
Equilibria of Plurality Voting: Lazy
and Truth-Biased Voters

Edith Elkind1, Evangelos Markakis2, Svetlana Obraztsova3,
and Piotr Skowron4(B)

1 University of Oxford, Oxford, UK
2 Athens University of Economics and Business, Athens, Greece

3 Tel Aviv University, Tel Aviv, Israel
4 University of Warsaw, Warsaw, Poland

p.skowron@mimuw.edu.pl

Abstract. We present a systematic study of Plurality elections with
strategic voters who, in addition to having preferences over election win-
ners, also have secondary preferences, governing their behavior when
their vote cannot affect the election outcome. Specifically, we study two
models that have been recently considered in the literature: lazy voters,
who prefer to abstain when they are not pivotal, and truth-biased voters,
who prefer to vote truthfully when they are not pivotal. For both lazy
and truth-biased voters, we are interested in their behavior under dif-
ferent tie-breaking rules (lexicographic rule, random voter rule, random
candidate rule). Two of these six combinations of secondary preferences
and tie-breaking rules have been studied in prior work; for the remaining
four, we characterize pure Nash equilibria (PNE) of the resulting strate-
gic games and study the complexity of related computational problems.
We then use these results to analyze the impact of different secondary
preferences and tie-breaking rules on the election outcomes. Our results
extend to settings where some of the voters are non-strategic.

1 Introduction

Plurality voting is a popular tool for collective decision-making in many domains,
including both human societies and multiagent systems. Under this voting rule,
each voter is supposed to vote for her most favorite candidate (or abstain); the
winner is then the candidate that receives the highest number of votes. If several
candidates have the highest score, the winner is chosen among them using a
tie-breaking rule; popular tie-breaking rules include the lexicographic rule, which
imposes a fixed priority order over the candidates; the random candidate rule,
which picks one of the tied candidates uniformly at random; and the random
voter rule, which picks the winner among the tied candidates according to the
preferences of a randomly chosen voter.

In practice, voters are often strategic, i.e., they may vote non-truthfully if they
can benefit from doing so. In that case, an election can be viewed as a game,
where the voters are the players, and each player’s space of actions includes vot-
ing for any candidate or abstaining. For deterministic rules (such as Plurality
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with lexicographic tie-breaking), the behavior of strategic voters is determined
by their preference ordering, i.e., a ranking of the candidates, whereas for ran-
domized rules a common approach is to specify utility functions for the voters;
i.e., the voters are assumed to maximize their expected utility under the lottery
induced by tie-breaking. The outcome of the election can then be identified with
a pure Nash equilibrium (PNE) of the resulting game.

However, under Plurality and with 3 or more voters, this approach fails to
provide a useful prediction of voting behavior: for each candidate c there is a
PNE where c is the unique winner, irrespective of the voters’ preferences. Indeed,
if there are at least 3 voters, the situation where all of them vote for c is a PNE,
as no voter can change the election outcome. Such equilibria may disappear if we
use a more refined model of voters’ preferences that captures additional aspects
of their decision-making. For instance, in practice, if a voter feels that her vote is
unlikely to have any effect on the outcome, she may decide to abstain from the
election. Also, voters may be averse to lying about their preferences, in which
case they can be expected to vote for their top candidate unless there is a clear
strategic reason to vote for someone else. By taking into account these aspects
of voters’ preferences, we can obtain a more faithful model of their behavior.

The problem of characterizing and computing the equilibria of Plurality vot-
ing, both for “lazy” voters (i.e., ones who prefer to abstain when they are not
pivotal) and for “truth-biased” voters (ones who prefer to vote truthfully when
they are not pivotal), has recently received a considerable amount of attention.
However, it is difficult to compare the existing results, since they rely on different
tie-breaking rules. In particular, Desmedt and Elkind [6], who study lazy voters,
use the random candidate tie-breaking rule, and Obraztsova et al. [17] consider
truth-biased voters and the lexicographic tie-breaking rule. Thus, it is not clear
whether the differences between the results in these papers can be attributed to
the voters’ secondary preferences, or to the tie-breaking rule.

The primary goal of our paper is to tease out the effects of different features
of these models, by systematically considering all the combinations of secondary
preferences and tie-breaking rules. We consider two types of secondary pref-
erences (lazy voters and truth-biased voters) and three tie-breaking rules (the
lexicographic rule, the random voter rule, and the random candidate rule); while
two of these combinations have been studied earlier by [6,17], to the best of our
knowledge, the remaining four possibilities have not been considered before. For
each of the new scenarios, we characterize the set of PNE for the resulting game;
in doing so, we also fill in a gap in the characterization of [6] for lazy voters
and random candidate tie-breaking. We then consider the problems of deciding
whether a given game admits a PNE and whether a given candidate can be
a co-winner/unique winner in some PNE of a given game. For all settings, we
determine the computational complexity of each of these problems, classifying
them as either polynomial-time solvable or NP-complete. Our characterization
results enable us to analyze the impact of various features of our model on
the election outcomes, and thereby evaluate the plausibility of our assumptions
about voters’ secondary preferences. Finally, we briefly discuss the implications
of our results in the setting where some of the voters may be principled, i.e.,
always vote truthfully.
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Related Work. Equilibria of Plurality voting have been investigated by a num-
ber of researchers, starting with [10]. However, most of the earlier works either
consider solution concepts other than pure Nash equilibria, such as iterative
elimination of dominated strategies [7,13], or assume that voters have incom-
plete information about each others’ preferences [14]. Both types of secondary
preferences (lazy voters and truth-biased voters) appear in the social choice lit-
erature, see, respectively, [2,3,19] and [8,11]. In computational social choice,
truth-biased voters have been considered by Meir et al. [12] in the context of
dynamics of Plurality voting; subsequently, Plurality elections with truth-biased
voters have been investigated empirically by Thompson et al. [20] and theoret-
ically by Obraztsova et al. [17]. To the best of our knowledge, the only paper
to study computational aspects of Plurality voting with lazy voters is that of
Desmedt and Elkind [6].

Our approach to tie-breaking is well-grounded in existing work. Lexicographic
tie-breaking is standard in the computational social choice literature. The ran-
dom candidate rule has been discussed by [6], and, more recently, by [15,16].
The random voter rule is used to break ties under the Schulze method [18]; the
complexity of manipulation under this tie-breaking rule has been studied by [1].

2 Preliminaries

For any positive integer t, we denote the set {1, . . . , t} by [t]. We consider elec-
tions with a set of voters N = [n] and a set of alternatives, or candidates,
C = {c1, . . . cm}. Each voter is associated with a preference order, i.e., a strict
linear order over C; we denote the preference order of voter i by �i. The list
(�1, . . . ,�n) is called a preference profile. For each i ∈ N , we set ai to be the top
choice of voter i, and let a = (a1, . . . , an). Given two disjoint sets of candidates
X, Y and a preference order �, we write X � Y if in � all candidates from X
are ranked above all candidates from Y .

We also assume that each voter i ∈ N is endowed with a utility function
ui : C → N; ui(cj) is the utility derived by voter i if cj is the unique election
winner. We require that ui(c) �= ui(c′) for all i ∈ N and all c, c′ ∈ C such
that c �= c′. The vector u = (u1, . . . , un) is called the utility profile. Voters’
preference orders and utility functions are assumed to be consistent, i.e., for
each i ∈ N and every pair of candidates c, c′ ∈ C we have c �i c′ if and only
if ui(c) > ui(c′); when this is the case, we will also say that �i is induced by
ui. Sometimes, instead of specifying preference orders explicitly, we will specify
the utility functions only, and assume that voters’ preference orders are induced
by their utility functions; on other occasions, it will be convenient to reason in
terms of preference orders.

A lottery over C is a vector p = (p1, . . . , pm) with pj ≥ 0 for all j ∈ [m] and∑
j∈[m] pj = 1. The value pj is the probability assigned to candidate cj . The

expected utility of a voter i ∈ N from a lottery p is given by
∑

j∈[m] ui(cj)pj .
In this work, we consider Plurality elections, where each voter i ∈ N submits

a vote, or ballot, bi ∈ C ∪ {∅}; if bi = ∅, voter i is said to abstain. The list
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of all votes b = (b1, . . . , bn) is also called a ballot vector. We say that a ballot
vector is trivial if bi = ∅ for all i ∈ N . Given a ballot vector b and a ballot
b′, we write (b−i, b

′) to denote the ballot vector obtained from b by replacing
bi with b′. The score of an alternative cj in an election with ballot vector b
is given by sc(cj ,b) = |{i ∈ N | bi = cj}|. Given a ballot vector b, we set
M(b) = maxc∈C sc(c,b) and let W (b) = {c ∈ C | sc(c,b) = M(b)}, H(b) =
{c ∈ C | sc(c,b) = M(b) − 1}, H ′(b) = {c ∈ C | sc(c,b) = M(b) − 2}. These
sets are useful in our analysis in the next sections. The set W (b) is called the
winning set. Note that if b is trivial then W (b) = C. If |W (b)| > 1, the winner
is selected from W (b) according to one of the following tie-breaking rules.

(1) Under the lexicographic rule RL, the winner is the candidate cj ∈ W (b) such
that j ≤ k for all ck ∈ W (b).

(2) Under the random candidate rule RC , the winner is chosen from W (b) uni-
formly at random.

(3) Under the random voter rule RV , we select a voter from N uniformly at
random; if she has voted for a candidate in W (b), we output this candidate,
otherwise we ask this voter to report her most preferred candidate in W (b),
and output the answer. This additional elicitation step may appear difficult
to implement in practice; fortunately, we can show that in equilibrium it is
almost never necessary.

Thus, the outcome of an election is a lottery over C; however, for RL this lottery
is degenerate, i.e., it always assigns the entire probability mass to a single can-
didate. For each X ∈ {L,C, V } and each ballot vector b, let pX(b) denote the
lottery that corresponds to applying RX to the set W (b). From the definition of
RC , it follows that for every cj ∈ C it holds that if pC

j (b) �= 0 then pC
j (b) ≥ 1

m .
Similarly, for RV , it follows that if pV

j (b) �= 0 then pV
j (b) ≥ 1

n .
In what follows, we focus on two types of secondary preferences, namely,

lazy voters, who prefer to abstain when their vote has no effect on the elec-
tion outcome, and truth-biased voters, who never abstain, but prefer to vote
truthfully when their vote has no effect on the election outcome. Formally,
pick ε < min{ 1

m2 , 1
n2 }, and consider a utility profile u and a tie-breaking rule

RX ∈ {RC , RV , RL}. Then

– if voter i is lazy, her utility in an election with ballot vector b under tie-
breaking rule RX is given by

Ui(b) =

{∑
j∈[m] p

X
j (b)ui(cj), if bi ∈ C,

∑
j∈[m] p

X
j (b)ui(cj) + ε, if bi = ∅.

– if voter i is truth-biased, her utility in an election with ballot vector b under
tie-breaking rule RX is given by

Ui(b) =

⎧
⎪⎨

⎪⎩

∑
j∈[m] p

X
j (b)ui(cj), if bi ∈ C \ {ai},

∑
j∈[m] p

X
j (b)ui(cj) + ε, if bi = ai,

−∞, if bi = ∅.
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We consider settings where all voters are of the same type, i.e., either all voters
are lazy or all voters are truth-biased; we refer to these settings as lazy or truth-
biased, respectively, and denote the former by L and the latter by T .

We investigate all possible combinations of settings (L, T ) and tie-breaking
rules (RL, RC , RV ). A combination of a setting S ∈ {L, T }, a tie-breaking rule
R ∈ {RL, RC , RV } and a utility profile u induces a strategic game, which we will
denote by (S, R,u): in this game, the players are the voters, the action space of
each player is C∪{∅}, and the players’ utilities U1, . . . , Un for a vector of actions
b are computed based on the setting and the tie-breaking rule as described above.
We say that a ballot vector b is a pure Nash equilibrium (PNE) of the game
(S, R,u) if Ui(b) ≥ Ui(b−i, b

′) for every voter i ∈ N and every b′ ∈ C ∪ {∅}.
For each setting S ∈ {L, T } and each tie-breaking rule R ∈ {RL, RC , RV },

we define three algorithmic problems, which we call (S, R)-ExistNE, (S, R)-
TieNE, and (S, R)-SingleNE. In each of these problems, we are given a candi-
date set C, |C| = m, a voter set N , |N | = n, and a utility vector u = (u1, . . . , un),
where each ui is represented by m numbers ui(c1), . . . , ui(cm); these numbers
are positive integers given in binary. In (S, R)-TieNE and (S, R)-SingleNE we
are also given the name of a target candidate cp ∈ C. In (S, R)-ExistNE we
ask if (S, R,u) has a PNE. In (S, R)-TieNE we ask if (S, R,u) has a PNE b
with |W (b)| > 1 and cp ∈ W (b). In (S, R)-SingleNE we ask if (S, R,u) has a
PNE b with W (b) = {cp}. Each of these problems is obviously in NP, as we can
simply guess an appropriate ballot vector b and check that it is a PNE.

In what follows, we omit some proofs due to space constraints; the omitted
proofs can be found in the full version of the paper [9].

3 Lazy Voters

In this section, we study PNE in Plurality games with lazy voters. The case
where the tie-breaking rule is RC has been analyzed in detail by Desmedt and
Elkind [6], albeit for a slightly different model; we complement their results by
considering RL and RV .

We start by extending a result of [6] to all three tie-breaking rules considered
here.

Proposition 1. For every R ∈ {RL, RC , RV } and every utility profile u, if a
ballot vector b is a PNE of (L, R,u) then for every voter i ∈ N either bi = ∅

or bi ∈ W (b). If |W (b)| = 1, there is exactly one voter i ∈ N with bi �= ∅.

Proof. Suppose that bi �= ∅, bi �∈ W (b) for some voter i ∈ N . Then if i changes
her vote to ∅, the set W (b) will not change, so i’s utility would improve by
ε, a contradiction with b being a PNE of (L, R,u). Similarly, suppose that
|W (b)| = 1 and there are two voters i, i′ ∈ N with bi �= ∅, bi′ �= ∅. It has to
be the case that bi = bi′ = cj for some cj ∈ C, since otherwise |W (b)| > 1. But
then if voter i changes her vote to ∅, cj will remain the election winner, so i’s
utility would improve by ε, a contradiction.
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Lexicographic Tie-breaking. The scenario where voters are lazy and ties are
broken lexicographically turns out to be fairly easy to analyze.

Theorem 1. For any utility profile u the game G = (L, RL,u) has the following
properties:

(1) If b is a PNE of G then |W (b)| ∈ {1,m}. Moreover, |W (b)| = m if and
only if b is the trivial ballot and all voters rank c1 first.

(2) If b is a PNE of G then there exists at most one voter i with bi �= ∅.
(3) G admits a PNE if and only if all voters rank c1 first (in which case c1 is

the unique PNE winner) or there exists a candidate cj with j > 1 such that
(i) sc(cj ,a) > 0 and (ii) for every k < j it holds that all voters prefer cj to
ck. If such a candidate exists, he is unique, and wins in all PNE of G.

The following corollary is directly implied by Theorem 1.

Corollary 1. (L, RL)-ExistNE, (L, RL)-SingleNE and (L, RL)-TieNE are
in P.

Remark 1. The reader may observe that, counterintuitively, while the lexico-
graphic tie-breaking rule appears to favor c1, it is impossible for c1 to win the
election unless he is ranked first by all voters. In contrast, c2 wins the election
as long as he is ranked first by at least one voter and no voter prefers c1 to c2.
In general, the lexicographic tie-breaking rule favors lower-numbered candidates
with the exception of c1. As for c1, his presence mostly has a destabilizing effect:
if some, but not all voters rank c1 first, no PNE exists. This phenomenon is an
artifact of our treatment of the trivial ballot vector: it disappears if we assume
(as [6] does) that when b = (∅, . . . , ∅) the election is declared invalid and the
utility of each voter is −∞: under this assumption c1 is the unique possible
equilibrium winner whenever he is ranked first by at least one voter.

Randomized Tie-breaking. We now consider RC and RV . Desmedt and
Elkind [6] give a characterization of utility profiles that admit a PNE for lazy vot-
ers and RC . However, there is a small difference between our model and theirs
regarding the trivial ballot vector, as explained in Remark 1 above. Further,
their results implicitly assume that the number of voters n exceeds the number
of candidates m; if this is not the case, Theorem 2 in their paper is incorrect (see
Remark 2).

Thus, we will now provide a full characterization of utility profiles u such
that (L, RC ,u) admits a PNE, and describe the corresponding equilibrium ballot
profiles. Our characterization result remains essentially unchanged if we replace
RC with RV : for almost all utility profiles u and ballot vectors b it holds that b
is a PNE of (L, RC ,u) if and only if it is a PNE of (L, RV ,u); the only exception
is the case of full consensus (all voters rank the same candidate first).

Theorem 2. Let u = (u1, . . . , un) be a utility profile over C, |C| = m, and let
R ∈ {RC , RV }. The game G = (L, R,u) admits a PNE if and only if one of the
following conditions holds:
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(1) all voters rank some candidate cj first;
(2) each candidate is ranked first by at most one voter, and ∀� ∈ N : 1

n

∑
i∈N u�(ai)

≥ maxi∈N\{�} u�(ai).
(3) there exists a set of candidates X = {c�1 , . . . , c�k

} with 2 ≤ k ≤ min(n/2,m)
and a partition of the voters into k groups N1, . . . , Nk of size n/k each such
that for each j ∈ [k] and each i ∈ Nj we have c�j

�i c for all c ∈ X \ {c�j
},

and, moreover, 1
k

∑
c∈X ui(c) ≥ maxc∈X\{c�j

} ui(c).

Further, when condition (1) holds for some cj ∈ C and R = RC , then for each
i ∈ N the game G has a PNE where i votes for cj and all other voters abstain,
whereas if R = RV , the game G has a PNE where all voters abstain; if condition
(2) holds, then G has a PNE where each voter votes for her top candidate; and
if condition (3) holds for some set X, then G has a PNE where each voter votes
for her favorite candidate in X. The game G has no other PNE.

Remark 2. Desmedt and Elkind [6] claim (Theorems 1 and 2) that for RC and
lazy voters, a PNE exists if and only if the utility profile satisfies either condition
(1) or (3) with the constraint k ≤ n/2 removed. To see why this is incorrect,
consider a 2-voter election over C = {x, y, z}, where the voters’ utility functions
are consistent with preference orders x � y � z and x � z � y, respectively.
According to [6], the vector (y, z) is a PNE. This is obviously not true: each of
the voters would prefer to change her vote to x. Note, however, that the two
characterizations differ only when m ≥ n, and in practice the number of voters
usually exceeds the number of candidates.

Desmedt and Elkind [6] show that checking condition (3) of Theorem 2 is
NP-hard; in their proof n > m, and the proof does not depend on how the
trivial ballot is handled. Further, their proof shows that checking whether a
given candidate belongs to some such set X is also NP-hard. On the other
hand, Theorem 2 shows that PNE with singleton winning sets only arise if some
candidate is unanimously ranked first, and this condition is easy to check. We
summarize these observations as follows.

Corollary 2. For R ∈ {RC , RV }, the problems (L, R)-ExistNE and (L, R)-
TieNE are NP-complete, whereas (L, R)-SingleNE is in P.

4 Truth-Biased Voters

For truth-biased voters, our exposition follows the same pattern as for lazy vot-
ers: we present some general observations, followed by a quick summary of the
results for lexicographic tie-breaking, and continue by analyzing randomized tie-
breaking. The following result is similar in spirit to Proposition 1.

Proposition 2. For every R ∈ {RL, RC , RV } and every utility profile u, if a
ballot vector b is a PNE of (T , R,u) then for every voter i ∈ N we have bi = ai

or bi ∈ W (b).
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Lexicographic Tie-breaking. Obraztsova et al. [17] characterize the PNE of
the game (T , RL,u). Their characterization is quite complex, and we will not
reproduce it here. However, for the purposes of comparison with the lazy voters
model, we will use the following description of truthful equilibria.

Proposition 3 (Obraztsova et al. [17], Theorem 1). Consider a utility
profile u, let a be the respective truthful ballot vector, and let j = min{r | cr ∈
W (a)}. Then a is a PNE of (T , RL,u) if and only if neither of the following
conditions holds:

(1) |W (a)| > 1, and there exists a candidate ck ∈ W (a) and a voter i such that
ai �= ck and ck �i cj.

(2) H(a) �= ∅, and there exists a candidate ck ∈ H(a) and a voter i such that
ai �= ck, ck �i cj, and k < j.

We will also utilize a crucial property of non-truthful PNE. For this, we first
need the following definition.

Definition 1. Consider a ballot vector b, where candidate cj is the winner
under RL. A candidate ck �= cj is called a threshold candidate with respect to b if
either (1) k < j and sc(ck,b) = sc(cj ,b)−1 or (2) k > j and sc(ck,b) = sc(cj ,b).
We denote the set of threshold candidates with respect to b by T (b).

That is, a threshold candidate is someone who could win the election if he
had one additional vote. A feature of all non-truthful PNE is that there must
exist at least one threshold candidate. The intuition for this is that, since voters
who are not pivotal prefer to vote truthfully, in any PNE that arises under
strategic voting, the winner receives just enough votes so as to beat the required
threshold (as set by the threshold candidate) and not more. Formally, we have
the following lemma.

Lemma 1 (Obraztsova et al. [17], Lemma 2). Consider a utility profile u,
let a be the respective truthful ballot vector, and let b �= a be a non-truthful PNE
of (T , RL,u). Then T (b) �= ∅. Further, sc(ck,b) = sc(ck,a) for every ck ∈ T (b),
i.e., all voters whose top choice is ck vote for ck.

The existence of a threshold candidate is an important observation about the
structure of non-truthful PNE, and we will use it repeatedly in the sequel. Note
that the winner in a does not have to be a threshold candidate in a non-truthful
PNE b.

Obraztsova et al. show that, given a candidate cp ∈ C and a score s, it is
computationally hard to decide whether the game (T , RL,u) has a PNE b where
cp wins with a score of s. This problem may appear to be “harder” than (T , RL)-
TieNE or (T , RL)-SingleNE, as one needs to ensure that cp obtains a specific
score; on the other hand, it does not distinguish between cp being the unique
top-scorer or being tied with other candidates and winning due to tie-breaking.
We now complement this hardness result by showing that all three problems we
consider are NP-hard for T and RL.
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Theorem 3. (T , RL)-SingleNE, (T , RL)-ExistNE, and (T , RL)-TieNE are
NP-complete.

The proof is by reduction from Maximum k-Subset Intersection (MSI);
see [9] for a formal definition of this problem. Surprisingly, the complexity of
MSI was very recently posed as an open problem by Clifford and Popa [5];
subsequently, MSI was shown to be hard under Cook reductions in [21]. In our
proof we first establish NP-hardness of MSI under Karp reductions, which may
be of independent interest, and then show NP-hardness of our problems by
constructing reductions from MSI.

Randomized Tie-breaking. It turns out that for truth-biased voters, the
tie-breaking rules RC and RV induce identical behavior by the voters; unlike for
lazy voters, this holds even if all voters rank the same candidate first.

For clarity, we present our characterization result for randomized tie-breaking
in three parts. We start by considering PNE with winning sets of size at least 2;
the analysis for this case turns out to be very similar to that for lazy voters.

Theorem 4. Let u = (u1, . . . , un) be a utility profile over C, |C| = m, and let
R ∈ {RC , RV }. The game G = (T , R,u) admits a PNE with a winning set of
size at least 2 if and only if one of the following conditions holds:

(1) each candidate is ranked first by at most one voter, and, moreover,
1
n

∑
i∈N u�(ai) ≥ maxi∈N\{�} u�(ai) for each � ∈ N .

(2) there exists a set of candidates X = {c�1 , . . . , c�k
} with 2 ≤ k ≤ min(n/2,m)

and a partitioning of the voters into k groups N1, . . . , Nk of size n/k each
such that for each j ∈ [k] and each i ∈ Nj we have c�j

�i c for all c ∈
X \ {c�j

}, and, moreover, 1
k

∑
c∈X ui(c) ≥ maxc∈X\{c�j

} ui(c).

Further, if condition (1) holds, then G has a PNE where each voter votes for her
top candidate, and if condition (2) holds for some X, then G has a PNE where
each voter votes for her favorite candidate in X. The game G has no other PNE.

The case where the winning set is a singleton is surprisingly complicated. We will
first characterize utility profiles that admit a truthful PNE with this property.

Theorem 5. Let u = (u1, . . . , un) be a utility profile over C, let R ∈ {RC , RV },
and suppose that W (a) = {cj} for some cj ∈ C. Then a is a PNE of the game
G = (T , R,u) if and only if for every i ∈ N and every ck ∈ H(a) \ {ai}, it holds
that cj �i ck.

Finally, we consider elections that have non-truthful equilibria with singleton
winning sets.

Theorem 6. Let u = (u1, . . . , un) be a utility profile over C, let R ∈ {RC , RV },
and consider a ballot vector b with W (b) = {cj} for some cj ∈ C and br �= ar

for some r ∈ N . Then b is a PNE of the game G = (T , R,u) if and only if all
of the following conditions hold:
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(1) bi ∈ {ai, cj} for all i ∈ N ;
(2) H(b) �= ∅;
(3) cj �i ck for all i ∈ N and all ck ∈ H(b) \ {bi};
(4) for every candidate c� ∈ H ′(b) and each voter i ∈ N with bi = cj, i prefers

cj to the lottery where a candidate is chosen from H(b) ∪ {cj , c�} according
to R.

We now consider the complexity of ExistNE, TieNE, and SingleNE
for truth-biased voters and randomized tie-breaking. The reader may observe
that the characterization of PNE with ties in Theorem 4 is essentially identical
to the one in Theorem 2. As a consequence, we immediately obtain that (T , RC)-
TieNE and (T , RV )-TieNE are NP-hard. For ExistNE and SingleNE, a sim-
ple modification of the proof of Theorem 3 shows that these problems remain
hard under randomized tie-breaking. These observations are summarized in the
following corollary.

Corollary 3. For R ∈ {RC , RV }, (T , R)-SingleNE, (T , R)-TieNE, and
(T , R)-ExistNE are NP-complete.

5 Comparison

We are finally in a position to compare the different models considered in this
paper.

Tie-breaking Rules. We have demonstrated that in equilibrium the two ran-
domized tie-breaking rules (RC and RV ) induce very similar behavior, and iden-
tical election outcomes, both for lazy and for truth-biased voters. This is quite
remarkable, since under truthful voting these tie-breaking rules can result in
very different lotteries. In contrast, there is a substantial difference between
the randomized rules and the lexicographic rule. For instance, with lazy vot-
ers, ExistNE is NP-hard for RC and RV , but polynomial-time solvable for RL.
Further, RL is, by definition, not neutral, and Theorem 1 demonstrates that
candidates with smaller indices have a substantial advantage. For truth-biased
voters the impact of tie-breaking rules is less clear: while we have NP-hardness
results for all three rules, it appears that, in contrast with lazy voters, PNE
induced by randomized tie-breaking are “simpler” than those induced by RL.

Lazy vs. Truth-Biased Voters. Under lexicographic tie-breaking, the sets of
equilibria induced by the two types of secondary preferences are incomparable:
there exists a utility profile u such that the sets of candidates who can win in
PNE of (L, RL,u) and (T , RL,u) are disjoint.

Example 1. Let C = {c1, c2, c3}, and consider a 4-voter election with one vote of
the form c2 � c3 � c1, and three votes of the form c3 � c2 � c1. The only PNE
of (L, RL,u) is (c2, ∅, ∅, ∅), where c2 wins, whereas the only PNE of (T , RL,u)
is (c2, c3, c3, c3), where c3 wins.
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For randomized tie-breaking, the situation is more interesting. For concrete-
ness, let us focus on RC . Note first that the utility profiles for which there exist
PNE with winning sets of size 2 or more are the same for both voter types. Fur-
ther, if (L, RC ,u) has a PNE b, with |W (b)| = 1 (which happens only if there is
a unanimous winner), then b is also a PNE of (T , RC ,u). However, (T , RC ,u)
may have additional PNE, including some non-truthful ones. In particular, for
truth-biased voters, the presence of a strong candidate is sufficient for stability:
Proposition 3 implies that if there exists a c ∈ C such that sc(c,a) ≥ sc(c′,a)+2
for all c′ ∈ C \ {c}, then for any R ∈ {RL, RC , RV } the truthful ballot vector a
is a PNE of (T , R,u) with W (a) = {c}.

Existence of PNE. For truth-biased voters, one can argue that, when the
number of voters is large relative to the number of candidates, under reasonable
probabilistic models of elections, the existence of a strong candidate (as defined
in the previous paragraph) is exceedingly likely. Thus, elections with truth-biased
voters typically admit stable outcomes; this is corroborated by the experimental
results of [20]. In contrast, for lazy voters stability is more difficult to achieve,
unless there is a candidate that is unanimously ranked first: under randomized
tie-breaking rules, there needs to be a very precise balance among candidates
that end up being in W (b), and under RL the eventual winner has to Pareto-
dominate all candidates that lexicographically precede him.

Quality of PNE. In all of our models, a candidate ranked last by all voters
cannot be elected, in contrast to the basic game-theoretic model for Plurality
voting. However, not all non-desirable outcomes are eliminated: under RV and
RC both lazy voters and truth-biased voters can still elect a Pareto-dominated
candidate with non-zero probability in PNE. This has been shown for lazy voters
and RC (Example 1 in [6]), and the same example works for truth-biased voters
and RV . A similar construction shows that a Pareto-dominated candidate may
win under RL when voters are truth-biased. In contrast, lazy voters cannot elect
a Pareto-dominated candidate under RL: Theorem 1 shows that the winner has
to be ranked first by some voter.

We can also measure the quality of PNE by analyzing the Price of Anarchy
(PoA) in both models. The study of PoA in the context of voting has been

Table 1. Complexity results: P stands for “polynomial-time solvable”, NPc stands for
“NP-complete”.

SingleNE TieNE ExistNE

(L, RL) P (Corollary 1) P (Corollary 1) P (Corollary 1)

(L, RC) P (Corollary 2) NPc (Corollary 2) NPc (Corollary 2)

(L, RV ) P (Corollary 2) NPc (Corollary 2) NPc (Corollary 2)

(T , RL) NPc (Theorem 3) NPc (Theorem 3) NPc (Theorem 3)

(T , RC) NPc (Corollary 3) NPc (Corollary 3) NPc (Corollary 3)

(T , RV ) NPc (Corollary 3) NPc (Corollary 3) NPc (Corollary 3)
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recently initiated by Branzei et al. [4]. The additive version of PoA, which was
considered in [4], is defined as the worst-case difference between the score of the
winner under truthful voting and the truthful score of a PNE winner. It turns
out that PoA can be quite high, both for lazy and for truth-biased voters: in the
full version of the paper we show that PoA = Ω(n) in all of our models. Even
though these results are not encouraging, PoA is only a worst-case analysis and
we expect a better performance on average. Indeed, for the truth-biased model,
this is supported by the experimental evaluation in [20].

6 Conclusions

We have characterized PNE of Plurality voting for several combinations of sec-
ondary preferences and tie-breaking rules. Our complexity results are summa-
rized in Table 1.

Our results extend to the setting where some of the voters are principled,
i.e., always vote truthfully (and never abstain). Due to space constraints, we
are unable to fully describe these extensions (see [9]). Briefly, the presence of
principled voters has the strongest effect on lazy voters and lexicographic tie-
breaking, as illustrated by the following example, whereas for other settings the
effect is less pronounced.

Example 2. Consider an election over a candidate set C = {c1, . . . , cm}, m > 1,
where there are two principled voters who both vote for cm, and two lazy voters
who both rank cm last. Then the ballot vector where both lazy voters abstain
is a PNE (with winner cm). Moreover, for every j ∈ [m − 1] the ballot vector
where both lazy voters vote for cj is a PNE as well (with winner cj).

In the absence of principled voters, PNE for lazy voters require very pre-
cise coordination among the voters and seem to be very different from what
we observe in real life. In contrast, for truth-biased voters the presence of a
strong candidate implies the existence of a truthful equilibrium, which requires
little coordination among the players. It is therefore tempting to conclude that
truth bias has a greater explanatory power than laziness. However, we demon-
strated that the presence of principled voters changes this equation. Extending
our analysis to a mixture of all three voter types is perhaps the most prominent
open problem suggested by our work.
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