = 0). Fur-
thermore, Fsr(E) is defined in the short-range region of the potential, where the
bound-to-continuum threshold is not an outstanding value of the energy, so it must
be a smooth function of energy near threshold. Hence we can write

Fsr(E)
κ→0∼ γsrE + O

(
E2), (4.19)

where γsr is a constant with the dimension of an inverse energy.
As will be seen in the following, the leading near-threshold behaviour of Ftail(E)

is of lower order than E, so this is also the leading near-threshold behaviour of the
full quantization function F(E). The short-range contribution Fsr(E) is of higher
order, namely O(E), and its magnitude depends on how accurately the reference
potential Vtail(r) describes the full interaction at finite distances. Its influence is
small if Vtail(r) is a good approximation of the full interaction down to distances
where the WKB representation, on which the definition of Ftail(E) is based, accu-
rately describes the solutions of Eq. (4.11). Since the WKB approximation breaks
down at the outer classical turning point rout(E), this implies that the reference po-
tential be a good approximation of the full interaction down to distances somewhat
smaller than rout(E).

If the quantization function is known accurately for a reasonable range of near-
threshold energies, then a small number of energy eigenvalues in this range can be
used to complement the spectrum and extrapolate to the dissociation threshold. This
can, for example, make it possible to reliably predict the energy of the dissocia-
tion threshold from the relative separations of a few observed energy levels some
distance away from threshold.

With the quantization function decomposed into a tail contribution and a short-
range part as in (4.18), and with the ansatz (4.19) for the short-range part, the quan-
tization rule (4.7) can be rewritten as

υ + Ftail(Eυ) = υD − Fsr(E)
E→0∼ υD − γsrEυ. (4.20)

As expressed on the far right of (4.20), the effects of the short-range deviation of the
full interaction from the reference potential Vtail(r) are contained in two parameters,
the threshold quantum number υD and the short-range correction coefficient γsr; the
next term is of order E2. According to (4.20), a plot of υ + Ftail(Eυ) against Eυ

should approach a straight-line behaviour towards threshold; υD and γsr can be de-
duced from the interception of this line with the ordinate and the gradient of the line,
respectively.
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The decomposition (4.18) of the full quantization function into a tail contribution
and a short-range part and the representation (4.20) of the quantization rule are
always valid. There is no semiclassical approximation involved, even though the tail
contribution Ftail(E) to the quantization function is expressed in tems of WKB wave
functions. For the short-range correction term to be small, however, the deviation
of the full interaction from the reference potential Vtail(r) should be restricted to
sufficiently small distances, at which the WKB representations of the solutions of
Eq. (4.11) are accurate.

The near-threshold behaviour of Ftail(E) is crucially determined by the near-
threshold energy dependence of the outer reflection phase. This can be derived under
very general conditions, as described in detail in [76] and summarized below.

The solution of (4.11) obeying bound state boundary conditions,

u(κ)(r)
r→∞∼ e−κr , (4.21)

is accurately the represented for r → 0 by the WKB expression

u(κ)(r)
r→0∼ D(κ)√

ptail(E; r) cos

(
1

�

∫ rout(E)

r

ptail
(
E; r ′)dr ′ − φout(E)

2

)
. (4.22)

Guided by the derivation of the effective-range expansion in Sect. 2.3.8, we intro-
duce two wave functions u(κ)(r) and u(0)(r) which solve Eq. (4.11) at the energies
E = −�

2κ2/(2μ) and E = 0, respectively. We also introduce two solutions w(κ)

and w(0), which have the same large-r boundary conditions, but are solutions of the
free equation, without Vtail(r),

w(κ)(r) = e−κr , w(0)(r) ≡ 1,

u(κ)(r)
r→∞∼ w(κ)(r), u(0)(r)

r→∞∼ w(0)(r).

(4.23)

From the radial Schrödinger equation we obtain

∫ ru

rl

(
u(κ)u(0)′′ − u(κ)′′u(0)

)
dr = [

u(κ)u(0)′ − u(κ)′u(0)
]ru
rl

= −κ2
∫ ru

rl

u(κ)u(0)dr

(4.24)
for arbitrary lower and upper integration limits rl and ru. The contribution of the
upper integration limit ru to the square bracket in the middle part of (4.24) vanishes
in the limit ru → ∞, because of the exponential decay of u(κ)(r) at large r . The con-
tribution from the lower integration limit rl follows from the WKB representation
of the wave function (4.22) and its derivative,

u(κ)′(r) = D(κ)√
ptail(E; r)

[
−1

2

p′
tail(E; r)

ptail(E; r) cos

(
1

�

∫ rout(E)

r

ptail
(
E; r ′)dr ′ − φout(E)

2

)

+ ptail(E; r)
�

sin

(
1

�

∫ rout(E)

r

ptail
(
E; r ′)dr ′ − φout(E

2

)]
. (4.25)
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Equations (4.22) and (4.25) also apply for u(0) if we insert E = 0. Since Vtail(r)

is more singular than −1/r2 at the origin, 1/ptail(E; r) vanishes faster than r , and
the contributions from the cosine in (4.25) to the products u(κ)u(0)′ and u(κ)′u(0) in
(4.24) vanish for rl → 0. With the abbreviations

Stail(E) =
∫ rout(E)

rl

ptail(E; r)dr, Iκ = Stail(E)

�
− φout(E)

2
(4.26)

we obtain from (4.22) and (4.25)

[
u(κ)u(0)′ − u(κ)′u(0)

]
rl→0 = D(κ)D(0)

�
sin(I0 − Iκ)

∣∣∣∣
rl→0

= −κ2
∫ ∞

0
u(κ)u(0)dr.

(4.27)
For the free-particle solutions we obtain

[
w(κ)w(0)′ − w(κ)′w(0)

]ru
rl

= −κ2
∫ ru

rl

w(κ)w(0)dr. (4.28)

Again, the contributions from ru vanish for ru → ∞ while the contribution from rl
is

[
w(κ)w(0)′ − w(κ)′w(0)

]
rl→0 = κ = −κ2

∫ ∞

0
w(κ)w(0)dr. (4.29)

Combining (4.27) and (4.29) gives

D(κ)D(0)

�
sin(I0 − Iκ)

= D(κ)D(0)

�
sin

(
Stail(0) − Stail(E)

�
− φout(0) − φout(E)

2

)

= κ + κ2
∫ ∞

0

[
u(κ)(r)u(0)(r) − w(κ)(r)w(0)(r)

]
dr. (4.30)

Resolving for φout(E) gives

φout(E)

2
= φout(0)

2
− Stail(0) − Stail(E)

�
+ arcsin

[
κ − ρ(E)κ2

D(0)D(κ)/�

]
, (4.31)

with the length ρ(E) defined by

ρ(E) =
∫ ∞

0

[
w(κ)(r)w(0)(r) − u(κ)(r)u(0)(r)

]
dr. (4.32)

The action integrals Stail(0) and Stail(E) diverge as the lower integration limit tends
to zero, but the difference Stail(0) − Stail(E) tends to a well defined value in this
limit.
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In order to account correctly for the contributions of order κ2 in the arcsin term
in (4.31), it is necessary to know the zero-energy limit of ρ(E),

ρ(0) =
∫ ∞

0

[(
w(0)(r)

)2 − (
u(0)(r)

)2]dr
def= ρeff, (4.33)

as well as the behaviour of D(κ) up to first order in κ . This can be obtained, as
described in [35], on the basis of the two linearly independent threshold (E = 0)
solutions u

(0)
0 (r) and u

(0)
1 (r) of the Schrödinger equation (4.11) which are defined

by the following large-r boundary conditions,

u
(0)
0 (r)

r→∞∼ 1, u
(0)
1 (r)

r→∞∼ r. (4.34)

For r → 0, these wave functions can be written as WKB waves,

u
(0)
0,1(r)

r→0∼ D0,1√
ptail(0; r) cos

(
1

�

∫ ∞

r

ptail
(
0; r ′)dr ′ − φ0,1

2

)
, (4.35)

which exactly defines the amplitudes D0,1 and the phases φ0,1. The amplitude D0 is
the threshold value D(0) of the amplitude defined in (4.22), and φ0 is the threshold
value of the outer reflection phase φout(E). For small but nonvanishing values of κ ,
the solution u(κ)(r) obeying the bound-state boundary condition (4.21) is given, up
to and including the first order in κ , by

u(κ)(r)
κr→0∼ u

(0)
0 (r) − κu

(0)
1 (r)

r→∞∼ 1 − κr. (4.36)

The WKB representation of the wave function (4.36), which is valid for small r and
exact in the limit r → 0, follows via (4.35),

u(κ)(r)
r→0∼ D0√

ptail(0; r)
[

cos

(
Stail(0)

�
− φ0

2

)
− D1

D0
κ cos

(
Stail(0)

�
− φ1

2

)]

= D0√
ptail(0; r)

[
1 − D1

D0
κ cos

(
φ0 − φ1

2

)]

× cos

(
Stail(0)

�
− φ1

2
− D1

D0
κ sin

(
φ0 − φ1

2

))
+ O

(
κ2). (4.37)

Comparing amplitude and phase of the right-hand sides of (4.22) and (4.37) gives

D(κ) = D0

[
1 − D1

D0
κ cos

(
φ0 − φ1

2

)]
+ O

(
κ2), (4.38)

φout(E)

2
= φ0

2
− Stail(0) − Stail(E)

�
+ bκ + O

(
κ2), (4.39)

with the length b in (4.39) defined as

b = D1

D0
sin

(
φ0 − φ1

2

)
. (4.40)
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Expanding the arcsin term on the right-hand side of (4.31) gives the near-threshold
expansion of the outer reflection phase up to and including second order in κ as

φout(E)

2
κ→0∼ φout(0)

2
− Stail(0) − Stail(E)

�
+ bκ − (dκ)2

2
; (4.41)

the length d is defined by

d2

2
= b(ρeff − ā) with ā = D1

D0
cos

(
φ0 − φ1

2

)
= b cot

(
φ0 − φ1

2

)
. (4.42)

In deriving (4.41) we compared the linear terms in (4.31) and (4.39) to deduce
�/D(0)2 = b.

Away from threshold, κ → ∞, the outer reflection phase approaches its semi-
classical limit π

2 . A measure for the proximity to the semiclassical limit is given by
the reduced classical turning point κrout(E), see discussion involving Eqs. (4.12)
to (4.15) above, so it is reasonable to assume that the leading high-κ behaviour of
the outer reflection phase is given by

φout(E)
κ→∞∼ π

2
+ D

κrout(E)
, (4.43)

with some dimensionless constant D characteristic for the reference potential
Vtail(r).

A remarkable feature of the near-threshold expansion (4.41) of the outer reflec-
tion phase is, that the term containing the difference of the action integrals exactly
cancels the corresponding contribution to the quantization function, as represented
by the big square bracket in the expression (4.16). The near-threshold behaviour of
Ftail(E) is thus given by

Ftail(E)
κ→0∼ bκ

π
− (dκ)2

2π
. (4.44)

The leading term on the right-hand side of (4.44), linear in κ , is reminiscent of
Wigner’s threshold law for s-waves. Since the short-range correction Fsr(E) is of
order E at threshold, this term also represents the leading energy dependence of the
full quantization function F(E):

F(E)
κ→0∼ bκ

π
, (4.45)

which is universally valid for all potentials falling off faster than 1/r2 at large dis-
tances. The second term on the right-hand side of (4.44), quadratic in κ , is only well
defined for reference potentials falling off faster than 1/r3, see the paragraph after
Eq. (4.53) below.

For a potential V (r) falling off faster than 1/r3 at large distances, the s-wave
scattering length a diverges when the threshold quantum number υD is an inte-
ger, i.e. when there is an s-wave bound state exactly at threshold, see Eq. (2.88) in
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Sect. 2.3.8. The derivation above enables us to formulate an explicit relation con-
necting the scattering length a with the threshold quantum number υD.

The asymptotic behaviour of the regular solution u(r) of the Schrödinger equa-
tion with the full potential V (r) is, according to Eqs. (2.83) and (4.34),

u(r)
r→∞∝ 1 − r

a
=⇒ u(r)

r large∝ u
(0)
0 (r) − 1

a
u

(0)
1 (r). (4.46)

The phrase “r large” refers to distances which are large enough for the full potential
to be well approximated by Vtail(r) and at the same time small enough for the WKB
representations (4.35) to be accurate representations of u

(0)
0 (r) and u

(0)
1 (r). For such

values of r ,

u(r) ∝ D1√
p(0; r) cos

(
1

�

∫ ∞

r

p
(
0; r ′)dr ′ − φ1

2

)

− aD0√
p(0; r) cos

(
1

�

∫ ∞

r

p
(
0; r ′)dr ′ − φ0

2

)

∝ 1√
p(0; r) cos

(
1

�

∫ ∞

r

p
(
0; r ′)dr ′ − φ+

4
− η

)
, (4.47)

with the angles φ± and η given by

φ± = φ0 ± φ1, tanη = a + D1/D0

a − D1/D0
tan

(
φ−
4

)
. (4.48)

Taking the inner classical turning point as reference gives

u(r) ∝ 1√
p(0; r) cos

(
1

�

∫ r

rin(0)

p
(
0; r ′)dr ′ − φin(0)

2

)
, (4.49)

and compatibility of (4.47) and (4.49) implies

1

�

∫ ∞

rin(0)

p(0; r)dr = φin(0)

2
+ η + φ+

4
(modπ). (4.50)

Comparison with (4.6) gives

η = υDπ + φ−
4

(modπ). (4.51)

Resolving the second equation (4.48) for a and inserting (4.51) for η yields

a = D1

D0

tan(υDπ + φ−
4 ) + tan(

φ−
4 )

tan(υDπ + φ−
4 ) − tan(

φ−
4 )

= D1

D0
sin

(
φ−
2

)[
1

tan(
φ−
2 )

+ 1

tan(υDπ)

]
. (4.52)
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In terms of the parameters b and ā as defined in Eqs. (4.40) and (4.42), this relation
simplifies to

a = ā + b

tan(υDπ)
= ā + b

tan(ΔDπ)
, ΔD = υD − 
υD�. (4.53)

Equation (4.53) is very fundamental, giving an explicit relation between the s-wave
scattering length a and the threshold quantum number υD. Because of the periodic-
ity of the tangent, it is actually only the remainder ΔD that counts. The remainder
can assume values between zero and unity and quantifies the proximity of the most
weakly bound state to threshold. A value of ΔD very close to zero indicates a bound
state very close to threshold, while a value very close to unity indicates that the
potential just fails to support a further bound state.

Equation (4.53) enables a physical interpretation of the parameters entering the
derivation of the expression (4.44) for the near-threshold behaviour of the tail contri-
bution Ftail(E) of the quantization function. In an ensemble of potentials character-
ized by evenly distributed values of the remainder ΔD, the values of the scattering
length will be evenly distributed around the mean value ā, hence ā is called the
mean scattering length, a term first introduced by Gribakin and Flambaum in [36].
We call the length b, which determines the leading term in the near-threshold be-
haviour (4.44) of the quantization function and the second term on the right-hand
side of (4.53), the threshold length. The definition (4.33) of ρeff resembles, except
for a factor two, the definition (2.103) of the effective range reff in Sect. 2.3.8, and
we call it the subthreshold effective range. Note however, that the wave functions
u(0) and w(0) that enter in the definition of ρeff remain bounded for r → ∞, ac-
cording to (4.23), so the expression (4.33) gives a well defined value for ρeff for
any reference potential falling off faster than 1/r3 at large distances. The length d ,
which defines the next-to-leading term in the near-threshold behaviour (4.44) of
the quantization function, is related to the mean scattering length ā, the threshold
length b and the subthreshold effective range ρeff via the first equation (4.42). We
use the term effective length for the parameter d .

The relation (4.53) makes it possible to extend Eq. (2.88), which relates the
asymptotic inverse penetration depth κb of a bound state very near threshold to the
scattering length, to the next order in 1/κb. With the quantization rule (4.7) we can
rewrite (4.53) as

a = ā + b

tan[πF(Eb)] = ā + b

tan[π(Ftail(Eb) + Fsr(Eb))] , (4.54)

where Eb = −�
2κ2

b /(2μ) is the energy of the very weakly bound state. Replacing
Fsr(Eb) by its leading term γsrEb according to (4.19) and using the leading two
terms of the Taylor expansion of the tangent yields [76]

a = 1

κb
+ ρeff + π

�
2γsr

2μb
+ O(κb). (4.55)
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It is interesting to observe, that the next-to-leading term in the expansion (4.55),
i.e. the term of order κ0

b , is not the mean scattering length ā, as one might guess from
Eq. (4.53) [36], but the subthreshold effective range ρeff, plus a contribution which
comes from short-range effects and is proportional to the constant γsr. In this light,
one might ask what sense it makes to extend the near-threshold expansion (4.44)
of Ftail(E) up to second order in κ , when short-range effects bring in a term of the
same order. The answer lies in the observation, that the length scales associated with
the potential tail are generally very large, so that both ρeff and b are much larger than
typical length scales associated with γsr. The dimensionless ratio πγsr�

2/(2μbρeff)

of the third term on the right-hand side of (4.55) to the second term is thus usually
very small, see also Example 1 below. Furthermore, a clean identification of the
tail function Ftail(E) over the whole range of energies from threshold to −∞ is a
prerequisite for the identification of the short-range correction Fsr(E) due to the
deviation of the full interaction from the reference potential at small distances.

At energies far from threshold, κ → ∞, the outer reflection phase approaches its
semiclassical limit according to (4.43), so the leading high-κ behaviour of Ftail(E)

is,

Ftail(E)
κ→∞∼ Stail(0) − Stail(E)

π�
−

(
φ0

2π
− 1

4

)
+ D/(2π)

κrout(E)
. (4.56)

The zero-energy value φ0 of the outer reflection phase, the lengths defining its
low-κ expansion (4.41), i.e. b, ā, ρeff and d , and the parameter D in (4.43), (4.56)
are tail parameters; they are properties of the reference potential Vtail(r) alone. For a
reference potential Vtail for which the Schrödinger equation (4.11) has analytically
known solutions at threshold, E = 0, the tail parameters can be derived analyti-
cally. The exact behaviour of Ftail(E) in between the near-threshold regime and
the high-κ , semiclassical regime is generally not known analytically, but it can be
calculated numerically by a straightforward evaluation of Eq. (4.16).

The application of the theory described in this section is particularly elegant for
potentials with a large-distance behaviour that is well described by a single-power
tail,

Vtail(r) ≡ V att
α (r) = −Cα

rα
= − �

2

2μ

(βα)α−2

rα
, Cα > 0, α > 2. (4.57)

As for the repulsive inverse-power potentials (2.160) discussed in Sect. 2.4.2, the
potential strength coefficient Cα in (4.57) is expressed in terms of the characteristic
quantum length

βα =
(

2μCα

�2

)1/(α−2)

, (4.58)

which does not exist in classical mechanics. The beauty of single-power reference
potentials (4.57) is that the properties of the solution of the Schrödinger equation
(4.11) depend only on the dimensionless product κβα and not on energy and poten-
tial strength independently, see Appendix A.2. For example, the reduced classical
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Table 4.1 Numerical values of tail parameters for single-power reference potentials (4.57), as
given analytically in (4.61). The last row contains the values of the dimensionless parameter Bo
governing the exponential fall-off of the modulus of the amplitude for quantum reflection according
to (4.93) in Sect. 4.1.2

α 3 4 5 6 7 α → ∞
φ0

3
2 π π 5

6 π 6
8 π 7

10 π ( 1
2 + 1

α−2 )π

b/βα
3
2 1 0.6313422 0.4779888 0.3915136 1

α−2 π

ā/βα – 0 0.3645056 0.4779888 0.5388722 1

ρeff/βα – π
3 0.7584176 0.6973664 0.6826794 1

d/βα –
√

2π
3 0.7052564 0.4579521 0.3355665 6.43

(α−2)3/2

D 0.8095502 0.5462620 0.4554443 0.4089698 0.3806186 1
12 π

Bo 2.24050 1.69443 1.35149 1.12025 0.95450 2
α
π

turning point is given by

κrout(E) = (κβα)1−2/α, (4.59)

and the difference of the action integrals appearing in (4.16), (4.56) is

lim
rin→0

1

π�

[∫ ∞

rin

ptail(0; r)dr −
∫ rout(E)

rin

ptail(E; r)dr

]

= (κβα)1−2/α

(α − 2)
√

π

Γ ( 1
2 + 1

α
)

Γ (1 + 1
α
)
. (4.60)

The tail parameters φout(0) ≡ φ0, b, ā, ρeff and d defining the low-κ expansion
(4.41) of the outer reflection phase, and the parameter D in (4.43) are explicitly
given for inverse-power tails (4.57) by [35, 76],

φ0 =
(

ν + 1

2

)
π,

b

βα

= ν2ν Γ (1 − ν)

Γ (1 + ν)
sin(πν),

ā

βα

= ν2ν Γ (1 − ν)

Γ (1 + ν)
cos(πν),

ρeff

βα

= π(2ν)2ννΓ ( 1
2 + 2ν)

sin(πν)Γ ( 1
2 + ν)Γ (1 + 3ν)

, D =
√

π

12

α + 1

α

Γ ( 1
2 − 1

α
)

Γ (1 − 1
α
)
,

(4.61)

with the abbreviation ν = 1/(α − 2). The expression for d follows from those for b,
ā and ρeff via (4.42). Numerical values are given in Table 4.1.

The behaviour of the outer reflection phase φout(E) is illustrated in Fig. 4.2 for
powers α = 3, . . . ,7. The abscissa is linear in κrout = (κβα)1−2/α , so the initial
decrease is linear in the plot, compare (4.39) and (4.60). In contrast to the reflection
phases for repulsive inverse-power potentials shown in Fig. 2.16 in Sect. 2.4.2, the
threshold values φ0 depend on the power α as given in the first equation (4.61).



4.1 Deep Potentials Falling off Faster than 1/r2 Asymptotically 199

Fig. 4.2 Outer reflection
phase φout for attractive
inverse-power potentials
(4.57) as function of the
reduced classical turning
point κrout = (κβα)1−2/α .
(Adapted from [85])

For a given power α > 2, one quantization function Ftail(E) ≡ Fα(κβα) applies
for all potential strengths. An expression for Fα(κβα) which is accurate all the way
from threshold to the semiclassical limit of large κ , can be obtained by interpolat-
ing between the near-threshold expression (4.44) and the high-κ limit (4.56). With
(4.59) and (4.60), the high-κ limit of Fα(κβα) is,

Fα(E)
κ→∞∼ (κβα)1−2/α

(α − 2)
√

π

Γ ( 1
2 + 1

α
)

Γ (1 + 1
α
)

− 1

2(α − 2)
+ D/(2π)

(κβα)1−2/α
. (4.62)

For α = 6, an analytical expression involving one dimensionless fitting parame-
ter B was derived in [76],

Fα=6(E) = 2bκ − (dκ)2

2π[1 + (κB)4] + (κB)4

1 + (κB)4

[
−1

8
+ D

2π(κβ6)2/3
+ Γ ( 2

3 )(κβ6)
2/3

4
√

πΓ ( 7
6 )

]
.

(4.63)
All other parameters appearing in (4.63) are as given in Eq. (4.61) and Table 4.1
for α = 6. With the value B = 0.9363β6, the expression (4.63) reproduces the exact
values, calculated by evaluating Eq. (4.16) numerically, to within an accuracy near
10−4 or better in the whole range from threshold to the high-κ limit [76].

For α = 4, a more sophisticated treatment of the semiclassical, high-κ limit is
needed to achieve a comparable accuracy on the basis of a small number of fit-
ting parameters. An extension of the high-κ expansion (4.43) of the outer reflection
phase to higher inverse powers of the reduced classical turning point (κβ4)

1/2,

φout(E)
κβ4→∞∼ π

2
+

∑
j=1,3,5,7

D(j)

(κβ4)j/2
, (4.64)
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Table 4.2 Coefficients D(j) in the high-κ expansion (4.64) of the outer reflection phase for a
−1/r4 reference potential

D(1) D(3) D(5) D(7)

5
√

π

48 Γ ( 1
4 )/Γ ( 3

4 ) − 35
√

π

384 Γ ( 3
4 )/Γ ( 1

4 )
475

√
π

3584 Γ ( 5
4 )/Γ (− 1

4 ) − 63305
√

π

221184 Γ ( 7
4 )/Γ (− 3

4 )

0.5462620 −0.0546027 −0.0434388 0.0964461

Table 4.3 Coefficients ci , di in the expression (4.66) for Fα=3(E)

i ci di i ci di

1 8.198894514574 7.367727350550 5 185.465618264420 242.028021052411

2 38.229531850326 32.492317936470 6 141.484936909078 250.115055730896

3 85.724646494548 85.380005002970 7 60.927524697423 63.749260455229

4 147.081920247084 169.428485967491 8 56.372265754601 112.744531509202

leads to the following analytical expression based on two fitting parameters, the
lengths B6 and B7,

Fα=4(E) = [2bκ − (dκ)2]/(2π)

1 + (κB6)6 + (κB7)7
+ (κB6)

6 + (κB7)
7

1 + (κB6)6 + (κB7)7

×
[
−1

4
+ Γ ( 3

4 )

Γ ( 5
4 )

(κβ4)
1/2

2
√

π
+ D(1)/(2π)

(κβ4)1/2
+ D(3)/(2π)

(κβ4)3/2

+ D(5)/(2π)

(κβ4)5/2
+ D(7)/(2π)

(κβ4)7/2

]
. (4.65)

The coefficients D(j), which determine the expansion (4.64), are given analytically
and numerically in Table 4.2. With B6 = 1.622576β4 and B7 = 1.338059β4 for the
fitted lengths, the expression (4.65) reproduces the exact values, calculated by eval-
uating Eq. (4.16) numerically, to within an accuracy near 10−4 or better in the whole
range from threshold to the high-κ limit [77].

For α = 3, it turned out to be more practical [62] to approximate Fα=3(E) by a
rational function of the reduced classical turning point (κβ3)

1/3,

Fα=3(E) = Γ ( 5
6 )√

πΓ ( 4
3 )

(κβ3)
1/3 + 3 + ∑imax

i=1 ci(κβ3)
i/3

4 + ∑imax
i=1 di(κβ3)i/3

− 3

4
. (4.66)

With expansions up to imax = 8 in the numerator and the denominator of the second
term on the right-hand side of (4.66), the formula is able to reproduce the exact
quantization function, calculated by evaluating Eq. (4.16) numerically, to within an
accuracy near 5 ·10−8 or better in the whole range from threshold to the high-κ limit
[62]. The coefficients ci and di with which this is achieved are listed in Table 4.3.
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Fig. 4.3 Tail contribution Ftail(E) ≡ Fα(κβα) to the quantization function for single-power ref-
erence potentials (4.57). The solid blue lines are the exact results, which are accurately given by
the expressions (4.63), (4.65) and (4.66) for α = 6,4 and 3, respectively. The dashed green lines
show the LeRoy–Bernstein functions [52, 84], and the dashed red lines in the three panels on the
right-hand side show the low-energy expansion (4.44) including both terms, linear and quadratic
in κβα for α = 6 and α = 4 and only the leading linear term for α = 3

The quantization functions (4.16) for the single-power tails (4.57) are shown
for the cases α = 6,4 and 3 in Fig. 4.3 as functions of κβα . The solid blue lines
show exact functions, which are accurately approximated by the expressions (4.63),
(4.65) and (4.66) all the way from threshold to the high-κ limit. The dashed green
lines show the LeRoy–Bernstein functions F LB

α (E) [52, 84], which are obtained
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by ignoring the contribution from the outer reflection phase in (4.16). The LeRoy–
Bernstein function is given explicitly by the first term on the right-hand side of
(4.62). It is wrong at threshold, because it misses the energy-dependence (4.41)
cancelling the contribution from the action integrals, and it is also wrong in the
high-κ , semiclassical limit, because it misses the contribution

φout(0)

2π
− π/2

2π
= 1

2(α − 2)
. (4.67)

This leads to significant errors when extrapolating from bound-state energies to
threshold, e.g. in order to determine the value of the dissociation threshold or of
the scattering length from spectroscopic energies [62, 76, 77].

The dashed red lines in the three right-hand panels in Fig. 4.3 show the low-
energy expansion (4.44) of Fα(E), including both terms, linear and quadratic in
κβα for α = 6 and α = 4 and only the leading linear term for α = 3. They allow
us to estimate the extent of the near-threshold quantum regime. From the quantiza-
tion rule (4.7) it is clear, that the value of F(Eυ) lies between zero and unity for
the highest bound state with quantum number υmax = 
υD�, between one and two
for the second-highest bound state with quantum number υmax − 1, etc. The range
covered in the left-hand panels of Fig. 4.3 thus only accommodates the highest three
bound states of a potential with the respective single-power tail. The enlargements in
the right-hand part of the figure show that the near-threshold linear behaviour of the
quantization function is restricted to a very small energy range indeed; in the major-
ity of cases, it does not even contain the highest bound state, and the second-highest
bound state is definitely beyond the range of validity of the near-threshold expansion
(4.44), even when the second term, quadratic in κ , is included in the examples α = 6
and α = 4. The range of validity of near-threshold, effective-range type expansions
is tiny. Nevertheless, an accurate description of this near-threshold quantum regime
and a reliable interpolation to the large-κ semiclassical regime are paramount to a
practicable application of the quantization-function concept in realistic situations.

4.1.1.1 Example 1. The Lennard–Jones Potential

We consider again the Lennard–Jones potential,

VLJ(r) = E

[(
rmin

r

)12

− 2

(
rmin

r

)6]
, (4.68)

which was already discussed in Sect. 2.6.5. The quantum mechanical properties of
this potential are determined by the parameter BLJ = E 2μr2

min/�
2, see (2.299). The

natural definition of the reference potential Vtail(r) in this case is

Vtail(r) ≡ V att
6 (r) = −2E

(rmin)
6

r6
= − �

2

2μ

(β6)
4

r6
with β6 = rmin(2BLJ)

1/4.

(4.69)
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Table 4.4 Energies in units of E of the highest twelve bound states in the Lennard–Jones potential
(4.68) with BLJ = 104 [72]

υ Eυ υ Eυ υ Eυ

12 −0.115225890999 16 −0.031813309316 20 −0.003047136244

13 −0.087766914229 17 −0.020586161356 21 −0.001052747695

14 −0.064982730497 18 −0.012350373216 22 −0.000198340301

15 −0.046469911358 19 −0.006657024344 23 −0.000002696883

Fig. 4.4 Plot of υ +F6(κυβ6) against energy for the highest ten bound states in the Lennard–Jones
potential (4.68) with BLJ = 104. The energies are as listed in Table 4.4 and the quantization func-
tion F6(κβ6) is as given by Eq. (4.63)

For BLJ = 104 we have β6 = 10 × 21/4rmin, and the potential supports 24 bound
states, υ = 0,1, . . . ,23. This is actually the potential illustrated in Fig. 4.1. It was
used by Paulsson et al. [72] to discuss the accuracy of higher-order WKB approxi-
mations. The energies of the highest twelve bound states are listed in Table 4.4.

According to (4.20), a plot of υ + F6(κυβ6) against Eυ should approach a
straight-line behaviour towards threshold, κυ being the asymptotic inverse pene-
tration depth at the energy Eυ . This is illustrated impressively in Fig. 4.4. The solid
squares represent the highest ten bound states in the left-hand part and the highest
five bound states in the right-hand part. The x-coordinate of each square is its en-
ergy eigenvalue Eυ (in units of E ), and the y-coordinate is υ + F6(κυβ6), where
F6(κβ6) is the quantization function (4.63), and β6 is as given in (4.69).

The fact that the linear behaviour in Fig. 4.4 reaches from threshold down to sev-
eral states below threshold shows that the quantization rule based on Eq. (4.63) is
reliable over this large energy range. To demonstrate this more quantitatively, Ta-
ble 4.5 lists the values of the threshold quantum number υD and the short-range
correction parameter γsr as obtained by fitting a straight line through two succes-
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Table 4.5 Values of the threshold quantum number υD and the short-range correction parame-
ter γsr [in units of E −1] as obtained by fitting a straight line through two successive bound states,
υ and υ + 1, according to (4.20), see Fig. 4.4. Also listed are the values of the scattering length a

[in units of rmin] as obtained via (4.53) with the respective values of υD

υ υD γsrE a/rmin υ υD γsrE a/rmin

13 23.227230 −0.926599 12.2461 18 23.232378 −1.075980 12.0355

14 23.229053 −0.954646 12.1706 19 23.232591 −1.107941 12.0270

15 23.230401 −0.983664 12.1155 20 23.232685 −1.138876 12.0232

16 23.231354 −1.013615 12.0768 21 23.232699 −1.151726 12.0227

17 23.231988 −1.044432 12.0512 22 23.232700 −1.159540 12.0226

sive points, υ and υ + 1. The values both of υD and of γsr converge rapidly and
smoothly with increasing quantum number υ . The value of the threshold quantum
number obtained by extrapolating from the sixth- and fifth-highest states (υ = 18
and υ = 19) already lies within 0.0004 of the value extrapolated via the highest
two states, υD = 23.23270. This is also reflected in the similarly rapid and smooth
convergence of the values of the scattering length a, as derived from the respec-
tive values of the threshold quantum number υD and the tail parameters ā and b

according to (4.53). In the present case of a 1/r6 reference potential, ā and b are
identical and both approximately equal to 0.478β6, see Table 4.1. With β6 as given
in (4.69), we have ā = b ≈ 5.684rmin in the present case. The well converged value
of the scattering length, as obtained with the highest two states, is already predicted
to within 0.1% when extrapolating from the sixth- and fifth-highest states (υ = 18
and υ = 19).

Note that the magnitude of the short-range correction coefficient γsr is of the or-
der of 1/E , where E is the depth of the potential. Characteristic energies associated
with the potential tail are typically of the order

Eβ6 = �
2

2μ(β6)2
. (4.70)

In the present example, Eβ6 ≈ 0.7 × 10−6E , so the short-range correction coeffi-
cient γsr is near to six powers of ten smaller than typical inverse energies associ-
ated with the scale set by the reference potential V6(r). This justifies carrying the
near-threshold expansions of the outer reflection phase (4.41) and the quantization
function (4.44) to second order in κ , even though the short-range corrections come
in at the same order.

The results above show, that the quantization function (4.63) for a 1/r6 reference
potential accurately accounts for the level progression of the high-lying bound states
in the deep Lennard–Jones potential (4.68), with the large value of BLJ allowing the
full potential to support 24 bound states. With only two parameters, υD and γsr,
to account for all short-range effects, an accurate extrapolation to threshold, e.g.
to deduce the value of the scattering length, is possible from several states below
threshold. Such a clean separation of short-range effects from the influence of the
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Table 4.6 Energy eigenvalues (in atomic units) relative to the dissociation threshold of the highest
ten bound states in the L = 0, 1sσg series of the H+

2 molecular ion according to Hilico et al. [45]

υ Eυ υ Eυ υ Eυ υ Eυ

10 −0.021970529704 13 −0.009458409007 16 −0.001967933877 18 −0.000109592359

11 −0.017272525961 14 −0.006373841570 17 −0.000709200873 19 −3.39093933 · 10−6

12 −0.013097363811 15 −0.003867245551

potential tail is possible, when the distances at which the full interaction deviates
significantly from the reference potential Vtail(r) are small compared to character-
istic length scales of Vtail(r). In the present example, it was sufficient to take the
leading single-power term of the potential as reference potential, because the devia-
tion of V (r) from Vtail(r) is only given by the repulsive 1/r12 contribution, which is
of very short range. In more realistic cases, a more sophisticated choice of reference
potential may be needed to describe a range of near-threshold energies containing
more than one or two bound states. This is demonstrated as Example 2 for the H+

2
molecular ion below.

4.1.1.2 Example 2. The H+
2 Molecular Ion

The H+
2 ion, consisting of a proton and a neutral hydrogen atom, is one of the most

fundamental molecular systems. Since its properties have been thoroughly exam-
ined in experiments and ab initio calculations, the system is ideally suited for testing
and demonstrating the strengths and possible weaknesses of a theory focussing on
the role of the potential tail, as done recently in Ref. [50].

Highly accurate energy eigenvalues of bound states of H+
2 have been calculated

by Hilico et al. [45]; the energies of the highest ten L = 0, 1sσg bound states are
listed in Table 4.6.

The p-H potential at large distances can be decomposed into a polarisation term
Vpol(r), and an exchange term Vex(r) which is responsible for the energy splitting of
the states with gerade and with ungerade parity [55]. The present example focusses
on the 1sσg configuration, where the polarisation term is attractive,

V1sσg (r) = Vpol(r) − Vex(r). (4.71)

The expansion of Vpol(r) and Vex(r) for large internuclear separations r was given
to a large number of terms in 1968 by Damburg and Propin [27]. Leading terms, in
atomic units, are

V DP
pol (r) = − 9

4r4
− 15

2r6
− 213

4r7 , V DP
ex (r) = 2re−r−1

(
1 + 1

2r
− 25

8r2

)
. (4.72)
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Fig. 4.5 Reference potentials V
(1)
tail (r) [Eq. (4.73)], V

(2)
tail (r) [Eq. (4.74)], V

(3)
tail (r) [Eq. (4.75)]

and V
(4)
tail (r) [Eq. (4.76)] in an energy range encompassing the highest ten bound states in the

L = 0, 1sσg configuration, see Table 4.6. The corresponding energy levels are shown as horizontal
dashed lines. The potential VBO(r) corresponds to the minimal electronic energy at internuclear
separation r ; this should be a good approximation to the full interaction for the range of r-values
in the figure. (From [50])

Including only the leading asymptotic term of the polarisation potential to define
the reference potential gives a single-power tail (4.57) with α = 4,

V
(1)
tail (r) = − 9

4r4
≡ − �

2

2μ

(β4)
2

r4
. (4.73)

With the reduced mass μ = 918.32627 a.u. this translates into a quantum length
β4 = 64.2843 a.u.

The reference potential (4.73) is shown in Fig. 4.5 (dot-dashed blue line) to-
gether with the potential VBO(r) (solid black line), which represents the electronic
ground-state energy at each internuclear separation r [71] and should be a good
approximation to the full interaction in the range of distances in the figure. The
energies of the highest ten bound states, as listed in Table 4.6, are shown as horizon-
tal dashed lines in the figure. The single-power reference potential (4.73) is clearly
far too weak for distances less than about 12 a.u., while the outer classical turn-
ing point lies in this range at the energies Eυ of all states with υ ≤ 17. Since the
dominance of Ftail(E) over short-range corrections requires the reference potential
to be an accurate approximation of the full interaction down to distances somewhat
smaller than the outer classical turning point, the usefulness of the single-power tail
(4.73) is expected to be limited to a very narrow range of near-threshold energies,
encompassing at most the highest one or two levels.

In order to understand how the choice of reference potential affects the separation
of short-range and tail effects, the authors of Ref. [50] investigated three further
versions for Vtail(r):

V
(2)
tail (r) = − 9

4r4
− 15

2r6
, (4.74)
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Fig. 4.6 Plots of υ + Ftail(Eυ) against Eυ with the quantization function Ftail(E) defined
via (4.16), (4.17) on the basis of the definitions (4.73)–(4.76) of Vtail . The straight dashed green
and solid red lines are fitted according to (4.20) through the highest two states, υ = 18 and υ = 19,
with Ftail(E) based on V

(3)
tail and V

(4)
tail , respectively. (Adapted from [50])

Table 4.7 Values υ + Ftail(Eυ) at the energies given in Table 4.6 for the quantization functions
based on the definitions (4.73), (4.74), (4.75) and (4.76) of Vtail(r)

υ V
(1)
tail V

(2)
tail V

(3)
tail V

(4)
tail υ V

(1)
tail V

(2)
tail V

(3)
tail V

(4)
tail

10 17.4612 17.2870 18.6570 18.5089 15 19.7486 19.6804 19.4491 19.4310

11 18.0115 17.8571 18.8562 18.7444 16 19.9740 19.9285 19.5374 19.5304

12 18.5268 18.3929 19.0367 18.9557 17 20.0268 20.0028 19.5976 19.5968

13 18.9980 18.8853 19.1968 19.1416 18 19.8143 19.8073 19.6291 19.6287

14 19.4120 19.3213 19.3349 19.3007 19 19.6468 19.6467 19.6346 19.6343

V
(3)
tail (r) = − 9

4r4
− 2re−r−1, (4.75)

V
(4)
tail (r) = − 9

4r4
− 15

2r6
− 213

4r7 − 2re−r−1
(

1 + 1

2r
− 25

8r2

)
. (4.76)

These further reference potentials are shown as dotted orange [V (2)
tail (r)], dashed

green [V (3)
tail (r)] and solid red lines [V (4)

tail (r)] in Fig. 4.5. The addition of the next-

order dispersion term −15/(2r6), which defines V
(2)
tail (r), is not a significant im-

provement over V
(1)
tail (r), but V

(3)
tail (r) and V

(4)
tail (r), which include a contribution from

the polarization potential, offer a far better representation of the full potential in the
whole range r > 5 a.u.

The quality with which the reference potentials V
(i)
tail(r) approximate the full po-

tential is reflected in the accuracy with which a plot of υ + Ftail(Eυ) against Eυ

yields a straight line with a small gradient according to (4.20). The plots are shown
in Fig. 4.6, and the numerical values on which they are based are listed in Table 4.7.
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Table 4.8 For the definitions (4.73)–(4.76) of the reference potential, the table lists the values
of the threshold quantum number υD and the short-range correction coefficient γsr as obtained by
fitting a straight line through the highest two states υ = 18 and υ = 19 according to (4.20), together
with the tail parameters ā, b and φ0. The last column shows the value obtained for the scattering
length according to (4.53)

Vtail υD γsr [a.u.] ā [a.u.] b [a.u.] φ0 a [a.u.]

V
(1)
tail 19.6414 1577.3 0 64.28 π −30.60

V
(2)
tail 19.6410 1517.4 O(10−15) 64.27 3.14396 −30.49

V
(3)
tail 19.6348 −51.57 −2.49 63.09 3.07548 −30.93

V
(4)
tail 19.6345 −52.91 −2.38 63.12 3.06881 −30.77

As already seen in Fig. 4.5, the potential tails V
(1)
tail (r) and V

(2)
tail (r) are only a

fair approximation of the full potential for distances larger than about 12 a.u. The
energy levels for which the outer classical turning point lies in this range are the
highest state υ = 19 and the second-highest state υ = 18, only. Correspondingly,
the behaviour of υ + Ftail(Eυ) for υ ≤ 17 and for υ ≥ 18 cannot, not even ap-
proximately, be reconciled to one straight line, see blue circles and red triangles in
Fig. 4.6. In contrast the points based on V

(3)
tail (r) show a much smoother energy de-

pendence, while for V
(4)
tail (r) the behaviour of υ + Ftail(Eυ) is quite close to linear

down to υ = 10.
Table 4.8 lists the values of the threshold quantum number υD and the short-range

correction coefficient γsr as obtained by fitting a straight line through the last two
states υ = 18 and υ = 19 according to (4.20) for the various choices of reference
potential. Also listed are the tail parameters ā (mean scattering length), b (threshold
length) and φ0 (threshold value of the outer reflection phase). The last column shows
the respective values of the scattering length a that follow via (4.53). Although the
choice of reference potential strongly influences the energy range over which the
tail contribution to the quantization function governs the energy progression of the
near-threshold bound states, the extrapolation to E = 0 yields a very stable value
of the threshold quantum number υD, which turns out to be quite insensitive to the
choice of Vtail(r). This puts rather tight bounds on the value of the scattering length,
which follows via (4.53) and is seen to lie in the range between −31 and −30.5 a.u.
Interestingly, this range does not include the value a = −29.3 a.u., which was de-
rived in [16] by solving the appropriate Faddeev equations for the three-body ppe

system. Two of the authors of Ref. [45], who obtained the energy eigenvalues in
Table 4.6, were also coauthors of Ref. [16]. It seems that the scattering length given
there is not quite consistent with the progression of near-threshold energy levels
given in [45]. The same applies to the value a = −28.8 a.u., which was obtained in
Ref. [13] by calculating p-H scattering cross sections down to very low energies.

Figure 4.7 shows the scattering length derived via (4.53), with the threshold quan-
tum number υD obtained by fitting a straight line through two bound states υ and
υ + 1 according to (4.20), as function of the quantum number υ . For the refer-
ence potentials (4.73) and (4.74), the predictions are outside the range of the figure
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Fig. 4.7 Scattering length a according to (4.53) with υD obtained by fitting a straight line through
the points υ and υ + 1 in Fig. 4.6 according to (4.20). The blue circle and the red triangle at
υ = 18 are based on V

(1)
tail (r) and V

(2)
tail (r). The upright green and diagonal red crosses are based

on V
(3)
tail (r) and V

(4)
tail (r), respectively. The dashed horizontal lines show the values a = −29.3 a.u.

and a = −28.8 a.u. given in [16] and [13]. (Adapted from[50])

for υ ≤ 17. With the more sophisticated choices (4.75) and (4.76) of reference po-
tential, a rapid and smooth convergence with υ is observed, similar to the case of
the Lennard–Jones potential, see Table 4.5. With the reference potential V

(4)
tail (r),

the scattering length obtained from the fifth and fourth highest state (υ = 15 and
υ = 16) already lies within 0.3 a.u. of the value obtained with the highest two states.

This example shows, how a sufficiently sophisticated choice of reference po-
tential can substantially increase the energy range over which the progression of
near-threshold energy levels can be understood as a property of Vtail(r). The “bad
news” is, that any choice of Vtail(r) beyond the single-power form (4.57) destroys
the universality of the quantization function. Whereas the quantization function
Fα(κβα) for a single-power tail caters for all values of the potential strength, ex-
pressed through the quantum length βα , adding any further term to the definition of
Vtail(r) only makes sense in an application to a specific system. For any reference
potential containing two or more terms, however, the quantization function will de-
pend on the ratios of the strengths of the various terms. These ratios are most likely
to be unique to a particular system, so the quantization function derived for a given
system will be applicable to this special case only.

4.1.2 Quantum Reflection

Above threshold, the radial Schrödinger equation with a reference potential Vtail(r)

is still of the form (4.11), but the energy is now positive,

E = �
2k2

2μ
, (4.77)
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and its spectrum continuous. We assume again, that the reference potential Vtail(r)

is attractive, falls off faster than 1/r2 at large distances and is more singular than
−1/r2 at small distances. Proximity to the semiclassical or anticlassical limits can,
as for energies below threshold, be estimated by the value of a typical classical ac-
tion in units of �, see discussion involving Eqs. (4.12) to (4.15) above. At positive
energies, there is no outer classical turning point, but a classically defined character-
istic distance can be identified as the distance rE at which the value of the potential
is equal to minus the absolute value of the energy E:

Vtail(rE) = −|E|. (4.78)

The distance rE is the classical turning point in the potential −Vtail(r) at energy |E|.
A typical classical action is now provided the product of rE and the asymptotic
momentum �k, corresponding in units of � to krE . Thus krE is a generalization of
the concept of the reduced classical turning point introduced in Sect. 4.1.1. For the
singular attractive potential Vtail(r), the high-energy limit k → ∞ implies krE → ∞
and corresponds to the semiclassical limit of the Schrödinger equation (4.11), while
the threshold limit k → 0 implies krE → 0 and corresponds to the anticlassical
limit.

The local classical momentum ptail(E; r) = √
2μ[E − Vtail(r)] is real and posi-

tive for all distances 0 < r < ∞. At distances noticeably smaller than rE , as defined
in (4.78), ptail(E; r) is dominated by the contribution from Vtail(r) and becomes
independent of energy. The quantality function (2.139) becomes insensitive to the
energy and vanishes for r → 0, so the WKB representations of the solutions of
(4.11) become exact in the limit r → 0. This implies that the solutions of (4.11) can,
for any energy E, be unambiguously decomposed into incoming and outgoing ra-
dial waves at small distances. At distances much larger than rE , the potential Vtail(r)

is only a small correction to the dominant, constant part �k of ptail(E; r), and the
Schrödinger equation (4.11) becomes that for free-particle motion. For r � rE , the
wave function essentially describes free-particle motion and can also be decom-
posed into incoming and outgoing waves. In between the near-origin regime r → 0
and the large-distance regime r � rE , there is a nonclassical region of the reference
potential Vtail(r), with distances of the order of the generalized reduced classical
turning point rE , where the condition (2.141) is not well fulfilled—at least at low
energies. Even though there is no potential barrier and no classical turning point,
incoming waves can be partially reflected in this nonclassical region of coordinate
space, so that only a fraction of the incoming radial wave penetrates through to
the near-origin regime. Such classically forbidden reflection is a purely quantum
mechanical phenomenon and is called quantum reflection; it is the counterpart of
classically forbidden transmission through a potential barrier—called tunnelling.

For each energy E, i.e. for each wave number k, there are two linearly inde-
pendent solutions of Eq. (4.11), and the physically relevant linear combination of
these two solutions is chosen by defining appropriate boundary conditions at small
distances. For ordinary scattering problems, this boundary condition is chosen to
ensure that the regular solution of the radial Schrödinger equation with the full in-
teraction matches to the solution of (4.11) at large distances. Other choices are,
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however, possible. Choosing incoming boundary conditions at r → 0,

u(r)
r→0∼ T√

ptail(E; r) exp

(
− i

�

∫ r

r0

ptail
(
E; r ′)dr ′

)
, (4.79)

corresponds to assuming that all incoming flux which is transmitted through the
nonclassical region of the potential tail to small distances is absorbed. Note that,
for sufficiently small r , the upper integration limit r is smaller than the lower in-
tegration limit r0 in the integral in (4.79), so the integral itself is negative. Writing
the argument of the WKB wave function as upper limit in the action integral has
the advantage, that wave functions containing exp(− i

�

∫ r · · · ) are easily identified
as inward-travelling waves, whereas wave functions containing exp(+ i

�

∫ r · · · ) are
outward-travelling waves.

Starting with the incoming boundary conditions (4.79), the Schrödinger equation
(4.11) can be integrated outwards, which yields a well defined solution that can be
decomposed into incoming and outgoing radial waves at large distances,

u(r)
r→∞∼ 1√

�k

(
e−ikr + Re+ikr

)
. (4.80)

Since the potential Vtail(r) is strongly r-dependent for r → 0, the right-hand side of
(4.79) necessarily contains the prefactor 1/

√
ptail(E; r). The factor 1/

√
�k on the

right-hand side of (4.80) is included for consistency. The transmission coefficient T

in (4.79) can be chosen such that there is no further proportionality constant in
front of the incoming wave in (4.80). The phase of T also depends on the choice
of the lower integration limit r0 in the action integral. Equation (4.80) defines the
quantum reflection amplitude R. Comparing Eq. (4.80) with Eqs. (2.68) and (2.69)
in Sect. 2.3.6 shows that the reflection amplitude R can be interpreted as minus the
s-wave S-matrix,

R ≡ −Sl=0 = −e2iδ0, (4.81)

with an s-wave scattering phase shift δ0. Incoming boundary conditions imply ab-
sorption, so the S-matrix is no longer unitary, which is expressed through a complex
phase shift δ0.

The immediate near-threshold behaviour of the quantum reflection amplitude can
be easily derived [35] on the basis of the two threshold (E = 0) solutions u

(0)
0 (r)

and u
(0)
1 (r) of the radial Schrödinger equation (4.11), which are defined by their

asymptotic behaviour (4.34). From their small-r behaviour (4.35), it follows that
the linear combination

u(r) = eiφ0/2

D1
u

(0)
1 (r) − eiφ1/2

D0
u

(0)
0 (r)

r→0∝ 1√
ptail(0; r) exp

(
− i

�

∫ r

∞
ptail

(
0; r ′)dr ′

)
(4.82)
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obeys incoming boundary conditions for r → 0. At large distances, the superposi-
tion (4.82) behaves as

u(r)
r→∞∼ −eiφ1/2

D0
+ eiφ0/2

D1
r, (4.83)

which is to be compared with

1√
�k

(
e−ikr + Re+ikr

) kr→0∝ 1 + R − ik(1 − R)r. (4.84)

Since the ratio of the constant term and the coefficient of r must be the same in
(4.83) and (4.84), we obtain

D0

D1
ei(φ0−φ1)/2 = ik(1 − R)

1 + R
=⇒ R

k→0∼ −1 − ike−i(φ0−φ1)/2D1/D0

1 + ike−i(φ0−φ1)/2D1/D0
, (4.85)

and, with the threshold length b and mean scattering length ā as defined in (4.40),
(4.42),

R
k→0∼ −

[
1 − 2k

D1

D0

[
sin

(
φ0 − φ1

2

)
+ i cos

(
φ0 − φ1

2

)]]
= −[

1 − 2i(ā − ib)k
]
.

(4.86)
Expressing R in terms of the complex phase shift δ0 according to (4.81) reveals the
following near-threshold behaviour of δ0,

δ0
k→0∼ −(ā − ib)k = −A k. (4.87)

Thus the mean scattering length ā and the threshold length b, introduced in
Sect. 4.1.1 as tail parameters of a singular reference potential Vtail(r), appear as the
real part and minus the imaginary part of the complex scattering length [3, 88, 89],

A = ā − ib, (4.88)

which describes the leading near-threshold behaviour of the quantum reflection
amplitude. The mean scattering length is well defined only for potentials falling
off faster than 1/r3 at large distances, but the threshold length b is well defined
for potentials falling off faster than 1/r2. The leading near-threshold behaviour of
the modulus of the quantum reflection amplitude is determined by the threshold
length b,

|R| k→0∼ 1 − 2bk + O
(
k2) = e−2bk + O

(
k2). (4.89)

Note that the probability |R|2 for quantum reflection approaches unity at threshold,
so quantum reflection always becomes dominant at sufficiently low energies.

The effective-range expansion, described for the phase shifts of ordinary scatter-
ing in Sect. 2.3.8, can be adapted for the complex phase shifts of quantum reflection,
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as described in Ref. [3]. Equation (2.103) becomes

k cot δ0
k→0∼ − 1

ā − ib
+ 1

2
Reffk

2, Reff = 2
∫ ∞

0

([
w(0)(r)

]2 − [
u(0)(r)

]2)
dr,

(4.90)
but the radial wave function u(0)(r) is now defined as the solution of (4.11) which
obeys incoming boundary conditions for r → 0 and the following boundary condi-
tions for large r :

u(0)(r)
r→∞∼ 1 − r

ā − ib
. (4.91)

The wave function w(0)(r) in (4.90) assumes the form (4.91) in the whole range of
r-values, from the origin to infinity,

w(0)(r) = 1 − r

ā − ib
. (4.92)

The parameter Reff in (4.90) is the complex effective range. As for the real effective
range in ordinary scattering, it is well defined for potentials Vtail(r) falling off faster
than 1/r5 at large distances.

At high energies corresponding to the semiclassical limit of the Schrödinger
equation (4.11), the probability for the classically forbidden process of quantum
reflection vanishes. For an infinitely differentiable potential Vtail(r), the probability
generally decreases exponentially with an exponent proportional to a typical classi-
cal action in units of �, e.g. to the generalized reduced classical turning point krE
introduced above,

|R| k→∞∝ e−BokrE , (4.93)

with some dimensionless constant Bo.
For an attractive single-power tail (4.57), the generalized reduced classical turn-

ing point is given by

krE = (kβα)1−2/α, (4.94)

and the quantum reflection amplitude depends only on kβα . The exponent on the
right-hand side of (4.93) describing the high-energy behaviour of |R| is BokrE =
Bo(kβα)1−2/α in this case; the coefficients Bo were derived in [33] and are given in
the last row of Table 4.1 in Sect. 4.1.1. Plots of ln |R|, as function both of kβα and of
(kβα)1−2/α , are shown in Fig. 4.8. The linear initial fall-off of the various curves in
the left-hand part of the figure is in agreement with (4.89), and the gradients −2b/βα

reflect the respective threshold lengths b as already given in Eq. (4.61) and Table 4.1.
In the right-hand part of the figure, the fall-off at large values of (kβα)1−2/α is in
agreement with (4.93); the straight dashed lines show −Bo(kβα)1−2/α with the val-
ues Bo as given in the bottom row of Table 4.1. With increasing power α, the expo-
nent Bo(kβα)1−2/α describing the high-energy behaviour of |R| approaches the ex-
ponent −2bk describing its low-energy behaviour, see the corresponding entries in



214 4 Special Topics

Fig. 4.8 Logarithmic plot of the modulus |R| of the quantum reflection amplitude for attrac-
tive inverse-power potentials (4.57) for α = 3, . . . ,7 as functions of kβα (left-hand part) and of
(kβα)1−2/α (right-hand part). The straight dashed lines in the right-hand part show the functions
−Bo(kβα)1−2/α with the coefficients Bo given in the bottom row of Table 4.1. (Adapted from [33])

the last column of Table 4.1. Thus the low- and high-energy behaviour of |R| merges
into a single exponential form for single-power tails (4.57) with large power α,

|R| α→∞∼ e−2πkβα/α (4.95)

for all energies.
The tail parameters of attractive single-power tails (4.57) can be related in a very

elegant way to corresponding parameters of the repulsive inverse-power potentials
(2.160) discussed in Sect. 2.4. To see this, observe that the repulsive inverse-power
potential (2.160) becomes the attractive inverse-power potential (4.57) by an appro-
priate transformation of the quantum length βα . With ν = 1/(α − 2):

βα → β−iπν
α =⇒ (βα)α−2

rα
→ − (βα)α−2

rα
. (4.96)

The same transformation, βα → β−iπν
α , transforms the purely imaginary local clas-

sical momentum under the repulsive inverse-power potential to a real local classical
momentum in the attractive inverse-power potential. The radial wave function which
is exactly equal to its WKB representation in the limit r → 0 for inverse-power tails
with α > 2, is transformed from the regular solution which vanishes monotonically
for r → 0 in the repulsive case to the oscillating solution obeying incoming bound-
ary conditions in the attractive case. All properties which depend on the quantum
length βα carry over from the repulsive to the attractive case via the transformation
(4.96). The scattering length, which is given by (2.181) for the repulsive inverse-
power potential (2.160), transforms according to

a = ν2ν Γ (1 − ν)

Γ (1 + ν)
βα −→ ν2ν Γ (1 − ν)

Γ (1 + ν)
βα

[
cos(πν) − i sin(πν)

] = ā − ib

(4.97)
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to the complex scattering length A = ā− ib; the expressions following for the mean
scattering length ā and the threshold length b according to (4.97) are those already
given in (4.61) . Similarly, the complex effective range Reff appearing in (4.90) is,
for attractive single-power potentials (4.57) with α > 5, just e−iπν times the real ef-
fective range reff of the corresponding repulsive inverse-power potential (4.57) with
the same quantum length βα [3]. The straightforward relationship between repul-
sive and attractive inverse-power potentials makes it possible to adapt the extensive
results on the near-threshold behaviour of phase shifts which were derived in [22]
for repulsive inverse-power potentials to the description of quantum reflection by
attractive inverse-power potentials.

4.1.2.1 Observation of Quantum Reflection

Quantum reflection is observable in collisions of ultracold atoms with surfaces. At
large distances, the projectile interacts with a plane surface via electrostatic van der
Waals forces, which are modified at very large distances due to retardation [19].
Such “Casimir-Polder potentials” have all the properties assumed for the reference
potential Vtail(r) in this section. Due to translational invariance parallel to the sur-
face, the motion normal to the surface is decoupled from the parallel motion, and
it is governed by a one-dimensional Schrödinger equation equivalent to the s-wave
radial equation of scattering in three-dimensional space. Very low normal veloci-
ties can be achieved with grazing incidence of very slow projectiles. Atoms which
are transmitted through the nonclassical region of the potential are accelerated to-
wards the surface and are likely to transfer at least some small fraction of their
kinetic energy to the surface, which leads to trapping of the atom at the surface if
its total energy falls below zero. Such “sticking” is classically expected to become
dominant at very low velocities, but early experiments with liquid helium surfaces
indicated a suppression of sticking probabilities towards threshold, which was con-
firmed in quantum mechanical calculations [10, 12]. The quenched sticking proba-
bilities are due to quantum reflection in the potential tail, whereby only a fraction
of the incident atoms actually penetrates through to the deep attractive part of the
atom-surface potential [18, 90]. Quantitative measurements of quantum reflection
probabilities for ultracold atoms scattering off solid surfaces have since been per-
formed by several groups, e.g. [21, 74, 78], and the growing activity in the field of
ultracold atoms and molecules has drawn particular attention to this phenomenon
[15, 20, 26, 32, 60, 61, 70, 91].

The van der Waals interaction between a neutral atom and a plane conducting or
dielectric surface is −C3/r3, but at very large distances it becomes equal to −C4/r4

due to retardation effects [19]. The quotient of the strength coefficients in the limit-
ing cases has the dimension of a length,

L = C4

C3
; (4.98)
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it roughly defines a transition range separating the nonretarded van der Waals regime
r � L from the highly retarded regime r � L. At very small distances of a few
atomic units or so, the atom-surface potential is rather complicated, but this “close
region” is not important when considering quantum reflection with incoming bound-
ary conditions. Beyond the close region, the singular, attractive atom-surface poten-
tial can be written as

Vtail(r) = −C3

r3
v

(
r

L

)
, lim

x→0
v(x) = 1, lim

x→∞ v(x) = 1

x
. (4.99)

The shape function v(x) interpolates between the −C3/r3 behaviour for r � L and
the −C4/r4 behaviour for r � L.

In order to explain the quantum reflection probabilities that he observed in his pi-
oneering experiments involving metastable neon atoms and solid surfaces, Shimizu
[78] modelled the atom-surface potential with a very simple shape function,

v1(x) = 1

1 + x
=⇒ Vtail(r) = − �

2

2μ

[
r3

β3
+ r4

(β4)2

]−1

. (4.100)

The lengths β3 and β4 are the quantum lengths for the single-power forms (4.57),
which the potential (4.99) approaches in the limits r → 0 and r → ∞, respectively.
An alternative interpolation is guided by the exact potential for a hydrogen atom
interacting with a perfectly conducting surface, which was calculated numerically
in [57]. For this we define the shape function

vH(r) = 1 + ξx

1 + x + ξx2
, ξ = 0.31608. (4.101)

With the shape function (4.101) and the coefficients C3, C4 appropriate for the case
of a hydrogen atom in front of a conducting surface,

C3 = 1

12
〈ψ0|r2|ψ0〉 = 1

4
a.u., C4 = 3

8π

αd(0)

αfs
≈ 73.61 a.u. (4.102)

the potential (4.99) reproduces the values of the hydrogen-surface potential tabu-
lated in [57] to within 0.6 % in the whole range of r-values. In (4.102), ψ0 stands for
the hydrogen atom’s ground-state wave function, αd(0) = 9

2 a.u. is its static dipole
polarizability and αfs is the dimensionless fine structure constant. The parameter ξ

in (4.101) is not a fit parameter, but is determined by the condition that the universal
next-to-leading term in the small-distance expansion of the potential of a Z-electron
atom in front of a conducting wall [9],

VZ(r)
r→0∼ C3

r3
+ Zαfs

4πr2
, (4.103)

is given correctly by the formula (4.101) for the hydrogen case Z = 1. This leads to
ξ = 1 − αfsC4/[4π(C3)

2].
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Fig. 4.9 Modulus of the quantum reflection amplitude, as observed in the scattering of metastable
neon atoms off a silicon surface [78]. The figure shows ln(− ln |R|) as function of ln(k) (natural
logarithms) with k measured in atomic units, i.e. in units of the inverse Bohr radius. The curves
show the results obtained by numerically solving the Schrödinger equation (4.11) with potentials
(4.99) constructed with the shape functions v1 and vH. The quantum length β4 associated with
the strength C4 of the potential in the highly retarded limit is β4 = 11400 a.u. in all cases. For the
−C3/r3 van der Waals limit of the potential, the quantum length is β3 = 11400 a.u. for ρ = 1 and
β3 = 114000 a.u. for ρ = 10. The straight red line in the bottom left corner shows the behaviour
ln |R| ∼ −2β4k expected in the low-k regime. The straight red line in the top right corner shows
the behaviour ln |R| ∝ −√

β4k expected in the high-k regime for a single-power 1/r4 potential.
(From [33])

As shown in [33], which part of the atom-wall potential dominantly influences
quantum reflection depends on the ratio ρ = β3/β4 of the quantum lengths charac-
terizing the single-power limits at small and large distances. For ρ < 1, the energy
dependence of |R| is largely determined by the nonretarded van der Waals part of
the potential; for ρ > 1, the retarded −C4/r4 part is dominant. Thus the smaller of
the two quantum lengths is the one belonging to the dominant term. This observation
may be counter-intuitive, but it is understandable when looking at the expression for
the atom-wall potential that is given on the far right of (4.100).

The transition from the leading linear behaviour (4.89) of |R| near threshold to
the high-k behaviour (4.93) can be exposed by studying ln(− ln |R|) as a function
of lnk,

|R| = e−BkC =⇒ ln
(− ln |R|) = ln(B) + C ln(k). (4.104)

A plot of ln(− ln |R|) against ln(k) is shown in Fig. 4.9 for the quantum reflection
of metastable neon atoms by a silicon surface, as studied by Shimizu in [78]. The
dots are the experimental data and the curves are the results obtained by numerically
solving the Schrödinger equation (4.11) with potentials (4.99) constructed with the
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shape functions v1 and vH. The quantum length corresponding to the highly retarded
−C4/r4 part of the potential was β4 = 11400 a.u. in all four cases. The value of β3
was chosen to be equal to β4, corresponding to ρ = 1, or to be ten times larger,
corresponding to ρ = 10. The straight red line in the bottom left of the figure has
unit gradient, corresponding to the universal near-threshold behaviour (4.89). The
results obtained with all potentials in Fig. 4.9 approach such behaviour in the low-k
limit, and the data are consistent, albeit with a very large scatter. Towards large k,
the gradients of the curves in Fig. 4.9 decrease gradually. The experimental points
are well fitted by the two curves with ρ = 10, i.e. with β3 = 114000 a.u. They are
essentially the same for both shape functions, (4.100) and (4.101), and they are also
independent of β3 as long as β3 is significantly larger than β4. Essentially the same
result is obtained with a single-power −1/r4 potential with the appropriate quantum
length β4 = 11400 a.u. The straight red line in the top right corner of the figure
shows the large-k behaviour expected in this case according to (4.93), with BokrE =
Bo(kβ4)

1/2; its gradient is 1
2 . In contrast, the large-k behaviour of the two curves

with ρ = 1 is closer to the expectation of a −1/r3 potential, where the asymptotic
gradient is 1

3 . One expects the nonretarded −1/r3 part of the potential at moderate
distances to have increasing influence at higher energies, but at the energies where
this happens, the quantum reflection yields are very small.

As already pointed out by Shimizu in [78], the highly retarded part of the neon-
surface interaction is essentially responsible for quantum reflection observed in the
experiment. Also for other atom-wall systems, involving e.g. bosonic alkali atoms,
hydrogen or metastable helium, the crucial parameter β3/β4 is generally signifi-
cantly larger than unity [33, 35]. Quantum reflection is well described on the basis
of the highly retarded, single-power −1/r4 potential in all these cases.

It is also worth noting, that all characteristic lengths, including the transition
length (4.98) are very large, typically several hundreds or thousands of atomic units
(Bohr radii) [33, 35]. Quantum reflection is generated at really large atom-surface
distances. The same applies for the quantum reflection of ultracold molecules, as
was impressively demonstrated in a recent experiment by Zhao et al. who scattered
helium dimers off a solid diffraction grating at very low energies corresponding to
normal incident velocities near 10 cm/s, translating to a kinetic energy near 0.6 neV
(≈ 2 × 10−11 a.u.) in the normal direction. The very fragile helium dimer, with a
binding energy of only 4 × 10−8 a.u. and a bond length of almost 100 a.u. (Bohr
radii), is expected to fragment while being accelerated under the influence of the
attractive molecule-surface potential with a well depth near 2 × 10−4 a.u. However,
a noticeable fraction of the incident dimers is spared this fate due to quantum re-
flection, which occurs “tens of nanometers above the actual surface where the · · ·
forces are still too feeble to break up even the fragile He2 bond” [91].

4.1.2.2 Nonplanar Surfaces

For atoms scattering off an absorbing sphere, the radius of the sphere enters as
a further length in the problem. As shown in [4], the nonclassical region of the
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potential tail moves to smaller r-values when the radius of the sphere is decreased,
but the transition region between nonretarded van der Waals regime and the highly
retarded regime is essentially independent of this radius and roughly the same as
for an atom in front of a plane surface. The sensitivity of quantum reflection to the
nonretarded part of the atom-surface potential thus becomes increasingly noticeable
for smaller spheres.

It is interesting to consider the threshold limits of the cross sections for elas-
tic scattering and for absorption of atoms interacting with an absorbing sphere.
The electrostatic van der Waals potential is proportional to 1/r6, but at very large
distances the atom-sphere potential is proportional to 1/r7 due to retardation ef-
fects [19]. Towards threshold, the scattering amplitude is dominated by the s-wave
(l = 0), and the complex scattering phase shift is determined by the complex scat-
tering length. With Eq. (2.47) in Sect. 2.3.3 and Eqs. (4.87), (4.88) above,

f (θ)
k→0∼ 1

k
δ0

k→0∼ −ā + ib. (4.105)

The elastic scattering cross section |f (θ)|2 remains finite, the square of the real
scattering length in the nonabsorbing case is simply replaced by the absolute square
of the complex scattering length in the presence of absorption,

dσel

dΩ

k→0∼ |A |2 = ā2 + b2, σel
k→0∼ 4π

(
ā2 + b2). (4.106)

In contrast, the absorption cross section, as given by Eq. (3.53) in Sect. 3.4, behaves
as follows towards threshold:

σabs
k→0∼ π

k2

(
1 − ∣∣e2iδ0

∣∣2) k→0∼ π

k2

(
1 − |1 − 2kb − 2iāk|2) k→0∼ 4πb

k
. (4.107)

This is consistent with the optical theorem (3.17), according to which

σtot = 4π

k
�[

f (θ = 0)
] k→0∼ 4π

k
�[−ā + ib]; (4.108)

the total cross section σtot = σel + σabs is dominated towards threshold by the di-
verging contribution of the absorption cross section (4.107).

The absorption cross section, which is related to the probability for transmission
through the nonclassical region of the potential tail, can be used to calculate the rate
for a reaction that occurs when projectile and target meet [24]. Since this involves an
average over the product of σabs and the asymptotic relative velocity �k/μ, reaction
rates following from absorption cross sections that diverge as in (4.107) tend to finite
limits at threshold.

For an atom interacting with a conducting cylinder, the nonclassical region of the
potential tail is not so sensitive to the radius of the cylinder. As in the case of the
plane wall, the highly retarded part of the atom-cylinder potential is important for
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quantum reflection by a conducting cylinder with realistic dimensions. The nonre-
tarded part of the interaction is more likely to play a role for dielectric cylinders [30].
Note that for a cylinder, the atom-surface interaction is much more complicated
than for a plane or spherical surface. Furthermore, due to translational invariance
along the direction parallel to the cylinder axis, the scattering problem is actually
two-dimensional, and quantum mechanical scattering theory in two dimensions is
somewhat more subtle than in the one- and three-dimensional cases, in particular
near threshold. A detailed description of scattering theory in two spatial dimensions
is given later in Sect. 4.3.

4.1.3 Elastic Scattering

Near-threshold quantization, discussed in Sect. 4.1.1, involved matching the regular
solution of the radial Schrödinger equation with the full potential to a solution of
the radial Schrödinger equation (4.11) obeying bound-state boundary conditions.
The potential in (4.11) is the attractive reference potential Vtail(r), which is more
singular than 1/r2 at small distances, is a good approximation of the full potential
at large distances and falls off faster than 1/r2 for r → ∞. The influence of the
potential tail was contained in one single quantization function (4.16), constructed
at each energy E with the help of the small-r behaviour of the asymptotically bound
solution of (4.11), which is accurately given by its WKB representation for r → 0.

At positive energies, there are two linearly independent physically meaningful
solutions of (4.11) for each energy E, and the small-r behaviour of each solution
is determined by an amplitude and a phase, e.g. in the WKB representation of this
solution for r → 0. One overall normalization constant is always arbitrary, so the
quantum mechanical properties of the reference potential are manifest not in one
tail function, as in subthreshold quantization, but in three tail functions at positive
energies. In the previous subsection on quantum reflection, the two linearly indepen-
dent solutions of (4.11) were the incoming and outgoing radial waves e±ikr/

√
�k,

and three appropriate tail functions are the modulus and phase of the quantum re-
flection amplitude R and the phase of the transmission amplitude T , the modulus
of T being already determined by flux conservation, |R|2 + |T |2 = 1.

An alternative choice of two linearly independent solutions of (4.11) is provided
by the wave functions obeying the following large-r boundary conditions [65]:

us(r)
r→∞∼ sin(kr), uc(r)

r→∞∼ cos(kr). (4.109)

Beyond the short-range deviations of the full interaction from the reference potential
Vtail(r), the regular solution ureg(r) of the full problem is a superposition of the two
solutions of (4.11),

ureg(r)
r large∝ cos δ0us(r) + sin δ0uc(r). (4.110)
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The properties of the reference potential Vtail(r) are contained in the amplitudes
and phases of the WKB representations of us(r) and us(r) for r → 0, where these
representation become exact. The explicit expressions for the WKB representations
contain the lower integration limit in the action integrals as point of reference. In the
presence of a classical turning point, this turning point is a natural choice, but for
the singular, attractive reference potential Vtail(r), there is no classical turning point
at positive energy. One conspicuous point is the distance rE at which the potential
V (rE) is equal to minus the energy E, see Eq. (4.78) in Sect. 4.1.2; it lies in the heart
of the nonclassical region of Vtail(r). With this choice, the WKB representations of
the two solutions of (4.11) defined by the boundary conditions (4.109) can be written
as

us(r)
r→0∼ As√

ptail(E; r) sin

(
1

�

∫ r

rE

ptail
(
E; r ′)dr ′ − φs

)
,

uc(r)
r→0∼ Ac√

ptail(E; r) cos

(
1

�

∫ r

rE

ptail
(
E; r ′)dr ′ − φc

)
,

(4.111)

with the local classical momentum ptail(E; r) = √
2μ[E − Vtail(r)], which is real

and positive in the whole range 0 < r < ∞. Equation (4.111) defines the ampli-
tudes As,c which are real and taken to be positive, and the phases φs,c, which are
real. These amplitudes and phases are tail functions determined entirely by the ref-
erence potential Vtail(r). They are functions of energy, but for simplicity in notation
this is not explicitly written in the formulae below. Note that the lower limit rE of
the integrals in (4.111) is larger than the upper limit r when r → 0.

At distances r which are small enough for the WKB representations (4.111) of
us(r) and uc(r) to be valid, and at the same time large enough so that the reference
potential Vtail(r) is a good approximation of the full interaction, the regular solution
(4.110) behaves as

ureg(r) ∝ 1√
ptail(E; r) sin

(
1

�

∫ r

rE

ptail
(
E; r ′)dr ′ − φsr(E)

)
. (4.112)

The position r in (4.112) lies beyond the short-range deviations of the full in-
teraction from the reference potential Vtail(r), and the inner boundary condition
ureg(0) = 0 is carried over in terms of the phase φsr(E). From (4.110) and (4.111) it
follows, that φsr(E) is related to the scattering phase shift δ0 by

tan δ0 = As

Ac

sin(φs − φsr(E))

cos(φc − φsr(E))
. (4.113)

The choice of the reference point rE in (4.112) may seem unconventional, but it al-
lows the WKB expression to be written in terms of ptail(E; r ′) rather than p(E; r ′),
which is defined in (4.3) and involves the full interaction. A more conventional
WKB representation for ureg(r) is,

ureg(r) ∝ 1√
p(E; r) cos

(
1

�

∫ r

rin(E)

p
(
E; r ′)dr ′ − φin(E)

2

)
, (4.114)
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which defines the inner reflection phase φin(E), compare Eq. (4.2) in Sect. 4.1.1.
For distances r beyond the short-range deviations of the full interaction from the
reference potential Vtail(r), ptail(E; r) and p(E; r) are essentially equal, so the fac-
tors in front of the sine in (4.112) and cosine (4.114) are the same. Equating the sine
and cosine parts relates φin(E) to φsr(E):

φsr(E) = φin(E)

2
− π

2
− 1

�

∫ r

rin(E)

p
(
E; r ′)dr ′ − 1

�

∫ rE

r

ptail
(
E; r ′)dr ′

= φin(E)

2
− π

2
− 1

�

∫ rE

rin(E)

p
(
E; r ′)dr ′. (4.115)

Since the range of integration in the second integral in the top line of (4.115) is
beyond the short-range deviations, the momentum ptail(E; r ′) can be replaced by
p(E; r ′) in this integral, which leads to the expression in the bottom line. With the
quantization condition at threshold, Eq. (4.6) in Sect. 4.1.1, the phase φsr(E) can be
related to the threshold quantum number υD,

φsr(E) = −υDπ − φout(0)

2
− π

2
− φin(0) − φin(E)

2

+ 1

�

∫ ∞

rE

p(0; r)dr + 1

�

∫ rE

rin(0)

p(0; r)dr − 1

�

∫ rE

rin(E)

p(E; r)dr.

(4.116)

The difference φin(0) − φin(E) of the inner reflection phases in (4.116) is a
smooth function of energy and vanishes at E = 0. The leading near-threshold energy
dependence of the right-hand side of (4.116) comes from the difference of action in-
tegrals in the lower line. Replacing the momenta p(0; r) and p(E : r) in the second
and third integrals, i.e. in those with upper limit rE , by ptail(0; r) and ptail(E : r)

introduces an error of order E at most. This is because the difference between p and
ptail is limited to short distances and hence a smooth function of E, while the dif-
ference of the two integrals clearly vanishes at E = 0. In the first integral, covering
the range rE to infinity, p(0; r) can be replaced by ptail(0; r), because r is always
beyond the range of the short-range deviations. With the abbreviation

ξ = 1

�

∫ ∞

rE

ptail(0; r)dr + 1

�

∫ rE

0

[
ptail(0; r) − ptail(E; r)]dr − φout(0)

2
− π

2
,

(4.117)
we can rewrite Eq. (4.116) as

φsr(E) = −υDπ + ξ + πfsr(E), (4.118)

where fsr(E) is a smooth function of energy which vanishes at threshold and ac-
counts for all residual short-range effects. The expression (4.113) thus becomes

tan δ0 = As

Ac

sin([υD − fsr(E)]π − ξ + φs)

cos([υD − fsr(E)]π − ξ + φc)
. (4.119)
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The influence of the reference potential Vtail(r) on the low-energy behaviour of
the scattering phase shift δ0 is expressed through the three tail functions, As/Ac, φs

and φc. The auxiliary tail function ξ defined in (4.117) is needed to compensate the
effects of choosing the lower integration limit in the action integrals to be rE rather
than some energy independent value. Such a choice would introduce an unnecessary
element of arbitrariness in the formulation.

Towards threshold, the solutions us(r) and uc(r) of (4.11), defined by their
asymptotic behaviour (4.109), approach the threshold solutions u

(0)
1 (r) and u

(0)
0 (r),

which were introduced in Sect. 4.1.1 and are defined by the asymptotic be-
haviour (4.34),

us(r)
k→0∼ ku

(0)
1 (r), uc(r)

k→0∼ u
(0)
0 (r). (4.120)

Consequently, the threshold limits of the tail functions can be expressed in terms
of the amplitudes D0,1 and phases φ0,1 defining the WKB representations (4.35) of
u

(0)
1 (r) and u

(0)
0 (r), and the threshold value of ξ follows from (4.117):

As

Ac

k→0∼ k
D1

D0
, φs

k→0−→ −π

2
− φ1

2
, φc

k→0−→ −φ0

2
,

ξ
k→0−→ −π

2
− φ0

2
.

(4.121)

With fsr(E = 0) = 0, the near-threshold limit of Eq. (4.119) is seen to be

tan δ0
k→0∼ −k

D1

D0

[
cos

(
φ0 − φ1

2

)
+ sin(

φ0−φ1
2 )

tan(υDπ)

]
= −k

(
ā+ b

tan(υDπ)

)
. (4.122)

The threshold length b and the mean scattering length ā are as already defined in
(4.40) and (4.42) in Sect. 4.1.1, so Eq. (4.122) is consistent with the expression
(4.53) for the scattering length a. Remember that a finite value for the mean scatter-
ing length ā exists only for reference potentials Vtail(r) falling off faster than 1/r3

at large distances.
As mentioned at the beginning of this subsection, the parameters of quantum

reflection by the nonclassical part the reference potential Vtail(r) can also serve as
appropriate tail functions to describe the influence of Vtail(r) on the scattering phase
shifts [66]. To see this, consider the solution uinc(r) of (4.11) which obeys incoming
boundary conditions for r → 0 and behaves as (4.80) for r → ∞. In terms of the
solutions us(r) and us(r), with the asymptotic behaviour (4.109) we have

uinc(r) = − i√
�k

(1 − R)us(r) + 1√
�k

(1 + R)uc(r). (4.123)
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From (4.111) the small-r behaviour of this wave function is

uinc(r)
r→0∼ e−iI

2
√
�kptail(E; r)

[
(1 − R)Ase

iφs + (1 + R)Aceiφc
]

+ e+iI

2
√
�kptail(E; r)

[
(1 + R)Ace−iφc − (1 − R)Ase

−iφs
]
, (4.124)

with I = 1
�

∫ r

rE
ptail(E; r ′)dr ′. Since uinc(r) is required to obey incoming boundary

conditions for r → 0, the content of the square bracket in the lower line of (4.124)
must vanish,

(1 + R)Ace−iφc = (1 − R)Ase
−iφs . (4.125)

The quotient As/Ac of the real and positive amplitudes defined by (4.111) is thus
related to the quantum reflection amplitude R by

As

Ac
=

∣∣∣∣1 + R

1 − R

∣∣∣∣. (4.126)

The phase of the square bracket on the right-hand side of the upper line of
(4.124) can be deduced by exploiting (4.125) to replace either (1 − R)As by
(1 + R)Acei(φc−φs) or (1 + R)Ac by (1 − R)Asei(φs−φc). This phase represents the
argument of the transmission coefficient T as defined by (4.79), provided that the
lower limit r0 in the action integral is taken as rE . With this definition of T ,

argT = φs + arg(1 + R) = φc + arg(1 − R). (4.127)

In terms of the amplitudes for reflection by and transmission through the nonclassi-
cal region of the reference potential Vtail(r), Eq. (4.119) reads

tan δ0 =
∣∣∣∣1 + R

1 − R

∣∣∣∣ sin([υD − fsr(E)]π − ξ + argT − arg(1 + R))

cos([υD − fsr(E)]π − ξ + argT − arg(1 − R))
. (4.128)

Equation (4.119) and its rephrased version (4.128) transparently expose how the
energy dependence of the scattering phase shift δ0 is influenced by the reference
potential Vtail(r). As for near-threshold quantization discussed in Sect. 4.1.1, the
threshold quantum number υD, more precisely the remainder ΔD = υD − 
υD�,
crucially determines the leading energy dependence of δ0.

For reference potentials Vtail(r) falling off faster than 1/r3 at large distances,
the leading proportionality of tan δ0 to k comes from the prefactor (4.126) in front
of the quotient of sine and cosine, and the actual value of the scattering length a

depends sensitively on ΔD, as seen in Eq. (4.122) and in Eq. (4.53) in Sect. 4.1.1.
The scattering length a and the remainder ΔD are interchangeable parameters; each
one characterizes how near the most weakly bound state is to threshold.

For potentials falling off as −1/r3 asymptotically, there is no finite scattering
length, and the threshold quantum number’s remainder ΔD assumes the role of the
critical parameter determining the near-threshold beahaviour of the s-wave phase
shift δ0. In 2013, Müller [67] derived the exact analytical expression for the leading
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behaviour of δ0 up to and including all terms of order k2,

tan δ0 = −
[

ln(kβ3) + π

tan(πΔD)
+ 3γE + ln 2 − 3

2

]
(kβ3)

+ π

[
ln(kβ3) + π

tan(πΔD)
+ 3γE + ln 2 − 19

12

]
(kβ3)

2 + O
(
k3). (4.129)

In (4.129), γE = 0.577 · · · is Euler’s constant (see Appendix B.3) and β3 is the
quantum length corresponding to the leading asymptotic term −C3/r3 according to
(4.58).

At large energies, for which the quantum reflection amplitude is close to zero,
the prefactor in (4.119), (4.128) is essentially unity and the arguments of sine and
cosine in the quotient are essentially the same and equal to δ0 itself,

δ0
k→∞∼ [

υD − fsr(E)
]
π − ξ + φs = [

υD − fsr(E)
]
π − ξ + argT . (4.130)

In this semiclassical regime, the threshold quantum number υD affects the scatter-
ing phase shift only as an additive constant. Further effects due to the short-range
deviation of the full interaction from the reference potential Vtail(r) enter via the cor-
rection term fsr(E), which is a smooth function of energy, in particular at threshold,
and vanishes at E = 0:

fsr(E) = γsrE + O
(
E2). (4.131)

Again, the description above is particularly useful for single-power tails (4.57),
for which the tail properties depend not on energy and potential strength indepen-
dently, but only on the dimensionless product kβα of the wave number k and the
quantum length βα . The point of reference in units of βα is rE/βα = (kβα)−2/α

according to (4.94), and the auxiliary function (4.117) is given by [65]

ξ = −
(

3

4
+ ν

2

)
π + 2νηα(kβα)1−2/α, with ν = 1

α − 2
and (4.132)

ηα = √
2 − α

α + 2
2F1

(
1

2
,

1

2
+ 1

α
; 3

2
+ 1

α
;−1

)
; (4.133)

2F1 stands for the hypergeometric function defined by Eq. (B.52) in Appendix B.5.
The leading near-threshold behaviour of the tail functions As/Ac, φs and φc is, for
any α > 3 [65],

As

Ac

k→0∼ ν2ν Γ (1 − ν)

Γ (1 + ν)
kβα = k

√
ā2 + b2, (4.134)

φs/c
k→0∼

(
−1

2
± ν − 1

2

2

)
π + 2νηα(kβα)1−2/α. (4.135)

The leading near-threshold behaviour of tan δ0 is as given in (4.122), with ā and b

as given in Eq. (4.61) and Table 4.1 in Sect. 4.1.1. In the semiclassical limit of
large k, the prefactor (4.126) approaches unity exponentially, compare Eq. (4.93),
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Table 4.9 Numerical values of dimensionless parameters ηα and ρα as defined in Eqs. (4.133)
and (4.136), respectively

α 3 4 5 6 7 α → ∞
ηα 0.908797 0.847213 0.802904 0.769516 0.743463 0.532840

ρα 0.769516 0.847213 0.885769 0.908797 0.924102 1

and

φs/c
k→∞∼ −ρα(kβα)1−2/α, ρα = √

2 − α/2

α − 1
2F1

(
1

2
,1 − 1

α
;2 − 1

α
;−1

)
, α > 2.

(4.136)
The high-k behaviour of the phase shift is thus

δ0
k→∞∼

(
υD − fsr(E) + 3

4
+ ν

2

)
π − (ρα + 2νηα)(kβα)1−2/α, (4.137)

as already given in [31]. Numerical values of the dimensionless parameters ηα and
ρα are listed in Table 4.9

For a single power tail (4.57), the quantum length βα can be related to an energy
Eβα ,

Eβα = �
2

2μβ2
α

, (4.138)

which defines a scale separating the extreme quantum region immediately near
threshold from the regime of somewhat larger energies, where the influence of
the reference potential can be described semiclassically. (See also Eq. (4.70) in
Sect. 4.1.1.) For E � Eβα corresponding to kβα � 1, the near-threshold expan-
sions (4.134), (4.135) apply and the phase shift may be expressed via the scattering
length according to (4.122); for α = 3 the near-threshold expansion of the phase
shift is expressed via the remainder ΔD according to (4.129). As the energy in-
creases beyond Eβα corresponding to kβα growing beyond unity, the semiclassical
expression (4.137) becomes increasingly accurate.

As specific examples consider single-power reference potentials (4.57) with
α = 6 and α = 4. The auxiliary function (4.117) is given according to (4.132) in
these cases by

ξ = −7

8
π + 1

2
η6(kβ6)

2/3 for α = 6 and (4.139)

ξ = −π + 1

2
η4(kβ4)

1/2 for α = 4. (4.140)

The tail functions As/Ac, φs and φc are shown for both powers in Fig. 4.10.
The scattering phase shifts that follow via (4.119) are shown for various values of

the remainder ΔD in Fig. 4.11. The leading linear behaviour near threshold, which
is in accordance with Wigner’s threshold law, is restricted to the extreme quantum
regime kβα � 1 corresponding to E � Eβα . The scattering length a depends sensi-
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Fig. 4.10 Tail functions for a single-power reference potential (4.57) with α = 6 (left-hand panels)
and α = 4 (right-hand panels). The upper panels show the ratios As/Ac of the amplitudes defined
by the WKB representations (4.111) of the wave functions us(r) and uc(r) in the limit r → 0,
as functions of kβα ; the lower panels show the phases φs and φc as functions of (kβα)1−2/α . The
straight grey dashed lines show the low-energy limits (4.134), (4.135). The straight grey dot-dashed
lines show the high-energy limit: unity for As/Ac and Eq. (4.136) for φs/c. (From [65])

tively on the remainder ΔD according to (4.53) and for large |a|, the linear regime is
restricted even further by the condition k|a| < 1. The dot-dashed lines in Fig. 4.11
show the cases of vanishing scattering length, which are achieved with ΔD = 3

4 for
α = 6 and ΔD = 1

2 for α = 4. In these cases, the versions (2.103) or (2.286) of the
effective-range expansion don’t work, but the corresponding expansions for tan δ0,
e.g. (2.104) for potentials falling off faster than 1/r5 at large distances, are applica-
ble. See Sects. 2.3.8 and 2.6.3 in Chap. 2.

Since the quantum lengths βα are very large in realistic systems, typically hun-
dreds or even many thousands of atomic units (Bohr radii), the truly quantum
mechanical near-threshold regime kβα � 1 is tiny, as already observed for near-
threshold quantization in Sect. 4.1.1. In contrast to the bound regime below thresh-
old however, the energy spectrum above threshold is continuous and any ever so
small range of energies near threshold accommodates physically meaningful wave
functions.

The phase shifts shown in Fig. 4.11 were obtained via (4.119) without consider-
ing possible short-range corrections due to the deviation of the full interaction from
the reference potential Vtail(r) at small distances, i.e. assuming fsr ≡ 0. The char-
acteristic length scale for such short-range corrections is typically of the order of a
few atomic units (Bohr radii), associated with a characteristic energy much larger
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Fig. 4.11 s-wave phase shifts as given by (4.119) for a potential with a single-power tail (4.57) for
various values of the remainder ΔD. The additional short-range correction given through fsr(E)

is taken to be zero. The solid lines show the results obtained with ΔD = 0,0.01,0.1,0.5,0.99
(from bottom to top). For the lowest three values of ΔD, the plots are repeated (as dashed lines)
with a shift of π , which would correspond to one additional bound state in a potential well. The
dot-dashed lines show the respective phase shift for the value of ΔD for which the scattering length
vanishes, ΔD = 3

4 for α = 6 and ΔD = 1
2 for α = 4. (Adapted from [65])

than Eβα . In the energy range covered in Fig. 4.11, the effect of the short-range cor-
rection term fsr in (4.119) is negligibly small in a sufficiently deep Lennard–Jones
type potential where the potential tail is well described by the single-power form
(4.57) [65].

Consider again the Lennard–Jones potential (4.68) with BLJ = 104, which was
studied as Example 1 in Sect. 4.1.1. The short-range correction function fsr(E) was
derived from the exact numerically calculated phase shifts by resolving Eq. (4.119),
and υD − fsr(E) is shown as the solid curve in the right-hand part (E > 0) of
Fig. 4.12. The left-hand part (E < 0) of the figure repeats the plot in the right-hand
part of Fig. 4.4, where υ + F6(κυβ6) is plotted as function of energy for the highest
five bound states υ = 19, . . . ,23. Note that the energy is now given in the units of
Eβ6 as defined in (4.70). It is related to the depth E of the Lennard–Jones potential
by Eβ6/E = (BLJ)

−3/2/
√

2, which in the present case means Eβ6 ≈ 0.7 × 10−6E .
According to the quantization rule (4.7) and the decomposition (4.18), the squares
in the left-hand part of Fig. 4.12 lie on the curve υD − Fsr(E), where Fsr(E) is
the short-range correction to the quantization function. This curve clearly merges
smoothly into the function fsr(E) accounting for the analogous short-range correc-
tion above threshold. So the short-range correction coefficient γsr, defined by (4.19)
in the subthreshold regime and by (4.131) on the scattering side of the threshold,
is seen to be the same in both cases. The dashed horizontal line in Fig. 4.12 indi-
cates the value υD = 23.2327 of the threshold quantum number and the other dashed
line shows the linear function υD − γsrE, with γsr = −1.16/E = −8.2 × 10−7/Eβ6 ,
compare Table 4.5 in Sect. 4.1.1.
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Fig. 4.12 For the Lennard–Jones potential (4.68) with BLJ = 104, the left-hand part (E < 0) shows
υ +F6(κυβ6) as function of energy for the highest five bound states υ = 19, . . . ,23 (solid squares).
The right-hand part (E > 0) shows υD − fsr(E), derived from the exact numerically calculated
phase shifts by resolving Eq. (4.119). The dashed horizontal line indicates the value υD = 23.2327
of the threshold quantum number; the other dashed line shows the linear function υD − γsrE, with
γsr = −1.16/E = −8.2 × 10−7/Eβ6 , compare Table 4.5

4.1.4 Nonvanishing Angular Momentum

For nonvanishing angular momentum quantum number l, the radial Schrödinger
equation (4.11) with the reference potential Vtail(r) becomes

− �
2

2μ

d2u

dr2
+ V

(l)
tail(r)u(r) = Eu(r), V

(l)
tail(r) = Vtail(r) + l(l + 1)�2

2μr2
. (4.141)

Since Vtail(r) is more singular than 1/r2 at small distances, its influence becomes
increasingly dominant for r → 0, and the influence of the centrifugal potential in
(4.141) becomes negligible in this limit. At large distances, however, the centrifugal
term dominates over Vtail(r), which falls off faster than 1/r2, and this gives rise to
a centrifugal barrier separating the regime of free-particle motion at large distances
from the region of WKB validity for r → 0. For a sufficiently deep full interaction,
there still is a region of r-values where r is large enough for the full interaction to be
accurately represented by the reference potential Vtail(r) and at the same time small
enough for the WKB representations of the solutions of (4.141) to be sufficiently
accurate.

As example, Fig. 4.13 shows the tail of the potential already featured in Fig. 4.1
together with the effective potential, which includes the centrifugal potential, in this
case for angular momentum quantum number l = 8. The procedure outlined in the
previous three subsections can also be applied in the case of nonvanishing angular
momentum. In the bound state regime, the outer classical turning point rout(E) does
not go to infinity for E → 0, but assumes a finite value rE=0 corresponding to the
inner base point of the centrifugal barrier. With this in mind, the tail contribution
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Fig. 4.13 Tail of the deep
potential already featured in
Fig. 4.1 (solid black line),
together with the effective
potential V

(l)
tail(r) as defined in

(4.141), for angular
momentum quantum number
l = 8 (solid blue line). The
dashed orange line shows the
location of the reference point
rE which is defined for
positive energies by (4.149)

Ftail(E) to the quantization function is still defined by Eq. (4.16) in Sect. 4.1.1, but
the local classical momentum ptail(r

′) in the action integrals is now replaced by

p
(l)
tail

(
r ′) =

√
2μ

[
E − V

(l)
tail

(
r ′)]. (4.142)

For small noninteger values of l in the range − 1
2 < l < + 1

2 , the leading near-
threshold behaviour of Ftail(E) was derived in [59] for single power tails (4.57),1

F (l)
α (κβα)

κ→0∼ πν(0)2ν(l)

sin[(l + 1
2 )π](l + 1

2 )ν(l)[Γ (l + 1
2 )Γ (ν(l))]2

(
κβα

2

)2l+1

+ O
(
(κβα)4l+2) + O(E), −1

2
< l < +1

2
; (4.143)

here ν(l) is a generalization of ν ≡ ν(0) as defined in (4.132),

ν(l) = 2l + 1

α − 2
. (4.144)

At the upper end of the interval given in (4.143), i.e., l = 1
2 , the energy dependence

(κβα)2l+1 is already of order E. For all higher l-values, in particular for all positive
integers, the leading energy dependence of the tail contribution to the quantization
function F

(l)
tail(E) is of order E. A separation of tail effects from the influence of

1Noninteger values of l are not merely of academic interest. They can describe the effects of
inverse-square potentials of other origin than the centrifugal term. In two-dimensional scattering
described in Sect. 4.3, the radial Schrödinger equation with integer angular momentum quantum
number m resembles that of the 3D case when l = |m| − 1

2 .
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short-range deviations of the full interaction from the reference potential Vtail(r) is
still possible for l > 0. As in Figs. 4.4 and 4.6 in Sect. 4.1.1, a plot of υ + F

(l)
tail(Eυ)

against Eυ approaches a straight-line behaviour towards threshold, from which the
parameters υD(l) and γsr can be extracted. For inverse-power tails (4.57), the thresh-
old quantum number υD(l) for nonvanishing l is related to the threshold quantum
number υD(0) by [35, 59],

υD(l) = υD(0) − l

α − 2
. (4.145)

This relation has been used by Lemeshko and Friedrich [53, 54] to estimate the
number of ro-vibrational bound states in diatomic molecules and molecular ions.

Turning to “quantum reflection”, the imposition of incoming boundary condi-
tions on the solutions of (4.141) remains meaningful for l > 0; it describes the ab-
sorption of all inward travelling flux which manages to penetrate the nonclassical
region of the effective reference potential V

(l)
tail(r). For energies below the maximum

of the centrifugal barrier, the term “quantum reflection” is inappropriate, because
reflection is classically allowed whereas transmission is classically forbidden. The
leading near-threshold behaviour of the transmission (tunnelling) probabilities PT
was calculated in [58] for centrifugal barriers consisting of a single-power tail (4.57)
plus the centrifugal potential, i.e., for the potential V

(l)
tail(r) in (4.141),

PT
k→0∼ 4π2ν(0)2ν(l)(kβα/2)2l+1

(l + 1
2 )ν(l)[Γ (l + 1

2 )Γ (ν(l))]2
, (4.146)

wherefrom the behaviour of the modulus of the reflection amplitude follows via

|R| = √
1 − PT

PT→0∼ 1 − 1

2
PT. (4.147)

Note that the penetrability of the centrifugal barrier is always proportional to k2l+1

near threshold, and only the proportionality constant depends on the power in the
reference potential Vtail(r). In contrast to similar formulas for the near-threshold
behaviour of the phases of the transmission and reflection amplitudes, the propor-
tionality of PT and of 1 − |R| to k2l+1 is not restricted by a relation like 2l + 3 < α,
compare Sect. 2.6 in Chap. 2. All quantities based on the tunnelling probability
through a centrifugal barrier obey Wigner’s threshold law.

For ordinary scattering, the procedure described in Sect. 4.1.3 can easily be ex-
tended to the case of nonvanishing angular momentum quantum number l. For l �= 0,
the two linearly independent solutions of (4.141) are chosen to be those behaving
asymptotically as

u(l)
s (r)

r→∞∼ krjl(kr)
r→∞∼ sin

(
kr − l

π

2

)
,

u(l)
c (r)

r→∞∼ −kryl(kr)
r→∞∼ cos

(
kr − l

π

2

)
.

(4.148)
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The amplitudes As,c and phases φs,c are defined via the WKB representations of
these wave functions for r → 0, as in (4.111) for the case l = 0, but the local classi-
cal momentum ptail is replaced by p

(l)
tail given by (4.142). The point of reference rE

is now chosen as the classical turning point of −V
(l)
tail(r),

V
(l)
tail(rE) = Vtail(rE) + l(l + 1)�2

2μ(rE)2
= −E < 0. (4.149)

The dashed orange line in Fig. 4.13 shows the location of reference point rE for
each positive energy E. At threshold, rE ≡ r0 coincides with the inner base point
of the centrifugal barrier, which is also the limit of the outer classical turning point
rout(E) when the threshold is approached from below. The auxiliary tail function
(4.117) is, for l > 0, defined by

ξ (l) = 1

�

∫ r0

rE

p
(l)
tail(0; r)dr + 1

�

∫ rE

0

[
p

(l)
tail(0; r) − p

(l)
tail(E; r)]dr − φout(0)

2
− π

2
.

(4.150)
The theory described above, including nonvanishing angular momenta, has been
shown to work well in a realistic application to near-threshold bound and continuum
states of the 88Sr2 molecule in Ref. [49].

4.1.5 Summary

For a deep potential with an attractive tail falling off faster than 1/r2 at large dis-
tances, tail effects and short-range effects are most effectively identified by defin-
ing a reference potential Vtail(r), which describes the full interaction accurately at
large distances and tends to −∞ more rapidly than −1/r2 at small distances. The
influence of the reference potential is contained in a few tail functions, which are
functions of energy that are determined solely by Vtail(r). They are related to the am-
plitudes and phases in the WKB representation of exact solutions of the Schrödinger
equation, with Vtail(r), in the limit r → 0. Since the WKB approximation is exact
for r → 0 in this case, referring to the WKB representation does not imply a semi-
classical approximation.

The near-threshold bound state energies and scattering phase shifts are signifi-
cantly influenced by the threshold quantum number υD, or rather by its remainder
ΔD = υD − 
υD�, which is a property of the full interaction and tells us how close
this is to supporting a bound state exactly at threshold. Further effects of the short-
range deviation of the full interaction from Vtail(r) enter via a smooth function of
energy which vanishes at threshold. We called it Fsr(E) below threshold and fsr(E)

above threshold, but both functions merge smoothly with a common gradient at
E = 0:

Fsr(E) = γsrE + O
(
E2) for E < 0, fsr(E) = γsrE + O

(
E2) for E > 0.

(4.151)
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The short-range correction (4.151) vanishes in the limit that the range of the devi-
ations of the full interaction from the reference potential Vtail(r) is small compared
to the characteristic length scales of Vtail(r).

The positions of the near-threshold energy levels are determined by the quanti-
zation rule (4.7), which can be written as (4.20) when the quantization function is
written as a sum of Ftail(E) and the short-range correction Fsr(E). The contribution
Ftail(E) is a tail function depending only on the properties of the reference potential
Vtail(r). The immediate near-threshold behaviour of the quantization function F(E)

and of the quantization rule (4.7) is universal for all potentials falling off faster than
1/r2 at large distances,

F(E)
κ→0∼ bκ

π
+ O(E), υD − υ

κυ→0∼ bκυ

π
+ O(E), (4.152)

where b is the threshold length. It is a property of Vtail(r) alone and is defined by
Eq. (4.40).

At above-threshold energies, the s-wave scattering phase shift is given by (4.119)
or, alternatively, by (4.128). In Eq. (4.119) the ratio As/Ac, the angles φs, and φc,
as well as the auxiliary function ξ are tail functions depending only on the reference
potential Vtail(r). The same holds for the quantum reflection amplitude R, the phase
of the transmission amplitude T and the same auxiliary function ξ in the alternative
formulation (4.128).

The immediate near-threshold behaviour of the phase shift depends sensitively
on the remainder ΔD = υD − 
υD�. For potentials falling off faster than 1/r3 at

large distances, we have tan δ0
k→0∼ −ka and the scattering length a is related to the

remainder ΔD by (4.53), i.e.

a = ā + b

tan(ΔDπ)
, (4.153)

where ā is the mean scattering length defined in Eq. (4.42). The relation (4.153)
follows from the immediate near-threshold behavior (4.121) of the tail functions
occurring in (4.119). For potentials falling off as −1/r3 asymptotically, the near-
threshold behaviour of the tail functions yields the behaviour (4.129).

The mean scattering length ā and the threshold length b together make up
the complex scattering length A which determines the leading near-threshold be-
haviour of the amplitude R for quantum reflection by the reference potential Vtail(r),

R = −e2iδ0, δ0
k→0∼ −kA , A = ā − ib. (4.154)

Note that the leading near-threshold behaviour of the modulus |R| of the quantum
reflection amplitude is determined according to (4.89) by the threshold length b

alone

|R| k→0∼ 1 − 2bk + O
(
k2) = e−2bk + O

(
k2). (4.155)
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The semiclassical limit is approached away from threshold, both for positive and
negative energies, i.e. for large |E|. The behaviour of the scattering phase shift is
given in the high-k limit by Eq. (4.130), and the influence of the threshold quantum
number reduces to a simple additive constant in this limit.

The theory described in this section is particularly elegant for potential tails that
are well described by a single-power reference potential (4.57). In this case, all tail
functions depend only on κβα (below threshold) or kβα (above threshold). The tran-
sition between the immediate near-threshold quantum regime and the semiclassical
regime away from threshold occurs when κβα or kβα is of the order of unity. The
range of the quantum regime is tiny when compared with typical potential depths,
because the length scale of the reference potential is very large (in atomic units) for
typical atomic or molecular interactions, see e.g. Table 1 in Ref. [17].

4.1.6 Relation to Other Approaches

Deep potentials typically occurring in atomic and molecular physics have been stud-
ied by many researchers over the years. Inspired by the success of quantum-defect
theory for Coulombic potentials, i.e. modified Coulomb potentials with short-range
deviations from the pure 1/r behaviour, Greene et al. [41, 43] and Giusti [42] for-
mulated an adaptation of quantum-defect theory to more general situations, in par-
ticular to potentials falling off faster than 1/r2 at large distances. This approach was
applied to elastic and inelastic scattering by several authors [37, 39, 40, 44, 63, 64].
The description of scattering in these references is essentially equivalent to the the-
ory described in the previous five subsections in that it attempts to separate the
effects due to the singular reference potential from the short-range effects due to
the deviation of the full interaction from the reference potential at small distances.
For a compact review of this line of work see the description beginning on p. 4962
of Ref. [75]. Although the applications of this “generalized quantum-defect theory”
have been very successful, the use of the language of quantum-defect theory in con-
nection with potentials falling off faster than 1/r2 at large distances has been and
remains unfortunate.

The term “quantum defect” was introduced for systems described by modified
Coulomb potentials to account for the shift of energy levels relative to the levels
in a pure Coulomb potential, which serves as reference potential. Above the ion-
ization threshold, the quantum-defect function describes the additional phase shift,
relative to the phase of the regular wave functions in the reference potential, the pure
Coulomb potential, see Sect. 2.5.4 in Chap. 2 and Sect. 3.7 in Chap. 3.

For potentials falling off faster than 1/r2 at large distances, the reference poten-
tials generally in use are too singular to supply a reference spectrum of bound states
or a definite phase of scattering states, relative to which a “defect” or additional
phase shift could be defined. Other marked differences are the number of bound
states, which is infinite for Coulombic potentials and finite for potentials falling off
faster than 1/r2 at large distances, and the semiclassical limit, which is at E → 0
for Coulombic potentials and |E| → ∞ for potentials falling off faster than 1/r2.
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Samuel Johnson once wrote: “Language is the dress of thought” [47]. For the
treatment of potentials which fall off faster than 1/r2 at large distances, the lan-
guage of quantum-defect theory is more of a disguise. Interpreting potentials that
fall off faster than 1/r2 as a generalization of Coulombic potentials tends to ob-
scure the fundamental differences between these two types of interaction. This is
potentially confusing and can promote misconceptions. One example is provided by
the observation made by Gao in 1999, that for single-power potential tails propor-
tional to −1/r6 or to −1/r3 conventional WKB quantization leads to poorer results
towards the dissociation threshold [38]. Although the failure of conventional WKB
quantization at threshold was long well known [72], the observation in Ref. [38] was
celebrated as sensational evidence for the “breakdown” of Bohr’s correspondence
principle, according to which the behaviour of a quantized system is expected to
become increasingly (semi-)classical as the quantum number tends to infinity. This
alledged breakdown of Bohr’s correspondence principle was spotlighted in two key
media, Physical Review Focus [73] and Nature’s “News” [6]. Apart from the fact
that the limit of infinite quantum number cannot be reached in a system with a finite
number of bound states, it was textbook knowledge at the time, that for homoge-
neous potential tails proportional to 1/rα , the semiclassical limit is for |E| → ∞
when α > 2, and this means E → −∞ in the bound-state regime, see e.g. discus-
sion involving Eqs. (5.153)–(5.156) in [34]. “Large quantum numbers” means not
large υ , but large υD − υ , and the semiclassical limit is approached not towards
threshold but towards increasing binding energy, at least as far as the finite depth of
any realistic potential well permits. Deep potentials falling off faster than 1/r2 at
large distances thus show conformity with Bohr’s correspondence principle and not
its breakdown. Appropriate refutations of Ref. [38] were published in 2001 [8, 29].
In order to avoid accidents such as the one documented by Refs. [6, 38, 73], it is
important to have a proper appreciation of the differences between potentials with a
Coulombic tail and those falling off faster than 1/r2 at large distances.

A further difference to Coulombic potentials is, that realistic atomic potentials
falling off faster than 1/r2 are often not so well represented at large distance by the
leading asymptotic inverse-power term alone, at least not in an energy range encom-
passing more than one or two of the most weakly bound states. The universality of
the theory for single-power reference potentials (4.57), where the universal tail func-
tions depending on κβα below and on kβα above threshold apply to all potentials
with a given power α, regardless of strength, is lost when a more sophisticated refer-
ence potential is used. The tail functions must then be calculated independently for
each specific system, and the question arises, whether it may not be worthwhile to
simply solve the radial Schrödinger equation directly to obtain bound-state energies
and scattering phase shifts.

A pragmatic approach to describe near-threshold states of deep potentials is
based on defining a (analytical) model potential Vmod(r), which is a good approx-
imation of the potential tail at large distances, where it is well known, and is non-
singular at small distances, where the exact interaction is often not so well known.
Being regular at the origin, the model potential supports a finite number of bound
states below threshold and well defined scattering states above threshold. The lesser
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known short-range part of the potential can be equipped with a small number of
model parameters to be fitted in order to reproduce known benchmarks of problem
under investigation, e.g. bound-state energy levels and the scattering length. For the
bound and continuum states in a relatively narrow energy range around threshold,
the behaviour of the wave functions at short distances is essentially independent of
energy, and their behaviour at large distances can be obtained by solving the radial
Schrödinger equation. Near-threshold effects depending on the potential tail can be
described accurately in this way, because the model potential accurately represents
the exact interaction at large distances. This approach is very flexible and easily ex-
tended to multi-channel scattering situations. It has been followed successfully in
recent years, in particular by Tiemann and collaborators [28, 56, 79, 80, 82, 83].

4.2 Near-Threshold Feshbach Resonances

4.2.1 Motivation

The successful preparation of Bose–Einstein condensates of dilute atomic gases in
1995 [2, 25] gave a tremendous boost to the field of ultracold atoms and molecules.
A new book series of annual reviews on the subject was launched in 2013 [69].

In a first approximation, a condensate of N indistinguishable bosonic parti-
cles is described by a completely symmetric many-body wave function, in which
each individual boson occupies the same single-particle quantum state, ψN(r). In
a mean-field treatment of the interparticle interactions, this single-particle wave
function is determined via the Gross–Pitaevskii equation, also called the “nonlinear
Schrödinger equation”. With the assumption that the mutual two-body interaction of
the bosons is of short range [46], this equation can be approximately written as [23]

(
− �

2

2M
Δ + W(r) + 4π�2

M
a
∣∣ψN(r)

∣∣2
)

ψN(r) = μcpψN(r), (4.156)

where M is the mass of each boson, W(r) is an external confining potential and
μcp is the chemical potential which corresponds to the energy of the single-particle
ground state. In this approximate version of the Gross–Pitaevskii equation, the two-
particle interaction between the bosons (e.g. bosonic alkali atoms) is accounted for
by the scattering length a in the term which contains |ψN(r)|2 and makes the equa-
tion nonlinear. Clearly, the magnitude and the sign of the scattering length have
a dominating influence of the solution of (4.156) and on whether or not a Bose–
Einstein condensate can form at all.

As discussed on several occasions in this book, the scattering length depends
sensitively on how close the highest bound state in a potential well is to the continu-
um threshold, which in an atom-atom system is the dissociation threshold, see e.g.
Eq. (2.88) in Sect. 2.3.8 and Eq. (4.55) in Sect. 4.1.1; it acquires large positive val-
ues for bound states very close to threshold and large negative values if the potential
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Fig. 4.14 Schematic
illustration of atom–atom
potentials in a two-channel
situation. The closed channel
(red curve) acquires a shift
ΔμB relative to the lower,
the “incident” channel (blue
curve) due to different effect
of a magnetic field of
strength B . The closed
channel supports a bound
state close to the threshold of
the incident channel

just fails to support a further bound state, see e.g. Fig. 2.5 in Sect. 2.3.8. As shown
below, this general behaviour of the scattering length also holds when the weakly
or almost bound state involved originates from an inelastic channel, i.e., when there
is a Feshbach resonance at an energy very near to the threshold of the elastic chan-
nel. In diatomic systems, elastic and inelastic channels can have different magnetic
properties (e.g. magnetic moments of the individual atoms), so the bound and con-
tinuum states in the elastic and in inelastic channels can acquire different shifts in
the presence of an external magnetic field. This makes it possible to tune the position
of a Feshbach resonance relative to the threshold of the elastic channel by varying
the strength of the external field, and thus offers a practical way of manipulating
and controlling Bose–Einstein condensates through the corresponding variations of
the scattering length. A comprehensive review on Feshbach resonances as a tool to
control the interaction in gases of ultracold atoms was published in 2010 by Chin
et al. [14].

Consider the two-channel situation illustrated schematically in Fig. 4.14. In the
presence of an external magnetic field of strength B , the channel thresholds are
shifted by ΔμB due to the difference Δμ in the relevant magnetic moments. The
upper channel is closed for energies near the threshold of the lower channel, which
we call “incident channel” for want of a better word. In the absence of channel coup-
ling, the closed channel supports a bound state at an energy E0 near the threshold
of the incident channel, and the coupling of this state to the incident-channel wave
functions appears as a Feshbach resonance in the incident channel.

Close to the threshold of the incident channel, which we take to be at E = 0,
the behaviour of the incident-channel phase shift δ is determined by the scattering

length a: δ
k→0∼ −ak. As the position of the Feshbach resonance is tuned to pass

the threshold of the incident channel, a pole singularity of the scattering length is
observed at a given strength B0 of the magnetic field. This is generally empirically
parametrized as [14, 68]

a = abg

(
1 + ΔB

B − B0

)
, (4.157)

where abg is the background scattering length for the incident channel in the absence
of channel coupling. It has become customary in the cold-atoms community to use
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the term “magnetic Feshbach resonance” to describe such a pole in the scattering
length. This can be confusing to anyone with a broader education in scattering the-
ory, because Feshbach resonances are a much more general phenomenon and not
restricted to energies near a threshold.

The empirical formula (4.157) satisfactorily describes the pole of the scattering
length that occurs when a Feshbach resonance crosses the threshold of the inci-
dent channel, but it does not reveal the physical origin of the parameters involved
nor their interdependencies. The theory described in the next two subsections aims
to provide a physically motivated parametrization of a Feshbach resonance near
threshold which transparently reveals its influence on scattering properties and on
the bound-state spectrum.

4.2.2 Threshold-Insensitive Parametrization of a Feshbach
Resonance

The influence of a single isolated Feshbach resonance on the scattering phase shift
of the incident channel was given in Sect. 3.5.1 in Chap. 3,

δ = δbg + δres, tan δres = − Γ/2

E − ER
, (4.158)

where δbg is the background phase shift due to the potential in the uncoupled inci-
dent channel and δres is the resonant phase shift due to coupling to the bound state
in the closed channel. The parameters ER and Γ are given by

ER = E0 + 〈uc|Vc,iĜVi,c|uc〉, Γ = 2π
∣∣〈uc|Vc,i|ū(reg)

i 〉∣∣2
, (4.159)

where uc is the wave function of the bound state in the uncoupled closed channel,
Vc,i and Vi,c are the channel-coupling potentials, ū(reg)

i (r) is the energy-normalized
regular wave function in the uncoupled incident channel and the operator Ĝ is the
propagator (Green’s operator) in the uncoupled incident channel; its kernel is the
Green’s function

G
(
r, r ′) = −π ū(reg)

i (r<)ū(irr)
i (r>). (4.160)

The pole of tan δres defines the resonance energy, i.e. the position ER of the reso-
nance, which differs from the bound-state energy E0 in the uncoupled closed chan-
nel by a shift given by the matrix element containing the incident-channel propaga-
tor. When ER is far from the incident-channel threshold and the channel coupling
is not too strong, the energy dependence of Γ is weak and its value at E = ER de-
fines the width of the resonance. This straightforward interpretation breaks down
towards the incident-channel threshold. The matrix element describing the shift be-
tween E0 and ER goes smoothly through a constant value at threshold, but the en-
ergy dependence of the parameter Γ poses a more serious problem.
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The behaviour of ū(reg)

i (r) is, beyond the range of the incident-channel potential,
given by

ū(reg)

i (r) =
√

2μ

π�2k
sin

[
k(r + δbg/k)

] k→0∼
√

2μk

π�2
(r − abg), (4.161)

compare (3.64) in Sect. 3.5.1. Remember that the near-threshold behaviour of the

phase shift δbg in the uncoupled incident channel is δbg
k→0∼ −abgk. From (4.161) it

follows, that ū(reg)

i (r) can be written as

ū(reg)

i (r) =
√

2μk

π�2
ũ

(reg)

i (r) with ũ
(reg)

i (r)
r→∞,k→0∼ (r − abg). (4.162)

The irregular radial wave ū(irr)
i (r) behaves, beyond the range of the incident-channel

potential, as

ū(irr)
i (r) =

√
2μ

π�2k
cos

[
k(r + δbg/k)

] k→0∼
√

2μ

π�2k
cos

[
k(r − abg)

]
, (4.163)

and can thus be written as

ū(irr)
i (r) =

√
2μ

π�2k
ũ

(irr)
i (r) with ũ

(irr)
i (r)

r→∞,k→0−→ 1; (4.164)

the wave function ũ
(irr)
i (r) converges to a k-independent function of r at threshold.

In a product of ū(reg)

i (r) and ū(irr)
i (r), the near-threshold dependencies on k cancel,

so the Green’s function (4.160) and the matrix element defining the energy shift in
the first equation (4.159) tend to finite limits at threshold. On the other hand, the pa-
rameter Γ as defined in (4.159) vanishes proportional to k, which makes Eq. (4.158)
less easy to interpret near threshold.

This problem can be solved by formulating a threshold-insensitive description
of the Feshbach resonance, which is possible when the incident-channel is deep in
the spirit of Sect. 4.1 and well described at large distances by a singular reference
potential Vtail(r) [81]. If channel-coupling effects are of sufficiently short range,
then the regular wave function in the incident channel can be written in the form
(4.112) in a range of r-values, which are large enough so that the wave function
already contains the effects due to the deviation of the full interaction, including
channel coupling, from the uncoupled reference potential Vtail(r), and at the same
time small enough for the WKB representation of the wave in the reference poten-
tial Vtail(r) to be sufficiently accurate. As elaborated in Ref. [81], the effect of the
Feshbach resonance on the phase of the regular wave under the influence of Vtail(r)

can be obtained in a way similar to the derivation of (4.158) and (4.159) above,
except that the (energy-normalized) continuum wave functions of the incident chan-
nel are replaced by incident-channel wave functions u

(reg)

i (r) which, in the range
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of r-values referred to above, have the form (4.112) with the phase φsr given by
(4.118),

u
(reg)

i (r) =
√

2μ

π�

1√
ptail(E; r) sin

(
1

�

∫ r

rE

ptail
(
E; r ′)dr ′ − φsr(E)

)
. (4.165)

[Remember that, in the range of r-values considered here, the upper limit r of the
integral in (4.165) is smaller than the lower limit rE .] The effect of channel coupling
on the incident-channel wave is the same as in the standard treatment leading to
Eqs. (4.158) and (4.159). The regular solution acquires an additional resonant phase

φsr(E) −→ φsr(E) + arctan

(
Γ̄ /2

E − ER

)
, (4.166)

and the width Γ̄ is given by

Γ̄ = 2π
∣∣〈uc|Vc,i|u(reg)

i 〉∣∣2
, (4.167)

where the wave function u
(reg)

i (r) is as defined in connection with Eq. (4.165). As
long as the range of r-values, where both the bound-state wave function uc(r) in
the uncoupled closed channel and the coupling potential Vc,i are significantly non-
vanishing, is small, the matrix element in (4.167) is essentially independent of en-
ergy in the near-threshold regime, because the regular wave function, which behaves
as (4.165) at small distances, only becomes sensitive to the threshold at large dis-
tances. The width Γ̄ defined by (4.167) is thus threshold-insensitive. At energies
far above the incident-channel threshold, the wave function (4.165) becomes equal
to the energy-normalized regular wave function ū(reg)

i (r) for all moderate and large
distances, so

Γ
E large−→ Γ̄ . (4.168)

With the appropriate choice of the irregular radial wave function u
(irr)
i (r), to re-

place ū(irr)
i (r) in (4.160), the product of u

(reg)

i and u
(irr)
i converges to a well-defined

function at E = 0. The matrix element defining the small shift between the posi-
tion ER of the Feshbach resonance and the energy E0 of the bound state in the
uncoupled closed channel is threshold-insensitive.

The determination of the scattering phase shift in the incident channel follows as
already described in Sect. 4.1.3 after Eq. (4.112). The result is

tan δ = As

Ac

sin([ΔD − fsr(E)]π + δ̄res − ξ + φs)

cos([ΔD − fsr(E)]π + δ̄res − ξ + φc)
, (4.169)

with the threshold-insensitive resonant phase shift,

δ̄res = − arctan

(
Γ̄ /2

E − ER

)
. (4.170)
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In (4.169), ΔD = υD − 
υD� is the noninteger remainder of the threshold quantum
number υD, and the functions As/Ac, φs and φc as well as the auxiliary function ξ

are tail functions depending only on the reference potential Vtail(r) in the incident
channel, as defined through Eqs. (4.109), (4.111) and (4.117) in Sect. 4.1.3; fsr(E)

is a smooth function of E which vanishes at threshold and accounts for residual
corrections due to the deviation of the full interaction in the uncoupled incident
channel from the reference potential at small distances.

Since the resonance is a short-range effect, it makes sense to amalgamate the
threshold-insensitive resonant phase and the uncoupled, single-channel remainder
ΔD to an “extended remainder”,

Δ̄D(E) = ΔD − 1

π
arctan

(
Γ̄ /2

E − ER

)
. (4.171)

With the definition (4.171) of the extended remainder the formula (4.169) becomes,

tan δ = As

Ac

sin([Δ̄D(E) − fsr(E)]π − ξ + φs)

cos([Δ̄D(E) − fsr(E)]π − ξ + φc)
. (4.172)

At energies sufficiently far above the incident-channel threshold, the ratio As/Ac
tends to unity and the phases φs and φc become equal. Hence the arguments of sine
and cosine in the quotient on the right-hand side of (4.172) become the same and
equal to the phase δ on the left-hand side, but instead of Eq. (4.130) in Sect. 4.1.3
we now have

δ
E large≈ [

Δ̄D(E) − fsr(E)
]
π − ξ + φs = δbg + δres with

δbg = [
ΔD − fsr(E)

]
π − ξ + φs and δres = − arctan

(
Γ̄ /2

E − ER

)
; (4.173)

this is consistent with Eqs. (4.158), (4.168) above.

4.2.3 Influence on the Scattering Length

We now assume, that the potential falls off faster than 1/r3 asymptotically, so that a
well defined scattering length exists. Towards threshold, an additive decomposition
of the scattering phase shift δ into a background contribution and a resonant term,

as in (4.173), is no longer possible. The behaviour As/Ac
k→0∝ k, as given in the first

equation (4.121) in Sect. 4.1.3, ensures the behaviour δ
k→0∼ −ak for the scattering

phase shift, and the value of the scattering length is obtained by the same steps that
led to the far right-hand side of (4.122),

tan δ
k→0∼ −k

(
ā + b

tan(ῡD(E = 0)π)

)
= −k

(
ā + b

tan(Δ̄D(E = 0)π)

)
. (4.174)
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The essential difference between Eqs. (4.174) and (4.122) is that, in place of the
threshold quantum number υD, Eq. (4.174) contains the threshold value of the “ex-
tended threshold quantum number”,

ῡD(E) = υD − 1

π
arctan

(
Γ̄ /2

E − ER

)
, (4.175)

or, equivalently, the extended remainder (4.171). Equation (4.174) shows that, even
in the presence of a near-threshold Feshbach resonance, the phase shift δ(k) is nailed
down to be an integer multiple of π at threshold, which precludes the existence
of a resonance feature of finite width in the scattering phase shift straddling the
threshold, as observed for the additional phase shifts in potentials with an attractive
Coulombic tail, see Fig. 3.5 in Sect. 3.7.1.

The scattering length following from (4.174) is the term in the big round brackets
on the right-hand sides,

a = ā + b

tan[Δ̄D(E = 0)π] = ā + b

tan[ΔDπ + arctan(Γ̄ /(2ER))] . (4.176)

In the absence of channel coupling, the incident-channel phase shift is the back-

ground phase shift δbg, and its leading near-threshold behaviour is δbg
k→0∼ −abgk,

which defines the background scattering length abg. It is related to the single-
channel remainder, i.e. the remainder ΔD in the uncoupled incident channel by
(4.53),

abg = ā + b

tan(ΔDπ)
=⇒ ΔDπ = arctan

(
b

abg − ā

)
. (4.177)

Inserting the expression on the far right of (4.177) for ΔDπ in (4.176) gives

a =
[
abg + Γ̄ /2

ER

(
ā

abg − ā

b
− b

)][
1 + Γ̄ /2

ER

(
abg − ā

b

)]−1

. (4.178)

Equation (4.178) is a universally valid formula for the scattering length a as
function of the position ER of a Feshbach resonance, which may be tuned, e.g. as a
function of the strength of an external field, from values above threshold, ER > 0,
to values below threshold ER < 0. On the right-hand side of (4.178), abg is the
background scattering length due to the potential in the uncoupled incident chan-
nel and Γ̄ is the threshold-insensitive width (4.167). The lengths ā and b are the
mean scattering length and the threshold length of the singular reference potential
Vtail(r); they are properties of the Vtail(r) only and independent of the position and
width of the Feshbach resonance. For a given reference potential describing the
large-distance behaviour of the potential in the incident channel, the value of the
scattering length depends on two quantities with a clear physical interpretation: the
background scattering length abg and the ratio of the threshold-insensitive width Γ̄

to the position ER of the Feshbach resonance relative to the threshold.



4.2 Near-Threshold Feshbach Resonances 243

If the distance ER of the Feshbach resonance from threshold is much larger than
its width, then the scattering length a is barely affected by the channel coupling,

Γ̄

ER
→ 0 =⇒ a → abg. (4.179)

If the uncoupled incident channel supports a bound state exactly at threshold, then
|abg| → ∞. From (4.178) we deduce,

|abg| → ∞ =⇒ a = ā + b
ER

Γ̄ /2
. (4.180)

In this case, the scattering length a is a linear function of ER and there is no pole.
For |abg| < ∞, the pole of the scattering length, which is customarily called the

(magnetic) Feshbach resonance in the cold-atoms community, generally occurs for
a nonvanishing value of ER:

|a| → ∞ for ER = ERpole, ERpole = Γ̄

2

(ā − abg)

b
= − Γ̄ /2

tan(ΔDπ)
. (4.181)

Whether the value of ERpole is above or below threshold depends on the sign of
ā − abg, which in turn depends on whether the (single-channel) remainder ΔD is
smaller or larger than 1

2 . If the background scattering length abg is smaller than the
mean scattering length of the reference potential Vtail(r), then tan(ΔDπ) is nega-
tive, corresponding to 1

2 < ΔD < 1, and ERpole > 0; if abg > ā, then tan(ΔDπ) is
positive, corresponding to 0 < ΔD < 1

2 , and ERpole < 0.
A plot of the scattering length (4.178) as function of abg and ER/(Γ̄ /2) is shown

in Fig. 4.15 for an inverse-power tail (4.57) with α = 6. Dark red areas indicate
large positive, dark blue areas large negative values. The white diagonal shows the
position of the pole of a as given by (4.181). It crosses the vertical axis abg = 0
at ER/(Γ̄ /2) = 1, because the two tail parameters ā and b are equal in this case,
compare Eq. (4.61) and Table 4.1 in Sect. 4.1.1.

4.2.4 Influence on the Bound-State Spectrum

The derivation of Eq. (4.169) was based on the influence of the Feshbach resonance
on the regular incident-channel wave function (4.165), and this influence consists of
an additional resonant phase in the argument of the sine on the right-hand side, see
(4.166). The distances r where the representation (4.165) of the regular radial wave
function is valid lie in the WKB regime where the potential is deep and where the
wave functions are insensitive to the position of the threshold. The derivation can
thus be continued to the bound-state regime at negative energies, which leads to a
simple modification of the quantization rule (4.7)

υD − 1

π
arctan

(
Γ̄ /2

Eυ − ER

)
− υ = F(Eυ), (4.182)
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Fig. 4.15 For a single-power
reference potential (4.57)
with α = 6, the figure shows
values of the scattering
length a given by Eq. (4.178)
as function of the background
scattering length abg (in units
of β6) and the position ER of
a Feshbach resonance (in
units of half its
threshold-insensitive width,
i.e. of Γ̄ /2). Dark red areas
indicate large positive, dark
blue areas large negative
values. The white diagonal
shows the pole ERpole as
given by (4.181). Vanishing
values of a occur along the
dashed lines. (From [81])

i.e., the threshold quantum number υD is simply replaced by the extended threshold
quantum number (4.175),

ῡD(Eυ) − υ = F(Eυ) = Ftail(Eυ) + Fsr(Eυ), (4.183)

where the expression on the far-right contains the decomposition (4.18) of the quan-
tization function F(E) into the tail contribution Ftail(E), as defined by (4.16) in
Sect. 4.1.1, and the short-range correction Fsr(E), which is a smooth function of
energy and vanishes at E = 0. Since the quantization functions in (4.183) vanish for
Eυ = 0, the condition for the existence of a bound state exactly at threshold is now,
that the threshold value of the extended threshold quantum number ῡD(E = 0) be
an integer, i.e. that the threshold value of the extended remainder be zero:

Δ̄D(E = 0) = ΔD + 1

π
arctan

(
Γ̄ /2

ER

)
= 0. (4.184)

[Remember that the branch of the arcus-tangent is chosen such that arctan(1/x)

varies smoothly from zero to −π as x varies from −∞ to ∞.]
If the position ER of the Feshbach resonance lies somewhat above threshold,

then its influence on the bound-state spectrum is small. If it lies below threshold,
ER < 0, then the quantization rule (4.183) produces one additional bound state, an
intruder or perturber state in the vicinity of ER, compared to the “unperturbed”
spectrum of the uncoupled incident channel. [We keep the term “incident” channel
at subthreshold energies, even though there can be no genuine incident waves when
the channel is closed.]

The exact position of the intruder state, i.e. of the perturber, depends on the po-
sition and width of the Feshbach “resonance” and on the unperturbed spectrum.
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Fig. 4.16 For a deep incident-channel potential with a single-power tail (4.57) with α = 6 and
a remainder ΔD = 0.9, the highest three bound-state energies following from (4.182) are shown
as functions of the position ER of a Feshbach resonance. The solid blue (dashed red) lines cor-
respond to a threshold-insensitive width Γ̄ = 100Eβ6 (Γ̄ = 500Eβ6 ). The short-range correction
term Fsr(E) is neglected. The unit of energy is Eβ6 = �

2/[2μ(β6)
2]. The straight horizontal lines

show the unperturbed bound-state energies and the straight diagonal line corresponds to Eb = ER.
The straight vertical lines indicate the respective values of ER at which the scattering length di-
verges according to (4.181). (Adapted from [81])

Near the threshold of a deep incident-channel potential, the unperturbed spectrum
is essentially determined by the singular reference potential Vtail(r) and the remain-
der ΔD, as discussed in Sect. 4.1.1. Figure 4.16 shows the dependence on ER of the
energies of the highest three states, as given by Eq. (4.182), in a deep potential with
an inverse-power tail (4.57) with α = 6 for a value ΔD = 0.9 of the (single-channel)
remainder. The straight horizontal lines in Fig. 4.16 show the unperturbed bound-
state energies; the solid blue and dashed red lines show the perturbed bound-state
energies corresponding, respectively, to the values Γ̄ = 100Eβ6 and Γ̄ = 500Eβ6

of the threshold-insensitive width. The short-range correction Fsr(E) is neglected
here.

Without channel coupling, the spectrum would consist of the unperturbed levels
in the incident channel (straight horizontal lines in Fig. 4.16) plus the intruder at
Eb = ER (straight diagonal line in Fig. 4.16). Channel coupling leads to avoided
crossings between the unperturbed levels and the intruder state. The value of ER
for which the least bound state is exactly at threshold defines the position ERpole of
the pole of the scattering length as given by (4.181). The straight vertical lines in
Fig. 4.16 indicate the values of ER at which this pole occurs for the respective choice
of Γ̄ . According to (4.181), the pole occurs at ER = −Γ̄ /[2 tan(0.9π)] ≈ 1.54 × Γ̄

in the present case(s).
The bound state at threshold is a two-component wave function with contri-

butions from the incident channel and the closed channel. Its composition can be
understood in a physically appealing way as a consequence of level repulsion be-
tween the Feshbach resonance at ER, which comes from the closed-channel bound
state, and a weakly bound incident-channel state just below threshold or a state just
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above threshold, which is only marginally unbound. A small value of the single-
channel remainder ΔD implies that the uncoupled incident channel supports a bound
state close to threshold, which can be pushed to threshold by level repulsion from a
lower-lying Feshbach resonance. A single-channel remainder ΔD close to unity sug-
gests a marginally unbound state just above threshold, which can be pushed down
to threshold from a higher-lying Feshbach resonance; this is the situation depicted
in Fig. 4.16. In both cases, the bound state at threshold is close to the uncoupled
incident channel wave function with a small contribution due to coupling from the
closed channel. If ΔD is close to 1

2 , then the uncoupled incident channel is as far as
possible from supporting a bound state at threshold. The two-channel wave function
of the bound state at threshold is then strongly influenced by the Feshbach resonance
from the closed-channel and it occurs at a value ERpole close to zero. If ΔD is a little
below 1

2 , then ERpole < 0; a Feshbach resonance just below threshold is pushed up
to threshold by the highest bound state of the incident channel. When ΔD is a little
above 1

2 , a Feshbach resonance just above threshold is pushed down by coupling to
the incident channel; ERpole > 0 in this case.

A relation connecting the scattering length as given by (4.176) with the asymp-
totic inverse penetration length κb of a bound state very near threshold can be found,
as in the derivation of Eq. (4.55) in Sect. 4.1.1, by exploiting Eqs. (4.182)–(4.184).
The low-energy expansion of the quantization function (multiplied by π ) gives,

πF(Eb)
κb→0∼ bκb − 1

2
(dκb)

2 + πγsrEb. (4.185)

From (4.182) we have

ΔDπ = πF(Eb) + arctan

(
Γ̄ /2

Eb − ER

)
(modπ); (4.186)

inserting this expression for ΔDπ in the argument of the tangent on the far right-
hand side of (4.176) leads to

a
κb→0∼ 1

κb
+ ρeff + �

2

2μb

[
πγsr − Γ̄ /2

E2
R + (Γ̄ /2)2

]
+ O(κb). (4.187)

Equation (4.187) shows that the leading universal result already formulated as

Eq. (2.88) in Sect. 2.3.8, namely a
κb→0∼ 1/κb + O(κ0

b ), also holds when the near-
threshold bound state is generated by the coupling of the incident channel to a near-
threshold Feshbach resonance. A different result given at the end of Sect. 4.1.3 in
the third edition of Ref. [34] is incorrect.

4.2.5 Relation to the Empirical Formula (4.157)

In a typical experiment involving a Feshbach resonance whose position is tuned past
an incident channel’s threshold, the quintessential observation is the pole of the scat-



4.2 Near-Threshold Feshbach Resonances 247

tering length, which occurs when the energy ER of the Feshbach resonance assumes
the value ERpole, as given in (4.181). Expressing ER as ERpole + ER − ERpole and
exploiting (4.177) and (4.181), we can rewrite Eq. (4.176) as

a = abg − b

sin2(ΔDπ)

Γ̄ /2

ER − ERpole
. (4.188)

In order to connect to the empirical formula (4.157), let’s assume that the energy ER
of the Feshbach resonance depends linearly on the strength B of an external mag-
netic (or other) field,

ER = ERpole + Δμ(B − B0), (4.189)

where B0 is the field strength of the pole and Δμ is a constant with physical dimen-
sion energy per field strength. This choice of notation is consistent with the label
ΔμB for the variable energy in Fig. 4.14. As function of the field strength B , the
scattering length (4.188) is

a = abg − b

sin2(ΔDπ)

Γ̄ /2

Δμ(B − B0)
= abg

[
1 − b/abg

sin2(ΔDπ)

Γ̄ /2

Δμ(B − B0)

]
,

(4.190)
so the width ΔB , introduced as an empirical parameter in (4.157), is explicitly given
as

ΔB = − b

abg

1

sin2(ΔDπ)

Γ̄

2Δμ
. (4.191)

Expressing sin2(ΔDπ) in terms of abg according to (4.177) gives an expression for
ΔB in terms of abg and the tail parameters ā and b:

ΔB = − Γ̄

2Δμ

1

b

[
ā2 + b2

abg
− 2ā + abg

]
. (4.192)

Equations (4.191), (4.192) show that the width ΔB of a “magnetic Feshbach
resonance”, as observed in a typical experiment, reflects not only the strength of the
coupling between the bound state in the closed channel and the incident-chanel wave
functions, which is expressed in the threshold-insensitive width Γ̄ . It also depends
sensitively on the properties of the uncoupled incident channel, as expressed in the
background phase shift abg. If the uncoupled incident channel supports a bound
state (or if there is a virtual state) very near threshold, abg becomes very large and
the empirical formula (4.157) is no longer applicable, as discussed in connection
with Eq. (4.180) above. Another interesting situation is abg → 0, corresponding to
little or no interaction in the absence of channel coupling. In this case, the width ΔB

as defined via (4.157) diverges, and a more appropriate empirical formula would be,

a = abg + ΔB

B − B0
with ΔB ≡ abgΔB = − Γ̄

2Δμ

1

b

(
ā2 + b2 − 2abgā + a2

bg

)
.

(4.193)



248 4 Special Topics

The width ΔB defined in this way has the physical dimension of a length times field
strength. In the limit of vanishing background phase shift, abg → 0, it converges
to a finite value determined by the threshold-insensitive width Γ̄ of the Feshbach
resonance and the tail parameters ā and b.

4.3 Quantum Description of Scattering in Two Spatial
Dimensions

Two-dimensional scattering problems arise naturally when the motion of projectile
and target is restricted to a plane, e.g. a surface separating two bulk media. A scat-
tering problem can also become effectively two-dimensional, if a three-dimensional
configuration is translationally invariant in one direction. This is the case for a pro-
jectile scattering off a cylindrically symmetric target, e.g., an atom or molecule scat-
tering off a cylindrical wire or nanotube. The motion of the projectile is free in the
direction parallel to the cylinder axis, and we are left with a two-dimensional scat-
tering problem in a plane perpendicular to the cylinder axis. Essential features of
the two-dimensional scattering problem were illuminated by Lapidus [51], Verhaar
et al. [87] and Adhikari [1] some decades ago. The recent intense activity in physics
involving ultracold atoms and their interaction with nanostructures such as cylin-
drical nanotubes has lead to a renewed interest in this subject, in particular in the
low-energy, near-threshold regime [5, 30, 48, 86].

As in Sect. 1.4 in Chap. 1 we assume that the 2D scattering process occurs in the
y–z plane, where the scattering angle θ varies between −π and π , see Fig. 4.17. As
in Chap. 2, the quantum mechanical description of the scattering process is based
on the Schrödinger equation

[
− �

2

2μ
Δ + V (r)

]
ψ(r) = Eψ(r), (4.194)

but r now stands for the two-component displacement vector in the y–z plane, and
� is the 2D-Laplacian.

Fig. 4.17 Two-dimensional
scattering in the y–z plane.
The z-axis shows in the
direction of incidence, and
the scattering angle θ varies
between −π and π
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4.3.1 Scattering Amplitude and Scattering Cross Section

We look for solutions of (4.194) with the following boundary conditions,

ψ(r)
r→∞∼ eikz + f (θ)

eikr

√
r
. (4.195)

Essential differences to the three-dimensional case (2.2) are, that the outgoing spher-
ical wave becomes an outgoing circular wave whose amplitude decreases propor-
tional to 1/

√
r instead of to 1/r , and that the physical dimension of the scattering

amplitude f (θ) is the square root of a length in the two-dimensional case. The cur-
rent density jout(r) associated with the outgoing circular wave is

jout(r) = �k

μ

∣∣f (θ)
∣∣2 êr

r
+ O

(
1

r3/2

)
, (4.196)

while the incoming current density associated with the “plane wave” eikz in (4.195)
can again be written as jin = êz�k/μ. The surface element of a large sphere in the
three-dimensional case, r2dΩ , is now replaced by the arc-element of a large circle,
rdθ , and the differential scattering cross section is defined by the flux scattered into
this arc, jout(r) · êrrdθ , normalized to the incoming current density |jin| = �k/μ,

dλ = ∣∣f (θ)
∣∣2

dθ,
dλ

dθ
= ∣∣f (θ)

∣∣2
. (4.197)

The integrated scattering cross section is

λ =
∫ π

−π

dλ

dθ
dθ =

∫ π

−π

∣∣f (θ)
∣∣2dθ. (4.198)

Note that the differential and the integrated scattering cross sections have the phys-
ical dimension of a length. The differential cross section can be interpreted as the
length perpendicular to the direction of incidence from which the incoming parti-
cles are scattered into the differential arc defined by dθ , while the integrated cross
section corresponds to the length from which particles are scattered at all.

Particle conservation implies that the total flux through a circle,
∫ π

−π
j · êrrdθ

should vanish for large radius r . The contribution from the incoming wave eikz van-
ishes on symmetry grounds, while the contribution from the outgoing circular wave
is:

Iout = lim
r→∞

∫ π

−π

jout(r) · êrrdθ = �k

μ

∫ π

−π

∣∣f (θ)
∣∣2dθ = �k

μ
λ. (4.199)

The contribution jint(r) of the interference of incoming “plane” and outgoing circu-
lar wave to the current density is,

jint(r) = �k

2μ
f (θ)

eik(r−z)

√
r

(êr + êz) + cc + · · · , (4.200)
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so the interference contribution to the flux through a circle of large radius r is

jint(r) · êrrdθ = �k

2μ
f (θ)eikr(1−cos θ)

√
r(1 + cos θ) + cc. (4.201)

The integral over the right-hand side of (4.201) can be evaluated by the method of
stationary phase, since the integrand contributes only around cos θ = 1 for r → ∞.
This gives

Iint =
∫ π

−π

jint(r) · êrrdθ = 2
�k

μ

√
π

k

[�{
f (θ = 0)

} − �{
f (θ = 0)

}]
. (4.202)

Particle conservation requires Iout + Iint = 0, so with (4.199) we obtain the optical
theorem for scattering in two-dimensional space,

λ = 2

√
π

k

[�{
f (θ = 0)

} − �{
f (θ = 0)

}]
. (4.203)

4.3.2 Lippmann–Schwinger Equation and Born Approximation

Adapting the treatment of Sect. 2.2 to the case of two spatial dimensions leads to
the Lippmann–Schwinger equation

ψ(r) = eikz +
∫

G2D
(
r, r′)V (

r′)ψ(
r′)dr′, (4.204)

which looks just like the corresponding equation (2.18) in 3D, except that the free-
particle Green’s function G2D(r, r′), defined by the 2D version of Eq. (2.16), is

G2D
(
r, r′) = iμ

2�2
H

(1)
0

(
k|r − r′|) k|r−r′|→∞∼ iμ

2�2
e−iπ/4

√
2

πk|r − r′|eik|r−r′|.

(4.205)
Here H

(1)
0 stands for the zero-order Hankel function of the first kind, see Eqs. (B.32)

and (B.33) in Appendix B.4. In the asymptotic region |r| � |r|′ the Green’s function
in (4.204) can be replaced by

G2D
(
r, r′) = μeiπ/4

�2
√

2πk

eikr

√
r

[
e−ikr·r′ + O

(
r ′

r

)]
. (4.206)

This is the 2D version of (2.19); kr again stands for kêr, but êr is now the radial
unit vector in the y–z plane. Inserting (4.206) in (4.204) gives the asymptotic form
(4.195) with

f (θ) = μeiπ/4

�2
√

2πk

∫
e−ikr·r′

V
(
r′)ψ(

r′)dr′. (4.207)
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The Born approximation is defined by replacing the exact solution ψ(r′) in the
integrand in (4.207) by the incoming “plane” wave eikz′ = ei(kêz)·r′

,

f Born(θ) = μeiπ/4

�2
√

2πk

∫
dr′e−ikr·r′

V
(
r′)eikz′ = μeiπ/4

�2
√

2πk

∫
dr′e−iq·r′

V
(
r′),
(4.208)

where �q is the momentum transferred from the incoming wave travelling in the
direction of êz to the outgoing wave travelling in the direction of êr,

q = k(êr − êz), q = |q| = 2k sin(θ/2). (4.209)

For a radially symmetric potential V (r) = V (r), Eq. (4.208) can be simplified via
an expansion of the exponential e−iq·r′

in polar variables [compare (4.219) below],

f Born(θ) = μeiπ/4

�2
√

2πk
2π

∫ ∞

0
V (r)J0

(
2kr sin(θ/2)

)
rdr. (4.210)

4.3.3 Partial-Waves Expansion and Scattering Phase Shifts

For planar motion in the y–z plane, there is only one relevant component of angular
momentum, namely L̂ = yp̂z − zp̂y , and in terms of the angle θ ,

L̂ = �

i

∂

∂θ
. (4.211)

The eigenfunctions of L̂ are eimθ with m = 0,±1,±2, . . ., and the corresponding
eigenvalues are m�. Any wave function Ψ (r) ≡ Ψ (r, θ) can be expanded in the
complete basis of eigenfunctions of L̂,

Ψ (r) =
∞∑

m=−∞

um(r)√
r

eimθ . (4.212)

From the polar representation of the Laplacian in 2D, we can write the kinetic energy
operator in (4.194) as,

− �
2

2μ
Δ = − �

2

2μ

(
∂2

∂r2
+ 1

r

∂

∂r

)
+ L̂2

2μr2
. (4.213)

We assume a radially symmetric potential, V (r) = V (r). Inserting the expansion
(4.212) into the Schrödinger equation (4.194) then gives, with the help of (4.213),
an uncoupled set of radial equations for the radial wave functions um(r),

[
− �

2

2μ

d2

dr2
+ (m2 − 1

4 )�2

2μr2
+ V (r)

]
um(r) = Eum(r). (4.214)
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The 2D radial Schrödinger equation looks similar to the 3D radial Schrödinger
equation (2.35) in Sect. 2.3.2. In fact, Eqs. (4.214) and (2.35) are identical, if we
equate |m| − 1

2 with the 3D angular momentum quantum number l:

l ≡ |m| − 1

2
. (4.215)

Many results derived for the 3D radial waves in Sect. 2.3 can be carried over to
the 2D radial waves simply via (4.215), but integer values of m imply half-integer
values of l, so the results of Sect. 2.3.2 have to be checked to see whether they
hold in these cases. This is particularly important for s-waves in 2D (m = 0), which
correspond to l = − 1

2 .
For the free-particle case V (r) ≡ 0, two linearly independent solutions of the

radial equation (4.214) are

u(s)
m (kr) =

√
π

2
krJ|m|(kr), u(c)

m (kr) = −
√

π

2
krY|m|(kr), (4.216)

where J|m| and Y|m| stand for the ordinary Bessel functions of the first and second
kind, respectively [see Appendix B.4]. Their asymptotic behaviour is given by2

u(s)
m (kr)

kr→∞∼ sin

[
kr −

(
|m| − 1

2

)
π

2

]
,

u(c)
m (kr)

kr→∞∼ cos

[
kr −

(
|m| − 1

2

)
π

2

]
.

(4.217)

The influence of a potential V (r) is manifest in the asymptotic phase shifts δm

of the regular solutions of the radial Schrödinger equation (4.214). When V (r) falls
off faster than 1/r2 at large distances the effective potential in (4.214) is dominated
by the centrifugal term at large distances, and the regular solution can be taken to
be a superposition of the two radial free-particle wave functions (4.216) obeying
(4.217),

um(r)
r→∞∝ Au(s)

m (kr) + Bu(c)
m (kr)

r→∞∝ sin

[
kr −

(
|m| − 1

2

)
π

2
+ δm

]
, (4.218)

with tan δm = B/A.
In order to relate the scattering phase shifts to the scattering amplitude, we first

expand the incoming “plane” wave of (4.195) in partial waves,

eikz =
∞∑

m=−∞
imJm(kr)eimθ kr→∞∼

∞∑
m=−∞

1√
2π ikr

(
eikr + (−1)mie−ikr

)
. (4.219)

2Due to the m-independent term π
4 appearing in the arguments both of u

(s)
m (kr) and of u

(c)
m (kr)

in (4.217), there is no a priori preference for the assignment of an asymptotic “sine-” or “cosine-
like” behaviour. The present nomenclature is chosen to make the connection to the 3D case as
transparent as possible.
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The appropriate partial-waves expansion for the scattering amplitude is

f (θ) =
∞∑

m=−∞
fmeimθ , (4.220)

and the constant coefficients fm are the partial-wave scattering amplitudes. Express-
ing the sum of “plane” and circular wave in the form (4.212) gives an explicit ex-
pression for the asymptotic behaviour of the radial wave functions,

um(r)
r→∞∼ 1√

2π ik

[
(1 + √

2π ikfm)eikr + i(−1)me−ikr
]

= i(−1)m√
2π ik

[
e−ikr − i(−1)m(1 + √

2π ikfm)eikr
]
. (4.221)

We can rewrite the asymptotic form of the regular solution (4.218) as

um(r)
r→∞∝ sin

[
kr −

(
|m| − 1

2

)
π

2
+ δm

]

∝ e−i[kr−(|m|− 1
2 ) π

2 +δm]e−iδm − ei[kr−(|m|− 1
2 ) π

2 +δm]e+iδm

∝ e−ikr − e−i(|m|− 1
2 )π eikre2iδm. (4.222)

Comparing the lower lines of Eqs. (4.221) and (4.222) gives

e2iδm = 1 + √
2π ikfm, fm = 1√

2π ik

(
e2iδm − 1

) =
√

2i

πk
eiδm sin δm. (4.223)

Equation (4.223) can be used to express the scattering cross sections in terms of
the scattering phase shifts,

dλ

dθ
= ∣∣f (θ)

∣∣2 =
∑
m,m′

f ∗
mfm′ei(m′−m)θ

= 2

πk

∑
m,m′

ei(δm′−δm) sin δm′ sin δmei(m′−m)θ , (4.224)

λ =
∫ π

−π

∣∣f (θ)
∣∣2dθ = 2π

∞∑
m=−∞

∣∣fm

∣∣2 = 4

k

∞∑
m=−∞

sin2 δm. (4.225)



254 4 Special Topics

The scattering amplitude in forward direction is

f (θ = 0) =
∞∑

m=−∞
fm =

√
2i

πk

∞∑
m=−∞

eiδm sin δm

=
√

2

πk

∞∑
m=−∞

sin δmei(δm+π/4), hence (4.226)

�{
f (0)

} − �{
f (0)

} = 2√
πk

∞∑
m=−∞

sin2 δm = 1

2

√
k

π
λ, (4.227)

which again yields the optical theorem (4.203).

4.3.4 Near-Threshold Behaviour of the Scattering Phase Shifts

The leading near-threshold behaviour of the phase shifts can be derived from the
small-argument behaviour of the free-particle solutions (4.216),

u(s)
m (kr)

kr→0∼
√

π

Γ (|m| + 1)

(
kr

2

) 1
2 +|m|

, (4.228)

u(c)
m (kr)

kr→0∼ Γ (|m|)√
π

(
kr

2

) 1
2 −|m|

for m �= 0. (4.229)

The case m = 0 is special, because the two powers of r appearing in (4.228) and
(4.229), namely 1

2 + |m| and 1
2 − |m| are equal in this case. We focus first on the

case m �= 0; the special case of s-waves in 2D is treated in Sect. 4.3.5 below.
At distances r beyond the range of the potential, the radial wave function um(r)

is a superposition of the free-particle wave functions (4.216); towards threshold,
k → 0, the product kr tends to zero so we can make use of the small-argument
expressions (4.228), (4.229),

um(r)
kr→0∝ u(s)

m (kr) + tan δmu(c)
m (kr)

∼
√

π

Γ (|m| + 1)

(
k

2

) 1
2 +|m|[

r |m|+ 1
2 + tan δm

(
k

2

)−2|m|
Γ (|m|)Γ (|m| + 1)

πr |m|− 1
2

]
.

(4.230)

Directly at threshold, the radial Schrödinger equation (4.214) has a regular solution
u

(0)
m (r) which is defined up to a constant by the boundary condition u

(0)
m (0) = 0 and

is a function of r only. The wave function (4.230) must become proportional to this
k-independent solution for k → 0, so in the second term in the square bracket in the
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lower line of Eq. (4.230), the k-dependence of tan δm must compensate the factor

(k/2)−2|m|, tan δ
k→0∝ k2|m|. More explicitly,

tan δm
k→0∼ ∓ π

Γ (|m|)Γ (|m| + 1)

(
amk

2

)2|m|
. (4.231)

The characteristic length am appearing on the right-hand side of (4.231) is the scat-
tering length in the partial wave m �= 0. Equation (4.231) is essentially identical
to Eq. (2.77) in Sect. 2.3.8 if we replace |m| by l + 1

2 , except that the power 2|m|
in (4.231) is always even for integer m, so the possibility of having positive or neg-
ative values on the right-hand side has to be explicitly included via the ∓ sign.

As in the 3D case, the threshold behaviour (4.231) is only valid in all partial
waves if the potential V (r) in the radial Schrödinger equation (4.214) falls off faster
than any power of 1/r at large distances. For potentials falling off as 1/rα , the
considerations of Sect. 2.6 can be carried over to the 2D case, remembering that l

now stands for |m| − 1
2 . In particular, the condition for the validity of Eq. (4.231)

now reads 2|m| < α − 2. For 2|m| > α − 2, Eq. (2.274) in Sect. 2.6.1 is applicable,
provided l+ 1

2 is replaced by |m|. The special case treated in Sect. 2.6.2 becomes the
special case 2|m| = α − 2, and the (marginally) leading term of the near-threshold
behaviour of tan δm is given by Eq. (2.280).

4.3.5 The Case m = 0, s-Waves in Two Dimensions

The case of s-waves in two dimensions is special, because the radial Schrödinger
equation (4.214) now reads

[
− �

2

2μ

d2

dr2
− 1

4

�
2

2μr2
+ V (r)

]
um=0(r) = Eum=0(r), (4.232)

and the centrifugal potential is attractive. In the language of Sect. 2.7 on potentials
with inverse-square tails, the 2D s-wave radial equation (4.232) corresponds to the
“critically attractive case” treated in Sects. 2.7.1.3 and 2.7.2.3. This degree of at-
tractivity of an inverse-square potential marks the boundary to the “over-critically
attractive” case. If the factor 1

4 in front of the inverse-square term in (4.232) were
replaced by 1

4 + ε with an ever so small positive ε, then the radial Schrödinger equa-
tion (4.232) would support an infinite dipole series of bound states, as described in
Sect. 2.7.2.2.

The free-particle solutions, for V (r) ≡ 0 in (4.232), are

u
(s)
m=0(r) =

√
π

2
krJ0(kr), u

(s)
m=0(r) = −

√
π

2
krY0(kr), (4.233)
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compare (2.330) in Sect. 2.7.1.3 and (4.216). Their small-argument behaviour is

u
(s)
m=0(kr)

kr→0∼
√

π

2
kr, u

(c)
m=0(kr)

kr→0∼ −
√

2

π
kr

[
ln

(
kr

2

)
+ γE + O

(
(kr)2)];

(4.234)
compare (2.332) in Sect. 2.7.1.3. Beyond the range of the interaction potential V (r),
the regular solution of the radial Schrödinger equation (4.232) is a superposition of
the free-particle waves (4.233), and its asymptotic behaviour is,3

um=0(r)
r→∞∝ √

kr
[
J0(kr) − tan δm=0Y0(kr)

] kr→∞∝ sin

(
kr + π

4
+ δm=0

)
.

(4.235)
The leading near-threshold behaviour of the s-wave scattering phase shift is as

already derived in Eq. (2.350),

cot δm=0
k→0∼ 2

π

(
ln

(
ka

2

)
+ γE

)
. (4.236)

Equation (4.236) defines the scattering length a for s-waves in two dimensions. In
the limit k → 0, the wave function (4.235) converges to a k-independent limit u

(0)
m=0,

um=0(r)
k→0∝ u

(0)
m=0(r)

r→∞∝ −√
r ln

(
r

a

)
. (4.237)

The wave function on the far right of (4.237) has exactly one node (beyond r = 0),
and this node lies at r = a. For a potential falling off as 1/rα at large distances, a
well-defined scattering length in the partial wave m exists as long as 2|m| < α − 2.
For m = 0, this condition is fulfilled for all α > 2. The scattering length a defined
according to Eqs. (4.236), (4.237) is well defined for all interaction potentials which
fall off faster than 1/r2 at large distances.

It is worthwhile to reflect a little on the remarkable situation of s-waves in 2D. At
threshold, the regular free-particle wave is proportional to

√
r , corresponding to rl+1

when l = − 1
2 . The “irregular” solution, which we might expect to be proportional

to r−l , is actually proportional to
√

r ln r , which seems only marginally less regular
than the regular wave. An arbitrary superposition of these two free-particle waves
can be written as

u(r) ∝ A
√

r − √
r ln r = −√

r ln

(
r

eA

)
, (4.238)

which is just the form on the right-hand side of (4.237), with the scattering length
given by a = eA. In two-dimensional scattering, the scattering length is never nega-
tive.

3Since m = 0 corresponds to l = − 1
2 , the phase shift δ̃ in Sect. 2.7.2.3 is actually the scattering

phase shift δm=0 in the present case, see Eq. (2.341).
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The leading near-threshold behaviour of the s-wave phase shift (4.236) was al-
ready given in Ref. [87], together with the next term of the effective-range expansion
in two dimensions,

cot δm=0
k→0∼ 2

π

[
ln

(
ka

2

)
+ γE + (kreff)

2

2

]
; (4.239)

the effective range in 2D is defined by

r2
eff = 2

∫ ∞

0

([
w(0)(r)

]2 − [
u(0)(r)

]2)
dr, (4.240)

see also [5]. Here u(0)(r) is the regular solution, at threshold, of (4.232), which
behaves as the right-hand side of (4.237) asymptotically, and w(0)(r) is the free-
particle solution which has this form for all r ,

w(0)(r) = −√
r ln

(
r

a

)
, u(0)(r)

r→∞∼ −√
r ln

(
r

a

)
. (4.241)

In contrast to the similar-looking definition of the effective range in 3D, see
Eq. (2.103) in Sect. 2.3.8, the right-hand side of (4.240) has the physical dimension
of a length squared. Note that r2

eff defined in this way can be negative. The integral
on the right-hand side of (4.240) converges to a well defined limit for interaction
potentials falling off faster than 1/r4 at large distances [5].

The leading near-threshold behaviour of the scattering cross sections is, naturally,
dominated by the contribution from the s-wave. From (4.220), (4.223) and (4.236)
we obtain

f (θ)
k→0∼ f0

k→0∼
√

π i/(2k)

ln( ka
2 ) + γE

, (4.242)

so

dλ

dθ

k→0∼ π/(2k)

| ln( ka
2 ) + γE|2 and λ

k→0∼ π2/k

| ln( ka
2 ) + γE|2 . (4.243)

The quantum mechanical scattering cross sections in two dimensions diverge at
threshold. This divergence is essentially as 1/k, moderated marginally by the log-
arithmic factor. Note that the expressions in (4.242) and (4.243), where the leading
behaviour contains the logarithm in the expression ln(ka/2) + γE, are only mean-
ingful when ka/2 is so small, that ln(ka/2) < −γE, i.e., for

ka < 2 exp (−γE). (4.244)

For a reference potential Vtail(r), which is attractive and more singular than
1/r2 at short distances, and falls off faster than 1/r2 at large distances, the radial
Schrödinger equation

[
− �

2

2μ

d2

dr2
− 1

4

�
2

2μr2
+ Vtail(r)

]
um=0(r) = Eum=0(r) (4.245)
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can be solved with incoming boundary conditions, which describes absorption in the
close region r → 0. At large distances, the radial wave function still has the form
given in the bottom line of (4.222), but the phase shift is now complex. With m = 0,

u(r)
r→∞∝ e−ikr − ie2iδeikr ∝ e−i(kr+ π

4 ) − e2iδei(kr+ π
4 ). (4.246)

The right-hand side(s) of (4.246) represent an incoming radial wave together with
an outgoing radial wave, which is generated by quantum reflection in the nonclas-
sical part of coordinate space. Defining the coefficient of ei(kr+π/4) as the quantum
reflection amplitude gives

R = −e2iδ, (4.247)

similar to Eq. (4.81) for s-waves in 3D.
The leading near-threshold behaviour of the complex phase shift δ is given by

a formula similar to (4.236), except that the real scattering length a is replaced by
a complex scattering length A , which is defined through the zero-energy solution
u(0)(r) of (4.245) obeying incoming boundary conditions for r → 0:

u(0)(r)
r→∞∝ −√

r ln

(
r

A

)
= −√

r ln

(
r

|A |
)

+ √
ri arg(A ). (4.248)

For the complex phase shift δ we have

cot δ
k→0∼ 2

π

[
ln

(
kA

2

)
+ γE

]
, (4.249)

which, for the quantum reflection amplitude (4.247), implies

R
k→0∼ −1 − iπ

ln( kA
2 ) + γE + i(arg(A ) − π

2 )
. (4.250)

The results (4.249) and (4.250) are derived in Ref. [5], where further terms up to
and including O(k2) are also given. (Note that the quantum reflection amplitude in
[5] is i times the amplitude R defined above.)

For near-threshold quantization in a deep potential which is well described at
large distances by the singular reference potential Vtail(r), the quantization rule
υD − υ = F(E) is determined by the quantization function F(E), and the universal
near-threshold behaviour of this quantization function for s-states in 2D is

F(E)
κ→0∼ 1

π
arctan

(
argA

ln(
k|A |

2 ) + γE

)
+ O

(
κ2). (4.251)

The complex scattering length A is as defined in (4.248), and it is a property of the
reference potential Vtail(r). The relation connecting the threshold quantum number
υD with the scattering length a reads

a = |A | exp

(
− arg(A )

tan(υDπ)

)
, (4.252)



4.3 Quantum Description of Scattering in Two Spatial Dimensions 259

so, for a bound-sate energy Eb = −�
2κ2

b /(2μ) very close to threshold,

a
κb→0∼ 2 exp(−γE)

κb
+ O(κb). (4.253)

For further details, see Ref. [5].

4.3.6 Rutherford Scattering in Two Dimensions

An instructive example showing interesting differences to the well-studied case of
scattering in 3D is the case of Rutherford scattering in two dimensions, which was
first treated comprehensively by Barton [7]. The potential is

V (r) = C

r
. (4.254)

This could be the interaction between two point particles whose motion is restricted
to a two-dimensional plane embedded in three-dimensional space. It is worth re-
membering, however, that the Coulomb interaction in a genuinely two-dimensional
space does not have this r-dependence. In terms of the scaled coordinate ρ = kr,
the Schrödinger equation reads[

−Δρ + 2η

ρ

]
ψ = ψ, (4.255)

where η is the Sommerfeld parameter

η = μC

�2k
. (4.256)

As in Sect. 2.5.1, we introduce the quantum mechanical length aC , which does not
exist in classical mechanics,

aC = 1

|η|k = �
2

μ|C| , |η| = 1

aCk
. (4.257)

For an attractive potential, C < 0 in (4.254), aC is the usual Bohr radius.
As in the 3D case, the Schrödinger equation (4.255) has analytical solutions in

2D as well. Equations (2.190), (2.191) and (2.192) in Sect. 2.5.1 are replaced in 2D
by

ψC(r) = e− π
2 η

Γ ( 1
2 + iη)

Γ ( 1
2 )

eikzF

(
−iη,

1

2
; ik[r − z]

)
, (4.258)

ψC(r) = ei[kz+η ln(k[r−z])]
[

1 + O

(
1

k[r − z]
)]

+ fC(θ)
ei(kr−η ln 2kr)

√
r

[
1 + O

(
1

k[r − z]
)]

(4.259)
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and

fC(θ) = − ηeiπ/4√
2k sin2(θ/2)

Γ ( 1
2 + iη)

Γ (1 − iη)
e−iη ln[sin2(θ/2)], (4.260)

respectively. The function F in (4.258 ) again denotes the confluent hypergeometric
function, see Appendix B.5. With the identities

∣∣∣∣Γ
(

1

2
+ iη

)∣∣∣∣
2

= π

cosh(πη)
,

∣∣Γ (1 − iη)
∣∣2 = πη

sinh(πη)
, (4.261)

we obtain the differential cross section for Rutherford scattering in two dimensions,

dλ

dθ
= ∣∣fC(θ)

∣∣2 = η tan(πη)

2k sin2(θ/2)
= |C|

4E

tanh(π |η|)
sin2(θ/2)

=
(

dλ

dθ

)qm

Ruth
. (4.262)

In contrast to the 3D case, the quantum mechanical result (4.262) does not agree
with the classical Rutherford cross section in two dimensions,

(
dλ

dθ

)class

Ruth
= |C|

4E

1

sin2(θ/2)
, (4.263)

see Eq. (1.55) in Sect. 1.4. On the other hand, evaluating Eq. (4.210) gives the
corresponding result in Born approximation,

(
dλ

dθ

)Born

Ruth
=

(
μC

�2

)2
π

2k3 sin2(θ/2)
= |C|

4E

π |η|
sin2(θ/2)

. (4.264)

In terms of the quantum mechanical length aC (the “Bohr radius”) defined in
(4.257), (

dλ

dθ

)qm

Ruth
= aC/2

(aCk)2

tanh[π/(aCk)]
sin2(θ/2)

, (4.265)

(
dλ

dθ

)class

Ruth
= aC/2

(aCk)2

1

sin2(θ/2)
,

(
dλ

dθ

)Born

Ruth
= aC/2

(aCk)2

π/(aCk)

sin2(θ/2)
. (4.266)

Comparing Eqs. (4.265) and (4.266) shows that the coincidence of Rutherford scat-
tering in 3D, namely that classical mechanics, the Born approximation and the full
quantum mechanical treatment all yield the same result (1.42) for the differential
scattering cross section [see also (2.194) and (2.196) in Sect. 2.5.1], is lifted in two
spatial dimensions. The angular dependence, dλ/dθ ∝ 1/ sin2(θ/2), is the same in
all three cases, but the energy-dependent prefactors of the classical cross section and
of the Born approximation differ from the exact quantum mechanical result. This is
illustrated in Fig. 4.18, where the respective differential cross sections, multiplied
by sin2(θ/2), are plotted as a functions of the dimensionless product kaC = 1/|η|.
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Fig. 4.18 Rutherford
scattering in two spatial
dimensions. The solid black
line shows the exact quantum
mechanical differential cross
section (4.265) [in units of
the “Bohr radius” aC ]
multiplied by sin2(θ/2) as
function of the dimensionless
product aCk = 1/|η|. The
dashed red line and the dotted
blue line show the
corresponding classical result
and the result of the Born
approximation (4.266)

Both the classical cross section and the Born approximation overestimate the
exact quantum mechanical cross sections (4.262), (4.265). As already observed
by Barton [7], the Born approximation becomes accurate in the high-energy limit,
whereas the classical result becomes exact in the low-energy limit,

(
dλ

dθ

)Born

Ruth

k→∞∼
(

dλ

dθ

)qm

Ruth
,

(
dλ

dθ

)class

Ruth

k→0∼
(

dλ

dθ

)qm

Ruth
. (4.267)

The example is a nice illustration of the fact that, for homogeneous potentials of
degree −1, i.e., of the Coulomb type, the classical limit is at the threshold E = 0, and
the classical treatment becomes increasingly inaccurate for large values of |E|. This
is well accepted for bound states at negative energies, where E → 0 corresponds
to the limit of infinite quantum numbers, but it is not so widely appreciated for the
regime of positive energies.
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