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Abstract. R. Lavy and C. Swamy (FOCS 2005, J. ACM 2011) intro-
duced a general method for obtaining truthful-in-expectation mecha-
nisms from linear programming based approximation algorithms. Due to
the use of the Ellipsoid method, a direct implementation of the method is
unlikely to be efficient in practice. We propose to use the much simpler
and usually faster multiplicative weights update method instead. The
simplification comes at the cost of slightly weaker approximation and
truthfulness guarantees.

1 Introduction

Algorithmic mechanism design studies optimization problems in which part of
the input is not directly available to the algorithm; instead, this data is col-
lected from self-interested players. It quests for polynomial-time algorithms that
(approximately) optimize a global objective function (usually called social wel-
fare), subject to the strategic requirement that the best strategy of the players
is to truthfully report their part of the input. Such algorithms are called truthful
mechanisms.

If the underlying optimization problem can be efficiently solved to optimal-
ity, the celebrated VCG mechanism (see, e.g., [17]) achieves truthfulness, social
welfare optimization, and polynomial running time.

In general, the underlying optimization problem can only be solved approx-
imately. Lavi and Swamy ([15,16]) showed that certain linear programming
based approximation algorithms for the social welfare problem can be turned
into randomized mechanisms that are truthful-in-expectation, i.e., reporting the
truth maximizes the expected utility of an player. The LS-mechanism is pow-
erful (see [4,11,15,16] for applications), but unlikely to be efficient in practice
because of its use of the Ellipsoid method. We show how to use the multiplicative
weights update method instead. This results in simpler algorithms at the cost of
somewhat weaker approximation and truthfulness guarantees.
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We next review the LS-mechanism. It applies to integer linear programming
problems of the packing type1 for which the linear programming relaxation can
be solved exactly and for which an α-integrality gap verifier is available (def-
inition below). Let Q ⊆ R

d
≥0 be a packing polytope, i.e., Q is the intersection

of finitely many halfspaces, and if y ∈ Q and x ≤ y then x ∈ Q. We use
QI := Q ∩Z

d for the set of integral points in Q, xj for a typical element of QI ,
and N for the index set of all elements in QI . The mechanism consists of three
main steps:

1. Let vi ∈ R
d
≥0, 1 ≤ i ≤ n, be the valuation of the i-th player and let v =

∑
i vi

be the accumulated valuation. Solve the LP-relaxation, i.e., find a maximizer
x∗ = argmaxx∈Q vT x for the social welfare of the fractional problem, and
determine the VCG prices2 p1, . . . , pn. The allocation x∗ and the VCG-prices
are a truthful mechanism for the fractional problem.

2. Write α · x∗ as a convex combination of integral solutions in Q, i.e., α · x∗ =∑
j∈N λjx

j , λj ≥ 0,
∑

j∈N λj = 1, and xj ∈ QI . This step requires an
α-integrality-gap-verifier for QI for some α ∈ [0, 1]. On input v̄ ∈ R

d
≥0 and

x∗ ∈ Q, an α-integrality-gap-verifier returns an x ∈ QI such that

v̄T x ≥ αv̄T x∗.

3. Pick the integral solution xj with probability λj , and charge the i-th player
the price pi · (vT

i xj/vT
i x∗) and If vT

i x∗ = 0, charge zero.

The LS-mechanism approximates social welfare with factor α and guarantees
truthfulness-in-expectation, i.e., it converts a truthful fractional mechanism into
an α-approximate truthful-in-expectation integral mechanism. With respect to
practical applicability, steps 1 and 2 are the two major bottlenecks. Step 1
requires solving a linear program; an exact solution requires the use of the Ellip-
soid method (see e.g. [10]), if the dimension is exponential. Furthermore, up to
recently, the only method known to perform the decomposition in Step 2 is
through the Ellipsoid method. An alternative method avoiding the use of the
Ellipsoid method was recently given by Kraft, Fadaei, and Bichler [14]. We com-
ment on their result in the next section.

1.1 Our Results

Our result concerns the design and analysis of a practical algorithm for the
LS-scheme. We first consider the case where the LP-relaxation of SWM (social
1 An example is the combinatorial auction problem. There is a set of m items to be

sold to a set of n players. The (reported) value of a set S of items to the i-th player is
vi(S) with vi(∅) = 0 and vi(S) ≤ vi(T ) whenever S ⊆ T . Let xi,S be a 0–1 variable
indicating that set S is given to player i. Then

∑
S xi,S ≤ 1 for every player i as at

most one set can be given to i, and
∑

i

∑
S;j∈S xi,S ≤ 1 for every item j as any item

can be given away only once. The social welfare is
∑

i,S vi(S)xi,S . The polytope Q
is obtained by replacing the integrality constraints for xi,s by 0 ≤ xi,S ≤ 1. Note
that the number d of variables is n2m.

2 pi =
∑

j �=i vT
j (x̂ − x∗), where x̂ = argmaxx∈Q

∑
j �=i vT

j x.
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welfare maximization) in Step 1 of the LS-scheme can be solved exactly and
efficiently and then our problem reduces to the design of practical algorithm for
the Step 2. In what follows we present an algorithm that is fast and practical
for the convex decomposition (i.e., Step 2). Afterwards, we consider a more
general problem where the LP-relaxation in Step 1 of the LS-scheme cannot be
solved exactly and we only have an approximate solution that maximizes the
LP-relaxation within a factor of 1 − ε.

Convex Decomposition. Over the past 15 years, simple and fast methods
[2,8,9,12,13,18,19] have been developed for solving packing and covering linear
programs within an arbitrarily small error guarantee ε. These methods are based
on the multiplicative weights update (MWU) method [1], in which a very simple
update rule is repeatedly performed until a near-optimal solution is obtained.
We show how to replace the use of the Ellipsoid method in Step 2 by an approxi-
mation algorithm for covering linear programs. This result is the topic of Sect. 2.

Theorem 1. Let ε > 0 be arbitrary. Given a fractional point x∗ ∈ Q, and an
α-integrality-gap verifier for QI , we can find a convex decomposition

α

1 + 4ε
· x∗ =

∑

j∈N
λjx

j .

The convex decomposition has size (= number of nonzero λj) at most s(1 +
�ε−2 ln s�), where s is the size of the support of x∗ (= number of nonzero com-
ponents). The algorithm makes at most s�ε−2 ln s� calls to the integrality-gap-
verifier.

Kraft, Fadaei, and Bichler [14] obtained a related result independently. How-
ever, their construction is less efficient in two aspects. First, it requires O(s2ε−2)
calls of the oracle. Second, the size of their convex decomposition might be as
large as O(s3ε−2). In the combinatorial auction problem, s = n + m. Theorem 1
together with Steps 1 and 3 of the LS scheme implies a mechanism that is truthful-
in-expectation and has (α/(1 + 4ε))-social efficiency. A mechanism has γ-social
efficiency, where γ ∈ [0, 1], if the expected social welfare of the allocation returned
by the mechanism is at least γ times the maximum possible social value.

Approximately Truthful-in-Expectation Mechanism. In contrast to Lavi-Swamy
mechanism, let us assume that we do not want to solve the LP-relaxation exactly
but instead, we want to use an ε-approximation algorithm A for it. Garg and
Könemann [8] showed that there is an FPTAS for the packing problem and hence
A exists, for every ε > 0. Using this, we show how to construct a fractional
randomized mechanism for given ε0 ∈ (0, 1/2] and ε = Θ( ε5

0
n4 ) that satisfies:

1. No positive transfer ( i.e., prices are non-negative).
2. Individually rational with probability 1−ε0 (i.e., the utility of any truth-telling

player is non-negative with probability at least 1 − ε0).
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3. (1 − ε0)-truthful-in-expectation (i.e., reporting the truth maximizes the
expected utility of an player up to a factor 1 − ε0)

4. (1 − ε)(1 − ε0)-social efficiency.

Now, let us assume that x is a fractional allocation obtained from the above
mechanism. We apply our convex decomposition technique and Step 3 of the
Lavi-Swamy mechanism to obtain an integral randomized mechanism that satis-
fies the aforementioned conditions 1 to 3 and has α(1−ε)(1−ε0)/(1+4ε)-social
efficiency. We show this result in Sect. 4.

Note that our fractional mechanism refines the one given in [5], where the
dependency of ε on n and ε0 is as ε = Θ(ε0/n9). A recent experimental study
of our mechanism on Display Ad Auctions [6] shows the applicability of these
methods in practice.

2 A Fast Algorithm for Convex Decompositions

Let x∗ ∈ Q be arbitrary. Carr and Vempala [3] showed how to construct a
convex combination of points in QI dominating αx∗ using a polynomial number
of calls to an α-integrality-gap-verifier for QI . Lavi and Swamy [16] modified
the construction to get an exact convex decomposition αx∗ =

∑
i∈N λix

i for the
case of packing linear programs. The construction uses the Ellipsoid method.
We show an approximate version that replaces the use of the Ellipsoid method
by the multiplicative weights update (MWU) method. For any ε > 0, we show
how to obtain a convex decomposition of αx∗/(1 + ε). Let s be the number of
non-zero components of x∗. The size of the decomposition and the number of
calls to the α-integrality gap verifier are O(sε−2 ln s).

This section is structured as follows. We first review Kkandekar’s FPTAS for
covering linear programs (Subsect. 2.1). We then use it and the α-integrality gap
verifier to construct a dominating convex combination for αx∗/(1 + 4ε), where
x∗ ∈ Q is arbitrary (Subsect. 2.2). In Subsect. 2.3, we show how to convert a
dominating convex combination into an exact convex decomposition. Finally, in
Subsect. 2.4, we put the pieces together.

2.1 An FPTAS for Covering Linear Programs

Consider a covering linear program:

min cT x s.t. {Ax ≥ b, x ≥ 0} (1)

where A ∈ R
m×n
≥0 is an m × d matrix with non-negative entries and c ∈

R
n
≥0 and b ∈ R

m
≥0 are non-negative vectors. We assume the availability of a

κ-approximation oracle for some κ ∈ (0, 1].

Oκ(z): Given z ∈ R
m
≥0, the oracle finds a column j of A that maximizes

1
cj

∑m
i=1

ziaij

bi
within a factor of κ:

1
cj

m∑

i=1

ziaij

bi
≥ κ · max

j′∈[n]

1
cj′

m∑

i=1

ziaij′

bi
(2)
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Algorithm 1. Covering(Oκ)
Require: a covering system (A, b, c) given by a κ−approximation oracle Oκ, where

A ∈ R
m×n
≥0 , b ∈ R

m
>0, c ∈ R

n
>0, and an accuracy parameter ε ∈ (0, 1/2]

Ensure: A feasible solution x̂ ∈ R
n
≥0 to (1) s.t. cT x̂ ≤ (1+4ε)

κ
z∗

1: x(0) := 0; t := 0; and T := ln m
ε2

2: while M(t) < T do
3: t := t + 1
4: Let j(t) := Oκ(p(t)/‖p(t)‖1)
5: xj(t)(t) := xj(t)(t − 1) + δ(t) and xj(t) = xj(t − 1) for j �= j(t)
6: end while
7: return x̂ = x(t)

M(t)

For an exact oracle κ = 1, Khandekar [12] gave an algorithm which computes
a feasible solution x̂ to covering LP (1) such that cT x̂ ≤ (1 + 4ε)z∗ where
z∗ is the value of an optimal solution. The algorithm makes O(mε−2 log m)
calls to the oracle, where m is the number of rows in A. If the exact oracle in
Khandekar’s algorithm is replaced by a κ-approximation algorithm, it computes
a feasible solution x̂ ∈ R

n
≥0 to (1) such that cT x̂ ≤ (1 + 4ε)z∗/κ. The algorithm

is given as Algorithm 1 and can be thought of as the algorithmic dual of the
FPTAS for multicommodity flows given in [8]. We use Ai to denote the i-th
row of A. The algorithm constructs vectors x(t) ∈ R

n
≥0, for t = 0, 1, . . . , until

M(t) := mini∈[m] Aix(t)/bi becomes at least T := lnm
ε2 . Define the active list at

time t by L(t) := {i ∈ [m] : Aix(t − 1)/bi < T}. For i ∈ L(t), define

pi(t) := (1 − ε)Aix(t−1)/bi , (3)

and set pi(t) = 0 for i 	∈ L(t). At each time t, the algorithm calls the oracle with
the vector zt = p(t)/‖p(t)‖1, and increases the variable xj(t) by

δ(t) := min
i∈L(t) and ai,j(t) �=0

bi

ai,j(t)
, (4)

where j(t) is the index returned by the oracle. Due to lack of space, the proof of
following theorem and corollary are presented in the full paper [7].

Theorem 2. Let ε ∈ (0, 1
2 ] and let z∗ be the value of an optimum solution to (1).

Procedure Covering(Oκ) (see Algorithm 1) terminates in at most m�ε−2 ln m�
iterations with a feasible solution x̂ of (1) of at most m�ε−2 ln m� positive com-
ponents. At termination, it holds that

cT x̂ ≤ (1 + 4ε)
κ

z∗. (5)

We observe that the proof of Theorem 2 can be modified to give:

Corollary 1. Suppose b = 1, c = 1, and we use the following oracle O′ instead
of O in Algorithm 1:
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O′(A, z): Given z ∈ R
m
≥0, such that 1T z = 1, the oracle finds a column j of A

such that zT A1j ≥ 1.

Then the algorithm terminates in at most m�ε−2 ln m� iterations with a feasible
solution x̂ having at most m�ε−2 ln m� positive entries, such that 1T x̂ ≤ 1 + 4ε.

2.2 Finding a Dominating Convex Combination

Recall that we use N to index the elements in QI . We assume the availability of
an α-integrality-gap-verifier F for QI . We will use the results of the preceding
section and show how to obtain for any x∗ ∈ Q and any positive ε a convex
composition of points in QI that covers αx∗/(1 + 4ε). Our algorithm requires
O(sε−2 ln s) calls to the oracle, where s is the support of x∗.

Theorem 3. Let ε > 0 be arbitrary. Given a fractional point x∗ ∈ Q and an
α-integrality-gap verifier F for QI , we can find a convex combination x̄ of inte-
gral points in QI such that

α

1 + 4ε
· x∗ ≤ x̄ =

∑

i∈N
λix

i.

The convex decomposition has size at most s�ε−2 ln s�, where s is the number
of positive entries of x∗. The algorithm makes at most s�ε−2 ln s� calls to the
integrality-gap verifier.

Proof. The task of finding the multipliers λi is naturally formulated as a covering
LP, namely,

min
∑

i∈N
λi (6)

s.t.
∑

i∈N
λix

i
j ≥ α · x∗

j for all j,

∑

i∈N
λi ≥ 1, λi ≥ 0.

λi ≥ 0.

Clearly, we can restrict our attention to the j ∈ S+ := {j : x∗
j > 0} and

rewrite the constraint for j ∈ S+ as
∑

i∈N λix
i
j/(α · x∗

j ) ≥ 1. For simplicity of
notation, we assume S+ = [1..s]. In the language of the preceding section, we
have m = s + 1, n = |N |, c = 1, b = 1 and the variable x = λ. The matrix
A = (aj,i) is as follows (note that we use j for the row index and i for the column
index):

aj,i :=
{

xi
j/(αx∗

j ) 1 ≤ j ≤ s, i ∈ N
1 j = s + 1, i ∈ N

Thus we can apply Corollary 1 of Sect. 2.1, provided we can efficiently imple-
ment the required oracle O′. We do so using F .
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Oracle O′ has arguments (A, z̃) such that 1T z̃ = 1. Let us conveniently write
z̃ = (w, z), where w ∈ R

s
≥0, z ∈ R≥0, and

∑j=1
j=s wj + z = 1. Oracle O′ needs to

find a column i such that z̃T A1i ≥ 1. In our case z̃T A1i =
∑s

j=1 wjx
i
j/αx∗

j + z,
and we need to find a column i for which this expression is at least one. Since z
does not depend on i, we concentrate on the first term. Define

Vj :=

{
wj

αx∗
j

for j ∈ S+

0 otherwise.

Call algorithm F with x∗ ∈ Q and V := (V1, . . . , Vd). F returns an integer
solution xi ∈ QI such that

V T xi =
∑

j∈S+

wj

αx∗
j

xi
j ≥ α · V T x∗ =

∑

j∈S+

wj ,

and hence, ∑

j∈S+

wj

αx∗
j

xi
j + z ≥

∑

j∈S+

wj + z = 1.

Thus i is the desired column of A.
It follows by Corollary 1 that Algorithm 1 finds a feasible solution λ′ ∈ R

|N |
≥0

to the covering LP (6), and a set Q′
I ⊆ QI of vectors (returned by F), such that

λ′
i > 0 only for i ∈ N ′, where N ′ is the index set returned by oracle O′ and

|N ′| ≤ s�ε−2 ln s� also Λ :=
∑

i∈N ′ λ′
i ≤ (1 + 4ε). Scaling λ′

i by Λ, we obtain a
set of multipliers {λi = λ′

i/Λ : i ∈ N ′}, such that
∑

i∈N ′ λi = 1 and
∑

i∈N ′
λix

i ≥ α

1 + 4ε
x∗. (7)

We may assume xi
j = 0 for all j /∈ S+ whenever λi > 0; otherwise simply replace

xi by a vector in which all components not in S+ are set to zero, by using packing
property this is possible. ��

2.3 From Dominating Convex Combination to Exact Convex
Decomposition

We will show how to turn a dominating convex combination into an exact decom-
position. The construction is general and uses only the packing property. Such
a construction seems to have been observed in [15], but was not made explicit.
Kraft, Fadaei, and Bichler [14] describe an alternative construction. Their con-
struction may increase the size of the convex decomposition (= number of non-
zero λi) by a multiplicative factor s and an additive factor s2. In contrast, our
construction increases the size only by an additive factor s.

Theorem 4. Let x∗ ∈ Q be dominated by a convex combination
∑

i∈N λix
i of

integral points in QI , i.e., ∑

i∈N
λix

i ≥ x∗. (8)
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Algorithm 2. Changing a dominating convex decomposition into an exact
decomposition
Require: A packing convex set Q and point x∗ ∈ Q and a convex combination∑

i∈N λix
i of integral points in QI dominating x∗.

Ensure: A convex decomposition x∗ =
∑

i∈N ′ λix
i with xi ∈ QI .

1: while there is an i ∈ N and a j such that λix
i
j > 0 and

∑
h∈N λhxh − λi1j ≥ x∗

do
2: replace xi by xi − 1j .
3: end while
4: while Δj :=

∑
i∈N λix

i − x∗
j > 0 for some j do

5: {for all i ∈ N and all j: if λix
i
j > 0 then

∑
h∈N λhxh − λi1j < x∗}

6: Let j be such that Δj > 0 and let i be such that λix
i
j > 0. Let B = {j ∈

S+ : xi
j �= 0andΔj > 0} and let b = |B|. Renumber the coordinates such that

B = {1, . . . , b} and Δ1/xi
1 ≤ . . . ≤ Δb/xi

b.
7: For � ∈ {0, . . . , b} define a vector y� by y�

j = xi
j for j ≤ � and y�

j = 0 for j > �.
8: Change the left-hand side of (8) as follows: replace λi by λi−Δb/xi

b; for 1 ≤ � < b,
increase the coefficient of y� by Δ�+1/xi

�+1 − Δ�/xi
�; and increase the coefficient

of y0 by Δ1/xi
1.

9: end while

Then Algorithm 2 achieves equality in (8). It increases the size of the convex
combination by at most s, where s is the number of positive components of x∗.

Proof. Let 1j be the j-th unit vector. As long as there is an i ∈ N and a j
such that λix

i
j > 0 and replacing xi by xi −1j maintains feasibility, i.e., satisfies

constraint (8), we perform this replacement. Note that xi is an integer vector in
QI , therefore xi − 1j remains positive vector and with using packing property,
it is also in QI . We may therefore assume that the set of vectors indexed by N
satisfy a minimality condition which is for all i ∈ N and j ∈ S+ with λix

i
j > 0

∑

h∈N
λhxh

j − λi1j < x∗
j (9)

We will establish (9) as an invariant of the second while-loop.

For j ∈ S+, let Δj =
∑

i∈N λix
i
j − x∗

j . Then Δj ≥ 0 and, by (9), for every
j ∈ S+ and i ∈ N , with λi 	= 0 either xi

j = 0 or Δj < λi ≤ λix
i
j . If Δj = 0 for

all j ∈ S+, we are done. Otherwise, choose j and i ∈ N such that Δj > 0 and
xi

j > 0. Let B = {j ∈ S+ : xi
j 	= 0 and Δj > 0} be the indices in the support

of xi for which Δj is non-zero. We will change the left-hand side of (8) such
that equality holds for all indices in B. The change will not destroy an already
existing equality for an index outside B and hence the number of indices for
which equality holds increases by |B|.

Let b = |B|. By renumbering the coordinates, we may assume B = {1, . . . , b}
and Δ1/xi

1 ≤ . . . ≤ Δb/xi
b. For j ∈ [b], we clearly have

λi − Δj

xi
j

= λi − Δb

xi
b

+
Δb

xi
b

− Δb−1

xi
b−1

+ · · · +
Δj+1

xi
j+1

− Δj

xi
j

.
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Multiplying by xi
j and adding zero a few times, we obtain

λix
i
j − Δj =

(

λi − Δb

xi
b

)

xi
j +

b−1∑

�=j

(
Δ�+1

xi
�+1

− Δ�

xi
�

)

xi
j +

j−1∑

�=1

(
Δ�+1

xi
�+1

− Δ�

xi
�

)

0 +
Δ1

xi
1

0.

For � ∈ {0, . . . , b − 1} define a vector y� by y�
j = xi

j for j ≤ � and y�
j = 0 for

j > �. Then xi
j = y�

j for � ≥ j and 0 = y�
j for � < j. Hence for all j ≤ b

λix
i
j − Δj =

(

λi − Δb

xi
b

)

xi
j +

b−1∑

�=1

(
Δ�+1

xi
�+1

− Δ�

xi
�

)

y�
j +

Δ1

xi
1

y0
j . (10)

Note that the coefficients on the right-hand side of (10) are non-negative and
sum up to λi. Also, by the packing property of Q, y� ∈ QI for 0 ≤ � < b. We
now change the left-hand side of (8) as follows: we replace λi by λi − Δb/xi

b;
for 1 ≤ � < b, we increase the coefficient of y� by Δ�+1/xi

�+1 − Δ�/xi
�; and we

increase the coefficient of y0 by Δ1/xi
1. As a result, we now have equality for all

indices in B. The Δj for j 	∈ B are not affected by this change.
We still need to establish that (9) holds for the vectors y�, 0 ≤ � < b, that

have a non-zero coefficient in the convex combination. Note first that y�
j > 0

implies j ∈ B. Also (8) holds with equality for all j ∈ B. Thus (9) holds.
Consider any iteration of the second while-loop. It adds up to b vectors to

the convex decomposition and decreases the number of nonzero Δ’s by b. Thus
the total number of vectors added to the convex decomposition is at most s. ��

2.4 Fast Convex Decomposition

Proof (of Theorem 1). Theorem 3 yields a convex combination of integer points
of QI dominating αx∗/1 + 4ε. Theorem 4 turns this dominating convex com-
bination into an exact combination. It adds up to |S| additional vectors to the
convex combination. The complexity bounds follow directly from the referenced
theorems. ��

3 Approximately Truthful-in-Expectation Fractional
Mechanisms

In this section we assume that we do not want to solve the LP-relaxation of SWM
exactly and there is an FPTAS for it. Then by using the FPTAS, we construct a
randomized fractional mechanism, Algorithm 3, and state the following theorem.
For the proof of the theorem and FPTAS algorithm see the full paper [7].

Theorem 5. Let ε0 ∈ (0, 1/2], ε = Θ( ε5
0

n4 ) and γ = (1 − ε)(1 − ε0). Given an
ε-approximation algorithm for Q, Algorithm 3 defines a fractional randomized
mechanism with the following conditions:

No positive transfer. (11)
Individually rational with probability1 − ε0. (12)
(1 − ε0)-truthful-in-expectation. (13)
γ-social efficiency, where γ depends on ε0, and ε. (14)
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In order to present Algorithm 3, we make some assumption and define some
notation. Let us assume that the problem is separable that means the variables
can be partitioned into disjoint groups, one for each player, such that the value
of an allocation for a player depends only on the variables in his group, i.e.,

vi(x) = vi(xi),

where xi is the set of variables associated with player i. Formally, any outcome
x ∈ Q ⊆ R

d can be written as x = (x1, . . . , xn) where xi ∈ R
di and d =

d1+ . . .+dn.3 We further assume that for each player i ∈ [n], there is an optimal
allocation ui ∈ Q that maximizes his value for every valuation vi, i.e.,

vi(ui) = max
z∈Q

vi(z), (15)

for every vi ∈ Vi, where Vi denote the all possible valuations of player i. In
combinatorial auction, the allocation ui allocates all the items to player i. Let

Li :=
∑

j �=i

vj(uj) and βi := εLi. (16)

Note that Li does not depend on the valuation of player i. Let A be an FPTAS
for LP relaxation of SWM. We use A(v, ε) to denote the outcome of A on input
v and ε. If ε is understood, we simply write A(v); A(v) is a fractional allocation
in Q. In the following, we will apply A to different valuations which we denote by
v = (vi, v−i), v̄ = (v̄i, v−i), and v′ = (0, v−i). Here vi is the reported valuation of
player i, v̄i is his true valuation and v′

i = 0. We denote the allocation returned
by A on input v (resp., v̄, v′) by x (resp., x̄, x′) and use the payment rule:

pi(v) := max{pVCG
i (v) − βi, 0} (17)

where
pVCG

i (v) := v−i(x′) − v−i(x).

v−i(x) =
∑

j �=i vj(x), x = A(v) and x′ = A(0, v−i). Observe the similarity in the
definition of pVCG

i (v) to the VCG payment rule. In both cases, the payment is
defined as the difference of the total value of two allocations to the players differ-
ent from i. The first allocation ignores the influence of player i (x′ = A(0, v−i))
and the second allocation takes it into account (x = A(v)). Define q0 = (1− ε0

n )n,
ε̄ = ε0/2, and qj = (1 − q0)/n for 1 ≤ j ≤ n. Let η = ε̄(1 − q0)2/n3, η′ = η/qj ,
and ε = ηε̄(1 − q0)/(8n). Let Ui(v) be the utility of player i obtained by the
mechanism which has an allocation function A and payment rule (17). Following
[5], we call player i active if the following two conditions hold:

Ui(v) +
ε̄qi

q0
vi(ui) ≥ qi

q0
η′Li, (18)

vi(ui) ≥ ηLi. (19)

3 In the combinatorial auction problem, variable xi comprises all variables xi,S and
the value of an allocation for player i depends only on the variables xi,S .
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Algorithm 3. The mechanism M of Theorem 5. The vectors ui are defined as
in (15) and the quantities Li are defined in (16). The definitions of q0, qj , active
and inactive player are given in the proof of Theorem 5.
Require: A valuation vector v, a packing convex set Q and an approximation scheme

A.
Ensure: An allocation x ∈ Q and a payment p ∈ R

n

1: Let ε be defined as in the below.
2: Choose an index j ∈ {0, 1, . . . , n}, where 0 is chosen with probability q0 and j ∈

{1, . . . , n} is chosen with probability qj = (1 − q0)/n.
3: if j = 0 then
4: Use ε-approximation algorithm A to compute an allocation x = (x1, . . . , xn) ∈ Q

and compute payments with payment rule (17). For all inactive i, change xi and
pi to zero.

5: else
6: For every 1 ≤ i ≤ n, set

⎧
⎨

⎩

xi = ui, pi = η′Li if i = j and i is active,
xi = ui, pi = 0 if i = j and i is inactive,
xi = 0, pi = 0 if i �= j.

7: end if
8: return (x, p)

Now, we briefly explain Algorithm 3. Let us choose a random number j ∈
{0, 1, . . . , n} with probability qj . If j = 0, we run ε-approximation algorithm A
on v to compute allocation x = (x1, . . . , xn). Then we change xi and pi to zero
for all inactive i. And if j 	= 0, we give optimal set uj to j-th player and charged
him with a price η′Lj if he is active and zero otherwise. For all other players, we
do not assign any item to them and do not charge them any price.

4 Approximately Truthful-in-Expectation Integral
Mechanisms

In this subsection we obtain a randomized mechanism M ′ which returns an
integral allocation. Let ε > 0 be arbitrary. First run Algorithm 3 to obtain x
and p(v). Then compute a convex decomposition of α

1+4εx, which is α
1+4εx =

∑
j∈N λx

j xj . Finally with probability λx
j (we used superscript to distinguish the

convex decompositions of x) return the allocation xj and charge i-th player, the
price pi(v)vi(x

j)
vi(x)

, if vi(x) > 0, and zero otherwise. In the following theorem we
show mechanism M ′ is indeed an approximately truthful-in-expectation integral
mechanism whose proof is appeared in the full paper [7].

Theorem 6. Suppose that ε0 ∈ (0, 1/2] be any constant, ε = Θ( ε5
0

n4 ) and γ =
α(1 − ε)(1 − ε0)/(1 + 4ε). Then we obtain a randomized integral mechanism
satisfying Conditions (11) to (14).
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