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Preface

This volume contains the proceedings of the 8th International Symposium on Algo-
rithmic Game Theory (SAGT), held in Saarbrücken, Germany, in September 2015.

The program of SAGT 2015 consisted of three invited lectures and 29 presentations
of refereed submissions. After a careful reviewing process, the Program Committee
selected 23 out of 63 submissions for regular presentation and invited 6 submissions to
be presented in the form of a brief announcement at the conference. The committee
feels that these brief announcements added inspiration and novelty to the program.

The accepted submissions were invited to these proceedings. They cover various
important aspects of algorithmic game theory such as matching under preferences, cost
sharing, mechanism design, social choice, auctions, networking, routing and fairness,
as well as equilibrium computation.

We would like to thank all authors who submitted their research work and all
Program Committee members and external reviewers for their effort in selecting the
program for SAGT 2015.

July 2015 Martin Hoefer
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Stable Matchings with Ties, Master Preference
Lists, and Matroid Constraints

Naoyuki Kamiyama1,2(B)

1 Institute of Mathematics for Industry, Kyushu University, Fukuoka, Japan
kamiyama@imi.kyushu-u.ac.jp

2 JST, PRESTO, Saitama, Japan

Abstract. In this paper, we consider a matroid generalization of the
hospitals/residents problem with ties and master lists. In this model, the
capacity constraints for hospitals are generalized to matroid constraints.
By generalizing the algorithms of O’Malley for the hospitals/residents
problem with ties and master lists, we give polynomial-time algorithms
for deciding whether there exist a super-stable matching and a strongly
stable matching in our model, and finding such matchings if they exist.

1 Introduction

The stable matching problem introduced by Gale and Shapley [1] is one of the
most popular mathematical models of a matching problem in which agents have
preferences. It is known [1] that if there exists no tie in preference lists, then
there always exists a stable matching and we can find one in polynomial time.
However, if there exist ties in preference lists, then the situation dramatically
changes. In the stable matching problem with ties, three stability concepts were
proposed by Irving [2]. The first one is called the weak stability. This stability
concept guarantees that there exists no unmatched pair each of whom prefers
the other to the current partner. It is known [2] that there always exists a weakly
stable matching and we can find one in polynomial time by slightly modifying the
algorithm of [1]. This algorithm can be generalized to the many-to-one setting.
The second one is called the strong stability. This stability concept guarantees
that there exists no unmatched pair such that (i) there exists an agent a in this
pair that prefers the other to the current partner, and (ii) the agent in this pair
other than a prefers a to the current partner, or is indifferent between a and the
current partner. The last one is called the super-stability. This stability concept
guarantees that there exists no unmatched pair each of whom prefers the other to
the current partner, or is indifferent between the other and the current partner.

One of the most notable differences between the last two concepts and the
stability concept in the stable matching problem without ties is that there may
exist no stable matching [2]. From the algorithmic viewpoint, it is important
to reveal whether we can check the existence of matchings satisfying such sta-
bility conditions in polynomial time. For the one-to-one setting (i.e., the stable
matching problem with ties), Irving [2] proposed polynomial-time algorithms
c© Springer-Verlag Berlin Heidelberg 2015
M. Hoefer (Ed.): SAGT 2015, LNCS 9347, pp. 3–14, 2015.
DOI: 10.1007/978-3-662-48433-3 1



4 N. Kamiyama

for finding a super-stable matching and a strongly stable matching (see also [3]).
For the many-to-one setting (i.e., the hospitals/residents problem with ties),
Irving, Manlove, and Scott [4] proposed a polynomial-time algorithm for finding
a super-stable matching, and Irving, Manlove, and Scott [5] a polynomial-time
algorithm for finding a strongly stable matching. It should be noted that Kavitha,
Mehlhorn, Michail, and Paluch [6] proposed a faster algorithm for this setting.

In this paper, we consider a matroid generalization of the hospitals/residents
problem with ties. In our model, the capacity constraints for hospitals are gener-
alized to matroid constraints. In contrast to the stable matching problem without
ties (and the weak stability) [7], to the best of our knowledge, it is open whether
we can extend the results about the super-stability and the strong stability to
the matroid setting. As a step toward the settlement of this question, we focus
on the situation in which we are given a master list and the preference list of each
hospital over residents is derived from this master list. For the stable matching
problem with ties and master lists, Irving, Manlove, and Scott [8] gave simple
polynomial-time algorithms for finding a super-stable matching and a strongly
stable matching. Furthermore, O’Malley [9] gave polynomial-time algorithms
for finding a super-stable matching and a strongly stable matching in the hospi-
tals/residents problem with ties and master lists. In this paper, by generalizing
the algorithms of [9], we give polynomial-time algorithms for finding a super-
stable matching and a strongly stable matching in a matroid generalization of
the hospitals/residents problem with ties and master lists, i.e., a partial positive
answer for the above question.

2 Preliminaries

For a set X and an element x, define X + x := X ∪ {x} and X − x := X \ {x}.
A pair M = (U, I) is called a matroid, if U is a finite set and I is a family of
subsets of U satisfying the following conditions. (I0) ∅ ∈ I. (I1) If I ∈ I and
J ⊆ I, then J ∈ I. (I2) If I, J ∈ I and |I| < |J |, then there exists an element u
in J \ I such that I + u ∈ I.

In this paper, we are given a simple (not necessarily complete) bipartite graph
G = (V,E) such that its vertex set V is partitioned into disjoint subsets R and
H, and an edge in E connects a vertex in R and a vertex in H. We call a vertex
in R (resp., H) a resident (resp., a hospital). For a vertex v in V and a subset F
of E, we denote by F (v) the set of edges in F incident to v. For a resident r in
R and a hospital h in H, if there exists an edge in E connecting r and h, then
we denote by (r, h) this edge. Furthermore, we are given a matroid N = (E,F)
such that {e} ∈ F for any edge e in E. The matroid N represents constraints
on assignment of residents to hospitals (it should be noted that in applications,
N might be a direct sum of different matroids for hospitals).

For a resident r in R, we are given a reflexive and transitive binary relation
�r on E(r) ∪ {∅} such that at least one of e �r f and f �r e holds for any
edges e, f in E(r), and e �r ∅ and ∅ ��r e for any edge e in E(r). For a resident
r in R, the binary relation �r represents the preference list of r. Namely, for a
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resident r in R and edges e, f in E(r), if e �r f holds, then r prefers e to f , or
is indifferent between e and f . For a resident r in R, we use the notation e �r f
(resp., e ∼r f), if e �r f and f ��r e (resp., e �r f and f �r e). Furthermore, we
are given a reflexive and transitive binary relation �H on R such that at least
one of r �H s and s �H r holds for any residents r, s in R. The binary relation
�H represents the master preference list of hospitals in H. We define �H and
∼H in the same way as �r and ∼r for a resident r in R.

A subset M of E is called a matching in G, if |M(r)| ≤ 1 for any resident
r in R, and M ∈ F . For a matching M in G and a resident r in R such that
M(r) �= ∅, we do not distinguish between M(r) and its element. For a matching
M in G and an edge e = (r, h) in E \ M , we say that r weakly (resp., strictly)
prefers e on M , if e �r M(r) (resp., e �r M(r)). For a matching M in G and
an edge e = (r, h) in E \ M , we say that H weakly (resp., strictly) prefers e on
M , if at least one of the following two conditions is satisfied. (P1) M + e ∈ F .
(P2) There exists an edge f = (s, p) in M such that M + e − f ∈ F and r �H s
(resp., r �H s).

A matching M in G is said to be super-stable, if there exists no edge (r, h)
in E \ M such that r and H weakly prefer (r, h) on M . A matching M in G is
said to be strongly stable, if there exists no edge (r, h) in E \ M such that r and
H weakly prefer (r, h) on M , and at least one of r and H strictly prefers (r, h)
on M . Our problem is to decide whether there exists a matching satisfying the
above conditions, and find such a matching if one exists.

Here we give a concrete setting of our abstract model. Assume that H is parti-
tioned into non-empty subsets H1,H2, . . . , Hk, and we are given positive integers
d1, d2, . . . , dk and ch for a hospital h in H. Then, define F as the family of subsets
F of E such that |F (h)| ≤ ch for any hospital h in H, and

∑
h∈Hi

|F (h)| ≤ di

for any i = 1, 2, . . . , k. It is not difficult to see that N = (E,F) is a matroid.
When we define N in this way, a subset M of E is a matching in G if and only
if |M(r)| ≤ 1 for any resident r in R, |M(h)| ≤ ch for any hospital h in H, and∑

h∈Hi
|M(h)| ≤ di for any i = 1, 2, . . . , k. These constraints are exactly the

capacity constraints in the student-project allocation problem [10].

Basics of Matroids. Let M = (U, I) be a matroid. A subset of U belonging to I
is called an independent set of M. A subset C of U is called a circuit of M, if C
is not an independent set of M, but any proper subset of C is an independent
set of M. Assume that we are given an independent set I of M and an element
u in U \ I such that I + u /∈ I. It is known [11, Proposition 1.1.6] that I + u
contains the unique circuit of M, and u belongs to this circuit. This circuit is
called the fundamental circuit of u, and denoted by CM(u, I). Define C−

M(u, I)
as CM(u, I) − u. It is known [11, p. 20, Exercise 5] that CM(u, I) is the set of
elements w in I + u such that I + u − w ∈ I. Thus, for a matching M in G and
an edge e in E \ M such that M + e /∈ F , the condition (P2) can be restated
as follows. There exists an edge f = (s, p) in C−

N(e,M) such that r �H s (resp.,
r �H s). A maximal independent set of M is called a base of M. The condition
(I2) implies that any base of M has the same size. For a subset X of U , we define
I|X := {I ⊆ X | I ∈ I}, and M|X := (X, I|X). It is known [11, p. 20] that for
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any subset X of U , M|X is a matroid. For a subset X of U , we define rM(X) as
the size of a base of M|X. It is not difficult to see that for any independent set
I of M, I is a base of M if and only if |I| = rM(U). For disjoint subsets X,J
of U , we define p(J ;X) := rM(J ∪ X) − rM(X). For a subset X of U , we define
I/X := {I ⊆ U \X | p(I;X) = |I|}, and M/X := (U \X, I/X). It is known [11,
Proposition 3.1.6] that for any subset X of U , M/X is a matroid.
Theorem 1 (See [11, p. 15, Exercise 14]). Assume that we are given a
matroid M and circuits C1, C2 of M such that C1 ∩ C2 �= ∅ and C1 \ C2 �= ∅.
Then, for any element u in C1 ∩ C2 and any element w in C1 \ C2, there exists
a circuit C of M such that w ∈ C and C is a subset of (C1 ∪ C2) − u.

The following lemma easily follows from Theorem 1.

Lemma 1. Assume that we are given a matroid M = (U, I) and independent
sets I, J of M such that I ⊆ J . Then, for any element u in U \ J , if I + u /∈ I,
then J + u /∈ I and CM(u, I) = CM(u, J).

Lemma 2. Let M = (U, I) be a matroid, and let C,C1, C2, . . . , Ck be circuits
of M. Assume that we are given distinct elements u1, u2, . . . , uk in U such that
ui ∈ C ∩ Ci and ui /∈ Cj for any i, j = 1, 2, . . . , k with i �= j, and there exists an
element w in U such that w ∈ C \ Ci for any i = 1, 2, . . . , k. Then, there exists
a circuit C ′ of M such that C ′ ⊆ (C ∪ C1 ∪ C2 ∪ · · · ∪ Ck) \ {u1, u2, . . . , uk}.
Proof. We consider the following procedure.
Step 1. Set t := 1 and K0 := C.
Step 2. If t ≤ k, then do the following steps. Otherwise, go to Step 3.

(2-a) If ut /∈ Kt−1, then set Kt := Kt−1 and go to Step (2-c).
(2-b) Find a circuit Kt of M such that w ∈ Kt and Kt ⊆ (Kt−1 ∪

Ct) − ut.
(2-c) Update t := t + 1, and go back to the beginning of Step 2.

Step 3. Output Kk and halt.

In Step (2-b), Theorem 1 implies that there exists a circuit Kt of M satisfying
the above properties. It is not difficult to see that Kk ⊆ C ∪ C1 ∪ C2 ∪ · · · ∪ Ck

and ui /∈ Kk for any i = 1, 2, . . . , k. This completes the proof. ��
Since the following lemma easily follows from known facts, we omit the proof.

Lemma 3. Let M = (U, I) be a matroid, and let X be a subset of U . (1) Let B
be an arbitrary base of M|X. For any subset I of U \X, I is an independent set
of M/X if and only if I ∪ B is an independent set of M. (2) For any base B1

of M|X and any base B2 of M/X, B1 ∪ B2 is a base of M. (3) For any subset
I of U such that I ∩ X is a base of M|X, if I \ X is not an independent set of
M/X, then I is not an independent set of M.

Let M1 = (U, I1) and M2 = (U, I2) be matroids on the same ground set.
A subset I of U is called a common independent set of M1 and M2, if I belongs
to I1 ∩ I2. It is known that we can find a maximum-size common independent
set of M1 and M2 in time bounded by a polynomial in |U | and EO, where EO is
the time required to decide whether X is an independent set of Mi for a subset
X of U and i = 1, 2. If we use the algorithm proposed by Cunningham [12], then
we can find a maximum-size common independent set in O(|U |2.5EO) time.
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3 Super-Stable Matchings

In this section, we consider the problem of deciding whether there exists a super-
stable matching in G, and finding such a matching if one exists. We first partition
R into non-empty disjoint subsets R1, R2, . . . , Rn such that (i) r ∼H s for any i =
1, 2, . . . , n and any residents r, s in Ri, and (ii) r �H s for any i, j = 1, 2, . . . , n
such that i < j and any residents r in Ri and s in Rj . For i, j = 1, 2, . . . , n such
that i ≤ j, we define Ri,j := Ri ∪ Ri+1 ∪ · · · ∪ Rj . Define Rn+1,n = ∅.

Our algorithm SuperM is described as follows.

Step 1. Set i := 1, M0 := ∅, and D0 := ∅.
Step 2. If i ≤ n, then do the following steps. Otherwise, go to Step 3.

(2-a) For a resident r in Ri, set Tr to be the set of edges e in E(r)\Di−1

such that e �r f for any edge f in E(r) \ Di−1.
(2-b) If there exists a resident r in Ri such that |Tr| > 1, then output

null and halt (i.e., there exists no super-stable matching in G).
(2-c) Set Ei := ∪r∈Ri

Tr. If Mi−1 ∪Ei /∈ F , then output null and halt.
(2-d) Set Mi := Mi−1 ∪ Ei.
(2-e) Set Li to be the set of edges (r, h) in E\Di−1 such that r ∈ Ri+1,n

and Mi + (r, h) /∈ F . Furthermore, set Di := Di−1 ∪ Li.
(2-f) Update i := i + 1, and go back to the beginning of Step 2.

Step 3. Output Mn and halt (i.e., Mn is a super-stable matching in G).

In the sequel, we prove the correctness of the algorithm SuperM.

Lemma 4. Assume that the algorithm SuperM halts when i = δ. Then, there
exists no super-stable matching N in G such that N ∩ Dδ−1 �= ∅.
Proof. An edge e in Dδ−1 is said to be bad, if there exists a super-stable matching
N in G such that e ∈ N . Namely, our goal is to prove that there exists no bad
edge in Dδ−1. We prove this lemma by contradiction. Assume that there exists a
bad edge in Dδ−1. Define Δ as the set of integers � in {1, 2, . . . , δ − 1} such that
there exists a bad edge in L�, and j as the minimum integer in Δ. Furthermore,
let e = (r, h) and N be a bad edge in Lj and a super-stable matching in G such
that e ∈ N , respectively. Since e ∈ Lj , Mj + e /∈ F . Define C := CN(e,Mj). If
C ⊆ N , then this contradicts the fact that N ∈ F . Thus, C \N �= ∅. In addition,
for any edge (s, p) in C \ N , since r ∈ Rj+1,n and s ∈ R1,j , we have s �H r.

We first consider the case where there exists an edge f = (s, p) in C \N such
that N(s) �s f . Since e ∈ N , e �= f . This implies that f ∈ Mj , i.e., f ∈ Ts.
Thus, the definition of the algorithm SuperM implies that j �= 1 and N(s) ∈ Lk

for an integer k in {1, 2, . . . , j−1}. Since Lk ⊆ Dδ−1 and N is super-stable, N(s)
is bad. This contradicts the minimality of j.

Next we consider the case where f �s N(s) for any edge f = (s, p) in C \ N .
If there exists an edge f in C \ N such that N + f ∈ F , then this contradicts
the fact that N is super-stable. Thus, we can assume that N + f /∈ F for any
edge f in C \ N . For an edge f in C \ N , we define Cf := CN(f,N). Since N is
super-stable, t �H s for any edge f = (s, p) in C \ N and any edge g = (t, q) in
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Cf − f . For any edge f = (s, p) in C \N , since s �H r, this implies that e /∈ Cf .
In addition, f ∈ C ∩ Cf for any edge f in C \ N . Thus, Lemma 2 implies that
there exists a circuit C ′ of N such that C ′ ⊆ (C ∪ C∗) \ (C \ N), where C∗ is
∪f∈C\NCf . Thus, since Cf − f is a subset of N for any edge f in C \ N , C ′ is a
subset of N . This contradicts the fact that N ∈ F , and completes the proof. ��
Lemma 5. Assume that the algorithm SuperM halts when i = δ (≤ n), and we
are given a super-stable matching N in G. Then, for any resident r in R1,δ such
that Tr = ∅ (resp., Tr �= ∅), we have N(r) = ∅ (resp., N(r) ∈ Tr).

Proof. For any resident r in R1,δ such that Tr = ∅, we have E(r) ⊆ Dδ−1. Thus,
Lemma 4 implies that N(r) = ∅ for any resident r in R1,δ such that Tr = ∅. Let
Π be the set of residents r in R1,δ such that Tr �= ∅ and N(r) /∈ Tr. If Π = ∅,
then the proof is done. Thus, we assume that Π �= ∅.

We first prove that there exists no resident r in Π such that N(r) �r e for
an edge e in Tr (notice that f ∼r g for any edges f, g in Tr). If there exists a
resident r in Π such that N(r) �r e for an edge e in Tr, then the definition of
the algorithm SuperM implies that N(r) ∈ Dδ−1, which contradicts Lemma 4.

Let Δ be the set of integers � in {1, 2, . . . , δ} such that Π ∩ R� �= ∅, and let j
and r be the minimum integer in Δ and a resident in Π ∩ Rj , respectively. Let
e be an edge in Tr. Then, since N(r) /∈ Tr and e ∈ Tr, we have e /∈ N . Since
N is super-stable and e �r N(r), we have N + e /∈ F and s �H r for any edge
(s, p) in C−

N(e,N). Since {e} ∈ F (i.e., C−
N(e,N) �= ∅), this implies that j �= 1.

Furthermore, e ∈ Tr implies e /∈ Dj−1. Thus, e /∈ Dj−2 and e /∈ Lj−1. These
imply that Mj−1 + e ∈ F . In the sequel, we prove that CN(e,N) ⊆ Mj−1 + e,
which contradicts the fact that Mj−1 + e ∈ F and completes the proof.

Let f = (s, p) be an edge in C−
N(e,N). Since s �H r, s ∈ Rk for an integer k

in {1, 2, . . . , j − 1}. This and the definition of the algorithm SuperM imply that
|Ts| ≤ 1. If Ts = ∅, then in the same way as above, we can prove that N(s) = ∅,
which contradicts the fact that f = N(s). Thus, |Ts| = 1. In this case, the unique
edge in Ts belongs to Mj−1. Since s ∈ Rk and k ≤ j − 1, the minimality of j
implies that f = N(s) ∈ Ts. Thus, f ∈ Mj−1. This completes the proof. ��
Lemma 6. If the algorithm SuperM outputs Mn, then Mn is a super-stable
matching in G.

Proof. It follows from the definition of the algorithm SuperM that Mn ∈ F and
|Mn(r)| ≤ 1 for any resident r in R. These imply that Mn is a matching in G.
What remains is to prove that Mn is super-stable. Let e = (r, h) be an edge in
E \ Mn. We prove that at least one of r and H does not weakly prefer e on Mn.
If Mn(r) �r e, then the proof is done. Thus, we can assume that e �r Mn(r).
Assume that r ∈ Rj for an integer j in {1, 2, . . . , n}. If Mn(r) = ∅, then Tr = ∅,
and thus j �= 1 and e ∈ Lk for an integer k in {1, 2 . . . , j − 1}. If Mn(r) �= ∅,
then Tr = {Mn(r)}. Since e �= Mn(r), e /∈ Tr. Thus, since e �r Mn(r), j �= 1
and e ∈ Lk for an integer k in {1, 2 . . . , j − 1}. In both cases, Mk + e /∈ F and
s �H r for any edge (s, p) in C−

N(e,Mk). Since Mk ⊆ Mn, Lemma 1 implies that
Mn + e /∈ F and CN(e,Mk) = CN(e,Mn). Thus, s �H r for any edge f = (s, p)
in C−

N(e,Mn). This completes the proof. ��
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Lemma 7. If the algorithm SuperM outputs null, then there exists no super-
stable matching in G.

Proof. We assume that the algorithm SuperM outputs null when i = δ (≤ n).
We prove this lemma by contradiction. Assume that there exists a super-stable
matching N in G.

We first consider the case where in Step (2-b) the algorithm SuperM outputs
null. In this case, there exists a resident r in Rδ such that |Tr| > 1. Lemma 5
implies that N(r) ∈ Tr. Let e be an edge in Tr such that e �= N(r). Then, since e
and N(r) belong to Tr, we have e ∼r N(r). Thus, what remains is to prove that
N + e ∈ F and/or there exists an edge f = (s, p) in N such that N + e − f ∈ F
and r �H s. This contradicts the fact that N is super-stable. If N + e ∈ F , then
the proof is done. Thus, we assume that N + e /∈ F and s �H r (i.e., s belongs
to R1,δ−1) for any edge (s, p) in C−

N(e,N). Since e ∈ Tr, Mδ−1 +e ∈ F . Lemma 5
and the definition of the algorithm SuperM imply that N(s) = Mδ−1(s) for any
resident s in R1,δ−1. These imply that CN(e,N) is a subset of Mδ−1 + e, which
contradicts the fact that Mδ−1 + e ∈ F .

Next we consider the case where in Step (2-c) the algorithm SuperM outputs
null, i.e., Mδ−1 ∪ Eδ /∈ F . Lemma 5 and the definition of the algorithm SuperM
imply that Mδ−1(r) = N(r) for any resident r in R1,δ−1, and Eδ(r) = Tr = N(r)
for any resident r in Rδ. These imply that Mδ−1 ∪ Eδ is a subset of N , which
contradicts the fact that N ∈ F . ��

Lemmas 6 and 7 imply the following theorem.

Theorem 2. The algorithm SuperM can decide whether there exists a super-
stable matching in G, and find a super-stable matching if one exists.

Here we consider the time complexity of the algorithm SuperM. Define m :=
|E| and λ := max{|R|, |H|}, and we denote by EO the time required to decide
whether F ∈ F for a subset F of E. In addition, we assume that we can decide
in O(1) time whether e �r f (resp., r �H s) for a resident r in R and edges
e, f in E(r) (resp., for residents r, s in R). For simplicity, we assume that EO is
Ω(m) and m ≥ λ. Then, we can construct the subsets R1, R2, . . . , Rn in O(λ2)
time. The number of iterations of Step 2 is at most λ, and Step (2-e) is the
bottleneck of Step 2. The time complexity of this step is O(mEO). Thus, the
time complexity of the algorithm SuperM is O(λmEO).

4 Strongly Stable Matchings

In this section, we give an algorithm for the problem of deciding whether there
exists a strongly stable matching in G, and finding such a matching if one exists.
We define the subsets R1, R2, . . . , Rn of R and the notation Ri,j in the same way
as in Sect. 3.

Our algorithm StrongM is described as follows.

Step 1. Set i := 1, M0 := ∅, D0 := ∅, and P0 := ∅.
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Step 2. If i ≤ n, then do the following steps. Otherwise, go to Step 3.
(2-a) For a resident r in Ri, set Tr to be the set of edges e in E(r)\Di−1

such that e �r f for any edge f in E(r) \ Di−1.
(2-b) Set Ei :=

⋃
r∈Ri

Tr, Pi :=
⋃

�=1,2,...,i E�, Ni := (N|Pi)/Pi−1,
and R∗

i := {r ∈ Ri | Tr �= ∅}.
(2-c) If rNi

(Ei) > |R∗
i |, then output null and halt.

(2-d) Set Ui to be the family of subsets F of Ei such that |F (r)| ≤ 1
for any resident r in Ri, and set Ai := (Ei,Ui) (notice that Ai is a
matroid). Then, find a maximum-size common independent set Fi

of Ai and Ni.
(2-e) If |Fi| < |R∗

i |, then output null and halt. Otherwise, set Mi :=
Mi−1 ∪ Fi.

(2-f) Set Li to be the set of edges (r, h) in E\Di−1 such that r ∈ Ri+1,n

and Mi + (r, h) /∈ F . Furthermore, set Di := Di−1 ∪ Li.
(2-g) Update i := i + 1, and go back to the beginning of Step 2.

Step 3. Output Mn and halt.

In the sequel, we prove the correctness of the algorithm StrongM.

Lemma 8. Assume that the algorithm StrongM halts when i = δ. Then,

1. F� is a base of N� for any � = 1, 2, . . . , δ − 1, and
2. M� is a base of N|P� for any � = 1, 2, . . . , δ − 1.

Proof. We first consider the statement (1). Let us fix an integer � in {1, 2, . . . , δ−
1}. Since the algorithm StrongM does not output null when i = �, we have
rN�

(E�) ≤ |R∗
� | and |F�| ≥ |R∗

� |. These imply that rN�
(E�) ≤ |F�|. Furthermore,

since F� is an independent set of N�, we have |F�| ≤ rN�
(E�). These imply that

|F�| = rN�
(E�), i.e., F� is a base of N�.

Next we prove the statement (2) by induction on �. It is not difficult to see
that the statement (2) for � = 1 is equivalent to the statement (1) for � = 1. Let ξ
be an integer in {1, 2, . . . , δ−2}. Assume that the statement (2) holds in the case
of � = ξ, and we consider the case of � = ξ + 1. Since N|Pξ = (N|Pξ+1)|Pξ and
Fξ+1 is a base of Nξ+1 = (N|Pξ+1)/Pξ, it follows from the induction hypothesis
and Lemma 3(2) that Mξ+1 is a base of N|Pξ+1. This completes the proof. ��
Lemma 9. Assume that the algorithm StrongM halts when i = δ. Then, there
exists no strongly stable matching N in G such that N ∩ Dδ−1 �= ∅.
Proof. We say that an edge e in Dδ−1 is bad, if there exists a strongly stable
matching N in G such that e ∈ N . Namely, our goal is to prove that there exists
no bad edge in Dδ−1. We prove this lemma by contradiction. Assume that there
exists a bad edge in Dδ−1. Define Δ as the set of integers � in {1, 2, . . . , δ − 1}
such that there exists a bad edge in L�, and j as the minimum integer in Δ.
Furthermore, let e = (r, h) and N be a bad edge in Lj and a strongly stable
matching in G such that e ∈ N , respectively. Since e ∈ Lj , Mj + e /∈ F . Define
C := CN(e,Mj) (notice that Mj ∈ F follows from Lemma 8(2)). If C is a subset
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of N , then this contradicts the fact that N ∈ F . Thus, C \ N is not empty. For
any edge (s, p) in C \ N , since r ∈ Rj+1,n and s ∈ R1,j , we have s �H r.

We first consider the case where there exists an edge f = (s, p) in C \ N
such that N(s) �s f . Since e ∈ N , we have e �= f . This implies that f ∈ Mj ,
i.e., f ∈ Ts. Thus, the definition of the algorithm StrongM implies that j �= 1
and N(s) ∈ Lk for an integer k in {1, 2, . . . , j − 1}. Since Lk ⊆ Dδ−1 and N is
strongly stable, N(s) is bad, which contradicts the minimality of j.

Next we consider the case where f �s N(s) for any edge f = (s, p) in C \ N .
If there exists an edge f in C \ N such that N + f ∈ F , then this contradicts the
fact that N is strongly stable. Thus, we assume that N + f /∈ F for any edge f
in C \ N . For an edge f in C \ N , we define Cf := CN(f,N). Since N is strongly
stable, t �H s for any edge f = (s, p) in C\N and any edge g = (t, q) in Cf −f . For
any edge f = (s, p) in C \ N , since s �H r, this implies that e /∈ Cf . In addition,
f ∈ C ∩ Cf for any edge f in C \ N . Thus, Lemma 2 implies that there exists a
circuit C ′ of N such that C ′ ⊆ N . This contradicts the fact that N ∈ F . ��
Lemma 10. Assume that the algorithm StrongM halts when i = δ (≤ n), and
we are given a strongly stable matching N in G. Then, for any resident r in R1,δ

such that Tr = ∅ (resp., Tr �= ∅), we have N(r) = ∅ (resp., N(r) ∈ Tr).

Proof. For any resident r in R1,δ such that Tr = ∅, we have E(r) ⊆ Dδ−1. Thus,
Lemma 9 implies that N(r) = ∅ for any resident r in R1,δ such that Tr = ∅. Let
Π be the set of residents r in R1,δ such that Tr �= ∅ and N(r) /∈ Tr. If Π = ∅,
then the proof is done. Thus, we assume that Π �= ∅.

We first prove that there exists no resident r in Π such that N(r) �r e for
an edge e in Tr. If there exists a resident r in Π such that N(r) �r e for an edge
e in Tr, then the definition of the algorithm StrongM implies that N(r) ∈ Dδ−1,
which contradicts Lemma 9.

Let Δ be the set of integers � in {1, 2, . . . , δ} such that Π ∩ R� �= ∅, and let j
and r be the minimum integer in Δ and a resident in Π ∩ Rj , respectively. Let
e be an edge in Tr. Then, since N(r) /∈ Tr and e ∈ Tr, we have e /∈ N . Since N
is strongly stable, N + e /∈ F and s �H r for any edge (s, p) in C−

N(e,N). This
implies that j �= 1. Define C := CN(e,N). Furthermore, since e ∈ Tr, we have
Mj−1 + e ∈ F . Thus, C is not a subset of Mj−1 + e.

Here we prove that for any edge f in C \ (Mj−1 + e), we have Mj−1 + f /∈ F .
Before proving this, we prove that we can complete the proof of this lemma by
using this. For an edge f in C \ (Mj−1 + e), we define Cf := CN(f,Mj−1). For
any edge f in C \ (Mj−1 + e), since e /∈ Mj−1 and f �= e, we have e /∈ Cf . In
addition, f ∈ C ∩ Cf for any edge f in C \ (Mj−1 + e). Thus, Lemma 2 implies
that there exists a circuit C ′ of N that C ′ ⊆ Mj−1 + e, which contradicts the
fact that Mj−1 + e ∈ F . This completes the proof.

What remains is to prove that for any edge f in C \ (Mj−1 + e), we have
Mj−1 + f /∈ F . Let us fix an edge f = (s, p) in C \ (Mj−1 + e). Since s �H r,
s ∈ Rk for an integer k in {1, 2, . . . , j − 1}. Since f = N(s), we can prove that
Ts �= ∅ in the same way as above. Since s ∈ Rk and k ≤ j − 1, the minimality
of j implies that f ∈ Ts, i.e., f ∈ Ek. Since f /∈ Mj−1 + e implies that f /∈ Fk
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and Lemma 8(1) implies that Fk is a base of Nk, Fk + f is not an independent
set of Nk = (N|Pk)/Pk−1. Thus, since Lemma 8(2) implies that Mk−1 is a base
of (N|Pk)|Pk−1, Lemma 3(3) implies that Mk + f /∈ F . Thus, since Mk ⊆ Mj−1,
Mj−1 + f /∈ F . This completes the proof. ��
Lemma 11. Assume that the algorithm StrongM halts when i = δ (≤ n), and
we are given a strongly stable matching N in G. Then, for any � = 1, 2, . . . , δ,
the following statements hold.

1. If � > 1, then N ∩ P�−1 is a base of N|P�−1.
2. N ∩ E� is a base of N�.

Proof. We prove this lemma by induction on �. We first consider the case of
� = 1, and we prove the statement (2) by contradiction. Assume that N ∩ E1 is
not a base of N1 = N|E1. Since N ∈ F , N ∩ E1 is an independent set of N1.
Thus, there exists an edge e = (r, h) in E1 \N such that (N ∩E1)+e ∈ F . Since
e ∈ E1 (i.e., e ∈ Tr), Lemma 10 implies that e ∼r N(r). If N + e ∈ F , then this
contradicts the fact that N is strongly stable. Thus, we assume that N + e /∈ F .
Since (N ∩ E1) + e ∈ F , we have CN(e,N) �⊆ (N ∩ E1) + e. Let f = (s, p) be an
edge in CN(e,N) \ ((N ∩ E1) + e). Since f = N(s), if s ∈ R1, then Lemma 10
implies that f ∈ Ts, and thus f ∈ E1. This contradicts the fact that f /∈ E1.
Thus, s ∈ R2,n and r �H s. This contradicts the fact that N is strongly stable.

Let ξ be an integer in {1, 2, . . . , δ − 1}. Assume that this lemma holds in the
case of � = ξ, and we consider the case of � = ξ +1. We first prove the statement
(1). If ξ = 1, then the statement (1) in the case of � = ξ + 1 is equivalent to the
statement (2) in the case of � = 1. Thus, we assume that ξ ≥ 2. The induction
hypothesis implies that N ∩ Pξ−1 is a base of (N|Pξ)|Pξ−1 and N ∩ Eξ is a base
of (N|Pξ)/Pξ−1. Thus, Lemma 3(2) implies that N ∩ Pξ is a base of N|Pξ. This
completes the proof.

Next we prove the statement (2) by contradiction. Assume that N ∩ Eξ+1 is
not a base of Nξ+1. Since N ∈ F , N ∩ Pξ+1 is an independent set of N|Pξ+1. In
addition, the statement (1) in the case of � = ξ +1 implies that N ∩Pξ is a base
of N|Pξ = (N|Pξ+1)|Pξ. These facts and Lemma 3(1) imply that N ∩ Eξ+1 is an
independent set of Nξ+1 = (N|Pξ+1)/Pξ. Thus, there exists an edge e = (r, h)
in Eξ+1 \N such that (N ∩Eξ+1)+e is an independent set of Nξ+1. Then, since
N ∩ Pξ is a base of (N|Pξ+1)|Pξ, Lemma 3(1) implies that (N ∩ Pξ+1) + e ∈ F .
Since e ∈ Eξ+1 (i.e., e ∈ Tr), Lemma 10 implies that e ∼r N(r). If N + e ∈ F ,
then this contradicts the fact that N is strongly stable. Thus, we consider the
case where N + e /∈ F . Since (N ∩ Pξ+1) + e ∈ F , CN(e,N) is not a subset of
(N ∩ Pξ+1) + e. Let f = (s, p) be an edge in CN(e,N) \ ((N ∩ Pξ+1) + e). Since
f = N(s), if s ∈ R1,ξ+1, then Lemma 10 implies that f ∈ Ts, and thus f ∈ Pξ+1.
This contradicts the fact that f /∈ Pξ+1. Thus, we have s ∈ Rξ+2,n and r �H s.
This contradicts the fact that N is strongly stable. ��
Lemma 12. If the algorithm StrongM outputs Mn, then Tr = ∅ for any resident
r in R such that Mn(r) = ∅.
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Proof. Let j be an integer in {1, 2, . . . , n}. It follows from the definition of the
algorithm StrongM that rNj

(Ej) ≤ |R∗
j | ≤ |Fj |. Furthermore, since Fj is an

independent set of Nj , we have |Fj | ≤ rNj
(Ej). Thus, |Fj | = |R∗

j |. Since Fj is
a subset of ∪r∈Rj

Tr and |Fj(r)| ≤ 1 for any resident r in Rj , |Fj(r)| = 1 for
any resident r in R∗

j . Thus, for any resident r in Rj such that Mn(r) = ∅, since
Fj(r) = Mn(r), we have r /∈ R∗

j , i.e., Tr = ∅. This completes the proof. ��
Lemma 13. If the algorithm StrongM outputs Mn, then Mn is a strongly stable
matching in G.

Proof. The definition of the algorithm StrongM implies that |Mn(r)| ≤ 1 for
any resident r in R. In addition, Lemma8(2) implies that Mn ∈ F . These facts
imply that Mn is a matching in G. Thus, what remains is to prove that Mn is
strongly stable. Let e = (r, h) be an edge in E \ Mn. If Mn(r) �r e, then r does
not weakly prefer e on Mn. Thus, we do not need to consider this case. Assume
that e �r Mn(r) and r ∈ Rj for an integer j in {1, 2, . . . , n}.

We first assume that e �r Mn(r). If Mn(r) = ∅, then Lemma 12 implies that
Tr = ∅. Thus, j �= 1 and e ∈ Lk for an integer k in {1, 2 . . . , j −1}. If Mn(r) �= ∅,
then the definition of the algorithm StrongM implies that Mn(r) ∈ Tr. Thus,
j �= 1 and e ∈ Lk for an integer k in {1, 2 . . . , j − 1}. In both cases, Mk + e /∈ F
and s �H r for any edge (s, p) in C−

N(e,Mk). Since Mk ⊆ Mn, Lemma 1 implies
that Mn + e /∈ F and CN(e,Mk) = CN(e,Mn). Therefore, s �H r for any edge
f = (s, p) in C−

N(e,Mn). This implies that H does not weakly prefer e on Mn.
Next we assume that e ∼r Mn(r). This implies that Mn(r) �= ∅ and

Mn(r) ∈ Tr. We first consider the case where e /∈ Tr. In this case, the definition
of the algorithm StrongM implies that j �= 1 and e ∈ Lk for an integer k in
{1, 2, . . . , j − 1}. Thus, we can treat this case in the same way as the case where
e �r Mn(r). Next we consider the case where e ∈ Tr. In this case, since e /∈ Mn,
e ∈ Ej \ Fj . Since Lemma 8(1) implies that Fj is a base of Nj , Fj + e is not an
independent set of (N|Pj)/Pj−1. Furthermore, Lemma 8(2) implies that Mj−1 is
a base of (N|Pj)|Pj−1. Thus, it follows from Lemma 3(3) that Mj +e /∈ F . Since
Mj ⊆ Pj , s �H r for any edge (s, p) in C−

N(e,Mj). Furthermore, since Mj ⊆ Mn,
Lemma 1 implies that Mn + e /∈ F and CN(e,Mj) = CN(e,Mn). Thus, s �H r
for any edge f = (s, p) in C−

N(e,Mn). This completes the proof. ��
Lemma 14. If the algorithm StrongM outputs null, then there exists no strongly
stable matching in G.

Proof. We assume that the algorithm StrongM outputs null when i = δ (≤ n).
We prove this lemma by contradiction. Assume that there exists a strongly stable
matching N in G.

We first consider the case where in Step (2-c) the algorithm StrongM outputs
null, i.e., rNδ

(Eδ) > |R∗
δ |. Since Lemma 11(2) implies that N ∩ Eδ is a base of

Nδ, we have |N ∩ Eδ| = rNδ
(Eδ). Thus, |N ∩ Eδ| > |R∗

δ |. However, since N is
a matching in G (i.e., |N(r)| ≤ 1 for any resident r in Rδ) and Eδ is ∪r∈R∗

δ
Tr,

|N ∩ Eδ| ≤ |R∗
δ |. This contradicts the fact that |N ∩ Eδ| > |R∗

δ |.
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Next we consider the case where in Step (2-e) the algorithm StrongM out-
puts null, i.e., we have |Fδ| < |R∗

δ |. Since N is a matching in G, |N(r)| ≤ 1
for any resident r in Rδ. Furthermore, Lemma 11(2) implies that N ∩ Eδ is an
independent set of Nδ. Thus, N ∩ Eδ is a common independent set of Aδ and
Nδ. Since Fδ is a maximum-size common independent set of Aδ and Nδ, we
have |N ∩ Eδ| ≤ |Fδ| < |R∗

δ |. This implies that there exists a resident r in R∗
δ

such that N(r) /∈ Eδ. However, since Tr ⊆ Eδ, this contradicts Lemma 10. ��
Lemmas 13 and 14 imply the following theorem.

Theorem 3. The algorithm StrongM can decide whether there exists a strongly
stable matching in G, and find a strongly stable matching if one exists.

Here we consider the time complexity of the algorithm StrongM under the
same assumption in Sect. 3. It is not difficult to see that the total time complexity
of Step 2 except Step (2-d) is O(λmEO). We consider the total time complexity
of Step (2-d). Let � be an integer in {1, 2, . . . , n}. Since Lemma 8(2) implies
that M�−1 is a base of N|P�−1, Lemma 3(1) implies that we can decide in O(EO)
time whether F is an independent set of N� for a subset F of E�. Thus, the time
complexity of Step (2-d) is O(|E�|2.5EO) for i = �. Since

∑n
�=1 |E�| is O(m), the

total time complexity of this step is O(m2.5EO), and thus the time complexity
of the algorithm StrongM is O(m2.5EO).
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Abstract. In the stable marriage and roommates problems, a set of
agents is given, each of them having a strictly ordered preference list over
some or all of the other agents. A matching is a set of disjoint pairs of
mutually acceptable agents. If any two agents mutually prefer each other
to their partner, then they block the matching, otherwise, the matching
is said to be stable. We investigate the complexity of finding a solution
satisfying additional constraints on restricted pairs of agents. Restricted
pairs can be either forced or forbidden. A stable solution must contain
all of the forced pairs, while it must contain none of the forbidden pairs.

Dias et al. [5] gave a polynomial-time algorithm to decide whether
such a solution exists in the presence of restricted edges. If the answer
is no, one might look for a solution close to optimal. Since optimality
in this context means that the matching is stable and satisfies all con-
straints on restricted pairs, there are two ways of relaxing the constraints
by permitting a solution to: (1) be blocked by as few as possible pairs,
or (2) violate as few as possible constraints on restricted pairs.

Our main theorems prove that for the (bipartite) stable marriage prob-
lem, case (1) leads to NP-hardness and inapproximability results, whilst
case (2) can be solved in polynomial time. For non-bipartite stable room-
mates instances, case (2) yields an NP-hard but (under some cardinality
assumptions) 2-approximable problem. In the case of NP-hard problems,
we also discuss polynomially solvable special cases, arising from restric-
tions on the lengths of the preference lists, or upper bounds on the num-
bers of restricted pairs.

1 Introduction

In the classical stable marriage problem (sm) [10], a bipartite graph is given,
where one color class symbolises a set of men U and the other color class stands
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for a set of women W . Man u and woman w are connected by edge uw if they find
one another mutually acceptable. Each participant provides a strictly ordered
preference list of the acceptable agents of the opposite gender. An edge uw
blocks matching M if it is not in M , but each of u and w is either unmatched or
prefers the other to their partner. A stable matching is a matching not blocked
by any edge. From the seminal paper of Gale and Shapley [10], we know that
the existence of such a stable solution is guaranteed and one can be found in
linear time. Moreover, the solutions form a distributive lattice [20]. The two
extreme points of this lattice are called the man- and woman-optimal stable
matchings [10]. These assign each man/woman their best partner reachable in
any stable matching. Another interesting and useful property of stable solutions
is the so-called Rural Hospitals Theorem. Part of this theorem states that if an
agent is unmatched in one stable matching, then all stable solutions leave him
unmatched [11].

One of the most widely studied extensions of sm is the stable roommates
problem (sr) [10,14], defined on general graphs instead of bipartite graphs. The
notion of a blocking edge is as defined above (except that it can now involve any
two agents in general), but several results do not carry over to this setting. For
instance, the existence of a stable solution is not guaranteed any more. On the
other hand, there is a linear-time algorithm to find a stable matching or report
that none exists [14]. Moreover, the corresponding variant of the Rural Hospitals
Theorem holds in the roommates case as well: the set of matched agents is the
same for all stable solutions [12].

Both sm and sr are widely used in various applications. In markets where
the goal is to maximise social welfare instead of profit, the notion of stability is
especially suitable as an optimality criterion [22]. For sm, the oldest and most
common area of applications is employer allocation markets [24]. On one side,
job applicants are represented, while the job openings form the other side. Each
application corresponds to an edge in the bipartite graph. The employers rank all
applicants to a specific job offer and similarly, each applicant sets up a preference
list of jobs. Given a proposed matching M of applicants to jobs, if an employer-
applicant pair exists such that the position is not filled or a worse applicant is
assigned to it, and the applicant received no contract or a worse contract, then
this pair blocks M . In this case the employer and applicant find it mutually ben-
eficial to enter into a contract outside of M , undermining its integrity. If no such
blocking pair exists, then M is stable. Stability as an underlying concept is also
used to allocate graduating medical students to hospitals in many countries [23].
sr on the other hand has applications in the area of P2P networks [9].

Forced and forbidden edges in sm and sr open the way to formulate various
special requirements on the sought solution. Such edges now form part of the
extended problem instance: if an edge is forced, it must belong to a constructed
stable matching, whilst if an edge is forbidden, it must not. In certain market
situations, a contract is for some reason particularly important, or to the con-
trary, not wished by the majority of the community or by the central authority
in control. In such cases, forcing or forbidding the edge and then seeking a sta-
ble solution ensures that the wishes on these specific contracts are fulfilled while
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stability is guaranteed. Henceforth, the term restricted edge will be used to refer
either to a forbidden edge or a forced edge. The remaining edges of the graph
are referred as unrestricted edges.

Note that simply deleting forbidden edges or fixing forced edges and searching
for a stable matching on the remaining instance does not solve the problem of
finding a stable matching with restricted edges. Deleted edges (corresponding
to forbidden edges, or those adjacent to forced edges) can block that matching.
Therefore, to meet both requirements on restricted edges and stability, more
sophisticated methods are needed.

The attention of the community was drawn very early to the characterization
of stable matchings that must contain a prescribed set of edges. In the seminal
book of Knuth [20], forced edges first appeared under the term arranged mar-
riages. Knuth presented an algorithm that finds a stable matching with a given
set of forced edges or reports that none exists. This method runs in O(n2) time,
where n denotes the number of vertices in the graph. Gusfield and Irving [12]
provided an algorithm based on rotations that terminates in O(|Q|2) time, fol-
lowing O(n4) pre-processing time, where Q is the set of forced edges. This latter
method is favoured over Knuth’s if multiple forced sets of small cardinality are
proposed.

Forbidden edges appeared only in 2003 in the literature, and were first studied
by Dias et al. [5]. In their paper, complete bipartite graphs were considered, but
the methods can easily be extended to incomplete preference lists. Their main
result was the following (in the following theorem, and henceforth, m is the total
number of edges in the graph).

Theorem 1 (Dias et al. [5]). The problem of finding a stable matching in a
sm instance with forced and forbidden edges or reporting that none exists is
solvable in O(m) time.

While Knuth’s method relies on basic combinatorial properties of stable
matchings, the other two algorithms make use of rotations. We refer the reader
to [12] for background on these. The problem of finding a stable matching with
forced and forbidden edges can easily be formulated as a weighted stable match-
ing problem (that is, we seek a stable matching with minimum weight, where
the weight of a matching M is the sum of the weights of the edges in M). Let us
assign all forced edges weight 1, all forbidden edges weight −1, and all remaining
edges weight 0. A stable matching satisfying all constraints on restricted edges
exists if and only if there is a stable matching of weight |Q| in the weighted
instance, where Q is the set of forced edges. With the help of rotations, maxi-
mum weight stable matchings can be found in polynomial time [6,7,15,19].

Since finding a weight-maximal stable matching in sr instances is an NP-
hard task [6], it follows that solving the problem with forced and forbidden
edges requires different methods from the aforementioned weighted transforma-
tion. Fleiner et al. [8] showed that any sr instance with forbidden edges can
be converted into another stable matching problem involving ties that can be
solved in O(m) time [16] and the transformation has the same time complexity
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as well. Forced edges can easily be eliminated by forbidding all edges adjacent
to them, therefore we can state the following result.

Theorem 2 (Fleiner et al. [8]). The problem of finding a stable matching in
an sr instance with forced and forbidden edges or reporting that none exists is
solvable in O(m) time.

As we have seen so far, answering the question as to whether a stable solu-
tion containing all forced and avoiding all forbidden edges exists can be solved
efficiently in the case of both sm and sr. We thus concentrate on cases where
the answer to this question is no. What kind of approximate solutions exist then
and how can we find them?

Our Contribution. Since optimality is defined by two criteria, it is straightfor-
ward to define approximation from those two points of view. In case BP, all
constraints on restricted edges must be satisfied, and we seek a matching with
the minimum number of blocking edges. In case CV, we seek a stable match-
ing that violates the fewest constraints on restricted edges. The optimization
problems that arise from each of these cases are defined formally in Sect. 2.

In Sect. 3, we consider case BP: that is, all constraints on restricted edges
must be fulfilled, while the number of blocking edges is minimised. We show
that in the sm case, this problem is computationally hard and not approximable
within n1−ε for any ε > 0, unless P = NP. We also discuss special cases for
which this problem becomes tractable. This occurs if the maximum degree of
the graph is at most 2 or if the number of blocking edges in the optimal solution
is a constant. We point out a striking difference in the complexity of the two
cases with only forbidden and only forced edges: the problem is polynomially
solvable if the number of forbidden edges is a constant, but by contrast it is
NP-hard even if the instance contains a single forced edge. We also prove that
when the restricted edges are either all forced or all forbidden, the optimization
problem remains NP-hard even on very sparse instances, where the maximum
degree of a vertex is 3.

Case CV, where the number of violated constraints on restricted edges is
minimised while stability is preserved, is studied in Sect. 4. It is a rather straight-
forward observation that in sm, the setting can be modelled and efficiently solved
with the help of edge weights. Here we show that on non-bipartite graphs, the
problem becomes NP-hard, but 2-approximable if the number of forced edges is
sufficiently large or zero. As in case BP, we also discuss the complexity of degree-
constrained restrictions and establish that the NP-hardness results remain intact
even for graphs with degree at most 3, while the case with degree at most 2 is
polynomially solvable.

A structured overview of our results is contained in Table 1.

2 Preliminaries and Techniques

In this section, we introduce the notation used in the remainder of the paper
and also define the key problems that we investigate later. A Stable Marriage
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Table 1. Summary of results

Stable marriage Stable roommates

case BP: min #
blocking edges

NP-hard to approxi-
mate within n1−ε

NP-hard to approximate within
n1−ε

case CV: min #
violated restricted
edge constraints

solvable in polyno-
mial time

NP-hard; 2-approximable if |Q| is
large or 0

instance (sm) I = (G,O) consists of a bipartite graph G = (U ∪ W,E) with n
vertices and m edges, and a set O: the set of strictly ordered, but not necessarily
complete preference lists. These lists are provided on the set of adjacent vertices
at each vertex. The Stable Roommates Problem (sr) differs from sm in one sense:
the underlying graph G need not be bipartite. In both sm and sr, a matching in
G is sought, assigning each agent to at most one partner. An edge uw ∈ E \ M
blocks matching M if u is unmatched or it prefers w to its partner in M and w
is unmatched or it prefers u to its partner in M . A matching that is not blocked
by any edge is called stable.

As already mentioned in the introduction, an sr instance need not admit
a stable solution. The number of blocking edges is a characteristic property of
every matching. The set of edges blocking M is denoted by bp(M). A natural
goal is to find a matching minimising |bp(M)|. For convenience, the minimum
number of edges blocking any matching of an instance I is denoted by bp(I).
Following the consensus in the literature, matchings blocked by bp(I) edges are
called almost stable matchings. This approach has a broad literature: almost
stable matchings have been investigated in sm [3,13,18] and sr [1,2] instances.

All problems investigated in this paper deal with at least one set of restricted
edges. The set of forbidden edges is denoted by P , while Q stands for the set of
forced edges. We assume throughout the paper that P ∩ Q = ∅. A matching M
satisfies all constraints on restricted edges if M ∩ P = ∅ and M ∩ Q = Q.

In Fig. 1, a sample sm instance on four men and four women can be seen.
The preference ordering is shown above or below the vertices. For instance,

u1

w1, w3

u2

w1, w4, w2

u3

w3

u4

w4, w3

w1

u1, u2

w2

u2

w3

u4, u1, u3

w4

u4, u2

Fig. 1. A sample stable marriage instance with forbidden edges
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vertex u2 ranks w1 best, then w4, and w2 last. The set of forbidden edges P =
{u2w2, u3w3} is marked by dotted gray edges. The unique stable matching M =
{u1w1, u2w2, u3w3, u4w4} contains both forbidden edges. Later on, we will return
to this sample instance to demonstrate approximation concepts on it.

The first approximation concept (case BP described in Sect. 1) is to seek a
matching M that satisfies all constraints on restricted edges, but among these
matchings, it admits the minimum number of blocking edges. This leads to the
following problem definition.

Problem 1. min bp sr restricted
Input: I = (G,O, P,Q); an sr instance, a set of forbidden edges P and a set of
forced edges Q.
Output: A matching M such that M ∩ P = ∅, Q ⊆ M and |bp(M)| ≤ |bp(M ′)|
for every matching M ′ in G satisfying M ′ ∩ P = ∅, Q ⊆ M ′.

Special attention is given to two special cases of min bp sr restricted:
in min bp sr forbidden, Q = ∅, while in min bp sr forced, P = ∅. Note
that an instance of min bp sr forced or min bp sr restricted can always
be transformed into an instance of min bp sr forbidden by forbidding all
edges that are adjacent to a forced edge. This transformation does not affect the
number of blocking edges.

According to the other intuitive approximation concept (case CV described
in Sect. 1), stability constraints need to be fulfilled, while some of the constraints
on restricted edges are relaxed. The goal is to find a stable matching that violates
as few constraints on restricted edges as possible.

Problem 2. sr min restricted violations
Input: I = (G,O, P,Q); an sr instance, a set of forbidden edges P and a set of
forced edges Q.
Output: A stable matching M such that |M ∩P |+ |Q \M | ≤ |M ′ ∩P |+ |Q \M ′|
for every stable matching M ′ in G.

Just as in the previous approximation concept (referred to as case BP in
Sect. 1), we separate the two subcases with only forbidden and only forced edges.
If Q = ∅, sr min restricted violations is referred as sr min forbidden,
while if P = ∅, the problem becomes sr max forced. In case BP, the subcase
with only forced edges can be transformed into the other subcase, simply by
forbidding edges adjacent to forced edges. This straightforward transformation
is not valid for case CV. Suppose a forced edge was replaced by an unrestricted
edge, but all of its adjacent edges were forbidden. A solution that does not
contain the original forbidden edge might contain two of the forbidden edges,
violating more constraints than the original solution. Yet most of our proofs are
presented for the problem with only forbidden edges, and they require only slight
modifications for the case with forced edges.

A powerful tool used in several proofs in our paper is to convert some of
these problems into a weighted sm or sr problem, where the goal is to find a
stable matching with the highest edge weight, taken over all stable matchings.
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Irving et al. [15] were the first to show that the weighted sm can be solved
in O(n4 log n) time (where n is the number of vertices) if the weight function
is monotone in the preference ordering, non-negative and integral. Feder [6,7]
shows a method to drop the monotonicity requirement. He also presents the best
known bound for the runtime of an algorithm for finding a minimum weight sta-
ble matching in sm: O(n2 · log( K

n2 + 2) · min {n,
√

K}), where K is the weight
of an optimal solution. Redesigning the weight function to avoid the monotonic-
ity requirement using Feder’s method can radically increase K. For weighted
sr, finding an optimal matching is NP-hard, but 2-approximable, under the
assumption of monotone, non-negative and integral weights [6]. These constraints
restrict the practical use of Feder’s results to a large extent. Fortunately, linear
programming techniques allow the majority of the conditions to be dropped
while retaining polynomial-time solvability. Weighted sm can be solved to opti-
mality with arbitrary real-valued weight functions [19], and a 2-approximation
for weighted sr can be found for every non-negative weight function [25].

In all discussed problems, n is the number of vertices and m is the number of
edges in the graph underlying the particular problem instance. When considering
the restriction of any of the above problems to the case of a bipartite graph sr
is replaced by sm in the problem name. Finally, we note that all proofs can be
found in the full version of the paper [4].

3 Almost Stable Matchings with Restricted Edges

In this section, constraints on restricted edges must be fulfilled strictly, while
the number of blocking edges is minimised. Our results are presented in three
subsections, and most of the results are given for min bp sm restricted. Firstly,
in Sect. 3.1, basic complexity results are discussed. In particular, we prove that
the studied problem min bp sm restricted is in general NP-hard and very
difficult to approximate. Thus, restricted cases are analyzed in Sect. 3.2. First we
assume that the number of forbidden, forced or blocking edges can be considered
as a constant. Due to this assumption, two of the three problems that naturally
follow from imposing these restrictions become tractable, but surprisingly, not
all of them. Then, degree-constrained cases are discussed. We show that the NP-
hardness result for min bp sm restricted holds even for instances where each
preference list is of length at most 3, while on graphs with maximum degree 2,
the problems become tractable. Finally, in Sect. 3.3 we mention the problem
min bp sr restricted and briefly elaborate on how results established for the
bipartite case carry over to the sr case.

3.1 General Complexity and Approximability Results

When minimising the number of blocking edges, one might think that removing
the forbidden edges temporarily and then searching for a stable solution in the
remaining instance leads to an optimal solution. Such a matching can only be
blocked by forbidden edges, but as the upcoming example demonstrates, opti-
mal solutions are sometimes blocked by unrestricted edges exclusively. In some
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instances, all almost stable solutions admit only non-forbidden blocking edges.
Moreover, a man- or woman-optimal almost stable matching with forbidden
edges does not always exist.

Let us recall the sm instance in Fig. 1. In the graph with edge set E(G) \ P ,
a unique stable matching exists: M = {u1w1, u4w4}. Matching M is blocked by
both forbidden edges in the original instance. On the other hand, matching M1 =
{u1w1, u2w4, u4w3} is blocked by exactly one edge: bp(M1) = u4w4. Similarly,
matching M2 = {u1w3, u2w1, u4w4} is blocked only by u1w1. Therefore, M1 and
M2 are both almost stable matchings and bp(I) = 1. One can easily check that
M1 and M2 are the only matchings with the minimum number of blocking edges.
They both are blocked only by unrestricted edges. Moreover, M1 is better for
u1, w1 and w3, whereas M2 is preferred by u2, u4 and w4.

We now present two results demonstrating the NP-hardness and inapprox-
imability of special cases of min bp sm restricted.

Theorem 3. min bp sm forbidden and min bp sm forced are NP-hard.

Theorem 4. Each of min bp sm forbidden and min bp sm forced is not
approximable within a factor of n1−ε, for any ε > 0, unless P = NP.

3.2 Bounded Parameters

Our results presented so far show that min bp sm restricted is computation-
ally hard even if P = ∅ or Q = ∅. Yet if certain parameters of the instance or the
solution can be considered as a constant, the problem can be solved in polyno-
mial time. Theorem 5 firstly shows that this is true for min bp sm forbidden.

Theorem 5. min bp sm forbidden is solvable in O(n2mL) time, where L =
|P |, which is polynomial if L is a constant.

In sharp contrast to the previous result on polynomial solvability when the
number of forbidden edges is small, we state the following theorem for the min
bp sm forced problem.

Theorem 6. min bp sm forced is NP-hard even if |Q| = 1.

On the other hand, a counterpart to Theorem 5 holds in the case of min
bp sm restricted if the number of blocking pairs in an optimal solution is a
constant.

Theorem 7. min bp sm restricted is solvable in O(mL+1) time, where L is
the minimum number of edges blocking an optimal solution, which is polynomial
if L is a constant.

Next we study the case of degree-constrained graphs, because for most hard
sm and sr problems, it is the most common special case to investigate [2,13,21].
Here, we show that min bp sm restricted remains computationally hard even
for instances with preference lists of length at most 3. On the other hand, the
problem can be solved by identifying forbidden subgraphs when the length of
preference lists is bounded by 2.
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Theorem 8. min bp sm forbidden and min bp sm forced are NP-hard even
if each agent’s preference list consists of at most 3 elements.

Theorem 9. min bp sm restricted is solvable in O(n) time if each preference
list consists of at most 2 elements.

Even with the previous two theorems, we have not quite drawn the line
between tractable and hard cases in terms of vertex degrees. The complexity of
min bp sm restricted remains open for the case when preference lists are of
length at most 2 on one side of the bipartite graph and they are of unbounded
length on the other side. However we believe that this problem is solvable in
polynomial time.

Conjecture 1. min bp sm restricted is solvable in polynomial time if each
woman’s preference list consists of at most 2 elements.

3.3 Stable Roommates Problem

Having discussed several cases of sm, we turn our attention to non-bipartite
instances. Since sm is a restriction of sr, all established results on the NP-
hardness and inapproximability of min bp sm restricted carry over to the non-
bipartite sr case. As a matter of fact, more is true, since min bp sr restricted
is NP-hard and difficult to approximate even if P = ∅ and Q = ∅ [1]. We
summarise these observations as follows.

Remark 1. By Theorems 3 and 4, min bp sr forbidden and min bp sr forced
are NP-hard and not approximable within n1−ε, for any ε > 0, unless P = NP.
Moreover Theorems 8 and 6 imply that min bp sr forbidden and min bp sr
forced are NP-hard even if all preference lists are of length at most 3 or, in
the latter case, |Q| = 1. Finally min bp sr restricted is NP-hard and not
approximable within n

1
2−ε, for any ε > 0, unless P = NP, even if P = ∅ and

Q = ∅ [1].

As for the polynomially solvable cases, the proofs of Theorems 5, 7 and 9
carry over without applying any modifications, giving the following.

Remark 2. min bp sr forbidden is solvable in polynomial time if |P | is a
constant. min bp sr restricted is solvable in polynomial time if the minimal
number of edges blocking an optimal solution is a constant.

4 Stable Matchings with the Minimum Number
of Violated Constraints on Restricted Edges

In this section, we study the second intuitive approximation concept. The sought
matching is stable and violates as few constraints on restricted edges aspossible.
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We return to our example that already appeared in Fig. 1. As already men-
tioned earlier, the instance admits a single stable matching, namely M =
{u1w1, u2w2, u3w3, u4w4}. Since M contains both forbidden edges, the minimum
number of violated constraints on restricted edges is 2.

As mentioned in Sect. 1, a weighted stable matching instance models sm min
restricted violations.

Theorem 10. sm min restricted violations is solvable in polynomial time.

In the sr context, finding a minimum weight stable matching is NP-hard [6],
so the above technique for sm does not carry over to sr. Indeed special cases of
sr min restricted violations are NP-hard, as the following result shows.

Theorem 11. sr min forbidden and sr max forced are NP-hard.

In our proof, we reduce the Minimum Vertex Cover problem to these two
problems. Minimum Vertex Cover is NP-hard and cannot be approximated
within a factor of 2−ε for any positive ε, unless the Unique Games Conjecture is
false [17]. The reduction also answers basic questions about the approximability
of these problems. Since any vertex cover on K vertices can be interpreted as a
stable matching containing K forbidden edges in sr min forbidden and vice
versa, the (2 − ε)-inapproximability result carries over. The same holds for the
number of violated forced edge constraints in sr max forced. On the positive
side, we can close the gap with the best possible approximation ratio if Q = ∅
or |Q| is sufficiently large. To derive this result, we use the 2-approximability of
weighted sr for non-negative weight functions [25]. Due to the non-negativity
constraint, the case of 0 < |Q| < |M | remains open.

Theorem 12. If |Q| ≥ |M | for a stable matching M , then sr min restricted
violations is 2-approximable in polynomial time.

When studying sr max forced, we measured optimality by keeping track
of the number of violated constraints. One might find it more intuitive instead
to maximise |Q ∩ M |, the number of forced edges in the stable matching. Our
NP-hardness proof for sr max forced remains intact, but the approximability
results need to be revisited. In fact, this modification of the measure changes
the approximability of the problem as well:

Theorem 13. For sr max forced, the maximum of |Q∩M | cannot be approx-
imated within n

1
2−ε for any ε > 0, unless P = NP.

We now turn to the complexity of sr min restricted violations and its
variants when the degree of the underlying graph is bounded or some parameter
of the instance can be considered as a constant.

Theorem 14. sr min forbidden and sr max forced are NP-hard even if
every preference list is of length at most 3.
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Theorem 15. sr min restricted violations is solvable in O(n) time if
every preference list is of length at most 2.

Theorem 16. sr min restricted violations is solvable in polynomial time
if the number of restricted edges or the minimal number of violated constraints
is constant.

5 Conclusion

In this paper, we investigated the stable marriage and the stable roommates
problems on graphs with forced and forbidden edges. Since a solution satisfying
all constraints need not exist, two relaxed problems were defined. In min bp sm
restricted, constraints on restricted edges are strict, while a matching with
the minimum number of blocking edges is searched for. On the other hand, in
sr min restricted violations, we seek stable solutions that violate as few
constraints on restricted edges as possible. For both problems, we determined
the complexity and studied several special cases.

One of the most striking open questions is the approximability of sr min
restricted violations if 0 < |Q| < |M |. Our other open question is formu-
lated as Conjecture 1: the complexity of min bp sm restricted is not known
if each woman’s preference list consists of at most 2 elements. A more general
direction of further research involves the sm min restricted violations prob-
lem. We have shown that it can be solved in polynomial time, due to algorithms
for maximum weight stable marriage. The following question arises naturally: is
there a faster method for sm min restricted violations that avoids reliance
on Feder’s algorithm or linear programming methods?
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References

1. Ageev, A.A., Kononov, A.V.: Approximation algorithms for scheduling problems
with exact delays. In: Erlebach, T., Kaklamanis, C. (eds.) WAOA 2006. LNCS,
vol. 4368, pp. 1–14. Springer, Heidelberg (2007)
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Priol, T. (eds.) Euro-Par 2007. LNCS, vol. 4641, pp. 825–834. Springer, Heidelberg
(2007)

10. Gale, D., Shapley, L.: College admissions and the stability of marriage. Am. Math.
Monthly 69, 9–15 (1962)

11. Gale, D., Sotomayor, M.: Some remarks on the stable matching problem. Discrete
Appl. Math. 11, 223–232 (1985)

12. Gusfield, D., Irving, R.: The Stable Marriage Problem: Structure and Algorithms.
MIT Press, Cambridge (1989)

13. Hamada, K., Iwama, K., Miyazaki, S.: An improved approximation lower bound for
finding almost stable maximum matchings. Inf. Process. Lett. 109(18), 1036–1040
(2009)

14. Irving, R.: An efficient algorithm for the “stable roommates” problem. J. Algo-
rithms 6, 577–595 (1985)

15. Irving, R., Leather, P., Gusfield, D.: An efficient algorithm for the “optimal” stable
marriage. J. ACM 34(3), 532–543 (1987)

16. Irving, R., Manlove, D.: The stable roommates problem with ties. J. Algorithms
43, 85–105 (2002)

17. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2 − ε.
J. Comput. Syst. Sci. 74(3), 335–349 (2008)

18. Khuller, S., Mitchell, S., Vazirani, V.: On-line algorithms for weighted bipartite
matching and stable marriages. Theor. Comput. Sci. 127, 255–267 (1994)
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and Baharak Rastegari5(B)

1 Institute of Mathematics, Faculty of Science, P.J. S̆afárik University,
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2014-463 (Ocěláková) and OTKA grant K108383 (Fleiner). The authors gratefully
acknowledge the support of COST Action IC1205 Computational Social Choice.

c© Springer-Verlag Berlin Heidelberg 2015
M. Hoefer (Ed.): SAGT 2015, LNCS 9347, pp. 27–39, 2015.
DOI: 10.1007/978-3-662-48433-3 3



28 K. Cechlárová et al.

1 Introduction

We study a many-to-many matching market that involves two finite disjoint
sets, a set of applicants and a set of courses. Each applicant finds a subset of
courses acceptable and has a preference ordering, not necessarily strict, over
these courses. Courses do not have preferences. Moreover, each applicant has a
quota on the number of courses she can attend, while each course has a quota
on the number of applicants it can admit.

A matching is a set of applicant-course pairs such that each applicant is
paired only with acceptable courses and the quotas associated with the applicants
and the courses are respected. The problem of finding an “optimal” matching
given the above market is called the Course Allocation problem (CA). Although
various optimality criteria exist, Pareto optimality (or Pareto efficiency) remains
the most popular one (see, e.g., [1,2,9,17]). Pareto optimality is a fundamental
concept that economists regard as a minimal requirement for a “reasonable”
outcome of a mechanism. A matching is a Pareto optimal matching (POM)
if there is no other matching in which no applicant is worse off and at least
one applicant is better off. Our work examines Pareto optimal many-to-many
matchings in the setting where applicants’ preferences may include ties.

In the special case where each applicant and course has quota equal to one,
our setting reduces to the extensively studied House Allocation problem (HA)
[1,13], also known as the Assignment problem [5,11]. Computational aspects of
HA have been examined thoroughly [2,16] and particularly for the case where
applicants’ preferences are strict. In [2] the authors provide a characterization
of POMs in the case of strict preferences and utilize it in order to construct
polynomial-time algorithms for checking whether a given matching is a POM and
for finding a POM of maximum size. They also show that any POM in an instance
of HA with strict preferences can be obtained through the well-known Serial
Dictatorship Mechanism (SDM) [1]. SDM is a straightforward greedy algorithm
that allocates houses sequentially according to some exogenous priority ordering
of the applicants, giving each applicant her most-preferred vacant house.

Recently, the above results have been extended in two different directions.
The first one [15] considers HA in settings where preferences may include ties.
Prior to [15], few works in the literature had considered extensions of SDM to
such settings. The difficulty regarding ties, observed already in [18], is that the
assignments made in the individual steps of the SDM are not unique, and an
unsuitable choice may result in an assignment that violates Pareto optimality.
In [6] and [18] an implicit extension of SDM is provided (in the former case for
dichotomous preferences, where an applicant’s preference list comprises a single
tie containing all acceptable houses), but without an explicit description of an
algorithmic procedure. [15] describe a mechanism called the Serial Dictatorship
Mechanism with Ties (SDMT) that combines SDM with the use of augmenting
paths to ensure Pareto optimality. In an augmentation step, applicants already
assigned a house may exchange it for another, equally preferred one, to enable
another applicant to take a house that is most preferred given the assignments
made so far. They also show that any POM in an instance of HA with ties can be
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obtained by an execution of SDMT and also describe the so-called Random Serial
Dictatorship Mechanism with Ties (RSDMT) whose (expected) approximation
ratio is e

e−1 with respect to the maximum-size POM.
The second direction [9] extends the results of [2] to the many-to-many setting

(i.e., CA) with strict preferences, while also allowing for a structure of applicant-
wise acceptable sets that is more general than the one implied by quotas; namely,
[9] assumes that each applicant selects from a family of course subsets that
is downward closed. This work provides a characterization of POMs assuming
that the preferences of applicants over sets of courses are obtained from their
(strict) preferences over individual courses in a lexicographic manner; using this
characterization, it is shown that deciding whether a given matching is a POM
can be accomplished in polynomial time. In addition, [9] generalizes SDM to
provide the Generalized Serial Dictatorship (GSD) mechanism, which can be
used to obtain any POM for CA under strict preferences. The main idea of GSD
is to allow each applicant to choose not her most preferred set of courses at
once but, instead, only one course at a time (i.e., the most preferred among
non-full courses that can be added to the courses already chosen). This result is
important as the version of SDM where an applicant chooses immediately her
most preferred set of courses cannot obtain all POMs.

Our Contribution. In the current work, we combine the directions appearing
in [15] and [9] to explore the many-to-many setting in which applicants have
preferences, which may include ties, over individual courses. We extend these
preferences to sets of courses lexicographically, since lexicographic set preferences
naturally describe human behavior [12], they have already been considered in
models of exchange of indivisible goods [9,10] and also possess theoretically
interesting properties including responsiveness [14].

We provide a characterization of POMs in this setting and introduce the
Generalized Serial Dictatorship Mechanism with Ties (GSDT) that generalizes
both SDMT and GSD. SDM assumes a priority ordering over the applicants,
according to which applicants are served one by one by the mechanism. Since
in our setting applicants can be assigned more than one course, each applicant
can return to the ordering several times (up to her quota), each time choosing
just one course. The idea of using augmenting paths [15] has to be employed
carefully to ensure that during course shuffling no applicant replaces a previously
assigned course for a less preferred one. To achieve this, we utilize methods and
properties of network flows. Although we prove that GSDT can generate all
POMs using different priority orderings over applicants, we also observe that
some of the priority orderings guarantee truthfulness whereas some others do
not. That is, there may exist priority orderings for which some applicant benefits
from misrepresenting her preferences. This is in contrast to SDM and SDMT in
the one-to-one case in the sense that all executions of these mechanisms induce
truthfulness. This shortcoming however is not specific to our mechanism, since
we establish that any mechanism generating all POMs is prone to strategic
manipulation by one or more applicants.
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Remark. [4] presented a general mechanism for computing Pareto optimal out-
comes in hedonic games which includes the many-to-many matching problem
with ties. However their mechanism was not presented in a form that is specific
to our setting and no explicit bound for the time complexity was given in [4].

Organization of the Paper. In Sect. 2 we define our notation and terminology.
The characterization is provided in Sect. 3, while GSDT is presented in Sect. 4.
A discussion on applicants’ incentives in GSDT is provided in Sect. 5. Missing
proofs can be found in the full version of this paper [8].

2 Preliminary Definitions of Notation and Terminology

Let A = {a′
1, a

′
2, · · · , a′

n1
} be the set of applicants, C = {c1, c2, · · · , cn2} the

set of courses and [i] denote the set {1, 2, . . . , i}. Each applicant a′ has a quota
b(a′) that denotes the maximum number of courses a′ can accommodate into her
schedule, and likewise each course c has a quota q(c) that denotes the maximum
number of applicants it can admit. Each applicant finds a subset of courses
acceptable and has a transitive and complete preference ordering, not necessarily
strict, over these courses. We write c �a′ c′ to denote that applicant a′ (strictly)
prefers course c to course c′, and c �a′ c′ to denote that a′ is indifferent between
c and c′. We write c �a′ c′ to denote that a′ either prefers c to c′ or is indifferent
between them, and say that a′ weakly prefers c to c′.

Because of indifference, each applicant divides her acceptable courses into
indifference classes such that she is indifferent between the courses in the same
class and has a strict preference over courses in different classes. Let Ca′

t denote
the t’th indifference class, or tie, of applicant a′ where t ∈ [n2]. We assume that
Ca′

t = ∅ implies Ca′
t′ = ∅ for all t′ > t. Let the preference list of any applicant

a′ be the tuple of sets Ca′
t , i.e., P (a′) = (Ca′

1 , Ca′
2 , · · · , Ca′

n2
); occasionally we

consider P (a′) to be a set itself and write c ∈ P (a′) instead of c ∈ Ca′
t for some

t. We denote by P the joint preference profile of all applicants, and by P(−a′)
the joint profile of all applicants except a′. Under these definitions, an instance
of CA is denoted by I = (A,C,P, b, q). Such an instance appears in Table 1.

A (many-to-many) assignment μ is a subset of A × C. For a′ ∈ A, μ(a′) =
{c ∈ C : (a′, c) ∈ μ} and for c ∈ C, μ(c) = {a′ ∈ A : (a′, c) ∈ μ}. An assignment
μ is a matching if μ(a′) ⊆ P (a′), |μ(a′)| ≤ b(a′) for each a′ ∈ A and |μ(c)| ≤ q(c)
for each c ∈ C. We say that a′ is exposed if |μ(a′)| < b(a′), and is full otherwise.
Analogous definitions of exposed and full hold for courses.

Table 1. An instance I of ca.

Applicant Quota Preference list Course Quota

a′
1 2 ({c1, c2}, {c3}, ∅) c1 2

a′
2 3 ({c2}, {c1, c3}, ∅) c2 1

a′
3 2 ({c3}, {c2}, {c1}) c3 1
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For an applicant a′ and a set of courses S, we define the generalized char-
acteristic vector χa′(S) as the vector (|S ∩ Ca′

1 |, |S ∩ Ca′
2 |, . . . , |S ∩ Ca′

n2
|). We

assume that for any two sets of courses S and U , a′ prefers S to U if and only if
χ′

a(S) >lex χ′
a(U), i.e., if and only if there is an indifference class Ca′

t such that
|S ∩ Ca′

t | > |U ∩ Ca′
t | and |S ∩ Ca′

t′ | = |U ∩ Ca′
t′ | for all t′ < t. If a′ neither prefers

S to U nor U to S, then she is indifferent between S and U . We write S�′
aU if

a′ prefers S to U , S �′
a U if a′ is indifferent between S and U , and S �a′ U if

a′ weakly prefers S to U .
A matching μ is a Pareto optimal matching (POM) if there is no other match-

ing in which some applicant is better off and none is worse off. Formally, μ is
Pareto optimal if there is no matching μ′ such that μ′(a′) �a′ μ(a′) for all a′ ∈ A,
and μ′(a′′)�a′′μ(a′′) for some a′′ ∈ A. If such a μ′ exists, we say that μ′ Pareto
dominates μ.

A deterministic mechanism φ maps an instance to a matching, i.e. φ : I 
→ μ
where I is a CA instance and μ is a matching in I. A randomized mechanism φ
maps an instance to a distribution over possible matchings. Applicants’ prefer-
ences are private knowledge and an applicant may prefer not to reveal her pref-
erences truthfully. A deterministic mechanism is truthful if all applicants always
finds it best to declare their true preferences, no matter what other applicants
declare. A randomized mechanism φ is universally truthful if it is a probability
distribution over deterministic truthful mechanisms.

3 Characterizing Pareto Optimal Matchings

Manlove [16, Sect. 6.2.2.1] provided a characterization of Pareto optimal match-
ings in HA with preferences that may include indifference. He defined three
different types of coalitions with respect to a given matching such that the exis-
tence of either means that a subset of applicants can trade among themselves
(possibly using some exposed course) and ensure that, at the end, no one is
worse off and at least one applicant is better off. He also showed that if no such
coalition exists, then the matching is guaranteed to be Pareto optimal. We show
that this characterization extends to the many-to-many setting, although the
proof is more complex and involved than in the one-to-one setting.

In what follows we assume that in each sequence C no applicant or course
appears more than once.

An alternating path coalition w.r.t. μ comprises a sequence C =
〈cj0 , a

′
i0

, cj1 , a
′
i1

, . . . , cjr−1a
′
ir−1

, cjr
〉 where r ≥ 1, cjk

∈ μ(a′
ik

) (0 ≤ k ≤ r − 1),
cjk

�∈ μ(a′
ik−1

) (1 ≤ k ≤ r), a′
i0

is full, and cjr
is an exposed course. Furthermore,

a′
i0

prefers cj1 to cj0 and, if r ≥ 2, a′
ik

weakly prefers cjk+1 to cjk
(1 ≤ k ≤ r−1).

An augmenting path coalition w.r.t. μ comprises a sequence C =
〈a′

i0
, cj1 , a

′
i1

, . . . , cjr−1a
′
ir−1

, cjr
〉 where r ≥ 1, cjk

∈ μ(a′
ik

) (1 ≤ k ≤ r − 1),
cjk

�∈ μ(a′
ik−1

) (1 ≤ k ≤ r), a′
i0

is an exposed applicant, and cjr
is an exposed

course. Furthermore, a′
i0

finds cj1 acceptable and, if r ≥ 2, a′
ik

weakly prefers
cjk+1 to cjk

(1 ≤ k ≤ r − 1).
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A cyclic coalition w.r.t. μ comprises a sequence C = 〈cj0 , a
′
i0

, cj1 , a
′
i1

, . . . ,
cjr−1 , a

′
ir−1

〉 where r ≥ 2, cjk
∈ μ(a′

ik
) (0 ≤ k ≤ r − 1), and cjk

�∈ μ(a′
ik−1

)
(1 ≤ k ≤ r). Furthermore, a′

i0
prefers cj1 to cj0 and a′

ik
weakly prefers cjk+1 to

cjk
(1 ≤ k ≤ r − 1). (All subscripts are taken modulo r when reasoning about

cyclic coalitions).
We define an improving coalition to be an alternating path coalition, an

augmenting path coalition or a cyclic coalition. Given an improving coalition C,
the matching

μC = (μ \ {(a′
ik

, cjk
) : δ ≤ k ≤ r − 1}) ∪ {(a′

ik
, cjk+1) : 0 ≤ k ≤ r − 1}} (1)

is defined to be the matching obtained from μ by satisfying C (δ = 1 in the case
that C is an augmenting path coalition, otherwise δ = 0).

The following theorem gives a necessary and sufficient condition for a match-
ing to be Pareto optimal.

Theorem 1. Given a CA instance I, a matching μ is a Pareto optimal matching
in I if and only if μ admits no improving coalition.

4 Constructing Pareto Optimal Matchings

We propose an algorithm for finding a POM in an instance of ca, which is
in a certain sense a generalization of Serial Dictatorship thus named ‘General-
ized Serial Dictatorship with ties’ (GSDT). The algorithm starts by setting the
quotas of all applicants to 0 and those of courses are set at the original values
given by q. At each stage i, the algorithm selects a single applicant whose orig-
inal capacity has not been reached, and increases only her capacity by 1. The
algorithm terminates after B =

∑
a∈A b(a) stages, i.e., once the original capaci-

ties of all applicants have been reached. In that respect, the algorithm assumes
a ‘multisequence’ Σ = (a1, a2, . . . , aB) of applicants such that each applicant
a appears b(a) times in Σ; e.g., for the instance of Table 1 and the sequence
Σ = (a′

1, a
′
1, a

′
2, a

′
2, a

′
3, a

′
2, a

′
3), the vector of capacities evolves as follows:

(0, 0, 0), (1, 0, 0), (2, 0, 0), (2, 1, 0), (2, 2, 0), (2, 2, 1), (2, 3, 1), (2, 3, 2).

Let us denote the vector of applicants’ capacities in stage i by bi, i.e., b0 is the
all-zeroes vector and bB = b. Clearly, each stage corresponds to an instance Ii

similar to the original instance except for the capacities vector bi. At each stage
i, our algorithm obtains a matching μi for the instance Ii. The single matching
of stage 0—the empty matching, is a POM in I0. The core idea is to modify μi−1

in such way that if μi−1 is a POM with respect to Ii−1 then μi is a POM with
respect to Ii. To achieve this, the algorithm relies on the following flow network.

Consider the digraph D = (V,E). Its node set is V = A ∪ T ∪ C ∪ {σ, τ}
where σ and τ are the source and the sink and vertices in T correspond to the
ties in the preference lists of all applicants; i.e., T has a node (a, t) per applicant
a′ and tie t such that Ca

t �= ∅. Its arc set is E = E1 ∪ E2 ∪ E3 ∪ E4 where E1 =
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{(σ, a) : a ∈ A}, E2 = {(a, (a, t)) : a ∈ A,Ca
t �= ∅}, E3 = {((a, t), c) : c ∈ Ca

t }
and E4 = {(c, τ) : c ∈ C}. The graph D for the instance of Table 1 appears in
Fig. 1.

Using digraph D = (V,E), we obtain a flow network N i at each stage i of the
algorithm, i.e., a network corresponding to instance Ii, by appropriately varying
the capacities of the arcs. (For an introduction on network flow algorithms see, e.g.,
[3].) The capacity of each arc in E3 is always 1 (since each course may be received
at most once by each applicant) and the capacity of an arc e = (c, τ) ∈ E4 is
always q(c). The capacities of all arcs in E1 ∪E2 are initially 0 and, at stage i, the
capacities of only certain arcs associated with applicant a′i are increased by 1. For
this reason, for each applicant a′ we use the variable curr(a′) that indicates her
‘active’ tie; initially, curr(a′) is set to 1 for all a′ ∈ A.

Fig. 1. Digraph D for the instance I from Table 1. An oval encircles all the vertices of
T that correspond to the same applicant.

In stage i, the algorithm computes a maximum flow f i whose saturated arcs in
E3 indicate the corresponding matching μi. The algorithm starts with f0 = 0 and
μ0 = ∅. Let the applicant a′i ∈ A be a copy of applicant a′ considered in stage i.
The algorithm increases by 1 the capacity of arc (σ, a′) ∈ E1 (i.e., the applicant
is allowed to receive an additional course). It then examines the tie curr(a′) to
check whether the additional course can be received from tie curr(a′). To do
this, the capacity of arc (a′, (a′, curr(a′))) ∈ E2 is increased by 1. The network
in stage i where tie curr(ai) is examined is denoted by N i,curr(ai). If there is
an augmenting σ − τ path in this network, the algorithm augments the current
flow f i−1 to obtain f i, accordingly augments μi−1 to obtain μi (i.e., it sets μi

to the symmetric difference of μi−1 and all pairs (a′, c) for which there is an arc
((a′, t), c) in the augmenting path) and proceeds to the next stage. Otherwise,
it decreases the capacity of (a′, (a′, curr(a′))) by 1 (but not the capacity of
arc (σ, a′)) and it increases curr(a′) by 1 to examine the next tie of a′; if all
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(non-empty) ties have been examined, the algorithm proceeds to the next stage
without augmenting the flow. Note that an augmenting σ−τ path in the network
N i,curr(ai) corresponds to an augmenting path coalition in μi−1 with respect to
Ii.

A formal description of GSDT is provided by Algorithm 1, where w(e)
denotes the capacity of an arc e ∈ E and ⊕ denotes the operation of augmenting
along an augmenting path (either relative to a flow or a matching). Observe
that all arcs in E2 are saturated, except for the arc corresponding to the current
applicant and tie, thus any augmenting path has one arc from each of E1, E2

and E4 and all other arcs from E3; as a consequence, the number of courses each
applicant receives at stage i in any tie cannot decrease at any subsequent step.
Also, μi dominates μi−1 with respect to instance Ii if and only if there is a flow
in N i that saturates all arcs in E2.

Algorithm 1. Producing a POM for any instance of ca
Input: an instance I of CA and a multisequence Σ
f0 := 0; μ0 := ∅;
for each a′ ∈ A, curr(a′) := 1;
for i = 1, 2, . . . , B do
{

consider the applicant a′ = a′i;
w(σ, a′)++;
P := ∅;
while P = ∅ and curr(a′) ≤ n2 and Ca′

curr(a′) �= ∅ do
{

w(a′, (a′, curr(a′)))++;
P := augmenting path in N i,curr(a) with respect to f i−1;
if P = ∅ then { w(a′, (a′, curr(a′)))- -; curr(a)++};

}
if P �= ∅ then { f i := f i−1 ⊕ P;

μi := μi−1 ⊕ {(a′, c) : ((a′, t), c) ∈ P for some a′ ∈ A and t
∈ T}; }

otherwise { f i := f i−1; μi := μi−1; }
}
return μB ;

To prove the correctness of GSDT, we need two intermediate lemmas. Let
et ∈ R

n2 be the vector having 1 at entry t and 0 elsewhere.

Lemma 1. Let N i,t be the network at stage i while tie t of applicant a′i is
examined. Then, there is an augmenting path with respect to f i−1 in N i,t if and
only if there is a matching μ such that

χ′
a(μ(a′)) = χ′

a(μi−1(a′)) for each a′ �= a′i and χa′i(μ(a′i)) = χa′i(μi−1(a′i))+et.

Lemma 2. Let S �a′ U and |S| ≥ |U |. If cS and cU denote a least preferred
course of applicant a in S and U , respectively, then S\{cS} �a′ U\{cU}.
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Theorem 2. For each i, the matching μi obtained by GSDT is a POM for
instance Ii.

Proof. We apply induction on i. Clearly, μ0 = ∅ is the single matching in I0 and
hence a POM in I0. We assume that μi−1 is a POM in Ii−1 and prove that μi

is a POM in Ii.
Assuming to the contrary that μi is not a POM in Ii implies that there is a

matching ξ in Ii that dominates μi. Then, for all a′ ∈ A, ξ(a′) �a′ μi(a′) �a′

μi−1(a′). Since the capacities of all applicants in Ii are as in Ii−1 except for the
capacity of a′i that has been increased by 1, for all a′ ∈ A\{a′i}, |ξ(a′)| does not
exceed the capacity of a′ in instance Ii−1, namely bi−1(a′), while |ξ(a′i)| may
exceed bi−1(a′i) by at most 1.

Moreover, it holds that |ξ(a′i)| ≥ |μi(a′i)|. Assuming to the contrary, that
|ξ(a′i)| < |μi(a′i)| yields that ξ is feasible also in instance Ii−1. In addition,
|ξ(a′i)| < |μi(a′i)| implies that it cannot be ξ(a′i) �a′i μi(a′i) thus, together
with ξ(a′i) �a′i μi(a′i) �a′i μi−1(a′i), it yields ξ(a′i) �a′i μi(a′i) �a′i μi−1(a′i).
But then, ξ dominates μi−1 in Ii−1, a contradiction to μi−1 being a POM in
Ii−1.

Let us first examine the case in which GSDT enters the ‘while’ loop and
finds an augmenting path, hence μi dominates μi−1 in Ii only with respect to
applicant a′i that receives an additional course. This is one of her worst courses
in μi(a′i) denoted as cμ. Let cξ be a worst course for a′i in ξ(a′i). Let also ξ′

and μ′ denote ξ \ {(a′i, cξ)} and μi \ {(a′i, cμ)}, respectively. Observe that both
ξ′ and μ′ are feasible in Ii−1, while having shown that |ξ(a′i)| ≥ |μi(a′i)| implies
through Lemma 2 that ξ′ weakly dominates μ′ which in turn weakly dominates
μi−1 by Lemma 1. Since μi−1 is a POM in Ii−1, ξ′(a′) �a′ μ′(a′) �a′ μi−1(a′)
for all a′ ∈ A, therefore ξ dominates μi only with respect to a′i and cξ �a′i cμ.
Overall, ξ(a′) �a′ μi(a′) �a′ μi−1(a′) for all a′ ∈ A \ {a′i} and ξ(a′i) �a′i

μi(a′i) �a′i μi−1(a′i).
Let tξ and tμ be the ties of applicant a′i containing cξ and cμ, respectively,

where tξ < tμ because cξ �a′i cμ. Then, Lemma 1 implies that there is a path
augmenting f i−1 (i.e., the flow corresponding to μi−1) in the network N i,tξ . Let
also t′ be the value of curr(a′i) at the beginning of stage i. Since we examine
the case where GSDT enters the ‘while’ loop and finds an augmenting path,
Ca′i

t′ �= ∅. Thus, t′ indexes the least preferred tie from which a′i has a course in
μi−1, the same holding for ξ′ since ξ′(a′i) �a′i μi−1(a′i). Because ξ′ is obtained
by removing from a′i its worst course in ξ(a′i), that course must belong to a
tie of index no smaller that t′, i.e., t′ ≤ tξ. This together with tξ < tμ yield
t′ ≤ tξ < tμ, which implies that GSDT should have obtained ξ instead of μi at
stage i, a contradiction.

It remains to examine the cases where, at stage i, GSDT does not enter the
‘while’ loop or enters it but finds no augmenting path. For both these cases,
μi = μi−1, thus ξ dominating μi means that ξ is not feasible in Ii−1 (since it
would then also dominate μi−1). Then, it holds that |ξ(a′i)| exceeds bi−1(a′i)
by 1, thus |ξ(a′i)| > |μi(a′i)| yielding ξ(a′i) �a′i μi(a′i). Let tξ be defined as
above and t′ now be the most preferred tie from which a′i has more courses in
ξ than in μi. Clearly, t′ ≤ tξ since tξ indexes the least preferred tie from which
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a′i has a course in ξ. If t′ < tξ then the matching ξ′, defined as above, is feasible
in Ii−1 and dominates μi−1 because ξ′(a′i) �a′i μi−1(a′i), a contradiction; the
same holds if t′ = tξ and a′i has in ξ at least two more courses from tξ than in
μi. Otherwise, t′ = tξ and a′i has in ξ exactly one more course from tξ than in
μi; that, together with |ξ(a′i)| > |μi(a′i)| and the definition of tξ, implies that
the index of the least preferred tie from which a′i has a course in μi−1 and,
therefore, the value of curr(a′i) in the beginning of stage i, is at most t′. But
then GSDT should have obtained ξ instead of μi at stage i, a contradiction. ��

The following statement is now direct.

Corollary 1. GSDT produces a POM for instance I.

To derive the complexity bound for GSDT, let us denote by L the length of
the preference profile in I, i.e. the total number of courses in the preference lists
of all applicants. Notice that |E3| = L and neither the size of any matching in I
nor the total number of ties in all preference lists exceeds L.

Within one stage, several searches in the network might be needed to find a tie
of the active applicant for which the current flow can be augmented. However, one
tie is unsuccessfully explored at most once, hence each search either augments
the flow thus adding a pair to the current matching or moves to the next tie.
So the total number of searches performed by the algorithm is bounded by the
size of the obtained matching plus the number of ties in the preference profile,
i.e. it is O(L). A search requires a number of steps that remains linear in the
number of arcs in the current network (i.e., N i,curr(ai)), but as at most one arc
per E1, E2 and E4 is used, any search needs O(|E3|) = O(L) steps. This leads
to a complexity bound O(L2) for GSDT.

Next we show that GSDT can produce any POM.

Theorem 3. Given a CA instance I and a POM μ, there exists a suitable pri-
ority ordering over applicants Σ given which GSDT can produce μ.

5 Truthfulness of Mechanisms for Finding POMs

It is well-known that the SDM for HA is truthful, regardless of the given priority
ordering over applicants. We will show shortly that GSDT is not necessarily
truthful, but first prove that this property does hold for some priority orderings
over applicants.

Theorem 4. GSDT is truthful given Σ if, for each applicant a′, all occurrences
of a′ in Σ are consecutive.

Proof. W.l.o.g. let the applicants appear in Σ in the following order

a1, a1, . . . , a1︸ ︷︷ ︸
b(a1)-times

, a2, a2, . . . , a2︸ ︷︷ ︸
b(a2)-times

. . . , ai−1, ai−1, . . . , ai−1
︸ ︷︷ ︸

b(ai−1)-times

, ai, ai, . . . , ai︸ ︷︷ ︸
b(ai)-times

, . . .
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Assume to the contrary that some applicant benefits from misrepresenting her
preferences. Let a′

i be the first such applicant in Σ who reports P ′(a′
i) instead of

P (a′
i) in order to benefit and P ′ = (P ′(a′

i),P(−a′
i)). Let μ denote the matching

returned by GSDT using ordering Σ on instance I = (A,C,P, b, q) (i.e. the
instance in which applicant ai reports truthfully) and ξ the matching returned
by GSDT using Σ but on instance I ′ = (A,C,P ′, b, q). Let s = (Σ�<ib(a�)) + 1,
i.e., s is the first stage in which our mechanism considers applicant a′

i. Let j be
the first stage of GSDT such that a′

i prefers ξj to μj , where s ≤ j < s + b(a′
i).

Given that applicants a′
1, . . . , a

′
i−1 report the same in I as in I ′ and all

their occurrences in Σ are before stage j, Lemma 1 yields μj(a′
�) �a′

�
ξj(a′

�)
for 	 = 1, 2, . . . , i − 1. Also μj(a′

�) = ξj(a′
�) = ∅ for 	 = i + 1, i + 2, . . . , n1, since

no such applicant has been considered before stage j. But then, all applicants
apart from a′

i are indifferent between μj and ξj , therefore a′
i preferring ξj to μj

implies that μj is not a POM in Ij , a contradiction to Theorem 2. ��
The next result then follows directly from Theorem 4.

Corollary 2. GSDT is truthful if all applicants have quota equal to one.

There are priority orderings for which an applicant may benefit from misre-
porting her preferences, even if preferences are strict. This phenomenon has also
been observed in a slightly different context [7]. Let us also provide an example.

Example 1. Consider a setting with applicants a′
1 and a′

2 and courses c1 and c2,
for which b(a′

1) = 2, b(a′
2) = 1, q(c1) = 1, and q(c2) = 1. Let I be an instance in

which c2�a′
1
c1 and a′

2 finds only c1 acceptable. This setting admits two POMs,
namely μ1 = {(a′

1, c2), (a
′
2, c1)} and μ2 = {(a′

1, c1), (a
′
1, c2)}. GSDT returns μ1

for Σ = (a′
1, a

′
2, a

′
1). If a′

1 misreports by stating that she prefers c1 to c2, GSDT
returns μ2 instead of μ1. Since μ2�a′

1
μ1, GSDT is not truthful given Σ.

The above observation seems to be a deficiency of GSDT. We conclude by
showing that no mechanism capable of producing all POMs is immune to this
shortcoming.

Theorem 5. There is no universally truthful randomized mechanism that pro-
duces all POMs in CA, even if applicants’ preferences are strict and all courses
have quota equal to one.

a1 : c1 � c2

a2 : c1 � c2

I1 with µ1

a1 : c1 � c2

a2 : c1

I2 with µ2

a1 : c2 � c1

a2 : c1

I3 with µ2

a1 : c2 � c1

a2 : c1 � c2

I4

Fig. 2. Four instances of CA used in the proof of Theorem 5. In all four instances
b(a′

1) = 2, b(a′
2) = 1, q(c1) = q(c2) = 1. For each of instances I1 to I3, a matching is

indicated using circles in applicants’ preference lists.
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Proof. The instance I1 in Fig. 2 admits three POMs, namely μ1 =
{(a′

1, c1), (a
′
2, c2)}, μ2 = {(a′

1, c1), (a
′
1, c2)} and μ3 = {(a′

1, c2), (a
′
2, c1)}. Assume

a randomized mechanism φ that produces all these matchings. Therefore, there
must be a deterministic realization of it, denoted as φD, that returns μ1 given
I1. Let us examine the outcome of φD under the slightly different applicants’
preferences shown in Fig. 2, bearing in mind that φD is truthful.

– Under I2, φD must return μ2. The only other POM under I2 is μ3, but if
φD returns μ3 then a′

2 under I1 has an incentive to lie and declare only c1
acceptable (as in I2).

– Under I3, φD must return μ2. The only other POM under I3 is μ3, but if φD

returns μ3 then a′
1 under I3 has an incentive to lie and declare that she prefers

c1 to c2 (as in I2).

I4 admits two POMs, namely μ2 and μ3. If φD returns μ2, then a′
1 under I1

has an incentive to lie and declare that she prefers c2 to c1 (as in I4). If φD

returns μ3, then a′
2 under I3 has an incentive to lie and declare c2 acceptable—

in addition to c1—and less preferred than c1 (as in I4). Thus overall φD cannot
return a POM under I4 while maintaining truthfulness. ��

6 Future Work

A particularly important problem is to investigate the expected size of the match-
ing produced by the randomized version of GSDT. It is also interesting to char-
acterize priority orderings that induce truthful-telling in GSDT. Should this be
possible, it would be interesting to compute the expected size of the matching
produced by a randomized GSDT in which the randomization is taken over the
priority orderings that give rise to truthfulness.
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Abstract. In Smart City and Participatory Sensing initiatives the key
concept is for user communities to contribute sensor information and
form a body of knowledge that can be exploited by innovative appli-
cations and data analytics services. A key aspect in all such platforms
is that sensor information is not free but comes at a cost. As a result,
these platforms may suffer due to insufficient sensor information made
publicly available if applications do not share efficiently the cost of the
sensor information they consume.

We explore the design of specialized market mechanisms that match
demand to supply while taking into account important positive demand
externalities: sensors are digital goods and their cost can be shared by
applications. We focus on the buyer side and define different demand
models according to the flexibility in choosing sensor data for satisfying
application needs. We then investigate the properties of various cost-
sharing mechanisms with respect to efficiency and budget balance. In
doing so, we also propose and study a new mechanism, which although
lacks strategyproofness, it exhibits important efficiency improvement
along with certain fairness properties.

1 Introduction

A remarkable incorporation of sensors has occurred in the last few years in a
wide range of devices. Starting from the inclusion of GPS receivers, accelerom-
eters and barometers in smartphones, lately we are also seeing a wave of health
related sensors being used in the form of fitness bands and smartwatches. Aside
from personal devices, home automation and power management devices are
distinctively on the rise and include a different variety of sensor data.

Such sensor information can potentially be collected in more precise detail
and volume, opening up possibilities for research on unprecedented scales.
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Towards this, participatory sensing initiatives form a natural and promising
approach, replacing traditional sensor networks, where user communities can
contribute sensor information, that can later be exploited by innovative appli-
cations. There are already existing deployments and platforms that support a
variety of applications like environmental monitoring (OpenSense), transporta-
tion (CrowdPark), fitness (BikeTastic), urban sensing (PulsodelaCiudad), and
medical research (Apple’s ResearchKit).

Unfortunately, gathering this information from individually owned devices
proved to be not a straightforward task. Some of these platforms have suffered
from insufficient participation because users that voluntarily submit their sensing
data found no interest in remaining active in the system without being rewarded,
or at least, have their cost covered. These undesirable facts have already been
observed in [4,8,9], which focus on incentive issues arising in the supplier’s side.
Namely, suppliers may drop out unless there is a positive Return on Investment,
which depends on the total cost for collecting data (battery consumption, device
resources, privacy, etc.). But potential buyers of data may also be reluctant to
participate in the market if for instance the prices are prohibitively high, or if
the underlying mechanisms do not aim at economic efficiency. How should appli-
cations express their demand for sensor information in such an environment and
how should prices be determined? At the same time, one also needs mechanisms
for matching (elastic) demand with potential sensor providers, exploiting the
fact that once a sensor is turned on it can be used simultaneously by multiple
applications.

Contribution. To begin with, we develop a framework for operating a large
market of sensor data in participatory sensing environments. On one side of the
market, we have buyers interested in obtaining data potentially from multiple
sources and for different types of sensors. Their demand can be elastic or inelastic
in terms of the number of sensors they require. On the other side of the market,
the data suppliers correspond to users or organizations owning sensors, and
require a payment to cover their costs. In this work, we are not concerned on
how suppliers define their prices. We focus on the buyers’ side and the design of
mechanisms that match demand with supply. We assume a centralized platform
that is able to execute such pricing schemes, as well as collect and distribute
the data and payments. An important aspect of such a marketplace is that we
can distribute the same sensor data to multiple interested parties, at no extra
cost, i.e., we can view sensors as digital goods. This implies positive externalities
between buyers, since they can profit from each other by sharing sensor costs
where possible.

Within this framework, we introduce 2 simple cost-sharing settings regard-
ing the demand of the users, and study various mechanisms. The first scenario
involves single-minded buyers, interested in different subsets of sensor types.
The second scenario concerns bidders with multi-unit, elastic demand. In both
scenarios, the two important and conflicting objectives we care for are (i) budget–
balance: the market management platform does not incur economic loss while
operating the system, making it self-sustainable, (ii) economic efficiency, i.e.,
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social welfare maximization: we would like to satisfy more customer queries if
this increases the net surplus in the system. Given the strong impossibility results
of [5,12], we cannot achieve both objectives at the same time with strategyproof
mechanisms. Instead, we first show how to achieve each one of these separately,
and with polynomial time complexity. For economic efficiency we prove that the
VCG mechanism can be implemented efficiently, whereas for budget balance, we
utilize and adapt ideas from the Moulin-Shenker mechanisms [10,11].

For the second scenario, we also propose a natural hybrid mechanism that
improves efficiency under budget balance by relaxing strategyproofness. Despite
the loss of strategyproofness, our hybrid mechanism has its own merits. It is
simple to implement, and is based on a very natural approach for increasing
the social welfare. We prove that this mechanism achieves higher welfare than
other established cost-sharing mechanisms. Furthermore, our hybrid mechanism
satisfies certain fairness properties, in the sense that wealthier players contribute
more to the total cost than poorer ones. Finally we also study welfare properties
at the equilibria of this mechanism and exhibit cases where socially optimal
equilibria exist.

1.1 Related Work

Regarding mechanism design for participatory sensing, a specialized reverse auc-
tion is proposed in [9], to incentivize suppliers to increase their participation.
Another reverse auction is also proposed in [8]. The work of [4] on the other
hand is limited to using a fixed price approach. All these works focus on the
suppliers’ side of the market. An issue that is not covered by these works is the
modeling of the demand side of the market, which is what we mainly address in
this paper.

We have recently performed experimental evaluations for some of the mech-
anisms we study here, reported briefly in [14]. The main message from these
simulations is that certain altruistic versions of budget-balanced mechanisms,
where some richer players could contribute a higher payment, may have a prac-
tical appeal. The fact that buyers here are able to share the same sensor, implies
that in some occasions wealthy buyers may have incentives to help out and con-
tribute a higher cost-share so that the costs are covered and they can still have
access to sensors. No theoretical analysis is provided though in [14]. The hybrid
mechanism we propose in Sect. 4 is motivated by such observations (though not
implemented or suggested in [14]).

The works from the economics literature that are most relevant to ours are
the cost-sharing mechanisms of Moulin and Shenker [10,11]. These mechanisms
work for a setting where each user is either granted the same identical service
with all other users or is declined. We also consider the Marginal Cost Pricing
mechanism, see [10], which is the adaptation of the VCG mechanism into the
cost-sharing setting.



46 G. Birmpas et al.

2 Definitions and Notation

In the models we study, we have a set N = {1, ..., n} of potential buyers, who
have a demand for some sensor data. We use interchangeably the terms buyer
or player, to refer to any i ∈ N . Different types of demand (e.g., elastic vs
inelastic, or single tuple vs multiple tuples) are examined in Sects. 3 and 4. We
also have a set M = {1, ...,m}, representing the different sensor basic types,
e.g., accelerometer, temperature, CO2, etc. Finally, we have a set of suppliers
or providers who own sensor data (via their mobile or any other device). Each
supplier may specify a price per sensor type that he needs to be paid for in order
to provide access to the value of the sensor. Note also that a value provided by
one supplier can be used by many buyers. Finally, suppliers do not all necessarily
have the same set of sensor types available.

Our main focus is on the following criteria, and especially on the first two:

– Budget balance. A mechanism is budget-balanced if for every instance, the
payments assigned to the buyers cover exactly the cost of the provider.

– Social welfare maximization. Following [10], the social welfare or surplus
in a cost-sharing setting is the sum of the buyers’ derived values minus the
cost incurred (the payments made by the buyers cancel out with what the
providers receive). If x denotes an outcome of a mechanism, the social welfare
is

∑
i vi(x) − C(x), where vi is the valuation of buyer i and C(x) is the cost

incurred.
– No Positive Transfers (NPT): The cost shares are always nonnegative.
– Voluntary Participation (VP): The welfare level corresponding to not pro-

viding service at no cost is guaranteed to each agent if they report truthfully.

In the remainder of the paper, several proofs are omitted due to space con-
straints.

3 Scenario 1: Single-Minded Buyers

We consider a simple scenario, in which each buyer i ∈ N is interested in a subset
Pi ⊆ M of sensor types. For example Pi could be of the form (speedometer,
accelerometer). Furthermore, he requests access to a single tuple with values
from these types of sensors, i.e., a tuple (x, y), where x is a value for speed and
y is a value for the acceleration. These values do not necessarily need to come
from the same provider (but buyers can request that all the data come from
providers within a certain geographical region, e.g., the city center, in order
to collect information about traffic; we omit such implementation aspects from
the description of the mechanisms). Hence, the request specified by each buyer
i ∈ N , is in the form (vi, Pi), where vi is the value derived by i for receiving this
tuple, i.e., his willingness to pay. The demand is inelastic in the sense that buyer
i is not deriving any utility if he receives only a strict subset of sensors from
Pi. We call such buyers single-minded, in analogy to single-minded bidders in
combinatorial auctions. Clearly such demands can come and go dynamically in



Cost-Sharing Models in Participatory Sensing 47

the course of time, but we are interested in a static snapshot, i.e., an instance of
our problem may correspond to the demands within a given time window during
which the centralized platform needs to make a decision on which users to serve.

The cost function C(S) for serving a set of customers S ⊆ N can be easily
computed for any S. For any sensor type j ∈ M , let cj be the cost for the
platform of providing a single value for this type. The values of the sensors can
be viewed as digital goods, and since each bidder is interested in receiving a
single tuple, we can use just one actual sensor for each type requested, to satisfy
all customers. Hence, the cost cj could be taken to be the cheapest price specified
by some supplier of type j (it is not though important for the mechanism how
cj is derived). Therefore, for a set S ⊆ N of buyers, the cost C(S) is the sum of
the costs of all sensor types required by S:

C(S) =
∑

j∈P (S)

cj , where P (S) =
⋃

i∈S

Pi . (1)

3.1 Social Welfare Maximization

We first look at the objective of maximizing the social welfare. Let θ = (θ1, ..., θn)
be the vector of the agents’ types, i.e., under Scenario 1, θi = (vi, Pi). If a
mechanism chooses S ⊆ N , as the set of buyers to be served, then the generated
welfare from S is: SW (S,θ) =

∑
i∈S vi − C(S).

Given the set of all agents, N , and their true type vector θ, let us denote by
SW ∗(θ) the optimal welfare that can be achieved by N , i.e.:

SW ∗(θ) = max
S⊆N

{
∑

i∈S

vi − C(S)}

Our main result in this section is the following:

Theorem 1. The problem of social welfare maximization under Scenario 1 can
be solved in polynomial time.

To prove Theorem 1, we need to avoid the exponential search over all subsets
of N . Note also that we do not have any monotonicity properties here (larger sets
do not necessarily produce higher welfare). To solve our problem, we resort to a
linear programming formulation, which turns out to yield a totally unimodular
constraint matrix.

Proof of Theorem 1: We begin by writing down an ILP for our problem. For
this, we use an integer variable xi for each buyer i ∈ N and an integer variable
yj for each sensor type j ∈ M . The rationale is that when xi = 1, agent i
receives his requested tuple Pi. When yj = 1, this means that the sensor of
type j is allocated. Note that determining the set of players who receive service,
also determines the set of sensor types that will be set to 1. We claim that the
following is an ILP describing our problem.
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maximize:
∑

i∈N

vixi −
∑

j∈M

cjyj

subject to: xi ≤ yj , ∀i ∈ N, ∀j ∈ Pi

xi ∈ {0, 1} , ∀i ∈ N

yj ∈ {0, 1} , ∀j ∈ M

To see why this suffices, note that if xi = 0, then for j ∈ Pi, the variable
yj could be either 0 or 1, depending on other buyers’ demand sets. If xi = 1
however, then we must have that yj = 1. Hence, the only constraint beyond
integrality that we need is that xi ≤ yj for j ∈ Pi. It is easy to see now that
every solution to our problem corresponds to a feasible solution of the ILP (there
are also some feasible solutions in which we can have yj = 1 without allocating
the sensor but these are clearly not optimal solutions).

We relax the ILP to get an LP relaxation, by setting that xi, yj ∈ [0, 1]. So
now we have a linear program, which we can write in the form {max wT z |
Az ≤ b, z ≥ 0}. The rest of the proof is devoted to showing that our constraint
matrix A is totally unimodular, which implies that the LP always has an integral
optimal solution.

Lemma 1. The constraint matrix A of the LP relaxation is totally unimodular.

The proof of Lemma 1 is based on a sufficient condition for total unimodularity
as established by [6], see also [13][page 276], and we omit it here. Therefore, we
can solve the Social Welfare maximization problem in polynomial time, and the
proof of Theorem 1 is complete. �

Theorem 1, implies that we can have strategyproof and efficient mechanisms
implemented in polynomial time. For example, we can utilize the VCG mecha-
nism, which we briefly recall for the sake of completeness. The VCG mechanism
first computes a set S∗ ⊆ N , where optimal welfare is attained. Then, if the
declared type vector is θ = (θ1, ..., θn), where θi = (bi, Pi) may not necessarily
be equal to the true type of i, the payment for every player i ∈ S∗, can be
written in the form:

pi = bi − (SW ∗(θ) − SW ∗(θ−i)) . (2)

Agents not picked in the optimal set do not pay anything. This is also known
as the pivotal mechanism [3], and also referred to in the cost-sharing context,
as the Marginal Cost (MC) mechanism in [11]. Hence, we can conclude with the
following:

Corollary 1. Under scenario 1, the VCG mechanism is strategyproof, satisfies
NPT and VP, and can be implemented in polynomial time.

More generally, we can have a family of strategyproof mechanisms by replac-
ing SW ∗(θ−i) in (2) with any function of the form hi(θ−i).

Since VCG is efficient, the impossibility results of [5,12] imply that it cannot
be budget-balanced. In fact, we cannot even hope to be “approximately” budget-
balanced, since in the cases where no player is pivotal, the VCG payments are all 0.
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3.2 Budget-Balanced Mechanisms

We now focus on the design of budget-balanced mechanisms. The family of
mechanisms we consider are derived directly from the pioneering work of Moulin
and Shenker [10,11]. Their work concerns a setting that differs from ours in 2
respects: first, their model is simpler in terms of the service requested. Namely,
they have a binary setup, where there is a single provider, offering the same
identical service to everyone, and each agent will be either granted or declined
the service. In our case the buyers are interested in different subsets, and hence
in a different type of service each. Second, in our model, the cost function is
simpler due to the fact that sensors correspond to digital goods and can be
shared. This implies that for instances where a set S of buyers requests the same
set of sensors, then in our setting C(S) is the same as C(T ) for any T ⊆ S with
T �= ∅. In their work C(·) is an arbitrary submodular set function.

We can easily adapt the approach of Moulin and Shenker for Scenario 1.
To do this, we need to define first an underlying cost-sharing method. A cost-
sharing method is a function ξ(·, ·) such that ξ(i, R) determines the cost-share
of agent i, when R is the set to be served by the mechanism. We demand that a
cost-sharing method satisfies

∑
i∈R ξ(i, R) = C(R) for all R ⊆ N , i.e., the sum

of the payments balance the cost.
We mainly focus on the egalitarian cost-sharing method, since this may have

more appeal in practice due to its simplicity. To define the share ξ(i, R) for a
given set R to be served, we split the cost of each used sensor equally among
the people who want it. Let yj be the number of buyers who have j in their
demand set. Egalitarian cost sharing means that each customer i contributes a
share cj/yj towards the cost of sensor j. Hence for a buyer i, with demand set
Pi, his total cost-share is:

ξ(i, R) =
∑

j∈Pi

cj
yj

. (3)

It is obvious that we have:
∑

i∈R ξ(i, R) = C(R), for any R ⊆ N . Given
now any cost-sharing method ξ, one can define parametrically the mechanism
below for determining who receives service along with the cost-shares. In the
description below, we let b = (b1, ..., bn) be the agents’ declared values for their
demand sets.

The Mechanism MS(ξ) (Moulin-Shenker mechanism under ξ(·, ·)):
– Start by trying to serve all agents, with cost-share ξ(i,N). Remove any agent

who cannot cover his share, i.e., anyone for which bi < ξ(i,N). If no one
is removed in this step, stop here, otherwise let R1 be the set of remaining
agents.

– Check if we can serve R1 with a cost-share of ξ(i, R1) for every i ∈ R1. Again
remove those who cannot afford this price.

– Continue like this and in every round obtain the set Rt+1 = {i ∈ Rt : bi ≥
ξ(i, Rt)}.

– Stop either when we reach the empty set, or when we reach a set in which all
agents can afford to pay their cost-share.
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This family of mechanisms turns out to have nice properties if the cost func-
tion C(·) and the cost-sharing method ξ(·, ·) satisfy certain conditions. Regarding
ξ(·, ·), the following is an important and desirable property, which simply says
that the cost-share of an agent should not become higher when more people
receive service.

Definition 1. A cost-sharing method is cross-monotonic if for any T ⊆ N ,

ξ(i, R) ≥ ξ(i, T ) for any R ⊆ T and i ∈ R . (4)

Claim 1. The egalitarian cost-sharing method described by (3) is cross-
monotonic.

We also need submodularity of our cost function, which is easy to establish.
Given Claim 1, the following theorem is a straightforward extension of the results
from [10,11] to our setting.

Theorem 2. Given any cross-monotonic cost-sharing method ξ for single-
minded bidders, the Mechanism MS(ξ) is budget-balanced, group-strategyproof
and satisfies NPT and VP. In particular, if ξ is the egalitarian cost-sharing
according to (3), MS(ξ) satisfies these properties and can also be implemented
in polynomial time.

The obvious question is how do these mechanisms perform with respect to
social welfare. Unfortunately, they are far from efficient. We can construct exam-
ples where the mechanism generates zero welfare, whereas the optimal welfare
is far from zero.

Our discussion in Sects. 3.1 and 3.2 highlights the tradeoff between achieving
efficiency and budget-balance. In the next section, we will see a way of achieving
better trade-offs in a scenario of multi-unit elastic demand (but not applicable
to Scenario 1).

4 Scenario 2: Multiple Units and Elastic Demand

At this orthogonal scenario all players have the same type of demand, i.e., the set
Pi is the same for every player. This could involve buyers who are all interested
in the same type of information, e.g., traffic in the city center, or environmental
sensors within a region. What differentiates the players is that each player i
specifies an additional amount di, for the maximum number of tuples that he is
interested in acquiring. The demand is elastic, so that player i does not mind
receiving less than di tuples. Each player also specifies his per-tuple willingness
to pay vi. This encodes a submodular1 valuation, which is additive up to the first

1 The model of this section can also be adapted for general submodular valuations
in the form vi = (vi(1), .., vi(di)), where vi(j) is the value for the j-th tuple. We
prefer the current exposition, due to its simplicity and more practical appeal for
participatory sensing applications.
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di tuples. We assume that there is a sufficient supply of tuples from the providers,
i.e., there are at least dmax of them with dmax = max di. Each tuple has some
cost ck so that we can sort them from the cheapest to the most expensive one,
say c1 ≤ c2 · · · ≤ cdmax

.
We start with showing that maximizing the social welfare can be solved in

polynomial time. The important property is that once we decide for allocating
a tuple, we do not lose in welfare by giving the tuple to all customers who have
demand for it, since we are only adding more value to the current welfare. Hence,
if θ = (θ1, ..., θn) is the type vector, with θi = (vi, di), the optimization problem
for the social welfare becomes

SW ∗(θ) = max
1≤k≤dmax

[ ∑

i∈N

vi · min{k, di} −
k∑

j=1

cj
]

(5)

We can solve (5) simply by trying all values for k. Hence we have:

Theorem 3. Under Scenario 2, we can have polynomial time, strategyproof,
and efficient cost-sharing mechanisms, that also satisfy NPT and VP.

4.1 Budget Balance: Sequential Moulin-Shenker Mechanisms

The application of Moulin-Shenker mechanisms is not any more straightforward
in the case of multi-unit demand. Each customer i corresponds now to a set of
potential service levels, ranging from 0 to di tuples. Hence, we cannot just run
an analog of MS(ξ) from Sect. 3. One could consider all combinations of service
levels to customers, and run MS(ξ) for each such combination (and then choose
the one that is more efficient). But this has prohibitively high complexity to be
run in practice.

Instead, one can utilize the Moulin-Shenker approach in a sequential manner.

The Mechanism SMS(ξ)(Sequential Moulin-Shenker):

1. Sort the dmax cheapest tuples so that c1 ≤ c2 · · · ≤ cdmax
. Let A1 = N be the

set of active players before the first round (initially all are active).
2. At round r (with r ranging from 1 to dmax):

(a) If Ar is the set of currently active players, run the mechanism MS(ξ) from
Sect. 3 on Ar, to determine who receives the r-th cheapest tuple, along
with their cost shares for that round.

(b) Remove from Ar all customers who were not selected to be served. Remove
also any customer with di = r.

(c) Let Ar+1 be the set of surviving customers after the previous step. Con-
tinue with the next round in the same manner, unless Ar+1 = ∅.

For the remainder of the paper, we fix again ξ to be the egalitarian cost
sharing method and denote the mechanism as SMS, rather than SMS(ξ). Since
everybody is interested in the same tuple, if there are say k active players in a
certain run of SMS at a round r, the cost share is defined as cr/k. The SMS mech-
anism is (group) strategy proof, which can be shown using the same arguments
as in Theorem 2. Hence:
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Theorem 4. Under Scenario 2, the SMS mechanism with egalitarian cost-
shares runs in polynomial time, is budget-balanced, group-strategyproof and sat-
isfies NPT and VP.

However, as in the previous Section, we can easily construct instances where
we have a great loss of efficiency, even with 2 players and 1 round.

4.2 Budget-Balance with Better Social Welfare: A Hybrid
Mechanism

We propose in this section a different mechanism, as an attempt to maintain
budget-balance but achieve higher welfare than the Moulin-Shenker mechanisms.
Our mechanism is quite intuitive and uses a very natural approach in order
to achieve better welfare. In each round now, we start by running the VCG
mechanism for sharing the tuple of that round. To achieve budget-balance, we
complement the VCG payments with an egalitarian cost-share for the remaining
cost. If this results in high costs for some players, we reject them and repeat for
the remaining players.

Assume that the input to the mechanism is θ = (θ1, · · · , θn) with θi = (bi, di).
We define first the per-round VCG mechanism, which is quite simple in this
setting. If we run VCG only for the tuple at round r, and Ar is the set of
currently active players, then the tuple is allocated if

∑
j∈Ar bj ≥ cr. A player

i is pivotal at round r, if
∑

j∈Ar bj ≥ cr and
∑

j∈Ar\{i} bj < cr, i.e., player i
has an impact on having the tuple allocated. The only players that pay under
VCG are the pivotal players, according to (2). Hence, if

∑
j∈Ar bj ≥ cr, the VCG

payments are:

pi
V CG =

{
cr − ∑

j∈Ar\{i} bj , if player i is pivotal
0, if player i is not pivotal

(6)

Our mechanism runs as follows:

The Hybrid Mechanism

1. Again sort the tuples so that c1 ≤ c2 · · · ≤ cdmax
. Let A1 = N .

2. At round r (with r ranging from 1 to dmax):
(a) Check if

∑
i∈Ar bi ≥ cr, where Ar is the set of currently active players

during round r. If not, the mechanism stops.
(b) Run the VCG mechanism on Ar, for the tuple of round r, and let pi

V CG

be the VCG payment for each i ∈ Ar, as defined in (6).
(c) Let cr

′ be the reduced cost after the VCG payments: cr
′ = cr −∑

i∈Ar pi
V CG.

(d) Split the cost c′
r equally among Ar, i.e. let pE = c′

r/|Ar|. Define the
candidate cost shares as pi

H = pi
V CG + pE .

(e) If there are players with bi < pHi , then pick the one with the lowest bid,
set Ar = Ar \ {i}, and go to step 2a to repeat the process for round r.

(f) Otherwise, if bi ≥ pH , for each i ∈ Ar, set Ar+1 = Ar \ {i : di = r}, and
continue to round r + 1, unless Ar+1 = ∅.
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Remark 1. Note that at step 2e, we remove only one player, even if there can
be more players with bi < pHi . This turns out to be crucial regarding the total
welfare achieved.

Regarding the pros and cons of this new mechanism, on the positive side,
we shall prove that it can attain much higher social welfare than SMS. On
the negative side, this is not a strategyproof mechanism. We do not view the
lack of strategyproofness as a prohibitive disadvantage for such mechanisms. In
the recent literature there have been several studies analyzing simple and non-
strategyproof mechanisms that have practical appeal. In the context of auctions
for example, see e.g., [1,2,7].

Apart from achieving better welfare, the Hybrid mechanism has other mer-
its as well. First, it maintains low complexity like SMS, since the VCG step is
very easy to run in this scenario. Second, we consider it a very natural app-
roach towards increasing the welfare of budget-balanced mechanisms and can be
applicable to other settings too. Third, it also satisfies certain fairness proper-
ties, in the sense that wealthier players contribute more to the total cost than
poorer ones, see Claim 2 below. During the VCG step in each round, the set of
players who pay are the richer ones, according to (6). The remaining cost is then
an egalitarian cost share for all active players. Hence, the mechanism helps the
poorer players to satisfy their demand. But in addition to that, the wealthier
players are also rewarded. As we will see in Lemma 2, a positive payment at the
VCG step for player i, ensures that i is never removed during the execution of
the mechanism, and he will thus be able to get the desired tuples (as long as the
cost of a tuple is covered by the sum of bids).

Claim 2. In the Hybrid mechanism, wealthier players have higher payments,
i.e., if bi ≥ bj then pi

H ≥ pj
H , at every round of the mechanism.

The main positive result for the Hybrid mechanism is that it dominates the
SMS mechanism as follows:

Theorem 5. For any type vector θ, if we run both the Hybrid and the SMS
mechanism on input θ, then the Hybrid mechanism always achieves at least as
good social welfare as the SMS mechanism, w.r.t. θ.

proof. The proof is based on two auxiliary lemmas stated below. The following
lemma shows that players who are asked to pay something at the VCG run of
a certain round cannot be rejected at that step of the mechanism (in fact this
implies that they will not be rejected from any future round where the sum of
active bids covers the cost).

Lemma 2. Consider a round r in the Hybrid mechanism and let Ar be the
set of active players just before an execution of step 2b within round r. If∑

j∈Ar bj ≥ cr, then for every player i ∈ Ar for which pi
V CG > 0, the mecha-

nism cannot remove i from Ar during that step, i.e., bi ≥ pi
H in the execution

of that iteration.

Using Lemma 2, we can then prove the following fact.
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Lemma 3. Consider a run of the SMS and the Hybrid mechanism on the same
instance. At every round r of each mechanism, let NS

r and NH
r be the set of

players who receive the r-th tuple by the SMS mechanism and by the Hybrid
mechanism respectively. Then NS

r ⊆ NH
r , for every r.

Lemma 3 implies that the Hybrid mechanism produces at least as good
social welfare as the SMS mechanism in each round. Hence, this completes our
proof. 	


We would like to stress here that for Scenario 1, we can construct examples
showing that an analog of the Hybrid mechanism does not necessarily produce
better social welfare than MS(ξ). More details on this will be provided in the
full version.

Equilibria Under the Hybrid Mechanism: An obvious question is whether
we can have a price of anarchy analysis for this cost-sharing setting. Do all
the Nash equilibria of the Hybrid mechanism achieve good social welfare? The
answer is generally negative as there may exist many “unreasonable” equilibria.
E.g., in instances where everybody has a value lower than the total cost of a
round, it is an equilibrium if everybody declares 0, and this is inherent in most
cost-sharing mechanisms, since no player would be willing to cover the cost of
a service on his own. Nevertheless, these are equilibria that are not expected to
be attained in practice.

The next step is towards a price of stability analysis, and the existence of
equilibria with better guarantees. The Hybrid mechanism is promising in that
direction. We briefly summarize some results here for the existence of socially
optimal pure equilibria.

Theorem 6. Consider a set of players with the same demand di = d, for i ∈ N .
Then, there is a Nash equilibrium producing optimal social welfare when d = 1
or when all the tuples have the same cost, c1 = ... = cd. In both cases, if the
optimal welfare is positive (

∑
i vi > c1), then every vector b with

∑n
j=1 bj = c1

and bi ≤ vi, is a Nash equilibrium which produces optimal social welfare (w.r.t.
the true valuation vector).

As we see, there can be a plethora of optimal equilibria in the above cases.
Next, we identify some more conditions that enable the existence of socially
optimal equilibria. For simplicity, we stick to the case where all players have the
same demand d and the optimal welfare is achieved by allocating all d tuples.
Note then, that at an equilibirum, we need to have

∑
bj = cd, i.e., if the bids

exceed the cost of the last round, then there are incentives for people to deviate.
Second, to enforce an efficient equilibrium, we also need some relation between
the values vi, the parameter d, and possibly the marginal cost increase between
rounds. The following conditions that we have identified say that as long as we
do not have very poor players (otherwise some people will have incentives to
shade their bids), socially optimal equilibria do exist.

Theorem 7. Consider an instance with players having the same demand d as
before and let δ = maxi{ci−ci−1}. If the following 2 conditions hold, there exists
a socially optimal equilibrium.
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1. vi > 2(d − 1)δ, for every i ∈ N ,
2. cd ∈ (

n(d − 1)δ,
∑

i vi − n(d − 1)δ
]
.

We defer a further discussion on equilibria to the full version of our work.

5 Concluding Remarks

We have proposed a general framework for market operation in participatory
sensing environments, and studied various mechanisms under this framework. To
our knowledge, a marketplace tailored to the specificities of participatory sens-
ing applications, is missing today. We conjecture that with the wider adoption
of devices containing sensors and new types of micro-payments, such market-
places for data originating from individually owned devices will be eventually
developed.

There are still many directions that one can explore in the context of sensor-
data markets, depending on the criteria that one wants to optimize. For example,
are there simple budget-balanced mechanisms that achieve a constant factor
approximation to the social welfare in either of the scenarios presented here?
Even without theoretical guarantees on the social welfare, are there budget-
balanced mechanisms that perform better on average than our hybrid mech-
anism. Note also that variations of the hybrid mechanism can be defined for
other scenarios as well, not just what we studied here. It would be interesting
to further explore its properties in more general settings.
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Abstract. In a capacitated network design game, each of n players
selects a path from her source to her sink. The cost of each edge is
shared equally among the players using the edge. Every edge has a finite
capacity that limits the number of players using the edge. We study the
price of stability for such games with respect to the max-cost objective,
i.e., the maximum cost paid by any player. We show that the price of
stability is O(n) for symmetric games, and this bound is tight. Further-
more, we show that the price of stability for asymmetric games can be
Ω(n log n), matching the previously known upper bound. We also prove
that the convergence time of best response dynamics cannot be bounded
by any function of n.

1 Introduction

The quantification of the inefficiency of Nash equilibria has received considerable
attention in recent years. The concept of the price of anarchy, measuring the
inefficiency of the worst Nash equilibrium (NE) of a given game compared to
a social optimum, was introduced by Koutsoupias and Papadimitriou [5], who
called it the coordination ratio. The price of stability, measuring the inefficiency
of the best NE of a given game, was first studied by Schulz et al. [9], under
the name optimistic price of anarchy. Games for which these measures have
been studied include scheduling games [5], routing games [8], network design
games [2], and capacitated network design games [4]. Apart from the study
of the inefficiency of NE, one is also interested in the convergence time of best
response dynamics (BRD), i.e., the process that starts with an arbitrary strategy
profile and iteratively allows one of the players to update her strategy to one
that optimises her cost given the current strategies of all the other players.

In a capacitated network design game, we are given an undirected graph with
edge costs and edge capacities, and each of the n players selects a path from
her source to her destination. The cost of an edge is shared equally among the
players using the edge. Each player aims to minimise her own cost. A capacitated
network design game is symmetric if all players share the same source and the
same destination, and asymmetric otherwise. As the social optimum, one usually
considers the best strategy profile with respect to sum-cost (total cost of all
players) or max-cost (maximum cost of any player).
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Feldman and Ron [4] studied symmetric capacitated network design games
and considered instances where the underlying graph is a set of parallel links,
a series-parallel graph, or an arbitrary graph. They gave tight bounds on the
maximum price of stability and the maximum price of anarchy for all cases for
both the max-cost objective and the sum-cost objective, except for the price
of stability with respect to max-cost for arbitrary graphs. For the latter case,
they showed an upper bound of O(n log n) and a lower bound of Ω(n), and they
posed closing this gap as an open problem. They also analysed BRD and showed
that there are symmetric capacitated network design games where convergence
requires Ω(n3/2) steps, contrary to the uncapacitated version of symmetric net-
work design games where BRD always converge in at most n steps.
Our Contribution. For symmetric games with n players, we show that the price
of stability with respect to max-cost is O(n). This bound is tight, as implied by
the matching lower bound from [4], and hence resolves the open problem posed
by Feldman and Ron. A standard proof technique for bounding the price of
stability is to bound the increase in social cost during best response dynamics
starting from the optimal strategy profile. We show that this technique does not
work in our case, as best response dynamics starting from the optimal strategy
profile can actually increase the max-cost by a factor of Θ(n log n). Therefore,
we use a different approach to bound the price of stability, which may be of
independent interest. For asymmetric games with n players, we show that the
price of stability can be Ω(n log n), matching the previously known upper bound.
We also analyse BRD and show that the number of update steps required to
converge to a NE cannot be bounded by any function of n, even for symmetric
games. Our construction does not depend on the order in which players are
allowed to update their strategies. Furthermore, we observe that the cost of
a player can grow by an arbitrary factor (not bounded by any function of n)
during BRD.
Outline. The remainder of the paper is structured as follows. Section 2 dis-
cusses related work. Section 3 gives formal definitions and other preliminaries.
Our results on BRD and on the price of stability with respect to max-cost are
presented in Sects. 4 and 5, respectively. Section 6 suggests possible directions
for future research.

2 Related Work

We discuss only related work on network design games and refer to [7] for general
background on algorithmic game theory and the inefficiency of equilibria for
different types of games. Network design games with fair cost sharing, where the
cost of an edge is distributed to all players using the edge in equal shares, were
first studied by Anshelevich et al. [2]. They observe that these games are potential
games [6] and therefore always have a NE in pure strategies, and BRD converge
to such a NE. For asymmetric, uncapacitated network design games on directed
graphs, they show that the price of stability with respect to sum-cost is at most
H(n) = Θ(log n), where H(n) =

∑n
i=1 1/i denotes the n-th harmonic number.
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They prove this result by considering a potential function that decreases with
every improving move of a player and using it to show that BRD from an optimal
strategy profile must lead to a NE whose sum-cost is at most H(n) times the
sum-cost of the starting profile. We will use the same potential function several
times in this paper. They also show that the upper bound of H(n) on the price
of stability for sum-cost holds for several generalisations, including capacitated
network design games. Regarding BRD, they construct a network design game
with n players where the convergence to a NE may take a number of steps that
is exponential in n (if players make their improving moves in a certain order).
It is also known that in symmetric uncapacitated network design games, BRD
converge to a NE in at most n steps, as the best response for the first update
will also be the best response for all other players [4].

The price of stability of uncapacitated network design games with respect to
sum-cost for undirected networks is still open. The best known lower bounds are
constant and the best known upper bound is (1 − Θ(1/n4))H(n), showing that
the maximum price of stability for undirected networks is smaller than it is for
directed networks, see [3] and the references given there.

As already noted in [4], it is easy to see that the price of stability is 1 for both
sum-cost and max-cost for symmetric network design games without capacities,
since the strategy profile where all players choose the same minimum-cost path
from the common source to the common destination is a NE and also the social
optimum.

Feldman and Ron [4] present a comprehensive study of symmetric capaci-
tated network design games in undirected networks. They show that the price
of anarchy is unbounded for both sum-cost and max-cost in general networks,
but is bounded by O(n) for parallel links and series-parallel networks. For the
price of stability with respect to sum-cost, they show a bound of O(log n) that is
tight even for parallel links. For the price of stability with respect to max-cost,
they give tight bounds of O(n) for parallel links and series-parallel networks, but
for arbitrary networks their upper bound of O(n log n) leaves a gap to the lower
bound of Ω(n).

3 Model and Definitions

Capacitated Network Design Games. We consider capacitated network
design games, also known as capacitated cost sharing (CCS) games and referred
to as CCS games in the following. These games are discrete. All players (or
agents) have perfect knowledge of their strategy space and the cost, ceterus
paribus, associated with each strategy. For some directed or undirected graph
G = (V,E), each player in a set of n must establish a connection between their
source and sink nodes. Every edge e ∈ E has cost p(e) ∈ R

≥0 and capacity
c(e) ∈ N. We also write pe for p(e) and ce for c(e). Let [n] denote the set
{1, 2, . . . , n}. The game can be represented as the tuple

Δ = 〈n,G = (V,E), {si}i∈[n], {ti}i∈[n], {pe}e∈E , {ce}e∈E〉 .
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The set of agent i’s strategies is the set of si-ti paths in G. We usually denote
the strategy of agent i by Si and the strategy profile of all n players as S. By
S−i we denote the joint action of all agents except i in some profile S. As we
are considering capacitated networks, a feasibility issue arises. A strategy profile
S = (S1, . . . , Sn) is feasible if xe(S) ≤ ce for all e ∈ E, where xe(S) = |{i :
e ∈ Si}| denotes the number of agents that use e in their path. Throughout this
paper we will only consider feasible games, i.e., games for which there is at least
one feasible strategy profile. We do not impose any restrictions on the network
topology, i.e., we allow arbitrary graphs. If we require that all n players have
the same source and the same destination, we call the game symmetric, and
asymmetric otherwise.

The price of an edge to an individual player using the edge is an equal slice
of its cost which is shared among all the players using the edge. This fair cost
division scheme is derived from the Shapley value, and is one of the most widely
studied protocols [6]. The price of an individual’s strategy Si, with respect to
the strategy profile S, is defined as pi(S) =

∑
e∈Si

pe

xe(S) .
A profile S is said to be a Nash equilibrium (NE) if no agent can improve their

cost by a unilateral deviation from the profile, that is, for every player i we have
that for all si-ti paths S′

i, it holds that pi(S) ≤ pi(S′
i, S−i). We consider two social

cost functions: the sum-cost of a profile S, denoted by scΔ(S) =
∑

i∈[n] pi(S),
is the total cost to all agents in S, while the max-cost of a profile S, denoted by
mcΔ(S) = maxi∈[n] pi(S), is the maximum cost of any agent in S. We omit the
subscript Δ if the game is clear from the context.

Note that a game Δ with undirected graph G can be transformed into an
equivalent game in directed graph G′ using the following construction: Every
undirected edge {u, v} of G is replaced by the directed edges (u, x1), (v, x1),
(x1, x2), (x2, u), and (x2, v), where x1 and x2 are two new nodes created for
the transformation of {u, v}. The capacity and cost of (x1, x2) are set equal
to those of {u, v}, the remaining edges have infinite capacity and cost 0. As a
consequence of this transformation, any construction of undirected CCS games
establishing a lower bound on the price of stability (or on the convergence time of
BRD) automatically yields an equivalent construction of directed CCS games.
Similarly, any upper bound on the price of stability proved for directed CCS
games automatically yields the same upper bound for undirected CCS games.
When it is clear from the context that we are considering undirected graphs, we
also write undirected edges in the form (u, v) instead of {u, v}.
Best Response Dynamics. If a strategy profile S is not a NE, there will be a
cheaper alternative to some player’s path. We assume agents have full knowledge
of the paths available to them, as well as their opponents’ strategies, so they know
the cost of all alternatives with respect to S−i. Being self-motivated, players will
update their strategies to the cheapest path available at any given point in what
is known as best response dynamics (BRD). We do not specify the order in which
updates are made, only that they are sequential and that the choice of strategy
of the player making the update must be the best response to her opponents’
current strategies.
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Existence of Nash Equilibria. The CCS games we consider fall into the class
of congestion games studied by Monderer and Shapley [6], who show that all
such games have pure Nash equilibria. They do this by defining a potential
function Φ, which in the context of our model is

Φ(S) =
∑

e∈E

xe(S)∑

i=1

pe

i
. (1)

Note that Φ(S) is bounded by H(n) times the sum-cost of S. As players only make
improving moves, best response dynamics will strictly reduce the potential of the
solution with each step, meaning a profile cannot be revisited. As the strategy
space of a game is finite, any sequence of updates will terminate at a profile
where no player can make a unilateral improvement, which must be a NE.

Quality of Nash Equilibria. When measuring the quality of a NE we will
compare its cost, by either the sum-cost or max-cost objective, to that of the
optimal solution. The ratio between the objective value of the worst NE and the
optimal objective value is called the price of anarchy, while the ratio between
the objective value of the cheapest NE and the optimal objective value is called
the price of stability, abbreviated to PoA and PoS, respectively. We refer to
the optimal objective value with respect to max-cost as OPTmc, and that with
respect to sum-cost as OPTsc. Furthermore, we write PoSmc(Δ) for the price
of stability with respect to max-cost, and similarly for the other cases. For a
particular CCS game Δ whose set of Nash equilibria is denoted by NE (Δ), the
prices of anarchy and stability with respect to max-cost are defined as

PoAmc(Δ) =
maxS∈NE(Δ) mcΔ(S)

OPTmc(Δ)
PoSmc(Δ) =

minS∈NE(Δ) mcΔ(S)
OPTmc(Δ)

with analogous calculations for sum-cost.

4 Cost Increase and Convergence Time of BRD

Best response dynamics are of interest both as a method to discover equilibria
and for the effect they can have on an individual’s cost. In potential games, the
number of updates required to reach a stable solution is bounded by the cardi-
nality of the strategy set, which is the set of all possible strategy combinations
for all players. The size of the strategy set for a game depends on the size and
topology of the underlying graph, the number of players, and the distribution of
their source and sink nodes.

Examining the effect of BRD on a single player’s cost, we now show that,
with an arbitrary number of updates, an arbitrary increase in cost for that player
is possible, within the limits of a factor H(n) increase in sum-cost. This result is
of particular interest as it illustrates that within a game, a start profile which is
cheap for a particular player is no guarantee of a good NE for that individual.
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Theorem 1. There exists a symmetric CCS game Δ with 2 players and a start
profile for Δ such that BRD increase the cost of a player to an arbitrary factor
times the player’s cost in the start profile.

Proof. For m ∈ N with m ≥ 3, consider the CCS game Δ with n = 2 players
and underlying undirected graph G = (V,E), defined as follows (see Fig. 1 for
an illustration for m = 3):

V = {xi, zi | 0 ≤ i ≤ m} ∪ {yi | 1 ≤ i ≤ m}
E = {(xi, xi−1), (zi, zi−1), (xi, yi), (yi, zi−1), (yi, zi) | 1 ≤ i ≤ m}

We denote the two players by a and b. Their source and sink nodes are sa = z0,
ta = xm, sb = x0, and tb = zm. We will discuss in the end how to make the
game symmetric. A horizontal path from xi to xj for some j ≥ i is denoted by
xi → xj , and similarly for zi → zj . (We will use this convention for denoting
horizontal paths throughout the remainder of the paper.)

x0 x1 x2 x3

y1 y2 y3

z0 z1 z2 z3

a1 b1

ab1

a2 b2

ab2

a3 b3

ab3

Fig. 1. Underlying graph of game in proof of Theorem 1

All edges have capacity 1, except those connecting an x node and a y node,
which have capacity 2. Only edges incident with y nodes have non-zero cost. For
any node yi, the costs of the connections to zi−1, zi, xi are denoted by ai, bi,
abi, respectively. These costs are defined as follows (where ε > 0 is a positive
constant satisfying ε < 1/m2):

a1 = 2m ai = 2m − 2i + 2i−2 + 1 − iε for i > 1
b1 = 1 + ε bi = 0 for i > 1
ab1 = 0 abi = 2i−1 + ε for i > 1

Let the start profile be S = ((z0, y1, x1 → xm), (x0, x1, y1, z1 → zm)). Our
aim is to enable a sequence of 2m − 2 best response moves such that the cost
of player b increases by an arbitrary factor (depending on m). In the start pro-
file S, players a and b share the edge (x1, y1) and their costs are 2m and 1 + ε,
respectively. Player a’s best response to player b’s strategy is now the path
z0, z1, y2, x2 → xm with cost a2 + ab2 = 2m − 2 − 2ε + 2 + ε = 2m − ε, so player
a will update to that path. Player b’s best response to a’s new path is now the
path x0 → x2, y2, z2 → zm with cost ab2/2 + b2 = 1 + ε

2 , so player b will update
to that path. As the edge (x2, y2) is now shared, this reduces the cost of player
a to 2m − 1 − 2ε + ε/2.
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Claim. In the profile reached after 2(i − 1) best response moves, for 2 ≤ i ≤
m, player a uses path z0 → zi−1, yi, xi → xm and player b uses path x0 →
xi, yi, zi → zm. Player a’s cost is ai+abi/2 = 2m−2i+2i−2+1−iε+2i−2+ε/2 =
2m + 2i−1 + 1 − 2i − iε + ε/2, and player b’s cost is 2i−2 + ε/2.

After 2(m − 1) best response moves, player a’s path is (z0 → zm−1, ym, xm)
with cost 2m−1 + 1 − mε + ε/2 and player b’s path is (x0 → xm, ym, zm) with
cost 2m−2 + ε/2. Denote this strategy profile by S∗. We claim that S∗ is a
NE. First, note that player a does not have an improving move: As the edges
(xm−1, xm) and (zm, ym) have capacity 1 and are used by player b, player a
can reach xm only via the edges (zm−1, ym) and (ym, xm), and the path that a
uses in S∗ contains only zero-cost edges in addition to these two edges. Player
b’s only alternative paths that are potential improving moves are of the form
(x0 → xi, yi, zi, yi+1, zi+1, . . . , ym−1, zm−1, zm) for some i < m − 1. Any such
path would contain the edge (zm−2, ym−1) with cost am−1 = 2m − 2m−1 +
2m−3 + 1 − (m − 1)ε = 2m−1 + 2m−3 + 1 − (m − 1)ε > 2m−2 + ε/2, so it would
not be an improving move for b. Therefore, S∗ is a NE.

The cost of player b is 1 + ε in the start profile S and 2m−2 + ε/2 in the NE
S∗ that is reached by BRD from S. Hence, the cost of player b has increased by
a factor arbitrarily close to 2m−2. As m can be chosen arbitrarily large, we have
shown that the cost of a player can increase by an arbitrary factor during BRD.

Finally, we observe that the game can be made symmetric by adding edges
(s, z0), (s, x0), (xm, t) and (zm, t) with cost 0 and capacity 1, where s and t are
two new nodes that represent the common source and destination, respectively.
If player a uses edges (s, z0) and (xm, t) and player b uses edges (s, x0) and (zm, t)
in the initial profile, this property must be maintained in every improving move,
and BRD in this symmetric game behave in the same way as in the asymmetric
game discussed above. 	


The symmetric CCS game defined in the proof of Theorem 1 has n = 2
players and the convergence time of BRD is 2(m − 1), where m can be chosen
arbitrarily large. This gives the following corollary, which is in contrast to the
uncapacitated symmetric case where BRD converge in at most n steps.

Corollary 1. There exists a symmetric CCS game and a strategy profile S where
BRD converge to NE in an arbitrarily high number of steps, with respect to n.

5 Price of Stability for Max-Cost

In Sect. 5.1 we show that the PoS is Θ(n log n) in the worst case for asymmetric
CCS games. In Sect. 5.2 we show that the PoS is bounded by n for symmetric
CCS games.

5.1 Asymmetric Games

Theorem 2. There exists an asymmetric CCS game Δ with n players and

PoSmc(Δ) = Θ(n log n) .
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Using the potential function Φ defined in (1) in Sect. 3, it can be shown that
the price of stability for max-cost is upper bounded by O(n log n) for any CCS
game: Consider a strategy profile S′ that minimises the max-cost. Let C ′ denote
the sum-cost of S′, and let M ′ denote the max-cost of S′. It follows that the
optimal max-cost M ′ satisfies M ′ ≥ C ′/n. Furthermore, the potential of S′ is
at most Φ(S′) ≤ C ′ · H(n) = C ′/n · nH(n) ≤ M ′nH(n). BRD starting with S′

converge to a NE S∗ without increasing the potential. Hence, the sum-cost of
S∗, and therefore also the max-cost of S∗, is at most M ′nH(n) [4].

In the following, we will construct a game Δ with an odd number n ≥ 3 of
players where

min
S∗∈NE(Δ)

max
i∈[n]

pi(S∗) ≈ n

2
H(�n/2) · OPTmc(Δ) .

The construction uses parameters m ∈ N and ε > 0, where ε is sufficiently
small, e.g., ε < 0.1, and m is sufficiently large. It is useful to think of m as
approaching infinity. Furthermore, for 2 ≤ i ≤ n, let k(i) denote the value
�(i + 2)/2. Let Δ be the CCS game with underlying graph G = (V,E) defined
as follows (see Fig. 2 for an illustration of the structure of G):

V =
{s1, t1, x[1,m], z[1,m]} ∪
{si, ti, z[i,0] | 1 < i ≤ n} ∪
{x[i,j], y[i,j], z[i,j] | 1 < i ≤ n, 1 ≤ j ≤ m}

E =

{
(s1, x[1,m]), (t1, z[n,m]), (x[1,m], z[1,m])

} ∪{
(x[i,j], x[i,j−1]), (x[i,j], y[i,j]),
(y[i,j], z[i,j]), (y[i,j], z[i,j−1]), (z[i,j], z[i,j−1])

| 1 < i ≤ n, 1 < j ≤ m

}

∪
{

(z[i,0], z[i−1,m]), (z[i,0], z[i,1]), (z[i,0], y[i,1]), (x[i,1], y[i,1]),
(z[i,1], y[i,1]), (x[1,m], x[i,1]), (z[i,0], si), (si, z[1,m]), (ti, x[i,m])

| 1 < i ≤ n

}

c(e) =

⎧
⎨

⎩

n if e = (x[1,m], z[1,m])
2 if e = (x[i,j], y[i,j]) : 1 < i ≤ n, 1 ≤ j ≤ m
1 otherwise

p(e) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2 + 2ε if e = (x[1,m], z[1,m])
1

k(i)2j−1 if e = (x[i,j], y[i,j]) : 1 < i ≤ n, 1 ≤ j ≤ m

H(k(i)) − 3
k(i)2j + ε

k(i)m+j if e = (y[i,j], z[i,j]) : 1 < i ≤ n, 1 ≤ j ≤ m
ε

k(i)+j if e = (y[i,j], z[i,j−1]) : 1 < i ≤ n, 1 ≤ j ≤ m

0 otherwise

The source and sink of player i, for 1 ≤ i ≤ n, are si and ti, respectively.
We refer to the nodes of the form x[i,j] as the x-row, to the nodes of the form
y[i,j] as the y-row, and to the nodes of the form z[i,j] as the z-row. We divide
the main part of the graph into grids as follows: For any i ≥ 2, the i-th grid
is the induced subgraph of all x, y, z nodes with subscript [i, j] for any j. Note
that the edge costs in pairs of consecutive grids, namely the (2k − 2)-th and
(2k − 1)-th grid, are the same for 2 ≤ k ≤ �n/2�. For fixed i and j, we refer
to the subgraph induced by x[i,j], y[i,j], z[i,j] and z[i,j−1] as column j of the i-th
grid. For simplicity we will refer to the costs of the connections from y[i,j] to
x[i,j], z[i,j], z[i,j−1] as ab[k(i),j], a[k(i),j], b[k(i),j], respectively.
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x :

y :

z : [2,0]

s2

[1,m]

[1,m]

s1

[2,1]

[2,1]

[2,1]

[2,2]

[2,2]

[2,2]

[2,m]

[2,m]

[2,m] [n,0]

[n,1]

[n,1]

[n,1]

t2

sn

[n,2]

[n,2]

[n,2]

[n,m]

[n,m]

[n,m] t1

tn

Fig. 2. Game Δ with PoSmc(Δ) = Θ(n log n) for m = 3

Lemma 1. OPTmc(Δ) ≤ 2+2ε
n

Proof. Consider the profile S′ where player 1 uses the path (s1, x[1,m], z[1,m] →
z[n,m], t1) and player i, for 2 ≤ i ≤ n, uses the path (si, z[1,m], x[1,m], x[i,1] →
x[i,m], ti). All n players share the edge (x[1,m], z[1,m]) and use no other edge with
non-zero cost. Each player has cost (2+2ε)/n. The optimal max-cost is therefore
at most (2 + 2ε)/n. 	


Lemma 2. minS∈NE(Δ) mcΔ(S) ≥ a[k(n),m] ≥ H(�n/2) − 3
k(n)2m + ε

(k(n)+1)m

Proof (Sketch). We claim that player 1 must pass through x[n,m] or x[n−1,m]

and hence use edges (x[i,m], y[i,m]) and (y[i,m], z[i,m]) for i = n − 1 or for i = n
in any NE (note that using edges (y[i,m], z[i,m−1]) and (z[i,m−1], z[i,m]) would
block player i from reaching ti), thus paying at least a[k(n−1),m] = a[k(n),m]. To
establish that player 1 must pass through x[n,m] or x[n−1,m] in any NE, we show
that in all other cases some player has an improving move.

Let S be a NE. Assume that the path S1 of player 1 does not pass through
x[n,m] or x[n−1,m]. Consider the last x node (i.e., node in the x-row) that the
path S1 of player 1 visits. Let x[i,j] be that node. Note that i < n−1 or j < m. If
i ≥ 2, note that x[i,j] must be followed directly by y[i,j] and z[i,j] on S1 because
using the subpath (y[i,j], z[i,j−1], z[i,j]) would block player i from reaching her
destination ti. If i = 1, the path S1 must use the edge (x[1,m], z[1,m]). There are
three possible cases for the location of the last x node on S1, and it can be shown
that some player has an improving move in each case.

Case 1: The last x node on S1 is x[1,m]. S1 must travel from x[1,m] to z[1,m]

and then reach t1 by visiting all nodes z[i,j] from left to right, possibly visiting
some y nodes in between adjacent z nodes. One can show that no other player i
can share the edge e1 = (x[1,m], z[1,m]) with player 1, as player i would have an
improving move via z[i,0] in that case due to 2+2ε

i > ab[k(i),1] + b[k(i),1]. Hence,
player 1 pays the full price 2 + 2ε for e1 and one can show that she has an
improving move via x[2,1].
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Case 2: The last x node on S1 is x[i,j] for some i ≥ 2, j < m. One can
use b[k(i),j] + ab[k(i),j]/2 > b[k(i),j+1] + ab[k(i),j+1] to show that player i passes
through (x[i,j+1], y[i,j+1]) (except in one case that can be handled differently)
and a[k(i),j] +ab[k(i),j] > a[k(i),j+1] +ab[k(i),j+1]/2 to show that player 1 then has
an improving move to column j + 1 of the i-th grid.

Case 3: The last x node on S1 is x[i,m] for 2 ≤ i < n−1. Player 1 must continue
from x[i,m] via (x[i,m], y[i,m], z[i,m], z[i+1,0]) and pass through the i′-th grid for
all i ≤ i′ ≤ n to reach t1. Edges in any such grid can therefore only be used
by player 1 and player i′. Let i′ ∈ {i + 1, i + 2} be such that player i′ reaches
the i′-th grid via the edge (si′ , z[i′,0]). One can show that such an i′ exists.
Player 1 must visit z[i′,0]. Using a[k(i),m] + ab[k(i),m]/2 > a[k(i′),1] + ab[k(i′),1]/2
for i′ ∈ {i+1, i+2}, player 1 has an improving move by choosing a path starting
with (s1, x[1,m], x[i′,1], y[i′,1]). 	

Proof (of Theorem 2). We have constructed a CCS game Δ with an optimal
strategy profile with a max-cost of at most 2+2ε

n by Lemma 1, while the max-cost
of the best NE is arbitrarily close to H(�n/2) by Lemma 2. Hence, PoSmc(Δ)
approaches nH(�n/2)/(2 + ε) = Θ(n log n) arbitrarily closely. 	


5.2 Symmetric Games

We now consider the case where all players have the same source and sink, and
find that the upper bound of O(n log n) on the price of stability is not tight. First,
we note that BRD starting with a strategy profile with optimal max-cost can
increase the max-cost by a factor of Ω(n log n) even in the symmetric case. The
game constructed for the proof of Theorem 2 in Sect. 5.1 can be made symmetric
by attaching a common source s that is made adjacent to {s1, . . . , sn} and a
common destination t that is made adjacent to {t1, . . . , tn}. Starting with the
strategy profile where player i visits si, the edge (x[1,m], z[1,m]), and ti, BRD
will converge to a NE that corresponds to a NE for the asymmetric game and
has max-cost Ω(n log n) times the optimal max-cost. Hence, in order to bound
the price of stability in the symmetric case, we cannot use the standard proof
technique of analysing BRD starting with the optimal strategy profile. Instead,
we use a different approach that may be of independent interest. We iteratively
discard a single expensive path from the NE reached by BRD and recombine the
remaining n − 1 paths with the optimal strategy profile, until a NE with small
max-cost is obtained. In this way we are able to show that for every symmetric
CCS game Δ there is always a NE where no player pays more than n times
OPTmc(Δ).

Theorem 3 For any symmetric CCS game Δ in directed or undirected net-
works, PoSmc(Δ) ≤ n.

Proof We present the proof for directed networks. The result for undirected
networks follows using the standard transformation of an undirected network
into an equivalent directed network discussed in Sect. 3.



Further Results on Capacitated Network Design Games 67

Let Δ be a symmetric CCS game with directed graph G = (V,E), n players,
common source s and common destination t. Let S be the optimal strategy
profile with respect to max-cost. Without loss of generality, we can scale the
edge costs so that the sum-cost of S is n. This implies mc(S) ≥ 1.

Consider the NE S∗ that is obtained from S using BRD. If mc(S∗) ≤ n,
then PoS(Δ) ≤ n and we are done. Otherwise, we have n < mc(S∗) ≤ sc(S∗) ≤
Φ(S∗) < Φ(S). Let Φ(S) = n + α and mc(S∗) = n + β for some α, β > 0, and
let Φ(S∗) = Φ(S) − δ for some δ > 0. Note that 0 < β ≤ α − δ. The following
table illustrates these quantities:

mc Φ
S ≥ 1 n + α
S∗ n + β n + α − δ

Now consider the (n−1)-player profile S∗
−1 that consists of the n−1 cheapest (in

terms of cost to the respective player) strategies in S∗. As the change in potential
function equals the cost to an individual player when making some change in
strategy, we have that Φ(S∗

−1) = Φ(S∗)−mc(S∗) = n+α−δ−(n+β) = α−β−δ.
We construct a new n-player strategy profile S′ by combining S and S∗

−1 using
an augmentation step in a suitably defined flow network. (We refer the reader to
[1] for background on network flow, residual networks, and augmenting paths.)
First, define the capacitated network Ḡ = (V, Ē) from G = (V,E) by letting
Ē = {e ∈ E | xe(S) > 0 or xe(S∗

−1) > 0} and setting the capacity c̄(e) for each
e ∈ Ē to c̄(e) = max{xe(S), xe(S∗

−1)}. The strategy profile S∗
−1 induces a flow

f of value n − 1 from s to t in Ḡ. The network Ḡ admits a flow of value n from
s to t as the profile S induces such a flow. Hence, the residual network Ḡf of Ḡ
with respect to flow f admits an augmenting path P from s to t. Let f ′ be the
flow of value n obtained by augmenting f with P . Decompose the flow f ′ into
n paths from s to t, and let S′ be the strategy profile corresponding to these n
paths.

In going from f to f ′, the flow on any edge increases by at most 1, and
every edge on which the flow increases satisfies xe(S) > 0. Let X be the set
of edges on which the flow increases. Observe that Φ(S′) ≤ Φ(S∗

−1) + p(X),
because increasing the number of players on an edge e by 1 adds at most p(e)
to the potential. As X ⊆ {e ∈ E | xe(S) > 0}, we have p(X) ≤ sc(S) = n and
hence Φ(S′) ≤ α − β − δ + n < Φ(S∗).

Let S∗∗ be the NE obtained from S′ via BRD. Note that Φ(S∗∗) ≤ Φ(S′) <
Φ(S∗). If mc(S∗∗) ≤ n, we have found a NE with max-cost at most n times the
optimal max-cost and we are done. Otherwise, we can repeat the construction
that we used to create S∗∗ from S∗, but starting with S∗∗ in place of S∗. Each
time we repeat the construction and obtain a NE with max-cost greater than n,
that NE has strictly smaller potential than the previous NE. As the number of
strategy profiles is finite, we must eventually obtain a NE whose max-cost is at
most n. This shows PoSmc(Δ) ≤ n. 	
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6 Further Research

As we have shown in Corollary 1 that the convergence time of BRD cannot be
bounded by any function of n for symmetric CCS games, an interesting question
is in what other settings it is possible for BRD convergence to be unbounded in n.
In our setting the effect of capacitated edges is to allow the reachable strategy
space of an individual player to be limited by their opponent’s choice of path,
thus increasing the number of states which can be passed before a stable solution
is reached. It may be interesting to identify other games where this behaviour
could be observed.

To prove that the price of stability with respect to max-cost is bounded by
n for symmetric CCS games, we iteratively combined a NE with large max-cost
with the optimal strategy profile. It would be interesting to explore whether this
method could be turned into an efficient procedure for constructively finding a
good NE. As the approach mainly relies on arguments about the reduction in
potential of the strategy profiles constructed, it may be possible to apply it to
other potential games.

References

1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and
Applications. Prentice Hall, New Jersey (1993)

2. Anshelevich, E., Dasgupta, A., Kleinberg, J.M., Tardos, É., Wexler, T., Roughgarden,
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Abstract. We study a very general cost-sharing scheduling game. An
instance consists of k jobs and m machines and an arbitrary weighed
bipartite graph denoting the job strategies. An edge connecting a job and
a machine specifies that the job may choose the machine; edge weights
correspond to processing times. Each machine has an activation cost that
needs to be covered by the job assigned to it. Jobs assigned to a partic-
ular machine share its cost proportionally to the load they generate.

Our game generalizes singleton cost-sharing games with weighted
players. We provide a complete analysis of the game with respect to equi-
librium existence, computation, convergence and quality – with respect
to the total cost. We study both unilateral and coordinated deviations.

We show that the main factor in determining the stability of
an instance and the quality of a stable assignment is the machines’
activation-cost. Games with unit-cost machines are potential games, and
every instance has an optimal solution which is also a pure Nash equilib-
rium (PNE). On the other hand, with arbitrary-cost machines, a PNE
is guaranteed to exist only for very limited instances, and the price of
stability is linear in the number of players. Also, the problem of deciding
whether a given game instance has a PNE is NP-complete.

In our analysis of coordinated deviations, we characterize instances
for which a strong equilibrium exists and can be calculated efficiently,
and show tight bounds for the SPoS and the SPoA.

1 Introduction

In job-scheduling applications, jobs are assigned to machines to be processed.
Many interesting combinatorial optimization problems arise in this setting, which
is a major discipline in operation research. A centralized scheduler should assign
the jobs in a way that achieves load balancing, an effective use of the system’s
resources, or a target quality of service [12]. Many modern systems provide ser-
vice to multiple strategic users, whose individual payoff is affected by the decisions
made by others. As a result, non-cooperative game theory has become an essen-
tial tool in the analysis of job-scheduling applications. We assume that each job
is controlled by a player which has strategic considerations and act to minimize
c© Springer-Verlag Berlin Heidelberg 2015
M. Hoefer (Ed.): SAGT 2015, LNCS 9347, pp. 69–81, 2015.
DOI: 10.1007/978-3-662-48433-3 6
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his own cost, rather than to optimize any global objective. Practically, this means
that the jobs choose a machine instead of being assigned to one by a centralized
scheduler. In this paper we study the corresponding cost-sharing scheduling game
(CSSGs, for short) on restricted unrelated parallel machines.

An instance of CSSG is given by an arbitrary weighted bipartite graph
whose vertex set consists of job-vertices and machine-vertices. The scheduling
is restricted in a sense that not all machines are feasible to all jobs: each job is
connected by edges to the machines that are capable to process it. Edge weights
specify the processing times, reflecting the load generated by the job on the
machine. Scheduling on restricted unrelated machines is the most general model
of scheduling on parallel machines.

In the corresponding game, the strategy space of a job is the set of machines
that can process it. Each machine has an activation cost that needs to be covered
by the jobs assigned to it. Cost-sharing games, in which players’ strategies are
subsets of resources and the resource’s activation cost is covered by its users,
arise in many applications, and are well-studied. Our game is different from
previously studied games in several ways, each arising new challenges. Previous
work on cost-sharing scheduling games assume that either the activation-cost of
a resource is shared uniformly by its users, or that players are weighted. To the
best of our knowledge, this is the first time that this most-general scheduling
model is analyzed as a non-cooperative cost-sharing game.

1.1 Preliminaries

An instance of CSSG is given by an arbitrary weighted bipartite graph G whose
vertex set is J ∪M, where J is a set of k jobs, and M is a set of m machines. Not
all machines are feasible to all jobs: each i ∈ J , has a set Mi ⊆ M of machines
that may process it. For every job i and machine j ∈ Mi, it is known what the
processing time pj,i of i on machine j is. The feasible sets and the processing
times are given by the edges of the bipartite graph. Specifically, there is an edge
(i, j) whose weight is pj,i for every j ∈ Mi.

Job i is controlled by Player i whose strategy space is the set of machines in
Mi. Each machine j ∈ M has an activation cost, c(j), which is shared by the jobs
assigned to it, where the share is proportional to the load generated by the job.

A profile of a CSSG game is a vector P = 〈s1, s2, . . . , sk〉 ∈ (M1 ×M2 × . . .×
Mk) describing the machines selected by the players. For a machine j ∈ M, we
define the load on j in P , denoted Lj(P ), as the total processing times of the
jobs assigned to machine j in P , that is, Lj(P ) =

∑
{i|si=j} pj,i. When P is clear

from the context we omit it. The cost of Player i in the profile P is costi(P ) =
psi,i

Lsi
(P ) · c(si) and the cost of the profile P is cost(P ) =

∑
1≤i≤k costi(P ). Note

that cost(P ) also equals the total activation-cost of non-idle machines, that is,
cost(P ) =

∑
j∈∪isi

c(j).
Consider a game G. For a profile P , a job i ∈ J , and a strategy s′

i ∈ Mi, let
P [i ← s′

i] denote the profile obtained from P by replacing the strategy of Player
i by s′

i. That is, the profile resulting from a migration of job i from machine
si to machine s′

i. A profile P is a pure Nash equilibrium (NE) if no job i can



Cost-Sharing Scheduling Games on Restricted Unrelated Machines 71

benefit from unilaterally deviating from his strategy in P to another strategy;
i.e., for every player i and every strategy s′

i ∈ Mi it holds that costi(P [i ← s′
i]) ≥

costi(P ).
Best-Response Dynamics (BRD) is a local-search method where in each step

some player is chosen and plays its best improving deviation (if one exists), given
the strategies of the other players. Since BRD corresponds to actual dynamics
in real life applications, the question of BRD convergence and the quality of
possible BRD outcomes are major issues in our study.

It is well known that decentralized decision-making may lead to sub-optimal
solutions from the point of view of society as a whole. We denote by OPT the
cost of a social-optimal (SO) solution; i.e., OPT = minP cost(P ). We quantify
the inefficiency incurred due to self-interested behavior according to the price
of anarchy (PoA) [9,11] and price of stability (PoS) [2,14] measures. The PoA
is the worst-case inefficiency of a Nash equilibrium, while the PoS measures the
best-case inefficiency of a Nash equilibrium. Formally,

Definition 1. Let G be a family of games, and let G be a game in G. Let Υ(G)
be the set of Nash equilibria of the game G. Assume that Υ(G) 	= ∅.
– The price of anarchy of G is the ratio between the maximal cost of a PNE and

the social optimum of G. That is, PoA(G) = maxP∈Υ(G) cost(P )/OPT (G).
The price of anarchy of the family of games G is PoA(G) = supG∈GPoA(G).

– The price of stability of G is the ratio between the minimal cost of a PNE and
the social optimum of G. That is, PoS(G) = minP∈Υ(G) cost(P )/OPT (G).
The price of stability of the family of games G is PoS(G) = supG∈GPoS(G).

A firmer notion of stability requires that a profile is stable against coordinated
deviations. A set of players Γ ⊆ J forms a coalition if there exists a move where
each job i ∈ Γ strictly reduces its cost. A profile P is a Strong Equilibrium (SE)
if there is no coalition Γ ⊆ J that has a beneficial move from P [3]. The strong
price of anarchy (SPoA) and the strong price of stability (SPoS) introduced in
[1] are defined similarly, where Υ(G) refers to the set of strong equilibria.

In our study of CSSGs, we distinguish between unit-cost instances, in which
all machines have the same activation cost, say c(j) = 1 for all j ∈ M, and
the general case, where c(j) is arbitrary. We say that an instance has machine-
independent processing-times if for every job i there is pi > 0 such that pj,i = pi

for all j ∈ Mi.

1.2 Related Work and Our Results

Game-theoretic analysis became an important tool for analyzing huge systems
that are controlled by users with strategic consideration. In particular, systems
in which a set of resources is shared by selfish users.

Congestion games [13] consist of a set of resources and a set of players who
need to use these resources. Players’ strategies are subsets of resources. Each
resource has a latency function which, given the load generated by the players
on the resource, returns the cost of the resource. We refer to the setting in which
the latency functions are increasing as congestion games (the more congested
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the resource, the higher the waiting time), and we focus on cost-sharing games
in which each resource has an activation cost that is shared by the players using
it according to some sharing mechanism. For example, in network formation
games, players have reachability objectives and strategies are subsets of edges,
each inducing a simple path from the source to the target [2]. Players that use
an edge uniformly share its cost. Such games always have a PNE and the PoS
is logarithmic in the number of players.

Weighted cost-sharing games are cost-sharing games in which each player
i has a weight wi ∈ IN, and his contribution to the load of the resources he
uses as well as his payments are multiplied by wi. In [2] the authors study the
counterpart of network formation games in the weighted cost-sharing setting.
They show that every two-player game admits a PNE and that the PoS is an
order of the number of players. Later, [5] closed the problem of PNE existence
in these games by showing an example of a three-player game with no PNE.

In a more general setting, players’ strategies are multisets of resources. Thus,
a player may need multiple uses of the same resource and his cost for using the
resource depends on the number of times he uses the resource [4]. Such multiset
cost-sharing games are less stable than classical cost-sharing games. Even very
simple instances may not have a PNE and an equilibrium may be extremely
inefficient (the PoS may equal the number of players) [4].

A lot of attention has been given to scheduling congestion games (for a survey,
see [16]), which can be thought of as a special case of congestion games in
which the players’ strategies are singletons. Most previous work assumes that
the cost of a player is simply the load on the machine, and is thus independent
of the job’s length. Scheduling congestion games that do take the length into an
account, were defined and studied in [10] (there, defined and studied as weighted
congestion games with separable preferences) and [17].

The SPoA and SPoS measures where introduced by [1], which study a similar
game to ours only with congestion effects rather than cost-sharing, and with a
different definition of the social optimum; namely the cost of the highest paying
player (which is the makespan in their setting). The SPoA and SPoS where
studied in [6] for network formation games in the cost-sharing setting.

In this work we complete the picture and study scheduling cost-sharing
games; i.e., when jobs have an incentive to be assigned to a heavily loaded
machine. CSSGs can be viewed as a generalization of classical cost-sharing games
with weighted players [2]. The latter corresponds to the special case in which
all the machines are identical; i.e., all machines are feasible to all jobs and the
processing time of a job on a machine is independent of the machine.

The paper [15] studies the complexity of equilibria in a wide range of cost
sharing games. Their results on singleton cost sharing games correspond to our
model with unit-length jobs (and therefore also fair cost-sharing).

In this paper we provide a complete analysis of the game with respect to
equilibrium existence, computation, convergence and quality. We study both
unilateral and coordinated deviations, distinguishing between instance having
unit or arbitrary machine-activation costs. Our results are detailed in Table 1.

Due to space constraints, some proofs are omitted.
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Table 1. Summary of our results. (†) Deciding whether a PNE exists is NP-complete.
(‡) Adopted to our model from [2]. (§) Extension of [15].

Activation Processing Pure Nash equilibrium Strong equilibrium

costs times

∃ PoA PoS ∃ SPoA SPoS

Unit arbitrary yes min{m, k} 1 no min{m, k
2
+ 1

2
} min{m

2
, k
4
+ 1

2
}

machine-indp. yes min{m, k} 1 yes min{m
2
, k
4
+ 1

2
} min{m

2
, k
4
+ 1

2
}

Arbitrary arbitrary no† k k no k k

machine-indp. yes k‡ k yes§ k k

2 Instances with Unit-Cost Machines

In this section we study game instances in which all machines have the same
activation cost, say c(j) = 1 for all j ∈ M. We suggest a non-standard potential
function to show that an CSSG with unit costs is a potential game. Hence, a
PNE exists. We also provide tight bounds for the PoA and PoS. Let P be a
profile of an CSSG with unit costs. Recall that with unit-cost machines, cost(P )
gives the number of active machines in P , that is, cost(P ) = |{j ∈ M|Lj > 0}|.
Theorem 1. A CSSG with unit-cost machines is a potential game.

Proof. Let G be an CSSG with unit-cost machines. Let P be a profile of G.
Consider the function

Φ(P ) = (cost(P ),Π{j∈M|Lj>0}Lj),

that maps a profile to a 2-dim vector. The first entry in the vector specifies
the number of active machines in P ; The second entry is the product of these
machines’ loads.

We show that Φ is a potential function for the game. Specifically, we show
that every migration of a job in best response dynamics reduces the lexicographic
order of the potential. Consider a profile P and assume, w.l.o.g, that Player 1
migrates from machine u to machine w, and the resulting profile is P ′. Denote by
Lu, L′

u, Lw, and L′
w the loads on machines u and w before and after the deviation

of Player 1, respectively, that is, Lu =
∑

{i|si=u} pu,i and L′
u = Lu − pu,1,

Lw =
∑

{i|si=w} pw,i and L′
w = Lw + pw,1.

Clearly, the migration is be beneficial only if Lw > 0. Thus, cost(P ′) ≤
cost(P ). If L′

u = 0, then cost(P ′) = cost(P ) − 1 and Φ(P ) � Φ(P ′). Otherwise,
cost(P ′) = cost(P ). We show that the second entry in the potential vector
strictly decreases by showing that Φ(P )2/Φ(P ′)2 > 1.

Since the loads on machines other than u,w do not change, we have

Φ(P )2
Φ(P ′)2

=
Lu · Lw

L′
u · L′

w

.
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Note that the above fraction is well-defined as L′
w > pw,1 > 0 and L′

u > 0
since we analyze the case cost(P ′) = cost(P ).

Multiply both numerator and denominator by pu,1 and pw,1 and rearrange
to get

Φ(P )2
Φ(P ′)2

=
Lu

pu,1
· pw,1

L′
w

· Lw

pw,1
· pu,1

L′
u

.

Note that
Lu

pu,1
=

1
cost1(P )

and
pw,1

L′
w

= cost1(P ′). (1)

Also,

1
cost1(P )

=
Lu

pu,1
=

L′
u

pu,1
+ 1 and

1
cost1(P ′)

=
L′

w

pw,1
=

Lw

pw,1
+ 1.

Thus,

pu,1

L′
u

=
cost1(P )

1 − cost1(P )
and

Lw

pw,1
=

1 − cost1(P ′)
cost1(P ′)

. (2)

Combining (1) and (2), we have

Φ(P )2
Φ(P ′)2

=
cost1(P ′)
cost1(P )

· cost1(P )
1 − cost1(P )

· 1 − cost1(P ′)
cost1(P ′)

=
1 − cost1(P ′)
1 − cost1(P )

.

Since the migration is beneficial, cost1(P ) > cost1(P ′). Since both costs are
positive and strictly lower than 1, we conclude that Φ(P )2/Φ(P ′)2 > 1. Thus,
Φ(P ) � Φ(P ′), as required. �

We turn to study the equilibrium inefficiency. Recall that our measurement
for a profile P is the total players’ cost, which is equal to the number of active
machines.

Theorem 2. Every CSSG instance with unit-cost machines has PoS = 1. If
k < m, then PoA = k. If m ≤ k < 2m − 1, then PoA = m − 1. If k ≥ 2m − 1,
then PoA = m.

Proof. Consider a BRD sequence that starts from the social optimum profile
(SO). By Theorem 1, the sequence reaches a PNE. Note that the maximal cost
of a player in the SO is 1. Therefore, during the BRD process, when a player
deviates, he will never activate a new machine (at cost 1). It follows that the
number of active machines in the resulting PNE is at most the social optimum.
Thus, PoS = 1.

We turn to analyze the PoA. Assume first that k < m. We describe a family
of game instances for which PoA = k. Let M = {0, 1, . . . , k, k + 1, . . . , m − 1}.
For 1 ≤ i ≤ k, the capable machines for Player i are {0, i}. Thus, machines
k +1, . . . , m−1 are dummy machines and not capable for any player. The social
optimum is 1 and it is attained when all players are assigned to machine 0.
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The worst PNE is when for all 1 ≤ i ≤ k, Player i is assigned to machine i. This
is indeed a PNE since no player can reduce his payment by deviating to machine
0 - as this machine is not used by any player in this profile and the machine
costs are equal. Thus, PoA = k

1 = k. Clearly, this bound is tight as PoA ≤ k
trivially holds.

The analysis for m ≤ k < 2m − 1 is omitted.
Assume k ≥ 2m − 1. We show a family of instances in which the SO is 1 and

the worst PNE uses m machines, and thus PoA = m. This is clearly a tight bound
as the SO is at least 1 and any schedule uses at most m machines. We continue
to describe the family. The only capable machines for Player 1 is machine 0.
For i = 2, 4, . . . , 2m − 2, Players i and i + 1 have Mi = Mi+1 = {0, i

2}. For
2m − 1 < i ≤ k, we have Mi = {0,m − 1}. The processing times of the players
on all the machines is equal. The SO is clearly 1 and it is achieved when all
players choose machine 0. We claim that the profile in which all players (except
for Player 1) choose their “second” machine is a PNE. Indeed, note that in this
profile there are at least two players using machines 1, . . . , m − 1 and the share
of the machines’ cost is divided equally. Since only Player 1 uses machine 0, a
player cannot reduce his payment by deviating to that machine. �

3 Instances with Arbitrary Cost Machines

In this section we extend the model and consider instances with arbitrary cost
machines. As we show, a PNE may not exist even in very small instances. More-
over, it is NP-hard to decide whether a given instance has a PNE. On the other
hand, a PNE is guaranteed to exist and can be calculated efficiently for instances
with machine-independent processing times.

Theorem 3. A PNE is guaranteed to exist in every CSSG in which m ≤ 2 or
k ≤ 3. There is an CSSG with m = 3 and k = 4 with no PNE.

Proof. The PNE-existence proof for m ≤ 2 or k ≤ 3 is omitted. We show that
there exists an instance with m = 3 machines and k = 4 players that has
no PNE. Consider an instance, InoNE , with three machines having activation
costs 30, 12 and 14, and four jobs having processing times as given in the table.
Note that Job d must be assigned to m1 and each of the other jobs has two
feasible machines. Figure 1 presents a loop of beneficial moves that covers six
out of the eight possible configurations. The payment vector is given below each
configuration. The job that has a beneficial move is darker and it deviates to the
next configuration (the leftmost configuration follows the rightmost one). It is
easy to see that the two other configurations (in which no machine accommodates
two jobs from a, b, c) are not stable either. �

The next natural question is whether it is possible to decide efficiently
whether a given instance has a PNE. We show that this is an NP-complete
problem.

Theorem 4. The question whether a game instance with arbitrary-cost
machines has a PNE is NP-complete.
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m1 m2 m3

a 2 −− 13

b 1 1 −
c −− 2 1

d 2 −− −−
m1    m2   m3 

d 

a 

b 

c 

m1   m2    m3 

d 

a b 

c 

m1    m2    m3 

d 
a 

  m1   m2    m3 

d 

m1   m2   m3 

d 

b 

m1   m2   m3 

b 

c 
a 

b 
a 

d 

a 

b 

(12, 6, 12, 12) (15, 4, 8, 15)   (14, 4, 8, 30) (13, 12, 1, 30) (13, 10, 1, 20) (12, 6, 14, 12) 

c c 

c 

Fig. 1. For c(m1) = 30, c(m2) = 12, and c(m3) = 14, the instance has no PNE.

Proof (Sketch). Checking stability of a given profile can be done efficiently, there-
fore the problem is clearly in NP. We prove hardness by showing a reduction from
the 3-dimensional matching problem (3DM), which is known to be NP-hard [7].
The input to the 3DM problem is a set of triplets T ⊆ X1 × X2 × X3, where
|X1| = |X2| = |X3| = n. The number of triplets is |T | ≥ n. The desired output
is a 3-dim matching T ′ ⊆ T such that |T ′| = n and any element in X1 ∪X2 ∪X3

appears exactly once in T ′.
Given an instance of 3DM, we construct a game G with |T | + 9n machines

and 12n jobs. The first |T | machines, denoted triplet-machines, correspond to the
3DM triplets. The additional 9n machines form 3n copies of machines m1,m2,m3

introduced in the instance InoNE in the proof of Theorem 3. Each copy is asso-
ciated with one element of X1 ∪ X2 ∪ X3.

For each element in X1∪X2∪X3, there are four jobs. The first job corresponds
to the element itself, and three additional jobs are copies of jobs a, b and c from
InoNE .

The main idea is that a 3DM corresponds to a schedule in which the element-
jobs are assigned in triplets to triplet-machines – each paying one third of a
triplet-machine cost. On the other hand, if a 3DM does not exist, then every
unmatched element pays at least half of a triplet-machine cost, and prefers
migrating to a corresponding copy of m1, generating an instance of InoNE as
a sub-instance that has no stable-assignment. Thus, a 3DM matching exists if
and only if G has a PNE schedule. �
Remark 1. An interesting open question along the lines of [8,17] is to suggest a
different cost-sharing mechanism, whose application induces a potential game. It
is not possible to adopt the approach suggested in [8] for weighted cost-sharing
games, since in our game the Shapley values of the players are not well defined.

3.1 Machine-Independent Processing Times

We show that when the processing times are machine independent, a PNE is
guaranteed to exist, can be found efficiently, and BRD converges from any ini-
tial configuration. The BRD convergence proof builds on the proof for weighted
symmetric cost-sharing games [2]. Our game is different since in the setting of
[2], all machines are feasible to all jobs, that is, for all i, we have Mi = M. An
efficient algorithm for calculating a Strong NE for machine-independent process-
ing times can be derived by generalizing the algorithm in [15] for fair cost sharing
(unweighted jobs).



Cost-Sharing Scheduling Games on Restricted Unrelated Machines 77

Theorem 5. If the processing times are independent of the machines, then a
PNE can be found efficiently and BRD converges to a PNE.

Remark 2. A different restricted class of instances assumes job-independent
processing times. That is, for every machine j there exists a pj > 0 be such
that for all jobs for which j ∈ Mi, we have pj,i = pj . Since the cost of a machine
is shared evenly by the jobs assigned to it, a PNE can be computed in polynomial
time by the general algorithm for finding a PNE in fair cost-sharing games with
singleton strategies [15]. Moreover, Φ(P ) =

∑
j∈M c(j) · H(Lj(P )/pj), where

H(0) = 0, and H(k) = 1 + 1/2 + . . . + 1/k, is a potential function whose value
reduces with every improving step of a player.

3.2 Equilibrium Inefficiency

We show that stability might lead to an extremely inefficient outcome with
respect to the total players’ cost. Similar to classic congestion games, the PoA
equals the number of players. On the other hand, the PoS might also be linear
in the number of players (compared to O(log k) in classical cost-sharing games).
Specifically,

Theorem 6. The PoA of CSSGs equals the number of players.

Theorem 7. CSSGs with m > 3 machines and k < m players have PoS = k.

Proof. Since PoS ≤ PoA, Theorem 6 implies that PoS ≤ k. For the lower bound,
consider the following game in which the unique PNE has cost k − ε′ while the
social optimum has cost 1. The jobs have lengths 1, ε, ε2, . . . , εk−1, independent
of the machine they are assigned to. Assume that a single machine, having cost 1
is feasible to all jobs. There are k − 1 additional machines each having cost 1−ε

1+ε .
Each of these machines is feasible to a single job among the k − 1 longer jobs.
The unique PNE is when each machine accommodates a single job. If two or
more jobs are assigned together to the first machine, then the longer will escape
to its dedicated machine. The PNE’s cost is k − ε′, thus PoA = PoS = k, and
we are done. �

For some special cases of CSSGs the PoS can be bounded as follows.

Theorem 8. CSSGs with m ∈ {2, 3} machines have PoS = m. CSSGs with k
players and m < k machines have PoS = Θ(k).

4 Coordinated Deviations

Recall that a strong equilibrium (SE) is a configuration in which no coalition
of players can deviate in a way that benefits all its members. We show that
for machine-independent processing times, a SE is guaranteed to exist, and we
present a poly-time algorithm to find one. We also prove that SPoS = SPoA = m

2 .
On the other hand, we show that a SE may not exist when jobs have arbitrary
processing times. In fact, even with unit-cost machines and if just a single job
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is allowed to have two variable processing times, there exists an instance, with
m = 3 machines and k = 5 jobs that has no SE. The inefficiency of the general
case decreases; we show that SPoS = m

2 and SPoA = m.
We start with the simpler class of machine-independent processing times.

Recall that for every job i there is pi > 0 such that pj,i = pi for all j ∈ Mi. We
show that any sequence of beneficial coordinated deviations converges to a SE.
Moreover, a simple greedy algorithm for finding a SE exist (omitted from this
extended abstract) – even for instances with arbitrary cost machines.

Theorem 9. For any instance with unit-cost machines and machine-
independent processing times, any sequence of beneficial coordinated deviations
converges to a SE.

We turn to study the inefficiency of a strong equilibrium. We show that
even with machine-independent processing times, an optimal solution may be
significantly better than any stable one. Thus, in systems where coordinated
deviations are allowed, we may end-up with an extremely poor outcome.

Theorem 10. CSSGs with unit-costs machines and machine-independent
processing times have SPoS = SPoA = min{m

2 , k
4 + 1

2}.
Proof. We first show the bounds w.r.t. the number of machines. We show that
SPoS ≥ m/2 and SPoA ≤ m/2. The statement will follow since SPoS ≤ SPoA.
We start with the upper bound and show SPoA ≤ m/2. For any profile P it
clearly holds that cost(P ) ≤ m. If the SO assigns the jobs on two or more
machines, then SPoA ≤ m/2 as required. Assume that the SO assigns all the
jobs on a single machine m0. We show that only one machine is active in any SE,
implying that in this case, SPoA = 1. Consider any profile P with more than a
single active machine. We claim that all the jobs assigned on M \ {m0} form a
coalition whose beneficial move is to join m0. By the assumption, this is a valid
migration. Let Si be the set of jobs assigned in P to an active machine Mi. In
P , their total cost is 1. After the deviation, their total cost is strictly less than 1
and since the relative cost of every job in Si remains the same, all the coalition
members benefit from the deviation. We conclude that if SO = 1 then any SE
has cost 1, and if SO ≥ 2 then the m/2-ratio clearly holds, thus, SPoA ≤ m/2.

For the lower bound, we describe an instance with unit-cost machines achiev-
ing SPoS = m/2. An example for m = 5 is given in Fig. 2. Given m, there
are n = 2(m − 1) jobs consisting of m − 1 pairs, a1, b1, . . . , am−1, bm−1. Let
M = {m0, . . . , mm−1}. For 1 ≤ k ≤ m − 1, the processing time of jobs ak and
bk is 2k. Job a1 is restricted to machine m0, Job b1 is restricted to machine m1.
For 2 ≤ k ≤ m − 1, Job ak is restricted to m0 or mk, and Job bk is restricted to
m1 or mk.

The SO assigns all the jobs {ak} on machine m0, and all the jobs {bk} on
machine m1. This optimal profile is not an SE. Note that since 2k >

∑k−1
i=1 2i,

each of am−1 and bm−1 has cost more than 1/2. This pair would benefit from
migrating to machine mm−1, where each will have cost exactly 1/2. After this
deviation, by the same argument, each of am−2 and bm−2 has cost more than 1/2.
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m0 m1 m2    m3 m4

a1

a2

a3

a4

b1

b2

b3

b4

m0 m1 m2       m3 m4

a1
a2

a3

a4

b1

b2

b3

b4

Fig. 2. The social optimum (left) and
the only SE (right) of a unit-cost
instance achieving SPoS = m/2.

m0    m1    m2 

0 

m0    m1    m2 

a1 

a2 

b1 

b2 

a1 a2 

m0    m1    m2 

b1 b2 j0 

Fig. 3. The social optimum (left) and the
worst SE (right) of a unit-cost instance
achieving SPoA = m.

This pair would benefit from migrating to machine mm−2. Next, in turn, every
pair will deviate to a new machine, resulting in the only SE of this instance in
which Job a1 is alone on m0, Job b1 is alone on m1, and for every 2 ≤ k ≤ m−1,
the pair of jobs ak and bk is on mk. There are m active machines in this SE,
while only two machines are active in the SO.

We proceed to prove the bounds w.r.t. the number of players. First, we show
that SPoA ≤ k

4 + 1
2 . We start with the following claim. Assume the SO uses

x machines, where x > 1 as otherwise the analysis above shows SPoA= 1. We
claim that in any SE, the number of machines that accommodate a single job
is at most x. Otherwise, there is a SE P in which at least x + 1 machines
accommodate a single job each. Then, there are (at least) two jobs who share
the same machine in the SO and use a machine by themselves in P . These two
jobs can deviate to their machine in the SO and decrease their cost from 1 in P
to less than 1, contradicting the fact that P is a SE. A corollary of the claim is
that any SE costs at most x+ k−x

2 . Thus, SPoA = x+(k−x)/2
x = 1+ k

2x − 1
2 , which

gets the maximal value of k
4 + 1

2 when x = 2. The lower bound is identical to
the one described above: the SO costs 2 and the only SE costs k−2

2 + 2 = k
2 + 1

2 ,
thus SPoS ≥ k

4 + 1
2 . �

While a SE is guaranteed to exist for any instance with machine-independent
processing times, we show that even the slightest relaxation in this condition may
result in an instance with no SE. Specifically, in Fig. 4, we present an instance
with unit-cost machines that has no SE. Note that all jobs except for a single
one have machine-independent processing times.

Theorem 11. There is an instance with m = 3 unit-cost machines and k = 5
jobs that has no SE.

For instances with arbitrary processing times, a SE is not guaranteed to exist.
For instances having a SE, the bounds on the equilibrium inefficiency depend on
the processing environment: For instances with arbitrary activation costs, the
analysis in Theorem 7 is valid also for coordinated deviations. Thus, SPoA =
SPoS = k. For instances with unit-cost machines, we prove the following.
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m1 m2 m3

a 2 −− 2

b 6 4 −−
c −− 4 4

d 2 −− −−
e −− −− 3

m1  m2   m3 m1  m2  m3 m1  m2  m3 m1  m2   m3 m1  m2  m3 

(1/2, 1/2, 1/2) (2/5, 1/2, 1/2)   (2/9, 1, 4/9) (2/9, 3/4, 4/9) (1/5, 3/5,4/7) 
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a 
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Fig. 4. An instance that has no SE. The table on the left gives the processing times.
The payment vector of jobs a, b and c is given below each configuration. The coalition
that has a beneficial move is darker and its members deviate to the next configuration.
The leftmost configuration follows the rightmost one, creating a loop. It is easy to see
that the three other configurations, in which either b or c are alone on m2, are not
stable either.

Theorem 12. CSSGs with unit-cost machines and arbitrary processing times
have SPoS = min{m

2 , k
4 + 1

2} and SPoA = min{m, k
2 + 1

2}.
Proof. We show the SPoA lower bound w.r.t the number of machines. The
rest of the proof is omitted. We describe an instance with unit-cost machines
achieving SPoA = m. An example for m = 3 is given in Fig. 3. Given m, let
M = {m0, ......mm−1}. There are n = 2m − 1 jobs consisting on m − 1 pairs,
a1, b1, . . . , am−1, bm−1, and a job j0, which is restricted to go to machine m0.
The processing time of j0 on m0 is ε < 1. For 1 ≤ k ≤ m − 1, jobs ak and bk are
restricted to go to m0 or mk. The processing time of either ak or bk on mk is 1.
The processing times of the 2(m − 1) jobs {ak, bk} on m0 are arbitrary distinct
powers of 2.

The SO assigns all the jobs on m0. It is easy to verify that the SO is a SE.
Only one job (whose processing time is the highest power of 2) pays more than
half. This job will not benefit from migrating by itself, and no job would join it
and pay at least half after the deviation. However, the SO is not the only SE.
Consider the profile P ′ in which j0 is on m0 and for 1 ≤ k ≤ m − 1, jobs ak and
bk are on mk. The cost of P ′ is m, where j0 has cost 1 and each of the other jobs
has cost 1/2. We claim that P ′ is a SE. The only possible deviation is into m0.
However, since the processing times on m0 are distinct powers of 2, some job will
cause more than half of the load on m0, resulting in cost more than 1/2. Since
all the coalition members have cost 1/2 in P ′, the deviation is not beneficial for
this job. We conclude that a SE whose cost is m exists and SPoA ≥ m. �
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Abstract. We study mechanism design where the payments charged to
the agents are not in the form of monetary transfers, but are effectively
burned. In this setting, the objective is to maximize social utility, i.e., the
social welfare minus the payments charged. We consider a general setting
with m discrete outcomes and n multidimensional agents. We present two
essentially orthogonal randomized truthful mechanisms that extract an
O(logm) fraction of the maximum welfare as social utility. Moreover, the
first mechanism achieves a O(logm)-approximation for the social welfare,
which is improved to an O(1)-approximation by the second mechanism.
An interesting feature of the second mechanism is that it optimizes over
an appropriately “smoothed” space, thus achieving a nice and smooth
tradeoff between welfare approximation and the payments charged.

1 Introduction

The extensive use of monetary transfers in the Algorithmic Game Theory is
due to the fact that so little can be implemented truthfully in their absence
(see e.g., [14]). On the other hand, if monetary transfers are available (and
acceptable for the particular application), the famous Vickrey-Clarke-Groves
(VCG) mechanism (see e.g., [14]) succeeds in truthfully maximizing the social
welfare, i.e., the total value generated for the agents, albeit with possible very
large monetary transfers from the agents to the center. This is acceptable as
long as the payments generate revenue for the center (e.g., the government for
public good allocation or the auctioneer for allocation of private goods), since
the funds are not lost, but are transferred to the center. Then, the funds could
be redistributed among the agents (see e.g., [9,10]) or invested in favor of the
society.

However, there are settings where the payments required for truthful imple-
mentation take the form of wasted resources, a.k.a. money burning, instead of
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actual monetary transfers. One could think of “computational” challenges (e.g.,
captcha), waiting times (e.g., waiting lists in hospitals [2] or in popular events
or places), or reduction in service quality (see also [4,11] for more examples). In
these settings, the natural objective is to maximize the net gain of the society,
measured by the social welfare minus the payments charged and usually referred
to as the social utility (or the social surplus).

In the AGT community, the general idea of money burning and social util-
ity maximization by truthful mechanisms was first considered by Hartline and
Roughgarden [11]. They considered single-unit and k-unit (unit demand) auc-
tions and presented a family of truthful prior-free mechanisms that guarantee
at least a constant fraction of the optimal (wrt. the social utility) Bayesian
mechanism. Their mechanisms randomize among a VCG auction and a ran-
domized posted price mechanism. To show that these mechanisms achieve an
O(1)-approximation to the social utility extracted by an optimal Bayesian mech-
anism with knowledge of the agents’ distribution (under the i.i.d. assumption),
Hartline and Roughgarden used Myerson’s theorem and characterized the opti-
mal Bayesian mechanism for single-parameter agents. They also proved that if
we compare the social utility of a truthful mechanism to the maximum social
welfare, then the best possible approximation guarantee for k-unit auctions is
Θ(1 + log n

k ), where n is the number of agents.

Contribution. In this work, we consider social utility maximization by truth-
ful mechanisms in a general mechanism design setting with m discrete possible
outcomes and multidimensional agents with positive valuations. Due to the fact
that social utility maximization is closely related to revenue maximization, com-
ing up with a characterization of the optimal (wrt. the social utility) truthful
Bayesian mechanism, as in [11], is a daunting task and far beyond the scope of
this work. Instead, we evaluate the performance of our mechanisms by comparing
their social utility to the maximum social welfare (achievable by an optimal algo-
rithm that does not need to be truthful). In fact, we seek for mechanisms that
achieve nontrivial approximation guarantees wrt. both social utility and social
welfare. Our main contribution is two randomized truthful mechanisms, based
on essentially orthogonal approaches, that approximate social utility within a
best possible factor of O(log m), thus extending the last result of [11] to our
general mechanism design setting.

Probably the simplest candidate mechanisms for utility maximization are
the random allocation, where each outcome is implemented with probability
1/m, and the VCG mechanism. Clearly, the approximation ratio of random
allocation for both the social utility and the social welfare is m, while VCG
cannot approximate within a ratio of m even for the natural case of uniform
i.i.d. bidders. A natural way to approximate social utility is through a careful
tradeoff between VCG, which optimizes welfare but may result in poor utility
due to high payments, and random allocation on appropriate sets of outcomes,
which is truthful without payments and thus, translates all welfare into utility.

Exploiting this intuition and building on the mechanism of [11, Theorem 5.2],
we present a randomized truthful mechanism that approximates both the social
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utility and the social welfare within a factor of O(log m). The idea is to select a
random integer j from 0 to log m, and then, select a random outcome i among
the best (in total value) 2j outcomes, and apply VCG payments. The key step
in establishing the approximation guarantee is to show that in terms of utility
maximization, the worst-case instances correspond to single item auctions. Then,
the upper bound of [11, Theorem 5.2] carries over to our more general setting.
Moreover, since the single item auction is a special case of our setting, the
lower bound of [11, Proposition 5.1] implies that our approximation ratio is
aymptotically tight.

Our second mechanism optimizes the social welfare (using VCG) over a care-
fully defined subspace of the unit simplex with all probability distributions over
the outcomes. Intuitively, if we optimized over the unit simplex, we would have
optimal welfare but probably poor utility, due to high payments when the two
best outcomes are close in total value. So, we define a subspace that is slightly
curved close to the vertices of the unit simplex, thus achieving a significant reduc-
tion in the payments if the best outcomes are close in total value. Due to this
fact, this mechanism is partial, in the sense that with probability 1−ε it may not
implement any outcome (see [5] for another use of partial allocation to induce
truthfulness). For any ε > 0, the approximation ratio is 1+ε for the social welfare
and O(ε−1 log m) for the social utility. Hence, this mechanism achieves a best
possible approximation ratio for the social utility and a constant approximation
for the social welfare, thus significantly improving on our first mechanism. The
main idea behind this mechanism is to “smoothen” the solution space so that
we achieve a smooth tradeoff between welfare approximation and the payments
charged, where for mechanisms close to the optimal, payments are reduced sig-
nificantly faster that social welfare. On the technical side, this mechanism bears
a resemblance to proper scoring rules in [8]. We believe that such mechanisms,
which are based on carefully chosen “smoothed” subspaces and provide smooth
tradeoffs between approximation and payments, are of independent interest and
may find other applications in mechanism design settings with restricted pay-
ments.

Our mechanisms run in time polynomial in the total number of outcomes
m and in the number of agents n. In domains that allow for succinct input
representation (e.g., Combinatorial Auctions, Combinatorial Public Projects),
m is usually exponential in the size of the input. This is not surprising, since
our approximation guarantees are significantly better than known lower bounds
on the polynomial time approximability of several NP-hard problems. In cer-
tain domains, we can combine our mechanisms with existing Maximal-in-Range
mechanisms so that everything runs in polynomial time (e.g., for subaddi-
tive Combinatorial Public Projects, we can use the Maximal-in-Range mech-
anism of [15, Sect. 3.2] and obtain a randomized polynomial-time truthful
mechanism that with O(min{k,

√
u})-approximation for the social welfare and

O(min{k,
√

u} log u)-approximation for the social utility, where u is the number
of items and k is the size of the project).
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Related Work. There is much work on (mostly polynomial-time) truthful
mechanisms with monetary transfers that seek to maximize (exactly or approx-
imately) the social welfare. In this general agenda, our work is closest in
spirit to mechanisms with frugal payments (see e.g., [1,6]). In addition to [11],
Chakravarty and Kaplan [4] characterized the Bayesian mechanism of maximum
social utility in multi-unit (unit demand) auctions. More recently, Braverman
et al. [2] considered utility optimization in health care service allocation, but
they focused on the complexity of computing efficient equilibrium allocations,
instead of approximate truthful mechanisms.

An orthogonal direction is that of revenue redistribution (see e.g., [3,9,10]
and the references therein). Although most of the literature focuses on maxi-
mizing the amount of redistributed VCG payments, some positive results in this
direction concern social utility optimization relaxing the requirement for social
welfare maximization (see e.g., [10]). Our viewpoint and results are incompa-
rable, both technically and conceptually, to those in the area of redistribution
mechanisms. A crucial difference is that in any efficient redistribution mecha-
nism, certain agents should receive payments (this is unavoidable if one insists
on efficiency and individual rationality, see e.g., [12]). This is infeasible our set-
ting, where money-burning payment schemes (e.g., computational challenges or
waiting time) make redistribution infeasible.

2 Preliminaries and Notation

For any integer m, [m] ≡ {1, . . . , m}. We denote the j-th coordinate of a vector x
by xj . For a vector x = (x1, . . . , xm) and i ∈ [m], x−i is x without coordinate i.
For a vector x ∈ R

m and some � ≥ 0, x � = (x�
1, . . . , x

�
m) is the coordinate-wise

power of x and ‖x‖� = (
∑m

j=1 x�
j)

1/� is the �-norm of x . For convenience, we let
‖x‖1 = |x |. Moreover, ‖x‖∞ = maxj∈[m]{xj} is the infinity norm of x .

The Setting. There is a finite set of possible outcomes O and we denote
|O| = m. We consider a set of n strategic agents, each with a private, non-
negative value for each outcome. For agent i, we denote his valuation as a vector
x i ∈ R

m
+ , that is, agent i receives value xij for outcome j. We call the vector

of all valuations x = (x 1, . . . ,xn) a valuation profile. For a valuation profile x ,
w(x ) = x 1 + . . .+xn is the vector of weights for the outcomes. We will write w
instead of w(x ) and w−i instead of w(x−i) when x is clear from the context.

Allocation Rules and Mechanisms. For a finite set S, Δ(S) denotes the
unit simplex over S. A (randomized) allocation rule is a function f : (Rm

+ )n →
Δ(O), mapping valuation profiles to probability distributions over outcomes.
Then fj(x ) is the probability of outcome j on valuation profile x . It follows
that the expected value of agent i is x i · f(x ). We consider allocation rules that
are strongly anonymous, in the sense that f(x ) depends only on w(x ), and we
therefore write the allocation rule only in terms of the weight vector.

A payment rule is a function p : (Rm
+ )n → R

n mapping valuation profiles
to payment vectors. A mechanism is a pair M = (f, p) that given some valua-
tion profile x outputs the probability distribution f(x ) and charges agent i the



Efficient Money Burning in General Domains 89

amount pi(x ). We focus on symmetric payment rules, and we therefore represent
the amount charged to agent i as p(x−i,x i). The expected utility of agent i on
valuation profile x under mechanism M = (f, p) is

x i · f(x ) − p(x−i,x i)

and is the amount he aims to maximize.
We require that our mechanisms are truthful and individually rational in

expectation. A mechanism (f, p) is truthful (in expectation) if for any agent i,
valuation profile x and valuation x ′

i,

x i · f(x ) − p(x−i,x i) ≥ x i · f(x−i,x
′
i) − p(x−i,x

′
i)

and individually rational (IR) if for any agent i and valuation profile x ,

x i · f(x ) − p(x−i,x i) ≥ 0

Objectives and Approximation. Let some mechanism M = (f, p) and
valuation profile x . We denote the total payments of M on input x by
P [x ] =

∑
i p(x−i,x i). The quantities we are interested in maximizing are

the social welfare and the social utility. The social welfare of M on x is
SW [x ] =

∑
i x i · f(x ) = w · f(x ) and the social utility of M on x is

U [x ] = SW [x ] − P [x ]. The maximum possible social utility and social wel-
fare of the mechanism (ignoring truthfulness constraints) on input x is ‖w‖∞.
We say that mechanism M, ρ-approximates social welfare (resp. social utility) if
for any input x , SW [x ] ≥ 1

ρ‖w(x )‖∞ (resp. U [x ] ≥ 1
ρ‖w(x )‖∞). For a mecha-

nism M that ρ1-approximates social welfare and ρ2-approximates social utility,
we say that it approximates social efficiency within (ρ1, ρ2).

Implementable Rules. For every set S ⊆ Rm
+ , the mechanism M = (f, p)

such that f(x ) = arg maxs∈S s ·w and p(x−i,x i) = w−i ·f(x−i)−w−i ·f(x ) is
truthful and individually rational. This follows directly from the analysis of the
VCG mechanism [14]. We refer to such mechanisms as Maximal in Distributional
Range (MIDR) and to the corresponding payment rule as the VCG payment
scheme.

3 Best-Possible Guarantees for Social Utility

In contrast to social welfare maximization, where monetary transfers can be
used freely to truthfully elicit the agents’ preferences, in the case of social utility
maximization, the transfers needed for the implementation of some mechanisms
may be a significant part of the social welfare, thus prohibiting any non-trivial
approximation guarantees.

Since the model we consider is so rich, the single item auction is a special case
of it, when we restrict the domain to m outcomes and m agents, where agent i
has a value vi ≥ 0 for outcome i and zero for the rest. By proving lower bounds
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to the approximation of social utility maximization in this special case, we get
the same lower bounds for the general model. Our main tool here is Myerson’s
characterization of the revenue of any truthful auction in the single parameter
environment.

Theorem 1 (Myerson [13]). For any truthful mechanism M = (f, p) and
valuation profile x, where agent i has some value vi ≥ 0 only for outcome i
and vi is drawn independently from distribution F with cumulative distribution
function FF (v) and probability density function fF (v), E[P (x)] = E[φ · f(x)],
where φi = vi − 1−FF (vi)

fF (vi)
.

Theorem (1) completely deftermines the expected amount of payments for
any truthful allocation rule. This in turn determines the expected utility in
terms of the allocation rule. By plugging in an appropriate distribution we can
come up with lower bounds to the social utility of truthful mechanisms.

Corollary 1. The Vickrey Auction when bidders are drawn i.i.d. from the uni-
form distribution U(0, 1), cannot approximate social utility within a factor better
than m.

This shows that the VCG mechanism for the natural case of uniform i.i.d.
bidders performs no better that a random allocation. By aiming to maximize
the social welfare, it has to charge every bidder his critical price which results to
a high amount of payments, negating the welfare it produces. We therefore need
to come up with mechanisms that instead of maximizing social welfare, employ
suboptimal allocations to reduce payments, while preserving some amount of
welfare. Our goal is to achieve the best possible worst-case guarantee for social
utility maximization. A lower bound on the best approximation ratio in our
setting can be obtained from [11, Proposition 5.1], which we prove here for
completeness.

Corollary 2 ([11]). No truthful mechanism can approximate social utility
within a factor of o(log m).

Proof. If agents are drawn from the exponential distribution, that is fE(x) = e−x,
FE(x) = 1 − e−x, then φi = vi − 1 and by applying Theorem (1) we get that

E[P (x )] = E[w · f(x ) − |f(x )|] = E[SW [x ] − |f(x )|]
and by linearity of expectation E[U [x ]] ≤ 1 It is straightforward to show that
the expectation of the maximum of m i.i.d. exponential random variables equals
Hm where Hm the m-th harmonic number. Then

E[U(x )] ≤ E

[‖w‖∞
Hm

]

and by the probabilistic method we get that there is some profile x for which
the approximation ratio is logarithmic. 
�

We will now describe a mechanism that matches this lower bound in the
general domain.
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Definition 1. For some k ∈ [m], the Topk allocation rule on input x , orders
outcomes in decreasing weight order, w1 ≥ . . . ≥ wm (breaking ties arbitrarily)
and assigns probability 1

k to the first k. Formally, Topk(x ) = arg maxs∈Sk
s · w ,

where Sk is the set of vectors in R
m
+ with exactly k coordinates equal to 1

k and
m − k equal to 0.

Since Topk are welfare maximizers, they can be turned into truthful and
IR mechanisms with the VCG payment scheme. We denote mechanisms of this
family by Mk = (Topk, pk). Each of these mechanism achieves different approx-
imation guarantees with respect to social welfare and social utility in different
settings, with respect to k. Thus by randomizing over them we can provide
worst-case guarantees. In Mechanism 1 we achieve such an optimal social utility
approximation guarantee by randomizing over exponentially increasing values of
k. For simplicity we assume that m is a power of 2.

Mechanism 1. A log m-approximate mechanism for Social Utility
Choose j uniformly at random from {0, 1, 2, . . . , log m}
Let k ← 2j

Output the probability distribution Topk(x ) over outcomes
Charge agent i the amount w−i · Topk(x−i) − w−i · Topk(x )

The complete mechanism is randomization over Mk for some k independent
of the input. As a result, Mechanism1 is truthful and IR as a whole. In order
to quantify the efficiency of the mechanism in terms of utility maximization, we
first show that the worst-case instances are those of the single item auction, that
is for each outcome i there is exactly one single-minded agent with valuation vi

for it (a bidder i is called single-minded if his utility is vi ≥ 0 for some outcome
j ∈ [m] and zero for the rest).

Lemma 1. For any valuation profile x = (x1, . . . ,xn), the utility of
Mechanism 1 on x is higher than the utility on the valuation profile y =
(y1, . . . ,ym), where yi is a single-minded agent for outcome i (yij = 0 for any
i = j).

Proof (sketch). Since the complete mechanism is a randomization over mecha-
nisms Mk is suffices to show this property for each Mk separately. We prove
the claim in two steps:

– First we show that if an agent has positive value for multiple outcomes, split-
ting this agent into single-minded agents (one for each outcome) can only
decrease the total utility. This holds since the “competition” between agents
is increased, and as a result, so do the payments, thus decreasing the total
utility (the social welfare remains unaltered since the mechanism depends only
on the weight of each outcome). By induction we transform any input to one
with single-minded agents without increasing the utility.
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– Then we show that if there are multiple single-minded bidders for the same
outcome, joining their values into a single agent can only decrease the total
utility. The reason for this is that the value the agents must “prove” (in the
form of payments) to the mechanism is initially split amongst them, and can
only increase as they aggregate their values. A single agent with high value is
more critical for the auction than many agents with small values. Again by
induction we can transform any input with single-minded agents to an input
with one single-minded agent per outcome.

The technical details can be found in the full version of the paper. 
�
Theorem 2. Mechanism 1 is a (O(log m), O(log m)) approximation to the social
efficiency.

Proof. By Proposition (1) and the analysis of [11], Mechanism 1, is a O(log m)-
approximation to social utility (and therefore social welfare). For the instance
x = (x 1, 0, . . . , 0), where i is a single minded agent with value v1 for outcome 1,
the approximation ratio of log m is tight for both the welfare and the utility. 
�

4 Optimizing Social Utility Without Sacrificing Social
Welfare

The mechanism of Sect. 3, approximates utility within an optimal logarithmic
factor. However, it also approximates Social Welfare within the same logarithmic
factor. The impossibility of Corollary 2 implies that no mechanism can do better
than (O(1), O(log m))-approximate social efficiency. So the question of simulta-
neously optimizing social welfare stands. We answer this question affirmatively
by presenting a mechanism that optimizes welfare on a smooth probability space.

Theorem 3. For any ε > 0, there is a mechanism M that
(
(1+ε), (1+ε)2

ε ln m
)
-

approximates social efficiency.

Remark 1. We can (O(1), O(log m))-approximate social efficiency simply by
randomizing, with constant probability, between the VCG mechanism and
Mechanism 1. However, the mechanism of Theorem 3 follows from a more general
approach that yields a smooth mechanism and may be of independent interest.

4.1 The Mechanism

Similarly to the previous mechanism, we need a careful tradeoff between the
VCG mechanism and suboptimal allocations close to the uniform mechanism.
We note that the VCG mechanism optimizes the expected welfare by selecting
the best outcome in the unit simplex Δ(O). Here, we optimize on a surface that
is close to the unit simplex, but slightly curved towards the corners, in order to
reduce the payments when the best outcomes are close in weight. To this end,
we define a mechanism by optimizing on the following family of surfaces:
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Sk =
{

s ∈ R
m
+

∣
∣ ‖s‖k ≤ 1

m1−1/k

}

(1)

For any k ≥ 1 or for k = ∞, we define the mechanism fk(x ) = arg
maxs∈Sk

s · w(x ).
The reason VCG is not working for utility maximization is that if the weight

vector for e.g. 2 outcomes is (1, 1 + ε), the mechanism will output the second
outcome instead of a mixture of both. Such a mechanism requires a high amount
of payments in order to truthfully distinguish between the outcomes, leading to
minimal utility. In contrast, the mechanism with allocation fk outputs a “smooth
max” over outcomes leading to a reduced amount of payments (Fig. 1).

o1

o2

w
f(x)

o1

o2

w

f(x)

o1

o2

w

f(x)

Fig. 1. Optimizing on the curved surfaces for m = 2

Lemma 2. The closed form of the mechanism fk is

fk(x) =
1

m1−1/k

w
1

k−1

||w 1
k−1 ||k

Proof. The outcome of the mechanism is the vector s the optimizes w ·s subject
to ‖s‖k ≤ m− k−1

k . By the Minkowski inequality, Eq. (1) defines a strictly convex
space. Therefore the optimal point will lie on the boundary of the space, at the
extremal point in the direction of w . The boundary is defined by

‖s‖k =
1

m1− 1
k

⇐⇒ ‖s‖k
k =

1
mk−1

and since we seek the extremal point in the direction of w , w must be perpen-
dicular to the boundary at the optimal point. Therefore at the optimal point s∗
the gradient of the surface is in the direction of w , that is there is some c such the

∇(‖s∗‖k
k) = cw ⇐⇒ s∗ =

( c

k

) 1
k−1

w
1

k−1

Moreover s∗ needs to be to be on the surface, and therefore

‖s∗‖k
k =

1
mk−1

⇐⇒
( c

k

) 1
k−1

=
1

m
k−1

k ‖w‖
1

k−1
k

k−1

Substituting in the equation for s∗ concludes the proof. 
�
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We are interested in mechanisms with Sk close to S1, so we set k = �/(� − 1)
for some integer � ≥ 1. The resulting mechanism is

f�(x ) =
1

m1/�

w �−1

||w �−1|| �
�−1

(2)

The reader is invited to verify that the mechanism exhibits a smooth tran-
sition between the VCG mechanism (for � → ∞) and the uniform mechanism
(for � = 1). Moreover, the mechanism is partial in the sense that for � ∈ (1,∞),
|f�(x )| < 1 and there is a positive probability that f� does not implement any
outcome.

4.2 Social Welfare Guarantees

Lemma 3. For any � ≥ 1, the mechanism of Eq. (2) approximates the social
welfare within m1/�.

Proof. For any vector a
‖a�‖1

‖a�−1‖ �
�−1

= ‖a‖� (3)

The approximation ratio follows from

w · f(x )
||w ||∞ =

1
m1/�

w · w �−1

‖w �−1‖ �
�−1

‖w‖∞
Equation (3)

= m1/� ‖w‖�

‖w‖∞
≥ 1

m1/�

The analysis is tight since when x consists of a single-minded agent with unit
value, w · f(x ) = 1

m1/� and ‖w‖∞ = 1. 
�

4.3 Bounds to the Revenue of the Mechanism

We will now study the amount of payments charged by the mechanism. The
payments of player i are computed as follows

p(x−i,x i) = w−i · f(x−i) − w−i · f(x )

=
1

m1/�

(

‖w−i‖� − ‖w‖� +
x i · w �−1

‖w‖�−1
�

)

Therefore we can now bound the total amount of payments

Lemma 4. For any integer � ≥ 1, the mechanism of Eq. (2) charges the set of
agents at most

P [x] ≤ 1
m1/�

(

1 − 1
�

)

‖w(x)‖� (4)
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Proof. By summing up the individual payments.

n∑

i=1

p(x−i,x i) =
1

m1/�

(
(
∑

i x i) · w
‖w‖l−1

�

−
∑

i

(‖w‖� − ‖w−i‖�)

)

=
1

m1/�

(

‖w‖� −
∑

i

(‖w‖� − ‖w−i‖�)

)

Therefore it suffices to show that

∑

i

(‖w‖� − ‖w−i‖�) ≥ ‖w‖�

�

The �-th power difference is bound as follows

‖w‖�
� − ‖w−i‖�

� = (‖w‖� − ‖w−i‖�) ·
l−1∑

k=0

(‖w‖l−1−k
� ‖w−i‖k

� )

≤ (‖w‖� − ‖w−i‖�) · �‖w‖�−1
�

For the rest of the proof, for a vector a we denote its j-th coordinate by a [j].
Then

∑

i

‖w‖�
� − ‖w−i‖�

�

�‖w‖�−1
�

≥ ‖w‖�

�
⇐⇒

∑

i

(‖w‖�
� − ‖w−i‖�

�) ≥ ‖w‖�
�

⇐⇒
n∑

i=1

⎛

⎝
m∑

j=1

w �[j] −
n∑

j=1

w �
−i[j]

⎞

⎠ ≥
m∑

j=1

w �[j]

⇐⇒
m∑

j=1

n∑

i=1

(w �[j] − w �
−i[j]) ≥

m∑

j=1

w �[j]

We will prove that the inequality holds for each term separately. It holds that

w �[j] − w �
−i[j] ≥ (w [j] − w−i[j])w �−1[j] = x i[j]w �−1[j]

and summing over i gives us
∑

i

(w �[j] − w �
−i[j]) ≥

∑

i

x i[j]w �−1[j] = w [j]w �−1[j] = w �[j]

concluding the proof. 
�
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4.4 Maximizing Utility

The utility of the mechanism is therefore

U [x ] = w · f(x ) − P [x ] ≥ ‖w‖�

�m1/�
≥ ‖w‖∞

�m1/�

We summarize our results in the following theorem.

Theorem 4. For every integer � ≥ 1, there is a truthful mechanism that
(m1/�, �m1/�)-approximates social efficiency.

The optimal point of this tradeoff in terms of utility maximization is when
� = lnm (for simplicity, we assume in this section that if � is not an integer, it
is rounded to the smallest integer exceeding the given value).

Corollary 3. There is a truthful mechanism that (e, e ln m)-approximates social
efficiency.

Alternatively by setting � = lnm
ln(1+ε) we get the following.

Corollary 4. There is a truthful mechanism, that for any ε > 0,
(
1 + ε, (1+ε)2

ε

ln m
)
- approximates social efficiency.

An interesting property of our mechanism, is that the set of outcomes can be
a priori restricted to some subset of the original outcome space. These mechanism
are known as Maximal in Range (MIR), and are tailored to obtain suboptimal
welfare guarantees in polynomial time for NP-hard problems. Our mechanisms
can be run on these modified outcome spaces with no modification preserving
welfare guarantees and providing social utility logarithmic to the number of
outcomes.

Corollary 5. Let some MIR mechanism with outcome space S, that
a-approximates social welfare. Then, it can be modified to ((1+ε)a)-approximate
social welfare and

(
(1+ε)2

ε a ln |S|
)
-approximate social utility.

Remark 2. We have shown that the mechanism is IR in expectation, however
there are examples where players net negative utility for certain random out-
comes. Nonetheless the mechanism can be modified to be universally IR. Con-
sider some agent i. Let Pi = w · f(x−i) − w · f(x ) denote the payments that
induce truthfulness. If outcome j is realized we charge this agent pij = Pi

x i·f(x)xij .
It is easy to verify that the expected payments are unaltered so truthfulness is
preserved. Moreover, the mechanism is now universally IR. A similar technique
can be found in [7].
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Abstract. R. Lavy and C. Swamy (FOCS 2005, J. ACM 2011) intro-
duced a general method for obtaining truthful-in-expectation mecha-
nisms from linear programming based approximation algorithms. Due to
the use of the Ellipsoid method, a direct implementation of the method is
unlikely to be efficient in practice. We propose to use the much simpler
and usually faster multiplicative weights update method instead. The
simplification comes at the cost of slightly weaker approximation and
truthfulness guarantees.

1 Introduction

Algorithmic mechanism design studies optimization problems in which part of
the input is not directly available to the algorithm; instead, this data is col-
lected from self-interested players. It quests for polynomial-time algorithms that
(approximately) optimize a global objective function (usually called social wel-
fare), subject to the strategic requirement that the best strategy of the players
is to truthfully report their part of the input. Such algorithms are called truthful
mechanisms.

If the underlying optimization problem can be efficiently solved to optimal-
ity, the celebrated VCG mechanism (see, e.g., [17]) achieves truthfulness, social
welfare optimization, and polynomial running time.

In general, the underlying optimization problem can only be solved approx-
imately. Lavi and Swamy ([15,16]) showed that certain linear programming
based approximation algorithms for the social welfare problem can be turned
into randomized mechanisms that are truthful-in-expectation, i.e., reporting the
truth maximizes the expected utility of an player. The LS-mechanism is pow-
erful (see [4,11,15,16] for applications), but unlikely to be efficient in practice
because of its use of the Ellipsoid method. We show how to use the multiplicative
weights update method instead. This results in simpler algorithms at the cost of
somewhat weaker approximation and truthfulness guarantees.
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We next review the LS-mechanism. It applies to integer linear programming
problems of the packing type1 for which the linear programming relaxation can
be solved exactly and for which an α-integrality gap verifier is available (def-
inition below). Let Q ⊆ R

d
≥0 be a packing polytope, i.e., Q is the intersection

of finitely many halfspaces, and if y ∈ Q and x ≤ y then x ∈ Q. We use
QI := Q ∩Z

d for the set of integral points in Q, xj for a typical element of QI ,
and N for the index set of all elements in QI . The mechanism consists of three
main steps:

1. Let vi ∈ R
d
≥0, 1 ≤ i ≤ n, be the valuation of the i-th player and let v =

∑
i vi

be the accumulated valuation. Solve the LP-relaxation, i.e., find a maximizer
x∗ = argmaxx∈Q vT x for the social welfare of the fractional problem, and
determine the VCG prices2 p1, . . . , pn. The allocation x∗ and the VCG-prices
are a truthful mechanism for the fractional problem.

2. Write α · x∗ as a convex combination of integral solutions in Q, i.e., α · x∗ =∑
j∈N λjx

j , λj ≥ 0,
∑

j∈N λj = 1, and xj ∈ QI . This step requires an
α-integrality-gap-verifier for QI for some α ∈ [0, 1]. On input v̄ ∈ R

d
≥0 and

x∗ ∈ Q, an α-integrality-gap-verifier returns an x ∈ QI such that

v̄T x ≥ αv̄T x∗.

3. Pick the integral solution xj with probability λj , and charge the i-th player
the price pi · (vT

i xj/vT
i x∗) and If vT

i x∗ = 0, charge zero.

The LS-mechanism approximates social welfare with factor α and guarantees
truthfulness-in-expectation, i.e., it converts a truthful fractional mechanism into
an α-approximate truthful-in-expectation integral mechanism. With respect to
practical applicability, steps 1 and 2 are the two major bottlenecks. Step 1
requires solving a linear program; an exact solution requires the use of the Ellip-
soid method (see e.g. [10]), if the dimension is exponential. Furthermore, up to
recently, the only method known to perform the decomposition in Step 2 is
through the Ellipsoid method. An alternative method avoiding the use of the
Ellipsoid method was recently given by Kraft, Fadaei, and Bichler [14]. We com-
ment on their result in the next section.

1.1 Our Results

Our result concerns the design and analysis of a practical algorithm for the
LS-scheme. We first consider the case where the LP-relaxation of SWM (social
1 An example is the combinatorial auction problem. There is a set of m items to be

sold to a set of n players. The (reported) value of a set S of items to the i-th player is
vi(S) with vi(∅) = 0 and vi(S) ≤ vi(T ) whenever S ⊆ T . Let xi,S be a 0–1 variable
indicating that set S is given to player i. Then

∑
S xi,S ≤ 1 for every player i as at

most one set can be given to i, and
∑

i

∑
S;j∈S xi,S ≤ 1 for every item j as any item

can be given away only once. The social welfare is
∑

i,S vi(S)xi,S . The polytope Q
is obtained by replacing the integrality constraints for xi,s by 0 ≤ xi,S ≤ 1. Note
that the number d of variables is n2m.

2 pi =
∑

j �=i vT
j (x̂ − x∗), where x̂ = argmaxx∈Q

∑
j �=i vT

j x.
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welfare maximization) in Step 1 of the LS-scheme can be solved exactly and
efficiently and then our problem reduces to the design of practical algorithm for
the Step 2. In what follows we present an algorithm that is fast and practical
for the convex decomposition (i.e., Step 2). Afterwards, we consider a more
general problem where the LP-relaxation in Step 1 of the LS-scheme cannot be
solved exactly and we only have an approximate solution that maximizes the
LP-relaxation within a factor of 1 − ε.

Convex Decomposition. Over the past 15 years, simple and fast methods
[2,8,9,12,13,18,19] have been developed for solving packing and covering linear
programs within an arbitrarily small error guarantee ε. These methods are based
on the multiplicative weights update (MWU) method [1], in which a very simple
update rule is repeatedly performed until a near-optimal solution is obtained.
We show how to replace the use of the Ellipsoid method in Step 2 by an approxi-
mation algorithm for covering linear programs. This result is the topic of Sect. 2.

Theorem 1. Let ε > 0 be arbitrary. Given a fractional point x∗ ∈ Q, and an
α-integrality-gap verifier for QI , we can find a convex decomposition

α

1 + 4ε
· x∗ =

∑

j∈N
λjx

j .

The convex decomposition has size (= number of nonzero λj) at most s(1 +
�ε−2 ln s�), where s is the size of the support of x∗ (= number of nonzero com-
ponents). The algorithm makes at most s�ε−2 ln s� calls to the integrality-gap-
verifier.

Kraft, Fadaei, and Bichler [14] obtained a related result independently. How-
ever, their construction is less efficient in two aspects. First, it requires O(s2ε−2)
calls of the oracle. Second, the size of their convex decomposition might be as
large as O(s3ε−2). In the combinatorial auction problem, s = n + m. Theorem 1
together with Steps 1 and 3 of the LS scheme implies a mechanism that is truthful-
in-expectation and has (α/(1 + 4ε))-social efficiency. A mechanism has γ-social
efficiency, where γ ∈ [0, 1], if the expected social welfare of the allocation returned
by the mechanism is at least γ times the maximum possible social value.

Approximately Truthful-in-Expectation Mechanism. In contrast to Lavi-Swamy
mechanism, let us assume that we do not want to solve the LP-relaxation exactly
but instead, we want to use an ε-approximation algorithm A for it. Garg and
Könemann [8] showed that there is an FPTAS for the packing problem and hence
A exists, for every ε > 0. Using this, we show how to construct a fractional
randomized mechanism for given ε0 ∈ (0, 1/2] and ε = Θ( ε5

0
n4 ) that satisfies:

1. No positive transfer ( i.e., prices are non-negative).
2. Individually rational with probability 1−ε0 (i.e., the utility of any truth-telling

player is non-negative with probability at least 1 − ε0).
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3. (1 − ε0)-truthful-in-expectation (i.e., reporting the truth maximizes the
expected utility of an player up to a factor 1 − ε0)

4. (1 − ε)(1 − ε0)-social efficiency.

Now, let us assume that x is a fractional allocation obtained from the above
mechanism. We apply our convex decomposition technique and Step 3 of the
Lavi-Swamy mechanism to obtain an integral randomized mechanism that satis-
fies the aforementioned conditions 1 to 3 and has α(1−ε)(1−ε0)/(1+4ε)-social
efficiency. We show this result in Sect. 4.

Note that our fractional mechanism refines the one given in [5], where the
dependency of ε on n and ε0 is as ε = Θ(ε0/n9). A recent experimental study
of our mechanism on Display Ad Auctions [6] shows the applicability of these
methods in practice.

2 A Fast Algorithm for Convex Decompositions

Let x∗ ∈ Q be arbitrary. Carr and Vempala [3] showed how to construct a
convex combination of points in QI dominating αx∗ using a polynomial number
of calls to an α-integrality-gap-verifier for QI . Lavi and Swamy [16] modified
the construction to get an exact convex decomposition αx∗ =

∑
i∈N λix

i for the
case of packing linear programs. The construction uses the Ellipsoid method.
We show an approximate version that replaces the use of the Ellipsoid method
by the multiplicative weights update (MWU) method. For any ε > 0, we show
how to obtain a convex decomposition of αx∗/(1 + ε). Let s be the number of
non-zero components of x∗. The size of the decomposition and the number of
calls to the α-integrality gap verifier are O(sε−2 ln s).

This section is structured as follows. We first review Kkandekar’s FPTAS for
covering linear programs (Subsect. 2.1). We then use it and the α-integrality gap
verifier to construct a dominating convex combination for αx∗/(1 + 4ε), where
x∗ ∈ Q is arbitrary (Subsect. 2.2). In Subsect. 2.3, we show how to convert a
dominating convex combination into an exact convex decomposition. Finally, in
Subsect. 2.4, we put the pieces together.

2.1 An FPTAS for Covering Linear Programs

Consider a covering linear program:

min cT x s.t. {Ax ≥ b, x ≥ 0} (1)

where A ∈ R
m×n
≥0 is an m × d matrix with non-negative entries and c ∈

R
n
≥0 and b ∈ R

m
≥0 are non-negative vectors. We assume the availability of a

κ-approximation oracle for some κ ∈ (0, 1].

Oκ(z): Given z ∈ R
m
≥0, the oracle finds a column j of A that maximizes

1
cj

∑m
i=1

ziaij

bi
within a factor of κ:

1
cj

m∑

i=1

ziaij

bi
≥ κ · max

j′∈[n]

1
cj′

m∑

i=1

ziaij′

bi
(2)
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Algorithm 1. Covering(Oκ)
Require: a covering system (A, b, c) given by a κ−approximation oracle Oκ, where

A ∈ R
m×n
≥0 , b ∈ R

m
>0, c ∈ R

n
>0, and an accuracy parameter ε ∈ (0, 1/2]

Ensure: A feasible solution x̂ ∈ R
n
≥0 to (1) s.t. cT x̂ ≤ (1+4ε)

κ
z∗

1: x(0) := 0; t := 0; and T := ln m
ε2

2: while M(t) < T do
3: t := t + 1
4: Let j(t) := Oκ(p(t)/‖p(t)‖1)
5: xj(t)(t) := xj(t)(t − 1) + δ(t) and xj(t) = xj(t − 1) for j �= j(t)
6: end while
7: return x̂ = x(t)

M(t)

For an exact oracle κ = 1, Khandekar [12] gave an algorithm which computes
a feasible solution x̂ to covering LP (1) such that cT x̂ ≤ (1 + 4ε)z∗ where
z∗ is the value of an optimal solution. The algorithm makes O(mε−2 log m)
calls to the oracle, where m is the number of rows in A. If the exact oracle in
Khandekar’s algorithm is replaced by a κ-approximation algorithm, it computes
a feasible solution x̂ ∈ R

n
≥0 to (1) such that cT x̂ ≤ (1 + 4ε)z∗/κ. The algorithm

is given as Algorithm 1 and can be thought of as the algorithmic dual of the
FPTAS for multicommodity flows given in [8]. We use Ai to denote the i-th
row of A. The algorithm constructs vectors x(t) ∈ R

n
≥0, for t = 0, 1, . . . , until

M(t) := mini∈[m] Aix(t)/bi becomes at least T := lnm
ε2 . Define the active list at

time t by L(t) := {i ∈ [m] : Aix(t − 1)/bi < T}. For i ∈ L(t), define

pi(t) := (1 − ε)Aix(t−1)/bi , (3)

and set pi(t) = 0 for i 	∈ L(t). At each time t, the algorithm calls the oracle with
the vector zt = p(t)/‖p(t)‖1, and increases the variable xj(t) by

δ(t) := min
i∈L(t) and ai,j(t) �=0

bi

ai,j(t)
, (4)

where j(t) is the index returned by the oracle. Due to lack of space, the proof of
following theorem and corollary are presented in the full paper [7].

Theorem 2. Let ε ∈ (0, 1
2 ] and let z∗ be the value of an optimum solution to (1).

Procedure Covering(Oκ) (see Algorithm 1) terminates in at most m�ε−2 ln m�
iterations with a feasible solution x̂ of (1) of at most m�ε−2 ln m� positive com-
ponents. At termination, it holds that

cT x̂ ≤ (1 + 4ε)
κ

z∗. (5)

We observe that the proof of Theorem 2 can be modified to give:

Corollary 1. Suppose b = 1, c = 1, and we use the following oracle O′ instead
of O in Algorithm 1:
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O′(A, z): Given z ∈ R
m
≥0, such that 1T z = 1, the oracle finds a column j of A

such that zT A1j ≥ 1.

Then the algorithm terminates in at most m�ε−2 ln m� iterations with a feasible
solution x̂ having at most m�ε−2 ln m� positive entries, such that 1T x̂ ≤ 1 + 4ε.

2.2 Finding a Dominating Convex Combination

Recall that we use N to index the elements in QI . We assume the availability of
an α-integrality-gap-verifier F for QI . We will use the results of the preceding
section and show how to obtain for any x∗ ∈ Q and any positive ε a convex
composition of points in QI that covers αx∗/(1 + 4ε). Our algorithm requires
O(sε−2 ln s) calls to the oracle, where s is the support of x∗.

Theorem 3. Let ε > 0 be arbitrary. Given a fractional point x∗ ∈ Q and an
α-integrality-gap verifier F for QI , we can find a convex combination x̄ of inte-
gral points in QI such that

α

1 + 4ε
· x∗ ≤ x̄ =

∑

i∈N
λix

i.

The convex decomposition has size at most s�ε−2 ln s�, where s is the number
of positive entries of x∗. The algorithm makes at most s�ε−2 ln s� calls to the
integrality-gap verifier.

Proof. The task of finding the multipliers λi is naturally formulated as a covering
LP, namely,

min
∑

i∈N
λi (6)

s.t.
∑

i∈N
λix

i
j ≥ α · x∗

j for all j,

∑

i∈N
λi ≥ 1, λi ≥ 0.

λi ≥ 0.

Clearly, we can restrict our attention to the j ∈ S+ := {j : x∗
j > 0} and

rewrite the constraint for j ∈ S+ as
∑

i∈N λix
i
j/(α · x∗

j ) ≥ 1. For simplicity of
notation, we assume S+ = [1..s]. In the language of the preceding section, we
have m = s + 1, n = |N |, c = 1, b = 1 and the variable x = λ. The matrix
A = (aj,i) is as follows (note that we use j for the row index and i for the column
index):

aj,i :=
{

xi
j/(αx∗

j ) 1 ≤ j ≤ s, i ∈ N
1 j = s + 1, i ∈ N

Thus we can apply Corollary 1 of Sect. 2.1, provided we can efficiently imple-
ment the required oracle O′. We do so using F .
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Oracle O′ has arguments (A, z̃) such that 1T z̃ = 1. Let us conveniently write
z̃ = (w, z), where w ∈ R

s
≥0, z ∈ R≥0, and

∑j=1
j=s wj + z = 1. Oracle O′ needs to

find a column i such that z̃T A1i ≥ 1. In our case z̃T A1i =
∑s

j=1 wjx
i
j/αx∗

j + z,
and we need to find a column i for which this expression is at least one. Since z
does not depend on i, we concentrate on the first term. Define

Vj :=

{
wj

αx∗
j

for j ∈ S+

0 otherwise.

Call algorithm F with x∗ ∈ Q and V := (V1, . . . , Vd). F returns an integer
solution xi ∈ QI such that

V T xi =
∑

j∈S+

wj

αx∗
j

xi
j ≥ α · V T x∗ =

∑

j∈S+

wj ,

and hence, ∑

j∈S+

wj

αx∗
j

xi
j + z ≥

∑

j∈S+

wj + z = 1.

Thus i is the desired column of A.
It follows by Corollary 1 that Algorithm 1 finds a feasible solution λ′ ∈ R

|N |
≥0

to the covering LP (6), and a set Q′
I ⊆ QI of vectors (returned by F), such that

λ′
i > 0 only for i ∈ N ′, where N ′ is the index set returned by oracle O′ and

|N ′| ≤ s�ε−2 ln s� also Λ :=
∑

i∈N ′ λ′
i ≤ (1 + 4ε). Scaling λ′

i by Λ, we obtain a
set of multipliers {λi = λ′

i/Λ : i ∈ N ′}, such that
∑

i∈N ′ λi = 1 and
∑

i∈N ′
λix

i ≥ α

1 + 4ε
x∗. (7)

We may assume xi
j = 0 for all j /∈ S+ whenever λi > 0; otherwise simply replace

xi by a vector in which all components not in S+ are set to zero, by using packing
property this is possible. ��

2.3 From Dominating Convex Combination to Exact Convex
Decomposition

We will show how to turn a dominating convex combination into an exact decom-
position. The construction is general and uses only the packing property. Such
a construction seems to have been observed in [15], but was not made explicit.
Kraft, Fadaei, and Bichler [14] describe an alternative construction. Their con-
struction may increase the size of the convex decomposition (= number of non-
zero λi) by a multiplicative factor s and an additive factor s2. In contrast, our
construction increases the size only by an additive factor s.

Theorem 4. Let x∗ ∈ Q be dominated by a convex combination
∑

i∈N λix
i of

integral points in QI , i.e., ∑

i∈N
λix

i ≥ x∗. (8)
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Algorithm 2. Changing a dominating convex decomposition into an exact
decomposition
Require: A packing convex set Q and point x∗ ∈ Q and a convex combination∑

i∈N λix
i of integral points in QI dominating x∗.

Ensure: A convex decomposition x∗ =
∑

i∈N ′ λix
i with xi ∈ QI .

1: while there is an i ∈ N and a j such that λix
i
j > 0 and

∑
h∈N λhxh − λi1j ≥ x∗

do
2: replace xi by xi − 1j .
3: end while
4: while Δj :=

∑
i∈N λix

i − x∗
j > 0 for some j do

5: {for all i ∈ N and all j: if λix
i
j > 0 then

∑
h∈N λhxh − λi1j < x∗}

6: Let j be such that Δj > 0 and let i be such that λix
i
j > 0. Let B = {j ∈

S+ : xi
j �= 0andΔj > 0} and let b = |B|. Renumber the coordinates such that

B = {1, . . . , b} and Δ1/xi
1 ≤ . . . ≤ Δb/xi

b.
7: For � ∈ {0, . . . , b} define a vector y� by y�

j = xi
j for j ≤ � and y�

j = 0 for j > �.
8: Change the left-hand side of (8) as follows: replace λi by λi−Δb/xi

b; for 1 ≤ � < b,
increase the coefficient of y� by Δ�+1/xi

�+1 − Δ�/xi
�; and increase the coefficient

of y0 by Δ1/xi
1.

9: end while

Then Algorithm 2 achieves equality in (8). It increases the size of the convex
combination by at most s, where s is the number of positive components of x∗.

Proof. Let 1j be the j-th unit vector. As long as there is an i ∈ N and a j
such that λix

i
j > 0 and replacing xi by xi −1j maintains feasibility, i.e., satisfies

constraint (8), we perform this replacement. Note that xi is an integer vector in
QI , therefore xi − 1j remains positive vector and with using packing property,
it is also in QI . We may therefore assume that the set of vectors indexed by N
satisfy a minimality condition which is for all i ∈ N and j ∈ S+ with λix

i
j > 0

∑

h∈N
λhxh

j − λi1j < x∗
j (9)

We will establish (9) as an invariant of the second while-loop.

For j ∈ S+, let Δj =
∑

i∈N λix
i
j − x∗

j . Then Δj ≥ 0 and, by (9), for every
j ∈ S+ and i ∈ N , with λi 	= 0 either xi

j = 0 or Δj < λi ≤ λix
i
j . If Δj = 0 for

all j ∈ S+, we are done. Otherwise, choose j and i ∈ N such that Δj > 0 and
xi

j > 0. Let B = {j ∈ S+ : xi
j 	= 0 and Δj > 0} be the indices in the support

of xi for which Δj is non-zero. We will change the left-hand side of (8) such
that equality holds for all indices in B. The change will not destroy an already
existing equality for an index outside B and hence the number of indices for
which equality holds increases by |B|.

Let b = |B|. By renumbering the coordinates, we may assume B = {1, . . . , b}
and Δ1/xi

1 ≤ . . . ≤ Δb/xi
b. For j ∈ [b], we clearly have

λi − Δj

xi
j

= λi − Δb

xi
b

+
Δb

xi
b

− Δb−1

xi
b−1

+ · · · +
Δj+1

xi
j+1

− Δj

xi
j

.
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Multiplying by xi
j and adding zero a few times, we obtain

λix
i
j − Δj =

(

λi − Δb

xi
b

)

xi
j +

b−1∑

�=j

(
Δ�+1

xi
�+1

− Δ�

xi
�

)

xi
j +

j−1∑

�=1

(
Δ�+1

xi
�+1

− Δ�

xi
�

)

0 +
Δ1

xi
1

0.

For � ∈ {0, . . . , b − 1} define a vector y� by y�
j = xi

j for j ≤ � and y�
j = 0 for

j > �. Then xi
j = y�

j for � ≥ j and 0 = y�
j for � < j. Hence for all j ≤ b

λix
i
j − Δj =

(

λi − Δb

xi
b

)

xi
j +

b−1∑

�=1

(
Δ�+1

xi
�+1

− Δ�

xi
�

)

y�
j +

Δ1

xi
1

y0
j . (10)

Note that the coefficients on the right-hand side of (10) are non-negative and
sum up to λi. Also, by the packing property of Q, y� ∈ QI for 0 ≤ � < b. We
now change the left-hand side of (8) as follows: we replace λi by λi − Δb/xi

b;
for 1 ≤ � < b, we increase the coefficient of y� by Δ�+1/xi

�+1 − Δ�/xi
�; and we

increase the coefficient of y0 by Δ1/xi
1. As a result, we now have equality for all

indices in B. The Δj for j 	∈ B are not affected by this change.
We still need to establish that (9) holds for the vectors y�, 0 ≤ � < b, that

have a non-zero coefficient in the convex combination. Note first that y�
j > 0

implies j ∈ B. Also (8) holds with equality for all j ∈ B. Thus (9) holds.
Consider any iteration of the second while-loop. It adds up to b vectors to

the convex decomposition and decreases the number of nonzero Δ’s by b. Thus
the total number of vectors added to the convex decomposition is at most s. ��

2.4 Fast Convex Decomposition

Proof (of Theorem 1). Theorem 3 yields a convex combination of integer points
of QI dominating αx∗/1 + 4ε. Theorem 4 turns this dominating convex com-
bination into an exact combination. It adds up to |S| additional vectors to the
convex combination. The complexity bounds follow directly from the referenced
theorems. ��

3 Approximately Truthful-in-Expectation Fractional
Mechanisms

In this section we assume that we do not want to solve the LP-relaxation of SWM
exactly and there is an FPTAS for it. Then by using the FPTAS, we construct a
randomized fractional mechanism, Algorithm 3, and state the following theorem.
For the proof of the theorem and FPTAS algorithm see the full paper [7].

Theorem 5. Let ε0 ∈ (0, 1/2], ε = Θ( ε5
0

n4 ) and γ = (1 − ε)(1 − ε0). Given an
ε-approximation algorithm for Q, Algorithm 3 defines a fractional randomized
mechanism with the following conditions:

No positive transfer. (11)
Individually rational with probability1 − ε0. (12)
(1 − ε0)-truthful-in-expectation. (13)
γ-social efficiency, where γ depends on ε0, and ε. (14)
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In order to present Algorithm 3, we make some assumption and define some
notation. Let us assume that the problem is separable that means the variables
can be partitioned into disjoint groups, one for each player, such that the value
of an allocation for a player depends only on the variables in his group, i.e.,

vi(x) = vi(xi),

where xi is the set of variables associated with player i. Formally, any outcome
x ∈ Q ⊆ R

d can be written as x = (x1, . . . , xn) where xi ∈ R
di and d =

d1+ . . .+dn.3 We further assume that for each player i ∈ [n], there is an optimal
allocation ui ∈ Q that maximizes his value for every valuation vi, i.e.,

vi(ui) = max
z∈Q

vi(z), (15)

for every vi ∈ Vi, where Vi denote the all possible valuations of player i. In
combinatorial auction, the allocation ui allocates all the items to player i. Let

Li :=
∑

j �=i

vj(uj) and βi := εLi. (16)

Note that Li does not depend on the valuation of player i. Let A be an FPTAS
for LP relaxation of SWM. We use A(v, ε) to denote the outcome of A on input
v and ε. If ε is understood, we simply write A(v); A(v) is a fractional allocation
in Q. In the following, we will apply A to different valuations which we denote by
v = (vi, v−i), v̄ = (v̄i, v−i), and v′ = (0, v−i). Here vi is the reported valuation of
player i, v̄i is his true valuation and v′

i = 0. We denote the allocation returned
by A on input v (resp., v̄, v′) by x (resp., x̄, x′) and use the payment rule:

pi(v) := max{pVCG
i (v) − βi, 0} (17)

where
pVCG

i (v) := v−i(x′) − v−i(x).

v−i(x) =
∑

j �=i vj(x), x = A(v) and x′ = A(0, v−i). Observe the similarity in the
definition of pVCG

i (v) to the VCG payment rule. In both cases, the payment is
defined as the difference of the total value of two allocations to the players differ-
ent from i. The first allocation ignores the influence of player i (x′ = A(0, v−i))
and the second allocation takes it into account (x = A(v)). Define q0 = (1− ε0

n )n,
ε̄ = ε0/2, and qj = (1 − q0)/n for 1 ≤ j ≤ n. Let η = ε̄(1 − q0)2/n3, η′ = η/qj ,
and ε = ηε̄(1 − q0)/(8n). Let Ui(v) be the utility of player i obtained by the
mechanism which has an allocation function A and payment rule (17). Following
[5], we call player i active if the following two conditions hold:

Ui(v) +
ε̄qi

q0
vi(ui) ≥ qi

q0
η′Li, (18)

vi(ui) ≥ ηLi. (19)

3 In the combinatorial auction problem, variable xi comprises all variables xi,S and
the value of an allocation for player i depends only on the variables xi,S .
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Algorithm 3. The mechanism M of Theorem 5. The vectors ui are defined as
in (15) and the quantities Li are defined in (16). The definitions of q0, qj , active
and inactive player are given in the proof of Theorem 5.
Require: A valuation vector v, a packing convex set Q and an approximation scheme

A.
Ensure: An allocation x ∈ Q and a payment p ∈ R

n

1: Let ε be defined as in the below.
2: Choose an index j ∈ {0, 1, . . . , n}, where 0 is chosen with probability q0 and j ∈

{1, . . . , n} is chosen with probability qj = (1 − q0)/n.
3: if j = 0 then
4: Use ε-approximation algorithm A to compute an allocation x = (x1, . . . , xn) ∈ Q

and compute payments with payment rule (17). For all inactive i, change xi and
pi to zero.

5: else
6: For every 1 ≤ i ≤ n, set

⎧
⎨

⎩

xi = ui, pi = η′Li if i = j and i is active,
xi = ui, pi = 0 if i = j and i is inactive,
xi = 0, pi = 0 if i �= j.

7: end if
8: return (x, p)

Now, we briefly explain Algorithm 3. Let us choose a random number j ∈
{0, 1, . . . , n} with probability qj . If j = 0, we run ε-approximation algorithm A
on v to compute allocation x = (x1, . . . , xn). Then we change xi and pi to zero
for all inactive i. And if j 	= 0, we give optimal set uj to j-th player and charged
him with a price η′Lj if he is active and zero otherwise. For all other players, we
do not assign any item to them and do not charge them any price.

4 Approximately Truthful-in-Expectation Integral
Mechanisms

In this subsection we obtain a randomized mechanism M ′ which returns an
integral allocation. Let ε > 0 be arbitrary. First run Algorithm 3 to obtain x
and p(v). Then compute a convex decomposition of α

1+4εx, which is α
1+4εx =

∑
j∈N λx

j xj . Finally with probability λx
j (we used superscript to distinguish the

convex decompositions of x) return the allocation xj and charge i-th player, the
price pi(v)vi(x

j)
vi(x)

, if vi(x) > 0, and zero otherwise. In the following theorem we
show mechanism M ′ is indeed an approximately truthful-in-expectation integral
mechanism whose proof is appeared in the full paper [7].

Theorem 6. Suppose that ε0 ∈ (0, 1/2] be any constant, ε = Θ( ε5
0

n4 ) and γ =
α(1 − ε)(1 − ε0)/(1 + 4ε). Then we obtain a randomized integral mechanism
satisfying Conditions (11) to (14).
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Abstract. We present a systematic study of Plurality elections with
strategic voters who, in addition to having preferences over election win-
ners, also have secondary preferences, governing their behavior when
their vote cannot affect the election outcome. Specifically, we study two
models that have been recently considered in the literature: lazy voters,
who prefer to abstain when they are not pivotal, and truth-biased voters,
who prefer to vote truthfully when they are not pivotal. For both lazy
and truth-biased voters, we are interested in their behavior under dif-
ferent tie-breaking rules (lexicographic rule, random voter rule, random
candidate rule). Two of these six combinations of secondary preferences
and tie-breaking rules have been studied in prior work; for the remaining
four, we characterize pure Nash equilibria (PNE) of the resulting strate-
gic games and study the complexity of related computational problems.
We then use these results to analyze the impact of different secondary
preferences and tie-breaking rules on the election outcomes. Our results
extend to settings where some of the voters are non-strategic.

1 Introduction

Plurality voting is a popular tool for collective decision-making in many domains,
including both human societies and multiagent systems. Under this voting rule,
each voter is supposed to vote for her most favorite candidate (or abstain); the
winner is then the candidate that receives the highest number of votes. If several
candidates have the highest score, the winner is chosen among them using a
tie-breaking rule; popular tie-breaking rules include the lexicographic rule, which
imposes a fixed priority order over the candidates; the random candidate rule,
which picks one of the tied candidates uniformly at random; and the random
voter rule, which picks the winner among the tied candidates according to the
preferences of a randomly chosen voter.

In practice, voters are often strategic, i.e., they may vote non-truthfully if they
can benefit from doing so. In that case, an election can be viewed as a game,
where the voters are the players, and each player’s space of actions includes vot-
ing for any candidate or abstaining. For deterministic rules (such as Plurality
c© Springer-Verlag Berlin Heidelberg 2015
M. Hoefer (Ed.): SAGT 2015, LNCS 9347, pp. 110–122, 2015.
DOI: 10.1007/978-3-662-48433-3 9
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with lexicographic tie-breaking), the behavior of strategic voters is determined
by their preference ordering, i.e., a ranking of the candidates, whereas for ran-
domized rules a common approach is to specify utility functions for the voters;
i.e., the voters are assumed to maximize their expected utility under the lottery
induced by tie-breaking. The outcome of the election can then be identified with
a pure Nash equilibrium (PNE) of the resulting game.

However, under Plurality and with 3 or more voters, this approach fails to
provide a useful prediction of voting behavior: for each candidate c there is a
PNE where c is the unique winner, irrespective of the voters’ preferences. Indeed,
if there are at least 3 voters, the situation where all of them vote for c is a PNE,
as no voter can change the election outcome. Such equilibria may disappear if we
use a more refined model of voters’ preferences that captures additional aspects
of their decision-making. For instance, in practice, if a voter feels that her vote is
unlikely to have any effect on the outcome, she may decide to abstain from the
election. Also, voters may be averse to lying about their preferences, in which
case they can be expected to vote for their top candidate unless there is a clear
strategic reason to vote for someone else. By taking into account these aspects
of voters’ preferences, we can obtain a more faithful model of their behavior.

The problem of characterizing and computing the equilibria of Plurality vot-
ing, both for “lazy” voters (i.e., ones who prefer to abstain when they are not
pivotal) and for “truth-biased” voters (ones who prefer to vote truthfully when
they are not pivotal), has recently received a considerable amount of attention.
However, it is difficult to compare the existing results, since they rely on different
tie-breaking rules. In particular, Desmedt and Elkind [6], who study lazy voters,
use the random candidate tie-breaking rule, and Obraztsova et al. [17] consider
truth-biased voters and the lexicographic tie-breaking rule. Thus, it is not clear
whether the differences between the results in these papers can be attributed to
the voters’ secondary preferences, or to the tie-breaking rule.

The primary goal of our paper is to tease out the effects of different features
of these models, by systematically considering all the combinations of secondary
preferences and tie-breaking rules. We consider two types of secondary pref-
erences (lazy voters and truth-biased voters) and three tie-breaking rules (the
lexicographic rule, the random voter rule, and the random candidate rule); while
two of these combinations have been studied earlier by [6,17], to the best of our
knowledge, the remaining four possibilities have not been considered before. For
each of the new scenarios, we characterize the set of PNE for the resulting game;
in doing so, we also fill in a gap in the characterization of [6] for lazy voters
and random candidate tie-breaking. We then consider the problems of deciding
whether a given game admits a PNE and whether a given candidate can be
a co-winner/unique winner in some PNE of a given game. For all settings, we
determine the computational complexity of each of these problems, classifying
them as either polynomial-time solvable or NP-complete. Our characterization
results enable us to analyze the impact of various features of our model on
the election outcomes, and thereby evaluate the plausibility of our assumptions
about voters’ secondary preferences. Finally, we briefly discuss the implications
of our results in the setting where some of the voters may be principled, i.e.,
always vote truthfully.
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Related Work. Equilibria of Plurality voting have been investigated by a num-
ber of researchers, starting with [10]. However, most of the earlier works either
consider solution concepts other than pure Nash equilibria, such as iterative
elimination of dominated strategies [7,13], or assume that voters have incom-
plete information about each others’ preferences [14]. Both types of secondary
preferences (lazy voters and truth-biased voters) appear in the social choice lit-
erature, see, respectively, [2,3,19] and [8,11]. In computational social choice,
truth-biased voters have been considered by Meir et al. [12] in the context of
dynamics of Plurality voting; subsequently, Plurality elections with truth-biased
voters have been investigated empirically by Thompson et al. [20] and theoret-
ically by Obraztsova et al. [17]. To the best of our knowledge, the only paper
to study computational aspects of Plurality voting with lazy voters is that of
Desmedt and Elkind [6].

Our approach to tie-breaking is well-grounded in existing work. Lexicographic
tie-breaking is standard in the computational social choice literature. The ran-
dom candidate rule has been discussed by [6], and, more recently, by [15,16].
The random voter rule is used to break ties under the Schulze method [18]; the
complexity of manipulation under this tie-breaking rule has been studied by [1].

2 Preliminaries

For any positive integer t, we denote the set {1, . . . , t} by [t]. We consider elec-
tions with a set of voters N = [n] and a set of alternatives, or candidates,
C = {c1, . . . cm}. Each voter is associated with a preference order, i.e., a strict
linear order over C; we denote the preference order of voter i by �i. The list
(�1, . . . ,�n) is called a preference profile. For each i ∈ N , we set ai to be the top
choice of voter i, and let a = (a1, . . . , an). Given two disjoint sets of candidates
X, Y and a preference order �, we write X � Y if in � all candidates from X
are ranked above all candidates from Y .

We also assume that each voter i ∈ N is endowed with a utility function
ui : C → N; ui(cj) is the utility derived by voter i if cj is the unique election
winner. We require that ui(c) �= ui(c′) for all i ∈ N and all c, c′ ∈ C such
that c �= c′. The vector u = (u1, . . . , un) is called the utility profile. Voters’
preference orders and utility functions are assumed to be consistent, i.e., for
each i ∈ N and every pair of candidates c, c′ ∈ C we have c �i c′ if and only
if ui(c) > ui(c′); when this is the case, we will also say that �i is induced by
ui. Sometimes, instead of specifying preference orders explicitly, we will specify
the utility functions only, and assume that voters’ preference orders are induced
by their utility functions; on other occasions, it will be convenient to reason in
terms of preference orders.

A lottery over C is a vector p = (p1, . . . , pm) with pj ≥ 0 for all j ∈ [m] and∑
j∈[m] pj = 1. The value pj is the probability assigned to candidate cj . The

expected utility of a voter i ∈ N from a lottery p is given by
∑

j∈[m] ui(cj)pj .
In this work, we consider Plurality elections, where each voter i ∈ N submits

a vote, or ballot, bi ∈ C ∪ {∅}; if bi = ∅, voter i is said to abstain. The list
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of all votes b = (b1, . . . , bn) is also called a ballot vector. We say that a ballot
vector is trivial if bi = ∅ for all i ∈ N . Given a ballot vector b and a ballot
b′, we write (b−i, b

′) to denote the ballot vector obtained from b by replacing
bi with b′. The score of an alternative cj in an election with ballot vector b
is given by sc(cj ,b) = |{i ∈ N | bi = cj}|. Given a ballot vector b, we set
M(b) = maxc∈C sc(c,b) and let W (b) = {c ∈ C | sc(c,b) = M(b)}, H(b) =
{c ∈ C | sc(c,b) = M(b) − 1}, H ′(b) = {c ∈ C | sc(c,b) = M(b) − 2}. These
sets are useful in our analysis in the next sections. The set W (b) is called the
winning set. Note that if b is trivial then W (b) = C. If |W (b)| > 1, the winner
is selected from W (b) according to one of the following tie-breaking rules.

(1) Under the lexicographic rule RL, the winner is the candidate cj ∈ W (b) such
that j ≤ k for all ck ∈ W (b).

(2) Under the random candidate rule RC , the winner is chosen from W (b) uni-
formly at random.

(3) Under the random voter rule RV , we select a voter from N uniformly at
random; if she has voted for a candidate in W (b), we output this candidate,
otherwise we ask this voter to report her most preferred candidate in W (b),
and output the answer. This additional elicitation step may appear difficult
to implement in practice; fortunately, we can show that in equilibrium it is
almost never necessary.

Thus, the outcome of an election is a lottery over C; however, for RL this lottery
is degenerate, i.e., it always assigns the entire probability mass to a single can-
didate. For each X ∈ {L,C, V } and each ballot vector b, let pX(b) denote the
lottery that corresponds to applying RX to the set W (b). From the definition of
RC , it follows that for every cj ∈ C it holds that if pC

j (b) �= 0 then pC
j (b) ≥ 1

m .
Similarly, for RV , it follows that if pV

j (b) �= 0 then pV
j (b) ≥ 1

n .
In what follows, we focus on two types of secondary preferences, namely,

lazy voters, who prefer to abstain when their vote has no effect on the elec-
tion outcome, and truth-biased voters, who never abstain, but prefer to vote
truthfully when their vote has no effect on the election outcome. Formally,
pick ε < min{ 1

m2 , 1
n2 }, and consider a utility profile u and a tie-breaking rule

RX ∈ {RC , RV , RL}. Then

– if voter i is lazy, her utility in an election with ballot vector b under tie-
breaking rule RX is given by

Ui(b) =

{∑
j∈[m] p

X
j (b)ui(cj), if bi ∈ C,

∑
j∈[m] p

X
j (b)ui(cj) + ε, if bi = ∅.

– if voter i is truth-biased, her utility in an election with ballot vector b under
tie-breaking rule RX is given by

Ui(b) =

⎧
⎪⎨

⎪⎩

∑
j∈[m] p

X
j (b)ui(cj), if bi ∈ C \ {ai},

∑
j∈[m] p

X
j (b)ui(cj) + ε, if bi = ai,

−∞, if bi = ∅.
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We consider settings where all voters are of the same type, i.e., either all voters
are lazy or all voters are truth-biased; we refer to these settings as lazy or truth-
biased, respectively, and denote the former by L and the latter by T .

We investigate all possible combinations of settings (L, T ) and tie-breaking
rules (RL, RC , RV ). A combination of a setting S ∈ {L, T }, a tie-breaking rule
R ∈ {RL, RC , RV } and a utility profile u induces a strategic game, which we will
denote by (S, R,u): in this game, the players are the voters, the action space of
each player is C∪{∅}, and the players’ utilities U1, . . . , Un for a vector of actions
b are computed based on the setting and the tie-breaking rule as described above.
We say that a ballot vector b is a pure Nash equilibrium (PNE) of the game
(S, R,u) if Ui(b) ≥ Ui(b−i, b

′) for every voter i ∈ N and every b′ ∈ C ∪ {∅}.
For each setting S ∈ {L, T } and each tie-breaking rule R ∈ {RL, RC , RV },

we define three algorithmic problems, which we call (S, R)-ExistNE, (S, R)-
TieNE, and (S, R)-SingleNE. In each of these problems, we are given a candi-
date set C, |C| = m, a voter set N , |N | = n, and a utility vector u = (u1, . . . , un),
where each ui is represented by m numbers ui(c1), . . . , ui(cm); these numbers
are positive integers given in binary. In (S, R)-TieNE and (S, R)-SingleNE we
are also given the name of a target candidate cp ∈ C. In (S, R)-ExistNE we
ask if (S, R,u) has a PNE. In (S, R)-TieNE we ask if (S, R,u) has a PNE b
with |W (b)| > 1 and cp ∈ W (b). In (S, R)-SingleNE we ask if (S, R,u) has a
PNE b with W (b) = {cp}. Each of these problems is obviously in NP, as we can
simply guess an appropriate ballot vector b and check that it is a PNE.

In what follows, we omit some proofs due to space constraints; the omitted
proofs can be found in the full version of the paper [9].

3 Lazy Voters

In this section, we study PNE in Plurality games with lazy voters. The case
where the tie-breaking rule is RC has been analyzed in detail by Desmedt and
Elkind [6], albeit for a slightly different model; we complement their results by
considering RL and RV .

We start by extending a result of [6] to all three tie-breaking rules considered
here.

Proposition 1. For every R ∈ {RL, RC , RV } and every utility profile u, if a
ballot vector b is a PNE of (L, R,u) then for every voter i ∈ N either bi = ∅

or bi ∈ W (b). If |W (b)| = 1, there is exactly one voter i ∈ N with bi �= ∅.

Proof. Suppose that bi �= ∅, bi �∈ W (b) for some voter i ∈ N . Then if i changes
her vote to ∅, the set W (b) will not change, so i’s utility would improve by
ε, a contradiction with b being a PNE of (L, R,u). Similarly, suppose that
|W (b)| = 1 and there are two voters i, i′ ∈ N with bi �= ∅, bi′ �= ∅. It has to
be the case that bi = bi′ = cj for some cj ∈ C, since otherwise |W (b)| > 1. But
then if voter i changes her vote to ∅, cj will remain the election winner, so i’s
utility would improve by ε, a contradiction.
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Lexicographic Tie-breaking. The scenario where voters are lazy and ties are
broken lexicographically turns out to be fairly easy to analyze.

Theorem 1. For any utility profile u the game G = (L, RL,u) has the following
properties:

(1) If b is a PNE of G then |W (b)| ∈ {1,m}. Moreover, |W (b)| = m if and
only if b is the trivial ballot and all voters rank c1 first.

(2) If b is a PNE of G then there exists at most one voter i with bi �= ∅.
(3) G admits a PNE if and only if all voters rank c1 first (in which case c1 is

the unique PNE winner) or there exists a candidate cj with j > 1 such that
(i) sc(cj ,a) > 0 and (ii) for every k < j it holds that all voters prefer cj to
ck. If such a candidate exists, he is unique, and wins in all PNE of G.

The following corollary is directly implied by Theorem 1.

Corollary 1. (L, RL)-ExistNE, (L, RL)-SingleNE and (L, RL)-TieNE are
in P.

Remark 1. The reader may observe that, counterintuitively, while the lexico-
graphic tie-breaking rule appears to favor c1, it is impossible for c1 to win the
election unless he is ranked first by all voters. In contrast, c2 wins the election
as long as he is ranked first by at least one voter and no voter prefers c1 to c2.
In general, the lexicographic tie-breaking rule favors lower-numbered candidates
with the exception of c1. As for c1, his presence mostly has a destabilizing effect:
if some, but not all voters rank c1 first, no PNE exists. This phenomenon is an
artifact of our treatment of the trivial ballot vector: it disappears if we assume
(as [6] does) that when b = (∅, . . . , ∅) the election is declared invalid and the
utility of each voter is −∞: under this assumption c1 is the unique possible
equilibrium winner whenever he is ranked first by at least one voter.

Randomized Tie-breaking. We now consider RC and RV . Desmedt and
Elkind [6] give a characterization of utility profiles that admit a PNE for lazy vot-
ers and RC . However, there is a small difference between our model and theirs
regarding the trivial ballot vector, as explained in Remark 1 above. Further,
their results implicitly assume that the number of voters n exceeds the number
of candidates m; if this is not the case, Theorem 2 in their paper is incorrect (see
Remark 2).

Thus, we will now provide a full characterization of utility profiles u such
that (L, RC ,u) admits a PNE, and describe the corresponding equilibrium ballot
profiles. Our characterization result remains essentially unchanged if we replace
RC with RV : for almost all utility profiles u and ballot vectors b it holds that b
is a PNE of (L, RC ,u) if and only if it is a PNE of (L, RV ,u); the only exception
is the case of full consensus (all voters rank the same candidate first).

Theorem 2. Let u = (u1, . . . , un) be a utility profile over C, |C| = m, and let
R ∈ {RC , RV }. The game G = (L, R,u) admits a PNE if and only if one of the
following conditions holds:
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(1) all voters rank some candidate cj first;
(2) each candidate is ranked first by at most one voter, and ∀� ∈ N : 1

n

∑
i∈N u�(ai)

≥ maxi∈N\{�} u�(ai).
(3) there exists a set of candidates X = {c�1 , . . . , c�k

} with 2 ≤ k ≤ min(n/2,m)
and a partition of the voters into k groups N1, . . . , Nk of size n/k each such
that for each j ∈ [k] and each i ∈ Nj we have c�j

�i c for all c ∈ X \ {c�j
},

and, moreover, 1
k

∑
c∈X ui(c) ≥ maxc∈X\{c�j

} ui(c).

Further, when condition (1) holds for some cj ∈ C and R = RC , then for each
i ∈ N the game G has a PNE where i votes for cj and all other voters abstain,
whereas if R = RV , the game G has a PNE where all voters abstain; if condition
(2) holds, then G has a PNE where each voter votes for her top candidate; and
if condition (3) holds for some set X, then G has a PNE where each voter votes
for her favorite candidate in X. The game G has no other PNE.

Remark 2. Desmedt and Elkind [6] claim (Theorems 1 and 2) that for RC and
lazy voters, a PNE exists if and only if the utility profile satisfies either condition
(1) or (3) with the constraint k ≤ n/2 removed. To see why this is incorrect,
consider a 2-voter election over C = {x, y, z}, where the voters’ utility functions
are consistent with preference orders x � y � z and x � z � y, respectively.
According to [6], the vector (y, z) is a PNE. This is obviously not true: each of
the voters would prefer to change her vote to x. Note, however, that the two
characterizations differ only when m ≥ n, and in practice the number of voters
usually exceeds the number of candidates.

Desmedt and Elkind [6] show that checking condition (3) of Theorem 2 is
NP-hard; in their proof n > m, and the proof does not depend on how the
trivial ballot is handled. Further, their proof shows that checking whether a
given candidate belongs to some such set X is also NP-hard. On the other
hand, Theorem 2 shows that PNE with singleton winning sets only arise if some
candidate is unanimously ranked first, and this condition is easy to check. We
summarize these observations as follows.

Corollary 2. For R ∈ {RC , RV }, the problems (L, R)-ExistNE and (L, R)-
TieNE are NP-complete, whereas (L, R)-SingleNE is in P.

4 Truth-Biased Voters

For truth-biased voters, our exposition follows the same pattern as for lazy vot-
ers: we present some general observations, followed by a quick summary of the
results for lexicographic tie-breaking, and continue by analyzing randomized tie-
breaking. The following result is similar in spirit to Proposition 1.

Proposition 2. For every R ∈ {RL, RC , RV } and every utility profile u, if a
ballot vector b is a PNE of (T , R,u) then for every voter i ∈ N we have bi = ai

or bi ∈ W (b).
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Lexicographic Tie-breaking. Obraztsova et al. [17] characterize the PNE of
the game (T , RL,u). Their characterization is quite complex, and we will not
reproduce it here. However, for the purposes of comparison with the lazy voters
model, we will use the following description of truthful equilibria.

Proposition 3 (Obraztsova et al. [17], Theorem 1). Consider a utility
profile u, let a be the respective truthful ballot vector, and let j = min{r | cr ∈
W (a)}. Then a is a PNE of (T , RL,u) if and only if neither of the following
conditions holds:

(1) |W (a)| > 1, and there exists a candidate ck ∈ W (a) and a voter i such that
ai �= ck and ck �i cj.

(2) H(a) �= ∅, and there exists a candidate ck ∈ H(a) and a voter i such that
ai �= ck, ck �i cj, and k < j.

We will also utilize a crucial property of non-truthful PNE. For this, we first
need the following definition.

Definition 1. Consider a ballot vector b, where candidate cj is the winner
under RL. A candidate ck �= cj is called a threshold candidate with respect to b if
either (1) k < j and sc(ck,b) = sc(cj ,b)−1 or (2) k > j and sc(ck,b) = sc(cj ,b).
We denote the set of threshold candidates with respect to b by T (b).

That is, a threshold candidate is someone who could win the election if he
had one additional vote. A feature of all non-truthful PNE is that there must
exist at least one threshold candidate. The intuition for this is that, since voters
who are not pivotal prefer to vote truthfully, in any PNE that arises under
strategic voting, the winner receives just enough votes so as to beat the required
threshold (as set by the threshold candidate) and not more. Formally, we have
the following lemma.

Lemma 1 (Obraztsova et al. [17], Lemma 2). Consider a utility profile u,
let a be the respective truthful ballot vector, and let b �= a be a non-truthful PNE
of (T , RL,u). Then T (b) �= ∅. Further, sc(ck,b) = sc(ck,a) for every ck ∈ T (b),
i.e., all voters whose top choice is ck vote for ck.

The existence of a threshold candidate is an important observation about the
structure of non-truthful PNE, and we will use it repeatedly in the sequel. Note
that the winner in a does not have to be a threshold candidate in a non-truthful
PNE b.

Obraztsova et al. show that, given a candidate cp ∈ C and a score s, it is
computationally hard to decide whether the game (T , RL,u) has a PNE b where
cp wins with a score of s. This problem may appear to be “harder” than (T , RL)-
TieNE or (T , RL)-SingleNE, as one needs to ensure that cp obtains a specific
score; on the other hand, it does not distinguish between cp being the unique
top-scorer or being tied with other candidates and winning due to tie-breaking.
We now complement this hardness result by showing that all three problems we
consider are NP-hard for T and RL.
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Theorem 3. (T , RL)-SingleNE, (T , RL)-ExistNE, and (T , RL)-TieNE are
NP-complete.

The proof is by reduction from Maximum k-Subset Intersection (MSI);
see [9] for a formal definition of this problem. Surprisingly, the complexity of
MSI was very recently posed as an open problem by Clifford and Popa [5];
subsequently, MSI was shown to be hard under Cook reductions in [21]. In our
proof we first establish NP-hardness of MSI under Karp reductions, which may
be of independent interest, and then show NP-hardness of our problems by
constructing reductions from MSI.

Randomized Tie-breaking. It turns out that for truth-biased voters, the
tie-breaking rules RC and RV induce identical behavior by the voters; unlike for
lazy voters, this holds even if all voters rank the same candidate first.

For clarity, we present our characterization result for randomized tie-breaking
in three parts. We start by considering PNE with winning sets of size at least 2;
the analysis for this case turns out to be very similar to that for lazy voters.

Theorem 4. Let u = (u1, . . . , un) be a utility profile over C, |C| = m, and let
R ∈ {RC , RV }. The game G = (T , R,u) admits a PNE with a winning set of
size at least 2 if and only if one of the following conditions holds:

(1) each candidate is ranked first by at most one voter, and, moreover,
1
n

∑
i∈N u�(ai) ≥ maxi∈N\{�} u�(ai) for each � ∈ N .

(2) there exists a set of candidates X = {c�1 , . . . , c�k
} with 2 ≤ k ≤ min(n/2,m)

and a partitioning of the voters into k groups N1, . . . , Nk of size n/k each
such that for each j ∈ [k] and each i ∈ Nj we have c�j

�i c for all c ∈
X \ {c�j

}, and, moreover, 1
k

∑
c∈X ui(c) ≥ maxc∈X\{c�j

} ui(c).

Further, if condition (1) holds, then G has a PNE where each voter votes for her
top candidate, and if condition (2) holds for some X, then G has a PNE where
each voter votes for her favorite candidate in X. The game G has no other PNE.

The case where the winning set is a singleton is surprisingly complicated. We will
first characterize utility profiles that admit a truthful PNE with this property.

Theorem 5. Let u = (u1, . . . , un) be a utility profile over C, let R ∈ {RC , RV },
and suppose that W (a) = {cj} for some cj ∈ C. Then a is a PNE of the game
G = (T , R,u) if and only if for every i ∈ N and every ck ∈ H(a) \ {ai}, it holds
that cj �i ck.

Finally, we consider elections that have non-truthful equilibria with singleton
winning sets.

Theorem 6. Let u = (u1, . . . , un) be a utility profile over C, let R ∈ {RC , RV },
and consider a ballot vector b with W (b) = {cj} for some cj ∈ C and br �= ar

for some r ∈ N . Then b is a PNE of the game G = (T , R,u) if and only if all
of the following conditions hold:
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(1) bi ∈ {ai, cj} for all i ∈ N ;
(2) H(b) �= ∅;
(3) cj �i ck for all i ∈ N and all ck ∈ H(b) \ {bi};
(4) for every candidate c� ∈ H ′(b) and each voter i ∈ N with bi = cj, i prefers

cj to the lottery where a candidate is chosen from H(b) ∪ {cj , c�} according
to R.

We now consider the complexity of ExistNE, TieNE, and SingleNE
for truth-biased voters and randomized tie-breaking. The reader may observe
that the characterization of PNE with ties in Theorem 4 is essentially identical
to the one in Theorem 2. As a consequence, we immediately obtain that (T , RC)-
TieNE and (T , RV )-TieNE are NP-hard. For ExistNE and SingleNE, a sim-
ple modification of the proof of Theorem 3 shows that these problems remain
hard under randomized tie-breaking. These observations are summarized in the
following corollary.

Corollary 3. For R ∈ {RC , RV }, (T , R)-SingleNE, (T , R)-TieNE, and
(T , R)-ExistNE are NP-complete.

5 Comparison

We are finally in a position to compare the different models considered in this
paper.

Tie-breaking Rules. We have demonstrated that in equilibrium the two ran-
domized tie-breaking rules (RC and RV ) induce very similar behavior, and iden-
tical election outcomes, both for lazy and for truth-biased voters. This is quite
remarkable, since under truthful voting these tie-breaking rules can result in
very different lotteries. In contrast, there is a substantial difference between
the randomized rules and the lexicographic rule. For instance, with lazy vot-
ers, ExistNE is NP-hard for RC and RV , but polynomial-time solvable for RL.
Further, RL is, by definition, not neutral, and Theorem 1 demonstrates that
candidates with smaller indices have a substantial advantage. For truth-biased
voters the impact of tie-breaking rules is less clear: while we have NP-hardness
results for all three rules, it appears that, in contrast with lazy voters, PNE
induced by randomized tie-breaking are “simpler” than those induced by RL.

Lazy vs. Truth-Biased Voters. Under lexicographic tie-breaking, the sets of
equilibria induced by the two types of secondary preferences are incomparable:
there exists a utility profile u such that the sets of candidates who can win in
PNE of (L, RL,u) and (T , RL,u) are disjoint.

Example 1. Let C = {c1, c2, c3}, and consider a 4-voter election with one vote of
the form c2 � c3 � c1, and three votes of the form c3 � c2 � c1. The only PNE
of (L, RL,u) is (c2, ∅, ∅, ∅), where c2 wins, whereas the only PNE of (T , RL,u)
is (c2, c3, c3, c3), where c3 wins.
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For randomized tie-breaking, the situation is more interesting. For concrete-
ness, let us focus on RC . Note first that the utility profiles for which there exist
PNE with winning sets of size 2 or more are the same for both voter types. Fur-
ther, if (L, RC ,u) has a PNE b, with |W (b)| = 1 (which happens only if there is
a unanimous winner), then b is also a PNE of (T , RC ,u). However, (T , RC ,u)
may have additional PNE, including some non-truthful ones. In particular, for
truth-biased voters, the presence of a strong candidate is sufficient for stability:
Proposition 3 implies that if there exists a c ∈ C such that sc(c,a) ≥ sc(c′,a)+2
for all c′ ∈ C \ {c}, then for any R ∈ {RL, RC , RV } the truthful ballot vector a
is a PNE of (T , R,u) with W (a) = {c}.

Existence of PNE. For truth-biased voters, one can argue that, when the
number of voters is large relative to the number of candidates, under reasonable
probabilistic models of elections, the existence of a strong candidate (as defined
in the previous paragraph) is exceedingly likely. Thus, elections with truth-biased
voters typically admit stable outcomes; this is corroborated by the experimental
results of [20]. In contrast, for lazy voters stability is more difficult to achieve,
unless there is a candidate that is unanimously ranked first: under randomized
tie-breaking rules, there needs to be a very precise balance among candidates
that end up being in W (b), and under RL the eventual winner has to Pareto-
dominate all candidates that lexicographically precede him.

Quality of PNE. In all of our models, a candidate ranked last by all voters
cannot be elected, in contrast to the basic game-theoretic model for Plurality
voting. However, not all non-desirable outcomes are eliminated: under RV and
RC both lazy voters and truth-biased voters can still elect a Pareto-dominated
candidate with non-zero probability in PNE. This has been shown for lazy voters
and RC (Example 1 in [6]), and the same example works for truth-biased voters
and RV . A similar construction shows that a Pareto-dominated candidate may
win under RL when voters are truth-biased. In contrast, lazy voters cannot elect
a Pareto-dominated candidate under RL: Theorem 1 shows that the winner has
to be ranked first by some voter.

We can also measure the quality of PNE by analyzing the Price of Anarchy
(PoA) in both models. The study of PoA in the context of voting has been

Table 1. Complexity results: P stands for “polynomial-time solvable”, NPc stands for
“NP-complete”.

SingleNE TieNE ExistNE

(L, RL) P (Corollary 1) P (Corollary 1) P (Corollary 1)

(L, RC) P (Corollary 2) NPc (Corollary 2) NPc (Corollary 2)

(L, RV ) P (Corollary 2) NPc (Corollary 2) NPc (Corollary 2)

(T , RL) NPc (Theorem 3) NPc (Theorem 3) NPc (Theorem 3)

(T , RC) NPc (Corollary 3) NPc (Corollary 3) NPc (Corollary 3)

(T , RV ) NPc (Corollary 3) NPc (Corollary 3) NPc (Corollary 3)
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recently initiated by Branzei et al. [4]. The additive version of PoA, which was
considered in [4], is defined as the worst-case difference between the score of the
winner under truthful voting and the truthful score of a PNE winner. It turns
out that PoA can be quite high, both for lazy and for truth-biased voters: in the
full version of the paper we show that PoA = Ω(n) in all of our models. Even
though these results are not encouraging, PoA is only a worst-case analysis and
we expect a better performance on average. Indeed, for the truth-biased model,
this is supported by the experimental evaluation in [20].

6 Conclusions

We have characterized PNE of Plurality voting for several combinations of sec-
ondary preferences and tie-breaking rules. Our complexity results are summa-
rized in Table 1.

Our results extend to the setting where some of the voters are principled,
i.e., always vote truthfully (and never abstain). Due to space constraints, we
are unable to fully describe these extensions (see [9]). Briefly, the presence of
principled voters has the strongest effect on lazy voters and lexicographic tie-
breaking, as illustrated by the following example, whereas for other settings the
effect is less pronounced.

Example 2. Consider an election over a candidate set C = {c1, . . . , cm}, m > 1,
where there are two principled voters who both vote for cm, and two lazy voters
who both rank cm last. Then the ballot vector where both lazy voters abstain
is a PNE (with winner cm). Moreover, for every j ∈ [m − 1] the ballot vector
where both lazy voters vote for cj is a PNE as well (with winner cj).

In the absence of principled voters, PNE for lazy voters require very pre-
cise coordination among the voters and seem to be very different from what
we observe in real life. In contrast, for truth-biased voters the presence of a
strong candidate implies the existence of a truthful equilibrium, which requires
little coordination among the players. It is therefore tempting to conclude that
truth bias has a greater explanatory power than laziness. However, we demon-
strated that the presence of principled voters changes this equation. Extending
our analysis to a mixture of all three voter types is perhaps the most prominent
open problem suggested by our work.
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Abstract. Revealed preference techniques are used to test whether a
data set is compatible with rational behaviour. They are also incorpo-
rated as constraints in mechanism design to encourage truthful behaviour
in applications such as combinatorial auctions. In the auction setting, we
present an efficient combinatorial algorithm to find a virtual valuation
function with the optimal (additive) rationality guarantee. Moreover, we
show that there exists such a valuation function that both is individu-
ally rational and is minimum (that is, it is component-wise dominated by
any other individually rational, virtual valuation function that approx-
imately fits the data). Similarly, given upper bound constraints on the
valuation function, we show how to fit the maximum virtual valuation
function with the optimal additive rationality guarantee. In practice,
revealed preference bidding constraints are very demanding. We explain
how approximate rationality can be used to create relaxed revealed pref-
erence constraints in an auction. We then show how combinatorial meth-
ods can be used to implement these relaxed constraints. Worst/best-case
welfare guarantees that result from the use of such mechanisms can be
quantified via the minimum/maximum virtual valuation function.

1 Introduction

Underlying the theory of consumer demand is a standard rationality assumption:
given a set of items with price vector p, a consumer will demand the bundle x
of maximum utility whose cost is at most her budget B. Of fundamental import,
therefore, is whether or not the decision making behaviour of a real consumer is
consistent with the maximization of a utility function. Samuelson [18,19] intro-
duced revealed preference to provide a theoretical framework within which to
analyse this question. Furthermore, this concept now lies at the heart of current
empirical work in the field; see, for example, Gross [11] and Varian [23]. Specif-
ically, Samuelson [18] conjectured that the weak axiom of revealed preference
(warp) was a necessary and sufficient condition for integrability – the ability to
construct a utility function which fits observed behaviour.

However, Houtthakker [14] proved that the weak axiom was insufficient.
Instead, he presented a strong axiom of revealed preference (sarp) and showed
c© Springer-Verlag Berlin Heidelberg 2015
M. Hoefer (Ed.): SAGT 2015, LNCS 9347, pp. 125–136, 2015.
DOI: 10.1007/978-3-662-48433-3 10
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non-constructively that it was necessary and sufficient in the case where behav-
iour is determined via a single-valued demand function. Afriat [1] provided an
extension to multi-valued demand functions – where ties are allowed – by showing
that the generalized axiom of revealed preference (garp) is necessary and suf-
ficient for integrability.1 Furthermore, Afriat’s approach was constructive (pro-
ducing monotonic, concave, piecewise-linear utility functions) and applied to the
setting of a finite collection of observational data. This rendered his method more
suitable for practical use.

In addition to its prominence in testing for rational behaviour, revealed pref-
erence has become an important tool in mechanism design. A notable area of
application is auction design. For combinatorial auctions, Ausubel, Cramton and
Milgrom [4] proposed bidding activity rules based upon warp. These rules are
now standard in the combinatorial clock auction, one of the two prominent
auction mechanisms used to sell bandwidth. In part, the warp bidding rules
have proved successful because they are extremely difficult to game [6]. Harsha
et al. [13] examine garp-based bidding rules, and Ausubel and Baranov [3]
advocate incorporating such constraints into bandwidth auctions. Based upon
Afriat’s theorem, these garp-based rules imply that there always exists a utility
function that is compatible with the bidding history. This gives the desirable
property that a bidder in an auction will always have at least one feasible bid –
a property that cannot be guaranteed under warp.

Revealed preference also plays a key role in motivating the generalised second
price mechanism used in adword auctions. Indeed, these position auctions have
welfare maximizing solutions with respect to a revealed preference equilibrium
concept; see [8,23].

1.1 Our Results

Multiple methods have been proposed to approximately measure how consistent
a data set is with rational behaviour; see Gross [11] for a comparison of a sam-
ple of these approaches. In this paper, we show how a graphical viewpoint of
revealed preference can be used to obtain a virtual valuation function that best
fits the data set. Specifically, we show in Sect. 3 that an individually rational
virtual valuation function can be obtained such that its additive deviation from
rationality is exactly the minimum mean length of a cycle in a bidding graph.
This additive guarantee cannot be improved upon. Furthermore, we show there
exists a unique minimum valuation function from amongst all individually ratio-
nal virtual valuation functions that optimally fit the data. Similarly, given a set
of upper bound constraints, we show how to find the unique maximum virtual
valuation that optimally fits the data, if it exists.

Imposing revealed preference bidding rules can be harsh. Indeed, Cramton [6]
states that “there are good reasons to simplify and somewhat weaken the
revealed preference rule”. These reasons include complexity issues, common

1 Afriat [1] gave several equivalent necessary and sufficient conditions for integrability.
One of these, cyclical consistency, is equivalent to garp as shown by Varian [21].
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value uncertainty, the complication of budget constraints, and the fact that a bid-
der’s assessment of its valuation function often changes as the auction progresses!
The concept of approximate rationality, however, naturally induces a relaxed form
of revealed preference rules. We examine such relaxed bidding rules in Sect. 4, show
how they can be implemented combinatorially, and show how to construct the min-
imal and maximal valuation functions which fit the data, which may be useful for
quantifying worst/best-case welfare guarantees.

2 Revealed Preference

2.1 Revealed Preference with Budgets

We first review revealed preference. We then examine its use in auction design
and describe how to formulate it in terms of a bidding graph. The standard
revealed preference model instigated by Samuelson [18] is as follows. We are given
a set of observations {(B1,p1,x 1), (B2,p2,x 2), . . . , (BT ,pT ,xT )}. At time t,
1 ≤ t ≤ T , the set of items has a price vector pt and the consumer chooses
to spend her budget Bt on the bundle x t.2 We say that bundle x t is (directly)
revealed preferred to bundle y , denoted x t � y , if y was affordable when x t

was purchased. We say that bundle x t is strictly revealed preferred to bundle y ,
denoted x t � y , if y was (strictly) cheaper than x t when x t was purchased.
This gives revealed preference (1) and strict revealed preference (2):

pt · y ≤ pt · x t ⇒ x t � y (1) pt · y < pt · x t ⇒ x t � y (2)

Furthermore, a basic assumption is that the consumer optimises a locally
non-satiated utility function.3 Consequently, at time t she will spend her entire
budget, i.e., pt·x t = Bt. In the absence of ties, preference orderings give relations
that are anti-symmetric and transitive. This leads to an axiomatic approach to
revealed preference formulated in terms of warp and sarp by Houthakker [14].
The weak axiom of revealed preference (warp) states that the relation should
be asymmetric, i.e. x � y ⇒ y �� x . Its transitive closure, the strong axiom of
revealed preference (sarp) states that the relation should be acyclic. Our interest
lies in the general case where ties are allowed. This produces what we dub the
k-th Axiom of Revealed Preference (karp): Given a fixed integer k and any κ ≤ k

x t = x t0 � x t1 � · · · � x tκ−1 � x tκ
= y ⇒ y � x t . (3)

There are two very important special cases of karp. For k = 1, this is simply
warp, i.e. x t � y ⇒ y � x t. This is just the basic property that for a
preference ordering, we cannot have that y is strictly preferred to x t if x t is

2 It is not necessary to present the model in terms of “time”. We do so because this
best accords with the combinatorial auction application.

3 Local non-satiation states that for any bundle x there is a more preferred bundle
arbitrarily close to x . A monotonic utility function is locally non-satiated, but the
converse need not hold.
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preferred to y . On the other hand, suppose we take k to take be arbitrarily
large (or simply larger than the total number of observed bundles). Then we
have the Generalized Axiom of Revealed Preference (garp), the simultaneous
application of karp for each value of k. In particular, garp encodes the property
of transitivity of preference relations. Specifically, for any k, if x t = x t0 � x t1 �
· · · � x tk−1 � x tk

= y then, by transitivity, x t � y . The first axiom of revealed
preference then implies that y � x t.

The underlying importance of garp follows from a classical result of Afriat [1]:
there exists a nonsatiated, monotone, concave utility function that rationalizes
the data if and only if the data satisfy garp. Brown and Echenique [5] examine
the setting of indivisible goods and Echenique et al. [7] consider the consequent
computational implications.

2.2 Revealed Preference in Combinatorial Auctions

As discussed, a major application of revealed preference in mechanism design
concerns combinatorial auctions. Here there are some important distinctions
from the standard revealed preference model presented in Sect. 2.1. First, con-
sumers are assumed to have quasilinear utility functions that are linear in money.
Thus, they seek to maximise profit. Second, the standard assumption is that bid-
ders have no budgetary constraints. For example, if profitable opportunities arise
that require large investments then these can be obtained from perfect capital
markets. (This assumption is slightly unrealistic; Harsha et al. [13] show how
to implement a budgeted revealed preference model for combinatorial auctions).
Third, the observations (pt,x t), for each 1 ≤ t ≤ T , are typically not purchases
but are bids made over a collection of auction rounds. When offered a set of
prices at time t the consumer bids for bundle x t.

So what would a model of revealed preference be in this combinatorial auction
setting? Suppose the bidder has an arbitrarily large budget B. In particular,
prices will never be so high that she cannot afford to buy every item. Second, to
model quasilinear utility functions, we treat money as a good. Specifically, given
a bundle of items x = (x1, . . . , xn) and an amount x0 of money we denote by
x̂ = (x0, x1, . . . , xn) the concatenation of x0 and x . If p = (p1, . . . , pn) is the
price vector for the the non-monetary items, then p̂ = (1, p1, . . . , pn) gives the
prices of all items including money.

In this n + 1 dimensional setting, let us select bundle x̂ t at time t. As the
budget B is arbitrarily large, we can certainly afford the bundle x s at this time.
But we may not be able to afford bundle x̂ s, as then we must also pay for the
monetary component at a cost of B −ps ·x s. However, we can afford the bundle
x s plus an amount B −pt ·x s of money. Applying revealed preference to {x̂ , p̂},
we have revealed that x̂ t = (B − pt · x t,x t) � (B − pt · x s,x s). Hence, by
quasilinearity, subtracting the monetary component from both sides, we have,

(0,x t) � ((B − pt · x s) − (B − pt · x t),x s) = (pt · x t − pt · x s,x s),

equivalently, v(x t) ≥ v(x s)+pt·x t−pt·x s. Rearranging, we have v(x t) − ptx t ≥
v(x s)−ptx s. Symmetrically, we get v(x s)−psx s ≥ v(x t)−psx t, and combining
both, we get
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pt − ps) · x s ≥ (pt − ps) · x t , (4)

which is the bidding rule based upon warp as defined by Ausubel, Cramton and
Milgrom [4]. This can be derived directly from the assumption of quasilinear
utility, as done in the full version of this paper. We can now extend this bidding
rule to incorporate indirect comparisons in a similar fashion to the extension
from warp to sarp via transitivity. This produces a garp-based bidding rule.
To wit, suppose we bid for the money-less bundle x i at time ti, for all 0 ≤ i ≤ k,
where 1 ≤ ti ≤ T . Thus we have revealed that

(0,x i) � ((B −pi · x i+1) − (B −pi · x i),x i+1) = (pi · x i −pi · x i+1,x i+1)

This induces the inequality v(x i)−pi ·x i ≥ v(x i+1)−pi ·x i+1. Summing over all
i, we obtain

∑k
i=0 (v(x i) − pi · x i) ≥ ∑k

i=0 (v(x i+1) − pi · x i+1), where the sum
in the subscripts are taken modulo k. Rearranging now gives the combinatorial
auction karp-based bidding activity rule:

(pk − p0) · x 0 ≥
∑k

i=1
(pi − pi−1) · x i . (5)

For k arbitrarily large, this gives the garp-based bidding rule. In order to qual-
itatively analyze the consequences of imposing karp-based activity rules, it is
informative to now provide a graphical interpretation of the these rules.

2.3 A Graphical View of Revealed Preference

Given the set of price-bid pairings {(pt,x t) : 1 ≤ t ≤ T}, we create a directed
graph G = (V,A), called the bidding graph, to which we will assign arc lengths �.
There is a vertex in V for each possible bundle – that is, there are 2n bundles in
an n-item auction. For each observed bid x t, 1 ≤ t ≤ T , there is an arc (x t,y)
for each bundle y ∈ V . In order to define the length �x t,y of an arc (x t,y),
note that Inequality (4) applied to x s = y gives v(y) ≤ v(x t) + pt · (y − x t),
otherwise we would prefer bundle y at time t. For the arc length, we would like
to simply set �x t,y = pt · (y − x t). Observe, however, that the bundle x t may
be chosen in more than one time period. That is, possibly x t = x t′ , for some
t �= t′. Therefore the bidding graph is, in fact, a multigraph. It suffices, though, to
represent only the most stringent constraints imposed by the bidding behaviour.
Thus, we obtain a simple graph by setting �x t,y = mint′ {pt′ · (y − x t) : x t′ =
x t}. Now the warp-based bidding rule (4) of Ausubel et al. [4] is equivalent to
(pt − ps) · x s − (pt − ps) · x t ≥ 0. But

�xs,x t + �x t,xs = min
s′ {ps′ · (x t − xs) : xs′ = xs} + min

t′ {pt′ · (xs − x t) : x t′ = x t}
≤ ps · (x t − xs) + pt · (xs − x t) = (pt − ps) · xs − (pt − ps) · x t .

It is then easy to see that the bidding constraint (4) is violated if and only if the
bidding graph contains no negative digons (cycles of length two). Furthermore,
we can interpret karp and garp is a similar fashion. Hence, the k-th axiom of
revealed preference is equivalent to requiring that the bidding graph not contain
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any negative cycles of cardinality at most k + 1, and garp is equivalent to
requiring no negative cycles at all. Thus, we can formalize the preference axioms
in terms of the lengths of negative cycles in a directed graph. We remark that
a cyclic view of revealed preference is briefly outlined by Vohra [25]. For us,
this cyclic formulation has important consequences in testing for the extent of
bidding deviations from the axioms. We will quantify this exactly in Sect. 3.
Before doing so, though, we remark that the focus on cycles also has important
computational consequences.

First, recall that the bidding graph G contains an exponential number of
vertices, one for every subset of the items. Of course, it is not practical to work
with such a graph. Observe, however, that a bundle y /∈ {x 1,x 2 . . . ,xT } has
zero out-degree in G. Consequently, y cannot be contained in any cycle. Thus, it
will suffice to consider only the subgraph induced by the bids {x 1,x 2 . . . ,xT }.
In a combinatorial auction there is typically one bid per time period and the
number of periods is quite small.4 Hence, the induced subgraph of the bidding
graph that we actually need is of a very manageable size.

Second, one way to implement a bidding rule is via a mathematical program;
see, for example, Harsha et al. [13]. The cyclic interpretation of a bidding rule
has two major advantages: we can test the rule very quickly by searching for
negative cycles in a graph. For example, we can test for negative cycles of length
at most k + 1 either by fast matrix multiplication or directly by looking for
shortest paths of length k using the Bellman-Ford algorithm in O(T 3) time.
Another major advantage is that a bidder can interpret the consequence of a
prospective new bid dynamically by consideration of the bidding graph. This is
extremely important in practice. In contrast, bidding rules that require using an
optimization solver as a black-box are very opaque to bidders.

3 Approximate Virtual Valuation Functions
For combinatorial auctions, Afriat’s result that garp is necessary and sufficient
for rationalisability can be reformulated as:

Theorem 3.1. A valuation function which rationalises bidding behaviour exists
if and only if the bidding graph has no negative cycle.

This is a simple corollary of Theorem 3.2 below; see also [25]. From an eco-
nomic perspective, however, what is most important is not whether agents are
perfectly rational but “whether optimization is a reasonable way to describe some
behavior” [22].5 It is then important to study the consequences of approximately
rational behaviour, see, for example, Akerlof and Yellen [2]. First, though, is it
possible to quantify the degree to which agents are rational? Gross [11] examines
assorted methods to test the degree of rationality. Notable amongst them is the

4 For example, in a bandwidth auction there are at most a few hundred rounds.
5 Indeed, several schools of thought in the field of bounded rationality argue that

people utilize simple (but often effective) heuristics rather than attempt to optimize;
see, for example, [10].
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Afriat Efficiency Index [1,22]. Here the condition required to imply a preference
is strengthened multiplicatively. Specifically, x t � y only if pt·y ≤ λ·pt·x t where
λ < 1. We examine this index with respect to the bidding graph in Sect. 4.3. For
combinatorial auctions, a variant of this constraint was examined experimentally
by Harsha et al. [13].

Here we show how to quantify exactly the degree of rationality present in the
data via a parameter of the bidding graph. Moreover, we are able to go beyond
multiplicative guarantees and obtain stronger additive bounds. To wit, we say
that v̂ is an ε-approximate virtual valuation function if, for all t and for any
bundle y , v̂(x t) − pt · x t ≥ v̂(y) − pt · y − ε. Note that if ε = 0, then the
bidder is optimizing with respect to a virtual valuation function, i.e. is rational.
We remark that the term virtual reflects the fact that v̂ need not be the real
valuation function (if one exists) of the bidder, but if it is then the bidding is
termed truthful.

3.1 Minimum Mean Cycles and Approximate Virtual Valuations

We now examine exactly when a bidding strategy is approximately rational. It
turns out that the key to understanding approximate deviations from rationality
is the minimum mean cycle in the bidding graph. Given a cycle C in G, its mean
length is μ(C) =

∑
a∈C �a

|C| . We denote by μ(G) = minC μ(C) the minimum
mean length of a cycle in G, and we say that C∗ is a minimum mean cycle if
C∗ ∈ argminC μ(C). We can find a minimum mean cycle in polynomial time
using the classical techniques of Karp [15].

Theorem 3.2. An ε-approximate valuation function which (approximately)
rationalises bidding behaviour exists if and only if the bidding graph has min-
imum mean cycle μ(G) ≥ −ε.

Proof. From the bidding graph G we create an auxiliary directed graph Ĝ =
(V̂ , Â) with vertex set V̂ = {x 1,x 2, . . . ,xT }. The arc set is complete with arc
lengths �̂xs,x t

= �xs,x t
− μ(G). Observe that, by construction, every cycle in Ĝ

is of non-negative length. It follows that we may obtain shortest path distances
d̂ from any arbitrary root vertex r. Thus, for any arc (x t,y), we have d̂(y) ≤
d̂(x t) + �̂x t,y = d̂(x t) + �x t,y − μ(G) ≤ d̂(x t) + pt · (y − x t) − μ(G). So, if we
set v̂(x ) = d̂(x ), for each x , then v̂(x t) − pt · x t ≥ v̂(y) − pt · y + μ(G).
for all t. Therefore, by definition of ε-approximate bidding, we have that v̂ is a
(−μ)-approximate virtual valuation function.

Conversely, let v̂ be an ε-approximate virtual valuation function which ratio-
nalises the graph, and take some cycle C of minimum mean length in the bidding
graph. Suppose for a contradiction that μ(C) < −ε. By ε-approximability, we
have v̂(x s) − ps · x s ≥ v̂(x t) − ps · x t − ε. But �xs,x t

≥ ps · (x t − x s).
Therefore �xsx t ≥ v̂(x t) − v̂(x s) − ε. Summing over every arc in the cycle we
obtain �(C) =

∑
(x ,y)∈C �xy ≥ ∑

(x ,y)∈C (v̂(y) − v̂(x ) − ε) = −|C| · ε. Thus
μ(C) ≥ −ε, giving the desired contradiction. 	
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3.2 Individually Rational Virtual Valuation Functions

Theorem 3.2 shows how to obtain a virtual valuation function with the best pos-
sible additive approximation guarantee: any valuation rationalising the bidding
graph G must allow for an additive approximation of at least −μ(G). However,
there is a problem. Such a valuation function may not actually be compatible
with the data; specifically, it may not be individually rational. For individual
rationality, we require, for each time t, that v̂(x t)−pt ·x t ≥ 0. But individually
rationality is (almost certainly) violated for the the root node r since we have
v̂(x r) = 0. It is possible to obtain an individually rational, approximate, virtual
valuation function simply by taking the v̂ from Theorem 3.2 and adding a huge
constant to value of each package. This operation, of course, is entirely unnatural
and the resulting valuation function is of little practical value.

The Minimum Individually Rational Virtual Valuation Function. We
say that v() is the minimum individually rational, ε-approximate virtual valua-
tion function if v(x t) ≤ ω(x t) for each 1 ≤ t ≤ T , for any other individually
rational, ε-approximate virtual valuation function ω(). This leads to the ques-
tions: (i) Does such a valuation function exist? and (ii) Can it be obtained
efficiently? The answer to both these questions is yes.

Theorem 3.3. The minimum individually rational, μ-approximate virtual val-
uation function exists and can be found in polynomial time.

Proof. We create an auxiliary directed graph H from Ĝ by adding a sink vertex
z . We add an arc (x t, z ) of length −pt · x t, for each 1 ≤ t ≤ T , allowing for
repeated arcs. Because Ĝ contains no negative cycle, neither does H. Therefore,
there exist shortest path distances in H. Denote by d̂() the shortest path distance
from vertex x t to z in H. We claim that setting v(x t) = −d̂(x t) gives the
minimum individually rational, μ-approximate virtual valuation function.

To begin, let’s verify that v() is an individually rational, μ-approximate vir-
tual valuation function. First, we require that v() is individually rational. Now
the direct path consisting of the arc (x t, z ) is at least as long as the short-
est path from x t to z . Thus, −pt · x t ≥ d̂(x t). Individual rationality then
follows as v(x t) = −d̂(x t) ≥ pt · x t. Second we need to show that v() is
μ-approximate. Consider a pair {x s,x t}. The shortest path conditions imply
that −v(x s) = d̂(x s) ≤ �̂st + d̂(x t) = (�st − μ) + d̂(x t) = (�st − μ) − v(x t). Here
the inequality follows from the shortest path conditions on d̂(). Therefore, by
definition of �st,v(x t) ≤ v(x s)+ �st −μ = v(x s)+mins′ {ps′ · (x t −x s) : x s′ =
x s} − μ ≤ v(x s) + ps · (x t − x s) − μ. Hence, v() is μ-approximate as desired.

Finally we require that v() is minimum individually rational. So, take any
other individually rational, μ-approximate virtual valuation ω(). We must show
that v(x t) ≤ ω(x t) for every bundle x t. Now consider the shortest path tree T

in H corresponding to d̂(). If (x t, z ) is an arc in T (and at least one such arc
exists) then −pt · x t = d̂(x t). Thus v(x t) − pt · x t = (−pt · x t) − d̂(x t) = 0 ≤
ω(x t) − pt · x t. Here the inequality follows by the individual rationality of ω().
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Thus v(x t) ≤ ω(x t). Now suppose that v(x s) > ω(x s) for some x s. We may
take x s to be the closest vertex to the root z in T with this property. We have
seen that x s cannot be a child of z . So let (x s,x t) be an arc in T . As x t is
closer to the root than x s, we know v(x t) ≤ ω(x t). Then, as T is a shortest
path tree, we have d̂(x s) = �̂st + d̂(x t). Consequently −v(x s) = �̂st − v(x t), and
so ω(x t) ≥ v(x t) = �̂st + v(x s) > �̂st + ω(x s). But then ω(x t) > ω(x s) + �st −
μ = ω(x s) + mins′ {ps′ · (x t − x s) : x s′ = x s} − μ. It follows that there is at
least one time period when x s was selected in violation of the μ-optimality of
ω(). So v() is a minimum individually rational, μ-approximate virtual valuation
function. 	


The Maximum (Individually Rational) Virtual Valuation Function.
The minimum individually rational virtual valuation function allows us to obtain
worst-case social welfare guarantees when revealed preference is used in mecha-
nism design, see Sect. 4. For the best-case welfare guarantees, we are interested
in finding the maximum virtual valuation function. In general, this need not
exist as we may add an arbitrary constant to each bundle valuation given by
the minimum individually rational virtual valuation function. But, it does exist
provided we have an upper bound on the valuation of at least one bundle. This
is often the case. For example in a combinatorial auction if a bidder drops out
of the auction at time t + 1, then pt+1 · x t is an upper bound on the value of
bundle x t. Furthermore, in practice, bidders (and the auctioneer) often have
(over)-estimates of the maximum possible value of some bundles. So suppose we
are given a set I and constraints of the form v(x i) ≤ βi for each i ∈ I. Then
there is a unique maximum μ-approximate virtual valuation function. Due to
space constraints the proof of this result and all that follow have been omitted
from this extended abstract; they can be found in the full version.

Theorem 3.4. Given a set of constraints, the maximum μ-approximate virtual
valuation function exists and can be found in polynomial time.

4 Revealed Preference Auction Bidding Rules

So far, we have focused upon how to test the degree of rationality reflected
in a data set. Specifically, we saw in Theorem 3.2 that the minimum mean
length of a cycle, μ(G), gives an exact and optimal goodness of fit measure
for rationality. Furthermore, Theorem 3.3 explained how to quickly obtain the
minimum individually rational valuation function that best fits the data.

Recall, however, that revealed preference is also used as tool in mechanism
design. In particular, we saw in Sect. 2.2 how revealed preference is used to
impose bidding constraints in combinatorial auctions. We will now show how to
apply the combinatorial arguments we have developed to create other relaxed
revealed preference constraints.
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4.1 Relaxed Revealed Preference Bidding Rules

Consider a combinatorial auction at time (round) t where our prior price-bundle
bidding pairs are {(p1,x 1), (p2,x 2), . . . , (pt−1,x t−1)}. By Inequality (4) in
Sect. 2.2, rational bidding at time t implies that v(x t)−pt·x t ≥ v(x s)−pt·x s, for
all s < t. Moreover, a necessary condition is then that (pt−ps)·x s ≥ (pt−ps)·x t

and this can easily be checked by searching for negative length digons in the bid-
ding graph induced by the first t bids. If such a cycle is found then the bid (pt,x t)
is not permitted by the auction mechanism.

The non-permittal of bids is clearly an extreme measure, and one that can
lead to the exclusion of bidders from the auction even when they still have bids
they wish to make. In this respect, it may be desirable for the mechanism to
use a relaxed set of revealed preference bidding rules. The natural approach is
to insist not upon strictly rational bidders but rather just upon approximately
rational bidders. Specifically, the auction mechanism may (dynamically) select a
desired degree ε of rationality. This requires v(x t)−pt ·x t ≥ v(x s)−pt ·x s − ε,
for all s < t. A necessary condition then is (pt −ps) ·x s ≥ (pt −ps) ·x t −2ε, and
we can test this relaxed warp-based bidding rule by insisting that every digon
has mean length at least −ε. Similarly, the relaxed karp-based bidding rule is

(pk − p0) · x 0 ≥
∑k

i=1
(pi − pi−1) · x i − (k + 1) · ε (6)

The relaxed garp-based bidding rule applies the relaxed karp-based bidding
rule for every choice of k. The imposition of the relaxed garp-based bidding rule
ensures approximate rationality.

Theorem 4.1. A set of price-bid pairings {(pt,xt) : 1 ≤ t ≤ T} has a cor-
responding ε-approximate individually rational virtual valuation function if and
only if it satisfies the relaxed garp-based bidding rule.

4.2 Relaxed KARP-Based Bidding Rules

Theorem 4.1 tells us that imposing the relaxed garp-based bidding rule ensures
approximate rationality. But, in practice, even warp-based bidding rules are
often confusing to real bidders. There is likely therefore to be some resistance to
the idea of imposing the whole gamut of garp-based bidding rules. We believe
that this combinatorial view of revealed preference, where the bidding rules can
be tested via cycle examination, will eradicate some of the confusion. However,
for simplicity, there is some worth in quantitatively examining the consequences
of imposing a weaker relaxed karp-based bidding rule rather than the garp-
based bidding rule. To test for the relaxed karp-based bidding rules, we simply
have to examine cycles of length at most k + 1. Now suppose the karp-based
bidding rules are satisfied. By finding the μ(G) in the bidding graph we can still
obtain the best-fit additive approximation guarantee, but we no longer have that
this guarantee is ε. We can still, though, prove a strong additive approximation
guarantee even for small values of k. To do this we need the following result.
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Theorem 4.2. Given a complete directed graph G with arc lengths �. If every
cycle of cardinality at most k + 1 has non-negative length then the minimum
mean length of a cycle is at least − �max

k , where �max = maxe∈E(G) |�e|.
This result is important as it allows us to bound the degree of rationality

that must arise whenever we impose the relaxed karp-based bidding rule.

Corollary 4.1. Given a set of price-bid pairings {(pt,xt) : 1 ≤ t ≤ T} that sat-
isfy the relaxed karp-based bidding rule. Then there is a ( bmax

k + ε)-approximate
individually rational virtual valuation function, where bmax is the maximum bid
made by the bidder during the auction.

One may ask whether the additive approximation guarantee in Corollary 4.1
can be improved. The answer is no; Theorem 4.2 is tight.

Lemma 4.1. There is a graph G where each cycle of cardinality at most k + 1
has non-negative length and the minimum mean length of a cycle is −�max/k.

4.3 Alternate Bidding Rules

Interestingly other bidding rules used in practice or proposed in the literature can
be viewed in the graphical framework. For example, bid withdrawals correspond
to vertex deletion in the bidding graph, whilst budget constraints and the Afriat
Efficiency Index can be formulated in terms of arc-deletion. We introduce here
the application to budget constraints; we discuss other applications in the full
version of the paper.

Recall that, in our bidding graph, each arc encodes information about the
head node relative to the tail node. However, this information is irrelevant if
the head node is not affordable at the time where the arc was recorded. This
simply means we must remove the arc (x t,x s) if x s was not affordable at time t.
A μ-approximate individual rational virtual valuation that is compatible with
the budget constraints then exists if and only if the resultant bidding graph has
minimum mean cycle length at least −μ.

In a budgeted combinatorial auction, we may assume a fixed budget Bt = B
for all t. Harsha et al. [13] then explain how to implement budgeted revealed
preference in a combinatorial auction. Their method applies to the case when
the fixed budget B is unknown to the auction mechanism. To do this, upper
and lower bounds on feasible budgets are maintained dynamically via a linear
program. It is also straightforward to do this combinatorially using the bidding
graph; as the auction proceeds, the price of any purchased bundle is a lower
bound on the budget B. Furthermore, for any value of B, we may ignore arcs
(x t,x s) such that ptx s > B. There is a greatest value of B for which, after
ignoring arcs, G has no negative cycles: this is an upper bound on B. A bid is
not permitted if these two bounds contradict one another.
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Abstract. In many fund-raising situations, a revenue target is speci-
fied. This suggests that the fund-raiser is interested in maximizing the
probability to achieve this revenue target, rather than in maximizing the
expected revenue. We study this topic from the perspective of Bayesian
mechanism design, in a setting where a seller has a certain good that he
can supply at no cost, and there are buyers whose joint valuation for the
good comes from some given prior distribution. We present an algorithm
to find the optimal truthful auction for two buyers with independent val-
uations via a direct characterization of the optimal auction. In contrast,
we show the problem is NP-hard when the number of buyers is arbitrary
or the distributions are correlated. Both negative results can be modified
to show NP-hardness of designing auctions for risk-averse sellers.

Our main results address the design of simple auctions for many buy-
ers, again in the context of a revenue target. For Sequential Posted Price
Auctions, we provide a FPTAS to compute the optimal posted prices
for a given sequence of buyers. For Monopoly Price Auctions, we apply
the results of [8] on sparse covers of distributions to obtain a PTAS in
a setting where the seller has a constraint on discriminatory pricing,
consisting of a fixed set of prices he may use.

1 Introduction

There is a considerable literature on the algorithmic challenge of designing auc-
tions that maximise the expected revenue obtained from a set of buyers. In this
paper we consider a related objective where instead of maximising the expected
revenue, the auctioneer has been given some revenue target T , and wishes to
maximise the probability of raising at least T . This objective gives rise to new
and interesting algorithmic challenges, and has some plausible real-world moti-
vations, discussed below.

We work in the classical Bayesian setting of a collection of buyers whose
valuations (prices they are willing to pay) for items being sold, are assumed to
be drawn from some known prior distribution D. We are interested in design-
ing mechanisms that are incentive compatible and individually rational. D in
combination with a mechanism M results in a distribution over the revenue
R obtained. A standard objective is to choose M to maximise the expected
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value of R. A more general setting assumes a non-decreasing “utility of money”
function u, and aims to maximize the expectation of u(R). In this revenue-target
setting, u is a shifted Heaviside function, equal to 0 for R < T and 1 for R ≥ T .
Certain concave functions u have been used to model risk aversion, however the
functions u considered here are not concave.

In this paper we focus on the “digital goods” setting, where the seller can
supply unlimited copies of some good, at no cost. We also assume that the
buyers have unit demand, so that a buyer’s type is represented by a probability
distribution over his valuation for a copy of the item. This special case is a
simplified model of the fund-raising situations mentioned below. In the context
of digital goods and unit demands, maximisation of the expected revenue can
be decomposed into revenue-maximisation from each buyer independently. In
contrast, when we switch to a revenue target, we find that the deal offered to a
buyer should depend on the outcomes of the deals offered to other buyers.

This revenue-target setting is motivated by various real-world scenarios.
Charitable fund-raising typically identify a target revenue to be raised. Simi-
larly, in Internet crowd-sourcing platforms that support fund-raising for busi-
ness start-ups (Kickstarter, Indiegogo, RocketHub etc.), it is typical to aim for
some amount of money, and if that target is not reached, the would-be investors
get their money back. (Our model doesn’t properly capture this situation; we
mention it to emphasise the importance of revenue targets in practice.) While a
fund-raising effort is not the same thing as an auction, to some extent it can be
modelled as one: an approach to a donor (or investor) corresponds to an attempt
to sell an item to a would-be buyer. In cases where goods are sold at auction, it
may be more desirable to raise a particular amount of money than to maximise
the expected revenue. For example, in a bankruptcy situation, the administrator
may wish to sell a collection of items so as to prioritise repaying the top-tier
creditors. And while the FCC spectrum auction wants to raise as much money
as possible, it is also required to cover its costs.

1.1 Our Results

We consider the problem parametrised by the number of buyers n, and the sup-
port size m of their value distributions. With multiple buyers, it is #P-complete
to compute the exact success probability (probability to achieve revenue tar-
get T ) for a given auction (Proposition 2). Given this obstacle, in Sect. 3 we
consider a basic case of two buyers having uncorrelated valuations. We exhibit a
polynomial-time algorithm to exactly compute the optimal truthful auction that
maximises the probability to achieve T , given as input any discrete prior distri-
butions. We do this via a structural characterisation of auctions that optimise
the probability of achieving a given revenue target. This characterisation totally
differs from the one maximising expected revenue and allows us to restrict to
auctions with a geometric property that makes the problem tractable.

We show contrasting hardness results for correlated valuations or n buyers
with independent distributions. Specifically, it is shown to be NP-complete to
compute the optimal auction for three buyers having correlated valuations and
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NP-hard for n buyers with independent distributions. Note that, in the latter
case, a truthful auction may not necessarily be succinctly representable. We
overcome the obstacle via proving the hardness for a class of succinct auctions
and showing there exists a truthful auction with good performance if and only
if there exists a good succinct auction in the constructed instance.

Our main algorithmic results are in Sect. 4, for two prevalent auctions follow-
ing the trend of designing simple auctions. The first one is the Sequential Posted
Price Auction introduced by Chawla et al. [4] to approximate the expected rev-
enue in multi-dimensional Bayesian mechanism design. In this auction, the seller
offers a take-it-or-leave-it price to each buyer sequentially. Given a sequence of
buyers, we are able to provide a fully polynomial-time approximation scheme
(FPTAS) to compute an approximately optimal sequential posted price auction
that maximizes the success probability with an additive error. Second, we con-
sider the Monopoly Price Auction where the seller offers take-it-or-leave-it prices
to buyers simultaneously. This type of auctions was studied in [13] for selling
goods with limited supply. We apply results of [8] on sparse covers of Poisson
binomial distributions to obtain a PTAS when the seller has a limitation on
discriminatory pricing, i.e., is only allowed to use few distinct prices.

1.2 Related Work

There has been a long line of research on maximizing expected revenue in
Bayesian mechanism design starting from the seminal work by Myerson [15].
Recently, Cai et al [3] developed a general framework reducing revenue max-
imization to social welfare maximization. They also applied the framework to
optimize certain non-linear functions [2]. However, the mechanisms they derived
are randomized and Bayesian truthful, not deterministic truthful mechanisms
studied in this paper.

Another line of research studied auction design for risk-averse sellers that
can be regarded as maximizing a concave function of the revenue (cf. [17]).
Sundararajan and Yan [18] studied the auction design problem for a risk averse
seller and gave robust mechanisms (without knowledge of the concave function)
which achieve constant approximations when buyers’ distributions are indepen-
dent. The approximation ratio has been improved to e/(e − 1) by Bhalgat et
al. [1] by using the knowledge of concave functions. Our work complements their
results by providing some corresponding intractability results.

We mention several negative results on revenue maximization in determin-
istic mechanism design. Diakonikolas et al. [10] showed that it is NP-hard to
maximize revenue given a welfare constraint. Chen et al. [6] proved that it is
NP-hard to maximize revenue in a multi-dimensional setting with a single unit-
demand buyer when the valuations of items are independently distributed. For
correlated buyers, Papadimitriou and Pierrakos [16] proved that it is NP-hard to
approximate the optimal expected revenue for a single-item auction. However,
in digital goods setting, the revenue maximizing auction can be constructed eas-
ily by computing the optimal price for each bidder separately based on their
distributions conditioned on others’ bids.
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The study of digital goods auctions was initiated by Goldberg et al. [11].
Recently, Chen et al. [5] derived the optimal competitive auction with the
benchmark defined to measure worst-case over all buyer profiles. In contrast,
our benchmark measure is the average cases based on the prior distribution.
Another related concept is “profit extractor” (see Sect. 6.2.4 in [12]) which is a
decision problem the profit maximization in the prior-free setting.

Threshold probability maximization is a classical objective in stochastic opti-
mization and has been studied for several combinatorial optimization problems
(cf. [14] and references therein). However no incentive issues were considered
before when optimizing this objective. The technique we apply to approximate
the optimal monopoly price auction is based on [8]. These results have been
shown helpful in computing Nash Equilibria [9] and learning sums of random
variables [7]. But to our knowledge, this paper is their first application in auction
design.

2 Preliminaries

Auction Setting. We study an auction environment where a seller wants to sell
copies of an item to n bidders. Each bidder/buyer i is interested in a single
copy of the item and values it at a privately known value vi. A valuation profile
v is the vector of all bidders’ valuations, i.e. v = (v1, . . . , vn). We consider a
deterministic single-round sealed-bid auction where each bidder submits a bid bi

to express how much he is willing to pay for the item. After soliciting submitted
bids b = (b1, . . . , bn), the seller must decide whether each bidder i wins an item
and how much he needs to pay. Bidder i’s utility is the difference between his
value vi and his payment if he wins a item; otherwise he pays 0 and gets utility 0
to guarantee individual rationality, that is, no bidders will get a negative utility
in the auction.

We assume every bidder in the auction is rational and aims to maximize
his own utility by choosing the best bidding strategy. An auction is said to be
truthful if for each bidder i, bidding his true valuation (i.e. bi = vi) is a dominant
strategy no matter what the other bidders bid. It is known that truthful auctions
can be characterized by bid-independent auctions where for each bidder i, the
auction computes a threshold price pi that does not depend on bi but may depend
on the bids of the other bidders b−i = (b1, . . . , bi−1, bi+1, . . . , bn). In other words,
there exists a pricing function for bidder i such that pi = fi(b−i) and i wins
the item iff bi ≥ pi and his payment is pi if he wins. So it suffices to consider
bid-independent auctions when designing truthful auctions.

Thus any truthful or bid-independent auction A can be represented by n
pricing functions (f1, . . . , fn) where fi is the pricing function for bidder i which
maps other bidders’ valuations v−i to the threshold price pi. For convenience,
we use xi(v) to denote the allocation rule of the auction, i.e. xi(v) = 1 if i
wins an item when the valuation profile is v; otherwise xi(v) = 0. Hence, the
revenue of A on profile v is RA(v) =

∑
i∈[n] xi(v)fi(v−i) where [n] denotes the

set {1, . . . , n}. We also use RA
i (v) to denote the revenue of the auction A from
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bidder i, i.e., RA
i (v) = xi(v)fi(v−i). We will omit A from the notation if the

auction is clear from the context.

Representation of Prior Distribution. We assume the seller has prior knowledge
of the bidders’ valuations, which is represented by a distribution on the valuation
profile v. In particular, we use D to denote the distribution on the valuation
profile and V to denote the support of D. We denote the probability that the
valuation profile is v by Pr[v] for all v ∈ V . Obviously, the distribution D can be
represented in the size of V (denoted by |V | or |D|) by explicitly describing Pr[v]
for all v ∈ V . We also use Vi = {v1

i , . . . , vmi
i } to denote the set of all possible

value of vi in D, where mi is |Vi| and v1
i < v2

i < · · · < vmi
i . For convenience, we

define v0
i = 0 and assume 0 ∈ Vi.

We say the bidders’ valuations are independently distributed if D is a product
distribution, i.e. D = ×i∈[n]Di where Di is the distribution on buyer i’s valu-
ations; otherwise they are correlated. For convenience, we say the bidders are
independent (or correlated) according to whether their valuations are indepen-
dently distributed. For independent bidders, D can be represented using space
O(n · m) where m = maxi mi.

We consider a seller with revenue target T and his utility is 1 if the revenue
raised in the auction is at least T ; otherwise his utility is 0. Given an instance
I = (D,T ) with the profile distribution D and revenue target T , the seller’s
utility in an auction A is Prv∼D[RA(v) ≥ T ]. We also call this value the perfor-
mance of auction A on instance I. So an auction is an optimal truthful auction
for an instance I if no truthful auction can outperform A on the instance I.
Similarly, we say A is c-additive approximately optimal if no truthful auction
can perform better than the performance of A plus a parameter c. It is without
loss of generality to assume the range of pricing function for bidder i is Vi as
shown in the following proposition. The intuition is that rounding prices up to
the next valuation of the agent will not decrease the revenue of the auction.

Proposition 1. For any distribution profile D and truthful auction A, there
exists another truthful auction A′ such that the range of pricing functions for
bidder i in A′ is Vi for all i ∈ [n] and RA′

(v) ≥ RA(v) for all profiles v.

Simple Auctions. We consider two types of simple auctions called monopoly
price auctions and sequential posted price auctions. A monopoly price auction
is a truthful auction with pricing functions (f1, . . . , fn) where each function fi

depends only on the prior distribution D and not on the other bids b−i. We
say an auction is a sequential posted price auction with respect to an order σ
if fi may depend on D together with the bids of buyers who precede i in σ,
i.e. (b1, . . . , bi−1) if buyers are indexed according to σ. The following proposition
shows the hardness of evaluating the performance of a given monopoly price
auction. This is proved via a reduction from counting the solutions of Knapsack.

Proposition 2. Given a monopoly price auction for independent bidders, it is
#P-complete to compute the probability of achieving a revenue target.
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3 Optimal Truthful Auction for Two Independent
Bidders

Recall that any truthful auction for two bidders can be represented by two pricing
functions f1 and f2. By Proposition 1, we only need to consider f1 : V2 → V1

which maps bidder 2’s valuations to bidder 1’s threshold prices and f2 : V1 → V2.
First of all, we show that the general problem reduces to a restricted version
where bidders’ distributions have support {0, . . . , m}×{0, . . . ,m} and the target
revenue is m, for some positive integer m. The intuition is mapping values of one
agent to indices and mapping values of the second agent to intervals of T − v1.

Lemma 3. Given any instance I = (D,T ) with an independent profile distrib-
ution D = D1 × D2 (Di having support Vi) and a target revenue T , there exists
an integer m ≤ min{|V1|, |V2|} + 1 and another instance I ′ = (D′, T ′) such that

(a) D′ = D′
1 × D′

2 has the support {0, . . . , m} × {0, . . . , m} and T ′ = m
(b) Given an instance I, the instance I ′ can be found in time linear in m
(c) Given any optimal truthful auction for I ′, it is possible to construct an opti-

mal truthful auction for I in time linear in m.

For the case with two independent bidders, we assume V1 = V2 = {0, . . . , m}
and T = m. We also use qi

1 and qj
2 to denote probabilities Pr[v1 = i] and

Pr[v2 = j] respectively and R(i, j) to be the revenue from the profile (i, j).
Regarding pricing functions, we can assume f1(0) = m and f2(0) = m, since
otherwise we can increase f1(0) or f2(0) to m without loss of the objective. In
the following lemmas, we show that there exists an optimal auction with several
nice properties. The first one is monotonicity of f1 and f2. Intuitively, the lemma
says once one bidder’s valuation increases, the seller will get more revenue from
this bidder and set a lower price for the other bidder as a consequence.

Lemma 4. There exists an optimal truthful auction for two independent bidders
such that the pricing functions are monotonically non-increasing.

By Lemma 3 we assume the valuations of both bidders are in {0, . . . , m} and
the target revenue is m. So for any profile v such that v1 < m and v2 < m, the
seller must sell items to both bidders to achieve the target revenue. Based on
this observation, we are able to show another property of f1 and f2.

Lemma 5. There exists an optimal truthful auction A = (f1, f2) for two inde-
pendent bidders such that f1 is non-increasing and for any i ∈ {0, . . . , m},

f2(i) =

⎧
⎨

⎩

m if ∀j ∈ {0, . . . , m}, i < f1(j)
j if ∃j ∈ {0, . . . , m}, f1(j) ≤ i < f1(j − 1)
f2(m − 1) if ∀j ∈ {0, . . . , m}, i ≥ f1(j), i.e.i = m since f1(0) = m

Intuitively, the optimal auction described in the above lemma divides all
profiles into four areas. In area one, the auction allocates nothing and in area
two it sells both items. In area three (or four), the auction only sells a single
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copy with a price m to bidder 1 (or bidder 2). In addition, as shown in Fig. 1,
the values of f2 in this auction only depend on f1. Thus, in order to design
the optimal auction, we only need to find the optimal f1, then a suitable f2
follows by Lemma 5. Before characterizing the optimal f1, we introduce some
new notations. Given a non-increasing function f1, let J ⊆ [m] be the set of
indices such that f2(j) < f2(j −1). We denote the set J by {j1, j2, . . . , j|J|} with
an increasing order, i.e. j� < j�+1. Let i� = f1(j�) as illustrated in Fig. 2. We
also define i0 = j|J|+1 = m + 1 for simplicity. Then for all � = 1, . . . , |J | and
j� ≤ j < j�+1, f1(j) = i� by the definition of j�. In addition, for all � = 1, . . . , |J |
and i� ≤ i < i�−1, f2(i) = j� by Lemma 5. This is because j� is the j such that
f1(j) ≤ i < f1(j − 1). Then we can prove the following lemma.

4

2

1 3

bidder 1 value

reddib
eulav

2

m

m

0

0

Fig. 1. Illustration of the computation
of f2 for a given f1 based on Lemma 5.
Again, the vertical bold lines are f1
and the horizontal dashed lines are the
resulting f2. We also mark the four areas
mentioned in the text.

bidder 1 value

reddib
eulav

2

i1i2i3

j1

j2

j3

Fig. 2. Illustration of the definition of the
set J , the values j� and i� when the pricing
functions f1 and f2 are given as vertical
and horizontal bold lines respectively. The
shawed squares illustrate the profiles with
revenue at least m.

Lemma 6. There exists an optimal auction A = (f1, f2) such that i� + j� = m
for all � = 1, . . . , |J | where i� and j� are defined by f1 as above.

By the above lemma, we can characterize the optimal auction by only using
the set J , i.e. the values of {j1, . . . , j|J|}. Given the set J , we can compute f1
and f2 by Lemmas 6 and 5 respectively. Based on this characterization, we are
able to show the main theorem in this section.

Theorem 7. Given a distribution D = D1 × D2 for two independent bidders
and a target revenue for the seller, an optimal truthful auction can be found in
time O(m3) where m = min{|D1|, |D2|}.

We have contrasting NP-hardness for more general cases. Both results can
be modified for the cases with risk-averse sellers.



144 P.W. Goldberg and B. Tang

Theorem 8. It is NP-complete to compute an optimal auction for three corre-
lated bidders, having a joint prior distribution presented as a set of probabilities
on a finite set of support points.

Theorem 9. It is NP-hard to compute the optimal auction for n independent
bidders even when each bidder has only two possible valuations, i.e. |Vi| = 2.

4 Near-Optimal Simple Auctions for Independent
Bidders

In this section, we study the following simple auctions for sellers with a target
revenue when the bidders are independent. In Sect. 4.1, we present an additive
FPTAS for computing approximately optimal sequential posted price auctions
with respect to a fixed order σ. Then in Sect. 4.2 we show an additive PTAS for
optimal monopoly price auctions, in a setting where the seller is restricted to
using a constant number of distinct prices.

4.1 Approximately Optimal Sequential Posted Price Auction

We first present a pseudo-polynomial time algorithm to compute optimal sequen-
tial posted prices via dynamic programming. Then we show that this algorithm
can be modified to be a FPTAS with respect to additive error. We order the
bidders with respect to the fixed order σ.

Recall that in a sequential posted price mechanism, the seller offers take-it-
or-leave-it prices to the buyers sequentially with respect to a given order σ and
the computation of the price for buyer i is based on the results of all buyers
preceding i, together with the valuation distributions. Note that the optimal
sequential posted price for any sequence of buyers, performs at least as well as
the optimal monopoly price auction. In contrast with the objective of expected
revenue maximization, our objective of a target revenue means that the price
offered to bidder i may depend on the revenue gained from the first i−1 bidders.
This allows us to solve the problem by the following dynamic programming. Let
Q[i, r] be the maximal probability to achieve revenue r by selling items to buyers
from i to n. By Proposition 1, it is sufficient to consider the case that pi ∈ Vi

where Vi is the support of buyer i’s valuation distribution. It is easy to see
Q[i, r] = 1 if r ≤ 0 and Q[i, r] = 0 if i > n and r > 0. For the other cases when
i ≤ n and r > 0 we have

Q[i, r] = max
pi∈Vi

{Q[i + 1, r − pi] · Pr[vi ≥ pi] + Q[i + 1, r] · (1 − Pr[vi ≥ pi])}.

Thus the maximal probability to achieve target revenue T from all buyers is
Q[1, T ]. Note that solving the above dynamic programming gives a pseudo-
polynomial time algorithm for the problem. Actually, we can get an additive
FPTAS by rounding the dynamic programming properly.
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Theorem 10. There exists an additive FPTAS for computing approximately
optimal sequential posted price auctions with respect to a fixed order of the buy-
ers. In particular, given ε ∈ (0, 1), an instance I = (D,T ) with n independent
buyers and a buyer sequence σ, an ε-additive approximately optimal sequential
posted price auction with respect to σ can be computed in time O(m2n2 log n ·
1/ε log(1/ε)) where m is the maximal support size, i.e. maxi∈[n]{|Di|}.

4.2 Approximately Optimal Monopoly Price Auction

In this section, we present a PTAS for computing the optimal monopoly price
auction when the seller is restricted to a given constant-sized set of distinct
prices, and for each buyer has to select one of those prices for that buyer. Recall
that in a monopoly price auction, the seller offers those take-it-or-leave-it prices
to the buyers simultaneously, and the prices are only based on the valuation
distributions. Our PTAS uses results of [8] on Poisson Binomial Distributions.
First of all, we review the definitions and results. For any two random variables
X and Y supported on a finite set A, their total variation distance is defined as

dTV(X,Y ) =
1
2

∑

a∈A

|Pr[X = a] − Pr[Y = a]|.

We use the following result in the proof of Theorems 14 and 15.

Lemma 11 (Lemma 2 in [8]). Let X1, . . . , Xn be mutually independent ran-
dom variables, and let Y1, . . . , Yn be mutually independent random variables.
Then

dTV(
n∑

i=1

Xi,

n∑

i=1

Yi) ≤
n∑

i=1

dTV(Xi, Yi).

A distribution is said to be a Poisson Binomial Distribution (PBD) of order
n if it is a discrete probability distribution consisting of the sum of n indepen-
dent indicator random variables. The distribution is parameterized by a vector
(ri)n

i=1 ∈ [0, 1]n of probabilities and is denoted by PBD(r1, . . . , rn). Let Sn be
the set of all PBDs of order n. We review a construction of an efficient and
proper ε-cover for Sn.

Theorem 12 (Theorem 1 in [8]). For all n, ε > 0, there exists a set Sn,ε ⊂ Sn

such that

1. Sn,ε is an ε-cover of Sn in total variation distance; that is, for all D ∈ Sn,
there exists some D′ ∈ Sn,ε such that dTV(D,D′) ≤ ε,

2. |Sn,ε| ≤ n2 + n · ( 1ε )O(log2 1/ε),
3. Sn,ε can be computed in time O(n2 log n) + O(n log n) · (1ε )O(log2 1/ε).

Moreover, all distributions PBD(r1, . . . , rn) ∈ Sn,ε in the cover satisfy at least
one of the following properties, for some positive integer t = t(ε) = O(1/ε).

– (t-sparse form) there is some � ≤ t3 such that, for all i ≤ �, ri ∈
{ 1

t2 , 2
t2 , . . . , t2−1

t2 } and for all i > �, ri ∈ {0, 1}; or
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– ((n, t)-Binomial form) there is some � ∈ [n] and q ∈ { 1
n , 2

n , . . . , n
n} such that,

for all i ≤ �, ri = q and for all i > �, ri = 0; moreover � and q satisfy �q ≥ t2

and �q(1 − q) ≥ t2 − t − 1.

In words, every PBD can be approximated by either a sparse PBD or a binomial
distribution. Moreover, the following theorem tells us that if the first O(log 1/ε)
moments of two PBDs are the same, then the total variation distance between
them is at most ε.

Theorem 13 (Theorem 3 in [8]). Let P := (pi)n
i=1 ∈ [0, 1/2]n and Q :=

(qi)n
i=1 ∈ [0, 1/2]n be two collections of probability values. Let also X := (Xi)n

i=1

and Y := (Yi)n
i=1 be two collections of mutually independent indicators with

E[Xi] = pi and E[Yi] = qi, for all i ∈ [n]. If for some d ∈ [n] the fol-
lowing condition is satisfied:

∑n
i=1 p�

i =
∑n

i=1 q�
i for all � = 1, . . . , d, then

dTV(
∑

i Xi,
∑

i Yi) ≤ 13(d + 1)1/42−(d+1)/2.

It is easy to see that Theorem 13 holds if we replace [0, 1/2] with [1/2, 1]. More-
over, by setting d = O(log 1/ε), this bound becomes at most ε. Theorem 12 shows
that there exists an efficient cover for the set of all PBDs. However, we cannot
directly apply this theorem to our problem, since (given prices and prior distri-
butions of a problem instance) the set of associated PBDs (call it S) is a proper
subset of Sn, and we need to find a cover that consists of a subset of S. The-
orem 14 is intended to overcome this obstacle. Given n finite sets W1, . . . , Wn

where Wi ⊂ [0, 1] for all i ∈ [n], let W = ×n
i=1Wi, and let Sn(W ) denote the set

of all PBDs such that the probability of the indicator i is in Wi for all i ∈ [n].
That is Sn(W ) = {PBD(r1, . . . , rn)|(ri)n

i=1 ∈ W}.

Theorem 14. For all n, ε > 0 and any n finite subsets of [0, 1], W1, . . . , Wn let
W = ×n

i=1Wi. Then there exists a set Sn,ε(W ) ⊂ Sn(W ) such that

1. Sn,ε(W ) is an ε-cover of Sn(W ) in total variation distance; that is, for all
D ∈ Sn(W ), there exists some D′ ∈ Sn,ε(W ) such that dTV(D,D′) ≤ ε,

2. Sn,ε(W ) can be computed in time (n
ε )O(log2 1/ε) and has size at most

(n
ε )O(log2 1/ε).

Given the above theorem, we can obtain an additive PTAS for computing approx-
imately optimal monopoly price auctions, given a fixed set of allowed prices.

Theorem 15. There exists an additive PTAS for computing approximately opti-
mal monopoly price auctions when the seller is restricted to a fixed number of
distinct prices. In particular, given ε ∈ (0, 1), an instance with n independent
bidders and k distinct prices the seller may use, an ε-additive approximately
optimal monopoly price auction can be computed in time (nk

ε )O(k log2 1/ε).

Proof. We use a1, . . . , ak to denote the k distinct prices the seller may use.
Given a monopoly price auction with price vector (p1, p2, . . . , pn), we use an
indicator random variable Hij to indicate that the seller gets revenue aj from
buyer i, that is Hij = 1 iff pi = aj and vi ≥ aj . Let Hj =

∑
i∈[n] Hij and
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H =
∑

j∈[k] ajHj . Note that H is the random variable for the total revenue
raised in this auction. Since the Hij are indicator random variables, the Hj are
Poisson Binomial random variables due to the independence among bidders. So
H can be viewed as a weighted sum of k Poisson Binomial random variables. Let
rij denote the probability of getting revenue exactly aj from buyer i. Then the
distribution of Hj is PBD(r1j , · · · , rnj). The distribution of H can be represented
by the vector r = (rij)i∈[n],j∈[k]. Let Wi be the set of all possible (ri1, . . . , rin)
such that rij = Pr[vi ≥ aj ] if the seller use price aj for bidder i and rij = 0
otherwise . It is clear that the set W = ×i∈[n]Wi is the set of all probability
vector r corresponding to a feasible pricing vector p.

Note that for any two random variables X,Y and any value T , |Pr[X ≥
T ] − Pr[Y ≥ T ]| ≤ dTV(X,Y ). So if there exists an ε-cover for the set
of all possible distribution of H parameterized by r ∈ W , we can explore
the pricing rules in the cover instead of all possible pricing rules to find
a sequence of monopoly prices which approximately maximize Pr[H ≥ T ].
In order to get such a cover, we need to modify the dynamic programming
used in the proof of Theorem14 to be k-dimensional. The moment profile
(μ1, . . . , μk, ν1, . . . , νk) is defined as μj = (μj

1, . . . , μ
j
d), ν

j = (νj
1 , . . . , ν

j
d) and

μj
� , ν

j
� ∈ {0, ( ε

nk )�, 2( ε
nk )�, . . . , n} for all � ∈ [d] and j ∈ [k]. By a similar argu-

ment to Theorem 14 and Lemma 11, all the possible moment profiles is already
an ε-cover. Define A[i, μ1, . . . , μk, ν1, . . . , νk] to be the indicator such that it is
equal to 1 iff there exists r1 ∈ W1, . . . , ri ∈ Wi such that for all j ∈ [k] and
� ∈ [d],

∑
i′≤i:r′

i′j∈[0,1/2](r
′
i′j)

� = μj
� and

∑
i′≤i:r′

i′j∈(1/2,1](r
′
i′j)

� = νj
� where r′ is

a ε
nk -rounding of r such that r′

ij is a multiple of ε
nk and rij − ε

nk < r′
ij ≤ rij for

all i ∈ [n] and j ∈ [k].
Similarly to the proof of Theorem14, A can be computed by the following

dynamic programming. Inductively, to compute layer i + 1, we consider all the
non-zero entries of layer i and for every such non-zero entry and every possible
prices aj , we find which entry of layer i + 1 we would transition to if we choose
pi = aj , i.e. rij = Pr[vi ≥ aj ] and rij′ = 0 for all j′ 
= j. It is easy to see the
overall running time to compute A is (nk

ε )O(k log2 1/ε). In addition, we can find
the corresponding monopoly prices for any distribution in this cover by tracing
the pointers in the computation of A. Therefore, we can enumerate all possible
pricing rules in this cover with size at most (nk

ε )O(k log2 1/ε) to find the optimal
pricing which maximize Pr[H ≥ T ].

The final step is to compute Pr[H ≥ T ] given a price vector p. By Theorem 12,
we know any PBD can be approximated by a sparse PBD or a binomial distribu-
tion. For the given price vector, we can get the corresponding Hj for all j ∈ [k].
We use Theorem 12 to compute H ′

j from Hj such that H ′
j is either a k/ε-sparse

PBD or a binomial distribution and dTV(H ′
j ,Hj) ≤ ε/k for all j ∈ [k]. Then we

compute Pr[H ′
j = Tj ] for any value Tj ∈ [0, . . . , n] and j ∈ [k]. This computation

can be done efficiently since H ′
j is either a k/ε-sparse PBD or a binomial distri-

bution. By Lemma 11, we have dTV(H ′,H) ≤ ε where H ′ =
∑

j ajHj . Finally
we compute Pr[H ′ ≥ T ] =

∑
(Tj)j :

∑
j ajTj≥T

∏
j Pr[H ′

j = Tj ] by enumerating all
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possible T1, . . . , Tk. Since the distance between H and H ′ is at most ε, we have
Pr[H ≥ T ] ≥ Pr[H ′ ≥ T ] − ε. Combine all these together, we get the additive
PTAS with running time (nk

ε )O(k log2 1/ε). ��

5 Conclusion

We see several promising directions for future work. For independent buyers, a
direct open problem is to generalize our characterization to three or more buyers.
That may be achievable via an induction on the number of buyers, character-
izing the optimal auction for three buyers by using the case with two buyers
as a substructure. Another direction is to approximate the optimal auction via
designing simple auctions. We find several examples to show the lower bounds
(see full version for more details) but the upper bound is still open. Finally, we
point out an interesting problem of computing optimal monopoly prices without
the limitation on distinct prices.
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Abstract. In many markets, products are highly complex with an
extremely large set of features. In advertising auctions, for example, an
impression, i.e., a viewer on a web page, has numerous features describ-
ing the viewer’s demographics, browsing history, temporal aspects, etc.
In these markets, an auctioneer must select a few key features to signal
to bidders. These features should be selected such that the bidder with
the highest value for the product can construct a bid so as to win the
auction. We present an efficient algorithmic solution for this problem in
a setting where the product’s features are drawn independently from a
known distribution, the bidders’ values for a product are additive over
their known values for the features of the product, and the number of fea-
tures is exponentially larger than the number of bidders and the number
of signals. Our approach involves solving a novel optimization problem
regarding the expectation of a sum of independent random vectors that
may be of independent interest. We complement our positive result with
a hardness result for the problem when features are arbitrarily correlated.
This result is based on the conjectured hardness of learning k-juntas, a
central open problem in learning theory.

1 Introduction

Much of the computer science literature on auction design assumes bidders have
full knowledge of their own values. However, in many markets, this assumption
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is quite unrealistic in part because the item for sale is not fully observable by
the bidders. In used car auctions, for example, the cars for sale are each unique
items with a long list of features – make, model, year, mileage, color, etc. Time
and communication constraints make it impractical for the auctioneer to provide
bidders with a full description of each car. Similarly, in advertising auctions, the
impressions for sale correspond to searchers, again with a long list of features –
gender, age, income, zip code, search history, etc. Again it is impractical for the
auctioneer to communicate all these features for each search, let alone track them
all. This raises a natural question: which features should an auctioneer signal to
bidders?

We study this question in the context of a single item auction. The item is
parameterized by a large feature vector drawn from some known distribution.
A bidder’s value for an item is a function of its features. The goal is to signal
a small subset of features to bidders such that the welfare1 generated by the
resulting auction is maximized. Trivial brute-force search can solve this problem
in time O(nk · mk) where n is the number of players, k is the number of allowed
signals, and m is the number of features. Throughout this paper, we think of the
number of bidders and allowable signals as small, whereas the number of features
is exponentially larger, and thus seek running times at most linear in m.

We wish to focus attention on the algorithmic problem of selecting features,
and so we make several simplifying assumptions. First we assume bidders’ val-
ues are additively separable across features. This assumption is a reasonable
approximation to valuations in many settings and is also a good first step in
understanding general substitutable valuations. Second, as is common in much
of the computer science literature on signaling [2,8,9,15], we assume bidders’
values for features are known to the auctioneer. This information could be avail-
able to the auctioneer through historical data, and is also a first step in designing
systems for the more common Bayesian setting.2

Even with these simplifying assumptions, we obtain strong negative results
for the problem of finding a welfare-maximizing set of signals. We do this by
relating the feature selection problem to the problem of learning k-juntas (i.e. m-
variable boolean functions that depend only on k � m of its coordinates) with
respect to the uniform distribution3. Introduced by Blum in 1994 [3,7], the
junta problem is a clean abstraction of learning in the presence of irrelevant
information, and represents a necessary first step towards the notorious problems
of learning polynomial-size decision trees and DNF formulas. Progress on the
problem has been slow despite significant interest — the current best algorithm
is due to G. Valiant and runs in time O(m0.6k) [17], a polynomial improvement

1 The welfare of a single item auction is the value of the winning bidder.
2 Clearly, if the auctioneer knowns the values of the bidders, he can maximize welfare

by simply assigning the item to the highest-value bidder, circumventing the auction
altogether. We assert that even if the auctioneer has this information, market con-
straints require the use of a second-price auction format as is the case in, e.g., ad
auctions.

3 See Sect. 3 for a definition.
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over brute-force search in time O(mk), and it is a generally accepted assumption
that is no mo(k)-time algorithm for the problem. (Indeed, it is known that the
broad class statistical query learning algorithms require both time and sample
complexity mΩ(k) for the junta problem [6]). Assuming that the junta problem
does in fact require time mΩ(k), we show there is no mo(k)-time algorithm that
can find an (1/n + ε)-approximately optimal set of signals.

On the positive side, we consider a setting where each feature is selected inde-
pendently from a (not necessarily identical) distribution, and takes on only a con-
stant number of values. In this case, we give an (1−ε)-approximate algorithm that
runs in time O(m) + 2O(k log(k/ε)) for all fixed values of n. This algorithm solves
a general optimization problem of potentially independent interest: for any norm
‖ · ‖ on R

n, given θ ∈ R
n and m independent mean-zero vector-valued random

variables X1, . . . ,Xm, find a subset S ⊆ [m] of cardinality k that approximately
maximizes E[‖θ +

∑
i∈S Xi‖]. Prior to our work there were no non-trivial algo-

rithms even when n = 1 — given m real-valued random variables X1, . . . ,Xm and
θ ∈ R, find a k-subset S ⊆ [m] that approximately maximizes E[|θ+

∑
i∈S Xi|] —

and even under the assumption that all the Xi’s are two-valued.

Related Work. Understanding the structure of optimal signaling schemes is
a classical question in economics [14], and has recently generated great inter-
est within the computer science community [2,8,9,13,15]. One line of prior
work [2,9,15] studies unconstrained signaling schemes that maximize revenue.
In such unconstrained settings, full information revelation is guaranteed to opti-
mize welfare. Other prior work [8], more closely related to the current paper,
studies constrained signaling schemes and seeks to maximize welfare. That work
considered two settings: one in which goods were represented by high dimen-
sional feature vectors and one where the goods were arbitrary and had to be
partitioned into classes. The former setting is closely related to ours, but in the
prior work the signaling schemes were arbitrary bounded-length bit strings. In
this paper, we constrain our signaling schemes to announce subsets of features,
an arguably more natural scheme for which the techniques of the prior work
cannot be applied. For an overview of the junta problem and its role in learning
theory see [4,16] and the references therein. As mentioned above its hardness is
a generally accepted assumption in learning theory, and indeed it is commonly
used as hardness primitive to establish the intractability of various other learning
problems (e.g. [1,10–12]).

2 Preliminaries

We consider a setting in which there is a set of possible items Ω for sale, where
each ω ∈ Ω is summarized by an m-dimensional vector of features — formally,
Ω =

∏m
j=1 Ωj , where Ωj is the set of possible values of the j’th feature. We

assume that an item is drawn according to a distribution λ ∈ ΔΩ . There is
a set of n players, each of whom is equipped with a valuation function vi :
Ω → R+ mapping items to the real numbers. We restrict attention to linearly
separable valuation functions, of the form vi(ω) =

∑m
j=1 vij(ωj), for functions

vij : Ωj → R+.
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We assume that the features of the item being sold are a-priori unknown
to the players, who learn them through a signaling scheme mapping an items
to messages, known as signals. In this paper, we restict attention to signaling
schemes which simply fix a set S ⊆ [m] of feature indices of a given size |S| = k,
and announces ωS = {(j, ωj) : j ∈ S}. After players learn this partial informa-
tion, some protocol — typically an auction — is run to assign the item to one
of the players. We focus on auctions, such as the second-price auction, which
assign the item to the player with the highest posterior expected value for the
item given the features revealed. In this case the expected social welfare, i.e. the
expected value of the winning player, can be written as follows.

welfare(S) = E[
n

max
i=1

E[vi(ω)|ωS ]]

where both expectations are over ω ∼ λ. Using vij as shorthand for the random
variable vij(ωj), we can rewrite the above expression as follows.

welfare(S) = E

⎡

⎣ n
max
i=1

⎛

⎝
∑

j∈S

vij +
∑

j �∈S

E[vij |ωS ]

⎞

⎠

⎤

⎦

In the special case in which the features are independently distributed, this
reduces to

welfare(S) = E

⎡

⎣ n
max
i=1

⎛

⎝
∑

j∈S

vij +
∑

j �∈S

E[vij ]

⎞

⎠

⎤

⎦

= E

⎡

⎣ n
max
i=1

⎛

⎝
∑

j∈S

(vij − E[vij ]) +
m∑

j=1

E[vij ]

⎞

⎠

⎤

⎦

= E

⎡

⎣

∥
∥
∥
∥
∥
∥

∑

j∈S

(vj − E[vj ]) +
m∑

j=1

E[vj ]

∥
∥
∥
∥
∥
∥

∞

⎤

⎦

when vj denotes the n-dimensional random vector (v1j , v2j , . . . , vnj). Note that
the vectors v1, . . . ,vm are independent when the features are independently
distributed.

We adopt the perspective of an auctioneer seeking to optimize his choice
of signaling scheme, with the goal of maximizing the expected welfare. This is
nontrivial when 0 < k < m, and we focus on the algorithmic question of finding
the best set of features S ∈ (

[m]
k

)
. We consider this question when the distribution

λ is represented explicitly. The sets Ω1, . . . , Ωm are given explicitly, as are the
functions {vij}n

i=1. In the general (correlated) case, λ is described explicitly by
a list of items Ω′ ⊆ Ω with associated probabilities {p(ω) : ω ∈ Ω′} summing to
1 — all other items in Ω assumed to have probability 0. In the independent case,
the marginal distribution of each feature j is given explicitly by the associated
probabilities {pj(μ) : μ ∈ Ωj}. We also consider the oracle model whereby only
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oracle access is given to λ; however, uniform convergence arguments reduce the
algorithmic task of signaling in the oracle model to that in the explicit model,
up to an arbitrarily small additive error term. In fact, our hardness result is
proved in the oracle model, and thus translates to the explicit model.

3 Hardness for General Distributions

We now prove that, in general, no nontrivial approximation is possible for the
feature signaling problem when the features are arbitrarily correlated. Our start-
ing point is the conjectured hardness of a special case of the k-junta learning
problem. A k-junta on m variables is a boolean function f : {−1, 1}m → {−1, 1}
which depends on only k bits of its input. When the bits S ⊆ [m] determining
f are unknown, and a learner is given access to sample access to evaluations
(x, f(x)) of f on bit strings x ∈ {−1, 1}m drawn uniformly at random, it is
widely believed that no algorithm can recover S in polynomial time/samples. In
fact, this is believed true even for k-junta functions which compute the majority
function on k/2 of the input bits, and the parity function on another k/2 bits,
and then xor the results (these are listed explicitly as candidate hard functions
in Blum’s surveys on the junta problem [4,5]) — those functions are “balanced”
in the sense we describe below.

Definition 1. A boolean function f : {−1, 1}m → {−1, 1} is c-balanced if the
following holds for every T ⊆ [m] with |T | ≤ c, and y ∈ {−1, 1}c.

Pr[f(x) = 1|xT = y] =
1
2
,

where xT denotes the projection of x onto the coordinates in T , and the proba-
bility is over x drawn uniformly from {−1, 1}m.

Definition 2. We say a randomized algorithm (ε,δ)-weakly learns a k-junta f
if it outputs S ⊆ [m] with |S| ≤ k such that, with probability at least 1 − δ,

advantage(S) := E
xS

[∣
∣
∣
∣Pr

x
[f(x) = 1|xS ] − 1

2

∣
∣
∣
∣

]

≥ ε

where x is uniformly distributed on {−1, 1}m.

We use the following commonly believed conjecture.

Conjecture 1 (see e.g. [4,5]). There are functions k = k(m) = o(m) and c =
c(m) = Θ(k) such that c-balanced k-juntas on m variables can not be (ε,δ)-
weakly learned in time mo(k) under the uniform distribution, for any pair of
constants ε, δ > 0.

The above conjecture implies the following corollary.
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Corollary 1. Assuming Conjecture 1, there are functions k = k(m) = o(m) and
c = c(m) = Θ(k) such that no poly(mo(k), log 1

δ )-time learning algorithm, given
sample access to a c-balanced k-Junta f on m variables, outputs with probability
1 − δ a set of variables S of size O(k) intersecting more than c of the relevant
variables of f .

Proof. We assume that such an algorithm A, with runtime mo(k) and arbitrar-
ily small failure probability δ = exp(−Ω(k)), exists. To simplify the proof, we
assume A recovers a set of size 2k which includes k/2 relevant variables of a
k/2-balanced Junta f , though the choice of constants is unimportant. We now
show how to weakly learn f in time mo(k), and with constant success probability,
violating Conjecture 1.

We learn the relevant variables S∗ ∈ (
m
k

)
of f as follows: first, run A to

recover S ⊆ [m] with |S| = 2k and |S ∩ S∗| ≥ k/2. Then, for each possible
setting z of the bits S (of which there are 22k) recurse on the function fS,z —
often referred to as a restriction of f — which simply replaces the portion of
its input at indices S with z and then evaluates f . Note that fS,z remains k/2-
balanced, and hence also k/4-balanced, yet is now a k/2-Junta on m variables.
Assuming the recursive calls succeed, between them they return the set S∗ \ S.
To complete S∗, it then suffices to try all 22k subsets of S.

In the event all invokations of A in the recursion tree are successful, cor-
rectness follows by induction. It remains to bound the runtime. Note that each
recursive call halves the number of variables of the Junta. Therefore, the number
of recursive calls equals 22k+22k·2k+22k·2k·2k/2+. . . ≤ log 2k·24k ≤ 25k = mo(k).
By essentially the same analysis, the runtime of the algorithm is also 25k ≤ mo(k).
The success probability is at least 1 − δ raised to a power equal to the number
of calls of A, which is a constant when δ = exp(−Ω(k)) is sufficiently small. ��

3.1 Warmup: Two Players

As a warmup, we prove our impossibility result for 2 players assuming
Conjecture 1. Note that we do not need the balance assumption for the 2-player
special case.

Theorem 1. Assuming Conjecture 1, there is no mo(k)-time ( 12 + ε)-
approximation algorithm for the feature signaling problem with two players in
the sample oracle model, for any constant ε > 0. This holds for Monte Carlo
approximation algorithms having a constant success probability.

Proof. Given sample access to an m-bit k-Junta f , with k = o(m), we construct
an instance of the feature signaling problem in the sample oracle model as follows.
We let Ω = {−1, 0, 1}2m, and consider two players Alice and Bob. Both players
have no value for features 1 through m — i.e. vij(.) = 0 for i ∈ {A,B} and
1 ≤ j ≤ m. For the remaining features j ∈ [m + 1, 2m], Alice has value 1 if
ωj = 1 and 0 otherwise, and Bob has value 1 if ωj = −1 and 0 otherwise.

The distribution λ is constructed as follows. The first m features of ω ∼ λ,
which we denote by x, are uniformly distributed in {−1, 1}m. The last m features,



156 S. Dughmi et al.

which we denote by y, are all set to 0, except for a single feature j∗ chosen
uniformly at random, which is set to f(x).

Note that if f is a k-Junta determined by the bits S∗ ⊆ [m] with |S∗| = k,
then welfare(S∗) = 1 as those bits uniquely determine which of Alice or Bob
values the item being sold. To complete the proof, we now show that if T ⊆ [2m]
is a set of k features satisfying welfare(T ) ≥ 1

2 +ε, then S = T ∩[m] is a solution
to the k-Junta problem with advantage(S) = Ω(ε). Indeed:

advantage(S) = E
xS

[∣
∣
∣
∣Pr

x
[f(x) = 1|xS ] − 1

2

∣
∣
∣
∣

]

= E
xS

[
max

(
Pr
x

[f(x) = 1|xS ],Pr
x

[f(x) = −1|xS ]
)]

− 1
2

≥ E
ωT

[
max

(
Pr
x

[f(x) = 1|ωT ],Pr
x

[f(x) = −1|ωT ]
)]

− |T \ [m]|
m

− 1
2

≥ welfare(T ) − k

m
− 1

2

where the next to last inequality is a consequence of the fact that, with proba-
bility at least 1 − |T\[m]|

m , the feature j∗ is not in T and therefore ωT provides
no information on f(x) beyond xS . ��

3.2 n Players

Next, we show that the feature signaling problem is hard to approximate
to within any constant independent of the number of players, assuming
Conjecture 1. Specifically, for n players where n is a constant independent of m,
we show that it is hard to approximate the feature signaling problem to within
any constant exceeding 1/n, and this holds for both the oracle and explicit rep-
resentation models.

Theorem 2. Assuming Conjecture 1, there is no mo(k)-time, ( 1
n + ε)-

approximation algorithm for the feature signaling problem with n players in the
sample oracle model, for any constant ε > 0. This holds for Monte Carlo approx-
imation algorithms having a constant success probability.

Proof. Our reduction for n players generalizes that for 2 players. Specifically,
Given sample access to an c-balanced k′-Junta f : {−1, 1}m → {0, 1}, with
k′ = k/ log n and c = θ(k′), we construct an instance of the k-feature signaling
problem in the sample oracle model as follows. We let Ω = {−1, 1}m log n ×
{0, 1, . . . , n}m, and consider players [n] = {1, . . . , n}. All players have no value for
features 1 through m log n. For the remaining features j ∈ [m log n+1,m log n+
m], player i has value 1 if ωj = i and 0 otherwise.

The distribution λ is constructed as follows. The first m log n features of
ω ∼ λ, which we denote by x, are uniformly distributed in {−1, 1}m log n.
We partition x into sub-vectors x1, . . . , xlog n, of length m each. The last m
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features, which we denote by y, are all set to 0, except for a single feature i∗

chosen uniformly at random, which is set to the integer encoded by the bit-string
f(x1)f(x2) . . . f(xlog n).

Note that since f is determined by some bits S∗ ⊆ [m] with |S∗| = k′,
signaling the k = k′ log n bits corresponding to the S∗th indices of each sub-
vector xi yields a welfare of 1, since those bits uniquely determine the player
who values the item. We now show that any signaling algorithm with nontrivial
performance must violate Corollary 1.

Indeed, consider any set T of k features computed by some algorithm for the
feature signaling problem which runs in mo(k) = mo(k′) time. By Corollary 1 and
the fact that |T | = k′ log n = O(k′), on some inputs T will not contain more
than c relevant features from any sub-vector among x1, . . . , xlog n. By the balance
property, such a set T affords no information regarding the player who values the
item for sale beyond that afforded by the features T\[m log n]. A similar analysis to
that of Theorem 1 shows that the advantage of the signaling scheme which reveals
T over one which randomly assigns the item to one of the n players is at most the
probability that i∗ ∈ T , which is at most k log n

m = o(1), as needed. ��
Finally, we note that any Monte Carlo algorithm with constant success proba-
bility can be boosted to one with exponentially small (in k) failure probability,
as needed to violate Corollary 1.

Corollary 2. Assuming Conjecture 1, there is no mo(k)-time ( 1
n + ε)-

approximation algorithm for the feature signaling problem with n players in the
explicit model, for any constant ε > 0. This holds for Monte Carlo approximation
algorithms having a constant success probability.

4 An Approximation Algorithm for Independent
Distributions

We cast the algorithmic task of feature selection as the following optimiza-
tion problem. The inputs are θ ∈ R

n, k ∈ [m], and independent t-valued n-
dimensional random vectors X1, . . . ,Xm with E[Xi] = 0 for all i ∈ [m]. We will
assume that each Xi is specified as {(p1, v1), . . . , (pt, vt)} where Pr[Xi = vj ] = pj

and
∑t

j=1 pj = 1, and that basic arithmetic can be done in constant time (e.g. we
can compute pi + pj in constant time, and ‖vi‖∞ in O(n) time). Given S ⊆ [m]
we write

value(S) = E

⎡

⎣

∥
∥
∥
∥
∥
∥
θ +

∑

j∈S

Xj

∥
∥
∥
∥
∥
∥

∞

⎤

⎦ , (1)

and define
S∗ = argmax

|S|=k

{value(S)} , opt = value(S∗). (2)

For 0 < ε ≤ 1
2 , we say that a subset S ⊆ [m] with |S| ≤ k is ε-optimal if

value(S) ≥ (1 − ε)opt; the algorithmic task is to find an ε-optimal k-subset
S ⊆ [m] efficiently.
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To see that this does in fact capture the feature selection problem where each
feature is selected independently, we recall the expression for welfare(S) given
in (1). Setting

Xj := vj − E[vj ] ∀j ∈ [m] and θ :=
m∑

j=1

E[vj ],

and noting that the Xj ’s do indeed satisfy E[Xj ] = 0, we have that for all
S ⊆ [m],

value(S) = E

⎡

⎣

∥
∥
∥
∥
∥
∥
θ +

∑

j∈S

Xj

∥
∥
∥
∥
∥
∥

∞

⎤

⎦ = E

⎡

⎣

∥
∥
∥
∥
∥
∥

∑

j∈S

(vj − E[vj ]) +
m∑

j=1

E[vj ]

∥
∥
∥
∥
∥
∥

∞

⎤

⎦

= welfare(S).

Note that for any S ⊆ [m] of cardinality k, the quantity value(S) can be com-
puted exactly in time O(nk · tk). Hence the naive algorithm which computes
value(S) for all

(
m
k

)
possible k-subsets S runs in time O(nk · (mt)k) and finds

S∗ achieving value(S∗) = opt. As mentioned in the introduction, we will be pri-
marily interested in the setting where the number of players n is constant, as
is the number of values each feature takes, and so this runtime can be written
as mO(k). To the best of our knowledge, prior to our work there were no known
improvements to this trivial algorithm even when n = 1 — given m real-valued
random variables X1, . . . ,Xm and θ ∈ R, find a k-subset S ⊆ [m] that approxi-
mately maximizes E[|θ +

∑
i∈S Xi|] — and even under the assumption that all

the Xi’s are two-valued (i.e. t = 2).
We give an algorithm that finds an ε-optimal set S of cardinality k, running

in time O(m) + 2O(k log(k/ε)) for all fixed values of n and t. (In particular, this is
poly(m) for all ε ≥ 1/polylog(m) and k � log m

log log m .)

Theorem 3. There is an algorithm A which, given as input 0 < ε ≤ 1
2 , k ∈ [m],

θ ∈ R
n, and independent t-valued d-dimensional random vectors X1, . . . ,Xm

with E[Xi] = 0 for all i ∈ [m], runs in time O(mnt)+poly(kt/ε)knt and outputs
a k-subset S ⊆ [m] satisfying value(S) ≥ (1 − ε)opt.

The techniques we develop to establish Theorem 3 are fairly general and
robust. Indeed, we obtain Theorem 3 as a special case of our most general result
which we now state. Given an arbitrary norm ‖ · ‖ on R

n, we may define value(·)
and opt with respect to ‖ · ‖ instead of ‖ · ‖∞, and hence also an analogous
optimization problem of finding an ε-optimal k-subset. Our most general result
is an efficient algorithm for this abstract optimization problem for any norm ‖ ·‖
on R

n:

Theorem 4. Fix a norm ‖ · ‖ on R
n. Given ε > 0 and k ∈ [m], let N = N (ε, k)

be an (ε/k)-net within the ball {v ∈ R
n : ‖v‖ ≤ k2/ε} with the property that for

every vector v in the ball, its closest point in N can be found in time r. There is
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an algorithm A which, given as input ε > 0, k ∈ [m], θ ∈ R
n, and independent t-

valued n-dimensional random vectors X1, . . . ,Xm with E[Xi] = 0 for all i ∈ [m],
runs in time O(mt(r + n) + nk · (4
t)k) where 
 = (|N |k3t/ε)O(t), and outputs
a k-subset S ⊆ [m] satisfying value(S) ≥ (1 − ε)opt, where value(·) and opt are
defined with respect to ‖ · ‖.

To see that Theorem 3 does in fact follow from Theorem 4, we note that for
all B, δ > 0, the grid points N =

{
(λ1δ, . . . , λnδ) : λi ∈ {0, 1, . . . , �B/δ�}}

is a
δ-net of size (�B/δ� + 1)n within the ball {v ∈ R

n : ‖v‖∞ ≤ B}. Furthermore,
it is clear that given any vector v in the ball, its closest vector within N can be
computed in time O(n). The remainder of this section will be devoted to proving
Theorem 4. The following simple fact will be useful for us:

Fact 1. Let X1 and X2 be independent random vectors where E[X1] = 0. Then
E[‖X1 + X2‖] ≥ E[‖X2‖]. Consequently, if S′ ⊇ S then value(S′) ≥ value(S)
(and in particular, it is equivalent to maximize over all |S| ≤ k in the definition
of opt in (2)).

Proof. The inequality holds pointwise for every possible outcome θ ∈ R
d of X2

since ‖θ‖ = ‖E[X1 + θ]‖ ≤ E[‖X1 + θ‖]. ��

Overview of proof. We assume for the sake of scaling that max(‖θ‖,maxi

E[‖Xi‖]) = 1, and hence opt ≥ 1 by Fact 1. Thus to find an ε-optimal set
S, it suffices to find one achieving value at least opt−ε; for notational simplicity,
we will only achieve value at least opt − O(ε). The main idea is to modify the
random vectors X1, . . . ,Xm in such a way that changes value(S) by at most an
additive ±O(ε) for all k-subsets S ⊆ [m], and yet results in a total of only 

distinct random variables Y1, . . . ,Y� where 
 is independent of m (i.e. many
Xi’s are modified to become the same Yj). If for each j ∈ [
] we let Mj denote
the number of Xi’s that are modified to become Yj , this reduces the problem
of finding an O(ε)-optimal k-subset S ⊆ [m] to that of finding λ ∈ Z

� that
maximizes

E

[∥
∥
∥
∥
∥
θ +

�∑

i=1

λiYi

∥
∥
∥
∥
∥

]

(3)

subject to λi ∈ {0, 1, . . . ,Mi} and
�∑

i=1

λi = k. (4)

Since there are at most 4k
(

�
k

)
many λ ∈ Z

� satisfying (4), and for each such λ
the quantity (3) can be computed in time O(nk · tk), the optimal λ can be found
in time O(nk · (4
t)k).

4.1 Transforming the Xi’s

Given numbers a, b ∈ R and ε > 0, we write a
ε≈ b as shorthand for |a − b| ≤ ε.

By the triangle inequality, if a
ε1≈ b and b

ε2≈ c then a
ε1+ε2≈ c.
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Definition 3. Given a parameter B > 1 we say that an n-dimensional random
vector Xi is B-bounded if ‖Xi‖ ≤ B with probability 1.

We begin with the following proposition which states that the Xi’s can be
modified so that all of them are B-bounded; we defer its proof to the full version
of this paper.

Proposition 1. Fix a parameter B > 1 and assume Xi is not B-bounded. Then
there is a B-bounded random vector X′

i such that

E[‖X′
i + Y‖]

4(k+1)/B≈ E[‖Xi + Y‖]

for all random vectors Y that are independent of Xi, X′
i and satisfy E[‖Y‖] ≤ k.

Furthermore, X′
i can be defined from Xi in time O(nt).

As a corollary of Proposition 1, for all k-subsets S ⊆ [m] containing i we
have

value(S)
4(k+1)/B≈ E

⎡

⎣

∥
∥
∥
∥
∥
∥
θ + X′

i +
∑

j∈S\{i}
Xj

∥
∥
∥
∥
∥
∥

⎤

⎦ .

In words, replacing Xi by X′
i in X1, . . . ,Xn changes value(S) by at most an

additive ±O(k/B) for all k-subsets S ⊆ [m]. Consequently, by the union bound,
we may make all of X1, . . . ,Xn B-bounded and change value(S) by at most an
additive ±O(k2/B).

We will need a simple numerical lemma for our next modification; we defer
its proof to the full version of this paper.

Lemma 2. Let p1, . . . , pt ∈ (0, 1) where
∑t

j=1 pi = 1, and 0 < η ≤ 1 where
1/η ∈ Z. There exist nonnegative integer multiples p′

1, . . . , p
′
t of η also summing

to 1 and satisfying |p′
j − pj | < η for all j.

Proposition 2. Fix parameters B > 1, δ > 0, and 0 < η ≤ 1, where 1/η ∈ Z.
Let N denote a δ-net within the ball {v ∈ R

n : ‖v‖ ≤ B}, and assume that for
every vector v in the ball, its closest vector in the δ-net N can be computed in
time r. Then for any B-bounded n-dimensional random vector Xi, there is a
random vector X′

i, dependent on Xi, such that:

1. all outcomes for X′
i are in N ;

2. all outcomes for X′
i occur with probability equal to an integer multiple of η;

3. E[‖X′
i − Xi‖] ≤ δ + 2Btη.

Furthermore, X′
i can be defined from Xi in time O(rt).

Proof. Let Xi ≡ {(p1, v1), . . . , (pt, vt)} (i.e. Pr[Xi = vj ] = pj and
∑t

j=1 pj = 1).
We first consider X∗

i = {(p1, v∗
1), . . . , (pt, v

∗
t )}, where v∗

j is the vector in N closest
to vj , coupled to Xi in such a way that Pr[X∗

i = v∗
j | Xi = vj ] = 1. Since

E[‖X∗
i − Xi‖] =

t∑

j=1

pj · ‖v∗
j − vj‖ ≤ δ



Algorithmic Signaling of Features in Auction Design 161

and all outcomes of X∗
i are in N (i.e. satisfying (1)), it remains to show how

to achieve (2) while incurring error at most 2Btη in (3). By Lemma 2 there
exist nonnegative integer multiples p′

1, . . . , p
′
t of η, summing to 1 and satisfying

|p′
j − pj | < η for all j (and it is straightforward to verify that p′

1, . . . , p
′
t can be

computed from p1, . . . , pt and η in time O(t)). We can then define X′
i by Pr[X′

i =
v∗

j ] = p′
j , coupled to X∗ in such a way that Pr[X∗

i = X′
i = v∗

j ] = min(pj , p
′
j) for

all j ∈ [t]. It is clear then that

Pr[X′
i �= X∗

i ] ≤
t∑

j=1

|p′
j − pj | ≤ tη,

and that whenever X′
i �= X∗

i we at least have ‖X′
i − X∗

i ‖ ≤ 2B by the B-
boundedness of X∗

i and Xi. The lemma follows.

Proof of Theorem 4. Applying Proposition 1 with B := k2/ε, we may assume
that X1, . . . ,Xm are all B-bounded — this modification can be carried out in
time O(mnt), and changes value(S) by at most an additive ±O(ε) for all k-
subsets S ⊆ [m]. Next, applying Proposition 2 with δ := ε/k and η any number
in [ε/(2kBt), ε/(kBt)] such that 1/η ∈ Z, there is an algorithm which runs in
time O(mrt) (i.e. O(rt) for each Xi) and outputs X′

1, . . . ,X
′
m satisfying

∣
∣
∣
∣value(S) − E

[∥
∥
∥
∥θ +

∑

i∈S

X′
i

∥
∥
∥
∥

∞

]∣
∣
∣
∣ ≤ E

[∥
∥
∥
∥
∥

∑

i∈S

X′
i − Xi

∥
∥
∥
∥
∥

]

≤
∑

i∈S

E[‖X′
i − Xi‖] ≤ k(δ + 2Btη) = O(ε)

for all k-subsets S ⊆ [m]. Furthermore, by Proposition 2 each X′
i is of the form

{(p1, v1), . . . , (pt, vt)} where every pi is an integer multiple of η, and every vi is
in N . It follows that there are in fact at most


 ≤
(|N | · η−1

t

)

= (|N |k3t/ε)O(t)

many distinct random variables Y1, . . . ,Y� in the multiset {X′
1, . . . ,X

′
m}. Let-

ting Mi denote the multiplicity of Yi in {X′
1, . . . ,X

′
n}, we have reduced the

problem of finding an O(ε)-optimal k-subset S ⊆ [m] to that of finding λ ∈ Z
�

that maximizes

E

[∥
∥
∥
∥
∥
θ +

�∑

i=1

λiYi

∥
∥
∥
∥
∥

]

(5)

subject to λi ∈ {0, 1, . . . ,Mi} and
�∑

i=1

λi = k. (6)

Since there are at most 4k
(

�
k

)
many λ ∈ Z

� satisfying (6), and for each such λ
the quantity (5) can be computed in time O(nk · tk), the optimal λ can be found
in time O(nk · (4
t)k).
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Abstract. We study the efficiency of the proportional allocation mecha-
nism, that is widely used to allocate divisible resources. Each agent sub-
mits a bid for each divisible resource and receives a fraction proportional
to her bids. We quantify the inefficiency of Nash equilibria by studying
the Price of Anarchy (PoA) of the induced game under complete and
incomplete information. When agents’ valuations are concave, we show
that the Bayesian Nash equilibria can be arbitrarily inefficient, in con-
trast to the well-known 4/3 bound for pure equilibria [12]. Next, we upper
bound the PoA over Bayesian equilibria by 2 when agents’ valuations are
subadditive, generalizing and strengthening previous bounds on lattice
submodular valuations. Furthermore, we show that this bound is tight
and cannot be improved by any simple mechanism. Then we switch to
settings with budget constraints, and we show an improved upper bound
on the PoA over coarse-correlated equilibria. Finally, we prove that the
PoA is exactly 2 for pure equilibria in the polyhedral environment.

1 Introduction

Allocating network resources, like bandwidth, among agents is a canonical prob-
lem in the network optimization literature. A traditional model for this problem
was proposed by Kelly [14], where allocating these infinitely divisible resources
is treated as a market with prices. More precisely, agents in the system submit
bids on resources to express their willingness to pay. After soliciting the bids, the
system manager prices each resource with an amount equal to the sum of bids
on it. Then the agents buy portions of resources proportional to their bids by
paying the corresponding prices. This mechanism is known as the proportional
allocation mechanism or Kelly mechanism in the literature.

The proportional allocation mechanism is widely used in network pricing and
has been implemented for allocating computing resources in several distributed
systems [5]. In practice, each agent has different interests for different subsets and
fractions of the resources. This can be expressed via a valuation function of the
resource allocation vector, that is typically private knowledge to each agent. Thus,
agents may bid strategically to maximize their own utilities, i.e., the difference
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between their valuations and payments. Johari and Tsitsiklis [12] observed that
this strategic bidding in the proportional allocation mechanism leads to inefficient
allocations, that do not maximize social welfare. On the other hand, they showed
that this efficiency loss is bounded when agents’ valuations are concave. More
specifically, they proved that the proportional allocation game admits a unique
pure equilibrium with Price of Anarchy (PoA) [15] at most 4/3.

An essential assumption used by Johari and Tsitsiklis is that agents have
complete information of each other’s valuations. However, in many realistic
scenarios, the agents are only partially informed. A standard way to model
incomplete information is by using the Bayesian framework, where the agents’
valuations are drawn independently from some publicly known distribution, that
in a sense, represents the agents’ beliefs. A natural question is whether the effi-
ciency loss is still bounded in the Bayesian setting. We give a negative answer to
this question by showing that the PoA over Bayesian equilibria is at least

√
m/2

where m is the number of resources. This result complements the current study
by Caragiannis and Voudouris [2], where the PoA of single-resource proportional
allocation games is shown to be at most 2 in the Bayesian setting.

Non-concave valuation functions were studied by Syrgkanis and Tardos [20]
for both complete and incomplete information games. They showed that, when
agents’ valuations are lattice-submodular, the PoA for coarse correlated and
Bayesian Nash equilibria is at most 3.73, by applying their general smoothness
framework. In this paper, we study subadditive valuations [8] that is a super-
class of lattice submodular functions. We prove that the PoA over Bayesian Nash
equilibria is at most 2. Moreover, we show optimality of the proportional alloca-
tion mechanism, by showing that this bound is tight and cannot be improved by
any simple mechanism, as defined in the recent framework of Roughgarden [19].

Next, we switch to the setting where agents are constrained by budgets, that
represent the maximum payment they can afford. We prove that the PoA of
the proportional allocation mechanism is at most 1 + φ ≈ 2.618, where φ is the
golden ratio. The previously best known bound was 2.78 and for a single resource
due to [2]. Finally, we consider the polyhedral environment that was previously
studied by Nguyen and Tardos in [16], where they proved that pure equilibria
are at least 75% efficient with concave valuations. We prove that the PoA is
exactly 2 for agents with subadditive valuations.

Related Work. The efficiency of the proportional allocation mechanism has
been extensively studied in the literature of network resource allocation. Besides
the work mentioned above, Johari and Tsitsiklis [13] studied a more general class
of scale-free mechanisms and proved that the proportional allocation mechanism
achieves the best PoA in this class. Zhang [21] and Feldman et al. [10] stud-
ied the efficiency and fairness of the proportional allocation mechanism, when
agents aim at maximizing non quasi-linear utilities subject to budget constraints.
Correa, Schulz and Stier-Moses [6] showed a relationship in the efficiency loss
between proportional allocation mechanism and non-atomic selfish routing for
not necessarily concave valuation functions.

There is a line of research studying the PoA of simple auctions for selling indi-
visible goods (see [1,3,11,20]). Recently, Feldman et al. [9] showed tighter upper
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bounds for simultaneous first and second price auctions when the agents have
subadditive valuations. Christodoulou et al. [4] showed matching lower bounds
for simultaneous first price auctions, and Roughgarden [19] proved general lower
bounds for the PoA of all simple auctions, by using the corresponding compu-
tational or communication lower bounds of the underlying allocation problem.

2 Preliminaries

There are n agents who compete for m divisible resources with unit supply. Every
agent i ∈ [n] has a valuation function vi : [0, 1]m → R+, where [n] denotes the
set {1, 2, . . . , n}. The valuations are normalized as vi(0) = 0, and monotonically
non-decreasing, that is, for every x,x′ ∈ [0, 1]m, where x = (xj)j ,x′ = (x′

j)j and
∀j ∈ [m] xj ≤ x′

j , we have vi(x) ≤ vi(x′). Let x + y be the componentwise sum
of two vectors x and y.

Definition 1. A function v : [0, 1]m → R≥0 is subadditive if, for all x,y ∈
[0, 1]m, such that x + y ∈ [0, 1]m, it is v(x + y) ≤ v(x) + v(y).

Remark. Lattice submodular functions used in [20] are subadditive. In the case
of a single variable (single resource), any concave function is subadditive; more
precisely, concave functions are equivalent to lattice submodular functions in this
case. However, concave functions of many variables may not be subadditive [18].

In the Bayesian setting, the valuation of each agent i is drawn from a set of
possible valuations Vi, according to some known probability distribution Di. We
assume that Di’s are independent, but not necessarily identical over the agents.

A mechanism can be represented by a tuple (x,q), where x specifies the
allocation of resources and q specifies the agents’ payments. In the mechanism,
every agent i submits a non-negative bid bij for each resource j. The proportional
allocation mechanism determines the allocation xi = (xij)j and payment qi, for
each agent i, as follows: xij = bij∑

k∈[n] bkj
, qi =

∑
j∈[m] bij . When all agents bid

0, the allocation can be defined arbitrarily, but consistently.

Nash Equilibrium. We denote by b = (b1, . . . , bn) the strategy profile of all
agents, where bi = (bi1, . . . , bim) denotes the pure bids of agent i for the m
resources. By b−i = (b1, . . . , bi−1, bi+1, . . . , bn) we denote the strategies of all
agents except for i. Any mixed, correlated, coarse correlated or Bayesian strategy
Bi of agent i is a probability distribution over bi. For any strategy profile b,
x(b) denotes the allocation and q(b) the payments under the strategy profile b.
The utility ui of agent i is defined as the difference between her valuation for the
received allocation and her payment: ui(x(b),q(b)) = ui(b) = vi(xi(b))−qi(b).

Definition 2. A bidding profile B forms the following equilibrium if for every
agent i and all bids b′

i:

Pure Nash equilibrium: B = b, ui(b) ≥ ui(b′
i,b−i).

Mixed Nash equilibrium: B = ×iBi, Eb∼B[ui(b)] ≥ Eb∼B[ui(b′
i,b−i)].
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Correlated equilibrium: B = (Bi)i, Eb∼B[ui(b)|bi] ≥ Eb∼B[ui(b′
i,b−i)|bi].

Coarse correlated equilibrium: B = (Bi)i, Eb∼B[ui(b)] ≥ Eb∼B[ui(b′
i,b−i)].

Bayesian Nash equilibrium: B(v) = ×iBi(vi), Ev−i,b[ui(b)] ≥ Ev−i,b

[ui(b′
i,b−i)].

The first four classes of equilibria are in increasing order of inclusion. Moreover,
any mixed Nash equilibrium is also a Bayesian Nash equilibrium.

Price of Anarchy (PoA). Our global objective is to maximize the sum of the
agents’ valuations for their received allocations, i.e., to maximize the social wel-
fare SW(x) =

∑
i∈[n] vi(xi). Given the valuations, v, of all agents, there exists

an optimal allocation ov = o = (o1, . . . , on), such that SW(o) = maxx SW(x).
By oi = (oi1, . . . , oim) we denote the optimal allocation to agent i. For sim-
plicity, we use SW(b) and vi(b) instead of SW(x(b)) and vi(xi(b)), whenever
the allocation rule x is clear from the context. We also use shorter notation for
expectations, e.g. we use Ev instead of Ev∼D, E[ui(b)] instead of Eb∼B[ui(b)]
and u(B) for Eb∼B[u(b)] whenever D and B are clear from the context.

Definition 3. Let I([n], [m],v) be the set of all instances, i.e., I([n], [m],v)
includes the instances for every set of agents and resources and any possible
valuations that the agents might have for the resources. We define the pure,
mixed, correlated, coarse correlated and Bayesian Price of Anarchy, PoA, as

PoA = max
I∈I

max
B∈E(I)

Ev[SW(o)]
Ev,b∼B[SW(b)]

,

where E(I) is the set of pure Nash, mixed Nash, correlated, coarse correlated or
Bayesian Nash equilibria for the specific instance I ∈ I, respectively1.

Budget Constraints. We also consider the setting where agents are budget-
constrained. That is, the payment of each agent i cannot be higher than ci, where
ci is a non-negative value denoting agent i’s budget. Following [2,20], we use
Effective Welfare as the benchmark: EW(x) =

∑
i min{vi(xi), ci}. In addition,

for any randomized allocation x, the expected effective welfare is defined as:
Ex[EW(x)] =

∑
i min{Ex[vi(xi)], ci}.

3 Concave Valuations

In this section, we show that for concave valuations on multiple resources,
Bayesian equilibria can be arbitrarily inefficient. More precisely, we prove that
the Bayesian PoA is Ω(

√
m) in contrast to the constant bound for pure equilib-

ria [12]. Therefore, there is a big gap between complete and incomplete informa-
tion settings. We state our main theorem in this section as follows.

Theorem 4. When valuations are concave, the PoA of the proportional alloca-
tion mechanism for Bayesian equilibria is at least

√
m
2 .

1 The expectation over v is only needed for the definition of Bayesian PoA.
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Proof. We consider an instance with m resources and 2 agents with the following
concave valuations. v1(x) = minj{xj} and v2(x) is drawn from a distribution
D2, such that some resource j ∈ [m] is chosen uniformly at random and then
v2(x) = xj/

√
m. Let δ = 1/(

√
m + 1)2. We claim that b(v) = (b1, b2(v2)) is a

pure Bayesian Nash equilibrium, where ∀j ∈ [m], b1j =
√

δ/m−δ and, if j ∈ [m]
is the resource chosen by D2, b2j(v2) = δ and for all j′ 	= j b2j′ = 0.

Under this bidding profile, agent 1 bids the same value for all resources,
and agent 2 only bids positive value for a single resource associated with her
valuation. Suppose that agent 2 has positive valuation for resource j, i.e., v2(x) =
xj/

√
m. Then the rest m − 1 resources are allocated to agent 1 and agents

are competing for resource j. Bidder 2 has no reason to bid positively for any
other resource. If she bids any value b′

2j for resource j, her utility would be

u2(b1, b
′
2j) = 1√

m

b′
2j

b1j+b′
2j

− b′
2j , which is maximized for b′

2j =
√

b1j√
m

− b1j . For

b1j =
√

δ/m − δ, the utility of agent 2 is maximized for b′
2j = 1/(

√
m + 1)2 = δ

by simple calculations.
Since v1(x) equals the minimum of x’s components, agent 1’s valuation is

completely determined by the allocation of resource j. So the expected utility

of agent 1 under b is Ev2 [u1(b)] =
√

δ/m−δ√
δ/m−δ+δ

− m(
√

δ/m − δ) = (1 − √
mδ)2 =

1

(√
m+1)2

= δ. Suppose now that agent 1 deviates to b′
1 = (b′

11, . . . , b
′
1m).

Ev2 [u1(b′
1, b2)] =

1
m

∑

j

b′
1j

b′
1j + δ

−
∑

j

b′
1j =

1
m

∑

j

(
b′
1j

b′
1j + δ

− m · b′
1j

)

≤ 1
m

∑

j

(√
δ/m − δ
√

δ/m
− m · (

√
δ/m − δ)

)

=
1
m

∑

j

(
1 − 2

√
m · δ + m · δ

)
=

1
m

∑

j

(
1 −

√
m · δ

)2

=
1
m

∑

j

(
1√

m + 1

)2

= δ = Ev2 [u1(b)].

The inequality comes from the fact that b′
1j

b′
1j+δ − m · b′

1j is maximized for b′
1j =

√
δ/m − δ. So we conclude that b is a Bayesian equilibrium.
Finally we compute the PoA. The expected social welfare under b is

Ev2 [SW(b)] =
√

δ/m−δ√
δ/m−δ+δ

+ 1√
m

δ√
δ/m−δ+δ

= 1−√
mδ+

√
δ = 2√

m+1
< 2√

m
. But

the optimal social welfare is 1 by allocating to agent 1 all resources. So, PoA
≥

√
m
2 . 
�

4 Subadditive Valuations

In this section, we focus on agents with subadditive valuations. We first show
that the proportional allocation mechanism is at least 50% efficient for coarse
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correlated equilibria and Bayesian Nash equilibria, i.e., PoA ≤ 2. Then we show
that this bound is tight and cannot be improved by any simple mechanism.

Upper Bound. A common approach to prove PoA bounds is to find a deviation
with proper utility bounds and then use the definition of Nash equilibrium to
bound agents’ utilities at equilibrium. The bidding strategy described in the
following lemma is for this purpose.

Lemma 5. Let v be any subadditive valuation profile and B be some random-
ized bidding profile. For any agent i, there exists a randomized bidding strategy
ai(v,B−i) such that:

∑
i ui(ai(v,B−i),B−i) ≥ 1

2

∑
i vi(ovi ) − ∑

i

∑
j Eb∼B[bij ].

Proof. Let pij be the sum of the bids of all agents except i on resource j, i.e.,
pij =

∑
k �=i bkj . Note that pij is a random variable that depends on b−i ∼

B−i. Let Pi be the propability distribution of pi = (pij)j . Inspired by [9], we
consider the bidding strategy ai(v,B−i) = (ovij · b′

ij)j , where b′
i ∼ Pi. Then,

ui(ai(v,B−i),B−i) is

Eb′
i∼Pi

Epi∼Pi

⎡

⎣vi

⎛

⎝

(
ovijb

′
ij

ovijb
′
ij + pij

)

j

⎞

⎠ − ovi · b′
i

⎤

⎦

≥1
2

· Epi∼Pi
Eb′

i∼Pi

⎡

⎣vi

⎛

⎝

(
ovijb

′
ij

ovijb
′
ij + pij

+
ovijpij

ovijpij + b′
ij

)

j

⎞

⎠

⎤

⎦ − Epi∼Pi
[ovi · pi]

≥1
2

· Epi∼Pi
Eb′

i∼Pi

⎡

⎣vi

⎛

⎝

(
ovij(b

′
ij + pij)

b′
ij + pij

)

j

⎞

⎠

⎤

⎦ − Epi∼Pi
[ovi · pi]

=
1
2

· vi(ovi ) −
∑

j

∑

k �=i

Eb∼B[ovij · bkj ]

The first inequality follows by swapping pij and b′
ij and using the subadditivity

of vi. The second inequality comes from the fact that ovij ≤ 1. The lemma follows
by summing up over all agents and the fact that

∑
i∈[n] o

v
ij = 1. 
�

Theorem 6. The coarse correlated PoA of the proportional allocation mecha-
nism with subadditive agents is at most 2.

Proof. Let B be any coarse correlated equilibrium (note that v is fixed). By
Lemma 5 and the definition of the coarse correlated equilibrium, we have

∑

i

ui(B) ≥
∑

i

ui(ai(v,B−i),B−i) ≥ 1
2

∑

i

vi(oi) −
∑

i

∑

j

E[bij ]

By rearranging terms, SW(B) =
∑

i ui(B) +
∑

i

∑
j E[bij ] ≥ 1

2 · SW(o). 
�
Theorem 7. The Bayesian PoA of the proportional allocation mechanism with
subadditive agents is at most 2.
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Proof. Let B be any Bayesian Nash Equilibrium and let vi ∼ Di be the valuation
of each agent i drawn independently from Di. We denote by C = (C1, C2, . . . , Cn)
the bidding distribution in B which includes the randomness of both the bid-
ding strategy b and of the valuations v. The utility of agent i with valuation
vi can be expressed by ui(Bi(vi),C−i). It should be noted that C−i does not
depend on some particular v−i, but merely on D−i and B−i. For any agent i
and any subadditive valuation vi ∈ Vi, consider the deviation ai(vi;w−i,C−i) as
defined in Lemma 5, where w−i ∼ D−i. By the definition of the Bayesian Nash
equilibrium, we obtain

Ev−i [u
vi
i (Bi(vi),B−i(v−i))] = u

vi
i (Bi(vi),C−i) ≥ Ew−i [u

vi
i (ai(vi;w−i,C−i),C−i)].

By taking expectation over vi and summing up over all agents,

∑

i

Ev[ui(B(v))] ≥
∑

i

Evi,w−i
[uvi

i (ai(vi;w−i,C−i),C−i)]

=Ev

[
∑

i

uvi
i (ai(v,C−i),C−i)

]

≥ 1
2

·
∑

i

Ev[vi(ovi )] −
∑

i

∑

j

E[bij ]

So, Ev[SW(B(v))] =
∑

i Ev[ui(B(v))] +
∑

i

∑
j E[bij ] ≥ 1

2 · Ev[SW(ov)]. 
�

Lower Bound. Now, we show a lower bound that applies to all simple mech-
anisms, where the bidding space has size (at most) sub-doubly-exponential in
m. More specifically, we apply the general framework of Roughgarden [19], for
showing lower bounds on the price of anarchy for all simple mechanisms, via com-
munication complexity reductions with respect to the underlying optimization
problem. In our setting, the problem is to maximize the social welfare by allo-
cating divisible resources to agents with subadditive valuations. We proceed by
proving a communication lower bound for this problem in the following lemma.

Lemma 8. For any constant ε > 0, any (2 − ε)-approximation (non-
deterministic) algorithm for maximizing social welfare in resource allocation
problem with subadditive valuations, requires an exponential amount of commu-
nication.

Proof. We prove this lemma by reducing the communication lower bound for
combinatorial auctions with general valuations (Theorem 3 of [17]) to our setting
(see also [7] for a reduction to combinatorial auctions with subadditive agents).

Nisan [17] used an instance with n players and m items, with n < m1/2−ε.
Each player i is associated with a set Ti, with |Ti| = t for some t > 0. At
every instance of this problem, the players’ valuations are determined by sets
Ii of bundles, where Ii ⊆ Ti for every i. Given Ii, player i’s valuation on some
subset S of items is vi(S) = 1, if there exists some R ∈ Ii such that R ⊆ S,
otherwise vi(S) = 0. In [17], it was shown that distinguishing between instances
with optimal social welfare of n and 1, requires t bits of communication. By
choosing t exponential in m, their theorem follows.
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We prove the lemma by associating any valuation v of the above combi-
natorial auction problem, to some appropriate subadditive valuation v′ for our
setting. For any player i and any fractional allocation x = (x1, . . . , xm), let
Axi

= {j|xij > 1
2}. We define v′

i(xi) = vi(Axi
) + 1 if xi 	= 0 and v′

i(xi) = 0
otherwise. It is easy to verify that v′

i is subadditive. Notice that v′
i(x) = 2 only

if there exists R ∈ Ii such that player i is allocated a fraction higher than 1/2
for every resource in R. The value 1/2 is chosen such that no two players are
assigned more than that fraction from the same resource. This corresponds to
the constraint of an allocation in the combinatorial auction where no item is
allocated to two players.

Therefore, in the divisible goods allocation problem, distinguishing between
instances where the optimal social welfare is 2n and n + 1 is equivalent to dis-
tinguishing between instances where the optimal social welfare is n and 1 in
the corresponding combinatorial auction and hence requires exponential, in m,
number of communication bits. 
�

The PoA lower bound follows the general reduction described in [19].

Theorem 9. The PoA of ε-mixed Nash equilibria2 of every simple mechanism,
when agents have subadditive valuations, is at least 2.

Remark. This result only holds for ε-mixed Nash equilibria. Considering exact
Nash equilibria, we show a lower bound for all scale-free mechanisms including
the proportional allocation mechanism in the full version.

5 Budget Constraints

In this section, we switch to scenarios where agents have budget constraints.
We use as a benchmark the effective welfare similarly to [2,20]. We compare the
effective welfare of the allocation at equilibrium with the optimal effective wel-
fare. We prove an upper bound of φ + 1 ≈ 2.618 for coarse correlated equilibria,
where φ =

√
5+1
2 is the golden ratio. This improves the previously known 2.78

upper bound in [2] for a single resource and concave valuations.
To prove this upper bound, we use the fact that in the equilibrium there

is no profitable unilateral deviation, and, in particular, the utility of agent i
obtained by any pure deviating bid ai should be bounded by her budget ci, i.e.,∑

j∈[m] aij ≤ ci. We define vc to be the valuation v suppressed by the budget c,
i.e., vc(x) = min{v(x), c}. Note that vc is also subadditive since v is subadditive.
For a fixed pair (v, c), let o = (o1, . . . , on) be the allocation that maximizes
the effective welfare. For a fixed agent i and a vector of bids b−i, we define the
vector pi as pi =

∑
k �=i bk. We first show the existence of a proper deviation.

Lemma 10. For any subadditive agent i, and any randomized bidding profile
B, there exists a randomized bid ai(B−i), such that for any λ ≥ 1, it is
2 A bidding profile B = ×iBi is called ε-mixed Nash equilibrium if, for every agent i

and all bids b′
i, Eb∼B[ui(b)] ≥ Eb∼B[ui(b

′
i,b−i)] − ε.
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ui(ai(B−i),B−i) ≥ vci
i (oi)
λ + 1

−
∑

j∈[m]

∑
k∈[n] oijE[bkj ]

λ
.

Moreover, if âi is any pure strategy in the support of ai(B−i), then
∑

j âij ≤ ci.

Proof. In order to find ai(B−i), we define the truncated bid vector b̃−i as follows.
For any set S ⊆ [m] of resources, we denote by 1S the indicator vector w.r.t.
S, such that xj = 1 for j ∈ S and xj = 0 otherwise. For any vector pi and any
λ > 0, let T := T (λ, pi) be a maximal subset of resources such that, vci

i (1T ) <
1
λ

∑
j∈T oijpij . For every k 	= i, if j ∈ T , then b̃kj = 0, otherwise b̃kj = bkj .

Similarly, p̃i =
∑

k �=i b̃k. Moreover, if b−i ∼ B−i, then pi is an induced random
variable with distribution denoted by Pi. We further define distributions B̃−i

and P̃i, as B̃−i = {b̃−i|b−i ∼ B−i} and P̃i = {p̃i|pi ∼ Pi}.
Now consider the following bidding strategy ai(B−i): sampling b′

i ∼ P̃i and
bidding aij = 1

λoijb
′
ij for each resource j. We first show

∑
j∈[m] aij ≤ ci. It

is sufficient to show that vci
i (1[m]\T ) ≥ ∑

j /∈T aij since ci ≥ vci
i (1[m]\T ). For

the sake of contradiction suppose vci
i (1[m]\T ) <

∑
j /∈T aij . Then, by the defin-

ition of T and p̃i, vci
i (1[m]) ≤ vci

i (1T ) + vci
i (1[m]\T ) <

∑
j∈T aij +

∑
j /∈T aij =

1
λ

∑
j∈[m] oijpij ,which contradicts the maximality of T .

Next we show for any bid bi and λ > 0,

vci
i (xi(bi,B−i))+

1
λ

∑

j∈[m]

oijEpi∼Pi
[pij ] ≥ vci

i (xi(bi, B̃−i))+
1
λ

∑

j∈[m]

oijEp̃i∼P̃i
[p̃ij ]

(1)
Observe that xi(bi, b̃−i) ≤ xi(bi,b−i) + 1T . Therefore, and by the definitions
of T and p̃i, vci

i (xi(bi, b̃−i)) ≤ vci
i (xi(bi,b−i)) + vci

i (1T ) ≤ vci
i (xi(bi,b−i)) +

1
λ

∑
j∈T oijpij = vci

i (xi(bi,b−i)) + 1
λ

∑
j∈[m] oijpij − 1

λ

∑
j∈[m] oij p̃ij . The claim

follows by rearranging terms and taking the expectation of b−i, b̃−i, pi and p̃i

over B−i, B̃−i, Pi and P̃i, respectively.

Eb′
i
∼P̃i

[

ui

(
1

λ
oib

′
i,B−i

)]

= Eb′
i
∼P̃i

[

vi

(
1

λ
oib

′
i,B−i

)]

− 1

λ

∑

j∈[m]

oijEb′
i
∼P̃i

[
b

′
ij

]

≥ Eb′
i
∼P̃i

[

v
ci
i

(
1

λ
oib

′
i,B−i

)]

− 1

λ

∑

j∈[m]

oijEp̃i∼P̃i
[p̃ij ] (by definition of v

ci
i )

≥ Eb′
i
∼P̃i

[

v
ci
i

(
1

λ
oib

′
i, B̃−i

)]

− 1

λ

∑

j∈[m]

oijEpi∼Pi
[pij ] (by Inequality (1))

≥ 1

2
Eb′

i
∼P̃i

Ep̃i∼P̃i

[

v
ci
i

(
oib

′
i

oib′
i + λp̃i

+
oip̃i

oip̃i + λb′
i

)]

− 1

λ

∑

j∈[m]

oij

∑

k �=i

Bkj

(by swapping b′
i with p̃i and the subadditivity of v

ci
i (·))

≥ 1

2
Eb′

i
∼P̃i

Ep̃i∼P̃i

[

v
ci
i

(

oi

(
b′

i

b′
i + λp̃i

+
p̃i

p̃i + λb′
i

))]

− 1

λ

∑

j∈[m]

∑

k∈[n]

oijE[bkj ]

≥ 1

2
v

ci
i

(
2oi

λ + 1

)

− 1

λ

∑

j∈[m]

oij

∑

k

Bkj (by monotonicity of v
ci
i )

≥ 1

λ + 1
v

ci
i (oi) − 1

λ

∑

j∈[m]

oij

∑

k

Bkj

(
subadditivity of v

ci
i ; 2

λ+1 ≤ 1
)



174 G. Christodoulou et al.

For the second inequality, notice that the second term doesn’t depend on b′
i, so

we apply Lemma 11 for every b′
i. For the forth and fifth inequalities, oi ≤ 1 and

b′
i

b′
i+λp̃i

+ p̃i

p̃i+λb′
i

≥ 2
λ+1 for every b′

i, p̃i and λ ≥ 1. 
�

We are ready to show the PoA bound by using the above lemma.

Theorem 11. The coarse correlated PoA for the proportional allocation mech-
anism when agents have budgets and subadditive valuations, is at most φ + 1 ≈
2.618.

Proof. Suppose B is a coarse correlated equilibrium. Let A be the set of agents
such that for every i ∈ A, vi(B) ≤ ci. For simplicity, we use vci

i (B) to denote
min{Eb∼B[vi(xi(b))], ci}. Then for all i /∈ A, vci

i (B) = ci ≥ vci
i (oi) and vci

i (B) =
ci ≥ ∑

j∈[m] E[bij ]. The latter inequality comes from that agents do not bid
higher than their budgets. Let λ = φ. So 1 − 1/λ = 1/(1 + λ). By taking the
linear combination and summing up over all agents not in A, we get

∑

i/∈A

vci
i (B) ≥ 1

λ + 1

∑

i/∈A

vci
i (oi) +

1
λ

∑

i/∈A

∑

j∈[m]

E[bij ] (2)

For every i ∈ A, we consider the deviating bidding strategy ai(B−i) that is
described in Lemma 10, then

vci
i (B) = vi(xi(B)) = ui(xi(B)) +

∑

j∈[m]

E[bij ] ≥ ui(ai(B−i),B−i) +
1

λ

∑

j∈[m]

E[bij ]

≥ 1

λ + 1
vci
i (oi) − 1

λ

∑

j∈[m]

∑

k∈[n]

oijE[bkj ] +
1

λ

∑

j∈[m]

E[bij ]

By summing up over all i ∈ A and by combining with inequality (2) we get
∑

i∈[n]

min{vi(xi(B)), ci}

≥ 1
λ + 1

∑

i∈[n]

vci
i (oi) +

1
λ

∑

i∈[n]

∑

j∈[m]

E[bij ] − 1
λ

∑

i∈A

∑

j∈[m]

∑

k∈[n]

oijE[bkj ]

≥ 1
λ + 1

∑

i∈[n]

vci
i (oi)

(
since

∑
i∈A oij ≤ 1

)

Therefore, the PoA with respect to the effective welfare is at most φ + 1. 
�
By applying Jensen’s inequality for concave functions, our upper bound also

holds for the Bayesian case with single-resource and concave functions.

Theorem 12. The Bayesian PoA of single-resource proportional allocation
games is at most φ + 1 ≈ 2.618, when agents have budgets and concave val-
uations.

Remark. Syrgkanis and Tardos [20], compared the social welfare in the equi-
librium with the effective welfare in the optimum allocation. Caragiannis and
Voudouris [2] also give an upper bound of 2 for this ratio in the single resource
case. We can obtain the same upper bound by replacing λ with 1 in the proofs.
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6 Polyhedral Environment

In this section, we study the efficiency of the proportional allocation mecha-
nism in the polyhedral environment, that was previously studied by Nguyen and
Tardos [16]. We show a tight price of anarchy bound of 2 for agents with sub-
additive valuations. Recall that, in this setting, the allocation to each agent i is
now represented by a single parameter xi, and not by a vector (xi1, . . . , xim). In
addition, any feasible allocation vector x = (x1, . . . , xn) should satisfy a poly-
hedral constraint A · x ≤ 1, where A is a non-negative m × n matrix and each
row of A corresponds to a different resource, and 1 is a vector with all ones.
Each agent aims to maximize her utility ui = vi(xi) − qi, where vi is a subad-
ditive function representing the agent’s valuation. The proportional allocation
mechanism determines the following allocation and payments for each agent:

xi(b) = min
j:aij>0

{
bij

aij

∑
k∈[n] bkj

}

; qi(b) =
∑

j∈[m]

bij ,

where aij is the (i, j)-th entry of matrix A. It is easy to verify that the above
allocation satisfies the polyhedral constraints.

Theorem 13. If agents have subadditive valuations, the pure PoA of the pro-
portional allocation mechanism in the polyhedral environment is exactly 2.

Proof. We first show that the PoA is at most 2. Let o = {o1, . . . , on} be the opti-
mal allocation, b be a pure Nash Equilibrium, and let pij =

∑
k �=i bij . For each

agent i, consider the deviating bid b′
i such that b′

ij = oiaijpij for all resources j.
Since b is a Nash Equilibrium,

ui(b) ≥ ui(b′
i, b−i) = vi

(

min
j:aij>0

{
oiaijpij

aij (pij + oiaijpij)

})

−
∑

j∈[m]

oiaijpij

≥ vi

(

min
j:aij>0

{
oi

1 + oiaij

})

−
∑

j∈[m]

oiaijpij ≥ 1
2
vi(oi) −

∑

j∈[m]

oiaijpij

The second inequality is true since A·x ≤ 1, for every allocation x, and therefore
oiaij < 1. The last inequality holds due to subadditivity of vi. By summing
up over all agents, we get

∑
i ui(b) ≥ 1

2

∑
i vi(oi) − ∑

j∈[m]

∑
i∈[n] oiaijpij ≥

1
2

∑
i vi(oi) − ∑

j∈[m]

∑
k∈[n] bkj . The last inequality holds due to the fact that

pij ≤ ∑
k∈[n] bkj and

∑
i∈[n] oiaij ≤ 1. PoA ≤ 2 follows by rearranging the terms.

For the lower bound, consider a game with only two agents and a single
resource where the polyhedral constraint is given by x1 + x2 ≤ 1. The valuation
of the first agent is v1(x) = 1 + ε · x, for some ε < 1 if x < 1 and v1(x) = 2
if x = 1. The valuation of the second agent is ε · x. One can verify that these
two functions are subadditive and the optimal social welfare is 2. Consider the
bidding strategies b1 = b2 = ε

4 . The utility of agent 1, when she bids x and
agent 2 bids ε

4 , is given by 1 + ε · x
x+ε/4 − x which is maximized for x = ε

4 .
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The utility of agent 2, when she bids x and agent 1 bids ε
4 , is ε · x

x+ε/4 −x which
is also maximized when x = ε

4 . So (b1, b2) is a pure Nash Equilibrium with social
welfare 1 + ε. Therefore, the PoA converges to 2 when ε goes to 0. 
�
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Abstract. In bandwidth allocation games (BAGs), the strategy of a
player consists of various demands on different resources. The player’s
utility is at most the sum of these demands, provided they are fully sat-
isfied. Every resource has a limited capacity and if it is exceeded by the
total demand, it has to be split between the players. Since these games
generally do not have pure Nash equilibria, we consider approximate
pure Nash equilibria, in which no player can prove her utility by more
than some fixed factor α through unilateral strategy changes. There is
a threshold αδ (where δ is a parameter that limits the demand of each
player on a specific resource) such that α-approximate pure Nash equi-
libria always exist for α ≥ αδ, but not for α < αδ. We give both upper
and lower bounds on this threshold αδ and show that the corresponding
decision problem is NP-hard. We also show that the α-approximate price
of anarchy for BAGs is α+1. For a restricted version of the game, where
demands of players only differ slightly from each other (e.g. symmet-
ric games), we show that approximate Nash equilibria can be reached
(and thus also be computed) in polynomial time using the best-response
dynamic. Finally, we show that a broader class of utility-maximization
games (which includes BAGs) converges quickly towards states whose
social welfare is close to the optimum.

1 Introduction

Nowadays, as cloud computing and other data intensive applications such as
video streaming gain more and more importance, the amount of data processed in
networks and compute centers is growing. Moore’s law for data traffic [16] states
that the overall data traffic doubles each year. This yields unique challenges for
resource management, particularly bandwidth allocation. As technology cannot
follow up with the data increase, bandwidth constraints are often a bottleneck
of current systems.
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In our paper, we cope with the problem that service providers often cannot
satisfy the needs of all customers. That is, the overall size of connections between
the provider and all customers exceeds the amount of data that the provider
can process. By allowing different link sizes in network structures, connections
between providers and customers with different capacities can be modeled. In
case a provider cannot fulfill the requirements of all customers, the available
bandwidth needs to be split. This results in customers not being supplied with
their full capacity. In video streaming, for example, this may lead to a lower
quality stream for certain customers. In our setting, we assume that each cus-
tomer can choose the service providers she wants to use herself. While this aspect
has recently been studied from the compute center’s point of view [9], our work
considers limited resources from the customers’ point of view.

We study this scenario in a game theoretic setting called bandwidth allocation
games. Here, we are interested in the effects of rational decision making by
individuals. In our context, the customers act as the players. In contrast, we
view the service providers as resources with a limited capacity. Each possible
distribution of a player among the resources (which we view as network entrance
points) is regarded as one of her strategies. Now, each player strives to maximize
the overall amount of bandwidth that is supplied to her. Our main interest lies
in states in which no customer wants to deviate from her current strategy, as
this would yield no or only a marginal benefit under the given situation. These
states are called (approximate) pure Nash equilibria. Instead of a global instance
enforcing such stable states, they occur as the result of player-induced dynamics.
At every point in time, exactly one player changes her strategy such that the
amount of received bandwidth is maximized, assuming the strategies of the other
players are fixed. We show that if we allow only changes which increase the
received bandwidth by some constant factor, this indeed leads to stable states.
We further analyze the quality of such states in regard to the total bandwidth
received by all players and compare it to the state which maximizes this global
payoff.

Related Work. Bandwidth allocation games can be considered to be a gener-
alization of market sharing games [22], in which players choose a set of market
in which they offer a service. Each market has a fixed cost and each player a
budget. The set of markets a player can service is thus determined by a knapsack
constraint. The utility of a player is the sum of utilities that she receives from
each market that she services. Each market has a fixed total profit or utility that
is evenly distributed among the players that service the market.

The utility functions of bandwidth allocation games are more general. In
particular the influence of a player on the utility share others players receive is
not uniform. Players with high demand have a much stronger influence on the
bandwidth other players receive than player with small demands. This feature
can also be found in demanded congestion games [28]. Players in a congestion
game choose among subsets of resources while trying to minimize costs. The cost
of a player is sum of the costs of the resources. In the undemanded version which
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was introduced by Rosenthal [30] the cost of each resource depends only on the
number of players using that resource. In the demanded version each player has
a demand and the cost of a resource is a function of the sum of demands of
the players using the resource. In both model the cost caused by a resource is
identical for each player that uses the resource. In the variant of player-specific
congestion games, each player has her own set of cost functions [28] for each
resource that map from the number of players using a resource to the cost
incurred to that specific player Mavronicolas et al. [27] combined these two vari-
ations into demanded congestion games with player-specific constants, in which
the cost functions are based on abelian group operations. Harks and Klimm [25]
introduced a model in which each player not only picks a subset of resources,
but also her single demand on them. A higher demand equals a higher utility for
each player, but also increases the congestion at the chosen resources. The final
payoff results from the difference between utility and congestion.

Both, market sharing games and congestion games always posses pure Nash
eqilibria. Moreover they are potential games [29] which implies that every finite
sequence of best response dynamics is guaranteed to converge to a pure Nash
equilibrium. demanded congestion games are potential games only if the cost
function are linear or exponential functions [24]. For demanded and player-
specific games the existence of pure Nash equilibria this is guaranteed for the spe-
cial case in which the strategy spaces of the players for the bases of a matroid [1].

Fabrikant et al. [20] showed that the problem of computing a pure Nash equi-
librium is PLS-complete. This result implies that the improvement path could
be exponentially long. In the case of demanded [19] or player-specific [2] conges-
tion games it is NP-hard to decide if there exists a pure Nash equilibrium. These
negative computational and existence results lead to the study of α-approximate
pure Nash equilibria which are states in which no player can increases her utility
(or decrease her cost) by a factor of more than α. Chien and Sinclair [13] showed
that in symmetric undemanded congestions games and under a mild assump-
tion on the cost functions every sequence of (1+ ε)-improving steps convergence
to (1 + ε)-approximate equilibria in polynomial time in the number of players
and ε−1. This result cannot be generalized to asymmetric games as Skopalik
and Vöcking [32] showed that the problem is still PLS-complete. However, for
the case of linear or polynomial cost function Caragiannis et al. presented [10]
an algorithm to compute approximate pure Nash equilibria in polynomial time
which was slightly improved in [21].

For demanded congestion games it was shown that α-approximate pure equi-
libria with small values of α exist [23] and that they can be computed in poly-
nomial time [11] albeit only for a larger values of α. Chen and Roughgarden [12]
proved the existence of approximate equilibria in network design games with
demanded players. The results have been used by Christodoulou et al. [15] to
give tight bounds on the price of anarchy and price of stability of approximate
pure Nash equilibria in undemanded congestion games.

To quantify the inefficiency of equilibrium outcomes the price of anarchy
has been thoroughly analyzed for exact equilibria for undemanded [3,14,31] as
well as for demanded congestion games [3,6,8,14]. Christodoulou et al. [15] also
investigated the PoA for approximate pure Nash equilibria.
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Recent work bounded the convergence time to states with a social welfare
close to the optimum rather than equilibria. The concept of smoothness was
first introduced by Roughgarden [31]. Several variants such as the concept of
semi-smoothness [26] followed. Awerbuch et al. [7] proposed β-niceness which
was reworked in [5]. It is the basis of the concept of nice games introduced in [4],
which we use in our work.

Our Contribution. We introduce the notion of δ-share bandwidth allocation
games (BAGs). The demand on a resource may not exceed that resource’s capac-
ity by a factor of more than δ. Building on a result from our previous paper [18],
we show that no matter how small we choose δ, these games generally do not have
pure Nash equilibria. We then turn to α-approximate pure Nash equilibria, in
which no player can improve her utility by a factor of more than α through unilat-
eral strategy changes. We are interested in the threshold αδ (based on a given δ),
such that for all α < αδ, there is a δ-share BAG without an α-approximate pure
Nash equilibrium, and for all α ≥ αδ, every δ-share BAG has an α-approximate
pure Nash equilibrium. By using a potential function argument, we give both
upper and lower bounds for αδ. For a general δ-share BAG B and α < αl

δ, it
is NP-complete to decide if B has an α-approximate pure Nash equilibria and
NP-hard to compute it, if available. On the other hand, for α ≥ αu

δ and if the
difference between the most-profitable strategies of the players can be bounded
by some constant λ, then an (α+ ε)-approximate Nash equilibrium can be com-
puted efficiently. We give an almost tight bound of α + 1 for the α-approximate
price of anarchy for BAGs and finally show that utility-maximization games with
certain properties converge quickly towards states with a social welfare close to
the optimum. We then adapt this general result to δ-share BAGs.

2 Model and Preliminaries

A bandwidth allocation game (BAG) B is a tuple (N ,R, (br)r∈R, (Si)i∈N ) where
the set of players is denoted by N = {1, . . . , n}, the set of resources by R =
{r1, . . . , rm}, the capacity of resource r by br and the strategy space of player i
by Si. Each si ∈ Si has the form (si(r1), . . . , si(rm)) ∈ R

m
≥0, with si(rj) ∈ R≥0

being the demand of si on the resource rj . We say that a strategy si uses a
resource rj if si(rj) > 0. S = S1 × . . . × Sn is the set of strategy profiles and
ui : S → R≥0 denotes the private utility function player i strives to maximize.
For a strategy profile s = (s1, . . . , sn), let ui,r(s) ∈ R≥0 denote the utility of
player i from resource r, which is defined as

ui,r(s) := min

(

si(r),
br · si(r)∑
j∈N sj(r)

)

.

The total utility of i is then defined as ui(s) :=
∑

r∈R ui,r(s).
Let δ > 0. We call a bandwidth allocation game a δ-share bandwidth alloca-

tion game if for every strategy si and every resource r, the restriction si(r) ≤ δbr

holds.
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Let s be an arbitrary strategy profile and i ∈ N . We denote with s−i :=
(s1, . . . , si−1, si+1, . . . , sn) the strategy vector of all players except i. For any si ∈
Si, we can extend this to the strategy profile (s−i, si) := (s1, . . . , si−1, si, si+1,
. . . , sn). We denote with sb

i ∈ Si the best response of i to s−i if ui(s−i, s
b
i ) ≥

ui(s−i, si) for all si ∈ Si.
Let α ≥ 1 and si a strategy of player i. If there is a strategy s′

i ∈ Si with
α · ui(s−i, si) < ui(s−i, s

′
i), then we call the switch from si to s′

i an α-move.
For α = 1, we simply use the term move. A strategy profile s is called an α-
approximate pure Nash equilibrium (α-NE) if α · ui(s) ≥ ui(s−i, s

′
i) for every

i ∈ N and s′
i ∈ Si. For α = 1, s is simply called a pure Nash equilibrium (NE). If

a bandwidth allocation game eventually reaches an (α-approximate) pure Nash
equilibrium after a finite number of (α-)moves from any initial strategy profile
s, we say that the game has the finite improvement property.

The social welfare of a strategy profile s is defined as u(s) =
∑

i∈N ui(s). Let
opt be the strategy profile with u(opt) ≥ u(s) for all s ∈ S. If Sα ⊆ S is the set of
all α-approximate pure Nash equilibria in a bandwidth allocation game B, then
B’s α-approximate price of anarchy (α-PoA) is the ratio maxs∈Sα

u(opt)
u(s) . Again,

we simply use the term price of anarchy (PoA) for α = 1.
Throughout the paper, we are going to use a potential function φ : S → R to

analyze the properties of bandwidth allocation games. Let Tr(s) :=
∑

i∈N si(r)
be the total demand on resource r under strategy profile s. We define φ(s) :=∑

r∈R φr(s) with

φr(s) :=

{
Tr(s) if Tr(s) ≤ br

br +
∫ Tr(s)

br

br

x dx else

3 Pure Nash Equilibria

The δ-share BAGs in this paper resemble the standard budget games from our
previous work [18] in which δ was unbounded. This allowed arbitrarily large
demands for the strategies. In particular, the demand of a strategy on a resource
r could exceed the capacity br. In δ-share BAGs, that demand is restricted to
the interval [0, δbr] for a fixed δ > 0. We now show that our previous result
concerning the existence of NE still holds for any restriction on the demands.

Definition 1. Let δ > 0 be arbitrary, but fixed. Choose γ, σ > 0 and n ∈ N0 s.t.
γ < δ, σ ≤ δ and n · σ + δ = 1. Let B0 be a δ-share bandwidth allocation game
with |N0| = n+2, R0 = {r1, r2, r3, r4} resources with capacity 1 and the strategy
spaces S1 = {s11 = (γ, δ, 0, 0), s21 = (0, 0, δ, γ)}, S2 = {s12 = (δ, 0, γ, 0), s22 =
(0, γ, 0, δ)} and Si = {si = (σ, σ, σ, σ)} for i ∈ {3, . . . , n + 2}.
The players i ∈ {3, . . . , n + 2} serve as auxiliary players to reduce the available
capacity of the resources. Each can only play strategy si, so we focus on the two
remaining players 1 and 2, which we regard as the main players of the game.
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In every strategy profile, one of them has a utility of u := γ
δ+γ+n·σ + δ while the

other one has a utility of u′ := δ
δ+γ+n·σ +γ. Assume δ ≤ 1. Since δ+γ+n ·σ > 1,

we obtain δ−γ
δ+γ+n·σ < δ − γ and therefore u′ < u. Since the player with utility

u′ can always change strategy to swap the two utilities, B0 does not have a pure
Nash equilibrium. For δ > 1, we choose n = 0 and γ > 1. In this case, u = γ

δ+γ +1
and u′ = δ

δ+γ + 1 with u < u′. Again, the player with the lower utility u can
always improve her utility. A visualisation of the game B0 for δ > 1 can be found
in the full version of the paper [17]. We conclude the following result.

Corollary 1. For every δ > 0, there is a δ-share bandwidth allocation game
which does not yield a pure Nash equilibrium.

4 Approximate Pure Nash Equilibria

The previous section has shown that we cannot expect any δ-share BAG to have
a pure Nash equilibrium. Therefore, we turn our attention to α-approximate
pure Nash equilibria. If α is chosen large enough, any strategy profile becomes
an α-NE, whereas we know that there may not be an α-NE for α = 1. Hence,
there has to be a threshold αδ for a guaranteed existence of these equilibria in
dependency of δ. In this section, we give both upper and lower bounds on αδ.
We start with the upper bound αu

δ , which we define as follows.

Definition 2. Let δ > 0. We define the upper bound αu
δ on αδ as

αu
δ := w · ln(w) − w + δ + 1

δ
with w =

(

−1
2
W−1

(
−2e(−δ)−2

))

.

Here, W−1 is the lower branch of the Lambert W function. Table 1 shows a
selection of values of αu

δ .

Theorem 1. Let δ > 0 and B be a δ-share bandwidth allocation game. For α ≥
αu

δ , B reaches an α-approximate pure Nash equilibrium after a finite number of
α-moves.

Proof. For this proof, we use the potential function φ introduced in Sect. 2. We
also need some additional concepts. For a resource r, let φr(s−i) be the potential
of r omitting the demand of player i. Now, φi,r(s) := φr(s) − φr(s−i) is the part
of r’s potential due to strategy si if si is the last strategy to be considered when
evaluating φr (cf. Fig. 1). Note that we always have ui,r(s) ≤ φi,r(s). We are
going to show that any strategy change of a player i improving her personal
utility by a factor of more than α also results in an increase of φ if α is chosen
accordingly. This implies that the game does not possess any cycles and thus
always reaches an α-NE after finitely many steps (finite improvement property),
as the total number of strategy profiles is finite.
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For now, let α ≥ maxi,r

(
φi,r(s)
ui,r(s)

)
which trivially implies φi,r(s) ≤ αui,r(s)

∀ i, r. Assume that under the strategy profile s, player i changes her strategy
from si to s′

i, increasing her overall utility by a factor of more than α in the
process. We denote the resulting strategy profile by s′. It follows

Δφ = φ(s′) − φ(s) =
∑

r∈R
φi,r(s′) −

∑

r∈R
φi,r(s) ≥

∑

r∈R
ui,r(s′) − α ·

∑

r∈R
ui,r(s)

= ui(s′) − α · ui(s) > α · ui(s) − α · ui(s) = 0

Fig. 1. The left side shows the potential of resource r, divided over the players. Each
block represents a player currently using r. The order of the players does not affect
the potential as a whole, but the amount caused by each individual player. The right
side shows how much utility each player initially receives if they arrive at r according
to their order.Therefore, the utility of the last player in the graph is her actual utility
from r under the strategy profile s.

Therefore, the potential φ of B indeed grows with every α-move. It remains to be
shown that αu

δ ≥ maxi,r

(
φi,r(s)
ui,r(s)

)
. For a resource r, define T−i,r(s) := Tr(s)−si(r)

as the total demand on r excluding player i. When the situation is clear from the
context, we also write t−i instead of T−i,r(s). We make a case distinction based
on the size of t−i and look at the two cases t−i < br and t−i ≥ br. We start with
the first one. Note that we can assume t−i + si > br, because otherwise the ratio
between potential and utility of i at r would be 1. The ratio looks as follows:

φi,r(s)
ui,r(s)

=
br − t−i +

∫ t−i+si

br

br

x dx
br·si

t−i+si

= (t−i + si) · br − t−i + br · ln( t−i+si

br
)

br · si

One can show that this ratio is at most αu
δ as defined in Definition 2. For the

second case, t−i ≥ br, this ratio only becomes smaller. We refer to the extended
proof in the full version of the paper [17] for details. �	
Now that we have an upper bound on αδ, we give a lower bound αl

δ, as well.

Definition 3. Let δ > 0. We define the lower bound αl
δ on αδ as

αl
δ :=

2
√

δ2(δ + 2) + δ − 1
4δ − 1

Again, we list some values for αl
δ in Table 1.
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Theorem 2. Let δ > 0 and α < αl
δ. There is a δ-share bandwidth allocation

game without an α-approximate pure Nash equilibrium.

Proof. We refer to the δ-share BAG from Definition 1. If we fix δ, the ratio
between u and u′ becomes a function f in γ.

f(γ) :=
δ + γ

δ+γ+n·σ
γ + δ

δ+γ+n·σ
=

γ + δ(δ + γ + n · σ)
δ + γ(δ + γ + n · σ)

=
γ + δ(γ + 1)
δ + γ(γ + 1)

Deriving f with respect to γ yields

f ′(γ) =
δ2 − δγ(γ + 2) − γ2

(δ + γ2 + γ)2
= 0 for γ0 =

√
δ3 + 2δ2 − δ

δ + 1

One can check that this is indeed the only local maximum of f for γ > 0.

f(γ0) =
2
√

δ2(δ + 2) + δ − 1
4δ − 1

= αl
δ �	

The smaller δ is chosen, the better our result, i.e. the gap between αu
δ and αl

δ

becomes smaller and αu
δ decreases. A value of δ = 1 is a realistic assumption as

it states that the demand on a resource may not exceed its capacity, but it also
means that one player is able to fully occupy any resource. However, if we think
back to our motivation, it usually takes several thousand clients to exhaust the
capacity of a provider. In this context, αu

δ -approximate Nash equilibria are close
to the definition of (regular) Nash equilibria. A visualisation of αu

δ depending on
δ ∈ ]0, 1] can be found in the full version of the paper [17]. Theorem 2 states that
for α below αl

δ, an α-NE cannot be guaranteed in general. The following result
shows that below this lower bound, it is computationally hard to both check for
a given δ-share BAG whether it has such an equilibrium and to compute it. The
corresponding proof can be found in the full version of the paper [17].

Theorem 3. Let δ > 0 and α < αl
δ. Computing an α-approximate Nash equi-

librium for any δ-share bandwidth allocation game is NP-hard.

The proof also shows that the decision version of this problem is NP-complete.
However, for α ≥ αu

δ and if the utilities uopt
i := maxsi∈Si

∑
r∈R min(si(r), br)

of the most-profitable strategies of the players do not differ too much from each
other, approximate Nash equilibria can be computed efficiently. For example,
symmetric games always have this property. We do not impose any restriction
on how much the demands of a single player may deviate from another between

Table 1. Upper and lower bounds for αδ derived from δ.

δ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

αu
δ 1.0485 1.0946 1.1388 1.1816 1.2232 1.2637 1.3033 1.3422 1.3804 1.4181

αl
δ 1.0170 1.0335 1.0497 1.0656 1.0811 1.0964 1.1114 1.1261 1.1405 1.1547
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her different strategies. However, we can assume that uopt
i and the potential

utility of any other strategy differ by a factor of at most nδ. Otherwise, that
strategy would never be chosen.

Lemma 1. Let B be a δ-share BAG. Then ui(s) ≥ uopt
i

(nδ)2 for all players i ∈ N
and strategy profile s.

Proof. Let sopti be the strategy of i associated with uopt
i . First, we show that

ui,r(s−i, s
opt
i ) ≥ sopt

i (r)

nδ for all s−i and r. If Tr(s−i, s
opt
i ) ≤ br, then the claim

holds, as ui,r(s−i, s
opt
i ) = sopti (r). For Tr(s−i, s

opt
i ) > br, ui,r(s−i, s

opt
i ) =

sopt
i (r)·br

sopt
i +Tr(s−i)

≥ sopt
i (r)·br

nδbr
= sopt

i (r)

nδ . By summing up over all resources, we obtain

ui(s−i, s
opt
i ) =

∑
r∈R

sopt
i (r)

nδ ≥ uopt
i

nδ . So we can assume wlog that for all strategies

si ∈ Si,
∑

r∈R min(si(r), br) ≥ uopt
i

nδ . Otherwise, the strategy sopti would yield a
higher utility in all situations. By the same arguments made above, this implies
ui(s−i, si) ≥ uopt

i

(nδ)2 . �	
We further need an additional lemma to bound the potential of a BAG in respect
to its social welfare.

Lemma 2. For any δ-share BAG and any strategy profile s, (1+log(nδ))·u(s) ≥
φ(s).

Theorem 4. Let B be a δ-share BAG for δ ≤ 1, ε > 0 and λ ∈ ]0, 1] such that
for all players i, j uopt

i ≥ λuopt
j . Then B reaches an (αu

δ + ε)-approximate NE in
O (

log(n) · n5 · (ελ)−1
)

(αu
δ + ε)-moves.

Proof. Let i be the player performing an (αu
δ +ε)-move under the strategy profile

s, leading to the strategy profile s′. We can bound the increase in the potential:

Φ(s′) − Φ(s) ≥ εui(s)
(1)

≥ ε

(nδ)2
uopt

i

(2)

≥ ελ

n(nδ)2
u(s)

(3)

≥ ε · λ

n(1 + log(n))(nδ)2
Φ(s)

Inequalities (1) and (3) follow by Lemmas 1 and 2 respectively while (2) holds
due to u(s) =

∑
j∈N uj(s) ≤ ∑

j∈N uopt
j ≤ n

λuopt
i . For convenience, we define

β := ε·λ
n(1+log(n))(nδ)2 . Assume that we need t steps to increase the potential from

Φ(s) to 2Φ(s). Then Φ(s) = 2Φ(s) − Φ(s) ≥ β · t · Φ(s) ⇔ t ≤ β−1. So in order
to double the current potential of B, we need at most β−1 improving moves.
Therefore, the game has to reach a corresponding equilibrium after at most
log

(
Φmax
Φmin

)
· β−1 improving moves, with Φmax and Φmin denoting the maximum

and minimum potential of B, respectively. Since Φmax ≤ ∑
i∈N uopt

i due to δ ≤ 1

and Φmin ≥ ∑
i∈N

uopt
i

(nδ)2 , we can bound log
(

Φmax
Φmin

)
≤ (nδ)2. �	

To conclude this section, we turn towards the quality of α-approximate Nash
equilibria. Although no player has an incentive to change her strategy, the social
welfare, which is the total utility of all players combined, may not be optimal. To
express how well Nash equilibria perform in comparison to a globally determined
optimal solution, the price of anarchy has been introduced.
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Theorem 5. The α-approximate price of anarchy of any δ-share bandwidth allo-
cation game is at most α + 1. For every ε > 0, there is a δ-share bandwidth
allocation game with an α-approximate Price of Anarchy of α + 1 − ε.

Due to space constraints, the proof can be found in the full version of the paper
[17]. Note that our result even holds for α < αl

δ, provided the BAG has an α-NE.
This result matches our previous work [18], where we have shown that the price
of anarchy for pure Nash equilibria (α = 1) is 2.

5 Approximating the Optimal Social Welfare

In this final section, we look at how fast certain utility-maximization games
converge towards socially good states, i.e. strategy profiles with a social wel-
fare close to u(opt) if the players keep performing α-moves. We then apply this
result to bandwidth allocation games. For this, we use the concept of nice games
introduced in [4]. A utility-maximization game is (λ, μ)-nice if for every strategy
profile s, there is a strategy profile s′ with

∑
i∈N ui(s−i, s

′
i) ≥ λ ·u(opt)−μ ·u(s)

for constants λ, μ. The proof of the following theorem is also derived from [4].

Theorem 6. Let B be a utility-maximization game with a potential function φ(s)
such that for some A,B,C ≥ 1, we have that A·φ(s) ≥ u(s) ≥ 1

B ·φ(s), φ(s−i, s
b
i )−

φ(s) ≥ ui(s−i, s
b
i ) − C · ui(s) and which is (λ, μ)-nice. Let ρ = λ

C+μ . Then, for
any ε > 0 and any initial strategy profile s0, the best-response dynamic reaches a
state st with u(st) ≥ ρ(1−ε)

AB u(opt) in at most O
(

n
A(C+μ) log 1

ε

)
steps. All future

states reached via best-response dynamics will satisfy this approximation factor
as well.

When adapting this result for bandwidth allocation games, note that the players
have to perform α-moves when following the best-response dynamic. Otherwise,
we cannot guarantee that φ is strictly monotone.

Corollary 2. Let B be a δ-share BAG and α ≥ αu
δ . For any ε > 0 and any

initial strategy profile s0, the best-response dynamic using only α-moves reaches a
state st with u(st) ≥ 1−ε

(α2+1)(ln(nδ)+1)u(opt) in at most O
(

n
α+α−1 log 1

ε

)
steps. All

future states reached via best-response dynamics will satisfy this approximation
factor as well.

Proof. First we show that any δ-share BAG is (α−1, α−1)-nice. Let s be an arbi-
trary strategy profile. We show that

∑
i∈N ui(s−i, s

b
i ) ≥ α−1 ·u(opt)−α−1 ·u(s).

Note that ui(s−i, s
b
i ) ≥ ui(s−i, opti) by definition of sb

i . This implies ui(s−i, s
b
i ) ≥

α−1 ·ui(s−i, opti) and we can therefore copy the proof of Theorem5 to show that∑
i∈N ui(s−i, s

b
i ) ≥ α−1 · u(opt) − α−1 · u(s).

We now use our potential function φ(s), for which we already know that
φ(s) ≥ u(s) ≥ 1

1+ln(nδ)φ(s) (see Lemma 2) and φ(s−i, s
b
i ) − φ(s) ≥ ui(s−i, s

b
i ) −

α · ui(s). So we obtain A = 1, B = 1 + ln(nδ) and C = α. Using these values
together with Theorem 6 directly leads to our result. �	
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Computing opt is NP-hard and prior to this result, an approximation algorithm
was only known for games in which the strategy spaces consist of the bases of a
matroid over the resources [18]. Following the best-response dynamic, we can now
approximate the optimal solution for arbitrary strategy space structures. While
reaching an actual α-approximate NE by this method may take exponentially
long, we obtain an O(α2 log(n))-approximation of the worst-case equilibrium
after a linear number of strategy changes.
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Abstract. Peer to peer (P2P) and Crowd Sourcing systems have built
their success on resource sharing protocols such as BitTorrent and Open
Garden. While previous studies addressed the issue of fairness, we discuss
prevention of manipulative actions a player may lie to take the advantage
of the protocols. We prove that, under a proportional response proto-
col, a player deviating from the protocol by reporting false broken links
will not make any gain in its utility eventually. This result establishes
the strategic stability of a popular resource sharing P2P system in the
Internet.

Keywords: Bandwidth sharing · Peer to peer system · Strategic
behavior

1 Introduction

We consider a decentralized and distributed network architecture where vertices
(called “peers”) act as both suppliers and consumers of resources. Commonly
referred to as peer to peer (P2P) networks, or crowd sourcing systems, partici-
pants use plum-for-peach (or tit-for-tat) mechanisms to make a portion of their
resources directly available to other network participants [7]. While peers gain
convenience and benefit created with the system, fairness or manipulativeness
become possible issues of the protocol design.

Wu and Zhang [8], motivated by P2P systems such as BitTorrent, have pio-
neered a model of proportional response (PR) for the consideration of fairness
among the participating agents. Under the PR protocol, each agent responds to
bandwidth provided by its neighbors by allocating its bandwidth in proportion
to its received shares. In recent years, in the context of crowd-sourcing mobile
net such as Opengarden and Karma and so on, the issue of incentive schemes for
resource sharing protocols has recently been put forth as a key challenge in the
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field [4–6]. Further, Godfrey, et al., considered a problem of congestion control
in TCP system queueing [3] and proved that efficiency and truthfulness cannot
hold at the same time.

In this work, we take up the challenge with respect to the PR protocol.
A natural strategic move to misreport utility is to remove an edge or more by an
agent, faked as happened naturally where a connection is broken, or shut down.
We confirm strategy stability of the PR protocol under such manipulative moves
by any agent: No agent can increase its bandwidth obtained from its neighbors
by unilaterally cutting off some of its links under the PR protocol.

To the best of our knowledge, this is the first concrete result for bandwidth
sharing protocols to be proven truthful under a natural strategic behavior.

Our work is based on an elegant bottleneck decomposition structure, and
the equivalence of fairness (with the proportional response protocol) and com-
petitiveness (market equilibrium) originally proven in [8]. By considering the
alternation on the structure caused by an agent’s manipulative act, the rela-
tionship of the original one and the altered one are shown to have interesting
properties. Then participants’ incentives are taken as the next line of analysis.
Together, we derive a set of localized properties where an agent may deviate from
the standard PR protocol by cutting of some edges it connects to the network.

Despite of the equivalence discussed above, those results under the limited
manipulative behavior space are in a sharp contrast to the negative results for
the linear market equilibrium where there are ample possibilities for an agent
to cheat [1,2]. One may observe that the P2P setting provides a model with a
unique cheating behavior. By cutting of an edge, a cheater will change its own
utility function as well as its neighbors on the other ends of its deleted edges.
That is, the deviation behavior in the PR protocol is no longer equivalent to
that in the market equilibrium model.

In the next section, we introduce some useful notations and some known
results pertinent to the subsequent studies. In Sect. 3, we first present some
structure properties of bottleneck decomposition which are crucial for our study
on the strategy stability of PR protocol. Next, we discuss our main result and
conclude to make remarks on future directions in Sect. 4.

2 Definitions and Terminologies

In this section, we present the basic model of [8] and discuss its basic properties.

P2P Bandwidth Sharing Problem: Consider a network, represented by an
undirected graph G = (V,E;w), where wv : V → R+ is the upload bandwidth
capacity of player v to be shared with its neighbors. Each edge represents a
communication link. Let Γ (v) denote the set of vertices adjacent to v in graph
G and xvu denote the fraction of bandwidth v allocated for use by its neighbor
u. Therefore, the upload bandwidth a vertex v provides to a neighboring vertex
u is wv · xvu. X = (xvu)(u,v)∈E is called an allocation. We use vertex agents to
refer to the players.
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Specially, for any subset S ⊆ V we define w(S) =
∑

u∈S wu, and let Γ (S) =
∪v∈SΓ (v) where Γ (v) is the neighborhood of v in G. It is obvious that S∩Γ (S) �=
∅ if S is not independent. Define α(S) = w(Γ (S))/w(S), referred to as the
inclusive expansion ratio of S, or the α-ratio of S for short.

Proportional Response Protocol: For each vertex u, the allocation (xuv : v ∈
Γ (u)) of its bandwidth wu is proportional to what it receives from its neighbors
(wv · xvu : Γ (u)).

Alternatively, we may consider an economy model where each player v sells
its own bandwidth to its neighbors, and at the same time each player is also
a buyer of bandwidth from its neighbors for its own communication needs. We
assume that each player’s utility is the sum of bandwidth it acquires from its
neighbors, i.e., the utility of v for an allocation X is Uv(X) =

∑
u∈Γ (v) xuvwu.

One supplies its bandwidth only for the communication needs of its neighbors.

Market Equilibrium: Let pv be the price for bandwidth of player v ∈ V . The
price vector p = (pv)v∈V , together with the allocation X = (xvu) is called a
market equilibrium if for any agent v ∈ V the following holds.

– Market clearance: (
∑

u∈Γ (v) xvu −1) ·pv = 0. All bandwidth of v are allocated
or priced null. The latter may occur in the case of an isolated vertex in the
P2P bandwidth sharing problem.

– Budget constraint:
∑

u∈Γ (v) xuvpu ≤ pv. The money player v should pay out
must not exceed its budget

– Individual optimality: The solution X = (xvu) maximizes utility
∑

u∈Γ (v)

xuvwu, subject to
∑

u∈Γ (v) xuvpu ≤ pv and xuv ≥ 0 for each vertex v. That
is, each player is optimally happy for its allocation at the current price.

In [8], an elegant bottleneck decomposition structure from which we can
obtain a market equilibrium is proposed.

Maximal Bottleneck: A vertex subset B ⊆ V is called a bottleneck of G if
α(B) = minS⊆V α(S). B is a maximal bottleneck if ∀B̃, B ⊂ B̃ ⊆ V implies
α(B̃) > α(B). We also call (B,Γ (B)) the maximal bottleneck pair.

Bottleneck Decomposition: Start with V1 = V , G1 = G and i = 1. Find
the maximal bottleneck Bi of Gi and let Gi+1 be the induced subgraph on the
vertex set Vi+1 = Vi − (Bi ∪ Ci), where Ci = Γ (Bi) ∩ Vi, the neighbor set of Bi

in the subgraph Gi. Repeat if Gi+1 �= ∅ and set k = i if Gi+1 = ∅. Then we
call B = {(B1, C1), · · · , (Bk, Ck)} the bottleneck decomposition of G, αi the i-th
α-ratio and (αi = w(Ci)

w(Bi)
: i = 1, 2, · · · , k) the α-ratio vector.

The following properties of the bottleneck decomposition will be useful in
our discussion.

Proposition 1 [8]. Given graph G, the bottleneck decomposition is unique and

1. 0 ≤ α1 < α2 < · · · < αk ≤ 1;
2. if there is a pair (B,C) in Gi with w(C)/w(B) = αi, then B ⊆ Bi and

C ⊆ Ci;
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3. if αi = 1, then i = k and Bi = Ci; otherwise Bi is independent and Bi∩Ci = ∅;
4. ∪i:αi<1Bi is an independent set.

Proposition 2 [8]. For the bottleneck decomposition B = {(B1, C1), · · · ,
(Bk, Ck)},
1. there is no edge between Bi and Bj, i �= j = 1, 2, · · · , k;
2. there is no edge between Bi and Cj, where j > i.

With those properties, a connection was established in [8] from the bottleneck
decomposition to the market equilibrium. First a price vector is established as:
for any u ∈ Bi, let pu = αiwu; for any u ∈ Ci, let pu = wu; and if αk = 1, then
for any u ∈ Bk = Ck let pu = wu. The corresponding allocations of bandwidth
of the vertices are determined as follows in three cases.

– αi < 1: consider the bipartite graph Ĝi = (Bi, Ci;Ei) where Ei = (Bi×Ci)∩E.
Let x̂uv be the amount of bandwidth that vertex u ∈ Bi uploads to v ∈ Ci

along edge (u, v) ∈ Ei. By the max-flow min-cut theorem, there exist x̂uv ≥ 0
for u ∈ Bi and v ∈ Ci such that

∑
v∈Γ (u)∩Ci

x̂uv = wu and
∑

u∈Γ (v)∩Bi
x̂uv =

wv/αi. Let x̂vu = αix̂uv which means that
∑

u∈Γ (v)∩Bi
x̂vu = wv.

– Bk = Ck with αk = 1: Construct a bipartite graph Ĝ = (Bk, B′
k;E′

k) such
that B′

k is a copy of Bk. There is an edge (u, v′) ∈ E′
k iff u, v ∈ Bk and

(u, v) ∈ E[Bk]. Then, by Hall’s theorem, for any edge (u, v) ∈ E[Bk], there
exist x̂uv′ such that

∑
v′∈Γ (u)∩B′

k
x̂uv′ = wu.

– For any other edge, (u, v) �∈ Bi × Ci, i = 1, 2, · · · , k, define x̂uv = 0

The allocation defined above assigns all the bandwidth of each vertex to its
neighbors, called a feasible allocation. For this particular feasible allocation, all
available bandwidth are uploaded along edges in Bi × Ci, i = 1, 2, · · · , k. In
addition, if we define xuv = x̂uv/wu and X = (xuv), then

Proposition 3 [8]. (p,X) is a market equilibrium. ∀u ∈ Bi, v ∈ Ci, i =
1, 2, · · · , k, the utilities of u and v are Uu = w(u) · αi and Uv = w(v)/αi,
respectively.

Furthermore, Wu and Zhang [8] show that the bandwidth allocation under
the market equilibrium derived from the bottleneck decomposition is a PR pro-
tocol. So in the subsequent discussion, we shall speak of the strategy stability
under the PR protocol in terms of the market equilibrium considered above.

3 Incentive Compatibility in the Bandwidth Sharing

In Sect. 2, a relationship between the market equilibrium and the bottleneck
decomposition is presented. Such a bandwidth allocation approach is derived
from the market equilibrium as a resource allocation rule for P2P network band-
width resources. A possibility arises that, under the distributed network protocol,
a player may or may not follow it in its execution. Can players make strategic
moves by misrepresenting their utility functions for gains in their true utilities?
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Specific to the bandwidth allocation problem, we consider a way to lie that
one player may do by removing edges adjacent to itself. Such a deceit way would
change the bottleneck decomposition which leads to the alteration of the market
equilibrium. And then the agent may obtain a different utility.

For simplicity of the presentation, we consider the case one edge is removed.
We observe that this would not reduce the generality of the result as we can
remove edges one by one at each of which steps the true utility of the cheater
would be proven to be non-increasing.

To prepare for the discussion, we first present several useful structure prop-
erties important to our analysis in Subsect. 3.1, including the Basic lemma, the
Key Lemma and the Main Lemma. Next, we will study the incentive properties
of an agent who would like to cut an incident edge to increase its utility in the
bottleneck decompositions of G and G′ = G − (u, v) in the original and the
resulting network before or after an agent may change the network by deleting
an edge of its own.

3.1 Structure Properties of Bottleneck Decomposition B and B′

Definition 1 (Bottleneck Decomposition). Let B = {(B1, C1), · · · , (Bk,
Ck)} be the bottleneck decomposition of the original graph G and let the α-ratio
of (Bi, Ci) be αi = w(Ci)/w(Bi), i = 1, 2, · · · , k. For pair (Bi, Ci) with αi < 1,
each vertex in Bi is called a B-class vertex, and each vertex in Ci is called a
C-class vertex. For the special case Bk = Ck, i.e., αk = 1, all vertices in Bk are
categorized as both B-class and C-class. Define V1 = V , Vi+1 = Vi − (Bi ∪ Ci)
for i = 1, 2, · · · , k − 1 and Gi for the induced subgraph on Vi, i = 1, 2, · · · , k.

Similarly, for the new graph G′ after removing one edge (u, v) from G,
its bottleneck decomposition may be different from that of G. Let it be B′ =
{(B′

1, C
′
1), · · · , (B′

k′ , C ′
k′)} with α-ratio α′

j, j = 1, 2, · · · , k′. Similarly, V ′
1 = V ,

V ′
j+1 = V ′

j − (B′
j ∪ C ′

j) for j = 1, 2, · · · , k′ − 1 and G′
j = G′[V ′

j ], j = 1, 2, · · · , k′.
Call vertices in B′

j, 1 ≤ j ≤ k′, B′-class, and those of C ′
j’s, C ′-class.

Therefore, a vertex in Vk with αk = 1 (or α′
k′ = 1) could simultaneously

be B-class and C-class (or B′-class and C ′-class), in the case Bk = Ck (or
B′

k′ = C ′
k′).

By Proposition 1, B-class vertices, except those in Bk with αk = 1, form an
independent subset of vertices. Edges are either between vertices from Bi to Cj

(i ≥ j), or between vertices from Ci to Cj . Thus at least one of u and v must be
a C-class vertex in G. The following is an immediate result of the definition of
the maximal bottleneck.

Lemma 1. Given pair (Bi, Ci), if B ⊆ Vi and C = Γ (B) ∩ Vi, then
w(C)/w(B) ≥ αi. Specially, if B ⊆ Bi and C = Γ (B) ∩ Ci, then w(C)/w(B) ≥
αi. Further, if let Bc = Bi − B and Cc = Ci − C, then w(Cc)/w(Bc) ≤ αi.

Definition 2 (Edge (u, v) and Indices iu, iv, ju, jv). Let (u, v) ∈ E be cut to
obtain G′ = G − (u, v). If u and v are in different classes, w.l.o.g, we assume v
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is in C-class. Let vertex u (and v, respectively) appear in pair (Bl, Cl) at step
l = iu (and l = iv, respectively) of the bottleneck decomposition of G. Specifically,
if both u and v are both in C-class, let iv ≤ iu. Similarly, let vertex u (and v,
respectively) appear in pair (B′

l, C
′
l) at step l = ju (and l = jv, respectively)

of the bottleneck decomposition of G′. Define j∗ = min{ju, jv}. In addition, let
Γ ′(x) be the neighborhood of x in G′ and define Γ ′(S) = ∪x∈SΓ ′(x) for set S.

Based on Definitions 1 and 2, the following results can be derived directly.

Lemma 2 (Basic Lemma). For the bottleneck decompositions B and B′,

1. for any 1 ≤ t < j∗, (B′
t, C

′
t) = (Bt, Ct).

2. for any 1 ≤ t ≤ j∗, V ′
t = Vt.

3. if V ′
t = Vt, then α′

t ≤ αt.
4. for any 1 ≤ t < j∗, B′

t ∩ (∪k
i=1Ci) = ∅.

5. for any 1 ≤ t < j∗, Bt ∩ (∪k
i=1C

′
i) = ∅.

6. j∗ ≤ iv ≤ iu.

Proof. We first show the correctness of Item 1. Suppose to the contrary that
j < j∗ is the smallest index such that (B′

j , C
′
j) �= (Bj , Cj). So (B′

1, C
′
1) =

(B1, C1), · · · , (B′
j−1, C

′
j−1) = (Bj−1, Cj−1) and V ′

1 = V1, · · · , V ′
j = Vj . Further-

more, the assumption that j < j∗ = min{ju, jv} implies that u and v cannot be
in B′

j and C ′
j .

On the one hand, the fact that u, v �∈ B′
j ∪ C ′

j implies that B′
j ⊆ Vj and

C ′
j = Γ (B′

j) ∩ Vj . So (B′
j , C

′
j) is a pair in Gj which guarantees w(C ′

j)/w(B′
j) ≥

w(Cj)/w(Bj) = αj by Lemma 1. On the other hand since V ′
j = Vj , Γ ′(Bj)∩V ′

j =
Cj or Cj − {v}. The second case happens when u ∈ Bj and any other vertex
in Bj is not incident to v in G′

j . So (Bj , Cj) or (Bj , Cj − {v}) is a pair in G′
j

and w(C ′
j)/w(B′

j) = α′
j ≤ w(Cj)/w(Bj). Combining above two inequalities, we

know w(C ′
j)/w(B′

j) = w(Cj)/w(Bj). So Proposition 1-(2) tells us that B′
j ⊆ Bj ,

C ′
j ⊆ Cj in Gj and Bj ⊆ B′

j , , Cj ⊆ C ′
j in G′

j . Thus (B′
j , C

′
j) = (Bj , Cj) which

contradicts the assumption.
Item 2 to Item 5 follow from Item 1. For Item 6, if iv < j∗, then (B′

iv
, C ′

iv
) =

(Biv , Civ ) by Item 1. But the fact that v appears in (Biv , Civ ) ensures that
j∗ ≤ iv which is a contradiction. Further, Definition 2 promises the correctness
of the second inequality of Item 6. �
Next we introduce a technique, dense kernel removal, for subsequent discussions.
The goal is to derive a contradiction to the minimality of the α-ratio of pair
(Bi, Ci) in the bottleneck decomposition if we suppose the desired result does
not hold.

Definition 3 (Dense kernel removal). Given B ⊆ Bi and C ⊆ Ci for a pair
(Bi, Ci) in the bottleneck decomposition, let Cc

i = Ci − C and Bc
i = Bi − B.

If Γ (Bc
i ) ∩ Vi ⊆ Cc

i and w(C)/w(B) > αi, then removing the pair (B,C) from
(Bi, Ci) would render a pair (Bc

i , C
c
i ) such that w(Cc

i )/w(Bc
i ) < αi, a contra-

diction to the minimum inclusive expansion ratio. We denote this technique by
(Bc

i , C
c
i ) = DKR(B,C;Bi, Ci) for simplicity.
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Lemma 3. If ∅ �= C ⊆ Ci and B = Γ (C) ∩ Bi, then w(B)/w(C) ≥ 1/αi.

The following are two important results.

Lemma 4 (Key Lemma). Consider the bottleneck decompositions B and B′.
Each of the following conditions implies that for any 1 ≤ t ≤ k′ with α′

t < 1,
B′

t ∩ (∪k
i=1Ci) = ∅:

Case 1. (u, v) ∈ Bk × Ck with αk = 1 and u, v are both in C ′-class;
Case 2. (u, v) ∈ Bi × Ci with αi < 1, i = 1, · · · , k, and v is in C ′-class;
Case 3. (u, v) �∈ Bi × Ci, i = 1, · · · , k.

Proof. Let t be the smallest index such that B′
t with α′

t < 1 contains a C-class
vertex x and suppose x ∈ B′

t ∩ Cl ⊆ V ′
t for some l ∈ {1, 2, · · · , k}. We derive a

contradiction to the minimality of t in the choice of B′
t.

First we prove that Γ (x)∩Bl ⊆ C ′
t. The condition that v and u are in C ′-class

in Case 1 shows that x �= u, v because x is B′-class. For Case 2, condition that
u is a B-class vertex and v is in C ′-class guarantees that x �= u, v. Therefore,
Γ (x) = Γ ′(x) in Case 1 and Case 2. As x ∈ Cl, if x ∈ {u, v}, Bl∩Γ (x)∩{u, v} = ∅
in Case 3. We have Γ (x) ∩ Bl = Γ ′(x) ∩ Bl in all three cases.

If Γ (x) ∩ Bl �⊆ C ′
t, then at least one vertex y ∈ Γ (x) ∩ Bl = Γ ′(x) ∩ Bl is not

in C ′
t. As x ∈ B′

t, such a vertex y must be deleted in one of the first t−1 steps in
the construction of B′ and it should be in either B′

h or C ′
h, h ∈ {1, 2, · · · , t − 1}.

If y is in B′
h, then x ∈ Γ ′(y) must be in C ′

h′ and should have been deleted at
step h′ ≤ h < t. So x could not be in V ′

t and this is a contradiction. If y is in C ′
h,

then there must be another vertex z such that z ∈ B′
h and (z, y) ∈ E. The fact

y ∈ Γ (x)∩Bl which means that y is a B-class vertex indicates that z is a C-class
vertex (B-class vertices being independent) or both l = k and Bl = Cl (the only
other possibility). In both cases, we have found another B′

h with index h < t
which contains a C-class vertex z, a contradiction implying that Γ (x)∩Bl ⊆ C ′

t

for any vertex x ∈ B′
t ∩ Cl, l ∈ {1, 2, , · · · , k}.

Second, we partition B′
t (and C ′

t, respectively) into two disjoint subsets B′
t1∪

B′
t2 (and C ′

t1 ∪ C ′
t2) as follows.

B′
t1 =

k⋃

l=1

⋃

x∈B′
t∩Cl

{x}; B′
t2 = B′

t − B′
t1;

C ′
t1 =

k⋃

l=1

⋃

x∈B′
t∩Cl

(Γ (x) ∩ Bl) ; C ′
t2 = C ′

t − C ′
t1.

Fixing l: 1 ≤ l ≤ k, let Csub =
⋃

x∈B′
t∩Cl

{x} ⊆ Cl and Bsub =
⋃

x∈B′
t∩Cl

(Γ (x)∩Bl) = Γ (Csub)∩Bl. Thus we have w(Bsub)/w(Csub) ≥ 1/αl ≥ 1
by Lemma 3. As α′

t < 1, it follows that w(C ′
t1)/w(B′

t1) ≥ 1 > α′
t. Therefore,

(B′
t2, C

′
t2) = DKR(B′

t1, C
′
t1;B

′
t, C

′
t) which in turn implies w(C ′

t2)/w(B′
t2) < α′

t.
Further, by definition all C-class vertices of B′

t are contained in B′
t1. There-

fore, B′
t2 only contains B-class vertices and its neighbors are all C-class.
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As all vertices in C ′
t1 are B-class, (Γ (B′

t2) ∩ V ′
t ) ∩ C ′

t1 = ∅ and
(Γ (B′

t2) ∩ V ′
t ) ⊆ C ′

t2. Then,

w (Γ (B′
t2) ∩ V ′

t )
w(B′

t2)
≤ w(C ′

t2)
w(B′

t2)
< α′

t.

Here another pair (B′
t2, Γ (B′

t2)∩V ′
t ) with B′

t2 ⊆ V ′
t is found such that the α-ratio

is strictly less than α′
t. Such a contradiction concludes the Key Lemma. �

Key Lemma illustrates that if the conditions in Lemma 4 are satisfied, then there
is no C-class vertex in B′-class with α′ < 1. Symmetrically, we introduce the
following Main Lemma.

Lemma 5 (Main Lemma). Consider the bottleneck decompositions B and B′.
If the case that (u, v) ∈ Bi × Ci, and u, v are both in B′-class does not happen,
then Bt ∩

(
∪α′

l<1C
′
l

)
= ∅, t = 1, · · · , k.

Proof. If the claim does not hold, we choose the minimum t such that the above
result fails, i.e. Bt ∩ (∪α′

l<1C
′
l) �= ∅. Thus there is an index l with α′

l < 1,
1 ≤ l ≤ k′, such that x ∈ Bt ∩ C ′

l .
We claim that Γ ′(x)∩B′

l ⊆ Vt. Otherwise, let y ∈ Γ ′(x)∩B′
l −Vt be deleted

in the first t − 1 steps. Therefore, y ∈ Ch with h < t; otherwise if y ∈ Bh, then
x should be in Ch and be deleted before step t. Hence there exists z ∈ Bh such
that (z, y) ∈ Bh × Ch. If (z, y) ∈ E(G′), then the fact that y ∈ B′

l and α′
l < 1

implies that z is in C ′-class, a contradiction to the choice of t and x. Otherwise if
(z, y) �∈ E(G′), then z = u and y = v by the assumption that v is C-class. So the
condition that (u, v) ∈ Bi × Ci, and u, v are not both in B′-class ensures that z
must be in C ′-class because y = v is in Γ ′(x) ∩ B′

l ⊆ B′
l. So z ∈ Bh ∩ (∪α′

l<1C
′
l)

with h < t, which is a contradiction to the choice of t and x.
Therefore, for any x ∈ Bt∩C ′

l with α′
l < 1, we have Γ ′(x)∩B′

l ⊆ Vt. It follows
that

⋃
x∈Bt∩C′

l ,α
′
l<1 Γ ′(x) ∩ B′

l ⊆ Ct. Let us partition Bt (and Ct, respectively)
into two disjoint subsets Bt1 ∪ Bt2 (and Ct1 ∪ Ct2) as follows.

Bt1 =
k′
⋃

l=1

⋃

x∈Bt∩C′
l ,α

′
l<1

{x}; Bt2 = Bt − Bt1;

Ct1 =
k′
⋃

l=1

⋃

x∈Bt∩C′
l ,α

′
l<1

(Γ ′(x) ∩ B′
l) ; Ct2 = Ct − Ct1.

Fixing l: we have C ′
sub = ∪x∈Bt∩C′

l ,α
′
l<1{x} ⊆ C ′

l and B′
sub =

∪x∈Bt∩C′
l ,α

′
l<1(Γ ′(x)∩B′

l) = Γ ′(C ′
sub)∩B′

l. Then we obtain w(B′
sub)/w(C ′

sub) ≥
1/α′

l > 1 by Lemma 3. It follows that w(Ct1)/w(Bt1) > 1 ≥ αt. Therefore,
(Bt2, Ct2) = DKR(Bt1, Ct2;Bt, Ct) which in turn implies w(Ct2)/w(Bt2) < αt.

In addition, all B′-class vertices of Bt are in Bt2 and all its neighbors are C ′-
class. Specially if Bt2 contains vertex x from B′

k′ , α′
k′ = 1, then x does not has

neighbors in B′
l, α′

l < 1. We know that all vertices have the same neighborhoods
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in G and G′ except for u and v. Further condition in lemma excludes the case
that u ∈ Bt2, v ∈ Ct1 which leads to Γ (u) �⊆ Ct2. So (Γ (Bt2) ∩ Vt) ∩ Ct1 = ∅
and (Γ (Bt2) ∩ Vt) ⊆ Ct2. Then,

w (Γ (Bt2) ∩ Vt)
w(Bt2)

≤ w(Ct2)
w(Bt2)

< αt.

Here another pair (Bt2, Γ (Bt2)∩Vt) with Bt2 ⊆ Vt is found such that its α-ratio
is strictly less than αt. Such a contradiction concludes Lemma 5. �
From Main Lemma, the following corollary can be obtained directly.

Corollary 1. If u ∈ Biu , then u cannot be in C ′-class with α′ < 1.

The following theorem shows that the decomposition of G′ is equal to that
of G if (u, v) �∈ Bi × Ci, i = 1, · · · , k.

Theorem 1. If (u, v) �∈ Bi × Ci, i = 1, · · · , k, then B = B′.

The proof shall be shown in the full version. We should emphasize that (u, v) �∈
Bi×Ci includes two cases: Case u ∈ Biu , v ∈ Civ with iv < iu and Case u ∈ Ciu ,
v ∈ Civ with iv ≤ iu.

3.2 Incentive Properties

In this subsection we propose the strategy-proof properties of agent u and v by
analyzing different cases. It is easy to compute that there are totally 16 cases
because agent u can be in Biu , Ciu , B′

ju
or C ′

ju
and v can be in Biv , Civ , B′

jv
or C ′

jv
. But according to the assumption that u and v are in B-class and C-

class respectively if edge (u, v) is between different classes, it is not necessary to
consider such cases in which u ∈ Ciu and v ∈ Biv . In addition, for the cases in
which u ∈ Biu and v ∈ Biv , it is only possible that (u, v) ∈ Bk ×Ck with αk = 1.
Thus u and v have the same statuses in G and Case u ∈ Biu , v ∈ Biv , u ∈ B′

ju
,

v ∈ C ′
jv

is equivalent to Case u ∈ Biu , v ∈ Biv , u ∈ C ′
ju

, v ∈ B′
jv

It is enough
to discuss one of them. Here we should point out that when such cases in which
u ∈ Ciu or v ∈ Civ (u ∈ C ′

ju
or v ∈ C ′

jv
respectively) are discussed, we mean its

α-ratio (α′-ratio) less than 1. Because if its α-ratio (α′-ratio) equals to 1, such
cases would come down to Case u ∈ Bk or v ∈ Bk with αk = 1 (Case u ∈ B′

k′ or
v ∈ B′

k′ with α′ = 1, respectively). In the following we will try our best to prove
that u and v has no incentive to cheat by removing edge (u, v) in the rest cases.

First we know that if u ∈ Ciu , v ∈ Civ and u ∈ Biu , v ∈ Civ with iv < iu,
then (u, v) �∈ Bi × Ci and B = B′ by Theorem 1. So U ′

u = Uu and U ′
v = Uv for

such cases in which that u ∈ Ciu , v ∈ Civ and u ∈ Biu , v ∈ Civ with iv < iu.
We also get that any agent has its utility larger than or equal to its bandwidth

if it is in C-class (or in C ′-class) and has its utility smaller than or equal to its
bandwidth if it is in B-class (or in B′-class) by Proposition 3. Furthermore, if u
and v are both in B-class, it is only possible that (u, v) ∈ Bk × Ck with αk = 1
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which implies that Uu = wu and Uv = wv. So U ′
u ≤ Uu and U ′

v ≤ Uv for Case
u ∈ Bk, v ∈ Bk with αk = 1 and u ∈ B′

ju
, v ∈ B′

jv
.

Further Corollary 1 ensures the following cases cannot exist because u is in
B-class and u ∈ C ′

ju
with α′ < 1.

• Case u ∈ Bk, v ∈ Bk with αk = 1, u ∈ C ′
ju

, v ∈ C ′
jv

;
• Case u ∈ Bk, v ∈ Bk with αk = 1, u ∈ C ′

ju
, v ∈ B′

jv
;

• Case u ∈ Bi, v ∈ Ci, u ∈ C ′
ju

, v ∈ C ′
jv

;
• Case u ∈ Bi, v ∈ Ci, u ∈ C ′

ju
, v ∈ B′

jv
.

Next, we shall prove our main result for the rest of 2 cases in the following
lemmas.

Lemma 6. If u ∈ Bi, v ∈ Ci, u ∈ B′
ju

and v ∈ B′
jv

, then u and v both cannot
gain more utilities by cutting one of adjacent edges.

Proof. Because U ′
v = α′

jv
wv ≤ wv/αiv = Uv, agent v has no incentive to cheat.

For agent u if ju ≤ jv, then ju = j∗ ≤ i by Basic Lemma-(6). Because Basic
Lemma-(3) shows that α′

j∗ ≤ αj∗ and j∗ ≤ i which implies αj∗ ≤ αi, we have
α′

j∗ ≤ αi and U ′
u = α′

j∗wu ≤ αiwu = Uu. Thus agent u cannot get benefit by
cheating in this case.

It is more complicated to discuss the utility of agent u in G′ if jv < ju. Our
main idea is to construct a pair containing u in V ′

ju
whose α-ratio is smaller than

αi. Thus we can get that α′
ju

< αi and U ′
u < Uu. In order to obtain this result,

the following results are necessary and their proofs are shown in the full version.

Fact 1. For each 1 ≤ l < i, Cl ∩ B′
j = ∅ and Bl ∩ C ′

j = ∅, j = jv, · · · , ju, if
(u, v) ∈ Bi × Ci with αi < 1 and jv < ju.

Fact 1 shows that no vertex in Cl belongs to B′
j and no vertex in Bl belongs to

C ′
j , for 1 ≤ l ≤ i − 1 and jv ≤ j ≤ ju. Therefore, we can define

Bh
l = Bl −

h⋃

j=jv

B′
j , Ch

l = Cl −
h⋃

j=jv

C ′
j , h = jv, · · · , ju − 1.

For each h = jv, · · · , ju−1, if let B =
⋃h

j=jv

(
B′

j ∩ Bl

)
and C =

⋃h
j=jv

(
C ′

j ∪ Cl

)
,

then Γ (B) ∩ Cl = C. So if let Bh
l = Bc = Bl − B and Ch

l = Cc = Cl − C, then
Lemma 1 tells us, for l = jv, · · · , i − 1, h = jv, · · · , ju − 1,

w(Ch
l )

w(Bh
l )

=
w(Cc)
w(Bc)

≤ αl < αi. (1)

But if l = i, there is no such a nice result in Fact 1. Thus for h = jv, · · · , ju − 1,
we define

Bh
i = Bi −

h⋃

j=jv

(
B′

j ∪ C ′
j

)
, Ch

i = Ci −
h⋃

j=jv

(
B′

j ∪ C ′
j

)
,

and have
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Fact 2. If (u, v) ∈ Bi × Ci with αi < 1 and jv < ju, then w(Ch
i )/w(Bh

i ) < αi,
h = jv, · · · , ju − 1.

Now let us focus on V ′
ju

. Since Bju−1
l ⊆ V ′

ju
and Cju−1

l ⊆ V ′
ju

, l = jv, · · · , i,
we define B̂ =

⋃i
l=jv

Bju−1
l and Ĉ =

⋃i
l=jv

Cju−1
l . Then (1) and Fact 2 tells

w(Ĉ)

w(B̂)
=

∑i
l=jv

w(Cju−1
l )

∑i
l=jv

w(Bju−1
l )

< αi.

Further, all vertices in Bju−1
l only can be adjacent to vertices in Cju−1

h , h =
jv, · · · , l, in V ′

ju
. Thus Γ ′(Bju−1

l ) ∩ V ′
ju

⊆ Ĉ for each l = jv, · · · , i. So Γ ′(B̂) ∩
V ′

ju
= C and (B̂, Ĉ) is a pair in V ′

ju
whose α-ratio is less than αi. Thus α′

ju
≤

w(Ĉ)/w(B̂) < αi. �
Lemma 7. If u ∈ Bi, v ∈ Ci, u ∈ B′

ju
and v ∈ C ′

jv
, then u and v both cannot

improve their utilities by cutting one of adjacent edges.

Proof. First we shall claim that if jv ≤ ju, then it must be that ju = jv = i and
(Bi, Ci) = (B′

i, C
′
i). On the one hand, Basic Lemma-(3) ensures that α′

jv
≤ αjv

because V ′
jv

= Vjv . On the other hand by Basic Lemma-(6), it is true that jv ≤ i
if jv ≤ ju. So at step jv of the decomposition in G, if u �∈ B′

jv
, then all vertices in

B′
jv

have the same neighborhoods in G and G′ which means that Γ (B′
jv

)∩Vjv =
C ′

jv
. If u ∈ B′

jv
, then we still have Γ (u) ∩ Vjv = (Γ ′(u) ∩ Vjv ) ∪ {v} ⊆ C ′

jv
as v ∈ C ′

jv
and v �∈ Γ ′(u). Thus (B′

jv
, C ′

jv
) is a pair in Vjv . It follows that

α′
jv

≥ αjv . Therefore α′
jv

= αjv and B′
jv

⊆ Bjv , C ′
jv

⊆ Cjv . Further the condition
v ∈ C ′

jv
⊆ Cjv promises that v ∈ Cjv which means that jv = i. So at step i = jv

of the decomposition in G′, (Bi, Ci) is a pair in V ′
i . The result αi = α′

i shows that
Bi ⊆ B′

i and Ci ⊆ C ′
i. Combining the previous result, we have (Bi, Ci) = (B′

i, C
′
i)

and jv = ju = i. Under this case, U ′
u = Uu and U ′

v = Uv.
Next let us discuss the case that ju < jv. Thus U ′

u ≤ Uu since ju ≤ i and
α′

ju
≤ αi. But it’s much more difficult to analyze the characterization of agent

v. In order to get the ideal result, the following fact is necessary.

Fact 3. If (u, v) ∈ Bi × Ci and jv > ju, v ∈ C ′
jv

, then there is an index
ju < j ≤ jv satisfying

1. Bh ∩ V ′
j = ∅ and Ch ∩ V ′

j = ∅, h = 1, 2, · · · , i − 1;
2. Bh ⊆ V ′

j and Ch ⊆ V ′
j , h = i + 1, · · · , k;

3. α′
j ≥ αi;

4. v ∈ V ′
j .

The proof of Fact 3 is presented in the full version. Fact 3 indicates that V ′
j does

not have any vertex from
⋃i−1

h=1(Bh ∪ Ch), all vertices in
⋃k

h=i+1(Bh ∪ Ch) are
contained in V ′

j and some vertices including v in Bi ∪ Ci belong to V ′
j . Based

on the result of Fact 3-(3), we know that α′
jv

≥ α′
j ≥ αi since jv ≥ j. Thus

U ′
v = wv/α′

jv
≤ wv/αi = Uv. �
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Based on the analysis above, the main result can be induced directly.

Theorem 2 (Main Result). Given the bandwidth allocation mechanism
obtained by the market equilibrium from the bottleneck decomposition, no agent
has incentive to cheat by cutting any of its incident edges.

4 Conclusion

In this article, we discuss the issue of possible cheating strategies of agent with
respect to the proportional response protocol for the application of bandwidth
sharing. We show that, if every agent follow this strategy, no player could gain
by removing a connection arc from its neighbors. In other words, no player
could gain eventually, if it removes one or more of its edge from the network
environment. In order to obtain this main result, we need to analyze 11 cases
one by one and list them in the following table.

u in G v in G u in G′ v in G′ Reason for impossibility/treatment

1 Biu Biv B′
ju B′

jv U ′
u ≤ Uu, U

′
v ≤ Uv

2 Biu Biv C′
ju B′

jv Cannot exist by Corollary 1

3 Biu Biv C′
ju C′

jv Cannot exist by Corollary 1

4 Ciu Civ B′
ju B′

jv Cannot exist by Theorem1

5 Ciu Civ C′
ju B′

jv Cannot exist by Theorem1

6 Ciu Civ B′
ju C′

jv Cannot exist by Theorem1

7 Ciu Civ C′
ju C′

jv (Biu , Ciu) = (B′
iu , C

′
iu), (Biv , Civ ) =

(B′
iv , C

′
iv ) by Theorem1

8 Biu Civ C′
ju C′

jv Cannot exist by Corollary 1

9 Biu Civ C′
ju B′

jv Cannot exist by Corollary 1

10 Biu Civ B′
ju B′

jv Cannot exist by Theorem1 if iu > iv

Please check Lemma 6 if iu = iv

11 Biu Civ B′
ju C′

jv (Biu , Ciu) = (B′
iu , C

′
iu), (Biv , Civ ) =

(B′
iv , C

′
iv ) by Theorem1 if iu > iv

Please check Lemma 7 if iu = iv

The result, building on discrete mathematical techniques, resolves a long time
unsolved problem whether the proportional response protocol is truthful. It is
the first, to the best of our knowledge, non-trivial result on truthful mechanism
for a practical network bandwidth resource sharing scheme.
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Abstract. We present a game-theoretic model for the creation of con-
tent networks such as the worldwide web. The action space of a node
in our model consists of choosing a set of outgoing links as well as click
probabilities on these links. A node’s utility is then the product of the
traffic through this node, captured by its PageRank in the Markov chain
created by the strategy profile, times the quality of the node, a surrogate
for the website’s utility per visit, such as repute or monetization poten-
tial. The latter depends on the intrinsic quality of the node’s content, as
modified by the chosen outgoing links and probabilities. We only require
that the quality be a concave function of the node’s strategy (the distri-
bution over outgoing links), and we suggest a natural example of such
a function. We prove that the resulting game always has a pure Nash
equilibrium. Experiments suggest that these equilibria are not hard to
compute, avoid the reciprocal equilibria of other such models, have char-
acteristics broadly consistent with what we know about the worldwide
web, and seem to have favorable price of anarchy.

1 Introduction

During the past quarter of a century, a great variety of networks of towering
magnitude, and paramount economic, social, and scientific importance, have
emerged. Understanding, ex post, these networks — their origins, properties,
operation, and destiny — has been a most important and central theme of sci-
entific inquiry. Many simple generative models have been proposed as an impor-
tant tool of such inquiry, sometimes successfully predicting many of the observed
properties of networks, see for example [5] and the related work section. Several
of these models ascribe certain incentives, or behaviors, to individual nodes, and
the network emerges as the equilibrium, or otherwise as the sum total of these
behaviors. For example, several early network creation games, motivated by the
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network infrastructure of the Internet, assumed that nodes optimize a combina-
tion of connection cost and topology advantage [2,11,12,29]. Following a different
perspective, certain web-creation models have postulated a link-copying behavior
by nodes, which leads to “the rich get richer” phenomena of web growth [5,21].
Often, an important goal of network models has been to predict the power-law
degree distributions and other quantitative features observed in real networks
[7,24,26]. In a different domain, for social networks, there are by now several
competing generative models, attempting to capture important aspects of those
complex systems [15,25].

In this paper we propose a game-theoretic model for the creation of content
networks, such as the worldwide web. The basic decision made by each node
is to determine the set of outgoing links, as well as their weights. We assume,
in other words, that a node can decide which other nodes to link to, but can
also influence the precise percentage of outgoing traffic on each outgoing link.
Mathematically, the action set of a node/player consists of all distributions over
the remaining nodes. A node in a content network chooses outgoing links so
as to accomplish two goals: outgoing links affect the volume of traffic, i.e., the
number of users who frequent your site. But also well-chosen links can improve
your content’s quality, variety, informativeness, and prestige, or even its direct
profitability through paid outgoing traffic, and therefore enhance the overall
utility per unit of traffic. These two objectives, traffic and quality, will be of
course conflicting in general. Ideally our model should postulate that each node
maximizes the product of the two, i.e., traffic times utility per traffic, since this is
the true payoff received (there have been models proposed in the literature where
one of the two objectives reigned, see the subsection on related work). But what
hope is there for such a complicated utility function to result in a game between
the nodes that has good properties — for example, always possess a pure Nash
equilibrium? As we shall see in Sect. 5, even best response computation is highly
nontrivial under our model.

Our main result is that, quite surprisingly, this multi-player game, as described
above, does always possess a pure Nash equilibrium (Theorem 1). The proof entails
looking at the expression for the player’s utility, as a function of the actions of
everybody — that is to say, of the resulting Markov chain — and observing that,
rather unexpectedly, this complicated expression turns out to be quasi-concave in
the actions of the player. Existence then follows from the Nash-Debreu-Fan the-
orem [9,13,27]. The result is true as long as the quality of a node is a continuous
concave function of the node’s action — of the distribution of outgoing flows. We
view this as a fundamental positive result in the economic analysis of networks,
whose importance goes beyond the particular model proposed here.

Our theorem raises certain intriguing questions: Is there a polynomial-time
algorithm for computing these equilibria? Or is the problem PPAD-hard? We
have no result, or even intelligent guess, to offer in this regard, even though we
did succeed in computing the Nash equilibria of quite large games of this sort.
And is the price of anarchy of these equilibria favorable? Again, we have no
definitive results here, even though some quite encouraging conclusions can be
drawn from experimentation, summarized below.
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In Sect. 5, we summarize the results of extensive experimentation with our
model. In the absence of a provably efficient algorithm, we find Nash equilibria
through simulations of best-response dynamics; with very modest computational
resources, we are able to solve networks with a number of nodes in the thou-
sands (the algorithm is described in Sect. 4). In these experiments we do observe
in-degree distributions that are quite power law-like, as well as a giant strongly
connected component, existence of dense bipartite subgraphs, and several other
features commonly observed in the web graph. We also experiment with a gradi-
ent ascent heuristic for estimating the social optimum, and notice that the local
optima of the social welfare function found are usally no more than 5 % better
than the worst Nash equilibrium computed by our algorithm.

Related Work. Several well known studies [7,23,24] have analyzed big parts
of the worldwide web, providing important insights about macroscopic proper-
ties of the web graph, such as degree distribution, clustering, connectivity and
many more. Generative models were then developed to explain and predict these
properties; such models are typically probabilistic, and only occasionally game-
theoretic. From the first category, the preferential attachment model [4], is the
most popular one. A key feature is that it creates a power law degree distribu-
tion, a known property of the web graph [5]. Several variants have been proposed,
elaborating on the initial model of [4], see e.g., among others, [1,8,21].

Several network formation games with strategic nodes have been studied,
starting with [12] (see also the survey [29]), but these works are meant to model
the Internet, and are much less suitable for modeling the web. Among the first
game-theoretic models tailored for content graphs is the work by marketing
researchers Katona and Sarvary [18]. They model what they call “the commer-
cial web”; sites can sell or buy advertising links, at prices per click that are
determined by the seller’s “quality”. The utility function is the traffic minus
advertising costs plus advertising revenue. Subsequent work [10] considers net-
works of content sites, with very limited exchange of user traffic. A generalization
of [18] is given in [19], where the effects of sticky content (content that induces
return traffic) are taken into consideration.

Another game-theoretic model, a bit closer to our spirit, is by Hopcroft and
Sheldon [17], see also their earlier work [16]. They are interested in modeling
reputation networks, where the utility function of a site is just traffic. They
consider two objectives: maximizing PageRank [6], or minimizing hitting time;
both utility functions result in rich sets of Nash equilibria, but the latter is
manipulation-resistant, as it does not depend on a website’s outgoing links.
However, hitting time offers poor predictions; for example, every graph is a
Nash equilibrium. PageRank as utility yields a more refined class of equilibrium
graphs, but these equilibria possess certain symmetries and reciprocities that are
not observed in practice — for example, at equilibrium non-source sites will link
only to sites pointing to them. Related to these models, [3] studied the Nash
equilibria of PageRank-related games on undirected graphs modeling social net-
works. Finally, an earlier model of the web in the same category is [20], in which
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economic incentives create a web-like network of documents, whose properties
are then analyzed.

2 Our Model

There are n players, alternatively referred to as nodes or websites; the set of all
players is denoted by [n]. The set of actions available to player i is the creation
of an arbitrary set of hyperlinks, where each hyperlink connects i to some j �= i.
Player i also has to choose a weight xij for each hyperlink, equal to the “click
probability” of this hyperlink, that is, the probability that a user visiting website
i will end up following this (i, j) link and land in website j next. We assume that
all possible distributions on [n] − {i} are available actions of player i; that is,
through manipulation of the precise positions of the hyperlinks, of the anchor
texts, and other characteristics, the player can achieve any action of the form
xi = (xi1, . . . xin), where xij ≥ 0 for all j, xii = 0, and

∑
j �=i xij = 1. Hence,

the set of actions (or pure strategies), Ai, available to player i, is the (n − 2)-
dimensional simplex Δn−1. Note that a strategy profile x = (x1, . . . ,xn) ∈∏n

i=1 Ai can be seen as a Markov chain on the n nodes without self loops.
We define the payoff of a player to be the product of two terms: the quality

of its content multiplied by the traffic:

Pi(x) = Qi(xi) · Ti(x) (1)

Note that the quality Qi only depends on the action of i — its weighted outgoing
links — while the traffic Ti depends, quite naturally, on the whole Markov chain
created by the actions of all players. We next define these two factors.

The quality of a player, Qi(xi), is defined as:

Qi(xi) = qi +
∑

j

dijxij − ci ·
∑

j

x2
ij , (2)

The first term, qi, is the inherent quality of i’s content. The second term
denotes contributions made by the outgoing links, where it is assumed that a
unit of traffic from i to j affects the quality of i by the parameter dij (which may
be negative). Intuitively, dij captures the relevance and affinity between the two
websites, or any kind of benefit — such as advertising payment — to i from a
user following the link to j. It is assumed for now that the parameters qi and dij

are known and fixed; in the description of our experiments in Sect. 5, we shall
explain how these parameters can be obtained from more primitive data, namely
the parameters of a topic model for the contents of these websites. Finally, the
third term in (2) captures the fact that a website benefits from the diversity in
its outgoing links. The parameter ci ≥ 0 is called the branching factor of node
i, and is a measure of the extent to which the quality of website i benefits from
such diversity. The parameter ci can be zero — in other words, the third term is
included for generality and modeling realism, and is not needed for the validity
of our theorem.
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Coming now to the traffic factor, Ti(x), the traffic of node i could be the
stationary probability of node i in the Markov chain x. In fact, we use a slight
variant known as PageRank [6], in which there is teleportation: at any step the
random walk may, with a small probability, proceed not to a neighbor, but to a
node selected uniformly at random (our main result is unaffected if we adopt the
stationary probability as our measure of traffic). More precisely, let us denote
as tji the expected number of hops that a user needs to travel from website j to
website i in the random surfer model. For j �= i:

tji = (1 − α)(1 +
∑

k �=i xjktki) + α(1 + 1
n

∑
k �=i tki)

Here α is the teleportation factor, i.e., the random restart probability. Similarly,
we can also define tii, the expected number of steps that a user needs to travel
from one website back to it:

tii = (1 − α)(1 +
∑

j �=i

xijtji) + α(1 +
1
n

∑

j �=i

tji) = 1 +
∑

j �=i

((1 − α)xij +
α

n
)tji (3)

Finally, the traffic Ti(x) (or PageRank of i) of a website is defined as:

Ti(x) =
1
tii

=
1

1 +
∑

j �=i((1 − α)xij + α
n )tji(x)

(4)

Note that we write tji(x) in Ti, since these quantities are parameters of the
Markov chain x; Hence, overall, the payoff of a player i under a strategy profile
x is:

Pi(x) = Qi(xi) · Ti(x) =
qi +

∑
j dijxij − ci · ∑

j x2
ij

1 +
∑

j �=i((1 − α)xij + α
n )tji(x)

(5)

3 The Main Theorem

Let G denote a game on n players, as defined in the previous section. Note that
it is not a finite game, as the set of pure strategies is uncountably infinite. Also,
the utility function of each player at a strategy profile x is not (multi)-linear
in the xij terms, which would have allowed us to use the theorem of Nash [27]
(recall that pure strategies here are probability distributions). But still, rather
remarkably, we can prove the following:

Theorem 1. Every game G, as defined above, always has a pure Nash equilbrium.

Proof. We rely on an old theorem, usually referred to as Debreu’s Theorem but
based on ideas due to Nash, Debreu, and Fan [9,13,27] from the early 1950s.
We refer the reader to [14] for a better exposition. The theorem states that
in any game with finitely many players, in which the action sets are all non-
empty, convex and compact, and in which, for each player i, the utility ui(x)
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is continuous and quasi-concave, when considered as a function of xi, with the
actions in x−i considered as fixed, then the game is guaranteed to have a pure
Nash equilibrium.

Clearly, the action sets in our case satisfy the above requirements. To com-
plete the proof, we need to check that the function

qi +
∑

j dijxij − ci · ∑
j x2

ij

1 +
∑

j �=i((1 − α)xij + α
n )tji(x)

is quasi-concave. This is established by the following two observations:

– The numerator is a linear function of xi minus a sum of squares from xi, and
is therefore concave.

– The denominator is a linear function of xi (and not quadratic, as it seems
superficially, due to the tji terms). To see this, recall that the coefficients
tji(x) stand for the expected number of steps it will take the random walk x
to return, for the first time, from node j to node i. However, these quantities
are all independent of xi: tji(x) = tji(x−i). This is because the first-time
return of the walk from node j to node i does not use any edge coming out of
node i, and hence it does not depend on xi. It follows that the denominator
of the payoff function for player i is indeed linear in xi.

Therefore, the payoff function is the ratio of a concave function of xi divided
by a linear function of xi. It follows that it is a quasi-concave function of xi,
completing the proof. ��

4 Computing Best Responses

We know of no polynomial-time algorithm for computing a Nash equilibrium
guaranteed by our main result, and so we resort to a best-response heuristic
for approximating Nash equilibria. As it turns out, even implementing a best
response dynamics heuristic has its own challenges, as explained next.

Our best response dynamics proceed in rounds. In every round, each player
is given the chance to update his strategy, given the current strategies of all
players. Each round consists of n steps so that all players get to update their
strategy (either in a fixed or random order). Every update is a best response to
the strategy profile at the present step (i.e., taking into account all updates that
have happened in previous steps by other players).

Consider a strategy profile x, and suppose we want to run one step of the
best response dynamics. From now on, let us fix a player i, for whom, we want
to compute his best response. Let x−i = (x1, ...,xi−1,xi+1, ...,xn) denote the
strategy profile of the other players. Given x−i, the problem that we need to
solve is to find a strategy xi that maximizes the function Pi(x) = Pi(xi,x−i).
Note that Pi also depends on the traffic terms tji for j �= i. However, these terms
have been computed in the previous step, they are dependent on x−i, and are
not affected by any changes we make to the xij variables at the current step.
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The way we optimize Pi(x) in an iterative fashion is as follows: if the best
response to a given x−i for player i, is a strategy xi = (xi1, ..., xin), then this
means that there is some value K for which it holds that Pi(xi1, xi2, .., xin,x−i) =
K, or

qi +
∑

j xijdij − ci

∑
j x2

ij

1 +
∑

j �=i((1 − α)xij + a
n )tji

= K

By expanding the above equation we get:

qi +
∑

j

xijdij − ci

∑

j

x2
ij − K

∑

j �=i

((1 − a)xij +
a

n
)tji = K (6)

Let us denote the left hand side by Hi(xi). This means that when we max-
imize Hi(·), the optimal value is equal to K. To compute the best response,
we compute K through binary search. Starting from some initial value for K
we maximize Hi(·). If K < max Hi, we increase K and repeat (respectively, we
decrease it in the other case). We continue like this until the optimal value for
Hi is equal to K (or ε-close to K).

So far, we have reduced the problem of computing the best response at a
given step of our heuristic, to the problem of maximizing the function Hi(·).
This is a nonlinear optimization problem, hence, we will make use of the KKT
conditions. Note also that after ignoring constant terms, the function we want
to optimize is in the following form:

∑

j

βijxij − ci

∑

j

x2
ij , where βij = dij − K(1 − α)tji (7)

We can now plug in our functions in the KKT conditions and obtain that in
order to maximize Hi(·), we have to meet the following conditions for player i:

∂−Hi(xi1, xi2, .., xin)
∂xij

+ λ − μij =0 ⇔−βij + 2cixij + λ − μij =0, j ∈ [n] (8)
∑

j

xij = 1 (9)

μij = 0 or xij = 0, j ∈ [n] (10)
xij ≥ 0, μij ≥ 0, j ∈ [n] (11)

Here, the λi’s and μj ’s are multipliers, arising from the KKT conditions.
Condition (10) is the complementarity condition of the system, implying that
for every j, either xij = 0 or μij = 0. Overall, there are 2n possible cases for
deciding the support of xi, i.e., the set of non-zero values in the probability
distribution xi. If we can identify the support, then we can find the value of
each xij using Eq. (8). Fortunately, we are able to avoid this exponential search
by using the complementarity condition and structural properties of an optimal
solution, as we describe now.
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Finding the Support of xi. Suppose for the moment that we knew the support
of an optimal solution xi. Without loss of generality, let us reorder the variables
so that all the positive xij variables are in the beginning of the sequence, say
from j = 1 to j = M for some M . Thus, xij > 0, j = 1, ..,M , and xij = 0, j =
M + 1, .., n.

By the complementarity condition, this implies that μij = 0, for j ∈ {1, ...,M}.
Using (8), we get that:

xij =
1

2ci
(βij − λ), j = 1, ..,M (12)

Since,
∑

j xij = 1 and xij = 0 for j ≥ M + 1, by summing up (12), we have
the following property:

M∑

j=1

βij − Mλ = 2ci (13)

The analysis above reveals that if we know the support of xi, we can then first
use (13) to compute λ and use (12) to compute the strategy xi. To proceed, we
first show that the support of an optimal strategy xi has to respect the ordering
of the βij values. In particular, let π be a permutation such that βi,π(1) ≥
βi,π(2) ≥ ... ≥ βi,π(n).

Claim. There is always an optimal solution where the support of xi is a prefix
of the sequence {π(1), π(2), ..., π(n)}, i.e., we give a non-zero value to the xij ’s
that correspond to the highest values of the βij terms.

Algorithm 1. Best Response Dynamics
Input : The parameters qi and dij for each player i
Output: A graph that represents a NE

1 Initialization: Start with a random or with a uniform distribution xi for
each i ∈ N ;

2 while not in an ε-Nash equilibrium do
3 for each player i do
4 Compute the tji’s;
5 Initialize K;
6 while K! = max Hi do
7 change K appropriately;
8 find the new βij ’s, and the new M , and λ as described above ;
9 compute the new xi and the maximum of Hi(·) ;

The above claim is proved by a simple exchange argument. This implies that
we only need to search n different possible supports for xi and use the KKT
conditions. Hence, we can try in polynomial time one by one the n possible
values of M , compute λ using (13) and xi by (12) and check where our function
is maximized.
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The description of the best response dynamics is summarized below. In our
experiments, we terminate the process when we reach an ε-Nash Equilibrium,
where ε is set to 10−9 (in fact our algorithm behaves even better, with ε coming
even closer to 0).

5 Experiments

We have conducted simulations, constructing many hundreds of instances, with
n ranging from 20 to 1, 000 nodes. For each instance, we derived networks that
are (approximate) Nash equilibria, through the best response dynamics discussed
in Sect. 4.

Generating the Parameters qi and dij . One of the challenges is to generate
in a principled manner the qi’s and the dij ’s needed for the definition of the
game G. To this end, we employ a topics model.

We start by assuming that we have a set of topics [k] = {1, ..., k}. These
correspond to possible subjects which could be present in a website’s content,
e.g., sports, entertainment, news, etc. We associate to each website a vector
characterizing its relevance/expertise to each one of these topics. For each i ∈ [n],
let vi = (vi(1), vi(2), ..., vi(k)) be the vector that corresponds to the values of
player i on each of the k topics.

Recall now that, when a player i creates a hyper-link to a player j �= i, player
i derives a value of dij from the link i → j. We define this value according to
the topic where i has his highest strength as follows:

dij = vi(mi) · vj(mi)

where mi = arg max� vi(	). Notice that dij is not necessarily equal to dji.
Finally, we define qi, the inherent value of website i, to be qi = vi(mi).

Experimental Setup. We implemented all our experiments in Java under Win-
dows environment. We conducted several experiments in total, which vary in the
input parameters. The values we used for each parameter are the following:

• Number of nodes: n ∈ {50, 100, 300, 500, 1000},
• Number of topics: k ∈ {10, 20, 50},
• Branching factor: c ∈ {1, 2, 5} (for simplicity we used ci = c ∀i),
• Update Method: Random permutation or serial update according to a fixed

order,
• Teleportation factor: α ∈ {0.10, 0.15} (as is done in the related literature

too).

For each combination of these parameters, we ran 20 experiments with dif-
ferent initializations for the topic vector vi of each player. In a similar way we
used either a uniform or a random assignment for the initial strategy profile xi

of player i. For every instance, we applied our best response dynamics algorithm,
that was described earlier.
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Table 1. Average number of iterations till convergence.

Branching factor (c) Number of nodes (n)

50 100 300 500 1000

c = 1 48 20 26 40 42

c = 2 40 32 35 37 50

c = 5 6 7 10 15 19

Results. We briefly comment below on our findings. Further discussion and
more supporting material will be made available in the full version of our work.

1. Convergence and number of iterations. The first positive news is that
our algorithm always converges and in many cases it does so with a quite small
number of iterations. As shown in Table 1, the number of iterations for various
settings is mostly in the range [30, 40], and does not worsen significantly as
the number of nodes gets bigger. The maximum number observed in our
experiments was 108 and the minimum was 5.

2. Convergence to approximate Nash equilibria and uniqueness. Inter-
estingly, the strategy profiles obtained by our algorithm always formed an
ε-approximate equilibrium, where in our worst case ε = 10−9 (in most cases,
we even had convergence with ε = 10−14). We also tried to find out how
often we have convergence to a unique equilibrium. For this, we ran the same
instance with different initializations. Our main conclusion is that in the
vast majority of our instances the best response heuristic identified a unique
approximate equilibrium. The cases where we did not have uniqueness were
very rare, approximately 1 in every 200 instances.

3. Number of strongly connected components (SCC). There is typically
a small number of strongly connected components in our graphs which is in
accordance to what is observed in the web graph. The number of components
in our instances is often 1 or a very small number for c = 2, almost always 1
when c = 5, and in the range [5,20], when c = 1.

4. Degree distribution. The graphs we produce are weighted by the proba-
bilities, hence we focused on measuring the weighted in-degree of each node
(the weighted out-degree always equals 1). We grouped together nodes that
had close enough weighted in-degrees, Our main observation is that there is
a strong correlation between power law behavior and the ratio #nodes

#topics = n
k .

We obtained power law distributions in instances where this ratio was at
least 50 or higher (say n = 1000, k = 10). Such ratios of n/k are closer to
reality, as usually the number of topics is small relatively to the number of
nodes in the web. In the log-log plots of Fig. 1, we present two instances with
n = 1000, k = 10, n/k = 100. Data fitting with a straight line (using Mat-
lab methods) yields an exponent that is approximately γ ≈ 2.91 in the first
instance and γ ≈ 2.7 in the second instance.

5. Existence of communities. It has been argued in [23] (see also [22]), that
complete, or generally dense bipartite subgraphs in the worldwide web, such
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(a) A game with n = 1000, k = 10 and
c = 2. Data fitting yields a slope of γ ≈
2.91.

(b) A game with n = 1000, k = 10 and
c = 5. Data fitting yields a slope of γ ≈
2.7.

Fig. 1. Log-Log plots of weighted in degree distributions.

as K3,3, is evidence of “cyber-communities.” Furthermore, it was noted that
such subgraphs occur far more frequently on the web than one would expect
on a random directed graph with the same number of edges. In our exper-
iments, indeed, for large values of n, the number of K3,3’s in our graphs is
always bigger than expectation by a factor ranging from 103 to 105, showing
an abundance of such communities.

6. Price of Anarchy. For this, we first need an algorithm to estimate the opti-
mal welfare. Given that the sum of quasi-concave functions is not necessarily a
quasi-concave function, we cannot hope to apply ideas similar to the analysis
presented in Sect. 4, where we optimized a single payoff function. Instead, we
ran a simple gradient ascent heuristic to identify local maxima of the social
welfare, and thus estimate bounds on the true maximum. Because of the dif-
ficulty of finding local maxima, we have experimented only with relatively
small graphs, with up to 100 nodes. However, our findings were more than
encouraging. On average, the welfare at a local maximum was no more than
2-8 % better than the welfare of an equilibrium found by our algorithm.

6 Conclusions

Strategic behavior is quintessential in modeling and understanding the explosive
emergence of networks of all kinds over the past twenty-five years, and in par-
ticular of content networks such as the worldwide web. Here we have proposed
a game-theoretic model for web-like networks that is novel in several ways. It
is based on a concept of quality, which captures not only the intrinsic content
quality of the website, but also the contributions to quality coming from the
relevance, informativeness, and even per-click advertising income, of the outgo-
ing links. It also takes into account the traffic through the website, captured
by its pagerank We believe that game-theoretic approaches to the web need to
account for both quantities, namely traffic and quality. On the experimental side,
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we performed simulations which yielded very promising results. The graphs pro-
duced by best response dynamics possess many of the properties that have been
observed in the web graph and other networks in previous studies, and seem to
be doing very well in terms of social welfare.

There are several interesting questions that remain open:

– What is the complexity of computing an equilibrium in our model? We have
tried to prove it is PPAD-hard, and such a proof seems very difficult. On the
other hand, the generically nonlinear nature of the utility function leaves no
handles for the development of clever algorithms.

– Is there a nice upper bound on the price of anarchy of this game, perhaps
based on smooth analysis [28]. We strongly suspect that this is the case.

– In order to extend our experiments to truly large graphs, an algorithm is
needed for the best response problem that scales better with n.

– Finally, let us articulate an important challenge that we see further afield:
Social networks constitute an even more challenging class from the game-
theoretic modeling point of view. Can game-theoretic modeling help here? Is
there a realistic model of a node’s utility, as a function of its neighborhood,
which predicts these intriguing phenomena?
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Abstract. Braess’s paradox exposes a counterintuitive phenomenon
that when travelers selfishly choose their routes in a network, remov-
ing links can improve overall network performance. Under the model of
nonatomic selfish routing, we characterize the topologies of k-commodity
undirected and directed networks in which Braess’s paradox never occurs.
Our results generalize Milchtaich’s series-parallel characterization for the
single-commodity undirected case.

Keywords: Nonatomic selfish routing · Braess’s paradox · Single-
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1 Introduction

A basic task of network management is routing traffic to achieve the best pos-
sible network performance, e.g., to minimize the maximum latency. However, it
is usually difficult or even impossible to implement centralized optimal routing
in many large systems, as modeled by selfish routing games [12]. In these games,
a number of players (network users) selfishly choose routes in the network for
traveling from their origins to their destinations, aiming to minimize their own
latencies. The equilibria of the selfish choices might not be socially optimal.
A dazzling example is Braess’s paradox [2], which exposes the seemingly coun-
terintuitive phenomenon that less route options for the players lead to shorter
travel time at the equilibrium – subnetworks have better performance under the
selfish behaviors. The natural question arises as to which topologies of networks
are immune to the inefficiency due to the occurrence of Braess’s paradox. The
characterization of network topologies, which model relatively fixed infrastruc-
tures, is independent of the relatively changeable latency functions and traf-
fic demands. Once such a paradox-free network is established, no matter how
the latency functions and traffic demands change, the entire network remains
the best venue for all selfish players. The goal of this paper is to characterize
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paradox-free network topologies for nonatomic players each routing a negligible
portion of the overall traffic, where the nonatomic routing can be viewed as a
mathematical idealization of a very large population of individuals.

1.1 Nonatomic Selfish Routing

We concern with both undirected and directed networks, and model them by
multigraph or multidigraph G = (V,E) with vertex set V and link set E. Loops
are not allowed, while more than one link can join the same pair of vertices.
Each link e ∈ E is associated with a nonnegative, continuous, nondecreasing
latency function �e(·) specifying the time needed to traverse e as a function of
the link congestion on e. We call G a graph (resp. digraph) if it is undirected
(resp. directed). Undirected links are called edges while directed ones are called
arcs. Throughout the paper, by a path (or a cycle) in a digraph we mean a
directed one. Let u, v ∈ V , a path in G from u to v is called a u-v path. For
convenience, graphs and digraphs are collectively referred to as (di)graphs.

Let k ≥ 1 be a positive integer. Given k distinct origin-destination pairs
of vertices (si, ti) with si �= ti, i = 1, . . . , k, in G, we call G a k-commodity
network if G contains at least an si-ti path for each i ∈ [k] = {1, . . . , k}. Given
a nonnegative traffic demand (vector) r = (ri)k

i=1, the traffic in G comprises k
flows, where, for each i ∈ [k], the flow of commodity i has an amount of ri, and
is formed by an infinite number of players traveling from si to ti. Each player
selects a single path from his origin to his destination, given the congestion
imposed by the rest of players. Assuming a continuum of players, the choice of
each individual player has a negligible impact on the experiences of others.

Formally, let the triple (G, r, �) denote a k-commodity selfish routing instance,
where latency functions �e(·), e ∈ E, are collectively represented by �. For each
i ∈ [k], let Pi be the set of si-ti paths in G; a flow of commodity i is a non-
negative vector fi = (fi(P ))P∈Pi

with
∑

P∈Pi
fi(P ) = ri. The combination of

f1, . . . , fk gives rise to a k-commodity flow f = (fi)k
i=1 for (G, r). Under f , each

link e that is contained by some path in P = ∪k
i=1Pi experiences a congestion

f(e) =
∑k

i=1

∑
P∈Pi:e∈P fi(P ), and thus a link latency �e(f(e)). Accordingly, each

path P contained by ∪Q∈PQ and any player traveling through P suffer from a path
latency �P (f) =

∑
e∈P �e(f(e)). In this nonatomic routing game, Nash equilibrium

is characterized by Wardrop’s principle in a way that all players travel only on the
minimum latency paths from their own origins to their own destinations.

Definition 1. We call f a Nash equilibrium (NE) of (G, r, �) if for each i ∈ [k]
and each P ∈ Pi with fi(P ) > 0, it holds that �P (f) = minQ∈Pi

�Q(f).

By the classical result of Beckmann et al. [1] (see also [7,12]), the NE of (G, r, �)
exist, and are essentially unique in the sense that the link latencies are invariant
under any NE of (G, r, �). Thus, for each i ∈ [k], the common latency expe-
rienced by all players traveling from si to ti in any NE of (G, r, �) is also an
invariant, which we denote by �i(G, r), and refer to as the equilibrium latency of
the commodity i for (G, r, �).
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1.2 Braess’s Paradox

The formal definition of Braess’s paradox involves specific meaning of sub-
networks. Let (G, r, �) be a k-commodity selfish routing instance with origin-
destination pairs (si, ti)k

i=1. For any index set Π ⊆ [k], a sub(di)graph H of
G is referred to as a subnetwork of (G,Π) if H is a |Π|-commodity network
with origin-destination pairs (si, ti)i∈Π , Following [7], a subnetwork of (G, [k])
is simply called a subnetwork of G.

Let Π(r) = {i ∈ [k] : ri > 0}, H be a subnetwork of (G,Π(r)), and �′ be the
restriction of � to the link set of H. In a mild abuse of notation, we use (H, r, �)
to denote the selfish routing instance (H, (ri)i∈Π(r), �

′), and, for each i ∈ Π(r),
use �i(H, r) to denote the equilibrium latency of commodity i for (H, r, �). For
simplicity, in case of single-commodity, i.e., k = 1, we often write r as r, and
drop the subscript 1 in notions s1, t1,P1, and �1(·, r) in our discussions. In case
of r being an all-one vector we often write it as 1.

Definition 2. We say that Braess paradox occurs in (G, r, �) if there exists
subnetwork H of (G,Π(r)) and h ∈ Π(r) such that �h(H, r) < �h(G, r) and
�i(H, r) ≤ �i(G, r) for all i ∈ Π(r)−{h}. A k-commodity network G is said to be
Braess’s paradox free, or simply paradox-free, if for any traffic demand vector r
and any nonnegative, continuous, nondecreasing latency functions �, Braess’s
paradox does not occur in (G, r, �). A k-commodity network that is not Braess’s
paradox free is called Braess’s paradox ridden, or simply paradox-ridden.1

Fig. 1. Braess’s paradox in nonatomic selfish routing.

For example, Braess’s paradox occurs in the routing instances (a) and (b)
depicted in Fig. 1(a) and (b), respectively, where one unit flow is to be routed
from each origin to its corresponding destination. The latency function �e(x) on
arc e of network Ga or network Gb is either x or a constant 0, 1 or 2 as represented
by the symbol beside the arc in the figure. In either instance, the subnetwork Ha

1 We remark that the definition of paradox-ridden network here is a substantial relax-
ation the ones given by Roughgarden [11] and Fotakis et al. [4], which admit instances
suffering from the most severe performance loss in terms of Braess’s paradox.
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(resp. Hb) is obtained from Ga (resp. Gb) by deleting the dotted arc. It is easy to
see that, in the single-commodity case (a), at the NE of (Ga, 1, �) all players go
through the path suvt, while at the NE of (Ha, 1, �) half of players go through
path sut and the other half go through path svt; this gives �(Ha, 1) = 1.5 <
2 = �(Ga, 1). Similarly, in the 2-commodity case (b), at the NE of (Gb,1, �) no
player uses arc (s1, t1), while at the NE of (Hb,1, �) the flows of commodities 1
and 2 use disjoint paths s1t1 and s2t2, respectively; it follows that �1(Hb,1) =
2 = �1(Gb,1) and �2(Hb,1) = 1 < 2 = �2(Gb,1). Hence, both networks Ga and
Gb are paradox-ridden. In contrast, the 3-commodity network Gc depicted in
Fig. 1(c) is paradox-free, as our main result (Theorem 2) below guarantees.

1.3 Paradox-Free Networks

Considering a k-commodity network G with origin-destination pairs (si, ti)k
i=1,

it would be convenient to think of G being irredundant in the sense that each
link and each vertex of G are contained in at least an si-ti path for some i ∈ [k].

Milchtaich [10] established a series-parallel characterization for excluding
Braess’s paradox in irredundant single-commodity undirected networks (see
Theorem 1), which partially solved the open question of characterizing paradox-
free networks, proposed by Roughgarden [11]. In the paper, we almost complete
the solution by characterizing all k-commodity undirected networks and all irre-
dundant k-commodity directed networks with the series-parallel and coincident
conditions (see Theorem 2). In particular, our results on multicommodity net-
works answer the open question raised by Milchtaich [10]. The theoretical results
imply polynomial time algorithms for recognizing paradox-free k-commodity
undirected networks and paradox-free k-commodity planar directed networks.

Single-commodity networks. The paradox-freeness of irredundant single-
commodity networks is characterized in [10] for the undirected case and in this
paper for the directed case (see Theorem 1 below), using the notion of two-
terminal series-parallel.

Definition 3. An irredundant single-commodity network G with origin-
destination pair (s, t) is said to be two-terminal series-parallel, or s-t series-
parallel to be more specific, if one of the following conditions holds.

(i) G is undirected, and there do not exist two s-t paths in G that pass a common
edge in opposite directions.

(ii) G is directed, and its underlying graph is s-t series-parallel.

Theorem 1. An irredundant single-commodity network is paradox-free if and
only if it is two-terminal series-parallel.

Given the result by Milchtaich [10] for undirected networks, intuitively, one
might expect a graphical characterization less restrictive than the two-terminal
series-parallel one for directed networks, where players lose the flexibility to
traverse a link in either direction, and Braess’s paradox might have fewer chances
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to occur, and one might expect a graphical characterization less restrictive than
the two-terminal series-parallel one. However, the intuition is disproved by our
result on directed networks.

Despite the similarity of the necessary and sufficient condition for graphs
and that for digraphs in Theorem 1, the necessity proof for digraphs constitutes
our first technical contribution. Milchtaich’s model [10] allows a class of latency
functions wider than ours; two (different) functions are defined for each edge e =
uv, one specifying the latency of passing e from u to v and the other specifying
the latency of passing e from v to u. This class of latency functions brings a
kind of directionality into Milchtaich’s model; the topological efficiency result
essentially means that, regardless of how the edges in the two-terminal series-
parallel network are directed and their latencies are defined, Braess’s paradox
does not occur. This is useful for proving the sufficiency of a characterization
for single-commodity directed networks to be paradox-free, although our short
sufficiency proof (see Sect. 2) does not take advantage of it. On the other hand,
Milchtaich’s model does preclude predetermined directionality, and the wider
class of latency functions does not contribute to the necessity proof for digraphs.
Neither the results nor their proofs in [10] can imply the necessity in the directed
case.

In the half-page necessity proof for graphs [10], Milchtaich derived a Braess’s
paradox from an undirected network that is not s-t series-parallel by finding a
special pair of vertices whose existence relies on the property that the graph has
two s-t paths which goes through an edge in opposite directions. Such a property
is lost when considering digraphs. This is the main hurdle to extending Milch-
taich’s proof to digraphs. New ideas and approaches are required to overcome
the difficulty due to more complicate structures of digraphs.

– We use the existence of cycles in digraphs to obtain these special pairs of
vertices (see Lemma 1), which in turn lead us to Braess’s paradoxes (see
Lemmas 2 and 3).

– We translate edge traverses in opposite directions in graphs into the existences
of s-t paths through reversed arcs in digraphs. Instead of relying on special
pairs of vertices as Milchtaich did, we derive Braess’s paradox directly in
acyclic digraphs that are not s-t series-parallel using an inductive argument
that carefully exploits the properties of digraphs (see Theorem 3).

Multicommodity Network. To characterize paradox-free multicommodity net-
works, we need the concept of a block [13]. Let H be a (di)graph. We say that
H is 2-connected if it is connected and has no cut-vertices. A block of H is a
maximal 2-connected sub(di)graph of H. If H is two-terminal series-parallel,
then each block B of H is also two-terminal series-parallel, where the terminals
of B are uniquely determined by the structure of H, and are referred to as the
terminals of B in H.

For each i ∈ [k], let Gi = (Vi, Ei) be the maximum (in terms of the number of
links) irredundant subnetwork of (G, {i}). Then Gi, consisting of all si-ti paths
in G, is an irredundant single-commodity network with origin-destination pair
(si, ti). We call si and ti the terminals of Gi.
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Definition 4. If Gi and Gj (i �= j) are two-terminal series-parallel, B is a block
of both Gi and Gj, and the set of terminals of B in Gi and that in Gj are the
same, then B is called a coincident block of Gi and Gj.

It is worth noting that a common block B of Gi and Gj is coincident if G is
directed, but it is not necessarily coincident if G is undirected, as the terminal
sets of B in undirected Gi and Gj might be different. In addition, the order of
a coincident block’s terminals (“who is the origin and who is the destination”)
makes a difference between directed and undirected networks. Given a coincident
block B of Gi and Gj , in the directed case, the order of B’s terminals is unique;
while in the undirected case, it is possible that the origin (resp. destination) of
B in Gi is the destination (resp. origin) of B in Gj . This case of different order
can be seen from G1 and G2 for G = Gc in Fig. 1(c).

The next theorem summarizes the main results of this paper, which concerns
both the directed and undirected case.

Theorem 2 (Main result). An irredundant k-commodity network G is
paradox-free if and only if G satisfies the following conditions:

(i) Series-parallel Condition: for each i ∈ [k], Gi is an si-ti series-parallel net-
work; and

(ii) Coincident Condition: for any distinct i, j ∈ [k], either Ei ∩ Ej = ∅ or the
(di)graph induced by Ei ∩ Ej consists of all coincident blocks of Gi and Gj.

The theorem clearly generalizes Theorem 1. This generalization is by no
means straightforward. Indeed, the coincident condition specifies the interactions
of players with different origins and destinations, capturing in the context of
paradox-freeness a key property of asymmetric nonatomic selfish routing, which,
to the best of our knowledge, was not studied previously.

The configuration depicted in Fig. 1(b) and its undirected underlying config-
uration give visualizations of how Braess’s paradox occurs in multicommodity
networks. Moreover, we show that the they are essentially all the forbidden struc-
tures for the paradox-freeness in multicommodity networks. This complements
the result that Wheatstone network (Ga in Fig. 1(a) and its underlying graph) is
the only forbidden configuration for paradox-free single-commodity undirected
networks.

The proofs for the necessity of the coincident condition constitute our second
technical contribution.

– In the undirected case, coping with the nonidentical sets of terminals for a
common block of Gi and Gj turns out to be the key for obtaining the paradox
configurations. The careful path selections to avoid unnecessary intersections,
which utilize techniques from graph connectivity theory, discover the essence
of the problem.

– In the directed case, the difficulty lies on the fact that pure graph theory
cannot enforce two intersecting blocks to be identical as it does for undirected
networks. More elaborate inductive method is applied for reducing the proof
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to smaller networks (obtained by arc deletions and contractions). As arc con-
tractions might create Braess’s paradox which is not possessed by the original
network, the challenging task is to guarantee that the selected arc contraction
does not destroy the paradox-freeness.

Inour proofs, the constructions of Braess’s paradoxes only use linear latency
functions of form �e(x) = aex + be for constants ae, be ≥ 0. An immediate
corollary is that our results all hold even if the paradox-freeness is defined with
respect to this kind of linear latency functions.

Our characterizations for paradox-free (paradox-ridden) networks show that
the multicommodity cases are natural and nontrivial extensions from their single-
commodity counterparts, which stands in contrast to the dichotomy between
single- and 2-commodity networks in terms of severity of Braess’s paradox [7,11].
It is known that Braess’s paradox can be dramatically more severe for multi-
commondity networks than single-commodity networks.

1.4 Related Work

Most literature on characterizing network topologies for various properties of NE
in selfish routing is restricted to the single-commodity case. The most related
work is the aforementioned two-terminal series-parallel characterization by
Milchtaich [10] for paradox-free undirected networks in nonatomic selfish rout-
ing. In the same paper [10], the author proved that the undirected networks
which guarantee all NE to be weakly Pareto efficient are exactly those with
linearly independent routes, meaning that every s-t path has at least an edge
that does not belong to any other s-t path. Networks with heterogeneous players
means that the latency functions are player-specific: the same link under the
same congestion might give different latencies to different players using it. For
the nonatomic routing with heterogeneous players, Milchtaich [8] characterized
undirected networks such that, given any strictly increasing latency functions,
each player’s latency is the same at all NE. These networks are either nearly
parallel or consist of two or more nearly parallel networks connected in series. In
contrast to nonatomic routing, an atomic routing game has only a finite number
of players, each controlling a noneligible part of traffic. The most studied sce-
narios are unsplittalbe routing where each player routes his flow through a single
path from his origin to his destination, and routing with unit demands where
each player controls a unit of flow. Milchtaich [9] identified some sufficient con-
ditions for directed networks that guarantee the existence of at least one pure
NE in unsplittable atomic routing with unit demands for either player-specific
latency functions or weighted players.

As far as multicommodity networks are concerned, Holzman and Monderer [6]
studied the unsplittable atomic routing game with unit demands that is played
on a directed network with two distinguished vertices u and v, where every arc
belongs to at least one u-v path. Under this topological constraint, the authors
[6] proved that the class of extension-parallel networks is exact the one guaran-
teeing the existence of strong equilibrium. This is a generalization of the previ-
ous result on the single-commodity case [5]. Epstein et al. [3] characterized the



226 X. Chen et al.

so-called efficient undirected networks in which all NE of each unsplittable rout-
ing with unit demands are socially optimal, i.e., they are among routings that
minimize the maximum path latency between any origin-destination pair. It was
shown that the efficient multicommodity networks are either trees or two ver-
tices joined by parallel edges, while the efficient single-commodity networks are
exactly those with linearly independent routes. The authors [3] also obtained
characterizations of efficient undirected networks for the routing game where
both individual players and the network (society) wish to minimize their own
maximum edge latencies.

Organization. In Sect. 2, we briefly discuss our proofs for single-commodity net-
works and multicommodity networks. In Sect. 3, we give concluding remarks.
Due to the space limit, the technical details, as well as discussions on corollaries
and future research, are deferred to the full version of the paper.

2 Proofs

We first study single-commodity network G = (V,E) with origin-destination
pair (s, t). It can be assumed w.l.o.g. that G is connected.

For the undirected case, the characterization for irredundant networks can
be easily extended to all single-commodity networks. This particularly provides
a polynomial time algorithm for determining whether a given undirected single-
commodity network is paradox-free or not.

Proof of Theorem 1 (Directed Case). We further assume that G is an
irredundant directed network, meaning that each arc of G is contained in some s-
t path. Let u(G) denote the underlying graph of G. Let P = v1v2 . . . vh be a v1-vh

path in G. For any 1 ≤ i < j ≤ h, we say that vi precedes vj in P , or equivalently
vj follows vi in P ; such a relation is written as vi ≺P vj . If 1 ≤ i ≤ j ≤ h, we
write vi �P vj , and use P [vi, vj ] to denote the subpath of P from vi to vj .
For convenience, we set P (vi, vj ] = P [vi, vj ] \ vi, P [vi, vj) = P [vi, vj ] \ vj and
P (vi, vj) = P [vi, vj ] \ {vi, vj}.

Sufficiency Proof. Suppose that G is s-t series-parallel. Then so is u(G) by
Definition 3. It can be seen that {u(P ) : P ∈ P} is exactly the set of s-t paths in
u(G). Suppose for a contradiction that there exist H ⊆ G, traffic demand r and
nonnegative, continuous, nondecreasing latency functions � such that �(H, r) <
�(G, r). For each edge e of u(G), set �e(·) = �e′(·) where e is the underlying edge
of the arc e′ ∈ E. Then �(u(H), r) = �(H, r) < �(G, r) = �(u(G), r), exhibiting
a Braess’s paradox in u(G). We deduce from Theorem 1 (Undirected Case) that
u(G) is not s-t series-parallel. The contradiction proves the sufficiency.

Necessity Proof. Our approach is to derive Braess’s paradox from directed net-
works that are not two-terminal series-parallel. The contradictory method was
adopted by Milchtaich [10], who used the property that the graph has two s-t
paths which goes through an edge in opposite directions. Such a property is lost
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when considering digraphs. This is main hurdle to extending Milchtaich’s proof
to digraphs.

Our first step is to use the existence of a cycle to derive a special pair of
vertices u and v as in the following lemma.

Lemma 1. If there is a cycle in G, then there exist s-t paths P,Q ∈ P and
distinct vertices u, v ∈ V (P ) ∩ V (Q) such that u precedes v in P and u follows
v in Q, i.e., u ≺P v and v ≺Q u. �

Consequently, such a pair of special vertices u and v helps us to construct
(in Lemma 2) an s-t paradox defined as follows.

Definition 5. We call G an s-t paradox if G = P1 ∪ P2 ∪ P3 is the union of
three paths P1, P2 and P3 with the following properties:

(i) P1 is an s-t path going through distinct vertices a, u, v, b such that s � a ≺P1

u ≺P1 v ≺P1 b � t;
(ii) P2 is an a-v path with V (P2) ∩ V (P1) = {a, v};
(iii) P3 is a u-b path with V (P3) ∩ V (P1) = {u, b} and V (P3) ∩ V (P2) = ∅.
The s-t paradox defined above is often denoted as (P1, P2, P3). See Fig. 2 for an
illustration.

Fig. 2. An s-t paradox (P1, P2, P3).

Lemma 2. If there is a cycle in G, then G contains an s-t paradox. �
Observe that the four-node Braess’s paradox Ga in Fig. 1(a) is an s-t paradox
(suvt, sv, ut) with s = a and t = b. More generally, we have

Lemma 3. If G contains an s-t paradox, then G is paradox-ridden.

Proof. Let G′ = (V ′, E′) = P1 ∪P2 ∪P3 be an s-t paradox (P1, P2, P3) contained
in G. In the subdigraph G′, let e1, e2 be the two outgoing arc from a with
e1 ∈ P1 and e2 ∈ P2, and let e3, e4 the two incoming arcs to b with e3 ∈ P1

and e4 ∈ P3. We define routing instance (G, 1, �) by �e(x) = x if e ∈ {e1, e3},
�e(x) = 1 if e ∈ {e2, e4}, �e(x) = 0 if e ∈ E′ − {e1, e2, e3, e4}, and �e(x) = ∞
if e ∈ E − E′. See Fig. 2 for an illustration. The unique equilibrium in (G, 1, �)
sends the one-unit flow all through path P1 and suffers from a latency �(G, 1) =
�e1(1)+ �e3(1) = 2. Let subnetwork H of (G, 1) be obtained from G by removing
an arc e on P1[u, v]. Then the unique equilibrium in (H, r, �) splits the one-unit
flow equally at a, sending half via path P2[a, v] ∪ P1[v, t] and the other half via
path P1[a, u] ∪ P3[u, b] ∪ P1[b, t]. This incurs a latency �(H, 1) = 1 + 0.5 = 1.5,
showing a Braess’s paradox. �
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Finally, we restrict our attention to acyclic digraphs. Using the existences of
s-t path through reversed arcs in digraphs, we derive s-t paradoxes directly via
an inductive argument, instead of relying on those special pair of vertices u, v
provided by Lemma 1.

For any arc subset K ⊆ E, let G〈K〉 be the digraph obtained from G by
reversing all arcs in K. The set of reversed arcs is written as K̄.

Theorem 3. If G is not s-t series-parallel, then G is paradox-ridden.

Proof. By Lemma 3, suppose on the contrary that G contains no s-t paradox.
It follows from Lemma 2 that G is acyclic. Therefore we have

(i) for any u, v, w ∈ V and any u-v path Puv and v-w path Pvw in G, Puv ∪Pvw

is a u-w path in G.

By Definitions 3, since digraph G is not s-t series-parallel, its underlying graph
has a pair of s-t paths which go through some edge in opposite directions. Recall
that each arc of G is contained in some s-t path in G. We deduce that there is a
nonempty subset K of E such that G〈K〉 contains an s-t path P going through
some arc(s) in K̄. Take such a K with minimum |K| > 0. The minimality of K
implies that K̄ ⊆ P , and K̄ induces a number of, say m, subpaths of P from vi to
wi, i = 1, 2, . . . ,m, where vi ≺P wi ≺P vi+1 ≺P wi+1 for all i = 1, 2, . . . ,m − 1.
Notice that

(ii) the reverse of P [vi, wi] is a path P̄ [wi, vi] = (Vi, Ei) in G for each i ∈ [m];
(iii) K is the disjoint union of E1, E2, . . . , Em;
(iv) P [wi, vi+1], i = 0, 1, . . . ,m are paths in G, where w0 = s and vm+1 = t;
(v) for any i ∈ [m], there exists a vi-v1 path Qi in G.

Fig. 3. The path P in G〈K〉, where arcs in G and K̄ are drawn as solid and dotted
ones, respectively.

Statements (ii)–(iv) are straightforward observations. See Fig. 3 for an illus-
tration. We prove (v) by induction on i. The base case i = 1 is trivial. Suppose
that 2 ≤ i ≤ m and there is a vh-v1 path Qh in G for each h ∈ [i − 1].

Since G is an irredundant network, it contains a vi-t path Q. If Q and P [s, vi)
are vertex-disjoint, then P [s, vi] ∪ Q is an s-t path in G〈∪i−1

h=1Eh〉 going through
∪i−1

h=1Ēh. However ∅ �= ∪i−1
h=1Eh � ∪m

h=1Eh and (iii) imply a contradiction to the
minimality of K. Hence

– P (s, vi) and Q(vi, t) have some vertices in common, say c.

Observe from (iv) and (i) that P [wi−1, vi] ∪ Q is a path in G, implying that
P [wi−1, vi) and Q are vertex-disjoint, and

– c ∈ P (s, wi−1) ∩ Q(vi, t).
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Note that c ∈ P [wh−1, wh) for some h ≤ i − 1. By (iv) and (ii), the subdigraph
P [wh−1, vh] ∪ P̄ [wh, vh] of G contains a c-vh path, written as R. Consider the
concatenation of R and the vh-v1 path Qh (whose existence is guaranteed by the
inductive hypothesis). We see from (i) that R ∪ Qh is a c-v1 path in G. In turn
we concatenate the vi-c path Q[vi, c] and the c-v1 path R ∪ Qh into a vi-v1 path
in G, which establishes (v).

Applying (ii) and (v) with i = m, we deduce from (i) that Swmv1 = P̄ [wm, vm]∪
Qm is a wm-v1 path in G. Since G is an irredundant network, it contains an s-wm

path Sswm
and a v1-t path Sv1t. By (i), S = Sswm

∪ Swmv1 ∪ Sv1t is an s-t path in
G satisfying s ≺S wm ≺S v1 ≺S t. Observe that v1, wm ∈ P ∩ S. This enables us
to take vertices u, v ∈ P ∩ S such that

– u ≺S v, v ≺P u,
– P [v1, wm] ⊆ P [v, u], and
– P [v, u] is as long as possible.

Notice from s �S u ≺S v �S t that v �= s and u �= t, giving s ∈ P [s, v) and t ∈
P (u, t]. Recall from (iv) that P [s, v1] ∪ P [wm, t] = P [w0, v1] ∪ P [wm, vm+1] ⊆ G.
From P [v1, wm] ⊆ P [v, u], we derive

(vi) P [s, v] ∪ P [u, t] ⊆ G.

The maximality of P [v, u] enforces that

(vii) P [s, v) ∩ S[u, t] = ∅ and P (u, t] ∩ S[s, v] = ∅.

Otherwise we should have taken v to be some vertex v′ ∈ P [s, v) ∩ S(u, t) with
u ≺S v′, or u to be some vertex u′ ∈ P (u, t] ∩ S(s, v) with u′ ≺S v. See Fig. 3
for the positions of the contradictory v′ and u′ on P .

Consider a traverse of P from s to t. Let a be the last vertex of P [s, v) with a ∈
S, meaning that P (a, v)∩S = ∅ (such a vertex a exists because s ∈ P [s, v)∩S).
Let b be the first vertex of P (u, t] with b ∈ S, meaning P (u, b) ∩ S = ∅ (such a
vertex b exists because t ∈ P (u, t] ∩ S). It follows from (vii) that a ∈ S[s, u) and
b ∈ S(v, t], giving a ≺S u ≺S v ≺S b. (Notice from s ≺P v ≺P u ≺P t that s �= u
and v �= t.) Thus, by (vi), we see that (S, P [a, v], P [u, b]) is an s-t paradox in G.
The contradiction completes the proof of the theorem. �
Proof of Theorem 2. Our goal is to prove the series-parallel and coincident
conditions in the theorem are necessary and sufficient for a multicommodity
network to be paradox-free.

By virtue of the block chain structure of series-parallel networks, the suf-
ficiency proof, which builds on the results for single-commodity (Theorem 1),
turns out to be easier. For the harder necessity proof, the main focus is on
establishing the coincident condition for 2-commodity networks.

3 Conclusion

The main result of this paper is a graphical characterization for all irredundant
networks to be paradox-free; the series-parallel and coincident conditions are
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shown to be sufficient and necessary for the paradox-freeness. In our proofs, the
constructions of Braess’s paradoxes only use linear latency functions of form
�e(x) = aex + be for constants ae, be ≥ 0. An immediate corollary is that our
results all hold even if the paradox-freeness is defined with respect to this kind
of linear latency functions.

References

1. Beckmann, M.J., McGuire, C.B., Winsten, C.B.: Studies in the Economics of
Transportation. Yale University Press, New Haven (1956)
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Abstract. In the traditional setting of routing games, the standard
assumption is that selfish agents are unconcerned with the performance
of their competitors in the network. We propose an extension to this
setting by modeling agents to consider a combination of their own per-
formance as well as that of their rivals. Per agent, we parameterize this
trade-off, thereby allowing agents to be partially selfish and partially
malicious.

We consider two types of routing games based on the structure of
the agents’ performance objectives, namely bottleneck routing games and
additive routing games. For bottleneck routing games, the performance
of an agent is determined by its worst-case link performance, and for
additive routing games, performance is determined by the sum of its link
performances. For the bottleneck routing scenario we establish the exis-
tence of a Nash equilibrium and show that the Price of Stability is equal
to 1. We also prove that the Price of Anarchy is unbounded. For additive
routing games, we focus on the fundamental load balancing game of rout-
ing over parallel links. For an interesting class of agents, we prove the
existence of a Nash equilibrium. Specifically, we establish that a special
case of the Wardrop equilibrium is likewise a Nash equilibrium. More-
over, when the system consists of two agents, this Nash equilibrium is
unique, and for the general case of N agents, we present an example of
its non-uniqueness.

1 Introduction

To date, game theoretic models have been employed in virtually all networking
contexts. These include control tasks at the network layer, such as flow control
(e.g., [16]), and routing (e.g., [1,5,18,20,24,25] and references therein), as well
as numerous studies on control tasks at the link and MAC layers. A fundamental
assumption in all of these referenced studies is that the selfish agents compete
over resources in the network and aim to optimize their own performance; agents
do not care (either way) about the performance of their competitors. However,
and typically in the context of routing, scenarios exist in which this assumption
is not warranted.

For example, consider the scenario where two Content Providers, A and B,
offer video-on-demand services in a network. Both A and B compete over the
network resources, however only Content Provider A aspires to minimize its own
latency. Due to business considerations, Content Provider B aims at offering its
c© Springer-Verlag Berlin Heidelberg 2015
M. Hoefer (Ed.): SAGT 2015, LNCS 9347, pp. 231–243, 2015.
DOI: 10.1007/978-3-662-48433-3 18
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clients a performance that is equal or better than A’s performance. Thus, the
objective of B is not solely to maximize its performance.

In light of examples like the one above, previous research in routing games has
extended the classical model of “performance-maximizing” or “selfish” agents,
and focused on different scenarios, e.g., settings where certain agents may act
maliciously towards other agents [4,7,22]. Such malicious behavior could be due
to a range of reasons, e.g., hackers or rivaling companies that aim to degrade
network quality. In contrast, other studies in routing games consider agents to
have an altruistic component to their objective [3,9,15].

In order to best model real-life scenarios, each agent’s objective should lie
somewhere in the range between malicious, selfish and altruistic, as depicted
in Fig. 1. This direction has been proposed in [11], where each agent i has a
parameter that captures how important the social performance is to i. In this
setting, a malicious agent aims to minimize the social performance, an altruistic
agent aims to maximize it and a selfish agent does not take the social performance
into account at all. However, [11] focuses on a non-atomic game, i.e., a game with
an infinite amount of agents, where each agent controls a negligible amount of
flow. Following a similar course, in [3,9,10,15], agents are of finite size, and their
objectives are parameterized to lie somewhere between selfish and altruistic, yet
malicious objectives are not taken into account.

In this study, we intend to investigate agents of finite size whose objectives
lie in the range between malicious and selfish. Per agent i, we parameterize this
trade-off through a coefficient αi ∈ [0, 1], where αi = 1 corresponds to a selfish
agent and αi = 0 to a malicious agent. However, unlike [11], we represent agent
i’s cost as a combination of its own performance and that of its rival. We define
the rival of an agent i as the agent j �= i with the current best performance in the
system. Note that an agent’s rival is not fixed, but is dependent on the current
performance of all the agents in the system. In our setting, a totally malicious
agent aims to minimize the performance of its rival, while a totally selfish agent
does not take its rival’s performance into account.

Fig. 1. The range of agents’ objectives.

We consider two types of routing games based on the structure of the agents’
performance objectives. The first game considers agents with bottleneck objec-
tives (also known as Max-Min or Min-Max objectives), i.e., their performance
is determined by the worst component (link) in the network [5,8,12]. Bottleneck
routing games have been shown to emerge in many practical scenarios. For exam-
ple, in wireless networks, the weakest link in a transmission is determined by the
node with the least remaining battery power. Hence, each agent would route
traffic so as to maximize the smallest battery lifetime along its routing topology.
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Additionally, bottleneck routing games arise in congested networks where it is
desirable to move traffic away from congested hot spots. For further discussion
and additional examples see [5]. The second type of game considers agents with
additive performance measures, e.g., delay or packet loss. Much of the current
literature on networking games has focused on such games, e.g., [1,14,17–20,25],
albeit in the traditional setting of selfish agents.

In [5] and [20], the existence of a Nash equilibrium has been established
respectively, for bottleneck and additive routing games with selfish agents. We
note that a major complication in proving the existence of a Nash equilibrium for
agents with a malicious component, i.e., αi < 1, is the inherent lack of convexity
of the objective functions. Thus, we cannot rely on the proofs of existence from
the referenced works, and need to establish proofs of our own that do not require
(quasi-)convexity of the performance functions.

For both types of games, many studies have attempted to bound the Price
of Anarchy (PoA) [17] and the Price of Stability (PoS) [2]. The PoA and PoS
quantify the deficiency of the network from a social perspective, at respectively,
the worst and best Nash equilibrium. Due to the ever-growing work in this
context, it is beyond the scope of this writing to do justice and present an
exhaustive survey of previous work on routing games with selfish agents. We
refer the reader to the above cited papers and to the references therein for a
broader review of the literature.

1.1 Our Contribution

We focus our study on the atomic splittable routing model [5,20], in which each
agent sends its non-negligible demand to its destination by splitting it over a
set of paths in the network. All agents share the same source and destination,
and each agent i has a coefficient αi, which captures the importance of its rival’s
performance. We first consider agents with bottleneck performance measures,
and for which αi ∈ [1/2, 1]. Intuitively, this range of αi implies that they care
more about their own performance than that of their rivals’. We prove that the
Price of Stability is equal to 1, i.e., there always exists a system optimal Nash
equilibrium. Moreover, we establish that the Price of Anarchy is unbounded.

We then consider agents with additive performance objectives and focus on the
fundamental load balancing game of routing over parallel links. Beyond being a
basic framework of routing, this is the generic framework of load balancing among
servers in a network. It has been the subject of numerous studies in the context
of non-cooperative networking games, e.g., [14,17,18,20,23,26], to name a few.
We consider agents that view their own performance and that of their rivals with
equal importance, i.e., for all i, αi = 1/2. We establish the existence of a Nash
equilibrium and show that the Wardrop equilibrium (which necessarily exists and
is unique [13]) is also a Nash equilibrium. Moreover, for a system with two agents,
we prove the Nash equilibrium’s uniqueness and for the general case of N agents,
we provide an example of its non-uniqueness. Finally, we present an example of
a system with agents for which αi ∈ [0, 1] and show that for both bottleneck and
additive routing games, no Nash equilibrium necessarily exists. Due to space lim-
itations, some proofs are omitted and can be found (online) in [6].
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2 Model and Game Theoretic Formulations

2.1 Model

We consider a set N = {1, 2, . . . , N} of selfish “users” (or, “players”, “agents”),
which share a communication network modeled by a directed graph G(V,E). We
denote by P the set of all paths in the network. Each user i ∈ N has a traffic
demand ri and all users share a common source S and common destination T .
Denote the total demand of all the users by R, i.e., R =

∑
i∈N ri. For every i,

we denote by −i the set of all users in the system, excluding i. A user ships its
demand from S to T by splitting it along the paths in P, i.e., user i decides what
fraction of ri should be sent on through each path. We denote by f i

p, the flow
that user i ∈ N sends on path p ∈ P. User i can fix any value for f i

p, as long
as f i

p ≥ 0 (non-negativity constraint) and
∑

p∈P f i
p = ri (demand constraint);

this assignment of traffic to paths, f i = {f i
p}p∈P shall also be referred to as

the routing strategy of user i. The (routing strategy) profile f is the vector of all
user routing strategies, f = (f1, f2, . . . , fN). We say that a profile f is feasible if
it is composed of feasible routing strategies and we denote by F the set of all
feasible profiles. Turning our attention to a path p ∈ P, let fp be the total flow
on that path i.e., fp =

∑
i∈N f i

p; also denote by f i
e the flow that i sends on link

e ∈ E, i.e., f i
e =

∑
p|e∈p f i

p. Similarly, the total flow on link e ∈ E is denoted by
fe =

∑
i∈N f i

e. We associate with each link a performance function Te(·), which
corresponds to the cost per unit of flow through link e and only depends on the
total flow fe. Furthermore, we impose the following assumptions on Te(fe):

A1 Te : [0,∞) → [0,∞].
A2 Te(fe) is continuous and strictly increasing in fe.

The performance measure of a user i ∈ N is given by a cost function Hi(f),
which we shall refer to as the selfish cost of i. In bottleneck routing games, Hi(f)
corresponds to the performance of the worst-case link, and in additive routing
games it corresponds to the sum of all link performances in the system. We define
the rival of i at f , as the user with the lowest selfish cost at f , i.e., minj �=i H

j(f).
The aim of each user is to minimize the weighted difference between its own cost
and the cost of its rival in the network. Thus, the aim of i is to minimize

J i(f) ≡ αiHi(f) − (1 − αi)min
j �=i

{Hj(f)}. (1)

Note that J i(f) is not necessarily convex in its user flows.

2.2 Bottleneck Routing Cost Function

Following [5], we define the bottleneck of a user i ∈ N , bi(f), as the worst
performance of any link in the network that i sends a positive amount of flow on,

bi(f) = max
e∈E|fi

e>0
Te(fe).
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The selfish cost of user i is equal to its bottleneck, Hi(f) = bi(f) = maxe∈E|fi
e>0

Te(fe). Thus, we consider users whose cost functions contain the following form,

J i(f) = αi max
e∈E|fi

e>0
{Te(fe)} − (1 − αi)min

j �=i
max

l∈E|fj
l >0

{Tl(fl)}. (2)

In other words, user i aims to minimize the weighted difference between its
bottleneck and that of its best-off competitor. We define the bottleneck of a
path p ∈ P with fp > 0 as bp(f) = maxe∈p Te(fe) and we define the bottleneck
of the system as

b(f) = max
e∈E|fe>0

Te(fe).

We equate the “welfare” of the system to its bottleneck and denote by f∗ =
(f∗)e∈E , the optimal vector of link flows. Thus, the social optimum equals b(f∗) =
minf∈F b(f).

2.3 Additive Routing Cost Functions

An important class of problems is when users are interested additive performance
measures, e.g., delay or packet loss. In this case, Te may correspond to the total
delay of link e. For additive routing games, we consider the framework of routing
in a “parallel links” network. Thus, G(V,E) corresponds to a graph with parallel
“links” (e.g., communication links, servers, etc.) L = {1, 2, . . . , L}, L > 1, and a
users ships its demand by splitting it over the links L. In particular, we consider
users whose selfish cost functions are of the following form:

Hi(f) =
1
ri

∑

l∈L
f i
l Tl(fl). (3)

Thus, Hi(f) corresponds to the average sum of the link costs. From (1) we get
that

J i(f) = αi
∑

l∈L

f i
l

ri
Tl(fl) − (1 − αi)min

j �=i

{
∑

l∈L

f j
l

rj
Tl(fl)

}

. (4)

2.4 Nash Equilibrium

A profile f is said to be a Nash equilibrium if, given f−i, no user finds it beneficial
to deviate from its routing strategy f i. More formally, f is a Nash equilibrium if,
for all i ∈ N and any feasible routing strategy f̄ i �= f i, the following condition
holds

J i(f i, f−i) ≤ J i(f̄ i, f−i). (5)

In order to quantify the degradation of a Nash equilibrium, we turn towards the
Price of Anarchy [17] (the Price of Stability [2]), which is defined as the ratio
between the worst (best) Nash equilibrium, and the social optimum.
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3 Bottleneck Routing Games

We start by establishing the existence of a Nash equilibrium in our bottleneck
routing game. Note that the user cost function in (2) is not continuous, as pointed
out in [5]. Moreover, J i(f) is not necessarily quasi-convex in f i

l . Consequently,
we need to construct an existence proof that does not rely on the continuity or
the quasi-convexity of the cost functions. We establish the existence of a Nash
equilibrium by constructing a feasible strategy profile for all users, such that no
user wishes to unilaterally deviate from its routing strategy. We first provide the
following definition.

Definition 1. A profile, f , is referred to as balanced, if for any two paths p1, p2 ∈
P with fp1 > 0, it holds that, bp1(f) ≤ maxe∈p2{Te(fe)}.
Thus, at a balanced flow profile, for any two paths p1, p2 ∈ P with positive flow,
their bottlenecks are equal, bp1(f) = bp2(f).

Definition 2. A profile, f , is referred to as proportional, if for any path p ∈ P,
and for any user i ∈ N , f i

p = ri

R fp.

To demonstrate that a proportional profile is feasible, it needs to satisfy (i) the
non-negativity constraint and (ii) the demand constraint of all users. Consider
a user i ∈ N . It follows that f i

p = ri

R fp ≥ 0, thus the non-negativity constraint
is satisfied. Furthermore,

∑
p∈P f i

p = ri

R

∑
p∈P fp = ri, thus the demand con-

straint is also satisfied. In order to construct a feasible Nash equilibrium, we
first establish following lemma.

Lemma 1. Consider a bottleneck routing game. Any system optimal strategy
profile is balanced.

Proof. See [6]. 	

We continue to construct a feasible profile, which is also a Nash equilibrium.
Specifically, we focus on a profile that is proportional and system optimal.

Theorem 1. Consider a bottleneck routing game, where for any user i, αi ∈
[1/2, 1]. Each system optimal proportional profile is a Nash equilibrium.

Proof. Consider a system optimal, proportional profile, f . As a result of Lemma 1,
f is balanced, thus for all i ∈ N , bi(f) = b(f). Therefore, for any user i,

J i(f) = αibi(f) − (1 − αi)min
j �=i

{bj(f)} = (2αi − 1) · b(f). (6)

Assume by contradiction that f is not a Nash equilibrium. In other words, there
exists a user i, which can send its flow according to f̄ i �= f i and by doing so,
decreases its cost. Moreover, consider the case that the cost of the bottleneck
link of i’s rival, has increased due to i’s deviation, i.e.,

min
j �=i

{bj(f̄ i, f−i)} > min
j �=i

{bj(f)}. (7)
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Denote the bottleneck link of i’s rival at (̄f i, f−i) as n, thus

min
j �=i

{bj(f̄ i, f−i)} ≡ Tn(f̄ i
n + f−i

n ). (8)

Since f is balanced, from (8) it follows that,

Tn(f̄ i
n + f−i

n ) > min
j �=i

{bj(f)} = b(f) ≥ Tn(fn). (9)

From (9) and Assumption A2 it follows that f̄ i
n > 0. Therefore from (6), (7)

and (9),

J i(f̄ i, f−i) = αibi(f̄ i, f−i) − (1 − αi)min
j �=i

{bj(f̄ i, f−i)}

= αibi(f̄ i, f−i) − (1 − αi)Tn(f̄ i
n + f−i

n )

≥ (2αi − 1)Tn(f̄ i
n + f−i

n ) ≥ (2αi − 1)b(f) = J i(f).

The last inequality follows from (9) and from αi ∈ [1/2, 1]. Therefore, J i(f̄ i, f−i) ≥
J i(f), which is a contradiction. We now consider the case where f is not a Nash
equilibrium and

min
j �=i

{bj(f̄ i, f−i)} ≤ min
j �=i

{bj(f)}. (10)

Since f is system optimal, it holds that

b(f̄ i, f−i) ≥ b(f). (11)

Denote the bottleneck link of the system, at (̄f i, f−i) as s and consider the case
where f̄ i

s = 0. By definition f−i
s > 0, otherwise s cannot be the system’s bot-

tleneck. Since, f−i
s > 0 it follows that fs > 0 and f i

s = ri

R fs > 0. Consequently,
from (11) and Assumption A2, Ts(f i

s + f−i
s ) > Ts(f̄ i

s + f−i
s ) ≥ b(f), which is a

contradiction to s being the system’s bottleneck. Therefore, f̄ i
s > 0 and

b(f̄ i, f−i) ≡ Ts(f̄ i
s + f−i

s ) = bi(f̄ i, f−i). (12)

Finally, from (6), (10), (11) and (12)

J i(f̄ i, f−i) = αibi(f̄ i, f−i) − (1 − αi)min
j �=i

{bj(f̄ i, f−i)}

≥ αibi(f̄ i, f−i) − (1 − αi)min
j �=i

{bj(f)}

= αib(f̄ i, f−i) − (1 − αi)min
j �=i

{bj(f)}
≥ αib(f) − (1 − αi)min

j �=i
{bj(f)} = (2αi − 1) · b(f) = J i(f),

which is a contradiction. Thus, any system optimal proportional balanced flow
is a Nash equilibrium. 	
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Theorem 1 illustrates that in any bottleneck routing game where for each user
i, αi ∈ [1/2, 1], there exists a Nash equilibrium. Moreover, there always exists
a Nash equilibrium, which is system optimal1. This brings us to the following
conclusion.

Corollary 1. Consider a bottleneck routing game, where for any user i, αi ∈
[1/2, 1]. The Price of Stability is equal to 1.

Even though Theorem1 establishes the existence of desirable equilibria from
a system’s perspective, it might also happen that the selfishness of the users
degrades the system substantially. This deficiency is captured by the Price of
Anarchy.

Theorem 2. Consider a bottleneck routing game, where for any user i, αi ∈
[1/2, 1]. The Price of Anarchy is unbounded.

Fig. 2. Example of a network with an unbounded PoA.

Proof. We establish the theorem through the following example.

Example 1. Consider the network G = (V,E) as depicted in Fig. 2. Further,
consider two users i and j, each with a flow demand of ri = rj = R

2 and
αi = αj ≡ α ∈ [1/2, 1]. For any edge e ∈ E, the cost per unit of flow is equal to
Te(fe) = efe − 1. We focus on a specific profile f , in which user i sends its total
demand on a single path, namely {S,A,B,E, F, I, J, T}, and, user j sends its
demand on the path {S,D,C, F,E,H,G, T}. The labels on the edges in Fig. 2
correspond to the portion of the total flow that transverses on that edge at f ,
i.e., fe/R. Thus,

J i(f) = αbi(f) − (1 − α)bj(f) = (2α − 1) · (eR/2 − 1).

1 In [5] a similar theorem was proven for a more general topology. However, they only
considered selfish users (i.e., ∀i, αi = 1).
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It is straightforward that J i(f) = Jj(f). Now assume by contradiction that f is
not a Nash equilibrium. Hence, there exists a different routing strategy for user
i, f̄ i �= f i at which user i can decrease its cost. If i places a positive flow on either
(S,D), (S,C) or (A,G), it is immediate that bi(f̄ i, f j) = bj(f̄ i, f j) > bi(f) and
J i(f̄ i, f j) > J i(f).

Thus, if i wishes to refrain from increasing its cost, it will send all its flow
on (B,E) and its bottleneck will be at least T(B,E)(R2 ) = eR/2 − 1. It follows
that at (f̄ i, f j), there cannot exist an edge on which both i and j send a positive
amount of flow, otherwise i increases its cost. Thus, the bottleneck of j stays the
same. Hence,

J i(f̄ i, f j) = αbi(f̄ i, f j) − (1 − α)bj(f̄ i, f j) = αbi(f̄ i, f j) − (1 − α)bj(f)

≥ (2α − 1) · (eR/2 − 1) = J i(f),

which is a contradiction. Because the users i and j are symmetric, the above
analysis also holds for j. Therefore f is a Nash equilibrium. The bottleneck of
the system at f is equal to b(f) = eR/2 − 1.

On the other hand, at the system optimum, f∗, an amount of flow, R/4,
is sent through the following four paths: 1: {S,A,G, T}, 2: {S,B,E,H, T}, 3:
{S,C, F, I, T}, 4: {S,D, J, T}. The system bottleneck at f∗ is equal to b(f∗) =
eR/4 − 1. As a result, the Price of Anarchy in our example is lower bounded by

PoA =
eR/2 − 1
eR/4 − 1

≥ eR/2 − 1
eR/4

= eR/4 − 1
eR/4

≥ eR/4 − 1.

Since R can be any positive number, the PoA is unbounded. 	


4 Additive Routing Games

In this section we consider additive performance measures, such as delay, jitter
and packet loss. Similar to bottleneck routing games, we first need to prove the
existence of a Nash equilibrium. As mentioned in Sect. 3, due to the lack of quasi-
convexity we cannot rely on well-known existence proofs for convex-games, such
as the one given in [21]. We establish the existence of a Nash equilibrium by
constructing a feasible strategy profile for all users, such that no user wishes to
unilaterally deviate from its routing strategy. Moreover, we consider the specific
case where for all i ∈ N , αi = 1/2.2 In other words, each user views its own
performance and that of its rival, with equal importance. From (3), the cost of
user i turns into

J i(f) =
∑

l∈L

f i
l

ri
Tl(fl) − min

j �=i

{
∑

l∈L

f j
l

rj
Tl(fl)

}

. (13)

Note that we disregard αi ≡ α = 1/2 from our equilibrium analysis, since it
multiplies all users’ costs by the same constant. We now bring the following
definition from [27].
2 An existence and uniqueness proof for selfish users is given in [20].
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Definition 3. A profile, f , is a Wardrop equilibrium if for any two links l, n ∈ L
with fl > 0, Tl(fl) ≤ Tn(fn).

In any additive routing game, there exists a Wardrop equilibrium. Moreover, it is
unique with respect to the aggregated link flows fl, [13,27]. We focus on a specific
Wardrop equilibrium, which is also proportional in the sense of Definition 2.
Hence, it is also unique with respect to the individual user flows.

Theorem 3. Consider an additive routing game as described in Sect. 2, where
for all users i, αi = 1/2. There exists a Nash equilibrium. In particular, it is
equal to the proportional Wardrop equilibrium.

Proof. We consider the unique proportional Wardrop equilibrium, f , and prove
that no user wishes to unilaterally deviate from f . Assume by contradiction that
f is not a Nash equilibrium. Hence, there exists a user i and a routing strategy,
f̄ i �= f i such that J i(f̄ i, f−i) < J i(f). We split the set of links L, into three
subsets: L+ = {l ∈ L|f̄ i

l > f i
l }, L− = {l ∈ L|f̄ i

l < f i
l } and L0 = {l ∈ L|f̄ i

l = f i
l }.

Since f̄ i �= f i, it follows that L+ and L− are not empty. For any link l ∈ L+,
denote εl ≡ f̄ i

l − f i
l and for any link l ∈ L−, denote δl ≡ f i

l − f̄ i
l . Since ri is

constant, the differences in L+ and L− are equal and
∑

l∈L+ εl =
∑

l∈L− δl.
Because f is a proportional profile, it holds that for any two users i, k ∈ N

and for any link l ∈ L, f i
l /ri = fk

l /rk. Thus, for any link l ∈ L0 and any user
k ∈ N , [

f̄ i
l

ri
− fk

l

rk

]

=
[
f i
l

ri
− fk

l

rk

]

= 0. (14)

Equation (14) holds for any k ∈ N , hence also for i’s rival at (̄f i, f−i). Denote
i’s rival at (̄f i, f−i) as j. Combining (14) with (13), we get

J i(f̄ i, f−i) =
∑

l∈L+

[
f̄ i
l

ri
− f j

l

rj

]

Tl(f̄
i
l + f−i

l ) +
∑

l∈L−

[
f̄ i
l

ri
− f j

l

rj

]

Tl(f̄
i
l + f−i

l )

+
∑

l∈L0

[
f̄ i
l

ri
− f j

l

rj

]

Tl(f̄
i
l + f−i

l ) (15)

=
∑

l∈L+

[
f i
l + εl
ri

− f j
l

rj

]

Tl(fl + εl) +
∑

l∈L−

[
f i
l − δl
ri

− f j
l

rj

]

Tl(fl − δl)

=
∑

l∈L+

εl
ri

Tl(fl + εl) −
∑

l∈L−

δl
ri

Tl(fl − δl) >
∑

l∈L+

εl
ri

Tl(fl) −
∑

l∈L−

δl
ri

Tl(fl).

The last inequality follows from Assumption A2. Since f is a Wardrop equilib-
rium, we make two observations, namely
(1): ∀l ∈ L−, δl > 0, thus fl > 0. Therefore, from Definition 3, for any two links
l, n ∈ L−, Tl(fl) = Tn(fn).
(2): From Definition 3 it follows that for any link l ∈ L+ and any link n ∈ L−,
Tl(fl) ≥ Tn(fn).
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Consider a link e ∈ L−. Consequently, Eq. (15) turns into

J i(f̄ i, f−i) >
∑

l∈L+

εl
ri

Te(fe) −
∑

l∈L−

δl
ri

Te(fe) =
1
ri

Te(fe) ·
[

∑

l∈L+

εl −
∑

l∈L−
δl

]

= 0.

On the other hand, because f is proportional, it follows from (13) that

J i(f) =
∑

l∈L

f i
l

ri
Tl(fl) − min

k �=i
{
∑

l∈L

fk
l

rk
Tl(fl)} =

∑

l∈L

f i
l

ri
Tl(fl) −

∑

l∈L

f i
l

ri
Tl(fl) = 0.

Thus, J i(f̄ i, f−i) > J i(f), which is a contradiction. Hence, f is a Nash
equilibrium.

Now that we have proven the existence of a Nash equilibrium, we continue to
investigate its uniqueness. We focus on a special case in which the network has
two users, i.e., N = 2, and we denote these two users as i and j. It follows from
(13) that Jj(f) = −J i(f). In order to prove the Nash equilibrium’s uniqueness,
we use of the following lemma.

Lemma 2. Consider an additive routing game as described in Sect. 2, where
N = 2 and αi = αj = 1/2. At any Nash equilibrium f , J i(f) = Jj(f) = 0.

Proof. See [6]. 	

We are now ready to prove our theorem.

Theorem 4. For N = 2, the proportional Wardrop equilibrium is the unique
Nash equilibrium, i.e., the Nash equilibrium is unique in the users’ individual
flows.

Proof. See [6]. 	

An immediate consequence of Theorem 4 is that, the PoA of two-user systems is
bounded by well-known bounds on the Wardrop equilibrium, e.g., see [19,25].

Although Theorem4 holds for a network with two users, in the general case
of N -players, it does not hold. Indeed, in [6] we provide an example of a network
with N users and multiple Nash equilibria. Finally, in [6], we provide an example
of a network with users for which αi ∈ [0, 1], in which no Nash equilibrium exists
for either bottleneck routing games or additive routing games.

5 Conclusions

In this study we investigated routing games where the cost of each agent is
represented as a combination of its own performance and that of its rival. We
established the existence of Nash equilibria in games with bottleneck perfor-
mance measures and games with additive performance measures. For bottleneck
routing games and agents with αi ∈ [1/2, 1], namely, games where agents care
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more about their own performance than that of their rivals’, we established
that the Price of Stability is equal to 1, i.e., a system optimal Nash equilibrium
always exists. Moreover, we provide an example in which the Price of Anarchy is
unbounded. For additive routing games, we focused on the fundamental load bal-
ancing game of routing over parallel links and on agents with αi = 1/2, namely,
games where agents view their own performance and that of their rivals with
equal importance. We proved that the proportional Wardrop equilibrium (which
exists and is unique) is also a Nash equilibrium. Moreover, for a two-player sys-
tem, we established the uniqueness of the Nash equilibrium. In this case, the
PoA can be bounded by well-known bounds on the Wardrop equilibrium. We
also provided an example of the non-uniqueness of the Nash equilibrium for
a system with N -players, and an example of its non-existence for agents with
αi ∈ [0, 1]. In future research, it would be interesting to consider networks with
multiple sources and destination pairs. Lastly, establishing the existence of a
Nash equilibrium for additive games and agents with αi ∈ [1/2, 1], remains an
open problem.
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Abstract. We consider the problem of allocating indivisible goods using
the leading notion of fairness in economics: the competitive equilibrium
from equal incomes. Focusing on two major classes of valuations, namely
perfect substitutes and perfect complements, we establish the compu-
tational properties of algorithms operating in this framework. For the
class of valuations with perfect complements, our algorithm yields a sur-
prisingly succinct characterization of instances that admit a competitive
equilibrium from equal incomes.

1 Introduction

The systematic study of economic mechanisms began in the 19th century with
the pioneering work of Irving Fisher [4] and Léon Walras [15], who proposed the
Fisher market and the exchange economy as answers to the question: “How does
one allocate scarce resources among the participants of an economic system?”.
These models of a competitive economy are central in mathematical economics
and have been studied ever since in an extensive body of literature [11].

The high level scenario is that of several economic players arriving at the
market with an initial endowment of resources and a utility function for con-
suming goods. The problem is to compute prices and an allocation for which an
optimal exchange takes place: each player is maximally satisfied with the bundle
acquired, given the prices and his initial endowment. Such allocation and prices
form a market equilibrium and, remarkably, are guaranteed to exist under mild
assumptions when goods are divisible [1].

In real scenarios, however, goods often come in discrete quantities; for exam-
ple, clothes, furniture, houses, or cars may exist in multiple copies, but cannot be
infinitely divided. Scarce resources, such as antique items or art collection pieces
are even rarer – often unique (and thus indivisible). The problem of allocating
discrete or indivisible resources is much more challenging because the theoreti-
cal guarantees from the divisible case do not always carry over; however, it can
be tackled as well using market mechanisms [3,5,6,12]. In this paper, we are
concerned with the question of allocating indivisible resources using the leading
fairness concept from economics: the competitive equilibrium from equal incomes
(CEEI).
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The competitive equilibrium from equal incomes solution embodies the ideal
notion of fairness [8,9,12,14] and is a special case of the Fisher market model [13].
Informally, there are m goods to be allocated among n buyers, each of which
is endowed with one unit of an artificial currency that they can use to acquire
goods. The buyers declare their preferences over the goods, after which the equi-
librium prices and allocation are computed. When the goods are divisible, a
competitive equilibrium from equal incomes is guaranteed to exist for very gen-
eral conditions and each equilibrium allocation satisfies the desirable properties
of envy-freeness and efficiency.

In recent years, the competitive equilibrium from equal incomes has been
studied for the allocation of discrete and indivisible resources in a series of papers.
Bouveret and Lemâıtre [3] considered it for allocating indivisible goods, together
with notions of fairness such as proportionality, envy-freeness, and maximin fair-
ness. Budish [5] analyzed the allocation of multiple discrete goods for the course
assignment problem1 and designed an approximate variant of CEEI that is guar-
anteed to exist for any instance. In this variant, buyers have permissible bundles
of goods and the approximation notion requires randomization to perturb the
budgets of the buyers while relaxing the market clearing condition. In follow-up
work, Othman, Papadimitriou, and Rubinstein [12] analyzed the computational
complexity of this variant, showing that computing the approximate solution
proposed by Budish is PPAD-complete, and that it is NP-hard to distinguish
between an instance where an exact CEEI exists and the one in which there is
no approximate-CEEI tighter than guaranteed in Budish [5].

A key requirement in the variants of the CEEI solution concept is the envy-
freeness condition among all participants of the market. In this vein, Moulin [10]
analyzes a variant of CEEI where the buyers have intrinsic value for money
and goods are allocated to those with the highest valuations (i.e. higher than
the competitive price), while the unallocated buyers receive a fair compensation
instead. Moulin’s definition can be viewed as a special case of the Arrow-Debreu
market model and is suitable for markets with extremely uneven supply and
demand, such as assigning seats in overbooked planes.

In this paper, we study the competitive equilibrium from equal incomes for
two major classes of valuations, namely perfect substitutes and perfect com-
plements, following the definition of Bouveret and Lemâıtre [3] and the exact
notion in Budish [5]. Perfect substitutes represent goods that can replace each
other in consumption, such as Pepsi and Coca-Cola, and are modeled mathe-
matically through additive utilities. This is the setting examined by Bouveret
and Lemâıtre [3] as well. Perfect complements represent goods that have to be
consumed together, such as a left shoe and a right shoe, and are modeled math-
ematically through Leontief utilities. For indivisible goods, Leontief utilities are
in fact equivalent to the class of single-minded buyers, which have been studied
extensively in the context of auctions [11].

1 Given a set of students and courses to be offered at a university, how should the
courses be scheduled given that the students have preferences over their schedules
and the courses have capacity constraints on enrollment?
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We study the computation of competitive equilibria for indivisible goods and
establish polynomial time algorithms and hardness results (where applicable).
Our algorithm for Leontief utilities gives a very succinct characterization of
markets that admit a competitive equilibrium from equal incomes for indivisible
resources. The computational results of Othman, Papadimitriou, and Rubinstein
[12] are orthogonal to our setting since they refer to combinatorial valuations.
Also, since in our model, buyers have no value for money, the literature on
markets with quasi-linear utilities is not directly relevant.

2 Competitive Equilibrium from Equal Incomes

We begin by formally introducing the competitive equilibrium from equal
incomes; the model is equivalent to a Fisher market with identical budgets [11].
Formally, there is a set N = {1, . . . , n} of buyers and a set M = {1, . . . , m} of
goods which are brought by a seller. In general, the goods can be either infinitely
divisible or discrete and, without loss of generality, there is exactly one unit from
every good j ∈ M . Each buyer i is endowed with:

– A utility function ui : [0, 1]m → R≥0 for consuming the goods, which maps
each vector x = 〈x1, . . . , xm〉 of resources to a real value, where xj denotes
the amount received by buyer i from good j and ui(x) represents i’s utility
for bundle x.

– An initial budget Bi = 1, which can be viewed as (artificial) currency to
acquire goods, but has no intrinsic value to the buyer. However, the currency
does have intrinsic value to the seller.

Each buyer in the market wants to spend its entire budget to acquire a
bundle of items that maximizes its utility, while the seller aims to sell all the
goods (which it has no intrinsic value for) and extract the money from the buyers.

A market outcome is defined as a tuple (x,p), where p is a vector of prices
for the m items and x = 〈x1, . . . ,xn〉 is an allocation of the m items, where pj
denotes the price of item j, xi is the bundle received by buyer i, and xij is the
amount of item j received by i. A market outcome that maximizes the utility
of each buyer subject to its budget constraint and clears the market is called a
market equilibrium [11]. Formally, (x,p) is a market equilibrium if and only if:

– For each buyer i ∈ N , the bundle xi maximizes buyer i’s utility given the
prices p and budget Bi = 1.

– Each item j ∈ M is completely sold or has price zero: (
∑n

i=1 xij − 1) pj = 0.
– All the buyers exhaust their budgets; that is,

∑m
j=1 pj · xij = 1, for all i ∈ N .

Every competitive equilibrium from equal incomes (x,p) is envy-free; if buyer
i would strictly prefer another buyer j’s bundle xj , then i could simply purchase
xj instead of xi since they have the same buying power, which is in contradiction
with the equilibrium property.

A market with divisible goods is guaranteed to have a competitive equilibrium
under mild conditions [1]. Moreover, for the general class of Constant Elasticity
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of Substitution valuations, the equilibrium can be computed using a remarkable
convex program due to Eisenberg and Gale [7], as one of the few algorithmic
results in general equilibrium theory. The classes of valuations studied in this
paper – perfect complements and perfect substitutes – belong to the constant
elasticity of substitution family.

In the following sections we study these classes in detail in the context of
allocating indivisible resources.

3 Perfect Complements

Let M = (N,M,v) denote a market with perfect complements, represented
through Leontief utilities; recall N is the set of buyers, M the set of items, and
v a matrix of constants, such that vi,j is the value of buyer i for consuming one
unit of good j. The utility of buyer i for a bundle x = 〈x1, . . . , xm〉 ∈ [0, 1]m is:

ui(x) =
m

min
j=1

(
xj

vi,j

)

(1)

In our model the goods are indivisible, and so xi,j ∈ {0, 1}, for all i, j. By
examining Eq. 1, it can be observed that buyer i’s utility for a bundle depends
solely on whether the buyer gets all the items that it values positively (or not).
To capture this we define the notion of demand set.

Definition 1 (Demand Set). Given a CEEI market with indivisible goods
and Leontief utilities, let the demand set of buyer i be the set of items that i has
a strictly positive value for; that is, Di = {j ∈ M | vi,j > 0}.

Now we can introduce the precise utility equation for indivisible goods with
Leontief valuations.

Definition 2 (Leontief Utility for Indivisible Goods). Given a market
with Leontief utilities and indivisible goods, the utility of a buyer i for a bundle
x = 〈x1, . . . , xm〉 ∈ {0, 1}m is:

ui(x) =

{
minj∈Di

(
1

vi,j

)
, if Di ⊆ x,

0, otherwise

where Di represents buyer i’s demand set.

We illustrate this utility class with an example. Note that valuations can be
arbitrary (i.e. not necessarily normalized).

Example 1. Let M be a market with buyers N = {1, 2, 3}, items M = {1, 2, 3, 4},
and values: v1,1 = 1, v2,2 = 2, v2,4 = 3, v3,1 = 0.5, v3,2 = 2.5, v3,3 = 5, and
vi,j = 0, for all other i, j. Recall the demand set of each buyer consists of the
items it values strictly positively, and so: D1 = {1}, D2 = {2, 4}, D3 = {1, 2, 3}.
Then the utility of buyer 1 for a bundle S ⊆ M is: u1(S) = 0 if D1 �⊆ S,
and u1(S) = minj∈D1 {1/v1,j} = 1/v1,1 = 1 otherwise. Similarly, u2(S) = 0 if

D2 �⊆ M and u2(S) = min
{

1
v2,2

, 1
v2,4

}
= 1/3 otherwise.
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Next, we examine the computation of allocations that are fair according to
the CEEI solution concept. The main computational problems that we consider
are: Given a market, determine whether a competitive equilibrium exists and
compute it when possible. Depending on the scenario at hand, an allocation of
the resources to the buyers may have already been made (or the seller may have
already set prices for the items). The questions then are to determine whether an
equilibrium exists at those prices or allocations. Our algorithm for computing
a competitive equilibrium for Leontief utilities with indivisible goods yields a
characterization of when a market equilibrium is guaranteed to exist.

Theorem 1. Given a market M = (N,M,v) with Leontief utilities, indivisible
goods, and a tuple (x,p), where x is an allocation and p a price vector, it can
be decided in polynomial time if (x,p) is a market equilibrium for M.

Proof. It is sufficient to verify that these conditions hold: (i) Each buyer i
exhausts their budget:

∑
j∈xi

pj = 1; (ii) Each item is either allocated or has
a price of zero; (iii) No buyer i can afford a better bundle: if ui(x) = 0, then∑

j∈Di
pj > 1. All the conditions can be verified in O(mn).

Theorem 2. Given a market M = (N,M,v) with Leontief utilities, indivisi-
ble goods, and a price vector p, it is NP-complete to decide if there exists an
allocation x such that (x,p) is a market equilibrium for M.

The proof of Theorem2 uses the PARTITION problem and is included in
the full version of the paper, together with the other omitted proofs.

Theorem 3. Given a market M = (N,M,v) with Leontief utilities and an
allocation x, it can be decided in polynomial time if there exists price vector p
such that (x,p) is a market equilibrium for M.

Proof. This problem can be solved using linear programming (see Algorithm 1).
At a high level, one needs to check that the allocation x is feasible, that each
item is either sold or has a price of zero, and that (i) each buyer spends all their
money and (ii) whenever a buyer does not get their demand set, the bundle is
too expensive. Since the number of constraints is polynomial in the number of
buyers and items, the algorithm runs in polynomial time.

Finally, we investigate the problem of computing both market equilibrium
allocation and prices, which yields the following characterization.

Theorem 4. Given a market M = (N,M,v) with Leontief utilities and indi-
visible items, a competitive equilibrium from equal incomes exists if and only if
the following hold:

– There are at least as many items as buyers (m ≥ n)
– No two buyers have identical demand sets of size one.

Moreover, an equilibrium can be computed in polynomial time if it exists.
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Proof. Clearly the two conditions are necessary; if there are fewer items than
buyers, then the budgets can never be exhausted, while if there exist two buyers
whose demand sets are identical and consist of exactly the same item, at least
one of them will be envious under any pair of feasible allocation and prices.

To see that the conditions are also sufficient, consider the allocation produced
by Algorithm 2. At a high level, the algorithm first sorts the buyers in increasing
order by the sizes of their demand sets, breaking ties lexicographically. Then
each buyer i in this order is given one item, j, selected from the unallocated
items in the buyer’s demand set (if possible), and an arbitrary un-allocated item
otherwise. Finally, the last buyer (i.e. with the largest demand set) additionally
gets all the items that remained unallocated at the end of this iteration (if any).

The prices are set as follows. For each buyer i among the first n−1 allocated,
the items in its bundle, xi, are priced equally, at 1/|xi|. For the last allocated
buyer, L, the items in xL ∩ DL are priced high (at (1 − ε)/|xL ∩ DL|), while the
unwanted items, in xL \ DL, are priced low (at ε/|xL \ DL|).

Now we verify that the allocation and prices (x,p) computed by Algorithm 2
represent indeed a market equilibrium for M (if one exists):

• Budgets exhausted: Each buyer gets a non-empty bundle priced at 1.
• Items sold: Each item is allocated by the algorithm.
• Optimality for each buyer: We show that each buyer i either gets its

demand set or cannot afford it using a few cases:
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◦ Case 1 : (|Di| = 1). Since there are no two identical demand sets with the size
of one, buyer i gets the unique item in its demand set, and this allocation
maximizes i’s utility.

◦ Case 2 : (|Di| ≥ 2) and i is not the last buyer. Then if i gets an item
from its demand set, since |Di| ≥ 2 and all items are positively priced, the
bundle Di is too expensive: p(Di) > 1. Otherwise, i gets an item outside
of its demand set. Then all the items in Di were allocated to the previous
buyers. Since |Di| ≥ 2 and each previously allocated item has price 1, Di

is too expensive: p(Di) > 1.
◦ Case 3 : (|Di| ≥ 2) and i is the last buyer. If i does not get all its demand,

then some item in Di was given to an earlier buyer at price 1. From |Di| ≥
2, there is at least one other desired item in Di positively priced, thus
p(Di) > 1. Thus, Algorithm 2 computes an equilibrium, which completes
the proof.

To gain more intuition, we illustrate Algorithm 2 on an example.
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Example 2. Consider a market with buyers N = {1, . . . , 6}, items M = {1, . . . , 8},
and demands: D1 = {1}, D2 = {2}, D3 = {2, 3}, D4 = {2, 3}, D5 = {4, 5, 6},
D6 = {6, 7, 8}. Algorithm 2 sorts the buyers in increasing order of the sizes of their
demand sets, breaking ties lexicographically. The order is: (1, 2, 3, 4, 5, 6).

– Step 1 : Buyer 1 gets item 1 at price 1: x1 = {1}, p1 = 1.
– Step 2 : Buyer 2 gets item 2 at price 1 : x2 = {2}, p2 = 1.
– Step 3 : There is one unallocated item left from buyer 3’s demand set, and so

3 gets it: x3 = {3} and p3 = 1.
– Step 4 : Buyer 4’s demand set has been completely allocated, thus 4 gets the

free item (outside of its demand) with smallest index: x4 = {4} and p4 = 1.
– Step 5 : There are two items (5 and 6) left unallocated in buyer 5’s demand

set. Thus : x5 = {5} and p5 = 1.
– Step 6 : Buyer 6 gets the leftover: x6 = {6, 7, 8} at p6 = p7 = p8 = 1/3.

The characterization obtained through Algorithm 2 raises several important
questions. For example, not only do fair division procedures typically guarantee
fairness (according to a given solution concept), but also they improve some
measure of efficiency when possible.

The utilitarian social welfare of an allocation x is defined as the sum of the
buyers’ utilities: SW(x) =

∑n
i=1 ui(xi). Note that social welfare normalization

is not required for any of our next results.
As the following example illustrates, the allocation computed by Algorithm 2

can be the worst possible among all the market equilibria.

Example 3. Given n ∈ N, let N = {1, . . . , n} be the set of buyers, M =
{1, . . . , 2n} the set of items, and the demand sets given by: Di = {2i − 1, 2i},
for each i ∈ N . Algorithm 2 computes the allocation: x1 = {1}, x2 = {3}, . . . ,
xn−1 = {2n − 3}, xn = {2, 4, . . . , 2n − 2, 2n − 1, 2n}, with a social welfare of
SW(x) = 1. The optimal allocation supported in a competitive equilibrium is:
x∗
i = {2i − 1, 2i}, for each i ∈ N , with a social welfare of SW(x∗) = n.

These observations give rise to the question: Is there an efficient algorithm
for computing a competitive equilibrium from equal incomes with optimal social
welfare (among all equilibria) for perfect complements with indivisible goods?

It is important to note that the allocation that maximizes social welfare
among all possible allocations cannot always be supported in a competitive equi-
librium. We illustrate this phenomenon in Example 4.

Example 4. Consider a market with buyers: N = {1, 2} and items: M = {1, 2, 3},
where the demand sets are: D1 = D2 = {1, 2}. Concretely, let these demands be
induced by the valuations: v1,1 = v1,2 = 1, v1,3 = 0 and v2,1 = v2,2 = 1, v2,3 = 0.
The optimal social welfare is 1 and can be achieved by giving one of the buyers
its entire demand set and the other buyer the remaining item; for example, let
x∗
1 = {1, 2} and x∗

2 = {3}, with p1 = p2 = 1/2 and p3 = 1. Clearly no such
allocation can be supported in an equilibrium, because whenever a buyer gets
their full demand, the other buyer does not get its own demand but can afford it
(their initial budgets are equal). Thus every competitive equilibrium has a social
welfare of zero, such as x1 = {1}, x2 = {2, 3}, with p1 = 1, p2 = 1, p3 = 0.
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The next result implies that equilibria with optimal social welfare cannot be
computed efficiently in the worst case.

Theorem 5. Given a market M = (N,M,v) with Leontief valuations, indi-
visible goods, and an integer K ∈ N, it is NP-complete to decide if M has a
competitive equilibrium from equal incomes with social welfare at least K.

We obtain a 1/n-approximation of the optimal welfare in polynomial time
(Algorithm 3) and leave open the question of determining the tight bound.

Theorem 6. There is a polynomial-time algorithm that computes a competi-
tive equilibrium from equal incomes with a social welfare of at least 1/n of the
optimum welfare attainable in any equilibrium.

Proof. We claim that Algorithm 3 computes an equilibrium with social welfare
at least 1/n of the optimal; note that this holds for weighted valuations (i.e. not
necessarily normalized). Given a market M, Algorithm 3 computes a set P of
eligible buyers, i.e. buyers k for which the following conditions hold:

(1) No buyer i’s demand is completely contained in the demand of buyer k.
(2) m − |Dk| ≥ n − 1
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Both conditions are necessary in any equilibrium that gives buyer k its
demand set. If Condition 1 is violated, there exists buyer i �= k with Di ⊆ Dk;
i can afford its demand but does not get it, which cannot happen in an equi-
librium. If Condition 2 is violated, by allocating k all of its demand, too many
items are used up and it’s no longer possible to extract all the money.

Algorithm 3 gives the eligible buyer k ∈ P with a maximal valuation for its
demand all the required items. The remaining buyers and items are allocated
using Algorithm 2. We claim that the tuple (x,p) computed is an equilibrium:

(a) Budgets exhausted: By combining: (i) xk �= ∅, (ii) m−|Dk| ≥ n−1, and
(iii) the fact that Compute-Equilibrium finds an equilibrium in the reduced
market, all buyers get a non-empty bundle at a price of 1.

(b) Items sold: Clearly all the items are allocated.
(c) Optimality for each buyer: If the algorithm exits before the set P is

constructed, then no equilibrium exists. Otherwise, buyer k gets its demand.

Let i �= k be a buyer that does not get its demand; then |Di| ≥ 2. If i is not
the last buyer allocated, then |xi| = 1 and there are two subcases:

– xi ⊂ Di: By construction, p(xi) = 1, so p(Di) = p(xi) +p(Di \ xi) > 1 since
all the items are priced strictly positively.

– xi ∩ Di = ∅: Then by the time buyer i was allocated, the items in Di have
been exhausted. Since buyer k gets its full demand before everyone else, it
cannot be that Di ⊆ Dk (this holds by choice of the set P, of eligible buyers).
Thus there is at least one item from Di given to a buyer other than k at a
price of 1, which combined with: |Di| ≥ 2 gives: p(Di) > 1.

Otherwise, i is the last buyer allocated; note that xi is always computed in the
procedure Compute-Equilibrium. Again there are two cases:

– xi ∩ Di = ∅: Then Di was exhausted before computing xi. Since it cannot be
that Di ⊆ Dk, there exists item j ∈ Di \Dk given to another buyer at a price
of 1. Using again the fact that |Di| ≥ 2 and that all prices are positive, we
get: p(Di) > 1, thus i cannot afford its demand.

– xi ∩Di �= ∅: Let � = |xi ∩Di|. Then i pays 1− ε for � items from Di, and ε for
some other items in xi \ Di. We show that i cannot use ε money to purchase
the items missing from its allocation. Let j ∈ Di \ xi be such an item and
S′ = (xi ∩ Di) ∪ {j}. Then item j was allocated to a previous buyer, priced
at least 1/|Dk|. Since ε < 1/|Dk|, i would have to pay at least 1− ε+ 1

|Dk| > 1
for S′. From S′ ⊆ Di, we get: p(Di) ≥ p(S′) > 1, and so i cannot afford Di.

Thus the market equilibrium conditions are met. Clearly the best equilibrium
cannot have a social welfare higher than n ·vk, which gives a 1/n-approximation.

4 Perfect Substitutes

We begin by introducing the utility function in a market with perfect substitutes,
represented through additive valuations.
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Definition 3 (Additive Utility for Indivisible Goods). Given a market
M = (N,M,v) with additive utilities and indivisible goods, the utility of a buyer
i for a bundle x = 〈x1, . . . , xm〉 ∈ {0, 1}m is:

ui(x) =
m∑

j=1

vi,j · xi,j (2)

where vi,j are constants and represent the value of buyer i for consuming one
unit of good j, while xi,j = 1 if buyer i gets good j, and xi,j = 0, otherwise.

Next we investigate the computation of competitive equilibria from equal
incomes with indivisible goods and additive utilities. Note that if a market M
has a competitive equilibrium at some allocation and prices (x,p), then M is
guaranteed to have an equilibrium at the same allocation x where all the prices
are rational numbers, (x,p∗); this aspect appears implicitly in some of the proofs.

Theorem 7. Given a market M = (N,M,v) with additive valuations, indivis-
ible goods, and tuple (x,p), where x is an allocation and p is a price vector, it is
coNP-complete to determine whether (x,p) is a competitive equilibrium for M.

Theorem 8. Given a market with indivisible goods and additive valuations,
M = (N,M,v), it is NP-hard to decide if M has a competitive equilibrium.

The next question, of computing an equilibrium allocation given a market
M and a price vector p was raised by Bouveret and Lemâıtre [3] and studied as
well by Aziz in a recent note [2].

Theorem 9. Given a market M = (N,M,v) with indivisible goods, additive
valuations, and price vector p, it is coNP-hard to decide if there is an allocation
x such that (x,p) is a market equilibrium.

Theorem 10. Given a market M = (N,M,v) with indivisible goods, additive
valuations, and allocation x, it is coNP-hard to decide if there is a price vector
p such that (x,p) is a market equilibrium.

Table 1. Summary of the computational results. The market instance is denoted by
M = 〈N,M,v〉, where N is a set of buyers, M a set of indivisible items, and v the
values of the buyers for items; x is an allocation of items to buyers and p a price vector.

Input \ Valuations Perfect Complements Perfect Substitutes

Market M P NP-hard

Market M, allocation x P co-NP-hard

Market M, prices p NP-complete co-NP-hard

Market M, allocation x, prices p P co-NP-complete
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Our findings on the complexity of computing a competitive equilibrium from
equal incomes for indivisible goods are summarized in Table 1.
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Abstract. The central result of classical game theory states that every
finite normal form game has a Nash equilibrium, provided that players
are allowed to use randomized (mixed) strategies. However, in practice,
humans are known to be bad at generating random-like sequences, and
true random bits may be unavailable. Even if the players have access to
enough random bits for a single instance of the game their randomness
might be insufficient if the game is played many times.

In this work, we ask whether randomness is necessary for equilibria to
exist in finitely repeated games. We show that for a large class of games
containing arbitrary two-player zero-sum games, approximate Nash equi-
libria of the n-stage repeated version of the game exist if and only if both
players have Ω(n) random bits. In contrast, we show that there exists a
class of games for which no equilibrium exists in pure strategies, yet the
n-stage repeated version of the game has an exact Nash equilibrium in
which each player uses only a constant number of random bits.

When the players are assumed to be computationally bounded, if
cryptographic pseudorandom generators (or, equivalently, one-way func-
tions) exist, then the players can base their strategies on “random-like”
sequences derived from only a small number of truly random bits. We
show that, in contrast, in repeated two-player zero-sum games, if pseudo-
random generators do not exist, then Ω(n) random bits remain necessary
for equilibria to exist.
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1 Introduction

The signature result of classical game theory states that a Nash equilibrium
exists in every finite normal form game, provided that players are allowed to play
randomized (mixed) strategies. It is easy to see that, in some games (e.g. Rock-
Paper-Scissors), randomization is necessary for equilibrium to exist. However, the
assumption that players are able to randomize their strategies in an arbitrary
manner is quite strong, as sources of true randomness may be unavailable and
humans are known to be bad at generating random-like sequences.

Motivated by these considerations, Budinich and Fortnow [3] investigated
the question of whether Nash equilibria exist when players only have access to
limited randomness. Specifically, they looked at the “repeated matching pen-
nies game.” Matching pennies is a very simple, two-player, two-action, zero-sum
game in which the unique equilibrium is for each player to flip a fair coin and
play an action uniformly at random. If the game is repeated for n stages, then
the unique Nash equilibrium is for each player to play an independent, uniformly
random action in each of the n stages. Budinich and Fortnow considered the case
where the players only have access to � n bits of randomness, which are insuf-
ficient to play the unique equilibrium of the game, and showed that there does
not even exist an approximate equilibrium (where the approximation depends
on the deficiency in randomness). That is, if the players cannot choose indepen-
dent, uniformly random actions in each of the n stages, then no approximate
equilibrium exists.

In this work, we further investigate the need for randomness in repeated
games by asking whether the same results hold for arbitrary games. That is, we
start with an arbitrary multi-player game such that Nash equilibria exist only if
players can use β bits of randomness. Then we consider the n-stage repetition of
that game. Do equilibria exist in the n-stage game if players only have access to
� βn bits of randomness? First, we show that the answer is essentially no for
arbitrary zero-sum games, significantly generalizing the results of Budinich and
Fortnow. On the other hand, we show that the answer is yes for a large class of
general games.

These results hold when both players are assumed to be computationally
unbounded. As noted by Budinich and Fortnow, if we assume that the play-
ers are required to run in polynomial time, and cryptographic pseudorandom
generators (or, equivalently, one-way functions) exist, then a player equipped
with only � n truly random bits can generate n pseudorandom bits that appear
truly random to a polynomial time adversary. Thus, in the computationally
bounded regime, if pseudorandom generators exist, then linear randomness is
not necessary. We show that, in contrast, in arbitrary repeated two-player zero-
sum games, if pseudorandom generators do not exist, then linear randomness
remains necessary even when the players are polynomial time.

Our Results. Suppose we have an arbitrary finite strategic game among k
players. We consider the n-stage repetition of this game in which in each of
the n consecutive stages, each of the k players simultaneously chooses an action
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(which may depend on the history of the previous stages). We assume that in the
stage game, β > 0 bits of randomness for each player are necessary and sufficient
for an equilibrium to exist. We ask whether or not the existence of approximate
equilibria in the n-stage game requires Ω(n) bits of randomness per player.

The Case of Computationally Unbounded Players. Our first set of results con-
cerns computationally unbounded players, which is the standard model in clas-
sical game theory. In this setting, our first result shows that linear randomness
is necessary for a large class of games including every two-player zero-sum game.

Theorem 1 (informal). For any k-player strategic game in which every Nash
equilibrium achieves the minmax payoff profile, in any Nash equilibrium of its
repeated version the players’ strategies use randomness at least linear in the
number of stages.

An important subset of strategic games where any Nash equilibrium achieves
the minmax payoff profile is the class of two-player zero-sum games where von
Neumann’s minmax theorem implies that the only equilibria are minimax solu-
tions of the game. Hence, in any finitely repeated two-player zero-sum game the
players must use randomness at least linear in the number of stages.

Second, we show that the above results cannot be extended to arbitrary
games. That is, there exists a class of strategic games that, in their repeated
version, admit “randomness efficient” Nash equilibria.

Theorem 2 (informal). For any k-player strategic game in which for every
player there exists a Nash equilibrium that achieves strictly higher expectation
than the minmax strategy, there exists a Nash equilibrium of its repeated version
where the players use total randomness independent of the number of stages.

As we shall see, this result is related to the “finite horizon Nash folk theorem,”
which roughly states that in finitely repeated games every payoff profile in the
stage game that dominates the minimax payoff profile can be achieved as a payoff
profile of some Nash equilibrium of the repeated game.

The Case of Computationally Efficient Players. For repeated two-player zero-
sum games we study the existence of Nash equilibria with limited randomness
when the players are computationally bounded. Under the assumption that one-
way functions do not exist (see the above discussion), we show that it is possible
to efficiently exploit any opponent (i.e., gain a non-negligible advantage over
the value of the stage game) that uses low randomness in every repeated two-
player zero-sum game. Hence, in repeated two-player zero-sum games there are
no computational Nash equilibria in which one of the players uses randomness
sub-linear in the number of the stages.

Theorem 4 (informal). In any repeated two-player zero-sum game, if one-way
functions do not exist, then for any strategy of the column player using sub-linear
randomness, there is a computationally efficient strategy for the row player that
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achieves an average payoff non-negligibly higher than his minimax payoff in the
stage game.

The proof of this result employs the algorithm of Naor and Rothblum [13] for
learning adaptively changing distributions. The main idea is to adaptively recon-
struct the small randomness used by the opponent in order to render his strategy
effectively deterministic and then improve the expectation by playing the best
response.

Strong Exploitation of Low-Randomness Players. In the classical setting,
i.e., without restrictions on the computational power of the players, it was shown
by Neyman and Okada [14] that in every repeated two-player zero-sum game it
is possible to extract utility proportional to the randomness deficiency of the
opponent. On the other hand, our result in the setting with computationally
efficient players guarantees only a non-negligible advantage in the presence of a
low-randomness opponent. This leaves open an intriguing question of how much
utility can one efficiently extract from a low-randomness opponent in a repeated
two-player zero-sum game (see the full version [9] for additional discussion).

Other Related Work. In one of the first works to consider the relation between
the randomness available to players and the existence of equilibria Halpern and
Pass [6] introduced a computational framework of machine games that explicitly
incorporates the cost of computation into the utility functions of the players and
specifically the possibility of randomness being expensive. They demonstrated
this approach on the game of Rock-Paper-Scissors, and showed that in machine
games where randomization is costly then Nash equilibria do not necessarily
exist. However, in machine games where randomization is free then Nash equi-
libria always exist.

Based on derandomization techniques, Kalyanaraman and Umans [12] pro-
posed randomness efficient algorithms both for finding equilibria and for playing
strategic games. In the context of finitely repeated two-player zero-sum games
where one of the players (referred to as the learner) is uninformed of the payoff
matrix, they gave an adaptive on-line algorithm for the learner that can reuse
randomness over the stages of the repeated game.

Halprin and Naor [7] suggested the possibility of using randomness generated
by human players in repeated games for generation of pseudorandom sequences.

2 Notation and Background

Standard Game Theoretic Notation. Formal definitions of main concepts
from game theory that we use in this work are provided in the full version [9].

A strategic game G = 〈N, (Ai), (ui)〉 consists of (i) a finite set of players N ,
(ii) for each player i ∈ N a set of actions Ai, and (iii) for each player i ∈ N
a utility function ui : A → R assigning each action profile a ∈ A = ×j∈NAj

a real-valued payoff ui(a). In the special case when G is a two-player zero-sum
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game, i.e., when N = {1, 2} and u1(a) = −u2(a) for all a ∈ A1 × A2, we use
the notation 〈(A1, A2), u〉. We refer to player 1 as the row player (also known as
Rowena) and to player 2 as the column player (also known as Colin).1

We denote by Si the set of mixed strategies of player i, i.e., the set Δ(Ai) of
all probability distributions on the action space of player i. For a strategy profile
σ ∈ S = ×j∈NSj we denote by σ−i the profile of strategies of all the players
in N \ {i}. A Nash equilibrium of a strategic game 〈N, (Ai), (ui)〉 is a strategy
profile σ such that for every player i ∈ N we have E[u(σi, σ−i)] ≥ E[(σ′

i, σ−i)]
for all σ′

i ∈ Si.
The minmax payoff of player i, denoted vi, is the lowest payoff that the other

players can force upon player i, i.e., vi = minσ−i∈S−i
maxσi∈Si E[ui(σi, σ−i)]. A

minmax strategy of player i in G is a strategy σ̂i ∈ Si such that E[ui(σ̂i, σ−i)] ≥
vi for all σ−i ∈ S−i. An individually rational payoff profile of G is a vector
p ∈ R

|N | for which pi ≥ vi for all i ∈ N . A vector p ∈ R
|N | is a feasible payoff

profile of G if there exists a collection {αa}a∈A of nonnegative rational numbers
such that

∑
a∈A αa = 1 and pi =

∑
a∈A αaui(a) for all i ∈ N .

The n-stage repeated game of G is an extensive form game with perfect
information and simultaneous moves Gn = 〈N,H,P, (u∗

i )〉 in which: (i) H =
{∅} ∪ {⋃n

t=1 At}, where ∅ is the initial history and At is the set of sequences
of action profiles in G of length t, (ii) P (h) = N for each non-terminal his-
tory h ∈ H, and (iii) u∗

i (a
1, . . . , an) = 1

n

∑n
t=1 ui(at) for every terminal history

(a1, . . . , an) ∈ An.
A behavioral strategy of player i is a collection (σi(h))h∈H\An of independent

probability measures (one for each non-terminal history), where each σi(h) is a
probability measure over Ai. A Nash equilibrium of Gn is a profile σ of behavioral
strategies with the property that for every player i ∈ N and every behavioral
strategy σ′

i, we have E[u∗(σi, σ−i)] ≥ E[u∗(σ′
i, σ−i)].

Pseudorandom Generators and One-Way Functions. The notion of cryp-
tographic pseudorandom generators was introduced by Blum and Micali [2], who
defined them as algorithms that produce sequences of bits unpredictable in poly-
nomial time, i.e., no efficient next-bit-test is able to predict the next output of
the pseudorandom generator given the sequence of bits generated so far. As
Yao [15] showed, this is equivalent to a generator whose output is indistinguish-
able from a truly random string to any polynomial time observer. One of the
central questions in cryptography is to understand the assumptions that are suf-
ficient and necessary for implementing a particular cryptographic task. Impagli-
azzo and Luby [11] (see also Impagliazzo [10]) showed that one-way functions
are essential for many cryptographic primitives (e.g., private-key encryption,
secure authentication, coin-flipping over telephone). H̊astad, Impagliazzo, Levin
and Luby [8] showed that pseudorandom generators exist if and only if one-way
functions exist. Therefore the existence of one-way functions is the major open
problem of cryptography. For an in depth discussion see Goldreich [5].

1 We have adopted Colin and Rowena from Aumann and Hart [1].
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Standard Cryptographic Notation. A function μ : N → R
+ is negligible if

for all c ∈ N there exists nc ∈ N such that for all n ≥ nc, μ(n) ≤ n−c. A function
μ : N → R

+ is noticeable if there exists c ∈ N and nc ∈ N such that for all
n ≥ nc, μ(n) ≥ n−c.

The statistical distance between two distributions X and Y over {0, 1}�,
denoted SD(X,Y ), is defined as: SD(X,Y ) = 1

2

∑
α∈{0,1}� |Pr[X = α]−

Pr[Y = α]| . Given a probability distribution ρ ∈ Δ(A), the Shannon entropy
of ρ is defined as H(ρ) := Ea←ρ

(
log2

(
1

Pr(ρ=a)

))
.

Definition 1 (almost one-way function). A function f is an almost one-
way function if it is computable in polynomial time, and for infinitely many
input lengths, for any PPTM M, the probability that M inverts f on a random
input is negligible. Namely, for any polynomial p, there exist infinitely many
choices of n ∈ N such that Prx∼Uk(n), M[M(f(x)) ∈ f−1(x)] < 1

p(n) .

3 Low-Entropy Nash Equilibria of Repeated Games

In this section we show that, in the setting with players that have unbounded
computational power, there are two classes of k-player strategic games at the
opposite sides of the spectrum with respect to the amount of randomness nec-
essary for equilibria of their repeated versions. To measure the randomness of a
player’s strategy we consider the maximal total Shannon entropy of his strategies
used along any terminal history.

Definition 2 (Shannon entropy of a strategy in repeated game). Let
G = 〈N, (Ai), (ui)〉 be a finite strategic game and let σi be a strategy of player i
in Gn. For any terminal history a = (a1, . . . , an) ∈ An, let (σi(∅), σi(a1), σi(a1,
a2), . . . , σi(a1, . . . , an−1)) be the n-tuple of strategies of player i in σi at all the
non-terminal subhistories of a. We define the Shannon entropy of σi, denoted
as H(σi), as H(σi) := maxa∈An

{
H(σi(∅)) +

∑n−1
j=1 H(σi(a1, . . . , aj))

}
.

This is a worst case notion, in that it measures the entropy of the strategy of
player i irrespective of the strategies of the other players. For some of our results
we consider its alternative variant of effective Shannon entropy of a strategy σi in
a strategy profile σ, i.e., the maximal total entropy of σi along terminal histories
that are sampled in σ with non-zero probability.

For the restricted class of games in which any Nash equilibrium payoff profile
is exactly the minmax payoff profile (e.g. any two-player zero-sum game), we
relate Nash equilibria of the strategic game to the structure of Nash equilibria
in its repeated version (the proof is provided in the full version [9]).

Proposition 1. Let G = 〈N, (Ai), (ui)〉 be a strategic game such that any Nash
equilibrium payoff profile is equal to the minmax payoff profile. For all n ∈ N,
if σ is a Nash equilibrium of Gn = 〈N,H,P, (u∗

i )〉, the n-stage repeated game of
G, then for every non-terminal history h ∈ H sampled with non-zero probability
by σ the strategy profile σ(h) is a Nash equilibrium of G.
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For strategic games from this class, Proposition 1 immediately gives a linear
lower bound on entropy needed to play Nash equilibria in their repeated games.

Theorem 1. Let G be a strategic game such that any Nash equilibrium payoff
profile is equal to the minmax payoff profile. For all n ∈ N and every player
i ∈ N , if in any Nash equilibrium of G the strategy of player i is of entropy
at least βi then in any Nash equilibrium of the n-stage repeated game of G the
strategy of player i is of entropy at least nβi.

Proof. Assume to the contrary that there exists a Nash equilibrium σ of the n-
stage repeated game of G with strategy of entropy strictly smaller than nβi for
player i. By Proposition 1, σ(h) is a Nash equilibrium of G for all h sampled by
σ with non-zero probability. Hence, there must exist a history h∗ ∈ H sampled
with non-zero probability in σ such that σ(h∗) is a Nash equilibrium of G and
the entropy H(σi(h∗)) of σi(h∗) is strictly smaller than βi, a contradiction. ��

Repeated Non-Zero-Sum Game Requiring a Lot of Randomness.
Theorem 1 applies not only to two-player zero-sum games but also to some non-
zero-sum games. Consider the strategic game G given by the following payoff
matrix:

Left (L) Heads (H) Tails (T ) Right (R)

Up (U) 0,−1 0,−1 0,−1 0, 0

Heads (H) 0,−1 1,−1 −1, 1 −1, 0

Tails (T ) 0,−1 −1, 1 1,−1 −1, 0

Down (D) 0, 0 −1, 1 −1, 1 1, 0

There are three mixed Nash equilibria in G: (12H+ 1
2T, 1

2H+ 1
2T ), (12U+ 1

2D, 1
2H+

1
2R), and (12U + 1

2D, 1
2T + 1

2R); all the three Nash equilibria achieve the same
payoff profile (0, 0) and require each player to use one random bit. Notice that
the row player can get utility 0 irrespective of the strategy of the column player
by selecting his action “Up”, and similarly the column player can ensure utility
0 by playing “Right”. Hence, the minmax payoff profile is (0, 0). Since none of
the three Nash equilibria of G improves over the minmax payoff profile, we get
by Theorem 1 that each player must use strategy of entropy at least n in any
Nash equilibrium of the n-stage repeated game of G.

Repeated Non-Zero-Sum Game Where Low Randomness Suffices. On
the other hand, there are strategic games for which Theorem 1 does not apply,
and the players may use in the n-stage repeated game equilibrium strategies
of entropy proportional only to the entropy needed in the single-shot game.
Consider the strategic game G given by the following payoff matrix:



266 P. Hubáček et al.

Cooperate (C) Heads (H) Tails (T ) Punish (P )

Cooperate (C) 3, 3 −3, 6 −3, 6 −3,−3

Heads (H) 6,−3 1,−1 −1, 1 −3,−3

Tails (T ) 6,−3 −1, 1 1,−1 −3,−3

Punish (P ) −3,−3 −3,−3 −3,−3 −4,−4

The strategy profile σ = (12H + 1
2T, 1

2H + 1
2T ) is the unique Nash equilibrium

of G that achieves payoff profile (0, 0). The minmax payoff profile is (−3,−3),
since any player can get utility at least −3 by playing C. We show that the n-
stage repeated game of G admits a Nash equilibrium that requires only a single
random coin, i.e., the same amount of randomness as the Nash equilibrium σ of
the stage game G. Consider the strategy profile in which both players play C
in the first n − 1 rounds and in the last round each player plays H and T with
equal probability, and if any player deviates from playing C in one of the first
n − 1 rounds then the opponent plays P throughout all the remaining stages.
To see that this strategy profile is a Nash equilibrium of the n-stage repeated
game of G note that any deviation from playing C in the first n − 1 rounds can
increase the utility of any player by at most 3 (by playing either H or T instead
of C), however the subsequent punishment induces a loss of at least −3 which
renders any deviation unprofitable.

The randomness efficient Nash equilibrium from the above example resembles
the structure of Nash equilibria constructed in the proof of the finite horizon
Nash folk theorem. This theorem characterizes the payoff profiles achievable by
Nash equilibria of the repeated game. In particular, it shows that in strategic
games G such that for very player i there exists a Nash equilibrium σi strictly
improving over his minmax payoff any feasible and individually rational payoff
profile can be approximated by a Nash equilibrium of sufficiently long Gn.

The main idea behind the proof of the folk theorem is that for every player
i the gap between the payoff in the Nash equilibrium σi and the minmax payoff
vi can be used to punish the player in case he deviates from the strategy that
approximates any feasible and individually rational payoff profile. In particular,
in any such Nash equilibrium the players use a fixed number of rounds (inde-
pendent of the number of stages n) before the last round in which they play
according to some (possibly mixed) Nash equilibria of the stage game and in the
preceding rounds they play pure strategies so that the overall payoff approxi-
mates the feasible payoff profile. Hence, the amount of randomness on all the
equilibrium paths is independent of the number of stages in any such Nash equi-
librium of the repeated game.

Theorem 2. Let G be a strategic game such that for every player i there exists
a Nash equilibrium σi of G in which the payoff of player i exceeds his minmax
payoff vi and there exists a feasible and individually rational payoff profile in
G. Let βi be such that in any Nash equilibrium of G the strategy of player i
is of entropy at most βi. There exists c ∈ N such that for all sufficiently large
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n ∈ N and every player i ∈ N there exists a Nash equilibrium of Gn, the n-stage
repeated game of G, in which the strategy of player i is of effective entropy at
most cβi.

Proof. Let p ∈ R
|N | be the feasible and individually rational payoff profile of

G. There exist coefficients {αa}a∈A ⊂ Q such that
∑

a∈A αa = 1 and for all
i ∈ N , pi =

∑
a∈A αaui(a). Let K be the smallest integer such that each αa

can be written as α′
a/K for α′

a ∈ N. For some � ∈ N, we divide the stages in
Gn into two parts of length �K and m = n − �K. Let s be a strategy profile
in Gn that schedules the first �K stages such that each action profile a for
which αa �= 0 is played by the players in exactly �α′

a number of stages. In the
remaining m stages the players cycle between the Nash equilibria {σi}i∈N , i.e.,
for all j ∈ {0, . . . , m − 1} at the stage n − m + 1 + j the players play the Nash
equilibrium σj′ , where j′ = 1 + (j mod |N |). In case any player i deviates from
s in one of the first �K rounds, the remaining players play the strategy that
forces the minmax level vi on player i.

Note that if the number m of the last stages is such that for all action profiles
a ∈ A with αa �= 0 and for every player i: m

|N |
(∑

j∈N E[ui(σj)] − |N |vi

)
≥

maxa′
i∈Ai

ui(a′
i, a−i)−ui(a), then no player has a profitable deviation and σ is a

Nash equilibrium of Gn. The number m of last stages can be bounded by some
constant c selected independently of n. Since the number of stages in which the
players play according to some Nash equilibrium of G is at most c (the players
take pure actions in all the first n−c stages), for any player i the effective entropy
of si in s is at most cβi. ��

4 Low-Entropy Computational Nash Equilibria
of Repeated Two-Player Zero-Sum Games

In this section we study randomness in equilibria of repeated two-player zero-sum
games with computationally efficient players. The solution concept we consider
in this setting is computational Nash equilibrium (introduced in the work of
Dodis, Halevi and Rabin [4]) that assumes that the players are restricted to
computationally efficient strategies and indifferent to negligible improvements in
their utilities, i.e., a computational Nash equilibrium is analogous to the concept
of ε-Nash equilibrium with a negligible ε, where the player’s strategies, as well
as any deviations, must be computationally efficient.

To capture the requirement of computational efficiency, the players’ strate-
gies must be implemented by families of polynomial-size circuits. For a two-
player zero-sum game G, we denote by repeated game of G the infinite collection
{Gn}n∈N of all the n-stage repeated games of G. A family of polynomial size cir-
cuits {Cn}n∈N implements the strategy of the row player in the repeated game of
G as follows. In Gn, the n-stage repeated game of G, the circuit Cn takes as input
a string corresponding to a non-terminal history h in Gn and s(n) random bits;
it outputs an action to be taken at history h. If the strategy of player i ∈ {1, 2}
is implemented by family {Ci

n}n∈N then the gameplay in the n-stage repeated
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game of G is defined in the following way: player i samples a random string
ri ∈ {0, 1}si(n) and at each stage of Gn takes the action a = Ci

n(h, ri) ∈ Ai,
given that the history of play up to the current stage is h. The utility function
u∗

n is for all n defined as in the standard n-stage repeated game of G (i.e., it is
the average utility achieved in the stage game over the n stages).

Definition 3 (computational Nash equilibrium of repeated game). For
a two-player zero-sum game G = 〈(A1, A2), u〉, a computational Nash equilib-
rium of the repeated game of G is a strategy profile ({C1

n}n∈N, {C2
n}n∈N) given

by polynomial-size circuit families such that for every player i ∈ {1, 2} and every
strategy {C̃i

n}n∈N given by a polynomial-size circuit family it holds for all large
enough n ∈ N that E[u∗

n(Ci
n, C−i

n )] ≥ E[u∗
n(C̃i

n, C−i
n )] + ε(n), where ε is a negli-

gible function.

We show that if one-way functions do not exist, then in repeated two-player
zero-sum games there are no computational Nash equilibria in which the players’
strategies use random strings of length sub-linear in the number of the stages.

Our result follows by showing that finding efficiently a best response to the
opponent’s strategy that uses limited randomness can be seen as a special case
of the problem of learning an adaptively changing distribution (introduced by
Naor and Rothblum [13]). The goal in their framework is for a learner to recover
a secret state used to sample a publicly observable distribution, in order to be
able to predict the next sample. In particular, this would allow the learner to
be competitive to someone who knows the secret state (Naor and Rothblum [13]
considered this problem in the context of an adversary trying to impersonate
someone in an authentication protocol). In the setting of repeated games, the
random string used by the opponent’s strategy can be thought of as the secret
state. Note that learning it at any non-terminal history would give rise to efficient
profitable deviation, since the player could just compute the next move of his
opponent and play the best response to it.

Learning Adaptively Changing Distributions. An adaptively changing
distribution is given by a pair of algorithms G and D for generating an initial state
and sampling. The algorithm G is a randomized function G : R → Sp ×Sinit that
outputs an initial public state p0 and a secret state s0. The sampling algorithm
D is a randomized function D : Sp × Ss × R → Sp × Ss that at each stage takes
the current public and secret states, updates its secret sate and outputs a new
public state. A learning algorithm L for (G,D) is given the initial public state
p0 (L does not get the initial secret state s0) and at each round i: i) L either
outputs prediction of the conditional distribution Ds0

i+1(p0, . . . , pi) of the public
output of D given the initial secret s0 and the observed public states p0, . . . , pi,
or ii) L proceeds to round i + 1 after observing a new public state pi+1 ←
Ds0

i+1(p0, . . . , pi). The goal of the learning algorithm is to output a hypothesis
(in a form of a distribution) that is with high probability close in statistical
distance to Ds0

i+1(p0, . . . , pi). In other words, L is trying to be competitive to
somebody who knows the initial secret state s0. In the setting where G,D are
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efficiently constructible Naor and Rothblum [13] gave an algorithm L that learns
s0 in probabilistic polynomial time provided that one-way functions do not exist.
Moreover, their algorithm outputs a hypothesis after seeing a number of samples
proportional to the entropy of the initial secret state.

Theorem 3 (Naor and Rothblum [13]). Almost one-way functions exist if
and only if there exists an adaptively changing distribution (G,D) and polyno-
mials ε(n), δ(ε) such that it is hard to (δ(n), ε(n))-learn the adaptively changing
distribution (G,D) with O

(
δ−2(n)ε−4(n) log |Sinit|

)
samples.

The strategy of the column player (Colin) with limited randomness gives rise
to a natural adaptively changing distribution and we show that the algorithm
of Naor and Rothblum [13] can be used to construct a computationally efficient
strategy for the row player (Rowena) that achieves utility noticeably larger than
the value of the stage game. Hence, if one-way functions do not exist, then in
repeated two-player strategic games there are no computational Nash equilibria
with strategies that use sub-linear randomness in the number of the stages.

Theorem 4. Let G = 〈(A1, A2), u〉 be a two-player zero-sum strategic game with
no weakly dominant pure strategies and value v. If almost one-way functions do
not exist then for any strategy {Cn}n∈N of Colin in the repeated game of G that
uses o(n) random bits, there exists a polynomial time strategy of Rowena with
expected average utility v+δ(n) against {Cn}n∈N for some noticeable function δ.

Proof. Let {Cn}n∈N be an arbitrary strategy of Colin that takes s(n) ∈ o(n)
random bits. Let μ be the minmax strategy of Rowena in G. We define the
following adaptively changing distribution (G,D). The generating algorithm G
on input 1n outputs a random string of length s(n) as the initial secret state s0
and the initial history ∅ of the n-stage repeated game of G as the initial public
state p0. The sampling algorithm D outputs the new secret state si+1 identical
to the secret state si that it received as an input (i.e., the secret state remains
fixed as the s(n) random coins s0) and updates the input public state pi in the
following way. The sampling algorithm parses pi as a history of length i in the
n-stage repeated game of G and computes Colin’s action ci = Cn(pi, si) at pi

using randomness si. D additionally samples Rowena’s action ri ← μ according
to her minmax strategy and then outputs the history (pi, (ri, ci)) of length i + 1
as the new public state pi+1. Note that after sampling the initial secret state s0
the only randomness used by D is to sample the minmax strategy of Rowena.

It follows from Theorem 3 that there exists an efficient learning algorithm
L that after at most k = k(n) ∈ O(s(n)δ−2(n)ε−4(n)) samples from D outputs
a hypothesis h such that Pr[SD(Ds0

k+1,D
h
k+1) ≤ ε(n)] ≥ 1 − δ(n). Consider

the strategy of Rowena that uses L in order to learn Colin’s random coins. In
particular, a strategy that at each stage i runs L on the current history pi−1 and if
L outputs some hypothesis h then the strategy plays the best response to Colin’s
action at stage i sampled according to Dh

i+1; and otherwise it plays according
to Rowena’s minmax strategy μ. This strategy can be efficiently implemented
and it achieves expectation at least v in the n − 1 stages in which Rowena
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plays according to her minmax strategy. It remains to show that Rowena has a
noticeable advantage over the value of the game at the stage in which L outputs
the hypothesis h about s0 and Rowena selects her strategy as the best response
to Colin’s action sampled according to Dh

k+1.
First, note that since G has no weakly dominant strategies, the best response

to any pure action a2 of Colin achieves a positive advantage over the value of the
game. This observation follows from the fact that Rowena’s minmax strategy
achieves expectation at least v against any action of Colin and from the fact
that the minmax strategy must be mixed (as there are no weakly dominant
strategies). By moving all the probability in the minmax strategy to the action
with highest payoff given that Colin plays a2, Rowena achieves a value strictly
larger than v. Hence, there exists some constant e (depending only on G) such
that if Dh

k+1 is e-close in statistical distance to Ds0
k+1 then the expectation of the

best response against Dh
k+1 achieves expectation at least v + c for some constant

c > 0. Moreover, it is good enough if L outputs such h with probability at least
1−δ for some constant δ > 0. Since ε and δ can be constant, for all large enough
n the learning algorithm L outputs the hypothesis after receiving at most k < n
samples which allows Rowena to get expectation at least v + 1

nc. ��
It follows from Theorem 4 that if one-way functions do not exist, then there is no
computational Nash equilibrium of repeated two-player zero-sum games where
one of the players uses randomness sub-linear in the number of stages (the proof
is provided in the full version [9]).
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Abstract. Over the years, researchers have studied the complexity of
several decision versions of Nash equilibrium in (symmetric) two-player
games (bimatrix games). To the best of our knowledge, the last remaining
open problem of this sort is the following; it was stated by Papadimitriou
in 2007: find a non-symmetric Nash equilibrium (NE) in a symmetric
game. We show that this problem is NP-complete and the problem of
counting the number of non-symmetric NE in a symmetric game is #P-
complete.

In 2005, Kannan and Theobald defined the rank of a bimatrix game
represented by matrices (A,B) to be rank(A + B) and asked whether a
NE can be computed in rank 1 games in polynomial time. Observe that
the rank 0 case is precisely the zero sum case, for which a polynomial time
algorithm follows from von Neumann’s reduction of such games to linear
programming. In 2011, Adsul et al. obtained an algorithm for rank 1
games; however, it does not guarantee symmetric NE in symmetric rank
1 game. We resolve this problem.

1 Introduction

One of the major achievements of complexity theory in recent years is obtaining
a fairly complete understanding of the complexity of computing a Nash equilib-
rium (NE) in a two-player game in various situations; such a game can be rep-
resented by two payoff matrices (A,B), and therefore is also known as bimatrix
game. Of the few remaining open questions, we settle two in this paper regarding
symmetric bimatrix games. We note that symmetry arises naturally in numerous
strategic situations. In fact, while providing game theory with its central solu-
tion concept, Nash [12] felt compelled to also define the notion of a symmetric
game and prove, in a separate theorem, that such (finite) games always admit a
symmetric equilibrium, i.e., where all players play the same strategy. Examples
of well-known bimatrix games that are symmetric are Prisoners’ Dilemma and
Rock-Paper-Scissors. With the growth of the Internet, on which typically users
are indistinguishable, the relevance of symmetric games has further increased.

In a symmetric game all players participate under identical circumstances,
i.e., strategy sets and payoffs. Thus the payoff of a player i depends only on the
strategy, s, played by her and the multiset of strategies, S, played by the others,
without reference to their identities; moreover, if any other player j were to play
c© Springer-Verlag Berlin Heidelberg 2015
M. Hoefer (Ed.): SAGT 2015, LNCS 9347, pp. 272–284, 2015.
DOI: 10.1007/978-3-662-48433-3 21
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s and the remaining players S, the payoff to j would be identical to that of i. In
case of a bimatrix game (A,B) such a symmetry translates to B = AT .

We first provide a brief summary of the known results. The seminal works
of Daskalakis, Goldberg and Papadimitriou [6], and Chen, Deng and Teng [2]
proved that finding a NE in a bimatrix game, or a symmetric NE in a sym-
metric bimatrix game, is PPAD-complete [5,13]. For special symmetric games
like anonymous games, Daskalakis and Papadimitriou gave an efficient algorithm
to compute the approximate Nash equilibrium [7]. Before the resolution of this
long-standing question, researchers studied the complexity of computing a NE
with desired special properties. For numerous properties, these problems turned
out to be NP-hard, even for the case of symmetric games [4,8].

In 2005, Kannan and Theobald [9] defined the rank of a bimatrix game (A,B)
to be rank(A + B) and asked whether a NE can be computed in rank 1 games
in polynomial time. They also gave an example of a bimatrix rank 1 game that
has disconnected NE, thereby providing evidence that the problem would be
a difficult one1. Observe that the rank 0 case is precisely the zero sum case,
for which a polynomial time algorithm follows from von Neumann’s reduction
of such games to linear programming. In 2011, Adsul et al. [1] answered this
question in the affirmative; this appears to be the first efficient algorithm for a
problem having disconnected solutions. More recently, Mehta [11] showed that
for games of rank 3 or more, and for symmetric games of rank 6 or more, the
problem is PPAD-complete.

We now list the open problems we are aware of. In 2007, Papadimitriou
[14] asked for the complexity of finding a non-symmetric NE in a symmetric
game. One motivation for this problem may be the following. In some situations,
symmetric equilibrium may imply both the player exhausting the same resources,
for instance if they access the same web site, which may be undesirable and non-
symmetric equilibrium is called for.

Mehta [11] left open the problem of determining the complexity of the fol-
lowing problems: finding a NE in a rank 2 game, and finding a symmetric NE
in a symmetric game of rank 1, 2, 3, 4, or 5.

In this paper, we show that the problem of finding asymmetric NE in a
symmetric game (Papadimitriou’s problem) is NP-complete. We further show
that the problem of counting the number of non-symmetric NE in a symmetric
game is #P-complete. We also give a polynomial time algorithm for finding a
symmetric NE in a symmetric game of rank 1. In the full version of the paper,
we give some reasons to believe that finding a symmetric NE in a symmetric
game of rank 2 or more should not be in P.

Next, we note that given a symmetric bimatrix rank 1 game, the algorithm
of Adsul et al. [1] is not guaranteed to produce a symmetric Nash equilibrium,
as required in the definition of a symmetric game. Furthermore, the symmetric
NE of a symmetric rank 1 game can also be disconnected, thereby making it a
difficult problem from the viewpoint of obtaining a polynomial time algorithm.
1 von Stengel [16] went further to give a symmetric bimatrix rank 1 game that has

exponentially many disconnected symmetric Nash equilibria.
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In Sect. 1.1 we give the new ideas that are needed, in addition to those of [1], to
solve this problem. For an example of a well-known game having disconnected
symmetric equilibria, consider Battle of Sexes, with appropriate payoffs so that
the game is symmetric.

Recently, McLennan and Tourky [10] gave the notion of imitation games,
which simplified the existing proofs of NP-completeness of [4] considerably for
the case of symmetric games and led to even more such results. In the full version
of the paper we study further properties of imitation games.

1.1 New Techniques

First Problem: Next we give an overview of the approach to show NP (#P)
hardness for computing (counting) non-symmetric NE in symmetric games. A
quick look at the set of Nash equilibrium problems proven NP-hard suggests
Non-Unique NE [8], i.e., whether the given bimatrix game has two or more NE,
as the most suitable problem to reduce from. Furthermore, an obvious approach
is to use the standard reduction from a bimatrix game (A,B) (where both A > 0
and B > 0 are m × n matrices) to a symmetric game (M,MT ), where

M =
[

0 A
BT 0

] For any non-zero vector z ≥ 0, let η(z) denote the normalized
vector, i.e., its components are non-negative and add to 1. It
is easy to see that the Nash equilibria (a , b) of (A,B) are in

one-to-one correspondence with the symmetric NE, (η(a/v, b/w), η(a/v, b/w)) of
M , where v = aT Bb and w = aT Ab. Furthermore, from a non-symmetric
NE ((a , b), (a ′, b ′)) of game (M,MT ), one can obtain two potential equilibria
for (A,B), namely (η(a ′), η(b)) and (η(a), η(b ′)); indeed, one can readily con-
firm that they satisfy all complementarity conditions. However, there is a snag,
namely all four of vectors {a , b,a ′, b ′} may not be nonzero, or one set of vec-
tors may be a scaled up version of the other, thereby not yielding 2 NE for
the game (A,B). In fact every NE (a , b) of (A,B) yields a non-symmetric NE
((a ,0), (0, b)) for the symmetric game (M,MT ), and such a non-symmetric NE
yields only one NE for (A,B).

Let us say that a NE has full support if both players play all their strategies.
We first seek a small dimensional symmetric game which has a unique NE and
moreover it has full support. Recently, [3] showed that all symmetric 2×2 games
always have pure NE, leading us to consider 3×3 games. As shown in Lemma 1,
the game (D,DT ), for the matrix D specified below, has the right properties.

Next, let us define a “blown up” version of matrix D. For every k ∈ R, let
Kn×m(k) be a matrix with n rows and m columns with all entries equal to k,
and define K to be the following (1 + m + n) × (1 + m + n) matrix:

D =

⎡

⎣
0 4 0
2 0 4
3 2 0

⎤

⎦ K =

⎡

⎣
0 K1×m(4) K1×n(0)

Km×1(2) Km×m(0) Km×n(4)
Kn×1(3) Kn×m(2) Kn×n(0)

⎤

⎦ G = K +

⎡

⎣
0 0 0
0 0 A
0 BT 0

⎤

⎦
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Let a ,a ′ ∈ R
m, b, b ′ ∈ R

n and c, c′ ∈ R. Now let x and y be the following (1 +
m+n)-dimensional vectors, x = (c,a , b) and y = (c′,a ′, b ′). Define the collapse
of a (1 + m + n)-dimensional vector say x = (c,a , b) to be the 3-dimensional
vector whose first component is c, the second is the sum of components of a and
the third is the sum of components of b; we will denote this by cl(x ). Now it is
easy to see that if (x ,y) is a NE of (K,KT ) then (cl(x ), cl(y)) must be a NE of
(D,DT ). Therefore, the NE of (K,KT ) must inherit the properties of the NE of
D, and hence all four vectors {a , b,a ′, b ′} must be nonzero!

The next key idea is to insert the given game (A,B) in this setup in such a
way that the composite game has not only the property established above but
also captures certain essential features of the game (A,B). For this we will first
make the assumption that w.l.o.g. the entries of A and B are positive and << 1,
and we construct the matrix G given above. We further define certain 3 × 3
matrices, Dε1,ε2 , by perturbing D appropriately (see Sect. 3).

We then show that the Nash equilibria of the symmetric game (G,GT )
have an “image” on the Nash equilibria of the perturbed 3 × 3 matrix, e.g.,
we show that payoff of the first player, assuming (x ,y) is played on the sym-
metric game (G,GT ), is the same as the payoff of first player if (cl(x ), cl(y))
is played on (Dε1,ε2 ,Dε′

1,ε′
2
), for a suitable choice of ε1, ε2, ε

′
1, ε

′
2. Eventually this

leads to showing that (G,GT ) has a non-symmetric NE iff (A,B) has at least
two NE, and moreover, the non-symmetric NE of (G,GT ) are in a one-to-one
correspondence with ordered pairs of NE of (A,B). These give the NP-hardness
and #P-completeness results, respectively.

Second Problem: An obvious approach to designing an algorithm for finding
symmetric NE in rank-1 symmetric games is to impose symmetry in the approach
of Adsul et al. However, this approach fails and a new approach is called for. In
order to describe the salient features of the latter, it is important to recall their
approach and show where it fails.

Their approach was to start with the standard quadratic program (QP) that
captures all Nash equilibria of a given bimatrix game as optimal solutions. Since
rank(A+B) = 1, A+B = cdT , for a suitable choice of vectors c,d . After making
this substitution, the objective function of the QP becomes the product of two
linear forms. [1] replaces one of the linear forms by a parameter λ, thereby getting
a parameterized linear program LP(λ). They show that the optimal solutions of
this linear program, over all choices of λ ∈ R, are precisely all NE of a certain
space of rank 1 games, i.e., (A,udT − A), for all choices of u ∈ R

m; we will
denote the bimatrix game (A,udT − A) by (A,u ,d). They further show that
the union of all the polyhedra defined by the constraints of LP(λ), over all λ,
is yet another polyhedron. The one-skeleton of the latter polyhedron contains a
path whose points are in one-to-one correspondence with the optimal solutions
of LP(λ), ∀λ. Additionally, λ is monotonic on this path. Therefore, they are able
find a NE of game (A,B) via a binary search for the “correct” value of λ.

Adapting this approach to symmetric rank one games will involve the follow-
ing. We are given game (A,AT ), where A+AT = cdT , and we seek a symmetric
NE (x ,x ). Clearly, we must start with the standard QP that captures symmetric
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equilibria of symmetric bimatrix games. The optimal solutions of the analogous
parameterized linear program are not even NE of games in the corresponding
space of rank 1 games, i.e., (A,u , c), for all choices of u ∈ R

m. The reason is
that this is not a space of symmetric games.

We rectify this situation by moving to a space of symmetric bimatrix games,
but of rank 2. This is made possible by the observation that matrix A can be
written as the sum of a skew-symmetric matrix K and the rank one matrix
1
2cd

T , using the fact that cdT is a symmetric matrix. Now, replacing the vector
d by u , for all choices of u ∈ R

m, we get the space of rank 2 symmetric games
((

K +
1
2
cuT

)

,

(

K +
1
2
ucT

)T
)

.

The new LP(λ) will capture all symmetric NE of this space of symmetric games.
At this stage we introduce another idea, thereby achieving a substantial sim-

plification. We bypass the polyhedra mentioned above completely and reduce the
problem of finding the “correct” λ to a one-dimensional fixed-point computation
in which every fixed point is guaranteed to be rational. Such a fixed point can
be found efficiently by a binary search and yields the “correct” λ, which in turn
yields the desired symmetric NE.

In what follows we discuss details of main results, however due to space
constraint proofs of some of the lemmas and theorems are deferred to the full
version.

2 Preliminaries

A bimatrix game is a two player game, each player having finitely many pure
strategies (moves). Let Si, i = 1, 2 be the set of strategies for player i, and let
m

def= |S1| and n
def= |S2|. Then such a game can be represented by two payoff

matrices A and B, each of m × n dimension. If the first player plays strategy
i and the second plays j, then the payoff of the first player is Aij and that of
the second player is Bij . Note that the rows of these matrices correspond to the
strategies of the first player and the columns to the strategies of second player.

Players may randomize among their strategies; a randomized play is called
a mixed strategy. The set of mixed strategies for the first player is X = {x =
(x1, . . . , xm) | x ≥ 0,

∑m
i=1 xi = 1}, and for the second player is Y = {y =

(y1, . . . , yn) | y ≥ 0,
∑n

j=1 yj = 1}. By playing (x ,y) ∈ X×Y we mean strategies
are picked independently at random as per x by the first-player and as per y by
the second-player. Therefore the expected payoffs of the first-player and second-
player are, respectively

∑
i,j Aijxiyj = xT Ay and

∑
i,j Bijxiyj = xT By .

Definition 1. (Nash Equilibrium [15]) A strategy profile is said to be a Nash
equilibrium strategy profile (NESP) if no player achieves a better payoff by a uni-
lateral deviation [12]. Formally, (x,y) ∈ X ×Y is a NESP iff ∀x′ ∈ X, xT Ay ≥
x′T Ay and ∀y′ ∈ Y, xT By ≥ xT By′.
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Given strategy y for the second-player, the first-player gets (Ay)k from her
kth strategy. Clearly, her best strategies are arg maxk(Ay)k, and a mixed strat-
egy fetches the maximum payoff only if she randomizes among her best strategies.
Similarly, given x for the first-player, the second-player gets (xT B)k from kth

strategy, and same conclusion applies. These can be equivalently stated as the
following complementarity type conditions,

∀i ∈ S1, xi > 0 ⇒ (Ay)i = maxk∈S1(Ay)k

∀j ∈ S2, yj > 0 ⇒ (xT B)j = maxk∈S2(x
T B)k

It is easy to get the following from the above discussion: (x ,y) ∈ X × Y is
a NE if and only if the following holds, where π1 and π2 are scalars.

∀i ∈ S1, (Ay)i ≤ π1; xi((Ay)i − π1) = 0
∀j ∈ S2, (xT B)j ≤ π2; yj((xT B)j − π2) = 0 (1)

Game (A,B) is said to be symmetric if B = AT . In a symmetric game
the strategy sets of both the players are identical, i.e., m = n, S1 = S2 and
X = Y . Therefore, we will use n, S and X for both. A Nash equilibrium profile
(x ,y) ∈ X × X is called symmetric if x = y . Note that at a symmetric strategy
profile (x ,x ) both the players get payoff xT Ax . Using (1) it follows that x ∈ X
is a symmetric NE of game (A,AT ), with payoff π to both players, iff,

∀i ∈ S, (Ax )i ≤ π; xi((Ax )i − π) = 0 (2)

3 NP-Hardness of Non-Symmetric NE in a Symmetric
Game

As discussed in the introduction, existence of symmetric NE in a symmetric game
is guaranteed [12], however, a symmetric game may not have a non-symmetric
equilibrium. In this section, we show that checking existence of non-symmetric
NE in general symmetric game is NP-complete and counting such NE is #P-
complete. For the NP-completeness result, we will reduce the problem of checking
non-uniqueness of Nash equilibria in bimatrix games, which is known to be NP-
complete [8], to checking if symmetric game has a non-symmetric equilibrium.
Refer to the second part of Sect. 1.1 for an overview of the reduction. The reduc-
tion is strong enough to also give #P-hardness result since counting equilibria
in bimatrix games is known to be #P-hard [4].

We will use the definitions and notation established in Sect. 1.1. Given 0 ≤
ε1, ε2 << 1, define Dε1,ε2 as below (similar to D defined in Sect. 1.1):

Dε1,ε2 =

⎡

⎣
0 4 0
2 0 4 + ε1
3 2 + ε2 0

⎤

⎦ (3)

See the full version of the paper for the proof of the following lemma.
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Lemma 1. Consider the bimatrix game (Dε1,ε2 ,Dε′
1,ε′

2

T ) where 0 ≤ εi, ε
′
i <<

1, i = 1, 2. The game has a unique NE which has full support, and if Dε1,ε2 =
Dε′

1,ε′
2

then it is a symmetric NE.

As observed in Sect. 1.1, the well known reduction from a bimatrix game

(A,B) to symmetric game G =
[

0 A
BT 0

]

is not useful for our purpose. This is

because, non-symmetric NE of (G,GT ) can be of the form ((a ,0), (0, b)), and
therefore fails to produce more than one NE of game (A,B). Next we show how
to circumvent this issue by constructing a suitable matrix G using the game of
Lemma 1 such that no component in non-symmetric NE is zero, and it relates
to a unique pair of NE of game (A,B). This one-to-one correspondence gives
#P -hardness result as well.

Recall the following, where Kc×d(k) is a c × d dimensional matrix with all
entries set to k ∈ R.

K =

⎡

⎣
0 K1×m(4) K1×n(0)

Km×1(2) Km×m(0) Km×n(4)
Kn×1(3) Kn×m(2) Kn×n(0)

⎤

⎦ G = K +

⎡

⎣
0 0 0
0 0 A
0 BT 0

⎤

⎦

Before we go into proving our claims, we define a few terms and functions,
to be used in the rest of the section. For any non-zero, non-negative vector z ,
of any dimension, let η(z ) denote the normalized vector, i.e., its components are
non-negative and add to 1. For a matrix M and two non-zero vectors z 1, z 2 ≥ 0
of appropriate dimensions, we define,

P (M ; z 1, z 2)
def= η(z 1)T Mη(z 2)

i.e., the payoffs obtained by player with payoff matrix M at strategy profile
(η(z 1), η(z 2)). Given strategy (x ,y) of game (G,GT ), where x = (c,a , b) and
y = (c′,a ′, b ′), or given NE (a , b ′) and (a ′, b) for game (A,B), define

ε1
def= P (A;a , b ′), ε2

def= P (B;a ′, b), ε′
1

def= P (A;a ′, b) ε′
2

def= P (B;a , b ′) (4)

For x = (c,a , b), recall that cl(x ) def= (c,
∑

i ai,
∑

j bj). Next we show a
connection between payoffs in game (G,GT ) and in game (Dε1,ε2 ,D

T
ε′
1,ε′

2
).

Lemma 2. P (G;x,y) = P (Dε1,ε2 ; cl(x), cl(y)), and P (GT ;x,y) = P (DT
ε′
1,ε′

2
;

cl(x), cl(y)).

Proof. We will prove the first part, and the second part follows similarly. Let
v = (v1, v2, v3) = cl(x ) and w = (w1, w2, w3) = cl(y). Then,

P (G;x ,y) = xT Gy = xT Ky + aT Ab ′ + a ′T Bb

where, xT Ky = 2v2w1 + 3v3w1 + 4v1w2 + 2v3w2 + 4v2w3. Note that a =
(
∑

i≤m ai) ∗ η(a) = v2η(a), and similarly b = v3η(b), a ′ = w2η(a ′) and
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b ′ = w3η(b ′). Thus, aT Ab ′ + a ′T Bb = η(a)T Aη(b ′)v2w3 + η(a ′)T
Bη(b)v3w2

and hence P (G;x ,y) is equal to

2v2w1+3v3w1+4v1w2+2v3w2+4v2w3+η(a)T Aη(b ′)v2w3+η(a ′)T
Bη(b)v3w2.

On the other hand we have P (Dε1,ε2 ; cl(x ), cl(y)) = 2v2w1 + 3v3w1 + 4v1w2 +
2v3w2 + 4v2w3 + ε1v2w3 + ε2v3w2. Since, ε1 = P (A;a , b ′) = η(a)T Aη(b ′) and
ε2 = P (B;a ′, b) = η(a ′)T Bη(b) the lemma follows. �	

The above lemma implies equivalence between payoffs in games (G,GT ) and
(Dε1,ε2 , Dε′

1,ε′
2

T ), when the strategies are mapped appropriately. Using this, next
we establish relation between their NE.

Lemma 3. If (x,y) is a NE for the game (G,GT ) then (cl(x), cl(y)) is a NE of
game (Dε1,ε2 ,Dε′

1,ε′
2

T ), where εs are defined as per (4).

See the full version of the paper for the proof of Lemma3. The next corollary
follows using Lemmas 1 and 3.

Corollary 1. If (x,y) is NE for the game (G,GT ), where x = (c,a, b) and
y = (c′,a′, b′), then vectors a,a′, b, b′ are non-zero.

As was our goal, the above corollary establishes non-zeroness of sub-
components of a NE (x ,y) of the symmetric game (G,GT ) that we constructed
from (A,B). Using this property we will show how non-symmetric NE of game
(G,GT ) give two distinct NE of game (A,B) and vice-versa.

Lemma 4. If (x,y) is a NE for the game (G,GT ), where x = (c,a, b) and
y = (c′,a′, b′), then (η(a), η(b′)) and (η(a′), η(b)) both are NE for the game
(A,B).

Proof. We will show that (η(a), η(b ′)) is NE for the game (A,B), and the proof
for (η(a ′), η(b)) is analogous. By contradiction, wlog suppose the first player can
change η(a) to η(a ′′) and get a better payoff, where

∑
1≤i≤m ai =

∑
1≤i≤m a′′

i .
Then, we have cl(x ) = cl(x ′) and η(a)T Aη(b ′) < η(a ′′)T Aη(b ′).

Let x ′ = (c,a ′′, b). In the proof of Lemma 2 we showed that for v = cl(x )
and w = cl(y), P (G;x ,y) = 2v2w1 + 3v3w1 + 4v1w2 + 2v3w2 + 4v2w3 +
η(a)T Aη(b ′)v2w3 + η(a ′)T

Bη(b)v3w2. Then,

P (G;x ,y) − P (G,x ′,y) = η(a)T Aη(b ′)v2w3 + η(a ′)T
Bη(b)v3w2−

η(a ′′)T Aη(b ′)v2w3 − η(a ′)T
Bη(b)v3w2

= η(a)T Aη(b ′)v2w3 − η(a ′′)T Aη(b ′)v2w3 < 0

A contradiction to (x ,y) being a NE of (G,GT ). �	
Next we prove the reverse of Lemmas 3 and 4; see the full version of the paper

for the proof.
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Lemma 5. If (a, b′) and (a′, b) are NE of game (A,B), and if for εs defined
in (4), (v,w) is a NE of game (Dε1,ε2 ,Dε′

1,ε′
2
), then ((v1, v2 ∗ a, v3 ∗ b), (w1, w2 ∗

a′, w3 ∗ b′)) is a NE of game (G,GT ).

The next theorem follows directly using Lemmas 3, 4 and 5.

Theorem 1. For x = (c,a, b) and y = (c′,a′, b′), (x,y) is a NE of game
(G,GT ) iff (cl(x), cl(y)) is a NE of (Dε1,ε2 ,Dε′

1,ε′
2
), where εs are defined as in

(4), and (η(a), η(b′)) and (η(a′), η(b)) are both NE of game (A,B).

To show NP-hardness of computing non-symmetric NE in symmetric games,
we need to establish connection between non-symmetric NE of game (G,GT )
and a pair of distinct NE of game (A,B). Theorem 1 almost does the job except
that no such conditions are imposed on the NE of (G,GT ) and of (A,B). Next
theorem achieves exactly this (see the full version of the paper for proof).

Theorem 2. The symmetric game (G,GT ) has a non-symmetric NE iff the
game (A,B) has more than one NE.

Note that, size of (G,GT ) is O(size(A,B)), and hence Theorem 2 implies
polynomial-time reduction from the problem of checking if a bimatrix game
has more than one NE to checking if a symmetric two-player game has a non-
symmetric NE. Since former is NP-complete [8], this shows NP-hardness for the
latter. Containment in NP follows since all NE of games (G,GT ) are rational
numbers of size polynomial in the size (bit-length) of G [14]. Thus we get the
next theorem.

Theorem 3. Checking existence of a non-symmetric Nash equilibrium in a sym-
metric game is NP-complete.

The proof of Theorem2 does not indicate how the number of equilibria in
the games relate to each other. We explore this in the next theorem to show the
#P -completeness result (see the full version of the paper for proof).

Theorem 4. There is a 1-to-1 correspondence between ordered pairs of (distinct)
NE of game (A,B) and non-symmetric NE of the symmetric game (G,GT ).

The next theorem follows using the fact that counting the number of NE in a
bimatrix game is #P -hard [4], and Theorem 4. Here, containment in #P follows
from the rationality of NE in bimatrix games.

Theorem 5. Counting the number of non-symmetric equilibria in a symmetric
game is #P -complete.

4 Efficient Algorithm for Symmetric Rank-1 Games

In this section we consider computing symmetric NE in symmetric constant rank
games. Recall that rank of a two player game (A,B) is defined as rank(A + B).
Adsul et al. [1] gave a polynomial time algorithm to compute a Nash equilibrium
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of a rank-1 bimatrix game. In case of a symmetric game, the Nash equilibrium
found by the algorithm need not be symmetric. In what follows, we design a poly-
nomial time algorithm to compute a symmetric Nash equilibrium in symmetric
rank-1 games. Our algorithm is an extension of the Adsul et al. approach.

Let (A,AT ) be a symmetric game, where A is an n × n square matrix. As
discussed in Sect. 2 a mixed-strategy x ∈ X is a symmetric Nash equilibrium of
game (A,AT ) if and only if it satisfies (2). Using this, the next lemma follows.

Lemma 6. If x ∈ X satisfies first part of (2) then xT Ax−π ≤ 0. Equality holds
iff x is a symmetric NE of (A,AT ).

Using Lemma 6 we get the following quadratic program which exactly cap-
tures the symmetric Nash equilibria of game (A,AT ).

max : xT Ax − π
s.t. Ax ≤ π; x ≥ 0 ;

∑
i∈S xi = 1

Note that, the objective value of the above program is at most zero, and
exactly zero at the optimal (Lemma 6). If the rank of game (A,AT ) is one then
A + AT = c · dT , where c,d ∈ R

n. Note that c · dT is a symmetric matrix, and
therefore, we have c · dT = d · cT

We will represent matrix A as sum of a skew-symmetric matrix and a rank-1
symmetric matrix. Let K be a matrix such that kij = aij − cidj

2 . This implies
A = K + 1

2c ·dT . Since, c ·dT = d ·cT and A+AT = c ·dT , we get K +KT = 0.
Thus, K is skew-symmetric, and therefore zT Kz = 0 for any vector z ∈ R

n.
Replacing A = K + 1

2c · dT in the above quadratic program we get,

max : 1
2 (xTc)(dTx ) − π

s.t. Kx + c
2 (dTx ) ≤ π; x ≥ 0 ;

∑
i xi = 1

The above formulation is a rank-1 quadratic program, which is NP-hard in
general. However, we will show that it can be solved in polynomial time using the
Nash equilibrium properties. The feasible region of the above program is linear,
while the cost function is quadratic which introduces the difficulty. The idea is
to construct an LP-type formulation, using the fact that the quadratic term is
a product of two linear terms, while maintaining the fact that optimal value of
the new formulation is also zero and it is achieved only when complementarity
is satisfied. Towards this, we first replace dTx by λ in the objective function as
well as in the inequality. This gives the following optimization problem where x
is a variable vector, and π and λ are scalar variables.

max : 1
2λ(xTc) − π

s.t. Kx + c
2λ ≤ π; x ≥ 0 ;

∑
i xi = 1 (5)

Lemma 7. Let (x, λ, π) be a feasible point of (5), then 1
2λ(xTc)−π ≤ 0. Equality

holds iff xi(Kx + c
2λ − π)i = 0, ∀i ∈ [n].
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Note that, formulation (5) is independent of vector d , an essential for our
original game. This seems very counter intuitive at first. However, this very
property allows (5) to capture NE of a space of games, as established next.
Finally, we will use this rich structure to formulate one-dimensional fixed point
to solve our game. The next lemma shows that the solution set (5) is rich enough
to contain a point for every value of λ; see the full version of the paper for its
proof.

Lemma 8. Given λ ∈ R, ∃(x, π) ∈ R
n+1 such that (x, λ, π) is a solution of (5),

and the objective value is zero at (x, λ, π).

Lemmas 7 and 8 imply that the optimal value of (5) is zero, and for every
a ∈ R there is an optimal solution with λ = a. If we substitute some value
for λ in (5), then it becomes an LP. Therefore, consider it as a parameterized
linear program LP (λ). The optimal value of LP (λ) for any λ ∈ R is zero (due to
Lemma 8). Therefore, solutions of (5) are exactly the solutions of LP (λ), ∀λ ∈ R;
see the full version of the paper for a brief discussion on its structure.

Result of the next lemma is central to the construction of one-dimensional
fixed point formulation for solving our original game (A,AT ).

Lemma 9. Given a λ ∈ R, if (x, π) is a solution of LP (λ) then for any v ∈ R
n

satisfying vTx = λ, x is a symmetric NE of game (Z,ZT ), where Z = K+ 1
2cv

T .

Proof. Let (x , π) be a solution of LP (λ), then since the feasible region of LP (λ)
is a subset of the feasible region of (5), vector (x , λ, π) satisfies (Kx − c

2λ)i ≤
π; x ≥ 0;

∑
i xi = 1. This ensures that x is a probability distribution vector. Due

to Lemma 8, it also satisfies xi(Kx + c
2λ − π)i = 0, ∀i ∈ [n]. Setting, λ = vTx ,

these conditions are exactly that of (2) for strategy x and game (Z,ZT ) where
Z = K + 1

2cv
T . �	

Remark 1. Note that both the matrices of the games constructed in Lemma 9
change with v , and cvT need not be a symmetric matrix. Therefore, rank(Z +
ZT ) = 2. In the Adsul et al. approach, the first matrix is same in all the games,
and the solutions of LP (λ) are NE of a family of rank-1 games, which crucially
uses the fact that y need not be same as x (non-symmetric). For this reason,
their approach is not immediately applicable for finding symmetric NE.

Lemma 9 implies that if we can find a λ such that the solution (x , π) of
LP (λ) satisfies dTx = λ, then x is a symmetric Nash equilibrium of our origi-
nal rank-1 game (A,AT ). Using this observation, consider a 1-dimensional cor-
respondence F : [dmin, dmax] → 2[dmin, dmax], where dmin = mini∈[n] di and
dmax = maxi∈[n] di.

F (λ) = {dTx | x is a solution of LP (λ)}
By definition we have that ∀λ ∈ [dmin, dmax], F (λ) is non-empty (Lemma 8)

and convex. Now using the Kakutani fixed-point theorem, F has fixed-points.
Clearly, every fixed-point of F gives a Nash equilibrium by Lemma9, and the
next theorem follows.
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Theorem 6. The fixed points of F exactly capture the Nash equilibria of the
game (A,AT ).

Since the Nash equilibrium profiles of game (A,AT ) are rational vectors of
size polynomial in the size of A [15], the fixed-points of F are also rational
numbers of polynomial sized (using Theorem6). Thus, one can compute an exact
fixed point of F in polynomial time using a simple binary search starting with
the pivots dmin and dmax, and the next theorem follows.

Theorem 7. The problem of computing a symmetric Nash equilibrium in a sym-
metric rank-1 game is in P.
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Abstract. We develop a quasi-polynomial time Las Vegas algorithm
for approximating Nash equilibria in polymatrix games over trees, under
a mild renormalizing assumption. Our result, in particular, leads to an
expected polynomial-time algorithm for computing approximate Nash
equilibria of tree polymatrix games in which the number of actions per
player is a fixed constant. Further, for trees with constant degree, the
running time of the algorithm matches the best known upper bound for
approximating Nash equilibria in bimatrix games (Lipton, Markakis, and
Mehta 2003).

Notably, this work closely complements the hardness result of Rubin-
stein (2015), which establishes the inapproximability of Nash equilibria in
polymatrix games over constant-degree bipartite graphs with two actions
per player.

1 Introduction

The complexity of equilibrium computation is a central area of research in algo-
rithmic game theory. Recent years have seen significant progress in this line of
work, especially in the context of two-player games [3–7,13,16,17]. Furthermore,
the computation of approximate Nash equilibrium in games over networks has
emerged as an important research direction [2,8,10,12,15]. Motivation for study-
ing such multiplayer games stems in part from the prevalence and importance
of large networks of interconnected, self-interested agents.

The prototypical family of large network games is that of polymatrix games.
These games merge two classical concepts, two-player games and networks. In a
polymatrix game, each player corresponds to a node in a network, and each edge
encodes a two-player game between the two endpoints of the edge. A player’s
payoff is the sum of her payoffs across the bimatrix games (edges) she participates
in. Polymatrix games capture complex settings with arbitrarily many players
while keeping the description complexity of the game polynomially small in the
number of players. Computation of equilibria for polymatrix games is hence a
natural test case, and has emerged at the boundary of computational tractability.

The seminal PPAD hardness reductions for computing ε-Nash equilibria1 by
Daskalakis, Goldberg, and Papadimitriou [5] along with their extensions by Chen,
1 In an ε-Nash equilibrium, a player can gain at most ε by unilaterally deviating from

her current strategy.
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Deng, and Teng [3] to two-player games were crucially developed within the
context of polymatrix games.2 Recently, Rubinstein [16] strengthened these inap-
proximability guarantees by establishing that there exists a constant ε such that
finding an ε-Nash equilibrium in polymatrix games over bipartite graphs of con-
stant degree is computationally hard. Our positive algorithmic result is inspired
by this work and explores the boundary between tractability and intractability of
ε-Nash computation in polymatrix games.

The study of equilibria in polymatrix games has had a long history [11,18].
To avoid hardness, most algorithmic results have focused on structured sub-
classes of polymatrix games. These include polymatrix generalizations of zero-
sum games where exact Nash equilibria can be computed in polynomial time
[2,8]. Games on trees is another family of multiplayer games that has received
attention [10,12,15]. The proposed algorithm in [10] finds an exact Nash equi-
librium in two-action games on paths and runs in polynomial time, but in the
case of trees the running time may be exponential even if the degree of the
underlying tree is bounded. In contrast, we study computation of approximate
Nash equilibrium in trees of arbitrary degree, and develop an algorithm that
runs in quasi-polynomial time. Finally, some interesting progress has been made
in the case of general polymatrix games as well, where it has been shown that
a (0.5 + ε)-Nash equilibrium of a polymatrix game can be computed in time
polynomial in the input size and 1/ε2 [9].

Results. We develop a quasi-polynomial time algorithm for approximating Nash
equilibrium in polymatrix games over trees under a mild renormalizing assump-
tion on the players’ payoffs. Specifically, instead of normalizing the entries
of each bimatrix game to lie in [0,1], which results in each player i’s payoff
depending linearly on its degree, we normalize them to lie in [0, 1/degree(i)],
so that players’ total payoffs lie in [0,1]. Our results actually extend even under
weaker renormalization conditions; see Sect. 2 for details. We show that, given an
n-player, m-action normalized polymatrix game over a tree, we can find an ε-
Nash equilibrium of the game in expected time

mO( log m(log m+log n−log ε)
ε4 ).

Our approach immediately implies a polynomial time approximation scheme
for computing Nash equilibria when the number of actions per player is constant.
The case of standard bimatrix games can be trivially captured in our setting via a
single-edge polymatrix game. Further, for trees of constant degree our framework
yields an algorithm that finds an ε-Nash equilibrium in time mO( log m+log n

ε2 ).
Note that in the single edge case (i.e., the case of standard bimatrix games) this
running-time bound matches the best known upper bound for approximating
Nash equilibria [13].

Techniques. We develop a dynamic program to find an approximate Nash equi-
librium of the given tree polymatrix game. The idea is to root the underlying

2 These hardness result hold for polynomially small ε.
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tree and process it in a bottom-up manner. For each node/player p we maintain
a set of mixed strategies—i.e., probability distributions over player’s actions—
that can be extended into a “partial” (approximate) equilibrium of the subtree
rooted at the node. That is, for each mixed strategy assigned to p there exist
mixed strategies for the descendants of p under which no descendant can benefit
more than ε, in expectation, by unilateral deviation. We find such extendable
mixed strategies of a player p after processing all of its children; in other words,
we start from the leaves of the tree and move towards the root. Note that such
an extendable mixed strategy for the root corresponds to an approximate Nash
equilibrium of the game. Also, it is worth pointing out that the tree structure
enables us to find partial equilibria of disjoint subtrees separately. In particular,
the fact that the utilities of players depend only on the actions of its parent and
its children implies that disjoint subtrees can be processed separately.

In and of itself, using a dynamic program to find an approximate Nash equi-
librium over a tree is a natural idea. In fact, similar approaches have been
adopted in prior work; see, e.g., [10]. The key technical contribution in this
paper is to show that the update step in the dynamic program can be performed
in quasi-polynomial time. To do this, we focus on a specific set of mixed strate-
gies U , which is the set of all uniform distributions with support size polynomial
in the approximation parameter ε and logarithmic in the number of players and
the number of actions; see Sect. 2 for a formal definition. It was shown in [1]
that every multiplayer game admits an ε-Nash equilibrium wherein the mixed
strategy of each player is contained in U . Hence, given an n-player game, an
exhaustive search over the set Un is guaranteed to find an approximate Nash
equilibrium. But, such a search runs in time exponential in n. We show that for
tree polymatrix games, an exponential-time exhaustive search can be bypassed.
The idea is to follow the above mentioned dynamic program and consider, for
each player p, mixed strategies in the set U that can be extended into partial
equilibria of the subtree rooted at p. To perform the update step in the dynamic
program we employ a linear program that, interestingly, gives a tight character-
ization of mixed strategies that can be extended. Together, these ideas lead us
to a quasi-polynomial time approximation algorithm.

2 Notation and Preliminaries

We study games with n players and m actions per player.3 Write [n] and [m]
to denote the set of players and the set of actions of each player, respectively.
The utilities of the players are normalized between 0 and 1; in particular, for
each player p we have utility up : [m]n → [0, 1]. Let Δm be the set of probability
distributions over [m]. In addition, for mixed strategy profile x = (xq)q∈[n] ∈
Δm × . . . × Δm, we denote the expected utility of player p by up(x). Following

3 We assume that each player has m actions for ease of presentation. The developed
result directly extends to the case wherein the number of actions of each player is
different.
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standard notation, we use x−p to denote the mixed strategy profile of all players
besides p.

Definition 1 (ε-Nash equilibirum). A mixed strategy profile x = (xq)q∈[n],
where each xq ∈ Δm, is said to be an ε-Nash equilibrium iff for every player
p ∈ [n] and action a ∈ [m] we have up(x) ≥ up(a, x−p) − ε.

Here, setting ε = 0 gives us the definition of a Nash equilibrium.

Polymatrix Games. In a polymatrix game, the players correspond to vertices
of a graph G = (V,E) and the utility of each player p ∈ V depends only on her
action and the actions of her neighbors. Moreover, the utility of each player is sep-
arable, i.e., for each edge (p, q) ∈ E we have a bimatrix game specified by m×m
matrices Ap,q and Aq,p, and the utility of player p, under action profile (aq)q∈[n] ∈
[m]n, is specified as follows up(a1, a2, . . . , an) :=

∑
q:(p,q)∈E eT

ap
Ap,q eaq

. Here,
ek ∈ R

m denotes the standard basis vector with 1 in the kth component and 0’s
elsewhere. Along these lines, for a mixed strategy profile (xq)q∈[n] ∈ (Δm)n, the
expected utility of player p, up(x1, x2, . . . , xn) :=

∑
q:(p,q)∈E xT

p Ap,qxq.
As mentioned above, the utility of each player is normalized between 0 and 1.

A typical way to accomplish this normalization (see, e.g., [9]) is to assume that
for each player p ∈ [n] the associated payoff matrices, Ap,qs, are entry-wise
between 0 and 1, and the utility of player p with degree d (in the graph) is
obtained by dividing the sum of the payoffs by d, i.e., up(a1, a2, . . . , an) :=
1
d

∑
q:(p,q)∈E eT

ap
Ap,q eaq

. This normalization ensures that the same approx-
imation guarantee is achieved for all players, irrespective of their degrees. If,
instead, one assumes that entry-wise the Ap,qs are between 0 and 1 and simply
add the payoffs eT

ai
Ap,qeaj

, then the approximation guarantee for players with
higher degree—since ε is the same of all the players—is stronger. This would
lead to an undesirable, nonuniform approximation bound.

The degree-normalized scaling mentioned above is equivalent to the assump-
tion that for player p ∈ [n], with degree d, the matrices Ap,qs are contained in
[0, 1/d]m×m and up(a1, . . . , an) :=

∑
q:(p,q)∈E eT

ap
Ap,q eaq

. In this paper we in
fact consider a more general setup in which, for a player with degree d, entries
of Ap,qs are between 0 and max

{
1
d , ε

2
√
6d log m

}
. Here, again we assume that for

each action profile a we have ui(a) ∈ [0, 1]. Developing a quasi-polynomial time
algorithm without an entry-wise assumption (i.e., without requirement (i) in the
following definition) remains an interesting direction for future work.

Definition 2 (Normalized Polymatrix Game). Let G be an n-player m-
action polymatrix game over graph G = (V,E) and with payoff matrices
Ap,q and Aq,p, for (p, q) ∈ E. Given parameter ε, we say that G is normal-
ized iff for each player p ∈ [n] we have (i) the entries of Ap,qs are con-

tained in
[
0,max

{
1
d , ε

2
√
6d log m

}]
; here d is the degree of player p in G, and

(ii) for every action profile (a1, . . . , an) ∈ [m]n, the utility up(a1, . . . , an) :=∑
q:(p,q)∈E eT

ap
Ap,q eaq

is between 0 and 1.
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Given mixed strategies of the neighbors of a player p, say (xq)q:(p,q)∈E , xp ∈ Δm

is said to be an ε-best response of p against (xq)q:(p,q)∈E if p cannot benefit more
than ε in expectation by deviating from xp, i.e.,

∑

q:(p,q)∈E

xT
p Ap,qxq ≥ max

j∈[m]

⎛

⎝
∑

q:(p,q)∈E

eT
j Ap,q xq

⎞

⎠ − ε. (1)

This paper studies polymatrix games in which the underlying graph G is a
tree. Note that a polymatrix game with exactly two players over a single edge
(p, q) ∈ E—which is trivially a tree—corresponds to a bimatrix game between
players p and q. Hence, computation of an approximate Nash equilibrium in tree
polymatrix games is at least as hard as computation of approximate Nash equi-
librium in bimatrix games. Therefore, our running-time benchmark for finding
an ε-Nash equilibrium is quasi-polynomial: mO( log m

ε2 ), which is the best known
upper bound for approximating Nash equilibria in bimatrix games [13].

Uniform Probability Distributions. A probability distribution x ∈ Δm is
said to be b uniform if it is a uniform distribution over a size-b multiset of [m].
Write U ⊂ Δm to denote the set of all

(
8(lnm+lnn−ln ε+ln 8)

ε2

)
-uniform probability

distributions. Note that

|U | = mO( log m+log n−log ε

ε2 ) (2)

As mentioned above, the work of Babichenko et al. [1] establishes that every
n-player m-action game admits an ε-Nash equilibrium x = (xq)q∈[n] such that
xq ∈ U for all q ∈ [n]. Hence, an exhaustive search over the set Un is guaranteed
to find an ε-Nash equilibrium. Note that the running time of such a search is
mO(n(log m+log n−log ε)

ε2 ), which is exponential in n. In contrast to this exponential-
time algorithm, we show that for tree polymatrix games an approximate Nash
equilibrium can be computed in expected time mO( log m(log m+log n−log ε)

ε4 ), which is
quasi-polynomial in n and m.

Next we state McDiarmid’s inequality [14]. We use this concentration bound
to prove our main result.

McDiarmid Inequality. Let Z1, Z2, . . . , Zd ∈ Z be independent random vari-
ables and f : Zd → R be a function of Z1, Z2, . . . , Zd. If for all i ∈ [d] and for
all z1, z2, . . . , zd, z

′
i ∈ Z the function f satisfies

|f(z1, . . . , zi, . . . , zd) − f(zi, . . . , z
′
i, . . . , zd)| ≤ ci,

then for δ > 0,

Pr(|f − E[f ]| ≥ δ) ≤ 2 exp

(
−2δ2

∑d
i=1 c2i

)

.
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3 Quasi-Polynomial Time Algorithm

This section develops the dynamic program that finds an approximate Nash
equilibrium. We will consider G to be a rooted tree and process it in a bottom-
up manner. We start with players all whose descendants are leaves, and then
iteratively proceed onto the remaining players.

Write C(q) and D(q) to denote the set of children and the set of descendants
of player q, respectively. The iterative process maintains a set Up,q(z) for each
parent-child pair (p, q) ∈ E and each z ∈ U .4 Intuitively, Up,q(z) denotes the
set of mixed strategies for player q that can be extended into a “partial” ε-Nash
equilibrium of the subtree rooted at q. Here p, the parent of q, is playing mixed
strategy z and might not be best responding. Formally, the inductive definition
of the sets Up,q(z)s is as follows:

– If q is a leaf player (i.e., q corresponds to a leaf in tree G), then Up,q(z) :=
{y ∈ U | y is an ε-best response of q against z}.

– Else, if q is a not a leaf player, we define Up,q(z) := {y ∈ U | there exist mixed
strategies (xc)c∈C(q) ∈ ∏

c∈C(q) Uq,c(y) such that y is an ε-best response of q

against (xc)c∈C(q) and z}; here, mixed strategy z is associated with parent
player p.

We also define the set Ur for the root r of tree G: Ur := {y ∈ U | there exist
mixed strategies (xc)c∈C(r) ∈ ∏

c∈C(r) Ur,c(y) such that y is an ε-best response
of r against (xc)c∈C(r)}.

If y ∈ Up,q(z) and q is not a leaf, then, by the above definition, there exist
mixed strategy profiles (xc)c∈C(q) ∈ ∏

c∈C(q) Uq,c(y) such that y is an ε-best
response of q against (xc)c∈C(q) and z. We will use Ep,q(z, y) to denote such a
collection of mixed strategies, (xc)c∈C(q).

Along these lines, for the root r of the tree G we define Er(y), for each y ∈ Ur,
to be a collection of mixed strategies (xc)c∈C(r) ∈ ∏

c∈C(r) Ur,c(y) such that y is
an ε-best response of r against (xc)c∈C(r).

Note that mixed strategies in Ep,q(z, y) extend y into a “partial” ε-Nash equi-
librium of the subtree rooted at q. Specifically, we can inductively use Ep,q(z, y),
then Eq,c(y, xc), for each c ∈ C(q), and so on, to determine mixed strategies
(xs)s∈D(q) for each descendant s ∈ D(q) such that no player in the subtree
rooted at q can benefit more than ε, in expectation, by deviating unilaterally.
Here we do not assert that the parent player p is at an approximate equilibrium.
In addition, note that the utilities of all the players s ∈ D(q) ∪ {q} depend only
on the mixed strategies of players in D(q) ∪ {p, q} and, hence, these utilities
can be determined even if the mixed strategies of players in [n] \ (D(q) ∪ {p, q})
are unspecified. Following the definition of Up,q(z), Algorithm 1 constructs these
sets and extensions Ep,q(z, y) for all parent-child pairs (p, q) ∈ E and z ∈ U in
a bottom-up manner. At the end, the algorithm uses the set Ur defined for the
root r to find an ε-Nash equilibrium of the game. Overall, the applicability of
the sets Up,q and Ep,q is established in Lemma 1 below.
4 Recall that U is the set of all O

(
log m+log n−log ε

ε2

)
-uniform probability distributions.
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Algorithm 1. Algorithm for finding ε-Nash equilibrium in tree polymatrix
games
Given: A normalized polymatrix game over tree G = (V, E). Return: An ε-Nash
equilibrium of the game.

1: Initialize processed set P to be the leaves in G and all Up,q(z) = ∅

2: while V \ P �= φ do
3: Select p ∈ V \ P such that C(p) ⊆ P
4: for all q ∈ C(p) and z ∈ U do
5: for all y ∈ U do
6: if q is a leaf node and y is an ε-best response of q against z then
7: Update Up,q(z) ← Up,q(z) ∪ {y}
8: else if there exist mixed strategy profiles (xc)c∈C(q) ∈ ∏c∈C(q) Uq,c(y) such

that y is an ε-best response against (xc)c∈C(q) and z then
9: Update Up,q(z) ← Up,q(z) ∪ {y} and set Ep,q(z, y) ← (xc)c∈C(q) {There

could be multiple tuples (xc)c∈C(q) that satisfy this best-response condi-
tion. We set Ep,q(z, y) to be any one of them.}

10: end if
11: end for
12: end for
13: P ← P ∪ {p}
14: end while
15: For the root r of the tree G, initialize Ur = φ.
16: for all y ∈ U do
17: if there exist mixed strategy profiles (xc)c∈C(r) ∈ ∏c∈C(r) Ur,c(y) such that y is

an ε-best response against (xc)c∈C(r) then
18: Update Ur ← Ur ∪ {y} and set Er(y) = (xc)c∈C(r). Use Lemma 1 to find an

ε-Nash equilibrium of the game
19: end if
20: end for

Lemma 1. Let G be a polymatrix game over a tree G = (V,E). Given sets
Up,q(z)—for each parent-child pair (p, q) ∈ E—and mixed strategy collections
Ep,q(z, y)—for y ∈ Up,q(z)—along with a mixed strategy profile ŷ ∈ Ur and
associated collection Er(ŷ) for the root r, we can find an ε-Nash equilibrium of
the game G in time polynomial in |U |.
Proof. The lemma is implied directly by the underlying definitions. For each
parent-child pair (p, q) ∈ E there exists at least one set Up,q which is nonempty:
as mentioned above, every n-player m-action game admits an ε-Nash equilibrium
(x̂q)q∈[n] where each x̂q ∈ U . Hence, in particular, x̂q ∈ Up,q(x̂p). Moreover, we
have x̂r ∈ Ur.

In fact to find an ε-Nash equilibrium we can start with the given mixed
strategy profile xr = ŷ then, for each c ∈ C(r), pick the corresponding mixed
strategy xc in Er(xr). The definition of Er(xr) implies that xc can be extended to
obtain an ε-Nash equilibrium of the subtree rooted at c. We can in fact find such
an ε-Nash equilibrium by proceeding inductively down the tree; in particular,
by setting xs for s ∈ C(c) to be the strategy associated with s in Er,c(xr, xc)).
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The definitions of Ep,qs ensure that this inductive process will run to completion
and find an ε-Nash equilibrium of the subtree rooted at c. By repeating the
process for each c ∈ C(r) we will find a mixed strategy xp for each player p ∈ [n].
Furthermore, the definitions of the underlying sets also imply that the found
mixed strategy profile (xp)p∈[n] is an ε-Nash equilibrium. �	
Algorithm 1 tests whether y ∈ Up,q(z) (i.e., tests whether there exist mixed
strategy profiles (xc)c∈C(q) ∈ ∏

c∈C(q) Uq,c(y) such that y is an ε-best response of
q against (xc)c∈C(q) and z) in Step 8, and the same idea is employed in Step 17.

In particular, if the number of children of q is Ω
(

log m
ε2

)
then Algorithm 1 uses

the following linear-programming relaxation LP(p, q, z, y) to perform this test.
The other case, wherein |C(q)| = o

(
log m

ε2

)
, is addressed directly via exhaustive

search, see proof of Theorem 1 for details.

max
αx,σc

0

subject to
∑

x∈Uq,c(y)

αx = 1 ∀c ∈ C(q)

σc =
∑

x∈Uq,c(y)

αx x ∀c ∈ C(q)

yT Aq,pz +
∑

c∈C(q)

yT Aq,c σc ≥ eT
j Aq,pz +

∑

c∈C(q)

eT
j Aq,c σc − ε

2
∀j ∈ [m] (3)

αx ≥ 0 ∀x ∈ ∪c∈C(q) Uq,c(y)

σc ∈ Δm ∀c ∈ C(q).

Formally, Lemma 2 below establishes that the feasibility of the linear program
LP(p, q, z, y) implies the required containment y ∈ Up,q(z), when |C(q)| =

Ω
(

log m
ε2

)
. Note that LP(p, q, z, y) is parameterized by players p and q along with

mixed strategies z and y. In addition, inequality (3) in LP(p, q, z, y) enforces that
y is an ε/2-best response against σcs and z. Also, if for some player c ∈ C(q) the
set Uq,c(y) is empty, then LP(p, q, z, y) is trivially infeasible.

Lemma 2. Let player p be the parent of player q in a normalized polymatrix
game over rooted tree G = (V,E). Also, let the number of children of q, |C(q)| =
Ω

(
log m

ε2

)
. Then, the feasibility of the linear program LP(p, q, z, y), for mixed

strategies z, y ∈ U , implies that y ∈ Up,q(z). Moreover, using a feasible solution
of LP(p, q, z, y) we can find mixed strategy profiles Ep,q(z, y) via a sampling
algorithm whose expected running time is polynomial in |U |.
Proof. Scalars (αx)x∈Uq,c(y) are nonnegative and sum up to one; hence, they
induce a probability distribution over Uq,c(y), for c ∈ C(q). Write αc to denote
this distribution. Also, let χc be the random variable that is equal to mixed
strategy x ∈ Uq,c(y) with probability αx, i.e., χc is drawn from αc. Note that
Eαc [χc] = σc.
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Let d denote the number of children of q, d := |C(q)|. For fixed j ∈ [m], we
consider function fj(χ1, . . . , χd) :=

∑
c∈C(q) eT

j Aq,cχc. The expected value of the
function satisfies Eα1,...,αd [fj ] =

∑
c∈C(q) eT

j Aq,c σc.
Given that the underlying game is normalized (see Definition 2) and d =

Ω
(

log m
ε2

)
, each entry of Aq,c is between 0 and ε

2
√
6d log m

.
This entry-wise bound implies that for any c ∈ C(q) and χ1, .., χc, .., χd, χ

′
c ∈

U the following Lipscihtz condition holds for fj :

|fj(χ1, . . . , χc, . . . , χd) − fj(χ1, . . . , χ
′
c, . . . , χd)| ≤ ε

2
√

6d log m
.

Using McDiarmid’s inequality (see Sect. 2) we get that

Pr
α1,...,αd

(|fj − E[fj ]| ≥ ε/4) ≤ 2
m3

.

Say, E denotes the event that for all j ∈ [m], we have |fj −E[fj ]| ≤ ε/4. Using the
union bound we get that Prα1,..,αd(E) ≥ 1 − 2/m2. Therefore, the probabilistic
method guarantees the existence of mixed strategies xc ∈ Uq,c(y), for c ∈ C(q),
that satisfy E . Note that to obtain such a collection of mixed strategies the
expected number of times that we need to sample—the product distribution∏

c∈C(q) αc—is at most two.
Say that mixed strategies xc ∈ Uq,c(y), for c ∈ C(q), satisfy event E . Next

we will show that y is an ε-best response of q against (xc)c∈C(q), and z. Overall,
this implies that y ∈ Up,q(z), and we can set Ep,q(z, y) = (xc)c∈C(q).

Mixed strategies xcs satisfy |fj(x1, . . . , xd) − E[fj ]| ≤ ε/4 for all j ∈ [m].
That is,

∣
∣
∣
∣
∣
∣

∑

c∈C(d)
eT

j Aq,c xc −
∑

c∈C(q)
eT

j Aq,c σc

∣
∣
∣
∣
∣
∣
≤ ε

4
∀j ∈ [m]. (4)

Using inequality (4) for each j in the support of distribution y ∈ Δm, we have

∣
∣
∣
∣
∣
∣

∑

c∈C(d)
yT Aq,c xc −

∑

c∈C(q)
yT Aq,c σc

∣
∣
∣
∣
∣
∣
≤ ε

4
. (5)

Note that y satisfies inequality (3) in the linear program, i.e., y is an ε/2-best
response against σcs and z. Using inequalities (4) and (5) to bound the change
in the left-hand-side of (3) and the right-hand-side of (3) respectively, we get
that y is an ε-best response against xcs and z:

yT Aq,pz +
∑

c∈C(q)
yT Aq,c xc ≥ eT

j Aq,pz +
∑

c∈C(q)
eT

j Aq,c xc − ε ∀j ∈ [m]
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Therefore, if LP(p, q, z, y) is feasible then y ∈ Up,q(z). Also, note that the size
of LP(p, q, z, y) is at most O(nm|U |), therefore we can solve the linear program
in time polynomial in |U |. As mentioned above, given a feasible solution of
LP(p, q, z, y), to obtain Ep,q(y, z) (i.e., a collection of mixed strategies (xc)c∈C(q)
that satisfy E) the expected number of times that we need to sample is at most
two. This establishes the running time bound stated in the lemma, and we get
the desired claims. �	
Next we prove the main result.

Theorem 1. Given an n-player m-action normalized polymatrix game over a
tree, Algorithm1 determines an ε-Nash equilibrium of the game in expected time

mO( log m(log m+log n−log ε)
ε4 ).

Proof. Let G = (V,E) be the underlying tree of the given normalized polymatrix
game. First, we will prove that Algorithm 1 necessarily finds a mixed strategy
in Ur, for the root r of G, in the specified amount of time. Hence, via Lemma 1,
we get that Algorithm 1 successfully finds an ε-Nash equilibrium of the game.

As mentioned above, it was established in [1] that every n-player m-action
game admits an ε/2-Nash equilibrium (x̂q)q∈[n] where each x̂q ∈ U .5 Hence,
for each parent-child pair (p, q) ∈ E there exists at least one set Up,q which is
nonempty; in particular, x̂q ∈ Up,q(x̂p). Moreover, for z = x̂p and y = x̂q the
relaxation LP(p, q, z, y) is guaranteed to be feasible. Therefore, contingent on
the fact that the “if” condition in Step 8 and 17 is performed correctly, we get
that Algorithm 1 is guaranteed to move up the tree with non-empty Up,qs and,
finally, find a mixed strategy in Ur.

Specifically, the correctness of the “if” condition (which we establish below)
ensures that for an ε/2-Nash equilibrium (x̂p)p∈[n] and the sets Up,qs populated
by the algorithm we have x̂q ∈ Up,q(x̂p) for every parent-child pair (p, q) ∈ E.
This follows via an inductive argument over levels of the tree: if q is a leaf node
then x̂q is an ε best response against x̂p and we get the desired containment
x̂q ∈ Up,q(x̂p). Furthermore, using the induction hypothesis that x̂c ∈ Uq,c(x̂q)
for all c ∈ C(q), we get that the “if” condition in Step 8 will be satisfied for x̂q and
x̂p, i.e., the algorithm will include x̂q in Up,q(x̂p) and the inductive claim holds.
In particular, this observation implies that the algorithm will never encounter
the situation wherein the set Up,q(x) is remain empty for all x ∈ U after the
for loops, i.e., the algorithm will always run to completion. It is also relevant
to note that the algorithm can set Ep,q(x̂q, x̂p) to be any tuple (xc)c∈C(q) that
satisfies the best response condition for x̂q and x̂p. That is, it is not necessary
that the algorithm sets Ep,q(x̂q, x̂p) = (x̂c)c∈C(q). But still, the above mentioned
argument goes though and we get that the algorithm always runs to completion.

The “if” condition in Step 8 and 17 is performed O(n|U |2) times. Next we
show that the “if” condition is verified correctly in expected time |U |O( log m

ε2 ).
This overall establishes the stated claims.
5 The change from ε-Nash equilibrium to ε/2-Nash equilibrium can be easily addressed

by adjusting the size of U .
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If the number of children of a player q is o
(

log m
ε2

)
then we can go over

the entire set
∏

c∈C(q) Uq,c(y) in time |U |o( log m

ε2 ) and determine whether the
“if” condition in Step 8 is satisfied. The same argument works in Step 17, if
the number of children of the root r is o

(
log m

ε2

)
.

For the remainder of the proof we consider the other case wherein the number
of children of q (or the root r) is Ω

(
log m

ε2

)
. In this case we verify the “if”

condition in Step 8 (and Step 17) by solving the linear-programming relaxation
LP(p, q, z, y) and employing Lemma 2. Note the size of LP(p, q, z, y) is O(n|U |)
and hence (again, via Lemma 2) in expected time polynomial in |U | we can test if
y ∈ Up,q(z) and find Ep,q(z, y). Recall that this test is guaranteed to succeed for
the ε/2-Nash equilibrium (x̂q)q∈[n], since the corresponding LP(p, q, z, y)s will
be feasible. Hence, we get that Algorithm 1 proceeds up the tree with x̂qs, and
eventually after processing the root r finds an ε-Nash equilibrium of the game.

Steps 8 and 17 are executed O(n|U |2) times, and the expected running time
of these steps is |U |O( log m

ε2 ). These observations establish the time complexity of
the algorithm and complete the proof. �	
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We study a variation of the single-item sealed-bid first-price auction where one
bidder (the leader) is given the option to publicly pre-commit to a distribution
from which her bid will be drawn. We formulate the auction as a two-stage Stack-
elberg game: in the first round, one bidder (the leader) is allowed to publicly com-
mit to a mixed strategy; in the second round, the other bidders submit their bids
simultaneously. Given the publicly known commitment of the leader, the other
bidders simultaneously play (possibly randomized) actions in the second stage.

Intuitively, the leader may have incentive to commit to a distribution with
support below what she would have played in a simultaneous first price auction,
because in doing so, she induces her opponents to lower their bids as well. Our
results provide support for this intuition. For example, we see that even a very
simple form of commitment, in which the leader announces to bid zero (effec-
tively, to exit the auction) with some positive probability p and to bid some other
announced real number with probability 1 − p, can strictly (and significantly)
benefit both bidders in a simple two-bidder setting.

We also completely characterize the optimal commitment strategy for the
leader in terms of the bidder valuations, for arbitrary numbers of bidders. The
characterized optimal commitment, together with best responses on the part
of the followers, forms a subgame perfect equilibrium (SPE). We find that if
the leader has the highest or the second highest valuation, then the two bidders
with highest valuations strictly benefit from the presence of a committing bidder.
This result establishes the leader’s optimal commitment as a coordinative mech-
anism that allows the top two valued bidders to collude without money transfer.
Somewhat surprisingly, compared with the simultaneous first-price auction, the
leader’s optimal commitment yields the top two bidders the same net utility ben-
efit. This observation could eliminate possible conflicts on who should commit
and who should follow.

A leader’s optimal commitment may result in inefficient outcomes, i.e., the
highest-valued bidder does not always win the item. Because the leader’s optimal
commitment benefits the bidders but hurts the welfare, it must decrease the auc-
tioneer’s revenue. Indeed, the auctioneer’s revenue strictly decreases whenever the
leader (and the highest valued follower) strictly benefits from the commitment.

Y. Xu—This research was supported in part by NSF grants CCF-0910940 and CNS-
1254169, the Charles Lee Powell Foundation, and a Microsoft Research Faculty
Fellowship.
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1 Department of Computer Science, Cornell University,
336 Gates Hall, Ithaca, NY 14853, USA

{hedyeh,eva}@cs.cornell.edu
2 Department of Electrical Engineering and Computer Science,

Massachusetts Institute of Technology, Cambridge, USA
nishanthd@csail.mit.edu

In this paper we consider the effect of strategic behavior in matching markets
as school graduates get assigned to jobs (or to further education) reacting to
multiple incentives:

– Companies want to hire the best students,
– Students want to take the best jobs,
– Schools want to help their graduating students take great jobs.

Strategic suppression of grades, as well as early offers and contracts, are well-
known phenomena in this matching process. To help the placement of their
students, schools often like suppressing grades, especially grades of their top
performing students. An important reason for suppressing grades is the desire to
have better placements for all students in the school, not only the top perform-
ing students. Suppressing grades is an explicit policy of many high schools and
universities, but the same effect can also be achieved by allowing grade inflation,
or by not having clear grading guidelines. When a large fraction of the class
receives a grade of A, the expressiveness of grades suffer, effectively creating the
same effect as suppressing grades by other schools. Similarly, randomness in how
grades are assigned also decreases the information content of the transcripts.

Students and companies or schools of further education also behave strate-
gically, acting to get better jobs or to improve the quality of students they can
hire or attract. One tool in this area is making early offers, referred to as the
unraveling of the matching market. Companies at times make offers to students
quite a bit before they graduate, based on transcripts with significant amount
of course work, and hence important information is still missing. Students often
accept these early offers, or even apply for them.

Effect of Strategic Grading. In the first part of the paper, we study the loss
in social welfare resulting from strategic grading by schools using a model intro-
duced by Ostrovsky and Schwarz [in American Economic Journal 2010]. To do

A full version of the paper can be found at http://arxiv.org/abs/1507.02718.
Supported in part by NSF grants CCF-0910940 and CCR-1215994, ONR grant
N00014-08-1-0031, and a Google Research Grant.
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so, we need to model the way that placement of a student with ability a in a job
with quality q, will contribute to welfare. We assume that the resulting welfare is
a monotone increasing function of both a and q, and the effects of these two con-
tributing factors are separable. Concretely, we assume that the resulting welfare
is expressed as f(q)g(a) with both f and g nondecreasing, and g also concave. We
think of grades as a form of signaling, and identify all grades with the expected abil-
ity of the group of students who receive that grade, and assume that all employers
are risk-neutral and aim to hire students with higher expected ability.

We consider the decrease of the quality of the matching resulting from the
fully strategic grading used by a school, i.e., the price of anarchy of the infor-
mation disclosure game of Ostrovsky and Schwarz. For this part of the paper
we use the continuous model of Ostrovsky and Schwarz, assuming that there
are infinitely many students and each school is infinitesimally small. Their main
result is that (under mild assumption, such as the equilibrium being continuous),
at the unique Nash equilibrium of their grading game, schools disclose the right
amount of information, so that students and employers will not find it profitable
to contract early. We give a bound on the loss of quality focusing on the case
when welfare is measured as aq.

Theorem 1. If the students aggregate ability distribution is uniform, and f and
g are the identity, the loss of efficiency in connected equilibria of the strategic
grading game is bounded by 1.36, and give an example with loss of 1.07.

Effect of Unraveling of the Matching Market. While Ostrovsky and Schwarz
show that early contracting is not advantageous under an equilibrium grading
policy of their information disclosure game, we observe that early contracting is
increasingly common. Schools do aim to optimize the placements of their stu-
dents, but we believe that they do not fully optimize grading. The pervasiveness
of early contracting does suggest that the information released in grades is not
at the equilibrium of the disclosure game. Exact optimization of grades at the
full generality proposed by the model is not feasible, or even advisable as grades
play many roles, including motivating the students.

To study the effect of unraveling we consider a two stage game where in stage
one some student-employer pairs can agree on early contracts. In the second stage
grades are released based on each school’s grading policy, and the remaining
students and jobs are matched based on their grades. In this two stage game,
prospective employers have to make decisions about early offers without any
grade information about the students, solely based on the school that the student
attends, where we assume that the distribution of students and grading policy
in each school is public knowledge.

Theorem 2. Suppose functions f and g are increasing and g is concave. Assum-
ing overall student abilities are uniformly distributed, the efficiency loss of match-
ing is at most a factor of 2 under any grading strategy, and this bound is tight.

We also consider the quality of the matching resulting from early contracting
in isolation, assuming fully informative grading, and again focusing on the case
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when welfare is measured as aq. When all schools have identical (and uniform)
distribution of student abilities we improve the above bound of 2 to 4/3.

Theorem 3. The loss of efficiency for the two-stage assignment game in the
case that all of the schools have uniform distribution of students on the same
interval of abilities is at most 4

3 , and give an example with loss of 1.11.
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Abstract. In this paper, we consider the pairwise kidney exchange
game. Ashlagi et al. [1] present a 2-approximation randomized truth-
ful mechanism for this problem. We note that the variance of the utility
of an agent in this mechanism may be as large as Ω(n2), which is not
desirable in a real application. Here, we resolve this issue by providing a
2-approximation randomized truthful mechanism in which the variance
of the utility of each agent is at most 2 + ε. Later, we derandomize our
mechanism and provide a deterministic mechanism such that, if an agent
deviates from the mechanism, she does not gain more than 2�log2 m�.

1 Introduction

Kidney transplant is the only treatment for several types of kidney diseases.
Since people have two kidneys and can survive with only one kidney, they can
potentially donate one of their kidneys. It may be the case that a patient finds
a family member or a friend willing to donate her kidney. Nevertheless, at times
the kidney’s donor is not compatible with the patient. Consider two incompatible
patient-donor pairs. If the donor of the first pair is compatible with the patient
of the second pair and vise-versa, we can efficiently serve both patients without
affecting the donors.

To make the pool of donor-patient pairs larger, hospitals combine their lists
of pairs to one big pool, trying to increase the number of treated patients by
exchanging pairs from different hospitals. This process is managed by some
national supervisor. A centralized mechanism can look at all of the hospitals
together and increase the total number of kidney exchanges. The problem is that
each hospital is interested in is teasinge the numbe of its own served patients.
Thus, the hospital may not report some patient-donors pairs, namely, the hos-
pital may report a partial list. This partial list is then matched by the national
supervisors. Undisclosed set of pairs are matched by the hospitals locally, with-
out the knowledge of the supervisor. This may have a negative effect on the
number of served patients.

The full version of this paper is available at http://arxiv.org/abs/1507.02746.
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Notations and Definitions. In a kidney exchange game we have a graph
G, and each agent owns a disjoint set of vertices of G. A mechanism for this
game receives the reported set of vertices from every agent. After the vertices
are reported, the mechanism chooses a matching on the induced subgraph of
the reported vertices. After this global run, each agent matches her unmatched
vertices, including her undisclosed vertices, privately.

In this game, the utility of each agent is the expected number of her matched
vertices and the social welfare of a mechanism is the size of the output matching.
A kidney exchange mechanism is truthful if no agent gains more by reporting a
partial subset of her vertex. A kidney exchange mechanism F is α-approximation
if for every graph G the number of matched vertices in the maximum matching
of G is at most α times the expected number of matched vertices by F in G.

Related Work. Ashlagi et al. [1] provide a randomized 2-approximation truth-
ful mechanism for the multi-agent kidney exchange game. Moreover, they show
that there is no truthful mechanism with an approximation ratio better than
8/7. They also introduce a deterministic 2-approximation truthful mechanism
for two player kidney exchange game. However, they conjectured that there is
no deterministic constant-approximation truthful mechanism for the multi-agent
kidney exchange game, even with three agents.

Our Results. In this paper, first, we show that the variance of the utility of an
agent in the mechanism proposed by Ashlagi et al. may be as large as Ω(n2),
where n is the number of vertices. The variance of the utility can be interpreted
as the risk of the agent caused by the randomness in the mechanism. Indeed, in
a real application agents prefer to take less risk for the same expected utility. In
this paper, we provide a tool to lower the variance of the utility of each agent
in a kidney exchange mechanism, while keeping the expected utility of each agent
the same. We used this tool to provide a 2-approximation randomized truthful
mechanism in which the variance of the utility of each agent is at most 2 + ε.

Theorem 1. There exists a truthful 2-approximation mechanism for multi-
agent kidney exchange such that the variance of the utility of each agent is at
most 2 + ε, where ε is an arbitrary small constant.

Interestingly, we could apply our technique to design a 2-approximation
deterministic mechanism such that if an agent deviates from the mechanism, she
does not gain more than 2�log2 m�. We call such a mechanism almost truthful.
Indeed, in a practical scenario an almost truthful mechanism is likely to imply a
truthful mechanism. To the best of our knowledge this is the first deterministic
mechanism for the multi-agent kidney exchange game.

Theorem 2. There exists an almost truthful deterministic 2-approximation
mechanism for multi-agent kidney exchange.
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The purpose of affirmative action in school choice is to create a more equal
and diverse social environment, i.e., granting students from disadvantaged social
groups preferential treatments in school admission decisions to maintain racial,
ethnic or socioeconomic balance. Recent evidences from both academia and prac-
tice, however, indicate that implementing affirmative action policies in school
choice problems may induce substantial welfare loss on the purported beneficia-
ries (i.e., minority students). Using the minority reserve policy in the student
optimal stable mechanism as an example, this paper addresses the following two
questions: what are the causes of such perverse consequence, and when we can
effectively implement affirmative action policies without unsatisfied outcomes.

The minimal requirement of an effective affirmative action is that it should
not make at least one minority student strictly worse off, while leaves all the
rest minority students weakly worse off. We first show that a variant of the
Ergin-acyclicity structure, type-specific acyclicity, is necessary and sufficient to
guarantee this minimal effectiveness criterion in a stable mechanism. Next, we
introduce a more demanding effectiveness criterion which requires implementing
a (stronger) affirmative action does not harm any minority students. We show
that a stable mechanism makes no minority students strictly worse off if and only
if the priority structure is strongly type-specific acyclic. These two findings clearly
reveal the source of perverse affirmation actions in school choice, which also
implies that such adverse effects are not coincidences but rather a fundamental
property concealed in the priority structures.

We then responses to the second question such that when we can effectively
implement affirmative action policies without unsatisfied outcomes. We show
that priority structures in practice are very unlikely to be neither type-specific
acyclic nor strongly type-specific acyclic. More specifically, if there is more than
one minority student has lower priority than any majority students in two (or
more) schools in any given priority structures, then the priority structure is
not type-specific acyclic. Strongly type-specific acyclicity condition is even more
confined which requires no minority student has lower priority than any majority

A draft full version is available at http://ssrn.com/abstract=2617877.
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students in all schools. This result suggests that even if helping disadvantaged
social groups is deemed desirable for the society, caution should be exercised
when applying affirmative action to rebalance education opportunities among
different social groups.
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1 Introduction

Media streaming is among the most popular services provided over the Internet.
The lack of a central authority that controls the users, motivates the analysis
of Media on Demand (MoD) services using game theoretic concepts. We define
and study the corresponding resource-allocation game, where users correspond to
self-interested players who choose a MoD server with the objective of minimizing
their individual cost. Each user requires a certain media-file which determines the
user’s class. A server provides both broadcasting and storage needs. Accordingly,
the user’s cost function encompasses both negative and positive, class-dependent,
congestion effects.

An instance of the multi-class resource allocation game is defined by a tuple
G = 〈I,M,A,U〉, where I is the set of players, M is the set of servers and A is the
set of classes. Let n = |I| and m = |M |. Each player belongs to a single class from
A, thus, I = I1∪I2 · · ·∪ I|A|, where all players from Ik belong to class k. For i ∈ I,
let ai ∈ A denote the class to which player i belongs. The parameter U ∈ IR+ is
the class activation-cost, which is assumed to be uniform for all classes.

An allocation of players to servers is a function f : I → M . For a given
allocation, the load on a server j, denoted by Lj , is the number of players
assigned to j, and Lj,k denotes the number of players from Ik assigned to j.

The cost of a player i in an allocation f consists of two components: the load
on the server the player is assigned to (as in job scheduling games [3]), and the
player’s share in the class activation-cost (as in cost-sharing games [1]). Formally,
cf (i) = Lf(i)+ U

Lf(i),ai

. Note that the class activation-cost is shared evenly among
the players from this class serviced by a server. Our model generalizes the one
studied in [2], where all players belong to the same class.

In MoD systems, the bandwidth required for transmitting a certain media-
file corresponds to one unit of load. The storage cost of a media-file on a server
is shared by the users requiring its transmission that are serviced by the server.

2 Our Results and Techniques

We provide answers to the basic questions regarding resource allocation games
with multiple resource classes. Namely, equilibrium existence, convergence, cal-
culation and efficiency. We prove that a Pure Nash Equilibrium (PNE) exists
c© Springer-Verlag Berlin Heidelberg 2015
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for any instance by presenting an exact potential function for the game. By
analyzing this function we show:

Theorem 1. For every instance G, better-response dynamics converges to a
PNE within O(n4) steps.

The equilibrium inefficiency is analyzed with respect to the objective of min-
imizing the maximal cost among the players. That is, given an allocation f , the
social cost of f is given by cmax(f) = maxi∈I cf (i).

We provide several lower bounds on the social cost of an optimal solution,
and then combine them to present the following tight bound on the Price of
Anarchy (PoA).

Theorem 2. For the family G of resource allocation games with multiple resource
classes, PoA(G) = m.

We show that for any number of servers, there exists a game for which the
Price of Stability (PoS) is 2− 1

m . This upper bound is almost matched. Our main
result is a polynomial time algorithm that constructs a PNE whose social cost
is at most twice the optimum. For two servers, we present a simpler algorithm
and our analysis is tight.

Theorem 3. For the family G of resource allocation games with multiple resource
classes, 2 − 1

m ≤ PoS(G) ≤ m. For two servers, PoS(G) = 3/2.

Our algorithms for finding a stable assignment with low social cost are based
on two new methods:

1. While all the players create the same unit-load on the servers, our algorithms
group the players into sets, based on their classes. An initial assignment is
found by considering these sets as an instance of a multiple-knapsack packing
problem with arbitrary-size elements. This method enables analysis of the
assignment using known packing techniques and their properties.

2. The stabilization phase that follows the initial assignment consists of itera-
tions in which the algorithm may reassign complete sets of players, or per-
form a supervised sequence of improving steps. The sequence is initiated by
one player i, and is then limited to players of i’s class who may benefit from
following i by performing exactly the same migration. Analyzing the configu-
ration after each improving step is complex; however, it is possible to analyze
the effect of each supervised sequence of improving steps on the potential
function and to bound the cost of an assignment derived by this method.
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The Addressed Problem. This work considers a fair allocation problem, called
the Fair Subset Sum problem (FSSP), where a common and bounded resource
is to be shared among two agents A and B. Each agent is willing to select a set
of items from an available ground set of weighted items. We address two types
of items structure. In the Separate Items case, each agent owns a set of items
having nonnegative weights and each agent can only use its own items. In the
Shared Items case the agents select the items from the same ground set. The
total utility of a solution x is denoted by U(x) and is equal to the sum of weights
over all selected items. A solution x is feasible if U(x) ≤ 1. We denote the set
of feasible solutions by X. Obviously, the computation of the system optimum
solution x∗ amounts to the solution of a classical subset sum problem (SSP).

A desirable feasible solution divides the utilities of the selected objects in a
fair way. The trade-off between fairness and efficiency, quantified by the so-called
Price of Fairness [1], is the central theme in this paper. We use two different
notions of fairness focusing on the individual utilities obtained by each agent.
Maximin fairness: Based on the principle of Rawlsian justice, a maximin fair
solution is such that the least happy agent gains as much as possible. Proportional
fairness [4]: A solution is proportional fair, if any other solution does not give a
relative improvement for one agent which is larger than the relative loss inflicted
on the other agent. Recently, we also extended our work to a normalized variant
of maximin fairness known as Kalai-Smorodinski fairness.

The contribution of this work regards the assessment of the quality of fair
solutions compared to the global system optimum solution for a general multi-
agent allocation problem. A special focus is put on FSSP for which we perform a
thorough analysis in terms of the largest items weight. In particular, we measure
the Price of Fairness (PoF) as defined in [1] and introduced in [2]. By definition
PoF ∈ [0, 1] and PoF ≈ 1 indicates that the fair solution may be arbitrarily far
from system optimum, while PoF ≈ 0 means that fair solutions are always close
to optimum. We denote the Prices of Fairness corresponding to maximin and
proportional fair solutions as PoFMM and PoFPF .

It is easy to provide worst case instances of FSSP with PoF = 1, correspond-
ing to pathological instances in which items weights are either very large or very
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small. To avoid similar unrealistic settings, as for many bin-packing heuristics,
the Price of Fairness is studied as a function of an upper bound α ≤ 1 on the
size of the maximum item weight. Formally, we extend the definition of PoF
from [1] as follows: Let Iα denote the set of all instances of our FSSP where
all items weights are not larger than α, let U∗

I be the maximum total utility
of instance I, and let fI be a fair solution of instance I. Then we can define
the Price of Fairness depending on α as follows: PoF(α) = supI∈Iα

U∗
I −U(fI)

U∗
I

.
Obviously, PoF = PoF(1).

Summary of Results. First, we provide some basic, yet very general results for
proportional fair solutions valid for any k-agent problem. In particular, we show
that if there exists a proportional fair solution, then such a solution is unique
and maximizes the product of agents utilities. Similar results were derived in
different contexts (e.g. for convex and compact utility sets) but here we provide
simple but fairly general proofs. Moreover, we present a general upper bound
on the Price of Fairness for any proportional fair solution. Additionally, for two
agents it is possible to show that the global utility of a proportional fair solution,
if it exists, is never smaller than that of a maximin fair solution. (This is not true
anymore as soon as the number of agents becomes three.) When the problem
is symmetric, we give a full characterization of proportional fair solutions by
showing that if a fair solution exists then it also system optimal and all agents
get the same utility value.

Table 1. Separate items.

α PoFMM PoFPF

1 1

[2/3, 1] 2 − 1/α 1/2

[1/2, 2/3] 1/2

(0, 1/2]
[

1

� 1
α

� , α
] [

1

� 1
α

� , α
]

Table 2. Shared items.

α PoFMM

1 1

[2/3, 1] 2α − 1

[1/3, 2/3] 1/3

(0, 1/3]
[

1

1+2� 1
2α

� , α
]

The main contribution of this work is an almost complete description of
PoF(α) for FSSP for all values of α. A summary of the obtained expressions (resp.
intervals) for PoF is given in Table 1 for separate items and Table 2 for shared
items. Note that for the case of shared items we prove that, if a proportional fair
solution exist, it is the system optimum and coincides also with the maximin
fair solution. Conversely, whenever a proportional fair solution does not exists,
it is possible to provide almost tight bounds on PoFMM . A different variant of
a game-theoretic setting of SSP with two agents was recently considered in [3].
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Abstract. We study the Fisher model of a competitive market from
the algorithmic perspective. For that, the related convex optimization
problem due to Gale and Eisenberg, [3], is used. The latter problem is
known to yield a Fisher equilibrium under some structural assumptions
on consumers’ utilities, e.g. homogeneity of degree 1, homotheticity etc.
We just assume the concavity of consumers’ utility functions. For this
case we suggest a novel concept of Fisher-Gale equilibrium by introducing
consumers’ utility prices. We develop a subgradient-type algorithm from
Convex Analysis to compute a Fisher-Gale equilibrium by auction. In
worst case, the number of price updates needed to achieve the ε-tolerance
is proportional to 1

ε2
.

Keywords: Fisher equilibrium · Computation of equilibrium · Price
adjustment · Convex optimization · Subgradient methods · Auction

The concept of Fisher equilibrium for a competitive market dates back to
1891, see e.g. [1]. Due to Fisher’s model, consumers buy goods by spending given
wealths in order to maximize their utility functions. There are fixed amounts of
supplied goods available at the market. Fisher equilibrium comprises of optimal
consumption bundles and equilibrium prices which clear the market of goods.
Aiming at the efficient computation of a Fisher equilibrium, a related convex
optimization problem has been proposed in [3]. This so-called Gale’s problem
consists of maximizing an aggregated logarithmic utility function subject to mar-
ket feasibility constraints. The feasibility constraints ensure that the aggregated
consumption does not exceed the fixed amounts of supplied goods. The solutions
of Gale’s problem give equilibrium allocations for the Fisher market. Moreover,
the Lagrange or dual multipliers for its feasibility constraints yield equilibrium
prices. It is crucial to point out that the solutions of Gale’s problem provide
Fisher equilibrium mainly if the wealths are fully spent within the budget con-
straints. To guarantee the latter fact some structural assumptions on the con-
sumers’ utility functions have been made in the literature.

Our goal is to examine the applicability of the Gale’s approach by departing
from the structural assumptions on the consumers’ utilities. We just assume the
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concavity of consumers’ utility functions. In this case, we cannot guarantee the
full spending of wealths within the budget constraints. This is the main reason
why under our concavity assumption the concepts of Fisher and Gale equilib-
rium may come apart. To deal with this difficulty, we generalize both concepts of
Fisher and Gale equilibrium by introducing the so-called utility prices attributed
to consumers. Prices of utility allow to dynamically transfer the utility of a con-
sumption bundle to a common numéraire. Using this transferable utility (cf.
[2]), we introduce a novel concept of Fisher-Gale equilibrium. Here, consumers
maximize their revenues as the differences of transferred utilities and expendi-
tures expressed in a numéraire. It turns out that Fisher and Gale equilibria can
be viewed as Fisher-Gale equilibrium. In particular, for Fisher equilibrium the
utility prices are inverse Lagrange multipliers associated to budget constraints.
For Gale equilibrium, the utility prices appear as ratios of wealths to achieved
utilities. The latter gives rise to the efficient computation of a Fisher-Gale equi-
librium by following the Gale’s approach.

In this paper we develop a subgradient-type algorithm to compute a
Fisher-Gale equilibrium by Gale’s approach. Its convergence properties are cru-
cially based on Convex Analysis. The price adjustment corresponds to the quasi-
monotone subgradent method for nonsmooth convex minimization, recently
suggested in [4]. As objective function for the latter method we take the total
logarithmic revenue of the market. Equilibrium prices can be then characterized
as its minimizers. We refer to [5] for the similar approach using the total exces-
sive revenue of the market. In order to decentralize prices, the auction design is
used: consumers settle and update their individual prices, and producers sell at
the highest offer price. Our price adjustment is based on a tâtonnement proce-
dure, i.e. the prices change proportionally to consumers’ individual excess sup-
plies. While our algorithm proceeds, the market clearance is achieved on average.
The latter means that during the price adjustment supply meets demand sta-
tistically. Altogether, the sequence of highest offer prices, historical averages of
consumption bundles and historical averages of utility prices generated by our
algorithm, converges to a Fisher-Gale equilibrium. In worst case, the number of
price updates needed to achieve the ε-tolerance is proportional to 1

ε2 . Note that
this rate of convergence is optimal for nonsmooth convex minimization.
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