
Chapter 1
Classical Scattering Theory

1.1 Relative Motion of Projectile and Target

Consider two particles, projectile and target, with masses m1 and m2 respectively,
which interact via a time-independent potential V depending on the separation

r = r1 − r2 (1.1)

of their position vectors r1 and r2. In the absence of external forces, the centre of
mass Rcm = (m1r1 +m2r2)/(m1 +m2) moves uniformly, Rcm(t) = Rcm(0)+Vcmt .
In the centre-of-mass frame of reference, that is the inertial system in which the
centre of mass of the two particles is at rest, the position vectors of the two particles
are

r(cm)
1 = m2

m1 + m2
r, r(cm)

2 = − m1

m1 + m2
r. (1.2)

Scattering experiments in the laboratory usually involve a projectile initially moving
freely towards a target at rest,

r(in, lab)
1 (t) = r(in, lab)

1 (0) + v(in, lab)
1 t, r(in, lab)

2 (t) = r(in, lab)
2 (0), (1.3)

so the centre-of-mass velocity in the laboratory frame of reference is simply V(lab)
cm =

ṙ(in, lab)
1 m1/(m1 + m2).

Throughout this book we shall focus on the relative motion of projectile and
target, which contains the essential nontrivial physics of the scattering problem. The
relevant coordinate is the relative distance (1.1). Transformation to the laboratory
frame of reference is achieved via (1.2) and r(lab)

i (t) = r(cm)
i (t) + R(lab)

cm (t), i = 1,2.
Details of such straightforward but cumbersome transformations are discussed, e.g.,
in paragraph 17 of [2].

Classically, the evolution of r(t) is described by Newton’s equation of motion

μr̈ = −∇V (r), μ = m1m2

m1 + m2
, (1.4)

as for one particle with the reduced mass μ moving under the influence of the po-
tential V (r). In accordance with standard convention, we assume the asymptotic in-
coming velocity v∞ = limt→−∞ ṙ(t) to point in the direction of the positive z-axis,
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2 1 Classical Scattering Theory

Fig. 1.1 Scattering of a
particle with asymptotic
incoming velocity v∞

as illustrated in Fig. 1.1. We assume the potential V (r) to vanish asymptotically, so
the conserved total energy E of the system is just the incoming particle’s initial ki-
netic energy, E = 1

2μυ2∞, where υ∞ = |v∞|. The perpendicular displacement of the
incoming particle’s asymptotic straight-line trajectory from the z-axis is the impact
parameter b, so the incoming particle has an initial angular momentum |L| = μbυ∞
around the origin.

1.2 Deflection Function

From now on we assume that the potential V (r) is radially symmetric; it depends
only on the modulus r of the distance vector r and not on its orientation. The angular
momentum L = μr × ṙ is thus a conserved vector which always points in the same
direction, and both r and ṙ must lie in the plane perpendicular to this direction.
Any trajectory r(t) describing the scattering of the particle by the potential V (r)

is confined to a plane, the scattering plane. As already anticipated in Fig. 1.1, we
choose it to be the y–z plane, and we assume that the positive x-axis points in the
direction of L, so L = |L| = Lx ≥ 0.

For motion in the y–z plane, the polar coordinates r , θ are defined via

x ≡ 0, y = r sin θ, z = r cos θ, (1.5)

and the (conserved) angular momentum is

L = Lx = μ(yż − zẏ) = −μr2θ̇ = μbυ∞. (1.6)

Since the conserved energy is E = 1
2μυ2∞, the impact parameter b is related to the

angular momentum L and energy E via

L = b
√

2μE. (1.7)

According to the geometry of Fig. 1.1, b and L are nonnegative, so

θ̇ = − L

μr2
≤ 0, (1.8)

which, for given L, uniquely defines θ̇ as function of r and shows that θ(t)

is a monotonically decreasing function in time, starting from its initial value

θ(t)
t→−∞= π .

After the particle is scattered by the potential, it leaves to large r and its trajectory
approaches a straight line deflected by the angle Θ from the forward direction. The
deflection angle Θ depends on the energy E and the impact parameter b. For a given
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Fig. 1.2 Scattering by a hard sphere of radius R. Deflection function (1.9)

scattering experiment, the energy can be taken as fixed and known, so the observable
features are determined by the function Θ(b), which is called the deflection function.
We write the capital letter and emphasize that Θ retains the memory of possible
clockwise revolutions around the scattering centre.

One of the simplest conceivable scattering problems is the scattering by a hard
sphere of radius R as illustrated in the left-hand part of Fig. 1.2. The deflection angle
is π − 2φ, where sinφ = b/R,

Θ(b) = π − 2 arcsin

(
b

R

)
= 2 arccos

(
b

R

)
for 0 ≤ b ≤ R. (1.9)

Obviously, trajectories with b > R are not deflected, Θ(b) = 0 for b > R. The de-
flection function (1.9) is shown in the right-hand part of Fig. 1.2.

More realistic scattering problems involve a smooth potential V (r), for which
the scattering trajectory cannot be constructed by such simple geometric means. In
polar coordinates we have E = 1

2μ(ṙ2 + r 2θ̇2) + V (r); with (1.8):

E = μ

2
ṙ2 + L2

2μr2
+ V (r). (1.10)

Equation (1.10) is a one-dimensional energy-conservation formula for the radial mo-
tion described by the coordinate r and the velocity ṙ . It shows that the evolution of
r(t) is as for one-dimensional motion of a particle with mass μ on the half-line r ≥ 0
under the influence of an effective potential, Veff. The effective potential consists of
the potential energy V (r) and the centrifugal potential Vcent(r), which comes from
the kinetic energy of angular motion and depends on the angular momentum L,

Veff(r) = V (r) + Vcent(r), Vcent(r) = L2

2μr2
. (1.11)

The effective potential helps us to understand the behaviour of a scattering
trajectory for given energy E and impact parameter b (or angular momentum
L = b

√
2μE) in very straightforward terms. The scattering process begins with

r → ∞ for t → −∞, and r decreases with time until it reaches the classical turn-
ing point rctp, which fulfills

E = Veff(rctp) (1.12)
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and corresponds to the point of closest approach of target and projectile. For the
hard-sphere case in Fig. 1.2, rctp is the sphere’s radius R as long as b ≤ R. If
Veff(r) < E for all r , then the radial turning point is the origin, rctp = 0. It is a useful
convention to choose the time of closest approach to be t = 0: r(t = 0) = rctp. For
later (positive) times, r increases again until r → ∞ for t → +∞.

The trajectory of the particle in the y–z-plane is most conveniently obtained via
dθ/dr = θ̇/ṙ with θ̇ from (1.8) and ṙ = ±√

(2/μ)[E − Veff(r)] from (1.10),

dθ

dr
= ± L

r2
√

2μ[E − Veff(r)] . (1.13)

During the first half of the scattering process, ṙ is negative (as is θ̇ ), so the plus sign
on the right-hand side of (1.13) applies. During the second half, ṙ is positive (in
contrast to θ̇ ), so (1.13) applies with the minus sign. The polar angle of the point of
closest approach, for which r = rctp, is

θ(r = rctp) = π +
∫ rctp

∞
dθ

dr
dr = π −

∫ ∞

rctp

L dr

r2
√

2μ[E − Veff(r)] . (1.14)

For an actual calculation, the scattering trajectory (r, θ) in the y–z plane can be
obtained via

θ(r) = θ(r = rctp) ±
∫ r

rctp

L dr ′

r ′2√2μ[E − Veff(r ′)] , (1.15)

where the plus sign gives the points on the incoming half of the trajectory and the
minus sign the points on the outgoing half. The deflection function follows from the
expression (1.15) for the polar angle in the limit r → ∞ on the outgoing branch of
the trajectory,

Θ(b) = θ(rctp) −
∫ ∞

rctp

L dr

r2
√

2μ[E − Veff(r)] = π −
∫ ∞

rctp

2L dr

r2
√

2μ[E − Veff(r)]

= π −
∫ ∞

rctp

2b

r2

[
1 − b2

r2
− V (r)

E

]−1/2

dr. (1.16)

In the limit of large impact parameters, the effective potential (1.11) is dominated
by the centrifugal term and the deflection angle tends to zero. For a potential falling
off asymptotically as an inverse power of r ,

V (r)
r→∞∼ Cα

rα
, α > 0, (1.17)

the large-b behaviour of Θ(b) is easily calculated analytically. Changing the inte-
gration variable in (1.16) from r to ξ = r/rctp gives, for large b,

Θ(b) = π −
∫ ∞

1

2 dξ
√

ξ4 − ξ2 + ε(ξ4 − ξ4−α)
, where ε =

(
rctp

b

)2

− 1. (1.18)

Expanding the integrand in terms of the small parameter ε
b→∞∼ Cα/(E bα) yields

Θ(b)
b→∞∼ Cα

E bα

πΓ (α)

2α−1[Γ (α
2 )]2

= Cα

Ebα

√
πΓ (α+1

2 )

Γ (α
2 )

. (1.19)
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Fig. 1.3 Effective potential (1.21) for a repulsive (C > 0, left-hand part) and an attractive (C < 0,
right-hand part) Kepler–Coulomb interaction. The dotted lines show the respective potential (1.20)
without centrifugal contribution

1.2.1 Kepler–Coulomb Potential

The Kepler or Coulomb potential,

V (r) = C

r
, (1.20)

is important, because it describes gravitational and electrostatic interactions. For
such a homogeneous potential of degree −1, the solutions of Newton’s equation of
motion (1.4) obey a simple scaling relation called Kepler’s third law. If r(t) is a
solution at energy E, then sr(s3/2t) is a solution at energy E/s, see Appendix A.1.
The geometric shape of a trajectory does not depend on the potential strength coef-
ficient C, the impact parameter b and the energy E independently, but only on the
ratio of C to the product Eb.

The weight of the centrifugal contribution in the effective potential (1.11) can be
expressed via the length parameter

rL = L2

μ|C| , so Veff(r) = |C|
2rL

[
±2

rL

r
+

(
rL

r

)2]
. (1.21)

In the repulsive case, C > 0, the plus sign in the square bracket applies; the effective
potential is a monotonically decreasing function of r . In the attractive case, C < 0,
Veff(r) has a zero at rL/2 and a minimum at rL with Veff(rL) = −|C|/(2rL). The
effective potential (1.21) is shown for both the repulsive and the attractive case in
Fig. 1.3.

The classical turning point is

rctp = b
(√

γ 2 + 1 ± γ
)

with γ = |C|
2Eb

, (1.22)
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Fig. 1.4 Scattering trajectories (left-hand part) and deflection function right-hand part for the
Kepler–Coulomb potential (1.20). The red (green) lines correspond to the repulsive (attractive)
case C > 0 (C < 0). Lengths are in units of |C|/(2E)

where the plus (minus) sign applies for the repulsive (attractive) case C > 0 (C < 0)
and the geometry of the trajectory is governed by the dimensionless parameter γ .
With ρ = r/b, Eqs. (1.14) and (1.15) are as follows for the Kepler–Coulomb case:

θ(ρctp) = π −
∫ ∞

ρctp

dρ

ρ
√

ρ2 ∓ 2γρ − 1
,

θ(ρ) = θ(ρctp) ±
∫ ρ

ρctp

dρ′

ρ′√ρ′2 ∓ 2γρ′ − 1
.

(1.23)

The minus (plus) sign in the square root applies for the repulsive (attractive) case
C > 0 (C < 0). Typical trajectories are shown in the left-hand part of Fig. 1.4.
The axes are labelled with the b-independent dimensionless lengths ρ cos θ/γ ≡
z2E/|C|, ρ sin θ/γ ≡ y2E/|C|. The right-hand part of Fig. 1.4 shows the deflec-
tion function,

Θ(b) = π −
∫ ∞

ρctp

2 dρ

ρ
√

ρ2 ∓ 2γρ − 1
= ±2 arccos

(
1

√
γ 2 + 1

)
. (1.24)

1.2.2 Inverse-Power Potentials

As a more general ansatz, consider the inverse-power potential,

V (r) = Cα

rα
, α > 0. (1.25)

This is a homogeneous potential of degree −α, and, as a generalization of Kepler’s
third law, the solutions of Newton’s equation of motion (1.4) obey the following
scaling relation: If r(t) is a solution at energy E, then sr(s1+α/2t) is a solution
at energy E/sα , see Appendix A.1. The geometric shape of a trajectory does not
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Fig. 1.5 Effective potential (1.26) for a repulsive (Cα > 0, left-hand part) and an attractive
(Cα < 0, right-hand part) inverse-power potential with α = 4. The dotted lines show the respective
potential (1.25) without centrifugal contribution

depend on the potential strength coefficient Cα , the impact parameter b and the
energy E independently, but only on the ratio of Cα to the product Ebα . Although
we are mainly interested in integer values of α on physical grounds, the discussion
below is largely valid also for noninteger, real and positive α.

As a generalization of (1.21) we define

rL =
[
α

μ|Cα|
L2

]1/(α−2)

, so Veff(r) = L2

2μr2
L

[
± 2

α

(
rL

r

)α

+
(

rL

r

)2]
. (1.26)

For Cα > 0, the plus sign in the square bracket applies; the effective potential is a
monotonically decreasing function of r . For Cα = −|Cα| < 0, the minus sign ap-
plies, Veff(r) has a zero at rL(2/α)1/(α−2) and an extremum at rL. For α < 2 this
extremum is a minimum, as in Sect. 1.2.1. For α > 2, the extremum is a maximum.
Such a “centrifugal barrier” is a characteristic property of all potentials with at-
tractive tails falling off faster than −1/r2. For the inverse-power tail (1.25) with
Cα < 0, the centrifugal barrier has its maximum at rL and the barrier height is
Veff(rL) = [1 − 2/α]L2/(2μr2

L) > 0. The effective potential (1.26) is shown for
α = 4, both for the repulsive and for the attractive case in Fig. 1.5.

Using (1.7), the equation defining turning points of the effective potential (1.26)
can be written as

1 −
(

b

rctp

)2

= ± 2

α
γ

(
b

rctp

)α

with γ = α

2

|Cα|
Ebα

. (1.27)

In the repulsive case [plus sign in (1.27)], there is always one real solution for rctp.
In the attractive case, Eq. (1.27) always has one real solution for rctp if α < 2.

For an attractive potential with α > 2, Eq. (1.27) has no real solutions for large γ

and two real solutions for small γ . For the value γorb separating these two regimes,
the total energy E is exactly equal to the height Veff(rL) of the centrifugal barrier
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Fig. 1.6 Scattering trajectories (left-hand part) and deflection function (right-hand part) for the
inverse-power potential (1.25) with α = 4. The red (green) lines correspond to the repulsive (at-
tractive) case C4 > 0 (C4 < 0). Lengths are in units of (2|C4|/E)1/4

and rctp is a double root of the equation; explicitly we have

γorb =
(

1 − 2

α

)(α−2)/2

. (1.28)

When γ = γorb, the turning point is rctp = rL = bγ
1/(α−2)

orb and Newton’s equa-
tions (1.4) are solved by ṙ = 0, θ̇ = const. corresponding to uniform clockwise
rotation on a circle of radius rL. This motion is called orbiting. For fixed values
of |Cα| and L, we have γ ∝ E(α−2)/2, so γ < γorb corresponds to energies below
the centrifugal barrier, where the radial motion is reflected at the outer turning point.
For energies above the centrifugal barrier (γ > γorb), there is no classical turning
point and the incoming particle crashes into the origin r = 0 with ever increasing
radial velocity. For the near-origin behaviour of the trajectory, Eq. (1.13) shows that

dθ

dr

r→0∼ L√
2μ|Cα| r

(α−4)/2 ⇒
∫ r

r0

dθ

dr
dr

r→0∼ c1 − c2r
(α−2)/2, (1.29)

for a given r0 with appropriate constants c1,2. Since (α − 2)/2 > 0, the polar angle
converges to a finite limit during the crash to the origin.

Typical scattering trajectories are shown in the left-hand part of Fig. 1.6 for the
inverse-power potential (1.25) with α = 4. In this case γ = 2|C4|/(Eb4). For γ =
γorb = 1

2 and C4 < 0, the incoming trajectory approaches the circular orbit for t →
+∞. For smaller impact parameters, γ > γorb, the incoming trajectory crashes into
the origin and an outgoing trajectory cannot be determined unambiguously without
further assumptions. The deflection function Θ(b) is shown in the right-hand part
of Fig. 1.6. The abscissa is labelled with b in units of the length (2|C4|/E)1/4, i.e.
with 1/γ 1/4. For C4 > 0, Θ(b) decreases monotonically from Θ(0) = π to zero;
for C4 < 0, Θ(b) increases monotonically from −∞ in the orbiting case to zero.

According to (1.19), Θ(b)
b→∞∼ ±3πγ/8.
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Scattering by attractive inverse-power potentials (1.25) depends crucially on
whether the power α is larger or smaller than two, i.e. if there is a centrifugal barrier
or not. The boundary separating these two regimes is provided by inverse-square
potentials

V (r) = C2

r2
, Veff(r) = L̃2

2μr2
, L̃2 = L2 + 2μC2. (1.30)

As long as L̃2 is greater than zero, the deflection function can be calculated in a very
straightforward way. Since Θ(b) is identically zero for a free particle, the integral
on the far right of the upper line of Eq. (1.16) must be equal to π for the free-particle
case. This also holds for the effective potential (1.30), if we replace the true angular

momentum L in the numerator of the integrand by L̃ =
√

L̃2, so

Θ(b) = π

(
1 − L

L̃

)
. (1.31)

If L̃2 ≤ 0, the effective potential (1.30) has no turning point and the scattering trajec-

tory crashes into the origin. For L̃2 < 0, dθ/dr
r→0∝ 1/r according to (1.29), whereas

dθ/dr
r→0∝ 1/r2 for L̃2 = 0; in both cases the particle encircles the origin infinitely

many times during the crash.

1.2.3 Lennard–Jones Potential

Realistic potentials have more structure than the inverse-power potentials discussed
above. For example, the interaction of two neutral atoms with each other is char-
acterized at large distances by an attractive tail proportional to −1/r6, and it is
strongly repulsive at very short distances comparable to the size of the atoms. A pop-
ular model for describing interatomic interactions is the Lennard–Jones potential,

VLJ(r) = C12

r12
− C6

r6
= E

[(
rmin

r

)12

− 2

(
rmin

r

)6]
. (1.32)

It has a minimum at rmin = (2C12/C6)
1/6, and VLJ(rmin) = −E = −C6

2/(4C12).
We express the angular momentum in terms of a dimensionless quantity Λ,

Λ = L

rmin
√

2μE
, so Veff = E

[(
rmin

r

)12

− 2

(
rmin

r

)6

+ Λ2
(

rmin

r

)2]
.

(1.33)

Λ2 is the ratio of the centrifugal potential at rmin to the depth E of the poten-
tial (1.32). Figure 1.7 shows the effective potential (1.33) for Λ2 = 0,1,2 and 3.
Note that Veff(r) only has a local maximum if the angular momentum is less than a
limiting value, Λ < Λorb. For Λ = Λorb, Veff has a horizontal point of inflection at
rorb. From V ′

eff(rorb) = 0 and V ′′
eff(rorb) = 0 we get



10 1 Classical Scattering Theory

Fig. 1.7 Effective
potential (1.33) for four
values of Λ2

Fig. 1.8 Trajectories of a
particle scattered by the
Lennard–Jones
potential (1.32) at energy
E = E /(1.09)2 ≈ 0.84E . The
three impact parameters
correspond to Λ2 = 1,
Λ2 = 2 and Λ2 = 3, for
which the effective potential
is shown in Fig. 1.7

rorb

rmin
=

(
5

2

)1/6

≈ 1.165,

Λ2
orb = 18

5

(
2

5

)2/3

≈ 1.954 and
Veff(rorb)

E
= 4

5
.

(1.34)

If E < 4
5E , there will be an appropriate angular momentum Λ < Λorb for which

the maximum of Veff, i.e. the top of the centrifugal barrier, coincides with E, so the
conditions for orbiting are fulfilled. For E = 4

5E , orbiting occurs for Λ = Λorb. If
E > 4

5E , there is no orbiting.
Scattering trajectories are shown in Fig. 1.8 at energy E/E = 1/(1.09)2 ≈ 0.84,

which is just above the energy for which orbiting is possible. The impact parame-
ters b = rminΛ

√
E /E correspond to Λ2 = 1,2 and 3 as featured in Fig. 1.7. In the

closest collision (Λ2 = 1), the particle passes above the centrifugal barrier associ-
ated with the attractive −1/r6 potential tail, but instead of crashing into the origin
it is reflected off the repulsive 1/r12 core at short distances. For the largest impact
parameter (Λ2 = 3), the radial motion is reflected by the centrifugal barrier, and the
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Fig. 1.9 Deflection function
for scattering by the
Lennard–Jones
potential (1.32) for three
energies. The abscissa is
labelled by
Λ = √

E/E b/rmin

particle only weakly feels the attractive tail of the potential. The case in between,
Λ2 = 2, is close to the orbiting situation and the particle almost fulfills a complete
revolution before leaving the interaction region.

Deflection functions for the Lennard–Jones potential (1.32) are shown in Fig. 1.9
for three energies. For E/E = 0.6, orbiting occurs at Λ ≈ 1.281. For E/E = 0.9
and 1.2, orbiting is no longer possible, but pronounced minima of Θ with gradually
decreasing depths remain.

1.3 Scattering Angle and Scattering Cross Sections

A typical scattering experiment involves a beam of incoming particles with uniform
density n and asymptotic incoming velocity v∞ = υ∞ez. The scattered particles are
observed with a detector under an angle θ relative to the direction of incidence, see
Fig. 1.10. The scattering angle θ varies between zero (forward scattering) and π

(backward scattering).
The differential dσ is a quantitative measure for the flux of particles scattered into

a differential solid angle dΩ = sin θ dθ dφ. It is defined as the number of particles
passing a given (large) distance from the scattering centre in the direction of dΩ per
unit time, divided by the magnitude of the incoming current density, |jin| = nυ∞.
If particles incident with impact parameter b are scattered into the angle θ , then,
the particles scattered into the differential solid angle dΩ are those with incoming
trajectories passing through the differential area db × b dφ as shown in Fig. 1.10.
The number of particles scattered into dΩ per unit time is nυ∞ × b db dφ, so

dσ = b db dφ = b

∣∣∣∣
db

dθ

∣∣∣∣dθdφ = b

sin θ

∣∣∣∣
db

dθ

∣∣∣∣dΩ. (1.35)

The expressions in (1.35) contain the absolute value of db/dθ , because the observed
yield is positive, regardless of whether db/dθ is positive or negative.

The scattering angle θ ∈ [0,π] must not be confused with the deflection func-
tion Θ(b) discussed in Sect. 1.2. Among the particles observed under the scatter-
ing angle θ , there are those with incoming trajectories above the z-axis, as shown
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Fig. 1.10 Schematic
illustration of a scattering
experiment. Out of the
uniform incoming beam, all
trajectories with impact
parameter between b and
b + db are observed with a
scattering angle between θ

and θ + dθ

Fig. 1.11 Schematic
illustration of different values
of the deflection function
corresponding to the same
scattering angle θ :
Θ(b1) = θ , Θ(b2) = −θ ,
Θ(b3) = θ − 2π

in Fig. 1.10, for which Θ(b) = θ . However, there may also be particles with in-
coming trajectories below the z-axis, corresponding to a scattering plane rotated
by π around the z-axis. An example is given by the dashed trajectory in Fig. 1.11
Such particles are detected under the scattering angle θ if Θ(b) = −θ . A scattering
experiment in three dimensions usually does not discriminate between these two
possibilities. Furthermore, one or more revolutions around the scattering centre are
not detected, so observation under the scattering angle θ records all particles with
impact parameter b for which ±(Θ(b) + 2Mπ) = θ , i.e.,

Θ(b) = ±θ − 2Mπ, M = 0,1,2 . . . . (1.36)

The case b = b3 in Fig. 1.11 is an example for Θ(b) = θ − 2π .
The differential scattering cross section as function of the scattering angle θ is

obtained by summing the contributions (1.35) over all impact parameters fulfill-
ing (1.36),

dσ

dΩ
(θ) =

∑

i

bi

sin θ

∣∣∣∣
db

dθ

∣∣∣∣ =
∑

i

bi

sin θ

[∣∣∣∣
dΘ

db

∣∣∣∣
bi

]−1

. (1.37)

The area dσ corresponds to the area perpendicular to the incoming beam, through
which all trajectories pass which are scattered into the solid angle dΩ . The expres-
sion on the far right of (1.37) is often preferred, because Θ(b) is an unambiguous
function of the impact parameter b, defined on the interval [0,∞). In the preceed-
ing expression, different terms in the sum correspond to different branches of the
multivalued function b(θ).
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The integrated or total scattering cross section σ is obtained by integrating the
differential scattering cross section (1.37) over all angles of the unit sphere,

σ =
∫

dσ

dΩ
dΩ = 2π

∫ π

0

dσ

dΩ
(θ) sin θ dθ. (1.38)

The total scattering cross section corresponds to the area perpendicular to incidence
through which all trajectories pass which are scattered at all.

For scattering by a hard sphere of radius R, the deflection function (1.9) is a
bijective function of the impact parameter on the domain b ∈ [0,R] where Θ = θ

and b = R cos(θ/2), so

dσ

dΩ
= b

sin θ

∣∣∣∣
db

dθ

∣∣∣∣ = R2

4
. (1.39)

Equation (1.39) shows that the hard sphere scatters isotropically. The total scat-
tering cross section is, according to (1.38), simply 4π times the differential cross
section (1.39), σ = πR2, which is just the geometric cross section, i.e., the area of
the obstacle as seen by the incident beam.

For a potential V (r) which approaches zero smoothly as r → ∞, the total scat-
tering cross section is infinite, because even trajectories with very large impact pa-
rameters are scattered into small but nonvanishing scattering angles. For a potential
falling off as V (r) ∼ Cα/rα asymptotically, Θ(b) ∝ 1/bα according to (1.19), and
the differential scattering cross section (1.37) diverges in the forward direction as

dσ

dΩ
(θ)

θ→0∼ 1

θ2+2/α

1

α

[√
π

|Cα|
E

Γ [(1 + α)/2]
Γ (α/2)

]2/α

. (1.40)

1.3.1 Kepler–Coulomb Potential

The Kepler–Coulomb potential V (r) = C/r was introduced in Sect. 1.2.1, Eq. (1.20).
The deflection function Θ(b) is given in (1.24) and shown in the right-hand part of
Fig. 1.4. It is a bijective mapping of the interval [0,∞) onto a finite interval of
deflection angles: (0,π] in the repulsive case C > 0 and [−π,0) in the attractive
case C < 0. The relation between scattering angle and deflection angle is θ = Θ for
C > 0 and θ = −Θ for C < 0. Explicitly,

Θ(b) = ±2 arccos

(
1

√
γ 2 + 1

)
,

γ = |C|
2Eb

=
∣∣∣∣tan

(
θ

2

)∣∣∣∣ ⇒ b =
∣∣∣∣

C

2E
cot

(
θ

2

)∣∣∣∣.
(1.41)

The differential scattering cross section follows via (1.37),
∣∣∣∣
db

dθ

∣∣∣∣ = |C|
4E

1

sin2(θ/2)
, so

dσ

dΩ
=

(
C

4E

)2 1

sin4(θ/2)
=

(
dσ

dΩ

)

Ruth
, (1.42)
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Fig. 1.12 Rutherford cross
section (1.42) for scattering
by the Kepler–Coulomb
potential (1.20)

and it is shown in Fig. 1.12. This is the famous Rutherford formula for the dif-
ferential cross section in Coulomb scattering. It does not discriminate between the
repulsive case C > 0 and the attractive case C < 0.

1.3.2 Inverse-Power Potentials

Inverse-power potentials V (r) = Cα/rα were introduced in Sect. 1.2.2, Eq. (1.25).
The deflection function is shown for the example α = 4 in the right-hand part of
Fig. 1.6. For the repulsive case, Cα > 0, the deflection function Θ(b) is a bijective
mapping of the interval [0,∞) onto [0,π) and Θ = θ . The scattering cross section
diverges in the forward direction according to (1.40) and is a monotonically de-
creasing function of the scattering angle. For an attractive inverse-power potential
with α < 2, there is no centrifugal barrier, and the scattering cross section is also a
monotonically decreasing function of θ .

When Cα < 0 and α > 2, there is a centrifugal barrier and orbiting occurs when
the parameter γ = α|Cα|/(2Ebα) is equal to the value γorb given in Eq. (1.28),
which, for given values of E and Cα , corresponds to the impact parameter

borb =
(

α|Cα|
2Eγorb

)1/α

=
(

α|Cα|
2E

)1/α √
α

(α − 2)(α−2)/(2α)
. (1.43)

As b increases from borb to infinity, Θ(b) grows from −∞ to zero. For each scat-
tering angle θ ∈ (0,π), there is an infinite sequence of impact parameters for which
Θ + 2Mπ = θ or Θ + 2Mπ = −θ . The derivative |dΘ/db| is very large near or-
biting, so the contribution of near-orbiting trajectories to the differential scattering
cross section (1.37) is quite small. The small range of impact parameters near borb

contributes rather uniformly to all scattering angles. The differential scattering cross
section is shown in Fig. 1.13 for an inverse-power potential (1.25) with α = 4.
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Fig. 1.13 Differential
scattering cross section for an
inverse-power potential (1.25)
with α = 4

Finite impact parameters for which Θ(b) is an odd multiple of π (corresponding
to backward scattering) give a divergent contribution to the cross section due to the
sin θ in the denominator of the expression (1.37). Such divergent enhancement of
the backward scattering cross section is referred to as glory scattering. The name
stems from a similar effect in light scattering [1]. Note that the integration of the
differential scattering cross section over a small finite range of angles near θ = π

will lead to a finite result, because the diverging factor 1/ sin θ in the cross section
is compensated by the factor sin θ in the differential dΩ .

Glory scattering also occurs for finite impact parameters for which Θ(b) is an
even multiple of π (“forward glory”). For potentials falling off smoothly to zero
when r → ∞, the effect of the forward glory is swamped by the generic forward
divergence of the differential scattering cross section, see Eq. (1.40).

For an attractive inverse-power potential (1.25) with α > 2, particles with impact
parameters smaller than the orbiting value borb defined in (1.43) crash into the ori-
gin, where they may be absorbed by a variety of physical processes. The absorption
cross section σabs, defined as the number of particles absorbed per unit time, divided
by the incoming current density nυ∞, is simply the area perpendicular to incidence
through which the corresponding trajectories pass. Assuming that all particles inci-
dent with impact parameters b < borb are absorbed yields

σabs = πb2
orb = πα

( |Cα|
2E

)2/α(
1

α − 2

)1−2/α

. (1.44)

For an inverse-square potential (1.30) with C2 < 0, particles crash into the origin if
b ≤ √|C2|/E. If all these particles are absorbed,

σabs = π
|C2|
E

, (1.45)

which corresponds to the result (1.44) in the limit α → 2.
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Fig. 1.14 Differential
scattering cross section for
the Lennard–Jones
potential (1.32). For
E = 0.9E , there is a rainbow
at θR ≈ 0.61π and the dark
side is towards smaller
scattering angles. For
E = 1.2E , there is a rainbow
at θR ≈ 0.71π and the dark
side is towards larger
scattering angles

1.3.3 Lennard–Jones Potential

The Lennard–Jones potential (1.32) was discussed in Sect. 1.2.3, and deflection
functions are shown in Fig. 1.9 for three energies. Differential scattering cross sec-
tions are shown in Fig. 1.14 for the same energies. At the lowest energy, E = 0.6E ,
orbiting occurs and the behaviour of the cross section is qualitatively similar to that
of the attractive 1/r4 potential shown in Fig. 1.13: there is divergence at backward
angles corresponding to glory scattering, and the generic forward divergence. At
E = 0.9E , there is no orbiting, but the deflection function passes −π for two finite
values of the impact parameter, so glory scattering is still observable.

The deflection function at E = 0.9E has a minimum value Θmin ≈ −1.39π for
Λ ≈ 1.45. At the corresponding scattering angle, θR = Θmin + 2π ≈ 0.61π , the dif-
ferential scattering cross section (1.37) diverges, because dΘ/db vanishes. Such a
divergence is called a rainbow singularity, because an analogous effect in light scat-
tering is responsible for the rainbows in the sky [1]. The corresponding scattering
angle θR is the rainbow angle. For θ > θR ≈ 0.61π , there are five branches of b(θ)

contributing to the scattering cross section (1.37), namely two with θ = Θ + 2π ,
two with θ = −Θ and one with θ = Θ . The two branches with θ = Θ + 2π co-
alesce at θR and no longer contribute for θ < θR, so only the three contributions
with θ = ±Θ remain. For this rainbow, the regime θ < θR is the dark side of the
rainbow, while the regime θ > θR is the bright side of the rainbow. The differential
cross section (1.37) is noticeably smaller on the dark side of a rainbow than on the
bright side.

At E = 1.2E , the deflection function has a minimum Θmin ≈ −0.71π at Λ ≈
1.56. The rainbow angle is now θR = −Θmin, and the dark side of the rainbow is
θ > θR, while θ < θR is the bright side. Note that Θ(b) never passes an odd multiple
of π beyond b = 0, so there is no glory scattering at E = 1.2E .
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Fig. 1.15 Schematic
illustration of a
two-dimensional scattering
experiment in the y–z plane.
The impact parameter can be
positive or negative (or zero),
and the scattering angle θ

varies between −π and π

1.4 Classical Scattering in Two Spatial Dimensions

Two-dimensional scattering problems arise naturally when the motion of a particle
is physically restricted to a plane. Furthermore, a three-dimensional scattering prob-
lem is effectively two-dimensional, if the physical system is translationally invariant
in one direction, as is, e.g., the case for scattering of an atom by an infinitely long
cylindrical wire.

As in three-dimensional scattering, we choose the z-axis to lie in the direction
of incidence. The scattering potential is assumed to be radially symmetric, and the
incoming particle with mass μ initially moves on a straight-line trajectory displaced
by the impact parameter b from the z-axis. In three dimensions, this set-up is axially
symmetric around the z-axis, and we chose the scattering plane to be the y–z plane
with b = L

√
2μE ≥ 0, see Fig. 1.1. In the 2D case, axial symmetry is replaced by

reflection symmetry at the z-axis, and we could again choose the y–z plane such,
that b ≥ 0. We shall, however, adopt the more customary and convenient approach,
where the y-z plane is assumed given by the physical system, so the impact param-
eter can be positive or negative (or zero), while the observable scattering angle θ

varies between −π and π—as sketched in Fig. 1.15.
For a given potential V (r), the deflection function Θ(b) is the same as described

in Sect. 1.2 for nonnegative b. Since the equations of motion are invariant under re-
flection at the z-axis, the deflection function for negative impact parameters follows
via

Θ(−b) = −Θ(b), (1.46)

i.e. the deflection function is an antisymmetric function of the impact parameter.
When Θ(0) �= 0, i.e., limb→0 Θ(b) = mπ with m �= 0, then the deflection function
shows a jump of 2mπ at b = 0. As an example, Fig. 1.16 shows the deflection func-
tion for the Kepler–Coulomb potential V (r) = C/r , adapted to the two-dimensional
case.

Particles scattered into a given scattering angle θ ∈ (0,π) are those with im-
pact parameter b fulfilling (1.36). For each positive impact parameter b for which
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Fig. 1.16 Deflection
function (1.24) for the
Kepler–Coulomb potential,
adapted to the
two-dimensional case

Θ(b) = −θ − 2Mπ , the negative impact parameter −b leads to the deflection angle
Θ(−b) = θ + 2Mπ because of (1.46). Trajectories of particles scattered into −θ

are the reflections at the z-axis of those scattered into θ .
Adapting (1.36) to the two-dimensional case we formulate: A given scattering an-

gle θ ∈ (−π,π) accommodates all particles with impact parameters b ∈ (−∞,∞)

for which

Θ(b) = θ − 2Mπ, M = 0,±1,±2 . . . . (1.47)

Equation (1.8) in Sect. 1.2 can be generalized to accommodate negative angular
momenta, for which θ(t) is a monotonically increasing function of time. One con-
sequence is, that the integer M on the right-hand side of (1.47) can only be negative
for negative impact parameters b, while it can only be positive for positive b, as
already formulated in (1.36).

The differential dλ is a quantitative measure for the number of particles scattered
into angles between θ and θ + dθ per unit time, normalized to the incoming current
density nυ∞. For each impact parameter fulfilling (1.47), these particles are those
with incoming trajectories passing through the differential length db as shown in
Fig. 1.15. The number of particles scattered into dθ per unit time is nυ∞ × db, so

dλ ≡ db =
∣∣∣∣
db

dθ

∣∣∣∣dθ. (1.48)

The differential scattering cross section as function of the scattering angle θ is
obtained by summing the contributions (1.48) over all impact parameters fulfill-
ing (1.47),

dλ

dθ
=

∑

i

∣∣∣∣
db

dθ

∣∣∣∣ =
∑

i

[∣∣∣∣
dΘ

db

∣∣∣∣
bi

]−1

. (1.49)

The length dλ corresponds to the length perpendicular to the incoming beam,
through which all particles pass that are scattered into the angle dθ . From the sym-
metry with respect to reflection at the z-axis, it follows that the differential scattering
cross section (1.49) is an even function of θ .
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The integrated or total scattering cross section is obtained by integrating the
differential cross section (1.49) over all scattering angles:

λ =
∫ π

−π

dλ

dθ
dθ. (1.50)

It corresponds to the length perpendicular to the incoming beam, through which all
particles pass that are scattered at all.

The formulae (1.49) and (1.50) for scattering cross sections in 2D differ from the
corresponding formulae (1.37) and (1.38) in 3D in that they are missing the factor
bi/ sin θ coming from the definition of the solid angle. So, although the deflection
function in 2D scattering is the same as in 3D—supplemented by Eq. (1.46) to ac-
commodate negative impact parameters—the scattering cross sections for analogous
systems in 2D and 3D do show differences.

Scattering by a hard sphere of radius R in 3D corresponds in 2D to the scattering
by a hard disc of radius R, and Fig. 1.2 in Sect. 1.2 can be used as illustration in this
case as well. The deflection function is given by (1.9) with (1.46), so b = R cos(θ/2)

and the differential cross section is, according to (1.49),

dλ

dθ
=

∣∣∣∣
db

dθ

∣∣∣∣ = R

2

∣∣∣∣sin

(
θ

2

)∣∣∣∣. (1.51)

Note that scattering by a hard disc is, in contrast to scattering by a sphere, not
isotropic. It is peaked at backward angles, θ → ±π , and it vanishes towards forward
angles θ → 0. The depletion at forward angles is easily understood considering that
particles scattered into small angles hit the disc near the edge of its projection onto
the line perpendicular to incidence, i.e. for b near ±R. In 3D, a whole circle of im-
pact parameters with b near R and azimuthal angles from zero to 2π contributes to
scattering into small angles. The integrated cross section for scattering by the hard
disc is

λ = R

2

∫ π

−π

∣∣∣∣sin

(
θ

2

)∣∣∣∣dθ = 2R, (1.52)

which is the geometric cross section, i.e., the length occupied by the disc in the path
of the incident particles.

As in 3D scattering, the integrated cross section is infinite for a potential falling

off smoothly as r → ∞. For V (r)
r→∞∼ Cα/rα , the deflection function behaves

according to (1.19) and the differential scattering cross section (1.49) diverges in
the forward direction as

dλ

dθ

θ→0∼ 1

|θ |1+1/α

1

α

[√
π

|Cα|
E

Γ [(1 + α)/2]
Γ (α/2)

]1/α

. (1.53)

Comparing the forward divergence in 2D (1.53) and 3D (1.40) gives the appealingly
simple result,

[
dλ

dθ
(θ)

]

2D

θ→0∼
√

1

α

[
dσ

dΩ

(|θ |)
]

3D
. (1.54)
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Fig. 1.17 Differential
scattering cross section in two
dimensions for an
inverse-power potential (1.25)
with α = 4

For the Kepler–Coulomb potential V (r) = C/r , the deflection function is given
analytically in (1.24) and displayed for the 2D situation in Fig. 1.16. The differential
scattering cross section in 2D follows immediately via (1.49),

dλ

dθ
= |C|

4E

1

sin2(θ/2)
. (1.55)

In this case, the relation (1.54), with α = 1, is not only valid asymptotically for
θ → 0; it is an equality for all scattering angles.

The cross sections for the other examples discussed in Sect. 1.3 can also be de-
rived via (1.49) using the deflection functions given in Sect. 1.2. Apart from the
slower divergence at forward angles, a main difference is the absence of the glory
singularity, which is due to the factor 1/ sin θ in the 3D case. A main manifesta-
tion of orbiting and near-orbiting situations in 3D scattering, namely glory scat-
tering at backward angles, is thus missing in the 2D cross sections. Figure 1.17
shows the differential scattering cross section (1.49) for an inverse-power potential
V (r) = C4/r4. The ordinate is labelled with the cross section in units of the length
(2|C4|/E)1/4.

For scattering by an attractive inverse-power potential V (r) = Cα/rα , with
α > 2, orbiting occurs for impact parameters |b| = borb, with borb given by (1.43).
Assuming that all particles with impact parameters |b| < borb are absorbed, the ab-
sorbtion cross section is

λabs = 2borb. (1.56)

The differential cross section for scattering by the Lennard–Jones potential (1.32)
in two dimensions follows via (1.49)—and (1.46)—from the deflection functions
discussed in Sect. 1.3.3, see Fig. 1.9. They are shown in Fig. 1.18 for the same
energies as in Fig. 1.9 and Sect. 1.3.3. The rainbow singularities for E = 0.9E (at
θR ≈ 0.61π ) and for E = 1.2E (at θR ≈ 0.71π ) are manifest, as in the 3D case.
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Fig. 1.18 Differential
scattering cross section in two
dimensions for the
Lennard–Jones
potential (1.32). For
E = 0.9E , there are rainbows
at |θ | = θR ≈ 0.61π and the
dark sides are towards smaller
values of |θ |. For E = 1.2E ,
there are rainbows at
|θ | = θR ≈ 0.71π and the
dark sides are towards larger
values of |θ |
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