
Chapter 17

Planar Four-Bar Mechanism

The solid lines in Fig. 17.1 are the links of a planar four-bar mechanism or
briefly planar four-bar. The link lengths � (base or fixed link), r1 (input
link), r2 (output link) and a (coupler) are free parameters. They determine,
whether individual links can rotate relative to others full cycle (i.e., unlim-
ited) or through an angle smaller than 2π . The link lengths also determine
the so-called transfer function relating the output angle ψ to the input angle
ϕ . The time derivative of this function yields the transmission ratio i = ϕ̇/ψ̇
as function of ϕ . The transfer function and the transmission ratio depend on
three parameters only, namely, on r1/� , r2/� and a/� . Points fixed in the
plane of the coupler move along coupler curves. The shapes of these curves
depend on six parameters, namely, on the four link lengths and, in addi-
tion, on two coordinates of the coupler-fixed point in the coupler plane. The
coupler plane as a whole undergoes a translatory-rotatory motion through
a continuum of positions which depends on the four link lengths. The said
dependencies which are the subject of the following sections are highly com-
plicated. It is this complexity in combination with simplicity of design which
makes the planar four-bar the most important linkage in engineering.

Literature on four-bars and on other linkages: Erdman (Ed.) [11], Arto-
bolevski [1], Geronimus [16], Dijksman [10].

Fig. 17.1 Planar four-bar in the two positions existing for a given input angle ϕ
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568 17 Planar Four-Bar Mechanism

In many machines a certain desired property is achieved by combining a
four-bar with additional elements. A typical example is shown in Fig. 17.2 .
Without the motor-driven crank mechanism MDB drawn with dashed lines
the mechanism is a four-bar A0ABB0 with base A0B0. None of its links is
able to rotate full cycle relative to the base. When this four-bar is moving
through its entire range, the coupler-fixed point C traces the dotted coupler
curve. A section of this curve is a very good straight-line approximation. The
combination of the four-bar A0ABB0 with the crank mechanism MDB results
in a machine in which C is moving periodically back and forth the straight
section when the crank is rotating. Point C can be used as guide for the
piston of the pump at an oil-well.

Fig. 17.2 Combination of four-bar and crank mechanism in a pump

17.1 Grashof Condition

In this section answers are given to the following questions. Through which
angle can two neighboring links of a four-bar rotate relative to each other?
Under which condition is this angle unlimited? In this case, one link is said
to be fully rotating relative to the other. For every possible angle ϕ between
two neighboring links there exist two positions of the four-bar (see Fig. 17.1).
In some four-bars the transition from one of these positions into the other can
be achieved by a continuous motion. In others the transition is possible only
by disconnecting and reassembling the four-bar. Under which conditions is
disconnection and reassembly necessary? The properties addressed by these
questions do not depend on which link is chosen as fixed link and which
as input link. Arbitrarily, the angle ϕ of the link of length r1 against the
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Fig. 17.3 Limit positions of a four-bar

link of length � is investigated. Extremal values of ϕ in limit positions are
denoted φ . In Figs. 17.3a,b,c all possible configurations in limit positions are
shown. All of them are characterized by collinearity of the other two links of
the four-bar. For the extremal angles φ1 and φ2 the cosine law yields the
expressions

cosφ1,2 =
r21 + �2 − (r2 ∓ a)2

2r1�
. (17.1)

The links are fully rotating relative to each other if cosφ1 ≥ +1 as well as
cosφ2 ≤ −1 . These conditions are

a) |r1 − �| ≥ |r2 − a| , b) r1 + � ≤ r2 + a . (17.2)

In the special case of four identical link lengths � = r1 = r2 = a φ1 = 0 ,
φ2 = π . This means that neighboring links can rotate full cycle relative to
each other.

In what follows, it is assumed that at least two link lengths are different.
Let �min and �max �= �min be the smallest and the largest, respectively, of
the four link lengths, and let �′ and �′′ ( �′ < �′′ or �′ = �′′ or �′ > �′′ ) be
the other two link lengths so that

�min ≤ �′, �′′ ≤ �max (�max �= �min) . (17.3)

Grashof1 [17] is the author of

Theorem 17.1. The link of length �min is fully rotating relative to all other
links if and only if the condition

�min + �max ≤ �′ + �′′ (17.4)

1 F. Grashof 1826-1893, professor at the Polytechnische Schule Karlsruhe, now Karlsruhe

Institute of Technology (KIT); one of the founders and first chairman of Verein Deutscher
Ingenieure (VDI)
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is satisfied. Then these other links are fully rotating relative to the link with
�min , but they are not fully rotating relative to each other. If condition (17.4)
is not satisfied, no link is fully rotating relative to any other link.

Proof: The following statements are easily verified if not obvious.
I. Equations (17.1) as well as conditions (17.2a,b) are invariant with respect
to an interchange of r1 and � and also of r2 and a .
II. If neither r1 nor � is �min , one of the conditions (17.2a), (17.2b) is
violated.
III. If either (r1, �) or (�, r1) is the pair ( �min, �max) , condition (17.2a) is
satisfied, and condition (17.2b) is condition (17.4).
IV. If either (r1, �) or (�, r1) is the pair ( �min, �

′) , condition (17.2b) is sat-
isfied, and condition (17.2a) is condition (17.4).
The combination of statements I to IV proves Grashof’s theorem. According
to this theorem four-bars are divided into
- four-bars satisfying Grashof’s condition; these four-bars are further sub-

divided
- general case: �min + �max < �′ + �′′

- special case: �min + �max = �′ + �′′

- four-bars not satisfying Grashof’s condition, i.e., four-bars with �min+
�max > �′ + �′′.
Matters are even more complicated due to the fact that in engineering prac-
tice a particular link of a four-bar is declared to be the fixed link. A neigh-
boring link (input link or output link) is referred to as crank or as rocker
depending on whether or not it is fully rotating relative to the fixed link.
Depending on the behavior of input link and output link a four-bar is either
a double-crank or a crank-rocker or a double-rocker. It is obvious that a four-
bar not satisfying Grashof’s condition is a double-rocker. On the other hand,
a four-bar satisfying Grashof’s condition may be either a double-crank or a
crank-rocker or a double-rocker. Details are worked out in what follows.

Four-Bars Satisfying Grashof’s Inequality Condition �min + �max < �′ + �′′ .
For demonstration the link lengths (3, 5, 6, 7) are used which satisfy Grashof’s
condition (3 + 7 < 5 + 6) . In Fig. 17.4a the fixed link is the shortest link.
This link (and only this link) is fully rotating relative to all other links. In
other words: The input link, the output link and the coupler are fully rotating
relative to the fixed link. Hence the four-bar is a double-crank. For a single
input angle the two existing positions of the four-bar are shown (one of them
with dashed lines).

In Fig. 17.4b the input link is the shortest link. Only this link is fully
rotating relative to all other links. Hence the four-bar is a crank-rocker. The
four-bar is shown in all four limit positions of the rocker. The angular range of
the rocker consists of two sectors < 180◦ which are arranged symmetrically
to the base line. The base line is outside these sectors. For a single input
angle the two existing positions of the four-bar are shown (one of them with
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Fig. 17.4 Four-bars with different distributions of the link lengths (3, 5, 6, 7). Double-

crank (a) with all links fully rotating. Crank-rocker (b) with fully rotating input crank.
Double-rocker of first kind with fully rotating coupler (c)

dashed lines). In these two positions the output link is located on opposite
sides of the base line.

Figure 17.4c differs from Fig. 17.4a in that the fixed link and the coupler
are interchanged. The coupler is the shortest link. Only the coupler is fully
rotating relative to all other links. The four-bar is referred to as double-rocker
of first kind. The figure shows the limit positions of both rockers. The angular
range of each rocker is a single sector. The sectors of both rockers are on one
and the same side of the base line. For a single input angle the two existing
positions of the four-bar are shown (one of them with dashed lines). In these
two positions the output link is located on one and the same side of the base
line.

In Figs. 17.4a , b and c reflection of every possible position in the base
line is another possible position.

Four-Bars not Satisfying Grashof’s Condition
For demonstration the link lengths (4, 5, 6, 8) are used which do not satisfy
Grashof’s condition (4+8 > 5+6) . Not a single link is fully rotating relative
to the fixed link. These four-bars are referred to as double-rockers of second
kind. Figure 17.5a shows the limit positions of both rockers. The angular
range of each rocker is a single sector which is symmetrical to the base line.
For a single input angle the two existing positions of the four-bar are shown
(one of them with dashed lines). In Figs. 17.5a,b,c the four given lengths
are given to different links of the four-bar. It is seen that depending on this
distribution the fixed link is inside the angular range of either both rockers
(Fig. 17.5a) or of a single rocker (Fig. 17.5b) or of no rocker (Fig. 17.5c).

Foldable Four-Bars Satisfying Grashof’s Equality Condition �min + �max =
�′ + �′′ .
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Fig. 17.5 Three double-rockers of second kind with different distributions of the link

lengths (4, 5, 6, 8). No link is fully rotating

For demonstration the link lengths (1, 3, 4, 6) are used which satisfy the
condition that 1 + 6 = 3 + 4 . Depending on whether the shortest link is the
fixed link or the input link or the coupler the four-bar is either a double-crank
or a crank-rocker or a double-rocker of first kind, respectively (compare Figs.
17.4a, b, c). In this respect there is no difference to the general case of four-
bars satisfying the inequality condition �min + �max < �′ + �′′ . The equality
�min + �max = �′ + �′′ has the consequence that the four-bar is foldable. In
a folded position all four links are collinear. Two different kinds of foldable
four-bars have to be distinguished:
- first kind: r1 + a = r2 + � (Fig. 17.6a)
- second kind: r1 + r2 = a+ � (Fig. 17.6b).
With link lengths (1, 3, 4, 6) the following foldable four-bars (�, r1, a, r2)
can be formed:
Foldable four-bars of first kind: Two double-cranks (1, 3, 4, 6), (1, 4, 3, 6);
four crank-rockers (4, 1, 6, 3), (3, 1, 6, 4), (6, 1, 4, 3), (6, 1, 3, 4);
two double-rockers of first kind (4, 6, 1, 3), (3, 6, 1, 4) ;
Foldable four-bars of second kind: One double-crank (1, 3, 6, 4);
two crank-rockers (3, 1, 4, 6), (4, 1, 3, 6);
one double-rocker of first kind (6, 4, 1, 3).

Example: The foldable four-bar of first kind in Fig. 17.6a is the double-
rocker with (�, r1, a, r2) = (4, 6, 1, 3) , and the foldable four-bar of second
kind in Fig. 17.6b is the double-rocker with (�, r1, a, r2) = (6, 4, 1, 3) . For
a single angle ϕ of the input link the two associated positions of coupler and
output link are shown. The points P1 and P2 are the instantaneous centers
of rotation of the coupler in these positions. Let x be the coordinate of P1

or P2. In positions sufficiently close to the folded position (ϕ = ψ = 0 in
Fig. 17.6a and ϕ = π − ψ = 0 in Fig. 17.6b) the following approximations
are valid:
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Fig. 17.6 (a) Foldable four-bar of first kind: r1+a = r2+
 ( 
 = 4 , r1 = 6 , a = 1 , r2 =

3 ). (b) Foldable four-bar of second kind: r1+r2 = a+
 ( 
 = 6 , r1 = 4 , a = 1 , r2 = 3 ).
Instantaneous centers of rotation P1 and P2 of the coupler tend toward M1 and M2 when
the four-bar is folding

x tanϕ ≈
{
(x− �) tanψ (foldable four-bars of first kind)
(�− x) tan(π − ψ) (foldable four-bars of second kind).

(17.5)
In Sect. 17.2 these approximations are used for determining instantaneous
centers of rotation of the coupler in folded positions when intersection points
P1 and P2 do not exist. End of example.

In the folded position motion is possible in two ways with either ψ̇/ϕ̇ > 0
or ψ̇/ϕ̇ < 0 . In engineering applications of foldable four-bars provisions
must be made either to avoid the folded position or to pass through it with
prescribed sense of rotation.

Consider again Figs. 17.3a,b,c . When the input link of length r1 is moving
away from its limit position, the joint connecting coupler and output link is
free to move in two different directions as is indicated by arrows. From this
the following conclusion is drawn. Two positions of a four-bar which are
associated with an arbitrarily given angle of a rocker can be reached one
from the other by a continuous motion. The four-bars in Figs. 17.4a,c as well
as those in Figs. 17.5a,b,c have this property. In contrast, two positions of
a four-bar which are associated with an arbitrarily given angle of a crank
cannot be reached one from the other by a continuous motion, but only by
disconnection and reassembly (Figs. 17.4b,c). Exception: Foldable four-bars.
Transition from one position to the other is possible via the folded position.

17.2 Transfer Function

From Figs. 17.5 and 17.4 it is known that to every position (ϕ, ψ) of the four-
bar the position symmetrical to the base line A0B0 with angles (−ϕ, −ψ)
exists. This symmetry is found in all subsequent equations. The transfer
function determines ψ as function of ϕ . First, implicit forms f(ϕ,ψ) = 0
of the transfer function are formulated. Starting point are the coordinates of
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Fig. 17.7 Four-bar with input angle ϕ , output angle ψ , inclination angle χ of the

coupler, transmission angle μ

the points A and B in the x, y -system shown in Fig. 17.7 :

xA = r1 cosϕ , xB = �+ r2 cosψ ,
yA = r1 sinϕ , yB = r2 sinψ .

}
(17.6)

The constant length a of the coupler requires that (xB−xA)
2+(yB−yA)

2 = a2

or explicitly

(�+ r2 cosψ − r1 cosϕ)
2 + (r2 sinψ − r1 sinϕ)

2 − a2 = 0 . (17.7)

This is already the desired equation f(ϕ,ψ) = 0 . Reformulation gives it the
form

f = 2r2(�−r1 cosϕ) cosψ−2r1r2 sinϕ sinψ−2�r1 cosϕ+r21+�2+r22−a2 = 0
(17.8)

or alternatively

f = 2�r2 cosψ−2�r1 cosϕ−2r1r2 cos(ϕ−ψ)+ r21 + �2+ r22 −a2 = 0 . (17.9)

Equation (17.8) has the form

A(ϕ) cosψ +B(ϕ) sinψ = C(ϕ) (17.10)

with coefficients

A = 2r2(�−r1 cosϕ), B = −2r1r2 sinϕ , C = 2r1� cosϕ−(r21+�2+r22−a2) .
(17.11)

For every angle ϕ there exist two solutions ψ1 and ψ2 . They are determined
through their sines and cosines:

cosψk =
AC + (−1)kB

√
A2 +B2 − C2

A2 +B2
,

sinψk =
BC − (−1)kA

√
A2 +B2 − C2

A2 +B2

⎫⎪⎪⎬
⎪⎪⎭ (k = 1, 2) . (17.12)

These expressions depend on three parameters only, namely, on r1/� , r2/�
and a/� . Equations (17.11) yield
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A2 +B2 = 4r22(�
2 + r21 − 2r1� cosϕ) = −4r22(C + r22 − a2) , (17.13)

A2 +B2 − C2 = 4r22a
2 − (C + 2r22)

2

= −[C + 2r2(a+ r2)][C − 2r2(a− r2)] (17.14)

= −[2r1� cosϕ− (r21 + �2) + (r2 + a)2]

×[2r1� cosϕ− (r21 + �2) + (r2 − a)2] . (17.15)

The angles ψ1 and ψ2 are real for all angles ϕ satisfying the condition
A2 +B2 −C2 ≥ 0 . Let φ denote all angles ϕ for which the equality sign is
valid. From (17.15) the cosines of these angles are obtained:

cosφ1,2 =
r21 + �2 − (r2 ∓ a)2

2r1�
. (17.16)

These are the Eqs.(17.1). The angles are the limit angles of the input link
known from Figs. 17.3a,b,c .

This section is closed with an application of (17.9) to foldable four-bars
(see Figs. 17.6a,b). In the process of folding the instantaneous centers of
rotation P1 and P2 of the coupler tend toward points M1 and M2 on the
base line. These points are determined by combining (17.5) and (17.9). First,
foldable four-bars of first kind are considered. In the limit ϕ → 0 , ψ → 0
(17.5) yields x/(x− �) = ψ/ϕ . With � = r1 − r2 + a (17.9) becomes

r1(r1+a)+r2(r2−a)−r1r2[1+cos(ϕ−ψ)]−(r1−r2+a)(r1 cosϕ−r2 cosψ) = 0 .
(17.17)

Taylor expansion up to second-order terms and division through ϕ2 produces
for λ = ψ/ϕ = x/(x − �) the quadratic equation λ2r2(r2 − a) − 2r1r2λ =
−r1(r1 + a) . The solutions λ1,2 and the associated coordinates x1,2 of M1

and M2 are

λ1,2 =
r1r2 ±

√
r1r2a�

r2(r2 − a)
, x1,2 =

λ1,2

λ1,2 − 1
� . (17.18)

The solution for foldable four-bars of second kind is obtained in a similar
way. In (17.9) the substitutions ψ = π − α and � = r1 + r2 − a are made.
Following this, a Taylor expansion up to second-order terms is made. The
result is a quadratic equation for λ = α/ϕ = x/(�− x) . The solutions λ1,2

are identical with those in (17.18):

λ1,2 =
r1r2 ±

√
r1r2a�

r2(r2 − a)
, x1,2 =

λ1,2

λ1,2 + 1
� . (17.19)

Examples: The link lengths of Fig. 17.6a yield x1 ≈ 5.17 , x2 ≈ 10.8 and
those of Fig. 17.6b yield x1 ≈ 4.64 , x2 ≈ 2.21 . These are the points M1 and
M2 shown in the figure. End of examples.
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17.3 Interchange of Input Link and Fixed Link

In Fig. 17.8 the four-bar A0ABB0 with link lengths � , r1 , a , r2 is called
four-bar F . Dashed lines parallel to the fixed link and to the input link
define the point P . The quadrilateral B0PAB is drawn one more time in
dotted lines. The dotted quadrilateral is called four-bar F∗ . Its fixed link
has length r1 , and its input link has length � . Both four-bars have the same
coupler and the same output link. If F is a foldable four-bar, also F∗ is
foldable. If F is a double-rocker of first kind (of second kind), also F∗ is a
double-rocker of first kind (of second kind). If F is a double-crank, F∗ is
either a double-crank or a crank-rocker. If F is a crank-rocker, F∗ is either
a double-crank (if fixed link and crank are interchanged) or a crank-rocker (if
fixed link and rocker are interchanged). Example: Let F be the crank-rocker
in Fig. 17.4b . Interchange of fixed link and crank produces the double-crank
of Fig. 17.4a .

In Fig. 17.8 F and F∗ have one and the same input angle ϕ . The relation
between the output angles ψ and ψ∗ is seen to be

ψ + ψ∗ ≡ ϕ+ π . (17.20)

For a given angle ϕ Eqs.(17.12) determine in the four-bar F two angles ψ1

and ψ2 and in the four-bar F∗ with coefficients A∗ = 2r2(r1 − � cosϕ) ,
B∗ = −2�r2 sinϕ , C∗ = C two angles ψ∗

1 and ψ∗
2 . The coordination of the

pairs of angles is as follows: ψ1+ψ∗
2 ≡ ϕ+π . This is verified by substituting

Fig. 17.8 Four-bar F and the associated four-bar F∗ with link lengths r1 and 


interchanged
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A , B ,C and A∗ , B∗ , C∗ into the equation cosψ1 cosψ
∗
2 − sinψ1 sinψ

∗
2 ≡

− cosϕ .

17.4 Inclination Angle of the Coupler. Transmission
Angle

Figure 17.7 defines the inclination angle χ of the coupler against the base line.
Its dependency on ϕ is found by the same method that was used for ψ . Point
B has coordinates xB = r1 cosϕ+a cosχ and yB = r1 sinϕ+a sinχ . These
expressions are substituted into the constraint equation (xB− �)2+y2B = r22 .
This results in the equation

Ā cosχ+ B̄ sinχ = C̄ , (17.21)

Ā = −2a(�−r1 cosϕ) , B̄ = 2r1a sinϕ , C̄ = 2r1� cosϕ−(r21+�2+a2−r22) .
(17.22)

These coefficients are obtained from those in (17.11) by interchanging r2 and
−a . The equation has the solutions

cosχk =
ĀC̄ − (−1)kB̄

√
Ā2 + B̄2 − C̄2

Ā2 + B̄2
,

sinχk =
B̄C̄ + (−1)kĀ

√
Ā2 + B̄2 − C̄2

Ā2 + B̄2

⎫⎪⎪⎬
⎪⎪⎭ (k = 1, 2). (17.23)

The exponent k in this equation must be the same as in (17.12). Only then
the constraint equation r1 cosϕ+ a cosχ = �+ r2 cosψ is satisfied.

The angle χ reaches a stationary value (maximum or minimum) when
the angular velocity χ̇ of the coupler is zero. This is the case when the
instantaneous center of rotation P30 , i.e., the intersection of input link and
output link, is at infinity. Figure 17.9 shows that this is possible in two
positions. Let ϕ = ϕ∞ and χstat be the associated angles. One position
is characterized by ψ = ϕ∞ and the other by ψ = ϕ∞ + π . Equation
(17.10) yields for cosϕ∞ the two expressions given below. Expressions for the
associated stationary angles χstat are obtained from the cosine law applied
to the triangles shown in Fig. 17.9 :

cosϕ∞ =
�2 − a2 + (r1 ∓ r2)

2

2�(r1 ∓ r2)
, cosχstat =

�2 + a2 − (r1 ∓ r2)
2

2a�
. (17.24)

The angles ϕ∞ have a kinematical interpretation. They determine the direc-
tions of asymptotes of the fixed centrode of the coupler. The centrode has no
asymptotes if both cosines have absolute values > 1 , i.e., if the conditions
(� − a)2 > (r1 − r2)

2 and (� + a)2 < (r1 + r2)
2 are satisfied. This is the
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Fig. 17.9 Stationary values of the angle χ occur when the cranks are parallel

case if and only if the coupler is fully rotating. These four-bars are either
double-cranks (Fig. 17.4a) or double-rockers of first kind (Fig. 17.4c). In Ex.
6 of Sect. 15.1.2 centrodes of couplers of four-bars with special link lengths
were investigated.

In Fig. 17.7 the transmission angle μ of a four-bar is defined. Its depen-
dency on ϕ is obtained as follows. The length of the diagonal starting from
A is expressed by means of the cosine law once in terms of cosϕ and once
in terms of cosμ . The identity of these expressions results in

cosμ =
2r1� cosϕ− (r21 + �2) + r22 + a2

2r2a
. (17.25)

Extremal values of μ are obtained from (17.1) by interchanging (r1, �) and
(r2, a) :

cosμstat =
r22 + a2 − (�∓ r1)

2

2r2a
. (17.26)

In positions with these extremal values the input link and the fixed link are
collinear (see Fig. 17.3). In phases of motion in which the coupler is required
to transmit a large torque to the output link the transmission angle μ should
differ from π/2 as little as possible. In other words: | cosμ| should be as small
as possible.

17.5 Transmission Ratio. Angular Acceleration of
Output Link

The angular velocity ratio i = ϕ̇/ψ̇ is called transmission ratio of the four-
bar. In what follows, the inverse value 1/i = ψ̇/ϕ̇ is represented in geometric
and in analytical form. The geometric form is obtained from (15.6). Let the
fixed link, the input link and the output link be links 0 , 1 and 2 , respec-
tively, so that ω10 = ϕ̇ and ω20 = ψ̇ (see Fig. 17.10). Equation (15.6) with
i = 2 , j = 1 , k = 0 yields the expression
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1

i
=

ψ̇

ϕ̇
=

�P10P12

�P20P12

=
x12

x12 − �
=

ξ

ξ − 1

(
ξ =

x12

�

)
. (17.27)

Here, x12(ϕ) is the coordinate of the instantaneous center P12 along the base
line. The dimensionless quantity ξ is zero at the center P10 and it equals
one at the center P20 . Over the ξ -axis thus defined the ratio 1/i is plotted
at the center P12 .

Fig. 17.10 Dimensionless coordinate ξ = x12/
 of the instantaneous center P12 and
inverse transmission ratio 1/i as function of ξ

An analytical expression for the ratio 1/i is found by differentiating the
transfer function f(ϕ,ψ) = 0 with respect to time:

ϕ̇
∂f

∂ϕ
+ ψ̇

∂f

∂ψ
= 0 . (17.28)

Hence
1

i
=

ψ̇

ϕ̇
= −∂f

∂ϕ

/ ∂f

∂ψ
. (17.29)

Equation (17.9) yields

∂f

∂ϕ
= 2�r1 sinϕ+2r1r2 sin(ϕ−ψ) ,

∂f

∂ψ
= −2�r2 sinψ−2r1r2 sin(ϕ−ψ) .

(17.30)
Hence

1

i
=

r1
r2

� sinϕ+ r2 sin(ϕ− ψ)

� sinψ + r1 sin(ϕ− ψ)
=

r1
r2

� sinϕ+ r2(sinϕ cosψ − cosϕ sinψ)

� sinψ + r1(sinϕ cosψ − cosϕ sinψ)
.

(17.31)
Temporarily, this is abbreviated as r1N/(r2D) (numerator N , denominator
D ). Equations (17.12) yield the expressions
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N(A2 +B2) = �(A2 +B2) sinϕ+ r2

[
(A sinϕ−B cosϕ)C

∓(B sinϕ+A cosϕ)
√

A2 +B2 − C2
]
, (17.32)

D(A2 +B2) = �
(
BC ±A

√
A2 +B2 − C2

)
+ r1

[
(A sinϕ−B cosϕ)C

∓(B sinϕ+A cosϕ)
√
A2 +B2 − C2

]
. (17.33)

From (17.11) it follows that

A sinϕ−B cosϕ = 2r2� sinϕ ,

B sinϕ+A cosϕ = 2r2(� cosϕ− r1) ,

�B + r1(A sinϕ−B cosϕ) = 0 .

⎫⎪⎬
⎪⎭ (17.34)

These equations in combination with (17.13) and (17.14) yield the formula

2

i
=

cosϕ− p1
cosϕ− p2

± (cosϕ− p3) sinϕ

(cosϕ− p2)
√

λ2 − (cosϕ− p4)2
(17.35)

with dimensionless constants

λ =
r2a

r1�
, p1 =

r1
�

, p2 =
r21 + �2

2r1�
=

1

2

(
p1 +

1

p1

)
≥ 1 ,

p3 = p2 − r22 − a2

2r1�
, p4 = p2 − r22 + a2

2r1�
.

⎫⎪⎪⎬
⎪⎪⎭ (17.36)

These constants are related as follows:

p22 − 1 = (p1 − p2)
2 , (p4 − p2)

2 − λ2 = (p3 − p2)
2 . (17.37)

The expression cosϕ−p2 in (17.35) is zero only if the conditions ϕ = 0 and
r1 = � are satisfied which imply that also r2 = a . The square root in (17.35)
is zero for angles ϕ = φ1,2 satisfying one of the equations cosφ1,2−p4 = ±λ .
This is Eq.(17.1) defining the angles shown in Figs. 17.3a,b,c .

With the exception of p1 all constants in (17.36) are invariant with respect
to an interchange of base length � and input link length r1 . Because of the
first Eq.(17.37) this is true also for (p1 − p2)

2 . A relation between the ratios
1/i and 1/i∗ of the two four-bars with interchanged link lengths is obtained
by differentiating the identity Eq.(17.20) with respect to time:

1

i
+

1

i∗
=

ψ̇

ϕ̇
+

ψ̇∗

ϕ̇
≡ 1 . (17.38)

The total time derivative of (17.28) yields the transfer characteristics on the
acceleration level:
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ϕ̈
∂f

∂ϕ
+ ψ̈

∂f

∂ψ
+ ϕ̇2 ∂2f

∂ϕ2
+ 2ϕ̇ψ̇

∂2f

∂ϕ∂ψ
+ ψ̇2 ∂2f

∂ψ2
= 0 . (17.39)

Furthermore, ψ̇ = ϕ̇/i with (17.29) for 1/i . This together with the deriva-
tives in (17.30) yields for ψ̈ the expression

ψ̈ = iϕ̈+ ϕ̇2 r1� cosϕ− (r2�/i
2) cosψ + r1r2(1− 1/i)2 cos(ϕ− ψ)

r2� sinψ + r1r2 sin(ϕ− ψ)
. (17.40)

17.6 Stationary Values of the Transmission Ratio

In this section geometrical and analytical methods are used for determin-
ing those input angles ϕ for which the ratio 1/i in (17.35) and hence the
transmission ratio i itself attains stationary values. Starting from Fig. 17.10
Freudenstein [14] discovered the following geometrical relationship. Imagine
that the input link is moving with ϕ̇ > 0 through its entire angular range. In
the course of this motion the instantaneous center P12 moves along the ξ -
axis. Whenever it has zero velocity, the ratio 1/i attains a stationary value.
This is a consequence of the monotonicity property of the function 1/i(ξ)
shown in the figure. The velocity of P12 is zero if and only if the coupler-
fixed point momentarily coinciding with P12 has a velocity in the direction
of the coupler (labeled body 3 ). Then the center P30 of the coupler lies on
the normal to the coupler erected in P12 . In other words: In positions of
the four-bar with a stationary value of 1/i the lines P12P30 and P31P32

are mutually orthogonal2. Figure 17.11 shows two different four-bars in such
positions.

If a stationary value occurs at ϕ = 0 or at ϕ = π , P12 and P30 are
located on the base line, and the coupler is orthogonal to the base line. Then
the parameters satisfy the condition

Fig. 17.11 Two four-bars in positions when P12P30 is orthogonal to the coupler

2 In Bobillier’s Theorem 15.6 the line P12P30 was shown to play another important role

(line h in Fig. 15.19)
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stationary value at ϕ = 0 : (�− r1)
2 + a2 = r22 ,

stationary value at ϕ = π : (�+ r1)
2 + a2 = r22 .

}
(17.41)

In the vicinity of an angle ϕ for which 1/i has a stationary value the angle
between the lines P12P30 and P31P32 is very sensitive to changes of ϕ . The
desired angle ϕ can, therefore, be determined graphically rather precisely
by checking the orthogonality. In order to determine for a given four-bar
all positions with a stationary value of 1/i the four-bar and the center P12

must be drawn for a number of (monotonically increasing) angles ϕ over the
entire possible range φ1 ≤ ϕ ≤ φ2 . A stationary value of 1/i is passed every
time the moving center P12 changes its sense of direction along the ξ -axis
(jumps from ∞ to −∞ do not count as changes of sense of direction). Once
a position is known approximately it can be improved by checking the angle
between the lines P12P30 and P31P32 .

Example: For the double-crank in Fig. 17.4a this investigation reveals that
stationary values of 1/i occur in the two positions shown in Fig. 17.12a with
ϕ ≈ 9◦ and with ϕ ≈ 95◦ . With the coordinate of P12 (17.27) yields for the
position ϕ ≈ 9◦ a maximum (1/i)max ≈ 2.7 and for the position ϕ ≈ 95◦

a minimum (1/i)min ≈ 0.42 .
For the crank-rocker of Fig. 17.4b the same investigation can be made.

This is unnecessary, however, because this four-bar is obtained from the pre-
viously investigated one by interchanging the fixed link and the input link.
From (17.38) it follows that two four-bars thus related have stationary values
of 1/i for one and the same angles ϕ . Furthermore, these stationary values
add up to one. If the stationary value is a maximum in one of the four-bars, it
is a minimum in the other and vice versa. Hence the crank-rocker of Fig. 17.4b
has at ϕ ≈ 9◦ a minimum (1/i)min ≈ −1.7 and at ϕ ≈ 95◦ a maximum
(1/i)max ≈ 0.58 . Figure 17.12b shows the crank-rocker in these positions.
End of example.

In what follows, two analytical methods for determining stationary values
of 1/i are described. Method 1 is a direct method based on (17.35). With
the abbreviation x = cosϕ it is written in the form

2

i(x)
=

x− p1
x− p2

± (x− p3)Q

(x− p2)P
,

P =
√

λ2 − (x− p4)2 , Q =
√
1− x2 .

⎫⎬
⎭ (17.42)

The stationarity condition d(1/i)/dx = 0 has the form (the prime denotes
the derivative with respect to x )

∓(p1 − p2)P
2 = (p3 − p2)PQ+ (x− p2)(x− p3)(PQ′ −QP ′) . (17.43)

Now, P ′ = −(x − p4)/P and Q′ = −x/Q are substituted. The resulting
equation is multiplied by PQ . This eliminates the case sinϕ = 0 . Whether
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Fig. 17.12 The double-crank of Fig. 17.4a (a) and the crank-rocker of Fig. 17.4b (b)

in the two positions with stationary values of 1/i

this is a solution is checked with (17.41). After this multiplication the equa-
tion has the form

± (p1 − p2)[(x− p4)
2 − λ2]

√
(x2 − 1)[(x− p4)2 − λ2]

= (p3 − p2)(x
2 − 1)[(x− p4)

2 − λ2]

−(x− p2)(x− p3)[p4(1 + x2) + x(λ2 − p24 − 1)] . (17.44)

The special case r1 = � is characterized by p1 = p2 = 1 and, therefore, by
the third-order equation

(p3−1)(1+x)[λ2−(x−p4)
2]+(x−p3)[p4(1+x2)+x(λ2−p24−1)] = 0 . (17.45)

The equation is quadratic if, in addition, also a = � .
In the general case r1 �= � , (17.44) is squared. The squared equation is

invariant with respect to the interchange of r1 and � (see the comments
following (17.36) and (17.37)). Because of the sign ± no extraneous roots
are introduced by squaring. Equation (17.44) with the positive sign has the
meaningless root x = p2 > 1 . This is verified with the help of (17.37). From
this it follows that the squared equation is divisible by (x− p2)

2 . Following
this division it is a sixth-order equation. The division is performed in two
steps. Squaring results in the equation

( x2 − 1)[(x− p4)
2 − λ2]2

{
(p1 − p2)

2[(x− p4)
2 − λ2]− (p3 − p2)

2(x2 − 1)
}

= (x− p2)F (x)
{
(x− p2)F (x)− 2(p3 − p2)(x

2 − 1)[(x− p4)
2 − λ2]

}
(17.46)

with the third-order polynomial
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F (x) = (x− p3)[p4(1 + x2) + x(λ2 − p24 − 1)] . (17.47)

Taking into account (17.37) the expression in curled brackets on the left-hand
side is written in the form (x− p2)(Ax+B) with constants

A = (p1 − p2)
2 − (p3 − p2)

2 , B = p2A− 2p4(p1 − p2)
2 . (17.48)

Division of (17.46) by (x− p2) produces the equation

(x2 − 1)[(x− p4)
2 − λ2]

{
[(x− p4)

2 − λ2](Ax+B) + 2(p3 − p2)F (x)
}

= (x− p2)[F (x)]2 . (17.49)

The expression in curled brackets is a third-order polynomial K3x
3+K2x

2+
K1x+K0 with coefficients

K3 = A+ 2p4(p3 − p2) ,

K2 = B − 2p4A+ 2(p3 − p2)(λ
2 − p24 − 1− p3p4) ,

K1 = −2p4B +A(p24 − λ2) + 2(p3 − p2)[p4 − p3(λ
2 − p24 − 1)] .

⎫⎪⎬
⎪⎭ (17.50)

Division by (x − p2) produces the second-order polynomial K3x
2 + (x +

p2)(K2 + p2K3) +K1 . With this expression (17.49) yields the desired sixth-
order equation

(x2−1)[(x−p4)
2−λ2][K3x

2+(x+p2)(K2+p2K3)+K1]−[F (x)]2 = 0 . (17.51)

The coefficient of x6 is

K3 − p24 = (p1 − p2)
2 − (p3 − p2 − p4)

2 =
(�2 − a2)(a2 − r21)

(r1�)2
. (17.52)

The equation is of fifth order if a = � and/or a = r1 . Only real roots
|x| ≤ 1 are significant. For every such root it is checked to which sign in
(17.44) the root belongs. With the same sign (17.42) and (17.12) determine
the corresponding stationary value of 1/i and the angle ψ .

Example: With the parameters of the double-crank in Fig. 17.4a as well
as with those of the crank-rocker in Fig. 17.4b (17.51) has the four real
roots x = cosϕ ≈ −0.084 , 0.9882 , 1.11 and 4.02 . The first two roots
determine the angles ϕ ≈ 94.8◦ and ϕ ≈ 8.8◦ , respectively. These are the
angles shown in Figs. 17.12a and b . End of example.

The second (historically the first) analytical method for determining sta-
tionary values of 1/i is due to Freudenstein [14]. Also this method leads to
a sixth-order equation. The method starts out from Fig. 17.10 and from the
coupler curve traced by a point C fixed on the coupler line P31P32 . Let
η =const be the coordinate of this point along the coupler line ( η = 0 , when
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C is at P31 and η > 0 , when C and P32 are on the same side of P31 ).
In Sect. 17.8.3 the equation of the coupler curve in the x, y -system of Fig.
17.7 is given. In what follows, only the coordinates of the intersection points
of the curve with the x -axis are needed. They are the roots of Eq.(17.100)
which is cubic with respect to x and to η :

(η − a)(x− �)(x2 + η2 − r21)− ηx[(x− �)2 + (η − a)2 − r22] = 0 . (17.53)

The corresponding angle ϕ is determined by the cosine law:

cosϕ =
x2 + r21 − η2

2r1x
. (17.54)

In Sect. 17.8.4 it is pointed out that not every real root x of (17.53) represents
an intersection point of the coupler-curve with the x -axis. A root represents a
singular point without kinematical significance if it is associated with values
| cosϕ| > 1 . In what follows, only those roots are of interest which yield
values | cosϕ| ≤ 1 .

Let now C be the coupler-fixed point which coincides with P12 when
the four-bar is in a position with a stationary value of 1/i . In Fig. 17.13
this situation is shown. The coordinate η of this point is associated with a
solution x of (17.53) which is equal to the stationary value of the coordinate
x12 of the center P12 . Although x12 and x have different definitions, x as
function of η has the same stationary value. From this it follows that the
implicit derivative of (17.53) with respect to η is valid with dx/dη = 0 .
This is the equation

(x− �)(x2 + η2 − r21)− x[(x− �)2 + (η− a)2 − r22]− 2�η(η− a) = 0 . (17.55)

This equation and (17.53) together determine the unknowns x and η . De-

Fig. 17.13 Four-bar in a position with stationary value of 1/i . The coupler point C
momentarily coinciding with P12 has coordinates x and η
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coupling leads to the desired sixth-order equation. This decoupling is achieved
in several steps. First, (17.55) is multiplied by η and then (17.53) is sub-
tracted. This results in the equation

a(x− �)(x2 + η2 − r21)− 2�η2(η − a) = 0 . (17.56)

This equation and (17.55) are rewritten by introducing the dimensionless
variable ξ = x/� already known and the new dimensionless variable ν = η/a .
The new equations for the unknowns ξ and ν are

�2ξ2 − ξ(�2 + a2 + r21 − r22) + r21 + a2[−3ν2 + 2ν(1 + ξ)] = 0 , (17.57)

�2(ξ3 − ξ2) + r21(1− ξ) + a2[−2ν3 + ν2(1 + ξ)] = 0 . (17.58)

In order to get a linear equation for ν (17.57) is multiplied by (λ1+λ2ν) and
then added to (17.58). The free coefficients λ1 and λ2 are then determined
such that the coefficients of ν3 and ν2 equal zero. This yields two linear
equations for λ1 and λ2 . Their solutions are λ1 = −(1+ξ)/9 , λ2 = −2/3 .
The resulting linear equation for ν has the solution

ν =
8(�2ξ3 + r21) + ξ2(r21 − 9�2 + a2 − r22) + ξ(�2 − 9r21 + a2 − r22)

2
{
ξ2(a2 + 3�2)− ξ[3(�2 + r21 − r22) + a2] + a2 + 3r21

} . (17.59)

This expression is substituted back into (17.57). The result of this procedure
is the desired sixth-order equation for ξ :

C6ξ
6 + C5ξ

5 + C4ξ
4 + C3ξ

3 + C2ξ
2 + C1ξ + C0 = 0 . (17.60)

The coefficients3 are

C6 = 4�2(�2 − a2)2 ,

C5 = 4�2[(r22 − r21)(3�
2 + 5a2)− 3(�2 − a2)2] ,

C4 = (a2 + 12�2)[(�2 − a2)2 + (r21 − r22)
2 − 2�2(r21 + r22)]

− 2a4(r21 + r22) + 20�2[3r21(�
2 + a2) + a2(r21 − r22)] ,

C3 = −2
[
2(�6 + r61) + 18�2r21(�

2 + r21)− 3(�4 + r41)(a
2 + 2r22)

+ 2�2r21(29a
2 − 12r22) + 2r22(�

2 + r21)(3r
2
2 − a2)

+ (a2 − 2r22)(a
2 − r22)

2
]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(17.61)

C0 , C1 and C2 are obtained from C6 , C5 and C4 , respectively, by inter-
changing � and r1 , and C3 is symmetric with respect to � and r1 . To
every real solution ξ the corresponding ν is calculated from (17.59). With

3 In [14] the symmetry with respect to 
 and r1 is not shown. The coefficient of x5 is
misprinted. The correct coefficient is d[32b2(a2 − c2) − 12(d2 − b2)n] . Another misprint

occurs in Eq.(30) which must begin with (x− d) instead of with (x− d)2
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x = �ξ and η = aν (17.54) determines the corresponding angle ϕ . The
corresponding stationary value of 1/i is given by (17.27): 1/i = ξ/(ξ − 1) .

Consider again two four-bars resulting one from the other by interchanging
the link lengths r1 and � . Let (17.60) be the conditional equation for one of
these four-bars. The equation for the other four-bar is C0ξ

6+C1ξ
5+C2ξ

4+
C3ξ

3 + C4ξ
2 + C5ξ + C6 = 0 . If ξ is a root of one equation, 1/ξ is root

of the other equation. With both roots (17.59) and (17.54) determine one
and the same angle ϕ . For both roots the corresponding quantities 1/i are
calculated from (17.27). These two quantities add up to one.

It is seen that C6 = 0 if a = � and that C0 = 0 if a = r1 . In either
case (17.60) is of fifth order. Under the same conditions also the previous
method resulted in a fifth-order equation (see (17.52)). In the case r1 = � ,
the previous method resulted in the third-order Eq.(17.45). With the present
method this case yields the identities C6 = C0 , C5 = C1 and C4 = C2 .
Equation (17.60) then has the form

C0ξ
6 + C1ξ

5 + C2ξ
4 + C3ξ

3 + C2ξ
2 + C1ξ + C0 = 0 . (17.62)

If ξ is a root, also 1/ξ is a root. Also the quadratic equation ξ2+ bξ+1 = 0
has this property. Hence there exist coefficients b1 , b2 , b3 such that (17.62)
has the form

C0(ξ
2 + b1ξ + 1)(ξ2 + b2ξ + 1)(ξ2 + b3ξ + 1) = 0 . (17.63)

The determination of b1 , b2 , b3 by comparison of coefficients requires solving
a cubic equation.

17.7 Transmission of Forces and Torques

Transmission of motion is not the only purpose of mechanisms. Equally im-
portant is transmission of forces and torques. In what follows, the state of
equilibrium of an arbitrary planar or spatial single-degree-of-freedom mecha-
nism is investigated. The planar four-bar is just an example. For every mech-
anism the input variable is called ϕ , and the output variable is called ψ .
Let, furthermore, M1 be the driving torque applied to the input link, and let
M2 be the counteracting torque applied to the output link. Thus, a torque
M1 > 0 is accelerating the mechanism and a torque M2 > 0 is decelerating
it. In a state of equilibrium the ratio M2/M1 has a certain value. It is deter-
mined from the equilibrium condition. According to the principle of virtual
power this is the equation

M1δϕ̇+ (−M2)δψ̇ = 0 . (17.64)
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From the definition of the transmission ratio i = ϕ̇/ψ̇ it follows that δψ̇ =
δϕ̇/i . Therefore, the equilibrium condition is (M1 −M2/i)δϕ̇ = 0 . Hence

M2

M1
= i . (17.65)

This equation is valid in the more general sense that ϕ and ψ are generalized
coordinates (for example, angles or cartesian coordinates), and that M1 , M2

are the associated generalized forces (torques or forces).
In a mechanism for the generation of large forces or torques the trans-

mission ratio i should be as large as possible. Typical examples are shears,
prongs and clamping devices of various kinds. In what follows, the shears
shown in Figs. 17.14a – d are investigated. Each of them is a four-bar. The
input and output variables are the opening widths x1 and x2 between the
points of application of the hand forces F1 and the cutting forces F2 , re-
spectively. In each case the equilibrium condition (17.65) is

F2

F1
=

ẋ1

ẋ2
. (17.66)

In each case the ratio of forces is to be expressed in terms of the lengths given
in the figures.
Solution: Since x1 and x2 describe relative positions, it is unnecessary to de-
clare any particular link as fixed link. In Table 17.1 the velocities ẋ1 and ẋ2

are expressed in terms of relative angular velocities (positive counterclock-
wise). These expressions are obvious from the figures. In each expression

Table 17.1 Ratio F2/F1 in terms of angular velocities

shears (a) (b) (c) (d)

F2

F1
=

ẋ1

ẋ2


1


4

ω10

ω23


1 + 
2


4

ω10

ω20


1 + 
2


2 + 
3 + 
4

ω10

ω23


1


4

ω10

ω23

the two relative angular velocities are related through a constraint equation.
These equations have the following forms.
(a) ẋ3 = −�2ω10 = −�3ω23 ,
(b) The constraint ẋ3 = 0 means that �2ω10 − (�2 + �3)ω20 = 0 ,
(c) ẋ3 = −�3ω10 = −(�2 + �3)ω23 ,
(d) In Fig. 17.14d instantaneous centers are shown. From (15.6) it fol-
lows that ω10/ω30 = L4/L3 and ω23/ω30 = L1/L2 and, consequently,
ω10/ω23 = L2L4/(L1L3) .
With these constraint equations the final results shown in Table 17.2 are
obtained.
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Fig. 17.14 Shears (a), (b), (c) with parameters 
1 , . . . , 
4 and shears (d) with instan-

taneous centers of rotation open and closed (e)

Table 17.2 Ratio F2/F1 in terms of link lengths

shears (a) (b) (c) (d)

F2

F1


1
3


2
4

(
1 + 
2)(
2 + 
3)


2
4

(
1 + 
2)(
2 + 
3)


3(
2 + 
3 + 
4)


1L2


4L3

L4

L1

Comparative evaluation: Figures 17.14a,b,c are drawn with identical lengths
�1 = 35 , �2 = 3.5 , �3 = 6 , �4 = 9 . With these lengths F2/F1 ≈ 6.7 for
the shears (a), F2/F1 ≈ 11.6 for the shears (b) and F2/F1 ≈ 3.3 for the
shears (c). Shears (c) are the only ones in which the object to be cut can
be placed in the position �4 = 0 . Then, F2/F1 ≈ 6.4 . With parameters
of commercially available pruning-shears of this kind a ratio F2/F1 = 15 is
possible. Compared with all other devices these shears have the advantage
that for a given width of the object to be cut the opening angle between the
shearing blades is the smallest.
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In shears (d) the lengths L2 and L3 are constant. The lengths L4 and
L1 depend very much on the opening angle. Both of them decrease mono-
tonically in the process of closing the blades. Figure 17.14e shows the blades
fully closed. The dimensions should be chosen such that in this position the
instantaneous centers P13 , P10 and P20 are almost collinear as shown. In
this case, the ratio L4/L1 is > 1 in every position, and it increases mono-
tonically when the blades are closing. With shears of this kind reinforcement
steel rods of 15 mm diameter can be cut by hand.

17.8 Coupler Curves

Every point fixed in the plane of the coupler traces a coupler curve when the
four-bar is moving through its entire range. It is the complexity of these curves
to which the four-bar owes much of its importance in engineering (see Fig.
17.2). In the following sections properties of coupler curves are investigated.
The curvature of coupler curves was the subject of Sect. 15.3.3 (see Fig.
15.19).

17.8.1 Roberts/Tschebychev Theorem. Cognate
Four-Bars

Figure 17.15 is started by drawing the four-bar A0A1B1B0 and a point C
fixed in the plane of the coupler A1B1 . This plane is represented by the
coupler triangle (A1,B1,C). Subject of investigation is the coupler curve gen-
erated by C . To this basic figure lines A0A2C and B0A3C are added thus
creating two parallelograms. In the next step, triangles similar to the coupler
triangle are drawn as shown with bases A2C and A3C . This results in points
B2 and B3 . Finally, another parallelogram defining the point C0 is drawn.
Point A0 is made the origin of a complex plane. In this complex plane arbi-
trary points such as B1 , for example, are interpreted as complex numbers.
The number is given the name of the point itself. For the addition of complex
numbers the parallelogram rule is valid. This means, for example, that the
number C0 is the sum

C0 = A2 + (B2 −A2) + (C0 −B2) . (17.67)

The coupler triangle (A1,B1,C) defines the complex number

z =
|C −A1|
|B1 −A1| e

iα . (17.68)
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Fig. 17.15 Roberts/Tschebychev theorem

The definition is such that

C −A1 = (B1 −A1)z . (17.69)

For the three terms in (17.67) the figure yields the expressions

A2 = C −A1 = (B1 −A1)z , B2 −A2 = (C −A2)z = A1z , (17.70)

C0 −B2 = B3 − C = (A3 − C)z = (B0 −B1)z . (17.71)

Substitution into (17.67) reveals that

C0 = (B1 −A1 +A1 +B0 −B1)z = B0z = const . (17.72)

Thus, C0 remains fixed independent of the motion of the four-bar A0A1B1B0 .
From this follows

Theorem 17.2. (Roberts4/Tschebychev5) For every four-bar A0A1B1B0

with a coupler point C there exist two additional four-bars A0A2B2C0 and
B0A3B3C0 the coupler points C of which trace one and the same coupler
curve. Because of this property the three four-bars are said to be cognate.

The coupler triangles of the three four-bars are similar, but in each triangle
another angle is opposite the coupler. Equation (17.72) shows that also the
triangle (A0,B0,C0) is similar to the coupler triangle (A1,B1,C). For B2 the
sum of the two Eqs.(17.70) yields

B2 = B1z . (17.73)

4 Samuel Roberts (1827-1913); published 1875
5 Pavnuty Lvovic Tschebychev (1821-1894); he considers a basic figure with arbitrary
coupler triangle, but with identical link lengths r1 = r2 , and he constructs geometrically
one other four-bar ([40] p.273 published in 1878)
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Hence also the triangle (A0,B1,B2) is similar to the coupler triangle and with
the same argument also the triangle (B0,A1,B3).

Imagine that the three four-bars are physically connected at C , and that
B0 and C0 are free to move. The resulting mechanism is deformable subject
to the constraints that (i) links and coupler triangles remain undeformed,
and that (ii) parallelograms remain parallelograms. In Fig. 17.16 a position
is shown in which the links of four-bar A0A1B1B0 are stretched out in the
line A0Ã1B̃1B̃0 . The new positions of the remaining points (denoted by the
symbol tilde) are determined by the three parallelograms not shaded and by
the three similar coupler triangles (shaded). In this position all three four-
bars have their links stretched out. The triangle (A0B̃0C̃0) is similar to the
coupler triangles. It is this figure from which all lengths of the other two
four-bars are most easily obtained.

Figure 17.15 is particularly simple if the coupler point C in the four-
bar A0A1B1B0 is located on the line A1B1 of the coupler. This case is
characterized by α = 0 or π and z real. From this it follows that in all three
four-bars C is located on the coupler line. The positions of C0 , A2 , B2 , A3

and B3 are determined by the equations C0 = B0z , A2 = (B1 − A1)z ,
B2 = B1z , B3 = C + (B0 − A1)z with real z . Figure 17.17 explains how
to proceed geometrically when the four-bar A0A1B1B0 and point C on the
coupler are given. As in Fig. 17.15 A2 and A3 are constructed by drawing the
parallelograms A0A1CA2 and B0B1CA3 . Next, B2 and B3 are constructed,
the former as point of intersection of the lines A0B1 and CA2 and the
latter as point of intersection of the lines B0A1 and CA3 . Finally, C0 is
constructed as in Fig. 17.15 by drawing the parallelogram B2CB3C0 .

Fig. 17.16 Cognate four-bars

of Fig. 17.15 deformed

Fig. 17.17 Cognate four-bars with

coupler point C on the coupler line

In what follows, the general case shown in Fig. 17.15 is considered again.
The parallelity of lines in parallelograms in combination with the rigidity of
coupler triangles has the consequences: If one of the links A0A1 , A2B2 and
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C0B3 is fully rotating, all three of them are fully rotating, and if any one
of them is not fully rotating, none of them is fully rotating. The same state-
ments apply to the links B0B1 , A3B3 and C0B2 . The combination of these
arguments leads to the following statements:
1. If four-bar A0A1B1B0 is a double-rocker of second kind, the other two
four-bars are double-rockers of second kind as well.
2. If four-bar A0A1B1B0 is a double-crank, the other two four-bars are
double-cranks as well.
3. If four-bar A0A1B1B0 is a crank-rocker with crank A0A1 , four-bar
A0A2B2C0 is double-rocker of first kind, and four-bar B0A3B3C0 is a crank-
rocker with crank C0B3 .
4. If four-bar A0A1B1B0 is a double-rocker of first kind, the other two four-
bars are crank-rockers with cranks A0A2 and B0A3 , respectively.

The Roberts-Tschebychev theorem has important engineering applica-
tions. If the generation of some particular coupler curve is required and if
there is not enough space for the chosen four-bar, the same coupler curve
is generated by two other four-bars which are located somewhere else and
which are different in size. The same curve can be generated by still other
linkages. Equation (17.71), C0−B2 = (B0−B1)z , shows that the links C0B2

and B0B1 have identical angular velocities when the four-bars are moving.
Identical angular velocities are produced also by means of three gears with
centers fixed in the base according to Fig. 17.18a . The two outer gears have
arbitrary, but equal diameters, and each of them is rigidly connected with
one of the two links. The central gear has arbitrary diameter and arbitrary
location. When the central gear is set into motion, C is generating the same
coupler curve that is generated by the three four-bars.

The linkage shown in Fig. 17.18b is composed of some of the links in
Fig. 17.15 . The degree of freedom is two. The parallelogram is free to rotate
as rigid body about A0 . It may also deform. Hence it is possible to guide
B1 along an arbitrarily prescribed curve (within a certain workspace). From
(17.73), B2 = B1z , it follows that B2 generates the same curve rotated
through the angle α and multiplied by the factor |z| = A1C/A1B1 . This
linkage is called Sylvester’s plagiograph [38], v.3 .

If, in particular, B1 is guided along a straight line f1 (arbitrary), B2 is
moving along a straight line f2 which is rotated counter-clockwise against f1
through α . The links A0A1B1 with B1 guided along f1 constitute a slider-
crank mechanism, and the links A0A2B2 with B2 guided along f2 constitute
another slider-crank mechanism. With both mechanisms the coupler-fixed
point C traces one and the same coupler curve. Thus, the existence of two
cognate slider-crank mechanisms is proved. The figure explains how to con-
struct one from the other.
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Fig. 17.18 Fig. a: The trajectory of C is identical with the coupler curve generated in

Fig. 17.15. Fig. b: Sylvester’s plagiograph. Cognate slider-crank mechanisms defined by
f1 and f2

17.8.2 Parameter Equations for Coupler Curves

For the graphical display of coupler curves a parameter representation of
the curve is required which determines, in the x, y -system of Fig. 17.19 ,
the coordinates x and y of the coupler point C as functions of the input
angle ϕ . Constant parameters in these functions are � , r1 , r2 , a and the
coordinates η and ζ of C in the coupler plane. Using the inclination angle

Fig. 17.19 Constant parameters η , ζ , b1 , b2 , β and variable coordinates x, y of the
coupler point C
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χ of the coupler as auxiliary variable the coordinates of C are

x = r1 cosϕ+ η cosχ− ζ sinχ , y = r1 sinϕ+ η sinχ+ ζ cosχ . (17.74)

This is the desired parameter representation of the coupler curve. For cosχ
and sinχ the expressions from (17.23) are substituted:

cosχk =
ĀC̄ − (−1)kB̄

√
Ā2 + B̄2 − C̄2

Ā2 + B̄2
,

sinχk =
B̄C̄ + (−1)kĀ

√
Ā2 + B̄2 − C̄2

Ā2 + B̄2
,

⎫⎪⎪⎬
⎪⎪⎭ (k = 1, 2) , (17.75)

Ā = −2a(�−r1 cosϕ) , B̄ = 2r1a sinϕ , C̄ = 2r1� cosϕ−(r21+�2+a2−r22) .
(17.76)

Every input angle ϕ determines two positions of the four-bar and, hence, two
positions of the coupler point C . From Sect. 17.1 it is known that double-
rockers of first kind (Fig. 17.4c) and of second kind (Figs. 17.5a,b,c) have
the property that the two positions can be reached one from the other by
a continuous motion. Hence these four-bars have the property that the cou-
pler curve is unicursal (a single closed curve). In contrast, double-cranks and
crank-rockers have the property that the two positions associated with a sin-
gle input angle cannot be reached one from the other by a continuous motion,
but only by disconnection and reassembly (see Figs. 17.4a and b). This has
the consequence that coupler curves of such four-bars are bicursal (two closed
branches). The transition from unicursal to bicursal coupler curves occurs in
foldable four-bars. In this case, the two closed branches of a bicursal curve
create a singular point. The three coupler curves in Fig. 17.20 demonstrate
the transition from unicursal to bicursal curves. Except for r1 the sets of
parameters (� , r1 , r2 , a , η , ζ) are the same for all three curves. The circle
is explained following Eq.(17.87).

17.8.3 Implicit Equation for Coupler Curves

Figure 17.19 is considered again. This time, the location of the coupler point
C in the coupler plane is specified not by the parameters a , η , ζ , but by
the parameters b1 , b2 , β . The transformation equations between these two
sets of parameters are

b1 =
√
η2 + ζ2 , b2 =

√
(a− η)2 + ζ2 , cosβ =

b21 + b22 − a2

2b1b2
,

a =
√

b21 + b22 − 2b1b2 cosβ , η =
b1(b1 − b2 cosβ)

a
, ζ =

b1b2 sinβ

a
.

⎫⎪⎪⎬
⎪⎪⎭

(17.77)
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Fig. 17.20 Coupler curves of a double-rocker of second kind with r1 = 3.01 (unicursal),

of a foldable four-bar with r1 = 3 and of a crank-rocker with r1 = 2.99 (bicursal). The
other parameters 
 = 8 , r2 = 5 , a = 6 , η = 0 and ζ = 4 are the same in all three
cases. For the circle see (17.87)

For making statements about properties of coupler curves the parameters
b1 , b2 , β are more suitable. First statements are the following.
In the case b1 = 0 (in the case b2 = 0 ), coupler curves are circles or arcs of
circles with radius r1 about A0 (with radius r2 about B0 ). Coupler curves
are confined to the area bounded by the concentric circles about A0 with
radii |r1 − b1| and r1 + b1 and by the concentric circles about B0 with radii
|r2 − b2| and r2 + b2 . In the case b1 , b2 � � , a , r1 , r2 , coupler curves are
approximately circles or arcs of circles.

The goal of the following analysis is an implicit equation of the coupler
curve in the form f(x, y, �, r1, r2, b1, b2, β) = 0 . In developing this equation
the auxiliary variables α and d shown in Fig. 17.19 are used temporarily.
From the figure it is seen that

x = r1 cosϕ+ b1 sinα . (17.78)

The cosine law applied to the triangles (A,D,A0 ) and (A,D,C) yields two
expressions for d2 . The identity of these expressions is the equation

r21 + x2 − 2xr1 cosϕ = b21 + y2 − 2b1y cosα . (17.79)

For r1 cosϕ the expression from (17.78) is substituted. This results in the
following equation which is linear with respect to both sinα and cosα :

2b1(x sinα+ y cosα) = x2 + y2 + b21 − r21 . (17.80)

The same equations are formulated for the triangles (B,D,C) and (B,D,B0 ).
They are obtained by replacing in the above equations x , r1 , b1 , α by
�−x , r2 , b2 , β−α , respectively. To sin(β−α) and to cos(β−α) addition
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theorems are applied. The equation equivalent to (17.80) then reads

2b2

{
[(x− �) cosβ + y sinβ] sinα− [(x− �) sinβ − y cosβ] cosα

}
= (x− �)2 + y2 + b22 − r22 . (17.81)

These two equations are solved for sinα and cosα . Let Δ be the coefficient
determinant. It is

Δ = −4b1b2[(x
2 + y2) sinβ − �(x sinβ + y cosβ)] . (17.82)

The solutions are

cosα =
−2

Δ

{
b2(x

2 + y2 + b21 − r21)[(x− �) cosβ + y sinβ]

− b1x[(x− �)2 + y2 + b22 − r22]
}
,

sinα =
−2

Δ

{
b2(x

2 + y2 + b21 − r21)[(x− �) sinβ − y cosβ]

+ b1y[(x− �)2 + y2 + b22 − r22]
}
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(17.83)

Substitution of these expressions into the constraint equation cos2 α +
sin2 α = 1 eliminates the auxiliary variable α . The resulting equation is
the desired implicit equation of the coupler curve:{

b2(x
2 + y2 + b21 − r21)[(x− �) sinβ − y cosβ]

+b1y[(x− �)2 + y2 + b22 − r22]
}2

+
{
b2(x

2 + y2 + b21 − r21)[(x− �) cosβ + y sinβ]

−b1x[(x− �)2 + y2 + b22 − r22]
}2

= 4b21b
2
2

[
(x2 + y2) sinβ − �(x sinβ + y cosβ)

]2
. (17.84)

In multiplying out the factor (x2 + y2) is encountered repeatedly. The equa-
tion has the form

p1(x
2 + y2)3 + (x2 + y2)2(p2x+ p3y) + (x2 + y2)(p4x

2 + p5xy + p6y
2

+p7x+ p8y) + p9x
2 + p10xy + p11y

2 + p12x+ p13y + p14 = 0 . (17.85)

With the abbreviations p = b21 − r21 , q = �2 + b22 − r22 , λ = 2b1b2 cosβ =
b21 + b22 − a2 , aη = b1b2 sinβ and aζ = b1(b1 − b2 cosβ) (see (17.77)) the
coefficients are



598 17 Planar Four-Bar Mechanism

p1 = a2 , p8 = 2
aζ(λ+ r21 + r22 − 
2 − a2) ,

p2 = −2
a(a+ η) , p9 = Z − 2
2(2a2ζ2 + λp) ,

p3 = −2
aζ , p10 = 4
2aζ(p− λ) ,

p4 = p6 + 4
2aη , p11 = Z − 
2λ2 ,

p5 = 4
2aζ , p12 = 
p(λq − 2b22p) ,

p6 = 
2b22 + p(b22 − b21 − a2) + 2a(qη − 2aζ2) , p13 = −2
aζpq ,

p7 = 
 [λ(3p+ q) + 8a2ζ2 − 4(b22p+ b21q)] , p14 = 
2b22p
2 ,

Z = p(2
2b22 − λq) + b22p
2 + b21q

2 .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(17.86)

The highest-order term p1(x
2 + y2)3 shows that on each of the imaginary

lines y = +ix and y = −ix the coupler curve has a triple-root at infinity.
The curve is a tricircular sextic.

Proposition: An arbitrary circle with center point coordinates x0, y0 and
with radius r intersects the coupler curve in six (not necessarily real) points.
The following proof provides a method for calculating the intersection points.
With a parameter γ the circle has the parameter equations x = x0 +
r cos γ , y = y0 + r sin γ . This yields x2 + y2 = r2 + x2

0 + y20 + 2r(x0 cos γ +
y0 sin γ) . These expressions are substituted into (17.85). The result is an
equation of third order in cos γ and sin γ . The substitution z = tan γ/2
leads to a 6th-order polynomial equation for z . End of proof.

The existence of six intersection points of a coupler curve and a circle can
be expressed in the following alternative form. Given three circles a , b , c
and a triangle (A,B,C), there exist six (not necessarily real) positions of the
triangle in which A lies on a , B on b and C on c . This result is important
for Sect. 17.10 on planar robots.

The equation Δ = 0 can be written in the form(
x− �

2

)2
+
(
y − �

2
cotβ

)2
=
( �

2 sinβ

)2
. (17.87)

It is the equation of the circle shown in Fig. 17.21 . The circle passes through
A0 and B0 . It has the central semi-angle β and, hence, the peripheral angle
β . It was shown that β is also the angle at C0 in the triangle (A0,B0,C0)
of Fig. 17.15 . Therefore, also C0 is located on the circle. From this fact
Roberts concluded Theorem 17.2 on the existence of three cognate four-bars
generating one and the same coupler curve. The three centers A0 , B0 and C0

are referred to as singular foci, and the circle itself is called circle of singular
foci. Since Δ equals zero on the circle, cosα and sinα are indeterminate if
the coupler point is located on the circle. Indeterminate means that at least
two different positions of the four-bar generate one and the same point of the
coupler curve. In other words: The coupler curve intersects the circle at this
point at least twice.

Figure 17.22 proves the inverse statement: If the coupler point C is at one
and the same point in two (or more) positions of the four-bar, this multiple
point lies on the circle. The coupler triangle is (A1,B1,C) in one position
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Fig. 17.21 Circle of singular

foci

Fig. 17.22 Proof that double points of the

coupler curve lie on the circle of singular foci

and (A2,B2,C) in the other. It must be shown that �(A0,C,B0) equals the
angle β in the coupler triangle. The dashed lines A0C and B0C bisect the
auxiliary angles γ and δ . With ψ as auxiliary angle β = γ + ψ = δ + ψ
and, consequently, δ = γ . Hence �(A0,C,B0)= γ/2 + ψ + δ/2 = β . End of
proof.

There is only a single type of double point of a coupler curve which, in
general, is not located on the circle (17.87). This is the singular point on the
coupler curve of a foldable four-bar associated with the folded position. It is
a point belonging to two branches of the curve and to a single position of the
four-bar. Example: The four-bar with parameters � = 8 , r1 = 3 , r2 = 5 ,
a = 6 is a foldable four-bar. The coupler point η = 0 , ζ = 4 generates the
coupler curve shown in Fig. 17.20 which has two ordinary double points on
the circle (17.87) and the singular double point related to the folded position.

Conditions for the singular double point to lie on the circle of singular foci
are formulated as follows. Let the parameters of the foldable four-bar satisfy
the condition � + r1 = a + r2 . In the folded position the coupler point C
has the coordinates x = η − r1 , y = ζ . The condition to lie on the circle
Δ = 0 is, according to (17.82),

[b21 + r21 + r1�− η(2r1 + �)] sinβ − ζ� cosβ = 0 (17.88)

and with η and ζ from (17.77)

a(b21 + r21 + r1�)− b21(2r1 + �) + 2r1b1b2 cosβ = 0 (17.89)

and with cosβ from (17.77)

(�+ r1 − a)(r1a− b21) + r1b
2
2 = 0 . (17.90)
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With �+r1−a = r2 this is the first equation below. Both equations together
constitute the desired conditions.

a =
b21
r1

− b22
r2

, � = a+ r2 − r1 . (17.91)

In terms of dimensionless parameters μ1 , μ2 the conditions are

b1 = μ1r1 , b2 = μ2r2 ,

a = μ2
1r1 − μ2

2r2 , � = (μ2
1 − 1)r1 − (μ2

2 − 1)r2 .

}
(17.92)

The parameters μ1 , r1 , μ2 , r2 can be chosen arbitrarily subject to the con-
ditions that (i) a > 0 , (ii) a , b1 , b2 satisfy the triangle inequalities and
(iii) � > 0 .

In what follows, four-bars are considered which are not foldable. Like any
other circle the circle of singular foci (17.87) intersects a coupler curve at
not more than six real points. Hence a coupler curve can have at most three
double points. In Fig. 17.23 a coupler curve with three double points is shown.
It is generated by a double-rocker with parameters � = 10 , r1 = 4 , a =
4 , r2 = 9 , η = 2 , ζ = 4 . Two double points may coincide in a quadruple
point. An example is shown in Fig. 17.28 .

A double point degenerates into a cusp if the loop associated with the
double point contracts into a single point. From this it follows that also
cusps lie on the circle (17.87), and that the maximum number of cusps is
three. The condition for a cusp to exist is that the coupler point C is located
on the moving centrode of the coupler. In the course of rolling of the moving
centrode on the fixed centrode the point C generates the cusp when it is the
point of contact, i.e., the instantaneous center of rotation of the coupler and,
hence, the intersection point of the input and the output link of the four-bar.

Fig. 17.23 Coupler curve with three double points on the circle with Eq.(17.87). Double-

rocker with parameters 
 = 10 , r1 = 4 , a = 4 , r2 = 9 , η = 2 , ζ = 4
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Figure 17.24 demonstrates that this may happen in altogether four different
configurations. The common feature is that the segments of lengths (r1, b1)
and (r2, b2) are pairwise collinear. In any such configuration the base A0B0

is seen from C either under the angle β or under the angle π − β . This
proves again that cusps lie on the circle (17.87). In the four-bar A0ABB0

drawn with thick lines the cosine law applied to the triangles (A0,B0,C) and
(A,B,C) yields the equations

�2 = (r1 + b1)
2 + (r2 + b2)

2 − 2(r1 + b1)(r2 + b2) cosβ ,

a2 = b21 + b22 − 2b1b2 cosβ .

}
(17.93)

Elimination of cosβ results in a condition for the existence of cusps:

b1b2[(r1+b1)
2+(r2+b2)

2−�2]−(r1+b1)(r2+b2)(b
2
1+b22−a2) = 0 . (17.94)

With reference to Fig. 17.24 (b1, b2) can be replaced by (−b1, b2) , (b1,−b2)
and (−b1,−b2) .

Example: To be determined are parameters of coupler curves of foldable
four-bars of the kind �+r1 = a+r2 which have not only the singular double
point, but also a cusp on the circle of singular foci.
Solution: The parameters must satisfy (17.92) as well as (17.94). Substitution
of the expressions (17.92) into (17.94) results in

(μ1 + μ2 − 1)[μ1(1 + μ1)r1 − μ2(1 + μ2)r2]
2 = 0 , i.e.,

Fig. 17.24 Four different four-
bars A0ABB0 in positions in
which the coupler point C coin-
cides with the instantaneous center

of rotation of the coupler thereby
passing through a cusp of its cou-
pler curve

Fig. 17.25 Coupler curve
with three cusps on the circle
with Eq.(17.87). Symmetrical
double-rocker with parameters

r1 = a = r2 = b1 = b2 = .5
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either μ2 = 1− μ1 (μ1 , r1 , r2 arbitrary) (a)

or r2 =
μ1(1 + μ1)

μ2(1 + μ2)
r1 (μ1 , μ2, r1 arbitrary) (b) .

⎫⎬
⎭ (17.95)

As is the case in (17.94) (μ1 , μ2 ) may be replaced by (−μ1 , μ2 ) , (μ1 , −μ2 )
and (−μ1 , −μ2 ) . Parameters of coupler curves having the desired proper-
ties are determined either from (a) or from (b) . Condition (b) is a special
case. Substitution of this expression for r2 and of b1 = μ1r1 , b2 = μ2r2 into
the second Eq.(17.93) shows that cosβ = 1 . This means that the generating
point of the coupler curve lies on the coupler. End of example.

Figure 17.25 is proof of the existence of coupler curves with three cusps. A
coupler curve has three cusps if in one of the three positions both A and B
are located on the circle with the diameter A0–B0 (Cayley [6] v.9:551–580 ,
Mayer [27]). Let the position drawn in thick lines in Fig. 17.24 be modified
so as to satisfy this condition. The angles in the coupler triangle are denoted
β , �(CBA) = α and �(CAB) = γ . Proposition: The triangles (C,A0,B0)
and (C,A,B) are congruent with �(CA0B0) = α and �(CB0A0) = γ .
Proof: It suffices to prove the first identity. This is done in three steps.
1. �(CA0B) = π/2− β (right-angled triangle).
2. The center 0 of the said circle is the apex of the three isosceles triangles
(A0,0,A) , (A,0,B) and (B,0,B0) . The second triangle has the apex angle
�(A0B) = π − 2β (twice the angle subtended by A–B ). Hence �(BA0) =
�(AB0) = β .
3. The angles �(CA0B0) = �(A0A0) and �(CBA) = α are both equal
to π− β− γ . End of proof. The bisected isosceles triangles establish for the
internal angles of the triangles the formulas

cosα = ±r1
�

, cosβ =
a

�
, cos γ = ±r2

�
, α+β+γ = π . (17.96)

The signs ± take into account that, formally, the sign of r1 and/or r2 can
be reversed. The cosines of the internal angles β1,2,3 of an arbitrary triangle
satisfy the equation6

3∑
i=1

cos2 βi + 2
3∏

i=1

cosβi = 1 . (17.97)

Hence Eqs.(17.96) are equivalent to

a2 + r21 + r22
�2

± 2
ar1r2
�3

= 1 . (17.98)

This equation shows that � is the largest link length. If two of the three
ratios r1/� , r2/� , a/� are given, the equation is a quadratic equation for

6 Proved by substituting β3 = π − (β1 + β2)
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the third. The ratios determine the angles in the coupler triangle, the side
lengths b1 = a sinα/ sinβ , b2 = a sin γ/ sinβ and the position of the cusp.
This cusp is referred to as principal cusp because it is the only one in which
both endpoints of the coupler are located on the circle with the diameter
A0–B0 . In the other two positions only one of them is on this circle. More
precisely, in the second position the endpoint originally at A has moved
to the reflection A′ of A in the line A0B0 , and the cusp is on the line

A0A
′ at the distance |r1 − b1| from A0 . Similarly, in the third position the

endpoint originally at B has moved to the reflection B′ of B in the line

A0B0 , and the cusp is on the line B0B
′ at the distance |r2 − b2| from B0 .

Simple algebra reveals that the distances of the second and of the third cusp
from the principal cusp are � sin 2α/ sinβ and � sin 2γ/ sinβ , respectively.
These expressions resemble those for b1 and b2. According to the Roberts-
Tschebychev Theorem three cusps are generated by three cognate four-bars.
Each cusp is the principal cusp for one of these four-bars. In Fig. 17.25 the
three cognate four-bars are congruent.

The conditions (17.96) are particularly simple in the case of foldable four-
bars. Example: Foldable four-bars of the kind a+ r2 = �+ r1 . With (17.96)
this equation is cosβ + cos γ = 1 + cosα = 1− cos(β + γ) or

(1 + cosβ) cos γ − sinβ sin γ = 1− cosβ . (17.99)

This is an equation for γ in terms of β . It has real roots γ for angles β
satisfying the condition cosβ ≥ 2−√

5 (β < 104◦ approximately).
Additional material on coupler curves is found in Mayer [27] and Müller

[28, 30, 31].

17.8.4 Symmetrical Coupler Curves

Coupler curves which are symmetrical with respect to the base line A0B0

have an Eq.(17.84) in which y appears in terms of even orders only. For
this it is necessary that sinβ = 0 . This means that the generating coupler
point C lies on the coupler line AB (not necessarily between the points
A and B ). The coupler curve in Fig. 17.2 is an example. According to the
Roberts-Tschebychev theorem every such coupler curve is generated by two
more four-bars. Also in these four-bars the coupler point lies on the coupler
line.

In Eq.(17.84) for symmetrical coupler curves with sinβ = 0 the parame-
ters are b1 = η and b2 = η−a where η is the parameter used in Fig. 17.19 .
Of particular interest are intersection points of the coupler curve with the
axis of symmetry. With y = 0 the following equation is obtained for these
points which is of third order in x and in η :
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(η − a)(x− �)(x2 + η2 − r21)− ηx[(x− �)2 + (η − a)2 − r22] = 0 . (17.100)

For given parameters the equation has either one or three real roots x . For
this reason one does not expect coupler curves which do not intersect the
x -axis. Such coupler curves do exist, however. Example: If η = 2a and
r2 = a , the equation has the roots x1 = � and x2,3 = �±

√
4a2 + �2 − r21 .

For the parameter values � = 1 , a = 1.3 and r1 = 0.4 the three roots
are real. Yet, the coupler curve does not intersect the x -axis. In Fig. 17.38
the branch of this curve above the x -axis is shown. The three real roots
are marked B0 , P1 and P2 . They represent singular points of the coupler
curve. In order to understand this phenomenon (17.80) and (17.81) must be
formulated for the special case b1 = η , b2 = η − a , β = 0 , y = 0 :

x2 + η2 − 2xη sinα = r21 , (x− �)2 +(η− a)2 − 2(x− �)(η− a) sinα = r22 .
(17.101)

Each equation expresses the cosine law for one of the triangles of Fig. 17.13 .
The elimination of sinα is possible without imposing the constraint equation
cos2 α + sin2 α = 1 . Simple linear combination of the equations results in
(17.100). Only those real solutions of this equation are admissible solutions
for which Eqs.(17.101) yield | sinα| ≤ 1 .

Symmetrical coupler curves of a different nature are generated if the four-
bar and the coupler triangle satisfy the symmetry conditions r1 = r2 = r
and b1 = b2 = b , respectively. Fig. 17.26 shows the system in its sym-
metrical trapezoidal position. The coupler curve of point C is symmetrical
with respect to the midnormal of the base A0B0 . The figure shows also one
of the cognate four-bars which, according to the Roberts-Tschebychev the-
orem, generate the same coupler curve. The third four-bar is the reflection
of the second in the midnormal of the base A0B0 . The parameters of the
second four-bar are denoted r′1 , a

′ , r′2 , b
′
1 , b

′
2 . They satisfy the condition

r′2 = b′2 = a′ . Hence also this is a sufficient condition for the coupler curve
to be symmetric. The symmetry axis passes through C0 , and its inclination
angle against the base line C0A0 is β/2 . The angle at C is β′ = π/2−β/2 .

In Fig. 17.27 this kind of four-bar A0A1B1B0 with coupler point C is
shown again, but this time with the usual notation, i.e., r2 = b2 = a instead
of r′2 = b′2 = a′ and β instead of β′ . The length of the input link is r .
The symmetry axis of the coupler curve passes through B0 under the angle
π/2− β against the base line. The symmetry axis is made the y -axis of an
x, y -system with origin B0 . At B1 the transmission angle 2α is shown. It is
convenient to use α as independent variable for the x, y-coordinates of C .
From isosceles triangles with the apex B1 the auxiliary quantities � and d
are obtained:

� = 2a cos(α− β) , d = 2a sinα . (17.102)

The angle δ appears also in the triangle (A0,B0,A1) . The cosine law r2 =
d2 + �2 − 2d� cos δ yields
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Fig. 17.26 Cognate four-bars

generating a symmetrical coupler
curve

Fig. 17.27 Four-bar generating a coupler

curve with symmetry axis y

cos δ =
4a2 sin2 α+ �2 − r2

4a� sinα
(17.103)

With these expressions the coordinates of C are

y = � cos δ =
4a2 sin2 α+ �2 − r2

2� sinα
cos(α− β)

=
1

2�

[
4a2(cosβ sinα cosα+ sinβ sin2 α)

+(�2 − r2)(sinβ + cosβ cotα)
]
, (17.104)

x = ±� sin δ = ±
√
�2 − y2

= ±
√
4a2 cos2(α− β)− y2 . (17.105)

These equations find an application in Sect. 17.12.3.
From the figure it is seen that intersection points of the coupler curve with

the symmetry axis are characterized by δ = 0 . In such positions A1 lies on
the base line. Then either d = � − r or d = � + r and y = � . Equations
(17.102) yield the associated angles α and the stationary values y :

sinα =
�∓ r

2a
, y = 2a cos(α− β) . (17.106)

The position d = �− r is always possible, the position d = �+ r only if the
four-bar is a crank-rocker. It is left to the reader to show that the positions
d = � − r and d = � + r of a crank-rocker yield identical values of y if
the parameters satisfy the condition r2+ �2 cot2 β = 4a2 cos2 β . In this case,
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the coupler curve has a quadruple point on the circle of singular foci. In Fig.
17.28 these conditions are satisfied.

Fig. 17.28 Symmetrical coupler curve with quadruple point on the circle of singular foci.
Crank-rocker with parameters 
 = 2

√
6 , r1 = 1 , r2 = a = b1 = b2 = 3

17.9 Slider-Crank. Inverted Slider-Crank

The slider-crank mechanism shown in Fig. 17.29a is derived from the four-bar
in Fig. 17.19 by moving the point B0 in y-direction to −∞ . This has the
effect that the endpoint B of the coupler of length a is guided along the
straight line y = h = const. In the inverted slider-crank mechanism of Fig.
17.29b the coupler of length a has become the fixed link, while the fixed
link with the parameter h has become the moving coupler. The parameter
h can be positive or zero or negative. Arbitrarily, it is considered as positive
in both figures. In both figures the crank angle ϕ is the input variable, and
the inclination angle χ of the coupler and the position s of the slider are
output variables. Every value of ϕ is associated with two positions of the
mechanism. In Fig. 17.29a the two values of χ and s are determined by the
equations

sinχ1,2 =
h− r sinϕ

a
, s1,2 = r cosϕ±

√
a2 − (h− r sinϕ)2 . (17.107)

In Fig. 17.29b the output variables are obtained from two equations express-
ing the fact that the slider has the coordinates x = a and y = 0 :

r cosϕ+ h cosχ+ s sinχ = a , r sinϕ+ h sinχ− s cosχ = 0 . (17.108)

Decoupling produces the equations
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Fig. 17.29 Slider-crank (a) and inverted slider-crank (b)

(r cosϕ− a) cosχ+ r sinϕ sinχ = −h ,
s = r sinϕ cosχ− (r cosϕ− a) sinχ .

}
(17.109)

The first equation has two solutions cosχ1,2 and sinχ1,2 . The associated
solutions s1,2 are obtained from the second equation. In both figures the
equivalent to Grashof’s Theorem 17.1 is

Theorem 17.3. The link with the shorter of the two lengths a and r is fully
rotating relative to all other links if

h2 ≤ (a− r)2 . (17.110)

Coupler curves: In both figures the coupler-fixed point C is specified by
constant parameters b1 , b2 and β . In Fig. 17.29a the notation is the same
as in Fig. 17.19, whereas in Fig. 17.29b b2 and β are defined differently.
Implicit equations for coupler curves in the form f(x, y, r, b1, b2, β) = 0 are
obtained from two linear equations for the sine and cosine of the auxiliary
variable angle α . For both figures (17.78) and (17.79) are valid. Hence also
the resulting Eq.(17.80) is valid:

2b1(x sinα+ y cosα) = x2 + y2 + b21 − r2 . (17.111)

In Fig. 17.29a the second linear equation for cosα and sinα is

y = h+ b2 cos(β − α) . (17.112)

In Fig. 17.29b the coordinates of point E satisfy the three equations

xE = x− b2 sin(α− β) , yE = y − b2 cos(α− β) , xE = a− yE cot(α− β) .
(17.113)
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Elimination of xE and yE produces the desired second linear equation:

(x− a) sin(α− β) + y cos(α− β) = b2 . (17.114)

To this equation and to (17.112) addition theorems are applied. Following
this, the two sets of equations, one for Fig. 17.29a and one for Fig. 17.29b, are
solved for cosα and sinα . As in Eqs.(17.83) for the four-bar these solutions
have the forms cosα = U/Δ and sinα = V/Δ with the pertinent coefficient
determinants U , V and Δ . The desired implicit equations of the coupler
curves are the equations cos2 α + sin2 α = 1 , i.e., U2 + V 2 = Δ2 . The
equation Δ = 0 determines the locus of double points and cusps of coupler
curves. Omitting elementary intermediate steps only the final equations are
documented.

Figure 17.29a: The equation of the coupler curve is the quartic[
b2(x

2 + y2 + b21 − r2) sinβ − 2b1x(y − h)
]2

+
[
b2(x

2 + y2 + b21 − r2) cosβ − 2b1y(y − h)
]2

= 4b21b
2
2(x cosβ − y sinβ)2 . (17.115)

The equation Δ = 0 defines the straight line (line f in Fig. 17.29a)

y = x cotβ . (17.116)

Since a straight line intersects a quartic in at most four real points, the
maximum number of double points and of cusps is two. In the context of Fig.
17.18b the existence of two cognate slider-crank mechanisms producing one
and the same coupler curve has been proved.

Figure 17.29b: The equation of the coupler curve is the tricircular sextic{
(x2 + y2 + b21 − r2)[y sinβ + (x− a) cosβ]− 2b1b2x

}2

+
{
(x2 + y2 + b21 − r2)[y cosβ − (x− a) sinβ]− 2b1b2y

}2

= 4b21

{
x[y cosβ − (x− a) sinβ]− y[y sinβ + (x− a) cosβ]

}2

. (17.117)

The equation Δ = 0 defines the circle of singular foci (circle c in Fig. 17.29b)(
x− a

2

)2
+
(
y − a

2
cotβ

)2
=
( a

2 sinβ

)2
. (17.118)

This equation is formally identical with Eq.(17.87) for the four-bar. Both a
and � denote the length of the fixed link. The definitions of β are different,
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however. The maximum number of double points and of cusps of coupler
curves on the circle is three. It can be shown that the third singular focus
coincides with the singular focus A0 . This has the consequence that there
are no cognate inverted slider-crank mechanisms.

17.10 Planar Parallel Robot

The triangular platform (A,B,C) of the planar parallel robot in Fig. 17.30
is positioned by means of three telescopic arms with controllable lengths ri
( i = 1, 2, 3 ) which are pivoted at A0 , B0 , C0 . The platform serves as
carrier of tools or of work pieces7. The characterization as parallel points to
the fact that the platform is positioned by arms in a parallel arrangement
in contrast to a serial robot where it is positioned by a single arm with a
series of links and joints (see Sect. 5.7). Parallel robots are able to manipulate
heavier loads than serial robots, and they position them with higher accuracy
and with greater stiffness.

Fig. 17.30 Planar parallel robot. Four-bar A0ABB0 with coupler curve generated by C .
The rate of change ṙ3 of the leg length r3 causes the platform to rotate with angular
velocity ω3 = ṙ3/(�3 cosα3) about P3

7 Other types of three-legged planar robots see in Hayes/Husty [21]
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The planar parallel robot poses the following kinematics problem. Alto-
gether nine parameters are given. These are three quantities specifying the
triangle (A,B,C), the arm lengths ri ( i = 1, 2, 3 ) and, in the x, y -system
shown, the x -coordinate of B0 and the x, y -coordinates of C0 . To be deter-
mined are all possible positions of the triangle (A,B,C).

Solution: Imagine that joint C connecting the platform with arm 3 is
eliminated. Point C is located on the coupler curve generated by C fixed
to the four-bar A0ABB0 and also on the circle k of radius r3 about C0 .
The four-bar and the coupler curve in Fig. 17.30 are copied from Fig. 17.23.
The circle k intersects the coupler curve at six points. This is the maximum
possible number of points. How to calculate these points was explained fol-
lowing (17.85). Each point determines a possible position of the robot. This
concludes the position analysis.

Next, the velocity state is analyzed. Imagine that the telescopic joint in
arm 3 is a passive joint so that this arm adapts itself freely to motions of the
four-bar A0ABB0 with fixed lengths r1 and r2 . The platform (A,B,C) has
relative to the base the instantaneous center P3 at the intersection of arms
1 and 2 . Let ω3 be the angular velocity of the coupler (ω3 > 0 counter-
clockwise). The velocity of C is v3 = ω3 × �3 . It is tangent to the coupler
curve. As is shown α3 denotes the angle between r3 and v3 in the case
ω3 > 0 . Arm 3 changes its length with the velocity ṙ3 = ω3�3 cosα3 . Con-
versely, if ṙ3 is prescribed, ω3 = ṙ3/(�3 cosα3) . This angular velocity and
the instantaneous center P3 determine the velocities of A , B and C . The
formula for ω3 shows that ṙ3 �= 0 is possible only if in the position under
investigation the coupler curve and the circle k are not in tangential contact.
The quantities �3 and cosα3 are calculated from the triangle (C0,P3,C) .

Similar statements are valid when in the position under investigation arm
1 only or arm 2 only experiences a rate of change of length ṙ1 or ṙ2 , respec-
tively. In Fig. 17.30 also the instantaneous centers P1 , P2 together with the
associated quantities �1 , α1 and �2 , α2 are shown. When the three rates
of change ṙ1 , ṙ2 , ṙ3 occur simultaneously, the superposition principle yields
the resultant angular velocity

ω =
3∑

i=1

ṙi
�i cosαi

. (17.119)

The velocity of each of the points A , B , C is the sum of three velocities
two of which are collinear. The instantaneous center of the platform is the
intersection point of the normals of the velocities of A , B and C .
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17.11 Four-Bars with Prescribed Transmission
Characteristics

The transmission characteristic is the relation between input angle ϕ and
output angle ψ . In what follows, the implicit form (17.9) is used:

−�r1 cosϕ+ �r2 cosψ = r1r2 cos(ϕ− ψ) +
1

2
[a2 − (r21 + �2 + r22)] . (17.120)

It depends upon the three parameters r1/� , r2/� and a/� where � is a
given unit length. In some engineering applications it is required that a four-
bar produces prescribed pairs of input and output angles (ϕk, ψk) (k =
1, 2, . . .) . In other applications it is required that some prescribed function
ψ = f(ϕ) be optimally approximated over a certain interval 0 ≤ ϕ ≤ ϕmax .
These and related problems have been treated extensively in the literature
(see, for example, Lichtenheldt/Luck [26], Hain [18, 19], Soni [36]). In what
follows, a few problems are discussed in detail.

17.11.1 Prescribed Pairs of Input-Output Angles

First, the case is treated that three pairs of angles (ϕk, ψk) (k = 1, 2, 3) are
prescribed. Equation (17.120) yields the three equations

−�r1 cosϕk+ �r2 cosψk = r1r2 cos(ϕk−ψk)+
1

2
[a2− (r21+ �2+r22)] (17.121)

(k = 1, 2, 3) . The differences first minus second and second minus third
equation have the general forms

A1�r1 +B1�r2 = C1r1r2 , A2�r1 +B2�r2 = C2r1r2 (17.122)

with given constants Ai , Bi , Ci (i = 1, 2) . Division by r1r2 results in two
linear equations for �/r1 and �/r2 with uniquely determined real solutions.
These solutions are substituted into one of the Eqs.(17.121). This equation
then determines a2/�2 . The solution thus obtained is useful only if, first,
r1 > 0 , r2 > 0 , a2/�2 > 0 and, second, the four-bar with these link lengths
is capable of producing the prescribed pairs of angles in the desired order and
without disconnection and reassembly.

In most engineering applications it is not required that the four-bar pro-
duces prescribed pairs of angles (ϕk, ψk) (k = 1, 2, . . .) . Instead, pairs of
angular differences (ϕk − ϕ0, ψk − ψ0) (k = 1, 2, . . .) are prescribed where
the pair (ϕ0, ψ0) is an unspecified initial position of the four-bar. The angles
ϕ0 and ψ0 are free parameters so that the total number of free parameters
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is five. In this formulation of the problem (17.120) must be satisfied for the
pair (ϕ0, ψ0) and for up to four pairs (ϕ0+ϕk, ψ0+ψk) (k = 1, 2, 3, 4) . The
previous discussion has shown that results may be useless for various reasons
(negative or imaginary link lengths, wrong order etc.). Therefore, only three
pairs (ϕ0 + ϕk, ψ0 + ψk) (k = 1, 2, 3) are prescribed. This has the conse-
quence, that the solutions for ψ0 , r1 , r2 and a are functions of ϕ0 . This
initial angle ϕ0 is a free parameter which is chosen later so as to arrive at a
useful solution. The altogether four equations are

−�r1 cosϕ0+�r2 cosψ0 = r1r2 cos(ϕ0−ψ0)+
1

2
[a2−(r21+�2+r22)] , (17.123)

−�r1 cos(ϕ0 + ϕk) + �r2 cos(ψ0 + ψk) = r1r2 cos(ϕ0 + ϕk − ψk − ψ0)

+
1

2
[a2 − (r21 + �2 + r22)] (k = 1, 2, 3) . (17.124)

The first equation is subtracted from each of the remaining three equations.
The differences are then divided by r1r2 . This results in the equations

�

r2
[cos(ϕ0 + ϕk)− cosϕ0]− �

r1
[cos(ψ0 + ψk)− cosψ0]

= cos(ϕ0 − ψ0)− cos(ϕ0 + ϕk − ψk − ψ0) (k = 1, 2, 3) .(17.125)

These are three linear inhomogeneous equations for �/r1 and �/r2 . For a so-
lution to exist it is necessary that the (3×3) -coefficient determinant including
the right-hand side terms be zero. This condition results in an equation in
which ϕ0 and ψ0 are the only unknowns. In order to be able to express
ψ0 as function of ϕ0 Eqs.(17.125) are rewritten with the help of addition
theorems in such a way that cosψ0 and sinψ0 are isolated. The equations
thus rewritten are

ak
�
r2 + (bk cosψ0 + ck sinψ0)

�
r1 = dk cosψ0 + fk sinψ0 ,

ak = cos(ϕ0 + ϕk)− cosϕ0 , dk = cosϕ0 − cos(ϕ0 + ϕk − ψk) ,
bk = 1− cosψk , fk = sinϕ0 − sin(ϕ0 + ϕk − ψk) ,
ck = sinψk

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(17.126)
(k = 1, 2, 3) . The condition is∣∣∣∣∣∣

a1 b1 cosψ0 + c1 sinψ0 d1 cosψ0 + f1 sinψ0

a2 b2 cosψ0 + c2 sinψ0 d2 cosψ0 + f2 sinψ0

a3 b3 cosψ0 + c3 sinψ0 d3 cosψ0 + f3 sinψ0

∣∣∣∣∣∣ = 0 (17.127)

or explicitly
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A cos2 ψ0 +B sin2 ψ0 + 2C cosψ0 sinψ0 = 0 , (17.128)

A = a1(b2d3 − b3d2) + a2(b3d1 − b1d3) + a3(b1d2 − b2d1) ,

B = a1(c2f3 − c3f2) + a2(c3f1 − c1f3) + a3(c1f2 − c2f1) ,

C = 1
2 [a1(b2f3 − b3f2) + a2(b3f1 − b1f3) + a3(b1f2 − b2f1)
+ a1(c2d3 − c3d2) + a2(c3d1 − c1d3) + a3(c1d2 − c2d1)] .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (17.129)

In the special case A = B �= 0 , the solutions are ψ0 = − 1
2 sin

−1(A/C) and

ψ0 = π− 1
2 sin

−1(A/C) . In the special case A �= 0 , B = 0 , the solutions are
ψ0 = ±π/2 and ψ0 = − 1

2 tan
−1 A/(2C) and ψ0 = π− 1

2 tan
−1 A/(2C) . In all

other cases division by cos2 ψ0 results in the quadratic equation B tan2 ψ0+
2C tanψ0 + A = 0 . Each solution tanψ0 determines two angles ψ0 which
differ by 180◦ . With each real solution ψ0 two out of the three Eqs.(17.126)
determine r1/� and r2/� . With these solutions r1/� and r2/� (17.123)
determines a2/�2 . At this point the desired formulation of the unknowns
ψ0 , r1 , r2 and a as functions of the free parameter ϕ0 is accomplished.
The variation of ϕ0 in search of a useful solution must be done numerically.

17.11.2 Prescribed Transmission Ratios

In this section four-bars are determined which produce two prescribed pairs of
angles (ϕk, ψk) (k = 1, 2) and, in the second position (ϕ2, ψ2) , a prescribed
value i2 of the transmission ratio i = ϕ̇/ψ̇ . The first two conditions yield
the equations (see (17.121))

−�r1 cosϕk+ �r2 cosψk = r1r2 cos(ϕk−ψk)+
1

2
[a2− (r21+ �2+r22)] (17.130)

(k = 1, 2) . As before, the difference of these two equations produces the
first Eq.(17.122). For the transmission ratio (17.31) is used. This yields an
equation of the same type:

−�r1 sinϕ2 +
�r2
i2

sinψ2 = r1r2

(
1− 1

i2

)
sin(ϕ2 − ψ2) . (17.131)

This is the second Eq.(17.122). The further steps of solution are as before.
The method of solution for five parameters (see (17.123), (17.124)) remains

the same if one or two of the Eqs.(17.124) are replaced by the requirement
that the transmission ratio is prescribed for one or two of the remaining pairs
of angles.
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17.11.3 Jeantaud’s Steering Mechanism

In an automobile the steering mechanism causes the axes of the front wheels
to turn about points A0 and B0 fixed in the car body. In Fig. 17.31 the axes
are shown in a vertical projection during a left turn. With an ideal steering
mechanism the turning angles α and β are coordinated such that the two
front axes and the rear axis of the car have, independent of the radius R of
the curve, a common intersection point. The lengths � and h are constant
parameters. From triangles the equations are obtained: h = (R− �/2) tanα ,
h = (R+ �/2) tanβ . Elimination of the variable R results in

cotβ − cotα =
�

h
. (17.132)

This equation defines the function β(α) . It is an odd function. The curve
denoted k in Fig. 17.32 is the graph of this function for the specific parameter
value �/h = 0.5 in the interval of interest up to the maximum steering angles
(αmax, βmax) . If, for example, αmax = 40◦ , (17.132) yields βmax ≈ 30.6◦ .

Jeantaud invented the steering mechanism shown in Fig. 17.33 . It is a
symmetrical four-bar approximating (17.132). The input link and the output
link of equal length r are rotating about A0 and B0 , respectively. They
are rigidly connected with the front axes. The figure shows the mechanism
in the symmetrical trapezoidal position (front axes not turned) and in a

Fig. 17.31 Ideal turning
angles α and β of the
front axes of a car during

a turn

Fig. 17.32 Graph of the function β = f(α)
for 
/h = 0.5 (curve k ) and approximation
by a Jeantaud mechanism with nonoptimal pa-

rameters (�, γ)

Fig. 17.33 Jeantaud mechanism
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position effecting a left turn. The link lengths are � , r and a . Suitable
dimensionless parameters are � = r/� and the angle γ . The figure shows
that a = �− 2r cos γ . Hence

2r2+�2−a2 = 2r2+4r�(1−� cos γ) cos γ = 2r�(2 cos γ−� cos 2γ) . (17.133)

The turning angle of the left front axis is α . The angle of the right axis is
called not β , but β∗ because it is an approximation of β . The figure shows
angles ψ and ϕ . When this figure is rotated 180 ◦ , it has the form and the
notation of Fig. 17.7 . Equation (17.9) relating ϕ and ψ is

2r�(cosψ − cosϕ)− 2r2 cos(ϕ− ψ) + 2r2 + �2 − a2 = 0 . (17.134)

For 2r2+�2−a2 the expression in (17.133) is substituted. Figure 17.33 shows
that ϕ = γ + β∗ and ψ = π + α − γ . Also these substitutions are made.
When the resulting equation is divided by 2r� , it has the form

cos(γ + β∗) + cos(γ − α)− � cos(2γ + β∗ − α) = 2 cos γ − � cos 2γ . (17.135)

After applying the addition theorem for the cosine function this takes the
form

A cosβ∗ +B sinβ∗ = C , (17.136)

A = cos γ − � cos(2γ − α) , C = 2 cos γ − � cos 2γ − cos(γ − α) ,
B = − sin γ + � sin(2γ − α) .

}
(17.137)

The equation has two solutions β∗ . Their sines are

sinβ∗ =
BC ±A

√
A2 +B2 − C2

A2 +B2
. (17.138)

The pertinent solution is the one which has the same sign that α has. This
solution defines a two-parametric manifold of functions β∗(α, �, γ) with
parameters � and γ . Every parameter combination (�, γ) determines a curve
β∗(α) in the diagram of Fig. 17.32 . It is reasonable to require that the curve
passes through the point α = αmax , β∗ = βmax . This means that (17.135)
is satisfied with α = αmax and β∗ = βmax . This equation determines for
every value of γ the associated value of � . Thus, a one-parametric manifold
of curves with parameter γ is left. In Fig. 17.32 a single nonoptimal curve
is shown. The optimal value of γ is determined from the criterion that the
maximum of the deviation |β∗(α)− β(α)| in the interval 0 ≤ α ≤ αmax be
minimal. It turns out that this criterion yields two solutions γ1 > 0 and
γ2 < 0 . Example: With �/h = 0.5 , αmax = 40◦ and βmax ≈ 30.6◦ the
solutions are γ1 ≈ 67◦ , �1 ≈ 0.25 and γ2 ≈ −121◦ , �2 ≈ 0.25 . The four-
bar with γ2 is located in front of the front axis. The four-bar with γ1 is the
one shown in Fig. 17.33 . It is located behind the front axis (Brossard [4]).
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17.12 Coupler Curves with Prescribed Properties

A problem frequently encountered in engineering is the design of a four-bar
for the generation of a coupler curve having certain prescribed properties.
If the four-bar has to be a crank-rocker, a suitable design may be found in
the book by Hrones/Nelson [22]. It is a compilation of 7300 coupler curves.
In each diagram a single crank-rocker is shown together with coupler curves
for a variety of coupler-fixed points. A different ordering principle of coupler
curves is found in Volmer [41]. Each diagram is a compilation of four-bars
(not only crank-rockers) and of coupler curves having the same singular foci
and the same double points on the circle of singular foci (17.87). In what
follows, some mathematical problems and methods of solution are discussed
which are encountered in the generation of coupler curves with prescribed
properties.

17.12.1 Coupler Curves Passing Through Prescribed
Points

The parameter representation of the coupler curve in the form of Eqs.(17.74)
– (17.76) contains the six constant parameters � , r1 , r2 , a , η , ζ and as sev-
enth parameter the variable ϕ . These equations describe the coupler curve in
the special x, y -system of Fig. 17.19 . Three additional constant parameters
determine the location of this x, y -system in an x′, y′ -reference system.

In a typical problem statement it is required that a coupler curve passes
through prescribed points in the x′, y′ -system. Also the order in which these
points are passed is prescribed. Let m be the number of prescribed points.
The 2m prescribed coordinates result in 2m conditional equations. These
equations contain 9 +m free parameters, namely, the nine constant param-
eters listed above and for every prescribed point the associated crank angle.
From the equality 2m = 9 +m it follows that up to nine points can be pre-
scribed. To be sure, not for every set of nine prescribed points real solutions
exist and if they are real, the nine points are, in general, not passed in the
prescribed order. It may happen that the calculated coupler curve is bicursal
with some of the nine points on each branch.

The number m of points that can be prescribed is smaller than nine if the
additional requirement exists that the angle ϕk−ϕ1 of rotation of the input
crank associated with the passage from point P1 to point Pk is prescribed
for k = 2, . . . ,m . The only free angle is ϕ1 . This means that altogether ten
free parameters exist while the number of equations to be satisfied is 2m as
before. From the equality 2m = 10 it follows that at most five points can
be prescribed. Methods for solving this problem see in Freudenstein [15] and
Dijksman [8].
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17.12.2 Straight-Line Approximations

Coupler curves with approximately straight-line segments have important
engineering applications (see Fig. 17.2). The earliest straight-line approxi-
mation was invented by Watt8 for the purpose of guiding the piston in his
steam engine. His four-bar is a symmetrical double-rocker of second kind
with link lengths � , r1 , a , r2 satisfying the conditions r1 = r2 = r and
� = 2

√
r2 + (a/2)2 . The ratio a/r is a free parameter. In Fig. 17.34a the

four-bar with link lengths r = 35 , a = 24 and � = 74 is shown in four
positions. The figure-eight-shaped coupler curve generated by the midpoint
C of the coupler is symmetric to both the base line A0B0 and the midnormal
of this base line. The maximum distance from the base line (in position 4 of
point C) is

√
a(�− a)/2 .

Watt was unaware of cognate four-bars since the Roberts-Tchebychev the-
orem had not yet been discovered. So was Evans who invented the so-called
grashopper linkage shown in Fig. 17.34b . It is a cognate of Watt’s mechanism.
Positions 1, 2, 3, 4 of the coupler point C are the same as in Fig. 17.34a .
Evans’ linkage has the advantage of being half the size of Watt’s mechanism
for one and the same coupler curve.

Fig. 17.34 Watt’s straight-line approximation by a double-rocker with r = 35 , a = 24 ,

 = 74 (a) and Evans’ grashopper linkage (b) , a cognate of Watt’s mechanism

8 James Watt (1736-1819) nowadays primarily known for the invention of steam engines
wrote: “Though I am not over anxious after fame, yet I am more proud of the parallel
motion than of any other mechanical invention I have ever made”
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Roberts9 is the inventor of another straight-line approximation (see Fig.
17.35). The coupler curve is symmetric with respect to the midnormal of the
base. In the symmetry position shown the coupler point C is on the base
line (coupler length a = �/2 , coupler triangle with b1 = b2 = r ). The three
congruent triangles are determined by the single parameter � = r/� . In the
figure the case � = .6 is shown. The coupler curve has a cusp and double
points at A0 and B0 .

Fig. 17.35 Roberts’ straight-line approximation by the double-rocker with r/
 = .6

Remark on the influence of the parameter � : With � = 1/2 the coupler curve
has three cusps. This curve is shown in Fig. 17.25 . With every � > 1/2 the
coupler curve has a single cusp and double points at A0 and B0 . The midpoint
between A0 and B0 is a minimum. The maximum deviation Δmax from
the straight line between A0 and B0 occurs at two symmetrically located
maxima. With increasing � this Δmax tends monotonically toward zero10.
In the same process the straight-line approximation becomes increasingly
better in an increasingly longer interval extending beyond the points A0 and
B0 . With � = 3/4 the four-bar is foldable. With � > 3/4 the coupler is fully
rotating. From an engineering point of view large values of � are impractical.

Watt’s, Evans’ and Roberts’ straight-line approximations were found by
engineering intuition. A more systematic approach was explained in Sect.
15.3.6. The coupler curve of the point which, in a position under investigation,
is Ball’s point of the coupler is a good straight-line approximation, because
it has at this point zero curvature and zero rate of change of curvature. A
textbook entirely devoted to straight-line approximations (by means of four-
bars and of other linkages) is Kraus [25]. Straight-line approximations by
means of inverted slider-crank mechanisms see also in Wunderlich [46]. By

9 Richard Roberts (1789-1864), not to be confused with Samuel Roberts (1827-1913) of
the Roberts/Tschebychev theorem
10 Δmax/
 ≈ .0154 for � = .5 , Δmax/
 ≈ .0068 for � = .6 , Δmax/
 ≈ .0029 for � = .75



17.12 Coupler Curves with Prescribed Properties 619

far the best straight-line approximations by coupler curves of four-bars were
obtained by Tschebychev [39, 40] who used this problem for demonstrating
the power of a new and widely applicable approximation theory invented by
him. His method is the subject of the next section.

17.12.3 Tschebychev’s Straight-Line Approximations

The general problem solved by Tschebychev is the following. In a given in-
terval xa ≤ x ≤ xb a given function F (x) is to be approximated by another
function of the form

Pn(x, p0, . . . , pn) = p0f0(x) + . . .+ pnfn(x) (17.139)

with free parameters p0, . . . , pn and with given linearly independent func-
tions f0(x), . . . , fn(x) . Tschebychev proved

Theorem 17.4. If the function Pn(x, p0, . . . , pn) has at most n real roots
in the interval xa ≤ x ≤ xb , uniquely determined parameters p0, . . . , pn
exist such that the maximum of the absolute value of the approximation error
Δn(x, p0, . . . , pn) = Pn(x, p0, . . . , pn)− F (x) in the interval xa ≤ x ≤ xb is
minimal:

|Δn(x, p0, . . . , pn)|max = Min! (xa ≤ x ≤ xb) . (17.140)

Moreover, if D is this maximum, the optimal function Δn(x, p0, . . . , pn)
attains in the interval xa ≤ x ≤ xb alternatingly not less than (n+2) times
extremal values D and −D .

For a proof of the theorem see Tschebychev [39] (p.111 and 273), Watson [45]
and Powell [34]. Figure 17.36 shows schematically the graph of the optimal
function Δn in the case n = 2 . At the boundaries xa and xb and at
unspecified points x in the interval xa ≤ x ≤ xb the maximum D and the
minimum −D are attained not less than four times. Points x of extremal
values in the interval are double roots of one of the two equations

Δn(x, p0, . . . , pn)±D = 0 . (17.141)

Extrema at the boundaries xa and xb of the interval are either simple roots
or double roots of (17.141). Double roots satisfy also the equation

Δ′
n(x, p0, . . . , pn) = 0 . (17.142)

The n+2 Eqs.(17.141) and the n Eqs.(17.142) for double roots x in the
interior of the interval represent altogether 2n+2 equations. This equals the



620 17 Planar Four-Bar Mechanism

Fig. 17.36 Optimal function Δ2(x, p0, p1, p2) with extrema D and −D inside and

on the boundaries of the interval xa ≤ x ≤ xb

number of unknowns. Unknown are D , p0, . . . , pn and the n double roots x
in the interior of the interval. Thus, it is possible to express all unknowns in
terms of xa and xb . The equations are linear with respect to D , p0 , . . . , pn
and they are nonlinear with respect to the double roots x in the interior of
the interval.

Remarks: 1. The set of Eqs.(17.141) does not change if D is replaced by
−D . For this reason D is redefined as either maximum or minimum of the
function.

2. If in (17.140) the function Δn is replaced by λΔn with an arbitrary
constant λ , the solutions for p0 , . . . , pn , x1 , . . . , xn+2 remain unaltered,
but D is replaced by λD .

Now back to straight-line approximations. In [40] p.51 Tschebychev inves-
tigated the family of coupler curves which are symmetric with respect to the
midnormal of the base A0B0 and among these coupler curves those which
approximate a straight line parallel to the base. Roberts’ coupler curve be-
longs to this family. Watt’s does not. For the family of symmetric coupler
curves the parameter Eqs.(17.104), (17.105) based on Fig. 17.27 are used11:

y(α) =
1

2�

[
4a2(cosβ sinα cosα+ sinβ sin2 α)

+ (�2 − r2)(sinβ + cosβ cotα)
]
,

x(α) = ±√4a2 cos2(α− β)− y2 .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (17.143)

The symmetry-axis is the y -axis. The constant parameters of the four-bar
are � , r , a , β , and the free parameter is the angle α . Intersection points
of the coupler curve with the y -axis are associated with one of the angles
(see (17.106))

sinα =
�∓ r

2a
. (17.144)

11 The four-bar analyzed in [40] p.51 is the one with symmetries r1 = r2 and
b1 = b2 . Only later Tschebychev [40] p.273 discovered what is now known as

Roberts/Tschebychev theorem. The formulation presented here follows the exposition in
Artobolevski/Levitski/Cherkudinov [2] without, however, making the substitution z =
sin2 α
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Tschebychev determined parameters � , r , a , β such that the coupler curve
is the optimal approximation to a straight line y = y0 = const. The difference
y(α)− y0 or rather a constant multiple of it is the function Δn = Pn − F .
With n = 2 it is written in the form

Δ2 =
2�

(�2 − r2) cosβ
[y(α)− y0] = p0f0(α) + p1f1(α) + p2f2(α)− F (α)

(17.145)
with the following functions and coefficients

f0(α) = 1 , f1(α) = sinα cosα , f2(α) = sin2 α , F (α) = − cotα ,
(17.146)

p0 = tanβ − 2y0�

(�2 − r2) cosβ
, p1 =

4a2

�2 − r2
, p2 =

4a2 tanβ

�2 − r2
.

(17.147)
In this formulation the problem appears as approximation of the function
F (α) = − cotα by P2 = p0f0+p1f1+p2f2 . In the interval 0 ≤ α ≤ π the
function P2 has at most two real roots. In the segment of the coupler curve
which is of interest the inequality 0 < α < π/2 holds. Thus, the condi-
tions for the applicability of Tschebychev’s theorem are satisfied. Equations
(17.141) read:

p0 + p1 sinα cosα+ p2 sin
2 α+ cotα±D = 0 . (17.148)

According to the theorem each equation has (at least) one simple root and
one double root in the interval 0 < α < π/2 . This is, indeed, the case. The
equations can be written in the forms

sin(α− α1) sin
2(α− α3) = 0 ,

sin(α− α4) sin
2(α− α2) = 0

}
(17.149)

with constants 0 < α1 , . . . , α4 < π/2 . For the first equation this is
shown as follows. With an addition theorem and after division through
sinα sinα1 sin

2 α3 the equation has the form

(cotα1 − cotα)[1 + (cot2 α3 − 1) sin2 α− 2 cotα3 sinα cosα] = 0 . (17.150)

Multiplying out further leads to

cotα1 + 2 cotα3 + (1− 2 cotα1 cotα3 − cot2 α3) sinα cosα

+ [(cot2 α3 − 1) cotα1 − 2 cotα3] sin
2 α− cotα = 0 . (17.151)

This is indeed Eq.(17.148). In the case +D , comparison of coefficients yields

p0 = − cotα1 − 2 cotα3 −D , (17.152)
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p1 = cot2 α3 + 2 cotα1 cotα3 − 1 =
2 sin(α1 + 2α3)

(1− cos 2α3) sinα1
,

p2 = 2 cotα3 + (1− cot2 α3) cotα1 = − 2 cos(α1 + 2α3)

(1− cos 2α3) sinα1
.

⎫⎪⎪⎬
⎪⎪⎭ (17.153)

In the same way the second Eq.(17.149) and Eq.(17.148) with −D yield

p0 = − cotα4 − 2 cotα2 +D , (17.154)

p1 =
2 sin(α4 + 2α2)

(1− cos 2α2) sinα4
, p2 = − 2 cos(α4 + 2α2)

(1− cos 2α2) sinα4
. (17.155)

The results obtained so far are summarized as follows. Each of the equations
Δ2 = ±D has in the interval 0 < α < π/2 a simple root (α1 or α4 ) and a
double root (α2 or α3 ). Suppose that α1 < α4 . The graph of the optimal
function Δ2 is as shown in Fig. 17.36 with α instead of x . The roots α1

and α4 are the boundaries of the approximation interval.
The six Eqs.(17.152) – (17.155) suffice for determining the unknowns

D , p0 , p1 , p2 , α2 and α3 as functions of α1 and α4 . The two Eqs.(17.142),
which are valid for x = α2 and for x = α3 , are not needed because
Eqs.(17.148) are available in the explicit form (17.149). Solutions for the
unknowns are obtained as follows. Equations (17.152) and (17.154) yield

p0 = −1

2
(cotα4 + cotα1)− (cotα3 + cotα2) , (17.156)

D =
1

2
(cotα1 − cotα4) + (cotα3 − cotα2) . (17.157)

With (17.153) and (17.155)

p1
p2

= − tan(α1 + 2α3) = − tan(α4 + 2α2) . (17.158)

From this it follows that either

α1 + 2α3 = α4 + 2α2 (17.159)

or α1 + 2α3 = α4 + 2α2 + π . From these two equations and from (17.153)
and (17.155) it follows that either

(1− cos 2α3) sinα1 = (1− cos 2α2) sinα4 (17.160)

or (1 − cos 2α3) sinα1 = −(1 − cos 2α2) sinα4 . Because of the restriction
0 < α1, α4 < π/2 only (17.159) together with (17.160) is useful. Equation
(17.159) yields

α3 = α2 +
1

2
(α4 − α1) . (17.161)
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With the corresponding expression cos 2α3 = cos 2α2 cos(α4 − α1) −
sin 2α2 sin(α4 − α1) Eq.(17.160) becomes an equation for α2 :

[sinα4 − sinα1 cos(α4 − α1)] cos 2α2

+ sinα1 sin(α4 − α1) sin 2α2 = sinα4 − sinα1 . (17.162)

Of its two solutions for α2 only one is located between α1 and α4 . Only
this solution is useful. The associated angle α3 is calculated from (17.161).
Following this, Eqs.(17.155) – (17.157) determine p0 , p1 , p2 and D as func-
tions of α1 and α4 .

The three Eqs.(17.147) relate the seven quantities α1 , α4 , � , y0 , r , a
and β . These relations are expressed as follows. Equating the two expressions
for p0 in (17.147) and (17.156) yields for y0 the expression shown below.
Similarly, equating the two expressions for p1 in (17.147) and (17.153) yields
for a2 the expression shown below. Finally, equating the expressions for
p2/p1 in (17.147) and (17.158) yields for tanβ the two expressions shown
below.

y0 =
�2 − r2

2�
cosβ

[
tanβ +

1

2
(cotα4 + cotα1) + (cotα3 + cotα2)

]
, (17.163)

a2 = (�2 − r2)
sin(α1 + 2α3)

2(1− cos 2α3) sinα1
, (17.164)

tanβ = − cot(α1 + 2α3) = − cot(α4 + 2α2) . (17.165)

Four out of the seven quantities α1 , α4 , � , y0 , r , a and β can (within
certain limits) be prescribed arbitrarily. The base length � is prescribed as
unit length. The interval boundaries α1 and α4 are associated with certain
points (x1, y1) and (x4, y4) , respectively, of the coupler curve which are de-
termined by (17.143). It is the segment of the coupler curve between these
points which is approximated to the straight line y = y0 . Now, it is decided
that one of these points, say (x1, y1) , is located on the symmetry axis. Be-
cause of the symmetry this has the consequence that the coupler curve is
approximated in the segment of double length between the points (−x4, y4)
and (x4, y4) . According to (17.144) the condition x1 = 0 has one of the
forms sinα1 = (�∓r)/(2a) . By an investigation which is omitted here it can
be shown that a better approximation of the straight line y = y0 is achieved
when the plus sign is chosen:

sinα1 =
�+ r

2a
. (17.166)

The angle α1 is real only if the four-bar to be determined is a crank-rocker.
Whether the results satisfy this condition remains to be seen.

The third quantity we prescribe is β = 0 . This means that the coupler
point lies on the coupler line. Having made these decisions on � , α1 and β
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a one-parametric manifold of four-bars is left. As parameter the ratio

� =
r

�
(17.167)

is chosen. It should be noted that Roberts’ four-bar is a double-rocker with
an angle β �= 0 . Thus, the straight-line approximations to be determined are
of a different nature12.

The next task is to express the quantities y0 and a in (17.163) and
(17.164) in terms of � and � . In addition, two new quantities are defined
which are measures of quality of the approximation. These are the relative
length L/� = 2x4/� = 2x(α4)/� of the approximately straight segment and
the relative width B/L = 2(y − y0)max/L of the error in this segment.
These quantities are expressed in terms of � . This is done first for B/� .
Equations (17.145) and (17.157) yield the preliminary expression

B

�
=

2(y − y0)max

�
=

�2 − r2

�2
D

= (1− �2)
[1
2
(cotα1 − cotα4) + (cotα3 − cotα2)

]
. (17.168)

With β = 0 Eqs.(17.165) take the simple forms

2α3 =
π

2
− α1 , 2α2 =

π

2
− α4 . (17.169)

With these expressions (17.160) becomes
(1− sinα1) sinα1 = (1− sinα4) sinα4 .
This has the trivial solution α4 = α1 and the significant solution

sinα4 = 1− sinα1 . (17.170)

The first Eq.(17.169) yields sin(α1 + 2α3) = 1 and cos 2α3 = sinα1 or
with (17.166) cos 2α3 = (�+ r)/(2a) . Substitution of these expressions into
(17.164) leads to

a =
�

2
(3− �) . (17.171)

The parameter � is free subject to the condition that the four-bar is a crank-
rocker. For this to be the case, r = �� must be the shortest link. In addition,
Grashof’s inequality (17.4), �min + �max ≤ �′ + �′′ , must be satisfied. Both
conditions are satisfied if and only if 0 < � ≤ 1 .

The expression obtained for a is substituted back into (17.166). With this
equation and with (17.169) and (17.170) the formulas are obtained:

12 Tschebychev [40] (p.273, p.285, p.301 and p.495) investigated also the case β �= 0 . Also
for this case he gave explicit formulas for a one-parametric family of four-bars. In [40] p.495
the approximation of a circle is investigated
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sinα1 =
1 + �

3− �
, cosα1 =

2
√
2(1− �)

3− �
, cotα3 =

1 + sinα1

cosα1
,

sinα4 = 2
1− �

3− �
, cosα4 =

√
(5− 3�)(1 + �)

3− �
, cotα2 =

1 + sinα4

cosα4
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(17.172)
With these expressions (17.163) and (17.168) yield for the location y0 of the
straight line and for the measure of quality B/� the formulas

y0
�

=
√

2(1− �) +
1

8
(5− 3�)

√
(5− 3�)(1 + �) , (17.173)

B

�
= 2

√
2(1− �)− 1

4
(5− 3�)

√
(5− 3�)(1 + �) . (17.174)

For the ratio L/� Eqs.(17.143) yield

y4 =
1

2�
cotα4[(3�− r)2 sin2 α4 + �2 − r2]

=
�

4
(5− 3�)

√
(5− 3�)(1 + �) , (17.175)

L

�
=

2x4

�
=

2

�

√
(3�− r)2 cos2 α4 − y24

=
1

2

√
3(5− 3�)(1 + �)(3− �)(3�− 1) . (17.176)

From L/� and B/� the second measure of quality B/L is calculated.
L > 0 requires that � > 1/3 . The diagram in Fig. 17.37 shows as functions

of � the ratios L/� and |B/L| characterizing the quality of the straight-line
approximation. The former should be large and the latter very small. These
goals are achieved with values of � close to 1/3 .

Example: With � = r/� = .4 (17.171), (17.173), (17.176) and (17.174),
determine the coupler length a = 1.3� , the length y0 ≈ 2.19� and the
measures of quality L/� ≈ 1.44 and |B/L| ≈ .00020 . This is an excellent
straight-line approximation. The entire coupler curve is shown in Fig. 17.38 .
The four-bar is drawn in solid lines. Dashed lines show the cognate four-
bar generating the same coupler curve. For the significance of the points
B0 , P1 and P2 see the comment following (17.100). For comparison: The
straight-line approximations by Watt / Evans (Fig. 17.34a,b ) and by Roberts
(Fig. 17.35) are not nearly as good. The measures of quality for Roberts’
approximation are L/� ≈ 1 and |B/L| ≈ .0068 . From Fig. 17.37 it is
seen that with increasing � the measure of quality L/� improves while the
essential measure of quality |B/L| deteriorates. For � = r/� = .5 , for
example, the measures are L/� ≈ 2.22 and |B/L| ≈ .0022 . This is still a
very good straight-line approximation. End of example.
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Fig. 17.37 Measures of quality L/
 and |B/L| of Tschebychev’s straight-line approxi-

mations as functions of � = r/


Fig. 17.38 Tschebyschev’s straight-line approximation. Solid lines: Crank-rocker with
r = .4
 , a = 1.3
 . Approximation of the line y0 ≈ 2, 19
 . Measures of quality L/
 ≈
1.44 , |B/L| ≈ .00020 . In dashed lines the cognate four-bar generating the same coupler

curve. For P1 and P2 see the text following (17.100)

17.13 Peaucellier Inversor

Until after Tschebychev’s work on straight-line approximations it was taken
for granted that no plane mechanism consisting of rigid links with rotary
joints could possibly generate an exact straight line. It caused, therefore,
quite a sensation when in 1864 Peaucellier [33] invented a simple mechanism
achieving just this13. The mechanism which became known as Peaucellier
inversor is shown in Fig. 17.39 . It has two fixed points 0 and A a distance
a apart. A crank of length � connects A to the point called P . This point
P is connected to 0 via two rods of equal length b and four rods of equal
length c < b . The trajectory of P is the circle k with the equation

(x− a)2 + y2 = �2 . (17.177)

13 The history of this invention see in Sylvester [38], v.3
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Fig. 17.39 Peaucellier inversor. Coordinates r , ϕ , x , y , r′ , x′ , y′ . Circles k , k0 , k′

In what follows, the trajectory of P′ is investigated. First, relationships be-
tween the polar coordinates of P and P′ are established. Both points have
equal polar coordinates ϕ , but different polar coordinates r and r′ . The re-
lationship between r and r′ is established as follows. In terms of rM (polar
coordinate of M) and of auxiliary lengths d and h the polar coordinates are
r = rM − d and r′ = rM + d . Hence rr′ = r2M − d2 . Also r2M = b2 − h2 and
d2 = c2 − h2 . Therefore, finally,

rr′ = R2 (R2 = b2 − c2 = const > 0) . (17.178)

The transformation of P into P′ or vice versa according to this equation is
called inversion in the circle

x2 + y2 = R2 . (17.179)

The circle itself is called inversion circle k0 . Every point of k0 is trans-
formed into itself. The trajectory of P′ is the inverse of the circle k in k0 .
Its equation is obtained as follows. Let (x, y) and (x′, y′) be the cartesian
coordinates of P and P′, respectively. The two sets of coordinates are related
by the equations

x = x′ r
r′

= x′ R
2

r′2
=

x′R2

x′2 + y′2
, y =

y′R2

x′2 + y′2
. (17.180)

Substitution of these expressions into (17.177) results in the desired equation
of the trajectory of P′ :

(
x′ − a

R2

a2 − �2

)2
+ y′2 =

(
�

R2

a2 − �2

)2
. (17.181)
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This is another circle centered on the x-axis. It is called the inverted circle
k′. Depending on R , a and � the circles k and k0 may or may not intersect
in real points. If they intersect, k′ intersects the circle k0 in the same points
because every point of k0 is transformed into itself. In Fig. 17.39 the circles
intersect in two points. Let ξ be the x-coordinate of these points. Equations
(17.177) and (17.179) yield

ξ =
R2 + a2 − �2

2a
. (17.182)

The circle k′ intersects the x-axis at the points

x1 =
R2

a+ �
, x2 =

R2

a− �
. (17.183)

In the limit � → a the circle k′ degenerates. Its radius, its center point co-
ordinate as well as the point x2 of intersection with the x-axis tend toward
infinity. In contrast, the other point of intersection tends toward the finite
point x1 = R2/(2a) . The point ξ tends toward the same point. Thus, the
circle k′ degenerates to the straight line x = R2/(2a) and to a point at
infinity. In Fig. 17.40 the limiting case � = a is shown. Point P is moving
on the circle k passing through 0 , while P′ is moving along the straight line
x = R2/(2a) . In the example shown the circles k and k0 do not intersect. If
they intersect, also the trajectory of P′ passes through the points of intersec-
tion. If � and a are different, but almost identical, k′ is a circle of very large
radius which intersects the x-axis at a point very close to x1 = R2/(2a) . In
engineering such circular trajectories are as interesting as straight-line tra-
jectories. Peaucellier’s discovery inspired Hart [20], Sylvester [38] and Kempe
[23] to invent other mechanisms with rotary joints which generate straight
lines (see also Schoenflies/Grübler [35], Dijksman [9], Pavlin/Wohlhart [32],
Demaine/O’Rourke [7]).

Fig. 17.40 Straight-line trajectory of P′ in the special case � = a



17.14 Four-Bars Producing Prescribed Positions of the
Coupler Plane. Burmester Theory

The purpose of many linkages is to carry a planar object, i.e., a plane Σ ,
through an ordered set of prescribed positions 1, . . . , n relative to a reference
plane Σ0 . If the number n is sufficiently small, this task can be achieved
by making Σ the coupler plane and Σ0 the frame of a four-bar (as will
be seen the condition is n ≤ 5 ). The moving four-bar carries the plane Σ
through a continuum of positions, to which the prescribed positions belong if
the free design parameters are chosen properly. The complete solution to this
problem which is due to Burmester [5] is the subject of this chapter. Exten-
sive use is made of Sect. 14.5 in which fundamental concepts of Burmester
were introduced. See the definitions of homologous points of points of Σ , of
pole triangle, pole quadrilateral and pole curve. Burmester’s basic idea is the
following. The two Σ -fixed endpoints of the coupler move on circles about
frame-fixed endpoints of two cranks (or rockers). Hence the problem can be
stated as follows. Determine all n -tuples of homologous points Q1, . . . ,Qn

which are located on a circle and for each such n -tuple the center Q0 of the
circle. The line segments Q0Qi (i = 1, . . . , n) defined by each such n -tuple
represent the positions of a suitable crank in the positions Σ1, . . . , Σn of the
coupler plane Σ . Two arbitrarily chosen n -tuples of this kind define two
suitable cranks and, thus, a four-bar. Whether a four-bar thus determined
produces the prescribed positions in the prescribed order remains to be seen.
The problem of order is the subject of Sect. 17.14.4 .

In what follows, n homologous points on a circle are called circle points,
and the center of the circle is called center point. The slider-crank mechanism
in Fig. 17.29a is a degenerate four-bar in that one center point Q0 is at
infinity. The circle is a straight line. The elliptic trammel in Fig. 15.4 has
two sliders. In the inverted slider-crank mechanism in Fig. 17.29b and in the
inverted elliptic trammel the sliders are pivoted at center points Q0 fixed in
Σ0 . The associated circle points Q1, . . . ,Qn are at infinity. In the mechanism
shown in Fig.15.9 one slider is pivoted in the frame Σ0 and the other in the
coupler Σ . This mechanism equals its inverse.

17.14.1 Three Prescribed Positions

Three prescribed positions can be generated by four-bars of all types including
the previously listed degenerate forms. Three prescribed positions determine
a pole triangle (P12 ,P23 ,P31 ). Since three points are always located on a
circle, one out of three circle points Q1 , Q2 , Q3 can be chosen arbitrarily.
The other two circle points are then found as is shown in Fig. 14.11 by

17.14 Four-Bars Producing Prescribed Positions of the CouplerPlane.BurmesterTheory 629
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reflections in the sides of the pole triangle. The center point Q0 is the center
of the circumcircle of the triangle (Q1,Q2,Q3).

Instead of a single circle point the center point Q0 can be chosen arbitrar-
ily. The associated circle points Q1 , Q2 , Q3 are determined either geometri-
cally by the pole triangle (Fig. 14.13) or analytically from (14.50). Following
Fig. 14.13 special cases (a) and (b) were explained when a pole is chosen
either as center point or as circle point.

Figure 14.14 explains how to determine solutions with a center point Q0 at
infinity and with circle points Q1, Q2, Q3 along a straight line. The straight
line is passing through the orthocenter S of the pole triangle. If the line is
prescribed, the circle points are determined, and if a single circle point is
prescribed, the line and the other two circle points are determined.

Figure 14.15 explains how to determine solutions with circle points lying
at infinity. As center point Q0 an arbitrary point on the circumcircle of the
pole triangle can be chosen. The chosen point determines the directions Q0Qi

(i = 1, 2, 3) in the three positions. They are the normals to the lines Q0S
i .

Instead of Q0 the direction towards a single infinitely distant circle point,
say Q3 , can be chosen. It determines the line Q0S

3 and, consequently, Q0

and the other two directions.

17.14.2 Four Prescribed Positions. Center Point
Curve. Circle Point Curves

Four prescribed positions of the coupler plane determine six poles, four pole
triangles, three pole quadrilaterals and the associated pole curve p (see Figs.
14.18 and 14.22). The pole curve is the geometric locus of all points from
which opposite sides of a pole quadrilateral are seen under angles which are
either identical or which add up to π . The present problem is to determine
all four-tuples of homologous points Q1 , Q2 , Q3 , Q4 which are located on
a circle and for each circle the center point Q0 . Following Burmester the
geometric locus of all center points thus defined is called center point curve.
Proposition: The center point curve is the pole curve. Proof: Figure 17.41
shows four homologous points Q1 , Q2 , Q3 , Q4 on a circle with center Q0 .
Homologous means that the poles of the pole quadrilateral (P12,P23,P34,P41)
are located somewhere on the dashed bisectors of the angles of rotation ϕij =
�(QiPijQj) (i, j = 1, 2, 3, 4 different). From Q0 the opposite sides P12P23

and P34P41 are seen under the angles 1
2 (β12 + β23) and 1

2 (β34 + β41) ,
respectively. Since β12 + β23 + β34 + β41 = 2π , these angles add up to π . If
a pole, say P41 , is located on the other side of Q0 , the two opposite sides of
the pole quadrilateral are seen under identical angles. End of proof.

Thus, both cranks of any four-bar capable of leading the coupler plane
through four prescribed positions must be centered on the pole curve. The



Fig. 17.41 Pole quadrilateral with four circle points and center point Q0

problem of determining circle points associated with a chosen center point
or of determining the center point associated with a chosen circle point is
reduced to the previously solved problem with three prescribed positions
since a solution satisfying four prescribed positions 1 , 2 , 3 , 4 satisfies any
three positions, for example, positions 1 , 2 , 3 and positions 1 , 2 , 4 . Hence
circle points associated with a chosen center point Q0 are determined either
geometrically from pole triangles (Fig. 14.13) or analytically from Eqs.(14.50)
which are now valid for the larger set of indices i, j = 1, 2, 3, 4 ( i �= j ).

Special case: As center point Q0 a pole is chosen, for example, Q0=P12 .
From the text following Fig. 14.13 (special case (a)) it is known that in the
pole triangle associated with positions 1 , 2 , 3 Q3 is an undetermined point
on the line P23P31 . For the same reason, Q3 is an undetermined point on
the line P34P41 in the pole triangle associated with positions 1 , 3 , 4 . Hence
Q3 is the point of intersection of these two lines.

There is only a single solution with a center point Q0 at infinity and with
circle points Q1, Q2, Q3, Q4 along a straight line. The center point Q0 is the
infinitely distant point on the asymptote of the pole curve. The straight line
is orthogonal to the asymptote. Since it is passing through the orthocenters,
of all four pole triangles (see Fig. 14.14) collinearity of these orthocenters is
proved.

Likewise, there is only a single solution with circle points Q1, Q2, Q3, Q4

at infinity. From Fig.14.15 it is known that the center point Q0 is located
on the circumcircles of all four pole triangles. These circles have a single
point of intersection U (Fig. 14.22). As in the case of three positions, the
directions Q0Qi (i = 1, 2, 3, 4) toward the infinitely distant circle points are
determined from pole triangles (Fig. 14.15). A center point Q0 on p close to
U is associated with a very long crank with very distant circle points.

Circle point curves: The geometric locus of the circle point Qi is called
circle point curve ki ( i = 1, 2, 3, 4 ). If a single circle point curve, say k1 ,
is known, the other three curves are obtained by rotating k1 about poles.
From Fig. 14.13 and Eq.(14.50) it is known that Q1 and Q0 switch roles if
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632 17 Planar Four-Bar Mechanism

the angles ϕ12 and ϕ13 are replaced by −ϕ12 and −ϕ13 , respectively. This
means that the pole P23 is replaced by its reflection P1

23 in the side P12P 31

of the pole triangle (see Fig. 14.12). With other indices the same is true for
the other two pole triangles (P12,P24,P41) and (P13,P34,P41) associated with
Q1 . In these triangles P24 and P34 are replaced by the reflected poles P1

24

and P1
34 , respectively. Hence the conclusion: The circle point curve k1 is the

center point curve (pole curve) associated with the six poles P12 , P13 , P14 ,
P1
23 , P

1
24 , P

1
34 . The curve passes through these six poles. It does not pass

through the poles P23 , P24 , P34 . With indices properly changed the same is
true for the circle point curves k2 , k3 and k4 .

17.14.3 Five Prescribed Positions

Center points Q0 are located on the center point curve associated with the
four positions 1 , 2 , 3 , 4 as well as on the center point curve associated
with the four positions 1 , 2 , 3 , 5. Two third-order curves have nine (real
or imaginary) points of intersection. Since the curves are circular, there exist
two imaginary points of intersection at infinity. This leaves seven points of
intersection. Each of the two curves passes through the poles P12 , P23 und
P31 . That these points cannot be center points Q0 is proved by taking P12 as
example. According to statements made earlier positions 1 , 2 , 3 , 4 require
Q3 to be the point of intersection of the lines P23P31 and P34P41 . For the
same reason, positions 1 , 2 , 3 , 5 require Q3 to be the point of intersection
of the lines P23P31 and P35P51 . This is impossible. End of proof.

Hence either zero or two or four real points of intersection are candidates as
center point Q0 , namely, those real points which are different from P12 , P23

and P31 . These points are called Burmester points. For methods of construc-
tion of these points see Müller [29]. No four-bar producing five prescribed
positions exists if the number of Burmester points is zero. A single four-bar
exists if the number is two and six if the number is four. This completes the
solution of Burmester’s problem in the case of five prescribed positions. More
than five positions cannot, in general, be prescribed.

17.14.4 Crank-Rockers Producing Four Prescribed
Positions in Prescribed Order

A Burmester solution for four prescribed positions is inadmissible if the four-
bar produces the prescribed positions either in a wrong order or in two dif-
ferent configurations of the four-bar. The problem of identifying admissible
solutions was first investigated by Filemon [12, 13] and since then by many re-



searchers. A list of 170 references is given in Balli/Chand [3]. In what follows,
Filemon’s method of identifying all admissible crank-rockers is described.

A crank-rocker is producing four prescribed positions in the prescribed or-
der 1 , 2 , 3 , 4 if the circle points on the crank circle are arranged in the order
Q1 , Q2 , Q3 , Q4 either clockwise or counterclockwise. For this to be the case,
the three triangles of circle points (Q1,Q2,Q3), (Q2,Q3,Q4) and (Q3,Q4,Q1 )
must have one and the same sense. For the definition of sense of a triangle
see Fig. 14.16 and the accompanying text. The sense is determined by the
location of the center point Q0 relative to the three lines of the correspond-
ing pole triangle. Four pole triangles have altogether twelve lines dividing
the infinite plane into domains. From Fig. 14.22 the following properties of
the center point curve are known. The curve is intersected by lines at the six
poles Pij , at the six points Πij (i, j = 1, 2, 3, 4 different) and at no other
point. From this and from Fig. 14.16 the following conclusions are drawn.
When Q0 travels on p through a pole Pij (i, j = 1, 2, 3, 4 different), two
lines belonging to one and the same pole triangle are crossed. This crossing
has no effect on the sense of any triangle of circle points. In contrast, when
Q0 travels through a point Πij (i, j = 1, 2, 3, 4 different), two lines belong-
ing to different pole triangles are crossed. This has the consequence that two
triangles of circle points change sense. The six points Πij (i, j = 1, 2, 3, 4
different) divide the curve into seven sections (no matter whether the curve
is unicursal or bicursal). The senses of circle point triangles do not change as
long as Q0 stays in one and the same section of the curve. Identical senses
of all three circle point triangles are achieved with a set of points Q0 which
is either a single section or the union of several nonneighboring sections. In
what follows, the set is denoted σc.

Example: In Fig. 14.22 the sense of the three circle point triangles is clock-
wise for points Q0 in the unbounded section to the right of Π12 and in the
section Π14-Φ-Π34 . It is counterclockwise in the unbounded section to the
left of Π23 . Thus, the set σc of admissible crank centers is the union of these
three sections.

From Fig. 17.4b the following properties of crank-rockers are known. A
four-bar is a crank-rocker if
(a) Grashof’s inequality condition �min + �max ≤ �′ + �′′ is satisfied and if,
in addition,
(b) the crank has the minimal length �min .
The angular range of a rocker consists of two disconnected sectors < 180◦

which are arranged symmetrically with respect to the base line. For being an
admissible crank-rocker a Burmester solution must satisfy condition
(c) all four circle points of the rocker must be on one and the same side of the
base line, for otherwise the four prescribed positions could not be produced
without disconnecting and reassembling the crank-rocker.

An algorithm determining, for a given center point curve p , all admissible
crank-rockers can now be formulated as follows.

17.14 Four-Bars Producing Prescribed Positions of the CouplerPlane.BurmesterTheory 633
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Choose an arbitrary point Q0r of p and an arbitrary point Q0c of the set σc

(the indices r and c stand for rocker and crank, respectively). Determine the
circle point Q1r associated with Q0r and the circle point Q1c associated with
Q0c . These four points determine a four-bar in the prescribed position 1 . If
this four-bar does not satisfy conditions (a) and (b), choose another point
Q0c of the set σc and repeat. Otherwise, determine also the circle points Q2r ,
Q3r , Q4r associated with Q0r and check whether condition (c) is satisfied. If
not, choose another point Q0c of the set σc and repeat. Otherwise, Q0r and
Q0c are centers of the rocker and of the crank of an admissible crank-rocker.
The sequence of decisions thus described has to be made for every point Q0r

of p in combination with every point Q0c of the set σc.

17.15 Trajectory of the Center of Mass of a Four-Bar

In Fig. 17.42a r0 , r1 , r2 , r3 represent differences of complex numbers in
the complex plane. All of them have constant absolute values. They form a
quadrilateral. The relation between the four is

r2 = r1 + r3 − r0 . (17.184)

Let it be assumed that r0 has constant direction. Then the differences of
complex numbers form a mobile four-bar with base r0 . For any coupler-fixed
point C a complex constant z exists such that

A1C = zr3 . (17.185)

When the four-bar is moving, the tip of the complex number

rC = r1 + zr3 (17.186)

traces the coupler curve generated by C .
The moving links i =1, 2, 3 have masses mi and centers of mass Si (Fig.

17.42b ). The positions of the centers of mass on the bodies are expressed in
the form

�i = ziri (i = 1, 2, 3) (17.187)

with complex constants zi . Let rS be the complex number representing the
composite system center of mass S of the four-bar (the moving parts only).
It is determined by the formula
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Fig. 17.42 Four-bar with coupler point C (a) and with centers of mass (b)

rS =
m1�1 +m3(r1 + �3) +m2(r0 + �2)

m1 +m2 +m3

=
m1z1r1 +m3(r1 + z3r3) +m2[r0 + z2(r1 + r3 − r0)]

m1 +m2 +m3

=
(m1z1 +m2z2 +m3)r1 + (m2z2 +m3z3)r3 +m2(1− z2)r0

m1 +m2 +m3
. (17.188)

In the general case m1z1 +m2z2 +m3 �= 0 ,

rS =
m1z1 +m2z2 +m3

m1 +m2 +m3

(
r1 +

m2z2 +m3z3
m1z1 +m2z2 +m3

r3

)
+

m2(1− z2)r0
m1 +m2 +m3

.

(17.189)
The term in parentheses has the form (17.186) with

z =
m2z2 +m3z3

m1z1 +m2z2 +m3
. (17.190)

The complex number rC moves along the coupler curve of the coupler-fixed
point C specified by this constant z . The constant complex factor in front
has the effect of a stretch-rotation of this coupler curve and the constant
behind has the effect of a translatory displacement. Hence the trajectory of
the composite center of mass of a moving four-bar is similar to a uniquely
determined coupler curve of the four-bar.

The acceleration of the composite center of mass determines the resultant
inertia force acting on the base of the four-bar. The resultant force is zero
throughout the motion if (17.188) yields rS = const. This is the case under
the weak conditions

m1z1 +m2z2 +m3 = 0 , m2z2 +m3z3 = 0 . (17.191)

In these conditions the link lengths do not appear. The four link lengths,
the three masses and, in addition, the position of the center of mass on
a single link, for example, the number z3 , can be chosen arbitrarily. Both
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conditions are satisfied if the centers of mass on the other two bodies satisfy
the conditions

z1 =
m3

m1
(z3 − 1) , z2 = − m3

m2
z3 . (17.192)

Note that for producing the time-varying angular acceleration of the coupler
a torque is required. Even if the conditions (17.191) are satisfied this torque
causes time-varying forces of equal magnitude and opposite directions acting
on the base in the crank bearings.
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rapport à un axe. pp.495–540

41. Volmer J (1956/57) Ein Beitrag zur Erzeugung von Koppelkurven. Wiss.Z.Dresden
6:491–510

42. Volmer J (ed.) (1976) Autorenkollektiv: Getriebetechnik – Lehrbuch VEB, Berlin
43. Volmer J (ed.) (1979) Getriebetechnik-Koppelgetriebe. VEB, Berlin

44. Volmer J (ed.) (1992) Getriebetechnik-Grundlagen. Verl. Technik, Berlin
45. Watson G A (1980) Approximation theory and numerical methods. Wiley, New York
46. Wunderlich W (1970) Ebene Kinematik. BI-Verl. Mannheim


	Chapter 17 Planar Four-Bar Mechanism
	17.1 Grashof Condition
	17.2 Transfer Function
	17.3 Interchange of Input Link and Fixed Link
	17.4 Inclination Angle of the Coupler. Transmission Angle
	17.5 Transmission Ratio. Angular Acceleration of Output Link
	17.6 Stationary Values of the Transmission Ratio
	17.7 Transmission of Forces and Torques
	17.8 Coupler Curves
	17.8.1 Roberts/Tschebychev Theorem. CognateFour-Bars
	17.8.2 Parameter Equations for Coupler Curves
	17.8.3 Implicit Equation for Coupler Curves
	17.8.4 Symmetrical Coupler Curves

	17.9 Slider-Crank. Inverted Slider-Crank
	17.10 Planar Parallel Robot
	17.11 Four-Bars with Prescribed Transmission Characteristics
	17.11.1 Prescribed Pairs of Input-Output Angles
	17.11.2 Prescribed Transmission Ratios
	17.11.3 Jeantaud’s Steering Mechanism

	17.12 Coupler Curves with Prescribed Properties
	17.12.1 Coupler Curves Passing Through Prescribed Points
	17.12.2 Straight-Line Approximations
	17.12.3 Tschebychev’s Straight-Line Approximations

	17.13 Peaucellier Inversor
	17.14 Four-Bars Producing Prescribed Positions of the Coupler Plane. Burmester Theory
	17.14.1 Three Prescribed Positions
	17.14.2 Four Prescribed Positions. Center Point Curve. Circle Point Curves
	17.14.3 Five Prescribed Positions
	17.14.4 Crank-Rockers Producing Four Prescribed Positions in Prescribed Order

	17.15 Trajectory of the Center of Mass of a Four-Bar
	References


