
Chapter 6

Overconstrained Mechanisms

By definition, an overconstrained mechanism is a mechanism for which
Grübler’s formula (4.1) yields a degree of freedom F > 0 only because the
system of kinematic constraint equations has a sufficiently large defect d > 0 .
It is known that a simple closed kinematic chain with n < 7 joint variables
has a degree of freedom F > 0 only if it is overconstrained. Sections 6.1 –
6.4 are devoted to simple closed chains with four, with five and with six rev-
olute joints. In the remaining Sects. 6.5 – 6.11 other types of overconstrained
mechanisms are analyzed.

The planar four-bar and the spherical four-bar with n = 4 revolute
joints are among the oldest overconstrained mechanisms. Two simple over-
constrained mechanisms with n = 6 revolute joints are shown in Figs. 6.1
and 6.2 . In Fig. 6.1 the fixed frame, three shafts and the cross-shaped central
bodies of two Hooke’s joints are interconnected by two frame-fixed revolutes
and by two more revolutes in each Hooke’s joint. The mechanism shown in
Fig. 6.2 was invented by Sarrus. Body 4 has the single degree of freedom of
translation along the x-axis. The body is connected to the frame 1 by two
dyads (bodies 2,3 and 5,6 ) each dyad having three parallel revolute joints

Fig. 6.1 Overconstrained
mechanism composed of
three shafts, two revolute

and two Hooke’s joints

Fig. 6.2 Sarrus’ over-

constrained mechanism
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206 6 Overconstrained Mechanisms

perpendicular to the x-axis (otherwise arbitrarily directed, but not all six
parallel).

6.1 Bricard’s Theorem on Closed Chains with Revolute
Joints

The early history of the search for overconstrained mechanisms was marked
by chance discoveries and by ingenuity. The first systematic investigations
were made by Delassus [15, 16]. An important step forward was made by
Bricard’s

Theorem 6.1. In the case of n = 6 revolute joints the joint axes are, in
every position of the system instantaneously, lines of a linear complex. In the
case of n = 5 revolute joints the joint axes are, in every position of the system
instantaneously, lines of a linear congruence. In the case of n = 4 revolute
joints the joint axes are, in every position of the system instantaneously,
generating lines of a ruled surface of order two (a quadric).

Proof for the case n = 6 (Bricard [10]): Let joint i connect bodies i and
i− 1 (i = 1, . . . , 6 cyclic), and let ωi(ni,ai × ni) be the associated velocity
screw of body i relative to body i − 1 (see (9.33)). The vectors ni and
ai × ni are the Plücker vectors of joint axis i . The velocity screw of body 6
relative to itself is zero. This is the set of equations

6∑
i=1

ai × niωi = 0 ,

6∑
i=1

niωi = 0 . (6.1)

Decomposition in some common reference frame yields six homogeneous lin-
ear equations with a (6×6)-coefficient matrix of vector coordinates multiplied
by the column matrix of angular velocities. Since these latter ones are not
all zero, the coefficient matrix must be singular. More precisely, some linear
combination of its rows must be zero. In vector notation this is expressed by
the six equations (one for each column of the matrix)

a · ai × ni + b · ni = 0 (i = 1 . . . , 6) (6.2)

where a and b are vectors whose altogether six coordinates are the coef-
ficients of the said linear combination. This is Eq.(2.25) defining the lines
(ni , ai × ni) to be lines of the linear complex (a;b) . End of proof.

Proof for the case n = 5 : The closed kinematic chain with six axes is
formally reduced to a chain with five axes if the sixth axis (n6 , a6 × n6)
has arbitrary location while simultaneously ω6 = 0 . Equations (6.1) lead
again to (6.2). Because of the arbitrariness of n6 and a6×n6 the said linear
complex (a;b) is now subject to a linear constraint equation. This proves
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that the axes 1 , . . . , 5 are lines of a linear congruence. The proof for the
case n = 4 repeats the same arguments. With axes 5 and 6 being arbitrary
the linear complex (a;b) is subject to two linear constraint equations. This
ends the proof of the theorem.

The theorem states that (in the case n = 6 , for example) a closed kine-
matic chain with six joint axes is instantaneously mobile if in the position
under investigation the six joint axes are lines of a linear complex. Motion
into another position is possible only if in every intermediate position the
six joint axes are lines of a linear complex. In general, this is not the case if
a single assembly position of a mechanism is the result of selecting at ran-
dom six lines of a linear complex as joint axes. The theorem provides a new
direction to the search for overconstrained systems, namely: Find closed kine-
matic chains having the property that its six axes belong in every position
to a linear complex. This search led Bricard [10] to three classes of overcon-
strained mechanisms which are the subjects of Sects. 6.4.1 , 6.4.2 and 6.4.3 .
The chapter begins with the celebrated Bennett mechanism which has four
revolute joints.

6.2 Bennett Mechanism

In Sect. 5.4.1 the closed kinematical chain RCCC was investigated (see Fig.
5.3 and (5.43) – (5.51)). Bennett [8] noticed that the joint variables h2 , h3

and h4 in the three cylindrical joints are identically zero if the parameters
satisfy the conditions

α3 = α1 , �3 = �1 , α4 = α2 , �4 = �2 ,
�2 sinα1 = �1 sinα2 , h1 = 0 .

}
(6.3)

A proof is given further below. With h2 = h3 = h4 ≡ 0 all four joints of
the mechanism are revolute joints with zero offset. This mechanism is called
Bennett mechanism. It is an overconstrained mechanism with the degree of
freedom F = 1 . Grübler’s formula (4.1) yields F = −2+d . Hence the number
of dependent constraint equations is d = 3 . According to Bricard’s Theorem
6.1 the joint axes are, in every position of the mechanism instantaneously,
generators of a hyperboloid.

From the condition �2 sinα1 = �1 sinα2 it follows that sinα1 and sinα2

have the same sign. Arbitrarily, the positive sign is assumed, i.e., angles in
the interval 0 < α1, α2 < π (angles zero and π are excluded because only
spatial mechanisms are investigated). The Bennett mechanism is specified by
the three parameters �1 , α1 and α2 . Together they determine �2 .
Note: The alternative decision to use as parameters the quantities �1 , �2 and
α1 has the disadvantage that either no real angle α2 or two different angles
α2 satisfy the condition �2 sinα1 = �1 sinα2 . Two mechanisms differing in
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α2 only are not representing two types of Bennett mechanism, but simply
two different Bennett mechanisms.

Kinematical properties of the Bennett mechanism are deduced from the
equations governing the mechanism RCCC and from the conditions (6.3).
First, it is proved that h2 = h3 = h4 ≡ 0 . Equation (5.51) reduces to
h3 = 0 . This concludes the proof for h3 . From the symmetry of Eqs.(6.3)
it follows that h2 ≡ 0 if h4 ≡ 0 . The solution h4 ≡ 0 requires that the
numerator expression in (5.45) be identically zero. In addition, (5.43) is valid.
Therefore, it must be shown that the equations

Ac4 +Bs4 −R = 0 , Dc4 + Es4 + F = 0 (6.4)

do not contradict each other. The coefficients A , B , R , D , E , F are those
given in (5.44) and (5.46). In view of (6.3) they have the forms

A = −S1(S1C2c1 + S2C1) , B = S2
1s1 , D = �1(ac1 + b) ,

R = S1(S2C1c1 + S1C2) , E = −2�1S1C1s1 , F = �1(bc1 + a)

}
(6.5)

with constants

a = S1(2C1C2 − S2
2) , b = S2(2C

2
1 + C1C2 − 1) . (6.6)

With these expressions Eqs.(6.4) are two linear equations for two unknowns:

S1C2
1 + c1c4
s1s4

+ C1S2
c1 + c4
s1s4

= S1 , a
1 + c1c4
s1s4

+ b
c1 + c4
s1s4

= 2S1C1 .

(6.7)
The solution is

1 + c1c4
s1s4

=
1− C1C2

C2 − C1
,

c1 + c4
s1s4

=
−S1S2

C2 − C1
. (6.8)

The difference of these two equations produces on the left-hand side the
expression

(1− c1)(1− c4)

s1s4
= tan

ϕ1

2
tan

ϕ4

2
(6.9)

and on the right-hand side the constant

1− (C1C2 − S1S2)

C2 − C1
=

1− cos(α1 + α2)

2 sin α1+α2

2 sin α1−α2

2

=
sin α1+α2

2

sin α1−α2

2

. (6.10)

It can have any positive or negative value. Thus, the result for ϕ4 is

tan
ϕ4

2
= p cot

ϕ1

2
, p =

sin α1+α2

2

sin α1−α2

2

. (6.11)
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This equation relates to every angle 0 ≤ ϕ1 ≤ 2π a single angle ϕ4 (and
vice versa) for which h4 ≡ 0 . This concludes the proof.

The existence of a single angle ϕ4 for every angle ϕ1 proves that the
Bennett mechanism does not have a second configuration. Full-cycle rotata-
bility in joint 1 follows also from the fact that in (6.4) A2 + B2 − R2 =
(S1S2s1)

2 ≥ 0 and D2 + E2 − F 2 = [�1S2(C1 + C2)s1]
2 ≥ 0 .

Next, the relationship between ϕ2 and ϕ1 is established. For the mech-
anism RCCC it is given by Eqs.(5.48), (5.49). With (6.3) the coefficients
A∗, B∗, R∗ turn out to be the coefficients A , B , R in (6.5) with α1 and
α2 interchanged. Because of (6.11) this means that ϕ2 = −ϕ4 .

Finally, the relationship between ϕ3 and ϕ1 is established. Equation
(5.50) reduces to cosϕ3 = cosϕ1 . Hence either ϕ3 = ϕ1 or ϕ3 = −ϕ1 .
Another equation involving ϕ3 is Eq.(5.53). With (6.3) it becomes

S1C2(c3 + c4)− S2(s3s4 − C1c3c4) + C1S2 = 0 . (6.12)

Depending on whether ϕ3 = ϕ1 or ϕ3 = −ϕ1 this is one of the two equations

S1C2(c1 + c4)− S2(±s1s4 − C1c1c4) + C1S2 = 0 . (6.13)

For c1 + c4 and for c1c4 expressions obtained from (6.8) are substituted. It
turns out that only the equation with the minus sign is identically satisfied.
This shows that ϕ3 = −ϕ1 .

Next, the angular velocity ϕ̇4 and the angular acceleration ϕ̈4 are de-
termined by differentiating (6.11) with respect to time. The first derivative
yields

ϕ̇4 = −p ϕ̇1

cos2 ϕ4

2

sin2 ϕ1

2

= −p ϕ̇1
1

sin2 ϕ1

2 (1 + tan2 ϕ4

2 )
(6.14)

= −p ϕ̇1
1

sin2 ϕ1

2 (1 + p2 cot2 ϕ1

2 )
= −p ϕ̇1

1

sin2 ϕ1

2 + p2 cos2 ϕ1

2

(6.15)

or, finally,

ϕ̇4 = −ϕ̇1
2p

1 + p2 − (1− p2) cosϕ1
. (6.16)

The ratio ϕ̇4/ϕ̇1 is oscillating 2π-periodically between the extremal values
−p and −1/p . Differentiating one more time yields for the angular acceler-
ation the expression

ϕ̈4 = −ϕ̈1
2p

1 + p2 − (1− p2) cosϕ1
+ ϕ̇2

1

2p(1− p2) sinϕ1

[1 + p2 − (1− p2) cosϕ1]2
. (6.17)

Byshgens [13] and Dimentberg/Schor [18] gave the first proofs that the
Bennett mechanism, the planar four-bar and the spherical four-bar are the
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only overconstrained mechanisms composed of four links and four revolute
joints. See also Dietmaier [19].

In Chap. 7 chains RR are investigated. A chain RR is a chain of three
bodies interconnected by two revolute joints. One of the terminal bodies is
the fixed frame. The other terminal body has the degree of freedom two.
Subject of investigation are positions of the moving body and trajectories of
body-fixed points. In the Bennett mechanism bodies 3 and 1 are the terminal
bodies of two chains RR , one with joints 1 , 2 on body 2 and the other with
joints 3 , 4 on body 4 . Equations (6.3) and the relationships ϕ3 = −ϕ1 ,
ϕ4 = −ϕ2 show that both chains RR are congruent. Every position of body
3 and the trajectories of all points of body 3 are generated by both chains
RR . In Chap. 7 these statements are arrived at by arguments different from
the ones used here.

6.3 Kinematical Chains with Five Revolute Joints

The only known 5R mechanism is the Goldberg mechanism treated in Sect.
6.3.1 . Whether other types exist, is an unsettled question. If so, then the
fifteen constant Denavit-Hartenberg parameters �i , αi , hi (i = 1, . . . , 5)
satisfy certain conditions. A set of sufficient conditions is formulated as fol-
lows. The unit vectors in the polygon of vectors �iai+hini (i = 1, . . . , 5) are
shown in Fig. 5.5a in which now all five joints are understood to be revolute
joints. Woernle-Lee equations eliminate two joint variables. Five equations
relating ϕ3 , ϕ1 , ϕ5 are based on the products n2 · n4 , n2 · r , n4 · r , r2

and r · n2 × n4 with the vector r pointing from n2 to n4 . This vector has
the two representations

r =

{
h2n2 + �2a2 + h3n3 + �3a3 (right segment)

−(h4n4 + �4a4 + h5n5 + �5a5 + h1n1 + �1a1) (left segment) .
(6.18)

The fifth equation is the dual derivative of the first equation (see (3.50)).
Evaluation of the equations by means of Table 5.2 is an elementary exercise
left to the reader. The first equation is nk · nk+2 = nk · nk−3 with k = 2 .
The equations are

S2S3c3 +A1c5 +B1s5 = R1 ,
�3 S2s3 +A2c5 +B2s5 = R2 ,

−h2S2S3c3 +�2 S3s3 +A3c5 +B3s5 = R3 ,
�2 �3 c3 +h2�3 S2s3 +A4c5 +B4s5 = R4 ,

(�2C2S3 + �3S2C3)c3 −h3S2S3s3 +A5c5 +B5s5 = R5 .

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(6.19)

The coefficients of c3 = cosϕ3 and s3 = sinϕ3 are constants. The coefficients
Ai , Bi , Ri (i = 1, . . . , 5) are abbreviations for linear functions of c1 = cosϕ1
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and s1 = sinϕ1 :

A1 = −S4(S1C5c1 + C1S5) , B1 = S4S1s1 ,
R1 = C4(S1S5c1 − C1C5) + C2C3 ,

A2 = −h4S4(S1C5c1 + C1S5) + �4S1s1 ,
B2 = �4(S1C5c1 + C1S5) + h4S4S1s1 ,
R2 = (h4C4 + h5)(S1S5c1 − C1C5)− (�5S1s1 + h1C1 + h2 + h3C2) ,

A3 = S4(�1C5s1 − h1S5) , B3 = S4(�1c1 + �5) ,
R3 = −[C4(�1S5s1 + h1C5 + h5) + C3(h2C2 + h3) + h4] ,

A4 = −�4(�1c1 + �5)− h4S4(�1C5s1 − h1S5) ,
B4 = −h4S4(�1c1 + �5) + �4(�1C5s1 − h1S5) ,
R4 = (h4C4 + h5)(�1S5s1 + h1C5) + �1�5c1 + h4h5C4 − h2h3C2

+ 1
2 [�

2
1 + �24 + �25 + h2

1 + h2
4 + h2

5 − (�22 + �23 + h2
2 + h2

3)] ,

A5 = h5B1 +A′
1 , B5 = −h5A1 +B′

1 R5 = R′
1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(6.20)

(A′
1 , B

′
1 , R

′
1 are the dual derivatives of A1 , B1 , R1 , respectively).

The first four Eqs.(6.19) are solved for c3 , s3 , c5 , s5 . In terms of coefficient
determinants

c3 =
Δc3

Δ
, s3 =

Δs3

Δ
, c5 =

Δc5

Δ
, s5 =

Δs5

Δ
. (6.21)

Δc3 and Δs3 are sums of products of three functions AiBjRk , whereas Δc5 ,
Δs5 and Δ are sums of products of only two functions (BjRk or AiRk or
AiBj ). Substitution of (6.21) into the fifth Eq.(6.19) results after multiplica-
tion with Δ in an equation in which ϕ1 is the only variable. This equation
must be the identity equation. The highest-order terms are c31 , c21s1 , c1s

2
1

and s31 . In terms of the new variable x1 = tanϕ1/2 it is a 6th-order equation

a6x
6
1 + a5x

5
1 + · · ·+ a1x1 + a0 ≡ 0 . (6.22)

The coefficients are functions of the fifteen parameters. Without loss of gen-
erality, the parameter �1 can be set equal to one so that �2, . . . , �5 and
h1, . . . , h5 are determined as multiples of �1 . Hence there are only four-
teen essential parameters. Equations (6.19), (6.20) remain valid when the
indices of all parameters and variables are cyclicly increased by 1 , by 2 , by
3 , by 4 . Hence altogether five 6th-order identity equations with variables
xi = tanϕi/2 (i = 1, . . . , 5) and with coefficients depending on the fourteen
essential parameters are obtained. In each identity equation the seven coeffi-
cients must be zero. In addition, the conditions c23+s23 = 1 , c25+s25 = 1 and
four more such conditions must be satisfied. Hence altogether 45 functions
of the parameters must be zero.
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6.3.1 Goldberg Mechanism

Goldberg [20] recognized that an overconstrained 5R mechanism can be con-
structed by merging two Bennett mechanisms. Both mechanisms must be
identical in the parameters α1 and �1 and different in the third parameter,
i.e., α2 in one mechanism and α3 �= α2 in the other (see Fig. 6.3a ). The
parameters satisfy Eqs.(6.3), i.e.,

�2 = �1
sinα2

sinα1
, �3 = �1

sinα3

sinα1
(6.23)

as well as the identity of pairs of opposite bodies. All joints have zero off-
set. Four bodies have the parameters �1 , α1 . In Fig. 6.3b the mechanisms
are shown in positions in which they share body 1 with parameters �1 , α1 .
The degree of freedom two as well as the quantities �1 and α1 remain un-
changed when body 1 is removed while preserving all six joint axes (Fig. c).
Indeed, none of the original Bennett mechanisms is mobile with other than
the original quantities �1 , α1 . In the system of Fig. 6.3d one of the two
joints bridging both mechanisms is frozen in an arbitrarily chosen position
β . This results in the Goldberg mechanism with five bodies and five revolute
joints. It has five constant parameters, namely, the four essential parameters
α1 , α2 , α3 , β and the length �1 which merely determines the size.

The bodies are newly labeled as shown in Fig. 6.3d . Body i is the body
of length �i (i = 1, . . . , 5). Joint 3 between bodies 2 and 3 is the mobile
joint bridging the two Bennett mechanisms. Body 5 with joint axes 5 and
1 is the body created by freezing the joint in the position β . The coefficients
Ai , Bi , Ri (i = 1, . . . , 5) in (6.19) and (6.20) depend on the parameters
�5 , α5 of this body 5 and on the offsets h5 , h1 of its joints 5 and 1 . As
preparatory step these four parameters are expressed in terms of β and of
the parameters �2 , α2 and �3 , α3 of the two bodies merged into body 5 .
These two bodies are labeled body 2′ and body 3′ , respectively. The vector
r pointing from axis 5 to axis 1 has the two representations

Fig. 6.3 Goldberg’s creation of a 5R mechanism from two Bennett mechanisms
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r =

{
h5n5 + �5a5 + h1n1 (right segment)

�2a
′
2 + �3a

′
3 (left segment)

(6.24)

with the notation familiar from Figs. 5.1 and 5.2. The unknown parameters
are determined from five Woernle-Lee equations for the loop formed by the
bodies 2′ , 3′ , 5 and by the joints 5 , 1 and the frozen joint. The five
equations are based on the scalar products n5 · n1 , n5 · r , n1 · r , r2 and
r · n5 × n1 . The first four equations are obtained from Table 5.2 :

cosα5 = cosα2 cosα3 − sinα2 sinα3 cosβ , (6.25)

h5 + h1 cosα5 = �2 sinα3 sinβ = �1
sinα2 sinα3 sinβ

sinα1
, (6.26)

h5 cosα5 + h1 = �3 sinα2 sinβ = �1
sinα2 sinα3 sinβ

sinα1
, (6.27)

h2
5 + h2

1 + 2h5h1 cosα5 + �25 = �22 + �23 + 2�2�3 cosβ

= �21
sin2 α2 + sin2 α3 + 2 sinα2 sinα3 cosβ

sin2 α1

.

(6.28)

The fifth equation is the dual derivative of the first equation:

�5 sinα5 = �2 sinα2 cosα3 + �3 cosα2 sinα3

+(�2 cosα2 sinα3 + �3 sinα2 cosα3) cosβ

= �1
sin2 α2 cosα3 + sin2 α3 cosα2 + (cosα2 + cosα3) sinα2 sinα3 cosβ

sinα1
.

(6.29)

From these equations the angle β is eliminated in order to express �5 , h1

and h5 in terms of �1 , α2 , α3 and α5 (Dietmaier [19]). Equation (6.29)
with the expression for sinα2 sinα3 cosβ from (6.25) yields

�5 = �1
(cosα2 + cosα3)

sinα1

(1− cosα5)

sinα5
= �1

cosα2 + cosα3

sinα1
tan

α5

2
. (6.30)

The difference of (6.26) and (6.27) is

(h5 − h1)(1− cosα5) = 0 . (6.31)

In the general case1 α5 �= 0 , the equation yields h5 = h1 . Equation (6.28)
with �5 from (6.30) and with cosβ from (6.25) yields

1 Dietmaier investigates also the special cases α5 = 0 , π (axes 1 and 5 parallel). It is

shown that α5 = 0 can occur only when the mechanism is a planar 2-d.o.f. mechanism.
The case α5 = π requires β = 0 , α2 + α3 = 0 and h5 = h1 (arbitrary)
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h5 = h1 = �1

√
1− cos2 α2 − cos2 α3 + 2 cosα2 cosα3 cosα5 − cos2 α5

sinα1(1 + cosα5)
(6.32)

or with the identities

1− cos2 α2 − cos2 α3 = sin2 α2 sin
2 α3 − cos2 α2 cos

2 α3

= −(cosα2 cosα3 + sinα2 sinα3)(cosα2 cosα3 − sinα2 sinα3)
= − cos(α2 − α3) cos(α2 + α3) ,

2 cosα2 cosα3 = cos(α2 − α3) + cos(α2 + α3)

⎫⎪⎪⎬
⎪⎪⎭ (6.33)

h5 = h1 = �1

√
[cos(α2 − α3)− cosα5][cosα5 − cos(α2 + α3)]

sinα1(1 + cosα5)
. (6.34)

Both �5 and h5 are symmetric with respect to α2 and α3 . The free param-
eters α2 , α3 and α5 are subject to the condition that h5 must be real.

With �5 and h5 = h1 and with the parameters

h2 = h3 = h4 = 0 , 
4 = 
1 , α4 = α1 , 
2 = 
1
sinα2

sinα1
, 
3 = 
1

sinα3

sinα1
(6.35)

the set of Eqs.(6.19), (6.20) and four more sets produced by cyclic permuta-
tion of all indices are formulated. In each set only the first four equations are
used because the fifth equation is known to be satisfied if the first four are
satisfied. Taking the first set, i.e., (6.19) and (6.20) as example three opera-
tions are carried out which are repeated with the other four sets of equations.
Operation 1 : Introduction of the special parameters (6.35). The coefficients
(6.20) are

A1 = −S1(S1C5c1 + C1S5) , B1 = S2
1s1 ,

R1 = C1(S1S5c1 − C1C5) + C2C3 ,

A2 = �1S1s1 , B2 = �1(S1C5c1 + C1S5) ,
R2 = h1[S1S5c1 − C1(1 + C5)]− �5S1s1 ,

A3 = S1(�1C5s1 − h1S5) , B3 = S1(�1c1 + �5) ,
R3 = −C1[�1S5s1 + h1(1 + C5)] ,

A4 = −�1(�1c1 + �5) , B4 = �1(�1C5s1 − h1S5) ,
R4 = h1(�1S5s1 + h1C5) + �1�5c1 +

1
2 [2�

2
1 + �25 + 2h2

1 − (�22 + �23)] .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(6.36)

Operation 2 : From the first two Eqs.(6.19) it follows that

cosϕ3 =
R1 −A1c5 −B1s5

S2S3
, sinϕ3 =

R2 −A2c5 −B2s5
�2S2

. (6.37)

Operation 3 : Linear combinations of the equations result in two equations
from which c3 and s3 are eliminated (note Eqs.(6.35) for h2 , �2 and �3 ):
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(�21A1 − S2
1A4)c5+ (�21B1 − S2

1B4)s5 = �21R1 − S2
1R4 ,

(A2 −A3)c5+ (B2 −B3)s5 = R2 −R3 .

}
(6.38)

Let in each set of four equations produced from (6.19), (6.20) by cyclic permu-
tation of indices ϕj be the independent variable. Then the other two variables
are ϕj+2 and ϕj−1 where ϕj+2 is the variable associated with constant co-
efficients. Repetition of the same three operations result in Eqs.(6.37) of the
general form

cosϕj+2 = f(ϕj , ϕj−1) ,
sinϕj+2 = g(ϕj , ϕj−1)

}
(j = 1, 2, 3, 4, 5 cyclic) (6.39)

and in Eqs.(6.38) of the general form

u1(ϕj) cosϕj−1 + v1(ϕj) sinϕj−1 = w1(ϕj) ,
u2(ϕj) cosϕj−1 + v2(ϕj) sinϕj−1 = w2(ϕj)

}
(j = 1, 2, 3, 4, 5) . (6.40)

For a given angle ϕj each of these Eqs.(6.40) has two solutions ϕj−1 . About
the number of solutions common to both equations the following statement
can be made. In the Goldberg mechanism two Bennett mechanisms are con-
nected by joint 3 . A single variable in a Bennett mechanism uniquely de-
termines all other variables in the same Bennett mechanism. Hence a single
common solution exists if ϕj is not ϕ3 . This solution is

cosϕj−1 =
w1v2 − w2v1
u1v2 − u2v1

, sinϕj−1 =
u1w2 − u2w1

u1v2 − u2v1
. (6.41)

The associated angle ϕj+2 is determined from (6.39).
In the case ϕj = ϕ3 (6.19) and (6.20) are the equations

S1S5c5 +A∗
1c2 +B∗

1s2 = R∗
1 ,

�5 S1s5 +A∗
2c2 +B∗

2s2 = R∗
2 ,

�1 S5s5 +A∗
3c2 +B∗

3s2 = R∗
3 ,

�1 �5 c5 +A∗
4c2 +B∗

4s2 = R∗
4

⎫⎪⎪⎬
⎪⎪⎭ (6.42)

with the coefficients
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A∗
1 = −S1(C2S3c3 + S2C3) , B∗

1 = S1S3s3 ,

R∗
1 = C1(S2S3c3 − C2C3 + C5) ,

A∗
2 = 
1

[
S3s3 − h1


1
S1(C2S3c3 + S2C3)

]
,

B∗
2 = 
1

(
C2S3c3 + S2C3 +

h1


1
S1S3s3

)
,

R∗
2 =


1

S1

[h1


1
S1C1(S2S3c3 − C2C3 − 1)− S2S3s3

]
,

A∗
3 = 
1C2S3s3 , B∗

3 = 
1(S3c3 + S2) ,

R∗
3 = − 
1

S1

[
C1S2S3s3 +

h1


1
S1(1 + C5)

]
,

A∗
4 = − 
21

S1

[
S2 + S3

(
c3 +

h1


1
S1C2s3

)]
,

B∗
4 =


21
S1

[
C2S3s3 − h1


1
S1(S3c3 + S2)

]
,

R∗
4 =


21
S2
1

[
S2S3

(h1


1
S1C1s3 + c3

)
+ 1 + C2C3 − (C2 + C3)2

1 + C5

]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.43)

Equations (6.40) are

(�1�5A
∗
1 − S1S5A

∗
4)c2 +(�1�5B

∗
1 − S1S5B

∗
4)s2 = �1�5R

∗
1 − S1S5R

∗
4 ,

(�1S5A
∗
2 − �5S1A

∗
3)c2 +(�1S5B

∗
2 − �5S1B

∗
3)s2 = �1S5R

∗
2 − �5S1R

∗
3 .

}
(6.44)

These two equations are identical, i.e., one of them is, independent of the
variable ϕ3 , a constant multiple of the other. This is proved by verifying the
identities

(�1�5A
∗
1 − S1S5A

∗
4)(�1S5B

∗
2 − �5S1B

∗
3)

− (�1�5B
∗
1 − S1S5B

∗
4)(�1S5A

∗
2 − �5S1A

∗
3) ≡ 0 ,

(�1�5A
∗
1 − S1S5A

∗
4)(�1S5R

∗
2 − �5S1R

∗
3)

− (�1�5R
∗
1 − S1S5R

∗
4)(�1S5A

∗
2 − �5S1A

∗
3) ≡ 0 .

⎫⎪⎪⎬
⎪⎪⎭ (6.45)

Each of them has, with different sets of constant coefficients, the form p1c
2
3+

p2c3s3 + p3c3 + p4s3 + p5 ≡ 0 . It is left to the reader to verify that in each
of them p1 = p2 = p3 = p4 = p5 = 0 . Some of these proofs make use of the
relationships


25

21

S2
1 =

1− C5

1 + C5
(C2 + C3)

2 ,

5


1
S1S5 = (1− C5)(C2 + C3) ,

S2
5

(
1 +

h2
1


21
S2
1

)
= −1− C5

1 + C5
(C2 + C3)

2 + 2(1− C5)(1 + C2C3) .

⎫⎪⎪⎬
⎪⎪⎭ (6.46)

From the identity of the Eqs.(6.44) it follows that for a given angle ϕ3 two
sets of solutions ϕ1k , ϕ2k , ϕ4k , ϕ5k (k = 1, 2) exist. For every solution
ϕ2k (k = 1, 2) the first two Eqs.(6.42) determine ϕ5k . Next, with ϕj =
ϕ2k (6.41) determines ϕ1k , and (6.39) determines ϕ4k . This concludes the
analysis of the Goldberg mechanism.
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It is unknown whether there exist 5R mechanisms other than Goldberg
mechanisms. It was shown that its fourteen essential parameters must satisfy
45 conditions. Starting from the same2 Eqs.(6.19), (6.20) Dietmaier [19] for-
mulated a different set of 45 conditions fk = 0 (k = 1, . . . , 45). A numerical

search was made for zero-value minima of the function F =
∑45

k=1 f
2
k . Start-

ing from a randomly picked point in the 14-dimensional parameter space the
algorithm yields a certain minimum. If this minimum is not zero-valued, a
new search is made with a new starting point. Among the zero-valued minima
found only those are of interest which represent a new type of mechanism,
i.e., neither a Goldberg mechanism nor a degenerate mechanism (planar, for
example). Although Dietmaier tried 2×106 randomly picked starting points
no new type of mechanism was found. This is not a proof, but a strong
argument for the Goldberg mechanism to be the only 5R mechanism.

6.4 Kinematical Chains with Six Revolute Joints

The number of different types of overconstrained kinematic chains with six
links and six revolute joints is unknown as well. Many different types are
known. Simple examples are shown in Figs. 6.1 and 6.2 . Systematic de-
scriptions and analyses see in Baker [4, 7], Mavroidis/Roth [25, 26, 27] and
Dietmaier [19]. Bricard [10] discovered three classes of mechanisms known
as line-symmetric, plane-symmetric and trihedral mechanisms. They are the
subjects of the three sections to come. Several other types of mechanisms are
obtained by merging a number of Bennett mechanisms or of Goldberg mech-
anisms in the spirit of Goldberg’s construction of the five-joint mechanism in
Fig. 6.3 (Mudrov [29], Goldberg [20], Wohlhart [31, 32]). Dietmaier [19] found
a new class of mechanisms by the numerical search described above. For six-
link mechanisms the function to be investigated has the form F =

∑102
k=1 f

2
k

with functions fk depending on eighteen Denavit-Hartenberg parameters.
Dietmaier’s mechanism is the subject of Sect. 6.4.4.

6.4.1 Line-Symmetric Bricard Mechanism

A mechanism having six arbitrarily skew, consecutively labeled joint axes 1,
2, 3, 4, 5, 6 is said to be symmetric with respect to a line z if the geometry
is invariant to a 180◦-rotation about this line. Bricard [10] recognized that
such a mechanism is deformable with degree of freedom one, and that the
symmetry is maintained in the course of deformation. His proof of mobility

2 (6.19), (6.20) and Dietmaier’s Eqs.(3-7) – (3-11) are identical if in the latter ones
( si , θi , αi , ai ) is replaced by (hi , ϕi , αi−1 , 
i−1 )
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one is as follows. Suppose that body 2 is fixed in some reference frame, and
that the constraints in all joints are removed. Relative to the reference frame
the line z is specified by four parameters, and the positions of bodies 1 and
3 are specified by additional twelve parameters. Through these altogether
N = 16 parameters the positions of the other three bodies 4 , 5 and 6 are
specified as well because of the symmetry with respect to z . Each revolute
joint introduces five constraints. Because of the pairwise symmetry of joints
the total number of independent constraints is only 3×5 = 15 . The difference
N − 15 = 1 is the degree of freedom of the mechanism. End of proof.

The line-symmetry of the mechanism finds its expression in the identities

αi+3 = αi , �i+3 = �i , ϕi+3 ≡ ϕi , hi+3 = hi (i = 1, 2, 3) . (6.47)

In Fig. 6.4 the spatial polygon of vectors hini and �iai (i = 1, . . . , 6) with
these symmetrically distributed Denavit-Hartenberg parameters is shown
schematically in projection along the line z . The angle ϕ1 is chosen as inde-
pendent variable. The angles ϕ2 and ϕ3 are the only dependent variables.
The vector r joining the axes n6 and n3 has in the right and in the left
segment the forms

r =

{
�3a6 + h1n1 + �1a1 + h2n2 + �2a2 + h3n3 (right segment)

−(�3a3 + h1n4 + �1a4 + h2n5 + �2a5 + h3n6) (left segment) .
(6.48)

The Woernle-Lee equation F �
3 = F r

3 with F3 = n6 · r is an equation
involving only ϕ1 and ϕ2 . It is written in the form

nk ·
[
�3(ak + ak−3) + h1(nk+1 + nk−2) + �1(ak+1 + ak−2)

+h2(nk+2 + nk−1) + �2(ak+2 + ak−1) + h3(nk+3 + nk)
]
= 0 (k = 6) .(6.49)

Copying coordinates from Table 5.2 and using (6.47) results in the equation

Fig. 6.4 Spatial polygon of vectors hini and 
iai of a Bricard mechanism with line of
symmetry z . Vector r joining axes n6 and n3
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A2 cosϕ2 +B2 sinϕ2 = R2

A2 = −h3C1S2S3 cosϕ1 + (�2S3 + �3C1S2) sinϕ1 − S1S2(h1 + h3C3) ,
B2 = (�2C1S3 + �3S2) cosϕ1 + h3S2S3 sinϕ1 + �1S2 + �2S1C3 ,
R2 = S1S3(h2 + h3C2) cosϕ1 − (�1S3 + �3S1C2) sinϕ1

−h1(C1C2 + C3)− h2(C1C3 + C2)− h3(1 + C1C2C3) .

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(6.50)
In the same way an equation for ϕ3 as function of ϕ1 is obtained on the
basis of F3 = n5 · r with a vector r joining the axes n5 and n2 . Equation
(6.49) is replaced by

nk ·
[
�2(ak + ak−3) + h3(nk+1 + nk−2) + �3(ak+1 + ak−2)

+h1(nk+2 + nk−1) + �1(ak+2 + ak−1) + h2(nk+3 + nk)
]
= 0 (k = 5) .(6.51)

Evaluation results in the equation

A3 cosϕ3 +B3 sinϕ3 = R3

A3 = −h2S1S2C3 cosϕ1 + (�1S2C3 + �2S1) sinϕ1 − S2S3(h1 + h2C1) ,
B3 = (�1S2 + �2S1C3) cosϕ1 + h2S1S2 sinϕ1 + �2C1S3 + �3S2 ,
R3 = S1S3(h2C2 + h3) cosϕ1 − (�1C2S3 + �3S1) sinϕ1

−h1(C1 + C2C3)− h2(1 + C1C2C3)− h3(C2 + C1C3) .

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(6.52)
Each of the Eqs.(6.50) and (6.52) has two solutions (ϕ21 , ϕ22) and (ϕ31 , ϕ32) ,
respectively. Their cosines and sines are

cjk =
AjRj + (−1)kBj

√
A2

j +B2
j −R2

j

A2
j +B2

j

,

sjk =
BjRj − (−1)kAj

√
A2

j +B2
j −R2

j

A2
j +B2

j

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(j = 2, 3 ; k = 1, 2) . (6.53)

The square roots are identical:

A2
2 +B2

2 −R2
2 − (A2

3 +B2
3 −R2

3) =
[

22(S

2
3 − S2

1) + 2
2S2(
3S3C1 − 
1S1C3)

+ S2
2(


2
3 + h2

3S
2
3 − 
21 − h2

2S
2
1)
]
(cos2 ϕ1 + sin2 ϕ1 − 1) ≡ 0 . (6.54)

In order to determine which of the two solutions ϕ2 belongs to which of the
two solutions ϕ3 an equation relating ϕ2 and ϕ3 is formulated by repeating
the procedure once more with F3 = n4 · r and with a vector r joining the
axes n4 and n1 . Equation (6.49) is replaced by

nk ·
[
�1(ak + ak−3) + h2(nk+1 + nk−2) + �2(ak+1 + ak−2)

+h3(nk+2 + nk−1) + �3(ak+2 + ak−1) + h1(nk+3 + nk)
]
= 0 (k = 4) .(6.55)
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Evaluation results in the equation

A4 cosϕ3 +B4 sinϕ3 = R4

A4 = −h1S1C2S3 cosϕ2 + (�1C2S3 + �3S1) sinϕ2 − S2S3(h1C1 + h2) ,
B4 = (�1S3 + �3S1C2) cosϕ2 + h1S1S3 sinϕ2 + �2S3 + �3C1S2 ,
R4 = S1S2(h1C3 + h3) cosϕ2 − (�1S2C3 + �2S1) sinϕ2

−h1(1 + C1C2C3)− h2(C1 + C2C3)− h3(C1C2 + C3) .

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(6.56)
In the example below it is shown that this equation is satisfied by the com-
binations (ϕ21 , ϕ32) and (ϕ22 , ϕ31) .

Example: In Sect. 4.2.5 the special line-symmetric mechanism with param-
eters α1 = α2 = α3 = π/2 , �1 = �2 = �3 = 0 and h1 = h2 = h3 = 1 was
analyzed. With these parameters (6.50), (6.52) and (6.56) are, in this order,

c2 − s1s2 = 1− c1 , c3 − s1s3 = 1− c1 , c3 − s2s3 = 1− c2 . (6.57)

Except for a difference in the definition of ϕ1 the first equation is identical
with (4.35), and the correlation between the solutions ϕ2 and ϕ3 has the
form (4.38). Equations (6.53) are

c21,2 = c31,2 =
1− c1 ± s1

√
1 + 2c1(1− c1)

1 + s21
,

s21,2 = s31,2 =
−s1(1− c1)±

√
1 + 2c1(1− c1)

1 + s21
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (6.58)

By substituting these expressions it is verified that the third Eq.(6.57) is
satisfied by the combinations (ϕ21 , ϕ32) and (ϕ22 , ϕ31) . End of example.

According to Theorem 6.1 the six joint axes are, in every position of the
mechanism instantaneously, lines of a linear complex. Conjecture: The axis
of this linear complex intersects the line of symmetry z orthogonally. The
following proof is due to Hon-Cheung [22]. It makes use of two properties of
reciprocal polars which were established in Sect. 2.7.5 :
(a) The two transversals of any four independent complex lines are reciprocal
polars of the linear complex.
(b) The common perpendicular of two reciprocal polars intersects orthogo-
nally the axis of the linear complex.

Joint axes 1, 2, 3, 4 are line-symmetric to joint axes 4, 5, 6, 1 , respectively.
According to (a) the two transversals of the former four axes are reciprocal
polars and so are the two transversals of the latter four axes. The common
perpendicular p of the former two reciprocal polars is line-symmetric to
the common perpendicular p′ of the latter two reciprocal polars whence
it follows that the common perpendicular of p and p′ intersects the line
of symmetry z orthogonally. But according to (b) the axis of the linear
complex intersects both p and p′ orthogonally, too. Therefore, this axis
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and the common perpendicular of p and p′ intersecting z orthogonally are
identical. End of proof.

6.4.2 Plane-Symmetric Bricard Mechanism

Another family of overconstrained mechanisms identified by Bricard [10] is
referred to as plane-symmetric because of the pairwise symmetry of joint axes
with respect to a plane Σ . In Fig. 6.5 the spatial polygon of vectors hini

and �iai (i = 1, . . . , 6) is shown schematically. The symmetry requires the
opposite joint axes 1 and 4 to lie in Σ and to have zero offset: h1 = h4 =
0 . It is left to the reader to verify that the remaining Denavit-Hartenberg
parameters satisfy the conditions (for definitions see Fig. 5.1)

�6 = �1 , h6 = h2 ,
�5 = �2 , h5 = h3 ,
�4 = �3 ,

}
(6.59)

α6 = π − α1 , ϕ6 ≡ −ϕ2 ,
α5 = −α2 , ϕ5 ≡ −ϕ3 ,
α4 = π − α3 .

}
(6.60)

Dissection of joints 1 and 4 produces two symmetrical twin halves of
the system. Consider the twin half consisting of bodies 1 , 2 and 3 and
imagine body 2 to be fixed. Let body 1 be rotated relative to body 2
through an arbitrary fixed angle ϕ2 so that joint axis 1 assumes a certain
position. Likewise, let body 3 be rotated relative to body 2 through the angle
ϕ3 (variable) so that joint axis 4 generates an hyperboloid of revolution
(in the case α3 = 0 a cylinder of radius �3 and in the case α3 = π/2 a
plane every point of which outside a circle of radius �3 is located on two
generators associated with different angles ϕ3 ). The fixed axis 1 intersects

Fig. 6.5 Spatial polygon of vectors hini and 
iai of a Bricard mechanism symmetric

with respect to plane Σ : 
6 = 
1 , h6 = h2 , 
5 = 
2 , h5 = h3 , 
4 = 
3
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two generators of the hyperboloid (of the cylinder, of the plane in the said
special cases) which are axes 4 coplanar with axis 1 . Thus, for every ϕ2 there
are two angles ϕ3 putting the twin half into a position with coplanar axes 1
and 4 . The other twin half is mounted symmetrically thereby determining
ϕ1 and ϕ4 . Thus, not only mobility one of the mechanism is proved, but also
the existence of two positions for a given independent angle ϕ2 . An equation
relating ϕ2 and ϕ3 is derived from the intersection condition of the axes 1
and 4 . This condition is written in the form (see Fig. 6.5)

λn1 + �1a1 + h2n2 + �2a2 + h3n3 + �3a3 + μn4 = 0 (6.61)

with unknowns λ and μ of dimension length. Decomposition of the vectors
results in three equations relating λ , μ , ϕ2 and ϕ3 . Vector coordinates are
copied from Table 5.2. The simplest equations are obtained by decomposition
on body 3 , i.e., by evaluating the equation

λnk−2 + �1ak−2 + h2nk−1 + �2ak−1 + h3nk + �3ak + μnk+1 = 0 (6.62)

with k = 3 . This results in the set of equations

λ(C1C2 − S1S2c2) + μC3 + 
1s2S2 + h2C2 + h3 = 0 ,

λ[C1S2s3 + S1(s2c3 + c2s3C2)] + 
1(c2c3 − s2s3C2) + h2S2s3 + 
2c3 + 
3 = 0 ,

λ[C1S2c3 − S1(s2s3 − c2c3C2)]− μS3 − 
1(c2s3 + s2c3C2) + h2S2c3 − 
2s3 = 0 .

⎫⎪⎬
⎪⎭

(6.63)

The first two equations are solved for λ and μ . Substitution into the third
equation and simple ordering of terms results in the desired equation relat-
ing ϕ2 and ϕ3 (terms c22 and s22 occuring in this process have identical
coefficients; the same is true for c23 and s23 )

A cosϕ3 +B sinϕ3 = R (6.64)

with coefficients

A = (−�1C1C2S3 + �2S1S2S3 − �3S1C2C3) cosϕ2

+S1S3(h2C2 + h3) sinϕ2 + �1S1S2S3 − �2C1C2S3 − �3C1S2C3 ,

B = S1S3(h2 + h3C2) cosϕ2 + (�1C1S3 + �3S1C3) sinϕ2 + h3C1S2S3 ,

R = (�1C1S2C3 + �2S1C2C3 − �3S1S2S3) cosϕ2 − h2S1S2C3 sinϕ2

+�1S1C2C3 + �2C1S2C3 + �3C1C2S3 .

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(6.65)
The equation has two solutions ϕ3 in terms of ϕ2 .

From the symmetry with respect to plane Σ it follows that ϕ1 is uniquely
determined by ϕ2 and ϕ3 . An explicit expression for ϕ1 in terms of ϕ2 and
ϕ3 is obtained by evaluating the Woernle-Lee equation based on the product
n6 ·n4 . This is the equation nk ·nk−2 = nk ·nk+4 with k = 6 . Table 5.2 in
combination with (6.60) yields the equation
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s1[S3(c2s3 + C2s2c3) + C3S2s2]

= (1− c1)
[
C1S3(s2s3 − C2c2c3) + S2(S1S3c3 − C1C3c2)− S1C2C3

]
, (6.66)

whence it follows that

tan
ϕ1

2
=

1− c1
s1

=
S3(c2s3 + C2s2c3) + C3S2s2

C1S3(s2s3 − C2c2c3) + S2(S1S3c3 − C1C3c2)− S1C2C3
.

(6.67)
An equation for tanϕ4/2 is obtained in the same way by expressing the
product n3 ·n1 in the two forms nk ·nk−2 = nk ·nk+4 with k = 3 . In view
of the symmetry of Fig. 6.5 the equation is directly obtained by interchanging
in (6.67) α1 with α3 and ϕ2 with ϕ3 :

tan
ϕ4

2
=

S1(c3s2 + C2s3c2) + C1S2s3
C3S1(s2s3 − C2c2c3) + S2(S1S3c2 − C1C3c3)− S3C2C1

. (6.68)

Example: The triple plane-symmetric mechanism shown in Fig. 4.6 is char-
acterized by the parameters �1 = �2 = �3 = 1 , h2 = h3 = 0 and
α1 = α2 = α3 = π/2 . This is the special case with a single solution (ϕ1 , ϕ3)
for a given angle ϕ2 . Equations (6.64) and (6.67) are

c2 + c2c3 + c3 = 0 , tan
ϕ1

2
=

c2s3
c3

. (6.69)

With c2 from the first equation the second becomes tanϕ1/2 = −s3/(1+c3)
or ϕ1 = −ϕ3 . Except for slightly different definitions of angles, the same
results were obtained in (4.20) and (4.22). End of example.

6.4.3 Trihedral Bricard Mechanism

This mechanism was developed by Bricard [10] in search for a system having
the property that in every position the six axes are lines of a special linear
complex. Consider Fig. 6.6 . The arbitrary spatial trihedral with lines 2, 4,
6 and with vertex A , referred to as trihedral A , is given. Furthermore, a
point B is given. The perpendiculars 1, 3, 5 from B onto the three planes of
trihedral A define the trihedral B . The construction implies that the lines
2, 4, 6 of trihedral A are perpendiculars of the three planes of trihedral B .
With the labeling shown in Fig. 6.6 the line i (i = 1, . . . , 6 cyclic) is normal
to the plane of lines i − 1 and i + 1 . Let P2 , P4 , P6 and P1 , P3 , P5 be
the feet of the correspondingly labeled perpendiculars. They form the spatial
polygon shown in dashed lines. The length of the side PiPi+1 is called �i .
The line segment APi (i = 1, 3, 5) which is not shown is hypotenuse in
the rectangular triangle (A,Pi,Pi−1) as well as in the rectangular triangle
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Fig. 6.6 Trihedrals A and B . Line i is normal to the plane of lines i − 1 and i + 1

(i = 1, . . . , 6 cyclic)

(A,Pi,Pi+1). Consequently, AP
2

i−1 + �2i−1 = AP
2

i+1 + � 2
i (i = 1, 3, 5). This

establishes the three equations

�21−�26 = AP6
2−AP2

2
, �23−�22 = AP2

2−AP4
2
, �25−�24 = AP4

2−AP6
2
.

(6.70)
Summation yields

�21 + �23 + �25 = �22 + �24 + �26 . (6.71)

Imagine now the lengths �1, . . . , �6 to be rigid rods interconnected by revo-
lute joints at the points Pi (i = 1, . . . , 6). Each joint axis has the direction
of the corresponding perpendicular i . This means that each rod carries two
mutually perpendicular joint axes which are also perpendicular to the rod.
The axes 2, 4, 6 intersect at the single point A , and the axes 1, 3, 5 intersect
at the single point B . Proposition: Every mechanism composed of six rods
and of six revolute joints having these orthogonality properties and arbitrary
lengths �1, . . . , �6 satisfying (6.71) has a single degree of freedom if one body
is held fixed. This is the trihedral Bricard mechanism (sometimes also re-
ferred to as orthogonal Bricard mechanism). As is the case in the Bennett
mechanism each joint has zero offset. Bricard’s proof of mobility one is as
follows. The construction of the system requires the specification of twelve
parameters, namely, three coordinates for each of the points A and B and
two direction cosines for each line of trihedral A . Six out of these twelve
parameters determine the dimensions of the system and the remaining six its
position in space. Of interest are only the first six parameters. Their number
exceeds the number of independent lengths by one. The single free param-
eter constitutes the single degree of freedom. End of proof. Since in every
position of the mechanism the six joint axes intersect the line AB , they are
lines of the special linear complex with the axis AB . In Fig. 4.6 the special
mechanism is shown in which the six lengths �1 , . . . , �6 are identical.
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A trihedral Bricard mechanism can assume so-called planar positions, i.e.,
positions in which the polygon of points P1, . . . ,P6 is planar. In these positions
three joint axes are normal to the plane. They intersect at infinity. The other
three joint axes are lying in the plane. They either intersect at a single point
or are parallel. The two rods coupled by any of these three joints are collinear.
From this it follows that every planar position of the mechanism creates a
triangle of rods in the plane. In order to find all planar positions with collinear
pairs of rods, say pairs (1,2), (3,4) and (5,6), the altogether eight combinations
of sums and differences |�1± �2| , |�3± �4| and |�5± �6| are calculated. Each
combination is checked whether it satisfies the triangle-inequalities. In the
same way all planar positions with collinear pairs of rods (2,3), (4,5) and (6,1)
are determined. With at least four of the altogether sixteen combinations of
sums and differences the triangle-inequalities are satisfied. The proof is left
to the reader. It makes use of (6.71).

Example: The mechanism with lengths (�1, �2, �3, �4, �5, �6) = (16, 3, 9, 17,
5, 8) has the eight planar positions shown in Figs. 6.7a-h . In Fig. 6.7d all
six rods are collinear, and the intersection points of both triples of joint axes
are at infinity. End of example.

The figures reveal the existence of two different types of trihedral mecha-
nisms. In Figs. 6.7a-d the number of differences of lengths in the triangle is
odd, and in Figs. 6.7e-h the number of sums of lengths is odd. According to
the rules in Fig. 5.1 the following quantities are defined:
– unit vectors n1 , . . . , n6 along the joint axes (sense of direction arbitrary)

– vectors �iai =
−−→
PiPi+1 (i = 1, . . . , 6)

– constant angles αi and joint variables ϕi (i = 1, . . . , 6) .
The angles α1 , . . . , α6 are either +π/2 or −π/2 . Simple inspection reveals
that, no matter how n1 , . . . , n6 are directed, the number of positive angles
αi = +π/2 is even in Figs. 6.7a-d and odd in Figs. 6.7e-h . Wohlhart [33] who
presented the first complete kinematics analysis speaks of a type 2 mecha-
nism in the former case and of a type 1 mechanism in the latter. A type 2
mechanism is obtained from type 1 and vice versa by opening one joint and
by closing it again after giving one of the neighboring bodies a 180◦-rotation
about a normal to the joint axis.

Let n1 , . . . , n6 be directed such that αi = +π/2 (i = 1, . . . , 6) in type
2 , and that α1 = α3 = α5 = +π/2 , α2 = α4 = α6 = −π/2 in type
1 . With the usual notation Ci = cosαi , Si = sinαi this means that
Ci = 0 (i = 1, . . . , 6) and

Si = +1 (i = 1, . . . , 6) (type 2 ) ,
S1 = S3 = S5 = +1 , S2 = S4 = S6 = −1 (type 1 ) .

}
(6.72)

The characteristic parameter specifying the type is
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Fig. 6.7 The eight planar positions of the trihedral Bricard mechanism with lengths

(
1, 
2, 
3, 
4, 
5, 
6) = (16, 3, 9, 17, 5, 8) . Type 2 with odd number of differences of lengths
(Figs. a–d) and type 1 with odd number of sums of lengths (Figs. e–h)

λ = SiSi+1 ( i = 1, . . . , 6 cyclic ) =

{
+1 (type 2 ) ,
−1 (type 1 ) .

(6.73)

The following kinematics analysis is different from Wohlhart’s. Three
Woernle-Lee equations are formulated. Two equations are based on the prod-
ucts n6 · n4 and n6 · n3 . They are written in the forms

nk · nk−2 = nk · nk+4 (k = 6) , (6.74)

nk · nk−3 = nk · nk+3 (k = 6) . (6.75)

The third equation is based on the product r·n6×n4 with r being the vector
pointing from P6 to P4 . Since r , n6 and n4 are coplanar, the Woernle-Lee
equation splits into two equations:

(�6ak + �1ak+1 + �2ak+2 + �3ak+3) · nk × nk+4 = 0 ,
(�4ak−2 + �5ak−1) · nk × nk−2 = 0 .

}
(k = 6) (6.76)
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All equations are valid with indices changed cyclicly. Evaluation of (6.74) and
(6.75) by means of Table 5.2 results in the equations

c2 = −λc1c3 + c5
s1s3

, s2 =
s4s5
s1

=
s5s6
s3

. (6.77)

The second expression for s2 is the result of increasing all indices by one.
In the second Eq.(6.76) the vectors (�4ak−2 + �5ak−1) and nk × nk−2

have the coordinate matrices⎡
⎣ 1st coordinate is irrelevant

(�4c5 + �5)c6
−(�4c5 + �5)s6

⎤
⎦ ,

⎡
⎣ 0
S4s5s6
S4s5c6

⎤
⎦ , (6.78)

respectively. Hence the second Eq.(6.76) is the identity. Not so the first equa-
tion. The vectors (�6ak + �1ak+1 + . . .) and nk × nk+4 have the coordinate
matrices⎡
⎣ 1st coordinate is irrelevant

�6 + �1c1 + �2c2c1 + �3(λs3s1 + c3c2c1)
−S1S6s2(�2 + �3c3)

⎤
⎦ ,

⎡
⎣ 0
S1S3S6s2s3
S3(−λc3s1 + s3c2c1)

⎤
⎦ ,

(6.79)
respectively. The scalar product allows factoring out S1S3S6s2. The first
Eq.(6.76) then is the first of the six equations below. The remaining equations
are obtained by cyclic permutation of indices.

1. (�2c3 + �3)s1+ λ(�1c1 + �6)s3 = 0 ,
2. (�3c4 + �4)s2+ λ(�2c2 + �1)s4 = 0 ,
3. (�4c5 + �5)s3+ λ(�3c3 + �2)s5 = 0 ,
4. (�5c6 + �6)s4+ λ(�4c4 + �3)s6 = 0 ,
5. (�6c1 + �1)s5+ λ(�5c5 + �4)s1 = 0 ,
6. (�1c2 + �2)s6+ λ(�6c6 + �5)s2 = 0 .

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(6.80)

Each equation involves two variables. The first equation yields ϕ3 in terms
of ϕ1 , and the fifth equation yields ϕ5 in terms of ϕ1 . These equations have
the forms

Aj cosϕj +Bj sinϕj = Rj (j = 3, 5) (6.81)

with coefficients which are functions of ϕ1 . Each equation has two solutions
ϕ3k and ϕ5k (k = 1, 2) . Their cosines and sines are

cjk =
AjRj + (−1)kBj

√
A2

j +B2
j −R2

j

A2
j +B2

j

,

sjk =
BjRj − (−1)kAj

√
A2

j +B2
j −R2

j

A2
j +B2

j

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(j = 3, 5 ; k = 1, 2) . (6.82)
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By substituting coefficients it is verified that the square roots are identical:
A2

3 + B2
3 − R2

3 − (A2
5 + B2

5 − R2
5) = 0 because of (6.71). Furthermore, by

substituting the expressions (6.82) it is verified that the third Eq.(6.80) is
satisfied by the combinations (ϕ31 , ϕ51) and (ϕ32 , ϕ52) .

The first Eq.(6.77) determines for each of the two solutions c3 , s3 , c5
the corresponding cosine c2 and hence two angles ±ϕ2 . The corresponding
cosine c4 is obtained by substituting the first expression s2 = s4s5/s1 into
the second Eq.(6.80) and by deleting the common factor s4 . In the same way
the corresponding cosine c6 is obtained from the second expression for s2 in
combination with the sixth Eq.(6.80). The results are

c4 = −λs1(�2c2 + �1) + �4s5
�3s5

, c6 = −λs3(�1c2 + �2) + �5s5
�6s5

. (6.83)

The signs of s4 and s6 are determined from (6.77). If s2 changes sign,
also s4 and s6 change signs. These results are summarized as follows. For
every value of ϕ1 there exist four (not necessarily real) sets of solutions
(σϕ2i , ϕ3i , σϕ4i , ϕ5i , σϕ6i) (i = 1, 2 ; σ = ±1 ). Equations (6.77) and
(6.83) fail in planar positions characterized by either s1 = s3 = s5 = 0
or by s2 = s4 = s6 = 0 . In these cases, the joint angles are determined from
triangles (see Fig. 6.7).

Example: For the lengths (�1, �2, �3, �4, �5, �6) = (16, 3, 9, 17, 5, 8) and for
ϕ1 = 80◦ a type 1 mechanism has the solutions
(ϕ2 , ϕ3 , ϕ4 , ϕ5 , ϕ6) ≈ (σ36.8◦, 142.9◦, σ48.4◦, 127.9◦, σ27.3◦) and
(σ92.8◦, 67.8◦, σ98.3◦, 83.7◦, σ111.5◦) (σ = ±1 ). End of example.

Example: The trihedral mechanism in Fig. 4.6 is a type 1 mechanism with
identical lengths �i ≡ 1 (i = 1, . . . , 6). It has four planar positions. Equations
(6.80) reduce to

1. (c3 + 1)s1 − (c1 + 1)s3 = 0 ,
2. (c4 + 1)s2 − (c2 + 1)s4 = 0 ,
3. (c5 + 1)s3 − (c3 + 1)s5 = 0 ,
4. (c6 + 1)s4 − (c4 + 1)s6 = 0 ,
5. (c1 + 1)s5 − (c5 + 1)s1 = 0 ,
6. (c2 + 1)s6 − (c6 + 1)s2 = 0 .

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(6.84)

For a given angle ϕ1 these equations and (6.77) have a single solution only,
namely, ϕ3 = ϕ5 = ϕ1 , ϕ4 = ϕ6 = ϕ2 and c1 + c1c2 + c2 = 0 . Except for
slightly different definitions of angles, the same results were obtained in (4.20)
and (4.22). Compare also the first Eq.(6.84) with (4.23). End of example.

With six rods of mutually different lengths altogether six different se-
quences and with each sequence both types of mechanism can be formed. In
general, the numbers of planar positions are different for different sequences
and for different types. Example: The sequence of lengths in Figs. 6.7a-h is
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the first of the following six sequences which represent all possible mecha-
nisms which can be formed with these lengths:

(16, 3, 9, 17, 5, 8)
(16, 8, 9, 17, 5, 3)

}
(a) ,

(16, 17, 9, 8, 5, 3)
(16, 17, 9, 3, 5, 8)

}
(b) ,

(16, 8, 9, 3, 5, 17)
(16, 3, 9, 8, 5, 17)

}
(c) .

It is left to the reader to verify the following statements. With each of the se-
quences (a) both types have four planar positions. With each of the sequences
(b) both types have two planar positions. With each of the sequences (c) there
are two planar positions of type 1 and three of type 2 .

Condition (6.71) is A + B + C = 0 with A = (�1 − �2)(�1 + �2) ,
B = (�3 − �4)(�3 + �4) , C = (�5 − �6)(�5 + �6) . Nonzero integer solutions
(�1, �2, �3, �4, �5, �6) are obtained from numbers A , B , C = −(A+B) which
are products of two different even or two different odd numbers. Example:
A = 2 · 8 , B = 1 · 17 , C = −1 · 33 = −3 · 11 yield (�1, �2, �3, �4, �5, �6) =
(5, 3, 9, 8, 16, 17) and (5, 3, 9, 8, 4, 7) .

Condition (6.71) is satisfied by the lengths �1 = a , �2 = a + b , �3 =
a+ 2b+ c , �4 = a+ c , �5 = a+ b+ 2c , �6 = a+ 2b+ 2c (a, b, c arbitrary).
Example: a = b = 1 , c = 2 yield (�1, �2, �3, �4, �5, �6) = (1, 2, 5, 3, 6, 7) . The
mechanism with these lengths has seven planar positions (four of type 2 ).
In one planar position of type 1 and in one of type 2 all six lengths are
collinear.

6.4.4 Dietmaier’s Mechanism

The ideas and results presented in this section are due to Dietmaier [19]. The
analysis of the 7R mechanism in Sect. 5.4.7 resulted in a 16th-order equation
for the variable x1 = tanϕ1/2 with coefficients depending on the variable ϕ7

and on constant Denavit-Hartenberg parameters. A prescribed value of ϕ7

(arbitrary) determines up to sixteen real roots x1 . The 16th-order equation
describes a 6R mechanism when the parameters and variables of body 7
and of joint 7 are set equal to zero: �7 = h7 = 0 , α7 = 0 , ϕ7 ≡ 0 (see Fig.
5.7 ). This has the consequence that the coefficients of the 16th-order equation
are constants. Since x1 is variable, all seventeen coefficients must be zero.
This requirement establishes seventeen conditions on the Denavit-Hartenberg
parameters �i , hi , αi ( i = 1, . . . , 6 ; �1 = 1 without loss of generality). The
16th-order equation remains valid when the indices of all parameters and
all variables are cyclicly increased by k = 1 , 2 , 3 , 4 , 5 . Hence altogether
6 × 17 = 102 conditions must be satisfied. Dietmaier’s numerical search
for Denavit-Hartenberg parameters satisfying these conditions led to a new
family of overconstrained 6R mechanisms. The parameters must satisfy the
following complicated symmetry relationships.
1. The opposite bodies 1 and 4 are identical:
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�4 = �1 , α4 = α1 . (6.85)

2. The opposite joints 2 and 5 have zero offset:

h2 = 0 , h5 = 0 . (6.86)

3. Joints 1 and 3 and joints 4 and 6 have pairwise identical offsets:

h3 = h1 , h6 = h4 . (6.87)

4. Bodies 2 and 3 and the opposite bodies 5 and 6 have pairwise identical
ratios

�2
sinα2

=
�3

sinα3
,

�5
sinα5

=
�6

sinα6
. (6.88)

5. These ratios are subject to the symmetrical constraint equation

�2
sinα2

(cosα2 + cosα3) =
�5

sinα5
(cosα5 + cosα6) . (6.89)

The last three equations can be used for expressing �3 , �5 and �6 in terms
of �2 , α2 , α3 , α5 and α6 . With the usual notation Ci = cosαi and
Si = sinαi

�3 = �2
S3

S2
, �5 = �2

S5(C2 + C3)

S2(C5 + C6)
, �6 = �2

S6(C2 + C3)

S2(C5 + C6)
. (6.90)

Let ϕ1 be the independent variable. The associated solutions for ϕ2 , ϕ4 , ϕ5 ,
ϕ6 are determined from (5.94) and (5.93) after setting �7 = h7 = 0 , α7 =
0 , ϕ7 ≡ 0 . The matrices A , B and P are constants. The matrix ur is
defined in (5.80). One out of the four Eqs.(5.94) is solved for x6 . Substitution
into the other equations results in three equations which are quadratic in the
sines and cosines of ϕ1 and ϕ2 . Hence they have the forms

Ai sin
2 ϕ2+Bi sinϕ2 cosϕ2+Ci sinϕ2+Di cos

2 ϕ2+Ei cosϕ2+Fi = 0 (6.91)

(i = 1, 2, 3) with coefficients which are functions of ϕ1 . The equations are
fourth-order equations for the variable x2 = tanϕ2/2 (see (5.60)). Only those
solutions x2 which are common to all three equations determine relevant
angles ϕ2 . Once ϕ2 is known also ϕ6 = 2 tan−1 x6 is known and then
also ϕ4 and ϕ5 from y (see (5.93)). Dietmaier’s numerical investigations
revealed that his 6R mechanism has up to four different configurations for
a given value of the independent variable no matter which angle is chosen
as independent variable. In this respect the mechanism is different from all
other known 6R mechanisms.
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6.5 Mobile Polyhedra

Euler expressed, without mathematical arguments, the conviction that all
polyhedra are rigid. By this the following is meant. In a polyhedron every
face is interpreted as rigid body and every edge as revolute joint. Nonrigid
means that the polyhedron is a mobile mechanism. Cauchy proved that all
convex polyhedra are, indeed, rigid (see Demaine/O’Rourke [17]). Bricard [10]
constructed mobile nonconvex octahedra which are self-intersecting. Connelly
constructed the first nonconvex polyhedron capable of moving without self-
intersection. Stimulated by this achievement Steffen constructed simpler ones
(see Connelly [14]). The simplest one is constructed as follows (see Fig. 6.8).
Starting point is the rigid isosceles triangle (A1, 0,A2) in the plane E with
leg lengths � and with vertex angle α . On the perpendicular to E through
0 the point B1 is marked at an arbitrary distance h from 0 . Rods of equal
length a connect A1 and A2 with B1 . Two more rods of equal length b
connect A1 and A2 with a point B2 on the dashed bisector of the angle
α . In the next step, congruent triangles (A1,B1,C1) and (A1,B2,C1) are
constructed as follows. To B1 a rod of length b is attached and to B2 a rod
of length a . The point C1 connecting these rods is located on a circle in a
plane normal to the line B1B2 and with its center on this line. With a given
length A1C1 = c (arbitrary) there are two possible locations for C1 . One of
them is chosen arbitrarily. Let C∗

1 be the other point not chosen. Repetition
of this construction produces two more triangles (A2,B1,C2) and (A2,B2,C2)
which are congruent to the previous ones. Of the two possible locations for C2

the one is chosen with which the dashed line C1C2 is not parallel to A1A2 .
Let C∗

2 be the other point not chosen.

Fig. 6.8 One half of a mobile polyhedron
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Now, imagine the connections of rods at the points A1 , A2 , B1 and B2

to be spherical joints. The system thus defined has the degree of freedom
one. The rigid isosceles triangle (A1,A2,B2) can rotate (in a limited angular
range) about its base line A1A2 . This rotation forces C1 and C2 to move
along certain trajectories. During this motion the distance of these two points
is not constant. Now, C1 and C2 are connected by a rod of fixed length d .
In order to restore the degree of freedom the angle α is made variable by
connecting the rods 0A1 and 0A2 at 0 by a spherical joint.

The 1-d.o.f. system thus constructed consists of the rigid triangles (0,A1,B1),
(0,A2,B1), (A1,B1,C1), (A1,B2,C1), (A2,B1,C2), (A2,B2,C2), (B1,C1,C2)
and (B2,C1,C2). This system is one half of the desired polyhedron. The other
half is obtained in two steps. First step: The existing halfpolyhedron - placed
in the position with B2 in E - is reflected in E . Second step: The reflections
of C1 and C2 are replaced by the reflections of C∗

1 and of C∗
2 , respectively.

With the reflection B′
1 of B1 the triangular faces (B1,B

′
1,A1) and (B1,B

′
1,A2)

of the polyhedron are produced.
With suitably chosen lengths h , a , b , c , d B2 is able to move along a

short segment of a trajectory on either side of E without causing a collision
of faces of the polyhedron. In [14] the lengths are proposed: 2h = 17 , a =
12 , b = 10 , c = 5 , d = 11 . The polyhedron can be produced by folding
the symmetric figure shown in Fig. 6.9 . The polyhedron has n = 14 faces
(bodies) and m = 21 edges (revolute joints). With these numbers Grübler’s
formula (4.1) yields the degree of freedom F = −27+d . Since F equals one,
the system of altogether 5× 21 constraint equations has the defect d = 28 .
See http://www.mathematik.com/Steffen/ for a display of the motion.

Fig. 6.9 Cutting and folding instructions for Steffen’s mobile polyhedron. Valley folds in
dashed lines. Mountain folds in solid lines

http://www.mathematik.com/Steffen/
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6.6 RRCRP Mechanism

A closed kinematic chain RRCRP has six joint variables. Hence it is rigid
unless it is overconstrained. It will be seen that the special chain shown
in Fig. 6.10 is overconstrained with degree of freedom one. The assembly
position shown is characterized as follows. The axis of the revolute R4 is
orthogonal to the x, y-plane of the frame-fixed x, y, z-system with origin 0 .
The other four joint axes are in this plane (the prismatic joint P parallel
to the revolute R1 at y = � = const; the axes of the revolutes R1 and
R2 and of the cylindrical joint C intersecting at 0 ; R1 and R2 under an
angle α = const and R2 and C orthogonally). After a rotation through ϕ1

(arbitrary) in R1 the unit vector n2 along the axis of R2 has the coordinates
n2 = [cosα − sinα sinϕ1 − sinα cosϕ1] . Dependent on ϕ1 the angle ϕ2

in R2 and the translatory variable in joint C can be determined such that
the vector r pointing to the revolute R4 has the required coordinates y = �
and z = 0 . Moreover, the angle ϕ3 in joint C can be determined such that
the axis of R4 has the required direction orthogonal to the x, y-plane. This
proves that the mechanism has the degree of freedom one, and that ϕ1 can
be used as independent input variable. As output the translatory variable in
the prismatic joint P is chosen. Let this be the coordinate x of r . From the
orthogonality condition n2 · r = 0 it follows that

x = � tanα sinϕ1 . (6.92)

Rotation with constant angular velocity ϕ̇1 = ω is converted into oscillatory
translation x(t) = � tanα sinωt . The mechanism was used in a pneumatic
saw (see Design and development/scanning the field for ideas, Sept.1964,
p.158 ). See also Altmann [2, 1].

Fig. 6.10 Mechanism R1R2CR4P converting rotation into harmonic translation
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6.7 4R-P Mechanism

In the fixed x, y, z-system of Fig. 6.11a two skew lines n1 and n2 are
fixed. Their common perpendicular of length � lies in the z-axis. This axis
is intersected by n1 at z = �/2 (point A1 ) and by n2 at z = −�/2 (point
A2 ). The projected angle α between the lines is bisected by the y-axis. The
lines n1 and n2 are the axes of two cylinders 1 and 2 of equal radius r .
Points denoted B1 and B2 are fixed on the cylinders. More precisely, Bi

(i = 1, 2) is fixed on cylinder i such that the line AiBi is orthogonal to both
ni and z-axis, and that, furthermore, B1 and B2 are, in the projection
shown, on a line parallel to the y-axis and at equal distances from the x-
axis. Imagine now that both cylinders are rotated about their axes through
identical angles ϕ (arbitrary). This causes B1 and B2 to move on their
respective circles to new positions B′

1 , B
′
2 . The displacements in z-direction

are identical, namely, u = r sinϕ , and also the displacements in x-direction
are identical, namely, r(1 − cosϕ ) . In the projection shown the distance
between B′

1 and B′
2 is δ = 2r cosϕ sinα/2 . The generator of cylinder i

passing through B′
i is called n′i (i = 1, 2). In Fig. 6.11b the essential points

and lines are shown in the projection along the x-axis. In this projection, the
axes and generators of the cylinders are shown as lines parallel to the y-axis.
Through B′

1 and B′
2 lines B′

1C1 and B′
2C2 of equal lengths �/2 are drawn

parallel to the z-axis. The line p through C1 and C2 is (not only in this
projection) parallel to the y-axis.

Imagine now that A1A2 , A1B
′
1 , A2B

′
2 , B′

1C1 and B′
2C2 are rigid

links which are interconnected by four revolute joints with pairwise paral-
lel axes n1 , n′1 and n2 , n′2 and by a prismatic joint with the axis p .
The result is a spatial overconstrained single-degree-of-freedom mechanism

Fig. 6.11 4R-P mechanism projected along the z-axis (a) and along the x-axis (b)
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4R-P with only five joint variables. The variable ϕ is identical in all four
revolute joints. The joint variable in the prismatic joint is δ . It is indepen-
dent of � . This mechanism was described first by Mavroidis/Roth [27] (see
also Mavroidis/Beddows [28] ). The links need not have the shapes shown
in the figures. Every link can be given any shape provided its two Denavit-
Hartenberg parameters (length of the common perpendicular and projected
angle of the two joint axes on the link) have the correct values. The link
coupling the parallel axes n1 and n′1 , for example, can be placed anywhere
between these axes. With this freedom of design it is possible to achieve full-
cycle mobility in the revolute joints without collision of links and joint axes.
The prismatic joint must be designed such that the passage through δ = 0
is possible. In the special case α = 0 , the mechanism is the planar foldable
four-bar in parallelogram configuration.

The mechanism is a simple means of converting the angular velocity ϕ̇
about the fixed input axis n1 into an identical angular velocity about the
fixed skew output axis n2 the location of which can be freely chosen by
specifying the two design parameters α and � . The mechanism is simpler
and less expensive than a set of hypoid gears serving the same purpose. This
is particularly true when � is large. However, like the planar foldable four-
bar the mechanism is not well suited for transmitting a large torque from the
input to the output axis.

6.8 Bricard-Borel Mechanism

The system shown in Fig. 6.12a consists of two parallel circular discs 1 and
2 (radii R1 and r1 �= R1 arbitrary) and of n ≥ 5 rods of equal length �1
connecting the discs. The rods are generators of a frustum of a regular cone.
The system is shown in two projections. The endpoints Pi and Qi of the rods
i = 1, . . . , n are connected to the discs by spherical joints. Disc 1 is a fixed
base. Disc 2 is referred to as platform. Every rod is free to rotate about its
longitudinal axis. This degree of freedom is not of interest. Because of the
symmetry of the arrangement it is obvious that the platform has a single
degree of freedom. It is free to undergo a continuous screw motion about the
vertical z-axis with an independent angular variable ϕ and with a translatory
variable z which is a function z(ϕ) . This function is obtained from Fig. 6.12b
which shows the vertical projection in a position ϕ (arbitrary). In the x, y, z-
system the endpoints P1 and Q1 of rod 1 have the coordinates [R1 0 0]
and [r1 cosϕ r1 sinϕ z] , respectively. The condition of constant rod length
establishes between z and ϕ the constraint equation (r1 cosϕ − R1)

2 +
r21 sin

2 ϕ+ z2 = �21 . Hence

z(ϕ) =
√
2R1r1 cosϕ+ �21 − (R2

1 + r21) . (6.93)
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Fig. 6.12 Platform mounted on rods in positions ϕ = 0 (a) and ϕ �= 0 (b)

The same function z(ϕ) is obtained with arbitrary parameters R , r , �
satisfying the conditions

Rr = R1r1 , �2 = �21 − (R2
1 + r21) + (R2 + r2) . (6.94)

The same function z(ϕ) is also obtained if both endpoints of a rod, i.e., the
entire rod, are vertically lifted or lowered by an arbitrary amount (each rod by
an individual amount). Also, because of the symmetry of the equations, it is
immaterial whether the larger or the smaller radius is located on the platform.
The degree of freedom one remains unchanged if an arbitrary number of rods
each satisfying the said conditions is added to the system. Every point of the
three-dimensional platform can be connected by a rod with a point of the
base which is uniquely determined by the conditions. From this it follows that
every point of the platform is moving on a base-fixed sphere. Platform-fixed
points of the screw axis move on spheres with infinite radius. Conversely,
every point fixed on the base moves on a platform-fixed sphere. All rods
are lines of the linear complex with the given screw axis and with the pitch
p = dz/dϕ . These characteristics of the system were first discovered by
Bricard [11] and Borel [9]. See also Husty/Zsombor-Murray [23].

6.9 Hyperboloid and Paraboloid Mechanisms

The hyperboloid of one sheet (Fig. 6.13a) and the hyperbolic paraboloid (Fig.
6.13b) have, in the cartesian x1, x2, x3-systems shown, the equations
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hyperboloid of one sheet :
x2
1

a2
+

x2
2

b2
− x2

3

c2
= 1 , (6.95)

hyperbolic paraboloid :
x2
1

a2
− x2

2

b2
= x3 . (6.96)

Planes x1 = const and x2 = const intersect the hyperboloid in hyperbo-
las and the hyperbolic paraboloid in parabolas. Planes x3 = const inter-
sect the hyperboloid in ellipses and the hyperbolic paraboloid in hyperbo-
las (in straight lines in the case x3 = 0 ). Both surfaces are ruled sur-
faces, more specifically the only ruled surfaces having the property that
every point is the intersection of two generating lines. The two families of
generators of the hyperboloid, referred to as regulus 1 and regulus 2, have
the equations (the parameters u and v are arbitrary constants; see Bron-
stein/Semendjajev/Musiol/Mühlig [12])

regulus 1 :
x1

a
+

x3

c
= u

(
1 +

x2

b

)
, u

(x1

a
− x3

c

)
= 1− x2

b
,

regulus 2 :
x1

a
+

x3

c
= v

(
1− x2

b

)
, v

(x1

a
− x3

c

)
= 1 +

x2

b
.

⎫⎬
⎭ (6.97)

The corresponding equations for the paraboloid are

Fig. 6.13 Hyperboloid of one sheet (a) and hyperbolic paraboloid (b)

regulus 1 :
x1

a
+

x2

b
= u , u

(x1

a
− x2

b

)
= x3 ,

regulus 2 :
x1

a
− x2

b
= v , v

(x1

a
+

x2

b

)
= x3 .

⎫⎬
⎭ (6.98)

Hyperboloid of one Sheet
Equations (6.97) reveal the following properties of generators. Two gener-
ators belonging to one and the same regulus are skew. Every generator of
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one regulus intersects all generators of the other regulus and exactly one of
them at infinity. Three generators belonging to one and the same regulus are
not parallel to one and the same plane. Three such generators determine a
hyperboloid uniquely.

Imagine now that arbitrarily many (in the limit all) generators are rigid
rods. Moreover, imagine that at every intersection point of any two such rods
the respective rods are connected by a spherical joint (in the limit there is a
spherical joint at every point of the hyperboloid). Proposition: The system of
rods thus defined is an overconstrained mechanism having a single degree of
freedom. It can move in such a way that in every position the rods are genera-
tors of a hyperboloid of one sheet. The intersections of all these hyperboloids
with the plane x3 = 0 are confocal ellipses.

Proof (see Bricard [10] and Hilbert/Cohn-Vossen [21]): It must be shown
that the distance of any two spherical joints P and Q on an arbitrarily chosen
rod is invariant under this motion. For this purpose (6.95) is written in the
form

3∑
i=1

x2
i

ai − λ
= 1 (a3 ≤ λ ≤ a2 ≤ a1 arbitr.) . (6.99)

Let pi and qi (i = 1, 2, 3) be the coordinates of two points P and Q ,
respectively, on an arbitrary generator. Also the midpoint with coordinates
(pi+qi)/2 (i = 1, 2, 3) lies on this generator and, consequently on the surface.
Hence

3∑
i=1

p2i
ai − λ

= 1 ,

3∑
i=1

q2i
ai − λ

= 1 ,

3∑
i=1

(pi + qi)
2

ai − λ
= 4 . (6.100)

From the third equation twice the sum of the first two equations is subtracted:

3∑
i=1

(pi − qi)
2

ai − λ
= 0 . (6.101)

Let r be the distance of the points P and Q . With (6.101)

r2 =
3∑

i=1

(pi − qi)
2 =

3∑
i=1

(ai − λ)
(pi − qi)

2

ai − λ
=

3∑
i=1

ai
(pi − qi)

2

ai − λ
. (6.102)

In (6.99) λ is replaced by an arbitrary λ′ satisfying the conditions a3 ≤ λ′ ≤
a2 . The two hyperboloids with λ and with λ′ are referred to as surface F
and surface F′, respectively. The coordinates x′

1 , x
′
2 , x

′
3 of points on F′ are

generated from the coordinates x1 , x2 , x3 of F by the affine transformation

x′
i = xi

√
ai − λ′

ai − λ
(i = 1, 2, 3) . (6.103)
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This transformation associates to the points P and Q of F points P′ and
Q′, respectively, of F′ having the coordinates

p′i = pi

√
ai − λ′

ai − λ
, q′i = qi

√
ai − λ′

ai − λ
(i = 1, 2, 3) . (6.104)

For the distance r′ of these points (6.102) is valid with the quantities bearing
the prime. With (6.104)

r′2 =
3∑

i=1

ai
(p′i − q′i)

2

ai − λ′ =
3∑

i=1

ai
(pi − qi)

2

ai − λ
≡ r2 . (6.105)

This identity proves the invariance of the distance of points. The mecha-
nism of rods which, in its initial position, is assembled on the hyperboloid
F governed by (6.99) with given constants a3 ≤ λ ≤ a2 ≤ a1 is able to
assume a position in which it is located on a hyperboloid F′ governed by the
same equation with the same constants a3 ≤ a2 ≤ a1 and with an arbitrary
a3 ≤ λ′ ≤ a2 .

The hyperboloid with the free parameter λ′ intersects the plane x3 = 0
in the ellipse depending on λ′ : x2

1/(a1 − λ′) + x2
2/(a2 − λ′) = 1 . Its focal

points are located on the x1-axis symmetrically to the origin. Their distance
is
√
(a1 − λ′)− (a2 − λ′) =

√
a1 − a2 independent of λ′ . Hence the ellipses

are confocal. End of proof.
In the limit λ′ = a2 the ellipse degenerates to the line connecting the

focal points. In this case, all rods lie in the x1, x3-plane and tangent to the
hyperbola x2

1/(a1−a2)−x2
3/(a2−a3) = 1 . In the limit λ′ = a3 all rods lie in

the x1, x2-plane and tangent to the ellipse x2
1/(a1 − a3) + x2

2/(a2 − a3) = 1 .
The hyperbolic paraboloid, too, is a 1-d.o.f. mechanism when all generators

are interconnected by spherical joints at every point of intersection. By the
same line of arguments it is proved that in every position the mechanism is
a hyperbolic paraboloid with the equation depending on the free parameter
λ :

2∑
i=1

x2
i

ai − λ
= x3 (a2 , a3 = const , a2 ≤ λ ≤ a3 ) . (6.106)

Hyperbolic Mechanism for the Generation of a Plane
The minimal system of rods constituting a hyperbolic mechanism consists of
five rods (see Fig. 6.14). Two skew rods g and g1 representing generators of
regulus 1 are interconnected by three rods of constant lengths (generators of
regulus 2). The spherical joints on g and g1 may be placed arbitrarily subject
only to the inequality condition P1P2 : P1P3 �= Q1Q2 : Q1Q3 (in the case of
equality the five lines would be generators of a hyperbolic paraboloid). Every
generator of regulus 2 intersects all generators of regulus 1 and exactly one
of them at infinity. Hence there exist a single generator of regulus 2 parallel
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to g and a uniquely defined intersection point of this generator with g1 . Let
Q be this point. When the 1-d.o.f.-mechanism is moving, each joint Qi is
moving on a sphere around Pi (i = 1, 2, 3). Point Q , in particular, is moving
on a sphere of infinite radius, i.e., in a plane E normal to g . Let 0 be the
point where g intersects E . When E and g are held fixed as is shown in Fig.
6.14, the mechanism has the additional degree of freedom of rotation about
g . Hence Q is free to move (in a certain ring-shaped region) in the fixed
plane E . This generation of a plane by a mechanism having only spherical
joints represents a spatial analog to the generation of a straight line by a
Peaucellier inversor (see Sect. 17.13).

Fig. 6.14 Hyperbolic mechanism for the generation of a plane

6.10 Cam Mechanism

De la Hire is the author of

Theorem 6.2. Mutually orthogonal tangents to an ellipse with semi axes a
and b (arbitrary) intersect on the circle of radius

√
a2 + b2 about the center

of the ellipse.

Proof (see Fig. 6.15) : In the x, y-system of principal axes the ellipse has the
equation

x2

a2
+

y2

b2
= 1 (6.107)

and also the parameter equation

x = a cosψ , y = b sinψ . (6.108)

The tangent t1 at the arbitrary point ψ = ψ1 has the normal form

x cosα+ y sinα = p1 . (6.109)
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Fig. 6.15 Cam mechanism based on De la Hire’s theorem on ellipses

The angle α and the length p1 of the perpendicular from the origin
onto the tangent depend on ψ1 . This dependency is investigated as fol-
lows. Through ψ1 the new angle β is defined by the equations cosψ1 =
(a/p1) cosβ , sinψ1 = (b/p1) sinβ . Together with (6.108) this yields for the
coordinates x1 , y1 associated with ψ1 the expressions x1 = (a2/p1) cosβ ,
y1 = (b2/p1) sinβ . By assumption, these coordinates satisfy (6.107) as well
as (6.109). Substitution yields the equations

a2 cos2 β + b2 sin2 β = p21 , a2 cosβ cosα+ b2 sinβ sinα = p21 . (6.110)

From them it follows that β = α and, furthermore,

p21 = a2 cos2 α+ b2 sin2 α =
1

2
(a2 + b2) +

1

2
(a2 − b2) cos 2α . (6.111)

A tangent t2 orthogonal to t1 has in its normal form the parameters α±π/2
and p2 . For this tangent (6.111) has the form p22 = a2 sin2 α + b2 cos2 α .
Hence p21 + p22 = a2 + b2 . This concludes the proof.

The angle γ shown in the figure is determined by

cos2 γ =
p21

a2 + b2
=

1

2
+

1

2

a2 − b2

a2 + b2
cos 2α . (6.112)

Hence

cos 2γ =
a2 − b2

a2 + b2
cos 2α . (6.113)
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Imagine now that the ellipse is free to rotate about its center P10 , and that
the right angle formed by t1 and t2 is materialized as rigid body with a
fixed center at P20 . Then the ellipse can rotate full circle. In every position
it is in tangential contact with the arms t1 and t2 . The ellipse represents
a cam, and the right angle is the follower driven by the cam. The system
is mobile with degree of freedom F = 1 . Grübler’s formula (4.2) with n =
m = 3 and f1 = f2 = f3 = 1 yields F = d . This shows that the system
is overconstrained with d = 1 . Manufacturing errors result in the loss of
mobility.

As angular coordinate of the cam the angle ϕ1 from the frame-fixed line
P10P20 to the minor principal axis of the ellipse is chosen and as coordinate of
the follower the angle ϕ2 from the same frame-fixed line to the bisector of the
right angle (ϕ1 , ϕ2 positive clockwise). The figure shows that γ = ϕ2+π/4
and γ − ϕ1 + α = π/2 . Together with (6.113) this yields

ϕ1 = ϕ2 + α(ϕ2)− π

4
with cos 2α = −a2 + b2

a2 − b2
sin 2ϕ2 . (6.114)

This equation cannot be solved explicitly for ϕ2 . However, the following
statements are obviously true. The angle ϕ2 is an odd, π-periodic function of
ϕ1 . It is zero for ϕ1 = kπ/2 (k = 0, 1, 2, · · · ). Stationary values of ϕ2 occur
in positions when the principal axes of the ellipse are parallel to t1 and to t2
(the dashed lines in Fig. 6.15). The figure yields ϕ2max = tan−1(a/b)− π/4
for ϕ1 = tan−1(a/b) . Differentiation of both Eqs.(6.114) with respect to
time yields the angular velocity ratio

ϕ̇1

ϕ̇2
= 1 +

a2 + b2

a2 − b2
cos 2ϕ2

sin 2α
. (6.115)

During the quarter revolution of the ellipse from the position ϕ1 = ϕ2 =
0 , α = π/4 to the position ϕ1 = π/2 , ϕ2 = 0 , α = 3π/4 this ratio
changes from the extremal value 2a2/(a2 − b2) through ∞ at ϕ2 = ϕ2max

to the extremal value −2b2/(a2 − b2) . This investigation is continued in Ex.
1 of Sect. 15.1.2.

6.11 Heureka Octahedron

In Fig. 6.16a a regular octahedron is shown. It has eight faces 1, . . . , 8 (equi-
lateral triangles) and six corners. Each corner is common to four faces. At
each corner the four faces are grouped in two pairs of adjacent faces. The
pairs are identified by the face labels separated by a komma. Examples: At
the top corner pairs 1,4 and 2,3 and at the bottom corner pairs 5,8 and 6,7.
Imagine the faces to be bodies pairwise interconnected by identical joints at
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Fig. 6.16 Regular octahedron (a) and octahedral mechanism with twelve joints unfolded

(b). Front faces 1, 2, 7, 8

the corners (one joint connecting pair 1,4 and another joint connecting pair
2,3 at the top corner etc.). The resulting mechanism has n = 8 identical
bodies and m = 12 identical joints. With f being the individual degree
of freedom of a single joint Grübler’s Eq.(4.1) yields for the total degree of
freedom of the mechanism the formula F = d+12f − 30 . This is F = d+6
in the case of spherical joints and F = d− 6 in the case of joints with f = 2
(universal joints). In Fig. 6.16b a mechanism with spherical joints is shown
in a slightly unfolded position which is preserving the original symmetry. The
joints are denoted P1 , . . . ,P12 . Example: Face 1 is connected to face 2 by
joint P1 , to face 8 by joint P2 and to face 4 by joint P3 . In what follows,
it is shown that the total degree of freedom is F = 1 if universal joints are
employed provided the two axes of rotation of the joint, each fixed on one
of the connected bodies, are properly directed relative to the bodies. In 1991
a very large mechanism of this kind was a major attraction at the Scien-
tific Exhibition HEUREKA at Zurich. Since then the mechanism is known as
Heureka octahedron. Since it is d = 7 times overconstrained, it became the
subject of scientific investigations (Stachel [30], Zsombor Murray [36], Baker
[6], Wohlhart [35]). The analysis presented here is different.

The Heureka octahedron is a multiloop mechanism. This is seen from the
so-called system graph shown in Fig. 6.17 . Its vertices 1, . . . , 8 represent
the bodies, and its edges 1, . . . , 12 (straight or curved lines) represent the
joints. The appearance of a graph depends on the labeling of bodies and of
joints, on the arrangement of vertices on the sheet of paper and on the shape
chosen for the connecting lines. A well-drawn graph should display structural
symmetries of the mechanism as clearly as possible. If possible, crossings of
edges should be avoided (this is not always possible). The graph in Fig.
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Fig. 6.17 System graph of
the Heureka octahedron with
elementary loops I – V Fig. 6.18 Screw motion of face 1

6.17 is free of crossings and highly symmetric. It reveals the existence of five
elementary loops I , II , III , IV and V . Each elementary loop is formed by
four bodies and four joints. Other loops present in the graph are combinations
of elementary loops. For proving that the Heureka octahedron has the degree
of freedom F = 1 it suffices to prove that a single independent variable
determines the kinematics of all five elementary loops. The proof is achieved
as follows. First, the triangular face 1 of Fig. 6.16a is considered when it is
isolated from its three neighbors. In Fig. 6.18 it is shown in the fixed reference
basis e . The outward normal to face 1 is specified by its unit vector n1 with
coordinates n1 = n2 = n3 =

√
3/3 . The circular cylinder with axis n1 which

is circumscribing the triangle intersects the e1, e2-plane, the e2, e3-plane and
the e3, e1-plane in three congruent ellipses. Clearly, it is possible to subject
face 1 to a continuous screw motion with rotation ϕ1 about n1 and with
translation u1(ϕ1) along n1 in such a way that P1 moves along the ellipse
in the e3, e1-plane, P2 along the ellipse in the e1, e2-plane and P3 along
the ellipse in the e2, e3-plane. In what follows, the translatory displacement
u1 as well as the positions of the three points are determined as functions
of ϕ1 . Let the position shown be the null position ϕ1 = 0 , u1 = 0 . Let,
furthermore, e1 be the body-fixed basis which coincides with e in the null
position. In e1 P1 , P2 , P3 have the coordinate matrices R1

1 = [1 0 0]T ,
R1

2 = [0 1 0]T and R1
3 = [0 0 1]T , respectively. This definition of unit

length implies that the side length of the equilateral triangular faces is
√
2 ,

and that the distance of opposite faces of the octahedron (faces 1 and 6 ,
for example) is 4/

√
3 . Let ri = [xi yi zi]

T be the coordinate matrix of
Pi (i = 1, 2, 3) in e after the screw displacement. It is calculated from the
equation

ri =

⎡
⎣xi

yi
zi

⎤
⎦ = A1R1

i + u1

√
3

3

⎡
⎣1
1
1

⎤
⎦ (i = 1, 2, 3) (6.116)
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where A1 is the matrix in (1.49) with n1 = n2 = n3 =
√
3/3 . With the

abbreviations c = cosϕ1 , s = sinϕ1⎡
⎣xi

yi
zi

⎤
⎦ =

1

3

⎛
⎝
⎡
⎣ 1 + 2c 1− c− s

√
3 1− c+ s

√
3

1− c+ s
√
3 1 + 2c 1− c− s

√
3

1− c− s
√
3 1− c+ s

√
3 1 + 2c

⎤
⎦R1

i + u1

√
3

⎡
⎣ 1
1
1

⎤
⎦
⎞
⎠

(6.117)
(i = 1, 2, 3) . Each of the conditions y1 = z2 = x3 = 0 yields

u1(ϕ1) =

√
3

3
(cosϕ1 − 1)− sinϕ1 . (6.118)

When this is substituted back into (6.117), the coordinates of the points are
obtained:

x3 = y1 = z2 = 0 , x1 = y2 = z3 = cosϕ1 −
√
3

3
sinϕ1 ,

z1 = x2 = y3 = −2
√
3

3
sinϕ1 .

⎫⎪⎬
⎪⎭ (6.119)

These are parameter equations of the three congruent ellipses. When the
position of a single point, for example x2, y2 , is given, the angle ϕ1 is
determined from the equations

sinϕ1 = −x2

√
3

2
, cosϕ1 = y2 − x2

2
. (6.120)

Substitution into the equation sin2 ϕ1+cos2 ϕ1 = 1 yields the parameter-free
equation of the ellipse

x2
2 + y22 − x2y2 = 1 . (6.121)

The other two ellipses have the equations y23 + z23 − y3z3 = 1 and z21 + x2
1 −

z1x1 = 1 . In Fig. 6.19 the x2, y2-system, the y3, z3-system and the z1, x1-
system are shown in a single diagram. In this diagram the three ellipses appear
as a single curve. The principal-axes system ξ, η of the ellipse is rotated 45◦

against the coordinate axes. In this ξ, η-system the equation of the ellipse is

ξ2

2
+

η2

2/3
= 1 . (6.122)

The angles ϕ1 = −60◦ and ϕ1 = 30◦ mark two vertices of the ellipse.
The vertices at ϕ1 = −60◦ and ϕ1 = 120◦ are the points of maximum
and minimum translatory displacements u1max =

√
3/3 and u1min = −√

3 ,
respectively. From Fig. 6.16b it is seen that all three coordinates of P1 , P2 ,
P3 as well as u1 must be nonnegative in order to prevent interference of face
1 with other faces. Hence ϕ1 is confined to the interval −120◦ ≤ ϕ1 ≤ 0 .
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Fig. 6.19 Elliptic trajectories of P1 , P2 , P3

At ϕ1 = −120◦ P1 ( P2 , P3 ) is in the position initially held by P3 (by P1 ,
by P2 ).

Not only the isolated face 1 , but every isolated face i (i = 1, . . . , 8) of
the octahedron is able to execute a screw motion ϕi , ui about its outward
normal unit vector ni in such a way that each of its three corners moves in
one of the principal planes of basis e . The position shown in Fig. 6.16a is
the null position ϕi = 0 (i = 1, . . . , 8). Independent of which face is chosen
the three coordinates of ni have identical absolute values

√
3/3 . From this

it follows that, independent of the choice of face, the circular cylinder which
has ni as axis and which circumscribes the triangle of face i intersects
the principal planes of basis e in the same three ellipses. For each of the
faces 2, . . . , 8 the analysis differs from the one for face 1 in the signs of
certain vector coordinates. In what follows, these changes are shown for face
2 . The unit normal vector n2 has coordinates

√
3/3[1 − 1 1]T . The minus

sign has the effect that the transformation matrix relating bases e and e2

(fixed on face 2 and coinciding with e in the position ϕ2 = 0 ) is with new
abbreviations c = cosϕ2 , s = sinϕ2

A2 =
1

3

⎡
⎣ 1 + 2c −(1− c)− s

√
3 1− c− s

√
3

−(1− c) + s
√
3 1 + 2c −(1− c)− s

√
3

1− c+ s
√
3 −(1− c) + s

√
3 1 + 2c

⎤
⎦ . (6.123)

In basis e2 P1, P4, P5 have the coordinate matrices R2
1 = [1 0 0]T , R2

4 =
[0 − 1 0]T and R2

5 = [0 0 1]T , respectively. In the analysis of face 1 it
has already been decided that P1 moves along the ellipse in the e3, e1-plane.
Face 2 is connected to face 1 at P1 . The previously specified motion of P1

in the e3, e1-plane is compatible with screw motion about n2 only if P4

moves along the ellipse in the e1, e2-plane and P5 along the ellipse in the
e2, e3-plane. These are the only differences as compared with face 1 . The
same calculations which led to (6.118) and (6.119) now lead to

u2(ϕ2) =

√
3

3
(cosϕ2 − 1) + sinϕ2 , (6.124)
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y1 = z4 = x5 = 0 , x1 = −y4 = z5 = cosϕ2 +

√
3

3
sinϕ2 ,

z1 = x4 = −y5 =
2
√
3

3
sinϕ2 .

⎫⎪⎬
⎪⎭ (6.125)

Face 7 is connected to face 2 at P4 . The previously specified motion of P4 in
the e1, e2-plane is compatible with screw motion about n7 only if P11 moves
in the e2, e3-plane and P12 in the e3, e1-plane. The equations equivalent to
(6.118) and (6.119) are

u7(ϕ7) =

√
3

3
(cosϕ7 − 1)− sinϕ7 , (6.126)

y12 = z4 = x11 = 0 , x12 = −y4 = −z11 = cosϕ7 −
√
3

3
sinϕ7 ,

z12 = −x4 = y11 =
2
√
3

3
sinϕ7 .

⎫⎪⎬
⎪⎭ (6.127)

Face 6 is connected to face 7 at P11 . The previously specified motion of
P11 in the e2, e3-plane is compatible with screw motion about n6 only if
P9 moves in the e3, e1-plane and P7 in the e1, e2-plane. The equations
equivalent to (6.118) and (6.119) are

u6(ϕ6) =

√
3

3
(cosϕ6 − 1) + sinϕ6 , (6.128)

x11 = y9 = z7 = 0 , z11 = x9 = y7 = − cosϕ6 −
√
3

3
sinϕ6 ,

y11 = z9 = x7 = −2
√
3

3
sinϕ6 .

⎫⎪⎬
⎪⎭ (6.129)

Face 8 is connected to face 7 at P12 . For this reason P12 is required to
move in the e3, e1-plane. At this point it is not yet required that the loop I
formed by faces 1 , 2 , 7 and 8 be closed at P2 . Let P∗

2 be the point fixed on
face 8 which coincides with P2 . The prescribed motion of P12 is compatible
with screw motion about n8 only if P∗

2 moves in the e1, e2-plane and P10

in the e2, e3-plane. The equations equivalent to (6.118) and (6.119) are

u8(ϕ8) =

√
3

3
(cosϕ8 − 1) + sinϕ8 , (6.130)

z∗2 = x10 = y12 = 0 , y∗2 = −z10 = x12 = cosϕ8 +

√
3

3
sinϕ8 ,

x∗
2 = y10 = −z12 =

2
√
3

3
sinϕ8 .

⎫⎪⎬
⎪⎭ (6.131)
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Closure of loop I at P2 requires that x∗
2 ≡ x2 and y∗2 ≡ y2 . This is, indeed,

the case. Equations (6.131), (6.127), (6.125) and (6.119) yield x∗
2 = −z12 =

x4 = z1 ≡ x2 and y∗2 = x12 = −y4 = x1 ≡ y2 .
The closure of the other four elementary loops is proved in the same way

by subjecting faces 3 , 4 and 5 to screw displacements about their outward
normals. For reasons of symmetry this is unnecessary. Each loop is composed
of four faces and four joints. In the folded position of the mechanism shown
in Fig. 6.16a two of the four joints coincide in one corner of the octahedron.
In loop I joints P1 and P12 coincide at the front corner with coordinates
(x, y, z) = (1 0 0) . In loop II joints P4 and P7 coincide at the corner
(0 − 1 0) . In loop III joints P6 and P9 coincide at the corner (−1 0 0) . In
loop IV joints P3 and P5 coincide at the top corner (0 0 1) , and in loop V
joints P10 and P11 coincide at the bottom corner (0 0 − 1) . In every loop
the geometry is the same.

Equations (6.125) and (6.119) express x1 and z1 once in terms of ϕ1

and once in terms of ϕ2 . The pairwise identity of the two expressions has
the form

cosϕ2 +

√
3

3
sinϕ2 ≡ cosϕ1 −

√
3

3
sinϕ1 ,

2
√
3

3
sinϕ2 ≡ −2

√
3

3
sinϕ1 .

(6.132)
Hence ϕ2 ≡ −ϕ1 . Also for the coordinates of P4 , P11 and P12 two expressions
in terms of two angles have been formulated. They lead to the identities
ϕ7 ≡ −ϕ2 ≡ ϕ1 , ϕ6 ≡ −ϕ7 ≡ ϕ1 and ϕ8 ≡ −ϕ7 ≡ ϕ1 . The general rule is
that screw angles of any two faces coupled by a joint are of equal magnitude
and opposite sign:

ϕ3 ≡ ϕ5 ≡ ϕ7 ≡ ϕ1 , ϕ2 ≡ ϕ4 ≡ ϕ6 ≡ ϕ8 ≡ −ϕ1 . (6.133)

These equations in combination with (6.118), (6.124), (6.126), (6.128) and
(6.130) prove that all translatory displacements are identical (either all of
them outward or all inward):

ui(ϕ1) ≡ u(ϕ1) =

√
3

3
(cosϕ1 − 1)− sinϕ1 (i = 1, . . . , 8) . (6.134)

Opposite faces of the octahedron have identical products screw angle times
unit normal vector (ϕ6n6 = ϕ1n1 , for example). From this it follows that
the motion of opposite faces relative to each other is pure translation 2u(ϕ1)
along the common normal. For faces 1 and 6 this follows also from (6.129),
(6.127), (6.125) and (6.119). In combination they state that the coordinates
of opposite joints of the two faces (joints P1 and P9 , joints P2 and P7 ,
joints P3 and P11 ) are of equal magnitude and opposite sign: x9 = −x1 ,
y9 = −y1 , z9 = −z1 etc. In Fig. 6.16b this is shown.

Through the same Eqs.(6.129), (6.127), (6.125) and (6.119) the coordinates
of all twelve points Pi (i = 1, . . . , 12) are expressed in terms of the coordi-
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nates x1 and z1 of P1 . The coordinates are collected in Table 6.1 . Column
i of this table (i = 1, . . . , 12) is the coordinate matrix ri = [xi yi zi]

T .

Table 6.1 Coordinates xi , yi , zi of points Pi (i = 1, . . . , 12) in basis e

1 2 3 4 5 6 7 8 9 10 11 12

xi x1 z1 0 z1 0 −x1 −z1 −z1 −x1 0 0 x1

yi 0 x1 z1 −x1 −z1 0 −x1 x1 0 z1 −z1 0
zi z1 0 x1 0 x1 z1 0 0 −z1 −x1 −x1 −z1

x1 = cosϕ1 −
√
3

3
sinϕ1 , z1 = −2

√
3

3
sinϕ1 .

At both ends of the admissible interval −120◦ ≤ ϕ1 ≤ 0 the eight faces
form a closed octahedron. At ϕ1 = −60◦ the eight faces experience the
maximum outward translatory displacement umax =

√
3/3 .

The motion of the mechanism described above is possible with twelve
spherical joints. What remains to be shown is that it is possible with two-
degree-of-freedom joints as well. This is done as follows. For reasons of
symmetry it suffices to consider faces 1 and 2 coupled by joint P1 . Let
Ω21 be the angular velocity of face 2 relative to face 1 about the com-
mon point P1 . It is the difference Ω21 = ω2 − ω1 of the angular veloc-
ities of faces 2 and 1 , respectively, relative to basis e . This difference is
Ω21 = ϕ̇2n2− ϕ̇1n1 = −ϕ̇1(n2+n1) . The vectors n1 and n2 are fixed in ba-
sis e . The constant angle α between them is determined by cosα = n1 ·n2 .
The coordinates (

√
3/3)[1 1 1] of n1 and (

√
3/3)[1 − 1 1] of n2 deter-

mine cosα = 1/3 (α ≈ 70.5◦) . The vector n2+n1 and, therefore, also Ω21

is directed along the bisector of this angle. Hence the joint connecting faces
1 and 2 is a two-degree-of-freedom joint with an axis of rotation 1 fixed on
face 1 in the direction of n1 and with an axis of rotation 2 fixed on face
2 in the direction of n2 (see Fig. 6.20). This joint is a universal joint with
nonorthogonal axes intersecting at P1 .

Faces 7 and 6 are separated from face 1 by two and by three joints,
respectively. Let Ω71 and Ω61 be their angular velocities relative to face
1 . These angular velocities are Ω71 = ϕ̇7n7 − ϕ̇1n1 = ϕ̇1(n7 − n1) and
Ω61 = ϕ̇6n6− ϕ̇1n1 ≡ 0 . The latter formula reconfirms that face 6 is in pure
translation relative to face 1 . The former can be written in the alternative
forms Ω71 = ϕ̇1(n7 + n6) = Ω76 and Ω71 = −ϕ̇1(n4 + n1) = −Ω41 . These
equations show that the relative angular velocities of all pairs of nonopposite
faces have identical absolute values.

The Heureka octahedron at the Scientific Exhibition at Zurich would not
have been a major attraction had only the identical screw motions of the eight
faces relative to basis e been demonstrated. Since one face of the octahedron
was fixed horizontally to the ground, not the motion relative to basis e was
visible, but the motion of the remaining seven faces relative to the fixed face.
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Fig. 6.20 Universal joint with nonorthogonal axes

Viewers were allowed to stand on this face while the octahedron was opening
and closing around them. In what follows, it is assumed that face 1 is fixed.
To be determined are the trajectories, i.e., the coordinate matrices of the
points Pi (i = 1, . . . , 12) in basis e1 as functions of ϕ1 . These matrices are
denoted R1

i = [Xi Yi Zi]
T . Inversion of (6.116) yields the explicit formula

R1
i =

⎡
⎣Xi

Yi

Zi

⎤
⎦ = A1T ri − u

√
3

3

⎡
⎣1
1
1

⎤
⎦ (i = 1, . . . , 12) (6.135)

or with the abbreviations c = cosϕ1 , s = sinϕ1 and with u from (6.134)⎡
⎣Xi

Yi

Zi

⎤
⎦ =

1

3

⎛
⎝
⎡
⎣ 1 + 2c 1− c+ s

√
3 1− c− s

√
3

1− c− s
√
3 1 + 2c 1− c+ s

√
3

1− c+ s
√
3 1− c− s

√
3 1 + 2c

⎤
⎦ ri + (1− c+ s

√
3)

⎡
⎣ 1

1
1

⎤
⎦
⎞
⎠

(6.136)

(i = 1, . . . , 12) . The coordinate matrices ri in basis e are known from Table
6.1 . Evaluation for i =1 , 4 , 5 , 7 , 9 , 11 and 12 yields as functions of ϕ1
the coordinates of the points fixed on faces 2 , 6 and 7 :

X1 = 1 , X4 =
2

3

[
s(1− 4c)

√
3

3
− c+ 1

]
, X5 =

4
√
3

9
s(1− c+ s

√
3 ) ,

Y1 = 0 , Y4 =
2

3

[
s(1 + 2c)

√
3

3
− c− 2c2

]
+ 1 , Y5 =

4
√
3

9
s(1 + 2c) ,

Z1 = 0 , Z4 =
2

3

[
s(1 + 2c)

√
3

3
− c+ 2c2 − 1

]
, Z5 =

4
√
3

9
s(1− c− s

√
3 ) + 1 ,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(6.137)

X11 = −2
√
3

3
u , X7 = X11 , X9 = X11 − 1 , X12 = Z5 ,

Y11 = X11 , Y7 = X11 − 1 , Y9 = X11 , Y12 = X5 ,

Z11 = X11 − 1 , Z7 = X11 , Z9 = X11 , Z12 = Y5 .

⎫⎪⎪⎬
⎪⎪⎭ (6.138)

Differentiation of the coordinates with respect to time yields the velocities of

the points. The velocities of P4 and P5 are v4 = 4
3 ϕ̇1

√
2 + (c+ s

√
3)2/4 =

4
3 ϕ̇1

√
2 + cos2(ϕ1 − 60◦) , v5 = 4

3 ϕ̇1

√
2 + cos2 ϕ1 .



6.11 Heureka Octahedron 251

P4 and P5 are both located on the sphere of radius
√
2 centered at P1 .

Hence (X4 − 1)2 + Y 2
4 + Z2

4 = 2 and (X5 − 1)2 + Y 2
5 + Z2

5 = 2 .
P4 as well as P5 is located on still another second-order surface. By substi-
tuting coordinates it is verified that
Y4 − Z4 + 1 = 8

3 s
2 , Y4 + Z4 − 2X4 + 1 = 8

3

√
3 sc ,

X5 − Z5 + 1 = 8
3 s

2 , X5 + Y5 + Z5 − 1 = 4
3

√
3 s .

Hence
(Y4 + Z4 − 2X4 + 1)2 − (1 + Y4 − Z4)[5− 3(Y4 − Z4)] = 0

or [X4 Y4 Z4 ]

⎡
⎣ 2 −1 −1
−1 2 −1
−1 −1 2

⎤
⎦
⎡
⎣X4

Y4

Z4

⎤
⎦− 2X4 + 2Z4 − 2 = 0

and
(X5 + Y5 + Z5 − 1)2 − 2(X5 − Z5 + 1) = 0

or [X5 Y5 Z5 ]

⎡
⎣ 1 1 1
1 1 1
1 1 1

⎤
⎦
⎡
⎣X5

Y5

Z5

⎤
⎦− 4X5 − 2Y5 − 1 = 0 .

In both equations the symmetric coefficient matrix of the second-order terms
has real eigenvalues λ1 , λ2 , λ3 and mutually orthogonal eigenvectors. Let
Ai (i = 4, 5) be the matrix with these eigenvectors as columns. The trans-
formation [Xi Yi Zi ]

T = Ai [x y z ]T results in an equation of the form
λ1x

2 + λ2y
2 + λ3z

2 + ax+ by + cz + d = 0 .

The equation for P4 :

λ1 = 0 , λ2 = λ3 = 3 , A4 = 1
6

⎡
⎣ 2

√
3 3

√
2

√
6

2
√
3 −3

√
2

√
6

2
√
3 0 −2

√
6

⎤
⎦ . The transformed

equation is (y − 1
6

√
2)2 + (z − 1

6

√
6)2 = 8

9 . This is a circular cylinder. Its
radius is twice the radius of the circle circumscribing the triangular face of
the octahedron.

The equation for P5 :

λ1 = 3 , λ2 = λ3 = 0 , A5 = 1
6

⎡
⎣−2

√
3

√
6 −3

√
2

−2
√
3 −2

√
6 0

−2
√
3

√
6 3

√
2

⎤
⎦ . The transformed

equation is (x
√
3 + 1)2 + 2z

√
2 − 2 = 0 . This is a cylinder with parabolic

cross section in the x, z-plane.

Generalized Heureka Octahedron
The triangle shown in Fig. 6.21 in basis e has its corners at points with coor-
dinate matrices R1

1 = [a1 0 0]T , R1
2 = [0 a2 0]T and R1

3 = [0 0 a3]
T , respec-

tively (a1, a2, a3 > 0 arbitrary). This triangle is face 1 of a plane-symmetric
octahedron with these corners and with the opposite corners −R1

1 , −R1
2

and −R1
3 . The labeling of faces, the pairwise connections of faces by joints

and the labeling of joints are copied from Figs. 6.16a and b . Proposition:
If the joint at Pi (i = 1, . . . , 12) is a universal joint with joint axes along
the normals of the two bodies coupled by this joint, the mechanism has the
degree of freedom F = 1 . Furthermore, each face i = 1, . . . , 8 moves in such
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Fig. 6.21 Face 1 of a plane-symmetric octahedron

a way that (i) its normal ni does not change its direction and (ii) each corner
moves in an ellipse in a principle plane of basis e . The idea to generalize the
Heureka octahedron in this way is due to Wohlhart [34]. The proof presented
here is different.

For reasons of symmetry it suffices to prove the propositions for face 1 . Its
outward normal unit vector has the coordinates (normalized vector product−−−→
P1P2 ×−−−→

P1P3 )

n1 =
a2a3
N

, n2 =
a3a1
N

, n3 =
a1a2
N

, N =
√

a21a
2
2 + a22a

2
3 + a23a

2
1 .

(6.139)
From the analysis of the Heureka octahedron the conditions are copied that
P1 moves in the e3, e1-plane, P2 in the e1, e2-plane and P3 in the e2, e3-
plane. These conditions plus the stationarity condition of the unit normal
vector require that the displacement of face 1 is a rotation about the unit
normal vector superimposed by a translation which does not have the direc-
tion of the unit normal vector. Equation (6.116) is replaced by the equation⎡

⎣xi

yi
zi

⎤
⎦ = A1R1

i +

⎡
⎣u1

u2

u3

⎤
⎦ (i = 1, 2, 3) , (6.140)

where u1 , u2 , u3 are the coordinates of the displacement in basis e . With
the general Eq.(1.49) for A1 this equation is ( c = cosϕ1 , s = sinϕ1 )⎡
⎣ xi

yi
zi

⎤
⎦ =

⎡
⎣ n2

1 + (1− n2
1)c n1n2(1− c)− n3s n1n3(1− c) + n2s

n1n2(1− c) + n3s n2
2 + (1− n2

2)c n2n3(1− c)− n1s
n1n3(1− c)− n2s n2n3(1− c) + n1s n2

3 + (1− n2
3)c

⎤
⎦R1

i +

⎡
⎣ u1

u2

u3

⎤
⎦

(6.141)

(i = 1, 2, 3) . For n1 , n2 , n3 the expressions (6.139) are substituted. The
conditions y1 = z2 = x3 = 0 yield for the translatory displacements the
explicit functions of ϕ1 :
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u1 = −a23a1

[ a22
N2

(1− cosϕ1) +
1

N
sinϕ1

]
,

u2 = −a21a2

[ a23
N2

(1− cosϕ1) +
1

N
sinϕ1

]
,

u3 = −a22a3

[ a21
N2

(1− cosϕ1) +
1

N
sinϕ1

]
.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(6.142)

When these expressions are substituted back into (6.141), the coordinates of
P1 , P2 , P3 in basis e are obtained:

x1 = a1

(
cosϕ1 − a23

N
sinϕ1

)
, z1 = −a3(a

2
1 + a22)

N
sinϕ1 ,

y2 = a2

(
cosϕ1 − a21

N
sinϕ1

)
, x2 = −a1(a

2
2 + a23)

N
sinϕ1 ,

z3 = a3

(
cosϕ1 − a22

N
sinϕ1

)
, y3 = −a2(a

2
3 + a21)

N
sinϕ1 .

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(6.143)

Elimination of ϕ1 from the equations for x2 and y2 proves that the trajec-
tory of P2 is the ellipse

x2
2

(a21 + a22)(a
2
1 + a23)

a21(a
2
2 + a23)

2
+

y22
a22

− 2a1
a2(a22 + a23)

x2y2 = 1 . (6.144)

The other two ellipses are obtained by cyclic permutation of indices. In the
special case a1 = a2 = a3 = 1 , which characterizes the Heureka octahedron,
(6.142) – (6.144) are identical with (6.118), (6.119) and (6.121), respectively.
This ends the proof that face 1 is moving in the predicted way. For reasons
of symmetry the trajectories of the corners of faces 2, . . . , 8 are congruent
ellipses. For the same reason, also Eqs.(6.133) are valid: ϕ3 ≡ ϕ5 ≡ ϕ7 ≡
ϕ1 , ϕ2 ≡ ϕ4 ≡ ϕ6 ≡ ϕ8 ≡ −ϕ1 . In joint Pi (i = 1, . . . , 12) the relative
angular velocity of the two coupled faces lies in the plane of the normals of
these faces. From this it follows that joint i is a universal joint with joint
axes along the normals of the two faces. The cosine of the constant angle αi

between the normals is the scalar product of the unit normal vectors. Face
1 is connected to face 2 by joint 1 (angle α1 ), to face 8 by joint 2 (angle
α2 ) and to face 4 by joint 3 (angle α3 ). The same three angles appear in
the joints of each face. The four unit normal vectors involved have in basis e
the following coordinates: Face 1 : [n1 n2 n3] , face 2 : [n1 − n2 n3] , face 8 :
[n1 n2 − n3] , face 4 : [−n1 n2 n3] . With (6.139) this yields

cosα1 =
a22a

2
3 − a23a

2
1 + a21a

2
2

a22a
2
3 + a23a

2
1 + a21a

2
2

, cosα2 =
a22a

2
3 + a23a

2
1 − a21a

2
2

a22a
2
3 + a23a

2
1 + a21a

2
2

,

cosα3 =
−a22a

2
3 + a23a

2
1 + a21a

2
2

a22a
2
3 + a23a

2
1 + a21a

2
2

,
∑
i

cosαi = 1 .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (6.145)
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16. Delassus E (1902) Sur les systèmes articulés gauches. Deuxième Partie. Paris

Ec.Normale Sup., Ann.Scie. 3s,XIX:119–152
17. Demaine E D , O’Rourke J (2007) Geometric folding algorithms. Linkages, origami,

polyhedra. Cambridge Univ. Press
18. Dimentberg F M, Schor Ja B (1940) The Bennett mechanism. PMM v.IV:111–118
19. Dietmaier P (1995) Einfach übergeschlossene Mechanismen mit Drehgelenken. Habil.-

Schrift Graz
20. Goldberg M (1943) New five-bar and six-bar linkages in three dimensions. Trans.

ASME 65:649–661
21. Hilbert D, Cohn-Vossen S (1996) Anschauliche Geometrie. 2.Aufl. Springer, Berlin.

Engl. trans. (1952) Geometry and the imagination. Chelsea, New York
22. Hon-Cheung Y (1994) published in: Baker E, Wohlhart K: On the single screw re-

ciprocal to the general line-symmetric six-screw linkage. Mechanism Machine Theory
29:169–175

23. Husty M L, Zsombor-Murray P (1994) A special type of singular Stewart–Gough
platform. In: [24] 449–458
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