
Chapter 3

Finite Screw Displacement

Subject of this chapter are relationships between two positions of a rigid
body without a fixed point. These two positions, referred to as initial and
final position, respectively, are assumed to be arbitrary subject only to the
restriction that the final position cannot be produced from the initial position
by pure translation. Motions leading from the initial to the final position are
not investigated.

3.1 (4 × 4) Transformation Matrix

In Fig. 3.1 the most general displacement of a rigid body is shown. The body is
represented by a body-fixed basis e2 . In the initial position e2 coincides with
a reference basis e1 with origin 01 . The displacement to the final position of
e2 with origin 02 is the result of a rotation (n, ϕ) about 01 followed by the

translatory displacement r =
−−→
0102 . The position of e2 after the rotation and

prior to translation is referred to as intermediate position (shown in dotted
lines). In the final position a body-fixed point Q with position vector �2 in
e2 has in e1 the position vector

Fig. 3.1 Initial, intermediate and final positions of basis e2 . Position vectors of a body-

fixed point Q . Rotation (n, ϕ) about 01 and translatory displacement r
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86 3 Finite Screw Displacement

�1 = �2 + r . (3.1)

Decomposition of this equation in e1 yields the equation

�1
1
= A12�2

2
+ r1 . (3.2)

The matrix A12 is determined by the rotation (n, ϕ) about 01 . The inverse

equation is (premultiply by A21 = A12T and write r2 = A21r1 )

�2
2
= A21�1

1
− r2 . (3.3)

It is convenient to write these equations in product form. This is achieved by
adding an identity equation:

[
�1
1
1

]
=

[
A12 r1

0T 1

] [
�2
2
1

]
,

[
�2
2
1

]
=

[
A21 −r2

0T 1

] [
�1
1
1

]
, 0 =

⎡
⎣ 0
0
0

⎤
⎦ . (3.4)

The (4 × 4) matrices are transformation matrices. Inversion is carried out
not by transposition, but by the rule shown in Eqs.(3.4).

Example: In Fig. 3.2 a serial robot with six revolute joints is shown. Starting
at the base the bodies and joints are labeled from 1 to 7 and from 1 to
6 , respectively. The locations of the joint axes on the bodies are specified
by body-fixed vectors r2, . . . , r6 pointing from one axis to the next and by
body-fixed unit vectors n1, . . . ,n6 along joint axes. The variable angle of
rotation in joint i is called ϕi . It is the angle of body i+1 relative to body
i . The vector r7 locates a specified point P on the hand of the robot. An
arbitrarily chosen position of the robot is declared as null position. In this
position the angles are ϕ1 = ϕ2 = . . . = ϕ6 = 0 . On body 1 a reference
basis e1 is fixed with its origin 0 on the joint axis 1 . On each of the bodies
i = 2, . . . , 7 a basis ei is fixed in such a way that in the null position all
bases are oriented parallel to basis e1 . The given data are
- the column matrices rii of the coordinates of ri in ei (i = 2, . . . , 7)
- the coordinates of ni in ei (identical with the coordinates in ei+1) (i =
1, . . . , 6)
- the angles ϕi (i = 1, . . . , 6).
The position of the robot hand in the reference basis e1 is determined by
the matrix A17 in the equation e1 = A17e7 and by the column matrix r1P
of the coordinates of the position vector rP in e1 . To be determined are A17

and r1P as functions of ϕ1, . . . , ϕ6 .
Solution: With the coordinates ni1 , ni2 , ni3 of ni in ei and with ϕi

Eq.(1.49) determines the matrix Ai−1,i in the relationship ei−1 = Ai−1,iei .
The desired matrix A17 is the product A12A23A34A45A56A67 . The position
vector of P is rP = r2 + r3 + · · · + r7 . The desired column matrix of its
coordinates in e1 is the expression (to be read from right to left)
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Fig. 3.2 Serial robot with six revolute joints

r1P = A12
(
r22 +A23

[
r33 +A34{r44 +A45[r55 +A56(r66 +A67r77)]}

])
. (3.5)

In terms of (4× 4) matrices this equation reads[
r1
P

1

]
=

[
A12 0
0T 1

] [
A23 r22
0T 1

] [
A34 r33
0T 1

] [
A45 r44
0T 1

] [
A56 r55
0T 1

] [
A67 r66
0T 1

] [
r77
1

]
.

(3.6)
End of example.

3.2 Chasles’ Theorem

In Fig. 3.3 the same general displacement of a rigid body is shown which
was the subject of Fig. 3.1. The body is displaced from an initial position
1 to a final position 2 . Let e2 be a body-fixed basis which in position 1
coincides with a reference basis e1 with origin 01 (arbitrary). In position 2
the origin of e2 is at 02 . The vector pointing from 01 to 02 is called r .
Dashed lines indicate an intermediate position 2′ arrived at from position 1
by pure translation r , and dotted lines indicate another intermediate position
1′ arrived at from position 2 by pure translation −r . The displacement from
position 1 to position 1′ is a rotation (n , ϕ ) about 01 , and the displacement
from position 2′ to position 2 is the same rotation (n , ϕ ) about 02 . Hence
the conclusion: The displacement of the body from position 1 to position
2 can be interpreted in two ways, either as resultant of the rotation (n , ϕ )
about 01 followed by the translation r or as resultant of the same translation
r followed by the same rotation (n , ϕ ) about 02 .

For another origin 0′1 of the basis e1 the rotation (n , ϕ ) is the same
because both e1 and e2 are oriented as before, but the translatory displace-
ment r′ from 0′1 to 0′2 is different. If � is the vector pointing from 01 to
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Fig. 3.3 Initial, final and two intermediate positions of a body-fixed basis e2 specified

by a rotation (n, ϕ) and a translatory displacement r . Screw axis S and displacement
sn

0′1 and �∗ the vector pointing from 02 to 0′2 , the relationship between r′

and r is r′ = r+ �∗ − � .
Proposition: For arbitrary n and ϕ �= 0 there exists a uniquely deter-

mined body-fixed line having the direction of n all points of which have
identical displacements sn ( s = const) in the direction along this line. More
precisely, this is the statement made by

Theorem 3.1. (Chasles [8])1 Any not purely translatory displacement of a
rigid body from an initial to a final position can be represented in a unique way
as screw displacement. This screw displacement is the resultant of a rotation
(n , ϕ ) about a body-fixed screw axis S and a translation sn along this axis.
The screw displacement is the same regardless whether the rotation or the
translation is carried out first.

Proof: Starting from (n , ϕ ) and from the displacement r the screw axis
and the displacement sn are determined as follows. Let � be the body-fixed
vector pointing from 01 to another body-fixed point P (arbitrary). After
the rotation (n , ϕ ) about 01 P has the position vector (see (1.37))

�∗ = �+ (1− cosϕ)n× (n× �) + sinϕn× � . (3.7)

After the subsequent translation r the point has the position vector r+�∗ ,
so that the total displacement of P is r + �∗ − � . Points on the body-
fixed screw axis, if it exists, have, prior to displacement, position vectors
� = u+λn (λ arbitrary) with u ·n = 0 . Thus, u is the perpendicular from
01 onto the screw axis. For proving the theorem it has to be shown that with
these vectors � the equation r+�∗ −� ≡ sn holds true independent of λ ,
and that, furthermore, the equation determines s and u uniquely. The first
condition is satisfied, because λ is eliminated by the product n × � . The
equation reads

r− (1− cosϕ)u+ sinϕn× u = sn . (3.8)

Scalar multiplication by n determines

1 This theorem was known already to Mozzi (1765; see Giorgini [16])
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s = n · r , (3.9)

and cross-multiplication by n produces the equation

n× r− (1− cosϕ)n× u− sinϕu = 0 . (3.10)

This equation and (3.8) with sn = nn ·r are two linear equations for u and
for the second Plücker vector u× n of the screw axis:

sinϕu −(1− cosϕ)u× n = n× r ,

(1− cosϕ)u +sinϕu× n = r− nn · r = (n× r)× n .

}
(3.11)

With the formula sinϕ/(1− cosϕ) = cotϕ/2 the solutions are

u =
1

2

[
(n× r)× n+ n× r cot

ϕ

2

]
, (3.12)

u× n =
1

2

[
(n× r)× n cot

ϕ

2
− n× r

]
. (3.13)

This concludes the proof. The geometrical interpretation of the formula for
u is given in Fig. 3.3. The vector r is decomposed into its components v
orthogonal to n and sn along n , so that s = n · r in accordance with
(3.9). Hence r = v + sn . The screw axis is called S . It is passing through
the apex P0 of the isosceles triangle in the plane normal to n having v as
base and ϕ as apex angle. The vector u is pointing from 01 to P0 . The
first term in the expression for u represents the vector v/2 , and the second
is the altitude of the triangle above the base. Until further below (see Sect.
3.9) the screw displacement is denoted (S, n, ϕ, s).

In the general formula for the displacement r+�∗−� of arbitrary points
of the body the last two terms satisfy (1.44) and (1.77):

(�∗ − �) · n = 0 , �∗ − � = n tan
ϕ

2
× (�∗ + �) . (3.14)

With the first equation it is verified that the component of the displacement
along the screw axis is nn · r = sn for all points of the body. With the
second equation it is verified that the same screw axis is obtained if instead
of 01 another point 0′1 is used as starting point. Let this point 0′1 be the
point at the tip of a vector � (arbitrary) from 01 . Furthermore, let u′ be
the perpendicular from 0′1 onto the screw axis. It is given by (3.12) if r is
replaced by r+ �∗ − � . It has to be verified that the second Plücker vector
(u′ + �)× n of the screw axis is identical with u× n . Because of (3.14) this
is, indeed, the case:
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(u′ + �)× n =
1

2

[
(n× r)× n cot

ϕ

2
− n× r

]
+

1

2

[
[n× (�∗ − �)]× n cot

ϕ

2
− n× (�∗ − �)

]
+ �× n

= u× n+
1

2

[
(�∗ − �) cot

ϕ

2
− n× (�∗ + �)

]
= u× n . (3.15)

Example: Given n , ϕ , s and the position vector rA of a point A on the
screw axis, determine the relationship between the position vectors r and
r∗ of an arbitrary body-fixed point before and after the screw displacement.
Solution: From Fig. 1.3 it follows that the rotation is governed by (1.38) if r∗

and r are replaced by r∗ − rA and r− rA , respectively. Hence the solution:

r∗ = rA+cosϕ (r−rA)+(1−cosϕ)nn·(r−rA)+sinϕn×(r−rA)+sn . (3.16)

In the special case ϕ = π , s = 0 , the point is reflected in the screw axis:

r∗ = 2rA − r+ 2nn · (r− rA) . (3.17)

This formula is known from (2.11). End of example.

3.3 Scalar Measures of a Screw Displacement

For a screw displacement with infinitesimal quantities ϕ and s the quotient
p = s/ϕ is called pitch as is done for a machine screw. In the theory of finite
screw displacements the quotient s/ϕ does not occur. As scalar measure of
a finite screw displacement Dimentberg [12] defines the quantity

pD =
s

sinϕ
. (3.18)

Parkin [34] defines the quantity2

pP =

s

2

tan
ϕ

2

. (3.19)

These two measures are related through the equation

pP = pD cos2
ϕ

2
. (3.20)

2 This measure was already used by Schönflies [32] p.1014
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In the special case of an infinitesimal screw displacement both measures are
identical with the pitch p = s/ϕ . Both measures find applications (see Huang
[20] and Eqs.(3.207), (6.3), (6.23), (6.88)).

3.4 Roth’ Theorem

Starting point of this section is the trivial statement: If a body is rotated
about a fixed point P , every point of the body has the property that its
distance from P is the same before and after the rotation. Roth [43] proved

Theorem 3.2. Given a point P and two positions of a body not resulting
from each other by a rotation about P , there exists a body-fixed plane every
point of which has the property that its distance from P is the same in both
positions.

In what follows, not only a proof of the theorem is given. The body-fixed plane
is determined as well. Let ri and r′i be the vectors from P to an arbitrary
body-fixed point in the initial and in the final position, respectively. The
condition that the distances from P be the same in both positions reads

r′i
2
= r2i . (3.21)

It suffices to prove that this condition is satisfied by three noncollinear body-
fixed points. Then it is satisfied by every body-fixed point in the plane
spanned by these points. Four noncoplanar body-fixed points satisfying (3.21)
cannot exist since otherwise the displacement of the body would be a rotation
about P contrary to the assumption.

In the general case, the displacement of the body is a screw displacement.
Define (n, ϕ) to be the rotation, R ≥ 0 the distance of P from the screw
axis, e a unit vector through P normal to the screw axis (in the case R > 0 ,
the vector Re is the perpendicular from P onto the screw axis). Finally, let
s be the translation along the screw axis (see Fig. 3.4). The special cases of
pure translation ( s �= 0 , ϕ = 0 ) and of pure rotation ( s = 0 , ϕ �= 0 ) are
not excluded. Three distinguished points of the unknown body-fixed plane

Fig. 3.4 Axes and quantities R , λ , μ , ν in the context of Roth’ theorem
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are its intersections with the line Pe , with the screw axis and with the line
perpendicular to both screw axis and line Pe . The vectors ri (i = 1, 2, 3)
from P to these points in the initial position have, with unknown quantities
λ , μ and ν of dimension length, the forms

r1 = Re+ λn , r2 = (R+ μ)e , r3 = Re+ νn× e . (3.22)

In the final position after the screw displacement the position vectors are
found by simple inspection from Fig. 3.4 :

r′1 = Re+ (s+ λ)n , r′2 = sn+ (R+ μ cosϕ)e+ μ sinϕ n× e ,

r′3 = sn+ (R− ν sinϕ)e+ ν cosϕ n× e .

}
(3.23)

Substitution into (3.21) yields for the unknowns the expressions

λ = −s

2
, μ =

s2

2R(1− cosϕ)
, ν =

s2

2R sinϕ
. (3.24)

Except for a single case these formulas define three points and, hence, a
plane. The single case is a pure rotation about an axis not passing through
P . It is characterized by s = 0 and R,ϕ �= 0 . The corresponding solutions
λ = μ = ν = 0 define only the point 0 . However, even in this case, a
body-fixed plane with the required property exists. Without calculation it is
obvious that the plane contains the rotation axis. In the initial position it is
rotated against the line P0 through −ϕ/2 and in the final position through
+ϕ/2 . In Fig. 3.5a the points P and 0 and the two positions of the plane
are shown in the projection along the rotation axis n . Thus, it is proved
that Roth’ Theorem is valid without any exception. In what follows, three
more special cases are considered in which the body-fixed plane is predictable
without the above analysis.

1. The special case R = 0 , ϕ, s �= 0 (screw displacement with a screw
axis passing through P ): Without calculation it is obvious that the plane
is normal to the screw axis. The perpendicular from P onto the plane is
−(s/2)n in the initial position and +(s/2)n in the final position of the
body (Fig. 3.5b). The plane is defined by Eqs.(3.24) which, in this case, yield
λ = −s/2 and μ, ν → ∞ . A point A in this plane is displaced to A′ .

2. The special case ϕ = 0 , s �= 0 , R unspecified (pure translation sn):
Without calculation it is obvious that Fig. 3.5b applies also to this case. As
before, Eqs.(3.24) yield λ = −s/2 and μ, ν → ∞ .

3. The special case ϕ = π , R , s �= 0 (screw displacement with 180◦-
turn): Equations (3.24) yield λ = −s/2 , μ = s2/(4R) and ν → ∞ .
These results indicate that the line n × e is parallel to the plane. In Fig.
3.5c the two positions of the plane are shown in the projection along n× e .
The points with position vectors r1 , r

′
1 and r2 , r

′
2 in Eqs.(3.22) and (3.23)

are marked A , A′ and B , B′ , respectively. In this case, the solution is less
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Fig. 3.5 Three special cases of Roth’ theorem

obvious than in the previous cases, but it is still predictable without analysis.
In all other cases λ , μ and ν are finite and different from zero.

3.5 Screw Displacement Determined from
Displacements of Three Body Points

Problem: For three noncollinear body-fixed points P1 , P2 , P3 the posi-
tion vectors zi before and z′i after a displacement, respectively, are given
(i = 1, 2, 3) . The three displacements z′i − zi (i = 1, 2, 3) are not identical.
Therefore, the displacement of the body is not a translation, but a screw
displacement. To be determined are the rotation (n, ϕ) , a vector from 0 to
some point on the screw axis and the translation s along the screw axis.

Solution: The rotation (n, ϕ) does not change if the displacement is superim-
posed by an arbitrary translation. Arbitrarily, the translation −(z′3 − z3) is
superimposed. Then the resulting displacement is the rotation (n, ϕ) about
the fixed point P3 . The position vectors from P3 to the body-fixed points P1

and P2 before and after the rotation are given by

ri = zi − z3 and r∗i = z′i − z′3 (i = 1, 2) , (3.25)

respectively. These vectors determine the rotation (n, ϕ) . Its Rodrigues vec-
tor n tanϕ/2 is calculated from (1.210) – (1.217) in Sect. 1.15.7 . The ro-
tation is superimposed again by the translation r = z′3 − z3 . From the now
known quantities n , ϕ and r the translation s along the screw axis and the
perpendicular u from P3 onto the screw axis are calculated from (3.9) and
(3.12), respectively. The desired vector from 0 to the screw axis is z3 + u .
Note: In (1.210) – (1.217) u is the Rodrigues vector.
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3.6 Halphen’s Theorem

In 1882 Halphen [17] published

Theorem 3.3. A screw displacement (S, n, ϕ, s) can be represented as resul-
tant of two successive reflections in lines g1 (first reflection) and g2 . The
lines g1 and g2 intersect the screw axis S orthogonally. Line g2 results
from g1 by the screw displacement (S,n, ϕ/2 , s/2). One of the two lines
may be chosen arbitrarily.

Proof: Figure 3.6 shows in two projections the screw axis S together with two
lines g1 and g2 having the required properties. Let Q1 be an arbitrary point
of the body in the initial position prior to the first reflection. Its location
relative to g1 is specified by the quantities d and α explained in the figure.
After the first reflection the body-fixed point is located at Q′ and after the
second reflection in g2 it is located at Q2 . The effect of the first reflection
is a rotation of the body-fixed perpendicular from Q1 onto S through the
angle 2α about S and a displacement of Q1 by 2d in the direction n . The
second reflection in g2 increases the rotation angle by 2(ϕ/2 − α) and the
displacement along S by 2(s/2 − d) . Hence the total rotation angle is ϕ ,
and the total displacement along S is s . This proves the theorem.

In the special case s = 0 , Halphen’s theorem reduces to the statement
known from Sects. 1.15.2 and 1.16 that a rotation (n, ϕ) can be represented
as resultant of two reflections in lines which intersect n orthogonally and
which enclose the angle ϕ/2 . A reflection in a line and a 180◦-rotation about
this line result in one and the same displacement.

Fig. 3.6 Halphen’s theorem
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3.7 Resultant of two Screw Displacements. Screw
Triangle

Consider now the displacement of a body which is the result of two suc-
cessive screw displacements (S1,n1, ϕ1, s1) (first screw displacement) and
(S2,n2, ϕ2, s2) . According to Chasles’ theorem the resultant displacement is
itself a screw displacement called the resultant screw displacement (Sres,nres,
ϕres, sres) . This resultant is geometrically constructed by applying Halphen’s
theorem several times. First, the general case is considered in which the screw
axes S1 and S2 are skew. Let g1 be the common perpendicular of S1 and
S2 (see Fig. 3.7). Each of the two screw displacements 1 and 2 is repre-
sented as resultant of two reflections. For the line of the second reflection of
screw displacement 1 and also for the line of the first reflection of screw dis-
placement 2 the common perpendicular g1 is chosen. These two reflections
cancel each other. Hence the resultant screw displacement is the resultant of
the first reflection of screw displacement 1 and of the second reflection of
screw displacement 2 . The lines of these two reflections are called g3 and
g2 . According to Halphen’s theorem, they are obtained by subjecting g1 to
the screw displacements (S1,n1,−ϕ1/2 , −s1/2 ) and (S2,n2, ϕ2/2 , s2/2 ) ,
respectively. Again, according to Halphen’s theorem, the resultant screw axis
Sres is the common perpendicular of g2 and g3 . Furthermore, sresnres/2 is
the vector along this common perpendicular shown in the figure, and ϕres/2
is the projected angle between g2 and g3 .

Up to now the screw axes S1 and S2 were assumed to be skew. Suppose
now that they intersect at a point P . In this case, the common perpendicular
g1 is uniquely defined as normal through P of the plane spanned by S1 and
S2 . The length of the common perpendicular is zero.

The inverse of the resultant is the screw displacement (Sres,nres,−ϕres,
−sres) . It carries the body back to its initial position. The lines S1 , g1 , S2 ,

Fig. 3.7 Resultant of two screw displacements in the screw triangle
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g2 , S3 , g3 form a spatial hexagon with right angles at every corner. Three
arbitrary pairwise skew lines S1 , S2 , S3 have uniquely defined common
perpendiculars g1 , g2 , g3 . Hence the three lines determine uniquely a system
of three screw displacements about these lines S1 , S2 , S3 which carry a
body from an initial position via two intermediate positions back into its
initial position3. In an arbitrarily chosen reference frame the three lines are
defined by their Plücker vectors. From this it follows that the position and the
shape of the hexagon are determined by twelve independent parameters. For
reasons explained later the hexagon is called spatial triangle or screw triangle
(Yang [51], Roth [44]). In Sects. 3.11 and 3.12 analytical relationships are
developed for the screw triangle.

When in the given screw displacements 1 and 2 s1 and s2 are changed
(all other parameters held fixed), then the lines g2 and g3 undergo lateral
displacements. This has no effect on ϕres whereas all other parameters of
the resultant screw displacement are effected. In Fig. 3.8 the special case
s1 = s2 = 0 is shown, i.e., the resultant of two pure rotations about skew
axes ( S1 , n1 , ϕ1 , S2 , n2 , ϕ2 and g1 are the same as in Fig. 3.7). The
points A1 and A2 coalesce in a single point A , and B1 and B2 coalesce in a
single point B .

Remark: In 1848 Cayley [7],v.1 gave analytical solutions for the resultant
of two successive screw displacements as well as for the inverse problem of
decomposing a given screw displacement into two screw displacements with
prescribed characteristics. He did not consider the special case of screw dis-
placements with 180◦ rotation angles which was the subject of Halphen’s
paper [17] almost half a century later. Among the problems solved by Cayley
are the determination of the resultant of two successive pure rotations about
skew axes and the decomposition of a given screw displacement into two pure

Fig. 3.8 Resultant of two rotations about skew axes

3 The lines S1 , S2 , S3 and their perpendiculars g1 , g2 , g3 can change roles. Thus, the
same hexagon determines three screw displacements about g1 , g2 , g3 which carry the
body from its initial position via two intermediate positions back into the initial position
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rotations with prescribed characteristics. The decomposition is the subject
of Cayley’s

Theorem 3.4. A given screw displacement can be represented as resultant
of two subsequent pure rotations. The axis of one rotation may be prescribed
arbitrarily (but not parallel to the axis of the resultant screw displacement).
Then the axis of the other rotation as well as the two rotation angles are
determined.

The geometrical solution is explained in Fig. 3.8 . Let it be assumed that the
resultant screw displacement and the axis S2 are prescribed as shown. The
axes S2 and Sres determine the common perpendicular g2 and its endpoints
B and C2 . Point C1 is determined by sres , and g3 is determined by ϕres .
Point A is the point of intersection of g3 with the plane through B and
perpendicular to S2 . The axis S1 of the first rotation is the common perpen-
dicular of g3 and g1 = AB . Finally, ϕ1/2 and ϕ2/2 are the angles between
g1 and g3 and between g1 and g2 , respectively. An analytical solution of the
problem is given in Sect. 3.11 .

3.8 Dual Numbers

Let x and y be real numbers. The number x + εy is complex if ε2 = −1 .
Clifford [10] was the first to consider the case ε2 = 0 . In this case, x + εy
is called a dual number with x being its primary part and y its dual part.
It must be understood that ε2 = 0 does not mean that also ε = 0 . The
quantity ε is, just as i =

√−1 , a unit, namely, the unit of the dual part.
The sum and the product of two dual numbers x1 + εy1 and x2 + εy2 are
defined by the formulas

(x1 + εy1) + (x2 + εy2) = x1 + x2 + ε(y1 + y2) ,

(x1 + εy1)(x2 + εy2) = x1x2 + ε(x1y2 + y1x2) .

}
(3.26)

According to these definitions, for addition as well as for multiplication the
laws of commutativity, associativity and distributivity are valid. As with real
numbers expressions are multiplied out term by term always keeping in mind
the rule ε2 = 0 . Together with ε2 = 0 also all higher-order terms of ε are
zero: ε3 = ε · ε2 = 0 etc. The difference of two dual numbers is defined
uniquely via the sum. The zero dual number is the number (0 + ε · 0) since
only this number has the property that addition to x + εy with arbitrary
x, y results in x+ εy .

Equation (3.26) shows that the product of two dual numbers is zero not
only if at least one factor is the number (0 + ε · 0) , but also in the case
x1 = x2 = 0 with arbitrary y1 , y2 . From this it follows that division by
(x+εy) is not defined if x = 0 . Indeed, multiplying both the numerator and
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the denominator of 1/(x+ εy) by x− εy results in the expression

1

x+ εy
=

x− εy

x2
=

1

x
+ ε

−y

x2
(3.27)

which is defined only in the case x �= 0 .

Dual numbers x + εy and (2 × 2)-matrices of the form
[
x 0
y x

]
have the

same algebra as is shown by the formulas[
x1 0
y1 x1

] [
x2 0
y2 x2

]
=

[
x1x2 0

x1y2 + x2y1 x1x2

]
,

[
x 0
y x

]−1

=

[
1/x 0

−y/x2 1/x

]
.

(3.28)
Let f(x + εy) be a once differentiable function depending on the dual

variable x + εy and possibly on additional parameters. The Taylor series
expansion about the point x consists, because of ε2 = 0 , of two terms only:

f(x+ εy) = f(x) + εy
∂f

∂x

∣∣∣
y=0

. (3.29)

Hence the function f(x+ εy) is a dual number. Its primary part is the func-
tion of the primary part of its argument. Its dual part is the derivative of the
primary part with respect to the primary part x of its argument multiplied
by the dual part y of x + εy . This dual part is referred to as dual deriva-
tive, and the process of calculating it is referred to as dual differentiation.
Examples:

cos(x+ εy) = cosx− εy sinx , sin(x+ εy) = sinx+ εy cosx , (3.30)

tan(x+ εy) = tanx+ ε
y

cos2 x
, cot(x+ εy) = cotx− ε

y

sin2 x
. (3.31)

The product of two functions f(x1 + εy1) g(x2 + εy2) is decomposed into
primary and dual part as follows:

f(x1 + εy1) g(x2 + εy2) =
(
f(x1) + εy1

∂f

∂x1

∣∣∣
y1=0

)(
g(x2) + εy2

∂g

∂x2

∣∣∣
y2=0

)
= f(x1)g(x2) + ε

(
f(x1)y2

∂g

∂x2

∣∣∣
y2=0

+ y1
∂f

∂x1

∣∣∣
y1=0

g(x2)
)
. (3.32)

Example:

sin(x1+εy1) cos(x2+εy2) = sinx1 cosx2+ε(y1 cosx1 cosx2−y2 sinx1 sinx2) .
(3.33)

Thus, the primary part is the product of the functions of the primary parts
of their variables. The rule for calculating the dual part is the product rule
of dual differentiation. The dual part is linear with respect to the dual parts
y1 , y2 of the arguments of the factors f and g , respectively. With these
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few rules all mathematical expressions encountered in later chapters can be
decomposed into their primary and dual parts.

A MAPLE software tool developed by Sinigersky [45] has subroutines for
the symbolic manipulation of dual numbers, dual vectors and dual quater-
nions and also for the dual differentiation of arbitrarily complex mathematical
expressions.

3.9 Dual Vectors. Dual Angles

Figure 3.9 shows a line vector v̂ of given magnitude. This is a vector which
is confined to its line. In contrast to a free vector v a line vector can slide
along its line, but it cannot move lateral to it. A force is an example of a
line vector. Its line is called line of action. Let v be the free vector having
direction, sense of direction and magnitude in common with v̂ . The line
vector v̂ is uniquely determined if v is given and, in addition, the vector r
from a reference point 0 to an arbitrary point of the line of v̂ . The vectors r
and v together define the moment of v̂ with respect to 0 . It is abbreviated
w :

w = r× v (equal for all points of the line of v̂ ) . (3.34)

The vectors v and w = r×v represent the first and the second Plücker vec-
tors of the line (see Sect. 2.2). They determine the line. With a free parameter
λ it is given by the vector equation

r∗(λ) = λv +
v ×w

v2
. (3.35)

The Plücker vectors satisfy the conditions

v2 = const , v ·w = 0 . (3.36)

Definition: The line vector v̂ is the dual vector

Fig. 3.9 Line vector v̂ Fig. 3.10 Screw angle ϕ̂ = ϕ+ εs
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v̂ = v + εw . (3.37)

Because of (3.36) the scalar product of v̂ with itself is

v̂2 = (v + εw)2 = v2 + 2εv ·w = v2 . (3.38)

In the case v2 = 1 , v̂ is a unit dual vector (unit line vector).
In Fig. 3.10 two unit line vectors v̂1 and v̂2 are shown the lines of which

are skew. By assumption, v2
1 = v2

2 = 1 . As vectors r1 and r2 the vectors
to the feet of the common perpendicular of the lines are chosen. Then, by
Eq.(3.37),

v̂1 = v1+εw1 = v1+εr1×v1 , v̂2 = v2+εw2 = v2+εr2×v2 . (3.39)

These expressions are valid also when the lines are parallel. In this case, r1
and r2 are the position vectors of an arbitrary common perpendicular.
Let n be the unit vector in the direction of r2 − r1 :

n =
r2 − r1
|r2 − r1| =

v1 × v2

|v1 × v2| . (3.40)

In the case of parallel lines only the first expression is useful and in the case
of intersecting (not identical) lines only the second expression. Furthermore,
the line vector is defined

n̂ = n+ εr1 × n . (3.41)

It has the direction of n , and its line is the common perpendicular.
The line vector v̂2 can be produced from v̂1 by a screw displacement

about the screw axis n̂ . The rotation angle ϕ and the translation s of this
screw displacement (both positive, zero or negative) are determined by the
equations

v1 × v2 = n sinϕ , r2 − r1 = n s . (3.42)

The absolute values |s| and |ϕ| are the distance and the projected angle,
respectively, between the two lines. The special cases of parallel or intersecting
lines are characterized by ϕ = 0 or s = 0 , respectively.
Between the various quantities just defined the following relationships exist:

v1 · v2 = cosϕ , (r2 − r1) · (v1 × v2) = s sinϕ . (3.43)

Definition: The dual angle
ϕ̂ = ϕ+ εs (3.44)

is called the screw angle of the screw displacement carrying v̂1 into v̂2 . The
screw displacement itself is denoted (n̂, ϕ̂) . This replaces the earlier notation
(S,n, ϕ, s) . The pair S,n is replaced by n̂ , and the pair ϕ, s is replaced by
ϕ̂ . The functions cos ϕ̂ and sin ϕ̂ are given in (3.30).
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The definitions given for dual vectors and for dual screw angles are very
useful. This is shown by calculating the dot product and the cross product
of the dual unit vectors v̂1 and v̂2 of Fig. 3.10 . With (3.39) and (3.43) the
dot product is

v̂1 · v̂2 = v1 · v2 + ε(v1 ·w2 + v2 ·w1) (3.45)

= v1 · v2 + ε(v1 · r2 × v2 + r1 × v1 · v2)

= v1 · v2 + ε(−r2 · v1 × v2 + r1 · v1 × v2)

= v1 · v2 − ε(r2 − r1) · (v1 × v2) . (3.46)

= cosϕ− εs sinϕ (3.47)

and with (3.30)
v̂1 · v̂2 = cos ϕ̂ . (3.48)

Thus, the rule for calculating the dot product of two ordinary unit vectors is
transferred to dual unit vectors.

Comparison of (3.45) and (3.47) yields s sinϕ = −(v1 ·w2+v2 ·w1) and
the condition for two lines to intersect:

v1 ·w2 + v2 ·w1 = 0 . (3.49)

These equations repeat what is known from (2.17) and (2.18). Another im-
portant relationship is deduced from (3.46):

(r1 − r2) · (v1 × v2) is the dual derivative of v1 · v2 . (3.50)

The usefulness of this equation is demonstrated in Sects. 5.3.1, 6.3 and 6.4.4.
Next, the cross product of the dual unit vectors v̂1 and v̂2 is calculated.

With (3.39) it is

v̂1 × v̂2 = (v1 + εr1 × v1)× (v2 + εr2 × v2)

= v1 × v2 + ε[v1 × (r2 × v2) + (r1 × v1)× v2]

= v1 × v2 + ε[v1 · v2r2 − v1 · r2v2 + r1 · v2v1 − v1 · v2r1]

= v1 × v2 + ε[v1 · v2(r2 − r1) + r1 × (v1 × v2)] (note v1 · r2 = v1 · r1)
= n sinϕ+ ε(cosϕns+ r1 × n sinϕ) (because of (3.43) and (3.42))

= (n+ εr1 × n)(sinϕ+ εs cosϕ) . (3.51)

The correctness of the last expression is verified by multiplying out again.
With (3.37) and (3.30) the final result is

v̂1 × v̂2 = n̂ sin ϕ̂ . (3.52)

Thus, also the rule for calculating the cross product of two ordinary unit
vectors is transferred to dual unit vectors.
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3.10 Principle of Transference

In Chap. 1 relationships were established between positions of a body be-
fore and after a rotation (n, ϕ) about a fixed point. Equations (3.48) and
(3.52) represent the basis of the principle of transference first formulated by
Kotelnikov [26] in 1886 and by Study [47] in 1903. It says: Given an equation
relating positions of a body before and after a rotation (n, ϕ) about a fixed
point. Replace the unit vector n along the axis by the dual unit vector n̂
and the rotation angle ϕ by the dual angle ϕ̂ . The equation thus obtained
relates positions of a body before and after the screw displacement (n̂, ϕ̂) .

In Sects. 3.10.1 – 3.10.5 the notions of cartesian basis, direction cosine ma-
trix, Euler angle, rotation tensor and quaternion of a rotation are dualized,
i.e., transferred into respective dual quantities. Dualized equations relating
such quantities must subsequently be split into their primary and dual parts.
For this procedure it suffices to apply basic rules of (vector) algebra in com-
bination with the rule of dual differentiation (see (3.29) – (3.33), in particular
formulas (3.30) and (3.31) for trigonometric functions). These rules and for-
mulas reveal the following facts.

1. The primary parts of dual equations contain neither second Plücker
vectors w of screw axes nor translatory displacements s along screw axes.
Thus, primary parts of equations describe a (usually nonlinear) problem of
rotation about a fixed point.

2. The quantities w and s of screw displacements appear in the dual
parts only and, moreover, in linear form only. The solution of these equations
is an elementary problem. Note: First Plücker vectors n of screw axes and
rotation angles appear in the dual parts as well. However, these quantities
are known from solving the primary parts.

Due to these facts the principle of transference is a powerful tool for solving
problems of very diverse nature. This is demonstrated in subsequent chapters
of this book (Sects. 3.11 , 3.12 , 3.14 and Chaps. 5 , 7 , 8 , 9 and 13).
Literature: Löbell [29] (applications in kinematics, statics and differential
geometry), Dimentberg [12] – [14], Keler [21] – [25], Yang [51, 52, 53],
Yang/Freudenstein [54], Adams [1], Roth [44], Yuan/Freudenstein/Woo [55,
56], Veldkamp [49], Hsia/Yang [19], Castelain/Flamme/Gorla/
Renaud [6], Pennock/Yang [37], Martinez/Duffy [30], Chevallier [9], Pennestri/
Stefanelli [36] and the article by Pennock/Schaaf in Erdman [15].

3.10.1 Dual Basis. Dual Direction Cosine Matrix

Using Fig. 3.11 the notion of a (right-handed, orthogonal) dual basis is intro-
duced. Point 0 is the origin of ordinary bases e1 and e2 . These bases are
related through the direction cosine matrix (see (1.6)):
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Fig. 3.11 Dual bases ê1 and ê2

e1 = A12e2 , A12 = e1 · e2T . (3.53)

Vectors r1 and r2 locate the origins 01 and 02 , respectively, of two dual
bases. These dual bases are formed by the dual unit vectors ê1i and ê2i
(i = 1, 2, 3) which are parallel to the basis vectors of e1 and e2 , respectively.
The dual basis vectors are

ê1i = e1i + ε r1 × e1i and ê2i = e2i + ε r2 × e2i (i = 1, 2, 3) . (3.54)

Let ê1 and ê2 denote the two dual bases as well as the column matrices of
their dual basis vectors. The two sets of equations are written in the matrix
forms

ê1 = e1 + εr1 × e1 , ê2 = e2 + εr2 × e2 . (3.55)

Every dual basis vector of ê1 is a linear combination of the dual basis vectors
of ê2 . This is written in the form

ê1i =
3∑

k=1

â12ik ê2k (i = 1, 2, 3) . (3.56)

By scalar multiplication of this equation by ê2j and by applying (3.48) and
(3.49) it is shown that the coordinates represent dual direction cosines:

â12ij = ê1i · ê2j (i, j = 1, 2, 3) . (3.57)

Since the dual basis vectors intersect orthogonally, the direction cosines sat-
isfy the conditions

3∑
k=1

â12ik â12jk = δij (i, j = 1, 2, 3) . (3.58)
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Let Â
12

be the matrix of the dual direction cosines. Dualization of (3.53)
yields

ê1 = Â
12
ê2 , Â

12
= ê1 · ê2T . (3.59)

Into the second equation the expressions (3.55) are substituted:

Â
12

= (e1 + ε r1 × e1) · (e2 + ε r2 × e2)T

= e1 · e2T − ε(r2 − r1) · e1 × e2
T

= A12 − ε (r2 − r1) · e1 × e1
T
A12 . (3.60)

Define r = r2 − r1 =
−−→
0102 and let r1 , r2 , r3 be the coordinates of r in e1 .

Then

Â
12

= (I + ε r̃)A12 , r̃ =

⎡
⎣ 0 −r3 r2

r3 0 −r1
−r2 r1 0

⎤
⎦ . (3.61)

From this it follows that the product Â
12
Â

12T

is the unit matrix. Hence its
inverse is also its transpose:

(Â
12
)
−1

= Â
12T

. (3.62)

The determinant of Â
12

equals 1 (the determinant of its dual part is zero).
Let v̂1 and v̂2 be the dual coordinate matrices of a dual vector of the form

(3.37), v̂ = v + εw , in the dual bases ê1 and ê2 , respectively. The vector
need not be a unit vector. The first Eq.(3.59) is proof of the transformation
rule

v̂1 = Â
12
v̂2 . (3.63)

This is the dualized form of the transformation rule v1 = A12v2 for ordinary
vector coordinates.

3.10.2 Screw Axis, Screw Angle and Translation
Determined from Dual Direction Cosines

From Chap. 1 on rotations about a fixed point Euler’s Theorem 1.1 is known.
It makes the following statements. The transformation matrix A12 has the
eigenvalue one. In the case A12 �= I , the matrix A12 determines uniquely
a rotation (n, ϕ) carrying a body-fixed basis from the position e1 into the

position e2 = A12Te1 . The coordinate matrix n of n , identical in both
bases, is the solution of the equation

(A12 − I)n = 0 . (3.64)
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If A12 is unsymmetric, ϕ and n are determined by (1.51) and (1.52):

cosϕ =
1

2
(trA12−1) , 2ni sinϕ = a12kj−a12jk (i, j, k = 1, 2, 3 cyclic) . (3.65)

If A12 is symmetric, then ϕ = ±π .
Transference of this theorem into dual form produces Chasles’ Theorem

3.1 and the following statements. The dual transformation matrix Â
12

=
(I+ε r̃)A12 has the eigenvalue one. A formal proof is given further below. In

the case A12 �= I , the matrix Â
12

determines uniquely a screw displacement
(n̂, ϕ̂) carrying a body-fixed dual basis from the position ê1 into the position

ê2 = Â
12T

ê1 . As before, the dual angle ϕ̂ and the dual unit line vector n̂
along the screw axis are written in the forms

ϕ̂ = ϕ+ εs , n̂ = n+ εw (n2 = 1 , n ·w = 0) . (3.66)

In what follows, it is shown how to determine the unknown scalars ϕ and s

and the unknown Plücker vectors n and w if the matrix Â
12

is given. The

unknowns are determined from the equation (Â
12 − I)n̂ = 0 or in detail

[(I + ε r̃)A12 − I](n+ εw) = 0 . (3.67)

If A12 is unsymmetric, Eqs.(3.65) in dualized form are valid. Only the first
equation is needed:

cos ϕ̂ =
1

2

{
tr [(I + ε r̃)A12]− 1

}
. (3.68)

Equations (3.67) and (3.68) are split into their primary and dual parts. The
primary parts are the original Eqs.(3.64) and (3.65) for n and ϕ . With the
solutions for n and ϕ the dual parts of the equations determine w and s .
The dual part of (3.67) is the equation (A12 − I)w + r̃ A12n = 0 or, since
A12n = n ,

(A12 − I)w = −r̃ n . (3.69)

Since the matrix A12−I has rank two, the equation has a solution w only if
the complete coefficient matrix including the right-hand side terms has rank
two. This is, indeed, the case. Proof: The equation has the form Bw = −r̃ n .
The homogeneous equation Bw = 0 has the solution w = μn (μ arbitrary).
Because of the orthogonality of A12 also the equation BT w = 0 has this
solution. From this it follows that the rows of BT , i.e., the columns of B
are in the plane orthogonal to n . In this plane also the column matrix −r̃ n
is located since it is the coordinate matrix of the vector n× r . End of proof.
Hence the inhomogeneous equation has a solution wp . The complete solution

is w = μn+wp . From the conditions n2 = 1 and n ·w = 0 valid for Plücker
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vectors it follows that μ = −nTwp . Thus, the final solution for w is

w = (I − nnT )wp . (3.70)

The perpendicular from 01 onto the screw axis is the vector u = n × w =
n×wp . It has the coordinate matrix

u = ñ wp . (3.71)

These results cover also the special case when the right-hand side of (3.69)
equals zero which means n× r = 0 . Then wp = 0 and w = 0 . This means
that the screw axis is the line connecting the origins 01 and 02 . This is obvious
without any analysis.

The dual part of (3.68) determines s . This equation reads (omitting the
upper indices in the elements of A12) :

−s sinϕ =
1

2
tr (r̃ A12)

=
1

2

[
(a23 − a32)r1 + (a31 − a13)r2 + (a12 − a21)r3

]
. (3.72)

The three differences of matrix elements are expressed with the help of the
second Eq.(3.65). This yields for s the explicit expression

s = n1r1 + n2r2 + n3r3 = nT r1 . (3.73)

This is identical with (3.9). For the perpendicular u of a screw displacement
with given quantities n , ϕ and r vector methods led to (3.12). Comparison
with (3.71), u = n×wp , allows an interpretation of wp .

In what follows, it is proved that the dual matrix Â
12

has the eigenvalue
one. The characteristic equation is det [(I + ε r̃)A12 − λI ] = 0 . The term
free of λ consists of 24 expressions which cancel each other pairwise. The
remaining terms are (the upper indices in the elements of A12 are omitted)

det (A21−λI)+ε λ

3∑
i=1

ri

[
λ(ajk−akj)−(aijaki−aiiakj)+(ajiaik−aiiajk)

]
= 0

(3.74)
(i, j, k = 1, 2, 3 cyclic). From (1.10) it follows that this equation is solved
with λ = 1 . End of proof.

The expression (3.61) for the dual transformation matrix was obtained by
applying the transference principle to the matrix A12 of a rotation expressed
in terms of direction cosines. In Chap. 1 the matrix A12 has been expressed
in various ways by the unit vector n along the axis of a rotation and by
the angle ϕ . The most useful expressions are those in (1.49) in terms of
n1 , n2 , n3 , sinϕ , cosϕ , in (1.79) in terms of Euler-Rodrigues parameters



3.10 Principle of Transference 107

and in (1.170) in terms of the coordinates of the Rodrigues vector. All these
expressions can be transferred into dual form. Transference of (1.49) yields
the expression

Â
12

=

⎡
⎣ n̂2

1 + (1− n̂2
1) cos ϕ̂ n̂1n̂2(1− cos ϕ̂)− n̂3 sin ϕ̂

n̂1n̂2(1− cos ϕ̂) + n̂3 sin ϕ̂ n̂2
2 + (1− n̂2

2) cos ϕ̂
n̂1n̂3(1− cos ϕ̂)− n̂2 sin ϕ̂ n̂2n̂3(1− cos ϕ̂) + n̂1 sin ϕ̂

n̂1n̂3(1− cos ϕ̂) + n̂2 sin ϕ̂
n̂2n̂3(1− cos ϕ̂)− n̂1 sin ϕ̂

n̂2
3 + (1− n̂2

3) cos ϕ̂

⎤
⎦ . (3.75)

Example: Determine ϕ , n̂ = n+ εw , u = ñ w , s = nT r and the matrix

Â
12

from the given quantities

A12 =

⎡
⎢⎣

2
3

− 11
15

− 2
15

1
3

2
15

14
15

− 2
3

− 2
3

1
3

⎤
⎥⎦ , r =

2

15

⎡
⎣ 50

30
11

⎤
⎦ . (3.76)

Solution: Equation (3.65) yields cosϕ = 1/15 , sinϕ = 4
√
14/15 (arbitrarily

positive), n = (1/
√
14) [ −3 1 2 ]T . Equation (3.69) reads⎡
⎣ −5 −11 −2

5 −13 14
−10 −10 −10

⎤
⎦ w =

√
14

⎡
⎣ −7

19
−20

⎤
⎦ . (3.77)

It has the solution wp =
√
14 [ 1 0 1 ]

T
. In (3.70) nTwp = −1 . Further-

more,

n̂ =
1√
14

⎡
⎣−3 + 11ε

1 + ε
2 + 16ε

⎤
⎦ , u =

⎡
⎣ 1

5
−1

⎤
⎦ , s = −14

√
14

15
. (3.78)

For u the same result is obtained from (3.13). For (3.75) the quantities are
calculated:

cos ϕ̂ = cosϕ− εs sinϕ = 1
152 (15 + 282ε) ,

sin ϕ̂ = sinϕ+ εs cosϕ = 2
√
14

152 (30− 7ε) ,

}
(3.79)

n̂2
1 = 1

14 (9− 66ε) , n̂1n̂2 = 1
14 (−3 + 8ε) , n̂1n̂3 = 1

14 (−6− 26ε),

n̂2
2 = 1

14 (1 + 2ε) , n̂2n̂3 = 1
14 (2 + 18ε) ,

n̂2
3 = 1

14 (4 + 64ε) .

⎫⎪⎬
⎪⎭ (3.80)

The desired matrix is

Â
12

=

⎡
⎢⎣

2
3

− 11
15

− 2
15

1
3

2
15

14
15

− 2
3

− 2
3

1
3

⎤
⎥⎦+ ε

⎡
⎢⎣
− 142

45
− 644

225
− 8

225

244
45

758
225

− 544
225

− 4
9

173
45

304
45

⎤
⎥⎦ . (3.81)

The primary part is the given matrix (3.76). End of Example.



108 3 Finite Screw Displacement

3.10.3 Dual Euler Angles. Dual Bryan Angles

In Fig. 3.12 the dual basis ê2 is produced from ê1 by a screw displacement
about the axis ê11 with the rotation angle φ1 and the translation u1 . With

φ̂1 = φ1 + εu1 the dual direction cosine matrix is

Â
12
1 =

⎡
⎣ 1 0 0

0 cos φ̂1 − sin φ̂1

0 sin φ̂1 cos φ̂1

⎤
⎦ . (3.82)

Formulas for cos φ̂ and sin φ̂ are given in (3.30). With the abbreviations

c1 = cosφ1 and s1 = sinφ1 these formulas are written in the forms cos φ̂1 =

c1 − εu1s1 , sin φ̂1 = s1 + εu1c1 . Hence

Â
12
1 =

⎡
⎣ 1 0 0
0 c1 −s1
0 s1 c1

⎤
⎦+ εu1

⎡
⎣ 0 0 0
0 −s1 −c1
0 c1 −s1

⎤
⎦ . (3.83)

The same result is obtained from (3.61) with r1 = u1 , r2 = r3 = 0 . The dual
part is calculated from the primary part by the rule of dual differentiation.

In what follows, the same idea is applied to the direction cosine matrix
A12 expressed as function of Euler angles ψ , θ and φ (see (1.28)). Euler
angles are defined in Fig. 1.1a . They are angles of subsequent rotations about
the axes e13 , e2

′′
1 and e2

′
3 = e23 . Each of these three rotations is replaced by

a screw displacement about the respective axis. The three dual screw angles
are denoted ψ̂ = ψ+ εuψ , θ̂ = θ+ εuθ and φ̂ = φ+ εuφ , respectively. They

are dual Euler angles. The dual direction cosine matrix Â
12

is obtained from
the direction cosine matrix A12 by the rule of dual differentiation:

Fig. 3.12 Screw displacement (ê11, φ̂1) with φ̂1 = φ1 + εu1
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Â
12

=

⎡
⎢⎣ cψcφ − sψcθsφ −cψsφ − sψcθcφ sψsθ
sψcφ + cψcθsφ −sψsφ + cψcθcφ −cψsθ
sθsφ sθcφ cθ

⎤
⎥⎦

+ε

⎛
⎝uψ

⎡
⎣−sψcφ − cψcθsφ sψsφ − cψcθcφ cψsθ

cψcφ − sψcθsφ −cψsφ − sψcθcφ sψsθ
0 0 0

⎤
⎦

+uθ

⎡
⎣ sψsθsφ sψsθcφ sψcθ
−cψsθsφ −cψsθcφ −cψcθ
cθsφ cθcφ −sθ

⎤
⎦

+uφ

⎡
⎣−cψsφ − sψcθcφ −cψcφ + sψcθsφ 0
−sψsφ + cψcθcφ −sψcφ − cψcθsφ 0
sθcφ −sθsφ 0

⎤
⎦
⎞
⎠ . (3.84)

The primary part is the matrix A12 of Eq.(1.28). Dual differentiation of
the element (1,3), i.e., of the product sψsθ , yields the expression uψcψsθ +
uθ sψcθ . These two terms are the elements (1,3) of the matrices associated
with uψ and uθ .

The same procedure is applied to the direction cosine matrix expressed as
function of Bryan angles φ1 , φ2 and φ3 (see Fig. 1.2a and Eq.(1.32)). Each
of the three subsequent rotations about the axes e11 , e2

′′
2 and e2

′
3 = e23 is

replaced by a screw displacement about the respective axis. The dual screw
angles are denoted φ̂i = φi + εui (i = 1, 2, 3). They are dual Bryan angles.
The associated dual direction cosine matrix is

Â
12

=

⎡
⎣ c2c3 −c2s3 s2

c1s3 + s1s2c3 c1c3 − s1s2s3 −s1c2
s1s3 − c1s2c3 s1c3 + c1s2s3 c1c2

⎤
⎦

+ε

⎛
⎝u1

⎡
⎣ 0 0 0
−s1s3 + c1s2c3 −s1c3 − c1s2s3 −c1c2
c1s3 + s1s2c3 c1c3 − s1s2s3 −s1c2

⎤
⎦

+u2

⎡
⎣−s2c3 s2s3 c2

s1c2c3 −s1c2s3 −s1s2
−c1c2c3 −c1c2s3 c1s2

⎤
⎦

+u3

⎡
⎣−c2s3 −c2c3 0

c1c3 − s1s2s3 −c1s3 − s1s2c3 − c1s3 0
s1c3 + c1s2s3 −s1s3 + c1s2c3 0

⎤
⎦
⎞
⎠ .(3.85)

The primary part is the matrix of Eq.(1.32). Linearization in the case of small
angles yields
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Â
12 ≈

⎡
⎢⎣ 1 −φ3 φ2

φ3 1 −φ1

−φ2 φ1 1

⎤
⎥⎦

+ ε

⎛
⎝u1

⎡
⎣ 0 0 0
φ2 −φ1 −1
φ3 1 −φ1

⎤
⎦+ u2

⎡
⎣−φ2 0 1

φ1 0 0
−1 −φ3 φ2

⎤
⎦+ u3

⎡
⎣−φ3 −1 0

1 −φ3 0
φ1 φ2 0

⎤
⎦
⎞
⎠ . (3.86)

3.10.4 Dual Rodrigues Vector

The Rodrigues vector of a rotation (n, ϕ) is the vector u = n tanϕ/2 . The
dual Rodrigues vector of a screw displacement (n̂, ϕ̂) with n̂ = n+ εw and
ϕ̂ = ϕ+ εs is

û = n̂ tan
ϕ̂

2
= (n+ εw)

(
tan

ϕ

2
+ ε

s/2

cos2 ϕ
2

)
= n tan

ϕ

2
+ ε
[
n
s

2

(
1 + tan2

ϕ

2

)
+w tan

ϕ

2

]
. (3.87)

3.10.5 Dual Euler-Rodrigues Parameters. Dual
Quaternions

From (1.67) the Euler-Rodrigues parameters of a rotation (n, ϕ) are known:

q0 = cos
ϕ

2
, q = n sin

ϕ

2
. (3.88)

They satisfy the constraint equation

q20 + q2 = 1 . (3.89)

According to Fig. 1.3 and to (1.70) the parameters establish between the
position vectors � and �∗ of a body-fixed point before and after the rotation
the relationship

�∗ = �+ 2[q× (q× �) + q0q× �] . (3.90)

The quaternion of the rotation is

D = (q0 , q) . (3.91)

Corresponding dual quantities are defined for a screw displacement (n̂, ϕ̂) .
With the quantities shown in Fig. 3.3 the dual screw angle ϕ̂ and the dual
unit vector n̂ along the screw axis are
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ϕ̂ = ϕ+ εs , n̂ = n+ εu× n , (u · n = 0 ) . (3.92)

For the translatory displacement r =
−−→
0102 in Fig. 3.3 Eq.(3.8) provides the

expression
r = sn+ u(1− cosϕ) + u× n sinϕ . (3.93)

The square of this vector is

r2 = s2 + 2u2(1− cosϕ) . (3.94)

By definition, the dual Euler-Rodrigues parameters of the screw displacement
are

q̂0 = cos
ϕ̂

2
= cos

ϕ

2
− ε

s

2
sin

ϕ

2
,

q̂ = n̂ sin
ϕ̂

2
= (n+ εu× n)

(
sin

ϕ̂

2
+ ε

s

2
cos

ϕ

2

)
= n sin

ϕ

2
+ ε
(s
2
n cos

ϕ

2
+ u× n sin

ϕ

2

)
.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.95)

The dual parts are abbreviated

q′0 = −s

2
sin

ϕ

2
, q′ =

s

2
n cos

ϕ

2
+ u× n sin

ϕ

2
. (3.96)

With this notation

q̂0 = q0 + εq′0 , q̂ = q+ εq′ . (3.97)

The dual quaternion of the screw displacement is

D̂ = (q̂0 , q̂) = D + εD′ (3.98)

with
D = (q0 , q) , D′ = (q′0 , q

′) . (3.99)

The square of the norm of D′ is

q′0
2
+ q′2 =

s2

4
+ u2 sin2

ϕ

2
=

1

4
[s2 + 2u2(1− cosϕ)] . (3.100)

Comparison with (3.94) shows that

r2 = 4(q′0
2
+ q′2) . (3.101)

Next, the quaternion product D D̃′ = (q0 , q)(q
′
0 , −q′) is calculated by the

multiplication rule (1.98). The scalar part is

q0q
′
0 + q · q′ = 0 . (3.102)
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This equation is referred to as Study-quadric. It expresses the orthogonality
of the primary and the dual part of the Euler-Rodrigues parameters. The
vector part of D D̃′ is

−q0q
′ + q′0q− q× q′ = −

[
cos

ϕ

2

(s
2
n cos

ϕ

2
+ u× n sin

ϕ

2

)
+
s

2
sin

ϕ

2
n sin

ϕ

2
+ n sin

ϕ

2
× (u× n) sin

ϕ

2

]
= −1

2
[sn+ u× n sinϕ+ u(1− cosϕ)] . (3.103)

Comparison with (3.93) reveals the equation

r = 2(q0q
′ − q′0q+ q× q′) . (3.104)

Let � and �∗ be the vectors from the reference point 01 to a body-fixed
point before and after the screw displacement. According to (3.90) and (3.104)
the relationship between these vectors is

�∗ = �+ 2[q× (q× �) + q0q× �] + 2(q0q
′ − q′0q+ q× q′) . (3.105)

The dualized form of Theorem 1.4 is

Theorem 3.5. The dual quaternion D̂res of the resultant of two subsequent
screw displacements with dual quaternions D̂1 (first screw displacement) and
D̂2 is the product

D̂res = D̂2D̂1 . (3.106)

Applications of the above equations see in Sect. 3.11 and in Chap. 8 . Addi-
tional material see in Ravani/Roth [41].

3.11 Resultant of two Screw Displacements.
Dual-Quaternion Formulation

Halphen’s geometrical construction of the resultant of two screw displace-
ments resulted in the spatial hexagon shown in Fig. 3.7 . Extracting ana-
lytical expressions for the unknowns ϕres , sres and Sres from this figure is
difficult. Explicit solutions are most easily obtained on the basis of Theorem
3.5. The quaternion equation Dres = D2D1 for the resultant (nres, ϕres) of
two successive rotations (n1, ϕ1) (first rotation) and (n2, ϕ2) resulted in the
explicit coordinate-free Eqs.(1.118) and (1.119). Decomposition of vectors in
the basis shown in Fig. 1.4 led to Eqs.(1.120) – (1.122):

n1,2 = e1 cos
α

2
∓ e2 sin

α

2
, (3.107)
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cos
ϕres

2
= cos

ϕ1

2
cos

ϕ2

2
− sin

ϕ1

2
sin

ϕ2

2
cosα , (3.108)

nres sin
ϕres

2
= e1 sin

ϕ1 + ϕ2

2
cos

α

2
− e2 sin

ϕ1 − ϕ2

2
sin

α

2

−e3 sin
ϕ1

2
sin

ϕ2

2
sinα . (3.109)

Theorem 3.5 states that the same equations are valid when vectors n of
rotation axes are replaced by dual vectors n̂ = n + εw of screw axes and
rotation angles ϕ by dual screw angles ϕ̂ = ϕ + εs . The angle α between
intersecting rotation axes is replaced by the dual angle α̂ = α + ε� of the
screw displacement which carries n̂1 into n̂2 (this means that � , positive or
negative, is the length of the common perpendicular of the two screw axes).
For making (3.107) with n̂1,2 and α̂ valid the origin 0 of the basis e1,2,3 of
Fig. 1.4 must be the midpoint of the common perpendicular (see Fig. 3.13).
The primary parts of the dualized equations are Eqs.(3.108) and (3.109). The
dual parts are

sres sin
ϕres

2
= s1

(
sin

ϕ1

2
cos

ϕ2

2
+ cos

ϕ1

2
sin

ϕ2

2
cosα

)
+s2

(
cos

ϕ1

2
sin

ϕ2

2
+ sin

ϕ1

2
cos

ϕ2

2
cosα

)
−2� sin

ϕ1

2
sin

ϕ2

2
sinα , (3.110)

Fig. 3.13 Screw axes with reference basis e1,2,3 on the common perpendicular
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nressres cos
ϕres

2
+ 2wres sin

ϕres

2

= e1

[
(s1 + s2) cos

ϕ1 + ϕ2

2
cos

α

2
− � sin

ϕ1 + ϕ2

2
sin

α

2

]
−e2

[
(s1 − s2) cos

ϕ1 − ϕ2

2
sin

α

2
+ � sin

ϕ1 − ϕ2

2
cos

α

2

]
−e3

[(
s1 cos

ϕ1

2
sin

ϕ2

2
+ s2 sin

ϕ1

2
cos

ϕ2

2

)
sinα

+2� sin
ϕ1

2
sin

ϕ2

2
cosα

]
. (3.111)

From (3.108) ϕres is determined (sign arbitrary), from (3.109) nres , from
(3.110) sres and from (3.111) wres . A sign change of ϕres results in a change
of signs of all other quantities. For the screw displacement this has no effect.
The quantities s1 , s2 and sres appear in linear form only.

For specifying the location of the resultant screw axis the perpendicular
u = nres×wres from point 0 onto the screw axis is needed. The cross-product
of the vectors in (3.109) and (3.111) is 2u sin2 ϕres/2 where sin2 ϕres/2 is
determined by (3.108). The result of this multiplication is4

u sin2
ϕres

2
= −e1 sin

2 α

2

[(
s1 sin

2 ϕ2

2
− s2 sin

2 ϕ1

2

)
cos

α

2

+� sin
ϕ1

2
sin

ϕ2

2
sin

ϕ1 − ϕ2

2
sin

α

2

]
+e2 cos

2 α

2

[(
s1 sin

2 ϕ2

2
+ s2 sin

2 ϕ1

2

)
sin

α

2

+� sin
ϕ1

2
sin

ϕ2

2
sin

ϕ1 + ϕ2

2
cos

α

2

]
+

1

4
e3

[
(s2 sinϕ1 − s1 sinϕ2) sinα+ �(cosϕ1 − cosϕ2)

]
. (3.112)

In accordance with Fig. 3.7 this equation shows that, in general, the resultant
screw axis does not intersect the common perpendicular e3 of the screw axes
1 and 2 . The resultant screw displacement has scalar measures pD and pP

defined by (3.18) and (3.19). They are written in the forms

pD =
sres

sinϕres
=

sres sin
ϕres

2

2 sin2 ϕres

2 cos ϕres

2

, pP = pD cos2
ϕres

2
. (3.113)

With (3.108) and (3.110) both measures are expressed in terms of s1 , ϕ1 , s2 ,
ϕ2 , α and � . The quantities s1 and s2 appear only in the numerator ex-
pressions. If pDi

and pPi
(i = 1, 2) denote the corresponding measures of

4 Alternative forms for the factors of 
 in (3.112):

sin ϕ1
2

sin ϕ2
2

sin ϕ1±ϕ2
2

= 1
4
[sinϕ2 ± sinϕ1 ∓ sin(ϕ1 ± ϕ2)]
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the screw displacements 1 and 2 , pD is a linear function of pD1
and pD2

,
and pP is a linear function of pP1

and pP2
. The coefficients are functions of

ϕ1 and ϕ2 .

In what follows, special cases are investigated.
Special case s1 = s2 = s , ϕ1 = ϕ2 = ϕ : Equations (3.108) – (3.112) become

cos
ϕres

2
= cos2

ϕ

2
− sin2

ϕ

2
cosα ,

nres sin
ϕres

2
= e1 sinϕ cos

α

2
− e3 sin

2 ϕ

2
sinα ,

sres sin
ϕres

2
= s sinϕ(1 + cosα)− �(1− cosϕ) sinα ,

u sin2
ϕres

2
= e2 cos

2 α

2
sin2

ϕ

2

(
2s sin

α

2
+ � sinϕ cos

α

2

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.114)

Special case ϕ2 = 0 : The second screw displacement is the pure translation
s2n2 . The screw axis n̂2 , the common perpendicular of length � and the
origin 0 of the e1,2,3-system are not uniquely defined. Equations (3.108) –
(3.112) reduce to

ϕres = ϕ1 , nres = n1 , sres = s1 + s2 cosα ,

u = −1

2
�e3 +

1

2
s2 sinα

(
e1 sin

α

2
+ e2 cos

α

2
+ e3 cot

ϕ1

2

)
= −1

2
�e3 +

1

2
s2 sinα

(
e3 × n1 + e3 cot

ϕ1

2

)
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (3.115)

The leading term (−�/2)e3 is the perpendicular vector from the arbitrarily
chosen origin 0 onto the screw axis n̂1 . If an arbitrary point on n̂1 is chosen
as origin 0 ,

u =
1

2
s2 sinα

(
e3 × n1 + e3 cot

ϕ1

2

)
. (3.116)

The absolute value is

|u| =
∣∣∣ s2

2

sin ϕ1

2

sinα
∣∣∣ . (3.117)

Special case s1 = s2 = 0 (resultant of pure rotations about nonintersect-
ing axes; see Fig. 3.8): Equations (3.108) and (3.109) remain valid without
change. Equations (3.110) and (3.112) reduce to

sres sin
ϕres

2
= −2� sin

ϕ1

2
sin

ϕ2

2
sinα , (3.118)
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u sin2
ϕres

2
=

�

4

{
− e1 sin

3 α

2

[
sinϕ2 − sinϕ1 + sin(ϕ1 − ϕ2)

]
+ e2 cos

3 α

2

[
sinϕ2 + sinϕ1 − sin(ϕ1 + ϕ2)

]
+ e3(cosϕ1 − cosϕ2)

}
. (3.119)

These equations govern the even more special case of the resultant of two
180◦-rotations about skew axes. With ϕ1 = −π (equivalent to ϕ1 = π ) and
with ϕ2 = π they yield ϕres = 2α , sres = 2� , nres = e3 , u = 0 . Hence
the resultant is the screw displacement about the common perpendicular of
the two rotation axes with rotation angle 2α and translation 2� . This is the
statement made by Halphen’s theorem.

Example: In Theorem 3.4 the problem is posed: Decompose a screw dis-
placement given by sres , ϕres and by its axis Sres into two subsequent pure
rotations ϕ1 about S1 (first rotation) and ϕ2 about S2 of which either
only S2 or only S1 is given. To be determined are ϕ1 , ϕ2 and the axis
not given.
Solution: Let S2 be given. The unknown first rotation is the resultant of
the given screw displacement followed by the inverse of the second rotation.
From this it follows that (3.108) – (3.112) are valid if the following changes
are made.
1. The basis e1,2,3 is placed at the midpoint of the common perpendicular
g2 of the given axes Sres and S2 . The quantities � and α specify the relative
location of these axes.
2. ( sres , ϕres ) , ( s1 , ϕ1 ) and ( s2 , ϕ2 ) are replaced by ( 0 , ϕ1 ) , ( sres ,
ϕres ) and ( 0 , −ϕ2 ) , respectively. Following these changes (3.108), (3.109),
(3.110) and (3.112) read:

cos
ϕ1

2
= cos

ϕres

2
cos

ϕ2

2
+ sin

ϕres

2
sin

ϕ2

2
cosα , (3.120)

n1 sin
ϕ1

2
= e1 sin

ϕres − ϕ2

2
cos

α

2
− e2 sin

ϕres + ϕ2

2
sin

α

2

+e3 sin
ϕres

2
sin

ϕ2

2
sinα , (3.121)

0 = sres

(
sin

ϕres

2
cos

ϕ2

2
− cos

ϕres

2
sin

ϕ2

2
cosα

)
+2� sin

ϕres

2
sin

ϕ2

2
sinα , (3.122)
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u sin2
ϕ1

2
= −e1 sin

ϕ2

2
sin2

α

2

[
sres sin

ϕ2

2
cos

α

2

− � sin
ϕres

2
sin

ϕres + ϕ2

2
sin

α

2

]
+ e2 sin

ϕ2

2
cos2

α

2

[
sres sin

ϕ2

2
sin

α

2

− � sin
ϕres

2
sin

ϕres − ϕ2

2
cos

α

2

]
+

1

4
e3

[
sres sinϕ2 sinα+ �(cosϕres − cosϕ2)

]
. (3.123)

Equation (3.122) determines ϕ2 :

tan
ϕ2

2
=

sres

sres cot
ϕres

2
cosα− 2� sinα

. (3.124)

With this angle ϕ2 (3.120) and (3.121) determine cosϕ1/2 and n1 sinϕ1/2 .
The vector u determined by (3.123) is the perpendicular from the midpoint
of g2 in Fig. 3.8 onto the first rotation axis. The equations fail in the case
sinα = 0 (axes S2 and Sres parallel).

When instead of S2 the axis S1 is given, ϕ1 , ϕ2 and S2 are determined
as follows. The unknown second rotation is the resultant of the inverse of the
first rotation followed by the given screw displacement. In (3.108) – (3.112)
the following changes are made.
1. The basis e1,2,3 is placed at the midpoint of the common perpendicular
g3 of the given axes Sres and S1 . The quantities � and α specify the relative
location of these axes.
2. ( sres , ϕres ) , ( s1 , ϕ1 ) and ( s2 , ϕ2 ) are replaced by ( 0 , ϕ2 ) , ( 0 , −ϕ1 )
and ( sres , ϕres ) , respectively. The modified Eq.(3.110) leads to

tan
ϕ1

2
=

sres

sres cot
ϕres

2
cosα− 2� sinα

. (3.125)

This is formally identical with (3.124). End of example.

Special case α = 0 (parallel screw axes; n1 = n2 ) : The case ϕ2 = −ϕ1

has to be distinguished from the general case ϕ2 �= −ϕ1 . This general case
is considered first. Equations (3.108) – (3.112) reduce to

ϕres = ϕ1 + ϕ2 �= 0 , sres = s1 + s2 , nres = n1 = n2 , (3.126)

u sin
ϕ1 + ϕ2

2
= �
(
e2 sin

ϕ1

2
sin

ϕ2

2
− e3

1

2
sin

ϕ1 − ϕ2

2

)
. (3.127)

The last equation is rewritten in the form
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�

2
e3 + u = �

(
e2 sin

ϕ1

2
+ e3 cos

ϕ1

2

) sin ϕ2

2

sin ϕ1+ϕ2

2

. (3.128)

This equation proves that the parallel screw axes n1 , n2 and nres , seen
in projection along the axes, form the triangle (P1,P2,P3) shown in Fig.
3.14a . It has internal angles ϕ1/2 and ϕ2/2 at P1 and P2 , respectively,

and the external angle ϕres/2 at P3 . The vector (�/2)e3 + u is
−−−→
P1P3 ,

and (e2 sin
ϕ1

2 + e3 cos
ϕ1

2 ) is the unit vector in the direction of
−−−→
P1P3 . The

equation expresses the sine law in the triangle.
In the special case ϕ2 = −ϕ1 , (3.108) yields ϕres = 0 . This indicates

that the resultant of the two screw displacements is a translation. No further
information is obtained from (3.109) – (3.112). Both magnitude and direction
of the translation are obtained from Fig. 3.7. In the case of parallel screw axes
n1 = n2 and with ϕ2 = −ϕ1 , the lines g2 and g3 are parallel. In Fig. 3.14b
the screw axes and the lines are shown in projection along the axes as in Fig.
3.14a . The component (s1+s2)e1 of the displacement is normal to the plane.
The in-plane component is illustrated by the displacement of the point which
prior to the first screw displacement is located at A . It is displaced via B
to C . The total translatory displacement vector is

sres = (s1+s2)e1+
−→
AC = (s1+s2)e1+� [− sinϕ1 e2+(1−cosϕ1)e3] . (3.129)

Equations (3.126) – (3.129) remain valid in the case s1 = s2 = 0 . In this
case, the equations determine the resultant of two rotations about parallel
axes. In Sects. 14.3 and 14.4 this case is investigated in more detail.

Fig. 3.14 Parallel screw axes n1 = n2 ; ϕ2 �= −ϕ1 (a) and ϕ2 = −ϕ1 (b)

3.12 Equations for the Screw Triangle

The quaternion formulation of the resultant of two rotations led to the ro-
tation triangle shown in Fig. 1.6 . Three rotations (n12, ϕ12) , (n23, ϕ23) ,
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(n31, ϕ31) executed in this order or in any order produced by cyclic per-
mutation carry a body via two intermediate positions back into its initial
position. Each rotation is the inverse of the resultant of the previous two.
Application of the sine and cosine laws led to (1.134):

tan
ϕ31

2
=

n12 × n23 · n31

(n12 × n31) · (n23 × n31)
. (3.130)

Analogously, two successive screw displacements followed by the inverse of
the resultant of these two carry a body via two intermediate positions back
into its initial position. The figure analogous to the rotation triangle is the
spatial hexagon shown in Fig. 3.7 with ϕres and sres replaced by −ϕres ,
−sres . This analogy explains the name screw triangle of the hexagon.

Let the three screw displacements be newly labeled 12 , 23 and 31 . Then,
according to the principle of transference, (3.130) is valid in the form

tan
ϕ̂31

2
=

n̂12 × n̂23 · n̂31

(n̂12 × n̂31) · (n̂23 × n̂31)
(3.131)

with

ϕ̂ij = ϕij + εsij , n̂ij = nij + εwij , n2
ij = 1 , nij ·wij = 0 (3.132)

(ij) = (12), (23), (31) . The vectors nij and wij are the Plücker vectors
of the screw axis ij in a reference frame with arbitrary origin 0 . The per-
pendicular from 0 onto the screw axis is nij ×wij . From the dual part of
the equation an expression for the translatory displacement s31 is developed.
The dual part of the left-hand side of the equation is

s31
2

1

cos2 ϕ31

2

=
s31
2

(1 + tan2
ϕ31

2
)

=
s31
2

[(n12 × n31) · (n23 × n31)]
2 + (n12 × n23 · n31)

2

[(n12 × n31) · (n23 × n31)]2
. (3.133)

The numerator is

[(n12 × n31) · (n23 × n31)]
2 + (n12 × n23 · n31)

2

= (n12 × n31)
2(n23 × n31)

2 . (3.134)

This is proved as follows. With the abbreviations a = n12 × n31 and b =
n23 × n31 and with β = �(a,b) the equation reads
a2b2 cos2 β + (n12 · b)2 = a2b2 or

(n12 · b)2 = a2b2 sin2 β = (a× b)2 = [(n12 × n31)× b]2

= [(n12 · b)n31 − (n31 · b)n12]
2 . (3.135)
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This is, indeed, true since n31 · b = 0 . Thus, the dual part of the left-hand
side of (3.131) is

s31
2

(n12 × n31)
2(n23 × n31)

2

[(n12 × n31) · (n23 × n31)]2
. (3.136)

The dual part of the right-hand side is calculated as follows. With Eqs.(3.132)
for n̂ij the numerator has the form N + εNd with

N = n12 × n23 · n31 ,

Nd = n23 × n31 ·w12 + n31 × n12 ·w23 + n12 × n23 ·w31 .

}
(3.137)

The denominator has the form D + εDd with

D = (n12 × n31) · (n23 × n31) ,

Dd = (w12 × n31 + n12 ×w31) · (n23 × n31)

+(n12 × n31) · (w23 × n31 + n23 ×w31)

= −[(n23 × n31)× n31] ·w12 − [(n12 × n31)× n31] ·w23

+[(n23 × n31)× n12 + (n12 × n31)× n23] ·w31 .

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.138)

In these terms the right-hand side of (3.131) is

N + εNd

D + εDd
=

N

D
+ ε

DNd −NDd

D2
. (3.139)

The dual part equals the expression in (3.136). This yields for s31 the ex-
pression

s31
2

=
DNd −NDd

(n12 × n31)2(n23 × n31)2
. (3.140)

The numerator is

DNd −NDd = v12 ·w12 + v23 ·w23 + v31 ·w31 (3.141)

with vectors

v12 =
[
(n12 × n31) · (n23 × n31)

]
n23 × n31

+(n12 × n23 · n31)
[
(n23 × n31)× n31

]
,

v23 = −
[
(n12 × n31) · (n23 × n31)

]
n12 × n31

+(n12 × n23 · n31)
[
(n12 × n31)× n31

]
,

v31 =
[
(n12 × n31) · (n23 × n31)

]
n12 × n23

−(n12 × n23 · n31)
[
(n23 × n31)× n12 + (n12 × n31)× n23

]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.142)
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These vectors are simplified as follows. First, the vector v12 . Obviously,
v12 · n31 = 0 . When the multiple products are simplified, it turns out that
also v12 · n12 = 0 . Hence v12 has the form v12 = An12 × n31 with an
unknown scalar A . It is determined by dot-multiplying this equation by
(n12 × n31) . Taking into account (3.134) this results in the equation

A(n12 × n31)
2 = [(n12 × n31) · (n23 × n31)]

2 + (n12 × n23 · n31)
2

= (n12 × n31)
2(n23 × n31)

2 . (3.143)

Hence
v12 = (n23 × n31)

2 n12 × n31 . (3.144)

The same arguments lead to

v23 = (n12 × n31)
2 n23 × n31 . (3.145)

The product v31 ·w31 in (3.141) eliminates the (nonzero) component of v31

in the direction of n31 . For determining the relevant components the ansatz
is made: v31 = An12 × n31 + Bn23 × n31 + Cn31 . Scalar multiplication
with (n23×n31)×n31 eliminates B and C , and scalar multiplication with
(n12 × n31)× n31 eliminates A and C . The first multiplication yields

A(n12 × n23 · n31) =
{
[(n12 · n23)− (n12 · n31)(n23 · n31)]n12 × n23

−(n12 × n23 · n31)[2(n12 · n23)n31 − (n12 · n31)n23

−(n23 · n31)n12]
}
· [(n23 · n31)n31 − n23]

= −(n12 × n23 · n31)(n12 · n31)[1− (n23 · n31)
2]

= −(n12 × n23 · n31)(n12 · n31)(n23 × n31)
2 . (3.146)

Hence A = −(n12 · n31)(n23 × n31)
2 . In the same way

B = (n23 · n31)(n12 × n31)
2 . Hence

v31 = −(n12 · n31)(n23 × n31)
2 n12 × n31

+(n23 · n31)(n12 × n31)
2 n23 × n31 + Cn31 . (3.147)

The expressions obtained for v12 , v23 and v31 are substituted into (3.141).
Further substitution into (3.140) yields for s31 the final result

s31
2

=
1

(n23 × n31)2
[n31 · n23 ×w23 + (n23 · n31)n23 · n31 ×w31]

− 1

(n12 × n31)2
[n31 · n12 ×w12 + (n12 · n31)n12 · n31 ×w31] . (3.148)

The vectors n12 ×w12 , n23 ×w23 and n31 ×w31 are the perpendiculars
from the reference point onto the three screw axes. The scalar products of
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unit vectors can be expressed through the angles α1 and α3 in Fig. 1.6 :

n12 · n31 = cosα1 , (n12 × n31)
2 = sin2 α1 ,

n23 · n31 = cosα3 , (n23 × n31)
2 = sin2 α3 .

}
(3.149)

Tsai and Roth [48] deduced (3.148) geometrically from Fig. 3.7 . See also
Bottema/Roth [5].

3.13 Resultant of two Infinitesimal Screw
Displacements. Cylindroid

In this section Eqs.(3.109) – (3.112) for the resultant of two screw displace-
ments are evaluated in the special case of infinitesimal screw displacements.
Let p1 , p2 and pres be the pitches of the three screw displacements so that

si = piϕi (i = 1, 2) , sres = presϕres . (3.150)

In what follows, the index res is omitted.
For Eq.(3.109) a Taylor series expansion up to 1st-order terms is made.

When (3.107) is taken into account, this results in the parallelogram rule for
small rotations (see Fig. 3.15):

nϕ = e1(ϕ1 + ϕ2) cos
α

2
+ e2(ϕ2 − ϕ1) sin

α

2
(3.151)

= n1ϕ1 + n2ϕ2 . (3.152)

In (3.110) and (3.112) si = piϕi (i = 1, 2) and s = pϕ are substituted.
Following this, Taylor series expansions are made up to 2nd-order terms.
This results in the equations

pϕ2 = p1ϕ
2
1 + p2ϕ

2
2 + [(p1 + p2) cosα− � sinα]ϕ1ϕ2 , (3.153)

uϕ2 = e3

[
(p2 − p1)ϕ1ϕ2 sinα+

1

2
�(ϕ2

2 − ϕ2
1)
]
. (3.154)

From the latter equation it follows that u has the form u = ue3 . This means
that the resultant screw axis intersects the common perpendicular e3 of the
screw axes 1 and 2 orthogonally at the point u given by the equation

uϕ2 = (p2 − p1)ϕ1ϕ2 sinα+
1

2
�(ϕ2

2 − ϕ2
1) . (3.155)

Let ψ be the angle of the resultant screw axis in the e1, e2-plane against
the e1-axis as shown in Fig. 3.15 . The sine law applied to the triangles in
this figure yields the expressions
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Fig. 3.15 Triangle of infinitesimal rotations

ϕ1 = ϕ
sin
(α
2
− ψ

)
sinα

, ϕ2 = ϕ
sin
(α
2
+ ψ

)
sinα

, (3.156)

from which it follows that

ϕ2
1,2 = ϕ2 1− cos 2ψ cosα∓ sin 2ψ sinα

2 sin2 α
,

ϕ1ϕ2 = ϕ2 cos 2ψ − cosα

2 sin2 α
.

⎫⎪⎪⎬
⎪⎪⎭ (3.157)

Substitution into (3.153) and (3.155) results in explicit expressions for p and
u :

p =
1

2
(p1 + p2 + � cotα)− � cos 2ψ + (p1 − p2) sin 2ψ

2 sinα
, (3.158)

u =
1

2
(p1 − p2) cotα +

� sin 2ψ − (p1 − p2) cos 2ψ

2 sinα
. (3.159)

These expressions are simpler if the transition is made to an x, y-system of
principal axes which is rotated against the e1, e2-system through the angle
ψ0 given by

cos 2ψ0 =
�√

(p1 − p2)2 + �2
, sin 2ψ0 =

p1 − p2√
(p1 − p2)2 + �2

. (3.160)

More precisely, ψ0 is the angle of the x-axis against the e1-axis. Then

p = p0− h cos 2χ ,

z = h sin 2χ

}
(3.161)

with new variables
χ = ψ − ψ0 , z = u− u0 (3.162)

and with constants
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p0 =
1

2
(p1+p2+ � cotα) , u0 =

1

2
(p1−p2) cotα , h =

√
(p1 − p2)2 + �2

2 sinα
.

(3.163)
Equations (3.161) – (3.163) determine a one-parametric manifold of resul-
tant screw displacements with the angle χ between screw axis and x-axis as
parameter. In what follows, statements are made about this manifold. Elim-
ination of χ from Eqs.(3.161) results in the equation of a circle relating p
and z :

(p− p0)
2 + z2 ≡ h2 . (3.164)

Every value of z in the interval |z| ≤ |h| occurs at two angles χ1 and
χ2 = π/2− χ1 which are located symmetrically with respect to χ = π/4 as
well as to χ = −π/4 . These two angles specify the directions of two screw
axes which intersect at z on the e3-axis. The two screw axes intersecting at
z = +h coincide (χ1 = χ2 = π/4) . Likewise, the two screw axes intersecting
at z = −h coincide (χ1 = χ2 = −π/4) . The pitch associated with these
screw axes is p0 .

The two screw axes intersecting at z = 0 are the principal x, y-axes
(χ1 = 0, χ2 = π/2) . The associated principal pitches are the extremal pitches

px = p0 − h , py = p0 + h . (3.165)

In terms of principal pitches the constants p0 and h are

p0 =
1

2
(px + py) , h =

1

2
(py − px) , (3.166)

and Eqs.(3.161) have the forms

p = px cos
2 χ+ py sin

2 χ ,

z = −(px − py) sinχ cosχ .

}
(3.167)

The first equation has the two forms p− px = (py − px) sin
2 χ and p− py =

−(py − px) cos
2 χ . Together with the second Eq.(3.167) this yields

(px − p) cosχ +z sinχ = 0 ,

z cosχ −(py − p) sinχ = 0 .

}
(3.168)

This is an eigenvalue problem with eigenvalue p(z) and with the associ-
ated eigenvector [ cosχ(z) sinχ(z) ] . The characteristic equation for p is
Eq.(3.164).

Every pitch p in the interval between the extremal pitches px and py
occurs at two angles ±χ . Definition: Two screws of equal pitch are called
conjugate screws. The pair of conjugate screws at angles ±0 coincides in
the principal screw with pitch px . Likewise, the pair of conjugate screws at
angles ±π coincides in the principal screw with pitch py . For a given pitch
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p the first Eq.(3.167) and (3.164) determine the associated angles ±χ and
coordinates z . Example: For the pair of conjugate screws with pitch p = 0 ,
i.e., pure rotations, the equations yield

cos 2χrot =
p0
h

=
py + px
py − px

, zrot = ±
√
h2 − p20 = ±√−pxpy . (3.169)

Real solutions exist only if pxpy ≤ 0 .
The one-parametric manifold of screw axes defines a ruled surface. With an

additional parameter λ this ruled surface has the parameter representation
u(χ) + λn(χ) . Its coordinate form is

x = λ cosχ , y = λ sinχ , z = (py − px) sinχ cosχ . (3.170)

The parameters λ and χ are eliminated by forming x2 + y2 = λ2 and
xy = λ2 sinχ cosχ . Combining these equations with the third Eq.(3.170)
results in the third-order equation

z(x2 + y2) = (py − px)xy . (3.171)

This ruled surface is called cylindroid. In the theory of ruled surfaces a line
which is intersected by every generator is called directrix. The z-axis is a
double directrix because it is intersected by two generators at every point
|z| ≤ | 12 (py − px)| . From (2.59) the distribution parameter δ is calculated as
function of χ . For this purpose the following change of notation has to be
made (see (2.51)). The role of the parameter u is played by χ . The curve
r(u) is the directrix u(χ) = (py − px) sinχ cosχe3 , and the unit vector
e(u) is n(χ) . According to (3.170) ṅ = e3 × n and ṅ2 ≡ 1 . Hence with
u̇(χ) = (py − px) cos 2χe3 the distribution parameter is δ(χ) = ṅ · u̇× n =
(py − px) cos 2χ . The two pairs of coinciding generators at z = − 1

2 (py − px)
and at z = 1

2 (py − px) are torsal lines (δ = 0 ) . In Fig. 3.16 the cylindroid
is represented in the x, y, z-system by an orthogonal net of lines χ = const
and λ = const. The curved lines λ = const are kinematically insignificant.
Their only purpose is to show the shape of the surface more clearly. What
matters are the straight lines χ = const, i.e., the screw axes. These axes
extend to ±∞ . The symmetry with respect to the two planes each spanned
by the directrix and by one torsal line is clearly shown.

Let n and w be the first and the second Plücker vector of the screw axis
associated with the angle χ . The x, y, z-coordinates of these vectors are

n : [ cosχ sinχ 0 ] ,

w : (py − px) sinχ cosχ [− sinχ cosχ 0 ] .

}
(3.172)

The results obtained so far are summarized as follows. The resultant of
two arbitrarily oriented infinitesimal screw displacements with constant pa-
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Fig. 3.16 Cylindroid

rameters α , � , p1 and p2 and with variable parameters ϕ1 and ϕ2 is the
manifold of screw displacements on the cylindroid defined by its axis, by u0

and by its principal pitches px and py associated with mutually orthogo-
nal principal axes x and y . The same manifold of screw displacements is
obtained if the two principal screws are used as starting point. This is the
special case α = π/2 and � = 0 . Equations (3.163) yield u0 = 0 (this is
in accordance with the statement preceding (3.165)) and p0 = px + py ,
h = py − px (as before; see Eqs.(3.165)). Every screw on the cylindroid is
resultant of two principal screws about the principal axes. Also the following
is true. Every screw on the cylindroid is resultant of two (arbitrary) conju-
gate screws. The quantities u0 and h determining the cylindroid depend on
the difference p1−p2 only, whereas p0 and, hence, p(χ) depend on the sum
p1+ p2 . If p1 and p2 (arbitrary) are increased by one and the same amount
(arbitrary), the cylindroid remains the same, whereas p(χ) is increased by
the same amount independent of χ .

The cylindroid was discovered independently by Hamilton [18] (1830),
Plücker [38] (1865) (see also [39]), Battaglini [3] (1869) and Ball [2] (1900).
Geometrical properties of the cylindroid see in Zindler [57]. In the present
book the cylindroid is met again in the next Sect. 3.14 and in Sect. 12.6.2 .

The end of the previous Sect. 3.11 on the resultant of two finite screw
displacements was devoted to cases which require special considerations
(Eqs.(3.118) – (3.129)). The same cases are considered here, and results are
developed from the said equations. As before, the index res is omitted.

Special case ϕ2 = 0 : Since the pitch p2 is not defined the infinitesimal
displacement s2 is expressed in the form s2 = μϕ1 . As origin 0 of the
e1,2,3-system an arbitrary point on the screw axis n̂1 is chosen (see the text
following (3.115)). Substituting s2 = μϕ1 and s1 = p1ϕ1 into (3.115) and
(3.116) and making a Taylor series expansion for u results in the equations
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ϕ = ϕ1 , n = n1 , p = p1 + μ cosα , u = e3μ sinα . (3.173)

These equations show that the resultant screw axis has the direction of n1 ,
and that it intersects the e3-axis orthogonally at the point u = μ sinα .

Special case α = 0 (parallel screw axes) and ϕ2 �= −ϕ1 : Equations (3.126)
become (with a Taylor series expansion for u )

ϕ = ϕ1 + ϕ2 �= 0 , p = p1 + p2 ,

n = n1 = n2 , u = −e3
�

2

ϕ1 − ϕ2

ϕ1 + ϕ2
.

⎫⎬
⎭ (3.174)

This means that the resultant screw axis intersects the e3-axis orthogonally
at a point u which depends on the ratio ϕ2/ϕ1 . The points P1 , P2 and P3

in Fig. 3.14a are collinear.

Special case α = 0 (parallel screw axes) and ϕ2 = −ϕ1 : According to
(3.129) the resultant displacement is a pure translation s . With s1 = p1ϕ1

and s2 = p2ϕ2 = −p2ϕ1 it is

s = [(p1 − p2)e1 − �e2]ϕ1 . (3.175)

This displacement is normal to e3 .

3.14 Screw Displacements Effecting a Prescribed Line
Displacement

In Fig. 3.17 two skew lines are defined by their unit line vectors r̂1 and r̂2 .
The line vector r̂2 is produced from r̂1 by the screw displacement (n̂3, α̂)
with the dual unit vector n̂3 along the common perpendicular and with the
dual screw angle α̂ = α+ε� between the two lines. Without loss of generality,
it is assumed that 0 < α < π whereas � may be positive, zero or negative.
The dual unit vector n̂3 is one of the basis vectors n̂i (i = 1, 2, 3) of a dual
basis which has its origin at the midpoint 0 of the common perpendicular.
The basis vector n̂1 is bisecting the angle α when seen in the projection
along n̂3 . The line vector r̂2 is produced from r̂1 not only by the screw
displacement (n̂3, α̂) , but also by the screw displacement (n̂1,±π) . Both
screw displacements carry the point A fixed on line 1 to the point B fixed
on line 2 . These observations stimulate an investigation of the following
problems.
Problem 1 : Determine the manifold of all screw displacements (n̂, ϕ̂) of a
rigid body which carry a body-fixed directed line from position r̂1 into po-
sition r̂2 . In this manifold determine the submanifold of all screw displace-
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Fig. 3.17 Quantities associated with screw displacements (n̂, ϕ̂) carrying the line r̂1 into

the line r̂2

ments which are pure rotations. The problem statement does not require that
point A of r̂1 is carried to a specified point on r̂2 .

Problem 2 : From the manifold of all screw displacements solving Problem 1
determine the submanifold of all screw displacements carrying point A of r̂1
to an arbitrarily prescribed point P on r̂2 . Consider the special case P=B .

Both problems have a practical background. Let the body-fixed line be
the axis of a cylindrical workpiece which is displaced by a robot from a box
into the chuck of a machine. In the box the axis has position r̂1 , and in
the chuck it has position r̂2 . The robot is equipped with a single cylindrical
joint so that it can execute screw displacements only. The angular position
of the cylindrical workpiece in the chuck is of no interest. If the depth of
insertion into the chuck is not prescribed either, every screw displacement
solving Problem 1 is acceptable, otherwise every screw displacement solving
Problem 2 .

Solution to Problem 1 : The solution is deduced by means of the principle
of transference from the solution to the following rotation problem solved in
Sect. 1.15.9 . Determine all rotations (n, ϕ) about a fixed point 0 which carry
a body-fixed line passing through 0 from a given position r1 into another
given position r2 . The lines r1 and r2 and the angle α between them are
shown in Fig. 1.11a . Figure 1.11b explains cartesian basis vectors n1 , n2 ,
n3 . They are related to r1 and r2 through (1.220) and (1.221):

n1 =
r1 + r2
2 cos α

2

, n3 =
r1 × r2
sinα

, n2 = n3 × n1 , (3.176)

r1,2 = n1 cos
α

2
∓ n2 sin

α

2
. (3.177)
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The notation in Fig. 3.17 is chosen such that in the case � = 0 the dual angle
α̂ is the angle α of Fig. 1.11, and that the dual vectors r̂i (i = 1, 2) and n̂i

(i = 1, 2, 3) are the vectors ri (i = 1, 2) and ni (i = 1, 2, 3), respectively. The
solution to the rotation problem of Fig. 1.11 is a one-parametric manifold of
rotations (n, ϕ) . With a free parameter ψ it is given in (1.222) and (1.228)
in the form

n = n1 cosψ − n3 sinψ , cot
ϕ

2
= − cot

α

2
sinψ . (3.178)

All vectors and angles are transferred into dual form by defining dual parts
as follows:

α̂ = α+ ε� , ϕ̂ = ϕ+ εs , ψ̂ = ψ + εu , (3.179)

n̂i = ni (i = 1, 2, 3) , r̂i = ri + εwi (i = 1, 2) , n̂ = n+ εw . (3.180)

The identity n̂i = ni holds true because the second Plücker vectors are zero
with respect to the origin 0 of the dual basis. The second Plücker vectors
w1 and w2 of r̂i are

w1,2 = ∓1

2
�n3 × r1,2 = −1

2
�
(
n1 sin

α

2
± n2 cos

α

2

)
. (3.181)

The same formulas are obtained by dual differentiation of (3.177). The quan-
tities ψ and u are two independent parameters of the manifold of solutions.
To be determined as functions of ψ and u are the dual parts s and w of
the screw displacement. Unknown, too, is the geometrical meaning of u . The
unknowns are determined as follows. Equations (3.178) are transferred into
the dual forms

n̂ = n1 cos ψ̂ − n3 sin ψ̂ , cot
ϕ̂

2
= − cot

α̂

2
sin ψ̂ . (3.182)

The dual part of the first equation yields

w = −u(n1 sinψ + n3 cosψ) . (3.183)

This together with the first Eq.(3.178) yields for the perpendicular n × w
from 0 onto the screw axis the expression

n×w = un2 . (3.184)

From this it follows, first, that all screw axes intersect the line n̂2 at right
angles and, second, that the free parameter u (positive, zero or negative)
represents the length of the perpendicular from 0 onto the screw axis. This
is shown in Fig. 3.17 . The line n̂2 is called nodal line of the two lines r̂1 and
r̂2 .
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The dual part of the second Eq.(3.182) is an equation for s :

−s/2

sin2 ϕ
2

=
�/2

sin2 α
2

sinψ − u cot
α

2
cosψ . (3.185)

For sin2 ϕ/2 and for other functions of ϕ the following expressions in terms
of ψ are known from (1.227) and (1.226):

sin2
ϕ

2
=

sin2 α
2

1− cos2 α
2 cos2 ψ

, sin
ϕ

2
cos

ϕ

2
=

− sin α
2 cos α

2 sinψ

1− cos2 α
2 cos2 ψ

, (3.186)

1− cosϕ =
1− cosα

1− cos2 α
2 cos2 ψ

, sinϕ =
− sinα sinψ

1− cos2 α
2 cos2 ψ

. (3.187)

With the first Eq.(3.186) s becomes a function of u and ψ :

s =
u sinα cosψ − � sinψ

1− cos2 α
2 cos2 ψ

. (3.188)

With Eqs.(3.178) for n and ϕ and with the equations for w , n × w and
s the two-parametric manifold of screw displacements (n̂, ϕ̂) solving Prob-
lem 1 is uniquely determined. The special screw displacements (n̂3, α̂) and
(n̂1,±π) shown in Fig. 3.17 belong to this manifold. The associated param-
eter values are ψ = −π/2 , u = 0 for the first and ψ = 0 , u = 0 for the
second.

Pure rotations satisfy the condition s = 0 , i.e.,

u =
� tanψ

sinα
. (3.189)

This condition defines the one-parametric submanifold of rotations in the
two-parametric manifold of screw displacements. The special rotation with
parameter values ψ = 0 , u = 0 belongs to this submanifold. The manifold
of all rotation axes defines a ruled surface. Let x , u , z be the coordinates
of points of this ruled surface along n1 , n2 and n3 , respectively. From the
primary part of (3.182) and from (3.189) it follows that z/x = − tanψ =
−(u/�) sinα or ux = −z�/ sinα . This is the equation of an equilateral
hyperbolic paraboloid. In a ξ, η-system rotated through 45◦ about the n2-
axis the transformation is x = (ξ + η)

√
2/2 and u = (−ξ + η)

√
2/2 and

consequently ux = −(ξ2 − η2)/2 . Hence the principal-axes equation of the
hyperbolic paraboloid is z = (ξ2 − η2)/a with a = 2�/ sinα . This ends the
solution of Problem 1 .

Solution to Problem 2 : According to the problem statement the point A on
r̂1 at the foot of the common perpendicular is displaced to some prescribed
point P on r̂2 . This displacement is achieved by a one-parametric subman-
ifold of the screw displacements solving Problem 1 . An appropriate measure
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of displacement of point A is the quantity (rP − rB) · r2 = (rP − rA) · r2 .
The analysis to follow shows that the essential measure of displacement is
the quantity σ = (rP − rB) · r2 cosα/2 .

Further below σ is prescribed. However, before doing so, σ is determined
for the screw displacements solving Problem 1 as function of ψ and u . Let
� be the vector leading from the point of intersection of a screw axis n̂ with
the nodal line n2 to point A . Figure 3.17 yields the expression

� = −
(
un2 +

1

2
�n3

)
. (3.190)

The associated measure of displacement is

σ =
{
(1− cosϕ)[(n · �)n− �] + sinϕn× �+ sn

}
· r2 cos α

2
. (3.191)

The term sn is due to translation, and the remaining terms are copied from
(1.37). The scalar products are expressed in terms of ψ and u with the help
of (3.190), (3.177) and (3.178):

n · � =
1

2
� sinψ , n · r2 = cos

α

2
cosψ , � · r2 = −u sin

α

2
,

n× � · r2 =
1

2
� sin

α

2
cosψ − u cos

α

2
sinψ .

⎫⎪⎬
⎪⎭ (3.192)

For s , for (1 − cosϕ) and for sinϕ the expressions (3.188) and (3.187),
respectively, are substituted. This yields σ as function of ψ and u . The
result is written in the two forms

σ =
2u sin α

2 cos α
2 − � cos2 α

2 sinψ cosψ

1− cos2 α
2 cos2 ψ

=
4u sinα− �(1 + cosα) sin 2ψ

4− (1 + cosα)(1 + cos 2ψ)
.

(3.193)
In what follows, the manifold of all screw displacements is determined for

which σ is an arbitrarily prescribed constant −∞ < σ < ∞ . Then (3.193)
represents a constraint equation for ψ and u . As independent parameter ψ
is chosen. The solution for u as function of ψ is written in the two forms

u sinα = σ + cos2
α

2
cosψ(� sinψ − σ cosψ) , (3.194)

u =
σ(3− cosα)

4 sinα
+

1

4
cot

α

2
(� sin 2ψ − σ cos 2ψ) . (3.195)

For further simplification the x, z-system of principal axes is introduced
which is rotated against the n1,n3-axes through the angle ψ0 defined by

cos 2ψ0 =
�√

�2 + σ2
, sin 2ψ0 =

σ√
�2 + σ2

. (3.196)
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With new variables
y = u− u0 , χ = ψ − ψ0 (3.197)

and with the constants

u0 =
σ(3− cosα)

4 sinα
, h =

1

4
cot

α

2

√
�2 + σ2 (3.198)

(3.195) becomes
y = h sin 2χ . (3.199)

The vector u(χ)n2 is the perpendicular from 0 onto the screw axis. The
rotation angle ϕ and the translation s are determined through (3.178) and
(3.188) as functions of ψ = χ+ ψ0 .

The one-parametric manifold of screw axes with parameter χ defines a
ruled surface. With an additional free parameter λ this ruled surface has the
parameter equations

x = λ cosχ , z = −λ sinχ , y = h sin 2χ . (3.200)

Compare this with Eqs.(3.170). Except for an interchange of y and z both
sets of equations are identical. Hence the ruled surface is a cylindroid the
directrix of which is the nodal line. The parameter-free equation of the cylin-
droid is (cf. (3.171))

y(x2 + z2) = −2hxz . (3.201)

Every prescribed value of σ determines a one-parametric manifold of screw
displacements with the associated cylindroid of screw axes.

Following (3.171) some important geometrical properties of the cylindroid
were listed (see Fig. 3.16). At every point y in the interval |y| ≤ |h| the
directrix is orthogonally intersected by two screw axes. At y = 0 these
screw axes lie in the x-axis and in the z-axis, respectively. These are the
principal screw axes. At y = −h and at y = +h the two intersecting screw
axes coincide. The angles associated with these axes are χ = −π/4 and
χ = +π/4 , respectively. These screw axes are torsal lines of the cylindroid.
Each of the two planes spanned by the directrix and by a torsal line is a
plane of symmetry of the cylindroid. Every pair of screw axes intersecting
the directrix in one point is located symmetrically with respect to each of the
planes of symmetry, i.e., under angles χ1 and χ2 related by the equation
χ2 = π/2 − χ1 . The relationship between the corresponding angles ψ1 =
χ1 + ψ0 and ψ2 = χ2 + ψ0 is ψ2 = π/2− ψ1 + 2ψ0 .

It was shown that the screw axes under the angles ψ = 0 and ψ = −π/2
belong to special screw displacements. The first one is characterized by ϕ =
±π and the second by ϕ = α and s = � . It will be seen that also the
screw displacements with screw axes located symmetrically to these screw
axes have special properties. The associated angles are ψ = π/2 + 2ψ0 and
ψ = 2ψ0 , respectively.
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First, it is investigated which screw axis n̂ intersects one or the other of
the two lines r̂1 and r̂2 . The screw axis n̂ = n+ εw has the Plücker vectors
n and w given in (3.182) and (3.183), respectively. The lines r̂i = ri + εwi

(i = 1, 2) have the Plücker vectors ri and wi given in (3.177) and (3.181).
The condition of intersection is n ·wi + ri ·w = 0 (see (2.18)). It turns out
that this condition has for both lines the same form

� sin
α

2
cosψ + 2u cos

α

2
sinψ = 0 . (3.202)

This equation is multiplied by sinα/2 , and then u sinα is replaced by the
expression in (3.194). Simple reformulation produces the final form

(� cosψ + σ sinψ)
(
sin2

α

2
+ cos2

α

2
sin2 ψ

)
= 0 . (3.203)

The results are summarized as follows. A screw axis which intersects one of
the two lines intersects also the other, and there is only one such screw axis.
Its angle ψ is given by tanψ = −�/σ or, because of (3.196), by tanψ =
− cot 2ψ0 . Hence ψ = 2ψ0 + π/2 . This shows that the screw axis is the one
which is located symmetrically with respect to χ = π/4 to the screw axis
associated with ψ = 0 , ϕ = π .

Every screw axis on the cylindroid, i.e., every angle ψ or χ , respectively,
is associated with a rotation angle ϕ and a translation s . The angle is deter-
mined by (3.178). The two screw axes along the principal axes and the two
screw axes along the torsal lines are examples of pairs of mutually orthogonal
screw axes (with or without intersection point). All pairs of mutually orthogo-
nal screw axes satisfy the identity (1.229): cot2(ϕ/2)+cot2(ϕ∗/2) ≡ cot2 α/2 .

The quantity s in the screw displacements solving Problem 2 remains
to be formulated. It is obtained by substituting in (3.188) for u sinα the
expression from (3.194). The result is

s = σ cosψ − � sinψ . (3.204)

Comparison with (3.195) yields the relationship

s(ψ) = −4 tan
α

2
[u(ψ/2)− u0] . (3.205)

Let s1 and s2 be the values of s associated with the principal axes x
(ψ = ψ0) and z (ψ = ψ0 − π/2). With (3.196)

s1,2 =

√
1

2

(
�2 + σ2 ∓ �

√
�2 + σ2

)
. (3.206)

From (3.204) it follows that there is only a single screw displacement which
is a pure rotation (s = 0). The direction of its axis is determined by tanψ =
σ/� = tan 2ψ0 . Hence ψ = 2ψ0 . This shows that the rotation axis is the



134 3 Finite Screw Displacement

screw axis which is located symmetrically with respect to χ = π/4 to the
screw axis associated with ψ = −π/2 , ϕ = α and s = � .

The results developed up to this point were obtained first by Moshammer
[33], Pelisěk [35], Rath [40] and Lilienthal [28]. See also Bottema [4]. None of
the cited papers made use of the principle of transference.

Equation (3.19) defined for screw displacements the scalar measure pP =
(s/2)/ tanϕ/2 . With the second Eq.(3.178) and with (3.204)

pP =
1

2
cot

α

2
sinψ (� sinψ − σ cosψ) =

1

4
cot

α

2
[�(1− cos 2ψ)− σ sin 2ψ] .

(3.207)
The angle ψ = 0 is associated with s = σ and pP = 0 . Transformation
of (3.207) into the principal-axes system by means of (3.198) results in the
equation

pP = pP0 − h cos 2χ , pP0 =
1

4
� cot

α

2
. (3.208)

The mean value pP0 of pP occurs in the torsal lines. The extremal values
pP0±h have opposite signs. They occur in the principal axes. For every pair of
screw axes which is located symmetrically with respect either to χ = π/4 or
to χ = −π/4 both screw axes are associated with one and the same measure
pP . Equations (3.208) and (3.199) reveal the remarkable relationship

(pP − pP0)
2 + y2 ≡ h2 . (3.209)

It is formally identical with (3.164).

Special case σ = 0 (A is displaced to B )
The formulas for n̂ and ϕ are independent of σ . Equations (3.195) – (3.198),
(3.204) and (3.206) become

u =
�

4
cot

α

2
sin 2ψ , χ ≡ ψ , u0 = 0 ,

s = −� sinψ , s1 = 0 , s2 = � .

}
(3.210)
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29. Löbell F (1929) Aus der Differentialgeometrie der Schraubenscharen. Festschrift der
T.H. Stuttgart zur Vollendung ihres 1. Jahrhunderts. Springer, Berlin, Wien

30. Martinez J M R, Duffy J (1993) The principle of transference: History, statement and
proof. Mechanism Machine Theory 28:165–177

31. Meyer W FR, Mohrmann H (eds.) (1921-1928) Enzyklopädie der Math. Wis-
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