Chapter 1
Estimating Lyapunov Exponents from Time
Series

Ulrich Parlitz

Abstract Lyapunov exponents are important statistics for quantifying stability
and deterministic chaos in dynamical systems. In this review article, we first
revisit the computation of the Lyapunov spectrum using model equations. Then,
employing state space reconstruction (delay coordinates), two approaches for
estimating Lyapunov exponents from time series are presented: methods based on
approximations of Jacobian matrices of the reconstructed flow and so-called direct
methods evaluating the evolution of the distances of neighbouring orbits. Most
direct methods estimate the largest Lyapunov exponent, only, but as an advantage
they give graphical feedback to the user to confirm exponential divergence. This
feedback provides valuable information concerning the validity and accuracy of the
estimation results. Therefore, we focus on this type of algorithms for estimating
Lyapunov exponents from time series and illustrate its features by the (iterated)
Hénon map, the hyper chaotic folded-towel map, the well known chaotic Lorenz-
63 system, and a time continuous 6-dimensional Lorenz-96 model. These examples
show that the largest Lyapunov exponent from a time series of a low-dimensional
chaotic system can be successfully estimated using direct methods. With increasing
attractor dimension, however, much longer time series are required and it turns out
to be crucial to take into account only those neighbouring trajectory segments in
delay coordinates space which are located sufficiently close together.

1.1 Introduction

Lyapunov exponents are a fundamental concept of nonlinear dynamics. They
quantify local stability features of attractors and other invariant sets in state space.
Positive Lyapunov exponents indicate exponential divergence of neighbouring
trajectories and are the most important attribute of chaotic attractors. While the
computation of Lyapunov exponents for given dynamical equations is straight
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forward, their estimation from time series remains a delicate task. Given a univariate
(scalar) time series the first step is to use delay coordinates to reconstruct the state
space dynamics. Using the reconstructed states there are basically two approaches
to solve the estimation problem: With Jacobian matrix based methods a (local)
mathematical model is fitted to the temporal evolution of the states that can then
be used like any other dynamical equation. Using this approach in principle all
Lyapunov exponents can be estimated if the chosen black-box model is in very good
agreement with the underlying dynamics. In practical applications such a high level
of fidelity is often difficult to achieve, in particular since the time series typically
contain only limited information about contracting directions in state space. With
the second approach for estimating (at least the largest) Lyapunov exponents the
local divergence of trajectory segments in reconstructed state space is assessed
directly. Advantage of this kind of direct methods is their low number of estimation
parameters, easy implementation, and last but not least, direct graphical feedback
about the (non-) existence of exponential divergence in the given time series.

The following presentation is organised as follows: In Sect. 1.2 the standard
algorithm for computing Lyapunov exponents using dynamical model equations
is revisited. Methods for computing Lyapunov exponents from time series are
presented in Sect. 1.3. In Sect. 1.4 four dynamical systems are introduced to generate
time series which are then in Sect.1.5 used as examples for illustrating and
evaluating features of direct estimation of the largest Lyapunov exponent. The
examples are: the Hénon map, the hyper chaotic folded-towel map, the Lorenz-
63 system, and a 6-dimensional Lorenz-96 model. These time discrete and time
continuous models exhibit deterministic chaos of different dimensionality and
complexity. In Sect. 1.6 a summary is given and the Appendix contains some
information for those readers who are interested in implementing Jacobian based
estimation algorithms.

1.2 Computing Lyapunov Exponents Using Model Equations

Lyapunov exponents characterize and quantify the dynamics of (infinitesimally)
small perturbations of a state or trajectory in state space. Let the dynamical model
be a M-dimensional discrete

x(n+ 1) = gx(n)) (1.1)
or a continuous
. dx
X = i f(x) (1.2)
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dynamical system generating a flow
¢ RM > RM (1.3)

with discrete t = n € Z or continuous ¢ € R time. The temporal evolution of an
infinitesimally small perturbation y of the state x

D¢'(x) -y (1.4)

is governed by the linearized dynamics where D¢’ (x) denotes the Jacobian matrix of
the flow ¢'. For discrete systems this Jacobian can be computed using the recursion
scheme

D.¢""! (x) = D.g(¢" (%)) - Dx¢" (x) (1.5)

with initial value D,¢°(x) = Iy where Ij; denotes the M x M identity matrix.
For continuous systems (1.2) additional linearized ordinary differential equations
(ODEs)

d t
7= D.f(¢'(x)) - Y (1.6)

have to be solved where ¢’(x) is a solution of Eq. (1.2) with initial value x and Y
is a M x M matrix that is initialized as Y(0) = Ij. The solution Y (#) provides the
Jacobian of the flow D¢'(x) that describes the local dynamics along the trajectory
given by the temporal evolution ¢’(x) of the initial state x. Since Eq. (1.6) is a linear
ODE its solutions consist of exponential functions and the Jacobian of the flow
D¢’ (x) maps a sphere of initial values close to x to an ellipsoid centered at ¢’(x) as
illustrated in Fig. 1.1. This evolution of the tangent space dynamics can be analyzed
using a singular value decomposition (SVD) of the Jacobian of the flow D¢’ (x)

DY'(x)=U-S-V" (1.7)

D'(x)=U-S-V*r

Fig. 1.1 Temporal evolution of an infinitesimally small sphere in state space
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where § = diag(oy,...,0n) is a M x M diagonal matrix containing the singular
valuesoy > 07 > ... > oy >0and U = (u,...,uM)and V = (v(V, ... ,v¥)
are orthogonal matrices, represented by orthonormal column vectors u® € R and
v € RM respectively. V' is the transposed of V coinciding with the inverse V! =
V', because V is orthogonal. For the same reason U” = U~! and by multiplying
by V from the right we obtain D¢'(x) - V = U - S or

D' x)V™ =g, 0™  (m=1,...,M). (1.8)

The column vectors of the matrices V and U span the initial sphere and the ellipsoid,
as illustrated in Fig. 1.1, where the singular values 0,,(¢) give the lengths of the
principal axes of the ellipsoid at time ¢. On average o,,(#) increases or decreases
exponentially during the temporal evolution and the Lyapunov exponents A,, are the
mean logarithmic growth rates of the lengths of the principal axes

1
Am = lim —1Ino,(1). (1.9)
t—o0

The existence of the limit in Eq. (1.9) is guaranteed by the Theorem of Oseledec
[33] stating that the Oseledec matrix

A) = lim (IDg'(0)]” - D' () * (1.10)

exists. For dissipative systems one set of exponents is associated with each attractor
and for almost all initial states x from each attractor A(x) takes the same value.

The logarithms of the eigenvalues u,, of this symmetric positive definite M x M
matrix are the Lyapunov exponents of the attractor or invariant set the initial state x
belongs to

Aw=Inp, (m=1,....M). (1.11)

Using the SVD of the Jacobian matrix of the flow the Oseledec matrix for finite time
¢ can be written

(V-S-UT-U-S-V")¥ = (v.§2.yr)¥ (1.12)

with eigenvalues 0,1/ ! Taking the logarithm %ln o, and performing the limit r —
oo we obtain the Lyapunov exponents (1.11). Unfortunately, this definition and
illustration of the Lyapunov exponents cannot be used directly for their numerical
computation, because the Jacobian matrix D¢’ (x) consists of elements that are expo-
nentially increasing or decreasing in time resulting in values beyond the numerical
resolution and representation of variables. To avoid these severe numerical problems
in 1979 Shimada and Nagashima [45] and in 1980 and Benettin et al. [3] suggested
algorithms that exploit the fact that the growth rate of k-dimensional volumes A®)
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(in the M-dimensional state space) is given by the sum of the largest £ Lyapunov
exponents

k
20 = Z,x,,, (1.13)
m=1

and the Lyapunov exponents can by computed from the volume growth rates as
o= A0 4 = A@ — 4, A3 = A — 1, — Ay, etc. The volume growth
rates A% can be computed using a QR decomposition of the Jacobian of the flow
D¢'(x). Let 0% = (o), ..., 0%) be an orthogonal matrix whose column vectors
o/ span a k-dimensional infinitesimal volume with k ranging from 1 to M. After
time ¢ this volume is transformed by the Jacobian matrix into a parallelepiped
PX (1) = D¢'(x) - O®. To computed the volume spanned by the column vectors
of PX (1) we perform a QR-decomposition of P (7)

PPt = D¢'(x) - 0N = oW (1) - RM (1) (1.14)

where QW(r) is a matrix with k orthonormal columns and R¥(f) is an upper
triangular matrix with non-negative diagonal elements. The volume V®) () of P®¥(t)

at time t is given by the product of the diagonal elements Rl(lk ) (#) of R¥()

k
v =R @) ... RY () =[] RP @) (1.15)

i=1

The mean logarithmic growth rate of the k-dimensional volume is thus given by

ii

k
1 1
®) — 1im — ® () = Tim — (k)
A —thm tan ® thm ; '_El InR:"(2). (1.16)

Using this relation and Eq.(1.13) we can conclude that the first k& Lyapunov
exponents Ap, ..., A, are given by

1
A = lim —1nRY (1), (1.17)
t—>o0

If one would perform the QR-decomposition (1.14) of the Jacobian D¢’ (x) after a
very long period of time (to approximate the limit # — oo) then one would be faced
with the same numerical problems that were mentioned above in the context of
the Oseledec matrix. The advantage of the volume approach via QR-decomposition
is, however, that this decomposition can be computed recursively for small time
intervals avoiding any numerical over or underflow. To exploit this feature the period
of time [0, 7] is divided into N time intervals of length T = ¢/N and the Jacobian
matrices D¢’ (¢" (x)) are computed at times t, = nT (n = 0,...,N — 1) along
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the orbit. Employing the chain rule the Jacobian matrix D¢’ (x) can be written as a
product of Jacobian matrices D¢ (¢" (x))

N—1
D' (x) = D" ($"~' (x)) - .- D" (6" (x)) = [ | Dp" (9" (x). (1.18)
n=0
Using QR-decompositions
0¥ (tr41) - R (141) = DY (9" (%)) - OV (1) (1.19)

the full period of time [0,f] used for averaging the local expansion rates can
be decomposed into a sequence of relatively short intervals [0, 7] with Jacobian
matrices D¢ (¢ (x)) that are not suffering from numerical difficulties. Applying
the QR-decompositions (1.19) recursively we obtain a scheme for computing the
QR-decomposition of the Jacobian matrix of the full time step

D¢'(x) - O = Dgp" (¢~ (x)) - ... - D" ($" (x)) - OV
= D¢ (p"(x)) ... D" (¢" (x)) - 0P (t1) - RP(ty)
= D¢ (p"1(x)) ... D" (92 (x)) - 0P (1) - RO (82) - RO (2y)

= D¢" (p"1(x)) - O (ty—1) - RO (ty—1) - ... - RP (1)
= 0W@) - RO (ty) - .- RO (1)

which provides Q% (1) = O™ (1y) and the required matrix R®)(7) as a product
RO@) = RO@y) - ...-R®(1y). (1.20)

For the diagonal elements of the upper triangular matrices holds the relation
N
RY (@) =[TRY (@) (1.21)
n=1

and substituting Rff) (1) in Eq.(1.17) (with t = NT) we obtain the following
expression for the ith Lyapunov exponent (with i < k < M)

N
_ o L 5(K)
A= lim W;lnRﬁ (1). (1.22)

Using this approach the computation of all Lyapunov exponents of a given
dynamical system became a standard procedure [12, 19, 46, 51] providing the full
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set of Lyapunov exponents constituting the Lyapunov spectrum which is an ordered
set of real numbers {A, A,, ..., A,,}. If the system undergoes aperiodic oscillations
(after transients decayed) and if the largest Lyapunov exponent A is positive, then
the corresponding attractor is said to be chaotic and to show sensitive dependence
on initial conditions. If more than one Lyapunov exponent is positive the underlying
dynamics is called hyper chaotic.

The (ordered) spectrum A; > A, > ... > A, can be used to compute the
Kaplan—Yorke dimension (also called Lyapunov dimension) [34]

k
Lizi ki (1.23)

Dgy =k +
K ir1]

where k is the maximum integer such that the sum of the k largest exponents is
still non-negative. Dgy is an upper bound for the information dimension of the
underlying attractor.

1.3 Estimating Lyapunov Exponents from Time Series

All methods for computing Lyapunov exponents are based on state space reconstruc-
tion from some observed (univariate) time series [11, 42, 43, 49]. For reconstructing
the dynamics most often delay coordinates are used due to their efficacy and
robustness.

To reconstruct the multi-dimensional dynamics from an observed (univariate)
time series {s,} sampled at times #, = nAt we use delay coordinates providing the
N x D trajectory matrix

X = (x.X2,....xy)" (1.24)
where each row is a reconstructed state vector

Xn = (Sns SntLs - o Snb(D—1)L) (1.25)

at time n (with lag L and dimension D). From a time series {s,} of length N, a
total number of N = N; — (D — 1)L states can be reconstructed. To achieve useful
(nondistorted) reconstructions the time window length (D — 1)L of the delay vector
should cover typical time scales of the dynamics like natural periods or the first zero
or minimum of the autocorrelation function or the (auto) mutual information [1, 26].

Since Lyapunov exponents are invariant with respect to diffeomorphic changes of
the coordinate system the Lyapunov exponents estimated for the reconstructed flow

'We use forward delay coordinates here. Delay reconstruction backward in time provides
equivalent results.
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will coincide with those of the original system. Technically, different approaches
exist for computing Lyapunov exponents from embedded time series. Jacobian-
based methods employ the standard algorithm outlined in Sect. 1.2 except for the
computation of the Jacobian matrix D¢’ (x) which is now based on approximations
of the flow in the reconstructed state space. This class of methods will be briefly
presented in Sect. 1.3.1. In particular with noisy data reliable estimation of the
Jacobian matrix may be a delicate task. This is one of the reasons why several
authors proposed methods for estimating the largest Lyapunov exponent directly
from diverging trajectories in reconstructed state space. Such direct methods will be
discussed in detail in Sect. 1.3.2 and will be illustrated and evaluated in Sect. 1.5.
They do not require Jacobian matrices but are mostly used to compute the largest
Lyapunov exponent, only. A major advantage of direct methods, however, is the fact
that they provide direct visual feedback to the user whether the available time series
really exhibits exponential divergence on small scales. Therefore, we shall focus on
this class of methods in the following.

1.3.1 Jacobian-Based Methods

With Jacobian methods, first a model is fitted to the data and then the Jacobian
matrices of the model equations are used to compute the Lyapunov exponents using
standard algorithms (see Sect. 1.2) which have been developed for the case when the
equations of the dynamical system are known [3, 12, 19, 45]. In this context usually
local linear approximations are used for modeling the flow in reconstructed state
space [14, 22, 29, 36, 40, 47, 48, 53, 54]. An investigation of the data requirements
for Jacobian-based methods may be found in [13, 15]. Technical details and more
information about the implementation of Jacobian-based methods are given in the
Appendix.

To employ the standard algorithm for computing Lyapunov exponents (Sect. 1.2)
also for time series analysis the Jacobian matrices along the orbit in reconstruction
space are required and have to be estimated from the temporal evolution of
reconstructed states. Here two major challenges occur:

(a) The Jacobian matrices (derivatives) have to be estimated using reconstructed
states that are scattered along the unstable direction(s) of the attractor but not
in transversal directions (governed by contracting dynamics). This may result
in ill-posed estimation problems and is a major obstacle for estimating negative
Lyapunov exponents. Furthermore, the estimation problem is often even more
delicate because we aim at approximating (partial) derivatives (the elements of
the Jacobian matrix) from typically noisy data where estimating derivatives is a
notoriously difficult problem.

(b) To properly unfold the attractor and the dynamics in reconstruction space
the embedding dimension D has in general to be larger than the dimension
of the original state space M (see Sect.1.3). Therefore, a straightforward
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computation of Lyapunov exponents using (estimated) D x D Jacobian matrices
in reconstruction space and QR-decomposition (see Sect. 1.2) will provide D
Lyapunov exponents, although the underlying M-dimensional system possesses
M < D exponents, only. The additional D — M Lyapunov exponents are called
parasitic or spurious exponents and they have to be identified (or avoided),
because their values are not related to the dynamics to be characterized.

Spurious Lyapunov exponents can take any values [8], depending on details
of the approximation scheme used to estimate the Jacobian matrices, the local
curvature of the reconstructed attractor, and perturbations of the time series (e.g.,
noise). Therefore, without taking precautions spurious Lyapunov exponents can
occur between “true” exponents and may spoil in this sense the observed spectrum
(resulting in false conclusion about the number of positive exponents or the Kaplan—
Yorke dimension, for example). To cope with this problem many authors presented
different approaches for avoiding spurious Lyapunov exponents or for reliably
detecting them [44].

To identify spurious Lyapunov exponents one can estimate the local thickness of
the attractor along the directions associated with the different Lyapunov exponents
[6, 7] or compare the exponents obtained with those computed for the time reversed
series [35, 36], because spurious exponents correspond to directions where the
attractor is very thin and because in general they do not change their signs upon
time reversal (in contrast to the true exponents). The latter method, however, works
only for data of very high quality that enable also a correct estimation of negative
Lyapunov exponents which in most practical situations is not the case. Furthermore,
in some cases also spurious Lyapunov exponents may change signs and can then
not be distinguished from true exponents. Another method for identifying spurious
Lyapunov exponents employing covariant Lyapunov vectors been suggested in
[27,52].

Spurious Lyapunov exponents can be avoided by globally unfolding the dynam-
ics in a D-dimensional reconstruction space and locally approximating the (tangent
space) dynamics in a lower dimensional d-dimensional space (with d < M). This
can be done using two different delay coordinates where the set of indices of
neighbouring points of a reference point is identified using a D-dimensional delay
reconstruction and then these indices are used to reconstruct states representing
“proper” neighbours in a d-dimensional delay reconstruction (with d < D) which
is used for subsequent modeling of the dynamics (flow and its Jacobian matrices)
[6, 7, 14]. To cover relevant time scales it is recommended [14] to use for both delay
reconstructions different lags Lp and L, so that the delay vectors span the same or
similar windows in time (i.e., (D — 1)Lp ~ (d — 1)L;). An alternative approach
for evaluating the dynamics in a lower dimensional space employs local projections
into d-dimensional subspaces of the D-dimensional delay embedding space given
by singular value decompositions of local trajectory matrices [10, 48].

For evaluating the uncertainty in Lyapunov exponent computations from time
series employing Jacobian based algorithms bootstrapping methods have been
suggested [28].
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1.3.2 Direct Methods

There are (slightly) different ways to implement a direct method for estimating
the largest Lyapunov exponent and they all rely on the fact that almost all tangent
vectors (or perturbations) converge to the subspace spanned by the first Lyapunov
vector(s) with an asymptotic growth rate given by the largest Lyapunov exponent
A1 (see Sect. 1.5.1). In practice, however, from a time series of finite length only a
finite number of reconstructed states is available with a finite lower bound for their
mutual distances. If the nearest neighbour x,,(, of a reference point x,, is chosen
from the set of reconstructed states the trajectory segments emerging from both
states will (on average) diverge exponentially until the distance ||Xum)+x — Xn||
exceeds a certain threshold and ceases to grow but oscillates bounded by the size
of the attractor. For direct methods it is crucial that the reorientation towards the
most expanding direction takes place and is finished before the distance between the
states saturates. Then the period of exponential growth characterised by the largest
Lyapunov exponent can be detected and estimated for some period of time as a linear
segment in a suitable semi-logarithmic plot. This feature is illustrated in Fig. 1.2a
showing the average of the logarithms of distances of neighbouring trajectories vs.
time on a semi-logarithmic scale. In phase I the difference vector between states
from both trajectories converges towards the most expanding direction. Then in
phase II exponential divergence results in a linear segment until in phase III states
from both trajectory segments are so far away from each other that nonlinear folding
occurs and the mean distance converges to a constant value (which is related to the
diameter of the attractor).

Different implementations of the direct approach have been suggested in the past
25 years [18, 25, 30, 38, 41] that are based on the following considerations.

Let x(m(n)) be a neighbour of the reference state x(n) (with respect to the
Euclidean norm or any other norm) and let both states be temporally separated

|m(n) —n| >w (1.26)

@ A (b) .

log(distance)

\ 4
.

time

Fig. 1.2 (a) Sketch showing the mean logarithmic distance of neighbouring states on different
trajectory segments vs. time. (b) Illustration motivating the exclusion of temporal neighbours
(Theiler window)
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where w is a characteristic time scale (e.g., a mean period) of the time series.
The temporal separation (also called Theiler window w [50]) is necessary to make
sure that this pair of neighbouring states can be considered as initial conditions of
different trajectory segments and the largest Lyapunov exponent can be estimated
from the mean rate of separation of states along these two orbits. Figure 1.2b shows
an illustration of a case where a Theiler window of w = 3 would be necessary to
exclude neighbours of the state marked by a big dot to avoid temporal neighbours
on the same trajectory segment (small dots preceding and succeeding the reference
state within the circle, indicating the search radius).
We shall quantify the separation of states by the distance

d(m(n),n, k) = ||x(m(n) + k) —x(n + k)| (1.27)

of the neighbouring states after k time steps (i.e. a period of time 7" = kAr). Most
often [18, 30, 38, 41] the Euclidean norm

dg(m(n), n, k) = [|x(m(n) + k) —x(n + k)2 (1.28)

is used to define this distance, although Kantz [25] pointed out that it is sufficient to
consider the difference

dp(m(n),n, k) = |x(m(n) + (D—1)L+ k) —x(n+ (D— 1)L+ k)| (1.29)

of the last components of both reconstructed states, because these projections also
grow exponentially with the largest Lyapunov exponent. Here L denotes again
the time lag used for delay reconstruction. With the same argument, one can also
consider the difference of the first component

dr(m(n),n, k) = |x(m(n) + k) — x(n + k)| (1.30)

and in the following we shall compare all three choices. Within the linear
approximation (very small d(m(n),n,k)) the temporal evolution of the distance
d(m(n),n, k) is given by

d(m(n),n, k) ~ d(m(n), n,0) eil(n)kAt (1.31)

where d(m(n), n, 0) stands for the initial separation of both orbits and )Akl (n) denotes
the (largest) local expansion rate of orbits starting at x(n). Taking the logarithm we
obtain

A 1

ha(n) ~ — [In(d(m(n). n. k) = In(d(m(n). . 0))] (1.32)

1 1 d(m(n),n, k)

—In| ———=).
kAt d(m(n),n,0)

%
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Here and in the following expansion rates and Lyapunov exponents are computed
using the natural logarithm In(-).

Since expansion rates vary on the attractor we have to average along the available
trajectory by choosing for each reference state x(n) some neighbouring states
{x(m(n)) : m(n) € %,} where %, defines the chosen neighbourhood of x(n) that
can be of fixed mass (a fixed number K of nearest neighbours of x(r)) or of fixed
size (all points with distance smaller than a given bound €). Often a fixed mass with
K =1 (i.e., using only the nearest neighbour) is used [18, 38, 41], but a fixed size
may in some cases be more appropriate to avoid mixing of scales [25, 30]. In the
following |%;,| denotes the number of neighbours of x(n).

Furthermore, it may be appropriate to use not all available reconstructed states
x(n) (n = 1,...,N) as reference points but only a subset & consisting of N, =
|Z| points. This speeds up computations and may even result in better results if Z
contains only those reconstructed states that possess very close neighbours (where
d(m(n),n,0) is very small). This issue will be discussed and demonstrated in the
results section.

With averaged logarithmic distances

E(k) = Z by %I z; In(d(m, n. k)) (1.33)
me,
and
Stk = Z ~ > In (ZE’"’ ”’ 8) — E(k) — E(0) (1.34)

nG@ mewU,

and the local expansion rates (1.32) the averaged growth rate can be expressed as

_ 1 d(m,n, k)
__Z 1~ NkAtZ|%| 2! (d(m, ,0)) (139

" nez me,

1
= k_At S(k) = E[E(k)—E(O)] (1.36)

providing the relations
S(k) ~ kAtA, (1.37)
and
E(k) ~ kAtA| + E(0). (1.38)

Here E(k) stands for Eg(k), Er(k), or Er (k) depending on the distance measure dp,
dr, or dr, used when computing E in Eq. (1.33).
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In 1987 Sato et al. [41] suggested to estimated the largest Lyapunov exponent
by the slope of a linear segment of the graph obtained when plotting S(k) vs. kAt.
The same approach was suggested later in 1993 by Gao and Zheng [18]. The same
year Rosenstein et al. [38] recommended to avoid the normalization by the initial
distance d(m(n),n,0) in Eqs.(1.32) and (1.34) and to plot E(k) vs. kAz. As can
be seen from Eqs. (1.37) and (1.38) both procedures are equivalent, because both
graphs differ only be a constant shift £(0). Instead of estimating the slope in S(k)
vs. kAt Sato et al. [41] and Kurths and Herzel [30] independently suggested in 1987
to consider

s E(k+D—E®) _ Sk+D—SE®

A 1.39
! LAt LAt ( )

and to identify a plateau in the graph [E(k+[) — E(k)] vs. k (that should occur for the
same range of k values where the linear segment occurs with the previous methods).
This is basically a finite differences approximation of the slope of the graph E(k) vs.
kAt. To obtain best results the time interval /At should be large but (I + k) Ar must
not exceed the linear scaling region(s) where distances grow exponentially (and this
range is in general not known a priori).

In 1985 Wolf et al. [51] suggested a method to estimate the largest Lyapunov
exponent(s) which avoids the saturation of mutual distances of reference states
and local neighbours due to nonlinear folding. The main idea is to monitor the
distance between the reference orbit and the neighbouring orbit and to replace
(once a threshold is exceeded) the neighbouring state by another neighbouring
state that is closer to the reference orbit and which lies on or near the line from
the current reference state to the last point of the previous neighbouring orbit
in order to preserve the (local) direction corresponding to the largest Lyapunov
exponent. Criteria for the replacement threshold and other details of the algorithm
are given in [51], including a FORTRAN program. In principle, it is possible to
use this strategy also for computing the second largest Lyapunov exponent [51],
but this turns out to be quite difficult. When applied to stochastic time series
the Wolf algorithm yields inconclusive results and may provide any value for
the Lyapunov exponent depending on computational parameters and pre-filtering
[9]. Due to its robustness the Wolf-algorithm is often used for the analysis of
experimental data (see, for example, [16, 17]). A drawback of this method (similar
to Jacobian based algorithms) is the fact that the user has no possibility to check
whether exponential growth underlies the estimated values or not. Even if the
amount of data available or the type and quality of the time series would not
be sufficient to quantify exponential divergence the algorithm would provide a
number that might be misinterpreted as the largest Lyapunov exponent of the
underlying process. Therefore, we do not consider this method in more detail in
the following.
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1.4 Example Time Series

To illustrate and evaluate the direct method for estimating the largest Lyapunov
exponent, time series generated by four different chaotic dynamical systems are
used that will be introduced in the following subsections.

1.4.1 The Hénon Map

The first system is the Hénon map [21]

xin+1)=1- ax%(n) + bx;(n) (1.40a)
xo(n+1) = x1(n) (1.40b)

with parameters a = 1.4 and b = 0.3. The Lyapunov exponents of this system
are A; = 0.420 and A, = —1.624 (computed with the natural logarithm In(-),
note that for the Hénon map A; + A, = In(b) = —1.204). In the following
we shall assume that a x; time series of length N; = 4096 is given.” A special
feature of the Hénon map is that its original coordinates (x(n), x,(n)) coincide with
2-dimensional delay coordinates (x;(n),x1(n — 1)) = (x1(n),x2(n)). Figure 1.3a
shows the Hénon attractor reconstructed from a clean {x;(n)} time series and in
Fig. 1.3b a reconstruction is given based on a time series with additive measurement
noise of signal-to-noise ration (SNR) of 30dB (generated by adding normally
distributed random numbers).
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Fig. 1.3 Attractor of the Hénon map (1.40) (a) without noise and (b) with noise (SNR = 30dB)

2Since x,(n + 1) = x;(n) any x, time series will give the same results.
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1.4.2 The Folded-Towel Map

The second system is the folded-towel map introduced in 1979 by Réssler [39]

x(n+ 1) = 3.8x(n)(1 — x(n)) — 0.05(y(n) + 0.35)(1 —2z(n)) (1.41a)
y(n+ 1) = 0.1[(y(n) + 0.35)(1 — 2z(n)) — 1](1 — 1.9x(n))  (L.41b)
z(n+ 1) = 3.78z(n)(1 — z(n)) + 0.2y(n) (1.41c¢)

which generates the chaotic attractor shown in Fig. 1.4. The folded-towel map has
two positive Lyapunov exponents A; = 0.427, A, = 0.378, and a negative exponent
A3 = —3.30. The Kaplan—Yorke dimension of this attractor equals Dgy = 2.24.

Figure 1.5 shows delay reconstructions based on x, y, and z time series of length
N; = 65,536 (i.e. 64k). In the first row (Fig. 1.5a—c) clean data are used while
for the reconstructions shown in the second row (Fig.1.5d—f) noisy data (64k)
with signal-to-noise ratio (SNR) of 30dB are used that were obtained by adding
normally distributed random numbers to the clean data shown in the first row. These
noisy time series will be used to evaluate the robustness of methods for estimating
Lyapunov exponents.

0.5
ym 0 x(n)

Fig. 1.4 Hyperchaotic attractor of the folded-towel map (1.41), original coordinates (x,y,z)
(length N; = 65,536)
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x(n+1)

Fig. 1.5 Delay reconstructions of the attractor of the folded-towel map (1.41). (a)—(c) Without
and (d)—(f) with additive (measurement) noise of SNR 30 dB. Reconstruction from (a), (d) {x(n)}
time series, (b), (e) {y(n)} time series, and (¢), (f) {z(n)} time series

1.4.3 Lorenz-63 System

As an example of a low dimensional continuous time system we use the Lorenz-63
system [31] given by the following set of ordinary differential equations (ODEs)

561 = O'()CZ —xl) (142&)
562 = xl(R — )C3) — X2 (142b)
563 = X1X2 — b)C3. (1420)

With parameter values 0 = 16, R = 45.92, and b = 4 this systems generates a
chaotic attractor with Lyapunov exponents A; = 1.51, A, = 0, and A3 = —22.5.

1.4.4 Lorenz-96 System

As an example of a continuous time system exhibiting complex dynamics we shall
employ a 6-dimensional Lorenz-96 system [32] describing a ring of 1-dimensional
dynamical elements. The differential equations for the model read

dxi(1)
dt

= Xi—1 (D (Xit1 () — xi—2() — x:(1) +f (1.43)
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Fig. 1.6 (a) Convergence of Lyapunov exponents of the 6-dimensional Lorenz-96 system (1.43)
generated with parameter value f = 10. (b) Typical oscillation

withi = 1,2,...,6, x_1(t) = x5(t),x0(t) = x¢(¢), and x7(t) = x;(¢). With a
forcing parameter f = 10 the system generates a chaotic attractor characterized by
a Lyapunov spectrum {1.249, 0.000, —0.098, —0.853, —1.629, —4.670} and a result-
ing Kaplan—Yorke dimension of Dgy = 4.18. Figure 1.6a shows the convergence of
the six Lyapunov exponents upon their computation using the full model equations
(1.43) and in Fig. 1.6b, a typical time series of the Lorenz-96 system is plotted.

1.5 Estimation of Largest Lyapunov Exponents Using Direct
Methods

1.5.1 Convergence of Small Perturbations

As illustrated in Fig. 1.2a any (random) perturbation first undergoes a transient phase
I and converges to the direction of the Lyapunov vector(s) corresponding to the
largest Lyapunov exponent. Then, in phase II, it grows linearly (on a logarithmic
scale) until the perturbation exceeds the linear range (phase III). In the following
we shall study this convergence process for the four example systems which were
introduced in the previous section. The asymptotic average stretching of almost any
initial perturbation (tangent vector) z(0) is given by the largest Lyapunov exponent
A1. Using the tangent space basis {v(V,...,v"} provided by the SVD (1.7) the
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initial tangent vector can be written as

M
20)=Y v =V-c (1.44)

m=1
where ¢ = (cy, ..., cy) denotes the vector of projection coefficients. Its temporal

evolution is thus given by

M
2(t) =D¢'(x)-2(0) =U-S-V"-2(0) =U-S-c= Y _ cpopu™. (1.45)

m=1

If we approximate the singular values o,, by ¢*"’ we obtain for (the square of) the
Euclidean norm of z(t)

Z(1) = |lz(0|* = Zcz Pt (1.46)

and this yields

1 1 (N
lim P In(Z() = lim 7 In(lz(@[) = lim 3 In (,; e =k
(1.47)
because the term e*»’ with the largest A,, dominates the sum as time ¢ goes to infinity.
The speed of convergence depends on the full Lyapunov spectrum. Figure 1.6 shows
In(Z(¢)) = In(]|z(¢)||) (as defined in Eq. (1.47)) vs. ¢ for the Hénon map (1.40), the
folded towel map (1.41), the Lorenz-63 system (1.42), and the Lorenz-96 system
(1.43). While the local slopes of the Hénon map and the folded towel map reach the
value of the largest Lyapunov exponent after a period of time of about ¢ ~ 1 the
random initial tangent vectors z(0) of the Lorenz-96 system need about twice the
time and converge to A; only after t &~ 2 (Fig. 1.7).

1.5.2 Hénon Map

Figure 1.8 shows an application of the direct estimation method to a {x;(n)} time
series of the Hénon map (1.40). The time series has a length of N = 4096 samples,
the lag equals L = 1, and different reconstruction dimensions D = 2, D = 4,
and D = 6 are used. Figure 1.8a shows Eg(k) vs. kAt where At = 1 denotes the
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Fig. 1.7 (a) Average values of In(Z(r)) = In(|lz@)||) vs. 7 (see Eq.(1.47)) for the Hénon map
(red), the folded towel map (blue, dotted line), The Lorenz-63 system (green, dashed-dotted line)
and the Lorenz-96 system (dashed line). The curves are computed by averaging 2000 realizations
with randomly chosen initial vectors z(0) with ||z(0)]| = 1. (b) Local slopes of curves shown in
(a) indicating the convergence to the value of the corresponding largest Lyapunov exponent (given
by horizontal dashed lines)
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Fig. 1.8 Direct estimation of the largest Lyapunov exponent from a Hénon time series for different
reconstruction dimensions D = 2, D = 4, D = 6 using a lag of L = 1. The diagrams (a), (c), and
(e) show Eg, E; and Ef vs. kAt with Ar = 1 for different measures of distance (1.28), (1.29), and
(1.30). In (b), (d), and (f) the corresponding slopes AE/ At vs. kAt (Eq. (1.48)) are shown. The
dashed lines indicate the true result A; = 0.42
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sampling time and Er (1.33) is computed with the Euclidean distance dg (1.28). In
Fig. 1.8b the slope

Ex(k+ 1) — Ex(k) _ AEg
At At

dE

d—tE((k +0.5) A1) ~ (1.48)
is plotted. Figure 1.8c, d and e, f show the corresponding diagrams obtained with
the distance measures dr (1.30) and d;, (1.29), respectively. In all diagrams three
phases occur (see also Fig. 1.2):

 First the difference vector x(m(n) + k) — x(n + k) converges for increasing k to
the subspace spanned by the first Lyapunov vector(s). The slope increases.

* Then the difference vector experiences the expansion rate given by the largest
Lyapunov exponent. The slope is constant indicating exponential divergence.

* Finally, the lengths of the difference vector exceeds the range of the linearized
dynamics and its length saturates due to nonlinear folding in the (reconstructed)
state space. The slope decreases.

The lengths of the linear scaling regions in Fig. 1.8a, ¢, e and of the plateaus
in Fig. 1.8b, d, f shrink with increasing embedding dimension. They also shrink, if
the length of the time series is reduced or the number of nearest neighbours K is
increased.

The results shown in Fig. 1.8 are computed by using each reconstructed state
as a reference point. Reliable estimates may be obtained, however, already with a
subset of reference points which reduces computation time almost linearly. This
subset can be randomly selected from all reconstructed states or it can be chosen
to include only those reconstructed states that possess the nearest neighbours. The
latter choice has the advantage that more steps of the diverging neighbouring
trajectory segments are governed by the linearised flow and exhibit exponential
growths resulting in longer scaling regions. Figure 1.9 shows results based on
those 25 % of the total number N of reference points that possess the closest
neighbours (i.e., where the chosen distance measure dg, dr, or d;, (see Egs. (1.28)—
(1.30)) takes the smallest values). The scaling regions are extended compared
to Fig. 1.8 but the local slopes plotted in Fig.1.9c, d, f show more statistical

fluctuations due to the smaller number of reference points (for D = 6 we
have N, = 1018 reference points in Fig.1.9e, f compared to N, = 4070 in
Fig. 1.8e, 1).

To illustrate the impact of (additive) measurement noise Fig. 1.10 shows results
obtained with a noisy Hénon time series (compare Fig. 1.2b). As can be seen in
all diagrams noise leads to shorter scaling intervals and a bias towards smaller
values underestimating the largest Lyapunov exponent. Decreasing the number N, of
reference points (with nearest neighbours) reduces the bias but increases statistical
fluctuations.



1 Estimating Lyapunov Exponents from Time Series 21

5 10 15 5 10 15
kAt kAt

Fig. 1.9 Direct estimation of the largest Lyapunov exponent from a Hénon time series for different
reconstruction dimensions D = 2, D = 4, D = 6 using a lag of L = 1. The diagrams (a), (c),
and (e) show Eg, E; and Er vs. kAt with At = 1 for different measures of distance (1.28), (1.29),
and (1.30). In (b), (d), and (f) the corresponding slopes AE/ At vs. kAt (Eq. (1.48)) are shown.
The dashed lines indicate the true result A; = 0.42. In contrast to Fig. 1.8 only those 25 % of the
reconstructed states with closest neighbours have been used as reference points

1.5.3 Folded Towel Map

To address the question whether the direct methods also work with hyper-chaotic
dynamics we shall now analyze time series generated by the folded-towel map
(1.41). Figure 1.11 shows results obtained from a {x(n)} time series of length
N, = 65,536 using all N reconstructed states as reference points. As can be seen no
linear scaling region exists, because this time series provides poor reconstructions
of the underlying attractor (compare the reconstruction shown in Fig. 1.4a). Results
can be improved by using a longer time series and only those reference points
with very close neighbours. Alternatively, one may consider reconstructions based
on a {y(n)} time series which provide better unfolding of the chaotic attractor
(compare Fig. 1.4b). Figure 1.12 shows results computed using a {y(n)} time
series from the folded-towel map (1.41) with length N; = 65,536, where only
10 % of the reconstructed states (with closest neighbours) are used for estimating
exponential divergence. As can be seen the {y(n)} time series is more suited for
estimating the largest Lyapunov exponent of the folded towel map and exhibits for
reconstruction dimensions D = 4 and D = 6 the expected scaling behaviour.
For D = 2 no clear scaling occurs and results differ significantly from those
obtained with D = 4 and D = 6, because 2-dimensional delay coordinates are not
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Fig. 1.10 Direct estimation of the largest Lyapunov exponent from a noisy Hénon time series
(SNR 30dB) for different reconstruction dimensions D = 2, D = 4, D = 6 using alagof L = 1.
The diagrams (a), (c), and (e) show Eg, E; and Er vs. kAt with At = 1 for different measures
of distance (1.28), (1.29), and (1.30). In (b), (d), and (f) the corresponding slopes AE/ At vs. kAt
(Eq. (1.48)) are shown. All reconstructed states are used as reference points and the dashed lines
indicate the true result A; = 0.42
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Fig. 1.11 Direct estimation of the largest Lyapunov exponent from a {x(n)} time series of the
folded-towel map of length N; = 65,536 for different embedding dimensions D = 2, D = 4,
D = 6 using a lag of L = 1. The diagrams (a), (c), and (e) show E vs. kAt with Az = 1 for the
Euclidean norm. In (b), (d), and (f) the corresponding slopes AE/ At vs. k (Eq. (1.48)) are shown.
The dashed lines indicate the true result A; = 0.43
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Fig. 1.12 Direct estimation of the largest Lyapunov exponent from a {y(n)} time series of the
folded-towel map of length N; = 65,536 for different embedding dimensions D = 2, D = 4,
D = 6 using a lag of L = 1. The diagrams (a), (c), and (e) show E vs. kAt with Az = 1 for the
Euclidean norm. In (b), (d), and (f) the corresponding slopes AE/ At vs. k (Eq. (1.48)) are shown.
The dashed lines indicate the true result A; = 0.43. Only those 10 % of the reconstructed states
possessing the most nearest neighbours are used as reference points for estimating exponential
divergence (N, = 6551 for D = 6)

sufficient for reconstructing this chaotic attractor (with Kaplan—Yorke dimension
Dgy = 2.24).

Figure 1.13 shows results obtained with a noisy {y(n)} time series (SNR
30dB) generated by the folded-towel map (compare Fig. 1.4e) with reconstruction
dimension D = 4, D = 6, and D = 8 and 10 % reference points. Scaling intervals
are barely visible due to the added measurement noise.

1.5.4 Lorenz-63

We shall now use as data source the Lorenz-63 system which is an example of a low
dimensional continuous system exhibiting deterministic chaos. Figure 1.14 shows
results for a x; time series of length N; = 65,536 sampled with Ar = 0.025 for
reconstruction dimensions D = 4, D = 12, and D = 21 using a delay of L = 1.
The resulting time windows (D — 1)L covered by the delay vectors are 3, 11, and
20, respectively, where the latter corresponds to a typical oscillation period of the
Lorenz-63 system. Here the sampling time At = 0.025 is much smaller compared to
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Fig. 1.13 Direct estimation of the largest Lyapunov exponent from a noisy {y(n)} time series
(SNR = 30dB) of the folded-towel map of length N; = 65,536 for different embedding
dimensions D = 4, D = 6, D = 8§ using a lag of L = 1. The diagrams (a), (c), and (e) show E
vs. kAt with At = 1 for the Euclidean norm. In (b), (d), and (f) the corresponding slopes AE/ At
vs. k (Eq. (1.48)) are shown. The dashed lines indicate the true result A; = 0.43. Only 10 % of
the reconstructed states with the smallest distances to their neighbours are used for estimating
(exponential) growth rates

the iterated maps considered so far. To avoid strong fluctuations of the slope values
the derivative AE/ At is estimated by

AE(I) _E@+34An)—-EQ1—-3A1)
At 6At

(1.49)

where E-values at 1 £ 3A are used when estimating AE/ At at time ¢. Note that the
oscillations are less pronounced for higher reconstruction dimensions. Only 20 % of
the reconstructed states are used as reference points (those which possess the closest
neighbours). The linear scaling regions are clearly visible in the semi-logarithmic
diagrams.

Figure 1.15 shows diagrams with reconstruction dimensions D = 6, D = 11,
and D = 21 and corresponding lags L = 4, L = 2, and L = 1, respectively. In
this case all reconstructed states represent the same windows in time with a length
of ( D—1)L =5-4=10-2 = 20-1 = 20 time steps of size Ar = 0.025,
i.e. a period of time of length 20 - 0.025 = 0.5 which is close to the period of the
natural oscillations of the Lorenz-63 system. The results for all three state space
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Fig. 1.14 Direct estimation of the largest Lyapunov exponent from a {x(n))} time series of the
Lorenz-63 system of length N; = 65,536 for different reconstruction dimensions D = 4, D = 12,
and D = 21, all with a lag of L = 1. As reference points only those 20 % of the reconstructed
states are used that possess the nearest neighbours. The diagrams (a), (c), and (e) show E vs. kAt
with Az = 0.025 for the Euclidean norm. In (b), (d), and (f) the corresponding slopes AE/ At vs.
k (Eq. (1.48)) are shown. The dashed lines indicate the true result A; = 1.51

reconstruction coincide very well and the amplitude of oscillations of the slope is
much smaller compared to the results shown in Fig. 1.14.

1.5.5 Lorenz-96

Although it possesses only a single positive Lyapunov exponent the 6-dimensional
Lorenz-96 systems turns out to be a surprisingly challenging case for estimating the
largest Lyapunov exponent from time series. Figure 1.16 shows estimation results
for time series of different lengths (first column: N; = 10,000, second column
Ny = 100,000, third column N; = 1,000,000) and a different number of reference
points given by those reconstructed states with closest neighbours (first row: 1 %,
second row: 10%). All examples employing 10 % of the reconstructed states as
reference points provide diagrams where no suitable scaling region exists (even
with N; = 1,000,000 data points, see Fig. 1.16F, f). If only 1 % of the reconstructed
states is used, the diagram based on N; = 100,000 samples (Fig. 1.16B, b) gives
a rough estimate of A, and with N; = 1,000,000 data points a linear scaling
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Fig. 1.15 Direct estimation of the largest Lyapunov exponent from a {x(n))} time series of the
Lorenz-63 system of length N; = 65,536 for different reconstruction dimensions D = 6, D = 11,
and D = 21, withlags L = 4, L = 2, and L = 1, respectively. As reference points only those 20 %
of the reconstructed states are use that possess the nearest neighbours. The diagrams (a), (c), and
(e) show E vs. kAt with At = 0.025 for the Euclidean norm. In (b), (d), and (f) the corresponding
slopes AE/ At vs. k (Eq. (1.48)) are shown. The dashed lines indicate the true result A, = 1.51

regime (with the correct slope) is clearly visible in Fig. 1.16C, c. The reconstruction
dimensions used here are D = 9, 18, and 36 with lags L = 4, 2, and 1, respectively,
resulting in window lengths 8 - 4 = 32, 17 -2 = 34, and 35-1 = 35. The
slopes given in Fig.1.16 were computed with Eq.(1.48) and only the case of
the Euclidean norm Er is shown here, because Er and E; show very similar
results. The observation that a time series of length N; = 1,000,000 (at least)
is required to obtain reliable and correct results is consistent with the results of
Eckmann and Ruelle [13] who estimated that the amount of required data points
increases as a power of the attractor dimension. For comparison, the Kaplan—
Yorke dimension of the Lorenz-96 attractor (Dgy = 4.18) is more than twice as
large as the dimension of the Lorenz-63 model and so instead of 64k data a time
series of length longer than 64’k = 4M would be necessary to obtain comparable
results.’

3This is just a rough estimate, because the choice of the sampling time At and the resulting
distribution of reconstructed states on the attractor have also to be taken into account when
estimating the required length of the time series.
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(A) 4

Fig. 1.16 Direct estimation of the largest Lyapunov exponent from a {x;(n))} time series of the
Lorenz-96 system for different reconstruction dimensions D = 9, D = 18, and D = 36 with
corresponding lags L = 4, L = 2, and L = 1, respectively. Diagrams (A)—(F) show Eg vs.
kAt with Ar = 0.025 and diagrams (a)—(f) give the corresponding local slopes AE/At vs. k
(Eq. (1.48)) (EE is the error with respect to the Euclidean norm). The dashed lines indicate the
true result A; = 1.249. In diagrams (A)—(C), (a)—(c) only 1 % of the reconstructed states with the
smallest distances to their neighbours are selected for estimating (exponential) growth rates, while
in (D)—(F), (d)—(f) 10 % are used. Diagrams (A), (a) and (D), (d) are generated using N; = 10,000
samples, figures (B), (b) and (E), (e) are computed from N; = 100,000 data points, and diagrams
(C), (c) and (F), (f) show results obtained from a time series of length N; = 1,000,000

1.6 Conclusion

Estimating Lyapunov exponents from time series is a challenging task and since any
algorithm provides “results” (i.e., numbers) some error control is very important
to avoid misleading interpretation of the values obtained. From the variety of
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estimation methods, currently only the direct methods provide some feedback to
the user whether local exponential divergence is properly identified or not. The
presented examples included cases where this was not the case, due to:

(a) atoo short time series (compared to the dimension of the underlying attractor),
resulting in neighbouring reconstructed states whose distances exceed the range
of validity of locally linearized dynamics, see for example Fig. 1.16A, B

(b) (measurement) noise, see for example Fig. 1.13, or

(c) an observable which is not suitable (to faithfully unfold the dynamics in
reconstruction space), see for example Fig. 1.11.

This failure was in all cases directly visible in the semi-logarithmic diagrams
showing the average growth of mutual distances of neighbouring states vs. time,
where no linear scaling region could be identified. If, on the contrary, such a linear
scaling region exists then it provides strong evidence for deterministic chaos and
the estimated slope can be trusted to be a good estimate of the largest Lyapunov
exponent. The choice of the norm for quantifying the divergence of trajectories
turned out to be noncritical because all three norms used (Eg, Er, and E;, see
Sect. 1.3.2) used exhibited equivalent performance.

A particular challenge are time series from high dimensional chaotic attractors.
Eckmann and Ruelle [13] estimated that the number of required data points N,
exponentially grows with the attractor dimension D, as N; = const?«. The
results obtained for the folded-towel map (Sect.1.5.3) and the 6-dimensional
Lorenz-96 model (Sect. 1.5.5) confirmed this (‘pessimistic’) prediction. Although
the 6-dimensional Lorenz-96 model possesses a chaotic attractor with a single
positive Lyapunov exponent it possesses a Kaplan—Yorke dimension of Dgy = 4.18.
Due to this relatively high attractor dimension, satisfying estimates of the largest
Lyapunov exponent were obtained only from very long time series (Fig. 1.16C) and
if only those trajectory segments are used for estimating local divergence which
started from very closely neighbouring reconstructed states (1 % in Fig. 1.16C).
This selection of suitable reference points is very similar to a fixed size approach
(see Sect. 1.3.2) using a relatively small radius € and the results obtained for the
folded-towel map and the Lorenz-96 model indicate its importance for coping with
high dimensional chaos. On the other hand, these examples clearly show that data
requirements (and practical difficulties) increase exponentially with the dimension
of the underlying attractor (at least for the direct estimation methods employed here)
and this fact imposes fundamental bounds for estimating Lyapunov exponents from
time series generated by processes of medium or even high complexity.
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Appendix

Let ¢f : R? — RP be the induced flow in reconstruction space mapping
reconstructed states X, = (Sy, SpL, - - - » Sn-(0—1)) to their future values ok (x,) =
X,+4. To estimate the D x D Jacobian matrices Dg*(x) from the temporal evolution
of the reconstructed states {x,}_, the flow @* has to be approximated by a general
ansatz (black-box model) like a neural network [20] or a superposition of / basis
functions b; : R? — R providing an approximating function

I I

VX)) = (YEX).. .. YH(x) = (Z cilbi(x),...,ZciDbi(x)) =b(x)-C
i=1 i=1
(1.50)

where C = (c;) denotes a I x D matrix of coefficients with columns e (j =
1,...,D) that have to be estimated and b(x) = (b1(x), ..., b;(x)) is a row vector
consisting of the values of all basis functions evaluated at the state x.*

For the special choice k = L (evolution time step equals the lag of the delay
coordinates) the first D — 1 components of the map /% (x,) are known (due to the
delay reconstruction) and only for the last component an approximation is required

I
yh(x) = (Sn+L, Spt2Ls -+ s St (D—1)L» Z Cibi(x)) (1.51)

i=1

= (x,,z, oo s XnD, b(X) . C). (152)

With this notation the approximation Dy*(x) of the desired Jacobian matrix
Dy (x) of the (induced) flow ¢(x) in embedding space can be written as

by o
dx; " 0xp
pyfx)=| : .. 1 |-C=G-C (1.53)
by by
dxp *°° dxp

where G will be called derivative matrix in the following.
For k = L the Jacobian matrix of the approximating function ¥ is given as

0 1 0 ... 0
0 0 1... 0
DY = A (1.54)
0 0 0 ... 1
1 b; J by
Zi:] Cia—fl ......... Zi:l Cin[)

4The matrix C and its column vectors ¢?) depend on the time step k. To avoid clumsy notation this
dependance is not explicitly indicated.
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Linear basis functions b;(x) can be used to model the (linearized) flow (very) close
to the reference points x, along the orbits. To approximate the flow in a larger
neighbourhood of x,, or even globally, nonlinear basis functions are required, like
multidimensional polynomials [2, 4-7], or radial basis functions [23, 24, 35].

To estimate the coefficient matrix C in Eq. (1.50) or the coefficient vector ¢ in
Eq.(1.51) we select a set of representative states {#'} whose temporal evolution
¢* (/) is known. For local modeling this set of states consists of nearest neighbours
{Xmey : m(n) € %y} of the reference point x, where %, defines the chosen
neighbourhood that can be of fixed mass (a fixed number K of nearest neighbours
of x,,) or of fixed size (all points with distance smaller than a given bound ¢€). For
global modeling of the flow the set {'} is usually a (randomly sampled) subset of
all reconstructed states. Let

e1(@) ... op(2)

Y = (1.55)

ei(@) ... ¢p(@)

be a J x D matrix whose rows are components the (known) future values ¢*(z') of
the J states {#'} and let

bl(Zl) . b[(Zl)

B= (1.56)

b]('ZJ) . . b]('ZJ)

be the J x I (design) matrix [37] whose rows are the basis functions b;(-) evaluated
at the selected states {#'}. Using this notation the approximation task can be stated
as a minimization problem with a cost function

3(c?) = B¢ —y? | (1.57)
where y) denotes the j-th column of the matrix Y (given in Eq. (1.55)), or
g(Q) = |B-C—Y|; (1.58)

where || - || = denotes the Frobenius matrix norm (also called Schur norm).

The solution of this optimization problem may suffer from the fact that typically
the states {#/} cover only some subspace of the reconstructed state space. Therefore,
in particular for local modeling ill-posed optimization problems may occur with
many almost equivalent solutions. For estimating Lyapunov exponents we prefer
to select solutions for the coefficient matrix C that provide partial derivatives
(elements of the Jacobian matrix) with small magnitudes, because in this way
spurious Lyapunov exponents are shifted towards —oo. This goal can be achieved
by Tikhonov—Philips regularization where the cost function of the optimization
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problem (1.58) is extended by a term p||A - C|| resulting in
g(e?) = [B-e? —y?|* + p*4 - 7 (1.59)

where A denotes a so-called stabilizer matrix and p € R is the regularization
parameter that is used to control the impact of the regularization term on the solution
of the minimization problem. If the identity matrix is used as stabilizer A = [
then ||c(j)|| is minimized and the solution with the smallest coefficients is selected
(also called Tikhonov stabilization). Another possible choice is the derivative matrix
(1.53) A = G. In this case we minimize the sum of all squared singular values o; of
Dy*(x) = U-S- V", because

|G- Cll} = IDY*®)||7 = trace ([DY*(x)]" - DY*(x)) (1.60)
D

= trace (V - S V) = trace(S?) = Zoiz (1.61)
i=1

and so we minimize Lyapunov exponents by maximizing contraction rates.
To solve the optimization problem (1.59) we rewrite it as an augmented least
squares problem with a cost function

. . () PO .
gy = 2 )-e— (Y TV P =B e — 02 (1.62)
PA 0
that can be minimized by a solution of the corresponding normal equations

(B"-B+ p?A"-A) - ¢V =B y» (1.63)

using a sequence of Householder transformations [35] or by employing the singular
value decomposition of the matrix B = Up - S - Vg providing the minimal solution
[37]

) = Vg'Sgl . Ug.}?(i)_ (1.64)
for each column é¥) or
c:vé-S;‘.Ug.? (1.65)

for the full coefficient matrix C where ¥ = ( I(:)
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For the stabilizer A = I the elements of the diagonal matrix S; are given by

(1.66)

where &; are the diagonal elements of Sj (i.e., the singular values of B).
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