
Chapter 4

Degree of Freedom of a Mechanism

Amechanism consists of rigid bodies and of joints inter-connecting the bodies.
A joint is a mechanical device which introduces kinematical constraints on
the motion of the two bodies relative to each other. This implies that inter-
connections by springs or dampers do not constitute joints since such elements
do not create kinematical constraints. Two bodies cannot be connected by
more than one joint. This means that the complete system of devices inter-
connecting two bodies is counted as a single joint. A joint does not connect
more than two bodies. If, for example, p > 2 bodies are rotating about a
single common shaft, this shaft represents p−1 joints each of them connecting
two bodies.

A single body moving in three-dimensional space without any kinematical
constraint is said to have the degree of freedom F = 6 . This is the minimal
number of generalized coordinates required for specifying its position and
angular orientation relative to some reference body. Let the moving body be
connected to the reference body by a joint. Kinematical constraints intro-
duced by this joint have the effect that the body has a degree of freedom
1 ≤ F ≤ 5 . This number F is also called degree of freedom f of the joint.
The number of independent kinematical constraints in the joint is 6 − f .
Examples: Revolute, prismatic and helical joints have f = 1 , cylindrical and
universal joints have f = 2 , and a spherical joint has f = 3 . The degree of
freedom is f = 4 ( f = 5 ) if the spherical joint is free to move along a rigid
line (in a rigid surface).

A mechanism is a joint-connected system of bodies. Let n be the number
of bodies. One of the bodies is held fixed. In order to be connected the mech-
anism must have m ≥ n−1 joints. Each joint i = 1, . . . ,m has its individual
degree of freedom 1 ≤ fi ≤ 5 . The mechanism as a whole has a degree of
freedom F . This is the minimal number of generalized coordinates required
for specifying its position and angular orientation relative to the single body
held fixed. The degree of freedom F depends not only on the numbers n
and m and on the degrees of freedom 1 ≤ fi ≤ 5 (i = 1, . . . ,m) of the
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138 4 Degree of Freedom of a Mechanism

individual joints, but also on the structure of the system. This dependency
is the subject of the present chapter.

4.1 Grübler’s Formula

A mechanism with m = n−1 joints is said to have tree structure (Fig. 4.1a).
Its characteristic feature is that any two bodies are connected by a uniquely
determined chain of bodies and of joints. Examples are serial robot arms
without kinematical constraint of the gripper to the surrounding environment
and the human body when standing on one foot and with free hands. A
mechanism with m = n joints contains a single closed chain or single loop.
An example is shown in Fig. 4.1b . A single loop without side branches (the
subsystem formed by the shaded bodies) is called simple closed chain. A
mechanism with m > n joints is called multiloop mechanism. It is created by
adding more joints in Fig. 4.1b . In both figures the schematically indicated
joints are of arbitrary nature with individual degrees of freedom 1 ≤ f ≤ 5 .

Fig. 4.1 Mechanisms with tree structure (m = n− 1 ) (a) and with a single closed chain
(m = n ) (b). Simple closed chain formed by the shaded bodies

The degree of freedom F of a mechanism is determined as follows. As a
preparatory step all joints of the mechanism are removed, so that all bodies
except the single body held fixed are free of kinematical constraints. In this
state these n − 1 bodies have a total degree of freedom 6(n − 1), namely,
six for each body. In joint i (i = 1, . . . ,m) with joint degree of freedom
1 ≤ fi ≤ 5 there are 6 − fi kinematical constraints. The total number of
constraints of all m joints equals the sum of all numbers (6− fi) . The total
number of independent constraints may be smaller. It is smaller by d where
d (defect) denotes the number of dependent constraints. After reconstituting
the removed joints the degree of freedom of the mechanism is obtained:

F = 6(n−1)−
[ m∑

i=1

(6−fi) −d
]
= 6(n−1−m)+d+

m∑
i=1

fi (1 ≤ fi ≤ 5) .

(4.1)
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This formula is valid for all mechanisms. In theory as well as in engineering
practice planar mechanisms and spherical mechanisms are important. In a
planar mechanism each body is in plane motion, and the reference plane is
the same for all bodies. In a spherical mechanism each body is rotating about
a fixed point, and all bodies have the same fixed point. A simple example is
the spherical four-bar with four bodies and four revolute joints intersecting
at a single point. In planar motion as well as in spherical motion about a
fixed point a single unconstrained body has the degree of freedom three. In
planar as well as in spherical mechanisms an individual joint has the joint
degree of freedom 1 ≤ fi ≤ 2 and, consequently, 3− fi constraints. In both
types of mechanism the degree of freedom of the mechanism is

F = 3(n−1−m)+d+
m∑
i=1

fi (planar and spherical mech’s ; 1 ≤ fi ≤ 2 ) . (4.2)

Planar mechanisms can be seen as special cases of spherical mechanisms. The
fixed point common to all bodies is at infinity.

In the literature (4.1) and (4.2) are usually written without the defect d .
These formulas are due to Grübler [3]. The formulas are accompanied by the
warning that false results are obtained in the case of dependent constraints.
A simple example shows that false results may be obtained even if the defect
is taken into account. Imagine two systems 1 and 2 which are sharing a
single body 0 which is held fixed. Suppose, (4.1) yields F1 = −1 for sys-
tem 1 (indicating rigidity) and F2 = 1 for system 2 . Clearly, the entire
system composed of systems 1 and 2 together has the degree of freedom
F = 1 . However, (4.1) applied to the entire system yields the wrong result
F = F1 + F2 = 0 indicating rigidity. The formula F = F1 + F2 is correct
if and only if F1, F2 ≥ 0 . The general statement is: Equations (4.1) and
(4.2) applied to an entire system yield correct results if and only if, by the
same equations, every subsystem of the entire system has a degree of freedom
≥ 0 . Hence the conclusion: In order to get a correct result it is necessary,
first, to determine the degree of freedom of subsystems. Every subsystem
with a degree of freedom ≤ 0 must be counted as a single rigid body. Only
then do (4.1) and (4.2) yield correct results for the entire system. Most en-
gineering systems are so simple that the degree of freedom of subsystems is
obvious without any analysis. In complex spatial multiloop systems, however,
a separate analysis of subsystems may be necessary.

Equations (4.1) and (4.2) show that the degree of freedom F of a mech-
anism is independent of which body is chosen as fixed body.

Mechanisms with tree structure (Fig. 4.1a) are characterized by m = n−1
and d = 0 . In this case, both formulas for the degree of freedom read

F =
n−1∑
i=1

fi . (4.3)
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For mechanisms with a closed chain and, in particular, for the simple closed
chain (Fig. 4.1b ; m = n ) (4.1) and (4.2) have the forms

F =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−6 + d+
n∑

i=1

fi (all mechanisms; 1 ≤ fi ≤ 5 )

−3 + d+
n∑

i=1

fi (planar and spherical mech’s; 1 ≤ fi ≤ 2 ) .

(4.4)

A mechanism with degree of freedom F = 1 is called 1-d.o.f. mechanism or
mobility-one mechanism. From (4.4) follows

Theorem 4.1. In a simple closed chain with mobility one and with indepen-
dent constraints (F = 1 , d = 0 ) the number of joint variables is

n∑
i=1

fi =

{
7 (nonspherical spatial simple closed chain)
4 (planar and spherical simple closed chains) .

(4.5)

Applied to revolute joints ( fi ≡ 1 ) this theorem states that a simple (non-
spherical) spatial closed chain must have seven revolute joints and seven
bodies in order to have mobility one if all constraints are independent. For
planar and for spherical simple closed chains this number of revolute joints
and of bodies is four. Engineering realizations are the planar four-bar and the
spherical four-bar. For both of them the first Eq.(4.4) yields the correct result
F = 1 only if d = 3 . Indeed, three constraints are dependent. In the planar
four-bar, for example, one out of four parallel revolute joints establishes the
constraint to the plane of motion. This constraint must not be counted as
independent in the other three revolutes.

A mechanism is said to be overconstrained if it has a degree of freedom
F ≥ 1 only because of the existence of dependent constraints (d > 0) .
Overconstrained mechanisms must be manufactured with great precision be-
cause inaccuracies result in the loss of mobility. Inhomogeneous changes of
temperature may have the same effect. For these reasons most engineering
mechanisms are designed such that overconstraint does not occur. Example:
The ideal planar four-bar is an overconstrained mechanism. This overcon-
straint is avoided by giving the bearing of one axis the freedom to adjust its
direction as is required.

4.2 Illustrative Examples

The determination of the defect d in Grübler’s Eq.(4.1) can be a difficult
problem requiring a kinematics analysis in which all mechanism parameters –
link lengths and parameters specifying directions of joint axes – are involved.
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In the following sections this analysis is demonstrated for seven different
mechanisms.

4.2.1 Five-Point-Contact Joint

Subject of investigation is a rigid body five points of which are constrained
to move in prescribed surfaces. To be determined is the degree of freedom
of the body. The five surfaces constitute a single body referred to as frame.
The system is a mechanism with n = 2 bodies and with m = 1 joint. The
constraint of a point Pi to a surface prevents the point from moving in the
direction of the unit vector ni normal to the surface. There are five such
constraints in the joint. If d is again the number of dependent constraints,
the joint degree of freedom is f = 6 − (5 − d) = 1 + d . According to (4.1)
this is also the degree of freedom of the mechanism and, thus, of the body.

The defect d is determined as follows. According to Chasles’s Theorem
3.1 an infinitesimal displacement of a rigid body is a screw displacement with
a certain screw axis and a certain pitch (this includes as special cases pure
translation and pure rotation). The infinitesimal displacement of an arbitrary
body-fixed point is directed along the helix through this point. Every line
perpendicular to the helix is a complex line of the linear complex with this
screw axis and with this pitch (see the comment on Fig. 2.5). From this it
follows that the normals to the five surfaces at the points Pi (i = 1, . . . , 5) are
complex lines. Let ri (i = 1, . . . , 5) be the position vectors of the points Pi

in a reference basis fixed on the frame. In this basis the normals have Plücker
vectors vi = ni and wi = ri × ni (i = 1, . . . , 5) . From five independent
complex lines the vectors a and b of a linear complex (a ;b) are determined
by Eqs.(2.38):

wi · a+ vi · b = 0 (i = 1, . . . , 5) . (4.6)

The screw axis has the direction of a . The location of the screw axis and the
pitch are determined by (2.29):

u =
a× b

a2
, p =

a · b
a2

. (4.7)

From these facts it follows that the defect d of the coefficient matrix in (4.6)
is the quantity determining the degree of freedom f = 1 + d of the joint.

An engineering realization of the constraint of a body to five surfaces is
shown in Fig. 4.2 . The body, now called platform, is connected to a frame
by five rods with spherical joints at both ends. Each surface is a sphere with
the rod length as radius. The axes of the five rods are the complex lines. The
platform on five rods finds an important engineering application in the five-
point wheel suspension system for cars shown in Fig. 4.3 . The platform is the
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Fig. 4.2 Platform mounted

on five rods with spherical
joints at both ends

Fig. 4.3 Five-point wheel sus-

pension system

carrier of the wheel, and the frame is the car body. A single spherical joint
on the car body is operated by the steering mechanism. When the steering
is held fixed, the carrier has a single degree of freedom. Springs connecting
the carrier with the car body allow small carrier displacements only. These
displacements are screw displacements.

The screw displacement of a platform can be made visible by the following
experiment. Instead of mounting the platform on rigid rods it is suspended
by five mutually skew inextensible strings in such a way that an equilibrium
position exists in which the weight of the platform keeps all strings tight.
A small perturbation causes the platform to oscillate about the equilibrium
position. This oscillation is a screw motion about the axis and with the pitch
determined by (4.6) and (4.7).

If the rods in Fig. 4.2 are counted as bodies, the entire system is composed
of n = 7 bodies (fixed frame, platform and five rods) and of m = 10 spherical
joints each having the joint degree of freedom f = 3 . With these numbers
Grübler’s formula (4.1) yields for the degree of freedom of the mechanism the
result F ′ = 6(n−1−m)+d+mf = 6+d . Since every rod has the degree of
freedom of rotation about its own axis, the degree of freedom of the platform
is F = F ′ − 5 = 1 + d as before.

To a platform mounted on five rods additional rods can be added in such a
way that, in the assembly position, all rods are lines of a single linear complex.
In this position then, the degree of freedom of the platform is F = 1 . In
general, it is not possible to move the platform into another position. The
platform is said to be shaky in this position. In exceptional cases a platform
is mounted on more than five rods in such a way that large motions are
possible. This requires an arrangement where every position in the course of
motion satisfies the condition that all rods are complex lines of a single linear
complex. The platform-fixed endpoint of each rod is moving on the sphere
having its center at the other endpoint of the rod. In Sect. 6.8 such systems
are investigated.
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4.2.2 Shaky Truss

In Fig. 4.4a a planar multiloop mechanism with n = 7 bodies (fixed body 0
plus bodies 1, . . . , 6) and with m = 9 revolute joints is shown (the connection
of bodies 2 , 4 and 5 represents two joints). To be determined is the degree
of freedom F .

Fig. 4.4 Planar mechanism with 7 bodies and 9 revolute joints (a) before and (b) after

eliminating rod 6

Solution: Equation (4.2) yields F = d . Hence the degree of freedom is F > 0
only if at least one constraint is dependent. In order to find out whether this
is the case, rod 6 is eliminated and, thereby, a single constraint forcing the
endpoints P16 and P36 to have identical velocity components in the direction
of rod 6 . The mechanism without rod 6 is shown in Fig. 4.4b . If in this
system with degree of freedom F = 1 P16 and P36 have identical velocity
components in the direction of the eliminated rod 6 , this rod 6 is unnec-
essary which means that d = 1 . Velocities are determined with the help of
Theorem 15.3 by Kennedy and Aronhold. The condition to be satisfied is
that the pole P13 is located on the line P16P36 . This pole P13 is found as
intersection of the lines P10P30 and P12P23 . The poles P12 and P23 are
determined as intersections of the lines P10P20 and P14P24 and of the lines
P20P30 and P25P35 , respectively. In the present case, P13 is, indeed, located
on the line P16P36 . However, this is true only in the instantaneous position
of the mechanism. Hence the conclusion: In the position shown the mecha-
nism in Fig. 4.4a has the degree of freedom F = 1 . Neighboring positions
cannot be assumed. In statics the system is called an infinitesimally mobile
or shaky truss. Grübler’s formula and the formula used for checking statical
determinacy of trusses are directly related.
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4.2.3 Closed Chain Formed by Four Planar Four-Bars

The planar system shown in Fig. 4.5 can be interpreted in different ways.
For one thing, it is a multiloop system with m = 12 bodies (the shaded
bodies plus eight rods) and with n = 16 revolute joints each joint having the
individual degree of freedom f = 1 . With these numbers Grübler’s Eq.(4.2)
yields the total degree of freedom F = d+1 . In a much simpler interpretation
each pair of rods interconnecting two shaded bodies constitutes a joint with
the individual degree of freedom f = 1 . In this interpretation the system
consists of bodies 1 , 2 , 3 , 4 and of joints 1 , 2 , 3 , 4 . With these
numbers Grübler’s equation yields F = d+ 1 as before. In joint 1 the link
lengths �1 , r1 , a1 , r2 represent a four-bar. Since the same is true for the
other joints, the mechanism is formed by four coplanar four-bars. The link
of length �1 in four-bar 1 is the fixed link. On this link the x, y reference
system is fixed. The kinematics is analyzed as follows.

The links of lengths �4 and a4 are eliminated and thereby the constraints
on the x, y-coordinates of the endpoints P1, P2, P3, P4 :

(x2−x1)
2+(y2− y1)

2− �24 = 0 , (x4−x3)
2+(y4− y3)

2−a24 = 0 . (4.8)

The resulting system of four-bars 1 , 2 , 3 has the degree of freedom three.
As independent variables the input angles ϕ1 , ϕ2 , ϕ3 of these four-bars are
chosen. Figure 17.1 shows that a four-bar with input angle ϕi can assume
two positions with output angles ψi1 and ψi2 . Their sines and cosines are
determined by (17.12) and (17.11). For four-bar 1 the equations are

Fig. 4.5 Closed chain with planar four-bars 1 , 2 , 3 , 4 connecting bodies 1 , 2 , 3 , 4

cosψ1k =
AC + (−1)kB

√
A2 +B2 − C2

A2 +B2
,

sinψ1k =
BC − (−1)kA

√
A2 +B2 − C2

A2 +B2

⎫⎪⎪⎬
⎪⎪⎭ (k = 1, 2) , (4.9)
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A = 2r2(�1 − r1 cosϕ1) , B = −2r1r2 sinϕ1 ,
C = 2r1�1 cosϕ1 − (r21 + �21 + r22 − a21) .

}
(4.10)

The x, y-coordinates of the points A and B in these two positions are ex-
pressed in terms of �1 , r2 , cosψ1k , sinψ1k and of parameters specifying
body 1 .

The same equations, but with ϕ2 as independent variable and with other
parameters, determine the coordinates of P1 and P3 in the x′, y′-system
shown in the figure. As before, two different solutions exist for every angle
ϕ2 . Transformation from the x′, y′-system into the x, y-system results in
expressions for the x, y-coordinates of P1 and P3 as functions of ϕ1 and
ϕ2 . Next, the x, y-coordinates of P2 and P4 are expressed as functions of
ϕ1 and ϕ3 . With minor modifications the equations are the same as for the
coordinates of P1 and P3 .

The results obtained so far are summarized as follows. Four different sets
of x, y-coordinates of P2 and P4 are known as functions of ϕ1 and ϕ3 , and
four different sets of x, y-coordinates of P1 and P3 are known as functions of
ϕ1 and ϕ2 . Each of the former four sets has to be combined with each
of the latter four sets. Thus, altogether sixteen combinations have to be
investigated. For each combination Eqs. (4.8) are formulated. For at least
one combination the degree of freedom is either F = 1 or F = 2 . It is
F = 1 if for every ϕ1 (in a certain interval) unique real solutions ϕ2 , ϕ3

exist. It is F = 2 if both constraint equations are identical. A combination
has the degree of freedom F = 0 if real solutions ϕ2 , ϕ3 do not exist for
any angle ϕ1 .

4.2.4 Trihedral Plane-Symmetric Bricard Mechanism

The mechanism shown in Fig. 4.6 is a spatial closed chain with six bodies
(fixed body 0 and bodies 1, . . . , 5 ) and with six revolute joints 1, . . . , 6 . The
two joint axes of each body are mutually orthogonal and nonintersecting.
Bodies 0 , 2 and 4 are identical and bodies 1 , 3 and 5 are identical. Fur-
thermore, body 1 is a mirror image of body 0 . In the position shown the
bodies are inscribed in a cube with all joint axes and all common perpen-
diculars of adjacent joint axes aligned along edges of the cube. In this cube
configuration the joint axes 1 , 3 , 5 form a trihedral intersecting at a single
point, and the axes 2 , 4 , 6 form another trihedral. Furthermore, the six
axes display a triple plane-symmetry. They are symmetric with respect to
the plane spanned by the axes 1 and 4 , to the plane spanned by the axes 2
and 5 and to the plane spanned by the axes 3 and 6 .

The kinematics of the mechanism is best understood if a model is avail-
able. It can be produced from cardboard by folding bodies. The angle γ
should be 30◦ . From such a model it is learned that the mechanism has the
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Fig. 4.6 Spatial closed chain with six bodies and six revolute joints

degree of freedom F = 1 . Moreover, the axes 1 , 3 , 5 and 2 , 4 , 6 are
permanently forming two trihedrals and also the triple plane-symmetry is
preserved. These experimental results are confirmed by the following kine-
matics analysis (Wittenburg [7, 8]).

Equation (4.1) yields F = d . Hence a degree of freedom F > 0 exists only
if at least one constraint is dependent. According to Grübler’s formula there
are altogether 30 constraints in the altogether six joints. It is not necessary to
analyze this system of constraints. The kinematics analysis is much simpler
if the joint between bodies 0 and 5 is cut. This results in a serial open chain
with five joints. For this chain Grübler’s formula (4.3) yields the degree of
freedom F = 5 . Reconstitution of the cut joint introduces five constraints.
These are the constraints which have to be analyzed. This is done as follows.
On each body i (i = 0, . . . , 5) a body-fixed basis ei is defined. In Fig. 4.6
only basis e0 is shown. In the cube configuration of this figure all body-fixed
bases are aligned parallel. The locations of the origins are without interest.
Three of the five constraint equations express the fact that, independent of
rotation angles in the joints, the chain of vectors leading from the point P on
body 0 along body edges to the coincident point P on body 5 is closed. This
is the vector equation

−e02 − e13 + e21 + e32 + e43 − e51 = 0 . (4.11)

Two more constraint equations express the fact that the vectors e51 and e52
are both orthogonal to e03 :

e51 · e03 = 0 , e52 · e03 = 0 . (4.12)

In order to obtain five scalar constraint equations the vectors must be de-
composed in a common basis. For this purpose joint variables are defined as
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follows. In joint i (i = 1, . . . , 5) ϕi is the rotation angle of body i relative
to body i − 1 . Sign convention: ϕ1 , ϕ2 , ϕ3 are positive and ϕ4 , ϕ5 are
negative in the case of a right-handed rotation about the basis vector in the
respective joint axis. In the cube configuration all angles are zero. Let Ai be
the transformation matrix for joint i defined by the equation ei = Ai e

i−1 .
With the abbreviations ci = cosϕi , si = sinϕi these matrices are

A1 = A2 = A3 = A4 = A5 =⎡
⎣ 1 0 0
0 c1 s1
0 −s1 c1

⎤
⎦ ,

⎡
⎣ c2 0 −s2

0 1 0
s2 0 c2

⎤
⎦ ,

⎡
⎣ c3 s3 0
−s3 c3 0

0 0 1

⎤
⎦ ,

⎡
⎣ 1 0 0
0 c4 −s4
0 s4 c4

⎤
⎦ ,

⎡
⎣ c5 0 s5

0 1 0
−s5 0 c5

⎤
⎦ .

(4.13)
The coordinate transformations for (4.11) and (4.12) are simplest if all vectors
are decomposed either in basis e2 or in e3 . With e3 (4.11) takes the form

A3A2A1

⎡
⎣ 0
−1
0

⎤
⎦+A3A2

⎡
⎣ 0

0
−1

⎤
⎦+A3

⎡
⎣ 1
0
0

⎤
⎦+

⎡
⎣ 0
1
0

⎤
⎦+AT

4

⎡
⎣ 0
0
1

⎤
⎦+AT

4 AT
5

⎡
⎣−1

0
0

⎤
⎦ =

⎡
⎣ 0
0
0

⎤
⎦ .

(4.14)

These equations are

c3[1 + s2(1− s1)]− s3c1 − c5 = 0 , (4.15)

s3[1 + s2(1− s1)] + c3c1 − s4(1− s5)− 1 = 0 , (4.16)

c2(1− s1) − c4(1− s5) = 0 . (4.17)

Also the scalar products in (4.12) are expressed in terms of vector coordinates
in e3 . This yields the equations

c5(−c3s2c1 + s3s1) + s5[s4(s3s2c1 + c3s1) + c4c2c1] = 0 , (4.18)

c4(s3s2c1 + c3s1)− s4c2c1 = 0 . (4.19)

From experimenting with the cardboard model it is learned that in every
position of the mechanism the constraint equations are satisfied:

ϕ3 = ϕ1 , ϕ5 = ϕ1 , ϕ4 = ϕ2 . (4.20)

When this is substituted, (4.15) – (4.19) become

c1(s1 + s1s2 − s2) = 0 ,
(s1 − 1)(s1 + s1s2 − s2) = 0 ,

0 = 0 ,
c1(1 + s1 + s1s2)(s1 + s1s2 − s2) = 0 ,

c1c2(s1 + s1s2 − s2) = 0 .

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.21)

These equations are satisfied if s1 + s1s2 − s2 = 0 . This is the equation

sinϕ2 =
sinϕ1

1− sinϕ1
. (4.22)
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In addition to (4.20) this constitutes a fourth independent constraint equa-
tion. There are no other independent constraint equations. Hence the mech-
anism is overconstrained with the degree of freedom F = 1 . As independent
variable the angle ϕ1 is chosen.

Remark: The constraint Eqs.(4.20) can be found without making experiments
as follows. Multiply (4.16) by c1c4 , (4.17) by −c1s4 , (4.19) by −(1− s1)
and add. Simple reformulation followed by division through c4 results in an
equation relating ϕ3 to ϕ1 :

(1− s1)c3 = (1− s3)c1 . (4.23)

The equation has the solutions ϕ3 = ϕ1 and ϕ3 = π/2 . Only the first
solution is useful. This is the first Eq.(4.20). Because of the equal character
of all bodies and of all joints and because of the definitions of joint angles this
equation holds true if the indices are increased by 1 and by 2 . This yields
the other two constraint equations ϕ4 = ϕ2 and ϕ5 = ϕ3 . End of remark.

The relationship (4.22) is illustrated in the diagram of Fig. 4.7 . Because
of the conditions | sinϕ1,2| ≤ 1 the angles are restricted to the intervals
−210◦ ≤ ϕ1 ≤ +30◦ and −30◦ ≤ ϕ2 ≤ +210◦ . Motion in these intervals is
possible without collision of neighboring bodies if the angle γ shown in Fig.
4.6 is γ ≤ 30◦ . The mechanism can undergo a continuous twisting motion
similar to an elastic ribbon.

Differentiation of (4.22) with respect to time yields the relationship be-
tween angular velocities:

ϕ̇2 = ϕ̇1
cosϕ1

(1− sinϕ1)2 cosϕ2
= ϕ̇1

cosϕ1

(1− sinϕ1)
√
1− 2 sinϕ1

. (4.24)

Differentiating one more time produces for the angular acceleration the ex-
pression

Fig. 4.7 Relationship between ϕ1 and ϕ2 in Fig. 4.6
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ϕ̈2 = ϕ̈1
cosϕ1

(1− sinϕ1)
√
1− 2 sinϕ1

+ ϕ̇2
1

2− 2 sinϕ1 − sin2 ϕ1

(1− sinϕ1)(1− 2 sinϕ1)3/2
. (4.25)

The mechanism is highly special. A mechanism having two trihedrals of
permanently intersecting axes need not be plane-symmetric, and a plane-
symmetric mechanism need not be trihedral. Bricard [1] discovered a five-
parametric family of trihedral mechanisms and an eight-parametric family of
plane-symmetric mechanisms. These mechanisms are analyzed in Sects. 6.4.2
and 6.4.3 .

4.2.5 Line-Symmetric Bricard Mechanism

The mechanism shown in Fig. 4.8 is another spatial closed chain with six
bodies (fixed body 0 and bodies 1, . . . , 5) and with six revolute joints 1, . . . , 6
(thick lines). The two joint axes of each body are mutually orthogonal and
intersecting. In the position shown the axes are edges of a cube (dashed
lines). The name of the mechanism points to the fact that the six joint axes
are pairwise symmetric with respect to a line (pairs 1 and 4 , 2 and 5 ,
3 and 6 ). In the cube configuration the line of symmetry is identified as
follows. Draw in the square at the bottom of the cube the diagonal through
P and give this diagonal a vertical translation by half the side length of the
cube. It is obvious that a 180◦-rotation about the line thus defined carries
joint axis i ( i = 1, 2, 3) into the position originally held by joint axis i+ 3 .

A kinematics analysis is found in Pandrea [5]1. For checking results it is
helpful to have a model made of six identical pieces of cardboard.

Fig. 4.8 Spatial closed chain with six bodies and six revolute joints

1 Pandrea attributes the mechanism to Franke. In a private communication P. Dietmaier
pointed out that R. Franke: Vom Aufbau der Getriebe, v.2 (1951) Deutscher-Ingenieur-

Verlag Düsseldorf shows, without kinematics analysis, a line-symmetric mechanism in
which the joint axes on the bodies are skew.
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Equation (4.1) yields F = d . Hence a degree of freedom F > 0 exists only if
at least one constraint is dependent. Constraint equations are formulated by
a method similar to the one used in the previous section. On each body i (i =
0, . . . , 5) a body-fixed basis ei is defined. In Fig. 4.8 only basis e0 is shown.
In the position shown in this figure all body-fixed bases are aligned parallel.
Three of the five constraint equations express the fact that, independent of
rotation angles in the joints, the chain of vectors leading from the point P on
body 0 along body edges to the coincident point P on body 5 is closed. This
is the constraint equation

e01 + e13 − e21 − e32 − e43 + e52 = 0 . (4.26)

Let Ai be the transformation matrix in the relationship ei = Aie
i−1 (i =

0, . . . , 5 cyclic). The matrices satisfy the constraint equation
A6A5A4A3A2A1 = I or

A3A2A1 = (A6A5A4)
T . (4.27)

Every matrix Ai is a function of the rotation angle ϕi of the respective
joint i . Definition: ϕi is the rotation angle of body i relative to body i− 1
(i = 1, . . . , 5) and of body 0 relative to body 5 in the case i = 6 . Sign
convention: ϕ1 , ϕ2 , ϕ4 are positive and ϕ3 , ϕ5 , ϕ6 are negative in the
case of a right-handed rotation about the basis vector in the respective joint
axis. In the configuration shown in the figure all angles are zero. With the
abbreviations ci = cosϕi , si = sinϕi the matrices are

A3 =

⎡
⎣ 1 0 0

0 c3 −s3
0 s3 c3

⎤
⎦ , A2 =

⎡
⎣ c2 s2 0

−s2 c2 0
0 0 1

⎤
⎦ , A1 =

⎡
⎣ 1 0 0

0 c1 s1
0 −s1 c1

⎤
⎦ ,

A6 =

⎡
⎣ c6 0 s6

0 1 0

−s6 0 c6

⎤
⎦ , A5 =

⎡
⎣ c5 −s5 0
s5 c5 0

0 0 1

⎤
⎦ , A4 =

⎡
⎣ c4 0 −s4

0 1 0

s4 0 c4

⎤
⎦ .

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(4.28)

With these expressions (4.27) becomes⎡
⎣ c2 c1s2 s1s2
−s2c3 c1c2c3 + s1s3 s1c2c3 − c1s3
−s2s3 c1c2s3 − s1c3 s1c2s3 + c1c3

⎤
⎦

=

⎡
⎣ c4c5c6 + s4s6 c4s5 −c4c5s6 + s4c6
−s5c6 c5 s5s6
−s4c5c6 + c4s6 −s4s5 s4c5s6 + c4c6

⎤
⎦ . (4.29)

Following Pandrea the identity of matrix elements is formulated. The ele-
ments (1,2) and (2,1) yield the equations c1s2 = c4s5 and c3s2 = c6s5 .
They are satisfied with

c4 = c1 , s5 = s2 , c6 = c3 , (4.30)
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but also with c4 = −c1 , s5 = −s2 , c6 = −c3 . In either case the signs of
s4 , c5 and s6 are still unknown. The calculations to come reveal that the
pairwise identity of all matrix elements is possible only if Eqs.(4.30) are valid
in combination with

s4 = −s1 , c5 = c2 , s6 = −s3 . (4.31)

Hence
ϕ4 = −ϕ1 , ϕ5 = ϕ2 , ϕ6 = −ϕ3 . (4.32)

After substituting (4.30) and (4.31) into (4.29) the pairwise identity of the
matrix elements (1,1) and (3,1) is formulated. This produces the equations

c1c2c3 +s1s3 = c2 ,
s1c2c3 +(s2 − c1)s3 = 0 .

}
(4.33)

Resolving for c3 and s3 results in

c3 =
c1 − s2
1− c1s2

, s3 =
s1c2

1− c1s2
. (4.34)

By substituting these expressions the pairwise identity of all matrix elements
in (4.29) is verified.

Next, (4.26) is decomposed in basis e3 . Using, for the moment, in (4.28)
only (4.30) and (4.31) this decomposition produces the equations

c2 + c1s2 = 1− s1 , (4.35)

c2 − c3s2 = 1 + s3 , c3 − s2s3 = c1 − s1s2 . (4.36)

When in (4.36) c3 and s3 are replaced by the expressions (4.34), these two
equations are satisfied if (4.35) is satisfied. This proves the existence of a single
dependent constraint. Thus, the mechanism is an overconstrained mechanism
with the degree of freedom F = 1 . Equation (4.35) has two solutions

c2k =
1− s1 + (−1)kc1

√
1 + 2s1(1− s1)

1 + c21
,

s2k =
c1(1− s1)− (−1)k

√
1 + 2s1(1− s1)

1 + c21

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (k = 1, 2) . (4.37)

With each solution Eqs.(4.34) yield the corresponding solution ϕ3k . Equa-
tions (4.32) yield the remaining angles. The two pairs of solutions ϕ3 , ϕ2

are related through the equations

ϕ3k = ϕ2j −
π

2
(k, j = 1, 2 ; k �= j ) . (4.38)
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This is proved by substituting (4.37) into (4.34) and by verifying that c3k =
s2j and s3k = −c2j .

The square root in (4.37) is zero for s1 = (1 − √
3)/2 , i.e. for ϕmin ≈

−21, 5◦ and for ϕmax ≈ π + 21, 5◦ . Only if ϕ1 is in the interval between
these bounds, the angle ϕ2 is real. At the bounds the solution is c2 =

√
3−1 .

This determines the angles ϕ2 ≈ ±42, 9◦ . In the diagram in Fig. 4.9 ϕ2k

and ϕ3k (k = 1, 2) are shown as functions of ϕ1 . The mechanism can be
assembled in two configurations. The change from one configuration to the
other is achieved by opening and re-closing a single joint in such a way that
body-fixed vectors along the opened joint axis have equal directions after if
they have equal directions before. In Fig. 4.8 the first configuration is shown
for the variable ϕ1 = 0 with ϕ2 = . . . = ϕ5 = 0 . In the second configuration
ϕ1 = 0 is associated with ϕ3 = −π/2 , ϕ4 = 0 , ϕ2 = ϕ5 = ϕ6 = π/2 . This
configuration is shown in Fig. 4.10a . It is possible to open and to re-close
a single joint in such a way that the said body-fixed vectors along the joint
axis reverse their relative orientation. However, this re-closing is possible in a
single position only in which the system is then rigid. This position is shown
in Fig. 4.10b .

Fig. 4.9 Angles ϕ2k and ϕ3k
(k = 1, 2) as functions of ϕ1

Fig. 4.10 Second mobile configuration (a) and rigid
configuration (b)

Angular velocities: From (4.32) and (4.38) it follows that ϕ̇4 = −ϕ̇1 , ϕ̇5 =
ϕ̇2 , ϕ̇6 = −ϕ̇3 and ϕ̇3k = ϕ̇2j (k, j = 1, 2 ; k �= j ) . Therefore, it suffices
to express ϕ̇2 in terms of ϕ̇1 and ϕ1 . Implicit differentiation of (4.35) in
combination with (4.37) yields

ϕ̇2k = ϕ̇1
s1s2k − c1
c1c2k − s2k

= −ϕ̇1
(−1)k c1(2− s1) + s1

√
1 + 2s1(1− s1)

(1 + c21)
√

1 + 2s1(1− s1)
(k = 1, 2) . (4.39)
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The mechanism is a very special case of a nine-parametric family of line-
symmetric Bricard mechanisms. These mechanisms are analyzed in Sect.
6.4.1.

4.2.6 Homokinetic Shaft Coupling

The mechanism shown in Fig. 4.11 is a spatial simple closed chain S1R1S2R2

with an additional revolute joint R3 . The parameters are such that, in the
position shown, the closed chain is symmetric with respect to the plane Σ
which is bisecting the angle between links 1 and 2 (referred to as shafts 1
and 2 ) and containing S1 , S2 and the point of intersection A of the revolutes
R1 and R2 (in the figure Σ is normal to the plane of the drawing). For the
entire mechanism with five bodies 0, . . . , 4 and with five joints Grübler’s
Eq.(4.4) yields the degree of freedom F = 3 . Shaft 2 is free to change its
direction in space as is indicated by arrows. In addition, shaft 1 is free to
rotate about its longitudinal axis (angle of rotation ϕ1 ). In every position
of the mechanism the closed chain is symmetric with respect to the plane
Σ bisecting the angle between shafts 1 and 2 and containing S1 , S2 and
A . When the direction of shaft 2 is fixed, Σ is fixed independent of ϕ1 .
Permanent symmetry with respect to a fixed plane Σ has the consequence
that both shafts have identical angular velocities: ϕ̇2 ≡ ϕ̇1 . The results are
summarized as follows. The plane-symmetric closed chain is a shaft coupling
characterized by the properties

(A) the axis of shaft 2 is free to change its direction during operation
(B) ϕ̇2/ϕ̇1 ≡ 1 independent of ϕ1 in every position of shaft 2 held fixed.

Shaft couplings having these two properties are called homokinetic. The com-
bination of these properties is essential in many engineering systems. A typ-

Fig. 4.11 Homokinetic shaft coupling with a plane-symmetric closed chain S1R1S2R2
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ical example is the coupling between front wheel and drive shaft in a front-
wheel driven automobile. The coupling must have property (A) since the
direction of the wheel axis is changing due to steering maneuvers and to dy-
namic processes in the suspension system. Property (B) is necessary in order
to prevent resonance vibrations in the car. The well-known Hooke’s joint is
a shaft coupling having property (A), but not property (B). Its ratio ϕ̇2/ϕ̇1

is a π -periodic function of ϕ1 . Only its mean value is 1 . This is shown in
Sect. 13.1 . In the power train of a car such a source of vibrations with a fre-
quency proportional to the speed of the car is unacceptable. It was the need
for cars with front-wheel drive which triggered the development of compact
and reliable homokinetic shaft couplings. See Sect. 13.4 for a more general
theory.

4.2.7 Mobile Tilings

In Fig. 4.12a Q is a convex quadrilateral of arbitrary nonparallelogram-
shape. By 180◦-rotations about the midpoints of its sides four congruent
quadrilaterals are produced. Let Q′ be one of them, and let t1 and t2
be the two diagonals as shown. By repeated translations t1 and t2 of the
hexagon composed of Q and Q′ the infinite plane is filled with congruent
quadrilaterals without gaps and overlaps. The individual quadrilateral is re-
ferred to as tile, and the plane-filling pattern is called tiling. The tiling is
invariant with respect to periodical translations with t1 , t2 , t1 + t2 and
t1−t2 . It is also invariant with respect to 180◦-rotations about the midpoints
of sides of quadrilaterals.

Remark: All statements made up to this point are valid also for parallel-
ograms and for nonconvex quadrilaterals. They are also valid in the much
more general case when each side of Q is replaced by an arbitrary centrally
symmetric curve. More about tilings is found in Sect. 14.6.

Kokotsakis [4] recognized that a tiling made of convex quadrilaterals of
arbitrary nonparallelogram-shape is a 1-d.o.f. mechanism if all quadrilaterals
are rigid bodies and all sides revolute joints.
Proof (Stachel [6]): The shaded area in Fig. 4.12b is a cluster of four con-
gruent quadrilaterals Q1 , Q2 , Q3 , Q4 grouped around center 01 . In what
follows, it is referred to as cluster 1 . When it is isolated from the surround-
ing quadrilaterals, it represents a spherical four-bar with constant angles α1 ,
α2 , α3 , α4 and with axes along unit vectors n1 , n2 , n3 , n4 pointing away
from 01 . Notation: αi (i = 1, 2, 3, 4) is the internal angle of Qi at 01 . The
variable angle of rotation of Qi relative to Qi−1 about ni is called ϕi

(i = 1, 2, 3, 4 cyclic; ϕi = 0 in the planar position). This is the notation used
in Fig. 18.1a . For a given angle ϕ1 the spherical four-bar can assume two
positions. Two solutions ϕ4 as functions of ϕ1 are determined by Eqs.(18.2),



4.2 Illustrative Examples 155

Fig. 4.12 Tiling with irregular convex quadrilaterals (a) and clusters of four quadrilat-

erals (b)

(18.3). With cyclic permutations of indices the same equations relate other
pairs of neighboring angles so that also ϕ2 and ϕ3 are determined as func-
tions of ϕ1 . If (ϕ1 , ϕ2 , ϕ3 , ϕ4 ) is a solution then, because of the symmetry
to the plane, also (−ϕ1 , −ϕ2 , −ϕ3 , −ϕ4 ) is a solution. In what follows,
ϕ1 > 0 is assumed. The equations reveal the following facts. If α4 is the
largest of the four angles α1 , α2 , α3 , α4 , as is the case in the figure,
ϕ1 , ϕ2 , ϕ4 > 0 and ϕ3 < 0 in one position and
ϕ1 , ϕ3 , ϕ4 > 0 and ϕ2 < 0 in the other position.
These results are easily verified experimentally by folding a circular piece of
paper along four radii having the directions of n1 , n2 , n3 , n4 (the four
sectors should be made very stiff). It is also apparent that the cluster is
immobile if the quadrilateral is nonconvex.

In what follows, it is assumed that in Fig. 4.12b the shaded cluster 1
is shown deformed in one of its two possible modes (ϕ1 , ϕ2 , ϕ3 , ϕ4) with
ϕ1 arbitrary. Let �i denote the tensor of the 180◦-rotation about the axis
through the midpoint of the edge common to Qi and Qi−1 which is (i)
normal to ni and (ii) bisecting the angle π − ϕi (i = 1, 2, 3, 4 cyclic ). The
rotation �i transforms Qi into Qi−1 and vice versa since a 180◦-rotation
equals its inverse. The short-hand notation of these relationships is

Q1 = �1Q4 , Q4 = �1Q1 = �1�2Q2 ,

Q3 = �4Q4 , Q4 = �4Q3 = �4�3Q2

}
(4.40)

and, consequently,
�4�3 = �1�2 . (4.41)

By applying �1 to the entire cluster 1 the overlapping congruent cluster 2
with center 02 and with new quadrilaterals �1Q2 and �1Q3 is obtained.
Likewise, applying �4 to cluster 1 the overlapping congruent cluster 4 with
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center 04 and with new quadrilaterals �4Q1 and �4Q2 is obtained. Proposi-
tion: The three quadrilaterals �1Q2 , Q4 and �4Q2 are obtained by subject-
ing Q1 , Q2 and Q3 , respectively, to the rotation �2 followed by the rotation
�1 , i.e., �1Q2 = �1�2Q1 , Q4 = �1�2Q2 , �4Q2 = �1�2Q3 . Proof: The first
equation is true since Q2 = �2Q1 . The second equation is one of Eqs.(4.40).
The third equation follows from �4Q3 = �4�3Q4 in combination with (4.41).
End of proof. From this it follows that the cluster 3 formed by the quadri-
laterals �1Q3 , Q1 , �4Q3 and Q5 with center 03 is also congruent with
cluster 1 and that it is the result of the said rotations. By applying the same
procedure successively infinitely many clusters can be added in all directions,
all clusters being congruent with cluster 1 independent of the deformation
of cluster 1 . This ends the proof of mobility with degree of freedom one.

Taking �1 as example, the 180◦-rotations are expressed analytically as
follows. It suffices to know the angle ϕ1 of the rotation (n1, ϕ1) and the
position vectors ri (i = 1, 2, 3) of the corners 01 , 02 , 03 of Q4 in some
arbitrarily chosen reference system. These data determine the midpoint rA =
(r1 + r2)/2 on the edge and the unit vector n1 = (r2 − r1)/|r2 − r1| of the
rotation (n1, ϕ1) . The auxiliary vector � = r3 − r1 determines the unit
vector e = (�−n1 n1 ·�)/|�−n1 n1 ·�)| in the plane of Q4 and normal to
n1 . The vectors n1 and e and the angle ϕ1 determine the unit vector n
along the axis of the 180◦-rotation �1 :

n = e sin
ϕ1

2
− n1 × e cos

ϕ1

2
. (4.42)

According to (3.17) the relationship between the positions r and r∗ of an
arbitrary point before and after the 180◦-rotation �1 is

r∗ = 2rA − r+ 2nn · (r− rA) . (4.43)

Formulas for the rotations �2 , �3 and �4 are obtained by cyclic permutation
of indices.
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Acad. Romane



References 157

6. Stachel H (2009) Remarks on Miura-Ori, a Japanese folding method. Proc.

Int.Conf.Eng. Graphics and Design, TU Cluc-Napoca
7. Wittenburg J (1977) Dynamics of systems of rigid bodies. Teubner Stuttgart
8. Wittenburg J (2007) Dynamics of multibody systems. Springer, Berlin Heidelberg New

York


	Chapter 4 Degree of Freedom of a Mechanism
	4.1 Gr¨ubler’s Formula
	4.2 Illustrative Examples
	4.2.1 Five-Point-Contact Joint
	4.2.2 Shaky Truss
	4.2.3 Closed Chain Formed by Four Planar Four-Bars
	4.2.4 Trihedral Plane-Symmetric Bricard Mechanism
	4.2.5 Line-Symmetric Bricard Mechanism
	4.2.6 Homokinetic Shaft Coupling
	4.2.7 Mobile Tilings

	References


