
Chapter 5
The Smaller (SALI) and the Generalized (GALI)
Alignment Indices: Efficient Methods of Chaos
Detection

Charalampos (Haris) Skokos and Thanos Manos

Abstract We provide a concise presentation of the Smaller (SALI) and the
Generalized Alignment Index (GALI) methods of chaos detection. These are
efficient chaos indicators based on the evolution of two or more, initially distinct,
deviation vectors from the studied orbit. After explaining the motivation behind the
introduction of these indices, we sum up the behaviors they exhibit for regular and
chaotic motion, as well as for stable and unstable periodic orbits, focusing mainly
on finite-dimensional conservative systems: autonomous Hamiltonian models and
symplectic maps. We emphasize the advantages of these methods in studying the
global dynamics of a system, as well as their ability to identify regular motion
on low dimensional tori. Finally we discuss several applications of these indices
to problems originating from different scientific fields like celestial mechanics,
galactic dynamics, accelerator physics and condensed matter physics.
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5.1 Introduction and Basic Concepts

A fundamental aspect in studies of dynamical systems is the identification of chaotic
behavior, both locally, i.e. in the neighborhood of individual orbits, and globally,
i.e. for large samples of initial conditions. The most commonly used method to
characterize chaos is the computation of the maximum Lyapunov exponent (mLE)
�1. In general, Lyapunov exponents (LEs) are asymptotic measures characterizing
the average rate of growth or shrinking of small perturbations to orbits of dynamical
systems. They were introduced by Lyapunov [55] and they were applied to
characterize chaotic motion by Oseledec in [70], where the Multiplicative Ergodic
Theorem (which provided the theoretical basis for the numerical computation of the
LEs) was stated and proved. For a recent review of the theory and the numerical
evaluation of LEs the reader is referred to [81]. The numerical evaluation of the
mLE was achieved in the late 1970s [11, 32, 69] and allowed the discrimination
between regular and chaotic motion. This evaluation is performed through the time
evolution of an infinitesimal perturbation of the orbit’s initial condition, which is
described by a deviation vector from the orbit itself. The evolution of the deviation
vector is governed by the so-called variational equations [32].

In practice, �1 is evaluated as the limit for t ! 1 of the finite time maximum
Lyapunov exponent

�1.t/ D 1

t
ln

kw.t/k
kw.0/k ; (5.1)

where t denotes the time and kw.0/k, kw.t/k are the Euclidean norms1 of the
deviation vector w at times t D 0 and t > 0 respectively. Thus

�1 D lim
t!1�1.t/: (5.2)

The computation of the mLE was extensively used for studying chaos and it is
still implemented nowadays for this purpose. Nevertheless, one of its major practical
disadvantages is the slow convergence of the finite time Lyapunov exponent (5.1)
to its limit value (5.2). Since �1.t/ is influenced by the whole evolution of the
deviation vector, the time needed for it to converge to �1 is not known a priori,
and in many cases it may become extremely long. This delay can result in CPU-
time expensive computations, especially when the study of many orbits is required
for the global investigation of a system. In order to overcome this problem several
other fast chaos detection techniques have been developed over the years; some of
which are presented in this volume.

Throughout this chapter we consider finite-dimensional conservative dynamical
systems and in particular, autonomous Hamiltonian models and symplectic maps
(except from Sect. 5.4.3 where a time dependent Hamiltonian system is studied).

1We note that the value of �1 is independent of the used norm.
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In these systems regular motion occurs on the surface of a torus in the system’s
phase space and is characterized by �1 D 0. Any deviation vector w.0/ from a
regular orbit eventually falls on the tangent space of this torus and its norm will
approximately grow linearly in time, i.e. eventually becoming proportional to t,
kw.t/k / t. Consequently, �1.t/ / ln t=t, which practically means that �1.t/ tends
asymptotically to zero following the power law t�1 because the values of ln t change
much slower than t as time grows (see for example [11, 26] and Sect. 5.3 of [81]). On
the other hand, in the case of chaotic orbits the use of any initial deviation vector in
(5.1) and (5.2) practically leads to the computation of the mLE �1 > 0 because this
vector eventually is stretched towards the direction associated to the mLE, assuming
of course that �1 > �2, with �2 being the second largest LE. We note here that,
from the first numerical attempts to evaluate the mLE [11, 32] it became apparent
that a random choice of the initial deviation vector w.0/ leads with probability one
to the computation of �1. This means that, the choice of w.0/ does not affect the
limiting value of �1.t/, but only the initial phases of its evolution. This behavior
introduces some difficulties when we want to evaluate the whole spectrum of LEs
of chaotic orbits because any set of initially distinct deviation vectors eventually
end up to vectors aligned along the direction defined by the mLE. It is worth-noting
that even in cases where we could theoretically know the initial choice of deviation
vectors which would lead to the evaluation of LEs other than the maximum one, the
unavoidable numerical errors in the computational procedure will lead again to the
computation of the mLE [15]. This problem was bypassed by the development of a
procedure based on repeated orthonormalizations of the evolved deviation vectors
[10, 12–15, 78, 95].

Although the eventual coincidence of distinct initial deviation vectors for chaotic
orbits with �1 > �2 was well-known from the early 1980s, this property was
not directly used to identify chaos for about two decades until the introduction of
the Smaller Alignment Index (SALI) method in [79]. In the 1990s some indirect
consequences of the fact that two initially distinct deviation vectors eventually
coincide for chaotic motion, while they will have different directions on the tangent
space of the torus for regular ones, were used to determine the nature of orbits, but
not the fact itself. In particular, in [91] the spectra of what was named the ‘stretching
number’, i.e. the quantity

˛ D
ln

� kw.tC�t/k
kw.t/k

�

�t
; (5.3)

where �t is a small time step, were considered. The main outcome of that paper was
that ‘the spectra for two different initial deviations are the same for chaotic orbits,
but different for ordered orbits’, as was stated in the abstract of Voglis et al. [91].
This feature was later quantified in [92] by the introduction of a quantity measuring
the ‘difference’ of two spectra, the so-called ‘spectral distance’. In [92] it was
shown that this quantity attains constant, positive values for regular orbits, while it
becomes zero for chaotic ones. It is worth noting that in [91] it was explained that the
observed behavior of the two spectra was due to the fact that the deviation vectors
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eventually coincide for chaotic orbits, producing the same sequences of stretching
numbers, while they remain different for regular ones resulting in different spectra of
stretching numbers. Nevertheless, instead of directly checking the matching (or not)
of the two deviation vectors the method developed in [91, 92] requires unnecessary,
additional computations as it goes through the construction of the two spectra and
the evaluation of their ‘distance’. Naturally, this procedure is influenced by the
whole time evolution of the deviation vectors, which in turn results in the delay
of the matching of the two spectra with respect to the matching of the two deviation
vectors.

Apparently, the direct determination of the possible coincidence (or not) of the
deviation vectors is a much faster and more efficient approach to reveal the regular
or chaotic nature of orbits than the evaluation of the spectral distance, as it requires
less computations (see [79] for a comparison between the two approaches). This
observation led to the introduction in [79] of the SALI method which actually checks
the possible coincidence of deviation vectors, while the later introduced Generalized
Alignment Index (GALI) [84] extends this criterion to more deviation vectors. As
we see in Sect. 5.3 this extension allows the correct characterization of chaotic orbits
also in the case where the spectrum of the LEs is degenerate and the second, or even
more, largest LEs are equal to �1.

In order to illustrate the behaviors of both the SALI and the GALI methods
for regular and chaotic motion we use in this chapter some simple models of
Hamiltonian systems and symplectic maps.

In particular, as a two degrees of freedom (2D) Hamiltonian model we consider
the well-known Hénon-Heiles system [43], described by the Hamiltonian

H2 D 1

2
.p2

1 C p2
2/ C 1

2
.q2

1 C q2
2/ C q2

1q2 � 1

3
q3

2: (5.4)

We also consider the 3D Hamiltonian system

H3 D
3X

iD1

!i

2
.q2

i C p2
i / C q2

1q2 C q2
1q3; (5.5)

initially studied in [15, 32]. Note that !i in (5.5) are some constant coefficients. As
a model of higher dimensions we use the ND Hamiltonian

HN D 1

2

NX
iD1

p2
i C

NX
iD0

�
1

2
.qiC1 � qi/

2 C 1

4
ˇ.qiC1 � qi/

4

�
; (5.6)

which describes a chain of N particles with quadratic and quartic nearest neighbor
interactions, known as the Fermi–Pasta–Ulam ˇ model (FPU-ˇ) [36], where q0 D
qNC1 D 0. In all the above-mentioned ND Hamiltonian models, qi, pi, i D 1; 2; : : : N
are respectively the generalized coordinates and the conjugate momenta defining the
2N-dimensional (2Nd) phase space of the system.
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As a symplectic map model we consider in our presentation the 2M-dimensional
(2Md) system of coupled standard maps studied in [51]

x0j D xj C y0j

y0j D yj C Kj

2�
sin

�
2�xj

� � �

2�

˚
sin

�
2�

�
xjC1 � xj

�	 C sin
�
2�

�
xj�1 � xj

�	

;

(5.7)

where j D 1; 2; : : : ; M is the index of each standard map, Kj and � are the model’s
parameters and the prime (0) denotes the new values of the variables after one
iteration of the map. We note that each variable is given modulo 1, i.e. 0 � xj < 1,
0 � yj < 1 and also that the conventions x0 D xM and xMC1 D x1 hold.

In order to make this chapter more focused and easier to read we decided not
to present any analytical proofs for the various mathematical statements given in
the text; we prefer to direct the reader to the publications where these proofs can
be found. Nevertheless, we want to emphasize here that all the laws describing the
behavior of the SALI and the GALI have been obtained theoretically and they are
not numerical estimations or fits to numerical data. Indeed, these laws succeed to
accurately reproduce the evolution of the indices in actual numerical simulations,
some of which are presented in the following sections.

The chapter is organized as follows. In Sect. 5.2 the SALI method is presented
and the behavior of the index for regular and chaotic orbits is discussed. Section 5.3
is devoted to the GALI method. After explaining the motivation that led to the
introduction of the GALI, the definition of the index is given and its practical
computation is discussed in Sect. 5.3.1. Then, in Sect. 5.3.2 the behavior of the
index for regular and chaotic motion is presented and several example orbits
of Hamiltonian systems and symplectic maps of various dimensions are used to
illustrate these behaviors. The ability of the GALI to identify motion on low
dimensional tori is presented in Sect. 5.3.3, while Sect. 5.3.4 is devoted to the
behavior of the index for stable and unstable periodic orbits. In Sect. 5.4 several
applications of the SALI and the GALI methods are presented. In particular, in
Sect. 5.4.1 we explain how the SALI and the GALI can be used for understanding
the global dynamics of a system, while specific applications of the indices to
various dynamical models are briefly discussed in Sect. 5.4.2. The particular case
of time dependent Hamiltonians is considered in Sect. 5.4.3. Finally, in Sect. 5.5 we
summarize the advantages of the SALI and the GALI methods and briefly discuss
some recent comparative studies of different chaos indicators.

5.2 The Smaller Alignment Index (SALI)

The idea behind the SALI’s introduction was the need for a simple, easily
computed quantity which could clearly identify the possible alignment of two
multidimensional vectors. As has been already explained, it was well-known that



134 Ch. (Haris) Skokos and T. Manos

any two deviation vectors from a chaotic orbit with �1 > �2 are stretched towards
the direction defined by the mLE, eventually becoming aligned having the same or
opposite directions. Thus, it would be quite helpful to devise a quantity which could
clearly indicate this alignment.

Since we are only interested in the direction of the two deviation vectors and not
in their actual size, we can normalize them before checking their alignment. This
process also eliminates the problem of potential numerical overflow due to vectors’
growth in size, which appears especially in the case of chaotic orbits. So in practice,
we let the two deviation vectors evolve under the system’s dynamics (according
to the variational equations for Hamiltonian models, or the so-called tangent map
for symplectic maps) normalizing them after a fixed number of evolution steps to
a predefined norm value. For simplicity in our presentation we consider the usual
Euclidean norm (denoted by k � k) and renormalize the evolved vectors to unity.

In the case of chaotic orbits this procedure is schematically shown in Fig. 5.1
where the two initially distinct unit deviation vectors2 Ow1.0/, Ow2.0/ converge to the
same direction. We emphasize that Fig. 5.1 is just a schematic representation on the
plane of the real deviation vectors which are objects evolving in multidimensional
spaces. Since the mLE �1 > 0 denotes the mean exponential rate of each vector’s
stretching, they are elongated at some later time t > 0,3 becoming w1.t/, w2.t/,

Fig. 5.1 Schematic representation of the evolution of two deviation vectors and of the correspond-
ing SALI for a chaotic orbit. Two initially distinct unit deviation vectors Ow1.0/, Ow2.0/ from point
P.0/ of a chaotic orbit become w1.t/, w2.t/ after some time t > 0 when the orbit reaches point P.t/,
with Ow1.t/, Ow2.t/ being the unit vectors along these directions. The length of the shortest diagonals
of the grey-shaded parallelograms defined by Ow1.0/, Ow2.0/ and Ow1.t/, Ow2.t/ are the values of the
SALI.0/ and the SALI.t/ respectively

2We note that throughout this chapter we use the hat symbol (O) to denote a unit vector.
3For Hamiltonian systems the time is a continuous variable, while for maps it is a discrete one
counting the map’s iterations.
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while the corresponding unit vectors are Ow1.t/, Ow2.t/. Then the diagonals of the
parallelograms defined by Ow1.t/, Ow2.t/, both for t D 0 and t > 0, depict the sum
and the difference of the two unit vectors.

In the particular case shown in Fig. 5.1 the two unit vectors tend to align by
becoming equal. This means that k Ow1.t/ � Ow2.t/k ! 0 and k Ow1.t/ C Ow2.t/k ! 2.
Of course the dynamics could have led the vectors to become opposite. In that case
we get k Ow1.t/ � Ow2.t/k ! 2 and k Ow1.t/ C Ow2.t/k ! 0. Since we are not interested
in the particular orientation of the deviation vectors, i.e. whether they become equal
or opposite to each other, when we check their possible alignment, a rather natural
choice is to define the minimum of norms k Ow1.t/ C Ow2.t/k, k Ow1.t/ � Ow2.t/k as an
indicator of the vectors’ alignment. This is the reason of the appellation, as well as
of the definition of the SALI in [79] as

SALI.t/ D min fk Ow1.t/ C Ow2.t/k; k Ow1.t/ � Ow2.t/kg ; (5.8)

with Owi.t/ D wi.t/
kwi.t/k , i D 1; 2 being unit vectors.

Naturally, in order for the SALI to be efficiently used as a chaos indicator it
should exhibit distinct behaviors for chaotic and regular orbits. As explained before
the SALI becomes zero for chaotic orbits. On the other hand, in the case of regular
orbits deviation vectors fall on the tangent space of the torus on which the motion
occurs, having in general different directions as there is no reason for them to be
aligned [82, 91]. This behavior is shown schematically in Fig. 5.2. Thus, in this case
the index should be always different from zero. In practice, the values of the SALI
exhibit bounded fluctuations around some constant, positive number.

Fig. 5.2 Schematic representation of the evolution of two deviation vectors for a regular orbit.
The motion takes place on a torus. We consider two initially distinct unit deviation vectors Ow1.0/,
Ow2.0/ from point P.0/, which are not necessarily on the tangent space of the torus (this space is
depicted as a shaded parallelogram passing through P.0/). As time evolves the deviation vectors
tend to fall on the torus’ tangent space and the corresponding unit vectors Ow1.t/, Ow2.t/ at time
t > 0 are ‘closer’ to the current tangent space (i.e. the grey-shaded parallelogram passing through
P.t/), as the shortening of the perpendicular to the tangent spaces dotted lines from the edges of the
deviation vectors indicate. Since there is no reason for the alignment of the two deviation vectors,
the SALI will not become zero
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Thus, in order to compute the SALI we follow the evolution of two initially
distinct, random, unit deviation vectors Ow1.0/, Ow2.0/. Choosing these vectors to be
also orthogonal sets the initial SALI to its highest possible value (SALI.0/ D p

2)
and ensures that they are considerably different from each other, which has proved
to be a very good computational practice. Then, every t D � time units we normalize
the evolved vectors w1.i�/, w2.i�/, i D 1; 2; : : :, to Ow1.i�/, Ow2.i�/ and evaluate the
SALI.i�/ from (5.8). This algorithm is described in pseudo-code in Table 5.1 of
the Appendix. A MAPLE code for this algorithm, developed specifically for the
Hénon-Heiles system (5.4) can be found in Chap. 5 of [20].

The completely different behaviors of the SALI for regular and chaotic orbits are
clearly seen in Fig. 5.3,4 where some representative results are shown for the 2D
Hamiltonian system (5.4) and the 6d symplectic map

x01 D x1 C y01
y01 D y1 C K

2�
sin .2�x1/ � �

2�
fsin Œ2� .x2 � x1/� C sin Œ2� .x3 � x1/�g

x02 D x2 C y02
y02 D y2 C K

2�
sin .2�x2/ � �

2�
fsin Œ2� .x3 � x2/� C sin Œ2� .x1 � x2/�g

x03 D x3 C y03
y03 D y3 C K

2�
sin .2�x3/ � �

2�
fsin Œ2� .x1 � x3/� C sin Œ2� .x2 � x3/�g ;

(5.9)

obtained by considering M D 3 coupled standard maps with K1 D K2 D K3 D K in
(5.7). From the results of Fig. 5.3 we see that for both systems the SALI of regular
orbits (black, solid curves) remains practically constant and positive, i.e.

SALI / constant: (5.10)

On the other hand, the SALI of chaotic orbits (black, dashed curve in Fig. 5.3a and
grey, solid curve in Fig. 5.3b) exhibits a fast decrease to zero after an initial transient
time interval, reaching very small values around the computer’s accuracy (10�16).
Actually, it was shown in [83] that the SALI tends to zero exponentially fast in such
cases, following the law

SALI.t/ / exp Œ�.�1 � �2/t�; (5.11)

where �1, �2 (�1 � �2) are the first (i.e. the mLE) and the second largest LEs
respectively. As an example demonstrating the validity of this exponential-decay
law we plot in Fig. 5.4 the evolution of the SALI (solid curve) of the chaotic orbit of

4We note that throughout this chapter the logarithm to base 10 is denoted by log.



5 The SALI and the GALI Methods of Chaos Detection 137

10

S
A
LI

10–16

10–14

10–12

10–10

10–8

10–6

10–4

10–2

100

100 1000

t

(a) (b)

Fig. 5.3 The time evolution of the SALI for a regular and a chaotic orbit of (a) the 2D Hamiltonian
system (5.4) for H2 D 0:125 (after [83]) and (b) the 6d map (5.9) for K D 3 and � D 0:1 (after
[79]). In (a) the time t is continuous, while in (b) it is discrete and counts the map’s iterations n.
The initial conditions of the orbits are: (a) q1 D 0, q2 D 0:1, p1 D 0:49058, p2 D 0 (regular orbit;
solid curve) and q1 D 0, q2 D �0:25, p1 D 0:42081, p2 D 0 (chaotic orbit; dashed curve), and
(b) x1 D 0:55, y1 D 0:05, x2 D 0:55, y2 D 0:01, x3 D 0:55, y3 D 0 (regular orbit; black curve)
and x1 D 0:55, y1 D 0:05, x2 D 0:55, y2 D 0:21, x3 D 0:55, y3 D 0 (chaotic orbit; grey curve)

Fig. 5.4 The evolution of the SALI (solid curve) for the chaotic orbit of Fig. 5.3a as a function of
time t. The dashed line corresponds to a function proportional to exp .��1t/ for �1 D 0:047. Note
that the t-axis is linear (after [83])
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Fig. 5.3a using a linear horizontal axis for time t. Since for 2D Hamiltonian systems
�2 D 0, (5.11) becomes

SALI.t/ / exp .��1t/; (5.12)

For this particular orbit the mLE was found to be �1 � 0:047 in [83]. From Fig. 5.4
we see that (5.12) with �1 D 0:047 (dashed line) reproduces correctly the evolution
of the SALI.5

Thus, the completely different behavior of the SALI for regular (5.10) and
chaotic (5.11) orbits permits the clear and efficient distinction between the two
cases. In [79, 83] a comparison of the SALI’s performance with respect to other
chaos detection techniques was presented and the efficiency of the index was
discussed. A main advantage of the SALI method is its ability to detect chaotic
motion faster than other techniques which depend on the whole time evolution
of deviation vectors, like the mLE and the spectral distance, because the SALI
is determined by the current state of these vectors and is not influenced by their
evolution history. Hence, the moment the two vectors are close enough to each
other the SALI becomes practically zero and guarantees the chaotic nature of the
orbit beyond any doubt. In addition, the evaluation of the SALI is simpler and
more straightforward with respect to other methods that require more complicated
computations. Such aspects were discussed in [83] where a comparison of the index
with the Relative Lyapunov Indicator (RLI) [77] and the so-called ‘0–1’ test [39]
was presented. Another crucial characteristic of the SALI is that it attains values
in a given interval, namely SALI.t/ 2 Œ0;

p
2�, which does not change in time as

is for example the case for the Fast Lyapunov Indicator (FLI) [37]. Thus, setting
a realistic threshold value below which the SALI is considered to be practically
zero (and the corresponding orbit is characterized as chaotic), allows the fast
and accurate discrimination between regular and chaotic motion. Due to all these
features the SALI became a reliable and widely used chaos indicator as its numerous
applications to a variety of dynamical systems over the years prove. Some of these
applications are discussed in Sect. 5.4.

5.3 The Generalized Alignment Index (GALI)

A fundamental difference between the SALI and other, commonly applied chaos
indicators, is that it uses information from the evolution of two deviation vectors
instead of just one. A consequence of this feature is the appearance of the two

5We note that here, as well as in several, forthcoming figures in this chapter, the evaluation of
the LEs is done only for confirming the theoretical predictions for the time evolution of the SALI
(Eq. (5.12) in the current case) and later on of the GALIs, and it is not needed for the computation
of the SALI and the GALIs.
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largest LEs in (5.11). After performing this first leap from using only one deviation
vector, the question of going even further arises naturally. To formulate this in other
words: why should we stop in using only two deviation vectors? Can we extend
the definition of the SALI to include more deviation vectors? Assuming that this
extension is possible, what will we gain from it? Will the use of more than two
deviation vectors lead to the introduction of a new chaoticity index which will permit
the acquisition of a deeper understanding of the system’s dynamics, exhibiting at the
same time a better numerical performance than the SALI? For instance, from (5.11)
we realize that in the case of a chaotic orbit with �1 � �2 the convergence of the
SALI to zero will be extremely slow. As a result long integrations would be required
in order for the index to distinguish this orbit from a regular one for which the SALI
remains practically constant. Although the existence of such chaotic orbits is not
very probable the drawback of the SALI remains. An alternative way to state this
problem is the following: can we construct a new index whose behavior in the case
of chaotic orbits will depend on more LEs than the two largest ones so that it can
overcome the discrimination problem for �1 � �2?

Indeed, such an index can be constructed. The key point to its development is
the observation that the SALI is closely related to the area of the parallelogram
defined by the two deviation vectors.6 From the schematic representation of the
deviation vectors’ evolution in Fig. 5.1 we see that when the SALI vanishes one of
the diagonals of the parallelogram also vanishes, and consequently its area becomes
zero. The area A2 of a usual 2d parallelogram is equal to the norm of the exterior
product of its two sides v1, v2, and also equal to the half of the product of its
diagonals’ lengths

A2 D kv1 � v2k D kv1 C v2k � kv1 � v2k
2

: (5.13)

In a similar way, the area A of the parallelogram of Fig. 5.1 is given by the
generalization of the exterior product of vectors to higher dimensions, i.e. the so-
called wedge product denoted by .^/,7 so that

A D k Ow1 ^ Ow2k D k Ow1 C Ow2k � k Ow1 � Ow2k
2

: (5.14)

Note the analogy of this equation to (5.13).8

Based on the fact that the SALI is related to the area of the parallelogram defined
by two unit deviation vectors, the extension of the index to include more vectors

6Note that this parallelogram is not the usual 2d parallelogram on the plane because its sides (the
deviation vectors) are not 2d vectors.
7For a brief introduction to the notion of the wedge product the reader is referred to the Appendix A
of [84] and the Appendix of [81].
8A proof of the second equality of (5.14) can be found in the Appendix B of [84].



140 Ch. (Haris) Skokos and T. Manos

is straightforward: the new quantity is defined as the volume of the parallelepiped
formed by more than two deviation vectors. This volume is computed as the norm
of the wedge product of these vectors. These arguments led to the introduction in
[84] of the Generalized Alignment Index of order k (GALIk) as

GALIk.t/ D k Ow1.t/ ^ Ow2.t/ ^ : : : ^ Owk.t/k; (5.15)

where Owi are unit vectors as in (5.8). In this definition the number of used deviation
vectors should not exceed the dimension of the system’s phase space, because in this
case the k vectors will become linearly dependent and the corresponding volume
will be by definition zero, as is for example the area defined by two vectors having
the same direction. Thus, for an ND Hamiltonian system with N � 2 or a 2Nd
symplectic map with N � 1, we consider only GALIs with 2 � k � 2N.

By its definition the GALIk is a quantity clearly indicating the linear dependence
(GALIk D 0) or independence (GALIk > 0) of k deviation vectors. The SALI
has the same discriminating ability as SALI D 0 indicates that the two vectors
are aligned, i.e. they are linearly dependent, while SALI > 0 implies that the
vectors are not aligned, which means that they are linearly independent. Actually,
the connection between the two indices can be quantified explicitly. Indeed, it was
proved in the Appendix B of [84] that

GALI2 D SALI � max fk Ow1.t/ C Ow2.t/k; k Ow1.t/ � Ow2.t/kg
2

: (5.16)

Since the max fk Ow1.t/ C Ow2.t/k; k Ow1.t/ � Ow2.t/kg is a number in the interval
Œ
p

2; 2� we conclude that

GALI2 / SALI; (5.17)

which means that the GALI2 is practically equivalent to the SALI. This is another
evidence that the GALI definition (5.15) is a natural extension of the SALI for more
than two deviation vectors.

5.3.1 Computation of the GALI

Let us discuss now how one can actually calculate the value of the GALIk for an ND
Hamiltonian system (N � 2) or a 2Nd symplectic map (N � 1). For this purpose
we consider the k � 2N matrix

A.t/ D

2
6664

w11.t/ w12.t/ � � � w1 2N.t/
w21.t/ w22.t/ � � � w2 2N.t/

:::
:::

:::

wk1.t/ wk2.t/ � � � wk 2N.t/

3
7775 (5.18)
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having as rows the 2N coordinates of the k unit deviation vectors Owi.t/ with respect
to the usual orthonormal basis Oe1 D .1; 0; 0; : : : ; 0/, Oe2 D .0; 1; 0; : : : ; 0/, : : :,
Oe2N D .0; 0; 0; : : : ; 1/. We note that the elements of A.t/ satisfy the conditionP2N

jD1 w2
ij.t/ D 1 for i D 1; 2; : : : ; k as each deviation vector has unit norm.

We can now follow two routes for evaluating the GALIk.t/. According to the
first one we compute the GALIk by evaluating the norm of the wedge product of k
vectors as

GALIk.t/ D

8
ˆ̂̂̂
<
ˆ̂̂̂
:

X
1�i1<i2<���<ik�2N

0
BBB@det

2
6664

w1i1 .t/ w1i2 .t/ � � � w1ik .t/
w2i1 .t/ w2i2 .t/ � � � w2ik .t/

:::
:::

:::

wki1 .t/ wki2 .t/ � � � wkik .t/

3
7775

1
CCCA

2
9
>>>>=
>>>>;

1=2

;

(5.19)

where the sum is performed over all the possible combinations of k indices out of
2N (a proof of this equation can be found in [84]). In practice this means that in
our calculation we consider all the k � k determinants of A.t/. Equation (5.19) is
particularly useful for the theoretical description of the GALI’s behavior (actually
expressions (5.22) and (5.23) below were obtained by using this equation), but
not very efficient from a practical point of view. The reason is that the number of
determinants appearing in (5.19) can increase enormously when N grows, leading
to unfeasible numerical computations.

A simpler, straightforward and computationally more efficient approach to
evaluate the GALIk was developed in [85], where it was proved that the index is
equal to the product of the singular values zi, i D 1; 2; : : : ; k of AT.t/ (the transpose
of matrix A.t/), i.e.

GALIk.t/ D
kY

iD1

zi.t/: (5.20)

We note that the singular values of AT.t/ are obtained by performing the Singular
Value Decomposition (SVD) procedure to AT.t/. According to the SVD method (see
for instance Sect. 2.6 of [74]) the 2N � k matrix AT is written as the product of a
2N�k column-orthogonal matrix U (UT �U D Ik, with Ik being the k�k unit matrix),
a k � k diagonal matrix Z having as elements the positive or zero singular values zi,
i D 1; : : : ; k, and the transpose of a k � k orthogonal matrix V (VT � V D Ik), i.e.

AT D U � Z � VT: (5.21)

In practice, in order to compute the GALI of order k we follow the evolution of
k initially distinct, random, orthonormal deviation vectors Ow1.0/, Ow2.0/, : : :, Owk.0/.
Similarly to the computation of the SALI, choosing orthonormal vectors ensures
that all of them are sufficiently far from linear dependence and gives to the GALIk
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its largest possible initial value GALIk D 1. Afterwards, every t D � time units we
normalize the evolved vectors w1.i�/, w2.i�/, : : :, wk.i�/, i D 1; 2; : : :, to Ow1.i�/,
Ow2.i�/, : : :, Owk.i�/ and set them as rows of a matrix A.i�/ (5.18). Then, according
to (5.20) the GALIk.i�/ is computed as the product of the singular values of matrix
AT.i�/. This algorithm is described in pseudo-code in Table 5.2 of the Appendix.
A MAPLE code computing all the possible GALIs (i.e. GALI2, GALI3 and GALI4)
for the 2D Hamiltonian (5.4) can be found in Chap. 5 of [20].

5.3.2 Behavior of the GALI for Chaotic and Regular Orbits

After defining the new index and explaining a practical way to evaluate it, let us
discuss its ability to discriminate between chaotic and regular motion. As we have
already mentioned, in the case of a chaotic orbit all deviation vectors eventually
become aligned to the direction defined by the largest LE. Thus, they become
linearly dependent and consequently the volume they define vanishes, meaning
that the GALIk, 2 � k � 2N, will become zero. Actually, in [84] it was shown
analytically that in this case the GALIk.t/ decreases to zero exponentially fast with
an exponent which depends on the k largest LEs as

GALIk.t/ / exp f� Œ.�1 � �2/ C .�1 � �3/ C � � � C .�1 � �k/� tg : (5.22)

Note that for k D 2 we get the exponential law (5.11) in agreement with the
equivalence between the GALI2 and the SALI (5.17).

Let us now consider the case of regular motion in a ND Hamiltonian system or a
2Nd symplectic map with N � 2. In general, this motion occurs on an Nd torus in the
system’s 2Nd phase space. As we discussed in Sect. 5.2, in this case any deviation
vector eventually falls on the Nd tangent space of the torus (Fig. 5.2). Consequently,
the k initially distinct, linearly independent deviation vectors we follow in order to
compute the evolution of the GALIk eventually fall on the Nd tangent space of the
torus, without necessarily having the same directions. Thus, if we do not consider
more deviation vectors than the dimension of the tangent space (k � N) we end up
with k linearly independent vectors on the torus’ tangent space and consequently the
volume of the parallelepiped they define (i.e. the GALIk) will be different from zero.
As we see later on, numerical simulations show that in this case the GALIk exhibits
small fluctuations around some positive value. If, on the other hand, we consider
more deviation vectors than the dimension of the tangent space (N < k � 2N) the
deviation vectors eventually become linearly dependent, as we end up with more
vectors in the torus’ tangent space than the space’s dimension. Thus, the volume
that these vectors define will vanish and the GALIk will become zero. Specifically,
in [84] it was shown analytically that in this case the GALIk tends to zero following
a power law whose exponent depends on the torus dimension and on the number k
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of deviation vectors considered, i.e. GALIk / t�2.k�N/. In summary the behavior of
the GALIk for regular orbits is

GALIk.t/ /
(

constant if 2 � k � N
1

t2.k�N/ if N < k � 2N:
(5.23)

From this equation we see that SALI / GALI2 / constant, in accordance to (5.10).

5.3.2.1 Some Illustrative Paradigms

In what follows we illustrate the different behaviors of the GALIk by computing
its evolution for some representative chaotic and regular orbits of various ND
autonomous Hamiltonians and 2Nd symplectic maps. Before doing so let us note
that for these systems the LEs comes in pairs of values having opposite signs

�i D ��2N�iC1; i D 1; 2; : : : ; N; (5.24)

while, moreover

�N D �NC1 D 0 (5.25)

for Hamiltonian systems [14, 41, 81].

Hamiltonian Systems

Initially, we consider the 2D Hamiltonian (5.4) which has a 4d phase space. For this
system we can define the GALIk for k D 2, 3 and 4. Then, according to (5.24) and
(5.25), the LEs satisfy the conditions �1 D ��4, �2 D �3 D 0. Thus, according to
(5.22) the evolution of the GALIs for a chaotic orbit is given by

GALI2.t/ / e��1t; GALI3.t/ / e�2�1 t; GALI4.t/ / e�4�1 t: (5.26)

On the other hand, for a regular orbit (5.23) indicates that

GALI2.t/ / constant; GALI3.t/ / 1

t2
; GALI4.t/ / 1

t4
: (5.27)

From the results of Fig. 5.5, where the time evolution of the GALI2, the GALI3 and
the GALI4 for a chaotic orbit (actually the one considered in Figs. 5.3a and 5.4)
and a regular orbit are plotted, we see that the laws (5.26) and (5.27) describe quite
accurately the obtained numerical data.
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Fig. 5.5 The time evolution of the GALI2, the GALI3 and the GALI4 for (a) a chaotic and (b) a
regular orbit of the 2D Hamiltonian (5.4) for H2 D 0:125. The chaotic orbit is the one considered
in Fig. 5.3a, while the initial conditions of the regular orbit are q1 D 0, q2 D 0, p1 D 0:5,
p2 D 0. The straight lines correspond in (a) to functions proportional to exp.��1t/, exp.�2�1t/
and exp.�4�1t/, for �1 D 0:047 and in (b) to functions proportional to t�2 and t�4. The slope of
each line is mentioned in the legend. Note that the horizontal, time axis in (a) is linear, while in (b)
is logarithmic (after [84])

For a 3D Hamiltonian like (5.5) the theoretical prediction (5.22) gives

GALI2.t/ / e�.�1��2/t; GALI3.t/ / e�.2�1��2/t; GALI4.t/ / e�.3�1��2/t;

GALI5.t/ / e�4�1t; GALI6.t/ / e�6�1t;
(5.28)

for a chaotic orbit, because, according to (5.24) and (5.25), �1 D ��6, �2 D ��5

and �3 D �4 D 0. On the other hand, a regular orbit lies on a 3d torus and according
to (5.23) the GALIs should behave as

GALI2.t/ / constant; GALI3.t/ / constant; GALI4.t/ / 1

t2
;

GALI5.t/ / 1

t4
; GALI6.t/ / 1

t6
:

(5.29)

In Fig. 5.6 we plot the time evolution of the various GALIs for a chaotic (Fig. 5.6a)
and a regular (Fig. 5.6b) orbit of the 3D Hamiltonian (5.5). From the plotted results
we see that the behaviors of the GALIs are very well approximated by (5.28)
and (5.29). We note here that the constant values that the GALI2 and the GALI3

eventually attain in Fig. 5.6b are not the same. Actually, the limiting value of GALI3

is smaller than the one of GALI2.
As an example of evaluating the GALIs for multidimensional Hamiltonians we

consider model (5.6) for N D 8 particles. This corresponds to an 8D Hamiltonian
system H8, having a 16d phase space, which allows the definition of several GALIs:
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Fig. 5.6 The time evolution of the GALIk , k D 2; 3; : : : ; 6 for (a) a chaotic and (b) a regular orbit
of the 3D Hamiltonian (5.5) with H3 D 0:09, !1 D 1, !2 D

p
2 and !3 D

p
3. The initial

conditions of the orbits are: (a) q1 D 0, q2 D 0, q3 D 0, E1 D 0:03, E2 D 0:03, E3 D 0:03,
and (b) q1 D 0, q2 D 0, q3 D 0, E1 D 0:005, E2 D 0:085, E3 D 0, where the quantities
E1, E2, E3 (usually referred as the ‘harmonic energies’) are related to the momenta p1 , p2 , p3

through pi D p2Ei=!i, i D 1; 2; 3. The straight lines in (a) correspond to functions proportional
to expŒ�.�1 � �2/t�, expŒ�.2�1 � �2/t�, expŒ�.3�1 � �2/t�, exp.�4�1t/ and exp.�6�1t/ for
�1 D 0:03, �2 D 0:008, which are accurate numerical estimations of the orbit’s two largest LEs
(see [84] for more details). The straight lines in (b) correspond to functions proportional to t�2,
t�4 and t�6. The slope of each line is mentioned in the legend. The horizontal, time axis is linear
in (a) and logarithmic in (b) (after [84])

starting from GALI2 up to GALI16. In Fig. 5.7 the time evolution of several of these
indices are shown for a chaotic (Fig. 5.7a, b) and a regular (Fig. 5.7c, d) orbit. From
these results we again conclude that the laws (5.22) and (5.23) are quite accurate in
describing the time evolution of the GALIs.

The first seven indices, GALI2 up to GALI8, exhibit completely different
behaviors for chaotic and regular motion: they tend exponentially fast to zero
for a chaotic orbit (Fig. 5.7a, b), while they attain constant, positive values for a
regular one (Fig. 5.7c). This characteristic makes them ideal numerical tools for
discriminating between the two cases, as we see in Sect. 5.4.1.1 where some specific
numerical examples are discussed in detail.

Although the constancy of the GALIk, k D 1; : : : ; 8 for regular orbits is predicted
from (5.23), nothing is yet said about the actual values of these constants. It is
evident from Fig. 5.7c that these values decrease as the order k of the GALIk

increases, something which was also observed in Fig. 5.6b for the 3D Hamiltonian
(5.5). For the regular orbit of Fig. 5.7c we see that GALI8 � 10�7. One might
argue that this very small value could be considered to be practically zero and that
the orbit might be (wrongly) classified as chaotic. The flaw in this argumentation
is that the possible smallness of GALI8 � 10�7 is of relative nature as this
value should be compared with the values that the index reaches for actual chaotic
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Fig. 5.7 The time evolution of the GALIk, k D 2; : : : ; 8; 10; 12; 14; 16 for a chaotic (panels (a)
and (b)) and a regular orbit (panels (c) and (d)) of the ND Hamiltonian (5.6) with N D 8 and ˇ D
1:5. The initial conditions of the chaotic orbit are Q1 D Q4 D 2, Q2 D Q5 D 1, Q3 D Q6 D 0:5,

Q7 D Q8 D 0:1, Pi D 0 where Qi D 2

3

8X
jD1

qj sin

�
ij�

9

�
, Pi D 2

3

8X
jD1

pj sin

�
ij�

9

�
, i D 1; : : : ; 8

(see [85] for more details). The initial conditions of the regular orbit are q1 D q2 D q3 D q8 D
0:05, q4 D q5 D q6 D q7 D 0:1, pi D 0, i D 1; : : : ; 8. The straight lines in (a) and (b) correspond
to exponential functions of the form (5.22) for �1 D 0:170, �2 D 0:141, �3 D 0:114, �4 D 0:089,
�5 D 0:064, �6 D 0:042, �7 D 0:020, which are estimations (obtained in [85]) of the orbit’s
seven largest LEs. The straight lines in (d) correspond to functions proportional to t�4, t�8, t�12

and t�16. The slope of each line is mentioned in the legend. Note the huge range differences in the
horizontal, time axes between panels (a) and (b), where the axes are linear, and panels (c) and (d)
where the axes are logarithmic (after [85])

orbits. For instance, the chaotic orbit of Fig. 5.7b has GALI8 � 10�40, after only
t � 160 time units! At the same time we get GALI8 � 10�1 for the regular orbit
(Fig. 5.7c). In addition, extrapolating the results of GALI8 for the chaotic orbit in
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Fig. 5.7b to e.g. t � 105 we would obtain values extremely smaller than the value
GALI8 � 10�7 archived for the regular orbit in Fig. 5.7c.

The necessity to determine an appropriate threshold value for the GALIk, 2 �
k � N, below which orbits will be securely classified as chaotic, becomes evident
from the above analysis. Since a theoretical, or even an empirical (numerical)
relation between the order k of the GALIk and the constant value it reaches for
regular orbits is still lacking, one efficient way to determine this threshold value is
by computing the GALIk for some representative chaotic and regular orbits of each
studied system. Then, a safe policy is to define this threshold to be a few orders of
magnitude smaller than the minimum value obtained by the GALIk for the tested
regular orbits. For example, based on the results of Fig. 5.6 for the 3D Hamiltonian
(5.5) this threshold value for the GALI3 could be set to be �10�8, while for the
system of Fig. 5.7 a reliable threshold value for the GALI8 could be �10�16.

The results of Fig. 5.7 verify the predictions of (5.22) and (5.23) that the GALIs
of order 8 < k � 16 tend to zero both for chaotic and regular orbits. Nevertheless,
the completely different way they do so, i.e. they decay exponentially fast for chaotic
orbits, while they follow a power law decay for regular ones, allows us again to
develop a well-tailored strategy to discriminate between the two cases. The different
decay laws result in enormous differences in the time the indices need to reach any
predefined low value. Thus, the measurement of this time can be used to characterize
the nature of the orbits, as we see in Sect. 5.4.1.2. For example, for the chaotic orbit
of Fig. 5.7b GALI16 � 10�30 after about t � 25 time units, while it reaches the
same small value after about t � 105 time units for the regular orbit of Fig. 5.7d; a
time interval which is larger by a factor � 4000 with respect to the chaotic orbit!

Symplectic Maps

Although up to now our discussion concerned the implementation of the GALIs to
Hamiltonian systems, the indices follow laws (5.22) and (5.23) also for symplectic
maps (with the obvious substitution of the continuous time t by a discrete one which
counts the map’s iterations n) as the representative results of Figs. 5.8 and 5.9 clearly
verify. In particular, in Fig. 5.8 we see the behavior of the GALIs for a chaotic
(Fig. 5.8a) and a regular (Fig. 5.8b) orbit of the 4d map

x01 D x1 C y01

y01 D y1 C K

2�
sin .2�x1/ � �

2�
sin Œ2� .x2 � x1/�

x02 D x2 C y02

y02 D y2 C K

2�
sin .2�x2/ � �

2�
sin Œ2� .x1 � x2/� ;

(5.30)
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Fig. 5.8 The evolution of the GALI2, the GALI3 and the GALI4 with respect to the number of
iterations n for (a) a chaotic and (b) a regular orbit of the 4d map (5.30) with K D 0:5 and � D
0:05. The initial conditions of the orbits are: (a) x1 D 0:55, y1 D 0:1, x2 D 0:005, y2 D 0:01, and
(b) x1 D 0:55, y1 D 0:1, x2 D 0:54, y2 D 0:01. The straight lines in (a) correspond to functions
proportional to expŒ�.�1��2/n�, exp.�2�1n/ and exp.�4�1n/ for �1 D 0:07, �2 D 0:008, which
are the orbit’s LEs obtained in [66]. The straight lines in (b) represent functions proportional to
n�2 and n�4. The slope of each line is mentioned in the legend. Note that the horizontal axis is
linear in (a) and logarithmic in (b) (after [66])

Fig. 5.9 The evolution of the GALIk, k D 2; 3; : : : ; 6 with respect to the number of iterations n
for (a) a chaotic (after [64]) and (b) a regular orbit of the 6d map (5.9) with K D 3 and � D 0:1.
The initial conditions of the orbits are: (a) x1 D x2 D x3 D 0:8, y1 D 0:05, y2 D 0:21, y3 D 0:01,
and (b) x1 D x2 D x3 D 0:55, y1 D 0:05, y2 D 0:21, y3 D 0. The straight lines in (a) correspond
to functions proportional to expŒ�.�1 � �2/n�, expŒ�.2�1 � �2 � �3/n�, expŒ�.3�1 � �2/n�,
exp.�4�1n/ and exp.�6�1n/ for �1 D 0:70, �2 D 0:57, �3 D 0:32, which are the orbit’s LEs
obtained in [64]. The straight lines in (b) represent functions proportional to n�2, n�4 and n�6.
The slope of each line is mentioned in the legend. Note that the horizontal axis is linear in (a) and
logarithmic in (b)
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obtained from (5.7) for M D 2 and K1 D K2 D K, while in Fig. 5.9 a chaotic
(Fig. 5.9a) and a regular (Fig. 5.9b) orbit of the 6d map (5.9) are considered.

These results illustrate the fact that the GALIk has the same behavior for
Hamiltonian flows and symplectic maps. For instance, even by simple inspection
we conclude that the GALIs behave similarly in Figs. 5.5 and 5.8, which refer to a
2D Hamiltonian and a 4d map respectively, as well as in Figs. 5.6 and 5.9, which
refer to a 3D Hamiltonian and a 4d map respectively.

5.3.2.2 The Case of 2d Maps

Equations (5.22) and (5.23) describe the behavior of the GALIs for ND Hamiltonian
systems and 2Nd symplectic maps with N � 2. What happens if N D 1? The case of
an 1D, time independent Hamiltonian is not very interesting because such systems
are integrable and chaos does not appear. But, this is not the case for 2d maps, which
can exhibit chaotic behavior.

In 2d maps only the GALI2 (which, according to (5.17) is equivalent to the SALI)
is defined. For chaotic orbits the GALI2 decreases exponentially to zero according
to (5.22), which becomes

GALI2.n/ / SALI.n/ / exp .�2�1n/ ; (5.31)

in this particular case, since, according to (5.24) �1 D ��2 > 0. Note that in
(5.31) we have substituted the continuous time t of (5.22) by the number n of map’s
iterations. The agreement between the prediction (5.31) and actual, numerical data
can be seen for example in Fig. 5.10a where the evolution of the SALI (/ GALI2)
is plotted for a chaotic orbit of the 2d standard map

x01 D x1 C y01

y01 D y1 C K

2�
sin .2�x1/ ;

(5.32)

obtained from (5.7) for M D 1. Thus, we conclude that (5.22) is also valid for 2d
maps.

But what happens in the case of regular orbits? Is (5.23) still valid for k D 2

and N D 1? First of all let us note that for these particular values of k and N only
the second branch of (5.23) is meaningful, and it provides the prediction that the
GALI2 tends to zero as n�2. This result is interesting, as this is the first case of
regular motion for which no GALI remains constant. But actually the vanishing
of the GALI2 in this case is not surprising. Regular motion in 2d maps occurs on
1d invariant curves. So, any deviation vector from a regular orbit eventually falls
on the tangent space of this curve, which of course has dimension 1. Thus, the
two deviation vectors needed for the computation of the GALI2 eventually becomes
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Fig. 5.10 The evolution of the SALI (which in practice is the GALI2) with respect to the number
of iterations n for (a) a chaotic and (b) a regular orbit of the 2d map (5.32) with K D 2. The initial
conditions of the orbits are: (a) x1 D y1 D 0:2, and (b) x1 D 0:4, y1 D 0:8. The straight line in (a)
corresponds to a function proportional to exp.�2�1n/ for �1 D 0:438, which is the orbit’s mLE
obtained in [65], while the line in (b) represents a function proportional to n�2. The slope of each
line is mentioned in the legend. Note that the horizontal axis is linear in (a) and logarithmic in (b)
(after [65])

collinear and consequently GALI2 ! 0. Actually the prediction obtained by (5.23),
that for regular orbits of 2d maps

GALI2.n/ / SALI.n/ / 1

n2
; (5.33)

is correct, as for example the results of Fig. 5.10b show.
In conclusion we note that the behavior of the SALI/GALI2 for chaotic and

regular orbits in 2d maps is respectively given by (5.31) and (5.33), which are
obtained from (5.22) and (5.23) for k D 2 and N D 1. The different behaviors
of the index for chaotic (exponential decay) and regular motion (power law decay)
were initially observed in [79], although the exact functional laws (5.31) and (5.33)
were derived later [83, 84]. As was pointed out even from the first paper on the
SALI [79], these differences allow us to use the SALI/GALI2 to distinguish between
chaotic and regular motion also in 2d maps (see for instance [65, 79]).

5.3.3 Regular Motion on Low Dimensional Tori

An important feature of the GALIs is their ability to identify regular motion on low
dimensional tori. In order to explain this capability let us assume that a regular orbit
lies on an sd torus, 2 � s � N, in the 2Nd phase space on an ND Hamiltonian
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system or a 2Nd map with N � 2. Then, following similar arguments to the ones
made in Sect. 5.3.2 for regular motion on an Nd torus, we conclude that the GALIk

eventually remains constant for 2 � k � s, because in this case the k deviation
vectors will remain linearly independent when they eventually fall on the sd tangent
space of the torus. On the other hand, any s < k � 2N deviation vectors eventually
become linearly dependent as there will be more vectors on the torus’ tangent space
than the space’s dimension, and consequently the GALIk will vanish. In this case,
the way the GALIk tends to zero depends not only on k and N, as in (5.23), but also
on the dimension s of the torus. Actually, it was shown analytically in [27, 85] that
for regular orbits on an sd torus the GALIk behaves as

GALIk.t/ /

8
<̂
:̂

constant if 2 � k � s
1

tk�s if s < k � 2N � s
1

t2.k�N/ if 2N � s < k � 2N:

(5.34)

It is worth noting that for s D N we retrieve (5.23) as the second branch of (5.34)
becomes meaningless, while by setting k D 2, s D 1 and N D 1 we get (5.33).

The validity of (5.34) is supported by the results of Fig. 5.11 where two
representative regular orbits of the H8 Hamiltonian, obtained by setting N D 8 in
(5.6), are considered (we note that Fig. 5.7 refers to the same model). The first orbit
(Fig. 5.11a, b) lies on a 2d torus as the constancy of only GALI2 indicates. The decay
of the remaining GALIs is well reproduced by the power laws (5.34) for N D 8 and
s D 2. The second orbit (Fig. 5.11c, d) lies on a 4d torus and consequently the
GALI2, the GALI3 and the GALI4 remain constant, while all other indices follow
power law decays according to (5.34) for N D 8 and s D 4.

In Fig. 5.12 we see the evolution of some GALIs for regular motion on low
dimensional tori of the 40d map obtained by (5.7) for M D 20. The results of
Fig. 5.12a denote that the orbit lies on a 3d torus in the 40d phase space of the map,
while in the case of Fig. 5.12b the motion takes place on a 6d torus. The plotted
straight lines help us verify that for both orbits the behaviors of the decaying GALIs
are accurately reproduced by (5.34) for N D 20, s D 3 (Fig. 5.12a) and N D 20,
s D 6 (Fig. 5.12b).

5.3.3.1 Searching for Regular Motion on Low Dimensional Tori

Equation (5.34), as well as the results of Figs. 5.11 and 5.12 imply that the GALIs
can be also used for identifying regular motion on low dimensional tori. From
(5.34) we deduce that the dimension of the torus on which the regular motion
occurs coincides with the largest order k of the GALIs for which the GALIk

remains constant. Based on this remark we can develop a strategy for locating low
dimensional tori in the phase space of a dynamical system. The GALIk of initial
conditions resulting in motion on an sd torus eventually will remain constant for
2 � k � s, while it will decay to zero following the power law (5.34) for k > s. So,
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Fig. 5.11 The time evolution of the GALIk , k D 2; : : : ; 9; 11; 13; 14; 16 for a regular orbit lying
on a 2d torus (panels (a) and (b)) and for another one lying on a 4d torus (panels (c) and (d)) of
the 8D Hamiltonian H8 considered in Fig. 5.7. The initial conditions of the first orbit are Q1 D 2,
P1 D 0, Qi D Pi D 0, i D 2; : : : ; 8 (the definition of these variables is given in the caption of
Fig. 5.7). The initial conditions of the second orbit are qi D 0:1, pi D 0, i D 1; : : : ; 8. The plotted
straight lines correspond to the power law predictions (5.34) for N D 8, s D 2 (panels (a) and (b))
and for N D 8, s D 4 (panels (c) and (d)). The slope of each line is mentioned in the legend (after
[85])

after some relatively long time interval, all the GALIs of order k > s will have much
smaller values than the ones of order k � s. Thus, in order to identify the location
of sd tori, 2 � s � N, in the 2Nd phase space of a dynamical system we evaluate at
first various GALIs for several initial conditions and then find the initial conditions
which result in large GALIk values for k � s and small values for k > s.

As was mentioned in Sect. 5.3.2.1, the constant, final values of the GALIs for
regular motion decrease with the order of the GALI (see Figs. 5.6b, 5.7c, 5.9b, 5.11c
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Fig. 5.12 The evolution of several GALIs for a regular orbit lying (a) on a 3d torus and (b) on a
6d torus of the 40d map obtained by setting M D 20 in (5.7). In (a) the initial conditions of the
orbit are x11 D 0:65, x12 D 0:55, xi D 0:5 8i ¤ 11; 12, and yi D 0, i D 1; : : : ; 20, while the
parameters of the map are set to � D 0:001 and Ki D K D 2, i D 1; : : : ; 20. In (b) � D 0:00001

and Ki are set in triplets of �1:35, �1:45, �1:55 (i.e. K1 D �1:35, K2 D �1:45, K3 D �1:55,
K4 D �1:35, : : :, K20 D �1:45), while the orbit’s exact initial conditions can be found in [21].
The plotted straight lines correspond to the power law predictions (5.34) for (a) N D 20, s D 3

and (b) N D 20, s D 6. The slope of each line is mentioned in the legend (after [21])

and 5.12). Since this decrease has not been quantified yet, a good computational
approach in the quest for low dimensional tori is to ‘normalize’ the values of the
GALIs for each individual orbit by dividing them by the largest GALIk value,
max .GALIk/, obtained by all orbits in the studied ensemble at the end time t D te
of the integration. In this way we define the ‘normalized GALIk’

gk.t/ D GALIk.t/

max ŒGALIk.te/�
: (5.35)

Then, by coloring each initial condition according to its gk.te/ value we can
construct phase space charts where the position of low dimensional tori is easily
located.

To illustrate this method we present (following [38]) the search for low dimen-
sional tori in a subspace of the 8d phase space of the 4D Hamiltonian system
H4 obtained by setting N D 4 and ˇ D 1:5 in (5.6). In order to facilitate the
visualization of the whole procedure we restrict our search in the subspace .q3; q4/

by setting the other initial conditions of the studied orbits to q1 D q2 D 0:1,
p1 D p2 D p3 D 0, while p4 > 0 is evaluated so that H4 D 0:010075. In Fig. 5.13
we color each permitted initial condition in the .q3; q4/ plane according to its g2, g3

and g4 value at t D te D 106 time units (panels (a), (b) and (c) respectively).
For this particular Hamiltonian we can have regular motion on 2d, 3d and 4d

tori. Let us see now how we can exploit the results of Fig. 5.13 to locate such tori.
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Fig. 5.13 Regions of different gk (5.35) values for (a) k D 2, (b) k D 3, (c) k D 4, in the subspace
.q3; q4/ of the 4D Hamiltonian H4 obtained from (5.6) for N D 4 and ˇ D 1:5. The remaining
coordinates of the considered initial conditions are set to q1 D q2 D 0:1, p1 D p2 D p3 D 0,
while p4 > 0 is evaluated so that H4 D 0:010075. White regions correspond to forbidden initial
conditions. The color scales shown at the right of the panels are used to color each point according
to the orbit’s gk value at t D 106 . The points with coordinates q3 D 0:106, q4 D 0:0996 (marked
by a triangle), q3 D 0:085109, q4 D 0:054 (marked by a square) and q3 D 0:025, q4 D 0 (marked
by a circle) correspond to regular orbits on a 2d, a 3d and a 4d torus respectively (after [38])

Fig. 5.14 The time evolution of the GALI2, the GALI3 and the GALI4 of regular orbits lying on
a (a) 2d, (b) 3d, (c) 4d torus of the 4D Hamiltonian considered in Fig. 5.13. The initial conditions
of these orbits are respectively marked by a triangle, a square and a circle in Fig. 5.13 (after [38])

Motion on 2d tori results in large final g2 values and to small g3 and g4. So, such
tori should be located in regions colored in yellow or light red in Fig. 5.13a and
in black in Fig. 5.13b, c. A region which satisfies these requirements is located at
the upper border of the colored areas in Fig. 5.13. The evolution of the GALIs of
an orbit with initial conditions in that region (denoted by a triangle in Fig. 5.13) is
shown in Fig. 5.14a and it verifies that the motion takes place on a 2d torus, as only
the GALI2 remains constant.



5 The SALI and the GALI Methods of Chaos Detection 155

Extending the same argumentation to higher dimensions we see that motion on
a 3d torus can occur in regions colored in yellow or light red in both Fig. 5.13a, b
and in black in Fig. 5.13c. The initial condition of an orbit of this kind is marked by
a small square in Fig. 5.13. The evolution of this orbit’s GALIs (Fig. 5.14b) verifies
that the orbit lies on a 3d torus, because only the GALI2 and the GALI3 remain
constant. Orbits on 4d tori is the most common situation of regular motion for this
4D Hamiltonian system. This is evident from the results of Fig. 5.13 because most
of the permitted area of initial conditions correspond to high g2, g3 and g4 values.
A randomly chosen initial condition in this region (marked by a circle in Fig. 5.13)
results indeed to regular motion on a 4d torus as the constancy of its GALIk, k D
2; 3; 4 in Fig. 5.14c clearly indicates.

We note that initial conditions leading to chaotic motion in this system would
correspond to very small g2, g3 and g4 values (due to the exponential decay of
the associated GALIs) and consequently would be colored in black in all panels
of Fig. 5.13. The lack of such regions in Fig. 5.13 signifies that all considered
initial conditions lead to regular motion. This happens because regions of chaotic
motion occupy a tiny fraction of the system’s phase space, because its nonlinearity
strength is very small. Therefore, chaotic motion is not captured by the grid of initial
conditions of Fig. 5.13.

5.3.4 Behavior of the GALI for Periodic Orbits

Let us now discuss the behavior of the GALIs for periodic orbits of period T;
i.e. orbits satisfying the condition x.t C T/ D x.t/, with x.t/ being the coordinate
vector in the system’s phase space. In the presentation of this topic we mainly follow
the analysis performed in [67]. The linear stability of periodic orbits is defined by the
eigenvalues of the so-called monodromy matrix, which is obtained by the solution
of the variational equations (for Hamiltonian systems) or by the evolution of the
tangent map (for symplectic maps) for one period T (see for example [22, 80] and
Sect. 3.3 of [53]). When all eigenvalues lie on the unit circle in the complex plane the
orbit is characterized as elliptic, while otherwise it is called hyperbolic (unstable).
For a detailed presentation of the various stability types of periodic orbits the reader
is referred for example to [22, 40, 44, 45, 80].

The presence of periodic orbits influence significantly the dynamics. In most
systems we observe that the majority of non-periodic orbits in the vicinity of an
elliptic one are regular. So, although initial conditions near an elliptic orbit can
lead to chaos, regular orbits exhibiting a time evolution similar to the elliptic orbit
itself prevail. If one assumes that the elliptic orbit is integrable and in its vicinity
the Kolmogorov–Arnold–Moser (KAM) theorem (see for example Sect. 3.2 of
[53] and references therein) can be applied (for which one needs to check a non-
degeneracy condition which is typically satisfied), then there is large measure of
orbits on KAM tori nearby. In Hamiltonian systems of dimension larger than 2 the
phenomenon of Arnold diffusion (see for example Chap. 6 of [53] and references



156 Ch. (Haris) Skokos and T. Manos

therein) typically would lead to an escape of orbits from the neighborhood of the
elliptic orbit. However, it is generally believed that Arnold diffusion occurs on a
slow time scale, and we do not expect interference with the GALI method. Of
course, regular behavior on nearby KAM tori does not imply that the elliptic orbit
itself is stable (e.g. Appendix of [34]). On the other hand, in chaotic Hamiltonian
systems and symplectic maps orbits in the vicinity of an unstable periodic orbit
typically behave chaotically and diverge from the periodic one exponentially fast.
This divergence is characterized by LEs (with at least one of them being positive)
which are determined by the eigenvalues of the monodromy matrix (e.g. [13, 84]
and Sect. 5.2b of [53]). Thus, following arguments similar to the ones developed
in Sect. 5.3.2 for chaotic orbits, we easily see that the GALIk of unstable periodic
orbits decreases to zero following the exponential law (5.22), i. e.

GALIk.t/ / exp f� Œ.�1 � �2/ C .�1 � �3/ C � � � C .�1 � �k/� tg ; (5.36)

where �i, i D 1; : : : ; k are the periodic orbit’s k largest LEs.
In Fig. 5.15a we see that the evolution of the GALIs for an unstable periodic

orbit of the 2D Hamiltonian (5.4) is well approximated by (5.36) for �1 D 0:084.
This value is the orbit’s mLE determined by the eigenvalues of the corresponding
monodromy matrix (see [67] for more details). We also note that according to (5.24)
and (5.25) we set �1 D ��4, and �2 D �3 D 0 in (5.36). The agreement between the
numerical data and the theoretical prediction (5.36) is lost after about t � 350 time
units. This happens because the numerically computed orbit eventually deviates

Fig. 5.15 The time evolution of (a) the GALI2 , the GALI3 , the GALI4 and (b) the finite time
mLE �1 of an unstable periodic orbit of the 2D Hamiltonian (5.4) for H2 D 0:125. The initial
conditions of the orbit are q1 D 0, q2 D 0:2083772012, p1 D 0:4453146996, p2 D 0:1196065752.
The straight lines in (a) correspond to functions proportional to exp.��1t/, exp.�2�1t/ and
exp.�4�1t/, for �1 D 0:084, which is the mLE of the periodic orbit. The slope of each line is
mentioned in the legend. The horizontal dotted line in (b) indicates the value �1 D 0:084 (after
[67])
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from the unstable periodic one due to unavoidable computational inaccuracies
and enters the chaotic region around the periodic orbit. In general, this region
is characterized by different LEs with respect to the ones of the periodic orbit.
The effect of this behavior on the orbit’s finite time mLE �1 (5.1) is seen in
Fig. 5.15b. The computed �1 deviates from the value �1 D 0:084 (marked by a
horizontal dotted line) at about the same time the GALI2 changes its decreasing rate
in Fig. 5.15a. Eventually, �1 stabilizes at another positive value, which characterizes
the chaoticity of the region around the periodic orbit.

On the other hand, the case of stable periodic orbits is a bit more complicated,
because the GALIs behave differently for Hamiltonian flows and symplectic maps.
In [67] it was shown analytically that for stable periodic orbits of ND Hamiltonian
systems, with N � 2, the GALIs decay to zero following the following power laws

GALIk.t/ /
(

1
tk�1 if 2 � k � 2N � 1
1

t2N if k D 2N:
(5.37)

We observe that this equation can be derived from (5.34), which describes the
behavior of the GALIs for motion on an sd tori, by setting s D 1. We note that
the first branch of (5.34) is meaningless for s D 1, while the other two branches
take the forms appearing in (5.37). The connection between (5.34) and (5.37) is not
surprising if we notice that a periodic orbit is nothing more than an 1d closed curve
in the system’s phase space, having the some dimension with an 1d torus.

Small, random perturbations from the stable periodic orbit generally results in
regular motion on an Nd torus. So, the GALIs of the perturbed orbit will follow
(5.23). Thus, in general, the GALIs of regular orbits in the vicinity of a stable
periodic orbit behave differently with respect to the indices of the periodic orbit
itself (except from the GALI2N and the GALI2N�1, which respectively follow the
laws / t�2N and / t�.2N�2/ in both cases). The most profound change happens for
the GALIs of order 2 � k � N because, according to (5.23), they remain constant
in the neighborhood of the periodic orbit, while they decay to zero following the
power law (5.37) for the periodic orbit.

The correctness of (5.37) becomes evident from the results of Fig. 5.16a, where
the time evolution of the GALIs of a stable periodic orbit of the 2D Hamiltonian
(5.4) is shown. In particular, we see that the indices decay to zero following the
power laws GALI2 / t�1, GALI3 / t�2, GALI4 / t�4 predicted from (5.37).
According to (5.23) the GALIs of regular orbits in the neighborhood of the stable
periodic orbit should behave as GALI2 / constant, GALI3 / t�2 and GALI4 / t�4.
Thus, only the GALI2 is expected to behave differently for regular orbits in the
vicinity of the periodic orbit of Fig. 5.16a. The results of Fig. 5.16b show that this is
actually true. The GALI2 of the neighboring regular orbits initially follows the same
power law decay of the periodic orbit (GALI2 / t�1), but later on it stabilizes to a
constant positive value. We see that the further the orbit is located from the periodic
one the sooner the GALI2 deviates from the power law decay.
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Fig. 5.16 (a) The time evolution of the GALI2, the GALI3 and the GALI4 for a stable periodic
orbit of the 2D Hamiltonian (5.4) for H2 D 0:125. The orbit’s initial conditions are q1 D 0D q10,
q2 D 0:35207 D q20, p1 D 0:36427 D p10, p2 D 0:14979 D p20. The straight lines correspond
to functions proportional to t�1, t�2 and t�4. The slope of each line is mentioned in the legend. (b)
The same plot as in (a) where apart from the GALIs of the stable periodic orbit (red curves) the
indices of two neighboring, regular orbits are also plotted. Their initial conditions are q1 D q10,
p2 D p20 for both of them, while q2 D q20 C 0:00793 (green curves), and q2 D q20 C 0:02793

(blue curves). In both cases the p1 > 0 initial condition is set so that H2 D 0:125. Note that the
curves of the GALI3 and the GALI4 for all three orbits overlap each other (after [67])

These differences of the GALI2 values can be used to identify the location of
stable periodic orbits in the system’s phase space, although the index was not
developed for this particular purpose.9 This becomes evident from the result of
Fig. 5.17 where the values of the GALI2 at t D 105 for several orbits of the Hénon-
Heiles system (5.4) are plotted as a function of the q2 coordinate of the orbits’
initial conditions. The remaining coordinates are q1 D p2 D 0, while p1 > 0 is set
so that H2 D 0:125. Actually these initial conditions lie on the symmetry line of the
subspace defined by q1 D 0, p1 > 0, i.e. the horizontal line p2 D 0 in Figs. 5.19 and
5.20 below. This line passes through the initial condition of some periodic orbits of
the system. For the construction of Fig. 5.17 we considered an ensemble of 7 000

orbits whose q2 coordinates are equally distributed in the interval �0:1 � q2 � 0:6.
The data points are line connected, so that the changes of the GALI2 values become
easily visible.

In Fig. 5.17 regions of relatively large GALI2 values (&10�4) correspond to
regular (periodic or quasiperiodic) motion. Chaotic orbits and unstable periodic
orbits have very small GALI2 values (.10�12), while domains with intermediate
values (10�12 . GALI2 . 10�4) correspond to sticky chaotic orbits. An interesting

9It is worth mentioning here that other chaos indicators, like the Orthogonal Fast Lyapunov
Indicator (OFLI) and its variations [7, 8], are quite successful in performing this task as they were
actually designed for this purpose.
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Fig. 5.17 The values of the GALI2 at t D 105 for several orbits of the 2D Hamiltonian (5.4)
as a function of the q2 coordinate of the orbits’ initial conditions. The remaining coordinates are
q1 D p2 D 0, while p1 > 0 is set so that H2 D 0:125. Actually these initial conditions lie on the
p2 D 0 line of Figs. 5.19 and 5.20. The numerical data (black points) are line connected (grey line)
in order to facilitate the visualization of the value changes (after [67])

feature of Fig. 5.17 is the appearance of some relatively narrow regions where the
GALI2 decreases abruptly obtaining values 10�4 . GALI2 . 10�1; the most
profound one being in the vicinity of q2 � 0:3. These regions correspond to the
immediate neighborhoods of stable periodic orbits, with the periodic orbit itself
been located at the point with the smallest GALI2 value.

The creation of these characteristic ‘pointy’ shapes is due to the behavior
depicted in Fig. 5.16b: the GALI2 has relatively small values on the stable periodic
orbit, for which it decreases as / t�1, while it attains constant, positive values for
regular orbits in the vicinity of the periodic orbit. These constant values increase as
the orbit’s initial conditions depart further away from the periodic orbit. So, more
generally, the appearance of such ‘pointy’ formations in GALIk plots (2 � k � N)
provide good indications for the location of stable periodic orbits.

Let us now turn our attention to maps. In 2Nd symplectic maps stable periodic
orbits of period l correspond to l distinct points (the so-called stable fixed points
of order l). Any deviation vector from the periodic orbit rotates around each fixed
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point. This behavior can be easily seen in the case of 2d maps where the tori around
a stable fixed point correspond to closed invariant curves which can be represented,
through linearization, by ellipses (see for example Sect. 3.3b of [53]). Thus, any
k initially distinct deviation vectors needed for the computation of the GALIk will
rotate around the fixed point keeping on average the angles between them constant.
Consequently the volume of the parallelepiped they define, i.e. the value of the
GALIk, will remain practically constant. Thus, in the case of stable periodic orbits
of 2Nd maps, with N � 1 we have

GALIk.t/ / constant; for 2 � k � 2N: (5.38)

This behavior is clearly seen in Fig. 5.18a where the evolution of the GALI2, the
GALI3 and the GALI4 for a stable periodic orbit of period 7 of the 4d map (5.30) is
plotted.

Again small perturbations of the periodic orbit’s initial conditions generally
result in motion on an Nd tori. Then, the evolution of the corresponding GALIs
is provided by (5.23) for N � 2, while the GALI2 will decrease to zero according
to (5.33) for 2d maps. So, the most striking difference between the behavior of the
GALIk of a stable periodic orbit and of a neighboring, regular orbit appears for
k > N, because in this case the GALIk remains constant for the periodic orbit, while
it decays to zero for the neighboring one. Differences of this kind can be observed
in Fig. 5.18b.

Fig. 5.18 The evolution of the GALI2, the GALI3 and the GALI4 with respect to the number of
iterations n for (a) a stable periodic orbit and (b) a nearby regular orbit, of the 4d map (5.30) with
K D 0:9 and � D 0:05. The initial conditions of the orbits are: (a) x1 D 0:23666, y1 D 0:0,
x2 D 0:23666, y2 D 0:0, and (b) x1 D 0:23, y1 D 0:0, x2 D 0:236, y2 D 0:0
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5.4 Applications

The ability of the SALI and the GALI methods to efficiently discriminate between
chaotic and regular motion was described in detail in the previous sections, where
some exemplary Hamiltonian systems and symplectic maps were considered. In
what follows we present applications of this ability to various dynamical systems
originating from different research fields.

5.4.1 Global Dynamics

In Sect. 5.3.2 we discussed how one can use the various GALIs to reveal the chaotic
or regular nature of individual orbits in the 2Nd phase space of a dynamical system.
Additionally, in Sect. 5.3.4 we saw how the measurement of the GALI2 values for
an ensemble of orbits can facilitate the uncovering of some dynamical properties of
the studied system, in particular the pinpointing of stable periodic orbits (Fig. 5.17),
while in Sect. 5.3.3.1 we described how a more general search can help us locate
motion on low dimensional tori.

Now we see how one can use the GALIs in order to study the global dynamics of
a system. For simplicity we use in our analysis the 2D Hamiltonian system (5.4), but
the methods presented below can be (and actually have already been) implemented
to higher-dimensional systems.

5.4.1.1 Investigating Global Dynamics by the GALIk with 2 � k � N

According to (5.22) and (5.23) the GALIk, with 2 � k � N, behaves in a completely
different way for chaotic (exponential decay) and regular (remains practically
constant) orbits. Thus, by coloring each initial condition of an ensemble of orbits
according to its GALIk value at the end of a fixed integration time we can produce
color plots where regions of chaotic and regular motion are easily seen. In addition,
by choosing an appropriate threshold value for the GALIk, below which the orbit
is characterized as chaotic (see Sect. 5.3.2.1 on how to set up this threshold), we
can efficiently determine the ‘strength’ of chaos by calculating the percentage of
chaotic orbits in the studied ensemble. Then, by performing the same analysis for
different parameter values of the system we can determine its physical mechanisms
that increase or suppress chaotic behavior.

A practical question arises though: which index should one use for this kind
of analysis? The obvious advantage of the GALI2/SALI is its easy computation
according to (5.8), which requires the evolution of only two deviation vectors.
On the other hand, evaluating the GALIs of order up to k D N is more CPU-
time consuming as the computation of the index from (5.20) requires the evolution
of more deviation vectors, as well as the implementation of the SVD algorithm.
An advantage of these higher order indices is that they tend to zero faster than
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the GALI2/SALI for chaotic orbits. So, reaching their threshold value which
characterizes an orbit as chaotic, requires in general, less computational effort.
This feature is particularly useful when we want to estimate the percentage of
chaotic orbits, as there is no need to continue integrating orbits which have been
characterized as chaotic (see Sect. 5.2 of [84] for an example of this kind). Thus, we
conclude that the reasonable choices for such global studies are the GALI2/SALI
and the GALIN .

In order to illustrate this process, let us consider the 2D Hénon-Heiles system
(5.4), for which GALIN � GALI2, since N D 2. In Fig. 5.19 we see color plots
of its Poincaré surface of section defined by q1 D 0 (a concise description of the
construction of a surface of section can be found for instance in Sect. 1.2b of [53]).
The remaining initial conditions of each orbit are its coordinates on the .q2; p2/

plane of Fig. 5.19, while p1 > 0 is set so that H2 D 0:125. For each panel of
Fig. 5.19 a 2d grid of approximately 350;000 equally distributed initial conditions is
considered. Each point on the .q2; p2/ plane is colored according to its log.GALI2/

value at t D 2000, while white regions denote not permitted initial conditions.
Regions colored in yellow or light red correspond to regular orbits, while dark blue
and black domains contain chaotic ones. Intermediate colors at the borders between
these two regions indicate sticky chaotic orbits.

This kind of color plots can reveal fine details of the underlying dynamics, like for
example the small yellow ‘islands’ of regular motion inside the large, black chaotic
‘sea’, as well as allow the accurate estimation of the percentage of chaotic or regular
orbits in the studied ensemble. Naturally the denser the used grid is, the finer the
uncovered details become, but unfortunately the higher the needed computational
effort gets. In an attempt to speed up the whole process the following procedure
was followed in [3] where the dynamics of the Hénon-Heiles system (5.4) was
studied. The final GALI2/SALI value and the corresponding color was assigned
not only to the initial condition of the studied orbit, but also to all intersection
points of the orbit with the surface of section. This assignment can be extended
even further by additionally taking into account the symmetry of Hamiltonian (5.4)
with respect to the q2 variable, which results in structures symmetric with respect
to the p2 D 0 axis in Fig. 5.19. Consequently, points symmetric to this axis should
have the same GALI2/SALI value. So, orbits with initial conditions on grid points
to which a color has already been assigned, as they were intersection points with
the surface of section of previously computed orbits, are not computed again and so
the construction of color plots like the ones of Fig. 5.19 is speeded up significantly.
In [3] it was shown that this approach achieves very accurate estimations of the
percentages of chaotic orbits with respect to the ones obtaining by coloring each
and every initial condition according to the index’s value at the end of the integration
time (this is actually how Fig. 5.19 was produced).

Let us now discuss the differences between panels (a) and (b) of Fig. 5.19. In both
figures the chaotic regions are practically the same. Nevertheless, in the yellow and
light red colored domains, where regular motion occurs, some ‘spurious’ structures
appear in Fig. 5.19a, which are not present in Fig. 5.19b. For example, inside the
large stability island with 0 . q2 . 0:5 at the right side of Fig. 5.19a we observe an
almost horizontal formation colored in light red, while similar colored ‘arcs’ appear
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Fig. 5.19 Regions of different values of the GALI2 on the Poincaré surface of section defined
by q1 D 0 of the 2D Hamiltonian (5.4) for H2=0.125. A set of approximately 350;000 equally
spaced initial conditions on the grid .q2; p2/ 2 Œ�0:5; 0:7� � Œ�0:5; 0:5� is used. White regions
correspond to forbidden initial conditions. The color scales shown at the right of the panels are
used to color each point according to the orbit’s log.GALI2/ value at t D 2000. In (a) the same set
of initial orthonormal deviation vectors was used for the computation of the GALI2 of each initial
condition, while in (b) a different, randomly produced set of vectors was used for each orbit

inside many other islands of regular motion. These artificial features emerge when
one uses exactly the same set of orthonormal, initial deviation vectors for every
studied orbit, as we did in Fig. 5.19a. The appearance of such features in color plots
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of other chaos detection methods has already been reported in the literature [9]. A
simple way to avoid them is to use a different, random set of initial, orthonormal
vectors for the computation of the GALI2, as we did in Fig. 5.19b. By doing so,
these spurious features disappear and only structures related to the actual dynamics
of the system remain, like for instance the cyclical ‘chain’ of the light red colored,
elongated regions inside the big stability island at the right side of Fig. 5.19b. This
structure indicates the existence of some higher order stability islands, which are
surrounded by an extremely thin chaotic layer. This layer is not visible for the
resolution used in Fig. 5.19b. A magnification, and a much finer grid would reveal
this tiny chaotic region.

5.4.1.2 Investigating Global Dynamics by the GALIk with N < k � 2N

As was clearly explained in Sect. 5.3.2.1 the GALIs of order N < k � 2N tend to
zero both for chaotic and regular orbits, but with very different time rates as (5.22)
and (5.23) state. This deference can be also used to investigate global dynamics, but
following an alternative approach to the one developed in Sect. 5.4.1.1. Since these
GALIs decay to zero exponentially fast for chaotic orbits, but follow a much slower
power law decay for regular ones, the time tth they need to reach an appropriately
chosen, small threshold value will be significantly different for the two kinds of
orbits. We note that both the exponential and the power law decays become faster
with increasing order k of GALIk. Consequently, the creation of huge differences
in the GALIk values, which allow the discrimination between chaotic and regular
motion, will appear earlier for larger k values. So, in general, the overall required
computational time decreases significantly by using a higher order GALIk, despite
the integration of more deviation vectors, since this integration will be terminated
earlier. Thus, the best choice in investigations of this kind is to use the GALI2N .

Let us illustrate this approach by computing the GALI4 for the 2D Hénon-Heiles
system (5.4), at a grid in its q1 D 0 surface of section. The outcome of this procedure
is seen in Fig. 5.20, where each initial condition is colored according to the time tth
needed for its GALI4 to become � 10�12. Each orbit is integrated up to t D 500 time
units and if its GALI4 value at the end of the integration is larger than the threshold
value 10�12 the corresponding tth value is set to tth D 500 and the initial condition
is colored in blue according to the color scales seen below the panel of Fig. 5.20.
Regions of regular motion correspond to large tth values and are colored in blue,
while all the remaining colored domains contain chaotic orbits. Again, white regions
correspond to forbidden initial conditions. This approach yields a very detailed chart
of the dynamics, analogous to the one seen in Fig. 5.19.

An advantage of the current approach is its ability to clearly reveal various
‘degrees’ of chaotic behavior in regions not colored in blue. Strongly chaotic orbits
are colored in red and yellow as their GALI4 becomes �10�12 quite fast. Orbits with
larger tth values correspond to chaotic orbits which need more time in order to show
their chaotic nature, while the ‘sticky’ chaotic regions are characterized by even
higher tth values and are colored in light blue. We note that for every initial condition
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Fig. 5.20 Regions of different values of the time tth needed for the GALI4 to become less than
10�12 on the q1 D 0 surface of section of the 2D Hénon-Heiles system (5.4). Each orbit is
integrated up to t D 500 time units. White regions correspond to forbidden initial conditions.
The color scales shown below the panel are used to color each point according to the orbit’s tth

value (after [84])

we used a different, random set of orthonormal deviation vectors in order to avoid
the appearance of possible ‘spurious’ structures, like the ones seen in Fig. 5.19a.

5.4.2 Studies of Various Dynamical Systems

The SALI and the GALI methods have been used broadly for the study of the phase
space dynamics of several models originating from different scientific fields. These
studies include the characterization of individual orbits as chaotic or regular, as well
as the consideration of large ensembles of initial conditions along the lines presented
in Sect. 5.4.1, whenever a more global understanding of the underlying dynamics
was needed.

In this section we present a brief, qualitative overview of such investigations. For
this purpose we focus mainly on the outcomes of these studies avoiding a detailed
presentation of mathematical formulas and equations for each studied model.

5.4.2.1 An Accelerator Map Model

Initially, let us discuss two representative applications of the SALI. The first one
concerns the study of a 4d symplectic map which describes the evolution of a
charged particle in an accelerator ring having a localized thin sextupole magnet.
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Fig. 5.21 Regions of different SALI values of (a) the 4d uncontrolled accelerator map studied in
[19] and (b) the controlled map constructed in [16]. The coordinates x1 , x3 respectively describe
horizontal and vertical deflections of a charged particle from the ideal circular orbit passing from
x1 D x3 D 0 in some appropriate units (see [19] for more details). 16;000 uniformly distributed
initial conditions on the grid .x1; x3/ 2 Œ�1; 1� � Œ�1; 1� were evolved for 105 iterations of each
map and colored according to the orbit’s log.SALI/ value, using the color scales shown at the
right of the panels. The white colored regions correspond to orbits that escape in less than 105

iterations. Red points denote chaotic orbits, while regular ones are colored in blue. The increase of
the stability region around the point x1 D x3 D 0 is evident (after [17])

The specific form of this map can be found in [19] where the SALI method was
used for the construction of phase space color charts where regions of chaotic and
regular motion were clearly identified, as well as for evaluating the percentage of
chaotic orbits.

Later on, in [16, 17] this map was used to test the efficiency of chaos control
techniques for increasing the stability domain (the so-called ‘dynamic aperture’)
around the ideal circular orbit of this simplified accelerator model. These techniques
turned out to be quite successful, as the addition of a rather simple control term,
which potentially could be approximated by real multipole magnets, increased the
stability region of the map as can be seen in Fig. 5.21.

5.4.2.2 A Hamiltonian Model of a Bose-Einstein Condensate

Let us now turn our attention to a 2D Hamiltonian system describing the interaction
of three vortices in an atomic Bose-Einstein condensate, which was studied in [52].
By means of SALI color plots the extent of chaos in this model was accurately
measured and its dependence on physically important parameters, like the energy
and the angular momentum of the vortices, were determined.

In real experiments, from which the study of this model was motivated, the
life time of Bose-Einstein condensates is limited. For this reason the time in
which the chaotic nature of orbits is uncovered played a significant role in the
analysis presented in [52]. Actually, different ‘degrees of chaoticity’ are revealed by
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Fig. 5.22 (a) Regions of different values of the time tth needed for the SALI to become less than
10�12 for a 2D Hamiltonian describing the interaction of three vortices in an atomic Bose-Einstein
condensate. The explicit definition of the coordinates J1 and 	1=� can be found in [52] where this
model was studied in detail. Each orbit is integrated up to t D 3000 time units. White regions
correspond to regular orbits, while black areas at the upper two corners, as well as in the middle
of the vertical axes at both sides of the plot, denote not permitted initial conditions. The color
scales shown at the right of the panel are used to color each point according to the orbit’s tth value.
The initial conditions of (a) are decomposed in four different sets according to their tth value: (b)
140 � tth � 500, (c) 500 < tth � 1000, (d) 1000 < tth � 1500 and (e) 1500 < tth � 2000 (after
[52])

registering the time tth that the SALI of a chaotic orbit requires in order to become
�10�12 (Fig. 5.22). This approach is similar to the one presented in Sect. 5.4.1.2,
and allows the identification of regions with different strengths of chaos.
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The chaotic orbits of Fig. 5.22a are decomposed in Figs. 5.22b–e in four different
sets according to their tth value: tth 2 Œ140; 500� (Fig. 5.22b), tth 2 .500; 1000�

(Fig. 5.22c), tth 2 .1000; 1500� (Fig. 5.22d) and tth 2 .1500; 2000� (Fig. 5.22e),
where time is measured in some appropriate units (see [52] for more details). From
these results we see that, as the initial conditions move further away from the center
of the x-shaped region of Fig. 5.22a the orbits need more time to show their chaotic
nature and consequently, some of them can be considered as regular from a practical
(experimental) point of view. For instance, in real experiments one would expect to
detect chaotic motion in regions shown in Fig. 5.22b where orbits have relatively
small tth values. Thus, an analysis of this kind can provide practical information
about where one should look for chaotic behavior in actual experimental set ups.

5.4.2.3 Further Applications of the SALI and the GALI Methods

The SALI and the GALI methods have been successfully employed in studies
of various physical problems and mathematical toy models, as well as for the
investigation of fundamental aspects of nonlinear dynamics (e.g. see [30]). In what
follows we briefly present some of these studies

In [65] the SALI/GALI2 method was used for the global study of the standard
map (5.32). By considering large ensembles of initial conditions the percentage
of chaotic motion was accurately computed as a function of the map’s parameter
K. This work revealed the periodic re-appearance of small (even tiny) islands
of stability in the system’s phase space for increasing values of K. Subsequent
investigations of the regular motion of the standard map in [62] led to the clear
distinction between typical islands of stability and the so-called accelerator modes,
i.e. motion resulting in an anomalous enhancement of the linear in time orbits’
diffusion. Typically, this motion is highly superdiffusive and is characterized by
a diffusion exponent � 2.

In [21] the GALI was used for the detection of chaotic orbits in many dimensions,
the prediction of slow diffusion, as well as the determination of quasiperiodic
motion on low dimensional tori in the system (5.7) of many coupled standard maps.
Additional applications of the SALI in studying maps can be found in [73], where
the index was used for shedding some light in the properties of accelerator models,
while in [76] a coupled logistic type predator-prey model describing population
growths in biological systems was considered. Further studies of 2d and 4d maps
based on the SALI method were performed in [35].

Models of dynamical astronomy and galactic dynamics are considered to be the
spearhead of the chaos detection methods [31]. Actually, many of these methods
have been used, or often even constructed, to investigate the properties of such
systems. Several applications of the SALI to systems of this kind can be found
in the literature. In [18, 88, 89] the stability properties of orbits in a particular
few-body problem, the so-called the Sitnikov problem, were studied, while in [94]
the long term stability of two-planet extrasolar systems initially trapped in the 3:1
mean motion resonance was investigated. The SALI was also used to study the
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dynamics of the Caledonian symmetric four-body problem [90], as well as the
circular restricted three-body problem [75].

In systems modeling the dynamics of galaxies special care should be taken with
respect to the determination of the star motion’s nature, because this has to be done
as fast as possible and in physically relevant time intervals (e.g. smaller than the
age of the universe). Hence, in order to check the adequacy of a proposed galactic
model, in terms of being able to sustain structures resembling the ones seen in
observations of real galaxies, the detection of chaotic and regular motion for rather
small integration times is imperative. The SALI and the GALI methods have proved
to be quite efficient tools for such studies, as they allow the fast characterization
of orbits. This ability reduces significantly the required computational burden, as in
many cases the determination of the orbits’ nature is achieved before the predefined,
final integration time.

In particular, the SALI method has been used successfully in studying the chaotic
motion and spiral structure in self-consistent models of rotating galaxies [93], the
dynamics of self-consistent models of cuspy triaxial galaxies with dark matter
haloes [23], the orbital structure in N body models of barred-spiral galaxies [42],
the secular evolution of elliptical galaxies with central masses [50], the chaotic
component of cuspy triaxial stellar systems [25], as well as the chaoticity of non-
axially symmetric galactic models [97] and of models with different types of dark
matter halo components [96].

The SALI was used in [65] for investigating the dynamics of 2D and 3D
Hamiltonian models of rotating bared galaxies. This work was extended in [60]
by using the GALI for studying the global dynamics of different galactic models
of this type. In particular, the effects of several parameters related to the shape and
the mass of the disk, the bulge and the bar components of the models, as well as
the rotation speed of the bar, on the amount of chaos appearing in the system were
determined. Moreover, the implementation of the GALI3 in the 3D Hamiltonians
allowed the detection of regular motion on low (2d) dimensional tori, although these
systems support, in general, 3d orbits. The astronomical significance of these orbits
was discussed in detail in [60].

Implementations of the SALI to nuclear physics systems can be found in [56–
58, 86, 87] where the chaotic behavior of boson models is investigated, as well as in
[5] where the dynamics of a Hamiltonian model describing a confined microplasma
was studied. Recently the SALI and the GALI methods, together with other chaos
indicators, were reformulated in the framework of general relativity, in order to
become invariant under coordinate transformation [54].

The SALI and the GALI have been also used to study the dynamics of nonlinear
lattice models. Applications of these indices to the Fermi–Pasta–Ulam model can
be found in [1, 2, 4, 27–29, 71, 85] where the properties of regular motion on low
dimensional tori, the long term stability of orbits, as well as the interpretation of
Fermi–Pasta–Ulam recurrences were studied. In [63] the GALI method managed to
capture the appearance of a second order phase transition that the Hamiltonian Mean
Field model exhibits at a certain energy density. The index successfully verified also
other characteristics of the system, like the sharp transition from weak to strong
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chaos. Further applications of the SALI method to other models of nonlinear lattices
can be found in [4, 72].

In addition, the SALI was further used in studying the chaotic and regular nature
of orbits in non-Hamiltonian dynamical systems [6, 47], some of which model
chaotic electronic circuits [46, 48, 49].

5.4.3 Time Dependent Hamiltonians

The applications presented so far concerned autonomous dynamical systems. How-
ever, there are several phenomena in nature whose modeling requires the invocation
of parameters that vary in time. Whenever these phenomena are described according
to the Hamiltonian formalism, the corresponding Hamiltonian function is not an
integral of motion as its value does not remain constant as time evolves.

The SALI and the GALI methods can be also used to determine the chaotic or
regular nature of orbits in time dependent systems as long as, their phase space
does not shrink ceaseless or expand unlimited, with respect to its initial volume,
during the considered times. This property allows us to utilize the time evolution of
the volume defined by the deviation vectors, as in the case of the time independent
models, and estimate accurately its possible decay for time intervals where the total
phase space volume has not changed significantly.

In conservative time independent Hamiltonians orbits can be periodic (stable or
unstable), regular (quasiperiodic) or chaotic and their nature does not change in
time. Sticky chaotic orbits may exhibit a change in their orbital morphologies from
almost quasiperiodic to completely chaotic behaviors, but in reality their nature
does not change as they are weakly chaotic orbits. On the other hand, in time
dependent models, individual orbits can display abrupt transitions from regular to
chaotic behavior, and vice versa, during their time evolution. This is an intriguing
characteristic of these systems which should be captured by the used chaos indicator.
Such transitions between chaotic and regular behaviors can be seen for example in
N body simulations of galactic models. For this reason, time dependent analytic
potentials trying to mimic the evolution of N body galactic systems, are expected to
exhibit similar transitions.

An analytic time dependent bared galaxy model consisting of a bar, a disk
and a bulge component, whose masses vary linearly in time was studied in [68].
The time dependent nature of the model influences drastically the location and
the size of stability islands in the system’s phase space, leading to a continuous
interplay between chaotic and regular behaviors. The GALI was able to capture
subtle changes in the nature of individual orbits (or ensemble of orbits) even
for relatively small time intervals, verifying that it is an ideal diagnostic tool for
detecting dynamical transitions in time dependent systems.

Although both 2D and 3D time dependent Hamiltonian models were studied in
[68], we further discuss here only the 3D model in order to illustrate the procedure
followed for detecting the various dynamical epochs in the evolution of an orbit. The
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main idea for doing that is the re-initialization of the computation of the GALIk, with
2 � k � N, whenever the index reaches a predefined low value (which signifies
chaotic behavior) by considering k new, orthonormal deviation vectors resetting
GALIk D 1.

Let us see this procedure in more detail. In [68] the evolution of the GALI3

was followed for each studied orbit. The three randomly chosen, initial orthonormal
deviation vectors set GALI3 D 1 in the beginning of the numerical simulation
.t D 0/. These vectors were evolved according to the dynamics induced by the 3D,
time dependent Hamiltonian up to the time t D td that the GALI3 became smaller
than 10�8 for the fist time. At that point the time t D td was registered and three new,
random, orthonormal vectors were considered resetting GALI3 D 1. Afterwards,
the evolution of these vectors was followed until the next, possible occurrence of
GALI3 < 10�8. Then the same process was repeated.

Why was this procedure implemented? What is the reason behind this strategy?
In order to reveal this reason let us assume that an orbit initially behaves in a chaotic
way and later on it drifts to a regular behavior. The volume formed by the deviation
vectors will shrink exponentially fast, becoming very small during the initial chaotic
epoch and will remain small throughout the whole evolution in the regular epoch,
unless one re-initializes the deviation vectors and the volume they define. In this
way the deviation vectors will be able to ‘feel’ the new, current dynamics.

An example case of this kind is shown in Fig. 5.23. In particular, in Fig. 5.23a
we see that the evolution of the finite time mLE �1 is not able to provide valid
information about the different dynamical epochs that the studied orbit experiences.
This is due to the index’s averaging nature which takes into account the whole
history of the evolution. On the other hand, the re-initialized GALI3 (whose time
evolution is shown in Fig. 5.23b) clearly succeeds in depicting the transitions
between regular epochs, where it oscillates around positive values (such time
intervals are denoted by I and III in Fig. 5.23a, b), and chaotic ones, where it exhibits
repeated exponential decays to very small values (epoch II). From the results of
Fig. 5.23a it becomes evident that the computation of the mLE cannot be used as a
reliable criterion for determining the chaotic or regular nature of the orbit in these
three time intervals.

Another way to visualize the results of Fig. 5.23b is through the measurement of
the time td needed for the repeated re-initializations of the GALI3, or in other words,
of the time needed for the GALI3 to decrease from GALI3 D 1 to GALI3 � 10�8.
In Fig. 5.23c we present td as a function of the evolution time of the orbit. From
the results of this figure we see that during the time interval 7500 . t . 14;000

the value of td is rather small, indicating strong chaotic motion. For smaller times,
t . 7500, the GALI3 takes a long time to become small, suggesting the presence
of regular motion or of (relatively) weaker chaotic motion. The upwardly pointing
arrow, after t & 15;000, shows that the GALI3 no longer falls to zero, which again
indicates the appearance of a regular epoch.

After the first, successful application of the GALIs to time dependent Hamilto-
nians in [68], the same approach was followed for the study of a more sophisticated
time dependent galactic model in [61]. This analytic Hamiltonian model succeeded
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Fig. 5.23 Time evolution of (a) the finite time mLE �1, (b) the re-initialized GALI3 , and (c)
the time td needed for the re-initialized GALI3 to decrease from GALI3 D 1 to GALI3 � 10�8

for a particular orbit of the 3D time dependent galactic model studied in [68]. The orbit changes
its dynamical nature from regular to chaotic and again to regular. Three characteristic epochs are
located between the vertical dashed gray lines in (a) and (b) and are denoted by I (regular), II
(chaotic) and III (regular). The arrow at the right end of (c) indicates that after t & 15;000 the
GALI3 in (b) does not fall back to zero (until of course, the final integration time t D 20;000),
which is a clear indication that in this time interval the orbit is regular (after [68])
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to incorporate the evolution of the basic morphological features of an actual N body
simulation, by allowing all the relevant parameters of its dynamical components to
vary in time.

5.5 Summary

In this chapter we presented how the SALI and the various GALIs can be used to
study the chaotic behavior of dynamical systems.

Following the history of the evolution of these indices, we initially presented in
Sect. 5.2 the underlying idea behind the introduction of the SALI: the index actually
quantifies the possible alignment of two initially distinct deviation vectors. The
natural generalization of this idea, by considering more than two deviation vectors
and checking if they become linearly dependent, led later on, to the introduction of
the GALI, as we explained in Sect. 5.3. The close relation between the two indices
was also pointed out, as according to (5.17) the GALI2 and the SALI practically
coincide

GALI2 / SALI:

Avoiding the presentation of mathematical proofs (which the interested reader
can find in the related references), we formulated in Sect. 5.3 the laws that the
indices follow for chaotic and regular orbits, providing also several numerical results
which demonstrate their validity.

In particular, for ND Hamiltonian systems (N � 2) and 2Nd symplectic maps
(N � 1) the GALIk tends exponentially to zero for chaotic orbits and unstable
periodic orbits following (5.22)

GALIk.t/ / exp f� Œ.�1 � �2/ C .�1 � �3/ C � � � C .�1 � �k/� tg ;

while for regular motion on as sd torus, with 2 � s � N, the evolution of the GALIk

is given by (5.34)

GALIk.t/ /

8
<̂
:̂

constant if 2 � k � s
1

tk�s if s < k � 2N � s
1

t2.k�N/ if 2N � s < k � 2N:

The latter formula is quite general as (a) for s D N it provides (5.23), which
describes the behavior of the GALIk for motion on an Nd torus, i.e. the most
common situation of regular motion in the 2Nd phase space of the system, (b) for
k D 2, s D 1 and N D 1 it gives (5.33), which describes the power law decay of
the GALI2 in the case of a 2d map (the GALI2 is the only possible GALI in this
case), and (c) for s D 1 it becomes (5.37), which provides the power law decay of



174 Ch. (Haris) Skokos and T. Manos

the GALIk for stable periodic orbits of Hamiltonian systems (we remind that in the
case of stable periodic in maps all the GALIs remain constant (5.38)).

In our presentation, we paid much attention to issues concerning the actual
computation of the indices. In Sect. 5.3.1 we explained in detail an efficient way
to evaluate the GALIk, which is based on the SVD procedure (5.20), while in the
Appendix we provide pseudo-codes for the computation of the SALI and the GALI.
In Sect. 5.3.3.1 we discussed a numerical strategy for the detection of regular motion
on low dimensional tori (see Figs. 5.13 and 5.14), while in Sect. 5.3.4 we showed
how the evaluation of the GALI for an ensemble of orbits can lead to the location of
stable periodic orbits (see Figs. 5.17 and 5.18). In addition, the effect of the choice
of the initial deviation vectors on the color plots depicting the global dynamics
of a system, was discussed in Sect. 5.4.1.1, where specific strategies to avoid the
appearance of spurious structures in these plots were presented (see Fig. 5.19).

One of the main advantages of the SALI and the GALI methods is their ability
to discriminate between chaotic and regular motion very efficiently. The GALIk

with 2 � k � N tends exponentially fast to zero for chaotic orbits, while it attains
positive values for regular ones. Due to these different behaviors these indices,
and in particular the GALI2/SALI and the GALIN , can reveal even tiny details of
the underlying dynamics, if one follows the procedure presented in Sect. 5.4.1.1.
Implementing the numerical strategies developed in Sect. 5.4.1.2 we can also use
the completely different time rates with which the GALIk with N < k � 2N,
tends to zero (exponentially fast for chaotic orbits and power law decay for regular
ones) in order to study the dynamics globally. Finally, in Sect. 5.4.3 a particular
numerical method, the re-initialization of the GALIk, proved to be the suitable
approach to reveal even brief changes in the dynamical nature of orbits in time
dependent Hamiltonians.

The SALI and the GALI have already proven their usefulness in chaos studies
as their many applications to a variety of dynamical systems show (see Sect. 5.4.2).
Nevertheless, several other chaos indicators have been developed over the years. A
few, sporadic comparisons between some of these methods have been performed
in studies of particular dynamical systems (e.g. [9, 75, 79, 83]). Recently, detailed
and systematic comparisons between many chaos indicators based on the evolution
of deviation vectors were conducted [33, 59], and the SALI method was added in
the software package LP-VIcode [24], which includes several of these indicators.
The main outcome of these comparative studies was that the use of more than one
chaos indicators is useful, if not imperative, for revealing the dynamics of a system.
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Appendix: Pseudo-Codes for the Computation of the SALI
and the GALIk

We present here pseudo–codes for the numerical computation of the SALI
(Table 5.1) and the GALIk (Table 5.2) methods, according to the algorithms
presented in Sects. 5.2 and 5.3.1 respectively.

Table 5.1 Numerical computation of the SALI

Input: 1. Hamilton equations of motion and variational equations, or

equations of the map and of the tangent map.

2. Initial condition for the orbit x.0/.

3. Initial orthonormal deviation vectors w1.0/, w2.0/.

4. Renormalization time � .

5. Maximum time: TM and small threshold value of the SALI: Sm.

Step 1 Set the stopping flag, SF 0, the counter, i 1, and the orbit

characterization variable, OC ‘regular’.

Step 2 While .SF D 0/ Do
Evolve the orbit and the deviation vectors from time t D .i� 1/�

to t D i� , i.e. Compute x.i�/ and w1.i�/, w2.i�/.

Step 3 Normalize the two vectors, i.e.

Set w1.i�/ w1.i�/=kw1.i�/k and w2.i�/ w2.i�/=kw2.i�/k.
Step 4 Compute and Store the current value of the SALI:

SALI.i�/ D min fkw1.i�/C w2.i�/k; kw1.i�/� w2.i�/kg.
Step 5 Set the counter i iC 1.

Step 6 If ŒSALI..i� 1/�/ < Sm� Then
Set SF 1 and OC ‘chaotic’.

End If
Step 7 If Œ.i� > TM/� Then

Set SF 1.

End If
End While

Step 8 Report the time evolution of the SALI and the nature of the orbit.

The algorithm for the computation of the SALI according to Eq. (5.8). The program computes the
evolution of the SALI with respect to time t up to a given upper value of time t D TM or until
the index becomes smaller than a low threshold value Sm. In the latter case the studied orbit is
considered to be chaotic
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Table 5.2 Numerical computation of the GALIk

Input: 1. Hamilton equations of motion and variational equations, or

equations of the map and of the tangent map.

2. Order k of the desired GALI.

3. Initial condition for the orbit x.0/.

4. Initial orthonormal deviation vectors w1.0/, w2.0/, : : :, wk.0/.

5. Renormalization time � .

6. Maximum time: TM and small threshold value of the GALI: Gm.

Step 1 Set the stopping flag, SF 0, the counter, i 1, and the orbit

characterization variable, OC ‘regular’.

Step 2 While .SF D 0/ Do
Evolve the orbit and the deviation vectors from time t D .i� 1/�

to t D i� , i.e. Compute x.i�/ and w1.i�/, w2.i�/, : : :, wk.i�/.

Step 3 Normalize the vectors:

Do for j D 1 to k

Set wj.i�/ wj.i�/=kwj.i�/k.
End Do

Step 4 Compute and Store the current value of the GALIk :

Create matrix A.i�/ having as rows the deviation vectors w1.i�/,

w2.i�/, : : :, wk.i�/.

Compute the singular values z1.i�/, z2.i�/, : : :, zk.i�/ of

matrix AT .i�/ by applying the SVD algorithm.

GALIk.i�/ DQk
jD1 zj.i�/.

Step 5 Set the counter i iC 1.

Step 6 If ŒGALIk..i� 1/�/ < Gm� Then
Set SF 1 and OC ‘chaotic’.

End If
Step 7 If Œ.i� > TM/� Then

Set SF 1.

End If
End While

Step 8 Report the time evolution of the GALIk and the nature of the orbit.

The algorithm for the computation of the GALIk according to Eq. (5.20). The program computes
the evolution of the GALIk with respect to time t up to a given upper value of time t D TM or
until the index becomes smaller than a low threshold value Gm. In the latter case the studied orbit
is considered to be chaotic
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