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Preface

This book is devoted to the kinematics of the single rigid body and of sys-
tems of inter-connected rigid bodies. Engineers are confronted with an endless
variety of systems ranging from simple planar mechanisms to robots, walk-
ing machines, prothetic devices, vehicles, stewart platforms, shaft couplings,
gears etc. Subjects of kinematics are relationships between two and more
positions, finite and infinitesimal displacements and continuous motions.

The book is intended for use as textbook in advanced courses on kine-
matics of mechanisms. It focuses on a solid theoretical foundation and on
mathematical methods applicable to the solution of problems of very diverse
nature. Applications are demonstrated in a large number of fully worked-out
problems. In kinematics a wide variety of mathematical tools is applicable.
The most important tools are vectors, tensors, matrices, complex numbers,
quaternions, dual numbers, dual vectors, dual quaternions and elements of
line geometry. Whereever possible vector equations are formulated instead of
lengthy scalar coordinate equations. The principle of transference is applied
to problems of very diverse nature.

The book has 19 chapters. Chapters 1 – 13, 16 and 18 are devoted to
spatial kinematics and Chapts. 14, 15 and 17 to planar kinematics. In Chapt.
19 nonlinear dynamics equations of motion are formulated for general spatial
mechanisms. Nearly one half of the book is dealing with position theory and
the other half with motion.

Chapter 1 on Finite rotation about a fixed point introduces the direction
cosine matrix, the similarity transformation, Euler and Bryan angles, Euler-
Rodrigues parameters, quaternions, Cayley-Klein parameters, Rodrigues-,
Euler- and Wiener vectors.

Subjects of Chapt. 2 on Line geometry are Plücker vectors with applica-
tions to the line of intersection of two planes, to lines intersecting four given
lines, to the linear complex, to linear congruences and to ruled surfaces.

Chapter 3 on Finite screw displacement introduces the (4 × 4) transfor-
mation matrix for general rigid-body displacements, Chasles’ and Halphen’s
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theorems and the screw triangle. Dual numbers and dual vectors lead to the
principle of transference. This principle is applied to the composition and
decomposition of finite and infinitesimal screw displacements and to deter-
mining the manifold of screw displacements effecting a prescribed line dis-
placement.

In Chapt. 4 entitled Degree of freedom of a mechanism Grüblers formula is
developed and illustrated by applications to various spatial mechanisms with
or without overconstraint.

Chapter 5 is devoted to Spatial closed kinematic chains with a single
independent and with six dependent joint variables. Such chains are basic
elements of single-degree-of-freedom mechanisms. Efficient methods are de-
veloped for expressing the dependent variables in terms of the independent
variable and of constant Denavit-Hartenberg parameters. As closure condi-
tions Woernle-Lee equations and Lee’s half-angle equations are formulated.
For products of vectors in these equations a novel technique is developed. It
is applied to ten mechanisms ranging from the RCCC mechanism with nine
to the general 7R mechanism with twenty-one parameters. The final section
is devoted to the inverse kinematics of serial 6-d.o.f. robots.

Chapter 6 entitled Overconstrained mechanisms starts with Bricard’s the-
orem on single-loop-mechanisms with revolute joints. The technique devel-
oped in Chapt. 5 is applied to Bennett’s 4R-mechanism, Goldberg’s 5R-
mechanism, to Bricard’s 6R-mechanisms known as line-symmetric, plane-
symmetric and trihedral mechanisms and to Dietmaier’s 6R-mechanism. In
addition, Steffen’s mobile polyhedra, the Bricard-Borel mechanism, Bricard’s
hyperbolic mechanism, a cam mechanism and the HEUREKA octahedron are
analyzed.

Chapter 7 is devoted to the position theory for the terminal body of
spatial three-body chains with two revolute, prismatic or cylindrical joints.

Subject of Chapt. 8 is the direct kinematics of the Stewart platform of
general geometry. Coordinate-free vector equations are formulated for the
dual quaternion specifying the position of a platform The same problem is
solved by elementary means for a Stuart platform with triangular geometry.

Chapter 9 entitled Angular velocity, angular acceleration is the first chap-
ter devoted not to position theory, but to continuous motion. Key words are
instantaneous screw axis, velocity screw, velocity and acceleration distribu-
tion in a rigid body, angular velocity of a body expressed in terms of positions
and velocities of three points, novel formulas for striction point and distribu-
tion parameter of raccording axodes, strapdown inertial navigation, motion
on curved surfaces, mecanum wheel.

In Chapt. 10 Kinematic differential equations are developed relating an-
gular velocity to the time derivatives of direction cosines, Euler- and Bryan
angles, Euler-Rodrigues parameters, Cayley-Klein parameters, Rodrigues pa-
rameters, Wiener parameters and the Euler vector.
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Chapter 11 is devoted to Kinematics of tree-structured systems with joints
of arbitrary nature. Positions, velocities and accelerations of bodies are ex-
pressed as functions of generalized joint variables and of their time deriva-
tives. The structure of the tree is described by its path matrix with elements
+1 , −1 and zero.

Chapter 12 on Screw systems begins with the resultant of two general
velocity screws, with the raccording hyperboloids of revolution associated
with the relative motion of two bodies rotating about skew axes and with
the analogy between force screw and velocity screw. The principle of virtual
power leads to the concept of reciprocal screws. Screw systems reciprocal to
first-order, second-order and third-order screw systems are investigated.

Chapter 13 on Shaft couplings starts with an analysis of Hooke’s joint
including the polhode and herpolhode cones of its cross-shaped central body.
From the principle of transference results are obtained for a joint coupling
skew axes. A simple formula is developed for the transmission ratio of a chain
of series-connected Hooke’s joints. Final sections are devoted to three classes
of homokinetic shaft couplings and to an elementary analysis of the tripod
joint.

In Chapt. 14 on Displacements in a plane complex numbers are used for
describing translation, rotation about a point and reflection in a line and
resultants of these three elementary displacements. Relationships between
three and between four positions of a plane including Burmester’s pole curve
are studied. The last section is devoted to Heesch’s work on tilings.

In Chapt. 15 on Plane motion the first part is devoted to centrodes and
to the theorems of Burmester and Kennedy/Aronhold with a series of il-
lustrative examples. Instantaneous centers of rotation and of acceleration,
Bresse circles and normal poles are expressed in complex form. Curvature
theory of plane trajectories leads to the Euler-Savary equation, the cubic of
stationary curvature and to Ball’s point. A short section on Holditch’s the-
orem with applications is followed by the theory of trochoids in general and
of cycloids in particular. An application of cycloids is demonstrated by the
analysis of optimal dwell mechanisms. The final section is devoted to the
problem of maneuvering a rectangle of maximum size in the space between
two nonorthogonal straight lines and a point.

In Chapt. 16 entitled Theory of gearing the first part on gears with par-
allel axes has the key words analytical meshing conditions for calculating
the tooth flank conjugate to a given flank, external and internal pin gears,
curvature relationship for meshing tooth flanks, Camus’ theorem, cycloidal
gears, involute gearing, addendum modification, helicoidal gears. Subject of
the final section is Giovanozzi’s theory of general spatial involute gearing.

Chapter 17 on the Planar four-bar begins with sections on Grashof’s con-
dition, the transfer function relating input and output angles, classical and
new formulas for stationary values of the transmission ratio, on four-bars
for the transmission of forces (shears, prongs etc.) and on coupler curves
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(Roberts-Tschebychev theorem, double points, cusps, symmetrical coupler
curves). Two sections are devoted to applications of four-bars in planar robots
and in Jeantaud’s steering mechanism. For the former a simple position and
velocity analysis is formulated. Final sections are devoted to Tschebychev’s
optimal straight-line approximations by coupler curves, to Peaucellier’s in-
versor generating an exact straight line, to Burmester’s four-position theory
and to the trajectory of the composite system center of mass of a four-bar.

Chapter 18 on the Spherical four-bar has sections on the transfer function,
on conditions analogous to Grashof’s condition for the planar four-bar and on
coupler curves (symmetry conditions, double points, cusps, number of points
of intersection with a circle, stereographic projection). The chapter ends with
the investigation of a spherical parallel robot.

In Chapt. 19 entitled Dynamics of mechanisms nonlinear differential equa-
tions of motion for spatial mechanisms are developed from the principle of
virtual power. Equations for tree-structured systems are based on the kine-
matics formulation in Chapt. 11 . Equations for mechanisms with closed kine-
matic chains are obtained by incorporating additional kinematical constraint
equations.

The author expresses his gratefulness to the following colleagues, research
assistants and students who supported the development of this manuscript:
Prof. Ljubomir Lilov / Kliment-Ochridsky Univ. Sofia (for his critical reading
of parts of the manuscript and for contributing Eq.(1.181) and Sect. 9.10 ),
Günther Stelzner (for fruitful discussions and contributions to Sect. 15.6 ),
Andrey Shutovich (for contributing ideas to Chapt. 18 and for his criti-
cal reading of Chapt. 8 ) and Xu Tongsheng, Benjamin Rutschke, Andreas
Funkhänel and Simon Fritz (for converting pencil-on-paper figures into data
files). Last, but not least, I thank the Springer team for technical advice and
for the patience in waiting for completion of the manuscript

Karlsruhe,
August 2015 Jens Wittenburg
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Notation

Vectors are printed boldface: r , ω .

Tensors are printed serif: Unit tensor I , dyad D = rr , inertia tensor
J =

∫
m
(r2I− rr) dm .

Products: ω · r , ω × r , J · ω .

Formulas: I ·ω ≡ ω , (n× r)×n = r−nn · r = (I−nn) · r (unit vector n ) ,∫
m
r× (ω × r) dm =

∫
m
(r2I− rr) dm · ω = J · ω (angular momentum) ,∫

m
(ω × r)2 dm = ω · ∫

m
(r2I− rr) dm · ω = ω · J · ω (kinetic energy) ,

ω̇ × r + ω × (ω × r) = ω̇ × r + ωω · r − ω2r = (ω̇ × I + ωω − ω2 I ) · r
(acceleration) .

Matrices are underscored: A , unit matrix I . The transpose of A is AT .

A right-handed cartesian basis with unit basis vectors e1 , e2 , e3 is called
basis e . This symbol e denotes also the column matrix [ e1 e2 e3 ]

T of the
three unit vectors.

The equation r = r1e1 + r2e2 + r3e3 defines the coordinates r1 , r2 , r3 of
a vector r in basis e and the column matrix r = [ r1 r2 r3 ]

T of these coor-
dinates. This matrix is not the vector since it is different in different bases.
The relationship between vector and coordinate matrix is r = eT r = rT e .

The coordinates ω1 , ω2 , ω3 of a vector ω define the skew-symmetric ma-

trix ω̃ =

[
0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

]
. If r is the column matrix of the coordinates of

another vector r in the same reference basis, ω̃ r is the column matrix of
the coordinates of ω × r . Also ω̃ r = −r̃ ω .

Right-handed cartesian bases fixed on bodies i = 0, 1, 2, . . . are denoted e0 ,
e1 , e2 etc. The coordinates of a vector r in basis ek are denoted rk1 , r

k
2 , r

k
3 ,

and the column matrix of these coordinates is denoted rk . Whether r21 is
the square of some scalar r1 or the first component of a vector r in basis
e2 is seen from the context.

Matrices with vectors as elements are boldface underscored: Basis e =
[ e1 e2 e3 ]

T , column matrix ω = [ω1 . . .ωn ]
T of vectors ω1 , . . . , ωn .

Matrices with tensors as elements are serif underscored: Diagonal matrix J
of inertia tensors J1 . . . Jn .

The rule of ordinary matrix multiplication (AB )ij =
∑

k AikBkj is gener-
alized for matrices with vectors and tensors as elements. Examples:

1. r = eT r ; 2. e·eT = I ; 3. e1 ·e2T =
[
e1i ·e2j

]
(direction cosine ma-

trix) ; 4. r·e×eT =

[
0 r3 −r2

−r3 0 r1
r2 −r1 0

]
= −r̃ ; 5. J·ω = [ J1 ·ω1 . . . Jn ·ωn ]

T

(diagonal matrix J of inertia tensors, column matrix ω ) .
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2.6 Plücker Vectors of the Common Perpendicular of two Lines . . 69
2.7 Linear Complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.7.1 Null Point. Null Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.7.2 Axis. Pitch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
2.7.3 Determine the Null Point if the Null Plane is Given

and Vice Versa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
2.7.4 Determine a Linear Complex from Given Complex

Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
2.7.5 Reciprocal Polars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2.8 Linear Congruence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
2.9 Ruled Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

2.9.1 Intersection of three Linear Complexes . . . . . . . . . . . . . . 78
2.9.2 Striction Point. Distribution Parameter . . . . . . . . . . . . . 78

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3 Finite Screw Displacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.1 (4× 4) Transformation Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.2 Chasles’ Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.3 Scalar Measures of a Screw Displacement . . . . . . . . . . . . . . . . . . 90
3.4 Roth’ Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.5 Screw Displacement Determined from Displacements of

Three Body Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.6 Halphen’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.7 Resultant of two Screw Displacements. Screw Triangle . . . . . . 95
3.8 Dual Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.9 Dual Vectors. Dual Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.10 Principle of Transference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.10.1 Dual Basis. Dual Direction Cosine Matrix . . . . . . . . . . . 102
3.10.2 Screw Axis, Screw Angle and Translation Determined

from Dual Direction Cosines . . . . . . . . . . . . . . . . . . . . . . . 104
3.10.3 Dual Euler Angles. Dual Bryan Angles . . . . . . . . . . . . . . 108

1.16 Reflection in a Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

1.15.9 Rotations Effecting a Prescribed Line Displacement . . . 46
1.15.10 Sensor Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
1.15.11 Decomposition of a Rotation into three Rotations . . . 51
1.15.12 Decomposition of a Rotation into three Rotations.

Quaternion Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 55



Contents xv

3.10.4 Dual Rodrigues Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
3.10.5 Dual Euler-Rodrigues Parameters. Dual Quaternions . . 110

3.11 Resultant of two Screw Displacements. Dual-Quaternion
Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

3.12 Equations for the Screw Triangle . . . . . . . . . . . . . . . . . . . . . . . . . 118
3.13 Resultant of two Infinitesimal Screw Displacements.

Cylindroid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4 Degree of Freedom of a Mechanism . . . . . . . . . . . . . . . . . . . . . . . 137
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Chapter 1

Rotation about a Fixed Point.
Reflection in a Plane

Subject of this chapter are relationships between two positions of a rigid body
with a fixed point. Note: Motions leading from one position to the other are
not investigated. Consequently, terms such as velocity or angular velocity do
not occur.
Literature: Rodrigues [25], Schoenflies [28], Klein/Müller [11], Meyer/
Mohrmann [17], Mises [19], Kuipers [14], Mayer [16], Murnaghan [23], Müller
[20, 21, 22], Rooney [26], Altmann [1], Geradin/Park/Cardona [7], Angeles
[2], Shuster [29], Kolve [13], Bronstein/Semendjajev/Musiol/Mühlig [5].

For describing positions two right-handed cartesian bases are defined. The
origins of both bases coincide with the fixed point of the body. The basis with
unit basis vectors e1i (i = 1, 2, 3) serves as reference basis. The other basis
with unit basis vectors e2i (i = 1, 2, 3) is fixed on the body. It represents
the body. The bases are denoted e1 and e2 , respectively. The unit basis
vectors of any right-handed cartesian basis e satisfy the six orthonormality
conditions

ei · ej = δij (i, j = 1, 2, 3) (1.1)

as well as the right-handedness condition

e1 · e2 × e3 = +1 . (1.2)

The positions between which relationships are to be established are the so-
called initial position in which e2 coincides with e1 and an arbitrary final
position.

1.1 Direction Cosine Matrix

The unit basis vectors e1i and e2j (i, j = 1, 2, 3) of the two bases define the

altogether nine direction cosines e1i · e2j = cos� (e1i , e
2
j ) (i, j = 1, 2, 3). They

1
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are abbreviated

a12ij = a21ji = e1i · e2j (i, j = 1, 2, 3) . (1.3)

These direction cosines are the coordinates of e1i (i = 1, 2, 3) in e2 as well
as the coordinates of e2j (j = 1, 2, 3) in e1 . Definition: The (3× 3) direction

cosine matrix A12 has in row i the coordinates of e1i (i = 1, 2, 3) in e2 and,
consequently, in column j the coordinates of e2j (j = 1, 2, 3) in e1 . The
three equations

e1i =

3∑
j=1

a12ij e
2
j (i = 1, 2, 3) (1.4)

are combined in matrix form in the equation

e1 = A12e2 . (1.5)

The symbols e1 and e2 , until now simply the names of bases, denote the col-
umn matrices of the unit basis vectors: e1 = [ e11 e12 e13 ]

T , e2 = [ e21 e22 e23 ]
T .

The exponent T denotes transposition. The use of boldface letters indicates
that the elements of e1 and e2 are vectors. The matrix product A12e2 is
evaluated following the rule of ordinary matrix algebra, although one of the
matrices has vectors as elements and the other scalars. For two matrices each
having vectors as elements both the inner product (dot product) and the
outer product (cross product) exist. Example: Scalar multiplication of (1.5)

from the right by e2
T

produces for the direction cosine matrix the explicit
expression

A12 = e1 · e2T . (1.6)

This equation is the matrix form of the nine Eqs.(1.3).
The direction cosine matrix is the first mathematical quantity used for

specifying the relationship between two positions. Other quantities are in-
troduced later. In what follows, properties of the matrix are discussed. Since
each row contains the coordinates of one of the unit basis vectors of e1 , the
determinant of the matrix is the scalar triple product e11 ·e12×e13 . According
to (1.2) this equals +1 . Hence

detA12 = +1 . (1.7)

The six orthonormality conditions (1.1) express the fact that the scalar prod-
uct of any two rows i and j and also of any two columns i and j of A12

equals the Kronecker delta:

3∑
k=1

a12ika
12
jk = δij ,

3∑
k=1

a12kia
12
kj = δij (i, j = 1, 2, 3). (1.8)



1.1 Direction Cosine Matrix 3

A matrix having these properties is called orthogonal matrix. Because of

(1.8) the product A12A12T equals the unit matrix. Hence the matrix has the
important property that its inverse equals its transpose:

(A12)
−1

= A12T . (1.9)

Definition: The co-factor of the element a12ij is (−1)i+j times the deter-

minant of the (2× 2)-submatrix of A12 left after deleting row i and column
j . Because of the orthogonality of the matrix every element equals it own
co-factor1. Omitting the upper indices 12 these identities can be written in
the forms

aii = ajjakk −ajkakj ,
ajk = aijaki −aiiakj ,
akj = ajiaik −aiiajk

⎫⎬
⎭ (i, j, k = 1, 2, 3 cyclic) . (1.10)

With (1.9) the inverse of (1.5) is

e2 = A21e1 with A21 = A12T . (1.11)

Let now v be an arbitrary vector (not necessarily the position vector of
a point). In the bases e1 and e2 it has different coordinates v1i and v2i ,
respectively (i = 1, 2, 3) :

v =

3∑
i=1

v1i e
1
i =

3∑
i=1

v2i e
2
i . (1.12)

The sums are written as matrix products. For this purpose the column ma-
trices v1 = [ v11 v

1
2 v

1
3 ]

T and v2 = [ v21 v
2
2 v

2
3 ]

T of the coordinates of v in the
two bases are defined. They are called coordinate matrices of v in e1 and in
e2 , respectively. It should be noted that the term vector is used for v and
not as abbreviation for coordinate matrix. We also distinguish between the
coordinate vi and the component viei of a vector. A component is itself a
vector, whereas a coordinate is a scalar.

In terms of coordinate matrices (1.12) has the form

e1
T
v1 = e2

T
v2 . (1.13)

From (1.11) it follows that e2
T

= e1
T
A12 . Substitution of this expression

produces the equation e1
T
v1 = e1

T
A12v2 and, consequently,

v1 = A12v2 . (1.14)

1 Special case of the general formula (A−1)ij = cji/detA valid for an arbitrary (n× n)-

matrix A ( cji co-factor of the matrix element aji )
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More directly, this equation follows from the fact that the components of
v are linear combinations of unit basis vectors. The equation is the rule by
which vector coordinates are transformed from one basis into another. Be-
cause of this equation the direction cosine matrix is also called transformation
matrix. The absolute value of a vector does not change under a transforma-
tion. Indeed, with both sets of coordinates the scalar product v · v is the

same: v1
T
v1 = v2

T
A12TA12v2 = v2

T
v2 .

Example: Let r and r∗ be the position vectors of an arbitrary body-fixed
point in the initial position and in the final position of basis e2 , respectively.
The coordinate matrices r∗1 in e1 and r∗2 in e2 satisfy the equation r∗1 =
A12r∗2 . However, since r∗ coincides with r , when e2 coincides with e1 ,
also the identity r1 = r∗2 is true. From this it follows that the coordinates
of r∗ and r in e1 are related through the equation

r∗1 = A12r1 . (1.15)

End of example.

Imagine in addition to the bases e1 and e2 a third basis e3 , i.e., a third
position of the rigid body. Then three direction cosine matrices are defined
by the equations

e1 = A13e3 , e1 = A12e2 , e2 = A23e3 . (1.16)

The matrices are not independent. The last two equations establish the rela-
tionship e1 = A12A23e3 . Comparison with the first equation yields

A13 = A12A23 . (1.17)

This equation shows that orthogonal matrices constitute a group with respect
to multiplication. They satisfy the four conditions: 1) The product of any
two elements of the group is itself an element (A13 is an orthogonal matrix).
2) The product is associative. 3) There is a unit element, namely, the unit
matrix. 4) For every element of the group the inverse element exists, namely,
the transposed matrix. The group is denoted SO(3) with O for orthogonal.

Next, the eigenvalue problem A12v = λv or (A12 − λI)v = 0 is inves-
tigated where A12 is an arbitrary direction cosine matrix. The equation is
the transformation rule A12v2 = v1 in the special case v1 = λv2 . Since
the absolute value of a vector does not change under a transformation, it
can be predicted that all three eigenvalues have the absolute value one. The
eigenvalues are the roots of the characteristic equation det (A12 − λI) = 0 .
Without the superscript of A12 this is the cubic equation

−λ3 + λ2 trA − λ[(a11a22 − a12a21) + (a22a33 − a23a32)

+(a33a11 − a31a13)] + detA = 0 . (1.18)
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According to (1.7) the free term is +1 . Every expression in parentheses is the
co-factor of one diagonal element of A12 . According to the first Eq.(1.10) the
co-factor is identical with the diagonal element. Consequently, the expression
in square brackets represents the trace of the matrix. Thus, the equation
reads

−λ3 + λ2 trA12 − λ trA12 + 1 = 0 . (1.19)

It shows that every direction cosine matrix has the eigenvalue λ = +1 .
Division by (λ−1) produces for the other eigenvalues the quadratic equation
λ2 − (trA12 − 1)λ+ 1 = 0 . It has the roots

λ2,3 =
trA12 − 1

2
± i

√
1−

( trA12 − 1

2

)2
= cosϕ± i sinϕ = e±iϕ (1.20)

with

cosϕ =
trA12 − 1

2
. (1.21)

If A12 is the unit matrix, it has the triple eigenvalue +1 . In the case
tr A12 = −1 it has the double eigenvalue λ2,3 = −1 .

Let n be the normalized eigenvector associated with the eigenvalue λ =
+1 . It is calculated from the equations

(A12 − I)n = 0 , n2
1 + n2

2 + n2
3 = 1 . (1.22)

This eigenvector n represents the coordinate matrix of a unit vector n which
has identical coordinate matrices in the bases e1 and e2 . Also this vector
n is called eigenvector of A12 .

Imagine that, starting from the initial position, the body-fixed basis e2

is rotated about the eigenvector n . The final position depends upon the
rotation angle. Independent of the angle the vector n has identical coordinate
matrices n1 = n2 = n in e1 and in e2 . The existence of the eigenvector
guarantees the existence of an angle which carries the basis from its initial
position to the final position given by the matrix A12 . Hence the

Theorem 1.1. (Euler) The displacement of a body-fixed basis from an initial
position e1 to an arbitrary final position e2 is achieved by a rotation through
a certain angle about an axis which is fixed in both bases. The axis has the
direction of the eigenvector associated with the eigenvalue λ = +1 of the
direction cosine matrix A12 .

In Sect. 1.5 it is shown that the rotation angle in Euler’s theorem is the
angle ϕ in Eq.(1.20) for the eigenvalues λ2 and λ3 . Euler’s theorem guar-
antees that the direction cosine matrix A12 can be expressed in terms of
the coordinates of its eigenvector n and of the rotation angle ϕ . This is the
subject of Sect. 1.5 .
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The complex conjugate eigenvectors associated with the eigenvalues cosϕ±
i sinϕ are determined at the end of Sect. 1.5 .

1.2 Similarity Transformation

Let A and B be arbitrary (n × n)-matrices, A nonsingular. The transfor-
mation of B into the matrix

B∗ = ABA−1 (1.23)

is called similarity transformation of B .

Theorem 1.2. The matrices B and ABA−1 have identical characteristic
polynomials and, therefore, identical eigenvalues and identical traces.

Proof: The characteristic polynomial of ABA−1 is det (ABA−1 − λI) =

det (ABA−1 −AλI A−1) = det [A (B − λI)A−1] = det (B − λI) = 0

(the determinant of a product of matrices equals the product of the determi-
nants of the factors). Since the trace is the sum of all eigenvalues, also the
traces are identical. End of proof.

Theorem 1.3. Let n and nB be the eigenvectors of ABA−1 and of B ,
respectively, associated with one and the same eigenvalue λ (arbitrary). They
are related by the equation

n = AnB . (1.24)

Proof: By definition, ABA−1 n = λn and B nB = λnB . With (1.24) the
first equation is ABA−1AnB = λAnB or B nB = λnB . This is the second
equation. End of proof.

Example: Let A12 be the direction cosine matrix relating the coordinates
of vectors in two bases e1 and e2 . Let, in particular, a1 , a2 and b1 , b2

be the coordinate matrices of two vectors a and b , respectively, so that,
for example, b1 = A12b2 . The cross-product a× b has in the two bases the
coordinate matrices ã1b1 and ã2b2 with the skew-symmetric matrices ãi =⎡
⎢⎣

0 −ai
3 ai

2

ai
3 0 −ai

1

−ai
2 ai

1 0

⎤
⎥⎦ (i = 1, 2) . Hence ã1 b1 = A12 ã2 b2 . On the right-hand side

b2 = A12T b1 is substituted. This results in the transformation formula

ã1 = A12 ã2 A12T . (1.25)

It is a similarity transformation. End of example.
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1.3 Euler Angles

Calculations with nine direction cosines subject to six constraint equations
are cumbersome. In the present section and in following sections the elements
of the direction cosine matrix are formulated in various ways in terms of either
three coordinates without constraint equations or in terms of four coordinates
with one constraint equation. In the present section so-called Euler angles
are introduced. The final position e2 of the body-fixed basis is the result of
three successive rotations (Fig. 1.1a ). In the initial position prior to the first
rotation the body-fixed basis coincides with e1 . The first rotation is carried
out through an angle ψ about the axis e13 (in the usual right-handed sense).
It carries the body-fixed basis into an intermediate position e2

′′
. The second

rotation is carried out through an angle θ about the axis e2
′′

1 . It carries the
body-fixed basis into a new intermediate position e2

′
. The third rotation is

carried out through an angle φ about the axis e2
′

3 . It carries the body-fixed
basis into the final position e2 . A characteristic feature of Euler angles is that
the second and the third rotation are carried out about axes which are the
result of the previous rotation (or rotations). Another characteristic feature
is the sequence (3,1,3) of rotation axes.

The desired expression for the matrix A12 in terms of the three angles
is obtained from the transformation Eqs.(1.5) for the individual rotations.
Figure 1.1a yields the equations

e1 = Aψe
2′′ , e2

′′
= Aθe

2′ , e2
′
= Aφe

2 (1.26)

with

Fig. 1.1 Euler angles. Definition (a) and application in a two-gimbal suspension (b)
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Aψ =

⎡
⎢⎣ cosψ − sinψ 0

sinψ cosψ 0

0 0 1

⎤
⎥⎦ , Aθ =

⎡
⎢⎣ 1 0 0

0 cos θ − sin θ

0 sin θ cos θ

⎤
⎥⎦ ,

Aφ =

⎡
⎢⎣ cosφ − sinφ 0

sinφ cosφ 0

0 0 1

⎤
⎥⎦ . (1.27)

From (1.26) it follows that A12 = AψAθAφ . When this is multiplied out and
use is made of the abbreviations cψ , cθ , cφ for cosψ , cos θ , cosφ and
sψ , sθ , sφ for sinψ , sin θ , sinφ , the matrix is obtained in the form

A12 =

⎡
⎢⎣ cψcφ − sψcθsφ −cψsφ − sψcθcφ sψsθ
sψcφ + cψcθsφ −sψsφ + cψcθcφ −cψsθ
sθsφ sθcφ cθ

⎤
⎥⎦ . (1.28)

The advantage of having only three coordinates and no constraint equation
is paid for by the disadvantage that the direction cosines are complicated
functions of the three coordinates. There is still another problem. Figure 1.1a
shows that in the case θ = nπ (n = 0,±1, . . .) the axis of the third rotation
coincides with the axis of the first rotation. This has the consequence that ψ
and φ cannot be distinguished.

Euler angles can be illustrated by means of a rigid body in a two-gimbal
suspension system (Fig. 1.1b ). The bases e1 and e2 are attached to the
material base and to the suspended body, respectively. The angles ψ , θ
and φ are, in this order, the rotation angle of the outer gimbal relative to
the material base, of the inner gimbal relative to the outer gimbal and of
the body relative to the inner gimbal. With this device all three angles can
be adjusted independently since the intermediate bases e2

′′
and e2

′
are

materially realized by the gimbals. For θ = nπ (n = 0, 1, . . .) the planes of
the gimbals coincide (gimbal lock).

Euler angles are ideally suited as position variables for the study of motions
in which θ(t) is either exactly or approximately constant, whereas ψ and
φ are (exactly or approximately) proportional to time, i.e., ψ̇ ≈ const and
φ̇ ≈ const . Euler angles are advantageous also whenever there exist two
physically significant directions, one fixed in the reference basis e1 and the
other fixed in the body-fixed basis e2 . In such cases, e13 and e23 are given
these directions so that θ is the angle between the two (as examples see
Eqs.(10.10) and (10.83)). However, the use of Euler angles is not restricted
to such special cases.

If the matrix A12 is given, the corresponding Euler angles are calculated
from the equations
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cos θ = a1233 , sin θ = σ
√
1− cos2 θ (σ = +1 or − 1) ,

cosψ = −a1223/ sin θ , sinψ = a1213/ sin θ ,

cosφ = a1232/ sin θ , sinφ = a1231/ sin θ .

⎫⎪⎬
⎪⎭ (1.29)

Let (ψ , θ , φ) be the angles associated with σ = +1 . The angles associated
with σ = −1 are (π + ψ , −θ , π + φ) . Both triples produce one and the
same final position of the basis e2 . Numerical difficulties arise when θ is
close to one of the critical values nπ (n = 0, 1, . . .).

1.4 Bryan Angles

These angles are also referred to as Cardan angles. As before, the final po-
sition e2 of the body-fixed basis is the result of three successive rotations
(Fig. 1.2a ). In the initial position prior to the first rotation the body-fixed
basis coincides with e1 . The first rotation is carried out through an angle
φ1 about the axis e11 . It carries the body-fixed basis into an intermediate
position e2

′′
. The second rotation is carried out through an angle φ2 about

the axis e2
′′

2 . It carries the body-fixed basis into a new intermediate posi-
tion e2

′
. The third rotation is carried out through an angle φ3 about the

axis e2
′

3 . It carries the body-fixed basis into the final position e2 . A charac-
teristic feature of Bryan angles is the sequence (1,2,3) of rotation axes2. The
desired expression for the matrix A12 is, again, the product of three matrices
describing the individual rotations. Figure 1.2a shows that

Fig. 1.2 Bryan angles. Definition (a) and application in a two-gimbal suspension (b)

2 In contrast to Euler angles each of the three body-fixed basis vectors is axis of one of the
three rotations. Other possible sequences of rotation axes for Bryan angles are (3,2,1) and

the cyclic permutations (2,3,1), (3,1,2), (2,1,3) and (1,3,2). In Sect. 18.4 the sequence
(3,2,1) is used
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e1 = A1e
2′′ , e2

′′
= A2e

2′ , e2
′
= A3e

2 , (1.30)

A1 =

⎡
⎢⎣ 1 0 0

0 cosφ1 − sinφ1

0 sinφ1 cosφ1

⎤
⎥⎦ , A2 =

⎡
⎢⎣ cosφ2 0 sinφ2

0 1 0

− sinφ2 0 cosφ2

⎤
⎥⎦ ,

A3 =

⎡
⎢⎣ cosφ3 − sinφ3 0

sinφ3 cosφ3 0

0 0 1

⎤
⎥⎦ . (1.31)

The desired matrix is A12 = A1A2A3 . When this is multiplied out and use
is made of the abbreviations ci = cosφi , si = sinφi (i = 1, 2, 3), the matrix
has the form

A12 =

⎡
⎢⎣ c2c3 −c2s3 s2

c1s3 + s1s2c3 c1c3 − s1s2s3 −s1c2
s1s3 − c1s2c3 s1c3 + c1s2s3 c1c2

⎤
⎥⎦ . (1.32)

Bryan angles, too, can be illustrated by means of a rigid body in a two-
gimbal suspension system. The arrangement is shown in Fig. 1.2b . The bases
e1 and e2 are attached to the material base and to the suspended body,
respectively. The angles φ1 , φ2 and φ3 are, in this order, the rotation angle
of the outer gimbal relative to the material base, of the inner gimbal relative
to the outer gimbal and of the body relative to the inner gimbal. The three
angles can be adjusted independently since the intermediate bases e2

′′
and

e2
′
are materially realized by the gimbals. For φ2 = 0 the three rotation

axes are mutually orthogonal. As with Euler angles there exists a critical case
in which the axes of the first and of the third rotation coincide. It occurs if
φ2 = π/2 + nπ (n = 0, 1, . . .) .

In contrast to Euler angles linearization for small angles is possible. With
|φi| � 1 (i = 1, 2, 3) sinφi ≈ φi , cosφi ≈ 1 the matrix is

A12 ≈

⎡
⎢⎣ 1 −φ3 φ2

φ3 1 −φ1

−φ2 φ1 1

⎤
⎥⎦ = I + φ̃ with φ̃ =

⎡
⎢⎣ 0 −φ3 φ2

φ3 0 −φ1

−φ2 φ1 0

⎤
⎥⎦ . (1.33)

The occurrence of the matrix φ̃ suggests to interpret φ1 , φ2 , φ3 as co-
ordinates of a rotation vector φ . In the linear approximation the coordi-
nates are the same in both bases. Indeed, transformation, i.e., multiplication
of the coordinate matrix φ = [φ1 φ2 φ3 ]

T with A12 , causes no change:

A12φ ≈ (I + φ̃)φ = φ . The rotation vector φ is used as follows. Let r and
r∗ be the position vectors of an arbitrary body-fixed point before and after
the small rotation, respectively. The coordinate matrices of these two vectors
in e1 satisfy (1.15): r∗1 = A12r1 ≈ (I + φ̃)r1 = r1 + φ̃ r1 . This is the
coordinate form of the vector equation
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r∗ ≈ r+ φ× r (valid for small rotations only) . (1.34)

What follows, is not restricted to small angles. If the matrix A12 in (1.32)
is given, the associated Bryan angles are calculated from the equations

sinφ2 = a1213 , cosφ2 = σ
√
1− sin2 φ2 (σ = +1 or − 1) ,

sinφ1 = −a1223/ cosφ2 , cosφ1 = a1233/ cosφ2 ,

sinφ3 = −a1212/ cosφ2 , cosφ3 = a1211/ cosφ2 .

⎫⎪⎬
⎪⎭

(1.35)
Numerical difficulties arise when φ2 is close to one of the critical values
π/2 + nπ (n = 0, 1, . . .) . Let (φ1 , φ2 , φ3) be the angles associated with
σ = +1 . The angles associated with σ = −1 are (π+φ1 , π−φ2 , π+φ3) .
Both triples produce one and the same final position of the basis e2 .

The combination of (1.35) and (1.28) yields Bryan angles in terms of Euler
angles. Conversely, the combination of (1.29) and (1.32) yields Euler angles
in terms of Bryan angles.

1.5 Rotation Tensor

In this section Theorem 1.1 is taken up again: The displacement of a body-
fixed basis from an initial position e1 to an arbitrary final position e2 is
achieved by a rotation through a certain angle ϕ about the axis given by
the eigenvector n which is associated with the eigenvalue λ = +1 of the
direction cosine matrix A12 . In what follows, the rotation is called rotation
(n, ϕ) . Note: The rotations (n, ϕ) , (−n,−ϕ) and (n, ϕ + 2π) produce
the same final position. For this reason, they are called equal. Now, the unit
vector n and the angle ϕ of the rotation are prescribed. To be determined is
the direction cosine matrix A12 . In Fig. 1.3 the rotation is illustrated by its

Fig. 1.3 Body-fixed vector in positions r before and r∗ after the rotation (n, ϕ)
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effect on a body-fixed vector. Before the rotation the vector is in the position
r . The rotation (n, ϕ) carries it into the position r∗ . With the auxiliary
vectors a = n× r and b = n× a = n× (n× r) the vector r∗ is expressed
in the form

r∗ = r+ (1− cosϕ)b+ sinϕa (1.36)

= r+ (1− cosϕ)n× (n× r) + sinϕn× r (1.37)

= cosϕ r+ (1− cosϕ)nn · r+ sinϕn× r . (1.38)

This has the form
r∗ = R(n, ϕ) · r . (1.39)

The equation defines the rotation tensor

R(n, ϕ) = cosϕ I+ (1− cosϕ)nn+ sinϕn× I (unit tensor I) . (1.40)

The inverse of the rotation (n, ϕ) is the rotation (n,−ϕ) = (−n, ϕ) . The
rotation (n, ϕ) as well as the inverse rotation carries the axial vector n into
itself. This is expressed by the identities

R(±n, ϕ) · n ≡ n , n · R(±n, ϕ) ≡ n . (1.41)

The rotation tensor is symmetric if and only if sinϕ = 0 , i.e., in the trivial
case ϕ = 0 and in the case ϕ = π which is of particular interest. This
symmetric tensor is

R(n,±π) = 2nn− I . (1.42)

From Fig. 1.3 it is seen that a 180◦-rotation about the line defined by n
is equivalent to reflection in this line. Definition: A point P∗ with position
vector r∗ is said to be the reflection of P (position vector r ) in a line if

- the line PP
∗
intersects the reflecting line orthogonally

- the point of intersection is midpoint of PP
∗
.

Equation (1.39) has the form r∗ = 2nn · r− r , whence it follows that r∗+ r
has the direction of n . Hence

n =
r∗ + r

|r∗ + r| (ϕ = ±π ; r · n �= 0 ) . (1.43)

Now back to the general case. From (1.37) it follows that

(r∗ − r) · n = 0 . (1.44)

Let R1 = R(n1, ϕ1) be the tensor of a first rotation which is followed by a
second rotation with the tensor R2 = R(n2, ϕ2) . The first rotation carries a
body-fixed vector from its initial position r into the new position r∗ = R1 ·r .
The second rotation carries this vector r∗ into the final position r∗∗ = R2·r∗ .
Combination of both equations yields the formula r∗∗ = R2 · R1 · r . The
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product R2 ·R1 is the tensor Rres of the resultant rotation (nres, ϕres) :

Rres = R2 · R1 . (1.45)

The product depends on the order of the rotations. The product is the unit
tensor, when the second rotation is the inverse of the first rotation:

R(−n, ϕ) · R(n, ϕ) = I . (1.46)

Up to now coordinate-free forms of rotation tensors have been used. Ap-
plications see in Sects. 1.15.2 , 1.15.9 and 1.15.11 . Decomposition of (1.39)
in basis e1 results in the coordinate equation

r∗1 = R(n, ϕ)r1 = [cosϕ I + (1− cosϕ)nnT + sinϕ ñ ] r1 . (1.47)

Comparison with (1.15) shows that R(n, ϕ) is the direction cosine matrix:

A12 = cosϕ I + (1− cosϕ)nnT + sinϕ ñ (1.48)

or explicitly

A12 =

⎡
⎣ n2

1 + (1− n2
1) cosϕ n1n2(1− cosϕ)− n3 sinϕ

n1n2(1− cosϕ) + n3 sinϕ n2
2 + (1− n2

2) cosϕ
n1n3(1− cosϕ)− n2 sinϕ n2n3(1− cosϕ) + n1 sinϕ

n1n3(1− cosϕ) + n2 sinϕ
n2n3(1− cosϕ)− n1 sinϕ

n2
3 + (1− n2

3) cosϕ

⎤
⎦ . (1.49)

The diagonal elements can be given other forms if use is made of the con-
straint equation

n2
1 + n2

2 + n2
3 = 1 . (1.50)

The diagonal elements yield the first equation below, and the off-diagonal
elements yield the second:

cosϕ =
trA12 − 1

2
, (1.51)

2ni sinϕ = a12kj − a12jk (i, j, k = 1, 2, 3 cyclic) ↔ 2ñ sinϕ = A12 −A12T .

(1.52)
The first equation is Eq.(1.21). This proves that the rotation angle ϕ is the
angle in the eigenvalues λ2,3 = e±iϕ of the direction cosine matrix.

When the matrix A12 is given, the rotation parameters ϕ and n1 , n2 , n3

can be determined in two ways. Either n is calculated from (1.22): (A12 −
I)n = 0 . Then (1.51) and (1.52) together determine ϕ uniquely. The al-
ternative way is to take one of the two solutions ϕ satisfying (1.51) and to
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calculate n1 , n2 , n3 from (1.52). This equation for n1 , n2 , n3 fails in the
particularly simple case ϕ = π . In this case, A12 is the symmetric matrix
(see (1.42))

A12 = 2nnT − I . (1.53)

It satisfies the equation (A12−I)(A12+I) = 0 . The trace of A12 is −1 . From
(1.20) it is known that the matrix has the real double eigenvalue λ2,3 = −1 .
Let z be the eigenvectors associated with this double eigenvalue. They are
solutions of the equation (A12 + I)z = 0 . This is the equation nnT z = 0 ,
whence it follows that nT z = 0 . This means that every vector perpendicular
to the rotation axis n is an eigenvector. Indeed, the rotation (n, π) applied
to such a vector z results in −z . The same displacement from z into −z
occurs when the vector is reflected in the line n .

The formulation (1.49) of the matrix A12 in terms of the four rotation
parameters n1 , n2 , n3 and ϕ is particularly useful in cases when a body is
rotating about a fixed axis which is not aligned with one of the basis vectors.
In this case, n1 , n2 , n3 are constants, and only ϕ is a variable. Applications
see in Sects. 1.15.3 , 6.11 and 18.4 . If one of the three coordinates n1 , n2 , n3

is zero, the other two are defined by an angle. Example: With n1 = 0 ,
n2 = sinα , n3 = cosα the matrix has the special form

A12 =

⎡
⎣ cosϕ − sinϕ cosα sinϕ sinα
sinϕ cosα cosϕ cos2 α+ sin2 α (1− cosϕ) sinα cosα
− sinϕ sinα (1− cosϕ) sinα cosα cosϕ sin2 α+ cos2 α

⎤
⎦ .

(1.54)
An application is shown in Sect. 16.2.1 .

For small rotations with |ϕ| � 1 the Taylor expansion of (1.48) up to
second-order terms yields the approximation

A12 ≈ I + ϕ ñ+
1

2
ϕ2(nnT − I) . (1.55)

An application is shown in Sect. 1.15.5 . The linear approximation A12 ≈
I + ϕ ñ is known from (1.33).

In what follows, the trace trA12 and the vector 2n sinϕ in (1.51) and
(1.52) are considered again. Both are expressed in terms of unit basis vectors.
For this purpose the definition of direction cosines in (1.3), a12ij = e1i · e2j , is
used. It yields the expressions

trA12 =

3∑
i=1

e1i · e2i , (1.56)

2ni sinϕ = e1k · e2j − e1j · e2k = e1i × e1j · e2j + e1i × e1k · e2k
= e1i ·

(
e1i × e2i + e1j × e2j + e1k × e2k

)
(i, j, k = 1, 2, 3 cyclic) (1.57)



1.5 Rotation Tensor 15

(in the first step e1k = e1i × e1j , e1j = e1k × e1i and in the second step
interchange of multiplication symbols and addition of a zero-term). With
this expression the nonnormalized eigenvector 2n sinϕ is

2n sinϕ =
3∑

i=1

e1i × e2i . (1.58)

Proposition: When A12 is symmetric, every vector of the form

e =

3∑
k=1

ck(e
1
k + e2k) (c1, c2, c3 arbitr.) (1.59)

is an eigenvector. For a proof it suffices to show that e has identical coordi-
nates in e1 and in e2 . The coordinates are

e1i · e = ci +
∑3

k=1 ck
(
e1i · e2k

)
= ci + a12i1 c1 + a12i2 c2 + a12i3 c3 ,

e2i · e = ci +
∑3

k=1 ck
(
e2i · e1k

)
= ci + a21i1 c1 + a21i2 c2 + a21i3 c3

}
(i = 1, 2, 3) .

(1.60)

Because of the symmetry A12T = A12 they are, indeed, identical.

Next, (1.49) is used for expressing the complex conjugate eigenvectors as-
sociated with the eigenvalues cosϕ ± i sinϕ of the direction cosine matrix
in terms of n1 , n2 , n3 and ϕ . Let [m1 m2 m3 ]

T be the eigenvector asso-
ciated with cosϕ+ i sinϕ . With the abbreviations c = cosϕ , s = sinϕ it
is determined from the equations⎡
⎣n2

1(1− c)− i s n1n2(1− c)− n3s n1n3(1− c) + n2s
n1n2(1− c) + n3s n2

2(1− c)− i s n2n3(1− c)− n1s
n1n3(1− c)− n2s n2n3(1− c) + n1s n2

3(1− c)− i s

⎤
⎦
⎡
⎣m1

m2

m3

⎤
⎦ = 0 .

(1.61)

From two equations ratios such as m1/m3 are calculated. It turns out that
they are independent of ϕ :

m1

m3
= −n1n3 + in2

n2
1 + n2

2

,
m2

m3
= −n2n3 − in1

n2
1 + n2

2

,

m2

m1
= −n1n2 + in3

n2
2 + n2

3

,
m3

m1
= −n3n1 − in2

n2
2 + n2

3

.

⎫⎪⎪⎬
⎪⎪⎭ (1.62)

The sum of squares equals zero: m2
1 + m2

2 + m2
3 = 0 . Equating the two

expressions available for m2/m3 yields

−n2n3 − in1

n2
1 + n2

2

=
n1n2 + in3

n3n1 − in2
. (1.63)
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Multiplication with (n2
1+n2

2)(n3n1− in2)(n1n2− in3) results in the identity

−(n1n2 − in3)(n2n3 − in1)(n3n1 − in2) = (n2
1 + n2

2)(n
2
1n

2
2 + n2

3) (1.64)

valid for arbitrary real n1 , n2 , n3 satisfying the constraint equation n2
1 +

n2
2 + n2

3 = 1 . Since the left-hand side of the equation is invariant under a
cyclic permutation of indices, also the right-hand side is:

(n2
1+n2

2)(n
2
1n

2
2+n2

3) = (n2
2+n2

3)(n
2
2n

2
3+n2

1) = (n2
3+n2

1)(n
2
3n

2
1+n2

2) . (1.65)

1.6 Euler-Rodrigues Parameters

Starting from (1.37) a new form is developed for the direction cosine matrix
A12 . By means of the formulas

1− cosϕ = 2 sin2
ϕ

2
, sinϕ = 2 sin

ϕ

2
cos

ϕ

2
(1.66)

the transition to the half-angle is made. New quantities are defined as follows:

q0 = cos
ϕ

2
, q = n sin

ϕ

2
. (1.67)

The vector q lies in the rotation axis (Fig. 1.3). Therefore, it has identical co-
ordinates in the bases e1 and e2 . These coordinates are denoted q1 , q2 , q3 ,
and the coordinate matrix is called q . The four quantities q0, . . . , q3 are re-
ferred to as Euler-Rodrigues parameters. They satisfy the constraint equation

q20 + q2 =
3∑

i=0

q2i = 1 . (1.68)

This can also be written in the forms

1− 2q2 = q20 − q2 = 2q20 − 1 . (1.69)

Equations (1.67) show: A change of the signs of all four parameters means
that either cosϕ/2 and sinϕ/2 change signs or cosϕ/2 and n change
signs. The former has the effect that (n, ϕ) is replaced by (n, ϕ + 2π) .
The latter means that (n, ϕ) is replaced by (−n,−ϕ) . Neither one of these
changes has an effect on the rotation.

Substitution of the expressions (1.66) into (1.37) produces the equation

r∗ = r+ 2[q× (q× r) + q0q× r] . (1.70)

Reformulation of the double cross product and application of (1.69) lead to
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r∗ = (q20 − q2)r+ 2(qq · r+ q0q× r) (1.71)

= [(q20 − q2)I+ 2(qq+ q0q× I)] · r . (1.72)

If one of the double cross products is kept, the alternative form is obtained:

r∗ = q20r+ qq · r+ q× (q× r) + 2q0q× r . (1.73)

Equation (1.70) yields

r∗−r = 2[q×(q×r)+q0q×r] , r∗+r = 2[r+q×(q×r)+q0q×r] . (1.74)

Elementary calculations show that

q0(r
∗ − r) = q× (r∗ + r) (1.75)

or, with the so-called Rodrigues vector

u =
q

q0
= n tan

ϕ

2
, (1.76)

r∗ − r = u× (r∗ + r) . (1.77)

This relationship can also be inferred directly from Fig. 1.3. The Rodrigues
vector is subject of Sects. 1.9 and 1.13 .

The coefficient of r in (1.72) represents a new form of the rotation tensor
in (1.39): r∗ = R(n, ϕ) · r . The same arguments that led to (1.48) for the
direction cosine matrix A12 now lead to the equation

A12 = (q20 − q2)I + 2(q qT + q0q̃) . (1.78)

Multiplying out results in the expression

A12 =

⎡
⎣ q20 + q21 − q22 − q23 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q1q2 + q0q3) q20 + q22 − q23 − q21 2(q2q3 − q0q1)
2(q1q3 − q0q2) 2(q2q3 + q0q1) q20 + q23 − q21 − q22

⎤
⎦ . (1.79)

This representation of the matrix is appealing in that every element is a
quadratic form of Euler-Rodrigues parameters. With (1.69) the diagonal el-
ements have the alternative form a12ii = 2(q20 + q2i )− 1 (i = 1, 2, 3) . Hence

A12 = −I + 2

⎡
⎣ q20 + q21 q1q2 − q0q3 q1q3 + q0q2
q1q2 + q0q3 q20 + q22 q2q3 − q0q1
q1q3 − q0q2 q2q3 + q0q1 q20 + q23

⎤
⎦ . (1.80)

The diagonal elements yield the first equation below, and the off-diagonal
elements yield the second:
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q0 = ±1

2

√
1 + trA12 (sign arbitrary) , (1.81)

4q0qi = a12kj − a12jk (i, j, k = 1, 2, 3 cyclic) ↔ 4q0q̃ = A12 −A12T .
(1.82)

The equations for q1 , q2 , q3 fail in the case q0 = 0 . This is the case ϕ = π ,
q = n when n must be determined from the equation (A12 − I)n = 0 (see
(1.51) and (1.52) in this case).

In contrast to Euler angles and to Bryan angles there is no critical case in
which the Euler-Rodrigues parameters are indeterminate. Hopf [10] was the
first to prove that no representation of finite rotations by three parameters
is possible without singular points. Stuelpnagel [30] gave a simpler version of
the proof.

The matrix A12 in (1.78) resulted from scalar decomposition of (1.72). If,
instead, (1.73) is decomposed, the matrix has the alternative form

A12 = q20I + q qT + q̃ q̃ + 2q0q̃ = q qT + (q0I + q̃)2 . (1.83)

This is the product
A12 = GHT (1.84)

with the (3× 4)-matrices

G = [−q , q0I + q̃ ] , H = [−q , q0I − q̃ ] . (1.85)

The comma separates the first column from the remaining three columns.
Each of these two matrices is a homogeneous linear function of Euler-
Rodrigues parameters. It is an elementary task to verify that the matrices
have the orthogonality properties

G

[
q0
q

]
= H

[
q0
q

]
= 0 . (1.86)

Furthermore, with the help of (1.69) the relations are verified:

GGT = HHT = q qT + q20I − q̃ q̃ = I , (1.87)

GTG = HTH = I −
[
q0
q

] [
q0
q

]T
( (4× 4)-matrices) . (1.88)
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1.7 Relationships Between Euler-Rodrigues Parameters
and Euler Angles

Expressions for Euler-Rodrigues parameters in terms of Euler angles are ob-
tained when in (1.81) and (1.82) for A12 Eq.(1.28) is substituted. The diag-
onal elements yield

1 + trA12 = 1 + cθ + cθ(cψcφ − sψsφ) + (cψcφ − sψsφ)

= (1 + cθ)[1 + (cψcφ − sψsφ)]

= (1 + cos θ)[1 + cos(ψ + φ)] = 4 cos2
θ

2
cos2

ψ + φ

2
. (1.89)

Hence q0 = ± cos θ/2 cos(ψ + φ)/2 . Arbitrarily, the positive sign is chosen.
From (1.82) q1 is calculated and for this purpose

a1232 − a1223 = sθ(cψ + cφ) = 4 sin
θ

2
cos

θ

2
cos

ψ + φ

2
cos

ψ − φ

2
. (1.90)

This expression and the result for q0 yield q1 = sin θ/2 cos(ψ − φ)/2 . In
a similar manner also q2 and q3 are calculated. All four formulas together
read:

q0 = cos
θ

2
cos

ψ + φ

2
, q2 = sin

θ

2
sin

ψ − φ

2
,

q1 = sin
θ

2
cos

ψ − φ

2
, q3 = cos

θ

2
sin

ψ + φ

2
.

⎫⎪⎬
⎪⎭ (1.91)

From these equations it follows that

cos2
θ

2
= q20 + q23 , sin2

θ

2
= q21 + q22 , (1.92)

cos θ = cos2
θ

2
− sin2

θ

2
= q20 − q21 − q22 + q23 , (1.93)

sin2 θ = 4 cos2
θ

2
sin2

θ

2
= 4(q20 + q23)(q

2
1 + q22) , (1.94)

tan
ψ + φ

2
=

q3
q0

, tan
ψ − φ

2
=

q2
q1

, (1.95)

ψ = tan−1 q3
q0

+ tan−1 q2
q1

, φ = tan−1 q3
q0

− tan−1 q2
q1

. (1.96)

Equation (1.93) is obtained more directly by equating the elements (3, 3) of
the direction cosine matrices in (1.28) and (1.79).
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1.8 Quaternions

Hamilton [8, 9] is acknowledged as inventor of quaternion algebra (in the year
1843). However, the quaternion product in connection with the composition
of finite rotations was formulated first by Euler in 1748 and by Gauss in
1819 . A quaternion, abbreviated Q , is composed of a scalar u and a vector
v , i.e., of four quantities altogether. Therefore, the name quaternion. The
quaternion is denoted Q = (u,v) . The product of a quaternion (u , v) by
a scalar λ is defined to be the quaternion (λu , λv) .

The sum and the product of two quaternions Q1 and Q2 are defined to
be the quaternions

Q1 +Q2 = Q2 +Q1 = (u1 + u2 , v1 + v2) , (1.97)

Q2Q1 = (u2 , v2)(u1 , v1) =
(
u2u1−v2 ·v1 , u2v1+u1v2+v2×v1

)
. (1.98)

Because of the term v2×v1 multiplication is not commutative. It is associa-
tive, however, as can be verified by multiplying out: Q3Q2Q1 = Q3(Q2Q1) =
(Q3Q2)Q1 .

Remark: In the mathematical literature (Blaschke [4]) a quaternion is intro-
duced in the form

Q = ue0 + v1e1 + v2e2 + v3e3 . (1.99)

The quaternion product is defined by the multiplication rules

eje0 = e0ej = ej , ejej = −e0 (j = 1, 2, 3) ,

ejek = −ekej = e� (j, k, � = 1, 2, 3 cyclic) .

}
(1.100)

End of remark.

The special quaternion (1 , 0) is called unit quaternion because multipli-
cation with an arbitrary quaternion Q yields Q , again:

(1 , 0)Q = Q(1 , 0) ≡ Q . (1.101)

The conjugate of Q = (u,v) is defined to be the quaternion Q̃ = (u,−v) .
The product of a quaternion with its own conjugate is

QQ̃ = (u,v)(u,−v) = (u2 + v2 , 0) = (u2 + v2)(1 , 0) . (1.102)

Thus, it is a nonnegative scalar multiple of the unit quaternion. The square
root of this scalar is called the norm of Q , abbreviated

‖Q‖ =
√
u2 + v2 . (1.103)
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An arbitrary quaternion Q with norm ‖Q‖ �= 0 satisfies the equation
(Q̃/‖Q‖2)Q = (1 , 0) . Because of this property Q̃/‖Q‖2 is called the in-
verse of Q .

The conjugate of the product Q2Q1 in (1.98) is (the vector part is mul-
tiplied by −1 )

˜Q2Q1 =
(
u2u1 − v2 · v1 , −u2v1 − u1v2 − v2 × v1

)
. (1.104)

With the same quaternions Q1 and Q2 the product is calculated:

Q̃1Q̃2 = (u1,−v1)(u2,−v2)

=
(
u1u2 − v1 · v2 , −u1v2 − u2v1 + v1 × v2

)
. (1.105)

Comparison reveals the formula

Q̃1Q̃2 = ˜Q2Q1 . (1.106)

With the Euler-Rodrigues parameters q0 and q of Eqs.(1.67) the quater-
nion of a rotation is defined. It is denoted D :

D = (q0,q) =
(
cos

ϕ

2
, n sin

ϕ

2

)
. (1.107)

It has the norm ‖D‖ =
√
q20 + q2 = 1 . Hence its inverse equals its conjugate:

D̃ = (q0 , −q) , D̃D = (1 , 0) . (1.108)

The conjugate is the quaternion of the inverse rotation. The quaternion of the
null rotation (ϕ = 0) is the unit quaternion (1 , 0) . Normalized quaternions
constitute a group with respect to multiplication.

With an arbitrary vector r the special quaternion (0 , r) is constructed.
With the vector r shown in Fig. 1.3 and with the quaternion D of the
rotation in this figure the product is calculated:

D(0 , r)D̃ = (q0,q)(0 , r)(q0,−q) . (1.109)

The product of the last two quaternions is

(0 , r)(q0,−q) = (r · q , q0r− r× q) . (1.110)

With this expression the scalar part of D(0 , r)D̃ turns out to be

q0r · q− q · (q0r− r× q) = 0 . (1.111)

The vector part is
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q0(q0r− r× q) + (r · q)q+ q× (q0r− r× q)

= q20r+ q0q× r+ q(q · r) + q0q× r+ q× (q× r) . (1.112)

Reformulation of the double cross product yields the expression

(q20 − q2)r+ 2(qq · r+ q0q× r) . (1.113)

Comparison with (1.71) shows that this is the vector r∗ of Fig. 1.3 . The
results are summarized in the equation

(0 , r∗) = D(0 , r)D̃ . (1.114)

Next, two consecutive rotations with quaternions D1 (first rotation) and
D2 are executed. The result of the first rotation is (0 , r∗) = D1(0 , r)D̃1 .
The second rotation carries the vector r∗ into the new position r∗∗ given
by the equation (0 , r∗∗) = D2(0 , r

∗)D̃2 . For (0 , r∗) the expression from
the previous equation is substituted. This yields the relationship (0 , r∗∗) =
D2D1(0 , r)D̃1D̃2 or, because of (1.106),

(0 , r∗∗) = (D2D1)(0 , r) ˜(D2D1) . (1.115)

This has the form (1.114). The results are summarized in

Theorem 1.4. (Euler, Gauss) The quaternion Dres of the resultant of two
consecutive rotations with quaternions D1 (first rotation) and D2 is the
product

Dres = D2D1 = (q02,q2)(q01,q1)

=
(
cos

ϕ2

2
, n2 sin

ϕ2

2

)(
cos

ϕ1

2
, n1 sin

ϕ1

2

)
. (1.116)

The multiplication rule (1.98) yields the formulas

q0res = q02q01 − q2 · q1 ,

qres = q02q1 + q01q2 + q2 × q1 .

}
(1.117)

More explicitly, these are formulas for the rotation angle ϕres and for the
unit vector nres of the resultant rotation:

cos
ϕres

2
= cos

ϕ2

2
cos

ϕ1

2
− n2 · n1 sin

ϕ2

2
sin

ϕ1

2
, (1.118)

nres sin
ϕres

2
= n1 cos

ϕ2

2
sin

ϕ1

2
+ n2 cos

ϕ1

2
sin

ϕ2

2

+n2 × n1 sin
ϕ2

2
sin

ϕ1

2
. (1.119)
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Because of the term with n2 × n1 the axis of the resultant rotation is
not located in the plane of the axes of the other two rotations. Its location
depends upon the order in which the rotations are executed. In contrast, the
angle ϕres is independent of the order. Applications see in Sects. 1.15.2 and
1.15.12 .

For scalar decomposition of the vectors n1 and n2 the basis e1,2,3 shown
in Fig. 1.4 is chosen. Let α be the rotation angle about e3 which carries n1

into the position n2 . Then the vectors are

n1,2 = e1 cos
α

2
∓ e2 sin

α

2
. (1.120)

With these expressions (1.118) and (1.119) take the forms

cos
ϕres

2
= cos

ϕ1

2
cos

ϕ2

2
− sin

ϕ1

2
sin

ϕ2

2
cosα , (1.121)

nres sin
ϕres

2
= e1 sin

ϕ1 + ϕ2

2
cos

α

2
− e2 sin

ϕ1 − ϕ2

2
sin

α

2

−e3 sin
ϕ1

2
sin

ϕ2

2
sinα . (1.122)

Fig. 1.4 Reference axes e1,2,3 for the vectors n1 and n2

In the case of small angles ϕ1 and ϕ2 the linearized Eqs.(1.118) and
(1.119) have the forms

cos
ϕres

2
≈ 1 , nresϕres ≈ n1ϕ1 + n2ϕ2 . (1.123)

From the first equation it follows that also ϕres is small. The second equation
proves that in this approximation it is possible to define rotation vectors
ϕres = nresϕres , ϕi = niϕi and to calculate the resultant vector by the
parallelogram rule

ϕres ≈ ϕ1 +ϕ2 . (1.124)

The vector of a small rotation appeared already in the context of (1.33).
By squaring (1.118) and by applying theorems for circular functions it is

possible to produce an equation which is free of half-angles. In contrast, no
expression can be obtained for nres which is free of half-angles and of square



24 1 Rotation about a Fixed Point. Reflection in a Plane

Fig. 1.5 Rotation of a vector r about an axis n normal to r

roots. Half-angles can be avoided only in the special case when in Fig. 1.3
r is normal to n . Then also r∗ is normal to n . This special situation is
shown in Fig. 1.5 . In accordance with (1.38) the vectors r∗ and r satisfy
the equation

r∗ = r cosϕ+ n× r sinϕ . (1.125)

The quaternion form of this equation is not only Eq.(1.114), but also the
simpler equation

(0 , r∗) = (cosϕ , n sinϕ)(0 , r) . (1.126)

Example: Given two consecutive rotations through identical angles ϕ about
the e1-axis (first rotation) and about the e3-axis of a basis e , determine the
resultant rotation (nres, ϕres) for ϕ = 180◦ (a) and for ϕ = 90◦ (b).
Solutions are calculated from (1.117).
Problem (a): nres = e2 , ϕres = 180◦ ,
Problem (b): nres = (

√
3/3)(e1 + e2 + e3) , ϕres = 60◦ . End of example.

1.9 Relationships Between Three Positions of a Body

New notations: In what follows, the axial unit vector and the angle of rotation
from a position i into a position j �= i are denoted nij and ϕij , respectively.
Thus, two rotations and the resultant of these two, up to now called (n1, ϕ1) ,
(n2, ϕ2) and (nres, ϕres) , respectively, are henceforth denoted (n12, ϕ12) ,
(n23, ϕ23) and (n13, ϕ13) , respectively. Define n31 = n13 and ϕ31 = −ϕ13 .
The rotation (n31, ϕ31) is the inverse of the resultant rotation (n13, ϕ13) .
The three rotations (n12, ϕ12) , (n23, ϕ23) , (n31, ϕ31) executed in this
order or in any order produced by cyclic permutation carry a body via two
intermediate positions back into its initial position. Equations (1.118) and
(1.119) establish the relationships

cos
ϕ31

2
= cos

ϕ23

2
cos

ϕ12

2
− n23 · n12 sin

ϕ23

2
sin

ϕ12

2
, (1.127)

−n31 sin
ϕ31

2
= n12 cos

ϕ23

2
sin

ϕ12

2
+ n23 cos

ϕ12

2
sin

ϕ23

2

+n23 × n12 sin
ϕ23

2
sin

ϕ12

2
. (1.128)
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In the first equation n23 · n12 = cosα2 is written. The index 2 of α2 is
common to both vectors. Every equation remains valid after cyclic permu-
tation of the indices 1, 2, 3 . In the three Eqs.(1.127) the cosine law for the
spherical triangle (P12,P23,P31) shown in Fig. 1.6 is recognized. Its vertices
are the tips of the vectors n12 , n23 , n31 . Its sides 1, 2, 3 have lengths α1 ,
α2 , α3 . The internal angles are semi-rotation angles. Since rotation angles
differing by 2π are considered as equal, the sign convention is as follows:
ϕij/2 (i, j = 1, 2, 3) is the internal and also the external angle from side i
to side j . These results are summarized in

Theorem 1.5. Three consecutive rotations about axes pointing from 0 to
the vertices of a spherical triangle (P12,P23,P31) and through angles equal
to twice the internal or external angles of the triangle carry a body via two
intermediate positions back into its initial position. The triangle is called
rotation triangle.

The theorem is illustrated in Fig. 1.7 . For the sake of simplicity, the
rotation triangle (P12,P23,P31) is drawn as planar triangle. Consider the
symmetrically located (spherical) triangle (P12,P

∗
23,P31) . After the first

rotation (n12, ϕ12) about P12 it has the position (P12,P23,P
∗
31) shown

by dotted lines. After the second rotation (n23, ϕ23) about P23 it is in
the position (P∗

12,P23,P31) . The same position is produced by the resul-
tant rotation (n13, ϕ13) about P31 with ϕ13/2 being the external angle
of the rotation triangle (P12,P23,P31) . The internal angle at P31 equals
ϕ31/2 = π − ϕ13/2 = (2π − ϕ13)/2 . This is the statement made by the
theorem.

Remark: In the case of nearly parallel rotation axes, the spherical triangle
is a nearly planar triangle in a plane tangent to the sphere. All statements
remain valid also in the limiting case of parallel rotation axes. In this case,
the center 0 of the sphere is at infinity, and the triangle is a planar triangle.
This special case is considered in Sect. 14.4 . There, the triangle is called pole
triangle.

Fig. 1.6 Spherical rotation triangle Fig. 1.7 Angles in the rotation triangle
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Through (1.77) the Rodrigues vector nij tanϕij/2 of the rotation (nij , ϕij)
was introduced. It is abbreviated uij . Division of (1.128) through (1.127) es-
tablishes the relationship

u31 = −u12 + u23 − u12 × u23

1− u12 · u23
. (1.129)

An alternative expression for u31 is derived from the spherical triangle in
Fig. 1.6. Scalar multiplication of (1.128) by (n23 × n12) yields

n12 × n23 · n31 = sin
ϕ12

2
sin

ϕ23

2
sin

ϕ31

2

sin2 α2

sin2 ϕ31

2

(1.130)

or, with the sine law

sin ϕ12

2

sinα3
=

sin ϕ23

2

sinα1
=

sin ϕ31

2

sinα2
, (1.131)

n12 × n23 · n31 = sinα1 sinα3 sin
ϕ31

2
. (1.132)

The cosine law states that

sinα1 sinα3 cos
ϕ31

2
= cosα2 − cosα1 cosα3

= n12 · n23 − (n12 · n31)(n23 · n31) = (n12 × n31) · (n23 × n31) . (1.133)

This equation in combination with (1.132) yields

tan
ϕ31

2
=

n12 × n23 · n31

(n12 × n31) · (n23 × n31)
. (1.134)

Multiplication with n31 produces for the Rodrigues vector u31 the formula

n31 tan
ϕ31

2
=

(n12 × n31)× (n23 × n31)

(n12 × n31) · (n23 × n31)
. (1.135)

In contrast to (1.129) n31 appears on both sides of the equation. Equations
(1.128) – (1.135) remain valid after cyclic permutation of the indices.

1.10 Relationships Between four Positions

Two positions determine a rotation, and three positions determine a rotation
triangle. Hence four positions determine altogether six rotations and four ro-
tation triangles. All relative positions are known if the positions 2 , 3 and
4 relative to position 1 are known. These three relative positions are de-
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termined by altogether nine parameters, namely, two spherical coordinates
for each of the three vertices P1k (identical with Pk1 ) and the rotation
angles ϕ1k (k = 2, 3, 4). In each rotation triangle the axes and the semi-
rotation angles are related according to Fig. 1.6 . Every vertex is vertex in
two triangles. The reason is that for any two triples of positions i, j, k and
i, j, � (i, j, k, � = 1, 2, 3, 4 different) the corresponding rotation triangles
(Pij ,Pjk,Pki) and (Pij ,Pj�,P�i) are sharing the vertex Pij . In both trian-
gles the angle ϕij/2 occurs at Pij either as internal or as external angle.
Figure 1.8a illustrates the case when it is the internal angle and Fig. 1.8b
the case when it is the external angle. Equation (1.134) yields for tanϕij/2
in the triangle (Pij ,Pjk,Pki) the first expression below and in the triangle
(Pij ,Pj�,P�i) the second expression:

tan
ϕij

2
=

nij · njk × nki

(nij × njk) · (nij × nki)
, tan

ϕij

2
=

nij · nj� × n�i

(nij × nj�) · (nij × n�i)
(1.136)

(i, j, k, � = 1, 2, 3, 4 different) . In each of the figures the vertices Pik , Pkj ,
Pj� , P�i define the quadrilateral (Pik,Pkj ,Pj�,P�i) . Each side of the quadri-
lateral connects two vertices having one index in common. Diametrically op-
posite vertices have no index in common. In both figures the opposite sides
PjkPki and Pj�P�i of the quadrilateral are seen from Pij under angles which

are either equal or which add up to π . From Pij also the opposite sides PkiP�i

and PjkPj� are seen under angles which are either equal or which add up
to π . It is a trivial statement that a side is seen from its endpoint under an
arbitrary angle. Therefore, also the following is true. From every vertex of
the quadrilateral each pair of opposite sides is seen under angles which are
either equal or which add up to π .

Fig. 1.8 Rotation triangles (Pij ,Pjk,Pki) and (Pij ,Pj�,P�i) and quadrilateral
(Pik,Pkj ,Pj�,P�i) . The vertex Pij common to both triangles lies either outside (a) or
inside (b) the quadrilateral
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The altogether six vertices are forming three quadrilaterals, namely,
(P12,P23,P34,P41) , (P13,P32,P24,P41) and (P12,P24,P43,P31) . From every
vertex every pair of opposite sides of every quadrilateral appears under angles
which are either equal or which add up to π .

In what follows, it is assumed that of the altogether six vertices only the
vertices of a single quadrilateral (Pik,Pkj ,Pj�,P�i) are given. It is natural to
ask for all axial unit vectors n having the property that from the tip of n
opposite sides of the given quadrilateral appear under angles which are either
equal or which add up to π . The solution is found as follows. The vector n
must satisfy the condition that the two expressions given in (1.136), but with
n replacing nij , are identical. This is the conditional equation

(n·njk×nki)[(n×nj�)·(n×n�i)] = (n·nj�×n�i)[(n×njk)·(n×nki)] (1.137)

(i, j, k, � = 1, 2, 3, 4 different) . It is a third-order equation for n . All vectors
n satisfying the equation determine a third-order cone with the apex at
0. It is called rotation cone. Equation (1.137) is satisfied by the four vectors
n = njk , n = nki , n = nj� and n = n�i . As fifth vector nij any generator
of the rotation cone can be chosen which is not one of these four vectors. With
this vector nij all rotation triangles on the sphere are determined and with
them all rotation angles and also the sixth vector nk� . This vector, too, is
located on the rotation cone.

The four-position theory just described is due to Roth [27]. Details see in
Sects. 3.12 and 7.3 . Roth’ theory generalizes Burmester’s planar four-position
theory. This planar theory is the subject of Sect. 14.5 .

1.11 Cayley-Klein Parameters

This section starts out from (1.15) relating the coordinates of a body-fixed
vector in positions r and r∗ which are related by a direction cosine ma-
trix A12 (see Fig. 1.3). The matrix is expressed in terms of Euler-Rodrigues
parameters (see (1.79)):

r∗ = A12r , (1.138)

A12 =

⎡
⎣ q20 + q21 − q22 − q23 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q1q2 + q0q3) q20 + q22 − q23 − q21 2(q2q3 − q0q1)
2(q1q3 − q0q2) 2(q2q3 + q0q1) q20 + q23 − q21 − q22

⎤
⎦ . (1.139)

New complex-valued parameters α and β are defined by the equations

α = q0 + i q3 , β = −q2 + i q1 . (1.140)

These parameters are referred to as Cayley-Klein parameters. The inverse
rotation has the Euler-Rodrigues parameters q0 , −q1 , −q2 , −q3 and, con-
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sequently, the Cayley-Klein parameters ᾱ (complex conjugate) and −β . The
Cayley-Klein parameters corresponding to the null rotation ( q0 = 1, q1 =
q2 = q3 = 0 ) are α = 1 , β = 0 . Equations (1.140) yield for the Euler-
Rodrigues parameters the expressions

q0 =
1

2
(α+ ᾱ) , q3 = − i

2
(α− ᾱ) , q2 = −1

2
(β + β̄) , q1 = − i

2
(β − β̄) .

(1.141)
With these expressions the matrix A12 is a function of α and β .

With the real vector coordinates ri (i = 1, 2, 3) of (1.138) new complex-
valued coordinates are defined as follows:

�1 = r1 + i r2 , �2 = −r1 + i r2 , �3 = −r3 . (1.142)

By the same equations the coordinates r∗i (i = 1, 2, 3) define new coordinates
�∗1 , �

∗
2 , �

∗
3 . The matrix forms of these definitions are

�∗ = C r∗ , � = C r , C =

⎡
⎣ 1 i 0
−1 i 0
0 0 −1

⎤
⎦ , C−1 =

1

2

⎡
⎣ 1 −1 0
−i −i 0
0 0 −2

⎤
⎦ .

(1.143)
With these expressions (1.138) becomes

�∗ = C A12C−1� . (1.144)

Multiplying out results in the equation

�∗ =

⎡
⎢⎣ α2 β2 2αβ

β̄2 ᾱ2 −2ᾱβ̄

−αβ̄ ᾱβ αᾱ− ββ̄

⎤
⎥⎦ � . (1.145)

This equation is simpler than its real counterpart (1.138). Of course, the
coefficient matrix is not orthogonal, because �1 , �2 , �3 are not coordinates
in a cartesian coordinate system. However, the inverse matrix is simple. It
is the matrix associated with the inverse rotation which has the parameters
(ᾱ,−β) instead of (α, β) .

Substitution of Eqs.(1.141) into the constraint equation q20+q21+q22+q23 = 1
for Euler-Rodrigues parameters yields the corresponding constraint equation
for Cayley-Klein parameters:

αᾱ+ ββ̄ = 1 . (1.146)

The expression on the left-hand side is the determinant of the matrix

U =

[
α β

−β̄ ᾱ

]
. (1.147)
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(2 × 2)-matrices of this form with determinant 1 constitute a group with
respect to multiplication. Indeed, it is easily verified that the product of two
such matrices U1 and U2 is itself an element of the group. The multiplication
is associative. The unit element of the group is the unit matrix I which
corresponds to the null rotation. For every element U of the group the inverse
element exists, namely, the matrix associated with the inverse rotation. This

is the transpose of the complex conjugate matrix. It is denoted Ū
T
. Indeed,

the product of the two equals the unit matrix:

UŪ
T
= Ū

T
U =

[
ᾱ −β

β̄ α

] [
α β

−β̄ ᾱ

]
= I . (1.148)

Matrices having these properties are called unitary matrices. The group is
denoted SU(2) with U for unitary.

The definitions in Eqs.(1.140) yield for U the expression

U = q0S0 + q1S1 + q2S2 + q3S3 (1.149)

with the so-called Pauli spin matrices (see [24])

S0 = I , S1 =

[
0 i
i 0

]
, S2 =

[
0 −1
1 0

]
, S3 =

[
i 0
0 −i

]
. (1.150)

The matrices satisfy the equations

SjS0 = S0Sj = Sj , SjSj = −S0 (j = 1, 2, 3) ,

SjSk = −SkSj = S� (j, k, � = 1, 2, 3 cyclic) .

}
(1.151)

In addition, the constraint equation is satisfied:

3∑
j=0

q2jSjSj = I . (1.152)

Equations (1.149) and (1.151) are formally identical with (1.99) and (1.100),
respectively. This identity proves

Theorem 1.6. The resultant of two rotations with matrices U1 (first rota-
tion) and U2 is characterized by the Cayley-Klein parameters of the unitary
matrix

U res = U2U1 . (1.153)

This equation expresses in terms of complex-valued quantities what (1.116)
expresses in terms of real-valued quantities. Equation (1.153) has the form
(1.148) if the second rotation is the inverse of the first rotation.

In what follows, another proof of the theorem is given. Let H be the
matrix H = r1S1 + r2S2 + r3S3 with the coordinates of r in (1.138). The
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same formula with the coordinates of r∗ defines the matrix H∗ . With the
help of (1.150) and (1.142) the matrices are shown to be

H =

[
i r3 i r1 − r2

i r1 + r2 −i r3

]
= i

[
�3 −�1
�2 −�3

]
, H∗ = i

[
�∗3 −�∗1
�∗2 −�∗3

]
. (1.154)

These matrices satisfy the equation

H∗ = U H Ū
T

(1.155)

with the matrix U from (1.147). This is verified by multiplying out and
by comparing with (1.145). Let now U1 and U2 be the matrices of two

successive rotations. Then the first rotation yields H∗ = U1 H Ū
T
1 . The

second rotation yields

H∗∗ = U2 H
∗ ŪT

2 = U2

(
U1 H Ū

T
1

)
Ū

T
2 = (U2U1)H (Ū2 Ū1)

T . (1.156)

This proves (1.153).
In what follows, still another relationship between the vectors r and r∗

is developed (Klein/Sommerfeld [12]). Without loss of generality, the vectors
are assumed to be unit vectors. They are represented by points on the unit
sphere centered at the origin of basis e1 (Fig. 1.9). The e11, e

1
2-plane is re-

ferred to as equatorial plane and the tip of e13 as north pole. Both points
are projected from the north pole onto the equatorial plane by a so-called
stereographic projection (see the dashed lines). Projections of points in the
northern hemisphere (in the southern hemisphere) lie outside (inside) the
unit circle. The projections of r and r∗ are denoted z and z∗ , respec-
tively. They are interpreted as numbers z = z1 + i z2 and z∗ = z∗1 + i z∗2
in the complex equatorial plane with e11 being the real axis and with e12
being the imaginary axis3. From the similarity of triangles it follows that

Fig. 1.9 Stereographic projection from the north pole onto the equatorial plane
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z = (r1 + i r2)/(1 − r3) = �1/(�3 + 1) . For z also the following represen-
tation is possible. The equation r21 + r22 = 1 − r23 is written in the form
(r1 + i r2)(r1 − i r2) = (1 + r3)(1 − r3) and, because of (1.142), in the form
�1�2 = (�3 + 1)(�3 − 1) . Hence �2/(�3 − 1) = (�3 + 1)/�1 = 1/z . The
same relationships are valid for the quantities bearing the asterisk. Only the
following relationships are used:

�1 = z(�3 + 1) , �2 =
1

z
(�3 − 1) , z∗ =

�∗1
�∗3 + 1

. (1.157)

In the third equation �∗1 and �∗3 are replaced by the expressions from (1.145).
Furthermore, the unit in the denominator is replaced by the expression αᾱ+
ββ̄ (see (1.146)). This results in the equation

z∗ =
α2�1 + β2�2 + 2αβ�3

−αβ̄�1 + ᾱβ�2 + (αᾱ− ββ̄)�3 + αᾱ+ ββ̄

=
α[α�1 + β(�3 + 1)] + β[β�2 + α(�3 − 1)]

α[−β̄�1 + ᾱ(�3 + 1)] + β[ᾱ�2 − β̄(�3 − 1)]
. (1.158)

For �1 and �2 the expressions from (1.157) are substituted. This yields the
final equation

z∗ =
αz + β

−β̄z + ᾱ
. (1.159)

Thus, z∗ is a linear fractional function of z with coefficients which are the
elements of the matrix U . Based on this equation a new proof of (1.153) is
given as follows. Let α1 , β1 be the Cayley-Klein parameters of the first of two
successive rotations and let α2 , β2 be the parameters of the second rotation.
Let, furthermore z∗∗ be the complex number after the second rotation. Then,
by these definitions,

z∗ =
α1z + β1

−β̄1z + ᾱ1
, z∗∗ =

α2z
∗ + β2

−β̄2z∗ + ᾱ2
. (1.160)

Substitution of the first expression into the second yields for z∗∗ a linear
fractional function of z with coefficients according to (1.153). End of proof.

3 Riemann used the inverse of the stereographic projection for projecting the infinite
complex plane onto the finite unit sphere. The sphere is called Riemann’s sphere or sphere
of complex numbers
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1.12 Euler Vector. Exponential Form of the Direction
Cosine Matrix

The Euler vector of a rotation (n, ϕ) is defined to be the vector ϕn . In the
bases e1 and e2 it has identical coordinate matrices ϕn . With these coordi-
nates the skew-symmetric matrix ϕñ is defined. Proposition: The direction
cosine matrix is

A12 = eϕñ . (1.161)

Proof: According to (1.37)

A12 = I + ñ ñ(1− cosϕ) + ñ sinϕ . (1.162)

The exponential function is defined by its Taylor series

eϕñ = I + ϕñ+
1

2!
ϕ2ñ2 +

1

3!
ϕ3ñ3 + . . . . (1.163)

All terms ñk with k > 2 can be expressed either through ñ or through
ñ2 . This is shown as follows. The vector n × (n × r) is n(n · r) − r .
Therefore, n× [n× (n× r)] = −n× r . The coordinate form of this equation
is ñ3r = −ñr . From this it follows that ñ3 = −ñ and by continued
multiplication: ñ4 = −ñ2 , ñ5 = −ñ3 = ñ etc. Equation (1.163) becomes

eϕñ = I + ϕñ+
1

2!
ϕ2ñ2 − 1

3!
ϕ3ñ− 1

4!
ϕ4ñ2 +

1

5!
ϕ5ñ± . . .

= I + ñ
(
ϕ− 1

3!
ϕ3 +

1

5!
ϕ5 ± . . .

)
+ ñ2

[
1−

(
1− 1

2!
ϕ2 +

1

4!
ϕ4 ∓ . . .

)]
= I + ñ sinϕ+ ñ ñ(1− cosϕ) . (1.164)

This is the expression in (1.162). End of proof.
Caution: In the case of real exponents a and b the formula ea eb = ea+b is
valid. It is this formula which makes the exponential function useful. In the
case of matrices A and B as exponents, the formula eA eB = eA+B is valid
if and only if AB = BA . Therefore, the equation

eϕ1ñ1eϕ2ñ2 = eϕ1ñ1+ϕ2ñ2 (1.165)

is valid if and only if n1 = n2 . This is the trivial case that both rotations are
carried out about one and the same axis. If the equation were generally true,
the resultant of two successive rotations (n1, ϕ1) and (n2, ϕ2) would be
obtained by the parallelogram rule: nresϕres = n1ϕ1 + n2ϕ2 . This is known
to be wrong. It is approximately valid if ϕ1 and ϕ2 are small.
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1.13 Rodrigues Vector

Through (1.76) and (1.77) the Rodrigues vector u of a rotation (n, ϕ) was
introduced:

u =
q

q0
= n tan

ϕ

2
, (1.166)

r∗ − r = u× (r∗ + r) . (1.167)

The vector u has identical coordinates in bases e1 and e2 . These coordi-
nates are referred to as Rodrigues parameters. They are denoted u1 , u2 , u3 .
The coordinate matrix is denoted u , and the absolute value of the vector is
denoted u . The coordinates are not subject to any constraint equation. In
the critical case ϕ = ±π , the absolute value of u is infinite. In this case,
the direction must be given by n . In what follows, it is assumed that u is
finite. From (1.166) it follows that

q20 = cos2
ϕ

2
=

1

1 + u2
, cosϕ =

1− u2

1 + u2
, sinϕ =

2u

1 + u2
. (1.168)

Substitution into (1.40) yields for the rotation tensor the alternative expres-
sions

R =
(1− u2)I+ 2uu+ 2u× I

1 + u2

= −I+
2

1 + u2
(I+ uu+ u× I ) . (1.169)

Decomposition in basis e1 produces for the direction cosine matrix the al-
ternative expressions

A12 =
1

1 + u2

⎡
⎣ 1 + u2

1 − u2
2 − u2

3 2(u1u2 − u3) 2(u1u3 + u2)
2(u1u2 + u3) 1 + u2

2 − u2
3 − u2

1 2(u2u3 − u1)
2(u1u3 − u2) 2(u2u3 + u1) 1 + u2

3 − u2
1 − u2

2

⎤
⎦

= −I +
2

1 + u2

⎡
⎣ 1 + u2

1 u1u2 − u3 u1u3 + u2

u1u2 + u3 1 + u2
2 u2u3 − u1

u1u3 − u2 u2u3 + u1 1 + u2
3

⎤
⎦ . (1.170)

If the matrix A12 is given, the Rodrigues parameters are obtained most
easily by first calculating the Euler-Rodrigues parameters q0 , q1 , q2 , q3 from
(1.81) and (1.82) and by substituting them into (1.166):

ũ =
q̃

q0
=

A12 −A12T

1 + trA12 . (1.171)
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The same result is obtained as follows. The diagonal elements of the matrix
yield the first equation below, and the off-diagonal elements yield the second.

1 + trA12 =
4

1 + u2
, A12 −A12T =

4

1 + u2
ũ . (1.172)

Combination of these equations yields (1.171).
Proposition: Alternative expressions for ũ are

ũ =

⎧⎪⎨
⎪⎩

(A12 − I)(A12 + I)−1 ,

(A12 + I)−1(A12 − I) ,

I − 2(A12 + I)−1 .

(1.173)

Proof: Decomposition of (1.167) in basis e1 yields, in view of (1.15),
(A12 − I)r1 = ũ(A12 + I)r1 and, consequently, the first Eq.(1.173).
Using (1.10) it is shown that the matrix A12 + I has the determinant 2(1+
trA12) and the co-factors c11 = c22 = c33 = 1 + trA12 , cij = a12ij − a12ji
(i, j = 1, 2, 3 ; j �= i ). Hence

(A12 + I)−1 =
1

2

(
I − A12 −A12T

1 + trA12

)
=

1

2
(I − ũ) . (1.174)

Resolving this equation for ũ results in the third Eq.(1.173). Finally, substi-
tution into the first Eq.(1.173) produces 2ũ = (A12 − I)(I − ũ) . Resolving
this equation for ũ results in the second Eq.(1.173) which shows that the
product on the right-hand side is commutative. End of proof. For numerical
evaluations (1.171) is preferable.

Multiplication of (1.174) with (A12 + I) reveals the formula

A12A12 = trA12(A12 − I) +A12T . (1.175)

In contrast to the previous equations, this equation is valid also in the case

ϕ = 180◦ when trA12 = −1 and A12T = A12 . Through continued mul-
tiplication with A12 all powers (A12)n (n ≥ 2 ) are expressed as linear

combinations of A12 , A12T and I .

For the Rodrigues vector ures of the resultant of two consecutive rotations
with Rodrigues vectors u1 (first rotation) and u2 division of (1.119) through
(1.118) yields

ures =
u1 + u2 − u1 × u2

1− u1 · u2
. (1.176)

This is known from (1.129) where u31 is −ures . In the special case of mu-
tually orthogonal rotation axes 1 and 2 the equation is

ures = u1 + u2 − u1 × u2 , (1.177)
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whence it follows that

tan2
ϕres

2
= tan2

ϕ1

2
+ tan2

ϕ2

2
+ tan2

ϕ1

2
tan2

ϕ2

2
. (1.178)

The quaternion Eq.(1.118) yields the simpler formula

cos
ϕres

2
= cos

ϕ1

2
cos

ϕ2

2
. (1.179)

Final remark: The Rodrigues vector u can be expressed in terms of unit
basis vectors. For this purpose (1.166) is written in the form

u =
2n sinϕ

4 cos2 ϕ/2
=

2n sinϕ

4q20
=

2n sinϕ

1 + trA12 . (1.180)

Hence with (1.56) and (1.58)

u =

3∑
i=1

e1i × e2i

1 +

3∑
i=1

e1i · e2i
. (1.181)

1.14 Wiener Vector

The Wiener vector σ of a rotation (n, ϕ) is a modified Rodrigues vector
(see Wiener [31], Milenkovic [18]). It is defined as follows:

σ = n tan
ϕ

4
. (1.182)

It has identical coordinates in the bases e1 and e2 . These coordinates are
referred to as Wiener parameters. They are denoted σ1 , σ2 , σ3 . The coor-
dinate matrix is denoted σ , and the absolute value of the vector is denoted
σ . The coordinates are not subject to any constraint equation. Relationships
with Euler-Rodrigues parameters are expressed by the formulas

σ = n tan
ϕ

4
= n

sin ϕ
2

1 + cos ϕ
2

=
q

1 + q0
,

q0 = cos
ϕ

2
=

1− tan2 ϕ
4

1 + tan2 ϕ
4

=
1− σ2

1 + σ2
,

q =
2σ

1 + σ2
.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(1.183)
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The relationship between Wiener vector and Rodrigues vector is

u =
σ

σ0
, σ0 =

q0
1 + q0

=
1

2
(1− σ2) . (1.184)

The rotations (n, ϕ) and (−n,−ϕ+ 2π ) are equivalent, and the Euler-
Rodrigues parameters q0 , q and −q0 , −q are equivalent. Hence the vector
σ is equivalent to the vector

σ∗ = −n tan
2π − ϕ

4
= −n cot

ϕ

4

=
−q

1− q0
.

⎫⎪⎬
⎪⎭ (1.185)

The vector σ has its singularity at ϕ = ±2π equivalent to ϕ = 0 when σ∗

has its singularity.
For expressing the direction cosine matrix A12 in terms of Wiener param-

eters (1.184) is substituted into (1.170):

A12 =
1

(1− σ0)2

⎡
⎣ σ2

0 + σ2
1 − σ2

2 − σ2
3 2(σ1σ2 − σ0σ3) 2(σ1σ3 + σ0σ2)

2(σ1σ2 + σ0σ3) σ2
0 + σ2

2 − σ2
3 − σ2

1 2(σ2σ3 − σ0σ1)

2(σ1σ3 − σ0σ2) 2(σ2σ3 + σ0σ1) σ2
0 + σ2

3 − σ2
1 − σ2

2

⎤
⎦ .(1.186)

If the matrix A12 is given, the associated Wiener vectors σ and σ∗ are
most easily obtained by first calculating the Euler-Rodrigues parameters
q0 , q1 , q2 , q3 from (1.81) and (1.82) and by substituting them into (1.183)
and (1.185). The same results are obtained as follows. The diagonal elements
of A12 yield the first equation below, and the off-diagonal elements yield the
second.

1 + trA12 =
4σ2

0

(1− σ0)2
, A12 −A12T =

4σ0

(1− σ0)2
σ̃ . (1.187)

The first equation is a quadratic equation for σ0 . Its solutions determine σ̃ :

σ0 =
−(1 + trA12)± 2

√
1 + trA12

3− trA12 ,

σ̃ = σ0
A12 −A12T

1 + trA12 =
A12 −A12T

1 + trA12 ± 2

√
1 + trA12

.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(1.188)

Equations (1.81) and (1.82) reconfirm that the last equation is

σ̃ =
±q̃

1± q0
. (1.189)
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The case trA12 = 3 occurs when A12 is the unit matrix. Then either ϕ = 0
or ϕ = 2π , i.e., either σ∗ = ∞ or σ = ∞ . In either case the unit vector
n is arbitrary.

1.15 Illustrative Problems

1.15.1 Generalized Coordinates Associated with a
Given Direction Cosine Matrix

For the direction cosine matrix A12 = 1
3

⎡
⎣ 2 1 2

−11
5

2
5

2
2
5

−14
5

1

⎤
⎦ determine the as-

sociated Euler and Bryan angles, the rotation (n, ϕ) , the Euler-Rodrigues
parameters, Rodrigues parameters and Wiener parameters.

Solution: Two sets of Euler angles are determined from (1.29). With σ = +1
ψ = 135◦ , θ = cos−1(1/3) ≈ 70.5◦ , φ = cos−1(−7

√
2/10) ≈ 171.9◦ .

Two sets of Bryan angles are determined from (1.35). With σ = +1
φ1 = sin−1(−2/

√
5) ≈ −63.4◦ , φ2 = sin−1(2/3) ≈ 41.8◦ , φ3 =

sin−1(−1/
√
5) ≈ −26.6◦ .

Two identical rotations (n, ϕ) and (−n,−ϕ) are determined from (1.51)
and (1.52) : ϕ = cos−1(1/15) ≈ 86.2◦ , [n1 n2 n3 ] =

√
1/14 [−3 1 − 2 ] .

Two sets of Euler-Rodrigues parameters are determined from (1.81) and
(1.82). With q0 = +

√
8/15 , [ q1 q2 q3 ] =

√
1/30 [−3 1 − 2 ] .

Rodrigues parameters are uniquely determined from (1.171) and (1.173):
[u1 u2 u3 ] = (1/4) [−3 1 − 2 ] .
Two sets of Wiener parameters are determined from (1.189):
[σ1 σ2 σ3 ] = (4±√

30)−1 [−3 1 − 2 ] .

1.15.2 Resultant of two 180◦-Rotations

Given two successive 180◦-rotations about axes with unit vectors n1 (first
rotation) and n2 enclosing the angle 0 < α < π , determine the axis and
the angle of the resultant rotation.

Two methods of solution are presented. The first method uses Eq.(1.45) for
rotation tensors, and the second method uses Eqs.(1.118) and (1.119) for
quaternions. The given rotations have the tensors R1 = 2n1n1 − I and
R2 = 2n2n2 − I . The unknown tensor of the resultant rotation has the form
(1.40). Equation (1.45) without the subscript res has the form

−(1−cosϕ)(I−nn)+sinϕn× I = 4(n2 ·n1)n2n1−2n2n2−2n1n1 . (1.190)
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Scalar multiplication from the right by n produces the equation

0 = n2[2(n2 · n1)(n1 · n)− (n2 · n)]− n1(n1 · n) . (1.191)

The coefficients of n2 and of n1 must both be zero. This requires that
n1 · n = 0 and n2 · n = 0 . Consequently,

n =
±n1 × n2

|n1 × n2| =
±n1 × n2

sinα
. (1.192)

Arbitrarily, the positive sign is chosen. A unique solution for the angle re-
quires expressions for cosϕ and for sinϕ . An equation for cosϕ is ob-
tained when (1.190) is scalar-multiplied from the left and from the right
by n1 . Taking into account that n1 · n = 0 this results in the equation
1− cosϕ = 2[1− (n1 ·n2)

2] = 2(1− cos2 α) = 2 sin2 α , whence it follows that

cosϕ = cos 2α . (1.193)

In order to get an expression for sinϕ (1.190) is scalar-multiplied from the
left by n2 and from the right by n1 . On the right-hand side this yields
zero. The equation reads (1− cosϕ)n2 · n1 + sinϕ (n1 × n2)

2/ sinα = 0 or
(1 − cosϕ) cosα + sinϕ sinα = 0 and with (1.193), finally, sinα(sin 2α −
sinϕ) = 0 . This together with (1.193) yields

ϕ = 2α . (1.194)

The second method of solution using quaternions is much simpler. Equa-
tions (1.118) and (1.119) are formulated with ϕ1 = −π (equivalent to
ϕ1 = π ) and with ϕ2 = π . This produces directly the results ϕres = 2α ,
nres = n1 × n2/|n1 × n2| = n1 × n2/ sinα .

The results are summarized as follows. The resultant of two 180◦-rotations
about axes n1 (first rotation) and n2 enclosing the angle 0 < α < π is a
rotation about the axis n1×n2/|n1×n2| through the angle 2α . In Sect. 1.5
it was shown that a 180◦-rotation about an axis n is equivalent to reflection
in the line n . Therefore, the result can also be stated as follows. The resultant
of two successive reflections in lines n1 (first reflection) and n2 enclosing the
angle 0 < α < π is a rotation about the axis n1×n2/|n1×n2| through the
angle 2α . The two 180◦-rotations (reflections) are not commutative. Reversal
of the order has the effect that the direction of the resultant rotation axis is
reversed. The resultant rotation does not change if the pair of vectors n1 ,
n2 is rotated in its own plane about the fixed point and with the angle α
kept constant.
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1.15.3 Rotations (n, ϕ) Resulting in Positions with
the Critical Bryan Angle φ2 = ±π/2

To be determined are all rotations (n, ϕ) resulting in positions which can be
produced by Bryan angles in the critical case cosφ2 = 0 .

Solution: Equations (1.32) and (1.49) express the transformation matrix A12

in terms of Bryan angles and in terms of n and ϕ , respectively. Only the
matrix element a1213 is considered. The expression in (1.32) with cosφ2 = 0
and sinφ2 = σ (σ = +1 or −1) is set equal to the expression in (1.49) for
the general case n1 , n2 , n3 , ϕ . This results in the equation

n1n3 cosϕ− n2 sinϕ = n1n3 − σ (σ = ±1) . (1.195)

It has the form A cosϕ + B sinϕ = C . It has two solutions ϕ which are
determined by
cosϕ = (AC ± BW )/N and sinϕ = (BC ∓ AW )/N with N = A2 + B2

and with

W =
√
A2 +B2 − C2 =

√
n2
1n

2
3 + n2

2 − (n1n3 − σ)2 =
√

−(n3 − σn1)2 .

(1.196)
Real roots (a double root) exist only if n3 = σn1 . The results are summarized
as follows. The critical case cosφ2 = 0 occurs if the rotation (n, ϕ) satisfies
the conditions

n3 = σn1 , n2
2 = 1− 2n2

1 , cosϕ =
−n2

1

1− n2
1

,

sinϕ =
σn2

1− n2
1

(σ = ±1 , n2
1 ≤ 1/2 arbitr.) .

⎫⎪⎬
⎪⎭ (1.197)

1.15.4 Determine all Direction Cosine Matrices
Having three Prescribed Elements

The elements a11 = a , a12 = b and a33 = c of a direction cosine matrix A
are prescribed. To be determined are all direction cosine matrices A having
these elements. Necessary and sufficient conditions for the existence of real
matrices are to be formulated.

Solution: The normalizing conditions for row 1 and for column 3 yield

a13 = σ1

√
1− (a2 + b2) , a23 = σ2

√
a2 + b2 − c2 , (1.198)

where σ1 and σ2 are independently either +1 or −1 . Sufficient and neces-
sary conditions for a13 and a23 to be real are
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c2 ≤ a2 + b2 ≤ 1 . (1.199)

The special case a = b = 0 : From (1.199) it follows that c = 0 . All real
solutions have the form

A =

⎡
⎣ 0 0 σ

cosϕ sinϕ 0
−σ sinϕ σ cosϕ 0

⎤
⎦ (ϕ arbitr. , σ = +1 or −1 ) . (1.200)

In what follows, this special case is excluded. The elements a21 , a22 , a31
and a32 are calculated from four linear equations expressing the fact that the
scalar product of rows 1 and 2 equals zero, and that every diagonal element
equals its own co-factor:

aa21 + ba22 + a13a23 = 0 , aa22 − ba21 = c , (1.201)

ac− a31a13 = a22 , a22c− a32a23 = a . (1.202)

Equations (1.201) are solved for a21 and a22 . Upon substitution of the result
for a22 Eqs.(1.202) are uncoupled. Taking into account (1.198) the results
are written in the form

a21 = −a a13a23 + b c

a2 + b2
, a22 = −b a13a23 − a c

a2 + b2
,

a31 = −a c a13 − b a23
a2 + b2

, a32 = −b c a13 + a a23
a2 + b2

.

⎫⎪⎬
⎪⎭ (1.203)

Together with (1.198) these equations determine all matrices. For given num-
bers a , b and c satisfying conditions (1.199) and not representing the special
case a = b = c = 0 the number of real matrices is either four or two or one
depending on whether zero or one or both of the elements a13 and a23 are
zero. All matrix elements are rational, if the elements in row 1 and in column
3 are rational.

Example: With a = 2/3 , b = 1/3 , c = 1/3 four matrices are calculated:⎡
⎢⎣

2
3

1
3

2
3

1
3

2
3

−2
3

−2
3

2
3

1
3

⎤
⎥⎦ ,

⎡
⎢⎣

2
3

1
3

−2
3

1
3

2
3

2
3

2
3

−2
3

1
3

⎤
⎥⎦ ,

⎡
⎢⎣

2
3

1
3

2
3

−11
15

2
15

2
3

2
15

−14
15

1
3

⎤
⎥⎦ ,

⎡
⎢⎣

2
3

1
3

−2
3

−11
15

2
15

−2
3

−2
15

14
15

1
3

⎤
⎥⎦ .

(1.204)

Other triples (a, b, c) resulting in rational matrix elements: ( 3
5 ,

4
5 , 1 ) ,

( 2
7 ,

3
7 ,

2
7 ) , ( 4

9 ,
7
9 ,

1
9 ) , ( 2

11 ,
6
11 ,

2
11 ) , ( 3

13 ,
4
13 ,

3
13 ) , ( 2

15 ,
11
15 ,

5
15 ) .

End of example.
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1.15.5 Rear Axle of a Vehicle

Figure 1.10a shows the simplest design of a rigid rear axle for road vehicles
(Matschinsky [15]). The axle is rigidly attached to a draw-bar which is sup-
ported in the car body by the spherical joint 0 . Another spherical joint B
connects the axle to a so-called sway bar or Panhard rod. The other end of
this rod is supported in the car body by still another spherical joint A . The
position of the axle relative to the car body is interpreted as the result of
two successive rotations. Prior to the first rotation the bases e2 (fixed on the
axle) and e1 (fixed in the car body) coincide. The first rotation about the
line A0 (unit vector n , rotation angle ϕ1 ) carries the axle-fixed basis to
the intermediate position e2

∗
and point B to the position B∗ . The second

rotation is executed about the axle-fixed line B∗0 (unit vector n∗ , rotation
angle ϕ2 ). In Fig. 1.10b the system is shown schematically in a vertical pro-
jection in the null position ϕ1 = ϕ2 = 0 . The figure shows also basis e1 and
the unit vectors n and n∗ along the rotation axes. It is assumed that in the
null position the axle, the draw-bar and the Panhard rod are coplanar. The
lengths h , a , � , b are given. Point B is moving along a circular path which
in the figure appears as straight line. To be determined are the coordinates
in e1 of the wheel centers P1 and P2 as functions of ϕ1 and ϕ2 .

Fig. 1.10 Rear axle seen in perspective (a) and in vertical projection (b)

Solution: The lengths h , a and � determine the angle α . For abbreviation
the quantities c = cosα and s = sinα are defined. The vector n has in
e1 the coordinate matrix [c s 0]T , and the vector n∗ has in e2

∗
the

coordinate matrix [c −s 0]T . With the coordinates of n and with ϕ = ϕ1

(1.49) determines the matrix A12
1 in the relationship e1 = A12

1 e2
∗
. The

same Eq.(1.49) with the coordinates of n∗ and with ϕ = ϕ2 determines
the matrix A12

2 in the relationship e2
∗
= A12

2 e2 . Consequently, the matrix
A12 in the relationship e1 = A12e2 is the product A12 = A12

1 A12
2 . Springs

not shown in the figure allow only small rotation angles. For this reason the
second-order approximation (1.55) is used. This yields the matrix
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A12 ≈
⎛
⎝I +

1

2

⎡
⎣−s2ϕ2

1 csϕ2
1 2sϕ1

csϕ2
1 −c2ϕ2

1 −2cϕ1

−2sϕ1 2cϕ1 −ϕ2
1

⎤
⎦
⎞
⎠

⎛
⎝I +

1

2

⎡
⎣−s2ϕ2

2 −csϕ2
2 −2sϕ2

−csϕ2
2 −c2ϕ2

2 −2cϕ2

2sϕ2 2cϕ2 −ϕ2
2

⎤
⎦
⎞
⎠

≈ I +
1

2

⎡
⎢⎣ −s2(ϕ1 − ϕ2)2 cs(ϕ2

1 + 2ϕ1ϕ2 − ϕ2
2) 2s(ϕ1 − ϕ2)

cs(ϕ2
1 − 2ϕ1ϕ2 − ϕ2

2) −c2(ϕ1 + ϕ2)2 −2c(ϕ1 + ϕ2)

−2s(ϕ1 − ϕ2) 2c(ϕ1 + ϕ2) 4c2ϕ1ϕ2 − (ϕ1 − ϕ2)2

⎤
⎥⎦ . (1.205)

In basis e2 the wheel centers P1 and P2 have the constant coordinate ma-
trices [−h b 0]T and [−h − b 0]T , respectively. The desired coordinate
matrices in e1 are found by multiplication with A12 . The displacements of
the wheel centers in the direction of e13 are linear functions of the angles
ϕ1 and ϕ2 whereas the displacements in the directions of e11 and e12 are
second-order functions of the angles.

1.15.6 Rotation Determined from Three Positions of a
Body-Fixed Point

When the body shown in Fig. 1.3 is rotated about n through angles
ϕ1 , ϕ2 , ϕ3 , the body-fixed point originally positioned by the vector r is
displaced into positions r1 , r2 , r3 , respectively. If only r1 , r2 , r3 of ar-
bitrary, but equal absolute values are given, the vector n and the angles
ϕ2 − ϕ1 and ϕ3 − ϕ1 are determined as follows. Since n is orthogonal to
r1 − r2 , r1 − r3 and r2 − r3 ,

n =
(r1 − r2)× (r1 − r3)

|(r1 − r2)× (r1 − r3)| =
r1 × r2 + r2 × r3 + r3 × r1

|(r1 − r2)× (r1 − r3)| . (1.206)

The product in the denominator can be replaced by the product of any two
vector differences. According to (1.77)

r2−r1 = n tan
ϕ2 − ϕ1

2
×(r2+r1) , r3−r1 = n tan

ϕ3 − ϕ1

2
×(r3+r1) .

(1.207)
With the expression for n the products are calculated:

n× (r2 + r1) = (r2 − r1)
(r1 + r2) · (r2 − r3)

|(r1 − r2)× (r2 − r3)| ,

n× (r3 + r1) = (r3 − r1)
(r1 + r3) · (r2 − r1)

|(r1 − r3)× (r2 − r1)| .

⎫⎪⎪⎬
⎪⎪⎭ (1.208)

Hence
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tan
ϕ2 − ϕ1

2
=

|(r1 − r2)× (r2 − r3)|
(r1 + r2) · (r2 − r3)

,

tan
ϕ3 − ϕ1

2
=

|(r1 − r3)× (r2 − r1)|
(r1 + r3) · (r2 − r1)

.

⎫⎪⎪⎬
⎪⎪⎭ (1.209)

1.15.7 Rodrigues Vector Determined from Prescribed
Point Displacements

A body with one point fixed in a reference basis e1 is rotated from an initial
position into a final position. Let P1 and P2 be two body-fixed points which
together with the fixed point of the body define a triangle (thus, the three
points are not collinear). In the initial position of the body P1 and P2 have
position vectors r1 and r2 in the reference basis e1 . In the final position
they have position vectors r∗1 and r∗2 , where |r∗1| = |r1| and |r∗2| = |r2| .
The problem to be solved is the following. Given the pairs of vectors r1 , r2
and r∗1 , r

∗
2 , determine the Rodrigues vector u = n tanϕ/2 (the axial vector

n if u → ∞ ) of the rotation (n, ϕ) carrying the body from the initial to
the final position.

Solution: The rotation angle is ϕ �= 0 since the two positions are not identical.
Let the points be labeled such that r∗1 − r1 �= 0 and r∗2 + r2 �= 0 . This is
always possible since at least one difference r∗i − ri and at least one sum
r∗i + ri (i = 1, 2) is different from zero and since a difference and a sum
cannot both be zero. With this labeling all denominator expressions to come
are different from zero.
Starting point of the analysis are Eqs.(1.167) and (1.43):

r∗1 − r1 = u× (r∗1 + r1) , r∗2 − r2 = u× (r∗2 + r2) (ϕ �= ±π) . (1.210)

n =
r∗2 + r2
|r∗2 + r2| (ϕ = ±π) . (1.211)

Equations (1.210) show that nonzero differences r∗i − ri (i = 1, 2) are or-
thogonal to u . The second equation is cross-multiplied by r∗1 − r1 . Because
of the said orthogonality this yields the equation

(r∗1−r1)×(r∗2−r2) = (r∗1−r1)×[u×(r∗2+r2)] = u (r∗1−r1)·(r∗2+r2) . (1.212)

Two cases have to be distinguished:
Case 1) (r∗1 − r1)× (r∗2 − r2) �= 0 : The desired solution is

u = n tan
ϕ

2
=

(r∗1 − r1)× (r∗2 − r2)

(r∗1 − r1) · (r∗2 + r2)
(r∗1 − r1 not orthogonal to r∗2 + r2)

(1.213)
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or ϕ = ±π with n given by (1.211) else.

Case 2) (r∗1 − r1)× (r∗2 − r2) = 0 : In this case, there exists a scalar λ such
that

r∗2 − r2 = λ(r∗1 − r1) . (1.214)

The first Eq.(1.210) is multiplied by λ , and then the second equation is
subtracted. This produces the equation

u× [λ(r∗1 + r1)− (r∗2 + r2)] = 0 (1.215)

and after combination with (1.214) the equations

u× (λr1 − r2) = 0 , u× (λr∗1 − r∗2) = 0 . (1.216)

The nonzero vector (λr1 − r2) of the first equation lies in the plane Σ
spanned by r1 and r2 . The vector (λr∗1 − r∗2) of the second equation lies in
the plane Σ∗ spanned by r∗1 and r∗2 . These two planes have either a line of
intersection (case 2a) or they are identical (case 2b).

Case 2a: Equations (1.216) require that the Rodrigues vector u is collinear
with both the vector in Σ and the vector in Σ∗ . From this it follows that
u lies in the line of intersection of the two planes, and that ϕ is the angle
between the normals to the planes. This result is expressed as follows (note
the rigid-body property |r1 × r2| = |r∗1 × r∗2| ) :

n sinϕ =
(r1 × r2)× (r∗1 × r∗2)

(r1 × r2)2
, cosϕ =

(r1 × r2) · (r∗1 × r∗2)
(r1 × r2)2

. (1.217)

Case 2b: The solution is ϕ = ±π with n given by (1.211).

1.15.8 Spherical Interpolation

Let r1 and r2 �= ±r1 be the coordinate matrices in basis e1 of two unit
vectors locating two points of a unit circle. Proposition: With the enclosed
angle α = cos−1(rT1 r2)

r(ψ) =
r1 sin(α− ψ) + r2 sinψ

sinα
(1.218)

is a parameter equation, with parameter ψ , of the unit circle. Proof:

rT r sin2 α = [rT1 sin(α− ψ) + rT2 sinψ][r1 sin(α− ψ) + r2 sinψ]

= sin(α− ψ)[sin(α− ψ) + 2 cosα sinψ] + sin2 ψ

= sin2 α cos2 ψ − cos2 α sin2 ψ + sin2 ψ = sin2 α . (1.219)
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Hence rT r ≡ 1 . End of proof.
In three-dimensional space (1.218) is the equation of the great circle pass-

ing through two points r1 and r2 on the unit sphere. The equation is used
for locating points on Earth. In terms of geographical longitude λ and lati-
tude φ the coordinate matrix is r(ψ) = [ cosλ cosφ sinλ cosφ sinφ ]T .
With this equation ψ is converted into λ and φ .

In four-dimensional space the column matrix [ q0 q1 q2 q3 ]
T of the Euler-

Rodrigues parameters associated with the angular position of a body is the
unit vector r . This vector r and the vector −r determine one and the
same angular position. Equation (1.218) is used for the animation of motion.
Two angular positions 1 and 2 determine associated vectors r1 and r2
enclosing the angle α = cos−1(rT1 r2) . When ψ is prescribed as function of
time ψ(t) , the Euler-Rodrigues parameters r(ψ(t)) determine a tumbling
motion leading the body through position 1 (ψ = 0 ) and position 2 (ψ =
α ) . In computer animations this tumbling motion is more attractive than the
alternative possibility of rotating the body about a fixed axis from position
1 into position 2 .

Equation (1.218) is not applicable to the interpolation between more than
two angular positions. An ordered sequence of m > 2 angular positions
can be interpolated as follows. The positions must be specified by rotations
(ni, ϕi) (i = 1, . . . ,m) . The unit vectors ni define points Pi on the unit
sphere with associated geographical longitudes λi and latitudes φi (i =
1, . . . ,m) . With a parameter t the three sequences of scalars λi , φi and ϕi

(i = 1, . . . ,m) are interpolated in a form λ(t) , φ(t) , ϕ(t) such that λ(t =
ti) = λi , φ(t = ti) = φi , ϕ(t = ti) = ϕi (i = 1, . . . ,m) . The functions λ(t)
and φ(t) determine the unit vector n(t) of the angular position (n(t), ϕ(t)) .
It is the desired interpolation.

1.15.9 Rotations Effecting a Prescribed Line
Displacement

To be determined are all rotations (n, ϕ) about a fixed point 0 which carry
a body-fixed point from a given position r1 into another given position r2 .
Without loss of generality, it is assumed that r1 and r2 are unit vectors.
The problem can also be formulated as follows. Determine all rotations (n, ϕ)
about a fixed point 0 which carry a body-fixed line passing through 0 from
a given position r1 into another given position r2 .

Solution: In the special case r2 = −r1 , every rotation (n, ϕ = ±π) about
an axis n orthogonal to r1 , r2 is a solution. In what follows, it is assumed
that r2 �= −r1 . In Fig. 1.11a the vectors r1 and r2 are shown in their
own plane, and in Fig. 1.11b they are shown in a projection in which they
coincide. Let α be the angle which rotates r1 in the projection (a) into
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Fig. 1.11 Axes n of rotations carrying r1 into position r2 lie in the n1,n3-plane

position r2 . Without loss of generality, it is assumed that 0 < α < π . Two
special solutions are obvious by inspection, namely, the rotations (n1,±π)
and (n3, α) with axial unit vectors

n1 =
r1 + r2
2 cos α

2

, n3 =
r1 × r2
sinα

. (1.220)

Together with n2 = n3 × n1 these vectors define a right-handed cartesian
basis. In this basis the given vectors are

r1,2 = n1 cos
α

2
∓ n2 sin

α

2
. (1.221)

Every rotation (n, ϕ) solving the problem has the property that r1 and r2
are generators of a circular cone with n as cone axis. From this it follows that
all unit vectors n lie in the plane of n1 and n3 . Furthermore, it is obvious
that every vector in this plane is a solution n . With a free parameter ψ it
is written in the form

n(ψ) = n1 cosψ − n3 sinψ . (1.222)

As is shown in the figure, ψ is the angle from n1 to n in the positive math-
ematical sense around n2 . The angles associated with the special solutions
(n1,±π) and (n3, α) are ψ = 0 and ψ = −π/2 , respectively. The general
relationship ϕ(ψ) is deduced from (1.37) which, in this case, has the form

r2 = r1 + (1− cosϕ)[(n · r1)n− r1] + sinϕn× r1 . (1.223)

Scalar multiplications by r1 and by n × r1 eliminate the expression with
sinϕ and the expression with (1− cosϕ) , respectively. For this purpose the
following products are calculated from (1.221) and (1.222):

(n · r1)2 = cos2
α

2
cos2 ψ ,

(n× r1)
2 = 1− (n · r1)2 = 1− cos2

α

2
cos2 ψ ,

(n× r1) · r2 = n · (r1 × r2) = − sinα sinψ .

⎫⎪⎪⎬
⎪⎪⎭ (1.224)
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With these expressions the said multiplications yield the equations

cosα = 1 + (1− cosϕ)
(
cos2

α

2
cos2 ψ − 1

)
,

− sinα sinψ = sinϕ
(
1− cos2

α

2
cos2 ψ

)
⎫⎪⎬
⎪⎭ (1.225)

or

1− cosϕ =
1− cosα

1− cos2 α
2 cos2 ψ

, sinϕ =
− sinα sinψ

1− cos2 α
2 cos2 ψ

. (1.226)

For ϕ and α the transition to half-angles is made everywhere. This results
in the equations

sin2
ϕ

2
=

sin2 α
2

1− cos2 α
2 cos2 ψ

, sin
ϕ

2
cos

ϕ

2
=

− sin α
2 cos α

2 sinψ

1− cos2 α
2 cos2 ψ

. (1.227)

Division of the second equation by the first produces the final equation

cot
ϕ

2
= − cot

α

2
sinψ . (1.228)

This equation and Eq.(1.222) for n(ψ) determine together the desired mani-
fold of rotations. For the absolute value of the rotation angle the inequalities
hold: |α| ≤ |ϕ| ≤ π .

Example: A pair of parameter values ψ (arbitrary) and ψ∗ = ψ + π/2
determines mutually orthogonal rotation axes n and n∗ and rotation angles
ϕ and ϕ∗ satisfying the identity

cot2
ϕ

2
+ cot2

ϕ∗

2
≡ cot2

α

2
. (1.229)

1.15.10 Sensor Calibration

On the end-effector of a robot a basis e1 is fixed. Another basis e2 is fixed on
a sensor which is rigidly attached to the end-effector. Let X be the unknown
direction cosine matrix relating these bases: e1 = X e2 . The determination
of X from measured data is referred to as sensor calibration. Two methods
based on different measured data are described.

Method 1 : The measured data are the coordinate matrices of two arbitrarily
chosen noncollinear body-fixed unit vectors n1 and n2 in both bases. They
are denoted as usual: n1

1 , n2
1 for n1 and n1

2 , n2
2 for n2 . Both pairs are

related through the unknown matrix: n1
1 = X n2

1 , n1
2 = X n2

2 . The vector
n3 = n1×n2 is a third linearly independent body-fixed vector the coordinate
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matrices of which are related by X . Its coordinate matrices are calculated
from the measured data: n1

3 = ñ1
1 n

1
2 and n2

3 = ñ2
1 n

2
2 . The altogether

nine linear equations n1
i = X n2

i ( i = 1, 2, 3 ) are combined in the matrix
equation [

n1
1 n1

2 n1
3

]
= X

[
n2
1 n2

2 n2
3

]
. (1.230)

The solution is

X =
[
n1
1 n1

2 n1
3

][
n2
1 n2

2 n2
3

]−1

. (1.231)

In the case of orthogonal unit vectors n1 and n2 the inverse matrix equals
its transpose. In the case of nonorthogonal vectors the ith row (i = 1, 2, 3)
of the inverse is the transpose of the coordinate matrix, in basis e2 , of the
reciprocal vector (see Bronstein/Semendjajev/Musiol/Mühlig [5])

ei =
nj × nk

n1 × n2 · n3
(i, j, k = 1, 2, 3 cyclic) . (1.232)

From n3 = n1 × n2 it follows that

n2 × n3 = n1 − (n1 · n2)n2 ,
n3 × n1 = n2 − (n1 · n2)n1 ,
n1 × n2 · n3 = (n1 × n2)

2 = 1− (n1 · n2)
2 .

⎫⎬
⎭ (1.233)

The measured data must satisfy the compatibility condition that n1 · n2 is
the same with both sets of coordinates.

Example: The measured data are

n1
1 =

1

15

⎡
⎣ 11
10
2

⎤
⎦ , n2

1 =
1

5

⎡
⎣ 4
3
0

⎤
⎦ , n1

2 =
1

9

⎡
⎣ 8

1
−4

⎤
⎦ , n2

2 =
1

3

⎡
⎣ 1

2
−2

⎤
⎦ .

The compatibility condition is satisfied. The data determine the number
n1 × n2 · n3 = 5/9 and the matrices

[
n1
1 n1

2 n1
3

]
=

1

45

⎡
⎣ 33 40 −14
30 5 20
6 −20 −23

⎤
⎦ ,

[
n2
1 n2

2 n2
3

]
=

1

15

⎡
⎣ 12 5 −6

9 10 8
0 −10 5

⎤
⎦ ,

[
n2
1 n2

2 n2
3

]−1

=
1

25

⎡
⎣ 26 7 20

−9 12 −30
−18 24 15

⎤
⎦ ,

X =
1

3

⎡
⎣ 2 1 −2
1 2 2
2 −2 1

⎤
⎦ .
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End of example.

In numerous articles published in the robotics literature the solution is
attempted by the following different method. The rigid body composed of
end-effector and sensor is subjected to a rotation (n , ϕ) . This rotation carries
the bases e1 and e2 into new positions e1∗ and e2∗ , respectively. The
measured data is the pair of direction cosine matrices A and B in the
relationships

e1 = A e1∗ (a) , e2 = B e2∗ (b) . (1.234)

The bases e1 and e2 are related through X in the initial as well as in the
final position. This is expressed by the equations

e1 = X e2 (a) , e1∗ = X e2∗ (b) . (1.235)

Applying (1.235)a , (1.234)b , (1.235)b , (1.234)a in this order results in the
equation

e1 = X e2 = X B e2∗ = X BXT e1∗ = X BXTAT e1 . (1.236)

Hence X BXTAT = I or AX = X B . A single rotation does not suffice.
Two rotations (n1 , ϕ1) and (n2 , ϕ2) about arbitrarily chosen noncollinear
unit vectors n1 , n2 and through arbitrary angles ϕ1 , ϕ2 yield two equations

Ai X = X Bi (i = 1, 2) (1.237)

with measured matrices Ai , Bi (i = 1, 2) . Articles in the robotics literature
were devoted to solving these equations numerically. Various complicated
iterative methods were proposed for this purpose. Both equations together
represent a set of eighteen homogeneous linear equations for the elements of
X . For having a nontrivial solution the matrices Ai , Bi (i = 1, 2) must be
compatible. The off-diagonal elements of Ai ,Bi determine the coordinates
in e1 and in e2 , respectively, of the body-fixed vector mi = ni sinϕi (see
(1.52)). Compatibility requires that m1 ·m1 , m2 ·m2 and m1 ·m2 be the
same with both sets of coordinates.

By writing (1.237) in the form Ai = X Bi X
T Ai is expressed as similar-

ity transform of Bi . Application of Theorem 1.3 (Eq.(1.24)) to this equation
leads directly to (1.230).

Angeles [3] proposes a combination of both methods by formulating (1.230)
not in terms of the coordinates of n1 , n2 and n1 × n2 , but in terms of the
coordinates of m1 , m2 and m1 × m2 calculated from measured matrices
Ai ,Bi (i = 1, 2) .
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1.15.11 Decomposition of a Rotation into three
Rotations

The material of this section and of the next section was published in Witten-
burg/Lilov [32]. Earlier contributions to the subject were made by Davenport
[6] and Wohlhart [33]. In the nonorthogonal gimbal suspension system of Fig.
1.12 the inner axis has the direction n1 , and the outer axis has the direction
n3 . If three rotations (n1, ϕ1) , (n2, ϕ2) , (n3, ϕ3) are carried out in this
order, all three rotation axes n1 , n2 , n3 are given in the outer (base-fixed)
reference frame. Let (n, ϕ) be the resultant of this sequence of rotations. Its
tensor R(n, ϕ) is the product of the tensors of the three individual rotations
(see (1.45)):

R(n, ϕ) = R(n3, ϕ3) · R(n2, ϕ2) · R(n1, ϕ1) . (1.238)

The problem to be solved is the following. The unit vector n and the angle ϕ
of the resultant rotation (n, ϕ) and, furthermore, the unit vectors n1 , n2 ,
n3 of the individual rotations are given. To be determined are the angles
ϕ1 , ϕ2 , ϕ3 . The vectors n1 , n2 , n3 are neither coplanar nor pairwise
orthogonal. The relative orientation of the four vectors is specified by the six
parameters

ai = nj · nk , bi = n · ni (i, j, k = 1, 2, 3 different) . (1.239)

Together with a1 , a2 , a3 also the following scalar products are given.

aii = (nj × nk)
2 = 1− a2i ,

aij = (ni × nk) · (nk × nj) = aiaj − ak ,
a = n1 · n2 × n3 ,
a2 = 1− a21 − a22 − a23 + 2a1a2a3 = aiiajj − a2ij

⎫⎪⎪⎬
⎪⎪⎭

(i, j, k = 1, 2, 3
different) .

(1.240)

The parameters b1 , b2 , b3 represent the covariant coordinates of n . The
contravariant coordinates c1 , c2 , c3 are defined through the equation n =
c1n1 + c2n2 + c3n3 . They satisfy the equations

Fig. 1.12 Gimbal suspension system with nonorthogonal axes
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aci = n · nj × nk ,

a2c2i = (1− b2j )(1− b2k)− (bjbk − ai)
2

}
(i, j, k = 1, 2, 3 cyclic) . (1.241)

Solution: Comparison of Fig. 1.12 with Fig. 1.2b shows: If n3 , n2 , n1 form
a right-hand cartesian basis e11 , e

1
2 , e

1
3 , the angles ϕ3 , ϕ2 , ϕ1 represent, in

this order, the Bryan angles φ1 , φ2 , φ3, respectively. This particular case is
characterized by the parameters ai = 0 , a = −1 and bi = ci (i = 1, 2, 3).
The solutions ϕ1 = φ3 , ϕ2 = φ2 and ϕ3 = φ1 are calculated from (1.35)
with the matrix elements of (1.49) with bi instead of ni (i = 1, 2, 3).

In the general case, the solution is found from (1.238) as follows. Two
scalar multiplications, one from the left by R(−n3, ϕ3) and the other from
the right by R(−n1, ϕ1) , produce the equation (see the identities (1.46))

R(n2, ϕ2) = R(−n3, ϕ3) ·R(n, ϕ) · R(−n1, ϕ1) . (1.242)

Scalar multiplication of this equation from the left by n3 eliminates ϕ3 , and
scalar multiplication from the right by n1 eliminates ϕ1 . This follows from
the identities (1.41). Thus, a scalar equation for the single unknown ϕ2 is
obtained by carrying out both multiplications:

n3 · R(n2, ϕ2) · n1 = n3 · R(n, ϕ) · n1 . (1.243)

Two coupled scalar equations for the two unknowns ϕ3 and ϕ2 are produced
by multiplying (1.242) from the left by n2 and from the right by n1 and by
multiplying from both sides by n1 , respectively:

n2 · n1 = n2 · R(−n3, ϕ3) · R(n, ϕ) · n1 ,
n1 · R(n2, ϕ2) · n1 = n1 · R(−n3, ϕ3) · R(n, ϕ) · n1 .

}
(1.244)

Finally, two coupled scalar equations for the two unknowns ϕ1 and ϕ2 are
produced by multiplying from the left by n3 and from the right by n2 and
by multiplying from both sides by n3 , respectively:

n3 · n2 = n3 · R(n, ϕ) · R(−n1, ϕ1) · n2 ,
n3 · R(n2, ϕ2) · n3 = n3 · R(n, ϕ) · R(−n1, ϕ1) · n3 .

}
(1.245)

These equations are obtained from (1.244) by interchanging the indices 1 and
3 . Hence the solution for ϕ1 is obtained from the solution for ϕ3 by this
interchange of indices. For this reason only (1.243) and (1.244) are considered.

The tensors are given in (1.40), for example,

R(n, ϕ) = nn+ cosϕ(I− nn) + sinϕn× I (1.246)

and similarly R(ni, ϕi) . First, the vectors are calculated:
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R(n2, ϕ2) · n1 = a3n2 + cosϕ2 (n1 − a3n2) + sinϕ2 n2 × n1 ,

R(n, ϕ) · n1 = b1n+ cosϕ (n1 − b1n) + sinϕn× n1 ,

n2 · R(−n3, ϕ3) = a1n3 + cosϕ3 (n2 − a1n3)− sinϕ3 n2 · n3 × I ,

n1 · R(−n3, ϕ3) = a2n3 + cosϕ3 (n1 − a2n3)− sinϕ3 n1 · n3 × I .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(1.247)
With these vectors Eq.(1.243) for ϕ2 takes the form

a13 cosϕ2 + a sinϕ2 = R (1.248)

with the given constant

R = a1a3 − b1b3 + (b1b3 − a2) cosϕ+ ac2 sinϕ . (1.249)

The equation has two solutions ϕ21 and ϕ22 . They are determined by

cosϕ2k =
a13R+ (−1)ka

√
a213 + a2 −R2

a213 + a2
,

sinϕ2k =
aR− (−1)ka13

√
a213 + a2 −R2

a213 + a2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (k = 1, 2) . (1.250)

Equations (1.244) are linear equations for cosϕ3 and sinϕ3

A1 cosϕ3 +B1 sinϕ3 = C1 ,
A2 cosϕ3 +B2 sinϕ3 = C2

}
(1.251)

with coefficients

A1 = b1(b2 − a1b3)− [b1(b2 − a1b3) + a12] cosϕ+ a(c3 + a1c2) sinϕ ,

B1 = −ab1c1 − a(1− b1c1) cosϕ+ (a3b3 − a2b2) sinϕ ,

C1 = a1[(b1b3 − a2) cosϕ+ ac2 sinϕ− b1b3] + a3 ,

A2 = b1(b1 − a2b3)− [b1(b1 − a2b3)− a22] cosϕ+ aa2c2 sinϕ ,

B2 = ab1c2(1− cosϕ) + (b3 − a2b1) sinϕ ,

C2 = a2[(b1b3 − a2) cosϕ+ ac2 sinϕ− b1b3] + a23 + a33 cosϕ2 .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭
(1.252)

The coefficient C2 is the only one which depends explicitly on ϕ2 . Each
solution cosϕ2 of (1.248) determines the associated solutions for cosϕ3

and sinϕ3 . The associated solutions for cosϕ1 and sinϕ1 are obtained
by interchanging the indices 1 and 3 .

Example: Let the given resultant rotation (n, ϕ) be the rotation ϕ = 0 .
The vector n is unspecified. Obviously, ϕ1 = ϕ2 = ϕ3 = 0 is a solution.
Equations (1.248), (1.251) and Eqs.(1.251) with indices 1 and 3 interchanged
determine two solutions. In the case ϕ = 0 , these three equations have the
special forms
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ajk cosϕi + a sinϕi = ajk (i, j, k = 1, 2, 3 different) . (1.253)

As should be expected, the parameters b1 , b2 and b3 do not occur. One of
the solutions is, indeed, the trivial solution ϕ1 = ϕ2 = ϕ3 = 0 . Equations
(1.250) yield for the second solution the formulas

cosϕi =
a2jk − a2

a2jk + a2
, sinϕi =

2aajk
a2jk + a2

(i, j, k = 1, 2, 3 different) . (1.254)

In the special case of mutually orthogonal vectors n1 , n2 , n3 , the angles
are ϕ1 = ϕ2 = ϕ3 = π . End of example.

In what follows, conditions for the existence of real solutions are formu-
lated. The solutions ϕ21 and ϕ22 determined by (1.250) are real if and only
if −

√
a213 + a2 ≤ R ≤

√
a213 + a2 . Define x = cosϕ and y = sinϕ so that

every angle ϕ is represented by a point on the unit circle. The equality signs
define two parallel straight lines:

(b1b3 − a2)x+ ac2y = b1b3 − a1a3 ±
√
a213 + a2 . (1.255)

Real solutions exist for all points of the intersection Γ of the unit circle and
the strip between these lines including the lines themselves. Let r1 and r2
be the distances of the lines from the origin of the x, y-system. They are

r1,2 =

∣∣∣b1b3 − a1a3 ±
√
a213 + a2

∣∣∣√
(b1b3 − a2)2 + a2c22

(1.256)

or with (1.240) and (1.241)

r1,2 =

∣∣∣b1b3 − a1a3 ±
√
(1− a21)(1− a23)

∣∣∣√
(1− b21)(1− b23)

. (1.257)

Γ is the complete unit circle if and only if r1,2 ≥ 1 . In the case a1 = a3 = 0 ,
these conditions are satisfied for arbitrary quantities b1 , b3 . In the case
b1 = b3 = 0 , they are satisfied if and only if a1 = a3 = 0 . Because
of (1.239) this means: The solutions (1.250) for ϕ2 are real for arbitrary
resultant rotations (n, ϕ) if and only if n2 is orthogonal to both n1 and
n3 . This is an important result. It means that the gimbal suspension system
of Fig. 1.12 is capable of producing arbitrary angular orientations of the
suspended body if and only if the axis between inner and outer gimbal is
orthogonal to both the fixed outer gimbal axis and the axis between body and
inner gimbal. Commonly used gimbal suspension systems have this property.

Indeterminacy conditions: From Euler angles as well as from Bryan angles the
phenomenon of gimbal lock is known. The angles are not fully determinate
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if the prescribed angular orientation of the body is characterized by gimbal
lock. In the case of Euler angles, only θ and either ψ + φ or ψ − φ are
determinate. In the case of Bryan angles, only φ2 and either φ1 + φ3 or
φ1 − φ3 are determinate. The same phenomenon occurs here. Under certain
conditions for the given quantities n , ϕ , n1 , n2 and n3 the gimbals in Fig.
1.12 are locked. In this case, only ϕ2 and either ϕ1 + ϕ3 or ϕ1 − ϕ3 are
determinate. The derivation of these conditions is found in Wittenburg/Lilov
[32]. The results can be summarized as follows. Indeterminacy occurs if the
given data satisfy the conditions

a3 = σa1 , b3 = σb1 , cosϕ =
σa2 − b21
a2 − b21

, sinϕ =
ac2

a2 − b21
(1.258)

(σ = +1 or −1) . Equations (1.239) show that the leading two conditions are
the orthogonality conditions n2 · (n1 − σn3) = 0 and n · (n1 − σn3) = 0 ,
respectively. The vectors n1−n3 and n1+n3 are the mutually orthogonal
bisectors of the angles between n1 and n3 . If the conditions (1.258) are
satisfied, the angle ϕ2 and the angles ϕ1 + σϕ3 are determined from the
equations

cosϕ2 =
σa2 − a21
1− a21

, cos(ϕ1 + σϕ3) = 1− 2a2c21
(1− a21)(1− b21)

,

sinϕ2 =
−σa

1− a21
, sin(ϕ1 + σϕ3) =

2ac1(a1b1 − σb2)

(1− a21)(1− b21)
.

⎫⎪⎪⎬
⎪⎪⎭ (1.259)

If the axes of the gimbal suspension system in Fig. 1.12 are mutually orthog-
onal, the conditions (1.258) are identical with (1.197).

1.15.12 Decomposition of a Rotation into three
Rotations. Quaternion Formulation

In this section the problem posed in the previous section is solved by means of
quaternions. Let D be the quaternion of the given resultant rotation (n, ϕ) ,
and let D1 , D2 , D3 be the quaternions of the three rotations (n1, ϕ1) ,
(n2, ϕ2) and (n3, ϕ3) , respectively. According to Theorem 1.4 (Eq.(1.116))
these quaternions satisfy the equation

D3D2D1 = D . (1.260)

According to (1.107)

D =
(
cos

ϕ

2
, n sin

ϕ

2

)
. (1.261)
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The quaternions D1 , D2 , D3 are given by the same formula with the re-
spective index added everywhere. For the cosines and sines of half-angles the
following abbreviations are defined:

Ci = cos
ϕi

2
, Si = sin

ϕi

2
(i = 1, 2, 3) , C = cos

ϕ

2
, S = sin

ϕ

2
. (1.262)

With this notation the quaternions are Di = (Ci,niSi) (i = 1, 2, 3) and
D = (C,nS) . Equation (1.260) becomes

(C3,n3S3)(C2,n2S2)(C1,n1S1) = (C,nS) . (1.263)

The product is formulated in two steps. In the first step the product
(C2,n2S2)(C1,n1S1) is calculated. According to the rule (1.98) it is the
quaternion

(C1C2 − n1 · n2 S1S2 , n1 S1C2 + n2 C1S2 − n1 × n2 S1S2) . (1.264)

After another application of the product rule the scalar part and the vector
part of (1.263) are

C1C2C3 − (a1C1S2S3 + a2S1C2S3 + a3S1S2C3) + aS1S2S3 = C , (1.265)

n1S1(C2C3 − a1S2S3) + n2S2(C3C1 + a2S3S1) + n3S3(C1C2 − a3S1S2)

−n1 × n2S1S2C3 − n2 × n3C1S2S3 + n3 × n1S1C2S3 = nS . (1.266)

For the definitions of a1 , a2 , a3 and a see (1.239) and (1.240).
Rodrigues [25] expressed the opinion that the equations cannot be solved

for the unknown angles ϕ1 , ϕ2 , ϕ3 . As will be seen they can be solved. The
vector part of the equation is scalar-multiplied by n1 , by n2 and by n3 . The
scalar part and the three component equations are written as linear equations
for C1 and S1 :

C1(C2C3 − a1S2S3) +S1(aS2S3 − a2C2S3 − a3S2C3) = C ,
−C1(aS2S3 − a2C2S3 − a3S2C3) +S1(C2C3 − a1S2S3) = b1S ,
C1(S2C3 + a1C2S3) +S1[aC2S3 + a3C2C3 + (a2 − 2a1a3)S2S3] = b2S ,

C1(C2S3 + a1S2C3) −S1(aS2C3 − a2C2C3 + a3S2S3) = b3S .

⎫⎪⎪⎬
⎪⎪⎭

(1.267)

This system of equations is invariant with respect to an interchange of the
indices 1 and 3 . More precisely, the first as well as the third equation is
individually invariant whereas the second and the fourth are invariant as a
set. This invariance confirms what is known from Sect. 1.15.11 . The solution
for ϕ1 is obtained from the solution for ϕ3 by interchanging the indices 1
and 3 .

The first two equations have the special forms pC1 + q S1 = C and
−q C1 + pS1 = b1S with coefficients p and q which are linear with respect
to C2 , S2 , C3 , S3 . The sum of squares of the equations is the equation
p2 + q2 = C2 + b21S

2 . The right-hand side expression is a given constant.
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The left-hand side expression represents the coefficient determinant of the
original two equations. The equation is used in two ways. First, it is used as
an equation for the unknowns ϕ2 and ϕ3 . Second, the original two equations
are solved for C1 and S1 . Since the coefficient determinant is constant,
the resulting expressions are linear with respect to C2 , S2 , C3 , S3 . These
expressions are then substituted into the third and the fourth Eq.(1.267).
This procedure results in two more equations for the unknowns ϕ2 and ϕ3 .
In each of the three equations the circular functions C2 , S2 , C3 , S3 appear
in products which allow the return from half-angles to full angles (the possible
return to the full angle ϕ is postponed until later). As a result of the said
algebraic manipulations the following equations are obtained:

[−a3a21 + (a2 − a1a23) cosϕ2 + aa2 sinϕ2] cosϕ3

+ [aa3(cosϕ2 − 1) + a23 sinϕ2] sinϕ3

= 2(C2 + b21S
2) + a2(−a1a3 + a13 cosϕ2 + a sinϕ2)− 1 , (1.268)

C[aa3(cosϕ2 − 1) + a23 sinϕ2] cosϕ3

− C[−a3a21 + (a2 − a1a23) cosϕ2 + aa2 sinϕ2] sinϕ3

= −S{2b3(C2 + b21S
2) + b1[−(a1a3 + a2) + a13 cosϕ2 + a sinϕ2]} , (1.269)

[a3b1S + (aC − a1b1S)(a1a3 − a13 cosϕ2 − a sinϕ2) + a33C sinϕ2] cosϕ3

+ [a3a13C + (a1a33C + ab1S) cosϕ2 − a13b1S sinϕ2] sinϕ3

= 2b2S(C
2 + b21S

2) + (aC − a1b1S)(a1a3 − a13 cosϕ2 − a sinϕ2)− a3b1S .

(1.270)

The equations are linear equations for cosϕ3 and sinϕ3 . With abbrevi-
ations bk� , ck� and rk (k, � = 1, 2, 3) for the coefficients they have the
forms

(bk1 cosϕ2+bk2 sinϕ2+bk3) cosϕ3+(ck1 cosϕ2+ck2 sinϕ2+ck3 ) sinϕ3 = rk
(1.271)

(k = 1, 2, 3) . With suitable coefficients A1 , A2 , A3 a linear combination of
the three equations can be constructed which is free of the term cosϕ3 . The
coefficients must satisfy the three homogeneous equations

A1b1� +A2b2� +A3b3� = 0 (� = 1, 2, 3) . (1.272)

These equations are solved by

A1 = aa2C
2−b1a12SC , A2 = a23C−ab1S , A3 = −a22C . (1.273)
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Similarly, coefficients are determined for a linear combination of the three
equations which is free of the term sinϕ3 . These coefficients must satisfy the
three Eqs.(1.272) with ck� instead of bk� (k, � = 1, 2, 3). Surprisingly, the
same coefficients A1 , A2 , A3 of Eqs.(1.273) are found. The reason is that
Eqs.(1.268) – (1.270) are three compatible equations for only two unknowns.
The said linear combination eliminates ϕ3 . In the resulting equation ϕ2 is
the single unknown. As should be expected, this equation is Eq.(1.248). It
has the solutions ϕ21 and ϕ22 given in (1.250). For each solution any two of
the Eqs.(1.268) – (1.270) represent a system of two linear equations for the
associated solutions cosϕ3 and sinϕ3 and after interchanging the indices
1 and 3 for the solutions cosϕ1 and sinϕ1 . This concludes the solution
of Eqs.(1.267).

In Sect. 1.15.11 it has been said that the angles ϕ1 and ϕ3 are individually
indeterminate, if the given quantities satisfy the conditions (1.258). Under
these conditions the solution is given by Eqs.(1.259). The same conditions
and the same resulting equations can be deduced directly from (1.267). This
is left to the reader.

1.16 Reflection in a Plane

Subject of this section are reflections of points in a plane (Fig. 1.13). The
plane is referred to as reflecting plane. Points as well as the reflecting plane
are defined in a reference basis e with origin 0 . The plane is determined
by its unit normal vector m (sense of direction arbitrary) and by the vector
r0 = r0m to the foot A0 of the perpendicular from 0 onto the plane. Let r
be the position vector of an arbitrary point P and let, furthermore, r∗ be
the position vector of the reflection P∗ of P . Reflection in a plane is defined
as follows (compare the definition of reflection in a line following Eq.(1.42)).
P∗ is the reflection of P if
- the line PP

∗
intersects the reflecting plane orthogonally

- the point of intersection is midpoint of PP
∗
.

Figure 1.13 shows that this definition is expressed by the equation

Fig. 1.13 Reflection in a plane
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r− r∗

2
= m[m · (r− r0)] . (1.274)

Taking into account the identity mm · r0 = mr0 = r0 the solution for r∗ is

r∗ = (I− 2mm) · r+ 2r0 (1.275)

= S · r+ 2r0 . (1.276)

The tensor
S = I− 2mm (1.277)

is called reflection tensor. It satisfies the equation

S · S = I . (1.278)

The tensor has the single eigenvalue λ1 = −1 and the double eigenvalue
λ2 = +1 . The eigenvector associated with the eigenvalue λ1 = −1 is m .
Every vector n in the reflecting plane, i.e., normal to m , is an eigenvector
associated with the eigenvalue λ2 = +1 . This is expressed by the equations

(I− 2mm) ·m = −m , (I− 2mm) · n = n . (1.279)

Proposition 1 : Reflection is involutoric (two reflections of a point P in
succession in one and the same plane result in the original point P ). Proof:
Twofold application yields the identity:
(I− 2mm) · [(I− 2mm) · r+ 2r0] + 2r0 ≡ r . End of proof.

Proposition 2 : Reflections are length- as well as angle-preserving. Proof: It
suffices to show that in the case r0 = 0 (point 0 is in the reflecting plane),
vectors r1 and r2 from 0 to points P1 and P2 , respectively, satisfy the
equation r∗1 · r∗2 = r1 · r2 . In the special case r1 = r2 , this equation proves
that length is preserved. Equation (1.276) yields

r∗1 · r∗2 = [r1 − 2m(m · r1)] · [r2 − 2m(m · r2)]
= r1 · r2 + (m · r1)(m · r2)(−2− 2 + 4) = r1 · r2 . (1.280)

End of proof.

Proposition 3 : The reflection e∗ of a right-handed cartesian basis e is a
left-handed cartesian basis. Proof: Again, it suffices to consider the special
case r0 = 0 . Since lengths as well as right angles are preserved, it suffices
to show that e∗1 · e∗2 × e∗3 = −1 . First, the cross product is calculated:

e∗2 × e∗3 = [e2 − 2m(m · e2)]× [e3 − 2m(m · e3)]
= e2 × e3 − 2(e2 ×m)(m · e3)− 2(m× e3)(m · e2) . (1.281)

With this expression another application of (1.276) yields
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e∗1 · e∗2 × e∗3 = [e1 − 2m(m · e1)] · e∗2 × e∗3
= e1 · [e2 × e3 − 2(e2 ×m)(m · e3)− 2(m× e3)(m · e2)]

−2(m · e2 × e3)(m · e1)
= e1 · e2 × e3 − 2[(m · e3)2 + (m · e2)2 + (m · e1)2]
= 1− 2 = −1 . (1.282)

End of proof.

Example: Equation (1.275) is applied to the planar problem shown in Fig.
1.14 . The vectors m , r0 and r are in the x, y-plane of an x, y, z-system.
Then also r∗ is in this plane. This is the special case of reflection of the
x, y-plane in a line located in this plane. The line is defined by the angle
α measured counterclockwise from the x-axis and by the coordinate a of
the point of intersection A with the x-axis. The unit vector m has the
coordinates [sinα −cosα]T . Furthermore, r0 = m a sinα . The coordinates
of r and r∗ are denoted [x y]T and [x∗ y∗]T , respectively. Equation
(1.275) yields the coordinate equation[

x∗

y∗

]
=

[
cos 2α sin 2α
sin 2α − cos 2α

] [
x
y

]
+ a

[
1− cos 2α
− sin 2α

]
. (1.283)

End of example.

Fig. 1.14 Reflection of x, y-plane in a line located in this plane

Next, the resultant of two successive reflections in different planes is in-
vestigated. The first reflection with tensor S1 = I− 2m1m1 and with vector
r01 is followed by the reflection with tensor S2 = I − 2m2m2 and with
vector r02 . A point originally located at r is after the first reflection in the
position S1 · r+ 2r01 and after the second reflection in the position

r∗ = S2 · (S1 · r+ 2r01) + 2r02 = S2 · S1 · r+ 2(S2 · r01 + r02) . (1.284)

The special case of parallel planes:
This case is characterized by m1 = m2 = m ; r01 and r02 collinear; S2 =
S1 = I− 2mm ; S2 · S1 = I and S2 · r01 = −r01 . Hence the
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Theorem 1.7. The resultant displacement r∗ − r caused by two successive
reflections in parallel planes with collinear vectors r01 (first reflection) and
r02 is the translation 2(r02 − r01) by twice the distance of the two planes
in the direction normal to the planes. The translation changes sign when the
order of reflections is changed.

Next, the general case of reflections in nonparallel planes is investigated. The
planes intersect in a line which, being normal to both m1 and m2 , has the
direction of m1 ×m2 . Without loss of generality the origin 0 is placed on
this line so that r01 = r02 = 0 . Equation (1.284) becomes

r∗ = (I− 2m2m2) · (I− 2m1m1) · r = (2m2m2− I) · (2m1m1− I) · r . (1.285)

According to (1.42) the last two tensors are the tensors of 180◦-rotations
about the axes m1 and m2 , respectively. Hence the resultant reflection
equals the resultant of two 180◦-rotations about m1 (first rotation) and
m2 . This resultant rotation was investigated in Sect. 1.15.2. The results are
summarized in

Theorem 1.8. The resultant of two successive reflections in nonparallel
planes with unit normal vectors m1 (first reflection) and m2 enclosing
the angle 0 < α < π is a rotation through the angle 2α about the axis
m1 ×m2/|m1 ×m2| . This axis is the line of intersection of the two planes.
The resultant rotation does not change if the two planes are rotated about
their line of intersection with the angle α kept constant. The sense of rota-
tion is reversed when the order of reflections is changed. In the special case
of mutually perpendicular planes (α = π/2 , 180◦-rotation about the line of
intersection) , the final position is independent of the order of reflections.

A consequence of this theorem is

Theorem 1.9. Any sequence of an even number of reflections in planes pass-
ing through a common point 0 is equivalent to a rotation about an axis passing
through 0 .

Indeed, each pair of consecutive reflections is equivalent to a rotation, and
the resultant of an arbitrary number of rotations is equivalent to a single
rotation.
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Chapter 2

Line Geometry

Line geometry was invented by Plücker. The basic idea is to consider as
elements of three-dimensional space not points with point coordinates, but
lines with line coordinates. A line is understood to be a straight line. In the
present chapter some basic elements of line geometry are introduced.

Literature: Plücker [5, 6], Sauer [9], Sturm [11], Kruppa [3], Timerding
[12], Zindler [13], Hoschek [1], Salmon [7], Salmon/Fiedler [8].

2.1 Normal Vector of a Plane. Equation of a Plane

Figure 2.1a shows a plane in a cartesian basis with origin 0 . The plane does
not pass through 0 . Let P0 be the foot of the perpendicular from 0 onto the
plane, and let, furthermore, d > 0 be the length of this perpendicular. The
normal vector m of the plane is defined to be the vector having the absolute
value |m| = 1/d and the direction from P0 to 0 . The position vector of P0

is −m/m2 . The vector r of an arbitrary point located in the plane satisfies
the equation

m · r = −1 . (2.1)

From the coordinate form mxx+myy+mzz = −1 it is seen that the points
of intersection of the plane with the coordinate axes have the coordinates
x = −1/mx , y = −1/my and z = −1/mz , respectively.

If the plane passes through 0 (Fig. 2.1b), Eq.(2.1) is replaced by

m · r = 0 , (2.2)

where m is a vector normal to the plane with arbitrary absolute value |m| �=
0 and with arbitrary sense of direction.
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Fig. 2.1 Normal vector m of a plane. (a) The plane is not passing through the origin:

|m| = 1/d ; (b) The plane is passing through the origin: |m| arbitrary

2.2 Plücker Vectors. Plücker Coordinates of a Line

Figure 2.2 shows a line in a cartesian basis with origin 0 . The line is uniquely
determined by two points P and P′ with position vectors r and r′, respec-
tively. The line is also uniquely determined by the vectors

v = r′ − r , w = r× v = r× r′ . (2.3)

These vectors satisfy the constraint equations

v2 = const �= 0 , v ·w = 0 . (2.4)

The vectors v and w are called first and second Plücker vector of the line,
and their cartesian coordinates are called Plücker coordinates of the line.
Equations (2.4) are two constraint equations for the altogether six vector
coordinates. That four scalar quantities define a line is seen also as follows.
Choose an arbitrary x, y, z-system in which the line has points of intersection
with the x, y-plane and with the x, z-plane. Each of these points has two
coordinates. In what follows, we speak of lines (v,w) . The first Plücker
vector v determines the direction of the line, and the second represents the
moment of the first with respect to 0 . The line is uniquely determined by its
Plücker vectors because Eqs.(2.3) yield as equation of the line

r(λ) = λv +
v ×w

v2
(2.5)

where λ is a free parameter. The perpendicular from 0 onto the line is

r(0) =
v ×w

v2
. (2.6)

The line passes through 0 if w = 0 . Multiplication of both Plücker vectors
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Fig. 2.2 Plücker vectors of a line

by an arbitrary common factor does not change the line. In the case v2 = 1 ,
the Plücker vectors are said to be normalized.

A line (v,w) lies in a plane given by either (2.1) or (2.2) if and only if
the following conditions are satisfied:

v ·m = 0 , w ×m =

{−v (Eq.(2.1); plane not passing through 0 )
0 (Eq.(2.2); plane passing through 0 ) .

(2.7)

This is seen as follows. The first equation is obviously true. Consequently,

w ×m = (r× v)×m = (m · r)v − (v ·m)r = (m · r)v . (2.8)

This together with (2.1) and (2.2) yields the second Eq.(2.7).

2.3 Reflection in a Line

From Sect. 1.5 it is known that reflection in a line is equivalent to 180◦-
rotation about the line (see (1.42)). In the present section the reflecting line
is not required to pass through the origin 0 of the reference frame. The line
is given by its normalized Plücker vectors v and w . Equation (2.5) of the
line (v,w) is

r(λ) = λv + v ×w . (2.9)

Let z be the position vector of an arbitrary point P , and let, furthermore,
z∗ be the position vector of the reflection P∗ of P . By the definition of
reflection in the line the vector (z∗+z)/2 is position vector r1 = r(λ1) of a
point on the line. In addition, z∗−z is normal to the line. Hence z∗ = 2r1−z
and v · (r1 − z) = 0 . With r1 = λ1v + v × w the latter condition yields
λ1 = v · z and, consequently,

z∗ = 2(v · zv + v ×w)− z = (2v v − I ) · z+ 2v ×w . (2.10)

The tensor is known from (1.42). The vector 2v×w is twice the perpendicular
from 0 onto the reflecting line. With the vector rA of an arbitrary point A
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on the line the second Plücker vector is w = rA × v . With this expression
the equation can be given the more useful form

z∗ = 2rA − z+ 2v v · (z− rA) . (2.11)

2.4 Plücker Vectors of the Line of Intersection of two
Planes

A line (v,w) need not be determined by two points. It may just as well be
defined as intersection line of two nonparallel planes. Therefore, it is possible
to express the Plücker vectors v and w in terms of the normal vectors m1

and m2 appearing in Eqs.(2.1) or (2.2) of two planes. The desired expres-
sions are derived from (2.7). The first equation requires that v be orthogonal
to both m1 and m2 so that w = r×v lies in the plane of m1 and m2 . An
appropriate ansatz is v = m1×m2 , w = μ1m1+μ2m2 with unknown coeffi-
cients μ1 , μ2 . These coefficients are obtained from two equations expressing
the second Eq.(2.7). Three cases have to be distinguished.
Case a: None of the two planes is passing through 0 . In this case, the equa-
tions read

(μ1m1 + μ2m2)×mi = −m1 ×m2 (i = 1, 2) . (2.12)

This yields μ1 = −1 , μ2 = 1 . Hence the desired Plücker vectors are

v = m1 ×m2 , w = m2 −m1 . (2.13)

Case b: Exactly one of the planes, say the plane with m1 , passes through 0 .
Then (2.12) must be satisfied for i = 2 , so that μ1 = −1 , again. For plane
1 the pertinent equation is the second Eq.(2.7). It yields μ2 = 0 . Thus, the
solution is

v = m1 ×m2 , w = −m1 . (2.14)

Case c: Both planes are passing through 0 . Then also the line of intersection
passes through 0 . Hence v = m1 ×m2 , w = 0 .

2.5 Condition for two Lines to Intersect

Let (v1,w1) and (v2,w2) be two nonparallel lines, which means that v1 ×
v2 �= 0 (Fig. 2.3). No matter whether the lines intersect or not, they have a
uniquely defined common perpendicular. It has the direction of v1×v2 . Let
n be the unit vector in this direction, and let, furthermore, r1 and r2 be
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Fig. 2.3 Skew lines and common perpendicular

the vectors to the points where the perpendicular intersects the lines. With
these vectors the quantities � and α are defined (positive or negative):

r2 − r1 = �n , v1 × v2 = n|v1 × v2| = n|v1||v2| sinα . (2.15)

|�| is the length of the common perpendicular, and α is the angle, right-
handed about n , which turns v1 into the direction of v2 . The second
Plücker vectors of the lines are w1 = r1 × v1 , w2 = r2 × v2 . With these
vectors the expression is formulated:

v1 ·w2 + v2 ·w1 = v1 · r2 × v2 + v2 · r1 × v1 = −r2 · v1 × v2 + r1 · v1 × v2

= (r1 − r2) · v1 × v2 = −�|v1 × v2| . (2.16)

This is an equation for � :

� = −v1 ·w2 + v2 ·w1

|v1 × v2| . (2.17)

Its usefulness lies in the fact that the second Plücker vector wi = ri × vi

can be calculated with the vector ri of an arbitrary point on the line i . The
most important consequence of the equation is

Theorem 2.1. Two lines intersect if and only if their Plücker vectors v1 , w1

and v2 , w2 satisfy the condition

v1 ·w2 + v2 ·w1 = 0 , (2.18)

and the point of intersection is

r =
w1 ×w2

w1 · v2
. (2.19)

The last equation is verified by substituting w1 = r×v1 and w2 = r×v2 .

Example: Given four pairwise skew lines gi = (vi,wi) (i = 1, 2, 3, 4), de-
termine all lines (x,y) which intersect these four given lines (the so-called
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transversals of the four lines).
Proposition: The number of lines solving this problem is either two or one or
zero. The following proof is due to Steiner [10] v.1:147–154. Let P(z) with a
coordinate z along g1 be an arbitrary point of g1 . The manifold of all lines
passing through P(z) and intersecting g2 defines a plane E(z) . Let Q(z) be
the point of intersection of g3 with E(z) . It can be shown that the manifold
of all lines g(z) = P(z)Q(z) for −∞ < z < ∞ defines a hyperboloid of
one sheet, here denoted H . Thus, every point of H is passed by exactly one
generator g(z) which intersects g1 , g2 and g3 . The line g4 intersects H
either at two points or in a double point or not at all. The generator g(z)
passing through such an intersection point intersects the four given lines. End
of proof.

For calculating the unknown lines (x,y) all vectors are decomposed in
some appropriately chosen common reference basis. The four intersection
conditions wi · x + vi · y = 0 (i = 1, 2, 3, 4) are formulated in terms of the
vector coordinates. This results in a system of four homogeneous linear equa-
tions for the six unknown coordinates xk , yk (k = 1, 2, 3) . The coefficient
matrix is of size (4 × 6) . Every solution (x,y) satisfies the orthogonality
condition x · y = 0 , i.e., x1y1 + x2y2 + x3y3 = 0 , as well as the normal-
izing condition x2

1 + x2
2 + x2

3 = 1 . Since, by Steiner’s proof, these altogether
six equations have isolated solutions, the (4 × 6) coefficient matrix of the
linear equations has rank four. From this it follows that four out of the six
coordinates can be expressed as linear combinations of the remaining two.
Of these two at least one is �= 0 because otherwise only the trivial solution
would exist. The linear combinations are substituted into the orthogonality
condition x1y1 + x2y2 + x3y3 = 0 . This results in a single equation for the
two remaining coordinates. The equation is quadratic with respect to both
coordinates. It is solved for one of them. With each of its two solutions the
first four coordinates are calculated. Thus, five coordinates are expressed in
terms of a single coordinate. This single coordinate may be chosen arbitrar-
ily. For example, it may be chosen so as to satisfy the normalizing condition
x2
1+x2

2+x2
3 = 1 . With or without normalization every 6-tuple of coordinates

determines uniquely one line (x,y) solving the problem.

A concrete example: The four pairwise skew lines (vi,wi) are given by the
coordinates
v1 : [ 1 0 3] , v2 : [ 1 1 2] , v3 : [ 1 2 3] , v4 : [ 3 1 −2] ,
w1 : [ 3 −2 −1] , w2 : [ 1 1 −1] , w3 : [ −2 1 0] , w4 : [ 1 −3 0] .
The intersection conditions wi · x+ vi · y = 0 (i = 1, 2, 3, 4) are⎡
⎢⎢⎣

3 −2 −1 1
1 1 −1 1

−2 1 0 1
1 −3 0 3

⎤
⎥⎥⎦
⎡
⎢⎢⎣
x1

x2

x3

y1

⎤
⎥⎥⎦ = −

⎡
⎢⎢⎣
0 3
1 2
2 3
1 −2

⎤
⎥⎥⎦
[
y2
y3

]
.

Inversion of the (4× 4)-matrix yields



2.6 Plücker Vectors of the Common Perpendicular of two Lines 69⎡
⎢⎢⎣
x1

x2

x3

y1

⎤
⎥⎥⎦ = −1

9

⎡
⎢⎢⎣

−6 6 −9 3
−7 7 −6 2
−18 9 −18 9
−5 5 −3 4

⎤
⎥⎥⎦
⎡
⎢⎢⎣
0 3
1 2
2 3
1 −2

⎤
⎥⎥⎦
[
y2
y3

]
=

1

9

⎡
⎢⎢⎣

9y2+ 39y3
3y2+ 29y3
18y2+ 108y3
−3y2+ 22y3

⎤
⎥⎥⎦ . (a)

The condition x1y1 + x2y2 + x3y3 = 0 is
1
81 (9y2 + 39y3)(−3y2 + 22y3) +

1
9 (3y2 + 29y3)y2 +

1
9 (18y2 + 108y3)y3 = 0

or y3(84y2+305y3) = 0 . This equation has two solutions [y2 y3] = [3 0] and
[−305 84] (the arbitrary factors are chosen for convenience). Substitution
into (a) produces the solutions
[x1 x2 x3 y1 y2 y3] = [3 1 6 − 1 3 0] and [59 169 398 307 − 305 84] .
End of example.

2.6 Plücker Vectors of the Common Perpendicular of
two Lines

In this section the lines (v1,w1) and (v2,w2) shown in Fig. 2.3 are con-
sidered again. The length of their common perpendicular is calculated from
(2.17). To be determined are the Plücker vectors v , w of the common per-
pendicular. Since v has the direction of v1 × v2 the ansatz is made:

v = v1 × v2 , w = λ1v1 ×w2 + λ2w1 × v2 + μv1 × v2 . (2.20)

The unknown coefficients λ1 , λ2 , μ are calculated from the three conditions
that the common perpendicular intersects both lines, and that, furthermore,
v ·w = 0 . The intersection conditions (2.18) are v ·wi+vi ·w = 0 (i = 1, 2).
Substitution of (2.20) yields after elementary manipulations λ1 = λ2 = 1 .
The condition v ·w = 0 is an equation for μ :

(v1 × v2) · (v1 ×w2 +w1 × v2) + μ(v1 × v2)
2 = 0 . (2.21)

Lagrange’s identity for multiple products in combination with the orthogo-
nality v1 ·w1 = v2 ·w2 = 0 results in

μ =
(v1 · v2)(v1 ·w2 + v2 ·w1)

(v1 × v2)2
(2.22)

(μ = 0 if the lines (v1,w1) and (v2,w2) intersect). With this and with
λ1 = λ2 = 1 the desired Plücker vectors (2.20) are

v = v1×v2 , w = v1×w2+w1×v2+(v1·w2+w1·v2)(v1·v2)
v1 × v2

(v1 × v2)2
.

(2.23)
The perpendicular from 0 onto the common perpendicular is the vector
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v ×w

v2
=

(v1 × v2 ·w2)v1 − (v1 × v2 ·w1)v2

(v1 × v2)2
. (2.24)

2.7 Linear Complex

The four independent coordinates of the Plücker vectors v and w of every
line in three-dimensional space may be subjected to one, to two, to three or
to four independent scalar constraints. This results in line manifolds having
three or two or one or zero free parameters. A manifold of lines with three free
parameters (a single constraint) is called a complex and, in particular, a linear
complex, if the constraint equation is linear. This is the case investigated in
what follows. A manifold of lines with two free parameters (two constraints) is
called a congruence, and a manifold of lines with a single free parameter (three
constraints) is called a ruled surface. The special case of linear congruences is
briefly treated in Sect. 2.8 . Ruled surfaces are the subject of Sect. 2.9 . Four
independent scalar constraints determine isolated lines. Note the difference
between line geometry and cartesian point geometry. Three point coordinates
may be subjected to one, to two or to three independent scalar constraints.
The results are surfaces, curves and points, respectively.

Let a and b be two arbitrarily prescribed, nonorthogonal vectors, i.e.,
a · b �= 0 . Since they are nonorthogonal, they are not Plücker vectors of a
line. Definition: The linear complex (a;b) is the manifold of all lines (v,w)
satisfying the linear constraint equation

a ·w + b · v = 0 . (2.25)

The linear complex (a;b) contains three independent coordinates. The lines
(v,w) are briefly called complex lines. Since (2.25) is unaffected by multipli-
cation with an arbitrary constant, the vector a can be made a unit vector.
In what follows, this is not assumed.

Remark: In the special case a · b = 0 excluded from the investigation,
a and b are Plücker vectors of a line. In this case, (2.25) represents the
intersection condition for the lines (a,b) and (v,w). It is satisfied by all
lines (v,w) intersecting the line (a,b) at arbitrary points and in arbitrary
directions. This linear complex is called a special linear complex, and the line
(a,b) is called its axis.

2.7.1 Null Point. Null Plane

Imagine that the vectors a and b start out from the origin 0 in Fig. 2.2 . The
point P is an arbitrarily chosen fixed point whereas P′ is a variable point.
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Equations (2.3) determine the Plücker vectors of all lines passing through P.
Among these lines only those are complex lines which satisfy (2.25):

a · r× r′ + b · (r′ − r) = 0 . (2.26)

This equation establishes a linear relation between the three coordinates of
r′. Hence it is the equation of a plane passing through P . All lines lying
in this plane and passing through P are complex lines. Proposition: The
nonnormalized vector

n = a× r+ b (2.27)

is normal to the plane. Proof: Substitution of the expression for n into the
orthogonality condition n · (r′ − r) = 0 produces (2.26). End of proof.

For every point P (2.26) determines uniquely a plane. For reasons ex-
plained later (see Sects. 9.3 and 12.4) the point and the associated plane
are called null point and null plane, respectively. Since b is not orthogonal
to a , the normal vector n is not orthogonal to a either. This means: No
null plane contains a line parallel to a . The vector n does not change if
to r an arbitrary multiple of a is added. This means: Null planes passing
through different null points are parallel if these null points are located on a
line parallel to a , and they are not parallel if the null points are not located
on a line parallel to a . Hence the conclusion: Every null plane has exactly
one null point. In every null plane all lines passing through the null point -
and these lines only - are complex lines. They form what is called a pencil of
complex lines.

2.7.2 Axis. Pitch

For clarifying the location of the infinitely many null planes/null points in
space (2.26) is rewritten by substituting r = rA +� and r′ = rA +� ′ where
rA is the position vector of an as yet unspecified point A (Fig. 2.4). This
results after simple manipulations in the equation

a · �× � ′ + (a× rA + b) · (� ′ − �) = 0 . (2.28)

For all points A on a line parallel to a the vectors a× rA + b are identical
(different vectors for different lines). There exists a single line parallel to a for
the points of which a×rA +b has the direction of a , i.e., a×rA +b = pa
with a scalar p of dimension length. This line is called axis of the linear
complex. Let u be the particular vector rA which is perpendicular to the
axis (see Fig. 2.4). Then also a × u + b = pa . Cross- and dot-multiplying
this equation by a and using the orthogonality a ·u = 0 one gets for u and
for p the expressions
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Fig. 2.4 Axis of a linear complex

u =
a× b

a2
, p =

a · b
a2

. (2.29)

The axis has the Plücker vectors a and u×a = (a×b)×a/a2 = b−pa . In
a reference basis having its origin on the axis of the complex the same linear
complex has the second Plücker vector u×a = 0 . In this reference basis the
linear complex (a;b) is the complex (a; pa) .

For better understanding the relationships between axis, constant p , null
point and null plane points of a single line perpendicular to the axis are
considered (Fig. 2.5). The foot of this perpendicular is chosen as origin 0 so
that (2.29), (2.27) and (2.26) have the forms

u = 0 , b = pa , n = a× r+ pa , (2.30)

a · [r× r′ + p (r′ − r)] = 0 . (2.31)

Let P with position vector r be an arbitrarily chosen null point on the line.
The associated null plane contains the line because (2.31) is satisfied with
every position vector r′ collinear with r . The figure shows the pencil of
complex lines in this null plane. The null plane is inclined against the axis
of the complex by an angle α for which the triangle at P yields the formula
(with r = |r|)

tanα =
p

r
. (2.32)

The angle α is the smaller, the larger the distance r of the null point from
the axis.

On every line perpendicular to the axis the allocation of null planes and
null points is the same. This simple allocation establishes a one-to-one rela-
tionship between a linear complex and a screw. The axis of the complex has
to be interpreted as axis of a screw with pitch p . The helix of the thread at
the distance r (arbitrary) from the axis progresses per revolution by 2πp .
Consequently, the inclination angle of this helix is the angle α in (2.32). This
means: Let P be an arbitrary null point in space. The corresponding null
plane is orthogonally intersected at P by the helix passing through P . In
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Fig. 2.5 The pencil of complex lines in the null plane with null point P is normal to the

helix through P

other words: The linear complex (a;b) is the manifold of all normals of all
helices produced by a screw having as axis the axis of the linear complex,
having the pitch p and arbitrary radius r . The pitch may be positive or
negative, i.e., the screw is right-handed or left-handed.

2.7.3 Determine the Null Point if the Null Plane is
Given and Vice Versa

Let r0 be the position vector of a null point, and let m · r = −1 be Eq.(2.1)
of the associated null plane. Then

m · r0 = −1 . (2.33)

The vector a × r0 + b was shown to be normal to the plane (see (2.27)).
Consequently

m = A(a× r0 + b) (2.34)

with an unknown scalar A . Cross-multiplying this equation with m and dot-
multiplying it with r0 and using in either case (2.33) results in the equations

0 = −a− (m · a)r0 +m× b , −1 = Ar0 · b . (2.35)

If the null plane is given, the first equation determines the null point:

r0 =
m× b− a

m · a . (2.36)

If, instead, the null point is given, the second equation determines the null
plane:

m =
r0 × a− b

r0 · b . (2.37)
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2.7.4 Determine a Linear Complex from Given
Complex Lines

The linear complex (a ; b) is defined by Eq.(2.25): a ·w+ b · v = 0 . Given
vectors a and b determine the axis and the pitch and the Plücker vectors
v and w of all complex lines (v , w) . The linear complex does not change
if a and b are multiplied by an arbitrary constant. The vectors a and b
are determined by five lines (vi , wi) (i = 1, . . . , 5) satisfying the condition
that the five equations

wi · a+ vi · b = 0 (i = 1, . . . , 5) (2.38)

are linearly independent. Applications to problems of kinematics see in Sects.
4.2.1 and 12.5 . In Zindler [13] reference is made to literature on 28 different
methods for determining a linear complex from given data.

2.7.5 Reciprocal Polars

In what follows, the origin 0 is again an arbitrary point, and the vector a
need not be a unit vector. Proposition: For every line (p1,q1) not belonging
to the linear complex (a;b) there exist exactly one line (p2,q2) also not
belonging to the linear complex and exactly one scalar μ �= 0 such that

p1 + p2 = μa , q1 + q2 = μb . (2.39)

The lines (p1,q1) and (p2,q2) are called reciprocal polars of the linear
complex.
Proof: The Plücker vectors of the two polars satisfy the equations p1 · q1 =
p2 · q2 = 0 . Since the polar (p1,q1) does not belong to the linear complex,
the Plücker vectors p1 and q1 do not satisfy (2.25). Hence a·q1+b·p1 �= 0 .
With (2.39) the equation p2 · q2 = 0 gets the form

(μa− p1) · (μb− q1) = μ2a · b− μ(a · q1 + b · p1) = 0 . (2.40)

From this it follows that there exists, indeed, a single scalar

μ =
a · q1 + b · p1

a · b �= 0 . (2.41)

With this scalar the other reciprocal polar (p2,q2) is uniquely determined
by (2.39). Its Plücker vectors yield the identity a ·q2+b ·p2 = a ·q1+b ·p1 .
This proves that also the other reciprocal polar does not belong to the linear
complex. End of proof.
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The polar (p1,q1) remains unchanged if p1 and with it also q1 is multi-
plied by an arbitrary scalar. The scalar can be chosen such that (2.41) yields
μ = 1 .

Any two reciprocal polars are skew lines. Indeed, the intersection condition
(2.18) is violated:

p1 ·q2+p2 ·q1 = p1 ·(μb−q1)+(μa−p1) ·q1 = μ(a ·q1+b ·p1) �= 0 . (2.42)

Theorem 2.2. The common perpendicular of two reciprocal polars (p1,q1)
and (p2,q2) intersects orthogonally the axis of the complex. In other words:
The axis of the complex and the reciprocal polars have a common perpendic-
ular.

Proof: Let N be the common perpendicular of the axis of the complex and
of the polar (p1,q1) . Without loss of generality the origin 0 is placed at
the foot of N on the axis of the complex. Furthermore, p1 is assumed to be
a unit vector. These assumptions have the consequence that b = pa , that
N has the Plücker vectors (p1 × q1 , 0) , and that a · p1 × q1 = 0 . The
last equation expresses the orthogonality of N to the axis of the complex. It
suffices to prove that N intersects the other reciprocal polar (p2,q2) , and
that it is orthogonal to it. These are the conditions

q2 · p1 × q1 = 0 , p2 · p1 × q1 = 0 . (2.43)

With p2 = μa − p1 and q2 = μb − q1 = μpa − q1 they are, indeed,
satisfied. End of proof.

Proposition: Every complex line (v,w) intersecting one out of two recip-
rocal polars (p1,q1) and (p2,q2) intersects also the other.
Proof: Suppose the intersection condition (2.18) is satisfied for the polar
(p1,q1) , i.e., v · q1 +w · p1 = 0 . The intersection condition for the other
polar (p2,q2) is

v · q2 +w · p2 = v · (μb− q1) +w · (μa− p1)

= μ(a ·w + b · v)− (v · q1 +w · p1) = 0 . (2.44)

It is satisfied because (2.25) is valid. End of proof. Conversely, if
v ·q1+w ·p1 = 0 and v ·q2+w ·p2 = 0 , then also a ·w+b ·v = 0 , whence
it follows that every line intersecting two reciprocal polars is a complex line.
And furthermore: If two lines, say g and g′ , have the property that every
line intersecting both of them is a complex line, g and g′ are reciprocal
polars.

Proposition: The two transversals of any four linearly independent com-
plex lines (vi,wi) (i = 1, 2, 3, 4) of a linear complex (a;b) are reciprocal
polars. Proof: Since every complex line intersecting one of two reciprocal po-
lars intersects also the other, it suffices to show that a transversal cannot be a
complex line. This is done as follows. Suppose one of the transversals is a fifth
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linearly independent complex line (v5,w5) . Then the system of five equa-
tions wi · v5 + vi ·w5 = 0 (i = 1, 2, 3, 4, 5) with a coefficient matrix of rank
five has the nontrivial solution (v5,w5) satisfying the equation v5 ·w5 = 0 .
But this is not the case since linear independence of the five lines means that
Eqs.(2.38), wi · a + vi · b = 0 (i = 1, 2, 3, 4, 5) , with the same coefficient
matrix have the nontrivial solution (a,b) satisfying the inequality a ·b �= 0 .
End of proof.

Let P be an arbitrary point located on one of two reciprocal polars. The
manifold of all lines passing through P and intersecting the other polar
represents the pencil of complex lines in the null plane which has P as null
point. Figure 2.6 shows two reciprocal polars together with the pencils of
complex lines in two null planes corresponding to two null points P1 and P2 .
The line connecting these null points is a complex line in both null planes. If
a null point moves along one reciprocal polar, the corresponding null plane
rotates about the other reciprocal polar. This has the following consequence.
If the null planes are known for two null points on one reciprocal polar, the
other reciprocal polar is the line of intersection of these null planes.

Two pairs of reciprocal polars determine a linear complex. According to
Theorem 2.2 its axis is the common perpendicular of the common perpendic-
ulars of the two pairs. According to Fig. 2.6 a single pair determines the null
plane associated with an arbitrary null point on one of the polars. The axis,
this null plane and this null point determine the radius r and the inclination
angle α shown in Fig. 2.5. According to (2.32) the pitch of the linear complex
is p = r tanα .

Fig. 2.6 Reciprocal polars and null planes associated with null points P1 and P2
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2.8 Linear Congruence

A congruence is the manifold of all lines (v , w) which are subject to two
constraint equations. In this section linear congruences are briefly treated.
This is the special case of the intersection of two linear complexes (see (2.25)):

C1 = a1 ·w + b1 · v = 0 , C2 = a2 ·w + b2 · v = 0 . (2.45)

The lines (v , w) of the congruence are complex lines common to both C1 and
C2. Through every point in space a line of the congruence is passing, namely,
the line of intersection of the null planes of C1 and C2 associated with this
null point. In every plane a line of the congruence is located, namely, the
line passing through the null points of C1 and C2 associated with this null
plane. If two lines of the congruence intersect, the two null planes of C1 and
C2 associated with this null point coincide with the plane spanned by the
intersecting lines. In this case, every line in this plane and passing through
this point is line of the congruence.

Equations (2.45) are equivalent to the two linear combinations (themselves
linear complexes) C1 + λ1C2 = 0 , C1 + λ2C2 = 0 , i.e.,

(a1 +λ1a2) ·w+(b1 +λ1b2) ·v = 0 , (a1 +λ2a2) ·w+(b1 +λ2b2) ·v = 0
(2.46)

with arbitrary (real or complex) numbers λ1 and λ2 �= λ1 . These numbers
are determined such that both linear complexes are special. For this to be
the case λ1 and λ2 must be the roots of the quadratic equation (see the
remark following (2.25))

(a1 + λa2) · (b1 + λb2) = 0 . (2.47)

Let it be assumed that the roots are different. The special linear complex
with λi (i = 1, 2) consists of all lines intersecting the line with Plücker vec-
tors (a1 + λia2) and (b1 + λib2) . The two lines thus determined are called
directrices of the congruence. Let it be assumed that they are skew. The
congruence consists of all lines intersecting both directrices. In accordance
with the statements made above the following is true. Through every point
in space a line exists which intersects both directrices. In every plane a line
exists which intersects both directrices. If, in particular, a directrix is pass-
ing through the point or lying in the plane, the number of congruence lines
through this point or in this plane is infinite. Further details see in Salmon
[7] and Salmon/Fiedler [8].
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2.9 Ruled Surfaces

Before investigating general ruled surfaces in Sect. 2.9.2 a special case is
considered.

2.9.1 Intersection of three Linear Complexes

The intersection of three linear complexes

C1 = a1 ·w+b1 ·v = 0 , C2 = a2 ·w+b2 ·v = 0 , C3 = a3 ·w+b3 ·v = 0
(2.48)

is a one-parametric manifold of lines and hence a ruled surface F . Every
generator of F belongs to the ∞2 linear combinations (themselves linear
complexes) C = λ1C1 + λ2C2 + C3 = 0 , i.e.,

C = (λ1a1 + λ2a2 + a3) ·w + (λ1b1 + λ2b2 + b3) · v = 0 (2.49)

with arbitrary (real or complex) parameters λ1 and λ2 . Among these there
are ∞1 special complexes, namely, the ones satisfying the constraint equation
for λ1 and λ2

(λ1a1 + λ2a2 + a3) · (λ1b1 + λ2b2 + b3) = 0 . (2.50)

Each of these special complexes is the manifold of all lines intersecting the
axis with Plücker vectors (λ1a1+λ2a2+a3) and (λ1b1+λ2b2+b3) . Thus,
a manifold of infinitely many generators of F intersect the axes of these ∞1

special complexes. From this it follows that these axes themselves represent
a second manifold of generators of F . Thus, the ruled surface F consists
of two manifolds of generators, each generator of one manifold intersecting
every generator of the second manifold. Consequently, the ruled surface is
a quadric, i.e., in general, either a hyperboloid of one sheet or a hyperbolic
paraboloid.

2.9.2 Striction Point. Distribution Parameter

A general ruled surface is a manifold of lines with a single free parameter
u . It is defined through the position vector r(u) of a curve and the unit
vector e(u) along the line passing through the point r(u) . The normalized
Plücker vectors of the lines are e(u) and r(u) × e(u) . The lines are called
generating lines or simply generators of the ruled surface. With an additional
free parameter λ the surface has the parameter equation
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x(u, λ) = r(u) + λe(u) . (2.51)

Until further below three special kinds of ruled surfaces are excluded. These
are
(a) general cylinders; all generators are parallel; e(u) = const.
(b) general cones; all generators are passing through a fixed point called apex
of the cone. Without loss of generality, r(u) is measured from the apex so
that r(u) and e(u) are collinear
(c) ruled surfaces where e(u) is defined to be the tangent to the curve r(u) .

In what follows, tangent planes are investigated. Derivatives with respect
to u are denoted by a dot. The tangent plane at the point x(u, λ) is spanned
by the vector ẋ = ṙ+ λė tangent to the curve λ = const through this point
and by the vector e of the generator through this point. These two vectors
define the unit normal vector n of the tangent plane at this point:

n =
(ṙ+ λė)× e

|(ṙ+ λė)× e | . (2.52)

In what follows, statements are made about an arbitrary single generator
with u = const. At the points λ → −∞ and λ → +∞ at infinity the unit
normal vectors of the tangent planes are the mutually opposite vectors

n−∞ =
e× ė

|e× ė | , n+∞ = − e× ė

|e× ė | . (2.53)

The unit vector

nS = n−∞ × e =
ė

|ė | (2.54)

is orthogonal to both n−∞ and n+∞ . The particular point on the generator
u = const where nS is normal to the tangent plane is called striction point
S on the generator. From (2.52) it follows that at S [(ṙ+λSė)× e]× ė = 0 .
Because of the orthogonality e · ė = 0 this is the equation (ṙ · ė+λSė

2)e = 0 .
Consequently

λS = − ṙ · ė
ė2

. (2.55)

With this expression (2.51) yields the position vector of the striction point:

xS = r+ λSe = r− ṙ · ė
ė2

e . (2.56)

The curve xS(u) with variable u is the locus of all striction points. It is
called striction line of the ruled surface (in this case, line does not mean
straight line).

In what follows, a single generator with u = const is considered again.
At the striction point S the cartesian basis with unit vectors e , nS and
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n−∞ = e × nS is defined. It is referred to as canonical reference frame. Let
ϕ(λ) be the angle through which the tangent plane at the point λ is rotated
against the tangent plane at the striction point. Equation (2.52) for n(λ)
yields cosϕ = nS · n and sinϕ = n−∞ · n . These are the equations (see
(2.55))

cosϕ =
ė · ṙ× e

|ė | |(ṙ+ λė)× e | ,

sinϕ =
−ė · ṙ− λė2

|ė | |(ṙ+ λė)× e | =
(λS − λ)ė2

|ė | |(ṙ+ λė)× e | .

⎫⎪⎪⎬
⎪⎪⎭ (2.57)

This yields

tanϕ =
λS − λ

δ
(2.58)

with

δ =
ė · ṙ× e

ė2
. (2.59)

The quantity δ is constant on the generator u = const. It is called distribu-
tion parameter because it determines the distribution of the tangent planes
along the generator. The rotation angle ϕ is an odd function of the dis-
tance λS −λ from the striction point. When traveling from the infinite point
λ → −∞ to the infinite point λ → +∞ , the tangent plane rotates through
the angle π . At the striction point one half of this rotation is executed.

The striction point is indeterminate, and the distribution parameter is
zero if ṙ is parallel to e , i.e., if the generator u = const is tangent to the
curve r(u) . This may happen at isolated points or even at all points of a
curve r(u) . Ruled surfaces where it happens at all points were excluded
from consideration.

In what follows, new interpretations are given for the striction point and
for the distribution parameter. Two generators associated with parameter
values u and u+Δu are considered. They are skew lines (see Fig. 2.7). Let
� be the length of the common perpendicular, and let α be the projected
angle. The perpendicular is the axis of the screw displacement carrying one
generator into the other. The quantities � and α are the translatory and
the angular component, respectively, of this screw displacement. For a fixed
u (arbitrary) there exist in the limit Δu → 0 a screw axis and the pitch
lim

Δu→0
(�/α) of the screw. Propositions:

1. The screw axis has the direction of n−∞
2. The screw axis intersects the generator u = const at the striction point
3. The pitch is the distribution parameter δ .

Proof: The generators associated with u and with u+Δu have the Plücker
vectors

v1 = e(u) , w1 = r(u)× e(u) ,
v2 = e(u+Δu) , w2 = r(u+Δu)× e(u+Δu) .

}
(2.60)
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Fig. 2.7 Common perpendicular of two generators corresponding to parameter values u

and u+Δu

For calculating limit values the Taylor expansions are made:

v2 = e+Δuė+ (Δu)2

2 ë+ . . . ,

w2 = r× e+Δu(ṙ× e+ r× ė) + (Δu)2

2 (r̈× e+ 2ṙ× ė+ r× ë) + . . . .

}
(2.61)

The first Eq.(2.23) determines the first Plücker vector of the common per-
pendicular: v1×v2 = Δu e× ė+ . . . . In the limit Δu → 0 this yields for the
direction of the screw axis the vector e × ė . This is the direction of n−∞ .
Thus, proposition 1 is proved. Let � be the perpendicular onto the screw
axis. Equation (2.24) yields the expression

� = lim
Δu→ 0

(v1 × v2 ·w2)v1 − (v1 × v2 ·w1)v2

(v1 × v2)2
. (2.62)

With the help of the Lagrangian identity for multiple products the following
expressions are obtained (note the orthogonality e · ė = 0 )

v1 × v2 ·w2 = Δu e× ė · [ r× e+Δu (ṙ× e+ r× ė ) ] + . . .

= −Δu r · ė+ (Δu)2[−ṙ · ė+ (r · e )ė2 ] + . . . ,

v1 × v2 ·w1 = Δu (e× ė ) · (r× e ) + . . . = −Δu r · ė+ . . . ,

(v1 × v2 ·w2)v1 − (v1 × v2 ·w1)v2

= (Δu)2 ė2
[
(r · e) e+ (r · nS)nS − ṙ · ė

ė2
e
]
+ . . .

(v1 × v2)
2 = (Δu)2 ė2 + . . . .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.63)

This yields

� = (r · e) e+ (r · nS)nS − ṙ · ė
ė2

e+ . . . . (2.64)

The first two terms represent the components of r in the directions of e and
of nS , respectively. The third term is the vector (r · n−∞)n−∞ along the
screw axis. Hence the intersection point of the screw axis with the generator
u is the point
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r− ṙ · ė
ė2

e . (2.65)

This is, indeed, the striction point S of Eq.(2.56). This ends the proof of
proposition 2 .

Next, the pitch lim
Δu→0

(�/α) of the screw is calculated. For a finite Δu

Eq.(2.17) expresses −� sinα in terms of the Plücker vectors of the two gen-
erators: v1 ·w2 + v2 ·w1 = −� sinα . Division of this equation through the
equation (v1 × v2)

2 = sin2 α yields the quotient �/ sinα and in the limit
Δu → 0 the pitch:

lim
Δu→0

�

α
= − lim

Δu→0

v1 ·w2 + v2 ·w1

(v1 × v2)2
. (2.66)

For the denominator expression the last Eq.(2.63) is used. The same kind of
expansion for the numerator expression leads to

lim
Δu→0

�

α
=

ṙ · e× ė

ė2
. (2.67)

This is, indeed, the distribution parameter δ of Eq.(2.59). End of proof.

Through (2.58) ruled surfaces become objects of kinematics. Imagine that
one generator of a ruled surface F1 and one generator of another ruled sur-
face F2 have identical distribution parameters δ . When the two generators,
the striction points on these generators and also the tangent planes to F1

and to F2 at the striction points are brought into coincidence, F1 and F2

are in tangential contact everywhere along the common generator. This is a
consequence of (2.58). Now, imagine that not only the two generators of F1

and F2 have identical distribution parameters, but that in every arbitrarily
small neighborhood there are generators with pairwise identical distribution
parameters, so that F1 and F2 can move relative to each other with perma-
nent tangential contact along the actual common generator. This rotational-
translational motion is called raccording motion. It is the subject of Sect.
9.5 .

During the raccording motion the striction lines of F1 and F2 are per-
manently intersecting. The directions of their tangents at the point of inter-
section depend on differential-geometric quantities of higher order so that,
normally, the lines are not cotangential.

Example: Determine the striction line and the distribution parameter for
the hyperboloid of revolution shown in Fig. 2.8 . Its equation in the x, y, z-
system is given as (x2 + y2)/a2 − z2/b2 = 1 .
Solution: The semi-axis a is the radius of the gorge circle in the x, y-plane.
This circle is chosen as curve having the position vector r(u) . Each point
r(u) is passed by two generators. The generators are orthogonal to r(u) and
inclined against the x, y-plane by the angle ψ with tanψ = b/a . In the
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Fig. 2.8 Hyperboloid of revolution

projection in Fig. 2.8 the four generators through the points x = ±a , y =
z = 0 appear pairwise superimposed. These projected generators are the
asymptotes of the contour hyperbola y2/a2 − z2/b2 = 1 . The hyperboloid is
created by rotating the generators about the z-axis. Let the parameter u be
the angle ϕ of this rotation. Then ṙ = ϕ̇ez × r and ė = ϕ̇ez × e , whence
it follows that ṙ · ė = 0 , ė2 = ϕ̇2 cos2 ψ and ṙ · e × ė = ±ϕ̇2a sinψ cosψ
(the sign depends upon which of the two generators passing through r is
considered). This together with (2.56) and (2.67) yields xS(ϕ) ≡ r(ϕ) and
|δ(ϕ)| ≡ a tanψ = b . Hence the striction line is the gorge circle, and the
distribution parameter (identical for all generators) is the imaginary semi-axis
b of the hyperboloid. Two hyperboloids of revolution with identical imaginary
semi-axes can be in raccording motion. The kinematical significance of this
motion is explained in Sect. 12.2 . End of example.

Torses
At the beginning of this section three special kinds of ruled surfaces were
excluded, namely,
(a) general cylinders; all generators are parallel; ė(u) ≡ 0
(b) general cones; r(u) is measured from the apex; r(u) and e(u) are
collinear for all u
(c) ruled surfaces where e(u) and ṙ(u) are collinear for all u .

An example for a type (c) ruled surface is the involute helicoid used as tooth
flank in involute helical gears (see Sec. 16.1.8). For cylinders the distribution
parameter is formally δ = ∞ . For cones and for type (c) ruled surfaces it
is δ = 0 . All three types of ruled surfaces have in common that the tangent
plane is the same for all points of a generator. All three of them have the
property of being developable into a plane. The technical term is torse.
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5. Plücker J (1865) On a new geometry of space. Philos.Trans. 155:725–791
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Chapter 3

Finite Screw Displacement

Subject of this chapter are relationships between two positions of a rigid
body without a fixed point. These two positions, referred to as initial and
final position, respectively, are assumed to be arbitrary subject only to the
restriction that the final position cannot be produced from the initial position
by pure translation. Motions leading from the initial to the final position are
not investigated.

3.1 (4 × 4) Transformation Matrix

In Fig. 3.1 the most general displacement of a rigid body is shown. The body is
represented by a body-fixed basis e2 . In the initial position e2 coincides with
a reference basis e1 with origin 01 . The displacement to the final position of
e2 with origin 02 is the result of a rotation (n, ϕ) about 01 followed by the

translatory displacement r =
−−→
0102 . The position of e2 after the rotation and

prior to translation is referred to as intermediate position (shown in dotted
lines). In the final position a body-fixed point Q with position vector �2 in
e2 has in e1 the position vector

Fig. 3.1 Initial, intermediate and final positions of basis e2 . Position vectors of a body-

fixed point Q . Rotation (n, ϕ) about 01 and translatory displacement r
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�1 = �2 + r . (3.1)

Decomposition of this equation in e1 yields the equation

�1
1
= A12�2

2
+ r1 . (3.2)

The matrix A12 is determined by the rotation (n, ϕ) about 01 . The inverse

equation is (premultiply by A21 = A12T and write r2 = A21r1 )

�2
2
= A21�1

1
− r2 . (3.3)

It is convenient to write these equations in product form. This is achieved by
adding an identity equation:

[
�1
1
1

]
=

[
A12 r1

0T 1

] [
�2
2
1

]
,

[
�2
2
1

]
=

[
A21 −r2

0T 1

] [
�1
1
1

]
, 0 =

⎡
⎣ 0
0
0

⎤
⎦ . (3.4)

The (4 × 4) matrices are transformation matrices. Inversion is carried out
not by transposition, but by the rule shown in Eqs.(3.4).

Example: In Fig. 3.2 a serial robot with six revolute joints is shown. Starting
at the base the bodies and joints are labeled from 1 to 7 and from 1 to
6 , respectively. The locations of the joint axes on the bodies are specified
by body-fixed vectors r2, . . . , r6 pointing from one axis to the next and by
body-fixed unit vectors n1, . . . ,n6 along joint axes. The variable angle of
rotation in joint i is called ϕi . It is the angle of body i+1 relative to body
i . The vector r7 locates a specified point P on the hand of the robot. An
arbitrarily chosen position of the robot is declared as null position. In this
position the angles are ϕ1 = ϕ2 = . . . = ϕ6 = 0 . On body 1 a reference
basis e1 is fixed with its origin 0 on the joint axis 1 . On each of the bodies
i = 2, . . . , 7 a basis ei is fixed in such a way that in the null position all
bases are oriented parallel to basis e1 . The given data are
- the column matrices rii of the coordinates of ri in ei (i = 2, . . . , 7)
- the coordinates of ni in ei (identical with the coordinates in ei+1) (i =
1, . . . , 6)
- the angles ϕi (i = 1, . . . , 6).
The position of the robot hand in the reference basis e1 is determined by
the matrix A17 in the equation e1 = A17e7 and by the column matrix r1P
of the coordinates of the position vector rP in e1 . To be determined are A17

and r1P as functions of ϕ1, . . . , ϕ6 .
Solution: With the coordinates ni1 , ni2 , ni3 of ni in ei and with ϕi

Eq.(1.49) determines the matrix Ai−1,i in the relationship ei−1 = Ai−1,iei .
The desired matrix A17 is the product A12A23A34A45A56A67 . The position
vector of P is rP = r2 + r3 + · · · + r7 . The desired column matrix of its
coordinates in e1 is the expression (to be read from right to left)
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Fig. 3.2 Serial robot with six revolute joints

r1P = A12
(
r22 +A23

[
r33 +A34{r44 +A45[r55 +A56(r66 +A67r77)]}

])
. (3.5)

In terms of (4× 4) matrices this equation reads[
r1
P

1

]
=

[
A12 0
0T 1

] [
A23 r22
0T 1

] [
A34 r33
0T 1

] [
A45 r44
0T 1

] [
A56 r55
0T 1

] [
A67 r66
0T 1

] [
r77
1

]
.

(3.6)
End of example.

3.2 Chasles’ Theorem

In Fig. 3.3 the same general displacement of a rigid body is shown which
was the subject of Fig. 3.1. The body is displaced from an initial position
1 to a final position 2 . Let e2 be a body-fixed basis which in position 1
coincides with a reference basis e1 with origin 01 (arbitrary). In position 2
the origin of e2 is at 02 . The vector pointing from 01 to 02 is called r .
Dashed lines indicate an intermediate position 2′ arrived at from position 1
by pure translation r , and dotted lines indicate another intermediate position
1′ arrived at from position 2 by pure translation −r . The displacement from
position 1 to position 1′ is a rotation (n , ϕ ) about 01 , and the displacement
from position 2′ to position 2 is the same rotation (n , ϕ ) about 02 . Hence
the conclusion: The displacement of the body from position 1 to position
2 can be interpreted in two ways, either as resultant of the rotation (n , ϕ )
about 01 followed by the translation r or as resultant of the same translation
r followed by the same rotation (n , ϕ ) about 02 .

For another origin 0′1 of the basis e1 the rotation (n , ϕ ) is the same
because both e1 and e2 are oriented as before, but the translatory displace-
ment r′ from 0′1 to 0′2 is different. If � is the vector pointing from 01 to
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Fig. 3.3 Initial, final and two intermediate positions of a body-fixed basis e2 specified

by a rotation (n, ϕ) and a translatory displacement r . Screw axis S and displacement
sn

0′1 and �∗ the vector pointing from 02 to 0′2 , the relationship between r′

and r is r′ = r+ �∗ − � .
Proposition: For arbitrary n and ϕ �= 0 there exists a uniquely deter-

mined body-fixed line having the direction of n all points of which have
identical displacements sn ( s = const) in the direction along this line. More
precisely, this is the statement made by

Theorem 3.1. (Chasles [8])1 Any not purely translatory displacement of a
rigid body from an initial to a final position can be represented in a unique way
as screw displacement. This screw displacement is the resultant of a rotation
(n , ϕ ) about a body-fixed screw axis S and a translation sn along this axis.
The screw displacement is the same regardless whether the rotation or the
translation is carried out first.

Proof: Starting from (n , ϕ ) and from the displacement r the screw axis
and the displacement sn are determined as follows. Let � be the body-fixed
vector pointing from 01 to another body-fixed point P (arbitrary). After
the rotation (n , ϕ ) about 01 P has the position vector (see (1.37))

�∗ = �+ (1− cosϕ)n× (n× �) + sinϕn× � . (3.7)

After the subsequent translation r the point has the position vector r+�∗ ,
so that the total displacement of P is r + �∗ − � . Points on the body-
fixed screw axis, if it exists, have, prior to displacement, position vectors
� = u+λn (λ arbitrary) with u ·n = 0 . Thus, u is the perpendicular from
01 onto the screw axis. For proving the theorem it has to be shown that with
these vectors � the equation r+�∗ −� ≡ sn holds true independent of λ ,
and that, furthermore, the equation determines s and u uniquely. The first
condition is satisfied, because λ is eliminated by the product n × � . The
equation reads

r− (1− cosϕ)u+ sinϕn× u = sn . (3.8)

Scalar multiplication by n determines

1 This theorem was known already to Mozzi (1765; see Giorgini [16])
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s = n · r , (3.9)

and cross-multiplication by n produces the equation

n× r− (1− cosϕ)n× u− sinϕu = 0 . (3.10)

This equation and (3.8) with sn = nn ·r are two linear equations for u and
for the second Plücker vector u× n of the screw axis:

sinϕu −(1− cosϕ)u× n = n× r ,

(1− cosϕ)u +sinϕu× n = r− nn · r = (n× r)× n .

}
(3.11)

With the formula sinϕ/(1− cosϕ) = cotϕ/2 the solutions are

u =
1

2

[
(n× r)× n+ n× r cot

ϕ

2

]
, (3.12)

u× n =
1

2

[
(n× r)× n cot

ϕ

2
− n× r

]
. (3.13)

This concludes the proof. The geometrical interpretation of the formula for
u is given in Fig. 3.3. The vector r is decomposed into its components v
orthogonal to n and sn along n , so that s = n · r in accordance with
(3.9). Hence r = v + sn . The screw axis is called S . It is passing through
the apex P0 of the isosceles triangle in the plane normal to n having v as
base and ϕ as apex angle. The vector u is pointing from 01 to P0 . The
first term in the expression for u represents the vector v/2 , and the second
is the altitude of the triangle above the base. Until further below (see Sect.
3.9) the screw displacement is denoted (S, n, ϕ, s).

In the general formula for the displacement r+�∗−� of arbitrary points
of the body the last two terms satisfy (1.44) and (1.77):

(�∗ − �) · n = 0 , �∗ − � = n tan
ϕ

2
× (�∗ + �) . (3.14)

With the first equation it is verified that the component of the displacement
along the screw axis is nn · r = sn for all points of the body. With the
second equation it is verified that the same screw axis is obtained if instead
of 01 another point 0′1 is used as starting point. Let this point 0′1 be the
point at the tip of a vector � (arbitrary) from 01 . Furthermore, let u′ be
the perpendicular from 0′1 onto the screw axis. It is given by (3.12) if r is
replaced by r+ �∗ − � . It has to be verified that the second Plücker vector
(u′ + �)× n of the screw axis is identical with u× n . Because of (3.14) this
is, indeed, the case:
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(u′ + �)× n =
1

2

[
(n× r)× n cot

ϕ

2
− n× r

]
+

1

2

[
[n× (�∗ − �)]× n cot

ϕ

2
− n× (�∗ − �)

]
+ �× n

= u× n+
1

2

[
(�∗ − �) cot

ϕ

2
− n× (�∗ + �)

]
= u× n . (3.15)

Example: Given n , ϕ , s and the position vector rA of a point A on the
screw axis, determine the relationship between the position vectors r and
r∗ of an arbitrary body-fixed point before and after the screw displacement.
Solution: From Fig. 1.3 it follows that the rotation is governed by (1.38) if r∗

and r are replaced by r∗ − rA and r− rA , respectively. Hence the solution:

r∗ = rA+cosϕ (r−rA)+(1−cosϕ)nn·(r−rA)+sinϕn×(r−rA)+sn . (3.16)

In the special case ϕ = π , s = 0 , the point is reflected in the screw axis:

r∗ = 2rA − r+ 2nn · (r− rA) . (3.17)

This formula is known from (2.11). End of example.

3.3 Scalar Measures of a Screw Displacement

For a screw displacement with infinitesimal quantities ϕ and s the quotient
p = s/ϕ is called pitch as is done for a machine screw. In the theory of finite
screw displacements the quotient s/ϕ does not occur. As scalar measure of
a finite screw displacement Dimentberg [12] defines the quantity

pD =
s

sinϕ
. (3.18)

Parkin [34] defines the quantity2

pP =

s

2

tan
ϕ

2

. (3.19)

These two measures are related through the equation

pP = pD cos2
ϕ

2
. (3.20)

2 This measure was already used by Schönflies [32] p.1014
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In the special case of an infinitesimal screw displacement both measures are
identical with the pitch p = s/ϕ . Both measures find applications (see Huang
[20] and Eqs.(3.207), (6.3), (6.23), (6.88)).

3.4 Roth’ Theorem

Starting point of this section is the trivial statement: If a body is rotated
about a fixed point P , every point of the body has the property that its
distance from P is the same before and after the rotation. Roth [43] proved

Theorem 3.2. Given a point P and two positions of a body not resulting
from each other by a rotation about P , there exists a body-fixed plane every
point of which has the property that its distance from P is the same in both
positions.

In what follows, not only a proof of the theorem is given. The body-fixed plane
is determined as well. Let ri and r′i be the vectors from P to an arbitrary
body-fixed point in the initial and in the final position, respectively. The
condition that the distances from P be the same in both positions reads

r′i
2
= r2i . (3.21)

It suffices to prove that this condition is satisfied by three noncollinear body-
fixed points. Then it is satisfied by every body-fixed point in the plane
spanned by these points. Four noncoplanar body-fixed points satisfying (3.21)
cannot exist since otherwise the displacement of the body would be a rotation
about P contrary to the assumption.

In the general case, the displacement of the body is a screw displacement.
Define (n, ϕ) to be the rotation, R ≥ 0 the distance of P from the screw
axis, e a unit vector through P normal to the screw axis (in the case R > 0 ,
the vector Re is the perpendicular from P onto the screw axis). Finally, let
s be the translation along the screw axis (see Fig. 3.4). The special cases of
pure translation ( s �= 0 , ϕ = 0 ) and of pure rotation ( s = 0 , ϕ �= 0 ) are
not excluded. Three distinguished points of the unknown body-fixed plane

Fig. 3.4 Axes and quantities R , λ , μ , ν in the context of Roth’ theorem
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are its intersections with the line Pe , with the screw axis and with the line
perpendicular to both screw axis and line Pe . The vectors ri (i = 1, 2, 3)
from P to these points in the initial position have, with unknown quantities
λ , μ and ν of dimension length, the forms

r1 = Re+ λn , r2 = (R+ μ)e , r3 = Re+ νn× e . (3.22)

In the final position after the screw displacement the position vectors are
found by simple inspection from Fig. 3.4 :

r′1 = Re+ (s+ λ)n , r′2 = sn+ (R+ μ cosϕ)e+ μ sinϕ n× e ,

r′3 = sn+ (R− ν sinϕ)e+ ν cosϕ n× e .

}
(3.23)

Substitution into (3.21) yields for the unknowns the expressions

λ = −s

2
, μ =

s2

2R(1− cosϕ)
, ν =

s2

2R sinϕ
. (3.24)

Except for a single case these formulas define three points and, hence, a
plane. The single case is a pure rotation about an axis not passing through
P . It is characterized by s = 0 and R,ϕ �= 0 . The corresponding solutions
λ = μ = ν = 0 define only the point 0 . However, even in this case, a
body-fixed plane with the required property exists. Without calculation it is
obvious that the plane contains the rotation axis. In the initial position it is
rotated against the line P0 through −ϕ/2 and in the final position through
+ϕ/2 . In Fig. 3.5a the points P and 0 and the two positions of the plane
are shown in the projection along the rotation axis n . Thus, it is proved
that Roth’ Theorem is valid without any exception. In what follows, three
more special cases are considered in which the body-fixed plane is predictable
without the above analysis.

1. The special case R = 0 , ϕ, s �= 0 (screw displacement with a screw
axis passing through P ): Without calculation it is obvious that the plane
is normal to the screw axis. The perpendicular from P onto the plane is
−(s/2)n in the initial position and +(s/2)n in the final position of the
body (Fig. 3.5b). The plane is defined by Eqs.(3.24) which, in this case, yield
λ = −s/2 and μ, ν → ∞ . A point A in this plane is displaced to A′ .

2. The special case ϕ = 0 , s �= 0 , R unspecified (pure translation sn):
Without calculation it is obvious that Fig. 3.5b applies also to this case. As
before, Eqs.(3.24) yield λ = −s/2 and μ, ν → ∞ .

3. The special case ϕ = π , R , s �= 0 (screw displacement with 180◦-
turn): Equations (3.24) yield λ = −s/2 , μ = s2/(4R) and ν → ∞ .
These results indicate that the line n × e is parallel to the plane. In Fig.
3.5c the two positions of the plane are shown in the projection along n× e .
The points with position vectors r1 , r

′
1 and r2 , r

′
2 in Eqs.(3.22) and (3.23)

are marked A , A′ and B , B′ , respectively. In this case, the solution is less
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Fig. 3.5 Three special cases of Roth’ theorem

obvious than in the previous cases, but it is still predictable without analysis.
In all other cases λ , μ and ν are finite and different from zero.

3.5 Screw Displacement Determined from
Displacements of Three Body Points

Problem: For three noncollinear body-fixed points P1 , P2 , P3 the posi-
tion vectors zi before and z′i after a displacement, respectively, are given
(i = 1, 2, 3) . The three displacements z′i − zi (i = 1, 2, 3) are not identical.
Therefore, the displacement of the body is not a translation, but a screw
displacement. To be determined are the rotation (n, ϕ) , a vector from 0 to
some point on the screw axis and the translation s along the screw axis.

Solution: The rotation (n, ϕ) does not change if the displacement is superim-
posed by an arbitrary translation. Arbitrarily, the translation −(z′3 − z3) is
superimposed. Then the resulting displacement is the rotation (n, ϕ) about
the fixed point P3 . The position vectors from P3 to the body-fixed points P1

and P2 before and after the rotation are given by

ri = zi − z3 and r∗i = z′i − z′3 (i = 1, 2) , (3.25)

respectively. These vectors determine the rotation (n, ϕ) . Its Rodrigues vec-
tor n tanϕ/2 is calculated from (1.210) – (1.217) in Sect. 1.15.7 . The ro-
tation is superimposed again by the translation r = z′3 − z3 . From the now
known quantities n , ϕ and r the translation s along the screw axis and the
perpendicular u from P3 onto the screw axis are calculated from (3.9) and
(3.12), respectively. The desired vector from 0 to the screw axis is z3 + u .
Note: In (1.210) – (1.217) u is the Rodrigues vector.
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3.6 Halphen’s Theorem

In 1882 Halphen [17] published

Theorem 3.3. A screw displacement (S, n, ϕ, s) can be represented as resul-
tant of two successive reflections in lines g1 (first reflection) and g2 . The
lines g1 and g2 intersect the screw axis S orthogonally. Line g2 results
from g1 by the screw displacement (S,n, ϕ/2 , s/2). One of the two lines
may be chosen arbitrarily.

Proof: Figure 3.6 shows in two projections the screw axis S together with two
lines g1 and g2 having the required properties. Let Q1 be an arbitrary point
of the body in the initial position prior to the first reflection. Its location
relative to g1 is specified by the quantities d and α explained in the figure.
After the first reflection the body-fixed point is located at Q′ and after the
second reflection in g2 it is located at Q2 . The effect of the first reflection
is a rotation of the body-fixed perpendicular from Q1 onto S through the
angle 2α about S and a displacement of Q1 by 2d in the direction n . The
second reflection in g2 increases the rotation angle by 2(ϕ/2 − α) and the
displacement along S by 2(s/2 − d) . Hence the total rotation angle is ϕ ,
and the total displacement along S is s . This proves the theorem.

In the special case s = 0 , Halphen’s theorem reduces to the statement
known from Sects. 1.15.2 and 1.16 that a rotation (n, ϕ) can be represented
as resultant of two reflections in lines which intersect n orthogonally and
which enclose the angle ϕ/2 . A reflection in a line and a 180◦-rotation about
this line result in one and the same displacement.

Fig. 3.6 Halphen’s theorem
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3.7 Resultant of two Screw Displacements. Screw
Triangle

Consider now the displacement of a body which is the result of two suc-
cessive screw displacements (S1,n1, ϕ1, s1) (first screw displacement) and
(S2,n2, ϕ2, s2) . According to Chasles’ theorem the resultant displacement is
itself a screw displacement called the resultant screw displacement (Sres,nres,
ϕres, sres) . This resultant is geometrically constructed by applying Halphen’s
theorem several times. First, the general case is considered in which the screw
axes S1 and S2 are skew. Let g1 be the common perpendicular of S1 and
S2 (see Fig. 3.7). Each of the two screw displacements 1 and 2 is repre-
sented as resultant of two reflections. For the line of the second reflection of
screw displacement 1 and also for the line of the first reflection of screw dis-
placement 2 the common perpendicular g1 is chosen. These two reflections
cancel each other. Hence the resultant screw displacement is the resultant of
the first reflection of screw displacement 1 and of the second reflection of
screw displacement 2 . The lines of these two reflections are called g3 and
g2 . According to Halphen’s theorem, they are obtained by subjecting g1 to
the screw displacements (S1,n1,−ϕ1/2 , −s1/2 ) and (S2,n2, ϕ2/2 , s2/2 ) ,
respectively. Again, according to Halphen’s theorem, the resultant screw axis
Sres is the common perpendicular of g2 and g3 . Furthermore, sresnres/2 is
the vector along this common perpendicular shown in the figure, and ϕres/2
is the projected angle between g2 and g3 .

Up to now the screw axes S1 and S2 were assumed to be skew. Suppose
now that they intersect at a point P . In this case, the common perpendicular
g1 is uniquely defined as normal through P of the plane spanned by S1 and
S2 . The length of the common perpendicular is zero.

The inverse of the resultant is the screw displacement (Sres,nres,−ϕres,
−sres) . It carries the body back to its initial position. The lines S1 , g1 , S2 ,

Fig. 3.7 Resultant of two screw displacements in the screw triangle
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g2 , S3 , g3 form a spatial hexagon with right angles at every corner. Three
arbitrary pairwise skew lines S1 , S2 , S3 have uniquely defined common
perpendiculars g1 , g2 , g3 . Hence the three lines determine uniquely a system
of three screw displacements about these lines S1 , S2 , S3 which carry a
body from an initial position via two intermediate positions back into its
initial position3. In an arbitrarily chosen reference frame the three lines are
defined by their Plücker vectors. From this it follows that the position and the
shape of the hexagon are determined by twelve independent parameters. For
reasons explained later the hexagon is called spatial triangle or screw triangle
(Yang [51], Roth [44]). In Sects. 3.11 and 3.12 analytical relationships are
developed for the screw triangle.

When in the given screw displacements 1 and 2 s1 and s2 are changed
(all other parameters held fixed), then the lines g2 and g3 undergo lateral
displacements. This has no effect on ϕres whereas all other parameters of
the resultant screw displacement are effected. In Fig. 3.8 the special case
s1 = s2 = 0 is shown, i.e., the resultant of two pure rotations about skew
axes ( S1 , n1 , ϕ1 , S2 , n2 , ϕ2 and g1 are the same as in Fig. 3.7). The
points A1 and A2 coalesce in a single point A , and B1 and B2 coalesce in a
single point B .

Remark: In 1848 Cayley [7],v.1 gave analytical solutions for the resultant
of two successive screw displacements as well as for the inverse problem of
decomposing a given screw displacement into two screw displacements with
prescribed characteristics. He did not consider the special case of screw dis-
placements with 180◦ rotation angles which was the subject of Halphen’s
paper [17] almost half a century later. Among the problems solved by Cayley
are the determination of the resultant of two successive pure rotations about
skew axes and the decomposition of a given screw displacement into two pure

Fig. 3.8 Resultant of two rotations about skew axes

3 The lines S1 , S2 , S3 and their perpendiculars g1 , g2 , g3 can change roles. Thus, the
same hexagon determines three screw displacements about g1 , g2 , g3 which carry the
body from its initial position via two intermediate positions back into the initial position
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rotations with prescribed characteristics. The decomposition is the subject
of Cayley’s

Theorem 3.4. A given screw displacement can be represented as resultant
of two subsequent pure rotations. The axis of one rotation may be prescribed
arbitrarily (but not parallel to the axis of the resultant screw displacement).
Then the axis of the other rotation as well as the two rotation angles are
determined.

The geometrical solution is explained in Fig. 3.8 . Let it be assumed that the
resultant screw displacement and the axis S2 are prescribed as shown. The
axes S2 and Sres determine the common perpendicular g2 and its endpoints
B and C2 . Point C1 is determined by sres , and g3 is determined by ϕres .
Point A is the point of intersection of g3 with the plane through B and
perpendicular to S2 . The axis S1 of the first rotation is the common perpen-
dicular of g3 and g1 = AB . Finally, ϕ1/2 and ϕ2/2 are the angles between
g1 and g3 and between g1 and g2 , respectively. An analytical solution of the
problem is given in Sect. 3.11 .

3.8 Dual Numbers

Let x and y be real numbers. The number x + εy is complex if ε2 = −1 .
Clifford [10] was the first to consider the case ε2 = 0 . In this case, x + εy
is called a dual number with x being its primary part and y its dual part.
It must be understood that ε2 = 0 does not mean that also ε = 0 . The
quantity ε is, just as i =

√−1 , a unit, namely, the unit of the dual part.
The sum and the product of two dual numbers x1 + εy1 and x2 + εy2 are
defined by the formulas

(x1 + εy1) + (x2 + εy2) = x1 + x2 + ε(y1 + y2) ,

(x1 + εy1)(x2 + εy2) = x1x2 + ε(x1y2 + y1x2) .

}
(3.26)

According to these definitions, for addition as well as for multiplication the
laws of commutativity, associativity and distributivity are valid. As with real
numbers expressions are multiplied out term by term always keeping in mind
the rule ε2 = 0 . Together with ε2 = 0 also all higher-order terms of ε are
zero: ε3 = ε · ε2 = 0 etc. The difference of two dual numbers is defined
uniquely via the sum. The zero dual number is the number (0 + ε · 0) since
only this number has the property that addition to x + εy with arbitrary
x, y results in x+ εy .

Equation (3.26) shows that the product of two dual numbers is zero not
only if at least one factor is the number (0 + ε · 0) , but also in the case
x1 = x2 = 0 with arbitrary y1 , y2 . From this it follows that division by
(x+εy) is not defined if x = 0 . Indeed, multiplying both the numerator and
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the denominator of 1/(x+ εy) by x− εy results in the expression

1

x+ εy
=

x− εy

x2
=

1

x
+ ε

−y

x2
(3.27)

which is defined only in the case x �= 0 .

Dual numbers x + εy and (2 × 2)-matrices of the form
[
x 0
y x

]
have the

same algebra as is shown by the formulas[
x1 0
y1 x1

] [
x2 0
y2 x2

]
=

[
x1x2 0

x1y2 + x2y1 x1x2

]
,

[
x 0
y x

]−1

=

[
1/x 0

−y/x2 1/x

]
.

(3.28)
Let f(x + εy) be a once differentiable function depending on the dual

variable x + εy and possibly on additional parameters. The Taylor series
expansion about the point x consists, because of ε2 = 0 , of two terms only:

f(x+ εy) = f(x) + εy
∂f

∂x

∣∣∣
y=0

. (3.29)

Hence the function f(x+ εy) is a dual number. Its primary part is the func-
tion of the primary part of its argument. Its dual part is the derivative of the
primary part with respect to the primary part x of its argument multiplied
by the dual part y of x + εy . This dual part is referred to as dual deriva-
tive, and the process of calculating it is referred to as dual differentiation.
Examples:

cos(x+ εy) = cosx− εy sinx , sin(x+ εy) = sinx+ εy cosx , (3.30)

tan(x+ εy) = tanx+ ε
y

cos2 x
, cot(x+ εy) = cotx− ε

y

sin2 x
. (3.31)

The product of two functions f(x1 + εy1) g(x2 + εy2) is decomposed into
primary and dual part as follows:

f(x1 + εy1) g(x2 + εy2) =
(
f(x1) + εy1

∂f

∂x1

∣∣∣
y1=0

)(
g(x2) + εy2

∂g

∂x2

∣∣∣
y2=0

)
= f(x1)g(x2) + ε

(
f(x1)y2

∂g

∂x2

∣∣∣
y2=0

+ y1
∂f

∂x1

∣∣∣
y1=0

g(x2)
)
. (3.32)

Example:

sin(x1+εy1) cos(x2+εy2) = sinx1 cosx2+ε(y1 cosx1 cosx2−y2 sinx1 sinx2) .
(3.33)

Thus, the primary part is the product of the functions of the primary parts
of their variables. The rule for calculating the dual part is the product rule
of dual differentiation. The dual part is linear with respect to the dual parts
y1 , y2 of the arguments of the factors f and g , respectively. With these
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few rules all mathematical expressions encountered in later chapters can be
decomposed into their primary and dual parts.

A MAPLE software tool developed by Sinigersky [45] has subroutines for
the symbolic manipulation of dual numbers, dual vectors and dual quater-
nions and also for the dual differentiation of arbitrarily complex mathematical
expressions.

3.9 Dual Vectors. Dual Angles

Figure 3.9 shows a line vector v̂ of given magnitude. This is a vector which
is confined to its line. In contrast to a free vector v a line vector can slide
along its line, but it cannot move lateral to it. A force is an example of a
line vector. Its line is called line of action. Let v be the free vector having
direction, sense of direction and magnitude in common with v̂ . The line
vector v̂ is uniquely determined if v is given and, in addition, the vector r
from a reference point 0 to an arbitrary point of the line of v̂ . The vectors r
and v together define the moment of v̂ with respect to 0 . It is abbreviated
w :

w = r× v (equal for all points of the line of v̂ ) . (3.34)

The vectors v and w = r×v represent the first and the second Plücker vec-
tors of the line (see Sect. 2.2). They determine the line. With a free parameter
λ it is given by the vector equation

r∗(λ) = λv +
v ×w

v2
. (3.35)

The Plücker vectors satisfy the conditions

v2 = const , v ·w = 0 . (3.36)

Definition: The line vector v̂ is the dual vector

Fig. 3.9 Line vector v̂ Fig. 3.10 Screw angle ϕ̂ = ϕ+ εs
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v̂ = v + εw . (3.37)

Because of (3.36) the scalar product of v̂ with itself is

v̂2 = (v + εw)2 = v2 + 2εv ·w = v2 . (3.38)

In the case v2 = 1 , v̂ is a unit dual vector (unit line vector).
In Fig. 3.10 two unit line vectors v̂1 and v̂2 are shown the lines of which

are skew. By assumption, v2
1 = v2

2 = 1 . As vectors r1 and r2 the vectors
to the feet of the common perpendicular of the lines are chosen. Then, by
Eq.(3.37),

v̂1 = v1+εw1 = v1+εr1×v1 , v̂2 = v2+εw2 = v2+εr2×v2 . (3.39)

These expressions are valid also when the lines are parallel. In this case, r1
and r2 are the position vectors of an arbitrary common perpendicular.
Let n be the unit vector in the direction of r2 − r1 :

n =
r2 − r1
|r2 − r1| =

v1 × v2

|v1 × v2| . (3.40)

In the case of parallel lines only the first expression is useful and in the case
of intersecting (not identical) lines only the second expression. Furthermore,
the line vector is defined

n̂ = n+ εr1 × n . (3.41)

It has the direction of n , and its line is the common perpendicular.
The line vector v̂2 can be produced from v̂1 by a screw displacement

about the screw axis n̂ . The rotation angle ϕ and the translation s of this
screw displacement (both positive, zero or negative) are determined by the
equations

v1 × v2 = n sinϕ , r2 − r1 = n s . (3.42)

The absolute values |s| and |ϕ| are the distance and the projected angle,
respectively, between the two lines. The special cases of parallel or intersecting
lines are characterized by ϕ = 0 or s = 0 , respectively.
Between the various quantities just defined the following relationships exist:

v1 · v2 = cosϕ , (r2 − r1) · (v1 × v2) = s sinϕ . (3.43)

Definition: The dual angle
ϕ̂ = ϕ+ εs (3.44)

is called the screw angle of the screw displacement carrying v̂1 into v̂2 . The
screw displacement itself is denoted (n̂, ϕ̂) . This replaces the earlier notation
(S,n, ϕ, s) . The pair S,n is replaced by n̂ , and the pair ϕ, s is replaced by
ϕ̂ . The functions cos ϕ̂ and sin ϕ̂ are given in (3.30).
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The definitions given for dual vectors and for dual screw angles are very
useful. This is shown by calculating the dot product and the cross product
of the dual unit vectors v̂1 and v̂2 of Fig. 3.10 . With (3.39) and (3.43) the
dot product is

v̂1 · v̂2 = v1 · v2 + ε(v1 ·w2 + v2 ·w1) (3.45)

= v1 · v2 + ε(v1 · r2 × v2 + r1 × v1 · v2)

= v1 · v2 + ε(−r2 · v1 × v2 + r1 · v1 × v2)

= v1 · v2 − ε(r2 − r1) · (v1 × v2) . (3.46)

= cosϕ− εs sinϕ (3.47)

and with (3.30)
v̂1 · v̂2 = cos ϕ̂ . (3.48)

Thus, the rule for calculating the dot product of two ordinary unit vectors is
transferred to dual unit vectors.

Comparison of (3.45) and (3.47) yields s sinϕ = −(v1 ·w2+v2 ·w1) and
the condition for two lines to intersect:

v1 ·w2 + v2 ·w1 = 0 . (3.49)

These equations repeat what is known from (2.17) and (2.18). Another im-
portant relationship is deduced from (3.46):

(r1 − r2) · (v1 × v2) is the dual derivative of v1 · v2 . (3.50)

The usefulness of this equation is demonstrated in Sects. 5.3.1, 6.3 and 6.4.4.
Next, the cross product of the dual unit vectors v̂1 and v̂2 is calculated.

With (3.39) it is

v̂1 × v̂2 = (v1 + εr1 × v1)× (v2 + εr2 × v2)

= v1 × v2 + ε[v1 × (r2 × v2) + (r1 × v1)× v2]

= v1 × v2 + ε[v1 · v2r2 − v1 · r2v2 + r1 · v2v1 − v1 · v2r1]

= v1 × v2 + ε[v1 · v2(r2 − r1) + r1 × (v1 × v2)] (note v1 · r2 = v1 · r1)
= n sinϕ+ ε(cosϕns+ r1 × n sinϕ) (because of (3.43) and (3.42))

= (n+ εr1 × n)(sinϕ+ εs cosϕ) . (3.51)

The correctness of the last expression is verified by multiplying out again.
With (3.37) and (3.30) the final result is

v̂1 × v̂2 = n̂ sin ϕ̂ . (3.52)

Thus, also the rule for calculating the cross product of two ordinary unit
vectors is transferred to dual unit vectors.
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3.10 Principle of Transference

In Chap. 1 relationships were established between positions of a body be-
fore and after a rotation (n, ϕ) about a fixed point. Equations (3.48) and
(3.52) represent the basis of the principle of transference first formulated by
Kotelnikov [26] in 1886 and by Study [47] in 1903. It says: Given an equation
relating positions of a body before and after a rotation (n, ϕ) about a fixed
point. Replace the unit vector n along the axis by the dual unit vector n̂
and the rotation angle ϕ by the dual angle ϕ̂ . The equation thus obtained
relates positions of a body before and after the screw displacement (n̂, ϕ̂) .

In Sects. 3.10.1 – 3.10.5 the notions of cartesian basis, direction cosine ma-
trix, Euler angle, rotation tensor and quaternion of a rotation are dualized,
i.e., transferred into respective dual quantities. Dualized equations relating
such quantities must subsequently be split into their primary and dual parts.
For this procedure it suffices to apply basic rules of (vector) algebra in com-
bination with the rule of dual differentiation (see (3.29) – (3.33), in particular
formulas (3.30) and (3.31) for trigonometric functions). These rules and for-
mulas reveal the following facts.

1. The primary parts of dual equations contain neither second Plücker
vectors w of screw axes nor translatory displacements s along screw axes.
Thus, primary parts of equations describe a (usually nonlinear) problem of
rotation about a fixed point.

2. The quantities w and s of screw displacements appear in the dual
parts only and, moreover, in linear form only. The solution of these equations
is an elementary problem. Note: First Plücker vectors n of screw axes and
rotation angles appear in the dual parts as well. However, these quantities
are known from solving the primary parts.

Due to these facts the principle of transference is a powerful tool for solving
problems of very diverse nature. This is demonstrated in subsequent chapters
of this book (Sects. 3.11 , 3.12 , 3.14 and Chaps. 5 , 7 , 8 , 9 and 13).
Literature: Löbell [29] (applications in kinematics, statics and differential
geometry), Dimentberg [12] – [14], Keler [21] – [25], Yang [51, 52, 53],
Yang/Freudenstein [54], Adams [1], Roth [44], Yuan/Freudenstein/Woo [55,
56], Veldkamp [49], Hsia/Yang [19], Castelain/Flamme/Gorla/
Renaud [6], Pennock/Yang [37], Martinez/Duffy [30], Chevallier [9], Pennestri/
Stefanelli [36] and the article by Pennock/Schaaf in Erdman [15].

3.10.1 Dual Basis. Dual Direction Cosine Matrix

Using Fig. 3.11 the notion of a (right-handed, orthogonal) dual basis is intro-
duced. Point 0 is the origin of ordinary bases e1 and e2 . These bases are
related through the direction cosine matrix (see (1.6)):
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Fig. 3.11 Dual bases ê1 and ê2

e1 = A12e2 , A12 = e1 · e2T . (3.53)

Vectors r1 and r2 locate the origins 01 and 02 , respectively, of two dual
bases. These dual bases are formed by the dual unit vectors ê1i and ê2i
(i = 1, 2, 3) which are parallel to the basis vectors of e1 and e2 , respectively.
The dual basis vectors are

ê1i = e1i + ε r1 × e1i and ê2i = e2i + ε r2 × e2i (i = 1, 2, 3) . (3.54)

Let ê1 and ê2 denote the two dual bases as well as the column matrices of
their dual basis vectors. The two sets of equations are written in the matrix
forms

ê1 = e1 + εr1 × e1 , ê2 = e2 + εr2 × e2 . (3.55)

Every dual basis vector of ê1 is a linear combination of the dual basis vectors
of ê2 . This is written in the form

ê1i =
3∑

k=1

â12ik ê2k (i = 1, 2, 3) . (3.56)

By scalar multiplication of this equation by ê2j and by applying (3.48) and
(3.49) it is shown that the coordinates represent dual direction cosines:

â12ij = ê1i · ê2j (i, j = 1, 2, 3) . (3.57)

Since the dual basis vectors intersect orthogonally, the direction cosines sat-
isfy the conditions

3∑
k=1

â12ik â12jk = δij (i, j = 1, 2, 3) . (3.58)
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Let Â
12

be the matrix of the dual direction cosines. Dualization of (3.53)
yields

ê1 = Â
12
ê2 , Â

12
= ê1 · ê2T . (3.59)

Into the second equation the expressions (3.55) are substituted:

Â
12

= (e1 + ε r1 × e1) · (e2 + ε r2 × e2)T

= e1 · e2T − ε(r2 − r1) · e1 × e2
T

= A12 − ε (r2 − r1) · e1 × e1
T
A12 . (3.60)

Define r = r2 − r1 =
−−→
0102 and let r1 , r2 , r3 be the coordinates of r in e1 .

Then

Â
12

= (I + ε r̃)A12 , r̃ =

⎡
⎣ 0 −r3 r2

r3 0 −r1
−r2 r1 0

⎤
⎦ . (3.61)

From this it follows that the product Â
12
Â

12T

is the unit matrix. Hence its
inverse is also its transpose:

(Â
12
)
−1

= Â
12T

. (3.62)

The determinant of Â
12

equals 1 (the determinant of its dual part is zero).
Let v̂1 and v̂2 be the dual coordinate matrices of a dual vector of the form

(3.37), v̂ = v + εw , in the dual bases ê1 and ê2 , respectively. The vector
need not be a unit vector. The first Eq.(3.59) is proof of the transformation
rule

v̂1 = Â
12
v̂2 . (3.63)

This is the dualized form of the transformation rule v1 = A12v2 for ordinary
vector coordinates.

3.10.2 Screw Axis, Screw Angle and Translation
Determined from Dual Direction Cosines

From Chap. 1 on rotations about a fixed point Euler’s Theorem 1.1 is known.
It makes the following statements. The transformation matrix A12 has the
eigenvalue one. In the case A12 �= I , the matrix A12 determines uniquely
a rotation (n, ϕ) carrying a body-fixed basis from the position e1 into the

position e2 = A12Te1 . The coordinate matrix n of n , identical in both
bases, is the solution of the equation

(A12 − I)n = 0 . (3.64)
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If A12 is unsymmetric, ϕ and n are determined by (1.51) and (1.52):

cosϕ =
1

2
(trA12−1) , 2ni sinϕ = a12kj−a12jk (i, j, k = 1, 2, 3 cyclic) . (3.65)

If A12 is symmetric, then ϕ = ±π .
Transference of this theorem into dual form produces Chasles’ Theorem

3.1 and the following statements. The dual transformation matrix Â
12

=
(I+ε r̃)A12 has the eigenvalue one. A formal proof is given further below. In

the case A12 �= I , the matrix Â
12

determines uniquely a screw displacement
(n̂, ϕ̂) carrying a body-fixed dual basis from the position ê1 into the position

ê2 = Â
12T

ê1 . As before, the dual angle ϕ̂ and the dual unit line vector n̂
along the screw axis are written in the forms

ϕ̂ = ϕ+ εs , n̂ = n+ εw (n2 = 1 , n ·w = 0) . (3.66)

In what follows, it is shown how to determine the unknown scalars ϕ and s

and the unknown Plücker vectors n and w if the matrix Â
12

is given. The

unknowns are determined from the equation (Â
12 − I)n̂ = 0 or in detail

[(I + ε r̃)A12 − I](n+ εw) = 0 . (3.67)

If A12 is unsymmetric, Eqs.(3.65) in dualized form are valid. Only the first
equation is needed:

cos ϕ̂ =
1

2

{
tr [(I + ε r̃)A12]− 1

}
. (3.68)

Equations (3.67) and (3.68) are split into their primary and dual parts. The
primary parts are the original Eqs.(3.64) and (3.65) for n and ϕ . With the
solutions for n and ϕ the dual parts of the equations determine w and s .
The dual part of (3.67) is the equation (A12 − I)w + r̃ A12n = 0 or, since
A12n = n ,

(A12 − I)w = −r̃ n . (3.69)

Since the matrix A12−I has rank two, the equation has a solution w only if
the complete coefficient matrix including the right-hand side terms has rank
two. This is, indeed, the case. Proof: The equation has the form Bw = −r̃ n .
The homogeneous equation Bw = 0 has the solution w = μn (μ arbitrary).
Because of the orthogonality of A12 also the equation BT w = 0 has this
solution. From this it follows that the rows of BT , i.e., the columns of B
are in the plane orthogonal to n . In this plane also the column matrix −r̃ n
is located since it is the coordinate matrix of the vector n× r . End of proof.
Hence the inhomogeneous equation has a solution wp . The complete solution

is w = μn+wp . From the conditions n2 = 1 and n ·w = 0 valid for Plücker
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vectors it follows that μ = −nTwp . Thus, the final solution for w is

w = (I − nnT )wp . (3.70)

The perpendicular from 01 onto the screw axis is the vector u = n × w =
n×wp . It has the coordinate matrix

u = ñ wp . (3.71)

These results cover also the special case when the right-hand side of (3.69)
equals zero which means n× r = 0 . Then wp = 0 and w = 0 . This means
that the screw axis is the line connecting the origins 01 and 02 . This is obvious
without any analysis.

The dual part of (3.68) determines s . This equation reads (omitting the
upper indices in the elements of A12) :

−s sinϕ =
1

2
tr (r̃ A12)

=
1

2

[
(a23 − a32)r1 + (a31 − a13)r2 + (a12 − a21)r3

]
. (3.72)

The three differences of matrix elements are expressed with the help of the
second Eq.(3.65). This yields for s the explicit expression

s = n1r1 + n2r2 + n3r3 = nT r1 . (3.73)

This is identical with (3.9). For the perpendicular u of a screw displacement
with given quantities n , ϕ and r vector methods led to (3.12). Comparison
with (3.71), u = n×wp , allows an interpretation of wp .

In what follows, it is proved that the dual matrix Â
12

has the eigenvalue
one. The characteristic equation is det [(I + ε r̃)A12 − λI ] = 0 . The term
free of λ consists of 24 expressions which cancel each other pairwise. The
remaining terms are (the upper indices in the elements of A12 are omitted)

det (A21−λI)+ε λ

3∑
i=1

ri

[
λ(ajk−akj)−(aijaki−aiiakj)+(ajiaik−aiiajk)

]
= 0

(3.74)
(i, j, k = 1, 2, 3 cyclic). From (1.10) it follows that this equation is solved
with λ = 1 . End of proof.

The expression (3.61) for the dual transformation matrix was obtained by
applying the transference principle to the matrix A12 of a rotation expressed
in terms of direction cosines. In Chap. 1 the matrix A12 has been expressed
in various ways by the unit vector n along the axis of a rotation and by
the angle ϕ . The most useful expressions are those in (1.49) in terms of
n1 , n2 , n3 , sinϕ , cosϕ , in (1.79) in terms of Euler-Rodrigues parameters
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and in (1.170) in terms of the coordinates of the Rodrigues vector. All these
expressions can be transferred into dual form. Transference of (1.49) yields
the expression

Â
12

=

⎡
⎣ n̂2

1 + (1− n̂2
1) cos ϕ̂ n̂1n̂2(1− cos ϕ̂)− n̂3 sin ϕ̂

n̂1n̂2(1− cos ϕ̂) + n̂3 sin ϕ̂ n̂2
2 + (1− n̂2

2) cos ϕ̂
n̂1n̂3(1− cos ϕ̂)− n̂2 sin ϕ̂ n̂2n̂3(1− cos ϕ̂) + n̂1 sin ϕ̂

n̂1n̂3(1− cos ϕ̂) + n̂2 sin ϕ̂
n̂2n̂3(1− cos ϕ̂)− n̂1 sin ϕ̂

n̂2
3 + (1− n̂2

3) cos ϕ̂

⎤
⎦ . (3.75)

Example: Determine ϕ , n̂ = n+ εw , u = ñ w , s = nT r and the matrix

Â
12

from the given quantities

A12 =

⎡
⎢⎣

2
3

− 11
15

− 2
15

1
3

2
15

14
15

− 2
3

− 2
3

1
3

⎤
⎥⎦ , r =

2

15

⎡
⎣ 50

30
11

⎤
⎦ . (3.76)

Solution: Equation (3.65) yields cosϕ = 1/15 , sinϕ = 4
√
14/15 (arbitrarily

positive), n = (1/
√
14) [ −3 1 2 ]T . Equation (3.69) reads⎡

⎣ −5 −11 −2

5 −13 14
−10 −10 −10

⎤
⎦ w =

√
14

⎡
⎣ −7

19
−20

⎤
⎦ . (3.77)

It has the solution wp =
√
14 [ 1 0 1 ]

T
. In (3.70) nTwp = −1 . Further-

more,

n̂ =
1√
14

⎡
⎣−3 + 11ε

1 + ε
2 + 16ε

⎤
⎦ , u =

⎡
⎣ 1

5
−1

⎤
⎦ , s = −14

√
14

15
. (3.78)

For u the same result is obtained from (3.13). For (3.75) the quantities are
calculated:

cos ϕ̂ = cosϕ− εs sinϕ = 1
152 (15 + 282ε) ,

sin ϕ̂ = sinϕ+ εs cosϕ = 2
√
14

152 (30− 7ε) ,

}
(3.79)

n̂2
1 = 1

14 (9− 66ε) , n̂1n̂2 = 1
14 (−3 + 8ε) , n̂1n̂3 = 1

14 (−6− 26ε),

n̂2
2 = 1

14 (1 + 2ε) , n̂2n̂3 = 1
14 (2 + 18ε) ,

n̂2
3 = 1

14 (4 + 64ε) .

⎫⎪⎬
⎪⎭ (3.80)

The desired matrix is

Â
12

=

⎡
⎢⎣

2
3

− 11
15

− 2
15

1
3

2
15

14
15

− 2
3

− 2
3

1
3

⎤
⎥⎦+ ε

⎡
⎢⎣
− 142

45
− 644

225
− 8

225

244
45

758
225

− 544
225

− 4
9

173
45

304
45

⎤
⎥⎦ . (3.81)

The primary part is the given matrix (3.76). End of Example.
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3.10.3 Dual Euler Angles. Dual Bryan Angles

In Fig. 3.12 the dual basis ê2 is produced from ê1 by a screw displacement
about the axis ê11 with the rotation angle φ1 and the translation u1 . With

φ̂1 = φ1 + εu1 the dual direction cosine matrix is

Â
12
1 =

⎡
⎣ 1 0 0

0 cos φ̂1 − sin φ̂1

0 sin φ̂1 cos φ̂1

⎤
⎦ . (3.82)

Formulas for cos φ̂ and sin φ̂ are given in (3.30). With the abbreviations

c1 = cosφ1 and s1 = sinφ1 these formulas are written in the forms cos φ̂1 =

c1 − εu1s1 , sin φ̂1 = s1 + εu1c1 . Hence

Â
12
1 =

⎡
⎣ 1 0 0
0 c1 −s1
0 s1 c1

⎤
⎦+ εu1

⎡
⎣ 0 0 0
0 −s1 −c1
0 c1 −s1

⎤
⎦ . (3.83)

The same result is obtained from (3.61) with r1 = u1 , r2 = r3 = 0 . The dual
part is calculated from the primary part by the rule of dual differentiation.

In what follows, the same idea is applied to the direction cosine matrix
A12 expressed as function of Euler angles ψ , θ and φ (see (1.28)). Euler
angles are defined in Fig. 1.1a . They are angles of subsequent rotations about
the axes e13 , e2

′′
1 and e2

′
3 = e23 . Each of these three rotations is replaced by

a screw displacement about the respective axis. The three dual screw angles
are denoted ψ̂ = ψ+ εuψ , θ̂ = θ+ εuθ and φ̂ = φ+ εuφ , respectively. They

are dual Euler angles. The dual direction cosine matrix Â
12

is obtained from
the direction cosine matrix A12 by the rule of dual differentiation:

Fig. 3.12 Screw displacement (ê11, φ̂1) with φ̂1 = φ1 + εu1
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Â
12

=

⎡
⎢⎣ cψcφ − sψcθsφ −cψsφ − sψcθcφ sψsθ
sψcφ + cψcθsφ −sψsφ + cψcθcφ −cψsθ
sθsφ sθcφ cθ

⎤
⎥⎦

+ε

⎛
⎝uψ

⎡
⎣−sψcφ − cψcθsφ sψsφ − cψcθcφ cψsθ

cψcφ − sψcθsφ −cψsφ − sψcθcφ sψsθ
0 0 0

⎤
⎦

+uθ

⎡
⎣ sψsθsφ sψsθcφ sψcθ
−cψsθsφ −cψsθcφ −cψcθ
cθsφ cθcφ −sθ

⎤
⎦

+uφ

⎡
⎣−cψsφ − sψcθcφ −cψcφ + sψcθsφ 0
−sψsφ + cψcθcφ −sψcφ − cψcθsφ 0
sθcφ −sθsφ 0

⎤
⎦
⎞
⎠ . (3.84)

The primary part is the matrix A12 of Eq.(1.28). Dual differentiation of
the element (1,3), i.e., of the product sψsθ , yields the expression uψcψsθ +
uθ sψcθ . These two terms are the elements (1,3) of the matrices associated
with uψ and uθ .

The same procedure is applied to the direction cosine matrix expressed as
function of Bryan angles φ1 , φ2 and φ3 (see Fig. 1.2a and Eq.(1.32)). Each
of the three subsequent rotations about the axes e11 , e2

′′
2 and e2

′
3 = e23 is

replaced by a screw displacement about the respective axis. The dual screw
angles are denoted φ̂i = φi + εui (i = 1, 2, 3). They are dual Bryan angles.
The associated dual direction cosine matrix is

Â
12

=

⎡
⎣ c2c3 −c2s3 s2

c1s3 + s1s2c3 c1c3 − s1s2s3 −s1c2
s1s3 − c1s2c3 s1c3 + c1s2s3 c1c2

⎤
⎦

+ε

⎛
⎝u1

⎡
⎣ 0 0 0
−s1s3 + c1s2c3 −s1c3 − c1s2s3 −c1c2
c1s3 + s1s2c3 c1c3 − s1s2s3 −s1c2

⎤
⎦

+u2

⎡
⎣−s2c3 s2s3 c2

s1c2c3 −s1c2s3 −s1s2
−c1c2c3 −c1c2s3 c1s2

⎤
⎦

+u3

⎡
⎣−c2s3 −c2c3 0

c1c3 − s1s2s3 −c1s3 − s1s2c3 − c1s3 0
s1c3 + c1s2s3 −s1s3 + c1s2c3 0

⎤
⎦
⎞
⎠ .(3.85)

The primary part is the matrix of Eq.(1.32). Linearization in the case of small
angles yields
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Â
12 ≈

⎡
⎢⎣ 1 −φ3 φ2

φ3 1 −φ1

−φ2 φ1 1

⎤
⎥⎦

+ ε

⎛
⎝u1

⎡
⎣ 0 0 0
φ2 −φ1 −1
φ3 1 −φ1

⎤
⎦+ u2

⎡
⎣−φ2 0 1

φ1 0 0
−1 −φ3 φ2

⎤
⎦+ u3

⎡
⎣−φ3 −1 0

1 −φ3 0
φ1 φ2 0

⎤
⎦
⎞
⎠ . (3.86)

3.10.4 Dual Rodrigues Vector

The Rodrigues vector of a rotation (n, ϕ) is the vector u = n tanϕ/2 . The
dual Rodrigues vector of a screw displacement (n̂, ϕ̂) with n̂ = n+ εw and
ϕ̂ = ϕ+ εs is

û = n̂ tan
ϕ̂

2
= (n+ εw)

(
tan

ϕ

2
+ ε

s/2

cos2 ϕ
2

)
= n tan

ϕ

2
+ ε
[
n
s

2

(
1 + tan2

ϕ

2

)
+w tan

ϕ

2

]
. (3.87)

3.10.5 Dual Euler-Rodrigues Parameters. Dual
Quaternions

From (1.67) the Euler-Rodrigues parameters of a rotation (n, ϕ) are known:

q0 = cos
ϕ

2
, q = n sin

ϕ

2
. (3.88)

They satisfy the constraint equation

q20 + q2 = 1 . (3.89)

According to Fig. 1.3 and to (1.70) the parameters establish between the
position vectors � and �∗ of a body-fixed point before and after the rotation
the relationship

�∗ = �+ 2[q× (q× �) + q0q× �] . (3.90)

The quaternion of the rotation is

D = (q0 , q) . (3.91)

Corresponding dual quantities are defined for a screw displacement (n̂, ϕ̂) .
With the quantities shown in Fig. 3.3 the dual screw angle ϕ̂ and the dual
unit vector n̂ along the screw axis are
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ϕ̂ = ϕ+ εs , n̂ = n+ εu× n , (u · n = 0 ) . (3.92)

For the translatory displacement r =
−−→
0102 in Fig. 3.3 Eq.(3.8) provides the

expression
r = sn+ u(1− cosϕ) + u× n sinϕ . (3.93)

The square of this vector is

r2 = s2 + 2u2(1− cosϕ) . (3.94)

By definition, the dual Euler-Rodrigues parameters of the screw displacement
are

q̂0 = cos
ϕ̂

2
= cos

ϕ

2
− ε

s

2
sin

ϕ

2
,

q̂ = n̂ sin
ϕ̂

2
= (n+ εu× n)

(
sin

ϕ̂

2
+ ε

s

2
cos

ϕ

2

)
= n sin

ϕ

2
+ ε
(s
2
n cos

ϕ

2
+ u× n sin

ϕ

2

)
.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.95)

The dual parts are abbreviated

q′0 = −s

2
sin

ϕ

2
, q′ =

s

2
n cos

ϕ

2
+ u× n sin

ϕ

2
. (3.96)

With this notation

q̂0 = q0 + εq′0 , q̂ = q+ εq′ . (3.97)

The dual quaternion of the screw displacement is

D̂ = (q̂0 , q̂) = D + εD′ (3.98)

with
D = (q0 , q) , D′ = (q′0 , q

′) . (3.99)

The square of the norm of D′ is

q′0
2
+ q′2 =

s2

4
+ u2 sin2

ϕ

2
=

1

4
[s2 + 2u2(1− cosϕ)] . (3.100)

Comparison with (3.94) shows that

r2 = 4(q′0
2
+ q′2) . (3.101)

Next, the quaternion product D D̃′ = (q0 , q)(q
′
0 , −q′) is calculated by the

multiplication rule (1.98). The scalar part is

q0q
′
0 + q · q′ = 0 . (3.102)
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This equation is referred to as Study-quadric. It expresses the orthogonality
of the primary and the dual part of the Euler-Rodrigues parameters. The
vector part of D D̃′ is

−q0q
′ + q′0q− q× q′ = −

[
cos

ϕ

2

(s
2
n cos

ϕ

2
+ u× n sin

ϕ

2

)
+
s

2
sin

ϕ

2
n sin

ϕ

2
+ n sin

ϕ

2
× (u× n) sin

ϕ

2

]
= −1

2
[sn+ u× n sinϕ+ u(1− cosϕ)] . (3.103)

Comparison with (3.93) reveals the equation

r = 2(q0q
′ − q′0q+ q× q′) . (3.104)

Let � and �∗ be the vectors from the reference point 01 to a body-fixed
point before and after the screw displacement. According to (3.90) and (3.104)
the relationship between these vectors is

�∗ = �+ 2[q× (q× �) + q0q× �] + 2(q0q
′ − q′0q+ q× q′) . (3.105)

The dualized form of Theorem 1.4 is

Theorem 3.5. The dual quaternion D̂res of the resultant of two subsequent
screw displacements with dual quaternions D̂1 (first screw displacement) and
D̂2 is the product

D̂res = D̂2D̂1 . (3.106)

Applications of the above equations see in Sect. 3.11 and in Chap. 8 . Addi-
tional material see in Ravani/Roth [41].

3.11 Resultant of two Screw Displacements.
Dual-Quaternion Formulation

Halphen’s geometrical construction of the resultant of two screw displace-
ments resulted in the spatial hexagon shown in Fig. 3.7 . Extracting ana-
lytical expressions for the unknowns ϕres , sres and Sres from this figure is
difficult. Explicit solutions are most easily obtained on the basis of Theorem
3.5. The quaternion equation Dres = D2D1 for the resultant (nres, ϕres) of
two successive rotations (n1, ϕ1) (first rotation) and (n2, ϕ2) resulted in the
explicit coordinate-free Eqs.(1.118) and (1.119). Decomposition of vectors in
the basis shown in Fig. 1.4 led to Eqs.(1.120) – (1.122):

n1,2 = e1 cos
α

2
∓ e2 sin

α

2
, (3.107)
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cos
ϕres

2
= cos

ϕ1

2
cos

ϕ2

2
− sin

ϕ1

2
sin

ϕ2

2
cosα , (3.108)

nres sin
ϕres

2
= e1 sin

ϕ1 + ϕ2

2
cos

α

2
− e2 sin

ϕ1 − ϕ2

2
sin

α

2

−e3 sin
ϕ1

2
sin

ϕ2

2
sinα . (3.109)

Theorem 3.5 states that the same equations are valid when vectors n of
rotation axes are replaced by dual vectors n̂ = n + εw of screw axes and
rotation angles ϕ by dual screw angles ϕ̂ = ϕ + εs . The angle α between
intersecting rotation axes is replaced by the dual angle α̂ = α + ε� of the
screw displacement which carries n̂1 into n̂2 (this means that � , positive or
negative, is the length of the common perpendicular of the two screw axes).
For making (3.107) with n̂1,2 and α̂ valid the origin 0 of the basis e1,2,3 of
Fig. 1.4 must be the midpoint of the common perpendicular (see Fig. 3.13).
The primary parts of the dualized equations are Eqs.(3.108) and (3.109). The
dual parts are

sres sin
ϕres

2
= s1

(
sin

ϕ1

2
cos

ϕ2

2
+ cos

ϕ1

2
sin

ϕ2

2
cosα

)
+s2

(
cos

ϕ1

2
sin

ϕ2

2
+ sin

ϕ1

2
cos

ϕ2

2
cosα

)
−2� sin

ϕ1

2
sin

ϕ2

2
sinα , (3.110)

Fig. 3.13 Screw axes with reference basis e1,2,3 on the common perpendicular
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nressres cos
ϕres

2
+ 2wres sin

ϕres

2

= e1

[
(s1 + s2) cos

ϕ1 + ϕ2

2
cos

α

2
− � sin

ϕ1 + ϕ2

2
sin

α

2

]
−e2

[
(s1 − s2) cos

ϕ1 − ϕ2

2
sin

α

2
+ � sin

ϕ1 − ϕ2

2
cos

α

2

]
−e3

[(
s1 cos

ϕ1

2
sin

ϕ2

2
+ s2 sin

ϕ1

2
cos

ϕ2

2

)
sinα

+2� sin
ϕ1

2
sin

ϕ2

2
cosα

]
. (3.111)

From (3.108) ϕres is determined (sign arbitrary), from (3.109) nres , from
(3.110) sres and from (3.111) wres . A sign change of ϕres results in a change
of signs of all other quantities. For the screw displacement this has no effect.
The quantities s1 , s2 and sres appear in linear form only.

For specifying the location of the resultant screw axis the perpendicular
u = nres×wres from point 0 onto the screw axis is needed. The cross-product
of the vectors in (3.109) and (3.111) is 2u sin2 ϕres/2 where sin2 ϕres/2 is
determined by (3.108). The result of this multiplication is4

u sin2
ϕres

2
= −e1 sin

2 α

2

[(
s1 sin

2 ϕ2

2
− s2 sin

2 ϕ1

2

)
cos

α

2

+� sin
ϕ1

2
sin

ϕ2

2
sin

ϕ1 − ϕ2

2
sin

α

2

]
+e2 cos

2 α

2

[(
s1 sin

2 ϕ2

2
+ s2 sin

2 ϕ1

2

)
sin

α

2

+� sin
ϕ1

2
sin

ϕ2

2
sin

ϕ1 + ϕ2

2
cos

α

2

]
+

1

4
e3

[
(s2 sinϕ1 − s1 sinϕ2) sinα+ �(cosϕ1 − cosϕ2)

]
. (3.112)

In accordance with Fig. 3.7 this equation shows that, in general, the resultant
screw axis does not intersect the common perpendicular e3 of the screw axes
1 and 2 . The resultant screw displacement has scalar measures pD and pP

defined by (3.18) and (3.19). They are written in the forms

pD =
sres

sinϕres
=

sres sin
ϕres

2

2 sin2 ϕres

2 cos ϕres

2

, pP = pD cos2
ϕres

2
. (3.113)

With (3.108) and (3.110) both measures are expressed in terms of s1 , ϕ1 , s2 ,
ϕ2 , α and � . The quantities s1 and s2 appear only in the numerator ex-
pressions. If pDi

and pPi
(i = 1, 2) denote the corresponding measures of

4 Alternative forms for the factors of 
 in (3.112):

sin ϕ1
2

sin ϕ2
2

sin ϕ1±ϕ2
2

= 1
4
[sinϕ2 ± sinϕ1 ∓ sin(ϕ1 ± ϕ2)]
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the screw displacements 1 and 2 , pD is a linear function of pD1
and pD2

,
and pP is a linear function of pP1

and pP2
. The coefficients are functions of

ϕ1 and ϕ2 .

In what follows, special cases are investigated.
Special case s1 = s2 = s , ϕ1 = ϕ2 = ϕ : Equations (3.108) – (3.112) become

cos
ϕres

2
= cos2

ϕ

2
− sin2

ϕ

2
cosα ,

nres sin
ϕres

2
= e1 sinϕ cos

α

2
− e3 sin

2 ϕ

2
sinα ,

sres sin
ϕres

2
= s sinϕ(1 + cosα)− �(1− cosϕ) sinα ,

u sin2
ϕres

2
= e2 cos

2 α

2
sin2

ϕ

2

(
2s sin

α

2
+ � sinϕ cos

α

2

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.114)

Special case ϕ2 = 0 : The second screw displacement is the pure translation
s2n2 . The screw axis n̂2 , the common perpendicular of length � and the
origin 0 of the e1,2,3-system are not uniquely defined. Equations (3.108) –
(3.112) reduce to

ϕres = ϕ1 , nres = n1 , sres = s1 + s2 cosα ,

u = −1

2
�e3 +

1

2
s2 sinα

(
e1 sin

α

2
+ e2 cos

α

2
+ e3 cot

ϕ1

2

)
= −1

2
�e3 +

1

2
s2 sinα

(
e3 × n1 + e3 cot

ϕ1

2

)
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (3.115)

The leading term (−�/2)e3 is the perpendicular vector from the arbitrarily
chosen origin 0 onto the screw axis n̂1 . If an arbitrary point on n̂1 is chosen
as origin 0 ,

u =
1

2
s2 sinα

(
e3 × n1 + e3 cot

ϕ1

2

)
. (3.116)

The absolute value is

|u| =
∣∣∣ s2

2

sin ϕ1

2

sinα
∣∣∣ . (3.117)

Special case s1 = s2 = 0 (resultant of pure rotations about nonintersect-
ing axes; see Fig. 3.8): Equations (3.108) and (3.109) remain valid without
change. Equations (3.110) and (3.112) reduce to

sres sin
ϕres

2
= −2� sin

ϕ1

2
sin

ϕ2

2
sinα , (3.118)
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u sin2
ϕres

2
=

�

4

{
− e1 sin

3 α

2

[
sinϕ2 − sinϕ1 + sin(ϕ1 − ϕ2)

]
+ e2 cos

3 α

2

[
sinϕ2 + sinϕ1 − sin(ϕ1 + ϕ2)

]
+ e3(cosϕ1 − cosϕ2)

}
. (3.119)

These equations govern the even more special case of the resultant of two
180◦-rotations about skew axes. With ϕ1 = −π (equivalent to ϕ1 = π ) and
with ϕ2 = π they yield ϕres = 2α , sres = 2� , nres = e3 , u = 0 . Hence
the resultant is the screw displacement about the common perpendicular of
the two rotation axes with rotation angle 2α and translation 2� . This is the
statement made by Halphen’s theorem.

Example: In Theorem 3.4 the problem is posed: Decompose a screw dis-
placement given by sres , ϕres and by its axis Sres into two subsequent pure
rotations ϕ1 about S1 (first rotation) and ϕ2 about S2 of which either
only S2 or only S1 is given. To be determined are ϕ1 , ϕ2 and the axis
not given.
Solution: Let S2 be given. The unknown first rotation is the resultant of
the given screw displacement followed by the inverse of the second rotation.
From this it follows that (3.108) – (3.112) are valid if the following changes
are made.
1. The basis e1,2,3 is placed at the midpoint of the common perpendicular
g2 of the given axes Sres and S2 . The quantities � and α specify the relative
location of these axes.
2. ( sres , ϕres ) , ( s1 , ϕ1 ) and ( s2 , ϕ2 ) are replaced by ( 0 , ϕ1 ) , ( sres ,
ϕres ) and ( 0 , −ϕ2 ) , respectively. Following these changes (3.108), (3.109),
(3.110) and (3.112) read:

cos
ϕ1

2
= cos

ϕres

2
cos

ϕ2

2
+ sin

ϕres

2
sin

ϕ2

2
cosα , (3.120)

n1 sin
ϕ1

2
= e1 sin

ϕres − ϕ2

2
cos

α

2
− e2 sin

ϕres + ϕ2

2
sin

α

2

+e3 sin
ϕres

2
sin

ϕ2

2
sinα , (3.121)

0 = sres

(
sin

ϕres

2
cos

ϕ2

2
− cos

ϕres

2
sin

ϕ2

2
cosα

)
+2� sin

ϕres

2
sin

ϕ2

2
sinα , (3.122)
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u sin2
ϕ1

2
= −e1 sin

ϕ2

2
sin2

α

2

[
sres sin

ϕ2

2
cos

α

2

− � sin
ϕres

2
sin

ϕres + ϕ2

2
sin

α

2

]
+ e2 sin

ϕ2

2
cos2

α

2

[
sres sin

ϕ2

2
sin

α

2

− � sin
ϕres

2
sin

ϕres − ϕ2

2
cos

α

2

]
+

1

4
e3

[
sres sinϕ2 sinα+ �(cosϕres − cosϕ2)

]
. (3.123)

Equation (3.122) determines ϕ2 :

tan
ϕ2

2
=

sres

sres cot
ϕres

2
cosα− 2� sinα

. (3.124)

With this angle ϕ2 (3.120) and (3.121) determine cosϕ1/2 and n1 sinϕ1/2 .
The vector u determined by (3.123) is the perpendicular from the midpoint
of g2 in Fig. 3.8 onto the first rotation axis. The equations fail in the case
sinα = 0 (axes S2 and Sres parallel).

When instead of S2 the axis S1 is given, ϕ1 , ϕ2 and S2 are determined
as follows. The unknown second rotation is the resultant of the inverse of the
first rotation followed by the given screw displacement. In (3.108) – (3.112)
the following changes are made.
1. The basis e1,2,3 is placed at the midpoint of the common perpendicular
g3 of the given axes Sres and S1 . The quantities � and α specify the relative
location of these axes.
2. ( sres , ϕres ) , ( s1 , ϕ1 ) and ( s2 , ϕ2 ) are replaced by ( 0 , ϕ2 ) , ( 0 , −ϕ1 )
and ( sres , ϕres ) , respectively. The modified Eq.(3.110) leads to

tan
ϕ1

2
=

sres

sres cot
ϕres

2
cosα− 2� sinα

. (3.125)

This is formally identical with (3.124). End of example.

Special case α = 0 (parallel screw axes; n1 = n2 ) : The case ϕ2 = −ϕ1

has to be distinguished from the general case ϕ2 �= −ϕ1 . This general case
is considered first. Equations (3.108) – (3.112) reduce to

ϕres = ϕ1 + ϕ2 �= 0 , sres = s1 + s2 , nres = n1 = n2 , (3.126)

u sin
ϕ1 + ϕ2

2
= �
(
e2 sin

ϕ1

2
sin

ϕ2

2
− e3

1

2
sin

ϕ1 − ϕ2

2

)
. (3.127)

The last equation is rewritten in the form
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�

2
e3 + u = �

(
e2 sin

ϕ1

2
+ e3 cos

ϕ1

2

) sin ϕ2

2

sin ϕ1+ϕ2

2

. (3.128)

This equation proves that the parallel screw axes n1 , n2 and nres , seen
in projection along the axes, form the triangle (P1,P2,P3) shown in Fig.
3.14a . It has internal angles ϕ1/2 and ϕ2/2 at P1 and P2 , respectively,

and the external angle ϕres/2 at P3 . The vector (�/2)e3 + u is
−−−→
P1P3 ,

and (e2 sin
ϕ1

2 + e3 cos
ϕ1

2 ) is the unit vector in the direction of
−−−→
P1P3 . The

equation expresses the sine law in the triangle.
In the special case ϕ2 = −ϕ1 , (3.108) yields ϕres = 0 . This indicates

that the resultant of the two screw displacements is a translation. No further
information is obtained from (3.109) – (3.112). Both magnitude and direction
of the translation are obtained from Fig. 3.7. In the case of parallel screw axes
n1 = n2 and with ϕ2 = −ϕ1 , the lines g2 and g3 are parallel. In Fig. 3.14b
the screw axes and the lines are shown in projection along the axes as in Fig.
3.14a . The component (s1+s2)e1 of the displacement is normal to the plane.
The in-plane component is illustrated by the displacement of the point which
prior to the first screw displacement is located at A . It is displaced via B
to C . The total translatory displacement vector is

sres = (s1+s2)e1+
−→
AC = (s1+s2)e1+� [− sinϕ1 e2+(1−cosϕ1)e3] . (3.129)

Equations (3.126) – (3.129) remain valid in the case s1 = s2 = 0 . In this
case, the equations determine the resultant of two rotations about parallel
axes. In Sects. 14.3 and 14.4 this case is investigated in more detail.

Fig. 3.14 Parallel screw axes n1 = n2 ; ϕ2 �= −ϕ1 (a) and ϕ2 = −ϕ1 (b)

3.12 Equations for the Screw Triangle

The quaternion formulation of the resultant of two rotations led to the ro-
tation triangle shown in Fig. 1.6 . Three rotations (n12, ϕ12) , (n23, ϕ23) ,
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(n31, ϕ31) executed in this order or in any order produced by cyclic per-
mutation carry a body via two intermediate positions back into its initial
position. Each rotation is the inverse of the resultant of the previous two.
Application of the sine and cosine laws led to (1.134):

tan
ϕ31

2
=

n12 × n23 · n31

(n12 × n31) · (n23 × n31)
. (3.130)

Analogously, two successive screw displacements followed by the inverse of
the resultant of these two carry a body via two intermediate positions back
into its initial position. The figure analogous to the rotation triangle is the
spatial hexagon shown in Fig. 3.7 with ϕres and sres replaced by −ϕres ,
−sres . This analogy explains the name screw triangle of the hexagon.

Let the three screw displacements be newly labeled 12 , 23 and 31 . Then,
according to the principle of transference, (3.130) is valid in the form

tan
ϕ̂31

2
=

n̂12 × n̂23 · n̂31

(n̂12 × n̂31) · (n̂23 × n̂31)
(3.131)

with

ϕ̂ij = ϕij + εsij , n̂ij = nij + εwij , n2
ij = 1 , nij ·wij = 0 (3.132)

(ij) = (12), (23), (31) . The vectors nij and wij are the Plücker vectors
of the screw axis ij in a reference frame with arbitrary origin 0 . The per-
pendicular from 0 onto the screw axis is nij ×wij . From the dual part of
the equation an expression for the translatory displacement s31 is developed.
The dual part of the left-hand side of the equation is

s31
2

1

cos2 ϕ31

2

=
s31
2

(1 + tan2
ϕ31

2
)

=
s31
2

[(n12 × n31) · (n23 × n31)]
2 + (n12 × n23 · n31)

2

[(n12 × n31) · (n23 × n31)]2
. (3.133)

The numerator is

[(n12 × n31) · (n23 × n31)]
2 + (n12 × n23 · n31)

2

= (n12 × n31)
2(n23 × n31)

2 . (3.134)

This is proved as follows. With the abbreviations a = n12 × n31 and b =
n23 × n31 and with β = �(a,b) the equation reads
a2b2 cos2 β + (n12 · b)2 = a2b2 or

(n12 · b)2 = a2b2 sin2 β = (a× b)2 = [(n12 × n31)× b]2

= [(n12 · b)n31 − (n31 · b)n12]
2 . (3.135)



120 3 Finite Screw Displacement

This is, indeed, true since n31 · b = 0 . Thus, the dual part of the left-hand
side of (3.131) is

s31
2

(n12 × n31)
2(n23 × n31)

2

[(n12 × n31) · (n23 × n31)]2
. (3.136)

The dual part of the right-hand side is calculated as follows. With Eqs.(3.132)
for n̂ij the numerator has the form N + εNd with

N = n12 × n23 · n31 ,

Nd = n23 × n31 ·w12 + n31 × n12 ·w23 + n12 × n23 ·w31 .

}
(3.137)

The denominator has the form D + εDd with

D = (n12 × n31) · (n23 × n31) ,

Dd = (w12 × n31 + n12 ×w31) · (n23 × n31)

+(n12 × n31) · (w23 × n31 + n23 ×w31)

= −[(n23 × n31)× n31] ·w12 − [(n12 × n31)× n31] ·w23

+[(n23 × n31)× n12 + (n12 × n31)× n23] ·w31 .

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.138)

In these terms the right-hand side of (3.131) is

N + εNd

D + εDd
=

N

D
+ ε

DNd −NDd

D2
. (3.139)

The dual part equals the expression in (3.136). This yields for s31 the ex-
pression

s31
2

=
DNd −NDd

(n12 × n31)2(n23 × n31)2
. (3.140)

The numerator is

DNd −NDd = v12 ·w12 + v23 ·w23 + v31 ·w31 (3.141)

with vectors

v12 =
[
(n12 × n31) · (n23 × n31)

]
n23 × n31

+(n12 × n23 · n31)
[
(n23 × n31)× n31

]
,

v23 = −
[
(n12 × n31) · (n23 × n31)

]
n12 × n31

+(n12 × n23 · n31)
[
(n12 × n31)× n31

]
,

v31 =
[
(n12 × n31) · (n23 × n31)

]
n12 × n23

−(n12 × n23 · n31)
[
(n23 × n31)× n12 + (n12 × n31)× n23

]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.142)
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These vectors are simplified as follows. First, the vector v12 . Obviously,
v12 · n31 = 0 . When the multiple products are simplified, it turns out that
also v12 · n12 = 0 . Hence v12 has the form v12 = An12 × n31 with an
unknown scalar A . It is determined by dot-multiplying this equation by
(n12 × n31) . Taking into account (3.134) this results in the equation

A(n12 × n31)
2 = [(n12 × n31) · (n23 × n31)]

2 + (n12 × n23 · n31)
2

= (n12 × n31)
2(n23 × n31)

2 . (3.143)

Hence
v12 = (n23 × n31)

2 n12 × n31 . (3.144)

The same arguments lead to

v23 = (n12 × n31)
2 n23 × n31 . (3.145)

The product v31 ·w31 in (3.141) eliminates the (nonzero) component of v31

in the direction of n31 . For determining the relevant components the ansatz
is made: v31 = An12 × n31 + Bn23 × n31 + Cn31 . Scalar multiplication
with (n23×n31)×n31 eliminates B and C , and scalar multiplication with
(n12 × n31)× n31 eliminates A and C . The first multiplication yields

A(n12 × n23 · n31) =
{
[(n12 · n23)− (n12 · n31)(n23 · n31)]n12 × n23

−(n12 × n23 · n31)[2(n12 · n23)n31 − (n12 · n31)n23

−(n23 · n31)n12]
}
· [(n23 · n31)n31 − n23]

= −(n12 × n23 · n31)(n12 · n31)[1− (n23 · n31)
2]

= −(n12 × n23 · n31)(n12 · n31)(n23 × n31)
2 . (3.146)

Hence A = −(n12 · n31)(n23 × n31)
2 . In the same way

B = (n23 · n31)(n12 × n31)
2 . Hence

v31 = −(n12 · n31)(n23 × n31)
2 n12 × n31

+(n23 · n31)(n12 × n31)
2 n23 × n31 + Cn31 . (3.147)

The expressions obtained for v12 , v23 and v31 are substituted into (3.141).
Further substitution into (3.140) yields for s31 the final result

s31
2

=
1

(n23 × n31)2
[n31 · n23 ×w23 + (n23 · n31)n23 · n31 ×w31]

− 1

(n12 × n31)2
[n31 · n12 ×w12 + (n12 · n31)n12 · n31 ×w31] . (3.148)

The vectors n12 ×w12 , n23 ×w23 and n31 ×w31 are the perpendiculars
from the reference point onto the three screw axes. The scalar products of
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unit vectors can be expressed through the angles α1 and α3 in Fig. 1.6 :

n12 · n31 = cosα1 , (n12 × n31)
2 = sin2 α1 ,

n23 · n31 = cosα3 , (n23 × n31)
2 = sin2 α3 .

}
(3.149)

Tsai and Roth [48] deduced (3.148) geometrically from Fig. 3.7 . See also
Bottema/Roth [5].

3.13 Resultant of two Infinitesimal Screw
Displacements. Cylindroid

In this section Eqs.(3.109) – (3.112) for the resultant of two screw displace-
ments are evaluated in the special case of infinitesimal screw displacements.
Let p1 , p2 and pres be the pitches of the three screw displacements so that

si = piϕi (i = 1, 2) , sres = presϕres . (3.150)

In what follows, the index res is omitted.
For Eq.(3.109) a Taylor series expansion up to 1st-order terms is made.

When (3.107) is taken into account, this results in the parallelogram rule for
small rotations (see Fig. 3.15):

nϕ = e1(ϕ1 + ϕ2) cos
α

2
+ e2(ϕ2 − ϕ1) sin

α

2
(3.151)

= n1ϕ1 + n2ϕ2 . (3.152)

In (3.110) and (3.112) si = piϕi (i = 1, 2) and s = pϕ are substituted.
Following this, Taylor series expansions are made up to 2nd-order terms.
This results in the equations

pϕ2 = p1ϕ
2
1 + p2ϕ

2
2 + [(p1 + p2) cosα− � sinα]ϕ1ϕ2 , (3.153)

uϕ2 = e3

[
(p2 − p1)ϕ1ϕ2 sinα+

1

2
�(ϕ2

2 − ϕ2
1)
]
. (3.154)

From the latter equation it follows that u has the form u = ue3 . This means
that the resultant screw axis intersects the common perpendicular e3 of the
screw axes 1 and 2 orthogonally at the point u given by the equation

uϕ2 = (p2 − p1)ϕ1ϕ2 sinα+
1

2
�(ϕ2

2 − ϕ2
1) . (3.155)

Let ψ be the angle of the resultant screw axis in the e1, e2-plane against
the e1-axis as shown in Fig. 3.15 . The sine law applied to the triangles in
this figure yields the expressions
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Fig. 3.15 Triangle of infinitesimal rotations

ϕ1 = ϕ
sin
(α
2
− ψ

)
sinα

, ϕ2 = ϕ
sin
(α
2
+ ψ

)
sinα

, (3.156)

from which it follows that

ϕ2
1,2 = ϕ2 1− cos 2ψ cosα∓ sin 2ψ sinα

2 sin2 α
,

ϕ1ϕ2 = ϕ2 cos 2ψ − cosα

2 sin2 α
.

⎫⎪⎪⎬
⎪⎪⎭ (3.157)

Substitution into (3.153) and (3.155) results in explicit expressions for p and
u :

p =
1

2
(p1 + p2 + � cotα)− � cos 2ψ + (p1 − p2) sin 2ψ

2 sinα
, (3.158)

u =
1

2
(p1 − p2) cotα +

� sin 2ψ − (p1 − p2) cos 2ψ

2 sinα
. (3.159)

These expressions are simpler if the transition is made to an x, y-system of
principal axes which is rotated against the e1, e2-system through the angle
ψ0 given by

cos 2ψ0 =
�√

(p1 − p2)2 + �2
, sin 2ψ0 =

p1 − p2√
(p1 − p2)2 + �2

. (3.160)

More precisely, ψ0 is the angle of the x-axis against the e1-axis. Then

p = p0− h cos 2χ ,

z = h sin 2χ

}
(3.161)

with new variables
χ = ψ − ψ0 , z = u− u0 (3.162)

and with constants
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p0 =
1

2
(p1+p2+ � cotα) , u0 =

1

2
(p1−p2) cotα , h =

√
(p1 − p2)2 + �2

2 sinα
.

(3.163)
Equations (3.161) – (3.163) determine a one-parametric manifold of resul-
tant screw displacements with the angle χ between screw axis and x-axis as
parameter. In what follows, statements are made about this manifold. Elim-
ination of χ from Eqs.(3.161) results in the equation of a circle relating p
and z :

(p− p0)
2 + z2 ≡ h2 . (3.164)

Every value of z in the interval |z| ≤ |h| occurs at two angles χ1 and
χ2 = π/2− χ1 which are located symmetrically with respect to χ = π/4 as
well as to χ = −π/4 . These two angles specify the directions of two screw
axes which intersect at z on the e3-axis. The two screw axes intersecting at
z = +h coincide (χ1 = χ2 = π/4) . Likewise, the two screw axes intersecting
at z = −h coincide (χ1 = χ2 = −π/4) . The pitch associated with these
screw axes is p0 .

The two screw axes intersecting at z = 0 are the principal x, y-axes
(χ1 = 0, χ2 = π/2) . The associated principal pitches are the extremal pitches

px = p0 − h , py = p0 + h . (3.165)

In terms of principal pitches the constants p0 and h are

p0 =
1

2
(px + py) , h =

1

2
(py − px) , (3.166)

and Eqs.(3.161) have the forms

p = px cos
2 χ+ py sin

2 χ ,

z = −(px − py) sinχ cosχ .

}
(3.167)

The first equation has the two forms p− px = (py − px) sin
2 χ and p− py =

−(py − px) cos
2 χ . Together with the second Eq.(3.167) this yields

(px − p) cosχ +z sinχ = 0 ,

z cosχ −(py − p) sinχ = 0 .

}
(3.168)

This is an eigenvalue problem with eigenvalue p(z) and with the associ-
ated eigenvector [ cosχ(z) sinχ(z) ] . The characteristic equation for p is
Eq.(3.164).

Every pitch p in the interval between the extremal pitches px and py
occurs at two angles ±χ . Definition: Two screws of equal pitch are called
conjugate screws. The pair of conjugate screws at angles ±0 coincides in
the principal screw with pitch px . Likewise, the pair of conjugate screws at
angles ±π coincides in the principal screw with pitch py . For a given pitch
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p the first Eq.(3.167) and (3.164) determine the associated angles ±χ and
coordinates z . Example: For the pair of conjugate screws with pitch p = 0 ,
i.e., pure rotations, the equations yield

cos 2χrot =
p0
h

=
py + px
py − px

, zrot = ±
√
h2 − p20 = ±√−pxpy . (3.169)

Real solutions exist only if pxpy ≤ 0 .
The one-parametric manifold of screw axes defines a ruled surface. With an

additional parameter λ this ruled surface has the parameter representation
u(χ) + λn(χ) . Its coordinate form is

x = λ cosχ , y = λ sinχ , z = (py − px) sinχ cosχ . (3.170)

The parameters λ and χ are eliminated by forming x2 + y2 = λ2 and
xy = λ2 sinχ cosχ . Combining these equations with the third Eq.(3.170)
results in the third-order equation

z(x2 + y2) = (py − px)xy . (3.171)

This ruled surface is called cylindroid. In the theory of ruled surfaces a line
which is intersected by every generator is called directrix. The z-axis is a
double directrix because it is intersected by two generators at every point
|z| ≤ | 12 (py − px)| . From (2.59) the distribution parameter δ is calculated as
function of χ . For this purpose the following change of notation has to be
made (see (2.51)). The role of the parameter u is played by χ . The curve
r(u) is the directrix u(χ) = (py − px) sinχ cosχe3 , and the unit vector
e(u) is n(χ) . According to (3.170) ṅ = e3 × n and ṅ2 ≡ 1 . Hence with
u̇(χ) = (py − px) cos 2χe3 the distribution parameter is δ(χ) = ṅ · u̇× n =
(py − px) cos 2χ . The two pairs of coinciding generators at z = − 1

2 (py − px)
and at z = 1

2 (py − px) are torsal lines (δ = 0 ) . In Fig. 3.16 the cylindroid
is represented in the x, y, z-system by an orthogonal net of lines χ = const
and λ = const. The curved lines λ = const are kinematically insignificant.
Their only purpose is to show the shape of the surface more clearly. What
matters are the straight lines χ = const, i.e., the screw axes. These axes
extend to ±∞ . The symmetry with respect to the two planes each spanned
by the directrix and by one torsal line is clearly shown.

Let n and w be the first and the second Plücker vector of the screw axis
associated with the angle χ . The x, y, z-coordinates of these vectors are

n : [ cosχ sinχ 0 ] ,

w : (py − px) sinχ cosχ [− sinχ cosχ 0 ] .

}
(3.172)

The results obtained so far are summarized as follows. The resultant of
two arbitrarily oriented infinitesimal screw displacements with constant pa-
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Fig. 3.16 Cylindroid

rameters α , � , p1 and p2 and with variable parameters ϕ1 and ϕ2 is the
manifold of screw displacements on the cylindroid defined by its axis, by u0

and by its principal pitches px and py associated with mutually orthogo-
nal principal axes x and y . The same manifold of screw displacements is
obtained if the two principal screws are used as starting point. This is the
special case α = π/2 and � = 0 . Equations (3.163) yield u0 = 0 (this is
in accordance with the statement preceding (3.165)) and p0 = px + py ,
h = py − px (as before; see Eqs.(3.165)). Every screw on the cylindroid is
resultant of two principal screws about the principal axes. Also the following
is true. Every screw on the cylindroid is resultant of two (arbitrary) conju-
gate screws. The quantities u0 and h determining the cylindroid depend on
the difference p1−p2 only, whereas p0 and, hence, p(χ) depend on the sum
p1+ p2 . If p1 and p2 (arbitrary) are increased by one and the same amount
(arbitrary), the cylindroid remains the same, whereas p(χ) is increased by
the same amount independent of χ .

The cylindroid was discovered independently by Hamilton [18] (1830),
Plücker [38] (1865) (see also [39]), Battaglini [3] (1869) and Ball [2] (1900).
Geometrical properties of the cylindroid see in Zindler [57]. In the present
book the cylindroid is met again in the next Sect. 3.14 and in Sect. 12.6.2 .

The end of the previous Sect. 3.11 on the resultant of two finite screw
displacements was devoted to cases which require special considerations
(Eqs.(3.118) – (3.129)). The same cases are considered here, and results are
developed from the said equations. As before, the index res is omitted.

Special case ϕ2 = 0 : Since the pitch p2 is not defined the infinitesimal
displacement s2 is expressed in the form s2 = μϕ1 . As origin 0 of the
e1,2,3-system an arbitrary point on the screw axis n̂1 is chosen (see the text
following (3.115)). Substituting s2 = μϕ1 and s1 = p1ϕ1 into (3.115) and
(3.116) and making a Taylor series expansion for u results in the equations
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ϕ = ϕ1 , n = n1 , p = p1 + μ cosα , u = e3μ sinα . (3.173)

These equations show that the resultant screw axis has the direction of n1 ,
and that it intersects the e3-axis orthogonally at the point u = μ sinα .

Special case α = 0 (parallel screw axes) and ϕ2 �= −ϕ1 : Equations (3.126)
become (with a Taylor series expansion for u )

ϕ = ϕ1 + ϕ2 �= 0 , p = p1 + p2 ,

n = n1 = n2 , u = −e3
�

2

ϕ1 − ϕ2

ϕ1 + ϕ2
.

⎫⎬
⎭ (3.174)

This means that the resultant screw axis intersects the e3-axis orthogonally
at a point u which depends on the ratio ϕ2/ϕ1 . The points P1 , P2 and P3

in Fig. 3.14a are collinear.

Special case α = 0 (parallel screw axes) and ϕ2 = −ϕ1 : According to
(3.129) the resultant displacement is a pure translation s . With s1 = p1ϕ1

and s2 = p2ϕ2 = −p2ϕ1 it is

s = [(p1 − p2)e1 − �e2]ϕ1 . (3.175)

This displacement is normal to e3 .

3.14 Screw Displacements Effecting a Prescribed Line
Displacement

In Fig. 3.17 two skew lines are defined by their unit line vectors r̂1 and r̂2 .
The line vector r̂2 is produced from r̂1 by the screw displacement (n̂3, α̂)
with the dual unit vector n̂3 along the common perpendicular and with the
dual screw angle α̂ = α+ε� between the two lines. Without loss of generality,
it is assumed that 0 < α < π whereas � may be positive, zero or negative.
The dual unit vector n̂3 is one of the basis vectors n̂i (i = 1, 2, 3) of a dual
basis which has its origin at the midpoint 0 of the common perpendicular.
The basis vector n̂1 is bisecting the angle α when seen in the projection
along n̂3 . The line vector r̂2 is produced from r̂1 not only by the screw
displacement (n̂3, α̂) , but also by the screw displacement (n̂1,±π) . Both
screw displacements carry the point A fixed on line 1 to the point B fixed
on line 2 . These observations stimulate an investigation of the following
problems.
Problem 1 : Determine the manifold of all screw displacements (n̂, ϕ̂) of a
rigid body which carry a body-fixed directed line from position r̂1 into po-
sition r̂2 . In this manifold determine the submanifold of all screw displace-
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Fig. 3.17 Quantities associated with screw displacements (n̂, ϕ̂) carrying the line r̂1 into

the line r̂2

ments which are pure rotations. The problem statement does not require that
point A of r̂1 is carried to a specified point on r̂2 .

Problem 2 : From the manifold of all screw displacements solving Problem 1
determine the submanifold of all screw displacements carrying point A of r̂1
to an arbitrarily prescribed point P on r̂2 . Consider the special case P=B .

Both problems have a practical background. Let the body-fixed line be
the axis of a cylindrical workpiece which is displaced by a robot from a box
into the chuck of a machine. In the box the axis has position r̂1 , and in
the chuck it has position r̂2 . The robot is equipped with a single cylindrical
joint so that it can execute screw displacements only. The angular position
of the cylindrical workpiece in the chuck is of no interest. If the depth of
insertion into the chuck is not prescribed either, every screw displacement
solving Problem 1 is acceptable, otherwise every screw displacement solving
Problem 2 .

Solution to Problem 1 : The solution is deduced by means of the principle
of transference from the solution to the following rotation problem solved in
Sect. 1.15.9 . Determine all rotations (n, ϕ) about a fixed point 0 which carry
a body-fixed line passing through 0 from a given position r1 into another
given position r2 . The lines r1 and r2 and the angle α between them are
shown in Fig. 1.11a . Figure 1.11b explains cartesian basis vectors n1 , n2 ,
n3 . They are related to r1 and r2 through (1.220) and (1.221):

n1 =
r1 + r2
2 cos α

2

, n3 =
r1 × r2
sinα

, n2 = n3 × n1 , (3.176)

r1,2 = n1 cos
α

2
∓ n2 sin

α

2
. (3.177)
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The notation in Fig. 3.17 is chosen such that in the case � = 0 the dual angle
α̂ is the angle α of Fig. 1.11, and that the dual vectors r̂i (i = 1, 2) and n̂i

(i = 1, 2, 3) are the vectors ri (i = 1, 2) and ni (i = 1, 2, 3), respectively. The
solution to the rotation problem of Fig. 1.11 is a one-parametric manifold of
rotations (n, ϕ) . With a free parameter ψ it is given in (1.222) and (1.228)
in the form

n = n1 cosψ − n3 sinψ , cot
ϕ

2
= − cot

α

2
sinψ . (3.178)

All vectors and angles are transferred into dual form by defining dual parts
as follows:

α̂ = α+ ε� , ϕ̂ = ϕ+ εs , ψ̂ = ψ + εu , (3.179)

n̂i = ni (i = 1, 2, 3) , r̂i = ri + εwi (i = 1, 2) , n̂ = n+ εw . (3.180)

The identity n̂i = ni holds true because the second Plücker vectors are zero
with respect to the origin 0 of the dual basis. The second Plücker vectors
w1 and w2 of r̂i are

w1,2 = ∓1

2
�n3 × r1,2 = −1

2
�
(
n1 sin

α

2
± n2 cos

α

2

)
. (3.181)

The same formulas are obtained by dual differentiation of (3.177). The quan-
tities ψ and u are two independent parameters of the manifold of solutions.
To be determined as functions of ψ and u are the dual parts s and w of
the screw displacement. Unknown, too, is the geometrical meaning of u . The
unknowns are determined as follows. Equations (3.178) are transferred into
the dual forms

n̂ = n1 cos ψ̂ − n3 sin ψ̂ , cot
ϕ̂

2
= − cot

α̂

2
sin ψ̂ . (3.182)

The dual part of the first equation yields

w = −u(n1 sinψ + n3 cosψ) . (3.183)

This together with the first Eq.(3.178) yields for the perpendicular n × w
from 0 onto the screw axis the expression

n×w = un2 . (3.184)

From this it follows, first, that all screw axes intersect the line n̂2 at right
angles and, second, that the free parameter u (positive, zero or negative)
represents the length of the perpendicular from 0 onto the screw axis. This
is shown in Fig. 3.17 . The line n̂2 is called nodal line of the two lines r̂1 and
r̂2 .
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The dual part of the second Eq.(3.182) is an equation for s :

−s/2

sin2 ϕ
2

=
�/2

sin2 α
2

sinψ − u cot
α

2
cosψ . (3.185)

For sin2 ϕ/2 and for other functions of ϕ the following expressions in terms
of ψ are known from (1.227) and (1.226):

sin2
ϕ

2
=

sin2 α
2

1− cos2 α
2 cos2 ψ

, sin
ϕ

2
cos

ϕ

2
=

− sin α
2 cos α

2 sinψ

1− cos2 α
2 cos2 ψ

, (3.186)

1− cosϕ =
1− cosα

1− cos2 α
2 cos2 ψ

, sinϕ =
− sinα sinψ

1− cos2 α
2 cos2 ψ

. (3.187)

With the first Eq.(3.186) s becomes a function of u and ψ :

s =
u sinα cosψ − � sinψ

1− cos2 α
2 cos2 ψ

. (3.188)

With Eqs.(3.178) for n and ϕ and with the equations for w , n × w and
s the two-parametric manifold of screw displacements (n̂, ϕ̂) solving Prob-
lem 1 is uniquely determined. The special screw displacements (n̂3, α̂) and
(n̂1,±π) shown in Fig. 3.17 belong to this manifold. The associated param-
eter values are ψ = −π/2 , u = 0 for the first and ψ = 0 , u = 0 for the
second.

Pure rotations satisfy the condition s = 0 , i.e.,

u =
� tanψ

sinα
. (3.189)

This condition defines the one-parametric submanifold of rotations in the
two-parametric manifold of screw displacements. The special rotation with
parameter values ψ = 0 , u = 0 belongs to this submanifold. The manifold
of all rotation axes defines a ruled surface. Let x , u , z be the coordinates
of points of this ruled surface along n1 , n2 and n3 , respectively. From the
primary part of (3.182) and from (3.189) it follows that z/x = − tanψ =
−(u/�) sinα or ux = −z�/ sinα . This is the equation of an equilateral
hyperbolic paraboloid. In a ξ, η-system rotated through 45◦ about the n2-
axis the transformation is x = (ξ + η)

√
2/2 and u = (−ξ + η)

√
2/2 and

consequently ux = −(ξ2 − η2)/2 . Hence the principal-axes equation of the
hyperbolic paraboloid is z = (ξ2 − η2)/a with a = 2�/ sinα . This ends the
solution of Problem 1 .

Solution to Problem 2 : According to the problem statement the point A on
r̂1 at the foot of the common perpendicular is displaced to some prescribed
point P on r̂2 . This displacement is achieved by a one-parametric subman-
ifold of the screw displacements solving Problem 1 . An appropriate measure
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of displacement of point A is the quantity (rP − rB) · r2 = (rP − rA) · r2 .
The analysis to follow shows that the essential measure of displacement is
the quantity σ = (rP − rB) · r2 cosα/2 .

Further below σ is prescribed. However, before doing so, σ is determined
for the screw displacements solving Problem 1 as function of ψ and u . Let
� be the vector leading from the point of intersection of a screw axis n̂ with
the nodal line n2 to point A . Figure 3.17 yields the expression

� = −
(
un2 +

1

2
�n3

)
. (3.190)

The associated measure of displacement is

σ =
{
(1− cosϕ)[(n · �)n− �] + sinϕn× �+ sn

}
· r2 cos α

2
. (3.191)

The term sn is due to translation, and the remaining terms are copied from
(1.37). The scalar products are expressed in terms of ψ and u with the help
of (3.190), (3.177) and (3.178):

n · � =
1

2
� sinψ , n · r2 = cos

α

2
cosψ , � · r2 = −u sin

α

2
,

n× � · r2 =
1

2
� sin

α

2
cosψ − u cos

α

2
sinψ .

⎫⎪⎬
⎪⎭ (3.192)

For s , for (1 − cosϕ) and for sinϕ the expressions (3.188) and (3.187),
respectively, are substituted. This yields σ as function of ψ and u . The
result is written in the two forms

σ =
2u sin α

2 cos α
2 − � cos2 α

2 sinψ cosψ

1− cos2 α
2 cos2 ψ

=
4u sinα− �(1 + cosα) sin 2ψ

4− (1 + cosα)(1 + cos 2ψ)
.

(3.193)
In what follows, the manifold of all screw displacements is determined for

which σ is an arbitrarily prescribed constant −∞ < σ < ∞ . Then (3.193)
represents a constraint equation for ψ and u . As independent parameter ψ
is chosen. The solution for u as function of ψ is written in the two forms

u sinα = σ + cos2
α

2
cosψ(� sinψ − σ cosψ) , (3.194)

u =
σ(3− cosα)

4 sinα
+

1

4
cot

α

2
(� sin 2ψ − σ cos 2ψ) . (3.195)

For further simplification the x, z-system of principal axes is introduced
which is rotated against the n1,n3-axes through the angle ψ0 defined by

cos 2ψ0 =
�√

�2 + σ2
, sin 2ψ0 =

σ√
�2 + σ2

. (3.196)
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With new variables
y = u− u0 , χ = ψ − ψ0 (3.197)

and with the constants

u0 =
σ(3− cosα)

4 sinα
, h =

1

4
cot

α

2

√
�2 + σ2 (3.198)

(3.195) becomes
y = h sin 2χ . (3.199)

The vector u(χ)n2 is the perpendicular from 0 onto the screw axis. The
rotation angle ϕ and the translation s are determined through (3.178) and
(3.188) as functions of ψ = χ+ ψ0 .

The one-parametric manifold of screw axes with parameter χ defines a
ruled surface. With an additional free parameter λ this ruled surface has the
parameter equations

x = λ cosχ , z = −λ sinχ , y = h sin 2χ . (3.200)

Compare this with Eqs.(3.170). Except for an interchange of y and z both
sets of equations are identical. Hence the ruled surface is a cylindroid the
directrix of which is the nodal line. The parameter-free equation of the cylin-
droid is (cf. (3.171))

y(x2 + z2) = −2hxz . (3.201)

Every prescribed value of σ determines a one-parametric manifold of screw
displacements with the associated cylindroid of screw axes.

Following (3.171) some important geometrical properties of the cylindroid
were listed (see Fig. 3.16). At every point y in the interval |y| ≤ |h| the
directrix is orthogonally intersected by two screw axes. At y = 0 these
screw axes lie in the x-axis and in the z-axis, respectively. These are the
principal screw axes. At y = −h and at y = +h the two intersecting screw
axes coincide. The angles associated with these axes are χ = −π/4 and
χ = +π/4 , respectively. These screw axes are torsal lines of the cylindroid.
Each of the two planes spanned by the directrix and by a torsal line is a
plane of symmetry of the cylindroid. Every pair of screw axes intersecting
the directrix in one point is located symmetrically with respect to each of the
planes of symmetry, i.e., under angles χ1 and χ2 related by the equation
χ2 = π/2 − χ1 . The relationship between the corresponding angles ψ1 =
χ1 + ψ0 and ψ2 = χ2 + ψ0 is ψ2 = π/2− ψ1 + 2ψ0 .

It was shown that the screw axes under the angles ψ = 0 and ψ = −π/2
belong to special screw displacements. The first one is characterized by ϕ =
±π and the second by ϕ = α and s = � . It will be seen that also the
screw displacements with screw axes located symmetrically to these screw
axes have special properties. The associated angles are ψ = π/2 + 2ψ0 and
ψ = 2ψ0 , respectively.
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First, it is investigated which screw axis n̂ intersects one or the other of
the two lines r̂1 and r̂2 . The screw axis n̂ = n+ εw has the Plücker vectors
n and w given in (3.182) and (3.183), respectively. The lines r̂i = ri + εwi

(i = 1, 2) have the Plücker vectors ri and wi given in (3.177) and (3.181).
The condition of intersection is n ·wi + ri ·w = 0 (see (2.18)). It turns out
that this condition has for both lines the same form

� sin
α

2
cosψ + 2u cos

α

2
sinψ = 0 . (3.202)

This equation is multiplied by sinα/2 , and then u sinα is replaced by the
expression in (3.194). Simple reformulation produces the final form

(� cosψ + σ sinψ)
(
sin2

α

2
+ cos2

α

2
sin2 ψ

)
= 0 . (3.203)

The results are summarized as follows. A screw axis which intersects one of
the two lines intersects also the other, and there is only one such screw axis.
Its angle ψ is given by tanψ = −�/σ or, because of (3.196), by tanψ =
− cot 2ψ0 . Hence ψ = 2ψ0 + π/2 . This shows that the screw axis is the one
which is located symmetrically with respect to χ = π/4 to the screw axis
associated with ψ = 0 , ϕ = π .

Every screw axis on the cylindroid, i.e., every angle ψ or χ , respectively,
is associated with a rotation angle ϕ and a translation s . The angle is deter-
mined by (3.178). The two screw axes along the principal axes and the two
screw axes along the torsal lines are examples of pairs of mutually orthogonal
screw axes (with or without intersection point). All pairs of mutually orthogo-
nal screw axes satisfy the identity (1.229): cot2(ϕ/2)+cot2(ϕ∗/2) ≡ cot2 α/2 .

The quantity s in the screw displacements solving Problem 2 remains
to be formulated. It is obtained by substituting in (3.188) for u sinα the
expression from (3.194). The result is

s = σ cosψ − � sinψ . (3.204)

Comparison with (3.195) yields the relationship

s(ψ) = −4 tan
α

2
[u(ψ/2)− u0] . (3.205)

Let s1 and s2 be the values of s associated with the principal axes x
(ψ = ψ0) and z (ψ = ψ0 − π/2). With (3.196)

s1,2 =

√
1

2

(
�2 + σ2 ∓ �

√
�2 + σ2

)
. (3.206)

From (3.204) it follows that there is only a single screw displacement which
is a pure rotation (s = 0). The direction of its axis is determined by tanψ =
σ/� = tan 2ψ0 . Hence ψ = 2ψ0 . This shows that the rotation axis is the
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screw axis which is located symmetrically with respect to χ = π/4 to the
screw axis associated with ψ = −π/2 , ϕ = α and s = � .

The results developed up to this point were obtained first by Moshammer
[33], Pelisěk [35], Rath [40] and Lilienthal [28]. See also Bottema [4]. None of
the cited papers made use of the principle of transference.

Equation (3.19) defined for screw displacements the scalar measure pP =
(s/2)/ tanϕ/2 . With the second Eq.(3.178) and with (3.204)

pP =
1

2
cot

α

2
sinψ (� sinψ − σ cosψ) =

1

4
cot

α

2
[�(1− cos 2ψ)− σ sin 2ψ] .

(3.207)
The angle ψ = 0 is associated with s = σ and pP = 0 . Transformation
of (3.207) into the principal-axes system by means of (3.198) results in the
equation

pP = pP0 − h cos 2χ , pP0 =
1

4
� cot

α

2
. (3.208)

The mean value pP0 of pP occurs in the torsal lines. The extremal values
pP0±h have opposite signs. They occur in the principal axes. For every pair of
screw axes which is located symmetrically with respect either to χ = π/4 or
to χ = −π/4 both screw axes are associated with one and the same measure
pP . Equations (3.208) and (3.199) reveal the remarkable relationship

(pP − pP0)
2 + y2 ≡ h2 . (3.209)

It is formally identical with (3.164).

Special case σ = 0 (A is displaced to B )
The formulas for n̂ and ϕ are independent of σ . Equations (3.195) – (3.198),
(3.204) and (3.206) become

u =
�

4
cot

α

2
sin 2ψ , χ ≡ ψ , u0 = 0 ,

s = −� sinψ , s1 = 0 , s2 = � .

}
(3.210)
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ou infiniment petit d’un corps solide libre. Bull. Scie. Math. de Ferussac XIV:321–326

9. Chevallier D P (1996) On the transference principle: Its various forms and limitations.
Mechanism Machine Theory 1:57–76

10. Clifford W K (1873) Preliminary sketch of biquaternions. Proc.London Math.Soc.
IV:381–395

11. Dimentberg F M (1948) A general method for the investigation of finite displacements
of spatial mechanisms and certain cases of passive constraints (Russ.) Trudy Seminara
po Teorii Mashin i Mechanismov, AN SSSR 5 Nr.17:5–39; Purdue Translation No.436,
Purdue Univ.

12. Dimentberg F M (1965) Screw calculus and its applications in mechanics (Russ.).

Nauka, Moscow. Engl. trans. (1968) Foreign Techn. Div. WP-AFB, Ohio
13. Dimentberg F M (1978) Screw theory and its applications (Russ). Nauka, Moscow
14. Dimentberg F M (1982) Theory of spatial linkages (Russ.). Nauka, Moscow
15. Erdman A G (ed.) (1993) Modern kinematics. Developments in the last forty years.

Wiley, New York (appr. 2250 literature references)
16. Giorgini G (1836) Memorie di Matematica. Soc.Ital. delle Scienze, Modena 21:1–54
17. Halphen M (1882) Sur la théorie du déplacement. Nouv. Ann. de Math. 3:296–299
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geometrie und dualer Grössen. Forschung Ing.-Wesen 25:26–63

22. Keler M K (1970) Die Verwendung dual-komplexer Grössen in Geometrie, Kinematik
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29. Löbell F (1929) Aus der Differentialgeometrie der Schraubenscharen. Festschrift der
T.H. Stuttgart zur Vollendung ihres 1. Jahrhunderts. Springer, Berlin, Wien

30. Martinez J M R, Duffy J (1993) The principle of transference: History, statement and
proof. Mechanism Machine Theory 28:165–177

31. Meyer W FR, Mohrmann H (eds.) (1921-1928) Enzyklopädie der Math. Wis-
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matik. Studienarbeit Inst. Techn. Mech. Univ. Karlsruhe
46. Spillers W R (ed.) (1964) Basic questions of design theory. Northholland, Amsterdam

47. Study E (1903) Die Geometrie der Dynamen. Teubner, Leipzig
48. Tsai L W, Roth(1972) Design of dyads with helical, cylindrical, spherical, revolute and

prismatic joints. Mechanism Machine Theory 7:85–102
49. Veldkamp G R (1976) On the use of dual numbers, vectors and matrices in instanta-

neous spatial kinematics. Mechanism Machine Theory 11:141–156
50. Wittenburg J (1981) Duale Quaternionen in der Kinematik räumlicher Getriebe. Eine
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Chapter 4

Degree of Freedom of a Mechanism

Amechanism consists of rigid bodies and of joints inter-connecting the bodies.
A joint is a mechanical device which introduces kinematical constraints on
the motion of the two bodies relative to each other. This implies that inter-
connections by springs or dampers do not constitute joints since such elements
do not create kinematical constraints. Two bodies cannot be connected by
more than one joint. This means that the complete system of devices inter-
connecting two bodies is counted as a single joint. A joint does not connect
more than two bodies. If, for example, p > 2 bodies are rotating about a
single common shaft, this shaft represents p−1 joints each of them connecting
two bodies.

A single body moving in three-dimensional space without any kinematical
constraint is said to have the degree of freedom F = 6 . This is the minimal
number of generalized coordinates required for specifying its position and
angular orientation relative to some reference body. Let the moving body be
connected to the reference body by a joint. Kinematical constraints intro-
duced by this joint have the effect that the body has a degree of freedom
1 ≤ F ≤ 5 . This number F is also called degree of freedom f of the joint.
The number of independent kinematical constraints in the joint is 6 − f .
Examples: Revolute, prismatic and helical joints have f = 1 , cylindrical and
universal joints have f = 2 , and a spherical joint has f = 3 . The degree of
freedom is f = 4 ( f = 5 ) if the spherical joint is free to move along a rigid
line (in a rigid surface).

A mechanism is a joint-connected system of bodies. Let n be the number
of bodies. One of the bodies is held fixed. In order to be connected the mech-
anism must have m ≥ n−1 joints. Each joint i = 1, . . . ,m has its individual
degree of freedom 1 ≤ fi ≤ 5 . The mechanism as a whole has a degree of
freedom F . This is the minimal number of generalized coordinates required
for specifying its position and angular orientation relative to the single body
held fixed. The degree of freedom F depends not only on the numbers n
and m and on the degrees of freedom 1 ≤ fi ≤ 5 (i = 1, . . . ,m) of the
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138 4 Degree of Freedom of a Mechanism

individual joints, but also on the structure of the system. This dependency
is the subject of the present chapter.

4.1 Grübler’s Formula

A mechanism with m = n−1 joints is said to have tree structure (Fig. 4.1a).
Its characteristic feature is that any two bodies are connected by a uniquely
determined chain of bodies and of joints. Examples are serial robot arms
without kinematical constraint of the gripper to the surrounding environment
and the human body when standing on one foot and with free hands. A
mechanism with m = n joints contains a single closed chain or single loop.
An example is shown in Fig. 4.1b . A single loop without side branches (the
subsystem formed by the shaded bodies) is called simple closed chain. A
mechanism with m > n joints is called multiloop mechanism. It is created by
adding more joints in Fig. 4.1b . In both figures the schematically indicated
joints are of arbitrary nature with individual degrees of freedom 1 ≤ f ≤ 5 .

Fig. 4.1 Mechanisms with tree structure (m = n− 1 ) (a) and with a single closed chain
(m = n ) (b). Simple closed chain formed by the shaded bodies

The degree of freedom F of a mechanism is determined as follows. As a
preparatory step all joints of the mechanism are removed, so that all bodies
except the single body held fixed are free of kinematical constraints. In this
state these n − 1 bodies have a total degree of freedom 6(n − 1), namely,
six for each body. In joint i (i = 1, . . . ,m) with joint degree of freedom
1 ≤ fi ≤ 5 there are 6 − fi kinematical constraints. The total number of
constraints of all m joints equals the sum of all numbers (6− fi) . The total
number of independent constraints may be smaller. It is smaller by d where
d (defect) denotes the number of dependent constraints. After reconstituting
the removed joints the degree of freedom of the mechanism is obtained:

F = 6(n−1)−
[ m∑

i=1

(6−fi) −d
]
= 6(n−1−m)+d+

m∑
i=1

fi (1 ≤ fi ≤ 5) .

(4.1)
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This formula is valid for all mechanisms. In theory as well as in engineering
practice planar mechanisms and spherical mechanisms are important. In a
planar mechanism each body is in plane motion, and the reference plane is
the same for all bodies. In a spherical mechanism each body is rotating about
a fixed point, and all bodies have the same fixed point. A simple example is
the spherical four-bar with four bodies and four revolute joints intersecting
at a single point. In planar motion as well as in spherical motion about a
fixed point a single unconstrained body has the degree of freedom three. In
planar as well as in spherical mechanisms an individual joint has the joint
degree of freedom 1 ≤ fi ≤ 2 and, consequently, 3− fi constraints. In both
types of mechanism the degree of freedom of the mechanism is

F = 3(n−1−m)+d+
m∑
i=1

fi (planar and spherical mech’s ; 1 ≤ fi ≤ 2 ) . (4.2)

Planar mechanisms can be seen as special cases of spherical mechanisms. The
fixed point common to all bodies is at infinity.

In the literature (4.1) and (4.2) are usually written without the defect d .
These formulas are due to Grübler [3]. The formulas are accompanied by the
warning that false results are obtained in the case of dependent constraints.
A simple example shows that false results may be obtained even if the defect
is taken into account. Imagine two systems 1 and 2 which are sharing a
single body 0 which is held fixed. Suppose, (4.1) yields F1 = −1 for sys-
tem 1 (indicating rigidity) and F2 = 1 for system 2 . Clearly, the entire
system composed of systems 1 and 2 together has the degree of freedom
F = 1 . However, (4.1) applied to the entire system yields the wrong result
F = F1 + F2 = 0 indicating rigidity. The formula F = F1 + F2 is correct
if and only if F1, F2 ≥ 0 . The general statement is: Equations (4.1) and
(4.2) applied to an entire system yield correct results if and only if, by the
same equations, every subsystem of the entire system has a degree of freedom
≥ 0 . Hence the conclusion: In order to get a correct result it is necessary,
first, to determine the degree of freedom of subsystems. Every subsystem
with a degree of freedom ≤ 0 must be counted as a single rigid body. Only
then do (4.1) and (4.2) yield correct results for the entire system. Most en-
gineering systems are so simple that the degree of freedom of subsystems is
obvious without any analysis. In complex spatial multiloop systems, however,
a separate analysis of subsystems may be necessary.

Equations (4.1) and (4.2) show that the degree of freedom F of a mech-
anism is independent of which body is chosen as fixed body.

Mechanisms with tree structure (Fig. 4.1a) are characterized by m = n−1
and d = 0 . In this case, both formulas for the degree of freedom read

F =
n−1∑
i=1

fi . (4.3)
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For mechanisms with a closed chain and, in particular, for the simple closed
chain (Fig. 4.1b ; m = n ) (4.1) and (4.2) have the forms

F =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−6 + d+
n∑

i=1

fi (all mechanisms; 1 ≤ fi ≤ 5 )

−3 + d+
n∑

i=1

fi (planar and spherical mech’s; 1 ≤ fi ≤ 2 ) .

(4.4)

A mechanism with degree of freedom F = 1 is called 1-d.o.f. mechanism or
mobility-one mechanism. From (4.4) follows

Theorem 4.1. In a simple closed chain with mobility one and with indepen-
dent constraints (F = 1 , d = 0 ) the number of joint variables is

n∑
i=1

fi =

{
7 (nonspherical spatial simple closed chain)
4 (planar and spherical simple closed chains) .

(4.5)

Applied to revolute joints ( fi ≡ 1 ) this theorem states that a simple (non-
spherical) spatial closed chain must have seven revolute joints and seven
bodies in order to have mobility one if all constraints are independent. For
planar and for spherical simple closed chains this number of revolute joints
and of bodies is four. Engineering realizations are the planar four-bar and the
spherical four-bar. For both of them the first Eq.(4.4) yields the correct result
F = 1 only if d = 3 . Indeed, three constraints are dependent. In the planar
four-bar, for example, one out of four parallel revolute joints establishes the
constraint to the plane of motion. This constraint must not be counted as
independent in the other three revolutes.

A mechanism is said to be overconstrained if it has a degree of freedom
F ≥ 1 only because of the existence of dependent constraints (d > 0) .
Overconstrained mechanisms must be manufactured with great precision be-
cause inaccuracies result in the loss of mobility. Inhomogeneous changes of
temperature may have the same effect. For these reasons most engineering
mechanisms are designed such that overconstraint does not occur. Example:
The ideal planar four-bar is an overconstrained mechanism. This overcon-
straint is avoided by giving the bearing of one axis the freedom to adjust its
direction as is required.

4.2 Illustrative Examples

The determination of the defect d in Grübler’s Eq.(4.1) can be a difficult
problem requiring a kinematics analysis in which all mechanism parameters –
link lengths and parameters specifying directions of joint axes – are involved.
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In the following sections this analysis is demonstrated for seven different
mechanisms.

4.2.1 Five-Point-Contact Joint

Subject of investigation is a rigid body five points of which are constrained
to move in prescribed surfaces. To be determined is the degree of freedom
of the body. The five surfaces constitute a single body referred to as frame.
The system is a mechanism with n = 2 bodies and with m = 1 joint. The
constraint of a point Pi to a surface prevents the point from moving in the
direction of the unit vector ni normal to the surface. There are five such
constraints in the joint. If d is again the number of dependent constraints,
the joint degree of freedom is f = 6 − (5 − d) = 1 + d . According to (4.1)
this is also the degree of freedom of the mechanism and, thus, of the body.

The defect d is determined as follows. According to Chasles’s Theorem
3.1 an infinitesimal displacement of a rigid body is a screw displacement with
a certain screw axis and a certain pitch (this includes as special cases pure
translation and pure rotation). The infinitesimal displacement of an arbitrary
body-fixed point is directed along the helix through this point. Every line
perpendicular to the helix is a complex line of the linear complex with this
screw axis and with this pitch (see the comment on Fig. 2.5). From this it
follows that the normals to the five surfaces at the points Pi (i = 1, . . . , 5) are
complex lines. Let ri (i = 1, . . . , 5) be the position vectors of the points Pi

in a reference basis fixed on the frame. In this basis the normals have Plücker
vectors vi = ni and wi = ri × ni (i = 1, . . . , 5) . From five independent
complex lines the vectors a and b of a linear complex (a ;b) are determined
by Eqs.(2.38):

wi · a+ vi · b = 0 (i = 1, . . . , 5) . (4.6)

The screw axis has the direction of a . The location of the screw axis and the
pitch are determined by (2.29):

u =
a× b

a2
, p =

a · b
a2

. (4.7)

From these facts it follows that the defect d of the coefficient matrix in (4.6)
is the quantity determining the degree of freedom f = 1 + d of the joint.

An engineering realization of the constraint of a body to five surfaces is
shown in Fig. 4.2 . The body, now called platform, is connected to a frame
by five rods with spherical joints at both ends. Each surface is a sphere with
the rod length as radius. The axes of the five rods are the complex lines. The
platform on five rods finds an important engineering application in the five-
point wheel suspension system for cars shown in Fig. 4.3 . The platform is the
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Fig. 4.2 Platform mounted

on five rods with spherical
joints at both ends

Fig. 4.3 Five-point wheel sus-

pension system

carrier of the wheel, and the frame is the car body. A single spherical joint
on the car body is operated by the steering mechanism. When the steering
is held fixed, the carrier has a single degree of freedom. Springs connecting
the carrier with the car body allow small carrier displacements only. These
displacements are screw displacements.

The screw displacement of a platform can be made visible by the following
experiment. Instead of mounting the platform on rigid rods it is suspended
by five mutually skew inextensible strings in such a way that an equilibrium
position exists in which the weight of the platform keeps all strings tight.
A small perturbation causes the platform to oscillate about the equilibrium
position. This oscillation is a screw motion about the axis and with the pitch
determined by (4.6) and (4.7).

If the rods in Fig. 4.2 are counted as bodies, the entire system is composed
of n = 7 bodies (fixed frame, platform and five rods) and of m = 10 spherical
joints each having the joint degree of freedom f = 3 . With these numbers
Grübler’s formula (4.1) yields for the degree of freedom of the mechanism the
result F ′ = 6(n−1−m)+d+mf = 6+d . Since every rod has the degree of
freedom of rotation about its own axis, the degree of freedom of the platform
is F = F ′ − 5 = 1 + d as before.

To a platform mounted on five rods additional rods can be added in such a
way that, in the assembly position, all rods are lines of a single linear complex.
In this position then, the degree of freedom of the platform is F = 1 . In
general, it is not possible to move the platform into another position. The
platform is said to be shaky in this position. In exceptional cases a platform
is mounted on more than five rods in such a way that large motions are
possible. This requires an arrangement where every position in the course of
motion satisfies the condition that all rods are complex lines of a single linear
complex. The platform-fixed endpoint of each rod is moving on the sphere
having its center at the other endpoint of the rod. In Sect. 6.8 such systems
are investigated.
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4.2.2 Shaky Truss

In Fig. 4.4a a planar multiloop mechanism with n = 7 bodies (fixed body 0
plus bodies 1, . . . , 6) and with m = 9 revolute joints is shown (the connection
of bodies 2 , 4 and 5 represents two joints). To be determined is the degree
of freedom F .

Fig. 4.4 Planar mechanism with 7 bodies and 9 revolute joints (a) before and (b) after

eliminating rod 6

Solution: Equation (4.2) yields F = d . Hence the degree of freedom is F > 0
only if at least one constraint is dependent. In order to find out whether this
is the case, rod 6 is eliminated and, thereby, a single constraint forcing the
endpoints P16 and P36 to have identical velocity components in the direction
of rod 6 . The mechanism without rod 6 is shown in Fig. 4.4b . If in this
system with degree of freedom F = 1 P16 and P36 have identical velocity
components in the direction of the eliminated rod 6 , this rod 6 is unnec-
essary which means that d = 1 . Velocities are determined with the help of
Theorem 15.3 by Kennedy and Aronhold. The condition to be satisfied is
that the pole P13 is located on the line P16P36 . This pole P13 is found as
intersection of the lines P10P30 and P12P23 . The poles P12 and P23 are
determined as intersections of the lines P10P20 and P14P24 and of the lines
P20P30 and P25P35 , respectively. In the present case, P13 is, indeed, located
on the line P16P36 . However, this is true only in the instantaneous position
of the mechanism. Hence the conclusion: In the position shown the mecha-
nism in Fig. 4.4a has the degree of freedom F = 1 . Neighboring positions
cannot be assumed. In statics the system is called an infinitesimally mobile
or shaky truss. Grübler’s formula and the formula used for checking statical
determinacy of trusses are directly related.
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4.2.3 Closed Chain Formed by Four Planar Four-Bars

The planar system shown in Fig. 4.5 can be interpreted in different ways.
For one thing, it is a multiloop system with m = 12 bodies (the shaded
bodies plus eight rods) and with n = 16 revolute joints each joint having the
individual degree of freedom f = 1 . With these numbers Grübler’s Eq.(4.2)
yields the total degree of freedom F = d+1 . In a much simpler interpretation
each pair of rods interconnecting two shaded bodies constitutes a joint with
the individual degree of freedom f = 1 . In this interpretation the system
consists of bodies 1 , 2 , 3 , 4 and of joints 1 , 2 , 3 , 4 . With these
numbers Grübler’s equation yields F = d+ 1 as before. In joint 1 the link
lengths �1 , r1 , a1 , r2 represent a four-bar. Since the same is true for the
other joints, the mechanism is formed by four coplanar four-bars. The link
of length �1 in four-bar 1 is the fixed link. On this link the x, y reference
system is fixed. The kinematics is analyzed as follows.

The links of lengths �4 and a4 are eliminated and thereby the constraints
on the x, y-coordinates of the endpoints P1, P2, P3, P4 :

(x2−x1)
2+(y2− y1)

2− �24 = 0 , (x4−x3)
2+(y4− y3)

2−a24 = 0 . (4.8)

The resulting system of four-bars 1 , 2 , 3 has the degree of freedom three.
As independent variables the input angles ϕ1 , ϕ2 , ϕ3 of these four-bars are
chosen. Figure 17.1 shows that a four-bar with input angle ϕi can assume
two positions with output angles ψi1 and ψi2 . Their sines and cosines are
determined by (17.12) and (17.11). For four-bar 1 the equations are

Fig. 4.5 Closed chain with planar four-bars 1 , 2 , 3 , 4 connecting bodies 1 , 2 , 3 , 4

cosψ1k =
AC + (−1)kB

√
A2 +B2 − C2

A2 +B2
,

sinψ1k =
BC − (−1)kA

√
A2 +B2 − C2

A2 +B2

⎫⎪⎪⎬
⎪⎪⎭ (k = 1, 2) , (4.9)
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A = 2r2(�1 − r1 cosϕ1) , B = −2r1r2 sinϕ1 ,
C = 2r1�1 cosϕ1 − (r21 + �21 + r22 − a21) .

}
(4.10)

The x, y-coordinates of the points A and B in these two positions are ex-
pressed in terms of �1 , r2 , cosψ1k , sinψ1k and of parameters specifying
body 1 .

The same equations, but with ϕ2 as independent variable and with other
parameters, determine the coordinates of P1 and P3 in the x′, y′-system
shown in the figure. As before, two different solutions exist for every angle
ϕ2 . Transformation from the x′, y′-system into the x, y-system results in
expressions for the x, y-coordinates of P1 and P3 as functions of ϕ1 and
ϕ2 . Next, the x, y-coordinates of P2 and P4 are expressed as functions of
ϕ1 and ϕ3 . With minor modifications the equations are the same as for the
coordinates of P1 and P3 .

The results obtained so far are summarized as follows. Four different sets
of x, y-coordinates of P2 and P4 are known as functions of ϕ1 and ϕ3 , and
four different sets of x, y-coordinates of P1 and P3 are known as functions of
ϕ1 and ϕ2 . Each of the former four sets has to be combined with each
of the latter four sets. Thus, altogether sixteen combinations have to be
investigated. For each combination Eqs. (4.8) are formulated. For at least
one combination the degree of freedom is either F = 1 or F = 2 . It is
F = 1 if for every ϕ1 (in a certain interval) unique real solutions ϕ2 , ϕ3

exist. It is F = 2 if both constraint equations are identical. A combination
has the degree of freedom F = 0 if real solutions ϕ2 , ϕ3 do not exist for
any angle ϕ1 .

4.2.4 Trihedral Plane-Symmetric Bricard Mechanism

The mechanism shown in Fig. 4.6 is a spatial closed chain with six bodies
(fixed body 0 and bodies 1, . . . , 5 ) and with six revolute joints 1, . . . , 6 . The
two joint axes of each body are mutually orthogonal and nonintersecting.
Bodies 0 , 2 and 4 are identical and bodies 1 , 3 and 5 are identical. Fur-
thermore, body 1 is a mirror image of body 0 . In the position shown the
bodies are inscribed in a cube with all joint axes and all common perpen-
diculars of adjacent joint axes aligned along edges of the cube. In this cube
configuration the joint axes 1 , 3 , 5 form a trihedral intersecting at a single
point, and the axes 2 , 4 , 6 form another trihedral. Furthermore, the six
axes display a triple plane-symmetry. They are symmetric with respect to
the plane spanned by the axes 1 and 4 , to the plane spanned by the axes 2
and 5 and to the plane spanned by the axes 3 and 6 .

The kinematics of the mechanism is best understood if a model is avail-
able. It can be produced from cardboard by folding bodies. The angle γ
should be 30◦ . From such a model it is learned that the mechanism has the
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Fig. 4.6 Spatial closed chain with six bodies and six revolute joints

degree of freedom F = 1 . Moreover, the axes 1 , 3 , 5 and 2 , 4 , 6 are
permanently forming two trihedrals and also the triple plane-symmetry is
preserved. These experimental results are confirmed by the following kine-
matics analysis (Wittenburg [7, 8]).

Equation (4.1) yields F = d . Hence a degree of freedom F > 0 exists only
if at least one constraint is dependent. According to Grübler’s formula there
are altogether 30 constraints in the altogether six joints. It is not necessary to
analyze this system of constraints. The kinematics analysis is much simpler
if the joint between bodies 0 and 5 is cut. This results in a serial open chain
with five joints. For this chain Grübler’s formula (4.3) yields the degree of
freedom F = 5 . Reconstitution of the cut joint introduces five constraints.
These are the constraints which have to be analyzed. This is done as follows.
On each body i (i = 0, . . . , 5) a body-fixed basis ei is defined. In Fig. 4.6
only basis e0 is shown. In the cube configuration of this figure all body-fixed
bases are aligned parallel. The locations of the origins are without interest.
Three of the five constraint equations express the fact that, independent of
rotation angles in the joints, the chain of vectors leading from the point P on
body 0 along body edges to the coincident point P on body 5 is closed. This
is the vector equation

−e02 − e13 + e21 + e32 + e43 − e51 = 0 . (4.11)

Two more constraint equations express the fact that the vectors e51 and e52
are both orthogonal to e03 :

e51 · e03 = 0 , e52 · e03 = 0 . (4.12)

In order to obtain five scalar constraint equations the vectors must be de-
composed in a common basis. For this purpose joint variables are defined as
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follows. In joint i (i = 1, . . . , 5) ϕi is the rotation angle of body i relative
to body i − 1 . Sign convention: ϕ1 , ϕ2 , ϕ3 are positive and ϕ4 , ϕ5 are
negative in the case of a right-handed rotation about the basis vector in the
respective joint axis. In the cube configuration all angles are zero. Let Ai be
the transformation matrix for joint i defined by the equation ei = Ai e

i−1 .
With the abbreviations ci = cosϕi , si = sinϕi these matrices are

A1 = A2 = A3 = A4 = A5 =⎡
⎣ 1 0 0
0 c1 s1
0 −s1 c1

⎤
⎦ ,

⎡
⎣ c2 0 −s2

0 1 0
s2 0 c2

⎤
⎦ ,

⎡
⎣ c3 s3 0
−s3 c3 0

0 0 1

⎤
⎦ ,

⎡
⎣ 1 0 0
0 c4 −s4
0 s4 c4

⎤
⎦ ,

⎡
⎣ c5 0 s5

0 1 0
−s5 0 c5

⎤
⎦ .

(4.13)
The coordinate transformations for (4.11) and (4.12) are simplest if all vectors
are decomposed either in basis e2 or in e3 . With e3 (4.11) takes the form

A3A2A1

⎡
⎣ 0
−1
0

⎤
⎦+A3A2

⎡
⎣ 0

0
−1

⎤
⎦+A3

⎡
⎣ 1
0
0

⎤
⎦+

⎡
⎣ 0
1
0

⎤
⎦+AT

4

⎡
⎣ 0
0
1

⎤
⎦+AT

4 AT
5

⎡
⎣−1

0
0

⎤
⎦ =

⎡
⎣ 0
0
0

⎤
⎦ .

(4.14)

These equations are

c3[1 + s2(1− s1)]− s3c1 − c5 = 0 , (4.15)

s3[1 + s2(1− s1)] + c3c1 − s4(1− s5)− 1 = 0 , (4.16)

c2(1− s1) − c4(1− s5) = 0 . (4.17)

Also the scalar products in (4.12) are expressed in terms of vector coordinates
in e3 . This yields the equations

c5(−c3s2c1 + s3s1) + s5[s4(s3s2c1 + c3s1) + c4c2c1] = 0 , (4.18)

c4(s3s2c1 + c3s1)− s4c2c1 = 0 . (4.19)

From experimenting with the cardboard model it is learned that in every
position of the mechanism the constraint equations are satisfied:

ϕ3 = ϕ1 , ϕ5 = ϕ1 , ϕ4 = ϕ2 . (4.20)

When this is substituted, (4.15) – (4.19) become

c1(s1 + s1s2 − s2) = 0 ,
(s1 − 1)(s1 + s1s2 − s2) = 0 ,

0 = 0 ,
c1(1 + s1 + s1s2)(s1 + s1s2 − s2) = 0 ,

c1c2(s1 + s1s2 − s2) = 0 .

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.21)

These equations are satisfied if s1 + s1s2 − s2 = 0 . This is the equation

sinϕ2 =
sinϕ1

1− sinϕ1
. (4.22)



148 4 Degree of Freedom of a Mechanism

In addition to (4.20) this constitutes a fourth independent constraint equa-
tion. There are no other independent constraint equations. Hence the mech-
anism is overconstrained with the degree of freedom F = 1 . As independent
variable the angle ϕ1 is chosen.

Remark: The constraint Eqs.(4.20) can be found without making experiments
as follows. Multiply (4.16) by c1c4 , (4.17) by −c1s4 , (4.19) by −(1− s1)
and add. Simple reformulation followed by division through c4 results in an
equation relating ϕ3 to ϕ1 :

(1− s1)c3 = (1− s3)c1 . (4.23)

The equation has the solutions ϕ3 = ϕ1 and ϕ3 = π/2 . Only the first
solution is useful. This is the first Eq.(4.20). Because of the equal character
of all bodies and of all joints and because of the definitions of joint angles this
equation holds true if the indices are increased by 1 and by 2 . This yields
the other two constraint equations ϕ4 = ϕ2 and ϕ5 = ϕ3 . End of remark.

The relationship (4.22) is illustrated in the diagram of Fig. 4.7 . Because
of the conditions | sinϕ1,2| ≤ 1 the angles are restricted to the intervals
−210◦ ≤ ϕ1 ≤ +30◦ and −30◦ ≤ ϕ2 ≤ +210◦ . Motion in these intervals is
possible without collision of neighboring bodies if the angle γ shown in Fig.
4.6 is γ ≤ 30◦ . The mechanism can undergo a continuous twisting motion
similar to an elastic ribbon.

Differentiation of (4.22) with respect to time yields the relationship be-
tween angular velocities:

ϕ̇2 = ϕ̇1
cosϕ1

(1− sinϕ1)2 cosϕ2
= ϕ̇1

cosϕ1

(1− sinϕ1)
√
1− 2 sinϕ1

. (4.24)

Differentiating one more time produces for the angular acceleration the ex-
pression

Fig. 4.7 Relationship between ϕ1 and ϕ2 in Fig. 4.6
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ϕ̈2 = ϕ̈1
cosϕ1

(1− sinϕ1)
√
1− 2 sinϕ1

+ ϕ̇2
1

2− 2 sinϕ1 − sin2 ϕ1

(1− sinϕ1)(1− 2 sinϕ1)3/2
. (4.25)

The mechanism is highly special. A mechanism having two trihedrals of
permanently intersecting axes need not be plane-symmetric, and a plane-
symmetric mechanism need not be trihedral. Bricard [1] discovered a five-
parametric family of trihedral mechanisms and an eight-parametric family of
plane-symmetric mechanisms. These mechanisms are analyzed in Sects. 6.4.2
and 6.4.3 .

4.2.5 Line-Symmetric Bricard Mechanism

The mechanism shown in Fig. 4.8 is another spatial closed chain with six
bodies (fixed body 0 and bodies 1, . . . , 5) and with six revolute joints 1, . . . , 6
(thick lines). The two joint axes of each body are mutually orthogonal and
intersecting. In the position shown the axes are edges of a cube (dashed
lines). The name of the mechanism points to the fact that the six joint axes
are pairwise symmetric with respect to a line (pairs 1 and 4 , 2 and 5 ,
3 and 6 ). In the cube configuration the line of symmetry is identified as
follows. Draw in the square at the bottom of the cube the diagonal through
P and give this diagonal a vertical translation by half the side length of the
cube. It is obvious that a 180◦-rotation about the line thus defined carries
joint axis i ( i = 1, 2, 3) into the position originally held by joint axis i+ 3 .

A kinematics analysis is found in Pandrea [5]1. For checking results it is
helpful to have a model made of six identical pieces of cardboard.

Fig. 4.8 Spatial closed chain with six bodies and six revolute joints

1 Pandrea attributes the mechanism to Franke. In a private communication P. Dietmaier
pointed out that R. Franke: Vom Aufbau der Getriebe, v.2 (1951) Deutscher-Ingenieur-

Verlag Düsseldorf shows, without kinematics analysis, a line-symmetric mechanism in
which the joint axes on the bodies are skew.
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Equation (4.1) yields F = d . Hence a degree of freedom F > 0 exists only if
at least one constraint is dependent. Constraint equations are formulated by
a method similar to the one used in the previous section. On each body i (i =
0, . . . , 5) a body-fixed basis ei is defined. In Fig. 4.8 only basis e0 is shown.
In the position shown in this figure all body-fixed bases are aligned parallel.
Three of the five constraint equations express the fact that, independent of
rotation angles in the joints, the chain of vectors leading from the point P on
body 0 along body edges to the coincident point P on body 5 is closed. This
is the constraint equation

e01 + e13 − e21 − e32 − e43 + e52 = 0 . (4.26)

Let Ai be the transformation matrix in the relationship ei = Aie
i−1 (i =

0, . . . , 5 cyclic). The matrices satisfy the constraint equation
A6A5A4A3A2A1 = I or

A3A2A1 = (A6A5A4)
T . (4.27)

Every matrix Ai is a function of the rotation angle ϕi of the respective
joint i . Definition: ϕi is the rotation angle of body i relative to body i− 1
(i = 1, . . . , 5) and of body 0 relative to body 5 in the case i = 6 . Sign
convention: ϕ1 , ϕ2 , ϕ4 are positive and ϕ3 , ϕ5 , ϕ6 are negative in the
case of a right-handed rotation about the basis vector in the respective joint
axis. In the configuration shown in the figure all angles are zero. With the
abbreviations ci = cosϕi , si = sinϕi the matrices are

A3 =

⎡
⎣ 1 0 0

0 c3 −s3
0 s3 c3

⎤
⎦ , A2 =

⎡
⎣ c2 s2 0

−s2 c2 0
0 0 1

⎤
⎦ , A1 =

⎡
⎣ 1 0 0

0 c1 s1
0 −s1 c1

⎤
⎦ ,

A6 =

⎡
⎣ c6 0 s6

0 1 0

−s6 0 c6

⎤
⎦ , A5 =

⎡
⎣ c5 −s5 0
s5 c5 0

0 0 1

⎤
⎦ , A4 =

⎡
⎣ c4 0 −s4

0 1 0

s4 0 c4

⎤
⎦ .

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(4.28)

With these expressions (4.27) becomes⎡
⎣ c2 c1s2 s1s2
−s2c3 c1c2c3 + s1s3 s1c2c3 − c1s3
−s2s3 c1c2s3 − s1c3 s1c2s3 + c1c3

⎤
⎦

=

⎡
⎣ c4c5c6 + s4s6 c4s5 −c4c5s6 + s4c6
−s5c6 c5 s5s6
−s4c5c6 + c4s6 −s4s5 s4c5s6 + c4c6

⎤
⎦ . (4.29)

Following Pandrea the identity of matrix elements is formulated. The ele-
ments (1,2) and (2,1) yield the equations c1s2 = c4s5 and c3s2 = c6s5 .
They are satisfied with

c4 = c1 , s5 = s2 , c6 = c3 , (4.30)
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but also with c4 = −c1 , s5 = −s2 , c6 = −c3 . In either case the signs of
s4 , c5 and s6 are still unknown. The calculations to come reveal that the
pairwise identity of all matrix elements is possible only if Eqs.(4.30) are valid
in combination with

s4 = −s1 , c5 = c2 , s6 = −s3 . (4.31)

Hence
ϕ4 = −ϕ1 , ϕ5 = ϕ2 , ϕ6 = −ϕ3 . (4.32)

After substituting (4.30) and (4.31) into (4.29) the pairwise identity of the
matrix elements (1,1) and (3,1) is formulated. This produces the equations

c1c2c3 +s1s3 = c2 ,
s1c2c3 +(s2 − c1)s3 = 0 .

}
(4.33)

Resolving for c3 and s3 results in

c3 =
c1 − s2
1− c1s2

, s3 =
s1c2

1− c1s2
. (4.34)

By substituting these expressions the pairwise identity of all matrix elements
in (4.29) is verified.

Next, (4.26) is decomposed in basis e3 . Using, for the moment, in (4.28)
only (4.30) and (4.31) this decomposition produces the equations

c2 + c1s2 = 1− s1 , (4.35)

c2 − c3s2 = 1 + s3 , c3 − s2s3 = c1 − s1s2 . (4.36)

When in (4.36) c3 and s3 are replaced by the expressions (4.34), these two
equations are satisfied if (4.35) is satisfied. This proves the existence of a single
dependent constraint. Thus, the mechanism is an overconstrained mechanism
with the degree of freedom F = 1 . Equation (4.35) has two solutions

c2k =
1− s1 + (−1)kc1

√
1 + 2s1(1− s1)

1 + c21
,

s2k =
c1(1− s1)− (−1)k

√
1 + 2s1(1− s1)

1 + c21

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (k = 1, 2) . (4.37)

With each solution Eqs.(4.34) yield the corresponding solution ϕ3k . Equa-
tions (4.32) yield the remaining angles. The two pairs of solutions ϕ3 , ϕ2

are related through the equations

ϕ3k = ϕ2j −
π

2
(k, j = 1, 2 ; k �= j ) . (4.38)
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This is proved by substituting (4.37) into (4.34) and by verifying that c3k =
s2j and s3k = −c2j .

The square root in (4.37) is zero for s1 = (1 − √
3)/2 , i.e. for ϕmin ≈

−21, 5◦ and for ϕmax ≈ π + 21, 5◦ . Only if ϕ1 is in the interval between
these bounds, the angle ϕ2 is real. At the bounds the solution is c2 =

√
3−1 .

This determines the angles ϕ2 ≈ ±42, 9◦ . In the diagram in Fig. 4.9 ϕ2k

and ϕ3k (k = 1, 2) are shown as functions of ϕ1 . The mechanism can be
assembled in two configurations. The change from one configuration to the
other is achieved by opening and re-closing a single joint in such a way that
body-fixed vectors along the opened joint axis have equal directions after if
they have equal directions before. In Fig. 4.8 the first configuration is shown
for the variable ϕ1 = 0 with ϕ2 = . . . = ϕ5 = 0 . In the second configuration
ϕ1 = 0 is associated with ϕ3 = −π/2 , ϕ4 = 0 , ϕ2 = ϕ5 = ϕ6 = π/2 . This
configuration is shown in Fig. 4.10a . It is possible to open and to re-close
a single joint in such a way that the said body-fixed vectors along the joint
axis reverse their relative orientation. However, this re-closing is possible in a
single position only in which the system is then rigid. This position is shown
in Fig. 4.10b .

Fig. 4.9 Angles ϕ2k and ϕ3k
(k = 1, 2) as functions of ϕ1

Fig. 4.10 Second mobile configuration (a) and rigid
configuration (b)

Angular velocities: From (4.32) and (4.38) it follows that ϕ̇4 = −ϕ̇1 , ϕ̇5 =
ϕ̇2 , ϕ̇6 = −ϕ̇3 and ϕ̇3k = ϕ̇2j (k, j = 1, 2 ; k �= j ) . Therefore, it suffices
to express ϕ̇2 in terms of ϕ̇1 and ϕ1 . Implicit differentiation of (4.35) in
combination with (4.37) yields

ϕ̇2k = ϕ̇1
s1s2k − c1
c1c2k − s2k

= −ϕ̇1
(−1)k c1(2− s1) + s1

√
1 + 2s1(1− s1)

(1 + c21)
√

1 + 2s1(1− s1)
(k = 1, 2) . (4.39)
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The mechanism is a very special case of a nine-parametric family of line-
symmetric Bricard mechanisms. These mechanisms are analyzed in Sect.
6.4.1.

4.2.6 Homokinetic Shaft Coupling

The mechanism shown in Fig. 4.11 is a spatial simple closed chain S1R1S2R2

with an additional revolute joint R3 . The parameters are such that, in the
position shown, the closed chain is symmetric with respect to the plane Σ
which is bisecting the angle between links 1 and 2 (referred to as shafts 1
and 2 ) and containing S1 , S2 and the point of intersection A of the revolutes
R1 and R2 (in the figure Σ is normal to the plane of the drawing). For the
entire mechanism with five bodies 0, . . . , 4 and with five joints Grübler’s
Eq.(4.4) yields the degree of freedom F = 3 . Shaft 2 is free to change its
direction in space as is indicated by arrows. In addition, shaft 1 is free to
rotate about its longitudinal axis (angle of rotation ϕ1 ). In every position
of the mechanism the closed chain is symmetric with respect to the plane
Σ bisecting the angle between shafts 1 and 2 and containing S1 , S2 and
A . When the direction of shaft 2 is fixed, Σ is fixed independent of ϕ1 .
Permanent symmetry with respect to a fixed plane Σ has the consequence
that both shafts have identical angular velocities: ϕ̇2 ≡ ϕ̇1 . The results are
summarized as follows. The plane-symmetric closed chain is a shaft coupling
characterized by the properties

(A) the axis of shaft 2 is free to change its direction during operation
(B) ϕ̇2/ϕ̇1 ≡ 1 independent of ϕ1 in every position of shaft 2 held fixed.

Shaft couplings having these two properties are called homokinetic. The com-
bination of these properties is essential in many engineering systems. A typ-

Fig. 4.11 Homokinetic shaft coupling with a plane-symmetric closed chain S1R1S2R2
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ical example is the coupling between front wheel and drive shaft in a front-
wheel driven automobile. The coupling must have property (A) since the
direction of the wheel axis is changing due to steering maneuvers and to dy-
namic processes in the suspension system. Property (B) is necessary in order
to prevent resonance vibrations in the car. The well-known Hooke’s joint is
a shaft coupling having property (A), but not property (B). Its ratio ϕ̇2/ϕ̇1

is a π -periodic function of ϕ1 . Only its mean value is 1 . This is shown in
Sect. 13.1 . In the power train of a car such a source of vibrations with a fre-
quency proportional to the speed of the car is unacceptable. It was the need
for cars with front-wheel drive which triggered the development of compact
and reliable homokinetic shaft couplings. See Sect. 13.4 for a more general
theory.

4.2.7 Mobile Tilings

In Fig. 4.12a Q is a convex quadrilateral of arbitrary nonparallelogram-
shape. By 180◦-rotations about the midpoints of its sides four congruent
quadrilaterals are produced. Let Q′ be one of them, and let t1 and t2
be the two diagonals as shown. By repeated translations t1 and t2 of the
hexagon composed of Q and Q′ the infinite plane is filled with congruent
quadrilaterals without gaps and overlaps. The individual quadrilateral is re-
ferred to as tile, and the plane-filling pattern is called tiling. The tiling is
invariant with respect to periodical translations with t1 , t2 , t1 + t2 and
t1−t2 . It is also invariant with respect to 180◦-rotations about the midpoints
of sides of quadrilaterals.

Remark: All statements made up to this point are valid also for parallel-
ograms and for nonconvex quadrilaterals. They are also valid in the much
more general case when each side of Q is replaced by an arbitrary centrally
symmetric curve. More about tilings is found in Sect. 14.6.

Kokotsakis [4] recognized that a tiling made of convex quadrilaterals of
arbitrary nonparallelogram-shape is a 1-d.o.f. mechanism if all quadrilaterals
are rigid bodies and all sides revolute joints.
Proof (Stachel [6]): The shaded area in Fig. 4.12b is a cluster of four con-
gruent quadrilaterals Q1 , Q2 , Q3 , Q4 grouped around center 01 . In what
follows, it is referred to as cluster 1 . When it is isolated from the surround-
ing quadrilaterals, it represents a spherical four-bar with constant angles α1 ,
α2 , α3 , α4 and with axes along unit vectors n1 , n2 , n3 , n4 pointing away
from 01 . Notation: αi (i = 1, 2, 3, 4) is the internal angle of Qi at 01 . The
variable angle of rotation of Qi relative to Qi−1 about ni is called ϕi

(i = 1, 2, 3, 4 cyclic; ϕi = 0 in the planar position). This is the notation used
in Fig. 18.1a . For a given angle ϕ1 the spherical four-bar can assume two
positions. Two solutions ϕ4 as functions of ϕ1 are determined by Eqs.(18.2),
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Fig. 4.12 Tiling with irregular convex quadrilaterals (a) and clusters of four quadrilat-

erals (b)

(18.3). With cyclic permutations of indices the same equations relate other
pairs of neighboring angles so that also ϕ2 and ϕ3 are determined as func-
tions of ϕ1 . If (ϕ1 , ϕ2 , ϕ3 , ϕ4 ) is a solution then, because of the symmetry
to the plane, also (−ϕ1 , −ϕ2 , −ϕ3 , −ϕ4 ) is a solution. In what follows,
ϕ1 > 0 is assumed. The equations reveal the following facts. If α4 is the
largest of the four angles α1 , α2 , α3 , α4 , as is the case in the figure,
ϕ1 , ϕ2 , ϕ4 > 0 and ϕ3 < 0 in one position and
ϕ1 , ϕ3 , ϕ4 > 0 and ϕ2 < 0 in the other position.
These results are easily verified experimentally by folding a circular piece of
paper along four radii having the directions of n1 , n2 , n3 , n4 (the four
sectors should be made very stiff). It is also apparent that the cluster is
immobile if the quadrilateral is nonconvex.

In what follows, it is assumed that in Fig. 4.12b the shaded cluster 1
is shown deformed in one of its two possible modes (ϕ1 , ϕ2 , ϕ3 , ϕ4) with
ϕ1 arbitrary. Let �i denote the tensor of the 180◦-rotation about the axis
through the midpoint of the edge common to Qi and Qi−1 which is (i)
normal to ni and (ii) bisecting the angle π − ϕi (i = 1, 2, 3, 4 cyclic ). The
rotation �i transforms Qi into Qi−1 and vice versa since a 180◦-rotation
equals its inverse. The short-hand notation of these relationships is

Q1 = �1Q4 , Q4 = �1Q1 = �1�2Q2 ,

Q3 = �4Q4 , Q4 = �4Q3 = �4�3Q2

}
(4.40)

and, consequently,
�4�3 = �1�2 . (4.41)

By applying �1 to the entire cluster 1 the overlapping congruent cluster 2
with center 02 and with new quadrilaterals �1Q2 and �1Q3 is obtained.
Likewise, applying �4 to cluster 1 the overlapping congruent cluster 4 with
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center 04 and with new quadrilaterals �4Q1 and �4Q2 is obtained. Proposi-
tion: The three quadrilaterals �1Q2 , Q4 and �4Q2 are obtained by subject-
ing Q1 , Q2 and Q3 , respectively, to the rotation �2 followed by the rotation
�1 , i.e., �1Q2 = �1�2Q1 , Q4 = �1�2Q2 , �4Q2 = �1�2Q3 . Proof: The first
equation is true since Q2 = �2Q1 . The second equation is one of Eqs.(4.40).
The third equation follows from �4Q3 = �4�3Q4 in combination with (4.41).
End of proof. From this it follows that the cluster 3 formed by the quadri-
laterals �1Q3 , Q1 , �4Q3 and Q5 with center 03 is also congruent with
cluster 1 and that it is the result of the said rotations. By applying the same
procedure successively infinitely many clusters can be added in all directions,
all clusters being congruent with cluster 1 independent of the deformation
of cluster 1 . This ends the proof of mobility with degree of freedom one.

Taking �1 as example, the 180◦-rotations are expressed analytically as
follows. It suffices to know the angle ϕ1 of the rotation (n1, ϕ1) and the
position vectors ri (i = 1, 2, 3) of the corners 01 , 02 , 03 of Q4 in some
arbitrarily chosen reference system. These data determine the midpoint rA =
(r1 + r2)/2 on the edge and the unit vector n1 = (r2 − r1)/|r2 − r1| of the
rotation (n1, ϕ1) . The auxiliary vector � = r3 − r1 determines the unit
vector e = (�−n1 n1 ·�)/|�−n1 n1 ·�)| in the plane of Q4 and normal to
n1 . The vectors n1 and e and the angle ϕ1 determine the unit vector n
along the axis of the 180◦-rotation �1 :

n = e sin
ϕ1

2
− n1 × e cos

ϕ1

2
. (4.42)

According to (3.17) the relationship between the positions r and r∗ of an
arbitrary point before and after the 180◦-rotation �1 is

r∗ = 2rA − r+ 2nn · (r− rA) . (4.43)

Formulas for the rotations �2 , �3 and �4 are obtained by cyclic permutation
of indices.
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Chapter 5

Spatial Simple Closed Chains

Subject of this chapter is the kinematics of 1-d.o.f. spatial simple closed
chains with axial joints. The simple closed chain is explained in Fig. 4.1b .
Axial joints are the cylindrical joint (C), the revolute joint (R) and the pris-
matic joint (P). Overconstrained mechanisms are excluded from considera-
tion. Then it is known from Theorem 4.1 that a 1-d.o.f. spatial simple closed
chain has seven joint variables. The variable of either one revolute joint or
one prismatic joint is declared independent. The problem to be solved is to
determine the six dependent variables in terms of the independent variable
and of constant mechanism parameters. The solution to this problem is of
great engineering importance because 1-d.o.f. spatial simple closed chains are
basic elements of machine mechanisms.

A simple closed chain is specified by the ordered sequence of letters C ,
R and P of its joints. Neither cyclic permutation of the sequence of letters
nor reversal of the sequence changes the mechanism. Thus, the sequences
RCPRC , CPRCR and CRPCR represent one and the same mechanism
whereas the sequence CCRRP represents a different mechanism with the
same set of joints. The sequence of letters does not tell which joint variable
is considered as independent variable.

Let nC , nR and nP be the numbers of cylindrical, of revolute and of
prismatic joints, respectively. Important characteristic numbers are the total
number nϕ of angular variables, the total number nt of translatory variables
and the total number n of joints and of bodies. These numbers are

nϕ = nC + nR , nt = nC + nP = 7− nϕ , n = nC + nR + nP . (5.1)

The numbers nC , nR and nP are subject to the constraint nϕ + nt =
2nC+nR+nP = 7 and also to the constraint nϕ = nC+nR > 3 because with
three or fewer rotation axes no change of angular positions is possible. An
equivalent formulation is nt = nC+nP ≤ 3 . It expresses the fact that three is
the maximum number of independent translations. Under these constraints
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Table 5.1 Numbers nC , nR , nP , nϕ , n and associated mechanisms. Symmetrical forms

printed boldface. Nϕ and Nt are the numbers of configurations for a given value of the
independent variable in a revolute joint and in a prismatic joint, respectively

nC nR nP nϕ n mechanisms Nϕ Nt

1 3 1 0 4 4 RCCC 2 −
2 2 2 1 4 5 RCPRC, CCPRR, RCPCR 2 4,8,8

3 1 3 2 4 6 RRRPPC, RRRPCP, RPRPCR, RPRCRP, RPRCPR 2 8

4 0 4 3 4 7 RRPPPRR, RPRPRPR, PRRPRRP, RRRPRPP 2 8

5 2 3 0 5 5 RCRCR, CRRRC 4∗), 8 −
6 1 4 1 5 6 RRCRPR, RRCPRR, RRCRRP 8 16

7 0 5 2 5 7 PRRRRRP, RPRRRPR, RRPRPRR 8 16

8 1 5 0 6 6 5R-C 16 −
9 0 6 1 6 7 6R-P 16 16

10 0 7 0 7 7 7R 16 −
∗) Nϕ = 4 configurations exist if (i) the mechanism is RCRCR and (ii) the independent

angle is in one of the underscored revolutes. Nϕ = 8 otherwise

altogether ten combinations of numbers nC , nR and nP are possible. They
are listed in Table 5.1 in the order of increasing numbers nϕ . For each com-
bination the complete list of mechanisms with the respective combination is
given. Whenever possible the letter sequence is shown in a form symmetri-
cal to the central letter. Symmetrical letter sequences are printed boldface.
The numbers Nϕ and Nt in the last columns are results of the kinematics
analysis to come. Nϕ is the number of configurations which a mechanism
has for a given value of the independent angular variable in a revolute joint,
and Nt is the number of configurations which a mechanism has for a given
value of the independent translatory variable in a prismatic joint. The planar
four-bar mechanism is known to have two configurations for a given value of
the input crank angle. The mechanisms in Table 5.1 have two or four or eight
or sixteen configurations.

About the relationship between Nϕ and Nt the following can be said
without any analysis. Let the angular and the translatory variable in a cylin-
drical joint λ be called ϕλ and hλ , respectively. If joint λ is a prismatic
joint, ϕλ is a constant ϕ∗

λ and hλ is variable. If joint λ is a revolute joint,
ϕλ is variable and hλ is a constant h∗

λ . Imagine now two mechanisms I and
II with the only difference that joint λ is a prismatic joint in mechanism I
and a revolute joint in mechanism II . Furthermore, it is assumed that the
independent variables are chosen such that in both mechanisms hλ = h∗

λ

and ϕλ = ϕ∗
λ . Then both mechanisms are identical in this position of their

joint λ . Consequently, both mechanisms have the same sets of solutions for
the six dependent variables. This means that Nt for mechanism I equals
Nϕ for mechanism II . This equality is shown in Table 5.1 . By replacing in
a mechanism of row 2, 3, 4, 6, 7 or 9 a prismatic joint by a revolute joint a
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mechanism of row 5, 6, 7, 8, 9 or 10 , respectively, is produced. The number
Nt for the former equals the number Nϕ for the latter.

Before starting the kinematics analysis joint variables and mechanism pa-
rameters must be defined. This is the subject of the following Sect. 5.1 . Sec-
tion 5.2 is devoted to coordinate transformations of relevant vectors. In Sect.
5.3 on closure conditions basic equations are formulated for the kinematics
analysis. The application of these equations to the mechanisms of Table 5.1
is demonstrated in Sect. 5.4 .

5.1 Joint Variables. Denavit-Hartenberg Parameters

A single-loop mechanism with n bodies has n joints (4 ≤ n ≤ 7). Bodies as
well as joints are labeled from 1 to n in such a way that the joint axes i
and i+ 1 are located on body i (i = 1, . . . , n cyclic). Figure 5.1 shows the
bodies i− 1 , i and i+ 1 together with their joint axes. The most general
case is assumed that the two joint axes of each body are skew. Then the
two joint axes of each body i have a common normal which is fixed on the
respective body i . The joint axis i is, in turn, the common normal of the
thus defined common normals on bodies i−1 and i . On the joint axis i the
dual unit line vector n̂i is defined, and on the common normal of the joint
axes i and i + 1 , i.e., also fixed on body i , the dual unit line vector âi is
defined (i = 1, . . . , n).

The unit line vector n̂i+1 is produced from n̂i by a screw displacement
with âi being the screw axis. As shown in Fig. 5.1 the rotation angle about
the screw axis is called αi and the translation along the screw axis is called
�i . These two constants (positive or negative) are the only kinematical pa-
rameters of body i . Together they define the constant dual screw angle

α̂i = αi + ε�i . (5.2)

In the same way the unit line vector âi is produced from âi−1 by a screw
displacement with the screw axis n̂i and with a dual screw angle

ϕ̂i = ϕi + εhi . (5.3)

Figure 5.1 shows also ϕi and hi . In a cylindrical joint ϕi and hi are joint
variables. In a revolute joint hi is a constant parameter and only ϕi is vari-
able. In a prismatic joint ϕi is a constant parameter and hi is variable. The
constant hi in a revolute joint is referred to as offset. The 4n quantities
αi , �i , ϕi , hi (i = 1, . . . , n) are the so-called Denavit-Hartenberg parame-
ters of the mechanism (see Denavit/Hartenberg [3]). Seven among them are
variables, and 4n − 7 are constant system parameters. The number of con-
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Fig. 5.1 Bodies i−1 , i and i+1 with joint axes. Dual unit line vectors, body parameters

and joint variables

stant system parameters ranges between nine for the mechanism RCCC and
twenty-one for all mechanisms with n = 7 .

The n line vectors hin̂i and the n line vectors �iâi (i = 1, . . . , n) create
a mobile spatial polygon with right angles at every corner. Analyzing the
mechanism means analyzing this polygon.

The assumption that consecutive joint axes i and i + 1 are skew can
now be dropped. If they intersect, then �i = 0 , α̂i = αi , and the unit line
vector âi is along the common normal of the joint axes through their point
of intersection. If the axes of three consecutive revolutes i− 1 , i and i+ 1
intersect at a single point, these axes are equivalent to a spherical joint S
located at this point. Example: The mechanism RRSRR is a special case of
the mechanism 7R .

If two consecutive joint axes i and i + 1 are parallel, then αi = 0 . The
common normal to the joint axes can be placed such that either hi = 0 or
hi+1 = 0 .

5.2 Screw Displacements. Coordinate Transformations

This section is devoted to screw displacements in the mobile spatial poly-
gon spanned be the line vectors hin̂i and �iâi (i = 1, . . . , n). The screw
displacements relating n̂i to n̂i+1 and âi+1 to âi are described by the
equations

n̂i+1 = n̂i cos α̂i+âi×n̂i sin α̂i , âi = âi−1 cos ϕ̂i+n̂i×âi−1 sin ϕ̂i . (5.4)

This is the dualized form of (1.125) which describes the rotation shown in
Fig. 1.5 . For a more compact formulation the following abbreviations are
introduced:
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Ĉi = cos α̂i , Ŝi = sin α̂i , ĉi = cos ϕ̂i , ŝi = sin ϕ̂i (5.5)

(i = 1, . . . , n cyclic) . The equations then read (in the second equation all
indices are increased by one):

n̂i+1 = Ĉin̂i + Ŝiâi × n̂i , âi+1 = ĉi+1âi + ŝi+1n̂i+1 × âi (5.6)

(i = 1, . . . , n cyclic) . On an indeterminate body k of the mechanism a dual
cartesian basis is defined with unit basis vectors

ê1 = n̂k , ê2 = âk , ê3 = n̂k × âk . (5.7)

Equations (5.6) constitute two-step recursion formulas for the coordinate
decomposition of all vectors n̂k+j and âk+j (j = 1, 2, . . .) in this basis.
From âk and n̂k+1

âk+1 = ĉk+1âk + ŝk+1(Ĉkn̂k + Ŝkâk × n̂k)× âk

= ŝk+1Ŝkn̂k + ĉk+1âk + ŝk+1Ĉkn̂k × âk . (5.8)

From âk+1 and n̂k+1

n̂k+2 = Ĉk+1n̂k+1 + Ŝk+1âk+1 × n̂k+1

= (Ĉk+1Ĉk − Ŝk+1Ŝk ĉk+1)n̂k + Ŝk+1ŝk+1âk

−(Ĉk+1Ŝk + Ŝk+1Ĉk ĉk+1)n̂k × âk . (5.9)

In the next step âk+2 and n̂k+3 are calculated by increasing in (5.8) and
(5.9) all indices by one and by substituting for âk+1 and n̂k+2 the previous
formulas. Formulas for n̂k+4 and âk+4 are obtained with the least effort
if in the expressions for n̂k+2 and âk+2 all indices are increased by two.
Example:

n̂k+4 = (Ĉk+3Ĉk+2 − Ŝk+3Ŝk+2ĉk+3)n̂k+2 + Ŝk+3ŝk+3âk+2

−(Ĉk+3Ŝk+2 + Ŝk+3Ĉk+2ĉk+3)n̂k+2 × âk+2 . (5.10)

Into this expression the previously obtained expressions for n̂k+2 and âk+2

are substituted. Every expression thus obtained is linear with respect to every
sine and to every cosine involved. Products sine × cosine of one and the same
angle do not appear.

From the coordinates of the vectors n̂k+j and âk+j (j arbitrary) in the
basis (5.7) the coordinates of n̂k−j and âk−j are obtained by a change
of symbols. This is shown as follows. Inversion of the relationships (5.4) is
achieved by reversing the sign of the dual angle:

n̂i = n̂i+1 cos α̂i − âi × n̂i+1 sin α̂i , âi−1 = âi cos ϕ̂i − n̂i × âi sin ϕ̂i .
(5.11)



164 5 Spatial Simple Closed Chains

With (5.5) these are the equations (in the first equation all indices are de-
creased by one)

n̂i−1 = Ĉi−1n̂i − Ŝi−1âi−1 × n̂i , âi−1 = ĉiâi − ŝin̂i × âi . (5.12)

Comparison with (5.6) reveals: For arbitrary j the coordinates of n̂k+j in
the basis (5.7) become those of âk−j and vice versa if (i) ê1 and ê2 are
interchanged, (ii) j is replaced by −j and (iii) α̂ and ϕ̂ are interchanged.

Table 5.2 contains the coordinates of all vectors n̂k±j and âk±j (k arbi-
trary; j = 0, 1, 2, 3) and of n̂k+4 and âk−4 . The table is used for calculating
sums and products of vectors. It greatly simplifies the kinematics analysis
of simple closed chains in this chapter. In Chap. 6 it is applied to overcon-
strained closed chains and in Chap. 7 to serial chains. When the symbol ˆ
is deleted everywhere, the table gives the coordinates of first Plücker vectors
nk±j and ak±j .

Table 5.2 Vector coordinates in the dual basis with unit vectors ê1 = n̂k , ê2 =
âk , ê3 = n̂k × âk . The three coordinates of each vector are separated by semicolons.
Ĉi = cos α̂i , Ŝi = sin α̂i , ĉi = cos ϕ̂i , ŝi = sin ϕ̂i

n̂k [ 1 ; 0 ; 0 ]

âk [ 0 ; 1 ; 0 ]

n̂k+1 [Ĉk ; 0 ; −Ŝk]

âk−1 [ 0 ; ĉk ; −ŝk]

âk+1 [ŝk+1Ŝk ; ĉk+1 ; ŝk+1Ĉk]

n̂k−1 [Ĉk−1 ; Ŝk−1ŝk ; Ŝk−1ĉk ]

n̂k+2 [Ĉk+1Ĉk − Ŝk+1Ŝk ĉk+1 ; Ŝk+1ŝk+1 ; −(Ĉk+1Ŝk + Ŝk+1Ĉk ĉk+1)]

âk−2 [ŝk−1Ŝk−1 ; ĉk−1ĉk − ŝk−1ŝkĈk−1 ; −(ĉk−1ŝk + ŝk−1ĉkĈk−1)]

âk+2 [ĉk+2ŝk+1Ŝk + ŝk+2(Ŝk+1Ĉk + Ĉk+1Ŝk ĉk+1) ; ĉk+2ĉk+1 − ŝk+2ŝk+1Ĉk+1 ;

ĉk+2ŝk+1Ĉk − ŝk+2(Ŝk+1Ŝk − Ĉk+1Ĉk ĉk+1)]

n̂k−2 [Ĉk−2Ĉk−1 − Ŝk−2Ŝk−1ĉk−1 ; Ĉk−2Ŝk−1ŝk + Ŝk−2(ŝk−1ĉk + ĉk−1ŝkĈk−1) ;

Ĉk−2Ŝk−1ĉk − Ŝk−2(ŝk−1ŝk − ĉk−1ĉkĈk−1)]

n̂k+3

[
Ĉk+2(Ĉk+1Ĉk − Ŝk+1Ŝk ĉk+1) + Ŝk+2[ŝk+2ŝk+1Ŝk

−ĉk+2(Ŝk+1Ĉk + Ĉk+1Ŝk ĉk+1)] ;

Ĉk+2Ŝk+1ŝk+1 + Ŝk+2(ŝk+2ĉk+1 + ĉk+2ŝk+1Ĉk+1) ;

−Ĉk+2(Ĉk+1Ŝk + Ŝk+1Ĉk ĉk+1) + Ŝk+2[ŝk+2ŝk+1Ĉk

+ĉk+2(Ŝk+1Ŝk − Ĉk+1Ĉk ĉk+1)]
]



âk−3

[
ĉk−2ŝk−1Ŝk−1 + ŝk−2(Ŝk−2Ĉk−1 + Ĉk−2Ŝk−1ĉk−1) ;

ĉk−2(ĉk−1ĉk − ŝk−1ŝkĈk−1)

+ŝk−2[Ŝk−2Ŝk−1ŝk − Ĉk−2(ŝk−1ĉk + ĉk−1ŝkĈk−1)] ;

−ĉk−2(ĉk−1ŝk + ŝk−1ĉkĈk−1)

+ŝk−2[Ŝk−2Ŝk−1ĉk + Ĉk−2(ŝk−1ŝk − ĉk−1ĉkĈk−1)]
]

âk+3

{
ĉk+3[ĉk+2ŝk+1Ŝk + ŝk+2(Ŝk+1Ĉk + Ĉk+1Ŝk ĉk+1)]

−ŝk+3

[
Ĉk+2[ŝk+2ŝk+1Ŝk − ĉk+2(Ŝk+1Ĉk + Ĉk+1Ŝk ĉk+1)]

−Ŝk+2(Ĉk+1Ĉk − Ŝk+1Ŝk ĉk+1)
]
;

ŝk+3[Ŝk+2Ŝk+1ŝk+1 − Ĉk+2(ŝk+2ĉk+1 + ĉk+2ŝk+1Ĉk+1)]

+ĉk+3(ĉk+2ĉk+1 − ŝk+2ŝk+1Ĉk+1) ; ĉk+3[ĉk+2ŝk+1Ĉk

−ŝk+2(Ŝk+1Ŝk − Ĉk+1Ĉk ĉk+1)]− ŝk+3

[
Ĉk+2[ŝk+2ŝk+1Ĉk

+ĉk+2(Ŝk+1Ŝk − Ĉk+1Ĉk ĉk+1)] + Ŝk+2(Ĉk+1Ŝk + Ŝk+1Ĉk ĉk+1)
]}

n̂k−3

{
Ŝk−3[ŝk−2ŝk−1Ŝk−1 − ĉk−2(Ŝk−2Ĉk−1 + Ĉk−2Ŝk−1ĉk−1)]

+Ĉk−3(Ĉk−2Ĉk−1 − Ŝk−2Ŝk−1ĉk−1) ; Ĉk−3[Ĉk−2Ŝk−1ŝk

+Ŝk−2(ŝk−1ĉk + ĉk−1ŝkĈk−1)]− Ŝk−3

[
ĉk−2[Ŝk−2Ŝk−1ŝk

−Ĉk−2(ŝk−1ĉk + ĉk−1ŝkĈk−1)]− ŝk−2(ĉk−1ĉk − ŝk−1ŝkĈk−1)
]
;

Ĉk−3[Ĉk−2Ŝk−1ĉk − Ŝk−2(ŝk−1ŝk − ĉk−1ĉkĈk−1)]

−Ŝk−3

[
ĉk−2[Ŝk−2Ŝk−1ĉk + Ĉk−2(ŝk−1ŝk − ĉk−1ĉkĈk−1)]

+ŝk−2(ĉk−1ŝk + ŝk−1ĉkĈk−1)
]}

n̂k+4

{
(Ĉk+3Ĉk+2 − Ŝk+3Ŝk+2ĉk+3)(Ĉk+1Ĉk − Ŝk+1Ŝk ĉk+1)

+Ŝk+3ŝk+3[ĉk+2ŝk+1Ŝk + ŝk+2(Ŝk+1Ĉk + Ĉk+1Ŝk ĉk+1)]

+(Ĉk+3Ŝk+2 + Ŝk+3Ĉk+2ĉk+3)[ŝk+2ŝk+1Ŝk

−ĉk+2(Ŝk+1Ĉk + Ĉk+1Ŝk ĉk+1)] ;

(Ĉk+3Ĉk+2 − Ŝk+3Ŝk+2ĉk+3)Ŝk+1ŝk+1

+Ŝk+3ŝk+3(ĉk+2ĉk+1 − ŝk+2ŝk+1Ĉk+1)

+(Ĉk+3Ŝk+2 + Ŝk+3Ĉk+2ĉk+3)(ŝk+2ĉk+1 + ĉk+2ŝk+1Ĉk+1) ;

−(Ĉk+3Ĉk+2 − Ŝk+3Ŝk+2ĉk+3)(Ĉk+1Ŝk + Ŝk+1Ĉk ĉk+1)

+Ŝk+3ŝk+3[ĉk+2ŝk+1Ĉk − ŝk+2(Ŝk+1Ŝk − Ĉk+1Ĉk ĉk+1)]

+(Ĉk+3Ŝk+2 + Ŝk+3Ĉk+2ĉk+3)[ŝk+2ŝk+1Ĉk

+ĉk+2(Ŝk+1Ŝk − Ĉk+1Ĉk ĉk+1)]
}

âk−4

{
(ĉk−3ĉk−2 − ŝk−3ŝk−2Ĉk−3)ŝk−1Ŝk−1

+ŝk−3Ŝk−3(Ĉk−2Ĉk−1 − Ŝk−2Ŝk−1ĉk−1)

+(ĉk−3ŝk−2 + ŝk−3ĉk−2Ĉk−3)(Ŝk−2Ĉk−1 + Ĉk−2Ŝk−1ĉk−1) ;

(ĉk−3ĉk−2 − ŝk−3ŝk−2Ĉk−3)(ĉk−1ĉk − ŝk−1ŝkĈk−1)

+ŝk−3Ŝk−3[Ĉk−2Ŝk−1ŝk + Ŝk−2(ŝk−1ĉk + ĉk−1ŝkĈk−1)]

+(ĉk−3ŝk−2 + ŝk−3ĉk−2Ĉk−3)[Ŝk−2Ŝk−1ŝk
−Ĉk−2(ŝk−1ĉk + ĉk−1ŝkĈk−1)] ;

−(ĉk−3ĉk−2 − ŝk−3ŝk−2Ĉk−3)(ĉk−1ŝk + ŝk−1ĉkĈk−1)

+ŝk−3Ŝk−3[Ĉk−2Ŝk−1ĉk − Ŝk−2(ŝk−1ŝk − ĉk−1ĉkĈk−1)]

+(ĉk−3ŝk−2 + ŝk−3ĉk−2Ĉk−3)[Ŝk−2Ŝk−1ĉk

+Ĉk−2(ŝk−1ŝk − ĉk−1ĉkĈk−1)]
}

Table 5.2 continued
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5.3 Closure Conditions

Having defined variables and parameters and having established basic rela-
tionships in the mobile spatial polygon of vectors hin̂i + �iâi (i = 1, . . . , n)
we can finally turn to the kinematics problem of this chapter: Determine six
dependent variables of a single-loop mechanism in terms of a single indepen-
dent variable. For this purpose six scalar equations relating the altogether
seven variables are required. Any such equation is called closure condition
because it expresses the closure of the kinematical loop. Closure conditions
are highly nonlinear. Therefore, it is not useful to formulate six fully coupled
equations. It is essential to formulate a set of m < 6 equations for m un-
knowns with m being as small as possible. Once these equations are solved
for the m unknowns it is simple to express the remaining 6−m unknowns
one by one in terms of previously determined unknowns. In the literature
various methods for formulating closure conditions are found:
Yang [40] – [42], Duffy [4] – [8], Duffy/Crane [9], Yuan [44], Yuan/Freuden-
stein/Woo [45], [46], Dukkipati/Soni [13], Dukkipati [14], Soni/Pamidi [35],
Soni [36], Lee [20, 27], Lee/Liang [21] – [24], Liang/Lee/Liao [28], Wo-
ernle [39], Lee/Woernle/Hiller [26], Raghavan/Roth [32], Lee/Roth [25],
Nielsen/Roth [30], Crane/Duffy [2] and others. Many more references are
found in [15]. An historical overview is found in Peisach [31].

In what follows, methods developed by Woernle [39] and Lee [27] are used.
They lead to a minimal set of either m = 1 or m = 2 or m = 4 coupled
equations depending on the type of mechanism. The formulations presented
appeared in Wittenburg [47].

5.3.1 Woernle-Lee Equations

Figure 5.2 shows schematically the polygon of dual-vectors of a single-loop
mechanism. Actually, only the vectors associated with two specific joints
labeled a and b are shown. The rest of the polygon is indicated by dashed
lines. How to choose the joints a and b is explained later. These joints
divide the mechanism into a left segment and a right segment. The ordinary
vector r shown in the figure joins the axes a and b . This vector has two
representations. One as a sum of vectors fixed on bodies of the left segment
and one as a sum of vectors fixed on bodies of the right segment. The vectors
are the primary parts of dual vectors. The two representations are

r =

{−(hbnb + �bab + hb+1nb+1 + . . .+ �a−1aa−1) (left segment)

hana + �aaa + ha+1na+1 + . . .+ �b−1ab−1 (right segment) .
(5.13)
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Fig. 5.2 Segments of a mechanism defined by two joints a and b

In the particular case b = a+ 1 the joints a and b are direct neighbors. In
this case, the vector r in the right segment is r = hana + �aaa . If the axes
a and a+1 are nonparallel, then aa = (1/Sa)(na ×na+1) (see Fig. 5.2). In
this case, (5.13) has the special form

r =

⎧⎨
⎩

−(ha+1na+1 + �a+1aa+1 + . . .+ �a−1aa−1) (left segment)

hana +
�a
Sa

(na × na+1) (right segment) .
(5.14)

In terms of na , nb and r seven scalar quantities F1, . . . , F7 are defined as
follows:

F1 = na · nb , F2 = r · na × nb ,

F3 = na · r , F4 = nb · r ,

F5 = r · np × nq (r from (5.14); p �= q arbitrary) ,

F6 = r2 , F7 = 1
2 (na · nb)r

2 − (na · r)(nb · r)
= 1

2F1F6 − F3F4 .

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(5.15)

The scalars F1 and F2 represent the primary part and the dual part, re-
spectively, of the dual scalar product n̂a · n̂b . The primary part is calculated
with coordinates from Table 5.2 (without the symbol ˆ ). The dual part is
calculated not as product r·na×nb , but as dual derivative of F1 (see (3.50)).
The MAPLE software tool developed by Sinigersky [34] has special routines
for switching back and forth between the ordinary notation cosα , sinα ,
cosϕ , sinϕ and the short-hand notation C, S, c, s . Dual differentiation is
carried out automatically. By combining Table 5.2 with this tool kinematics
equations for mechanisms can be formulated semi-automatically.

Each of the scalar quantities F1, . . . , F7 is expressed in the left segment as
function of variables and in the right segment as another function of variables.
These functions are called F �

k and F r
k (k = 1, . . . , 7). The equality of both

scalars establishes the seven Woernle-Lee equations

F �
k = F r

k (k = 1, . . . , 7) . (5.16)
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These equations have properties which make them useful as closure condi-
tions. The most important properties are the following:
- the parameters ϕa and ϕb do not appear explicitly in any of the equations
F �
k = F r

k (k = 1, . . . , 7). This is a consequence of the fact that each of the
vectors na and nb is fixed on a body of the left segment and also fixed on
a body of the right segment
- the parameters ha and hb do not appear explicitly in the equation
F �
2 = F r

2 . This is a consequence of the fact that this equation is the dual
derivative of the equation F �

1 = F r
1 .

From these properties the following criteria for choosing the joints a and
b are derived. The joint combination ab is
- CC in mechanisms with two or three cylindrical joints (rows 1, 2, 5 of Table
5.1)
- CR in mechanisms with one cylindrical joint (rows 3, 6, 8 )
- RR in all other mechanisms
- the angles ϕa and ϕb must be dependent variables.

This choice of joints has the consequence that the maximum possible num-
ber of dependent variables is eliminated from the equations. The properties
of the equations F �

1 = F r
1 and F �

2 = F r
2 can now be stated in more detail as

follows. The equation F �
1 = F r

1 is an equation in terms of angular Denavit-
Hartenberg parameters only. Every sine and every cosine appears in linear
form only. Products sine × cosine of one and the same angle do not appear.

The independent variable is either the angle in a specific revolute joint or
the translatory variable in a specific prismatic joint. Until further below it is
assumed to be an angle. The mechanisms in Table 5.1 have a total number
nϕ of angular variables in the range 4 ≤ nϕ ≤ 7 . With one of them being
independent and with ϕa and ϕb being eliminated the equation F �

1 = F r
1

is an equation for 1 ≤ nϕ − 3 ≤ 4 unknown angular variables.
Unknowns in the equation F �

2 = F r
2 are the same nϕ−3 angular variables

and, in addition, ν translatory variables. The number ν is the difference
between the total number nt = nC + nP of translatory variables and the
number of cylindrical joints among the joints a and b . This formula yields
ν = 1 for the mechanism RCCC and ν = nP for all other mechanisms.
Table 5.1 shows that ν is in the range 0 ≤ ν ≤ 3 . The translatory variables
and the sines and cosines of angular variables appear in linear form only.
The mechanisms in rows 5 , 8 and 10 of Table 5.1 have angular variables
only (ν = 0). For these mechanisms the equation F �

2 = F r
2 has, with other

coefficients, the same form as the equation F �
1 = F r

1 .
Let b be the larger of the indices a and b so that 1 ≤ a < b ≤ n and

b = a+d with d > 0 . Because of the cyclic repetition of the indices 1, . . . , n
the identity holds: b ≡ b − n = a + d − n . With this identity the equation
F �
1 = F r

1 is written in the form

nk · nk+d = nk · nk+d−n (k = a) . (5.17)
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Example: In the case a = 3 , b = 6 , n = 7 , the equation is nk · nk+3 =
nk · nk−4 with k = 3 . The product nk · nk+3 is found in Table 5.2 as first
coordinate of the vector nk+3 with k = 3 . It is a function of ϕ4 and ϕ5 . For
the product nk · nk−4 the vector nk−4 is not found in the table. The table
suffices, however, because the product has the alternative form nk−2 · nk+2

with k = 1 . It is a function of ϕk−1 = ϕ0 ≡ ϕ7 , ϕk = ϕ1 and ϕk+1 = ϕ2 .
For details see the right-hand side of (5.82). End of example.

Mechanisms with nϕ = 4 : Let ϕ1 and ϕλ be the independent and the
dependent angular variable, respectively. The equation F �

1 = F r
1 is

Acλ +Bsλ = R . (5.18)

The coefficients A , B and R are functions of ϕ1 . For every value of ϕ1 the
equation has two (not necessarily real) solutions ϕλ . This is an important
result. It means that the mechanisms in rows 1 to 4 of Table 5.1 have two
different configurations for every value of the independent angular variable.
This is the number Nϕ shown in Table 5.1 .

Dual differentiation of (5.18) produces the equation F �
2 = F r

2 :

(A′ + hλB)cλ + (B′ − hλA)sλ = R′ , (5.19)

where A′, B′, R′ are the dual derivatives of A , of B and of R , respectively.
Since ϕλ is known from (5.18), this equation is a linear equation for ν = 1
or 2 or 3 translatory variables. The mechanisms in rows 1 and 2 of Table
5.1 with ν = 1 are the simplest mechanisms. Equation (5.19) determines the
single translatory variable. For the mechanism RCCC this is shown in detail
in Sect. 5.4.1 .

Mechanisms with nϕ = 5 : These are the mechanisms in rows 5 , 6 and 7
of Table 5.1 . Let ϕλ and ϕμ be the two dependent angular variables. The
equation F �

1 = F r
1 has either the form

A2cλ +B2sλ = A1cμ +B1sμ +R1 (5.20)

or the form

A [ cλcμ cλsμ cλ sλcμ sλsμ sλ cμ sμ 1 ]T = 0 . (5.21)

The coefficients A1 , B1 , R1 , A2 , B2 and the row matrix A are functions of
the independent variable. Equation (5.20) occurs if the joints λ and μ belong
to different segments created by the cylindrical joints, and (5.21) occurs if
they belong to one and the same segment.

Unknowns in the equation F �
2 = F r

2 are the same angles ϕλ and ϕμ and,
in addition, ν = 0 or 1 or 2 translatory variables. For the mechanisms
RCRCR and CRRRC with ν = 0 the equations F �

2 = F r
2 and F �

1 = F r
1
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have identical forms, i.e., either the form (5.20) or the form (5.21). Both
equations together determine ϕλ and ϕμ . Details see in Sect. 5.4.2 .

The mechanisms in rows 6 and 7 of Table 5.1 : It will be seen that the
equation F �

5 = F r
5 has the form (5.21) for the same unknowns ϕλ and ϕμ .

Thus, all mechanisms with nϕ = 5 are governed either by two Eqs.(5.20) or
by two Eqs.(5.21). Once the two unknowns ϕλ and ϕμ are determined the
equation F �

2 = F r
2 represents a linear equation for ν = 1 or ν = 2 unknown

translatory variables.

Mechanisms with nϕ = 6 : The only mechanisms of this type are the mech-
anisms 5R-C and 6R-P . The joints a and b (a cylindrical and a revolute
joint or two revolute joints) are chosen such that two dependent angular vari-
ables are in one segment and the third dependent angular variable together
with the independent variable is in the other. Let ϕλ , ϕμ and ϕν be the
dependent variables. The matrix form of the equation F �

1 = F r
1 is

A [ cν sν ]T = B [ cλcμ cλsμ cλ sλcμ sλsμ sλ cμ sμ 1 ]T . (5.22)

The row matrices A and B are either constant or functions of the indepen-
dent variable. The equation F �

2 = F r
2 for the mechanism 5R-C has the same

form with other coefficient matrices A and B .
In the equation F �

2 = F r
2 for a mechanism 6R-P the unknown translatory

variable of the prismatic joint appears in addition to the three unknown
angular variables. If this translatory variable is called hκ , the equation has
the form

A [ cν sν hκcν hκsν hκ ]T

= B [ cλcμ cλsμ cλ sλcμ sλsμ sλ cμ sμ 1 ]T . (5.23)

Mechanisms with nϕ = 7 : The only mechanism of this type is the mechanism
7R . The joints a and b are chosen such that two dependent angular variables
are in each segment. Let ϕ7 be the independent variable. Then a = 3 , b =
6 is a possible choice. The four dependent variables are ϕ1 , ϕ2 , ϕ4 and
ϕ5 . The equation F �

1 = F r
1 is known already from the example given for

Eq.(5.17). Its matrix form is

A [ c4c5 c4s5 c4 s4c5 s4s5 s4 c5 s5 ]T

= B [ c1c2 c1s2 c1 s1c2 s1s2 s1 c2 s2 1 ]T . (5.24)

The row matrix A is constant, and B is a function of ϕ7 . The equation
F �
2 = F r

2 has the same form with other coefficient matrices A and B . Details
see in Sect. 5.4.7 .

The equations F �
3 = F r

3 and F �
4 = F r

4

Unknowns in these equations are the same 1 ≤ nϕ − 3 ≤ 4 angular variables
which appear in the equations F �

1 = F r
1 and F �

2 = F r
2 and, in addition,
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all translatory variables including ha and hb (constant parameter or vari-
able). In the equations for the mechanisms in rows 3 , 4 , 8 and 9 the total
number of variables is four, so that these two equations together with the
equations F �

1 = F r
1 and F �

2 = F r
2 represent a system of four equations for

four unknowns.
The mechanisms in rows 3 and 4 : The equation F �

1 = F r
1 is Eq.(5.18).

With each of its two solutions the other three equations are coupled linear
equations for three unknown translatory variables.

The mechanisms 5R-C and 6R-P : Unknowns are three angular and one
translatory variable. The equations F �

3 = F r
3 and F �

4 = F r
4 have the form

(5.23), and the equations F �
1 = F r

1 and F �
2 = F r

2 have the form (5.22).
The mechanism 7R : The four unknowns are angular variables. The four

equations F �
k = F r

k (k = 1, 2, 3, 4) have the form (5.24).

The equation F �
5 = F r

5

This equation is formulated only for the mechanisms in rows 6 and 7 of Table
5.1 . These mechanisms have nϕ = 5 angular variables and either n = 6
joints with one cylindrical and one prismatic joint or n = 7 joints with two
prismatic joints. These joints are the only ones with translatory variables.
They are chosen as joints p and q in the expression F5 = r · np × nq . With
(5.14) for r the equation F �

5 = F r
5 is

− (ha+1na+1 + �a+1aa+1 + . . .+ �a−1aa−1 + hana) · (np × nq)

=
�a
Sa

(na × na+1) · (np × nq)

=
�a
Sa

[(na × np) · (na+1 × nq)− (na × nq) · (na+1 × np)] . (5.25)

The vectors hpnp and hqnq are among the vectors indicated by dots. Mul-
tiplication with (np × nq) eliminates the variables hp and hq . The angular
variables in the joints a and a+ 1 are eliminated as well. This means that
only two dependent angular variables appear explicitly. Let them be denoted
ϕλ and ϕμ . Then the equation has the form

A [ cλcμ cλsμ cλ sλcμ sλsμ sλ cμ sμ 1 ]T = 0 . (5.26)

This is, with a different coefficient matrix A , the form of the equation F �
1 =

F r
1 (see (5.21)). In both equations the unknowns ϕλ and ϕμ are the same

if the joints a and b = a+ 1 are the same.
It remains to be shown how to generate the coefficient matrix A in (5.26)

with the help of Table 5.2 . First, the left-hand side of (5.25) is considered.
It is a linear combination of products n� · np × nq (� �= p, q arbitrary)
and a� · np × nq (� �= a arbitrary). Every product is evaluated as (3 ×
3)-determinant of vector coordinates copied from Table 5.2 . The goal is to
formulate the determinant such that the angles ϕa and ϕa+1 do not appear
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explicitly, and that sλ , cλ , sμ , cμ appear in linear form only. This goal is
achieved if the determinant is evaluated in three steps as follows.

Step 1 : To those of the indices � , p and q which are smaller than or
equal to a the number n is added (n = 6 or n = 7). The new indices are
called �′ , p′ and q′ .

Step 2 : The new indices �′ , p′ and q′ are brought into a monotonically
increasing order. One of them is the central index. To this index the name k
is given. The other two indices are k − d1 and k + d2 with d1, d2 ≥ 0 .

Step 3 : The rows of the (3 × 3)-determinant are the coordinates of the
vectors with indices k , k−d1 and k+d2 . These coordinates are copied from
Table 5.2 . The vector with the index k is either nk with the coordinates
[ 1 0 0 ] or ak with the coordinates [ 0 1 0 ] . With either one of these
forms the determinant is reduced to a (2× 2)-determinant. The coordinates
of the vectors with indices k − d1 and k + d2 are linear with respect to
cλ , sλ , cμ and sμ . The variables ϕa and ϕa+1 do not appear.

Example: For a mechanism with n = 7 joints the product a1 · n5 × n6 is
to be expressed such that the variables ϕa and ϕa+1 with a = 4 do not
appear explicitly.

Solution: The given indices are � = 1 < a , p = 5 > a and q = 6 > a .
Hence �′ = �+ n = 8 , p′ = 5 , q′ = 6 . The desired form of the product is

ak+2 · nk−1 × nk︸ ︷︷ ︸
k=6

= S5c6(c1c7 − s1s7C7)− S5s6[c1s7C6 − s1(S7S6 − C7C6c7)] . (5.27)

End of example.

For the left-hand side expression of (5.25) considered so far the desired
form (free of ϕa and ϕa+1 and linear in the sines and cosines of the remaining
three angles) is possible no matter which angle is chosen as ϕa . For the right-
hand side expression this choice is not arbitrary. For both sides the angle
dictated by the right-hand side is chosen. The rule for choosing joint a is
explained, first, for the mechanisms in row 6 with one prismatic joint and
one cylindrical joint. Let the cylindrical joint be joint q . One of the joints a
and a+ 1 must be the cylindrical joint q , and the other must be a revolute
joint with a dependent angular variable. This allocation is possible no matter
in which revolute joint the independent variable is located. In the case a = q ,
the right-hand side of (5.25) is

�a
Sa

(Canp · nq − np · na+1) . (5.28)

In the case a+ 1 = q , the right-hand side of (5.25) is
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− �a
Sa

(Canp · nq − na · np) . (5.29)

In either case Table 5.2 yields an expression with the desired linearity prop-
erties.

Next, the mechanisms with two prismatic joints p and q are considered.
The joints a and a + 1 must be revolute joints with dependent angular
variables, and one of them must be neighbor of a prismatic joint ( p or q ).
This allocation is possible no matter in which revolute joint the independent
variable is located. Since each of the two prismatic joints can be joint p , it
suffices to distinguish whether joint a or joint a+ 1 is neighbor of joint p .
If joint a is neighbor of joint p , then a = p+1 and na×np = −Spap and
na · np = Cp . The right-hand side of (5.25) is

�a
Sa

(−Spap · na+1 × nq − Canp · nq + Cpnq · na+1) . (5.30)

If joint a + 1 is neighbor of joint p , then p = a + 2 and na+1 × np =
−Sa+1aa+1 and np · na+1 = Ca+1 . The right-hand side of (5.25) is

�a
Sa

(Canp · nq − Ca+1na · nq + na × nq · Sa+1aa+1) . (5.31)

In either case Table 5.2 yields an expression with the desired linearity prop-
erties. The products ap · na+1 × nq and na × nq · aa+1 are evaluated as
determinants.

The equations F �
6 = F r

6 and F �
7 = F r

7

These equations are formulated only for the mechanism 7R which has an-
gular variables only. In every scalar product appearing in the expressions for
r2 every sine and every cosine appears in linear form only. Products sine ×
cosine of one and the same angle do not appear. If as joints a and b the
joints 3 and 6 are chosen again, the equation F �

6 = F r
6 has the form (5.24).

Only the coefficient matrices are different.
Surprisingly, also the equation F �

7 = F r
7 has the form (5.24) (with other

coefficient matrices). In spite of the definition F7 = 1
2F1F6 −F3F4 the func-

tions F �
7 and F r

7 are both linear with respect to the sines and cosines of
angles. For the function F r

7 this is proved as follows. With (5.13) for r the
function F r

7 is a linear combination of products hihj , hi�j and �i�j with
a ≤ i, j ≤ b . As an example the coefficient of hihj with i ≤ j is considered.
This coefficient denoted Hij is

Hij = (na · nb)(ni · nj)− (na · ni)(nb · nj)− (na · nj)(nb · ni) (5.32)

= (na × ni) · (nb × nj)− (na · ni)(nb · nj) (a ≤ i ≤ j ≤ b) . (5.33)

The products (na×ni) and (na ·ni) are linear with respect to the sines and
cosines of angles between bodies a and i , and the products (nb × nj) and
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(nb · nj) are linear with respect to the sines and cosines of angles between
bodies b and j . From this follows the linearity of Hij with respect to the
sines and cosines of all angles. For other terms of F r

7 and for F �
7 similar

arguments hold. End of proof.

The discussion of Woernle-Lee equations is summarized as follows.

Mechanisms in rows 1 and 2 of Table 5.1 : The equations with F1 and F2

are formulated. They have the forms (5.18) and (5.19). The first equation
determines two solutions for a single unknown angle ϕλ . With each solution
the second equation is a linear equation for a single translatory variable.

Mechanisms in rows 3 and 4 : The equations with F1 , F2 , F3 and F4 are
formulated. The first equation is Eq.(5.18). It determines two solutions for a
single unknown angle ϕλ . With each solution the remaining three equations
are linear equations for three unknown translatory variables.

Mechanisms in rows 5 , 6, 7 : Two equations are formulated. These are the
equations with F1 and F2 for the mechanisms in row 5 and the equations
with F1 and F5 for the mechanisms in rows 6 and 7 . Both equations
have either the form (5.20) or the form (5.21). These equations are easily
decoupled. Methods of solution see in Sect. 5.4.3 .

Mechanisms 5R-C , 6R-P and 7R : The four equations with F1 , F2 , F3

and F4 determine four unknowns. Without additional equations of another
mathematical form it is impossible to decouple these equations. The necessary
additional equations are the half-angle equations introduced further below.

Up to this point the independent variable was the angle of an arbitrarily
chosen revolute joint. In what follows, it is the translatory variable in an
arbitrarily chosen prismatic joint. This change has the effect that in each
of the seven Woernle-Lee equations the number of unknown angular vari-
ables increases by one whereas the number of unknown translatory variables
decreases by one. The two numbers of unknowns are 2 ≤ nϕ − 2 ≤ 4 and
0 ≤ nP−1 ≤ 2 . For the mechanisms of Table 5.1 this change has the following
effect.

For the mechanisms in rows 2 , 3 and 4 the same equations are formulated
which are formulated for the mechanisms in rows 5 , 6 , 7 with an independent
angular variable. These are the equations with F1 and F2 for the mechanisms
in row 2 and the equations with F1 and F5 for the mechanisms in rows 3
and 4 . Both equations have either the form (5.20) or the form (5.21).

For the mechanisms in rows 6 , 7 and 9 the four equations with F1 , F2 , F3

and F4 determine four unknowns. For the mechanisms in row 6 they are
the same equations which govern the mechanism 5R-C with an independent
angular variable. For the mechanisms in row 7 they are the same equations
which govern the mechanism 6R-P with an independent angular variable.
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For the mechanism 6R-P they are the same equations which govern the
mechanism 7R with an independent angular variable. These relationships
were predicted when Table 5.1 was introduced.

5.3.2 Half-Angle Equations

These equations were first formulated by Lee [27]. Again, Fig. 5.2 is consid-
ered. The ordinary unit vectors nb , ab und nb × ab form an orthogonal
cartesian basis fixed on body b , and the unit vectors nb , ab−1 , nb × ab−1

form another basis fixed on body b − 1 . Temporarily, the abbreviations are
used:

db = nb × ab , d∗
b−1 = nb × ab−1 . (5.34)

The two bases are rotated against each other through the angle ϕb about
the common axis nb . Let v be an arbitrary vector. Its coordinates in the
two bases are related through the matrix equation⎡

⎣v · nb

v · ab
v · db

⎤
⎦ =

⎡
⎢⎣ 1 0 0

0 cosϕb sinϕb

0 − sinϕb cosϕb

⎤
⎥⎦
⎡
⎣v · nb

v · ab−1

v · d∗
b−1

⎤
⎦ . (5.35)

The new variable xb = tanϕb/2 is defined. The expressions cosϕb = (1 −
x2
b)/(1 + x2

b) and sinϕb = 2xb/(1 + x2
b) are substituted into (5.35). In order

to avoid the quadratic term x2
b the equation is premultiplied by the matrix⎡

⎣ 1 0 0
0 xb 1
0 1 −xb

⎤
⎦ . Following this, the identities sinϕb − xb cosϕb = xb and

xb sinϕb + cosϕb = 1 are used. This results in the following equation which
is linear with respect to xb :⎡

⎢⎣ 1 0 0

0 xb 1

0 1 −xb

⎤
⎥⎦
⎡
⎣v · nb

v · ab
v · db

⎤
⎦ =

⎡
⎢⎣ 1 0 0

0 −xb 1

0 1 xb

⎤
⎥⎦
⎡
⎣v · nb

v · ab−1

v · d∗
b−1

⎤
⎦ . (5.36)

The first equation is the identity. The other two are, in terms of the original
vectors in (5.34),

xb v · ab+ v · nb × ab = −xb v · ab−1+ v · nb × ab−1 ,

v · ab− xb v · nb × ab = v · ab−1+ xb v · nb × ab−1 .

}
(5.37)

This pair of equations is formulated with the vectors
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v1 = na , v2 = r , v3 = na×r , v4 =
1

2
r2na−(na ·r)r . (5.38)

The vectors na and r are the ones shown in Fig. 5.2 and in (5.13). In what
follows, it is important that −hbnb is part of r in the left segment, and that
hana is part of r in the right segment.

The scalar products vi · ab and vi · nb × ab on the left-hand side of the
equations are evaluated in the left segment, and the scalar products vi ·ab−1

and vi · nb × ab−1 on the right-hand side of the equations are evaluated in
the right segment. With every vector vi (i = 1, 2, 3, 4) the vector products
in (5.37) are linear with respect to the sines and cosines of all angles involved.

The expressions for r in (5.13) allow the following conclusions (note that
the vector nb×ab is fixed on body b , and that the vector nb×ab−1 is fixed
on body b− 1 ):

1. With all vectors vi (i = 1, 2, 3, 4) all scalar products are independent
of both ϕa and ϕb .

2. The angle ϕb appears in every equation, however, only in the form
xb = tanϕb/2 .

3. With vi = v1 only angular variables appear.
4. With vi = v2 all scalar products are independent of hb . In the products

on the right-hand side ha occurs in linear form.
5. With vi = v3 all scalar products are independent of ha . In the products

on the left-hand side hb occurs in linear form.
6. With vi = v4 both ha and hb occur in first and second-order terms.

These equations are formulated only for the mechanism 7R in which the
parameters h1, . . . , h7 are constant.

For the evaluation of products in (5.37) Table 5.2 is used. The following
facts are helpful. The vector nb × ab fixed on body b has the coordinates
[0 0 1]T in the basis of body b . The vector nb × ab−1 fixed on body b − 1
has the coordinates [Cb−1 0 − Sb−1]

T in the basis of body b− 1 .
The product v3 · ab is formulated with r = r+ hbnb − hbnb :

v3 · ab = −[(r+ hbnb)× na · ab + hbna · nb × ab] . (5.39)

In the second term the previously given coordinates of nb × ab are used. In
the first term the vector r + hbnb joins the dual vectors n̂a and âb (see
Fig. 5.2). From this it follows that the first term represents the dual part of
n̂a · âb . It is calculated as dual derivative of na · ab . Similarly,

v3 · ab−1 = −r× na · ab−1 = −(dual derivative of na · ab−1 ) . (5.40)
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5.4 Systematic Analysis of Mechanisms

The previous section provided equations which are sufficient for the analysis
of all mechanisms of Table 5.1 . In the present section methods for decou-
pling these equations are presented. For each type of mechanism a polyno-
mial equation of minimal order is developed for a single unknown variable.
This minimal order is the maximum number of configurations the mechanism
under consideration can have for a given value of the independent variable.
In these analyses all constant Denavit-Hartenberg parameters are assumed
to be nonzero and arbitrary. As special cases a 7R-mechanism with three
parallel joint axes and a 7R-mechanism with a spherical joint are analyzed.

5.4.1 RCCC

This is the simplest of all mechanisms listed in Table 5.1 . It has the smallest
number of joints (n = 4) and the smallest number of constant parameters
(4n − 7 = 9) . Figure 5.3 shows schematically the mobile polygon with unit
vectors ni and ai (i = 1, 2, 3, 4). The vectors are uniformly directed counter-
clockwise. Joint 1 represents the revolute joint. The variable ϕ1 in this joint
is the independent variable. The six dependent variables are the quantities
ϕi , hi in the cylindrical joints i = 2, 3, 4 . The nine constant parameters are
h1 in joint 1 and the quantities αi , �i of bodies i = 1, 2, 3, 4 .
General remarks on vector polygons of mechanisms: A mechanism with n
joints has a polygon with 2n sides. It can be drawn schematically as a regular
2n-gon with all unit vectors ni and ai (i = 1, . . . , n) pointing counter-
clockwise. A regular 2n-gon has 2n axes of symmetry. Any closure condition
formulated for a specific mechanism remains valid if the labels of its constant
and variable Denavit-Hartenberg parameters are changed according to the

Fig. 5.3 Mechanism RCCC . Polygon with unit vectors ni , ai and Denavit-Hartenberg

parameters αi , 
i , ϕi , hi (i = 1, 2, 3, 4). Joint 1 is the revolute with the independent
variable ϕ1 . The dashed line of symmetry
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symmetry. Symmetry is particularly useful if symmetrically located joints
are of equal type, i.e., CC or RR or PP. In Fig. 5.3 this is the case for the
dashed line of symmetry. Closure conditions remain valid if the quantities
(α1 , �1 , ϕ2 , h2 , α2 , �2) are replaced by (α4 , �4 , ϕ4 , h4 , α3 , �3) and vice
versa. Not every mechanism has such an axis of symmetry, for example not
the mechanism RCPRC .

Also the following is true. Any closure condition formulated for a spe-
cific mechanism remains valid if the labels of its constant and variable
Denavit-Hartenberg parameters are cyclicly increased by an arbitrary inte-
ger λ (±1,±2, . . .) . This means that the two joints a and b on which the
closure condition is founded are replaced by the joints a + λ and b + λ ,
respectively. A cyclic rotation of labels by an integer λ is equivalent to a
symmetry change of labels if the joints a + λ and b + λ are located sym-
metrically to the joints b and a , respectively. Cyclic rotation of labels and
symmetry changes of labels are much simpler than re-formulations of closure
conditions for new joints a and b .

Now back to the mechanism RCCC . Among the three cylindrical joints 2 ,
3 and 4 any two can be chosen as joints a and b . For each pair Eqs.(5.18)
and (5.19) are formulated. The unknowns in these equations are the two
variables of the third cylindrical joint. The first equation is the Woernle-
Lee Eq.(5.17). It is given for only two joint combinations because any other
combination is produced by a cyclic change of indices.

joint combination a = 2 , b = 3 : nk · nk−3 = nk · nk+1

joint combination a = 2 , b = 4 : nk · nk−2 = nk · nk+2

}
k = a . (5.41)

For the joint combination a = 2 , b = 3 Table 5.2 yields the equation

S3[s4s1S1 − c4(S4C1 + C4S1c1)] + C3(C4C1 − S4S1c1) = C2 . (5.42)

This is Eq.(5.18) for ϕ4 :
Ac4 +Bs4 = R . (5.43)

The coefficients depend on ϕ1 :

A = −S3(S4C1 + C4S1c1) , B = S1S3s1 ,
R = C2 − C3(C4C1 − S4S1c1) .

}
(5.44)

Dual differentiation of (5.43) yields Eq.(5.19) for h4 :

h4(Bc4 −As4) = Dc4 + Es4 + F . (5.45)

The coefficients D , E and F are the dual derivatives of −A , −B and R ,
respectively:
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D = −�4S3(S1S4c1 − C1C4) + �1S3(C1C4c1 − S1S4)
+�3C3(S1C4c1 + C1S4)− h1S1S3C4s1 ,

F = �4C3(S1C4c1 + C1S4) + �1C3(C1S4c1 + S1C4)
−�3S3(S1S4c1 − C1C4)− h1S1C3S4s1 − �2S2 ,

E = −s1(�1C1S3 + �3S1C3)− h1S1S3c1 .

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(5.46)

For every value of ϕ1 Eq.(5.43) has two (not necessarily real) solutions ϕ4 .
The associated solutions h4 are determined by (5.45).

Next, equations for ϕ2 and h2 are produced. This is done by increasing
all indices in (5.43) and (5.44) cyclicly by one. Equation (5.43) is replaced by
the equation

S4[s1s2S2 − c1(S1C2 + C1S2c2)] + C4(C1C2 − S1S2c2) = C3 . (5.47)

This is the equation for ϕ2 :

A∗c2 +B∗s2 = R∗ , (5.48)

A∗ = −S2(S1C4 + C1S4c1) , B∗ = S4S2s1 ,
R∗ = C3 − C2(C4C1 − S4S1c1) .

}
(5.49)

The cyclic change of indices in (5.45) and (5.46) is left to the reader. Next,
ϕ3 is determined from (5.41) for the joint combination a = 2 , b = 4 . Table
5.2 yields the equation

C3C2 − S3S2c3 = C1C4 − S1S4c1 . (5.50)

It displays the symmetry of Fig. 5.3 . It determines c3 as a linear function
of c1 . Every value of ϕ1 yields two solutions ±ϕ3 . Dual differentiation of
(5.50) produces for h3 the formula

h3S2S3s3 = h1S1S4s1 + c3(�2C2S3 + �3S2C3) + (�2S2C3 + �3C2S3)

− c1(�1C1S4 + �4S1C4)− (�1S1C4 + �4C1S4) . (5.51)

If h3 is the solution associated with +ϕ3 , −h3 is the solution associated
with −ϕ3 .

The analysis is now complete except for one open problem. For every
value of ϕ1 there exist two solutions (ϕ2, h2) , two solutions (ϕ3, h3) and
two solutions (ϕ4, h4) . What remains to be shown is which of the solutions
ϕ2, ϕ4 occur together with +ϕ3 and which with −ϕ3 . For solving this
problem two closure conditions are needed relating ϕ3 to ϕ4 and ϕ3 to ϕ2 ,
respectively. They are obtained by increasing the indices in (5.43) by two and
by three, respectively. This produces the equations

S1[s2s3S3 − c2(S2C3 + C3S3c3)] + C1(C2C3 − S2S3c3) = C4 , (5.52)
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S2[s3s4S4 − c3(S3C4 + C3S4c4)] + C2(C3C4 − S3S4c4) = C1 . (5.53)

The relationship between ϕ4 and ϕ2 is obtained more easily from (5.50) by
a cyclic increase of indices by one:

C4C3 − S4S3c4 = C2C1 − S2S1c2 . (5.54)

Any two of these equations determine whether numerically calculated angles
ϕ4 and ϕ2 belong to +ϕ3 or to −ϕ3 .

Special Cases: Bennett Mechanism and Spherical Four-Bar
Under certain conditions on the nine constant Denavit-Hartenberg parame-
ters �1 , . . . , �4 , α1 , . . . , α4 and h1 of the mechanism RCCC the translatory
variables h2 , h3 , h4 are constant (actually identically zero) independent of
the angle ϕ1 . This means that the mechanism has four revolute joints and,
yet, a single degree of freedom. It is an overconstrained mechanism. There are
two such special mechanisms. One of them is called Bennett mechanism. It is
the subject of Sect. 6.2 . The other is the spherical four-bar with four revolute
joints the axes of which intersect at a single point. Intersection means that
the Denavit-Hartenberg parameters �1, . . . , �4 and h1 are zero. Equations
(5.46) yield D = E = F ≡ 0 and with this, (5.45) yields h4 ≡ 0 . Dual
differentiation of (5.47) and (5.51) yields h2 ≡ 0 and h3 ≡ 0 . The equa-
tions relating the angular variables ϕ1, . . . , ϕ4 do not change (see (5.43),
(5.44), (5.48), (5.49), (5.50), (5.54)). These results confirm that the spherical
four-bar has a single degree of freedom.

In Fig. 5.4 a spherical four-bar is shown as quadrilateral A0ABB0 the
links 1 , 2 , 3 , 4 of which are arcs of great circles on the unit sphere about the
intersection point 0 of the joint axes. The unit vectors n1, . . . ,n4 along the
axes are pointing away from 0 . The unit vector ai normal to both ni and
ni+1 has the direction of ni × ni+1 (here and in what follows, i = 1, . . . , 4
cyclic). The angle αi is the angle about ai from ni to ni+1 , and ϕi is the
angle about ni from ai−1 to ai (see Fig. 5.1). The angle αi equals the arc
of link i on the unit sphere. Link i is said to have the length αi . At this

Fig. 5.4 Spherical four-bar
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point the kinematics analysis is stopped. It is resumed in Chap. 18.

Final remark: The expressions in (5.42) – (5.46) are moderately complicated.
For mechanisms with up to twenty-one instead of nine constant parameters
much more complicated expressions are generated. In every case the genera-
tion requires only two operations. One is copying terms from Table 5.2 and
the other is calculating dual derivatives. Both operations can be executed by
the MAPLE software tool [34] already mentioned.

5.4.2 RCRCR and CRRRC

These mechanisms have n = 5 joints, 4n− 7 = 13 constant parameters, two
cylindrical joints and nϕ = 5 angular variables. Figures 5.5a and b show
the mobile polygons with unit vectors ni and ai (i = 1, . . . , 5). Each figure
is structurally symmetric with respect to the dashed line.

With the cylindrical joints as joints a and b the equations F �
1 = F r

1 and
F �
2 = F r

2 are formulated. From Sect. 5.3.1 it is known that these equations
relate the angles in the three revolute joints. Two of them are unknown
dependent angles. The equations have the form (5.20) if the unknowns are
located in different segments created by the cylindrical joints, and they have
the form (5.21) if they are located in one and the same segment. The case of
location in different segments occurs if (i) the mechanism is RCRCR and (ii)
the independent angle is in one of the underscored revolutes. This simpler case
is treated first. It is the case of Fig. 5.5a with ϕ1 as independent variable.
The cylindrical joints are the joints 3 and 5 . The equation F �

1 = F r
1 is the

equation nk ·nk+2 = nk ·nk−3 with k = 3 . Table 5.2 yields the explicit form

C4C3 − S4S3c4

= S5[s1s2S2 − c1(S1C2 + C1S2c2)] + C5(C1C2 − S1S2c2) . (5.55)

This is a special form of (5.20):

Fig. 5.5 Polygons with unit vectors for the mechanisms RCRCR (a) and CRRRC (b)
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S3S4c4 = A1c2 +B1s2 +R1 . (5.56)

The coefficients A1 , B1 and R1 depend on ϕ1 :

A1 = S2(C5S1 + C1S5c1) , B1 = −S2S5s1 ,
R1 = C3C4 − C2(C1C5 − S1S5c1) .

}
(5.57)

Dual differentiation yields (5.21):

A4c4 − h4S3S4s4 = A2c2 +B2s2 +R2 . (5.58)

The coefficients are

A4 = �3C3S4 + �4S3C4 , A2 = A′
1 + h2B1 , B2 = B′

1 − h2A1 , R2 = R′
1

(5.59)
with A′

1 , B
′
1 , R

′
1 denoting the dual derivatives of A1 , of B1 and of R1 ,

respectively.
Equations (5.56) and (5.58) are linear equations for c4 and s4 . Substi-

tuting the solutions into the equation c24 + s24 = 1 results in an equation for
ϕ2 of the form

A sin2 ϕ2 +B sinϕ2 cosϕ2 +C sinϕ2 +D cos2 ϕ2 +E cosϕ2 + F = 0 (5.60)

with new coefficients which are functions of ϕ1 . The substitution x =
tanϕ2/2 , cosϕ2 = (1 − x2)/(1 + x2) , sinϕ2 = 2x/(1 + x2) produces
for x the 4th-order equation

x4(D−E+F )+2x3(C−B)+2x2(2A−D+F )+2x(C+B)+D+E+F = 0 .
(5.61)

It has four (not necessarily real) solutions ϕ2 for every value of ϕ1 . This is
the number Nϕ = 4 in Table 5.1 . With every real solution ϕ2 the associated
values c4 and s4 and, thus, ϕ4 are determined from (5.56) and (5.58).

Note: The substitution x = tanϕ2/2 makes sense only if ϕ2 �= π . ϕ2 = π
is a solution if D − E + F = 0 and a double solution if, in addition, also
C−B = 0 . These are the coefficients of x4 and x3 in the polynomial1. In the
case B = C = 0 , (5.60) is quadratic in cosϕ2 , and in the case B = E = 0 ,
it is quadratic in sinϕ2 . In either case the substitution x = tanϕ2/2 is
unnecessary.

The variables ϕ3 , h3 and ϕ5 , h5 in the cylindrical joints are still un-
known. The angles ϕ3 and ϕ5 are determined first as follows. One of the
two half-angle equations (5.37) is formulated with a = 5 , b = 3 and v = n5 .
This is a linear equation for x3 = tanϕ3/2 as the only unknown. The same
equation with a = 3 , b = 5 and v = n3 determines x5 = tanϕ5/2 . Next,

1 Example: The equation 4 sin2 ϕ+ 3 sinϕ cosϕ+ 3 sinϕ+ 2 cos2 ϕ+ cosϕ− 1 = 0
has the solutions ϕ1 = ϕ2 = π . Equation (5.61) is 5x2 +6x− 1 = 0 . It has the solutions
ϕ3 = −π/2 and ϕ4 = −2 tan−1(1/5)
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the unknowns h3 and h5 are expressed in terms of all other variables includ-
ing the previously determined angles ϕ3 and ϕ5 . A single linear equation
for h3 is obtained by formulating one of the half-angle equations (5.37) with
a = 5 , b = 3 and v = r . The same equation with a = 3 , b = 5 and v = r
determines h5 . Note that the vector r depends upon a and b according to
Fig. 5.2 . This concludes the analysis of the mechanism RCRCR with ϕ1 as
independent variable.

Next, ϕ4 is assumed to be the independent variable. In this case, both
Eq.(5.55) and its dual derivative have the form (5.21). With new names for
coefficients they are written in the form

c1 (ai1c2 + ai2s2 + ai3)︸ ︷︷ ︸
Ai

+s1 (bi1c2 + bi2s2 + bi3)︸ ︷︷ ︸
Bi

+(ri1c2 + ri2s2 + ri3)︸ ︷︷ ︸
Ri

= 0

(5.62)
(i = 1, 2) . Equation (5.55) yields, for example, a11 = S5C1S2 , a12 = 0 ,
b11 = 0 , b12 = −S5S2 , r11 = C5S1S2 , r12 = 0 , r13 = C4C3 − S4S3c4 −
C5C1C2 . The two Eqs.(5.62) are solved as linear equations for c1 and s1 :

c1 =
B1R2 −B2R1

A1B2 −A2B1
, s1 = −A1R2 −A2R1

A1B2 −A2B1
. (5.63)

The common denominator and the two numerator expressions contain zero,
first and second-order terms of c2 and s2 . Substitution into the constraint
equation c21+s21 = 1 eliminates ϕ1 . The resulting equation relates ϕ2 to the
independent variable ϕ4 . This is the equation (A1R2 − A2R1)

2 + (B1R2 −
B2R1)

2 − (A1B2 − A2B1)
2 = 0 . It contains zero, first, second, third and

fourth-order terms of c2 and s2 with coefficients which are functions of ϕ4 :

A cos4 ϕ2 +B cos3 ϕ2 sinϕ2 + . . . = 0 . (5.64)

The substitution x = tanϕ2/2 , cosϕ2 = (1−x2)/(1+x2) , sinϕ2 = 2x/(1+
x2) produces for x an 8th-order polynomial equation2. For a given value
of the independent variable ϕ4 it has eight (not necessarily real) solutions
ϕ2 . This is the number Nϕ = 8 in Table 5.1 . For every solution ϕ2 the
corresponding solution ϕ1 is calculated from (5.63).

For the mechanism CRRRC in Fig. 5.5b the same set of Eqs.(5.62) is
obtained. Only the indices of the unknown variables and the coefficients are
different. The details are left to the reader. This concludes the analysis of the
mechanisms RCRCR and CRRRC .

Equations (5.63) require a comment. It may happen that the common
denominator and the two numerator expressions are linear functions of c2
and s2 . This requires that in all three expressions c2s2 has the factor zero,

2 ϕ2 = π is a root of multiplicity n if the highest-order term in the polynomial is x8−n
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and that c22 and s22 have identical factors. For the factors of c2s2 to be zero
the three conditions on the left-hand side below must be satisfied. For the
factors of c22 and of s22 to be identical the three conditions on the right-hand
side must be satisfied.

a11r22 +a12r21 = a21r12 +a22r11 , a11r21 −a21r11 = a12r22 −a22r12 ,
b11r22 +b12r21 = b21r12 +b22r11 , b11r21 −b21r11 = b12r22 −b22r12 ,
a11b22 +a12b21 = a21b12 +a22b11 , a11b21 −a21b11 = a12b22 −a22b12 .

⎫⎬
⎭

(5.65)
Under these conditions the equation (A1R2 − A2R1)

2 + (B1R2 − B2R1)
2 −

(A1B2 − A2B1)
2 = 0 contains only zero, first and second-order terms of c2

and s2 . Hence it does not have the form (5.64), but the form (5.60). This
equation has four solutions for every value of the independent variable. The
mechanism RRSRR analyzed in Sect. 5.5.2 is governed by a set of equations
satisfying the conditions (5.65).

5.4.3 RCPRC , CCPRR and RCPCR . Independent
Variable in the Prismatic Joint

These mechanisms are obtained from the previously investigated mechanisms
RCRCR and CRRRC when one revolute joint is replaced by a cylindrical
joint. The letter sequences are written such that the prismatic joint is joint
3 . The translatory variable h3 in this joint is the independent variable. As
before, the two cylindrical joints are the joints a and b . As before, the clo-
sure conditions F �

1 = F r
1 and F �

2 = F r
2 are formulated and, as before, the

angles ϕλ and ϕμ of two revolute joints are the only unknowns in these
equations. In the mechanism RCPRC the two angles are located in different
segments created by the cylindrical joints, and in the mechanisms CCPRR
and RCPCR they are located in one and the same segment. For the first
mechanism both equations have the form (5.20), and for the other two mech-
anisms they have the form (5.21). The numbers of solution are four for the
former and eight for the latter. These are the numbers Nt given in Table
5.1 . This concludes the analysis.

5.4.4 Mechanisms in Rows 6 and 7 of Table 5.1 .
Independent Variable is an Angle

It was shown that the closure condition F �
1 = F r

1 is Eq.(5.21) with two
unknowns ϕλ and ϕμ , and that the closure condition F �

5 = F r
5 has the

same form (see (5.26)). The unknowns ϕλ and ϕμ are the same in both
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equations if the joints a and b are the same for both equations. The choice
of these joints is dictated by the method for formulating the right-hand side
of (5.26). Both equations are written in the form (5.62). For a given value of
the independent variable the number of solutions is eight since the conditions
(5.65) are not satisfied. This concludes the analysis.

5.4.5 5R-C

This mechanism has n = 6 joints, 4n−7 = 17 constant parameters, nϕ = 6
angular variables and a single translatory variable in the cylindrical joint.
Figure 5.6 shows schematically the mobile polygon with unit vectors ni and
ai (i = 1, . . . , 6). Joint 3 is the cylindrical joint. The dashed line is an axis
of structural symmetry. The vector r shown in the figure is

r =

{−(h3n3 + �3a3 + h4n4 + �4a4 + h5n5 + �5a5) (left segment)

h6n6 + �6a6 + h1n1 + �1a1 + h2n2 + �2a2 (right segment) .
(5.66)

The revolute joint 6 and the cylindrical joint 3 are chosen as joints a and
b , respectively. This has the effect that every closure condition displays the
symmetry.

Let ϕ5 be the independent variable. Then two unknown variables ϕ1

and ϕ2 appear in the right segment and the single unknown variable ϕ4 in
the left segment. First, the closure conditions F �

1 = F r
1 and F �

2 = F r
2 are

formulated. The former is the equation nk · nk+3 = nk · nk−3 with k = 3 .
The scalar products are copied from Table 5.2 :

C5(C4C3 − S4S3c4) + S5[s5s4S3 − c5(S4C3 + C4S3c4)]

= S6[s1s2S2 − c1(S1C2 + C1S2c2)] + C6(C1C2 − S1S2c2) . (5.67)

Fig. 5.6 Mechanism 5R-C . Polygon with unit vectors
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This is written in the form (5.22) with ϕλ = ϕ1 , ϕμ = ϕ2 and ϕν = ϕ4 .
The matrix A of this equation is

A = [−S3(S4C5 + C4S5c5) S3S5s5 ]T . (5.68)

The equation F �
2 = F r

2 is the dual derivative of (5.67). It has the same form.
Both equations are combined in the matrix form

A1u� = B1

[
ur

1

]
. (5.69)

The column matrices u� and ur are

u� = [c4 s4 ]T , ur = [c1c2 c1s2 c1 s1c2 s1s2 s1 c2 s2 ]T . (5.70)

The coefficient matrices A1 and B1 are of size (2× 2) and (2× 9) , respec-
tively. They are functions of the independent variable ϕ5 .

No other closure condition yields a third equation for the same three un-
knowns. The closure conditions F �

3 = F r
3 and F �

4 = F r
4 with F3 = n6 · r

and F4 = n3 · r have the form (5.23) with hκ = h3 . One of these equations
is used later for the calculation of h3 once ϕ1 , ϕ2 and ϕ4 are known. For
the determination of these angles the two pairs of half-angle equations (5.37)
with v = n6 and with v = r are formulated. In the four Eqs.(5.37) the same
unknown elements of u� are located on the left-hand sides and the elements
of ur on the right-hand sides. All these elements occur once without and
once with the factor x6 = tanϕ6/2 . The four equations are combined in the
matrix form

(A2 + x6A3)u� = (B2 + x6B3)

[
ur

1

]
. (5.71)

The coefficient matrices A2 and A3 are of size (4×4) , and B2 and B3 are
of size (4× 9) . They are functions of ϕ5 .

The goal is now to deduce from the six Eqs.(5.69) and (5.71) a polynomial
equation for a single unknown variable. Two additional equations are pro-
duced by multiplying (5.69) with x6 . These two equations together with the
two Eqs.(5.69) and the four Eqs.(5.71) represent a system of eight equations.
It is written in the form

⎡
⎣A1 0

0 A1

A2 A3

⎤
⎦

︸ ︷︷ ︸
A

[
u�

x6u�

]
︸ ︷︷ ︸

y

=

⎡
⎣B1 0

0 B1

B2 B3

⎤
⎦

︸ ︷︷ ︸
B

⎡
⎢⎢⎣

ur

1
x6ur

x6

⎤
⎥⎥⎦

︸ ︷︷ ︸
z

or Ay = B z . (5.72)

The coefficient matrices A and B are of size (8× 4) and (8× 18) , respec-
tively. Four out of these eight equations are solved for y in terms of z . The
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resulting expression is substituted into the last four equations. These four
equations are then of the form

P z = 0 (5.73)

with a (4× 18)-matrix P . Next, two new variables xi = tanϕi/2 (i = 1, 2)
are defined. Substituting ci = (1− x2

i )/(1 + x2
i ) and si = 2xi/(1 + x2

i ) (i =
1, 2) into the submatrix ur of z and re-arranging terms the four Eqs.(5.73)
are given the forms

x6(aix
2
2 + bix2 + di) + (pix

2
2 + qix2 + ri) = 0 (i = 1, 2, 3, 4) . (5.74)

The coefficients ai , bi , di , pi , qi , ri themselves are second-order functions
of x1 with coefficients depending on ϕ5 . The four Eqs.(5.74) are multiplied
with x2 . These new equations and the four Eqs.(5.74) are combined in matrix
form: ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 p1 b1 q1 d1 r1 0 0
a2 p2 b2 q2 d2 r2 0 0
a3 p3 b3 q3 d3 r3 0 0
a4 p4 b4 q4 d4 r4 0 0
0 0 a1 p1 b1 q1 d1 r1
0 0 a2 p2 b2 q2 d2 r2
0 0 a3 p3 b3 q3 d3 r3
0 0 a4 p4 b4 q4 d4 r4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x3
2x6

x3
2

x2
2x6

x2
2

x2x6

x2

x6

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0 . (5.75)

The (8× 8) coefficient matrix must satisfy two conditions.
1. For a nontrivial solution to exist the determinant Δ of the coefficient
matrix must be zero.
2. The nontrivial solution must have a nonzero 8th component. This latter
condition is formulated as follows. Let K1 be the (8× 7)-matrix formed by
the first seven columns of the coefficient matrix, and let K2 be the eighth
column. Furthermore, let ξ be the column matrix

ξ = [ x3
2x6 x3

2 x2
2x6 x2

2 x2x6 x2 x6 ]T . (5.76)

Equation (5.75) has the form K1ξ = −K2 . Premultiplication by KT
1 pro-

duces the equation
KT

1 K1ξ = −KT
1 K2 . (5.77)

This equation must have a unique solution. This is condition 2 . The matrices
K1 and K2 depend on x1 which is calculated from the first condition Δ =
0 . This is a 16th-order equation3 for x1 . With this equation it is proved
that the mechanism 5R-C has at most sixteen different configurations for a

3 The 16th-order polynomial is computed as interpolation-polynomial connecting sixteen
numerically calculated points (x1i ,Δi) (i = 1, . . . , 16) . The general problem of Numerical

polynomial algebra is the title of Stetter [38]
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given value of the independent variable ϕ5 . This is the number Nϕ given
in Table 5.1 . Lee [27] gave a numerical example with sixteen different real
configurations.

Every solution x1 determines ϕ1 = 2 tan−1 x1 . The associated solutions
x2 and x6 , i.e., ϕ2 and ϕ6 are determined by (5.77). With the solutions
for ϕ1 and ϕ2 Eqs.(5.69) are two linear equations for c4 and s4 . They
determine ϕ4 . The last two unknowns are the variables ϕ3 and h3 in the
cylindrical joint. The equation F �

3 = F r
3 has the form (5.23) with hκ = h3 .

It determines h3 . The angle ϕ3 or rather x3 = tanϕ3/2 , can be calculated
from one half-angle equation (5.37) with a = 6 , b = 3 and v = n6 . An
alternative method is to formulate and to solve two linear equations for c3
and s3 , for example, the Woernle-Lee equations F �

1 = F r
1 with F1 = n4 ·n1

and with F1 = n5 · n2 . They are obtained from (5.67) by a cyclic increase
of all indices by one and by two, respectively. This concludes the analysis of
the mechanism 5R-C .

5.4.6 RRCRPR , RRCPRR , RRCRRP . Independent
Variable in the Prismatic Joint

Each of these mechanisms can be produced from the mechanism 5R-C by
replacing one revolute joint by a cylindrical joint. To be specific, the mecha-
nism RRCRPR is investigated. Its vector polygon has the form of Fig. 5.6 .
The only difference as compared with the mechanism 5R-C is that joint 5 is
replaced by a prismatic joint. In the previous analysis the angle ϕ5 was the
independent variable. Now, ϕ5 is constant whereas h5 , previously constant,
is the independent variable. With the joints a = 3 and b = 6 the same equa-
tions F �

1 = F r
1 and F �

2 = F r
2 are formulated. These are Eq.(5.67) and its

dual derivative. The matrix form of these two equations is, again, Eq.(5.69).
The only difference is, that now the coefficient matrix A1 is a function not of
ϕ5 , but of h5 . Also the rest of the analysis is the same as for the mechanism
5R-C . Two pairs of half-angle equations (5.37) with v = n6 and with v = r
result in Eqs.(5.71). Via Eqs.(5.73) - (5.75) the existence of sixteen solutions
x1 = tanϕ1/2 for a given value of the independent variable h5 is proved.
This concludes the analysis.

5.4.7 Mechanism 7R

This mechanism has n = 7 joints and 4n − 7 = 21 constant parameters.
The only variables are the angles ϕ1, . . . , ϕ7 in the revolute joints. Figure 5.7
shows schematically the polygon with unit vectors ni and ai (i = 1, . . . , 7).
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Fig. 5.7 Mechanism 7R . Polygon with unit vectors

Let ϕ7 be the independent variable. Joints 3 and 6 are chosen as joints a
and b for the formulation of closure conditions. The vector r shown in the
figure is

r =

{
h3n3 + �3a3 + h4n4 + �4a4 + h5n5 + �5a5 (left s.)

−(h6n6 + �6a6 + h7n7 + �7a7 + h1n1 + �1a1 + h2n2 + �2a2) (right s.) .
(5.78)

The unknown dependent variables are ϕ1 , ϕ2 in the right segment and
ϕ4 , ϕ5 in the left segment. The four closure conditions F �

k = F r
k (k =

1, . . . 4) with F1 = n3 · n6 , F2 = r · n3 × n6 , F3 = n3 · r and F4 = n6 · r
are formulated. It was shown that all four equations have, with different
coefficient matrices, the form (5.24). They are written in the matrix form

A∗
i u� = B∗

i

[
ur

1

]
(i = 1, . . . , 4) (5.79)

with the column matrices

u� = [ c4c5 c4s5 c4 s4c5 s4s5 s4 c5 s5 ]T ,
ur = [ c1c2 c1s2 c1 s1c2 s1s2 s1 c2 s2 ]T .

}
(5.80)

In order to demonstrate the usefulness of Table 5.2 the four equations are
developed in detail. The equation with F1 is written in the form (see the
example following (5.17))

nk · nk+3︸ ︷︷ ︸
k=3

= nk−2 · nk+2︸ ︷︷ ︸
k=1

. (5.81)

With Table 5.2 this is the equation

C5 (C4C3 − S4S3c4) + S5[s5s4S3 − c5(S4C3 + C4S3c4)]

= (C6C7 − S6S7c7)(C2C1 − S2S1c2) + [C6S7s1 + S6(s7c1 + c7s1C7)]S2s2

−[C6S7c1 − S6(s7s1 − c7c1C7)](C2S1 + S2C1c2) . (5.82)

This is the first Eq.(5.79). The coefficient matrices are
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A∗
1 = [−S3C4S5 0 − S3S4C5 0 S3S5 0 − C3S4S5 0 ] ,

B∗
1 = [−C1S2(C6S7 + S6C7c7) S2S6s7 − S1C2(C6S7 + S6C7c7) C1S2S6s7

S2(C6S7 + S6C7c7) S1C2S6s7 − S1S2(C6C7 − S6S7c7) 0
C1C2(C6C7 − S6S7c7)− C3C4C5 ] .

⎫⎪⎪⎬
⎪⎪⎭
(5.83)

The second closure condition with F2 is the dual derivative of the first equa-
tion. It is more complicated. Only the left-hand side expression is given:

− 
5S5(C4C3 − S4S3c4) + C5[−
4S4C3 − 
3C4S3 − (
4C4S3 + 
3S4C3)c4 + h4S4S3s4]

+ 
5C5[s5s4S3 − c5(S4C3 + C4S3c4)] + S5{h5c5s4S3 + h4s5c4S3 + 
3s5s4C3

+ h5s5(S4C3 + C4S3c4)− c5[
4C4C3 − 
3S4S3 + (−
4S4S3 + 
3C4C3)c4 − h4C4S3s4]}
= . . . (dual derivative of the right-hand side expression of (5.82)) . (5.84)

The two closure conditions with F3 = n3 · r and F4 = n6 · r read

h3 + nk · (h4nk+1 + 
4ak+1 + h5nk+2 + 
5ak+2)︸ ︷︷ ︸
k=3

= −h6 nk−2 · nk+2︸ ︷︷ ︸
k=1

−nk · (
6ak−4 + h7nk−3 + 
7ak−3 + h1nk−2 + 
1ak−2 + h2nk−1)︸ ︷︷ ︸
k=3

,

(5.85)

nk · (h3nk−3 + 
3ak−3 + h4nk−2 + 
4ak−2 + h5nk−1)︸ ︷︷ ︸
k=6

= −h6 − nk · (h7nk+1 + 
7ak+1 + h1nk+2 + 
1ak+2 + h2nk+3 + 
2ak+3)︸ ︷︷ ︸
k=6

. (5.86)

The scalar products are copied from Table 5.2 . Simple re-arrangements result
in the following equations

h3 + C3(�5s5S4 + h5C4 + h4) + S3s4(�5c5 + �4) + S3c4(�5s5C4 − h5S4)

= −h2C2 − (C2C1 − S2S1c2)(�6s7S7 + h7C7 + h1)

−s2S2[�6(c7c1 − s7s1C7) + h7S7s1 + �7c1 + �1]

+(C2S1 + S2C1c2)[−�6(c7s1 + s7c1C7) + h7S7c1 − �7s1]

−h6 × right-hand side expression of (5.82) , (5.87)

h5C5 + (C5C4 − S5S4c5)h4 + S5s5(�4 + �3c4) + (C5S4 + S5C4c5)�3s4

+h3 × left-hand side expression of (5.82)

= −h6 − h7C6 − �7s7S6 − (C6C7 − S6S7c7)(h1 + h2C1 + �2s2S1)

−[C6S7s1 + S6(s7c1 + c7s1C7)](�1 + �2c2)

−[C6S7c1 − S6(s7s1 − c7c1C7)](−h2S1 + �2s2C1) . (5.88)

The four Eqs.(5.82), (5.84), (5.87) and (5.88) for the unknowns ϕ1 , ϕ2 ,
ϕ4 , ϕ5 are Eqs.(5.79) written in detail. Following Lee [27] the reduction
to a 16th-order polynomial equation for a single unknown is achieved as
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follows. First, the two Woernle-Lee Eqs.(5.16) with F6 = r2 and with F7 =
1
2 (n3 · n6)r

2 − (n3 · r)(n6 · r) are formulated. These equations have, with
new coefficient matrices, the form (5.79). The altogether six equations are
combined in the matrix form

A1u� = B1

[
ur

1

]
(5.89)

with coefficient matrices A1 and B1 of size (6×8) and (6×9) , respectively.
They are functions of the independent variable ϕ7 .

Next, four pairs of half-angle equations (5.37) are formulated with the
vectors v1, . . . ,v4 shown in (5.38) and with a = 3 and b = 6 :

x6 vi · a6+ vi · n6 × a6 = −xb vi · a5+ vi · n6 × a5 ,

vi · a6− x6 vi · n6 × a6 = vi · a5+ x6 vi · n6 × a5

}
(i = 1, 2, 3, 4) ,

(5.90)

v1 = n3 , v2 = r , v3 = n3×r , v4 =
1

2
r2n3− (n3 ·r)r . (5.91)

In each of these eight equations the elements of u� appear on the left-hand
side and the elements of ur on the right-hand side. All these elements occur
once without and once with the factor x6 = tanϕ6/2 . The eight equations
are combined in the matrix form

(A2 + x6A3)u� = (B2 + x6B3)

[
ur

1

]
(5.92)

with coefficient matrices A2 and A3 of size (8 × 8) and B2 and B3 of
size (8× 9) . They are functions of ϕ7 . Another six equations are produced
by multiplying (5.89) with x6 . These six equations together with the six
Eqs.(5.89) and the eight Eqs.(5.92) represent a system of twenty equations.
It is written in the form

⎡
⎣A1 0

0 A1

A2 A3

⎤
⎦

︸ ︷︷ ︸
A

[
u�

x6u�

]
︸ ︷︷ ︸

y

=

⎡
⎣B1 0

0 B1

B2 B3

⎤
⎦

︸ ︷︷ ︸
B

⎡
⎢⎢⎣

ur

1
x6ur

x6

⎤
⎥⎥⎦

︸ ︷︷ ︸
z

or Ay = B z . (5.93)

The coefficient matrices A and B are of size (20 × 16) and (20 × 18) ,
respectively. Sixteen out of these twenty equations are solved for y in terms
of z . The resulting expression is substituted into the last four equations.
These four equations are then of the form

P z = 0 (5.94)
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with a (4 × 18)-matrix P . They are formally identical with (5.73). Also
(5.74) and (5.75) and the conditions on the coefficient matrix in (5.75) are
valid again (the only difference being that now ϕ7 is the independent vari-
able instead of ϕ5 and that a larger number of constant Denavit-Hartenberg
parameters is involved). The condition that the determinant Δ must be zero
results in a 16th-order equation for x1 = tanϕ1/2 with coefficients depend-
ing on ϕ7 . Thus, it is proved that the mechanism 7R has at most sixteen
configurations for a given value of the independent variable ϕ7 . The unknown
angles ϕ1 , ϕ2 and ϕ6 are calculated as was shown following (5.77). With
ϕ1 , ϕ2 and ϕ6 the column matrix ur in the four Eqs.(5.79) is known. These
equations are solved for u� . This solution determines the angles ϕ1 and ϕ2 .
The last unknown ϕ3 is found by the method explained in the section on
the mechanism 5R-C . This concludes the analysis of the mechanism 7R .

5.4.8 4R-3P . Independent Variable is an Angle

These are the mechanisms in row 4 of Table 5.1 . At the end of Sect. 5.3.1
on Woernle-Lee equations it was said that the closure conditions F �

k = F r
k

(k = 1, 2, 3, 4) are formulated not only for the mechanism 7R , but also for the
mechanisms 4R-3P . These mechanisms have seven joints and, consequently,
the vector polygon shown in Fig. 5.7 . The mechanism 7R is converted into
a mechanism 4R-3P by replacing three out of the four revolute joints 1 , 2 ,
4 and 5 by prismatic joints. This has the effect that in the four Eqs.(5.82),
(5.84), (5.87) and (5.88) three out of the variables ϕ1 , ϕ2 , ϕ4 and ϕ5 are
(arbitrary) constants. Only one of them, say ϕj , is still a variable. For this
variable (5.82) becomes an equation of the form Acj +Bsj = R . It has two
solutions for every value of the independent variable ϕ7 . With each solution
the remaining three Eqs.(5.84), (5.87) and (5.88) become linear equations
with known coefficients for the translatory variables in the three prismatic
joints. This concludes the analysis of the mechanisms 4R-3P .

5.4.9 6R-P . Independent Variable is an Angle

The mechanism 6R-P has the same vector polygon the mechanism 7R has
(Fig. 5.7). The mechanism 7R is converted into the mechanism 6R-P by
replacing a single revolute joint by a prismatic joint. Let this be joint 5 .
Again, the four Eqs.(5.82), (5.84), (5.87) and (5.88) are used. As before, ϕ7

is the independent variable. But now, ϕ5 is a constant and h5 is a variable.
The only places where this variable appears explicitly, are the left-hand sides
of (5.84), (5.87) and (5.88). These three equations have the form (5.23) with
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λ = 1 , μ = 2 , ν = 4 and κ = 5 . These three equations and (5.82) are
combined in the matrix form

A1

⎡
⎣ u�

h5u�

h5

⎤
⎦ = B1

[
ur

1

]
(5.95)

with the column matrices

u� = [c4 s4 ]T , ur = [c1c2 c1s2 c1 s1c2 s1s2 s1 c2 s2 ]T . (5.96)

The coefficient matrices A1 and B1 are of size (4× 5) and (4× 9) , respec-
tively. These four equations are supplemented by three pairs of half-angle
equations (5.37) formulated with the vectors v1 , v2 and v3 shown in (5.38).
In each of these altogether six equations the column matrices of (5.95) appear
once without and once with the factor x6 = tanϕ6/2 . The six equations are
combined in the matrix form

(A2 + x6A3)

⎡
⎣ u�

h5u�

h5

⎤
⎦ = (B2 + x6B3)

[
ur

1

]
. (5.97)

The coefficient matrices A2 and A3 are of size (6× 5) and B2 and B3 are
of size (6 × 9) . Another four equations are produced by multiplying (5.95)
with x6 . These four equations together with the four Eqs.(5.95) and the six
Eqs.(5.97) represent a system of fourteen equations. It is written in the form

⎡
⎣A1 0

0 A1

A2 A3

⎤
⎦

︸ ︷︷ ︸
A

⎡
⎢⎢⎢⎢⎢⎢⎣

u�

h5u�

h5

x6u�

x6h5u�

x6h5

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
y

=

⎡
⎣B1 0

0 B1

B2 B3

⎤
⎦

︸ ︷︷ ︸
B

⎡
⎢⎢⎣

ur

1
x6ur

x6

⎤
⎥⎥⎦

︸ ︷︷ ︸
z

or Ay = B z . (5.98)

The coefficient matrices A and B are of size (14 × 10) and (14 × 18) ,
respectively. Ten out of these fourteen equations are solved for y in terms of
z . The resulting expression is substituted into the last four equations. These
four equations are then of the form

P z = 0 (5.99)

with a (4 × 18)-matrix P . They are formally identical with (5.73). The re-
duction to a 16th-order equation proceeds as before. Thus, it is proved that
the mechanism 6R-P has at most sixteen configurations for a given value of
the independent variable ϕ7 . The unknown angles ϕ1 , ϕ2 and ϕ6 are cal-
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culated as was shown following (5.77). With these results the column matrix
z in the fourteen Eqs.(5.98) is known. The ten equations already mentioned
yield y and with it the variables ϕ4 and h5 . The last two unknowns ϕ3 and
ϕ6 can be determined either from half-angle equations or from Woernle-Lee
equations F �

1 = F r
1 . See the sections on the mechanisms RCRCR and 5R-C .

This concludes the analysis of the mechanism 6R-P when the independent
variable is an angle.

5.4.10 6R-P . Independent Variable in the Prismatic
Joint

Again, the vector polygon shown in Fig. 5.7 is used. This time, joint 7 is
the prismatic joint. As in the analysis of the mechanism 7R the same four
Eqs.(5.82), (5.84), (5.87), (5.88), the same two Woernle-Lee equations with
F6 and F7 and the same four pairs of half-angle equations are formulated.
The only difference is that in these equations ϕ7 is now constant whereas
h7 is the independent variable. The only unknowns are, as before, the angles
ϕ1 , ϕ2 , ϕ4 and ϕ5 . The final result of the analysis is, again, a 16th-order
polynomial equation for x1 = tanϕ1/2 . This explains the number Nt = 16
in Table 5.1 for this mechanism.

5.5 Mechanisms with Special Parameter Values

In the analysis of every mechanism up to now it was assumed that all con-
stant Denavit-Hartenberg parameters are nonzero and arbitrary. The large
number of parameters (between nine and twenty-one) allows for an enormous
number of special cases. The Bennett mechanism and the spherical four-bar
introduced in Sect. 5.4.1 are special cases of the mechanism RCCC . Table
5.2 shows that parallelity or orthogonality of the joint axes on a single body
k results in substantial simplifications (Sk = 0 , Ck = 1 in the former case
and Sk = 1 , Ck = 0 in the latter). In the following sections two special
mechanisms are investigated.

5.5.1 7R with Three Parallel Joint Axes in Series

Subject of investigation is a mechanism 7R with three parallel successive
joint axes, say n2 , n3 and n4 . The parallelity has the effect that the bodies
1, 2, 3 and 4 are in planar motion relative to each other. For the Denavit-
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Hartenberg parameters this parallelity means α2 = α3 = 0 and, therefore,
S2 = S3 = 0 , C2 = C3 = 1 . When this is substituted into (5.82), the
unknowns ϕ2 and ϕ4 disappear. For the two remaining unknowns ϕ1 and
ϕ5 the equation has the form

S4S5c5 = A1c1 +B1s1 +R1 (5.100)

with coefficients

A1 = S1(C6S7 + S6C7c7) , B1 = −S1S6s7 ,
R1 = C4C5 − C1(C6C7 − S6S7c7) .

}
(5.101)

Except for changes of indices (5.100) is identical with (5.56). Equation (5.84)
is replaced by the dual derivative of (5.100). This equation is Eq.(5.58) with
the same changes of indices. It was shown that these equations have four
solutions (ϕ1, ϕ5) for every value of the independent variable ϕ7 . This ends
the analysis of the special case.

5.5.2 RRSRR

The mechanism RRSRR is another special case of a mechanism 7R . The
letter S stands for the spherical joint which was explained in Sect. 5.1 .
The polygon of vectors is shown in Fig. 5.8 . Bodies 1, 2, 3, 4, 5 are cou-
pled by revolute joints 1, 2, 3, 5 and by the spherical joint. Unit vectors
ni (i = 1, 2, 3, 5) and ai (i = 1, 2, 5) are located on joint axes and on
normals common to pairs of joint axes, respectively. The vectors �3a3 and
�4a4 denote the normals from the spherical joint onto the joint axes 3 and
5 , respectively. The mechanism has twelve constant parameters, namely, hi

(i = 1, 2, 3, 5) in revolute joints and �i (i = 1, . . . , 5), αi (i = 1, 2, 5) on
bodies. Variables are the angles ϕ1 , ϕ2 , ϕ3 , ϕ5 in revolute joints and, in
addition, three angles associated with the spherical joint. These latter ones
are not considered.

The symmetry allows the same conclusions which were drawn from the
symmetry of Fig. 5.3 . The independent variable is either ϕ5 or ϕ1 . Because
of the symmetry only these two cases need be considered. As joints a and
b in the sense of Fig. 5.2 the spherical joint and joint 3 are chosen. One of
the two segments between the joints a and b has no joint variables. The
other segment has the joint variables ϕ1 , ϕ2 and ϕ5 . Two of these are
unknowns. These two are determined from the two Woernle-Lee Eqs.(5.16)
with F3 = n3 · r and F6 = r2 . The vector r is shown in Fig. 5.8 :
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Fig. 5.8 Mechanism RRSRR with vector polygon

r =

{
�4a4 + h5n5 + �5a5 + h1n1 + �1a1 + h2n2 + �2a2 (left segment)

−(h3n3 + �3a3) (right segment) .
(5.102)

Taking into account the orthogonality n3 · a3 = 0 the closure conditions are

n3 · (�4a4 + h5n5 + �5a5 + h1n1 + �1a1 + h2n2 + �2a2) = −h3 , (5.103)

(�4a4 + h5n5 + �5a5 + h1n1 + �1a1 + h2n2 + �2a2)
2 = �23 + h2

3 . (5.104)

In (5.104) the seven quadratic terms yield the constant (�24 + h2
5 + . . .+ �22) .

Each vector is orthogonal to its right-hand neighbor. This determines the
products a4 · n5 = n5 · a5 = a5 · n1 = n1 · a1 = a1 · n2 = n2 · a2 = 0 .
Between each vector and its second neighbor to the right either a joint angle
or a constant angle is located. This determines the five products a4 · a5 =
c5 , n5 · n1 = C5 , a5 · a1 = c1 , n1 · n2 = C1 , a1 · a2 = c2 . For calculating
the remaining products the vectors are decomposed in a basis fixed on body
1 . With k = 1 the vectors are a4 = ak−2 , n5 = nk−1 , a5 = ak−1 ,
n1 = nk , a1 = ak , n2 = nk+1 , a2 = ak+1 , n3 = nk+2 . The
coordinates are copied4 from Table 5.2 into the following Table 5.3 .

Table 5.3 Coordinates of vectors in (5.103) and (5.104)

a4 n5 a5 n1 a1 n2 a2 n3

s5S5 C5 0 1 0 C1 s2S1 C2C1 − S2S1c2
c5c1 − s5s1C5 S5s1 c1 0 1 0 c2 S2s2
−(c5s1 + s5c1C5) S5c1 −s1 0 0 −S1 s2C1 −(C2S1 + S2C1c2)

With these coordinates (5.103) and (5.104) take the forms

cλ(ai1c2+ai2s2+ai3)+sλ(bi1c2+bi2s2+bi3)+(ri1c2+ri2s2+ri3) = 0 (5.105)

4 Instead of using Table 5.3 the scalar products can be obtained directly from Table 5.2 .
Example: n5 · n2 = nk · nk+2 with k = 5 yields C1C5 − S1S5c1
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(i = 1, 2) . The index λ equals 5 if ϕ1 is the independent variable and it
equals 1 if ϕ5 is the independent variable. The coefficients a11, . . . , r23 are
functions of the independent variable (ϕ1 or ϕ5). They are given further
below. The equations are identical with (5.62). The number of solutions for
a given value of the independent variable is eight in the general case and
four if the coefficients of c2 and s2 satisfy the six conditions (5.65). In the
present case, these conditions are satisfied. This is shown as follows. If ϕ1 is
the independent variable, the auxiliary variables are defined:

q1 = C1C5c1 − S1S5 ,
q2 = h5S5s1 + �5c1 + �1 ,
q3 = h5(C1S5c1 + S1C5)− �5C1s1 + h1S1 .

⎫⎬
⎭ (5.106)

In terms of these variables the coefficients of c2 and s2 are

a11 = �2�4c1 , a12 = −�2�4C1s1 ,
a21 = S2�4C1s1 , a22 = S2�4c1 ,
b11 = −�2�4C5s1 , b12 = −�2�4q1 ,
b21 = S2�4q1 , b22 = −S2�4C5s1 ,
r11 = �2q2 , r12 = �2q3 ,
r21 = −S2q3 , r22 = S2q2 .

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(5.107)

If ϕ5 is the independent variable, new auxiliary variables are defined as
follows:

q1 = �4c5 + �5 , q2 = �4C5s5 − h5S5 , q3 = �4S5s5 + h5C5 + h1 . (5.108)

In terms of these variables the new coefficients of c2 and s2 are

a11 = �2q1 , a12 = −�2C1q2 ,
a21 = S2C1q2 , a22 = S2q1 ,
b11 = −�2q2 , b12 = −�2C1q1 ,
b21 = S2C1q1 , b22 = −S2q2 ,
r11 = �2�1 , r12 = �2S1q3 ,
r21 = −S2S1q3 , r22 = S2�1 .

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(5.109)

In either case the conditions (5.65) are satisfied. The proof by inspection is
elementary. This concludes the analysis of the mechanism RRSRR .

5.6 Generalized Velocities. Generalized Accelerations

The time derivatives of the seven variables ϕi and hj are called generalized

velocities ϕ̇i and ḣj , respectively. One of them is independent and the other
six are dependent. The time derivatives of six suitably chosen closure condi-
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tions constitute a system of six homogeneous linear equations for the seven
generalized velocities. The solution of this system expresses each of the six
dependent generalized velocities as some multiple of the independent general-
ized velocity. Suitable closure conditions are Woernle-Lee equations which are
used also for the determination of the dependent variables. In what follows,
details are shown for the mechanisms RCCC and 7R .

5.6.1 RCCC

The mechanism RCCC with the labeling of joints shown in Fig. 5.3 has
the seven generalized velocities ϕ̇1 , ϕ̇2 , ϕ̇3 , ϕ̇4 , ḣ2 , ḣ3 , ḣ4 . For expressing
six of them as multiples of the independent velocity ϕ̇1 six linear equations
are required. The simplest equations are the total time derivatives of (5.43),
(5.45), (5.50) and (5.51) and of (5.50), (5.51) with all indices increased by
one. The time derivatives of (5.43) and (5.45) are

ϕ̇4(−As4 +Bc4) = ϕ̇1(−A′c4 −B′s4 +R′) ,

ḣ4(Bc4 −As4)+ ϕ̇4[h4(−Bs4 −Ac4) +Ds4 − Ec4]

= ϕ̇1[−h4(B
′c4 −A′s4) +D′c4 + E′s4 + F ′] .

⎫⎪⎬
⎪⎭ (5.110)

The scalars A′ , B′ , R′ , D′ , E′ , F ′ are the partial derivatives of
A , B , R , D , E , F from (5.44) and (5.46) with respect to ϕ1 :

A′ = S3C4S1s1 , B′ = S1S3c1 , R′ = −C3S4S1s1 ,

D′ = ( �4S3S1S4 − �1S3C1C4 − �3C3S1C4)s1 − h1S1S3C4c1 ,

F ′ = (−�4C3S1C4 − �1C3C1S4 + �3S3S1S4)s1 − h1S1C3S4c1 ,

E′ = −(�1C1S3 + �3S1C3)c1 + h1S1S3s1 .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (5.111)

The time derivatives of (5.50) and (5.51) are

ϕ̇3S3S2s3 = ϕ̇1S1S4s1 ,

ḣ3S2S3s3+ ϕ̇3[h3S2S3c3 + s3(�2C2S3 + �3S2C3)]

= ϕ̇1[h1S1S4c1 + s1(�1C1S4 + �4S1C4)] .

⎫⎪⎬
⎪⎭ (5.112)

5.6.2 Mechanism 7R

The mechanism 7R has seven generalized velocities ϕ̇1, . . . , ϕ̇7 . The simplest
closure condition is Eq.(5.82). Its matrix form is A∗

1u� = B∗
1[u

T
r 1]T .

The matrices A∗
1 , B

∗
1 , u� and ur are given in (5.83) and (5.80). The time

derivative of the equation is
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ϕ̇4A
∗
1 [ −s4c5 − s4s5 − s4 c4c5 c4s5 c4 0 0 ]T

+ ϕ̇5A
∗
1 [ −c4s5 c4c5 0 − s4s5 s4c5 0 − s5 c5 ]T

= ϕ̇1B
∗
1 [ −s1c2 − s1s2 − s1 c1c2 c1s2 c1 0 0 0 ]T

+ ϕ̇2B
∗
1 [ −c1s2 c1c2 0 − s1s2 s1c2 0 − s2 c2 0 ]T

+ ϕ̇7B
∗
1
′
[ c1c2 c1s2 c1 s1c2 s1s2 s1 c2 s2 1 ]T .

(5.113)

The matrix B∗
1
′
is the partial derivative of B∗

1 with respect to ϕ7 :

B∗
1
′ = S6[C1S2C7s7 S2c7 S1C2C7s7 C1S2c7

−S2C7s7 S1C2c7 − S1S6S7s7 0 C1C2S7s7 ] . (5.114)

The other five equations are produced from this equation by a cyclic increase
of all indices by one, by two, . . ., by five (not the index 1 of A∗

1 and B∗
1 ,

but all indices in A∗
1 and B∗

1).
It is a simple task to formulate the second time derivative. The result is a

system of six linear equations for generalized accelerations ϕ̈1, . . . , ϕ̈7 . These
equations contain additional terms with ϕ̇iϕ̇j (i, j = 1, 2, 4, 5, 7).

5.7 Spatial Serial Robots

A spatial serial robot consists of a stationary base, a robot hand and a serial
kinematical chain connecting hand and base. The serial chain is the arm of
the robot. With a suitable combination of cylindrical, revolute and prismatic
joints in the arm with altogether six joint variables the hand has relative
to the base three rotational and three translatory degrees of freedom. The
minimal number of joints is three with the joint combination 3C and the
maximal number is six with the joint combination 6R . The bodies are labeled
1, . . . , n with the base being body 1 and the hand being body n . The joints
are labeled 1, . . . , n − 1 beginning at the base. The problem to be solved is
the following. The pose, i.e., the position and the angular orientation of the
hand relative to the base, is prescribed in terms of six variables of unspecified
nature, for example, by three coordinates of a single point plus three angular
variables. Determine all sets of six joint variables producing this prescribed
pose. The solution is found as follows. In a preparatory step the six prescribed
variables are converted into another set of six variables which are defined as
follows. In the prescribed pose bodies n and 1 are imagined to be connected
by a revolute joint labeled n with an axis of arbitrarily chosen location and
direction and with locked joint variable ϕn . The six new variables are the
six Denavit-Hartenberg parameters defined by this joint, namely, αn , �n on
body n , ϕn and hn in joint n and α1 , �1 on body 1 . Together with the real
joints of the robot this fictitious joint creates a spatial single-loop mechanism
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with given constant Denavit-Hartenberg parameters and with a given value
of the joint variable ϕn . Thus, the problem to be solved is the following.
Determine six dependent joint variables of a spatial single-loop mechanism
for a given value of a single independent variable ϕn . The complete solution
is known from the previous sections. Table 5.4 is deduced from Table 5.1 .
Each of the ten rows shows the joint combination of the respective row in
Table 5.1 with one revolute joint deleted. The deleted joint is the fictitious
joint. The ten joint combinations represent all possible robot arms giving

Table 5.4 Serial robots with three rotational and three translatory degrees of freedom of

the hand

joint combin. νr Nϕ

1 3C 1 2

2 2C-R-P 12 2 independent of joint sequence

3 C-2R-2P 30 2 independent of joint sequence

4 3R-3P 20 2 independent of joint sequence

5 2C-2R 6
4

8

(sequences CRCR, RCRC)

(sequences CCRR, RRCC, RCCR, CRRC )

6 C-3R-P 20 8 independent of joint sequence

7 4R-2P 15 8 independent of joint sequence

8 C-4R 5 16 independent of joint sequence

9 5R-P 6 16 independent of joint sequence

10 6R 1 16

the hand six degrees of freedom. The joints of a given joint combination can
be ordered along the robot arm from base to hand in many different ways.
Different sequences of letters represent different robots. Examples are the
sequences (from base to hand) CRRPP, CRPRP, RRPPC etc. with the joint
combination C-2R-2P. Let νr be the number of different robots that can be
built with a given joint combination. It is calculated as follows. Let νC , νR

and νP be the numbers of cylindrical, of revolute and of prismatic joints,
respectively. The total number of joints in the arm is ν = νC+νR+νP . With
these numbers the number νr is

νr =

(
ν

νC

)(
ν − νC

νR

)
. (5.115)

The pair of numbers νC , νR in this formula can be replaced by the pair
νC , νP and also by the pair νR , νP .
Example: The joint combination C-2R-2P yields νr =

(
5
1

)(
4
2

)
= 30 . In Table

5.4 the number νr is given for every joint combination.
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The number Nϕ is copied from Table 5.1 . It represents the number of (real
or complex) six-tuples of joint variables for a given pose of the robot hand.
Every real six-tuple determines an arm configuration producing the given
pose. From Table 5.1 it is known that in row 5 the number Nϕ is either four
or eight depending on which revolute joint carries the independent angular
variable. In Table 5.4 the independent variable is ϕ5 in the fictitious joint 5 .
This explains the correspondence between the numbers Nϕ = 4 and 8 and
the various joint sequences. For all other joint combinations the number Nϕ

is independent of the sequence of joints.
Lee [27] investigated the following problem. The hand of a 6R-robot is in

pure translation with a point P of the hand moving along a given straight
line. Let z be the coordinate of P along this line. The six Denavit-Hartenberg
parameters αn , �n , ϕn , hn , α1 , �1 of the fictitious joint are functions of z .
The number of real solutions for the six joint variables, i.e., of arm configu-
rations is a function of z , too. This function divides the z-axis into intervals
with different numbers of arm configurations. With the parameter values
chosen by Lee z-intervals with the maximum number Nϕ = 16 were found.
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34. Sinigersky A (2002) Rechnerunterstützte Behandlung von dualen Grössen in der Kine-

matik. Studienarbeit Inst. Techn. Mech. Univ. Karlsruhe
35. Soni A H, Pamidi P R (1971) Closed-form displacement relations of a five-link R-R-

C-C-R spatial mechanism. J. Eng.f.Ind. 93:221–226
36. Soni A H (1974) Mechanism synthesis and analysis. Mac-Graw Hill, New York
37. Spillers W R (ed.) (1964) Basic questions of design theory. Northholland, Amsterdam
38. Stetter H J (2004) Numerical polynomial algebra. SIAM Philad. A G (ed.) (1993)
39. Woernle C (1988) Ein systematisches Verfahren zur Aufstellung der ge-

ometrischen Schliessbedingungen in kinematischen Schleifen mit Anwendung bei
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Chapter 6

Overconstrained Mechanisms

By definition, an overconstrained mechanism is a mechanism for which
Grübler’s formula (4.1) yields a degree of freedom F > 0 only because the
system of kinematic constraint equations has a sufficiently large defect d > 0 .
It is known that a simple closed kinematic chain with n < 7 joint variables
has a degree of freedom F > 0 only if it is overconstrained. Sections 6.1 –
6.4 are devoted to simple closed chains with four, with five and with six rev-
olute joints. In the remaining Sects. 6.5 – 6.11 other types of overconstrained
mechanisms are analyzed.

The planar four-bar and the spherical four-bar with n = 4 revolute
joints are among the oldest overconstrained mechanisms. Two simple over-
constrained mechanisms with n = 6 revolute joints are shown in Figs. 6.1
and 6.2 . In Fig. 6.1 the fixed frame, three shafts and the cross-shaped central
bodies of two Hooke’s joints are interconnected by two frame-fixed revolutes
and by two more revolutes in each Hooke’s joint. The mechanism shown in
Fig. 6.2 was invented by Sarrus. Body 4 has the single degree of freedom of
translation along the x-axis. The body is connected to the frame 1 by two
dyads (bodies 2,3 and 5,6 ) each dyad having three parallel revolute joints

Fig. 6.1 Overconstrained
mechanism composed of
three shafts, two revolute

and two Hooke’s joints

Fig. 6.2 Sarrus’ over-

constrained mechanism
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perpendicular to the x-axis (otherwise arbitrarily directed, but not all six
parallel).

6.1 Bricard’s Theorem on Closed Chains with Revolute
Joints

The early history of the search for overconstrained mechanisms was marked
by chance discoveries and by ingenuity. The first systematic investigations
were made by Delassus [15, 16]. An important step forward was made by
Bricard’s

Theorem 6.1. In the case of n = 6 revolute joints the joint axes are, in
every position of the system instantaneously, lines of a linear complex. In the
case of n = 5 revolute joints the joint axes are, in every position of the system
instantaneously, lines of a linear congruence. In the case of n = 4 revolute
joints the joint axes are, in every position of the system instantaneously,
generating lines of a ruled surface of order two (a quadric).

Proof for the case n = 6 (Bricard [10]): Let joint i connect bodies i and
i− 1 (i = 1, . . . , 6 cyclic), and let ωi(ni,ai × ni) be the associated velocity
screw of body i relative to body i − 1 (see (9.33)). The vectors ni and
ai × ni are the Plücker vectors of joint axis i . The velocity screw of body 6
relative to itself is zero. This is the set of equations

6∑
i=1

ai × niωi = 0 ,

6∑
i=1

niωi = 0 . (6.1)

Decomposition in some common reference frame yields six homogeneous lin-
ear equations with a (6×6)-coefficient matrix of vector coordinates multiplied
by the column matrix of angular velocities. Since these latter ones are not
all zero, the coefficient matrix must be singular. More precisely, some linear
combination of its rows must be zero. In vector notation this is expressed by
the six equations (one for each column of the matrix)

a · ai × ni + b · ni = 0 (i = 1 . . . , 6) (6.2)

where a and b are vectors whose altogether six coordinates are the coef-
ficients of the said linear combination. This is Eq.(2.25) defining the lines
(ni , ai × ni) to be lines of the linear complex (a;b) . End of proof.

Proof for the case n = 5 : The closed kinematic chain with six axes is
formally reduced to a chain with five axes if the sixth axis (n6 , a6 × n6)
has arbitrary location while simultaneously ω6 = 0 . Equations (6.1) lead
again to (6.2). Because of the arbitrariness of n6 and a6×n6 the said linear
complex (a;b) is now subject to a linear constraint equation. This proves
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that the axes 1 , . . . , 5 are lines of a linear congruence. The proof for the
case n = 4 repeats the same arguments. With axes 5 and 6 being arbitrary
the linear complex (a;b) is subject to two linear constraint equations. This
ends the proof of the theorem.

The theorem states that (in the case n = 6 , for example) a closed kine-
matic chain with six joint axes is instantaneously mobile if in the position
under investigation the six joint axes are lines of a linear complex. Motion
into another position is possible only if in every intermediate position the
six joint axes are lines of a linear complex. In general, this is not the case if
a single assembly position of a mechanism is the result of selecting at ran-
dom six lines of a linear complex as joint axes. The theorem provides a new
direction to the search for overconstrained systems, namely: Find closed kine-
matic chains having the property that its six axes belong in every position
to a linear complex. This search led Bricard [10] to three classes of overcon-
strained mechanisms which are the subjects of Sects. 6.4.1 , 6.4.2 and 6.4.3 .
The chapter begins with the celebrated Bennett mechanism which has four
revolute joints.

6.2 Bennett Mechanism

In Sect. 5.4.1 the closed kinematical chain RCCC was investigated (see Fig.
5.3 and (5.43) – (5.51)). Bennett [8] noticed that the joint variables h2 , h3

and h4 in the three cylindrical joints are identically zero if the parameters
satisfy the conditions

α3 = α1 , �3 = �1 , α4 = α2 , �4 = �2 ,
�2 sinα1 = �1 sinα2 , h1 = 0 .

}
(6.3)

A proof is given further below. With h2 = h3 = h4 ≡ 0 all four joints of
the mechanism are revolute joints with zero offset. This mechanism is called
Bennett mechanism. It is an overconstrained mechanism with the degree of
freedom F = 1 . Grübler’s formula (4.1) yields F = −2+d . Hence the number
of dependent constraint equations is d = 3 . According to Bricard’s Theorem
6.1 the joint axes are, in every position of the mechanism instantaneously,
generators of a hyperboloid.

From the condition �2 sinα1 = �1 sinα2 it follows that sinα1 and sinα2

have the same sign. Arbitrarily, the positive sign is assumed, i.e., angles in
the interval 0 < α1, α2 < π (angles zero and π are excluded because only
spatial mechanisms are investigated). The Bennett mechanism is specified by
the three parameters �1 , α1 and α2 . Together they determine �2 .
Note: The alternative decision to use as parameters the quantities �1 , �2 and
α1 has the disadvantage that either no real angle α2 or two different angles
α2 satisfy the condition �2 sinα1 = �1 sinα2 . Two mechanisms differing in
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α2 only are not representing two types of Bennett mechanism, but simply
two different Bennett mechanisms.

Kinematical properties of the Bennett mechanism are deduced from the
equations governing the mechanism RCCC and from the conditions (6.3).
First, it is proved that h2 = h3 = h4 ≡ 0 . Equation (5.51) reduces to
h3 = 0 . This concludes the proof for h3 . From the symmetry of Eqs.(6.3)
it follows that h2 ≡ 0 if h4 ≡ 0 . The solution h4 ≡ 0 requires that the
numerator expression in (5.45) be identically zero. In addition, (5.43) is valid.
Therefore, it must be shown that the equations

Ac4 +Bs4 −R = 0 , Dc4 + Es4 + F = 0 (6.4)

do not contradict each other. The coefficients A , B , R , D , E , F are those
given in (5.44) and (5.46). In view of (6.3) they have the forms

A = −S1(S1C2c1 + S2C1) , B = S2
1s1 , D = �1(ac1 + b) ,

R = S1(S2C1c1 + S1C2) , E = −2�1S1C1s1 , F = �1(bc1 + a)

}
(6.5)

with constants

a = S1(2C1C2 − S2
2) , b = S2(2C

2
1 + C1C2 − 1) . (6.6)

With these expressions Eqs.(6.4) are two linear equations for two unknowns:

S1C2
1 + c1c4
s1s4

+ C1S2
c1 + c4
s1s4

= S1 , a
1 + c1c4
s1s4

+ b
c1 + c4
s1s4

= 2S1C1 .

(6.7)
The solution is

1 + c1c4
s1s4

=
1− C1C2

C2 − C1
,

c1 + c4
s1s4

=
−S1S2

C2 − C1
. (6.8)

The difference of these two equations produces on the left-hand side the
expression

(1− c1)(1− c4)

s1s4
= tan

ϕ1

2
tan

ϕ4

2
(6.9)

and on the right-hand side the constant

1− (C1C2 − S1S2)

C2 − C1
=

1− cos(α1 + α2)

2 sin α1+α2

2 sin α1−α2

2

=
sin α1+α2

2

sin α1−α2

2

. (6.10)

It can have any positive or negative value. Thus, the result for ϕ4 is

tan
ϕ4

2
= p cot

ϕ1

2
, p =

sin α1+α2

2

sin α1−α2

2

. (6.11)
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This equation relates to every angle 0 ≤ ϕ1 ≤ 2π a single angle ϕ4 (and
vice versa) for which h4 ≡ 0 . This concludes the proof.

The existence of a single angle ϕ4 for every angle ϕ1 proves that the
Bennett mechanism does not have a second configuration. Full-cycle rotata-
bility in joint 1 follows also from the fact that in (6.4) A2 + B2 − R2 =
(S1S2s1)

2 ≥ 0 and D2 + E2 − F 2 = [�1S2(C1 + C2)s1]
2 ≥ 0 .

Next, the relationship between ϕ2 and ϕ1 is established. For the mech-
anism RCCC it is given by Eqs.(5.48), (5.49). With (6.3) the coefficients
A∗, B∗, R∗ turn out to be the coefficients A , B , R in (6.5) with α1 and
α2 interchanged. Because of (6.11) this means that ϕ2 = −ϕ4 .

Finally, the relationship between ϕ3 and ϕ1 is established. Equation
(5.50) reduces to cosϕ3 = cosϕ1 . Hence either ϕ3 = ϕ1 or ϕ3 = −ϕ1 .
Another equation involving ϕ3 is Eq.(5.53). With (6.3) it becomes

S1C2(c3 + c4)− S2(s3s4 − C1c3c4) + C1S2 = 0 . (6.12)

Depending on whether ϕ3 = ϕ1 or ϕ3 = −ϕ1 this is one of the two equations

S1C2(c1 + c4)− S2(±s1s4 − C1c1c4) + C1S2 = 0 . (6.13)

For c1 + c4 and for c1c4 expressions obtained from (6.8) are substituted. It
turns out that only the equation with the minus sign is identically satisfied.
This shows that ϕ3 = −ϕ1 .

Next, the angular velocity ϕ̇4 and the angular acceleration ϕ̈4 are de-
termined by differentiating (6.11) with respect to time. The first derivative
yields

ϕ̇4 = −p ϕ̇1

cos2 ϕ4

2

sin2 ϕ1

2

= −p ϕ̇1
1

sin2 ϕ1

2 (1 + tan2 ϕ4

2 )
(6.14)

= −p ϕ̇1
1

sin2 ϕ1

2 (1 + p2 cot2 ϕ1

2 )
= −p ϕ̇1

1

sin2 ϕ1

2 + p2 cos2 ϕ1

2

(6.15)

or, finally,

ϕ̇4 = −ϕ̇1
2p

1 + p2 − (1− p2) cosϕ1
. (6.16)

The ratio ϕ̇4/ϕ̇1 is oscillating 2π-periodically between the extremal values
−p and −1/p . Differentiating one more time yields for the angular acceler-
ation the expression

ϕ̈4 = −ϕ̈1
2p

1 + p2 − (1− p2) cosϕ1
+ ϕ̇2

1

2p(1− p2) sinϕ1

[1 + p2 − (1− p2) cosϕ1]2
. (6.17)

Byshgens [13] and Dimentberg/Schor [18] gave the first proofs that the
Bennett mechanism, the planar four-bar and the spherical four-bar are the
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only overconstrained mechanisms composed of four links and four revolute
joints. See also Dietmaier [19].

In Chap. 7 chains RR are investigated. A chain RR is a chain of three
bodies interconnected by two revolute joints. One of the terminal bodies is
the fixed frame. The other terminal body has the degree of freedom two.
Subject of investigation are positions of the moving body and trajectories of
body-fixed points. In the Bennett mechanism bodies 3 and 1 are the terminal
bodies of two chains RR , one with joints 1 , 2 on body 2 and the other with
joints 3 , 4 on body 4 . Equations (6.3) and the relationships ϕ3 = −ϕ1 ,
ϕ4 = −ϕ2 show that both chains RR are congruent. Every position of body
3 and the trajectories of all points of body 3 are generated by both chains
RR . In Chap. 7 these statements are arrived at by arguments different from
the ones used here.

6.3 Kinematical Chains with Five Revolute Joints

The only known 5R mechanism is the Goldberg mechanism treated in Sect.
6.3.1 . Whether other types exist, is an unsettled question. If so, then the
fifteen constant Denavit-Hartenberg parameters �i , αi , hi (i = 1, . . . , 5)
satisfy certain conditions. A set of sufficient conditions is formulated as fol-
lows. The unit vectors in the polygon of vectors �iai+hini (i = 1, . . . , 5) are
shown in Fig. 5.5a in which now all five joints are understood to be revolute
joints. Woernle-Lee equations eliminate two joint variables. Five equations
relating ϕ3 , ϕ1 , ϕ5 are based on the products n2 · n4 , n2 · r , n4 · r , r2

and r · n2 × n4 with the vector r pointing from n2 to n4 . This vector has
the two representations

r =

{
h2n2 + �2a2 + h3n3 + �3a3 (right segment)

−(h4n4 + �4a4 + h5n5 + �5a5 + h1n1 + �1a1) (left segment) .
(6.18)

The fifth equation is the dual derivative of the first equation (see (3.50)).
Evaluation of the equations by means of Table 5.2 is an elementary exercise
left to the reader. The first equation is nk · nk+2 = nk · nk−3 with k = 2 .
The equations are

S2S3c3 +A1c5 +B1s5 = R1 ,
�3 S2s3 +A2c5 +B2s5 = R2 ,

−h2S2S3c3 +�2 S3s3 +A3c5 +B3s5 = R3 ,
�2 �3 c3 +h2�3 S2s3 +A4c5 +B4s5 = R4 ,

(�2C2S3 + �3S2C3)c3 −h3S2S3s3 +A5c5 +B5s5 = R5 .

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(6.19)

The coefficients of c3 = cosϕ3 and s3 = sinϕ3 are constants. The coefficients
Ai , Bi , Ri (i = 1, . . . , 5) are abbreviations for linear functions of c1 = cosϕ1
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and s1 = sinϕ1 :

A1 = −S4(S1C5c1 + C1S5) , B1 = S4S1s1 ,
R1 = C4(S1S5c1 − C1C5) + C2C3 ,

A2 = −h4S4(S1C5c1 + C1S5) + �4S1s1 ,
B2 = �4(S1C5c1 + C1S5) + h4S4S1s1 ,
R2 = (h4C4 + h5)(S1S5c1 − C1C5)− (�5S1s1 + h1C1 + h2 + h3C2) ,

A3 = S4(�1C5s1 − h1S5) , B3 = S4(�1c1 + �5) ,
R3 = −[C4(�1S5s1 + h1C5 + h5) + C3(h2C2 + h3) + h4] ,

A4 = −�4(�1c1 + �5)− h4S4(�1C5s1 − h1S5) ,
B4 = −h4S4(�1c1 + �5) + �4(�1C5s1 − h1S5) ,
R4 = (h4C4 + h5)(�1S5s1 + h1C5) + �1�5c1 + h4h5C4 − h2h3C2

+ 1
2 [�

2
1 + �24 + �25 + h2

1 + h2
4 + h2

5 − (�22 + �23 + h2
2 + h2

3)] ,

A5 = h5B1 +A′
1 , B5 = −h5A1 +B′

1 R5 = R′
1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(6.20)

(A′
1 , B

′
1 , R

′
1 are the dual derivatives of A1 , B1 , R1 , respectively).

The first four Eqs.(6.19) are solved for c3 , s3 , c5 , s5 . In terms of coefficient
determinants

c3 =
Δc3

Δ
, s3 =

Δs3

Δ
, c5 =

Δc5

Δ
, s5 =

Δs5

Δ
. (6.21)

Δc3 and Δs3 are sums of products of three functions AiBjRk , whereas Δc5 ,
Δs5 and Δ are sums of products of only two functions (BjRk or AiRk or
AiBj ). Substitution of (6.21) into the fifth Eq.(6.19) results after multiplica-
tion with Δ in an equation in which ϕ1 is the only variable. This equation
must be the identity equation. The highest-order terms are c31 , c21s1 , c1s

2
1

and s31 . In terms of the new variable x1 = tanϕ1/2 it is a 6th-order equation

a6x
6
1 + a5x

5
1 + · · ·+ a1x1 + a0 ≡ 0 . (6.22)

The coefficients are functions of the fifteen parameters. Without loss of gen-
erality, the parameter �1 can be set equal to one so that �2, . . . , �5 and
h1, . . . , h5 are determined as multiples of �1 . Hence there are only four-
teen essential parameters. Equations (6.19), (6.20) remain valid when the
indices of all parameters and variables are cyclicly increased by 1 , by 2 , by
3 , by 4 . Hence altogether five 6th-order identity equations with variables
xi = tanϕi/2 (i = 1, . . . , 5) and with coefficients depending on the fourteen
essential parameters are obtained. In each identity equation the seven coeffi-
cients must be zero. In addition, the conditions c23+s23 = 1 , c25+s25 = 1 and
four more such conditions must be satisfied. Hence altogether 45 functions
of the parameters must be zero.
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6.3.1 Goldberg Mechanism

Goldberg [20] recognized that an overconstrained 5R mechanism can be con-
structed by merging two Bennett mechanisms. Both mechanisms must be
identical in the parameters α1 and �1 and different in the third parameter,
i.e., α2 in one mechanism and α3 �= α2 in the other (see Fig. 6.3a ). The
parameters satisfy Eqs.(6.3), i.e.,

�2 = �1
sinα2

sinα1
, �3 = �1

sinα3

sinα1
(6.23)

as well as the identity of pairs of opposite bodies. All joints have zero off-
set. Four bodies have the parameters �1 , α1 . In Fig. 6.3b the mechanisms
are shown in positions in which they share body 1 with parameters �1 , α1 .
The degree of freedom two as well as the quantities �1 and α1 remain un-
changed when body 1 is removed while preserving all six joint axes (Fig. c).
Indeed, none of the original Bennett mechanisms is mobile with other than
the original quantities �1 , α1 . In the system of Fig. 6.3d one of the two
joints bridging both mechanisms is frozen in an arbitrarily chosen position
β . This results in the Goldberg mechanism with five bodies and five revolute
joints. It has five constant parameters, namely, the four essential parameters
α1 , α2 , α3 , β and the length �1 which merely determines the size.

The bodies are newly labeled as shown in Fig. 6.3d . Body i is the body
of length �i (i = 1, . . . , 5). Joint 3 between bodies 2 and 3 is the mobile
joint bridging the two Bennett mechanisms. Body 5 with joint axes 5 and
1 is the body created by freezing the joint in the position β . The coefficients
Ai , Bi , Ri (i = 1, . . . , 5) in (6.19) and (6.20) depend on the parameters
�5 , α5 of this body 5 and on the offsets h5 , h1 of its joints 5 and 1 . As
preparatory step these four parameters are expressed in terms of β and of
the parameters �2 , α2 and �3 , α3 of the two bodies merged into body 5 .
These two bodies are labeled body 2′ and body 3′ , respectively. The vector
r pointing from axis 5 to axis 1 has the two representations

Fig. 6.3 Goldberg’s creation of a 5R mechanism from two Bennett mechanisms
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r =

{
h5n5 + �5a5 + h1n1 (right segment)

�2a
′
2 + �3a

′
3 (left segment)

(6.24)

with the notation familiar from Figs. 5.1 and 5.2. The unknown parameters
are determined from five Woernle-Lee equations for the loop formed by the
bodies 2′ , 3′ , 5 and by the joints 5 , 1 and the frozen joint. The five
equations are based on the scalar products n5 · n1 , n5 · r , n1 · r , r2 and
r · n5 × n1 . The first four equations are obtained from Table 5.2 :

cosα5 = cosα2 cosα3 − sinα2 sinα3 cosβ , (6.25)

h5 + h1 cosα5 = �2 sinα3 sinβ = �1
sinα2 sinα3 sinβ

sinα1
, (6.26)

h5 cosα5 + h1 = �3 sinα2 sinβ = �1
sinα2 sinα3 sinβ

sinα1
, (6.27)

h2
5 + h2

1 + 2h5h1 cosα5 + �25 = �22 + �23 + 2�2�3 cosβ

= �21
sin2 α2 + sin2 α3 + 2 sinα2 sinα3 cosβ

sin2 α1

.

(6.28)

The fifth equation is the dual derivative of the first equation:

�5 sinα5 = �2 sinα2 cosα3 + �3 cosα2 sinα3

+(�2 cosα2 sinα3 + �3 sinα2 cosα3) cosβ

= �1
sin2 α2 cosα3 + sin2 α3 cosα2 + (cosα2 + cosα3) sinα2 sinα3 cosβ

sinα1
.

(6.29)

From these equations the angle β is eliminated in order to express �5 , h1

and h5 in terms of �1 , α2 , α3 and α5 (Dietmaier [19]). Equation (6.29)
with the expression for sinα2 sinα3 cosβ from (6.25) yields

�5 = �1
(cosα2 + cosα3)

sinα1

(1− cosα5)

sinα5
= �1

cosα2 + cosα3

sinα1
tan

α5

2
. (6.30)

The difference of (6.26) and (6.27) is

(h5 − h1)(1− cosα5) = 0 . (6.31)

In the general case1 α5 �= 0 , the equation yields h5 = h1 . Equation (6.28)
with �5 from (6.30) and with cosβ from (6.25) yields

1 Dietmaier investigates also the special cases α5 = 0 , π (axes 1 and 5 parallel). It is

shown that α5 = 0 can occur only when the mechanism is a planar 2-d.o.f. mechanism.
The case α5 = π requires β = 0 , α2 + α3 = 0 and h5 = h1 (arbitrary)
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h5 = h1 = �1

√
1− cos2 α2 − cos2 α3 + 2 cosα2 cosα3 cosα5 − cos2 α5

sinα1(1 + cosα5)
(6.32)

or with the identities

1− cos2 α2 − cos2 α3 = sin2 α2 sin
2 α3 − cos2 α2 cos

2 α3

= −(cosα2 cosα3 + sinα2 sinα3)(cosα2 cosα3 − sinα2 sinα3)
= − cos(α2 − α3) cos(α2 + α3) ,

2 cosα2 cosα3 = cos(α2 − α3) + cos(α2 + α3)

⎫⎪⎪⎬
⎪⎪⎭ (6.33)

h5 = h1 = �1

√
[cos(α2 − α3)− cosα5][cosα5 − cos(α2 + α3)]

sinα1(1 + cosα5)
. (6.34)

Both �5 and h5 are symmetric with respect to α2 and α3 . The free param-
eters α2 , α3 and α5 are subject to the condition that h5 must be real.

With �5 and h5 = h1 and with the parameters

h2 = h3 = h4 = 0 , 
4 = 
1 , α4 = α1 , 
2 = 
1
sinα2

sinα1
, 
3 = 
1

sinα3

sinα1
(6.35)

the set of Eqs.(6.19), (6.20) and four more sets produced by cyclic permuta-
tion of all indices are formulated. In each set only the first four equations are
used because the fifth equation is known to be satisfied if the first four are
satisfied. Taking the first set, i.e., (6.19) and (6.20) as example three opera-
tions are carried out which are repeated with the other four sets of equations.
Operation 1 : Introduction of the special parameters (6.35). The coefficients
(6.20) are

A1 = −S1(S1C5c1 + C1S5) , B1 = S2
1s1 ,

R1 = C1(S1S5c1 − C1C5) + C2C3 ,

A2 = �1S1s1 , B2 = �1(S1C5c1 + C1S5) ,
R2 = h1[S1S5c1 − C1(1 + C5)]− �5S1s1 ,

A3 = S1(�1C5s1 − h1S5) , B3 = S1(�1c1 + �5) ,
R3 = −C1[�1S5s1 + h1(1 + C5)] ,

A4 = −�1(�1c1 + �5) , B4 = �1(�1C5s1 − h1S5) ,
R4 = h1(�1S5s1 + h1C5) + �1�5c1 +

1
2 [2�

2
1 + �25 + 2h2

1 − (�22 + �23)] .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(6.36)

Operation 2 : From the first two Eqs.(6.19) it follows that

cosϕ3 =
R1 −A1c5 −B1s5

S2S3
, sinϕ3 =

R2 −A2c5 −B2s5
�2S2

. (6.37)

Operation 3 : Linear combinations of the equations result in two equations
from which c3 and s3 are eliminated (note Eqs.(6.35) for h2 , �2 and �3 ):
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(�21A1 − S2
1A4)c5+ (�21B1 − S2

1B4)s5 = �21R1 − S2
1R4 ,

(A2 −A3)c5+ (B2 −B3)s5 = R2 −R3 .

}
(6.38)

Let in each set of four equations produced from (6.19), (6.20) by cyclic permu-
tation of indices ϕj be the independent variable. Then the other two variables
are ϕj+2 and ϕj−1 where ϕj+2 is the variable associated with constant co-
efficients. Repetition of the same three operations result in Eqs.(6.37) of the
general form

cosϕj+2 = f(ϕj , ϕj−1) ,
sinϕj+2 = g(ϕj , ϕj−1)

}
(j = 1, 2, 3, 4, 5 cyclic) (6.39)

and in Eqs.(6.38) of the general form

u1(ϕj) cosϕj−1 + v1(ϕj) sinϕj−1 = w1(ϕj) ,
u2(ϕj) cosϕj−1 + v2(ϕj) sinϕj−1 = w2(ϕj)

}
(j = 1, 2, 3, 4, 5) . (6.40)

For a given angle ϕj each of these Eqs.(6.40) has two solutions ϕj−1 . About
the number of solutions common to both equations the following statement
can be made. In the Goldberg mechanism two Bennett mechanisms are con-
nected by joint 3 . A single variable in a Bennett mechanism uniquely de-
termines all other variables in the same Bennett mechanism. Hence a single
common solution exists if ϕj is not ϕ3 . This solution is

cosϕj−1 =
w1v2 − w2v1
u1v2 − u2v1

, sinϕj−1 =
u1w2 − u2w1

u1v2 − u2v1
. (6.41)

The associated angle ϕj+2 is determined from (6.39).
In the case ϕj = ϕ3 (6.19) and (6.20) are the equations

S1S5c5 +A∗
1c2 +B∗

1s2 = R∗
1 ,

�5 S1s5 +A∗
2c2 +B∗

2s2 = R∗
2 ,

�1 S5s5 +A∗
3c2 +B∗

3s2 = R∗
3 ,

�1 �5 c5 +A∗
4c2 +B∗

4s2 = R∗
4

⎫⎪⎪⎬
⎪⎪⎭ (6.42)

with the coefficients
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A∗
1 = −S1(C2S3c3 + S2C3) , B∗

1 = S1S3s3 ,

R∗
1 = C1(S2S3c3 − C2C3 + C5) ,

A∗
2 = 
1

[
S3s3 − h1


1
S1(C2S3c3 + S2C3)

]
,

B∗
2 = 
1

(
C2S3c3 + S2C3 +

h1


1
S1S3s3

)
,

R∗
2 =


1

S1

[h1


1
S1C1(S2S3c3 − C2C3 − 1)− S2S3s3

]
,

A∗
3 = 
1C2S3s3 , B∗

3 = 
1(S3c3 + S2) ,

R∗
3 = − 
1

S1

[
C1S2S3s3 +

h1


1
S1(1 + C5)

]
,

A∗
4 = − 
21

S1

[
S2 + S3

(
c3 +

h1


1
S1C2s3

)]
,

B∗
4 =


21
S1

[
C2S3s3 − h1


1
S1(S3c3 + S2)

]
,

R∗
4 =


21
S2
1

[
S2S3

(h1


1
S1C1s3 + c3

)
+ 1 + C2C3 − (C2 + C3)2

1 + C5

]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.43)

Equations (6.40) are

(�1�5A
∗
1 − S1S5A

∗
4)c2 +(�1�5B

∗
1 − S1S5B

∗
4)s2 = �1�5R

∗
1 − S1S5R

∗
4 ,

(�1S5A
∗
2 − �5S1A

∗
3)c2 +(�1S5B

∗
2 − �5S1B

∗
3)s2 = �1S5R

∗
2 − �5S1R

∗
3 .

}
(6.44)

These two equations are identical, i.e., one of them is, independent of the
variable ϕ3 , a constant multiple of the other. This is proved by verifying the
identities

(�1�5A
∗
1 − S1S5A

∗
4)(�1S5B

∗
2 − �5S1B

∗
3)

− (�1�5B
∗
1 − S1S5B

∗
4)(�1S5A

∗
2 − �5S1A

∗
3) ≡ 0 ,

(�1�5A
∗
1 − S1S5A

∗
4)(�1S5R

∗
2 − �5S1R

∗
3)

− (�1�5R
∗
1 − S1S5R

∗
4)(�1S5A

∗
2 − �5S1A

∗
3) ≡ 0 .

⎫⎪⎪⎬
⎪⎪⎭ (6.45)

Each of them has, with different sets of constant coefficients, the form p1c
2
3+

p2c3s3 + p3c3 + p4s3 + p5 ≡ 0 . It is left to the reader to verify that in each
of them p1 = p2 = p3 = p4 = p5 = 0 . Some of these proofs make use of the
relationships


25

21

S2
1 =

1− C5

1 + C5
(C2 + C3)

2 ,

5


1
S1S5 = (1− C5)(C2 + C3) ,

S2
5

(
1 +

h2
1


21
S2
1

)
= −1− C5

1 + C5
(C2 + C3)

2 + 2(1− C5)(1 + C2C3) .

⎫⎪⎪⎬
⎪⎪⎭ (6.46)

From the identity of the Eqs.(6.44) it follows that for a given angle ϕ3 two
sets of solutions ϕ1k , ϕ2k , ϕ4k , ϕ5k (k = 1, 2) exist. For every solution
ϕ2k (k = 1, 2) the first two Eqs.(6.42) determine ϕ5k . Next, with ϕj =
ϕ2k (6.41) determines ϕ1k , and (6.39) determines ϕ4k . This concludes the
analysis of the Goldberg mechanism.
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It is unknown whether there exist 5R mechanisms other than Goldberg
mechanisms. It was shown that its fourteen essential parameters must satisfy
45 conditions. Starting from the same2 Eqs.(6.19), (6.20) Dietmaier [19] for-
mulated a different set of 45 conditions fk = 0 (k = 1, . . . , 45). A numerical

search was made for zero-value minima of the function F =
∑45

k=1 f
2
k . Start-

ing from a randomly picked point in the 14-dimensional parameter space the
algorithm yields a certain minimum. If this minimum is not zero-valued, a
new search is made with a new starting point. Among the zero-valued minima
found only those are of interest which represent a new type of mechanism,
i.e., neither a Goldberg mechanism nor a degenerate mechanism (planar, for
example). Although Dietmaier tried 2×106 randomly picked starting points
no new type of mechanism was found. This is not a proof, but a strong
argument for the Goldberg mechanism to be the only 5R mechanism.

6.4 Kinematical Chains with Six Revolute Joints

The number of different types of overconstrained kinematic chains with six
links and six revolute joints is unknown as well. Many different types are
known. Simple examples are shown in Figs. 6.1 and 6.2 . Systematic de-
scriptions and analyses see in Baker [4, 7], Mavroidis/Roth [25, 26, 27] and
Dietmaier [19]. Bricard [10] discovered three classes of mechanisms known
as line-symmetric, plane-symmetric and trihedral mechanisms. They are the
subjects of the three sections to come. Several other types of mechanisms are
obtained by merging a number of Bennett mechanisms or of Goldberg mech-
anisms in the spirit of Goldberg’s construction of the five-joint mechanism in
Fig. 6.3 (Mudrov [29], Goldberg [20], Wohlhart [31, 32]). Dietmaier [19] found
a new class of mechanisms by the numerical search described above. For six-
link mechanisms the function to be investigated has the form F =

∑102
k=1 f

2
k

with functions fk depending on eighteen Denavit-Hartenberg parameters.
Dietmaier’s mechanism is the subject of Sect. 6.4.4.

6.4.1 Line-Symmetric Bricard Mechanism

A mechanism having six arbitrarily skew, consecutively labeled joint axes 1,
2, 3, 4, 5, 6 is said to be symmetric with respect to a line z if the geometry
is invariant to a 180◦-rotation about this line. Bricard [10] recognized that
such a mechanism is deformable with degree of freedom one, and that the
symmetry is maintained in the course of deformation. His proof of mobility

2 (6.19), (6.20) and Dietmaier’s Eqs.(3-7) – (3-11) are identical if in the latter ones
( si , θi , αi , ai ) is replaced by (hi , ϕi , αi−1 , 
i−1 )
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one is as follows. Suppose that body 2 is fixed in some reference frame, and
that the constraints in all joints are removed. Relative to the reference frame
the line z is specified by four parameters, and the positions of bodies 1 and
3 are specified by additional twelve parameters. Through these altogether
N = 16 parameters the positions of the other three bodies 4 , 5 and 6 are
specified as well because of the symmetry with respect to z . Each revolute
joint introduces five constraints. Because of the pairwise symmetry of joints
the total number of independent constraints is only 3×5 = 15 . The difference
N − 15 = 1 is the degree of freedom of the mechanism. End of proof.

The line-symmetry of the mechanism finds its expression in the identities

αi+3 = αi , �i+3 = �i , ϕi+3 ≡ ϕi , hi+3 = hi (i = 1, 2, 3) . (6.47)

In Fig. 6.4 the spatial polygon of vectors hini and �iai (i = 1, . . . , 6) with
these symmetrically distributed Denavit-Hartenberg parameters is shown
schematically in projection along the line z . The angle ϕ1 is chosen as inde-
pendent variable. The angles ϕ2 and ϕ3 are the only dependent variables.
The vector r joining the axes n6 and n3 has in the right and in the left
segment the forms

r =

{
�3a6 + h1n1 + �1a1 + h2n2 + �2a2 + h3n3 (right segment)

−(�3a3 + h1n4 + �1a4 + h2n5 + �2a5 + h3n6) (left segment) .
(6.48)

The Woernle-Lee equation F �
3 = F r

3 with F3 = n6 · r is an equation
involving only ϕ1 and ϕ2 . It is written in the form

nk ·
[
�3(ak + ak−3) + h1(nk+1 + nk−2) + �1(ak+1 + ak−2)

+h2(nk+2 + nk−1) + �2(ak+2 + ak−1) + h3(nk+3 + nk)
]
= 0 (k = 6) .(6.49)

Copying coordinates from Table 5.2 and using (6.47) results in the equation

Fig. 6.4 Spatial polygon of vectors hini and 
iai of a Bricard mechanism with line of
symmetry z . Vector r joining axes n6 and n3
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A2 cosϕ2 +B2 sinϕ2 = R2

A2 = −h3C1S2S3 cosϕ1 + (�2S3 + �3C1S2) sinϕ1 − S1S2(h1 + h3C3) ,
B2 = (�2C1S3 + �3S2) cosϕ1 + h3S2S3 sinϕ1 + �1S2 + �2S1C3 ,
R2 = S1S3(h2 + h3C2) cosϕ1 − (�1S3 + �3S1C2) sinϕ1

−h1(C1C2 + C3)− h2(C1C3 + C2)− h3(1 + C1C2C3) .

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(6.50)
In the same way an equation for ϕ3 as function of ϕ1 is obtained on the
basis of F3 = n5 · r with a vector r joining the axes n5 and n2 . Equation
(6.49) is replaced by

nk ·
[
�2(ak + ak−3) + h3(nk+1 + nk−2) + �3(ak+1 + ak−2)

+h1(nk+2 + nk−1) + �1(ak+2 + ak−1) + h2(nk+3 + nk)
]
= 0 (k = 5) .(6.51)

Evaluation results in the equation

A3 cosϕ3 +B3 sinϕ3 = R3

A3 = −h2S1S2C3 cosϕ1 + (�1S2C3 + �2S1) sinϕ1 − S2S3(h1 + h2C1) ,
B3 = (�1S2 + �2S1C3) cosϕ1 + h2S1S2 sinϕ1 + �2C1S3 + �3S2 ,
R3 = S1S3(h2C2 + h3) cosϕ1 − (�1C2S3 + �3S1) sinϕ1

−h1(C1 + C2C3)− h2(1 + C1C2C3)− h3(C2 + C1C3) .

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(6.52)
Each of the Eqs.(6.50) and (6.52) has two solutions (ϕ21 , ϕ22) and (ϕ31 , ϕ32) ,
respectively. Their cosines and sines are

cjk =
AjRj + (−1)kBj

√
A2

j +B2
j −R2

j

A2
j +B2

j

,

sjk =
BjRj − (−1)kAj

√
A2

j +B2
j −R2

j

A2
j +B2

j

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(j = 2, 3 ; k = 1, 2) . (6.53)

The square roots are identical:

A2
2 +B2

2 −R2
2 − (A2

3 +B2
3 −R2

3) =
[

22(S

2
3 − S2

1) + 2
2S2(
3S3C1 − 
1S1C3)

+ S2
2(


2
3 + h2

3S
2
3 − 
21 − h2

2S
2
1)
]
(cos2 ϕ1 + sin2 ϕ1 − 1) ≡ 0 . (6.54)

In order to determine which of the two solutions ϕ2 belongs to which of the
two solutions ϕ3 an equation relating ϕ2 and ϕ3 is formulated by repeating
the procedure once more with F3 = n4 · r and with a vector r joining the
axes n4 and n1 . Equation (6.49) is replaced by

nk ·
[
�1(ak + ak−3) + h2(nk+1 + nk−2) + �2(ak+1 + ak−2)

+h3(nk+2 + nk−1) + �3(ak+2 + ak−1) + h1(nk+3 + nk)
]
= 0 (k = 4) .(6.55)
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Evaluation results in the equation

A4 cosϕ3 +B4 sinϕ3 = R4

A4 = −h1S1C2S3 cosϕ2 + (�1C2S3 + �3S1) sinϕ2 − S2S3(h1C1 + h2) ,
B4 = (�1S3 + �3S1C2) cosϕ2 + h1S1S3 sinϕ2 + �2S3 + �3C1S2 ,
R4 = S1S2(h1C3 + h3) cosϕ2 − (�1S2C3 + �2S1) sinϕ2

−h1(1 + C1C2C3)− h2(C1 + C2C3)− h3(C1C2 + C3) .

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(6.56)
In the example below it is shown that this equation is satisfied by the com-
binations (ϕ21 , ϕ32) and (ϕ22 , ϕ31) .

Example: In Sect. 4.2.5 the special line-symmetric mechanism with param-
eters α1 = α2 = α3 = π/2 , �1 = �2 = �3 = 0 and h1 = h2 = h3 = 1 was
analyzed. With these parameters (6.50), (6.52) and (6.56) are, in this order,

c2 − s1s2 = 1− c1 , c3 − s1s3 = 1− c1 , c3 − s2s3 = 1− c2 . (6.57)

Except for a difference in the definition of ϕ1 the first equation is identical
with (4.35), and the correlation between the solutions ϕ2 and ϕ3 has the
form (4.38). Equations (6.53) are

c21,2 = c31,2 =
1− c1 ± s1

√
1 + 2c1(1− c1)

1 + s21
,

s21,2 = s31,2 =
−s1(1− c1)±

√
1 + 2c1(1− c1)

1 + s21
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (6.58)

By substituting these expressions it is verified that the third Eq.(6.57) is
satisfied by the combinations (ϕ21 , ϕ32) and (ϕ22 , ϕ31) . End of example.

According to Theorem 6.1 the six joint axes are, in every position of the
mechanism instantaneously, lines of a linear complex. Conjecture: The axis
of this linear complex intersects the line of symmetry z orthogonally. The
following proof is due to Hon-Cheung [22]. It makes use of two properties of
reciprocal polars which were established in Sect. 2.7.5 :
(a) The two transversals of any four independent complex lines are reciprocal
polars of the linear complex.
(b) The common perpendicular of two reciprocal polars intersects orthogo-
nally the axis of the linear complex.

Joint axes 1, 2, 3, 4 are line-symmetric to joint axes 4, 5, 6, 1 , respectively.
According to (a) the two transversals of the former four axes are reciprocal
polars and so are the two transversals of the latter four axes. The common
perpendicular p of the former two reciprocal polars is line-symmetric to
the common perpendicular p′ of the latter two reciprocal polars whence
it follows that the common perpendicular of p and p′ intersects the line
of symmetry z orthogonally. But according to (b) the axis of the linear
complex intersects both p and p′ orthogonally, too. Therefore, this axis
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and the common perpendicular of p and p′ intersecting z orthogonally are
identical. End of proof.

6.4.2 Plane-Symmetric Bricard Mechanism

Another family of overconstrained mechanisms identified by Bricard [10] is
referred to as plane-symmetric because of the pairwise symmetry of joint axes
with respect to a plane Σ . In Fig. 6.5 the spatial polygon of vectors hini

and �iai (i = 1, . . . , 6) is shown schematically. The symmetry requires the
opposite joint axes 1 and 4 to lie in Σ and to have zero offset: h1 = h4 =
0 . It is left to the reader to verify that the remaining Denavit-Hartenberg
parameters satisfy the conditions (for definitions see Fig. 5.1)

�6 = �1 , h6 = h2 ,
�5 = �2 , h5 = h3 ,
�4 = �3 ,

}
(6.59)

α6 = π − α1 , ϕ6 ≡ −ϕ2 ,
α5 = −α2 , ϕ5 ≡ −ϕ3 ,
α4 = π − α3 .

}
(6.60)

Dissection of joints 1 and 4 produces two symmetrical twin halves of
the system. Consider the twin half consisting of bodies 1 , 2 and 3 and
imagine body 2 to be fixed. Let body 1 be rotated relative to body 2
through an arbitrary fixed angle ϕ2 so that joint axis 1 assumes a certain
position. Likewise, let body 3 be rotated relative to body 2 through the angle
ϕ3 (variable) so that joint axis 4 generates an hyperboloid of revolution
(in the case α3 = 0 a cylinder of radius �3 and in the case α3 = π/2 a
plane every point of which outside a circle of radius �3 is located on two
generators associated with different angles ϕ3 ). The fixed axis 1 intersects

Fig. 6.5 Spatial polygon of vectors hini and 
iai of a Bricard mechanism symmetric

with respect to plane Σ : 
6 = 
1 , h6 = h2 , 
5 = 
2 , h5 = h3 , 
4 = 
3
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two generators of the hyperboloid (of the cylinder, of the plane in the said
special cases) which are axes 4 coplanar with axis 1 . Thus, for every ϕ2 there
are two angles ϕ3 putting the twin half into a position with coplanar axes 1
and 4 . The other twin half is mounted symmetrically thereby determining
ϕ1 and ϕ4 . Thus, not only mobility one of the mechanism is proved, but also
the existence of two positions for a given independent angle ϕ2 . An equation
relating ϕ2 and ϕ3 is derived from the intersection condition of the axes 1
and 4 . This condition is written in the form (see Fig. 6.5)

λn1 + �1a1 + h2n2 + �2a2 + h3n3 + �3a3 + μn4 = 0 (6.61)

with unknowns λ and μ of dimension length. Decomposition of the vectors
results in three equations relating λ , μ , ϕ2 and ϕ3 . Vector coordinates are
copied from Table 5.2. The simplest equations are obtained by decomposition
on body 3 , i.e., by evaluating the equation

λnk−2 + �1ak−2 + h2nk−1 + �2ak−1 + h3nk + �3ak + μnk+1 = 0 (6.62)

with k = 3 . This results in the set of equations

λ(C1C2 − S1S2c2) + μC3 + 
1s2S2 + h2C2 + h3 = 0 ,

λ[C1S2s3 + S1(s2c3 + c2s3C2)] + 
1(c2c3 − s2s3C2) + h2S2s3 + 
2c3 + 
3 = 0 ,

λ[C1S2c3 − S1(s2s3 − c2c3C2)]− μS3 − 
1(c2s3 + s2c3C2) + h2S2c3 − 
2s3 = 0 .

⎫⎪⎬
⎪⎭

(6.63)

The first two equations are solved for λ and μ . Substitution into the third
equation and simple ordering of terms results in the desired equation relat-
ing ϕ2 and ϕ3 (terms c22 and s22 occuring in this process have identical
coefficients; the same is true for c23 and s23 )

A cosϕ3 +B sinϕ3 = R (6.64)

with coefficients

A = (−�1C1C2S3 + �2S1S2S3 − �3S1C2C3) cosϕ2

+S1S3(h2C2 + h3) sinϕ2 + �1S1S2S3 − �2C1C2S3 − �3C1S2C3 ,

B = S1S3(h2 + h3C2) cosϕ2 + (�1C1S3 + �3S1C3) sinϕ2 + h3C1S2S3 ,

R = (�1C1S2C3 + �2S1C2C3 − �3S1S2S3) cosϕ2 − h2S1S2C3 sinϕ2

+�1S1C2C3 + �2C1S2C3 + �3C1C2S3 .

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(6.65)
The equation has two solutions ϕ3 in terms of ϕ2 .

From the symmetry with respect to plane Σ it follows that ϕ1 is uniquely
determined by ϕ2 and ϕ3 . An explicit expression for ϕ1 in terms of ϕ2 and
ϕ3 is obtained by evaluating the Woernle-Lee equation based on the product
n6 ·n4 . This is the equation nk ·nk−2 = nk ·nk+4 with k = 6 . Table 5.2 in
combination with (6.60) yields the equation
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s1[S3(c2s3 + C2s2c3) + C3S2s2]

= (1− c1)
[
C1S3(s2s3 − C2c2c3) + S2(S1S3c3 − C1C3c2)− S1C2C3

]
, (6.66)

whence it follows that

tan
ϕ1

2
=

1− c1
s1

=
S3(c2s3 + C2s2c3) + C3S2s2

C1S3(s2s3 − C2c2c3) + S2(S1S3c3 − C1C3c2)− S1C2C3
.

(6.67)
An equation for tanϕ4/2 is obtained in the same way by expressing the
product n3 ·n1 in the two forms nk ·nk−2 = nk ·nk+4 with k = 3 . In view
of the symmetry of Fig. 6.5 the equation is directly obtained by interchanging
in (6.67) α1 with α3 and ϕ2 with ϕ3 :

tan
ϕ4

2
=

S1(c3s2 + C2s3c2) + C1S2s3
C3S1(s2s3 − C2c2c3) + S2(S1S3c2 − C1C3c3)− S3C2C1

. (6.68)

Example: The triple plane-symmetric mechanism shown in Fig. 4.6 is char-
acterized by the parameters �1 = �2 = �3 = 1 , h2 = h3 = 0 and
α1 = α2 = α3 = π/2 . This is the special case with a single solution (ϕ1 , ϕ3)
for a given angle ϕ2 . Equations (6.64) and (6.67) are

c2 + c2c3 + c3 = 0 , tan
ϕ1

2
=

c2s3
c3

. (6.69)

With c2 from the first equation the second becomes tanϕ1/2 = −s3/(1+c3)
or ϕ1 = −ϕ3 . Except for slightly different definitions of angles, the same
results were obtained in (4.20) and (4.22). End of example.

6.4.3 Trihedral Bricard Mechanism

This mechanism was developed by Bricard [10] in search for a system having
the property that in every position the six axes are lines of a special linear
complex. Consider Fig. 6.6 . The arbitrary spatial trihedral with lines 2, 4,
6 and with vertex A , referred to as trihedral A , is given. Furthermore, a
point B is given. The perpendiculars 1, 3, 5 from B onto the three planes of
trihedral A define the trihedral B . The construction implies that the lines
2, 4, 6 of trihedral A are perpendiculars of the three planes of trihedral B .
With the labeling shown in Fig. 6.6 the line i (i = 1, . . . , 6 cyclic) is normal
to the plane of lines i − 1 and i + 1 . Let P2 , P4 , P6 and P1 , P3 , P5 be
the feet of the correspondingly labeled perpendiculars. They form the spatial
polygon shown in dashed lines. The length of the side PiPi+1 is called �i .
The line segment APi (i = 1, 3, 5) which is not shown is hypotenuse in
the rectangular triangle (A,Pi,Pi−1) as well as in the rectangular triangle
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Fig. 6.6 Trihedrals A and B . Line i is normal to the plane of lines i − 1 and i + 1

(i = 1, . . . , 6 cyclic)

(A,Pi,Pi+1). Consequently, AP
2

i−1 + �2i−1 = AP
2

i+1 + � 2
i (i = 1, 3, 5). This

establishes the three equations

�21−�26 = AP6
2−AP2

2
, �23−�22 = AP2

2−AP4
2
, �25−�24 = AP4

2−AP6
2
.

(6.70)
Summation yields

�21 + �23 + �25 = �22 + �24 + �26 . (6.71)

Imagine now the lengths �1, . . . , �6 to be rigid rods interconnected by revo-
lute joints at the points Pi (i = 1, . . . , 6). Each joint axis has the direction
of the corresponding perpendicular i . This means that each rod carries two
mutually perpendicular joint axes which are also perpendicular to the rod.
The axes 2, 4, 6 intersect at the single point A , and the axes 1, 3, 5 intersect
at the single point B . Proposition: Every mechanism composed of six rods
and of six revolute joints having these orthogonality properties and arbitrary
lengths �1, . . . , �6 satisfying (6.71) has a single degree of freedom if one body
is held fixed. This is the trihedral Bricard mechanism (sometimes also re-
ferred to as orthogonal Bricard mechanism). As is the case in the Bennett
mechanism each joint has zero offset. Bricard’s proof of mobility one is as
follows. The construction of the system requires the specification of twelve
parameters, namely, three coordinates for each of the points A and B and
two direction cosines for each line of trihedral A . Six out of these twelve
parameters determine the dimensions of the system and the remaining six its
position in space. Of interest are only the first six parameters. Their number
exceeds the number of independent lengths by one. The single free param-
eter constitutes the single degree of freedom. End of proof. Since in every
position of the mechanism the six joint axes intersect the line AB , they are
lines of the special linear complex with the axis AB . In Fig. 4.6 the special
mechanism is shown in which the six lengths �1 , . . . , �6 are identical.
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A trihedral Bricard mechanism can assume so-called planar positions, i.e.,
positions in which the polygon of points P1, . . . ,P6 is planar. In these positions
three joint axes are normal to the plane. They intersect at infinity. The other
three joint axes are lying in the plane. They either intersect at a single point
or are parallel. The two rods coupled by any of these three joints are collinear.
From this it follows that every planar position of the mechanism creates a
triangle of rods in the plane. In order to find all planar positions with collinear
pairs of rods, say pairs (1,2), (3,4) and (5,6), the altogether eight combinations
of sums and differences |�1± �2| , |�3± �4| and |�5± �6| are calculated. Each
combination is checked whether it satisfies the triangle-inequalities. In the
same way all planar positions with collinear pairs of rods (2,3), (4,5) and (6,1)
are determined. With at least four of the altogether sixteen combinations of
sums and differences the triangle-inequalities are satisfied. The proof is left
to the reader. It makes use of (6.71).

Example: The mechanism with lengths (�1, �2, �3, �4, �5, �6) = (16, 3, 9, 17,
5, 8) has the eight planar positions shown in Figs. 6.7a-h . In Fig. 6.7d all
six rods are collinear, and the intersection points of both triples of joint axes
are at infinity. End of example.

The figures reveal the existence of two different types of trihedral mecha-
nisms. In Figs. 6.7a-d the number of differences of lengths in the triangle is
odd, and in Figs. 6.7e-h the number of sums of lengths is odd. According to
the rules in Fig. 5.1 the following quantities are defined:
– unit vectors n1 , . . . , n6 along the joint axes (sense of direction arbitrary)

– vectors �iai =
−−→
PiPi+1 (i = 1, . . . , 6)

– constant angles αi and joint variables ϕi (i = 1, . . . , 6) .
The angles α1 , . . . , α6 are either +π/2 or −π/2 . Simple inspection reveals
that, no matter how n1 , . . . , n6 are directed, the number of positive angles
αi = +π/2 is even in Figs. 6.7a-d and odd in Figs. 6.7e-h . Wohlhart [33] who
presented the first complete kinematics analysis speaks of a type 2 mecha-
nism in the former case and of a type 1 mechanism in the latter. A type 2
mechanism is obtained from type 1 and vice versa by opening one joint and
by closing it again after giving one of the neighboring bodies a 180◦-rotation
about a normal to the joint axis.

Let n1 , . . . , n6 be directed such that αi = +π/2 (i = 1, . . . , 6) in type
2 , and that α1 = α3 = α5 = +π/2 , α2 = α4 = α6 = −π/2 in type
1 . With the usual notation Ci = cosαi , Si = sinαi this means that
Ci = 0 (i = 1, . . . , 6) and

Si = +1 (i = 1, . . . , 6) (type 2 ) ,
S1 = S3 = S5 = +1 , S2 = S4 = S6 = −1 (type 1 ) .

}
(6.72)

The characteristic parameter specifying the type is
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Fig. 6.7 The eight planar positions of the trihedral Bricard mechanism with lengths

(
1, 
2, 
3, 
4, 
5, 
6) = (16, 3, 9, 17, 5, 8) . Type 2 with odd number of differences of lengths
(Figs. a–d) and type 1 with odd number of sums of lengths (Figs. e–h)

λ = SiSi+1 ( i = 1, . . . , 6 cyclic ) =

{
+1 (type 2 ) ,
−1 (type 1 ) .

(6.73)

The following kinematics analysis is different from Wohlhart’s. Three
Woernle-Lee equations are formulated. Two equations are based on the prod-
ucts n6 · n4 and n6 · n3 . They are written in the forms

nk · nk−2 = nk · nk+4 (k = 6) , (6.74)

nk · nk−3 = nk · nk+3 (k = 6) . (6.75)

The third equation is based on the product r·n6×n4 with r being the vector
pointing from P6 to P4 . Since r , n6 and n4 are coplanar, the Woernle-Lee
equation splits into two equations:

(�6ak + �1ak+1 + �2ak+2 + �3ak+3) · nk × nk+4 = 0 ,
(�4ak−2 + �5ak−1) · nk × nk−2 = 0 .

}
(k = 6) (6.76)
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All equations are valid with indices changed cyclicly. Evaluation of (6.74) and
(6.75) by means of Table 5.2 results in the equations

c2 = −λc1c3 + c5
s1s3

, s2 =
s4s5
s1

=
s5s6
s3

. (6.77)

The second expression for s2 is the result of increasing all indices by one.
In the second Eq.(6.76) the vectors (�4ak−2 + �5ak−1) and nk × nk−2

have the coordinate matrices⎡
⎣ 1st coordinate is irrelevant

(�4c5 + �5)c6
−(�4c5 + �5)s6

⎤
⎦ ,

⎡
⎣ 0
S4s5s6
S4s5c6

⎤
⎦ , (6.78)

respectively. Hence the second Eq.(6.76) is the identity. Not so the first equa-
tion. The vectors (�6ak + �1ak+1 + . . .) and nk × nk+4 have the coordinate
matrices⎡
⎣ 1st coordinate is irrelevant

�6 + �1c1 + �2c2c1 + �3(λs3s1 + c3c2c1)
−S1S6s2(�2 + �3c3)

⎤
⎦ ,

⎡
⎣ 0
S1S3S6s2s3
S3(−λc3s1 + s3c2c1)

⎤
⎦ ,

(6.79)
respectively. The scalar product allows factoring out S1S3S6s2. The first
Eq.(6.76) then is the first of the six equations below. The remaining equations
are obtained by cyclic permutation of indices.

1. (�2c3 + �3)s1+ λ(�1c1 + �6)s3 = 0 ,
2. (�3c4 + �4)s2+ λ(�2c2 + �1)s4 = 0 ,
3. (�4c5 + �5)s3+ λ(�3c3 + �2)s5 = 0 ,
4. (�5c6 + �6)s4+ λ(�4c4 + �3)s6 = 0 ,
5. (�6c1 + �1)s5+ λ(�5c5 + �4)s1 = 0 ,
6. (�1c2 + �2)s6+ λ(�6c6 + �5)s2 = 0 .

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(6.80)

Each equation involves two variables. The first equation yields ϕ3 in terms
of ϕ1 , and the fifth equation yields ϕ5 in terms of ϕ1 . These equations have
the forms

Aj cosϕj +Bj sinϕj = Rj (j = 3, 5) (6.81)

with coefficients which are functions of ϕ1 . Each equation has two solutions
ϕ3k and ϕ5k (k = 1, 2) . Their cosines and sines are

cjk =
AjRj + (−1)kBj

√
A2

j +B2
j −R2

j

A2
j +B2

j

,

sjk =
BjRj − (−1)kAj

√
A2

j +B2
j −R2

j

A2
j +B2

j

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(j = 3, 5 ; k = 1, 2) . (6.82)
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By substituting coefficients it is verified that the square roots are identical:
A2

3 + B2
3 − R2

3 − (A2
5 + B2

5 − R2
5) = 0 because of (6.71). Furthermore, by

substituting the expressions (6.82) it is verified that the third Eq.(6.80) is
satisfied by the combinations (ϕ31 , ϕ51) and (ϕ32 , ϕ52) .

The first Eq.(6.77) determines for each of the two solutions c3 , s3 , c5
the corresponding cosine c2 and hence two angles ±ϕ2 . The corresponding
cosine c4 is obtained by substituting the first expression s2 = s4s5/s1 into
the second Eq.(6.80) and by deleting the common factor s4 . In the same way
the corresponding cosine c6 is obtained from the second expression for s2 in
combination with the sixth Eq.(6.80). The results are

c4 = −λs1(�2c2 + �1) + �4s5
�3s5

, c6 = −λs3(�1c2 + �2) + �5s5
�6s5

. (6.83)

The signs of s4 and s6 are determined from (6.77). If s2 changes sign,
also s4 and s6 change signs. These results are summarized as follows. For
every value of ϕ1 there exist four (not necessarily real) sets of solutions
(σϕ2i , ϕ3i , σϕ4i , ϕ5i , σϕ6i) (i = 1, 2 ; σ = ±1 ). Equations (6.77) and
(6.83) fail in planar positions characterized by either s1 = s3 = s5 = 0
or by s2 = s4 = s6 = 0 . In these cases, the joint angles are determined from
triangles (see Fig. 6.7).

Example: For the lengths (�1, �2, �3, �4, �5, �6) = (16, 3, 9, 17, 5, 8) and for
ϕ1 = 80◦ a type 1 mechanism has the solutions
(ϕ2 , ϕ3 , ϕ4 , ϕ5 , ϕ6) ≈ (σ36.8◦, 142.9◦, σ48.4◦, 127.9◦, σ27.3◦) and
(σ92.8◦, 67.8◦, σ98.3◦, 83.7◦, σ111.5◦) (σ = ±1 ). End of example.

Example: The trihedral mechanism in Fig. 4.6 is a type 1 mechanism with
identical lengths �i ≡ 1 (i = 1, . . . , 6). It has four planar positions. Equations
(6.80) reduce to

1. (c3 + 1)s1 − (c1 + 1)s3 = 0 ,
2. (c4 + 1)s2 − (c2 + 1)s4 = 0 ,
3. (c5 + 1)s3 − (c3 + 1)s5 = 0 ,
4. (c6 + 1)s4 − (c4 + 1)s6 = 0 ,
5. (c1 + 1)s5 − (c5 + 1)s1 = 0 ,
6. (c2 + 1)s6 − (c6 + 1)s2 = 0 .

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(6.84)

For a given angle ϕ1 these equations and (6.77) have a single solution only,
namely, ϕ3 = ϕ5 = ϕ1 , ϕ4 = ϕ6 = ϕ2 and c1 + c1c2 + c2 = 0 . Except for
slightly different definitions of angles, the same results were obtained in (4.20)
and (4.22). Compare also the first Eq.(6.84) with (4.23). End of example.

With six rods of mutually different lengths altogether six different se-
quences and with each sequence both types of mechanism can be formed. In
general, the numbers of planar positions are different for different sequences
and for different types. Example: The sequence of lengths in Figs. 6.7a-h is
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the first of the following six sequences which represent all possible mecha-
nisms which can be formed with these lengths:

(16, 3, 9, 17, 5, 8)
(16, 8, 9, 17, 5, 3)

}
(a) ,

(16, 17, 9, 8, 5, 3)
(16, 17, 9, 3, 5, 8)

}
(b) ,

(16, 8, 9, 3, 5, 17)
(16, 3, 9, 8, 5, 17)

}
(c) .

It is left to the reader to verify the following statements. With each of the se-
quences (a) both types have four planar positions. With each of the sequences
(b) both types have two planar positions. With each of the sequences (c) there
are two planar positions of type 1 and three of type 2 .

Condition (6.71) is A + B + C = 0 with A = (�1 − �2)(�1 + �2) ,
B = (�3 − �4)(�3 + �4) , C = (�5 − �6)(�5 + �6) . Nonzero integer solutions
(�1, �2, �3, �4, �5, �6) are obtained from numbers A , B , C = −(A+B) which
are products of two different even or two different odd numbers. Example:
A = 2 · 8 , B = 1 · 17 , C = −1 · 33 = −3 · 11 yield (�1, �2, �3, �4, �5, �6) =
(5, 3, 9, 8, 16, 17) and (5, 3, 9, 8, 4, 7) .

Condition (6.71) is satisfied by the lengths �1 = a , �2 = a + b , �3 =
a+ 2b+ c , �4 = a+ c , �5 = a+ b+ 2c , �6 = a+ 2b+ 2c (a, b, c arbitrary).
Example: a = b = 1 , c = 2 yield (�1, �2, �3, �4, �5, �6) = (1, 2, 5, 3, 6, 7) . The
mechanism with these lengths has seven planar positions (four of type 2 ).
In one planar position of type 1 and in one of type 2 all six lengths are
collinear.

6.4.4 Dietmaier’s Mechanism

The ideas and results presented in this section are due to Dietmaier [19]. The
analysis of the 7R mechanism in Sect. 5.4.7 resulted in a 16th-order equation
for the variable x1 = tanϕ1/2 with coefficients depending on the variable ϕ7

and on constant Denavit-Hartenberg parameters. A prescribed value of ϕ7

(arbitrary) determines up to sixteen real roots x1 . The 16th-order equation
describes a 6R mechanism when the parameters and variables of body 7
and of joint 7 are set equal to zero: �7 = h7 = 0 , α7 = 0 , ϕ7 ≡ 0 (see Fig.
5.7 ). This has the consequence that the coefficients of the 16th-order equation
are constants. Since x1 is variable, all seventeen coefficients must be zero.
This requirement establishes seventeen conditions on the Denavit-Hartenberg
parameters �i , hi , αi ( i = 1, . . . , 6 ; �1 = 1 without loss of generality). The
16th-order equation remains valid when the indices of all parameters and
all variables are cyclicly increased by k = 1 , 2 , 3 , 4 , 5 . Hence altogether
6 × 17 = 102 conditions must be satisfied. Dietmaier’s numerical search
for Denavit-Hartenberg parameters satisfying these conditions led to a new
family of overconstrained 6R mechanisms. The parameters must satisfy the
following complicated symmetry relationships.
1. The opposite bodies 1 and 4 are identical:
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�4 = �1 , α4 = α1 . (6.85)

2. The opposite joints 2 and 5 have zero offset:

h2 = 0 , h5 = 0 . (6.86)

3. Joints 1 and 3 and joints 4 and 6 have pairwise identical offsets:

h3 = h1 , h6 = h4 . (6.87)

4. Bodies 2 and 3 and the opposite bodies 5 and 6 have pairwise identical
ratios

�2
sinα2

=
�3

sinα3
,

�5
sinα5

=
�6

sinα6
. (6.88)

5. These ratios are subject to the symmetrical constraint equation

�2
sinα2

(cosα2 + cosα3) =
�5

sinα5
(cosα5 + cosα6) . (6.89)

The last three equations can be used for expressing �3 , �5 and �6 in terms
of �2 , α2 , α3 , α5 and α6 . With the usual notation Ci = cosαi and
Si = sinαi

�3 = �2
S3

S2
, �5 = �2

S5(C2 + C3)

S2(C5 + C6)
, �6 = �2

S6(C2 + C3)

S2(C5 + C6)
. (6.90)

Let ϕ1 be the independent variable. The associated solutions for ϕ2 , ϕ4 , ϕ5 ,
ϕ6 are determined from (5.94) and (5.93) after setting �7 = h7 = 0 , α7 =
0 , ϕ7 ≡ 0 . The matrices A , B and P are constants. The matrix ur is
defined in (5.80). One out of the four Eqs.(5.94) is solved for x6 . Substitution
into the other equations results in three equations which are quadratic in the
sines and cosines of ϕ1 and ϕ2 . Hence they have the forms

Ai sin
2 ϕ2+Bi sinϕ2 cosϕ2+Ci sinϕ2+Di cos

2 ϕ2+Ei cosϕ2+Fi = 0 (6.91)

(i = 1, 2, 3) with coefficients which are functions of ϕ1 . The equations are
fourth-order equations for the variable x2 = tanϕ2/2 (see (5.60)). Only those
solutions x2 which are common to all three equations determine relevant
angles ϕ2 . Once ϕ2 is known also ϕ6 = 2 tan−1 x6 is known and then
also ϕ4 and ϕ5 from y (see (5.93)). Dietmaier’s numerical investigations
revealed that his 6R mechanism has up to four different configurations for
a given value of the independent variable no matter which angle is chosen
as independent variable. In this respect the mechanism is different from all
other known 6R mechanisms.
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6.5 Mobile Polyhedra

Euler expressed, without mathematical arguments, the conviction that all
polyhedra are rigid. By this the following is meant. In a polyhedron every
face is interpreted as rigid body and every edge as revolute joint. Nonrigid
means that the polyhedron is a mobile mechanism. Cauchy proved that all
convex polyhedra are, indeed, rigid (see Demaine/O’Rourke [17]). Bricard [10]
constructed mobile nonconvex octahedra which are self-intersecting. Connelly
constructed the first nonconvex polyhedron capable of moving without self-
intersection. Stimulated by this achievement Steffen constructed simpler ones
(see Connelly [14]). The simplest one is constructed as follows (see Fig. 6.8).
Starting point is the rigid isosceles triangle (A1, 0,A2) in the plane E with
leg lengths � and with vertex angle α . On the perpendicular to E through
0 the point B1 is marked at an arbitrary distance h from 0 . Rods of equal
length a connect A1 and A2 with B1 . Two more rods of equal length b
connect A1 and A2 with a point B2 on the dashed bisector of the angle
α . In the next step, congruent triangles (A1,B1,C1) and (A1,B2,C1) are
constructed as follows. To B1 a rod of length b is attached and to B2 a rod
of length a . The point C1 connecting these rods is located on a circle in a
plane normal to the line B1B2 and with its center on this line. With a given
length A1C1 = c (arbitrary) there are two possible locations for C1 . One of
them is chosen arbitrarily. Let C∗

1 be the other point not chosen. Repetition
of this construction produces two more triangles (A2,B1,C2) and (A2,B2,C2)
which are congruent to the previous ones. Of the two possible locations for C2

the one is chosen with which the dashed line C1C2 is not parallel to A1A2 .
Let C∗

2 be the other point not chosen.

Fig. 6.8 One half of a mobile polyhedron
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Now, imagine the connections of rods at the points A1 , A2 , B1 and B2

to be spherical joints. The system thus defined has the degree of freedom
one. The rigid isosceles triangle (A1,A2,B2) can rotate (in a limited angular
range) about its base line A1A2 . This rotation forces C1 and C2 to move
along certain trajectories. During this motion the distance of these two points
is not constant. Now, C1 and C2 are connected by a rod of fixed length d .
In order to restore the degree of freedom the angle α is made variable by
connecting the rods 0A1 and 0A2 at 0 by a spherical joint.

The 1-d.o.f. system thus constructed consists of the rigid triangles (0,A1,B1),
(0,A2,B1), (A1,B1,C1), (A1,B2,C1), (A2,B1,C2), (A2,B2,C2), (B1,C1,C2)
and (B2,C1,C2). This system is one half of the desired polyhedron. The other
half is obtained in two steps. First step: The existing halfpolyhedron - placed
in the position with B2 in E - is reflected in E . Second step: The reflections
of C1 and C2 are replaced by the reflections of C∗

1 and of C∗
2 , respectively.

With the reflection B′
1 of B1 the triangular faces (B1,B

′
1,A1) and (B1,B

′
1,A2)

of the polyhedron are produced.
With suitably chosen lengths h , a , b , c , d B2 is able to move along a

short segment of a trajectory on either side of E without causing a collision
of faces of the polyhedron. In [14] the lengths are proposed: 2h = 17 , a =
12 , b = 10 , c = 5 , d = 11 . The polyhedron can be produced by folding
the symmetric figure shown in Fig. 6.9 . The polyhedron has n = 14 faces
(bodies) and m = 21 edges (revolute joints). With these numbers Grübler’s
formula (4.1) yields the degree of freedom F = −27+d . Since F equals one,
the system of altogether 5× 21 constraint equations has the defect d = 28 .
See http://www.mathematik.com/Steffen/ for a display of the motion.

Fig. 6.9 Cutting and folding instructions for Steffen’s mobile polyhedron. Valley folds in
dashed lines. Mountain folds in solid lines

http://www.mathematik.com/Steffen/
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6.6 RRCRP Mechanism

A closed kinematic chain RRCRP has six joint variables. Hence it is rigid
unless it is overconstrained. It will be seen that the special chain shown
in Fig. 6.10 is overconstrained with degree of freedom one. The assembly
position shown is characterized as follows. The axis of the revolute R4 is
orthogonal to the x, y-plane of the frame-fixed x, y, z-system with origin 0 .
The other four joint axes are in this plane (the prismatic joint P parallel
to the revolute R1 at y = � = const; the axes of the revolutes R1 and
R2 and of the cylindrical joint C intersecting at 0 ; R1 and R2 under an
angle α = const and R2 and C orthogonally). After a rotation through ϕ1

(arbitrary) in R1 the unit vector n2 along the axis of R2 has the coordinates
n2 = [cosα − sinα sinϕ1 − sinα cosϕ1] . Dependent on ϕ1 the angle ϕ2

in R2 and the translatory variable in joint C can be determined such that
the vector r pointing to the revolute R4 has the required coordinates y = �
and z = 0 . Moreover, the angle ϕ3 in joint C can be determined such that
the axis of R4 has the required direction orthogonal to the x, y-plane. This
proves that the mechanism has the degree of freedom one, and that ϕ1 can
be used as independent input variable. As output the translatory variable in
the prismatic joint P is chosen. Let this be the coordinate x of r . From the
orthogonality condition n2 · r = 0 it follows that

x = � tanα sinϕ1 . (6.92)

Rotation with constant angular velocity ϕ̇1 = ω is converted into oscillatory
translation x(t) = � tanα sinωt . The mechanism was used in a pneumatic
saw (see Design and development/scanning the field for ideas, Sept.1964,
p.158 ). See also Altmann [2, 1].

Fig. 6.10 Mechanism R1R2CR4P converting rotation into harmonic translation
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6.7 4R-P Mechanism

In the fixed x, y, z-system of Fig. 6.11a two skew lines n1 and n2 are
fixed. Their common perpendicular of length � lies in the z-axis. This axis
is intersected by n1 at z = �/2 (point A1 ) and by n2 at z = −�/2 (point
A2 ). The projected angle α between the lines is bisected by the y-axis. The
lines n1 and n2 are the axes of two cylinders 1 and 2 of equal radius r .
Points denoted B1 and B2 are fixed on the cylinders. More precisely, Bi

(i = 1, 2) is fixed on cylinder i such that the line AiBi is orthogonal to both
ni and z-axis, and that, furthermore, B1 and B2 are, in the projection
shown, on a line parallel to the y-axis and at equal distances from the x-
axis. Imagine now that both cylinders are rotated about their axes through
identical angles ϕ (arbitrary). This causes B1 and B2 to move on their
respective circles to new positions B′

1 , B
′
2 . The displacements in z-direction

are identical, namely, u = r sinϕ , and also the displacements in x-direction
are identical, namely, r(1 − cosϕ ) . In the projection shown the distance
between B′

1 and B′
2 is δ = 2r cosϕ sinα/2 . The generator of cylinder i

passing through B′
i is called n′i (i = 1, 2). In Fig. 6.11b the essential points

and lines are shown in the projection along the x-axis. In this projection, the
axes and generators of the cylinders are shown as lines parallel to the y-axis.
Through B′

1 and B′
2 lines B′

1C1 and B′
2C2 of equal lengths �/2 are drawn

parallel to the z-axis. The line p through C1 and C2 is (not only in this
projection) parallel to the y-axis.

Imagine now that A1A2 , A1B
′
1 , A2B

′
2 , B′

1C1 and B′
2C2 are rigid

links which are interconnected by four revolute joints with pairwise paral-
lel axes n1 , n′1 and n2 , n′2 and by a prismatic joint with the axis p .
The result is a spatial overconstrained single-degree-of-freedom mechanism

Fig. 6.11 4R-P mechanism projected along the z-axis (a) and along the x-axis (b)
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4R-P with only five joint variables. The variable ϕ is identical in all four
revolute joints. The joint variable in the prismatic joint is δ . It is indepen-
dent of � . This mechanism was described first by Mavroidis/Roth [27] (see
also Mavroidis/Beddows [28] ). The links need not have the shapes shown
in the figures. Every link can be given any shape provided its two Denavit-
Hartenberg parameters (length of the common perpendicular and projected
angle of the two joint axes on the link) have the correct values. The link
coupling the parallel axes n1 and n′1 , for example, can be placed anywhere
between these axes. With this freedom of design it is possible to achieve full-
cycle mobility in the revolute joints without collision of links and joint axes.
The prismatic joint must be designed such that the passage through δ = 0
is possible. In the special case α = 0 , the mechanism is the planar foldable
four-bar in parallelogram configuration.

The mechanism is a simple means of converting the angular velocity ϕ̇
about the fixed input axis n1 into an identical angular velocity about the
fixed skew output axis n2 the location of which can be freely chosen by
specifying the two design parameters α and � . The mechanism is simpler
and less expensive than a set of hypoid gears serving the same purpose. This
is particularly true when � is large. However, like the planar foldable four-
bar the mechanism is not well suited for transmitting a large torque from the
input to the output axis.

6.8 Bricard-Borel Mechanism

The system shown in Fig. 6.12a consists of two parallel circular discs 1 and
2 (radii R1 and r1 �= R1 arbitrary) and of n ≥ 5 rods of equal length �1
connecting the discs. The rods are generators of a frustum of a regular cone.
The system is shown in two projections. The endpoints Pi and Qi of the rods
i = 1, . . . , n are connected to the discs by spherical joints. Disc 1 is a fixed
base. Disc 2 is referred to as platform. Every rod is free to rotate about its
longitudinal axis. This degree of freedom is not of interest. Because of the
symmetry of the arrangement it is obvious that the platform has a single
degree of freedom. It is free to undergo a continuous screw motion about the
vertical z-axis with an independent angular variable ϕ and with a translatory
variable z which is a function z(ϕ) . This function is obtained from Fig. 6.12b
which shows the vertical projection in a position ϕ (arbitrary). In the x, y, z-
system the endpoints P1 and Q1 of rod 1 have the coordinates [R1 0 0]
and [r1 cosϕ r1 sinϕ z] , respectively. The condition of constant rod length
establishes between z and ϕ the constraint equation (r1 cosϕ − R1)

2 +
r21 sin

2 ϕ+ z2 = �21 . Hence

z(ϕ) =
√
2R1r1 cosϕ+ �21 − (R2

1 + r21) . (6.93)
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Fig. 6.12 Platform mounted on rods in positions ϕ = 0 (a) and ϕ �= 0 (b)

The same function z(ϕ) is obtained with arbitrary parameters R , r , �
satisfying the conditions

Rr = R1r1 , �2 = �21 − (R2
1 + r21) + (R2 + r2) . (6.94)

The same function z(ϕ) is also obtained if both endpoints of a rod, i.e., the
entire rod, are vertically lifted or lowered by an arbitrary amount (each rod by
an individual amount). Also, because of the symmetry of the equations, it is
immaterial whether the larger or the smaller radius is located on the platform.
The degree of freedom one remains unchanged if an arbitrary number of rods
each satisfying the said conditions is added to the system. Every point of the
three-dimensional platform can be connected by a rod with a point of the
base which is uniquely determined by the conditions. From this it follows that
every point of the platform is moving on a base-fixed sphere. Platform-fixed
points of the screw axis move on spheres with infinite radius. Conversely,
every point fixed on the base moves on a platform-fixed sphere. All rods
are lines of the linear complex with the given screw axis and with the pitch
p = dz/dϕ . These characteristics of the system were first discovered by
Bricard [11] and Borel [9]. See also Husty/Zsombor-Murray [23].

6.9 Hyperboloid and Paraboloid Mechanisms

The hyperboloid of one sheet (Fig. 6.13a) and the hyperbolic paraboloid (Fig.
6.13b) have, in the cartesian x1, x2, x3-systems shown, the equations
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hyperboloid of one sheet :
x2
1

a2
+

x2
2

b2
− x2

3

c2
= 1 , (6.95)

hyperbolic paraboloid :
x2
1

a2
− x2

2

b2
= x3 . (6.96)

Planes x1 = const and x2 = const intersect the hyperboloid in hyperbo-
las and the hyperbolic paraboloid in parabolas. Planes x3 = const inter-
sect the hyperboloid in ellipses and the hyperbolic paraboloid in hyperbo-
las (in straight lines in the case x3 = 0 ). Both surfaces are ruled sur-
faces, more specifically the only ruled surfaces having the property that
every point is the intersection of two generating lines. The two families of
generators of the hyperboloid, referred to as regulus 1 and regulus 2, have
the equations (the parameters u and v are arbitrary constants; see Bron-
stein/Semendjajev/Musiol/Mühlig [12])

regulus 1 :
x1

a
+

x3

c
= u

(
1 +

x2

b

)
, u

(x1

a
− x3

c

)
= 1− x2

b
,

regulus 2 :
x1

a
+

x3

c
= v

(
1− x2

b

)
, v

(x1

a
− x3

c

)
= 1 +

x2

b
.

⎫⎬
⎭ (6.97)

The corresponding equations for the paraboloid are

Fig. 6.13 Hyperboloid of one sheet (a) and hyperbolic paraboloid (b)

regulus 1 :
x1

a
+

x2

b
= u , u

(x1

a
− x2

b

)
= x3 ,

regulus 2 :
x1

a
− x2

b
= v , v

(x1

a
+

x2

b

)
= x3 .

⎫⎬
⎭ (6.98)

Hyperboloid of one Sheet
Equations (6.97) reveal the following properties of generators. Two gener-
ators belonging to one and the same regulus are skew. Every generator of
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one regulus intersects all generators of the other regulus and exactly one of
them at infinity. Three generators belonging to one and the same regulus are
not parallel to one and the same plane. Three such generators determine a
hyperboloid uniquely.

Imagine now that arbitrarily many (in the limit all) generators are rigid
rods. Moreover, imagine that at every intersection point of any two such rods
the respective rods are connected by a spherical joint (in the limit there is a
spherical joint at every point of the hyperboloid). Proposition: The system of
rods thus defined is an overconstrained mechanism having a single degree of
freedom. It can move in such a way that in every position the rods are genera-
tors of a hyperboloid of one sheet. The intersections of all these hyperboloids
with the plane x3 = 0 are confocal ellipses.

Proof (see Bricard [10] and Hilbert/Cohn-Vossen [21]): It must be shown
that the distance of any two spherical joints P and Q on an arbitrarily chosen
rod is invariant under this motion. For this purpose (6.95) is written in the
form

3∑
i=1

x2
i

ai − λ
= 1 (a3 ≤ λ ≤ a2 ≤ a1 arbitr.) . (6.99)

Let pi and qi (i = 1, 2, 3) be the coordinates of two points P and Q ,
respectively, on an arbitrary generator. Also the midpoint with coordinates
(pi+qi)/2 (i = 1, 2, 3) lies on this generator and, consequently on the surface.
Hence

3∑
i=1

p2i
ai − λ

= 1 ,

3∑
i=1

q2i
ai − λ

= 1 ,

3∑
i=1

(pi + qi)
2

ai − λ
= 4 . (6.100)

From the third equation twice the sum of the first two equations is subtracted:

3∑
i=1

(pi − qi)
2

ai − λ
= 0 . (6.101)

Let r be the distance of the points P and Q . With (6.101)

r2 =
3∑

i=1

(pi − qi)
2 =

3∑
i=1

(ai − λ)
(pi − qi)

2

ai − λ
=

3∑
i=1

ai
(pi − qi)

2

ai − λ
. (6.102)

In (6.99) λ is replaced by an arbitrary λ′ satisfying the conditions a3 ≤ λ′ ≤
a2 . The two hyperboloids with λ and with λ′ are referred to as surface F
and surface F′, respectively. The coordinates x′

1 , x
′
2 , x

′
3 of points on F′ are

generated from the coordinates x1 , x2 , x3 of F by the affine transformation

x′
i = xi

√
ai − λ′

ai − λ
(i = 1, 2, 3) . (6.103)
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This transformation associates to the points P and Q of F points P′ and
Q′, respectively, of F′ having the coordinates

p′i = pi

√
ai − λ′

ai − λ
, q′i = qi

√
ai − λ′

ai − λ
(i = 1, 2, 3) . (6.104)

For the distance r′ of these points (6.102) is valid with the quantities bearing
the prime. With (6.104)

r′2 =
3∑

i=1

ai
(p′i − q′i)

2

ai − λ′ =
3∑

i=1

ai
(pi − qi)

2

ai − λ
≡ r2 . (6.105)

This identity proves the invariance of the distance of points. The mecha-
nism of rods which, in its initial position, is assembled on the hyperboloid
F governed by (6.99) with given constants a3 ≤ λ ≤ a2 ≤ a1 is able to
assume a position in which it is located on a hyperboloid F′ governed by the
same equation with the same constants a3 ≤ a2 ≤ a1 and with an arbitrary
a3 ≤ λ′ ≤ a2 .

The hyperboloid with the free parameter λ′ intersects the plane x3 = 0
in the ellipse depending on λ′ : x2

1/(a1 − λ′) + x2
2/(a2 − λ′) = 1 . Its focal

points are located on the x1-axis symmetrically to the origin. Their distance
is
√
(a1 − λ′)− (a2 − λ′) =

√
a1 − a2 independent of λ′ . Hence the ellipses

are confocal. End of proof.
In the limit λ′ = a2 the ellipse degenerates to the line connecting the

focal points. In this case, all rods lie in the x1, x3-plane and tangent to the
hyperbola x2

1/(a1−a2)−x2
3/(a2−a3) = 1 . In the limit λ′ = a3 all rods lie in

the x1, x2-plane and tangent to the ellipse x2
1/(a1 − a3) + x2

2/(a2 − a3) = 1 .
The hyperbolic paraboloid, too, is a 1-d.o.f. mechanism when all generators

are interconnected by spherical joints at every point of intersection. By the
same line of arguments it is proved that in every position the mechanism is
a hyperbolic paraboloid with the equation depending on the free parameter
λ :

2∑
i=1

x2
i

ai − λ
= x3 (a2 , a3 = const , a2 ≤ λ ≤ a3 ) . (6.106)

Hyperbolic Mechanism for the Generation of a Plane
The minimal system of rods constituting a hyperbolic mechanism consists of
five rods (see Fig. 6.14). Two skew rods g and g1 representing generators of
regulus 1 are interconnected by three rods of constant lengths (generators of
regulus 2). The spherical joints on g and g1 may be placed arbitrarily subject
only to the inequality condition P1P2 : P1P3 �= Q1Q2 : Q1Q3 (in the case of
equality the five lines would be generators of a hyperbolic paraboloid). Every
generator of regulus 2 intersects all generators of regulus 1 and exactly one
of them at infinity. Hence there exist a single generator of regulus 2 parallel
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to g and a uniquely defined intersection point of this generator with g1 . Let
Q be this point. When the 1-d.o.f.-mechanism is moving, each joint Qi is
moving on a sphere around Pi (i = 1, 2, 3). Point Q , in particular, is moving
on a sphere of infinite radius, i.e., in a plane E normal to g . Let 0 be the
point where g intersects E . When E and g are held fixed as is shown in Fig.
6.14, the mechanism has the additional degree of freedom of rotation about
g . Hence Q is free to move (in a certain ring-shaped region) in the fixed
plane E . This generation of a plane by a mechanism having only spherical
joints represents a spatial analog to the generation of a straight line by a
Peaucellier inversor (see Sect. 17.13).

Fig. 6.14 Hyperbolic mechanism for the generation of a plane

6.10 Cam Mechanism

De la Hire is the author of

Theorem 6.2. Mutually orthogonal tangents to an ellipse with semi axes a
and b (arbitrary) intersect on the circle of radius

√
a2 + b2 about the center

of the ellipse.

Proof (see Fig. 6.15) : In the x, y-system of principal axes the ellipse has the
equation

x2

a2
+

y2

b2
= 1 (6.107)

and also the parameter equation

x = a cosψ , y = b sinψ . (6.108)

The tangent t1 at the arbitrary point ψ = ψ1 has the normal form

x cosα+ y sinα = p1 . (6.109)
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Fig. 6.15 Cam mechanism based on De la Hire’s theorem on ellipses

The angle α and the length p1 of the perpendicular from the origin
onto the tangent depend on ψ1 . This dependency is investigated as fol-
lows. Through ψ1 the new angle β is defined by the equations cosψ1 =
(a/p1) cosβ , sinψ1 = (b/p1) sinβ . Together with (6.108) this yields for the
coordinates x1 , y1 associated with ψ1 the expressions x1 = (a2/p1) cosβ ,
y1 = (b2/p1) sinβ . By assumption, these coordinates satisfy (6.107) as well
as (6.109). Substitution yields the equations

a2 cos2 β + b2 sin2 β = p21 , a2 cosβ cosα+ b2 sinβ sinα = p21 . (6.110)

From them it follows that β = α and, furthermore,

p21 = a2 cos2 α+ b2 sin2 α =
1

2
(a2 + b2) +

1

2
(a2 − b2) cos 2α . (6.111)

A tangent t2 orthogonal to t1 has in its normal form the parameters α±π/2
and p2 . For this tangent (6.111) has the form p22 = a2 sin2 α + b2 cos2 α .
Hence p21 + p22 = a2 + b2 . This concludes the proof.

The angle γ shown in the figure is determined by

cos2 γ =
p21

a2 + b2
=

1

2
+

1

2

a2 − b2

a2 + b2
cos 2α . (6.112)

Hence

cos 2γ =
a2 − b2

a2 + b2
cos 2α . (6.113)
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Imagine now that the ellipse is free to rotate about its center P10 , and that
the right angle formed by t1 and t2 is materialized as rigid body with a
fixed center at P20 . Then the ellipse can rotate full circle. In every position
it is in tangential contact with the arms t1 and t2 . The ellipse represents
a cam, and the right angle is the follower driven by the cam. The system
is mobile with degree of freedom F = 1 . Grübler’s formula (4.2) with n =
m = 3 and f1 = f2 = f3 = 1 yields F = d . This shows that the system
is overconstrained with d = 1 . Manufacturing errors result in the loss of
mobility.

As angular coordinate of the cam the angle ϕ1 from the frame-fixed line
P10P20 to the minor principal axis of the ellipse is chosen and as coordinate of
the follower the angle ϕ2 from the same frame-fixed line to the bisector of the
right angle (ϕ1 , ϕ2 positive clockwise). The figure shows that γ = ϕ2+π/4
and γ − ϕ1 + α = π/2 . Together with (6.113) this yields

ϕ1 = ϕ2 + α(ϕ2)− π

4
with cos 2α = −a2 + b2

a2 − b2
sin 2ϕ2 . (6.114)

This equation cannot be solved explicitly for ϕ2 . However, the following
statements are obviously true. The angle ϕ2 is an odd, π-periodic function of
ϕ1 . It is zero for ϕ1 = kπ/2 (k = 0, 1, 2, · · · ). Stationary values of ϕ2 occur
in positions when the principal axes of the ellipse are parallel to t1 and to t2
(the dashed lines in Fig. 6.15). The figure yields ϕ2max = tan−1(a/b)− π/4
for ϕ1 = tan−1(a/b) . Differentiation of both Eqs.(6.114) with respect to
time yields the angular velocity ratio

ϕ̇1

ϕ̇2
= 1 +

a2 + b2

a2 − b2
cos 2ϕ2

sin 2α
. (6.115)

During the quarter revolution of the ellipse from the position ϕ1 = ϕ2 =
0 , α = π/4 to the position ϕ1 = π/2 , ϕ2 = 0 , α = 3π/4 this ratio
changes from the extremal value 2a2/(a2 − b2) through ∞ at ϕ2 = ϕ2max

to the extremal value −2b2/(a2 − b2) . This investigation is continued in Ex.
1 of Sect. 15.1.2.

6.11 Heureka Octahedron

In Fig. 6.16a a regular octahedron is shown. It has eight faces 1, . . . , 8 (equi-
lateral triangles) and six corners. Each corner is common to four faces. At
each corner the four faces are grouped in two pairs of adjacent faces. The
pairs are identified by the face labels separated by a komma. Examples: At
the top corner pairs 1,4 and 2,3 and at the bottom corner pairs 5,8 and 6,7.
Imagine the faces to be bodies pairwise interconnected by identical joints at
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Fig. 6.16 Regular octahedron (a) and octahedral mechanism with twelve joints unfolded

(b). Front faces 1, 2, 7, 8

the corners (one joint connecting pair 1,4 and another joint connecting pair
2,3 at the top corner etc.). The resulting mechanism has n = 8 identical
bodies and m = 12 identical joints. With f being the individual degree
of freedom of a single joint Grübler’s Eq.(4.1) yields for the total degree of
freedom of the mechanism the formula F = d+12f − 30 . This is F = d+6
in the case of spherical joints and F = d− 6 in the case of joints with f = 2
(universal joints). In Fig. 6.16b a mechanism with spherical joints is shown
in a slightly unfolded position which is preserving the original symmetry. The
joints are denoted P1 , . . . ,P12 . Example: Face 1 is connected to face 2 by
joint P1 , to face 8 by joint P2 and to face 4 by joint P3 . In what follows,
it is shown that the total degree of freedom is F = 1 if universal joints are
employed provided the two axes of rotation of the joint, each fixed on one
of the connected bodies, are properly directed relative to the bodies. In 1991
a very large mechanism of this kind was a major attraction at the Scien-
tific Exhibition HEUREKA at Zurich. Since then the mechanism is known as
Heureka octahedron. Since it is d = 7 times overconstrained, it became the
subject of scientific investigations (Stachel [30], Zsombor Murray [36], Baker
[6], Wohlhart [35]). The analysis presented here is different.

The Heureka octahedron is a multiloop mechanism. This is seen from the
so-called system graph shown in Fig. 6.17 . Its vertices 1, . . . , 8 represent
the bodies, and its edges 1, . . . , 12 (straight or curved lines) represent the
joints. The appearance of a graph depends on the labeling of bodies and of
joints, on the arrangement of vertices on the sheet of paper and on the shape
chosen for the connecting lines. A well-drawn graph should display structural
symmetries of the mechanism as clearly as possible. If possible, crossings of
edges should be avoided (this is not always possible). The graph in Fig.



244 6 Overconstrained Mechanisms

Fig. 6.17 System graph of
the Heureka octahedron with
elementary loops I – V Fig. 6.18 Screw motion of face 1

6.17 is free of crossings and highly symmetric. It reveals the existence of five
elementary loops I , II , III , IV and V . Each elementary loop is formed by
four bodies and four joints. Other loops present in the graph are combinations
of elementary loops. For proving that the Heureka octahedron has the degree
of freedom F = 1 it suffices to prove that a single independent variable
determines the kinematics of all five elementary loops. The proof is achieved
as follows. First, the triangular face 1 of Fig. 6.16a is considered when it is
isolated from its three neighbors. In Fig. 6.18 it is shown in the fixed reference
basis e . The outward normal to face 1 is specified by its unit vector n1 with
coordinates n1 = n2 = n3 =

√
3/3 . The circular cylinder with axis n1 which

is circumscribing the triangle intersects the e1, e2-plane, the e2, e3-plane and
the e3, e1-plane in three congruent ellipses. Clearly, it is possible to subject
face 1 to a continuous screw motion with rotation ϕ1 about n1 and with
translation u1(ϕ1) along n1 in such a way that P1 moves along the ellipse
in the e3, e1-plane, P2 along the ellipse in the e1, e2-plane and P3 along
the ellipse in the e2, e3-plane. In what follows, the translatory displacement
u1 as well as the positions of the three points are determined as functions
of ϕ1 . Let the position shown be the null position ϕ1 = 0 , u1 = 0 . Let,
furthermore, e1 be the body-fixed basis which coincides with e in the null
position. In e1 P1 , P2 , P3 have the coordinate matrices R1

1 = [1 0 0]T ,
R1

2 = [0 1 0]T and R1
3 = [0 0 1]T , respectively. This definition of unit

length implies that the side length of the equilateral triangular faces is
√
2 ,

and that the distance of opposite faces of the octahedron (faces 1 and 6 ,
for example) is 4/

√
3 . Let ri = [xi yi zi]

T be the coordinate matrix of
Pi (i = 1, 2, 3) in e after the screw displacement. It is calculated from the
equation

ri =

⎡
⎣xi

yi
zi

⎤
⎦ = A1R1

i + u1

√
3

3

⎡
⎣1
1
1

⎤
⎦ (i = 1, 2, 3) (6.116)
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where A1 is the matrix in (1.49) with n1 = n2 = n3 =
√
3/3 . With the

abbreviations c = cosϕ1 , s = sinϕ1⎡
⎣xi

yi
zi

⎤
⎦ =

1

3

⎛
⎝
⎡
⎣ 1 + 2c 1− c− s

√
3 1− c+ s

√
3

1− c+ s
√
3 1 + 2c 1− c− s

√
3

1− c− s
√
3 1− c+ s

√
3 1 + 2c

⎤
⎦R1

i + u1

√
3

⎡
⎣ 1
1
1

⎤
⎦
⎞
⎠

(6.117)
(i = 1, 2, 3) . Each of the conditions y1 = z2 = x3 = 0 yields

u1(ϕ1) =

√
3

3
(cosϕ1 − 1)− sinϕ1 . (6.118)

When this is substituted back into (6.117), the coordinates of the points are
obtained:

x3 = y1 = z2 = 0 , x1 = y2 = z3 = cosϕ1 −
√
3

3
sinϕ1 ,

z1 = x2 = y3 = −2
√
3

3
sinϕ1 .

⎫⎪⎬
⎪⎭ (6.119)

These are parameter equations of the three congruent ellipses. When the
position of a single point, for example x2, y2 , is given, the angle ϕ1 is
determined from the equations

sinϕ1 = −x2

√
3

2
, cosϕ1 = y2 − x2

2
. (6.120)

Substitution into the equation sin2 ϕ1+cos2 ϕ1 = 1 yields the parameter-free
equation of the ellipse

x2
2 + y22 − x2y2 = 1 . (6.121)

The other two ellipses have the equations y23 + z23 − y3z3 = 1 and z21 + x2
1 −

z1x1 = 1 . In Fig. 6.19 the x2, y2-system, the y3, z3-system and the z1, x1-
system are shown in a single diagram. In this diagram the three ellipses appear
as a single curve. The principal-axes system ξ, η of the ellipse is rotated 45◦

against the coordinate axes. In this ξ, η-system the equation of the ellipse is

ξ2

2
+

η2

2/3
= 1 . (6.122)

The angles ϕ1 = −60◦ and ϕ1 = 30◦ mark two vertices of the ellipse.
The vertices at ϕ1 = −60◦ and ϕ1 = 120◦ are the points of maximum
and minimum translatory displacements u1max =

√
3/3 and u1min = −√

3 ,
respectively. From Fig. 6.16b it is seen that all three coordinates of P1 , P2 ,
P3 as well as u1 must be nonnegative in order to prevent interference of face
1 with other faces. Hence ϕ1 is confined to the interval −120◦ ≤ ϕ1 ≤ 0 .
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Fig. 6.19 Elliptic trajectories of P1 , P2 , P3

At ϕ1 = −120◦ P1 ( P2 , P3 ) is in the position initially held by P3 (by P1 ,
by P2 ).

Not only the isolated face 1 , but every isolated face i (i = 1, . . . , 8) of
the octahedron is able to execute a screw motion ϕi , ui about its outward
normal unit vector ni in such a way that each of its three corners moves in
one of the principal planes of basis e . The position shown in Fig. 6.16a is
the null position ϕi = 0 (i = 1, . . . , 8). Independent of which face is chosen
the three coordinates of ni have identical absolute values

√
3/3 . From this

it follows that, independent of the choice of face, the circular cylinder which
has ni as axis and which circumscribes the triangle of face i intersects
the principal planes of basis e in the same three ellipses. For each of the
faces 2, . . . , 8 the analysis differs from the one for face 1 in the signs of
certain vector coordinates. In what follows, these changes are shown for face
2 . The unit normal vector n2 has coordinates

√
3/3[1 − 1 1]T . The minus

sign has the effect that the transformation matrix relating bases e and e2

(fixed on face 2 and coinciding with e in the position ϕ2 = 0 ) is with new
abbreviations c = cosϕ2 , s = sinϕ2

A2 =
1

3

⎡
⎣ 1 + 2c −(1− c)− s

√
3 1− c− s

√
3

−(1− c) + s
√
3 1 + 2c −(1− c)− s

√
3

1− c+ s
√
3 −(1− c) + s

√
3 1 + 2c

⎤
⎦ . (6.123)

In basis e2 P1, P4, P5 have the coordinate matrices R2
1 = [1 0 0]T , R2

4 =
[0 − 1 0]T and R2

5 = [0 0 1]T , respectively. In the analysis of face 1 it
has already been decided that P1 moves along the ellipse in the e3, e1-plane.
Face 2 is connected to face 1 at P1 . The previously specified motion of P1

in the e3, e1-plane is compatible with screw motion about n2 only if P4

moves along the ellipse in the e1, e2-plane and P5 along the ellipse in the
e2, e3-plane. These are the only differences as compared with face 1 . The
same calculations which led to (6.118) and (6.119) now lead to

u2(ϕ2) =

√
3

3
(cosϕ2 − 1) + sinϕ2 , (6.124)
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y1 = z4 = x5 = 0 , x1 = −y4 = z5 = cosϕ2 +

√
3

3
sinϕ2 ,

z1 = x4 = −y5 =
2
√
3

3
sinϕ2 .

⎫⎪⎬
⎪⎭ (6.125)

Face 7 is connected to face 2 at P4 . The previously specified motion of P4 in
the e1, e2-plane is compatible with screw motion about n7 only if P11 moves
in the e2, e3-plane and P12 in the e3, e1-plane. The equations equivalent to
(6.118) and (6.119) are

u7(ϕ7) =

√
3

3
(cosϕ7 − 1)− sinϕ7 , (6.126)

y12 = z4 = x11 = 0 , x12 = −y4 = −z11 = cosϕ7 −
√
3

3
sinϕ7 ,

z12 = −x4 = y11 =
2
√
3

3
sinϕ7 .

⎫⎪⎬
⎪⎭ (6.127)

Face 6 is connected to face 7 at P11 . The previously specified motion of
P11 in the e2, e3-plane is compatible with screw motion about n6 only if
P9 moves in the e3, e1-plane and P7 in the e1, e2-plane. The equations
equivalent to (6.118) and (6.119) are

u6(ϕ6) =

√
3

3
(cosϕ6 − 1) + sinϕ6 , (6.128)

x11 = y9 = z7 = 0 , z11 = x9 = y7 = − cosϕ6 −
√
3

3
sinϕ6 ,

y11 = z9 = x7 = −2
√
3

3
sinϕ6 .

⎫⎪⎬
⎪⎭ (6.129)

Face 8 is connected to face 7 at P12 . For this reason P12 is required to
move in the e3, e1-plane. At this point it is not yet required that the loop I
formed by faces 1 , 2 , 7 and 8 be closed at P2 . Let P∗

2 be the point fixed on
face 8 which coincides with P2 . The prescribed motion of P12 is compatible
with screw motion about n8 only if P∗

2 moves in the e1, e2-plane and P10

in the e2, e3-plane. The equations equivalent to (6.118) and (6.119) are

u8(ϕ8) =

√
3

3
(cosϕ8 − 1) + sinϕ8 , (6.130)

z∗2 = x10 = y12 = 0 , y∗2 = −z10 = x12 = cosϕ8 +

√
3

3
sinϕ8 ,

x∗
2 = y10 = −z12 =

2
√
3

3
sinϕ8 .

⎫⎪⎬
⎪⎭ (6.131)
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Closure of loop I at P2 requires that x∗
2 ≡ x2 and y∗2 ≡ y2 . This is, indeed,

the case. Equations (6.131), (6.127), (6.125) and (6.119) yield x∗
2 = −z12 =

x4 = z1 ≡ x2 and y∗2 = x12 = −y4 = x1 ≡ y2 .
The closure of the other four elementary loops is proved in the same way

by subjecting faces 3 , 4 and 5 to screw displacements about their outward
normals. For reasons of symmetry this is unnecessary. Each loop is composed
of four faces and four joints. In the folded position of the mechanism shown
in Fig. 6.16a two of the four joints coincide in one corner of the octahedron.
In loop I joints P1 and P12 coincide at the front corner with coordinates
(x, y, z) = (1 0 0) . In loop II joints P4 and P7 coincide at the corner
(0 − 1 0) . In loop III joints P6 and P9 coincide at the corner (−1 0 0) . In
loop IV joints P3 and P5 coincide at the top corner (0 0 1) , and in loop V
joints P10 and P11 coincide at the bottom corner (0 0 − 1) . In every loop
the geometry is the same.

Equations (6.125) and (6.119) express x1 and z1 once in terms of ϕ1

and once in terms of ϕ2 . The pairwise identity of the two expressions has
the form

cosϕ2 +

√
3

3
sinϕ2 ≡ cosϕ1 −

√
3

3
sinϕ1 ,

2
√
3

3
sinϕ2 ≡ −2

√
3

3
sinϕ1 .

(6.132)
Hence ϕ2 ≡ −ϕ1 . Also for the coordinates of P4 , P11 and P12 two expressions
in terms of two angles have been formulated. They lead to the identities
ϕ7 ≡ −ϕ2 ≡ ϕ1 , ϕ6 ≡ −ϕ7 ≡ ϕ1 and ϕ8 ≡ −ϕ7 ≡ ϕ1 . The general rule is
that screw angles of any two faces coupled by a joint are of equal magnitude
and opposite sign:

ϕ3 ≡ ϕ5 ≡ ϕ7 ≡ ϕ1 , ϕ2 ≡ ϕ4 ≡ ϕ6 ≡ ϕ8 ≡ −ϕ1 . (6.133)

These equations in combination with (6.118), (6.124), (6.126), (6.128) and
(6.130) prove that all translatory displacements are identical (either all of
them outward or all inward):

ui(ϕ1) ≡ u(ϕ1) =

√
3

3
(cosϕ1 − 1)− sinϕ1 (i = 1, . . . , 8) . (6.134)

Opposite faces of the octahedron have identical products screw angle times
unit normal vector (ϕ6n6 = ϕ1n1 , for example). From this it follows that
the motion of opposite faces relative to each other is pure translation 2u(ϕ1)
along the common normal. For faces 1 and 6 this follows also from (6.129),
(6.127), (6.125) and (6.119). In combination they state that the coordinates
of opposite joints of the two faces (joints P1 and P9 , joints P2 and P7 ,
joints P3 and P11 ) are of equal magnitude and opposite sign: x9 = −x1 ,
y9 = −y1 , z9 = −z1 etc. In Fig. 6.16b this is shown.

Through the same Eqs.(6.129), (6.127), (6.125) and (6.119) the coordinates
of all twelve points Pi (i = 1, . . . , 12) are expressed in terms of the coordi-
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nates x1 and z1 of P1 . The coordinates are collected in Table 6.1 . Column
i of this table (i = 1, . . . , 12) is the coordinate matrix ri = [xi yi zi]

T .

Table 6.1 Coordinates xi , yi , zi of points Pi (i = 1, . . . , 12) in basis e

1 2 3 4 5 6 7 8 9 10 11 12

xi x1 z1 0 z1 0 −x1 −z1 −z1 −x1 0 0 x1

yi 0 x1 z1 −x1 −z1 0 −x1 x1 0 z1 −z1 0
zi z1 0 x1 0 x1 z1 0 0 −z1 −x1 −x1 −z1

x1 = cosϕ1 −
√
3

3
sinϕ1 , z1 = −2

√
3

3
sinϕ1 .

At both ends of the admissible interval −120◦ ≤ ϕ1 ≤ 0 the eight faces
form a closed octahedron. At ϕ1 = −60◦ the eight faces experience the
maximum outward translatory displacement umax =

√
3/3 .

The motion of the mechanism described above is possible with twelve
spherical joints. What remains to be shown is that it is possible with two-
degree-of-freedom joints as well. This is done as follows. For reasons of
symmetry it suffices to consider faces 1 and 2 coupled by joint P1 . Let
Ω21 be the angular velocity of face 2 relative to face 1 about the com-
mon point P1 . It is the difference Ω21 = ω2 − ω1 of the angular veloc-
ities of faces 2 and 1 , respectively, relative to basis e . This difference is
Ω21 = ϕ̇2n2− ϕ̇1n1 = −ϕ̇1(n2+n1) . The vectors n1 and n2 are fixed in ba-
sis e . The constant angle α between them is determined by cosα = n1 ·n2 .
The coordinates (

√
3/3)[1 1 1] of n1 and (

√
3/3)[1 − 1 1] of n2 deter-

mine cosα = 1/3 (α ≈ 70.5◦) . The vector n2+n1 and, therefore, also Ω21

is directed along the bisector of this angle. Hence the joint connecting faces
1 and 2 is a two-degree-of-freedom joint with an axis of rotation 1 fixed on
face 1 in the direction of n1 and with an axis of rotation 2 fixed on face
2 in the direction of n2 (see Fig. 6.20). This joint is a universal joint with
nonorthogonal axes intersecting at P1 .

Faces 7 and 6 are separated from face 1 by two and by three joints,
respectively. Let Ω71 and Ω61 be their angular velocities relative to face
1 . These angular velocities are Ω71 = ϕ̇7n7 − ϕ̇1n1 = ϕ̇1(n7 − n1) and
Ω61 = ϕ̇6n6− ϕ̇1n1 ≡ 0 . The latter formula reconfirms that face 6 is in pure
translation relative to face 1 . The former can be written in the alternative
forms Ω71 = ϕ̇1(n7 + n6) = Ω76 and Ω71 = −ϕ̇1(n4 + n1) = −Ω41 . These
equations show that the relative angular velocities of all pairs of nonopposite
faces have identical absolute values.

The Heureka octahedron at the Scientific Exhibition at Zurich would not
have been a major attraction had only the identical screw motions of the eight
faces relative to basis e been demonstrated. Since one face of the octahedron
was fixed horizontally to the ground, not the motion relative to basis e was
visible, but the motion of the remaining seven faces relative to the fixed face.
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Fig. 6.20 Universal joint with nonorthogonal axes

Viewers were allowed to stand on this face while the octahedron was opening
and closing around them. In what follows, it is assumed that face 1 is fixed.
To be determined are the trajectories, i.e., the coordinate matrices of the
points Pi (i = 1, . . . , 12) in basis e1 as functions of ϕ1 . These matrices are
denoted R1

i = [Xi Yi Zi]
T . Inversion of (6.116) yields the explicit formula

R1
i =

⎡
⎣Xi

Yi

Zi

⎤
⎦ = A1T ri − u

√
3

3

⎡
⎣1
1
1

⎤
⎦ (i = 1, . . . , 12) (6.135)

or with the abbreviations c = cosϕ1 , s = sinϕ1 and with u from (6.134)⎡
⎣Xi

Yi

Zi

⎤
⎦ =

1

3

⎛
⎝
⎡
⎣ 1 + 2c 1− c+ s

√
3 1− c− s

√
3

1− c− s
√
3 1 + 2c 1− c+ s

√
3

1− c+ s
√
3 1− c− s

√
3 1 + 2c

⎤
⎦ ri + (1− c+ s

√
3)

⎡
⎣ 1

1
1

⎤
⎦
⎞
⎠

(6.136)

(i = 1, . . . , 12) . The coordinate matrices ri in basis e are known from Table
6.1 . Evaluation for i =1 , 4 , 5 , 7 , 9 , 11 and 12 yields as functions of ϕ1
the coordinates of the points fixed on faces 2 , 6 and 7 :

X1 = 1 , X4 =
2

3

[
s(1− 4c)

√
3

3
− c+ 1

]
, X5 =

4
√
3

9
s(1− c+ s

√
3 ) ,

Y1 = 0 , Y4 =
2

3

[
s(1 + 2c)

√
3

3
− c− 2c2

]
+ 1 , Y5 =

4
√
3

9
s(1 + 2c) ,

Z1 = 0 , Z4 =
2

3

[
s(1 + 2c)

√
3

3
− c+ 2c2 − 1

]
, Z5 =

4
√
3

9
s(1− c− s

√
3 ) + 1 ,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(6.137)

X11 = −2
√
3

3
u , X7 = X11 , X9 = X11 − 1 , X12 = Z5 ,

Y11 = X11 , Y7 = X11 − 1 , Y9 = X11 , Y12 = X5 ,

Z11 = X11 − 1 , Z7 = X11 , Z9 = X11 , Z12 = Y5 .

⎫⎪⎪⎬
⎪⎪⎭ (6.138)

Differentiation of the coordinates with respect to time yields the velocities of

the points. The velocities of P4 and P5 are v4 = 4
3 ϕ̇1

√
2 + (c+ s

√
3)2/4 =

4
3 ϕ̇1

√
2 + cos2(ϕ1 − 60◦) , v5 = 4

3 ϕ̇1

√
2 + cos2 ϕ1 .
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P4 and P5 are both located on the sphere of radius
√
2 centered at P1 .

Hence (X4 − 1)2 + Y 2
4 + Z2

4 = 2 and (X5 − 1)2 + Y 2
5 + Z2

5 = 2 .
P4 as well as P5 is located on still another second-order surface. By substi-
tuting coordinates it is verified that
Y4 − Z4 + 1 = 8

3 s
2 , Y4 + Z4 − 2X4 + 1 = 8

3

√
3 sc ,

X5 − Z5 + 1 = 8
3 s

2 , X5 + Y5 + Z5 − 1 = 4
3

√
3 s .

Hence
(Y4 + Z4 − 2X4 + 1)2 − (1 + Y4 − Z4)[5− 3(Y4 − Z4)] = 0

or [X4 Y4 Z4 ]

⎡
⎣ 2 −1 −1
−1 2 −1
−1 −1 2

⎤
⎦
⎡
⎣X4

Y4

Z4

⎤
⎦− 2X4 + 2Z4 − 2 = 0

and
(X5 + Y5 + Z5 − 1)2 − 2(X5 − Z5 + 1) = 0

or [X5 Y5 Z5 ]

⎡
⎣ 1 1 1
1 1 1
1 1 1

⎤
⎦
⎡
⎣X5

Y5

Z5

⎤
⎦− 4X5 − 2Y5 − 1 = 0 .

In both equations the symmetric coefficient matrix of the second-order terms
has real eigenvalues λ1 , λ2 , λ3 and mutually orthogonal eigenvectors. Let
Ai (i = 4, 5) be the matrix with these eigenvectors as columns. The trans-
formation [Xi Yi Zi ]

T = Ai [x y z ]T results in an equation of the form
λ1x

2 + λ2y
2 + λ3z

2 + ax+ by + cz + d = 0 .

The equation for P4 :

λ1 = 0 , λ2 = λ3 = 3 , A4 = 1
6

⎡
⎣ 2

√
3 3

√
2

√
6

2
√
3 −3

√
2

√
6

2
√
3 0 −2

√
6

⎤
⎦ . The transformed

equation is (y − 1
6

√
2)2 + (z − 1

6

√
6)2 = 8

9 . This is a circular cylinder. Its
radius is twice the radius of the circle circumscribing the triangular face of
the octahedron.

The equation for P5 :

λ1 = 3 , λ2 = λ3 = 0 , A5 = 1
6

⎡
⎣−2

√
3

√
6 −3

√
2

−2
√
3 −2

√
6 0

−2
√
3

√
6 3

√
2

⎤
⎦ . The transformed

equation is (x
√
3 + 1)2 + 2z

√
2 − 2 = 0 . This is a cylinder with parabolic

cross section in the x, z-plane.

Generalized Heureka Octahedron
The triangle shown in Fig. 6.21 in basis e has its corners at points with coor-
dinate matrices R1

1 = [a1 0 0]T , R1
2 = [0 a2 0]T and R1

3 = [0 0 a3]
T , respec-

tively (a1, a2, a3 > 0 arbitrary). This triangle is face 1 of a plane-symmetric
octahedron with these corners and with the opposite corners −R1

1 , −R1
2

and −R1
3 . The labeling of faces, the pairwise connections of faces by joints

and the labeling of joints are copied from Figs. 6.16a and b . Proposition:
If the joint at Pi (i = 1, . . . , 12) is a universal joint with joint axes along
the normals of the two bodies coupled by this joint, the mechanism has the
degree of freedom F = 1 . Furthermore, each face i = 1, . . . , 8 moves in such
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Fig. 6.21 Face 1 of a plane-symmetric octahedron

a way that (i) its normal ni does not change its direction and (ii) each corner
moves in an ellipse in a principle plane of basis e . The idea to generalize the
Heureka octahedron in this way is due to Wohlhart [34]. The proof presented
here is different.

For reasons of symmetry it suffices to prove the propositions for face 1 . Its
outward normal unit vector has the coordinates (normalized vector product−−−→
P1P2 ×−−−→

P1P3 )

n1 =
a2a3
N

, n2 =
a3a1
N

, n3 =
a1a2
N

, N =
√

a21a
2
2 + a22a

2
3 + a23a

2
1 .

(6.139)
From the analysis of the Heureka octahedron the conditions are copied that
P1 moves in the e3, e1-plane, P2 in the e1, e2-plane and P3 in the e2, e3-
plane. These conditions plus the stationarity condition of the unit normal
vector require that the displacement of face 1 is a rotation about the unit
normal vector superimposed by a translation which does not have the direc-
tion of the unit normal vector. Equation (6.116) is replaced by the equation⎡

⎣xi

yi
zi

⎤
⎦ = A1R1

i +

⎡
⎣u1

u2

u3

⎤
⎦ (i = 1, 2, 3) , (6.140)

where u1 , u2 , u3 are the coordinates of the displacement in basis e . With
the general Eq.(1.49) for A1 this equation is ( c = cosϕ1 , s = sinϕ1 )⎡
⎣ xi

yi
zi

⎤
⎦ =

⎡
⎣ n2

1 + (1− n2
1)c n1n2(1− c)− n3s n1n3(1− c) + n2s

n1n2(1− c) + n3s n2
2 + (1− n2

2)c n2n3(1− c)− n1s
n1n3(1− c)− n2s n2n3(1− c) + n1s n2

3 + (1− n2
3)c

⎤
⎦R1

i +

⎡
⎣ u1

u2

u3

⎤
⎦

(6.141)

(i = 1, 2, 3) . For n1 , n2 , n3 the expressions (6.139) are substituted. The
conditions y1 = z2 = x3 = 0 yield for the translatory displacements the
explicit functions of ϕ1 :
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u1 = −a23a1

[ a22
N2

(1− cosϕ1) +
1

N
sinϕ1

]
,

u2 = −a21a2

[ a23
N2

(1− cosϕ1) +
1

N
sinϕ1

]
,

u3 = −a22a3

[ a21
N2

(1− cosϕ1) +
1

N
sinϕ1

]
.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(6.142)

When these expressions are substituted back into (6.141), the coordinates of
P1 , P2 , P3 in basis e are obtained:

x1 = a1

(
cosϕ1 − a23

N
sinϕ1

)
, z1 = −a3(a

2
1 + a22)

N
sinϕ1 ,

y2 = a2

(
cosϕ1 − a21

N
sinϕ1

)
, x2 = −a1(a

2
2 + a23)

N
sinϕ1 ,

z3 = a3

(
cosϕ1 − a22

N
sinϕ1

)
, y3 = −a2(a

2
3 + a21)

N
sinϕ1 .

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(6.143)

Elimination of ϕ1 from the equations for x2 and y2 proves that the trajec-
tory of P2 is the ellipse

x2
2

(a21 + a22)(a
2
1 + a23)

a21(a
2
2 + a23)

2
+

y22
a22

− 2a1
a2(a22 + a23)

x2y2 = 1 . (6.144)

The other two ellipses are obtained by cyclic permutation of indices. In the
special case a1 = a2 = a3 = 1 , which characterizes the Heureka octahedron,
(6.142) – (6.144) are identical with (6.118), (6.119) and (6.121), respectively.
This ends the proof that face 1 is moving in the predicted way. For reasons
of symmetry the trajectories of the corners of faces 2, . . . , 8 are congruent
ellipses. For the same reason, also Eqs.(6.133) are valid: ϕ3 ≡ ϕ5 ≡ ϕ7 ≡
ϕ1 , ϕ2 ≡ ϕ4 ≡ ϕ6 ≡ ϕ8 ≡ −ϕ1 . In joint Pi (i = 1, . . . , 12) the relative
angular velocity of the two coupled faces lies in the plane of the normals of
these faces. From this it follows that joint i is a universal joint with joint
axes along the normals of the two faces. The cosine of the constant angle αi

between the normals is the scalar product of the unit normal vectors. Face
1 is connected to face 2 by joint 1 (angle α1 ), to face 8 by joint 2 (angle
α2 ) and to face 4 by joint 3 (angle α3 ). The same three angles appear in
the joints of each face. The four unit normal vectors involved have in basis e
the following coordinates: Face 1 : [n1 n2 n3] , face 2 : [n1 − n2 n3] , face 8 :
[n1 n2 − n3] , face 4 : [−n1 n2 n3] . With (6.139) this yields

cosα1 =
a22a

2
3 − a23a

2
1 + a21a

2
2

a22a
2
3 + a23a

2
1 + a21a

2
2

, cosα2 =
a22a

2
3 + a23a

2
1 − a21a

2
2

a22a
2
3 + a23a

2
1 + a21a

2
2

,

cosα3 =
−a22a

2
3 + a23a

2
1 + a21a

2
2

a22a
2
3 + a23a

2
1 + a21a

2
2

,
∑
i

cosαi = 1 .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (6.145)
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Chapter 7

Two-Joint Chains

Figure 7.1 shows a spatial chain of three bodies 0 , 1 and 2 interconnected
by two joints 1 and 2 . Body 0 is referred to as frame and body 2 as
terminal body. Joints are either revolute (R) or prismatic (P) or cylindric
(C). Throughout Sects. 7.1 and 7.2 cylindrical joints are excluded. Chains
with revolute and prismatic joints are classified by the sequence of joints
(joint 1 , joint 2 ) as RR , RP , PR , PP. Since each joint has a single joint
variable, the degree of freedom of the terminal body is two. In Sect. 7.1 the
work space of points fixed on the terminal body is investigated. Sect. 7.2
is devoted to the problem of synthesis of RR chains capable of producing
prescribed positions of the terminal body. In Sect. 7.3 the same synthesis
problem is solved for chains CC . Chains RR , PP and CC are structurally
symmetric. By this is meant that the structure remains the same if body 0
becomes body 2 and vice versa.

Fig. 7.1 Two-joint chain. Frame-fixed basis e0 . Position vector x of point Q fixed on
body 2 . Denavit-Hartenberg parameters ϕ1 , h1 , α1 , 
1 , ϕ2 , h2 , 
2
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258 7 Two-Joint Chains

7.1 Work Space of Points of the Terminal Body

On body 0 the reference basis e0 is fixed with its origin 0 at an arbitrarily
chosen point on joint axis 1 . The basis vector e01 is directed along this joint
axis (see Fig. 7.1). Let x be the position vector of an arbitrary point Q fixed
on the terminal body 2 . The coordinates x1 , x2 , x3 of x in e0 are functions
of the two joint variables, say q1 and q2 , and of constant parameters of the
chain. The functions define a surface in e0 . This surface is the work space of
Q . Lines q1 = const (arbitrary) and q2 = const (arbitrary) on the surface
are either circles or straight lines depending on whether the other variable not
held constant is an angle in a revolute joint or a straight-line displacement
in a prismatic joint. Each of the chains RR , RP , PR and PP has its own
characteristic surface. The purpose of this section is to analyze, for each
type of chain separately, the dependency of the surface upon the constant
parameters of the chain.

Parameters and variables are the Denavit-Hartenberg parameters ex-
plained in Sect. 5.1 (see Fig. 5.1). Unambiguous definitions require a chain
of mutually orthogonal lines along joint axes and lines perpendicular to joint
axes. For body 1 the situation is the same as for body i in Fig. 5.1 . Unit
vectors along the joint axes are called n1 and n2 , and the unit vector along
the common perpendicular is called a1 . Bodies 0 and 2 do not have a sec-
ond joint axis. As lines perpendicular to the existing joint axes the axis e02
fixed on body 0 and the perpendicular from Q onto joint axis 2 are chosen.
Let a2 be the unit vector pointing from the foot of this perpendicular to-
ward Q . The lines thus specified define the Denavit-Hartenberg parameters
ϕ1 , h1 , α1 , �1 , ϕ2 , h2 and �2 of the chain. If joint i (i = 1 or i = 2) is
a revolute joint, ϕi is variable and hi is constant. If joint i is a prismatic
joint, ϕi is constant and hi is variable. The position vector x of Q is

x = h1n1 + �1a1 + h2n2 + �2a2 . (7.1)

The coordinates of n1 , a1 , n2 and a2 in basis e0 are taken from Table
5.2 by setting k = 0 . The abbreviations in the table are C1 = cosα1 ,
S1 = sinα1 and ck = cosϕk , sk = sinϕk (k = 1, 2) . By definition (see Fig.
5.1 and Eqs.(5.6), (5.7)), basis e0 is located not in joint 1 but in a joint 0
connecting body 0 to a preceding body −1 . In order to adapt to the present
situation the angle α0 between joint axes 0 and 1 must, formally, be defined
as zero. This means that S0 = 0 and C0 = 1 . With these definitions Table
5.2 yields the coordinate equations
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⎣x1

x2

x3

⎤
⎦ = h1

⎡
⎣ 1
0
0

⎤
⎦+ �1

⎡
⎣0
c1
s1

⎤
⎦+ h2

⎡
⎣C1

S1s1
−S1c1

⎤
⎦+ �2

⎡
⎣ s2S1

c2c1 − s2s1C1

c2s1 + s2C1c1

⎤
⎦

=

⎡
⎣h1 + h2C1 + �2S1s2
(�1 + �2c2)c1 − (�2C1s2 − h2S1)s1
(�1 + �2c2)s1 + (�2C1s2 − h2S1)c1

⎤
⎦ . (7.2)

These equations are the parameter equations of the surfaces to be investi-
gated.

7.1.1 Chains RR Defining Tori

Variables in (7.2) are the angles ϕ1 and ϕ2 . The origin of basis e0 on joint
axis 1 is now placed at the foot of the common perpendicular of both joint
axes. This has the consequence that h1 = 0 . The expression r =

√
x2
2 + x2

3

depends on ϕ2 only. From this it follows that the surface is a surface of
revolution. It is generated by rotating a planar curve k about the axis e01 , i.e.,
about the axis of joint 1 . The generating curve has the parameter equation

x1(ϕ2) = h2C1 + �2S1s2 ,

r(ϕ2) =
√
(�1 + �2c2)2 + (�2C1s2 − h2S1)2 .

}
(7.3)

The trivial case of parallel joint axes (α1 = 0) is characterized by x1 ≡ h2 .
The workspace of Q is the ring-shaped area |�1 − �2| ≤ r ≤ �1 + �2 in the
plane x1 = h2 . In what follows, α1 �= 0 is assumed.

The special case α1 = π/2 , h2 = 0 : Equations (7.3) have the forms x1 =
�2s2 , r = �1+ �2c2 . Elimination of ϕ2 produces for the curve k the equation
of a circle: x2

1+(r−�1)
2 = �22 . The surface of revolution is the torus generated

by rotating this circle about the x1-axis. In the case �2 > �1 , the circle
intersects the x1-axis. In this case, the generating curve k of the torus is
moon-shaped and pointed on the axis of joint 1 .

In the general case α1 �= 0, π/2 , the surface of revolution is a generalized
torus with a noncircular generating curve k (see Fichter/Hunt [2]). The di-
versity of forms is illustrated by the two curves k1 and k2 shown in Fig.
7.2 . Both curves have the parameters α1 = 30◦ , h2 = 3

√
3 and �1 = 4 in

common. The only difference is the parameter �2 = 5 for k1 and �2 = 6 for
k2 . The parameters of k1 satisfy the condition �22 = �21 + h2

2 tan
2 α1 . Under

this condition the curve is pointed on the axis of revolution at x1 = h2/C1 .
The elimination of ϕ2 from (7.3) is achieved as follows. The first Eq.(7.3)

multiplied by 2�1/S1 is the first equation below, and the sum of squares of
both Eqs.(7.3) together is the second equation.
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Fig. 7.2 Generating curves k1 and k2 of two tori

2�1
S1

(x1 − h2C1) = 2�1�2s2 , r2 + x2
1 − (�21 + h2

2 + �22) = 2�1�2c2 . (7.4)

The sum of squares of these two equations is the desired parameter-free equa-
tion of the torus:[

r2 + x2
1 − (�21 + h2

2 + �22)
]2

+
(2�1
S1

)2
(x1 − h2C1)

2 = (2�1�2)
2 . (7.5)

In terms of the original parameters α1 , �1 , h2 , �2 new parameters are de-
fined as follows:

p21 = �21 + h2
2 + �22 , p2 =

�1
S1

, p3 = h2C1 , p4 = �1�2 . (7.6)

In terms of these parameters the equation of the torus is

(r2 + x2
1 − p21)

2 + 4p22(x1 − p3)
2 = 4p24 . (7.7)

This yields the explicit equation

r(x1) =

√
p21 − x2

1 ± 2
√
p24 − p22(x1 − p3)2 . (7.8)

From (7.6) the original parameters α1 , �1 , h2 , �2 are recovered as follows.
The last three equations yield

S1 =
�1
p2

, C1 =

√
1− �21

p22
, h2 =

p3√
1− �21

p2
2

, �2 =
p4
�1

. (7.9)

Substitution of the expressions for h2 and �2 into the first Eq.(7.6) results
in a cubic equation for �21 . With the abbreviation μ = �21 it reads

μ3 − (p21 + p22)μ
2 + [p22(p

2
1 − p23) + p24]μ− p22p

2
4 = 0 . (7.10)
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Suppose α1 , �1 , h2 , �2 are given. From (7.6) the associated parameters
p21 , p2 , p3 , p4 are calculated and from these, in turn, three roots μi = �21i
(i = 1, 2, 3) . One of them is the prescribed quantity μ1 = �21 . Division by
(μ − �21) produces a quadratic equation. When p21 , p2 , p3 , p4 are replaced
again by the expressions (7.6), this quadratic equation is

μ2 −
( �21
S2
1

+ h2
2 + �22

)
μ+

�21�
2
2

S2
1

= 0 . (7.11)

The roots μ2 and μ3 are real and positive since their sum as well as their
product is positive. The quantities �12 =

√
μ2 and �13 =

√
μ3 are parameters

of two new chains RR generating the same torus which is generated by the
original chain. The remaining parameters of these new chains are calculated
from (7.9) and (7.6):

�22,3 =
p4
�12,3

, S12,3 =
�12,3
p2

, h22,3 =
p3√

1− S2
12,3

, C12,3 = C1
h2

h22,3

.

(7.12)
The conditions S2

12,3 ≤ 1 read

∓
√
[�21 − S2

1(h
2
2 + �22)]

2 + 4S2
1�

2
1h

2
2 ≤ �21 − S2

1(h
2
2 + �22) . (7.13)

The first condition is always satisfied. The second condition is satisfied only
in the trivial case when S1�1h2 = 0 . Hence

Theorem 7.1. Every chain RR with parameters α1 , �1 , h2 , �2 satisfying
the condition �1h2 sinα1 �= 0 is one out of two chains RR generating one
and the same torus. Both chains have the first joint axis and on this joint
axis the foot of the common perpendicular of joint axes 1 and 2 in common.

The theorem is of the same nature as de la Hire’s theorem on the double
generation of trochoids and as the theorem of Roberts and Tschebyschev on
the triple generation of coupler curves by planar four-bars (see Sects. 15.5.2
and 17.8.1). The theorem is in agreement with a statement made at the end of
Sect. 6.2, namely, that in a Bennett mechanism the trajectories of all points
fixed on body 3 are generated by two chains RR .

Example: The curve k2 in Fig. 7.2 is generated by the chain RR with
parameters α1 = 30◦ , h2 = 3

√
3 , �1 = 4 and �2 = 6 . Equation (7.10) is

(μ − 16)(μ2 − 127μ + 482) = 0 . It has the roots μ1 = �21 = 16 , μ2 ≈ 21.93
and μ3 ≈ 105.1 . The roots μ2 and μ3 yield the parameters �12 ≈ 4.68 and
�13 ≈ 10.25 . The parameters associated with �12 ≈ 4.68 are S12 ≈ 0.5853
(real angle α12 ), �22 ≈ 5.12 and h22 ≈ 5.55 . End of example.
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7.1.2 Chains RP Defining Hyperboloids of Revolution

Variables in (7.2) are ϕ1 and h2 . As before, the origin of basis e0 is placed
at the foot of the common perpendicular of both joint axes so that, again,
h1 = 0 . As before, ϕ1 is eliminated by forming x2

2 + x2
3 = (�1 + �2c2)

2 +
(�2C1s2 − h2S1)

2 . For h2 the expression h2 = (x1 − �2S1s2)/C1 obtained
from the first Eq.(7.2) is substituted. The resulting parameter-free equation
of the surface is

C2
1 (x

2
2 + x2

3)− (S1x1 − �2s2)
2 = C2

1 (�1 + �2c2)
2 . (7.14)

There are two trivial cases, namely, S1 = 0 (parallel joint axes 1 and 2 )
and C1 = 0 (perpendicular joint axes). In the first case, the surface is the
circular cylinder of radius r =

√
�21 + �22 + 2�1�2c2 (see (7.3)). In the second

case, the surface is located in the plane x1 = �2s2 = const. The surface is
the manifold of all points on or outside the circle x2

2 + x2
3 = (�1 + �2c2)

2 . In
the general case S1C1 �= 0 , the surface is a hyperboloid of revolution with
the x1-axis, i.e., the axis of joint 1 , as axis of revolution.

7.1.3 Chains PR Defining Elliptic Cylinders

Variables in (7.2) are h1 and ϕ2 . The basis vector e02 is placed parallel to
the common perpendicular of the two joint axes so that the constant angle
ϕ1 is zero (c1 = 1 , s1 = 0) . Then (7.2) has the form⎡

⎣x1

x2

x3

⎤
⎦ =

⎡
⎣h1 + h2C1 + �2S1s2
�1 + �2c2
�2C1s2 − h2S1

⎤
⎦ . (7.15)

The coordinates x2 and x3 depend on the variable ϕ2 only. With c2 ex-
pressed through x2 and s2 through x3 the equation c22 + s22 = 1 defines in
the x2, x3-plane the ellipse(x2 − �1

�1

)2
+
(x3 + h2S1

�2C1

)2
= 1 . (7.16)

The coordinate x1 depends on ϕ2 and, in addition, on h1 . The surface
under investigation is, therefore, a cylinder with the elliptic cross section and
with generating lines parallel to the axis of joint 1 .
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7.1.4 Chains PP Defining Planes

As in the chain PR the basis vector e02 is placed such that ϕ1 = 0 . Then
(7.15) applies again. But now, h1 and h2 are the variables. The surface
under investigation is the plane x2 = �1 + �2c2 = const.

7.2 Chains RR Leading the Terminal Body Through
Prescribed Positions

This section is devoted to chains RR . Two problems are formulated as fol-
lows.
Problem 1 : Determine the constant parameters of a chain RR capable
of leading the terminal body, i.e., basis e2 , through prescribed positions
1 , 2 , . . . , m in basis e0 . In addition, the joint variables in these positions
are to be determined.
Problem 2 is a relaxed form of Problem 1 : Position 1 is not prescribed.
Only the m − 1 screw displacements leading from position 1 to positions
2 , . . . , m are prescribed.

Problem 2 has been the subject of intensive research (Roth [6, 8], Suh
[10, 11], Tsai [12], Tsai/Roth [13], Huang [3], Perez Gracia/McCarthy [4]).
Tsai and Roth based their analysis on the geometry of the screw triangle (Fig.
3.7). They proved that at most three positions relative to each other can be
prescribed arbitrarily. The analysis led to ten coupled second-order equations
for ten unknowns which were then reduced to a bicubic equation with a
single real and positive root. This root proved the existence of two chains
RR . It was shown that these chains form a Bennett mechanism. In view of
what has been said at the end of Sect. 6.2, this result had to be expected.
Perez Gracia/McCarthy [4] combined the analysis of the screw triangle with
properties of the Bennett mechanism, in particular with the fact that finite
displacement screws of the coupler form a cylindroid (Huang [3]). For the
problem of three relative displacements a system of four coupled equations for
four unknowns was obtained. These equations reproduced numerical results
obtained by Tsai and Roth.

The analysis presented in what follows addresses Problem 1 . The analysis
is based on the principle of transference. According to this principle, first,
a rotation problem is investigated. This is the case of a chain RR with
intersecting joint axes. The notation of Fig. 7.1 is used again. Without loss
of generality, the origins of the bases e0 and e2 are placed at the point
of intersection of the joint axes. Furthermore, the basis vector e22 of e2 is
directed along the axis of joint 2 . In basis e0 , the unit vector n1 along
the axis of joint 1 is unknown. It is specified by two angular parameters
ψ and θ defined further below. The unknown angle between joint axes 1
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and 2 is now called α instead of α1 . The angles ψ , θ and α are the
only constant parameters of the system. Variables are the joint angles ϕ1

and ϕ2 . The altogether five quantities ψ , θ , α , ϕi
1 and ϕi

2 determine
a position i of the terminal body, i.e., the transformation matrix Ai in
the equation e2 = Ai e0 . Further below, Ai is expressed in terms of these
five angles. Prescribed positions 1, . . . ,m , i.e., prescribed matrices Ai (i =
1, . . . ,m ) are determined by 3+ 2m angles (three parameters ψ , θ , α and
2m joint angles ϕi

1 , ϕi
2 ). On the other hand, a direction cosine matrix is

uniquely determined by three quantities (Euler angles, for example). Hence
m matrices are determined by 3m quantities. Thus, there are 3m equations
for 3 + 2m unknowns. From the equality 3m = 3 + 2m it follows that at
most three positions of the terminal body can be prescribed.

In what follows, Ai is expressed in terms of the angles ψ , θ , ϕi
1 , α

and ϕi
2 of five consecutive rotations carried out in this order. In the position

ψ = θ = ϕi
1 = α = ϕi

2 = 0 basis e2 coincides with e0 . This position
is referred to as initial position of e2 . The position after the fifth rotation
is referred to as final position. Each rotation is carried out about an axis
which is the result of all previous rotations. The position of e2 after the k th
rotation (k = 1, 2, 3, 4) is referred to as intermediate position e(k) . As usual,
a rotation is denoted by the unit vector along the axis and by the angle of
rotation. The sequence of rotations and of positions of the body-fixed basis
e2 is as follows:

initial position e0

1st rotation (e03 , ψ) intermediate position e(1)

2nd rotation (e
(1)
1 , θ) intermediate position e(2)

3rd rotation (e
(2)
2 , ϕi

1) intermediate position e(3)

4th rotation (e
(3)
1 , α) intermediate position e(4)

5th rotation (e
(4)
2 , ϕi

2) final position e2 .

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(7.17)

In Fig. 7.3 all bases and angles are shown. The first two rotations position

the axis of joint 1 in basis e0 . The axial unit vector n1 is e
(2)
2 . The fourth

rotation has the effect that the joint axes n1 = e
(2)
2 and n2 = e

(4)
2 enclose the

angle α . With self-explanatory abbreviations for the transformation matrices
of the five individual rotations the prescribed matrix Ai (i = 1, 2, 3) is the
product

Ai = Aϕi
2
AαAϕi

1
AθAψ (i = 1, 2, 3) . (7.18)

Hence
Aϕi

2
AαAϕi

1
= Ai(AθAψ)

T (i = 1, 2, 3) . (7.19)

The following abbreviations are used:
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Fig. 7.3 Consecutive rotations defining the orientations of joint axes and of basis e2 in

basis e0

Cψ = cosψ , Cθ = cos θ , Cα = cosα , ci1 = cosϕi
1 , ci2 = cosϕi

2 ,
Sψ = sinψ , Sθ = sin θ , Sα = sinα , si1 = sinϕi

1 , si2 = sinϕi
2 .

}
(7.20)

With these abbreviations the matrices in (7.19) are

Aϕi
2
AαAϕi

1
=

⎡
⎣ ci2 0 −si2

0 1 0
si2 0 ci2

⎤
⎦
⎡
⎣1 0 0
0 Cα Sα

0 −Sα Cα

⎤
⎦
⎡
⎣ ci1 0 −si1

0 1 0
si1 0 ci1

⎤
⎦ (7.21)

=

⎡
⎣ ci1c

i
2 − Cαs

i
1s

i
2 Sαs

i
2 −si1c

i
2 − Cαc

i
1s

i
2

Sαs
i
1 Cα Sαc

i
1

ci1s
i
2 + Cαs

i
1c

i
2 −Sαc

i
2 −si1s

i
2 + Cαc

i
1c

i
2

⎤
⎦ , (7.22)

Ai(AθAψ)
T = Ai

⎡
⎣Cψ −Sψ 0
Sψ Cψ 0
0 0 1

⎤
⎦
⎡
⎣ 1 0 0
0 Cθ −Sθ

0 Sθ Cθ

⎤
⎦

= Ai

⎡
⎣Cψ −SψCθ SψSθ

Sψ CψCθ −CψSθ

0 Sθ Cθ

⎤
⎦ . (7.23)

The elements of the prescribed matrix Ai are denoted aijk (i, j, k = 1, 2, 3) .
Of the nine Eqs.(7.19) only the five equations for the elements with indices
(2,2), (2,1), (2,3), (1,2) and (3,2) are used. In this order these equations
read

Cα = Cθ(−ai21Sψ + ai22Cψ) + ai23Sθ (i = 1, 2, 3) , (7.24)
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Sαs
i
1 = ai21Cψ + ai22Sψ ,

Sαc
i
1 = Sθ(a

i
21Sψ − ai22Cψ) + ai23Cθ ,

Sαs
i
2 = Cθ(a

i
12Cψ − ai11Sψ) + ai13Sθ ,

−Sαc
i
2 = Cθ(a

i
32Cψ − ai31Sψ) + ai33Sθ

⎫⎪⎪⎬
⎪⎪⎭ (i = 1, 2, 3) . (7.25)

Equations (7.24) determine ψ, θ, α . By subtracting the second equation from
the first and the third equation from the second two expressions are obtained
for Sθ/Cθ = tan θ :

tan θ =
(a121 − a221)Sψ − (a122 − a222)Cψ

a123 − a223
=

(a221 − a321)Sψ − (a222 − a322)Cψ

a223 − a323
.

(7.26)
This identity determines1

tanψ =
Sψ

Cψ
=

(a122 − a222)(a
2
23 − a323)− (a222 − a322)(a

1
23 − a223)

(a121 − a221)(a
2
23 − a323)− (a221 − a321)(a

1
23 − a223)

. (7.27)

For arbitrarily prescribed2 matrices A1, A2, A3 this equation has two real
solutions ψ1 and ψ1 + π . The associated cosines and sines are Cψ1 , Sψ1

and −Cψ1 , −Sψ1 , respectively. With ψ1 (7.26) determines two solutions θ1
and θ1 + π . In the same way ψ1 + π determines two solutions −θ1 and
−θ1 + π . The two pairs of solutions (ψ1, θ1) and (ψ1 + π, −θ1 + π) have to
be considered as equal since they determine one and the same direction of n1 .
For the same reason the two pairs of solutions (ψ1, θ1+π) and (ψ1+π, −θ1)
have to be considered as equal. Both of them determine the opposite direction
−n1 . In what follows, only the two pairs of solutions (ψ1, θ1) and (ψ1, θ1+π)
are distinguished. With the pair (ψ1, θ1) (7.24) determines Cα (identical
for i = 1, 2, 3) and Sα = ±√1− C2

α . This determines angles ±α . In the
same way, the pair of solutions (ψ1, θ1 + π) determines the angles ±α+ π .
With each of the two triples (ψ1, θ1, α) and (ψ1, θ1 + π, α + π) Eqs.(7.25)
determine ci1 , s

i
1 , c

i
2 , s

i
2 and, consequently, ϕi

1 , ϕ
i
2 (i = 1, 2, 3). For a fixed

value of i the quantities ci1 , s
i
2 , c

i
2 associated with one triple are equal to

those associated with the other triple, whereas the values si1 associated with
the two triples are of opposite signs. From this it follows that the angles ϕi

2

associated with the two triples are identical, whereas the angles ϕi
1 associated

with the two triples are of opposite sign. Since also the associated vectors n1

are of opposite sign, both triples represent one and the same solution. A
second solution is obtained from the triple (ψ1, θ1,−α) . Both solutions are
real for arbitrary prescribed positions of the terminal body.

Example: The prescribed direction cosine matrices are

1 Results are invariant with respect to a change of labeling of the given matrices A1,
A2, A3. One out of the three expressions for tanψ may be 0/0 . Similarly, one out of the
expressions for tan θ may be 0/0 . If Ai is the unit matrix, then (7.24) reads Cα = CθCψ .
This does not represent a critical case
2 Eventually occurring degenerate cases are not investigated
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A1 =

⎡
⎢⎣

2
3

1
3

2
3

1
3

2
3

−2
3

−2
3

2
3

1
3

⎤
⎥⎦ , A2 =

⎡
⎢⎣

2
3

1
3

−2
3

−11
15

2
15

−2
3

−2
15

14
15

1
3

⎤
⎥⎦ , A3 =

⎡
⎢⎣

−7
9

4
9

4
9

4
9

−1
9

8
9

4
9

8
9

−1
9

⎤
⎥⎦ .

(7.28)

Equation (7.27) yields tanψ = 1/2 , whence follow Cψ = 2/
√
5 and

Sψ = 1/
√
5 . The first expression in (7.26) is indeterminate : 0/0 . The

second expression yields tan θ = 3
√
5/14 , whence follow Cθ = 14/

√
241

and Sθ = 3
√
5/241 . With ψ and θ (7.24) yields Cα = 4/

√
1205 and

Sα = ±√1189/1205 . With the positive sign of Sα Eqs.(7.25) determine the
sines and cosines of the variable angles ϕ1 and ϕ2 compiled in Table 7.1.
End of example.

Table 7.1 Joint angles ϕi
1 and ϕi

2 associated with the matrices Ai (i = 1, 2, 3)

matrix Ai si1 = sinϕi
1 ci1 = cosϕi

1 si2 = sinϕi
2 ci2 = cosϕi

2

A1 (4/3)
√

241/1189 −(37/3)
√

5/1189 10/
√
1189 −33/

√
1189

A2 −(4/3)
√

241/1189 −(37/3)
√

5/1189 −10/
√
1189 −33/

√
1189

A3 (7/9)
√

241/1189 (130/9)
√

5/1189 30/
√
1189 −17/

√
1189

Skew Joint Axes
From the principle of transference it follows that the number of positions
which can be prescribed for the terminal body of a chain with skew joint
axes cannot be larger than for a chain with intersecting axes. Skew joint
axes have a common perpendicular of length � �= 0 . This length � and
the angle α are the Denavit-Hartenberg parameters of body 1 . The unit
vector along the common perpendicular is called a (Fig 7.4). The origin
00 of e0 is no longer located on the axis of joint 1 nor is the origin 02
of e2 located on the axis of joint 2 . The origins are defined by the vector
u from 00 to the foot P1 and by the vector v from the foot P2 of the
common perpendicular to 02 . Furthermore, the bases e0 and e2 are fixed
on their respective bodies such that they are aligned parallel in the position
ψ = θ = ϕ1 = α = ϕ2 = 0 . As before, the basis vector e22 is aligned parallel
to the axis of joint 2 , so that in position i the unit vector a has in e2 the
coordinate matrix [ cosϕi

2 0 sinϕi
2 ) = [ ci2 0 si2 ]

T . A position i of the
terminal body is prescribed by the direction cosine matrix Ai relating the

bases e0 and e2 and by the coordinates of the vector ri =
−−→
0002 in basis e0 .

In three prescribed positions i = 1, 2, 3 the vector equations to be satisfied
are

u+ �a+ v = ri (i = 1, 2, 3) . (7.29)

Define the column matrices u and ri of the coordinates of u and ri , re-
spectively, in e0 and the column matrix v of the coordinates of v in e2 .
With these coordinate matrices the decomposition of (7.29) in e0 yields the
equations
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Fig. 7.4 Vectors u , 
a , v and ri locating the origin of basis e2 in e0

u+AiT

⎛
⎝�

⎡
⎣ ci2

0
si2

⎤
⎦+ v

⎞
⎠ = ri (i = 1, 2, 3) . (7.30)

This is a set of nine inhomogeneous linear equations for the seven unknown
parameters represented by u , � and v . The matrices Ai and ri are pre-
scribed, and so are ci2 , s

i
2 as solutions of (7.25). The equations do not have

a solution u , � , v . This means that Problem 1 with three prescribed po-
sitions does not have a solution. Further below the relaxed Problem 2 is
investigated. Before doing so Eqs.(7.30) are derived in a different way in
order to illustrate the principle of transference.

Proposition: Equations (7.30) represent the dual part of the dualized
Eqs.(7.19) from which the unknown angles were obtained. Proof: Equations
(7.19) are equivalent to (7.18): Ai = Aϕi

2
AαAϕi

1
AθAψ (i = 1, 2, 3). The du-

alization of this equation requires three operations.
Operation 1 : The matrix Ai is replaced by (see the transpose in (3.61))

Â
i
= Ai(I − ε r̃i) , r̃i =

⎡
⎣ 0 −ri3 ri2

ri3 0 −ri1
−ri2 ri1 0

⎤
⎦ . (7.31)

Operation 2 : Of the five rotations on the right-hand side of the equation the
rotation through the angle α is the only one which is replaced by a screw
displacement. The dual screw angle is α̂ = α + ε� . This means that the
matrix Aα is replaced by a dual matrix Âα = Aα + ε�Bα . For Aα the
expression in (7.21) is available. Dual differentiation yields

Aα + ε�Bα =

⎡
⎣ 1 0 0
0 Cα Sα

0 −Sα Cα

⎤
⎦+ ε�

⎡
⎣ 0 0 0
0 −Sα Cα

0 −Cα −Sα

⎤
⎦ . (7.32)

Operation 3 : The first rotation through the angle ψ is preceded by the
translation u , and the fifth rotation through the angle ϕi

2 is followed by
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the translation v . The dual transformation matrices associated with these
translations are (I − ε ũ) and (I − ε ṽ) , respectively (see (7.31)). The result
of all three operations is the dualized form of (7.18):

Ai(I − ε r̃i) = (I − ε ṽ)Aϕi
2
(Aα + ε�Bα)Aϕi

1
AθAψ(I − ε ũ) (7.33)

(i = 1, 2, 3) . Multiplication from the right by the inverse of AθAψ(I − ε ũ)
yields

Ai(I − ε r̃i)(I + ε ũ)(AθAψ)
T = (I − ε ṽ)Aϕi

2
(Aα + ε�Bα)Aϕi

1
(7.34)

(i = 1, 2, 3) . The primary parts of these equations are Eqs.(7.19). These
equations determine the unknown angles ψ , θ , α and ϕi

1 , ϕ
i
2 (i = 1, 2, 3).

The dual parts of the equations read

Ai (ũ− r̃i)(AθAψ)
T + ṽAϕi

2
AαAϕi

1
= �Aϕi

2
BαAϕi

1
(i = 1, 2, 3) . (7.35)

Because of (7.19) this is identical with

[Ai (ũ− r̃i)AiT + ṽ]Aϕi
2
AαAϕi

1
= �Aϕi

2
BαAϕi

1
(i = 1, 2, 3) . (7.36)

Multiplication from the right by (Aϕi
2
AαAϕi

1
)T yields

Ai (ũ− r̃i)AiT + ṽ − �Aϕi
2
BαA

T
αA

T
ϕi

2
= 0 (i = 1, 2, 3) . (7.37)

With the matrices Aϕi
2
in (7.21) and Aα , Bα in (7.32) this becomes

Ai (ũ− r̃i)AiT + ṽ + �

⎡
⎣ 0 −si2 0
si2 0 −ci2
0 ci2 0

⎤
⎦ = 0 (i = 1, 2, 3) . (7.38)

The product Ai (ũ − r̃i)AiT expresses the similarity transformation of the
tensor coordinates (ũ− r̃i) from basis e0 into basis e2 (see (1.25)). Hence
the equations represent the skew-symmetric form of the equations Ai(u −
ri) + v + �

[
ci2 0 si2

]T
= 0 (i = 1, 2, 3). These are Eqs.(7.30) premultiplied

by Ai . End of proof.

In what follows, the problem of three positions is stated in the relaxed
form of Problem 2 . Instead of prescribing three positions the displacement
from position 1 to position 2 and the displacement from position 1 to
position 3 are prescribed (and, thereby, the displacement from position 2
to position 3 ). Position 1 itself is not prescribed. It is part of the solution.
In order to formulate the problem thus defined a second basis e is rigidly
attached to body 0 . It has the same origin 00 basis e0 has. The constant
direction cosine matrix A in the equation e = A e0 is treated as unknown.
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The three positions ri (i = 1, 2, 3) are prescribed in basis e . The matrices
ri (i = 1, 2, 3) are now understood to be the prescribed coordinate matrices
in basis e . This has the consequence that the coordinate matrices in e0

are AT ri instead of ri (i = 1, 2, 3). Hence Eqs.(7.30) are replaced by the
equations

u+AiT

⎛
⎝�

⎡
⎣ ci2

0
si2

⎤
⎦+ v

⎞
⎠ = AT ri (i = 1, 2, 3) . (7.39)

The quantities on the left-hand side are defined as before. The matrix A
introduces three new unknowns. Thus, there are nine equations for ten un-
knowns. The equations have, therefore, a one-parametric family of solutions.

The three unknowns in u are eliminated by formulating the differences

(A1 −A2)T v +

⎛
⎝A1T

⎡
⎣ c12

0
s12

⎤
⎦−A2T

⎡
⎣ c22

0
s22

⎤
⎦
⎞
⎠ � = AT (r1 − r2) ,

(A1 −A3)T v +

⎛
⎝A1T

⎡
⎣ c12

0
s12

⎤
⎦−A3T

⎡
⎣ c32

0
s32

⎤
⎦
⎞
⎠ � = AT (r1 − r3) .

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(7.40)

Four of these six equations are solved for the unknowns v and � . Substitution
of this solution into the remaining two equations results in two homogeneous
linear equations for the elements of A . Let A be expressed in terms of Euler-
Rodrigues parameters q0 , q1 , q2 , q3 in the form (1.79) and let, furthermore,
q0 be the independent parameter. Then the linear equations for the elements
of A are second-order equations for q1 , q2 , q3 . They are supplemented by
the equation q21 + q22 + q23 = 1− q20 . For a given value of q0 the three second-
order equations determine up to eight solutions (q1 , q2 , q3) and associated
matrices. Every solution A determines v and � from (7.40), the coordinate
matrices AT ri in basis e0 and u from (7.39).

Example: The prescribed direction cosine matrices are those in (7.28), and
the prescribed coordinate matrices in basis e are

r1 =

√
2

2

⎡
⎣ 27

37
√
2

29

⎤
⎦ , r2 =

√
2

6

⎡
⎣ 81

55
√
2

71

⎤
⎦ , r3 =

√
2

18

⎡
⎣ 543

527
√
2

169

⎤
⎦ . (7.41)

With these data and with data from Table 7.1 Eqs.(7.40) are

⎡
⎢⎢⎢⎢⎢⎣

0 16 −8 −120

0 8 −4 240
20 0 0 −560
13 −1 −10 −497
−1 7 −2 −211

2 −14 4 −70

⎤
⎥⎥⎥⎥⎥⎦
⎡
⎢⎢⎣
v1
v2
v3

/
√
1189

⎤
⎥⎥⎦ =

AT

⎡
⎣ 0

280

40
√
2

⎤
⎦

AT

⎡
⎣−150

√
2

−194

46
√
2

⎤
⎦ . (7.42)
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The (4 × 4)-submatrix of rows 1 , 2 , 3 and 6 of the coefficient matrix has
the inverse

1

1800

⎡
⎢⎢⎣

−84 168 90 0
−113 −74 30 −300
−406 −238 60 −600

−3 6 0 0

⎤
⎥⎥⎦ .

With this inverse [ v1 v2 v3 �/
√
1189 ]T is expressed in terms of the elements

aij of A . Substitution into the remaining equations 4 and 5 results in the
following homogeneous linear equations for the elements aij :

( 750 a11 −2625 a13 )
√
2

+4526 a21 +1288 a22 −2975 a23
+( 278 a31 +184 a32 +865 a33 )

√
2 = 0 ,

( 750 a12 +375 a13 )
√
2

+574 a21 −178 a22 +485 a23
+( 82 a31 −394 a32 −115 a33 )

√
2 = 0 .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7.43)

These equations have the special solution

A =

⎡
⎣

√
2/2 0

√
2/2

0 1 0

−√
2/2 0

√
2/2

⎤
⎦ . It determines

⎡
⎢⎢⎣
v1
v2
v3

/
√
1189

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
30
9
8

1

⎤
⎥⎥⎦ ,

AT r1 =

⎡
⎣−1

37
28

⎤
⎦ , AT r2 =

1

3

⎡
⎣ 5
55
76

⎤
⎦ , AT r3 =

1

9

⎡
⎣ 187
527
356

⎤
⎦ , u =

⎡
⎣ 10
20
30

⎤
⎦ .

End of example.

7.3 Chains CC Leading the Terminal Body Through
Prescribed Positions

This section is devoted to chains CC with skew joint axes. The problem to be
solved is the same as in the previous section on chains RR . To be determined
are the parameters of a chain (or of chains) leading the terminal body 2
through prescribed positions i = 1, . . . ,m . The positions are prescribed by
– the position vectors ri ( i = 1, . . . ,m ) of the origin of basis e2 in basis e1

and by
– the direction cosine matrices Ai ( i = 1, . . . ,m ) defined by the equation
e2 = Ai e0 .
To be determined are
– the Plücker vectors of joint axis 1 fixed in basis e0

– the Plücker vectors of joint axis 2 fixed in basis e2

– the Denavit-Hartenberg parameters of body 1 .
What is the maximum number mmax of positions which can be prescribed?
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These problems were solved by Roth [7]. The method of solution presented
here is basically the same.

The Plücker vectors of joint axis 1 fixed in basis e0 are denoted n (axial
unit vector) and w . The perpendicular from the origin of e0 onto joint axis
1 is n×w . The Plücker vectors of joint axis 2 fixed in basis e2 are denoted
N (axial unit vector) and W . The perpendicular from the origin of e2 onto
joint axis 2 is N×W . Since the coordinates of these vectors in e0 depend
on the position i of body 2 , they are denoted Ni (axial unit vector) and
Wi . The perpendicular from the origin of e0 onto joint axis 2 in position
i is Ni × (ri ×Ni +Wi) . Let N i be the coordinate matrix of Ni in e0 .
Then

N i = AiTA1N1 (i = 1, . . . ,m) . (7.44)

Both joint axes are fixed on body 1 . The Denavit-Hartenberg parameters α
and � of this body 1 are determined by the equations, independent of the
position of body 2 (see (2.17)),

cosα ≡ n ·Ni (i = 1, . . . ,m) , (7.45)

� sinα ≡ n · (ri ×Ni +Wi) +w ·Ni (i = 1, . . . ,m) . (7.46)

The parameters α and � are eliminated by subtracting the first equation
from each of the remaining m− 1 equations:

n · (Ni −N1) = 0 (i = 2, . . . ,m) , (7.47)

w·(Ni−N1) = −n·(ri×Ni−r1×N1+Wi−W1) (i = 2, . . . ,m) . (7.48)

Three Prescribed Positions
Let joint axis 2 on body 2 be chosen arbitrarily. This means that the coor-
dinates of Ni and Wi in e2 (identical for i = 1, 2, 3 ) are chosen arbitrarily.
The coordinates of Ni and Wi (i = 1, 2, 3) in e0 are determined by the
prescribed matrices Ai (i = 1, 2, 3). The two orthogonality conditions (7.47)
determine the first Plücker vector of joint axis 1 :

n =
(N2 −N1)× (N3 −N1)

|(N2 −N1)× (N3 −N1)|
=

N1 ×N2 +N2 ×N3 +N3 ×N1

|N1 ×N2 +N2 ×N3 +N3 ×N1| . (7.49)

Since the second Plücker vector w is orthogonal to n , the ansatz is made:

w = A(N2 −N1) +B(N3 −N1) . (7.50)

Substitution into (7.48) produces for A and B the scalar equations
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[A(N2 −N1) +B(N3 −N1)] · (N2 −N1) = −n · (r2 ×N2 − r1 ×N1 +W2 −W1) ,

[A(N2 −N1) +B(N3 −N1)] · (N3 −N1) = −n · (r3 ×N3 − r1 ×N1 +W3 −W1) .

}
(7.51)

The symmetrical coefficient matrix has the determinant

(N2 −N1)
2(N3 −N1)

2 − [(N2 −N1) · (N3 −N1)]
2

= [(N2 −N1)× (N3 −N1)]
2 �= 0 . (7.52)

With the solutions for A and B the vector w and also the perpendicular
n×w from the origin of e0 onto joint axis 1 is determined. Finally, (7.45)
and (7.46) determine cosα and � sinα . The formula for cosα is

cosα =
N1 ×N2 ·N3

|N1 ×N2 +N2 ×N3 +N3 ×N1| . (7.53)

These results are summarized as follows. If three positions of body 2 are
arbitrarily prescribed, an arbitrary line on body 2 can be chosen as axis of
joint 2 . This axis determines uniquely the associated joint axis 1 fixed on
body 0 and the Denavit-Hartenberg parameters of body 1 . Because of the
structural symmetry also the inverse is true: On body 0 an arbitrary line
can be chosen as axis of joint 1 . This line determines uniquely the associated
joint axis 2 fixed on body 2 and the Denavit-Hartenberg parameters of body
1 .

Four Prescribed Positions
The Plücker vector n must satisfy three orthogonality conditions (7.47) with
vectors (N2 −N1) , (N3 −N1) and (N4 −N1) . This requires coplanarity
of the three vectors:

(N2 −N1) · (N3 −N1)× (N4 −N1) = 0 (7.54)

or, in terms of the coordinate matrices N i (i = 1, 2, 3, 4) in basis e0 ,

det
[
N2 −N1 ; N3 −N1 ; N4 −N1

]
= 0 . (7.55)

Because of (7.44) this equation becomes

det
[
(A2TA1 − I)N1 ; (A3TA1 − I)N1 ; (A4TA1 − I)N1

]
= 0 . (7.56)

This equation represents a third-order polynomial equation in terms of the
coordinates of N1 . All vectors N1 satisfying this equation define, if attached
to the origin of e0 , a general cone called rotation cone. It is the cone known
from Sect. 1.10 . Every generator of the cone is an admissible first Plücker
vector N1 of joint axis 2 in position 1 of the body.

Let the coordinates of N1 in e0 be arbitrarily chosen admissible coordi-
nates. The prescribed matrices Ai (i = 1, 2, 3, 4) determine the coordinates
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A1N1 in e2 and the coordinates N i = AiTA1N1 of Ni (i = 2, 3, 4) in
e0 . The first Plücker vector n of joint axis 1 is determined from (7.49), and
cosα is determined from (7.53). The second Plücker vectors w and W1 are
determined from the three Eqs.(7.48),

w · (Ni−N1) = −n · (ri×Ni− r1×N1+Wi−W1) (i = 2, 3, 4) (7.57)

in combination with the orthogonality relationship

w · n = 0 . (7.58)

The vectors are decomposed in basis e0 . Because of (7.44) the coordinates
of Wi are linear functions of the coordinates of W1 . Hence Eqs.(7.57),
(7.58) represent four inhomogeneous linear equations for the coordinates of
w with known coefficients and with right-hand side terms which are linear
with respect to the coordinates of W1 . For a solution to exist the (4 × 4)
determinant of the complete coefficient matrix including the right-hand side
terms must be zero. Because of the said properties of the matrix this equation
has the form aW11+bW12+cW13 = d with the coordinates W11 , W12 , W13

of W1 and with known constants a , b , c , d . The equation defines a plane
E1 in which W1 is located. Since W1 is also located in the plane E2 normal
to N1 , the tip of W1 is an arbitrary point on the line of intersection of E1

and E2 . This is expressed in the form W1(λ) = W1(0) + λe (unit vector
e having the direction of the line; perpendicular W1(0) from the origin of
e0 onto the line; free parameter λ ). For every vector W1(λ) Eqs.(7.57)
have a unique solution w(λ) satisfying also (7.58). Since this solution is
linear with respect to λ , it has the form w(λ) = w(0) + λw∗ with uniquely
determined vectors w(0) and w∗ . Equation (7.46) with i = 1 , w(λ) and
W1(λ) determines the associated Denavit-Hartenberg parameter �(λ) .

The results are summarized as follows. The first Plücker vector N1 of
joint axis 2 in position 1 is an arbitrarily chosen generator of the third-order
rotation cone. This vector determines uniquely a one-parametric manifold of
joint axes 2 with Plücker vectors N1 and W1(λ) fixed on body 2 as well as
a one-parametric manifold of joint axes 1 with Plücker vectors n and w(λ)
fixed in e0 . The perpendiculars from the origin of e2 onto the manifold of
joint axes 2 are N1 ×W1(λ) , and the perpendiculars from the origin of e0

onto the manifold of joint axes 1 are n×w(λ) . From this it follows that the
manifold of joint axes 2 is located in a plane fixed on body 2 , and that the
manifold of joint axes 1 is located in a plane fixed in e0 .

Five Prescribed Positions
In the case of five prescribed positions 1, 2, 3, 4, 5 , positions 1, 2, 3, 4 define
a rotation cone C1 , and positions 1, 2, 3, 5 define another rotation cone C2 .
The first Plücker vector N1 of joint axis 2 in position 1 is generator of both
cones. Two third-order cones having the same apex intersect in nine real or
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complex straight lines. Three real lines mark the first Plücker vectors of the
screw displacements leading from position 1 to position 2 , from position 2
to position 3 and from position 3 to position 1 , respectively. These are the

eigenvectors associated with eigenvalue 1 of the prescribed matrices A1TA2 ,

A2TA3 and A3TA1 , respectively. Since N1 cannot be any of these vectors,
there remain either six or four or two or zero real lines representing solutions
N1 . Let N1 be one of these solutions. The associated vector n is uniquely
determined from any two out of altogether four Eqs.(7.47). The associated
second Plücker vectors w and W1 of joint axes 1 and 2 are determined
as follows. Four positions 1, 2, 3 and 4 determine the plane E1 described
above in which W1 is located. By the same arguments the four positions
1, 2, 3 and 5 determine another plane E∗

1 in which W1 is located, too. In
addition, W1 is located in the plane E2 normal to N1 . Hence W1 is the
point of intersection of E1 , E

∗
1 and E2. Except for degenerate cases, this is

a single point. The second Plücker vector w of joint axis 1 is determined
by Eqs.(7.57) as before. Also this vector is uniquely determined if W1 is
uniquely determined.

The four- and five-position theory just described is due to Roth [7]. It is
the spatial generalization of Burmester’s planar four- and five position theory
which is the subject of Sects. 14.5 and 17.14 .
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Chapter 8

Stewart Platform

A Stewart platform (or Gough platform; Stewart [9]) is a rigid body which is
connected to a supporting frame by six telescopic legs with spherical joints
at both ends (Fig. 8.1). The spherical joints Qi on the frame have position
vectors Ri in a frame-fixed basis e1 , and the joints Pi on the platform have
position vectors �i in a platform-fixed basis e2 (i = 1, . . . , 6). Neither the
six points on the platform nor those on the frame are coplanar or otherwise
regularly arranged.

In a general position five legs of given constant lengths determine a linear
complex (see Sect. 2.7.4) giving the platform a single degree of freedom,
namely, instantaneously a screw motion about the axis of the actual linear
complex. A sixth leg of constant length which is not a complex line of this
linear complex connects the platform rigidly to the frame. With telescopic legs
of variable lengths the degree of freedom of the platform is six. In addition,
each leg has the degree of freedom of rotation about its longitudinal axis.
This degree of freedom is without interest. In practice it is often suppressed
by replacing one spherical joint per leg by a Hooke’s joint.

Stewart platforms find applications whenever the six position variables of
a body must be controllable both fast and with high accuracy. Examples are
grippers of robots, carriers of vehicles in drive and flight simulators and of

Fig. 8.1 Stewart-Gough-platform
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work pieces in tool machines. Stewart platforms are also found in the field of
vibration control and in micro system technology. When operating a Stewart
platform, positions must be avoided in which all six legs are lines of a single
linear complex. In such positions the platform has at least one additional
degree of freedom which cannot be controlled by actuators in the legs.

Inverse kinematics of the Stewart platform: The coordinates of the vectors
Ri and �i (i = 1, . . . , 6) in the respective bases as well as the position of
the platform, i.e., of basis e2 in e1 are given. To be determined are the six
leg lengths �i (i = 1, . . . , 6). This is an elementary problem. The platform
position determines the position of the points Pi (i = 1, . . . , 6) in e1 and
with them the leg lengths �i = |PiQi| (i = 1, . . . , 6).

8.1 Direct Kinematics of the General Stewart Platform

The problem of direct kinematics is considerably more difficult than inverse
kinematics. It is stated as follows. Given the leg lengths �i , the vectors Ri

in e1 and the vectors �i in e2 (i = 1, . . . , 6) , determine all positions of e2

in e1 . In what follows, it is assumed that the given parameters are such that
the platform can assume only a finite number of positions in which the legs
do not belong to a single linear complex.

Husty [2] was the first who succeeded in formulating scalar equations for
the determination of all positions of a platform with arbitrarily prescribed
parameters Ri , �i , �i (i = 1, . . . , 6). His coordinate formulation leads to
expressions which can only be handled by an automatic formula manipulation
program. The method presented here formulates the same equations in vector
form. These equations are compact and simple (Wittenburg [11]).

The unknown position of e2 in e1 is represented as displacement from an
initial position in which e2 coincides with e1 . This displacement is described
by its dual quaternion (see (3.98))

D̂ = (q0,q) + ε(q′0,q
′) . (8.1)

The unknown quantities q0 , q , q′0 and q′ satisfy (3.89) and (3.102)

q20 + q2 = 1 , (8.2)

q0q
′
0 + q · q′ = 0 . (8.3)

The vector r0 =
−−→
0102 joining the origins of the two bases and the square of

this vector are (see (3.104) and (3.101))

r0 = 2(q0q
′ − q′0q+ q× q′) , (8.4)

r20 = 4(q′0
2
+ q′2) . (8.5)
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In the initial position the platform-fixed point Pi has in e1 the given posi-
tion vector �i . Let �∗

i be its position vector in e1 after the displacement.
According to (3.105)

�∗
i = �i + 2[q× (q× �i) + q0q× �i]︸ ︷︷ ︸

ai

+2(q0q
′ − q′0q+ q× q′)︸ ︷︷ ︸

r0

(8.6)

(i = 1, . . . , 6) . The vector ai−�i is the displacement caused by the rotation
(note that a2i = �2

i ). As origin of basis e2 point P6 is chosen and as origin
of e1 point Q6 . The condition that the legs have prescribed lengths �i are

(Ri − �∗
i )

2 − �2i = 0 (i = 1, . . . , 5) (8.7)

and r20 = �26 . This sixth equation is, because of (8.5),

4(q′0
2
+ q′2) = �26 . (8.8)

In (8.7) the term on the left-hand side is, with (8.6) and with r20 = �26 ,

(Ri − ai − r0)
2 − �2i

= R2
i + �26 + �2

i − 2(Ri − ai) · r0 − 2Ri · (ai − �i)− 2Ri · �i − �2i

= −2(Ri − ai) · r0 − 4Ri · [q× (q× �i) + q0q× �i]

+(Ri − �i)
2 + �26 − �2i . (8.9)

The second term in this expression is transformed as follows:

Ri · [q× (q× �i) + q0q× �i] = (q0Ri − q×Ri) · (q× �i) . (8.10)

In the first term of (8.9) the expressions from (8.6) for ai and r0 are used.
This yields

(Ri − ai) · r0 = 2Ri · (q0q′ − q′0q+ q× q′)− 2�i · (q0q′ − q′0q− q× q′)

−4
{
�i · q× q′ + [q× (q× �i) + q0q× �i] · (q0q′ − q′0q+ q× q′)

}
. (8.11)

The expression in curled brackets equals zero (note (8.2) and the product
rule (q×�i) · (q× q′) = q2(q′ ·�i)− (q ·q′)(q ·�i) ) . Hence (8.8) takes the
form

q · (Ri − �i)q
′
0 + [q× (Ri + �i)− q0(Ri − �i)] · q′

+(q×Ri − q0Ri) · (q× �i) +
1

4
[(Ri − �i)

2 + �26 − �2i ] = 0 (8.12)

(i = 1, . . . , 5) and with the abbreviations

ri = Ri − �i , pi = Ri + �i (i = 1, . . . , 5) (8.13)
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the form

q · riq′0 + (q× pi − q0ri) · q′

+(q×Ri − q0Ri) · (q× �i) +
1

4
(r2i + �26 − �2i ) = 0 (i = 1, . . . , 5) . (8.14)

These five equations1 together with (8.2), (8.3) and (8.8) determine the eight
unknowns q0,1,2,3 and q′0,1,2,3 . Before reducing them to a smaller set of
equations a statement is made about the number of solutions.

Proposition: The maximum number of (real or complex) solutions is eighty.
If (q0,1,2,3, q

′
0,1,2,3) is a solution, also (−q0,1,2,3, −q′0,1,2,3) is. Since these

two solutions determine one and the same platform position, the maximum
number of different platform positions is forty.
Proof by Wampler [10]: Define

zT = [q0 q1 q2 q3] and z′T = (2/�6)[q
′
0 q′1 q′2 q′3] . Then (8.2) and (8.3) read:

zT z = 1 , zT z′ = 0 . (8.15)

In (8.8) �26 is multiplied by (q20 + q2) . The equation then reads

4

�26
(q′0

2
+ q′2)− (q20 + q2) = 0 . (8.16)

This is the equation
z′T z′ − zT z = 0 . (8.17)

Also in (8.14) the constant (r2i +�26−�2i ) is multiplied by (q20+q2) . Following
this the terms in the second row represent a quadratic form in q0,1,2,3 . It has
the form zTAiz with a symmetric matrix Ai . The terms in the first row
are bilinear and, consequently, of the form 2zTBiz

′ . It is seen that Bi is
skewsymmetric. Equations (8.14) now read

zTAiz + 2zTBiz
′ = 0 (i = 1, . . . , 5 ; AT

i = Ai , B
T
i = −Bi ) . (8.18)

Wampler investigates the more general equations

zTAiz + 2zTBiz
′ − λ2z′TAiz

′ = 0 (i = 1, . . . , 5 ; AT
i = Ai , B

T
i = −Bi )

(8.19)
in which λ is a real parameter. With new variables x = z + λz′ and
y = z − λz′ the products xTx , yT y , xT y and xT (Ai − Bi/λ)y are
formed. Using (8.15) and (8.17) as well as the symmetry of Ai and the
skewsymmetry of Bi the resulting expressions are

1 (8.14) can also be written in the form
(2q′0 + q · ri)2 + (2q′ + q× pi − q0ri)

2 = 
2i (i = 1, . . . , 5).

Proof: Substitute pi = 2Ri − ri and �i = Ri − ri and use 4(q′20 + q′2) = r20 = 
26 and
(q · ri)2 + (q× ri)

2 + q20r
2
i = (q2 + q20)r

2
i = r2i
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xTx = 1 + λ2 , yT y = 1 + λ2 , (8.20)

xT y = 1− λ2 , (8.21)

xT (Ai −
1

λ
Bi)y = zTAiz + 2zTBiz

′ − λ2z′TAiz
′ . (8.22)

According to (8.19) the expression on the right-hand side is zero. Hence

xT (Ai −
1

λ
Bi)y = 0 (i = 1, . . . , 5) . (8.23)

The eight original equations have now been replaced by the eight new
Eqs.(8.20), (8.21) and (8.23). The left-hand side expressions in both Eqs.(8.20)
are homogeneous quadratic forms, and those in the altogether six Eqs.(8.21)
and (8.23) are bilinear forms. About the number of solutions of such spe-
cial equations a simple statement is made by Bezout’s theory (see Mor-
gan/Sommese [8]). The maximum number of solutions equals the coefficient
of the term α4β4 in the expression (α + β)6(2α)(2β) . This coefficient is
eighty. This number eighty is valid also in the case λ = 0 , although (8.23)
does not allow setting λ = 0 . Because of the implicit function theorem ev-
ery nonsingular solution in the case λ = 0 is associated with a nonsingular
solution in an open set λ �= 0 . Since the maximum number of solutions is
eighty in the open set, it is eighty also in the case λ = 0 . This ends the proof.
The proof does not answer the question whether this maximum number can
actually occur. This problem was settled by Dietmaier [1]. He determined pa-
rameter values for which Husty’s equations yield forty different real platform
positions.

Reduction of the Equations
In what follows, the original Eqs.(8.2), (8.3), (8.8) and (8.14) for the un-
knowns q0 ,q , q′0 and q′ are considered. In several steps these equations are
reduced to a system of three equations for three unknowns. Equations (8.14)
and (8.3) together represent a system of linear equations for q′0 and q′ . This
system is written in the form

ciq
′
0 + vi · q′ = bi (i = 1, . . . , 6) (8.24)

with coefficients vi , ci , bi depending on q0 and q :

vi = q× pi − q0ri , ci = q · ri = − 1

q0
q · vi ,

bi = (q0Ri − q×Ri) · (q× �i)− 1

4
(r2i + �26 − �2i )

⎫⎪⎬
⎪⎭ (i = 1, . . . , 5) ,

(8.25)
c6 = q0 , v6 = q , b6 = 0 . (8.26)
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The coefficients of the sixth equation are orthogonal not only to the unknown
solution q′0 ,q

′ , but also to the coefficients of the remaining five equations:

c6ci + v6 · vi = 0 (i = 1, . . . , 5) . (8.27)

Solutions q′0 and q′ exist if the system of equations has rank four. By as-
sumption, this is the case. One of the four equations used must be the sixth
equation because the coefficients of the other five equations belong to the
three-dimensional complement of the coefficients of the sixth equation. Let it
be assumed that the equations 1, 2, 3, 6 have rank four. First, the quantity
q′0 is determined. It is the quotient

q′0 =
Δ0

Δ1236
(8.28)

of the determinants2

Δ0 =

∣∣∣∣∣∣∣∣
b1 v1

b2 v2

b3 v3

0 q

∣∣∣∣∣∣∣∣ = q ·
3∑

i=1

bivj × vk , (8.29)

Δ1236 = − 1

q0

∣∣∣∣∣∣∣∣
q · v1 v1

q · v2 v2

q · v3 v3

−q20 q

∣∣∣∣∣∣∣∣
= − 1

q0

[ 3∑
i=1

(q · vi)(q · vj × vk) + q20v1 · v2 × v3

]
(8.30)

(here and in other sums further below i, j, k = 1, 2, 3 cyclic). The identity3

3∑
i=1

(q · vi)vj × vk = q(v1 · v2 × v3) (8.31)

in combination with q20 + q2 = 1 yields

Δ1236 = − 1

q0
v1 · v2 × v3 . (8.32)

With the first Eq.(8.25)

2 The notation is unconventional. Instead of the vectors v1, v2, v3 and q the matrix
contains the row matrices of the coordinates of these vectors. The corresponding (3 × 3)
determinants are the vector products shown in (8.29) and (8.30)
3 Verified by scalar multiplications with v1 , v2 , v3
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vj × vk = q20rj × rk + q0[(q · rj)pk − (q · rk)pj ]

+q [q · pj × pk + q0(rk · pj − rj · pk)] . (8.33)

The product v1 · v2 × v3 allows factoring out q0 . Division by −q0 yields

Δ1236 = q20r1 · r2 × r3 +
3∑

i=1

(q · ri)[q ·pj ×pk + q0(rk ·pj − rj ·pk)] . (8.34)

The result for q′0 is written in the form

q′0 =
q · s
Δ1236

(8.35)

with the abbreviation

s =
3∑

i=1

bivj × vk . (8.36)

The product q · s is of fifth degree in q0 , q1 , q2 , q3 , and Δ1236 is of second
degree.

The vector q′ is determined from the equations 1, 2, 3 of the system
(8.24):

vi · q′ =
q′0
q0

q · vi + bi (i = 1, 2, 3) . (8.37)

The solution is

q′ =

3∑
i=1

(q′0
q0

q · vi + bi

)
vj × vk

v1 · v2 × v3
(8.38)

or, with (8.35), (8.31) and (8.32),

q′ =
qq · s− s

q0Δ1236
. (8.39)

The quantities q′0 and q′ are now known as functions of q0 and q . In the
next step q0 and q are determined. For this purpose (8.8), the fourth and
the fifth Eq.(8.24) and (8.2) are available. Equation (8.8) is

�26 = 4(q′0
2
+ q′2) = 4

q20(q · s)2 + (qq · s− s)2

q20Δ
2
1236

= 4
s2 − (q · s)2
q20Δ

2
1236

= 4
q20s

2 + (q× s)2

q20Δ
2
1236

(8.40)

or

s2 +

(
q× s

q0

)2

=
1

4
�26Δ

2
1236 (8.41)
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and with (8.33) and (8.36)

s2+

{
q×

3∑
i=1

bi

[
q0rj × rk + (q · rj)pk − (q · rk)pj

]}2

=
1

4
�26Δ

2
1236 . (8.42)

This equation is of 8th order in the coordinates of q .
With c� = −q ·v�/q0 the fourth and the fifth Eq.(8.24) read −v� · s/q0 =

b�Δ1236 (� = 4, 5) or with (8.36)

−
3∑

i=1

bi
v� · vj × vk

q0
= b�Δ1236 (� = 4, 5) . (8.43)

Equation (8.32) shows that this can be written in the form

3∑
i=1

biΔ�jk6 = b�Δ1236 (� = 4, 5) (8.44)

(i, j, k = 1, 2, 3 cyclic). The quantity Δ�jk6 is given in (8.34) with indices
�, j, k instead of 1, 2, 3 . It represents the coefficient determinant of the equa-
tions �, j, k, 6 in the system (8.24). Equations (8.44) are of fourth order in
the unknowns q0 , q . Equations (8.35), (8.39), (8.42) and (8.44) are Husty’s
equations.

The equation q20 + q2 = 1 is used for expressing even and odd powers
of q0 in the forms q2m0 = (1 − q2)m and q2m+1

0 = q0(1 − q2)m for
m ≥ 1 . With these substitutions the three Eqs.(8.42) and (8.44) have the
forms Aiq0 + Bi = 0 (i = 1, 2, 3) with coefficients Ai , Bi depending on q
only. Substitution of q0 = −B3/A3 into the other equations results in three
equations for q1 , q2 , q3 only. These equations are

A1B3 −A3B1 = 0 [1, 3, 5, 7] ,
A2B3 −A3B2 = 0 [1, 3, 5, 7, 9, 11] ,

(q2 − 1)A2
3 −B2

3 = 0 [0, 2, 4, 6, 8] .

⎫⎬
⎭ (8.45)

The numbers shown in brackets indicate the order of terms in q1 , q2 , q3
occurring in the equations. In the first equation, for example, only terms of
the orders 1, 3, 5 and 7 occur.

8.2 Triangle-Configuration of the Stewart Platform

The maximum number of platform positions is smaller than forty if the at-
tachment points of the legs i = 1, . . . , 6 on the platform and on the frame
are in some way regularly arranged. A very special arrangement is shown
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Fig. 8.2 Platform with frame triangle (Q1,Q2,Q3) and platform triangle (P1,P2,P3)

in Fig. 8.2 . In a triangle (P1,P2,P3) fixed on the platform and in another
triangle (Q1,Q2,Q3) fixed on the frame each corner is the attachment point
of two legs. The problem of direct kinematics is to find for given forms of the
triangles (P1,P2,P3) and (Q1,Q2,Q3) and for given leg lengths �1, . . . , �6 all
possible positions of the platform. The following method of solution is due to
Merlet [4, 6, 5].

A frame-fixed reference basis is defined as follows. Its origin is an arbitrary
point in the plane of the triangle (Q1,Q2,Q3), and its basis vector e3 is normal
to this plane. Furthermore, let ni be the unit vector pointing from Qj to
Qk (i, j, k = 1, 2, 3 cyclic). In the figure only the vector n1 pointing from
Q2 to Q3 is shown. When the leg lengths are given, the triangle (Q2,Q3,P1)
is given, too, and so is the altitude h1 and the foot A1 of the perpendicular
dropped from P1 onto the line Q2Q3 . Let a1 be the position vector of A1

in the reference basis and let, furthermore, ϕ1 be the angle through which
the altitude of length h1 is rotated against the direction of n1 × e3 . Then
P1 has the position vector

r1 = a1 + h1(n1 × e3 cosϕ1 + e3 sinϕ1) . (8.46)

In this expression the angle ϕ1 is the only unknown.
What has been explained for the triangle (Q2,Q3,P1) is valid, with cyclic

permutation of indices, also for the triangles (Q3,Q1,P2) and (Q1,Q2,P3). For
each of them there is an equation of the form (8.46). With the abbreviations
ci = cosϕi and si = sinϕi (i = 1, 2, 3) the three equations have the forms

ri = ai + hi(ni × e3ci + e3si) (i = 1, 2, 3) . (8.47)
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In Fig. 8.2 the side lengths b1 , b2 , b3 of the platform-fixed triangle (P1,P2,P3)
are shown. The rigidity of the triangle requires that b2i = (rj − rk)

2

(i, j, k = 1, 2, 3 cyclic). Since the vectors ai and ni (i = 1, 2, 3) are or-
thogonal to e3 , these three equations have the special forms

D1s2s3 + E1c2c3 + F1c2 +G1c3 +H1 = 0 ,
D2s3s1 + E2c3c1 + F2c3 +G2c1 +H2 = 0 ,
D3s1s2 + E3c1c2 + F3c1 +G3c2 +H3 = 0

⎫⎬
⎭ (8.48)

with constant coefficients

Di = 2hjhk ,

Ei = 2hjhknj · nk ,

Fi = −2hje3 · nj × (aj − ak) ,

Gi = 2hke3 · nk × (aj − ak) ,

Hi = b2i − h2
j − h2

k − (aj − ak)
2

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(i, j, k = 1, 2, 3 cyclic) . (8.49)

From these equations it is seen that if (ϕ1, ϕ2, ϕ3) is a solution, then also
(−ϕ1, −ϕ2, −ϕ3) is a solution. The second solution is the reflection of the
first in the plane of the frame triangle.

The third Eq.(8.48) yields

s1s2 = − 1

D3
(E3c1c2 + F3c1 +G3c2 +H3) (8.50)

and after squaring

D2
3(1− c21)(1− c22) = (E3c1c2 + F3c1 +G3c2 +H3)

2 . (8.51)

This is a quadratic equation for c2 with coefficients which are functions of
c1 . The first two Eqs.(8.48) are resolved for s3 and c3 . With this solution
the equation s23 + c23 = 1 is formed. This is the equation

[(F1c2 +H1)(E2c1 + F2)− (G2c1 +H2)(E1c2 +G1)]
2

+ [D1s2(G2c1 +H2)−D2s1(F1c2 +H1)]
2

= [D1s2(E2c1 + F2)−D2s1(E1c2 +G1)]
2 . (8.52)

The quantities s1 and s2 appear only in the forms s21 , s22 and s1s2 . The
expressions s21 and s22 are replaced by 1 − c21 and by 1 − c22 , respectively,
and s1s2 is replaced by the expression in (8.50). The resulting equation is
another quadratic equation for c2 with coefficients which are functions of
c1 . With abbreviations for the said coefficients the equations are written in
the forms

Kic
2
2 + Lic2 +Mi = 0 (i = 1, 2) . (8.53)
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Compatibility requires that∣∣∣∣ K1L2 −K2L1 K1M2 −K2M1

K1M2 −K2M1 L1M2 − L2M1

∣∣∣∣ = 0 . (8.54)

This is an 8th-order polynomial for c1 = cosϕ1 . Its solutions determine
eight (not necessarily real) pairs of angles ϕ1 and −ϕ1 . Merlet [4] gave a
numerical example with eight different real solutions c1 thus showing that a
polynomial of degree smaller than eight cannot be found. For every solution
ϕ1 the two Eqs.(8.53) determine c2 uniquely, and (8.50) determines s2 .
Hence ϕ2 is uniquely determined. The solutions s3 and c3 of the first two
Eqs.(8.48) determine the angle ϕ3 .
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Chapter 9

Angular Velocity. Angular
Acceleration

This is the first chapter devoted not to position theory, but to continuous mo-
tion. The essential kinematical quantities are velocity, acceleration, angular
velocity and angular acceleration.

9.1 Definitions. Basic Equations

In Fig. 9.1 an arbitrarily moving reference basis e1 with origin 0 is shown.
Relative to e1 a body is moving. The body is represented by the basis e2

rigidly attached to it. The origin A of this basis is an arbitrarily chosen point
of the body. Relative to e2 a point Q is moving. The position vectors of Q
in the two bases are denoted r and � , respectively. The figure shows the
relationship

r = rA + � . (9.1)

In general, the velocities of Q relative to the two bases are different, and
also the accelerations of Q relative to the two bases are different. The velocity
and the acceleration relative to e1 are denoted v and a , respectively. They
are the first and the second time derivative, respectively, of r in e1. The

Fig. 9.1 Reference basis e1, body-fixed basis e2 and point Q in motion relative to e2
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velocity and the acceleration of Q relative to e2 are denoted vrel and arel ,
respectively. They are the first and the second time derivative, respectively,
of � in e2. In what follows, the basis in which a vector is differentiated is
denoted by an upper index set in parentheses. With this notation the said
velocities and accelerations are

v =
(1)dr

dt
, vrel =

(2)d�

dt
, a =

(1)d2r

dt2
, arel =

(2)d2�

dt2
. (9.2)

In contrast to vectors scalar quantities have identical time derivatives in
different bases. These derivatives are denoted by dots as usual. The goal
of the present section is to express v and a in terms of � , vrel and arel
and of quantities describing the motion of e2 relative to e1.

The relationship between time derivatives of a vector in two bases e1

and e2 is met frequently and not only with position vectors. For this reason
it is formulated first for a vector p of arbitrary physical nature. Let pi
(i = 1, 2, 3) be the coordinates of p in e2. Then

(1)dp

dt
=

(1)d

dt

3∑
i=1

pi e
2
i =

3∑
i=1

ṗi e
2
i +

3∑
i=1

pi
(1)d

dt
e2i

=
(2)dp

dt
+

3∑
i=1

pi
(1)d

dt
e2i . (9.3)

The derivative of e2i is a vector. Let aij (j = 1, 2, 3) be its unknown coordi-
nates in e2 :

(1)d

dt
e2i =

3∑
j=1

aij e
2
j (i = 1, 2, 3) . (9.4)

The basis vectors satisfy the orthonormality conditions e2i · e2k = δik (i, k =
1, 2, 3). Differentiation of this equation in e1 yields

( (1)d

dt
e2i

)
· e2k + e2i ·

( (1)d

dt
e2k

)
= 0 (i, k = 1, 2, 3) . (9.5)

The derivatives in parentheses are expressed by means of (9.4):

( 3∑
j=1

aij e
2
j

)
· e2k + e2i ·

( 3∑
j=1

akj e
2
j

)
= 0 (i, k = 1, 2, 3) . (9.6)

Because of the orthonormality conditions this reduces to aik+aki = 0 (i, k =
1, 2, 3). Hence a11 = a22 = a33 = 0 . Instead of nine unknowns aij there are
only three. These are given the new names aij = −aji = ωk (i, j, k = 1, 2, 3
cyclic). In these terms (9.4) gets the form
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(1)d

dt
e2i = −ωj e

2
k + ωk e

2
j (i, j, k = 1, 2, 3 cyclic) . (9.7)

The three quantities ωi (i = 1, 2, 3) are interpreted as coordinates of a vector
ω21 in e2. Then

(1)d

dt
e2i = ω21 × e2i (i = 1, 2, 3) . (9.8)

The vector ω21 is called angular velocity of the body, i.e., of basis e2, relative
to e1. In (9.3) – (9.8) the origin A of e2 does not play any role. Hence the
angular velocity is independent of A . In figures the angular velocity vector
may be attached to any point of the body. It is not wrong, but sometimes
misleading to talk about the angular velocity about A . This is particularly
true when the body has a fixed point different from A .

With (9.8) Eq.(9.3) gets the form

(1)dp

dt
=

(2)dp

dt
+ ω21×p (ω21 = angular velocity of e2 relative to e1) . (9.9)

This is the desired relationship between the time derivatives of an arbitrary
vector p in two different bases. Application to ω21 itself shows that the
time derivatives in both bases are identical. Therefore, the simpler notation
is used:

(1)dω21

dt
=

(2)dω21

dt
= ω̇21 . (9.10)

This vector is called angular acceleration of the body relative to e1.
After these preparations the desired expressions for velocities and acceler-

ations can be formulated. Starting point is (9.1) : r = rA+� . The equation is
differentiated twice with respect to time in e1. The derivatives of rA are the
velocity and the acceleration of the body-fixed point A relative to e1. They
are denoted vA and aA , respectively. For differentiating � (9.9) is used.
Instead of ω21 simply ω is written. With the notation (9.2) the velocity is

v = vA + ω × �+ vrel . (9.11)

The acceleration a is found by differentiating one more time in e1. In doing
so (9.9) is applied to the second and to the third vector. Each of these vectors
contributes the term ω × vrel . The resulting expression is

a = aA + ω̇ × �+ ω × (ω × �) + 2ω × vrel + arel . (9.12)

In the special case vrel = 0 , arel = 0 (9.11) and (9.12) express the velocity
and the acceleration, respectively, of the body-fixed point Q defined by the
position vector � :
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v = vA + ω × � , (9.13)

a = aA + ω̇ × �+ ω × (ω × �) . (9.14)

Since these formulas are valid for all points Q of the body, they describe
the velocity distribution and the acceleration distribution in the rigid body.
These distributions are the subject of Sects. 9.3 and 9.8 .

In (9.11) and (9.12) the rigid-body terms are called transport velocity vt

and transport acceleration at of Q . With this notation the velocity of Q is
v = vt + vrel , and the acceleration is a = at + 2ω × vrel + arel . The term
2ω × vrel is called Coriolis acceleration.

In what follows, the second time derivative of ω and the third time deriva-
tive of r , the so-called jerk j , are formulated. Also these derivatives are un-
derstood as derivatives in basis e1 . They are found by repeated applications
of (9.9). The upper index (1) is omitted. The results are

d2ω

dt2
= γ + ω × ω̇ , (9.15)

j =
d3r

dt3

= jA + (γ + ω × ω̇)× �+ 2ω̇ × (ω × �) + ω × [ω̇ × �+ ω × (ω × �)]

= jA + (γ − ω2ω)× �− 3(ω̇ · ω)�+ 2(ω · �)ω̇ + (ω̇ · �)ω . (9.16)

Here, γ is the derivative of ω̇ in e2 , and jA is the jerk of the body-fixed
point A relative to e1 .

9.2 Inverse Motion

The motion of basis e1 relative to e2 is called the inverse of the motion
of e2 relative to e1. Let ωrel and ω̇rel be the angular velocity and the
angular acceleration, respectively, of e1 relative to e2. These quantities are
determined as follows. Equation (9.9) is solved for the right-hand side time
derivative of p . This is achieved by interchanging the indices 1 and 2 . The
result is ω12 = −ω21 . By definition, ω12 is the desired angular velocity
ωrel . This yields the first equation below. The second equation follows by
the argument used for (9.10) (again ω is written instead of ω21) :

ωrel = −ω , ω̇rel = −ω̇ . (9.17)

Next, (9.11) is applied twice, once to an arbitrary point A fixed in e2 and
once to the point fixed in e1 instantaneously coinciding with A . In the first
case, the equation is v = vA . In the second case, v = 0 , and vrel is the
desired velocity of the inverse motion. Hence in this case, 0 = vA + vrel .
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Combination of both equations yields

vrel = −v . (9.18)

In the same way an expression for arel is obtained from (9.12). The two
applications yield the equations a = aA and 0 = aA + 2ω × vrel + arel .
Combination with (9.18) yields

arel = −a+ 2ω × v . (9.19)

Again, the quantities on the left-hand side belong to the inverse motion and
the ones on the right-hand side to the motion. Equations (9.17) – (9.19) are
summarized in

Theorem 9.1. The switch from motion to inverse motion has the conse-
quence that angular velocity, angular acceleration and velocities of arbitrary
points are multiplied by (−1). For accelerations this rule is valid only for
points satisfying the condition ω × v = 0 . These points define the instanta-
neous screw axis.

9.3 Instantaneous Screw Axis. Pitch. Velocity Screw.
Linear Complex of Velocity

Equations (9.1) and (9.13) describe the instantaneous velocity distribution
in a rigid body at an arbitrary fixed time t . The body point at the position
vector

r = rA + � (9.20)

with arbitrary � has the velocity

v = vA + ω × � . (9.21)

The equation is in accordance with the rigid-body property that the velocities
v1 and v2 of any two body-fixed points have identical components along the
line connecting these points:
(v1 − v2) · (�1 − �2) = [ω × (�1 − �2)] · (�1 − �2) = 0 .

There are two special cases, namely,
- pure translation: ω = 0 , v ≡ vA for all points of the body
- pure rotation about a point A : vA = 0 , v = ω × � .
In the general case, the velocity distribution can be interpreted as superpo-
sition of the velocity distributions of these two special motions translation
with velocity vA and rotation about A with angular velocity ω .

All body-fixed points along a straight line parallel to ω have one and
the same velocity (different for different lines). In the case ω �= 0 , there
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exists exactly one line parallel to ω the points of which have a velocity in
the direction of ω , i.e., the velocity v = pω with a scalar p of dimension
length. Hence for all points on this line pω = vA + ω × � . Let u be the
perpendicular from A onto this particular line. Then also

pω = vA + ω × u . (9.22)

Cross- and dot-multiplying this equation by ω and using the orthogonality
ω · u = 0 one gets for u and for p the expressions

u =
ω × vA

ω2
, p =

ω · vA

ω2
. (9.23)

If in (9.21) an arbitrary point on the line determined by u is chosen as point
A , the velocity of an arbitrary point located by the vector � is

v = pω + ω × � . (9.24)

This shows that the instantaneous velocity distribution is that of a screw
motion, i.e., the superposition of rotation with angular velocity ω about
this particular line and of translation with velocity pω along the line. The
line is called instantaneous screw axis (ISA), and p is the pitch of the screw.
The velocity v of an arbitrary point not located on the ISA has the direction
of the helix through this point.

In the special case p = 0 the velocity vA and, consequently, the velocities
v of all points of the body are in planes orthogonal to ω . This is the case
of plane motion. It is the subject of Chap. 15 .

In an x, y, z reference system with its origin 0 on the screw axis and
with the z-axis in the direction of ω the velocity of a body-fixed point with
coordinates [x, y, z] (arbitrary) has the coordinates

v = ω[ −y x p ] (9.25)

and the absolute value |v| = ω
√
x2 + y2 + p2 . Cylinders x2 + y2 = r2

( r arbitrary) are surfaces of equal absolute value |v| . Lines parallel to the
z-axis are lines of equal velocity v .

Let E be the body-fixed plane parallel to the z-axis which intersects the
x, y-plane in the line y = ax+ b (a, b arbitrary), and let, furthermore, n be
the vector with coordinates [ 1 a b/p ] . When attached to a point P of E
this vector lies in E . From (9.25) it follows that the velocity of every point
P of E is orthogonal to n .

Next, all points of an arbitrarily located body-fixed plane E are deter-
mined which have in-plane velocities. From (9.24) it follows that no such
points exist in planes orthogonal to ω . A plane E is specified by its
Eq.(2.1) , m · � = −1 , and the in-plane condition on the velocities is
m · (pω + ω × �) = 0 . In terms of coordinates these two equations are
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mxx +myy = −(1 +mzz) ,
myx −mxy = −mzp .

}
(9.26)

The solution is

x(z) =
−mx(1 +mzz)−mymzp

m2
x +m2

y

, y(z) =
−my(1 +mzz) +mxmzp

m2
x +m2

y

.

(9.27)
This determines a straight line in E . Its Plücker vectors and the perpendicu-
lar from the origin 0 onto the line are calculated from two points of the line
(see (2.3) and (2.6)). For convenience, the points z = 0 and z = −1/mz are
chosen. Simple algebra yields the coordinates of the said three vectors (both
Plücker vectors multiplied by mz(m

2
x +m2

y) ):

⎡
⎣−mxmz

−mymz

m2
x +m2

y

⎤
⎦ ,

⎡
⎣−my +mxmzp

mx +mymzp
m2

zp

⎤
⎦ ,

⎡
⎢⎢⎢⎢⎢⎣
− mx

m2
x +m2

y +m2
z

− p
mymz

m2
x +m2

y

− my

m2
x +m2

y +m2
z

+ p
mxmz

m2
x +m2

y

− mz

m2
x +m2

y +m2
z

⎤
⎥⎥⎥⎥⎥⎦ .

(9.28)
The first Plücker vector has the direction of m×(ω×m) . The perpendicular
onto the line is the sum of the perpendicular −m/m2 onto the plane and an

in-plane vector of absolute value pmz/
√
m2

x +m2
y in the direction of ω×m .

Substitution of (9.27) into (9.25) yields the velocity as function of z . At
z = −1/mz the velocity has the direction of the line and, consequently, its
minimal absolute value. This minimal value is

|v|min = pω

√
1 +

m2
z

m2
x +m2

y

. (9.29)

This concludes the investigation.
In what follows, the curve defined by those body-fixed points is determined

the velocities of which are directed either towards or away from a prescribed
point A . Without loss of generality, A is placed on the positive x-axis with
coordinates [ 2a , 0 , 0 ] . With (9.25) the condition on the velocity of the point
[x, y, z] is

x− 2a

−y
=

y

x
=

z

p
. (9.30)

By eliminating the three coordinates, one at a time, the projections of the
curve onto the planes of the other two coordinate axes are obtained:

(x− a)2 + y2 = a2 , x(z) = 2a
1

1 + z2/p2
, y(z) = 2a

z/p

1 + z2/p2
. (9.31)
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The curve is located on the cylinder (x−a)2+y2 = a2 ; it is passing through
A ; the z-axis is asymptote. Points on the curve on one side of A have
velocities pointing away from A , and points on the other side of A have
velocities pointing towards A . In terms of the polar coordinate ϕ in the
x, y-plane ( tanϕ = y/x )

x = a(1 + cos 2ϕ) , y = a sin 2ϕ , z = p tanϕ . (9.32)

In the case of plane motion the curve is Thales’ circle (x − a)2 + y2 = a2

over the diameter 0A .

Velocity Screw
The pair of vectors (ω,v) in (9.24) is called velocity screw of the body1. By
writing ω = ωn (unit vector n ) and a = −� it is given the standard form

(ω,v) = ω(n , a× n+ pn) . (9.33)

The vector a is directed from the point having the velocity v to an arbitrary
point of the ISA. The vectors n and a × n are the Plücker vectors of the
ISA. The scalar ω is called intensity of the velocity screw. The expression in
parentheses is called unit screw. There are two special cases:
The special case of plane motion ( p = 0 ): The unit screw is identical with
the screw axis, namely, (n, a× n) .
The special case of pure translation: Every point of the body has the same
velocity vn with unit vector n . A screw axis does not exist. The pitch is
undefined ( p = ∞ according to (9.23)). Equation (9.33) has the form

(ω,v) = v(0 , n) . (9.34)

In what follows, the general case is considered. The unit line vector n̂
along the ISA and the velocity screw are written as dual vectors. The former
is composed of the Plücker vectors of the ISA and the latter is defined as
ω̂ = ω + εv :

n̂ = n+ εa× n , (9.35)

ω̂ = ω + εv = ω[n+ ε(a× n+ pn)] . (9.36)

These dual vectors are related through the equation (to be verified by multi-
plying out again)

ω̂ = ω(1 + εp)n̂ . (9.37)

Comparison with (2.29) shows that Eqs.(9.23) define the axis and the pitch
of the linear complex (ω ; vA) . It is called linear complex of velocity. From
Fig. 2.5 it is known that the complex lines of this linear complex are normals
of the helices, i.e., of the velocities v . Let z be the first Plücker vector of

1 The name velocity screw is used instead of twist
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a complex line passing through the point with position vector � and with
velocity v = vA +ω × � . Orthogonality requires that v · z = 0 . This is the
equation (vA +ω×�) · z = 0 or ω ·�× z+vA · z = 0 . In this equation the
defining Eq.(2.25) of the linear complex (ω ; vA) is recognized. The vectors
z and � × z are the Plücker vectors of a complex line passing through the
null point with position vector � and with velocity v = vA + ω × � .

Theorem 9.2. Every plane not containing a line parallel to the ISA is in-
stantaneously intersected orthogonally by the velocity (the trajectory) of ex-
actly one body-fixed point.

Proof: Every such plane is a null plane. It is intersected orthogonally by a
helix of the screw at its uniquely defined null point and only at this point.
For a plane specified in the form m ·� = −1 the null point is calculated from
(2.36) which, in the present case, has the form

�0 =
m× pω − ω

m · ω . (9.38)

In the x, y, z-system used in (9.25) it has the coordinates (1/mz)[ pmy

− pmx − 1 ] . End of proof.

Theorem 9.3. If a straight line g is at one point instantaneously normal to
the velocity (the trajectory) of the coinciding body-fixed point, every point of
g is instantaneously normal to the velocity of the coinciding body-fixed point.

Proof: Orthogonality of the line g to a single trajectory means that g is a
complex line of the linear complex of velocity. In the context of Fig. 2.6 it
was shown that every point P of a complex line is null point of a null plane
containing the line g . The null plane is intersected orthogonally by a helix
at its null point P . Hence also g is intersected orthogonally. A simpler proof
makes use of the rigid-body property. Body-fixed points located on g have
identical velocity components along g . So, if one point has a zero velocity
component, all points have. End of proof.

Theorem 9.3 explains the names null plane and null point. The null plane
associated with a null point P is the locus of points which have zero velocity
components toward P (see Fig. 2.5 ).

Imagine in Fig. 2.5 a sphere of arbitrary radius a centered at the point
P with coordinates [ r , 0 , 0 ] . From Theorem 9.3 it follows that the great
circle in which the null plane associated with P intersects the sphere is the
locus of points on the sphere which have velocities tangent to the sphere.
This is independently verified as follows. An arbitrary point [x, y, z] on the
sphere has the velocity coordinates (9.25), v = ω[ −y x p ] and the local
normal with coordinates [ x − r y z ] . The orthogonality condition is
ry + p z = 0 . This is the equation of the null plane associated with P .

Subject of the following investigation is the motion of a rigid body three
noncollinear points P1 , P2 , P3 of which are constrained to prescribed spatial
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curves. Spatial means: The tangents to the curves at the three points are
neither parallel nor are they in the plane of the points. According to Grübler’s
formula (4.1) the degree of freedom of the body is F = d . Hence without
defect of the system of constraint equations the body is immobile. Let Σ0

be the plane of the points P1 , P2 , P3 and let, furthermore, Σi (i = 1, 2, 3)
be the plane normal to the curve at Pi .

Theorem 9.4. The body is instantaneously mobile with degree of freedom
F = 1 if the four planes Σi (i = 0, 1, 2, 3) intersect at a single point.

Proof: If the body is mobile, Σi (i = 1, 2, 3) is the null plane corresponding
to the null point Pi . Let Qi be the point of intersection of the three planes
Σ0 , Σj , Σk (i, j, k = 1, 2, 3 different). According to Theorem 9.3 the tra-
jectory of the body-fixed point coinciding with Qi intersects orthogonally
both the line QiPj and the line QiPk . Hence it intersects orthogonally also
Σ0. Consequently, Qi is the null point of the null plane Σ0 . Since a plane
has exactly one null point, motion is possible if and only if Q1 , Q2 and Q3

coincide in a single point Q0 . In this case, the instantaneous motion is a
screw motion with degree of freedom F = 1 . End of proof.

The instantaneous screw axis is constructed from two pairs of recipro-
cal polars of the linear complex (see Sect. 2.7.5). The lines P1P2 =g3 and
P2P3 =g1 are not lines of the linear complex since they lie in Σ0 without
passing through the nullpoint Q0 . Since g3 is intersected by the pencil of
complex lines in Σ1 and also by the pencil of complex lines in Σ2 , the line g3
reciprocal to g3 , too, is intersected by these pencils of complex lines. Hence
g3 is the line of intersection of Σ1 and Σ2 . It is passing through Q0 . For the
same reason the line g1 reciprocal to g1 is the line of intersection of Σ2 and
Σ3 also passing through Q0 . According to Theorem 2.2 the axis of the linear
complex is the common perpendicular of the common perpendiculars of the
pairs g3 , g3 and g1 , g1 . The pitch of the instantaneous screw is calculated
from (2.32), p = r tanα . The quantities r and α are explained in Fig. 2.5
where P and its nullplane are any of the pairs Pi , Σi (i = 1, 2, 3).

The trajectories of three body-fixed points in the course of an arbitrary
general motion are curves satisfying the condition stated in Theorem 9.4 not
only instantaneously, but continuously.

At the beginning of Sect. 2.7.5 on reciprocal polars (p1,q1) and (p2,q2)
of a linear complex it was shown that the absolute value of p1 in (2.39) can
be chosen such that in (2.41) μ = 1 . Let this be the case. Applied to the
linear complex (ω ; v) Eqs.(2.39) then read:

p1 + p2 = ω , q1 + q2 = v . (9.39)

By definition, the second Plücker vector qi of a polar (pi,qi) is the moment
of the first vector pi . In the equations the kinematical relationships are
recognized (note that ai = −�i (i = 1, 2)):
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ω1 + ω2 = ω , ω1 × �1 + ω2 × �2 = v . (9.40)

These equations are proof of

Theorem 9.5. An arbitrary velocity screw (ω,v) with ω �= 0 can be repre-
sented as resultant of two pure rotations. The axis of one of these rotations
can be chosen arbitrarily subject to the restriction that it is not a line of the
linear complex (ω;v) . The axis of the other rotation is the uniquely deter-
mined reciprocal polar of the first axis.

Further applications of velocity screws and linear complexes see in Chap. 12 .

9.4 Angular Velocity of a Body in Terms of Positions
and Velocities of Three Points

Problem statement: In some reference basis the instantaneous position vectors
r1 , r2 , r3 of three noncollinear points P1 , P2 , P3 of a rigid body as well
as the instantaneous velocities v1 , v2 , v3 of these points are given. To be
determined is the instantaneous angular velocity ω of the body. Since none
of the three points is dominant in any way, it must be possible to find an
expression for ω which is cyclicly symmetric with respect to the indices 1,
2, 3 .

Solution: Starting point is the equation

vi − vj = ω × (ri − rj) (i, j = 1, 2, 3) . (9.41)

Using this equation the product is formed:

(v1 − v3) × (v2 − v3) = [ω × (r1 − r3)]× (v2 − v3)

= ω · (v2 − v3) (r1 − r3)− ω (r1 − r3) · (v2 − v3) . (9.42)

The first scalar product is zero because of (9.41). If and only if ω lies in
the plane of the three points, again because of (9.41), also the second scalar
product and, consequently, the left-hand side of the equation is zero. For the
moment this special case is excluded. Then the angular velocity is

ω =
(v1 − v3)× (v2 − v3)

(r3 − r1) · (v2 − v3)
. (9.43)

When multiplied out, the numerator displays the desired cyclic symmetry.
Not so the denominator. Differentiation of the rigid-body property (r3−r1) ·
(r2 − r3) = const with respect to time yields the equation

(r3 − r1) · (v2 − v3) = −(v3 − v1) · (r2 − r3) . (9.44)
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The left-hand side expression is the denominator of (9.43). When this expres-
sion is added one more time to both sides of the equation, the denominator
takes the form

(r3 − r1) · (v2 − v3) =
1

2
[(r3 − r1) · (v2 − v3)− (v3 − v1) · (r2 − r3)] . (9.45)

This is substituted into (9.43). Then the numerator and the denominator are
multiplied out. This results in two alternative forms displaying the desired
symmetry (see Stojanov [11], Charlamov [4], Wittenburg [14, 15]):

ω = 2
v1 × v2 + v2 × v3 + v3 × v1

v1 · (r2 − r3) + v2 · (r3 − r1) + v3 · (r1 − r2)
(9.46)

= −2
v1 × v2 + v2 × v3 + v3 × v1

r1 · (v2 − v3) + r2 · (v3 − v1) + r3 · (v1 − v2)
. (9.47)

For numerical evaluations (9.43) is preferable. With ω and vA = vi (i = 1
or 2 or 3) Eqs.(9.23) determine the perpendicular ui from Pi onto the
instantaneous screw axis and the pitch p .

If the denominator and, hence, also the numerator is zero, ω lies in the
plane of the three points. Consequently, there exist coefficients λ and μ such
that

ω = λ(r1 − r2) + μ(r2 − r3) . (9.48)

This ansatz yields

v3 − v2 = ω × (r3 − r2) = λn , v1 − v2 = ω × (r1 − r2) = μn , (9.49)

where n is the vector

n = (r1 − r2)× (r3 − r2) = −(r1 × r2 + r2 × r3 + r3 × r1) . (9.50)

Scalar multiplication of Eqs.(9.49) by n yields

λ =
1

n2
n · (v3 − v2) , μ =

1

n2
n · (v1 − v2) . (9.51)

With these expressions (9.48) has the symmetrical form

ω =
1

n2
n ·
[
v1(r2 − r3) + v2(r3 − r1) + v3(r1 − r2)

]
. (9.52)

Special case : If P3 is fixed, r3 = 0 (arbitrarily) and v3 = 0 . Equations
(9.43) and (9.52) are
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ω =

⎧⎨
⎩

−v1 × v2
r1 · v2

(denominator �= 0)

r1 × r2
(r1 × r2)

2 · (v2r1 − v1r2) (else) .
(9.53)

9.5 Raccording Axodes. Striction Point. Distribution
Parameter

The statements made so far refer to instantaneous velocities and angular
velocities at a fixed time t . In what follows, continuous motions are inves-
tigated which are neither planar motions nor motions about a fixed point.
In the course of a continuous motion the ISA generates a ruled surface in
the reference basis e1 and another ruled surface in the body-fixed basis e2 .
These ruled surfaces are called fixed axode Ff (fixed in e1) and moving axode
Fm (fixed in e2).

Proposition: At every point along the common ISA the tangent planes
of Ff and of Fm coincide. Proof: Let km be an arbitrary curve fixed on
Fm which intersects the generators of Fm . Furthermore, let P be the point
which at all times t is located on both km and the ISA(t) (see Fig. 9.2).
Finally, let vrel be the velocity of P along km . On Ff P is moving along
a different trajectory kf . Its velocity along kf is, according to (9.11) and
(9.24), v = pω+vrel . The plane spanned by pω and v coincides with the
plane spanned by pω and vrel . Since these planes are the tangent planes of
Ff and of Fm , respectively, also the tangent planes coincide. End of proof.
These statements are summarized in

Fig. 9.2 Velocities proving that at every point of the ISA the tangent planes of the axodes
coincide

Theorem 9.6. (Painlevé) Every continuous motion of a rigid body which is
neither a planar motion nor a motion about a fixed point can be interpreted
as raccording motion of a body-fixed axode Fm on an axode Ff fixed in the
reference basis. Both axodes are ruled surfaces which are generated by the
ISA. The raccording motion is the superposition of translation with velocity
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pω along the ISA and rotation (rolling motion) with angular velocity ω
about the ISA.

In Sect. 13.2 Fenyi’s joint is investigated. Its central body is executing a
periodic spatial motion without a fixed point. The raccording axodes of this
motion are determined in analytical form.

From Sect. 2.9 on ruled surfaces it is known that the tangent planes at all
points of a generator are uniquely determined by the location of the striction
point S on the generator and by the distribution parameter δ . From Theo-
rem 9.6 it follows that both axodes have, on the common generator ISA, the
same striction point and the same distribution parameter. In what follows,
the pertinent formulas from Sect. 2.9 are considered again. The parameter
equation of a ruled surface was written in the form (see (2.51))

x(u, λ) = r(u) + λe(u) (9.54)

with u and λ being free parameters and with e being the unit vector along
the generator u = const (arbitrary). The striction point on the generator is
determined by the value λS of λ at this point. The unit vector normal to the
tangent plane at the point x(u, λ) of this generator depends on λ only. It is
called n(λ) , and the unit vector normal to the tangent plane at the striction
point is called nS . In the projection along the generator the vector n(λ) is
rotated against nS through an angle ϕ(λ) . The vector nS , the parameter
value λS , the angle ϕ(λ) and the distribution parameter δ are, according
to (2.54), (2.55), (2.56), (2.58) and (2.59),

nS =
(e× ė)× e
|(e× ė)× e| , λS = − ṙ · ė

ė2
,

tanϕ(λ) = λS − λ
δ

, δ = ė · ṙ× e
ė2

.

⎫⎪⎬
⎪⎭ (9.55)

These formulas are not directly applicable to raccording axodes. What is
needed are formulas in terms of the five kinematical quantities rA, vA, aA, ω
and ω̇ . In what follows, such formulas are developed for the moving axode
(Wittenburg [15]).

The parameter equation (9.54) is replaced by the equation r(t, λ) =
rA(t) + u(t) + λe(t) . Thus, the parameter u is replaced by time t , and
the vector r(u) is replaced by the vector rA(t) + u(t) to the foot of the
perpendicular from A onto the ISA. The unit vector e along the ISA is
expressed in the form e = ω/|ω| . With this vector and with (9.23) for u
the equation is (omitting the parameter t )

r(λ) = rA +
ω × vA

ω2
+

λ

|ω| ω . (9.56)

From ω = ω e and ω̇ = ω̇ e + ω ė it follows that (ω × ω̇) × ω =
ω3 (e× ė)× e . With this equation the first Eq.(9.55) for nS is expressed in
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terms of kinematical quantities:

nS =
(ω × ω̇)× ω

|ω × ω̇||ω| . (9.57)

Expressions for λS , for tanϕ(λ) and for δ are found from properties of the
acceleration of body-fixed points momentarily coinciding with the ISA. The
point coinciding with r(λ) has the acceleration (see (9.14))

a(λ) = a(0)− λ

|ω| ω × ω̇ (9.58)

where a(0) is the acceleration of the body-fixed point at the foot of the
perpendicular u on the ISA (see (9.23)):

a(0) = aA + ω̇ × u− ω2u = aA − ω × vA +
ω̇ × (ω × vA)

ω2
. (9.59)

Proposition: The acceleration a(λ) lies in the plane spanned by the ISA
and by n(λ) . Proof: The acceleration has a component along the ISA due
to the translatory part of the raccording motion and a component ar(λ)
due to the rolling motion. Consider the rolling motion alone. In Sect. 15.5.2
(Eq.(15.127)) it is shown that the body-fixed point which is in rolling contact
at r(λ) is passing through a cusp of its trajectory with the normal unit vector
n(λ) being, in the limit, the tangent to the trajectory. Hence ar(λ) has the
direction of n(λ) . End of proof. In particular, the acceleration aS = a(λS)
of the body-fixed point coinciding with the striction point lies in the plane
spanned by ω and nS . From this together with (9.57) it follows that the
striction point is characterized by coplanarity of the vectors aS , ω and ω̇ :

aS · ω × ω̇ = 0 . (9.60)

Substituting for aS the expression from (9.58) with λ = λS results in

λS

|ω| =
a(0) · ω × ω̇

(ω × ω̇)2
. (9.61)

Substitution of this expression into (9.56) yields the desired expression for
the position vector rS of the striction point:

rS = rA +
ω × vA

ω2
+

a(0) · ω × ω̇

(ω × ω̇)2
ω . (9.62)

This point S is the origin of the canonical reference frame. Unit vectors along
its axes are e = ω/|ω| , ω × ω̇/|ω × ω̇| and nS .

Writing (9.58) also for λ = λS and taking the difference results in the
equation
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a(λ) = aS + (λS − λ)
ω × ω̇

|ω| . (9.63)

The second term is a vector normal to aS . Hence the conclusion: The striction
point is the point of minimum acceleration on the ISA : |a(λ)|min = |aS| .

An expression for tanϕ(λ) is developed from Fig. 9.3 in which the
collinear vectors n(λ) and ar(λ) are shown in the canonical reference frame.
They are located in the plane spanned by nS and ω × ω̇ . The angle ϕ(λ)
is determined by

cosϕ(λ) =
ar(λ) · nS

|ar(λ)| , sinϕ(λ) =
ar(λ) · ω × ω̇

|ar(λ)| |ω × ω̇| . (9.64)

The numerator expressions are with (9.57), (9.58), (9.60) and (9.63)

Fig. 9.3 Vectors n(λ) , ar(λ) and angle ϕ(λ) in the canonical reference frame

ar(λ) · nS = a(λ) · nS = a(0) · nS =
a(0) · [(ω × ω̇)× ω]

|ω × ω̇| |ω| , (9.65)

ar(λ) · ω × ω̇ = (λS − λ)
(ω × ω̇)2

|ω| . (9.66)

From these expressions it follows that tanϕ(λ) has the desired form

tanϕ(λ) =
λS − λ

δ
(9.67)

with the distribution parameter

δ =
a(0) · [(ω × ω̇)× ω ]

(ω × ω̇)2
. (9.68)

In (9.65) also a(λ) · nS = aS · nS is correct. This yields the more appealing
formula

δ =
aS · [(ω × ω̇)× ω ]

(ω × ω̇)2
. (9.69)

As has already been said, raccording motion of the moving axode and the
fixed axode requires that both axodes have, at every instant of time, the
same striction point rS and the same distribution parameter δ . The moving
axode and the fixed axode exchange their roles when the change from motion
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to inverse motion is made. According to Theorem 9.1 this change has the
effect that vA , a(0) , aS , ω and ω̇ are multiplied by −1 . Equations (9.62)
and (9.69) show, that neither rS nor δ is effected by this change.

9.6 Spatial Rotation About a Fixed Point

In (9.21) the fixed point is chosen as point A . Then

v = ω × � . (9.70)

The ISA is the straight line having the direction of ω and passing through A .
The translatory velocity pω of the raccording motion is zero. The raccording
axodes are general cones with the common apex A . The cones are rolling
one on the other without slipping. They are generated by the vector ω(t)
attached to A . They are referred to as moving cone (also polhode cone ;
fixed on the body) and as fixed cone (also herpolhode cone ; fixed in the
reference basis e1). The general situation is shown in Fig. 9.4 . Painlevé’s
general Theorem 9.6 has the special form:

Theorem 9.7. (Poinsot) Every continuous motion of a rigid body about a
fixed point can be interpreted as rolling motion of a body-fixed moving cone
(polhode cone) on a cone fixed in the reference basis e1 (herpolhode cone).
Both cones are generated by the angular velocity vector ω(t) .

This theorem is a direct consequence of the fact that the angular acceleration
ω̇ is identical in both cones and that it is tangent to both cones (Fig. 9.4).

Fig. 9.4 Polhode cone and herpolhode cone

When the body has the degree of freedom one, its position is a function
of a single variable, say ψ , and its angular velocity has in e2 coordinates
of the form ωi = ψ̇ fi(ψ) ( i = 1, 2, 3 ). This means that the shape of the
polhode cone does not depend on the initial conditions of the motion. The
same is true for the herpolhode cone. The shapes of the cones can help to
detect unexpected relationships between differently defined motions. This is
demonstrated by a motion defined in Sect. 10.1 and by the motion of the
central cross in a Hooke’s joint which is investigated in Sect. 13.1.1.
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Any two bodies i and j with a common fixed point have relative to each
other an angular velocity. Let ωij be the angular velocity of body i relative
to body j . Then the angular velocity of body j relative to body i (inverse
motion) is

ωji = −ωij . (9.71)

Three bodies i , j and k (arbitrary, different) with a common fixed point
have relative to each other angular velocities ωij , ωjk and ωki . Repeated
application of (9.8) yields the equation

ωij + ωjk + ωki = 0 (i, j, k arbitrary) . (9.72)

This shows that the instantaneous axes of rotation are coplanar and that
the angular velocities form a closed planar triangle. Because of (9.71) this
equation can also be written in the form

ωij + ωjk = ωik (i, j, k arbitrary) . (9.73)

The equation is illustrated by the bevel gear pair shown in Fig. 9.5a . Two
bevel wheels 1 and 2 are mounted in the frame 0 . Their angular velocities
ω10 and ω20 relative to the frame have the directions of the axes. The
relative angular velocity ω21 has the direction of the common generator of
the two pitch cones. These pitch cones represent the fixed and the moving
cone of the motion of one wheel relative to the other. Thus, the directions of
the three angular velocities are prescribed by the design. If one of the angular
velocities is prescribed, the other two are determined by (9.72). The equation
requires that the vector triangle in Fig. 9.5b be closed.

Fig. 9.5 Bevel gear pair (a) and angular velocity diagram (b)

The geometrical construction just demonstrated for two wheels is appli-
cable to arbitrarily complicated bevel gear trains with degrees of freedom
F ≥ 1 . All wheel axes as well as all generators of all pitch cones are passing
through a common point. Every wheel axis and every generator common to
the cones of two wheels determines the direction of a relative angular velocity.
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This fact in combination with (9.71), (9.72) or (9.73) determines all angular
velocities if F angular velocities are arbitrarily prescribed.

Example: In the bevel differential shown in Fig. 9.6a with bodies 0, . . . , 4
the gear box 4 can rotate relative to the frame 0 . The bevel differential
has the degree of freedom F = 2 . The lines with indices ij determine the
directions of the angular velocities ωij (i, j = 0, . . . , 4 ; j �= i ) . Any two
angular velocities can be prescribed arbitrarily. Then the remaining ones are
uniquely determined. In Fig. 9.6b the angular velocity diagram is shown.
End of example.

Fig. 9.6 Bevel differential (a) and angular velocity diagram (b)

9.7 The Ancient Chinese Southpointing Chariot

Subject of this section is an engineering problem. In Needham [7] it is re-
ported that in China possibly as early as 3000 years ago and with certainty
at about 200 a.C. during imperial processions two-wheel chariots were dis-
played on which a rotating wooden statue pointed its arm due south inde-
pendent of driving maneuvers. In a rather detailed description dated 1107
a gear train connecting the wheels of the chariot to the vertical axis of the
statue is described. In Fig. 9.7 the essential elements of a modern reconstruc-
tion by Lanchester [6] are shown. In the chariot (body 1 ) wheels 6 and 7
are rotating about vertical axes. These wheels are driven by wheel pairs 2 ,
4 and 3 , 5 , respectively. Together with the two wheels 8 wheels 6 and
7 constitute a bevel differential2. The statue 9 is rotated by the wheels 8 .
The system has only three parameters, namely, the width � of the track,
the radius r of the chariot wheels 2 and 3 and the angular velocity ratio

2 In spite of its elaborate character the description of the year 1107 is not detailed enough.
It does not prove the usage of a bevel differential. In Europe the bevel differential appears

for the first time in the 18th century in clocks
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Fig. 9.7 Chinese southpointing chariot

Fig. 9.8 Angular ve-
locity diagram of the
bevel differential

|ω61/ω21| = |ω71/ω31| = i . What are the conditions to be satisfied by these
parameters in order to give the statue the desired property?
Solution: The gear train must realize the identity ω90 = ω91 +ω10 ≡ 0 , i.e.,

ω91 ≡ −ω10 . (9.74)

As representative driving maneuver a circle with radius R about the center
0 and with angular velocity ω10 > 0 of the chariot body is chosen. This
maneuver causes angular velocities ω21 > 0 and ω31 > 0 in the directions
shown in the figure. The points fixed on wheels 2 and 3 which are in contact
with the ground have, in negative z-direction, the velocities v2 = ω10(R −
�/2)−ω21r and v3 = ω10(R+�/2)−ω31r , respectively. The rolling conditions
require that v2 = v3 = 0 . The difference of these two equations is

ω31 − ω21 =
�

r
ω10 . (9.75)

The given angular velocity ratio i yields

ω61 = iω21 , ω71 = −iω31 (> 0 in positive y-direction) . (9.76)

In Fig. 9.8 the angular velocity diagram of the bevel differential composed of
the members 6 , 7 , 8 and 9 is shown. The directions of all angular velocities
except ω18 are prescribed by the design as shown. The magnitudes of ω61

and ω71 are chosen arbitrarily. They determine ω67 = ω61 − ω71 . First,
ω86 is determined from the vector equation ω67 + ω78 + ω86 = 0 . Next,
ω18 is determined by the vector equation ω61+ω18+ω86 = 0 . Finally, ω91

and ω89 are determined from the vector equation ω91 + ω18 + ω89 = 0 .
The angular velocity diagram reveals the relationship
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ω91 = ω61 − 1

2
ω67 = ω61 − 1

2
(ω61 − ω71) =

1

2
(ω61 + ω71) . (9.77)

Hence with (9.76)

ω91 =
i

2
(ω21 − ω31) . (9.78)

Equations (9.74) and (9.75) yield

ω91 =
r

�
(ω21 − ω31) . (9.79)

The identity of these two expressions is the condition to be satisfied by the
system parameters:

i =
2r

�
. (9.80)

The wheels shown in Fig. 9.7 do not satisfy this condition. Note: Precise
functioning of the chariot requires a perfectly even terrain.

9.8 Acceleration Distribution. Instantaneous Center of
Acceleration

The instantaneous acceleration distribution in a rigid body is determined by
(9.14). It depends on the vectors aA , ω and ω̇ :

a = aA + ω̇ × �+ ω × (ω × �) . (9.81)

If ω and ω̇ are not collinear, there exists a single body-fixed point G which
instantaneously has zero acceleration. This point is called instantaneous cen-
ter of acceleration. It is located on the so-called inflection curve. This is the
geometric locus of all points characterized instantaneously by collinearity
of acceleration a and velocity v . The name is explained by the fact that
points of inflection have this property. The condition is written in the form
a = s ω v , where s is a dimensionless parameter. Explicitly

aA + ω̇ × �+ ω × (ω × �) = s ω (vA + ω × �) . (9.82)

This is a linear equation for �(s) . The center of acceleration G is the point
�G = �(s = 0) . For � the ansatz is made:

� = c1aA + c2ω̇ + c3ω . (9.83)

Substitution into (9.82) and scalar multiplications by aA , by ω̇ and by ω
result in linear equations for c1 , c2 , c3 :
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⎣ (ω × aA)2 (ω × ω̇) · (ω × aA + s ωaA) ω × ω̇ · aA

(ω × ω̇) · (ω × aA − s ωaA) (ω × ω̇)2 0
−ω × ω̇ · aA 0 0

⎤
⎦
⎡
⎣ c1
c2
c3

⎤
⎦

=

⎡
⎣ (aA − s ωvA) · aA

(aA − s ωvA) · ω̇
(aA − s ωvA) · ω

⎤
⎦ . (9.84)

c1 is linear in s , c2 is of second order in s , and c3 is of third order.
The ansatz (9.83) fails, when A is the striction point S because aS , ω̇ and

ω are coplanar (see (9.60)). In this case, the vectors in (9.82) are decomposed
in the canonical reference frame defined in the text following (9.62). Its basis
vectors are e1 = ω × ω̇/|ω × ω̇| , e2 = nS (normal to the tangent plane
of the raccording axodes at the striction point S) and e3 = ω/|ω| . The
coordinate matrices of � , ω , ω̇ , vS and aS are written in the forms

� =

⎡
⎣ x
y

z

⎤
⎦ , ω = ω

⎡
⎣ 0
0

1

⎤
⎦ , ω̇ = μω2

⎡
⎣ 0
sinα

cosα

⎤
⎦ , vS = pω

⎡
⎣ 0
0

1

⎤
⎦ , aS = 
μω2

⎡
⎣ 0
sinβ

cosβ

⎤
⎦ .

(9.85)

With this notation decomposition of (9.82) results in the equations⎡
⎣ 1 μ cosα+ s −μ sinα
−(μ cosα+ s) 1 0

μ sinα 0 0

⎤
⎦
⎡
⎣x
y
z

⎤
⎦ =

⎡
⎣ 0
� μ sinβ
� μ cosβ − sp

⎤
⎦ .

(9.86)
x is linear in s , y is of second order in s , and z is of third order. Hence
the projection of the inflection curve onto the x, y-plane is a parabola and
the projection onto the x, z-plane is a cubical parabola. With s = 0 the
equations yield the coordinates of the center of acceleration G :

⎡
⎣xG

yG

zG

⎤
⎦ =

�

sinα

⎡
⎢⎢⎣
cosβ
μ cos(β − α)

μ sin(β − α) +
(1 + μ2) cosβ

μ sinα

⎤
⎥⎥⎦ . (9.87)

Next, the instantaneous acceleration distribution (9.81) is considered. As
point A the center of acceleration G is chosen. The acceleration is written
as product of a tensor with � :

a = (ω̇ × I+ ωω − ω2 I ) · � . (9.88)

This equation shows that the accelerations of all body-fixed points located
on a ray emanating from G have equal directions. Their magnitudes are
proportional to the distance |�| from G . In general, the direction is neither
orthogonal to nor collinear with � . This gives rise to the following problems
(Veldkamp [12]). Determine all straight lines passing through the center of
acceleration all points of which have accelerations which are (a) orthogonal
to the line or (b) collinear with the line.
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Problem (a): Orthogonality means that a · � = 0 , i.e.,

(ω · �)2 − ω2�2 = −(ω × �)2 = 0 . (9.89)

The solution is � = λ0ω where λ0 is an arbitrary scalar having the phys-
ical dimension length×time. This means that the only straight line passing
through G which solves this problem is the line parallel to the instantaneous
screw axis. The accelerations of the points on this line are a = λ0ω̇ × ω .

Problem (b): Collinearity means that a has the form a = λω2� where λ is
an indeterminate dimensionless scalar. With this expression (9.88) takes the
form

[ω̇ × I+ ωω − ω2(1 + λ) I ] · � = 0 . (9.90)

The vectors in this equation are decomposed in the reference frame with
origin G and with axes parallel to the canonical reference frame, so that ω
and ω̇ have the coordinates given in (9.85). This results in the coordinate
equation ⎡

⎣−(1 + λ) −μ cosα μ sinα
μ cosα −(1 + λ) 0

−μ sinα 0 −λ

⎤
⎦ � = 0 . (9.91)

This represents an eigenvalue problem with eigenvalues λi (i = 1, 2, 3) and
with associated eigenvectors �

i
. The characteristic equation is

λ3 + 2λ2 + (1 + μ2)λ+ μ2 sin2 α = 0 (9.92)

or λ(λ + 1)2 + μ2(λ + sin2 α) = 0 . Real eigenvalues are in the interval
− sin2 α < λ < 0 . From this and from the equation a = λω2� it fol-
lows that the collinear vectors a and � have opposite signs. This means
that the accelerations of all points located on the straight lines determined
by the eigenvectors are directed toward the center of acceleration G . The
discriminant of the equation is (see Bronstein/Semendjajew/Musiol/Mühlig
[3]):

D =
μ2

27

[
μ4 +

1

4
μ2(27 cos4 α− 18 cos2 α− 1) + cos2 α

]
. (9.93)

The equation D = 0 is a quadratic equation for μ2 as function of cosα
and also a quadratic equation for cos2 α as function of μ . The equation
has the double root μ2 = 1/3 if cosα = 1/3 . Real solutions exist only
for 0 < μ2 ≤ 1/3 and for 0 < | cosα| ≤ 1/3 . In a diagram with axes
cosα and μ the curve D = 0 separates the domain D < 0 with three
real eigenvectors from the domain D > 0 with a single real eigenvector.
At the point μ2 = 1/3 , cosα = 1/3 the curve has a cusp. With these
parameter values the characteristic Eq.(9.92) has the form (λ + 2/3)3 = 0 .
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Fig. 9.9 Domains with three eigenvectors (shaded) and with a single eigenvector

The triple eigenvalue λ = −2/3 is associated with the single eigenvector
� = [ 1/

√
2 1/

√
6 1/

√
3 ]T .

In Fig. 9.9 the curve D = 0 is shown not in the cosα, μ-diagram, but in
a diagram with axes μ sinα and μ cosα . According to (9.85) these are the
coordinates of the vector ω̇/ω2 in the plane of ω and ω̇ . The unit vector
ω/|ω| is directed along the μ cosα-axis (see (9.85)). Three real eigenvectors
exist if the vector ω̇/ω2 terminates in the shaded domain D < 0 .

Three real eigenvectors are not mutually orthogonal. Let βi be the angle
between the eigenvector �i and ω . With the coordinates �i1 , �i2 , �i3 of �i

cos2 βi =
�2i3

�2i1 + �2i2 + �2i3
(i = 1, 2, 3) . (9.94)

From the last two Eqs.(9.91) it follows that

�i2 = �i1
μ cosα

1 + λi
, �i3 = −�i1

μ sinα

λi
. (9.95)

Hence

cos2 βi =
(1 + λi)

2μ2 sin2 α

λ2
i (1 + λi)2 + λ2

iμ
2 cos2 α+ (1 + λi)2μ2 sin2 α

=
(1 + λi)

2μ2 sin2 α

λi[λ3
i + 2λ2

i + (1 + μ2)λi + μ2 sin2 α] + (1 + λi)μ2 sin2 α

= 1 + λi (9.96)

(because of (9.92)). Consequently, λi = − sin2 βi . The sum of the three
eigenvalues equals −2 (factor 2 of λ2 in (9.92)). Hence

3∑
i=1

cos2 βi = 1 . (9.97)

This result is due to Bottema [1]. From λ > − sin2 α it follows that sin2 βi <
sin2 α (i = 1, 2, 3) .
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Example: With μ = 1/2 and cosα = 1/4 (9.92) has three real roots
λ1 = −3/4 , λ2,3 = (±√

5 − 5)/8 . From (9.95) the associated normalized
eigenvectors are calculated:
�
1

= [
√
15/5

√
15/10 1/2 ]T ,

�
2,3

= [
√
3/3 (

√
3∓√

15/3)/4 (
√
5± 1)/4 ]T .

The third coordinates are the cosines in (9.97): cosβ1 = 1/2 , cosβ2,3 =
(
√
5± 1)/4 (β1 = 60◦ , β2 = 36◦ , β3 = 72◦ ). End of example.

A line not passing through the center of acceleration is specified by the
equation �(λ) = �0 + λn with the dimensionless unit vector n along the
line and the perpendicular �0 �= 0 from the center of acceleration onto the
line (hence �0 · n = 0 ). The point �(λ) has the acceleration

a(λ) = ω̇ × �0 + ω × (ω × �0) + λ[ω̇ × n+ ω × (ω × n)] . (9.98)

On every line not parallel to the ISA exactly one point has an acceleration
perpendicular to the line. The pertinent value of λ is determined from the
condition a(λ) · n = 0 . This is the equation

ω̇ × �0 · n+ (ω · �0)(ω · n)− λ(ω × n)2 = 0 . (9.99)

Next, lines and points on these lines are determined which have an accel-
eration along the line. The condition is a(λ) = νn with an arbitrary
scalar ν of dimension acceleration. Suppose that n is given. Then the equa-
tion is a linear equation for λ and for two coordinates of �0 in the plane
perpendicular to n . The solutions are proportional to ν , i.e., of the form
λ = (ν/ν∗)λ∗ , �0 = (ν/ν∗)�∗

0 where λ∗ and �∗
0 are the solutions for

an arbitrary reference value ν∗ . They determine uniquely a straight line
(ν/ν∗)(�∗

0 + λ∗n) through the center of acceleration. All points of this line,
and these points only, have accelerations in the direction of n . It remains to
be shown that the coefficient matrix of λ and �0 is nonsingular. Decompo-
sition in a system in which n and �0 have the coordinate matrices [ 1 0 0 ]T

and [ 0 y z ]T , respectively, results in the equation⎡
⎣ −(ω2

2 + ω2
3) −ω̇3 + ω1ω2 ω̇2 + ω3ω1

ω̇3 + ω1ω2 −(ω2
3 + ω2

1) −ω̇1 + ω2ω3

−ω̇2 + ω3ω1 ω̇1 + ω2ω3 −(ω2
1 + ω2

2)

⎤
⎦
⎡
⎣λ
y
z

⎤
⎦ = ν

⎡
⎣ 1
0
0

⎤
⎦ . (9.100)

It is straight-forward to show that the determinant of the coefficient matrix
is −(ω̇ × ω)2 �= 0 .

Next, (9.88) is used for determining the surface defined by all body-fixed
points � which have an acceleration of prescribed absolute value |a| (arbi-
trary). The vectors are again decomposed in the reference frame with origin
G . With the coordinates of � , ω and ω̇ given in (9.85) the acceleration has
the coordinates
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a = ω2[−x− yμ cosα+ zμ sinα , −y + xμ cosα , −xμ sinα ] . (9.101)

On the desired surface the sum of squares equals a2 . This is the second-order
equation

x2(1+μ2)+y2(1+μ2 cos2 α)+z2μ2 sin2 α−2xzμ sinα−2yzμ2 sinα cosα =
a2

ω4

(9.102)
or [x y z ]A [x y z ]T = a2/ω4 with the symmetric matrix

A =

⎡
⎣ 1 + μ2 0 −μ sinα

0 1 + μ2 cos2 α −μ2 sinα cosα
−μ sinα −μ2 sinα cosα μ2 sin2 α

⎤
⎦ . (9.103)

This matrix has real eigenvalues λ1 , λ2 , λ3 and mutually perpendicular
eigenvectors. In terms of the eigenvalues and in the x, y, z-system of prin-
cipal axes defined by the eigenvectors the equation is

λ1x
2 + λ2y

2 + λ3z
2 =

a2

ω4
. (9.104)

Both the eigenvalues and the eigenvectors are independent of a . The eigen-
values are the roots of the characteristic equation det (A− λI) = 0 :

λ3 − 2λ2(1 + μ2) + λ(1 + μ2)2 − μ4 sin4 α = 0 . (9.105)

They are positive. This is seen by writing the equation in the form λ[λ −
(1 + μ2)]2 = μ4 sin4 α . Hence the surface is an ellipsoid. Vieta’s theorem
establishes for the eigenvalues the equations λ1 + λ2 + λ3 = 2(1 + μ2) and
λ1λ2 + λ2λ3 + λ3λ1 = (1 + μ2)2 , whence it follows that

(λ1 + λ2 + λ3)
2 − 4(λ1λ2 + λ2λ3 + λ3λ1) = 0 (9.106)

or
λ2
1 + λ2

2 + λ2
3 − 2(λ1λ2 + λ2λ3 + λ3λ1) = 0 (9.107)

or(√
λ1+

√
λ2+

√
λ3

)(
−
√

λ1+
√

λ2+
√

λ3

)(√
λ1−

√
λ2+

√
λ3

)(√
λ1+

√
λ2−

√
λ3

)
= 0 .

(9.108)

Let λ1 be the largest eigenvalue. Then
√
λ1 =

√
λ2+

√
λ3 . The ith principal

semi-axis of the ellipsoid is bi = a/(ω2
√
λi) (i = 1, 2, 3). Hence3 1/b1 =

1/b2 + 1/b3 independent of a , μ and α .

3 in [2] it is mistakenly said that bi is proportional to
√
λi and that, consequently,

b1 = b2 + b3
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Example: μ = 2 , α = 45◦ yield λ1 = 3 + 2
√
2 , λ2 = 4 , λ3 = 3− 2

√
2 ,

b1 = (
√
2 − 1)a/ω2 , b2 = 1

2 a/ω
2 , b3 = (

√
2 + 1)a/ω2 . This concludes the

investigation.

Given a body-fixed plane E by its Eq.(2.1) , m · � = −1 , determine all
points � of E the accelerations of which are (a) in-plane or (b) perpendicular
to the plane. The same problems with velocity instead of acceleration were
solved by Eqs.(9.26) – (9.28) and (9.38) for planes given in the x, y, z-system
underlying these equations. In the present case, the plane is given in the
reference system with origin G and with the coordinates (9.85).

Problem (a): Vectors � satisfy the equations m ·� = −1 and m ·a/ω2 = 0 .
With the coordinates (9.101) of a the first equation and the sum of both
equations are written as linear equations for x and y in terms of z :

xmx +ymy = −(1 + zmz) ,
xμ(my cosα−mz sinα) −yμmx cosα = −[1 + z(μmx sinα+mz)] .

}
(9.109)

The solution x(z) , y(z) determines a straight line in E . No such line exists
in planes with normal vectors m satisfying the condition that the coefficient
determinant is zero. This condition is (m2

x +m2
y) cosα−mymz sinα = 0 or

(see (9.28) and (9.85)) [m×(ω×m)] ·ω̇ = 0 or (m×ω) ·(m×ω̇) = 0 . This
shows that m = cω and m = c ω̇ with c =const (arbitrary) are special
solutions. The general solution is obtained by writing the scalar equation
in the form m2

x + (my − 1
2mz tanα)

2 = ( 12mz tanα)
2 . This is, with the

free parameter mz , the equation of a cone. The cone intersects the plane
mz =const in a circle. Every vector m along a generator of the cone is a
solution. The special solutions m = cω and m = c ω̇ are vectors along the
two generators in the plane mx = 0 .

Problem (b): Vectors � satisfy the equations m · � = −1 and λm = a/ω2

with an indeterminate scalar λ . Decomposition of all vectors results in four
linear equations for x , y , z and λ :⎡

⎢⎢⎣
1 μ cosα −μ sinα mx

−μ cosα 1 0 my

μ sinα 0 0 mz

mx my mz 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣
x
y
z
λ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
0
0

−1

⎤
⎥⎥⎦ . (9.110)

The solution determines a single point in E . No such point exists in planes
satisfying the condition that the coefficient determinant is zero. This condi-
tion is m2

z +μ2(my sinα+mz cosα)
2 = 0 , i.e., my = mz = 0 . These planes

are parallel to the plane spanned by ω and ω̇ .
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9.9 Angular Acceleration of a Body in Terms of
Positions, Velocities and Accelerations of Three
Points

Problem statement: In some reference basis the instantaneous position vectors
r1 , r2 , r3 of three noncollinear points P1 , P2 , P3 of a rigid body as well as
the instantaneous velocities v1 , v2 , v3 and the instantaneous accelerations
a1 , a2 , a3 of these points are given. In Sect. 9.4 the instantaneous angular
velocity ω of the body was expressed in terms of r1 , r2 , r3 and v1 , v2 ,
v3 (see (9.46), (9.47) and (9.52)). In the present section a cyclicly symmetric
expression is developed for the angular acceleration ω̇ of the body. The
method of solution is similar to the one used for determining ω . Let A
be an arbitrary body-fixed point and let �i be the vector pointing from
A to Pi . Then ω × �i = vi − vA . With this expression Eq.(9.81) for the
acceleration ai takes the form ai = aA+ ω̇×�i+ω× (vi−vA) (i = 1, 2, 3).
The difference of two of these equations reads

ai − aj − ω × (vi − vj) = ω̇ × (ri − rj) (i, j = 1, 2, 3) . (9.111)

This equation serves as starting point just as (9.41) was the starting point
for formulating ω . The equivalent to (9.42) is the equation

[a1 − a3 − ω × (v1 − v3)] × [a2 − a3 − ω × (v2 − v3)]

= −ω̇ (r1 − r3) · [a2 − a3 − ω × (v2 − v3)] .(9.112)

If the scalar product on the right-hand side is nonzero,

ω̇ =
[a1 − a3 − ω × (v1 − v3)]× [a2 − a3 − ω × (v2 − v3)]

(r3 − r1) · [a2 − a3 − ω × (v2 − v3)]
. (9.113)

The numerator (abbreviated N) is multiplied out:

N = (a1 − a3)× (a2 − a3) + [ω × (v1 − v3)]× [ω × (v2 − v3)]

+[ω × (v2 − v3)]× (a1 − a3)− [ω × (v1 − v3)]× (a2 − a3) . (9.114)

Multiplying out further and rearranging terms results in the cyclicly sym-
metric expression

N =
3∑

i=1

ai× [aj−ω×(vj−vk)]+ωω ·(v1×v2+v2×v3+v3×v1) (9.115)

(i, j, k = 1, 2, 3 cyclic) . Next, the denominator in (9.113) (abbreviated D) is
given a symmetric form. The equation (r3− r1) · (r2− r3) = const expressing
the rigid-body property is differentiated twice with respect to time. This



yields

(r3− r1) · (a2−a3) = −(a3−a1) · (r2− r3)− 2(v3−v1) · (v2−v3) . (9.116)

If to both sides of this equation the expression (r3 − r1) · [a2 − a3 − 2ω ×
(v2 − v3)] is added, the left-hand side turns out to be 2D . Therefore,

D =
1

2

[
(r3 − r1) · (a2 − a3)− (a3 − a1) · (r2 − r3)

]
−(v3 − v1) · (v2 − v3)− (r3 − r1) · ω × (v2 − v3) . (9.117)

The last two terms cancel each other (interchange the multiplication symbols
and note that (r3 − r1)× ω = −(v3 − v1)) . The remaining terms have the
desired symmetry property. Multiplying out yields the final result

ω̇ = 2

3∑
i=1

ai × [aj − ω × (vj − vk)] + ωω · (v1 × v2 + v2 × v3 + v3 × v1)

a1 · (r2 − r3) + a2 · (r3 − r1) + a3 · (r1 − r2)

(i, j, k = 1, 2, 3 cyclic) . (9.118)

The angular velocity ω is given either by (9.46) or by (9.52).
If in (9.112) the scalar product on the right-hand side is zero, also the left-

hand side is zero. Because of (9.111) this means that the vectors ω̇×(r1−r3)
and ω̇× (r2−r3) are collinear. From this it follows that ω̇ is in the plane of
the points P1 , P2 , P3. Consequently, there exist coefficients λ and μ such
that

ω̇ = λ(r1 − r2) + μ(r2 − r3) . (9.119)

This ansatz yields

a3 − a2 − ω × (v3 − v2) = ω̇ × (r3 − r2) = λn ,
a1 − a2 − ω × (v1 − v2) = ω̇ × (r1 − r2) = μn ,

}
(9.120)

where n is the vector

n = (r1 − r2)× (r3 − r2) = −(r1 × r2 + r2 × r3 + r3 × r1) . (9.121)

Scalar multiplication of Eqs.(9.120) by n yields

λ =
1

n2
n · [a3−a2−ω× (v3−v2)] , μ =

1

n2
n · [a1−a2−ω× (v1−v2)] .

(9.122)
With these expressions (9.119) has the desired symmetrical form

ω̇ =
1

n2
n ·

3∑
i=1

(ai − ω × vi)(rj − rk) (i, j, k = 1, 2, 3 cyclic) . (9.123)
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Special case : If P3 is fixed, r3 = 0 (arbitrarily) and v3 = 0 , a3 = 0 .
Equations (9.113) and (9.123) are

ω̇ =

⎧⎪⎨
⎪⎩

− (a1 − ω × v1)× (a2 − ω × v2)
r1 · (a2 − ω × v2)

(denominator �= 0) ,

− r1 × r2
(r1 × r2)

2 · [a1r2 − a2r1 − ω × (v1r2 − v2r1)] (else) .
(9.124)

9.10 Strapdown Inertial Navigation

The body shown in Fig. 9.10 stands for an aircraft. In an inertial reference
basis e1 the body-fixed point A has the position vector r(t) . The points

Pi (i = 1, . . . , 6) are six body-fixed points with position vectors �i =
−−→
APi .

Let ai be the acceleration of Pi relative to e1 . An accelerometer positioned
at Pi measures as function of time the component αi(t) of this acceleration
ai in a body-fixed direction specified by the unit vector ni : αi(t) =
ai ·ni (i = 1, . . . , 6). To be determined are, as functions of time, the position
r(t) and the direction cosine matrix A12(t) relating e1 to a body-fixed basis
e2 . The characterization strapdown points to the fact that the accelerometers
are fixed in e2 rather than in an inertial platform the orientation of which
relative to the reference basis e1 is held constant by means of gyroscopic
instruments.

Fig. 9.10 Freely flying body with accelerometers mounted at body-fixed points P1, . . . ,P6

Solution: Starting point is the definition of αi(t) :

ni · [r̈+ ω̇ × �i + ω × (ω × �i)] = αi(t) (i = 1, . . . , 6) . (9.125)

This is written in the form
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ni · r̈+ ci · ω̇ + ω · Di · ω = αi(t) (i = 1, . . . , 6) (9.126)

with vectors ci and tensors Di defined as follows:

ci = �i × ni , Di = �ini − �i · niI (i = 1, . . . , 6) . (9.127)

Let it be assumed that the vectors n1 , n2 and n3 are linearly independent.
Then the other three vectors n4 , n5 , n6 are linear combinations

nj =
3∑

i=1

λjini (j = 4, 5, 6) (9.128)

with given coefficients λji . From the jth Eq.(9.126) (j = 4, 5, 6) the term
r̈ is eliminated by subtracting λj1 times the first equation, λj2 times the
second equation and λj3 times the third equation. The resulting equations
are

c∗j · ω̇ + ω · D∗
j · ω = αj(t)−

3∑
i=1

λjiαi(t) (j = 4, 5, 6) (9.129)

with

c∗j = cj −
3∑

i=1

λjici , D∗
j = Dj −

3∑
i=1

λjiDi (j = 4, 5, 6) . (9.130)

Equations (9.129) are decomposed in the body-fixed basis e2 . In this basis
the vectors c∗j and the tensors D∗

j have constant coordinates. The terms
involving ω̇ contribute an expression of the form C ω̇ with a constant (3×3)
matrix C the rows of which contain the coordinates of c∗4 , c∗5 and c∗6 . A
necessary and sufficient condition for a solution to exist is the existence of
C−1 . Multiplication by C−1 produces differential equations of the form

ω̇i +
3∑

j,k=1

pijkωjωk = fi(t) (i = 1, 2, 3) (9.131)

with given functions fi(t) and with given constant coefficients pijk . Numer-
ical integration of these equations yields ω(t) . This solution is substituted
into kinematic differential equations, for example, into Eq.(10.35) for Euler-
Rodrigues parameters: [

q̇0

q̇

]
=

1

2

[
0 −ωT

ω −ω̃

] [
q0

q

]
. (9.132)
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From the numerical solution for q0(t) , q1(t) , q2(t) , q3(t) the direction cosine
matrix A12(t) is calculated from (1.79).

In the last step, the acceleration r̈ is calculated from the first three Eqs.
(9.126). Also these equations are decomposed in the body-fixed basis e2 . For
all vectors except r̈ the coordinates are known by now. This yields for the
coordinate matrix r̈2 in e2 an equation of the form N r̈2 = F (t) with a
constant matrix N . By definition, N−1 exists. The coordinates r̈1 of r̈ in
e1 are

r̈1 = A12(t)N−1F (t) . (9.133)

Numerical integration of this equation yields r1(t) . This concludes the solu-
tion of the problem.

The equations are particularly simple if the vectors �i and ni (i =
1, . . . , 6) are chosen as follows (� is an arbitrary reference length):

�1 = −�4 = � e22 , n1 = −n4 = e23 ,

�2 = −�5 = � e23 , n2 = −n5 = e21 ,

�3 = −�6 = � e21 , n3 = −n6 = e22 .

⎫⎪⎬
⎪⎭ (9.134)

In this case, the only nonzero coefficients in (9.128) are λ41 = λ52 = λ63 =
−1 . Furthermore,

ci = �i × ni = � e2i , c∗i+3 = 2ci (i = 1, 2, 3)

Di = �ini = � e2je
2
k , D∗

i+3 = 2Di (i, j, k = 1, 2, 3 cyclic) .

}
(9.135)

This yields C = 2� I . Equations (9.131) become⎡
⎣ ω̇1 + ω2ω3

ω̇2 + ω3ω1

ω̇3 + ω1ω2

⎤
⎦ =

1

2�

⎡
⎣α1(t) + α4(t)
α2(t) + α5(t)
α3(t) + α6(t)

⎤
⎦ . (9.136)

The first three Eqs.(9.126) decomposed in the body-fixed basis read⎡
⎣0 0 1
1 0 0
0 1 0

⎤
⎦
⎡
⎣ r̈21
r̈22
r̈23

⎤
⎦+ �

⎡
⎣ ω̇1 + ω2ω3

ω̇2 + ω3ω1

ω̇3 + ω1ω2

⎤
⎦ =

⎡
⎣α1(t)
α2(t)
α3(t)

⎤
⎦ . (9.137)

For the second term the right-hand side of the previous equation is substi-
tuted. Following this, the equation is multiplied by the inverse (the transpose)
of the leading matrix N . Transformation into the reference basis yields the
final Eq.(9.133): ⎡

⎣ r̈11
r̈12
r̈13

⎤
⎦ =

1

2
A12(t)

⎡
⎣α2(t)− α5(t)
α3(t)− α6(t)
α1(t)− α4(t)

⎤
⎦ . (9.138)



9.11 Motion on a Curved Surface 321

9.11 Motion on a Curved Surface

Let Σ be a continuously curved surface and let, furthermore, p and q be
suitably chosen curvilinear coordinates such that every point of Σ is inter-
section point of two lines p = const and q = const. The point is denoted
P(p, q) . Its position vector measured from some reference point is denoted
r(p, q) . The partial derivatives ∂r/∂p and ∂r/∂q are vectors tangent to the
line p = const and to the line q = const, respectively, at P(p, q) . The unit
vector n normal to Σ at P(p, q) is

n(p, q) =

∂r

∂p
× ∂r

∂q∣∣∣∂r
∂p

× ∂r

∂q

∣∣∣ . (9.139)

Example: The surface Σ is the ellipsoid x2/a2+y2/b2+z2/c2 = 1 . Suitable
curvilinear coordinates p and q are angles which represent geographical
longitude and geographical latitude when the ellipsoid is a sphere. In the
x, y, z-system the position vector r measured from the center, its partial
derivatives and the unit normal vector n have the coordinates

r : [ a cos p cos q b sin p cos q c sin q ] ,

∂r

∂p
: [ −a sin p cos q b cos p cos q 0 ] ,

∂r

∂q
: [ −a cos p sin q −b sin p sin q c cos q ] ,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(9.140)

n :
[ bc cos p cos q ca sin p cos q ab sin q ]√

(b2 cos2 p+ a2 sin2 p)c2 cos2 q + a2b2 sin2 q
. (9.141)

End of example.

Let P be a point moving on Σ . Prescribed functions p(t) , q(t) of time
t determine the trajectory r(t) = r( p(t) , q(t) ) , the velocity ṙ(t) and the
acceleration r̈(t) of P :

ṙ =
∂r

∂p
ṗ+

∂r

∂q
q̇ , r̈ =

∂r

∂p
p̈+

∂r

∂q
q̈+

∂2r

∂p2
ṗ2+

∂2r

∂q2
q̇2+2

∂2r

∂p∂q
ṗq̇ . (9.142)

Equation (9.139) with p = p(t) and q = q(t) determines the instantaneous
unit normal vector n(t) at P . Its derivative with respect to time is

ṅ =
∂n

∂p
ṗ+

∂n

∂q
q̇ . (9.143)
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Next, the case is considered that a plane Σ′ is moving on a curved sur-
face Σ . Let 0 be a point fixed in Σ′ . The position vector of 0 is denoted
r0 . Furthermore, let n′ and ω be the unit normal vector and the angular
velocity, respectively, of Σ′ . The motion of Σ′ on a curved surface Σ with
coordinates p , q is called Levi-Civita motion (Pfister [9]) if at all times t the
following constraints exist:

- Σ′ is tangent to Σ
- the point of contact is 0
- the angular velocity of Σ′ lies in Σ′ .

These constraints are expressed through the equations

n′ ≡ n(p, q) , (9.144)

r0 ≡ r(p, q) , (9.145)

ω = n×
(∂n
∂p

ṗ+
∂n

∂q
q̇
)
. (9.146)

Proof of (9.146): The vector n′ fixed in Σ′ has the time derivative ṅ′ = ω×
n′ . Because of (9.144) this is the equation ṅ = ω×n . Cross-multiplication
from the left with n produces, because of the orthogonality of n and ω ,
the equation n × ṅ = ω . This together with (9.143) yields (9.146). End of
proof. The angular acceleration is ω̇ = n× n̈ .

Without the constraint (9.146) the system is holonomic with degree of
freedom three. Suitable coordinates are the coordinates p , q of 0 on Σ and
the angle between an arbitrary straight line fixed in Σ′ and the tangent to
the line p = const at 0 . Equation (9.146) is integrable in analytical form
if and only if Σ is a surface with zero Gaussian curvature (for example
a general cylinder). In this case, not only the position of 0 , but also the
angular orientation of Σ′ is uniquely determined as function of p and q . If
Σ is not of this special form, (9.146) is a nonholonomic constraint equation.
In this case, kinematic differential equations must be formulated relating
time derivatives of coordinates of the angular orientation of Σ′ to ω . As
coordinates Euler angles are chosen with the surface normal n as axis of
rotation of the third angle φ . The constraint equation requires ω3 ≡ 0 .
Therefore, the kinematic differential Eqs.(10.24) have the form⎡

⎣ ψ̇

θ̇

φ̇

⎤
⎦ =

⎡
⎣ sinφ/ sin θ cosφ/ sin θ

cosφ − sinφ
− sinφ cot θ − cosφ cot θ

⎤
⎦[ω1

ω2

]
. (9.147)

If the motion of 0 on Σ is prescribed by functions of time p(t) and q(t) ,
r0(t) and ω(t) are known as functions of time. Starting from initial condi-
tions satisfying (9.144) integration of (9.147) yields the angular orientation
of Σ′ as function of time.
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Motion of a Curved Surface on Another Curved Surface
In Fig. 9.11a Σ1 and Σ2 are curved surfaces. Let pi , qi be the curvilinear
coordinates of Σi (i = 1, 2) . Surface Σ2 is moving relative to Σ1 in such
a way that both surfaces have, at all times t , a single (moving) point of
tangential contact. Examples are the motion of a finger of a robot hand on a
curved object and the single-point contact of tooth flanks in a gear train. Such
motions may be holonomic or nonholonomic. In the case of pure rolling they
are nonholonomic. At the instantaneous contact point P a point P1(p1, q1)
of Σ1 coincides with a point P2(p2, q2) of Σ2 . At P Σ1 and Σ2 have the
same normal: n1 ≡ n2 . The trajectories of P1 on Σ1 and of P2 on Σ2 are,
in general, not cotangent. In the course of a sliding motion, for example, one
trajectory may degenerate to a point while the other is a continuous curve.

The single-point contact represents a 5-d.o.f. joint. It seems natural to
choose as coordinates describing the position of Σ2 the coordinates (p1, q1)
of P1 , the coordinates (p2, q2) of P2 and, in addition, the angle between the
tangents at P to the lines p1 = const and p2 = const. These coordinates,
originally introduced by Darboux [5], are still used in the literature. They
have the disadvantage of leading to complicated expressions for the angular
velocity and the angular acceleration of Σ2 .

A different set of coordinates free of this disadvantage was proposed by
Neumann [8] and Richter [10] (see Pfister [9]). Following their ideas the two-
body system Σ1–Σ2 with a 5-d.o.f.-joint is interpreted as four-body system
Σ1–Σ

′
1–Σ

′
2–Σ2 with three joints (see Fig. 9.11b). Bodies Σ′

1 and Σ′
2 are

coalescent planes which rotate relative to each other about a point 0 fixed in
both planes. The angle of rotation of Σ′

2 relative to Σ′
1 is denoted χ . Plane

Σ′
1 is executing a Levi-Civita motion relative to Σ1 , and plane Σ′

2 is execut-
ing another Levi-Civita motion relative to Σ2 . Point 0 is the common point
of contact of the four bodies. It coincides with the moving points P1(p1, q1)
and P2(p2, q2) . The angular velocity of Σ2 relative to Σ1 is written in the

Fig. 9.11 Curved surfaces Σ1 and Σ2 with single-point contact (a) interpreted as four-
body system with three joints (b)
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form
ω = ω1 + χ̇n′ − ω2 , (9.148)

where ω1 and ω2 are the angular velocities of Σ′
1 relative to Σ1 and of

Σ′
2 relative to Σ2 , respectively. Equations (9.144) – (9.146) for the two Levi-

Civita motions read

n′ ≡ n1(p1, q1) ≡ n2(p2, q2) , (9.149)

r0 ≡ r1(p1, q1) ≡ r2(p2, q2) , (9.150)

ω1 = n1 ×
(∂n1

∂p1
ṗ1 +

∂n1

∂q1
q̇1

)
, ω2 = n2 ×

(∂n2

∂p2
ṗ2 +

∂n2

∂q2
q̇2

)
. (9.151)

For each Levi-Civita motion (9.147) with indices 1 or 2 attached to all
variables is formulated.

9.12 Mecanum Wheel

A Swedish invention referred to as Mecanum wheel consists of a rigid wheel
hub and of rigid rollers mounted on the periphery of the hub according to
Fig. 9.12 . Each roller can freely rotate about an axis which in radial projec-
tion makes an angle α with the axis of the wheel hub. The generating line
of the rollers is formed so as to keep the hub axis at a constant distance R
above ground. This distance is the outer wheel radius. When the wheel hub
is rotating, the contact point on the roller moves from one end of the roller
to the other, i.e., from one side of the wheel to the other. This lateral motion
has interesting kinematical and dynamical effects. In a vehicle equipped with
mecanum wheels the axes of the hubs are fixed on the vehicle body. Such a
vehicle can rotate on the spot and translate in any direction without slipping
on the ground provided a single roller per wheel has ground contact. Vehicle
motion is controlled by controlling the angular velocities of wheel hubs rela-
tive to the vehicle body. Because of their maneuverability such vehicles find
applications as store trolleys, assembly platforms in factories, platforms for
mobile robots etc. The following kinematics analysis was published in [13].

In Fig. 9.13 the axis of the wheel hub and a single roller contacting ground
are shown. The reference basis with unit basis vectors ex , ey , ez is fixed on
the vehicle. Its origin S is the center of the hub, ey is directed along the
hub axis, and ez is normal to the plane on which the roller is rolling. The
basis with unit basis vectors e1 , e2 , e3 is fixed on the hub. Its origin is the
center S∗ of the roller, e2 is directed along the roller axis, and e3 is pointing
towards S . Let ϕ be the rotation angle of the hub relative to the vehicle
about ey with ϕ = 0 in the position e3 = ez . The angular orientation
of basis e1,2,3 with respect to basis ex,y,z is the result of this rotation ϕ
followed by a rotation about e3 through the roller inclination angle α . Hence
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Fig. 9.12 Mecanum wheel (a) with pa-

rameters R and α (b)

Fig. 9.13 Single roller con-

tacting ground at P

the relationship between the two bases is⎡
⎣e1
e2
e3

⎤
⎦ =

⎡
⎣ cosα sinα 0
− sinα cosα 0

0 0 1

⎤
⎦
⎡
⎣ cosϕ 0 − sinϕ

0 1 0
sinϕ 0 cosϕ

⎤
⎦
⎡
⎣ex
ey
ez

⎤
⎦

=

⎡
⎣ cosα cosϕ sinα − cosα sinϕ
− sinα cosϕ cosα sinα sinϕ

sinϕ 0 cosϕ

⎤
⎦
⎡
⎣ex
ey
ez

⎤
⎦ . (9.152)

The point P of contact between roller and ground has in basis ex,y,z coor-
dinates [ 0 , y , −R] with a variable y(ϕ) . The vertical through P intersects
the roller axis. Therefore, �SP can also be represented in the form

�SP = −re3 + ue2 − wez (9.153)

with r being the constant distance between S and S∗ and with variables
u(ϕ) and w(ϕ) . Decomposition of this expression in ex,y,z with the help of
(9.152) yields ⎡

⎣−r sinϕ− u sinα cosϕ
u cosα

−r cosϕ+ u sinα sinϕ− w

⎤
⎦ =

⎡
⎣ 0

y
−R

⎤
⎦ . (9.154)

Hence
y = −r cotα tanϕ , w = R− r

cosϕ
. (9.155)

The velocity state of the vehicle is described by its angular velocity θ̇ez and
by the velocity vS = vxex+vyey of S . Let, furthermore, ψ̇e2 be the angular
velocity of the roller relative to the hub. In these terms, the contact point P
of the roller has the velocity
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vP = vS + θ̇ez × �SP + ϕ̇ey × �SP + ψ̇e2 × �S∗P

= vS + θ̇yez × ey + ϕ̇ey × (−Rez) + ψ̇e2 × (−wez)

= vxex + vyey − (θ̇y + ϕ̇R)ex − ψ̇z(ey sinα cosϕ+ ex cosα) . (9.156)

The rolling condition vP = 0 yields the equations

vx − θ̇y − ϕ̇R− ψ̇w cosα = 0 , vy − ψ̇w sinα cosϕ = 0 . (9.157)

For y and w the expressions (9.155) are substituted. The resulting equations
are resolved for ϕ̇R and ψ̇ :

ϕ̇R = vx −
( vy
cosϕ

− θ̇r tanϕ
)
cotα , ψ̇ =

vy
(R cosϕ− r) sinα

. (9.158)

The formula for ψ̇ shows that the contacting roller does not rotate relative to
the hub if vy = 0 . In this case, the entire wheel consisting of hub and rollers
forms a single rigid body. In the position ϕ = 0 (contact point P vertically
below S ; roller axis horizontal) the first Eq.(9.158) reduces to ϕ̇R = vx −
vy cotα . From this it follows that ϕ̇ = 0 if the velocity vS is directed normal
to the roller axis. Only the rollers are rotating. This can also be predicted
from Fig. 9.12 .

Equations (9.158) are valid as long as ϕ is in a narrow range −ϕmax ≤
ϕ ≤ ϕmax assuring contact between roller and ground. When the angle ϕ
of a roller is close to ϕmax , the next roller contacts ground and its angle is
close to −ϕmax . In the case θ̇ �= 0 , the two rollers require different angular
velocities ϕ̇(ϕmax) and ϕ̇(−ϕmax) . The difference is ϕ̇(−ϕmax)−ϕ̇(ϕmax) =
−2(r/R)θ̇ cotα tanϕmax or, in view of (9.155), 2ymaxθ̇/R . The quantity
2ymax is the active width of the wheel. These results show that in phases
of motion with two rollers contacting ground pure rolling is impossible if
the vehicle is rotating (θ̇ �= 0 ). The periodical change between slipping and
rolling causes vibrations of systems mounted on the vehicle. Such vibrations
have been observed.

In (9.158) the angle ϕ is small. Assuming that also θ̇ is small the equations
can be approximated as follows:

ϕ̇R = vx − vy cotα , ψ̇(R− r) =
vy

sinα
. (9.159)

Next, motions of a vehicle equipped with mecanum wheels are considered. For
this purpose two new reference systems are defined in the plane of motion.
One with axes X , Y is fixed on the ground. The other with basis vectors
eξ , eη and origin A (arbitrary) is fixed on the vehicle. In this vehicle-fixed
system a mecanum wheel is located by the vector rS = aeξ+beη of its center
S and by the constant angle β between the axes eξ and ex . The velocity

of S relative to ground is vS = vA + θ̇ez × rS . For formulating (9.159) the
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coordinates in basis ex,y,z are required. This basis is making the angle θ+β

against the X,Y -system. Hence with Ẋ and Ẏ denoting the coordinates of
vA in the X,Y -system the desired velocities are

[
vx
vy

]
=

[
cos(θ + β) sin(θ + β) −b

− sin(θ + β) cos(θ + β) a

]⎡⎣ Ẋ

Ẏ

θ̇

⎤
⎦ . (9.160)

For producing prescribed functions X(t) , Y (t) , θ(t) three controlled wheels
are required. Let ai , bi , βi and ϕ̇i (i = 1, 2, 3) be their position parameters
and their angular velocities, respectively. The combination of (9.160) with the
first Eq.(9.159) produces the equations

ϕ̇i =
1

R
[1 − cotα]

[
cos(θ + βi) sin(θ + βi) −bi

− sin(θ + βi) cos(θ + βi) ai

]⎡⎣ Ẋ

Ẏ

θ̇

⎤
⎦ (9.161)

(i = 1, 2, 3) . These angular velocities ϕ̇1,2,3 produce the motion prescribed
by X(t) , Y (t) and θ(t) .

Example: For a constant-velocity turn along a circular trajectory of radius
r0 and with angular velocity ω the prescribed functions are

θ = ωt , X = r0 cos θ , Y = r0 sin θ ,

θ̇ ≡ ω , Ẋ = −ωr0 sin θ , Ẏ = ωr0 cos θ .

}
(9.162)

On the right-hand side in (9.161) the only terms involving time-varying quan-
tities are the terms

Ẋ cos(θ + βi) + Ẏ sin(θ + βi) = ωr0[− sin θ cos(θ + βi) + cos θ sin(θ + βi)]
≡ ωr0 sinβi ,

−Ẋ sin(θ + βi) + Ẏ cos(θ + βi) = ωr0[sin θ sin(θ + βi) + cos θ cos(θ + βi)]
≡ ωr0 cosβi .

⎫⎪⎪⎬
⎪⎪⎭

(9.163)
Since these terms are constant, also the required angular velocities ϕ̇1,2,3 are
constant. End of example.
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Chapter 10

Kinematic Differential Equations

The angular velocity ω of a body-fixed basis e2 relative to a reference basis
e1 cannot, in general, be expressed as time derivative of some other vec-
tor. This is possible only in the special case when the direction of ω is
constant in e2 and, thereby, also in e1 . In all other cases the relationship
between variables describing the angular position of the body on the one
hand and the angular velocity on the other is expressed through kinematic
differential equations in which the coordinates of ω appear as time-varying
coefficients. In kinematics as well as in dynamics the relevant coordinates
of ω are those in the body-fixed basis e2 . In what follows, ω1 , ω2 , ω3 are
these coordinates, and the column matrix of these coordinates is denoted ω .
In the sections to come kinematic differential equations are formulated for
direction cosines, Euler angles, Bryan angles, Euler-Rodrigues parameters,
Cayley-Klein parameters, Rodrigues parameters, Wiener parameters and for
the Euler vector.

10.1 Direction Cosines

Let r be the position vector of an arbitrary body-fixed point. Its constant
coordinate matrix r2 in e2 and its time-varying coordinate matrix r1(t) in
e1 are related through the equation r1(t) = A12(t) r2 . Differentiation yields
the velocity coordinates relative to e1 and decomposed in e1 :

ṙ1 = Ȧ
12
r2 . (10.1)

In terms of ω the velocity is ṙ = ω× r . Its coordinate matrix in e2 is ω̃ r2

and in e1 it is A12ω̃ r2 . Comparison with (10.1) yields the equation Ȧ
12
r2 =

A12ω̃ r2 . Since this equation is valid independent of r2 , the preceding factors
on both sides are equal:
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Ȧ
12

= A12ω̃ . (10.2)

These are, in matrix form, the desired differential equations for direction
cosines. They are called Poisson’s equations. They are linear equations with
time-varying coefficients. Equations for individual direction cosines are ob-
tained by multiplying out:

ȧ1211 = ω3a
12
12 − ω2a

12
13 etc. (10.3)

Equation (10.2) yields for the trace of Ȧ
12

the expression

tr Ȧ
12

= −ωT p (10.4)

with the column matrix

p =
[
a1232 − a1223 , a1213 − a1231 , a1221 − a1212

]T
. (10.5)

Its time derivative is calculated from six Eqs.(10.3):

ṗ =
[(

trA12
)
I −A12T

]
ω . (10.6)

The kinematic differential equations determine the direction cosines when
ω1(t) , ω2(t) , ω3(t) are known from an analytical or numerical integration
of dynamics equations of motion. Frequently, dynamics equations of motion
contain as unknowns not only ω1 , ω2 , ω3 and ω̇1 , ω̇2 , ω̇3 , but also the
direction cosines themselves. In such cases the dynamics equations of motion
and the kinematic differential equations must be integrated simultaneously.

If the direction cosine matrix is prescribed as function of time, the coor-
dinates of ω are calculated from the equation

ω̃ = A12T Ȧ
12

. (10.7)

The coordinates of ω in basis e1 define the coordinate matrix ω1 and
the skewsymmetric matrix ω̃1 . They are related to ω and ω̃ by the trans-

formations ω1 = A12ω and ω̃1 = A12ω̃A12T (see (1.25)). With (10.7) the

latter equation is ω̃1 = Ȧ
12
A12T .

Example: Two points P1 and P2 of a body with a fixed point 0 are
constrained to mutually perpendicular fixed planes E1 and E2 , respectively.
Plane E1 is the e11, e

1
2-plane of a fixed reference basis e1 having 0 as origin,

and E2 is the e11, e
1
3-plane of the same basis. The coordinate matrices of P1

and P2 in the body-fixed basis e2 with origin 0 are given as r21 = [ 1 0 0 ]T

and r22 = [ cosα 0 sinα ]T , respectively (0 < α ≤ π/2 ). The angle
α is the apex angle in the isosceles triangle (P1,0,P2). Together with P1

and P2 the body-fixed lines 0P1 and 0P2 are constrained to E1 and E2 ,
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respectively. The body has the degree of freedom F = 1 . It is free to rotate
such that in projection along e11 the base P1P2 of the triangle is moving
through all four quadrants of the e12, e

1
3-plane. The kinematics is most easily

described in terms of Euler angles. From (1.28) the direction cosine matrix
is copied:

A12 =

⎡
⎢⎣ cψcφ − sψcθsφ −cψsφ − sψcθcφ sψsθ
sψcφ + cψcθsφ −sψsφ + cψcθcφ −cψsθ
sθsφ sθcφ cθ

⎤
⎥⎦ . (10.8)

In e1 P1 and P2 have the coordinate matrices r11 = A12r21 and r12 =
A12r22 , respectively. The third coordinate of r11 and the second coordinate
of r12 are zero. This establishes the equations

sin θ sinφ = 0 , (sinψ cosφ+cosψ cos θ sinφ) cosα−cosψ sin θ sinα = 0 .
(10.9)

The solution is

φ = 0 , sin θ = cotα tanψ , cos θ = σ
√
1− sin2 θ (σ = ±1 ) .

(10.10)
The angle ψ is chosen as independent variable. It is in the range −α ≤ ψ ≤
α . With sin θ(ψ) and cos θ(ψ)

A12 =

⎡
⎢⎣ cosψ − sinψ cos θ sinψ sin θ

sinψ cosψ cos θ − cosψ sin θ

0 sin θ cos θ

⎤
⎥⎦ . (10.11)

Differentiation with respect to time yields

Ȧ
12

= ψ̇

⎡
⎢⎣− sinψ − cosψ cos θ − sinψ d

dψ cos θ cosψ sin θ + sinψ d
dψ sin θ

cosψ − sinψ cos θ + cosψ d
dψ cos θ sinψ sin θ − cosψ d

dψ sin θ

0 d
dψ sin θ d

dψ cos θ

⎤
⎥⎦

(10.12)
with

d

dψ
sin θ =

cotα

cos2 ψ
,

d

dψ
cos θ = σ

d

dψ

√
1− sin2 θ = − tan θ

d

dψ
sin θ .

⎫⎪⎬
⎪⎭ (10.13)

From (10.7) the coordinates of ω in e2 are obtained:
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ω1 = ψ̇
(
− sin θ

d

dψ
cos θ + cos θ

d

dψ
sin θ

)
=

ψ̇

cos θ

d

dψ
sin θ = σψ̇

cotα

cos2 ψ
√
1− cot2 α tan2 ψ

,

ω2 = ψ̇ sin θ = ψ̇ cotα tanψ ,

ω3 = ψ̇ cos θ = σψ̇

√
1− cot2 α tan2 ψ .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(10.14)

The coordinates in e1 , denoted Ω1 , Ω2 , Ω3 , are obtained by the transfor-
mation Ω = A12ω :

Ω1 = ω1 cosψ , Ω2 = ω1 sinψ , Ω3 = ψ̇ . (10.15)

The coordinates ω1 , ω2 , ω3 are parameter equations of the moving polhode
cone of the body, and the coordinates Ω1 , Ω2 , Ω3 are parameter equations
of the fixed herpolhode cone. The cones are best portrayed by their curves of
intersection with a plane normal to e21 (the moving cone) and with a plane
normal to e11 (the fixed cone), respectively. These curves have the parameter
equations

x(ψ) =
ω3

ω1
=

tanα

1 + tan2 ψ
(1− cot2 α tan2 ψ) ,

y(ψ) =
ω2

ω1
=

tanψ

1 + tan2 ψ

√
1− cot2 α tan2 ψ

⎫⎪⎬
⎪⎭ (10.16)

and

X(ψ) =
Ω3

Ω1
= σ tanα cosψ

√
1− cot2 α tan2 ψ ,

Y (ψ) =
Ω2

Ω1
= tanψ .

⎫⎪⎬
⎪⎭ (10.17)

In both sets of equations the elimination of ψ is a simple matter. The equa-
tion for x yields

tan2 ψ =
tanα− x

cotα+ x
. (10.18)

The resulting parameter-free equations of the curves are

moving cone:

(
x− 1

2 tanα
1
2 tanα

)2

+

(
y

1
2 sinα

)2

= 1 ,

fixed cone: X2 +X2Y 2 + Y 2 = tan2 α .

⎫⎪⎬
⎪⎭ (10.19)

These curves are discussed in Sect. 13.1.1 where they are met again. There,
it is shown that the motion of the central cross in a Hooke’s joint is the
inverse of the motion studied here. A plane normal to the body-fixed line
0P2 intersects the moving cone in the circle (x = x′/ cosα )

(x′ − 1
2 sinα)

2 + y2 = ( 12 sinα)
2 . (10.20)
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In the case α � 1 both cones are circular cones with the curves

(x− α
2 )

2 + y2 = (α2 )
2 , X2 + Y 2 = α2 . (10.21)

The smaller circle is rolling inside the fixed circle which is twice as big. These
circles are met again in Sect. 15.1.2 (Fig. 15.4a). End of example.

10.2 Euler Angles

Figure 1.1a yields for the angular velocity vector ω the expression

ω = ψ̇e13 + θ̇e2
′

1 + φ̇e23 . (10.22)

The vectors are decomposed in basis e2 . With the help of (1.26) this results
in the coordinate equations⎡

⎣ω1

ω2

ω3

⎤
⎦ =

⎡
⎣ sin θ sinφ cosφ 0

sin θ cosφ − sinφ 0
cos θ 0 1

⎤
⎦
⎡
⎣ ψ̇

θ̇

φ̇

⎤
⎦ . (10.23)

Inversion yields the desired differential equations:⎡
⎣ ψ̇

θ̇

φ̇

⎤
⎦ =

⎡
⎣ sinφ/ sin θ cosφ/ sin θ 0

cosφ − sinφ 0
− sinφ cot θ − cosφ cot θ 1

⎤
⎦
⎡
⎣ω1

ω2

ω3

⎤
⎦ . (10.24)

These equations are nonlinear. Numerical problems arise when θ gets close
to one of the critical values nπ (n = 0,±1, . . .) .

10.3 Bryan Angles

Figure 1.2a yields for the angular velocity vector ω the expression

ω = φ̇1e
1
1 + φ̇2e

2′
2 + φ̇3e

2
3 . (10.25)

The vectors are decomposed in basis e2 . With the help of (1.30) this results
in the coordinate equations⎡

⎣ω1

ω2

ω3

⎤
⎦ =

⎡
⎣ cosφ2 cosφ3 sinφ3 0

− cosφ2 sinφ3 cosφ3 0
sinφ2 0 1

⎤
⎦
⎡
⎣ φ̇1

φ̇2

φ̇3

⎤
⎦ . (10.26)
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Inversion yields the desired differential equations:⎡
⎣ φ̇1

φ̇2

φ̇3

⎤
⎦ =

⎡
⎣ cosφ3/ cosφ2 − sinφ3/ cosφ2 0

sinφ3 cosφ3 0
− cosφ3 tanφ2 sinφ3 tanφ2 1

⎤
⎦
⎡
⎣ω1

ω2

ω3

⎤
⎦ . (10.27)

These equations are nonlinear. Numerical problems arise when φ2 gets close
to one of the critical values π/2 + nπ (n = 0,±1, . . .) .

In Sect. 1.4 it was shown that in the case of small angles φ1 , φ2 , φ3 lin-
earization of the direction cosine matrix is possible (see (1.33)). Linearization
of (10.26) yields ωi ≈ φ̇i (i = 1, 2, 3). Hence the angular orientation of the
body is the result of simple integration:

φi ≈
∫

ωi dt (|φi| � 1 ; i = 1, 2, 3) . (10.28)

10.4 Euler-Rodrigues Parameters

Introductory remarks: The vector q = n sinϕ/2 is one out of five vectors of
the general form z = nf(ϕ) . The other four vectors are n itself, the Ro-
drigues vector n tanϕ/2 , the Wiener vector n tanϕ/4 and the Euler vector
nϕ . The vector z has identical coordinates in e1 and in e2 . But its time
derivatives in the two bases are different. The relationship is

(1) dz

dt
=

(2) dz

dt
+ ω × z ( z = nf(ϕ) ) . (10.29)

End of the introductory remarks.
Kinematic differential equations for Euler-Rodrigues parameters are es-

tablished by three different methods. The first method starts out from
Eqs.(1.117) for the Euler-Rodrigues parameters of the resultant of two con-
secutive rotations:

q0res = q02q01 − q2 · q1 , qres = q02q1 + q01q2 + q2 × q1 . (10.30)

The parameters (q01,q1) are attributed to time t during a continuous mo-
tion, and the parameters (q0res ,qres) are attributed to time t + dt . The
quantities (q02,q2) represent the Euler-Rodrigues parameters of the differ-
ential rotation ω dt = eωω dt during the time interval dt (unit vector eω ).
These parameters are

q02 = cos
(1
2
ω dt

)
= 1 , q2 = eω sin

(1
2
ω dt

)
=

1

2
ω dt . (10.31)
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With these expressions Eqs.(10.30) take the forms

q0(t+ dt) = q0(t)− 1

2
ω · q(t) dt ,

q(t+ dt) = q(t) +
1

2
[q0(t)ω + ω × q(t)] dt .

⎫⎪⎬
⎪⎭ (10.32)

Division by dt yields for q̇0 and for the derivative of q in e1 the differential
equations

q̇0 = −1

2
ω · q ,

(1) dq

dt
=

1

2
(q0ω + ω × q) . (10.33)

Because of (10.29) the derivative in e2 is

(2) dq

dt
=

1

2
(q0ω − ω × q) . (10.34)

Decomposition of these equations in e2 yields the desired kinematic differ-
ential equations: [

q̇0

q̇

]
=

1

2

[
0 −ωT

ω −ω̃

] [
q0

q

]
. (10.35)

The equations are linear with a time-varying skew-symmetric coefficient ma-
trix.

The second method for generating these equations uses Eqs.(1.81), (1.82),
(1.78) and (10.4) – (10.6) relating Euler-Rodrigues parameters to direction
cosines. From (1.81), (1.82) and (10.5)

4q20 = trA12 + 1 , 4q0q = p . (10.36)

Both equations are differentiated:

8q0q̇0 = tr Ȧ
12

, 4q0q̇ = ṗ− 4q̇0q . (10.37)

The first equation in combination with (10.4) yields 8q0q̇0 = −ωT p and
with the second Eq.(10.36)

q̇0 = −1

2
ωT q . (10.38)

This is the first Eq.(10.35). With this expression for q̇0 and with (10.6) for
ṗ the second Eq.(10.37) becomes

4q0q̇ =
[(

trA12
)
I −A12T + 2q qT

]
ω (10.39)

and with (10.36) for trA12 and (1.78) for A12 4q0q̇ = 2(q20I+q0q̃)ω . Hence
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q̇ =
1

2
(ω q0 − ω̃ q) . (10.40)

This is the second Eq.(10.35).
The third method for generating the differential equations makes use of

Eqs.(1.93) and (1.96) relating Euler angles to Euler-Rodrigues parameters:

cos θ = q20 − q21 − q22 + q23 , (10.41)

ψ = tan−1 q3
q0

+ tan−1 q2
q1

, φ = tan−1 q3
q0

− tan−1 q2
q1

. (10.42)

Differentiation with respect to time produces the equations

ψ̇ =
q0q̇3 − q3q̇0
q20 + q23

+
q1q̇2 − q2q̇1
q21 + q22

, φ̇ =
q0q̇3 − q3q̇0
q20 + q23

− q1q̇2 − q2q̇1
q21 + q22

. (10.43)

These expressions and the expression for cos θ are substituted into the third
differential Eq.(10.23) for Euler angles: ω3 = ψ̇ cos θ+ φ̇ . This results in the
equation

ω3 =
q0q̇3 − q3q̇0
q20 + q23

(q20 − q21 − q22 + q23 + 1)︸ ︷︷ ︸
2(q20+q23)

+
q1q̇2 − q2q̇1
q21 + q22

(q20 − q21 − q22 + q23 − 1)︸ ︷︷ ︸
−2(q21+q22)

= 2(q0q̇3 − q3q̇0 − q1q̇2 + q2q̇1) . (10.44)

Equations for ω2 and ω1 are obtained by cyclic permutation of the indices
1, 2 and 3 . The three equations constitute rows 2, 3 and 4 of the matrix
equation below. The first row represents the time derivative of the constraint
equation 1 = q20 + q21 + q22 + q23 .⎡

⎢⎢⎣
0
ω1

ω2

ω3

⎤
⎥⎥⎦ = 2

⎡
⎢⎢⎣

q0 q1 q2 q3
−q1 q0 q3 −q2
−q2 −q3 q0 q1
−q3 q2 −q1 q0

⎤
⎥⎥⎦
⎡
⎢⎢⎣
q̇0
q̇1
q̇2
q̇3

⎤
⎥⎥⎦ . (10.45)

This is the inverse of (10.35). The coefficient matrix is orthogonal (the scalar
product of any two rows or columns i and j equals δij ). Consequently, its
inverse equals its transpose. Hence⎡

⎢⎢⎣
q̇0
q̇1
q̇2
q̇3

⎤
⎥⎥⎦ =

1

2

⎡
⎢⎢⎣
q0 −q1 −q2 −q3
q1 q0 −q3 q2
q2 q3 q0 −q1
q3 −q2 q1 q0

⎤
⎥⎥⎦
⎡
⎢⎢⎣

0
ω1

ω2

ω3

⎤
⎥⎥⎦ . (10.46)
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Simple reordering results in (10.35).
In the course of numerical integrations of (10.35) inevitable numerical

errors have the effect that computed quantities qi(t) (i = 0, 1, 2, 3) do not
strictly satisfy the constraint equation q20+q21+q22+q23 = 1 . Such faulty quan-
tities must not be used for calculating from (1.79) a direction cosine matrix
for the transformation of vector coordinates. Before doing so the quantities
must be replaced by corrected quantities satisfying the constraint equation.
Correction formulas are developed in Sect. 10.9 .

10.5 Cayley-Klein Parameters

Starting point are Eqs.(1.140) and (1.141) relating Cayley-Klein parameters
to Euler-Rodrigues parameters:

α = q0 + i q3 , β = −q2 + i q1 ,

q0 =
1

2
(α+ ᾱ) , q3 = − i

2
(α− ᾱ) , q2 = −1

2
(β + β̄) , q1 = − i

2
(β − β̄) .

⎫⎬
⎭

(10.47)
The first equation yields α̇ = q̇0 + i q̇3 . For q̇0 and for q̇3 the expressions
from (10.46) are substituted. Following this, the parameters q0 , q1 , q2 , q3
are again expressed in terms of α and β by substituting the expressions in
(10.47). The result is

α̇ =
1

2

[
−(q1+i q2)ω1+(−q2+i q1)ω2+(−q3+i q0)ω3

]
=

1

2
[(iω1+ω2)β+iω3α] .

(10.48)
In the same way β̇ is calculated. Both expressions are combined in matrix
form as follows: [

α̇

β̇

]
=

1

2

[
iω3 iω1 + ω2

iω1 − ω2 −iω3

] [
α

β

]
. (10.49)

These are the desired kinematic differential equations for Cayley-Klein pa-
rameters. They are linear. The same coefficient matrix occurs in the inverse
equation[

α

β

]
=

−2

ω2
1 + ω2

2 + ω2
3

[
iω3 iω1 + ω2

iω1 − ω2 −iω3

] [
α̇

β̇

]
. (10.50)
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10.6 Rodrigues Parameters

The relationship between the Rodrigues vector u and the Euler-Rodrigues
parameters is

u =
q

q0
. (10.51)

This in combination with the differential Eqs.(10.33) and (10.34) for Euler-
Rodrigues parameters yields

(2) du

dt
=

q0
(2) dq
dt − q̇0q

q20
=

1

2

q0(q0ω − ω × q) + qq · ω
q20

=
1

2
(I+ uu+ u× I) · ω . (10.52)

Decomposition in e2 yields the desired differential equations:

u̇ =
1

2
(I + uuT + ũ)ω . (10.53)

They are nonlinear.
Resolution for ω is achieved by first resolving (10.52) for ω . With inde-

terminate coefficients A , B , C the ansatz ω = Au+B
(2) du
dt +Cu× (2) du

dt
is made. Substitution into (10.52) results in the equation

2
(2) du

dt
= u

[
A(1 + u2) + (B + C)u ·

(2) du

dt

]
+

(2) du

dt
(B − Cu2) + u×

(2) du

dt
(B + C) . (10.54)

Scalar multiplications with u , with
(2) du
dt and with u × (2) du

dt produce
three equations for A , B and C . The third equation yields C = −B . The
other two equations become

Au2+
(
B− 2

1 + u2

)
u·

(2) du

dt
= 0 , Au·

(2) du

dt
+
(
B− 2

1 + u2

)( (2) du

dt

)2
= 0 .

(10.55)
The solutions are

A = 0 , B = −C =
2

1 + u2
. (10.56)

This yields

ω =
2

1 + u2

( (2) du

dt
− u×

(2) du

dt

)
=

2

1 + u2
(I− u× I) ·

(2) du

dt
. (10.57)

Decomposition in e2 yields the final result
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ω =
2

1 + u2
(I − ũ) u̇ . (10.58)

10.7 Wiener Parameters

The Wiener vector σ is related to Euler-Rodrigues parameters through
Eqs.(1.183) and (1.184):

σ =
q

1 + q0
, σ0 =

q0
1 + q0

=
1

2
(1− σ2) . (10.59)

This in combination with the differential Eqs.(10.33) and (10.34) for Euler-
Rodrigues parameters yields

(2) dσ

dt
=

1

(1 + q0)2

[
(1 + q0)

(2) dq

dt
− q̇0q

]
=

1

2

[ q0
1 + q0

ω +
q

1 + q0
× ω +

qq · ω
(1 + q0)2

]
=

1

2
(σ0I+ σσ + σ × I) · ω . (10.60)

Decomposition in e2 yields the desired differential equations:

σ̇ =
1

2
(σ0I + σ σT + σ̃)ω . (10.61)

They are nonlinear. Resolution for ω is achieved by first resolving (10.60)
for ω by the same method which led to (10.57). This time, the ansatz ω =

Aσ +B
(2) dσ
dt + Cσ × (2) dσ

dt is made. The result is

ω =
2

(1− σ0)2
(σ0I+ σσ − σ × I)

(2) dσ

dt
. (10.62)

Decomposition in e2 yields the final result

ω =
2

(1− σ0)2
(σ0I + σ σT − σ̃) σ̇ . (10.63)

10.8 Euler Vector

The time derivative of the Euler vector ϕ = nϕ in basis e2 is
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(2) dϕ

dt
=

(2) dn

dt
ϕ+ nϕ̇ . (10.64)

Expressions for ϕ̇ and for (2) dn/dt in terms of n and ω are derived
from the definitions of Euler-Rodrigues parameters and from their kinematic
differential Eqs.(10.33) and (10.34):

q0 = cos
ϕ

2
(a) , q̇0 = −1

2
ω · q (b) ,

q = n sin
ϕ

2
(c) ,

(2) dq

dt
=

1

2
(q0ω + q× ω) (d) .

⎫⎪⎬
⎪⎭ (10.65)

From (10.65)a it follows that q̇0 = − 1
2 ϕ̇ sinϕ/2 and from this with (10.65)b

and c
ϕ̇ =

q · ω
sin ϕ

2

= n · ω . (10.66)

Equations (10.65)c and d yield

(2) dn

dt
=

(2) d

dt

( q

sin ϕ
2

)
=

(2) dq
dt

sin ϕ
2

− 1

2
ϕ̇q

cos ϕ
2

sin2 ϕ
2

=
1

2

(ω cos ϕ
2 + q× ω

sin ϕ
2

− ϕ̇
q

sin ϕ
2

cot
ϕ

2

)

=
1

2

(
ω cot

ϕ

2
+ n× ω − ϕ̇ n cot

ϕ

2

)
(10.67)

and with (10.66) for ϕ̇ and with cotϕ/2 = (1 + cosϕ)/ sinϕ finally

(2) dn

dt
= −1

2

[1 + cosϕ

sinϕ
(nn− I)− n× I

]
· ω . (10.68)

With this expression and with (10.66) Eq.(10.64) takes the form

(2) dϕ

dt
=
{
nn− ϕ

2

[1 + cosϕ

sinϕ
(nn− I)− n× I

]}
· ω . (10.69)

This is the desired kinematic differential equation for the Euler vector. It is
nonlinear. Decomposition in e2 yields the scalar differential equations

ϕ̇ =
{
nnT − ϕ

2

[1 + cosϕ

sinϕ
(nnT − I)− ñ

]}
ω . (10.70)

Resolution for ω is achieved by first resolving (10.69) for ω by the same
method which led to (10.57). With indeterminate coefficients A , B , C the

ansatz ω = An + B
(2) dϕ
dt + Cn × (2) dϕ

dt is made. It is substituted into
(10.69). With the abbreviations
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x =
ϕ

2

1 + cosϕ

sinϕ
, y =

ϕ

2
(10.71)

the resulting equation reads:

(2) dϕ

dt
= An + B

[
(1− x)

(
n ·

(2) dϕ

dt

)
n+ x

(2) dϕ

dt
− y n×

(2) dϕ

dt

]
+ C

[
xn×

(2) dϕ

dt
− y n×

(
n×

(2) dϕ

dt

)]
. (10.72)

Scalar multiplications with n , with
(2) dϕ
dt and with n × (2) dϕ

dt produce
three equations for A , B and C . The first and the third equation yield

A = (1−B)n ·
(2) dϕ

dt
, C = −B

y

x
. (10.73)

When this is substituted, the second equation becomes an equation for B .
The solutions for the three coefficients are

B =
x

x2 + y2
=

sinϕ

ϕ
, A =

(
1− sinϕ

ϕ

)
n ·

(2) dϕ

dt
, C = −1− cosϕ

ϕ
.

(10.74)
With these expressions the angular velocity is

ω =
[
nn− sinϕ

ϕ
(nn− I)− 1− cosϕ

ϕ
n× I

]
·

(2) dϕ

dt
. (10.75)

Decomposition in e2 yields the final result

ω =
[
nnT − sinϕ

ϕ
(nnT − I)− 1− cosϕ

ϕ
ñ
]
ϕ̇ . (10.76)

The kinematic differential equation for the Euler vector and the formula
for ω were established by other methods and with different notations by
Stuelpnagel [5], Peres [2], Nazaroff [1], Shuster [4] and Pfister [3].

Example 1 : The solutions of the various kinematic differential equations
are a-priorily known if the direction cosine matrix A12(t) is prescribed as
function of time. As illustrative example the matrix is prescribed as follows:

A12(t) =

⎡
⎣ cosωt − sinωt 0

0 0 −1
sinωt cosωt 0

⎤
⎦ , A12(0) =

⎡
⎣ 1 0 0

0 0 −1
0 1 0

⎤
⎦ . (10.77)

The initial position at t = 0 is the result of a 90◦-rotation of the body-fixed
basis e2 about the axis e11 . From the matrix A12(t) it is evident that the
motion is a permanent rotation about the axis e12 ≡ −e23 with the angular
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velocity of constant magnitude ω . This means that the vector ω has in e2

the constant coordinate matrix ω = [0 0 ω] . The same coordinate matrix

is obtained from (10.7): ω̃ = A12T Ȧ
12

. The matrix A12(t) determines as
functions of time the corresponding Euler angles, Bryan angles and Euler-
Rodrigues parameters. Equations (1.29), (1.35), (1.81) and (1.82) yield

Euler angles: ψ ≡ 0 , θ ≡ π/2 , φ = ωt ,

Bryan angles: φ1 ≡ π/2 , φ2 ≡ 0 , φ3 = ωt ,

E.-Rodr. par’s: q0(t) = q1(t) =
√

2
2

cos ωt
2

, q3(t) =
√

2
2

sin ωt
2

, q2(t) = −q3(t) .

⎫⎪⎪⎬
⎪⎪⎭

(10.78)

The matrix A12(t) also determines the eigenvector n(t) ≡ e23 , the Rodrigues
vector u(t) = e23 tan

ωt
2 , the Wiener vector σ(t) = e23 tan

ωt
4 and the Euler

vector φ = e23ωt .
As illustrative examples the differential equations for Euler angles and for

Euler-Rodrigues parameters are formulated. With the given angular velocity
coordinates [0 0 ω] Eqs.(10.24) for Euler angles read: ψ̇ = 0 , θ̇ = 0 ,
φ̇ = ω . Together with the prescribed initial values this yields the solutions
(10.78).
Equations (10.35) for Euler-Rodrigues parameters read

q̇0 = −ω

2
q3 , q̇1 =

ω

2
q2 , q̇2 = −ω

2
q1 , q̇3 =

ω

2
q0 . (10.79)

Combining the first equation with the fourth and the second with the third
results in the equations q̈0 = −(ω/2)2q0 and q̈1 = −(ω/2)2q1 . They have
the general solutions

q0(t) = A0 cos
ωt

2
+B0 sin

ωt

2
, q1(t) = A1 cos

ωt

2
+B1 sin

ωt

2
. (10.80)

With these solutions the solutions for q2(t) and q3(t) are obtained from
(10.79). The constants of integration A0 , B0 , A1 , B1 are determined by
the prescribed initial conditions q0(0) = q1(0) =

√
2/2 , q2(0) = q3(0) = 0 .

The final results are those given in (10.78). End of example.

Example 2 : The coordinates of the angular velocity ω of a body in the
body-fixed basis e2 are given as functions of time in the form

ω1(t) = −Ω sinω0t , ω2(t) = Ω cosω0t , ω3(t) ≡ μΩ (10.81)

with constants μ , Ω and ω0 . They show that the body-fixed polhode cone
referred to in Theorem 9.7 is a circular cone with the axis e23 . The vector ω

has constant magnitude Ω
√

1 + μ2 . It is rotating with the angular velocity
ω0 about the cone axis. To be determined are the herpolhode cone and the
angular position of the body as functions of time.

Solution: The differential Eqs.(10.24) for Euler angles are
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ψ̇ = Ω
cos(φ+ ω0t)

sin θ
,

θ̇ = −Ω sin(φ+ ω0t) ,

φ̇ = −Ω cos(φ+ ω0t) cot θ + μΩ .

⎫⎪⎪⎬
⎪⎪⎭ (10.82)

Equations (10.81) are the solutions of Euler’s dynamics equations of motion
for a classical problem of rigid body dynamics, namely, the motion of an
inertia-symmetric body about its center of mass in the absence of external
torques (Wittenburg [6, 8]). The angular momentum vector of the body has
constant magnitude and direction in an inertial reference basis e1 . This
additional condition requires the Euler angles to be the special solutions

φ(t) = −ω0t , φ̇ ≡ −ω0 = const ,

cot θ ≡ μ+
ω0

Ω
= const , ψ̇ ≡ Ω

sin θ
= const .

⎫⎬
⎭ (10.83)

These results are interpreted as follows (see Fig. 1.1). The motion of basis
e2 is the superposition of two rotational motions. One is rotation with ψ̇ =
const about e13 in the position θ = const., and the other is rotation with φ̇ =
const about e23 . This means that the body-fixed axis e23 is moving on the
cone with axis e13 and with semi apex angle θ . The fixed herpolhode cone
generated by ω is another circular cone also with the axis e13 . The vector
ω along the line of contact of polhode and herpolhode cone is permanently
in the plane spanned by e23 and e13 .

The general solution ψ(t) , θ(t) , φ(t) is obtained not from (10.82), but
via Euler-Rodrigues parameters. The differential Eqs.(10.35) for these pa-
rameters are

2q̇0 = −Ω(−q1 sinω0t+ q2 cosω0t+ μq3) ,

2q̇1 = Ω(−q0 sinω0t− q3 cosω0t+ μq2) ,

2q̇2 = Ω(−q3 sinω0t+ q0 cosω0t− μq1) ,

2q̇3 = −Ω(−q2 sinω0t− q1 cosω0t− μq0) .

⎫⎪⎪⎬
⎪⎪⎭ (10.84)

Solving these equations is difficult. Solving the differential Eqs.(10.49) for the
Cayley-Klein parameters α = q0 + i q3 and β = −q2 + i q1 is much simpler.
With iω1(t)± ω2(t) = ±Ωe∓iω0t these equations are

α̇ =
Ω

2

(
iμα+ e−iω0tβ

)
, β̇ = −Ω

2

(
iμβ + eiω0tα

)
. (10.85)

With D = ω0/Ω , with the dimensionless time τ = (Ω/2)t , with the chain
rule d/dt = (Ω/2)d/dτ and with the symbol ′ denoting the derivative with
respect to τ the equations are

α′ = iμα+ e−2iDτβ , β′ = − (iμβ + e2iDτα
)
. (10.86)
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The first equation is differentiated:

α′′ = iμα′ + e−2iDτ (−2iDβ + β′) . (10.87)

By means of (10.86) the term e−2iDτ (−2iDβ + β′) is expressed as lin-
ear combination of α′ and α . This procedure results in the second-order
equation

α′′ + 2iDα′ + (1 + μ2 + 2Dμ)α = 0 . (10.88)

The ansatz α = A eλτ leads to the equation λ2+2iDλ+1+μ2+2Dμ = 0 .
It has two purely imaginary solutions

λ1,2 = i ν1,2 , ν1,2 = −D ±√1 + (D + μ)2 ,

ν1 + ν2 = −2D , (ν1 − μ)(ν2 − μ) = −1 .

}
(10.89)

Hence α(τ) is a linear combination of two harmonic oscillations:

α(τ) = A ei ν1τ +B ei ν2τ . (10.90)

The first Eq.(10.86) yields

β(τ) = e2iDτ (α′ − iμα)

= e2iDτ
[
i (ν1 − μ)A ei ν1τ + i (ν2 − μ)B ei ν2τ

]
= i (ν1 − μ)A e−i ν2τ + i (ν2 − μ)B e−i ν1τ . (10.91)

At this point the return from the complex Cayley-Klein parameters to the
real Euler-Rodrigues parameters is made. Writing the complex constants of
integration in the forms A = A1 + iA2 , B = B1 + iB2 and expressing the
exponential functions through circular functions the equations α = q0+i q3 ,
β = −q2 + i q1 yield the explicit solutions

q0 = A1 cos ν1τ −A2 sin ν1τ +B1 cos ν2τ −B2 sin ν2τ ,

q3 = A2 cos ν1τ +A1 sin ν1τ +B2 cos ν2τ +B1 sin ν2τ ,

q2 = (ν1 − μ)(A2 cos ν2τ −A1 sin ν2τ) + (ν2 − μ)(B2 cos ν1τ −B1 sin ν1τ) ,

q1 = (ν1 − μ)(A1 cos ν2τ +A2 sin ν2τ) + (ν2 − μ)(B1 cos ν1τ +B2 sin ν1τ) .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(10.92)
These are the solutions of (10.84). They determine the direction cosine matrix
A12(τ) and the coordinates ω1(τ) = A12ω of the angular velocity in basis
e1 . These coordinates are parameter equations of the herpolhode cone.

Substitution of (10.92) into (1.92) – (1.96) yields the general solution of
Eqs.(10.82) for Euler angles. Equations (1.92) are
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cos2
θ

2
= q20 + q23 = A2

1 +A2
2 +B2

1 +B2
2 + f(τ) ,

sin2
θ

2
= q21 + q22 = (ν1 − μ)2(A2

1 +A2
2) + (ν2 − μ)2(B2

1 +B2
2)− f(τ) ,

f(τ) = 2[(A1B1 +A2B2) cos(ν1 − ν2)τ + (A1B2 −A2B1) sin(ν1 − ν2)τ ] .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(10.93)
The sum of the equations is

[1 + (ν1 − μ)2](A2
1 +A2

2) + [1 + (ν2 − μ)2](B2
1 +B2

2) = 1 . (10.94)

This constitutes a constraint equation on the four constants of integration.
The oscillatory term f(τ) with (ν1 − ν2)τ =

√
Ω2 + (ω0 + ω3)2 t has the

amplitude 2
√
(A2

1 +A2
2)(B

2
1 +B2

2) . The angle θ is constant if either A1 =
A2 = 0 or B1 = B2 = 0 . These special solutions yield

cot
θ1,2
2

=
1

ν1,2 − μ
(10.95)

and

cot θ1,2 =
cot2 θ1,2/2− 1

2 cot θ1,2/2
=

1− (ν1,2 − μ)2

2(ν1,2 − μ)
(10.96)

and with (10.89)
cot θ1,2 = μ+D . (10.97)

This is the solution (10.83). End of example.

10.9 Correction Formulas for Euler-Rodrigues
Parameters

Solutions qk(t) (k = 0, 1, 2, 3) resulting from a numerical integration of the
differential Eqs.(10.35) violate, because of inevitable numerical errors, the
constraint Eq.(1.68)

f(q0, . . . , q3) =
3∑

k=0

q2k − 1 = 0 . (10.98)

The solutions must be corrected in order to be true Euler-Rodrigues param-
eters. In what follows, the calculated faulty quantities are denoted q∗i , and
the unknown corrected quantities are denoted qi (i = 0, 1, 2, 3). The measure
for the error of the calculated quantities is

ε =
3∑

k=0

q∗k
2 − 1 . (10.99)



346 10 Kinematic Differential Equations

It is reasonable to determine the corrections qi − q∗i (i = 0, 1, 2, 3) such that
the sum of squares is a minimum:

F (q0, . . . , q3) =

3∑
k=0

(qk − q∗k)
2 = Min! (10.100)

The unknowns are the solutions of the equations

∂

∂qi
(F − λf) = 0 (i = 0, 1, 2, 3) (10.101)

where λ is the Lagrangian multiplier associated with the function f in
(10.98). The equations yield qi = q∗i /(1 − λ) (i = 0, 1, 2, 3). Substitution
into (10.98) leads to 1− λ =

√
1 + ε . The desired corrected quantities are

qi =
q∗i√
1 + ε

= q∗i
(
1− ε

2

)
+ . . . (higher-order terms in ε) (i = 0, 1, 2, 3) .

(10.102)
Normally, these correction formulas are used.

Instead of the objective function F in (10.100) some other function can
be chosen in which not the differences (qk − q∗k) , but differences of geomet-
rically significant functions of Euler-Rodrigues parameters appear explicitly.
Direction cosines are significant functions. The direction cosine matrix is (see
(1.80))

A = [aij ] =

⎡
⎣ 2(q20 + q21)− 1 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) 2(q20 + q22)− 1 2(q2q3 − q0q1)
2(q1q3 − q0q2) 2(q2q3 + q0q1) 2(q20 + q23)− 1

⎤
⎦ . (10.103)

Let A∗ = [a∗ij ] be the matrix obtained from this equation with q∗k instead
of qk . Equation (10.100) is replaced by (Wittenburg [7])

3∑
i=1

3∑
j=1

(aij − a∗ij)
2 = Min! (10.104)

or
3∑

i=1

3∑
j=1

a2ij +
3∑

i=1

3∑
j=1

a∗ij
2 − 2

3∑
i=1

3∑
j=1

aija
∗
ij = Min! (10.105)

The first double sum equals three because A is an orthogonal matrix. The
second double sum is a given number. Hence the objective function is

F (q0, . . . , q3) =
3∑

i=1

3∑
j=1

aija
∗
ij = Max! (10.106)
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With this function Eqs.(10.101) are formulated. With aij from (10.103), with
f from (10.98) and with a∗ij still unchanged these equations have the form⎡

⎢⎢⎣
2(a∗11 + a∗22 + a∗33)− λ symmetric

a∗23 − a∗32 2a∗11 − λ
a∗31 − a∗13 a∗12 + a∗21 2a∗22 − λ
a∗12 − a∗21 a∗13 + a∗31 a∗23 + a∗32 2a∗33 − λ

⎤
⎥⎥⎦
⎡
⎢⎢⎣
q0
q1
q2
q3

⎤
⎥⎥⎦ = 0 .

(10.107)
Next, the matrix elements a∗ij are expressed by (10.103) as functions of the

given quantities q∗k . With the abbreviation μ = (2− q∗0
2 + λ)/4 the system

of equations is obtained:⎡
⎢⎢⎣
q∗0

2 + ε− μ symmetric

q∗0q
∗
1 q∗1

2 − μ

q∗0q
∗
2 q∗1q

∗
2 q∗2

2 − μ

q∗0q
∗
3 q∗1q

∗
3 q∗2q

∗
3 q∗3

2 − μ

⎤
⎥⎥⎦
⎡
⎢⎢⎣
q0
q1
q2
q3

⎤
⎥⎥⎦ = 0 . (10.108)

This is an eigenvalue problem with eigenvalue μ . The characteristic equation
is

μ2
[
μ2 − (1 + 2ε)μ+ ε(1 + ε− q∗0

2)
]
= 0 . (10.109)

The eigenvalues are

μ1 = μ2 = 0 , μ3,4 =
1

2

(
1 + 2ε±

√
1 + 4εq∗0

2
)
. (10.110)

In the case ε = 0 (10.108) is known to have the solutions qi = q∗i (i =
0, 1, 2, 3). This requires μ = 1 . From this it follows that in the general case
ε �= 0 the relevant eigenvalue is

μ =
1

2

(
1 + 2ε+

√
1 + 4εq∗0

2
)
. (10.111)

This is substituted into (10.108). The first equation is discarded. The remain-
ing equations are solved for q1 , q2 and q3 :

qi = q∗i
q0q

∗
0

μ− (1 + ε− q∗0
2)

(i = 1, 2, 3) . (10.112)

With these expressions the final result for q0 is obtained from (10.98):

q0 =
[
1 +

q∗0
2(1 + ε− q∗0

2)

[μ− (1 + ε− q∗0
2)]2

]−1/2

. (10.113)

When this is substituted back into (10.112), final results for the other three
Euler-Rodrigues parameters are obtained. The first-order approximations
with respect to ε are
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q0 = q∗0
[
1 +

1

2
ε(1− 2q∗0

2)
]
+ . . . ,

qi = q∗i
[
1− 1

2
ε(1 + 2q∗0

2)
]
+ . . . (i = 1, 2, 3) .

⎫⎪⎬
⎪⎭ (10.114)

These results differ significantly from those in (10.102).

References

1. Nazaroff G J (1979) The orientation vector differential equation. J. Guidance and
Control 2:351–352

2. Peres A ((1979) Finite rotations and angular velocity. American J. Physics 48:70–71
3. Pfister F (1998) Bernoulli numbers and rotational kinematics. Trans. ASME 65:758–

763
4. Shuster M D (1993) A survey of attitude representations. J.Astronaut.Scie.41:439–517

[with 163 lit. references]
5. Stuelpnagel J (1964) On the parametrization of the three-dimensional rotation group.

Siam Rev.8:422–430
6. Wittenburg J (1977) Dynamics of systems of rigid bodies. Teubner Stuttgart

7. Wittenburg J (1982) A new correction formula for Euler-Rodrigues parameters. ZAMM
62:495–497

8. Wittenburg J (2007) Dynamics of multibody systems. Springer, Berlin Heidelberg New
York



Chapter 11

Direct Kinematics of Tree-Structured
Systems

In Fig. 11.1 a general spatial tree-structured system is shown. Its bodies
i = 0, . . . , n and its joints i = 1, . . . , n are regularly labeled. By this is
meant that joint i (i = 1, . . . , n) connects body i to a body b(i) < i .
Example: In Fig. 11.1 b(5) = 3 and b(1) = 0 . Regular labeling is always
possible and, in general, in more than one way. The simplest tree-structure
is a serial chain (a system without side branches). In a serial chain joint i
(i = 1, . . . , n) connects body i to body b(i) = i− 1 .

Body 0 is moving relative to a common reference basis e according to
some unspecified prescribed functions of time t . This general case includes the
special case of a body 0 at rest. On each body i (i = 0, . . . , n) a reference
basis ei is fixed. Its origin 0i and its angular orientation on the body are
chosen arbitrarily. The schematically indicated joints are of arbitrary nature
with individual degrees of freedom 1 ≤ fi ≤ 6 . Note: A joint with fi = 6 is
not a joint in the sense defined in Chap. 4 because the number of constraints
is fi − 6 = 0 . Such a joint might have the form of a spring or damper
connection. It is assumed that for each joint i = 1, . . . , n fi joint variables
qi� (� = 1, . . . , fi) have been chosen which are suitable for describing the
position of body i relative to body b(i) .

Fig. 11.1 Tree-structured system with regular labeling of bodies and of joints. Common
reference basis e , reference basis ei fixed on body i , position vectors r0(t) and ri
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The problem of direct kinematics is stated as follows. Determine as func-
tions of joint variables and of time derivatives of joint variables for all bodies
i = 1, . . . , n the position vector ri , the velocity ṙi and the acceleration r̈i of
0i relative to the common reference basis e , the direction cosine matrix Ai

defined by the equation e = Aie
i , the angular velocity ωi and the angular

acceleration ω̇i relative to basis e . For body 0 these six quantities are, by
assumption, prescribed functions of time r0(t) , ṙ0(t) , r̈0(t) , A0(t) , ω0(t)
and ω̇0(t) . The solution to the problem is given in Sect. 11.2 . It is based on
the kinematics of individual joints which is treated first.

11.1 Kinematics of Individual Joints

In Fig. 11.2 a single joint i of unspecified nature connecting two bodies i
and b(i) is shown. The reference bases fixed on these bodies are ei and eb(i) ,
respectively. Let q

i
be the column matrix of joint variables qi1, . . . , qifi . The

problem of joint kinematics is stated as follows. Determine as functions of the
variables q

i
and of their time derivatives the following six quantities: The

position vector cb(i)i , the velocity vi and the acceleration ai relative to

eb(i) of a single point Pi fixed in ei , the direction cosine matrix Gi defined
by the equation eb(i) = Gie

i , the angular velocity Ωi and the angular
acceleration εi of ei relative to eb(i) .

The single point Pi fixed in ei is referred to as articulation point. How
to choose this point is shown further below. The articulation point has in
ei a constant position vector cii and in eb(i) a variable position vector
cb(i)i(qi) . The first index refers to the body and the second to the joint.

The velocity vi and the acceleration ai relative to eb(i) are the first and
the second time derivative, respectively, of cb(i)i in eb(i) . For joints with
holonomic constraints of arbitrary nature the six kinematical quantities have
the forms

Fig. 11.2 Joint i connecting bodies i and b(i) . Articulation point Pi with position
vectors cii in basis ei and cb(i)i in basis eb(i) . Position vectors ri and rb(i) in basis e
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cb(i)i(qi) , vi =

fi∑
�=1

ki�q̇i� , ai =

fi∑
�=1

ki�q̈i� + si ,

Gi(qi) , Ωi =

fi∑
�=1

pi�q̇i� , εi =

fi∑
�=1

pi�q̈i� +wi .

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(11.1)

Depending on the nature of joint i , on the choice of joint variables and on
the choice of the articulation point the vectors ki� and pi� are either fixed
on body b(i) or functions of joint variables. Vectors si �= 0 and wi �= 0
exist only if at least one of the vectors ki� or pi� , respectively, is not fixed
on body b(i) . Vectors si and wi are second-order functions of first time
derivatives of joint variables. It is always possible to express the coordinates
of cb(i)i and of vi and ai in basis eb(i) and the coordinates of Ωi and εi
in ei as functions of joint variables and of time derivatives of joint variables.
The four velocities and accelerations are written in the forms

Ωi = pT
i
q̇
i
, vi = kT

i q̇i ,

εi = pT
i
q̈
i
+wi , ai = kT

i q̈i + si

⎫⎬
⎭ (i = 1, . . . , n) (11.2)

with column matrices p
i
= [pi1 . . . pifi ]

T and ki = [ki1 . . . kifi ]
T . Each

of these four sets of n equations is written in matrix form. For this purpose,
column matrices Ω , ε , v , a , w and s of n vectors each are defined
(for example Ω = [Ω1 . . .Ωn]

T ). Furthermore, column matrices q̇ and q̈
are defined which are composed of q̇

i
and q̈

i
, respectively (i = 1, . . . , n).

Finally, block-diagonal matrices k and p are defined which have the matrices
kj and p

j
, respectively, along the diagonal. In terms of these matrices the

four sets of equations are

Ω = pT q̇ , v = kT q̇ ,

ε = pT q̈ +w , a = kT q̈ + s .

⎫⎬
⎭ (11.3)

Examples:
1. Spherical, universal and revolute joints: The choice of the articulation point
is dictated by the nature of the joint. In a spherical joint the center of the
sphere is chosen. In a universal joint the point of intersection of the two axes
on the central cross is chosen. In a revolute joint an arbitrary point on the
joint axis is chosen. In all three cases the articulation point is fixed not only
in ei , but also in eb(i) . Hence cb(i)i = const , vi = 0 and ai = 0 .

2. Revolute joint: Define the unit vector p along the joint axis and the angle
of rotation q about this axis. With these definitions Ωi = pq̇ and εi = pq̈ .
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3. Universal joint: Define axial unit vectors p1 fixed on body b(i) and p2

fixed on body i and angles of rotation q1 , q2 about these axes. With these
definitions Ωi = p1q̇1 +p2q̇2 and εi = p1q̈1 +p2q̈2 +Ωi ×p2q̇2 , whence it
follows that wi = p1 × p2q̇1q̇2 .

4. Spherical joint: Three angular joint variables (Euler angles or Bryan angles)
are inconvenient because they lead to unwieldy expressions for Ωi and εi
and because singular positions cannot be avoided. It is preferable to use
Euler-Rodrigues parameters q0 , q1 , q2 , q3 . The three rotational kinematical
quantities are (see (1.79))

Gi =

[
q20 + q21 − q22 − q23 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) q20 + q22 − q23 − q21 2(q2q3 − q0q1)
2(q1q3 − q0q2) 2(q2q3 + q0q1) q20 + q23 − q21 − q22

]
,

Ωi =
3∑

�=1

pi�Ωi� , εi =
3∑

�=1

pi�Ω̇i� .

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(11.4)

The scalars Ωi� (� = 1, 2, 3) are the coordinates of Ωi in basis ei, and the vec-
tors pi� (� = 1, 2, 3) are the basis vectors themselves. The Euler-Rodrigues
parameters and the coordinates Ωi� are related through the kinematical dif-
ferential Eqs.(10.35).

5. Cylindrical joint: As articulation point an arbitrary point on the joint axis
is chosen. Furthermore, the axial unit vector p fixed on both bodies, the
cartesian coordinate q1 along the axis and the angle of rotation q2 about
the axis are defined. With these definitions

cb(i)i = pq1 + const , vi = pq̇1 , ai = pq̈1 ,

Gi = Gi(q2) , Ωi = pq̇2 , εi = pq̈2 .

}
(11.5)

6. In Fig. 11.3 two cranks of a planar four-bar constitute a 1-d.o.f. joint
connecting bodies i and b(i) . As joint variable the crank angle ϕ is chosen
and as articulation point Pi the endpoint of this crank. The figure explains
the unit vector e along the crank, the unit vector p normal to the plane and
the inclination angle χ of body i . For every value of ϕ two (not necessarily
real) angles χ1,2 are determined by (17.21) and (17.22):

A cosχ+B sinχ = C , (11.6)

A = −2a(�−r1 cosϕ) , B = 2r1a sinϕ , C = 2r1� cosϕ−(r21+�2+a2−r22) .
(11.7)

Their cosines and sines are
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Fig. 11.3 Two cranks of a planar four-bar connecting bodies i and b(i) . Articulation

point Pi

cosχk =
AC − (−1)kB

√
A2 +B2 − C2

A2 +B2
,

sinχk =
BC + (−1)kA

√
A2 +B2 − C2

A2 +B2

⎫⎪⎪⎬
⎪⎪⎭ (k = 1, 2) . (11.8)

The six kinematical quantities in (11.1) are

cb(i)i = r1e+ const , vi = ϕ̇p× r1e , ai = ϕ̈p× r1e− ϕ̇2r1e ,

Gi =

⎡
⎣
cosχ − sinχ 0
sinχ cosχ 0
0 0 1

⎤
⎦ , Ωi = p

dχ

dϕ
ϕ̇ , εi = p

(dχ
dϕ

ϕ̈+
d2χ

dϕ2
ϕ̇2
)
.

⎫⎪⎬
⎪⎭

(11.9)
The vectors ai and εi have the forms given in (11.1) with vectors ki1 =
r1p × e , si = −ϕ̇2r1e , pi1 = p dχ/dϕ and wi = pϕ̇2 d2χ/dϕ2 . The
coordinates of these vectors in basis eb(i) are functions of ϕ . Expressions for
dχ/dϕ and d2χ/dϕ2 are obtained by differentiating (11.6) implicitly. End
of examples.

11.2 Kinematics of Entire Systems

In this section the problem of direct kinematics stated in the last paragraph
prior to Sect. 11.1 is solved: Determine as functions of joint variables and of
time derivatives of joint variables for all bodies i = 1, . . . , n the position vec-
tor ri , the velocity ṙi and the acceleration r̈i of 0i relative to the common
reference basis e , the direction cosine matrix Ai defined by the equation
e = Aie

i , the angular velocity ωi and the angular acceleration ω̇i relative
to basis e . Solutions are formulated in different forms for different purposes.
For the purpose of minimizing computation time in numerical evaluations a
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set of recursive equations is developed. For applications in analytical investi-
gations the solutions are expressed in explicit form.

11.2.1 Recursive Solution

Figure 11.2 yields for the direction cosine matrix Ai , for the angular velocity
ωi and for the position vector ri the recursion formulas

Ai = Ab(i)Gi ,

ωi = ωb(i) +Ωi ,

ri = rb(i) + cb(i)i − cii

⎫⎪⎬
⎪⎭ (i = 1, . . . , n) . (11.10)

Recursion formulas for ω̇i , ṙi and r̈i are obtained by differentiating ωi and
ri with respect to time. According to Eq.(9.9) in which e1 and e2 are now
identified with e and eb(i) , respectively, the results are

ω̇i = ω̇b(i) + εi + ωb(i) ×Ωi ,

ṙi = ṙb(i) + vi + ωb(i) × cb(i)i − ωi × cii ,

r̈i = r̈b(i) + ai + ω̇b(i) × cb(i)i − ω̇i × cii + hi ,

hi = ωb(i) × (ωb(i) × cb(i)i)− ωi × (ωi × cii) + 2ωb(i) × vi

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(11.11)

(i = 1, . . . , n) . For Gi , Ωi , cb(i)i , εi , vi and ai the expressions (11.1)
are substituted. The altogether six Eqs.(11.10) and (11.11) are evaluated
in the given order and step by step with i = 1, . . . , n . At the start with
i = 1 the leading terms on the right-hand sides are the prescribed quantities
Ab(i) = A0(t) , ωb(i) = ω0(t) , rb(i) = r0(t) etc. At each step i all quantities
on the right-hand sides of the equations are known either from the preceding
step with b(i) or from a preceding equation at step i . The matrices Ai and
Ab(i) are used for transforming vector coordinates from bases ei or eb(i)

into basis e .

11.2.2 Explicit Solution

The material presented in this section is taken from Wittenburg [2, 4]. Taking
angular velocities as example, it is seen from Fig. 11.1 that ωi (i = 1, . . . n
arbitrary) is the sum of the prescribed angular velocity ω0(t) of body 0 and
of the relative angular velocities Ωj of all joints on the direct path between
bodies 0 and i . For this reason, numbers Tji are defined as follows:
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Tji =

{−1 (joint j is on the direct path between bodies 0 and i )

0 (else)
(11.12)

(j, i = 1, . . . , n) . With these numbers the recursive Eqs.(11.10) are replaced
by the explicit equations

Ai = A0(t)
∏

j:Tji 	=0

Gj (indices j monotonically increasing) ,

ωi = ω0(t)−
n∑

j=1

TjiΩj ,

ω̇i = ω̇0(t)−
n∑

j=1

Tji(εj + ωb(j) ×Ωj) ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(i = 1, . . . , n) .

(11.13)

ri = r0(t)−
n∑

j=1

Tji(cb(j)j − cjj) ,

ṙi = ṙ0(t)−
n∑

j=1

Tji(vj + ωb(j) × cb(j)j − ωj × cjj) ,

r̈i = r̈0(t)−
n∑

j=1

Tji(aj + ω̇b(j) × cb(j)j − ω̇j × cjj + hj) .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(i = 1, . . . , n) .

(11.14)
According to (11.1) the term Ωj in ωi and the term vj in ṙi are linear
combinations of first time derivatives q̇i� of joint variables. Hence ωi and
ṙi have the forms
ωi = ω0(t)+ linear combination of q̇i� ,
ṙi = ṙ0(t) + ω0(t)× [ri − r0(t)]+ linear combination of q̇i� .
The four sets of equations for ωi , ω̇i , ṙi and r̈i (i = 1, . . . , n) are written
in the matrix forms

ω = ω0(t)1 + a1q̇ , ṙ = ṙ0(t)1 + ω0(t)× [r− r0(t)1 ] + a2q̇ ,

ω̇ = ω̇0(t)1 + a1q̈ + b1 , r̈ = r̈0(t)1 + ω̇0(t)× [r− r0(t)1 ] + a2q̈ + b2

}
(11.15)

with column matrices ω , ω̇ , r , ṙ and r̈ composed of n vectors each
(for example ω = [ω1 . . .ωn]

T ), with the column matrix 1 = [1 . . . 1]T and
with the column matrices q̇ and q̈ known from (11.3). Explicit expressions
for the coefficient matrices a1 , a2 and for the column matrices b1 , b2 are
obtained as follows. First, the (n × n) matrix T with elements Tji (j, i =
1, . . . , n) and the column matrices h = [h1 . . .hn]

T and f = [f1 . . . fn]
T

with elements f j = ωb(j)×Ωj are defined. Next, the difference cb(j)j−cjj in
Eq.(11.14) for ri and the difference ωb(j)×cb(j)j −ωj ×cjj in the equation
for ṙi are written in the forms
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cb(j)j − cjj =
n∑

k=1

Ckj ,

−cb(j)j × ωb(j) + cjj × ωj = −
n∑

k=1

Ckj × ωk .

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(j = 1, . . . , n) (11.16)

Through these equations the vectors are defined:

Ckj =

⎧⎪⎨
⎪⎩

−cjj ( k = j )

cb(j)j ( k = b(j) )

0 (else)

( k = 0, . . . , n ; j = 1, . . . , n ) . (11.17)

With these vectors the row matrix C0 = [C01 . . . C0n] and the (n ×
n)-matrix C with elements Ckj (k, j = 1, . . . , n) are constructed. With
these matrices and with other matrices known from (11.3) the five sets of
Eqs.(11.13), (11.14) for ωi , ω̇i , ri , ṙi and r̈i are

ω = ω0(t)1− TTΩ ,

ω̇ = ω̇0(t)1− TT (ε+ f) ,

}
(11.18)

r = r0(t)1− TT (CT
0 +CT 1 ) ,

ṙ = ṙ0(t)1− TT [ω0(t)×CT
0 −CT × ω + v ] ,

r̈ = r̈0(t)1− TT [ω̇0(t)×CT
0 −CT × ω̇ + (a+ h)] .

⎫⎪⎪⎬
⎪⎪⎭ (11.19)

In (11.18) Ω and ε are replaced by the expressions in (11.3). The resulting
expressions for ω and ω̇ as well as Eqs.(11.3) for v and a are then sub-
stituted into the last two Eqs.(11.19). This procedure results in Eqs.(11.15)
and in the desired explicit expressions for the coefficient matrices:

ω = ω0(t)1 + a1q̇ ,

ω̇ = ω̇0(t)1 + a1q̈ + b1 ,

ṙ = ṙ0(t)1− ω0(t)× TT (CT
0 +CT 1 ) + a2q̇ ,

r̈ = r̈0(t)1− ω̇0(t)× TT (CT
0 +CT 1 ) + a2q̈ + b2 ,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(11.20)

a1 = −TTpT , a2 = TT (CT × a1 − kT ) ,

b1 = −TT (w + f) , b2 = TT [CT × b1 − (s+ h)] .

}
(11.21)

The matrices a1 and a2 are functions of q only, i.e., neither of q̇ nor of
time t explicitly. The column matrices b1 and b2 are functions of q , of
q̇ and also of t because the vectors f1 and h1 depend on ω0(t) . In the
column matrix h all centrifugal and Coriolis accelerations are collected. The
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matrices p , k , w and s are determined by the kinematics of joints, and
the matrices T and C are determined by the topology of the tree.

Example: In a system with n revolute joints each joint j has a single axial
unit vector pj and a single rotation angle qj around this vector. The matrix
p is the diagonal matrix of the vectors p1, . . . ,pn . As articulation points
points on the joint axes are chosen. This has the consequence that not only
the vectors cjj , but also the vectors cb(j)j and, hence, all vectors in the
matrices C0 and C are body-fixed vectors. Furthermore, k = 0 , w = 0
and s = 0 .

A serial chain with n = 5 joints connecting bodies 0, . . . , 5 has the ma-
trices

T = −

⎡
⎢⎢⎢⎢⎣

1 1 1 1 1
0 1 1 1 1
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦ , C = −

⎡
⎢⎢⎢⎢⎣
c11 −c12 0 0 0
0 c22 −c23 0 0
0 0 c33 −c34 0
0 0 0 c44 −c45
0 0 0 0 c55

⎤
⎥⎥⎥⎥⎦ .

(11.22)
End of Example.

From the point of view of computation time required for numerical eval-
uations the recursive Eqs.(11.10), (11.11) are preferable. The explicit formu-
lation (11.20), (11.21) is useful for analytical investigations. In Chap. 19 it
is applied to dynamics of mechanisms. In this application, basis e is inertial
space, and the origins 0i of the body-fixed bases ei (i = 1, . . . , n) are the
body centers of mass.
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Chapter 12

Screw Systems

In this chapter the investigation of velocity screws is resumed. Definitions see
in Sect. 9.3 .

12.1 Resultant of two Velocity Screws. Cylindroid

The system shown in Fig. 12.1 has two helical joints with skew axes and with
pitches p1 and p2 . The terminal body 2 has relative to frame 0 the degree of
freedom two. The length of the common perpendicular of the joint axes is � ,
and the projected angle is α . Unit vectors n1 and n2 having the directions
of the axes are attached to the midpoint 0 of the common perpendicular.
This point 0 is the origin of a frame-fixed basis e . The basis vector e1 is
directed along the bisector of the angle α between n1 and n2 , and e3 is
directed along the common perpendicular. The instantaneous velocity screws
of body 1 relative to frame 0 and of body 2 relative to body 1 are (see
(9.33))

ω1(n1 , a1×n1+p1n1) , ω2(n2 , a2×n2+p2n2) , a1,2 = ∓ �

2
e3 . (12.1)

Let ω(n , a× n+ pn) be the instantaneous velocity screw of body 2 rela-
tive to frame 0 . It is the resultant of the two velocity screws. Its unknown
quantities ω , n , a and p are calculated as follows. Since the superposition
principle is valid for velocities the resultant velocity screw is the sum

ω(n , a×n+pn) = ω1(n1 , a1×n1+p1n1)+ω2(n2 , a2×n2+p2n2) . (12.2)

With the above expressions for a1 and a2 this equation splits into the equa-
tions
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Fig. 12.1 Velocity screws with skew

axes. Unit vectors ni and pitches pi
(i = 1, 2). Parameters α , 
 and refer-
ence basis e1,2,3

Fig. 12.2 Angular veloc-

ity triangles

ωn = ω1n1 + ω2n2 , (12.3)

ω(a× n+ pn) = ω1

(
− �

2
e3 × n1 + p1n1

)
+ ω2

( �
2
e3 × n2 + p2n2

)
. (12.4)

The first equation expresses the parallelogram rule for angular velocities (Fig.
12.2). It determines both magnitude and direction of ωn . Since n1 and n2

are normal to e3 also n is normal to e3 . Hence

a = ue3 (12.5)

with an as yet unknown scalar u . This equation states that the resultant
screw axis intersects the common perpendicular of the screw axes 1 and 2
orthogonally at the point ue3 . With this expression (12.4) becomes

ω(ue3 × n+ pn)

= ω1

(
− �

2
e3 × n1 + p1n1

)
+ ω2

( �
2
e3 × n2 + p2n2

)
. (12.6)

Explicit results for the unknowns p and u are obtained when this equation
is dot- and cross-multiplied by n . For this purpose the angle ψ shown in
Fig. 12.2 is introduced as new parameter. It is the angle from the reference
axis e1 to n (positive clockwise around e3 ). The sine law applied to the
triangles in this figure yields the expressions

ω1 = ω
sin
(α
2
− ψ

)
sinα

, ω2 = ω
sin
(α
2
+ ψ

)
sinα

. (12.7)
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Furthermore, the following products are calculated:

n · n1 = cos
(α
2
+ ψ

)
, n× n1 = − e3 sin

(α
2
+ ψ

)
,

n · n2 = cos
(α
2
− ψ

)
, n× n2 = e3 sin

(α
2
− ψ

)
,

n · (e3 × n1) = sin
(α
2
+ ψ

)
, n× (e3 × n1) = e3 cos

(α
2
+ ψ

)
,

n · (e3 × n2) = − sin
(α
2
− ψ

)
, n× (e3 × n2) = e3 cos

(α
2
− ψ

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(12.8)
With these equations and with addition theorems the said multiplications of
(12.6) by n yield the expressions

p =
1

2
(p1 + p2 + � cotα)− � cos 2ψ + (p1 − p2) sin 2ψ

2 sinα
, (12.9)

u =
1

2
(p1 − p2) cotα +

� sin 2ψ − (p1 − p2) cos 2ψ

2 sinα
. (12.10)

These equations are identical with Eqs.(3.158) and (3.159) governing the
resultant of two infinitesimal screw displacements. Compare also Fig. 12.2
with Fig. 3.15 and Eqs.(12.7) and (3.156). The formal identity is explained
by the equation d(ϕ + εs) = (ω + εv) dt . A change of variables led to
Eqs.(3.160) – (3.171) which show that the resultant screw axis is generator
of a cylindroid (Fig. 3.16). The same equations and the same figure are valid
for the resultant velocity screw.

Let P be an arbitrary point fixed on body 2 of Fig. 12.1 . In the case
ω2 = 0 , P has a velocity v1 proportional to ω1 , and in the case ω1 = 0 , P
has a velocity v2 proportional to ω2 . Superposition determines the velocity
v = v1+v2 . If the point P is chosen at random, v1 and v2 are not collinear.
Together they determine a certain plane. The direction of v in this plane
depends on the ratio ω1/ω2 . The question arises: Are there body-fixed points
such that v1 and v2 are collinear so that the direction of v is independent
of ω1/ω2 ? The answer is as follows. If the principal pitches of the cylindroid
determined by the velocity screws (12.1) have opposite signs, there are two
screws of zero pitch on the cylindroid (see (3.169)). Proposition: All body-
fixed points P on the axes of these screws have the desired property. Proof:
Zero pitch means that for an appropriate ratio ω1/ω2 such a point P has
the resultant velocity v = v1 + v2 = 0 . This implies that v1 and v2 are
collinear. Since the directions of v1 and v2 are independent of ω1 and ω2

also the direction of v is independent. End of proof.
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12.2 Relative Velocity Screw. Raccording Hyperboloids

The bodies shown in Fig. 12.3 are rotating about skew axes. The length of
the common perpendicular is � , and the projected angle is α . Unit vectors
n1 and n2 having the directions of the axes are attached to the midpoint
0 of the common perpendicular. This point 0 is the origin of a frame-fixed
basis e . The basis vector e1 is directed along the bisector of the angle α
between n1 and n2 , and e3 is directed along the common perpendicular.
The velocity screws of the bodies relative to the frame are

ω1(n1 , a1 × n1) , ω2(n2 , a2 × n2) , a1,2 = ∓ �

2
e3 . (12.11)

Gears not shown in the figure keep the angular velocity ratio μ = ω2/ω1

constant. Without loss of generality, it is assumed that μ > 0 . Subject of
investigation is the velocity screw of body 2 relative to body 1 . Let this
relative velocity screw be denoted ω(n , a× n+ pn) . It is the difference

ω(n , a× n+ pn) = −ω1(n1 , a1 × n1) + ω2(n2 , a2 × n2) . (12.12)

This equation is a special case of (12.2). Equations (12.3) and (12.6) are
replaced by the equations

ω

ω1
n = −n1 + μn2 , (12.13)

ω

ω1
(ue3 × n+ pn) =

�

2
e3 × (n1 + μn2) , (12.14)

and Fig. 12.2 is replaced by Fig. 12.4 . The direction of n relative to n1 and
to n2 is described by the angles α1 and α2 , respectively. The ratio ω/ω1

as well as these angles are functions of μ . The cosine and sine laws yield the
formulas

Fig. 12.3 Relative velocity screw of
two rotating bodies

Fig. 12.4 Angular velocity
triangles
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ω

ω1
=
√

1 + μ2 − 2μ cosα , (12.15)

sinα1 =
ω1

ω
μ sinα , cosα1 =

ω1

ω
(μ cosα− 1) ,

sinα2 =
ω1

ω
sinα , cosα2 =

ω1

ω
(μ− cosα) .

⎫⎬
⎭ (12.16)

Equation (12.14) is dot- and cross-multiplied by n (the same operations were
performed with (12.6)):

ω

ω1
p =

�

2
(sinα1 + μ sinα2) ,

ω

ω1
u =

�

2
(cosα1 + μ cosα2) . (12.17)

Combination with the previous equations yields for p and for u the explicit
formulas

p = �
μ sinα

1 + μ2 − 2μ cosα
, u =

�

2

μ2 − 1

1 + μ2 − 2μ cosα
. (12.18)

The resultant screw axis defined by u and n is fixed in basis e . In a basis
fixed on the rotating body i (i = 1, 2) the screw axis generates a hyper-
boloid of revolution. Equations describing these hyperboloids are developed
as follows. Because of the rotational symmetry the hyperboloid on body i
(i = 1, 2) is described in a nonrotating cartesian xi, yi, zi-system. Its origin
is the intersection of the rotation axis i with the e3-axis. The xi-axis is
directed along e3 , and the zi-axis has the direction of ni . In this system
the equation of the hyperboloid has the normal form

x2
i + y2i
r2i

− z2i
b2i

= 1 (i = 1, 2) (12.19)

with semi-axes ri and bi . The semi-axis ri is the radius of the gorge circle
of the hyperboloid i . These radii are

r1 =
�

2
+ u = �

μ(μ− cosα)

1 + μ2 − 2μ cosα
, r2 =

�

2
− u = �

1− μ cosα

1 + μ2 − 2μ cosα
.

(12.20)
In the x1, y1, z1-system of body 1 the resultant screw axis lies in the plane
x1 = r1 , and its slope is z1/y1 = cotα1 . Similarly, in the x2, y2, z2-system
of body 2 the resultant screw axis lies in the plane x2 = −r2 , and its slope
is z2/y2 = cotα2 . Substitution of these expressions into (12.19) results in
the equations b2i = r2i cot

2 αi (i = 1, 2). For ri and cotαi Eqs.(12.20) and
(12.16) are substituted. This yields identical results b1 = b2 = b for the
imaginary semi-axes of both hyperboloids:

b =

∣∣∣∣� (μ− cosα)(1− μ cosα)

sinα(1 + μ2 − 2μ cosα)

∣∣∣∣ = ∣∣∣r1r2p
∣∣∣ . (12.21)
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This identity had to be expected. According to Painlevé’s Theorem 9.6 the
hyperboloids are in raccording motion. This is possible only if both hyper-
boloids have, in the common resultant screw axis, identical distribution pa-
rameters and coinciding striction points. The example at the end of Sect. 2.9
has shown that the imaginary semi-axis b is the distribution parameter, and
that the striction point lies on the gorge circle.

Depending on the parameters α, � and μ |u| is smaller, equal or greater
than |�/2| . The hyperboloid with the smaller gorge circle radius is in tangen-
tial contact either outside or inside the other hyperboloid. External contact
requires that r1 > 0 as well as r2 > 0 . Under the initial assumption μ > 0
these conditions are satisfied with

| cosα| < μ <
1

| cosα| . (12.22)

In addition to tangential contact along the resultant screw axis the hyper-
boloids may have an intersection curve. An equation for this curve is deter-
mined in the x, y, z-system whose x-axis coincides with the common perpen-
dicular e3 and whose z-axis coincides with the resultant screw axis. Figure
12.4 yields the transformation relationships (abbreviations ci = cosαi , si =
sinαi (i = 1, 2) )

x1 = x+ r1 , x2 = x− r2 , yi = ciy − siz , zi = siy + ciz (i = 1, 2) .
(12.23)

With these expressions Eqs.(12.19) of the hyperboloids become

x2b2 + y2(b2c2i − r2i s
2
i ) + z2(b2s2i − r2i c

2
i )− (−1)i 2xb2ri − 2yzcisi(b

2 + r2i ) = 0
(12.24)

(i = 1, 2) . The arguments leading to (12.21) showed that r2i = b2 tan2 αi

(i = 1, 2). From (12.16) it follows that tanα1/ tanα2 < 0 if r1 and r2 are
both positive and > 0 otherwise. With the signs of ri = ±bsi/ci chosen
correctly Eqs.(12.24) become

x2c2i + y2(c2i − s2i ) + 2sici(xb− yz) = 0 (i = 1, 2) . (12.25)

These equations are identically satisfied by all points on the z-axis. The
difference of the first equation multiplied by c2s2 and the second equation
multiplied by c1s1 is the equation

x2c1c2 + y2(c1c2 + s1s2) = 0 . (12.26)

From (12.16) it follows that

c1c2 =
(μ cosα− 1)(μ− cosα)

1 + μ2 − 2μ cosα
, c1c2 + s1s2 = cosα . (12.27)
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Hence (12.26) is solved by

y = ±qx with q =

√
(μ− cosα)(1− μ cosα)

cosα(1 + μ2 − 2μ cosα)
. (12.28)

When this expression is substituted into one of the Eqs.(12.25), also for z a
linear function of x is obtained. The first equation yields

z = ±
[ b
q
+ x

c21 + q2(c21 − s21)

2c1s1q

]
. (12.29)

If q is real, the hyperboloids are not only in tangential contact along a com-
mon generator. In addition, they intersect in two more generators which are
arranged symmetrically to the generator of tangential contact. The quantity
q is real if and only if in addition to conditions (12.22) for external contact
of the hyperboloids the condition |α| ≤ π/2 is satisfied.

Equations (12.18) – (12.28) are particularly simple in the special case of
two shafts rotating with identical angular velocities (μ = ω2/ω1 = 1 ). The
essential quantities are

ωn = ω1(n2 − n1) , p =
�

2
cot

α

2
, u = 0 , (12.30)

r1 = r2 =
�

2
, b =

�

2
tan

α

2
, q =

√
1− cosα

2 cosα
. (12.31)

The result u = 0 tells that the screw axis intersects the common perpendic-
ular of the two shafts orthogonally at the midpoint 0 , and the result for ωn
tells that the screw axis n lies along e2 . The two raccording hyperboloids
are congruent. They are in external contact along the resultant screw axis.

12.3 Rotary Piercing of Tubes over Plug

Seamless steel tubes are hot-rolled in a so-called piercing mill by a process
known as rotary piercing of tubes over plug (patent Mannesmann; see VDI-
Zeitschrift Heft 25 (1890) and Fröhlich [4]). The principle is explained in Fig.
12.5. Two identical rollers 1 and 2 of radius R are rotating with equal
angular velocities Ω about skew axes. The common perpendicular of the
axes is the z-axis normal to the plane of the drawing. The projected angle
α between the axes is bisected by the x-axis. A cylinder 3 of radius r with
its axis along the x-axis is in contact with each roller at a single point on
the z-axis (at z = r with the top roller 1 and at z = −r with the bottom
roller 2 ). At these points the rollers have circumferential velocities v1 and
v2 of equal magnitude ΩR and directions as shown. When the cylinder 3
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Fig. 12.5 Piercing mill

is a rigid body, it follows from the rolling conditions at the points of contact
that the cylinder is in screw motion along the x-axis with translatory velocity
v = ΩR sinα/2 and with angular velocity ω = (ΩR/r) cosα/2 . The pitch is
v/ω = r tanα/2 . This velocity screw is neither the sum nor the difference of
the velocity screws of the rollers.

Actually, the hot cylinder 3 is not rigid, but deformable. It enters the mill
as a solid cylinder. It is driven by traction forces of the rollers against a conical
plug (see the figure). As a result of rotation and of stress concentration in
front of the plug the material is deformed into a cylindrical tube.

12.4 Analogy Between Force Screw and Velocity Screw

As is well known, an arbitrary system of forces F1, F2, . . . can be reduced
to an equivalent force system consisting of a single force F applied to an
arbitrarily chosen reduction point A and of a free torque (a couple) MA .
The force F is the resultant of the given forces shifted to the point A . It is
independent of the location of A . The torque MA is the resultant moment
about A of the given forces. This torque depends on the location of A . For

a different reduction point Q given by the vector � =
−→
AQ the resultant

torque is
M = MA + F× � . (12.32)

This equation is analogous to Eq.(9.21) describing the velocity distribution
in a rigid body: v = vA +ω×� . Velocity is replaced by torque, and angular
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velocity is replaced by force. Equation (9.21) led to the definition of an in-
stantaneous velocity screw with pitch p and to the associated linear complex
of velocity and to reciprocal polars associated with this linear complex. For
every Eq.(9.21) – (9.40) the analogous equation exists for torques and forces.
In what follows, this is shown in some detail. Equation (12.32) tells that
for all reduction points located on a line parallel to F the same resultant
torque is obtained (different for different lines). In the case F �= 0 , there
exists exactly one line parallel to F for the points of which the torque has
the direction of F , i.e., the torque M = pF with a scalar p of dimension
length. Hence for all points on this line pF = MA + F × � . Let u be the
perpendicular from A onto this particular line. Then also

pF = MA + F× u . (12.33)

Cross- and dot-multiplying this equation by F and using the orthogonality
F · u = 0 one gets for u and for p the expressions

u =
F×MA

F2
, p =

F ·MA

F2
. (12.34)

If as reduction point A an arbitrary point on the distinguished line thus
determined is chosen, (12.32) has the form

M = pF+ F× � . (12.35)

Equations (12.33) – (12.35) are analogous to (9.22) – (9.24). The entity anal-
ogous to the velocity screw (ω,v) is the force screw1 (F,M) . The screw axis
with the direction of F is determined by u . The screw has the pitch p . The
resultant torque M with respect to a point not located on the screw axis has
the direction of the tangent to the helix through this point. This point and
the plane through this point and orthogonal to the helix are a null point and
the associated null plane of the linear complex (F;M) associated with the
force screw (F,M) . The resultant torque about the null point has a zero-
component along every complex line in this null plane. This is, historically,
the reason for choosing the names null plane and null point2.

Writing again a = −� and F = Fn the force screw has the standard
form analogous to (9.33):

(F,M) = F (n,a× n+ pn) . (12.36)

The scalar F is the intensity, and the factor behind is the unit screw. There
are two special cases.

1 The name force screw is used instead of wrench
2 Historically, the notion of force screw and formulas for the resultant of two force screws
(Battaglini [2]) preceded the corresponding results for infinitesimal screw displacements

(Ball [1])
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1) Planar force system: The pitch is p = 0 . The force screw is F (n,a× n) .
2) The case F = 0 : The force system is a free couple M . A screw axis does
not exist. The pitch is not defined (p = ∞ according to (12.34)). Equation
(12.36) has the form (see (9.34))

(F,M) = M(0,n) . (12.37)

The equations analogous to (9.35) – (9.37) are

n̂ = n+ εa× n , (12.38)

F̂ = F+ εM = F [n+ ε(a× n+ pn)] (12.39)

= F (1 + εp)n̂ . (12.40)

The analogy to Theorem 9.5 is

Theorem 12.1. An arbitrary force screw (F,M) (an arbitrary system of
forces) with F �= 0 can be represented as resultant of two forces. The line of
action of one of these forces can be chosen arbitrarily subject to the restriction
that it is not a line of the linear complex (F;M) . The line of action of the
other force is the uniquely determined reciprocal polar of the first line.

12.5 Virtual Power of a Force Screw. Reciprocal Screws

Virtual power of forces is the key to the proof of

Theorem 12.2. If six forces F1, . . . ,F6 constitute an equilibrium system,
the lines of action of these forces are complex lines of a linear complex.

The following proof is due to Sylvester [11], v.3 . Imagine that the forces are
acting on a rigid body. Equilibrium requires that the virtual power of the
forces calculated for a virtual velocity of the body is zero. The lines of action
of five forces define the axis and the pitch of a linear complex (Eqs.(2.38),
(2.29)). As virtual velocity of the body a virtual velocity screw with the
same axis and the same pitch is chosen. This has the consequence that each
of the five forces has individually zero virtual power since it is normal to the
virtual velocity of its point of application. Since the total virtual power of
all six forces must be zero also the sixth force must be normal to the virtual
velocity of its point of application. Hence also the line of action of this force
is a line of the same linear complex. End of proof.

Imagine that a rigid body is subject to a system of forces defined by its
force screw. This force screw has either the general form (F,M) = F (n1,a1×
n1 + p1n1) or the special form M(0,n1) when only a free couple is acting.
Imagine, furthermore, that the instantaneous state of motion of the body is
given by its velocity screw. This screw has either the general form (ω,v) =
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Fig. 12.6 Force screw (F,M) = F (n1,a1 × n1 + p1n1) and velocity screw (ω,v) =

ω(n2,a2 × n2 + p2n2)

ω(n2, a2 × n2 + p2n2) or the special form v(0,n2) in the case of pure
translation. Virtual changes of the velocity screw are expressed in the form
δω(n2,a2 × n2 + p2n2) in the general case and in the form δv(0,n2) in
the special case. In Fig. 12.6 the general case is shown with unit vectors n1

and n2 along the screw axes and with vectors a1 and a2 pointing from an
arbitrary point 0 to points on the screw axes. For convenience, the points
at the feet of the common perpendicular are chosen since the second Plücker
vectors a1 × n1 and a2 × n2 are independent of which points are chosen.
The virtual power δP of the force screw calculated for the virtual change of
the velocity screw is

δP = F · δv +M · δω . (12.41)

For screws of the general form

δP = δωF
[
n1 · (a2 × n2 + p2n2) + n2 · (a1 × n1 + p1n1)

]
(12.42)

= δωF
[
(a1 − a2) · n1 × n2 + (p1 + p2)n1 · n2

]
. (12.43)

If one of the screws is general and the other is special, the virtual power is
δP = δP ∗ n1 · n2 with either δP ∗ = δωM or δP ∗ = δvF . If both screws
are special, then δP = 0 .

Equilibrium requires that the virtual power is zero. If exactly one of the
screws is special, this is the orthogonality condition n1 ·n2 = 0 . In the general
case, the condition is

(a1 − a2) · n1 × n2 + (p1 + p2)n1 · n2 = 0 (12.44)

and in terms of the Plücker vectors ni and wi = ai × ni (i = 1, 2) of the
screw axes

n1 ·w2 + n2 ·w1 + (p1 + p2)n1 · n2 = 0 . (12.45)

The equations are symmetric with respect to the indices 1 and 2 . Two screws
satisfying the condition are called reciprocal screws. From Fig. 12.6 it is seen
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that the scalar form is

(p1 + p2) cosα− � sinα = 0 , (12.46)

where � and α (both positive or zero or negative) are the length of the
common perpendicular and the projected angle between the screw axes.

Equations (12.40) and (9.37) defined the dual screws:

F+ εM = F (1 + εp1)n̂1 , ω + εv = ω(1 + εp2)n̂2 , n̂i = ni + εai × ni

(12.47)
(i = 1, 2) . The scalar product of the dual unit screws is

(1+εp1)(1+εp2)n̂1·n̂2 = n1·n2+ε[(a1−a2)·n1×n2+(p1+p2)n1·n2] . (12.48)

The reciprocity condition (12.44) is satisfied if the dual part of the scalar
product is zero.

Example: The robot arm shown in Fig. 12.7 is mounted on a stationary
frame 0 . Bodies 0, 1, 2 and 3 are interconnected by a revolute joint 1 , a
prismatic joint 2 and a helical joint 3 with given pitch p3 . The joint axes
are defined by their unit vectors n1 , n2 , n3 . Joint variables are rotation
angles ϕ1 , ϕ3 in joints 1 and 3 , respectively, and translatory displacements
s2 and s3 = p3ϕ3 in joints 2 and 3 , respectively. Each of these variables
describes the position of the outer body relative to the inner body, and in
each joint the positive direction is the direction of the axial unit vector. Two
problems are stated as follows.
1. Given ϕ̇1 , ṡ2 and ϕ̇3 , determine the angular velocity ω3 of body 3 and
the velocity vP of the given point P , both relative to the frame.
2. Body 3 is subject to a force F applied at P and to a torque MP about P .
Determine the column matrix [M1 F2 M3]

T of axial joint torques and forces
to be produced by motors in the joints such that the robot is in equilibrium.
Formulate the conditions M1 = 0 , F2 = 0 and M3 = 0 .
Solution to Problem 1 : The principle of superposition yields for ω3 and vP

the expressions

ω3 = ϕ̇1n1+ϕ̇3n3 , vP = ϕ̇1a1×n1+ṡ2n2+ϕ̇3a3×n3+p3ϕ̇3n3 (12.49)

with vectors a1 and a3 pointing from P to arbitrary points of the joint axes
1 and 3 , respectively (see Fig. 12.7). The matrix form of the equations is

[
ω3

vP

]
=

[
n1 0 n3

a1 × n1 n2 a3 × n3 + p3n3

]⎡⎣ ϕ̇1

ṡ2
ϕ̇3

⎤
⎦ . (12.50)

The left-hand side is the velocity screw of body 3 . The right-hand side rep-
resents the sum of the velocity screws of the three joints. Column j of the
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coefficient matrix (j = 1, 2, 3) is the unit screw of joint j (see (9.33) and
(9.34)).
Solution to Problem 2 : Equilibrium requires that under virtual velocities the
virtual power δP of all forces and torques acting on the system equals zero.
This is the condition

δP = M1δϕ̇1 + F2δṡ2 +M3δϕ̇3 +MP · δω3 + F · δvP = 0 (12.51)

or written in matrix form

[M1 F2 M3] δ

⎡
⎣ ϕ̇1

ṡ2
ϕ̇3

⎤
⎦+ [MP F] · δ

[
ω3

vP

]
= 0 . (12.52)

For the last column matrix the expression from (12.50) is substituted. Follow-
ing this, the column matrix δ[ ϕ̇1 ṡ2 ϕ̇3 ]

T is factored out. Since its elements
are independent and arbitrary, the factor must be zero. Transposition yields⎡

⎣M1

F2

M3

⎤
⎦ = −

⎡
⎣n1 a1 × n1

0 n2

n3 a3 × n3 + p3n3

⎤
⎦ ·
[
MP

F

]
. (12.53)

If one or more of the quantities M1 , F2 , M3 are zero, the force screw
(F,MP) is reciprocal to the respective velocity screws. The three reciprocity
conditions are

n1 ·MP+a1×n1 ·F = 0 , n2 ·F = 0 , n3 ·MP+(a3×n3+p3n3)·F = 0 .
(12.54)

End of example.

Fig. 12.7 Robot arm with frame 0 , revolute joint 1 , prismatic joint 2 , helical joint 3
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12.6 Reciprocal Screw Systems

Constraint forces in joints of a mechanism have zero virtual power. For this
reason they need not be taken into account in equations expressing the princi-
ple of virtual power. This advantage of the principle, as compared with other
methods, is clearly demonstrated by the equilibrium condition (12.51). It is
even more important when the principle is used for formulating dynamics
equations of motion of mechanisms (see Eq.(19.3)).

In what follows, constraint forces in joints of mechanisms are the subject of
investigation. General statements are derived from the fact that their virtual
power is zero. In abstract form this is expressed in

Theorem 12.3. The force screw of an arbitrary system of constraint forces
acting on a single body of a mechanism is reciprocal to a virtual velocity screw
of the body.

The degree of freedom of the single body under investigation is in the range
1 ≤ f ≤ 5 . Depending on the nature of the mechanism the virtual veloc-
ity screw of the body is either general or special. Only the general case is
treated in detail although the simpler special case is typical for the majority
of mechanisms used in engineering.

In Sect. 4.1 on Grübler’s formula it was said that a body with degree of
freedom f is subject to N = 6 − f linearly independent constraints. The
precise meaning of linear independence can now be formulated as follows.
Reciprocity of a virtual velocity screw having the unit screw (n, a×n+pn)
to N force screws having unit screws (ni, ai × ni + pini) (i = 1, . . . , N)
is expressed by N equations of the form (12.44). With the abbreviations
m = a× n+ pn and mi = ai × ni + pini (i = 1, . . . , N) the equations can
also be written in the form (see (12.42))

mi · n+ ni ·m = 0 (i = 1, . . . , N) . (12.55)

This is a set of N homogeneous linear equations for the coordinates of n
and m . The force screws are linearly independent if the (N × 6) coefficient
matrix has the full rank N . In this case, the set of equations has 6 − N
linearly independent nontrivial solutions (n , m) . Any linear combination of
these solutions is itself a solution. The vectors n and m of every solution
determine the associated perpendicular n ×m/n2 onto the screw axis and
the associated pitch p = n ·m/n2 .

Before going into details it is pointed out again that every statement about
degree of freedom, about velocity screws and about force screws is referring
to an instantaneous position of the body, i.e., of the mechanism. Any gen-
eralization to continuous motions with changing relative positions of bodies
requires additional arguments beyond the scope of the present investigation.

If the body under consideration has the degree of freedom f = 1 , it
is characterized by a single velocity screw and by a system of five linearly
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independent reciprocal force screws. In the case f = 2 , the number of linearly
independent velocity screws is two, and the number of linearly independent
force screws is four. The two linearly independent velocity screws define a
cylindroid, and any resultant of the four linearly independent force screws
is reciprocal to every velocity screw on the cylindroid or, shorter, reciprocal
to the cylindroid. In the case f = 3 , the number of linearly independent
velocity screws as well as the number of linearly independent reciprocal force
screws is three. An investigation beyond f = 3 is unnecessary. In the case
f = 4 , for example, the manifold of all force screws defines a cylindroid,
whereas the manifold of all velocity screws are the screws reciprocal to this
cylindroid. In what follows, the mutually reciprocal screw systems of order
one to five are investigated. Additional material see in Timerding [12]. Hunt
[5] and Phillips [8] demonstrate applications of reciprocal screws to the study
of mechanisms.

12.6.1 First-Order Screw System and Reciprocal
Fifth-Order System

The general form of the first-order system is a single unit screw (n,w+ pn)
with Plücker vectors n and w of its axis and with pitch p . The fifth-
order system reciprocal to this screw consists of all screws (n1,w1 + p1n1)
satisfying the reciprocity condition (12.45):

n ·w1 + [w + (p+ p1)n] · n1 = 0 . (12.56)

This is Eq.(2.25), a ·w1+b ·n1 = 0 , defining the linear complex (a;b) with
a = n and b = w+(p+p1)n . Equations (2.29) yield the pitch a·b = p+p1
of this linear complex and the perpendicular onto its axis u = a×b = n×w .
The Plücker vectors of this axis are a = n and w1 = u × n = w . Thus,
the fifth-order screw system (n1,w1 + p1n1) reciprocal to the single screw
(n,w + pn) is the manifold of all linear complexes having the axis (n,w)
of the given screw and the pitch p+ p1 with p1 being a free parameter. In
the special case p1 = −p , there is a single reciprocal screw along the axis
(n,w) . All reciprocal screws of given pitch p1 �= −p (arbitrary) passing
through a given point P (arbitrary) are in the null plane associated with the
null point P of the linear complex with axis (n,w) and with pitch p+ p1 .

If a fifth-order screw system is given by five linearly independent screws
(ni,wi + pini) (i = 1, . . . , 5), the single screw (n,w+ pn) reciprocal to all
five is determined from (12.55).

Example: In Sect. 12.2 the relative motion of two wheels rotating with
constant angular velocity ratio μ = ω2/ω1 = const about skew axes was
shown to be a velocity screw ω(n,n×r+pn) (see Fig. 12.3). The direction of
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the axis is determined by the parallelogram rule ω = ω2 −ω1 (Eq.(12.13)).
The pitch p(μ) is given in the first Eq.(12.18). The second equation for
u(μ) determines the point where the screw axis intersects orthogonally the
common perpendicular of the two wheel axes. Imagine the two wheels to be
a pair of gears with any kind of teeth appropriate for keeping the relative
velocity screw constant. Let P be an arbitrary point at which, in the course
of meshing, two tooth flanks are in tangential contact, and let n1 be the
common unit normal vector at P . The normal contact force Fn1 exerted at
P by one tooth flank on the other is a force screw F (n1,n1×r+p1n1) with
pitch p1 = 0 . Being a constraint force with zero virtual power the force screw
is reciprocal to the relative velocity screw. Hence the conclusion (Phillips
[9]): Whatever tooth shapes are chosen and wherever tangential contact is
established in the course of meshing the common normal at the point of
contact must belong to the linear complex having the axis and the pitch p of
the relative velocity screw. This statement is an expression of the fact that
the relative sliding velocity at the point of contact, v21 = ω(n × ρ + pn)
with ρ being the vector from an arbitrary point on the screw axis to the
contact point, has the direction of the helix through the contact point. If one
tooth flank is prescribed, the other, so-called conjugate flank is determined
by this condition. In Sect. 16.2 this is shown in more detail. End of example.

12.6.2 Second-Order Screw System and Reciprocal
Fourth-Order System

The general form of the second-order system is the screw system on a cylin-
droid. Some of its properties are known from Eqs.(3.150) – (3.172) and from
Fig. 3.16 . The third-order Eq.(3.171) of the cylindroid is

z(x2 + y2) = 2hxy , 2h = py − px . (12.57)

The z-axis is the directrix. The principal screws along x-axis and y-axis have
the principal pitches px and py , respectively. In the context of reciprocity
conjugate screws (screws of equal pitch) play an important role. For simpli-
fication the expression ‘two screws intersect’ means that ‘the axes of the two
screws intersect’. From (12.46) it follows that a screw along the z-axis with
arbitrary pitch including p = ∞ (pure translation) is reciprocal to the cylin-
droid, because all screws on the cylindroid are intersected perpendicularly by
the z-axis. Another consequence of Eq.(12.46) is

Theorem 12.4. Let σ and σ be two conjugate screws of pitch p (arbitrary)
on the cylindroid. Any screw τ intersecting both σ and σ (the two points
of intersection being arbitrary) and having the pitch −p is reciprocal to both
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σ and σ and, hence, to the cylindroid since every screw on the cylindroid is
a linear combination of the two conjugate screws.

Special reciprocal screws identified by this theorem are the screw along the x-
axis with pitch −px and the screw along the y-axis with pitch −py . Indeed,
either one of them is reciprocal to both principal screws and, hence, to the
cylindroid.

From the third-order Eq.(12.57) of the cylindroid it follows that any line
neither parallel nor orthogonal to the z-axis intersects the cylindroid in three
points located on three screws (two of which may coalesce or be imaginary).
In particular

Theorem 12.5. A screw τ intersecting two conjugate screws σ and σ of
pitch p intersects a third screw σ∗ on the cylindroid perpendicularly. And
conversely: If a screw τ intersects one screw σ∗ perpendicularly, it inter-
sects, in addition, two conjugate screws (which may coalesce or be imagi-
nary).

The first statement is proved as follows. By Theorem 12.4 the screw with
pitch −p is reciprocal to σ∗ since σ∗ is a linear combination of the two
conjugate screws with pitch p . However, the pitch of σ∗ is different from
p since not more than two screws on the cylindroid have identical pitches.
Therefore, reciprocity of τ and σ∗ requires, because of (12.46), that τ and
σ∗ intersect perpendicularly. This ends the proof of the first statement. The
converse is true since it follows from (12.57) that none of the other two screws
intersected by τ is intersected perpendicularly. Therefore, reciprocity to τ
requires that both have the same pitch. End of proof.

In what follows, analytical methods are used for proving that there are no
reciprocal screws other than those covered by Theorem 12.4 . The analysis
will show that every point not lying on the z-axis is apex of a second-order
cone all generators of which are axes of reciprocal screws. The cylindroid is
represented by a pair of conjugate screws σ and σ with angles χ and −χ
(arbitrary). Their common pitch is given by (3.167),

p1,2 = px cos
2 χ+ py sin

2 χ , (12.58)

and their first and second normalized Plücker vectors, denoted n1 , w1 and
n2 , w2 , have the x, y, z-coordinates (see (3.172))

n1,2 : [ cosχ ±sinχ 0 ] , w1,2 : (py−px) sinχ cosχ [− sinχ ±cosχ 0 ] .
(12.59)

Let τ be the unknown reciprocal screw with normalized Plücker vectors n
and w and with pitch p . The coordinates of n are denoted [nx ny nz] . Let
x, y, z be the coordinates of a point on the screw axis. The second Plücker
vector w has the coordinates [−zny + ynz znx−xnz − ynx+xny ] . The
screw τ must satisfy the two reciprocity conditions (12.45):
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n ·wi + ni ·w + (p+ pi)n · ni = 0 (i = 1, 2) . (12.60)

These equations are

(py − px) sinχ cosχ(− sinχnx ± cosχny)

+ cosχ(−zny + ynz)± sinχ(znx − xnz)

+ (p+ px cos
2 χ+ py sin

2 χ)(cosχnx ± sinχny) = 0 . (12.61)

The sum and the difference of the equations are

(px + p)nx − zny + ynz = 0 ,

znx + (py + p)ny − xnz = 0 .

}
(12.62)

Solving for p yields the equivalent expressions

p =
zny − ynz

nx
− px =

xnz − znx

ny
− py . (12.63)

Elimination of p results in the equation

(xnx + yny)nz − z(n2
x + n2

y)− (py − px)nxny = 0 . (12.64)

Let x0, y0, z0 be the coordinates of an arbitrary point P not lying on the
z-axis. A reciprocal screw τ passing through P has direction cosines nx ,
ny , nz which are proportional to (x− x0) , (y− y0) , (z− z0) , respectively.
Hence the reciprocal screws passing through P are defined by the equation
( py − px = 2h )

[x(x−x0)+y(y−y0)](z−z0)−z[(x−x0)
2+(y−y0)

2]−2h(x−x0)(y−y0) = 0 .
(12.65)

This is the equation of a second-order cone with apex P . The cone is referred
to as reciprocal cone. Its properties are revealed by investigating the curves
of intersection with planes z = const and with the cylindroid.

The cone has a generator parallel to the z-axis (the equation is satisfied
by x = x0 , y = y0 and z arbitrary). At a point called A this generator
intersects a single screw of the cylindroid (perpendicularly). Let σ0 be this
screw. Its angle χ0 against the x-axis is χ0 = tan−1(y0/x0) . The conjugate
screw σ0 lies under the angle −χ0 against the x-axis. These two screws lie
in the planes z = h sin 2χ0 and z = −h sin 2χ0 , respectively. In Fig. 12.8a
the screws σ0 and σ0 are shown in the projection along the z-axis (briefly
called vertical projection). The points P and A are projected into the point
called P0 . Among all planes z = const the plane z = −z0 is the one for
which Eq.(12.65) is simplest, namely,

z0(x
2 + y2 − x2

0 − y20) + 2h(x− x0)(y − y0) = 0 . (12.66)
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Let this conic section be denoted e1 . It is passing through P0 with the slope
−x0/y0 , i.e., perpendicularly to σ0 . Its principal axes are rotated 45◦ against
the x, y-directions. This rotation is accomplished by the substitution

x =
ξ − η√

2
, y =

ξ + η√
2

. (12.67)

It results in the equation

ξ2(z0+h)+η2(z0−h)−
√
2h[ξ(x0+y0)+η(x0−y0)]−z0(x

2
0+y20)+2hx0y0 = 0 .

(12.68)
Its standard form is

(z0 + h)

[
ξ − h√

2

x0 + y0
z0 + h

]2
+ (z0 − h)

[
η − h√

2

x0 − y0
z0 − h

]2
=

z20
z20 − h2

[z0(x
2
0 + y20)− 2hx0y0] . (12.69)

The conic section is either elliptic or parabolic or hyperbolic depending on
whether |z0| − |h| is positive or zero or negative, respectively. The ellipse
e1 shown in Fig. 12.8a is associated with the parameters x0 = 4 , y0 = 3 ,
z0 = 2 , h = 1 . It is used for illustrating relationships which, in modified
form, are valid in the parabolic and in the hyperbolic case, as well.

In the vertical projection every generator of the reciprocal cone intersects
e1 at P0 and at a second point G . The coordinates x , y and z = −z0 of
G determine the direction cosines

nx =
x− x0

N
, ny =

y − y0
N

, nz =
−2z0
N

,

N =
√

(x− x0)2 + (y − y0)2 + 4z20

⎫⎬
⎭ (12.70)

of this generator and, with (12.63), the associated pitch p . With this pitch,
the screw τ having the generator PG as axis is reciprocal to the cylindroid.
The pitch associated with the generator parallel to the z-axis is ∞ since
nz/nx and nz/ny tend towards ∞ when G tends towards P0 .

Equation (12.65) of the cone as well as Eq.(12.57) of the cylindroid is linear
in z . Elimination of z results in an equation for the curve of intersection of
cone and cylindroid in the vertical projection. Collecting the terms involving
z (12.65) has the form

−z0[x(x−x0)+y(y−y0)]−2h(x−x0)(y−y0)+z[x0(x−x0)+y0(y−y0)] = 0 .
(12.71)

Substituting for z the expression z = 2hxy/(x2 + y2) from (12.57) and
multiplying with (x2 + y2) results in the equation
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Fig. 12.8 a) Projection along the z-axis of the curves e1 , e2 and c in which the re-

ciprocal cone with apex P intersects the plane z = −z0 and the cylindroid. Conjugate
screws σ0 and σ0 . b) Plane Σ spanned by A and σ0 intersects the cylindroid in the
line σ0 and an ellipse e . Line AD intersects in Q a third screw σ∗ orthogonally

(x2 + y2)
{
− z0[x(x− x0) + y(y − y0)]− 2h(x− x0)(y − y0)

}
+ 2hxy[x0(x− x0) + y0(y − y0)] = 0 . (12.72)

It is identical with[
x(x− x0) + y(y − y0)

][
z0(x

2 + y2) + 2h(xy − xy0 − yx0)
]
= 0 . (12.73)

This shows that the cone and the cylindroid intersect in curves which, in
vertical projection, are a circle and another second-order curve e2 with prin-
cipal axes rotated 45◦ against the x, y-system. The circle called c is shown
in Fig. 12.8a . It is independent of z0 . It is passing through the origin 0
and through P0 , and its center M is midpoint between these points. The
other second-order curve e2 is passing through the origin 0 with the slope
−y0/x0 , which means that at 0 it is tangent to σ0 . The transformation
(12.67) results in the equation

ξ2(z0 + h) + η2(z0 − h)−
√
2h[ξ(x0 + y0) + η(x0 − y0)] = 0 . (12.74)

Its standard form is
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(z0 + h)

[
ξ − h√

2

x0 + y0
z0 + h

]2
+ (z0 − h)

[
η − h√

2

x0 − y0
z0 − h

]2
=

h2

z20 − h2
[z0(x

2
0 + y20)− 2hx0y0] . (12.75)

Comparison with (12.69) shows that e2 and e1 are concentric and similar the
size ratio being z0/h . In Fig. 12.8a both ellipses are shown. The conic sec-
tion e2 intersects the x-axis (the y-axis) at x = 2hy0/z0 (at y = 2hx0/z0 ).
Equation (12.73) yields the slope of the tangents t1 and t2 to e2 at these
points. It is easily verified that both tangents are passing through P0 . The
sector formed by the two tangents including the tangents themselves is de-
noted Φ . Since e2 is section of a cone it is located in a plane. In general,
a plane intersects the third-order cylindroid in a third-order curve. In the
present case, this curve splits into the conic section e2 and a straight line.
This straight line is the tangent σ0 of e2 .

The reciprocal cone and its intersections with the cylindroid are inter-
preted geometrically as follows. Let Σ be the plane spanned by the point A
on σ0 and by the conjugate screw σ0 . For reasons explained above plane Σ
intersects the cylindroid in the straight line σ0 and in a second-order curve.
Since the cylindroid is confined to the interval |z| ≤ |h| , the curve must be
an ellipse e . For reasons explained later it is the ellipse which in the verti-
cal projection appears as circle c . Thus, σ0 is common to the two planes
in which the cylindroid is intersected by the reciprocal cone. The ellipse e
intersects the line σ0 at the point C on the z-axis and at the point B at
the foot of the perpendicular from A (the angle at B is right also in vertical
projection). The vertical distance between A and B is zA−zB = 2h sin 2χ0 .
The projected distance is 2r sin 2χ0 where r is the radius of circle c . Hence
the angle of inclination α of plane Σ is determined by tanα = h/r . Since
the ellipse extends from z = −h to z = h the semi-major axis of the ellipse
is

a =
h

sinα
= h

√
1 + tan2 α

tanα
=
√

h2 + r2 . (12.76)

These results establish as by-product

Theorem 12.6. A circular cylinder of radius r having the directrix as gen-
erator intersects the cylindroid in an ellipse with semi-axes r and

√
h2 + r2 .

Figure 12.8b shows the screw σ0 and the ellipse e with points A , B and
C in their own plane Σ . Let D be an arbitrary point on the screw σ0 .
From Theorem 12.5 it follows that at the point of intersection Q with e the
line AD intersects a third screw σ∗ orthogonally. When D is point C the
third screw σ∗ is the only other screw which, together with σ0 , intersects
the z-axis at this point C . When D is point B the third screw σ∗ coalesces
with σ0 expressing the fact that plane Σ is tangent to the cylindroid at B .
This explains why the ellipse e is passing through B and C .
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The line AQ and the associated orthogonal screw σ∗ are shown also in
the projection of Fig. 12.8a . In this projection the orthogonality is nothing
but Thales’ theorem on the circle c . The screw σ∗ is orthogonal not only to
the line AQ , but also to the generator PQ of the reciprocal cone. From the
second part of Theorem 12.5 it follows that the generator PQ intersects the
cylindroid in two conjugate screws, i.e., at two points. In the projection of
Fig. 12.8a these are the points Q1 and Q2 on e2 . They are real if the line
P0Q belongs to Φ . In this case, the lines 0Q1 and 0Q2 are the projections
of the two conjugate screws. With their angle against the x-axis (12.58)
determines the pitch, say p′ . The screw PQ with pitch −p′ is reciprocal
to the cylindroid. Screws on the cylindroid have pitches p′ in the interval
px ≤ p′ ≤ py (assuming arbitrarily that px < py ). Hence the conclusion:
Reciprocal screws PQ with projections P0Q belonging to Φ have pitches
−py ≤ −p′ ≤ −px . All other reciprocal screws on the cone have pitches out-
side this range. The reciprocal screws with pitches −px and −py have axes
which are, in the vertical projection, the tangents t1 and t2 , respectively. It
is easily verified, that the points of intersection of e2 with the ξ, η-axes are
located on the line passing through P0 and through the center of e2 . From
this it follows that the reciprocal screw having, in the vertical projection, this
axis has the pitch − 1

2 (px + py) .
Except for one special case, this ends the geometrical interpretation of

the reciprocal cone. The special case is the one when the apex P is on the
cylindroid, i.e., P=A . In this case, the cone breaks up into two planes. One
of them is plane Σ . According to Theorem 12.4 every screw in Σ passing
through A and having the pitch −p ( p being the pitch of σ0 and σ0 ) is
reciprocal to the cylindroid. The second plane Σ′ is the one normal to σ0

and passing3 through A . According to Theorem 12.5 every line in this plane
and passing through A intersects two (not necessarily real) conjugate screws
having an associated pitch p′ . Therefore, the screw having this line as axis
and the pitch −p′ is reciprocal to the cylindroid. This ends the analysis of
the fourth-order screw system reciprocal to a given cylindroid.

In what follows, the inverse problem is solved: Determine the cylindroid re-
ciprocal to a given fourth-order screw system represented by four independent
screws labeled 1, 2, 3, 4 . The method of solution is due to Ball [1]. Let the
four given screws be ordered such that their pitches are p1 < p2 < p3 < p4 .
Screws 1 and 3 define the cylindroid (1, 3), and screws 2 and 4 define the
cylindroid (2, 4). Choose a pitch p such that p2 < p < p3 . On each of the
cylindroids (1, 3) and (2, 4) there are two real conjugate screws having this
pitch p . These altogether four screws have two transversals. Let σ and τ
be the two screws having these transversals as axes and the pitch −p . By

3 Plane Σ′ intersects the cylindroid in a third-order curve. In the x′, y′, z′-system defined

by the transformation x = x′ cosχ0 − y′ sinχ0 , y = x′ sinχ0 + y′ cosχ0 , z = z′ +
h sin 2χ0 Σ′ is the plane x′ = 2r . Substitution into (12.57) yields the desired equation:
z′(4r2 + y′2) + 2hy′(y′ sin 2χ0 − 2r cos 2χ0) = 0
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Theorem 12.4 the cylindroid determined by σ and τ is reciprocal to the four
screws 1, 2, 3, 4 . Thus, the problem is solved.

This section is closed by the demonstration of still another property of
the cylindroid. Proposition: For every screw 1 on the cylindroid specified by
its angle χ1 , by its coordinate z1 = h sin 2χ1 and by its pitch p1 = p0 −
h cos 2χ1 there exists one other screw 2 on the cylindroid with an angle χ2 ,
with the coordinate z2 = h sin 2χ2 and with the pitch p2 = p0 − h cos 2χ2

such that the screws 1 and 2 are reciprocal to each other. Proof: As condition
for reciprocity Eq.(12.46) is used: (p1 + p2) cosα− � sinα = 0 . Substitution
of p1 + p2 = 2p0 − h(cos 2χ1 + cos 2χ2) , � = h(sin 2χ2 − sin 2χ1) and
α = χ2 − χ1 yields

2p0 cos(χ2 − χ1) − h
[
(cos 2χ1 + cos 2χ2) cos(χ2 − χ1)

+(sin 2χ2 − sin 2χ1) sin(χ2 − χ1)
]
= 0 . (12.77)

The factor of h being 2 cos(χ2 + χ1) this becomes

tanχ1 tanχ2 = −p0 − h

p0 + h
= −px

py
. (12.78)

This equation determines for every angle χ1 two angles χ2 and χ2 + π
belonging to one and the same screw 2 . This ends the proof. Proposition:
The pitches p1 and p2 associated with any such pair of reciprocal screws on
the cylindroid satisfy the identity

1

p1
+

1

p2
≡ 1

px
+

1

py
or

p1p2
p1 + p2

≡ pxpy
px + py

. (12.79)

Proof: In terms of tangents the pitches are (see (3.167))

pi =
px + py tan

2 χi

1 + tan2 χi
(i = 1, 2) . (12.80)

These expressions are substituted into the equation p1p2(px + py) = (p1 +
p2)pxpy . Upon multiplying out (tanχ1 tanχ2)

2 is replaced by (px/py)
2 .

This proves the identity.

12.6.3 Third-Order Screw System and Reciprocal
Third-Order System

In a body with degree of freedom three some body-fixed basis with origin 0
and with unit basis vectors ex , ey , ez is instantaneously free to move with
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three velocity screws having the basis vectors as screw axes. These screws
have the standard form ωx( ex , pxex ) , ωy( ey , pyey ) , ωz( ez , pzez ) with
fixed pitches px , py , pz and with variable intensities ωx , ωy , ωz . The
resultant velocity screw has the standard form

(ω , a× ω + pω ) = ω (n , a× n + pn ) (12.81)

with intensity ω and with normalized Plücker vectors n and a × n of the
screw axis. The unknowns are determined from the equations

ω n = ωxex + ωyey + ωzez , (12.82)

ω (a× n + pn) = ωxpxex + ωypyey + ωzpzez (12.83)

From the first equation it follows that ωx = ωnx etc. Hence the second
equation becomes

a× n + pn = pxnxex + pynyey + pznzez . (12.84)

Scalar multiplication by n yields for the pitch

p = pxn
2
x + pyn

2
y + pzn

2
z . (12.85)

The vector a is position vector of an arbitrary point on the screw axis.
Its coordinates are denoted [x y z ] . Decomposition of (12.84) yields the
eigenvalue problem

(px − p)nx +zny −ynz = 0 ,
−znx +(py − p)ny +xnz = 0 ,
ynx −xny +(pz − p)nz = 0

⎫⎬
⎭ (12.86)

with eigenvalue p and eigenvector n . The characteristic equation is

(px − p)x2 + (py − p)y2 + (pz − p)z2 = −(px − p)(py − p)(pz − p) (12.87)

or

p3 − (px + py + pz)p
2 + (x2 + y2 + z2 + pxpy + pypz + pzpx)p

− (pxx
2 + pyy

2 + pzz
2 + pxpypz) = 0 . (12.88)

For any given point [x y z ] this third-order equation has three (real or
complex) roots p1 , p2 , p3 . By Vieta’s theorem, p1 + p2 + p3 = px + py +
pz = const (coefficient of −p2 ). The number of real roots depends upon
the discriminant D (see Bronstein/Semendjajev/Musiol/Mühlig [3]). The
equation D = 0 defines a surface of sixth order in x , y and z separating
two domains D < 0 and D > 0 . Through each point [x y z ] in the domain
D < 0 three screw axes with different real pitches p1 , p2 , p3 are passing, and
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through each point in the domain D > 0 a single screw axis with real pitch is
passing. The coordinates nx , ny , nz of the unit eigenvector associated with
an eigenvalue pi of multiplicity one are determined by two of the Eqs.(12.86)
in combination with the condition n2

x + n2
y + n2

z = 1 . In what follows, it is
assumed that

pz < py < px (12.89)

thereby excluding the special cases pz = py < px , pz < py = px and
pz = py = px . For p = const Eq.(12.87) is the equation of a real hyperboloid
of one sheet if p is in the interval pz ≤ p ≤ px . The axes of all screws with
given pitch p are generators belonging to one and the same regulus of the
respective hyperboloid. All screws having pitch −p and screw axes belonging
to the other regulus are reciprocal to the first ones because every generator
of one regulus intersects all generators of the other regulus. All hyperboloids
have the x, y, z-axes as principal axes. The following five cases have to be
distinguished

1. pz < p < py : Hyperboloid x2/a2 + y2/b2 − z2/c2 = 1 ; elliptical cross
section with semi-axes

a =
√

(py − p)(p− pz) < b =
√
(px − p)(p− pz) in the x, y-plane; c =√

(px − p)(py − p)

2. py < p < px : Hyperboloid −x2/a2 + y2/b2 + z2/c2 = 1 ; elliptical cross
section with semi-axes

b =
√
(px − p)(p− pz) > c =

√
(px − p)(p− py) in the y, z-plane; a =√

(p− py)(p− pz)

3. p = pz : x = y = 0 , z arbitrary; the hyperboloid degenerates to the
z-axis

4. p = py : The hyperboloid degenerates to the pair of planes x =

±z
√

(py − pz)/(px − py) , y arbitrary

5. p = px : y = z = 0 , x arbitrary; the hyperboloid degenerates to the
x-axis.

The hyperboloid associated with p = 0 (real only if pz and px are of
different sign) is referred to as pitch quadric. It has the equation

x2

pypz
+

y2

pzpx
+

z2

pxpy
= −1 . (12.90)

Zero-pitch screws about generators of one regulus are reciprocal to zero-pitch
screws about generators of the other regulus. Hence

Theorem 12.7. Pure rotation of an hyperboloid about a generator of regulus
1 has the effect that every point P of the hyperboloid has a velocity normal
to the generator of regulus 2 through P
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The practical significance of this theorem is illustrated in Fig. 12.9 . The body
with a spherical head is the terminal body of a chain with three revolute
joints along skew axes n1 , n2 and n3 . In the absence of the support of the
spherical head the body is free to move instantaneously with independent
angular velocities (zero-pitch velocity screws) about the three lines. Through
these lines a hyperboloid is determined on which the lines belong to one
regulus (regulus 1). The other regulus 2 is the manifold of all transversals
t1 , t2 , t3 etc. of the three lines. Forces (zero-pitch force screws) along these
lines are reciprocal to zero-pitch velocity screws along lines of regulus 1 .
The rigid support of the spherical head is causing such a force along the line
t1 . Neither this force nor constraint forces along other transversals have any
effect on the instantaneous mobility of the body. The hyperboloid is the pitch
quadric of the two mutually reciprocal zero-pitch screw systems.

Fig. 12.9 Pitch quadric defined by three lines n1 , n2 , n3 . Body moving instantaneously
with independent angular velocities (zero-pitch velocity screws) about these lines regardless

of constraint forces (zero-pitch force screws) along transversals
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Chapter 13

Shaft Couplings

A shaft coupling is, in the broadest sense, a mechanical device transmitting
rotational motion from a shaft 1 to another shaft 2 . In addition, a shaft
coupling may serve the purpose of keeping one shaft in position relative to
the other. Example: If both shafts are mounted in bearings in a common
frame, a pair of gears having the transmission ratio one (spur gears, bevel
gears or hypoid gears depending on the relative location of the shafts) is
a shaft coupling transmitting rotational motion in such a way that ω1 =
const in shaft 1 causes ω2 ≡ ω1 = const in shaft 2 . If both shafts are
mounted in parallel and sufficiently close together, an Oldham coupling is
serving the same purpose. The Oldham coupling is functioning properly even
in the case when the distance between the shafts is changing during operation.
Neither gears nor Oldham couplings serve the purpose of keeping one shaft
in position relative to the other. Another example: Only shaft 1 is mounted
in fixed bearings. Shaft 2 is required to intersect shaft 1 at a given point
0 whereas its direction is free to change. Bevel gears are not applicable in
this case. A common Hooke’s joint (also called universal joint) is a possible
shaft coupling. Its cross-shaped central body serves the purpose of keeping
the shafts intersecting at 0 . In addition, rotational motion is transmitted
from shaft 1 to shaft 2 . However, as will be seen in the following section,
ω1 = const in shaft 1 does not cause ω2 ≡ ω1 = const in shaft 2 . Shaft
couplings allowing changes of relative position while maintaining the identity
ω2 ≡ ω1 are called homokinetic. The general theory of homokinetic couplings
is the subject of Sect. 13.4. The engineering importance and a simple example
were explained in Sect. 4.2.6.

387
J. Wittenburg, Kinematics, DOI 10.1007/978-3-662-48487-6_  13
© Springer-Verlag Berlin Heidelberg 2016 



388 13 Shaft Couplings

13.1 Hooke’s Joint

In the plane of Fig. 13.1 two shafts 1 and 2 are mounted in bearings such
that the shaft axes intersect at point 0 under a constant angle α . The shafts
are coupled by a Hooke’s joint. Its essential element is a cross-shaped central
body. Each shaft is connected to this body by a revolute joint the axis of
which is normal to the shaft. On the central body the two joint axes intersect
orthogonally at 0 . In the figure the system is shown in a position in which
one axis of the central body is in the plane of the drawing, while the other
axis is perpendicular to it. The central body and the two revolute joints
together constitute Hooke’s joint. The angle α is a free parameter which in
Fig. 13.1 is prescribed by the other two revolute joints connecting the shafts
to a frame. The entire system composed of frame, shafts, central body and
of four revolute joints represents a spherical four-bar with center 0 . From
Chap. 4 it is known that the degree of freedom is one. Thus, Hooke’s joint
transmits a rotation from shaft 1 to shaft 2 . Let ϕ1 and ϕ2 be the angles of
rotation of shaft 1 and of shaft 2 , respectively, relative to the frame. They
are related by a constraint equation f(ϕ1, ϕ2) = 0 . In what follows, this
equation is formulated. Subsequently, various other kinematical relationships
are derived from this equation.

In Fig. 13.1 e1 and e2 are two reference bases fixed on the frame. Their
common basis vectors e13 = e23 are normal to the plane of the two shafts,
and e11 and e21 are directed along the respective shaft axes. The bases are
related by the constant transformation matrix

A12 =

⎡
⎣ cosα − sinα 0
sinα cosα 0

0 0 1

⎤
⎦ . (13.1)

Let n1 and n2 be unit vectors fixed on the central body along the joint
axes. In the position shown in Fig. 13.1 n1 = e12 . Let this be the position
ϕ1 = 0 of shaft 1 and the position ϕ2 = −π/2 of shaft 2 . This means that
ϕ2 = 0 is the position when n2 = e22 . In a position ϕ1 (arbitrary) n1 has

Fig. 13.1 Hooke’s joint with frame-fixed bases e1 , e2 in position ϕ1 = 0 , ϕ2 = −π/2
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in basis e1 the coordinate matrix n1
1 = [0 cosϕ1 sinϕ1]

T . Similarly, in a
position ϕ2 (arbitrary) n2 has in e2 the coordinate matrix

n2
2 = [0 cosϕ2 sinϕ2]

T . (13.2)

Transformation yields the coordinate matrix n1
2 = A12n2

2 in basis e1 . The
coordinate matrices n1

1 and n1
2 determine the coordinate matrix n1

3 = ñ1
1n

1
2

of the vector n3 = n1 × n2 . The three coordinate matrices are

n1
1 = n1

2 = n1
3 =⎡

⎣ 0
cosϕ1

sinϕ1

⎤
⎦ ,

⎡
⎣− sinα cosϕ2

cosα cosϕ2

sinϕ2

⎤
⎦ ,

⎡
⎣− cosα sinϕ1 cosϕ2 + cosϕ1 sinϕ2

− sinα sinϕ1 cosϕ2

sinα cosϕ1 cosϕ2

⎤
⎦ .

(13.3)
From the first two matrices the desired relationship f(ϕ1, ϕ2) = 0 is ob-
tained. Orthogonality of the vectors n1 and n2 requires that n1 · n2 = 0 .
This is the equation f(ϕ1, ϕ2) = cosϕ1 cosα cosϕ2 + sinϕ1 sinϕ2 = 0 or

tanϕ2 tanϕ1 = − cosα . (13.4)

This relationship was first published in 1824 by Jean Victor Poncelét (1788-
1867) (see also Poncelét [15]). The output angle ϕ2 is an odd, π-periodic
function of the input angle ϕ1 . It is independent of the sign of α . In view
of Fig. 13.1 this had to be expected. The equation yields the expressions

cosϕ2 =
1√

1 + tan2 ϕ2

=
sinϕ1√

1− sin2 α cos2 ϕ1

,

sinϕ2 =
− cosα cosϕ1√
1− sin2 α cos2 ϕ1

.

⎫⎪⎪⎬
⎪⎪⎭ (13.5)

Differentiation of (13.4) with respect to time results in the equation
(ϕ̇2/ cos

2 ϕ2) tanϕ1 + (ϕ̇1/ cos
2 ϕ1) tanϕ2 = 0 . This yields for the angular

velocity ratio the expression

ϕ̇2

ϕ̇1
= − sinϕ2 cosϕ2

sinϕ1 cosϕ1
. (13.6)

Elimination of ϕ2 by means of (13.5) leads to the final formula

ϕ̇2

ϕ̇1
=

cosα

1− sin2 α cos2 ϕ1

. (13.7)

This is an even π-periodic function of ϕ1 . In the case ϕ̇1 = const, the
angular velocity ϕ̇2 is oscillating π-periodically between the extremal values
ϕ̇1 cosα and ϕ̇1/ cosα .
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One more differentiation with respect to time yields for the angular accel-
eration ϕ̈2 the expression (valid for ϕ̇1 = const)

ϕ̈2 = −ϕ̇2
1

sin2 α cosα sin 2ϕ1

(1− sin2 α cos2 ϕ1)2
, ϕ̈2 ≈ −ϕ̇2

1α
2 sin 2ϕ1 (α � 1) . (13.8)

The difference χ(ϕ1) = ϕ2 − ϕ1 + π/2 is an odd π-periodic function
of ϕ1 (note that ϕ2 = −π/2 when ϕ1 = 0 ). Its maxima and minima of
equal absolute value occur in positions when ϕ̇2 = ϕ̇1 . According to (13.7)
this is the case when cos2 ϕ1 = 1/(1 + cosα) . From this it follows that
sin2 ϕ1 = cosα/(1 + cosα) and tanϕ1 =

√
cosα . Furthermore, according

to (13.4), tanϕ2 = −√
cosα . This yields for the maximum of χ the formula

tan
(
χmax − π

2

)
= − cotχmax = tan(ϕ2 − ϕ1)

=
tanϕ2 − tanϕ1

1− tanϕ2 tanϕ1
=

−2
√
cosα

1− cosα
. (13.9)

Hence

χmax = tan−1 1− cosα

2
√
cosα

. (13.10)

Example: χmax ≈ 4.1◦ at ϕ1 ≈ 42.9◦ for α = 30◦ . The Taylor formula
for small angles α is χmax ≈ α2/4 . End of example.

13.1.1 Polhode and Herpolhode Cones of the Central
Cross

The cross-shaped central body is executing a periodic motion about a fixed
point. For this reason, both the polhode cone and the herpolhode cone are
closed cones. In what follows, these cones are determined1. Let ψ̇1n1 and
ψ̇2n2 be the angular velocities of the cross relative to the two shafts so that
the angular velocity ω of the cross relative to the frame has the alternative
forms

ω = ϕ̇1e
1
1 + ψ̇1n1 = ϕ̇2e

2
1 + ψ̇2n2 . (13.11)

In the reference basis with basis vectors n1 , n2 , n3 = n1 × n2 fixed on the
cross ω has the coordinates

ω1 = ψ̇1 = ϕ̇2e
2
1 ·n1 , ω2 = ψ̇2 = ϕ̇1e

1
1 ·n2 , ω3 = ϕ̇1e

1
1 ·n3 . (13.12)

1 In Wittenburg/Roberson [18] the cones are determined for a Hooke’s joint with a

nonorthogonal central cross
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The scalar products are read from (13.2) and (13.3). For cosϕ2 , sinϕ2 and
ϕ̇2 the expressions (13.5) and (13.7) are substituted. This results in

ω1 = ψ̇1 = ϕ̇1
sinα cosα cosϕ1

1− sin2 α cos2 ϕ1

, ω2 = −ϕ̇1
sinα sinϕ1√

1− sin2 α cos2 ϕ1

,

ω3 = ϕ̇1
− cosα√

1− sin2 α cos2 ϕ1

.

⎫⎪⎪⎬
⎪⎪⎭

(13.13)
These equations are parameter equations of the polhode cone (the moving
cone) with ϕ1 as parameter. The cone is best portrayed by its curve of
intersection with a plane parallel to the n1,n2-plane. This curve has the
parameter equations

x(ϕ1) =
ω1

ω3
=

− sinα cosϕ1√
1− sin2 α cos2 ϕ1

, y(ϕ1) =
ω2

ω3
= tanα sinϕ1 . (13.14)

Squaring both equations leads to expressions for cos2 ϕ1 and for sin2 ϕ1 .
Their sum equals one. This is the parameter-free equation

x2 + x2y2 + y2 = tan2 α . (13.15)

In Fig. 13.2 curves are shown for various angles α . The ellipse is explained
later. An investigation of the curvature shows that the transition from convex
to nonconvex curves occurs at α = 60◦ . The smaller α the better is the ap-
proximation of a circle of radius α . In joints used in engineering angles up to
approximately α = 35◦ are realizable. At the points of symmetry of the curve
marked by |x| = |y| (13.15) yields y2 = 1/ cosα−1 . Equation (13.14) yields
for the associated angle ϕ1 the expression sinϕ1 =

√
cosα/(1 + cosα) .

This is the angle associated with the maximum difference χmax .
The herpolhode cone (the fixed cone) is determined by the coordinates

of ω in basis e1 . Let these coordinates be denoted Ω1 , Ω2 , Ω3 . Equation
(13.11) in combination with (13.3) and with ψ̇1 from (13.13) results in

Ω1 = ϕ̇1 , Ω2 = ψ̇1n1 · e12 = ϕ̇1
sinα cosα cos2 ϕ1

1− sin2 α cos2 ϕ1

,

Ω3 = ψ̇1n1 · e13 = ϕ̇1
sinα cosα sinϕ1 cosϕ1

1− sin2 α cos2 ϕ1

.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (13.16)

This yields the ratios

X(ϕ1) =
Ω2

Ω1
=

sinα cosα cos2 ϕ1

1− sin2 α cos2 ϕ1

,

Y (ϕ1) =
Ω3

Ω1
=

sinα cosα sinϕ1 cosϕ1

1− sin2 α cos2 ϕ1

.

⎫⎪⎪⎬
⎪⎪⎭ (13.17)
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Fig. 13.2 Intersection curves of polhode cones of the cross-shaped central body with a

plane parallel to the n1,n2-plane for Hooke’s joints with various angles α . The ellipse
represents the herpolhode cone associated with α = 75◦ in the position ϕ1 = 0

They are parameter equations of the intersection curve of the herpolhode cone
with a plane normal to the shaft axis e11 . The parameter ϕ1 is eliminated
by calculating tanϕ1 = Y/X and hence cos2 ϕ1 = X2/(X2 + Y 2) . This
expression is substituted back into the equation for X(ϕ1) . The result is the
ellipse (

X − 1
2 tanα

1
2 tanα

)2

+

(
Y

1
2 sinα

)2

= 1 . (13.18)

Figure 13.3 shows the location of the herpolhode cone and of this ellipse
relative to the two shafts. Both shaft axes are generators of the cone. The
projection of the ellipse along the axis of shaft 2 is a circle. In the position
ϕ1 = 0 the planes of intersection of the cones coincide, and the common
generator ω lies in the shaft axis 2 . In Fig. 13.2 the ellipse associated with
α = 75◦ is shown in this position. For arbitrary α and in every position ϕ1

the fixed cone lies entirely inside the moving cone so that rolling of one cone
on the other is possible without collision. Per revolution of shaft 1 the vector

Fig. 13.3 Herpolhode cone with elliptic cross section between the shaft axes
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ω is sweeping out the fixed cone twice and the moving cone once. This means
that the moving cone is rolling around the fixed cone twice per revolution of
shaft 1 .

The cones are known from Sect. 10.1. The motion studied there is the
inverse of the motion of the central cross. The moving cone of one motion is
the fixed cone of the other and vice versa (compare (13.15) and (13.18) with
(10.19)).

In preparation for Sect. 13.2.1 the angle of rotation ψ1 of the cross relative
to shaft 1 is determined as function of ϕ1 . Arbitrarily, ψ1 = 0 is associated
with ϕ1 = 0 . From (13.12) and (13.13) it follows that

dψ1

dϕ1
=

sinα cosα cosϕ1

1− sin2 α cos2 ϕ1

. (13.19)

With the new variable z = tanϕ1/2 and with the constant k2 = (1 −
sinα)/(1 + sinα) this takes the form

ψ1 = 2 tanα

∫
1− z2

(1 + k2z2)(1 + z2/k2)
dz

=
2 tanα

k2 − 1

[
k2
∫

dz

1 + k2z2
−
∫

dz

1 + z2/k2

]
= tan−1(z/k)− tan−1(kz) = tan−1(tanα sinϕ1) . (13.20)

Hence
tanψ1 = tanα sinϕ1 . (13.21)

This equation is the second Eq.(10.10).

13.2 Fenyi’s Joint

Figure 13.4 is the exploded view of a shaft coupling brought to the author’s
attention by Fenyi2. The coupled shafts 1 and 2 are skew. They are mounted
in frame-fixed bearings not shown in the figure. Let ê12 and ê 2

2 be dual
unit vectors along the shaft axes, and let, furthermore, α̂ = α + ε� be the
constant dual screw angle displacing ê12 into the position ê 2

2 . The projected
angle α and the length � of the common perpendicular of the two shaft
axes are the only parameters of the joint. To each shaft and at right angles
to the shaft two collinear trunnions are rigidly attached. These trunnions
are moving in bearings of the central ring-shaped body. The axes of these
bearings intersect at a right angle at M . In the assembled state the ring
transmits the rotational motion of shaft 1 to shaft 2 . Relative to each pair

2 Stanislo Fenyi, Forschungszentrum Karlsruhe
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Fig. 13.4 Exploded view of Fenyi’s joint

of trunnions the ring executes a screw motion. It is assumed that shaft 1
is in pure rotation relative to the frame (angle of rotation ϕ1 ). In order to
function properly the bearings of shaft 2 must allow shaft 2 to execute a
screw motion composed of a rotation ϕ2 and a translation z . In the special
case α = 0 , the joint is the Oldham coupling shown in Fig. 15.6 . In the
special case � = 0 , the joint is Hooke’s joint shown in Fig. 13.1 , and all
screw displacements are pure rotations.

The following kinematics investigation is based on the principle of trans-
ference. The rotational part of the problem is identical with that of a Hooke’s
joint with parameter α . The principle of transference is applied to Eq.(13.4):

tanϕ2 tanϕ1 = − cosα . (13.22)

The angle α is replaced by α̂ = α + ε� , and the angle ϕ2 is replaced by
ϕ̂2 = ϕ2+εz . The angle ϕ1 is not effected because shaft 1 is, by assumption,
in pure rotation. Thus, the dual form of (13.22) is tan ϕ̂2 tanϕ1 = − cos α̂ .
This is the equation (see (3.31))(

tanϕ2 + ε
z

cos2 ϕ2

)
tanϕ1 = −(cosα− ε� sinα) . (13.23)

The primary part of this equation is Eq.(13.22). The dual part is
(z/ cos2 ϕ2) tanϕ1 = � sinα . Writing 1/ cos2 ϕ2 = 1 + tan2 ϕ2 and using
(13.22) this yields for the translatory displacement of shaft 2 the expression

z = �
sinα sinϕ1 cosϕ1

1− sin2 α cos2 ϕ1

. (13.24)

This is an odd, π-periodic function of ϕ1 . Its maxima and minima of equal
absolute value occur when dz/dϕ1 = 0 . This equation leads to cos2 ϕ1 =
1/(1+ cos2 α) , sin2 ϕ1 = cos2 α/(1+ cos2 α) and sinϕ1 cosϕ1 = cosα/(1+
cos2 α) . When this is substituted into (13.24), the maximum range of the
translatory displacement of shaft 2 is found to be
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zmax − zmin = 2zmax = � tanα . (13.25)

13.2.1 Raccording Axodes of the Central Ring

The central ring is executing a periodic spatial motion without a fixed point.
The periodically moving instantaneous screw axis is the generator of two
closed raccording axodes. In what follows, parameter equations with ϕ1 as
parameter are developed for these axodes. On the frame the basis e1 known
from Fig. 13.1 is fixed. Its origin A is the point where the axis of shaft
1 intersects the first axis of the ring. On the ring the basis n with basis
vectors n1, n2, n3 known from Fig. 13.1 is defined. It has its origin at the
point of intersection M of the two ring axes. By writing the vector from A to
M in the form z1n1 the coordinate z1 = z1(ϕ1) is defined. Let u(ϕ1) be the
perpendicular from A onto the instantaneous screw axis (ISA) of the ring,
and let, furthermore, ω(ϕ1) be the angular velocity of the ring relative to
the frame. With a dimensionless parameter λ the vectors from A and from
M to an arbitrary point P(λ) on the ISA are

rAP(ϕ1, λ) = u(ϕ1) +
λ�

ϕ̇1
ω(ϕ1) ,

rMP(ϕ1, λ) = u(ϕ1) +
λ�

ϕ̇1
ω(ϕ1)− z1(ϕ1)n1 .

⎫⎪⎪⎬
⎪⎪⎭ (13.26)

The coordinates of rAP in basis e1 and the coordinates of rMP in basis n
are the desired parameter equations of the fixed axode and of the moving ax-
ode, respectively. With increasing |λ| the equations of the axodes approach
asymptotically those of the herpolhode cone and of the polhode cone, respec-
tively, of the cross-shaped central body in Hooke’s joint (see Figs. 13.2 and
13.3).

The perpendicular u from A onto the ISA is, according to (9.23),

u =
ω × vA

ω2
(13.27)

with vA being the velocity of the ring-fixed point coinciding with A . This
velocity is vA = ż1n1 . Expressions for z1 and for ż1 are obtained by trans-
ferring Eq.(13.21) into dual form: tan(ψ1 + εz1) = tan(α + ε�) sinϕ1 . Its
dual part is the expression for z1 given below. Differentiation3 yields ż1 .
With the abbreviations C = cosα , S = sinα , c = cosϕ1 , s = sinϕ1 the
expressions are

3 ż1 is also the dual part of the dualized expression for ψ̇1 given in the first Eq.(13.29)
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z1 = �
s

1− S2c2
, ż1 = ϕ̇1�

c(C2 − S2s2)

(1− S2c2)2
. (13.28)

The angular velocity ω of the ring is identical with the angular velocity
of the cross-shaped body in Hooke’s joint. From (13.11), (13.12) and (13.13)
the following expressions are copied:

ψ̇1 = ϕ̇1
SCc

1− S2c2
, ω = ϕ̇1e

1
1 + ψ̇1n1 ,

ω2 = ϕ̇2
1 + ψ̇2

1 = ϕ̇2
1

1− S2c2(1 + S2s2)

(1− S2c2)2
.

⎫⎪⎬
⎪⎭ (13.29)

With these expressions and with vA = ż1n1 (13.27) yields

u = �
c(C2 − S2s2)

1− S2c2(1 + S2s2)
(−s e12 + c e13) . (13.30)

This expression and the expressions for ω and for z1 are substituted into
(13.26). The coordinates of ω in the bases e1 and n are known from (13.16)
and (13.13), respectively. The coordinates of e12 and of e13 in n are calculated
from (13.3) and (13.5). Substitution of all these expressions results in the
desired parameter equations for the axodes:

Fixed axode in basis e11,2,3 : moving axode in basis n1,2,3 :




⎡
⎢⎢⎢⎢⎢⎣
λ

−cs(C2 − S2s2)

1− S2c2(1 + S2s2)
+ λ CSc2

1− S2c2

c2(C2 − S2s2)

1− S2c2(1 + S2s2)
+ λ CScs

1− S2c2

⎤
⎥⎥⎥⎥⎥⎦ , 


⎡
⎢⎢⎢⎢⎢⎣

−s+ λCSc
1− S2c2

−1√
1− S2c2

[
Cc(C2 − S2s2)

1− S2c2(1 + S2s2)
+ λSs

]
1√

1− S2c2

[
Scs(C2 − S2s2)

1− S2c2(1 + S2s2)
− λC

]

⎤
⎥⎥⎥⎥⎥⎦ .

(13.31)

In Fig. 13.5 the axodes for the parameter value α = 60◦ are shown (the
fixed axode dark, the white moving axode in a single position). Each ax-
ode is represented by a net of lines λ = const (−2 ≤ λ ≤ 2 ) and ϕ1 =
const. The moving axode is raccording around the fixed axode twice per
revolution of shaft 1 . For showing the moving axode in a single position
ϕ1 = φ together with the fixed axode the coordinates in the column matrix
on the right-hand side of (13.31) are transformed into basis e1 . The trans-
formation matrix for this purpose is composed of the three columns shown
in (13.3) with ϕ1 = φ . To the resulting coordinates the coordinates of the
vector rAM(φ) = z1(φ)n1(φ) are added (see (13.26)). The raccording motion
is made visible by showing the moving axode in a sequence of pictures over
the full range of values 0 ≤ φ ≤ 2π .
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Fig. 13.5 Raccording axodes of the central ring for α = 60◦ (fixed axode dark)

13.3 Series-Connected Hooke’s Joints

Equation (13.7) has shown that the output angular velocity of Hooke’s joint is
oscillating if the input angular velocity is constant. For this reason the single
Hooke’s joint has a limited range of engineering applications. The present
section is devoted to the following problem. A chain of shafts 1, . . . , n is
interconnected by Hooke’s joints 1, . . . , n− 1 . The shafts labeled 1 and n
are referred to as input shaft and as output shaft, respectively. The entire
system between these two shafts represents a single joint. To be formulated
are necessary and sufficient conditions guaranteeing the angular velocity ratio
ϕ̇n/ϕ̇1 ≡ 1 .

First, the case n = 3 is investigated, i.e., the case of Hooke’s joints 1 and
2 coupling shafts 1 , 2 and 3 . The parameter α of Fig. 13.1 associated with
Hooke’s joint 1 is now called α1 . The parameter α2 associated with Hooke’s
joint 2 is the constant angle between shafts 2 and 3 . Until further below it is
assumed that shafts 1 , 2 and 3 are coplanar. Since they are coplanar, only
two configurations are possible in which shafts 1 and 3 intersect at an angle
which is either α1 + α2 or α1 − α2 . The cross of each of the two Hooke’s
joints is rotating relative to shaft 2 about an axis which is perpendicular to
shaft 2 . Let β2 be the constant angle between these two perpendiculars. It
is a third parameter in addition to α1 and α2 . The sign of β2 is specified
by the definition that ϕ2−β2 is the input angle of the second Hooke’s joint.
Applying (13.4) to both joints results in the relationships

tanϕ2 tanϕ1 = − cosα1 , tanϕ3 tan(ϕ2 − β2) = − cosα2 . (13.32)

In what follows, only the special cases β2 = 0 and β2 = π/2 are considered.
With the identity tanψ = − cot(ψ−π/2) the second Eq.(13.32) is given the
form
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β2 = 0 : cot(ϕ3 − π
2 ) tanϕ2 = cosα2 ,

β2 = π
2 : tanϕ3 cotϕ2 = cosα2 .

}
(13.33)

Combination with the first Eq.(13.32) eliminates ϕ2 . The result is the desired
input-output relationship

β2 = 0 : tan(ϕ3 − π
2 ) tanϕ1 = − cosα1/ cosα2 ,

β2 = π
2 : tanϕ3 tanϕ1 = − cosα1 cosα2 .

}
(13.34)

This is written in the form

tan(ϕ3 − γ3) tanϕ1 = −a3 , a3 =

{
cosα1/ cosα2 (β2 = 0)

cosα1 cosα2 (β2 = π
2 )

(13.35)

with either γ3 = π/2 or γ3 = 0 .
The generalization to chains with n − 1 Hooke’s joints coupling shafts

1 , . . . , n is straight-forward. Again, the shafts are assumed to be coplanar.
With each new shaft i a new shaft parameter βi−1 (either βi−1 = 0 or
βi−1 = π/2 ) and a new joint parameter αi−1 are introduced and with them
a new equation of the general form (13.33) with indices i and i− 1 instead
of 3 and 2 . The angle ϕi−1 is eliminated by combining this equation with
the previous equation of the general form (13.35). The final result for the
input-output relationship for a chain of n− 1 Hooke’s joints coupling shafts
1 , . . . , n has the form

tan(ϕn − γn) tanϕ1 = −an (13.36)

with constants γn and an . The latter is

an = cosα1

n−1∏
i=2

(cosαi)
νi , νi =

{
+1 (βi =

π
2 )

−1 (βi = 0)
(n ≥ 3) . (13.37)

Differentiation with respect to time yields the angular velocity ratio (compare
the transition from (13.4) to (13.7))

ϕ̇n

ϕ̇1
=

an
1− (1− a2n) cos

2 ϕ1
. (13.38)

The desired angular velocity ratio ϕ̇n/ϕ̇1 ≡ 1 is achieved with an = 1 .
This is a condition on the joint parameters α1 , . . . , αn−1 and on the shaft
parameters β2 , . . . , βn−1 .

Example n = 3 : Equation (13.35) shows that a3 = 1 requires β2 = 0
and, in addition, cosα1/ cosα2 = 1 , i.e., |α1| = |α2| . This result was to be
expected. In Figs. 13.6a and b the two possible arrangements with coplanar
shafts 1 , 2 and 3 are shown.
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Fig. 13.6 The two possible couplings of coplanar shafts 1 , 2 , 3 by two Hooke’s joints

resulting in ϕ̇3 ≡ ϕ̇1

At this point the condition of coplanarity of the three shafts is abandoned.
Obviously, the property ϕ̇3 ≡ ϕ̇1 is preserved if the planar system (for exam-
ple, the one in Fig. 13.6a) is subjected to the following three-step operation:
Step 1: In an arbitrary position shaft 2 is cut thus splitting the entire system
into a left part 1 and a right part 2
Step 2: Part 2 including joint 2 and the bearing of shaft 3 is rotated as one
single rigid body about the axis of shaft 2 through an arbitrary angle ψ
Step 3: In the new position ψ the two parts of shaft 2 are rigidly joined
together.

In the special case ψ = π , the new position is the position shown in Fig.
13.6b . If ψ �= π , the axes of shafts 1 and 3 are skew in the new position.

Example n = 4 : Equation (13.37) shows that the condition a4 = 1 is
satisfied in each of the following three cases.
Case a: (β2, β3) = (π2 , 0) and cosα1 cosα2 = cosα3

Case b: (β2, β3) = (0 , 0) and cosα2 cosα3 = cosα1

Case c: (β2, β3) = (0 , π
2 ) and cosα3 cosα1 = cosα2 .

In Fig. 13.7 case (c) is illustrated by a system of coplanar axes with α3 =
α1 = 20◦ and cosα2 = cos2 20◦ (α2 ≈ 28◦). This example shows that
geometrical symmetry of the coupling of shafts 1 and 4 is not a necessary
condition for the identity of input and output angular velocity.

Example n = 5 : The condition a5 = 1 is satisfied by altogether seven dif-
ferent combinations (β2, β3, β4) and by associated conditions on α1 , . . . , α4 .
The details are left to the reader. See also Duditza [4, 7]. In Fig. 13.8 a simple
example with five coplanar axes is shown. It is the combination of two sys-
tems of the type shown in Fig. 13.6b . The parameters are β2 = β3 = β4 = 0
and α1 = α2 = α3 = α4 = α . Shafts 1 , 3 and 5 have identical angular
velocities ϕ̇5 ≡ ϕ̇3 ≡ ϕ̇1 .

In every system with coplanar axes i = 1, . . . , n the property ϕ̇n ≡ ϕ̇1 is
preserved if the three-step operation explained for the case n = 3 is applied
analogously, i.e., by cutting an arbitrary intermediate shaft j = 2 , . . . , n −
1 and by a rigid-body rotation of the part located beyond the cut shaft.
This operation may even be performed repeatedly with different intermediate
shafts.
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Fig. 13.7 Unsymmetrical coupling of coplanar shafts 1 , 2 , 3 , 4 by three Hooke’s joints

resulting in ϕ̇4 ≡ ϕ̇1

Fig. 13.8 Coupling of coplanar shafts 1 , 2 , 3 , 4 , 5 by four Hooke’s joints resulting in
ϕ̇5 ≡ ϕ̇3 ≡ ϕ̇1

13.4 Homokinetic Shaft Couplings

By definition, the coupling of two shafts is homokinetic if it satisfies the
conditions

(A) the axes of the shafts are free to change their relative position and
direction during operation

(B) the angular velocities are identical in every relative position and di-
rection held fixed.
The homokinetic coupling is the mechanism required for positioning and di-
recting the axis of shaft 2 relative to shaft 1 . If both location and direction
of this axis are variable, the mechanism must have the degree of freedom
F = 5 (three coordinates of a single point plus two direction cosines). Cou-
plings of simpler nature, namely, with degree of freedom F = 2 , are required
for shafts the axes of which are permanently intersecting at a fixed point. In
engineering these simpler solutions are fully sufficient. Such coupling cannot
be a serial chain because it would have to be a chain of two intersecting revo-
lute joints. However, this is Hooke’s joint which is known to violate condition
(B). This means that homokinetic couplings must be closed kinematic chains.
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13.4.1 Couplings With a Spherical Joint

Permanent intersection of the axes of shafts 1 and 2 is most easily achieved
by means of a spherical joint. According to Grübler’s Eq.(4.4) a simple closed
chain with a spherical joint must have five additional joint variables in order
to have the degree of freedom F = 2 . Let Σ be the plane which is (i) bisect-
ing the angle between the two shafts and (ii) normal to the plane spanned
by the shafts. Conditions (A) and (B) are both satisfied if in every relative
position of the shafts the closed chain is both structurally and dimensionally
symmetric with respect to Σ . If only revolute joints R , prismatic joints P
and combinations of these two (cylindrical joints C , spherical joints S and
planar joints E ) are used, altogether eight five-variable chains can be formed
which are structurally symmetric with respect to a central joint. These are
the chains RRRRR , RRPRR , PRRRP , RPRPR , RSR , PSP , CRC
and RER . The central joint is indicated by a boldface letter. If the central
joint is a revolute R , its axis must lie in Σ . If it is a prismatic joint P , it
must be perpendicular to Σ . If it is a planar joint E , the plane E must be
normal to Σ . Every one of the eight mechanisms has been used in patented
shaft couplings. Detailed documentations see in Kutzbach [10, 11], Duditza
[5] and Seherr-Thoss/Schmelz/Aucktor [17]. In most engineering realizations
adjacent joint axes are either parallel or at right angles. This is not a nec-
essary condition. The only necessary condition, in addition to symmetry, is
that the shafts must have the freedom to rotate full cycle.

A homokinetic coupling based on the chain RSR was shown in Fig. 4.11.
A coupling based on the chain CRC is shown schematically in Fig. 13.9a .
It was known to Koenigs [9] already. The patented engineering realization is
known as Hebson coupling. A single chain CRC suffices. The second chain
CRC is added in order to diminish dynamical unbalance (total balance is
achieved when shafts 1 and 2 are collinear). In a Hebson coupling a larger
number of chains is evenly distributed around the cylinders. The joints R in
these chains may be replaced by spherical joints since the additional degrees
of freedom thus introduced are passive. With this coupling inclination angles
up to 90◦ are possible.

The so-called Tracta coupling shown schematically in Fig. 13.9b is based
on the chain RER . The chain is encapsulated in two concentric spherical
shells which together represent the spherical joint connecting shafts 1 and
2 . The axes of both revolutes R are in the plane E . Each revolute axis
intersects one shaft axis orthogonally. Rotations in these revolutes keep plane
E normal to plane Σ independent of the angular position ϕ of the shafts. In
the figure plane E is shown in the positions ϕ = 0, π and ϕ = ±π/2 . The
Tracta coupling is widely used in the automotive field because of the following
properties: Inclination angles up to 50◦ ; compact form; simple assembly; no
loss of lubrication; large wear-resistant contact surfaces.
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Fig. 13.9 Hebson coupling (a) and Tracta coupling (b)

In the homokinetic coupling shown in Fig. 13.10 two revolutes on either
side of plane Σ constitute the central cross of a Hooke’s joint each connecting
one shaft to the intermediate body 3 . For this reason the coupling is referred
to as bicardanic coupling. Body 3 is a cylinder with the axis 01-02 inside
of which centrally placed rings 4 provide a planar joint in plane Σ for the
smaller circular disc 5 . Normal to this disc another hollow cylinder 6 is
rigidly connected. This cylinder is guide for two spherical bodies fixed at the
ends of shafts 1 and 2 at equal distances from 01 and from 02 , respectively.
The entire mechanism connecting shafts 1 and 2 is homokinetic. The point
of intersection of the shafts is not fixed on the shafts, but constrained to lie
in Σ . This type of coupling finds applications in low-speed vehicles such as
agricultural machines. For high-speed vehicles it is not suitable because the
nonuniform motion of the coupling mechanism is a source of vibrations.

Duditza [4, 5] and Kutzbach [10] describe various other forms of bicardanic
homokinetic couplings.

Fig. 13.10 Bicardanic homokinetic coupling
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13.4.2 Couplings With Three Parallel Serial Chains

In the shaft couplings described in the previous section permanent symmetry
of a five-d.o.f. chain with respect to plane Σ is achieved by a central spher-
ical joint S closing the chain. The same constraints that are exerted by the
spherical joint S can be exerted by placing two additional five-d.o.f. chains
parallel to the first one. For reasons of dynamic balancing and of simplicity
of design three identical chains are placed at intervals of 120◦. The so-called
Clemens coupling shown schematically in Fig. 13.11 is derived from Fig. 4.11.
The serial chain R1S2R2 of this coupling is placed three times in parallel. On
each shaft the three revolute axes fixed on the shaft are placed 120◦ apart.
The three spherical joints are permanently in the bisecting plane Σ .

Fig. 13.11 Clemens coupling with three identical parallel chains RSR

The shafts 1 and 2 in Fig. 13.12 are connected to the sides of the rigid
isosceles triangle (01,C,02) of base length 2� and apex angle 2β by two pairs
of revolutes R1 , R2 and R3 , R4 . At 01 the axis of R1 intersects both shaft
1 and R2 orthogonally, and at 02 the axis of R4 intersects both shaft 2 and
R3 orthogonally. In the figure the symmetrical position is shown in which the
shafts intersect in the bisecting plane Σ normal to 0102 and passing through
C . When the shafts are held fixed in this position, rotation of the triangle
about the line 0102 causes both shafts to rotate through identical angles ϕ .
The chain R1R2R3R4 is one out of three identical chains sharing the line
0102 and the plane Σ . The entire shaft coupling thus described is known as
Unitru coupling. It is homokinetic because it allows changing the direction
of shaft 2 while maintaining symmetry with respect to Σ .

In what follows, it is shown under which condition on the design parameter
β , for a given inclination angle α of the shafts, the triangle and the shafts
are free to rotate full cycle. Definition: The angle of rotation ϕ of the shafts
and the angle of rotation ψ of the triangle are zero when the shafts as well as
the triangle are in the plane of the drawing (the frame-fixed x, y-plane). In
this position the revolutes R1 and R4 are parallel to the z-axis. The point
P on the axis of R4 at the distance � from 02 is an auxiliary point. With
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Fig. 13.12 Single serial chain of a Unitru coupling

the altitude � cotβ of the triangle the x, y, z-coordinates of C and P are

C(ψ, β) : �[0 cosψ cotβ sinψ cotβ] ,

P (ϕ, γ) : �[1− sinϕ cos γ − sinϕ sin γ cosϕ ] .

}
(13.39)

The distance between C and P is �
√

2 + cot2 β independent of ψ and ϕ .
This condition yields the equation

cosψ sinϕ sin γ − sinψ cosϕ = tanβ sinϕ cos γ . (13.40)

It has the form A cosψ + B sinψ = R . The triangle can rotate full cycle if
A2 +B2 −R2 ≥ 0 for 0 ≤ ϕ ≤ 2π . This is the condition

1− cos2 γ

cos2 β
sin2 ϕ ≥ 0 . (13.41)

This requires cosβ ≥ cos γ or β ≤ γ ≤ π/2 . The inclination angle between
the two shafts is α = π − 2γ . Thus, the condition is 2β ≤ π − α . With
2β = 90◦ inclination angles α up to 90◦ are possible.

13.4.3 Ball-in-Track Joints

The symmetrical five-d.o.f. chains essential for all previously described shaft
couplings have the disadvantage of being structurally complex. Much simpler
realizations are shown in Figs. 13.13a and b . The shafts in Fig. 13.13a are
connected by a spherical joint. The shafts as well as the symmetrical curves
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of arbitrary shape drawn in thick lines are in the plane of the drawing. Imag-
ine these curves to be rigid and rigidly attached to the shafts. Due to the
symmetry the point of contact is in the bisecting plane Σ . Both symmetry
with respect to and contact in the bisecting plane are maintained when the
inclination angle α between the shafts is changed and also, when both shafts
are rotated through arbitrary identical angles into positions in which the two
curves are no longer coplanar. The sliding point contact of two curves con-
stitutes a five-d.o.f. joint. The symmetrical closed chain formed by this joint
in parallel to the spherical joint represents a homokinetic coupling of shafts
1 and 2 . However, since point contact is transmitting force from one shaft
to the other in only one sense of direction of rotation, a second pair of rigid
curves for the opposite sense of direction is necessary. This is the pair drawn
in dashed lines in the same plane. Repeating the arguments at the beginning
of the previous section the shaft coupling continues to be homokinetic if the
central spherical joint is replaced by two additional sets of curves in planes
placed at intervals of 120◦ . Engineering realizations see in Kutzbach [10].
The contacting curves are edges of bodies.

Single-point contact of curves is unsatisfactory. A much better design is the
so-called ball-in-track joint shown in Fig. 13.13b . The role of the contact point
is played by the center C of a spherical ball of arbitrary diameter. Motion
of C relative to the shafts along prescribed symmetric curves is realized by
appropriately curved shallow grooves referred to as tracks in which the ball is
constrained to move. Each track is rigidly attached to one of the shafts. The
element composed of a ball enclosed between two crossing tracks is called
ball-in-track joint. It is a five-d.o.f. joint. Homokinetic shaft couplings with
ball-in-track joints have many advantages such as small size, small dynamic
unbalance and distribution of contact forces among a large number of balls.
However, there are disadvantages, too. Problems arise from the fact that the
motion of balls in crossing tracks is not rolling, but sliding and boring with
the possibility of jamming due to friction. This aspect of kinematics see in
Phillips/Winter [14].

The so-called Devos coupling shown schematically in Fig. 13.14 has two
balls-in-tracks in parallel to a spherical joint S . The tracks are symmetrically
located cylinders. In order to keep the centers of the balls in the bisecting
plane Σ the balls are also constrained to move along the cylindrical pin
3 which is rigidly attached to the sphere of the joint S . This implies that
the sphere of the joint S cannot be rigidly connected to any of the two
shafts. Details of design not shown in the figure allow the shaft coupling to
be assembled under prestress in such a way that its elements are firmly held
together.

Figure 13.15 shows the essential elements of a shaft coupling without cen-
tral spherical joint and with balls in torus-shaped tracks in the particular
position when the circular lines of contact between ball and both tori (indi-
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Fig. 13.13 Homokinetic coupling with contacting symmetrical curves (a) and with a

ball-in-track joint (b)

Fig. 13.14 Devos coupling with balls in cylindrical tracks

Fig. 13.15 Homokinetic shaft coupling with balls in torus-shaped tracks
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cated by the dashed circles) are in the plane of the drawing4. Let this be the
position ϕ = 0 of the shafts. The radii r1 and r2 of these circles satisfy the
condition r2 − r1 = 2ρ where ρ is the radius of the balls. This has the effect
that the trajectory of the center C of the ball relative to shaft 1 is the circle
of radius r = r1 + ρ about 01 and that the trajectory of C relative to shaft
2 is the circle of the same radius r about 02 . In the position ϕ = 0 these
circles are symmetric with respect to and intersecting in the bisecting plane
Σ . The pair of balls shown in the figure is one out of three or more pairs
moving in tracks which are placed at equal angular intervals. After what has
been said in the context of Figs. 13.13a,b the symmetry properties prove that
the shaft coupling is homokinetic. Not only in the position ϕ = 0 , but in
arbitrary positions ϕ �= 0 point C is in the plane Σ at equal distances r
from 01 and from 02 . Hence the trajectory of C relative to the frame is a
circle in Σ with the center at the midpoint between 01 and 02 . The radius
of this circle depends on α .

The position of C in the tracks is described by the angle β = �(001C) .
It is a function ϕ . The extremal values β1 and β2 are obtained from the
condition that the x, y-coordinates of C satisfy the equation x = y tanα/2 .
This is the set of equations

h− r cosβ1,2 = ±r sinβ1,2 tan
α

2
. (13.42)

Solving for sinβ1,2 results in the formulas

sinβ1,2 =
(h/r) tanα/2±

√
1 + tan2 α/2− (h/r)2

1 + tan2 α/2
. (13.43)

An animation of the motion is on display in Wikipedia Homokinetisches Ge-
lenk.

13.4.4 Tripod Joint

The tripod joint shown in Fig. 13.16 is another ball-in-track coupling. Its
kinematics was investigated by Roethlisberger/Aldrich [16], Duditza [5], Du-
ditza/Diaconescu [6], Durum [8], Orain [12, 13] and Akbil/Lee [1, 2]. In what
follows, an elementary analysis is presented. Imagine that in the fixed carte-
sian x1, y1, z1-system of Fig. 13.17 the shaft labeled 1 is rotating about the
z1-axis. The rotation angle is ϕ . A point Q fixed on the shaft at radius
a is moving on a circle. In the position ϕ of the shaft Q has the coordi-
nates x1(ϕ) = a cosϕ , y1(ϕ) = a sinϕ . The circle and this point Q(ϕ) are

4 The dimensions chosen in the figure are unrealistic because they allow only small varia-
tions of the angle α
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Fig. 13.16 Tripod joint. Balls sliding on the rays of the star-shaped tripod 2 are guided

in tracks fixed on shaft 1

projected parallel to the z1-axis onto the x, y-plane of another fixed x, y, z-
system which is inclined against the x1, y1, z1-system by an angle α about
the x1-axis. The projection of the circle is the ellipse with semi-axes a and
b = a/ cosα . Point Q(ϕ) is projected into the point P(ϕ) with coordinates

x(ϕ) = a cosϕ , y(ϕ) = b sinϕ . (13.44)

Let, in the same x, y-plane, x0(ϕ) and y0(ϕ) be the coordinates of another
point P0(ϕ) , i.e., of another curve. To be determined are all curves P0(ϕ)
having the property that the angle between the line P0(ϕ)P(ϕ) and the
x-axis is identical with ϕ . This is the condition

b sinϕ− y0(ϕ)

a cosϕ− x0(ϕ)
≡ tanϕ . (13.45)

The ansatz
x0(ϕ) = ξ(ϕ) cosϕ , y0(ϕ) = η(ϕ) sinϕ (13.46)

results in the condition

Fig. 13.17 Point Q fixed at radius a on the rotating shaft 1 (rotation angle ϕ ) is

projected parallel to the z1-axis into the point P(ϕ) in the fixed x, y-plane. Another point
P0(ϕ) in the x, y-plane
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η(ϕ)− ξ(ϕ) ≡ b− a . (13.47)

This condition is satisfied by infinitely many functions, for example, by the
family of functions ξ(ϕ) = −r(cos2 ϕ + c1) , η(ϕ) = r(sin2 ϕ + c2) with
constants r , c1 , c2 satisfying the constraint equation r(1+c1+c2) = b−a .
In the special case c1 = c2 = −3/4 , r = −2(b− a) , Eqs.(13.46) are

x0(ϕ) = � cos 3ϕ , y0(ϕ) = � sin 3ϕ ,

� = −r

4
=

b− a

2
= a

1− cosα

2 cosα
.

⎫⎬
⎭ (13.48)

When shaft 1 is rotating with angular velocity ϕ̇ , P0(ϕ) is moving with
angular velocity 3ϕ̇ on the circle with radius � about 0 , and the line
P0(ϕ)P(ϕ) is rotating with angular velocity ϕ̇ . Examples: � ≈ 0.08a for
α = 30◦ , � ≈ 0.21a for α = 45◦ , � = 0.5a for α = 60◦ . The Taylor formula
is �/a ≈ α2/4 .

Imagine that on the circle of radius a fixed on shaft 1 not a single point
Q , but three points Q1 , Q2 , Q3 are marked 120◦ apart. The projections
of these points are three points Pi(ϕ) (i = 1, 2, 3) on the ellipse. For each
one of these points (13.48) yields the same point P0(ϕ) since 3 · 120◦ = 2π .
From this it follows that the rays P0(ϕ)Pi(ϕ) (i = 1, 2, 3) emanating from
P0(ϕ) form a rigid 120◦-star with the center at P0 . This star is rotating with
angular velocity ϕ̇ while its center P0 is moving on the circle of radius �
with angular velocity 3ϕ̇ . The lines Qi(ϕ)Pi(ϕ) (i = 1, 2, 3) are parallel to
the axis of shaft 1 and fixed on shaft 1 . In the tripod joint shown in Fig.
13.16 the star, the three lines Qi(ϕ)Pi(ϕ) (i = 1, 2, 3) and the permanent
intersection of each ray with the associated line at Pi are materially realized.
Each ray is guide for a ball which is free to move along the ray. The associated
line fixed on shaft 1 is the axis of a cylinder in which the ball is also free to
move. Orthogonal to the star and through its center P0 a shaft 2 is rigidly
attached to the star. The star and this shaft together constitute the tripod
giving the joint its name. The tripod has the same angular velocity ϕ̇ shaft
1 has independent of the direction of shaft 2 relative to shaft 1 . It has the
additional degree of freedom of translation along the axis of shaft 1 . In spite
of these properties the tripod joint is not homokinetic because shaft 2 cannot
be held fixed due to its motion on a cylinder of radius � . By means of an
Oldham coupling the motion of shaft 2 can be transmitted to a shaft 3 the
axis of which is the z-axis. This combination tripod joint – Oldham coupling
is a homokinetic coupling of shafts 1 and 3 .

If a point fixed on shaft 2 at a distance � � a from P0 is coupled to the z-
axis by a spherical joint S , the kinematics of the tripod is slightly changed.
An analysis made by Duditza and Diaconescu [5, 6] leads to the following
first-order approximation. Three times per revolution of shaft 1 the axis of
shaft 2 is moving on a circular cone with the apex at S and with the semi-
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vertex angle �/� � 1 , and the angular velocity of the tripod about shaft 2
is approximately ϕ̇(1−A cos 3ϕ) with A = 3

2 (a/�) tanα tan2 α/2 � 1 .
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7. Duditza F, Diaconescu D, Böhm C, Saulescu R (2003) Transmisii cardanice. Editura
Transilvania Expres 2003

8. Durum M M (1975) Kinematic properties of tripode joints. J.Eng.Ind.97B:708–713
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Chapter 14

Displacements in a Plane

Subject of this chapter are relationships between positions of a plane Σ in
a reference plane Σ0 . Motions leading from one position to another are not
considered. Displacements in a plane are translation, rotation, reflection and
resultants of these three. All of them are special cases of the spatial displace-
ments investigated in Chaps. 1 and 3 . Consequently, theorems governing the
latter remain valid, normally in simplified form. In addition, special theorems
exist which are valid for planar displacements only.
Literature: Koenigs [10, 11], Schoenflies/Grübler [15], Bereis [1], Blaschke
/Müller [2], Wunderlich [16].

14.1 Complex Numbers in Planar Kinematics

In planar kinematics vector equations can be replaced by equations written in
terms of complex numbers. In what follows, these two formulations are com-
pared. The complex plane is the e1, e2-plane of a cartesian e1, e2, e3-system
with origin 0 . The real axis is the e1-axis. Let a and b be the cartesian
coordinates of a point P in the plane (Fig. 14.1). The position vector of this
point is denoted r = ae1 + be2 . The complex number representing the point
is denoted z = a+ i b . It can be interpreted as directed object pointing from
0 to P . In contrast to r it is not a vector. The conjugate of z is defined
to be z = a− i b . It is easy to verify the following correspondences between
vectors and complex numbers:

r2 = a2 + b2 , zz = a2 + b2 , (14.1)

r1 + r2 = (a1 + a2)e1 + (b1 + b2)e2 , z1 + z2 = (a1 + a2) + i (b1 + b2) , (14.2)

r1 · r2 = a1a2 + b1b2 , 1
2
(z1z2 + z1z2) = a1a2 + b1b2 , (14.3)

r1 × r2 = (a1b2 − a2b1)e3 , 1
2
(z1z2 − z1z2) = i (a1b2 − a2b1) . (14.4)
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Fig. 14.1 Complex number

From the last two correspondences the following statements are deduced.

z1 and z2 are mutually orthogonal if z1z2 = −z1z2
z1 and z2 are collinear (equal or opposite direction) if z1z2 = z1z2 .

}
(14.5)

These conditions can also be formulated as follows:

z1 and z2 are mutually orthogonal if Re(z1z2) = 0

z1 and z2 are collinear (equal or opposite direction) if Im(z1z2) = 0 .

}
(14.6)

In conclusion it can be said that all vector algebraic operations can be ex-
pressed in terms of complex numbers. Complex numbers have additional
advantages which make them more powerful than vectors. For one thing,
division is possible:

z1
z2

=
z1z2
z2z2

=
z1z2

a22 + b22
. (14.7)

The most important advantage is that a complex number z = a+ i b can be
expressed in exponential form as z = |z|eiϕ where |z| = √

a2 + b2 and ϕ
are polar coordinates (see Fig. 14.1). The angle is also referred to as argument
of z : ϕ = Arg z . The conversion from one form to the other is achieved by
Euler’s formula for a complex number of absolute value 1 :

eiϕ = cosϕ+ i sinϕ . (14.8)

The exponential form is used for multiplication and for division:

z1z2 = |z1||z2|ei (ϕ1+ϕ2) . (14.9)

This formula shows that multiplication has the effect of stretch-rotation. The
absolute values are multiplied, and the angles are summed. The conjugate of
z = |z|eiϕ is z = |z|e−iϕ . From this it follows that z/z = ei 2ϕ and hence

ϕ =
1

2i
ln

z

z
. (14.10)
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Example 1: In Fig. 14.2 the vector rB is uniquely determined by the coor-
dinates x = 4 , y = 3 of the vector rA , by the angle α and by the absolute
value |rB| = 7 . The calculation of the coordinates of rB by methods of
vector algebra is cumbersome. In terms of the complex numbers rA and rB

the solution is much simpler:

rB =
7

5
eiα rA =

7

5
(cosα+ i sinα)(4 + 3i)

=
7

5
(4 cosα− 3 sinα) + i

7

5
(3 cosα+ 4 sinα) . (14.11)

End of example.

Fig. 14.2 Determination of rB from x , y , α and |rB|

Example 2: Let ri = xi + i yi (i = 1, 2) be two complex numbers. Under
what condition does a counterclockwise rotation of r1 through the angle α
produce a complex number parallel to r2 ?
Solution: The condition is Im(eiαr1r2) = 0 or

Im
[
(cosα+ i sinα)(x1 + i y1)(x2 − i y2)

]
= (x1x2 + y1y2) sinα− (x1y2 − y1x2) cosα = 0 . (14.12)

End of example.

Example 3: z(t) = r(t)eiϕ(t) with real functions r(t) ≥ 0 and ϕ(t) is
the time-dependent complex number representing a point in planar motion
along a trajectory in the complex plane. The quantities r(t) and ϕ(t) are
polar coordinates. The first and the second time derivatives yield for the
velocity and for the acceleration the expressions v(t) = ż = (ṙ + i ϕ̇r)eiϕ(t)

and a(t) = z̈ = [r̈− ϕ̇2r+ i (ϕ̈r+ 2ϕ̇ṙ)]eiϕ(t) , respectively. The development
of the corresponding vector equations is more complicated. These equations
read v(t) = ṙer + ϕ̇ret and a(t) = (r̈ − ϕ̇2r)er + (ϕ̈r + 2ϕ̇ṙ)et with unit
vectors er (radial) and et (tangential). End of example.
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14.1.1 Curvature of a Plane Curve

Let r(t) be the complex representation of a plane curve. The real parameter
t is time if r(t) is the trajectory of a moving point. What follows, is valid,
however, also for curves which have nothing to do with motion such as geo-
metrical ornaments. In such cases t does not represent time. The derivative
with respect to t is denoted r′ = dr/dt .

The chord r(t+Δt)− r(t) divided by Δt converges in the limit Δt → 0
towards the complex number r′ having the direction of the tangent. Let n(t)
be the normal to the curve at the point r(t) . It has the direction of r′i . With
a real parameter λ this normal has the complex form

ζ = r + λr′i . (14.13)

From this equation and from the conjugate complex equation ζ̄ = r̄ − λr̄′i
the parameter λ is eliminated. This produces for the normal n(t) of the
curve the parameter-free representation

(ζ − r)r̄′ + (ζ̄ − r̄)r′ = 0 . (14.14)

In Fig. 14.3 the normals n(t) and n(t+Δt) are shown. In the limit Δt → 0
their point of intersection converges toward the center of curvature M of the
curve for the point r(t) . Hence M is at the intersection of n and n′ . The
equation of n′ is obtained by differentiating (14.14):

(ζ − r)r̄′′ + (ζ̄ − r̄)r′′ = 2r′r̄′ . (14.15)

Let ζM be the complex number pointing to the center of curvature. It is
obtained by multiplying (14.14) by r′′ , (14.15) by r′ and by taking the
difference:

ζM = r + 2r′
r′r̄′

r′r̄′′ − r̄′r′′
. (14.16)

The absolute value of the second term represents the radius of the circle of
curvature of the curve at the point r(t) . Its inverse is the curvature κ . The
curvature is (note the factor i in (14.13) and the equation |r′| = (r′r′)1/2 )

κ =
1

2i

r̄′r′′ − r′r̄′′

(r′r̄′)3/2
. (14.17)

The same expression can also be found as follows. According to (14.10) the
angle Arg(r′) of the tangent r′ against the real axis is

Arg(r′) =
1

2i
ln

r′

r′
. (14.18)
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Fig. 14.3 Normals n(t) and n(t+Δt) of a curve and center of curvature M

The curvature is the derivative of this angle with respect to the arc length s
of the curve:

κ =
d

ds
Arg(r′) =

1

2i

d

ds

(
ln

r′

r′
)
. (14.19)

The arc element ds satisfies the equation

(ds)2 = |dr|2 = |r′dt|2 = r′r′(dt)2 . (14.20)

This yields the formula

d

ds
=

d

dt

dt

ds
=

1

(r′ r′)1/2
d

dt
. (14.21)

Application to (14.19) yields for the curvature again the expression (14.17).
A point of stationary curvature of a curve is called vertex. An ellipse, for

example, has four vertices. Every point of a circle is a vertex. The vertex
condition dκ/dt = 0 is the equation

2r′r′(r′r′′′ − r′r′′′)− 3(r′r′′ − r′r′′)(r′r′′ + r′r′′) = 0 . (14.22)

14.2 Elementary Displacements

The plane Σ positions of which are investigated is represented by a triangle
fixed inΣ . In Fig. 14.4 this triangle is shown in three positions (A1,A2,A3) ,
(A′

1,A
′
2,A

′
3) and (A′′

1 ,A
′′
2 ,A

′′
3) in the reference plane Σ0 . Every position can

be produced from every other position by a displacement. Arrows indicate
the sense of the triangles (clockwise or counterclockwise). The sense of the
triangle (A′

1,A
′
2,A

′
3) is equal to that of the triangle (A1,A2,A3) , whereas

the sense of the triangle (A′′
1 ,A

′′
2 ,A

′′
3) is opposite. This shows that there are

displacements preserving the sense and others reversing the sense.
We begin by defining three elementary displacements called translation,

rotation and reflection. During a translation, abbreviated T , every point
experiences the same translatory displacement t . A rotation, abbreviated C ,
is carried out about a fixed point called pole P through an angle ϕ (positive
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Fig. 14.4 Triangle in three posi-

tions in the reference plane Σ0 .
Arrows indicate the sense (clock-
wise or counterclockwise)

Fig. 14.5 Triangle in its original

position (A1,A2,A3) and following a
translatory displacement t , a rotation
about P and reflection in the line g

counterclockwise). A reflection in a line g , abbreviated S , produces a mirror
image the line g being the mirror. The triangle (A1,A2,A3) in Fig. 14.5 is
used for demonstrating a translatory displacement t , rotation about a pole P
and reflection in a line g . Translation and rotation are both sense-preserving
displacements. From Sect. 1.16 it is known that reflection is a sense-reversing
displacement.

The three elementary displacements are formulated analytically as follows.
The reference plane Σ0 is interpreted as complex plane. Let z be the complex
number representing an arbitrary point of Σ prior to the displacement, and
let z′ be the complex number representing the same point in its position
after the displacement. The equivalent vectors are z and z′ (so, the symbol
′ does not indicate differentiation). Relationships between z′ and z for the
three elementary displacements are deduced from Figs. 14.6a,b,c .

Translation T : Let t be the complex number representing the translatory
displacement as is shown in Fig. 14.6a . Then

z′ = z + t . (14.23)

The equivalent vector equation is

z′ = z+ t . (14.24)

The inverse of the translation t is the translation −t .

Rotation C : Let p be the complex number locating the pole P as is shown
in Fig. 14.6b . Then z′ − p = eiϕ(z − p) and, consequently,

z′ = p+ w(z − p) with w = eiϕ = cosϕ+ i sinϕ . (14.25)

The trivial case ϕ = 0 is characterized by w = 1 and the case ϕ = π by
w = −1 . The general expression for w yields
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1− w = 2 sin
ϕ

2

(
sin

ϕ

2
− i cos

ϕ

2

)
= 2 sin

ϕ

2
exp

[
i (
ϕ

2
− π

2
)
]
, (14.26)

1

1− w
=

1

2

(
1 + i cot

ϕ

2

)
,

w

1− w
=

1

2

(
− 1 + i cot

ϕ

2

)
. (14.27)

The inverse of the rotation with pole P and with rotation angle ϕ is the
rotation about the same pole P with the rotation angle −ϕ .

Reflection S : As is shown in Fig. 14.6c the reflecting line is represented in
the form a+λb with complex numbers a and b and with the real parameter
λ . Proposition: The desired relationship between z′ and z is

z′ = a+
b

b
(z − a) . (14.28)

Proof: First, the reflecting line a + λb is mapped onto the real axis by the
translation −a followed by the rotation associated with multiplication by b .
Through these operations the points z and z′ are mapped into the points
b(z − a) and b(z′ − a) , respectively. These new points are reflections of
each other in the real axis. From this it follows that b(z′ − a) is the complex
conjugate of b(z − a) . This establishes the equation b(z′ − a) = b(z −
a) . Resolution for z′ produces (14.28). End of proof. The equivalent vector
equation is Eq.(1.276):

z′ = (I− 2mm) · z+ 2r0 (14.29)

with the unit vector m normal to the reflecting line (sense of direction arbi-
trary) and with the perpendicular r0 from the origin onto the reflecting line.
The inverse of the reflection in a line is this reflection itself. Thus, reflections
are involutoric.

Fig. 14.6 Complex numbers z and z′ before and after translation (a), rotation (b) and
reflection (c)
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14.3 Resultant Displacements. Commutativity
Conditions

Resultants of two displacements are written as products, for example T2T1

as resultant of a translation T1 followed by another translation T2 and
TC as resultant of a rotation C followed by a translation T . Altogether
nine resultants have to be investigated, namely, T2T1 , C2C1 , S2S1 ,
TS , ST , SC , CS , TC , CT . From the fact that S is the only sense-
reversing elementary displacement it follows that TS , ST , SC and CS are
sense-reversing whereas T2T1 , C2C1 , S2S1 , TC and CT are sense-
preserving. The investigation to come reveals, among other things, condi-
tions for products to be commutative, for example conditions for the equality
TS=ST .

The resultant T2T1 : The equivalent Eqs.(14.23) and (14.24) make the state-
ment

z′ = z + t1 + t2 , z′ = z+ t1 + t2 . (14.30)

The resultant is a translation which is calculated by the parallelogram rule.
The resultant is unconditionally commutative: T2T1 =T1T2 . Moreover,
translations form a group. Indeed, the resultant is itself a translation; the as-
sociative law is valid; the unit element exists, namely, the translation t = 0 ,
and the inverse element exists, namely, the translation −t .

The resultant S2S1 : For reflections the vector formulation (14.29) is more
convenient than the complex formulation (14.28). In Sect. 1.16 the same
formulation was used for reflections in an arbitrarily oriented plane. In the
present planar case, reflecting planes are orthogonal to the plane Σ0 . Their
intersections with Σ0 are the reflecting lines. Theorems 1.8 and 1.7 on the
resultant S2S1 remain valid in the following simplified forms.

Theorem 14.1. The resultant of two successive reflections in nonparallel
lines with unit normal vectors m1 (first reflection) and m2 enclosing the
angle 0 < ϕ < π is a rotation through the angle 2ϕ about the axis
m1 × m2/|m1 × m2| normal to Σ0 through the point P of intersection
of the two reflecting lines. The resultant rotation does not change when the
two lines are rotated about their point of intersection with the angle ϕ kept
constant. The sense of rotation is reversed when the order of reflections is
changed. In the special case of mutually perpendicular lines (ϕ = π/2 , 180◦-
rotation), the final position is independent of the order of reflections.

Theorem 14.2. The resultant displacement z′ − z caused by two successive
reflections in parallel lines with normal vectors r01 = r01m (first reflection)
and r02 = r02m is the translation 2(r02 − r01) by twice the distance of the
two lines in the direction normal to the lines. The translation changes sign
when the order of reflections is changed.
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Fig. 14.7 Generation of z′ from z by two successive reflections in lines g1 (first reflec-

tion) and g2 and the resulting rotation about the pole P

The two successive reflections and the rotation about P referred to in Theo-
rem 14.1 are shown in Fig. 14.7 . According to the last sentence in this theorem
two successive reflections are commutative if and only if the reflecting lines
g1 and g2 are orthogonal.

The resultants TS and ST : Let e be the unit vector in the direction of the
reflecting line (sense of direction arbitrary). The translation is

t = mm · t+ ee · t (m ·m = e · e = 1 , m · e = 0 ) . (14.31)

For the two resultant displacements the relationships between the final posi-
tion z′ and the initial position z are according to (14.29)

TS : z′ = (I− 2mm) · z+ 2r0 + t ,

ST : z′ = (I− 2mm) · (z+ t) + 2r0 .

}
(14.32)

With (14.31) these relationships become

TS : z′ = (I− 2mm) · z+ 2(r0 +
1
2 mm · t) + ee · t ,

ST : z′ = (I− 2mm) · z+ 2(r0 − 1
2 mm · t) + ee · t .

}
(14.33)

Let g denote the reflecting line specified by the perpendicular r0 . The vectors
(r0 +

1
2 mm · t) and (r0 − 1

2 mm · t) have both the direction of r0 . They
are the perpendiculars from the origin onto two lines parallel to and at equal
distances from g . Comparison with the first Eq.(14.32) for the resultant TS
shows that each equation expresses the resultant of a reflection about a line
parallel to g followed by the translation ee · t along g .

Definition: The special resultant displacement TS of a reflection followed
by a translation along the reflecting line is called glide reflection. The results
obtained are summarized as follows. The resultants TS and ST are different
glide reflections. The difference is that their reflecting lines are parallel to
and at equal distances from g . Their translatory displacements along the
reflecting lines are equal. Identity of the two resultants, i.e., commutativity
TS=ST , requires that m · t = 0 .
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A glide reflection is the same independent of whether the reflection is car-
ried out before or after the translation. It has the property that the midpoint
(z+ z′)/2 of the displacement lies on the reflecting line, and that the trans-
lation (positive in the direction of e ) is t = e · (z′ − z) . A glide reflection
is a screw displacement with rotation angle π . For this reason the analytical
methods developed in Chap. 3 are applicable. In the theory of planar dis-
placements glide reflections are as important as translations and rotations.

Theorem 14.3. Every sense-reversing displacement is either a reflection or
a glide reflection. Every sense-preserving displacement is either a translation
or a rotation.

Proof: Let zi (i = 1, 2, 3) be the initial positions of the corner points of
a triangle, and let z′i (i = 1, 2, 3) be the final positions. First, the case is
considered that the displacement is sense-reversing. In this case, two out of
the three midpoints (zi + z′i)/2 , say (z1 + z′1)/2 and (z2 + z′2)/2 , are
different. They define a line g . It is an elementary task to prove that also
(z3 + z′3)/2 is located on g . Hint: Consider, first, the special triangle the
third corner z3 of which is located on g at the midpoint (z1+ z′1)/2 . Then
it follows from the rigid-body property that also z′3 is located on g , and
that, furthermore, the three translations e · (z′i − zi) (i = 1, 2, 3) are equal.
Next, a triangle with an arbitrarily located corner z3 is considered which is
rigidly connected to the previously considered special triangle. Using, again,
the rigid-body property and elementary geometry it is shown that also in this
case the midpoint (z3 + z′3)/2 is located on g , and that, furthermore, the
translation e · (z′3 − z3) is the same as before. If the identical translations
e · (z′i − zi) (i = 1, 2, 3) are zero, the displacement is a reflection in g . This
ends the proof of the first part of the theorem.

Next, the case is considered that the displacement is sense-preserving. In
this case, the three midpoints (zi+z′i)/2 (i = 1, 2, 3) are not collinear, so that
the displacement is not a glide reflection. If the three displacements z′i − zi
(i = 1, 2, 3) are identical, the displacement is a translation by this vector
difference. Otherwise it is a rotation. In this case, the initial and final positions
of two points suffice for determining the pole and the angle of the rotation. In
complex formulation these are the quantities zi and z′i (i = 1, 2). The points
are denoted Ai in the initial position and A′

i in the final position. The first
Eq.(14.25) applied to both points yields two equations for the unknowns p
and w :

z′1 = p+ w(z1 − p) , z′2 = p+ w(z2 − p) . (14.34)

The solutions are

w =
z′2 − z′1
z2 − z1

, p =
1

1− w
z′i −

w

1− w
zi (i = 1, 2) . (14.35)

The rigid-body property |z′2 − z′1| = |z2 − z1| = has the consequence that
|w| = 1 . Therefore and with (14.27) the solutions determine the angle ϕ
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and the pole:

w = eiϕ =
z′2 − z′1
z2 − z1

, p =
1

2

[
(z′i + zi) + i (z′i − zi) cot

ϕ

2

]
(i = 1, 2) .

(14.36)
In Fig. 14.8a these results are interpreted geometrically. The expression for
w determines uniquely (except for 2π) the angle ϕ between the dashed lines

A1A2 and A′
1A

′
2 . The formulas for p express the fact that the pole P is the

intersection point of the midnormals of A1A
′
1 and A2A

′
2 . The angle ϕ is the

angle at P in the isosceles triangles (A1,P,A
′
1) and (A2,P,A

′
2) . The triangle

(P,A1,A2) fixed in Σ is rotated about P into the position (P,A′
1,A

′
2) . In

Fig. 14.8b A1A
′
1 and A2A

′
2 are parallel. In this case, P is the intersection

of the lines A1A2 and A′
1A

′
2 . In Fig. 14.8c all four points A1 , A′

1 , A2 ,
A′

2 are collinear. In this case, ϕ = π , and the pole P is midpoint between
A1 and A′

1 and also midpoint between A2 and A′
2 . End of proof.

Fig. 14.8 Geometric construction of pole P and rotation angle ϕ from the positions of
two points before and after a rotation. P lies on the midnormals of A1A′

1 and of A2A′
2 .

Fig. a: The midnormals do not coincide. Fig. b: The midnormals coincide. P lies on the

lines A1A2 and A′
1A

′
2 . Fig. c: Special case ϕ = π : P is midpoint of A1A′

1 and of A2A′
2

The resultants SC and CS : Both resultants are glide reflections. For both
resultants the line of reflection and the translation along this line are con-
structed geometrically by displacing an isosceles triangle from an initial posi-
tion 1 via an intermediate position 2 into the final position 3 . This geomet-
rical approach is simpler than the analytical approach by means of complex
numbers. First, the resultant SC is considered. In Fig. 14.9a the point P
is the pole of the rotation C , and g is the reflecting line of the subsequent
reflection S . Let ϕ be the angle of the rotation C (positive counterclock-
wise). In the intermediate position 2 following the rotation the triangle has
the apex P , the apex angle ϕ and the base on g . From this position 2



422 14 Displacements in a Plane

Fig. 14.9 Resultants SC (a) and CS (b) . Pole P and angle ϕ of the rotation C , line

of reflection g , line g′ and translation t of the resultant glide reflection

the initial position 1 is obtained by the inverse of the rotation C , i.e., by
clockwise rotation through ϕ about P . The final position 3 is the result of
reflecting position 2 in the line g . In position 1 the corner points of the
triangle are denoted A1 , A2 , A3 as shown. In position 3 these points as-
sume the positions A′

1 , A′
2 , A′

3 . The desired line g′ of the glide reflection
is the line passing through the midpoints between Ai and A′

i (i = 1, 2, 3).
Two of these midpoints coincide. The line g′ makes the angle ϕ/2 with g .

It is orthogonal to the lines A1A
′
2 and A′

1A
′
3 . Hence the distance between

these two lines is the translation of the glide reflection along g′ . In terms of
the distance h of P from g this translation t is 2h sinϕ/2 in the direction
shown by the arrow.

Next, the resultant CS is considered (Fig. 14.9b). The pole P and the
angle ϕ of the rotation C as well as the line g of the reflection S are
as before. Positions 1 and 2 of the triangle before and after the reflection
and the final position 3 after the rotation are as shown. The points initially
located at A1 , A2 , A3 assume the final positions A′

1 , A
′
2 , A

′
3 . The line g′

of the glide reflection is determined as before. Again, two of the midpoints
between Ai and A′

i (i = 1, 2, 3) coincide. The line g′ makes the angle ϕ/2
with g , but this time to the other side. As before, the translation t of the
glide reflection along g′ is 2h sinϕ/2 in the direction shown by the arrow.

The resultants SC and CS are commutative if and only if P is located
on g ( h = 0 ) and if, in addition, ϕ = π . Under these conditions the lines g′

of both resultants are the perpendicular to g through P , and the translation
is zero. This means that the resultant is a reflection.

The resultants TC and CT : The complex formulations (14.23) and (14.25)
are used. For the two resultants the relationships between the final position
z′ and the initial position z are
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TC : z′ = p+ w(z − p) + t ,

CT : z′ = p+ w(z + t− p)

}
w = eiϕ . (14.37)

The equations can be written in the forms

TC : z′ = p∗ + w(z − p∗) with p∗ = p+
t

1− w
= p+

t

2

(
1 + i cot

ϕ

2

)
,

CT : z′ = p∗∗ + w(z − p∗∗) with p∗∗ = p+ t
w

1− w
= p− t

2

(
1− i cot

ϕ

2

)
.

⎫⎪⎬
⎪⎭

(14.38)

Both resultants are rotations through the angle ϕ of the rotation C about
different poles located by p∗ and p∗∗ , respectively. For geometrical interpre-
tations see Fig. 14.10 which shows P , ϕ and t , and, prior to displacements,
two lines 0 and 1 which are fixed in Σ . For the resultant TC only line 1 is
of interest. After the rotation C it is in position 2 , and after the subsequent
translation T it is in the final position 3 . The same final position is the
result of the rotation through ϕ about P∗ . The difference p∗ − p has the
components t/2 and (t/2) cotϕ/2 . The pole P∗ is the apex of the isosceles
triangle with base t and with the angle ϕ at P∗ . For the resultant CT only
line 0 is of interest. After the translation T it is in position 1 , and after the
subsequent rotation C it is in the final position 2 . The same final position
is the result of the rotation through ϕ about P∗∗ . These results show that
the resultant TC is never commutative.

Fig. 14.10 Resultants TC and CT are rotations about different poles P∗ and P∗∗

The resultant C2C1 : At the end of Sect. 3.11 the resultant of two screw dis-
placements with parallel screw axes was derived from dual quaternion equa-
tions. The results were summarized in (3.126) – (3.129) and in Figs. 3.14a,b .
The resultant C2C1 of two rotations about parallel axes is the special case
s1 = s2 = 0 . In what follows, these results are derived from the complex for-
mulations (14.25) – (14.27). Let p1 , ϕ1 be the pole location and the angle,
respectively, of the first rotation C1 and p2 , ϕ2 those of the second rota-
tion C2 . Equation (14.23) yields the relationship between the final position
z′ and the initial position z in the form
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z′ = p2 + w2[p1 + w1(z − p1)− p2] , wi = eiϕi (i = 1, 2) . (14.39)

In the special case ϕ2 = −ϕ1 , which means w1w2 = 1 , the resultant is a
translation, because the equation then reads

z′ = z + t with t = (1−w2)(p2 − p1) = (1− cosϕ1 + i sinϕ1)(p2 − p1) .
(14.40)

This is, with a different notation, the special case s1 = s2 = 0 of (3.129).

The translation t is the complex number equivalent to the vector
−→
AC in Fig.

3.14b .

In the general case ϕ2 �= −ϕ1 , the resultant C2C1 is a rotation. Equation
(14.39) has the form

z′ = p+ w1w2(z − p) with p = p1 + (p2 − p1)
1− w2

1− w1w2
. (14.41)

The factor w2w1 shows that the angle of the resultant rotation is

ϕres = ϕ1 + ϕ2 . (14.42)

From the formula for p and from (14.26) it follows that

p− p1 = (p2 − p1) exp
(
− i

ϕ1

2

) sin ϕ2

2

sin ϕ1+ϕ2

2

. (14.43)

Except for differences of notation, the last two equations are identical with
(3.126) and (3.128). The geometrical interpretation was given in Fig. 3.14a .
The poles identified by p1 , p2 and p define a triangle (P1,P2,P3) with inter-
nal angles ϕ1/2 and ϕ2/2 at P1 and P2 , respectively, and with the external
angle ϕres/2 at P3 .

Equations (14.39) and (14.43) show that the resultant displacement C2C1

is commutative only in the case when the poles P1 and P2 coincide. Table
14.1 summarizes the commutativity conditions found for the various resultant
displacements. The resultant T2T1 is the only resultant which is uncondi-
tionally commutative, and reflection is the only displacement which can be
commutative in the product with all three elementary displacements.

Table 14.1 Commutativity conditions for elementary displacements

T2T1 always commutative; forms a group
TS commutative if translation parallel to reflecting line (glide reflection)
CS commutative if rotation angle = π and pole on reflecting line

S2S1 commutative if the reflecting lines are orthogonal
C2C1 commutative if both poles identical
CT never commutative
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14.4 Relationships Between Three Positions

With a new notation this section continues the investigation of the pole tri-
angle defined by (14.42) and (14.43). The pole and the angle of a rotation
from a position i into a position j are denoted Pij and ϕij , respectively.
The pole and the angle of the inverse rotation from position j into position
i are

Pji =Pij , ϕji = −ϕij . (14.44)

The first rotation about the pole P12 through the angle ϕ12 carries the
plane Σ from a position 1 into a position 2 , and the second rotation about
the pole P23 through the angle ϕ23 into a position 3 . The resultant of the
two rotations is the rotation through the angle ϕ13 = ϕ12 + ϕ23 or, what is
the same, through ϕ13 = 2π + ϕ12 + ϕ23 , about P13. The inverse rotation
through the angle ϕ31 = −ϕ13 about the same pole carries Σ back into its
initial position. Hence with (14.44)

1

2
(ϕ12 + ϕ23 + ϕ31) = π . (14.45)

According to this equation ϕ12/2 , ϕ23/2 and ϕ31/2 are the internal angles
of the pole triangle (P12,P23,P31) (see Fig. 14.11). Every side of the triangle
is labeled by the index common to the two poles on this side. Since rotation
angles differing by 2π are considered as equal, the angle ϕij/2 is the internal
and also the external angle leading from side i to side j . The results are
summarized in

Theorem 14.4. Three consecutive rotations about the poles of a pole triangle
through angles which are twice the internal or external angles of the triangle
carry the plane via two intermediate positions back into its initial position.

This theorem represents a special case of Theorem 1.5 on three rotations
about non-coplanar axes intersecting at a single point (see the spherical tri-
angle in Fig. 1.7). If the intersection point moves to infinity, the spherical
triangle degenerates to the planar pole triangle.
Let Q be an arbitrary point fixed in Σ and let Q1 , Q2 and Q3 be the
points in the reference plane Σ0 where Q is located in the positions 1 , 2
and 3 of Σ . These points are called homologous points of Q . At every pole
the two sides of the triangle and the enclosed semi-rotation angle create the
situation shown in Fig. 14.7 . Every two of the points Q1 , Q2 and Q3 are car-
ried into each other by a sequence of two reflections in sides of the triangle.
The altogether six reflections are sharing one and the same reflection point
Q′ . In Fig. 14.11 this reflection point is shown in the triangle (Q1,Q2,Q3).
The circumcircle of this triangle and its center Q0 are shown as well. The
homologous points Q1 , Q2 , Q3 are now simply called circle points. In what
follows, relationships between circle points, poles and the points Q′ and Q0
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Fig. 14.11 Pole triangle (P12,P23,P31) with sides 1 , 2 , 3 and with internal angles ϕ12/2 ,

ϕ23/2 , ϕ31/2 . Three homologous points Q1 , Q2 , Q3 with reflection point Q′ , circumcircle
and center Q0

Fig. 14.12 Reflections of poles, orthocenter S and circumcircle

are developed, first by geometrical and then by analytical methods. In Sect.
17.14 these relationships are used for the design of mechanisms leading a
plane through prescribed positions. As a preparatory step some new points
and circles are defined in the pole triangle (P12,P23,P31) (see Fig. 14.12). The
reflection of Pij in the opposite side of the triangle is called the reflected pole
Pk
ij (i, j, k = 1, 2, 3 different). Every reflected pole lies on the perpendicular

from the pole onto the opposite side of the pole triangle. The point of con-
currency of these perpendiculars (the orthocenter of the triangle) is denoted
S . The reflection of S in the triangle side PijPjk (twice the index j ) is

denoted Sj (j = 1, 2, 3). Proposition: The three points Sj (j = 1, 2, 3) are
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located on the circumcircle of the pole triangle. Proof: The altitudes of the
pole triangle create pairs of similar right-angled triangles so that angles γ1 ,
γ2 and γ3 appear twice each as shown. The angles subtended by the line
segment PjkPki are γi + γj at Pij and 180◦ − (γi + γj) at Sk . From this it
follows that both points are located on the circle. End of proof. Consequently,
the three reflections of the circumcircle in the sides of the triangle (dashed
lines) intersect at S .

Next, relationships are formulated between the center Q0 , the reflection
point Q′ , the circle points Q1 , Q2 , Q3 and the poles. The point Q0 is the
intersection point of the midperpendiculars of the triangle (Q1,Q2,Q3), and
every midperpendicular passes through one pole. The midperpendiculars are
shown in Fig. 14.13 . As an example, consider the perpendicular bisector
passing through P12 . At P12 the angles satisfy the equation �(P31P12P23) =
ϕ12/2 as well as the equation �(Q1P12Q0) =

1
2�(Q1P12Q2) = ϕ12/2 . Since

the angles �(Q1P12P31) and �(P31P12Q
′) are equal, they are also equal to

the angle �(Q0P12P23) . In Fig. 14.13 these angles are denoted β12 . By the
same arguments angles β23 and β13 appear twice each at the other poles
of the pole triangle. As is shown in the figure each angle is measured from
two sides of the triangle with opposite signs. Through these relationships
the point Q′ is determined if Q0 is given and vice versa. If Q0 (if Q′ ) is
not located in a pole, Q′ (or Q0) is uniquely determined. The circle points
Q1 , Q2 , Q3 are obtained by reflecting Q′ in the sides of the pole triangle.
Obviously, the following statement is true: The center Q0 and the reflection

Fig. 14.13 Relationships between circle points, reflection point Q′ and center Q0
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point Q′ can be interchanged. If Q0 is made the reflection point of three
homologous points, Q′ is their center point (Burmester [4]). The two points
can be inside, on the perimeter or outside the triangle. It is left to the reader
to prove that the radii of the circle about Q0 and of the circle about Q′ as
center are equal.
Special case (a): Q0 coincides with a pole, for example with P12: In this case,
Q′=Q3 is an undetermined point on the line P23P31 ; Q1 lies on the dotted

line P31P
1
23 , and Q2 lies on the line P23P

2
31 .

Special case (b): Q′ coincides with a pole, for example with P12: In this
case, Q1=Q2=Q′=P12 ; Q3 =P3

12 ; Q0 is an undetermined point on the line
P23P31 .

Infinitely Distant Center Point
With a center point Q0 at infinity the circle points Q1 , Q2 , Q3 are on a
straight line. Its location is explained by Fig. 14.14 . Let Q0 be prescribed
as intersection of two arbitrarily directed parallel lines passing through P12

and P23 , respectively. In this case, the angles β12 and β23 explained in Fig.
14.13 are identical: β12 = β23 = β . This has the consequence that Q′ lies
on the circumcircle of the pole triangle (equal angles β subtended by the

chord P31Q
′ ) . Since Q1 , Q2 , Q3 are the reflections of Q′ in the sides of the

triangle, each point lies on the reflection of the circumcircle in one side of the
triangle. Since these reflected circles are concurrent in S , the line Q1Q2Q3

passes through S .

Fig. 14.14 Collinear points Q1 , Q2 , Q3 and S . Center Q0 at infinity



14.4 Relationships Between Three Positions 429

Fig. 14.15 Reflection point Q′ and circle points at infinity. Center Q0 on circumcircle of

pole triangle

Infinitely Distant Circle Points
The interchangeability of center point Q0 and reflection point Q′ has the
consequence: If Q0 is an arbitrarily prescribed point on the circumcircle of
the pole triangle, the corresponding reflection point Q′ and the corresponding
circle points Q1 , Q2 , Q3 are at infinity. The direction toward the reflection
point Q′ is determined by the angle β against the triangle side P23P31 (Fig.
14.15). Proposition: The direction toward the circle point Qi (i = 1, 2, 3) is

normal to the line Q0S
i . The proof is given for the case i = 3 : The lines

leading from P23 toward Q′ and Q3 , respectively, must be symmetric with
respect to the line P23P31 . This is, indeed, the case since not only the two
angles β are equal, but also the two angles denoted α are equal. The reason

is that γ = 90◦ − α is the angle subtended by the chord S3P23 . End of
proof.

Sense of Triangle of Circle Points
In Fig. 14.16 the pole triangle of Fig. 14.13 is shown again. Its sides 1 , 2 and
3 define the sense of the pole triangle. In the figure the sense is clockwise.
In what follows, the side i of the pole triangle continued to infinity in both
directions is referred to as line i (i = 1, 2, 3). The lines 1 , 2 and 3 divide the
infinite plane into seven domains (the lines themselves do not belong to any
of these domains). If the center point Q0 is inside the pole triangle, also Q′

is inside, and the triangle of circle points Q1, Q2, Q3 has the same sense the
pole triangle has. Every time Q0 crosses one of the lines 1 , 2 , 3 the sense of
the triangle of circle points is reversed. Hence both triangles have the same
sense if Q0 is located in one of the four domains marked = , and they have
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Fig. 14.16 The seven domains in the plane of the pole triangle and the sense of the

triangle of circle points Q1 , Q2 , Q3 . Symbols = and �= indicate that the sense is equal
or opposite, respectively, to the sense of the pole triangle if Q0 is located in the domain
under consideration

opposite senses if Q0 is located in one of the three domains marked �= . If
Q0 is located on one of the lines 1 , 2 , 3 , but not in a pole, two circle points
coincide (see the special case (b) above). In this case, there is no unique sense
of the triangle of circle points. If Q0 is located in a pole, Q′ is an arbitrary
point of the opposite line (see the special case (a) above). In this case, the
sense of the triangle of circle points depends upon whether Q′ is located on
a side of the pole triangle or on one of the continuations of this side. In the
former case, the sense equals the sense of the pole triangle, and in the latter
it is opposite to it.

Analytical Relationships
In what follows, the geometrical relationships described so far are expressed in
analytical form. First, the relationship between center point Q0 and reflection
point Q′ is expressed in terms of so-called normal coordinates. In Fig. 14.17
the normal coordinates u1 , u2 , u3 of Q0 are shown. Definition: ui is the
distance from the line i . All three normal coordinates are positive if Q0

is inside the triangle. Since a point of a plane has only two independent
coordinates, the three coordinates are subject to a constraint equation. It
expresses the fact that the areas of the three triangles created by the segments
connecting Q0 with the poles add up to the total area A of the triangle. In
terms of the side lengths s1 , s2 , s3 this is the constraint equation

s1u1 + s2u2 + s3u3 = 2A . (14.46)

Let u′
1 , u

′
2 , u

′
3 be the correspondingly defined normal coordinates of the

reflection point Q′ . The two-fold symmetrical occurrence of the angle β31

has the consequence that u1 : u3 = u′
3 : u′

1 . From this and from two more
such equations it follows that the desired analytical relationship between Q0

and Q′ has the form
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Fig. 14.17 Normal coordinates of center Q0 and of reflection point Q′

u1 : u2 : u3 =
1

u′
1

:
1

u′
2

:
1

u′
3

. (14.47)

It is quadratic-involutoric. Further applications of normal coordinates to the
study of positions of a plane are found in Blaschke [3] p.165 .

In what follows, analytical relationships are developed between the circle
points Q1 , Q2 , Q3 and the center point Q0 . In an arbitrary cartesian co-
ordinate system fixed in Σ0 the coordinates of a point are interpreted as
real part and as imaginary part of a complex number. This number is given
the name of the point itself. Examples are the numbers Q1 and P12 in Fig.
14.13 . In this figure, the example i = 1 , j = 2 illustrates the fact that
for arbitrary combinations of indices i and j �= i the difference Q0−Pij is
rotated against the difference Qi−Pij through the angle ϕij/2 . This means
that the numbers eiϕij/2(Qi − Pij) and (Q0 − Pij) have equal directions
(i, j = 1, 2, 3 ; i �= j ). According to (14.6) this is expressed in the form

Im
[(

cos
ϕij

2
+i sin

ϕij

2

)
(Qi−Pij)(Q̄0− P̄ij)

]
= 0 (i, j = 1, 2, 3 ; i �= j ) .

(14.48)
Let the coordinates of the points be denoted as follows:

Qi = ξi+i ηi , Q0 = x+i y , Pij = uij+i vij (i, j = 1, 2, 3 ; i �= j ) .
(14.49)

Substitution of these expressions results in equations which are linear with
respect to ξi , ηi , x and y . If the center point is known and the circle
points are unknown, the equations are written in the form (abbreviations
sij = sinϕij/2 , cij = cosϕij/2 ) :

ξi
[
(x− uij)sij − (y − vij)cij

]
+ ηi

[
(x− uij)cij + (y − vij)sij

]
= x(uijsij + vijcij)− y(uijcij − vijsij)− sij(u

2
ij + v2ij) (14.50)
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(i, j = 1, 2, 3; i �= j) . For a fixed value of i (i = 1, 2, 3) these are two
equations for ξi and ηi . Equation (14.48) shows that no unique solution
exists if Q0 is located in a pole. This is the special case (a) explained above.

If the coordinates (ξi, ηi) of a single circle point are given, the equations
are resolved for the coordinates (x, y) of the center point. For i = 1 , 2 and 3
one and the same coordinates (x, y) are obtained. Formally, this resolution
is achieved by reversing the sign of ϕij and by interchanging (ξi, ηi) and
(x, y) . The reason is that the resulting equations express the fact that the
numbers e−iϕij/2(Q0 − Pij) and (Qi − Pij) have equal directions. The
solution is not unique if Qi is located in a pole. This is the special case (b)
explained above.

14.5 Relationships Between Four Positions. Pole Curve

Two positions of a plane determine a pole and a rotation angle, and three
positions determine a pole triangle. Hence four positions determine altogether
six poles and four pole triangles. In Fig. 14.18 the four positions are defined by
the points Ai , Bi (i = 1, 2, 3, 4). The poles are constructed according to the
rules of Fig. 14.7 . In what follows, it is assumed that no pole is at infinity and
that no two poles coincide. All relative positions are known if the positions
2 , 3 and 4 relative to position 1 are known. These three relative positions
are determined by altogether nine parameters. These are two coordinates
for each of the three poles P1k and the rotation angles ϕ1k (k = 2, 3, 4).
Between the poles and the semi-rotation angles of every pole triangle exist
the relationships shown in Fig. 14.11 and in (14.45). Every pole is pole in two
triangles. The reason is that for any two triples of positions i , j , k and i , j , �
(i, j, k, � = 1, 2, 3, 4 different) the corresponding pole triangles (Pij ,Pjk,Pki)
and (Pij ,Pj�,P�i) are sharing the pole Pij . In both triangles the angle ϕij/2
is either internal or external angle at Pij . As an example, consider the pole
P12 common to the pole triangles (P12,P23,P13) and (P12,P24,P14) . From
P12 the sides P23P13 and P24P14 are seen under one and the same angle
ϕ12/2 . Also the sides P23P24 and P13P14 are seen from P12 under one and
the same angle (different from ϕ12/2 ). The two pairs of sides represent pairs
of opposite sides of the pole quadrilateral (P13,P32,P24,P41). This notation
indicates the sequence of poles. Every side connects two poles having one
index in common. Poles in opposite corners, so-called opposite poles, have no
index in common.

Opposite sides of this pole quadrilateral are seen also from P34 under one
and the same angle (different for each pair) and, finally, they are seen under
one and the same angle from any pole of the pole quadrilateral itself. The
reason is that a side seen from one of its endpoints appears under an arbitrary
angle.
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Fig. 14.18 Poles Pij and points Πij corresponding to four positions AiBi (i =

1, . . . , 4). In the x, y-system in which A1 and B1 have coordinates (0; 0) and (1; 0) , re-
spectively, A2 , A3 , A4 have the coordinates (−2; 2) , (−4; 5) and (−6; 5) , respectively.
The angles from A1B1 to AiBi (i = 2, 3, 4) are 45◦ , 70◦ and 120◦ , respectively

The quadrilateral just considered is one of altogether three pole quadrilat-
erals of the general form (Pij ,Pjk,Pk�,P�i) (i, j, k, � = 1, 2, 3, 4 different). The
other two are (P12,P23,P34,P41) and (P12,P24,P43,P31) . For all pole quadri-
laterals the following is true: From every pole any pair of opposite sides is
seen under angles which are either equal or which add up to π . Example:
From P13 the opposite sides P12P23 and P34P41 are seen under the angles
π − ϕ13/2 and ϕ13/2 , respectively. These angles have equal tangents. In
what follows, it is assumed that of the altogether six poles only the poles
of a single quadrilateral (Pij ,Pjk,Pk�,P�i) are given. It is natural to ask for
all points P having the property that from P opposite sides of the given
quadrilateral appear under angles which are either equal or which add up to
π . The solution is found as follows. The pole quadrilateral (Pij ,Pjk,Pk�,P�i)
is shown in Fig. 14.19 . let rij , rjk , rk� and r�i be the vectors pointing
from P to the four poles. Furthermore, let e be the unit vector normal to
the plane. Equality of tangents of angles is expressed as follows:

e · rij × rjk
rij · rjk =

e · r�i × rk�
rk� · r�i (i, j, k, � = 1, 2, 3, 4 different) . (14.51)

The relationships just described for pole triangles are identical with those
for spherical triangles associated with four positions of a rigid body with a
fixed point (see Fig. 1.8a,b and (1.137)). It was shown that in the spherical
case, (1.137) defines a third-order cone of rotation axes. In the present planar
case, (14.51) defines a third-order pole curve (Burmester [4]). The curve is
uniquely defined by a single pole quadrilateral, i.e., by eight parameters. On
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Fig. 14.19 Pole quadrilateral with vectors defining the pole curve p . Midline M1M2

this curve a fifth pole can be chosen arbitrarily. Its location determines the
ninth parameter and, hence, also the sixth pole. Also this sixth pole lies on
the pole curve.

In Sect. 17.14 the pole curve plays a central role in the synthesis of linkages
leading a plane through prescribed positions. In what follows, the curve is
abbreviated p . It has many remarkable properties. Its equation in a carte-
sian x, y-system is deduced from (14.51). As shown in Fig. 14.19 the axes
are chosen such that Pij is the origin and that Pjk lies on the x-axis. The
coordinates of the poles are denoted (a2, 0) , (a3, b3) and (a4, b4) as shown.
With (x, y) being the coordinates of the point P the vectors in (14.51) have
the coordinates
rij : (−x,−y) , rjk : (a2 − x,−y) , rk� : (a3 − x, b3 − y) , r�i :
(a4 − x, b4 − y) . Equation (14.51) takes the form

a2y

x2 + y2 − a2x
=

(b4 − b3)x+ (a3 − a4)y + a4b3 − a3b4
x2 + y2 − (a3 + a4)x− (b3 + b4)y + a3a4 + b3b4

. (14.52)

Re-ordering of terms produces the following equation which is cubic in x as
well as in y :

(λx+ μy +A)(x2 + y2) +B(y2 − x2) + 2Cxy +Dx+ Ey = 0 , (14.53)
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λ = b4 − b3 , μ = a3 − a2 − a4 , A = b3(a2 + a4)− a3b4 ,
B = a2b4 , C = a2a4 , D = a2(a3b4 − a4b3) , E = −a2(a3a4 + b3b4) .

}
(14.54)

In the case λ = μ = 0 , the pole quadrilateral is a parallelogram, and p is
an equilateral hyperbola. In what follows, this special case is excluded. It is
treated in Luck/Modler [13].
Propositions: 1) The curve p has an asymptote which is parallel to what is
called the midline of the pole quadrilateral. This is the line connecting the
midpoints of its diagonals.
2) In the x, y -system the asymptote has the slope −λ/μ .

Proof for (1): In Fig. 14.19 the midpoints of the diagonals are denoted M1 and
M2 . Through the four poles lines parallel to the midline M1M2 are drawn.
The projections of opposite sides of the pole quadrilateral along M1M2 are
equally long. From this it follows that from the infinitely distant intersection
points of these parallel lines pairs of opposite sides are seen under equal
angles. This proves proposition (1) . In the x, y-system M1 and M2 have the
coordinates x1 = a3/2 , y1 = b3/2 and x2 = (a2 + a4)/2 , y2 = b4/2 .
This yields for the slope of M1M2 the expression (y2 − y1)/(x2 − x1) =
(b3 − b4)/(a3 − a2 − a4) . According to (14.54) this is −λ/μ . End of proof.

The cubical nature of p has the consequence that every (straight) line not
parallel to the asymptote intersects p at three points two of which might
be imaginary. Lines parallel to the asymptote intersect p at two – real or
imaginary – points. The asymptote itself intersects p at a single real point.

In Fig. 14.20 the same pole quadrilateral is shown. Each side is denoted by
the index common to the poles at its endpoints. Let Πik be the intersection
point of the opposite sides j and � and let Πj� be the intersection point
of the opposite sides i and k . From Πik and from Πj� opposite sides
are seen under equal angles βik and βj� , respectively. Hence both points
belong to p . The altogether three pole quadrilaterals define six points Πij

(i, j = 1, 2, 3, 4 ; i �= j). In Fig. 14.18 these points are shown.
In Fig. 14.20 circles ki and kk with the peripheral angle βik subtended

by the opposite sides i and k , respectively, are drawn. They intersect at
Πik and at one more point which, because of the equality of the two angles,
also belongs to p . By the same argument the circles kj and k� with the
peripheral angle βj� subtended by the opposite sides j and � , respectively,
intersect at Πj� and at one more point belonging to p . The figure shows that
the four circles intersect at a single point Φ . This is proved as follows. To
begin with, let Φ be the intersection of kj and kk only. Also ki is passing
through Φ if the peripheral angles α − βj� at Φ and γ at P �i are equal.
This is, indeed, the case since α appears as peripheral angle in the circle kk
also at Pk� , and from the triangle (P�i,Pk�, Πj�) it follows that γ = α−βj� .
In the same way it is shown that also the circle k� is passing through Φ .

The curve p intersects the four circles at Φ , Πik , Πj� , at the poles of the
pole quadrilateral and at no other point. Indeed, if there were to be another
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Fig. 14.20 Π-points of a pole quadrilateral and focus Φ

intersection point, say with the circle kj , the side j would be seen from this
point under the angle βj� and the opposite side � under a different angle.

For each of the three pole quadrilaterals there exists an intersection point
Φ of four associated circumcircles of triangles. All three intersection points
coincide. Indeed, if they were different points, the curve p could not inter-
connect these three points, the six poles and the six Π-points without inter-
secting at least one of the twelve circles at one more point. The significant
point Φ is called the focus of p .

Of the asymptote so far only its direction parallel to the midline of the
pole quadrilateral is known. The focus Φ determines also its location. In Fig.
14.20 the following is seen. If, with the pair of opposite poles Pij and Pk�

being fixed, the pole P�i tends on p towards Φ , the pole Pjk tends towards
infinity on the asymptote. From this it follows that the asymptote is on the
same side of Φ as the midline and at twice the distance. Another consequence
is that the midlines of all three pole quadrilaterals coincide.

Another significant point on p is defined by the circumcircles of the four
pole triangles (see Fig. 14.21). The circumcircles intersect at a single point
U . This is proved as follows. First, only the circumcircles of the triangles
(P12,P24,P41) and (P13,P34,P41) are considered. They intersect at P41 and
at U . At P41 the peripheral angle subtended by P12P24 in the one circle
and the peripheral angle subtended by P13P34 in the other circle are equal.
Hence also at U the peripheral angles subtended by these sides are equal.
Since these sides are opposite sides of a pole quadrilateral, U belongs to p .
From no other point of the circle except P41 and U the two opposite sides are
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Fig. 14.21 Poles of Fig. 14.18 with circumcircles of four pole triangles intersecting at U

seen under equal angles. The same statements are valid for the circumcircles
of any two of the four pole triangles. From this it follows that, first, all four
circles intersect at U and that, second, the curve p intersects these four
circumcircles at no points other than U and the poles.

In what follows, a property of the six Π-points is revealed. Let the curve
p be given and on it an arbitrary point P together with two straight lines
passing through P . These lines intersect p at two more points each. The four
intersection points thus defined constitute a pole quadrilateral one Π-point of
which is the given point P . Now, choose as point P the pole P�i in Fig. 14.20
and through P�i the lines P�iPij and P�iPk� . These lines create the pole
quadrilateral (Pij , Πj�,Pk�, Πik) in which Πj� and Πik are opposite poles.
The six Π-points constitute three pairs of opposite poles. Consequently, they
represent the poles belonging to four positions of the plane with which the
same pole curve p is associated. The Π-points of these poles are poles again
etc. Starting from the six original poles this procedure produces an infinite
sequence of six-tuples of poles all lying on p . On a computer screen a graph
of p is most easily generated by calculating a sufficiently large number of
six-tuples of poles. In Fig. 14.22 the pole curve for the six poles of Fig. 14.18
is shown together with its focus and its asymptote. The point of intersection
of the asymptote with p is called cardinal point H of p .

Next, Eq.(14.53) of the pole curve p is considered again. New coordinates
ξ, η are defined through the transformation equations

x =
μ(ξ − ξ0) + λ(η − η0)√

λ2 + μ2
, y =

−λ(ξ − ξ0) + μ(η − η0)√
λ2 + μ2

(14.55)

where ξ0 and η0 are as yet unspecified constants. This transformation has
the effect that the ξ-axis is parallel to the asymptote of p . Substitution into
(14.53) produces an equation of the form
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Fig. 14.22 Pole curve for the poles of Fig. 14.18 with significant points and lines

[√
λ2 + μ2(η−η0)+A′

]
(ξ2+η2)+B′(η2−ξ2)+2C ′ξη+D′ξ+E′η+F = 0 .

(14.56)
The coefficients A′, . . . , F are functions of λ , μ , A , . . . , E and of ξ0 , η0 .
The constants ξ0 and η0 are chosen such that B′ = 0 and C ′ = 0 :

ξ0 = −2Bλμ+ C(λ2 − μ2)

(λ2 + μ2)3/2
, η0 =

2Cλμ−B(λ2 − μ2)

(λ2 + μ2)3/2
. (14.57)

Further below it is proved that the origin of the ξ, η-system is the focus Φ .
The x, y-coordinates of the origin are obtained from (14.55):

xΦ =
Bλ− Cμ

λ2 + μ2
, yΦ = −Bμ+ Cλ

λ2 + μ2
. (14.58)

From the fact that the origin Φ lies on p it follows that also F = 0 . With
new abbreviations a , d and e Eq.(14.56) of the curve gets its normal form

(η − a)(ξ2 + η2) + d ξ + eη = 0 . (14.59)

The formula for a is

a = 2η0 − A√
λ2 + μ2

. (14.60)

For proving that Φ is the origin it suffices to show that the coordinates
xΦ , yΦ satisfy the equations of the circles ki and kj of Fig. 14.20 . The
equation of a circle passing through three points (xi, yi) (i = 1, 2, 3) is
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∣∣∣∣∣∣∣∣∣∣

x2 + y2 x y 1

x2
1 + y2

1 x1 y1 1

x2
2 + y2

2 x2 y2 1

x2
3 + y2

3 x3 y3 1

∣∣∣∣∣∣∣∣∣∣
= 0 .

The points Pij , P�i , Πik on ki have the coordinates ( 0, 0 ), (a4, b4) and
( a∗2, 0 ), and the points Pij , Πj� , Pjk on kj have the coordinates ( 0, 0 ),
(a∗4, b

∗
4) and ( a2, 0 ) with

a∗2 = a4 − b4
a3 − a4
b3 − b4

, a∗4 =
a4a2b3

b3a4 − b4(a3 − a2)
, b∗4 =

b4
a4

a∗4 .

(14.61)
With these coordinates the equations of ki and kj are

−(x2 + y2) + xa∗2 +y
[ a4
b4

(a4 − a∗2) + b4

]
= 0 ,

−(x2 + y2) + xa2 +y
[ a4
b4

(a∗4 − a2) + b∗4
]
= 0 .

⎫⎬
⎭ (14.62)

Both equations are, indeed, satisfied with (14.58) in combination with (14.54).
End of proof.

Resolution of (14.59) for η − a yields an expression which tends to zero
for ξ → ±∞ . Consequently, the asymptote of p in the ξ, η-system has
the equation η = a . Its intersection with p , i.e., the cardinal point H in
Fig. 14.22 , has the coordinates ηH = a and ξH = −ae/d . The midline of
all three pole quadrilaterals has the equation η = a/2 . This follows from
previous comments on Fig. 14.20 .

Further properties of the pole curve are revealed by introducing in (14.59)
for ξ2 + η2 the abbreviation r2 and by resolving the equation for η . This
results in the equations

ξ2 + η2 = r2, η = a
r2 − ξd/a

r2 + e
= ηH

r2 + e ξ/ξH

r2 + e
. (14.63)

They are parameter equations with parameter r of a family of concentric
circles centered at Φ and of a family of lines passing through the cardinal
point H . The pole curve p is the geometric locus of all intersection points
of the family of circles and the family of lines (for each value of r one circle
and one line). The circle and the line for r = 0 intersect at the double
point Φ . From this it follows that the tangent to p in Φ passes through
H . This follows more directly from the derivative of (14.59). At Φ it is
η′ = −d/e = ηH/ξH .

Proposition: A pole curve with parameters

a = 2ηD , d = 2ξDηD , e = η2D − ξ2D (14.64)

has the double point (ξD , ηD) and at this point the derivatives
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ξ′1,2 =
dξ

dη

∣∣∣
1,2

=
ξD

ηD

±
√
1 +

( ξD

ηD

)2
. (14.65)

From the relationship ξ′2 = −1/ξ′1 it follows that the crossing at the double
point is at right angles (Fig. 14.23).
Proof: In (14.59) a , d and e are replaced by the expressions in (14.64). In
addition, the transformation ξ = x+ξD , η = y+ηD to a parallel x, y-system
with origin (ξD , ηD) is made. The resulting equation is quadratic in x :

x2(y − ηD) + 2xyξD + y2(y + ηD) = 0 . (14.66)

It is satisfied by x = y = 0 . The Taylor formula for the solutions in the
neighborhood of the origin is x1,2 = yξ′1,2 with the expressions (14.65). End
of proof.

The equation

e =
a2

4
− d2

a2
(14.67)

resulting from (14.64) is a necessary condition for the existence of a double
point. Because of the squaring of a and d it is not a sufficient condition.

A pole curve without double point is either bicursal (Fig. 14.22) or uni-
cursal (the solid line in Fig. 14.23). Of which type it is can be seen di-
rectly from Fig. 14.18. An arbitrarily chosen quadrilateral (Pij ,Pjk,Pk�,P�i)

Fig. 14.23 Pole curve unicursal
(solid line) and with double point

(dashed line)

Fig. 14.24 Pole curve gener-
ated by a pole quadrilateral in-

terpreted as four-bar
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(i, j, k, � = 1, 2, 3, 4 different) is interpreted as mobile four-bar with two ar-
bitrarily chosen neighboring poles, say Pij and Pjk , serving as frame (Fig.
14.24). Following a rotation ϕ of the left crank (or rocker) the coupler P�iPk�

is either in the position AB or in the position AB′ . The midnormal of P�iA
is intersected by the midnormal of Pk�B at Q0 and by the midnormal of

Pk�B
′ at Q′

0 . Proposition: Q0 and Q′
0 are located on p .

Proof for Q0 : The triangles (Q0,A,B) and (Q0,P�i , Pk�) have all three side
lengths and, hence, also the angle α in common. Therefore, also the angles
denoted β are equal. From Q0 opposite sides of the quadrilateral are seen
under identical angles ( PijPjk and P�iPk� under the angle α and PijP�i

and PjkPk� under the angle β/2 ). This ends the proof for Q0 . The proof for
Q′

0 is based on the congruence of the triangles (Q′
0,A,B′) and (Q′

0 ,P�i ,Pk�) .
End of proof.

The pole curve is composed of the trajectories of Q0 and Q′
0 generated

when the shortest link of the four-bar is rotated through its entire angular
range. Depending on the link lengths this range is either 2π (case I ; fully
rotating link) or < 2π (case II). Conditions see in Grashof’s Theorem 17.1
(Eq. (17.4)). In case I , the trajectories of Q0 and Q′

0 are isolated from each
other which means that the pole curve is bicursal. In case II , the pole curve
is unicursal. The curve has a double point if the four-bar is foldable.

14.6 Tilings

Tiles are congruent plane figures which, if properly arranged, fill the infinite
plane without gaps and overlaps. The resulting pattern is called tiling. Every
tile of a tiling can be made to coincide with any other tile of the same tiling by
translation or rotation or reflection or glide reflection. The problem of finding
all possible forms of tiles is an open problem (see Grünbaum/Shephard [6]).
The present section is devoted to important contributions made by Heesch
[8]. Without showing details of the theory his final results are presented
because they have great aesthetical appeal as well as great economical and
engineering importance. If the infinitely extended tiling as a whole coincides
with itself after a rotation about a pole P0 through an angle 2π/n (n integer),
it coincides with itself also after a rotation about P0 through any of the angles
2kπ/n (k = 1, . . . , n). The tilings under consideration have the property
that periodical translations in one or more directions 1, 2, . . . with associated
minimal period lengths t1, t2, . . . result in self-coincidence. Let t be the
smallest of these period lengths. Translation by t carries the said rotation
pole P0 to a point P1 at the distance t , and the translation by −t carries it
in the opposite direction to a point P−1 so that P−1 , P0 and P1 are collinear
with equal distances t . Rotation about P0 through the angle 2kπ/n carries
P1 into a point P(k, n) . This point may coincide with P−1 . If it does not
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coincide, however, then, by assumption, its distance from P−1 cannot be
smaller than t . It is easily proved that this condition can be satisfied for all
k = 1, . . . , n only with n = 1, 2, 3, 4 and 6 . In the case n = 5 , for example,
it is not satisfied with k = 2 . Thus, the only possible rotation angles are
2π/n with n = 2, 3, 4 and 6 .

Heesch gives a list of 28 basic types of tiles. The boundary of a tile consists
of at least two pairs and of at most five pairs of congruent segments. In
each pair of segments one segment can be arbitrarily prescribed (continuously
curved or with corners). The associated second segment is produced from
this first one either by translation or by rotation or by glide reflection. In
the case of rotation, one of the endpoints of the first segment is the pole,
and the rotation angle is 2π/n with n = 6, 4, 3 or 2 . A pair of segments
with rotation angle 2π/n (n = 6, 4, 3) is abbreviated CnCn , and a pair of
segments with rotation angle 180◦ (i.e., a centrally symmetric line) is simply
abbreviated C (instead of C2C2 ). Figures 14.25a and b show as examples
a pair C6C6 and a line C .

Each segment in a pair of translated segments is abbreviated T , and each
segment in a pair of glide-reflected segments is abbreviated G . A pair T· · ·T
must be disconnected (no intersections; no common endpoints). An example is
shown in Fig. 14.25c . A pair of glide-reflected segments is either disconnected
(G· · ·G in Fig. 14.25d) or one endpoint of one segment coincides with the
image of the other endpoint (GG in Fig. 14.25e).

A basic type of tile is identified as follows. With an arbitrarily chosen sense
along the boundary the segments are sequentially listed by the symbols de-
noting the corresponding displacements (Cn , C , T or G). The complete
sequence of symbols serves as identifier of the basic type. If the bound-
ary contains two pairs of glide-reflected segments, these pairs are denoted
G1 · · ·G1 and G2 · · ·G2 . Likewise, two pairs of translated segments are de-
noted T1 · · ·T1 and T2 · · ·T2 . If a boundary contains several pairs of rotated
segments with identical rotation angles, the pairs are placed in brackets, for
example (C4C4)(C4C4) . In this case, one segment C4 of the first pair and
one segment C4 of the second pair can be prescribed independently and ar-
bitrarily. In the case of two or more lines C all lines are independent.

Fig. 14.25 Segment-pair C6C6 (a) , centrally symmetric curve C (b) , segment-pair

T· · ·T (c) , glide-reflected segment-pairs G· · ·G (d) and GG (e)
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The altogether 28 basic types are grouped in Table 14.2 as follows1. Num-
bers 1 and 2 involve translations only (T) , numbers 3 and 4 glide reflec-
tions only (G) , numbers 5 - 15 rotations only (C or Cn ) , numbers 16 ,
17 , 18 T and C only, numbers 19 , 20 , 21 T and G only, numbers 22 - 26
C and G only and numbers 27 and 28 T , C and G .

Table 14.2 Basic types of tiles

1 T1T2T1T2 11 (C4C4)(C4C4) 21 TG1G2TG2G1
2)

2 T1T2T3T1T2T3 12 (C3C3)(C3C3)(C3C3) 22 CGG
3 G1G1G2G2 13 C3C3C6C6 23 CCGG

4 G1G2G1G2
1) 14 C(C4C4)(C4C4) 24 CGCG

5 CCC 15 CC3C3C6C6 25 CG1G2G1G2
3)

6 CCCC 16 TCTC 26 CG1CG2G1G2
3)

7 CC3C3 17 TCTCC 27 TCTGG
8 CC4C4 18 TCCTCC 28 TCCTGG

9 CC6C6 19 TGTG
10 (C3C3)(C3C3) 20 TG1G1TG2G2

1) The endpoints of the segments form a rectangle
2) The axes of both glide reflections are orthogonal to the translation of the pair T· · ·T
3) The axes of both glide reflections are orthogonal to each other

Remarks: The footnotes 1) , 2) and 3) of the Table are conditions. In what
follows, some geometrical properties are listed which do not represent condi-
tions, but consequences of two general conventions. The first general conven-
tion requires that the boundary of each basic type is closed and free of double
points. This implies that the freedom in choosing one segment per pair is not
unlimited. The second general convention requires that in basic types with
several pairs of the form CnCn in each pair the sense of direction of rotation
(from the first segment to the second segment) be the same. These conven-
tions have the following consequences which are not obvious immediately.
Basic type No. 3 : The axes of both glide reflections are parallel.
Basic type No. 10 : The four endpoints of the segments form a rhombus.
Basic type No. 11 : The four endpoints of the segments form a square.
Basic type No. 12 : The three poles form an equilateral triangle.
Basic type No. 13 : The pole of the pair C3C3 lies outside the equilateral
triangle formed by the pair C6C6 .
Basic type No. 19 : The axis of glide reflection is orthogonal to the translation
of the pair T· · ·T . Begin by drawing the pair T· · ·T .
Basic types No. 20 , 27 , 28 : All glide reflection axes are parallel to the trans-
lation of the pair T· · ·T . Begin by drawing the pair T· · ·T .

1 From a mathematical point of view a different arrangement in a (6 × 10)-matrix is
necessary in which rows correspond to displacement groups and columns to line nets. See
Heesch [8]
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The nine basic types No. 2 , 12 , 14 , 15 , 18 , 20 , 21 , 26 and 28 represent
principal types from which all other basic types can be produced by shrinking
pairs of segments to zero. The following examples demonstrate the freedom
of choice in the design of tiles.
Basic type No. 12 (C3C3)(C3C3)(C3C3) : In Fig. 14.26a the points A , B and
P as well as the segment C3 from A to B and the segment C3 from A to P
are freely chosen. 120◦-rotations of these segments about B and P , respec-
tively, produce the points A′ and A′′ . The pole D of the third pair C3C3

and the poles B and P form an equilateral triangle. The freely chosen seg-
ment C3 from D to A′ is rotated through 120◦ about D . In Fig. 14.26b the
tiling is shown. The salamander is a modification of a form originally drawn
by the artist Escher. In a preface to one of Escher’s books Heesch expresses his
respect for Escher’s intuitive grasp of the basic type (C3C3)(C3C3)(C3C3) .
See also Coxeter’s comments on Escher’s work in Locher [12].
Basic type No. 15 CC3C3C6C6 : In Fig. 14.27a the points A , B and D as
well as the segment C6 from A to B and the segment C3 from A to D are
freely chosen. Rotations about B through 60◦ and about D through 120◦

produce the points A′ and A′′ . These points are connected by a freely chosen
centrally symmetric line C . In Fig. 14.27b the tiling is shown (published in
1985 in [5] p.56 and the same year as frontcover of the June issue of mathe-
plus. Duden-Zeitschrift für Schüler).

Basic type No. 26 CG1CG2G1G2 : In Fig. 14.28a the points A , B and A′′

as well as the segment G1 from A to B and the segment G2 from B to
A′′ are freely chosen. The segment G1 from A to B is glide-reflected to
A′B′ (axis 1-1 of glide reflection and translation along the axis arbitrary).
The segment G2 from B to A′′ is glide-reflected to B′′A (condition: Axis

Fig. 14.26 Basic type (C3C3)(C3C3)(C3C3) (a) and the resulting tiling (b). No corner
occurs at A so that this point is concealed
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Fig. 14.27 Basic type CC3C3C6C6 (a) and the resulting tiling (b). No corner occurs

at A′ so that this point is concealed

Fig. 14.28 Basic type CG1CG2G1G2 with mutually orthogonal glide-reflection axes (a)
and the resulting tiling (b)

2-2 orthogonal to axis 1-1 ). Points A′ and A′′ as well as B′ and B′′ are
connected by freely chosen centrally symmetric lines C . In Fig. 14.28b the
tiling is shown.

Heesch’s results have (quote Heesch) two important fields of application:
For one thing, they represent a basis for teaching all branches of art design
with surfaces; on the other hand, they constitute a rationalization principle
for the mass production of semi-finished products. Mass-produced parts made
of sheet metal for certain engineering purposes can often, without loss of func-
tionality, be slightly changed in shape so as to become tiles. The production
of sheet metal parts having this property reduces sheet metal waste, produc-
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Fig. 14.29 Tile of type (C3C3)(C3C3)(C3C3) fitting into a circle (a) and tile of type

TCCTCC fitting into a circular ring the inner radius of which is one third of the outer
radius (b) . The resulting tiling (c)

tion time per piece as well as wear of tools. In Figs. 14.29a,b two tiles are
shown which fit into a circle. The tile in Fig. 14.29b leaves room for a central
circular object. The tiling with this shape is shown in Fig. 14.29c .

Heesch’s theory does not require symmetry of individual tiles. However,
both axially symmetric tiles and centrally symmetric tiles can be obtained
from many basic types by a proper choice of segments. To give an example,
the basic type No. 2, T1T2T3T1T2T3 , is a centrally symmetric hexagon if as
segments T1 , T2 and T3 straight lines are chosen (lengths and directions
arbitrary). Other important results obtained from Table 14.2 are the follow-
ing.
Every triangle is a tile of the basic type CCC .
Every quadrilateral (convex or nonconvex) is a tile of the basic type CCCC .
Table 14.2 does not solve the problem for pentagons and hexagons completely,
but it provides important contributions to the solution. For being a tile it is
not necessary, but sufficient that two or more congruent polygons properly
joined together represent a basic type. In Heesch/Kienzle [7] ten different
sets of sufficient conditions are listed for pentagons and thirty for hexagons.
Some of these sets of conditions are as follows.

Pentagons
1. A pentagon with two parallel sides is a tile. Two congruent pentagons of
such a shape produce the basic type T1T2T3T1T2T3 (Figs. 14.30a,b). Special
cases: Figure a with two or three or four or five sides of the pentagon equal
in length.
2. A pentagon (convex or nonconvex) is a tile if it has two right angles with
pairwise identical leg lengths (the thick lines in Fig. 14.31). As is shown in
the same figure four congruent pentagons of such a shape produce the basic
type T1T2T1T2 . Special cases: Convex pentagons with three or four or five
sides equal in length.
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Fig. 14.30 Basic types T1T2T3T1T2T3 with two

congruent pentagons (convex and nonconvex) with two
parallel sides

Fig. 14.31 Basic type

T1T2T1T2 with four
congruent pentagons

Fig. 14.32 Basic type T1T2T3T1T2T3 produced from four congruent pentagons having
two non-adjacent sides of equal lengths b and angles α + β = 180◦ . Segments T1 , T2 ,
T3 of the boundary are marked by small circles

3. A pentagon is a tile if it has two nonadjacent sides of equal length b and
angles α + β = 180◦ (the thick lines in Fig. 14.32). As is shown in the
same figure four congruent pentagons of such a shape produce the basic type
T1T2T3T1T2T3 . The same is true if the condition α+β = 180◦ is replaced
by the condition α+ β = 360◦ . Special cases: Three or four or five sides of
the pentagon equal in length.

Hexagons: Let the sides of the hexagon be sequentially labeled 1 to 6 .
1. A hexagon is a tile if (i) sides 1 and 3 are parallel and (ii) sides 4 and 6
are parallel (Fig. 14.33 a or b)
2. A hexagon is a tile if sides 1 , 3 and 5 are parallel (Fig. 14.33c)
3. A hexagon is a tile if either sides 1 and 3 or sides 1 and 4 are (i) parallel
and (ii) equal in length (Fig. 14.33d or e).

It is left to the reader to produce from each of the Figs. 14.33a–e a basic
type by joining several congruent hexagons together.

It was said that the conditions on pentagons and hexagons given by
Heesch/Kienzle are sufficient, but not necessary. For the following state-
ments the reader is referred to Schattschneider [14] and Grünbaum/Shephard
[6]. 1. The number of different types of convex pentagonal tiles is unknown.
Many types are known, including types not satisfying the conditions given
by Heesch/Kienzle.
2. The number of different types of convex hexagonal tiles is known to be
three.
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Fig. 14.33 Hexagonal tiles. (a) and (b) Sides 1 and 3 parallel, and sides 4 and 6

parallel; (c) Sides 1 , 3 and 5 parallel; (d) Sides 1 and 3 parallel and equal in length;
(e) Sides 1 and 4 parallel and equal in length

3. Convex polygonal tiles with seven or more corners do not exist.
4. With many polygonal tiles more than one tiling is possible. Example: In the
case a = b the pentagon in Fig. 14.31 admits the tiling shown in Fig. 14.32.
A more remarkable example is the equilateral pentagon with internal angles
140◦ , 60◦ , 160◦ , 80◦ , 100◦ (in this order) found by Rice (see Schattschnei-
der [14]). Since there are eleven ways in which these angles can be combined
to make 360◦ , several different tilings are possible, including two which dis-
play rotational and no other form of symmetry. This pentagon is composed
of a rhomb and an equilateral triangle. It is a special case of the type shown
in Fig. 14.30a .
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7. Heesch H, Kienzle O (1963) Flächenschluss. System der Formen lückenlos aneinander-

schliessender Flachteile. Springer, Berlin
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Chapter 15

Plane Motion

The present chapter is devoted to theorems on centrodes, to curvature theory,
to properties of trochoids with applications and to related problems.
Literature: Koenigs [20, 21], Schoenflies/Grübler [26], Bereis [1], Blaschke
/Müller [3], Geronimus [11], Wunderlich [30].

15.1 Instantaneous Center of Rotation. Centrodes

According to (9.13) the instantaneous velocity distribution in a rigid body
in an arbitrary state of motion is determined by the velocity vA of a single
point A and by the angular velocity ω :

v = vA + ω × � . (15.1)

If the velocity vA(t) of the single point A is, independent of t , in a fixed
plane ΣA , and if, in addition, ω(t) is, independent of t , orthogonal to
ΣA , the velocity v(t) of every point of the body and, consequently, also its
trajectory, is in a plane parallel to ΣA . This state of motion of the body
is called plane motion. In the special case ω(t) ≡ 0 , plane motion is pure
translation with velocity vA(t) . In what follows, ω(t) �= 0 is assumed. In
this general case, the screw axis (ISA) has the constant direction of ω(t) ,
and the pitch is p ≡ 0 (see (9.23)). The perpendicular from A onto the
screw axis is instantaneously

u =
ω × vA

ω2
. (15.2)

If as point A a point on the instantaneous screw axis is chosen, (15.1) be-
comes

v = ω × � . (15.3)
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This equation shows that the instantaneous velocity distribution is that of a
rotation with ω about what is called instantaneous axis of rotation.

In what follows, the body is represented by a single body-fixed plane Σ2

which is moving in a reference plane Σ1 . The body-fixed point A , its velocity
vA and the vector u are located in Σ2 as well as in Σ1 . The point at the
tip of u is the point of intersection of the instantaneous axis of rotation with
both planes. This point is referred to as instantaneous center of rotation P
because Σ2 is instantaneously rotating about P . During a continuous plane
motion which is not a rotation about a fixed axis the instantaneous center P
is neither fixed in Σ2 nor fixed in Σ1 . Its trajectory in Σ2 is called moving
centrode km . It is determined by the time-varying vector u(t) given by (15.2).
The trajectory of P in Σ1 is called fixed centrode kf . At every time t both
centrodes have point P in common and, at this point, zero relative velocity.
Let vrel be the velocity of P along the moving centrode. Then its velocity
along the fixed centrode is, according to (9.11), v = vA+ω×u+vrel = vrel .
Hence the tangents of the centrodes at P coincide (see Fig. 15.1). These
results are summarized in

Theorem 15.1. During a continuous plane motion of a body the moving
centrode km (fixed in Σ2 ) is rolling without slipping on the fixed centrode kf
(fixed in Σ1 ).

This theorem is a special case of Painlevé’s Theorem 9.6 on the raccording
motion of two axodes which are generated by the instantaneous screw axis
in general spatial motion of a rigid body. In plane motion the screw axis is
the instantaneous axis of rotation. Both axodes are general cylinders. The
raccording motion is pure rolling. The centrodes are the intersections of the
cylinders with the planes Σ1 and Σ2 .

Inverse motion: The inverse of the motion of Σ2 relative to Σ1 is the mo-
tion of Σ1 relative to Σ2 . Both motion and inverse motion have the same
instantaneous center of rotation P and the same centrodes in Σ1 and in
Σ2 . What the fixed centrode is for the inverse motion is the moving centrode

Fig. 15.1 Fixed centrode kf in reference plane Σ1 , moving centrode km in body-fixed
plane Σ2 , instantaneous center of rotation P and vector u
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for the motion and vice versa. In both motion and inverse motion P moves
along the centrodes with equal velocities.

15.1.1 Theorems of Burmester and Kennedy/Aronhold

Equation (15.2) determines the location of the instantaneous center P . In
Sect. 15.2.1 a simpler equation in terms of complex numbers is formulated.
For most practical purposes the following geometric method of construction
is preferable. According to (15.3) the vector from the center P to an arbitrary
point of the body is orthogonal to the velocity v of this point. From this
it follows that P lies on the normal of v through the body point under
consideration. Two nonparallel normals determine P uniquely. Consequently,
P is known if for two body points with nonparallel velocities the directions of
these velocities are known. Neither the magnitudes nor the senses of direction
need be known. If the velocities are parallel, also their magnitudes must be
known. There are two special cases.
1. Permanent rotation about an axis fixed in Σ1 and, consequently, also fixed
in Σ2 . In this case, the point P on this axis is not only instantaneous, but
permanent center of rotation. Centrodes do not exist.
2. Pure translation: All points of Σ2 have identical velocities. The angular
velocity is ω = 0 . Equation (15.2) states that the center P is the infinitely
distant intersection of the normals to these velocities.

In Fig. 15.2 a body is shown together with the instantaneous center P .
The velocity vi of an arbitrary body-fixed point Pi is proportional to the
radius PPi . Let the rotated velocity v∗

i be the vector vi rotated counter-
clockwise through π/2 . It is pointing towards P . Elementary geometry yields
Burmester’s

Theorem 15.2. The polygon connecting the tips of the rotated velocities v∗
i

of points Pi ( i = 1, 2, . . . ) is both similar and directed parallel to the polygon
P1, P2, . . . .

This theorem is valid independent of the scale chosen for the velocity vectors.
If, in particular, the scale is chosen such that all vectors v∗

i terminate at P ,
the similar polygon degenerates to the point P .

If three bodies i , j and k are in plane motion relative to each other,
there exist, at any time t , three instantaneous centers Pij , Pjk , Pki and
three relative angular velocities ωij , ωjk , ωki. Definition: ωij is the angular
velocity of body i (first index) relative to body j . Then

ωji = −ωij . (15.4)

In addition, ωik = ωij + ωjk is valid and, consequently,
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Fig. 15.2 Velocities vi and rotated velocities v∗
i of body-fixed points Pi

ωij + ωjk + ωki = 0 . (15.5)

In multi-link mechanisms it frequently happens that for less than two
points of some link the directions of the velocities are known. In such cases,
the geometric construction of the instantaneous center requires

Theorem 15.3. (Kennedy/Aronhold)1 The instantaneous centers Pij , Pjk

and Pki of three bodies i , j , k in plane motion relative to each other are
collinear.

Proof: Suppose the centers Pik and Pjk are known (Fig. 15.3). The center Pij

is the point at which body i and body j have equal velocities v relative to
body k . This establishes the equation ωik × �PikPij

= ωjk × �PjkPij
. The

two vector products are collinear only if �PikPij
and �PjkPij

are collinear.
This ends the proof already. In addition, the equation requires the two vector
products to be equal in magnitude and in sense of direction. If �PikPij

and
�PjkPij

have equal directions (opposite directions), also ωik and ωjk have
equal directions (opposite directions). Hence the scalar magnitudes satisfy

Fig. 15.3 Theorem of Kennedy and Aronhold

1 Aronhold 1882, Kennedy 1886. See Kennedy [18]
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the equation
ωik

ωjk
=

�PjkPij

�PikPij

. (15.6)

The theorem of Kennedy and Aronhold is a special case of the theorem stating
that three instantaneous screw axes associated with spatial motions of three
bodies relative to each other have a common perpendicular (see Sect. 12.1).

15.1.2 Illustrative Examples

In this section the importance of instantaneous centers and of centrodes for
the solution of practical problems is illustrated by eight examples.

Example 1 : Cam mechanism
The cam mechanism of Fig. 6.15 is investigated again. The missing instanta-
neous center P12 is determined from (15.6) by setting k = 0 , i = 1 , j = 2 ,
ω10 = ϕ̇1 and ω20 = ϕ̇2 . The distance between P10 and P20 is the con-
stant

√
a2 + b2 . Hence �P20P12

= �P10P12
− √

a2 + b2 . Therefore, with the

abbreviation �P10P12
= � , ϕ̇1/ϕ̇2 = (�−√

a2 + b2)/� or

� =

√
a2 + b2

1− ϕ̇1/ϕ̇2
. (15.7)

In the rotating x, y-system P12 has the coordinates x = −� cosϕ1 , y =
� sinϕ1 . The ratio ϕ̇1/ϕ̇2 and the angle ϕ1 are known functions of ϕ2 (see
(6.114) and (6.115)). The coordinates x(ϕ2) , y(ϕ2) determine the centrode
fixed on the cam. It was shown that during the quarter revolution of the
ellipse from the position ϕ1 = ϕ2 = 0 , α = π/4 to the position ϕ1 =
π/2 , ϕ2 = 0 , α = 3π/4 the ratio ϕ̇1/ϕ̇2 changes from the extremal
value 2a2/(a2 − b2) through ∞ at ϕ2 = ϕ2max

to the extremal value
−2b2/(a2 − b2) . The associated points of the centrode have the coordinates
[x = 0 , y = −(a2 − b2)/

√
a2 + b2 ] , [x = 0 , y = 0 ] and [x = (a2 −

b2)/
√
a2 + b2 , y = 0 ] , respectively. The entire centrode is obtained by

reflecting the curved segment connecting these three points in the x-axis and
in the y-axis. The centrode has the form of a rosette with four leaves of equal
length (one pair of leaves different in shape from the other). Similar arguments
lead to equations for the centrode fixed on the follower. This centrode is an
oval with a single axis of symmetry along the bisector of the right angle.

Example 2 : Elliptic trammel
In Fig. 15.4a a rod of length � is shown the endpoints A and B of which
move along mutually orthogonal guides. These guides define the plane Σ1 .
The rod is part of the infinitely extended plane Σ2 . The instantaneous center
P is the intersection point of the perpendiculars drawn as dashed lines. In
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every position of the rod its distances from M and from the midpoint C
of the rod are � and �/2 , respectively. From this it follows that the circles
shown in the figure are the centrodes. Theorem 15.1 says that the small circle
k2 fixed on the rod rolls in the big circle k1 fixed in Σ1 .

Remark: In Sect. 10.1 the motion of a body with a fixed point 0 was
investigated two points P1 and P2 of which are constrained to two mutually
orthogonal fixed planes E1 and E2 , respectively. In the projection along the
line of intersection of E1 and E2 these planes are mutually orthogonal guides
for the projections of P1 and P2 . When the apex angle α in the triangle
(P1,0,P2) is very small, the polhode cone and the herpolhode cone have the
circular cross sections described by Eqs.(10.21). These are the circles shown
in Fig. 15.4a where the two points are called A and B . End of remark.

Obviously, not only the points A and B on the circumference of k2 , but
every point on this circumference moves along a straight line through M .
Hence two wheels having the diameter ratio 1 : 2 can be used for guiding the
endpoints of a rod along two lines under an arbitrary angle α (see Fig. 15.4b).
If � is again the rod length, the radius of the small wheel is �/(2 sinα ) . This
follows from the theorem that in the small circle the central angle subtended
by the chord � equals 2α .

During two full revolutions of k2 the rod moves through all four quad-
rants of k1 . From an engineering point of view the generation of this motion
by means of two toothed wheels is better than by sliding two points along
straight guides. The simplest possible forms of toothed wheels are shown in
Fig. 15.5 . On the small wheel cylinders of arbitrary diameter are fixed with
their centers on the circumference of k2 . Every cylinder is moving in a slot
cut into the big wheel. The cylinders and the slots are the flanks of the teeth.
The minimum number of teeth is two. Pins, as the cylinders are called, are
the historically oldest forms of teeth. See also Sec. 16.1.5 .

Fig. 15.4 Orthogonal (a) and nonorthogonal (b) guides for points A and B . Fixed
centrode k1 and moving centrode k2 . Elliptical trajectory of Q fixed in Σ2 (c)



15.1 Instantaneous Center of Rotation. Centrodes 457

Fig. 15.5 Pinion with eight cylindric pins. Circles k1 and k2 of Fig. 15.4a

In what follows, the trajectory of an arbitrary point Q fixed in Σ2 is
investigated. The straight line passing through Q and C intersects k2 at
two points A and B (see Fig. 15.4c). After what has been said these points
move along mutually orthogonal straight lines passing through M . These
lines fixed in Σ1 constitute the x, y-system best suited for the description
of the trajectory of Q . With r denoting the radius of the small circle and
with the distance R of Q from C the x, y-coordinates of Q are

x = (r −R) cosϕ , y = (r +R) sinϕ . (15.8)

In the special cases R = r and R = −r , these are the equations of the
straight lines x ≡ 0 and y ≡ 0 , respectively. In all other cases, the constraint
equation cos2 ϕ+ sin2 ϕ = 1 produces the equation of an ellipse:

x2

(r −R)2
+

y2

(r +R)2
= 1 . (15.9)

The semi-axes |r−R| and |r+R| are the distances of Q from A and from
B , respectively. Hence the conclusion: A rod with endpoints moving along
straight guides as well as a set of gear wheels having the diameter ratio 1 : 2
is capable of generating elliptical trajectories with arbitrary ratio of principal
axes. For this reason both systems are referred to as elliptic trammel.

Darboux Motion
Before continuing with plane motion a harmonic translation along the axial
z-axis is superimposed on the rolling motion. Let z(ϕ) = a sinϕ with arbi-
trary amplitude a be the displacement when the radius MC is under the
angle ϕ against the x-axis as shown in Fig. 15.4c . In this so-called Darboux
motion the circles k1 and k2 are the cross sections of raccording cylinders.
Proposition: The trajectory of every body-fixed point is located in a plane
(every point in its own plane) and, furthermore, these trajectories are either
ellipses or straight-line segments.
Proof: As representative point the point is chosen which has in the position
ϕ = 0 the coordinates x = (r − R) cosϕ0 , y = (r + R) sinϕ0 , z = z0
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with arbitrary constants R , ϕ0 , z0 . In the position ϕ �= 0 (arbitrary) it
has the coordinates x(ϕ) = (r − R) cos(ϕ + ϕ0) , y(ϕ) = (r + R) sin(ϕ +
ϕ0) , z(ϕ) = a sinϕ + z0 . The trajectory is in a plane if these coordi-
nates are linearly dependent, i.e., if there are constants F , G , K such that
Fx(ϕ) +Gy(ϕ) + z(ϕ) +K ≡ 0 . This is the condition

sinϕ [−F (r −R) sinϕ0 +G(r +R) cosϕ0 + a]

+ cosϕ [ F (r −R) cosϕ0 +G(r +R) sinϕ0] +K + z0 ≡ 0 .(15.10)

It is satisfied by

F =
a sinϕ0

r −R
G = −a cosϕ0

r +R
K = −z0 . (15.11)

This proves that the trajectory is planar. That it is either an ellipse or a
straight-line segment follows from the fact that its projection onto the x, y-
plane is described by (15.9). End of proof. Darboux [7] showed that this
special motion is the only nonplanar motion (planar in the narrower sense
defined following (15.1)) having the property that every body-fixed point is
moving in a plane (see also Bottema/Roth [4]).

After this digression the plane motion shown in Fig. 15.4a is considered
again. In what follows, the inverse motion is investigated. This means that
the small circle k2 is stationary. The large circle k1 is rolling on k2 . Every
diameter of k1 is sliding through a fixed point on k2 . This is shown in
Fig. 15.6a . The two mutually perpendicular diameters of k1 which up to
now were fixed guides for moving points A and B are now moving lines g1
and g2 which are guided through fixed points A and B , respectively. An
engineering realization is the Oldham coupling of which an exploded view is
shown in Fig. 15.6b . The fixed points A and B are located on the axes of
two parallel shafts with discs 1 and 2 . Grooves on these discs are guides for
the lines g1 and g2 which are materialized as rails on the central disc 3 . The
Oldham coupling transmits the angular velocity of one shaft to the other.

Fig. 15.6 Mutually perpendicular lines g1 and g2 guided through fixed points A and
B (a) and exploded view of Oldham coupling (b)
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Figure 15.7a shows the circle k1 rolling on the fixed circle k2 . As in Fig.
15.4a the radii are denoted � for k1 and �/2 for k2 . Also the notations P
and M for the instantaneous center of rotation and for the center of k1 are
the same. To be investigated is the trajectory of an arbitrary point Q fixed on
k1 at the radius R (R < � or R = � or R > � ). This point Q determines
two mutually perpendicular diameters fixed on k1 which are sliding through
fixed points A and B on the circumference of k2 . The trajectory of Q , from
now on abbreviated q , is most easily described in the x, y-system with origin
A and with the x-axis along the diameter AB of k2 . The polar coordinates
r and ϕ of Q are related through the equation2

r(ϕ) = � cosϕ+R (15.12)

(right-angled triangle (M,A,B) ). The x , y-coordinates are

x(ϕ) = r cosϕ = (� cosϕ+R) cosϕ ,
y(ϕ) = r sinϕ = (� cosϕ+R) sinϕ .

}
(15.13)

Elimination of ϕ yields the implicit equation

Fig. 15.7 Fig. a: Fixed circle k2 of radius 
/2 and rolling circle k1 of radius 
 . Mutually
perpendicular diameters of k1 sliding through fixed points A and B . Limaçon of Pascal
q traced by Q . Fig. b: Limaçon of Pascal enveloped by circles centered on the circle k

and passing through A

2 A curve having the polar-coordinate equation r(ϕ) = f(ϕ)+ const is said to be a
conchoid of the curve with the polar-coordinate equation r(ϕ) = f(ϕ) . By this definition,
the limaçon of Pascal is a conchoid of the circle k2



460 15 Plane Motion

(x2 + y2 − �x)2 = R2(x2 + y2) . (15.14)

In terms of the dimensionless quantities ξ = x/� , η = y/� and � = R/�
the equation is

(ξ2 + η2 − ξ)2 = �2(ξ2 + η2) . (15.15)

These curves are called limaçons of Pascal (after Etienne Pascal, father of
Blaise Pascal).

Equation (15.14) shows that the x-axis is an axis of symmetry of q . The
equation does not change if R is replaced by −R . Hence two points Q and
Q∗ located symmetrically to M trace one and the same limaçon of Pascal.
The reason is that the center M of k1 circles k2 twice per revolution of
k1 . After half a revolution M is in its initial position, while Q is in the
position Q∗ opposite M . Other properties of limaçons of Pascal are explained
geometrically as follows. In Fig. 15.7a the line QH perpendicular to the line
AQ is drawn. It is tangent to the circle k3 with radius R and with fixed
center B . From this it follows that the limaçon of Pascal q is the pedal curve
of this circle. The pedal curve of an arbitrary curve c is defined as follows.
From a fixed point A perpendiculars are dropped to all tangents of c . The
curve connecting the feet of these perpendiculars is the pedal curve of c .
From this it follows that q is tangent to k3 at the points of intersection
with the x-axis.

The tangent t of q in Q is perpendicular to PQ since P is instantaneous
center. The midpoint K of PQ is also midpoint of AH . Thales’ circle over
PQ (the dotted circle) passes through the fixed point A (also through H ).
At Q it is tangent to q . Points H and K vary with ϕ . Their cartesian
coordinates xH , yH and xK , yK are related through the equations xH =
2xK and yH = 2yK . Since H lies on the fixed circle (xH − �)2 + y2H = R2 ,
point K lies on the fixed circle (xK− �/2)2+y2K = (R/2)2 . This is the circle
k shown in Fig. 15.7a . It is concentric with k2 , and its radius is R/2 . These
facts are summarized in the statement that q is enveloped by all circles
centered on k and passing through A . This is demonstrated in Fig. 15.7b
in which A and the circle k are copied from Fig. 15.7a .

Next, the polar-coordinate equation (15.12) is considered again: r(ϕ) =
� cosϕ + R . In the case R < � , the function r(ϕ) has two roots. They are
associated with the double point A of q (Fig. 15.8a). In the case R = � ,
r(ϕ) has a double root. In this case, q has a cusp at A (Fig. 15.8b). This
curve is called cardioid. In the case � < R < 2� , shapes with inflection
points result (Fig. 15.8c), and in the case R > 2� , shapes without inflection
points (Fig. 15.8d). In the case R > � , the fixed point A is an isolated point
which is not part of the trajectory traced by Q . Equation (15.14) is satisfied
by the coordinates x = y = 0 of A independent of R , whereas the polar-
coordinate equation r(ϕ) = � cosϕ+ R shows that r = 0 is possible if and
only if R ≤ � .
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Fig. 15.8 Limaçons of Pascal with double point A (a), with a cusp (cardioid (b)), with

inflection points (c) and without inflection points (d)

The generation of ellipses and of limaçons of Pascal by means of an elliptic
trammel is made use of in many engineering apparatuses (examples see in
Wunderlich [30]).

Example 3 : Body with one line passing through a fixed point and
with one point moving along a fixed line
In Fig. 15.9 the x, y-system is the fixed frame Σ1 , and the ξ, η-system is the
moving body Σ2 . The body-fixed η-axis is constrained to pass through point
A fixed in the frame at x = a , and point B fixed on the body at ξ = b
is constrained to move along the frame-fixed y-axis. To be determined are
the equations of the fixed centrode kf in the x, y-system and of the moving
centrode km in the ξ, η-system. In addition, equations are to be formulated
for the trajectory of the body-fixed point Q with coordinates ξ = v , η = u
(arbitrary).
Solution: Motion and inverse motion (motion of Σ1 relative to Σ2 ) are
of identical nature. Equations for the centrode kf in the x, y-system are
transformed into equations for km in the ξ, η-system by replacing (x, y, a, b)
by (ξ, η, b, a) . This is seen by reflecting the figure in the line y = x .

Fixed centrode kf : The instantaneous center P is the intersection of the
normal to the η-axis at A and the normal to the y-axis at B . The x, y-
coordinates of P are expressed in terms of the angle ϕ :

x = a+y tanϕ , y = a tanϕ+
b

cosϕ
= a tanϕ+ b

√
1 + tan2 ϕ . (15.16)

Elimination of tanϕ results in the equation

y2 − a(x− a) = b
√
y2 + (x− a)2 . (15.17)

In the special case b = 0 , this is the parabola y2 = a(x− a) . In the special
case b = a , it is the parabola y2 = a(2x − a) . In this case, Fig. 15.9 is
symmetric. The pole P is equidistant from the fixed point A and from the
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Fig. 15.9 The body-fixed η-axis is constrained to pass through the frame-fixed point A ,

and the body-fixed point B is constrained to move along the frame-fixed y-axis. Fixed
centrode kf , moving centrode km and trajectory of body-fixed point Q

fixed y-axis. Hence A is the focus, and the y-axis is the directrix of the
parabola. The moving centrode is the congruent parabola η2 = a(2ξ − a)
with focus B and with the η-axis as directrix.

In the general case b �= 0 , a , squaring of (15.17) produces a quadratic
equation for x− a with the solutions

x− a =
y

a2 − b2

(
ya± b

√
y2 + a2 − b2

)
. (15.18)

This equation is satisfied by the coordinates x = a , y = 0 of A . This does
not mean that kf is unconditionally passing through A . This happens when
B is at the origin of the x, y-system. This is possible only if a2 > b2 . Likewise,
km is passing through B only if b2 > a2 .

Trajectory of Q : In terms of ϕ the x, y-coordinates of Q are

x = u cosϕ+ (v − b) sinϕ ,

y = (ηA − u) sinϕ+ v cosϕ
= −u sinϕ+ v cosϕ+ (a+ b sinϕ) tanϕ .

⎫⎪⎬
⎪⎭ (15.19)

The velocity and the acceleration of Q are determined by the time derivatives
ẋ , ẏ and ẍ , ÿ , respectively. For eliminating ϕ the second equation is written
in the form

y cosϕ = −u sinϕ cosϕ+ v(1− sin2 ϕ) + a sinϕ+ b sin2 ϕ . (15.20)

Solving for cosϕ yields the expression
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cosϕ =
v + a sinϕ+ (b− v) sin2 ϕ

y + u sinϕ
. (15.21)

Substitution into the first Eq.(15.19) produces a linear equation for sinϕ
with the solution

sinϕ =
uv − xy

u(x− a) + y(b− v)
. (15.22)

With this expression the first Eq.(15.19) yields

cosϕ =
x(x− a) + v(b− v)

u(x− a) + y(b− v)
. (15.23)

The parameter-free equation sin2 ϕ+ cos2 ϕ = 1 is quadratic in y :

y2[x2 − (b− v)2]− 2yu[bx− a(b− v)]

= u2[(x− a)2 − v2]− [x(x− a) + v(b− v)]2 . (15.24)

In the case u = 0 , (15.22) follows directly from the first Eq.(15.19).
If Q is located on km , the trajectory has a cusp on kf in the position

when Q is the pole P . The condition for Q to be located on km is obtained
from (15.17) by replacing (x , y , a , b) by (v , u , b , a) :
u2 − b(v − b) = a

√
u2 + (v − b)2 .

Example 4 : Rod moving tangent to a circle and with one point
along a straight line
The rod AB in Figs. 15.10a,b is constrained to move tangentially to a unit
circle and with its endpoint A along a straight line. In Fig. 15.10a this line
is a diameter of the circle and in Fig. 15.10b it is a tangent to the circle. To
be determined are in either case the equations of the fixed centrode kf in the
x, y-system with origin 0 and of the moving centrode km in the ξ, η-system
with origin A .

Solution: In both figures the instantaneous center P is the intersection of the
normal to the circle at the point of contact and of the normal to the straight
line at A . The coordinates x, y and ξ, η of P as functions of the angle α
are obtained from triangles. First, Fig. 15.10a is analyzed. The coordinates
of P are

x =
1

cosα
, y = x tanα =

sinα

cos2 α
,

ξ = tanα , η = y sinα = tan2 α .

⎫⎬
⎭ (15.25)

Elimination of α yields for kf and km the equations

kf : y2 =
sin2 α

cos4 α
=

1

cos4 α
− 1

cos2 α
= x2(x2 − 1) , km : η = ξ2 . (15.26)

In Fig. 15.10b P has the coordinates
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Fig. 15.10 Rod AB moving tangentially to a unit circle. The endpoint A is moving

along a diameter of the circle (a) or along a tangent to the circle (b). Fixed centrodes kf
and moving centrodes km

x =
1

cosα
+ tanα =

1 + sinα

cosα
, y = x tanα =

sinα

1− sinα
,

ξ = (1 + y) cosα =
cosα

1− sinα
≡ x , η = (1 + y) sinα =

sinα

1− sinα
≡ y .

⎫⎪⎬
⎪⎭

(15.27)
The first two equations yield x2 = (1 + sinα)/(1− sinα) = 1 + 2 sinα/(1−
sinα) = 1+2y . Hence the centrodes are the congruent parabolas x2 = 2y+1
and ξ2 = 2η + 1 . These parabolas are shown in Fig. 15.10b . The foci are
0 and A , respectively, and the directrices are the line y = −1 and the
line η = −1 , respectively. Through a comparison of angles it is verified that
(0,A,P) is an isosceles triangle. From this it follows that the parabolas are
located symmetrically with respect to the altitude h of the triangle, and that
this altitude is the common tangent at P .

The motions shown in Figs. 15.10a and b can be interpreted in a different
way as follows. The body-fixed line η = −1 is moving through the fixed point
0 , and the body-fixed point A is moving along a fixed line y =const ( y = 0
in Fig. 15.10a and y = −1 in Fig. 15.10b ). With this interpretation both
motions turn out to be special cases of Fig. 15.9. The notation is different,
however. Figure 15.10a is the special case b = 0 , and Fig. 15.10b is the
special case a = b = 1 . From (15.17) it was deduced that in the former case
one of the centrodes is a parabola, and that in the latter case both centrodes
are congruent parabolas.

Example 5 : Centrodes of couplers in four-bar mechanisms
The quadrilateral A0ABB0 shown in Fig. 15.11 is a foldable four-bar mecha-
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nism in antiparallelogram configuration. The fixed link A0B0 and the coupler
AB have equal length � , and the crossed cranks A0A and B0B have equal
length r > � . In the instantaneous position shown the line t–t is a line
of symmetry. To be determined are the fixed centrode kf and the moving
centrode km of the coupler.

Solution: The instantaneous center P is the point of intersection of the
cranks. Since its distance from B equals its distance from A0 , the sum
of the distances PA and PB is the constant length A0A= r . From this it
follows that the moving centrode km is the ellipse having A and B as foci
and passing through P . For reasons of symmetry the fixed centrode kf is the
ellipse having A0 and B0 as foci. The line t–t is the instantaneous tangent.
The semi principal axes of the ellipses are a = r/2 and b = 1/2

√
r2 − �2 < a .

This is seen by drawing the four-bar and the ellipses in the two positions in
which AB is parallel to A0B0 .

In what follows, the same four-bar is considered, but this time the longer
link BB0 is the fixed link. The moving coupler is the link AA0 . In this
case, P∗ is the instantaneous center of the coupler. Since its distance from B
equals its distance from A0 , the difference of the distances P∗A and P∗A0

is the constant length AB= � . From this it follows that the moving centrode
k∗m is the hyperbola having A and A0 as foci and passing through P∗ . For
reasons of symmetry the fixed centrode k∗f is the hyperbola having B and
B0 as foci. The line t–t is the instantaneous tangent. The semi principal
axes of the hyperbolas are a = �/2 (real axis) and b = 1/2

√
r2 − �2 . This

concludes the investigation.

Fig. 15.11 Foldable four-bar mechanism in antiparallelogram configuration. The cen-
trodes of the coupler are ellipses when the coupler is the shorter link and hyperbolas
otherwise
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In the foldable four-bar considered next, not opposite links, but adjacent
links have pairwise identical lengths. The left crank A0A and the coupler
AB have length a , and the fixed link A0B0 and the right crank B0B have
length � > a . The four-bar should be drawn in a position in which the
crank angle ϕ = �(B0A0A) is in the range 0 < ϕ < π/2 . The line AB0

is a line of symmetry. As before, the pole P of the coupler is the point of
intersection of the cranks. Its polar coordinates in the fixed frame are ϕ and
r =A0P . Let R be the distance of P from B0 . The law of cosines states that
R2 = �2+r2+2�r cosϕ . Auxiliary lines and points are defined as follows. The
line through B parallel to the line of symmetry intersects the line A0B0 at a
point C at the distance � from B0 (similar triangles). The line through B0

parallel to the coupler intersects the auxiliary line BC at a point D . Finally,
let P∗ be the reflection of P in the line of symmetry. The similarity of the
triangles (B,P∗,C) and (D,B0,C) establishes the equation (R+ �)/r = �/a .
Hence R = �(r/a − 1) . Setting the square of this expression equal to the
previous expression for R2 results in the polar-coordinate equation for the
fixed centrode kf :

r =
2�a

�2 − a2
(�+ a cosϕ) . (15.28)

Comparison with (15.12) shows that kf is a limaçon of Pascal and, because of
� > a , one without double point. Its line of symmetry is A0B0 . The constant
coefficients depending on � and a determine the quantities � and R of Fig.
15.8.

An equation for the moving centrode km is obtained as follows. In the
coupler-fixed system the pole P has the polar coordinates ϕ = �(ABB0)
and r′ =BP= �−R and with the above expression for R r′ = �(2− r/a) .
Hence r = a(2 − r′/�) . Substitution into (15.28) results in the desired
equation for km :

r′ =
2�a

a2 − �2
(a+ � cosϕ) . (15.29)

This is a limaçon of Pascal with the double point B and with the line of sym-
metry BA . The equation is obtained directly from (15.28) by interchanging
� and a .

Example 6 : Door mechanism
In Fig. 15.12 the labeled six-body linkage of an airplane door is shown in the
position door closed. The body of the airplane is the frame 0 , and the door
is body 5 . All revolute joints are instantaneous centers with labels as shown.
The joints of bodies 0 , 1 , 2 , 3 form a parallelogram 1 , and the joints of
bodies 5 , 3 , 2 , 4 form another parallelogram 2 . Both parallelograms share
bodies 2 and 3 and the joint P23 . About which point P50 does the door
rotate relative to the frame in the position shown? Where is P50 located in
other positions of the door? In doors of modern furniture the same linkage is
used with link lengths on the order of 1 cm.
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Fig. 15.12 Six-link door mechanism with permanent center of rotation P50

Solution: In a parallelogram parallel sides rotate relative to each other
about an infinitely distant instantaneous center. According to the theorem of
Kennedy/Aronhold this center is the intersection of the other pair of parallel
sides of the same parallelogram. Examples: P30 is the intersection of the lines
P13P10 and P23P20 , and P25 is the intersection of the lines P23P35 and
P24P45 . This determines the desired center P50 as intersection of the lines
P20P25 and P30P35 . The instantaneous centers P50 , P20 , P23 and P35 form
a parallelogram.

During large motions of the door body 3 is in translatory motion relative
to body 0 . The parallelogram 2 produces constraints forcing also body 4
to be in translatory motion relative to body 0 . During a translatory motion
of a body the difference of the position vectors of two body-fixed points A
and B is constant: rA−rB = const . Applied to body 3 this means: The two
joints connecting body 3 with body 5 and with body 2 , respectively, have
a constant difference of position vectors. Since the latter joint is moving on
a circle around P20, the former is moving on a circle around P50 . The same
argument applies to body 4 . The joints connecting this body with body 5
and with body 2 , respectively, have a constant difference of position vectors.
Since the latter joint is moving on a circle around P20, the former is moving
on a circle around P50 . Hence two points of body 5 move on circles about
P50 . This proves that P50 is not only instantaneously, but permanently center
of rotation of the door.

Example 7 : Instantaneous centers of an eight-link mechanism
In this example, the theorem of Kennedy and Aronhold alone does not
suffice for constructing instantaneous centers of rotation. In addition, also
Burmester’s theorem 15.2 must be applied. The planar linkage in Fig. 15.13
consists of the frame 0 and of moving bodies 1, . . . , 7 which are intercon-
nected by the ten revolute joints A , B , C , D , E , B′ , C′ , D′ , E′ , F . Ac-
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cording to Grübler’s Eq.(4.2) the degree of freedom of the linkage is one. To
be determined are the instantaneous centers Pi0 (i = 1, . . . , 7) and P23 .

Solution: All revolute joints are centers of rotation with the respective labels
as shown. Examples are P10=A and P12=B . The system does not contain
any four-bar linkage so that no pair of straight lines is available which, by the
theorem of Kennedy and Aronhold, might yield an additional instantaneous
center. In the following applications of Burmester’s theorem 15.2 velocity al-
ways means velocity relative to frame 0 . In Fig. 15.13 the rotated velocities
of the points B and B′ are drawn to scale as vectors v∗

B and v∗
B′ , respec-

tively, terminating at the center P10 =A . Theorem 15.2 applied to body 2
states that the tip of the rotated velocity v∗

E of point E on rod 2 lies on the
line h parallel to rod 2 . The tip of the rotated velocity v∗

D of D lies on the
line CD since rod 4 rotates about the center P40 =C . Next, theorem 15.2 is
applied to body 6 . The tips of the rotated velocities v∗

D , v∗
E and v∗

F form
a triangle which is both similar and parallel to the triangle (D,E,F) . It is the
triangle (D1,E1,F1) if the tip of v∗

E is located at E1 , and it degenerates to
point M (intersection of h and CD ) if the tip of v∗

E is located at M . Since
the tip of v∗

E is an as yet unknown point on h , the tip of v∗
F is an as yet

unknown point on the line g=MF1 .
By the same arguments applied to the right-hand side of the system, i.e.,

to bodies 1 , 3 , 5 and 7 , the tip of v∗
F is located also on the line g′=M′F′

1 .
Hence the tip of v∗

F lies at the intersection Q of g and g′ . This determines
the instantaneous center P60 as intersection of the velocity normals v∗

D

and v∗
F and the instantaneous center P70 as intersection of v∗

D′ and v∗
F .

Fig. 15.13 Mechanism with eight links and ten revolute joints. The geometric construction
of P60 and P70 rests on Burmester’s theorem 15.2
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All other instantaneous centers are found with the help of the theorem of
Kennedy and Aronhold. Examples: The center P20 is the intersection of the
lines P62P60 = EP60 and P10P21 = AB . The center P30 is the intersection

of the lines E′P70 and AB′ . The center P23 is the intersection of the lines
P20P30 and P21P31 = BB′ .

Example 8 : Kutzbach’s angular velocity diagram for spur gears
In spur gears all bodies move in one common plane. All axes of gear wheels
and also all pitch points are instantaneous centers of rotation. Since the
distances of these points are constant, also all angular velocity ratios are
constant. The planetary gear shown in Fig. 15.14a is used as illustrative
example for explaining Kutzbach’s general-purpose method for determining
angular velocities [22]. The gear consists of the stationary frame 0 , the pinion
cage 1 and gear wheels 2 , 3 and 4 . The degree of freedom is one. A single,
arbitrary angular velocity is prescribed, for example, ω10 (pinion cage 1
relative to the frame). To be determined are all angular velocities ωij (i, j =
0, . . . , 4 ; i �= j ).

Solution: The instantaneous centers P30 , P32 and P24 in Fig. 15.14a are
pitch points, and the centers P31 , P21 , P10 and P40 are located on wheel
axes. From these centers lines parallel to the axes are drawn thus creating
the r, v-velocity diagram in Fig. 15.14b . This velocity diagram consists of
straight lines i = 0, . . . , 4 . Definition: The line i is the graph of the function
vi(r) . This function determines the velocity (relative to body 0 ) of the point
fixed on body i at the radius r from the center line. The line 0 for the
frame and the line v1(r) = ω10r for the pinion cage 1 are given by the
problem statement. These lines are drawn first (with arbitrary scale). Wheel
3 has at the radius of P30 the same velocity body 0 has, and at the radius
of P31 the same velocity body 1 has. Through these two points the line 3

Fig. 15.14 Planetary gear (a) , velocity diagram (b) and angular velocity diagram (c)
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is determined. Subsequently, the lines 2 and 4 are determined in the same
way.

The diagram in Fig. 15.14c is the angular velocity diagram. It is con-
structed by drawing, from a point on the center line, lines parallel to all
lines in the velocity diagram. These lines have the equations vi(r) = ωi0r .
The function values at an arbitrarily chosen radius r = r0 are ωi0r0 . Thus,
these values together with the scale chosen for the prescribed angular velocity
ω10 determine the directions and magnitudes of all other angular velocities
ωi0 (i = 1 . . . , 4). With these velocities also all relative angular velocities
ωij = ωi0 − ωj0 (i, j = 1, . . . , 4 ; i �= j ) are determined. For demonstration
ω23 is shown.

15.2 Velocity and Acceleration in Complex Formulation

In the case of plane motion, complex formulations of position, velocity and
acceleration of points are more convenient than vector formulations. In Fig.
15.15 the planes Σ1 and Σ2 of Fig. 15.1 are shown again. To Σ1 the real
and the imaginary axis of a complex plane are attached. In this plane complex
numbers representing positions, velocities and accelerations are formulated.
Let ϕ(t) be the time-dependent angle of rotation of Σ2 relative to Σ1 .
It is the angle of an arbitrarily chosen line fixed in Σ2 against the real axis
fixed in Σ1 (positive counterclockwise). The angular velocity and the angular
acceleration of Σ2 are ϕ̇ and ϕ̈ , respectively. It is assumed that ϕ̇ �= 0 .
Points A and Q are arbitrarily chosen points fixed in Σ2 . Let rA and r
be the complex numbers specifying their positions in Σ1 . The relationship
between the two is expressed in the form

r = rA + �eiϕ ( � = complex const) . (15.30)

Differentiation with respect to time yields expressions for velocity and ac-

Fig. 15.15 Complex numbers rA and r specifying the positions in Σ1 of two points A

and Q fixed in Σ2 . � is a complex constant
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celeration. With the abbreviations ṙ = v , ṙA = vA , r̈ = a and r̈A = aA

these expressions are

v = vA + i ϕ̇�eiϕ = vA + i ϕ̇(r − rA) , (15.31)

a = aA + i ϕ̈(r − rA) + i ϕ̇(v − vA) = aA + (i ϕ̈− ϕ̇2)(r − rA) . (15.32)

These equations are the complex formulations of the vector Eqs.(9.13) and
(9.81) in the case of planar motion. At time t = const (arbitrary) v and a
are linear functions of r with constant coefficients. From this fact Burmester
derived two theorems:

Theorem 15.4. The tips of the complex velocities vi of arbitrary points Qi

of Σ2 ( i = 1, 2, . . . ) produce a figure similar to the figure produced by the
points Qi .

Theorem 15.5. The tips of the complex accelerations ai of arbitrary points
Qi of Σ2 ( i = 1, 2, . . . ) produce a figure similar to the figure produced by the
points Qi .

Theorem 15.4 is the complex formulation of Theorem 15.2 on rotated veloc-
ities.

15.2.1 Instantaneous Center of Rotation

Let rP be the complex number representing the instantaneous center of ro-
tation P . Equation (15.31) with r = rP and v = 0 yields the expression

rP = rA +
i vA

ϕ̇
. (15.33)

This is the complex formulation of (15.2). In the special case A=P and vP =
0 , (15.31) becomes

v = i ϕ̇(r − rP) . (15.34)

This is the complex formulation of (15.3). Two complex velocities vA and
v of arbitrary points positioned at rA and r , respectively, determine the
instantaneous center of rotation rP uniquely. Equation (15.34) is written
also with rA and vA : vA = i ϕ̇(rA − rP) . Multiplying this equation by v ,
(15.34) by vA and taking the difference results in

rP =
vrA − vAr

v − vA

. (15.35)

This is the complex formulation of the geometric construction of P as point
of intersection of the normals to the velocities of two points. Solving the
equation for v yields the expression
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v = vA

r − rP

rA − rP

. (15.36)

15.2.2 Instantaneous Center of Acceleration

Equation (15.32) shows that there exists a point in Σ2 which has, instanta-
neously, the acceleration a = 0 . This point is called instantaneous center of
acceleration G . Actually, every body-fixed point on the line through G and
normal to Σ2 has zero acceleration. The complex position rG of G is

rG = rA − aA

i ϕ̈− ϕ̇2
. (15.37)

In the special case A=G and aG = 0 , (15.32) becomes

a = (i ϕ̈− ϕ̇2)(r − rG) . (15.38)

Two complex accelerations aA and a of arbitrary points positioned at rA

and r , respectively, determine the instantaneous center of acceleration rG

uniquely. Equation (15.38) is written also with rA and aA : aA = (i ϕ̈ −
ϕ̇2)(rA − rG) . Multiplying this equation by a , (15.38) by aA and taking the
difference results in

rG =
arA − aAr

a− aA

. (15.39)

Solving this equation for a yields the expression

a = aA

r − rG

rA − rG

. (15.40)

Equations (15.37) – (15.40) correspond to (15.33) – (15.36).
In (15.38) the factor (i ϕ̈ − ϕ̇2) is the same for all points of Σ2 . This

factor has the effect of stretch rotation of r − rG . Let α be the angle of
this stretch rotation. The angle is π/2 in the special case ϕ̇ = 0 , and it is
π in the special case ϕ̈ = 0 . Figure 15.16 shows the general case with the
center of acceleration G and with the accelerations a1 and a2 of two points
Q1 and Q2 , respectively. By attaching to Q1 not only a1 , but also a2 and
the acceleration zero of G the triangle (P1,P

∗
2,Q1) is obtained. From (15.38)

it follows that the triangles (G,Q1,P1) and (G,Q2,P2) are similar, and from
Theorem 15.5 it follows that the triangles (P1,P

∗
2,Q1) and (Q1,Q2,G) are

similar. These two similarities are the geometrical interpretations of (15.40)
and (15.39). They determine a2 if only G and the acceleration a1 are given,
and they determine G if only a1 and a2 are given.
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Fig. 15.16 Center of acceleration G and accelerations a1 , a2 of points Q1 , Q2

15.2.3 Inflection Circle. Bresse Circles

Subject of investigation is again the instantaneous state of plane motion at
some fixed time t . Up to now the locations of the real axis and the imaginary
axis of the complex plane in Σ1 were unspecified. Now, the instantaneous
center of rotation P is chosen as origin. Furthermore, the imaginary axis is
given the (positive or negative) direction of the acceleration of the point of
Σ2 coinciding with P . This has the consequence that the center of rotation
has position rP = 0 , velocity vP = 0 and acceleration aP = i a0 with a
positive or negative scalar a0 . The position in Σ1 of a point fixed in Σ2 is
written in the form r = x + i y . This means that x and y are cartesian
coordinates along the real and the imaginary axis. In these terms Eqs.(15.31)
and (15.32) for velocity and acceleration of the point r have the forms

v = i ϕ̇(x+ i y) a = i a0 + (i ϕ̈− ϕ̇2)(x+ iy)

= −ϕ̇y + i ϕ̇x , = −ϕ̇2x− ϕ̈y + i (a0 − ϕ̇2y + ϕ̈x) .

}
(15.41)

The following problems are solved.
1. Determine all points of Σ2 characterized by collinearity of acceleration a
and velocity v.
2. Determine all points of Σ2 characterized by mutual orthogonality of ac-
celeration a and velocity v.

The center of acceleration G as well as the center of rotation P are singular
points satisfying both conditions. The first condition is satisfied by points
the trajectories of which have zero curvature. In other words: The point is
either on a straight trajectory or it is instantaneously inflection point of
its trajectory. The second condition is satisfied by points the acceleration
of which is instantaneously pointing through P (either toward P or away
from P ). In other words: These points have, instantaneously, no acceleration
component along their trajectory. According to (14.6) a and v are collinear
if the imaginary part of av is zero, and they are mutually orthogonal if the
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real part is zero. With (15.41)

av = ϕ̇{ϕ̈(x2 + y2) + a0x+ i [ϕ̇2(x2 + y2)− a0y]} . (15.42)

Both conditions result in the equation of a circle. The first circle is called
inflection circle (geometric locus of all instantaneous inflection points). Both
circles are also referred to as Bresse circles [6]. Their equations are

inflection circle: ϕ̇2(x2 + y2)− a0y = 0 , (15.43)

second Bresse circle: ϕ̈ (x2 + y2) + a0x = 0 . (15.44)

In Fig. 15.17 both circles are drawn in solid lines. With the coordinate

y2 =
a0
ϕ̇2

(15.45)

of the point denoted P2 the inflection circle has the equation

x2 + y2 − y2y = 0 . (15.46)

From the figure it is seen that at points of inflection tangents to trajectories
are passing through P2 . At the origin P and at the center of acceleration G
both circles intersect orthogonally. The coordinates of G are

Fig. 15.17 Center of acceleration G at the intersection of the Bresse circles (solid lines).
Inflection circle (dashed line) and center of acceleration G∗ of the inverse motion

xG = −y2
ϕ̈/ϕ̇2

1 + (ϕ̈/ϕ̇2)2
, yG = y2

1

1 + (ϕ̈/ϕ̇2)2
. (15.47)
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The line passing through P2 and G passes also through the second point of
intersection of the second Bresse circle with the x -axis. In the case ϕ̈ = 0 ,
the second Bresse circle degenerates to the line x = 0 , and the center of
acceleration G is located at P2 .

Next, the motion of Σ2 is again interpreted as rolling motion of the cen-
trode fixed in Σ2 on the centrode fixed in Σ1 . The point of rolling contact
is P . The point of Σ2 coinciding with P has, instantaneously, zero velocity
and the acceleration a0 in y -direction. From this it follows that its trajec-
tory has a cusp in P . The trajectory into and out of P is tangent to the
y -axis. This means that the y -axis is the common normal of both centrodes,
and the x -axis is the common tangent.

Example: In the elliptic trammel shown in Fig. 15.4a the circle k2 is the
moving centrode. It was shown that all points of k2 move on straight lines.
From this it follows that k2 is also the inflection circle. The second Bresse
circle has its center on the tangent to the inflection circle in P . Its radius
depends on ϕ̈ . End of example.

15.2.4 Center of Acceleration and Bresse Circles of
the Inverse Motion

The inverse of the motion of Σ2 relative to Σ1 is the motion of Σ1 relative
to Σ2 . For angular velocity and angular acceleration of Σ1 and for velocities
and accelerations of points fixed in Σ1 (9.17), (9.18) and (9.19) are valid for
general spatial motion:

ωrel = −ω , ω̇rel = −ω̇ , vrel = −v , arel = −a+ 2ω × v . (15.48)

The quantities carrying the index rel are associated with the inverse motion,
and the ones without this index are associated with the motion. In the special
case of planar motion, the equations have the forms

ϕ̇rel = −ϕ̇ , ϕ̈rel = −ϕ̈ , vrel = −v , arel = −a+ 2i ϕ̇v . (15.49)

Let G∗ be the center of acceleration of the inverse motion. Its location rG∗

is obtained in two steps. First, in (15.37) for the location rG of G the index
rel is attached to all quantities. In the second step all quantities carrying the
index are replaced by the respective expressions in (15.49). The result is

rG∗ = rA +
2i ϕ̇vA − aA

i ϕ̈+ ϕ̇2
. (15.50)

The same procedure applied to (15.43) and (15.44) yields for the Bresse circles
of the inverse motion the equations
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inflection circle: ϕ̇2(x2 + y2) + a0y = 0 , (15.51)

second Bresse circle: ϕ̈ (x2 + y2) + a0x = 0 . (15.52)

Thus, the second Bresse circles of motion and inverse motion are identical,
whereas the inflection circle of the inverse motion is the reflection of the
inflection circle of the motion in the tangent to the centrodes. Also the center
of acceleration G∗ is the reflection of the center of acceleration G . In Fig.
15.17 all centers and circles are shown.

15.3 Curvature of Plane Trajectories

15.3.1 Normal Poles

As before, an arbitrary continuous motion of a plane Σ2 relative to a refer-
ence plane Σ1 is considered. In the present section curvatures of trajectories
of points of Σ2 are investigated. Curvature is a differential-geometric prop-
erty which is determined by the shape of the trajectory independent of the
motion generating the trajectory. For this reason, the complex representation
known from (15.30) is used with ϕ as independent variable:

r(ϕ) = rA(ϕ) + �eiϕ (� = const) . (15.53)

As before, ϕ̇ �= 0 is assumed which means that the instantaneous center of
rotation exists.

The n th derivative of r with respect to ϕ is denoted r(n) . For the deriva-
tives with n =1 , 2 and 3 also the notations r′ , r′′ and r′′′ are used. The
n th derivative is (see (15.31) and (15.32))

r(n) = r
(n)
A + in�eiϕ = r

(n)
A + in(r − rA) (n = 1, 2, . . .) . (15.54)

Definition: The normal pole of n th order, denoted Pn , is the particular point
of Σ2 for which the n th derivative is zero. Let rPn

be the complex number
representing Pn . Then, by definition,

0 = r
(n)
A + in(rPn

− rA) (n = 1, 2, . . .) , (15.55)

whence it follows that

rPn
= rA − i−nr

(n)
A (n = 1, 2, . . .) . (15.56)

The expression on the right-hand side is independent of � . Since A is an
arbitrary point of Σ2 , rA can be replaced by r . Hence
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rPn
= r − i−nr(n) (n = 1, 2, . . .) . (15.57)

For n = 1, . . . , 4 the formula yields

rP1
= r + i r′ , rP2

= r + r′′ , rP3
= r − i r′′′ , rP4

= r − r(4) . (15.58)

In continuing this sequence the factors +i , +1 , −i , −1 of the n th deriva-
tive are periodically repeated. Equation (15.57) yields

r(n) = in(r − rPn
) (n = 1, 2, . . .) . (15.59)

Thus, r(n) is known for all points of Σ2 if Pn is known. Writing (15.57)
also for rPn+1

and taking the difference results in the equation

in(rPn+1
− rPn

) = r(n) + i r(n+1) (n = 1, 2, . . .) (15.60)

and with the first Eq.(15.58)

r
(n)
P1

= in(rPn+1
− rPn

) (n = 1, 2, . . .) . (15.61)

The relationship dr/dt = ϕ̇ dr/dϕ shows that P1 is identical with the in-
stantaneous center of velocity. In the special case of motion with ϕ̇ = const,
dnr/dtn = ϕ̇n r(n) and, in particular, d2r/dt2 = ϕ̇2 r′′ . From this it follows
that in the special case ϕ̇ = const, P2 is identical with the instantaneous
center of acceleration G . Already in Fig. 15.17 this point was denoted P2 .
In the x, y-system of this figure the normal poles are, in the instantaneous
position shown,

rP1
= 0 , rP2

= i y2 , rPn
= xn + i yn (n > 2) . (15.62)

The coordinates y2 , xn and yn (n > 2) are determined by the motion of
plane Σ2 .

Example: In Figs. 15.26 and 15.27 the rolling motion of a planetary wheel
1 on or inside a fixed sun wheel 0 is shown. The planetary wheel is the
moving plane Σ2 , and the sun wheel is plane Σ1 . The point denoted P10 is
the normal pole P1 . As points A and Q in the sense of Fig. 15.15 the wheel
center P12 and the wheel-fixed point C are chosen. Their complex numbers
rA and r are given in (15.119) in terms of constant parameters r0 , r1 , b
and of the variables ϕ1 and ϕ2 explained in the figures: rA = (r1− r0)e

iϕ2 ,
r = (r1 − r0)e

iϕ2 + beiϕ1 . The angle ϕ1 is the angle ϕ of Eq.(15.53). From
(15.120) the relationship ϕ2 = λϕ with λ = r1/(r1 − r0) is copied. With
the additional abbreviation r1 − r0 = a the complex numbers are

rA = aeiλϕ , r = aeiλϕ + beiϕ . (15.63)

The n th derivative of r is
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r(n) = in(λnaeiλϕ + beiϕ) = in[r − a(1− λn)eiλϕ] . (15.64)

With this expression Eq.(15.57) for the normal pole Pn becomes

rPn
= a(1− λn)eiλϕ = (1− λn)rA (n ≥ 1) . (15.65)

Hence rPn
− rA = −λnrA . This shows that the normal poles are located on

the normal to the centrodes, and that their distances from the center of the
planetary wheel form a geometric series. The elliptic trammel in Fig. 15.4
is the planetary gear with λ = −1 . In this special case, the normal poles
coalesce alternatingly with P1 and with the center of the planetary wheel.
End of example.

15.3.2 Normal Poles of the Inverse Motion

Let P∗
n be the n th-order normal pole of the inverse motion (motion of Σ1

relative to Σ2 ). From Sect. 15.1 it is known that P∗
1 =P1 . Furthermore, from

Fig. 15.17 it is known that P∗
2 and P2 are located symmetrically to P1 on

the normal to the centrode. With (15.53) P∗
n (n ≥ 1 arbitrary) is expressed

in terms of P1, . . . ,Pn as follows. In the inverse motion r is constant while
rA(ϕ) and �(ϕ) are variable. The derivatives of order n = 0 to n = 3 yield
the equations

n = 0 : r = rA + �eiϕ ,

n = 1 : 0 = r′A + i �eiϕ + �′eiϕ

= r′A + i (r − rA) + �′eiϕ ,

n = 2 : 0 = r′′A − i r′A + i �′eiϕ + �′′eiϕ

= r′′A − 2i r′A + (r − rA) + �′′eiϕ ,

n = 3 : 0 = r′′′A − 2i r′′A − r′A + i �′′eiϕ + �′′′eiϕ

= r′′′A − 3i r′′A − 3r′A − i (r − rA) + �′′′eiϕ .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(15.66)

According to (15.55) r
(n)
A = −in(rPn

− rA) (n = 1, 2, . . .). Furthermore, by
definition r = rP∗

n
when �(n) = 0 . When this is substituted, the equations

are

n = 1 : 0 = −i (rP1 − rA) + i (rP∗
1
− rA) or rP∗

1
= rP1 ,

n = 2 : 0 = (rP2 − rA)− 2(rP1 − rA) + (rP∗
2
− rA) or rP1 = 1

2
(rP∗

2
+ rP2 ) ,

n = 3 : 0 = i (rP3 − rA)− 3i (rP2 − rA) + 3i (rP1 − rA)− i (rP∗
3
− rA) or

rP∗
3
− rP3 = 3(rP1 − rP2 ) .

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(15.67)

The results for n = 1 and for n = 2 reconfirm what is already known. The
result for n = 3 states that the two pairs of poles P1 , P2 and P∗

3 , P3 are the
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parallel sides of a trapezoid and that the ratio of the lengths of these sides
is 1 : 3 . From the sequence of Eqs.(15.67) continued for n > 3 the following
explicit expression for rP∗

n
is deduced:

rP∗
n
=

n∑
k=1

(
n

k

)
(−1)k−1rPk

. (15.68)

The proof by induction is left to the reader.

15.3.3 Euler-Savary Equation

In this section the curvature of trajectories is investigated. An important
role is played by the inflection circle shown in Fig. 15.18. As is known from
Fig. 15.17 the circle is determined by the normal poles P1 and P2 . It is the
geometric locus of all points of Σ2 the trajectories of which have, instanta-
neously, an inflection point and a tangent passing through the normal pole
P2 which has the coordinate (see (15.45)) y2 = a0/ϕ̇

2 , a0 being the accel-
eration of the point of Σ2 coinciding with P1 . For simplifying the figure the
case y2 < 0 is illustrated.The tangent to the inflection circle in P1 is also the
tangent to the centrodes which are in rolling contact at P1 . The vector e in
the figure is the unit vector along an arbitrarily directed line through P1 . In
what follows, this line is referred to as line e . It is specified by the angle α
against the x-axis. Let Q with position vector re be an arbitrary point fixed
in Σ2 on the line e . Furthermore, let W be the second intersection point
of the line e with the inflection circle. Its position vector is denoted rWe , so
that α and rW are the polar coordinates of the circle. To be determined is
the instantaneous center of curvature M of the trajectory of Q . The position
vector of M is denoted Re . The coordinates r , rW and R are positive, zero
or negative. Finally, let � be the radius of curvature of the trajectory of Q
(not to be confused with the complex number � in (15.53)). Its definition is

Fig. 15.18 Inflection circle with normal poles P1 and P2. On a line e a point Q fixed in
Σ2 , the center of curvature M of the trajectory of Q and the second point of intersection

W with the inflection circle



480 15 Plane Motion

� = R− r . (15.69)

In the case shown in the figure, � < 0 .
The desired relationship between M and Q , i.e., between R and r is

found as follows. The velocity v of Q has the magnitude v = rϕ̇ . The
normal component of the acceleration of Q which is directed toward M is
denoted ane . Its magnitude an (positive or negative) is a function of the
radius of curvature:

an =
v2

�
=

r2ϕ̇2

R− r
. (15.70)

With (9.81) an is expressed through the acceleration a0 of the point of Σ2

instantaneously coinciding with P1 :

an = a0 · e− rϕ̇2 . (15.71)

Hence

a0 · e− rϕ̇2 =
r2ϕ̇2

R− r
(15.72)

or, after simple re-formulation,

1

r
− 1

R
=

1

s
(15.73)

with the abbreviation

s =
a0 · e
ϕ̇2

=
a0
ϕ̇2

sinα = y2 sinα . (15.74)

The quantity s is a constant on the line e . Equation (15.73) is called Euler-
Savary equation3. The derivation shown here is due to Fayet [9]. An alterna-
tive form is (

1

r
− 1

R

)
sinα =

1

y2
= const . (15.75)

From the unconditionally valid three-angle equation4

3 Euler 1765, Savary 1845
4 When π/2 is added to all three angles or to α1 and α2 only or to α1 only, the
alternative equations are obtained:
cosα1 sin(α2 − α3) + cosα2 sin(α3 − α1) + cosα3 sin(α1 − α2) = 0 ,
cosα1 cos(α2 − α3) − cosα2 cos(α3 − α1) + sinα3 sin(α1 − α2) = 0 ,
cosα1 sin(α2 − α3) − sinα2 cos(α3 − α1) + sinα3 cos(α1 − α2) = 0 .
The corresponding equations for hyperbolic functions are
sinhx1 sinh(x2 − x3) + sinhx2 sinh(x3 − x1) + sinhx3 sinh(x1 − x2) = 0 ,

coshx1 sinh(x2 − x3) + coshx2 sinh(x3 − x1) + coshx3 sinh(x1 − x2) = 0 ,
coshx1 cosh(x2 − x3) − coshx2 cosh(x3 − x1) − sinhx3 sinh(x1 − x2) = 0 ,
coshx1 sinh(x2 − x3) − sinhx2 cosh(x3 − x1) + sinhx3 cosh(x1 − x2) = 0 .
These formulas are not found in any collection of formulas known to the author including
the rich collection Skanavi [27]
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sinα1 sin(α2 − α3) + sinα2 sin(α3 − α1) + sinα3 sin(α1 − α2) = 0 (15.76)

in combination with (15.74) it follows that

s1 sin(α2 − α3) + s2 sin(α3 − α1) + s3 sin(α1 − α2) = 0 . (15.77)

Given the constants s1 and s2 on two lines e1 , e2 and the direction of a
third line e3 relative to these two, the equation determines the constant s3
on line e3 . The tangent to the centrodes as line of reference is not needed
for this purpose. The equation was first formulated by Fayet [9] without,
however, explicitly referring to (15.76).

From the right-angled triangle (P1,W,P2) in Fig. 15.18 it follows that
rW = y2 sinα . This proves the identity of s with the polar coordinate rW :

s = rW . (15.78)

This follows also directly from (15.73). At the inflection point W the center
of curvature is at infinity. Hence R = ∞ and s = rW .

Euler-Savary Equation of the Inverse Motion
In the inverse motion, trajectories in Σ2 produced by points Q fixed in Σ1

are considered. Let M∗ be the center of curvature with the position vector
R∗e . In the inverse motion a0 is replaced by −a0 (see Theorem 9.1; a0 is
the acceleration of the point coinciding with P1). From (15.74) it follows that
s is replaced by −s . Thus, the Euler-Savary equation of the inverse motion
is

1

r
− 1

R∗ = −1

s
. (15.79)

Now back to the motion. The trajectory of the point Q coinciding with
P1 ( r = 0 ) has a cusp at P1 . About the curvature at the cusp no statement
is made by the Euler-Savary equation.

On the tangent to the centrodes, i.e., on the line characterized by α = 0 ,
(15.75) requires that R = 0 independent of r . This means: For all points Q
on this line, with the exception of Q=P1 , the associated center of curvature
M is located at P1 .

A single pair of points Q1 ,M1 and its quantities r1 , R1 determine a line
e1 and, through (15.73), the constant s1 on this line. The same equation
then determines for every point Q on this line the associated point M .
Likewise, a second pair of points Q2 ,M2 on another line e2 determines s2
on this line and then for every point Q on this line the associated point M .
Subsequently, Fayet’s Eq.(15.77) determines the constant s3 on any third
line e3 specified by the angular difference α3 − α1 and, consequently, the
center of curvature M for every point Q on this line.

Example: These analytical methods find an important application in the
theory of the four-bar mechanism (see the four-bar M1Q1Q2M2 in Fig. 15.19).
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The moving plane Σ2 under investigation is the plane fixed to the coupler
Q1Q2 . When the four-bar is moving, every point Q fixed in Σ2 moves along
a trajectory referred to as coupler curve. Properties of coupler curves are
the subject of Sect. 17.8. The Euler-Savary equation determines the center
of curvature of the coupler curve in an instantaneous position of Q .

The pole P1 of Σ2 lies at the intersection of the cranks. On the lines e1
and e2 the fixed points M1 and M2 are the centers of curvature associated
with Q1 and Q2 , respectively. The figure provides the quantities r1 , R1 ,
r2 , R2 and α2−α1 from which s1 and s2 and everything else is calculated.
The points W1 and W2 have the polar coordinates s1 and s2 , respectively.
The pole P2 is the point of intersection of the perpendiculars to the lines e1
and e2 at W1 and W2 , respectively. In the auxiliary ξ, η -system with origin
P1 and with the ξ-axis along e1 these perpendiculars have the equations
ξ = s1 and ξ cos(α2 − α1) + η sin(α2 − α1) = s2 , respectively. Hence P2

has the coordinates ξ2 = s1 , η2 = [s2 − s1 cos(α2 − α1)]/ sin(α2 − α1) . The
tangent to the centrodes has the equation η = −ξξ2/η2 . The significance of
the angles β1 , β2 is explained later. End of example.

Fig. 15.19 Four-bar M1Q1Q2M2 , inflection circle of the coupler-fixed plane and angles
α1 = β2 , α2 = β1 of Bobillier’s theorem

The analytical methods explained above have geometrical interpretations
which are useful for graphical constructions. Graphical constructions have
the advantage of making things visible. But they have the disadvantage of
relying on intersections of lines which, frequently, are either almost parallel
or intersecting outside the available sheet of paper.
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First, a method known as sawtooth construction is explained. As prepara-
tory step, the Euler-Savary Eq.(15.73) in combination with (15.69), R =
�+ r , and with (15.78), s = rW , is written in the form

�(rW − r) = r2 . (15.80)

Consider Fig. 15.20 which is in part a copy of Fig.15.18. The relationships
between the points P1 , Q , M and W on a line e can be expressed geo-
metrically as follows. Let P∗ be an arbitrarily chosen auxiliary point. Lines
P∗M and P∗P1 are drawn and parallel to these lines the lines g1 through
P1 and g2 through W . Proposition: The point of intersection W ∗ of g1
and g2 lies on the line P∗Q .
Proof: The triangles (Q,M,P∗) and (Q,P1,W

∗ ) are similar, and the trian-

gles (Q,P1,P
∗) and (Q,W,W∗ ) are similar. Therefore, QP∗ : QW∗ equals

� : r as well as r : (rW − r) . Hence �(rW − r) = r2 . This is Eq.(15.80). End
of proof.

The name sawtooth construction refers to the shape of the figure. If P1

and any two of the points Q , M and W are given, the missing third point
is determined.

Fig. 15.20 Sawtooth construction

Example: In Fig. 15.19 the points W1 ,W2 can be constructed by two
sawtooth constructions applied to the lines e1 and e2 (preferably, both with
one and the same auxiliary point P∗ ). Following this, the normal pole P2 is
constructed graphically as point of intersection of two perpendiculars. Any
third line e3 intersects the circle in a point W3 . For an arbitrary point Q
on this line the associated point M can be constructed by one more sawtooth
construction. End of example.

Bobillier showed that the tangent to the centrodes (the x-axis) can be con-
structed without constructing the inflection circle (see Fig. 15.19). It suffices
to draw the line h through P1 and the point A at the intersection of the
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lines M1M2 and Q1Q2 (when the quadrilateral M1Q1Q2M2 is interpreted
as four-bar, A is the instantaneous center of rotation of the two cranks rel-
ative to each other). The lines e1 , e2 and h define the angles β1 and β2 .
Bobillier is author of

Theorem 15.6.
α1 = β2 , α2 = β1 . (15.81)

Proof (Husty[17]): According to (15.75)(
1

r1
− 1

R1

)
sinα1 =

(
1

r2
− 1

R2

)
sinα2 . (15.82)

Consider the triangles (A,P1,M1) and (A,P1,Q1) located to the right of line
e1 . The difference of the areas equals the area of the triangle (A,Q1,M1) .
This is expressed in the form

AP1 AM1 sin(ψ + χ)−AP1 AQ1 sinχ = AQ1 AM1 sinψ (15.83)

or, after division through AP1 AM1 AQ1 sinχ sin(ψ + χ) ,

1

AQ1 sinχ
− 1

AM1 sin(ψ + χ)
=

sinψ

AP1 sinχ sin(ψ + χ)
. (15.84)

The sine law applied to the triangles (A,P1,Q1) and (A,P1,M1) yields

AQ1 sinχ = r1 sinβ1 , AM1 sin(ψ + χ) = R1 sinβ1 . (15.85)

Hence the previous equation becomes(
1

r1
− 1

R1

)
1

sinβ1
=

sinψ

AP1 sinχ sin(ψ + χ)
. (15.86)

The same arguments applied to the triangles located to the right of line e2
result in the equation(

1

r2
− 1

R2

)
1

sinβ2
=

sinψ

AP1 sinχ sin(ψ + χ)
(15.87)

with the same expression on the right-hand side. Hence(
1

r1
− 1

R1

)
sinβ2 =

(
1

r2
− 1

R2

)
sinβ1 . (15.88)

Comparison with (15.82) shows that α1 = β2 and α2 = β1 . End of proof.

Once the tangent to the centrodes is known, the theorem can be used
for constructing the center of curvature M3 associated with an arbitrarily
chosen point Q3 . This is done in the following steps.
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1. Draw the line h′ through P1 under the angle α1 (known by now) against
the line P1Q3 .
2. Construct the point A′ as point of intersection of h′ with the line Q1Q3 .
3. The desired point M3 is the point of intersection of the lines M1A

′ and
P1Q3 .

15.3.4 Radii of Curvatures of Centrodes

In Fig. 15.21 the points Q and M on an arbitrary line e are those of Fig.
15.18. In the figure also the centrode k2 fixed in Σ2 and the centrode k1 fixed
in Σ1 together with their point P1 of rolling contact are shown. The centers
of curvature of the centrodes at P1 are denoted Mp

1 and Mp
2 , respectively.

They are located on the common normal to the centrodes. Let en be the
unit vector directed from P1 toward Mp

2 . The radii of curvature �1 and �2
are defined by expressing the vector from P1 to Mp

i (i = 1, 2) in the form
�ien . This means that always �2 > 0 , whereas �1 is positive or negative
depending on whether the two centrodes are curved toward the same side
or toward opposite sides. From (15.46) it is known that the acceleration a0
of the point fixed in Σ2 and coinciding with P1 has the direction of en .
This acceleration remains unchanged if the centrodes are replaced by their
instantaneous circles of curvature. The reason is that acceleration as well as
curvature depend on first- and second-order derivatives of position vectors
only, whereas the difference between curve and circle of curvature depends
on higher-order derivatives. Thus, a0 is the acceleration produced by the
rolling motion of the circle of curvature of k2 on the circle of curvature of
k1 . This acceleration is taken from (15.127) in the chapter on cycloids. For
the present purpose the notation has to be changed as follows. The radius r0
must be replaced by �1 , r1 by �2 and the angular velocity ϕ̇1 by ϕ̇ . The

Fig. 15.21 Points Q and M on a line e and centrodes k1 , k2 together with their centers
of curvature Mp

1 , Mp
2



486 15 Plane Motion

sign conventions remain unchanged. The positive real axis of Fig. 15.36 has
the direction of en . With this change of notation

1

�2
− 1

�1
=

ϕ̇2

a0
=

1

y2
. (15.89)

Comparison with (15.73) and (15.74) shows that the relationship between Mp
1

and Mp
2 is the same as the relationship between associated points M and Q

on the line en . Equation (15.75) establishes between �1 , �2 and the radii
R , r of any pair of associated points M and Q the relationship(

1

r
− 1

R

)
sinα =

1

�2
− 1

�1
. (15.90)

When �1 and �2 are known, this equation determines the center of curvature
M for every point Q in the entire plane. Euler showed that this analytical
solution is equivalent to the following geometrical solution. Construct in Fig.
15.21 the point B as point of intersection of the line QMp

2 with the perpen-
dicular to e through P1 . Proposition: The center of curvature M lies at the
intersection of e and BMp

1 . Proof: As auxiliary quantity the length b = BP1

is introduced. Similar triangles yield

R

b
=

R− �1 sinα

�1 cosα
,

r

b
=

r − �2 sinα

�2 cosα
. (15.91)

Elimination of b produces (15.90). End of proof. Note: Unlike (15.90), the
geometrical construction fails when Q and M are located on the normal en .

Example: Equation (15.90) and the alternative geometrical construction of
M are of particular interest in the case when the centrode k2 is materialized
as circular wheel rolling on the inside or outside of another circular wheel
k1 . Trajectories of points Q fixed in the plane of k2 are called trochoids.
They are the subject of Sect. 15.5. For every position of Q the associated
center of curvature is determined. Consider, for example, the special case
when k1 is a straight line (a wheel of infinite radius �1 ) and when Q is
a point on the circumference of k2 . The trajectory is the cusped cycloid b
shown in Fig. 15.38 where the points Q and P1 are denoted C and P ,
respectively. In this case, the rule of construction in Fig. 15.21 shows that P
is the midpoint between the generating point C and the center of curvature
M . End of example.

Equation (15.89) shows that the normal poles P1 and P2 do not suffice for
determining �1 and �2 . In addition, also P3 must be known. An expression
for �1 in terms of the coordinates of these three poles is found as follows.
The circle of curvature with radius �1 has the equation x2 + y2 − 2�1y = 0 .
Hence �1 ≡ (x2 + y2)/(2y) and
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�1 = lim
x→0

x2

2y
. (15.92)

For determining this limit value it is sufficient to formulate the Taylor expan-
sion of the centrode k1 , i.e., of the trajectory of P1 , in the neighborhood of
the origin. In complex notation this is the curve rP1

(ϕ) . For convenience, it
is assumed that rP1

(0) is the origin. Hence

rP1
(ϕ) = rP1

(0) + ϕ r′P1
(0) +

1

2
ϕ2 r′′P1

(0) + . . . . (15.93)

The derivatives of rP1
are expressed by means of (15.61) in terms of normal

poles:

rP1
(ϕ) = rP1

(0) + iϕ
[
rP2

(0)− rP1
(0)
]− 1

2
ϕ2
[
rP3

(0)− rP2
(0)
]
+ · · · (15.94)

and with the coordinates (15.62) of the normal poles

rP1
(ϕ) =

[
− y2ϕ− 1

2
x3ϕ

2 + · · ·
]
+ i
[1
2
(y2 − y3)ϕ

2 + · · ·
]
. (15.95)

The expressions in square brackets are in the limit ϕ → 0 the functions
x and y required for (15.92). This yields for �1 the first equation below.
Equation (15.89) then determines �2 :

�1 =
y22

y2 − y3
, �2 =

y22
2y2 − y3

. (15.96)

15.3.5 Cubic of Stationary Curvature. Directrix

In Sect. 14.1.1 the curvature κ of a curve and vertices of a curve were defined.
The vertex condition dκ/dϕ = 0 is Eq.(14.22):

2r′r′(r′r′′′ − r′r′′′)− 3(r′r′′ − r′r′′)(r′r′′ + r′r′′) = 0 . (15.97)

This equation determines all points r of a moving plane Σ2 which are mo-
mentarily at a vertex of their respective trajectories. Let x and y be the
coordinates of r in the x, y-system of Fig. 15.17: r = x+i y . For the deriva-
tives r′ , r ′′ and r′′′ Eqs.(15.59) are used: r(n) = in(r − rPn

) (n = 1, 2, 3) .
For rPn

(n = 1, 2, 3) Eqs.(15.62) are substituted. This results in the expres-
sions

r′ = i (x+i y) , r′′ = −x−i (y−y2) , r′′′ = y−y3−i (x−x3) (15.98)

and
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r′r′ = x2 + y2 , r′r′′ = y2x+ i (x2 + y2 − y2y) ,

r′r′′′ = −(x2 + y2) + x3x+ y3y + i (y3x− x3y) .

}
(15.99)

With these expressions (15.97) takes the form

[(3y2 − y3)x+ x3y](x
2 + y2)− 3y22xy = 0 (15.100)

or
(λx+ μy)(x2 + y2)− xy = 0 (15.101)

with two parameters

λ =
3y2 − y3

3y22
, μ =

x3

3y22
. (15.102)

Because of the third-order terms the curve is referred to as cubic of station-
ary curvature. The equation is simplest in terms of polar coordinates r , α .
Substitution of x = r cosα , y = r sinα results in the explicit equation

r =
cosα sinα

λ cosα+ μ sinα
. (15.103)

The stationarity condition dr/dα = 0 is tan3 α = λ/μ , and the stationary
value is rstat = (1/μ)[1 + (λ/μ)2/3]−3/2 = (1/λ)[1 + (μ/λ)2/3]−3/2 .

If the x, y-coordinates of two vertices are known, λ and μ are determined
by two linear Eqs.(15.101). Then also the coordinates of the normal pole P3

and the radii of curvature of the centrodes are known. Equations (15.102)
and (15.96) yield the expressions

x3 = 3y22μ , y3 = 3y2(1− y2λ) , (15.104)

�1 =
y2

3λy2 − 2
, �2 =

y2
3λy2 − 1

. (15.105)

Taylor expansion of (15.101) about the origin starts with the second-order
term −xy . From this it follows that the curve has a double point at the
origin, and that at the origin both the x-axis and the y-axis are tangents.

In the special case λ = 0 , μ �= 0 , the curve has the equation y[μ(x2 +
y2) − x] = 0 . It splits into the x-axis and a circle. Likewise, in the special
case μ = 0 , λ �= 0 , the curve has the equation x[λ(x2 + y2) − y] = 0 .
It splits into the y-axis and a circle. The two circles with their centers at
(x = 1/(2μ) , y = 0 ) and (x = 0 , y = 1/(2λ) ) , respectively, are the circles
of curvature of the curve at the double point.

Equation (15.101) of the curve is a special case of Eq.(14.53) defining
Burmester’s pole curve. The geometrical reason is the following. Burmester’s
pole curve is the expression of relationships between centers of rotation de-
fined by four discrete positions of a plane. The cubic of stationary curvature
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is the expression of relationships between instantaneous centers of rotation
defined by four infinitesimally neighboring positions of a plane (at a vertex
a trajectory is contacting the curve in – at least – four infinitesimally close
neighboring points; it is contacting its circle of curvature in at least three
points). In Sect. 14.5 properties of Burmester’s pole curve were investigated
(see (14.53) – (14.63)). The curve has an asymptote. The asymptote has the
slope −λ/μ . It intersects the curve at a single point H called cardinal point.
Another characteristic point is the focus Φ . The tangent to the curve in Φ
passes through H . For the cubic of stationary curvature with Eq.(15.101)
the following special formulas are obtained5. The equation of the asymptote
parallel to the line λx+ μy = 0 is

λx+ μy +
λμ

λ2 + μ2
= 0 . (15.106)

The cardinal point H and the focus Φ have the coordinates

xH = −λ
λμ

λ4 − μ4
, yH = μ

λμ

λ4 − μ4
,

xΦ =
μ

2(λ2 + μ2)
, yΦ =

λ

2(λ2 + μ2)
.

⎫⎪⎬
⎪⎭ (15.107)

From these equations it follows that P1 lies halfway between the asymptote
and the line parallel to the asymptote and passing through Φ .

Example: The coupler of the four-bar mechanism shown in Fig. 15.19 is
considered again. The points Q1 and Q2 are both vertices because every
point of a circular trajectory is a vertex. Hence the x, y-coordinates of these
points determine the parameters λ and μ , the cubic of stationary curvature,
its asymptote, the normal pole P3 , the radii of curvature of the centrodes
and the points H and Φ of the coupler in the instantaneous position shown.
In Fig. 15.22 the cubic of stationary curvature, its asymptote and the points
H and Φ are shown together with various other lines and points which are
explained later. End of example.

Directrix of the Cubic of Stationary Curvature
In Fig. 15.23 the x, y-system with origin P1 is the same as in previous figures.
Let Q̂ be an arbitrary point (not yet confined to the straight line referred
to as directrix). The diagonal in the rectangle defined by the axes and by
the lines parallel to the axes and the perpendicular from the origin onto this
diagonal define the point Q . Through this construction every point Q̂ is

5 The transformation (14.55), (14.57) determines the normal form (14.59)

(η − a)(ξ2 + η2) + d ξ + eη = 0. Its parameters are

a = −2λμ

(λ2+μ2)3/2
, d =

−λμ(λ2−μ2)

(λ2+μ2)3
, e =

−(λ4−6λ2μ2+μ4)

4(λ2+μ2)3
.

These parameters satisfy the condition (14.67) for the existence of a double point: e =
a2/4− d2/a2
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Fig. 15.22 Four-bar of Fig. 15.19 with inflection circle, cubic of stationary curvature,

directrix, asymptote, focus Φ , cardinal point H and Ball’s point U of the coupler

mapped into a uniquely defined point Q . Points Q̂ on the x-axis and/or on
the y-axis are mapped into the origin P1 . The inverse mapping of Q into Q̂
is determined by drawing through Q the perpendicular to the line joining Q
with P1 . This rule of construction fails if Q is a point on the x-axis and/or
on the y-axis. The geometrical rules for constructing Q from Q̂ and vice
versa are expressed analytically as follows. Let x̂ and ŷ be the coordinates
of Q̂ and x and y be the coordinates of Q . The two lines intersecting at
Q have the equations y/ŷ + x/x̂ = 1 and y/x = x̂/ŷ . Resolving once for
x and y and once for x̂ and ŷ results in the equations

x = ŷ
x̂ŷ

x̂2 + ŷ2
, y = x̂

x̂ŷ

x̂2 + ŷ2
, (15.108)

x̂ =
x2 + y2

x
, ŷ =

x2 + y2

y
. (15.109)

Through these equations it is reconfirmed that every point Q̂ is mapped into
a uniquely defined point Q , and that the inverse mapping from Q into Q̂
is uniquely defined for all points Q except points on the x-axis and/or on
the y-axis. From (15.108) it follows that
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Fig. 15.23 Geometric construction of Q from Q̂ and vice versa

λx+ μy = (λŷ + μx̂)
x̂ŷ

x̂2 + ŷ2
,

x2 + y2 =
x̂2ŷ2

x̂2 + ŷ2
, xy =

x̂3ŷ3

(x̂2 + ŷ2)2

⎫⎪⎪⎬
⎪⎪⎭ (15.110)

and, hence

(λx+ μy)(x2 + y2)− xy = (μx̂+ λŷ − 1)
x̂3ŷ3

(x̂2 + ŷ2)2
. (15.111)

Hence the conclusion: If Q̂ is located on the line μx̂ + λŷ − 1 = 0 , Q is
located on the cubic of stationary curvature. Thus, this line is mapped into
the cubic of stationary curvature by means of the construction shown in Fig.
15.23 and also by means of (15.108). The line is called directrix of the cubic
of stationary curvature. It intersects the x-axis at x = 1/μ and the y-axis at
y = 1/λ . These two points of intersection are mapped into the double point
x = y = 0 of the cubic of stationary curvature.

From Eqs.(15.107) for the coordinates of H and Φ it follows that the line
P1H is parallel to the directrix and that, furthermore, Φ is the midpoint of
the perpendicular from the origin P1 onto the directrix. Equations (15.109)
map H and Φ into points Ĥ and Φ̂ , respectively, on the directrix. These
points have the coordinates

x̂H =
−μ

λ2 − μ2
, ŷH =

λ

λ2 − μ2
, x̂Φ =

1

2μ
, ŷΦ =

1

2λ
. (15.112)

Point Φ̂ is the midpoint between the points of intersection of the directrix
with the x- and y-axes. In Fig. 15.22 Φ̂ and lines for the construction of Q̂1

and Q̂2 from Q1 and Q2 , respectively, according to Fig. 15.23 are shown.
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15.3.6 Ball’s Point

The cubic of stationary curvature intersects the inflection circle at the pole
P1 and at one more point. This point is called Ball’s point, denoted U . The
trajectory of the point of Σ2 coinciding with U has at this point not only
zero curvature, but also zero rate of change of curvature. It is, therefore, a
good straight-line approximation of its tangent UP2 . The coordinates of U
are determined as follows. The inflection circle has the equation (see (15.46))

x2 + y2 − y2y = 0 . (15.113)

Combination with (15.100) for the cubic of stationary curvature produces the
equation y2y(−y3x+ x3y) = 0 . The solution y = 0 belongs to the pole P1 .
The second solution yields for the coordinates of U the ratio yU/xU = y3/x3 .
This shows that U is located on the line P1P3 . Substitution of yU = xUy3/x3

into (15.113) yields an expression for xU . The coordinates are

xU = x3
y2y3

x2
3 + y23

, yU = y3
y2y3

x2
3 + y23

. (15.114)

By substituting for x3 and y3 the expressions (15.104) the coordinates are
expressed in terms of y2 , λ and μ :

xU = y2
μy2(1− λy2)

(1− λy2)2 + μ2y22
, yU = y2

(1− λy2)
2

(1− λy2)2 + μ2y22
. (15.115)

With the expressions (15.114) Eqs.(15.109) determine the coordinates of the
associated point Û on the directrix. It turns out that ŷU = y2 . This means
that Û is the point of intersection of the directrix with the tangent to the
inflection circle at the pole P2 . From this point Û Ball’s point U can be
constructed following the rules of Fig. 15.23. In Fig. 15.22 Û and U and the
geometrical construction are shown. Remark: That the asymptote intersects
the x-axis at the point x = xÛ is a peculiarity of this example. Normally,
this is not the case.

At the beginning it was said that the trajectory of the point of Σ2 coincid-
ing with Ball’s point U is a good straight-line approximation of its tangent
UP2 . In engineering, straight-line approximations are required for many pur-
poses. So-called level-luffing jib cranes, for example, are large-size four-bars
maneuvering the load-lifting hook. The pulley for the hook-carrying rope is
attached to the coupler at a point which is Ball’s point when the crane is
halfway between its extremal positions. The parameters of the four-bar are
chosen such that the almost straight trajectory is horizontal. This arrange-
ment has the effect that a load is carried in good approximation horizontally
when the crane is operating with constant length of the rope. Details see in
Dijksman [8].
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15.4 Holditch’s Theorem

In a reference plane Σ a closed curve k is given (Fig. 15.24a ). The curve
may be either convex or nonconvex. It is free of double points. It may have
straight-line segments and a finite number of corners. A rod (a line segment)
of length 2� is guided with its endpoints C1 and C2 on k . Provided � is
sufficiently small a periodic motion is possible such that per period the rod
is rotated through 2π counterclockwise (this sense of rotation is arbitrarily
chosen) and that at the end of the period C1 and C2 are back in their initial
positions. In the course of this motion both C1 and C2 trace the entire curve
k . In what follows, this motion is investigated. Taking the nonconvex curve
and the rod in Fig. 15.24a as example, the following statements can be made.
The periodic motion is, in general, not possible without reversing several
times (more precisely an even number of times)
- the sense of direction of motion of C1 and C2 along k
- the sense of rotation of the rod.
Uniform sense of rotation is possible if and only if k is convex. Uniform sense
of direction of motion of C1 and C2 is, in general, impossible even if k is
convex.

Let rC be the vector pointing from some reference point 0 fixed in Σ
to the midpoint C of the rod and let, furthermore, � be the vector from
C to C1 . Then r(t) = rC(t) + λ�(t) (λ arbitrary) is the time-dependent
position vector of the point denoted P(λ) on the line passing through C1

and C2 . In the course of the said periodic motion every point P(λ) traces
a closed trajectory. In Fig. 15.24b the trajectories of P(0) (point C) and of
P(λ =

√
2) are shown. The curve k itself is the trajectory of both P(1) = C1

and of P(−1) = C2 .

Fig. 15.24 Curve k with guided rod C1C2 . Areal element dA of the trajectory of P(λ)
(a) and trajectories of points P(0) = C and P(λ =

√
2) (b)
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In Fig. 15.24a the shaded areal element dA enclosed by the position
vector r and by the path element dr is shown. It is expressed in the form
dA = 1

2 e · r × dr where e is the unit vector normal to the plane (sense of
direction as indicated). Areal elements can be positive, zero or negative. Let
A(λ) be the area enclosed by the trajectory of P(λ). It is the line integral
over the closed trajectory:

A(λ) =
1

2
e ·
∮

r× dr =
1

2
e ·
[ ∮

rC × drC

+ λ
(∮

rC × d�+

∮
�× drC

)
+ λ2

∮
�× d�

]
. (15.116)

The term free of λ represents the area A(0) enclosed by the trajectory of
C . The coefficient of λ2 is the area π�2 of the circle having the rod length
2� as diameter. The coefficient of λ is the difference 1

2 [A(1)−A(−1)] . It is
zero because A(1) as well as A(−1) is the area enclosed by k . Hence

A(λ) = A(0) + λ2π�2 . (15.117)

Subtraction of the same equation for the special case λ = 1 results in

A(λ)−A(1) = (λ2 − 1)π�2 . (15.118)

This equation is Holditch’s [15] famous6

Theorem 15.7. The difference of the areas enclosed by the trajectory of
P(λ) and by k is, independent of the shape of k , (λ2 − 1) times the area
π�2 of the circle having the rod length 2� as diameter.

Example: For the trajectories with λ = 0 and λ =
√
2 shown Fig. 15.24b

the difference of areas is the same, namely, π�2 .
If k is convex, trajectories of points with |λ| < 1 are inside of k or on

k , and trajectories of points with |λ| > 1 are outside of k or on k .
If the shape of k is such that in some section of motion C1 and C2 are

guided on nonparallel straight lines, the trajectories of all points P(λ) in this
section are segments of ellipses (see the elliptic trammel in Sect. 15.1.2). This
case is illustrated in Fig. 15.25a . The curve k is an equilateral triangle, and
the length 2� of the rod is smaller than the altitude of the triangle. The
trajectory of the midpoint C=P(0) is composed of three congruent elliptic
segments and of three straight-line segments. Arrows indicate the sense of

6 Holditch’s brief communication (less than a single page) seems to indicate that only
convex curves k and points with |λ| ≤ 1 are considered. These restrictions are unnecessary.
The theorem is one out of very few global statements about curves (global in contrast to

local statements of differential geometry). For this reason Giering [12] speaks of a jewel
of geometry. Generalizations of the theorem see in Schoenflies/Grübler [26], Hoschek [16],
Hering [13] and Feldhoff [10]
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direction of motion of P(0). These arrows show that the area A(0) enclosed
by the trajectory of P(0) is calculated from the partial areas denoted A1 , A2

and A3 according to the formula A(0) = A3 −A2 − 2A1 .
The vertices of the triangle are the centers of the ellipses. Point C is at

a vertex of an ellipse when the rod is either parallel to or orthogonal to an
altitude of the triangle. These two positions yield for the semi major axes a
and b of the ellipses the formulas a = 3

4Lc , b = a/3 where L is the side
length of the triangle and c (arbitrary) is the ratio c = 2�/h (rod length
divided by the altitude of the triangle).

In Fig. 15.25b the curve k is the same triangle. The rod length equals
the altitude of the triangle ( c = 1 ) . This is the maximum possible length.
At the points of contact the elliptic segments have equal tangents and equal
curvature. The rod may be guided along k such that P(0) traces the tra-
jectory in the way shown in Fig. 15.25a . However, the rod may also be
guided such that its endpoints C1 and C2 move along k without revers-
ing the sense of direction. In this case, P(0) is tracing twice per period
the oval formed by the three elliptic segments (see the arrows). From this
it follows that the two areas denoted A2 and A3 are identical and that,
furthermore, A(0) = −2A1 = A(1) − π�2 . With the side length L of the
triangle A(1) = L2

√
3/4 and � = L

√
3/4 . Hence the area of the oval is

A1 = 1
32L

2(3π − 4
√
3) .

Fig. 15.25 Trajectory of the midpoint P(0) when k is an equilateral triangle. In (a) the
rod length 2
 is smaller than the altitude of the triangle, and in (b) it equals the altitude

15.5 Trochoids

Trochoids are trajectories of points C fixed on a planetary wheel 1 which
is rolling on a stationary sunwheel 0 . In Figs. 15.26 and 15.27 all possible
arrangements of wheels are shown. In Fig. 15.26 the wheels are touching each
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Fig. 15.26 Wheels touching each other from the outside. For the straight-line position

shown the parameters are r0 = −3 , r1 = 2 , b = 4

Fig. 15.27 Wheel 1 inside wheel 0 . For the straight-line position shown the parameters
are r0 = 5 , r1 = 2 , b = 1 . In the small figure wheel 0 is inside wheel 1

other from the outside, and in Fig. 15.27 one wheel is inside the other. The
one inside may be either wheel 1 or wheel 0 (see the small figure). The point
C fixed on wheel 1 is located at a radius which is either smaller than or equal
to or larger than the radius of wheel 1 . Depending on the arrangement of
the wheels and on the location of C on wheel 1 trochoids come in many
different shapes. This makes them interesting for engineering applications.
Mathematical investigations of trochoids started very early because of their
role in the explanation of orbits of solar planets by cycles and epicycles (de
la Hire [14], J. Bernoulli). The crank 2 connecting the centers of the wheels
has no influence on the shape of trochoids. Its only purpose is to keep the
wheels in touch and to make wheel 1 rolling.

The curvature of trochoids was the subject of the example illustrating Fig.
15.21.
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From the elliptic trammel in Fig. 15.4 the following results are known
about wheels having the ratio 1 : 2 of radii with the small wheel being inside
the larger wheel. If the small wheel is the planetary wheel 1 , trochoids are
diameters of wheel 0 if C is located on the circumference of wheel 1 and
ellipses otherwise. If the large wheel is the planetary wheel 1 , trochoids are
limaçons of Pascal (Fig. 15.8).

15.5.1 Basic Equations in Complex Notation

Three parameters suffice if the radii r0 and r1 of the wheels and the radius
b of point C on wheel 1 are defined as quantities which may be positive or
negative. These definitions are given next. In Figs. 15.26 and 15.27 the poles
P20 , P12 and P10 are shown. The tangent to the trochoid is the normal to the
line P10C . The position of C is specified by the complex number z in the
complex plane with origin P20 . A system has several, possibly even infinitely
many so-called straight-line positions. In these positions the three poles and
the point C are located on a single line. The real axis of the complex plane
is placed along the line of an arbitrarily chosen straight-line position. In the
chosen position the signs of the scalar parameters r0 , r1 and b are defined
as follows:

r0 > 0 ( r0 < 0 ) if P20 lies to the right (to the left) of P10 ,
r1 > 0 ( r1 < 0 ) if P12 lies to the right (to the left) of P10 ,
b > 0 ( b < 0 ) if C lies to the right (to the left) of P12 .

The rotation angles ϕ1 of wheel 1 and ϕ2 of crank 2 relative to frame 0 are
zero in the straight-line position and positive counterclockwise. The parame-
ters belonging to Figs. 15.26 and 15.27 are given in the figure headings. With
parameters and variables thus defined the complex number z representing
C is always

z = (r1 − r0)e
iϕ2 + beiϕ1 . (15.119)

The angular ratio ϕ1/ϕ2 is constant and, consequently, identical with the
angular velocity ratio ϕ̇1/ϕ̇2 . According to (15.6) the ratio is

ϕ1

ϕ2
=

ϕ̇1

ϕ̇2
=

r1 − r0
r1

. (15.120)

The angular velocities themselves need not be constant. Trochoids are closed
(nonclosed) curves if the ratio ϕ1/ϕ2 = (r1−r0)/r1 is a rational number (an
irrational number, respectively). In gears with teeth the ratio is rational.

Equation (15.119) is differentiated twice with respect to time. In combi-
nation with (15.120) this yields for the velocity and the acceleration of the
generating point C the complex expressions
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ż = i ϕ̇1

(
r1e

iϕ2 + beiϕ1

)
, (15.121)

z̈ = i ϕ̈1

(
r1e

iϕ2 + beiϕ1

)
− ϕ̇2

1

( r21
r1 − r0

eiϕ2 + beiϕ1

)
. (15.122)

Imagine that in the mechanism of Figs. 15.26 or 15.27 the crank is mak-
ing a single 2π-rotation so that its final position coincides with its initial
position. Then also the circle of wheel 1 is the same in the final and in the
initial position. However, wheel 1 is rotated in this process through the an-
gle Δϕ1 = 2π(r1 − r0)/r1 . If (r1 − r0)/r1 is not an integer number, C
assumes a new position C1 . From this it follows that two points of wheel
1 on the same radius b and displaced by the angle Δϕ1 trace one and the
same trochoid. For the same reason all points C1 , C2 etc. with equal angular
displacements Δϕ1 trace one and the same trochoid. For a closed trochoid
there exists a minimal integer number ν such that νΔϕ1 is an integer mul-
tiple of 2π . The points C , C1 ,. . . , Cν on wheel 1 form a regular polygon
all vertices of which trace one and the same trochoid. This fact is made use
of in the Wankel engine (see Fig. 15.28). The mechanism in this figure has
the parameters r0 = 2 and r1 = 3 . They yield Δϕ1 = 1

3 2π . The polygon is
an equilateral triangle. This triangle represents the rotating piston. Between
piston and trochoid three chambers are created the volumes of which are pe-
riodically changing when the crank is rotating. The trochoid itself depends on
the additional free parameter b . In Fig. 15.28 b = 9 is chosen. In a Wankel
engine the three sides of the piston are not straight lines, but curves shaped
in such a way that the ratio of minimum and maximum chamber volumes is
as small as possible. The optimal curve is described by Wunderlich [30].

Fig. 15.28 The equilateral triangle is the rotating piston of a Wankel engine. Its vertices
trace the trochoid with parameters r0 = 2 , r1 = 3 , b = 9
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15.5.2 Double Generation of Trochoids

The trochoid of a mechanism with parameters r0 , r1 , b is generated by an-
other mechanism having the same center P20 , but different parameters r∗0 , r

∗
1

and b∗ (Philippe de la Hire [14]). This double generation has interesting engi-
neering applications. The complex number z in (15.119) remains unchanged
if the new parameters satisfy the conditions

r∗1 − r∗0 = b , b∗ = r1 − r0 , ϕ∗
2 = ϕ1 , ϕ∗

1 = ϕ2 . (15.123)

From the last two conditions it follows that ϕ∗
2/ϕ

∗
1 = ϕ1/ϕ2 and with this

from (15.120) r∗1/(r
∗
1 − r∗0) = (r1 − r0)/r1 or after simple reformulation

r1
r0

+
r∗1
r∗0

= 1 . (15.124)

This equation and the first two Eqs.(15.123) together determine r∗0 , r
∗
1 and

b∗ :

r∗0 = − b

r1
r0 , r∗1 =

b

r1
(r1 − r0) , b∗ = r1 − r0 . (15.125)

These formulas lead to the statement:

if

∣∣∣∣ br1
∣∣∣∣ >=< 1 , then

∣∣∣∣ b∗r∗1
∣∣∣∣ <=> 1 and

∣∣∣∣r∗0r0
∣∣∣∣ >=< 1 . (15.126)

In Figs. 15.29 and 15.30 the solid lines show again the mechanisms of Figs.
15.26 and 15.27, respectively. The second mechanism is found graphically as
follows (see Fig. 15.29). The centers P∗

20 of wheel 0∗ and P20 of wheel 0
coalesce. The dashed lines parallel to the lines P20P12 and P12C form the
parallelogram with the corner P∗

12 opposite P12 . The point P∗
12 is the center

of wheel 1∗ . The pole P∗
10 is determined by the fact that it is on the line

P∗
12P20 as well as on the normal P10C to the tangent of the trochoid. The

poles P20 , P
∗
10 and P∗

12 determine the positions of the wheels 0∗ and 1∗ . The
parallelogram is seen to accomplish the interchange of angles as is prescribed
by the last two Eqs.(15.123). In the case of opposite signs of ϕ2 and ϕ1

(Fig. 15.30), interchanging the angles has the effect that the cranks of the
two generating mechanisms must be rotated in opposite directions in order
to trace the trochoid in the same sense.

The two generating mechanisms have some properties in common. By other
properties they can be distinguished. First, a distinguishing property. If P20

is outside the circle of wheel 1 in one generation, P20 is inside the circle of
wheel 1 in the other generation (see Figs. 15.29 and 15.30). By convention,
the generation with P20 outside the circle of wheel 1 is called first genera-
tion. Next, a property common to both generating mechanisms. Wheel 0 is
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Fig. 15.29 First and second generation

of the trochoid of Fig. 15.26. Parameters
r0 = −3 , r1 = 2 , b = 4 (first generation;
solid lines) and r∗0 = 6 , r∗1 = 10 , b∗ = 5
(second generation; dashed lines)

Fig. 15.30 First and second genera-

tion of the trochoid of Fig. 15.27. Pa-
rameters r0 = 5 , r1 = 2 , b = 1 (first
generation) and r∗0 = −5/2 , r∗1 =
−3/2 , b∗ = −3 (second generation)

touched by wheel 1 either in both mechanisms from the outside (Fig. 15.29)
or in both mechanisms from the inside (Fig. 15.30). Trochoids generated by
mechanisms of the former type are called epitrochoids, and trochoids gener-
ated by mechanisms of the latter type are called hypotrochoids. Epitrochoids
and hypotrochoids alike are divided into three families:
1. Trochoids have double points if in the first generation the generating point
C is outside the circle of wheel 1 , i.e., if |b/r1| > 1 . Such trochoids are called
curtate trochoids (Fig. 15.26 and the limaçon of Pascal in Fig. 15.8a ).
2. Trochoids have cusps on the circumference of wheel 1 if the generating
point C is located on the circumference of wheel 1 (in both generations;
|b/r1| = 1 ). Such trochoids are called cycloids (either epicycloids or hypocy-
cloids).
3. Trochoids have neither double points nor cusps if in the first generation
point C is inside of wheel 1 , i.e., if |b/r1| < 1 . Such trochoids are called
prolate trochoids (Fig. 15.28 and the limaçons of Pascal in Figs. 15.8c,d ).

Example: In the system shown in Fig. 15.31 with parameters r0 > r1 >
0 the trajectory of C is a hypocycloid. Wheel 1 is rotating with angular
velocity ϕ̇1 = const. Determine in the position shown (C in the cusp of the
cycloid) the acceleration a0 of C and for an arbitrary position the velocity
v .

Solution: In (15.121) and (15.122) the substitution b = −r1 is made. In the
position ϕ1 = ϕ2 = 0 the acceleration is
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Fig. 15.31

a0 = z̈ =
ϕ̇2
1

1/r1 − 1/r0
in the direction of the positive real axis . (15.127)

For the velocity v (15.121) yields

v2 = |ż|2 = ϕ̇2
1r

2
1[(cosϕ2 − cosϕ1)

2 + (sinϕ2 − sinϕ1)
2]

= 2ϕ̇2
1r

2
1

[
1− (cosϕ2 cosϕ1 + sinϕ2 sinϕ1)

]
= 2ϕ̇2

1r
2
1[1− cos(ϕ1 − ϕ2)]

= 4ϕ̇2
1r

2
1 sin

2 ϕ1 − ϕ2

2
. (15.128)

This complicated calculation is of course unnecessary. In the resulting formula
v = ϕ̇12r1 sin

1
2 (ϕ1 − ϕ2) the factor of ϕ̇1 is the distance of C from the

instantaneous center of velocity P10 . The maximum velocity occurs in the
vertices of the trajectory: vmax = 2r1ϕ̇1 . End of example.

15.5.3 Cycloids

Both generating mechanisms of a cycloid share the same sunwheel 0 and,
furthermore, cusps occur on the sunwheel. An example is the cardioid shown
in Fig. 15.8b . It is an epitrochoid with the two generations according to Fig.
15.32. Hypocycloids of particular interest are Steiner’s hypocycloid in Fig.
15.33b and the astroid in Fig. 15.33c . A special case belonging to this family
is the system shown in Fig. 15.33a . It is known from the elliptic trammel.
This particular hypocycloid is a diameter of the sunwheel.

Equation (15.119) for the astroid is simplest when as straight-line position
ϕ1 = ϕ2 = 0 not the position shown in Fig. 15.33c is chosen, but the position
when P10 is a cusp of the astroid. Then r1 = 1

4r0 , b = − 1
4r0 and

z = −3

4
r0 (cosϕ2 + i sinϕ2)− 1

4
r0 (cos 3ϕ2 − i sin 3ϕ2)

= −r0 (cos
3 ϕ2 + i sin3 ϕ2) . (15.129)
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Fig. 15.32 Cardioid. First generation with r1 = −r0 ; second generation with r∗1 = 2r0

Fig. 15.33 First and second generation of the rectilinear hypocycloid ( r1 = 1
2
r0 (a) ),

Steiner’s hypocycloid ( r1 = 1
3
r0 (b) ), astroid ( r1 = 1

4
r0 (c) )

In Fig. 15.34a three circles 1 , s1 and s2 with radii r , nr and (n+1)r ,
respectively, (n ≥ 2 integer) are one inside the other with a common contact
point Q . In the example shown, n = 3 . Circle s2 is held fixed. When circle
1 rolls inside s1 , an arbitrarily chosen point P on the circumference traces
a hypocycloid z1 with n cusps on s1 . Similarly, when circle 1 rolls inside
s2 , the same point P traces a hypocycloid z2 with n+ 1 cusps on s2 (in
the example shown, z1 is Steiner’s hypocycloid and z2 is an astroid). The
hypocycloid z2 is fixed on the fixed circle s2 . Both cycloids have the common
tangent t normal to QP. According to (15.125) the second generation of z2
has the same sunwheel s2 and an inner planetary wheel with radius nr .
This is the radius of s1 . Thus, the rolling of s1 inside s2 represents the
second generation of z2 . In this second generation of z2 all cusps of z1 move
along z2 , and in every position z1 and z2 are co-tangential at one point.
The centers 01 of s1 and 02 of s2 , at the distance r from each other,
are the poles P12 and P20, respectively, of crank 2 . Equation (15.120) yields
ϕ̇1/ϕ̇2 = 1/n .

In Fig. 15.34b the special case n = 2 is shown. In this case, the hypocy-
cloid z1 is a diameter of s1 having the length 4r , and z2 is Steiner’s hypocy-
cloid with radius 3r of the sunwheel s2 . In the second generation of z2 ( s1
rolling inside s2 ) the endpoints of the diameter move along z2 . During this
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Fig. 15.34 Rolling of circle 1 (radius r ) inside circles s1 (radius nr ) and s2 (radius

(n+ 1)r ) produces hypocycloids z1 and z2 , respectively. When s1 rolls in s2 , the cusps
of z1 are guided along z2 , and both hypocycloids are continuously in tangential contact.
Cases n = 3 (a) and n = 2 (b)

motion the diameter is always in tangential contact with z2 and, conse-
quently, inside z2 . In other words: The diameter of length 4r can be rotated
full circle inside Steiner’s hypocycloid with a sunwheel of radius 3r . For a
long time it was believed that this hypocycloid represents the smallest area
inside of which a line segment of length 4r can be rotated full circle. Besicov-
itch [2] showed, however, that this is possible inside arbitrarily small areas.
These areas consist of intricately branching subdomains.

The area enclosed by Steiner’s hypocycloid is calculated from Holditch’s
Eq.(15.117), A(λ) = A(0) + λ2π�2 , with � = 2r and λ = 1 and with the
area A(0) enclosed by the midpoint of the line segment. The trajectory of this
midpoint is the circle of radius r inscribed in Steiner’s hypocycloid. When
the line segment is rotating once counterclockwise, the midpoint traces this
circle twice clockwise. Therefore, A(0) = −2πr2 . Hence the area enclosed by
the cycloid is A(1) = 2πr2 , i.e., twice the area of the inscribed circle. Every
point fixed on the line segment traces a trochoid. With the pertinent value
of λ the formula yields the area enclosed by this trochoid.

Now back to the general case with n > 2 . The motion of cycloid z1
inside z2 is creating n chambers of periodically changing volumes. This
phenomenon has found engineering applications. If the crank is driven by
a motor, the chambers can be used for pumping fluid. By controlling the
pressure inside the chambers by means of a rotating distribution valve z1 ,
the crank can be driven (the crank rotating n times as fast as z1). The
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systems shown in Figs. 15.34a and b are special cases of cycloidal gearings.
For additional material on this subject see Sec. 16.1.2.

Consider the cycloid z1 in Fig. 15.35. It is the trajectory of the point C
fixed on wheel 1 rolling on wheel 0 . This generating system is referred to as
system r0, r1 . As straight-line position with angles ϕ1 = ϕ2 = 0 the position
is chosen when C is located at the vertex C0 of z1 . Then the parameters
are r0 < 0 and r1 > 0 . The circle on which C0 is located is called circle
of vertices. Its radius is 2r1 − r0 . The line P10C is the normal n to z1 at
C . The tangent t passes through the point P∗

12 common to wheel 1 and to
the circle of vertices (wheel 1 is Thales’ circle in the right-angled triangle
(P10,C,P

∗
12)). The rotation angle ϕ1 of wheel 1 is (see (15.120))

ϕ1 =
r1 − r0

r1
ϕ2 . (15.130)

The angle �(CP12P
∗
12) is seen to be ϕ1 − ϕ2 , whence it follows that

�(CP10P
∗
12) = 1

2 (ϕ1 − ϕ2) (theorem on angles subtended by the chord

CP
∗
12 ) . The angle of rotation of the normal n as well as of the tangent

t from their positions in the straight-line position is α = 1
2 (ϕ1 −ϕ2) +ϕ2 =

1
2 (ϕ1 + ϕ2) or, with (15.130),

α =
2r1 − r0

2r1
ϕ2 . (15.131)

Comparison with (15.130) shows that this is the rotation angle of a wheel
with radius 2r1 instead of r1 rolling on the same sunwheel 0 . In the figure
this wheel is shown in the position α as dashed line. The tangent t is a
diameter fixed on this wheel. These results are summarized in

Fig. 15.35 Cycloid z1 enveloped by the diameter of a rolling wheel and evolute z2
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Theorem 15.8. A cycloid generated as point trajectory in a system r0, r1 is
enveloped by a diameter fixed on the planetary wheel in the system r0, 2r1

Consider the special case r0 = −2r1 shown in Fig. 15.36. The circle of vertices
has the radius R = 2|r0| . The epicycloid has two cusps. From Fig. 15.35 the
general formula β = �(P10P

∗
12C)=

1
2π− 1

2 (ϕ1−ϕ2) is known. In the special
case under consideration, this becomes β = 1

2π−ϕ2 . In Fig. 15.36 it is seen

that β is also the angle between the line P20P
∗
12 and the perpendicular s

to the line P20C0 . A light beam having the direction of s is reflected on the
circle of vertices in the direction of the tangent to the cycloid. This explains
a phenomenon which can be observed in a cup of coffee in early-morning
sunshine. Parallel sun rays are reflected on the inner wall of the cup (circle
of vertices of radius R ). The reflected rays envelope an epicycloid with two
cusps on the circle of radius R/2 . In the vicinity of one cusp the cycloid is
clearly visible.

Fig. 15.36 Generation of a two-cusped epicycloid by means of reflected light

As another special case Steiner’s hypocycloid of Fig. 15.33b is consid-
ered. The first generating system is the system r0,

1
3r0 . According to the

theorem the cycloid is enveloped by a diameter fixed on the planetary wheel
in the system r0,

2
3r0 . This system is also the second generating system of

the same cycloid. In other words: The endpoints of the enveloping diameter
of the planetary wheel in the second generation are tracing the cycloid. This
property is known already from Fig. 15.34b . Steiner’s hypocycloid is the only
hypocycloid having this property.

Next, the evolute of the cycloid z1 in Fig. 15.35 is determined. Let it be
called z2 . By definition, z2 is the curve which is enveloped by the normal n
of z1 . The following facts are obvious:
1. n is tangent to z2 ; n is passing through P10 which is located on the
circle with radius r0
2. t is tangent to z1 ; t is passing through P∗

12 which is located on the circle
with radius 2r1 − r0
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3. P20P10 is collinear with P20P
∗
12 ; both n and t are rotating with α̇ ; n

is orthogonal to t .

A direct consequence of these facts is

Theorem 15.9. (Bernoulli, de la Hire)7 The evolute of a cycloid z1 in the
system r0, r1 is another similar cycloid z2 , which is the trajectory of a point
in the new system pr0, pr1 with p = r0/(2r1 − r0) . The circle of vertices
in the new system is identical with the circle of the sunwheel in the initial
system. The vertices of the evolute z2 coalesce with the cusps of z1 .

Figure 15.35 shows the evolute z2 and in dashed lines the wheels of the
new system. Further properties of cycloids and of trochoids in general are
found in Wunderlich [30] and Strubecker [28]. Higher-order trochoids were
investigated by Wunderlich [29].

15.5.4 Ordinary Cycloids

An ordinary cycloid8 is the trajectory of an arbitrary point (not just a cir-
cumferential point) fixed on a circular wheel which is rolling along a straight
line. This is the situation when in Fig. 15.26 r0 is infinite. In what follows,
the notation shown in Fig. 15.37 is used. The radii of the circle and of point C
are denoted r and b respectively ( r, b > 0 ). The angle of roll of the circle is
ϕ (positive clockwise). The position ϕ = 0 is defined to be the position when
the center as well as point C is on the imaginary axis with C being below
the center of the circle. In this position these two points have the complex
numbers i r and z = i (r − b) , respectively. In the position ϕ (arbitrary)
the numbers are rϕ+ i r and

Fig. 15.37 Ordinary cycloid
Fig. 15.38 Ordinary cycloids: Curtate
(a) , cusped (b) , prolate (c)

7 J. Bernoulli 1692, de la Hire 1694
8 Leibniz [23] quotes Cardinal de Susa (1454) to be the first to mention this curve



15.5 Trochoids 507

z = rϕ+ i r − i be−iϕ , (15.132)

respectively. This yields for the x, y-coordinates of C and for their time
derivatives the expressions

x = rϕ− b sinϕ , y = r − b cosϕ ,

ẋ = ϕ̇(r − b cosϕ) , ẏ = ϕ̇b sinϕ ,

ẍ = ϕ̈(r − b cosϕ) + ϕ̇2b sinϕ , ÿ = b(ϕ̈ sinϕ+ ϕ̇2 cosϕ) .

⎫⎪⎬
⎪⎭ (15.133)

Depending on whether b < r or b = r or b > r ordinary cycloids are either
curtate or cusped or prolate (Fig. 15.38). By the conventions of Sect. 15.5.2
only the cusped cycloids should be called cycloids. The indiscriminate name
ordinary cycloid is much older than this convention. The cusped ordinary
cycloid has in the cusps the acceleration coordinates

ẍ = 0 , ÿ = rϕ̇2 . (15.134)

Another property was shown in the example illustrating Fig. 15.21: In every
position ϕ the point of rolling P is midpoint between the generating point
C and the center of curvature M .

15.5.5 Involute of a Circle

The inverse motion of a circle rolling along a straight line is the rolling of a
straight line g on a fixed circle k of radius r0 . This is the situation when in
Fig. 15.26 r1 is infinite. In Fig. 15.39 the line g is tangent to k at point A .
To be investigated are the trajectories traced by the point B fixed on g and
by the point P rigidly attached to g at the distance h on the perpendicular

Fig. 15.39 Involute of base circle k generated by B and epitrochoid traced by P
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through B . In the case h < 0 , P is located on the other side of g , i.e., on
the side toward the circle k .

First, the trajectory of B . It is an epicycloid. Point A is the instantaneous
center of rotation of g and, therefore, the center of curvature of the trajectory
of B . The trajectory is, therefore, the involute of k , and k is called base
circle of the involute. The segment AB may be interpreted as part of a string
which is winding off the circle k . Figure 15.39 shows that the following facts
are true
- every normal to the involute is tangent to k and vice versa
- the involute has a cusp B0 on k . It is symmetric with respect to the diameter
of k through B0

- the line segment AB which is the radius of curvature of the involute at B
equals the length of the arc AB0 of k . It is r0φ . The element of the arc
length of the involute is, therefore, ds = r0φ dφ and the arc length itself is
s = r0φ

2/2 (s = 0 at B0)
- in terms of the angle ψ as parameter B has the polar coordinates (note
that ϕ+ ψ = φ = tanψ )

ρ(ψ) =
r0

cosψ
, ϕ(ψ) = invψ (15.135)

with the involute function defined as

invψ = tanψ − ψ (15.136)

- involutes of base circles with different radii r0 are geometrically similar
- involutes on one and the same base circle, i.e., trajectories of different points
B1 , B2 , . . . fixed on g are parallel curves.

Next, the trajectory of P is investigated. It is an epitrochoid. This time,
cartesian coordinates in the special x, y-system shown and polar coordinates
ρ, ϕ are expressed not as functions of the angle ψ , but of φ . With AB = r0φ
the coordinates are

x = −(r0 + h) sinφ+ r0φ cosφ , ρ =
√
x2 + y2 =

√
(r0 + h)2 + r20φ

2 ,

y = (r0 + h) cosφ+ r0φ sinφ , tanϕ =
x

y
.

⎫⎬
⎭

(15.137)
The coordinate x(φ) is an odd function of φ , and y(φ) is an even function of
φ . From this it follows that the y-axis is an axis of symmetry. The tangent
to the trajectory at P is normal to the line AP . In the special case h = 0 ,
the curve is the involute with the polar coordinates (15.135). Another special
case is h = −r0 ( P is at the center 0 of the circle in the position φ = 0 ).
In this case, the equations are ρ = r0φ and ϕ = φ − π/2 . These are the
equations of Archimedes’ spiral.

The coordinate x is zero if φ satisfies the equation φ = [(r0+h)/r0] tanφ .
This equation has the solution φ = 0 and one more solution if h < 0 . These
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curves have a double point on the axis of symmetry. They are curtate, and
those with h > 0 (without double point) are prolate.

15.5.6 Dwell Mechanisms Based on Cycloids

In the mechanism shown in Fig. 15.40 the crank 2 causes the planetary wheel
1 (radius r ) to roll inside the sunwheel 0 (radius R ). In the position ϕ = 0
point A lies on the x-axis at xA = R − 2r . Rod 3 (length � ) connects
A to the slider 4 . The figure shows the case R/r = 3 . In what follows, the
general case R/r = n (n ≥ 3 ; integer) is investigated. In the interval −ϕ0 ≤
ϕ ≤ +ϕ0 with ϕ0 = π/n the hypocycloid traced by A is a rather good
approximation of a circular arc. For this reason it is possible to render the
ratio ξ(λ, ϕ) = xB(λ, ϕ)/r in the interval −ϕ0 ≤ ϕ ≤ +ϕ0 approximately
constant provided the ratio λ = �/r is chosen appropriately. The mechanism
can then be used as dwell mechanism with a single dwell per revolution of
crank 2 . An appropriate value λ1 is obtained if � is the radius of curvature
� of the hypocycloid at the point ϕ = 0 . Another appropriate value λ2

is obtained from the condition ξ(λ2, 0) = ξ(λ2, ϕ0) . To be determined are
λ1 and λ2 as functions of n . The optimal value λ0 is obtained from the
condition that the difference between the absolute maximum and the absolute
minimum of the function ξ(λ, ϕ) in the interval −ϕ0 ≤ ϕ ≤ +ϕ0 is minimal.
This is Tshebychev’s criterion of optimality. Determine λ0 and the minimal
difference in the cases n = 3 and n = 4 .

Solution: Figure 15.40 shows the poles P10 , P20 and P12 . With these poles
(15.6) yields the angular velocity ratio ω10/ω20 = −(n − 1) . This is
Eq.(15.120). This ratio yields for the angle of rotation α of wheel 1 rel-

Fig. 15.40 Dwell mechanism
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ative to the x, y-system the expression α = (n − 1)ϕ (positive clockwise;
see the figure). This determines the coordinates of A and B :

xA = r[(n− 1) cosϕ− cos(n− 1)ϕ] ,

yA = r[(n− 1) sinϕ + sin(n− 1)ϕ] ,

}
(15.138)

ξ(λ, ϕ) =
xB

r
=

1

r

(
xA +

√
�2 − y2A

)
= (n− 1) cosϕ− cos(n− 1)ϕ

+
√
λ2 − [(n− 1) sinϕ+ sin(n− 1)ϕ]2 . (15.139)

The curvature κ of a curve with parameter equations x(ϕ), y(ϕ) is

κ =
x′y′′ − y′x′′

(x′2 + y′2)3/2
( ′ = d/dϕ ) . (15.140)

The radius of curvature is � = 1/κ . For the radius of curvature of the
trajectory of A Eqs.(15.138) yield

x′
A = r(n− 1)[− sinϕ+ sin(n− 1)ϕ] , x′′

A = r(n− 1)[− cosϕ+ (n− 1) cos(n− 1)ϕ] ,

y′A = r(n− 1)[cosϕ+ cos(n− 1)ϕ] , y′′A = −r(n− 1)[sinϕ+ (n− 1) sin(n− 1)ϕ] .

}
(15.141)

From the values for ϕ = 0 the desired ratio λ1 is found:

λ1 =
1

r|κ(0)| = 4
n− 1

n− 2
. (15.142)

For determining λ2 the relations are used

sin(n−1)ϕ0 = sin(π−π/n) = sinϕ0 , cos(n−1)ϕ0 = − cosϕ0 . (15.143)

With these relations the conditional equation ξ(λ2, 0) = ξ(λ2, ϕ0) for λ2

takes the form

n− 2 + λ2 = n cosϕ0 +

√
λ2
2 − n2 sin2 ϕ0 . (15.144)

Squaring produces a linear equation with the solution

λ2 =
1 + n(n− 2) sin2 ϕ0/2

1− n sin2 ϕ0/2
. (15.145)

Next, the optimal ratio λ0 is determined and for this purpose the absolute
maximum and the absolute minimum of the function ξ(λ, ϕ) in the interval
0 ≤ ϕ ≤ ϕ0 with λ being a constant parameter. First, all angles ϕ in the
interval 0 ≤ ϕ ≤ ϕ0 are determined for which ξ(λ, ϕ) attains stationary
values. These angles are the roots of the equation ∂ξ/∂ϕ = 0 . With (15.139)
this is the equation
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sin(n− 1)ϕ− sinϕ

]√
λ2 − [(n− 1) sinϕ+ sin(n− 1)ϕ]2

−
[
(n− 1) sinϕ+ sin(n− 1)ϕ

][
cosϕ+ cos(n− 1)ϕ

]
= 0 . (15.146)

It has the root ϕ1 = 0 and also the root ϕ2 = ϕ0 since because of (15.143)
the first and the second term in brackets are both zero for ϕ = ϕ0 . From this
it follows that for λ =const (arbitrary) the function ξ(λ, ϕ) has stationary
values at ϕ = 0 and at ϕ = ϕ0 . These stationary values as functions of λ
are denoted ξs1(λ) and ξs2(λ) . Equation (15.144) yields

ξs1(λ) = n− 2 + λ , ξs2(λ) = n cosϕ0 +

√
λ2 − n2 sin2 ϕ0 . (15.147)

For λ = λ2 these stationary values are identical, namely,

ξs1(λ2) = ξs2(λ2) =
n− 1

1− n sin2 ϕ0/2
. (15.148)

From this identity it follows that (15.146) has at least one more root in the
interval 0 ≤ ϕ ≤ ϕ0 provided λ satisfies certain conditions. Further progress
at this point is possible only if the integer n is specified.

Special case n = 3 (ϕ0 = 60◦ ): Equations (15.142) and (15.145) yield λ1 =
8 and λ2 = 7 . With the formulas

sin 2ϕ− sinϕ = 2 sinϕ(cosϕ− 1
2 ) ,

2 sinϕ+ sin 2ϕ = 2 sinϕ(cosϕ+ 1) ,

cosϕ+ cos 2ϕ = 2(cosϕ− 1
2 )(cosϕ+ 1)

⎫⎪⎬
⎪⎭ (15.149)

Equation (15.146) becomes

sinϕ
(
cosϕ− 1

2

)[√
λ2 − 4 sin2 ϕ(cosϕ+ 1)2−2(cosϕ+1)2

]
= 0 . (15.150)

This equation has, in addition to the roots ϕ1 = 0 and ϕ2 = ϕ0 = 60◦ , a
third root ϕ3 . Squaring and simple reformulations yield the explicit result

cos[ϕ3(λ)] =
1

2
λ2/3 − 1 . (15.151)

This root is in the interval 0 ≤ ϕ3 ≤ ϕ0 if
√
27 ≤ λ ≤ 8 = λ1 . Let ξs3(λ)

be the associated third stationary value. It is calculated with cos[ϕ3(λ)] from
(15.139). The altogether three stationary values are (see (15.147))

ξs1(λ) = 1+λ , ξs2(λ) =
3

2
+

√
λ2 − 27

4
, ξs3(λ) = 3(λ2/3−1) . (15.152)

For λ = λ2 = 7 they are two identical maxima and a single minimum:



512 15 Plane Motion

ξs1(7) = ξs2(7) = 8 , ξs3(7) ≈ 7.9779 . (15.153)

In the neighborhood of λ = 7 ξs1(λ) and ξs2(λ) are nonidentical max-
ima, and ξs3(λ) is a minimum. Define the two differences maximum minus
minimum:

f13(λ) = ξs1(λ)− ξs3(λ) , f23(λ) = ξs2(λ)− ξs3(λ) . (15.154)

Their derivatives with respect to λ at the point λ = 7 are f ′
13(7) < 0

and f ′
23(7) > 0 . This together with (15.153) allows the conclusion that the

desired optimal parameter is λ0 = λ2 = 7 . Figure 15.41 shows the graphs
of the function ξ(λ, ϕ) − ξ(λ, 0) for λ = 7 and for λ = 8 in the interval
−80◦ ≤ ϕ ≤ 80◦ . Notice the scale. The differences between maximum and
minimum are

Δξ(7) = ξs2(7)− ξs3(7) ≈ 0.022 , Δξ(8) = ξs2(8)− ξs1(8) ≈ 0.066 .
(15.155)

The quality of dwell is much better with λ0 = λ2 = 7 than with λ1 = 8
obtained from the condition on curvature. Equation (15.151) determines the
angle ϕ3(7) ≈ 33.9◦ .

In Fig. 15.41 the upper limit of the interval of dwell is denoted ϕ4 . It is
defined through the equation ξ(7, ϕ4) = ξs3(7) or explicitly

2 cosϕ4 − 2 cos2 ϕ4 + 1 +
√
49− 4(1− cos2 ϕ4)(cosϕ4 + 1)2 = 3(72/3 − 1) .

(15.156)
Solving for the root and squaring results in a cubic equation for cosϕ4 .
Since this equation has the double root cosϕ4 = cos[ϕ3(7)] =

1
2 7

2/3 − 1 , a
linear equation is obtained. This equation has the solution cosϕ4 = 1

4 (5 −
72/3) , ϕ4 ≈ 70.4◦ . Thus, the dwell has the length of approximately 141◦

per revolution of the crank.

Fig. 15.41 Graphs of functions ξ(λ, ϕ)− ξ(λ, 0) for λ = 7 and for λ = 8



15.6 Rectangle Moving Between two Lines and a Point 513

Special case n = 4 (ϕ0 = 45◦): Equations (15.142) and (15.145) yield λ1 = 6
and λ2 = 1 + 3

√
2 . With the formulas

sin 3ϕ− sinϕ = 4 sinϕ(cos2 ϕ− 1
2 ) ,

3 sinϕ+ sin 3ϕ = 4 sinϕ(cos2 ϕ+ 1
2 ) ,

cosϕ+ cos 3ϕ = 4 cosϕ(cos2 ϕ− 1
2 )

⎫⎪⎬
⎪⎭ (15.157)

Equation (15.146) becomes

sinϕ
(
cos2 ϕ−1

2

)[√
λ2 − 16 sin2 ϕ

(
cos2 ϕ+

1

2

)2
−4 cosϕ

(
cos2 ϕ+

1

2

)]
= 0 .

(15.158)
It has the roots ϕ1 = 0 , ϕ2 = ϕ0 = 45◦ and cos[ϕ3(λ)] =

1
2

√
λ− 2 . The

associated stationary values are

ξs1(λ) = 2 + λ , ξs2(λ) = 2
√
2 +

√
λ2 − 8 , ξs3(λ) = 4

√
λ− 2 .
(15.159)

As in the case n = 3 , the optimal ratio λ0 is identical with λ2 . The smallest
difference between the maximum and the minimum of ξ(λ, ϕ) is ξs2(λ0)−
ξs3(λ0) ≈ 0.040 .

What follows next, is valid again for the general case with n ≥ 3 (integer).
The pole P10 in Fig. 15.40 lies on the line AB if the points A , B and P10

satisfy the condition (xB−xA)(y10−yA)+yA(x10−xA) = 0 . The coordinates in
this equation are x10 = nr cosϕ , y10 = nr sinϕ and xA, yA , xB = rξ from
(15.138) and (15.139). Substitution of these expressions yields, surprisingly,
Eq.(15.146) again. This identity has to be interpreted as follows. At ϕ = 0
and also at ϕ = ϕ0 P10 lies on the line AB independent of the value of λ .
In the interval −ϕ0 ≤ ϕ ≤ +ϕ0 P10 lies on the line AB independent of ϕ
if λ has the optimal value λ0 . Outside the interval −ϕ0 ≤ ϕ ≤ +ϕ0 P10

does not lie, in general, on the line AB .

15.6 Rectangle Moving Between two Lines and a Point

Figures 15.42a and b illustrate a problem encountered when moving a piece
of furniture. The rectangle of unit length is to be displaced from position I
to position II in the space formed by the angle α between straight lines g1
and g2 and by the point P0 . Given α and the coordinates x0 , y0 of P0

in the x, y-system shown in the figures, determine whether the prescribed
displacement is possible and if so, what is the maximum admissible width
Bmax of the rectangle?

In the literature only the special case α = π/2 is treated analytically
(Miller [24], Husty/Karger/Sachs/Steinhilper [17], Moretti [25], Boute [5]).



514 15 Plane Motion

Fig. 15.42 Rectangle of unit length in a space defined by α and P0 in cases α > π/2

(a) and α < π/2 (b). Initial position I , intermediate positions with position angle ϕ and
final position II

In all four references the maximum length of the rectangle for a given width is
determined. This statement of the problem results in a sixth-order polynomial
equation for the unknown length. In the present section the problem is stated
differently. The length of the rectangle is given. The maximum possible width
is the unknown. This approach leads to a fourth-order polynomial in the case
α ≥ π/2 and to a sixth-order polynomial in the case α < π/2 .

For achieving the maximum possible width corner points of the rectangle
must be guided along g1 and g2 . In the case α ≥ π/2 shown in Fig. 15.42a ,
the motion of the rectangle consists of three phases, namely, of translation
along g1 until B is at 0 , of a motion with the position variable ϕ in the
interval 0 ≤ ϕ ≤ π − α and of translation along g2 . These phases are
numbered 1 , 3 and 5 . In the case α < π/2 shown in Fig. 15.42b , phase 3 is
restricted to the interval π/2−α ≤ ϕ ≤ π/2 . In the interval 0 ≤ ϕ ≤ π/2−α
between phases 1 and 3 a phase 2 occurs with A moving along g1 and
with B′ moving along g2 . Between phases 3 and 5 a phase 4 occurs with
A′ moving on g1 and with B on g2 . The translatory motions in phases 1
and 5 are trivial. The other motions in phases 2 , 3 and 4 are known from
the elliptic trammel in Sect. 15.1.2 . They are called elliptic motions because
trajectories of body-fixed points are ellipses. The inverse motion is known,
too. For an observer fixed on the moving rectangle P0 is moving on a limaçon
of Pascal.

The solution to the problem is simplified by the fact that the trajectory of
every point of the rectangle is symmetric with respect to the bisector g of the
angle α . Phase 1 is symmetric to phase 5 , phase 2 is symmetric to phase
4 , and phase 3 is symmetric with respect to its midpoint in the position
ϕ = (π − α)/2 . For two positions of P0 which are symmetric with respect
to g the maximum possible width is the same. For this reason it suffices to
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investigate the case when P0 is below the symmetry axis g or on g . Thus,
the maximum possible width is determined in phases 3 (second half only),
4 and 5 .

Method of Solution
The width b of the rectangle is treated as a free parameter. For each phase
i of motion (i = 1, . . . , 5) a one-parametric family of curves Ei(b) is defined
as follows. For a given value of b Ei(b) is the curve on which P0 must be
located such that in phase i a rectangle of width b has a degree of freedom
when it is in contact with P0 .

Let fi(x, y, b) = 0 be the equation describing Ei(b) . Furthermore, let the
domain Γi be the set of all points (x, y) in the sector between g1 and g2
for which the equation fi(x0, y0, b) = 0 has (at least) one real solution b .
With this definition the maximum width Bmax for a given location (x0, y0)
of P0 is the minimum bmin of all solutions b of the equations fi(x0, y0, b) = 0
(i = 1, 3, 5 if α ≥ π/2 and i = 1, . . . , 5 if α < π/2 ) . In the case bmin < 0 ,
the displacement from position I to position II is not possible.

It will be seen that each pair of domains Γi and Γj (j �= i) has a nonempty
intersection. Let Γ ′

i (i = 1, . . . , 5) be the subdomain of Γi in which P0 must
be located so that bmin is a solution of fi(x0, y0, b) = 0 . If the domains Γ ′

i

(i = 1, . . . , 5) are known, the solution for Bmax is found in two steps. First,
it is determined in which domain Γ ′

k P0 is located. Then, the single equation
fk(x0, y0, b) = 0 is solved. Its smallest root is Bmax .

The domains Γ ′
i (i = 1, . . . , 5) are determined by their boundaries. Let

Gij = Gji (i, j = 1, . . . , 5 ; i �= j ) be the boundary between Γ ′
i and Γ ′

j .
By definition, for every point (x, y) on Gij there exists a real value of b
satisfying the equations fi(x, y, b) = 0 and fj(x, y, b) = 0 . Elimination of
b from these equations yields an equation for Gij .

15.6.1 Obtuse-Angled Corner

This is the case α ≥ π/2 . Figure 15.42a shows that the curve E5(b) in phase
5 is the line y ≡ b for x ≥ 0 . The curve E1(b) is the reflection of E5(b) in
g . It is the line parallel to g1 at the distance b . Its equation is

x sinα− y cosα− b = 0 (x cosα+ y sinα ≥ 0) . (15.160)

From this it follows that the domain Γ5 is the first quadrant of the x, y-plane,
and that Γ1 is the reflection of Γ5 on g . Furthermore, the symmetry axis
g is the boundary G15 between the domains Γ ′

1 and Γ ′
5 .

Next, a parametric equation is given for the curve E3(b) in phase 3 of
the motion. Figure 15.43 shows a rectangle of width b in phase 3 . The
instantaneous center of rotation P (or pole P ) is the intersection of the
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normals to g1 at A and to g2 at B . It has the coordinates xP = sinϕ/ sinα
and yP = cosϕ/ sinα . Its distance from 0 is 1/ sinα independent of ϕ .
Thus, the pole is moving on the circle with radius 1/ sinα about 0 . Let
n(ϕ) be the normal to AB through P . In the figure the quantities ϕ and
b and the location of P0 are chosen such that the following conditions are
satisfied:
a) P0 lies on A′B′

b) P0 lies on n(ϕ) . When these conditions are satisfied, P0 lies between A′

and B′. The point of the rectangle coinciding with P0 has zero velocity in
the direction of n(ϕ) . In this position the rectangle has a degree of freedom.
With a larger width b motion is impossible. From this it follows that E3(b)

is the envelope of all lines A′B′ in the interval 0 ≤ ϕ ≤ π − α . This implies
that curves E3(b1) and E3(b2) are parallel curves with the distance |b1−b2|
between them. The envelope E3(b) is determined as follows. The normal form

of A′B′ with ϕ and b as free parameters is x cosβ + y sinβ − (p+ b) = 0 .
With the length p = xP cosβ of the perpendicular from 0 onto the line AB
and with β = ϕ+ α− π/2 this becomes(

x− sinϕ

sinα

)
sin(ϕ+ α)− y cos(ϕ+ α)− b = 0 . (15.161)

On E3(b) this equation as well as its partial derivative with respect to ϕ is
satisfied:

x cos(ϕ+ α) + y sin(ϕ+ α)− sin(2ϕ+ α)

sinα
= 0 . (15.162)

The solutions of these two equations for x and y are parameter equations
of E3(b) :

Fig. 15.43 Rectangle in a position ϕ with instantaneous center of rotation P and with
P0 on the edge A′B′
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x(ϕ, b) = b sin(ϕ+ α) +
sinϕ+ cosϕ sin(ϕ+ α) cos(ϕ+ α)

sinα
,

y(ϕ, b) = −b cos(ϕ+ α) +
cosϕ sin2(ϕ+ α)

sinα

⎫⎪⎬
⎪⎭ (0 < ϕ < π − α) .

(15.163)

Figure 15.44 shows parallel curves E3(b) for several values b ≥ 0 in the
case α = 110◦ . The lines n1 and n2 are the normals n(ϕ = 0) and n(ϕ =
π − α) , respectively. The curves E3(b) are symmetric with respect to g .
The endpoints for ϕ = 0 and for ϕ = π − α are located on n1 and n2 ,
respectively. The endpoint on n2 has the coordinates x = 1 , y = b . The
curve E3(b = 0) is the envelope of all lines AB. When P0 is located on E3(0) ,
the maximum admissible width of the rectangle is Bmax = 0 . For points P0

in the domain between g1 , g2 and E3(0) no rectangle can be moved from
position I to position II.

For parameter values b in a certain, as yet unknown interval the curves
E3(b) have cusps. Let K be the curve connecting all cusps. It is the evolute
of all E3(b) and also the envelope of the normals n(ϕ) . The equation of
n(ϕ) is Eq.(15.162). On K this equation as well as its partial derivative with
respect to ϕ is satisfied:

−x sin(ϕ+ α) + y cos(ϕ+ α)− 2 cos(2ϕ+ α)

sinα
= 0 . (15.164)

The solutions of these two equations for x and y are parameter equations
of K :

Fig. 15.44 Domain Γ3 (shaded), evolute K and curves E3(b) for several values of b in
the case α = 110◦ . Curves E3(b) with −2 cotα < b < bS have cusps on K
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x(ϕ) =
3 sinϕ− sin(3ϕ+ 2α)

2 sinα

y(ϕ) =
3 cosϕ+ cos(3ϕ+ 2α)

2 sinα

⎫⎪⎬
⎪⎭ (0 < ϕ < π − α) . (15.165)

In Fig. 15.44 the evolute K is shown. It is symmetric with respect to g . Its
endpoints associated with ϕ = 0 and with ϕ = π − α are the points Q1

on n1 and Q2 on n2 , respectively. At these points K merges tangentially
with n1 (with n2 ). The point Q2 has the coordinate y = −2 cotα . The tip
S of K belonging to the central value ϕ = (π − α)/2 has the coordinates
xS = 1/ sin(α/2) , yS = 1/ cos(α/2) . Its distance from 0 is 2/ sinα , i.e.,
twice the radius of the pole circle. The width b = bS associated with the
special curve E3(b) through S is obtained from the first Eq.(15.161) with
x = xS and ϕ = (π−α)/2 . It is bS = (3−cosα)/(2 sinα) . From this it follows
that the curve E3(b) has cusps if b is in the interval −2 cotα ≤ b ≤ bS .

The domain Γ3 of definition of curves E3(b) is the shaded domain in Fig.
15.44 . In what follows, the boundary G35 between the domains Γ ′

3 and Γ ′
5 is

determined. By definition, every point of G35 is the intersection point of two
curves E3(b) and E5(b) with identical b . Since both curves have the point
with coordinates x = 1 , y = b in common, the normal n2 is part of G35 .
Figure 15.44 shows that a curve E3(b) with cusps and the line E5(b) for the
same value of b have a second point of intersection located between the lines
n2 and K (in the small figure this is shown schematically). Also this point
is part of G35 . A parameter equation for G35 is found as follows. For E3(b)
Eqs.(15.161) and (15.162) are used (in the interval (π − α)/2 ≤ ϕ ≤ π − α
describing the branch below the symmetry line g ). In both equations b is
replaced by y because E5(b) has the equation y = b . This results in two
linear equations for x and y :

x sin(ϕ+ α)− y[1 + cos(ϕ+ α)] =
sinϕ sin(ϕ+ α)

sinα
,

x cos(ϕ+ α) + y sin(ϕ+ α) =
sin(2ϕ+ α)

sinα

⎫⎪⎬
⎪⎭

(π − α

2
≤ ϕ < π − α

)
.

(15.166)

The coefficient determinant is 1 + cos(π + α) . In the solutions for x and y
this determinant appears not only as denominator, but also as factor in both
numerators. From this it follows that both x and y are indeterminate in the
case ϕ = π − α . The solution associated with this indeterminacy is the line
n2 which was shown to be part of G35 . The other branch of G35 is described
by the solutions for x and y after canceling out the factor 1 + cos(π + α) .
These are the equations

x(ϕ) =
sinϕ+ cosϕ sin(ϕ+ α)

sinα

y(ϕ) =
[1− cos(ϕ+ α)] cosϕ

sinα

⎫⎪⎬
⎪⎭

(π − α

2
≤ ϕ < π − α

)
. (15.167)

Let S∗ be the endpoint associated with ϕ = (π − α)/2 . It is located on g .
Its coordinates are
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x∗ =
1 + sin α

2

2 sin α
2

, y∗ =
1 + sin α

2

2 cos α
2

=
1

2
tan

π + α

4
. (15.168)

The other endpoint associated with ϕ = π−α is the point Q2 on n2 . In Fig.
15.45 this branch of the boundary G35 is shown. The results are summarized
as follows. The domain Γ ′

3 has the symmetry axis g . The part below g is
bounded by the section 0 ≤ x ≤ 1 of the x-axis, by the section of n2 between
the points (x = 1 , y = 0) and Q2 and by the section of G35 between Q2

and S∗ . That the section of n2 above Q2 does not play a role is seen in
Fig. 15.44 from the curves E3(b) and E5(b) terminating on this section of
n2 . Figure 15.45 shows also the domains Γ ′

1 , Γ ′
3 and Γ ′

5 , the line g and
the curve E3(0) . The three domains have the point S∗ in common. If P0 is
located at S∗ , all three motion phases 1 , 3 and 5 yield one and the same
maximum width Bmax . This implies that S∗ has equal distances from g1 ,
from g2 and from the curve E3(0) . The maximum width is Bmax = y∗ with
y∗ from (15.168).

Fig. 15.45 Domains Γ ′
1 , Γ ′

5 and Γ ′
3 (shaded) for α = 110◦

Next, equations determining Bmax are formulated for the three domains
Γ ′
1 , Γ ′

3 and Γ ′
5 . At the beginning it was said that the equation describing

the curve Ei(b) becomes an equation for b if, first, P0 is located in Γ ′
i and

if, second, for x and y the coordinates x0 and y0 of P0 are substituted.
The maximum admissible width Bmax is the smallest of the roots b . The
three cases are:

P0 is located in Γ ′
1 : The equation of E1(b) is Eq.(15.160). With x = x0 , y =

y0 the explicit result is obtained: Bmax = x0 sinα− y0 cosα .

P0 is located in Γ ′
5 : The equation of E3(b) is y = b . Hence Bmax = y0 .

P0 is located in Γ ′
3 : E3(b) is represented by (15.161) and (15.162). With

x = x0 , y = y0 these equations are
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b(ϕ) =
(
x0 − sinϕ

sinα

)
sin(ϕ+ α)− y0 cos(ϕ+ α) ,

x0 cos(ϕ+ α) + y0 sin(ϕ+ α)− sin(2ϕ+ α)

sinα
= 0

⎫⎪⎬
⎪⎭ (0 < ϕ < π − α) .

(15.169)
For every root ϕ of the second equation the associated solution b(ϕ) is
calculated from the first equation. On the number of solutions the following
statement can be made. Consider in Fig. 15.44 the curve E3(b) with the
cusp shown in the enlarged inset. A neighboring curve E3(b + Δb) with a
sufficiently small Δb intersects the curve E3(b) at two points, one of them
located between G31 and n1 and the other between G35 and n2 . Hence the
conclusion: Two solutions b exist if P0 is located either between G31 and n1
or between G35 and n2 . A single solution exists if P0 is located elsewhere in
Γ ′
3 .
For solving the second Eq.(15.169) the terms cos(ϕ+α) , sin(ϕ+α) and

sin(2ϕ+α) are expressed in terms of functions of individual angles by means
of addition theorems. In the resulting equation the variable u = tanϕ/2 is
introduced by substituting the expressions cosϕ = (1 − u2)/(1 + u2) and
sinϕ = 2u/(1 + u2) . After multiplication with (1 + u2)2 a fourth-order
equation for u is obtained. With the abbreviations s = sinα , c = cosα it
reads

a4u
4 + a3u

3 + a2u
2 + a1u+ a0 = 0 ,

a4 = 1 + cx0 + sy0 , a3 = 2(sx0 − cy0 − 2c/s) ,
a0 = 1− cx0 − sy0 , a1 = 2(sx0 − cy0 + 2c/s) , a2 = −6 .

⎫⎪⎬
⎪⎭ (15.170)

The degree four has the following explanation. For an observer fixed on the
moving rectangle P0 is moving on a limaçon of Pascal. Solutions b are dis-
tances between the line AB which is now fixed and all tangents to the limaçon
which are parallel to AB . Figures 15.8a – d show that the maximum number
of parallel tangents is four.

15.6.2 Right-Angled Corner

This is the special case α = π/2 . The parametric equation (15.163) of the
curve E3(0) is x = sin3 ϕ , y = cos3 ϕ . This is the equation of an astroid
(see (15.129)). The parameter-free form is x2/3 + y2/3 = 1 . The parametric
equation (15.165) of the evolute K is x = sinϕ(1+ 2 cos2 ϕ) , y = cosϕ(1+
2 sin2 ϕ) . In a ξ, η-system rotated though π/4 against the x, y-system the
coordinates are ξ = (y + x)/

√
2 = (cosϕ + sinϕ)(1 + sin 2ϕ)/

√
2 , η =

(y−x)/
√
2 = (cosϕ−sinϕ)(1−sin 2ϕ)/

√
2 . With ψ defined by ϕ = ψ−π/4

this becomes ξ = 2 sin3 ψ , η = 2 cos3 ψ . This represents the astroid E3(0)
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rotated through π/4 and multiplied by 2 . This result is a special case of
Theorem 15.9 stating that the evolute of a cycloid is a similar cycloid.

The parametric equation (15.167) of the curve G35 is x = sinϕ +
cos2 ϕ (1) , y = cosϕ(1+sinϕ) (2) . From (1) 1−cos2 ϕ = (x−cos2 ϕ)2 (3)
and from (2) in combination with (1) y2 = cos2 ϕ (2x + 2 − 3 cos2 ϕ) .
Elimination of cos4 ϕ from the last two equations yields cos2 ϕ =
(y2 − 3x2 + 3)/(5 − 4x) . Substitution of this expression into (3) results
in a parameter-free equation for G35 :
(x2 + y2)2 + y2(11− 14x) + 2x(x2 − 1)− 1 = 0 and resolved for y2

y2 = − 1
2 [(5− 4x)3/2 + 2x2 − 14x+ 11] .

Equation (15.170) reads (1 + y0)u
4 + 2x0u

3 − 6u2 + 2x0u+ (1− y0) = 0 .

15.6.3 Acute-Angled Corner

This is the case α < π/2 . Both domains Γ1 and Γ5 cover the entire sector
between g1 and g2 . The curves E1(b) and E5(b) have the same equations
as before.

Phase 3 of the motion is restricted to the interval π/2−α ≤ ϕ ≤ π/2 . In
this interval all previous results remain valid, i.e., Eqs.(15.161) – (15.163) for
the curves E3(b) , Eq.(15.165) for K and Eq.(15.167) for the curved section
of G35 . In the center ϕ = (π − α)/2 of the interval all curves intersect the
symmetry axis g .

Figure 15.46 shows for α = 40◦ the curve K , the curved section of G35

and curves E3(b) for several values b ≥ 0 . At the final angle ϕ = π/2 the
curve K and all curves E3(b) terminate on the line y = 1 . In particular,
E3(0) terminates at the point Q0 with the coordinate x = cotα , and K
terminates at the point Q3 with the coordinate x = 2 cotα . The curved
section of G35 starts at the point S∗ (see Fig. 15.45 and (15.168)), and it
terminates with ϕ = π/2 at the intersection of g2 and E3(0) . Reflection of
G35 on g produces G31 . The domain Γ3 is the shaded area of the sector
between g1 and g2 .

Phase 2 : Figure 15.47 shows a rectangle and a point P0 in positions sat-
isfying the conditions (a) and (b). For the center of rotation P the dashed
auxiliary lines yield the x -coordinates xP = (sinϕ + b cosϕ)/ sinα , yP =
(cosϕ− b sinϕ)/ sinα . Elimination of ϕ yields x2

P + y2P = (1 + b2)/ sin2 α .

The normal n(ϕ) intersects the line A′B′ between A′ and B′ only if
xP ≥ xA . With the angle ψ shown in the figure this condition is ϕ ≥
π/2 − α − ψ or sinϕ ≥ sin(π/2 − α − ψ) . With sinψ = b/

√
1 + b2 ,

cosψ = 1/
√
1 + b2 the condition becomes sinϕ ≥ (cosα− b sinα)/

√
1 + b2 .

From this it follows that in equations for the curves E2(b) the variable ϕ is
subject to the condition ϕ0 ≤ ϕ ≤ π/2− α with
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Fig. 15.46 Curves, points and domains of Figs. 15.44 and 15.45 for α = 40◦

Fig. 15.47 Phase 2 with center of rotation P and with P0 on the edge A′B′

sinϕ0 =
cosα− b sinα√

1 + b2
, cosϕ0 =

sinα+ b cosα√
1 + b2

(b ≤ cotα)

ϕ0 = 0 (b ≥ cotα) .

⎫⎬
⎭

(15.171)

The normal form of the equation for the line A′B′ is determined by the angle
β = π/2 − (ϕ + α) and by the length p = xP cosβ of the perpendicular.
The equation is

x sin(ϕ+ α)− y cos(ϕ+ α)− (sinϕ+ b cosϕ) sin(ϕ+ α)

sinα
= 0 . (15.172)

On E2(b) this equation as well as its partial derivative with respect to ϕ is
satisfied:

x cos(ϕ+ α) + y sin(ϕ+ α)− sin(2ϕ+ α) + b cos(2ϕ+ α)

sinα
= 0 . (15.173)

The solutions of these two equations for x and y are parameter equations
of E2(b) :
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x(ϕ, b) =
sinϕ+ b cosϕ+ (cosϕ− b sinϕ) sin(ϕ+ α) cos(ϕ+ α)

sinα
,

y(ϕ, b) =
(cosϕ− b sinϕ) sin2(ϕ+ α)

sinα

⎫⎪⎬
⎪⎭ (ϕ0 ≤ ϕ ≤ π/2−α) .

(15.174)

Figure 15.48 shows for α = 40◦ curves E2(b) for several values b ≥ 0 . At the
end of the interval, i.e., for ϕ = π/2−α , all curves terminate on the normal
to g1 through the point Q0 known from Fig. 15.46 . The interval starts with
ϕ = ϕ0 given by (15.171). All curves E2(b) with b ≥ cotα start on the
line y = sinα . In particular, E2(b = cotα) starts at the point R0 with
the coordinate x = (1 + 1/ sin2 α) cosα . The curve E2(b) with b ≤ cotα
(arbitrary) starts at the point with the coordinates

x(b) =
√

1 + b2 cotα+
b√

1 + b2
, y(b) =

1√
1 + b2

(0 ≤ b ≤ cotα) .

(15.175)
These coordinates are obtained from (15.174) by substituting for sinϕ and
cosϕ the expressions sinϕ0 and cosϕ0 , respectively, of (15.171). Equation
(15.175) is a parametric equation of the curve called e1 . It starts with b = 0
at the point Q0 and it terminates with b = cotα at the point R0 . Elimination
of the parameter b yields the explicit equation x =

√
1− y2 + (1/y) cotα

(valid for sinα ≤ y ≤ 1 ) .
The domain Γ2 is the shaded area in Fig. 15.48 . Of its boundary only

the small section is still unknown on which the curves E2(b) have cusps.
This section is called e2 . For a given value of b (arbitrary) all normals n(ϕ)
envelope a curve K(b) . This curve K(b) is found by the same method that
was used for the curve K of Fig. 15.44 . Starting point is Eq.(15.173) of the
normal n(ϕ) . On K(b) this equation as well as its partial derivative with
respect to ϕ is satisfied:

−x sin(ϕ+α) + y cos(ϕ+α)− 2
cos(2ϕ+ α)− b sin(2ϕ+ α)

sinα
= 0 . (15.176)

At the cusp of E2(b) Eqs.(15.172), (15.173) and (15.176) have the quantities
b , x , y and ϕ in common. Summation of (15.172) and (15.176) eliminates
x and y . The resulting equation is solved for b :

b =
3 cos(ϕ+ α) cosϕ− cosα

3 cos(ϕ+ α) sinϕ+ sinα
. (15.177)

Substitution of this expression into (15.174) results in the desired parametric
equation for e2 :

x(ϕ) =
[2 + sin2(ϕ+ α)] cos(ϕ+ α)

sinα[3 cos(ϕ+ α) sinϕ+ sinα]

y(ϕ) =
sin3(ϕ+ α)

sinα[3 cos(ϕ+ α) sinϕ+ sinα]

⎫⎪⎬
⎪⎭ (0 ≤ ϕ ≤ π/2− α) . (15.178)
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Fig. 15.48 Curves, points and domains associated with phase 2 of the motion for α = 40◦

In Fig. 15.48 this curve is shown. With ϕ = 0 it starts at the point R1 with
coordinates x = (1+ 2/ sin2 α) cosα , y = sinα . At this point the curve e2
merges tangentially with the line y = sinα . With ϕ = π/2 − α the curve
terminates at the point x = 0 , y = 1/ sin2 α . No explicit formulas have been
found for the point of tangential contact between e2 and e1 . The section of
e2 to the right of this point is part of the boundary of Γ2 .

In what follows, the curves G21 and G23 are determined. First, the curve
G21 . It is the geometric locus of the intersection points of E2(b) and E1(b) .
The expressions (15.174) are substituted into (15.160). The resulting equation
is solved for b :

b =
(1 + cosϕ) cos(ϕ+ α)

(1 + cosϕ) sin(ϕ+ α)− sinα
. (15.179)

When this is substituted back into (15.174), the parametric equation for G21

is obtained:

x(ϕ) =
cosα+ [1 + sinα sin(ϕ+ α)] cos(ϕ+ α)
sinα[(1 + cosϕ) sin(ϕ+ α)− sinα]

y(ϕ) =
sin2(ϕ+ α)

(1 + cosϕ) sin(ϕ+ α)− sinα

⎫⎪⎬
⎪⎭ (0 ≤ ϕ ≤ π/2− α) .

(15.180)
Figure 15.48 shows the curve G21 . With ϕ = 0 it starts at the same point
R1 as e2 . With ϕ = π/2− α it terminates at Q0.

Next, the curve G23 is determined. Since neither for E2(b) nor for E3(b)
an equation free of the parameter ϕ is known, the curve G23 cannot be found
by the method used for G21 . For E2(b) (15.172) and (15.173) are used and
for E3(b) (15.161) and (15.162). At the intersection point the equations are
identical in x and y , but the parameters ϕ are not the same for E2(b) and
E3(b) . The angles are called ϕ2 for E2(b) and ϕ3 for E3(b) . The equations
are written as linear equations for x , y and b with coefficients depending
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on ϕ2 and ϕ3 :⎡
⎢⎢⎣
sin(ϕ2 + α) − cos(ϕ2 + α) − cosϕ2 sin(ϕ2 + α)/ sinα
cos(ϕ2 + α) sin(ϕ2 + α) − cos(2ϕ2 + α)/ sinα
sin(ϕ3 + α) − cos(ϕ3 + α) −1
cos(ϕ3 + α) sin(ϕ3 + α) 0

⎤
⎥⎥⎦
⎡
⎣x
y
b

⎤
⎦

=
1

sinα

⎡
⎢⎢⎣
sinϕ2 sin(ϕ2 + α)
sin(2ϕ2 + α)
sinϕ3 sin(ϕ3 + α)
sin(2ϕ3 + α)

⎤
⎥⎥⎦ . (15.181)

A necessary condition for the existence of solutions x , y , b is the vanish-
ing of the (4 × 4)-determinant of the coefficients including the right-hand
side expressions. The third and the fourth columns are multiplied by sinα .
Then, using addition theorems, the terms cos(2ϕi+α) and sin(2ϕi+α) are
expressed as functions of ϕi and of (ϕi + α) (i = 2, 3). Finally, the abbre-
viations are introduced: s = sinα , c = cosα , si = sinϕi , ci = cosϕi ,
Si = sin(ϕi + α) , Ci = cos(ϕi + α) (i = 2, 3). The resulting equation has
the form ∣∣∣∣∣∣∣∣

S2 −C2 −c2S2 s2S2

C2 S2 −c2C2 + s2S2 s2C2 + c2S2

S3 −C3 −s s3S3

C3 S3 0 s3C3 + c3S3

∣∣∣∣∣∣∣∣ = 0 . (15.182)

Linear combinations of rows 1 and 2 with coefficients S2 and C2 and of
rows 3 and 4 with coefficients S3 and C3 result in the equation∣∣∣∣∣∣∣∣

1 0 −c2 + s2C2S2 s2 + c2C2S2

0 1 s2S
2
2 c2S

2
2

1 0 −S3s s3 + c3C3S3

0 1 C3s c3S
2
3

∣∣∣∣∣∣∣∣ = 0 . (15.183)

Expansion of this determinant leads to the equation

(s2S
2
2 − sC3)(s3 + c3C3S3) + S2

2(sc2S3 − 1)

+c3S
2
3(c2 − s2C2S2 − sS3) + sC3(s2 + c2C2S2 − sS3) = 0 . (15.184)

Finally, the expressions Si = sic + cis and Ci = cic − sis are introduced
(i = 2, 3). This results in an equation for ϕ2 and ϕ3 . Its highest-order term
is cos3 ϕ2 cos

4 ϕ3 . The solution for, say ϕ2 , must be calculated numerically.
For reasons of symmetry it suffices to consider the interval π/2− α ≤ ϕ3 ≤
(π − α)/2 . For every pair of values (ϕ2, ϕ3) the corresponding quantities
x , y and b are calculated from (15.181). From b the angle ϕ0 of Eq.(15.171)
is calculated. If the condition ϕ0 ≤ ϕ2 ≤ π/2 − α is satisfied, x and y



526 15 Plane Motion

are the coordinates of a point of G23 . Figure 15.48 shows the curve G23

calculated for the angle α = 40◦ .
Reflection of G21 and G23 on g produces G45 and G43 , respectively. Figure

15.49 displays the curves Gij (i, j = 1, . . . , 5 ; j �= i ) . Together with g1 and
g2 they divide the sector between g1 and g2 into the domains Γ ′

1, . . . Γ
′
5 .

The domain boundaries G31 and G35 shown as dashed lines are irrelevant.

Fig. 15.49 Domains Γ ′
1, . . . Γ

′
5 (Γ ′

2 , Γ
′
4 shaded) for α = 40◦ . When P0 is point A , the

rectangle of maximum width is in contact with P0 in three positions occurring in phases
2, 3 and 4 . Two positions are shown

Finally, an equation determining bmin is formulated for the case when P0

is located in Γ ′
2 . Equations (15.174) determine b and ϕ if x = x0 and

y = y0 is substituted. The second equation is solved for b and then this
expression is substituted into the first equation. This results in the equations

b(ϕ) = cotϕ− y0
sinα

sinϕ sin2(ϕ+ α)
, (15.185)

(
x0 sinϕ− 1

sinα

)
sin2(ϕ+ α) + y0[cosϕ− sinϕ sin(ϕ+ α) cos(ϕ+ α)] = 0 .

(15.186)
The last equation is an equation for ϕ . As was done with (15.169), the
variable u = tanϕ/2 is introduced. The result is the 6th-order equation for
u (with abbreviations s = sinα , c = cosα )
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b6u
6 + b5u

5 + b4u
4 + b3u

3 + b2u
2 + b1u+ b0 = 0 ,

b6 = −(y0 + s) , b5 = 2s(sx0 − cy0) + 4c ,
b0 = y0 − s , b1 = 2s(sx0 − cy0)− 4c ,
b4 = −8s(cx0 + sy0) + 3y0 + 5s− 4/s , b3 = 12c(cx0 + sy0)− 4x0 ,
b2 = 8s(cx0 + sy0)− 3y0 + 5s− 4/s .

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(15.187)
Every real solution u determines an angle ϕ = 2 tan−1 u . If this angle sat-
isfies the condition ϕ0 ≤ ϕ ≤ π/2 − α , the corresponding width b(ϕ) is
calculated from (15.185). The smallest of all widths thus determined is the
desired solution Bmax .

In Fig. 15.49 point A belongs to the three domains Γ ′
2 , Γ

′
3 and Γ ′

4 . When
P0 is at A , the rectangle of maximum width is in contact with P0 in three
positions. The two positions in phases 2 and 3 are shown. The coordinates
of A , the associated maximum width b and the associated angle ϕ in phase
2 are determined as follows. The coordinates in phase 2 as functions of b
and ϕ are given in (15.174). The coordinates in phase 3 are (see Fig. 15.49)

x = y cot
α

2
= cos

α

2

(
1

2
cot

α

2
+ b

)
, y =

1

2
cos

α

2
+ b sin

α

2
. (15.188)

Equating the two yields two equations for the unknowns b and ϕ . Elimina-
tion of b leads to an equation for ϕ . It can only be solved numerically since
it contains as highest-order term cos3 ϕ .
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26. Schoenflies A, Grübler M (1908) Kinematik. In: [19]:190–278

27. Skanavi M I (Ed.) Sbornik sadach po matematike dlya postupajushchich vo vtusy. Kn.1
Algebra [Collection of mathematical problems of entrance examinations at technical
universities. Book 1 Algebra]

28. Strubecker K (1964) Differentialgeometrie I. Kurventheorie der Ebene und des Raumes.
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Chapter 16

Theory of Gearing

Gears are wheels with teeth shaped so as to transmit rotational motion from
one wheel to another. One of the wheels may be a rack (a wheel of infinite
radius). In this case, rotational motion of a wheel is transformed into trans-
latory motion of the rack or vice versa. The present chapter is restricted to
gears transforming uniform motion of one wheel into uniform motion of the
other wheel or rack. This restriction eliminates from investigation specialties
such as elliptical wheels, Geneva wheels etc.

Gear pairs are classified by the relative location of the wheel axes and by
the shapes of teeth. Wheel axes are either parallel or intersecting or skew. In
all three cases there is a choice between external gearing (both wheels car-
rying the teeth externally and contacting each other externally) and internal
gearing (one wheel with external teeth inside the other wheel with internal
teeth). In all these cases an infinite variety of tooth shapes exists for trans-
mitting uniform motion into uniform motion. For practical reasons only a
small number of shapes is actually used. Criteria for making the choice be-
tween external and internal gearing and for selecting particular tooth shapes
are among others (not necessarily in the given order and not unrelated)
– the power to be transmitted
– the gear ratio ω2/ω1 to be produced
– the volume required
– magnitude and direction of load imposed on shaft bearings
– the amount of sliding of contacting teeth (heat development, wear, lubri-
cation)
– the kind of contact (convex-convex or convex-concave; along a line; at a
single point)
– the sensitivity to manufacturing errors
– the amount of noise produced
– manufacturing costs.

Gearing technology has reached a high standard of precision. Of its
many aspects only some elements of kinematics are treated in the present
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530 16 Theory of Gearing

chapter. For more information the reader is referred to Schoenflies/Grübler
[17], Disteli[3, 4] and to the handbooks by Bonfiglioli Riduttori S.p.A. [1],
Townsend [18], Litvin [12], Dudley [5, 6], K. Roth [15, 16] and to the rich
literature cited therein. For the history of gearing see Matschoss [13].

Let ω1 and ω2 be the scalar magnitudes (both positive) of the angular
velocities of a pair of gears relative to the frame in which the gear axes are
mounted, and let n1 and n2 be the numbers of teeth of the two gears. The
gear ratio is

μ =
ω2

ω1
=

n1

n2
(16.1)

for external as well as for internal gears and with parallel or intersecting or
skew gear axes.

16.1 Parallel Axes

Transmission of rotation from one shaft to another parallel shaft is possible
by means of two cylindrical friction wheels which are rolling one on the other
without slipping. In Figs. 16.1a and b cross sections of the two possible
arrangements of wheels are shown. The radii are r1 and r2 . The circles p1
and p2 rolling one on the other are the centrodes of the wheels. The point
of rolling is the center of relative rotation P12 . In the theory of gearing the
centrodes are referred to as pitch circles and P12 as pitch point. The wheels
in Fig. 16.1a are rotating relative to the fixed frame with opposite senses
of direction whereas those in Fig. 16.1b are rotating with equal senses of
direction. If in both cases ω1 and ω2 are the magnitudes of the angular
velocities relative to the frame, in both cases the rolling condition is ω1r1 =
ω2r2 or

μ =
ω2

ω1
=

r1
r2

. (16.2)

If the wheels are gears, the centrodes exist only virtually. As is indicated in
the figures on parts of the circumferences the centrodes are replaced by teeth.
These teeth must have shapes which ensure that the gear ratio ω2/ω1 is
constant throughout the motion. Necessary conditions are formulated further
below. In Fig. 16.1a both wheels have external gearing whereas in Fig. 16.1b
the larger external wheel has internal gearing. Equations (16.1) and (16.2)
establish between angular velocities, radii of pitch circles and numbers of
teeth the relationship

μ =
ω2

ω1
=

r1
r2

=
n1

n2
. (16.3)

A cylindrical gear – with external or internal gearing – is called spur gear if
the teeth are parallel to the gear axis. Such gears are treated first. Spur gears
have line contact. This has the consequence that unavoidable misalignment
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Fig. 16.1 Cylindrical friction wheels in rolling contact with opposite (a) and with equal

senses of rotation (b)

of wheel axes results in edge contact leading to rapid destruction of teeth. In
order to prevent this kind of failure the tooth flanks on the wheel with fewer
teeth are given a minute crowning so that point contact is guaranteed. In what
follows, the kinematics of ideal spur gears without crowning is investigated.

From Fig. 16.2 a necessary condition on the shapes of teeth ensuring con-
stant gear ratio ω2/ω1 is deduced. The figure shows two tooth flanks which
are instantaneously in contact at B . They belong to two wheels which are
rotating about fixed centers P10 and P20 with instantaneous angular veloci-
ties ω1 and ω2 , respectively. Note that at this point pitch circles do not yet
exist. According to the theorem of Kennedy and Aronhold the instantaneous
center P12 of relative rotation of the wheels is the point of intersection of the

common normal at B with the line P10P20 . The vectors a =
−−−→
P10P20 and

b =
−−−→
P12P10 determine the instantaneous gear ratio (see (15.6))

Fig. 16.2 Wheels 1 and 2 in planar motion with fixed centers P10 , P20 and with tan-
gential contact of tooth flanks at B . Vectors z1 , z2 , r , a = z1 − z2 , b = r − z1 and
unit vectors e , en , et. Arc lengths s1 and s2 of tooth flanks
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μ =
ω2

ω1
=

b

a+ b
(16.4)

where a and b are the magnitudes of a and b , respectively (both positive
if a and b are pointing in the same direction; the figure shows the case of
internal gearing; in the case of external gearing the vectors a and b have
opposite directions). In the case of arbitrarily shaped tooth flanks, the center
P12 is not fixed, and μ is a function of the angle of rotation of wheel 1 .
Hence the

Theorem 16.1. A constant gear ratio μ = ω2/ω1 requires mating tooth
flanks to be shaped such that throughout the period of tangential contact the
common normal at the point of contact passes through a fixed point on the
line P10P20 . Then this point is the pitch point P12 of two virtual pitch circles
p1 , p2 . Tooth flanks satisfying this condition are said to be conjugate.

The condition stated in this theorem is necessary, but not sufficient. Another
necessary condition is that before a pair of meshing teeth is separating the
subsequent pair of teeth must have started meshing already. In the follow-
ing section Theorem 16.1 is used for formulating a relationship between the
curvatures of conjugate tooth flanks at the point of contact.

With certain restrictions one out of two meshing tooth flanks, say flank f1 ,
can be chosen arbitrarily. The conjugate flank f2 is then uniquely determined.
In Sec. 16.1.4 Theorem 16.1 is used for determining parameter equations of
f2 from given parameter equations of f1 .

An altogether different way of determining the unknown flank f2 from
a given flank f1 is based on the fact that f2 is enveloped by f1 when the
wheels are rotating with the prescribed gear ratio. This is true not only for
spur gears, but for all kinds of gears. In engineering practice, this fact is
the basis of manufacturing methods. A cutting or milling tool 1 having the
shape of f1 is brought in contact with a cylindrical blank 2 . Tool 1 and
blank 2 are rotating with the prescribed gear ratio. In addition, tool 1 is
slowly moved into blank 2 thereby removing material in such a way that
at every stage the shape of 2 is enveloped by the shape of 1. This process
is continued until tool 1 and the finished wheel 2 have reached the desired
relative position. A survey of manufacturing methods see in K. Roth [16].

16.1.1 Curvature Relationship of Meshing Tooth
Flanks

As is shown in Fig. 16.2 the fixed vectors a =
−−−→
P10P20 and b =

−−−→
P12P10 are

expressed in terms of instantaneous vectors z1 , z2 and r : a = z1 − z2 ,
b = r − z1 . In addition, the mutually orthogonal unit vectors e (axis of
rotation), en (normal) and et = e×en (tangent) are used. In terms of these
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vectors ωi = ωie (i = 1, 2) and r = ren . At B the tooth flanks are sliding
relative to each other. The relative velocity is expressed in two ways. In terms
of relative rotation about P12 it is

v12 = (ω1 − ω2)× r = ω1r(1− μ)et . (16.5)

Expressed as difference of the velocities of the two body-fixed points coincid-
ing with B it is

v12 = ω1 × z1 − ω2 × z2 . (16.6)

Let s1 and s2 be the arc lengths of the flanks at B with directions as shown
in the figure. The velocities of B relative to the two flanks are ṡ1et and ṡ2et ,
respectively. The curvatures of the contacting flanks at B are denoted κ1

and κ2 . The sign conventions are such that the angular velocity of en is
given by the formula (κ1ṡ1+ω1)e as well as by the formula (κ2ṡ2+ω2)e (in
Fig. 16.2 κ1 > 0 and κ2 < 0 ). From the equality of these two expressions it
follows that

κ1ṡ1 − κ2ṡ2 = −ω1(1− μ) . (16.7)

Furthermore,
ėn = (κ1ṡ1 + ω1)et . (16.8)

From the identity z1 − z2 ≡ a = const it follows that

ż2 ≡ ż1 = ṡ1et + ω1 × z1 = ṡ2et + ω2 × z2 (16.9)

and from this in combination with (16.5)

ṡ1 − ṡ2 = −ω1r(1− μ) . (16.10)

In order to bring angular accelerations into play the orthogonality relation-
ship v12 · en = 0 is differentiated with respect to time:

v̇12 · en + v12 · ėn = 0 . (16.11)

Equation (16.6) yields

v̇12 = ω̇1 × z1 + ω1 × ż1 − (ω̇2 × z2 + ω2 × ż2) . (16.12)

The condition μ = const means that ω̇2 = 0 if ω̇1 = 0 . Therefore, the
equation must be valid for ω̇1 = ω̇2 ≡ 0 . Hence, with (16.9),

v̇12 = (ω1 − ω2)× ż1 = (1− μ)ω1 × (ṡ1et + ω1 × z1)

= −ω1(1− μ)(ṡ1en + ω1z1) . (16.13)

With this expression and with (16.5) and (16.8) Eq.(16.11) becomes

(κ1ṡ1 + ω1)r − (ṡ1 + ω1en · z1) = 0 (16.14)
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The coefficient of ω1 is r−en ·z1 = en · (r−z1) = en ·b . Thus, the equation
yields

ṡ1 = ω1
en · b
1− κ1r

. (16.15)

From (16.10) an expression for ṡ2 is obtained. Substitution of these two
expressions into (16.7) results in the desired condition on curvatures of con-
jugate flanks. It has the symmetrical form

en · b(κ1 − κ2) + (1− μ)(1− κ1r)(1− κ2r) ≡ 0 . (16.16)

In terms of radii of curvature �i = 1/κi (i = 1, 2) it has the form

en · b (�2 − �1) + (1− μ)(�1 − r)(�2 − r) ≡ 0 . (16.17)

Equations (16.4) through (16.17) remain valid in the limit case a → ∞ ,
i.e., ω2 → 0 and μ → 0 . In this case, body 2 in Fig. 16.2 is a rack in
translatory motion with velocity v = ω1r1 . Equations (16.16) and (16.17)
are used not only in kinematics, but also for calculations of Hertzian pressures
from curvatures at points of contact.

16.1.2 Camus’ Theorem

In Fig. 16.3 p1 and p2 are the pitch circles of two wheels with pitch point
P12 . Let q be an arbitrary smooth curve which is fixed in a plane Σ and
which is in tangential contact with p1 and p2 at P12 . Furthermore, let Q
be an arbitrary point fixed in Σ , i.e., rigidly connected to q . The curve q is
rolled once on p1 and once on p2 . Point Q generates in the first process a
trajectory f1 on wheel 1 and in the second process a trajectory f2 on wheel
2 . Camus1 proved

Theorem 16.2. The trajectories f1 and f2 are conjugate tooth flanks.

Proof: In the figure the rotations of p1 and p2 about their centers with rolling
contact at P12 and the rolling of q on both pitch circles occur simultaneously
in such a way that q is permanently in contact with p1 and with p2 at P12 .
For an observer fixed on p1 Q is moving along f1 and for an observer fixed
on p2 Q is moving along f2 . In this process Q is permanently contact point
of f1 and f2 , and the line P12Q is permanently the common normal of f1
and f2 at this contact point Q . Hence, by Theorem 16.1 , f1 and f2 are
conjugate tooth flanks. These arguments are valid for external as well as for
internal gearing. End of Proof.

1 Ch.E.L. Camus (1699 – 1768), Theorem of 1733
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Fig. 16.3 Pitch circles p1 , p2 , curve q and point Q rigidly connected to q . During

simultaneous rolling contact at P12 point Q is generating conjugate tooth flanks f1 and
f2 and the frame-fixed line of contact b

The trajectory of the contact point Q in a frame-fixed reference system
(line b in the figure) is referred to as line of contact. At Q the line P12Q is
tangent to b .

16.1.3 Cycloidal Gearing

Camus’ theorem provides a simple explanation of de la Hire’s classical theory
of cycloidal gearing2. In Fig. 16.4 the case of external gearing is demonstrated.
The curve q is a circle touching p1 from the inside and p2 from the outside,
and Q is a point fixed on q . When the circle q is rolled inside p1 , Q
generates a hypocycloid f1 fixed on p1 , and when q is rolled on p2 , Q
generates an epicycloid f2 fixed on p2 . The two cycloids are conjugate flanks.
More precisely, f1 is the bottom part of a tooth on p1 , and f2 is the top
part of a tooth on p2 . The missing parts of the teeth are generated by means
of another circle q′ which is rolled on the outside of p1 and on the inside
of p2 . This circle generates the epicycloid f ′1 on p1 and the hypocycloid f ′2
on p2 . In Fig. 16.4 the circles q and q′ have equal diameters. This is not
necessary, though.
Remark: One of the pitch circles, say p1 , may be a rack, i.e., a circle of
infinite radius. In this case, f1 and f ′1 are ordinary cycloids generated by
rolling q and q′ on the straight pitch line p1 .

A given gear ratio ω2/ω1 = n1/n2 = r1/r2 requires that each wheel
is equipped with equally spaced identical teeth, n1 on wheel 1 and n2 on
wheel 2 . The length of arc of the pitch circle available per tooth is identical
for both pitch circles. It is called circular pitch t :

t =
2πr1
n1

=
2πr2
n2

. (16.18)

2 de la Hire (1694)
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In Fig. 16.4 the numbers are n1 = 9 and n2 = 12 . The height of a tooth
above the pitch circle, the so-called addendum a , is limited by the condition
that teeth must not be pointed. The maximum possible addendum is dictated
by the epicycloids on the smaller wheel. On both wheels the cycloidal tooth
flanks have the same height a above and the same depth a below the pitch
circle, so that the active height of the teeth is 2a . The feet of neighboring
teeth are separated by a smooth curve called fillet the purpose of which is (i)
to reduce the notch effect, (ii) to prevent contact with the tips of opposite
teeth and (iii) to provide room for lubricating fluids.

In the course of meshing the point of contact is moving along the dotted
line of contact A1-P12-A2 with endpoints A1 and A2 on the dashed adden-
dum circles. It is seen that the gearing satisfies another necessary condition,
namely, that before one pair of meshing teeth is loosing contact another pair is
already meshing. The relative sliding velocity at a contact point B anywhere
on the line of contact is given by (16.5). It is proportional to the distance
r = BP12 . It is maximal at A1 and at A2 and it is zero when P12 is the
point of contact.

In well-lubricated gears (no friction force in the common tangent plane) the
force transmitted by one tooth on the other has the direction of the contact
normal BP12 . The periodical change of this direction is a disadvantage of
cycloidal gears. Another weakness, from the point of view of bending stiffness
and bending stresses, is the concave shape of the bottom parts of teeth. A
favorable characteristic is the concave–convex contact of teeth which reduces
contact pressure as well as wear. For all these reasons cycloidal gears are
used in fine precision mechanics exclusively. An example is the watch gear
shown in Fig. 16.5 . In this particular example, the hypocycloids inside the
pitch circles are straight lines passing through the respective centers. This
indicates that the radius of the circle q equals r1/2 , and that the radius of
the circle q′ equals r2/2 . The large backlash of this gearing does not cause

Fig. 16.4 Generation of cycloidal tooth flanks by rolling circles q and q′ on p1 and p2
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Fig. 16.5 Watch gearing with straight-line tooth flanks inside the pitch circles

problems because in watch gearings the sense of rotation does not change.

Remark: All kinds of gears require a small backlash preventing teeth from
having contact on both flanks simultaneously. For the manufacturing of teeth
this means that on the pitch circle the arc length of a tooth is a little smaller
than half the circular pitch t , and that the width between teeth is a little
larger than t/2 . In the remainder of this chapter this is not mentioned again.

16.1.4 Construction of Conjugate Flanks

Reuleaux showed how to use Theorem 16.1 for constructing conjugate tooth
flanks. In Fig. 16.6 his method is demonstrated in the case of external gearing.
The figure shows pitch circles p1 and p2 with fixed centers P10 and P20 and
the pitch point P12 . Let flank f1 on wheel 1 be some arbitrarily prescribed
smooth curve subject only to the condition that the normal to f1 at the point
B1 (arbitrary) intersects p1 . Let N1 be this wheel-fixed point of intersection.
In Fig. 16.6 f1 is shown when wheels 1 and 2 are in some arbitrarily chosen

Fig. 16.6 Reuleaux’s construction of flank f2 conjugate to a given flank f1
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initial position. To each pair (point B1 , normal B1N1 ) a conjugate pair (point
B2 , normal B2N2 ) of flank f2 in the initial position of f2 is constructed
as follows. Conjugate means that (B1 , B1N1 ) and (B2 , B2N2 ) are the
points and normals which coincide in the course of meshing at a certain
point B . Let ϕ1 = �(B1P10B) be the unknown angle of rotation of wheel
1 carrying B1 to B . According to Theorem 16.1 the common normal to
the flanks at B is the dotted line passing through P12 . This means that
the rotation through ϕ1 carries the wheel-fixed point N1 to P12 . Hence
ϕ1 = �(N1P10P12) . When wheel 1 rotates through ϕ1 , wheel 2 rotates in
the opposite direction through ϕ2 = μϕ1 . Hence, the initial positions of B2

and B2N2 are determined by rotating wheel 2 from the meshing position
(B , BP12 ) through the angle −ϕ2 . In this way the contact point B and the
initial positions of B2 and B2N2 of flank f2 are determined for each pair
( B1 , B1N1 ) of flank f1 . It may happen that flank f1 is intersecting f2 at
some point while it is in contact at another point. This phenomenon is called
undercutting. It restricts the freedom in choosing flank f1 . The geometric
locus of all contact points B is the line of contact (see the example in Fig.
16.4 where the line of contact is the arc sequence A1-P12-A2 ).

Analytically, the condition in Theorem 16.1 is formulated as follows. The
x0, y0-system shown in Fig. 16.7a is frame-fixed. Against this x0, y0-system
the x, y-system fixed on wheel 1 and the ξ, η-system fixed on wheel 2 are
rotated through the angles ϕ1 (arbitrary) counterclockwise and ϕ2 = μϕ1 =
(n2/n1)ϕ1 clockwise, respectively. The following transformation equations
are deduced from the figure:

x0 = x cosϕ1 − y sinϕ1 − r1 ,
y0 = x sinϕ1 + y cosϕ1 ,

}
(16.19)

ξ = −x cos(ϕ1 + ϕ2) + y sin(ϕ1 + ϕ2) + (r1 + r2) cosϕ2 ,
η = x sin(ϕ1 + ϕ2) + y cos(ϕ1 + ϕ2)− (r1 + r2) sinϕ2 .

}
(16.20)

Flank f1 is assumed to be given in the x, y-system in the form x(u) , y(u)
with a parameter u . To be determined are, in parameter form as functions of
u , the line of contact in the frame-fixed x0, y0-system and the conjugate flank
f2 in the ξ, η-system. The solution is found as follows. The transformation
(16.19) of x(u) , y(u) into the x0, y0-system yields for flank f1 as functions
of ϕ1 the coordinates

x0(u) = x(u) cosϕ1 − y(u) sinϕ1 − r1 , y0(u) = x(u) sinϕ1 + y(u) cosϕ1 .
(16.21)

Let the partial derivative with respect to u be denoted by the symbol prime.
The normal to f1 has the slope −x′

0(u)/y
′
0(u) . The condition that in the

position ϕ1 the normal at the point x0(u) , y0(u) passes through P12 has
the form y0(u)/x0(u) = −x′

0(u)/y
′
0(u) or x0(u)x

′
0(u) + y0(u)y

′
0(u) = 0 .
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Fig. 16.7 Frame-fixed x0, y0-system and wheel-fixed x, y- and ξ, η-systems for external

gearing (a) and for internal gearing (b). Flank f1 with coordinates x(u) , y(u) . Contact
point B with normal passing through P12

With (16.21) this is the equation

[x(u) cosϕ1 − y(u) sinϕ1 − r1][x
′(u) cosϕ1 − y′(u) sinϕ1]

+ [x(u) sinϕ1 + y(u) cosϕ1][x
′(u) sinϕ1 + y′(u) cosϕ1] = 0 (16.22)

or

A cosϕ1 +B sinϕ1 = C ,

A = r1x
′(u) , B = −r1y

′(u) , C = x(u)x′(u) + y(u)y′(u) .

}
(16.23)

The equation has two solutions ϕ1 given by

cosϕ1(u) =
AC ∓B

√
A2 +B2 − C2

A2 +B2
, sinϕ1(u) =

BC ±A
√
A2 +B2 − C2

A2 +B2
. (16.24)

Each solution determines the angle ϕ1(u) , i.e., the position of wheel 1 , for
which the point x0(u) , y0(u) determined by (16.21) is a point of contact
(point B of Fig. 16.6). From this it follows that the line of contact has, in
the frame-fixed x0, y0-system, the parameter equations

x0B(u) = x(u) cosϕ1(u)− y(u) sinϕ1(u)− r1 ,
y0B(u) = x(u) sinϕ1(u) + y(u) cosϕ1(u) .

}
(16.25)

Equations (16.20) determine the ξ, η-coordinates of flank f2 :

ξ(u) = −x(u) cos[ϕ1(u) + ϕ2(u)] + y(u) sin[ϕ1(u) + ϕ2(u)] + (r1 + r2) cosϕ2(u) ,
η(u) = x(u) sin[ϕ1(u) + ϕ2(u)] + y(u) cos[ϕ1(u) + ϕ2(u)]− (r1 + r2) sinϕ2(u) .

}
(16.26)

These equations represent a mapping of flank f1 into flank f2 . This ends the
solution of the problem for external gearing.
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In the case of internal gearing, Fig. 16.7b replaces Fig. 16.7a . Deliberately,
the inner wheel is given the label 2 in contrast to the labeling in Figs. 16.1b
and 16.2 . The x0, y0-system and the x, y-system are located as before. This
has the consequence that (16.19) and (16.22) – (16.25) remain valid. The line
of contact is the same for external and for internal gearing. Equations (16.26)
for flank f2 are replaced by

ξ(u) = x(u) cos[ϕ2(u)− ϕ1(u)] + y(u) sin[ϕ2(u)− ϕ1(u)]− (r1 − r2) cosϕ2(u) ,
η(u) = −x(u) sin[ϕ2(u)− ϕ1(u)] + y(u) cos[ϕ2(u)− ϕ1(u)] + (r1 − r2) sinϕ2(u) .

}
(16.27)

Here and in (16.26)

ϕ2(u) =
n1

n2
ϕ1(u) , r2 =

n2

n1
r1 . (16.28)

Remark: Sometimes it is simpler to solve (16.23) for u(ϕ1) than for ϕ1(u) .
In such cases, the free parameter in (16.25) – (16.28) is ϕ1 .

16.1.5 Pin Gears

The teeth of a pin gear are circular cylinders mounted between two circular
discs. Manufacture is inexpensive since no cutting of teeth is necessary. For
this reason the larger of the two wheels is made the pin wheel. Pin gears of
small size are used in watches and of large size in reducers of cranes and other
heavy-duty machinery.

Figure 16.8 shows a case of external gearing. On the larger wheel pins
of radius ρ are placed with their centers on the pitch circle p1 . Consider
the pin centered at the pitch point P12 . Let this position be the position
ϕ1 = ϕ2 = 0 of the wheels. The circular contour of the pin is the given flank
f1 . When the pitch circles are rotating with rolling contact at P12 , the center

Fig. 16.8 External pin gearing with r1 = 2r2 , ρ = 0.2r2 . Circle f1 , conjugate flank f2 ,
cycloid z traced by the center of the pin, line of contact b
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of the pin traces an epicycloid z fixed on p2 . In the same process the circle
f1 fixed on p1 sweeps over an area of wheel 2 which is enveloped by two
curves which are parallel to z at the distance ρ . These parallel curves are
the flanks f2 conjugate to f1 . With the angle u as parameter the equations
of the circle f1 are

x(u) = r1 + ρ cosu , y(u) = ρ sinu . (16.29)

Hence x′(u) = −ρ sinu , y′(u) = ρ cosu . Equation (16.23) has the form

sin(u+ ϕ1) = sinu . (16.30)

The solutions are
ϕ1 = 0 : u arbitrary ,
ϕ1 �= 0 : ϕ1 = ±π − 2u .

}
(16.31)

The solution in the case ϕ1 = 0 expresses the fact that in the position shown
in the figure the normal at every point of the circle passes through P12 . The
solutions ϕ1 = ±π − 2u represent identical positions of wheel 1 . Therefore,
it suffices to consider the solution ϕ1 = π − 2u . The position shown in the
figure is characterized by ϕ1 = 0 , i.e., by u = π/2 . This means that in the
position shown flank f2 is in contact with the pin at this point. Substituting
(16.29) and the solution ϕ1 = π − 2u into (16.25) results in the equations
for the line of contact:

x0B(u) = −r1(1 + cos 2u)− ρ cosu = −(2r1 cosu+ ρ) cosu ,
y0B(u) = r1 sin 2u + ρ sinu = (2r1 cosu+ ρ) sinu .

}
(16.32)

Comparison with (15.13) shows that the line of contact is a limaçon of Pascal.
Substitution of (16.29) into (16.26) yields for f2 the equations

ξ(u) = −ρ cos[u+ ϕ1(u) + ϕ2(u)] −r1 cos[ϕ1(u) + ϕ2(u)] +(r1 + r2) cosϕ2(u) ,
η(u) = ρ sin[u+ ϕ1(u) + ϕ2(u)] +r1 sin[ϕ1(u) + ϕ2(u)] −(r1 + r2) sinϕ2(u)

}
(16.33)

with

ϕ1(u) = π − 2u , ϕ2(u) =
n1

n2
ϕ1(u) , r1 =

n1

n2
r2 . (16.34)

Example: In Fig. 16.8 the parameters are n1 = 16 , n2 = 8 (implying
r1 = 2r2 ) and ρ = 0.2r2 . Equations (16.32) and (16.33) are

x0B (u) = −r2(4 cosu+ 0.2) cosu , ξ(u) = r2 (0.2 cos 5u+ 2 cos 6u+ 3 cos 4u) ,

y0B (u) = r2(4 cosu+ 0.2) sinu , η(u) = r2 (0.2 sin 5u + 2 sin 6u+ 3 sin 4u) .

}
(16.35)

The line of contact is the dotted line denoted b . The functions ξ(u) , η(u)
without the terms cos 5u and sin 5u describe the cycloid z traced by the
center of the pin. These lines b and z as well as the flank f2 display the
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symmetry shown in the figure. The following discussion of f2 is concerned
with the branch η > 0 . The small figure shows, enlarged and schematically,
the curves f1 and f2 in the vicinity of tangential contact at the point u =
π/2 . At this point f2 is passing, with increasing u , from the outside to
the inside of f1 . After passing through a cusp C it crosses f1 at another
point A . With the given parameters the cusp C is the point u ≈ 92.4◦ ,
ξ ≈ 0.9792r2 , η ≈ 0.1986r2 , and A is the point u ≈ 93.2◦ , ξ ≈ 0.9816r2 ,
η ≈ 0.1992r2 . This means that A lies at approximately 0.09ρ to the right
of the y0-axis. The tip B of the tooth shown in the large figure is the point
of intersection of f2 with the line η = π

8 ξ . It is associated with u ≈ 103.5◦ .
In conclusion: The arc A–B of f2 has contact with f1 in the narrow interval
93.2◦ < u < 103.5◦ of f1 . To the right of A the tooth flank must be given a
form avoiding contact with the pin. The arc A–C of f2 interferes with the
pin. This problem of interference does not occur when the centers of the pins
are placed on a circle of radius < r1 , for then the cycloid z and the parallel
curve f2 do not have cusps. End of example.

Example: In Fig. 16.9 a case of internal gearing is shown. The outer wheel
1 has n1 = 10 pins, and the inner wheel 2 has n2 = 9 teeth, so that
r2/r1 = n2/n1 = 9/10 . The centers of the pins of radius ρ are placed on a
circle of radius λr1 with λ > 1 . With the angle u shown in the figure the
flank f1 of the pin having its center on the x-axis is given by the equations

x(u) = λr1 − ρ cosu , y(u) = −ρ sinu . (16.36)

Equation (16.23) is
sin(u+ ϕ1) = λ sinu . (16.37)

The solution for u as function of ϕ1 is

u(ϕ1) = tan−1 sinϕ1

λ− cosϕ1
. (16.38)

With this expression Eqs.(16.25) for the line of contact and Eqs.(16.27) for
the conjugate flank f2 are equations with ϕ1 as parameter. For the specific
numerical example λ = 2 , ρ = 0.2r1 flank f2 has the equations

ξ(ϕ1) = r1

[
2 cos 1

9ϕ1 − 1
10 cos

10
9 ϕ1 − 1

5 cos
(
1
9ϕ1 − u(ϕ1)

) ]
,

η(ϕ1) = −r1

[
2 sin 1

9ϕ1 − 1
10 sin

10
9 ϕ1 − 1

5 sin
(
1
9ϕ1 − u(ϕ1)

) ]
.

⎫⎬
⎭ (16.39)

Flank f2 is the curve parallel to the trajectory traced by the center of the pins.
The latter one is the prolate epitrochoid e described by the functions without
the terms with factor ρ = 1/5 . Flank f2 is generating nine teeth which are
meshing with the ten pins on wheel 1 . All pins are meshing simultaneously.
At every contact point the contact normal is passing through the pitch point
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Fig. 16.9 Internal pin gearing with ten pins on the larger wheel 1 and with nine teeth

on wheel 2 . Epitrochoid e traced by the center of the pin and parallel tooth flank f2

P12 . The line of contact itself is not shown. It is not passing through P12 .
This means that there is sliding at every contact point in every position of
the wheels. End of example.

In Fig. 15.5 the geometrically simplest case of internal pin gearing is il-
lustrated. It is the case with the inner pitch circle being half the size of the
outer and with pins located on the inner wheel. The cycloids traced by the
centers of the pins are straight lines and so are the parallel curves, i.e., the
tooth flanks on the outer wheel. It is easy to show that also in this case the
line of contact is a limaçon of Pascal.

16.1.6 External Involute Spur Gears

In well-lubricated gears (no friction force in the common tangent plane) the
force transmitted by one tooth on the other has the direction of the contact
normal (line BP12 in Fig. 16.6). When the transmitted torque is constant,
both magnitude and direction of this force should also be constant in order to
prevent periodic excitations. These conditions are satisfied if and only if the
line of contact is a straight line in which case it is also the line of action of the
contact force. Another desirable property of gears is the following. Conjugate
flanks of two wheels should be geometrically similar in order to be able to
use one and the same manufacturing tool for both wheels. In what follows,
it is shown that the involute of a circle is the curve having these desired
properties. This was first shown by Euler [7]. For properties of involutes see
Sect. 15.5.4 . In Fig. 16.10 the pitch circles of two wheels with centers P10

and P20 and with pitch point P12 are shown again. Through P12 a straight
line A1A2 is drawn under an arbitrary angle α . This line is tangent to two
so-called base circles c1 about P10 and c2 about P20 . Their radii are
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Fig. 16.10 Spur gears with involute tooth flanks

r0i = ri cosα (i = 1, 2) . (16.40)

The ratio is r01/r02 = r1/r2 . The base circles c1 and c2 are rigidly attached
to the respective wheels. Imagine the straight line A1A2 to be part of a string
which is wound off circle c1 and rolled up by circle c2 when the wheels are
rotating. Consider a point B fixed on the string in its motion from A1 to
A2 . Seen from an observer fixed on c1 the trajectory of B is the involute
f1 , and seen from an observer fixed on c2 the trajectory of B is the involute
f2 . At B the two involutes are in tangential contact. The common normal is
the line BP12 . This proves the two properties of involute gearing stated in
the beginning: Involutes are, indeed, tooth flanks producing a constant gear
ratio ω2/ω1 = r1/r2 . Both flanks are geometrically similar, and the line of
contact is a straight line, namely, the line A1A2 . This frame-fixed line is the
line of action of the contact force. In addition, involute tooth flanks have the
important property to remain conjugate, i.e., to be meshing correctly, when
the distance between the centers of the two base circles is changed. Involute
tooth flanks are the only ones having this property3. With changing distance
the angle α as well as the radii r1 and r2 of the pitch circles change in such
a way that the ratio r1/r2 remains unchanged.

That the two involutes are conjugate tooth flanks is confirmed by (16.17).
In the present case, the quantities a and b as well �1 and �2 have pairwise
opposite signs. With the definitions given in Fig. 16.2 the various quantities
are a = r1 + r2 , b = −r1 , μ = b/(a + b) = −r1/r2 , en · b = −r1 sinα ,
�1 − r = r1 sinα , �2 − r = −r2 sinα and �2 − �1 = −(r1 + r2) sinα . With
these quantities (16.17) is, indeed, satisfied.

The angle α is called angle of pressure. If for a given angle of pressure
the radius r01 is made larger and larger, the meshing segment of flank f1 is
curved less and less. In the limit r01 → ∞ a rack with straight-line tooth

3 For proofs see Bricard [2] and Fayet [8]
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flanks is obtained. Hence the conclusion: A wheel 2 with involute gearing
and a rack 1 with straight line tooth flanks and with equal angle of pressure
α satisfy the condition that a constant angular velocity ω2 of the wheel
produces a constant translatory velocity r2ω2 of the rack.

Remark: It is unnecessary to prove by means of (16.22) – (16.26) that the
flank f2 conjugate to an involute flank f1 on the base circle c1 is an involute
on the base circle c2 . As is seen in Fig. 16.10 the definition of the involute
implies that the line A1A2 is the line of contact. Therefore, the following
formulation of (16.22) and (16.25) is done simply as an exercise. Parameter
equations of the involute on the base circle c1 of radius r1 cosα are copied
from (15.137) with h = 0 and with u instead of φ :

x(u) = r1 cosα(− sinu+ u cosu) , x′(u) = −r1 cosα u sinu ,
y(u) = r1 cosα(cosu+ u sinu) , y′(u) = r1 cosα u cosu .

}
(16.41)

Equation (16.22) has the form

u[cosα+ sin(u+ ϕ1)] = 0 (16.42)

or sin(u + ϕ1) = − cosα = − sin(α + π/2) . Hence ϕ1 = −(u + α + π/2)
and

cosϕ1 = − sin(u+ α) , sinϕ1 = − cos(u+ α) . (16.43)

With these expressions Eqs.(16.25) for the line of contact are

x0B(u) = −r1 sinα (sinα+ u cosα) ,
y0B(u) = −r1 cosα (sinα+ u cosα) .

}
(16.44)

Hence y0B(u) = x0B(u) cotα . This is, indeed, the equation of the line A1A2

in Fig. 16.10 . The transformation of Eqs.(16.26) into the standard form of
an involute is tedious. End of remark.

For a single wheel the radius r of the pitch circle, the angle of pressure
α and the number n of teeth determine the radius r0 = r cosα of the base
circle and the circular pitch

t =
2πr

n
. (16.45)

Two mating wheels have the same circular pitch t since r1/n1 = r2/n2 .
Following (16.18) the addendum a and the active height 2a of teeth were
defined. In the theory of involute gearing these quantities are expressed in
terms of the so-called module m which is defined by the equation

m =
2r

n
=

t

π
. (16.46)

Two mating wheels have the same module m . By industrial standard a nor-
mal tooth has height m above and depth (6/5)m below the pitch circle.
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These two measures are referred to as addendum and dedendum, respectively.
With appropriate tools the involute is cut between the circle with radius
ri = r − m and the addendum circle with radius ra = r + m . The differ-
ence ra − ri = 2m is the active height of the teeth. The clearance of radial
width m/5 at the foot of teeth is the room for the fillet which was explained
following (16.18). The definition (16.46) is chosen such that the tooth thick-
ness d(ra) at the tip of the tooth is reasonable for any number n of teeth.
Reasonable means not unnecessarily large and always positive. A formula for
d(ra) is given in (16.66).

Figure 16.11 shows the contact line A1A2 of Fig. 16.10. Tooth contact is
confined to the segment B1B2 inside the addendum circles with radii ra1
and ra2 . These radii determine the angles γ1 and γ2 and the length � of
the segment B1B2 :

� = r01(tan γ1 − tanα) + r02(tan γ2 − tanα) , cos γi =
r0i
rai

(i = 1, 2) .

(16.47)
Before one pair of teeth goes out of meshing the next pair must be meshing
already. On the line of contact the distance between points of meshing of
subsequent teeth is δ = 2πr01/n1 = 2πr02/n2 (since involutes are parallel
curves the distance δ equals the arc length on the base circle). The ratio
ε = �/δ is called contact ratio. It must be larger than 1 . The formulas yield
the expression

ε =
�

δ
=

1

2π

[
n1(tan γ1−tanα)+n2(tan γ2−tanα)

]
, cos γi =

r0i
rai

(i = 1, 2) .

(16.48)

a

a

Fig. 16.11 Segment B1B2 of tooth contact on the line of contact A1A2

One out of many ways of cutting teeth of the desired shape into a cylindri-
cal blank of radius ra = r+m is by means of a rack cutter. This is a modified
rack which is capable of meshing with the wheel to be cut. Its teeth are cut-
ting blades. The motion of work piece and rack cutter relative to each other
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is the intended rolling of the pitch circle p on the pitch line Π of the rack
cutter superimposed by a reciprocating translatory motion in the direction
normal to the plane of rolling (Fig. 16.12a). In the space of width m above
and m below the pitch line Π the tooth of the rack cutter has straight-line
flanks under the angle of pressure α . Industrial standard is α = 20◦ . The
distance between adjacent teeth on the pitch line equals the circular pitch
t = πm of the wheel. The straight-line section of the tooth is cutting the
involute. The tip of radial extension m/5 consists of a straight-line segment
parallel to Π and of a circular arc which is cutting the fillet.

Figure 16.12a shows the line of contact passing through the pitch point
P12 under the angle α and touching the base circle c of the involute at A
(compare with Fig. 16.10). The segment P12A has length r sinα . Hence the
distance of A from the line Π is r sin2 α . In order to avoid undercutting
the condition m ≤ r sin2 α must be satisfied. In view of (16.46) this is a
condition on the number of teeth of the wheel:

n >
2

sin2 α
≈ 17.1 (for α = 20◦ ) . (16.49)

In practice n = 17 is acceptable.

Addendum Modification
In order to allow for numbers of teeth n < 18 without undercutting the rack
cutter is laterally shifted away from the wheel. In Fig. 16.12b this so-called
rack shift or addendum modification is denoted e . Note that the pitch line Π
is not shifted because it is, by definition, the tangent to the pitch circle. Only
the teeth of the rack are shifted. Consequently, the condition m ≤ r sin2 α
is replaced by m− e ≤ r sin2 α or

Fig. 16.12 Gear and rack cutter in normal position (a) and with addendum modification
e > 0 (b). Pitch circle p and pitch line Π are the same in both cases

m
(
1− e

m

)
≤ r sin2 α . (16.50)
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With m = 2r/n this is a condition on e/m as function of n :

e

m
≥ 1− n

2
sin2 α . (16.51)

Example: n = 13 yields e/m ≥ 0.24 , and n = 8 yields e/m ≥ 0.53 .
End of example.

In what follows, the effects of addendum modification on the geometry
of teeth are investigated. The inner radius of the involute tooth flank is
ri = r + e−m . Definition: The tooth thickness d(ρ) at an arbitrary radius
ρ ≥ ri is the arc length of the circle of radius ρ between the flanks of the
tooth (see Fig. 16.13). The thickness d(r) on the pitch circle equals the space
width between the tooth flanks of the rack cutter on the line Π . Figure
16.12b shows that this is

d(r) =
t

2
+ 2e tanα = r

(π
n
+

4

n

e

m
tanα

)
. (16.52)

The factor of r is the angle under which d(r) is seen from the wheel center.
The thickness d(ρ) at the radius ρ is seen under an angle which is larger by
2[invα− invψ(ρ)] (see Figs. 16.13 and 15.39). The angles in this expression
are (see (15.135) and (15.136)):

invα = tanα− α , invψ(ρ) = tanψ(ρ)− ψ(ρ)

with cosψ(ρ) =
r0
ρ

=
r

ρ
cosα . (16.53)

With these angles the thickness d(ρ) is determined by the equation

d(ρ) = ρ

[
π

n
+

4

n

e

m
tanα+ 2[invα− invψ(ρ)]

]
. (16.54)

It is seen that an addendum modification e > 0 has the effect of increasing
the tooth thickness. The foot of the involute on the base circle is characterized
by invψ(ρ) = 0 . Consequently, the angle χ between the cusps of the involute

Fig. 16.13 Tooth thickness d(ρ) at radius ρ (arbitrary), thickness d(r) on the pitch
circle of radius r and associated angles. See also Fig. 15.39



16.1 Parallel Axes 549

tooth flanks on the base circle is

χ =
π

n
+ 2

[(
1 +

2

n

e

m

)
tanα− α

]
. (16.55)

Let ρp be the radius at which the tooth thickness is zero (the index p stands
for pointed tooth). Equations (16.53) and (16.54) yield the formulas

invψp =
χ

2
, ρp = r

cosα

cosψp
. (16.56)

Solving an equation invψ = c = const , i.e., f = tanψ− ψ− c = 0 , for ψ
is done by the Newton-Raphson iteration formula ψi+1 = ψi−f(ψi)/f

′(ψi) .
This is the equation

ψi+1 = ψi − tanψi − ψi − c

tan2 ψi
. (16.57)

A good starting value is (taken from Townsend [18], Chap.6)

ψ0 =

{
1.441c1/3 − 0.366c (c ≤ 0.5)
0.243π + 0.471 tan−1 c (c > 0.5) .

(16.58)

Example: The given constant is c = inv 85◦ which means that the exact
solution is ψ = 85◦ . The formulas yield ψ0 ≈ 83.4◦ , ψ1 ≈ 85.5◦ , ψ2 ≈
85.05◦ , ψ3 ≈ 85.0005◦ . End of example.

In what follows, the meshing of two wheels with addendum modifications
e1 and e2 is investigated. Without addendum modifications the geometry is
as shown in Fig. 16.10 . Because of increased tooth thickness it is necessary
to increase the distance r1 + r2 between the wheel centers in order to avoid
interference of teeth. It has already been said that proper meshing of two
involute flanks is possible with arbitrary distances. Let D′ be the unknown
distance. It determines the radii r′1 and r′2 of new pitch circles and a new
angle of pressure α′ such that

r′1 + r′2 = D′ ,
r′2
r′1

=
r2
r1

=
n2

n1
, cosα′ =

r01
r′1

=
r02
r′2

. (16.59)

The distance D′ is determined by the condition that on these new pitch
circles the tooth thickness d(r′1) on wheel 1 equals the space width w(r′2)
between neighboring teeth on wheel 2 (and vice versa). The tooth thickness
is given by (16.54) with ψ(r′1) = α′ :

d(r′1) = r′1

[
π

n1
+

4

n1

e1
m

tanα+ 2(invα− invα′)
]
. (16.60)
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The space width is

w(r′2) = r′2

[
π

n2
− 4

n2

e2
m

tanα− 2(invα− invα′)
]
. (16.61)

The change of signs is explained by the fact that the sum of the angles
subtended by tooth thickness and space width equals 2π/n2 . Equating both
expressions and making use of the second Eq.(16.59) results in an equation
for α′ :

invα′ =
[
1 +

2(e1 + e2)

m(n1 + n2)

]
tanα− α . (16.62)

With the angle α′ thus determined the distance D′ is calculated from
(16.59):

D′ =
r01 + r02
cosα′ = (r1 + r2)

cosα

cosα′ . (16.63)

Next, the radii rai (i = 1, 2) of the addendum circles at the tips of teeth
are determined. The inner radii of the involute flanks are known to be rii =
ri + ei − m (i = 1, 2). The active height h = ra1 − ri1 = ra2 − ri2 of the
teeth is the difference

h = D′ − (ri1 + ri2) = D′ − [(r1 + e1 −m) + (r2 + e2 −m)]

= 2m−
[
e1 + e2 − (r1 + r2)

( cosα

cosα′ − 1
)]

. (16.64)

Without addendum modification (also in the more general case e1 + e2 = 0 )
this formula yields the normal active height 2m . It can be shown that h <
2m if e1 + e2 > 0 . The desired radii of the addendum circles are

rai = rii + h = ri + ei −m+ h (i = 1, 2) . (16.65)

With these radii Eq.(16.48) for the contact ratio remains valid provided α
is replaced by α′ .

Example: For a pair of wheels the data are given: n1 = 8 , e1/m = 0.56 ;
n2 = 13 , e2/m = 0.24 . To be determined are the angles χi and the radii
ρpi (i = 1, 2) of the teeth, the distance D′ , the active height h , the radii
rai (i = 1, 2) and the contact ratio ε . All lengths are to be expressed as
multiples of r1 .
Solution: Equations (16.55) – (16.65) and (16.48) yield
χ1 ≈ 30.05◦ , ψp1 ≈ 47.50◦ , ρp1 ≈ 1.391 r1 , χ2 ≈ 17.22◦ , ψp2 ≈ 40.73◦ ,
ρp2 ≈ 2.015 r1 , α′ ≈ 27.92◦ , D′ ≈ 2.792 r1 , h ≈ 0.467 r1 , ra1 ≈ 1.357 r1 ,
ra2 ≈ 1.902 r1 , γ1 ≈ 46.17◦ , γ2 ≈ 36.60◦ , ε ≈ 1.09 .
End of example.

In this example, the purpose of addendum modification is to prevent un-
dercutting. The same goal is achieved without addendum modification by
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increasing the tooth numbers n1 = 8 , n2 = 13 to n1 = 24, n2 = 39 .
Addendum modification is used not only for the prevention of undercutting.
Another purpose is to achieve a desired distance D′ of the wheel axes or
a desired change of tooth thickness (possibly with addendum modification
e1+e2 < 0 ). If, for example, D′ is prescribed, (16.63) and (16.62) determine
α′ and e1 + e2 .

This section is closed with a formula for the tooth thickness d(ra) at the
tip of a tooth in the case of zero addendum modification. With (16.46) the
tip radius is ra = r +m = r(1 + 2/n) . Hence with (16.53) and (16.54)

d(ra) = r

(
1 +

2

n

)[π
n
+ 2(invα− invψ)

]
, cosψ =

cosα

1 + 2
n

. (16.66)

With α = 20◦ this formula yields d(ra) ≈ 0.076r for n = 18 and d(ra) ≈
0.032r for n = 48 . These very reasonable figures show that the engineering
standard addendum is well chosen.

16.1.7 Internal Involute Spur Gears

Figure 16.14 differs from Fig. 16.10 in that the pitch circle p1 of wheel
1 with radius r1 is inside wheel 2 . The outer wheel has internal gearing,
whereas the inner wheel has external gearing as before. As in Fig. 16.10 the
common normal en to the involutes f1 and f2 at the point of contact B
is tangent to the base circles c1 and c2 . Equation (16.17) is satisfied with
a = r2 − r1 , b = r1 , μ = b/(a + b) = r1/r2 , en · b = −r1 sinα ,
�2 − �1 = A1A2 = (r2 − r1) sinα , �1 − r = r1 sinα and �2 − r = r2 sinα .
This suffices as proof for the involutes being conjugate tooth flanks.

Fig. 16.14 Wheel 2 with internal gearing meshing with wheel 1 with external gearing
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In comparison with the pairing of two wheels with external gearing the pairing
internal / external gearing has the following advantages:
– the internal teeth have the shape of the free space between external involute
teeth. Consequently,
– the teeth are stronger because they are thicker at the base
– since the internal teeth have concave flanks, the Hertzian pressure is smaller
– both shafts have the same sense of rotation; this has the consequence that
– the sliding velocity of tooth flanks relative to each other is proportional not
to |ω1|+ |ω2| , but to |ω1| − |ω2|
– the design is more compact because it has the size of the outer wheel
– in a given volume more power can be transmitted
– the inner wheel and the contact zone are shielded by the outer wheel.

A disadvantage is that many manufacturing methods available for external
gears cannot be used for internal gears.

Problems of undercutting occur when the difference n2−n1 of the numbers
of teeth is too small. From experience it is known that no undercutting occurs
if n2−n1 > 10 . Differences smaller than 10 are possible with a reduced tooth
height of the internal teeth.

Equations (16.62) and (16.63) for the angle of pressure α′ and for the dis-
tance D′ of wheel centers as function of addendum modification is replaced
by the equations

invα′ =
[
1 +

2(e2 − e1)

m(n2 − n1)

]
tanα− α , D′ = (r2 − r1)

cosα

cosα′ . (16.67)

The equation for α′ results from the condition that the tooth thickness d(r′1)
given by (16.60) equals the space width w(r′2) between neighboring teeth on
wheel 2 and that the latter is given by (16.60) with the index 1 replaced by
2 .

16.1.8 Involute Helical Gearing

The pitch circles p1 , p2 and the base circles c1 , c2 (radii r01 , r02 ) shown
in Fig. 16.10 and the string A1A2 wound around the base circles are the front
views (cross sections) of pitch cylinders, of base cylinders c1 , c2 and of a
belt wound around the base cylinders. Figure 16.15 is a perspective view.
In the frame-fixed x, y, z-system the moving planar section E of the belt is
defined by the pressure angle α . The following statements repeat what has
been said in the context of Fig. 16.10 . Seen from an observer fixed on c1
the trajectory of a belt-fixed point B is an involute in the plane z = const
in which B is located and seen from an observer fixed on c2 the trajectory
of B is another involute. At B the involutes are in tangential contact the
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common tangent being normal to E . With points B located on a belt-fixed
straight line parallel to the z-axis two conjugate involute tooth flanks of spur
wheels with straight-line teeth are generated. In Fig. 16.15 the belt-fixed
points B are located on a belt-fixed straight line e which is making an angle
β0 against lines parallel to the z-axis. The involutes are shown for only two
points on this line. The conjugate tooth flanks formed by the manifold of
involutes for all points of the line are surfaces h1 and h2 called involute
helicoids. Both helicoids are instantaneously in tangential contact along the
generating line e . The common tangent plane intersects E orthogonally.
This means that a helicoid is a ruled surface of the special kind called torse
(distribution parameter δ = 0 on every generator; see the end of Sec. 2.9.2).
In wrapping around the base cylinders the belt-fixed line e is forming on
each base cylinder ci (i = 1, 2) a base helix Hi having the slope cotβ0 .
From this it follows that every generator of the helicoid hi is tangent to Hi .
The base helices on the two base cylinders have opposite hands.

The unit vector n normal to the common tangent plane of h1 and h2
is located in E and normal to e . In the x, y, z-system it has the constant
coordinates

nx = sinα cosβ0 ,
ny = cosα cosβ0 ,
nz = − sinβ0 .

⎫⎬
⎭ (16.68)

Points fixed on h1 and h2 have, in the contact position and in the direction
of n , velocities of magnitude

Fig. 16.15 Involutes generated by all points B of line e are forming involute helicoids
contacting along the line with common normal n .
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vi = ωir0i cosβ0 (i = 1, 2) . (16.69)

From the kinematical constraint v1 = v2 it follows that

ω2

ω1
=

n1

n2
=

r01
r02

. (16.70)

In the absence of friction the resultant contact force has the frame-fixed
direction of n . Let F be the magnitude of this force. Its torque about the
axis of wheel i (i = 1, 2) has magnitude Fr0i cosβ0 . Equilibrium in the
state of constant angular velocities requires Mi − Fr0i cosβ0 = 0 with Mi

being the external torque about the axis of wheel i . Thus, both direction
and magnitude of the resultant contact force are constant:

F =
Mi

r0i cosβ0
n = const (i = 1 or 2) . (16.71)

In axial direction the force has the component F sinβ0 = (M1/r01) tanβ0 .
Each wheel must be supported in a bearing capable of carrying this axial load.
The axial component is zero if each wheel is composed of two symmetrical
sections, one with left-turning and the other with right-turning helicoids (so-
called double helical gearing).

An involute helical gear with base helix angle β0 can be cut by an ordinary
rack cutter used for cutting straight involute teeth. As in Fig. 16.12a the pitch
cylinder of the gear is in rolling contact with the pitch plane Π of the rack
cutter (in Fig. 16.12a the pitch line Π is the side view of the pitch plane).
The only difference is that the teeth t – t of the rack cutter must make an
angle β with the z-axis as is shown in Fig. 16.16 . This angle β is the helix
angle not on the base cylinder, but on the larger pitch cylinder of radius r .
The helix on this cylinder has the smaller slope

Fig. 16.16 Rack cutter and pitch cylinder positioned for involute helicoidal tooth flanks.
Cross sections normal to teeth and normal to the axis of the pitch cylinder



16.1 Parallel Axes 555

cotβ =
r0
r
cotβ0 = cosα cotβ0 . (16.72)

The rack cutter in Fig. 16.12a is specified by the pressure angle α = 20◦ ,
by the distance t which equals the circular pitch and by the addendum
m = t/π (the active tooth height is 2m ). In what follows, these quantities
are given the new names αn = 20◦ , tn and mn = tn/π , respectively. The
index n points to the fact that these parameters are measured in the plane
n – n normal to the teeth of the rack cutter. In Fig. 16.16 the involute is
cut in the plane normal to the gear axis. The tooth height is in both planes
the same, i.e., mn = tn/π . The circular pitch and the pressure angle are
different, however. They are now called t and α . The figure shows that

t =
tn

cosβ
, tanα =

tanαn

cosβ
. (16.73)

Formally, (16.46) yields the associated module

m =
t

π
=

mn

cosβ
. (16.74)

This is not the tooth height. The circular pitch t , the numbers n1 , n2 of
teeth and the angle α determine the radii of the pitch cylinders and of the
base cylinders:

ri =
tnni

2π cosβ
=

mni

2
, r0i = ri cosα (i = 1, 2) . (16.75)

From Fig. 16.10 it is known that involute tooth flanks of spur gears have
the property to remain conjugate when the distance between the gear axes
is changed. It is this property which led to Eqs.(16.50) – (16.65) relating
addendum modification to changes of tooth thickness and to changes of dis-
tance between gear axes. Involute helical gears with parallel axes, too, remain
conjugate when the distance between the gear axes is changed. The reason is
that in every cross section z=const two involute tooth flanks are meshing.
Consequently, Eqs. (16.50) – (16.65) are valid also for helical involute gears
if the following rules are observed. Everywhere, t and α are the quanti-
ties defined in (16.73). In (16.50), (16.64) and (16.65) the quantity m is the
tooth height mn . In contrast, in (16.52) m is introduced via (16.74). It is,
therefore, the quantity defined by this equation. This is true also for (16.54),
(16.55), (16.60) and (16.61) which are derived from (16.52).

Example: In condition (16.50) for non-undercutting,

m
(
1− e

m

)
≤ r sin2 α , (16.76)
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m is the tooth height mn , and r and α are the quantities given in (16.75)
and (16.73), respectively. Hence the condition is

e

mn
≥ 1− n

2

sin2 α

cosβ
= 1− n

2

tan2 αn

cosβ(cos2 β + tan2 αn)
(16.77)

and in the case e = 0 (zero addendum modification)

n ≥ 2 cosβ(cos2 β + tan2 αn)

tan2 αn
. (16.78)

In Table 16.1 this dependency on β is shown for helical gears produced by a
standard rack cutter with αn = 20◦ . The table shows that an increase of β

Table 16.1 Condition (16.78) for helical gears produced by a rack cutter with αn = 20◦

β 0◦ 10◦ 20◦ 30◦ 40◦ 45◦

n ≥ 18 17 15 12 9 7

is an effective means against undercutting. This is one of many advantages of
involute helical gears as compared with involute spur gears. Another advan-
tage is that the contact ratio can be made � 1 by increasing β . Another
advantage is that gears with helical teeth develop less noise because the inset
of meshing is gradual rather than abrupt along the entire length of teeth.
End of example.

Up to now the case of external helical gearing has been considered. How-
ever, two gears with equal base helix angles β0 are meshing correctly also
in the case, when the larger wheel has internal gearing. As in the case of
internal straight involute teeth, the problem of undercutting requires special
investigations. And so does the problem of assembly in the case when the
difference n1 − n2 is small.

Involute Helicoid Analytically
Let x0(φ) and y0(φ) be the coordinates of a curve with the free parameter φ
in the plane z = 0 of an x, y, z-system. A surface called helicoid is generated
by subjecting this curve to a continuous screw displacement with axis z ,
angle of rotation ψ and pitch p . The helicoid has the coordinates

x(φ, ψ) = x0(φ) cosψ − y0(φ) sinψ ,
y(φ, ψ) = x0(φ) sinψ + y0(φ) cosψ ,
z(ψ) = pψ .

⎫⎬
⎭ (16.79)

The helicoid is an involute helicoid on the base cylinder of radius r0 and
with a base helix of slope cot β0 if the generating curve is the involute on
the base circle of radius r0 and if the pitch is p = r0 cotβ0 . The coordinates
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of the involute are copied from (15.137) with h = 0 :

x0(φ) = r0(− sinφ+ φ cosφ) , y0(φ) = r0( cosφ+ φ sinφ) . (16.80)

Substitution into (16.79) yields for the involute helicoid the parameter equa-
tions

x(φ, ψ) = r0[− sin(φ+ ψ) + φ cos(φ+ ψ)] ,
y(φ, ψ) = r0[ cos(φ+ ψ) + φ sin(φ+ ψ)] ,
z(ψ) = r0ψ cotβ0

⎫⎬
⎭ (16.81)

or, in terms of the parameters φ and α = φ+ ψ instead of φ and ψ ,

x(φ, α) = r0(− sinα+ φ cosα) ,
y(φ, α) = r0( cosα+ φ sinα) ,
z(φ, α) = r0(α− φ) cotβ0 .

⎫⎬
⎭ (16.82)

The line ψ = const (arbitrary) is the involute rotated through ψ in the plane
z = r0ψ cotβ0 . The line φ = const (arbitrary) is a helix on the cylinder

of radius
√
x2 + y2 = r0

√
1 + φ2 . The line φ = 0 , in particular, is the

base helix with coordinates x(ψ) = −r0 sinψ , y(ψ) = r0 cosψ , z(ψ) =
r0ψ cotβ0 . Lines α = const are straight lines because each of the three
coordinates is a linear function of φ with constant coefficients. These lines are
swept through by the line e of Fig. 16.15 . In Fig. 16.17 the involute helicoid
is shown. Figure 15.39 explains why it consists of two surfaces emerging from
the base helix on the base cylinder. On each surface lines α=const tangent to
the base helix are shown. The surfaces extend to infinity. In the figure they
are truncated by lines φ=const. The unit vector n normal to the helicoid is

n =

∂ρ

∂φ
× ∂ρ

∂α∣∣∣∣∂ρ∂φ × ∂ρ

∂α

∣∣∣∣
. (16.83)

With (16.82) this formula yields the coordinates

nx = cosα cosβ0 ,
ny = sinα cosβ0 ,
nz = sinβ0 .

⎫⎬
⎭ (16.84)

The vector is constant on every line α = const. The coordinates are identical
with those in (16.68) if α is replaced by π/2− α and β0 by −β0 .
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Fig. 16.17 Base helix and involute helicoid on base cylinder

16.2 Skew Axes

In Sect. 12.2 the relative motion of two wheels rotating with constant angular
velocity ratio μ = ω2/ω1 = const about skew axes was shown to be a veloc-
ity screw. Its axis has the direction of the relative angular velocity ω2 −ω1

(Eq.(12.13)). The axis intersects orthogonally the common perpendicular of
the two wheel axes at a point determined by u(μ) . This scalar as well as the
pitch p(μ) of the screw are given in (12.18). Seen by an observer fixed on
wheel i (i = 1, 2) the screw axis is sweeping out an hyperboloid of revolution
with a gorge circle of radius ri given in (12.20). Both hyperboloids have one
and the same imaginary semi-axis b given in (12.21). The hyperboloids are
in raccording motion sharing the frame-fixed screw axis, the striction point
on the common perpendicular of the wheel axes and also the distribution pa-
rameter which is identical with b . The example given in Sect. 12.6.1 revealed
the following reciprocity relationship which is now stated as

Theorem 16.3. A constant gear ratio ω2/ω1 requires tooth flanks to be
shaped such that wherever tangential contact of tooth flanks is established the
common normal at the point of contact belongs to the linear complex having
the axis and the pitch of the relative velocity screw.

This theorem is the spatial generalization of Theorem 16.1 for plane motions
of spur gears. In Sect. 16.1.4 Reuleaux’s construction of conjugate tooth flanks
for spur gears was explained (see Fig. 16.6). The spatial generalization of this
method is explained in the next section. For simplifying the comparison of
both methods the same notation for points, lines and angles is used.

16.2.1 Construction of Conjugate Flanks

In Fig. 16.18 P10 and P20 are the endpoints of the common perpendicular
of the axes of the raccording hyperboloids 1 and 2 . At P12 the axis of the
relative velocity screw is shown normal to the plane of the drawing (unit
vector n ). The axes of the hyperboloids (unit vectors n1 and n2 ) are tilted
against n through the angles α1 and α2 , respectively, defined in Fig. 12.4
and in (12.16). The absolute values of the vectors r1 and r2 are the radii
of the gorge circles of the hyperboloids. Let flank f1 on wheel 1 be some
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arbitrarily prescribed smooth surface subject only to the condition that the
normal to f1 at B1 (arbitrary) intersects the hyperboloid 1 . Let N1 be this
wheel-fixed point of intersection. In Fig. 16.18 f1 is shown when wheels 1
and 2 are in some arbitrarily chosen initial position. To each pair (point
B1 , normal B1N1 ) a conjugate pair (point B2 , normal B2N2 ) of flank f2
in the initial position of f2 is constructed as follows. Conjugate means that
(B1 , B1N1 ) and (B2 , B2N2 ) are the points and normals which coincide
in the course of meshing at a certain point B . This point B is determined
by Theorem 16.3. In contrast to the planar case in Fig. 16.6, it cannot be
constructed graphically. Analytically it is determined as follows. From (2.25)
it is known that a line with Plücker vectors (v1 , w1) belongs to a linear
complex (a ; b) if

a ·w1 + b · v1 = 0 . (16.85)

The vectors are represented in the x, y, z-system shown in Fig. 12.4 which
has the origin at P12 , the x-axis along r1 and the z-axis along the axis of
the relative velocity screw. In this reference frame the vectors of the linear
complex are a = n and b = pn (see the text following (2.29)). The
displacement from B1 to B is a rotation through an unknown angle ϕ1

about n1 . Let z1(0) be the given position vector of B1 and z1(ϕ1) the
position vector of B . With the rotation tensor R(n1, ϕ1) defined in (1.40)

z1(ϕ1) = r1 + R(n1, ϕ1) · (z1(0)− r1) . (16.86)

Let v1(0) be the given unit vector along the normal B1N1 . By the same
rotation this vector is carried into the position

v1(ϕ1) = R(n1, ϕ1) · v1(0) . (16.87)

This is the first Plücker vector of the normal to the tooth flanks at point B .
The second Plücker vector is w1(ϕ1) = z1(ϕ1) × v1(ϕ1) . Since the vectors
(z1(ϕ1)− r1) and v1(ϕ1) and, consequently, also their vector cross product
are fixed on wheel 1 , this is

Fig. 16.18 Construction of flank f2 conjugate to a given flank f1
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w1(ϕ1) = r1 × R(n1, ϕ1) · v1(0) + R(n1, ϕ1) · (z1(0)− r1)× v1(0) . (16.88)

The vectors v1(ϕ1) , w1(ϕ1) , a = n and b = pn are substituted into
(16.85). The equation is then decomposed in the x, y, z-system. The vectors
r1 and n have the coordinate matrices [ r1 0 0 ]T and [ 0 0 1 ]T , respectively.
The tensor R(n1, ϕ1) has the coordinate matrix A12 given in (1.54) with
sinα1 and cosα1 from (12.16). The resulting equation for the unknown
angle ϕ1 has the form A cosϕ1 +B sinϕ1 = C with coefficients A , B , C
satisfying the condition A2+B2−C2 > 0 for the existence of real solutions.
For comparison: The equivalent Eq.(16.23) for the planar case has the same
form. With the pertinent solution ϕ1 the position vector z2(0) of B2 and
the unit normal vector v2(0) at B2 are determined by subjecting z1(ϕ1)
and v1(ϕ1) to the rotation ϕ2 = −(n1/n2)ϕ1 about n2 . This is done by
Eqs.(16.86) and (16.87) with indices changed accordingly.

16.2.2 General Spatial Involute Gearing

Let h1 and h2 be two involute helicoids on skew axes. Each helicoid hi
(i = 1, 2) has its own base cylinder ci of radius r0i , its own base helix angle
β0i and its own angle αi which determines the radius ri = r0i/ cosαi of
the pitch cylinder pi (see Fig. 16.15). The pitch cylinder is rolling on the
pitch plane of the rack cutter used for producing the helicoid. Let h1 be
the helicoid on gear 1 in Fig. 16.15. The axis of h2 intersects the x-axis
orthogonally at a point x = d ≥ r1 + r2 . The projected angle between the
two axes is called λ (rotation about the x-axis in the positive mathematical
sense). Thus, the x-axis is the common perpendicular of the axes, and d is
the minimal distance. The situation shown in Fig. 16.15 is the special case
β01 = β02 = β0 , α1 = α2 = α , d = r1 + r2 , λ = 0 .

Following Giovannozzi [9, 10] and without reference to Theorem 16.3 it is
shown that under certain conditions h1 and h2 are conjugate tooth flanks.
In particular, it is shown that the distance d has no influence on any of the
angular relationships which follow. The reason is that involute helicoids are
torses. On every generator the tangent plane is the same for all points of this
generator.

Let P be a point of contact. For each of the two helicoids hi (i = 1, 2) the
statements made in the context of Fig. 16.15 are valid, namely: The contact
point P is located on a generator ei of hi in a plane Ei which is tangent
to the base cylinder ci and defined by the angle αi . The generator ei is
making the base helix angle β0i with lines parallel to the axis of ci . The
contact normal at P lies in E1 as well as in E2 and it is normal to e1 as
well as to e2 . From the skewness of the axes it follows that h1 and h2 have
single-point contact and that the frame-fixed line of intersection of E1 and
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E2 , referred to as g , is the common contact normal. According to (16.69)
the point fixed on hi which is coinciding with P has, in the direction of g ,
a velocity component of magnitude vi = ωir0i cosβ0i (i = 1, 2) . From the
kinematical constraint v1 = v2 it follows that

ω2

ω1
=

n1

n2
=

r01 cosβ01

r02 cosβ02
. (16.89)

When the helicoids rotating with this angular velocity ratio remain in contact,
the contact point P moves along g . Hence the frame-fixed line g is the line of
contact. Being normal to h1 and to h2 it is the line of action of the normal
contact force which, therefore, is frame-fixed, too. Another consequence of
(16.89) is that, depending on β01 and β02 , the wheel having the smaller
number of teeth may have the larger radius.

Tangential contact requires that at the point of contact the unit normal
vectors n1 of h1 and n2 of h2 satisfy the equation n2 = −n1 . The x, y, z-
coordinates of n1 are known from (16.68):

n1x = sinα1 cosβ01 ,
n1y = cosα1 cosβ01 ,
n1z = − sinβ01 .

⎫⎬
⎭ (16.90)

The vector n2 has, prior to the rotation through λ , coordinates

− sinα2 cosβ02 ,
− cosα2 cosβ02 ,
sinβ02 .

⎫⎬
⎭ (16.91)

Following this rotation it has the coordinates

n2x = − sinα2 cosβ02 ,
n2y = − cosα2 cosβ02 cosλ− sinβ02 sinλ ,
n2z = − cosα2 cosβ02 sinλ+ sinβ02 cosλ .

⎫⎬
⎭ (16.92)

The contact condition n2 = −n1 is the set of equations

sinα2 cosβ02 = sinα1 cosβ01 ,

cosα2 cosβ02 cosλ+ sinβ02 sinλ = cosα1 cosβ01 ,

cosα2 cosβ02 sinλ− sinβ02 cosλ = − sinβ01 .

⎫⎪⎬
⎪⎭ (16.93)

These equations are solved by

cosα1 =
sinβ02 − sinβ01 cosλ

cosβ01 sinλ
, cosα2 = − sinβ01 − sinβ02 cosλ

cosβ02 sinλ
.

(16.94)
The helices on the pitch cylinders have the slopes (see (16.72))
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cotβ1 = cosα1 cotβ01 =
1

sinλ

(
sinβ02

sinβ01
− cosλ

)
,

cotβ2 = cosα2 cotβ02 =
−1

sinλ

(
sinβ01

sinβ02
− cosλ

)
.

⎫⎪⎪⎬
⎪⎪⎭ (16.95)

From these equations it follows that

cot(β2 − β1) =
1 + cotβ1 cotβ2

cotβ1 − cotβ2
= cotλ . (16.96)

Hence
β2 − β1 = λ (16.97)

(the second solution β2 − β1 = λ + π must be dismissed because it is not
valid in the case β2 = β1 , λ = 0 ). Equations (16.95) also yield

1 + cot2 βi =
1

sin2 β0i

sin2 β01 + sin2 β02 − 2 sinβ01 sinβ02 cosλ

sin2 λ
(16.98)

(i = 1, 2) . This in combination with ri = r0i/ cosαi and with (16.89) proves
that

r1 cosβ1

r2 cosβ2
=

r1 cotβ1

r2 cotβ2

√
1 + cot2 β2

1 + cot2 β1

=
r01 cosβ01

r02 cosβ02
=

ω2

ω1
. (16.99)

The equations up to this point were first formulated by Giovannozzi [9].
In (16.94) the substitutions are made:

sinβ0i =
1√

1 + cot2 β0i

=
1√

1 + cot2 βi/ cos2 αi

,

cosβ0i =
cotβ0i√

1 + cot2 β0i

=
cotβi/ cosαi√

1 + cot2 βi/ cos2 αi

⎫⎪⎪⎬
⎪⎪⎭ (i = 1, 2) . (16.100)

Following this substitution the equations are squared. This results in

cos2 α1(cos
2 α2 + cot2 β2)(cosλ+ sinλ cotβ1)

2

= cos2 α2(cos
2 α1 + cot2 β1) ,

cos2 α2(cos
2 α1 + cot2 β1)(cosλ− sinλ cotβ2)

2

= cos2 α1(cos
2 α2 + cot2 β2) .

⎫⎪⎪⎬
⎪⎪⎭ (16.101)

When λ is replaced by β2 − β1 , both equations become

(tanα2 cosβ2)
2 = (tanα1 cosβ1)

2 (16.102)
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or, with (16.73),
tan2 αn2 = tan2 αn1 . (16.103)

This equation shows that both gears must be cut by rack cutters with iden-
tical normal pressure angles αn . This condition and (16.97) together consti-
tute necessary and sufficient conditions for the two helicoids to be conjugate
tooth flanks. If the crossing angle λ of the gear axes is prescribed, β1 and
β2 may be chosen positive, zero or negative subject only to (16.97). In the
case βi = 0 , gear i is a spur gear. The angles β1 , β2 and αn determine
the angles α1 and α2 . Equations (16.89) – (16.103) are the rules governing
general spatial involute gearing (title of Phillips’ book [14]). The equations
are independent of the shortest distance d of the wheel axes. So is the di-
rection of the line of contact g . Only the location of g in the x, y, z-system
depends on d . The line is laterally displaced when d is changed (all other
parameters held constant). In general, g does not intersect the x-axis. The
helicoids remain conjugate when the shortest distance d is changed. This
requires, of course, a change of tooth thickness.

In engineering the special case d = r1 + r2 is standard for gears with
zero addendum modification. In this case, the pitch cylinders are in (sliding)
contact on the x-axis at the point x = r1 . In what follows, this point is
called P0 . The line g is passing through this point. Figure 16.19 shows in
projection along the x-axis the angular velocities ω1 and ω2 of the pitch
cylinders under the angle λ . The point P0 is in the plane of the drawing.
The cylinder c1 is below and the cylinder c2 is above this plane. The line t –
t stands for the coinciding teeth of two imaginary rack cutters, one in mesh
with gear 1 and the other in mesh with gear 2 . The figure is a generalization
of Fig. 16.16 which shows the special case λ = 0 . As in this figure the line
t – t is making the angle βi with the axis of gear i (i = 1, 2). At P0 the
pitch cylinders and the pitch planes of the associated rack cutters have the
velocities vi of magnitude riωi (i = 1, 2) in the directions shown. The
relative velocity v2−v1 has the direction t – t of the teeth if β1 and β2 are

Fig. 16.19 Coinciding rack cutters with teeth t – t under helix angles β1 and β2 against

the axes of pitch cylinders c1 and c2 . Velocity triangle of pitch cylinders and rack cutters
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satisfying (16.97). Indeed, the sine law applied to the velocity triangle with
the angles λ , π/2+β1 and π/2−β2 states that r2ω2/ cosβ1 = r1ω1/ cosβ2 .
This is Eq.(16.99). By the figure it is confirmed that the initially coinciding
teeth of both rack cutters are permanently coinciding and that the two gears
are permanently meshing. For the sliding velocity v2 − v1 the cosine law
yields the formula

|v2 − v1| = ω1r1

√
1 +

(
ω2r2
ω1r1

)2

− 2
ω2r2
ω1r1

cosλ . (16.104)

From (16.97) it follows that cosβ1 = cosβ2 cosλ+ sinβ2 sinλ . Substitution
into (16.99) yields for β1 and β2 the formulas

tanβ2 =
ω2

ω1

r2
r1

− cosλ

sinλ
, β1 = β2 − λ . (16.105)

The three quantities λ , ω2/ω1 and r2/r1 are free design parameters. If, for
example, λ and ω2/ω1 are prescribed, the third parameter r2/r1 can be
chosen such that the sliding velocity in (16.104) is below an acceptable level.

Gear i (i = 1, 2) has an addendum cylinder of radius rai = ri+mn . The
contact line g passing through P0 intersects the cylinder 1 at a point P1

and the cylinder 2 at a point P2 . The gears must have axial lengths �1 and
�2 and positions on their shafts such that in the course of meshing of two
tooth flanks the contact point can move all the way from P1 to P2 . Lengths
larger than �1 and �2 are unnecessary.

In (16.48) the contact ratio was given for spur gears with involute teeth.
It is left to the reader to show that in the case of skew axes the contact ratio
is

ε =
1

2π

[
n1

tan γ1 − tanα1/ cosβ1

cos2 β1
+ n2

tan γ2 − tanα2/ cosβ2

cos2 β2

]
with cos γi =

r0i
rai

(i = 1, 2) . (16.106)

References

1. Bonfiglioli Riduttori S.p.A. (Eds.) (1995) Gear Motor Handbook. Springer, Berlin

Heidelberg New York
2. Bricard R (1926/27) Leçons de cinématique. v.I.: Cinématique théorique. v.II:
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Chapter 17

Planar Four-Bar Mechanism

The solid lines in Fig. 17.1 are the links of a planar four-bar mechanism or
briefly planar four-bar. The link lengths � (base or fixed link), r1 (input
link), r2 (output link) and a (coupler) are free parameters. They determine,
whether individual links can rotate relative to others full cycle (i.e., unlim-
ited) or through an angle smaller than 2π . The link lengths also determine
the so-called transfer function relating the output angle ψ to the input angle
ϕ . The time derivative of this function yields the transmission ratio i = ϕ̇/ψ̇
as function of ϕ . The transfer function and the transmission ratio depend on
three parameters only, namely, on r1/� , r2/� and a/� . Points fixed in the
plane of the coupler move along coupler curves. The shapes of these curves
depend on six parameters, namely, on the four link lengths and, in addi-
tion, on two coordinates of the coupler-fixed point in the coupler plane. The
coupler plane as a whole undergoes a translatory-rotatory motion through
a continuum of positions which depends on the four link lengths. The said
dependencies which are the subject of the following sections are highly com-
plicated. It is this complexity in combination with simplicity of design which
makes the planar four-bar the most important linkage in engineering.

Literature on four-bars and on other linkages: Erdman (Ed.) [11], Arto-
bolevski [1], Geronimus [16], Dijksman [10].

Fig. 17.1 Planar four-bar in the two positions existing for a given input angle ϕ
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In many machines a certain desired property is achieved by combining a
four-bar with additional elements. A typical example is shown in Fig. 17.2 .
Without the motor-driven crank mechanism MDB drawn with dashed lines
the mechanism is a four-bar A0ABB0 with base A0B0. None of its links is
able to rotate full cycle relative to the base. When this four-bar is moving
through its entire range, the coupler-fixed point C traces the dotted coupler
curve. A section of this curve is a very good straight-line approximation. The
combination of the four-bar A0ABB0 with the crank mechanism MDB results
in a machine in which C is moving periodically back and forth the straight
section when the crank is rotating. Point C can be used as guide for the
piston of the pump at an oil-well.

Fig. 17.2 Combination of four-bar and crank mechanism in a pump

17.1 Grashof Condition

In this section answers are given to the following questions. Through which
angle can two neighboring links of a four-bar rotate relative to each other?
Under which condition is this angle unlimited? In this case, one link is said
to be fully rotating relative to the other. For every possible angle ϕ between
two neighboring links there exist two positions of the four-bar (see Fig. 17.1).
In some four-bars the transition from one of these positions into the other can
be achieved by a continuous motion. In others the transition is possible only
by disconnecting and reassembling the four-bar. Under which conditions is
disconnection and reassembly necessary? The properties addressed by these
questions do not depend on which link is chosen as fixed link and which
as input link. Arbitrarily, the angle ϕ of the link of length r1 against the
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Fig. 17.3 Limit positions of a four-bar

link of length � is investigated. Extremal values of ϕ in limit positions are
denoted φ . In Figs. 17.3a,b,c all possible configurations in limit positions are
shown. All of them are characterized by collinearity of the other two links of
the four-bar. For the extremal angles φ1 and φ2 the cosine law yields the
expressions

cosφ1,2 =
r21 + �2 − (r2 ∓ a)2

2r1�
. (17.1)

The links are fully rotating relative to each other if cosφ1 ≥ +1 as well as
cosφ2 ≤ −1 . These conditions are

a) |r1 − �| ≥ |r2 − a| , b) r1 + � ≤ r2 + a . (17.2)

In the special case of four identical link lengths � = r1 = r2 = a φ1 = 0 ,
φ2 = π . This means that neighboring links can rotate full cycle relative to
each other.

In what follows, it is assumed that at least two link lengths are different.
Let �min and �max �= �min be the smallest and the largest, respectively, of
the four link lengths, and let �′ and �′′ ( �′ < �′′ or �′ = �′′ or �′ > �′′ ) be
the other two link lengths so that

�min ≤ �′, �′′ ≤ �max (�max �= �min) . (17.3)

Grashof1 [17] is the author of

Theorem 17.1. The link of length �min is fully rotating relative to all other
links if and only if the condition

�min + �max ≤ �′ + �′′ (17.4)

1 F. Grashof 1826-1893, professor at the Polytechnische Schule Karlsruhe, now Karlsruhe

Institute of Technology (KIT); one of the founders and first chairman of Verein Deutscher
Ingenieure (VDI)
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is satisfied. Then these other links are fully rotating relative to the link with
�min , but they are not fully rotating relative to each other. If condition (17.4)
is not satisfied, no link is fully rotating relative to any other link.

Proof: The following statements are easily verified if not obvious.
I. Equations (17.1) as well as conditions (17.2a,b) are invariant with respect
to an interchange of r1 and � and also of r2 and a .
II. If neither r1 nor � is �min , one of the conditions (17.2a), (17.2b) is
violated.
III. If either (r1, �) or (�, r1) is the pair ( �min, �max) , condition (17.2a) is
satisfied, and condition (17.2b) is condition (17.4).
IV. If either (r1, �) or (�, r1) is the pair ( �min, �

′) , condition (17.2b) is sat-
isfied, and condition (17.2a) is condition (17.4).
The combination of statements I to IV proves Grashof’s theorem. According
to this theorem four-bars are divided into
- four-bars satisfying Grashof’s condition; these four-bars are further sub-

divided
- general case: �min + �max < �′ + �′′

- special case: �min + �max = �′ + �′′

- four-bars not satisfying Grashof’s condition, i.e., four-bars with �min+
�max > �′ + �′′.
Matters are even more complicated due to the fact that in engineering prac-
tice a particular link of a four-bar is declared to be the fixed link. A neigh-
boring link (input link or output link) is referred to as crank or as rocker
depending on whether or not it is fully rotating relative to the fixed link.
Depending on the behavior of input link and output link a four-bar is either
a double-crank or a crank-rocker or a double-rocker. It is obvious that a four-
bar not satisfying Grashof’s condition is a double-rocker. On the other hand,
a four-bar satisfying Grashof’s condition may be either a double-crank or a
crank-rocker or a double-rocker. Details are worked out in what follows.

Four-Bars Satisfying Grashof’s Inequality Condition �min + �max < �′ + �′′ .
For demonstration the link lengths (3, 5, 6, 7) are used which satisfy Grashof’s
condition (3 + 7 < 5 + 6) . In Fig. 17.4a the fixed link is the shortest link.
This link (and only this link) is fully rotating relative to all other links. In
other words: The input link, the output link and the coupler are fully rotating
relative to the fixed link. Hence the four-bar is a double-crank. For a single
input angle the two existing positions of the four-bar are shown (one of them
with dashed lines).

In Fig. 17.4b the input link is the shortest link. Only this link is fully
rotating relative to all other links. Hence the four-bar is a crank-rocker. The
four-bar is shown in all four limit positions of the rocker. The angular range of
the rocker consists of two sectors < 180◦ which are arranged symmetrically
to the base line. The base line is outside these sectors. For a single input
angle the two existing positions of the four-bar are shown (one of them with
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Fig. 17.4 Four-bars with different distributions of the link lengths (3, 5, 6, 7). Double-

crank (a) with all links fully rotating. Crank-rocker (b) with fully rotating input crank.
Double-rocker of first kind with fully rotating coupler (c)

dashed lines). In these two positions the output link is located on opposite
sides of the base line.

Figure 17.4c differs from Fig. 17.4a in that the fixed link and the coupler
are interchanged. The coupler is the shortest link. Only the coupler is fully
rotating relative to all other links. The four-bar is referred to as double-rocker
of first kind. The figure shows the limit positions of both rockers. The angular
range of each rocker is a single sector. The sectors of both rockers are on one
and the same side of the base line. For a single input angle the two existing
positions of the four-bar are shown (one of them with dashed lines). In these
two positions the output link is located on one and the same side of the base
line.

In Figs. 17.4a , b and c reflection of every possible position in the base
line is another possible position.

Four-Bars not Satisfying Grashof’s Condition
For demonstration the link lengths (4, 5, 6, 8) are used which do not satisfy
Grashof’s condition (4+8 > 5+6) . Not a single link is fully rotating relative
to the fixed link. These four-bars are referred to as double-rockers of second
kind. Figure 17.5a shows the limit positions of both rockers. The angular
range of each rocker is a single sector which is symmetrical to the base line.
For a single input angle the two existing positions of the four-bar are shown
(one of them with dashed lines). In Figs. 17.5a,b,c the four given lengths
are given to different links of the four-bar. It is seen that depending on this
distribution the fixed link is inside the angular range of either both rockers
(Fig. 17.5a) or of a single rocker (Fig. 17.5b) or of no rocker (Fig. 17.5c).

Foldable Four-Bars Satisfying Grashof’s Equality Condition �min + �max =
�′ + �′′ .
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Fig. 17.5 Three double-rockers of second kind with different distributions of the link

lengths (4, 5, 6, 8). No link is fully rotating

For demonstration the link lengths (1, 3, 4, 6) are used which satisfy the
condition that 1 + 6 = 3 + 4 . Depending on whether the shortest link is the
fixed link or the input link or the coupler the four-bar is either a double-crank
or a crank-rocker or a double-rocker of first kind, respectively (compare Figs.
17.4a, b, c). In this respect there is no difference to the general case of four-
bars satisfying the inequality condition �min + �max < �′ + �′′ . The equality
�min + �max = �′ + �′′ has the consequence that the four-bar is foldable. In
a folded position all four links are collinear. Two different kinds of foldable
four-bars have to be distinguished:
- first kind: r1 + a = r2 + � (Fig. 17.6a)
- second kind: r1 + r2 = a+ � (Fig. 17.6b).
With link lengths (1, 3, 4, 6) the following foldable four-bars (�, r1, a, r2)
can be formed:
Foldable four-bars of first kind: Two double-cranks (1, 3, 4, 6), (1, 4, 3, 6);
four crank-rockers (4, 1, 6, 3), (3, 1, 6, 4), (6, 1, 4, 3), (6, 1, 3, 4);
two double-rockers of first kind (4, 6, 1, 3), (3, 6, 1, 4) ;
Foldable four-bars of second kind: One double-crank (1, 3, 6, 4);
two crank-rockers (3, 1, 4, 6), (4, 1, 3, 6);
one double-rocker of first kind (6, 4, 1, 3).

Example: The foldable four-bar of first kind in Fig. 17.6a is the double-
rocker with (�, r1, a, r2) = (4, 6, 1, 3) , and the foldable four-bar of second
kind in Fig. 17.6b is the double-rocker with (�, r1, a, r2) = (6, 4, 1, 3) . For
a single angle ϕ of the input link the two associated positions of coupler and
output link are shown. The points P1 and P2 are the instantaneous centers
of rotation of the coupler in these positions. Let x be the coordinate of P1

or P2. In positions sufficiently close to the folded position (ϕ = ψ = 0 in
Fig. 17.6a and ϕ = π − ψ = 0 in Fig. 17.6b) the following approximations
are valid:
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Fig. 17.6 (a) Foldable four-bar of first kind: r1+a = r2+
 ( 
 = 4 , r1 = 6 , a = 1 , r2 =

3 ). (b) Foldable four-bar of second kind: r1+r2 = a+
 ( 
 = 6 , r1 = 4 , a = 1 , r2 = 3 ).
Instantaneous centers of rotation P1 and P2 of the coupler tend toward M1 and M2 when
the four-bar is folding

x tanϕ ≈
{
(x− �) tanψ (foldable four-bars of first kind)
(�− x) tan(π − ψ) (foldable four-bars of second kind).

(17.5)
In Sect. 17.2 these approximations are used for determining instantaneous
centers of rotation of the coupler in folded positions when intersection points
P1 and P2 do not exist. End of example.

In the folded position motion is possible in two ways with either ψ̇/ϕ̇ > 0
or ψ̇/ϕ̇ < 0 . In engineering applications of foldable four-bars provisions
must be made either to avoid the folded position or to pass through it with
prescribed sense of rotation.

Consider again Figs. 17.3a,b,c . When the input link of length r1 is moving
away from its limit position, the joint connecting coupler and output link is
free to move in two different directions as is indicated by arrows. From this
the following conclusion is drawn. Two positions of a four-bar which are
associated with an arbitrarily given angle of a rocker can be reached one
from the other by a continuous motion. The four-bars in Figs. 17.4a,c as well
as those in Figs. 17.5a,b,c have this property. In contrast, two positions of
a four-bar which are associated with an arbitrarily given angle of a crank
cannot be reached one from the other by a continuous motion, but only by
disconnection and reassembly (Figs. 17.4b,c). Exception: Foldable four-bars.
Transition from one position to the other is possible via the folded position.

17.2 Transfer Function

From Figs. 17.5 and 17.4 it is known that to every position (ϕ, ψ) of the four-
bar the position symmetrical to the base line A0B0 with angles (−ϕ, −ψ)
exists. This symmetry is found in all subsequent equations. The transfer
function determines ψ as function of ϕ . First, implicit forms f(ϕ,ψ) = 0
of the transfer function are formulated. Starting point are the coordinates of
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Fig. 17.7 Four-bar with input angle ϕ , output angle ψ , inclination angle χ of the

coupler, transmission angle μ

the points A and B in the x, y -system shown in Fig. 17.7 :

xA = r1 cosϕ , xB = �+ r2 cosψ ,
yA = r1 sinϕ , yB = r2 sinψ .

}
(17.6)

The constant length a of the coupler requires that (xB−xA)
2+(yB−yA)

2 = a2

or explicitly

(�+ r2 cosψ − r1 cosϕ)
2 + (r2 sinψ − r1 sinϕ)

2 − a2 = 0 . (17.7)

This is already the desired equation f(ϕ,ψ) = 0 . Reformulation gives it the
form

f = 2r2(�−r1 cosϕ) cosψ−2r1r2 sinϕ sinψ−2�r1 cosϕ+r21+�2+r22−a2 = 0
(17.8)

or alternatively

f = 2�r2 cosψ−2�r1 cosϕ−2r1r2 cos(ϕ−ψ)+ r21 + �2+ r22 −a2 = 0 . (17.9)

Equation (17.8) has the form

A(ϕ) cosψ +B(ϕ) sinψ = C(ϕ) (17.10)

with coefficients

A = 2r2(�−r1 cosϕ), B = −2r1r2 sinϕ , C = 2r1� cosϕ−(r21+�2+r22−a2) .
(17.11)

For every angle ϕ there exist two solutions ψ1 and ψ2 . They are determined
through their sines and cosines:

cosψk =
AC + (−1)kB

√
A2 +B2 − C2

A2 +B2
,

sinψk =
BC − (−1)kA

√
A2 +B2 − C2

A2 +B2

⎫⎪⎪⎬
⎪⎪⎭ (k = 1, 2) . (17.12)

These expressions depend on three parameters only, namely, on r1/� , r2/�
and a/� . Equations (17.11) yield
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A2 +B2 = 4r22(�
2 + r21 − 2r1� cosϕ) = −4r22(C + r22 − a2) , (17.13)

A2 +B2 − C2 = 4r22a
2 − (C + 2r22)

2

= −[C + 2r2(a+ r2)][C − 2r2(a− r2)] (17.14)

= −[2r1� cosϕ− (r21 + �2) + (r2 + a)2]

×[2r1� cosϕ− (r21 + �2) + (r2 − a)2] . (17.15)

The angles ψ1 and ψ2 are real for all angles ϕ satisfying the condition
A2 +B2 −C2 ≥ 0 . Let φ denote all angles ϕ for which the equality sign is
valid. From (17.15) the cosines of these angles are obtained:

cosφ1,2 =
r21 + �2 − (r2 ∓ a)2

2r1�
. (17.16)

These are the Eqs.(17.1). The angles are the limit angles of the input link
known from Figs. 17.3a,b,c .

This section is closed with an application of (17.9) to foldable four-bars
(see Figs. 17.6a,b). In the process of folding the instantaneous centers of
rotation P1 and P2 of the coupler tend toward points M1 and M2 on the
base line. These points are determined by combining (17.5) and (17.9). First,
foldable four-bars of first kind are considered. In the limit ϕ → 0 , ψ → 0
(17.5) yields x/(x− �) = ψ/ϕ . With � = r1 − r2 + a (17.9) becomes

r1(r1+a)+r2(r2−a)−r1r2[1+cos(ϕ−ψ)]−(r1−r2+a)(r1 cosϕ−r2 cosψ) = 0 .
(17.17)

Taylor expansion up to second-order terms and division through ϕ2 produces
for λ = ψ/ϕ = x/(x − �) the quadratic equation λ2r2(r2 − a) − 2r1r2λ =
−r1(r1 + a) . The solutions λ1,2 and the associated coordinates x1,2 of M1

and M2 are

λ1,2 =
r1r2 ±

√
r1r2a�

r2(r2 − a)
, x1,2 =

λ1,2

λ1,2 − 1
� . (17.18)

The solution for foldable four-bars of second kind is obtained in a similar
way. In (17.9) the substitutions ψ = π − α and � = r1 + r2 − a are made.
Following this, a Taylor expansion up to second-order terms is made. The
result is a quadratic equation for λ = α/ϕ = x/(�− x) . The solutions λ1,2

are identical with those in (17.18):

λ1,2 =
r1r2 ±

√
r1r2a�

r2(r2 − a)
, x1,2 =

λ1,2

λ1,2 + 1
� . (17.19)

Examples: The link lengths of Fig. 17.6a yield x1 ≈ 5.17 , x2 ≈ 10.8 and
those of Fig. 17.6b yield x1 ≈ 4.64 , x2 ≈ 2.21 . These are the points M1 and
M2 shown in the figure. End of examples.
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17.3 Interchange of Input Link and Fixed Link

In Fig. 17.8 the four-bar A0ABB0 with link lengths � , r1 , a , r2 is called
four-bar F . Dashed lines parallel to the fixed link and to the input link
define the point P . The quadrilateral B0PAB is drawn one more time in
dotted lines. The dotted quadrilateral is called four-bar F∗ . Its fixed link
has length r1 , and its input link has length � . Both four-bars have the same
coupler and the same output link. If F is a foldable four-bar, also F∗ is
foldable. If F is a double-rocker of first kind (of second kind), also F∗ is a
double-rocker of first kind (of second kind). If F is a double-crank, F∗ is
either a double-crank or a crank-rocker. If F is a crank-rocker, F∗ is either
a double-crank (if fixed link and crank are interchanged) or a crank-rocker (if
fixed link and rocker are interchanged). Example: Let F be the crank-rocker
in Fig. 17.4b . Interchange of fixed link and crank produces the double-crank
of Fig. 17.4a .

In Fig. 17.8 F and F∗ have one and the same input angle ϕ . The relation
between the output angles ψ and ψ∗ is seen to be

ψ + ψ∗ ≡ ϕ+ π . (17.20)

For a given angle ϕ Eqs.(17.12) determine in the four-bar F two angles ψ1

and ψ2 and in the four-bar F∗ with coefficients A∗ = 2r2(r1 − � cosϕ) ,
B∗ = −2�r2 sinϕ , C∗ = C two angles ψ∗

1 and ψ∗
2 . The coordination of the

pairs of angles is as follows: ψ1+ψ∗
2 ≡ ϕ+π . This is verified by substituting

Fig. 17.8 Four-bar F and the associated four-bar F∗ with link lengths r1 and 


interchanged
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A , B ,C and A∗ , B∗ , C∗ into the equation cosψ1 cosψ
∗
2 − sinψ1 sinψ

∗
2 ≡

− cosϕ .

17.4 Inclination Angle of the Coupler. Transmission
Angle

Figure 17.7 defines the inclination angle χ of the coupler against the base line.
Its dependency on ϕ is found by the same method that was used for ψ . Point
B has coordinates xB = r1 cosϕ+a cosχ and yB = r1 sinϕ+a sinχ . These
expressions are substituted into the constraint equation (xB− �)2+y2B = r22 .
This results in the equation

Ā cosχ+ B̄ sinχ = C̄ , (17.21)

Ā = −2a(�−r1 cosϕ) , B̄ = 2r1a sinϕ , C̄ = 2r1� cosϕ−(r21+�2+a2−r22) .
(17.22)

These coefficients are obtained from those in (17.11) by interchanging r2 and
−a . The equation has the solutions

cosχk =
ĀC̄ − (−1)kB̄

√
Ā2 + B̄2 − C̄2

Ā2 + B̄2
,

sinχk =
B̄C̄ + (−1)kĀ

√
Ā2 + B̄2 − C̄2

Ā2 + B̄2

⎫⎪⎪⎬
⎪⎪⎭ (k = 1, 2). (17.23)

The exponent k in this equation must be the same as in (17.12). Only then
the constraint equation r1 cosϕ+ a cosχ = �+ r2 cosψ is satisfied.

The angle χ reaches a stationary value (maximum or minimum) when
the angular velocity χ̇ of the coupler is zero. This is the case when the
instantaneous center of rotation P30 , i.e., the intersection of input link and
output link, is at infinity. Figure 17.9 shows that this is possible in two
positions. Let ϕ = ϕ∞ and χstat be the associated angles. One position
is characterized by ψ = ϕ∞ and the other by ψ = ϕ∞ + π . Equation
(17.10) yields for cosϕ∞ the two expressions given below. Expressions for the
associated stationary angles χstat are obtained from the cosine law applied
to the triangles shown in Fig. 17.9 :

cosϕ∞ =
�2 − a2 + (r1 ∓ r2)

2

2�(r1 ∓ r2)
, cosχstat =

�2 + a2 − (r1 ∓ r2)
2

2a�
. (17.24)

The angles ϕ∞ have a kinematical interpretation. They determine the direc-
tions of asymptotes of the fixed centrode of the coupler. The centrode has no
asymptotes if both cosines have absolute values > 1 , i.e., if the conditions
(� − a)2 > (r1 − r2)

2 and (� + a)2 < (r1 + r2)
2 are satisfied. This is the
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Fig. 17.9 Stationary values of the angle χ occur when the cranks are parallel

case if and only if the coupler is fully rotating. These four-bars are either
double-cranks (Fig. 17.4a) or double-rockers of first kind (Fig. 17.4c). In Ex.
6 of Sect. 15.1.2 centrodes of couplers of four-bars with special link lengths
were investigated.

In Fig. 17.7 the transmission angle μ of a four-bar is defined. Its depen-
dency on ϕ is obtained as follows. The length of the diagonal starting from
A is expressed by means of the cosine law once in terms of cosϕ and once
in terms of cosμ . The identity of these expressions results in

cosμ =
2r1� cosϕ− (r21 + �2) + r22 + a2

2r2a
. (17.25)

Extremal values of μ are obtained from (17.1) by interchanging (r1, �) and
(r2, a) :

cosμstat =
r22 + a2 − (�∓ r1)

2

2r2a
. (17.26)

In positions with these extremal values the input link and the fixed link are
collinear (see Fig. 17.3). In phases of motion in which the coupler is required
to transmit a large torque to the output link the transmission angle μ should
differ from π/2 as little as possible. In other words: | cosμ| should be as small
as possible.

17.5 Transmission Ratio. Angular Acceleration of
Output Link

The angular velocity ratio i = ϕ̇/ψ̇ is called transmission ratio of the four-
bar. In what follows, the inverse value 1/i = ψ̇/ϕ̇ is represented in geometric
and in analytical form. The geometric form is obtained from (15.6). Let the
fixed link, the input link and the output link be links 0 , 1 and 2 , respec-
tively, so that ω10 = ϕ̇ and ω20 = ψ̇ (see Fig. 17.10). Equation (15.6) with
i = 2 , j = 1 , k = 0 yields the expression
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1

i
=

ψ̇

ϕ̇
=

�P10P12

�P20P12

=
x12

x12 − �
=

ξ

ξ − 1

(
ξ =

x12

�

)
. (17.27)

Here, x12(ϕ) is the coordinate of the instantaneous center P12 along the base
line. The dimensionless quantity ξ is zero at the center P10 and it equals
one at the center P20 . Over the ξ -axis thus defined the ratio 1/i is plotted
at the center P12 .

Fig. 17.10 Dimensionless coordinate ξ = x12/
 of the instantaneous center P12 and
inverse transmission ratio 1/i as function of ξ

An analytical expression for the ratio 1/i is found by differentiating the
transfer function f(ϕ,ψ) = 0 with respect to time:

ϕ̇
∂f

∂ϕ
+ ψ̇

∂f

∂ψ
= 0 . (17.28)

Hence
1

i
=

ψ̇

ϕ̇
= −∂f

∂ϕ

/ ∂f

∂ψ
. (17.29)

Equation (17.9) yields

∂f

∂ϕ
= 2�r1 sinϕ+2r1r2 sin(ϕ−ψ) ,

∂f

∂ψ
= −2�r2 sinψ−2r1r2 sin(ϕ−ψ) .

(17.30)
Hence

1

i
=

r1
r2

� sinϕ+ r2 sin(ϕ− ψ)

� sinψ + r1 sin(ϕ− ψ)
=

r1
r2

� sinϕ+ r2(sinϕ cosψ − cosϕ sinψ)

� sinψ + r1(sinϕ cosψ − cosϕ sinψ)
.

(17.31)
Temporarily, this is abbreviated as r1N/(r2D) (numerator N , denominator
D ). Equations (17.12) yield the expressions
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N(A2 +B2) = �(A2 +B2) sinϕ+ r2

[
(A sinϕ−B cosϕ)C

∓(B sinϕ+A cosϕ)
√

A2 +B2 − C2
]
, (17.32)

D(A2 +B2) = �
(
BC ±A

√
A2 +B2 − C2

)
+ r1

[
(A sinϕ−B cosϕ)C

∓(B sinϕ+A cosϕ)
√
A2 +B2 − C2

]
. (17.33)

From (17.11) it follows that

A sinϕ−B cosϕ = 2r2� sinϕ ,

B sinϕ+A cosϕ = 2r2(� cosϕ− r1) ,

�B + r1(A sinϕ−B cosϕ) = 0 .

⎫⎪⎬
⎪⎭ (17.34)

These equations in combination with (17.13) and (17.14) yield the formula

2

i
=

cosϕ− p1
cosϕ− p2

± (cosϕ− p3) sinϕ

(cosϕ− p2)
√

λ2 − (cosϕ− p4)2
(17.35)

with dimensionless constants

λ =
r2a

r1�
, p1 =

r1
�

, p2 =
r21 + �2

2r1�
=

1

2

(
p1 +

1

p1

)
≥ 1 ,

p3 = p2 − r22 − a2

2r1�
, p4 = p2 − r22 + a2

2r1�
.

⎫⎪⎪⎬
⎪⎪⎭ (17.36)

These constants are related as follows:

p22 − 1 = (p1 − p2)
2 , (p4 − p2)

2 − λ2 = (p3 − p2)
2 . (17.37)

The expression cosϕ−p2 in (17.35) is zero only if the conditions ϕ = 0 and
r1 = � are satisfied which imply that also r2 = a . The square root in (17.35)
is zero for angles ϕ = φ1,2 satisfying one of the equations cosφ1,2−p4 = ±λ .
This is Eq.(17.1) defining the angles shown in Figs. 17.3a,b,c .

With the exception of p1 all constants in (17.36) are invariant with respect
to an interchange of base length � and input link length r1 . Because of the
first Eq.(17.37) this is true also for (p1 − p2)

2 . A relation between the ratios
1/i and 1/i∗ of the two four-bars with interchanged link lengths is obtained
by differentiating the identity Eq.(17.20) with respect to time:

1

i
+

1

i∗
=

ψ̇

ϕ̇
+

ψ̇∗

ϕ̇
≡ 1 . (17.38)

The total time derivative of (17.28) yields the transfer characteristics on the
acceleration level:
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ϕ̈
∂f

∂ϕ
+ ψ̈

∂f

∂ψ
+ ϕ̇2 ∂2f

∂ϕ2
+ 2ϕ̇ψ̇

∂2f

∂ϕ∂ψ
+ ψ̇2 ∂2f

∂ψ2
= 0 . (17.39)

Furthermore, ψ̇ = ϕ̇/i with (17.29) for 1/i . This together with the deriva-
tives in (17.30) yields for ψ̈ the expression

ψ̈ = iϕ̈+ ϕ̇2 r1� cosϕ− (r2�/i
2) cosψ + r1r2(1− 1/i)2 cos(ϕ− ψ)

r2� sinψ + r1r2 sin(ϕ− ψ)
. (17.40)

17.6 Stationary Values of the Transmission Ratio

In this section geometrical and analytical methods are used for determin-
ing those input angles ϕ for which the ratio 1/i in (17.35) and hence the
transmission ratio i itself attains stationary values. Starting from Fig. 17.10
Freudenstein [14] discovered the following geometrical relationship. Imagine
that the input link is moving with ϕ̇ > 0 through its entire angular range. In
the course of this motion the instantaneous center P12 moves along the ξ -
axis. Whenever it has zero velocity, the ratio 1/i attains a stationary value.
This is a consequence of the monotonicity property of the function 1/i(ξ)
shown in the figure. The velocity of P12 is zero if and only if the coupler-
fixed point momentarily coinciding with P12 has a velocity in the direction
of the coupler (labeled body 3 ). Then the center P30 of the coupler lies on
the normal to the coupler erected in P12 . In other words: In positions of
the four-bar with a stationary value of 1/i the lines P12P30 and P31P32

are mutually orthogonal2. Figure 17.11 shows two different four-bars in such
positions.

If a stationary value occurs at ϕ = 0 or at ϕ = π , P12 and P30 are
located on the base line, and the coupler is orthogonal to the base line. Then
the parameters satisfy the condition

Fig. 17.11 Two four-bars in positions when P12P30 is orthogonal to the coupler

2 In Bobillier’s Theorem 15.6 the line P12P30 was shown to play another important role

(line h in Fig. 15.19)
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stationary value at ϕ = 0 : (�− r1)
2 + a2 = r22 ,

stationary value at ϕ = π : (�+ r1)
2 + a2 = r22 .

}
(17.41)

In the vicinity of an angle ϕ for which 1/i has a stationary value the angle
between the lines P12P30 and P31P32 is very sensitive to changes of ϕ . The
desired angle ϕ can, therefore, be determined graphically rather precisely
by checking the orthogonality. In order to determine for a given four-bar
all positions with a stationary value of 1/i the four-bar and the center P12

must be drawn for a number of (monotonically increasing) angles ϕ over the
entire possible range φ1 ≤ ϕ ≤ φ2 . A stationary value of 1/i is passed every
time the moving center P12 changes its sense of direction along the ξ -axis
(jumps from ∞ to −∞ do not count as changes of sense of direction). Once
a position is known approximately it can be improved by checking the angle
between the lines P12P30 and P31P32 .

Example: For the double-crank in Fig. 17.4a this investigation reveals that
stationary values of 1/i occur in the two positions shown in Fig. 17.12a with
ϕ ≈ 9◦ and with ϕ ≈ 95◦ . With the coordinate of P12 (17.27) yields for the
position ϕ ≈ 9◦ a maximum (1/i)max ≈ 2.7 and for the position ϕ ≈ 95◦

a minimum (1/i)min ≈ 0.42 .
For the crank-rocker of Fig. 17.4b the same investigation can be made.

This is unnecessary, however, because this four-bar is obtained from the pre-
viously investigated one by interchanging the fixed link and the input link.
From (17.38) it follows that two four-bars thus related have stationary values
of 1/i for one and the same angles ϕ . Furthermore, these stationary values
add up to one. If the stationary value is a maximum in one of the four-bars, it
is a minimum in the other and vice versa. Hence the crank-rocker of Fig. 17.4b
has at ϕ ≈ 9◦ a minimum (1/i)min ≈ −1.7 and at ϕ ≈ 95◦ a maximum
(1/i)max ≈ 0.58 . Figure 17.12b shows the crank-rocker in these positions.
End of example.

In what follows, two analytical methods for determining stationary values
of 1/i are described. Method 1 is a direct method based on (17.35). With
the abbreviation x = cosϕ it is written in the form

2

i(x)
=

x− p1
x− p2

± (x− p3)Q

(x− p2)P
,

P =
√

λ2 − (x− p4)2 , Q =
√
1− x2 .

⎫⎬
⎭ (17.42)

The stationarity condition d(1/i)/dx = 0 has the form (the prime denotes
the derivative with respect to x )

∓(p1 − p2)P
2 = (p3 − p2)PQ+ (x− p2)(x− p3)(PQ′ −QP ′) . (17.43)

Now, P ′ = −(x − p4)/P and Q′ = −x/Q are substituted. The resulting
equation is multiplied by PQ . This eliminates the case sinϕ = 0 . Whether



17.6 Stationary Values of the Transmission Ratio 583

Fig. 17.12 The double-crank of Fig. 17.4a (a) and the crank-rocker of Fig. 17.4b (b)

in the two positions with stationary values of 1/i

this is a solution is checked with (17.41). After this multiplication the equa-
tion has the form

± (p1 − p2)[(x− p4)
2 − λ2]

√
(x2 − 1)[(x− p4)2 − λ2]

= (p3 − p2)(x
2 − 1)[(x− p4)

2 − λ2]

−(x− p2)(x− p3)[p4(1 + x2) + x(λ2 − p24 − 1)] . (17.44)

The special case r1 = � is characterized by p1 = p2 = 1 and, therefore, by
the third-order equation

(p3−1)(1+x)[λ2−(x−p4)
2]+(x−p3)[p4(1+x2)+x(λ2−p24−1)] = 0 . (17.45)

The equation is quadratic if, in addition, also a = � .
In the general case r1 �= � , (17.44) is squared. The squared equation is

invariant with respect to the interchange of r1 and � (see the comments
following (17.36) and (17.37)). Because of the sign ± no extraneous roots
are introduced by squaring. Equation (17.44) with the positive sign has the
meaningless root x = p2 > 1 . This is verified with the help of (17.37). From
this it follows that the squared equation is divisible by (x− p2)

2 . Following
this division it is a sixth-order equation. The division is performed in two
steps. Squaring results in the equation

( x2 − 1)[(x− p4)
2 − λ2]2

{
(p1 − p2)

2[(x− p4)
2 − λ2]− (p3 − p2)

2(x2 − 1)
}

= (x− p2)F (x)
{
(x− p2)F (x)− 2(p3 − p2)(x

2 − 1)[(x− p4)
2 − λ2]

}
(17.46)

with the third-order polynomial
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F (x) = (x− p3)[p4(1 + x2) + x(λ2 − p24 − 1)] . (17.47)

Taking into account (17.37) the expression in curled brackets on the left-hand
side is written in the form (x− p2)(Ax+B) with constants

A = (p1 − p2)
2 − (p3 − p2)

2 , B = p2A− 2p4(p1 − p2)
2 . (17.48)

Division of (17.46) by (x− p2) produces the equation

(x2 − 1)[(x− p4)
2 − λ2]

{
[(x− p4)

2 − λ2](Ax+B) + 2(p3 − p2)F (x)
}

= (x− p2)[F (x)]2 . (17.49)

The expression in curled brackets is a third-order polynomial K3x
3+K2x

2+
K1x+K0 with coefficients

K3 = A+ 2p4(p3 − p2) ,

K2 = B − 2p4A+ 2(p3 − p2)(λ
2 − p24 − 1− p3p4) ,

K1 = −2p4B +A(p24 − λ2) + 2(p3 − p2)[p4 − p3(λ
2 − p24 − 1)] .

⎫⎪⎬
⎪⎭ (17.50)

Division by (x − p2) produces the second-order polynomial K3x
2 + (x +

p2)(K2 + p2K3) +K1 . With this expression (17.49) yields the desired sixth-
order equation

(x2−1)[(x−p4)
2−λ2][K3x

2+(x+p2)(K2+p2K3)+K1]−[F (x)]2 = 0 . (17.51)

The coefficient of x6 is

K3 − p24 = (p1 − p2)
2 − (p3 − p2 − p4)

2 =
(�2 − a2)(a2 − r21)

(r1�)2
. (17.52)

The equation is of fifth order if a = � and/or a = r1 . Only real roots
|x| ≤ 1 are significant. For every such root it is checked to which sign in
(17.44) the root belongs. With the same sign (17.42) and (17.12) determine
the corresponding stationary value of 1/i and the angle ψ .

Example: With the parameters of the double-crank in Fig. 17.4a as well
as with those of the crank-rocker in Fig. 17.4b (17.51) has the four real
roots x = cosϕ ≈ −0.084 , 0.9882 , 1.11 and 4.02 . The first two roots
determine the angles ϕ ≈ 94.8◦ and ϕ ≈ 8.8◦ , respectively. These are the
angles shown in Figs. 17.12a and b . End of example.

The second (historically the first) analytical method for determining sta-
tionary values of 1/i is due to Freudenstein [14]. Also this method leads to
a sixth-order equation. The method starts out from Fig. 17.10 and from the
coupler curve traced by a point C fixed on the coupler line P31P32 . Let
η =const be the coordinate of this point along the coupler line ( η = 0 , when
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C is at P31 and η > 0 , when C and P32 are on the same side of P31 ).
In Sect. 17.8.3 the equation of the coupler curve in the x, y -system of Fig.
17.7 is given. In what follows, only the coordinates of the intersection points
of the curve with the x -axis are needed. They are the roots of Eq.(17.100)
which is cubic with respect to x and to η :

(η − a)(x− �)(x2 + η2 − r21)− ηx[(x− �)2 + (η − a)2 − r22] = 0 . (17.53)

The corresponding angle ϕ is determined by the cosine law:

cosϕ =
x2 + r21 − η2

2r1x
. (17.54)

In Sect. 17.8.4 it is pointed out that not every real root x of (17.53) represents
an intersection point of the coupler-curve with the x -axis. A root represents a
singular point without kinematical significance if it is associated with values
| cosϕ| > 1 . In what follows, only those roots are of interest which yield
values | cosϕ| ≤ 1 .

Let now C be the coupler-fixed point which coincides with P12 when
the four-bar is in a position with a stationary value of 1/i . In Fig. 17.13
this situation is shown. The coordinate η of this point is associated with a
solution x of (17.53) which is equal to the stationary value of the coordinate
x12 of the center P12 . Although x12 and x have different definitions, x as
function of η has the same stationary value. From this it follows that the
implicit derivative of (17.53) with respect to η is valid with dx/dη = 0 .
This is the equation

(x− �)(x2 + η2 − r21)− x[(x− �)2 + (η− a)2 − r22]− 2�η(η− a) = 0 . (17.55)

This equation and (17.53) together determine the unknowns x and η . De-

Fig. 17.13 Four-bar in a position with stationary value of 1/i . The coupler point C
momentarily coinciding with P12 has coordinates x and η
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coupling leads to the desired sixth-order equation. This decoupling is achieved
in several steps. First, (17.55) is multiplied by η and then (17.53) is sub-
tracted. This results in the equation

a(x− �)(x2 + η2 − r21)− 2�η2(η − a) = 0 . (17.56)

This equation and (17.55) are rewritten by introducing the dimensionless
variable ξ = x/� already known and the new dimensionless variable ν = η/a .
The new equations for the unknowns ξ and ν are

�2ξ2 − ξ(�2 + a2 + r21 − r22) + r21 + a2[−3ν2 + 2ν(1 + ξ)] = 0 , (17.57)

�2(ξ3 − ξ2) + r21(1− ξ) + a2[−2ν3 + ν2(1 + ξ)] = 0 . (17.58)

In order to get a linear equation for ν (17.57) is multiplied by (λ1+λ2ν) and
then added to (17.58). The free coefficients λ1 and λ2 are then determined
such that the coefficients of ν3 and ν2 equal zero. This yields two linear
equations for λ1 and λ2 . Their solutions are λ1 = −(1+ξ)/9 , λ2 = −2/3 .
The resulting linear equation for ν has the solution

ν =
8(�2ξ3 + r21) + ξ2(r21 − 9�2 + a2 − r22) + ξ(�2 − 9r21 + a2 − r22)

2
{
ξ2(a2 + 3�2)− ξ[3(�2 + r21 − r22) + a2] + a2 + 3r21

} . (17.59)

This expression is substituted back into (17.57). The result of this procedure
is the desired sixth-order equation for ξ :

C6ξ
6 + C5ξ

5 + C4ξ
4 + C3ξ

3 + C2ξ
2 + C1ξ + C0 = 0 . (17.60)

The coefficients3 are

C6 = 4�2(�2 − a2)2 ,

C5 = 4�2[(r22 − r21)(3�
2 + 5a2)− 3(�2 − a2)2] ,

C4 = (a2 + 12�2)[(�2 − a2)2 + (r21 − r22)
2 − 2�2(r21 + r22)]

− 2a4(r21 + r22) + 20�2[3r21(�
2 + a2) + a2(r21 − r22)] ,

C3 = −2
[
2(�6 + r61) + 18�2r21(�

2 + r21)− 3(�4 + r41)(a
2 + 2r22)

+ 2�2r21(29a
2 − 12r22) + 2r22(�

2 + r21)(3r
2
2 − a2)

+ (a2 − 2r22)(a
2 − r22)

2
]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(17.61)

C0 , C1 and C2 are obtained from C6 , C5 and C4 , respectively, by inter-
changing � and r1 , and C3 is symmetric with respect to � and r1 . To
every real solution ξ the corresponding ν is calculated from (17.59). With

3 In [14] the symmetry with respect to 
 and r1 is not shown. The coefficient of x5 is
misprinted. The correct coefficient is d[32b2(a2 − c2) − 12(d2 − b2)n] . Another misprint

occurs in Eq.(30) which must begin with (x− d) instead of with (x− d)2
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x = �ξ and η = aν (17.54) determines the corresponding angle ϕ . The
corresponding stationary value of 1/i is given by (17.27): 1/i = ξ/(ξ − 1) .

Consider again two four-bars resulting one from the other by interchanging
the link lengths r1 and � . Let (17.60) be the conditional equation for one of
these four-bars. The equation for the other four-bar is C0ξ

6+C1ξ
5+C2ξ

4+
C3ξ

3 + C4ξ
2 + C5ξ + C6 = 0 . If ξ is a root of one equation, 1/ξ is root

of the other equation. With both roots (17.59) and (17.54) determine one
and the same angle ϕ . For both roots the corresponding quantities 1/i are
calculated from (17.27). These two quantities add up to one.

It is seen that C6 = 0 if a = � and that C0 = 0 if a = r1 . In either
case (17.60) is of fifth order. Under the same conditions also the previous
method resulted in a fifth-order equation (see (17.52)). In the case r1 = � ,
the previous method resulted in the third-order Eq.(17.45). With the present
method this case yields the identities C6 = C0 , C5 = C1 and C4 = C2 .
Equation (17.60) then has the form

C0ξ
6 + C1ξ

5 + C2ξ
4 + C3ξ

3 + C2ξ
2 + C1ξ + C0 = 0 . (17.62)

If ξ is a root, also 1/ξ is a root. Also the quadratic equation ξ2+ bξ+1 = 0
has this property. Hence there exist coefficients b1 , b2 , b3 such that (17.62)
has the form

C0(ξ
2 + b1ξ + 1)(ξ2 + b2ξ + 1)(ξ2 + b3ξ + 1) = 0 . (17.63)

The determination of b1 , b2 , b3 by comparison of coefficients requires solving
a cubic equation.

17.7 Transmission of Forces and Torques

Transmission of motion is not the only purpose of mechanisms. Equally im-
portant is transmission of forces and torques. In what follows, the state of
equilibrium of an arbitrary planar or spatial single-degree-of-freedom mecha-
nism is investigated. The planar four-bar is just an example. For every mech-
anism the input variable is called ϕ , and the output variable is called ψ .
Let, furthermore, M1 be the driving torque applied to the input link, and let
M2 be the counteracting torque applied to the output link. Thus, a torque
M1 > 0 is accelerating the mechanism and a torque M2 > 0 is decelerating
it. In a state of equilibrium the ratio M2/M1 has a certain value. It is deter-
mined from the equilibrium condition. According to the principle of virtual
power this is the equation

M1δϕ̇+ (−M2)δψ̇ = 0 . (17.64)
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From the definition of the transmission ratio i = ϕ̇/ψ̇ it follows that δψ̇ =
δϕ̇/i . Therefore, the equilibrium condition is (M1 −M2/i)δϕ̇ = 0 . Hence

M2

M1
= i . (17.65)

This equation is valid in the more general sense that ϕ and ψ are generalized
coordinates (for example, angles or cartesian coordinates), and that M1 , M2

are the associated generalized forces (torques or forces).
In a mechanism for the generation of large forces or torques the trans-

mission ratio i should be as large as possible. Typical examples are shears,
prongs and clamping devices of various kinds. In what follows, the shears
shown in Figs. 17.14a – d are investigated. Each of them is a four-bar. The
input and output variables are the opening widths x1 and x2 between the
points of application of the hand forces F1 and the cutting forces F2 , re-
spectively. In each case the equilibrium condition (17.65) is

F2

F1
=

ẋ1

ẋ2
. (17.66)

In each case the ratio of forces is to be expressed in terms of the lengths given
in the figures.
Solution: Since x1 and x2 describe relative positions, it is unnecessary to de-
clare any particular link as fixed link. In Table 17.1 the velocities ẋ1 and ẋ2

are expressed in terms of relative angular velocities (positive counterclock-
wise). These expressions are obvious from the figures. In each expression

Table 17.1 Ratio F2/F1 in terms of angular velocities

shears (a) (b) (c) (d)

F2

F1
=

ẋ1

ẋ2


1


4

ω10

ω23


1 + 
2


4

ω10

ω20


1 + 
2


2 + 
3 + 
4

ω10

ω23


1


4

ω10

ω23

the two relative angular velocities are related through a constraint equation.
These equations have the following forms.
(a) ẋ3 = −�2ω10 = −�3ω23 ,
(b) The constraint ẋ3 = 0 means that �2ω10 − (�2 + �3)ω20 = 0 ,
(c) ẋ3 = −�3ω10 = −(�2 + �3)ω23 ,
(d) In Fig. 17.14d instantaneous centers are shown. From (15.6) it fol-
lows that ω10/ω30 = L4/L3 and ω23/ω30 = L1/L2 and, consequently,
ω10/ω23 = L2L4/(L1L3) .
With these constraint equations the final results shown in Table 17.2 are
obtained.



17.7 Transmission of Forces and Torques 589

Fig. 17.14 Shears (a), (b), (c) with parameters 
1 , . . . , 
4 and shears (d) with instan-

taneous centers of rotation open and closed (e)

Table 17.2 Ratio F2/F1 in terms of link lengths

shears (a) (b) (c) (d)

F2

F1


1
3


2
4

(
1 + 
2)(
2 + 
3)


2
4

(
1 + 
2)(
2 + 
3)


3(
2 + 
3 + 
4)


1L2


4L3

L4

L1

Comparative evaluation: Figures 17.14a,b,c are drawn with identical lengths
�1 = 35 , �2 = 3.5 , �3 = 6 , �4 = 9 . With these lengths F2/F1 ≈ 6.7 for
the shears (a), F2/F1 ≈ 11.6 for the shears (b) and F2/F1 ≈ 3.3 for the
shears (c). Shears (c) are the only ones in which the object to be cut can
be placed in the position �4 = 0 . Then, F2/F1 ≈ 6.4 . With parameters
of commercially available pruning-shears of this kind a ratio F2/F1 = 15 is
possible. Compared with all other devices these shears have the advantage
that for a given width of the object to be cut the opening angle between the
shearing blades is the smallest.
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In shears (d) the lengths L2 and L3 are constant. The lengths L4 and
L1 depend very much on the opening angle. Both of them decrease mono-
tonically in the process of closing the blades. Figure 17.14e shows the blades
fully closed. The dimensions should be chosen such that in this position the
instantaneous centers P13 , P10 and P20 are almost collinear as shown. In
this case, the ratio L4/L1 is > 1 in every position, and it increases mono-
tonically when the blades are closing. With shears of this kind reinforcement
steel rods of 15 mm diameter can be cut by hand.

17.8 Coupler Curves

Every point fixed in the plane of the coupler traces a coupler curve when the
four-bar is moving through its entire range. It is the complexity of these curves
to which the four-bar owes much of its importance in engineering (see Fig.
17.2). In the following sections properties of coupler curves are investigated.
The curvature of coupler curves was the subject of Sect. 15.3.3 (see Fig.
15.19).

17.8.1 Roberts/Tschebychev Theorem. Cognate
Four-Bars

Figure 17.15 is started by drawing the four-bar A0A1B1B0 and a point C
fixed in the plane of the coupler A1B1 . This plane is represented by the
coupler triangle (A1,B1,C). Subject of investigation is the coupler curve gen-
erated by C . To this basic figure lines A0A2C and B0A3C are added thus
creating two parallelograms. In the next step, triangles similar to the coupler
triangle are drawn as shown with bases A2C and A3C . This results in points
B2 and B3 . Finally, another parallelogram defining the point C0 is drawn.
Point A0 is made the origin of a complex plane. In this complex plane arbi-
trary points such as B1 , for example, are interpreted as complex numbers.
The number is given the name of the point itself. For the addition of complex
numbers the parallelogram rule is valid. This means, for example, that the
number C0 is the sum

C0 = A2 + (B2 −A2) + (C0 −B2) . (17.67)

The coupler triangle (A1,B1,C) defines the complex number

z =
|C −A1|
|B1 −A1| e

iα . (17.68)
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Fig. 17.15 Roberts/Tschebychev theorem

The definition is such that

C −A1 = (B1 −A1)z . (17.69)

For the three terms in (17.67) the figure yields the expressions

A2 = C −A1 = (B1 −A1)z , B2 −A2 = (C −A2)z = A1z , (17.70)

C0 −B2 = B3 − C = (A3 − C)z = (B0 −B1)z . (17.71)

Substitution into (17.67) reveals that

C0 = (B1 −A1 +A1 +B0 −B1)z = B0z = const . (17.72)

Thus, C0 remains fixed independent of the motion of the four-bar A0A1B1B0 .
From this follows

Theorem 17.2. (Roberts4/Tschebychev5) For every four-bar A0A1B1B0

with a coupler point C there exist two additional four-bars A0A2B2C0 and
B0A3B3C0 the coupler points C of which trace one and the same coupler
curve. Because of this property the three four-bars are said to be cognate.

The coupler triangles of the three four-bars are similar, but in each triangle
another angle is opposite the coupler. Equation (17.72) shows that also the
triangle (A0,B0,C0) is similar to the coupler triangle (A1,B1,C). For B2 the
sum of the two Eqs.(17.70) yields

B2 = B1z . (17.73)

4 Samuel Roberts (1827-1913); published 1875
5 Pavnuty Lvovic Tschebychev (1821-1894); he considers a basic figure with arbitrary
coupler triangle, but with identical link lengths r1 = r2 , and he constructs geometrically
one other four-bar ([40] p.273 published in 1878)
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Hence also the triangle (A0,B1,B2) is similar to the coupler triangle and with
the same argument also the triangle (B0,A1,B3).

Imagine that the three four-bars are physically connected at C , and that
B0 and C0 are free to move. The resulting mechanism is deformable subject
to the constraints that (i) links and coupler triangles remain undeformed,
and that (ii) parallelograms remain parallelograms. In Fig. 17.16 a position
is shown in which the links of four-bar A0A1B1B0 are stretched out in the
line A0Ã1B̃1B̃0 . The new positions of the remaining points (denoted by the
symbol tilde) are determined by the three parallelograms not shaded and by
the three similar coupler triangles (shaded). In this position all three four-
bars have their links stretched out. The triangle (A0B̃0C̃0) is similar to the
coupler triangles. It is this figure from which all lengths of the other two
four-bars are most easily obtained.

Figure 17.15 is particularly simple if the coupler point C in the four-
bar A0A1B1B0 is located on the line A1B1 of the coupler. This case is
characterized by α = 0 or π and z real. From this it follows that in all three
four-bars C is located on the coupler line. The positions of C0 , A2 , B2 , A3

and B3 are determined by the equations C0 = B0z , A2 = (B1 − A1)z ,
B2 = B1z , B3 = C + (B0 − A1)z with real z . Figure 17.17 explains how
to proceed geometrically when the four-bar A0A1B1B0 and point C on the
coupler are given. As in Fig. 17.15 A2 and A3 are constructed by drawing the
parallelograms A0A1CA2 and B0B1CA3 . Next, B2 and B3 are constructed,
the former as point of intersection of the lines A0B1 and CA2 and the
latter as point of intersection of the lines B0A1 and CA3 . Finally, C0 is
constructed as in Fig. 17.15 by drawing the parallelogram B2CB3C0 .

Fig. 17.16 Cognate four-bars

of Fig. 17.15 deformed

Fig. 17.17 Cognate four-bars with

coupler point C on the coupler line

In what follows, the general case shown in Fig. 17.15 is considered again.
The parallelity of lines in parallelograms in combination with the rigidity of
coupler triangles has the consequences: If one of the links A0A1 , A2B2 and
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C0B3 is fully rotating, all three of them are fully rotating, and if any one
of them is not fully rotating, none of them is fully rotating. The same state-
ments apply to the links B0B1 , A3B3 and C0B2 . The combination of these
arguments leads to the following statements:
1. If four-bar A0A1B1B0 is a double-rocker of second kind, the other two
four-bars are double-rockers of second kind as well.
2. If four-bar A0A1B1B0 is a double-crank, the other two four-bars are
double-cranks as well.
3. If four-bar A0A1B1B0 is a crank-rocker with crank A0A1 , four-bar
A0A2B2C0 is double-rocker of first kind, and four-bar B0A3B3C0 is a crank-
rocker with crank C0B3 .
4. If four-bar A0A1B1B0 is a double-rocker of first kind, the other two four-
bars are crank-rockers with cranks A0A2 and B0A3 , respectively.

The Roberts-Tschebychev theorem has important engineering applica-
tions. If the generation of some particular coupler curve is required and if
there is not enough space for the chosen four-bar, the same coupler curve
is generated by two other four-bars which are located somewhere else and
which are different in size. The same curve can be generated by still other
linkages. Equation (17.71), C0−B2 = (B0−B1)z , shows that the links C0B2

and B0B1 have identical angular velocities when the four-bars are moving.
Identical angular velocities are produced also by means of three gears with
centers fixed in the base according to Fig. 17.18a . The two outer gears have
arbitrary, but equal diameters, and each of them is rigidly connected with
one of the two links. The central gear has arbitrary diameter and arbitrary
location. When the central gear is set into motion, C is generating the same
coupler curve that is generated by the three four-bars.

The linkage shown in Fig. 17.18b is composed of some of the links in
Fig. 17.15 . The degree of freedom is two. The parallelogram is free to rotate
as rigid body about A0 . It may also deform. Hence it is possible to guide
B1 along an arbitrarily prescribed curve (within a certain workspace). From
(17.73), B2 = B1z , it follows that B2 generates the same curve rotated
through the angle α and multiplied by the factor |z| = A1C/A1B1 . This
linkage is called Sylvester’s plagiograph [38], v.3 .

If, in particular, B1 is guided along a straight line f1 (arbitrary), B2 is
moving along a straight line f2 which is rotated counter-clockwise against f1
through α . The links A0A1B1 with B1 guided along f1 constitute a slider-
crank mechanism, and the links A0A2B2 with B2 guided along f2 constitute
another slider-crank mechanism. With both mechanisms the coupler-fixed
point C traces one and the same coupler curve. Thus, the existence of two
cognate slider-crank mechanisms is proved. The figure explains how to con-
struct one from the other.
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Fig. 17.18 Fig. a: The trajectory of C is identical with the coupler curve generated in

Fig. 17.15. Fig. b: Sylvester’s plagiograph. Cognate slider-crank mechanisms defined by
f1 and f2

17.8.2 Parameter Equations for Coupler Curves

For the graphical display of coupler curves a parameter representation of
the curve is required which determines, in the x, y -system of Fig. 17.19 ,
the coordinates x and y of the coupler point C as functions of the input
angle ϕ . Constant parameters in these functions are � , r1 , r2 , a and the
coordinates η and ζ of C in the coupler plane. Using the inclination angle

Fig. 17.19 Constant parameters η , ζ , b1 , b2 , β and variable coordinates x, y of the
coupler point C
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χ of the coupler as auxiliary variable the coordinates of C are

x = r1 cosϕ+ η cosχ− ζ sinχ , y = r1 sinϕ+ η sinχ+ ζ cosχ . (17.74)

This is the desired parameter representation of the coupler curve. For cosχ
and sinχ the expressions from (17.23) are substituted:

cosχk =
ĀC̄ − (−1)kB̄

√
Ā2 + B̄2 − C̄2

Ā2 + B̄2
,

sinχk =
B̄C̄ + (−1)kĀ

√
Ā2 + B̄2 − C̄2

Ā2 + B̄2
,

⎫⎪⎪⎬
⎪⎪⎭ (k = 1, 2) , (17.75)

Ā = −2a(�−r1 cosϕ) , B̄ = 2r1a sinϕ , C̄ = 2r1� cosϕ−(r21+�2+a2−r22) .
(17.76)

Every input angle ϕ determines two positions of the four-bar and, hence, two
positions of the coupler point C . From Sect. 17.1 it is known that double-
rockers of first kind (Fig. 17.4c) and of second kind (Figs. 17.5a,b,c) have
the property that the two positions can be reached one from the other by
a continuous motion. Hence these four-bars have the property that the cou-
pler curve is unicursal (a single closed curve). In contrast, double-cranks and
crank-rockers have the property that the two positions associated with a sin-
gle input angle cannot be reached one from the other by a continuous motion,
but only by disconnection and reassembly (see Figs. 17.4a and b). This has
the consequence that coupler curves of such four-bars are bicursal (two closed
branches). The transition from unicursal to bicursal coupler curves occurs in
foldable four-bars. In this case, the two closed branches of a bicursal curve
create a singular point. The three coupler curves in Fig. 17.20 demonstrate
the transition from unicursal to bicursal curves. Except for r1 the sets of
parameters (� , r1 , r2 , a , η , ζ) are the same for all three curves. The circle
is explained following Eq.(17.87).

17.8.3 Implicit Equation for Coupler Curves

Figure 17.19 is considered again. This time, the location of the coupler point
C in the coupler plane is specified not by the parameters a , η , ζ , but by
the parameters b1 , b2 , β . The transformation equations between these two
sets of parameters are

b1 =
√
η2 + ζ2 , b2 =

√
(a− η)2 + ζ2 , cosβ =

b21 + b22 − a2

2b1b2
,

a =
√

b21 + b22 − 2b1b2 cosβ , η =
b1(b1 − b2 cosβ)

a
, ζ =

b1b2 sinβ

a
.

⎫⎪⎪⎬
⎪⎪⎭

(17.77)
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Fig. 17.20 Coupler curves of a double-rocker of second kind with r1 = 3.01 (unicursal),

of a foldable four-bar with r1 = 3 and of a crank-rocker with r1 = 2.99 (bicursal). The
other parameters 
 = 8 , r2 = 5 , a = 6 , η = 0 and ζ = 4 are the same in all three
cases. For the circle see (17.87)

For making statements about properties of coupler curves the parameters
b1 , b2 , β are more suitable. First statements are the following.
In the case b1 = 0 (in the case b2 = 0 ), coupler curves are circles or arcs of
circles with radius r1 about A0 (with radius r2 about B0 ). Coupler curves
are confined to the area bounded by the concentric circles about A0 with
radii |r1 − b1| and r1 + b1 and by the concentric circles about B0 with radii
|r2 − b2| and r2 + b2 . In the case b1 , b2 � � , a , r1 , r2 , coupler curves are
approximately circles or arcs of circles.

The goal of the following analysis is an implicit equation of the coupler
curve in the form f(x, y, �, r1, r2, b1, b2, β) = 0 . In developing this equation
the auxiliary variables α and d shown in Fig. 17.19 are used temporarily.
From the figure it is seen that

x = r1 cosϕ+ b1 sinα . (17.78)

The cosine law applied to the triangles (A,D,A0 ) and (A,D,C) yields two
expressions for d2 . The identity of these expressions is the equation

r21 + x2 − 2xr1 cosϕ = b21 + y2 − 2b1y cosα . (17.79)

For r1 cosϕ the expression from (17.78) is substituted. This results in the
following equation which is linear with respect to both sinα and cosα :

2b1(x sinα+ y cosα) = x2 + y2 + b21 − r21 . (17.80)

The same equations are formulated for the triangles (B,D,C) and (B,D,B0 ).
They are obtained by replacing in the above equations x , r1 , b1 , α by
�−x , r2 , b2 , β−α , respectively. To sin(β−α) and to cos(β−α) addition
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theorems are applied. The equation equivalent to (17.80) then reads

2b2

{
[(x− �) cosβ + y sinβ] sinα− [(x− �) sinβ − y cosβ] cosα

}
= (x− �)2 + y2 + b22 − r22 . (17.81)

These two equations are solved for sinα and cosα . Let Δ be the coefficient
determinant. It is

Δ = −4b1b2[(x
2 + y2) sinβ − �(x sinβ + y cosβ)] . (17.82)

The solutions are

cosα =
−2

Δ

{
b2(x

2 + y2 + b21 − r21)[(x− �) cosβ + y sinβ]

− b1x[(x− �)2 + y2 + b22 − r22]
}
,

sinα =
−2

Δ

{
b2(x

2 + y2 + b21 − r21)[(x− �) sinβ − y cosβ]

+ b1y[(x− �)2 + y2 + b22 − r22]
}
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(17.83)

Substitution of these expressions into the constraint equation cos2 α +
sin2 α = 1 eliminates the auxiliary variable α . The resulting equation is
the desired implicit equation of the coupler curve:{

b2(x
2 + y2 + b21 − r21)[(x− �) sinβ − y cosβ]

+b1y[(x− �)2 + y2 + b22 − r22]
}2

+
{
b2(x

2 + y2 + b21 − r21)[(x− �) cosβ + y sinβ]

−b1x[(x− �)2 + y2 + b22 − r22]
}2

= 4b21b
2
2

[
(x2 + y2) sinβ − �(x sinβ + y cosβ)

]2
. (17.84)

In multiplying out the factor (x2 + y2) is encountered repeatedly. The equa-
tion has the form

p1(x
2 + y2)3 + (x2 + y2)2(p2x+ p3y) + (x2 + y2)(p4x

2 + p5xy + p6y
2

+p7x+ p8y) + p9x
2 + p10xy + p11y

2 + p12x+ p13y + p14 = 0 . (17.85)

With the abbreviations p = b21 − r21 , q = �2 + b22 − r22 , λ = 2b1b2 cosβ =
b21 + b22 − a2 , aη = b1b2 sinβ and aζ = b1(b1 − b2 cosβ) (see (17.77)) the
coefficients are
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p1 = a2 , p8 = 2
aζ(λ+ r21 + r22 − 
2 − a2) ,

p2 = −2
a(a+ η) , p9 = Z − 2
2(2a2ζ2 + λp) ,

p3 = −2
aζ , p10 = 4
2aζ(p− λ) ,

p4 = p6 + 4
2aη , p11 = Z − 
2λ2 ,

p5 = 4
2aζ , p12 = 
p(λq − 2b22p) ,

p6 = 
2b22 + p(b22 − b21 − a2) + 2a(qη − 2aζ2) , p13 = −2
aζpq ,

p7 = 
 [λ(3p+ q) + 8a2ζ2 − 4(b22p+ b21q)] , p14 = 
2b22p
2 ,

Z = p(2
2b22 − λq) + b22p
2 + b21q

2 .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(17.86)

The highest-order term p1(x
2 + y2)3 shows that on each of the imaginary

lines y = +ix and y = −ix the coupler curve has a triple-root at infinity.
The curve is a tricircular sextic.

Proposition: An arbitrary circle with center point coordinates x0, y0 and
with radius r intersects the coupler curve in six (not necessarily real) points.
The following proof provides a method for calculating the intersection points.
With a parameter γ the circle has the parameter equations x = x0 +
r cos γ , y = y0 + r sin γ . This yields x2 + y2 = r2 + x2

0 + y20 + 2r(x0 cos γ +
y0 sin γ) . These expressions are substituted into (17.85). The result is an
equation of third order in cos γ and sin γ . The substitution z = tan γ/2
leads to a 6th-order polynomial equation for z . End of proof.

The existence of six intersection points of a coupler curve and a circle can
be expressed in the following alternative form. Given three circles a , b , c
and a triangle (A,B,C), there exist six (not necessarily real) positions of the
triangle in which A lies on a , B on b and C on c . This result is important
for Sect. 17.10 on planar robots.

The equation Δ = 0 can be written in the form(
x− �

2

)2
+
(
y − �

2
cotβ

)2
=
( �

2 sinβ

)2
. (17.87)

It is the equation of the circle shown in Fig. 17.21 . The circle passes through
A0 and B0 . It has the central semi-angle β and, hence, the peripheral angle
β . It was shown that β is also the angle at C0 in the triangle (A0,B0,C0)
of Fig. 17.15 . Therefore, also C0 is located on the circle. From this fact
Roberts concluded Theorem 17.2 on the existence of three cognate four-bars
generating one and the same coupler curve. The three centers A0 , B0 and C0

are referred to as singular foci, and the circle itself is called circle of singular
foci. Since Δ equals zero on the circle, cosα and sinα are indeterminate if
the coupler point is located on the circle. Indeterminate means that at least
two different positions of the four-bar generate one and the same point of the
coupler curve. In other words: The coupler curve intersects the circle at this
point at least twice.

Figure 17.22 proves the inverse statement: If the coupler point C is at one
and the same point in two (or more) positions of the four-bar, this multiple
point lies on the circle. The coupler triangle is (A1,B1,C) in one position
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Fig. 17.21 Circle of singular

foci

Fig. 17.22 Proof that double points of the

coupler curve lie on the circle of singular foci

and (A2,B2,C) in the other. It must be shown that �(A0,C,B0) equals the
angle β in the coupler triangle. The dashed lines A0C and B0C bisect the
auxiliary angles γ and δ . With ψ as auxiliary angle β = γ + ψ = δ + ψ
and, consequently, δ = γ . Hence �(A0,C,B0)= γ/2 + ψ + δ/2 = β . End of
proof.

There is only a single type of double point of a coupler curve which, in
general, is not located on the circle (17.87). This is the singular point on the
coupler curve of a foldable four-bar associated with the folded position. It is
a point belonging to two branches of the curve and to a single position of the
four-bar. Example: The four-bar with parameters � = 8 , r1 = 3 , r2 = 5 ,
a = 6 is a foldable four-bar. The coupler point η = 0 , ζ = 4 generates the
coupler curve shown in Fig. 17.20 which has two ordinary double points on
the circle (17.87) and the singular double point related to the folded position.

Conditions for the singular double point to lie on the circle of singular foci
are formulated as follows. Let the parameters of the foldable four-bar satisfy
the condition � + r1 = a + r2 . In the folded position the coupler point C
has the coordinates x = η − r1 , y = ζ . The condition to lie on the circle
Δ = 0 is, according to (17.82),

[b21 + r21 + r1�− η(2r1 + �)] sinβ − ζ� cosβ = 0 (17.88)

and with η and ζ from (17.77)

a(b21 + r21 + r1�)− b21(2r1 + �) + 2r1b1b2 cosβ = 0 (17.89)

and with cosβ from (17.77)

(�+ r1 − a)(r1a− b21) + r1b
2
2 = 0 . (17.90)
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With �+r1−a = r2 this is the first equation below. Both equations together
constitute the desired conditions.

a =
b21
r1

− b22
r2

, � = a+ r2 − r1 . (17.91)

In terms of dimensionless parameters μ1 , μ2 the conditions are

b1 = μ1r1 , b2 = μ2r2 ,

a = μ2
1r1 − μ2

2r2 , � = (μ2
1 − 1)r1 − (μ2

2 − 1)r2 .

}
(17.92)

The parameters μ1 , r1 , μ2 , r2 can be chosen arbitrarily subject to the con-
ditions that (i) a > 0 , (ii) a , b1 , b2 satisfy the triangle inequalities and
(iii) � > 0 .

In what follows, four-bars are considered which are not foldable. Like any
other circle the circle of singular foci (17.87) intersects a coupler curve at
not more than six real points. Hence a coupler curve can have at most three
double points. In Fig. 17.23 a coupler curve with three double points is shown.
It is generated by a double-rocker with parameters � = 10 , r1 = 4 , a =
4 , r2 = 9 , η = 2 , ζ = 4 . Two double points may coincide in a quadruple
point. An example is shown in Fig. 17.28 .

A double point degenerates into a cusp if the loop associated with the
double point contracts into a single point. From this it follows that also
cusps lie on the circle (17.87), and that the maximum number of cusps is
three. The condition for a cusp to exist is that the coupler point C is located
on the moving centrode of the coupler. In the course of rolling of the moving
centrode on the fixed centrode the point C generates the cusp when it is the
point of contact, i.e., the instantaneous center of rotation of the coupler and,
hence, the intersection point of the input and the output link of the four-bar.

Fig. 17.23 Coupler curve with three double points on the circle with Eq.(17.87). Double-

rocker with parameters 
 = 10 , r1 = 4 , a = 4 , r2 = 9 , η = 2 , ζ = 4



17.8 Coupler Curves 601

Figure 17.24 demonstrates that this may happen in altogether four different
configurations. The common feature is that the segments of lengths (r1, b1)
and (r2, b2) are pairwise collinear. In any such configuration the base A0B0

is seen from C either under the angle β or under the angle π − β . This
proves again that cusps lie on the circle (17.87). In the four-bar A0ABB0

drawn with thick lines the cosine law applied to the triangles (A0,B0,C) and
(A,B,C) yields the equations

�2 = (r1 + b1)
2 + (r2 + b2)

2 − 2(r1 + b1)(r2 + b2) cosβ ,

a2 = b21 + b22 − 2b1b2 cosβ .

}
(17.93)

Elimination of cosβ results in a condition for the existence of cusps:

b1b2[(r1+b1)
2+(r2+b2)

2−�2]−(r1+b1)(r2+b2)(b
2
1+b22−a2) = 0 . (17.94)

With reference to Fig. 17.24 (b1, b2) can be replaced by (−b1, b2) , (b1,−b2)
and (−b1,−b2) .

Example: To be determined are parameters of coupler curves of foldable
four-bars of the kind �+r1 = a+r2 which have not only the singular double
point, but also a cusp on the circle of singular foci.
Solution: The parameters must satisfy (17.92) as well as (17.94). Substitution
of the expressions (17.92) into (17.94) results in

(μ1 + μ2 − 1)[μ1(1 + μ1)r1 − μ2(1 + μ2)r2]
2 = 0 , i.e.,

Fig. 17.24 Four different four-
bars A0ABB0 in positions in
which the coupler point C coin-
cides with the instantaneous center

of rotation of the coupler thereby
passing through a cusp of its cou-
pler curve

Fig. 17.25 Coupler curve
with three cusps on the circle
with Eq.(17.87). Symmetrical
double-rocker with parameters

r1 = a = r2 = b1 = b2 = .5
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either μ2 = 1− μ1 (μ1 , r1 , r2 arbitrary) (a)

or r2 =
μ1(1 + μ1)

μ2(1 + μ2)
r1 (μ1 , μ2, r1 arbitrary) (b) .

⎫⎬
⎭ (17.95)

As is the case in (17.94) (μ1 , μ2 ) may be replaced by (−μ1 , μ2 ) , (μ1 , −μ2 )
and (−μ1 , −μ2 ) . Parameters of coupler curves having the desired proper-
ties are determined either from (a) or from (b) . Condition (b) is a special
case. Substitution of this expression for r2 and of b1 = μ1r1 , b2 = μ2r2 into
the second Eq.(17.93) shows that cosβ = 1 . This means that the generating
point of the coupler curve lies on the coupler. End of example.

Figure 17.25 is proof of the existence of coupler curves with three cusps. A
coupler curve has three cusps if in one of the three positions both A and B
are located on the circle with the diameter A0–B0 (Cayley [6] v.9:551–580 ,
Mayer [27]). Let the position drawn in thick lines in Fig. 17.24 be modified
so as to satisfy this condition. The angles in the coupler triangle are denoted
β , �(CBA) = α and �(CAB) = γ . Proposition: The triangles (C,A0,B0)
and (C,A,B) are congruent with �(CA0B0) = α and �(CB0A0) = γ .
Proof: It suffices to prove the first identity. This is done in three steps.
1. �(CA0B) = π/2− β (right-angled triangle).
2. The center 0 of the said circle is the apex of the three isosceles triangles
(A0,0,A) , (A,0,B) and (B,0,B0) . The second triangle has the apex angle
�(A0B) = π − 2β (twice the angle subtended by A–B ). Hence �(BA0) =
�(AB0) = β .
3. The angles �(CA0B0) = �(A0A0) and �(CBA) = α are both equal
to π− β− γ . End of proof. The bisected isosceles triangles establish for the
internal angles of the triangles the formulas

cosα = ±r1
�

, cosβ =
a

�
, cos γ = ±r2

�
, α+β+γ = π . (17.96)

The signs ± take into account that, formally, the sign of r1 and/or r2 can
be reversed. The cosines of the internal angles β1,2,3 of an arbitrary triangle
satisfy the equation6

3∑
i=1

cos2 βi + 2
3∏

i=1

cosβi = 1 . (17.97)

Hence Eqs.(17.96) are equivalent to

a2 + r21 + r22
�2

± 2
ar1r2
�3

= 1 . (17.98)

This equation shows that � is the largest link length. If two of the three
ratios r1/� , r2/� , a/� are given, the equation is a quadratic equation for

6 Proved by substituting β3 = π − (β1 + β2)
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the third. The ratios determine the angles in the coupler triangle, the side
lengths b1 = a sinα/ sinβ , b2 = a sin γ/ sinβ and the position of the cusp.
This cusp is referred to as principal cusp because it is the only one in which
both endpoints of the coupler are located on the circle with the diameter
A0–B0 . In the other two positions only one of them is on this circle. More
precisely, in the second position the endpoint originally at A has moved
to the reflection A′ of A in the line A0B0 , and the cusp is on the line

A0A
′ at the distance |r1 − b1| from A0 . Similarly, in the third position the

endpoint originally at B has moved to the reflection B′ of B in the line

A0B0 , and the cusp is on the line B0B
′ at the distance |r2 − b2| from B0 .

Simple algebra reveals that the distances of the second and of the third cusp
from the principal cusp are � sin 2α/ sinβ and � sin 2γ/ sinβ , respectively.
These expressions resemble those for b1 and b2. According to the Roberts-
Tschebychev Theorem three cusps are generated by three cognate four-bars.
Each cusp is the principal cusp for one of these four-bars. In Fig. 17.25 the
three cognate four-bars are congruent.

The conditions (17.96) are particularly simple in the case of foldable four-
bars. Example: Foldable four-bars of the kind a+ r2 = �+ r1 . With (17.96)
this equation is cosβ + cos γ = 1 + cosα = 1− cos(β + γ) or

(1 + cosβ) cos γ − sinβ sin γ = 1− cosβ . (17.99)

This is an equation for γ in terms of β . It has real roots γ for angles β
satisfying the condition cosβ ≥ 2−√

5 (β < 104◦ approximately).
Additional material on coupler curves is found in Mayer [27] and Müller

[28, 30, 31].

17.8.4 Symmetrical Coupler Curves

Coupler curves which are symmetrical with respect to the base line A0B0

have an Eq.(17.84) in which y appears in terms of even orders only. For
this it is necessary that sinβ = 0 . This means that the generating coupler
point C lies on the coupler line AB (not necessarily between the points
A and B ). The coupler curve in Fig. 17.2 is an example. According to the
Roberts-Tschebychev theorem every such coupler curve is generated by two
more four-bars. Also in these four-bars the coupler point lies on the coupler
line.

In Eq.(17.84) for symmetrical coupler curves with sinβ = 0 the parame-
ters are b1 = η and b2 = η−a where η is the parameter used in Fig. 17.19 .
Of particular interest are intersection points of the coupler curve with the
axis of symmetry. With y = 0 the following equation is obtained for these
points which is of third order in x and in η :
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(η − a)(x− �)(x2 + η2 − r21)− ηx[(x− �)2 + (η − a)2 − r22] = 0 . (17.100)

For given parameters the equation has either one or three real roots x . For
this reason one does not expect coupler curves which do not intersect the
x -axis. Such coupler curves do exist, however. Example: If η = 2a and
r2 = a , the equation has the roots x1 = � and x2,3 = �±

√
4a2 + �2 − r21 .

For the parameter values � = 1 , a = 1.3 and r1 = 0.4 the three roots
are real. Yet, the coupler curve does not intersect the x -axis. In Fig. 17.38
the branch of this curve above the x -axis is shown. The three real roots
are marked B0 , P1 and P2 . They represent singular points of the coupler
curve. In order to understand this phenomenon (17.80) and (17.81) must be
formulated for the special case b1 = η , b2 = η − a , β = 0 , y = 0 :

x2 + η2 − 2xη sinα = r21 , (x− �)2 +(η− a)2 − 2(x− �)(η− a) sinα = r22 .
(17.101)

Each equation expresses the cosine law for one of the triangles of Fig. 17.13 .
The elimination of sinα is possible without imposing the constraint equation
cos2 α + sin2 α = 1 . Simple linear combination of the equations results in
(17.100). Only those real solutions of this equation are admissible solutions
for which Eqs.(17.101) yield | sinα| ≤ 1 .

Symmetrical coupler curves of a different nature are generated if the four-
bar and the coupler triangle satisfy the symmetry conditions r1 = r2 = r
and b1 = b2 = b , respectively. Fig. 17.26 shows the system in its sym-
metrical trapezoidal position. The coupler curve of point C is symmetrical
with respect to the midnormal of the base A0B0 . The figure shows also one
of the cognate four-bars which, according to the Roberts-Tschebychev the-
orem, generate the same coupler curve. The third four-bar is the reflection
of the second in the midnormal of the base A0B0 . The parameters of the
second four-bar are denoted r′1 , a

′ , r′2 , b
′
1 , b

′
2 . They satisfy the condition

r′2 = b′2 = a′ . Hence also this is a sufficient condition for the coupler curve
to be symmetric. The symmetry axis passes through C0 , and its inclination
angle against the base line C0A0 is β/2 . The angle at C is β′ = π/2−β/2 .

In Fig. 17.27 this kind of four-bar A0A1B1B0 with coupler point C is
shown again, but this time with the usual notation, i.e., r2 = b2 = a instead
of r′2 = b′2 = a′ and β instead of β′ . The length of the input link is r .
The symmetry axis of the coupler curve passes through B0 under the angle
π/2− β against the base line. The symmetry axis is made the y -axis of an
x, y -system with origin B0 . At B1 the transmission angle 2α is shown. It is
convenient to use α as independent variable for the x, y-coordinates of C .
From isosceles triangles with the apex B1 the auxiliary quantities � and d
are obtained:

� = 2a cos(α− β) , d = 2a sinα . (17.102)

The angle δ appears also in the triangle (A0,B0,A1) . The cosine law r2 =
d2 + �2 − 2d� cos δ yields
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Fig. 17.26 Cognate four-bars

generating a symmetrical coupler
curve

Fig. 17.27 Four-bar generating a coupler

curve with symmetry axis y

cos δ =
4a2 sin2 α+ �2 − r2

4a� sinα
(17.103)

With these expressions the coordinates of C are

y = � cos δ =
4a2 sin2 α+ �2 − r2

2� sinα
cos(α− β)

=
1

2�

[
4a2(cosβ sinα cosα+ sinβ sin2 α)

+(�2 − r2)(sinβ + cosβ cotα)
]
, (17.104)

x = ±� sin δ = ±
√
�2 − y2

= ±
√
4a2 cos2(α− β)− y2 . (17.105)

These equations find an application in Sect. 17.12.3.
From the figure it is seen that intersection points of the coupler curve with

the symmetry axis are characterized by δ = 0 . In such positions A1 lies on
the base line. Then either d = � − r or d = � + r and y = � . Equations
(17.102) yield the associated angles α and the stationary values y :

sinα =
�∓ r

2a
, y = 2a cos(α− β) . (17.106)

The position d = �− r is always possible, the position d = �+ r only if the
four-bar is a crank-rocker. It is left to the reader to show that the positions
d = � − r and d = � + r of a crank-rocker yield identical values of y if
the parameters satisfy the condition r2+ �2 cot2 β = 4a2 cos2 β . In this case,
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the coupler curve has a quadruple point on the circle of singular foci. In Fig.
17.28 these conditions are satisfied.

Fig. 17.28 Symmetrical coupler curve with quadruple point on the circle of singular foci.
Crank-rocker with parameters 
 = 2

√
6 , r1 = 1 , r2 = a = b1 = b2 = 3

17.9 Slider-Crank. Inverted Slider-Crank

The slider-crank mechanism shown in Fig. 17.29a is derived from the four-bar
in Fig. 17.19 by moving the point B0 in y-direction to −∞ . This has the
effect that the endpoint B of the coupler of length a is guided along the
straight line y = h = const. In the inverted slider-crank mechanism of Fig.
17.29b the coupler of length a has become the fixed link, while the fixed
link with the parameter h has become the moving coupler. The parameter
h can be positive or zero or negative. Arbitrarily, it is considered as positive
in both figures. In both figures the crank angle ϕ is the input variable, and
the inclination angle χ of the coupler and the position s of the slider are
output variables. Every value of ϕ is associated with two positions of the
mechanism. In Fig. 17.29a the two values of χ and s are determined by the
equations

sinχ1,2 =
h− r sinϕ

a
, s1,2 = r cosϕ±

√
a2 − (h− r sinϕ)2 . (17.107)

In Fig. 17.29b the output variables are obtained from two equations express-
ing the fact that the slider has the coordinates x = a and y = 0 :

r cosϕ+ h cosχ+ s sinχ = a , r sinϕ+ h sinχ− s cosχ = 0 . (17.108)

Decoupling produces the equations
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Fig. 17.29 Slider-crank (a) and inverted slider-crank (b)

(r cosϕ− a) cosχ+ r sinϕ sinχ = −h ,
s = r sinϕ cosχ− (r cosϕ− a) sinχ .

}
(17.109)

The first equation has two solutions cosχ1,2 and sinχ1,2 . The associated
solutions s1,2 are obtained from the second equation. In both figures the
equivalent to Grashof’s Theorem 17.1 is

Theorem 17.3. The link with the shorter of the two lengths a and r is fully
rotating relative to all other links if

h2 ≤ (a− r)2 . (17.110)

Coupler curves: In both figures the coupler-fixed point C is specified by
constant parameters b1 , b2 and β . In Fig. 17.29a the notation is the same
as in Fig. 17.19, whereas in Fig. 17.29b b2 and β are defined differently.
Implicit equations for coupler curves in the form f(x, y, r, b1, b2, β) = 0 are
obtained from two linear equations for the sine and cosine of the auxiliary
variable angle α . For both figures (17.78) and (17.79) are valid. Hence also
the resulting Eq.(17.80) is valid:

2b1(x sinα+ y cosα) = x2 + y2 + b21 − r2 . (17.111)

In Fig. 17.29a the second linear equation for cosα and sinα is

y = h+ b2 cos(β − α) . (17.112)

In Fig. 17.29b the coordinates of point E satisfy the three equations

xE = x− b2 sin(α− β) , yE = y − b2 cos(α− β) , xE = a− yE cot(α− β) .
(17.113)
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Elimination of xE and yE produces the desired second linear equation:

(x− a) sin(α− β) + y cos(α− β) = b2 . (17.114)

To this equation and to (17.112) addition theorems are applied. Following
this, the two sets of equations, one for Fig. 17.29a and one for Fig. 17.29b, are
solved for cosα and sinα . As in Eqs.(17.83) for the four-bar these solutions
have the forms cosα = U/Δ and sinα = V/Δ with the pertinent coefficient
determinants U , V and Δ . The desired implicit equations of the coupler
curves are the equations cos2 α + sin2 α = 1 , i.e., U2 + V 2 = Δ2 . The
equation Δ = 0 determines the locus of double points and cusps of coupler
curves. Omitting elementary intermediate steps only the final equations are
documented.

Figure 17.29a: The equation of the coupler curve is the quartic[
b2(x

2 + y2 + b21 − r2) sinβ − 2b1x(y − h)
]2

+
[
b2(x

2 + y2 + b21 − r2) cosβ − 2b1y(y − h)
]2

= 4b21b
2
2(x cosβ − y sinβ)2 . (17.115)

The equation Δ = 0 defines the straight line (line f in Fig. 17.29a)

y = x cotβ . (17.116)

Since a straight line intersects a quartic in at most four real points, the
maximum number of double points and of cusps is two. In the context of Fig.
17.18b the existence of two cognate slider-crank mechanisms producing one
and the same coupler curve has been proved.

Figure 17.29b: The equation of the coupler curve is the tricircular sextic{
(x2 + y2 + b21 − r2)[y sinβ + (x− a) cosβ]− 2b1b2x

}2

+
{
(x2 + y2 + b21 − r2)[y cosβ − (x− a) sinβ]− 2b1b2y

}2

= 4b21

{
x[y cosβ − (x− a) sinβ]− y[y sinβ + (x− a) cosβ]

}2

. (17.117)

The equation Δ = 0 defines the circle of singular foci (circle c in Fig. 17.29b)(
x− a

2

)2
+
(
y − a

2
cotβ

)2
=
( a

2 sinβ

)2
. (17.118)

This equation is formally identical with Eq.(17.87) for the four-bar. Both a
and � denote the length of the fixed link. The definitions of β are different,
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however. The maximum number of double points and of cusps of coupler
curves on the circle is three. It can be shown that the third singular focus
coincides with the singular focus A0 . This has the consequence that there
are no cognate inverted slider-crank mechanisms.

17.10 Planar Parallel Robot

The triangular platform (A,B,C) of the planar parallel robot in Fig. 17.30
is positioned by means of three telescopic arms with controllable lengths ri
( i = 1, 2, 3 ) which are pivoted at A0 , B0 , C0 . The platform serves as
carrier of tools or of work pieces7. The characterization as parallel points to
the fact that the platform is positioned by arms in a parallel arrangement
in contrast to a serial robot where it is positioned by a single arm with a
series of links and joints (see Sect. 5.7). Parallel robots are able to manipulate
heavier loads than serial robots, and they position them with higher accuracy
and with greater stiffness.

Fig. 17.30 Planar parallel robot. Four-bar A0ABB0 with coupler curve generated by C .
The rate of change ṙ3 of the leg length r3 causes the platform to rotate with angular
velocity ω3 = ṙ3/(�3 cosα3) about P3

7 Other types of three-legged planar robots see in Hayes/Husty [21]
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The planar parallel robot poses the following kinematics problem. Alto-
gether nine parameters are given. These are three quantities specifying the
triangle (A,B,C), the arm lengths ri ( i = 1, 2, 3 ) and, in the x, y -system
shown, the x -coordinate of B0 and the x, y -coordinates of C0 . To be deter-
mined are all possible positions of the triangle (A,B,C).

Solution: Imagine that joint C connecting the platform with arm 3 is
eliminated. Point C is located on the coupler curve generated by C fixed
to the four-bar A0ABB0 and also on the circle k of radius r3 about C0 .
The four-bar and the coupler curve in Fig. 17.30 are copied from Fig. 17.23.
The circle k intersects the coupler curve at six points. This is the maximum
possible number of points. How to calculate these points was explained fol-
lowing (17.85). Each point determines a possible position of the robot. This
concludes the position analysis.

Next, the velocity state is analyzed. Imagine that the telescopic joint in
arm 3 is a passive joint so that this arm adapts itself freely to motions of the
four-bar A0ABB0 with fixed lengths r1 and r2 . The platform (A,B,C) has
relative to the base the instantaneous center P3 at the intersection of arms
1 and 2 . Let ω3 be the angular velocity of the coupler (ω3 > 0 counter-
clockwise). The velocity of C is v3 = ω3 × �3 . It is tangent to the coupler
curve. As is shown α3 denotes the angle between r3 and v3 in the case
ω3 > 0 . Arm 3 changes its length with the velocity ṙ3 = ω3�3 cosα3 . Con-
versely, if ṙ3 is prescribed, ω3 = ṙ3/(�3 cosα3) . This angular velocity and
the instantaneous center P3 determine the velocities of A , B and C . The
formula for ω3 shows that ṙ3 �= 0 is possible only if in the position under
investigation the coupler curve and the circle k are not in tangential contact.
The quantities �3 and cosα3 are calculated from the triangle (C0,P3,C) .

Similar statements are valid when in the position under investigation arm
1 only or arm 2 only experiences a rate of change of length ṙ1 or ṙ2 , respec-
tively. In Fig. 17.30 also the instantaneous centers P1 , P2 together with the
associated quantities �1 , α1 and �2 , α2 are shown. When the three rates
of change ṙ1 , ṙ2 , ṙ3 occur simultaneously, the superposition principle yields
the resultant angular velocity

ω =
3∑

i=1

ṙi
�i cosαi

. (17.119)

The velocity of each of the points A , B , C is the sum of three velocities
two of which are collinear. The instantaneous center of the platform is the
intersection point of the normals of the velocities of A , B and C .
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17.11 Four-Bars with Prescribed Transmission
Characteristics

The transmission characteristic is the relation between input angle ϕ and
output angle ψ . In what follows, the implicit form (17.9) is used:

−�r1 cosϕ+ �r2 cosψ = r1r2 cos(ϕ− ψ) +
1

2
[a2 − (r21 + �2 + r22)] . (17.120)

It depends upon the three parameters r1/� , r2/� and a/� where � is a
given unit length. In some engineering applications it is required that a four-
bar produces prescribed pairs of input and output angles (ϕk, ψk) (k =
1, 2, . . .) . In other applications it is required that some prescribed function
ψ = f(ϕ) be optimally approximated over a certain interval 0 ≤ ϕ ≤ ϕmax .
These and related problems have been treated extensively in the literature
(see, for example, Lichtenheldt/Luck [26], Hain [18, 19], Soni [36]). In what
follows, a few problems are discussed in detail.

17.11.1 Prescribed Pairs of Input-Output Angles

First, the case is treated that three pairs of angles (ϕk, ψk) (k = 1, 2, 3) are
prescribed. Equation (17.120) yields the three equations

−�r1 cosϕk+ �r2 cosψk = r1r2 cos(ϕk−ψk)+
1

2
[a2− (r21+ �2+r22)] (17.121)

(k = 1, 2, 3) . The differences first minus second and second minus third
equation have the general forms

A1�r1 +B1�r2 = C1r1r2 , A2�r1 +B2�r2 = C2r1r2 (17.122)

with given constants Ai , Bi , Ci (i = 1, 2) . Division by r1r2 results in two
linear equations for �/r1 and �/r2 with uniquely determined real solutions.
These solutions are substituted into one of the Eqs.(17.121). This equation
then determines a2/�2 . The solution thus obtained is useful only if, first,
r1 > 0 , r2 > 0 , a2/�2 > 0 and, second, the four-bar with these link lengths
is capable of producing the prescribed pairs of angles in the desired order and
without disconnection and reassembly.

In most engineering applications it is not required that the four-bar pro-
duces prescribed pairs of angles (ϕk, ψk) (k = 1, 2, . . .) . Instead, pairs of
angular differences (ϕk − ϕ0, ψk − ψ0) (k = 1, 2, . . .) are prescribed where
the pair (ϕ0, ψ0) is an unspecified initial position of the four-bar. The angles
ϕ0 and ψ0 are free parameters so that the total number of free parameters
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is five. In this formulation of the problem (17.120) must be satisfied for the
pair (ϕ0, ψ0) and for up to four pairs (ϕ0+ϕk, ψ0+ψk) (k = 1, 2, 3, 4) . The
previous discussion has shown that results may be useless for various reasons
(negative or imaginary link lengths, wrong order etc.). Therefore, only three
pairs (ϕ0 + ϕk, ψ0 + ψk) (k = 1, 2, 3) are prescribed. This has the conse-
quence, that the solutions for ψ0 , r1 , r2 and a are functions of ϕ0 . This
initial angle ϕ0 is a free parameter which is chosen later so as to arrive at a
useful solution. The altogether four equations are

−�r1 cosϕ0+�r2 cosψ0 = r1r2 cos(ϕ0−ψ0)+
1

2
[a2−(r21+�2+r22)] , (17.123)

−�r1 cos(ϕ0 + ϕk) + �r2 cos(ψ0 + ψk) = r1r2 cos(ϕ0 + ϕk − ψk − ψ0)

+
1

2
[a2 − (r21 + �2 + r22)] (k = 1, 2, 3) . (17.124)

The first equation is subtracted from each of the remaining three equations.
The differences are then divided by r1r2 . This results in the equations

�

r2
[cos(ϕ0 + ϕk)− cosϕ0]− �

r1
[cos(ψ0 + ψk)− cosψ0]

= cos(ϕ0 − ψ0)− cos(ϕ0 + ϕk − ψk − ψ0) (k = 1, 2, 3) .(17.125)

These are three linear inhomogeneous equations for �/r1 and �/r2 . For a so-
lution to exist it is necessary that the (3×3) -coefficient determinant including
the right-hand side terms be zero. This condition results in an equation in
which ϕ0 and ψ0 are the only unknowns. In order to be able to express
ψ0 as function of ϕ0 Eqs.(17.125) are rewritten with the help of addition
theorems in such a way that cosψ0 and sinψ0 are isolated. The equations
thus rewritten are

ak
�
r2 + (bk cosψ0 + ck sinψ0)

�
r1 = dk cosψ0 + fk sinψ0 ,

ak = cos(ϕ0 + ϕk)− cosϕ0 , dk = cosϕ0 − cos(ϕ0 + ϕk − ψk) ,
bk = 1− cosψk , fk = sinϕ0 − sin(ϕ0 + ϕk − ψk) ,
ck = sinψk

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(17.126)
(k = 1, 2, 3) . The condition is∣∣∣∣∣∣

a1 b1 cosψ0 + c1 sinψ0 d1 cosψ0 + f1 sinψ0

a2 b2 cosψ0 + c2 sinψ0 d2 cosψ0 + f2 sinψ0

a3 b3 cosψ0 + c3 sinψ0 d3 cosψ0 + f3 sinψ0

∣∣∣∣∣∣ = 0 (17.127)

or explicitly
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A cos2 ψ0 +B sin2 ψ0 + 2C cosψ0 sinψ0 = 0 , (17.128)

A = a1(b2d3 − b3d2) + a2(b3d1 − b1d3) + a3(b1d2 − b2d1) ,

B = a1(c2f3 − c3f2) + a2(c3f1 − c1f3) + a3(c1f2 − c2f1) ,

C = 1
2 [a1(b2f3 − b3f2) + a2(b3f1 − b1f3) + a3(b1f2 − b2f1)
+ a1(c2d3 − c3d2) + a2(c3d1 − c1d3) + a3(c1d2 − c2d1)] .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (17.129)

In the special case A = B �= 0 , the solutions are ψ0 = − 1
2 sin

−1(A/C) and

ψ0 = π− 1
2 sin

−1(A/C) . In the special case A �= 0 , B = 0 , the solutions are
ψ0 = ±π/2 and ψ0 = − 1

2 tan
−1 A/(2C) and ψ0 = π− 1

2 tan
−1 A/(2C) . In all

other cases division by cos2 ψ0 results in the quadratic equation B tan2 ψ0+
2C tanψ0 + A = 0 . Each solution tanψ0 determines two angles ψ0 which
differ by 180◦ . With each real solution ψ0 two out of the three Eqs.(17.126)
determine r1/� and r2/� . With these solutions r1/� and r2/� (17.123)
determines a2/�2 . At this point the desired formulation of the unknowns
ψ0 , r1 , r2 and a as functions of the free parameter ϕ0 is accomplished.
The variation of ϕ0 in search of a useful solution must be done numerically.

17.11.2 Prescribed Transmission Ratios

In this section four-bars are determined which produce two prescribed pairs of
angles (ϕk, ψk) (k = 1, 2) and, in the second position (ϕ2, ψ2) , a prescribed
value i2 of the transmission ratio i = ϕ̇/ψ̇ . The first two conditions yield
the equations (see (17.121))

−�r1 cosϕk+ �r2 cosψk = r1r2 cos(ϕk−ψk)+
1

2
[a2− (r21+ �2+r22)] (17.130)

(k = 1, 2) . As before, the difference of these two equations produces the
first Eq.(17.122). For the transmission ratio (17.31) is used. This yields an
equation of the same type:

−�r1 sinϕ2 +
�r2
i2

sinψ2 = r1r2

(
1− 1

i2

)
sin(ϕ2 − ψ2) . (17.131)

This is the second Eq.(17.122). The further steps of solution are as before.
The method of solution for five parameters (see (17.123), (17.124)) remains

the same if one or two of the Eqs.(17.124) are replaced by the requirement
that the transmission ratio is prescribed for one or two of the remaining pairs
of angles.
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17.11.3 Jeantaud’s Steering Mechanism

In an automobile the steering mechanism causes the axes of the front wheels
to turn about points A0 and B0 fixed in the car body. In Fig. 17.31 the axes
are shown in a vertical projection during a left turn. With an ideal steering
mechanism the turning angles α and β are coordinated such that the two
front axes and the rear axis of the car have, independent of the radius R of
the curve, a common intersection point. The lengths � and h are constant
parameters. From triangles the equations are obtained: h = (R− �/2) tanα ,
h = (R+ �/2) tanβ . Elimination of the variable R results in

cotβ − cotα =
�

h
. (17.132)

This equation defines the function β(α) . It is an odd function. The curve
denoted k in Fig. 17.32 is the graph of this function for the specific parameter
value �/h = 0.5 in the interval of interest up to the maximum steering angles
(αmax, βmax) . If, for example, αmax = 40◦ , (17.132) yields βmax ≈ 30.6◦ .

Jeantaud invented the steering mechanism shown in Fig. 17.33 . It is a
symmetrical four-bar approximating (17.132). The input link and the output
link of equal length r are rotating about A0 and B0 , respectively. They
are rigidly connected with the front axes. The figure shows the mechanism
in the symmetrical trapezoidal position (front axes not turned) and in a

Fig. 17.31 Ideal turning
angles α and β of the
front axes of a car during

a turn

Fig. 17.32 Graph of the function β = f(α)
for 
/h = 0.5 (curve k ) and approximation
by a Jeantaud mechanism with nonoptimal pa-

rameters (�, γ)

Fig. 17.33 Jeantaud mechanism



17.11 Four-Bars with Prescribed Transmission Characteristics 615

position effecting a left turn. The link lengths are � , r and a . Suitable
dimensionless parameters are � = r/� and the angle γ . The figure shows
that a = �− 2r cos γ . Hence

2r2+�2−a2 = 2r2+4r�(1−� cos γ) cos γ = 2r�(2 cos γ−� cos 2γ) . (17.133)

The turning angle of the left front axis is α . The angle of the right axis is
called not β , but β∗ because it is an approximation of β . The figure shows
angles ψ and ϕ . When this figure is rotated 180 ◦ , it has the form and the
notation of Fig. 17.7 . Equation (17.9) relating ϕ and ψ is

2r�(cosψ − cosϕ)− 2r2 cos(ϕ− ψ) + 2r2 + �2 − a2 = 0 . (17.134)

For 2r2+�2−a2 the expression in (17.133) is substituted. Figure 17.33 shows
that ϕ = γ + β∗ and ψ = π + α − γ . Also these substitutions are made.
When the resulting equation is divided by 2r� , it has the form

cos(γ + β∗) + cos(γ − α)− � cos(2γ + β∗ − α) = 2 cos γ − � cos 2γ . (17.135)

After applying the addition theorem for the cosine function this takes the
form

A cosβ∗ +B sinβ∗ = C , (17.136)

A = cos γ − � cos(2γ − α) , C = 2 cos γ − � cos 2γ − cos(γ − α) ,
B = − sin γ + � sin(2γ − α) .

}
(17.137)

The equation has two solutions β∗ . Their sines are

sinβ∗ =
BC ±A

√
A2 +B2 − C2

A2 +B2
. (17.138)

The pertinent solution is the one which has the same sign that α has. This
solution defines a two-parametric manifold of functions β∗(α, �, γ) with
parameters � and γ . Every parameter combination (�, γ) determines a curve
β∗(α) in the diagram of Fig. 17.32 . It is reasonable to require that the curve
passes through the point α = αmax , β∗ = βmax . This means that (17.135)
is satisfied with α = αmax and β∗ = βmax . This equation determines for
every value of γ the associated value of � . Thus, a one-parametric manifold
of curves with parameter γ is left. In Fig. 17.32 a single nonoptimal curve
is shown. The optimal value of γ is determined from the criterion that the
maximum of the deviation |β∗(α)− β(α)| in the interval 0 ≤ α ≤ αmax be
minimal. It turns out that this criterion yields two solutions γ1 > 0 and
γ2 < 0 . Example: With �/h = 0.5 , αmax = 40◦ and βmax ≈ 30.6◦ the
solutions are γ1 ≈ 67◦ , �1 ≈ 0.25 and γ2 ≈ −121◦ , �2 ≈ 0.25 . The four-
bar with γ2 is located in front of the front axis. The four-bar with γ1 is the
one shown in Fig. 17.33 . It is located behind the front axis (Brossard [4]).
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17.12 Coupler Curves with Prescribed Properties

A problem frequently encountered in engineering is the design of a four-bar
for the generation of a coupler curve having certain prescribed properties.
If the four-bar has to be a crank-rocker, a suitable design may be found in
the book by Hrones/Nelson [22]. It is a compilation of 7300 coupler curves.
In each diagram a single crank-rocker is shown together with coupler curves
for a variety of coupler-fixed points. A different ordering principle of coupler
curves is found in Volmer [41]. Each diagram is a compilation of four-bars
(not only crank-rockers) and of coupler curves having the same singular foci
and the same double points on the circle of singular foci (17.87). In what
follows, some mathematical problems and methods of solution are discussed
which are encountered in the generation of coupler curves with prescribed
properties.

17.12.1 Coupler Curves Passing Through Prescribed
Points

The parameter representation of the coupler curve in the form of Eqs.(17.74)
– (17.76) contains the six constant parameters � , r1 , r2 , a , η , ζ and as sev-
enth parameter the variable ϕ . These equations describe the coupler curve in
the special x, y -system of Fig. 17.19 . Three additional constant parameters
determine the location of this x, y -system in an x′, y′ -reference system.

In a typical problem statement it is required that a coupler curve passes
through prescribed points in the x′, y′ -system. Also the order in which these
points are passed is prescribed. Let m be the number of prescribed points.
The 2m prescribed coordinates result in 2m conditional equations. These
equations contain 9 +m free parameters, namely, the nine constant param-
eters listed above and for every prescribed point the associated crank angle.
From the equality 2m = 9 +m it follows that up to nine points can be pre-
scribed. To be sure, not for every set of nine prescribed points real solutions
exist and if they are real, the nine points are, in general, not passed in the
prescribed order. It may happen that the calculated coupler curve is bicursal
with some of the nine points on each branch.

The number m of points that can be prescribed is smaller than nine if the
additional requirement exists that the angle ϕk−ϕ1 of rotation of the input
crank associated with the passage from point P1 to point Pk is prescribed
for k = 2, . . . ,m . The only free angle is ϕ1 . This means that altogether ten
free parameters exist while the number of equations to be satisfied is 2m as
before. From the equality 2m = 10 it follows that at most five points can
be prescribed. Methods for solving this problem see in Freudenstein [15] and
Dijksman [8].
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17.12.2 Straight-Line Approximations

Coupler curves with approximately straight-line segments have important
engineering applications (see Fig. 17.2). The earliest straight-line approxi-
mation was invented by Watt8 for the purpose of guiding the piston in his
steam engine. His four-bar is a symmetrical double-rocker of second kind
with link lengths � , r1 , a , r2 satisfying the conditions r1 = r2 = r and
� = 2

√
r2 + (a/2)2 . The ratio a/r is a free parameter. In Fig. 17.34a the

four-bar with link lengths r = 35 , a = 24 and � = 74 is shown in four
positions. The figure-eight-shaped coupler curve generated by the midpoint
C of the coupler is symmetric to both the base line A0B0 and the midnormal
of this base line. The maximum distance from the base line (in position 4 of
point C) is

√
a(�− a)/2 .

Watt was unaware of cognate four-bars since the Roberts-Tchebychev the-
orem had not yet been discovered. So was Evans who invented the so-called
grashopper linkage shown in Fig. 17.34b . It is a cognate of Watt’s mechanism.
Positions 1, 2, 3, 4 of the coupler point C are the same as in Fig. 17.34a .
Evans’ linkage has the advantage of being half the size of Watt’s mechanism
for one and the same coupler curve.

Fig. 17.34 Watt’s straight-line approximation by a double-rocker with r = 35 , a = 24 ,

 = 74 (a) and Evans’ grashopper linkage (b) , a cognate of Watt’s mechanism

8 James Watt (1736-1819) nowadays primarily known for the invention of steam engines
wrote: “Though I am not over anxious after fame, yet I am more proud of the parallel
motion than of any other mechanical invention I have ever made”
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Roberts9 is the inventor of another straight-line approximation (see Fig.
17.35). The coupler curve is symmetric with respect to the midnormal of the
base. In the symmetry position shown the coupler point C is on the base
line (coupler length a = �/2 , coupler triangle with b1 = b2 = r ). The three
congruent triangles are determined by the single parameter � = r/� . In the
figure the case � = .6 is shown. The coupler curve has a cusp and double
points at A0 and B0 .

Fig. 17.35 Roberts’ straight-line approximation by the double-rocker with r/
 = .6

Remark on the influence of the parameter � : With � = 1/2 the coupler curve
has three cusps. This curve is shown in Fig. 17.25 . With every � > 1/2 the
coupler curve has a single cusp and double points at A0 and B0 . The midpoint
between A0 and B0 is a minimum. The maximum deviation Δmax from
the straight line between A0 and B0 occurs at two symmetrically located
maxima. With increasing � this Δmax tends monotonically toward zero10.
In the same process the straight-line approximation becomes increasingly
better in an increasingly longer interval extending beyond the points A0 and
B0 . With � = 3/4 the four-bar is foldable. With � > 3/4 the coupler is fully
rotating. From an engineering point of view large values of � are impractical.

Watt’s, Evans’ and Roberts’ straight-line approximations were found by
engineering intuition. A more systematic approach was explained in Sect.
15.3.6. The coupler curve of the point which, in a position under investigation,
is Ball’s point of the coupler is a good straight-line approximation, because
it has at this point zero curvature and zero rate of change of curvature. A
textbook entirely devoted to straight-line approximations (by means of four-
bars and of other linkages) is Kraus [25]. Straight-line approximations by
means of inverted slider-crank mechanisms see also in Wunderlich [46]. By

9 Richard Roberts (1789-1864), not to be confused with Samuel Roberts (1827-1913) of
the Roberts/Tschebychev theorem
10 Δmax/
 ≈ .0154 for � = .5 , Δmax/
 ≈ .0068 for � = .6 , Δmax/
 ≈ .0029 for � = .75
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far the best straight-line approximations by coupler curves of four-bars were
obtained by Tschebychev [39, 40] who used this problem for demonstrating
the power of a new and widely applicable approximation theory invented by
him. His method is the subject of the next section.

17.12.3 Tschebychev’s Straight-Line Approximations

The general problem solved by Tschebychev is the following. In a given in-
terval xa ≤ x ≤ xb a given function F (x) is to be approximated by another
function of the form

Pn(x, p0, . . . , pn) = p0f0(x) + . . .+ pnfn(x) (17.139)

with free parameters p0, . . . , pn and with given linearly independent func-
tions f0(x), . . . , fn(x) . Tschebychev proved

Theorem 17.4. If the function Pn(x, p0, . . . , pn) has at most n real roots
in the interval xa ≤ x ≤ xb , uniquely determined parameters p0, . . . , pn
exist such that the maximum of the absolute value of the approximation error
Δn(x, p0, . . . , pn) = Pn(x, p0, . . . , pn)− F (x) in the interval xa ≤ x ≤ xb is
minimal:

|Δn(x, p0, . . . , pn)|max = Min! (xa ≤ x ≤ xb) . (17.140)

Moreover, if D is this maximum, the optimal function Δn(x, p0, . . . , pn)
attains in the interval xa ≤ x ≤ xb alternatingly not less than (n+2) times
extremal values D and −D .

For a proof of the theorem see Tschebychev [39] (p.111 and 273), Watson [45]
and Powell [34]. Figure 17.36 shows schematically the graph of the optimal
function Δn in the case n = 2 . At the boundaries xa and xb and at
unspecified points x in the interval xa ≤ x ≤ xb the maximum D and the
minimum −D are attained not less than four times. Points x of extremal
values in the interval are double roots of one of the two equations

Δn(x, p0, . . . , pn)±D = 0 . (17.141)

Extrema at the boundaries xa and xb of the interval are either simple roots
or double roots of (17.141). Double roots satisfy also the equation

Δ′
n(x, p0, . . . , pn) = 0 . (17.142)

The n+2 Eqs.(17.141) and the n Eqs.(17.142) for double roots x in the
interior of the interval represent altogether 2n+2 equations. This equals the



620 17 Planar Four-Bar Mechanism

Fig. 17.36 Optimal function Δ2(x, p0, p1, p2) with extrema D and −D inside and

on the boundaries of the interval xa ≤ x ≤ xb

number of unknowns. Unknown are D , p0, . . . , pn and the n double roots x
in the interior of the interval. Thus, it is possible to express all unknowns in
terms of xa and xb . The equations are linear with respect to D , p0 , . . . , pn
and they are nonlinear with respect to the double roots x in the interior of
the interval.

Remarks: 1. The set of Eqs.(17.141) does not change if D is replaced by
−D . For this reason D is redefined as either maximum or minimum of the
function.

2. If in (17.140) the function Δn is replaced by λΔn with an arbitrary
constant λ , the solutions for p0 , . . . , pn , x1 , . . . , xn+2 remain unaltered,
but D is replaced by λD .

Now back to straight-line approximations. In [40] p.51 Tschebychev inves-
tigated the family of coupler curves which are symmetric with respect to the
midnormal of the base A0B0 and among these coupler curves those which
approximate a straight line parallel to the base. Roberts’ coupler curve be-
longs to this family. Watt’s does not. For the family of symmetric coupler
curves the parameter Eqs.(17.104), (17.105) based on Fig. 17.27 are used11:

y(α) =
1

2�

[
4a2(cosβ sinα cosα+ sinβ sin2 α)

+ (�2 − r2)(sinβ + cosβ cotα)
]
,

x(α) = ±√4a2 cos2(α− β)− y2 .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (17.143)

The symmetry-axis is the y -axis. The constant parameters of the four-bar
are � , r , a , β , and the free parameter is the angle α . Intersection points
of the coupler curve with the y -axis are associated with one of the angles
(see (17.106))

sinα =
�∓ r

2a
. (17.144)

11 The four-bar analyzed in [40] p.51 is the one with symmetries r1 = r2 and
b1 = b2 . Only later Tschebychev [40] p.273 discovered what is now known as

Roberts/Tschebychev theorem. The formulation presented here follows the exposition in
Artobolevski/Levitski/Cherkudinov [2] without, however, making the substitution z =
sin2 α
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Tschebychev determined parameters � , r , a , β such that the coupler curve
is the optimal approximation to a straight line y = y0 = const. The difference
y(α)− y0 or rather a constant multiple of it is the function Δn = Pn − F .
With n = 2 it is written in the form

Δ2 =
2�

(�2 − r2) cosβ
[y(α)− y0] = p0f0(α) + p1f1(α) + p2f2(α)− F (α)

(17.145)
with the following functions and coefficients

f0(α) = 1 , f1(α) = sinα cosα , f2(α) = sin2 α , F (α) = − cotα ,
(17.146)

p0 = tanβ − 2y0�

(�2 − r2) cosβ
, p1 =

4a2

�2 − r2
, p2 =

4a2 tanβ

�2 − r2
.

(17.147)
In this formulation the problem appears as approximation of the function
F (α) = − cotα by P2 = p0f0+p1f1+p2f2 . In the interval 0 ≤ α ≤ π the
function P2 has at most two real roots. In the segment of the coupler curve
which is of interest the inequality 0 < α < π/2 holds. Thus, the condi-
tions for the applicability of Tschebychev’s theorem are satisfied. Equations
(17.141) read:

p0 + p1 sinα cosα+ p2 sin
2 α+ cotα±D = 0 . (17.148)

According to the theorem each equation has (at least) one simple root and
one double root in the interval 0 < α < π/2 . This is, indeed, the case. The
equations can be written in the forms

sin(α− α1) sin
2(α− α3) = 0 ,

sin(α− α4) sin
2(α− α2) = 0

}
(17.149)

with constants 0 < α1 , . . . , α4 < π/2 . For the first equation this is
shown as follows. With an addition theorem and after division through
sinα sinα1 sin

2 α3 the equation has the form

(cotα1 − cotα)[1 + (cot2 α3 − 1) sin2 α− 2 cotα3 sinα cosα] = 0 . (17.150)

Multiplying out further leads to

cotα1 + 2 cotα3 + (1− 2 cotα1 cotα3 − cot2 α3) sinα cosα

+ [(cot2 α3 − 1) cotα1 − 2 cotα3] sin
2 α− cotα = 0 . (17.151)

This is indeed Eq.(17.148). In the case +D , comparison of coefficients yields

p0 = − cotα1 − 2 cotα3 −D , (17.152)
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p1 = cot2 α3 + 2 cotα1 cotα3 − 1 =
2 sin(α1 + 2α3)

(1− cos 2α3) sinα1
,

p2 = 2 cotα3 + (1− cot2 α3) cotα1 = − 2 cos(α1 + 2α3)

(1− cos 2α3) sinα1
.

⎫⎪⎪⎬
⎪⎪⎭ (17.153)

In the same way the second Eq.(17.149) and Eq.(17.148) with −D yield

p0 = − cotα4 − 2 cotα2 +D , (17.154)

p1 =
2 sin(α4 + 2α2)

(1− cos 2α2) sinα4
, p2 = − 2 cos(α4 + 2α2)

(1− cos 2α2) sinα4
. (17.155)

The results obtained so far are summarized as follows. Each of the equations
Δ2 = ±D has in the interval 0 < α < π/2 a simple root (α1 or α4 ) and a
double root (α2 or α3 ). Suppose that α1 < α4 . The graph of the optimal
function Δ2 is as shown in Fig. 17.36 with α instead of x . The roots α1

and α4 are the boundaries of the approximation interval.
The six Eqs.(17.152) – (17.155) suffice for determining the unknowns

D , p0 , p1 , p2 , α2 and α3 as functions of α1 and α4 . The two Eqs.(17.142),
which are valid for x = α2 and for x = α3 , are not needed because
Eqs.(17.148) are available in the explicit form (17.149). Solutions for the
unknowns are obtained as follows. Equations (17.152) and (17.154) yield

p0 = −1

2
(cotα4 + cotα1)− (cotα3 + cotα2) , (17.156)

D =
1

2
(cotα1 − cotα4) + (cotα3 − cotα2) . (17.157)

With (17.153) and (17.155)

p1
p2

= − tan(α1 + 2α3) = − tan(α4 + 2α2) . (17.158)

From this it follows that either

α1 + 2α3 = α4 + 2α2 (17.159)

or α1 + 2α3 = α4 + 2α2 + π . From these two equations and from (17.153)
and (17.155) it follows that either

(1− cos 2α3) sinα1 = (1− cos 2α2) sinα4 (17.160)

or (1 − cos 2α3) sinα1 = −(1 − cos 2α2) sinα4 . Because of the restriction
0 < α1, α4 < π/2 only (17.159) together with (17.160) is useful. Equation
(17.159) yields

α3 = α2 +
1

2
(α4 − α1) . (17.161)
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With the corresponding expression cos 2α3 = cos 2α2 cos(α4 − α1) −
sin 2α2 sin(α4 − α1) Eq.(17.160) becomes an equation for α2 :

[sinα4 − sinα1 cos(α4 − α1)] cos 2α2

+ sinα1 sin(α4 − α1) sin 2α2 = sinα4 − sinα1 . (17.162)

Of its two solutions for α2 only one is located between α1 and α4 . Only
this solution is useful. The associated angle α3 is calculated from (17.161).
Following this, Eqs.(17.155) – (17.157) determine p0 , p1 , p2 and D as func-
tions of α1 and α4 .

The three Eqs.(17.147) relate the seven quantities α1 , α4 , � , y0 , r , a
and β . These relations are expressed as follows. Equating the two expressions
for p0 in (17.147) and (17.156) yields for y0 the expression shown below.
Similarly, equating the two expressions for p1 in (17.147) and (17.153) yields
for a2 the expression shown below. Finally, equating the expressions for
p2/p1 in (17.147) and (17.158) yields for tanβ the two expressions shown
below.

y0 =
�2 − r2

2�
cosβ

[
tanβ +

1

2
(cotα4 + cotα1) + (cotα3 + cotα2)

]
, (17.163)

a2 = (�2 − r2)
sin(α1 + 2α3)

2(1− cos 2α3) sinα1
, (17.164)

tanβ = − cot(α1 + 2α3) = − cot(α4 + 2α2) . (17.165)

Four out of the seven quantities α1 , α4 , � , y0 , r , a and β can (within
certain limits) be prescribed arbitrarily. The base length � is prescribed as
unit length. The interval boundaries α1 and α4 are associated with certain
points (x1, y1) and (x4, y4) , respectively, of the coupler curve which are de-
termined by (17.143). It is the segment of the coupler curve between these
points which is approximated to the straight line y = y0 . Now, it is decided
that one of these points, say (x1, y1) , is located on the symmetry axis. Be-
cause of the symmetry this has the consequence that the coupler curve is
approximated in the segment of double length between the points (−x4, y4)
and (x4, y4) . According to (17.144) the condition x1 = 0 has one of the
forms sinα1 = (�∓r)/(2a) . By an investigation which is omitted here it can
be shown that a better approximation of the straight line y = y0 is achieved
when the plus sign is chosen:

sinα1 =
�+ r

2a
. (17.166)

The angle α1 is real only if the four-bar to be determined is a crank-rocker.
Whether the results satisfy this condition remains to be seen.

The third quantity we prescribe is β = 0 . This means that the coupler
point lies on the coupler line. Having made these decisions on � , α1 and β
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a one-parametric manifold of four-bars is left. As parameter the ratio

� =
r

�
(17.167)

is chosen. It should be noted that Roberts’ four-bar is a double-rocker with
an angle β �= 0 . Thus, the straight-line approximations to be determined are
of a different nature12.

The next task is to express the quantities y0 and a in (17.163) and
(17.164) in terms of � and � . In addition, two new quantities are defined
which are measures of quality of the approximation. These are the relative
length L/� = 2x4/� = 2x(α4)/� of the approximately straight segment and
the relative width B/L = 2(y − y0)max/L of the error in this segment.
These quantities are expressed in terms of � . This is done first for B/� .
Equations (17.145) and (17.157) yield the preliminary expression

B

�
=

2(y − y0)max

�
=

�2 − r2

�2
D

= (1− �2)
[1
2
(cotα1 − cotα4) + (cotα3 − cotα2)

]
. (17.168)

With β = 0 Eqs.(17.165) take the simple forms

2α3 =
π

2
− α1 , 2α2 =

π

2
− α4 . (17.169)

With these expressions (17.160) becomes
(1− sinα1) sinα1 = (1− sinα4) sinα4 .
This has the trivial solution α4 = α1 and the significant solution

sinα4 = 1− sinα1 . (17.170)

The first Eq.(17.169) yields sin(α1 + 2α3) = 1 and cos 2α3 = sinα1 or
with (17.166) cos 2α3 = (�+ r)/(2a) . Substitution of these expressions into
(17.164) leads to

a =
�

2
(3− �) . (17.171)

The parameter � is free subject to the condition that the four-bar is a crank-
rocker. For this to be the case, r = �� must be the shortest link. In addition,
Grashof’s inequality (17.4), �min + �max ≤ �′ + �′′ , must be satisfied. Both
conditions are satisfied if and only if 0 < � ≤ 1 .

The expression obtained for a is substituted back into (17.166). With this
equation and with (17.169) and (17.170) the formulas are obtained:

12 Tschebychev [40] (p.273, p.285, p.301 and p.495) investigated also the case β �= 0 . Also
for this case he gave explicit formulas for a one-parametric family of four-bars. In [40] p.495
the approximation of a circle is investigated
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sinα1 =
1 + �

3− �
, cosα1 =

2
√
2(1− �)

3− �
, cotα3 =

1 + sinα1

cosα1
,

sinα4 = 2
1− �

3− �
, cosα4 =

√
(5− 3�)(1 + �)

3− �
, cotα2 =

1 + sinα4

cosα4
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(17.172)
With these expressions (17.163) and (17.168) yield for the location y0 of the
straight line and for the measure of quality B/� the formulas

y0
�

=
√

2(1− �) +
1

8
(5− 3�)

√
(5− 3�)(1 + �) , (17.173)

B

�
= 2

√
2(1− �)− 1

4
(5− 3�)

√
(5− 3�)(1 + �) . (17.174)

For the ratio L/� Eqs.(17.143) yield

y4 =
1

2�
cotα4[(3�− r)2 sin2 α4 + �2 − r2]

=
�

4
(5− 3�)

√
(5− 3�)(1 + �) , (17.175)

L

�
=

2x4

�
=

2

�

√
(3�− r)2 cos2 α4 − y24

=
1

2

√
3(5− 3�)(1 + �)(3− �)(3�− 1) . (17.176)

From L/� and B/� the second measure of quality B/L is calculated.
L > 0 requires that � > 1/3 . The diagram in Fig. 17.37 shows as functions

of � the ratios L/� and |B/L| characterizing the quality of the straight-line
approximation. The former should be large and the latter very small. These
goals are achieved with values of � close to 1/3 .

Example: With � = r/� = .4 (17.171), (17.173), (17.176) and (17.174),
determine the coupler length a = 1.3� , the length y0 ≈ 2.19� and the
measures of quality L/� ≈ 1.44 and |B/L| ≈ .00020 . This is an excellent
straight-line approximation. The entire coupler curve is shown in Fig. 17.38 .
The four-bar is drawn in solid lines. Dashed lines show the cognate four-
bar generating the same coupler curve. For the significance of the points
B0 , P1 and P2 see the comment following (17.100). For comparison: The
straight-line approximations by Watt / Evans (Fig. 17.34a,b ) and by Roberts
(Fig. 17.35) are not nearly as good. The measures of quality for Roberts’
approximation are L/� ≈ 1 and |B/L| ≈ .0068 . From Fig. 17.37 it is
seen that with increasing � the measure of quality L/� improves while the
essential measure of quality |B/L| deteriorates. For � = r/� = .5 , for
example, the measures are L/� ≈ 2.22 and |B/L| ≈ .0022 . This is still a
very good straight-line approximation. End of example.
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Fig. 17.37 Measures of quality L/
 and |B/L| of Tschebychev’s straight-line approxi-

mations as functions of � = r/


Fig. 17.38 Tschebyschev’s straight-line approximation. Solid lines: Crank-rocker with
r = .4
 , a = 1.3
 . Approximation of the line y0 ≈ 2, 19
 . Measures of quality L/
 ≈
1.44 , |B/L| ≈ .00020 . In dashed lines the cognate four-bar generating the same coupler

curve. For P1 and P2 see the text following (17.100)

17.13 Peaucellier Inversor

Until after Tschebychev’s work on straight-line approximations it was taken
for granted that no plane mechanism consisting of rigid links with rotary
joints could possibly generate an exact straight line. It caused, therefore,
quite a sensation when in 1864 Peaucellier [33] invented a simple mechanism
achieving just this13. The mechanism which became known as Peaucellier
inversor is shown in Fig. 17.39 . It has two fixed points 0 and A a distance
a apart. A crank of length � connects A to the point called P . This point
P is connected to 0 via two rods of equal length b and four rods of equal
length c < b . The trajectory of P is the circle k with the equation

(x− a)2 + y2 = �2 . (17.177)

13 The history of this invention see in Sylvester [38], v.3
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Fig. 17.39 Peaucellier inversor. Coordinates r , ϕ , x , y , r′ , x′ , y′ . Circles k , k0 , k′

In what follows, the trajectory of P′ is investigated. First, relationships be-
tween the polar coordinates of P and P′ are established. Both points have
equal polar coordinates ϕ , but different polar coordinates r and r′ . The re-
lationship between r and r′ is established as follows. In terms of rM (polar
coordinate of M) and of auxiliary lengths d and h the polar coordinates are
r = rM − d and r′ = rM + d . Hence rr′ = r2M − d2 . Also r2M = b2 − h2 and
d2 = c2 − h2 . Therefore, finally,

rr′ = R2 (R2 = b2 − c2 = const > 0) . (17.178)

The transformation of P into P′ or vice versa according to this equation is
called inversion in the circle

x2 + y2 = R2 . (17.179)

The circle itself is called inversion circle k0 . Every point of k0 is trans-
formed into itself. The trajectory of P′ is the inverse of the circle k in k0 .
Its equation is obtained as follows. Let (x, y) and (x′, y′) be the cartesian
coordinates of P and P′, respectively. The two sets of coordinates are related
by the equations

x = x′ r
r′

= x′ R
2

r′2
=

x′R2

x′2 + y′2
, y =

y′R2

x′2 + y′2
. (17.180)

Substitution of these expressions into (17.177) results in the desired equation
of the trajectory of P′ :

(
x′ − a

R2

a2 − �2

)2
+ y′2 =

(
�

R2

a2 − �2

)2
. (17.181)
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This is another circle centered on the x-axis. It is called the inverted circle
k′. Depending on R , a and � the circles k and k0 may or may not intersect
in real points. If they intersect, k′ intersects the circle k0 in the same points
because every point of k0 is transformed into itself. In Fig. 17.39 the circles
intersect in two points. Let ξ be the x-coordinate of these points. Equations
(17.177) and (17.179) yield

ξ =
R2 + a2 − �2

2a
. (17.182)

The circle k′ intersects the x-axis at the points

x1 =
R2

a+ �
, x2 =

R2

a− �
. (17.183)

In the limit � → a the circle k′ degenerates. Its radius, its center point co-
ordinate as well as the point x2 of intersection with the x-axis tend toward
infinity. In contrast, the other point of intersection tends toward the finite
point x1 = R2/(2a) . The point ξ tends toward the same point. Thus, the
circle k′ degenerates to the straight line x = R2/(2a) and to a point at
infinity. In Fig. 17.40 the limiting case � = a is shown. Point P is moving
on the circle k passing through 0 , while P′ is moving along the straight line
x = R2/(2a) . In the example shown the circles k and k0 do not intersect. If
they intersect, also the trajectory of P′ passes through the points of intersec-
tion. If � and a are different, but almost identical, k′ is a circle of very large
radius which intersects the x-axis at a point very close to x1 = R2/(2a) . In
engineering such circular trajectories are as interesting as straight-line tra-
jectories. Peaucellier’s discovery inspired Hart [20], Sylvester [38] and Kempe
[23] to invent other mechanisms with rotary joints which generate straight
lines (see also Schoenflies/Grübler [35], Dijksman [9], Pavlin/Wohlhart [32],
Demaine/O’Rourke [7]).

Fig. 17.40 Straight-line trajectory of P′ in the special case � = a



17.14 Four-Bars Producing Prescribed Positions of the
Coupler Plane. Burmester Theory

The purpose of many linkages is to carry a planar object, i.e., a plane Σ ,
through an ordered set of prescribed positions 1, . . . , n relative to a reference
plane Σ0 . If the number n is sufficiently small, this task can be achieved
by making Σ the coupler plane and Σ0 the frame of a four-bar (as will
be seen the condition is n ≤ 5 ). The moving four-bar carries the plane Σ
through a continuum of positions, to which the prescribed positions belong if
the free design parameters are chosen properly. The complete solution to this
problem which is due to Burmester [5] is the subject of this chapter. Exten-
sive use is made of Sect. 14.5 in which fundamental concepts of Burmester
were introduced. See the definitions of homologous points of points of Σ , of
pole triangle, pole quadrilateral and pole curve. Burmester’s basic idea is the
following. The two Σ -fixed endpoints of the coupler move on circles about
frame-fixed endpoints of two cranks (or rockers). Hence the problem can be
stated as follows. Determine all n -tuples of homologous points Q1, . . . ,Qn

which are located on a circle and for each such n -tuple the center Q0 of the
circle. The line segments Q0Qi (i = 1, . . . , n) defined by each such n -tuple
represent the positions of a suitable crank in the positions Σ1, . . . , Σn of the
coupler plane Σ . Two arbitrarily chosen n -tuples of this kind define two
suitable cranks and, thus, a four-bar. Whether a four-bar thus determined
produces the prescribed positions in the prescribed order remains to be seen.
The problem of order is the subject of Sect. 17.14.4 .

In what follows, n homologous points on a circle are called circle points,
and the center of the circle is called center point. The slider-crank mechanism
in Fig. 17.29a is a degenerate four-bar in that one center point Q0 is at
infinity. The circle is a straight line. The elliptic trammel in Fig. 15.4 has
two sliders. In the inverted slider-crank mechanism in Fig. 17.29b and in the
inverted elliptic trammel the sliders are pivoted at center points Q0 fixed in
Σ0 . The associated circle points Q1, . . . ,Qn are at infinity. In the mechanism
shown in Fig.15.9 one slider is pivoted in the frame Σ0 and the other in the
coupler Σ . This mechanism equals its inverse.

17.14.1 Three Prescribed Positions

Three prescribed positions can be generated by four-bars of all types including
the previously listed degenerate forms. Three prescribed positions determine
a pole triangle (P12 ,P23 ,P31 ). Since three points are always located on a
circle, one out of three circle points Q1 , Q2 , Q3 can be chosen arbitrarily.
The other two circle points are then found as is shown in Fig. 14.11 by

17.14 Four-Bars Producing Prescribed Positions of the CouplerPlane.BurmesterTheory 629
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reflections in the sides of the pole triangle. The center point Q0 is the center
of the circumcircle of the triangle (Q1,Q2,Q3).

Instead of a single circle point the center point Q0 can be chosen arbitrar-
ily. The associated circle points Q1 , Q2 , Q3 are determined either geometri-
cally by the pole triangle (Fig. 14.13) or analytically from (14.50). Following
Fig. 14.13 special cases (a) and (b) were explained when a pole is chosen
either as center point or as circle point.

Figure 14.14 explains how to determine solutions with a center point Q0 at
infinity and with circle points Q1, Q2, Q3 along a straight line. The straight
line is passing through the orthocenter S of the pole triangle. If the line is
prescribed, the circle points are determined, and if a single circle point is
prescribed, the line and the other two circle points are determined.

Figure 14.15 explains how to determine solutions with circle points lying
at infinity. As center point Q0 an arbitrary point on the circumcircle of the
pole triangle can be chosen. The chosen point determines the directions Q0Qi

(i = 1, 2, 3) in the three positions. They are the normals to the lines Q0S
i .

Instead of Q0 the direction towards a single infinitely distant circle point,
say Q3 , can be chosen. It determines the line Q0S

3 and, consequently, Q0

and the other two directions.

17.14.2 Four Prescribed Positions. Center Point
Curve. Circle Point Curves

Four prescribed positions of the coupler plane determine six poles, four pole
triangles, three pole quadrilaterals and the associated pole curve p (see Figs.
14.18 and 14.22). The pole curve is the geometric locus of all points from
which opposite sides of a pole quadrilateral are seen under angles which are
either identical or which add up to π . The present problem is to determine
all four-tuples of homologous points Q1 , Q2 , Q3 , Q4 which are located on
a circle and for each circle the center point Q0 . Following Burmester the
geometric locus of all center points thus defined is called center point curve.
Proposition: The center point curve is the pole curve. Proof: Figure 17.41
shows four homologous points Q1 , Q2 , Q3 , Q4 on a circle with center Q0 .
Homologous means that the poles of the pole quadrilateral (P12,P23,P34,P41)
are located somewhere on the dashed bisectors of the angles of rotation ϕij =
�(QiPijQj) (i, j = 1, 2, 3, 4 different). From Q0 the opposite sides P12P23

and P34P41 are seen under the angles 1
2 (β12 + β23) and 1

2 (β34 + β41) ,
respectively. Since β12 + β23 + β34 + β41 = 2π , these angles add up to π . If
a pole, say P41 , is located on the other side of Q0 , the two opposite sides of
the pole quadrilateral are seen under identical angles. End of proof.

Thus, both cranks of any four-bar capable of leading the coupler plane
through four prescribed positions must be centered on the pole curve. The



Fig. 17.41 Pole quadrilateral with four circle points and center point Q0

problem of determining circle points associated with a chosen center point
or of determining the center point associated with a chosen circle point is
reduced to the previously solved problem with three prescribed positions
since a solution satisfying four prescribed positions 1 , 2 , 3 , 4 satisfies any
three positions, for example, positions 1 , 2 , 3 and positions 1 , 2 , 4 . Hence
circle points associated with a chosen center point Q0 are determined either
geometrically from pole triangles (Fig. 14.13) or analytically from Eqs.(14.50)
which are now valid for the larger set of indices i, j = 1, 2, 3, 4 ( i �= j ).

Special case: As center point Q0 a pole is chosen, for example, Q0=P12 .
From the text following Fig. 14.13 (special case (a)) it is known that in the
pole triangle associated with positions 1 , 2 , 3 Q3 is an undetermined point
on the line P23P31 . For the same reason, Q3 is an undetermined point on
the line P34P41 in the pole triangle associated with positions 1 , 3 , 4 . Hence
Q3 is the point of intersection of these two lines.

There is only a single solution with a center point Q0 at infinity and with
circle points Q1, Q2, Q3, Q4 along a straight line. The center point Q0 is the
infinitely distant point on the asymptote of the pole curve. The straight line
is orthogonal to the asymptote. Since it is passing through the orthocenters,
of all four pole triangles (see Fig. 14.14) collinearity of these orthocenters is
proved.

Likewise, there is only a single solution with circle points Q1, Q2, Q3, Q4

at infinity. From Fig.14.15 it is known that the center point Q0 is located
on the circumcircles of all four pole triangles. These circles have a single
point of intersection U (Fig. 14.22). As in the case of three positions, the
directions Q0Qi (i = 1, 2, 3, 4) toward the infinitely distant circle points are
determined from pole triangles (Fig. 14.15). A center point Q0 on p close to
U is associated with a very long crank with very distant circle points.

Circle point curves: The geometric locus of the circle point Qi is called
circle point curve ki ( i = 1, 2, 3, 4 ). If a single circle point curve, say k1 ,
is known, the other three curves are obtained by rotating k1 about poles.
From Fig. 14.13 and Eq.(14.50) it is known that Q1 and Q0 switch roles if
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the angles ϕ12 and ϕ13 are replaced by −ϕ12 and −ϕ13 , respectively. This
means that the pole P23 is replaced by its reflection P1

23 in the side P12P 31

of the pole triangle (see Fig. 14.12). With other indices the same is true for
the other two pole triangles (P12,P24,P41) and (P13,P34,P41) associated with
Q1 . In these triangles P24 and P34 are replaced by the reflected poles P1

24

and P1
34 , respectively. Hence the conclusion: The circle point curve k1 is the

center point curve (pole curve) associated with the six poles P12 , P13 , P14 ,
P1
23 , P

1
24 , P

1
34 . The curve passes through these six poles. It does not pass

through the poles P23 , P24 , P34 . With indices properly changed the same is
true for the circle point curves k2 , k3 and k4 .

17.14.3 Five Prescribed Positions

Center points Q0 are located on the center point curve associated with the
four positions 1 , 2 , 3 , 4 as well as on the center point curve associated
with the four positions 1 , 2 , 3 , 5. Two third-order curves have nine (real
or imaginary) points of intersection. Since the curves are circular, there exist
two imaginary points of intersection at infinity. This leaves seven points of
intersection. Each of the two curves passes through the poles P12 , P23 und
P31 . That these points cannot be center points Q0 is proved by taking P12 as
example. According to statements made earlier positions 1 , 2 , 3 , 4 require
Q3 to be the point of intersection of the lines P23P31 and P34P41 . For the
same reason, positions 1 , 2 , 3 , 5 require Q3 to be the point of intersection
of the lines P23P31 and P35P51 . This is impossible. End of proof.

Hence either zero or two or four real points of intersection are candidates as
center point Q0 , namely, those real points which are different from P12 , P23

and P31 . These points are called Burmester points. For methods of construc-
tion of these points see Müller [29]. No four-bar producing five prescribed
positions exists if the number of Burmester points is zero. A single four-bar
exists if the number is two and six if the number is four. This completes the
solution of Burmester’s problem in the case of five prescribed positions. More
than five positions cannot, in general, be prescribed.

17.14.4 Crank-Rockers Producing Four Prescribed
Positions in Prescribed Order

A Burmester solution for four prescribed positions is inadmissible if the four-
bar produces the prescribed positions either in a wrong order or in two dif-
ferent configurations of the four-bar. The problem of identifying admissible
solutions was first investigated by Filemon [12, 13] and since then by many re-



searchers. A list of 170 references is given in Balli/Chand [3]. In what follows,
Filemon’s method of identifying all admissible crank-rockers is described.

A crank-rocker is producing four prescribed positions in the prescribed or-
der 1 , 2 , 3 , 4 if the circle points on the crank circle are arranged in the order
Q1 , Q2 , Q3 , Q4 either clockwise or counterclockwise. For this to be the case,
the three triangles of circle points (Q1,Q2,Q3), (Q2,Q3,Q4) and (Q3,Q4,Q1 )
must have one and the same sense. For the definition of sense of a triangle
see Fig. 14.16 and the accompanying text. The sense is determined by the
location of the center point Q0 relative to the three lines of the correspond-
ing pole triangle. Four pole triangles have altogether twelve lines dividing
the infinite plane into domains. From Fig. 14.22 the following properties of
the center point curve are known. The curve is intersected by lines at the six
poles Pij , at the six points Πij (i, j = 1, 2, 3, 4 different) and at no other
point. From this and from Fig. 14.16 the following conclusions are drawn.
When Q0 travels on p through a pole Pij (i, j = 1, 2, 3, 4 different), two
lines belonging to one and the same pole triangle are crossed. This crossing
has no effect on the sense of any triangle of circle points. In contrast, when
Q0 travels through a point Πij (i, j = 1, 2, 3, 4 different), two lines belong-
ing to different pole triangles are crossed. This has the consequence that two
triangles of circle points change sense. The six points Πij (i, j = 1, 2, 3, 4
different) divide the curve into seven sections (no matter whether the curve
is unicursal or bicursal). The senses of circle point triangles do not change as
long as Q0 stays in one and the same section of the curve. Identical senses
of all three circle point triangles are achieved with a set of points Q0 which
is either a single section or the union of several nonneighboring sections. In
what follows, the set is denoted σc.

Example: In Fig. 14.22 the sense of the three circle point triangles is clock-
wise for points Q0 in the unbounded section to the right of Π12 and in the
section Π14-Φ-Π34 . It is counterclockwise in the unbounded section to the
left of Π23 . Thus, the set σc of admissible crank centers is the union of these
three sections.

From Fig. 17.4b the following properties of crank-rockers are known. A
four-bar is a crank-rocker if
(a) Grashof’s inequality condition �min + �max ≤ �′ + �′′ is satisfied and if,
in addition,
(b) the crank has the minimal length �min .
The angular range of a rocker consists of two disconnected sectors < 180◦

which are arranged symmetrically with respect to the base line. For being an
admissible crank-rocker a Burmester solution must satisfy condition
(c) all four circle points of the rocker must be on one and the same side of the
base line, for otherwise the four prescribed positions could not be produced
without disconnecting and reassembling the crank-rocker.

An algorithm determining, for a given center point curve p , all admissible
crank-rockers can now be formulated as follows.

17.14 Four-Bars Producing Prescribed Positions of the CouplerPlane.BurmesterTheory 633
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Choose an arbitrary point Q0r of p and an arbitrary point Q0c of the set σc

(the indices r and c stand for rocker and crank, respectively). Determine the
circle point Q1r associated with Q0r and the circle point Q1c associated with
Q0c . These four points determine a four-bar in the prescribed position 1 . If
this four-bar does not satisfy conditions (a) and (b), choose another point
Q0c of the set σc and repeat. Otherwise, determine also the circle points Q2r ,
Q3r , Q4r associated with Q0r and check whether condition (c) is satisfied. If
not, choose another point Q0c of the set σc and repeat. Otherwise, Q0r and
Q0c are centers of the rocker and of the crank of an admissible crank-rocker.
The sequence of decisions thus described has to be made for every point Q0r

of p in combination with every point Q0c of the set σc.

17.15 Trajectory of the Center of Mass of a Four-Bar

In Fig. 17.42a r0 , r1 , r2 , r3 represent differences of complex numbers in
the complex plane. All of them have constant absolute values. They form a
quadrilateral. The relation between the four is

r2 = r1 + r3 − r0 . (17.184)

Let it be assumed that r0 has constant direction. Then the differences of
complex numbers form a mobile four-bar with base r0 . For any coupler-fixed
point C a complex constant z exists such that

A1C = zr3 . (17.185)

When the four-bar is moving, the tip of the complex number

rC = r1 + zr3 (17.186)

traces the coupler curve generated by C .
The moving links i =1, 2, 3 have masses mi and centers of mass Si (Fig.

17.42b ). The positions of the centers of mass on the bodies are expressed in
the form

�i = ziri (i = 1, 2, 3) (17.187)

with complex constants zi . Let rS be the complex number representing the
composite system center of mass S of the four-bar (the moving parts only).
It is determined by the formula
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Fig. 17.42 Four-bar with coupler point C (a) and with centers of mass (b)

rS =
m1�1 +m3(r1 + �3) +m2(r0 + �2)

m1 +m2 +m3

=
m1z1r1 +m3(r1 + z3r3) +m2[r0 + z2(r1 + r3 − r0)]

m1 +m2 +m3

=
(m1z1 +m2z2 +m3)r1 + (m2z2 +m3z3)r3 +m2(1− z2)r0

m1 +m2 +m3
. (17.188)

In the general case m1z1 +m2z2 +m3 �= 0 ,

rS =
m1z1 +m2z2 +m3

m1 +m2 +m3

(
r1 +

m2z2 +m3z3
m1z1 +m2z2 +m3

r3

)
+

m2(1− z2)r0
m1 +m2 +m3

.

(17.189)
The term in parentheses has the form (17.186) with

z =
m2z2 +m3z3

m1z1 +m2z2 +m3
. (17.190)

The complex number rC moves along the coupler curve of the coupler-fixed
point C specified by this constant z . The constant complex factor in front
has the effect of a stretch-rotation of this coupler curve and the constant
behind has the effect of a translatory displacement. Hence the trajectory of
the composite center of mass of a moving four-bar is similar to a uniquely
determined coupler curve of the four-bar.

The acceleration of the composite center of mass determines the resultant
inertia force acting on the base of the four-bar. The resultant force is zero
throughout the motion if (17.188) yields rS = const. This is the case under
the weak conditions

m1z1 +m2z2 +m3 = 0 , m2z2 +m3z3 = 0 . (17.191)

In these conditions the link lengths do not appear. The four link lengths,
the three masses and, in addition, the position of the center of mass on
a single link, for example, the number z3 , can be chosen arbitrarily. Both
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conditions are satisfied if the centers of mass on the other two bodies satisfy
the conditions

z1 =
m3

m1
(z3 − 1) , z2 = − m3

m2
z3 . (17.192)

Note that for producing the time-varying angular acceleration of the coupler
a torque is required. Even if the conditions (17.191) are satisfied this torque
causes time-varying forces of equal magnitude and opposite directions acting
on the base in the crank bearings.
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mécanisme. pp.51-57. Les plus simples systèmes de tiges articulées. pp.273–281. Sur
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Chapter 18

Spherical Four-Bar Mechanism

From Sect. 5.4.1 it is known that the spherical four-bar mechanism or briefly
spherical four-bar is a special mechanism RCCC . Figure 18.1a is a copy of
Fig. 5.4 . The four-bar has four revolute joints the axes of which intersect in a
single point 0 . The links are shown as arcs of great circles on the unit sphere
about 0 . Constant parameters αi > 0 , joint variables ϕi and associated unit
vectors ni and ai (i = 1, . . . , 4) were defined as follows. The unit vectors
n1, . . . ,n4 along the joint axes are pointing away from 0 . The unit vector
ai has the direction of ni × ni+1 (here and in what follows, i = 1, . . . , 4
cyclic). The angle αi is the angle about ai from ni to ni+1 . This angle is
the arc length (link length) of link i . Throughout this chapter it is assumed
that αi ≤ π . The joint variable ϕi is the angle about ni from ai−1 to
ai . In what follows, link 4 is considered as frame, link 1 as input link, link
2 as coupler and link 3 as output link. This means that the angles ϕ1 and
ϕ4 represent the input angle and the output angle, respectively. Since the
spherical four-bar is a special mechanism RCCC , it is governed by the same

Fig. 18.1 Spherical four-bar mechanism. General case (a) and planar case (b)
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640 18 Spherical Four-Bar Mechanism

equations relating joint variables ϕ1, . . . , ϕ4 and parameters α1, . . . , α4 . On
the other hand, the spherical four-bar shares many characteristics with the
planar four-bar. In the limit αi → 0 (i = 1, 2, 3, 4) it is a planar four-bar in
a plane tangent to the sphere (Fig. 18.1b).

18.1 Transfer Function

The transfer function relating the angles ϕ1 and ϕ4 is known from the
analysis of the mechanism RCCC . It is copied from (5.43) and (5.44):

A cosϕ4 +B sinϕ4 = R (18.1)

with coefficients (abbreviations Ci = cosαi and Si = sinαi )

A = −S3(S4C1 + C4S1 cosϕ1) , B = S1S3 sinϕ1 ,
R = C2 − C3(C4C1 − S4S1 cosϕ1) .

}
(18.2)

The equation has two solutions ϕ4 which are determined by their sines and
cosines:

cosϕ4k =
AR+ (−1)kB

√
A2 +B2 −R2

A2 +B2
,

sinϕ4k =
BR− (−1)kA

√
A2 +B2 −R2

A2 +B2

⎫⎪⎪⎬
⎪⎪⎭ (k = 1, 2) . (18.3)

In the case αi � 1 (i = 1, 2, 3, 4), when the spherical four-bar approximates
a planar four-bar in a plane tangent to the sphere the coefficients A , B , R
are represented by their second-order approximations

A ≈ −α3(α1 cosϕ1 + α4) , B ≈ α1α3 sinϕ1 ,
R ≈ α1α4 cosϕ1 − 1

2 (α
2
2 − α2

1 − α2
3 − α2

4) .

}
(18.4)

Compare this with the transfer function of the planar four-bar given in (17.10)
and (17.11). In these equations the following changes of notation are necessary
(see Fig. 18.1b). The input angle ϕ of the planar four-bar is identified with
ϕ1 −π and the output angle ψ with 2π−ϕ4 . The link lengths r1 , a , r2 , �
of the planar four-bar are given the new names α1 , α2 , α3 , α4 , respectively.
Following these changes (17.10) and (17.11) are identical with (18.1), (18.4).
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18.2 Grashof Type Conditions

Grashof’s conditions for the planar four-bar were deduced from Figs. 17.1a,b,c
which show limit positions of the input link. These positions are characterized
by collinearity of coupler and output link. In the case of the spherical four-bar,
the equivalence to collinearity of coupler and output link is the coincidence
of the great circles of coupler and output link. If, for convenience, great-circle
arcs are drawn as straight lines, the Figs. 18.2a,b,c are equivalent to Figs.
17.1a,b,c . The triangles are spherical triangles. The angles φ1 and φ2 are
limit values of the input angle ϕ1 . The cosine law for spherical triangles
yields the equations

cos(α3 ± α2) = cosα1 cosα4 + sinα1 sinα4 cos(φ1,2 − π) . (18.5)

Hence

cosφ1,2 =
cosα1 cosα4 − cos(α3 ± α2)

sinα1 sinα4
. (18.6)

The same expressions are obtained from the condition that in (18.3) A2 +
B2−R2 = 0 . Equations (18.2) yield (with the abbreviations c1 = cosϕ1 and
s1 = sinϕ1 )

A2 +B2 −R2 = S2
1 [c

2
1(S

2
3C

2
4 − S2

4C
2
3 ) + s21S

2
3 ] + 2c1S1S4(C1C4 − C2C3)

+C2
1 (S

2
3S

2
4 − C2

3C
2
4 ) + C2(2C1C3C4 − C2) . (18.7)

Substituting S2
3 = 1− C2

3 , S2
4 = 1− C2

4 and s21 = 1− c21 this is rewritten
in the form

Fig. 18.2 Spherical four-bar in limit positions of the input link
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S2
1 [(1− C2

3 )− c21(1− C2
4 )] + 2c1S1S4(C1C4 − C2C3) + C2

1 [(1− C2
3 )− C2

4 ]

+C2(2C1C3C4 − C2)

= −S2
1S

2
4c

2
1 + 2c1S1S4(C1C4 − C2C3) + S2

3 − C2
1C

2
4 + C2(2C1C3C4 − C2)

= −[S1S4c1 − (C1C4 − C2C3)]
2

+(C1C4 − C2C3)
2 + S2

3 − C2
1C

2
4 + C2(2C1C3C4 − C2)

= −[S1S4c1 − (C1C4 − C2C3)]
2 + S2

2S
2
3

= −[(C2C3 + S2S3)− (C1C4 − S1S4c1)]

×[(C2C3 − S2S3)− (C1C4 − S1S4c1)] . (18.8)

The roots c1 of this expression are, indeed, the quantities in (18.6).
The input link is fully rotating relative to the base if Eqs.(18.5) yield

cos(φ1 − π) ≥ +1 as well as cos(φ2 − π) ≤ −1 . These are the conditions

cos(α4 + α1) ≥ cos(α3 + α2) , cos(α3 − α2) ≥ cos(α4 − α1) . (18.9)

The special case of four identical link lengths α1 = α2 = α3 = α4 is treated
first. Equations (18.5) yield φ1 − π = 0 , φ2 − π = π . This means that the
input link can rotate full circle relative to the base.

In what follows, it is assumed that at least two link lengths are different.
Let αmin and αmax �= αmin be the smallest and the largest link length,
respectively, and let α′ and α′′ be the other link lengths so that αmin ≤
α′ , α′′ ≤ αmax . Because of the assumption 0 < αi ≤ π (i = 1, 2, 3, 4) the
second condition (18.9) is equivalent to

|α3 − α2| ≤ |α4 − α1| . (18.10)

The first condition is satisfied if

either α4 + α1 ≤ α3 + α2 ≤ 2π − (α4 + α1)
or 2π − (α4 + α1) ≤ α3 + α2 ≤ α4 + α1 .

}
(18.11)

Condition (18.10) and the first condition (18.11) are satisfied if and only if

α1 + α4 ≤ π , α1 + α2 + α3 + α4 ≤ 2π ,
α1 = αmin or α4 = αmin , αmin + αmax ≤ α′ + α′′ .

}
(18.12)

Condition (18.10) and the second condition (18.11) are satisfied if and only
if

α1 + α4 ≥ π , α1 + α2 + α3 + α4 ≥ 2π ,
α1 = αmax or α4 = αmax , αmin + αmax ≥ α′ + α′′ .

}
(18.13)

In conclusion, link 1 is a fully rotating crank if either the set of conditions
(18.12) or the set of conditions (18.13) is satisfied. The last two of the con-
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ditions (18.12) are formally identical with Grashof’s condition for the pla-
nar four-bar. Conditions (18.13) are different. Examples: Conditions (18.12)
are satisfied by the set of parameters α1 = 50◦ , α2 = 100◦ , α3 = 120◦ ,
α4 = 80◦ , and conditions (18.13) are satisfied by the set of parameters
α1 = 120◦ , α2 = 70◦ , α3 = 100◦ , α4 = 160◦ . The above results apply
also to the mechanism RCCC .

Like planar four-bars also spherical four-bars fall into the categories of
crank-rockers, double-cranks, double-rockers and foldable four-bars. A spher-
ical four-bar is foldable if αmin + αmax = α′ + α′′ .

18.3 Coupler Curves

Every point C fixed on the coupler of a moving spherical four-bar traces a
coupler curve which is located on a sphere. Without loss of generality the
point C is chosen on the unit sphere. Together with the endpoints A and B
of the coupler the point C creates a coupler-fixed spherical triangle (A,B,C).
In Fig. 18.3 arcs of great circles are schematically represented by straight
lines. As parameters of the coupler triangle the angles α5 , α6 and α7 are
chosen. They are equivalent to the parameters b1 , b2 and β of the coupler
triangle of the planar four-bar in Fig. 17.19. As coordinates of the coupler
point C its geographical longitude u and its geographical latitude v are
used (A0 and B0 lie in the equatorial plane; u = 0 at A0). The meridian
passing through C defines the point D on the equator.

Fig. 18.3 Spherical four-bar with coupler point C in the coupler triangle (A,B,C) .

Schematic view with great-circle arcs shown as straight lines. All lengths are angles. Geo-
graphical coordinates u , v . Auxiliary angles α , ε , δ
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18.3.1 Implicit Equation for Coupler Curves

To be determined is an implicit equation of the coupler curve in the form
f(u, v, α1, α3, α4, α5, α6, α7) = 0 . The following derivation is due to Dobro-
volski [1]. It is analogous to the development for the planar four-bar (see
Fig. 17.19 and Eqs.(17.78) – (17.84)). Temporarily, the auxiliary variables
α , ε and δ are used. Spherical cosine and sine laws applied to the triangle
(A,D,C) and the spherical cosine law applied to the triangle (A,D,A0) yield
the equations

cosα =
cos δ − C5 cos v

S5 sin v
, cos ε = S5

sinα

sin δ
, cos ε =

C1 − cos δ cosu

sin δ sinu
.

(18.14)
From the identity of the last two expressions it follows that

cos δ =
C1 − S5 sinα sinu

cosu
. (18.15)

Substitution of this expression into the first Eq.(18.14) results in the following
equation which is linear with respect to both sinα and cosα :

S5(sinu sinα+ cosu sin v cosα) = C1 − C5 cosu cos v . (18.16)

The same equations are formulated for the triangles (B,D,C) and (B,D,B0).
They are obtained by replacing in the above equations u , α1 , α5 , α by
α4 − u , α3 , α6 , α7 − α , respectively. To sin(α7 − α) and to cos(α7 − α)
addition theorems are applied. The equation equivalent to (18.16) then reads

S6

{
[S7 sin v cos(α4 − u)− C7 sin(α4 − u)] sinα+ [C7 sin v cos(α4 − u)

+S7 sin(α4 − u)] cosα
}
= C3 − C6 cos(α4 − u) cos v . (18.17)

These two equations are solved for sinα and cosα . Let Δ be the coefficient
determinant. It is a simple expression if also sin(α4 − u) and cos(α4 − u)
are developed:

Δ = S5S6[S4C7 sin v − C4S7 + S7 cos
2 v cosu(S4 sinu+ C4 cosu)] . (18.18)

In the numerator determinants for sinα and for cosα the expressions
sin(α4 − u) and cos(α4 − u) are kept unchanged. The resulting expressions
are
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sinα =
1

Δ

{
S6(C1 − C5 cosu cos v)[C7 sin v cos(α4 − u) + S7 sin(α4 − u)]

− S5[C3 − C6 cos(α4 − u) cos v] cosu sin v
}
, (18.19)

cosα =
1

Δ

{
S5[C3 − C6 cos(α4 − u) cos v] sinu− S6(C1 − C5 cosu cos v)

×[S7 sin v cos(α4 − u)− C7 sin(α4 − u)]
}
. (18.20)

Substitution into the constraint equation cos2 α+ sin2 α = 1 eliminates the
auxiliary variable α . The resulting equation is the desired implicit equation
of the coupler curve:{

S6(C1 − C5 cosu cos v)[C7 sin v cos(α4 − u) + S7 sin(α4 − u)]− S5[C3

−C6 cos(α4 − u) cos v] cosu sin v
}2

+
{
S5[C3 − C6 cos(α4 − u) cos v] sinu

−S6(C1 − C5 cosu cos v)[S7 sin v cos(α4 − u)− C7 sin(α4 − u)]
}2

= Δ2 . (18.21)

When this is multiplied out, the function sin(α4 − u) disappears. Only the
term cos(α4 − u) = S4 sinu+C4 cosu is left. The final form of the equation
reads

S2
6(C1 − C5 cosu cos v)

2[1− cos2 v(S4 sinu+ C4 cosu)
2]

+ S2
5 [C3 − C6 cos v(S4 sinu+ C4 cosu)]

2(1− cos2 u cos2 v)

− 2S5S6(C1 − C5 cosu cos v)[C3 − C6 cos v(S4 sinu+ C4 cosu)]

× [S4S7 sin v + C4C7 − C7 cos
2 v cosu(S4 sinu+ C4 cosu)]

= S2
5S

2
6 [S4C7 sin v − C4S7 + S7 cos

2 v cosu(S4 sinu+ C4 cosu)]
2 . (18.22)

The condition for the coupler curve to pass through the north pole (the
south pole) of the sphere is that the equation is satisfied with v = π/2 (with
v = −π/2 ). These conditions are

S2
6C

2
1 +S2

5C
2
3 − 2S5S6C1C3(C7C4±S7S4) = S2

5S
2
6(±S4C7−C4S7)

2 (18.23)

or
[S5S6 cos(α7 ∓ α4)− C1C3]

2 = (S2
5 − C2

1 )(S
2
6 − C2

3 ) . (18.24)

Equation (18.22) can be written in a simpler form when the transition is
made to cartesian coordinates in an x, y, z-system defined as follows1. The
origin is the center 0 of the sphere, the z, x-plane is the equatorial plane, the

1 This idea was conceived in 2005 by Andrey Shutovich (St. Peterburg), then undergraduate
student in Karlsruhe
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z-axis passes through A0 , and the y-axis passes through the north pole. The
point on the sphere with geographical coordinates u , v has the cartesian
coordinates

x = sinu cos v , y = sin v , z = cosu cos v . (18.25)

Every expression in (18.22) is an algebraic function of x , y and z . The
variable x occurs only in the form p = S4x+ C4z . With this abbreviation
the equation becomes

S2
6(C1 − C5z)

2(1− p2) + S2
5(C3 − C6p)

2(1− z2)

− 2S5S6(C1 − C5z)(C3 − C6p)[S4S7y + C7(C4 − zp)]

= S2
5S

2
6 [S4C7y − S7(C4 − zp)]2 (p = S4x+ C4z) . (18.26)

This fourth-order polynomial equation defines a surface. Curves of intersec-
tion with planes z =const are conic sections. The coupler curve is the inter-
section of the surface with the unit sphere

x2 + y2 + z2 = 1 . (18.27)

Proposition: An arbitrary circle on the sphere intersects the coupler curve in
eight (not necessarily real) points. This can also be expressed in the follow-
ing form. Given three circles a , b , c on a sphere and a spherical triangle
(A,B,C), there exist eight (not necessarily real) positions of the triangle in
which A lies on a , B on b and C on c . In Chap.17.8.3 on triangles and
circles in a plane the number of positions was found to be six (see the text
following (17.86)).

Proof: Intersection points are located on the fourth-order surface, on the
second-order sphere and in the plane of intersection of the circle with the
sphere. Let y = ax + bz + c be the equation of the plane. Substitution into
(18.27) and (18.26) results in the equation of an ellipse and in a fourth-order
equation with circularity zero, respectively. These two equations have eight
solutions (x, z). End of proof. In Sect. 18.3.6 other forms of proof are given.

18.3.2 Symmetrical Coupler Curves

From the planar four-bar it is known that points on the coupler line, and only
these points, generate coupler curves which are symmetrical with respect
to the base line. In the case of the spherical four-bar, the equivalence to
symmetry with respect to the base line is symmetry with respect to the x, z-
plane (the base plane). This symmetry exists if in (18.26) the variable y either
disappears altogether or appears in quadratic form only. The latter happens
if S7 = 0 (α7 = 0 or π/2) . This is the case when the point generating the
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coupler curve is located on the great circle of the coupler. This represents a
direct analogy to the planar four-bar.

The variable y disappears altogether if either α4 = π or α3 = α6 =
α7 = π/2 or α1 = α5 = α7 = π/2 . The case α4 = π is the geometrically
trivial case that the input axis n1 and the output axis n4 are directed along
one and the same diameter of the sphere. In (18.26) not only y , but also
x disappears. After division through (1 − z2) a quadratic equation for z
is left. Its solutions define two planes z ≡ z1 and z ≡ z2 . These planes
intersect the unit sphere (18.27) in two circles which represent the coupler
curve. Equation (18.1) has the form cos(ϕ1 − ϕ4) = (C2 + C1C3)/(S1S3) =
const .

The case α3 = α6 = α7 = π/2 is not trivial. Equation (18.26) has the
form F (x, z) = 0 . It defines a cylinder the generators of which are parallel
to the y-axis. The coupler curve is the line of intersection of this cylinder
with the sphere. From the identity α6 = α7 = π/2 it follows that also the
length α2 of the coupler equals π/2 . Thus, the coupler triangle is isosceles
with two right angles. The case α1 = α5 = α7 = π/2 differs from the case
α3 = α6 = α7 = π/2 only in that input link and output link change their
roles.

From the planar four-bar it is known that coupler curves are symmetrical
with respect to the midnormal of the base if the four-bar and the coupler
triangle satisfy the symmetry conditions r1 = r2 and b1 = b2 , respectively
(see Fig. 17.26). The equivalent statement for the spherical four-bar is the
following. If the four-bar and the coupler triangle satisfy the symmetry condi-
tions α3 = α1 and α6 = α5 , respectively, the coupler curve is symmetrical
with respect to the plane spanned by the y-axis and the bisector of the angle
α4 . With C3 = C1 , S3 = S1 , C6 = C5 , S6 = S5 Eq.(18.26) takes, after
simple re-arrangements of terms, the form

2[C2
1 − C2

5z
2p2 − C1C5(z + p)(1− zp)] + (C2

5 − C2
1 )(z

2 + p2)

− 2[C2
1 + C2

5zp− C1C5(z + p)][S4S7y + C7(C4 − zp)]

= S2
5 [S4C7y − S7(C4 − zp)]2 . (18.28)

The bisector of α4 is made the z̄-axis of a new cartesian x̄, y, z̄-system. The
transformation equations are

x = x̄ cos
α4

2
+ z̄ sin

α4

2
, z = −x̄ sin

α4

2
+ z̄ cos

α4

2
, p = x̄ sin

α4

2
+ z̄ cos

α4

2
.

(18.29)
The only variable terms in (18.28) are y , z2 + p2 , zp and z + p . For the
latter ones the expressions are obtained:
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z2 + p2 = (1 + C4)z̄
2 + (1− C4)x̄

2 ,

2zp = (1 + C4)z̄
2 − (1− C4)x̄

2 ,

z + p = 2z̄ cos
α4

2
.

⎫⎪⎪⎬
⎪⎪⎭ (18.30)

When this is substituted into (18.28), x̄ occurs only in the forms x̄2 and
x̄4 . This confirms the symmetry. For x̄2 the expression 1−y2− z̄2 obtained
from the equation of the sphere is substituted. The resulting equation is the
functional equation of the projection of the coupler curve onto the plane of
symmetry. The equation is of fourth order in both y and z̄ .

18.3.3 Geometrical Locus of Double Points

The linear Eqs.(18.16) and (18.17) for sinα and cosα do not have a unique
solution when the determinant Δ in (18.18) equals zero:

S4C7 sin v − C4S7 + S7 cos
2 v cosu(S4 sinu+ C4 cosu) = 0 . (18.31)

This equation defines a curve τ on the unit sphere. The determinant appears
also on the right-hand side of (18.26). Thus, the equation Δ = 0 has the
alternative form

S4C7y − C4S7 + S7z(S4x+ C4z) = 0 . (18.32)

This equation defines a surface in the x, y, z-system. The curve τ is the
intersection of the surface with the unit sphere.

Indeterminacy of sinα and cosα means that a position of the coupler
point C on τ is produced by (at least) two positions of the four-bar with
different angles α . This means that a point C on τ is a multiple point of
the coupler curve. For comparison: In the case of the planar four-bar, the
condition Δ = 0 defines the circle of singular foci with Eq.(17.87). Figure
17.22 was used for proving that the inverse statement is true: If the coupler
point C is at one and the same point in two (or more) different positions of
the four-bar, this multiple point lies on the circle. Following Dobrovolski [2]
the same Fig. 17.22 is now used for proving that this statement holds true
for spherical four-bars if the word circle is replaced by curve τ . The straight
lines in the figure are interpreted as arcs of great circles on the unit sphere
and the angle β in the coupler triangle has the new name α7 . Repeating
the old arguments it is shown that the angle �(A0CB0) equals the angle α7

of the coupler triangle. In other words this means: The curve τ described by
(18.31) and (18.32) is the geometric locus of all points on the sphere from
which the base A0B0 is seen under the angle α7 . In the plane this property
defines the circle of singular foci (17.87). Like this circle also the curve τ
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is uniquely determined by the base length α4 and by the angle α7 in the
coupler triangle.

In what follows, more properties of the curve τ are revealed. Special points
located on τ are the base points A0 and B0 and the points diametrically
opposed to these two. This can be verified by substituting the coordinates
(u, v) of these points into (18.31). The coordinates are (u, v) = (0, 0) , (0, π) ,
(α4, 0) and (α4, π) , respectively. Another proof uses the geometric argument
that from each of the four points the base A0B0 is seen under an arbitrary
angle and, thus, under the angle α7 .

Symmetry properties of the curve τ are revealed when (18.32) is trans-
formed into the x̄, y, z̄-system by substituting for x and z the expressions
from (18.29). This produces the equation

S4C7y − C4S7 +
1

2
S7[(1 + C4)z̄

2 − (1− C4)x̄
2] = 0 . (18.33)

It is the principal-axes equation of a hyperbolic paraboloid. The curve τ is
the intersection of the paraboloid with the sphere. The curve is symmetrical
with respect to the x̄, y-plane and also to the y, z̄-plane. The same symmetry
properties are revealed by (18.31). With a new variable w defined through
the equation u = w+α4/2 the two planes of symmetry are the planes w = 0
and w = π/2 . In terms of w the last term in (18.31) is

cosu(S4 sinu+ C4 cosu) = cos(w + α4/2) cos(w − α4/2)

=
1

2
(C4 + cos 2w) (18.34)

so that (18.31) becomes

S4C7 sin v − C4S7 +
1

2
S7 cos

2 v(C4 + cos 2w) = 0 . (18.35)

Equation (18.33) and the equation of the sphere are now used for for-
mulating equations for the projections of τ onto the two planes of sym-
metry. The equations are obtained by making in (18.33) the substitutions
x̄2 = 1 − y2 − z̄2 and z̄2 = 1 − y2 − x̄2 , respectively. The projections turn
out to be the ellipses

z̄2

S2
4

2S2
7(1−C4)

+

[
y + C7S4

S7(1−C4)

S4

S7(1−C4)

]2
= 1 ,

x̄2

S2
4

2S2
7(1+C4)

+

[
y − C7S4

S7(1+C4)

S4

S7(1+C4)

]2
= 1 .

(18.36)
In Fig. 18.4 these ellipses are shown for the three sets of parameters (α4, α7) =
(60◦, 30◦) , (60◦, 60◦) and (60◦, 90◦) . The circles represent the projections of
the unit sphere. Only the elliptic sections inside the circles belong to curves
τ .
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Fig. 18.4 Projections of the unit sphere and of three curves τ onto the planes of symmetry

w = π/2 (z̄, y-plane) and w = 0 (x̄, y-plane). Ellipses 1 , 2 , 3 for the sets of parameters
(α4, α7) = (60◦, 30◦) , (60◦, 60◦) and (60◦, 90◦) , respectively

From the properties of the curve τ it follows that two spherical four-bars
have one and the same curve τ only if they have the same base points A0

and B0 and the same angle α7 . From this it follows that for spherical four-
bars there is no theorem equivalent to the Roberts-Tschebyschev Theorem
17.2. This is the most significant qualitative difference between planar and
spherical four-bars.

In both projections in Fig. 18.4 the ellipse belonging to the parameters
(60◦, 60◦) is passing through the north pole. Hence, also the curve τ is
passing through the north pole. The general condition for a curve τ to pass
through a pole is that (18.35) be satisfied by v = π/2 (north pole) or by
v = −π/2 (south pole). This is the case if the parameters α4 and α7 satisfy
the condition sin(α4−α7) = 0 (north pole) or sin(α4+α7) = 0 (south pole).
Under these conditions (18.35) has the special forms (upper sign for north
pole)

cos 2w = cosα4
1∓ sin v

1± sin v
↔ sin v = ∓cos 2w − cosα4

cos 2w + cosα4
. (18.37)

These equations display the following properties. The curve has a double
point at the respective pole. At the double point the curve is tangent to the
two great circles w = α4 and w = −α4 . The entire curve is located between
these two great circles. It intersects the equator at the points w = α4/2
and w = −α4/2 (these are the base points A0 and B0). At w = 0 the
curve reaches its extremal geographical latitude v = ∓ sin−1[(1−cosα4)/(1+
cosα4)] . The curve τ is unicursal in the case | tanα7| < | tanα4| and it is
bicursal in the case | tanα7| > | tanα4| .
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18.3.4 Stereographic Projection

From the previous section it is known that double points of coupler curves
are located on the curve τ if these points are associated with two different
positions of the spherical four-bar2. For making statements about the number
of double points algebraic equations in terms of two variables are needed for
the coupler curve and for the curve τ . Such equations are obtained by a
suitable projection. Parallel projections are not suitable because they may
produce double points to which no double point on the sphere corresponds.
Following Primrose/Freudenstein [7] a stereographic projection from a central
point Q located on the sphere onto the plane tangent to the sphere at the
point opposite Q is used. As central point Q the point opposite the base
point A0 is chosen. In contrast to Primrose/Freudenstein, not (18.22) written
in terms of geographical coordinates is used, but (18.26) written in terms of
the cartesian coordinates x, y, z . In the x, y, z-system the central point Q
has the coordinates (0, 0,−1) , and the plane of projection has the equation
z = 1 . Let P be an arbitrary point on the sphere with coordinates (x, y, z) ,
and let P′ with coordinates (ξ, η, 1) be the stereographic projection of P .
Because of the collinearity of Q , P and P′

ξ

x
=

η

y
=

2

z + 1
. (18.38)

Also x2 + y2 + z2 = 1 . Resolution of these equations for ξ and η yields

ξ =
2x

z + 1
, η =

2y

z + 1
. (18.39)

Conversely, resolution for x , y and z yields

x =
4ξ

ξ2 + η2 + 4
, y =

4η

ξ2 + η2 + 4
, z =

4− ξ2 − η2

ξ2 + η2 + 4
. (18.40)

These expressions are substituted into (18.26). After multiplication with the
common denominator (ξ2 + η2 + 4)4 the following equation is obtained for
the stereographic projection of the coupler curve:

2 The double point produced by a foldable spherical four-bar in the folding position belongs
to two different branches of the coupler curve and to a single position of the four-bar.

Therefore, this double point may or may not be located on τ
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S2
6 [(ξ

2 + η2)(C1 + C5) + 4(C1 − C5)]
2

× [S2
4(ξ

2 + η2)2 + 8(ξ2 + η2)(C4S4ξ + 1 + C2
4 ) + 16S4(−S4ξ

2 − 2C4ξ + S4)]

+ 16S2
5(ξ

2 + η2)[(ξ2 + η2)(C3 + C4C6)− 4(S4C6ξ − C3 + C4C6)]
2

− 8S5S6[(ξ
2 + η2)(C1 + C5) + 4(C1 − C5)]

× [(ξ2 + η2)(C3 + C4C6)− 4(S4C6ξ − C3 + C4C6)]

× {(ξ2 + η2)[S4(C7ξ + S7η) + 4C4C7] + 4S4(−C7ξ + S7η)}
= 16S2

5S
2
6{(ξ2 + η2)[S4(−S7ξ + C7η)− 4C4S7] + 4S4(S7ξ + C7η)}2 .(18.41)

In multiplying out the factor (ξ2+η2) is encountered repeatedly. Separation
of terms of orders eight, seven, six, five and lower results in an equation of
the form

p1(ξ
2 + η2)4 + (ξ2 + η2)3(p2ξ + p3η) + (ξ2 + η2)2(p4ξ

2 + p5ξη + p6η
2

+ p7ξ + p8η) + . . . (fourth- and lower-order terms) = 0 . (18.42)

The constant coefficients p1 , p2 , . . . are complicated functions of the system
parameters α1 , . . . , α7 . The simplest coefficient is p1 = [S4S6(C1 + C5)]

2 .
The curve is of order eight with circularity four.

Equation (18.42) provides the basis for another proof of the theorem that
a coupler curve intersects a circle on the unit sphere in eight points. First,
it is proved that the stereographic projection of an arbitrary circle on the
sphere is itself a circle. This is done as follows. A circle on the unit sphere is
defined by a point fixed on the sphere and by an angle α . If (x0, y0, z0) and
(x, y, z) denote the coordinates of the fixed point and of a point on the circle,
respectively, the equation of the circle is xx0+yy0+zz0 = cosα . Substitution
of the expressions (18.40) yields the equation of the stereographic projection
of the circle:

(ξ2 + η2)(z0 + cosα)− 4(x0ξ + y0η + cosα) = 0 . (18.43)

This, is indeed, the equation of a circle. Let now ξ0, η0 be the coordinates of
the center of this circle, and let r be its radius. The circle has the parameter
representation ξ = ξ0 + r cos γ , η = η0 + r sin γ . This yields ξ2 + η2 =
r2 + ξ20 + η20 + 2r(ξ0 cos γ + η0 sin γ) . These expressions are substituted into
(18.42). The resulting equation is of fourth order in cos γ and sin γ . The
substitution z = tan γ/2 leads to an 8th-order polynomial equation for z .
This ends the proof.

The proof can also be formulated as follows. The stereographic projection
of the coupler curve results in an 8th-order equation independent of which
point on the sphere is chosen as central point of the projection. The central
point can be chosen such that the given circle to be intersected by the coupler
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curve is projected into a straight line. This line intersects the 8th-order curve
at eight points.

Next, the curve τ is subjected to the stereographic projection. Let τ ′

be this projection. On τ ′ the right-hand side expression of (18.41) is zero.
This is the desired equation of τ ′ . It is necessary to distinguish between the
general case α7 �= π/2 and the special case α7 = π/2 . The two equations
describing τ ′ read:

α7 �= π

2
: (ξ2 + η2)(η − λξ − μ) + 4(η + λξ) = 0

(λ = tanα7 , μ = 4λ cotα4) , (18.44)

α7 =
π

2
: η = ±

√
4ξ

ξ + cotα4
− ξ2 . (18.45)

Equation (18.44) defines a curve of third order with circularity one. It is of
the same type as Burmester’s center point curve (see (14.53)). The factor of
(ξ2+η2) yields the equation for the asymptote of the curve: η = λξ+μ . The
existence of an asymptote is due to the fact that the curve τ on the sphere
passes through the central point Q of the stereographic projection. Both the
origin and the point of intersection of the asymptote with the line η+λξ = 0
lie on τ ′ . The line η+λξ = 0 is tangent to τ ′ at the origin. From Eqs.(18.36)
it is known under which conditions τ ′ is unicursal, bicursal and double-point
curve, respectively. Furthermore, it is known that a double point is either the
north pole or the south pole. The projections of these points are the points
ξ = 0 , η = 2 and ξ = 0 , η = −2 , respectively.

Equations (18.42) and (18.44) for the projections of the coupler curve and
of the curve τ , respectively, determine the number of double points of coupler
curves. The orders eight and three, respectively, and the circularities four
and one, respectively, tell that the two curves have a total of sixteen points
of intersection. Thus, there is a total of eight double points. Two double
points lie at infinity on the imaginary lines ξ = ±iη . Proposition: Two more
double points are the imaginary points with the coordinates3 ξ = −2C4/S4 ,
η = ±2i /S4 . Proof: Substitution of these coordinates yields ξ2 + η2 = −4 .
Three terms appearing in (18.41) are individually zero. These are the terms

S2
4(ξ

2 + η2)2 + 8(ξ2 + η2)(C4S4ξ + 1 + C2
4 )

+16S4(−S4ξ
2 − 2C4ξ + S4) = 0 ,

(ξ2 + η2)(C3 + C4C6)− 4(S4C6ξ − C3 + C4C6) = 0 ,

(ξ2 + η2)[S4(−S7ξ + C7η)− 4C4S7] + 4S4(S7ξ + C7η) = 0 .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (18.46)

This shows that both sides of the equation are individually zero. Thus, the
points are located not only on the projection of the coupler curve, but also
on the curve τ ′ . End of proof.

3 The coordinates reported in [7] are incorrect due to a sign error in the formula for tanu
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This leaves, finally, a maximum number of four real double points. That
this number can actually occur in a unicursal coupler curve is demonstrated
by Fig. 18.5 . It shows in stereographic projection the coupler curve and the
curve τ for the set of parameters α1 = 85◦ , α2 = 82◦ , α3 = 100◦ ,
α4 = 90◦ , α5 = α6 = 50◦ (α2 , α5 and α6 determine α7 ≈ 117.8◦ ). Note:
In this figure the central point of the stereographic projection is the north
pole (the point y = 1 ). This has the advantage that the projection of the
curve τ is symmetric4.

Fig. 18.5 Unicursal coupler curve with four double points on the curve τ in stereographic
projection from the north pole. Parameters α1 = 85◦ , α2 = 82◦ , α3 = 100◦ , α4 = 90◦ ,
α5 = α6 = 50◦ , α7 ≈ 117.8◦

18.3.5 Cusps

As is known from the planar four-bar double points may degenerate into
cusps. Conditions for the occurrence of cusps are developed as follows (com-
pare with the formulation of condition (17.94) for the planar four-bar and
with Fig. 17.24). The coupler point C is located in a cusp when the coupler
is momentarily rotating about the axis 0C . Then A0 , A and C lie on a
great circle, and B0 , B and C lie on another great circle. This can happen
in altogether four different configurations. The common feature is that the

4 Equation (18.33) is the principal-axes equation of τ . The pertinent transformation equa-
tions are

x̄ = 4ξ
ξ2+ζ2+4

, y = ξ2+ζ2−4
ξ2+ζ2+4

, z̄ = 4ζ
ξ2+ζ2+4

.

This projection produces the principal-axes equation of the curve shown in Fig. 18.5:
(ξ2 + ζ2)2 sin(α4 − α7)− 8(ξ2 − ζ2) sinα7 − 16 sin(α4 + α7) = 0
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great-circle arcs of lengths α1 , α5 and of α3 , α6 are pairwise co-tangent.
In any such configuration the base A0B0 is seen from C either under the
angle α7 or under the angle π−α7 . This proves again that cusps lie on the
curve τ . The four configurations are shown by Fig. 17.24 if the straight lines
are interpreted as great-circle arcs and if the notations are changed according
to Fig. 18.3. The cosine law applied to the spherical triangles (A0,B0,C) and
(A,B,C) yields the equations

C4 = cos(α1 + α5) cos(α3 + α6) + sin(α1 + α5) sin(α3 + α6)C7 ,

C2 = C5C6 + S5S6C7 .

}
(18.47)

Elimination of C7 = cosα7 results in a condition for the existence of cusps.
With the help of addition theorems it can be given the form

C1S3S5(C5 − C2C6) + S1C3S6(C6 − C2C5)

+ S1S3(C
2
5 + C2

6 − C2C5C6 − 1) + S5S6(C4 − C1C2C3) = 0 . (18.48)

With reference to Fig. 17.24 the combination (S1, S3) can be replaced by
any of the combinations (−S1, S3) , (S1,−S3) and (−S1,−S3) . In Prim-
rose/Freudenstein [7] the numerical example is given: α1 = α3 = α4 = 90◦ ,
α5 = α6 = 30◦ , α2 = cos−1 2

3 . With these parameters both the four-bar
and the coupler triangle are symmetric. Condition (18.48) is satisfied with all
four combinations (S1, S3) , (−S1, S3) , (S1,−S3) and (−S1,−S3) . Equa-
tion (18.47) yields C7 = −1/3 . The coupler curve with these parameters is
bicursal with two cusps in each branch. It is shown in Fig. 18.6 together with
the curve τ in the same stereographic projection that was used in Fig. 18.5 .

Fig. 18.6 Bicursal coupler curve with four cusps on the curve τ in stereographic pro-

jection from the north pole. Parameters α1 = α3 = α4 = 90◦ , α5 = α6 = 30◦ ,
α2 = cos−1 2

3
, α7 = cos−1

(−1
3

)
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18.3.6 Parameter Equations for Coupler Curves

In Fig. 18.7 a spherical four-bar with coupler triangle and with coordinate
systems x, y, z and x∗, y, z∗ is shown. The parameters α1, . . . , α7 , the vari-
ables ϕ1 , ϕ4 and the axial unit vectors n1 , n2 , n3 , n4 are those of Fig.
18.1a . The x, y, z-system with unit basis vectors ex , ey , ez is defined in
the text preceding (18.25). The x∗, y, z∗-system is rotated against the x, y, z-
system through the angle α4 about the y-axis. The transformation is⎡

⎣x
y
z

⎤
⎦ =

⎡
⎣ C4 0 S4

0 1 0
−S4 0 C4

⎤
⎦
⎡
⎣x∗

y
z∗

⎤
⎦ . (18.49)

The coupler triangle is defined as usual by the parameters α5 , α6 , α7 . In
addition, angular parameters η , ζ of the coupler point C and the auxiliary
angle χ are introduced. The parameters η , ζ are equivalent to the parame-
ters of equal name in the coupler triangle of the planar four-bar in Fig. 17.19.
Cosine and sine laws establish the equations

C2 = C5C6 + S5S6C7 , C5 = cos η cos ζ , C6 = cos(α2 − η) cos ζ ,

sin ζ = S5 sinχ , cosχ =
C6 − C5C2

S5S2
.

⎫⎬
⎭

(18.50)
The goal of the following analysis is to express the coordinates x, y, z of the
coupler point C as functions of the single variable ϕ1 . Such parameter equa-
tions are the basis of graphical displays of coupler curves. Together with the
x, y, z-coordinates the geographical coordinates u , v determined by (18.25)
and the stereographic coordinates ξ , η determined by (18.39) become func-
tions of ϕ1 . The desired functions are obtained by expressing the position

Fig. 18.7 Parameters η , ζ and α5 , α6 , α7 in the coupler triangle. Coordinate systems
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vector
−→
0C of the coupler point C in two forms:

−→
0C = xex + yey + zez ,

−→
0C = z1n2 + z2n3 + z3n2 × n3 . (18.51)

This identity is written in the form

[ex ey ez]

⎡
⎣x
y
z

⎤
⎦ = [n2 n3 n2 × n3]

⎡
⎣ z1
z2
z3

⎤
⎦ . (18.52)

The expression on the right-hand side is transformed in two steps. In Step
1 , the constants z1 , z2 , z3 are expressed in terms of the parameters of the
coupler triangle. In Step 2 , the vectors n2 , n3 and n2 × n3 are expressed
as linear combinations of ex , ey , ez with variable coefficients.
Step 1 : Scalar multiplications of the second Eq.(18.51) by n2 , n3 and n2×n3

result in the equations (see Fig. 18.7)
C5 = z1 + C2z2 , C6 = C2z1 + z2 , sin ζ = S2z3 , whence it follows that⎡

⎣ z1
z2
z3

⎤
⎦ =

1

S2
2

⎡
⎣C5 − C2C6

C6 − C2C5

S2 sin ζ

⎤
⎦ . (18.53)

Using (18.50) alternative expressions in terms of α5 , α6 , α7 only or in terms
of α2 , η , ζ only can be obtained, for example

C5 − C2C6 = S6(C5S6 − S5C6C7) , S2
2 = 1− (C5C6 + S5S6C7)

2 ,

(C5−C2C6)/S
2
2 = sin(α2−η) cos ζ/S2 , (C6−C2C5)/S

2
2 = sin η cos ζ/S2 .

Step 2 : Figure 18.7 shows that n2 has in the x, y, z-system the coordinates
(with the abbreviations ci = cosϕi , si = sinϕi ) [−S1c1 − S1s1 C1 ] .

Similarly, in the x∗, y, z∗-system n3 has the coordinates [S3c4 −S3s4 C3 ] .

The transformation (18.49) yields the coordinates in the x, y, z-system:

[C3S4+S3C4c4 −S3s4 C3C4−S3S4c4 ] . The x, y, z-coordinates of n2 and
n3 constitute the first and the second column of the matrix below. Together
they determine the coordinates of n2 × n3 in column 3 .

A =

⎡
⎣−S1c1 C3S4 + S3C4c4 C1S3s4 − S1s1(C3C4 − S3S4c4)

−S1s1 −S3s4 C1(C3S4 + S3C4c4) + S1c1(C3C4 − S3S4c4)
C1 C3C4 − S3S4c4 S1[s1(C3S4 + S3C4c4) + S3c1s4]

⎤
⎦ .

(18.54)

For c4 and s4 the expressions (18.3) are substituted. The matrix A is then
a function of ϕ1 . The matrix establishes the relation

[n2 n3 n2 × n3] = [ex ey ez]A(ϕ1) . (18.55)

Substitution of (18.55) and (18.53) into (18.52) results in the desired param-
eter equations for the coupler curve:
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⎣x
y
z

⎤
⎦ =

1

S2
2

A(ϕ1)

⎡
⎣C5 − C2C6

C6 − C2C5

S2 sin ζ

⎤
⎦ . (18.56)

18.4 Spherical Parallel Robot

The spherical linkage with center 0 shown in Fig. 18.8 is a parallel robot.
The position of its triangular platform (A,B,C) is controlled by the angles
of rotation αi about fixed (not necessarily orthogonal) axes. The kinematics
has been investigated by Gosselin, Sefriou and Richard [3, 4]. The problem

Fig. 18.8 Spherical parallel robot

of direct kinematics is to determine all positions of the platform when the
angles αi (i = 1, 2, 3) are given. The solution to this problem is found in
Sects. 18.3.1 and 18.3.4 . When the angles are given, the points A0 , B0 and C0

are fixed. Imagine that in this position the connection C between the binary
link C0C and the triangle (A,B,C) is opened. The binary link is then free to
lead its point C on a circle about C0 , and the spherical four-bar A0ABB0

is free to lead its coupler-fixed point C along a coupler curve. Hence C is
a point of intersection of this circle and this coupler curve. The maximum
number of real points of intersection was shown to be eight. The calculation
of these points is based either on Eqs.(18.26) and (18.27) or on Eq.(18.42).

Gosselin and Gagne [5] investigated the special case when all angular sys-
tem parameters equal π/2 . In what follows, their analysis is presented in a
modified form. In Fig. 18.9 the mutually orthogonal rotation axes e11 , e12 ,
e13 are directed along the edges of the fixed cube 1 . The platform-fixed axes
0A , 0B , 0C are the axes e21 , e22 , e23 along the edges of another cube 2
representing the platform. Each pair of binary links connects an axis on cube
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Fig. 18.9 Special spherical parallel robot

1 to an axis on cube 2 . The labeling of axes and of pairs of binary links is
as follows. The pair connected to the axis e1i which is operated by the angle
αi is referred to as pair i . It connects e1i to e2i+1 via the internal axis ni−1

(i = 1, 2, 3 cyclic). The orthogonality of axes of binary links is expressed by
the equations

n1 · e12 = 0 , n2 · e13 = 0 , n3 · e11 = 0 , (18.57)

n1 · e23 = 0 , n2 · e21 = 0 , n3 · e22 = 0 . (18.58)

Let the null position α1 = α2 = α3 = 0 be the one in which for i = 1, 2, 3 the
triple of vectors e1i , e2i and ni coalesces. With this definition, the vectors
n1 , n2 , n3 have in basis e1 the coordinates (with abbreviations Ci =
cosαi , Si = sinαi )

n1 = [ C2 0 − S2 ]T , n2 = [ −S3 C3 0 ]T , n3 = [ 0 − S1 C1 ]T .
(18.59)

With these coordinates and with the direction cosine matrix A defined by
the equation e1 = A e2 the orthogonality conditions (18.58) have the forms

−S3a11+C3a21 = 0 , −S1a22+C1a32 = 0 , C2a13−S2a33 = 0 . (18.60)

The problem of direct kinematics is to solve these equations for the direction
cosines when the angles αi (i = 1, 2, 3) are given. It is known that with three
angular position variables critical cases occur. Here, a critical case occurs
when a single angle equals π/2 or −π/2 . Example: From Fig. 18.9 it is
seen that α1 = π/2 is possible only in combination with α3 = 0 and with
n1 = e12 = e23 . In this position the platform is free to rotate about n1 , and
α2 is arbitrary independent of this rotation. Hence the platform position is
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not controllable if α1 = π/2 . With a cyclic change of indices the same is
true for α2 = π/2 and for α3 = π/2 . In order to avoid critical positions the
robot must be operated in the range −π/2 < αi < π/2 (i = 1, 2, 3).

Solving Eqs.(18.60) is difficult because of second-order constraint equa-
tions for direction cosines. The solution is simpler when the matrix is ex-
pressed in terms of Bryan angles. Following [5] the sequence of rotations is
defined as follows (this differs from the sequence chosen in Sect. 1.4). The
first rotation is the one with angle φ3 about the axis e13 . Then follows the
rotation with angle φ2 about the actual position of e22 and then the ro-
tation with angle φ1 about the actual position of e21 . With this sequence
of rotations the direction cosine matrix is (with abbreviations ci = cosφi ,
si = sinφi )

A =

⎡
⎢⎣ c2c3 −c1s3 + s1s2c3 s1s3 + c1s2c3
c2s3 c1c3 + s1s2s3 −s1c3 + c1s2s3
−s2 s1c2 c1c2

⎤
⎥⎦ . (18.61)

With direction cosines expressed in this form Eqs.(18.60) become

c2 sin(φ3 − α3) = 0 ,
c1S1c3 +s1(S1s3s2 − C1c2) = 0 ,
c1(C2c3s2 − S2c2) +s1C2s3 = 0 .

⎫⎬
⎭ (18.62)

The first equation has the solutions

φ31 = α3 , φ32 = α3 + π (18.63)

and the irrelevant solution c2 = 0 independent of α1 , α2 , α3 which marks
the critical case for Bryan angles.

The second and the third equation are homogeneous linear equations for
c1 and s1 . Nontrivial solutions exist if the determinant of the coefficients is
zero. This condition is

c2[c2(C1S2 − S1C2s3c3)− s2(C1C2c3 + S1S2s3)] = 0 . (18.64)

As before, the solution c2 = 0 is of no interest. The remaining term yields

tanφ2 =
s2
c2

=
C1S2 − S1C2s3c3
C1C2c3 + S1S2s3

. (18.65)

The third Eq.(18.62) yields

tanφ1 =
s1
c1

=
S2c2 − C2c3s2

C2s3
. (18.66)
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For each of the two solutions φ3 (18.65) determines two solutions φ2 also
differing by π , and for each of these two solutions (18.66) determines two
solutions φ1 also differing by π . Hence there are altogether eight sets of
solutions φ1 , φ2 , φ3 . The associated sines and cosines are substituted into
the matrix (18.61). It turns out that the four matrices associated with φ32 are
identical with those associated with φ31 . Hence there are only four different
platform positions.

Example: Given the angles α1 = 30◦ , α2 = 45◦ and α3 = 60◦ . With
the solution φ3 = α3 = 60◦ Eq.(18.65) yields tanφ2 = 3/4 . Consequently,
c2 = ±4/5 and s2 = ±3/5 . With the plus sign (18.66) yields tanφ1 =

√
1/3 ,

i.e., φ1 = 30◦ and φ1 = 210◦ . End of example.

In what follows, the direction cosine matrix A of Eq.(18.61) is expressed
not in terms of Bryan angles, but in the form (1.49) through the angle ϕ and
the direction of a single rotation. The coordinates of the unit vector along
the axis of rotation are denoted a1,2,3 since n1,2,3 have already been used.
With the abbreviations c = cosϕ and s = sinϕ the matrix is

A12 =

⎡
⎣ a21(1− c) + c a1a2(1− c)− a3s a1a3(1− c) + a2s
a1a2(1− c) + a3s a22(1− c) + c a2a3(1− c)− a1s
a1a3(1− c)− a2s a2a3(1− c) + a1s a23(1− c) + c

⎤
⎦ .

(18.67)
With these expressions for the direction cosines the orthogonality conditions
(18.60) are

Ci[ajak(1−c)+ais]−Si[a
2
j (1−c)+c] = 0 (i, j, k = 1, 2, 3 cyclic) . (18.68)

The resolution for c , s and a1,2,3 in terms of given values of Ci , Si (i =
1, 2, 3) is difficult. The only simple case is the special case of identical angles
αi ≡ α (Ci ≡ C , Si ≡ S) . For reasons of symmetry it can be predicted
that a1 = a2 = a3 =

√
1/3 is a solution. With these simplifications the

three Eqs.(18.68) are identical. With the abbreviation T = tanα = S/C
they have the form

(1 + 2T ) cosϕ−
√
3 sinϕ+ T − 1 = 0 . (18.69)

This equation has the irrelevant root ϕ = 240◦ independent of T and the
relevant root

cosϕ =
2 + 2T − T 2

2(1 + T + T 2)
, sinϕ =

T (T + 2)
√
3

2(1 + T + T 2)
. (18.70)

Final remark: The realization of a spherical joint 0 of the platform by
means of six binary links and nine joints is complicated. It is unnecessarily
complicated if only two degrees of freedom are required as is the case when
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a platform is used for pointing a light-beam or a camera. In such cases, it
suffices to mount the platform on a Hooke’s joint.
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Chapter 19

Dynamics of Mechanisms

For numerical investigations into the dynamics of mechanisms nonlinear dif-
ferential equations must be formulated. The formulation given in this chapter
allows writing a general-purpose software tool applicable to arbitrary mecha-
nisms. The change from one mechanism to another is accomplished by chang-
ing readily available input data. More information see in Wittenburg [4].

19.1 Conservative Single-Degree-of-Freedom
Mechanisms

Subject of this introductory section is the following rather special yet fre-
quently arising problem of dynamics. Imagine an arbitrary single-degree-of-
freedom mechanism with an input shaft and an output shaft. Both shafts are
rotating about frame-fixed axes. Simple examples: Hooke’s joint, the planar
four-bar, the spherical four-bar and the Bennett mechanism. The transmis-
sion ratio of a single-degree-of-freedom mechanism is the ratio i = ϕ̇1/ϕ̇2

(input angular velocity / output angular velocity). For the four illustrative ex-
amples the transmission ratio is known as function of the input angle ϕ1 . For
Hooke’s joint the function is (see (13.7)) i(ϕ1) = (1− sin2 α cos2 ϕ1)/ cosα .
For the planar four-bar the function is given in (17.35), and for the Bennett
mechanism it is given in (6.16).

In what follows, only those mechanisms are considered which satisfy the
condition i(ϕ1) �= 0 . In words: If ϕ̇2 �= 0 , then ϕ̇1 �= 0 independent of
ϕ1 . Imagine that in a single-degree-of-freedom mechanism with a known
function i(ϕ1) �= 0 a rotor with moment of inertia J1 is mounted on the
input shaft and that another rotor with moment of inertia J2 is mounted
on the output shaft. Compared with these rotors the masses and moments
of inertia of both shafts and of the coupling mechanism are assumed to be
negligible. Furthermore, it is assumed that no external torques are applied to
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the shafts and that no springs and dampers are present in the entire system.
Under these conditions the mechanism is idling with time-varying angular
velocities ϕ̇1 and ϕ̇2 . The law of conservation of kinetic energy requires
that J1ϕ̇

2
1 + J2ϕ̇

2
2 ≡ 2T = const . The constant is given by the initial

condition on ϕ̇1 . The solution for ϕ̇1 is ϕ̇1 =
√
2T/[J1 + J2/i2(ϕ1)] . With

the dimensionless parameter λ2 = J2/J1 and with the constant angular
velocity ω0 defined through the equation 2T = (J1 + J2)ω

2
0 the solution is

ϕ̇1 = ω0

√
1 + λ2

1 + λ2/i2(ϕ1)
. (19.1)

The graph of this function in a ϕ1 , ϕ̇1-diagram is called phase curve of the
motion. Except for the special case i(ϕ1) = const which is typical for gear
trains the angular velocity ϕ̇1 is not constant.

19.2 The General Problem of Dynamics

Subject of investigation for the rest of this chapter are joint-connected spa-
tial mechanisms without dry friction in the joints. The system structure is
arbitrary (serial chain, tree structure, single-loop or multiloop systems). Holo-
nomic joints of arbitrary nature are taken into consideration. Most systems
are joint-connected to a frame which is fixed in inertial space. In this chapter
the more general case is considered that the system is joint-connected to a
carrier body labeled body 0 which is moving relative to inertial space accord-
ing to prescribed functions of time. Since this motion is prescribed, neither the
center of mass nor the mass nor moments of inertia of body 0 are of concern.
The body is represented by a moving basis e0 . The prescribed functions of
time for body 0 are the position vector r0(t) , the velocity ṙ0(t) and the
acceleration r̈0(t) of the origin of basis e0 relative to an inertial basis e ,
the direction cosine matrix A0(t) defined by the equation e = A0e

0 , the
angular velocity ω0(t) and the angular acceleration ω̇0(t) relative to basis
e . Since the motion of e0 is prescribed, virtual displacements and virtual
changes of velocity are zero. In the special case that body 0 is at rest the
matrix A0(t) is the unit matrix and the other five vectorial quantities are
identically zero. This means that e0 permanently coincides with e .

The general system under consideration is subject to arbitrary external
forces and torques as well as to arbitrary internal forces and torques caused
by springs, dampers or actuators (active elements) connecting bodies of the
system. Let F ≥ 1 (arbitrary) be the total degree of freedom so that the
position of the system in basis e is specified by F independent variables
(generalized coordinates). Let q = [q1 . . . qF ]

T be the column matrix of
suitably chosen variables. At this point it is unnecessary to specify whether
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the variables are joint variables or variables specifying positions of bodies
relative to basis e . Large motions of the system are governed by F nonlinear
differential equations for the chosen variables q . The goal of this chapter is
to write these equations in the standard matrix form

A q̈ = B . (19.2)

Because of the nonlinearity of the system the matrix A depends on the
variables q . It will be shown that A is symmetric and positive definite.
The column matrix B depends on q , on q̇ and, because of the prescribed
motion of body 0 , explicitly on time t . Explicit expressions for A and B
are derived from the principle of virtual power which is the subject of the
following section.

There are systems which are moving without kinematical constraints to
inertial space. Typical examples are freely falling systems and systems orbit-
ing Earth. The motion of the composite system center of mass C is governed
by Newton’s law M r̈C = Fres (total system mass M , resultant external
force Fres ). This vector equation – equivalent to three scalar equations –
can be used for reducing the F scalar Eqs.(19.2) to a smaller set of F − 3
equations. How to do this is shown in Sect. 19.4.1 .

19.3 Principle of Virtual Power

The principle of virtual power is written in the Lagrangian form

n∑
i=1

∫
mi

δṙ · (r̈dm− dF) = 0 . (19.3)

The integral is taken over the mass mi of body i , and the sum is taken over
all bodies i = 1, . . . , n . The vector r denotes the radius vector of a mass
element dm of body i in the inertial basis e , r̈ its absolute acceleration
and δṙ a virtual change of its velocity. Body 0 does not contribute to the
sum because of δṙ = 0 . The force dF is the total force applied to dm . It
may be the infinitesimal weight g dm of dm . It may also be a finite force
applied to dm . Constraint forces caused by ideal kinematical constraints in
joints do not contribute to virtual power because for every pair of constraint
forces F1 = +F and F2 = −F (actio = reactio) the term δṙ1 ·F1+δṙ2 ·F2

is equal to zero.
First, the contribution of a single rigid body i to the sum in (19.3) is

formulated. Let ri be the radius vector of the body center of mass Ci in
e and let, furthermore, � be the body-fixed vector from Ci to the mass
element dm (see Fig. 19.1). These definitions establish the three kinematics
equations below. The last equation expresses the fact that Ci is the body
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Fig. 19.1 Vectors ri and � locating the body i center of mass and a mass element dm

center of mass.

r = ri + � , δṙ = δṙi + δωi × � , r̈ = r̈i + �̈ ,

∫
mi

� dm = 0 .

(19.4)
With these equations a single integral in (19.3) is∫

mi

δṙ · (r̈ dm− dF) =

∫
mi

(δṙi + δωi × �) · [(r̈i + �̈) dm− dF]

= δṙi · (r̈imi − Fi) + δωi ·
(∫

mi

�× �̈ dm−
∫
mi

�× dF
)
. (19.5)

The force Fi is the resultant applied force on body i . Its line of action passes
through the body center of mass Ci . The last integral is the resultant applied
torque Mi about the center of mass. The first integral is∫

mi

�× �̈ dm =
d

dt

∫
mi

�× �̇ dm . (19.6)

The term �̇ dm under the integral on the right-hand side is the momentum
of the mass element dm . The integral is the moment of momentum, also
called angular momentum of the entire body about the body center of mass.
The formula �̇ = ωi × � yields �× �̇ = �× (ωi × �) = (�2I− ��) ·ωi and∫

mi

�× �̇ dm =

∫
mi

(�2I− ��) dm · ωi = Ji · ωi . (19.7)

This equation defines the central inertia tensor Ji of the body:

Ji =

∫
mi

(�2I− ��) dm . (19.8)
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The integral in (19.6) and (19.5) is the absolute time derivative of Ji · ωi .
This is (see (9.9)) Ji · ω̇i+ωi× Ji ·ωi . Thus, Eq.(19.3) for the entire system
finally becomes

n∑
i=1

[
δṙi · (mir̈i − Fi) + δωi · (Ji · ω̇i + ωi × Ji · ωi −Mi)

]
= 0 . (19.9)

The quantities δṙi , δωi , r̈i and ω̇i appear in linear form. For this reason
the equation is written in the matrix form

δṙT · (m r̈− F) + δωT · (J · ω̇ −M∗) = 0 . (19.10)

Here, r , F , ω and M∗ are column matrices of n vectors each, for exam-
ple, r = [r1 . . . rn]

T . The column matrix M∗ is introduced for abbreviation.
Its elements are the vectors

M∗
i = Mi − ωi × Ji · ωi (i = 1, . . . , n) . (19.11)

Finally, m and J are diagonal (n × n)-matrices with masses m1, . . . ,mn

and inertia tensors J1, . . . , Jn , respectively, along the diagonal.
Following (19.2) the need for a special investigation into systems without

kinematical constraints to inertial space was pointed out. In this investigation
the composite system center of mass C plays an important role. Let rC be
the radius vector of C in the inertial basis e , and let Ri be the vector
pointing from the composite system center of mass C to the body i center
of mass. From these definitions it follows that

ri = rC+Ri , r̈i = r̈C+R̈i (i = 1, . . . , n) ,
n∑

i=1

Rimi = 0 . (19.12)

The expressions for ri and r̈i are substituted into (19.9). Multiplying out
and using the last Eq.(19.12) results in the equation (M is the total system
mass M = m1 + . . .+mn )

δṙC·
(
M r̈C−

n∑
i=1

Fi

)
+

n∑
i=1

[
δṘi·(miR̈i−Fi)+δωi·(Ji·ω̇i−M∗

i )
]
= 0 . (19.13)

The absence of constraints to inertial space has the consequence that δṙC is
independent. Hence the factor behind is zero. This is Newton’s law for the
composite system center of mass:

M r̈C =
n∑

i=1

Fi . (19.14)

The rest of the equation is written in the matrix form
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δṘ
T · (m R̈− F) + δωT · (J · ω̇ −M∗) = 0 . (19.15)

The formal difference between this equation and Eq.(19.10) for arbitrary
systems is that R replaces r . Between R and r exists a simple relationship.
By definition, the radius vector of the composite system center of mass is

rC =
1

M

n∑
j=1

mjrj . (19.16)

Substitution into the first Eq.(19.12) yields

Ri =
n∑

j=1

(
δij − mj

M

)
rj (i = 1, . . . , n) . (19.17)

Let μ be the dimensionless constant matrix with elements

μij = δij − mi

M
(i, j = 1, . . . , n) . (19.18)

Then the matrix form of all n Eqs.(19.17) is

R = μT r . (19.19)

The matrix μ has remarkable properties. It satisfies the three equations

μT 1 = 0 , μ μ = μ , μm = mμT = μmμT . (19.20)

The first equation states that the sum of all rows is a row of zeros which means
that μ is singular. Hence (19.19) cannot be resolved for r . This is obvious
for physical reasons. The positions r of the body centers of mass in inertial
space cannot be determined if only the positions relative to the composite
system center of mass are known. For a proof of the other two equations it
must be shown that (μμ)ij = μij and that (μmμT )ij = (μm)ij = μijmj .
These two matrix elements are

(μμ)ij =

n∑
k=1

μikμkj =

n∑
k=1

μik

(
δkj − mk

M

)
= μij − 1

M

n∑
k=1

μikmk ,

(μmμT )ij =

n∑
k=1

μikmkμjk =

n∑
k=1

μikmk

(
δjk − mj

M

)
= μijmj − mj

M

n∑
k=1

μikmk .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(19.21)

The sum
∑n

k=1 μikmk appearing in both equations equals zero. End of proof.
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19.4 Equations of Motion

The formulation of equations of motion is simplest for systems with tree
structure. This is the subject of Sect. 19.4.1 . In Sect. 19.4.3 the procedure
for systems with closed kinematic chains is explained.

19.4.1 Systems with Tree Structure

In Sect. 11.2.2 the kinematics analysis of tree-structured systems in terms of
joint variables resulted in Eqs.(11.20) and (11.21):

ω = ω0(t)1 + a1q̇ ,

ω̇ = ω̇0(t)1 + a1q̈ + b1 ,

ṙ = ṙ0(t)1− ω0(t)× TT (CT
0 +CT 1 ) + a2q̇ ,

r̈ = r̈0(t)1− ω̇0(t)× TT (CT
0 +CT 1 ) + a2q̈ + b2 ,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(19.22)

a1 = −TTpT , a2 = TT (CT × a1 − kT ) ,

b1 = −TT (w + f) , b2 = TT [CT × b1 − (s+ h)] .

}
(19.23)

For the definitions of the various matrices see the equations prior to (11.20).
For abbreviation the acceleration terms ω̇ and r̈ are written in the forms

ω̇ = a1q̈ + b∗
1 ,

r̈ = a2q̈ + b∗
2

}
(19.24)

with

b∗
1 = b1+ω̇0(t)1 , b∗

2 = b2+r̈0(t)1−ω̇0(t)×TT (CT
0 +CT 1 ) . (19.25)

In Sect. 11.2.2 the vector ri was by definition the position vector of the
unspecified origin 0i of a basis ei fixed on body i in some unspecified
common reference basis e . In the present section the origin 0i of ei is the
body i center of mass, and the common reference basis e is fixed in inertial
space. With these definitions, r̈ and ω̇ are the quantities required for (19.10).
The virtual velocity changes are

δω = a1 δq̇ ,

δṙ = a2 δq̇ .

}
(19.26)

Substitution of (19.24) and (19.26) into (19.10) results in the equation
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δq̇T
{
(aT2 ·ma2+aT1 ·J·a1)q̈−[aT2 ·(F−mb∗

2)+aT1 ·(M∗−J·b∗
1)]
}
= 0 . (19.27)

The elements of δq̇ are independent. From this it follows that the factor
behind equals zero. This yields the desired equations of motion for joint
variables:

A q̈ = B , (19.28)

A = aT2 ·ma2+aT1 ·J·a1 , B = aT2 ·(F−mb∗
2)+aT1 ·(M∗−J·b∗

1) . (19.29)

As predicted, the inertia matrix A is symmetric. It is also positive definite.
The proof is given for a system in which body 0 is inertial space. Twice the
total kinetic energy T of such a system is

2T =
n∑
1

(miṙ
2
i + ωi · Ji · ωi) = ṙT ·m ṙ+ ω̇T · J · ω̇

= q̇T (aT2 ·ma2 + aT1 · J · a1)q̇ = q̇TAq̇ . (19.30)

Thus, the matrix A is the coefficient matrix of the total kinetic energy. Since
the kinetic energy is positive definite, also the matrix A is.

Next, tree-structured systems without kinematical constraints to inertial
space are considered. In this case, body 0 is inertial space. Equations of
motion are formulated from Eqs.(19.19) and (19.15). Equations (19.24) and
(19.26) yield

ω̇ = a1q̈ + b∗
1 , R̈ = μT (a2q̈ + b∗

2) ,

δω = a1 δq̇ , δṘ = μTa2 δq̇ .

}
(19.31)

Substitution into (19.15) results in the equation

δq̇T
{
(aT2 μ·mμTa2+aT1 ·J·a1)q̈−[aT2 μ·(F−mμTb∗

2)+aT1 ·(M∗−J·b∗
1)]
}
= 0 .

(19.32)
As before, the elements of δq̇ are independent. The equations of motion are

Â q̈ = B̂ , (19.33)

Â = aT2 μ ·mμTa2 + aT1 · J · a1 ,

B̂ = aT2 μ · (F−mμTb∗
2) + aT1 · (M∗ − J · b∗

1) .

}
(19.34)

During numerical evaluations the matrices a1 , b∗
1 , a2 , b∗

2 are not calcu-
lated from (19.23) and (19.25), but directly from (19.24) in combination with
the recursive Eqs.(11.11). The formulation (19.23) is useful for nonnumeri-
cal investigations. The expressions for a2 and b2 show that in (19.29) and
(19.34) the products (CT )T and (CT μ)T play a prominent role. If all
joints of a system are spherical joints, the elements of these matrices can be
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interpreted as body-fixed vectors. In terms of these vectors certain problems
of analytical mechanics can be formulated very elegantly (see Wittenburg
[4]).

19.4.2 Constraint Forces and Torques in Joints

In a joint with kinematical constraints the coupled bodies are in contact either
at individual points or along certain lines or in a certain surface. Constraint
forces are, therefore, distributed forces. Since the bodies are assumed rigid,
it is impossible to determine the distribution of constraint forces. Only an
equivalent force system can be determined which consists of a single force
and a single torque. The torque depends upon the choice of the point at
which the single force is thought to be acting. It is natural to choose for each
joint i the articulation point located on body i . Let Xi and Yi be the
constraint force and the constraint torque, respectively, thus defined for joint
i . More precisely, +Xi and +Yi are acting on body b(i) , and −Xi and
−Yi are acting on body i (see Fig. 11.2). In order to express whether a given
constraint force is applied to a given body with positive or with negative sign
or not at all numbers Sji are defined as follows:

Sji =

⎧⎨
⎩

−1 (j=i)
+1 (j=b(i))
0 (else)

(j, i = 1, . . . , n) . (19.35)

The first index refers to a body and the second to a joint. With this definition
the resultant of all constraint forces and the resultant of all constraint torques
applied to body j (arbitrary) are the sums (summation over all joints)

n∑
i=1

SjiXi ,
n∑

i=1

Sji(cji ×Xi +Yi) (j = 1, . . . , n) . (19.36)

By assumption, there are no dry friction forces. If, as before, Fj and Mj

denote the external resultant force and the external resultant torque, respec-
tively, Newton’s and Euler’s equations for the isolated body j have the forms

mj r̈j = Fj +

n∑
i=1

SjiXi ,

Jj · ω̇j + ωj × Jj · ωj = Mj +
n∑

i=1

Sjicji ×Xi +
n∑

i=1

SjiYi

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (j = 1, . . . , n) .

(19.37)
The vector Sjicji is the vector Cji known from (11.17). With this abbre-
viation and with the (n × n)-matrix S with elements Sji the two sets of
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equations are written as follows:

m r̈ = F+ SX , J · ω̇ = M∗ +C×X+ SY . (19.38)

The various quantities in these equations are known from previous equations
(see (19.29)). Further progress relies on

Theorem 19.1. The matrix S is the inverse of T .

Proof: From the definition in (19.35) it follows that the product T S has the
elements

(T S)ji =
n∑

k=1

TjkSki = TjiSii+Tjb(i)Sb(i)i = −Tji+Tjb(i) (j, i = 1, . . . , n) .

(19.39)
Two cases have to be distinguished. In the case j = i , (11.12) yields Tii = −1
and Tib(i) = 0 whence follows (T S)ii = 1 . In the case j �= i , joint j satisfies
one of the following two conditions. a) Joint j is on the direct path between
bodies 0 and i and also on the direct path between bodies 0 and b(i) . b)
Joint j is neither on the direct path between bodies 0 and i nor on the direct
path between bodies 0 and b(i) . If the former is true, then Tji = Tjb(i) = −1
and if the latter is true, then Tji = Tjb(i) = 0 . In either case, (T S)ji = 0 .
End of proof1.

With this theorem Eqs.(19.38) can be solved explicitly for the constraint
forces and constraint torques. Premultiplication by T yields

X = T (m r̈− F) , Y = T (J · ω̇ −M∗ −C×X) . (19.40)

The expression for X is substituted into the equation for Y . The numerical
evaluation of these equations is done in parallel with the numerical integration
of the equations of motion.

19.4.3 Systems with Closed Kinematical Chains

From Chap. 4 it is known that the joint variables of a closed kinematical chain
are subject to kinematical constraints. As illustrative example the trihedral
Bricard mechanism shown in Fig. 4.6 is used. It is a simple closed chain with
six joints. For the kinematics analysis see Eqs.(4.12) – (4.25). The analysis
started with the removal of joint 6 thus creating a serial chain with five

1 In graph theory the matrices T and S are referred to as path matrix and incidence
matrix, respectively. The matrix C represents a weighted incidence matrix. Whereas the

path matrix is defined for tree-structured systems only, the definition of incidence matrix
can be generalized to include multiloop systems. Details see in Wittenburg [3, 4]
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joint variables ϕ1, . . . , ϕ5 . Closure of the removed sixth joint resulted in four
independent constraint Eqs.(4.20) and (4.22):

ϕ3 = ϕ1 , ϕ5 = ϕ1 , ϕ4 = ϕ2 , sinϕ2 =
sinϕ1

1− sinϕ1
. (19.41)

The total degree of freedom is F = 1 . Hence the mechanism is governed by
a single differential equation for a single independent variable. Which of the
variables is chosen as independent, is a matter of taste. The equations suggest
to choose ϕ1 . A single differential equation for ϕ1 is developed as follows.
First, equations of motion are formulated for the system without joint 6 . This
system is a particularly simple tree-structured system with regularly labeled
bodies 0, . . . , 5 and joints i = 1, . . . , 5 . Equations of motion for the variables
q = [ϕ1 ϕ2 ϕ3 ϕ4 ϕ5]

T have the form (19.28):

A q̈ = B , (19.42)

A = aT2 ·ma2+aT1 ·J·a1 , B = aT2 ·(F−mb∗
2)+aT1 ·(M∗−J·b∗

1) . (19.43)

In the present case, the equations are particularly simple since body 0 is at
rest and since all joints are revolute joints. For what follows, not Eq.(19.28),
but the preceding Eq.(19.27) is used:

δq̇T (Aq̈ −B) = 0 . (19.44)

The constraint Eqs.(19.41) have the effect that the elements of δq̇ are not
independent. The elements of q̈ are not independent, either. The necessary
relationships are obtained by differentiating the constraint equations with
respect to time. The first and the second time derivatives are known from
(4.24) and (4.25):

ϕ̇5 = ϕ̇3 = ϕ̇1 , ϕ̇4 = ϕ̇2 = ϕ̇1
cosϕ1

(1− sinϕ1)
√
1− 2 sinϕ1

,

ϕ̈5 = ϕ̈3 = ϕ̈1 , ϕ̈4 = ϕ̈2 = ϕ̈1
cosϕ1

(1− sinϕ1)
√
1− 2 sinϕ1

+ ϕ̇2
1

2− 2 sinϕ1 − sin2 ϕ1

(1− sinϕ1)(1− 2 sinϕ1)3/2
.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(19.45)

With the abbreviations

g =
cosϕ1

(1− sinϕ1)
√
1− 2 sinϕ1

, h = ϕ̇2
1

2− 2 sinϕ1 − sin2 ϕ1

(1− sinϕ1)(1− 2 sinϕ1)3/2

(19.46)
the two sets of equations establish relationships of the form

q̇ = G q̇1 , δq̇ = Gδq̇1 , q̈ = G q̈1 +H (19.47)
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with column matrices

G =

⎡
⎢⎢⎢⎢⎣
1
g
1
g
1

⎤
⎥⎥⎥⎥⎦ , H =

⎡
⎢⎢⎢⎢⎣
0
h
0
h
0

⎤
⎥⎥⎥⎥⎦ . (19.48)

The expressions for δq̇ and for q̈ are substituted into (19.44). This results
in the equation

δq̇1G
T [A(G q̈1 +H)−B] = 0 . (19.49)

Since δq̇1 is independent, the factor behind is zero. This is the desired single
differential equation for the independent variable q1 :

(GTAG) q̈1 = GT (B −AH) . (19.50)

The matrices A and B depend explicitly on q1, . . . , q5 and q̇1, . . . , q̇5 . The
dependent quantities q2, . . . , q5 and q̇2, . . . , q̇5 are expressed in terms of q1
and q̇1 with the help of (19.41) and (19.45).

The method just described for the trihedral Bricard mechanism is applica-
ble to arbitrary multiloop systems. A multiloop system is converted into a sys-
tem with tree structure by deleting suitably chosen joints. Optimal strategies
are described in Möller [1]. The resulting tree-structured system has a certain
degree of freedom F and an equal number of joint variables q = [q1 . . . qF ]

T .
For this system Eq.(19.44) is established. Restoration of the deleted joints re-
sults in a set of constraint equations (loop-closure conditions) for the variables
q . Let ν be the total number of independent constraint equations. Then the
total degree of freedom of the multiloop system is F − ν . An equal number
of equations of motion has to be formulated. In general, constraint equations
are not available in explicit form like Eqs.(19.41), but in the implicit form

fi(q1, . . . , qF ) = 0 (i = 1, . . . , ν) . (19.51)

Examples of such loop-closure conditions for a single loop are known from
Chap. 5 . F − ν of the variables are independent, and the remaining ν vari-
ables are dependent. Which of the variables are considered as independent is
a matter of choice. Often, this choice is dictated by the equations. As was the
case with the Bricard mechanism, the constraint equations are differentiated
twice with respect to time. This results in the equations

ḟi =
F∑

j=1

∂fi
∂qj

q̇j = 0 , f̈i =
F∑

j=1

∂fi
∂qj

q̈j +
F∑

j=1

F∑
k=1

∂2fi
∂qj∂qk

q̇j q̇k = 0 (19.52)

(i = 1, . . . , ν) . These are two sets of ν linear equations, one for the ν
dependent velocities and the other for the ν dependent accelerations. Each
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set of equations is solved for these ν quantities. Let q∗ be the column matrix
of the F−ν independent variables. The solutions for the dependent quantities
combined with identities for the independent quantities result in equations
of the forms

q̇ = G q̇ ∗ , δq̇ = Gδq̇ ∗ , q̈ = G q̈ ∗ +H . (19.53)

This is a generalization of Eqs.(19.47). The matrix G is of size F × (F − ν) ,
and H is a column matrix. The expressions for δq̇ and for q̈ are substituted
into (19.44). This results in the equation

δq̇ ∗TGT [A(G q̈ ∗ +H)−B] = 0 . (19.54)

By definition, the elements of δq̇ ∗ are independent. This yields the desired
F − ν equations of motion for the independent variables:

(GTAG) q̈ ∗ = GT (B −AH) . (19.55)

The (F − ν)× (F − ν)-coefficient matrix is symmetric. The matrices G and
A depend explicitly on all F variables q1, . . . , qF . The matrices B and H
depend on q1, . . . , qF and, in addition, on q̇1, . . . , q̇F . For the dependent ve-
locities explicit expressions are available. Not so for the dependent variables.
This means that in the course of numerical integration for every evaluation of
the matrices the nonlinear constraint equations (19.51) must be solved for the
dependent variables. For two reasons this is not a very time-consuming task.
First, the Jacobian G is available so that a Newton-Raphson method can be
applied. Second, the previous solution for time t is a good approximation for
the actual solution at time t + Δt . It is more difficult to determine initial
values satisfying the constraint equations.
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(4× 4) transformation matrix, 85

Π-points, 435

acceleration, 350, 413, 497

complex formulation, 470

acceleration distribution, 309

accelerometer, 318

active height, 536, 545, 550

addendum, 536, 545

addendum circle, 546, 550

addendum modification, 547

affine transformation, 238

angle of pressure, 544, 547, 552

angular acceleration, 289, 350

angular momentum, 666

angular velocity, 289, 329, 350

angular velocity ratio, 509

angular velocity triangle, 360

animation of motion, 46

antiparallelogram mechanism, 465

Archimedes’ spiral, 508

articulation point, 350, 671

astroid, 501, 520

Ball’s point, 492, 618

ball-in-track joint, 404

base circle, 543, 552

base cylinder, 552, 556

base helix, 553, 556

base helix angle, 560

Bennett mechanism, 180, 207, 663

Besicovitch, 503

bevel differential, 307

bevel gear, 306

Bezout, 281

bicursal, 633, 653

binary link, 658

Bobillier’s theorem, 484

Bresse circle, 473

Bryan angles, 9, 38, 40, 333, 660

Burmester point, 632

Burmester theory, 629

cam mechanism, 240, 455

canonical reference frame, 80, 303, 310

Cardan angles, 9

cardinal point, 437, 489

cardioid, 460, 501

carrier body, 664

cartesian base, 1

Cayley-Klein parameters, 28, 337

center

of acceleration, 309

of curvature, 414

of rotation, 521, 575, 577

center point, 629, 630

center point curve, 630, 632, 653

centrifugal acceleration, 356

centrode, 451, 464, 485, 488, 530, 577, 600

Chebychev’s optimality criterion, 509, 619

Chinese southpointing chariot, 307

circle of singular foci, 598, 606, 648

circle of vertices, 504

circle point, 425, 629

circle point curve, 632

circular pitch, 535, 545

closed kinematic chain, 400

closure condition, 166, 168, 177, 674

co-factor, 3, 5, 35, 41

cognate four-bars, 590, 604, 617, 625

cognate slider-crank, 593, 608

commutativity conditions, 418, 424
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complex (of lines), 70

complex line, 71, 141, 296

complex number, 411, 431, 497, 590

composite system center of mass, 634, 665,
667

conchoid, 459

congruence, 70, 77, 206

conjugate screws, 124, 374

conjugate tooth flanks, 374, 532, 534, 537,
544, 553, 558, 560

conservation of kinetic energy, 664

constraint force, 665, 671

contact

force, 544, 554

normal, 536, 542, 561

point, 538

ratio, 546, 556, 564

coordinate matrix, 3

Coriolis acceleration, 292, 356

coupler, 567, 639

centrode, 464

coupler curve, 482, 567, 584, 590, 594, 595,

607, 616, 634, 643, 656, 658

bicursal, 595, 606

double points, 599, 648

straight-line approximation, 617

symmetrical, 603, 646

unicursal, 595

coupler triangle, 590, 643, 656

coupling

ball-in-track, 405, 407

bicardanic, 402

Clemens, 403

Devos, 405

Hebson, 401

Oldham, 387, 394, 409

Tracta, 401

tripod, 407

Unitru, 403

crank, 570

crank-rocker, 570, 593, 623, 632, 643

crowning, 531

cubic of stationary curvature, 487

curvature, 414, 473, 476, 485, 510

curvilinear coordinates, 321

cusp, 303, 311, 460, 463, 481, 501, 517, 542,
548, 654

cycloid, 500, 501, 521

ordinary, 506

cylindroid, 122, 132, 359, 373

principal axes, 123, 124

principal pitches, 124

Darboux motion, 457

decomposition

of a rotation, 55, 299

of a screw displacement, 116

of force screw, 368

dedendum, 546

defect, 138

degree of freedom, 137, 515, 664, 674

Denavit-Hartenberg parameters, 161, 235,
271

differential equations of motion, 665

direct kinematics, 278, 350

direct path, 354

direction cosine matrix, 1, 13, 17, 33, 34,
37, 318, 350, 660

direction cosines, 1, 329, 335

directrix, 77, 125, 132, 379, 487, 489

discriminant, 311, 382

displacement

elementary, 415

in a plane, 411

sense-preserving, 416, 420

sense-reversing, 416, 420

displacement group, 443

distribution parameter, 78, 83, 125, 301,
364, 553, 558

door mechanism, 466

double helical gearing, 554

double-crank, 570, 593, 643

double-rocker, 570, 643

first kind, 571

second kind, 571, 593

draw-bar, 42

dual angle, 99

dual basis, 102

dual Bryan angles, 108

dual derivative, 98

dual differentiation, 98, 108, 167, 178, 268

dual direction cosine matrix, 102, 108

dual direction cosines, 103

dual Euler angles, 108

dual Euler-Rodrigues parameters, 110

dual number, 97

dual quaternion, 110, 112, 278

dual Rodrigues vector, 110

dual transformation matrix, 269

dual vector, 99

dwell mechanism, 509

dynamics of mechanisms, 663

eigenvalue, 4, 14, 124, 311, 382

eigenvector, 5, 15, 59, 311, 382
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elliptic trammel, 455, 475, 494, 497, 501,

514, 629

envelope, 517

epicycloid, 500, 508, 535, 541

epitrochoid, 500, 508

prolate, 542

equilibrium condition, 587

Euler angles, 7, 19, 38, 333, 336

Euler vector, 33, 339

Euler’s equation, 671

Euler’s formula, 412

Euler-Rodrigues parameters, 16, 19, 21, 28,
36, 38, 270, 319, 334

correction formulas, 345

Euler-Savary equation, 479

evolute, 517

external force, 664

Fayet’s equation, 481

Fenyi’s joint, 302

fillet, 536, 546

fixed axode, 301

fixed centrode, 452

fixed cone, 305

fixed link, 567

focus, 436, 489

foldable four-bar, 235, 571, 575, 595, 599,
643

first kind, 572

second kind, 572

foldable spherical four-bar, 651

force screw, 366, 367

intensity, 367

standard form, 367

unit screw, 367

four-bar, 144, 154, 205, 352, 441, 465, 481,
663

angular acceleration, 578

foldable, 575

limit angles, 575

transfer function, 573

friction wheel, 530

gear, 374, 457, 497, 529, 593

cycloidal, 504, 535

gear ratio, 530, 531

gearing, 529

external, 529

internal, 529

generalized acceleration, 197

generalized coordinates, 588, 664

generalized forces, 588

generalized velocity, 197

generator, 78, 237

gimbal lock, 8, 54

gimbal suspension system, 8, 51

glide reflection, 419, 421, 441

Goldberg mechanism, 212

gorge circle, 363, 558

Grübler’s formula, 139, 205, 298, 401

graph theory, 672

Grashof condition, 568, 641

group, 4, 21, 30

half-angle equations, 175

helicoid, 556

helix, 367, 374

herpolhode cone, 305, 332, 342, 390, 395

Heureka octahedron, 242

homokinetic shaft coupling, 153, 387, 400

homologous points, 425, 629, 630

Hooke’s joint, 154, 205, 305, 388, 663

angular acceleration, 390

angular velocity ratio, 389

herpolhode cone, 390

polhode cone, 390

series-connected, 397

hyperbolic paraboloid, 78, 130, 649

hyperboloid, 78, 221, 383, 384

hyperboloid of revolution, 82, 262, 363, 558

hypocycloid, 500, 535

hypotrochoid, 500

incidence matrix, 672

inclination angle of the coupler, 352, 577

indeterminacy conditions, 54

inertia matrix, 670

inertia tensor, 666

inflection circle, 473, 479, 492

inflection curve, 309

inflection point, 460, 473

input angle, 567, 639

input link, 567, 639

instantaneous axis of rotation, 452

instantaneous center

of acceleration, 472

of rotation, 451, 452, 471, 515, 610

of velocity, 501

instantaneous screw axis (ISA), 293, 395,

452

interchange of input link and fixed link,
576, 580

internal force, 664

internal gearing, 542

intersection condition, 66, 101, 133

inverse motion, 292, 458, 475, 478, 481
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inverse rotation, 12

inversion circle, 627

inversion in a circle, 627

inverted circle, 628

inverted slider-crank mechanism, 606

involute

function, 508

helical gearing, 552

helicoid, 553, 556, 560

of a circle, 507, 543, 552

spur gear, 543

involutoric, 417

Jeantaud mechanism, 614

jerk, 292

joint, 137, 349, 664

cylindrical, 159, 352

Fenyi’s, 393

helical, 137, 370

homokinetic, 387

prismatic, 137, 159, 370

revolute, 137, 159, 351, 370

spherical, 137, 162, 352

tripod, 407

universal, 352, 387

joint variables, 161, 349, 355, 665

kinematic chain, 400

kinematic differential equations, 319, 322,
329

kinematical constraint, 137

kinematics of joints, 350

kinetic energy, 670

Kutzbach’s angular velocity diagram, 469

level-luffing jib crane, 492

limaçon of Pascal, 460, 466, 497, 514, 520,
541

limit position, 569, 641

line contact, 530

line displacement, 46, 127

line geometry, 63

line net, 443

line of contact, 535, 536, 538, 539, 561

line vector, 99, 296

line-symmetric Bricard mechanism, 149

linear complex, 70, 77, 142, 206, 220, 236,

277, 296, 367, 368, 373, 558

axis, 71

pitch, 71

special, 70, 77, 78, 223

linear complex of velocity, 293

linear fractional function, 32

linkage, 567, 593

matrix

orthogonal, 3, 336

unitary, 30

mecanum wheel, 324

mechanism

4R-P, 234

5R-C, 185

6R-P, 192

7R, 188, 194, 198

antiparallelogram, 465

Bennett, 180, 207

Bricard-Borel, 235

cam, 240, 455

CRRRC, 181

Dietmaier’s, 229

door, 466

Goldberg, 212

hyperboloid, 236

Jeantaud, 614

line-symmetric Bricard, 149, 217

mobility-one, 140

multiloop, 138

orthogonal Bricard, 224

overconstrained, 140, 205

paraboloid, 236

Peaucellier inversor, 626

planar, 139

planar four-bar, 567

planar multiloop, 143

plane-symmetric Bricard, 145, 221

RCCC, 177, 198, 207, 639

RCRCR, 181

RRCRP, 233

RRSRR, 195

Sarrus, 205

slider-crank, 606, 629

slider-crank inverted, 606

spherical, 139

spherical four-bar, 639

steering, 614

trihedral Bricard, 145, 672

mobile polyhedron, 231

mobility-one mechanism, 140

module, 545, 555

moment of momentum, 666

momentum, 666

motion on a curved surface, 321

moving axode, 301

moving centrode, 452

moving cone, 305

multiloop mechanism, 138, 243, 664, 674
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Newton’s law, 665, 667, 671

nodal line, 129, 132

nonholonomic constraint, 322

normal coordinates, 430

normal poles, 476

normal vector of a plane, 63

null plane, 70, 73, 297, 367, 373

null point, 70, 73, 297, 367, 373

offset, 161, 207, 221

Oldham coupling, 458

opposite poles, 432

orthogonality, 18, 112

orthonormality condition, 1, 290

output angle, 567, 639

output link, 567, 639

overconstrained mechanism, 140, 205

Panhard rod, 42

parallel curve, 508, 516, 541, 546

parallel robot, 609

path matrix, 672

Pauli spin matrix, 30

Peaucellier inversor, 626

pedal curve, 460

pencil of complex lines, 71, 76

phase curve, 664

piercing mill, 365

pin gear, 456, 540

pitch, 141, 293, 367, 556

pitch circle, 530, 547, 552

pitch cone, 306

pitch cylinder, 552, 563

pitch line, 535, 547

pitch plane, 554

pitch point, 469, 530

pitch quadric, 383

Plücker coordinates, 64

Plücker vector, 64, 69, 99, 125, 141, 206,

271, 369, 375, 382, 559

normalized, 65

planar four-bar, 567

planar mechanism, 139

plane motion, 294, 451

plane-symmetric Bricard mechanism, 145

planetary gear, 469

planetary wheel, 477, 495

point contact, 531

pointed tooth, 549

Poisson’s equations, 330

polar coordinates, 413

pole, 415, 421, 425, 441

normal, 476

opposite, 432

pole curve, 432, 433, 488, 629, 630, 632

pole quadrilateral, 432, 629, 630

pole triangle, 25, 425, 432, 629

polhode cone, 305, 332, 342, 390, 395

position vector, 350

positive definite, 670

principal pitch, 361, 374

principal screw, 132, 374

principle of transference, 102, 128, 263, 394

principle of virtual power, 587, 665

pruning-shears, 589

quadratic-involutoric, 431

quadric, 206

quadrilateral, 27

quaternion, 20, 38, 55, 110

conjugate, 20

inverse, 21

norm, 20

of a rotation, 21

of resultant rotation, 22

unit, 20

quaternion product, 20

raccording axodes, 301, 395, 452

raccording hyperboloids, 362, 558

raccording motion, 82, 301, 364

rack, 529, 534, 535, 544

rack cutter, 546, 554

rack shift, 547

radius of curvature, 479, 510

rear axle, 42

reciprocal cone, 376

reciprocal polar, 74, 220, 298

reciprocal screw systems, 372

reciprocal screws, 368, 369

reciprocal vector, 49

reciprocity condition, 375, 558

recursive equations, 163, 354

reduction point, 366

reflected pole, 426

reflecting line, 417

reflecting plane, 58

reflection, 12, 422, 441

in a line, 12, 39, 65, 90, 94, 415, 425

in a plane, 58

reflection point, 425

reflection tensor, 59

regular labeling, 349, 673

regulus, 237, 383, 384

relative velocity screw, 362

resultant
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of elementary displacements, 418

of infinitesimal screw displacements, 122,
125

of reflections, 39, 94, 418

of rotations, 13, 299

of screw displacements, 95

of velocity screws, 359

resultant torque, 367

robot arm, 370

rocker, 570

Rodrigues parameters, 34, 38, 338

Rodrigues vector, 17, 26, 34, 93, 338

rotated velocity, 453, 468

rotation, 1, 5, 11, 40, 93, 415, 423, 441

about a fixed point, 305

decomposition, 55

instantaneous center of, 451

resultant, 13, 22, 30, 35, 38, 55

rotation cone, 28, 273, 433

rotation tensor, 11, 17, 38, 559

rotation triangle, 25

rotation vector, 10, 23

ruled surface, 70, 78, 125, 206, 237, 301,
553

sawtooth construction, 483

screw, 72

angle, 100, 393

axis, 88, 141, 360, 367, 558

displacement, 85, 88, 89, 91, 94, 100,
105, 161

decomposition, 116

scalar measure, 90, 114, 134

motion, 235, 244, 294, 394

system, 359

triangle, 95, 118

sense of a triangle, 415, 429, 633

sense-preserving displacement, 416, 420

sense-reversing displacement, 420

sensor calibration, 48

serial chain, 349, 664

serial robot, 86, 199, 609

shaft coupling, 153, 387

shaky, 142

shears, 588

similarity transformation, 6, 50, 269

simple closed chain, 138, 140, 159, 672

single-loop mechanism, 664

slider-crank mechanism, 606, 629

spherical four-bar, 139, 181, 205, 639, 663

spherical interpolation, 45

spherical mechanism, 139

spherical parallel robot, 658

spur gear, 469, 530, 543

steering mechanism, 614

Steiner’s hypocycloid, 501, 503

stereographic projection, 31, 651

Stewart platform, 277

triangle-configuration, 284

straight-line approximation, 568, 617

grashopper linkage, 617

Roberts, 618

Tschebychev, 619

Watt, 617

straight-line position, 497

strapdown inertial navigation, 318

striction line, 79, 83

striction point, 78, 301, 364, 558

Study-quadric, 112

sunwheel, 495, 501

superposition principle, 359, 370, 610

sway bar, 42

Sylvester’s plagiograph, 593

system graph, 243

system structure, 664

theorem

Bernoulli/de la Hire, 506

Bobillier, 484

Bricard, 206

Burmester, 453, 468, 471

Camus, 534

Cayley, 97

Chasles, 87, 105

de La Hire, 240

Euler, 5, 104

Grashof, 441, 569, 607

Halphen, 94

Holditch, 493, 503

Kennedy/Aronhold, 143, 453, 531

Painlevé, 301, 452

Poinsot, 305

Roberts/Tschebychev, 590

Roth, 91

Tschebychev, 619

three-angle equation, 480

tile, 154, 441

tiling, 154, 441

time derivative of a vector, 290

tooth flank, 531

conjugate, see conjugate, 534

curvature, 532

tooth thickness, 548

torque, 366

torsal line, 125, 132

torse, 83, 553, 560
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torus, 259

trajectory, 456, 462, 493, 495, 534
c.o.m. of four-bar, 634

transfer function, 567, 573, 640
transformation matrix, 4

translation, 415, 441
transmission

angle, 577, 604
characteristics, 611

of forces and torques, 587
ratio, 567, 578, 581, 613, 663

transport acceleration, 292
transport velocity, 292

transversal, 68, 220, 380
tree structure, 138, 349, 664, 669
tricircular sextic, 598, 608

trihedral Bricard mechanism, 145, 672
tripod joint, 407
trochoid, 495

curtate, 500

curvature, 486
double generation, 499
first generation, 499
prolate, 500

two-joint-chain, 257

undercutting, 538, 556

unicursal, 633, 653

unitary matrix, 30

vector polygon, 162, 177
velocity, 350, 413, 497

complex formulation, 470
rotated, 453

velocity distribution, 293, 366, 451
velocity screw, 206, 293, 299, 366, 367

intensity, 296
Plücker vectors, 296
standard form, 296
unit screw, 296

velocity triangle, 564
vertex, 415

condition, 415, 487

virtual change of velocity, 665
virtual power of a force screw, 368
virtual velocity screw, 368

Wankel engine, 498
weighted incidence matrix, 672
wheel suspension system, 141
Wiener parameters, 36, 38, 339

Wiener vector, 36, 339
Woernle-Lee equations, 166, 222, 226
work space, 258
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