
Cost-Sharing Scheduling Games on Restricted
Unrelated Machines

Guy Avni1 and Tami Tamir2(B)

1 School of Computer Science and Engineering, The Hebrew University,
Jerusalem, Israel

2 School of Computer Science, The Interdisciplinary Center Herzliya, Herzliya, Israel
tami@idc.ac.il

Abstract. We study a very general cost-sharing scheduling game. An
instance consists of k jobs and m machines and an arbitrary weighed
bipartite graph denoting the job strategies. An edge connecting a job and
a machine specifies that the job may choose the machine; edge weights
correspond to processing times. Each machine has an activation cost that
needs to be covered by the job assigned to it. Jobs assigned to a partic-
ular machine share its cost proportionally to the load they generate.

Our game generalizes singleton cost-sharing games with weighted
players. We provide a complete analysis of the game with respect to equi-
librium existence, computation, convergence and quality – with respect
to the total cost. We study both unilateral and coordinated deviations.

We show that the main factor in determining the stability of
an instance and the quality of a stable assignment is the machines’
activation-cost. Games with unit-cost machines are potential games, and
every instance has an optimal solution which is also a pure Nash equilib-
rium (PNE). On the other hand, with arbitrary-cost machines, a PNE
is guaranteed to exist only for very limited instances, and the price of
stability is linear in the number of players. Also, the problem of deciding
whether a given game instance has a PNE is NP-complete.

In our analysis of coordinated deviations, we characterize instances
for which a strong equilibrium exists and can be calculated efficiently,
and show tight bounds for the SPoS and the SPoA.

1 Introduction

In job-scheduling applications, jobs are assigned to machines to be processed.
Many interesting combinatorial optimization problems arise in this setting, which
is a major discipline in operation research. A centralized scheduler should assign
the jobs in a way that achieves load balancing, an effective use of the system’s
resources, or a target quality of service [12]. Many modern systems provide ser-
vice to multiple strategic users, whose individual payoff is affected by the decisions
made by others. As a result, non-cooperative game theory has become an essen-
tial tool in the analysis of job-scheduling applications. We assume that each job
is controlled by a player which has strategic considerations and act to minimize
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his own cost, rather than to optimize any global objective. Practically, this means
that the jobs choose a machine instead of being assigned to one by a centralized
scheduler. In this paper we study the corresponding cost-sharing scheduling game
(CSSGs, for short) on restricted unrelated parallel machines.

An instance of CSSG is given by an arbitrary weighted bipartite graph
whose vertex set consists of job-vertices and machine-vertices. The scheduling
is restricted in a sense that not all machines are feasible to all jobs: each job is
connected by edges to the machines that are capable to process it. Edge weights
specify the processing times, reflecting the load generated by the job on the
machine. Scheduling on restricted unrelated machines is the most general model
of scheduling on parallel machines.

In the corresponding game, the strategy space of a job is the set of machines
that can process it. Each machine has an activation cost that needs to be covered
by the jobs assigned to it. Cost-sharing games, in which players’ strategies are
subsets of resources and the resource’s activation cost is covered by its users,
arise in many applications, and are well-studied. Our game is different from
previously studied games in several ways, each arising new challenges. Previous
work on cost-sharing scheduling games assume that either the activation-cost of
a resource is shared uniformly by its users, or that players are weighted. To the
best of our knowledge, this is the first time that this most-general scheduling
model is analyzed as a non-cooperative cost-sharing game.

1.1 Preliminaries

An instance of CSSG is given by an arbitrary weighted bipartite graph G whose
vertex set is J ∪M, where J is a set of k jobs, and M is a set of m machines. Not
all machines are feasible to all jobs: each i ∈ J , has a set Mi ⊆ M of machines
that may process it. For every job i and machine j ∈ Mi, it is known what the
processing time pj,i of i on machine j is. The feasible sets and the processing
times are given by the edges of the bipartite graph. Specifically, there is an edge
(i, j) whose weight is pj,i for every j ∈ Mi.

Job i is controlled by Player i whose strategy space is the set of machines in
Mi. Each machine j ∈ M has an activation cost, c(j), which is shared by the jobs
assigned to it, where the share is proportional to the load generated by the job.

A profile of a CSSG game is a vector P = 〈s1, s2, . . . , sk〉 ∈ (M1 ×M2 × . . .×
Mk) describing the machines selected by the players. For a machine j ∈ M, we
define the load on j in P , denoted Lj(P ), as the total processing times of the
jobs assigned to machine j in P , that is, Lj(P ) =

∑
{i|si=j} pj,i. When P is clear

from the context we omit it. The cost of Player i in the profile P is costi(P ) =
psi,i

Lsi
(P ) · c(si) and the cost of the profile P is cost(P ) =

∑
1≤i≤k costi(P ). Note

that cost(P ) also equals the total activation-cost of non-idle machines, that is,
cost(P ) =

∑
j∈∪isi

c(j).
Consider a game G. For a profile P , a job i ∈ J , and a strategy s′

i ∈ Mi, let
P [i ← s′

i] denote the profile obtained from P by replacing the strategy of Player
i by s′

i. That is, the profile resulting from a migration of job i from machine
si to machine s′

i. A profile P is a pure Nash equilibrium (NE) if no job i can
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benefit from unilaterally deviating from his strategy in P to another strategy;
i.e., for every player i and every strategy s′

i ∈ Mi it holds that costi(P [i ← s′
i]) ≥

costi(P ).
Best-Response Dynamics (BRD) is a local-search method where in each step

some player is chosen and plays its best improving deviation (if one exists), given
the strategies of the other players. Since BRD corresponds to actual dynamics
in real life applications, the question of BRD convergence and the quality of
possible BRD outcomes are major issues in our study.

It is well known that decentralized decision-making may lead to sub-optimal
solutions from the point of view of society as a whole. We denote by OPT the
cost of a social-optimal (SO) solution; i.e., OPT = minP cost(P ). We quantify
the inefficiency incurred due to self-interested behavior according to the price
of anarchy (PoA) [9,11] and price of stability (PoS) [2,14] measures. The PoA
is the worst-case inefficiency of a Nash equilibrium, while the PoS measures the
best-case inefficiency of a Nash equilibrium. Formally,

Definition 1. Let G be a family of games, and let G be a game in G. Let Υ(G)
be the set of Nash equilibria of the game G. Assume that Υ(G) 	= ∅.
– The price of anarchy of G is the ratio between the maximal cost of a PNE and

the social optimum of G. That is, PoA(G) = maxP∈Υ(G) cost(P )/OPT (G).
The price of anarchy of the family of games G is PoA(G) = supG∈GPoA(G).

– The price of stability of G is the ratio between the minimal cost of a PNE and
the social optimum of G. That is, PoS(G) = minP∈Υ(G) cost(P )/OPT (G).
The price of stability of the family of games G is PoS(G) = supG∈GPoS(G).

A firmer notion of stability requires that a profile is stable against coordinated
deviations. A set of players Γ ⊆ J forms a coalition if there exists a move where
each job i ∈ Γ strictly reduces its cost. A profile P is a Strong Equilibrium (SE)
if there is no coalition Γ ⊆ J that has a beneficial move from P [3]. The strong
price of anarchy (SPoA) and the strong price of stability (SPoS) introduced in
[1] are defined similarly, where Υ(G) refers to the set of strong equilibria.

In our study of CSSGs, we distinguish between unit-cost instances, in which
all machines have the same activation cost, say c(j) = 1 for all j ∈ M, and
the general case, where c(j) is arbitrary. We say that an instance has machine-
independent processing-times if for every job i there is pi > 0 such that pj,i = pi

for all j ∈ Mi.

1.2 Related Work and Our Results

Game-theoretic analysis became an important tool for analyzing huge systems
that are controlled by users with strategic consideration. In particular, systems
in which a set of resources is shared by selfish users.

Congestion games [13] consist of a set of resources and a set of players who
need to use these resources. Players’ strategies are subsets of resources. Each
resource has a latency function which, given the load generated by the players
on the resource, returns the cost of the resource. We refer to the setting in which
the latency functions are increasing as congestion games (the more congested
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the resource, the higher the waiting time), and we focus on cost-sharing games
in which each resource has an activation cost that is shared by the players using
it according to some sharing mechanism. For example, in network formation
games, players have reachability objectives and strategies are subsets of edges,
each inducing a simple path from the source to the target [2]. Players that use
an edge uniformly share its cost. Such games always have a PNE and the PoS
is logarithmic in the number of players.

Weighted cost-sharing games are cost-sharing games in which each player
i has a weight wi ∈ IN, and his contribution to the load of the resources he
uses as well as his payments are multiplied by wi. In [2] the authors study the
counterpart of network formation games in the weighted cost-sharing setting.
They show that every two-player game admits a PNE and that the PoS is an
order of the number of players. Later, [5] closed the problem of PNE existence
in these games by showing an example of a three-player game with no PNE.

In a more general setting, players’ strategies are multisets of resources. Thus,
a player may need multiple uses of the same resource and his cost for using the
resource depends on the number of times he uses the resource [4]. Such multiset
cost-sharing games are less stable than classical cost-sharing games. Even very
simple instances may not have a PNE and an equilibrium may be extremely
inefficient (the PoS may equal the number of players) [4].

A lot of attention has been given to scheduling congestion games (for a survey,
see [16]), which can be thought of as a special case of congestion games in
which the players’ strategies are singletons. Most previous work assumes that
the cost of a player is simply the load on the machine, and is thus independent
of the job’s length. Scheduling congestion games that do take the length into an
account, were defined and studied in [10] (there, defined and studied as weighted
congestion games with separable preferences) and [17].

The SPoA and SPoS measures where introduced by [1], which study a similar
game to ours only with congestion effects rather than cost-sharing, and with a
different definition of the social optimum; namely the cost of the highest paying
player (which is the makespan in their setting). The SPoA and SPoS where
studied in [6] for network formation games in the cost-sharing setting.

In this work we complete the picture and study scheduling cost-sharing
games; i.e., when jobs have an incentive to be assigned to a heavily loaded
machine. CSSGs can be viewed as a generalization of classical cost-sharing games
with weighted players [2]. The latter corresponds to the special case in which
all the machines are identical; i.e., all machines are feasible to all jobs and the
processing time of a job on a machine is independent of the machine.

The paper [15] studies the complexity of equilibria in a wide range of cost
sharing games. Their results on singleton cost sharing games correspond to our
model with unit-length jobs (and therefore also fair cost-sharing).

In this paper we provide a complete analysis of the game with respect to
equilibrium existence, computation, convergence and quality. We study both
unilateral and coordinated deviations, distinguishing between instance having
unit or arbitrary machine-activation costs. Our results are detailed in Table 1.

Due to space constraints, some proofs are omitted.
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Table 1. Summary of our results. (†) Deciding whether a PNE exists is NP-complete.
(‡) Adopted to our model from [2]. (§) Extension of [15].

Activation Processing Pure Nash equilibrium Strong equilibrium

costs times

∃ PoA PoS ∃ SPoA SPoS

Unit arbitrary yes min{m, k} 1 no min{m, k
2
+ 1

2
} min{m

2
, k
4
+ 1

2
}

machine-indp. yes min{m, k} 1 yes min{m
2
, k
4
+ 1

2
} min{m

2
, k
4
+ 1

2
}

Arbitrary arbitrary no† k k no k k

machine-indp. yes k‡ k yes§ k k

2 Instances with Unit-Cost Machines

In this section we study game instances in which all machines have the same
activation cost, say c(j) = 1 for all j ∈ M. We suggest a non-standard potential
function to show that an CSSG with unit costs is a potential game. Hence, a
PNE exists. We also provide tight bounds for the PoA and PoS. Let P be a
profile of an CSSG with unit costs. Recall that with unit-cost machines, cost(P )
gives the number of active machines in P , that is, cost(P ) = |{j ∈ M|Lj > 0}|.
Theorem 1. A CSSG with unit-cost machines is a potential game.

Proof. Let G be an CSSG with unit-cost machines. Let P be a profile of G.
Consider the function

Φ(P ) = (cost(P ),Π{j∈M|Lj>0}Lj),

that maps a profile to a 2-dim vector. The first entry in the vector specifies
the number of active machines in P ; The second entry is the product of these
machines’ loads.

We show that Φ is a potential function for the game. Specifically, we show
that every migration of a job in best response dynamics reduces the lexicographic
order of the potential. Consider a profile P and assume, w.l.o.g, that Player 1
migrates from machine u to machine w, and the resulting profile is P ′. Denote by
Lu, L′

u, Lw, and L′
w the loads on machines u and w before and after the deviation

of Player 1, respectively, that is, Lu =
∑

{i|si=u} pu,i and L′
u = Lu − pu,1,

Lw =
∑

{i|si=w} pw,i and L′
w = Lw + pw,1.

Clearly, the migration is be beneficial only if Lw > 0. Thus, cost(P ′) ≤
cost(P ). If L′

u = 0, then cost(P ′) = cost(P ) − 1 and Φ(P ) � Φ(P ′). Otherwise,
cost(P ′) = cost(P ). We show that the second entry in the potential vector
strictly decreases by showing that Φ(P )2/Φ(P ′)2 > 1.

Since the loads on machines other than u,w do not change, we have

Φ(P )2
Φ(P ′)2

=
Lu · Lw

L′
u · L′

w

.
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Note that the above fraction is well-defined as L′
w > pw,1 > 0 and L′

u > 0
since we analyze the case cost(P ′) = cost(P ).

Multiply both numerator and denominator by pu,1 and pw,1 and rearrange
to get

Φ(P )2
Φ(P ′)2

=
Lu

pu,1
· pw,1

L′
w

· Lw

pw,1
· pu,1

L′
u

.

Note that
Lu

pu,1
=

1
cost1(P )

and
pw,1

L′
w

= cost1(P ′). (1)

Also,

1
cost1(P )

=
Lu

pu,1
=

L′
u

pu,1
+ 1 and

1
cost1(P ′)

=
L′

w

pw,1
=

Lw

pw,1
+ 1.

Thus,

pu,1

L′
u

=
cost1(P )

1 − cost1(P )
and

Lw

pw,1
=

1 − cost1(P ′)
cost1(P ′)

. (2)

Combining (1) and (2), we have

Φ(P )2
Φ(P ′)2

=
cost1(P ′)
cost1(P )

· cost1(P )
1 − cost1(P )

· 1 − cost1(P ′)
cost1(P ′)

=
1 − cost1(P ′)
1 − cost1(P )

.

Since the migration is beneficial, cost1(P ) > cost1(P ′). Since both costs are
positive and strictly lower than 1, we conclude that Φ(P )2/Φ(P ′)2 > 1. Thus,
Φ(P ) � Φ(P ′), as required. �

We turn to study the equilibrium inefficiency. Recall that our measurement
for a profile P is the total players’ cost, which is equal to the number of active
machines.

Theorem 2. Every CSSG instance with unit-cost machines has PoS = 1. If
k < m, then PoA = k. If m ≤ k < 2m − 1, then PoA = m − 1. If k ≥ 2m − 1,
then PoA = m.

Proof. Consider a BRD sequence that starts from the social optimum profile
(SO). By Theorem 1, the sequence reaches a PNE. Note that the maximal cost
of a player in the SO is 1. Therefore, during the BRD process, when a player
deviates, he will never activate a new machine (at cost 1). It follows that the
number of active machines in the resulting PNE is at most the social optimum.
Thus, PoS = 1.

We turn to analyze the PoA. Assume first that k < m. We describe a family
of game instances for which PoA = k. Let M = {0, 1, . . . , k, k + 1, . . . , m − 1}.
For 1 ≤ i ≤ k, the capable machines for Player i are {0, i}. Thus, machines
k +1, . . . , m−1 are dummy machines and not capable for any player. The social
optimum is 1 and it is attained when all players are assigned to machine 0.
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The worst PNE is when for all 1 ≤ i ≤ k, Player i is assigned to machine i. This
is indeed a PNE since no player can reduce his payment by deviating to machine
0 - as this machine is not used by any player in this profile and the machine
costs are equal. Thus, PoA = k

1 = k. Clearly, this bound is tight as PoA ≤ k
trivially holds.

The analysis for m ≤ k < 2m − 1 is omitted.
Assume k ≥ 2m − 1. We show a family of instances in which the SO is 1 and

the worst PNE uses m machines, and thus PoA = m. This is clearly a tight bound
as the SO is at least 1 and any schedule uses at most m machines. We continue
to describe the family. The only capable machines for Player 1 is machine 0.
For i = 2, 4, . . . , 2m − 2, Players i and i + 1 have Mi = Mi+1 = {0, i

2}. For
2m − 1 < i ≤ k, we have Mi = {0,m − 1}. The processing times of the players
on all the machines is equal. The SO is clearly 1 and it is achieved when all
players choose machine 0. We claim that the profile in which all players (except
for Player 1) choose their “second” machine is a PNE. Indeed, note that in this
profile there are at least two players using machines 1, . . . , m − 1 and the share
of the machines’ cost is divided equally. Since only Player 1 uses machine 0, a
player cannot reduce his payment by deviating to that machine. �

3 Instances with Arbitrary Cost Machines

In this section we extend the model and consider instances with arbitrary cost
machines. As we show, a PNE may not exist even in very small instances. More-
over, it is NP-hard to decide whether a given instance has a PNE. On the other
hand, a PNE is guaranteed to exist and can be calculated efficiently for instances
with machine-independent processing times.

Theorem 3. A PNE is guaranteed to exist in every CSSG in which m ≤ 2 or
k ≤ 3. There is an CSSG with m = 3 and k = 4 with no PNE.

Proof. The PNE-existence proof for m ≤ 2 or k ≤ 3 is omitted. We show that
there exists an instance with m = 3 machines and k = 4 players that has
no PNE. Consider an instance, InoNE , with three machines having activation
costs 30, 12 and 14, and four jobs having processing times as given in the table.
Note that Job d must be assigned to m1 and each of the other jobs has two
feasible machines. Figure 1 presents a loop of beneficial moves that covers six
out of the eight possible configurations. The payment vector is given below each
configuration. The job that has a beneficial move is darker and it deviates to the
next configuration (the leftmost configuration follows the rightmost one). It is
easy to see that the two other configurations (in which no machine accommodates
two jobs from a, b, c) are not stable either. �

The next natural question is whether it is possible to decide efficiently
whether a given instance has a PNE. We show that this is an NP-complete
problem.

Theorem 4. The question whether a game instance with arbitrary-cost
machines has a PNE is NP-complete.
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m1 m2 m3

a 2 −− 13

b 1 1 −
c −− 2 1

d 2 −− −−
m1    m2   m3 

d 

a 

b 

c 

m1   m2    m3 

d 

a b 

c 

m1    m2    m3 

d 
a 

  m1   m2    m3 

d 

m1   m2   m3 

d 

b 

m1   m2   m3 

b 

c 
a 

b 
a 

d 

a 

b 

(12, 6, 12, 12) (15, 4, 8, 15)   (14, 4, 8, 30) (13, 12, 1, 30) (13, 10, 1, 20) (12, 6, 14, 12) 

c c 

c 

Fig. 1. For c(m1) = 30, c(m2) = 12, and c(m3) = 14, the instance has no PNE.

Proof (Sketch). Checking stability of a given profile can be done efficiently, there-
fore the problem is clearly in NP. We prove hardness by showing a reduction from
the 3-dimensional matching problem (3DM), which is known to be NP-hard [7].
The input to the 3DM problem is a set of triplets T ⊆ X1 × X2 × X3, where
|X1| = |X2| = |X3| = n. The number of triplets is |T | ≥ n. The desired output
is a 3-dim matching T ′ ⊆ T such that |T ′| = n and any element in X1 ∪X2 ∪X3

appears exactly once in T ′.
Given an instance of 3DM, we construct a game G with |T | + 9n machines

and 12n jobs. The first |T | machines, denoted triplet-machines, correspond to the
3DM triplets. The additional 9n machines form 3n copies of machines m1,m2,m3

introduced in the instance InoNE in the proof of Theorem 3. Each copy is asso-
ciated with one element of X1 ∪ X2 ∪ X3.

For each element in X1∪X2∪X3, there are four jobs. The first job corresponds
to the element itself, and three additional jobs are copies of jobs a, b and c from
InoNE .

The main idea is that a 3DM corresponds to a schedule in which the element-
jobs are assigned in triplets to triplet-machines – each paying one third of a
triplet-machine cost. On the other hand, if a 3DM does not exist, then every
unmatched element pays at least half of a triplet-machine cost, and prefers
migrating to a corresponding copy of m1, generating an instance of InoNE as
a sub-instance that has no stable-assignment. Thus, a 3DM matching exists if
and only if G has a PNE schedule. �
Remark 1. An interesting open question along the lines of [8,17] is to suggest a
different cost-sharing mechanism, whose application induces a potential game. It
is not possible to adopt the approach suggested in [8] for weighted cost-sharing
games, since in our game the Shapley values of the players are not well defined.

3.1 Machine-Independent Processing Times

We show that when the processing times are machine independent, a PNE is
guaranteed to exist, can be found efficiently, and BRD converges from any ini-
tial configuration. The BRD convergence proof builds on the proof for weighted
symmetric cost-sharing games [2]. Our game is different since in the setting of
[2], all machines are feasible to all jobs, that is, for all i, we have Mi = M. An
efficient algorithm for calculating a Strong NE for machine-independent process-
ing times can be derived by generalizing the algorithm in [15] for fair cost sharing
(unweighted jobs).
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Theorem 5. If the processing times are independent of the machines, then a
PNE can be found efficiently and BRD converges to a PNE.

Remark 2. A different restricted class of instances assumes job-independent
processing times. That is, for every machine j there exists a pj > 0 be such
that for all jobs for which j ∈ Mi, we have pj,i = pj . Since the cost of a machine
is shared evenly by the jobs assigned to it, a PNE can be computed in polynomial
time by the general algorithm for finding a PNE in fair cost-sharing games with
singleton strategies [15]. Moreover, Φ(P ) =

∑
j∈M c(j) · H(Lj(P )/pj), where

H(0) = 0, and H(k) = 1 + 1/2 + . . . + 1/k, is a potential function whose value
reduces with every improving step of a player.

3.2 Equilibrium Inefficiency

We show that stability might lead to an extremely inefficient outcome with
respect to the total players’ cost. Similar to classic congestion games, the PoA
equals the number of players. On the other hand, the PoS might also be linear
in the number of players (compared to O(log k) in classical cost-sharing games).
Specifically,

Theorem 6. The PoA of CSSGs equals the number of players.

Theorem 7. CSSGs with m > 3 machines and k < m players have PoS = k.

Proof. Since PoS ≤ PoA, Theorem 6 implies that PoS ≤ k. For the lower bound,
consider the following game in which the unique PNE has cost k − ε′ while the
social optimum has cost 1. The jobs have lengths 1, ε, ε2, . . . , εk−1, independent
of the machine they are assigned to. Assume that a single machine, having cost 1
is feasible to all jobs. There are k − 1 additional machines each having cost 1−ε

1+ε .
Each of these machines is feasible to a single job among the k − 1 longer jobs.
The unique PNE is when each machine accommodates a single job. If two or
more jobs are assigned together to the first machine, then the longer will escape
to its dedicated machine. The PNE’s cost is k − ε′, thus PoA = PoS = k, and
we are done. �

For some special cases of CSSGs the PoS can be bounded as follows.

Theorem 8. CSSGs with m ∈ {2, 3} machines have PoS = m. CSSGs with k
players and m < k machines have PoS = Θ(k).

4 Coordinated Deviations

Recall that a strong equilibrium (SE) is a configuration in which no coalition
of players can deviate in a way that benefits all its members. We show that
for machine-independent processing times, a SE is guaranteed to exist, and we
present a poly-time algorithm to find one. We also prove that SPoS = SPoA = m

2 .
On the other hand, we show that a SE may not exist when jobs have arbitrary
processing times. In fact, even with unit-cost machines and if just a single job
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is allowed to have two variable processing times, there exists an instance, with
m = 3 machines and k = 5 jobs that has no SE. The inefficiency of the general
case decreases; we show that SPoS = m

2 and SPoA = m.
We start with the simpler class of machine-independent processing times.

Recall that for every job i there is pi > 0 such that pj,i = pi for all j ∈ Mi. We
show that any sequence of beneficial coordinated deviations converges to a SE.
Moreover, a simple greedy algorithm for finding a SE exist (omitted from this
extended abstract) – even for instances with arbitrary cost machines.

Theorem 9. For any instance with unit-cost machines and machine-
independent processing times, any sequence of beneficial coordinated deviations
converges to a SE.

We turn to study the inefficiency of a strong equilibrium. We show that
even with machine-independent processing times, an optimal solution may be
significantly better than any stable one. Thus, in systems where coordinated
deviations are allowed, we may end-up with an extremely poor outcome.

Theorem 10. CSSGs with unit-costs machines and machine-independent
processing times have SPoS = SPoA = min{m

2 , k
4 + 1

2}.
Proof. We first show the bounds w.r.t. the number of machines. We show that
SPoS ≥ m/2 and SPoA ≤ m/2. The statement will follow since SPoS ≤ SPoA.
We start with the upper bound and show SPoA ≤ m/2. For any profile P it
clearly holds that cost(P ) ≤ m. If the SO assigns the jobs on two or more
machines, then SPoA ≤ m/2 as required. Assume that the SO assigns all the
jobs on a single machine m0. We show that only one machine is active in any SE,
implying that in this case, SPoA = 1. Consider any profile P with more than a
single active machine. We claim that all the jobs assigned on M \ {m0} form a
coalition whose beneficial move is to join m0. By the assumption, this is a valid
migration. Let Si be the set of jobs assigned in P to an active machine Mi. In
P , their total cost is 1. After the deviation, their total cost is strictly less than 1
and since the relative cost of every job in Si remains the same, all the coalition
members benefit from the deviation. We conclude that if SO = 1 then any SE
has cost 1, and if SO ≥ 2 then the m/2-ratio clearly holds, thus, SPoA ≤ m/2.

For the lower bound, we describe an instance with unit-cost machines achiev-
ing SPoS = m/2. An example for m = 5 is given in Fig. 2. Given m, there
are n = 2(m − 1) jobs consisting of m − 1 pairs, a1, b1, . . . , am−1, bm−1. Let
M = {m0, . . . , mm−1}. For 1 ≤ k ≤ m − 1, the processing time of jobs ak and
bk is 2k. Job a1 is restricted to machine m0, Job b1 is restricted to machine m1.
For 2 ≤ k ≤ m − 1, Job ak is restricted to m0 or mk, and Job bk is restricted to
m1 or mk.

The SO assigns all the jobs {ak} on machine m0, and all the jobs {bk} on
machine m1. This optimal profile is not an SE. Note that since 2k >

∑k−1
i=1 2i,

each of am−1 and bm−1 has cost more than 1/2. This pair would benefit from
migrating to machine mm−1, where each will have cost exactly 1/2. After this
deviation, by the same argument, each of am−2 and bm−2 has cost more than 1/2.
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m0 m1 m2    m3 m4

a1

a2

a3

a4

b1

b2

b3

b4

m0 m1 m2       m3 m4

a1
a2

a3

a4

b1

b2

b3

b4

Fig. 2. The social optimum (left) and
the only SE (right) of a unit-cost
instance achieving SPoS = m/2.

m0    m1    m2 

0 

m0    m1    m2 

a1 

a2 

b1 

b2 

a1 a2 

m0    m1    m2 

b1 b2 j0 

Fig. 3. The social optimum (left) and the
worst SE (right) of a unit-cost instance
achieving SPoA = m.

This pair would benefit from migrating to machine mm−2. Next, in turn, every
pair will deviate to a new machine, resulting in the only SE of this instance in
which Job a1 is alone on m0, Job b1 is alone on m1, and for every 2 ≤ k ≤ m−1,
the pair of jobs ak and bk is on mk. There are m active machines in this SE,
while only two machines are active in the SO.

We proceed to prove the bounds w.r.t. the number of players. First, we show
that SPoA ≤ k

4 + 1
2 . We start with the following claim. Assume the SO uses

x machines, where x > 1 as otherwise the analysis above shows SPoA= 1. We
claim that in any SE, the number of machines that accommodate a single job
is at most x. Otherwise, there is a SE P in which at least x + 1 machines
accommodate a single job each. Then, there are (at least) two jobs who share
the same machine in the SO and use a machine by themselves in P . These two
jobs can deviate to their machine in the SO and decrease their cost from 1 in P
to less than 1, contradicting the fact that P is a SE. A corollary of the claim is
that any SE costs at most x+ k−x

2 . Thus, SPoA = x+(k−x)/2
x = 1+ k

2x − 1
2 , which

gets the maximal value of k
4 + 1

2 when x = 2. The lower bound is identical to
the one described above: the SO costs 2 and the only SE costs k−2

2 + 2 = k
2 + 1

2 ,
thus SPoS ≥ k

4 + 1
2 . �

While a SE is guaranteed to exist for any instance with machine-independent
processing times, we show that even the slightest relaxation in this condition may
result in an instance with no SE. Specifically, in Fig. 4, we present an instance
with unit-cost machines that has no SE. Note that all jobs except for a single
one have machine-independent processing times.

Theorem 11. There is an instance with m = 3 unit-cost machines and k = 5
jobs that has no SE.

For instances with arbitrary processing times, a SE is not guaranteed to exist.
For instances having a SE, the bounds on the equilibrium inefficiency depend on
the processing environment: For instances with arbitrary activation costs, the
analysis in Theorem 7 is valid also for coordinated deviations. Thus, SPoA =
SPoS = k. For instances with unit-cost machines, we prove the following.
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m1 m2 m3

a 2 −− 2

b 6 4 −−
c −− 4 4

d 2 −− −−
e −− −− 3

m1  m2   m3 m1  m2  m3 m1  m2  m3 m1  m2   m3 m1  m2  m3 

(1/2, 1/2, 1/2) (2/5, 1/2, 1/2)   (2/9, 1, 4/9) (2/9, 3/4, 4/9) (1/5, 3/5,4/7) 

d 

a 
b e 

c 

d 

a 

b e 

c 

d 

a 

b e 

c 

d 

a 
b 

e 

c 

d 

a 

b 

e 

c 

Fig. 4. An instance that has no SE. The table on the left gives the processing times.
The payment vector of jobs a, b and c is given below each configuration. The coalition
that has a beneficial move is darker and its members deviate to the next configuration.
The leftmost configuration follows the rightmost one, creating a loop. It is easy to see
that the three other configurations, in which either b or c are alone on m2, are not
stable either.

Theorem 12. CSSGs with unit-cost machines and arbitrary processing times
have SPoS = min{m

2 , k
4 + 1

2} and SPoA = min{m, k
2 + 1

2}.
Proof. We show the SPoA lower bound w.r.t the number of machines. The
rest of the proof is omitted. We describe an instance with unit-cost machines
achieving SPoA = m. An example for m = 3 is given in Fig. 3. Given m, let
M = {m0, ......mm−1}. There are n = 2m − 1 jobs consisting on m − 1 pairs,
a1, b1, . . . , am−1, bm−1, and a job j0, which is restricted to go to machine m0.
The processing time of j0 on m0 is ε < 1. For 1 ≤ k ≤ m − 1, jobs ak and bk are
restricted to go to m0 or mk. The processing time of either ak or bk on mk is 1.
The processing times of the 2(m − 1) jobs {ak, bk} on m0 are arbitrary distinct
powers of 2.

The SO assigns all the jobs on m0. It is easy to verify that the SO is a SE.
Only one job (whose processing time is the highest power of 2) pays more than
half. This job will not benefit from migrating by itself, and no job would join it
and pay at least half after the deviation. However, the SO is not the only SE.
Consider the profile P ′ in which j0 is on m0 and for 1 ≤ k ≤ m − 1, jobs ak and
bk are on mk. The cost of P ′ is m, where j0 has cost 1 and each of the other jobs
has cost 1/2. We claim that P ′ is a SE. The only possible deviation is into m0.
However, since the processing times on m0 are distinct powers of 2, some job will
cause more than half of the load on m0, resulting in cost more than 1/2. Since
all the coalition members have cost 1/2 in P ′, the deviation is not beneficial for
this job. We conclude that a SE whose cost is m exists and SPoA ≥ m. �
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