
Chapter 2
Efficiency in the Identification in the Limit
Learning Paradigm

Rémi Eyraud, Jeffrey Heinz and Ryo Yoshinaka

Abstract The most widely used learning paradigm in Grammatical Inference was
introduced in 1967 and is known as identification in the limit. An important issue
that has been raised with respect to the original definition is the absence of efficiency
bounds. Nearly fifty years after its introduction, it remains an open problem how
to best incorporate a notion of efficiency and tractability into this framework. This
chapter surveys the different refinements that have been developed and studied, and
the challenges they face.Main results for each formalization, alongwith comparisons,
are provided.

2.1 Introduction

2.1.1 The Importance of Efficiency in Learning

Gold [24] introduced in the 1960s a definition of learning called identification in
the limit, which works as follows. An algorithm is fed with an infinite sequence of
data exemplifying a target language. When a new element is given to the algorithm,
it may output a hypothesis. The algorithm identifies the language in the limit if
for any possible sequence of data for this language, there exists a moment from
when the algorithm does not change its hypothesis, and this hypothesis is a correct
representation of the target language.When awhole class of languages is considered,
the algorithm identifies the class in the limit if it can identify all languages of the
class.
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The fact that the convergence is required to hold whatever the sequence of data
is what makes this paradigm adversarial [14]. This worst-case scenario principle
strengthens the value of any algorithmic idea that yields an identification in the limit
result for a class of languages [25].

However, Gold’s formulation can be of little help for practical purposes, when
one wants to study a learning idea with the aim of applying it to real-world data.
This is mainly due to the fact that no efficiency property is required and thus one can
assume infinite time and space. This is the reason why several refinements of Gold’s
model which add polynomial bounds to the requirements of the paradigm have been
developed. The purpose of this chapter is to comprehensively review the proposed
refinements and the challenges they face. Main results of each approach, along with
comparisons, are provided.

Insteadof augmenting the learning framework to incorporate a notionof efficiency,
one response to this state of affairs could be to utilize a different learning framework
altogether, preferably one which contains a built-in notion of efficiency, such as the
Probably Approximately Correct framework [43]. Section2.2 discusses some issues
with PAC-learning of formal languages, which makes this option less attractive than
it otherwise may appear at first.

Section2.3 studies the limitations of the initial identification in the limit definition
and previous attempts to overcome them. These include requirements based on the
running time of the studied algorithm. Efficiency requirements depending on the
incremental behavior of the algorithm, and a set-based refinement ofGold’s paradigm
are detailed in Sect. 2.4. Finally, Sect. 2.5 introduces two recent reformulations of the
paradigm.

2.1.2 Preliminary Definitions

An alphabet Σ is a finite non-empty set of symbols called letters. A string w over Σ

is a finite sequence w = a1a2 . . . an of letters. Let |w| denote the length of w. Given
a set of strings S, we denote |S| its cardinality and ‖S‖ its size, i.e. the sum of |S|
with the lengths of the strings S contains.1 In the following, letters will be indicated
by a, b, c, . . ., strings by u, v, . . . , z, and the empty string by λ. Let Σ∗ be the set of
all strings and Σ+ the set Σ∗ \ {λ}.

We assume a fixed but arbitrary total order < on the letters of Σ . As usual, we
extend < to Σ∗ by defining the hierarchical order [33], denoted by �, as follows:

∀w1,w2 ∈ Σ∗,w1 � w2 iff

⎧
⎨

⎩

|w1| < |w2| or
|w1| = |w2| and ∃u, v1, v2 ∈ Σ∗, ∃a1, a2 ∈ Σ

s.t. w1 = ua1v1,w2 = ua2v2 and a1 < a2.

1We define ‖S‖ = |S| + ∑
w∈S |w| so that ‖{a}‖ < ‖{λ, a}‖.
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� is a total strict order over Σ∗, and if Σ = {a, b} and a < b, then λ � a � b �
aa � ab � ba � bb � aaa � . . .

We extend this order to non-empty finite sets of strings: S1 � S2 iff ‖S1‖ < ‖S2‖
or ‖S1‖ = ‖S2‖ and ∃w ∈ S1 \ S2 such that ∀w′ ∈ S2 \ S1, w � w′. For instance
{a} � {λ, a} and {a, b} � {aaa}.

By a language L overΣ wemean any set L ⊆ Σ∗.Many classes of languageswere
investigated in the literature. In general, the definition of a class L relies on a class
R of abstract machines,2 here called representations, that characterize all and only
the languages of L. The relationship is given by the naming function L : R → L

such that: (1) ∀R ∈ R,L (R) ∈ L and (2) ∀L ∈ L, ∃R ∈ R such that L (R) = L .
Two representations R1 and R2 are equivalent iff L (R1) = L (R2).

Many different classes of representations have been studied in the literature. It is
beyond the scope of this chapter to exhaustively list them. However, we introduce the
following definition, which is a generalization of some well-known classes of gram-
mars. We will mainly focus on the classes of representations whose characterization
can be done in this context.

Definition 2.1 (Generative grammar) G = 〈Σ, N , P, I 〉 where Σ is the alphabet
of the language, N is a set of variables usually called non-terminals, P ⊂ (N ∪
Σ)+ × (N ∪ Σ)∗ is the set of generative (production) rules, I is the finite set of
axioms, which are elements of (Σ ∪ N )∗.

A generative rule (α, β) is usually denoted α → β. It allows the rewriting of
elements of (Σ ∪ N )∗ into elements of (Σ ∪ N )∗. Given γ ∈ (Σ ∪ N )∗ we say that
a production rule α → β applied to γ if it exists η, δ ∈ (Σ ∪ N )∗ such that γ = ηαδ.
The result of applying this rule on γ is ηβδ. We write γ ⇒ ηβδ. ⇒∗ is the reflexive
and transitive closure of ⇒, and ⇒∗

P is the reflexive and transitive closure of ⇒
restricted to the production rules in P .

We define the size of a generative grammar to be the size of the set of its rules,
plus the size of its set of axioms: ‖G‖ = ‖I‖ + |P| + ∑

α→β∈P(|αβ| + 1).

Definition 2.2 (Generated language) Let G = 〈Σ, N , P, I 〉 be a generative gram-
mar. L (G) = {w ∈ Σ∗ : ∃α ∈ I s.t. α ⇒∗

P w}.
Example 2.1 The usual classes of the Chomsky hierarchy are classes of generative
grammars. Regular grammars correspond to the restriction P ⊂ N × (ΣN ∪ {λ}),
or P ⊂ N × (NΣ ∪ {λ}) by symmetry. The context-free grammars are the ones
where P ⊂ N × (Σ ∪ N )∗ while the context-sensitive grammars are the ones such
that if α → β ∈ P then ∃(γ, δ, η) ∈ (Σ ∪ N )∗, A ∈ N : α = δAη and β = δγ η. If
no restrictions are imposed on the rules of the grammar, then the resulting class of
representations corresponds to that of the unrestricted grammars. All of these classes
were formerly defined with a set of axioms reduced to one element of N [11].

2This is not strictly necessary: for instance, the substitutable languages [13] have no grammatical
characterization.
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Example 2.2 String Rewriting Systems (SRS) [9] are generative devices where N =
∅. A rule corresponds to an element of Σ∗ rewritten into an element of Σ∗ and the
set of axioms is made of elements of Σ∗. The language represented by an SRS is the
set of strings that can be rewritten using the rules from an element of I .

Some classes of representations that have been studied in grammatical inference
are not covered by Definition 2.1. This is the case for instance for multiple context-
free grammars [39], patterns [2], tree [17] and graph [37] grammars, etc. While it is
not difficult to generalize the definition in order to cover these classes, we conduct
our discussion in the context of the above definition for concreteness and due to its
familiarity.

2.2 PAC Learning and Other Learning Paradigms

2.2.1 PAC Paradigm

The best known paradigm in machine learning is certainly the Probably Approxi-
mately Correct (PAC) criterium [43] and its refinements [29, 30]. Unlike the iden-
tification in the limit paradigm, the PAC framework comes with built-in efficiency
requirements so PAC-learners are efficient in important senses. A natural question
then is: Why modify the identification in the limit paradigm when the PAC frame-
work can be utilized instead? We argue that the PAC paradigm is not well-adapted
to learning formal languages, as even very simple and well-characterized classes of
languages are not PAC-learnable [4]. Several theoretical reasons explain this inade-
quacy, and each of them relates to aspects of the formal grammars used to describe
formal languages.

One of the main reasons is that the VC-dimension of even the simplest models of
language representations, namely the finite state automata, is not bounded [28] which
make them not learnable in the PAC sense [8]. Indeed, not even the class of finite
languages has finite VC-dimension. This is closely related to the fact that the learning
principle of empirical risk minimization [44], inherent in most approaches studied
under the PAC framework, is of little use when formal languages are considered.
Indeed, the number of representations consistent to a given set of data of a target
language, that is to say representations that correctly explain all the data, is often
infinite. It is then useless to reduce the hypothesis space to the ones that minimize
the error on a given set of data.

Similarly, consider the fact that the PAC paradigm does not suffer from the main
drawback of identification in the limit of being asymptotic. Unlike PAC learning,
in identification in the limit, there is no guarantee provided about the quality of the
hypothesis before the (exact) convergence happens. But this drawback seems to be
inherent to the kind of representations of the learning targets considered. Even if two
generative grammars have all but one of their rules in common, the languages of
these two grammars can be as far apart as one wishes. This problem is inherent to the
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nature of formal languages and their grammatical representations. This ‘Gestalt-like’
property is unavoidable in the formalization of learning: the whole grammar is more
than the sum of its rules. In our view, this mainly justifies the use of identification in
the limit in the context of grammar learning.

Another reason is that a representation of a formal language is not only a classifier,
that is to say a device that defines what is in the language and what is not, but it also
gives structural information about the elements of the language.

Also, there are concerns that aremore independent of the representations. Another
particularity of language learning is that a lot of algorithmsuse only positive examples
of a target concept, while the usual machine learning framework relies on labeled
data.

Finally, the PACparadigm is particularly pertinent in the case of statisticalmodels,
where the probability ofmaking amistake can be evaluated using the hypothesis. This
particular attribute of the PAC paradigm is of less value when non-stochastic model
learning is of interest. But even while grammatical inference is concerned with learn-
ing probability distributions over strings, the power of the considered models makes
the paradigm inadequate: there are for instance infinitely many structurally different
probabilistic context-free grammars that define the same set of distributions [26].

To be complete, some positive learning results exist in restrictive versions of the
PAC-paradigm, mostly in the case where the target distribution is known to be drawn
using a given class of stochastic grammars, and with additional restrictions that allow
us to distinguish the different parts of the target from any sample (see [15, 36, 41]
for examples).

2.2.2 Other Learning Paradigms

There are other less known learning frameworks which eschew identifiability in the
limit in order to incorporate notions of computational efficiency. The aim here is not
to give an exhaustive list of such paradigms: we just want to give pointers to the main
ones.

The first that is worth mentioning is known as query learning in which the
learner interacts with an oracle (see Chap.3, Learning Grammars and Automata
with Queries, de la Higuera). A wide range of types of queries have been investi-
gated, frommembership queries [31] where the oracle answers whether given strings
belong to the language or not, to equivalence queries [3] that allow the learner to
know if its current hypothesis is the target one, including correction queries [6] that
correspond to membership queries where the oracle returns a ‘close’ element of the
language if the submitted string is not part of the target (different definitions of string
distance can be considered). In this approach, efficiency is measured by the number
of queries the algorithm needs to converge to a hypothesis exactly equivalent to the
target. Another learning paradigm derived from the former one requires access to a
finite set of examples of the language and a membership oracle [16, 34].

http://dx.doi.org/10.1007/978-3-662-48395-4_3
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Although these paradigms can be of practical interest (see the work on model
checking for instance [27]), and though they can also be motivated by the study of
first language acquisition [14], the need for an oracle clearly reduces the practical
value of an algorithm investigated in this context.

Another learning paradigm that can be used to study algorithms in the context of
grammatical inference is the one of stochastic finite learning [51]. In this framework,
an algorithm is said to have learned a language if, from any infinite sequence of
data of this language drawn from a probability distribution, it stops after having
seen a finite number of elements and its hypothesis at that point is correct with
high probability. The expected number of examples that the learner needs before
convergence forms a measure of the algorithm’s efficiency. This approach is similar
in its aims to identification in the limit, but it can also be seen as a probably exactly
correct paradigm. It is thus a tempting way to fill the gap between PAC-learning
and identification in the limit. However, results in this paradigm are hard to obtain
and even simple classes of languages are known to be not learnable. Many of the
arguments of the previous section on the PAC-paradigm work can be used for this
formalization. On the other hand, there are positive results for some classes of pattern
languages [52].

We believe the reasons above, or some combination thereof, have led many schol-
ars to seek a way to incorporate efficiency into the identification in the limit paradigm
(as opposed to abandoning the paradigm altogether).

2.3 The Limits of Gold’s Paradigm

2.3.1 Identification in the Limit

We now provide a detailed formalization of the identification in the limit paradigm.
A presentation P of a language L is an infinite sequence of data corresponding

to L . We note P[i] the i th element of P and Pi the set of the i th first elements of
P . If the data contains only elements of L then the presentation is called a text of
language L . A text T is a complete presentation of L iff for all w ∈ L there exists
n ∈ N such that T [n] = w. If data in the presentation are instead pairs (w, l), such
that w ∈ Σ∗ and l is a Boolean valued true if w ∈ L and false otherwise, then
the presentation is called an informant. An informant I is a complete presentation
of L iff for all w ∈ Σ∗ there exists n ∈ N such that I [n] = (w, l). In the rest of the
chapter, we will only consider complete presentations.

A learning algorithm in this context, sometimes called an inductive inference
machine, is an algorithm that takes as input larger and larger initial segments of a
presentation and outputs, after each input, a hypothesis from a pre-specified hypoth-
esis space.
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Definition 2.3 (Identification in the limit [24]) A classL of languages is identifiable
in the limit (IIL) from text (resp. from informant) if and only if there exists a learning
algorithmA such that for all languages L ∈ L, for all text T (resp. informant I ) of L ,

• there exists an index N such that ∀n ≥ N ,A(Tn) = A(TN ) [resp.A(In) = A(IN )]
• L (A(TN )) = L [resp. L (A(IN )) = L]

Angluin [5] characterizes exactly those classes of languages that are identifiable
in the limit from text. The central theorem in this work refers to the presence of
‘telltale’ finite subsets for each language in the class. Later, in Sect. 2.4.2, we will
see an efficiency bound in terms of ‘characteristic’ finite subsets of languages (these
are not exactly the same as Angluin’s telltale subsets).

Gold [24] established three important results in this paradigm. The first is that
the class of all finite languages is identifiable in the limit from text. The second
is that no superfinite class of languages can be identified in the limit from text.
Despite what the name may evoke, a class of languages is superfinite if it contains
all finite languages and at least one infinite language (the class contains thus an
infinite number of languages). The third is that any computably enumerable class
whose uniform membership problem is decidable3 is identifiable in the limit from
an informant.

The proof of the second result relies on the fact that given a presentation of
an infinite language L , there does not exist any index N from which a learner can
distinguish thefinite languagemadeof the strings seen so far and the infinite language.
If the algorithm converges to L on a complete text T for L at N then there is a text for
the finite language containing all and only the strings in TN for which the algorithm
will also converge to L . Hence the algorithm fails to identify this finite language in
the limit.

On the other hand, the learning algorithm for the third result (learning any com-
putably enumerable class with informant) is really naive: it enumerates the elements
of the class until it finds the first one consistent with the information so far. In other
words, the algorithm always conjectures the first language in the enumeration that
accepts all positive examples (labeled true) and rejects all negative ones (labeled
false). If it is the correct hypothesis, the algorithm has converged. If not, then there
will be an example later in the presentation that will be inconsistent with the current
hypothesis and consequently the algorithm will move along down the enumeration
to the next consistent language.

This third result, though of positive nature, is one of themain reasons that the iden-
tification in the limit paradigm needs to be refined to include a notion of tractability.
‘Learning by enumeration’ is clearly not tractable and thus is of little use. While it
meets the letter of the definition of learning, it violates our intuitions of what learning
should be like. At first glance, a natural way to exclude such learning ‘solutions’ is
to add a tractability requirement to the definition in some way. However, as we now
discuss, this is more difficult than it may initially appear.

3The uniform membership problem is the one where given a string and a representation one needs
to determine whether the string belongs to the represented language.
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For more on variations of Gold’s original paradigm see Chap. 1, Gold-Style
Learning Theory (Case).

2.3.2 Polynomial Time

Given the limitations of IIL shown in the previous section, designing requirements
to add to the paradigm is needed to strengthen the validity of learning ideas. An
intuitive way to deal with that is to constrain the time allowed for the algorithm to
make its computations.

Limiting the overall running time appears inappropriate since languagesmay have
infinite cardinality and concomitantly there is no bound on the length of the strings.
Thus for any polynomial function p, infinite language L , and number n, there is a
presentation P for L such that the first element of P is larger than p(n). Stochastic
finite learning [51] would be of great interest to readers concerned with this problem
since it replaces this worst-case scenario with a learning framework that focuses
on expected convergence (where presentations are drawn according to probability
distributions).

Amore consensual requirement is update-time efficiency. An algorithm is update-
time efficient if it outputs a new hypothesis in time polynomial in the size of the data
seen so far. This is reasonable as far it goes. Unfortunately, this requirement turns
out to be no real restriction at all.

In a seminal paper [35], Leonard Pitt shows that update-efficiency is not sufficient
to prove the validity of a learning approach. Indeed, using a method now known as
Pitt’s trick, he proves that any algorithm that can identify a class in the limit can be
transformed into an algorithm that identifies the class in the limit and is update-time
efficient.

Informally the proof relies on the fact that, given a presentation P , if a learner
converges to a correct hypothesis on the initial sequence Pi , a variant can delay the
computation of any interesting hypothesis until having seen Pj ( j > i) such that the
computation time of the initial learner on Pi is polynomial in ‖Pj‖. This variant
of the learning algorithm then has an efficient update-time while also fulfilling the
conditions of identification in the limit. Pitt’s trick essentially trades time for data so
that enforcing tractability in this way has no impact. The set of classes of languages
identifiable in the limit without the update-time requirement is exactly the same as
the set of classes of languages identifiable in the limit with it.

Pitt’s trick reveals that algorithms may be able to efficiently output hypotheses,
but convergence can only occur after non-reasonable amounts of data have been
provided. This lessens the practical utility of the theoretical results when real data is
taken into account.

Onemaywonder if one can prohibit Pitt’s trick, which ignores the great part of the
given data, by forcing a learner to respect all the given data. Case and Kötzing [10]
show that apparently reasonable properties to force a learner to take all the examples
into account are not strong enough to prevent Pitt’s trick actually when learning from
text.

http://dx.doi.org/10.1007/978-3-662-48395-4_1
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2.3.3 Identification of a Language and the Size of a Target
Representation

Despite the problem described in the previous section, the requirement to have poly-
nomial update-time is still desirable. Efforts have been made to enrich the paradigm
further such that Pitt-style delaying tricks are not possible.

Most additional requirements are based on the samemethod: they link the behavior
of the algorithm to the size of a representation of the target language. Indeed, though
the identification of the target language is required, a polynomial bound cannot
be established with respect to the size of the language since non-trivial classes of
languages often contain an infinite number of infinite languages. A representation
of finite size of the target language is thus needed. Choosing a target representation
also focuses the attention on the hypothesis space of the algorithm, which is relevant
from a machine learning standpoint.

However, the choice of representations is not central at all in Gold’s learning
paradigm as a learner’s hypotheses can converge to an arbitrary one among equivalent
representations for the correct language. The apparent consequence is that the choice
of a representation class for a target language class does matter when taking the
representation size into account.

But this duality between the identification of a language and an efficiency bound
on the size of a target representation has consequences that need to be handled
carefully. For example, it is well known that a nondeterministic finite automaton can
be exponentially smaller than the smallest deterministic finite automaton accepting
the same language. A learning algorithm that behaves efficiently with respect to the
size of deterministic finite automata may not be admitted as an efficient algorithm in
terms of the size of nondeterministic finite automata. The reader is referred to Chap.
4,On the Inference of Finite State Automata from Positive and Negative Data (López
and García), for details on this question.

In general, an inefficient learner can be seen as an efficient learner by choosing
a class of redundant representations. Therefore, it is important to make clear under
which class of representations the efficiency of a learner is discussed.

In principle, the choice of a representation class is arbitrary and seems hard to
justify, but in practice there exist orthodox or natural representations for target lan-
guage classes. For example, minimal deterministic (canonical) finite state automata
are widely used to represent regular languages. Since they are uniquely determined
based on an algebraic property of regular languages, there is no room to inflate the
representation size.

An intuitive way to deal with the duality exposed above would be to define a
paradigm where identification is on a target representation and not on a language.
The formalization of this idea is known as strong identification [12]. However, this
approach onlymakes sense for classes of representationswhere each language admits
a unique representative: otherwise, it is impossible for any algorithm to distinguish
between the different grammars generating the same language, and thus the identi-

http://dx.doi.org/10.1007/978-3-662-48395-4_4
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fication cannot succeed. The use of canonical finite-state automata in the work on
regular languages [33] is an example of such an approach.

2.4 First Refinements

2.4.1 Mind Changes and Implicit Errors of Prediction

Oneway to formalize the notionof convergencewith a reasonable amount of datawith
respect to the size of the representation is to measure the number ofmind changes [1,
7]. Another way is to measure the number of implicit prediction errors [35].

A mind change occurs when a learning algorithm replaces its current hypothesis
with another. Then one adds to the identification in the limit paradigm the requirement
that the number of mind changes made before convergence must be bounded by a
polynomial function in the size of the representation.

However, Pitt [35] presents another trick where the algorithm postpones changing
its mind solely to meet the requirements of the mind change bound. Consequently,
the algorithm maintains untenable hypotheses (ones inconsistent with the data) until
a sufficient amount data is seen so that a mind change can occur without violating
the polynomial bound on the number of mind changes.

Measuring implicit predictions errors can get around this trick when learning
from an informant. When the learner’s current hypothesis is inconsistent with a new
datum, it is called an implicit error of prediction. Then one adds to the identification
in the limit paradigm the requirement that the number of times the current hypothesis
is in contradiction with the new example has to be polynomial in the size of the target
representation. More formally:

Definition 2.4 (Identification in polynomial number of implicit errors)

• Given a presentation P , an algorithm A makes an implicit error of prediction at
step n if the language of the hypothesized target A(Pn) is in contradiction with
P[n + 1].

• A class G of representations is polynomial-time identifiable in the limit in Pitt’s
sense if G admits a polynomial-time learning algorithm A such that for any pre-
sentation of L (G) for G ∈ G, A makes implicit errors of prediction at most
polynomial in ‖G‖ [35].

• A class G of representations is polynomial-time identifiable in the limit in Yoko-
mori’s sense if G admits a polynomial-time learning algorithm A such that for
any presentation P ofL (G) for G ∈ G, for any natural number n, the number of
implicit errors of prediction made by A on the nth first examples is bounded by a
polynomial in m · ‖G‖, where m = max{|P[1]|, . . . , |P[n]|} [46].

Notice that Yokomori’s formulation is a relaxed version of that of Pitt’s.
However, if the presentation is a text, there is yet another unwanted Pitt-style

delaying trick: the algorithm can output a representation for Σ∗, which will never
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be in contradiction with the data. It can then wait to see enough examples before
returning a pertinent hypothesis.

On the other hand, if the presentation is an informant, then the additional require-
ment limiting the number of implicit prediction errors is significant because there is
no language like Σ∗ which is consistent with both the positive and negative exam-
ples. Consequently, it can be shown that not all classes of languages identifiable
in the limit in polynomial update time are identifiable in the limit in Pitt’s sense
or in Yokomori’s sense: in the former paradigm, an algorithm working in polyno-
mial time can change its hypothesis an exponential number of times before conver-
gence, while in the latter paradigms this is not allowed and cannot be circumvented
as in the case of texts. Note this is different from the mind-change requirement,
where the delaying trick there works in both kinds of presentations: in that case,
the algorithm can choose to not update its hypothesis when a new example contra-
dicts it.

Another property of these requirements is that they are mainly designed for incre-
mental algorithms. Indeed, these paradigms give a lot of importance to the sequence
of data, in particular as the parts of two sequences that contain the same elements
in a different order might not correspond to the same number of implicit errors (or
mind changes). This forces the complexity analysis to consider particularly malev-
olent sequences of data. However, in many practical frameworks, for instance in
Natural Language Processing or Bio-informatics, we are interested in algorithms
that work from a finite set of data, where the order of presentation is irrelevant. From
this perspective, the (inadvertent) focus on an incremental process appears to be a
drawback.

The main positive learning results using this approach concerns the class of
very simple languages [47, 49]: an algorithm has been designed that fulfills the
requirements of Yokomori’s formulation of the paradigm. This class of languages
is incomparable with the class of regular languages and contains context-free
languages.

2.4.2 Characteristic Sample

The most widely used definition of data efficiency relies on the notion of character-
istic sample. The characteristic sample is a finite set of data from a language L that
ensures the correct convergence of the algorithm on any presentation of L as soon
as it is included in the data seen so far. For some, these characteristic samples evoke
Angluin’s telltale subsets [5], also of finite size, which were central to characterizing
the nature of classes of formal languages identifiable from text.
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In this learning paradigm [18], it is required that the algorithm needs a charac-
teristic sample whose size4 is polynomial in the size of the target representation.
Formally:

Definition 2.5 (Identification in the limit in polynomial time and data) A class of
languages L is identifiable in the limit in polynomial time and data from a class R
of representations iff there exist a learning algorithm A and a polynomial p() such
that for any language L ∈ L, for any representation R ∈ R of L:

• A has a polynomial update-time,
• there exists a set of dataCS, called a characteristic sample, of size at most p(‖R‖)
such that for any presentation P of L , if CS ⊆ Pn then A(Pn) is equivalent to R,
and for all N > n, A(PN ) = A(Pn).

The idea underlying the paradigm is that if the data available to the algorithm so far
does not contain enough information to distinguish the target from other potential
targets then it is impossible to learn. This complexity requirement diverges from
update-time requirements above in that incremental learning algorithms no longer
sit at the core of the paradigm. Indeed, limiting the complexity in terms of the
characteristic sample makes possible the set-based definition that we are developing
below.

Definition 2.6 Let L be a class of languages represented by some class R of repre-
sentations.

1. A sample S for a language L ∈ L is a finite set of data consistent with L . A
positive sample for L is made only of elements of L . A positive and negative
sample for L is made of pairs (w, l), where l is a boolean such that l = true if
w ∈ L and l = false otherwise. The size of a sample S is the sum of the size of
all its elements plus |S|.

2. An (L,R)-learning algorithm A is a program that takes as input a sample for a
language L ∈ L and outputs a representation from R.

We can now formalize the notion of characteristic sample in the set-based
approach.

Definition 2.7 (Characteristic sample) Given an (L,R)-learning algorithm A, we
say that a sampleCS is a characteristic sample of a language L ∈ L if for all samples
S such that CS ⊆ S, A returns a representation R such that L (R) = L .

Hopefully it is evident that the class of representations is especially relevant in
this paradigm.

The learning paradigm can now be defined as follows.

4The size of a sample is the sum of the length of its elements: it has been shown [35] that its
cardinality is not a relevant feature when efficiency is considered, as it creates a risk of collusion:
one can delay an exponential computation on a given sample of data and wait for a sufficient number
of examples to run the computation on the former sample in polynomial time in the size of the latter.
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Definition 2.8 (Set-based identification in polynomial time and data [18]) A class
L of languages is identifiable in polynomial time and data (IPTD) from a class R
of representations if and only if there exists an (L,R)-learning algorithm A and two
polynomials p() and q() such that:

1. Given a sample S of size m for L ∈ L, A returns a consistent hypothesis H ∈ R

in O(p(m)) time.
2. For each representation R of size k of a language L ∈ L, there exists a character-

istic sample of L of size at most O(q(k)).

Notice that thefirst item is a reformulationof thepolynomial update time requirement,
which is now in terms of the size of the sample. The second item corresponds to the
additional requirement that the amount of data needed to converge is computationally
reasonable. By forcing the algorithm to converge to a correct hypothesis whenever
a characteristic sample of reasonable size has been seen, this paradigm tackles the
risk of collusion by forbidding Pitt’s delaying tricks.

The main reason this unusual way to formalize identification is chosen is because
by formalizing learning when a set of data is available it corresponds to the most
common framework when real-world data is considered.

Furthermore, the set-based approach encompasses the incremental approach since
any algorithm studied in the latter can easily be cast into a set-based one. In other
words, any algorithm that learns a class of languages in the sense of Definition 2.5
also learns the class in the sense of Definition 2.8.

However, it is not easy to cast set-based learners into incremental ones. Naively
one may believe that for any algorithm A satisfying Definition 2.8, there exists an
incremental algorithm which satisfies Definition 2.5. The idea would be, for each
new data, to run A on the set of data seen so far. However, as shown in Appendix,
this simple approach will not always work. There is an algorithm for learning the
substitutable context-free languages which satisfies Definition 2.8 for which this
incremental construction fails. In Appendix, it is shown that unless this incremental
algorithm A is conservative,5 A will not converge to a single grammar. However, if
A is conservative then there is a presentation at a point at which the characteristic
set is seen but A has not yet converged to the correct grammar. It remains to be seen
whether for every set-based learner satisfying Definition 2.8, there is an incremental
learner satisfying Definition 2.5.

Main Results Many learning algorithms have been studied in the context of IPTD.
The main positive results concerns approaches that used positive and negative exam-
ples as input. In this context, regular languages are learnable [18] using deterministic
finite state automata, and so are deterministic even linear languages as the question
of inferring these grammars can be reduced to that of inferring deterministic finite
state automata [40]. Another related class of languages that have been positively
investigated in this context is the deterministic linear one [20]. The algorithms is fed
with positive and negative examples and outputs a deterministic linear grammar.

5An incremental learner is conservative if it changes its current hypothesis H if and only if the next
datum is inconsistent with H .
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Context-free languages that are representable by delimited, almost non-overlap-
ping string rewriting systems are also IPTD-learnable [22] from positive and negative
examples. Comparisons of this class with the previous ones are difficult since they
are not defined using the same kind of representation.

The whole class of context-free languages is learnable in the IPTD sense [19, 38]
from structural positive examples, that is to say derivation trees with no information
on the internal nodes. Given a positive integer k, the target class of representation is
that of k-reversible context-free grammars [32] and the elements of the sample have
to correspond to derivation trees of these grammars.

LimitationsWe have already discussed one drawback to measuring the complexity
of the learning problem in terms of the size of the representation. It can be unclear
what counts as a ‘reasonable’ representation. Consequently, it may be possible to
artificially inflate representations to allow learning. This is another kind of trick
since the algorithm would be efficient according to the letter of the definition but not
its spirit.

Identification in polynomial time and data also suffers from the opposite kind
of drawback. As we will see, for non-regular languages, there can be exponentially
compact representations of languages. For such cases, IPTD-learning appears to
give the wrong results: classes which intuitively ought to count as tractably learnable
(because they return a very compact representation of the target language) can in
fact be shown to not be IPTD-learnable. As IPTD was developed and studied in the
context of learning regular languages, neither of these problems arose since minimal
deterministic finite-state automata are considered to be reasonable representations
of regular languages.

Example 2.3 illustrates the problem for the IPTD-learning of non-regular lan-
guages. It proves that context-free languages cannot be learned under this criterion
using context-free grammars. Indeed, the characteristic sample of any grammar of
the series has to contain the only string in the language, but the length of this string
is exponentially greater than the size of the grammar.

Example 2.3 [18] let G1 = ∪n>0{Gn} be the class of context-free grammars such
that for any n, the unique axiom of Gn is N0 and its production rules are Ni →
Ni+1Ni+1, for 0 ≤ i < n, and Nn → a. The language ofGn is the singleton L(Gn) =
{a2n }.

The reason why this example is not learnable does not come from the hardness
of the languages: they are made of only one string. But the use of any class of
representations that contains G1 is not identifiable in the limit.

It seems that in this case the problem comes from the definition of what learning
means, that is to say from the learning criterion, rather than the properties of the
language. From an information theory point of view, it is obviously interesting to
have an algorithm that is able to find a model explaining the data it is fed with that is
exponentially smaller than the data. This is actually a desired property in many fields
of machine learning (see [23] for instance). Hence, the trouble here comes from the
learning paradigm.
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2.5 Recent Refinements

In this section, we review two contemporary approaches that develop a definition of
efficient learning which can be applied to non-regular classes of languages. They are
both refinements of the identification with polynomial time and data.

2.5.1 Structurally Complete Set

We first introduce the following definition:

Definition 2.9 (Structurally complete set) Given a generative grammar G, a struc-
turally complete set (SCS) for G is a set of data SC such that for each produc-
tion α → β, there exists an element x ∈ SC , an element γ ∈ I and two elements
η, τ ∈ (Σ ∪ N )∗ such that γ ⇒∗ ηατ ⇒ ηβτ ⇒∗ x . The smallest structurally com-
plete set (SSCS) S for a grammar G is the sample such that for all SCS S′ for G,
S � S′.

A notion of structurally complete sample has already been defined in the context of
regular language learning [21]. However, this former definition relied on a particular
representation, namely the finite state automaton, and it considered only the case
of positive and negative examples. Definition 2.9 is more general as it does not
depend on a particular representation and does not consider a particular type of data.
Definition 2.9 is a generalization of the notion of representative sample [42] that has
been introduced in the context of learning from membership queries and a sample of
positive examples of a subclass of context-free languages named simple deterministic
languages.

Definition 2.10 (Polynomial structurally complete identification) A class L of lan-
guages is identifiable in polynomial time and structurally complete data (IPTscD)
for a class R of representations if and only if there exists an algorithm A and two
polynomials p() and q() such that:

1. Given a sample S for L ∈ L of size m, A returns a consistent hypothesis H ∈ R

in O(p(m)) time.
2. For each representation R of a language L ∈ L, there exists a characteristic

sampleCSwhose size is inO(q(k)), where k is the size of the smallest structurally
complete set for R.

Notice that in the case where negative data is also available, the size of the charac-
teristic sample has to be polynomial in the size of a SCSwhich contains only positive
examples. This implies that the amount of negative evidence has to be polynomially
related to that of the positive evidence.
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This paradigm shifts the perspective considerably: the efficiency does not rely
anymore directly on the size of the representation but instead on the kind of strings it
can generate. This move is anticipated, and pursued in part, in the approach by Ryo
Yoshinaka [48], discussed in Sect. 2.5.2.

Comparison with IPTD Consider the class of languages L2 = ⋃
n∈N {{ai : 0 ≤

i ≤ 2n}}. This class is identifiable in polynomial time and data from positive data
only using the class of representations G2 = ⋃

n∈N {〈{a}, {S, A}, {S → A2n , A →
a|λ}, {S}〉}. Indeed, given a target language, the simple algorithm that returns the
only grammar consistent with a sample admits the characteristic sample {a2n } which
is linear in the size of the target. However, the smallest structurally complete set of
any target grammar is {λ, a} which is of size 2. As the size of the smallest SCS is
constant and the class of languages infinite, L2 is not identifiable in polynomial time
and structurally complete data.

On the other hand, let us consider the class of languages of Example 2.3: L1 =⋃
n∈N {{a2n }} and its class of representationsG1 = ⋃

n∈N {〈{a}, Nn, Pn, {N0}〉}, with
Pn = {Nn → a} ∪0≤i<n {Ni → Ni+1Ni+1}. Given n, the characteristic sample is
{a2n } which is also the smallest structurally complete set for the target grammar.
However, this sample is not polynomial in the size of the target grammar. Therefore
L1 is identifiable in the limit in polynomial time and structurally complete data using
G1 but not in polynomial time and data.

This shows that these two paradigms are thus non-comparable. However, most
non-trivial language classes studied under the former paradigm are identifiable in
polynomial time and structurally complete data. This is the case for instance for the
regular languages from positive and negative examples and for all sub-regular classes
studied in the context of grammatical inference: there is a linear link between the
size of a regular grammar and what can be derived from any of its non-terminals.

2.5.2 Thickness

In a recent paper [48], Ryo Yoshinaka introduced the identification from a charac-
teristic sample whose size is a polynomial in the size of the target grammar and of a
measure called the thickness of the grammar.

Definition 2.11 (Thickness) Let G = 〈Σ, N , P, I 〉 be a generative grammar. The
thickness of G is τG = max{|ω(α)| : ∃β, α → β ∈ P} where ω(α) = min�{w ∈
Σ∗ : α ⇒∗

G w}.
Informally, the thickness is the length of the longest string in the set of the smallest
strings that can be generated from a left hand-side of a grammar rule.

This definition is an extended version of the one that was first introduced for
context-free grammars in the context of model complexity [45]. Notice that it has
nothing to do with the usual notion of thickness in learning theory.
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Definition 2.12 (Polynomial thick identification [48]) A class L of languages is
identifiable in polynomial time and thick data (IPTtD) for a classR of representations
if and only if there exists an algorithmA and two polynomials p() and q() such that:

1. Given a sample S for L ∈ L of size m, A returns a consistent hypothesis H ∈ R

in O(p(m)) time.
2. For each representation R of a language L ∈ L of size k, there exists a charac-

teristic sample CS whose size is in O(q(k, τR)).

IPTtD is clearly a refinement of IPTD since it simply adds the thickness as a
parameter of the paradigm. It is however a fundamental move since it links the
efficiency of the learning not only on the target representation but also to the kind
of strings the grammar produces. This shift in perspective is a way to indirectly take
into account the length of the strings in the language in the learning criterium. On
the other hand, since it does not go so far as to remove the requirement that the
characteristic sample be polynomial in the size of the grammar, it is still susceptible
to inflation tricks.

Learnable Classes Since the size of the representation is used in Definition 2.12, it
is clear that every class of languages that is IPTD is also IPTtD.

However, the converse is not true. Consider the grammars of Example 2.3: The
thickness of any Gn ∈ G1 is 2n .

More interesting examples are the classes of languages that have been investigated
in the context of what is called distributional learning (see Chap. 6, Distributed
hearing of contest-free and multiple contest free Grammars, Clark and Yoshinaka).
For instance, a context-free language is substitutable if whenever two substrings
appear once in the same context, then they always appear in the same context in the
language [13].

There exists a polynomial-time algorithm that identifies the class of context-free
substitutable languages from positive examples only, in the sense of Definition 2.8,
but the exhibited characteristic sample might be of size exponential in the size of
the target representation (this is the case for the languages of Example 2.3, which
are substitutable). Thus, this algorithm is not IPTD. On the other hand, it is easy to
see that this characteristic sample is polynomial in the size and the thickness of the
target grammar, so the algorithm is IPTtD. This result can be extended to the more
complex classes that have been studied in the context of distributional learning from
positive examples only (see for instance [48, 50]).

2.5.3 Comparison of the Two Refinements

Since the IPTD and IPTscD classes are incomparable and every IPTD class is IPTtD,
clearly there is an IPTtD class which is not IPTscD (this is the case for instance of
the class L2 introduced at the end of Sect. 2.5.1). However, one can show that every

http://dx.doi.org/10.1007/978-3-662-48395-4_6
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IPTtD class of unambiguousCFGs is IPTscD.Also, it is easy to see that every IPTscD
class of context-free languages is IPTtD using the same class of representations.

The two refinements of polynomial identification share a basic idea – to measure
the complexity by the size of the simplest strings that a grammar generates, rather
than the description size of it. Indeed one can show that the size of the smallest SCS
of G is polynomially bounded by τG‖G‖. That is, if a language class is IPTscD for
a class of context-free grammars, then it is also IPTtD.

However, the converse is not necessarily true. The following discussion illustrates
a particularly difficult problem for IPTscD learning: ambiguity. Let Gn consists of
the following rules:

Pn = { A → a, A → b, B → b } ∪ { S → X1 . . . Xn | Xi ∈ {A, B} } ,

which generates L(Gn) = {a, b}n . Then the set {an, bn}, whose size is 2n + 2, is
the smallest SCS for Gn . On the other hand, ‖Gn‖ ∈ O(n2n) and τGn = n. When
learning the class L = ⋃

n∈N Ln where Ln = { L ⊆ {a, b}n } \ {∅} with a positive
sample, the only possible characteristic sample of L(Gn) is L(Gn) itself for any
learning algorithm. Therefore, L is not IPTscD for any representation class. One can
easily see that L is IPTtD for a reasonable class of grammars where Gn is the unique
grammar for {a, b}n .

The grammar Gn is very redundant and highly ambiguous—there are 2n ways to
derive bn . If the redundancy is removed from Gn by deleting the nonterminal B and
the rules involving B, the size of the grammar is now O(n) and it is not IPTtD any
more. In fact, one can show that τG‖G‖ is polynomially bounded by the size of the
smallest SCS when only unambiguous context-free grammars are considered.

2.6 Conclusion

The purpose of this chapter was to address the problem of efficiently learning formal
languages and grammars. We argued that the PAC framework is not the best suited
one even though its efficiency requirements are well-designed. On the other hand, we
argued in favor of identification in the limit paradigms provided they are adequately
modified to include efficiency requirements. This survey showed doing so is more
challenging than anyonemay have anticipated.We discussed the challenges that have
been encountered by different attempts. For regular languages, de la Higuera’s [18]
solution is satisfactory due to the canonical representation given by the smallest
deterministic acceptors. For non-regular languages, challenges remain.We discussed
two promising paths forward to address efficient learning in the identification in the
limit paradigm in the realm of non-regular languages. One was based on the notion
of a structurally complete sample, and the other was based on the ‘thickness’ of
strings generated by production rules. Both are measuring efficiency at least partly



2 Efficiency in the Identification in the Limit Learning Paradigm 43

in terms of the size of particular strings generated by grammars. We believe further
developments along these lines will help shape future directions in grammatical
inference.

Appendix

Here we present an example that shows that a learning result in a set-based approach
(that of IPTtD) may not yield to a learning result in the incremental approach.

A characteristic sample has been exhibited for a set-based polynomial-time learn-
ing algorithm6 for the class of substitutable context-free languages [13]. The size of
this characteristic sample is polynomial in the size of the target grammar and its
thickness [48]. From any superset of this set, the algorithm returns a representation
that generates the target language. Therefore, one can state that the algorithm learns
the class of substitutable context-free languages in a set-based approach.

A particularity of this algorithm is that from two different supersets of the char-
acteristic sample, it may returns two different equivalent grammars, and the number
of such pairs of samples is infinite (this is due to the infinite number of congruence
classes that a context-free language defines). Consider the incremental version of the
algorithm that computes a new grammar for every new example. It therefore does
not fit the conditions of identification in the limit since there does not exist a moment
after which the algorithm always returns the same hypothesis, though there exists a
point after which the generated language will always be the target one.7

An intuitive solution is then to make the algorithm conservative: the incremental
version of the algorithm has to change its hypothesis only if the new example is not
recognized. However, this is not working as is shown with the following example.

Consider the language a({b, c}{b, c})∗, which is substitutable. It is also context-
free as it can begenerated by the grammarwhose rules are S → a|SBB and B → b|c,
with S being the only axiom.

As defined in the previously cited papers, the characteristic sample is the following
set: CS = {lur ∈ Σ∗ : ∃N → α, (l, r) = C(A) and u = ω(α)}, where C(A) is the
smallest context in which the non-terminal A can appear in a derivation, and ω(α)

is the smallest element of Σ∗ that can be derived from α in the grammar.
If we assume a < b < c and (ab, λ) < (a, b), the characteristic sample is then

CS = {a, abb, abc}.
Suppose the learner gets examples a, abb, abbbc in this order. As the letter c is

new, the conjecture has to be updated at this point. The new conjecture is then the
string rewriting system {a → abb, a → abc, b → bbc}witha being the only axiom.

6Notice that the algorithm was originally presented in an incremental paradigm. However, its study
was (mostly) done in a set-based framework and, as is shown in this appendix, the proofs are valid
only in this context.
7This is known as behaviorally correct identification in the limit.
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It generates every sentence in the characteristic sample.8 However the hypothesis is
not correct since for example acc is in the target language but not in the current one.
Therefore, if the next example is the missing string of the characteristic sample, abc,
the algorithmwill not change its hypothesis: though all elements of the characteristic
sample are available, the current hypothesis is not correct. Once an element of the
language that is not generated by the hypothesis is seen, the hypothesis will be
updated using a set containing a characteristic sample and thus the new conjecture
will correspond to a correct representation of the language.
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