
Chapter 1
Gold-Style Learning Theory

A Selection of Highlights Since Gold

John Case

Abstract This chapter is a tutorial addressed to, among other audiences, the gram-
matical inference community. It is on the computational learning theory initiated by
E. Mark Gold’s seminal 1967 paper. One of Gold’s important motivations was to
present a formal model of child language learning. This chapter introduces Gold’s
model and also presents an introduction to some selected highlights of the theory
appearing sinceGold 1967. Since bothGold and the present author had or have cogni-
tive science motivations, many of the results discussed herein also have implications
for, and were motivated by, questions regarding the human cognitive ability to learn.
For this chapter some prior knowledge of computability theory would be helpful to
the reader, as would some prior acquaintance with Gold’s identification/learning in
the limit concept. The first section concentrates on results which are independent of
computational complexity considerations. Covered are: Gold’s model of child lan-
guage learning (including some reasonable, post-Gold criteria of successful learning
and some critical discussion); some severe constraints on successful learning; some
characterization results and important examples of successful learning; discussion
and results on potential child insensitivities to data presentation order; and empirical
U-shaped learning with some corresponding formal results interpreted for their cog-
nitive science significance. The second section concentrates on relevant complexity
issues. The issues considered are: large database size and corresponding memory-
limited learners; unavoidable cases of complexity and information deficiencies of
the programs learned; and the complexity of learner updates. In this section a few,
seemingly difficult, open mathematical questions are indicated. Some of them are
important for cognitive science.
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1.1 Language Learnability: Gold 1967 and Beyond

In this section, covered are: Gold’s model of child language learning (Sect. 1.1.1);
criteria of success (Sect. 1.1.2); some severe constraints on successful learning
(Sect. 1.1.3); some characterization results and important examples of successful
learning (Sect. 1.1.4); discussion and results on potential child insensitivities to data
presentation order (Sect. 1.1.5); and empirical U-shaped learning (Sect. 1.1.6) with
some corresponding formal results interpreted for their cognitive science significance
(Sect. 1.1.7).

1.1.1 Gold’s 1967 Model of Child Language Learning

M , below in Fig. 1.1, is an algorithmic device (machine), and, for t = 0, 1, 2, . . .,
at “time” t , M reacts only to the finite sequence of utterances u0, u1, . . . , ut , with
utterance ui arriving from, for example, the Mother, at time i ; with the (formal lan-
guage) L to be learned = {u0, u1, . . .}; and with gt the child’s t-th internal grammar
computed by its M on input utterance sequence u0, u1, . . . , ut .

This leaves open for the moment what constitutes successful learning of a formal
language L . In the next section (Sect. 1.1.2) we begin to take up this interesting topic.
Further below, in the second main section entitled Complexity Considerations, i.e.,
Sect. 1.2, additional criteria of success are explored.

As for the plausibility of Gold’s model of child language learning above, Gold
[37] argued from the psycholinguistic literature (e.g., [47]) that children react to and
need only positive data regarding languages L they learn—and that they really need
no data regarding L .

While this model of Gold’s is clearly deficient regarding inputs to the child of
semantic/denotational information and social reinforcers, I’ll, nonetheless present
below what I consider to be some resultant insights for cognitive science.

My view, argued in [19] (and to some extent in [18]) is that reality, including
cognitive reality, has algorithmic expected behavior.

Hence, restricting learners to being algorithmic from this point of view is perfectly
reasonable. Furthermore, it is a standard assumption of the field of cognitive science
that cognition is algorithmic.

Fig. 1.1 Gold’s model
gt

Out←− M
Child

In←− u0,u1, . . . ,ut

From, e.g., Mother

∈ L;
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1.1.2 Some Criteria of Successful Learning

Definition 1.1

• T is a text for L
def⇔ {T (0), T (1), . . .} = L .1

• Depicted just below is the I/Obehavior of learningmachine M receiving successive
text elements and outputting corresponding successive grammars.

g0, g1, . . . , gt , . . .
Out←− M

In←− T (0), T (1), . . . , T (t), . . . .

• Below are criteria from [17, 27, 37, 53] for somemachine M successfully learning
every language L in a class of languages L (see also [40])—where the gis are
from the previous bullet.
Suppose: N = {0, 1, 2, . . .}; N+ = {1, 2, . . .}; b ∈ (N+ ∪ {∗}); and x ≤ ∗ means
x < ∞.

– L ∈ TxtFexb ⇔ (∃ suitably clever M)(∀L ∈ L )(∀T for L)(∃t) [gt , gt+1, . . .

each generates L ∧ card({gt , gt+1, . . .}) ≤ b].
We say M TxtFexb-learns (each) L ∈ L .TxtEx def= TxtFex1,Gold’s criterion!
For example, the classF of all finite languages ∈ TxtEx [37].

– L ∈ TxtBc ⇔ (∃M)(∀L ∈ L )(∀T for L)(∃t) [gt , gt+1, . . . each generates L].
We say M TxtBc-learns (each) L ∈ L . For example,K = {K ∪ {x} | x ∈N} ∈
(TxtBc − TxtFex∗) [17], where K is the diagonal halting problem from [58].

1.1.2.1 TxtFexb-Hierarchy

Definition 1.2 Let Wg
def= the language generated or enumerated by grammar or

program g [58]. Informally: Wg can be thought of as the [summary of the] behavior
of g.

I like the use of machine self-reference arguments [16], and in the next theorem
(Theorem1.3), the classes mentioned for witnessing that one TxtFexb criterion has
more learning power than another are each (finitarily) self-referential. The proof that
they work is omitted but can be found in [17].

Theorem 1.3 [17] Let 〈·, ·〉 computably map N × N 1–1 onto N [58]. Here and

below
∞∀ z means: for all but finitely many z ∈ N [9]. Suppose n ∈ N

+. Let Ln = the
set of all infinite L such that

(∃e1, . . . , en)[We1 = · · · = Wen = L ∧

(
∞∀〈x, y〉 ∈ L)[y ∈ {e1, . . . , en}]].

1Technically, a text T for L is a mapping fromN onto L . A text for L is then a sequence of utterances
of all and only the elements of L .
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Let L∗ = ∪n∈N+Ln. Then Ln+1 ∈ (TxtFexn+1 − TxtFexn) ∧ L∗ ∈ (TxtFex∗ −
∪n∈N+TxtFexn).

Does, say, Noam Chomsky, for each natural language he learns, eventually vacillate
between up to 42 correct grammars in his head (but for some languages no fewer)?
I.e., does he need TxtFex42-learning? The problem is that we cannot (yet) see gram-
mars inside peoples’ heads. So, we don’t know if humans employ TxtEx-learning,
TxtFex2-learning,TxtFex3-learning,….Hence, for now,TxtFexn-learning, for non-
astronomical n ∈ N, are all not unreasonable for modeling human behavior.

1.1.2.2 Discussion

In [49] a well-documented body of experimental evidence indicates Mothers’ utter-
ances to young children are not calibrated by increasing syntactic complexity to
teach children gradually (but, instead, to fit the limited attention span and processing
powers of children).

These considerations are partly formally mirrored in the success criteria by the
requirement that the learners eventually correctly learn a language L no matter in
what order the input is presented, i.e., (∀T for L)—as long as that input contains all
and only the correct sentences of the language. At this point it is important to note
that (∀T for L) includes both computable and also uncomputable texts T for L! It
is noted in [52] that, since the utterances of children’s caretakers depend heavily on
external environmental events, such influences might introduce a random component
into naturally occurring texts. Whence comes the interest at all in non-computable
texts. As we shall see below in Sect. 1.1.5.2, for many important criteria of success,
learning power is nicely unaffected by whether we allow or disallow uncomputable
texts!

Children may be insensitive to some aspects of the order of data presentation. In
Sect. 1.1.5 several possibilities are considered, and some corresponding theoretical
results (for some learning criteria) will be presented.

First, though, in the next section (Sect. 1.1.3), the topic of constraints on successful
learning are considered.

1.1.3 Constraints on Learnability

Angluin [2] introduced the following Subset Principle for TxtEx-learning. It places
a severe constraint on the learnable.

Theorem 1.4 (Subset Principle [2, 17]) Suppose C ∈ {TxtFexb,TxtBc} and
M C-learns L.
Then (∃ finite S ⊆ L)(∀L ′ ⊂ L | S ⊆ L ′))[M does not C-identify L ′].
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N.B. The above Subset Principle and its depressing corollary just below (Corol-
lary1.5) hold even if M is not algorithmic! The proofs essentially depend on Baire
Category (or Banach-Mazur Games) fromTopology [51, 52] and not on algorithmic-
ity! This is possible only because M in general cannot infer data about L . Case and
Kötzing [26] studies which learning theory results depend only on topology, which
on algorithmicity.

Angluin connected the Subset Principle to the machine learning problem of over-
generalization. From the proof: M must overgeneralize on (some T s for) L ′, but it
does not overgeneralize on L itself.

See [41, 68] for discussion regarding the possible connection between this subset
principle and a more traditionally linguistically oriented one in [45].

Corollary 1.5 [37, 53] If L contains an infinite language together with all its finite
sublanguages, then L /∈ TxtBc.
Hence, for example, the class of regular languages /∈ TxtBc!

Definition 1.6 Consider the variant of TxtBc-learning called TxtBc∗-learning.
TxtBc∗-learning is just like TxtBc-learning except the final grammars or programs,
instead of each being perfectly correct, may each make finitely many mistakes.

Actually:

Remark 1.1 [53] While TxtBc∗ learners can learn more than TxtBc-learners, the
class of regular languages /∈ TxtBc∗!

In [17] there are variants of Theorems1.3 and 1.4 for criteria which allow a few
mistakes in final programs. In [5] there are variants of Theorem1.7 and Remark1.2
for criteria which allow a few mistakes in final programs. Success criteria allowing
a few mistakes in the final programs are also considered below in Sect. 1.2.2.

1.1.4 Characterizations and Pattern Languages

In this section presented are some characterization results (Sect. 1.1.4.1) and impor-
tant positive learnability results based on pattern languages (Sect. 1.1.4.2).

1.1.4.1 Characterizations

Program p taking two inputs i, x is a uniform decision procedure for a class U of
computably decidable languages iff

U = {Ui | (∀x)[p on input i, x decides whether or not x ∈ Ui ]}.

Such a U is called uniformly decidable. Important examples are all the Chom-
sky Hierarchy classes, Regular, …, Context-Sensitive [39], and, in the next section
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(Sect. 1.1.4.2), Angluin’s important class of Pattern Languages [1]. The following
important characterization of Angluin extends the Subset Principle for the cases of
uniformly decidable classes.

Theorem 1.7 (Angluin [2]) Suppose U = {Ui | i ∈ N} is uniformly decidable as
above. Then U ∈ TxtEx iff there is a computably enumerable sequence of enumer-
ating programs for finite sets S0, S1, . . . (tell tales) such that (∀i)[Si ⊆ Ui ∧ (∀ j |
Si ⊆ U j )[U j �⊂ Ui ]]. The output programs of a witnessing M can be decision pro-
cedures.

Remark 1.2 From [5], uniformly decidableU as just above is ∈ TxtBc iff the asso-
ciated tell tales S0, S1, . . . exist but do not have to be computably enumerable. In
this context, the output programs of a witnessing M cannot, in general, be decision
procedures.

Remark 1.3 Angluin [2] exhibited a uniformly decidable U with tell tales but with
no computably enumerable tell tales. Hence, from [5], herU is a uniformly decidable
class ∈ (TxtBc − TxtEx).

1.1.4.2 Pattern Languages

Next is an ostensive definition of Angluin’s important class of Pattern Languages.

Definition 1.8 (Angluin [1]) A pattern language is one generated by all and only
the positive length substitutions for variables (in upper case letter alphabet) of strings
(over a lower case letter alphabet) in a pattern, such as, for example, abXYcbbZXa.

Angluin [1] showed the class of pattern languages to beTxtEx-learnable, and through
further papers we have the following.

Theorem 1.9 [1, 63, 71] For each n ∈ N
+, the uniformly decidable class of unions

of n pattern languages ∈ TxtEx!

These classes are not rendered unlearnable by the severe constraint of Theorem1.4 as
are the classes in theChomskyHierarchy (Corollary1.5). This, in part, is because they
crosscut the classes in the Chomsky Hierarchy. Perhaps the (somewhat ill-defined)
class of natural languages is like that too. For example, most linguists consider each
natural language to be infinite.

Applications of unions of n pattern languages, ranging from learning in
molecular biology to more general machine learning, appear in, for example,
[3, 4, 11, 50, 61, 64].

1.1.5 Insensitivities to Presentation Order

In this section we first consider some possible child insensitivities to order of presen-
tation (Sect. 1.1.5.1); then corresponding formal results are presented (Sect. 1.1.5.2).
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1.1.5.1 Order Insensitivities’ Definitions

Children may be sensitive to the order or timing of data presentation (texts). First we
present two local and, then, two global (formal) insensitivities.

Definition 1.10

• M is partly set-driven [34, 35, 60] iff, on sequence u0, . . . , ut , it reacts only to the
set {u0, u1, . . . , ut } of utterances and the length t + 1 of the utterance sequence—
not to the order of the sequence. In effect, M reacts a little to timing (but not to
order) of utterances.

• M is set-driven [69] iff, when shown utterance sequence u0, u1, . . . , ut , it reacts
only to the corresponding set {u0, u1, . . . , ut }— not to the sequence’s order and
length.

• M is weakly b-ary order independent [17] iff, for each language L on which,
for some T for L , M converges in the limit to a finite set of grammars, there is,
corresponding to L , a finite set of grammars G of cardinality ≤ b such that M
converges to a subset of this same G for each T for L .

• M is b-ary order independent [17] iff M is weakly so, but, instead of converging
to a subset of G, it converges to exactly G. For b = 1, these two notions coincide
and are essentially from [8, 52].

1.1.5.2 Order Insensitivities’ Results

Results regarding (partly) set-driveness for TxtEx (the b = 1 case of TxtFexb) are
from [34, 35, 60]. For example, set-driveness strictly limits learning power for
TxtEx. That, for TxtEx, (weakly) 1-ary order independence is without loss of learn-
ing power is essentially from [8, 34, 35]. I found the b > 1 cases harder to prove
than the b = 1 case.

Theorem 1.11 [17] Any M can be algorithmically transformed into an M ′ so that
M ′ is both partly set-driven and weakly b-ary independent and M ′ TxtFexb-learns
all the languages M does (even if M only learns for computable texts).

As noted above in Sect. 1.1.2.2, [52] argues that, since the utterances of children’s
caretakers depend heavily on external environmental events, such influences might
introduce a random component into naturally occurring texts. This is whence comes
the interest at all in non-computable texts. The just above theorem and the results
below in this section (Sect. 1.1.5.2) imply that for the important criteria considered
in this section, learning power is nicely unaffected by whether texts are or are not
allowed to be uncomputable.

Remark 1.4 [17] The preceding theorem holds with partly set-driven replaced by
set-driven but with TxtFexb-identification restricted to only infinite languages.
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Theorem 1.12 [17] Any M can be algorithmically transformed into an M ′ so that
M ′ is b-ary order independent and M ′ TxtFexb-learns all the languages M does
(even if M only learns for computable texts).

It is not known (it’s hard to tease out experimentally) whether children exhibit any
of these insensitivities, but the formal results tell us something of how they affect
learning power. It has not been investigated how the results in this section would be
affected if complexity considerations were taken into account.

1.1.6 Empirical U-Shaped Learning

U-Shaped Learning follows the sequence Learn, Unlearn, Relearn. It occurs in child
development [10, 46, 66, 67], e.g., verb regularization and understanding of various
(Piaget-like) conservation principles, such as temperature and weight conservation
and interaction between object tracking and object permanence.

Here is an example of U-shaped learning from irregular English past tense verbs.
A child first uses spoke, the correct past tense of the irregular verb to speak. Then the
child ostensibly overregularizes, incorrectly using speaked. Lastly, the child returns
to using spoke. The major concern of the prior cognitive science literature on U-
shaped learning is in how one models U-shaped learning. For example, for language
learning, by general rules or tables of exceptions [10, 46, 54, 55]? With neural nets
[59] and statistical regularities or statistical irregularities?

My own concern regarding U-shaped learning is whether it is an unnecessary and
harmless accident of human evolution or whether U-shaped learning is advantageous
in that some classes of tasks can be learned in the U-shaped way, but not otherwise?

1.1.7 Formal U-Shaped Learning

In the interest of studying whether U shapes are necessary for full learning power,
it is mathematically useful to define alternatives to success criteria, including those
above but in which U shapes are forbidden on the way to success.

Definition 1.13

• Depicted just below is the I/Obehavior of learningmachine M receiving successive
text elements and outputting corresponding successive grammars.

g0, g1, . . . , gt , . . .
Out←− M

In←− T (0), T (1), . . . , T (t), . . . .
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NonUTxtEx
= TxtEx
= NonUTxtFexb

TxtFex2 TxtFex3 TxtFex∗

NonUTxtBc TxtBc

Fig. 1.2 Diagram of results

• Suppose C is a learning success criterion, for example, one ∈ {TxtFexb,TxtBc}.
Then, where the gis are from the first bullet of this definition,
L ∈NonUC ⇔ (∃M witnessing L ∈C)(∀L ∈L )(∀T for L)(∀i, j, k | i < j <

k)[Wgi = Wgk = L ⇒ Wg j = L]. Non-U-shaped learners of L never abandon
correct behaviors output on texts for L ∈ L and subsequently return to them.

1.1.8 Results/Question Regarding U-Shaped Learning

The results are presented first as a diagram (Sect. 1.1.8.1) and, then, as a verbal
summary of key points—with an important cognitive science question at the end
(Sect. 1.1.8.2).

1.1.8.1 Diagram of Some Results

The arrow−→ above denotes class inclusion. The transitive closure of the inclusions
in Fig. 1.2 below hold and no other inclusions hold [6, 12, 14, 15]. For example,
from Fig. 1.2, we haveTxtFex2 included inTxtFex3 and properly so—regarding the
latter, the transitive closure of the inclusions of Fig. 1.2 has no arrow from TxtFex3
to TxtFex2.

For example, from the above, there is someL ∈ (TxtFex3 − NonUTxtBc)! This
sameL then cannot be ∈ NonUTxtFex∗—else, it would, then, be in NonUTxtBc.
The proof regarding this L does employ an interplay between general rules and
(finite) sets of exceptions [12, 14]. Asmentioned above in Sect. 1.1.6, some cognitive
scientists, e.g., [10, 46, 54, 55], believe this interplay underpins human U-shaped
learning.

1.1.8.2 Main Results and a Question

In the present section we summarize key results from the previous section
(Sect. 1.1.8.1) and, at the end, pose and discuss a difficult question for cognitive
science and the evolution of human cognition.
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Remark 1.5

• Main results:

– From NonUTxtBc −→ TxtBc, U-shaped learning is needed for some class in
TxtBc.

– FromNonUTxtEx = TxtEx, U-shaped learning is not needed forTxtEx learn-
ing, i.e., for learning one successful grammar in the limit.

– FromNonUTxtFex∗ −→ TxtFex2, U-shaped learning is needed for some class
in TxtFex2 even if finitely many (∗) grammars are allowed in the limit but,
from TxtFex2 −→ NonUTxtBc, it is not needed if we allow infinitely many
grammars in the limit.

– From the reasoning after the previous section’s (Sect. 1.1.8.1’s) diagram, there
exists L ∈ (TxtFex3 − (NonUTxtFex∗ ∪ NonUTxtBc)); in particular,
U-shaped learning is needed for this L ∈ TxtFex3—even if allow infinitely
many grammars in the limit!

• Question: Does the class of tasks humans must learn to be competitive in the
genetic marketplace, like this latterL , necessitate U-shaped learning?
Of course we have not yet modeled human cognition and its evolution sufficiently
to answer this question. As pointed out in [12], on the formal modeling level,
the pattern emerges that, for parameterized, cognitively relevant learning criteria,
beyond very few initial parameter values, U shapes are necessary for full learning
power! This is seen in the results just above as well as in Sect. 1.2.1.3. This latter
section has, though, some important open questions very relevant to the emerging
pattern.

1.2 Complexity Considerations

This section concentrates on computational complexity issues. Considered are: large
database size and corresponding memory-limited learners (Sect. 1.2.1); unavoid-
able cases of complexity and information deficiencies of the programs learned
(Sect. 1.2.2); and the complexity of learner updates (Sect. 1.2.3). In the present section
a few, seemingly difficult, open questions are indicated. Some of them are impor-
tant for cognitive science (Sect. 1.2.1.3); one pertains to Turing machine complexity
(Sect. 1.2.3.6).

1.2.1 Hulking Databases and Memory-Limited Learners

The Database (DB) of utterances, u0, u1, . . . , ut−1, prior to time t , can, for large
t , become an Incredible Hulk (IH) unpleasant to handle and query. I think of this
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Fig. 1.3 The incredible hulk
(IH) (©2013 Marvel and
Subs)

Fig. 1.4 ≤k-bounded
example-memory model

gt
Out←− M In←− ut ∈ L

↓ ↑
M remembers ≤k elements (from time t −1)

{ui1
,ui2

,...,uik
} (and at t , can drop some ui j s and add ut )

⊆ {u0,u1, . . .,ut−1} ⊆ L;

Marvel Comics character (Fig. 1.3) as metaphorically representing the problem of
DBs that are too large.

Furthermore, humans (including children) may not remember, even subcon-
sciously, every utterance they’ve ever heard.

In Sects. 1.2.1.1 and 1.2.1.2 we begin to introduce some Memory-Limited criteria
of learning success to begin to deal with these too large DB problems.

Then Sect. 1.2.1.3 presents corresponding results. It indicates some results of
relevance to cognitive science—as well as important, cognitive science-relevant,
seemingly hard open questions.

1.2.1.1 One Kind of Memory-Limited Learning Criteria

The ≤ k-Bounded Example-Memory Model [22, 36, 52] is without access to the
complete IH DB and is depicted at time t below in Fig. 1.4.2 At time t , M reacts only
to: ut , gt−1 and its memory from time (t − 1) of ≤ k of the prior utterances from L .

We say M TxtBemk-learns L iff, for any text of all/only the utterances of L ,
at some time t , gt above in Fig. 1.4 is a grammar for L and gt = gt+1 = gt+2 =
gt+3 = . . . .

1.2.1.2 A Second Kind of Memory-Limited Learning Criteria

For The ≤ k-Queries Feedback Model [22] (k = 0, 1 cases: [44, 70]) the learning
machine M asks little per hypothesis update of the complete IH DB, and it is depicted
at time t below in Fig. 1.5. In this model, at time t , M reacts only to: ut , gt−1 and
the answers to only ≤ k queries it generates regarding membership in the eventually
large IH DB of the past inputs {u0, u1, . . . , ut−1} up through time (t − 1).

2In Fig. 1.4, for t = 0, M’smemory of prior data at time (t − 1) is empty; furthermore, in Fig. 1.4 and
elsewhere below, for t = 0, gt−1 can be taken to be a fixed grammar, e.g., for the empty language.



12 J. Case

Fig. 1.5 ≤k-queries
feedback model

gt
Out←− M In←− ut ∈ L

↓ ↑
≤k queries of IH DB

{u0 ,u1,...,ut−1}⊆ L;

M is said to TxtFbk-learn L iff, for any text of all/only the utterances of L , at
some time t , gt above is a grammar for L and gt = gt+1 = gt+2 = gt+3 = · · · .

For k = 0 the two models coincide and the resultant learning criterion is called
iterative or TxtIt-learning [69, 70].

1.2.1.3 Results About the Just Prior Two Models

Theorem 1.14 [22] In each model, one can learn more with strictly larger k.

Theorem 1.15 [22] For each k > 0, for each model, there are language classes
where that model is successful and the other is not!

For each k > 0, for each of the two models, here is a hard open problem: does
forbidding U shapes decrease learning power? For k = 0, the answer is no [28].

Even for k = 0, it is a hard open problem: does the case of adding the counter t
to M’s inputs ut , gt−1 affect whether U shapes are necessary?

Remark 1.6 It is known [25], for example, for each k ≥ 3, for the variant of
TxtBemk , where gt−1 is not available to M and where the memory of≤ k utterances
is replaced by memory of any one of k-objects (i.e., log2(k)-bits), that forbidding U
shapes decreases learnability.

For k = 1, 2 here, U shapes are irrelevant [13].

Theorem 1.16 [22] For each n > 0, the class of all unions of n pattern languages
∈ TxtIt!

1.2.2 Deficiencies of Programs Learned

Independently of other complexity issues is the problem of the reasonableness of
the programs eventually successfully found by a learner. This is explored in the
present section for the learning of programs for total characteristic/decision func-
tionsN → {0, 1} from complete data about their graphs. In prior sectionswe explored
the mathematically different vehicle of learning programs for generating formal lan-
guages from positive information only about those languages. For any total function,
once one has an enumeration of its graph, one can algorithmically generate all that is
and onlywhat is in the complement of its graph.We restrict our attention in the present
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section to data presentations of such functions f in the order: f (0), f (1), f (2), . . .—
since from any presentation order of the graph of f (i.e., {(x, y) | f (x) = y}) one
can algorithmically generate the presentation order f (0), f (1), f (2), . . . .

In Sects. 1.2.2.1–1.2.2.3, the basic background material is presented. Then, in
Sect. 1.2.2.4, results about inherent computational complexity deficiencies in pro-
grams learned are presented. Finally, in Sect. 1.2.2.5, some unexpected, inherent
informational deficiencies of programs learned are laid out.

1.2.2.1 Successful Learning on Complete Data Regarding Total
Functions

Suppose S ⊆ R0,1, the class of all (total) computable characteristic functions of
subsets of N . Defined just below are criteria of success analogs of TxtEx andTxtBc
— but regarding learning programs for characteristic functions instead of grammars
for languages.

Definition 1.17

• Depicted below is the I/O behavior of a learning machine M receiving successive
values of a function f and outputting corresponding successive programs. Some
later items in this definition refer to this depiction.

p0, p1, . . . , pt , . . .
Out←− M

In←− f (0), f (1), . . . , f (t), . . . .

• Suppose a ∈ N ∪ {∗}. a is for anomaly count. For a = ∗, a stands for finitely
many.3

• S ∈ Exa ⇔ (∃ suitably clever M)(∀ f ∈ S )

[M, fed f (0), f (1), . . . , outputs p0, p1, . . . ∧ (∃t)[pt = pt+1 = · · · ∧ pt com-
putes f —except at up to a inputs]].

• S ∈ Bca ⇔ (∃M)(∀ f ∈ S )

[M, fed f (0), f (1), . . . , outputs p0, p1, . . . ∧ (∃t)[pt , pt+1, . . . each computes
f —except at up to a inputs]].

1.2.2.2 Examples

Below are some important example classes together with some known results about
them which will help us understand the results in Sects. 1.2.2.4 and 1.2.2.5 on the
deficiencies of programs learned.

3Case and Smith [29, 30] motivate by anomalous dispersion from physical optics the presence of
a > 0 anomalies in “successful” final programs. We omit herein details about that.



14 J. Case

Remark 1.7

• For k ≥ 1, let Pk = the class all 0–1 valued functions computable by (multi-
tape) TMs in O(nk) time, with n = input length. Let P = ⋃

Pk , the class of
polynomial time computable characteristic functions.

• Let slowbe afixed slow-growingunbounded function∈ P1, e.g., ≤ Ackermann−1

[31]. LetQk = the class all {0, 1}-valued functions computable in O(nk · log(n) ·
slow(n)) time, again with n = input length. We have,

Pk ⊂ Qk
︸ ︷︷ ︸

Tightest known separation [38, 39]

⊂ Pk+1.

• P ∈ Ex0. Pk ∈ Ex0 too (with each output conjecture running in k-degree
poly time); CF , the class all characteristic functions of context-free languages,
∈ Ex0 [37].

• Ex0 ⊂ Ex1 ⊂ Ex2 ⊂ · · · ⊂ Ex∗ ⊂ Bc0 ⊂ Bc1 ⊂ · · · ⊂ Bc∗ [29]. Hence, more
anomalies tolerated in final successful programs entails strictly more learning
power.

• Harrington in [30]:R0,1 ∈ Bc∗.

1.2.2.3 Basic Notation

Next is some basic terminology important to the statements of results in Sects. 1.2.2.4
and 1.2.2.5.

Definition 1.18

• C of = { f ∈ R0,1 | (
∞∀ x)[ f (x) = 1]} (⊂ P1 and REG , the class all character-

istic functions of regular languages). As will be seen, C of is important as a nice
example of a particularly trivial, easily learnable class of (characteristic) functions.

• ϕTM
p = the partial computable function N → N computed by (multi-tape) Turing

machine program (number) p.
• ΦTM

p (x) = the runtime of Turing machine program (number) p on input x , if p
halts on x , and is undefined otherwise.

• ΦWS
p (x) = the tape work space used by Turing machine program (number) p on

input x , if p halts on x , and is undefined otherwise.
• f [m]= the sequence f (0), . . . , f (m − 1); form = 0, f [m] is the empty sequence.
• M( f [m]) = M’s output based on f [m]. For the results herein, we may and will
suppose without loss of generality that M( f [m]) is always defined.

• M( f ) denotes M’s final output program on input f , if any; else, it is undefined.
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1.2.2.4 Complexity Deficiencies of Programs Learned

First is a simple positive result which, in effect, is part of the third bullet in Remark1.7
in Sect. 1.2.2.2. This result will contrast nicely with the theorem just after it.

Proposition 1.19 [20]For each k ≥ 1,∃M witnessingPk ∈Ex0 such that (∀ f )(∀m)

[ΦTM
M( f [m])(x) ∈ O(|x |k)].

Theorem 1.20 ([20], tightens [65]) Suppose k ≥ 1 and that M witnesses either
Qk ∈ Ex∗ or Qk ∈ Bc0 (special case: M witnesses Qk ∈ Ex0).
Then: (∃ f ∈ C of)(∀k-degree polynomials p)

(
∞∀n)(

∞∀ x)[ΦTM
M( f [n])(x) > p(|x |)].

Idea: if one ups the generality of a learner M from Pk to Qk , then the run-times
of M’s successful outputs on some trivial f ∈ C of is worse than any preassigned
k-degree polynomial bound, a complexity deficiency.

Of course, since REG is defined in terms of finite automata [32, 39], no Work
Space is needed to compute the functions inREG (which includes the trivial func-
tions in C of), but:

Theorem 1.21 [20] For k ≥ 1 and M witnessing CF ∈ Ex∗ (special case: M wit-
nesses CF ∈ Ex0), (∃ f ∈ C of)(∃x)[ΦWS

M( f )(x) ≥ k].
Idea: learning CF instead of REG produces some final programs on some trivial
functions in C of which do require some work space, another complexity deficiency.

1.2.2.5 Information Deficiencies of Programs Learned

First is a positive result which will contrast nicely with the theorem just after it.

Theorem 1.22 [20] ∃M outputting only total poly-time conjectures and witnessing
both P ∈ Bc∗ and P1 ∈ Ex0 such that (∀ f ∈ P1)[ΦTM

M( f )(x) ∈ O(|x |)].
In the next theorem f.o. PA is the version of Peano Arithmetic expressed within first
order logic [48, 58]. PA is a well-known formal theory in which one can express and
prove all the theorems in an elementary number theory book.

For a sentence E expressible in PA, � E � is some natural translation of E into
the language of PA.

In the next theorem, the example

E = ϕTM
M( f [m]) is computable∗ in O(|x |k)time

contains what would, without explanation, be a mysterious ∗. This E is meant to
be an abbreviation of the clearer, but longer sentence: any total, finite variant of the
function computed by the TM-program output by M on f [m] runs in time O(nk),
where n = the length of this program’s input.
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Theorem 1.23 [20]
Suppose theory T is any true, computably axiomatized extension of f.o. PA (so, T is a
safe, algorithmic information extractor). Suppose k ≥ 1 and M witnessesQk ∈ Bc∗.

Then: (∃ f ∈ C of)(
∞∀m)[T � � � ϕTM

M( f [m]) is computable∗ in O(|x |k) time �].
It is particularly interesting to apply the preceding theorem (Theorem1.23) to the
case of a learner M from Theorem1.22 earlier: while the programs learned by this
M for functions in all of C of are perfectly correct and do have excellent, linear-time
run-times, some of these programs learned will be informationally deficient—since
we cannot prove in T from them even considerably weaker upper bounds on the
run-times of any total finite variants of the functions they compute!

1.2.3 Complexity of Learner Updates

This section begins with a general discussion of the important and well-investigated
subject of learner update complexity (Sect. 1.2.3.1). Then an automata-theory-based
paradigm is chosen for both illustration and since it may be new to the Grammatical
Inference community as well as interesting to it (Sects. 1.2.3.2–1.2.3.6).

1.2.3.1 Complexity-Restricted Updates of Learners Generally

There has been tremendous interest in the Grammatical Inference community, e.g.,
[33], in polynomial time updating of each learned output conjecture, where the
polynomials are typically in some measure of the size of data used to obtain the
conjecture.

For example, the Pattern Languages are polytime TxtIt-learnable [43]—but at
the interesting, apparently necessary cost of intermediate conjectures which do not
generate some of the data on which they are based!

Pitt [56] notes that it’s possible to cheat and always obtain (meaningless) polytime
updates: Suppose q is a polynomial, and M on finite data sequence σ delivers its
correspondingly conjectured program within time q(|σ |). Pitt notes M can put off
outputting conjectures based on σ until it has seen much larger data τ so that q(|τ |)
is enough time for M to work on σ as long as it needs. He notes that this delaying
trick is unfair—since it allows as much to be learned as in the case of no time bound
on the learner updates.

Finding mathematical conditions to guarantee no Pitt delaying tricks can be used
seems very difficult [24]. For a time I believed polytime TxtFbk-learning is fair—
until Frank Stephan provided me a counterexample. I currently believe polytime
TxtBemk-learning is reasonably fair—provided output conjectures are not padded
up too much to carry over extra information from one update to the next. Reasonably
fair such padding was employed for TxtIt-learning of some mildly context-sensitive
classes in [7]. Most published polytime update learning algorithms I’ve seen seem
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quite fair, e.g., the TxtEx-learning of somewhat different mildly context-sensitive
classes in [72] and, of course, the polytime TxtIt-learnability of the Pattern Lan-
guages mentioned above.

Next are presented, for example, some recent results about the use of learning
functionswhose graphs are regular (i.e., finite automata-acceptable). These are called
automatic learning functions and are defined more formally later in Sect. 1.2.3.3.

Perhaps this material will be new to the Grammatical Inference community and
of some interest to them. We believe finite automata are not smart enough to do Pitt
tricks.

1.2.3.2 Automatic Structures

The study of automatic structures (defined below) began with the Program of Khous-
sainov andNerode [42]: replace TMs by finite automata in computable model theory.

Below we provide some basic definitions regarding automatic structures which
will lead, for example, to Remark1.8 in Sect. 1.2.3.3 in which we are able to define
automatic learning function and present a few results.

Definition 1.24

• The automatic 1-ary relations are the regular (i.e., finite automata accepted) lan-
guages ⊆ Σ∗, for some finite (non-empty) alphabet Σ .

• For our next defining automatic binary relations R over a finite alphabet Υ (⊇ Σ),
we need be able to submit a pair (α, β) ∈ (Υ ∗ × Υ ∗) to a finite automaton.

• If we feed α and, subsequently, β, the finite automaton will have trouble remem-
bering much about α upon receiving β, so we use convolution to submit α and β

together—details next.
• Suppose �� is a “blank” symbol /∈ Υ . We provide next an ostensive definition of
conv(α, β).
Example: conv(ab, bba) = (a, b)(b, b)(��, a). Idea: these pairs are each new sin-
gle alphabet symbols to be sequentially read by a finite automaton.

• We say a binary relation R is automatic iff {conv(α, β) | R(α, β)} is regular—
over the alphabet ((Υ ∪ {��}) × (Υ ∪ {��})).
The concept obviously generalizes to k-ary relations, and we consider it to be so
generalized.

1.2.3.3 Automatic Classes and Functions

Remark 1.8

• L is said to be an automatic class iff each L ∈ L is a subset ofΣ∗, and, for some
regular index domain I and some automatic S ⊆ (I × Σ∗),
L = {Lα | α ∈ I }, where (the then regular) Lα = {x | (α, x) ∈ S}.
Idea: such a L is uniformly regular.
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• Automatic classes are the automatic analog of the uniformly decidable classes,
e.g., fromAngluin’s characterization theorem, Theorem1.7 fromSect. 1.1.4.1. The
analog of the index domain above for the uniformly decidable classes is just N.

• An automatic function M is an automatic, single-valued relation.
I.e., a function M is automatic iff the relation {(α, β) | M(α) = β} is automatic.

• In the later, learnability portion of this section, we are interested in modeling
learners as automatic and, also, as more general functions M . Although more
general functions can learn more, and

• Case et al. [21] notes there are significant automatic classes based on erasing
regular patterns which are learnable by mere automatic learners.4

1.2.3.4 TM Input/Output of Automatic Functions

A finite automaton accepting (the convolutions of) all/only the ordered pairs in the
graph of an automatic function M is not at all the same as computing the value of
M(x) from each x in domain(M). However:

Theorem 1.25 [23] Suppose M is an automatic function. Then there is a linear-time
bounded, one-tape, deterministic TM which computes M where each input x is given
on the tape starting from the marked left end and output M(x) starts from this same
left end.

This theorem has a strong converse as follows.

Theorem 1.26 [23]Suppose a linear-timebounded, one-tape, non-deterministicTM
computes M such that each input x is given on the tape starting from the marked
left end; on each non-deterministic path the output is M(x) or?, where at least one
path has output M(x); and outputs M(x) or? start from this same left end. Then M
is automatic. (Left end I/O is provably crucial.)

1.2.3.5 Relevant General Learnability Definitions

We are next interested in the learnability (general or otherwise) of automatic classes.
The next definition begins to explore how to handle this.

Definition 1.27

• As above, a text T for L ⊆ Σ∗ (in automatic class) L is a sequence of all and
only the elements of L .

• A learner employs output hypotheses hypt ∈ I (I , the corresponding index set)
and a sequence of long-term memories memt (each ∈ 
∗).

4Above, in Sect. 1.1.4.2, we defined Angluin’s pattern languages based on patterns, and there only
positive length substitutions are allowed. The provably hard to learn erasing pattern languages [57]
also allow empty substitutions. The regular ones [62] require that each variable in the associated
defining pattern be present only once.
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• A learner has initial long-term memory mem0 (and initial hypothesis hyp0).
Think of each t = 0, 1, . . . as a time/cycle. Then learner M : (T (t),memt ) �→
(hypt+1,memt+1).

• L is learnable by M : (∀L ∈ L )(∀T for L)(∃t)(∀t ′ > t)[hypt ′ = hypt ∧ hypt
is correct for L].

Remark 1.9

• With unrestricted memory and Ms TM computable, the preceding learnability cri-
terion (for automatic classes) is equivalent toTxtEx (butwith hypotheses restricted
to I ).

• Curiously: learnabilityof automatic classesdoesnot change even if the Ms canalso
be uncomputable, andAngluin’s Characterization can in this case omit computable
enumerability of tell tales.

1.2.3.6 Linear Time Learners Suffice!

We explore next how efficiently the general learning of automatic classes can be
done. First we introduce a relevant TM model.

Definition 1.28 Our (k + 1)-Tape TM Model:

• Tape 0 (base tape): At the beginning of cycle t , it contains conv(T (t),memt ) (with
|memt | ≤ longest text datum seen so far + a constant).
At end of cycle t , it contains conv(hypt+1,memt+1) (with |memt+1| ≤ longest text
datum seen so far + a constant). Marked left end I/O too.

• Additional Tapes 1, 2, . . . , k: normal work-tapes, with contents and head position
not modified during change of cycle.

• Each cycle of the machine runs in the linear-time in the length of the longest text
datum seen so far.

Theorem 1.29 [23] Every learnable automatic class has such a linear-time TM
learner employing only k = two additional work-tapes.
The two work tapes can be replaced by two stacks or, instead, one queue—a queue
with non-overtaking, one-way heads to operate each end!

Open problem: does only k = one additional work tape suffice?

1.3 Summary Including Open Problems

We briefly summarize what’s been done in the present chapter.
As noted above, the chapter is about Gold’s 1967model of child language learning

and selected highlights of the theory appearing since Gold’s 1967 paper. It is divided
into two major sections. The first concentrates on results that are independent of
computational complexity considerations; the second concentrates on relevant com-
plexity issues.
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In the first major section are treated: Gold’s Model; criteria of successful learning
(with hierarchy results); reasonableness and weaknesses of the general model; prov-
able severe constraints on learnability; related characterizations and the important
example of Angluin’s Pattern Languages; two local and two global formal insensi-
tivities of learning to order of presentation of data with corresponding formal results,
with no available conclusions about how these do or do not apply to human children;
and the cognitive science empirically observed phenomenon of U-shaped learning
with mathematically defined formal analogs, and corresponding interpreted formal
results that suggest the U shape may be necessary for full human learning power.
Also presented are some hard questions for the state of the art in empirical cog-
nitive science: do some humans, after successfully learning at least some natural
languages, vacillate between multiple grammars. Is U-shaped learning necessary for
those humans who succeed in the genetic marketplace?

In the secondmajor section on complexity considerations are treated: the problem
of learning based on infeasibly large amounts of data, and presented are two for-
mal models of data memory-limited learners, accompanied by corresponding formal
hierarchy results; surprising results showing that some slight increases in learning
generality inexorably lead to both complexity and information deficiencies in the
programs that are learned for some very simple objects to be learned, but with no
such Deficiencies appearing for the less general learning cases; and the important
feasibly computable learner updates where it is noted that sometimes the feasibility
of updates can be a cheat, and detailed results are given about both the use of finite
automata accepted learning functions (where it is ostensibly difficult to cheat) and
the learnability of uniformly finite automata accepted classes. Also presented are
some seemingly difficult open mathematical questions (the first two are of relevance
to cognitive science, the third to complexity theory): For each k > 0, for each of the
two data memory-limited models of Sect. 1.2.1, does forbidding U shapes decrease
learning power? For each k ≥ 0, for these two models, does the case of supplying
the counter t to M in addition to its inputs ut , gt−1 affect whether U shapes are
necessary? For Theorem1.29 in Sect. 1.2.3.6, does only k = 1 additional work tape
suffice?
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