
Chapter 5

Spatial Simple Closed Chains

Subject of this chapter is the kinematics of 1-d.o.f. spatial simple closed
chains with axial joints. The simple closed chain is explained in Fig. 4.1b .
Axial joints are the cylindrical joint (C), the revolute joint (R) and the pris-
matic joint (P). Overconstrained mechanisms are excluded from considera-
tion. Then it is known from Theorem 4.1 that a 1-d.o.f. spatial simple closed
chain has seven joint variables. The variable of either one revolute joint or
one prismatic joint is declared independent. The problem to be solved is to
determine the six dependent variables in terms of the independent variable
and of constant mechanism parameters. The solution to this problem is of
great engineering importance because 1-d.o.f. spatial simple closed chains are
basic elements of machine mechanisms.

A simple closed chain is specified by the ordered sequence of letters C ,
R and P of its joints. Neither cyclic permutation of the sequence of letters
nor reversal of the sequence changes the mechanism. Thus, the sequences
RCPRC , CPRCR and CRPCR represent one and the same mechanism
whereas the sequence CCRRP represents a different mechanism with the
same set of joints. The sequence of letters does not tell which joint variable
is considered as independent variable.

Let nC , nR and nP be the numbers of cylindrical, of revolute and of
prismatic joints, respectively. Important characteristic numbers are the total
number nϕ of angular variables, the total number nt of translatory variables
and the total number n of joints and of bodies. These numbers are

nϕ = nC + nR , nt = nC + nP = 7− nϕ , n = nC + nR + nP . (5.1)

The numbers nC , nR and nP are subject to the constraint nϕ + nt =
2nC+nR+nP = 7 and also to the constraint nϕ = nC+nR > 3 because with
three or fewer rotation axes no change of angular positions is possible. An
equivalent formulation is nt = nC+nP ≤ 3 . It expresses the fact that three is
the maximum number of independent translations. Under these constraints
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160 5 Spatial Simple Closed Chains

Table 5.1 Numbers nC , nR , nP , nϕ , n and associated mechanisms. Symmetrical forms

printed boldface. Nϕ and Nt are the numbers of configurations for a given value of the
independent variable in a revolute joint and in a prismatic joint, respectively

nC nR nP nϕ n mechanisms Nϕ Nt

1 3 1 0 4 4 RCCC 2 −
2 2 2 1 4 5 RCPRC, CCPRR, RCPCR 2 4,8,8

3 1 3 2 4 6 RRRPPC, RRRPCP, RPRPCR, RPRCRP, RPRCPR 2 8

4 0 4 3 4 7 RRPPPRR, RPRPRPR, PRRPRRP, RRRPRPP 2 8

5 2 3 0 5 5 RCRCR, CRRRC 4∗), 8 −
6 1 4 1 5 6 RRCRPR, RRCPRR, RRCRRP 8 16

7 0 5 2 5 7 PRRRRRP, RPRRRPR, RRPRPRR 8 16

8 1 5 0 6 6 5R-C 16 −
9 0 6 1 6 7 6R-P 16 16

10 0 7 0 7 7 7R 16 −
∗) Nϕ = 4 configurations exist if (i) the mechanism is RCRCR and (ii) the independent

angle is in one of the underscored revolutes. Nϕ = 8 otherwise

altogether ten combinations of numbers nC , nR and nP are possible. They
are listed in Table 5.1 in the order of increasing numbers nϕ . For each com-
bination the complete list of mechanisms with the respective combination is
given. Whenever possible the letter sequence is shown in a form symmetri-
cal to the central letter. Symmetrical letter sequences are printed boldface.
The numbers Nϕ and Nt in the last columns are results of the kinematics
analysis to come. Nϕ is the number of configurations which a mechanism
has for a given value of the independent angular variable in a revolute joint,
and Nt is the number of configurations which a mechanism has for a given
value of the independent translatory variable in a prismatic joint. The planar
four-bar mechanism is known to have two configurations for a given value of
the input crank angle. The mechanisms in Table 5.1 have two or four or eight
or sixteen configurations.

About the relationship between Nϕ and Nt the following can be said
without any analysis. Let the angular and the translatory variable in a cylin-
drical joint λ be called ϕλ and hλ , respectively. If joint λ is a prismatic
joint, ϕλ is a constant ϕ∗

λ and hλ is variable. If joint λ is a revolute joint,
ϕλ is variable and hλ is a constant h∗

λ . Imagine now two mechanisms I and
II with the only difference that joint λ is a prismatic joint in mechanism I
and a revolute joint in mechanism II . Furthermore, it is assumed that the
independent variables are chosen such that in both mechanisms hλ = h∗

λ

and ϕλ = ϕ∗
λ . Then both mechanisms are identical in this position of their

joint λ . Consequently, both mechanisms have the same sets of solutions for
the six dependent variables. This means that Nt for mechanism I equals
Nϕ for mechanism II . This equality is shown in Table 5.1 . By replacing in
a mechanism of row 2, 3, 4, 6, 7 or 9 a prismatic joint by a revolute joint a
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mechanism of row 5, 6, 7, 8, 9 or 10 , respectively, is produced. The number
Nt for the former equals the number Nϕ for the latter.

Before starting the kinematics analysis joint variables and mechanism pa-
rameters must be defined. This is the subject of the following Sect. 5.1 . Sec-
tion 5.2 is devoted to coordinate transformations of relevant vectors. In Sect.
5.3 on closure conditions basic equations are formulated for the kinematics
analysis. The application of these equations to the mechanisms of Table 5.1
is demonstrated in Sect. 5.4 .

5.1 Joint Variables. Denavit-Hartenberg Parameters

A single-loop mechanism with n bodies has n joints (4 ≤ n ≤ 7). Bodies as
well as joints are labeled from 1 to n in such a way that the joint axes i
and i+ 1 are located on body i (i = 1, . . . , n cyclic). Figure 5.1 shows the
bodies i− 1 , i and i+ 1 together with their joint axes. The most general
case is assumed that the two joint axes of each body are skew. Then the
two joint axes of each body i have a common normal which is fixed on the
respective body i . The joint axis i is, in turn, the common normal of the
thus defined common normals on bodies i−1 and i . On the joint axis i the
dual unit line vector n̂i is defined, and on the common normal of the joint
axes i and i + 1 , i.e., also fixed on body i , the dual unit line vector âi is
defined (i = 1, . . . , n).

The unit line vector n̂i+1 is produced from n̂i by a screw displacement
with âi being the screw axis. As shown in Fig. 5.1 the rotation angle about
the screw axis is called αi and the translation along the screw axis is called
�i . These two constants (positive or negative) are the only kinematical pa-
rameters of body i . Together they define the constant dual screw angle

α̂i = αi + ε�i . (5.2)

In the same way the unit line vector âi is produced from âi−1 by a screw
displacement with the screw axis n̂i and with a dual screw angle

ϕ̂i = ϕi + εhi . (5.3)

Figure 5.1 shows also ϕi and hi . In a cylindrical joint ϕi and hi are joint
variables. In a revolute joint hi is a constant parameter and only ϕi is vari-
able. In a prismatic joint ϕi is a constant parameter and hi is variable. The
constant hi in a revolute joint is referred to as offset. The 4n quantities
αi , �i , ϕi , hi (i = 1, . . . , n) are the so-called Denavit-Hartenberg parame-
ters of the mechanism (see Denavit/Hartenberg [3]). Seven among them are
variables, and 4n − 7 are constant system parameters. The number of con-
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Fig. 5.1 Bodies i−1 , i and i+1 with joint axes. Dual unit line vectors, body parameters

and joint variables

stant system parameters ranges between nine for the mechanism RCCC and
twenty-one for all mechanisms with n = 7 .

The n line vectors hin̂i and the n line vectors �iâi (i = 1, . . . , n) create
a mobile spatial polygon with right angles at every corner. Analyzing the
mechanism means analyzing this polygon.

The assumption that consecutive joint axes i and i + 1 are skew can
now be dropped. If they intersect, then �i = 0 , α̂i = αi , and the unit line
vector âi is along the common normal of the joint axes through their point
of intersection. If the axes of three consecutive revolutes i− 1 , i and i+ 1
intersect at a single point, these axes are equivalent to a spherical joint S
located at this point. Example: The mechanism RRSRR is a special case of
the mechanism 7R .

If two consecutive joint axes i and i + 1 are parallel, then αi = 0 . The
common normal to the joint axes can be placed such that either hi = 0 or
hi+1 = 0 .

5.2 Screw Displacements. Coordinate Transformations

This section is devoted to screw displacements in the mobile spatial poly-
gon spanned be the line vectors hin̂i and �iâi (i = 1, . . . , n). The screw
displacements relating n̂i to n̂i+1 and âi+1 to âi are described by the
equations

n̂i+1 = n̂i cos α̂i+âi×n̂i sin α̂i , âi = âi−1 cos ϕ̂i+n̂i×âi−1 sin ϕ̂i . (5.4)

This is the dualized form of (1.125) which describes the rotation shown in
Fig. 1.5 . For a more compact formulation the following abbreviations are
introduced:
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Ĉi = cos α̂i , Ŝi = sin α̂i , ĉi = cos ϕ̂i , ŝi = sin ϕ̂i (5.5)

(i = 1, . . . , n cyclic) . The equations then read (in the second equation all
indices are increased by one):

n̂i+1 = Ĉin̂i + Ŝiâi × n̂i , âi+1 = ĉi+1âi + ŝi+1n̂i+1 × âi (5.6)

(i = 1, . . . , n cyclic) . On an indeterminate body k of the mechanism a dual
cartesian basis is defined with unit basis vectors

ê1 = n̂k , ê2 = âk , ê3 = n̂k × âk . (5.7)

Equations (5.6) constitute two-step recursion formulas for the coordinate
decomposition of all vectors n̂k+j and âk+j (j = 1, 2, . . .) in this basis.
From âk and n̂k+1

âk+1 = ĉk+1âk + ŝk+1(Ĉkn̂k + Ŝkâk × n̂k)× âk

= ŝk+1Ŝkn̂k + ĉk+1âk + ŝk+1Ĉkn̂k × âk . (5.8)

From âk+1 and n̂k+1

n̂k+2 = Ĉk+1n̂k+1 + Ŝk+1âk+1 × n̂k+1

= (Ĉk+1Ĉk − Ŝk+1Ŝk ĉk+1)n̂k + Ŝk+1ŝk+1âk

−(Ĉk+1Ŝk + Ŝk+1Ĉk ĉk+1)n̂k × âk . (5.9)

In the next step âk+2 and n̂k+3 are calculated by increasing in (5.8) and
(5.9) all indices by one and by substituting for âk+1 and n̂k+2 the previous
formulas. Formulas for n̂k+4 and âk+4 are obtained with the least effort
if in the expressions for n̂k+2 and âk+2 all indices are increased by two.
Example:

n̂k+4 = (Ĉk+3Ĉk+2 − Ŝk+3Ŝk+2ĉk+3)n̂k+2 + Ŝk+3ŝk+3âk+2

−(Ĉk+3Ŝk+2 + Ŝk+3Ĉk+2ĉk+3)n̂k+2 × âk+2 . (5.10)

Into this expression the previously obtained expressions for n̂k+2 and âk+2

are substituted. Every expression thus obtained is linear with respect to every
sine and to every cosine involved. Products sine × cosine of one and the same
angle do not appear.

From the coordinates of the vectors n̂k+j and âk+j (j arbitrary) in the
basis (5.7) the coordinates of n̂k−j and âk−j are obtained by a change
of symbols. This is shown as follows. Inversion of the relationships (5.4) is
achieved by reversing the sign of the dual angle:

n̂i = n̂i+1 cos α̂i − âi × n̂i+1 sin α̂i , âi−1 = âi cos ϕ̂i − n̂i × âi sin ϕ̂i .
(5.11)
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With (5.5) these are the equations (in the first equation all indices are de-
creased by one)

n̂i−1 = Ĉi−1n̂i − Ŝi−1âi−1 × n̂i , âi−1 = ĉiâi − ŝin̂i × âi . (5.12)

Comparison with (5.6) reveals: For arbitrary j the coordinates of n̂k+j in
the basis (5.7) become those of âk−j and vice versa if (i) ê1 and ê2 are
interchanged, (ii) j is replaced by −j and (iii) α̂ and ϕ̂ are interchanged.

Table 5.2 contains the coordinates of all vectors n̂k±j and âk±j (k arbi-
trary; j = 0, 1, 2, 3) and of n̂k+4 and âk−4 . The table is used for calculating
sums and products of vectors. It greatly simplifies the kinematics analysis
of simple closed chains in this chapter. In Chap. 6 it is applied to overcon-
strained closed chains and in Chap. 7 to serial chains. When the symbol ˆ
is deleted everywhere, the table gives the coordinates of first Plücker vectors
nk±j and ak±j .

Table 5.2 Vector coordinates in the dual basis with unit vectors ê1 = n̂k , ê2 =
âk , ê3 = n̂k × âk . The three coordinates of each vector are separated by semicolons.
Ĉi = cos α̂i , Ŝi = sin α̂i , ĉi = cos ϕ̂i , ŝi = sin ϕ̂i

n̂k [ 1 ; 0 ; 0 ]

âk [ 0 ; 1 ; 0 ]

n̂k+1 [Ĉk ; 0 ; −Ŝk]

âk−1 [ 0 ; ĉk ; −ŝk]

âk+1 [ŝk+1Ŝk ; ĉk+1 ; ŝk+1Ĉk]

n̂k−1 [Ĉk−1 ; Ŝk−1ŝk ; Ŝk−1ĉk ]

n̂k+2 [Ĉk+1Ĉk − Ŝk+1Ŝk ĉk+1 ; Ŝk+1ŝk+1 ; −(Ĉk+1Ŝk + Ŝk+1Ĉk ĉk+1)]

âk−2 [ŝk−1Ŝk−1 ; ĉk−1ĉk − ŝk−1ŝkĈk−1 ; −(ĉk−1ŝk + ŝk−1ĉkĈk−1)]

âk+2 [ĉk+2ŝk+1Ŝk + ŝk+2(Ŝk+1Ĉk + Ĉk+1Ŝk ĉk+1) ; ĉk+2ĉk+1 − ŝk+2ŝk+1Ĉk+1 ;

ĉk+2ŝk+1Ĉk − ŝk+2(Ŝk+1Ŝk − Ĉk+1Ĉk ĉk+1)]

n̂k−2 [Ĉk−2Ĉk−1 − Ŝk−2Ŝk−1ĉk−1 ; Ĉk−2Ŝk−1ŝk + Ŝk−2(ŝk−1ĉk + ĉk−1ŝkĈk−1) ;

Ĉk−2Ŝk−1ĉk − Ŝk−2(ŝk−1ŝk − ĉk−1ĉkĈk−1)]

n̂k+3

[
Ĉk+2(Ĉk+1Ĉk − Ŝk+1Ŝk ĉk+1) + Ŝk+2[ŝk+2ŝk+1Ŝk

−ĉk+2(Ŝk+1Ĉk + Ĉk+1Ŝk ĉk+1)] ;

Ĉk+2Ŝk+1ŝk+1 + Ŝk+2(ŝk+2ĉk+1 + ĉk+2ŝk+1Ĉk+1) ;

−Ĉk+2(Ĉk+1Ŝk + Ŝk+1Ĉk ĉk+1) + Ŝk+2[ŝk+2ŝk+1Ĉk

+ĉk+2(Ŝk+1Ŝk − Ĉk+1Ĉk ĉk+1)]
]



âk−3

[
ĉk−2ŝk−1Ŝk−1 + ŝk−2(Ŝk−2Ĉk−1 + Ĉk−2Ŝk−1ĉk−1) ;

ĉk−2(ĉk−1ĉk − ŝk−1ŝkĈk−1)

+ŝk−2[Ŝk−2Ŝk−1ŝk − Ĉk−2(ŝk−1ĉk + ĉk−1ŝkĈk−1)] ;

−ĉk−2(ĉk−1ŝk + ŝk−1ĉkĈk−1)

+ŝk−2[Ŝk−2Ŝk−1ĉk + Ĉk−2(ŝk−1ŝk − ĉk−1ĉkĈk−1)]
]

âk+3

{
ĉk+3[ĉk+2ŝk+1Ŝk + ŝk+2(Ŝk+1Ĉk + Ĉk+1Ŝk ĉk+1)]

−ŝk+3

[
Ĉk+2[ŝk+2ŝk+1Ŝk − ĉk+2(Ŝk+1Ĉk + Ĉk+1Ŝk ĉk+1)]

−Ŝk+2(Ĉk+1Ĉk − Ŝk+1Ŝk ĉk+1)
]
;

ŝk+3[Ŝk+2Ŝk+1ŝk+1 − Ĉk+2(ŝk+2ĉk+1 + ĉk+2ŝk+1Ĉk+1)]

+ĉk+3(ĉk+2ĉk+1 − ŝk+2ŝk+1Ĉk+1) ; ĉk+3[ĉk+2ŝk+1Ĉk

−ŝk+2(Ŝk+1Ŝk − Ĉk+1Ĉk ĉk+1)]− ŝk+3

[
Ĉk+2[ŝk+2ŝk+1Ĉk

+ĉk+2(Ŝk+1Ŝk − Ĉk+1Ĉk ĉk+1)] + Ŝk+2(Ĉk+1Ŝk + Ŝk+1Ĉk ĉk+1)
]}

n̂k−3

{
Ŝk−3[ŝk−2ŝk−1Ŝk−1 − ĉk−2(Ŝk−2Ĉk−1 + Ĉk−2Ŝk−1ĉk−1)]

+Ĉk−3(Ĉk−2Ĉk−1 − Ŝk−2Ŝk−1ĉk−1) ; Ĉk−3[Ĉk−2Ŝk−1ŝk

+Ŝk−2(ŝk−1ĉk + ĉk−1ŝkĈk−1)]− Ŝk−3

[
ĉk−2[Ŝk−2Ŝk−1ŝk

−Ĉk−2(ŝk−1ĉk + ĉk−1ŝkĈk−1)]− ŝk−2(ĉk−1ĉk − ŝk−1ŝkĈk−1)
]
;

Ĉk−3[Ĉk−2Ŝk−1ĉk − Ŝk−2(ŝk−1ŝk − ĉk−1ĉkĈk−1)]

−Ŝk−3

[
ĉk−2[Ŝk−2Ŝk−1ĉk + Ĉk−2(ŝk−1ŝk − ĉk−1ĉkĈk−1)]

+ŝk−2(ĉk−1ŝk + ŝk−1ĉkĈk−1)
]}

n̂k+4

{
(Ĉk+3Ĉk+2 − Ŝk+3Ŝk+2ĉk+3)(Ĉk+1Ĉk − Ŝk+1Ŝk ĉk+1)

+Ŝk+3ŝk+3[ĉk+2ŝk+1Ŝk + ŝk+2(Ŝk+1Ĉk + Ĉk+1Ŝk ĉk+1)]

+(Ĉk+3Ŝk+2 + Ŝk+3Ĉk+2ĉk+3)[ŝk+2ŝk+1Ŝk

−ĉk+2(Ŝk+1Ĉk + Ĉk+1Ŝk ĉk+1)] ;

(Ĉk+3Ĉk+2 − Ŝk+3Ŝk+2ĉk+3)Ŝk+1ŝk+1

+Ŝk+3ŝk+3(ĉk+2ĉk+1 − ŝk+2ŝk+1Ĉk+1)

+(Ĉk+3Ŝk+2 + Ŝk+3Ĉk+2ĉk+3)(ŝk+2ĉk+1 + ĉk+2ŝk+1Ĉk+1) ;

−(Ĉk+3Ĉk+2 − Ŝk+3Ŝk+2ĉk+3)(Ĉk+1Ŝk + Ŝk+1Ĉk ĉk+1)

+Ŝk+3ŝk+3[ĉk+2ŝk+1Ĉk − ŝk+2(Ŝk+1Ŝk − Ĉk+1Ĉk ĉk+1)]

+(Ĉk+3Ŝk+2 + Ŝk+3Ĉk+2ĉk+3)[ŝk+2ŝk+1Ĉk

+ĉk+2(Ŝk+1Ŝk − Ĉk+1Ĉk ĉk+1)]
}

âk−4

{
(ĉk−3ĉk−2 − ŝk−3ŝk−2Ĉk−3)ŝk−1Ŝk−1

+ŝk−3Ŝk−3(Ĉk−2Ĉk−1 − Ŝk−2Ŝk−1ĉk−1)

+(ĉk−3ŝk−2 + ŝk−3ĉk−2Ĉk−3)(Ŝk−2Ĉk−1 + Ĉk−2Ŝk−1ĉk−1) ;

(ĉk−3ĉk−2 − ŝk−3ŝk−2Ĉk−3)(ĉk−1ĉk − ŝk−1ŝkĈk−1)

+ŝk−3Ŝk−3[Ĉk−2Ŝk−1ŝk + Ŝk−2(ŝk−1ĉk + ĉk−1ŝkĈk−1)]

+(ĉk−3ŝk−2 + ŝk−3ĉk−2Ĉk−3)[Ŝk−2Ŝk−1ŝk
−Ĉk−2(ŝk−1ĉk + ĉk−1ŝkĈk−1)] ;

−(ĉk−3ĉk−2 − ŝk−3ŝk−2Ĉk−3)(ĉk−1ŝk + ŝk−1ĉkĈk−1)

+ŝk−3Ŝk−3[Ĉk−2Ŝk−1ĉk − Ŝk−2(ŝk−1ŝk − ĉk−1ĉkĈk−1)]

+(ĉk−3ŝk−2 + ŝk−3ĉk−2Ĉk−3)[Ŝk−2Ŝk−1ĉk

+Ĉk−2(ŝk−1ŝk − ĉk−1ĉkĈk−1)]
}

Table 5.2 continued
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5.3 Closure Conditions

Having defined variables and parameters and having established basic rela-
tionships in the mobile spatial polygon of vectors hin̂i + �iâi (i = 1, . . . , n)
we can finally turn to the kinematics problem of this chapter: Determine six
dependent variables of a single-loop mechanism in terms of a single indepen-
dent variable. For this purpose six scalar equations relating the altogether
seven variables are required. Any such equation is called closure condition
because it expresses the closure of the kinematical loop. Closure conditions
are highly nonlinear. Therefore, it is not useful to formulate six fully coupled
equations. It is essential to formulate a set of m < 6 equations for m un-
knowns with m being as small as possible. Once these equations are solved
for the m unknowns it is simple to express the remaining 6−m unknowns
one by one in terms of previously determined unknowns. In the literature
various methods for formulating closure conditions are found:
Yang [40] – [42], Duffy [4] – [8], Duffy/Crane [9], Yuan [44], Yuan/Freuden-
stein/Woo [45], [46], Dukkipati/Soni [13], Dukkipati [14], Soni/Pamidi [35],
Soni [36], Lee [20, 27], Lee/Liang [21] – [24], Liang/Lee/Liao [28], Wo-
ernle [39], Lee/Woernle/Hiller [26], Raghavan/Roth [32], Lee/Roth [25],
Nielsen/Roth [30], Crane/Duffy [2] and others. Many more references are
found in [15]. An historical overview is found in Peisach [31].

In what follows, methods developed by Woernle [39] and Lee [27] are used.
They lead to a minimal set of either m = 1 or m = 2 or m = 4 coupled
equations depending on the type of mechanism. The formulations presented
appeared in Wittenburg [47].

5.3.1 Woernle-Lee Equations

Figure 5.2 shows schematically the polygon of dual-vectors of a single-loop
mechanism. Actually, only the vectors associated with two specific joints
labeled a and b are shown. The rest of the polygon is indicated by dashed
lines. How to choose the joints a and b is explained later. These joints
divide the mechanism into a left segment and a right segment. The ordinary
vector r shown in the figure joins the axes a and b . This vector has two
representations. One as a sum of vectors fixed on bodies of the left segment
and one as a sum of vectors fixed on bodies of the right segment. The vectors
are the primary parts of dual vectors. The two representations are

r =

{−(hbnb + �bab + hb+1nb+1 + . . .+ �a−1aa−1) (left segment)

hana + �aaa + ha+1na+1 + . . .+ �b−1ab−1 (right segment) .
(5.13)
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Fig. 5.2 Segments of a mechanism defined by two joints a and b

In the particular case b = a+ 1 the joints a and b are direct neighbors. In
this case, the vector r in the right segment is r = hana + �aaa . If the axes
a and a+1 are nonparallel, then aa = (1/Sa)(na ×na+1) (see Fig. 5.2). In
this case, (5.13) has the special form

r =

⎧⎨
⎩

−(ha+1na+1 + �a+1aa+1 + . . .+ �a−1aa−1) (left segment)

hana +
�a
Sa

(na × na+1) (right segment) .
(5.14)

In terms of na , nb and r seven scalar quantities F1, . . . , F7 are defined as
follows:

F1 = na · nb , F2 = r · na × nb ,

F3 = na · r , F4 = nb · r ,

F5 = r · np × nq (r from (5.14); p �= q arbitrary) ,

F6 = r2 , F7 = 1
2 (na · nb)r

2 − (na · r)(nb · r)
= 1

2F1F6 − F3F4 .

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(5.15)

The scalars F1 and F2 represent the primary part and the dual part, re-
spectively, of the dual scalar product n̂a · n̂b . The primary part is calculated
with coordinates from Table 5.2 (without the symbol ˆ ). The dual part is
calculated not as product r·na×nb , but as dual derivative of F1 (see (3.50)).
The MAPLE software tool developed by Sinigersky [34] has special routines
for switching back and forth between the ordinary notation cosα , sinα ,
cosϕ , sinϕ and the short-hand notation C, S, c, s . Dual differentiation is
carried out automatically. By combining Table 5.2 with this tool kinematics
equations for mechanisms can be formulated semi-automatically.

Each of the scalar quantities F1, . . . , F7 is expressed in the left segment as
function of variables and in the right segment as another function of variables.
These functions are called F �

k and F r
k (k = 1, . . . , 7). The equality of both

scalars establishes the seven Woernle-Lee equations

F �
k = F r

k (k = 1, . . . , 7) . (5.16)
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These equations have properties which make them useful as closure condi-
tions. The most important properties are the following:
- the parameters ϕa and ϕb do not appear explicitly in any of the equations
F �
k = F r

k (k = 1, . . . , 7). This is a consequence of the fact that each of the
vectors na and nb is fixed on a body of the left segment and also fixed on
a body of the right segment
- the parameters ha and hb do not appear explicitly in the equation
F �
2 = F r

2 . This is a consequence of the fact that this equation is the dual
derivative of the equation F �

1 = F r
1 .

From these properties the following criteria for choosing the joints a and
b are derived. The joint combination ab is
- CC in mechanisms with two or three cylindrical joints (rows 1, 2, 5 of Table
5.1)
- CR in mechanisms with one cylindrical joint (rows 3, 6, 8 )
- RR in all other mechanisms
- the angles ϕa and ϕb must be dependent variables.

This choice of joints has the consequence that the maximum possible num-
ber of dependent variables is eliminated from the equations. The properties
of the equations F �

1 = F r
1 and F �

2 = F r
2 can now be stated in more detail as

follows. The equation F �
1 = F r

1 is an equation in terms of angular Denavit-
Hartenberg parameters only. Every sine and every cosine appears in linear
form only. Products sine × cosine of one and the same angle do not appear.

The independent variable is either the angle in a specific revolute joint or
the translatory variable in a specific prismatic joint. Until further below it is
assumed to be an angle. The mechanisms in Table 5.1 have a total number
nϕ of angular variables in the range 4 ≤ nϕ ≤ 7 . With one of them being
independent and with ϕa and ϕb being eliminated the equation F �

1 = F r
1

is an equation for 1 ≤ nϕ − 3 ≤ 4 unknown angular variables.
Unknowns in the equation F �

2 = F r
2 are the same nϕ−3 angular variables

and, in addition, ν translatory variables. The number ν is the difference
between the total number nt = nC + nP of translatory variables and the
number of cylindrical joints among the joints a and b . This formula yields
ν = 1 for the mechanism RCCC and ν = nP for all other mechanisms.
Table 5.1 shows that ν is in the range 0 ≤ ν ≤ 3 . The translatory variables
and the sines and cosines of angular variables appear in linear form only.
The mechanisms in rows 5 , 8 and 10 of Table 5.1 have angular variables
only (ν = 0). For these mechanisms the equation F �

2 = F r
2 has, with other

coefficients, the same form as the equation F �
1 = F r

1 .
Let b be the larger of the indices a and b so that 1 ≤ a < b ≤ n and

b = a+d with d > 0 . Because of the cyclic repetition of the indices 1, . . . , n
the identity holds: b ≡ b − n = a + d − n . With this identity the equation
F �
1 = F r

1 is written in the form

nk · nk+d = nk · nk+d−n (k = a) . (5.17)
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Example: In the case a = 3 , b = 6 , n = 7 , the equation is nk · nk+3 =
nk · nk−4 with k = 3 . The product nk · nk+3 is found in Table 5.2 as first
coordinate of the vector nk+3 with k = 3 . It is a function of ϕ4 and ϕ5 . For
the product nk · nk−4 the vector nk−4 is not found in the table. The table
suffices, however, because the product has the alternative form nk−2 · nk+2

with k = 1 . It is a function of ϕk−1 = ϕ0 ≡ ϕ7 , ϕk = ϕ1 and ϕk+1 = ϕ2 .
For details see the right-hand side of (5.82). End of example.

Mechanisms with nϕ = 4 : Let ϕ1 and ϕλ be the independent and the
dependent angular variable, respectively. The equation F �

1 = F r
1 is

Acλ +Bsλ = R . (5.18)

The coefficients A , B and R are functions of ϕ1 . For every value of ϕ1 the
equation has two (not necessarily real) solutions ϕλ . This is an important
result. It means that the mechanisms in rows 1 to 4 of Table 5.1 have two
different configurations for every value of the independent angular variable.
This is the number Nϕ shown in Table 5.1 .

Dual differentiation of (5.18) produces the equation F �
2 = F r

2 :

(A′ + hλB)cλ + (B′ − hλA)sλ = R′ , (5.19)

where A′, B′, R′ are the dual derivatives of A , of B and of R , respectively.
Since ϕλ is known from (5.18), this equation is a linear equation for ν = 1
or 2 or 3 translatory variables. The mechanisms in rows 1 and 2 of Table
5.1 with ν = 1 are the simplest mechanisms. Equation (5.19) determines the
single translatory variable. For the mechanism RCCC this is shown in detail
in Sect. 5.4.1 .

Mechanisms with nϕ = 5 : These are the mechanisms in rows 5 , 6 and 7
of Table 5.1 . Let ϕλ and ϕμ be the two dependent angular variables. The
equation F �

1 = F r
1 has either the form

A2cλ +B2sλ = A1cμ +B1sμ +R1 (5.20)

or the form

A [ cλcμ cλsμ cλ sλcμ sλsμ sλ cμ sμ 1 ]T = 0 . (5.21)

The coefficients A1 , B1 , R1 , A2 , B2 and the row matrix A are functions of
the independent variable. Equation (5.20) occurs if the joints λ and μ belong
to different segments created by the cylindrical joints, and (5.21) occurs if
they belong to one and the same segment.

Unknowns in the equation F �
2 = F r

2 are the same angles ϕλ and ϕμ and,
in addition, ν = 0 or 1 or 2 translatory variables. For the mechanisms
RCRCR and CRRRC with ν = 0 the equations F �

2 = F r
2 and F �

1 = F r
1
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have identical forms, i.e., either the form (5.20) or the form (5.21). Both
equations together determine ϕλ and ϕμ . Details see in Sect. 5.4.2 .

The mechanisms in rows 6 and 7 of Table 5.1 : It will be seen that the
equation F �

5 = F r
5 has the form (5.21) for the same unknowns ϕλ and ϕμ .

Thus, all mechanisms with nϕ = 5 are governed either by two Eqs.(5.20) or
by two Eqs.(5.21). Once the two unknowns ϕλ and ϕμ are determined the
equation F �

2 = F r
2 represents a linear equation for ν = 1 or ν = 2 unknown

translatory variables.

Mechanisms with nϕ = 6 : The only mechanisms of this type are the mech-
anisms 5R-C and 6R-P . The joints a and b (a cylindrical and a revolute
joint or two revolute joints) are chosen such that two dependent angular vari-
ables are in one segment and the third dependent angular variable together
with the independent variable is in the other. Let ϕλ , ϕμ and ϕν be the
dependent variables. The matrix form of the equation F �

1 = F r
1 is

A [ cν sν ]T = B [ cλcμ cλsμ cλ sλcμ sλsμ sλ cμ sμ 1 ]T . (5.22)

The row matrices A and B are either constant or functions of the indepen-
dent variable. The equation F �

2 = F r
2 for the mechanism 5R-C has the same

form with other coefficient matrices A and B .
In the equation F �

2 = F r
2 for a mechanism 6R-P the unknown translatory

variable of the prismatic joint appears in addition to the three unknown
angular variables. If this translatory variable is called hκ , the equation has
the form

A [ cν sν hκcν hκsν hκ ]T

= B [ cλcμ cλsμ cλ sλcμ sλsμ sλ cμ sμ 1 ]T . (5.23)

Mechanisms with nϕ = 7 : The only mechanism of this type is the mechanism
7R . The joints a and b are chosen such that two dependent angular variables
are in each segment. Let ϕ7 be the independent variable. Then a = 3 , b =
6 is a possible choice. The four dependent variables are ϕ1 , ϕ2 , ϕ4 and
ϕ5 . The equation F �

1 = F r
1 is known already from the example given for

Eq.(5.17). Its matrix form is

A [ c4c5 c4s5 c4 s4c5 s4s5 s4 c5 s5 ]T

= B [ c1c2 c1s2 c1 s1c2 s1s2 s1 c2 s2 1 ]T . (5.24)

The row matrix A is constant, and B is a function of ϕ7 . The equation
F �
2 = F r

2 has the same form with other coefficient matrices A and B . Details
see in Sect. 5.4.7 .

The equations F �
3 = F r

3 and F �
4 = F r

4

Unknowns in these equations are the same 1 ≤ nϕ − 3 ≤ 4 angular variables
which appear in the equations F �

1 = F r
1 and F �

2 = F r
2 and, in addition,
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all translatory variables including ha and hb (constant parameter or vari-
able). In the equations for the mechanisms in rows 3 , 4 , 8 and 9 the total
number of variables is four, so that these two equations together with the
equations F �

1 = F r
1 and F �

2 = F r
2 represent a system of four equations for

four unknowns.
The mechanisms in rows 3 and 4 : The equation F �

1 = F r
1 is Eq.(5.18).

With each of its two solutions the other three equations are coupled linear
equations for three unknown translatory variables.

The mechanisms 5R-C and 6R-P : Unknowns are three angular and one
translatory variable. The equations F �

3 = F r
3 and F �

4 = F r
4 have the form

(5.23), and the equations F �
1 = F r

1 and F �
2 = F r

2 have the form (5.22).
The mechanism 7R : The four unknowns are angular variables. The four

equations F �
k = F r

k (k = 1, 2, 3, 4) have the form (5.24).

The equation F �
5 = F r

5

This equation is formulated only for the mechanisms in rows 6 and 7 of Table
5.1 . These mechanisms have nϕ = 5 angular variables and either n = 6
joints with one cylindrical and one prismatic joint or n = 7 joints with two
prismatic joints. These joints are the only ones with translatory variables.
They are chosen as joints p and q in the expression F5 = r · np × nq . With
(5.14) for r the equation F �

5 = F r
5 is

− (ha+1na+1 + �a+1aa+1 + . . .+ �a−1aa−1 + hana) · (np × nq)

=
�a
Sa

(na × na+1) · (np × nq)

=
�a
Sa

[(na × np) · (na+1 × nq)− (na × nq) · (na+1 × np)] . (5.25)

The vectors hpnp and hqnq are among the vectors indicated by dots. Mul-
tiplication with (np × nq) eliminates the variables hp and hq . The angular
variables in the joints a and a+ 1 are eliminated as well. This means that
only two dependent angular variables appear explicitly. Let them be denoted
ϕλ and ϕμ . Then the equation has the form

A [ cλcμ cλsμ cλ sλcμ sλsμ sλ cμ sμ 1 ]T = 0 . (5.26)

This is, with a different coefficient matrix A , the form of the equation F �
1 =

F r
1 (see (5.21)). In both equations the unknowns ϕλ and ϕμ are the same

if the joints a and b = a+ 1 are the same.
It remains to be shown how to generate the coefficient matrix A in (5.26)

with the help of Table 5.2 . First, the left-hand side of (5.25) is considered.
It is a linear combination of products n� · np × nq (� �= p, q arbitrary)
and a� · np × nq (� �= a arbitrary). Every product is evaluated as (3 ×
3)-determinant of vector coordinates copied from Table 5.2 . The goal is to
formulate the determinant such that the angles ϕa and ϕa+1 do not appear
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explicitly, and that sλ , cλ , sμ , cμ appear in linear form only. This goal is
achieved if the determinant is evaluated in three steps as follows.

Step 1 : To those of the indices � , p and q which are smaller than or
equal to a the number n is added (n = 6 or n = 7). The new indices are
called �′ , p′ and q′ .

Step 2 : The new indices �′ , p′ and q′ are brought into a monotonically
increasing order. One of them is the central index. To this index the name k
is given. The other two indices are k − d1 and k + d2 with d1, d2 ≥ 0 .

Step 3 : The rows of the (3 × 3)-determinant are the coordinates of the
vectors with indices k , k−d1 and k+d2 . These coordinates are copied from
Table 5.2 . The vector with the index k is either nk with the coordinates
[ 1 0 0 ] or ak with the coordinates [ 0 1 0 ] . With either one of these
forms the determinant is reduced to a (2× 2)-determinant. The coordinates
of the vectors with indices k − d1 and k + d2 are linear with respect to
cλ , sλ , cμ and sμ . The variables ϕa and ϕa+1 do not appear.

Example: For a mechanism with n = 7 joints the product a1 · n5 × n6 is
to be expressed such that the variables ϕa and ϕa+1 with a = 4 do not
appear explicitly.

Solution: The given indices are � = 1 < a , p = 5 > a and q = 6 > a .
Hence �′ = �+ n = 8 , p′ = 5 , q′ = 6 . The desired form of the product is

ak+2 · nk−1 × nk︸ ︷︷ ︸
k=6

= S5c6(c1c7 − s1s7C7)− S5s6[c1s7C6 − s1(S7S6 − C7C6c7)] . (5.27)

End of example.

For the left-hand side expression of (5.25) considered so far the desired
form (free of ϕa and ϕa+1 and linear in the sines and cosines of the remaining
three angles) is possible no matter which angle is chosen as ϕa . For the right-
hand side expression this choice is not arbitrary. For both sides the angle
dictated by the right-hand side is chosen. The rule for choosing joint a is
explained, first, for the mechanisms in row 6 with one prismatic joint and
one cylindrical joint. Let the cylindrical joint be joint q . One of the joints a
and a+ 1 must be the cylindrical joint q , and the other must be a revolute
joint with a dependent angular variable. This allocation is possible no matter
in which revolute joint the independent variable is located. In the case a = q ,
the right-hand side of (5.25) is

�a
Sa

(Canp · nq − np · na+1) . (5.28)

In the case a+ 1 = q , the right-hand side of (5.25) is
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− �a
Sa

(Canp · nq − na · np) . (5.29)

In either case Table 5.2 yields an expression with the desired linearity prop-
erties.

Next, the mechanisms with two prismatic joints p and q are considered.
The joints a and a + 1 must be revolute joints with dependent angular
variables, and one of them must be neighbor of a prismatic joint ( p or q ).
This allocation is possible no matter in which revolute joint the independent
variable is located. Since each of the two prismatic joints can be joint p , it
suffices to distinguish whether joint a or joint a+ 1 is neighbor of joint p .
If joint a is neighbor of joint p , then a = p+1 and na×np = −Spap and
na · np = Cp . The right-hand side of (5.25) is

�a
Sa

(−Spap · na+1 × nq − Canp · nq + Cpnq · na+1) . (5.30)

If joint a + 1 is neighbor of joint p , then p = a + 2 and na+1 × np =
−Sa+1aa+1 and np · na+1 = Ca+1 . The right-hand side of (5.25) is

�a
Sa

(Canp · nq − Ca+1na · nq + na × nq · Sa+1aa+1) . (5.31)

In either case Table 5.2 yields an expression with the desired linearity prop-
erties. The products ap · na+1 × nq and na × nq · aa+1 are evaluated as
determinants.

The equations F �
6 = F r

6 and F �
7 = F r

7

These equations are formulated only for the mechanism 7R which has an-
gular variables only. In every scalar product appearing in the expressions for
r2 every sine and every cosine appears in linear form only. Products sine ×
cosine of one and the same angle do not appear. If as joints a and b the
joints 3 and 6 are chosen again, the equation F �

6 = F r
6 has the form (5.24).

Only the coefficient matrices are different.
Surprisingly, also the equation F �

7 = F r
7 has the form (5.24) (with other

coefficient matrices). In spite of the definition F7 = 1
2F1F6 −F3F4 the func-

tions F �
7 and F r

7 are both linear with respect to the sines and cosines of
angles. For the function F r

7 this is proved as follows. With (5.13) for r the
function F r

7 is a linear combination of products hihj , hi�j and �i�j with
a ≤ i, j ≤ b . As an example the coefficient of hihj with i ≤ j is considered.
This coefficient denoted Hij is

Hij = (na · nb)(ni · nj)− (na · ni)(nb · nj)− (na · nj)(nb · ni) (5.32)

= (na × ni) · (nb × nj)− (na · ni)(nb · nj) (a ≤ i ≤ j ≤ b) . (5.33)

The products (na×ni) and (na ·ni) are linear with respect to the sines and
cosines of angles between bodies a and i , and the products (nb × nj) and

5.3 Closure Conditions 173



(nb · nj) are linear with respect to the sines and cosines of angles between
bodies b and j . From this follows the linearity of Hij with respect to the
sines and cosines of all angles. For other terms of F r

7 and for F �
7 similar

arguments hold. End of proof.

The discussion of Woernle-Lee equations is summarized as follows.

Mechanisms in rows 1 and 2 of Table 5.1 : The equations with F1 and F2

are formulated. They have the forms (5.18) and (5.19). The first equation
determines two solutions for a single unknown angle ϕλ . With each solution
the second equation is a linear equation for a single translatory variable.

Mechanisms in rows 3 and 4 : The equations with F1 , F2 , F3 and F4 are
formulated. The first equation is Eq.(5.18). It determines two solutions for a
single unknown angle ϕλ . With each solution the remaining three equations
are linear equations for three unknown translatory variables.

Mechanisms in rows 5 , 6, 7 : Two equations are formulated. These are the
equations with F1 and F2 for the mechanisms in row 5 and the equations
with F1 and F5 for the mechanisms in rows 6 and 7 . Both equations
have either the form (5.20) or the form (5.21). These equations are easily
decoupled. Methods of solution see in Sect. 5.4.3 .

Mechanisms 5R-C , 6R-P and 7R : The four equations with F1 , F2 , F3

and F4 determine four unknowns. Without additional equations of another
mathematical form it is impossible to decouple these equations. The necessary
additional equations are the half-angle equations introduced further below.

Up to this point the independent variable was the angle of an arbitrarily
chosen revolute joint. In what follows, it is the translatory variable in an
arbitrarily chosen prismatic joint. This change has the effect that in each
of the seven Woernle-Lee equations the number of unknown angular vari-
ables increases by one whereas the number of unknown translatory variables
decreases by one. The two numbers of unknowns are 2 ≤ nϕ − 2 ≤ 4 and
0 ≤ nP−1 ≤ 2 . For the mechanisms of Table 5.1 this change has the following
effect.

For the mechanisms in rows 2 , 3 and 4 the same equations are formulated
which are formulated for the mechanisms in rows 5 , 6 , 7 with an independent
angular variable. These are the equations with F1 and F2 for the mechanisms
in row 2 and the equations with F1 and F5 for the mechanisms in rows 3
and 4 . Both equations have either the form (5.20) or the form (5.21).

For the mechanisms in rows 6 , 7 and 9 the four equations with F1 , F2 , F3

and F4 determine four unknowns. For the mechanisms in row 6 they are
the same equations which govern the mechanism 5R-C with an independent
angular variable. For the mechanisms in row 7 they are the same equations
which govern the mechanism 6R-P with an independent angular variable.
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For the mechanism 6R-P they are the same equations which govern the
mechanism 7R with an independent angular variable. These relationships
were predicted when Table 5.1 was introduced.

5.3.2 Half-Angle Equations

These equations were first formulated by Lee [27]. Again, Fig. 5.2 is consid-
ered. The ordinary unit vectors nb , ab und nb × ab form an orthogonal
cartesian basis fixed on body b , and the unit vectors nb , ab−1 , nb × ab−1

form another basis fixed on body b − 1 . Temporarily, the abbreviations are
used:

db = nb × ab , d∗
b−1 = nb × ab−1 . (5.34)

The two bases are rotated against each other through the angle ϕb about
the common axis nb . Let v be an arbitrary vector. Its coordinates in the
two bases are related through the matrix equation⎡

⎣v · nb

v · ab
v · db

⎤
⎦ =

⎡
⎢⎣ 1 0 0

0 cosϕb sinϕb

0 − sinϕb cosϕb

⎤
⎥⎦
⎡
⎣v · nb

v · ab−1

v · d∗
b−1

⎤
⎦ . (5.35)

The new variable xb = tanϕb/2 is defined. The expressions cosϕb = (1 −
x2
b)/(1 + x2

b) and sinϕb = 2xb/(1 + x2
b) are substituted into (5.35). In order

to avoid the quadratic term x2
b the equation is premultiplied by the matrix⎡

⎣ 1 0 0
0 xb 1
0 1 −xb

⎤
⎦ . Following this, the identities sinϕb − xb cosϕb = xb and

xb sinϕb + cosϕb = 1 are used. This results in the following equation which
is linear with respect to xb :⎡

⎢⎣ 1 0 0

0 xb 1

0 1 −xb

⎤
⎥⎦
⎡
⎣v · nb

v · ab
v · db

⎤
⎦ =

⎡
⎢⎣ 1 0 0

0 −xb 1

0 1 xb

⎤
⎥⎦
⎡
⎣v · nb

v · ab−1

v · d∗
b−1

⎤
⎦ . (5.36)

The first equation is the identity. The other two are, in terms of the original
vectors in (5.34),

xb v · ab+ v · nb × ab = −xb v · ab−1+ v · nb × ab−1 ,

v · ab− xb v · nb × ab = v · ab−1+ xb v · nb × ab−1 .

}
(5.37)

This pair of equations is formulated with the vectors
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v1 = na , v2 = r , v3 = na×r , v4 =
1

2
r2na−(na ·r)r . (5.38)

The vectors na and r are the ones shown in Fig. 5.2 and in (5.13). In what
follows, it is important that −hbnb is part of r in the left segment, and that
hana is part of r in the right segment.

The scalar products vi · ab and vi · nb × ab on the left-hand side of the
equations are evaluated in the left segment, and the scalar products vi ·ab−1

and vi · nb × ab−1 on the right-hand side of the equations are evaluated in
the right segment. With every vector vi (i = 1, 2, 3, 4) the vector products
in (5.37) are linear with respect to the sines and cosines of all angles involved.

The expressions for r in (5.13) allow the following conclusions (note that
the vector nb×ab is fixed on body b , and that the vector nb×ab−1 is fixed
on body b− 1 ):

1. With all vectors vi (i = 1, 2, 3, 4) all scalar products are independent
of both ϕa and ϕb .

2. The angle ϕb appears in every equation, however, only in the form
xb = tanϕb/2 .

3. With vi = v1 only angular variables appear.
4. With vi = v2 all scalar products are independent of hb . In the products

on the right-hand side ha occurs in linear form.
5. With vi = v3 all scalar products are independent of ha . In the products

on the left-hand side hb occurs in linear form.
6. With vi = v4 both ha and hb occur in first and second-order terms.

These equations are formulated only for the mechanism 7R in which the
parameters h1, . . . , h7 are constant.

For the evaluation of products in (5.37) Table 5.2 is used. The following
facts are helpful. The vector nb × ab fixed on body b has the coordinates
[0 0 1]T in the basis of body b . The vector nb × ab−1 fixed on body b − 1
has the coordinates [Cb−1 0 − Sb−1]

T in the basis of body b− 1 .
The product v3 · ab is formulated with r = r+ hbnb − hbnb :

v3 · ab = −[(r+ hbnb)× na · ab + hbna · nb × ab] . (5.39)

In the second term the previously given coordinates of nb × ab are used. In
the first term the vector r + hbnb joins the dual vectors n̂a and âb (see
Fig. 5.2). From this it follows that the first term represents the dual part of
n̂a · âb . It is calculated as dual derivative of na · ab . Similarly,

v3 · ab−1 = −r× na · ab−1 = −(dual derivative of na · ab−1 ) . (5.40)

176 5 Spatial Simple Closed Chains



5.4 Systematic Analysis of Mechanisms

The previous section provided equations which are sufficient for the analysis
of all mechanisms of Table 5.1 . In the present section methods for decou-
pling these equations are presented. For each type of mechanism a polyno-
mial equation of minimal order is developed for a single unknown variable.
This minimal order is the maximum number of configurations the mechanism
under consideration can have for a given value of the independent variable.
In these analyses all constant Denavit-Hartenberg parameters are assumed
to be nonzero and arbitrary. As special cases a 7R-mechanism with three
parallel joint axes and a 7R-mechanism with a spherical joint are analyzed.

5.4.1 RCCC

This is the simplest of all mechanisms listed in Table 5.1 . It has the smallest
number of joints (n = 4) and the smallest number of constant parameters
(4n − 7 = 9) . Figure 5.3 shows schematically the mobile polygon with unit
vectors ni and ai (i = 1, 2, 3, 4). The vectors are uniformly directed counter-
clockwise. Joint 1 represents the revolute joint. The variable ϕ1 in this joint
is the independent variable. The six dependent variables are the quantities
ϕi , hi in the cylindrical joints i = 2, 3, 4 . The nine constant parameters are
h1 in joint 1 and the quantities αi , �i of bodies i = 1, 2, 3, 4 .
General remarks on vector polygons of mechanisms: A mechanism with n
joints has a polygon with 2n sides. It can be drawn schematically as a regular
2n-gon with all unit vectors ni and ai (i = 1, . . . , n) pointing counter-
clockwise. A regular 2n-gon has 2n axes of symmetry. Any closure condition
formulated for a specific mechanism remains valid if the labels of its constant
and variable Denavit-Hartenberg parameters are changed according to the

Fig. 5.3 Mechanism RCCC . Polygon with unit vectors ni , ai and Denavit-Hartenberg

parameters αi , 
i , ϕi , hi (i = 1, 2, 3, 4). Joint 1 is the revolute with the independent
variable ϕ1 . The dashed line of symmetry
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symmetry. Symmetry is particularly useful if symmetrically located joints
are of equal type, i.e., CC or RR or PP. In Fig. 5.3 this is the case for the
dashed line of symmetry. Closure conditions remain valid if the quantities
(α1 , �1 , ϕ2 , h2 , α2 , �2) are replaced by (α4 , �4 , ϕ4 , h4 , α3 , �3) and vice
versa. Not every mechanism has such an axis of symmetry, for example not
the mechanism RCPRC .

Also the following is true. Any closure condition formulated for a spe-
cific mechanism remains valid if the labels of its constant and variable
Denavit-Hartenberg parameters are cyclicly increased by an arbitrary inte-
ger λ (±1,±2, . . .) . This means that the two joints a and b on which the
closure condition is founded are replaced by the joints a + λ and b + λ ,
respectively. A cyclic rotation of labels by an integer λ is equivalent to a
symmetry change of labels if the joints a + λ and b + λ are located sym-
metrically to the joints b and a , respectively. Cyclic rotation of labels and
symmetry changes of labels are much simpler than re-formulations of closure
conditions for new joints a and b .

Now back to the mechanism RCCC . Among the three cylindrical joints 2 ,
3 and 4 any two can be chosen as joints a and b . For each pair Eqs.(5.18)
and (5.19) are formulated. The unknowns in these equations are the two
variables of the third cylindrical joint. The first equation is the Woernle-
Lee Eq.(5.17). It is given for only two joint combinations because any other
combination is produced by a cyclic change of indices.

joint combination a = 2 , b = 3 : nk · nk−3 = nk · nk+1

joint combination a = 2 , b = 4 : nk · nk−2 = nk · nk+2

}
k = a . (5.41)

For the joint combination a = 2 , b = 3 Table 5.2 yields the equation

S3[s4s1S1 − c4(S4C1 + C4S1c1)] + C3(C4C1 − S4S1c1) = C2 . (5.42)

This is Eq.(5.18) for ϕ4 :
Ac4 +Bs4 = R . (5.43)

The coefficients depend on ϕ1 :

A = −S3(S4C1 + C4S1c1) , B = S1S3s1 ,
R = C2 − C3(C4C1 − S4S1c1) .

}
(5.44)

Dual differentiation of (5.43) yields Eq.(5.19) for h4 :

h4(Bc4 −As4) = Dc4 + Es4 + F . (5.45)

The coefficients D , E and F are the dual derivatives of −A , −B and R ,
respectively:
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D = −�4S3(S1S4c1 − C1C4) + �1S3(C1C4c1 − S1S4)
+�3C3(S1C4c1 + C1S4)− h1S1S3C4s1 ,

F = �4C3(S1C4c1 + C1S4) + �1C3(C1S4c1 + S1C4)
−�3S3(S1S4c1 − C1C4)− h1S1C3S4s1 − �2S2 ,

E = −s1(�1C1S3 + �3S1C3)− h1S1S3c1 .

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(5.46)

For every value of ϕ1 Eq.(5.43) has two (not necessarily real) solutions ϕ4 .
The associated solutions h4 are determined by (5.45).

Next, equations for ϕ2 and h2 are produced. This is done by increasing
all indices in (5.43) and (5.44) cyclicly by one. Equation (5.43) is replaced by
the equation

S4[s1s2S2 − c1(S1C2 + C1S2c2)] + C4(C1C2 − S1S2c2) = C3 . (5.47)

This is the equation for ϕ2 :

A∗c2 +B∗s2 = R∗ , (5.48)

A∗ = −S2(S1C4 + C1S4c1) , B∗ = S4S2s1 ,
R∗ = C3 − C2(C4C1 − S4S1c1) .

}
(5.49)

The cyclic change of indices in (5.45) and (5.46) is left to the reader. Next,
ϕ3 is determined from (5.41) for the joint combination a = 2 , b = 4 . Table
5.2 yields the equation

C3C2 − S3S2c3 = C1C4 − S1S4c1 . (5.50)

It displays the symmetry of Fig. 5.3 . It determines c3 as a linear function
of c1 . Every value of ϕ1 yields two solutions ±ϕ3 . Dual differentiation of
(5.50) produces for h3 the formula

h3S2S3s3 = h1S1S4s1 + c3(�2C2S3 + �3S2C3) + (�2S2C3 + �3C2S3)

− c1(�1C1S4 + �4S1C4)− (�1S1C4 + �4C1S4) . (5.51)

If h3 is the solution associated with +ϕ3 , −h3 is the solution associated
with −ϕ3 .

The analysis is now complete except for one open problem. For every
value of ϕ1 there exist two solutions (ϕ2, h2) , two solutions (ϕ3, h3) and
two solutions (ϕ4, h4) . What remains to be shown is which of the solutions
ϕ2, ϕ4 occur together with +ϕ3 and which with −ϕ3 . For solving this
problem two closure conditions are needed relating ϕ3 to ϕ4 and ϕ3 to ϕ2 ,
respectively. They are obtained by increasing the indices in (5.43) by two and
by three, respectively. This produces the equations

S1[s2s3S3 − c2(S2C3 + C3S3c3)] + C1(C2C3 − S2S3c3) = C4 , (5.52)
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S2[s3s4S4 − c3(S3C4 + C3S4c4)] + C2(C3C4 − S3S4c4) = C1 . (5.53)

The relationship between ϕ4 and ϕ2 is obtained more easily from (5.50) by
a cyclic increase of indices by one:

C4C3 − S4S3c4 = C2C1 − S2S1c2 . (5.54)

Any two of these equations determine whether numerically calculated angles
ϕ4 and ϕ2 belong to +ϕ3 or to −ϕ3 .

Special Cases: Bennett Mechanism and Spherical Four-Bar
Under certain conditions on the nine constant Denavit-Hartenberg parame-
ters �1 , . . . , �4 , α1 , . . . , α4 and h1 of the mechanism RCCC the translatory
variables h2 , h3 , h4 are constant (actually identically zero) independent of
the angle ϕ1 . This means that the mechanism has four revolute joints and,
yet, a single degree of freedom. It is an overconstrained mechanism. There are
two such special mechanisms. One of them is called Bennett mechanism. It is
the subject of Sect. 6.2 . The other is the spherical four-bar with four revolute
joints the axes of which intersect at a single point. Intersection means that
the Denavit-Hartenberg parameters �1, . . . , �4 and h1 are zero. Equations
(5.46) yield D = E = F ≡ 0 and with this, (5.45) yields h4 ≡ 0 . Dual
differentiation of (5.47) and (5.51) yields h2 ≡ 0 and h3 ≡ 0 . The equa-
tions relating the angular variables ϕ1, . . . , ϕ4 do not change (see (5.43),
(5.44), (5.48), (5.49), (5.50), (5.54)). These results confirm that the spherical
four-bar has a single degree of freedom.

In Fig. 5.4 a spherical four-bar is shown as quadrilateral A0ABB0 the
links 1 , 2 , 3 , 4 of which are arcs of great circles on the unit sphere about the
intersection point 0 of the joint axes. The unit vectors n1, . . . ,n4 along the
axes are pointing away from 0 . The unit vector ai normal to both ni and
ni+1 has the direction of ni × ni+1 (here and in what follows, i = 1, . . . , 4
cyclic). The angle αi is the angle about ai from ni to ni+1 , and ϕi is the
angle about ni from ai−1 to ai (see Fig. 5.1). The angle αi equals the arc
of link i on the unit sphere. Link i is said to have the length αi . At this

Fig. 5.4 Spherical four-bar
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point the kinematics analysis is stopped. It is resumed in Chap. 18.

Final remark: The expressions in (5.42) – (5.46) are moderately complicated.
For mechanisms with up to twenty-one instead of nine constant parameters
much more complicated expressions are generated. In every case the genera-
tion requires only two operations. One is copying terms from Table 5.2 and
the other is calculating dual derivatives. Both operations can be executed by
the MAPLE software tool [34] already mentioned.

5.4.2 RCRCR and CRRRC

These mechanisms have n = 5 joints, 4n− 7 = 13 constant parameters, two
cylindrical joints and nϕ = 5 angular variables. Figures 5.5a and b show
the mobile polygons with unit vectors ni and ai (i = 1, . . . , 5). Each figure
is structurally symmetric with respect to the dashed line.

With the cylindrical joints as joints a and b the equations F �
1 = F r

1 and
F �
2 = F r

2 are formulated. From Sect. 5.3.1 it is known that these equations
relate the angles in the three revolute joints. Two of them are unknown
dependent angles. The equations have the form (5.20) if the unknowns are
located in different segments created by the cylindrical joints, and they have
the form (5.21) if they are located in one and the same segment. The case of
location in different segments occurs if (i) the mechanism is RCRCR and (ii)
the independent angle is in one of the underscored revolutes. This simpler case
is treated first. It is the case of Fig. 5.5a with ϕ1 as independent variable.
The cylindrical joints are the joints 3 and 5 . The equation F �

1 = F r
1 is the

equation nk ·nk+2 = nk ·nk−3 with k = 3 . Table 5.2 yields the explicit form

C4C3 − S4S3c4

= S5[s1s2S2 − c1(S1C2 + C1S2c2)] + C5(C1C2 − S1S2c2) . (5.55)

This is a special form of (5.20):

Fig. 5.5 Polygons with unit vectors for the mechanisms RCRCR (a) and CRRRC (b)
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S3S4c4 = A1c2 +B1s2 +R1 . (5.56)

The coefficients A1 , B1 and R1 depend on ϕ1 :

A1 = S2(C5S1 + C1S5c1) , B1 = −S2S5s1 ,
R1 = C3C4 − C2(C1C5 − S1S5c1) .

}
(5.57)

Dual differentiation yields (5.21):

A4c4 − h4S3S4s4 = A2c2 +B2s2 +R2 . (5.58)

The coefficients are

A4 = �3C3S4 + �4S3C4 , A2 = A′
1 + h2B1 , B2 = B′

1 − h2A1 , R2 = R′
1

(5.59)
with A′

1 , B
′
1 , R

′
1 denoting the dual derivatives of A1 , of B1 and of R1 ,

respectively.
Equations (5.56) and (5.58) are linear equations for c4 and s4 . Substi-

tuting the solutions into the equation c24 + s24 = 1 results in an equation for
ϕ2 of the form

A sin2 ϕ2 +B sinϕ2 cosϕ2 +C sinϕ2 +D cos2 ϕ2 +E cosϕ2 + F = 0 (5.60)

with new coefficients which are functions of ϕ1 . The substitution x =
tanϕ2/2 , cosϕ2 = (1 − x2)/(1 + x2) , sinϕ2 = 2x/(1 + x2) produces
for x the 4th-order equation

x4(D−E+F )+2x3(C−B)+2x2(2A−D+F )+2x(C+B)+D+E+F = 0 .
(5.61)

It has four (not necessarily real) solutions ϕ2 for every value of ϕ1 . This is
the number Nϕ = 4 in Table 5.1 . With every real solution ϕ2 the associated
values c4 and s4 and, thus, ϕ4 are determined from (5.56) and (5.58).

Note: The substitution x = tanϕ2/2 makes sense only if ϕ2 �= π . ϕ2 = π
is a solution if D − E + F = 0 and a double solution if, in addition, also
C−B = 0 . These are the coefficients of x4 and x3 in the polynomial1. In the
case B = C = 0 , (5.60) is quadratic in cosϕ2 , and in the case B = E = 0 ,
it is quadratic in sinϕ2 . In either case the substitution x = tanϕ2/2 is
unnecessary.

The variables ϕ3 , h3 and ϕ5 , h5 in the cylindrical joints are still un-
known. The angles ϕ3 and ϕ5 are determined first as follows. One of the
two half-angle equations (5.37) is formulated with a = 5 , b = 3 and v = n5 .
This is a linear equation for x3 = tanϕ3/2 as the only unknown. The same
equation with a = 3 , b = 5 and v = n3 determines x5 = tanϕ5/2 . Next,

1 Example: The equation 4 sin2 ϕ+ 3 sinϕ cosϕ+ 3 sinϕ+ 2 cos2 ϕ+ cosϕ− 1 = 0
has the solutions ϕ1 = ϕ2 = π . Equation (5.61) is 5x2 +6x− 1 = 0 . It has the solutions
ϕ3 = −π/2 and ϕ4 = −2 tan−1(1/5)
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the unknowns h3 and h5 are expressed in terms of all other variables includ-
ing the previously determined angles ϕ3 and ϕ5 . A single linear equation
for h3 is obtained by formulating one of the half-angle equations (5.37) with
a = 5 , b = 3 and v = r . The same equation with a = 3 , b = 5 and v = r
determines h5 . Note that the vector r depends upon a and b according to
Fig. 5.2 . This concludes the analysis of the mechanism RCRCR with ϕ1 as
independent variable.

Next, ϕ4 is assumed to be the independent variable. In this case, both
Eq.(5.55) and its dual derivative have the form (5.21). With new names for
coefficients they are written in the form

c1 (ai1c2 + ai2s2 + ai3)︸ ︷︷ ︸
Ai

+s1 (bi1c2 + bi2s2 + bi3)︸ ︷︷ ︸
Bi

+(ri1c2 + ri2s2 + ri3)︸ ︷︷ ︸
Ri

= 0

(5.62)
(i = 1, 2) . Equation (5.55) yields, for example, a11 = S5C1S2 , a12 = 0 ,
b11 = 0 , b12 = −S5S2 , r11 = C5S1S2 , r12 = 0 , r13 = C4C3 − S4S3c4 −
C5C1C2 . The two Eqs.(5.62) are solved as linear equations for c1 and s1 :

c1 =
B1R2 −B2R1

A1B2 −A2B1
, s1 = −A1R2 −A2R1

A1B2 −A2B1
. (5.63)

The common denominator and the two numerator expressions contain zero,
first and second-order terms of c2 and s2 . Substitution into the constraint
equation c21+s21 = 1 eliminates ϕ1 . The resulting equation relates ϕ2 to the
independent variable ϕ4 . This is the equation (A1R2 − A2R1)

2 + (B1R2 −
B2R1)

2 − (A1B2 − A2B1)
2 = 0 . It contains zero, first, second, third and

fourth-order terms of c2 and s2 with coefficients which are functions of ϕ4 :

A cos4 ϕ2 +B cos3 ϕ2 sinϕ2 + . . . = 0 . (5.64)

The substitution x = tanϕ2/2 , cosϕ2 = (1−x2)/(1+x2) , sinϕ2 = 2x/(1+
x2) produces for x an 8th-order polynomial equation2. For a given value
of the independent variable ϕ4 it has eight (not necessarily real) solutions
ϕ2 . This is the number Nϕ = 8 in Table 5.1 . For every solution ϕ2 the
corresponding solution ϕ1 is calculated from (5.63).

For the mechanism CRRRC in Fig. 5.5b the same set of Eqs.(5.62) is
obtained. Only the indices of the unknown variables and the coefficients are
different. The details are left to the reader. This concludes the analysis of the
mechanisms RCRCR and CRRRC .

Equations (5.63) require a comment. It may happen that the common
denominator and the two numerator expressions are linear functions of c2
and s2 . This requires that in all three expressions c2s2 has the factor zero,

2 ϕ2 = π is a root of multiplicity n if the highest-order term in the polynomial is x8−n
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and that c22 and s22 have identical factors. For the factors of c2s2 to be zero
the three conditions on the left-hand side below must be satisfied. For the
factors of c22 and of s22 to be identical the three conditions on the right-hand
side must be satisfied.

a11r22 +a12r21 = a21r12 +a22r11 , a11r21 −a21r11 = a12r22 −a22r12 ,
b11r22 +b12r21 = b21r12 +b22r11 , b11r21 −b21r11 = b12r22 −b22r12 ,
a11b22 +a12b21 = a21b12 +a22b11 , a11b21 −a21b11 = a12b22 −a22b12 .

⎫⎬
⎭

(5.65)
Under these conditions the equation (A1R2 − A2R1)

2 + (B1R2 − B2R1)
2 −

(A1B2 − A2B1)
2 = 0 contains only zero, first and second-order terms of c2

and s2 . Hence it does not have the form (5.64), but the form (5.60). This
equation has four solutions for every value of the independent variable. The
mechanism RRSRR analyzed in Sect. 5.5.2 is governed by a set of equations
satisfying the conditions (5.65).

5.4.3 RCPRC , CCPRR and RCPCR . Independent
Variable in the Prismatic Joint

These mechanisms are obtained from the previously investigated mechanisms
RCRCR and CRRRC when one revolute joint is replaced by a cylindrical
joint. The letter sequences are written such that the prismatic joint is joint
3 . The translatory variable h3 in this joint is the independent variable. As
before, the two cylindrical joints are the joints a and b . As before, the clo-
sure conditions F �

1 = F r
1 and F �

2 = F r
2 are formulated and, as before, the

angles ϕλ and ϕμ of two revolute joints are the only unknowns in these
equations. In the mechanism RCPRC the two angles are located in different
segments created by the cylindrical joints, and in the mechanisms CCPRR
and RCPCR they are located in one and the same segment. For the first
mechanism both equations have the form (5.20), and for the other two mech-
anisms they have the form (5.21). The numbers of solution are four for the
former and eight for the latter. These are the numbers Nt given in Table
5.1 . This concludes the analysis.

5.4.4 Mechanisms in Rows 6 and 7 of Table 5.1 .
Independent Variable is an Angle

It was shown that the closure condition F �
1 = F r

1 is Eq.(5.21) with two
unknowns ϕλ and ϕμ , and that the closure condition F �

5 = F r
5 has the

same form (see (5.26)). The unknowns ϕλ and ϕμ are the same in both
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equations if the joints a and b are the same for both equations. The choice
of these joints is dictated by the method for formulating the right-hand side
of (5.26). Both equations are written in the form (5.62). For a given value of
the independent variable the number of solutions is eight since the conditions
(5.65) are not satisfied. This concludes the analysis.

5.4.5 5R-C

This mechanism has n = 6 joints, 4n−7 = 17 constant parameters, nϕ = 6
angular variables and a single translatory variable in the cylindrical joint.
Figure 5.6 shows schematically the mobile polygon with unit vectors ni and
ai (i = 1, . . . , 6). Joint 3 is the cylindrical joint. The dashed line is an axis
of structural symmetry. The vector r shown in the figure is

r =

{−(h3n3 + �3a3 + h4n4 + �4a4 + h5n5 + �5a5) (left segment)

h6n6 + �6a6 + h1n1 + �1a1 + h2n2 + �2a2 (right segment) .
(5.66)

The revolute joint 6 and the cylindrical joint 3 are chosen as joints a and
b , respectively. This has the effect that every closure condition displays the
symmetry.

Let ϕ5 be the independent variable. Then two unknown variables ϕ1

and ϕ2 appear in the right segment and the single unknown variable ϕ4 in
the left segment. First, the closure conditions F �

1 = F r
1 and F �

2 = F r
2 are

formulated. The former is the equation nk · nk+3 = nk · nk−3 with k = 3 .
The scalar products are copied from Table 5.2 :

C5(C4C3 − S4S3c4) + S5[s5s4S3 − c5(S4C3 + C4S3c4)]

= S6[s1s2S2 − c1(S1C2 + C1S2c2)] + C6(C1C2 − S1S2c2) . (5.67)

Fig. 5.6 Mechanism 5R-C . Polygon with unit vectors
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This is written in the form (5.22) with ϕλ = ϕ1 , ϕμ = ϕ2 and ϕν = ϕ4 .
The matrix A of this equation is

A = [−S3(S4C5 + C4S5c5) S3S5s5 ]T . (5.68)

The equation F �
2 = F r

2 is the dual derivative of (5.67). It has the same form.
Both equations are combined in the matrix form

A1u� = B1

[
ur

1

]
. (5.69)

The column matrices u� and ur are

u� = [c4 s4 ]T , ur = [c1c2 c1s2 c1 s1c2 s1s2 s1 c2 s2 ]T . (5.70)

The coefficient matrices A1 and B1 are of size (2× 2) and (2× 9) , respec-
tively. They are functions of the independent variable ϕ5 .

No other closure condition yields a third equation for the same three un-
knowns. The closure conditions F �

3 = F r
3 and F �

4 = F r
4 with F3 = n6 · r

and F4 = n3 · r have the form (5.23) with hκ = h3 . One of these equations
is used later for the calculation of h3 once ϕ1 , ϕ2 and ϕ4 are known. For
the determination of these angles the two pairs of half-angle equations (5.37)
with v = n6 and with v = r are formulated. In the four Eqs.(5.37) the same
unknown elements of u� are located on the left-hand sides and the elements
of ur on the right-hand sides. All these elements occur once without and
once with the factor x6 = tanϕ6/2 . The four equations are combined in the
matrix form

(A2 + x6A3)u� = (B2 + x6B3)

[
ur

1

]
. (5.71)

The coefficient matrices A2 and A3 are of size (4×4) , and B2 and B3 are
of size (4× 9) . They are functions of ϕ5 .

The goal is now to deduce from the six Eqs.(5.69) and (5.71) a polynomial
equation for a single unknown variable. Two additional equations are pro-
duced by multiplying (5.69) with x6 . These two equations together with the
two Eqs.(5.69) and the four Eqs.(5.71) represent a system of eight equations.
It is written in the form

⎡
⎣A1 0

0 A1

A2 A3

⎤
⎦

︸ ︷︷ ︸
A

[
u�

x6u�

]
︸ ︷︷ ︸

y

=

⎡
⎣B1 0

0 B1

B2 B3

⎤
⎦

︸ ︷︷ ︸
B

⎡
⎢⎢⎣

ur

1
x6ur

x6

⎤
⎥⎥⎦

︸ ︷︷ ︸
z

or Ay = B z . (5.72)

The coefficient matrices A and B are of size (8× 4) and (8× 18) , respec-
tively. Four out of these eight equations are solved for y in terms of z . The
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resulting expression is substituted into the last four equations. These four
equations are then of the form

P z = 0 (5.73)

with a (4× 18)-matrix P . Next, two new variables xi = tanϕi/2 (i = 1, 2)
are defined. Substituting ci = (1− x2

i )/(1 + x2
i ) and si = 2xi/(1 + x2

i ) (i =
1, 2) into the submatrix ur of z and re-arranging terms the four Eqs.(5.73)
are given the forms

x6(aix
2
2 + bix2 + di) + (pix

2
2 + qix2 + ri) = 0 (i = 1, 2, 3, 4) . (5.74)

The coefficients ai , bi , di , pi , qi , ri themselves are second-order functions
of x1 with coefficients depending on ϕ5 . The four Eqs.(5.74) are multiplied
with x2 . These new equations and the four Eqs.(5.74) are combined in matrix
form: ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 p1 b1 q1 d1 r1 0 0
a2 p2 b2 q2 d2 r2 0 0
a3 p3 b3 q3 d3 r3 0 0
a4 p4 b4 q4 d4 r4 0 0
0 0 a1 p1 b1 q1 d1 r1
0 0 a2 p2 b2 q2 d2 r2
0 0 a3 p3 b3 q3 d3 r3
0 0 a4 p4 b4 q4 d4 r4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x3
2x6

x3
2

x2
2x6

x2
2

x2x6

x2

x6

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0 . (5.75)

The (8× 8) coefficient matrix must satisfy two conditions.
1. For a nontrivial solution to exist the determinant Δ of the coefficient
matrix must be zero.
2. The nontrivial solution must have a nonzero 8th component. This latter
condition is formulated as follows. Let K1 be the (8× 7)-matrix formed by
the first seven columns of the coefficient matrix, and let K2 be the eighth
column. Furthermore, let ξ be the column matrix

ξ = [ x3
2x6 x3

2 x2
2x6 x2

2 x2x6 x2 x6 ]T . (5.76)

Equation (5.75) has the form K1ξ = −K2 . Premultiplication by KT
1 pro-

duces the equation
KT

1 K1ξ = −KT
1 K2 . (5.77)

This equation must have a unique solution. This is condition 2 . The matrices
K1 and K2 depend on x1 which is calculated from the first condition Δ =
0 . This is a 16th-order equation3 for x1 . With this equation it is proved
that the mechanism 5R-C has at most sixteen different configurations for a

3 The 16th-order polynomial is computed as interpolation-polynomial connecting sixteen
numerically calculated points (x1i ,Δi) (i = 1, . . . , 16) . The general problem of Numerical

polynomial algebra is the title of Stetter [38]
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given value of the independent variable ϕ5 . This is the number Nϕ given
in Table 5.1 . Lee [27] gave a numerical example with sixteen different real
configurations.

Every solution x1 determines ϕ1 = 2 tan−1 x1 . The associated solutions
x2 and x6 , i.e., ϕ2 and ϕ6 are determined by (5.77). With the solutions
for ϕ1 and ϕ2 Eqs.(5.69) are two linear equations for c4 and s4 . They
determine ϕ4 . The last two unknowns are the variables ϕ3 and h3 in the
cylindrical joint. The equation F �

3 = F r
3 has the form (5.23) with hκ = h3 .

It determines h3 . The angle ϕ3 or rather x3 = tanϕ3/2 , can be calculated
from one half-angle equation (5.37) with a = 6 , b = 3 and v = n6 . An
alternative method is to formulate and to solve two linear equations for c3
and s3 , for example, the Woernle-Lee equations F �

1 = F r
1 with F1 = n4 ·n1

and with F1 = n5 · n2 . They are obtained from (5.67) by a cyclic increase
of all indices by one and by two, respectively. This concludes the analysis of
the mechanism 5R-C .

5.4.6 RRCRPR , RRCPRR , RRCRRP . Independent
Variable in the Prismatic Joint

Each of these mechanisms can be produced from the mechanism 5R-C by
replacing one revolute joint by a cylindrical joint. To be specific, the mecha-
nism RRCRPR is investigated. Its vector polygon has the form of Fig. 5.6 .
The only difference as compared with the mechanism 5R-C is that joint 5 is
replaced by a prismatic joint. In the previous analysis the angle ϕ5 was the
independent variable. Now, ϕ5 is constant whereas h5 , previously constant,
is the independent variable. With the joints a = 3 and b = 6 the same equa-
tions F �

1 = F r
1 and F �

2 = F r
2 are formulated. These are Eq.(5.67) and its

dual derivative. The matrix form of these two equations is, again, Eq.(5.69).
The only difference is, that now the coefficient matrix A1 is a function not of
ϕ5 , but of h5 . Also the rest of the analysis is the same as for the mechanism
5R-C . Two pairs of half-angle equations (5.37) with v = n6 and with v = r
result in Eqs.(5.71). Via Eqs.(5.73) - (5.75) the existence of sixteen solutions
x1 = tanϕ1/2 for a given value of the independent variable h5 is proved.
This concludes the analysis.

5.4.7 Mechanism 7R

This mechanism has n = 7 joints and 4n − 7 = 21 constant parameters.
The only variables are the angles ϕ1, . . . , ϕ7 in the revolute joints. Figure 5.7
shows schematically the polygon with unit vectors ni and ai (i = 1, . . . , 7).
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Fig. 5.7 Mechanism 7R . Polygon with unit vectors

Let ϕ7 be the independent variable. Joints 3 and 6 are chosen as joints a
and b for the formulation of closure conditions. The vector r shown in the
figure is

r =

{
h3n3 + �3a3 + h4n4 + �4a4 + h5n5 + �5a5 (left s.)

−(h6n6 + �6a6 + h7n7 + �7a7 + h1n1 + �1a1 + h2n2 + �2a2) (right s.) .
(5.78)

The unknown dependent variables are ϕ1 , ϕ2 in the right segment and
ϕ4 , ϕ5 in the left segment. The four closure conditions F �

k = F r
k (k =

1, . . . 4) with F1 = n3 · n6 , F2 = r · n3 × n6 , F3 = n3 · r and F4 = n6 · r
are formulated. It was shown that all four equations have, with different
coefficient matrices, the form (5.24). They are written in the matrix form

A∗
i u� = B∗

i

[
ur

1

]
(i = 1, . . . , 4) (5.79)

with the column matrices

u� = [ c4c5 c4s5 c4 s4c5 s4s5 s4 c5 s5 ]T ,
ur = [ c1c2 c1s2 c1 s1c2 s1s2 s1 c2 s2 ]T .

}
(5.80)

In order to demonstrate the usefulness of Table 5.2 the four equations are
developed in detail. The equation with F1 is written in the form (see the
example following (5.17))

nk · nk+3︸ ︷︷ ︸
k=3

= nk−2 · nk+2︸ ︷︷ ︸
k=1

. (5.81)

With Table 5.2 this is the equation

C5 (C4C3 − S4S3c4) + S5[s5s4S3 − c5(S4C3 + C4S3c4)]

= (C6C7 − S6S7c7)(C2C1 − S2S1c2) + [C6S7s1 + S6(s7c1 + c7s1C7)]S2s2

−[C6S7c1 − S6(s7s1 − c7c1C7)](C2S1 + S2C1c2) . (5.82)

This is the first Eq.(5.79). The coefficient matrices are

5.4 Systematic Analysis of Mechanisms 189



A∗
1 = [−S3C4S5 0 − S3S4C5 0 S3S5 0 − C3S4S5 0 ] ,

B∗
1 = [−C1S2(C6S7 + S6C7c7) S2S6s7 − S1C2(C6S7 + S6C7c7) C1S2S6s7

S2(C6S7 + S6C7c7) S1C2S6s7 − S1S2(C6C7 − S6S7c7) 0
C1C2(C6C7 − S6S7c7)− C3C4C5 ] .

⎫⎪⎪⎬
⎪⎪⎭
(5.83)

The second closure condition with F2 is the dual derivative of the first equa-
tion. It is more complicated. Only the left-hand side expression is given:

− 
5S5(C4C3 − S4S3c4) + C5[−
4S4C3 − 
3C4S3 − (
4C4S3 + 
3S4C3)c4 + h4S4S3s4]

+ 
5C5[s5s4S3 − c5(S4C3 + C4S3c4)] + S5{h5c5s4S3 + h4s5c4S3 + 
3s5s4C3

+ h5s5(S4C3 + C4S3c4)− c5[
4C4C3 − 
3S4S3 + (−
4S4S3 + 
3C4C3)c4 − h4C4S3s4]}
= . . . (dual derivative of the right-hand side expression of (5.82)) . (5.84)

The two closure conditions with F3 = n3 · r and F4 = n6 · r read

h3 + nk · (h4nk+1 + 
4ak+1 + h5nk+2 + 
5ak+2)︸ ︷︷ ︸
k=3

= −h6 nk−2 · nk+2︸ ︷︷ ︸
k=1

−nk · (
6ak−4 + h7nk−3 + 
7ak−3 + h1nk−2 + 
1ak−2 + h2nk−1)︸ ︷︷ ︸
k=3

,

(5.85)

nk · (h3nk−3 + 
3ak−3 + h4nk−2 + 
4ak−2 + h5nk−1)︸ ︷︷ ︸
k=6

= −h6 − nk · (h7nk+1 + 
7ak+1 + h1nk+2 + 
1ak+2 + h2nk+3 + 
2ak+3)︸ ︷︷ ︸
k=6

. (5.86)

The scalar products are copied from Table 5.2 . Simple re-arrangements result
in the following equations

h3 + C3(�5s5S4 + h5C4 + h4) + S3s4(�5c5 + �4) + S3c4(�5s5C4 − h5S4)

= −h2C2 − (C2C1 − S2S1c2)(�6s7S7 + h7C7 + h1)

−s2S2[�6(c7c1 − s7s1C7) + h7S7s1 + �7c1 + �1]

+(C2S1 + S2C1c2)[−�6(c7s1 + s7c1C7) + h7S7c1 − �7s1]

−h6 × right-hand side expression of (5.82) , (5.87)

h5C5 + (C5C4 − S5S4c5)h4 + S5s5(�4 + �3c4) + (C5S4 + S5C4c5)�3s4

+h3 × left-hand side expression of (5.82)

= −h6 − h7C6 − �7s7S6 − (C6C7 − S6S7c7)(h1 + h2C1 + �2s2S1)

−[C6S7s1 + S6(s7c1 + c7s1C7)](�1 + �2c2)

−[C6S7c1 − S6(s7s1 − c7c1C7)](−h2S1 + �2s2C1) . (5.88)

The four Eqs.(5.82), (5.84), (5.87) and (5.88) for the unknowns ϕ1 , ϕ2 ,
ϕ4 , ϕ5 are Eqs.(5.79) written in detail. Following Lee [27] the reduction
to a 16th-order polynomial equation for a single unknown is achieved as
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follows. First, the two Woernle-Lee Eqs.(5.16) with F6 = r2 and with F7 =
1
2 (n3 · n6)r

2 − (n3 · r)(n6 · r) are formulated. These equations have, with
new coefficient matrices, the form (5.79). The altogether six equations are
combined in the matrix form

A1u� = B1

[
ur

1

]
(5.89)

with coefficient matrices A1 and B1 of size (6×8) and (6×9) , respectively.
They are functions of the independent variable ϕ7 .

Next, four pairs of half-angle equations (5.37) are formulated with the
vectors v1, . . . ,v4 shown in (5.38) and with a = 3 and b = 6 :

x6 vi · a6+ vi · n6 × a6 = −xb vi · a5+ vi · n6 × a5 ,

vi · a6− x6 vi · n6 × a6 = vi · a5+ x6 vi · n6 × a5

}
(i = 1, 2, 3, 4) ,

(5.90)

v1 = n3 , v2 = r , v3 = n3×r , v4 =
1

2
r2n3− (n3 ·r)r . (5.91)

In each of these eight equations the elements of u� appear on the left-hand
side and the elements of ur on the right-hand side. All these elements occur
once without and once with the factor x6 = tanϕ6/2 . The eight equations
are combined in the matrix form

(A2 + x6A3)u� = (B2 + x6B3)

[
ur

1

]
(5.92)

with coefficient matrices A2 and A3 of size (8 × 8) and B2 and B3 of
size (8× 9) . They are functions of ϕ7 . Another six equations are produced
by multiplying (5.89) with x6 . These six equations together with the six
Eqs.(5.89) and the eight Eqs.(5.92) represent a system of twenty equations.
It is written in the form

⎡
⎣A1 0

0 A1

A2 A3

⎤
⎦

︸ ︷︷ ︸
A

[
u�

x6u�

]
︸ ︷︷ ︸

y

=

⎡
⎣B1 0

0 B1

B2 B3

⎤
⎦

︸ ︷︷ ︸
B

⎡
⎢⎢⎣

ur

1
x6ur

x6

⎤
⎥⎥⎦

︸ ︷︷ ︸
z

or Ay = B z . (5.93)

The coefficient matrices A and B are of size (20 × 16) and (20 × 18) ,
respectively. Sixteen out of these twenty equations are solved for y in terms
of z . The resulting expression is substituted into the last four equations.
These four equations are then of the form

P z = 0 (5.94)
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with a (4 × 18)-matrix P . They are formally identical with (5.73). Also
(5.74) and (5.75) and the conditions on the coefficient matrix in (5.75) are
valid again (the only difference being that now ϕ7 is the independent vari-
able instead of ϕ5 and that a larger number of constant Denavit-Hartenberg
parameters is involved). The condition that the determinant Δ must be zero
results in a 16th-order equation for x1 = tanϕ1/2 with coefficients depend-
ing on ϕ7 . Thus, it is proved that the mechanism 7R has at most sixteen
configurations for a given value of the independent variable ϕ7 . The unknown
angles ϕ1 , ϕ2 and ϕ6 are calculated as was shown following (5.77). With
ϕ1 , ϕ2 and ϕ6 the column matrix ur in the four Eqs.(5.79) is known. These
equations are solved for u� . This solution determines the angles ϕ1 and ϕ2 .
The last unknown ϕ3 is found by the method explained in the section on
the mechanism 5R-C . This concludes the analysis of the mechanism 7R .

5.4.8 4R-3P . Independent Variable is an Angle

These are the mechanisms in row 4 of Table 5.1 . At the end of Sect. 5.3.1
on Woernle-Lee equations it was said that the closure conditions F �

k = F r
k

(k = 1, 2, 3, 4) are formulated not only for the mechanism 7R , but also for the
mechanisms 4R-3P . These mechanisms have seven joints and, consequently,
the vector polygon shown in Fig. 5.7 . The mechanism 7R is converted into
a mechanism 4R-3P by replacing three out of the four revolute joints 1 , 2 ,
4 and 5 by prismatic joints. This has the effect that in the four Eqs.(5.82),
(5.84), (5.87) and (5.88) three out of the variables ϕ1 , ϕ2 , ϕ4 and ϕ5 are
(arbitrary) constants. Only one of them, say ϕj , is still a variable. For this
variable (5.82) becomes an equation of the form Acj +Bsj = R . It has two
solutions for every value of the independent variable ϕ7 . With each solution
the remaining three Eqs.(5.84), (5.87) and (5.88) become linear equations
with known coefficients for the translatory variables in the three prismatic
joints. This concludes the analysis of the mechanisms 4R-3P .

5.4.9 6R-P . Independent Variable is an Angle

The mechanism 6R-P has the same vector polygon the mechanism 7R has
(Fig. 5.7). The mechanism 7R is converted into the mechanism 6R-P by
replacing a single revolute joint by a prismatic joint. Let this be joint 5 .
Again, the four Eqs.(5.82), (5.84), (5.87) and (5.88) are used. As before, ϕ7

is the independent variable. But now, ϕ5 is a constant and h5 is a variable.
The only places where this variable appears explicitly, are the left-hand sides
of (5.84), (5.87) and (5.88). These three equations have the form (5.23) with
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λ = 1 , μ = 2 , ν = 4 and κ = 5 . These three equations and (5.82) are
combined in the matrix form

A1

⎡
⎣ u�

h5u�

h5

⎤
⎦ = B1

[
ur

1

]
(5.95)

with the column matrices

u� = [c4 s4 ]T , ur = [c1c2 c1s2 c1 s1c2 s1s2 s1 c2 s2 ]T . (5.96)

The coefficient matrices A1 and B1 are of size (4× 5) and (4× 9) , respec-
tively. These four equations are supplemented by three pairs of half-angle
equations (5.37) formulated with the vectors v1 , v2 and v3 shown in (5.38).
In each of these altogether six equations the column matrices of (5.95) appear
once without and once with the factor x6 = tanϕ6/2 . The six equations are
combined in the matrix form

(A2 + x6A3)

⎡
⎣ u�

h5u�

h5

⎤
⎦ = (B2 + x6B3)

[
ur

1

]
. (5.97)

The coefficient matrices A2 and A3 are of size (6× 5) and B2 and B3 are
of size (6 × 9) . Another four equations are produced by multiplying (5.95)
with x6 . These four equations together with the four Eqs.(5.95) and the six
Eqs.(5.97) represent a system of fourteen equations. It is written in the form

⎡
⎣A1 0

0 A1

A2 A3

⎤
⎦

︸ ︷︷ ︸
A

⎡
⎢⎢⎢⎢⎢⎢⎣

u�

h5u�

h5

x6u�

x6h5u�

x6h5

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
y

=

⎡
⎣B1 0

0 B1

B2 B3

⎤
⎦

︸ ︷︷ ︸
B

⎡
⎢⎢⎣

ur

1
x6ur

x6

⎤
⎥⎥⎦

︸ ︷︷ ︸
z

or Ay = B z . (5.98)

The coefficient matrices A and B are of size (14 × 10) and (14 × 18) ,
respectively. Ten out of these fourteen equations are solved for y in terms of
z . The resulting expression is substituted into the last four equations. These
four equations are then of the form

P z = 0 (5.99)

with a (4 × 18)-matrix P . They are formally identical with (5.73). The re-
duction to a 16th-order equation proceeds as before. Thus, it is proved that
the mechanism 6R-P has at most sixteen configurations for a given value of
the independent variable ϕ7 . The unknown angles ϕ1 , ϕ2 and ϕ6 are cal-
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culated as was shown following (5.77). With these results the column matrix
z in the fourteen Eqs.(5.98) is known. The ten equations already mentioned
yield y and with it the variables ϕ4 and h5 . The last two unknowns ϕ3 and
ϕ6 can be determined either from half-angle equations or from Woernle-Lee
equations F �

1 = F r
1 . See the sections on the mechanisms RCRCR and 5R-C .

This concludes the analysis of the mechanism 6R-P when the independent
variable is an angle.

5.4.10 6R-P . Independent Variable in the Prismatic
Joint

Again, the vector polygon shown in Fig. 5.7 is used. This time, joint 7 is
the prismatic joint. As in the analysis of the mechanism 7R the same four
Eqs.(5.82), (5.84), (5.87), (5.88), the same two Woernle-Lee equations with
F6 and F7 and the same four pairs of half-angle equations are formulated.
The only difference is that in these equations ϕ7 is now constant whereas
h7 is the independent variable. The only unknowns are, as before, the angles
ϕ1 , ϕ2 , ϕ4 and ϕ5 . The final result of the analysis is, again, a 16th-order
polynomial equation for x1 = tanϕ1/2 . This explains the number Nt = 16
in Table 5.1 for this mechanism.

5.5 Mechanisms with Special Parameter Values

In the analysis of every mechanism up to now it was assumed that all con-
stant Denavit-Hartenberg parameters are nonzero and arbitrary. The large
number of parameters (between nine and twenty-one) allows for an enormous
number of special cases. The Bennett mechanism and the spherical four-bar
introduced in Sect. 5.4.1 are special cases of the mechanism RCCC . Table
5.2 shows that parallelity or orthogonality of the joint axes on a single body
k results in substantial simplifications (Sk = 0 , Ck = 1 in the former case
and Sk = 1 , Ck = 0 in the latter). In the following sections two special
mechanisms are investigated.

5.5.1 7R with Three Parallel Joint Axes in Series

Subject of investigation is a mechanism 7R with three parallel successive
joint axes, say n2 , n3 and n4 . The parallelity has the effect that the bodies
1, 2, 3 and 4 are in planar motion relative to each other. For the Denavit-
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Hartenberg parameters this parallelity means α2 = α3 = 0 and, therefore,
S2 = S3 = 0 , C2 = C3 = 1 . When this is substituted into (5.82), the
unknowns ϕ2 and ϕ4 disappear. For the two remaining unknowns ϕ1 and
ϕ5 the equation has the form

S4S5c5 = A1c1 +B1s1 +R1 (5.100)

with coefficients

A1 = S1(C6S7 + S6C7c7) , B1 = −S1S6s7 ,
R1 = C4C5 − C1(C6C7 − S6S7c7) .

}
(5.101)

Except for changes of indices (5.100) is identical with (5.56). Equation (5.84)
is replaced by the dual derivative of (5.100). This equation is Eq.(5.58) with
the same changes of indices. It was shown that these equations have four
solutions (ϕ1, ϕ5) for every value of the independent variable ϕ7 . This ends
the analysis of the special case.

5.5.2 RRSRR

The mechanism RRSRR is another special case of a mechanism 7R . The
letter S stands for the spherical joint which was explained in Sect. 5.1 .
The polygon of vectors is shown in Fig. 5.8 . Bodies 1, 2, 3, 4, 5 are cou-
pled by revolute joints 1, 2, 3, 5 and by the spherical joint. Unit vectors
ni (i = 1, 2, 3, 5) and ai (i = 1, 2, 5) are located on joint axes and on
normals common to pairs of joint axes, respectively. The vectors �3a3 and
�4a4 denote the normals from the spherical joint onto the joint axes 3 and
5 , respectively. The mechanism has twelve constant parameters, namely, hi

(i = 1, 2, 3, 5) in revolute joints and �i (i = 1, . . . , 5), αi (i = 1, 2, 5) on
bodies. Variables are the angles ϕ1 , ϕ2 , ϕ3 , ϕ5 in revolute joints and, in
addition, three angles associated with the spherical joint. These latter ones
are not considered.

The symmetry allows the same conclusions which were drawn from the
symmetry of Fig. 5.3 . The independent variable is either ϕ5 or ϕ1 . Because
of the symmetry only these two cases need be considered. As joints a and
b in the sense of Fig. 5.2 the spherical joint and joint 3 are chosen. One of
the two segments between the joints a and b has no joint variables. The
other segment has the joint variables ϕ1 , ϕ2 and ϕ5 . Two of these are
unknowns. These two are determined from the two Woernle-Lee Eqs.(5.16)
with F3 = n3 · r and F6 = r2 . The vector r is shown in Fig. 5.8 :
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Fig. 5.8 Mechanism RRSRR with vector polygon

r =

{
�4a4 + h5n5 + �5a5 + h1n1 + �1a1 + h2n2 + �2a2 (left segment)

−(h3n3 + �3a3) (right segment) .
(5.102)

Taking into account the orthogonality n3 · a3 = 0 the closure conditions are

n3 · (�4a4 + h5n5 + �5a5 + h1n1 + �1a1 + h2n2 + �2a2) = −h3 , (5.103)

(�4a4 + h5n5 + �5a5 + h1n1 + �1a1 + h2n2 + �2a2)
2 = �23 + h2

3 . (5.104)

In (5.104) the seven quadratic terms yield the constant (�24 + h2
5 + . . .+ �22) .

Each vector is orthogonal to its right-hand neighbor. This determines the
products a4 · n5 = n5 · a5 = a5 · n1 = n1 · a1 = a1 · n2 = n2 · a2 = 0 .
Between each vector and its second neighbor to the right either a joint angle
or a constant angle is located. This determines the five products a4 · a5 =
c5 , n5 · n1 = C5 , a5 · a1 = c1 , n1 · n2 = C1 , a1 · a2 = c2 . For calculating
the remaining products the vectors are decomposed in a basis fixed on body
1 . With k = 1 the vectors are a4 = ak−2 , n5 = nk−1 , a5 = ak−1 ,
n1 = nk , a1 = ak , n2 = nk+1 , a2 = ak+1 , n3 = nk+2 . The
coordinates are copied4 from Table 5.2 into the following Table 5.3 .

Table 5.3 Coordinates of vectors in (5.103) and (5.104)

a4 n5 a5 n1 a1 n2 a2 n3

s5S5 C5 0 1 0 C1 s2S1 C2C1 − S2S1c2
c5c1 − s5s1C5 S5s1 c1 0 1 0 c2 S2s2
−(c5s1 + s5c1C5) S5c1 −s1 0 0 −S1 s2C1 −(C2S1 + S2C1c2)

With these coordinates (5.103) and (5.104) take the forms

cλ(ai1c2+ai2s2+ai3)+sλ(bi1c2+bi2s2+bi3)+(ri1c2+ri2s2+ri3) = 0 (5.105)

4 Instead of using Table 5.3 the scalar products can be obtained directly from Table 5.2 .
Example: n5 · n2 = nk · nk+2 with k = 5 yields C1C5 − S1S5c1
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(i = 1, 2) . The index λ equals 5 if ϕ1 is the independent variable and it
equals 1 if ϕ5 is the independent variable. The coefficients a11, . . . , r23 are
functions of the independent variable (ϕ1 or ϕ5). They are given further
below. The equations are identical with (5.62). The number of solutions for
a given value of the independent variable is eight in the general case and
four if the coefficients of c2 and s2 satisfy the six conditions (5.65). In the
present case, these conditions are satisfied. This is shown as follows. If ϕ1 is
the independent variable, the auxiliary variables are defined:

q1 = C1C5c1 − S1S5 ,
q2 = h5S5s1 + �5c1 + �1 ,
q3 = h5(C1S5c1 + S1C5)− �5C1s1 + h1S1 .

⎫⎬
⎭ (5.106)

In terms of these variables the coefficients of c2 and s2 are

a11 = �2�4c1 , a12 = −�2�4C1s1 ,
a21 = S2�4C1s1 , a22 = S2�4c1 ,
b11 = −�2�4C5s1 , b12 = −�2�4q1 ,
b21 = S2�4q1 , b22 = −S2�4C5s1 ,
r11 = �2q2 , r12 = �2q3 ,
r21 = −S2q3 , r22 = S2q2 .

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(5.107)

If ϕ5 is the independent variable, new auxiliary variables are defined as
follows:

q1 = �4c5 + �5 , q2 = �4C5s5 − h5S5 , q3 = �4S5s5 + h5C5 + h1 . (5.108)

In terms of these variables the new coefficients of c2 and s2 are

a11 = �2q1 , a12 = −�2C1q2 ,
a21 = S2C1q2 , a22 = S2q1 ,
b11 = −�2q2 , b12 = −�2C1q1 ,
b21 = S2C1q1 , b22 = −S2q2 ,
r11 = �2�1 , r12 = �2S1q3 ,
r21 = −S2S1q3 , r22 = S2�1 .

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(5.109)

In either case the conditions (5.65) are satisfied. The proof by inspection is
elementary. This concludes the analysis of the mechanism RRSRR .

5.6 Generalized Velocities. Generalized Accelerations

The time derivatives of the seven variables ϕi and hj are called generalized

velocities ϕ̇i and ḣj , respectively. One of them is independent and the other
six are dependent. The time derivatives of six suitably chosen closure condi-
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tions constitute a system of six homogeneous linear equations for the seven
generalized velocities. The solution of this system expresses each of the six
dependent generalized velocities as some multiple of the independent general-
ized velocity. Suitable closure conditions are Woernle-Lee equations which are
used also for the determination of the dependent variables. In what follows,
details are shown for the mechanisms RCCC and 7R .

5.6.1 RCCC

The mechanism RCCC with the labeling of joints shown in Fig. 5.3 has
the seven generalized velocities ϕ̇1 , ϕ̇2 , ϕ̇3 , ϕ̇4 , ḣ2 , ḣ3 , ḣ4 . For expressing
six of them as multiples of the independent velocity ϕ̇1 six linear equations
are required. The simplest equations are the total time derivatives of (5.43),
(5.45), (5.50) and (5.51) and of (5.50), (5.51) with all indices increased by
one. The time derivatives of (5.43) and (5.45) are

ϕ̇4(−As4 +Bc4) = ϕ̇1(−A′c4 −B′s4 +R′) ,

ḣ4(Bc4 −As4)+ ϕ̇4[h4(−Bs4 −Ac4) +Ds4 − Ec4]

= ϕ̇1[−h4(B
′c4 −A′s4) +D′c4 + E′s4 + F ′] .

⎫⎪⎬
⎪⎭ (5.110)

The scalars A′ , B′ , R′ , D′ , E′ , F ′ are the partial derivatives of
A , B , R , D , E , F from (5.44) and (5.46) with respect to ϕ1 :

A′ = S3C4S1s1 , B′ = S1S3c1 , R′ = −C3S4S1s1 ,

D′ = ( �4S3S1S4 − �1S3C1C4 − �3C3S1C4)s1 − h1S1S3C4c1 ,

F ′ = (−�4C3S1C4 − �1C3C1S4 + �3S3S1S4)s1 − h1S1C3S4c1 ,

E′ = −(�1C1S3 + �3S1C3)c1 + h1S1S3s1 .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (5.111)

The time derivatives of (5.50) and (5.51) are

ϕ̇3S3S2s3 = ϕ̇1S1S4s1 ,

ḣ3S2S3s3+ ϕ̇3[h3S2S3c3 + s3(�2C2S3 + �3S2C3)]

= ϕ̇1[h1S1S4c1 + s1(�1C1S4 + �4S1C4)] .

⎫⎪⎬
⎪⎭ (5.112)

5.6.2 Mechanism 7R

The mechanism 7R has seven generalized velocities ϕ̇1, . . . , ϕ̇7 . The simplest
closure condition is Eq.(5.82). Its matrix form is A∗

1u� = B∗
1[u

T
r 1]T .

The matrices A∗
1 , B

∗
1 , u� and ur are given in (5.83) and (5.80). The time

derivative of the equation is
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ϕ̇4A
∗
1 [ −s4c5 − s4s5 − s4 c4c5 c4s5 c4 0 0 ]T

+ ϕ̇5A
∗
1 [ −c4s5 c4c5 0 − s4s5 s4c5 0 − s5 c5 ]T

= ϕ̇1B
∗
1 [ −s1c2 − s1s2 − s1 c1c2 c1s2 c1 0 0 0 ]T

+ ϕ̇2B
∗
1 [ −c1s2 c1c2 0 − s1s2 s1c2 0 − s2 c2 0 ]T

+ ϕ̇7B
∗
1
′
[ c1c2 c1s2 c1 s1c2 s1s2 s1 c2 s2 1 ]T .

(5.113)

The matrix B∗
1
′
is the partial derivative of B∗

1 with respect to ϕ7 :

B∗
1
′ = S6[C1S2C7s7 S2c7 S1C2C7s7 C1S2c7

−S2C7s7 S1C2c7 − S1S6S7s7 0 C1C2S7s7 ] . (5.114)

The other five equations are produced from this equation by a cyclic increase
of all indices by one, by two, . . ., by five (not the index 1 of A∗

1 and B∗
1 ,

but all indices in A∗
1 and B∗

1).
It is a simple task to formulate the second time derivative. The result is a

system of six linear equations for generalized accelerations ϕ̈1, . . . , ϕ̈7 . These
equations contain additional terms with ϕ̇iϕ̇j (i, j = 1, 2, 4, 5, 7).

5.7 Spatial Serial Robots

A spatial serial robot consists of a stationary base, a robot hand and a serial
kinematical chain connecting hand and base. The serial chain is the arm of
the robot. With a suitable combination of cylindrical, revolute and prismatic
joints in the arm with altogether six joint variables the hand has relative
to the base three rotational and three translatory degrees of freedom. The
minimal number of joints is three with the joint combination 3C and the
maximal number is six with the joint combination 6R . The bodies are labeled
1, . . . , n with the base being body 1 and the hand being body n . The joints
are labeled 1, . . . , n − 1 beginning at the base. The problem to be solved is
the following. The pose, i.e., the position and the angular orientation of the
hand relative to the base, is prescribed in terms of six variables of unspecified
nature, for example, by three coordinates of a single point plus three angular
variables. Determine all sets of six joint variables producing this prescribed
pose. The solution is found as follows. In a preparatory step the six prescribed
variables are converted into another set of six variables which are defined as
follows. In the prescribed pose bodies n and 1 are imagined to be connected
by a revolute joint labeled n with an axis of arbitrarily chosen location and
direction and with locked joint variable ϕn . The six new variables are the
six Denavit-Hartenberg parameters defined by this joint, namely, αn , �n on
body n , ϕn and hn in joint n and α1 , �1 on body 1 . Together with the real
joints of the robot this fictitious joint creates a spatial single-loop mechanism

1995.7 Spatial Serial Robots



with given constant Denavit-Hartenberg parameters and with a given value
of the joint variable ϕn . Thus, the problem to be solved is the following.
Determine six dependent joint variables of a spatial single-loop mechanism
for a given value of a single independent variable ϕn . The complete solution
is known from the previous sections. Table 5.4 is deduced from Table 5.1 .
Each of the ten rows shows the joint combination of the respective row in
Table 5.1 with one revolute joint deleted. The deleted joint is the fictitious
joint. The ten joint combinations represent all possible robot arms giving

Table 5.4 Serial robots with three rotational and three translatory degrees of freedom of

the hand

joint combin. νr Nϕ

1 3C 1 2

2 2C-R-P 12 2 independent of joint sequence

3 C-2R-2P 30 2 independent of joint sequence

4 3R-3P 20 2 independent of joint sequence

5 2C-2R 6
4

8

(sequences CRCR, RCRC)

(sequences CCRR, RRCC, RCCR, CRRC )

6 C-3R-P 20 8 independent of joint sequence

7 4R-2P 15 8 independent of joint sequence

8 C-4R 5 16 independent of joint sequence

9 5R-P 6 16 independent of joint sequence

10 6R 1 16

the hand six degrees of freedom. The joints of a given joint combination can
be ordered along the robot arm from base to hand in many different ways.
Different sequences of letters represent different robots. Examples are the
sequences (from base to hand) CRRPP, CRPRP, RRPPC etc. with the joint
combination C-2R-2P. Let νr be the number of different robots that can be
built with a given joint combination. It is calculated as follows. Let νC , νR

and νP be the numbers of cylindrical, of revolute and of prismatic joints,
respectively. The total number of joints in the arm is ν = νC+νR+νP . With
these numbers the number νr is

νr =

(
ν

νC

)(
ν − νC

νR

)
. (5.115)

The pair of numbers νC , νR in this formula can be replaced by the pair
νC , νP and also by the pair νR , νP .
Example: The joint combination C-2R-2P yields νr =

(
5
1

)(
4
2

)
= 30 . In Table

5.4 the number νr is given for every joint combination.
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The number Nϕ is copied from Table 5.1 . It represents the number of (real
or complex) six-tuples of joint variables for a given pose of the robot hand.
Every real six-tuple determines an arm configuration producing the given
pose. From Table 5.1 it is known that in row 5 the number Nϕ is either four
or eight depending on which revolute joint carries the independent angular
variable. In Table 5.4 the independent variable is ϕ5 in the fictitious joint 5 .
This explains the correspondence between the numbers Nϕ = 4 and 8 and
the various joint sequences. For all other joint combinations the number Nϕ

is independent of the sequence of joints.
Lee [27] investigated the following problem. The hand of a 6R-robot is in

pure translation with a point P of the hand moving along a given straight
line. Let z be the coordinate of P along this line. The six Denavit-Hartenberg
parameters αn , �n , ϕn , hn , α1 , �1 of the fictitious joint are functions of z .
The number of real solutions for the six joint variables, i.e., of arm configu-
rations is a function of z , too. This function divides the z-axis into intervals
with different numbers of arm configurations. With the parameter values
chosen by Lee z-intervals with the maximum number Nϕ = 16 were found.

References
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