
Chapter 13

Shaft Couplings

A shaft coupling is, in the broadest sense, a mechanical device transmitting
rotational motion from a shaft 1 to another shaft 2 . In addition, a shaft
coupling may serve the purpose of keeping one shaft in position relative to
the other. Example: If both shafts are mounted in bearings in a common
frame, a pair of gears having the transmission ratio one (spur gears, bevel
gears or hypoid gears depending on the relative location of the shafts) is
a shaft coupling transmitting rotational motion in such a way that ω1 =
const in shaft 1 causes ω2 ≡ ω1 = const in shaft 2 . If both shafts are
mounted in parallel and sufficiently close together, an Oldham coupling is
serving the same purpose. The Oldham coupling is functioning properly even
in the case when the distance between the shafts is changing during operation.
Neither gears nor Oldham couplings serve the purpose of keeping one shaft
in position relative to the other. Another example: Only shaft 1 is mounted
in fixed bearings. Shaft 2 is required to intersect shaft 1 at a given point
0 whereas its direction is free to change. Bevel gears are not applicable in
this case. A common Hooke’s joint (also called universal joint) is a possible
shaft coupling. Its cross-shaped central body serves the purpose of keeping
the shafts intersecting at 0 . In addition, rotational motion is transmitted
from shaft 1 to shaft 2 . However, as will be seen in the following section,
ω1 = const in shaft 1 does not cause ω2 ≡ ω1 = const in shaft 2 . Shaft
couplings allowing changes of relative position while maintaining the identity
ω2 ≡ ω1 are called homokinetic. The general theory of homokinetic couplings
is the subject of Sect. 13.4. The engineering importance and a simple example
were explained in Sect. 4.2.6.
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388 13 Shaft Couplings

13.1 Hooke’s Joint

In the plane of Fig. 13.1 two shafts 1 and 2 are mounted in bearings such
that the shaft axes intersect at point 0 under a constant angle α . The shafts
are coupled by a Hooke’s joint. Its essential element is a cross-shaped central
body. Each shaft is connected to this body by a revolute joint the axis of
which is normal to the shaft. On the central body the two joint axes intersect
orthogonally at 0 . In the figure the system is shown in a position in which
one axis of the central body is in the plane of the drawing, while the other
axis is perpendicular to it. The central body and the two revolute joints
together constitute Hooke’s joint. The angle α is a free parameter which in
Fig. 13.1 is prescribed by the other two revolute joints connecting the shafts
to a frame. The entire system composed of frame, shafts, central body and
of four revolute joints represents a spherical four-bar with center 0 . From
Chap. 4 it is known that the degree of freedom is one. Thus, Hooke’s joint
transmits a rotation from shaft 1 to shaft 2 . Let ϕ1 and ϕ2 be the angles of
rotation of shaft 1 and of shaft 2 , respectively, relative to the frame. They
are related by a constraint equation f(ϕ1, ϕ2) = 0 . In what follows, this
equation is formulated. Subsequently, various other kinematical relationships
are derived from this equation.

In Fig. 13.1 e1 and e2 are two reference bases fixed on the frame. Their
common basis vectors e13 = e23 are normal to the plane of the two shafts,
and e11 and e21 are directed along the respective shaft axes. The bases are
related by the constant transformation matrix

A12 =

⎡
⎣ cosα − sinα 0
sinα cosα 0

0 0 1

⎤
⎦ . (13.1)

Let n1 and n2 be unit vectors fixed on the central body along the joint
axes. In the position shown in Fig. 13.1 n1 = e12 . Let this be the position
ϕ1 = 0 of shaft 1 and the position ϕ2 = −π/2 of shaft 2 . This means that
ϕ2 = 0 is the position when n2 = e22 . In a position ϕ1 (arbitrary) n1 has

Fig. 13.1 Hooke’s joint with frame-fixed bases e1 , e2 in position ϕ1 = 0 , ϕ2 = −π/2
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in basis e1 the coordinate matrix n1
1 = [0 cosϕ1 sinϕ1]

T . Similarly, in a
position ϕ2 (arbitrary) n2 has in e2 the coordinate matrix

n2
2 = [0 cosϕ2 sinϕ2]

T . (13.2)

Transformation yields the coordinate matrix n1
2 = A12n2

2 in basis e1 . The
coordinate matrices n1

1 and n1
2 determine the coordinate matrix n1

3 = ñ1
1n

1
2

of the vector n3 = n1 × n2 . The three coordinate matrices are

n1
1 = n1

2 = n1
3 =⎡

⎣ 0
cosϕ1

sinϕ1

⎤
⎦ ,

⎡
⎣− sinα cosϕ2

cosα cosϕ2

sinϕ2

⎤
⎦ ,

⎡
⎣− cosα sinϕ1 cosϕ2 + cosϕ1 sinϕ2

− sinα sinϕ1 cosϕ2

sinα cosϕ1 cosϕ2

⎤
⎦ .

(13.3)
From the first two matrices the desired relationship f(ϕ1, ϕ2) = 0 is ob-
tained. Orthogonality of the vectors n1 and n2 requires that n1 · n2 = 0 .
This is the equation f(ϕ1, ϕ2) = cosϕ1 cosα cosϕ2 + sinϕ1 sinϕ2 = 0 or

tanϕ2 tanϕ1 = − cosα . (13.4)

This relationship was first published in 1824 by Jean Victor Poncelét (1788-
1867) (see also Poncelét [15]). The output angle ϕ2 is an odd, π-periodic
function of the input angle ϕ1 . It is independent of the sign of α . In view
of Fig. 13.1 this had to be expected. The equation yields the expressions

cosϕ2 =
1√

1 + tan2 ϕ2

=
sinϕ1√

1− sin2 α cos2 ϕ1

,

sinϕ2 =
− cosα cosϕ1√
1− sin2 α cos2 ϕ1

.

⎫⎪⎪⎬
⎪⎪⎭ (13.5)

Differentiation of (13.4) with respect to time results in the equation
(ϕ̇2/ cos

2 ϕ2) tanϕ1 + (ϕ̇1/ cos
2 ϕ1) tanϕ2 = 0 . This yields for the angular

velocity ratio the expression

ϕ̇2

ϕ̇1
= − sinϕ2 cosϕ2

sinϕ1 cosϕ1
. (13.6)

Elimination of ϕ2 by means of (13.5) leads to the final formula

ϕ̇2

ϕ̇1
=

cosα

1− sin2 α cos2 ϕ1

. (13.7)

This is an even π-periodic function of ϕ1 . In the case ϕ̇1 = const, the
angular velocity ϕ̇2 is oscillating π-periodically between the extremal values
ϕ̇1 cosα and ϕ̇1/ cosα .
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One more differentiation with respect to time yields for the angular accel-
eration ϕ̈2 the expression (valid for ϕ̇1 = const)

ϕ̈2 = −ϕ̇2
1

sin2 α cosα sin 2ϕ1

(1− sin2 α cos2 ϕ1)2
, ϕ̈2 ≈ −ϕ̇2

1α
2 sin 2ϕ1 (α � 1) . (13.8)

The difference χ(ϕ1) = ϕ2 − ϕ1 + π/2 is an odd π-periodic function
of ϕ1 (note that ϕ2 = −π/2 when ϕ1 = 0 ). Its maxima and minima of
equal absolute value occur in positions when ϕ̇2 = ϕ̇1 . According to (13.7)
this is the case when cos2 ϕ1 = 1/(1 + cosα) . From this it follows that
sin2 ϕ1 = cosα/(1 + cosα) and tanϕ1 =

√
cosα . Furthermore, according

to (13.4), tanϕ2 = −√
cosα . This yields for the maximum of χ the formula

tan
(
χmax − π

2

)
= − cotχmax = tan(ϕ2 − ϕ1)

=
tanϕ2 − tanϕ1

1− tanϕ2 tanϕ1
=

−2
√
cosα

1− cosα
. (13.9)

Hence

χmax = tan−1 1− cosα

2
√
cosα

. (13.10)

Example: χmax ≈ 4.1◦ at ϕ1 ≈ 42.9◦ for α = 30◦ . The Taylor formula
for small angles α is χmax ≈ α2/4 . End of example.

13.1.1 Polhode and Herpolhode Cones of the Central
Cross

The cross-shaped central body is executing a periodic motion about a fixed
point. For this reason, both the polhode cone and the herpolhode cone are
closed cones. In what follows, these cones are determined1. Let ψ̇1n1 and
ψ̇2n2 be the angular velocities of the cross relative to the two shafts so that
the angular velocity ω of the cross relative to the frame has the alternative
forms

ω = ϕ̇1e
1
1 + ψ̇1n1 = ϕ̇2e

2
1 + ψ̇2n2 . (13.11)

In the reference basis with basis vectors n1 , n2 , n3 = n1 × n2 fixed on the
cross ω has the coordinates

ω1 = ψ̇1 = ϕ̇2e
2
1 ·n1 , ω2 = ψ̇2 = ϕ̇1e

1
1 ·n2 , ω3 = ϕ̇1e

1
1 ·n3 . (13.12)

1 In Wittenburg/Roberson [18] the cones are determined for a Hooke’s joint with a

nonorthogonal central cross
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The scalar products are read from (13.2) and (13.3). For cosϕ2 , sinϕ2 and
ϕ̇2 the expressions (13.5) and (13.7) are substituted. This results in

ω1 = ψ̇1 = ϕ̇1
sinα cosα cosϕ1

1− sin2 α cos2 ϕ1

, ω2 = −ϕ̇1
sinα sinϕ1√

1− sin2 α cos2 ϕ1

,

ω3 = ϕ̇1
− cosα√

1− sin2 α cos2 ϕ1

.

⎫⎪⎪⎬
⎪⎪⎭

(13.13)
These equations are parameter equations of the polhode cone (the moving
cone) with ϕ1 as parameter. The cone is best portrayed by its curve of
intersection with a plane parallel to the n1,n2-plane. This curve has the
parameter equations

x(ϕ1) =
ω1

ω3
=

− sinα cosϕ1√
1− sin2 α cos2 ϕ1

, y(ϕ1) =
ω2

ω3
= tanα sinϕ1 . (13.14)

Squaring both equations leads to expressions for cos2 ϕ1 and for sin2 ϕ1 .
Their sum equals one. This is the parameter-free equation

x2 + x2y2 + y2 = tan2 α . (13.15)

In Fig. 13.2 curves are shown for various angles α . The ellipse is explained
later. An investigation of the curvature shows that the transition from convex
to nonconvex curves occurs at α = 60◦ . The smaller α the better is the ap-
proximation of a circle of radius α . In joints used in engineering angles up to
approximately α = 35◦ are realizable. At the points of symmetry of the curve
marked by |x| = |y| (13.15) yields y2 = 1/ cosα−1 . Equation (13.14) yields
for the associated angle ϕ1 the expression sinϕ1 =

√
cosα/(1 + cosα) .

This is the angle associated with the maximum difference χmax .
The herpolhode cone (the fixed cone) is determined by the coordinates

of ω in basis e1 . Let these coordinates be denoted Ω1 , Ω2 , Ω3 . Equation
(13.11) in combination with (13.3) and with ψ̇1 from (13.13) results in

Ω1 = ϕ̇1 , Ω2 = ψ̇1n1 · e12 = ϕ̇1
sinα cosα cos2 ϕ1

1− sin2 α cos2 ϕ1

,

Ω3 = ψ̇1n1 · e13 = ϕ̇1
sinα cosα sinϕ1 cosϕ1

1− sin2 α cos2 ϕ1

.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (13.16)

This yields the ratios

X(ϕ1) =
Ω2

Ω1
=

sinα cosα cos2 ϕ1

1− sin2 α cos2 ϕ1

,

Y (ϕ1) =
Ω3

Ω1
=

sinα cosα sinϕ1 cosϕ1

1− sin2 α cos2 ϕ1

.

⎫⎪⎪⎬
⎪⎪⎭ (13.17)
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Fig. 13.2 Intersection curves of polhode cones of the cross-shaped central body with a

plane parallel to the n1,n2-plane for Hooke’s joints with various angles α . The ellipse
represents the herpolhode cone associated with α = 75◦ in the position ϕ1 = 0

They are parameter equations of the intersection curve of the herpolhode cone
with a plane normal to the shaft axis e11 . The parameter ϕ1 is eliminated
by calculating tanϕ1 = Y/X and hence cos2 ϕ1 = X2/(X2 + Y 2) . This
expression is substituted back into the equation for X(ϕ1) . The result is the
ellipse (

X − 1
2 tanα

1
2 tanα

)2

+

(
Y

1
2 sinα

)2

= 1 . (13.18)

Figure 13.3 shows the location of the herpolhode cone and of this ellipse
relative to the two shafts. Both shaft axes are generators of the cone. The
projection of the ellipse along the axis of shaft 2 is a circle. In the position
ϕ1 = 0 the planes of intersection of the cones coincide, and the common
generator ω lies in the shaft axis 2 . In Fig. 13.2 the ellipse associated with
α = 75◦ is shown in this position. For arbitrary α and in every position ϕ1

the fixed cone lies entirely inside the moving cone so that rolling of one cone
on the other is possible without collision. Per revolution of shaft 1 the vector

Fig. 13.3 Herpolhode cone with elliptic cross section between the shaft axes
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ω is sweeping out the fixed cone twice and the moving cone once. This means
that the moving cone is rolling around the fixed cone twice per revolution of
shaft 1 .

The cones are known from Sect. 10.1. The motion studied there is the
inverse of the motion of the central cross. The moving cone of one motion is
the fixed cone of the other and vice versa (compare (13.15) and (13.18) with
(10.19)).

In preparation for Sect. 13.2.1 the angle of rotation ψ1 of the cross relative
to shaft 1 is determined as function of ϕ1 . Arbitrarily, ψ1 = 0 is associated
with ϕ1 = 0 . From (13.12) and (13.13) it follows that

dψ1

dϕ1
=

sinα cosα cosϕ1

1− sin2 α cos2 ϕ1

. (13.19)

With the new variable z = tanϕ1/2 and with the constant k2 = (1 −
sinα)/(1 + sinα) this takes the form

ψ1 = 2 tanα

∫
1− z2

(1 + k2z2)(1 + z2/k2)
dz

=
2 tanα

k2 − 1

[
k2

∫
dz

1 + k2z2
−
∫

dz

1 + z2/k2

]
= tan−1(z/k)− tan−1(kz) = tan−1(tanα sinϕ1) . (13.20)

Hence
tanψ1 = tanα sinϕ1 . (13.21)

This equation is the second Eq.(10.10).

13.2 Fenyi’s Joint

Figure 13.4 is the exploded view of a shaft coupling brought to the author’s
attention by Fenyi2. The coupled shafts 1 and 2 are skew. They are mounted
in frame-fixed bearings not shown in the figure. Let ê12 and ê 2

2 be dual
unit vectors along the shaft axes, and let, furthermore, α̂ = α + ε� be the
constant dual screw angle displacing ê12 into the position ê 2

2 . The projected
angle α and the length � of the common perpendicular of the two shaft
axes are the only parameters of the joint. To each shaft and at right angles
to the shaft two collinear trunnions are rigidly attached. These trunnions
are moving in bearings of the central ring-shaped body. The axes of these
bearings intersect at a right angle at M . In the assembled state the ring
transmits the rotational motion of shaft 1 to shaft 2 . Relative to each pair

2 Stanislo Fenyi, Forschungszentrum Karlsruhe
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Fig. 13.4 Exploded view of Fenyi’s joint

of trunnions the ring executes a screw motion. It is assumed that shaft 1
is in pure rotation relative to the frame (angle of rotation ϕ1 ). In order to
function properly the bearings of shaft 2 must allow shaft 2 to execute a
screw motion composed of a rotation ϕ2 and a translation z . In the special
case α = 0 , the joint is the Oldham coupling shown in Fig. 15.6 . In the
special case � = 0 , the joint is Hooke’s joint shown in Fig. 13.1 , and all
screw displacements are pure rotations.

The following kinematics investigation is based on the principle of trans-
ference. The rotational part of the problem is identical with that of a Hooke’s
joint with parameter α . The principle of transference is applied to Eq.(13.4):

tanϕ2 tanϕ1 = − cosα . (13.22)

The angle α is replaced by α̂ = α + ε� , and the angle ϕ2 is replaced by
ϕ̂2 = ϕ2+εz . The angle ϕ1 is not effected because shaft 1 is, by assumption,
in pure rotation. Thus, the dual form of (13.22) is tan ϕ̂2 tanϕ1 = − cos α̂ .
This is the equation (see (3.31))(

tanϕ2 + ε
z

cos2 ϕ2

)
tanϕ1 = −(cosα− ε� sinα) . (13.23)

The primary part of this equation is Eq.(13.22). The dual part is
(z/ cos2 ϕ2) tanϕ1 = � sinα . Writing 1/ cos2 ϕ2 = 1 + tan2 ϕ2 and using
(13.22) this yields for the translatory displacement of shaft 2 the expression

z = �
sinα sinϕ1 cosϕ1

1− sin2 α cos2 ϕ1

. (13.24)

This is an odd, π-periodic function of ϕ1 . Its maxima and minima of equal
absolute value occur when dz/dϕ1 = 0 . This equation leads to cos2 ϕ1 =
1/(1+ cos2 α) , sin2 ϕ1 = cos2 α/(1+ cos2 α) and sinϕ1 cosϕ1 = cosα/(1+
cos2 α) . When this is substituted into (13.24), the maximum range of the
translatory displacement of shaft 2 is found to be
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zmax − zmin = 2zmax = � tanα . (13.25)

13.2.1 Raccording Axodes of the Central Ring

The central ring is executing a periodic spatial motion without a fixed point.
The periodically moving instantaneous screw axis is the generator of two
closed raccording axodes. In what follows, parameter equations with ϕ1 as
parameter are developed for these axodes. On the frame the basis e1 known
from Fig. 13.1 is fixed. Its origin A is the point where the axis of shaft
1 intersects the first axis of the ring. On the ring the basis n with basis
vectors n1, n2, n3 known from Fig. 13.1 is defined. It has its origin at the
point of intersection M of the two ring axes. By writing the vector from A to
M in the form z1n1 the coordinate z1 = z1(ϕ1) is defined. Let u(ϕ1) be the
perpendicular from A onto the instantaneous screw axis (ISA) of the ring,
and let, furthermore, ω(ϕ1) be the angular velocity of the ring relative to
the frame. With a dimensionless parameter λ the vectors from A and from
M to an arbitrary point P(λ) on the ISA are

rAP(ϕ1, λ) = u(ϕ1) +
λ�

ϕ̇1
ω(ϕ1) ,

rMP(ϕ1, λ) = u(ϕ1) +
λ�

ϕ̇1
ω(ϕ1)− z1(ϕ1)n1 .

⎫⎪⎪⎬
⎪⎪⎭ (13.26)

The coordinates of rAP in basis e1 and the coordinates of rMP in basis n
are the desired parameter equations of the fixed axode and of the moving ax-
ode, respectively. With increasing |λ| the equations of the axodes approach
asymptotically those of the herpolhode cone and of the polhode cone, respec-
tively, of the cross-shaped central body in Hooke’s joint (see Figs. 13.2 and
13.3).

The perpendicular u from A onto the ISA is, according to (9.23),

u =
ω × vA

ω2
(13.27)

with vA being the velocity of the ring-fixed point coinciding with A . This
velocity is vA = ż1n1 . Expressions for z1 and for ż1 are obtained by trans-
ferring Eq.(13.21) into dual form: tan(ψ1 + εz1) = tan(α + ε�) sinϕ1 . Its
dual part is the expression for z1 given below. Differentiation3 yields ż1 .
With the abbreviations C = cosα , S = sinα , c = cosϕ1 , s = sinϕ1 the
expressions are

3 ż1 is also the dual part of the dualized expression for ψ̇1 given in the first Eq.(13.29)
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z1 = �
s

1− S2c2
, ż1 = ϕ̇1�

c(C2 − S2s2)

(1− S2c2)2
. (13.28)

The angular velocity ω of the ring is identical with the angular velocity
of the cross-shaped body in Hooke’s joint. From (13.11), (13.12) and (13.13)
the following expressions are copied:

ψ̇1 = ϕ̇1
SCc

1− S2c2
, ω = ϕ̇1e

1
1 + ψ̇1n1 ,

ω2 = ϕ̇2
1 + ψ̇2

1 = ϕ̇2
1

1− S2c2(1 + S2s2)

(1− S2c2)2
.

⎫⎪⎬
⎪⎭ (13.29)

With these expressions and with vA = ż1n1 (13.27) yields

u = �
c(C2 − S2s2)

1− S2c2(1 + S2s2)
(−s e12 + c e13) . (13.30)

This expression and the expressions for ω and for z1 are substituted into
(13.26). The coordinates of ω in the bases e1 and n are known from (13.16)
and (13.13), respectively. The coordinates of e12 and of e13 in n are calculated
from (13.3) and (13.5). Substitution of all these expressions results in the
desired parameter equations for the axodes:

Fixed axode in basis e11,2,3 : moving axode in basis n1,2,3 :




⎡
⎢⎢⎢⎢⎢⎣
λ

−cs(C2 − S2s2)

1− S2c2(1 + S2s2)
+ λ CSc2

1− S2c2

c2(C2 − S2s2)

1− S2c2(1 + S2s2)
+ λ CScs

1− S2c2

⎤
⎥⎥⎥⎥⎥⎦ , 


⎡
⎢⎢⎢⎢⎢⎣

−s+ λCSc
1− S2c2

−1√
1− S2c2

[
Cc(C2 − S2s2)

1− S2c2(1 + S2s2)
+ λSs

]
1√

1− S2c2

[
Scs(C2 − S2s2)

1− S2c2(1 + S2s2)
− λC

]

⎤
⎥⎥⎥⎥⎥⎦ .

(13.31)

In Fig. 13.5 the axodes for the parameter value α = 60◦ are shown (the
fixed axode dark, the white moving axode in a single position). Each ax-
ode is represented by a net of lines λ = const (−2 ≤ λ ≤ 2 ) and ϕ1 =
const. The moving axode is raccording around the fixed axode twice per
revolution of shaft 1 . For showing the moving axode in a single position
ϕ1 = φ together with the fixed axode the coordinates in the column matrix
on the right-hand side of (13.31) are transformed into basis e1 . The trans-
formation matrix for this purpose is composed of the three columns shown
in (13.3) with ϕ1 = φ . To the resulting coordinates the coordinates of the
vector rAM(φ) = z1(φ)n1(φ) are added (see (13.26)). The raccording motion
is made visible by showing the moving axode in a sequence of pictures over
the full range of values 0 ≤ φ ≤ 2π .
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Fig. 13.5 Raccording axodes of the central ring for α = 60◦ (fixed axode dark)

13.3 Series-Connected Hooke’s Joints

Equation (13.7) has shown that the output angular velocity of Hooke’s joint is
oscillating if the input angular velocity is constant. For this reason the single
Hooke’s joint has a limited range of engineering applications. The present
section is devoted to the following problem. A chain of shafts 1, . . . , n is
interconnected by Hooke’s joints 1, . . . , n− 1 . The shafts labeled 1 and n
are referred to as input shaft and as output shaft, respectively. The entire
system between these two shafts represents a single joint. To be formulated
are necessary and sufficient conditions guaranteeing the angular velocity ratio
ϕ̇n/ϕ̇1 ≡ 1 .

First, the case n = 3 is investigated, i.e., the case of Hooke’s joints 1 and
2 coupling shafts 1 , 2 and 3 . The parameter α of Fig. 13.1 associated with
Hooke’s joint 1 is now called α1 . The parameter α2 associated with Hooke’s
joint 2 is the constant angle between shafts 2 and 3 . Until further below it is
assumed that shafts 1 , 2 and 3 are coplanar. Since they are coplanar, only
two configurations are possible in which shafts 1 and 3 intersect at an angle
which is either α1 + α2 or α1 − α2 . The cross of each of the two Hooke’s
joints is rotating relative to shaft 2 about an axis which is perpendicular to
shaft 2 . Let β2 be the constant angle between these two perpendiculars. It
is a third parameter in addition to α1 and α2 . The sign of β2 is specified
by the definition that ϕ2−β2 is the input angle of the second Hooke’s joint.
Applying (13.4) to both joints results in the relationships

tanϕ2 tanϕ1 = − cosα1 , tanϕ3 tan(ϕ2 − β2) = − cosα2 . (13.32)

In what follows, only the special cases β2 = 0 and β2 = π/2 are considered.
With the identity tanψ = − cot(ψ−π/2) the second Eq.(13.32) is given the
form
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β2 = 0 : cot(ϕ3 − π
2 ) tanϕ2 = cosα2 ,

β2 = π
2 : tanϕ3 cotϕ2 = cosα2 .

}
(13.33)

Combination with the first Eq.(13.32) eliminates ϕ2 . The result is the desired
input-output relationship

β2 = 0 : tan(ϕ3 − π
2 ) tanϕ1 = − cosα1/ cosα2 ,

β2 = π
2 : tanϕ3 tanϕ1 = − cosα1 cosα2 .

}
(13.34)

This is written in the form

tan(ϕ3 − γ3) tanϕ1 = −a3 , a3 =

{
cosα1/ cosα2 (β2 = 0)

cosα1 cosα2 (β2 = π
2 )

(13.35)

with either γ3 = π/2 or γ3 = 0 .
The generalization to chains with n − 1 Hooke’s joints coupling shafts

1 , . . . , n is straight-forward. Again, the shafts are assumed to be coplanar.
With each new shaft i a new shaft parameter βi−1 (either βi−1 = 0 or
βi−1 = π/2 ) and a new joint parameter αi−1 are introduced and with them
a new equation of the general form (13.33) with indices i and i− 1 instead
of 3 and 2 . The angle ϕi−1 is eliminated by combining this equation with
the previous equation of the general form (13.35). The final result for the
input-output relationship for a chain of n− 1 Hooke’s joints coupling shafts
1 , . . . , n has the form

tan(ϕn − γn) tanϕ1 = −an (13.36)

with constants γn and an . The latter is

an = cosα1

n−1∏
i=2

(cosαi)
νi , νi =

{
+1 (βi =

π
2 )

−1 (βi = 0)
(n ≥ 3) . (13.37)

Differentiation with respect to time yields the angular velocity ratio (compare
the transition from (13.4) to (13.7))

ϕ̇n

ϕ̇1
=

an
1− (1− a2n) cos

2 ϕ1
. (13.38)

The desired angular velocity ratio ϕ̇n/ϕ̇1 ≡ 1 is achieved with an = 1 .
This is a condition on the joint parameters α1 , . . . , αn−1 and on the shaft
parameters β2 , . . . , βn−1 .

Example n = 3 : Equation (13.35) shows that a3 = 1 requires β2 = 0
and, in addition, cosα1/ cosα2 = 1 , i.e., |α1| = |α2| . This result was to be
expected. In Figs. 13.6a and b the two possible arrangements with coplanar
shafts 1 , 2 and 3 are shown.
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Fig. 13.6 The two possible couplings of coplanar shafts 1 , 2 , 3 by two Hooke’s joints

resulting in ϕ̇3 ≡ ϕ̇1

At this point the condition of coplanarity of the three shafts is abandoned.
Obviously, the property ϕ̇3 ≡ ϕ̇1 is preserved if the planar system (for exam-
ple, the one in Fig. 13.6a) is subjected to the following three-step operation:
Step 1: In an arbitrary position shaft 2 is cut thus splitting the entire system
into a left part 1 and a right part 2
Step 2: Part 2 including joint 2 and the bearing of shaft 3 is rotated as one
single rigid body about the axis of shaft 2 through an arbitrary angle ψ
Step 3: In the new position ψ the two parts of shaft 2 are rigidly joined
together.

In the special case ψ = π , the new position is the position shown in Fig.
13.6b . If ψ �= π , the axes of shafts 1 and 3 are skew in the new position.

Example n = 4 : Equation (13.37) shows that the condition a4 = 1 is
satisfied in each of the following three cases.
Case a: (β2, β3) = (π2 , 0) and cosα1 cosα2 = cosα3

Case b: (β2, β3) = (0 , 0) and cosα2 cosα3 = cosα1

Case c: (β2, β3) = (0 , π
2 ) and cosα3 cosα1 = cosα2 .

In Fig. 13.7 case (c) is illustrated by a system of coplanar axes with α3 =
α1 = 20◦ and cosα2 = cos2 20◦ (α2 ≈ 28◦). This example shows that
geometrical symmetry of the coupling of shafts 1 and 4 is not a necessary
condition for the identity of input and output angular velocity.

Example n = 5 : The condition a5 = 1 is satisfied by altogether seven dif-
ferent combinations (β2, β3, β4) and by associated conditions on α1 , . . . , α4 .
The details are left to the reader. See also Duditza [4, 7]. In Fig. 13.8 a simple
example with five coplanar axes is shown. It is the combination of two sys-
tems of the type shown in Fig. 13.6b . The parameters are β2 = β3 = β4 = 0
and α1 = α2 = α3 = α4 = α . Shafts 1 , 3 and 5 have identical angular
velocities ϕ̇5 ≡ ϕ̇3 ≡ ϕ̇1 .

In every system with coplanar axes i = 1, . . . , n the property ϕ̇n ≡ ϕ̇1 is
preserved if the three-step operation explained for the case n = 3 is applied
analogously, i.e., by cutting an arbitrary intermediate shaft j = 2 , . . . , n −
1 and by a rigid-body rotation of the part located beyond the cut shaft.
This operation may even be performed repeatedly with different intermediate
shafts.
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Fig. 13.7 Unsymmetrical coupling of coplanar shafts 1 , 2 , 3 , 4 by three Hooke’s joints

resulting in ϕ̇4 ≡ ϕ̇1

Fig. 13.8 Coupling of coplanar shafts 1 , 2 , 3 , 4 , 5 by four Hooke’s joints resulting in
ϕ̇5 ≡ ϕ̇3 ≡ ϕ̇1

13.4 Homokinetic Shaft Couplings

By definition, the coupling of two shafts is homokinetic if it satisfies the
conditions

(A) the axes of the shafts are free to change their relative position and
direction during operation

(B) the angular velocities are identical in every relative position and di-
rection held fixed.
The homokinetic coupling is the mechanism required for positioning and di-
recting the axis of shaft 2 relative to shaft 1 . If both location and direction
of this axis are variable, the mechanism must have the degree of freedom
F = 5 (three coordinates of a single point plus two direction cosines). Cou-
plings of simpler nature, namely, with degree of freedom F = 2 , are required
for shafts the axes of which are permanently intersecting at a fixed point. In
engineering these simpler solutions are fully sufficient. Such coupling cannot
be a serial chain because it would have to be a chain of two intersecting revo-
lute joints. However, this is Hooke’s joint which is known to violate condition
(B). This means that homokinetic couplings must be closed kinematic chains.
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13.4.1 Couplings With a Spherical Joint

Permanent intersection of the axes of shafts 1 and 2 is most easily achieved
by means of a spherical joint. According to Grübler’s Eq.(4.4) a simple closed
chain with a spherical joint must have five additional joint variables in order
to have the degree of freedom F = 2 . Let Σ be the plane which is (i) bisect-
ing the angle between the two shafts and (ii) normal to the plane spanned
by the shafts. Conditions (A) and (B) are both satisfied if in every relative
position of the shafts the closed chain is both structurally and dimensionally
symmetric with respect to Σ . If only revolute joints R , prismatic joints P
and combinations of these two (cylindrical joints C , spherical joints S and
planar joints E ) are used, altogether eight five-variable chains can be formed
which are structurally symmetric with respect to a central joint. These are
the chains RRRRR , RRPRR , PRRRP , RPRPR , RSR , PSP , CRC
and RER . The central joint is indicated by a boldface letter. If the central
joint is a revolute R , its axis must lie in Σ . If it is a prismatic joint P , it
must be perpendicular to Σ . If it is a planar joint E , the plane E must be
normal to Σ . Every one of the eight mechanisms has been used in patented
shaft couplings. Detailed documentations see in Kutzbach [10, 11], Duditza
[5] and Seherr-Thoss/Schmelz/Aucktor [17]. In most engineering realizations
adjacent joint axes are either parallel or at right angles. This is not a nec-
essary condition. The only necessary condition, in addition to symmetry, is
that the shafts must have the freedom to rotate full cycle.

A homokinetic coupling based on the chain RSR was shown in Fig. 4.11.
A coupling based on the chain CRC is shown schematically in Fig. 13.9a .
It was known to Koenigs [9] already. The patented engineering realization is
known as Hebson coupling. A single chain CRC suffices. The second chain
CRC is added in order to diminish dynamical unbalance (total balance is
achieved when shafts 1 and 2 are collinear). In a Hebson coupling a larger
number of chains is evenly distributed around the cylinders. The joints R in
these chains may be replaced by spherical joints since the additional degrees
of freedom thus introduced are passive. With this coupling inclination angles
up to 90◦ are possible.

The so-called Tracta coupling shown schematically in Fig. 13.9b is based
on the chain RER . The chain is encapsulated in two concentric spherical
shells which together represent the spherical joint connecting shafts 1 and
2 . The axes of both revolutes R are in the plane E . Each revolute axis
intersects one shaft axis orthogonally. Rotations in these revolutes keep plane
E normal to plane Σ independent of the angular position ϕ of the shafts. In
the figure plane E is shown in the positions ϕ = 0, π and ϕ = ±π/2 . The
Tracta coupling is widely used in the automotive field because of the following
properties: Inclination angles up to 50◦ ; compact form; simple assembly; no
loss of lubrication; large wear-resistant contact surfaces.
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Fig. 13.9 Hebson coupling (a) and Tracta coupling (b)

In the homokinetic coupling shown in Fig. 13.10 two revolutes on either
side of plane Σ constitute the central cross of a Hooke’s joint each connecting
one shaft to the intermediate body 3 . For this reason the coupling is referred
to as bicardanic coupling. Body 3 is a cylinder with the axis 01-02 inside
of which centrally placed rings 4 provide a planar joint in plane Σ for the
smaller circular disc 5 . Normal to this disc another hollow cylinder 6 is
rigidly connected. This cylinder is guide for two spherical bodies fixed at the
ends of shafts 1 and 2 at equal distances from 01 and from 02 , respectively.
The entire mechanism connecting shafts 1 and 2 is homokinetic. The point
of intersection of the shafts is not fixed on the shafts, but constrained to lie
in Σ . This type of coupling finds applications in low-speed vehicles such as
agricultural machines. For high-speed vehicles it is not suitable because the
nonuniform motion of the coupling mechanism is a source of vibrations.

Duditza [4, 5] and Kutzbach [10] describe various other forms of bicardanic
homokinetic couplings.

Fig. 13.10 Bicardanic homokinetic coupling
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13.4.2 Couplings With Three Parallel Serial Chains

In the shaft couplings described in the previous section permanent symmetry
of a five-d.o.f. chain with respect to plane Σ is achieved by a central spher-
ical joint S closing the chain. The same constraints that are exerted by the
spherical joint S can be exerted by placing two additional five-d.o.f. chains
parallel to the first one. For reasons of dynamic balancing and of simplicity
of design three identical chains are placed at intervals of 120◦. The so-called
Clemens coupling shown schematically in Fig. 13.11 is derived from Fig. 4.11.
The serial chain R1S2R2 of this coupling is placed three times in parallel. On
each shaft the three revolute axes fixed on the shaft are placed 120◦ apart.
The three spherical joints are permanently in the bisecting plane Σ .

Fig. 13.11 Clemens coupling with three identical parallel chains RSR

The shafts 1 and 2 in Fig. 13.12 are connected to the sides of the rigid
isosceles triangle (01,C,02) of base length 2� and apex angle 2β by two pairs
of revolutes R1 , R2 and R3 , R4 . At 01 the axis of R1 intersects both shaft
1 and R2 orthogonally, and at 02 the axis of R4 intersects both shaft 2 and
R3 orthogonally. In the figure the symmetrical position is shown in which the
shafts intersect in the bisecting plane Σ normal to 0102 and passing through
C . When the shafts are held fixed in this position, rotation of the triangle
about the line 0102 causes both shafts to rotate through identical angles ϕ .
The chain R1R2R3R4 is one out of three identical chains sharing the line
0102 and the plane Σ . The entire shaft coupling thus described is known as
Unitru coupling. It is homokinetic because it allows changing the direction
of shaft 2 while maintaining symmetry with respect to Σ .

In what follows, it is shown under which condition on the design parameter
β , for a given inclination angle α of the shafts, the triangle and the shafts
are free to rotate full cycle. Definition: The angle of rotation ϕ of the shafts
and the angle of rotation ψ of the triangle are zero when the shafts as well as
the triangle are in the plane of the drawing (the frame-fixed x, y-plane). In
this position the revolutes R1 and R4 are parallel to the z-axis. The point
P on the axis of R4 at the distance � from 02 is an auxiliary point. With
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Fig. 13.12 Single serial chain of a Unitru coupling

the altitude � cotβ of the triangle the x, y, z-coordinates of C and P are

C(ψ, β) : �[0 cosψ cotβ sinψ cotβ] ,

P (ϕ, γ) : �[1− sinϕ cos γ − sinϕ sin γ cosϕ ] .

}
(13.39)

The distance between C and P is �
√

2 + cot2 β independent of ψ and ϕ .
This condition yields the equation

cosψ sinϕ sin γ − sinψ cosϕ = tanβ sinϕ cos γ . (13.40)

It has the form A cosψ + B sinψ = R . The triangle can rotate full cycle if
A2 +B2 −R2 ≥ 0 for 0 ≤ ϕ ≤ 2π . This is the condition

1− cos2 γ

cos2 β
sin2 ϕ ≥ 0 . (13.41)

This requires cosβ ≥ cos γ or β ≤ γ ≤ π/2 . The inclination angle between
the two shafts is α = π − 2γ . Thus, the condition is 2β ≤ π − α . With
2β = 90◦ inclination angles α up to 90◦ are possible.

13.4.3 Ball-in-Track Joints

The symmetrical five-d.o.f. chains essential for all previously described shaft
couplings have the disadvantage of being structurally complex. Much simpler
realizations are shown in Figs. 13.13a and b . The shafts in Fig. 13.13a are
connected by a spherical joint. The shafts as well as the symmetrical curves
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of arbitrary shape drawn in thick lines are in the plane of the drawing. Imag-
ine these curves to be rigid and rigidly attached to the shafts. Due to the
symmetry the point of contact is in the bisecting plane Σ . Both symmetry
with respect to and contact in the bisecting plane are maintained when the
inclination angle α between the shafts is changed and also, when both shafts
are rotated through arbitrary identical angles into positions in which the two
curves are no longer coplanar. The sliding point contact of two curves con-
stitutes a five-d.o.f. joint. The symmetrical closed chain formed by this joint
in parallel to the spherical joint represents a homokinetic coupling of shafts
1 and 2 . However, since point contact is transmitting force from one shaft
to the other in only one sense of direction of rotation, a second pair of rigid
curves for the opposite sense of direction is necessary. This is the pair drawn
in dashed lines in the same plane. Repeating the arguments at the beginning
of the previous section the shaft coupling continues to be homokinetic if the
central spherical joint is replaced by two additional sets of curves in planes
placed at intervals of 120◦ . Engineering realizations see in Kutzbach [10].
The contacting curves are edges of bodies.

Single-point contact of curves is unsatisfactory. A much better design is the
so-called ball-in-track joint shown in Fig. 13.13b . The role of the contact point
is played by the center C of a spherical ball of arbitrary diameter. Motion
of C relative to the shafts along prescribed symmetric curves is realized by
appropriately curved shallow grooves referred to as tracks in which the ball is
constrained to move. Each track is rigidly attached to one of the shafts. The
element composed of a ball enclosed between two crossing tracks is called
ball-in-track joint. It is a five-d.o.f. joint. Homokinetic shaft couplings with
ball-in-track joints have many advantages such as small size, small dynamic
unbalance and distribution of contact forces among a large number of balls.
However, there are disadvantages, too. Problems arise from the fact that the
motion of balls in crossing tracks is not rolling, but sliding and boring with
the possibility of jamming due to friction. This aspect of kinematics see in
Phillips/Winter [14].

The so-called Devos coupling shown schematically in Fig. 13.14 has two
balls-in-tracks in parallel to a spherical joint S . The tracks are symmetrically
located cylinders. In order to keep the centers of the balls in the bisecting
plane Σ the balls are also constrained to move along the cylindrical pin
3 which is rigidly attached to the sphere of the joint S . This implies that
the sphere of the joint S cannot be rigidly connected to any of the two
shafts. Details of design not shown in the figure allow the shaft coupling to
be assembled under prestress in such a way that its elements are firmly held
together.

Figure 13.15 shows the essential elements of a shaft coupling without cen-
tral spherical joint and with balls in torus-shaped tracks in the particular
position when the circular lines of contact between ball and both tori (indi-
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Fig. 13.13 Homokinetic coupling with contacting symmetrical curves (a) and with a

ball-in-track joint (b)

Fig. 13.14 Devos coupling with balls in cylindrical tracks

Fig. 13.15 Homokinetic shaft coupling with balls in torus-shaped tracks
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cated by the dashed circles) are in the plane of the drawing4. Let this be the
position ϕ = 0 of the shafts. The radii r1 and r2 of these circles satisfy the
condition r2 − r1 = 2ρ where ρ is the radius of the balls. This has the effect
that the trajectory of the center C of the ball relative to shaft 1 is the circle
of radius r = r1 + ρ about 01 and that the trajectory of C relative to shaft
2 is the circle of the same radius r about 02 . In the position ϕ = 0 these
circles are symmetric with respect to and intersecting in the bisecting plane
Σ . The pair of balls shown in the figure is one out of three or more pairs
moving in tracks which are placed at equal angular intervals. After what has
been said in the context of Figs. 13.13a,b the symmetry properties prove that
the shaft coupling is homokinetic. Not only in the position ϕ = 0 , but in
arbitrary positions ϕ �= 0 point C is in the plane Σ at equal distances r
from 01 and from 02 . Hence the trajectory of C relative to the frame is a
circle in Σ with the center at the midpoint between 01 and 02 . The radius
of this circle depends on α .

The position of C in the tracks is described by the angle β = �(001C) .
It is a function ϕ . The extremal values β1 and β2 are obtained from the
condition that the x, y-coordinates of C satisfy the equation x = y tanα/2 .
This is the set of equations

h− r cosβ1,2 = ±r sinβ1,2 tan
α

2
. (13.42)

Solving for sinβ1,2 results in the formulas

sinβ1,2 =
(h/r) tanα/2±

√
1 + tan2 α/2− (h/r)2

1 + tan2 α/2
. (13.43)

An animation of the motion is on display in Wikipedia Homokinetisches Ge-
lenk.

13.4.4 Tripod Joint

The tripod joint shown in Fig. 13.16 is another ball-in-track coupling. Its
kinematics was investigated by Roethlisberger/Aldrich [16], Duditza [5], Du-
ditza/Diaconescu [6], Durum [8], Orain [12, 13] and Akbil/Lee [1, 2]. In what
follows, an elementary analysis is presented. Imagine that in the fixed carte-
sian x1, y1, z1-system of Fig. 13.17 the shaft labeled 1 is rotating about the
z1-axis. The rotation angle is ϕ . A point Q fixed on the shaft at radius
a is moving on a circle. In the position ϕ of the shaft Q has the coordi-
nates x1(ϕ) = a cosϕ , y1(ϕ) = a sinϕ . The circle and this point Q(ϕ) are

4 The dimensions chosen in the figure are unrealistic because they allow only small varia-
tions of the angle α
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Fig. 13.16 Tripod joint. Balls sliding on the rays of the star-shaped tripod 2 are guided

in tracks fixed on shaft 1

projected parallel to the z1-axis onto the x, y-plane of another fixed x, y, z-
system which is inclined against the x1, y1, z1-system by an angle α about
the x1-axis. The projection of the circle is the ellipse with semi-axes a and
b = a/ cosα . Point Q(ϕ) is projected into the point P(ϕ) with coordinates

x(ϕ) = a cosϕ , y(ϕ) = b sinϕ . (13.44)

Let, in the same x, y-plane, x0(ϕ) and y0(ϕ) be the coordinates of another
point P0(ϕ) , i.e., of another curve. To be determined are all curves P0(ϕ)
having the property that the angle between the line P0(ϕ)P(ϕ) and the
x-axis is identical with ϕ . This is the condition

b sinϕ− y0(ϕ)

a cosϕ− x0(ϕ)
≡ tanϕ . (13.45)

The ansatz
x0(ϕ) = ξ(ϕ) cosϕ , y0(ϕ) = η(ϕ) sinϕ (13.46)

results in the condition

Fig. 13.17 Point Q fixed at radius a on the rotating shaft 1 (rotation angle ϕ ) is

projected parallel to the z1-axis into the point P(ϕ) in the fixed x, y-plane. Another point
P0(ϕ) in the x, y-plane
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η(ϕ)− ξ(ϕ) ≡ b− a . (13.47)

This condition is satisfied by infinitely many functions, for example, by the
family of functions ξ(ϕ) = −r(cos2 ϕ + c1) , η(ϕ) = r(sin2 ϕ + c2) with
constants r , c1 , c2 satisfying the constraint equation r(1+c1+c2) = b−a .
In the special case c1 = c2 = −3/4 , r = −2(b− a) , Eqs.(13.46) are

x0(ϕ) = � cos 3ϕ , y0(ϕ) = � sin 3ϕ ,

� = −r

4
=

b− a

2
= a

1− cosα

2 cosα
.

⎫⎬
⎭ (13.48)

When shaft 1 is rotating with angular velocity ϕ̇ , P0(ϕ) is moving with
angular velocity 3ϕ̇ on the circle with radius � about 0 , and the line
P0(ϕ)P(ϕ) is rotating with angular velocity ϕ̇ . Examples: � ≈ 0.08a for
α = 30◦ , � ≈ 0.21a for α = 45◦ , � = 0.5a for α = 60◦ . The Taylor formula
is �/a ≈ α2/4 .

Imagine that on the circle of radius a fixed on shaft 1 not a single point
Q , but three points Q1 , Q2 , Q3 are marked 120◦ apart. The projections
of these points are three points Pi(ϕ) (i = 1, 2, 3) on the ellipse. For each
one of these points (13.48) yields the same point P0(ϕ) since 3 · 120◦ = 2π .
From this it follows that the rays P0(ϕ)Pi(ϕ) (i = 1, 2, 3) emanating from
P0(ϕ) form a rigid 120◦-star with the center at P0 . This star is rotating with
angular velocity ϕ̇ while its center P0 is moving on the circle of radius �
with angular velocity 3ϕ̇ . The lines Qi(ϕ)Pi(ϕ) (i = 1, 2, 3) are parallel to
the axis of shaft 1 and fixed on shaft 1 . In the tripod joint shown in Fig.
13.16 the star, the three lines Qi(ϕ)Pi(ϕ) (i = 1, 2, 3) and the permanent
intersection of each ray with the associated line at Pi are materially realized.
Each ray is guide for a ball which is free to move along the ray. The associated
line fixed on shaft 1 is the axis of a cylinder in which the ball is also free to
move. Orthogonal to the star and through its center P0 a shaft 2 is rigidly
attached to the star. The star and this shaft together constitute the tripod
giving the joint its name. The tripod has the same angular velocity ϕ̇ shaft
1 has independent of the direction of shaft 2 relative to shaft 1 . It has the
additional degree of freedom of translation along the axis of shaft 1 . In spite
of these properties the tripod joint is not homokinetic because shaft 2 cannot
be held fixed due to its motion on a cylinder of radius � . By means of an
Oldham coupling the motion of shaft 2 can be transmitted to a shaft 3 the
axis of which is the z-axis. This combination tripod joint – Oldham coupling
is a homokinetic coupling of shafts 1 and 3 .

If a point fixed on shaft 2 at a distance � � a from P0 is coupled to the z-
axis by a spherical joint S , the kinematics of the tripod is slightly changed.
An analysis made by Duditza and Diaconescu [5, 6] leads to the following
first-order approximation. Three times per revolution of shaft 1 the axis of
shaft 2 is moving on a circular cone with the apex at S and with the semi-
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vertex angle �/� � 1 , and the angular velocity of the tripod about shaft 2
is approximately ϕ̇(1−A cos 3ϕ) with A = 3

2 (a/�) tanα tan2 α/2 � 1 .
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