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Preface

Grammatical inference is one part of theoretical computer science that addresses
the problem of how computers can learn from experience. In this way, it is like the
well-known field of machine learning. Perhaps what most distinguishes grammat-
ical inference from standard machine learning approaches is its focus on learning
the structure which underlies the concept to be learned, i.e., in identifying the
nature of the target concept.

A common ingredient that one can find in all the grammatical inference works is
that the target concepts are formal objects like sets of strings or sets of trees, which
can be represented either by accepting devices (for example, a finite automata, a
neural network, etc.) or by generating devices (mainly, formal grammars which can
be inserted into a formal framework such as the Chomsky hierarchy). Hence, it is
common for the results and algorithms developed in the area of grammatical
inference to have implications in other research areas such as computability and
complexity theory, formal languages and applications, artificial intelligence, etc.
Similarly, such areas frequently guide research in grammatical inference. So,
grammatical inference and other research areas are continuously influencing each
other.

Grammatical inference has been developed largely in the last 30 years. We can
establish E.M. Gold’s work Language Identification in the Limit (1967) as the
seminal work where all the basic problems, concepts, and rules of the game were
established for grammatical inference. Since then, the grammatical inference
research area has been continuously in progress, especially since the landmark work
in the 1980s by Dana Angluin. So, it is a well-developed area with a long tradition.

There is a well-established community of researchers who have a presence in the
scientific scene through different publications and conferences. The main confer-
ence on grammatical inference is international in scale, and has been celebrated
every 2 years since 1993 (the ICGI conference series). Its proceedings were pub-
lished as part of the Springer LNCS or LNAI series until 2010, and since 2012 they
have been published as part of the open-access JMLR Workshop and Conference
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Proceedings series.1 These conferences are directed by an international steering
committee (of which we are current members). Additionally, the website http://
www.grammarlearning.org/ provides online information about conferences, com-
petitions, software, and other resources relating to the field of grammatical
inference. Lastly, the 2010 book Grammatical Inference by Colin de la Higuera,
published by Cambridge University Press, collects in one place the main body of
results of this field and presents them from the ground up in a uniform fashion.

This book provides advanced treatments of topics in grammatical inference. In
this way, this book complements de la Higuera’s book, by addressing topics that are
either unmentioned or only introduced there.

The topics included in this book are largely drawn from tutorials that were
presented at the ICGI 2010 and 2012 conferences. They were selected for the
following reasons: (1) the topic has reached a certain level of scientific maturity, so
a reasonable number of (positive and negative) results, algorithms, and conclusions
have been obtained; and (2) the topic is of fundamental interest to grammatical
inference, so it attracts a significant number of researchers to study the many facets
of the problems that it exhibits.

The first three chapters of the book deal with issues regarding the theoretical
learning framework. So, John Case’s chapter, Gold-Style Learning Theory, dis-
cusses different learning paradigms, relationships among them, and learning power
associated with them more generally. Rémi Eyraud, Jeffrey Heinz, and Ryo
Yoshinaka’s chapter, Efficiency in the Identification in the Limit Learning
Paradigm, pays special attention to the complexity issues associated with identi-
fication in the limit learning criteria. Then, a chapter by Colin de la Higuera,
Learning Grammars and Automata with Queries, focuses on the main results of
learning by changing the information source to what is called active learning,
wherein the learner can ask an oracle for information about the target. The next part
of the book focuses on the main classes of formal languages according to
Chomsky’s hierarchy: the regular languages and the context-free languages. With
respect to the regular languages, two chapters deal with finite-state automata. First,
the chapter by Damián López and Pedro Garca, On the Inference of Finite State
Automata from Positive and Negative Data, shows the main aspects of learning
regular languages from examples and counterexamples. The chapter by Jorge
Castro and Ricard Gavaldà, Learning Probability Distributions Generated by
Finite-State Machines, approaches the learning of stochastic regular languages in a
probabilistic manner, with a special focus on spectral learning. The chapter
Distributional Learning of Context-Free and Multiple Context-Free Grammars, by
Alexander Clark and Ryo Yoshinaka, focuses on an algebraic approach to learning
some subclasses of the context-sensitive languages, which include significant
classes of context-free languages. The next chapter, by Johanna Björklund and
Henning Fernau, Learning Tree Languages, largely deals with the learning of
regular sets of tree languages. The relation between tree languages and context-free

1http://jmlr.csail.mit.edu/proceedings/.
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languages of strings was established as an alternative approach to learn in what is
named learning from structural data. Hence, most of the results of this chapter are
relevant to learning context-free languages. Finally, the chapter by François Coste,
Learning the Language of Biological Sequences, shows an area of application that
has recently been approached by grammatical inference: the processing of
biosequences.

One decision we made early in regards to this book was to give the authors a
high level of autonomy in preparing their chapters. There are advantages and
disadvantages to this approach. One disadvantage is that some overlap inevitably
exists between the chapters. We have cross-referenced other chapters where
appropriate. Another disadvantage is that the notation used in each chapter differs.
However, we believe the advantages outweigh these disadvantages. Each chapter in
this book stands on its own, and includes the concepts and references necessary to
help the understanding of the results by the reader. Thus it is not necessary for the
reader to approach the contents of this book in order. Additionally, as a conse-
quence of this approach, this book is oriented to an audience with basic knowledge
of mathematics, computer science, and formal language theory. It could be
(under)graduate students, or computer scientists, linguistics researchers, cognitive
psychologists, or other readers interested in the nature of learning and its relation to
computer science, artificial intelligence, and a significant number of related areas.

The editing of this book has been a long process where we have been helped by
many different persons. We would like to thank them all for the support that they
have provided during this process. First, we would like to thank all the contributors
and authors of this book for the patience that they have exhibited during all stages
of the book’s production, especially during the reviewing process. We specially
thank Colin de la Higuera for his support and for giving us the idea of editing this
book. We thank all the people from Springer for their support, specially Ronan
Nugent for all his understanding about the delays and problems that we encountered
during the preparation of this book. Last but not least, we give thanks to our family
members and friends for all their support. This book has been a good conversation
topic during all this time, although they avoided asking much about it on some
occasions. To all of them, thank you very much.

Newark, DE, USA Jeffrey Heinz
Valencia, Spain José M. Sempere
December 2014
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Chapter 1
Gold-Style Learning Theory

A Selection of Highlights Since Gold

John Case

Abstract This chapter is a tutorial addressed to, among other audiences, the gram-
matical inference community. It is on the computational learning theory initiated by
E. Mark Gold’s seminal 1967 paper. One of Gold’s important motivations was to
present a formal model of child language learning. This chapter introduces Gold’s
model and also presents an introduction to some selected highlights of the theory
appearing sinceGold 1967. Since bothGold and the present author had or have cogni-
tive science motivations, many of the results discussed herein also have implications
for, and were motivated by, questions regarding the human cognitive ability to learn.
For this chapter some prior knowledge of computability theory would be helpful to
the reader, as would some prior acquaintance with Gold’s identification/learning in
the limit concept. The first section concentrates on results which are independent of
computational complexity considerations. Covered are: Gold’s model of child lan-
guage learning (including some reasonable, post-Gold criteria of successful learning
and some critical discussion); some severe constraints on successful learning; some
characterization results and important examples of successful learning; discussion
and results on potential child insensitivities to data presentation order; and empirical
U-shaped learning with some corresponding formal results interpreted for their cog-
nitive science significance. The second section concentrates on relevant complexity
issues. The issues considered are: large database size and corresponding memory-
limited learners; unavoidable cases of complexity and information deficiencies of
the programs learned; and the complexity of learner updates. In this section a few,
seemingly difficult, open mathematical questions are indicated. Some of them are
important for cognitive science.

J. Case (B)
Computer and Information Sciences Department, University of Delaware,
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2 J. Case

1.1 Language Learnability: Gold 1967 and Beyond

In this section, covered are: Gold’s model of child language learning (Sect. 1.1.1);
criteria of success (Sect. 1.1.2); some severe constraints on successful learning
(Sect. 1.1.3); some characterization results and important examples of successful
learning (Sect. 1.1.4); discussion and results on potential child insensitivities to data
presentation order (Sect. 1.1.5); and empirical U-shaped learning (Sect. 1.1.6) with
some corresponding formal results interpreted for their cognitive science significance
(Sect. 1.1.7).

1.1.1 Gold’s 1967 Model of Child Language Learning

M , below in Fig. 1.1, is an algorithmic device (machine), and, for t = 0, 1, 2, . . .,
at “time” t , M reacts only to the finite sequence of utterances u0, u1, . . . , ut , with
utterance ui arriving from, for example, the Mother, at time i ; with the (formal lan-
guage) L to be learned = {u0, u1, . . .}; and with gt the child’s t-th internal grammar
computed by its M on input utterance sequence u0, u1, . . . , ut .

This leaves open for the moment what constitutes successful learning of a formal
language L . In the next section (Sect. 1.1.2) we begin to take up this interesting topic.
Further below, in the second main section entitled Complexity Considerations, i.e.,
Sect. 1.2, additional criteria of success are explored.

As for the plausibility of Gold’s model of child language learning above, Gold
[37] argued from the psycholinguistic literature (e.g., [47]) that children react to and
need only positive data regarding languages L they learn—and that they really need
no data regarding L .

While this model of Gold’s is clearly deficient regarding inputs to the child of
semantic/denotational information and social reinforcers, I’ll, nonetheless present
below what I consider to be some resultant insights for cognitive science.

My view, argued in [19] (and to some extent in [18]) is that reality, including
cognitive reality, has algorithmic expected behavior.

Hence, restricting learners to being algorithmic from this point of view is perfectly
reasonable. Furthermore, it is a standard assumption of the field of cognitive science
that cognition is algorithmic.

Fig. 1.1 Gold’s model
gt

Out←− M
Child

In←− u0,u1, . . . ,ut

From, e.g., Mother

∈ L;
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1.1.2 Some Criteria of Successful Learning

Definition 1.1

• T is a text for L
def⇔ {T (0), T (1), . . .} = L .1

• Depicted just below is the I/Obehavior of learningmachine M receiving successive
text elements and outputting corresponding successive grammars.

g0, g1, . . . , gt , . . .
Out←− M

In←− T (0), T (1), . . . , T (t), . . . .

• Below are criteria from [17, 27, 37, 53] for somemachine M successfully learning
every language L in a class of languages L (see also [40])—where the gis are
from the previous bullet.
Suppose: N = {0, 1, 2, . . .}; N+ = {1, 2, . . .}; b ∈ (N+ ∪ {∗}); and x ≤ ∗ means
x < ∞.

– L ∈ TxtFexb ⇔ (∃ suitably clever M)(∀L ∈ L )(∀T for L)(∃t) [gt , gt+1, . . .

each generates L ∧ card({gt , gt+1, . . .}) ≤ b].
We say M TxtFexb-learns (each) L ∈ L .TxtEx def= TxtFex1,Gold’s criterion!
For example, the classF of all finite languages ∈ TxtEx [37].

– L ∈ TxtBc ⇔ (∃M)(∀L ∈ L )(∀T for L)(∃t) [gt , gt+1, . . . each generates L].
We say M TxtBc-learns (each) L ∈ L . For example,K = {K ∪ {x} | x ∈N} ∈
(TxtBc − TxtFex∗) [17], where K is the diagonal halting problem from [58].

1.1.2.1 TxtFexb-Hierarchy

Definition 1.2 Let Wg
def= the language generated or enumerated by grammar or

program g [58]. Informally: Wg can be thought of as the [summary of the] behavior
of g.

I like the use of machine self-reference arguments [16], and in the next theorem
(Theorem1.3), the classes mentioned for witnessing that one TxtFexb criterion has
more learning power than another are each (finitarily) self-referential. The proof that
they work is omitted but can be found in [17].

Theorem 1.3 [17] Let 〈·, ·〉 computably map N × N 1–1 onto N [58]. Here and

below
∞∀ z means: for all but finitely many z ∈ N [9]. Suppose n ∈ N

+. Let Ln = the
set of all infinite L such that

(∃e1, . . . , en)[We1 = · · · = Wen = L ∧

(
∞∀〈x, y〉 ∈ L)[y ∈ {e1, . . . , en}]].

1Technically, a text T for L is a mapping fromN onto L . A text for L is then a sequence of utterances
of all and only the elements of L .
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Let L∗ = ∪n∈N+Ln. Then Ln+1 ∈ (TxtFexn+1 − TxtFexn) ∧ L∗ ∈ (TxtFex∗ −
∪n∈N+TxtFexn).

Does, say, Noam Chomsky, for each natural language he learns, eventually vacillate
between up to 42 correct grammars in his head (but for some languages no fewer)?
I.e., does he need TxtFex42-learning? The problem is that we cannot (yet) see gram-
mars inside peoples’ heads. So, we don’t know if humans employ TxtEx-learning,
TxtFex2-learning,TxtFex3-learning,….Hence, for now,TxtFexn-learning, for non-
astronomical n ∈ N, are all not unreasonable for modeling human behavior.

1.1.2.2 Discussion

In [49] a well-documented body of experimental evidence indicates Mothers’ utter-
ances to young children are not calibrated by increasing syntactic complexity to
teach children gradually (but, instead, to fit the limited attention span and processing
powers of children).

These considerations are partly formally mirrored in the success criteria by the
requirement that the learners eventually correctly learn a language L no matter in
what order the input is presented, i.e., (∀T for L)—as long as that input contains all
and only the correct sentences of the language. At this point it is important to note
that (∀T for L) includes both computable and also uncomputable texts T for L! It
is noted in [52] that, since the utterances of children’s caretakers depend heavily on
external environmental events, such influences might introduce a random component
into naturally occurring texts. Whence comes the interest at all in non-computable
texts. As we shall see below in Sect. 1.1.5.2, for many important criteria of success,
learning power is nicely unaffected by whether we allow or disallow uncomputable
texts!

Children may be insensitive to some aspects of the order of data presentation. In
Sect. 1.1.5 several possibilities are considered, and some corresponding theoretical
results (for some learning criteria) will be presented.

First, though, in the next section (Sect. 1.1.3), the topic of constraints on successful
learning are considered.

1.1.3 Constraints on Learnability

Angluin [2] introduced the following Subset Principle for TxtEx-learning. It places
a severe constraint on the learnable.

Theorem 1.4 (Subset Principle [2, 17]) Suppose C ∈ {TxtFexb,TxtBc} and
M C-learns L.
Then (∃ finite S ⊆ L)(∀L ′ ⊂ L | S ⊆ L ′))[M does not C-identify L ′].
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N.B. The above Subset Principle and its depressing corollary just below (Corol-
lary1.5) hold even if M is not algorithmic! The proofs essentially depend on Baire
Category (or Banach-Mazur Games) fromTopology [51, 52] and not on algorithmic-
ity! This is possible only because M in general cannot infer data about L . Case and
Kötzing [26] studies which learning theory results depend only on topology, which
on algorithmicity.

Angluin connected the Subset Principle to the machine learning problem of over-
generalization. From the proof: M must overgeneralize on (some T s for) L ′, but it
does not overgeneralize on L itself.

See [41, 68] for discussion regarding the possible connection between this subset
principle and a more traditionally linguistically oriented one in [45].

Corollary 1.5 [37, 53] If L contains an infinite language together with all its finite
sublanguages, then L /∈ TxtBc.
Hence, for example, the class of regular languages /∈ TxtBc!

Definition 1.6 Consider the variant of TxtBc-learning called TxtBc∗-learning.
TxtBc∗-learning is just like TxtBc-learning except the final grammars or programs,
instead of each being perfectly correct, may each make finitely many mistakes.

Actually:

Remark 1.1 [53] While TxtBc∗ learners can learn more than TxtBc-learners, the
class of regular languages /∈ TxtBc∗!

In [17] there are variants of Theorems1.3 and 1.4 for criteria which allow a few
mistakes in final programs. In [5] there are variants of Theorem1.7 and Remark1.2
for criteria which allow a few mistakes in final programs. Success criteria allowing
a few mistakes in the final programs are also considered below in Sect. 1.2.2.

1.1.4 Characterizations and Pattern Languages

In this section presented are some characterization results (Sect. 1.1.4.1) and impor-
tant positive learnability results based on pattern languages (Sect. 1.1.4.2).

1.1.4.1 Characterizations

Program p taking two inputs i, x is a uniform decision procedure for a class U of
computably decidable languages iff

U = {Ui | (∀x)[p on input i, x decides whether or not x ∈ Ui ]}.

Such a U is called uniformly decidable. Important examples are all the Chom-
sky Hierarchy classes, Regular, …, Context-Sensitive [39], and, in the next section
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(Sect. 1.1.4.2), Angluin’s important class of Pattern Languages [1]. The following
important characterization of Angluin extends the Subset Principle for the cases of
uniformly decidable classes.

Theorem 1.7 (Angluin [2]) Suppose U = {Ui | i ∈ N} is uniformly decidable as
above. Then U ∈ TxtEx iff there is a computably enumerable sequence of enumer-
ating programs for finite sets S0, S1, . . . (tell tales) such that (∀i)[Si ⊆ Ui ∧ (∀ j |
Si ⊆ U j )[U j �⊂ Ui ]]. The output programs of a witnessing M can be decision pro-
cedures.

Remark 1.2 From [5], uniformly decidableU as just above is ∈ TxtBc iff the asso-
ciated tell tales S0, S1, . . . exist but do not have to be computably enumerable. In
this context, the output programs of a witnessing M cannot, in general, be decision
procedures.

Remark 1.3 Angluin [2] exhibited a uniformly decidable U with tell tales but with
no computably enumerable tell tales. Hence, from [5], herU is a uniformly decidable
class ∈ (TxtBc − TxtEx).

1.1.4.2 Pattern Languages

Next is an ostensive definition of Angluin’s important class of Pattern Languages.

Definition 1.8 (Angluin [1]) A pattern language is one generated by all and only
the positive length substitutions for variables (in upper case letter alphabet) of strings
(over a lower case letter alphabet) in a pattern, such as, for example, abXYcbbZXa.

Angluin [1] showed the class of pattern languages to beTxtEx-learnable, and through
further papers we have the following.

Theorem 1.9 [1, 63, 71] For each n ∈ N
+, the uniformly decidable class of unions

of n pattern languages ∈ TxtEx!

These classes are not rendered unlearnable by the severe constraint of Theorem1.4 as
are the classes in theChomskyHierarchy (Corollary1.5). This, in part, is because they
crosscut the classes in the Chomsky Hierarchy. Perhaps the (somewhat ill-defined)
class of natural languages is like that too. For example, most linguists consider each
natural language to be infinite.

Applications of unions of n pattern languages, ranging from learning in
molecular biology to more general machine learning, appear in, for example,
[3, 4, 11, 50, 61, 64].

1.1.5 Insensitivities to Presentation Order

In this section we first consider some possible child insensitivities to order of presen-
tation (Sect. 1.1.5.1); then corresponding formal results are presented (Sect. 1.1.5.2).
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1.1.5.1 Order Insensitivities’ Definitions

Children may be sensitive to the order or timing of data presentation (texts). First we
present two local and, then, two global (formal) insensitivities.

Definition 1.10

• M is partly set-driven [34, 35, 60] iff, on sequence u0, . . . , ut , it reacts only to the
set {u0, u1, . . . , ut } of utterances and the length t + 1 of the utterance sequence—
not to the order of the sequence. In effect, M reacts a little to timing (but not to
order) of utterances.

• M is set-driven [69] iff, when shown utterance sequence u0, u1, . . . , ut , it reacts
only to the corresponding set {u0, u1, . . . , ut }— not to the sequence’s order and
length.

• M is weakly b-ary order independent [17] iff, for each language L on which,
for some T for L , M converges in the limit to a finite set of grammars, there is,
corresponding to L , a finite set of grammars G of cardinality ≤ b such that M
converges to a subset of this same G for each T for L .

• M is b-ary order independent [17] iff M is weakly so, but, instead of converging
to a subset of G, it converges to exactly G. For b = 1, these two notions coincide
and are essentially from [8, 52].

1.1.5.2 Order Insensitivities’ Results

Results regarding (partly) set-driveness for TxtEx (the b = 1 case of TxtFexb) are
from [34, 35, 60]. For example, set-driveness strictly limits learning power for
TxtEx. That, for TxtEx, (weakly) 1-ary order independence is without loss of learn-
ing power is essentially from [8, 34, 35]. I found the b > 1 cases harder to prove
than the b = 1 case.

Theorem 1.11 [17] Any M can be algorithmically transformed into an M ′ so that
M ′ is both partly set-driven and weakly b-ary independent and M ′ TxtFexb-learns
all the languages M does (even if M only learns for computable texts).

As noted above in Sect. 1.1.2.2, [52] argues that, since the utterances of children’s
caretakers depend heavily on external environmental events, such influences might
introduce a random component into naturally occurring texts. This is whence comes
the interest at all in non-computable texts. The just above theorem and the results
below in this section (Sect. 1.1.5.2) imply that for the important criteria considered
in this section, learning power is nicely unaffected by whether texts are or are not
allowed to be uncomputable.

Remark 1.4 [17] The preceding theorem holds with partly set-driven replaced by
set-driven but with TxtFexb-identification restricted to only infinite languages.
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Theorem 1.12 [17] Any M can be algorithmically transformed into an M ′ so that
M ′ is b-ary order independent and M ′ TxtFexb-learns all the languages M does
(even if M only learns for computable texts).

It is not known (it’s hard to tease out experimentally) whether children exhibit any
of these insensitivities, but the formal results tell us something of how they affect
learning power. It has not been investigated how the results in this section would be
affected if complexity considerations were taken into account.

1.1.6 Empirical U-Shaped Learning

U-Shaped Learning follows the sequence Learn, Unlearn, Relearn. It occurs in child
development [10, 46, 66, 67], e.g., verb regularization and understanding of various
(Piaget-like) conservation principles, such as temperature and weight conservation
and interaction between object tracking and object permanence.

Here is an example of U-shaped learning from irregular English past tense verbs.
A child first uses spoke, the correct past tense of the irregular verb to speak. Then the
child ostensibly overregularizes, incorrectly using speaked. Lastly, the child returns
to using spoke. The major concern of the prior cognitive science literature on U-
shaped learning is in how one models U-shaped learning. For example, for language
learning, by general rules or tables of exceptions [10, 46, 54, 55]? With neural nets
[59] and statistical regularities or statistical irregularities?

My own concern regarding U-shaped learning is whether it is an unnecessary and
harmless accident of human evolution or whether U-shaped learning is advantageous
in that some classes of tasks can be learned in the U-shaped way, but not otherwise?

1.1.7 Formal U-Shaped Learning

In the interest of studying whether U shapes are necessary for full learning power,
it is mathematically useful to define alternatives to success criteria, including those
above but in which U shapes are forbidden on the way to success.

Definition 1.13

• Depicted just below is the I/Obehavior of learningmachine M receiving successive
text elements and outputting corresponding successive grammars.

g0, g1, . . . , gt , . . .
Out←− M

In←− T (0), T (1), . . . , T (t), . . . .
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NonUTxtEx
= TxtEx
= NonUTxtFexb

TxtFex2 TxtFex3 TxtFex∗

NonUTxtBc TxtBc

Fig. 1.2 Diagram of results

• Suppose C is a learning success criterion, for example, one ∈ {TxtFexb,TxtBc}.
Then, where the gis are from the first bullet of this definition,
L ∈NonUC ⇔ (∃M witnessing L ∈C)(∀L ∈L )(∀T for L)(∀i, j, k | i < j <

k)[Wgi = Wgk = L ⇒ Wg j = L]. Non-U-shaped learners of L never abandon
correct behaviors output on texts for L ∈ L and subsequently return to them.

1.1.8 Results/Question Regarding U-Shaped Learning

The results are presented first as a diagram (Sect. 1.1.8.1) and, then, as a verbal
summary of key points—with an important cognitive science question at the end
(Sect. 1.1.8.2).

1.1.8.1 Diagram of Some Results

The arrow−→ above denotes class inclusion. The transitive closure of the inclusions
in Fig. 1.2 below hold and no other inclusions hold [6, 12, 14, 15]. For example,
from Fig. 1.2, we haveTxtFex2 included inTxtFex3 and properly so—regarding the
latter, the transitive closure of the inclusions of Fig. 1.2 has no arrow from TxtFex3
to TxtFex2.

For example, from the above, there is someL ∈ (TxtFex3 − NonUTxtBc)! This
sameL then cannot be ∈ NonUTxtFex∗—else, it would, then, be in NonUTxtBc.
The proof regarding this L does employ an interplay between general rules and
(finite) sets of exceptions [12, 14]. Asmentioned above in Sect. 1.1.6, some cognitive
scientists, e.g., [10, 46, 54, 55], believe this interplay underpins human U-shaped
learning.

1.1.8.2 Main Results and a Question

In the present section we summarize key results from the previous section
(Sect. 1.1.8.1) and, at the end, pose and discuss a difficult question for cognitive
science and the evolution of human cognition.
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Remark 1.5

• Main results:

– From NonUTxtBc −→ TxtBc, U-shaped learning is needed for some class in
TxtBc.

– FromNonUTxtEx = TxtEx, U-shaped learning is not needed forTxtEx learn-
ing, i.e., for learning one successful grammar in the limit.

– FromNonUTxtFex∗ −→ TxtFex2, U-shaped learning is needed for some class
in TxtFex2 even if finitely many (∗) grammars are allowed in the limit but,
from TxtFex2 −→ NonUTxtBc, it is not needed if we allow infinitely many
grammars in the limit.

– From the reasoning after the previous section’s (Sect. 1.1.8.1’s) diagram, there
exists L ∈ (TxtFex3 − (NonUTxtFex∗ ∪ NonUTxtBc)); in particular,
U-shaped learning is needed for this L ∈ TxtFex3—even if allow infinitely
many grammars in the limit!

• Question: Does the class of tasks humans must learn to be competitive in the
genetic marketplace, like this latterL , necessitate U-shaped learning?
Of course we have not yet modeled human cognition and its evolution sufficiently
to answer this question. As pointed out in [12], on the formal modeling level,
the pattern emerges that, for parameterized, cognitively relevant learning criteria,
beyond very few initial parameter values, U shapes are necessary for full learning
power! This is seen in the results just above as well as in Sect. 1.2.1.3. This latter
section has, though, some important open questions very relevant to the emerging
pattern.

1.2 Complexity Considerations

This section concentrates on computational complexity issues. Considered are: large
database size and corresponding memory-limited learners (Sect. 1.2.1); unavoid-
able cases of complexity and information deficiencies of the programs learned
(Sect. 1.2.2); and the complexity of learner updates (Sect. 1.2.3). In the present section
a few, seemingly difficult, open questions are indicated. Some of them are impor-
tant for cognitive science (Sect. 1.2.1.3); one pertains to Turing machine complexity
(Sect. 1.2.3.6).

1.2.1 Hulking Databases and Memory-Limited Learners

The Database (DB) of utterances, u0, u1, . . . , ut−1, prior to time t , can, for large
t , become an Incredible Hulk (IH) unpleasant to handle and query. I think of this
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Fig. 1.3 The incredible hulk
(IH) (©2013 Marvel and
Subs)

Fig. 1.4 ≤k-bounded
example-memory model

gt
Out←− M In←− ut ∈ L

↓ ↑
M remembers ≤k elements (from time t −1)

{ui1
,ui2

,...,uik
} (and at t , can drop some ui j s and add ut )

⊆ {u0,u1, . . .,ut−1} ⊆ L;

Marvel Comics character (Fig. 1.3) as metaphorically representing the problem of
DBs that are too large.

Furthermore, humans (including children) may not remember, even subcon-
sciously, every utterance they’ve ever heard.

In Sects. 1.2.1.1 and 1.2.1.2 we begin to introduce some Memory-Limited criteria
of learning success to begin to deal with these too large DB problems.

Then Sect. 1.2.1.3 presents corresponding results. It indicates some results of
relevance to cognitive science—as well as important, cognitive science-relevant,
seemingly hard open questions.

1.2.1.1 One Kind of Memory-Limited Learning Criteria

The ≤ k-Bounded Example-Memory Model [22, 36, 52] is without access to the
complete IH DB and is depicted at time t below in Fig. 1.4.2 At time t , M reacts only
to: ut , gt−1 and its memory from time (t − 1) of ≤ k of the prior utterances from L .

We say M TxtBemk-learns L iff, for any text of all/only the utterances of L ,
at some time t , gt above in Fig. 1.4 is a grammar for L and gt = gt+1 = gt+2 =
gt+3 = . . . .

1.2.1.2 A Second Kind of Memory-Limited Learning Criteria

For The ≤ k-Queries Feedback Model [22] (k = 0, 1 cases: [44, 70]) the learning
machine M asks little per hypothesis update of the complete IH DB, and it is depicted
at time t below in Fig. 1.5. In this model, at time t , M reacts only to: ut , gt−1 and
the answers to only ≤ k queries it generates regarding membership in the eventually
large IH DB of the past inputs {u0, u1, . . . , ut−1} up through time (t − 1).

2In Fig. 1.4, for t = 0, M’smemory of prior data at time (t − 1) is empty; furthermore, in Fig. 1.4 and
elsewhere below, for t = 0, gt−1 can be taken to be a fixed grammar, e.g., for the empty language.
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Fig. 1.5 ≤k-queries
feedback model

gt
Out←− M In←− ut ∈ L

↓ ↑
≤k queries of IH DB

{u0 ,u1,...,ut−1}⊆ L;

M is said to TxtFbk-learn L iff, for any text of all/only the utterances of L , at
some time t , gt above is a grammar for L and gt = gt+1 = gt+2 = gt+3 = · · · .

For k = 0 the two models coincide and the resultant learning criterion is called
iterative or TxtIt-learning [69, 70].

1.2.1.3 Results About the Just Prior Two Models

Theorem 1.14 [22] In each model, one can learn more with strictly larger k.

Theorem 1.15 [22] For each k > 0, for each model, there are language classes
where that model is successful and the other is not!

For each k > 0, for each of the two models, here is a hard open problem: does
forbidding U shapes decrease learning power? For k = 0, the answer is no [28].

Even for k = 0, it is a hard open problem: does the case of adding the counter t
to M’s inputs ut , gt−1 affect whether U shapes are necessary?

Remark 1.6 It is known [25], for example, for each k ≥ 3, for the variant of
TxtBemk , where gt−1 is not available to M and where the memory of≤ k utterances
is replaced by memory of any one of k-objects (i.e., log2(k)-bits), that forbidding U
shapes decreases learnability.

For k = 1, 2 here, U shapes are irrelevant [13].

Theorem 1.16 [22] For each n > 0, the class of all unions of n pattern languages
∈ TxtIt!

1.2.2 Deficiencies of Programs Learned

Independently of other complexity issues is the problem of the reasonableness of
the programs eventually successfully found by a learner. This is explored in the
present section for the learning of programs for total characteristic/decision func-
tionsN → {0, 1} from complete data about their graphs. In prior sectionswe explored
the mathematically different vehicle of learning programs for generating formal lan-
guages from positive information only about those languages. For any total function,
once one has an enumeration of its graph, one can algorithmically generate all that is
and onlywhat is in the complement of its graph.We restrict our attention in the present
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section to data presentations of such functions f in the order: f (0), f (1), f (2), . . .—
since from any presentation order of the graph of f (i.e., {(x, y) | f (x) = y}) one
can algorithmically generate the presentation order f (0), f (1), f (2), . . . .

In Sects. 1.2.2.1–1.2.2.3, the basic background material is presented. Then, in
Sect. 1.2.2.4, results about inherent computational complexity deficiencies in pro-
grams learned are presented. Finally, in Sect. 1.2.2.5, some unexpected, inherent
informational deficiencies of programs learned are laid out.

1.2.2.1 Successful Learning on Complete Data Regarding Total
Functions

Suppose S ⊆ R0,1, the class of all (total) computable characteristic functions of
subsets of N . Defined just below are criteria of success analogs of TxtEx andTxtBc
— but regarding learning programs for characteristic functions instead of grammars
for languages.

Definition 1.17

• Depicted below is the I/O behavior of a learning machine M receiving successive
values of a function f and outputting corresponding successive programs. Some
later items in this definition refer to this depiction.

p0, p1, . . . , pt , . . .
Out←− M

In←− f (0), f (1), . . . , f (t), . . . .

• Suppose a ∈ N ∪ {∗}. a is for anomaly count. For a = ∗, a stands for finitely
many.3

• S ∈ Exa ⇔ (∃ suitably clever M)(∀ f ∈ S )

[M, fed f (0), f (1), . . . , outputs p0, p1, . . . ∧ (∃t)[pt = pt+1 = · · · ∧ pt com-
putes f —except at up to a inputs]].

• S ∈ Bca ⇔ (∃M)(∀ f ∈ S )

[M, fed f (0), f (1), . . . , outputs p0, p1, . . . ∧ (∃t)[pt , pt+1, . . . each computes
f —except at up to a inputs]].

1.2.2.2 Examples

Below are some important example classes together with some known results about
them which will help us understand the results in Sects. 1.2.2.4 and 1.2.2.5 on the
deficiencies of programs learned.

3Case and Smith [29, 30] motivate by anomalous dispersion from physical optics the presence of
a > 0 anomalies in “successful” final programs. We omit herein details about that.
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Remark 1.7

• For k ≥ 1, let Pk = the class all 0–1 valued functions computable by (multi-
tape) TMs in O(nk) time, with n = input length. Let P = ⋃

Pk , the class of
polynomial time computable characteristic functions.

• Let slowbe afixed slow-growingunbounded function∈ P1, e.g., ≤ Ackermann−1

[31]. LetQk = the class all {0, 1}-valued functions computable in O(nk · log(n) ·
slow(n)) time, again with n = input length. We have,

Pk ⊂ Qk
︸ ︷︷ ︸

Tightest known separation [38, 39]

⊂ Pk+1.

• P ∈ Ex0. Pk ∈ Ex0 too (with each output conjecture running in k-degree
poly time); CF , the class all characteristic functions of context-free languages,
∈ Ex0 [37].

• Ex0 ⊂ Ex1 ⊂ Ex2 ⊂ · · · ⊂ Ex∗ ⊂ Bc0 ⊂ Bc1 ⊂ · · · ⊂ Bc∗ [29]. Hence, more
anomalies tolerated in final successful programs entails strictly more learning
power.

• Harrington in [30]:R0,1 ∈ Bc∗.

1.2.2.3 Basic Notation

Next is some basic terminology important to the statements of results in Sects. 1.2.2.4
and 1.2.2.5.

Definition 1.18

• C of = { f ∈ R0,1 | (
∞∀ x)[ f (x) = 1]} (⊂ P1 and REG , the class all character-

istic functions of regular languages). As will be seen, C of is important as a nice
example of a particularly trivial, easily learnable class of (characteristic) functions.

• ϕTM
p = the partial computable function N → N computed by (multi-tape) Turing

machine program (number) p.
• ΦTM

p (x) = the runtime of Turing machine program (number) p on input x , if p
halts on x , and is undefined otherwise.

• ΦWS
p (x) = the tape work space used by Turing machine program (number) p on

input x , if p halts on x , and is undefined otherwise.
• f [m]= the sequence f (0), . . . , f (m − 1); form = 0, f [m] is the empty sequence.
• M( f [m]) = M’s output based on f [m]. For the results herein, we may and will
suppose without loss of generality that M( f [m]) is always defined.

• M( f ) denotes M’s final output program on input f , if any; else, it is undefined.
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1.2.2.4 Complexity Deficiencies of Programs Learned

First is a simple positive result which, in effect, is part of the third bullet in Remark1.7
in Sect. 1.2.2.2. This result will contrast nicely with the theorem just after it.

Proposition 1.19 [20]For each k ≥ 1,∃M witnessingPk ∈Ex0 such that (∀ f )(∀m)

[ΦTM
M( f [m])(x) ∈ O(|x |k)].

Theorem 1.20 ([20], tightens [65]) Suppose k ≥ 1 and that M witnesses either
Qk ∈ Ex∗ or Qk ∈ Bc0 (special case: M witnesses Qk ∈ Ex0).
Then: (∃ f ∈ C of)(∀k-degree polynomials p)

(
∞∀n)(

∞∀ x)[ΦTM
M( f [n])(x) > p(|x |)].

Idea: if one ups the generality of a learner M from Pk to Qk , then the run-times
of M’s successful outputs on some trivial f ∈ C of is worse than any preassigned
k-degree polynomial bound, a complexity deficiency.

Of course, since REG is defined in terms of finite automata [32, 39], no Work
Space is needed to compute the functions inREG (which includes the trivial func-
tions in C of), but:

Theorem 1.21 [20] For k ≥ 1 and M witnessing CF ∈ Ex∗ (special case: M wit-
nesses CF ∈ Ex0), (∃ f ∈ C of)(∃x)[ΦWS

M( f )(x) ≥ k].
Idea: learning CF instead of REG produces some final programs on some trivial
functions in C of which do require some work space, another complexity deficiency.

1.2.2.5 Information Deficiencies of Programs Learned

First is a positive result which will contrast nicely with the theorem just after it.

Theorem 1.22 [20] ∃M outputting only total poly-time conjectures and witnessing
both P ∈ Bc∗ and P1 ∈ Ex0 such that (∀ f ∈ P1)[ΦTM

M( f )(x) ∈ O(|x |)].
In the next theorem f.o. PA is the version of Peano Arithmetic expressed within first
order logic [48, 58]. PA is a well-known formal theory in which one can express and
prove all the theorems in an elementary number theory book.

For a sentence E expressible in PA, � E � is some natural translation of E into
the language of PA.

In the next theorem, the example

E = ϕTM
M( f [m]) is computable∗ in O(|x |k)time

contains what would, without explanation, be a mysterious ∗. This E is meant to
be an abbreviation of the clearer, but longer sentence: any total, finite variant of the
function computed by the TM-program output by M on f [m] runs in time O(nk),
where n = the length of this program’s input.
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Theorem 1.23 [20]
Suppose theory T is any true, computably axiomatized extension of f.o. PA (so, T is a
safe, algorithmic information extractor). Suppose k ≥ 1 and M witnessesQk ∈ Bc∗.

Then: (∃ f ∈ C of)(
∞∀m)[T � � � ϕTM

M( f [m]) is computable∗ in O(|x |k) time �].
It is particularly interesting to apply the preceding theorem (Theorem1.23) to the
case of a learner M from Theorem1.22 earlier: while the programs learned by this
M for functions in all of C of are perfectly correct and do have excellent, linear-time
run-times, some of these programs learned will be informationally deficient—since
we cannot prove in T from them even considerably weaker upper bounds on the
run-times of any total finite variants of the functions they compute!

1.2.3 Complexity of Learner Updates

This section begins with a general discussion of the important and well-investigated
subject of learner update complexity (Sect. 1.2.3.1). Then an automata-theory-based
paradigm is chosen for both illustration and since it may be new to the Grammatical
Inference community as well as interesting to it (Sects. 1.2.3.2–1.2.3.6).

1.2.3.1 Complexity-Restricted Updates of Learners Generally

There has been tremendous interest in the Grammatical Inference community, e.g.,
[33], in polynomial time updating of each learned output conjecture, where the
polynomials are typically in some measure of the size of data used to obtain the
conjecture.

For example, the Pattern Languages are polytime TxtIt-learnable [43]—but at
the interesting, apparently necessary cost of intermediate conjectures which do not
generate some of the data on which they are based!

Pitt [56] notes that it’s possible to cheat and always obtain (meaningless) polytime
updates: Suppose q is a polynomial, and M on finite data sequence σ delivers its
correspondingly conjectured program within time q(|σ |). Pitt notes M can put off
outputting conjectures based on σ until it has seen much larger data τ so that q(|τ |)
is enough time for M to work on σ as long as it needs. He notes that this delaying
trick is unfair—since it allows as much to be learned as in the case of no time bound
on the learner updates.

Finding mathematical conditions to guarantee no Pitt delaying tricks can be used
seems very difficult [24]. For a time I believed polytime TxtFbk-learning is fair—
until Frank Stephan provided me a counterexample. I currently believe polytime
TxtBemk-learning is reasonably fair—provided output conjectures are not padded
up too much to carry over extra information from one update to the next. Reasonably
fair such padding was employed for TxtIt-learning of some mildly context-sensitive
classes in [7]. Most published polytime update learning algorithms I’ve seen seem
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quite fair, e.g., the TxtEx-learning of somewhat different mildly context-sensitive
classes in [72] and, of course, the polytime TxtIt-learnability of the Pattern Lan-
guages mentioned above.

Next are presented, for example, some recent results about the use of learning
functionswhose graphs are regular (i.e., finite automata-acceptable). These are called
automatic learning functions and are defined more formally later in Sect. 1.2.3.3.

Perhaps this material will be new to the Grammatical Inference community and
of some interest to them. We believe finite automata are not smart enough to do Pitt
tricks.

1.2.3.2 Automatic Structures

The study of automatic structures (defined below) began with the Program of Khous-
sainov andNerode [42]: replace TMs by finite automata in computable model theory.

Below we provide some basic definitions regarding automatic structures which
will lead, for example, to Remark1.8 in Sect. 1.2.3.3 in which we are able to define
automatic learning function and present a few results.

Definition 1.24

• The automatic 1-ary relations are the regular (i.e., finite automata accepted) lan-
guages ⊆ Σ∗, for some finite (non-empty) alphabet Σ .

• For our next defining automatic binary relations R over a finite alphabet Υ (⊇ Σ),
we need be able to submit a pair (α, β) ∈ (Υ ∗ × Υ ∗) to a finite automaton.

• If we feed α and, subsequently, β, the finite automaton will have trouble remem-
bering much about α upon receiving β, so we use convolution to submit α and β

together—details next.
• Suppose �� is a “blank” symbol /∈ Υ . We provide next an ostensive definition of
conv(α, β).
Example: conv(ab, bba) = (a, b)(b, b)(��, a). Idea: these pairs are each new sin-
gle alphabet symbols to be sequentially read by a finite automaton.

• We say a binary relation R is automatic iff {conv(α, β) | R(α, β)} is regular—
over the alphabet ((Υ ∪ {��}) × (Υ ∪ {��})).
The concept obviously generalizes to k-ary relations, and we consider it to be so
generalized.

1.2.3.3 Automatic Classes and Functions

Remark 1.8

• L is said to be an automatic class iff each L ∈ L is a subset ofΣ∗, and, for some
regular index domain I and some automatic S ⊆ (I × Σ∗),
L = {Lα | α ∈ I }, where (the then regular) Lα = {x | (α, x) ∈ S}.
Idea: such a L is uniformly regular.
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• Automatic classes are the automatic analog of the uniformly decidable classes,
e.g., fromAngluin’s characterization theorem, Theorem1.7 fromSect. 1.1.4.1. The
analog of the index domain above for the uniformly decidable classes is just N.

• An automatic function M is an automatic, single-valued relation.
I.e., a function M is automatic iff the relation {(α, β) | M(α) = β} is automatic.

• In the later, learnability portion of this section, we are interested in modeling
learners as automatic and, also, as more general functions M . Although more
general functions can learn more, and

• Case et al. [21] notes there are significant automatic classes based on erasing
regular patterns which are learnable by mere automatic learners.4

1.2.3.4 TM Input/Output of Automatic Functions

A finite automaton accepting (the convolutions of) all/only the ordered pairs in the
graph of an automatic function M is not at all the same as computing the value of
M(x) from each x in domain(M). However:

Theorem 1.25 [23] Suppose M is an automatic function. Then there is a linear-time
bounded, one-tape, deterministic TM which computes M where each input x is given
on the tape starting from the marked left end and output M(x) starts from this same
left end.

This theorem has a strong converse as follows.

Theorem 1.26 [23]Suppose a linear-timebounded, one-tape, non-deterministicTM
computes M such that each input x is given on the tape starting from the marked
left end; on each non-deterministic path the output is M(x) or?, where at least one
path has output M(x); and outputs M(x) or? start from this same left end. Then M
is automatic. (Left end I/O is provably crucial.)

1.2.3.5 Relevant General Learnability Definitions

We are next interested in the learnability (general or otherwise) of automatic classes.
The next definition begins to explore how to handle this.

Definition 1.27

• As above, a text T for L ⊆ Σ∗ (in automatic class) L is a sequence of all and
only the elements of L .

• A learner employs output hypotheses hypt ∈ I (I , the corresponding index set)
and a sequence of long-term memories memt (each ∈ 
∗).

4Above, in Sect. 1.1.4.2, we defined Angluin’s pattern languages based on patterns, and there only
positive length substitutions are allowed. The provably hard to learn erasing pattern languages [57]
also allow empty substitutions. The regular ones [62] require that each variable in the associated
defining pattern be present only once.
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• A learner has initial long-term memory mem0 (and initial hypothesis hyp0).
Think of each t = 0, 1, . . . as a time/cycle. Then learner M : (T (t),memt ) �→
(hypt+1,memt+1).

• L is learnable by M : (∀L ∈ L )(∀T for L)(∃t)(∀t ′ > t)[hypt ′ = hypt ∧ hypt
is correct for L].

Remark 1.9

• With unrestricted memory and Ms TM computable, the preceding learnability cri-
terion (for automatic classes) is equivalent toTxtEx (butwith hypotheses restricted
to I ).

• Curiously: learnabilityof automatic classesdoesnot change even if the Ms canalso
be uncomputable, andAngluin’s Characterization can in this case omit computable
enumerability of tell tales.

1.2.3.6 Linear Time Learners Suffice!

We explore next how efficiently the general learning of automatic classes can be
done. First we introduce a relevant TM model.

Definition 1.28 Our (k + 1)-Tape TM Model:

• Tape 0 (base tape): At the beginning of cycle t , it contains conv(T (t),memt ) (with
|memt | ≤ longest text datum seen so far + a constant).
At end of cycle t , it contains conv(hypt+1,memt+1) (with |memt+1| ≤ longest text
datum seen so far + a constant). Marked left end I/O too.

• Additional Tapes 1, 2, . . . , k: normal work-tapes, with contents and head position
not modified during change of cycle.

• Each cycle of the machine runs in the linear-time in the length of the longest text
datum seen so far.

Theorem 1.29 [23] Every learnable automatic class has such a linear-time TM
learner employing only k = two additional work-tapes.
The two work tapes can be replaced by two stacks or, instead, one queue—a queue
with non-overtaking, one-way heads to operate each end!

Open problem: does only k = one additional work tape suffice?

1.3 Summary Including Open Problems

We briefly summarize what’s been done in the present chapter.
As noted above, the chapter is about Gold’s 1967model of child language learning

and selected highlights of the theory appearing since Gold’s 1967 paper. It is divided
into two major sections. The first concentrates on results that are independent of
computational complexity considerations; the second concentrates on relevant com-
plexity issues.
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In the first major section are treated: Gold’s Model; criteria of successful learning
(with hierarchy results); reasonableness and weaknesses of the general model; prov-
able severe constraints on learnability; related characterizations and the important
example of Angluin’s Pattern Languages; two local and two global formal insensi-
tivities of learning to order of presentation of data with corresponding formal results,
with no available conclusions about how these do or do not apply to human children;
and the cognitive science empirically observed phenomenon of U-shaped learning
with mathematically defined formal analogs, and corresponding interpreted formal
results that suggest the U shape may be necessary for full human learning power.
Also presented are some hard questions for the state of the art in empirical cog-
nitive science: do some humans, after successfully learning at least some natural
languages, vacillate between multiple grammars. Is U-shaped learning necessary for
those humans who succeed in the genetic marketplace?

In the secondmajor section on complexity considerations are treated: the problem
of learning based on infeasibly large amounts of data, and presented are two for-
mal models of data memory-limited learners, accompanied by corresponding formal
hierarchy results; surprising results showing that some slight increases in learning
generality inexorably lead to both complexity and information deficiencies in the
programs that are learned for some very simple objects to be learned, but with no
such Deficiencies appearing for the less general learning cases; and the important
feasibly computable learner updates where it is noted that sometimes the feasibility
of updates can be a cheat, and detailed results are given about both the use of finite
automata accepted learning functions (where it is ostensibly difficult to cheat) and
the learnability of uniformly finite automata accepted classes. Also presented are
some seemingly difficult open mathematical questions (the first two are of relevance
to cognitive science, the third to complexity theory): For each k > 0, for each of the
two data memory-limited models of Sect. 1.2.1, does forbidding U shapes decrease
learning power? For each k ≥ 0, for these two models, does the case of supplying
the counter t to M in addition to its inputs ut , gt−1 affect whether U shapes are
necessary? For Theorem1.29 in Sect. 1.2.3.6, does only k = 1 additional work tape
suffice?
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Chapter 2
Efficiency in the Identification in the Limit
Learning Paradigm

Rémi Eyraud, Jeffrey Heinz and Ryo Yoshinaka

Abstract The most widely used learning paradigm in Grammatical Inference was
introduced in 1967 and is known as identification in the limit. An important issue
that has been raised with respect to the original definition is the absence of efficiency
bounds. Nearly fifty years after its introduction, it remains an open problem how
to best incorporate a notion of efficiency and tractability into this framework. This
chapter surveys the different refinements that have been developed and studied, and
the challenges they face.Main results for each formalization, alongwith comparisons,
are provided.

2.1 Introduction

2.1.1 The Importance of Efficiency in Learning

Gold [24] introduced in the 1960s a definition of learning called identification in
the limit, which works as follows. An algorithm is fed with an infinite sequence of
data exemplifying a target language. When a new element is given to the algorithm,
it may output a hypothesis. The algorithm identifies the language in the limit if
for any possible sequence of data for this language, there exists a moment from
when the algorithm does not change its hypothesis, and this hypothesis is a correct
representation of the target language.When awhole class of languages is considered,
the algorithm identifies the class in the limit if it can identify all languages of the
class.
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The fact that the convergence is required to hold whatever the sequence of data
is what makes this paradigm adversarial [14]. This worst-case scenario principle
strengthens the value of any algorithmic idea that yields an identification in the limit
result for a class of languages [25].

However, Gold’s formulation can be of little help for practical purposes, when
one wants to study a learning idea with the aim of applying it to real-world data.
This is mainly due to the fact that no efficiency property is required and thus one can
assume infinite time and space. This is the reason why several refinements of Gold’s
model which add polynomial bounds to the requirements of the paradigm have been
developed. The purpose of this chapter is to comprehensively review the proposed
refinements and the challenges they face. Main results of each approach, along with
comparisons, are provided.

Insteadof augmenting the learning framework to incorporate a notionof efficiency,
one response to this state of affairs could be to utilize a different learning framework
altogether, preferably one which contains a built-in notion of efficiency, such as the
Probably Approximately Correct framework [43]. Section2.2 discusses some issues
with PAC-learning of formal languages, which makes this option less attractive than
it otherwise may appear at first.

Section2.3 studies the limitations of the initial identification in the limit definition
and previous attempts to overcome them. These include requirements based on the
running time of the studied algorithm. Efficiency requirements depending on the
incremental behavior of the algorithm, and a set-based refinement ofGold’s paradigm
are detailed in Sect. 2.4. Finally, Sect. 2.5 introduces two recent reformulations of the
paradigm.

2.1.2 Preliminary Definitions

An alphabet Σ is a finite non-empty set of symbols called letters. A string w over Σ

is a finite sequence w = a1a2 . . . an of letters. Let |w| denote the length of w. Given
a set of strings S, we denote |S| its cardinality and ‖S‖ its size, i.e. the sum of |S|
with the lengths of the strings S contains.1 In the following, letters will be indicated
by a, b, c, . . ., strings by u, v, . . . , z, and the empty string by λ. Let Σ∗ be the set of
all strings and Σ+ the set Σ∗ \ {λ}.

We assume a fixed but arbitrary total order < on the letters of Σ . As usual, we
extend < to Σ∗ by defining the hierarchical order [33], denoted by �, as follows:

∀w1,w2 ∈ Σ∗,w1 � w2 iff

⎧
⎨

⎩

|w1| < |w2| or
|w1| = |w2| and ∃u, v1, v2 ∈ Σ∗, ∃a1, a2 ∈ Σ

s.t. w1 = ua1v1,w2 = ua2v2 and a1 < a2.

1We define ‖S‖ = |S| + ∑
w∈S |w| so that ‖{a}‖ < ‖{λ, a}‖.
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� is a total strict order over Σ∗, and if Σ = {a, b} and a < b, then λ � a � b �
aa � ab � ba � bb � aaa � . . .

We extend this order to non-empty finite sets of strings: S1 � S2 iff ‖S1‖ < ‖S2‖
or ‖S1‖ = ‖S2‖ and ∃w ∈ S1 \ S2 such that ∀w′ ∈ S2 \ S1, w � w′. For instance
{a} � {λ, a} and {a, b} � {aaa}.

By a language L overΣ wemean any set L ⊆ Σ∗.Many classes of languageswere
investigated in the literature. In general, the definition of a class L relies on a class
R of abstract machines,2 here called representations, that characterize all and only
the languages of L. The relationship is given by the naming function L : R → L

such that: (1) ∀R ∈ R,L (R) ∈ L and (2) ∀L ∈ L, ∃R ∈ R such that L (R) = L .
Two representations R1 and R2 are equivalent iff L (R1) = L (R2).

Many different classes of representations have been studied in the literature. It is
beyond the scope of this chapter to exhaustively list them. However, we introduce the
following definition, which is a generalization of some well-known classes of gram-
mars. We will mainly focus on the classes of representations whose characterization
can be done in this context.

Definition 2.1 (Generative grammar) G = 〈Σ, N , P, I 〉 where Σ is the alphabet
of the language, N is a set of variables usually called non-terminals, P ⊂ (N ∪
Σ)+ × (N ∪ Σ)∗ is the set of generative (production) rules, I is the finite set of
axioms, which are elements of (Σ ∪ N )∗.

A generative rule (α, β) is usually denoted α → β. It allows the rewriting of
elements of (Σ ∪ N )∗ into elements of (Σ ∪ N )∗. Given γ ∈ (Σ ∪ N )∗ we say that
a production rule α → β applied to γ if it exists η, δ ∈ (Σ ∪ N )∗ such that γ = ηαδ.
The result of applying this rule on γ is ηβδ. We write γ ⇒ ηβδ. ⇒∗ is the reflexive
and transitive closure of ⇒, and ⇒∗

P is the reflexive and transitive closure of ⇒
restricted to the production rules in P .

We define the size of a generative grammar to be the size of the set of its rules,
plus the size of its set of axioms: ‖G‖ = ‖I‖ + |P| + ∑

α→β∈P(|αβ| + 1).

Definition 2.2 (Generated language) Let G = 〈Σ, N , P, I 〉 be a generative gram-
mar. L (G) = {w ∈ Σ∗ : ∃α ∈ I s.t. α ⇒∗

P w}.
Example 2.1 The usual classes of the Chomsky hierarchy are classes of generative
grammars. Regular grammars correspond to the restriction P ⊂ N × (ΣN ∪ {λ}),
or P ⊂ N × (NΣ ∪ {λ}) by symmetry. The context-free grammars are the ones
where P ⊂ N × (Σ ∪ N )∗ while the context-sensitive grammars are the ones such
that if α → β ∈ P then ∃(γ, δ, η) ∈ (Σ ∪ N )∗, A ∈ N : α = δAη and β = δγ η. If
no restrictions are imposed on the rules of the grammar, then the resulting class of
representations corresponds to that of the unrestricted grammars. All of these classes
were formerly defined with a set of axioms reduced to one element of N [11].

2This is not strictly necessary: for instance, the substitutable languages [13] have no grammatical
characterization.
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Example 2.2 String Rewriting Systems (SRS) [9] are generative devices where N =
∅. A rule corresponds to an element of Σ∗ rewritten into an element of Σ∗ and the
set of axioms is made of elements of Σ∗. The language represented by an SRS is the
set of strings that can be rewritten using the rules from an element of I .

Some classes of representations that have been studied in grammatical inference
are not covered by Definition 2.1. This is the case for instance for multiple context-
free grammars [39], patterns [2], tree [17] and graph [37] grammars, etc. While it is
not difficult to generalize the definition in order to cover these classes, we conduct
our discussion in the context of the above definition for concreteness and due to its
familiarity.

2.2 PAC Learning and Other Learning Paradigms

2.2.1 PAC Paradigm

The best known paradigm in machine learning is certainly the Probably Approxi-
mately Correct (PAC) criterium [43] and its refinements [29, 30]. Unlike the iden-
tification in the limit paradigm, the PAC framework comes with built-in efficiency
requirements so PAC-learners are efficient in important senses. A natural question
then is: Why modify the identification in the limit paradigm when the PAC frame-
work can be utilized instead? We argue that the PAC paradigm is not well-adapted
to learning formal languages, as even very simple and well-characterized classes of
languages are not PAC-learnable [4]. Several theoretical reasons explain this inade-
quacy, and each of them relates to aspects of the formal grammars used to describe
formal languages.

One of the main reasons is that the VC-dimension of even the simplest models of
language representations, namely the finite state automata, is not bounded [28] which
make them not learnable in the PAC sense [8]. Indeed, not even the class of finite
languages has finite VC-dimension. This is closely related to the fact that the learning
principle of empirical risk minimization [44], inherent in most approaches studied
under the PAC framework, is of little use when formal languages are considered.
Indeed, the number of representations consistent to a given set of data of a target
language, that is to say representations that correctly explain all the data, is often
infinite. It is then useless to reduce the hypothesis space to the ones that minimize
the error on a given set of data.

Similarly, consider the fact that the PAC paradigm does not suffer from the main
drawback of identification in the limit of being asymptotic. Unlike PAC learning,
in identification in the limit, there is no guarantee provided about the quality of the
hypothesis before the (exact) convergence happens. But this drawback seems to be
inherent to the kind of representations of the learning targets considered. Even if two
generative grammars have all but one of their rules in common, the languages of
these two grammars can be as far apart as one wishes. This problem is inherent to the
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nature of formal languages and their grammatical representations. This ‘Gestalt-like’
property is unavoidable in the formalization of learning: the whole grammar is more
than the sum of its rules. In our view, this mainly justifies the use of identification in
the limit in the context of grammar learning.

Another reason is that a representation of a formal language is not only a classifier,
that is to say a device that defines what is in the language and what is not, but it also
gives structural information about the elements of the language.

Also, there are concerns that aremore independent of the representations. Another
particularity of language learning is that a lot of algorithmsuse only positive examples
of a target concept, while the usual machine learning framework relies on labeled
data.

Finally, the PACparadigm is particularly pertinent in the case of statisticalmodels,
where the probability ofmaking amistake can be evaluated using the hypothesis. This
particular attribute of the PAC paradigm is of less value when non-stochastic model
learning is of interest. But even while grammatical inference is concerned with learn-
ing probability distributions over strings, the power of the considered models makes
the paradigm inadequate: there are for instance infinitely many structurally different
probabilistic context-free grammars that define the same set of distributions [26].

To be complete, some positive learning results exist in restrictive versions of the
PAC-paradigm, mostly in the case where the target distribution is known to be drawn
using a given class of stochastic grammars, and with additional restrictions that allow
us to distinguish the different parts of the target from any sample (see [15, 36, 41]
for examples).

2.2.2 Other Learning Paradigms

There are other less known learning frameworks which eschew identifiability in the
limit in order to incorporate notions of computational efficiency. The aim here is not
to give an exhaustive list of such paradigms: we just want to give pointers to the main
ones.

The first that is worth mentioning is known as query learning in which the
learner interacts with an oracle (see Chap.3, Learning Grammars and Automata
with Queries, de la Higuera). A wide range of types of queries have been investi-
gated, frommembership queries [31] where the oracle answers whether given strings
belong to the language or not, to equivalence queries [3] that allow the learner to
know if its current hypothesis is the target one, including correction queries [6] that
correspond to membership queries where the oracle returns a ‘close’ element of the
language if the submitted string is not part of the target (different definitions of string
distance can be considered). In this approach, efficiency is measured by the number
of queries the algorithm needs to converge to a hypothesis exactly equivalent to the
target. Another learning paradigm derived from the former one requires access to a
finite set of examples of the language and a membership oracle [16, 34].

http://dx.doi.org/10.1007/978-3-662-48395-4_3
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Although these paradigms can be of practical interest (see the work on model
checking for instance [27]), and though they can also be motivated by the study of
first language acquisition [14], the need for an oracle clearly reduces the practical
value of an algorithm investigated in this context.

Another learning paradigm that can be used to study algorithms in the context of
grammatical inference is the one of stochastic finite learning [51]. In this framework,
an algorithm is said to have learned a language if, from any infinite sequence of
data of this language drawn from a probability distribution, it stops after having
seen a finite number of elements and its hypothesis at that point is correct with
high probability. The expected number of examples that the learner needs before
convergence forms a measure of the algorithm’s efficiency. This approach is similar
in its aims to identification in the limit, but it can also be seen as a probably exactly
correct paradigm. It is thus a tempting way to fill the gap between PAC-learning
and identification in the limit. However, results in this paradigm are hard to obtain
and even simple classes of languages are known to be not learnable. Many of the
arguments of the previous section on the PAC-paradigm work can be used for this
formalization. On the other hand, there are positive results for some classes of pattern
languages [52].

We believe the reasons above, or some combination thereof, have led many schol-
ars to seek a way to incorporate efficiency into the identification in the limit paradigm
(as opposed to abandoning the paradigm altogether).

2.3 The Limits of Gold’s Paradigm

2.3.1 Identification in the Limit

We now provide a detailed formalization of the identification in the limit paradigm.
A presentation P of a language L is an infinite sequence of data corresponding

to L . We note P[i] the i th element of P and Pi the set of the i th first elements of
P . If the data contains only elements of L then the presentation is called a text of
language L . A text T is a complete presentation of L iff for all w ∈ L there exists
n ∈ N such that T [n] = w. If data in the presentation are instead pairs (w, l), such
that w ∈ Σ∗ and l is a Boolean valued true if w ∈ L and false otherwise, then
the presentation is called an informant. An informant I is a complete presentation
of L iff for all w ∈ Σ∗ there exists n ∈ N such that I [n] = (w, l). In the rest of the
chapter, we will only consider complete presentations.

A learning algorithm in this context, sometimes called an inductive inference
machine, is an algorithm that takes as input larger and larger initial segments of a
presentation and outputs, after each input, a hypothesis from a pre-specified hypoth-
esis space.
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Definition 2.3 (Identification in the limit [24]) A classL of languages is identifiable
in the limit (IIL) from text (resp. from informant) if and only if there exists a learning
algorithmA such that for all languages L ∈ L, for all text T (resp. informant I ) of L ,

• there exists an index N such that ∀n ≥ N ,A(Tn) = A(TN ) [resp.A(In) = A(IN )]
• L (A(TN )) = L [resp. L (A(IN )) = L]

Angluin [5] characterizes exactly those classes of languages that are identifiable
in the limit from text. The central theorem in this work refers to the presence of
‘telltale’ finite subsets for each language in the class. Later, in Sect. 2.4.2, we will
see an efficiency bound in terms of ‘characteristic’ finite subsets of languages (these
are not exactly the same as Angluin’s telltale subsets).

Gold [24] established three important results in this paradigm. The first is that
the class of all finite languages is identifiable in the limit from text. The second
is that no superfinite class of languages can be identified in the limit from text.
Despite what the name may evoke, a class of languages is superfinite if it contains
all finite languages and at least one infinite language (the class contains thus an
infinite number of languages). The third is that any computably enumerable class
whose uniform membership problem is decidable3 is identifiable in the limit from
an informant.

The proof of the second result relies on the fact that given a presentation of
an infinite language L , there does not exist any index N from which a learner can
distinguish thefinite languagemadeof the strings seen so far and the infinite language.
If the algorithm converges to L on a complete text T for L at N then there is a text for
the finite language containing all and only the strings in TN for which the algorithm
will also converge to L . Hence the algorithm fails to identify this finite language in
the limit.

On the other hand, the learning algorithm for the third result (learning any com-
putably enumerable class with informant) is really naive: it enumerates the elements
of the class until it finds the first one consistent with the information so far. In other
words, the algorithm always conjectures the first language in the enumeration that
accepts all positive examples (labeled true) and rejects all negative ones (labeled
false). If it is the correct hypothesis, the algorithm has converged. If not, then there
will be an example later in the presentation that will be inconsistent with the current
hypothesis and consequently the algorithm will move along down the enumeration
to the next consistent language.

This third result, though of positive nature, is one of themain reasons that the iden-
tification in the limit paradigm needs to be refined to include a notion of tractability.
‘Learning by enumeration’ is clearly not tractable and thus is of little use. While it
meets the letter of the definition of learning, it violates our intuitions of what learning
should be like. At first glance, a natural way to exclude such learning ‘solutions’ is
to add a tractability requirement to the definition in some way. However, as we now
discuss, this is more difficult than it may initially appear.

3The uniform membership problem is the one where given a string and a representation one needs
to determine whether the string belongs to the represented language.
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For more on variations of Gold’s original paradigm see Chap. 1, Gold-Style
Learning Theory (Case).

2.3.2 Polynomial Time

Given the limitations of IIL shown in the previous section, designing requirements
to add to the paradigm is needed to strengthen the validity of learning ideas. An
intuitive way to deal with that is to constrain the time allowed for the algorithm to
make its computations.

Limiting the overall running time appears inappropriate since languagesmay have
infinite cardinality and concomitantly there is no bound on the length of the strings.
Thus for any polynomial function p, infinite language L , and number n, there is a
presentation P for L such that the first element of P is larger than p(n). Stochastic
finite learning [51] would be of great interest to readers concerned with this problem
since it replaces this worst-case scenario with a learning framework that focuses
on expected convergence (where presentations are drawn according to probability
distributions).

Amore consensual requirement is update-time efficiency. An algorithm is update-
time efficient if it outputs a new hypothesis in time polynomial in the size of the data
seen so far. This is reasonable as far it goes. Unfortunately, this requirement turns
out to be no real restriction at all.

In a seminal paper [35], Leonard Pitt shows that update-efficiency is not sufficient
to prove the validity of a learning approach. Indeed, using a method now known as
Pitt’s trick, he proves that any algorithm that can identify a class in the limit can be
transformed into an algorithm that identifies the class in the limit and is update-time
efficient.

Informally the proof relies on the fact that, given a presentation P , if a learner
converges to a correct hypothesis on the initial sequence Pi , a variant can delay the
computation of any interesting hypothesis until having seen Pj ( j > i) such that the
computation time of the initial learner on Pi is polynomial in ‖Pj‖. This variant
of the learning algorithm then has an efficient update-time while also fulfilling the
conditions of identification in the limit. Pitt’s trick essentially trades time for data so
that enforcing tractability in this way has no impact. The set of classes of languages
identifiable in the limit without the update-time requirement is exactly the same as
the set of classes of languages identifiable in the limit with it.

Pitt’s trick reveals that algorithms may be able to efficiently output hypotheses,
but convergence can only occur after non-reasonable amounts of data have been
provided. This lessens the practical utility of the theoretical results when real data is
taken into account.

Onemaywonder if one can prohibit Pitt’s trick, which ignores the great part of the
given data, by forcing a learner to respect all the given data. Case and Kötzing [10]
show that apparently reasonable properties to force a learner to take all the examples
into account are not strong enough to prevent Pitt’s trick actually when learning from
text.

http://dx.doi.org/10.1007/978-3-662-48395-4_1
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2.3.3 Identification of a Language and the Size of a Target
Representation

Despite the problem described in the previous section, the requirement to have poly-
nomial update-time is still desirable. Efforts have been made to enrich the paradigm
further such that Pitt-style delaying tricks are not possible.

Most additional requirements are based on the samemethod: they link the behavior
of the algorithm to the size of a representation of the target language. Indeed, though
the identification of the target language is required, a polynomial bound cannot
be established with respect to the size of the language since non-trivial classes of
languages often contain an infinite number of infinite languages. A representation
of finite size of the target language is thus needed. Choosing a target representation
also focuses the attention on the hypothesis space of the algorithm, which is relevant
from a machine learning standpoint.

However, the choice of representations is not central at all in Gold’s learning
paradigm as a learner’s hypotheses can converge to an arbitrary one among equivalent
representations for the correct language. The apparent consequence is that the choice
of a representation class for a target language class does matter when taking the
representation size into account.

But this duality between the identification of a language and an efficiency bound
on the size of a target representation has consequences that need to be handled
carefully. For example, it is well known that a nondeterministic finite automaton can
be exponentially smaller than the smallest deterministic finite automaton accepting
the same language. A learning algorithm that behaves efficiently with respect to the
size of deterministic finite automata may not be admitted as an efficient algorithm in
terms of the size of nondeterministic finite automata. The reader is referred to Chap.
4,On the Inference of Finite State Automata from Positive and Negative Data (López
and García), for details on this question.

In general, an inefficient learner can be seen as an efficient learner by choosing
a class of redundant representations. Therefore, it is important to make clear under
which class of representations the efficiency of a learner is discussed.

In principle, the choice of a representation class is arbitrary and seems hard to
justify, but in practice there exist orthodox or natural representations for target lan-
guage classes. For example, minimal deterministic (canonical) finite state automata
are widely used to represent regular languages. Since they are uniquely determined
based on an algebraic property of regular languages, there is no room to inflate the
representation size.

An intuitive way to deal with the duality exposed above would be to define a
paradigm where identification is on a target representation and not on a language.
The formalization of this idea is known as strong identification [12]. However, this
approach onlymakes sense for classes of representationswhere each language admits
a unique representative: otherwise, it is impossible for any algorithm to distinguish
between the different grammars generating the same language, and thus the identi-

http://dx.doi.org/10.1007/978-3-662-48395-4_4
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fication cannot succeed. The use of canonical finite-state automata in the work on
regular languages [33] is an example of such an approach.

2.4 First Refinements

2.4.1 Mind Changes and Implicit Errors of Prediction

Oneway to formalize the notionof convergencewith a reasonable amount of datawith
respect to the size of the representation is to measure the number ofmind changes [1,
7]. Another way is to measure the number of implicit prediction errors [35].

A mind change occurs when a learning algorithm replaces its current hypothesis
with another. Then one adds to the identification in the limit paradigm the requirement
that the number of mind changes made before convergence must be bounded by a
polynomial function in the size of the representation.

However, Pitt [35] presents another trick where the algorithm postpones changing
its mind solely to meet the requirements of the mind change bound. Consequently,
the algorithm maintains untenable hypotheses (ones inconsistent with the data) until
a sufficient amount data is seen so that a mind change can occur without violating
the polynomial bound on the number of mind changes.

Measuring implicit predictions errors can get around this trick when learning
from an informant. When the learner’s current hypothesis is inconsistent with a new
datum, it is called an implicit error of prediction. Then one adds to the identification
in the limit paradigm the requirement that the number of times the current hypothesis
is in contradiction with the new example has to be polynomial in the size of the target
representation. More formally:

Definition 2.4 (Identification in polynomial number of implicit errors)

• Given a presentation P , an algorithm A makes an implicit error of prediction at
step n if the language of the hypothesized target A(Pn) is in contradiction with
P[n + 1].

• A class G of representations is polynomial-time identifiable in the limit in Pitt’s
sense if G admits a polynomial-time learning algorithm A such that for any pre-
sentation of L (G) for G ∈ G, A makes implicit errors of prediction at most
polynomial in ‖G‖ [35].

• A class G of representations is polynomial-time identifiable in the limit in Yoko-
mori’s sense if G admits a polynomial-time learning algorithm A such that for
any presentation P ofL (G) for G ∈ G, for any natural number n, the number of
implicit errors of prediction made by A on the nth first examples is bounded by a
polynomial in m · ‖G‖, where m = max{|P[1]|, . . . , |P[n]|} [46].

Notice that Yokomori’s formulation is a relaxed version of that of Pitt’s.
However, if the presentation is a text, there is yet another unwanted Pitt-style

delaying trick: the algorithm can output a representation for Σ∗, which will never
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be in contradiction with the data. It can then wait to see enough examples before
returning a pertinent hypothesis.

On the other hand, if the presentation is an informant, then the additional require-
ment limiting the number of implicit prediction errors is significant because there is
no language like Σ∗ which is consistent with both the positive and negative exam-
ples. Consequently, it can be shown that not all classes of languages identifiable
in the limit in polynomial update time are identifiable in the limit in Pitt’s sense
or in Yokomori’s sense: in the former paradigm, an algorithm working in polyno-
mial time can change its hypothesis an exponential number of times before conver-
gence, while in the latter paradigms this is not allowed and cannot be circumvented
as in the case of texts. Note this is different from the mind-change requirement,
where the delaying trick there works in both kinds of presentations: in that case,
the algorithm can choose to not update its hypothesis when a new example contra-
dicts it.

Another property of these requirements is that they are mainly designed for incre-
mental algorithms. Indeed, these paradigms give a lot of importance to the sequence
of data, in particular as the parts of two sequences that contain the same elements
in a different order might not correspond to the same number of implicit errors (or
mind changes). This forces the complexity analysis to consider particularly malev-
olent sequences of data. However, in many practical frameworks, for instance in
Natural Language Processing or Bio-informatics, we are interested in algorithms
that work from a finite set of data, where the order of presentation is irrelevant. From
this perspective, the (inadvertent) focus on an incremental process appears to be a
drawback.

The main positive learning results using this approach concerns the class of
very simple languages [47, 49]: an algorithm has been designed that fulfills the
requirements of Yokomori’s formulation of the paradigm. This class of languages
is incomparable with the class of regular languages and contains context-free
languages.

2.4.2 Characteristic Sample

The most widely used definition of data efficiency relies on the notion of character-
istic sample. The characteristic sample is a finite set of data from a language L that
ensures the correct convergence of the algorithm on any presentation of L as soon
as it is included in the data seen so far. For some, these characteristic samples evoke
Angluin’s telltale subsets [5], also of finite size, which were central to characterizing
the nature of classes of formal languages identifiable from text.
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In this learning paradigm [18], it is required that the algorithm needs a charac-
teristic sample whose size4 is polynomial in the size of the target representation.
Formally:

Definition 2.5 (Identification in the limit in polynomial time and data) A class of
languages L is identifiable in the limit in polynomial time and data from a class R
of representations iff there exist a learning algorithm A and a polynomial p() such
that for any language L ∈ L, for any representation R ∈ R of L:

• A has a polynomial update-time,
• there exists a set of dataCS, called a characteristic sample, of size at most p(‖R‖)
such that for any presentation P of L , if CS ⊆ Pn then A(Pn) is equivalent to R,
and for all N > n, A(PN ) = A(Pn).

The idea underlying the paradigm is that if the data available to the algorithm so far
does not contain enough information to distinguish the target from other potential
targets then it is impossible to learn. This complexity requirement diverges from
update-time requirements above in that incremental learning algorithms no longer
sit at the core of the paradigm. Indeed, limiting the complexity in terms of the
characteristic sample makes possible the set-based definition that we are developing
below.

Definition 2.6 Let L be a class of languages represented by some class R of repre-
sentations.

1. A sample S for a language L ∈ L is a finite set of data consistent with L . A
positive sample for L is made only of elements of L . A positive and negative
sample for L is made of pairs (w, l), where l is a boolean such that l = true if
w ∈ L and l = false otherwise. The size of a sample S is the sum of the size of
all its elements plus |S|.

2. An (L,R)-learning algorithm A is a program that takes as input a sample for a
language L ∈ L and outputs a representation from R.

We can now formalize the notion of characteristic sample in the set-based
approach.

Definition 2.7 (Characteristic sample) Given an (L,R)-learning algorithm A, we
say that a sampleCS is a characteristic sample of a language L ∈ L if for all samples
S such that CS ⊆ S, A returns a representation R such that L (R) = L .

Hopefully it is evident that the class of representations is especially relevant in
this paradigm.

The learning paradigm can now be defined as follows.

4The size of a sample is the sum of the length of its elements: it has been shown [35] that its
cardinality is not a relevant feature when efficiency is considered, as it creates a risk of collusion:
one can delay an exponential computation on a given sample of data and wait for a sufficient number
of examples to run the computation on the former sample in polynomial time in the size of the latter.
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Definition 2.8 (Set-based identification in polynomial time and data [18]) A class
L of languages is identifiable in polynomial time and data (IPTD) from a class R
of representations if and only if there exists an (L,R)-learning algorithm A and two
polynomials p() and q() such that:

1. Given a sample S of size m for L ∈ L, A returns a consistent hypothesis H ∈ R

in O(p(m)) time.
2. For each representation R of size k of a language L ∈ L, there exists a character-

istic sample of L of size at most O(q(k)).

Notice that thefirst item is a reformulationof thepolynomial update time requirement,
which is now in terms of the size of the sample. The second item corresponds to the
additional requirement that the amount of data needed to converge is computationally
reasonable. By forcing the algorithm to converge to a correct hypothesis whenever
a characteristic sample of reasonable size has been seen, this paradigm tackles the
risk of collusion by forbidding Pitt’s delaying tricks.

The main reason this unusual way to formalize identification is chosen is because
by formalizing learning when a set of data is available it corresponds to the most
common framework when real-world data is considered.

Furthermore, the set-based approach encompasses the incremental approach since
any algorithm studied in the latter can easily be cast into a set-based one. In other
words, any algorithm that learns a class of languages in the sense of Definition 2.5
also learns the class in the sense of Definition 2.8.

However, it is not easy to cast set-based learners into incremental ones. Naively
one may believe that for any algorithm A satisfying Definition 2.8, there exists an
incremental algorithm which satisfies Definition 2.5. The idea would be, for each
new data, to run A on the set of data seen so far. However, as shown in Appendix,
this simple approach will not always work. There is an algorithm for learning the
substitutable context-free languages which satisfies Definition 2.8 for which this
incremental construction fails. In Appendix, it is shown that unless this incremental
algorithm A is conservative,5 A will not converge to a single grammar. However, if
A is conservative then there is a presentation at a point at which the characteristic
set is seen but A has not yet converged to the correct grammar. It remains to be seen
whether for every set-based learner satisfying Definition 2.8, there is an incremental
learner satisfying Definition 2.5.

Main Results Many learning algorithms have been studied in the context of IPTD.
The main positive results concerns approaches that used positive and negative exam-
ples as input. In this context, regular languages are learnable [18] using deterministic
finite state automata, and so are deterministic even linear languages as the question
of inferring these grammars can be reduced to that of inferring deterministic finite
state automata [40]. Another related class of languages that have been positively
investigated in this context is the deterministic linear one [20]. The algorithms is fed
with positive and negative examples and outputs a deterministic linear grammar.

5An incremental learner is conservative if it changes its current hypothesis H if and only if the next
datum is inconsistent with H .
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Context-free languages that are representable by delimited, almost non-overlap-
ping string rewriting systems are also IPTD-learnable [22] from positive and negative
examples. Comparisons of this class with the previous ones are difficult since they
are not defined using the same kind of representation.

The whole class of context-free languages is learnable in the IPTD sense [19, 38]
from structural positive examples, that is to say derivation trees with no information
on the internal nodes. Given a positive integer k, the target class of representation is
that of k-reversible context-free grammars [32] and the elements of the sample have
to correspond to derivation trees of these grammars.

LimitationsWe have already discussed one drawback to measuring the complexity
of the learning problem in terms of the size of the representation. It can be unclear
what counts as a ‘reasonable’ representation. Consequently, it may be possible to
artificially inflate representations to allow learning. This is another kind of trick
since the algorithm would be efficient according to the letter of the definition but not
its spirit.

Identification in polynomial time and data also suffers from the opposite kind
of drawback. As we will see, for non-regular languages, there can be exponentially
compact representations of languages. For such cases, IPTD-learning appears to
give the wrong results: classes which intuitively ought to count as tractably learnable
(because they return a very compact representation of the target language) can in
fact be shown to not be IPTD-learnable. As IPTD was developed and studied in the
context of learning regular languages, neither of these problems arose since minimal
deterministic finite-state automata are considered to be reasonable representations
of regular languages.

Example 2.3 illustrates the problem for the IPTD-learning of non-regular lan-
guages. It proves that context-free languages cannot be learned under this criterion
using context-free grammars. Indeed, the characteristic sample of any grammar of
the series has to contain the only string in the language, but the length of this string
is exponentially greater than the size of the grammar.

Example 2.3 [18] let G1 = ∪n>0{Gn} be the class of context-free grammars such
that for any n, the unique axiom of Gn is N0 and its production rules are Ni →
Ni+1Ni+1, for 0 ≤ i < n, and Nn → a. The language ofGn is the singleton L(Gn) =
{a2n }.

The reason why this example is not learnable does not come from the hardness
of the languages: they are made of only one string. But the use of any class of
representations that contains G1 is not identifiable in the limit.

It seems that in this case the problem comes from the definition of what learning
means, that is to say from the learning criterion, rather than the properties of the
language. From an information theory point of view, it is obviously interesting to
have an algorithm that is able to find a model explaining the data it is fed with that is
exponentially smaller than the data. This is actually a desired property in many fields
of machine learning (see [23] for instance). Hence, the trouble here comes from the
learning paradigm.
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2.5 Recent Refinements

In this section, we review two contemporary approaches that develop a definition of
efficient learning which can be applied to non-regular classes of languages. They are
both refinements of the identification with polynomial time and data.

2.5.1 Structurally Complete Set

We first introduce the following definition:

Definition 2.9 (Structurally complete set) Given a generative grammar G, a struc-
turally complete set (SCS) for G is a set of data SC such that for each produc-
tion α → β, there exists an element x ∈ SC , an element γ ∈ I and two elements
η, τ ∈ (Σ ∪ N )∗ such that γ ⇒∗ ηατ ⇒ ηβτ ⇒∗ x . The smallest structurally com-
plete set (SSCS) S for a grammar G is the sample such that for all SCS S′ for G,
S � S′.

A notion of structurally complete sample has already been defined in the context of
regular language learning [21]. However, this former definition relied on a particular
representation, namely the finite state automaton, and it considered only the case
of positive and negative examples. Definition 2.9 is more general as it does not
depend on a particular representation and does not consider a particular type of data.
Definition 2.9 is a generalization of the notion of representative sample [42] that has
been introduced in the context of learning from membership queries and a sample of
positive examples of a subclass of context-free languages named simple deterministic
languages.

Definition 2.10 (Polynomial structurally complete identification) A class L of lan-
guages is identifiable in polynomial time and structurally complete data (IPTscD)
for a class R of representations if and only if there exists an algorithm A and two
polynomials p() and q() such that:

1. Given a sample S for L ∈ L of size m, A returns a consistent hypothesis H ∈ R

in O(p(m)) time.
2. For each representation R of a language L ∈ L, there exists a characteristic

sampleCSwhose size is inO(q(k)), where k is the size of the smallest structurally
complete set for R.

Notice that in the case where negative data is also available, the size of the charac-
teristic sample has to be polynomial in the size of a SCSwhich contains only positive
examples. This implies that the amount of negative evidence has to be polynomially
related to that of the positive evidence.
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This paradigm shifts the perspective considerably: the efficiency does not rely
anymore directly on the size of the representation but instead on the kind of strings it
can generate. This move is anticipated, and pursued in part, in the approach by Ryo
Yoshinaka [48], discussed in Sect. 2.5.2.

Comparison with IPTD Consider the class of languages L2 = ⋃
n∈N {{ai : 0 ≤

i ≤ 2n}}. This class is identifiable in polynomial time and data from positive data
only using the class of representations G2 = ⋃

n∈N {〈{a}, {S, A}, {S → A2n , A →
a|λ}, {S}〉}. Indeed, given a target language, the simple algorithm that returns the
only grammar consistent with a sample admits the characteristic sample {a2n } which
is linear in the size of the target. However, the smallest structurally complete set of
any target grammar is {λ, a} which is of size 2. As the size of the smallest SCS is
constant and the class of languages infinite, L2 is not identifiable in polynomial time
and structurally complete data.

On the other hand, let us consider the class of languages of Example 2.3: L1 =⋃
n∈N {{a2n }} and its class of representationsG1 = ⋃

n∈N {〈{a}, Nn, Pn, {N0}〉}, with
Pn = {Nn → a} ∪0≤i<n {Ni → Ni+1Ni+1}. Given n, the characteristic sample is
{a2n } which is also the smallest structurally complete set for the target grammar.
However, this sample is not polynomial in the size of the target grammar. Therefore
L1 is identifiable in the limit in polynomial time and structurally complete data using
G1 but not in polynomial time and data.

This shows that these two paradigms are thus non-comparable. However, most
non-trivial language classes studied under the former paradigm are identifiable in
polynomial time and structurally complete data. This is the case for instance for the
regular languages from positive and negative examples and for all sub-regular classes
studied in the context of grammatical inference: there is a linear link between the
size of a regular grammar and what can be derived from any of its non-terminals.

2.5.2 Thickness

In a recent paper [48], Ryo Yoshinaka introduced the identification from a charac-
teristic sample whose size is a polynomial in the size of the target grammar and of a
measure called the thickness of the grammar.

Definition 2.11 (Thickness) Let G = 〈Σ, N , P, I 〉 be a generative grammar. The
thickness of G is τG = max{|ω(α)| : ∃β, α → β ∈ P} where ω(α) = min�{w ∈
Σ∗ : α ⇒∗

G w}.
Informally, the thickness is the length of the longest string in the set of the smallest
strings that can be generated from a left hand-side of a grammar rule.

This definition is an extended version of the one that was first introduced for
context-free grammars in the context of model complexity [45]. Notice that it has
nothing to do with the usual notion of thickness in learning theory.
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Definition 2.12 (Polynomial thick identification [48]) A class L of languages is
identifiable in polynomial time and thick data (IPTtD) for a classR of representations
if and only if there exists an algorithmA and two polynomials p() and q() such that:

1. Given a sample S for L ∈ L of size m, A returns a consistent hypothesis H ∈ R

in O(p(m)) time.
2. For each representation R of a language L ∈ L of size k, there exists a charac-

teristic sample CS whose size is in O(q(k, τR)).

IPTtD is clearly a refinement of IPTD since it simply adds the thickness as a
parameter of the paradigm. It is however a fundamental move since it links the
efficiency of the learning not only on the target representation but also to the kind
of strings the grammar produces. This shift in perspective is a way to indirectly take
into account the length of the strings in the language in the learning criterium. On
the other hand, since it does not go so far as to remove the requirement that the
characteristic sample be polynomial in the size of the grammar, it is still susceptible
to inflation tricks.

Learnable Classes Since the size of the representation is used in Definition 2.12, it
is clear that every class of languages that is IPTD is also IPTtD.

However, the converse is not true. Consider the grammars of Example 2.3: The
thickness of any Gn ∈ G1 is 2n .

More interesting examples are the classes of languages that have been investigated
in the context of what is called distributional learning (see Chap. 6, Distributed
hearing of contest-free and multiple contest free Grammars, Clark and Yoshinaka).
For instance, a context-free language is substitutable if whenever two substrings
appear once in the same context, then they always appear in the same context in the
language [13].

There exists a polynomial-time algorithm that identifies the class of context-free
substitutable languages from positive examples only, in the sense of Definition 2.8,
but the exhibited characteristic sample might be of size exponential in the size of
the target representation (this is the case for the languages of Example 2.3, which
are substitutable). Thus, this algorithm is not IPTD. On the other hand, it is easy to
see that this characteristic sample is polynomial in the size and the thickness of the
target grammar, so the algorithm is IPTtD. This result can be extended to the more
complex classes that have been studied in the context of distributional learning from
positive examples only (see for instance [48, 50]).

2.5.3 Comparison of the Two Refinements

Since the IPTD and IPTscD classes are incomparable and every IPTD class is IPTtD,
clearly there is an IPTtD class which is not IPTscD (this is the case for instance of
the class L2 introduced at the end of Sect. 2.5.1). However, one can show that every

http://dx.doi.org/10.1007/978-3-662-48395-4_6
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IPTtD class of unambiguousCFGs is IPTscD.Also, it is easy to see that every IPTscD
class of context-free languages is IPTtD using the same class of representations.

The two refinements of polynomial identification share a basic idea – to measure
the complexity by the size of the simplest strings that a grammar generates, rather
than the description size of it. Indeed one can show that the size of the smallest SCS
of G is polynomially bounded by τG‖G‖. That is, if a language class is IPTscD for
a class of context-free grammars, then it is also IPTtD.

However, the converse is not necessarily true. The following discussion illustrates
a particularly difficult problem for IPTscD learning: ambiguity. Let Gn consists of
the following rules:

Pn = { A → a, A → b, B → b } ∪ { S → X1 . . . Xn | Xi ∈ {A, B} } ,

which generates L(Gn) = {a, b}n . Then the set {an, bn}, whose size is 2n + 2, is
the smallest SCS for Gn . On the other hand, ‖Gn‖ ∈ O(n2n) and τGn = n. When
learning the class L = ⋃

n∈N Ln where Ln = { L ⊆ {a, b}n } \ {∅} with a positive
sample, the only possible characteristic sample of L(Gn) is L(Gn) itself for any
learning algorithm. Therefore, L is not IPTscD for any representation class. One can
easily see that L is IPTtD for a reasonable class of grammars where Gn is the unique
grammar for {a, b}n .

The grammar Gn is very redundant and highly ambiguous—there are 2n ways to
derive bn . If the redundancy is removed from Gn by deleting the nonterminal B and
the rules involving B, the size of the grammar is now O(n) and it is not IPTtD any
more. In fact, one can show that τG‖G‖ is polynomially bounded by the size of the
smallest SCS when only unambiguous context-free grammars are considered.

2.6 Conclusion

The purpose of this chapter was to address the problem of efficiently learning formal
languages and grammars. We argued that the PAC framework is not the best suited
one even though its efficiency requirements are well-designed. On the other hand, we
argued in favor of identification in the limit paradigms provided they are adequately
modified to include efficiency requirements. This survey showed doing so is more
challenging than anyonemay have anticipated.We discussed the challenges that have
been encountered by different attempts. For regular languages, de la Higuera’s [18]
solution is satisfactory due to the canonical representation given by the smallest
deterministic acceptors. For non-regular languages, challenges remain.We discussed
two promising paths forward to address efficient learning in the identification in the
limit paradigm in the realm of non-regular languages. One was based on the notion
of a structurally complete sample, and the other was based on the ‘thickness’ of
strings generated by production rules. Both are measuring efficiency at least partly
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in terms of the size of particular strings generated by grammars. We believe further
developments along these lines will help shape future directions in grammatical
inference.

Appendix

Here we present an example that shows that a learning result in a set-based approach
(that of IPTtD) may not yield to a learning result in the incremental approach.

A characteristic sample has been exhibited for a set-based polynomial-time learn-
ing algorithm6 for the class of substitutable context-free languages [13]. The size of
this characteristic sample is polynomial in the size of the target grammar and its
thickness [48]. From any superset of this set, the algorithm returns a representation
that generates the target language. Therefore, one can state that the algorithm learns
the class of substitutable context-free languages in a set-based approach.

A particularity of this algorithm is that from two different supersets of the char-
acteristic sample, it may returns two different equivalent grammars, and the number
of such pairs of samples is infinite (this is due to the infinite number of congruence
classes that a context-free language defines). Consider the incremental version of the
algorithm that computes a new grammar for every new example. It therefore does
not fit the conditions of identification in the limit since there does not exist a moment
after which the algorithm always returns the same hypothesis, though there exists a
point after which the generated language will always be the target one.7

An intuitive solution is then to make the algorithm conservative: the incremental
version of the algorithm has to change its hypothesis only if the new example is not
recognized. However, this is not working as is shown with the following example.

Consider the language a({b, c}{b, c})∗, which is substitutable. It is also context-
free as it can begenerated by the grammarwhose rules are S → a|SBB and B → b|c,
with S being the only axiom.

As defined in the previously cited papers, the characteristic sample is the following
set: CS = {lur ∈ Σ∗ : ∃N → α, (l, r) = C(A) and u = ω(α)}, where C(A) is the
smallest context in which the non-terminal A can appear in a derivation, and ω(α)

is the smallest element of Σ∗ that can be derived from α in the grammar.
If we assume a < b < c and (ab, λ) < (a, b), the characteristic sample is then

CS = {a, abb, abc}.
Suppose the learner gets examples a, abb, abbbc in this order. As the letter c is

new, the conjecture has to be updated at this point. The new conjecture is then the
string rewriting system {a → abb, a → abc, b → bbc}witha being the only axiom.

6Notice that the algorithm was originally presented in an incremental paradigm. However, its study
was (mostly) done in a set-based framework and, as is shown in this appendix, the proofs are valid
only in this context.
7This is known as behaviorally correct identification in the limit.
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It generates every sentence in the characteristic sample.8 However the hypothesis is
not correct since for example acc is in the target language but not in the current one.
Therefore, if the next example is the missing string of the characteristic sample, abc,
the algorithmwill not change its hypothesis: though all elements of the characteristic
sample are available, the current hypothesis is not correct. Once an element of the
language that is not generated by the hypothesis is seen, the hypothesis will be
updated using a set containing a characteristic sample and thus the new conjecture
will correspond to a correct representation of the language.
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Chapter 3
Learning Grammars and Automata
with Queries

Colin de la Higuera

Abstract When learning languages or grammars, an attractive alternative to using
a large corpus is to learn by interacting with the environment. This can allow us to
deal with situations where data is scarce or expensive, but testing or experimenting is
possible. The situation, which arises in a number of fields, is formalised in a setting
called active learning or query learning. By controlling better the information to
which one has access, this setting provides us with a better understanding of the
hardness of learning tasks. But the setting also allows us to solve practical learning
situations, for which new algorithms are needed.

3.1 Introduction

Grammatical inference deals with the question of learning grammatical models, such
as automata, grammars or transducers, given information about a language [32]. The
most general setting is that of learning from examples over which the learner has
no say, often allowing us to reformulate the learning problem as a combinatorial
question: find the smallest automaton such that some condition is met. An alter-
native introduced by Angluin is to allow the learning algorithm to have access to
its environment, and question it about the language for which a grammar is sought
[29, 44, 50].

Query learning [5] can be described as a gamewhere the learner can ask questions
(queries) to an Oracle (teacher) about the target language. The game ends when the
learner guesses the target. Of course, the learning results strongly depend on the sort
of queries that the learner is allowed to make.
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If grammatical inference concerns the learning of grammars for strings, but also,
trees and graphs, below we will only consider string languages, and point in the
conclusion to further resources where more complex types are used.

Typically, the formalism involves the presence of a learner (he) and an Oracle
(she). There has to be an agreement on the type of queries one can make. Some
typical queries are:

• Membership queries: the learner presents a string to the Oracle and receives as
answer the label, i.e., a Boolean indicating if the string belongs or not to the
language.

• Strong equivalence queries: the learner presents a machine or a grammar and
receives as answer TRUE (whenever the machine is equivalent to the target) or a
counterexample which is a string misclassified by the hypothesis.

• Weak equivalence queries: the learner presents a machine and receives as answer
TRUE or FALSE.

• Correction queries: the learner presents an example and receives as answer TRUE
or a close element from the target language (‘close’ implies that a topology is
defined).

There are a number of ways of describing or understanding the Oracle. She can be
probabilistic (and randomly draw a permissible answer), follow a worst-case policy
(in which case, the worst-possible legal answer will be returned), helpful (and then
the Oracle may be seen as a teacher). Settings can be described where the Oracle
may make noisy answers [43].

The type of Oracle one uses will entirely depend on the type of learning situation
one has to model; but in all cases the task is to learn a grammatical representation of
a language, while querying the Oracle.

A number of negative results have been described in the literature, used to prove
that some class of languages/grammars could not be efficiently learned by using
queries of one type or another. Deterministic finite automata (DFA) were thoroughly
investigated in this setting: as negative results, it was proved that they could not be
learned from just a polynomial number of membership queries [4] nor from just a
polynomial number of strong equivalence queries [7].

On the other hand, algorithm LSTAR is able to learn DFA from a polynomial
number of strong equivalence queries and membership queries [6].

Correction queries offer new possibilities [12, 13, 46]. The idea behind these
queries is that the learner produces an example, submits it to the Oracle and obtains
either a positive answer or a correction of the suggested example. There can be
various types of corrections: some obey language-theoretic considerations, and some
are intended to fit with real-life applications.

One may argue that the query learning setting is purely formal and ill-adapted to
practical situations.When consideringmost of the early papers in the field this would
be true: the papers were mostly published in theoretical conferences and journals,
and no mention of applications seemed necessary. Furthermore with more and more
data available why rely on interactive learning?
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On the other hand, the fact of being able to choose what data needs labelling,
during the actual learning process, offers many algorithmic advantages and justifies
the current renewed interest in these techniques.

Indeed, active learning is used nowadays to check a learnt model. A typical exam-
ple is an online translation system, which allows the user to undo a proposed trans-
lation: in this case, the query is the suggested translation and the Oracle is the end
user.

The mathematical definitions are given in Sect. 3.2. In Sect. 3.3 we detail some
applications in which these questions are interesting and have found use. In Sect. 3.4
the learning model is mathematically scrutinised: we present many types of queries
and identify paradigms in which they can be used, Sects. 3.4.3 and 3.4.4 deal with
identification in the limit and PAC learning. Negative results are recalled in Sect. 3.5:
these are important in order to understand that being allowed to query does not
suddenly open all the doors. Positive results and applications depend heavily on
algorithm LSTAR; this algorithm is described and analysed in Sect. 3.6, and some of
the corresponding implementation issues are discussed in Sect. 3.6.4. Extensions of
LSTAR and alternative active learning results and challenges are surveyed (briefly)
in Sect. 3.7, with an up-to-date presentation of the state of the art, specially following
the Zulu competition held in 2010 (Sect. 3.7.1).

3.2 Definitions and Notations

N is the set of positive or null integers; Q is the set of all rational numbers; [n] =
{1, . . . , n} (and for n = 0, [0] = ∅).

An alphabet Σ is a finite nonempty set of symbols called letters. A string w =
a1 . . . an is any finite sequence of letters. We write λ for the empty string and |w|
for the length of w. Let Σ� denote the set of all strings over Σ . We say that u is
a subsequence of v, denoted u � v, if u = a1 . . . an and there exist u0, . . . , un ∈ Σ�

such that v = u0a1u1 . . . anun. We suppose there is a predefined alphabetical order
over the letters, denoted by ≤lex; we introduce the hierarchical order: u � v if |u| <

|v| or (u = v and u ≤lex v).
A language is any subset L ⊆ Σ�. Let IN denote the set of non-negative integers.

For all k ∈ IN, let Σ≤k = {w ∈ Σ� : |w| ≤ k} and Σ>k = {w ∈ Σ� : |w| > k}. We
define A ⊕ B = (A \ B) ∪ (B \ A), where A \ B = {x ∈ Σ� : x ∈ A ∧ x /∈ B}.

A grammar is a machine that allows us to generate, recognize or define strings.
Grammatical inference aims at learning the languages of a fixed class L repre-

sented by the grammars of a class G. L and G are related by a naming function
L : G → L that is total (∀G ∈ G,L(G) ∈ L) and surjective (∀L ∈ L, ∃G ∈ G such
that L(G) = L). When considering a learning task, we will denote by T the target
grammar and H the hypothesis. In each case the corresponding language is L(T)

(or L(H)).
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For any string w ∈ Σ� and language L ∈ L, we shall write �L(w) = 1 if w ∈ L.
If w /∈ L, �L(w) = 0. The same notation will be used with grammars instead of
languages, i.e., �G(w) = �L(G)(w)

Concerning the grammars, they may be understood as any piece of information
allowing a given parser to recognise the strings. ‖G‖ will denote the size of the
grammar G (e.g., the number of states in the case of DFA, for a fixed alphabet).
Moreover, given a set X of strings, we will write |X| for the cardinality of X and ‖X‖
for the sum of the lengths of the strings in X.

A deterministic finite automaton (DFA) is a 5-tuple A = 〈Σ,Q, q0,F, δ〉 such
that Q is a set of states, q0 ∈ Q is an initial state, F ⊆ Q is a set of final states and
δ : Q × Σ → Q is a transition function. Every DFA can be completed with one sink
state such that δ is a total function. As usual, δ is extended to Σ�. The language
recognised by A is L(A) = {w ∈ Σ� : δ(q0,w) ∈ F}. The size of A is |Q|. We will
writeDFA(Σ) for the class of all DFA over the alphabet Σ . The class of all DFA
of size at most n is denoted byDFAn(Σ).

The edit distance d(w,w′) is the minimum number of primitive edit operations
needed to transformw intow′ [47]. The operation is either (1) a deletion:w = uav and
w′ = uv , or (2) an insertion:w = uv andw′ = uav, or (3) a substitution:w = uav and
w′ = ubv, where u, v ∈ Σ�, a, b ∈ Σ and a �= b. For example, d(abaa,aab) = 2
sinceabaa −→ aaa −→ aab and the rewriting ofabaa intoaab cannot be achieved
with less than 2 steps. d(w,w′) can be computed in O (|w| · |w′|) time by dynamic
programming [59].

The edit distance is a metric, so topological balls over Σ can be introduced. The
ball of centre o ∈ Σ� and radius r ∈ IN, denoted Br(o), is the set of all strings whose
distance is at most r from o: Br(o) = {w ∈ Σ� : d(o,w) ≤ r}. The size of a ball is
therefore |o| + log r.

For example, if Σ = {a,b}, then B1(ba) = {a,b,aa,ba,bb,aba,baa,bab,

bba} and Br(λ) = Σ≤r for all r ∈ IN. We will write BALL(Σ) for the family
of all the balls and BALLn(Σ) for the family of all balls of size at most n.

3.3 Motivations and Applications

A number of typical situations in which Oracle learning makes sense are described in
[30]. In most cases, algorithm LSTAR, or one of its variants, has been used. LSTAR
has been designed to learn DFA using equivalence and membership queries. The
earliest task addressed by LSTAR-inspired algorithms was that of map building in
robotics: the (simplified) map is a graph and the outputs in each state are what the
robot may encounter in a state. A particularity here is that the robot cannot be reset:
the learning algorithm is to learn from just one very long string and all its prefixes
[35, 52]. Another issue is that if the graph is not strongly connected, the robot may
not even be able to explore all the graph and will therefore only learn part of the
language/map.
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A task somehow related is that of discovering the rational strategy followed by
an adversary. The setting is that of a game played by two players. One of these
follows a strategy described by a finite state machine. In order to beat this player,
the algorithm should play against him, introducing (with a cost!) the moves that
allow him to learn this strategy. This line was investigated in papers related to agent
technologies [22, 23].

A task on which grammatical inference is proving to be particularly useful is that
of wrapper induction: the idea is to build expressions (typically XPath) allowing
us to find particular types of information in webpages sharing a similar structure.
Since webpages will be encoded in HTML or XML, learning tree automata is a good
approach (see Chap. 7, Learning Tree Languages, Björklund and Fernau). Further-
more the role of the Oracle is played by the human user [20, 21]. The system will
interrogate the (human) user who will mark webpages. The marking will be used to
learn a tree automaton (or transducer).

In different tasks linked with checking if the specifications of a system or a piece
of hardware are met, the item to be checked is used as an Oracle. Queries are made
in order to build a model of the item, and then the learnt model can be checked
against the specifications. Learning test sets [18] and testing hardware [40] are other
activities where there is an unsuspected Oracle: the actual electronic device we are
testing can be physically tested, by entering a sequence. The device will then be able
to answer a membership query. Note that in that setting equivalence queries will be
usually simulated by sampling [16, 18, 51].

The World Wide Web can also be interpreted as an Oracle. The knowledge it
contains is huge and cannot be sampled. It also may be inexact and can be queried
in a number of ways. Interrogating the web in order to pick the useful information
for learning is becoming an important task.

Interactive learning is becoming an interesting approach: the user is asked to
correct a solution proposed by the computer, in this way the user plays the role of
the Oracle.

One may also consider active learning in order to deal with concepts that have
been learnt but may not be intelligible. Consider for instance neural networks [37]: an
alternative approach to learning from sequences is to train recurrent neural networks
[3]. But once these are learnt, we may choose to interpret these and one way to do
this is to use the black box/neural network as an Oracle that can be interrogated. In
some way, what is going to happen is that we are going to attempt to translate the
neural network into an automaton.

3.4 Query Learning Models

In this section we detail the different mathematical elements we need: the Oracle,
the queries and the learning paradigms.

http://dx.doi.org/10.1007/978-3-662-48395-4_7
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3.4.1 The Oracle

The active learning paradigm is based on the existence of an Oracle which can be
seen in principle as a device that

• knows the language and has to answer correctly,
• can only answer to queries from a given set of queries.

AnOracle (she) is generally supposed to be fair: she can answer any specific query
of a predefined type. She can even answer queries that a concrete machine would
not be able to cope with and therefore might even solve undecidable questions. The
ability of the Oracle is determined by the learning setting.

In some cases the Oracle may have various possible answers. In this case she
should be allowed to give any admissible answer. As our goal when studying Oracle
learning is to consider worst case scenarios, then we will always have to suppose
the Oracle is giving us the least informative of all possible answers.

3.4.2 The Different Types of Queries

In Fig. 3.1 we give a running example to illustrate the different sorts of queries we
will present. We will suppose this DFA is the target. There are 3 states, two of which
are final accepting states (q0 and q2, denoted by a double circle) and one is rejecting
(q1, denoted by a thick grey line).

3.4.2.1 Sampling Queries

The first type of queries one can use to learn is sampling queries: the learner just
asks the Oracle for a random example. The Oracle then has to randomly draw a
string from a distribution (fixed but usually unknown) over all possible strings. Let
D denote this distribution.

Thequery of an example or a counterexamplewill be denoted EXD ()or EX()when
the distribution is clear. When the Oracle is only queried for a positive example, we
will write POS-EX(). And when the Oracle is only queried for strings of length≤ m,
we will write EX(Σ≤m) and POS-EX(Σ≤m) respectively. Formally, the Oracle will
then return a string drawn from D , or D(L(H)), or D(Σ≤m), or D(L(H) ∩ Σ≤m),

Fig. 3.1 A target automaton
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respectively, where D(L) is the restriction of D to the strings of L: PrD(L)(x) =
PrD(x)/PrD(L) if x ∈ L, 0 otherwise. PrD(L)(x) is not defined if L = ∅.
Example 3.1 Suppose that D is defined as follows: ∀n > 0, PrD(anbn) = 1

2n and
PrD(x) = 0 for all the other strings. Then, for the running example (aabb, 1) will
be drawn with probability 1

4 when using EXD (), but aabb will be the answer in 1
2

of the cases to POS-EX(), and will always be the answer to POS-EX(Σ≤5).

A specific sampling query is made by submitting a pattern: the Oracle draws
a string that matches some chosen pattern sampled according to the distribution D.
Specific sampling queries are intended to fit the idea that the user can ask for examples
matching some pattern he is interested in. We will denote such a query by EX(Π ),
where Π is a pattern, typically a regular expression.

For the running example, we may want to use EX(), which could return (aa, 1)
or (ab, 0), POS-EX() which could return aa or NEG-EX() whose result could be
ab. A specific sampling queries could be EX(Σ3) (asking for a string of length 3) or
EX(a∗) which would ask for a string, in the language, containing only occurrences
of symbol a.

3.4.2.2 Membership Queries

Themost studied queries are calledmembership queries. The learner presents a string
to the Oracle and gets back the label of this string (�T (x)). The Oracle is therefore
playing the role of the characteristic function of the language. A membership query
is made by proposing a string to the Oracle who answers TRUE if the string belongs
to the language and FALSE if not. We will denote this formally by:

MQ : Σ� → {TRUE,FALSE}

In the case of the target represented in Fig. 3.1, MQ(ba) returns TRUE.

3.4.2.3 Equivalence Queries

The idea behind the equivalence queries is that the learner can somehow build a
representation of its hypothesis and submit it to the Oracle. We distinguish weak
equivalence queries in which the Oracle just answers TRUE or FALSE from strong
equivalence queries in which the Oracle will return a counterexample if the answer
is FALSE.

Formally, a weak equivalence queries is denoted by WEQ. A weak equivalence
query is made by proposing a grammar H to the Oracle. The Oracle answers TRUE
if the grammar is equivalent to the target and FALSE if not:

WEQ : G → {TRUE,FALSE}
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Fig. 3.2 A hypothesis
automaton H

A strong equivalence queries (EQ) is made by proposing a grammar (or an automa-
ton) H to the Oracle. The Oracle answers TRUE if the grammar is equivalent to the
target and returns a string in the symmetrical difference between the target and L(H)

if not:

EQ : G → {TRUE} ∪ Σ�

In the case of the target represented in Fig. 3.1, WEQ(H) (for H represented in
Fig. 3.2) returns FALSE whereas the answer to EQ(H) might be counterexample
abb. But the counterexample could be any string of the type abn with n > 1.

In principle theOracle is not computationally limited; in the case ofmore complex
classes of grammars or automata, the Oracle may actually be solving an NP-hard
or even undecidable equivalence problem in order to answer the query.

3.4.2.4 Subset Queries

A subset query (SSQ) is made by proposing a grammar (or an automaton) H to the
Oracle. The Oracle answers TRUE if L(H) is a subset of the target language and
returns a string from L(H) that is not in the target language if not:

SSQ : G → {TRUE} ∪ Σ�

In the case of the target represented in Fig. 3.1, SSQ(H) (forH represented in Fig. 3.2)
returns counterexample bba (but other counterexamples would have been possible,
including bb1000000a or any valid arbitrarily long string).

Definition of superset queries is obtained in a similar—but opposite—manner.

3.4.2.5 Presentation Queries

A presentation of a language is an enumeration of all strings in Σ�, with a label
indicating if a string belongs or not to L(T) (this is an informed presentation) or an
enumeration of all strings in L(T) (this is a text presentation). A presentation query
(PQ) is made by submitting an integer i: the Oracle then returns f (i), the ith element
of the presentation.
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In a presentation there can be repetitions. If the presentation is a text presentation
of the empty language, the Oracle just returns some special value #.

The presentation has to be fair (sometimes this is called complete): in a text
presentation of language L, given any string w in L there exists at least one integer
i such that f (i) = w; in an informed presentation, given any string w in Σ�, there
exists at least one integer i such that f (i) = (w, �L(w)).

A possible informed presentation of L(T) is (λ, 1), (ab, 0), (ab, 0), (bb, 1),
(a, 1)…Apossible text presentation isa,aaa,bb... In terms of notations, this would
lead in the first case to PQ(0) = (λ, 1), PQ(1) = (ab, 0),…, and in the second (text)
case to PQ(0) = a, PQ(1) = aaa…

Note that for a learner to use presentation queries, somehow the Oracle has to be
able to select a specific presentation, and is supposed to stick to it.

3.4.2.6 Correction Queries

Correction queries (CQ) were introduced in [15] and studied since [13, 46, 56].
With the correction queries based on the edit distance [13] (CQEDIT), the learner

submits a string w and the Oracle answers TRUE if w ∈ L, and any correction z ∈ L
at minimum edit distance of w otherwise.

With the corrections based on the shortest suffix (CQSUFFIX) [14], what is returned
is a string wz in L(T) where z is the shortest possible string in length-lex order. If no
correction allows us to be in the language, the Oracle just returns some value #.

A comparison of the power of these different types of correction queries can be
found in [56].

Following with the example, CQSUFFIX(bba) may receive as an answer bbaa,
whereas for CQEDIT(bba) the answer will be any string in L at edit distance one, i.e.
any string from set {ba, bb, aba, baa, baba, bbab}.

3.4.2.7 Probabilistic Queries

If the target is a PFA or a probabilistic context-free grammar, one may want to to
use probabilistic queries. With these, the learner submits a string and receives from
the Oracle the probability of this string. In [34] the authors suggest to use specific
sampling queries (see Sect. 3.4.2.1) to learn PFA: only a specific zone is sampled.

3.4.2.8 Translation Queries

Vilar [58] introduced translation queries in order to learn transducers. With these,
an input string is submitted to the Oracle who returns the translation of this string.
When learning transducers, these translation queries play the role that membership
queries play with automata.
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3.4.2.9 Combinations of Queries

In most cases, various types of queries are allowed to be used at the same time. We
denote by QUER the types of queries that one may use for a specific task. A typi-
cal combination is QUER = {EQ,MQ} which is called MAT (Minimally adequate
teacher, named by Angluin this way to emphasize the fact that with this particular
combination DFA are learnable, whereas they are not with less).

3.4.3 Query Learnability

The query learning process supposes an interaction between the learner and the
Oracle. Moreover, at some point, the learner is supposed to halt and return a solution.
Ideally, the hypothesis is always correct (identification). Sometime, it may only be
(probably) approximately correct (PAC).

This should be contrasted with identification in the limit [38], which was inspired
by the cognitive process of a child thatwould acquire its native language bypicking up
the sentences that are broadcast in its environment.More formally, information keeps
on arriving about a target language and the learner keeps making hypotheses. We
say that convergence takes place if there is a moment where the process is stationary
and the hypothesis is correct.

In the case of learning with queries, the learner is not only allowed to choose
when and what to query, but he also has to decide when to halt.

The following definitions are based on works by [6, 11, 32].

Definition 3.1 A class G is identifiable with queries from QUER if there exists an
algorithmA such that given any grammar T inG,Amakes a finite number of queries
from QUER, returns a grammar H and halts. Furthermore H is equivalent to T .

It should be noted that Definition 3.1 corresponds to a strict definition in which the
key point is that the algorithmmust be able to decide when to halt or not. This makes
the definition much more restrictive than identification in the limit. For example, the
finite languages are not learnable from membership queries, whereas the same class
can be identified in the limit from text.

In order to put some polynomial bounds on the learning process there are several
difficulties:

• having a global limit is impossible: as many queries require an example (or a
counterexample) to be given, it is difficult, if not impossible, to impose a limit on
the length of what the Oracle may return;

• letting the complexity depend on the quantity of information received can also
lead to unfair or collusive results: a learner can deliberately decide to postpone
convergence until he has received enough information to justify the time he is
taking to learn.
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The above remarks are analysed in more detail in [8] and [24]. To take them into
account, we need to introduce some extra notations depending on the actual runs of
the learning algorithm:

Let us suppose that the information received from the environment by A during
some run ρ is stocked in a list Info(ρ) for which we can compute lInfo(ρ) indicating
the length of this list and maxInfo(ρ) the length of the longest element in this list
(typically the longest counterexample returned by the Oracle at a certain point). On
a particular run ρ, Infon(ρ) corresponds to the information received from the Oracle
as answers to the n first queries.

A first imposed condition concerns the time the learner is allowed to build his
next hypothesis.

Definition 3.2 A query learning algorithm A makes polynomial updates if there
exists a polynomial p(·, ·) such that, given any run ρ, the time used by A before
(finishing) making the n + 1st query is in O(p(maxInfon(ρ), lInfon(ρ))).

In other words, in order to make his next query the learner can (only) use time
polynomial in the amount of information received so far.

Definition 3.3 A classG is polynomial update identifiable with queries fromQUER
if there exists an algorithm Amaking polynomial updates such that given any gram-
mar T in G, A returns a grammar H equivalent to T and halts.

But this definition does not limit in any sense the total number of queries that can
be made. For this, we add the following condition.

Definition 3.4 A class G is polynomially identifiable with queries from QUER if
there exists a polynomial q(·, ·) and an algorithm A, such that given any grammar T
in G, A makes polynomial updates and returns a grammar H equivalent to T before
halting and for which the total number of queries is in O(q(‖T‖,maxInfo(ρ))).

The above definitions will not be able to adapt exactly to all possible types of
queries. For example, they will need to be modified to take into account probabilistic
queries. What is important to note, nevertheless, is that in certain cases, the Oracle
may choose to return an unnecessarily long string, and just the parsing of this string
would cost us more than what our polynomial bounds allow. Because of this, the
length of the information received from the Oracle is both part of the data and of the
result.

Another issue has been noted before: if the polynomial updates condition is not
present, a learning algorithm may, in certain cases, take an exponential amount of
time to build the correct hypothesis then interrogate the Oracle in such a way as to
force the Oracle to return an extraordinarily long example, justifying a posteriori the
time wasted.
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3.4.4 PAC Query Learning

The second paradigm, PAC learning (Probably approximately correct) [57] is more
pragmatic as it doesn’t oblige the learner to exactly identify the target. In this setting,
one assumes that there is a distributionD over the strings of the target language,which
is used to sample learning and testing examples. Two parameters are introduced: ε is
related to the error of the model (i.e., the probability of a string to be misclassified)
and δ is related to the probability that the sample randomly drawn according toD is
not representative of the target language.

The PAC paradigm [57] has been widely used in machine learning. It aims at
building, with high confidence (> 1 − δ), good approximations (error less than ε) of
an unknown concept.

Definition 3.5 (ε-good hypothesis) Let T be the target grammar andH a hypothesis
grammar. Let D be a distribution over Σ� and ε > 0. We say that H is an ε-good
hypothesis w.r.t. T if PrD(x ∈ L(T) ⊕ L(H)) < ε.

A learning algorithm is nowasked to learn a grammargiven a confidenceparameter
δ and an error parameter ε. The algorithm must also be given an upper bound n on
the size of the target grammar and an upper bound m on the length of the examples
it is going to get (perhaps computed using Lemma 3.1). The algorithm can query an
Oracle for examples or labels, depending on QUER.

Definition 3.6 (Polynomial PAC-learnability) Let G be a class of grammars and
QUER a combination of queries. G is PAC-learnable from QUER if there exists an
algorithmA such that ∀ε, δ > 0, for any distributionD over Σ�, ∀n ∈ N, ∀T ∈ G of
size at most n, for any upper bound m ∈ N on the size of the examples returned by
the Oracle, if A has access to ε, δ, n and m, then with probability higher than 1 − δ,
A returns an ε-good hypothesis w.r.t. T . If A runs in time polynomial in 1

ε
, 1

δ
, n and

m, we say that G is polynomially PAC-learnable.

Again, the above definition depends strongly on the sort of queries the learner
is allowed to make. If it has no control over the length of the counterexamples (for
instance) then the definition should take this into account.

The PAC-learnability of grammars from strings of unbounded size poses specific
technical questions [44, 45, 60]. Indeed, with the standard definition, a PAC-learner
can ask an Oracle to return a sample randomly drawn according to the distribution
D . However, in the case of strings, there is always the risk (albeit small) to sample
a string too long to account for in polynomial time. In order to avoid this problem,
we can impose that we sample from a distribution restricted to strings shorter than a
specific value. A particular value ν can be built by unrestricted sampling using the
following lemma.

Lemma 3.1 ([33]) Let D be a distribution over Σ�. Then for all ε, δ > 0, with
probability larger than 1 − δ, if one draws a sample S of at least 1

ε
ln 1

δ
strings

following D , the probability for any new string x to be longer than all the strings of
S is less than ε. Formally, let νS = max{|y| : y ∈ S}, then PrD(|x| > νS) < ε.
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3.5 Some Important Hardness Results

It may sound too easy: if one can ask anything one likes, learning should always be
feasible. But obviously the actual power of the different queries is limited.

3.5.1 Learning with Membership Queries and Little Else

What can a learner hope for if he uses membership queries? This sounds like a strong
enough paradigm, and it also corresponds to several practical situations.

To see where the difficulties are let us consider lock automata: these automata
recognise just one string of length n. With a two letter alphabet there are 2n such
automata, each of size n + 1. It is easy to see that an algorithm attempting to distin-
guish one such automaton has to discard the 2n − 1 other automata, and will need
2n − 1 queries.

The key result is due to Angluin [5].

Lemma 3.2 If a class L contains a non-empty set L∩ and n sets L1, . . . ,Ln such
that ∀i, j ∈ [n] Li ∩ Lj = L∩, any algorithm using membership, weak equivalence
and subset queries needs in the worst case to make at least n-1 queries.

Proof The Oracle will answer each query as follows:

• to MQ(x) with x in L∩, TRUE, and the learner cannot discard any language;
• to MQ(x) with x in Li\L∩, FALSE, and only language Li can be discarded by the
learner;

• to WEQ(L∩), FALSE, and only language L∩ can be discarded by the learner;
• to WEQ(Li), FALSE, and only language Li can be discarded;
• to SSQ(L∩), TRUE and no language can be discarded;
• to SSQ(Li), FALSE, with counterexample xi from Li\L∩ and only language Li can
be discarded.

The following corollary is due to the lock automata.

Corollary 3.1 DFAn(Σ) cannot be identified by a polynomial number of mem-
bership, weak equivalence and subset queries.

3.5.2 Learning with Equivalence Queries

Obviously, due to Lemma 3.2, weak equivalence queries alone are insufficient to
hope to learn anything of interest. But what about strong ones?

Pitt [50] noticed that a negative answer to the question of learning from a poly-
nomial amount of strong equivalence queries would also lead to a negative answer
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to the question of identifying in the limit from informed presentations: an informed
presentation of a language L(G) is just a complete presentation of all the strings in
Σ� with, in each case, a label indicating if the string is in L(G) or not. A learning
algorithm is said to identify the class G in the limit if there is a polynomial p and
an algorithm which, for each target grammar G, after each newly presented pair (x,
label(x)) returns a hypothesis H and furthermore always stabilizes itself on a given
hypothesis which is equivalent to the target grammar. An implicit prediction error
is made when the label of the new example disagrees with the label the hypothe-
sis grammar returns. An algorithm would make a polynomial number of implicit
prediction errors (IPE) when the number of IPE is less than p(G).

Lemma 3.3 ([50]) If a class is identifiable in the limit from an informed presentation
making just a polynomial number of implicit prediction errors, it is identifiable from
strong equivalence queries with just a polynomial number (in the size of the target)
of queries.

Proof (Supposing this is not true) We can build a presentation containing just the
counterexamples (with their labels) received from the different examples and then
notice that each counterexample corresponds to an implicit prediction error; an
implicit prediction error is made by a learning algorithm using a presentation each
time its current hypothesis fails to classify the newly presented example.

We state the following without proof.

Theorem 3.1 ([7])DFA(Σ) cannot be identified by a polynomial number of strong
equivalence queries.

The proof is beyond the scope of this paper and uses the concept of approxi-
mate fingerprints. It should be noted that the same applies for NFA or context-free
grammars.

3.5.2.1 The Halving Algorithm

But information-theoretic arguments such as those used to prove Lemma 3.2 should
be handled with care, as, when complexity constraints are not taken into account, it
is possible to learn anything by using a traditional dichotomy approach.

Let us first suppose that we have to learn a language which is just a subset of
E = {w1, ...wn}. There are therefore 2n different possible targets.

Let us denote by Hk the hypothesis space at step k, that is, the set of solutions
consistent with the information obtained so far. Initially, at step 0, H0 = 2E .

Given setHk , we say that w is a positive consensus string if it belongs to at least
half the languages in Hk , and a negative consensus string if it belongs to less than
half of the languages in Hk .

We denote Ck the set of positive consensus strings at step k.



3 Learning Grammars and Automata with Queries 61

Now if EQ(Ck) is made at step k + 1:

• either the counterexample returned by the Oracle will be a positive consensus
string, which, being a counterexample, eliminates all the languages in which it is
contained, therefore at least half the languages inHk ,

• or the counterexample returned by the Oracle will be a negative consensus string,
which, being a counterexample to Ck is supposed to belong to the target language,
and again all the languages inHk which reject it are eliminated.

Thus

|Hk+1| ≤ |Hk|
2

It is easy to see that k steps will be enough to learn.
Now suppose that the class of targets is a bit more general. Still, the targets will be

encoded by grammars whose length is going to be reasonable (<p(n)), and therefore
we have |H0| < 2p(n), so the above argument can be adapted and we can devise a
dichotomy strategy allowing us to make sure to shatterH0 in just a polynomial (in n)
number of steps. As a consequence H0 is both more complicated than a powerset,
yet does not contain all subsets.

The problem (which makes the halving algorithm impracticable) is that the infor-
mation theoretic nature of hypothesis Ck makes it impossible, in general, to build. In
other words, Ck will not be representable by a grammar of the class we are interested
in learning.

It is usually required that equivalence queries are proper (i.e., are made inside the
solution class) in order to avoid problems of this type.

3.6 Learning DFA from an MAT

We present in a simplified manner algorithm LSTAR invented by Angluin [6]. An
alternative presentation using tree like structures can be found in [45].

3.6.1 LSTAR

An observation table is a specific tabular representation of an automaton. An example
is given in Table3.1.

The table is interpreted as follows: by concatenating the name of a row r with
the name of a column c we obtain a string rc. This string is in the language we are
considering if the corresponding cell OT[r][c] contains a 1 and does not if it is a 0.
If the table complies with certain conditions an automaton can be extracted from the
table. The corresponding automaton is depicted in Fig. 3.3. A procedure allowing
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Table 3.1 The observation
table and the corresponding
automaton

λ a

λ 0 1

a 1 0

b 1 0

aa 0 1

ab 1 0

Fig. 3.3 The automaton
corresponding to the
observation table

to extract a DFA from a table (when possible) is described in [32] (page 272). The
idea is to use the names of the rows as states and the columns in order to decide
that certain states are equivalent (in the sense of the Nerode equivalence). The rest is
simple. Obviously the difficulty resides in the fact that a table can’t always be built

Formally, an observation table is a triple 〈STA, e, OT〉 with:
• STA=RED ∪ BLUE is a set of strings, denoting labels of states;
• RED ⊂ Σ� is a finite set of states;
• BLUE = RED · Σ \ RED is the set of states successors of RED that are not RED;
• EXP ⊂ Σ� is the experiment set;
• OT: STA ×EXP → {0, 1, ∗} is a function such that:

• OT[u][e] =
⎧
⎨

⎩

1 if ue ∈ L
0 if ue /∈ L
∗ otherwise (not known).

Definition 3.7 (Automaton consistent with a table) Given an automaton A and an
observation table 〈STA,EXP,OT〉,A is consistent with 〈STA,EXP,OT〉 when the
following holds:

• OT[u][e] = 1 =⇒ ue ∈ L(A );
• OT[u][e] = 0 =⇒ ue ∈ L(A ).

Building an automaton from a table 〈STA,EXP,OT〉 can be done if certain con-
ditions are met:

• the set of strings marking the states in STA must be prefix-closed;
• the set EXP is suffix-closed;
• the table must be complete and therefore have no holes;
• the table must be closed and consistent.

Definition 3.8 (Holes) A hole in a table 〈STA,EXP,OT〉 is a pair (u, e) with u ∈
STA, e ∈ EXP such that OT[u][e] = ∗.

A table is complete if it has no holes.
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Definition 3.9 (Closed table) Two prefixes u and v are equivalent if OT[u] = OT[v].
We will denote this by u ≡EXP v.
A table 〈STA,EXP,OT〉) is closed if given any row u of BLUE there is some row v
in RED such that u ≡EXP v.

Checking if the table is closed is straightforward. But what can the algorithm do
once it has found that the table is not closed? Let s be the row (of BLUE) that does
not appear in RED, we can add s to RED, and ∀a ∈ Σ , add sa to BLUE.

By repeating this until the table is closed, we are done. Notice that the number
of iterations is bounded by the size of the automaton. This is the goal of procedure
LSTAR-CLOSE, not described here.

Definition 3.10 (Consistent table) A table is consistent if every equivalent pair of
prefixes in RED remains equivalent in STA after appending any symbol.
OT[s1] = OT[s2] =⇒ ∀a ∈ Σ , OT[s1a] = OT[s2a].
What do we do when we have an inconsistent table? If it is inconsistent, then let
a ∈ Σ be the symbol forwhichOT[s1] = OT[s2] butOT[s1a] �= OT[s2a]. Let e be the
experiment for which the inconsistency has been found (OT[s1a][e] �= OT[s2a][e]).
Then by adding experiment ae to the table, rows OT[s1] and OT[s2] become dif-
ferent. Indeed, OT[s1][ae] �= OT[s2][ae]. This is the goal of procedure LSTAR-
CONSISTENT, not described here.

Once the learner has built a complete, closed and consistent table, it can construct
the DFA and this can be used to make an equivalence query!

Obviously, if the Oracle returns a positive answer to the algorithm’s equivalence
query, it can halt. If she returns a counterexample (u), then the learner should add as
RED states all the prefixes of u, and complete the BLUE section accordingly (with
all strings pa (a ∈ Σ) such that p is a prefix of u but pa is not. In this way at least
one new RED line obviously different from all the others will have been added. This
is the goal of procedure LSTAR-USEEQ, not described here.

Algorithme 1 : LSTAR Learning Algorithm.
Input : –
Output : DFA A
LSTAR-Initialise;1
repeat2

while 〈STA,EXP,OT〉 is not closed or not consistent do3
if 〈STA,EXP,OT〉 is not closed then4
〈STA,EXP,OT〉 ←LSTAR-CLOSE(〈STA,EXP,OT〉);
if 〈STA,EXP,OT〉 is not consistent then5
〈STA,EXP,OT〉 ←LSTAR-CONSISTENT(〈STA,EXP,OT〉)

Answer← EQ(〈STA,EXP,OT〉);6
if Answer�= TRUE then 〈STA,EXP,OT〉 ←LSTAR-USEEQ(〈STA,EXP,OT〉, Answer)7

until Answer= TRUE;8
return LSTAR-BUILDAUTOMATON(〈STA,EXP,OT〉)9
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Theorem 3.2 Algorithm LSTAR (1) polynomially identifies DFA from membership
and equivalence queries.

In the above algorithm, subroutines LSTAR-INITIALISE, LSTAR-CLOSE,
LSTAR-CONSISTENT, LSTAR-USEEQ and LSTAR-BUILDAUTOMATON are
used but not defined. These can be found in [32] or reconstructed from the previous
definitions and discussion.

Extensions or alternative presentations of LSTAR can be found in [10, 45] and
there has been further theoretical work aimed at counting the number of queries
really necessary [11, 19], on identifying the power of the equivalence queries [36],
or relating the query model to other ones [24, 33]. Several open problems related to
learning grammars and automata in this setting have been proposed [31].

3.6.2 Trading Off Equivalence Queries

We can trade-off the equivalence queries used by LSTAR for sampling queries in
exchange for a small mistake. In that case, we will also have to be able to sample.

It can be noticed that equivalence queries are used in the algorithm LSTAR in
order to check at each moment where the algorithm has come up with a closed and
consistent solution whether this solution is the correct one. An attractive alternative
is to use sampling in order to have some sort of a statistical equivalence query. The
algorithm would work as follows: at each moment an equivalence query is required,
draw instead m labelled examples x1, . . . , xm and check if the current hypothesis
labels them in the same way as the target does (the true labelling).

If ∀i ∈ [m] xi ∈ L(G) ⇐⇒ xi ∈ L(GT ) then the error is most likely small. . .But
just how small? We want this error to be at most ε. Let us suppose for contradiction
that the true error is more than ε. Then the probability of selecting randomly one
example where G and GT coincide is less than 1 − ε and the probability of selecting
randomly m examples where G and GT coincide (all the time) is now less than
(1 − ε)m.

But now we have the following bound: (1 − ε)m ≤ e−εm. So by bounding this
value by δ we have m ≥ 1

ε
ln( 1

δ
).

Therefore, by sampling at least 1
ε
ln( 1

δ
) labelled examples and testing them against

the current hypothesis, the algorithm can make a stochastic equivalence query.
But the number of equivalence queries that are needed is unknown in practice. And

since each time an equivalence query is made, a number of calls to EX(), dependent
on the δ parameter, has to bemade. In order tomake sure the total confidence is at least
1 − δ, the size of each sample (or of the calls to EX()) should be at leastmi = 1

ε

(
ln( 1

δ
)

+i ln 2
)
. By doing this, one ensures that the (global) confidence parameter δ is at most

Σi>0(1 − ε)mi .
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3.6.3 Adapting to Correction Queries

It can be shown that correction queries alone cannot compensate for the absence
of both membership and equivalence queries: consider a random string w ∈ Σn and
language Lw = Σn \ {w}; it is easy to see that the onlyway to have useful information
about w is by querying w itself. But they can be used instead of membership queries
to advantage. In many cases the extra information one obtains allows us to make
fewer queries [14, 56].

3.6.4 Some Implementation Issues

Onedifficultywith the implementation of LSTARcomes frommaintaining the redun-
dancy in the table. Actually it is not necessary to implement the actual table. A better
idea is to manage three association tables and use hash functions:

• A first table MQ contains the result of the membership queries. It can be consulted
in near constant time to know if a particular string has been queried or not and, if
it has, if it belongs or not to the language.

• A second table PREF contains the different names of rows, and for each row, the
status: is it RED or BLUE?

• A third table just contains the different experiments that have been made.

The actual observation table is only simulated by a function OT(u, v) which will
return the value MQ[uv]. The other tables are used to avoid unnecessary searches.

3.7 Extensions

3.7.1 Post Zulu Extensions

Competition Zulu [28] was launched in 2009 in order to learn more about active
learning. The task proposed to the competitors consisted of learning DFA from
membership queries only.

The server 1 could be accessed by any user/learner. The server acts as an Oracle
for membership queries. A player can log in and ask for a target DFA. The server
then computes how many queries it needs to learn a reasonable machine (reasonable
means that it makes less than 30% classification errors), and invites the player to
interact in a learning session in which he can ask up to that number of queries. At
the end of the learning process the server gives the learner a set of unlabelled strings
(a test set). The labels the learner submits are used to compute his score.

1http://labh-curien.univ-st-etienne.fr/zulu.

http://labh-curien.univ-st-etienne.fr/zulu
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As a starting point, the baseline algorithm, which is a simple variation of LSTAR,
with some sampling done to simulate equivalence queries, is given to the user, who
can therefore play with some simple JAVA (i.e., he doesn’t have to develop from
scratch).

A number of new ideas emerged from Zulu2: some authors attempted to search
for the most interesting strings to be provided as counter-examples; others attempted
to avoid entirely filling the table. A third line of ideas consisted in using the coun-
terexamples differently, by adding extra columns instead of extra rows.

Even if Zulu still leaves a number of routes open for further improvement, it is
clear that the ideas proposed allowed a significant gain: with less (queries), achieve
more (larger automata, with larger alphabets).

3.7.2 Co-learning

When there are multiple active learners involved, one should consider cooperation
questions: one learner learns from the other. The questions themselves can be used
as information. This problem was formally proposed in [31].

Consider the situation where two adversaries have to negotiate something. The
goal of each is to learn the model of the opponent while giving away as little infor-
mation as possible. The situation can be modelled as follows:

Let L1 be the language of player 1 and L2 be the language of player 2. We suppose
here that the languages are regular and can be represented by deterministic finite
automata with respectively n1 and n2 states. The goal for each is to learn the common
language, i.e., language L1 ∩ L2.

The rule is that each player can only query the opponent by asking questions using
his own language. This means that when player 1 names string w, w ∈ L1. In turn,
player 2 will answer whether, or not, string w belongs to the language L2.

Using this setting as a starting point, one should study the possible strategies and
outcomes of the different types of players.

This hypothetical game can be illustrated by situations described in control and
robotics [25].

3.7.3 Learning Other Types of Grammars

In this survey, we have essentially presented work on learning DFA. But other results
are known:

2The different papers presented at the workshop can be found at http://users.dsic.upv.es/workshops/
icgi2010/.

http://users.dsic.upv.es/workshops/icgi2010/
http://users.dsic.upv.es/workshops/icgi2010/
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• Algorithm LSTAR has been adapted to learn probabilistic automata [34, 39],
multiplicity automata [17], NFA, tree automata, transducers [58] with, in each
case, subtle variations.

• Sakakibara [53] learns context-free grammars from queries; more recently, Clark
[26] presents a new learning algorithm in which queries can be contextual queries,
in which two substrings can be compared and the Oracle is interrogated as to
whether these substrings are interchangeable, i.e., can be used in an identical
context.

• Vilar extends queries to translation tasks in [58]; Akram and de la Higuera learn
probabilistic transducers [2] using probabilistic queries. In this case, the idea is
that these queries (what is the global probability of u as a prefix?) can be later
replaced by samples.

• In testing and model checking, queries are used to learn a variety of finite state
machines [1, 42, 55].

• Yokomori [62] learns 2-tape automata fromboth queries and counterexamples, and
in [61] non-deterministic finite automata from queries also in polynomial time, but
depending on the size of the associated DFA.

• Maler and Pnueli [48] learn Büchi automata from queries over infinite strings.
• In the case of balls, it can be proved [13] that (1) BALL(Σ) is not polynomially
identifiable from MQ and EQ, and (2) BALL(Σ) is polynomially identifiable
from CQ. The technical proofs will be related to the fact that finding the smallest
ball containing a given set of strings is an intractable problem. Note however that
if the learner is given one string from a ball, then he can learn using a polynomial
number of MQ only.

3.7.4 More About Querying

The relationships between Pac learning, equivalence queries and active learning
have been studied in [9, 36]. Balcázar et al. have studied the query complexities for
different combinations of queries [10, 11].

In order to learn probabilistic automata and grammars, the queries should some-
how give the learner some indication of the distributions. Between the special sorts of
queries for this, extended membership queries were introduced in [17] and extended
prefix language queries in [34].

Statistical queries, as introduced by [43], allow us to deal with noise or with
imperfect sampling, and are an important tool to prove Pac results for probabilistic
automata and grammars.
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3.8 Conclusions

Query learning is currently becoming an exciting field in which there are many open
challenges. Some are theoretical and may concern the actual paradigm: how does it
fit in and compare with other learning paradigms?

Other questions correspond to obtaining better definitions: theway the polynomial
bounds are defined is still a matter of discussion.

Obviously new algorithms are needed, either for the existing tasks (and types of
queries) or for alternative and new tasks.

Finally, the number of situations where the world can be represented or modelled
as a finite state machine is increasing; in many of these situations, some form or
another of interaction with the environment is possible. This leads to being able to
consider the question of building the model through this interaction, which can be
viewed as a query learning problem.

Acknowledgments The questions raised by the helpful and careful reviewer have been of great
help when preparing the final version of this chapter.
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Chapter 4
On the Inference of Finite State Automata
from Positive and Negative Data

Damián López and Pedro García

Abstract The works by Thrakhtenbrot–Barzdin and Gold can be considered to be
the first works on the identification of Finite Automata from given data. The main
drawback of their results is that they may obtain hypotheses that may be inconsistent
with the provided data. This drawback was solved by the RPNI and Lang algorithms.
Aside from these works, other works have introduced more efficient algorithms
with respect to the training data. The direct consequence of this improvement has
lead to algorithms that have lower error rates. Recently, some works have tackled
the identification of NFAs instead of using the traditional DFA model. In this line
of research, the inference of Residual Finite State Automata (RFSA) provides a
canonical non-deterministic model. Other works consider the inference of teams of
NFAs to be a method that is suitable to solve the grammatical inference of finite
automata. We review the main approaches that solve the inference of finite automata
by using positive and negative data from the target language. In this review, we will
describe the above-mentioned formalisms and induction techniques.

4.1 Introduction

The problem of language identification from positive and negative information was
proposed in the 1970s. This task is related to the search for a minimal DFA that is
compatible with a given positive and negative set of data. Automata synthesis from
data is, in fact, a classic problem of Automata Theory. Nowadays this problem is
incorporated within the Grammatical Inference (GI) topics.

One common approach to GI is based on the merging of states of an initial rep-
resentation that strictly recognizes the training set. In this approach, two states are
merged when there is no evidence that the associated language is different, and,
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therefore, one of them can be considered to be redundant. The above-mentioned
evidence comes from the existence or absence of a positive or negative sample in the
training set. This means that mergible states in a given situation might not be merged
with additional extra information. Such inconvenient merges usually imply a larger
size of the automata output and a lower recognition rate.

The work of Gold in the 1960s and 1970s led to several relevant contributions
in the field of regular GI. First, he proved that the problem of finding a minimal
deterministic finite automaton (DFA) that is consistent with some input positive
(D+) and negative (D−) data is NP-hard [32]. He also proposed the identification in
the limit model [31], which is a valuable tool for proving the correction of new GI
algorithms. Furthermore, Gold proposed aGI algorithm [32] that outputs theminimal
deterministic automaton for the language in polynomial time when a representative
enough set of data is provided. This algorithm is of great interest because several
subsequent algorithms can be viewed as modifications of it.

In the same decades, Trakhtenbrot and Barzdin [44] proposed a DFA synthesis
algorithm that considers all the strings of the language whose length is bounded by
a given integer. Even though this work does not present a grammatical inference
algorithm it is known that the Gold and the Trakhtenbrot–Barzdin algorithms work
in a similar way, despite the fact that they use very different representations of the
same information [24].

In the 1980s, some new negative results confirmed the theoretical difficulty of the
regular languageGI problem.Angluin proved that, for a given set of data, the problem
of finding the minimal DFA is NP-hard even for target automata of two states. She
also proved that the training set must be complete and that whenever a few samples
are removed from the training set, the problem also becomes NP-hard [4]. Another
result by Angluin is the proof that the task is also hard when the algorithm is allowed
to question an oracle about the membership to the target language of certain samples
[6] or to question an oracle about the equivalence of the current hypothesis and the
target language [8].

Since those negative theoretical results led to obvious pessimism, in order to
design new GI algorithms for applied tasks, several approaches were considered.
Some works focused on the inference of stochastic DFA (e.g. [9]). Other papers
studied active learning, that is, the possibility to question an oracle whenever it is
considered necessary [6–8]. There were also works devoted to the characterization
of language classes learnable from positive information [5, 25, 30, 48]. Other works
studied the inference of transducers [42]. In our review, we do not consider these
methods and techniques, whichwere reviewed recently by de la Higuera [17], instead
we focus on those methods that output (deterministic or non-deterministic) automata
using positive and negative information from the target language.

In 1992, two works appeared independently of each other. Oncina and García
proposed theRPNI algorithm [41] andLang proposed amodification of theTrakhten–
Barzdin algorithm known as the Traxbar algorithm [38]. InRPNI, the output depends
on the quality of the training set, and it has been proved that whenever this training
set is characteristic, the algorithm converges to the minimal DFA for the target
language [41].
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In the quest to avoid incorrect mergings as much as possible, de la Higuera et al.
[18] proposed a modification of the canonical order in order to favor those pairs of
states that have high evidence of equivalence. Therefore, they proposed attaching
a score to each pair of states, and subsequently merging the pairs of states with
the highest score. There are multiple criteria for attaching this score, but, generally
speaking, high (low) score values are expected whenever the training set contains
great (little) evidence that the languages of both states are the same. Preliminary
experimental results were encouraging but not conclusive.

Price revisited this same idea and proposed the EDSM (Evidence Driven State
Merging) algorithm in the context of the Abbadingo One contest [37]. In this compe-
tition, whichwas organized by Lang in 1998, several GI algorithms tried to solve a set
of regular inference problems. There were two winners: the EDSM algorithm and a
parallel algorithm based on non-deterministic search. The fact that the winners were
based on a strategy of merging states encouraged the community to again take up the
design of identification algorithms. In fact, taking into account the contest results,
Lang proposed the Blue-Fringe algorithm [11, 37]. Several other works were also
based on the EDSM algorithm [1, 11]. In [29], García et al. revisited these works
and the inference of automata teams was proposed.

Eventually, the GI community also studied the inference of non-deterministic
finite automata (NFA). In 1994, Yokomori published a work in this field proposing a
method that is based on counterexamples and questions to an oracle [16, 47]. Coste
and Fredouille also studied this issue [13–15]; they proposed their NFA inference
method taking into account results on the inference of unambiguous finite automata.

In this field of NFA inference, Denis et al. [19, 20, 22] have focused their work
on the inference of a subset of NFA called RFSA (residual finite state automata). The
interest in this subclass of NFA comes from the fact that there is a canonical RFSA
for each regular language.

Currently, even though few research groups are working on the inference of NFA,
there is some research on the minimalization of NFAs that are attempting to obtain a
canonical form [43]; there are works that present algorithms that converge to RFSAs
[2]; algorithms that infer UFAs (Unambiguous Finite Automata) [1, 14, 15]; other
works that extend the RPNI strategy but consider non-deterministic merging [2]; and
other works that study the inference of NFAs using subautomata juxtaposition [46].
In [28], a new general method namedOIL (Order Independent Learning) is proposed.
This method constructs the maximal automaton for the training set (instead of the
prefix tree acceptor) and then considers any order in the merging of the states.

This chapter is organized as follows. First, in Sect. 4.2 we summarize the basic
notation and definitions used. In Sect. 4.3, we review the inference methods that
output deterministic automata (beginning with the seminal results of Gold and
Trakhtenbrot–Barzdin, and including more recent works that consider heuristics or
teams of automata). Section4.4 is devoted to reviewing those methods that output
non-deterministic automata. Section4.5 experimentially compares the quality of the
reviewed methods taking into account the results obtained when a dataset of lan-
guages proposed in the literature is used. Some conclusions and suggestions for
continuing this study are presented at the end of the chapter.
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4.2 Definitions and Notation

Definitions that are not contained in this section can be found in [34]. Definitions
and previous works concerning RFSA can be found in [19, 20, 22]. For the reader
who is interested in the Universal Automaton, we suggest [39, 43].

Let Σ be a finite alphabet and let Σ∗ be the free monoid generated by Σ with
concatenation as the internal operation and λ as the neutral element. A language
L over Σ is a subset of Σ∗. The elements of L are called words or strings. Given
x ∈ Σ∗, if x = uv with u, v ∈ Σ∗, then u (resp. v) is called the prefix (resp. suffix)
of x. Let us denote the set of prefixes (suffixes) of x by Pr(x) (resp. Suf (x)), and
the natural extension of the prefixes (suffixes) operation to a language L by Pr(L)

(resp. Suf (L)). Let us also recall here the definition of the canonical order over Σ∗
as being the order that first classifies the shorter strings and considers the alphabetic
order for those strings of the same length.

A finite automaton (NFA) is a 5-tuple A = (Q,Σ, δ, I,F), where Q is a finite
set of states, Σ is an alphabet, I ⊆ Q is the set of initial states, F ⊆ Q is the set
of final states and δ : Q × Σ → 2Q is the transition function, which will also be
seen as δ ⊆ Q × Σ × Q. Given an automaton A and a state q ∈ Q, we denote the
right language of q in A as RA

q , that is, the language accepted by the automaton
A = (Q,Σ, δ, {q},F). The language accepted by the automaton A will be denoted
as L(A) and can be defined as L(A) = ⋃

q∈I RA
q . Two automata are equivalent if they

recognize the same language. Given any two states p, q of the automaton, let ≺ be
the relation defined as p ≺ q if and only if RA

p ⊆ RA
q .

Given any two automata A1 = (Q1,Σ1, δ1, I1,F1) and A = (Q2,Σ2, δ2, I2,F2),
the disjoint union of automata is defined as the automaton A1 � A2 = (Q1 ∪ Q2,

Σ1 ∪ Σ2, δ1 ∪ δ2, I1 ∪ I2,F1 ∪ F2).
Let S ⊂ Σ∗ be finite. The maximal automaton for S is the NFA MA(S) =

(Q,A, δ, I,F) where: Q = ⋃
x∈S{(u, v) ∈ Σ∗ × Σ∗ : uv = x}, I = {(λ, x) : x ∈

S}, F = {(x, λ) : x ∈ S}, and where δ((u, av), a) = (ua, v) for (u, av) ∈ Q. Note
that, when so defined, L(MA(S)) = S.

A deterministic finite automaton (DFA) is an automaton such that card(I) = 1
and, for every state q and every symbol a, the number of transitions δ(q, a) is at most
one.

Given a language L over Σ , the (left) quotient of L by a string u is defined as the
language u−1L = {v ∈ Σ∗ : uv ∈ L}. Let us also define the set SL = {u−1L : u ∈
Σ∗} and the set UL = {u−1

1 L ∩ · · · ∩ u−1
k L : k ≥ 0, u1, . . . , uk ∈ Σ∗}. Note that

whenever the language L is regular, the sets SL and UL are finite.
The minimal DFA for a language L is A = (SL,Σ, δ, {q0},F), where: q0 =

λ−1L = L; F = {u−1L : u ∈ L}; and δ(u−1L, a) = (ua)−1L for any state in SL and
any symbol a of the alphabet. The universal automaton [12] for a language L is
UL = (UL,Σ, δ, I,F), where I = {p ∈ UL : p ⊆ L}, F = {p ∈ UL : λ ∈ p} and
the set of transitions is defined as δ(u−1L, a) = {p ∈ UL : p ⊆ (ua)−1L}. We note
here that, given a regular language L, for every automaton A that recognizes L, there
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is a morphism ψ such that ψ(A) is a subautomaton of the universal automaton for L
[39, 43].

AMoore machine is a 6-tupleM = (Q,Σ,Δ, δ, q0, Φ), whereΣ (resp.Δ) is the
input (resp. output) alphabet, δ is a partial function that maps Q × Σ in Q, and Φ is
a function that maps Q in Δ called output function. The behavior of M is given by
the partial function tM : Σ∗ → Δ defined as tM(x) = Φ(δ(q0, x)), for every x ∈ Σ∗
such that δ(q0, x) is defined.

Given two disjoint finite sets of words D+ and D−, we define the (D+, D−)-prefix
Moore machine (PTMM(D+,D−)) as theMoore machine havingΔ = {0, 1, ?},Q =
Pr(D+ ∪ D−), q0 = λ, and δ(u, a) = ua if u, ua ∈ Q and a ∈ Σ . For every state u,
the value of the output function associated to u is 1, 0 or ? (undefined) depending on
whether u belongs to D+, to D−, or to Q − (D+ ∪ D−).

A Moore machine M = (Q,A, {0, 1, ?}, δ, q0, Φ) is consistent with (D+, D−) if
∀x ∈ D+ we have Φ(x) = 1 and ∀x ∈ D− we have Φ(x) = 0. Note that a DFA A =
(Q,Σ, δ, q0,F) can be simulated by aMooremachineM = (Q,Σ, {0, 1}, δ, q0, Φ),
where Φ(q) = 1 if q ∈ F and Φ(q) = 0 otherwise. Thus, the language defined by
M is L(M) = {x ∈ Σ∗ : Φ(δ(q0, x)) = 1}.

A Mealy machine is a 6-tuple M = (Q,Σ,Δ, δ, q0, Φ), where all the ele-
ments are defined as they are in the Moore machine except Φ. In this machine,
the function Φ maps Q × Σ in Δ. The behavior of M is given by the partial
function tM : Σ∗ → Δ that, given x = a1, a2, . . . , an ∈ Σ∗, is defined as tM(x) =
Φ(q0, a1)Φ(q1, a2) . . . Φ(qn−1, an), where q0, q1, . . . , qn is such that δ(qi−1, ai) =
qi for 1 < i ≤ n.

4.3 Inference of Deterministic Automata

In this section we review the most important contributions to the inference of DFAs.
First, we present the seminal works by Gold [32] and Trakhtenbrot–Barzdin [44].
We then analyze the RPNI algorithm [41] and the algorithm proposed by Lang in
[38]. Both of these are extensions of the works by Gold and Trakhtenbrot–Barzdin.
This section also reviews the works that guide the merging of states by heuristics,
based on the general scheme of the RPNI and Lang algorithms.

4.3.1 Non-merging Algorithms: Trakhtenbrot–Barzdin
and Gold

The algorithm we describe below can be ascribed to Trakhtenbrot and Barzdin [44]
and also to Gold [32]. The algorithm proposed by Trakhtenbrot and Barzdin was
published in a book on automata theory and in a context that is different from the
GI context. Trakhtenbrot and Barzdin tackled the automata synthesis task using a
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uniform and complete set of strings from the language. This set is represented using a
finite tree that is complete up to a certain string length, and it contains the information
of membership to the language for each string in the set. This set of data concerning
positive and negative information is then represented using the PTMM that considers
the sets D+ and D− (which is the input of the algorithm).

In an independent way (and in the context of the GI field), Gold proposes an
algorithm that converges to the minimal DFA of a regular language using complete
presentation samples. Gold uses an evidence table to represent the available data,
and his algorithm outputs a Mealy machine. The variety of formalisms that are used
may hide the equivalence of the two algorithms from the reader. Here we use a
prepresentation that is close to the Trakhtenbrot–Barzdin representation. Algorithm
4.3.1 shows this GI method, which hereafter we will call TBG.

Algorithm 4.3.1 Trakhtenbrot–Barzdin and Gold algorithm
1: Input: Two disjoint finite sets (D+,D−)

2: Output: A consistent Moore Machine
3: Method
4: M0 = PTMM(D+,D−) = (Q0,Σ, {0, 1, ?}, δ, q0, Φ0);
5: R = {λ};
6: while ∃s′ ∈ RΣ − R : ∀s ∈ R, od(s, s′,M0) = True do
7: choose s′;
8: R = R ∪ {s′};
9: end while
10: Q = R;
11: q0 = λ;
12: for s ∈ R do
13: Φ(s) = Φ0(s);
14: for a ∈ Σ do
15: if sa ∈ R then δ(s, a) = sa
16: else δ(s, a) = any s′ ∈ R such that od(sa, s′,M0) = False
17: end if
18: end for
19: end for
20: M = (Q,Σ, {0, 1, ?}, δ, q0, Φ);
21: if M is consistent with (D+,D−) then
22: Return(M)
23: else
24: Return(M0);
25: end if
26: End Method.

The TBG algorithm calls a function to determine whether or not two states are
obviously distinguishable. Taking M0 as the initial representation of the training set
and two states, s and s′, this function is defined as:

od(s, s′,M0) = True ⇔ ∃x ∈ Σ∗ :
{

Φ(δ(s, x)),Φ(δ(s′, x)) ∈ {0, 1}
Φ(δ(s, x)) �= Φ(δ(s′, x))
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It is worth noting here that this algorithm does not guarantee the consistency of
the output with respect to the input data. The result of the inference process is first
checked for consistency (line 21) andwhen the obtainedmachine is not consistent the
PTMM(D+,D−) is output (line 24). Also note that the algorithm is not deterministic.
In line 7, the algorithm chooses any state in RΣ − R that is obviously different from
the states in R. The usual way to deterministically implement this command is to
choose s′ as the first state in canonical order. In the same way, line 16 is usually
implemented to choose the first indistinguishable state in canonical order to sa as the
state reached by s using symbol a. Example 4.1 illustrates the behaviour of Algorithm
4.3.1.

Example 4.1 Let us take the finite sample D+ = {λ, 00, 10, 11, 010} and D− =
{0, 1, 001}. Algorithm 4.3.1 first constructs the Moore machine PTMM(D+,D−)

(shown in Fig. 4.1) where the positive, negative and undefined states are represented
with double circles, single circles, and dashed circles respectively. Note that the num-
bering of the states is consistent with the canonical order of the strings that reach
each state. As mentioned above, we will follow this canonical order in order to select
the states to be analyzed.

Initially R = {1} and RΣ − R = {2, 3}. The empty string allows us to say that
od(1, 2,M0) = True. Therefore, R = {1, 2} and RΣ − R = {3, 4, 5}. The string λ

also shows that od(1, 3,M0) = True, but od(2, 3,M0) = False. This is followed by
an analysis of states 1 and 4, which concludes that od(1, 4,M0) = False. State 5 is
then considered and it is detected that od(1, 5,M0) = True (due to the string λ), but
that od(2, 5,M0) = False. The output of the algorithm is shown in Fig. 4.2. Note that
the output automaton is non-consistent with the input data.

Note that a slight modification of the training data is enough for the algorithm to
obtain consistency. Let us consider a new training set where D+ = {λ, 00, 10, 11,
010} and D− = {0, 1, 01, 001}. Note that the difference lies in string 01, which is
now in the negative sample.

Fig. 4.1 PTMM example
when the sets
D+ = {λ, 00, 10, 11, 010}
and D− = {0, 1, 001} are
considered
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Fig. 4.2 The DFA obtained by the TBG algorithm using D+ = {λ, 00, 10, 11, 010} and D− =
{0, 1, 001}. Note that string 11 should be accepted and it is not
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Fig. 4.3 The DFA obtained by the TBG algorithm using D+ = {λ, 00, 10, 11, 010} and D− =
{0, 1, 01, 001} as the training set

In this case,when thefinite sampleD+ = {λ, 00, 10, 11, 010} andD− = {0, 1, 01,
001} is taken into account, Algorithm 4.3.1 first constructs the Moore machine
PTMM(D+,D−), which is essentially the same as in Fig. 4.1 but where state 5 is
a negative state. Initially R = {1} and RΣ − R = {2, 3}. The empty string allows
us to say that od(1, 2,M0) = True. Therefore, R = {1, 2} and RΣ − R = {3, 4, 5}.
The string λ also leads to detecting that od(1, 3,M0) = True and string 1 leads to
detecting that od(2, 3,M0) = True. Thus, R = {1, 2, 3} and RΣ − R = {4, 5, 6, 7}.
This is followed by the analysis of states 1 and 4, and od(1, 4,M0) = False. State
5 is then considered and it is detected that od(1, 5,M0) = True (due to λ), but
od(2, 5,M0) = False. Finally, states 6 and 7 are indistinguishable to state 1, that
is, od(1, 6,M0) = False and od(1, 7,M0) = False. The output of the algorithm is
shown in Fig. 4.3. Note that the output automaton is consistent with the input data.

The reason for the inconsistency of the TBG algorithm is due to the fact that it
carries out all the comparison among states onM0. The initial automaton (the PTMM
of the input data) is not modified as a result of these comparisons. In other words, the
algorithm does not merge states while it checks consistency. Therefore, for any state
whose output is not determined by the training set, it is possible to relate different
outputs.

4.3.2 Merging Algorithms: RPNI and Lang

As already mentioned, the main drawback of the TBG algorithm is that consistence
with respect to the input data is not guaranteed. In these cases, the algorithm gives
up any generalization and outputs a strict representation of the input data.

In the early 1990s, two algorithms that were proposed independently but were
essentially identical solved this problem. These algorithms are: the RPNI algorithm
(Regular Positive and Negative Inference) [41] and the Traxbar algorithm [38]. The
main difference of these methods with respect to Algorithm 4.3.1 consists in the
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Algorithm 4.3.2 Function for the deterministic merge of states.
1: Input: A Moore MachineM = (QM ,Σ, {0, 1, ?}, δM , q0, ΦM )

2: Input: Two states p and q
3: Output: A Moore Machine with p and q deterministically merged (if possible)
4: Output: False if the merge of states is not possible
5: Method
6: if {ΦM (p),ΦM (q)} = {0, 1} then Return(False);

end if
7: M ′ = M;
8: if ΦM ′ (p) =? then ΦM ′ (p) = ΦM (q);

end if
9: Substitute with p any reference to q in M ′
10: for all a ∈ Σ do
11: if both δM (p, a) and δM(q, a) are defined then
12: M ′ = detmerge(M ′, δM (p, a), δM (q, a)
13: if M ′ = False then
14: Return(False);
15: end if
16: end if
17: end for
18: Return(M ′)
19: End Method.

merging of those indistinguishable states that are detected. Once one of these merges
has been carried out, the algorithm considers this new hypothesis and rejects the
previous one. As mentioned above, the TBG algorithm always compares each pair
of states taking into account the initial PTMM.

TheRPNI algorithmuses a function tomerge stateswhile assuring that the automa-
ton retains determinism. This operation is carried out by the detmerge function that
recursively triggers another merge of states whenever the merge of two states implies
non-determinism.Note that a givenmergemaynot be possible because itwould imply
the merge of a positive state and a negative state. In that case, the function returns
False.

Algorithms 4.3.3 and 4.3.2 show this method, which can be summarized as fol-
lows: Let the states of PTMM(D+,D−) be ordered canonically; the deterministic
merge of each state (based on this order) with all the previous states is checked. In
order to do so, the outputs associated to these states must be compatible (the outputs
cannot be simultaneously in {0, 1} and also to be different); whenever the outputs
are compatible, the states can be merged. Nevertheless, the merge can lead to non-
determinism and the algorithm tries new merges to handle this situation. These new
merges can lead to some incompatibility, in which case the algorithm returns to the
previous situation that triggered the process; the algorithm ends when there is no
state to be considered.

The first classification of GI algorithms that is possible to make takes into account
whether or not the algorithms modify the initial PTMM by merging states each
time two compatible states are found. In order to compare the behaviour of the two
approaches, Example 4.2 depicts a run of the RPNI algorithm.
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Algorithm 4.3.3 RPNI algorithm
1: Input: Two disjoint finite sets (D+,D−)

2: Output: A consistent Moore Machine
3: Method
4: M = PTMM(D+,D−);
5: //{u0, u1, ..., ur} states of M in canonical order, u0 = λ//;
6: R = {u0};
7: B = RΣ − R;
8: while B not empty do
9: q = canonical order first state in B;
10: B = B − {q}
11: merged = False;
12: for all p in R traversed in canonical order do
13: if detmerge(M, p, q) �= False then
14: merged = True;
15: M = detmerge(M, p, q);
16: BreakFor
17: end if
18: end for
19: if not merged then
20: R = Append(R, q);
21: end if
22: B = RΣ − R;
23: end while
24: Return(M)
25: End Method.

Example 4.2 Let us consider the following sets of samples:

D+ = {a, aba, abba, abbba}
D− = {λ, b, aa, ab, ba, bb, aaa, abb, baa, bba}

A run of the RPNI algorithm first constructs the PTMM for D+ and D−. Figure4.4
shows the resulting PTMM.

When the first merging detmerge(M, 1, 2) is tried, it fails due to the fact that
Φ(1) = 0 and Φ(2) = 1. The next merge to try is detmerge(M, 1, 3), which also
fails. Note that both detmerge(M, 1, 4) and detmerge(M, 2, 4) are not possible, but
detmerge(M, 3, 4) is possible. This merge triggers the merge of state 6 and state 8.
The next state to consider is state 5, which cannot be deterministically merged and
is therefore promoted to the set R. State 6 is then considered and deterministically
merged with state 3, which triggers the merge of state 3 and state 11. The machine
obtained at this point is shown in Fig. 4.5.

The consideration of state 7 leads to themerge of states 3 and 7,which also triggers
the merge of states 3 and 12. Now, the states in the set B are 9 and 10. The first state
to consider is state 9 which can be deterministically merged with state 2. State 10 can
be deterministically merged with state 5. This merge triggers the following merges:
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Fig. 4.4 The PTMM for D+ = {a, aba, abba, abbba} and D− = {λ, b, aa, ab, ba, bb, aaa,
abb, baa, bba}
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Fig. 4.5 The DFA obtained when the pairs of states 〈3, 4〉, 〈3, 6〉 of the initial PTMM (Fig. 4.4) are
deterministically merged

states 2 and 13; states 5 and 14; and, finally, states 2 and 15. These merges end the
process because set B is now empty. Thus the output of the algorithm is the machine
shown in Fig. 4.6.

4.3.3 Algorithms Guided by Heuristics: EDSM
and Blue-Fringe

In a run, RPNI merges those equivalent states (i.e., the states for which there is no
sample that contradicts this equivalence).
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Fig. 4.6 The output of RPNI
algorithm with input
D+ = {a, aba, abba, abbba}
and D− = {λ, b, aa, ab, ba,
bb, aaa, abb, baa, bba}
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When the training set is not sufficiently representative of the language, it may
imply that some inconvenientmerges could be done.Thosemerges produce a negative
effect on the inference process, leading to lower recognition rates.

In order to avoid as many of these merges as possible, de la Higuera et al. [18]
proposed modifying the canonical order used by RPNI to favor the merge of states
for which there exists great evidence of equivalence. This evidence is measured by
a score to be computed for each pair of states. It is expected that the higher the score
value, the greater the evidence of equivalence.

The initial results were not conclusive. Nevertheless, this approach was revisited
by Price [37] who proposed the EDSM (Evidence-Driven State Merging) algorithm.
This algorithm had very good behaviour in the Abbadingo contest and was one of the
twowinners. TheEDSM strategy is summarized inAlgorithm4.3.4. In this algorithm,
we denote by Φ(p) ≈ Φ(q) that states p and q are compatible, where states p and
q are compatible if and only if Φ(p) = 1 (resp. Φ(p) = 0) implies that Φ(q) �= 0
(resp. Φ(q) �= 1).

As stated in line 6, the algorithm iterates while mergible states in the current
automaton, let’s say A = (Q,Σ, δ, q0,F), are found. Each pair of mergible states
p and q is evaluated by the function FindScore that, briefly speaking, takes into
account the number of coincidences of states with defined output in the automata
A = (Q,Σ, δ, p,F) and A = (Q,Σ, δ, q,F). Once all the mergible pairs of states
are evaluated, the algorithm merges the pair of states with the highest score, that is,
the pair of states with greatest evidence of equivalence. The algorithm ends when all
mergible states have been considered.

The main drawback of the EDSM strategy is due to the cost of evaluating each
pair of mergible states for each merge carried out. The first modification that was
proposed to avoid this was to consider only those pairs of states at a given distance
W from the initial state. This version is known as W -EDSM [11]. A better strategy
for selecting the pairs of states to merge is known as red-blue [11, 37], which led
to the Blue-Fringe method which is described in Algorithm 4.3.5. This algorithm is
considered to be the state of the art with respect to the inference of DFA by merging
of states.

Algorithm 4.3.5 uses the PTMM of the training sample. First, the Blue-Fringe
algorithm considers the red set that contains only states of the hypothesis. Thus, the
algorithm initializes the red set using the initial state of the machine. The blue set is
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Algorithm 4.3.4 EDSM algorithm.
1: Input: Two disjoint finite sets (D+,D−)

2: Output: A consistent Moore Machine
3: Method
4: A = PTMM(D+,D−);
5: ok = True;
6: while ok do
7: score = {};
8: for (p, q) ∈ Q × Q do
9: if Φ(p) ≈ Φ(q) ∧ p �= q then
10: score = score ∪ {((p, q),FindScore(M, p, q))};
11: end if
12: end for
13: if score = {} then
14: ok = False;
15: else
16: (p, q) = MaximumScorePair(score);
17: A = detmerge(M, p, q);
18: end if
19: end while
20: Return(A);
21: End Method.

obtained by taking into account the red set, which contains those non-red states of
the hypothesis that are reachable from any state in the red set. The algorithm ends
when the blue set is empty.

In each iteration, the algorithm searches for a blue state that is non-mergible with
any red state. The first of such states detected is promoted to the red set and the
blue set is recalculated. Note that any state in the blue set that is not mergible should
belong to the hypothesis in order to maintain consistence with the supplied data.

If this is not the case, then all the blue states are mergible with (at least) one red
state. At this stage, the algorithm merges the pair of states with the greatest evidence
of equivalence. The quantification of the evidence of equivalence takes into account
the coincidences of the output values of the states in the prefix machine and also
takes into account the depth of the red state (minimal number of transitions to reach
the red state from the initial state). When the algorithm ends, it returns the resulting
Moore machine.

It is worth noting here that the RPNI algorithm can be considered to be a red-blue
method. In fact, note that if canonical order is considered (which is the usual order
considered in the Blue-Fringe implementations) and the score computation is not
carried out in the the Blue-Fringe algorithm, then the algorithms do not differ from
each other.

The next example shows the different experimental behaviours of the Blue-Fringe
and RPNI algorithms. Note that the guided merging leads to a more efficient use of
the available data.
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Algorithm 4.3.5 Blue-Fringe algorithm
1: Input: Two disjoint finite sets (D+,D−)

2: Output: A consistent Moore Machine
3: Method:
4: M = PTMM(D+,D−) = (Q,Σ, {0, 1, ?}, δ, q0, Φ);
5: red = {λ}
6: score = ∅
7: blue = {q ∈ Q : q = δ(p, a), p ∈ red ∧ a ∈ Σ} − red;
8: while blue �= ∅ do
9: for q ∈ blue do
10: merged = False;
11: for p ∈ red do
12: if (p, q) have a score in score then
13: merged = True
14: else
15: if p and q are mergible ∧ p �= q then
16: score = score ∪ {((p, q), 100 ∗ FindScore(M, p, q) + 99 − depth(p))};
17: merged = True
18: end if
19: end if
20: end for
21: if not merged then
22: red = red ∪ {q}
23: BreakFor
24: end if
25: end for
26: if merged then
27: (p, q) = MaximumScorePair(score);
28: M = detmerge(M, p, q);
29: score = ∅
30: end if
31: blue = {q ∈ Q|q = δ(p, a) for p ∈ red ∧ a ∈ Σ} − red
32: end while
33: Return(M);
34: End Method.

Example 4.3 Let us consider the following training sets:

D+ = {b, bb, aab, aba, bbb}
D− = {bba}

Figure4.7 shows PTMM(D+,D−). If the RPNI algorithm is run with this input,
the first merge, detmerge(M, 1, 2), is successful: the merging of the pair of states
(1, 2) triggers the merging of the pairs (1, 4), (3, 5), (3, 7). The output of the RPNI
algorithm is shown in Fig. 4.8.

When the Blue-Fringe algorithm is run, initially red = {1} and blue = {2, 3}.
The score of the pair (1, 2) is 0; therefore, an evidence of 0 · 100 + 99 − 0 = 99 is
assigned to the pair of states (1, 2). The pair of states (1, 3) lead to the comparison
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Fig. 4.7 The PTMM for
D+ = {b, bb, aab, aba, bbb}
and D− = {bba}

1

2

3

4

5

6

7

8

9

10

a

b

a

b

b

b

a

a

b

Fig. 4.8 The RPNI
output when
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Fig. 4.9 The DFA obtained
by the deterministic merging
of states 1 and 3 of the
machine in Fig. 4.7
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of the output values of the pairs (3, 6) and (6, 10), with two coincidences (Φ(3) =
Φ(6) = 1 and Φ(6) = Φ(10) = 1); therefore, an evidence of 2 · 100 + 99 − 0 =
299 is assigned. The hypothesis that is obtained by the deterministic merging of
states 1 and 3 is shown in Fig. 4.9.

From red = {1} and blue = {2}, it follows that state 2 cannot be merged with any
red state, and, therefore, state 2 is promoted to the red set. Thus, red = {1, 2} and
blue = {4, 5}. The evidence computed for the pairs of states (1, 4), (2, 4), and (2, 5)
are 199, 98, and 98, respectively (note that state 1 and 5 are not mergible). This
leads to the merge of states 1 and 4. The new red and blue sets are red = {1, 2} and
blue = {5}. State 5 can only be merged with state 2, which gives the final automaton
shown in Fig. 4.10.
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Fig. 4.10 The Blue-Fringe
output when
D+ = {b, bb, aab, aba, bbb}
and D− = {bba} are
considered 1 2
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4.3.4 Inference of Teams of Automata

The last method we review in this section is the inference of teams of automata
proposed byGarcía et al. in [29]. This work takes into account that there is usually not
enough information available to infer the automaton that accepts the target language
(the characteristic sample is not available). The approach considers that different
orders in the state merging process are able to capture some features of the target
language while neglecting others. Therefore, it should be possible to improve the
classification rates by considering a set (team) of automata and a vote scheme that
weights the result obtained by each individual automaton in the set.

This approach is based on the proof that, under certain conditions, a red-blue
algorithm that consistently but arbitrarily merges states in the prefix tree acceptor of
the sample converges.

Similar to any red-blue algorithm, the approach described in [29] considers the
merging of states but arbitrarily chooses a blue state and tries to merge it with a red
one. Only when all merges are proved to not be possible is the state promoted to
the red set. This scheme improves the computational efficiency with respect to other
methods that give priority to promotion (e.g. the Blue-Fringe method).

It is worth noting here that the time complexity of the method is (O(k × n2),
where k stands for the number of automata in the team and n stands for the size of
the training set), which is better than the best algorithm so far.

Once the team of automata is obtained, several methods can be used to carry
out the recognition of test strings. In [29], the authors consider a fair vote scheme
together with several weighted vote schemes. The experimentation shows that the
method obtains better resultswhen the bigger automata (those bigger than the average
size in the inferred team) are discarded and the vote of each remaining automaton is
inversely proportional to its size.

The authors claim that the use of automata teams increases the probability of good
results since the inclusion of the characteristic sample in the input data is not usually
assured. This is corroborated by the experimental results shown in [29]. These results
are summarized in Sect. 4.5. The authors compare their approach with current state-
of-the-art algorithms. It can be seen that their method outperforms previous research
approaches.
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4.3.5 Identification in the Limit

Despite the differences between the algorithms reviewed hitherto, all three algorithms
follow a red-blue scheme. These algorithms identify the class of regular languages in
the limit. The respective proofs follow the same approach, that is, for every algorithm
and any regular language, there exists a characteristic set (or sample) of positive and
negative data. Whenever any of the three algorithms is run with such a characteristic
set as input, the algorithm outputs the minimal DFA for the language. Furthermore,
any training set that contains the characteristic set also obtains the same output.

Recently, García et al. studied the convergence of data-driven, red-blue algorithms
[23]. In their work, the authors propose a general scheme to implement red-blue
algorithms. In this general algorithm, any order can be used to traverse the states
of the automata. Therefore, it is possible to implement as many red-blue algorithms
as orders among the states can be defined. Please, note that Blue-Fringe is just an
instance of this family of algorithms.

In their work, García et al. prove the existence of a characteristic sample for any
red-blue inference algorithm (whether or not it is data-driven) that uses an a priori
fixed order to traverse the states, thus proving the convergence of any such algorithms.
This result is enunciated in Theorem 4.1.

Theorem 4.1 (García et al. [23]) Any DFA GI algorithm, such that the promotion
of states is independent from the input set, has a polynomial characteristic set, no
matter the order followed to carry out the merge of states.

In order to compute the characteristic set for any given language L, the authors
present a method that considers a minimal set of test states of the minimal DFA
A = (Q,Σ, δ, q0,F) for L. This set of test states consists of any set of strings such
that, if for every q ∈ Q, there exists only one string in the set such that δ(q0, x) = q.
Example 4.4 illustrates this concept.

Example 4.4 Let us consider the automaton in Fig. 4.11. Note that it is possible to
obtain several sets of test states by taking into account different orders to traverse the
states. For instance, according to the alphabetic order, the set S = {λ, a, aa} would
be a minimal set of test states, and, according the canonical order, S′ = {λ, a, b}
would be the minimal test set. Note that, for each state q, each one of the minimal
test sets contains the first string that reaches q based on the chosen order (alphabetic
or canonic).

Briefly speaking, for any language L, the proof of Theorem 4.1 takes into account
a prefix-closed minimal set of test states obtained according to a defined order. The
authors prove that Algorithm 4.3.6 outputs two sets D+(S) and D−(S) that are a
characteristic sample for a red-blue algorithm using this defined order to identify the
language L. Example 4.5 depicts how the algorithm works.

Example 4.5 Let us again consider the automaton in Fig. 4.11 and the prefix-closed
minimal sets of test states S = {λ, a, aa}. The following table summarizes the process
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Fig. 4.11 DFA example

a

a

a b
b

b

Algorithm 4.3.6 Algorithm to obtain the characteristic set for a language L.
Require: The minimal DFA A for L
Ensure: The polynomial characteristic set for L
1: Method
2: Let S be the minimal set of test states for A
3: E = {λ}
4: Let S′ = SΣ − S
5: Let T be a matrix indexed by the strings u ∈ S ∪ S′ and e ∈ E that stores the membership of

the string ue to the language
6: while there exist two undistinguished u, v ∈ S and a symbol a ∈ Σ such that T [ua, e] �=

T [va, e] for some e ∈ E do
7: E = E ∪ {ae}
8: end while
9: for each row u and column v in T do
10: if T [u, v] = 1 then
11: Add uv to D+
12: else
13: Add uv to D−
14: end if
15: end for
16: Return(D+, D−);
17: End Method.

of obtaining the characteristic set. For the sake of clarity, we represent the elements
in S and those in SΣ − S separately. Initially the only column available is the one
with label λ. The 1 and 0 entries in the table represent whether or not the strings
obtained by concatenation of the strings that label the row and column belong to the
language L.

λ b
λ 1 0
a 0 1

aa 0 0
b 0 0
ab 1 0

aaa 1 0
aab 0 1
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Note that taking into account just the column labelled λ, the undistinguished
elements in S are {a, aa}. It is possible to distinguish the first element using the suffix
b. Once the table is filled in, all the elements in S are distinguished; therefore, the
characteristic sample for the language is D+(S) = {λ, aaa, aabb, ab} and D−(S) =
{a, aa, aaab, aab, abb, b, bb}. Figure4.12 shows the corresponding PTMM and the
numbering of the states.

When the algorithm is run using the canonical order, then the prefix-closed
minimal set of test states to be used is S = {λ, a, b} and the sets output by the
algorithm are D+(S) = {λ, ab, ba, bbb} and D−(S) = {a, b, aa, bb, aab, abb, bab}.
Figure4.13 shows the corresponding PTMM and the order to traverse the states.

Obviously, it is not possible to ensure the inclusion of a characteristic sample in
the training set. In any case, in this context, a characteristic sample depends directly
on the promotion order of the states that a red-blue algorithm uses. This implies that

Fig. 4.12 The PTMM for
D+(S) = {λ, aaa,
aabb, ab}, D−(S) =
{a, aa, aaab, aab, abb,
b, bb} and an alphabetic
numbering of the states
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Fig. 4.13 The PTMM for
D+(S) = {λ, ab, ba, bbb},
D−(S) =
{a, b, aa, bb, aab, abb, bab}
and a canonical numbering
of the states
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the same training set may or may not be representative depending on the promotion
order implemented.

Thus, the consideration of several arbitrary orders (and therefore a team of
automata) is convenient and motivates the approach presented in [29]; here we note
that the experimental results confirm the authors’ hypothesis.

Let us finally note the similarity between the inference of teams of automata and
the Blue-Fringe algorithm. In essence, Blue-Fringe looks for evidence of the best
order to merge the states. The team approach uses different orders in order to obtain a
team of automata and classifies any test string by combining those inferred automata.

4.4 Inference of Non-deterministic Automata

Recently, a new line of work has proposed the inference of non-deterministic
automata (NFA) instead of the usual deterministic model. In 1994, Yokomori pub-
lished a paper that proposes a method that considers queries to an oracle and coun-
terexamples [16, 47]. Coste and Fredouille also studied the inference of NFAs [13–
15] proposing a method to infer unambiguous finite automata.

Later, Denis et al. [19, 21] focused their work on the inference of a subclass of
NFA, the Residual Finite State Automata (RFSA). The consideration of this subclass
of NFAs is interesting because it has been proved that there is a unique canonical
RFSA for each regular language. In [19], Denis et al. propose an algorithm (known
as the DeLeTe2 algorithm) that converges to a RFSA. Unfortunately, the hypothesis
that the algorithm outputs is not always consistent with the supplied training data. To
solve this drawback, the authors propose the DeLeTe2 program [21], which always
returns a consistentmachine. In the samepaper, the authors presented an experimental
comparisonwith respect to otherwell-knownmethods such asRPNI andBlue-Fringe.
The experimentation considers data from languages represented byNFAs and regular
expressions, and the results obtained show that DeLeTe2 performs better than the
RPNI and Blue-Fringe methods.

Among the recent work on NFA inference, it is worth citing some works in the
field. In [10, 33, 35, 36, 40, 43] results are presented on theminimality and reduction
of automata. Other papers study methods that converge to a RFSA [3]. In [1, 14, 15],
the authors propose methods to infer Unambiguous Finite Automata (UFA). There
are also works that propose extensions of the RPNI scheme that consider language
inclusion relations as a way to increase the training data [26]. Finally, in [46], the
authors study the inference of NFAs by juxtaposition of subautomata.

Other works that are related to this topic are [27, 28]. These papers study the
influence of the merging order on the convergence of the algorithms. It is proved
that whenever some more general conditions are fulfilled, convergence is assured,
regardless of the order in which the non-deterministic merges have been done.
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Fig. 4.14 Example from [20]. A1 is an automaton that recognizes L = Σ∗0Σ , but it is neither
a DFA nor a RFSA (note that �u ∈ Σ∗ such that RA1

3 = u−1L). The automaton A2 is a DFA that
recognizes L (it is also a RFSA by definition). A3 is the canonical RFSA for L

4.4.1 Inference of Canonical NFAs

Given a language L, a residual finite state automaton (RFSA) [20] for the language
is a finite automaton A that accepts the language L and, for any state q, there exists a
word u such that RA

q = u−1L. The saturated RFSA of a minimal DFA A is defined as
the subautomaton of the universal automaton UL that is induced by the set of states
of the automaton A.

In other words, a RFSA A is a non-deterministic automaton such that all its
states define a residual language of L(A). Note that every DFA fulfills the conditions
for being RFSA. Figure4.14 shows three automata for the same regular language
L = Σ∗0Σ . Note that there is a NFA, a DFA, and the canonical RFSA, all of which
identify L.

Two relationships that are defined over the set of states of an automaton link the
RFSA with GI. Let D = (D+,D−) be a set of samples and let u, v be two strings
in Pr(D+). First, the relation ≺ is redefined as u ≺ v if there is no string w such
that uw ∈ D+ and vw ∈ D−. Note that this is important because, in a grammatical
inference process, right languages of the states are unknown. Second, if u ≺ v and
v ≺ u, the function obviously different is defined as od(u1, u2,PTMM(D+,D−)) =
False (non-obviously different using Gold’s terms). In the sequel, we will denote this
condition as u � v.

It is well known that every regular language has a finite set of residual languages
(seeNerode’s theorem in any language theory text, for instance [34]). It is also known
that every regular language has aDFA that recognizes the language and that any given
DFA is also a RFSA. Therefore, any regular language can be represented using a
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RFSA [20]. Among the RFSA that identify a regular language, the smallest one,
the canonical RFSA, is of special interest. Formally speaking, for a given language
L ⊆ Σ∗, the canonical RFSA of L is the automaton A = (Q,Σ, δ, I,F) where:

• Q = {u−1L : u−1L is prime, u ∈ Σ∗}, where prime quotients are such that they
cannot be obtained by the union of other quotients.

• δ(u−1L, a) = {p ∈ Q : p ⊆ (ua)−1L}
• I = {p ∈ Q : p ⊆ L}
• F = {p ∈ Q : λ ∈ p}

The canonical RFSA for a given language L is unique, and it is the smallest RFSA
that recognizes L (taking into account the number of states). If RA

q = u−1L, then the
string u is said to be characteristic of state q. The size of the canonical RFSA is upper
bounded by the size of the minimal DFA for the language and lower bounded by the
minimal equivalent NFAs [20].

Under these conditions, several situations may occur: the canonical RFSA may
be exponentially smaller than the minimal equivalent DFA; both automata may be of
the same size and there may be an exponentially smaller NFA than both the minimal
DFA and the canonical RFSA; there may be a minimal NFA with the same number
of states but with few transitions. Taking into account the length of the characteristic
strings, it is possible for the smallest characteristic string of a given state to have an
exponential length with respect to the size (number of states) of the canonical RFSA.
This may occur when the characteristic strings are computed taking into account the
minimal DFA and also where this automaton has an exponential size with respect to
the canonical RFSA.

All these situations show that any inference algorithm that converges to the canon-
ical RFSA does not ensure the output to be minimal. Despite this, it is possible to
improve the results whenever the target language L is characterized by the fact that
the DFA for L is made up of many composite residual languages. It remains to be
studied how common such languages are. The practical use of RFSAs depends on
the results of that study.

Denis et al. studied the inference of RFSAs in [22]. In their work, the authors
propose a method to infer residual automata from positive and negative data. The
authors claim this method converges to the saturated subautomata of the minimal
DFA. The main drawback of the method is that, in some circumstances, the method
does not guarantee consistency. The implementation of the method provides a solu-
tion to this drawback, but the implementation does not completely correspond to
the algorithm. Section4.4.1.1 reviews the initial method, which will hereafter be
referred to as the DeLeTe2 algorithm. Section4.4.1.2 reviews the implementation of
the method, which will be referred to as the DeLeTe2 procedure.

4.4.1.1 The DeLeTe2 Algorithm

TheDeLeTe2 procedure is shown inAlgorithm4.4.1.Wehave rewritten the algorithm
in [22] in order to relate it with the other algorithms mentioned above. We point out
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that (leaving aside implementation details)Algorithm4.4.1 and themethod described
in [22] are equivalent.

As the authors state in [22], this automata can be obtained by saturating the
minimal DFA A and reducing all the states that are greater than p, where p is the
greatest prime state in A.

The algorithm looks for inclusion relations among residual languages and consid-
ers them using a saturation operator. As commented above, this method is of special
interest when the target automaton has many non-prime residual languages. In this
situation, many inclusion relationships may be found, and this leads to a smaller
hypothesis. Whenever the target automaton has many prime residual languages, the
size of the hypothesis and the size of theminimalDFA is expected to be the same [22].

Algorithm 4.4.1 DeLeTe2 algorithm.
1: Input: Two finite sets of data D+ ∪ D− over Σ

2: Output: A finite automaton
3: Method:
4: Let Pref be the set of prefixes of D+ ∪ D−
5: R = {λ}
6: B = (RΣ − R) ∩ Pref
7: Q = R
8: I = δ = F = ∅
9: A = (Q,Σ, I, λ,F)

10: while B �= ∅ do
11: I = {q ∈ Q : q ≺ λ}
12: F = Q ∩ D+
13: for p ∈ R do
14: δ = {(p, a, r) : r ∈ R ∧ r ≺ pa}
15: end for
16: if A is not consistent with respect to (D+,D−) then
17: Let C = {q ∈ B : �p ∈ R, p � q}
18: if C = ∅ then
19: Return(A)

20: end if
21: choose q ∈ C
22: R = R ∪ {q}
23: B = (RΣ − R) ∩ Pref
24: else
25: B = ∅
26: end if
27: end while
28: Return(A)

29: End Method:

It is worth noting that the TBG method (Algorithm 4.3.1) is closely related to
the DeLeTe2 algorithm. Also note that when the TBG algorithm is going to add a
transition, say for a state s and a symbol a, the algorithm selects one of the possible
states which is not distinguishable from sa (line 16 in Algorithm 4.3.1). When the
DeLeTe2 algorithm builds the set of transitions, it adds a transition (p, a, r) for each
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Fig. 4.15 The minimal
DFA for
L = λ + 00+ + 0∗1(0 + 1)+ 0
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state r ≺ pa. Thus, if line 16 of the TBG algorithm is modified to work the way
DeLeTe2 works, then the TBG algorithm would output the minimal saturated DFA
for the language (when a characteristic sample is input).

The reason why the DeLeTe2 algorithm can output smaller automata than the
minimal DFA is that this algorithm builds a hypothesis whenever a new state is
added. The algorithm ends when one of these hypotheses is consistent with the data.
Nevertheless, an important drawback of theDeLeTe2 algorithm is that, in some cases,
it outputs non-consistent automata. The following example illustrates this.

Example 4.6 Let us consider the language L = λ + 00+ + 0∗1(0 + 1)+. The mini-
mal DFA for L is shown in Fig. 4.15.

When the sets D+ = {λ, 00, 10, 11, 010} and D− = {0, 1, 01, 001} are provided,
theRPNI algorithm outputs the automaton shown in Fig. 4.3. Note that the automaton
does not accept the string 10111 that belongs to L. Although not explicitly considered
in the DeLeTe2 algorithm, in order to illustrate the run of the algorithm we will take
into account thePTMM of the sample shown Fig. 4.1 (if the state 5 is considered to be
negative). Thus, theDeLeTe2 algorithm first considers the state λ. The algorithm sets
Q = λ and also adds this state to the set of initial states (it fulfills thatλ ≺ λ) and to the
final states (λ is inD+). The algorithm takes into account the relationships among the
state λ and the set of blue states {0, 1}. Since no relationship is detected, no transitions
are added. Then, the first hypothesis is the automaton A = ({λ}, {0, 1}, {}, {λ}, {λ}).
Since this hypothesis is not consistent with the data, a new state is added.

When thefirst state that is obviously distinguishable from the those inQ (according
a canonical order) is considered, the state 0 is taken into account. The relationships
that are to be analyzed consider the sets of states {λ, 0} and {1, 00, 01}. Thus, it is
detected that 0 ≺ 1, λ � 00, 0 ≺ 00 and 0 � 01. The second hypothesis is shown in
Fig. 4.16.

0,1

0

0,1

Fig. 4.16 The second hypothesis of the DeLeTe2 algorithm. Note that the automaton does not
accept 001
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Fig. 4.17 The RFSA output by the DeLeTe2 algorithm for D+ = {λ, 00, 10, 11, 010} and D− =
{0, 1, 01, 001}
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Fig. 4.18 The automaton output by the DeLeTe2 algorithm using. D+ = {λ, 00, 10, 11, 010} and
D− = {0, 1, 001}. Note that the automaton is not consistent with the data

This hypothesis is also non-consistent with respect to the data, and the next added
state is 1. The relationships among the sets of states {λ, 0, 1} and {00, 01, 10, 11} are
to be taken into account. Thus, it is detected that 1 � 01, λ � 10, 0 ≺ 10, 1 ≺ 10,
λ � 11, 0 ≺ 11 and 1 ≺ 11. The third hypothesis, which is shown in Fig. 4.17, is
consistent with the data and therefore is output. Please note that this automaton
accepts L and that it is smaller than the minimal DFA.

Let us consider the same example but where the string 01 does not belong to D−.
Figure4.18 shows the automaton output in this case. This automaton is not consistent
with the data. It accepts the string 001 which is in D−.

Convergence of the Inference of RFSAs To prove the convergence of DeLeTe2,
it is possible to use an argument that is similar to the one used to prove the RPNI
convergence. Therefore, it is possible to build a characteristic sample that ensures
accessibility to all of the states of the target automaton and that contains information
of the possible relations of inclusion.

In [22], the authors prove that the number of strings in the characteristic sample is
polynomial with respect to the size of the minimal DFA for the language. Note that,
for a given language L, the minimal DFA for L can be exponentially bigger than the
canonical RFSA for L.
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4.4.1.2 An Improved Implementation

As shown above, the DeLeTe2 algorithm does not guarantee consistence. In order
to solve this drawback, the authors propose an improved implementation of the
algorithm, which is usually referred to as theDeLeTe2 procedure. The authors do not
study the theoretical properties of the implementation, and experimentation cannot
guarantee the convergence of the DeLeTe2 procedure to the saturated subautomata
of the minimal DFA.

The DeLeTe2 procedure also represents the hypothesis obtained by RFSAs. Its
source code is available on the home web page of the authors. To our knowledge,
there is only one work that has studied the behaviour of this implementation [2].
In that work, the author takes into account the source code and detects that both
(the DeLeTe2 algorithm and the DeLeTe2 procedure) behave differently. The main
features of the DeLeTe2 procedure are summarized below:

• It is a regular language GI algorithm based on state merging.
• The algorithm considers the PTMM of the training set and outputs a RFSA. The
algorithm takes advantageof several properties of the residual languages associated
to each state. Specifically, the transitivity of the inclusion relationship is very
useful.

• The hypotheses that the algorithm obtains are always consistent with respect to
the supplied data.

The DeLeTe2 procedure strategy considers each pair of states of the PTMM, in
canonical order, in order to determine the relationship of the states, that is, the inclu-
sion, no inclusion, or unknown relation of the residual languagest that are associated
to the states of the pair.

When an unknown relationship is going to be considered, it is temporarily set
to inclusion and propagated. If this assumption generates inconsistency, the initial
assumption is discarded, along with any other relationship found by the triggered
one. We note that this kind of assumption may imply several consequences, such as
the definition of unknown outputs of the PTMM or the discovery of new inclusion
or no inclusion relationships (among others). The time complexity of the DeLeTe2
procedure is bounded by O(n4).

4.4.2 Inference by Juxtaposition of Automata

One advantage of using non-deterministic models to infer regular languages is that
this model is more concise than the deterministic one. It is worth noting that, in this
sense, the use of RFSA does not ensure that we obtain good (small) representations
of the target languages. This is because, for a given language, the size of the minimal
RFSA can be exponentially bigger than the size of a minimal NFA for the same



4 On the Inference of Finite State Automata … 99

language. As an example, consider the following family of languages indexed by n:

{0i : i has a divisor greater than 1 and lower than n}

In this family, the number of states of the NFAs grows polynomially with respect
to n, while the number of states of the RFSAs grows exponentially with respect to n.

Algorithm 4.4.2 Word Associated Subautomata Regular Inference (WASRI) general
scheme.
1: Input: Two finite sets D+ = {x1, x2, . . . , xn} and D−
2: Output: A finite automaton consistent with the input sets
3: Method:
4: A = (Q,Σ, δ, I,F) where Q = δ = I = F = ∅
5: for i = 1 to n do
6: if xi /∈ L(A) then
7: for at least j = 1 do
8: Infer an automaton Aj

i consistent with D+ = {xi} and D−
9: A = A � Aj

i
10: //let us recall that � stands for disjoint union of the automata//
11: end for
12: end if
13: end for
14: for all component (automaton) Ai ∈ A do
15: if Component Ai is not necessary to accept D+ then
16: Remove the component Ai from A
17: end if
18: end for
19: Return A
20: End Method.

In [46], the authors propose a family of algorithms that infer the regular language
class in the limit. The general scheme of this family is shown in Algorithm 4.4.2.
Briefly speaking, for each string of the positive sample u, the method obtains at least
one irreducible consistent automaton (i.e., an automaton such that the merging of
any two states in it makes the resulting automaton accept negative strings). In order
to infer such an automaton, the method takes into account the automaton that only
recognizes the positive string u and merges states while it is possible. The automaton
to be output is obtained by disjoint union of the inferred automata.

This method is quite flexible because the input parameters of the method are the
number of automata to infer for each word as well as the order of state merging. The
authors prove that convergence is ensured even if the these parameters change.

The method also includes an option to filter the collection of automata obtained
(the loop in line 14 is just one possibility to do so). For example, if several automata for
eachword have been obtained (using differentmerging order criteria), it is possible to
consider a criterion to select one (or some) of them (for instance, the smallest in size).
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Algorithm 4.4.2 implements this filter by the deletion of some of the automata in the
output collection (of course, as long as the resulting automaton still accepts D+).

The complexity of the WASRI algorithm is O(kn2|D−|), where k is an integer,
n is the length of the longest word of D+, and |D−| is the sum of the lengths of
the negative words of the sample. It is worth mentioning that the time complexity
depends on the length of each word and not on the sum of the lengths of the input
(i.e., the size of the prefix tree acceptor of the sample). This fact makes WASRI a
very fast algorithm.

An interesting example to illustrate the behaviour of WASRI is the language of
strings in 0∗ whose length is a multiple of either 2, 3, or 5. The minimal DFA for
L has the same number of states as the canonical RFSA (30 states). Taking into
account the sets D+ = {02, 03, 05} and D− = {0, 011}, Algorithm 4.4.2 returns an
automaton with 10 states that identifies the language. We also note that RPNI and
DeLeTe2 (runningwith the same input) return automata that are far fromconvergence.

Convergence of the WASRI Algorithm To prove the convergence of any WASRI
implementation, for any given target language L, the authors consider the universal
automaton for the languageUL. This automaton allows a universal sample D+ to be
computed. It is proved that, fromMA(D+) every irreducible automaton in L that can
be obtained accepts the target language. The authors also show that this theoretical
condition can be replaced by the construction of a (finite) set of negative samples
D−, which contains at least one string in merge(p, q,MA(D+)) − L for any pair of
states p and q inMA(D+).

In other words, when D− is taken into account, for any string in L, it is possible
to obtain an irreducible automaton that accepts a sublanguage of the target language.
This process can be iterated as many times as necessary using the strings inD+. Note
that convergence is ensured because any automaton that recognizes a sublanguage
of L can be projected into the universal automaton for L and there exists a finite set
of subautomata of the universal automaton.

4.4.3 Order-Independent Merging Inference

In [28], the authors propose a state-merging algorithm that, given a universal sample
as input, converges to a nondeterministic finite automaton that recognizes the target
language independently of the order in which the states are merged.

The definition of universal sample is closely related to the notion of automata
irreducibility, where an automaton A is said to be irreducible if the automaton is such
that themerge of any pair of states leads to an automaton that accepts a super-language
of the target language. The authors extend this notion and define an automaton A as
being irreducible in a regular language L if and only if L(A) ⊆ L and the merge of
any pair of states leads to an automaton that accepts a super-language of L.
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Taking this into account, for every regular language L, a universal sample for L is
a finite set D+ ⊆ L with the property that any partition over the maximal automaton
for D+ that produces an irreducible automaton in L produces an automaton that
identifies L.

It is worth noting that, while the irreducibility of an automaton in a regular target
language L needs L to be known, it is possible to prove that it is enough to achieve
irreducibility using only a finite set of negative samples.

In [28], the authors use some theoretical tools (especially the universal automaton
for the language) that help to prove the convergence of the method. These tools
also help to clarify and simplify ideas about the convergence of other inference
algorithms, including those that may be proposed in the future. Even though different
orders of merging states may lead to different hypotheses (automata), note that, when
convergence is achieved, the language accepted by those automata will be the target
language.

In the same work, the authors use the theoretical results to propose the Order-
Independent Learning (OIL) family of algorithms. This scheme is described in Algo-
rithm 4.4.3. The authors prove that this algorithm identifies the family of regular
languages in the limit.

When a set of blocks of positive and negative samples for the target language L is
given to the algorithm, an automaton that recognizes L in the limit is obtained. Note
that a block may contain just a single word, so the algorithm is presented here in a
very general way.

Briefly, the method first builds the maximal automaton for D1+ and merges the
states in a random order until the algorithm obtains an irreducible automaton in D1−.
Then the algorithm performs the following steps for every new block:

1. If the existing automaton is consistent with the new block, nothing has to be done.
2. If it is consistent with the new set of negative samples, the algorithm considers

only the positive words that were not accepted by the previous hypothesis. Then
the algorithm builds the maximal automaton for the new set of positive words,
adds the new negative words to D−, and finds a partition of the states of the
automaton until an irreducible automaton in D− is obtained.

3. Otherwise, the algorithm runs a recursive call taking the following into account in
each step: the corresponding set of positive samples and the whole set of negative
samples. This part of the algorithm (line 19) overcomes the fact that even though
wemay have a universal sample, the negative samplesmay not lead to consistency.
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Algorithm 4.4.3 Order-Independent Learning (OIL) general scheme.
1: Input: A sequence of finite sets 〈(D1+,D1−), (D2+,D2−), . . . , (Dn+,Dn−)〉
2: Output: A finite automaton consistent with the input sets
3: Method:
4: A = MA(D1+)

5: D− = D1−
6: Find a partition π of the states of A irreducible in D−
7: A = A/π

8: for i = 2 to n do
9: D− = D− ∪ Di−
10: if A is consistent with (Di+,Di−) then Continue end if
11: if A is consistent with Di− then
12: S+ = Di+ − L(A)

13: A′ = (Q′,Σ, δ′, I ′,F ′) = MA(S+)

14: A = (Q � Q,Σ, δ � δ′, I � I ′,F � F ′)
15: //where � stands for disjoint union //
16: Find a partition π of the states of A irreducible in D−
17: A = A/π

18: else
19: A = OIL(D1+,D−), (D2+,D−), . . . , (Di+,D−))

20: end if
21: end for
22: Return A
23: End Method.

Note that Algorithm 4.4.3 is presented in a very general way and there are many
possible ways to obtain a partition of the set of states (lines 6 and 16 of the algorithm).

One possible implementation of the algorithm could consider a random ordering
of the states inMA(D1+). Thus, the algorithm would analyze the merging of the states
in the chosen order in order to obtain an irreducible automaton in D−.

At every step, the algorithm considers only those words of the new block (e.g.Di+)
that are not accepted by the hypothesis at that moment. The algorithm then proceeds
to analyze the merging of the states (according to a random ordering) of the maximal
automaton obtained from the remaining words.

Whenever the current hypothesis is not consistent with the new block of negative
samples, the previous hypothesis is discarded. A recursive call takes into account the
whole set of negative samples seen up to that point. The following example illustrates
this implementation.

Example 4.7 Let L = a∗ + b∗, and let the input sample be divided into the following
blocks:

D1+ = {a, bb, aa} D1− = {ab, bba}
D2+ = {b, aaa} D2− = {aaab, aab}

D3+ = {λ, bbb, aaaa} D3− = {abb, ba}

The OIL algorithm starts considering the first block (D1+,D1−). The maximal
automaton MA(D+) for this block is shown in Fig. 4.19, in which the order among
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Fig. 4.19 The maximal
automaton for the sample
D1+ = {a, bb, aa} with a
randomly generated order of
the states

4 1

2 8 5

7 3 6

a

b b

a a

Fig. 4.20 The first
hypothesis obtained by OIL

1 8 5
b b

a

Fig. 4.21 The automaton
that considers the relevant
information in the second
block of samples

1 8 5 9 10
b b

a

b

the states has been randomly generated. The algorithm follows this order and makes
all the possible merges. Thus, states 1 and 2 are (non-deterministically) merged as
well as states 1 and 3, states 1 and 4, states 1 and 6, and states 1 and 7.

Note that, in this process, state 1 cannot be merged with state 5 because it would
lead to accepting the word bba ∈ D1−. The pair of states 1 and 8 cannot be merged
for a similar reason. The algorithm obtains the automaton shown in Fig. 4.20, which
is irreducible with respect to D1−.

Once the first hypothesis has been obtained, the algorithm starts processing the
second block. First, the algorithm checks for consistency with the current hypothesis.
Thus, the automaton shown in Fig. 4.20 is consistent with the negative samplesD2− =
{aaab, aab}. Second, the algorithm selects those strings inD2+ that are not accepted by
the current hypothesis.With the remaining positive strings, a newmaximal automaton
is built and incorporated into the hypothesis. Note that the ordering of the states has
been randomly generated, starting with N + 1, where N is the number of states of
the maximal automaton for the previous block (MA(D1+)). The resulting automaton
is shown in Fig. 4.21.

Now, the algorithm, which is controlled by the set of negative samples (i.e.D− =
D1− ∪ D2− = {ab, bb, aab, aaab}), tries to merge the states in this order. The possible
merges at this point are state 1 with state 10, and state 5 with state 9. Note that the
merging of state 1 with state 9 would cause the word ab to be accepted. The merging
of the previous states produces the second hypothesis depicted in Fig. 4.22.
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1 8 5
b b

a

b

Fig. 4.22 The second hypothesis obtained by OIL

1 2a b

Fig. 4.23 The final automaton output by OIL

The algorithm starts the processing of the third block of samples. The algorithm
checks the third block of the sample for consistency with the current hypothesis and
detects that there are words in the negative sample that are accepted by the hypothesis
(for instance abb). Therefore, the algorithm processes the positive samples D1+, D2+,
and D3+ again. This process is controlled by the whole set of negative samples, that
is, D− = {ab, abb, aab, aaab, abb, ba}.

If we consider the previous enumeration of the states in themaximal automaton, in
this run states 1 and 2 cannot be merged since the resulting automaton would accept
abb. States 1 and 5 cannot be merged either since bba would be accepted. States 1
and 3, states 1 and 4, states 1 and 7, states 2 and 5, and states 2 and 8 are merged.
Figure4.23 shows the output of the algorithm that recognizes the target language.

Convergence of the OIL Algorithm Despite the non-deterministic nature of any
implementation of OIL, the convergence of this algorithm is proved in [28]. The
argument is quite similar to the one used to prove the convergence ofWASRI. Thus,
for any given target language L, the authors consider the universal sample D+ of L.

As described above, theOIL algorithm considers a pair of sets of positiveDi+ and
negative samplesDi− in each iteration. Let us denote the sets of positive and negative
information available at a given iteration i with D≤i

+ and D≤i
− , respectively.

First, note that the universal sample for the target language L will eventually be
available after n iterations, that is D+ ⊆ D≤n

+ . Second, as stated in Sect. 4.4.2, there
exists a finite subset of negative samples D− that avoids any undesired merging of
states over the maximal automaton MA(D+). This set will also be available after
m ≥ n iterations (D− ⊆ D≤m

− ).
Note that OIL can output an automaton that recognizes L whenever enough neg-

ative samples are provided. If convergence has not yet been achieved before the
m iteration, then the current hypothesis will accept words that are not in L, and,
therefore, the hypothesis will not be consistent with D≤m

− . In this case, the algorithm
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runs a recursive call taking into account D≤m
− and D≤m

− , which will return a correct
automaton.

4.5 (Experimental) Comparison of Different Approaches

In order to compare the behaviour of their results, in [22], Denis et al. built a cor-
pus of data. This corpus has been subsequently used by several other authors, and,
therefore, it is quite useful for comparing a variety of GI algorithms. This corpus
contains data for 120 languages represented by NFAs and 120 represented by regular
expressions. Each set of 120 languages was processed and distributed into four sets
of 30 languages. A training set of 50 strings was generated for each language in
the first set, and training sets of 100, 150 and 200 strings were generated for each
language in the second, third, and fourth sets. The maximum length of the strings
was set to 30.A test set of 1000 strings was also generated for every language in the
corpus. Each set was guaranteed to contain, at least, 20% of positive and negative
strings.

Coste and Fredouille [14] extend this dataset to consider languages represented
by DFAs and Unambiguous Finite Automata (UFAs). Their dataset is built following
the distribution described above. Therefore, this new dataset contains information
for 240 target languages (120 represented by DFAs and 120 represented by UFAs).
Each one of the test sets for each language also contains 1000 strings.

In order to test the evolution behaviour of the algorithms with respect to the size
data available, the training sets should be incremental. Note that neither of these
corpora are incremental, and, furthermore, each set may contain several occurrences
of the same string. In order to solve this problem, in [2], the author takes into account
the distinct languages represented in these corpora and generates new training and
test data for each language. The new corpus considers 102 languages represented
by regular expressions, 120 languages represented by NFAs, and 119 languages
represented by DFAs. For each of these languages, a training set of 500 strings
was generated, labelled by the target language and incrementally distributed into
five sets of 100, 200, 300, 400, and 500 strings. In addition, a disjoint set of 1000
strings was also generated to be used as the test set. The length of all the strings varied
from0 to 18. This corpus is the one that is used in the experimental comparison below.

In order to evaluate the learning rate, we first show the results of a naive baseline
algorithm, the Majority algorithm. This algorithm considers the number of posi-
tive and negative strings in the training set. Thus, if there are more positive than
negative strings, the algorithm classifies the whole test set as positive (otherwise, it
accordingly classifies the whole test set as negative). Table4.1 shows the results.

The first comparison we show includes the RPNI, Blue-Fringe andDeLeTe2 algo-
rithms (data from [2]). Table4.2 shows the results. Taking into account the subset
of regular expressions, all three algorithms obtained very good recognition rates.
Nevertheless, DeLeTe2 obtained the best results even with the smaller training sets.
DeLeTe2 was also the best algorithm when the NFA subset was considered. Note
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Table 4.1 The results of the (naive) baseline algorithm using the experimental dataset

Tr. set ident. Majority Rec. rate (%)

er_100 66.33

er_200 66.35

er_300 66.46

er_400 66.27

er_500 66.16

nfa_100 66.94

nfa_200 67.00

nfa_300 66.97

nfa_400 67.04

nfa_500 67.03

dfa_100 72.13

dfa_200 72.13

dfa_300 72.13

dfa_400 72.13

dfa_500 72.14

Table 4.2 The experimental results and average size of the inferred automata for the Blue-Fringe,
RPNI, and DeLeTe2 algorithms

Blue-Fringe RPNI DeLeTe2

Rec. rate (%) av. |A| Rec. rate (%) av. |A| Rec. rate (%) av. |A|
er_100 87.94 10 83.35 12.39 91.65 30.23

er_200 94.81 9.97 93.91 11.52 96.96 24.48

er_300 96.46 11.05 96,32 11.17 97.80 31.41

er_400 97.74 10.43 97.45 10.98 98.49 27.40

er_500 98.54 10.47 98.11 10.95 98.75 29.85

nfa_100 68.15 18.83 66.50 20.31 73.95 98.80

nfa_200 72.08 28.80 69.27 32.35 77.79 220.93

nfa_300 74.55 36.45 72.90 40.86 80.86 322.13

nfa_400 77.53 42.58 74.59 49.75 82.66 421.30

nfa_500 80.88 47.54 76.75 55.91 84.29 512.55

dfa_100 69.12 18.59 66.29 20.27 62.94 156.89

dfa_200 77.18 25.83 71.01 31.11 64.88 432.88

dfa_300 88.53 25.10 80.61 33.33 66.37 706.64

dfa_400 94.42 21.36 87.39 31.90 69.07 903.32

dfa_500 97.88 18.75 91.67 29.61 72.41 1027.42
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that RPNI is the algorithm that obtained the lowest recognition rates with this sub-
set. Finally, we considered the DFA subset. With this subset, the algorithm with the
best behaviour up to that point becames the worst one and Blue-Fringe became the
best one.

When the recognition rates obtained with the baseline algorithm are compared,
note that the recognition rates of the three algorithms using the subset of regular
expressions beat the rates obtained by the baseline algorithm. When the NFA subset
is taken into account, on the one hand, both the RPNI and the Blue-Fringe algorithms
had poor learning rates using the smaller training sets of the corpus.On the other hand,
DeLeTe2 notably improved the results of the baseline. Finally, the smaller training
sets of the DFA subset were apparently not big enough for any of the algorithms,
and all three obtained even lower recognition rates than the baseline. Despite this,
RPNI and Blue-Fringe quickly improved their results and obtained close to 100%
results with the bigger training sets. Nevertheless, DeLeTe2 was only able to reach
the baseline rate with the bigger set.

In Table4.3, we also show the comparative results of an instance ofWASRI, Blue-
Fringe, and DeLeTe2. This data is from [45] and considers the regular expression
and the NFA subsets of the corpus.

Before commenting on the results, in order to properly compare the behaviour of
the algorithms, the instance of WASRI used in the experiments should be described
in detail. In this experimentation, two automata were inferred for each string in
the training set. The first inference process considered the states of the maximal
automaton for the string in canonical order. The second inference process considered
the states in inverse canonical order. The smaller automaton was chosen. It should
be noted that WASRI was the algorithm that best behaved with small training sets.
An overall comparison shows thatWASRI behaved better than Blue-Fringe, and also
behaved in a way that is quite similar toDeLeTe2with respect to the recognition rates

Table 4.3 The experimental results of an instance of WASRI compared with the Blue-Fringe and
the DeLeTe2 algorithms

Blue-Fringe WASRI DeLeTe2

Rec. rate (%) Rec. rate (%) av. |A| Rec. rate (%)

er_100 87.94 93.4 25.3 91.65

er_200 94.81 95.7 33.4 96.96

er_300 96.46 96.2 47.0 97.80

er_400 97.74 97.1 51.3 98.49

er_500 98.54 97.6 48.6 98.75

nfa_100 68.15 74.7 82.9 73.95

nfa_200 72.08 77.1 170.4 77.79

nfa_300 74.55 79.7 267.2 80.86

nfa_400 77.53 81.1 350.1 82.66

nfa_500 80.88 83.5 431.2 84.29
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Table 4.4 The experimental results ofOIL comparedwith theBlue-Fringe andDeLeTe2 algorithms

Blue-
Fringe Rec.
rate (%)

OIL DeLeTe2 Rec.
rate

Smallest |A| Fair vote

Rec. rate (%) av. |A| Rec. rate (%)

er_100 87.94 93.79 8.27 93.32 91.65

er_200 94.81 97.83 7.80 97.27 96.96

er_300 96.46 98.77 7.68 98.68 97.80

er_400 97.74 99.20 7.55 99.10 98.49

er_500 98.54 99.66 6.82 99.53 98.75

nfa_100 68.15 75.00 21.46 76.42 73.95

nfa_200 72.08 78.05 35.23 79.94 77.79

nfa_300 74.55 81.27 45.81 82.94 80.86

nfa_400 77.53 83.87 52.40 85.58 82.66

nfa_500 80.88 85.64 58.81 87.06 84.29

dfa_100 69.12 60.17 28.01 60.34 62.94

dfa_200 77.18 63.05 49.63 63.54 64.88

dfa_300 88.53 66.01 65.17 67.41 66.37

dfa_400 94.42 69.12 78.66 70.53 69.07

dfa_500 97.88 72.29 88.30 73.66 72.41

achieved. With regard to the size of the automata inferred, note that this instance of
WASRI obtained smaller automata than DeLeTe2, but bigger than RPNI and Blue-
Fringe.

In [27], the authors carried out a comparative experimentation of OIL and other
algorithms. Due to the non-deterministic nature of OIL five runs of the algorithm
were carried out in their work for each language in the corpus. The results of two
different approaches are given: the first approach considers the classification rate of
the smallest automaton obtained; the second approach carries out the classification
using a poll where the weight of the vote of all the automata is the same. Table4.4
summarizes these results.

Using the regular expression or NFA subsets of the corpus, both approaches
behaved in a similar way and improved previous results obtained by RPNI, Blue-
Fringe, DeLeTe2, or WASRI. Nevertheless, the performance of OIL with the DFA
subset was quite similar to the performance ofDeLeTe2 and far from other algorithm
rates.

We recall the results obtained by the inference of a team of automata. In [29], the
authors proposed their method and used the same dataset described above to compare
the experimental behaviour of the approach with Blue-Fringe and DeLeTe2. Several
sizes of the team were considered, and the classification was carried out taking into
account a weighted vote scheme (inverse to the square of the sizes of the automata).
An option to select those automata that were smaller than the average size of the team
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Table 4.5 The results obtained by the inference of teams of automata method

Set Team Inference (81 FA) Blue-Fringe DeLeTe

No select. Sel. FA size smaller average

cl. rate cl. rate #FA

er_100 95.19 95.55 50.00 87.94 91.65

er_200 98.32 98.45 58.24 94.81 96.96

er_300 98.78 98.87 60.58 96.46 97.80

er_400 99.24 99.32 63.45 97.74 98.49

er_500 99.42 99.49 65.91 98.54 98.75

nfa_100 77.24 77.45 40.51 68.15 73.95

nfa_200 80.96 81.25 41.28 72.08 77.79

nfa_300 83.46 83.77 41.26 74.55 80.86

nfa_400 85.14 85.50 41.47 77.53 82.66

nfa_500 86.71 86.98 42.25 80.88 84.29

dfa_100 76.68 76.83 40.48 69.12 62.94

dfa_200 83.13 84.04 36.00 77.18 64.88

dfa_300 90.04 91.59 36.00 88.53 66.37

dfa_400 95.24 96.48 36.31 94.42 69.07

dfa_500 98.16 98.68 37.69 97.88 72.41

was also studied. Table4.5 shows the results obtained using a team of 81 automata.
This table shows the size of the resulting teamwhen the bigger automata are discarded
(column #FA). Note that regardless of whether or not the selection of automata was
carried out, the approach improved the classification rates obtained by both Blue-
Fringe and DeLeTe2.

As Table4.5 shows, comparing the average size of the automata inferred and
leaving aside the inference of teams of automata where the size depends on the
size of the team, the smallest automata were obtained by the Blue-Fringe algorithm
followed by the RPNI and OIL algorithms (which obtained the smallest automata
for the regular expression subset). The methods that obtained the largest hypotheses
wereWASRI and DeLeTe2.

4.6 Conclusions

The inference of finite deterministic automata has been thoroughly studied since
it was proposed in the 1970s. As a result of this work, many methods have been
proposed that provide solutions to the problemwith good time and space complexity.

The consideration of different orderings in the process of state merging has been
proved to be relevant, so these can be applied to practical tasks. Nevertheless, no
order has been proved to be the best, and the final selection depends on the nature
and characteristics of the practical task. Recently, it has been proved that, no matter
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what order is considered, convergence is not an issuewhen someminimumconditions
are fulfilled.

Non-deterministic automata can be exponentiallymore concise than deterministic
automata, and this can be of particular interest in some practical contexts. This is the
main reason why the inference of non-deterministic finite automata arouses interest
nowadays. Someworks have proposed algorithms that consider different approaches.

The main drawback for the inference of non-deterministic automata is the lack
of a canonical representative for any regular language. The definition and inference
of residual automata is an attempt to obtain such a canonical representation. Other
approaches are focused on obtaining a set of several automata, with the aim of achiev-
ing a team that is able to identify the target language so that each individual automata
concisely recognizes a fragment of that language.Another drawbackof thesemethods
is that they have worse time complexity than those that infer deterministic automata.

In our opinion, the inference of non-deterministic models deserves to be studied
further, and the study of time-efficient NFA inference or the inference of smallNFAs
may provide interesting results.
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Chapter 5
Learning Probability Distributions
Generated by Finite-State Machines

Jorge Castro and Ricard Gavaldà

Abstract We review methods for inference of probability distributions generated
by probabilistic automata and related models for sequence generation. We focus on
methods that can be proved to learn in the inference in the limit and PAC formal
models. The methods we review are state merging and state splitting methods for
probabilistic deterministic automata and the recently developed spectral method for
nondeterministic probabilistic automata. In both cases, we derive them from a high-
level algorithm described in terms of the Hankel matrix of the distribution to be
learned, given as an oracle, and then describe how to adapt that algorithm to account
for the error introduced by a finite sample.

5.1 Introduction

Finite state machines in their many variants are accepted as one of the most useful and
used modeling formalisms for sequential processes. One of the reasons is their versa-
tility: They may be deterministic, nondeterministic, or probabilistic, they may have
observable or hidden states, and they may be acceptors, transducers, or generators.
Additionally, many algorithmic problems (determinization, minimization, equiva-
lence, set-theoretic or linear-algebraic operations, etc.) are often computationally
feasible for these models.

Learning from samples or observations of their behavior is one of the most impor-
tant associated problems, both theoretically and practically, since good methods for
the task offer a competitive alternative to expensive modeling by experts. It has been
intensely studied in various communities, and particularly in the grammatical infer-
ence one. Here we concentrate on learning probabilistic finite automata that generate
probabilistic distributions over strings, where more precisely the task is to come up
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with a device generating a similar distribution. We focus on two formal models of
learning (the identification in the limit paradigm and the PAC learning models) rather
than on heuristics, practical issues, and applications.

The main goal of the chapter is to survey known results and to connect the research
on merging/splitting methods, mainly by the grammatical inference community, with
the recently proposed methods collectively known as “spectral methods”. The latter
have emerged from several communities that present them in very different lights,
for example as instances of the method of moments, of principal component analysis
methods, of tensor-based subspace learning, etc. Our goal is to present it as emerging
as a relatively natural extension of the work on automata induction that starts with
Angluin’s L� method [3] for DFA and continues with the work by Beimel et al. [11]
on learning multiplicity automata from queries. The Hankel matrix representation of
functions and the generalization from probabilistic automata to weighted automata
are essential ideas here.

The chapter is organized as follows. Section 5.2 presents the preliminaries on
languages, probability, finite-state machines, and learning models.

Section 5.3 surveys the existing results on identification-in-the-limit and PAC
learning. We discuss the evidence pointing to the hardness of PAC learning proba-
bilistic automata when the only measures of complexity of the target machine are
the number of states and alphabet size. We then indicate how PAC learning becomes
feasible if other measures of complexity are taken into account.

Section 5.4 introduces the two main notions on which we base the rest of our
exposition: the Hankel matrix of a function from strings to real values, and weighted
automata, which generalize DFA and probabilistic automata. We present three results
that link automata size and properties of the Hankel matrix: the well-known Myhill–
Nerode theorem for DFA; a theorem originally due to Schützenberger and rediscov-
ered several times linking weighted automata size and rank (in the linear algebraic
sense) of the Hankel matrix; and a similar characterization of the size of deterministic
weighted automata in terms of the Hankel matrix, which we have not seen stated so
far—although it may be known.

Section 5.5 presents a high-level algorithm for learning probabilistic deterministic
finite automata using the Hankel matrix which distills the reasoning behind many of
the state merging/splitting methods described in the literature. We then present (vari-
ants of) the ALERGIA method [13, 14] and of the method by Clark and Thollard [16]
building on this formulation; additionally, we describe them using a recently intro-
duced notion of statistical query learning for distributions, which we believe makes
for a clearer presentation.

Section 5.6, in analogy with the previous one, presents a high-level algorithm for
learning weighted automata using the Hankel matrix. We then derive a formulation
of the spectral method as a way of dealing with the effect of finite size samples in that
high-level algorithm. We also discuss a few optimizations and extensions in recent
woks in Sect. 5.6.3.

Finally, Sect. 5.7 mentions a few open questions for further research. In an Appen-
dix we describe the well-known Baum–Welch heuristics for learning HMM. Even
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though it does not fit into the formal models we discuss, the comparison with the
other methods presented is interesting.

Since the literature in this topic is large, we have surely omitted many relevant
references, either involuntarily or because they were out of our focus (rigorous results
in formal models of learning). For example, recent works using Bayesian approaches
to learning finite automata have not been covered because, while promising, they
seem still far from providing formal guarantees. We have also omitted most references
to probability smoothing, a most essential ingredient in any implementation of such
methods; information on smoothing for automata inference can be found in [16, 23,
36, 42].

The reader is referred to the surveys by Vidal et al. [45, 46], Dupont et al. [24],
and the book by de la Higuera [18] for background on the models and results by
the grammatical inference community. A good source of information about spectral
learning of automata is the thesis of Balle [17] and the paper [9]. The 2012 and 2013
editions of the NIPS conference hosted workshops dedicated to spectral learning,
including but more general than automata learning.

5.2 Preliminaries

We denote by Σ� the set of all strings over a finite alphabet Σ . Elements of Σ�

will be called strings or words. Given x, y ∈ Σ� we will write xy to denote the
concatenation of both strings. We use λ to denote the empty string which satisfies
λx = xλ = x for all x ∈ Σ�. The length of x ∈ Σ� is denoted by |x |. The empty
string is the only string with |λ| = 0. We denote by Σ t the set of strings of length t .
A prefix of a string x ∈ Σ� is a string u such that there exists another string v such
that x = uv. String v is a suffix of x . Hence, for example, uΣ� is the set of all strings
having u as a prefix. A subset X of Σ� is prefix-free whenever for all x ∈ X , if y is
a prefix of x and y ∈ X then y = x .

Several measures of divergence between probability distributions are considered.
Let D1 and D2 be distributions over Σ�. The Kullback–Leibler (KL) divergence or
relative entropy is defined as

KL(D1‖D2) =
∑

x∈Σ�

D1(x) log
D1(x)

D2(x)
,

where the logarithm is taken to base 2 and by definition log(0/0) = 0.
The total variation distance is L1(D1, D2) = ∑

x∈Σ� |D1(x) − D2(x)|. The supre-
mum distance is L∞(D1, D2) = maxx∈Σ� |D1(x) − D2(x)|. While KL is neither
symmetric nor satisfies the triangle inequality, measures L1 and L∞ are true dis-
tances. We recall Pinsker’s inequality, L1 ≤ √

2KL, bounding the total variation
distance in terms of the relative entropy. Thus, as L1 obviously upperbounds L∞, the
relative entropy is, up to a factor, the most sensitive divergence measure among the
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ones considered here to distribution perturbations, and convergence criteria based on
the KL value are most demanding.

Frequently, machine descriptions are provided in terms of vectors and matrices
of real numbers and computations are defined by matrix products. We use square
brackets to denote a specific component of a vector or matrix. For instance, compo-
nent j of vector α is α[ j]. Row x of a matrix T is denoted by T [x ,:] and column y is
T [:,y]. Vectors are always assumed to be columns. If α is a vector, a row vector αT

is obtained by transposing α.

5.2.1 Learning Distributions in the PAC Framework

We introduce the PAC model for learning distributions, an adaptation of Valiant’s
PAC model for concept (function) learning [44]. LetD be a class of distributions over
some fixed set X . Assume D is equipped with some measure of complexity assigning
a positive number |D| to any D ∈ D . We say that an algorithm A PAC learns a
class of distributions D using S(·) examples and time T (·) if, for all 0 < ε, δ < 1
and D ∈ D , with probability at least 1 − δ, the algorithm reads S(1/ε, 1/δ, |D|)
examples drawn i.i.d. from D and after T (1/ε, 1/δ, |D|) steps outputs a hypothesis D̂
such that L1(D, D̂) ≤ ε. The probability is over the sample used by A and any internal
randomization. As usual, PAC learners are considered efficient if the functions S(·)
and T (·) are polynomial in all of their parameters.

Sometimes we will consider the relative entropy instead of the variation distance
as a measure of divergence, which creates a different learning problem. Which spe-
cific measure we are considering in each PAC result will be clear from the context.
Although the majority of PAC statements in the chapter are provided for L1 all of
them can be also shown for the KL divergence measure, at the cost of longer proofs.
As the main proof ideas are the same for both measures, we have chosen mainly L1

versions for simplicity.
Concerning the measure of complexity of distributions, standard practice is to fix

a formalism for representing distributions, such as finite-state machines, and then
consider the smallest, in some sense, representation of a given distribution in that
formalism (usually exactly, but possibly approximately). In the case of finite-state
machines, a seemingly reasonable measure of “size” is the number of states times
the number of alphabet symbols, as that roughly measures the size of the transition
table, hence of the automaton description. A first objection is that transition tables
contain numbers, so this notion does not match well the more customary notion of
bit-length complexity. One could refine the measure by assuming rational probabil-
ities (which have reasonable bit-length complexity measures) or by truncating the
probabilities to a number of digits that does not distort the probability distribution
by more than about ε. We will see however that numbers of states and symbols alone
do not fully determine the learning complexity of probabilistic finite-state machines,
and that the bit-length of the probabilities seems irrelevant. This will motivate the
(non-standard) introduction of further complexity parameters, some defined in terms
of the finite-state machine, and some in terms of the distribution itself.
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5.2.2 Identification in the Limit Paradigm

An alternative framework for learning distributions is the identification in the limit
paradigm, originally introduced by Gold [27] for the setting of language learning.
Later, the model was adapted in [19] to the learning distributions scenario. Basi-
cally, the model demands that with probability 1, given an infinite sample from the
target, the learning algorithm with input the first m examples of the sample exactly
identifies the target distribution when m is large enough. We consider here a slightly
weaker definition, mainly because we consider state machines defined on real num-
bers instead of rational ones as in [19].

As before, let D be a class of distributions. We say that an algorithm A identifies
in the limit a class of distributionsD if for all 0 < ε < 1 and D ∈ D , given an infinite
sample x1, x2, . . . of D

1. with probability 1, there exists m0(ε) such that for all m ≥ m0(ε) algorithm A
with input x1, . . . , xm outputs a hypothesis D̂ such that L1(D, D̂) ≤ ε.

2. A runs in polynomial time in its input size.

It is easy to check that any PAC learning algorithm also achieves identification in
the limit: Assume that identification in the limit does not occur. We have that with
probability δ > 0 there are arbitrarily large valuesm such that A with input x1, . . . xm
outputs a hypothesis D̂ such that L1(D, D̂) > ε. This implies that PAC learning does
not hold.

5.2.3 Probabilistic Automata

A probabilistic finite automaton (PFA) of size n is a tuple 〈Q,Σ, τ, α0, α∞〉 where Q
is a set of n states, Σ is a finite alphabet, τ : Q × Σ × Q → [0, 1] is the transition
probability function and α0 and α∞ are respectively [0, 1]n vectors of initial and
final probabilities. We require that

∑
i∈Q α0[i] = 1 and, for every state i , α∞[i] +∑

a∈Σ, j∈Q τ(i, a, j) = 1. States i such that α0[i] > 0 (α∞[i] > 0) are initial (final)
sates. To each PFA D corresponds an underlying non-deterministic finite automaton
(NFA) called the support of D, defined as 〈Q,Σ, δ, QI , QF 〉 where QI and QF are
respectively the set of initial and final states, and transition function δ is defined as
δ(i, a) = { j |τ(i, a, j) > 0}.

The transition probability function of a PFA D can be extended to strings in Σ�.
Given x ∈ Σ�, we define τ(i, xa, j) = ∑

k∈Q τ(i, x, k)τ (k, a, j) and τ(i, λ, j) = 1
if i = j and 0 otherwise. A probability mass can be assigned to words in Σ defining:

D(x) =
∑

i∈QI , j∈QF

α0[i]τ(i, x, j)α∞[ j].
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Defining transition matrices Ta for each a ∈ Σ as Ta[i, j] = τ(i, a, j) and provided
x = x1 . . . xm where xt ∈ Σ for t = 1 . . .m, a more convenient expression in terms
of matrix products for the probability mass of x is

D(x) = αT
0 Tx1 · · · Txmα∞

which we write in short as αT
0 Txα∞. Note that transition matrices are square |Q| ×

|Q| and define the transition function. So, an alternative tuple description for a PFA
D in terms of transition matrices is 〈Σ, {Ta}a∈Σ, α0, α∞〉.

The probability mass induced by D defines a semi-distribution in Σ�: it satisfies
0 ≤ ∑

x∈Σ� D(x) ≤ 1. Whenever from every state i there is non-zero probability of
reaching a final state, D defines a true probability distribution, i.e.

∑
x∈Σ� D(x) = 1.

In the rest of the chapter we will consider only PFAs defining true probability func-
tions. More generally, every state i of a PFA D defines a probability distribution
Di (x) = γ T

i Txα∞ where γi is the i-indicator vector γi [ j] = 1 if i = j and 0 other-
wise. We have D(x) = ∑

i∈Q α0[i]Di [x].

5.2.4 Probabilistic Deterministic Automata
and Distinguishability

A probabilistic deterministic finite automaton (PDFA for short) is a PFA whose
support is a deterministic finite automaton (DFA). We note that for a PDFA we can
assume without loss of generality—in short, “without loss of generality” (w.l.o.g.)—
that the initial probability vector αT

0 is (1, 0, 0,…, 0) and each row of each transition
matrix Ta has at most one non-zero component.

It is known [24] that PFA cannot exactly compute all probability distributions
over Σ�, and that there are PFA computing distributions that cannot be exactly
computed by any PDFA. That is, PFA are strictly more expressive than PDFA.

The following parameter will be useful to measure the complexity of learning a
particular PDFA. It appears in [16] as defined here, although a similar idea is implicit
in [36].

Definition 5.1 We say that distributions D1 and D2 are μ-distinguishable if μ ≤
L∞(D1, D2). A PDFA D is μ-distinguishable when for each pair of states i and
j their corresponding distributions Di and Dj are μ-distinguishable. The distin-
guishability of a PDFA is defined as the supremum over all μ for which the PDFA
is μ-distinguishable.

The distinguishability parameter can sometimes be exponentially small in the number
of states. There exists reasonable evidence suggesting that polynomially learnability
of PDFA in the number of states alone may not be achievable [30, 41]. However,
PAC results have been obtained [16] when the inverse of distinguishability of the
target is also considered, as we will see. We will also discuss parameters that play
similar roles in PFA learning.
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5.2.5 Hidden Markov Models

Hidden Markov models (HMM) are representations of choice for Markovian sto-
chastic processes whose latent states are non-observable but their effects are. Visible
effects are the observations arising from the process.

There are several formal definitions for HMM in the literature, but all of them are
equivalent up to a polynomially transformation [24]. Often, observations in HMM
are associated to states rather than transitions but for simplicity, we choose a defin-
ition closest to that of PFA. A HMM is a tuple 〈Q,Σ, τ, α0〉 where the four para-
meters have the same meaning as in the PFA definition. For any state i , it always
holds

∑
a∈Σ, j∈Q τ(i, a, j) = 1. Thus, one can see a HMM as a PFA having no stop-

ping probabilities, i.e. as an infinite duration process. Transition probability matrices
{Ta}a∈Σ are defined as in the PFA case, i.e. Ta[i, j] = τ(i, a, j).

A HMM defines, for each integer t ≥ 0, a probability distribution on Σ t . The
probability mass assigned to string x = x1 . . . xt is αT

0 Tx1 . . . Txt 1 where 1 is the all-
ones vector. This is the probability that the machine generates an infinite string of
observations whose length-t prefix is x .

5.2.6 Weighted Automata

Weighted automata (WA) are the most general class of finite state machines we
consider. They encompass all the models we have introduced before. A weighted
automaton T over Σ with n states is a tuple 〈Σ, {Ta}a∈Σ, α0, α∞〉 where Ta ∈ R

n×n

and α0 and α∞ are vectors in R
n . To each weighted automaton T corresponds a

real-valued function defined on Σ�. Given x = x1 . . . xm ∈ Σ�:

fT (x) = αT
0 Tx1 · · · Txmα∞ = αT

0 Txα∞.

We note that WA can be defined over semirings other than the real numbers, but
whether WA are learnable (in any particular learning model) strongly depends on the
semiring. For example, the high-level algorithms for real-valued WA that we present
in Sects. 5.5.1 and 5.6.1 work in fact on any field, including finite fields. On the other
hand, WA over the boolean semiring (∨,∧, 0, 1) are at least as expressive as DNF
formulas, whose learnability in the PAC [44] or query [3] concept learning models
are major open problems in computational learning theory.

A weighted automaton is deterministic (in short, a DWA) when rows of its
transition matrices have at most one nonzero value and its initial vector αT

0 is
(1, 0, . . . , 0).
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5.3 A Panoramic View of Known Results

Around 1970, Baum and Welch described a practical heuristic for learning Hidden
Markov Models generating infinite sequences; their properties were studied in [10],
where it was shown to perform hill-climbing with respect to maximum likelihood.
As such, it cannot be shown to learn in either of the two models we have presented
(identification in the limit and PAC) but, even today, it is possibly the most used
method in practice. Although it is described in many sources, we state it in our
formalism in the Appendix for completeness and for comparison to the other methods
we review.

Rudich [37] was, to our knowledge, the first to prove that Hidden Markov Models
generating infinite sequences are identifiable in the limit. His method seems far from
the PAC criterion in the sense that not only are there no bounds on the error on a finite
sample, but even processing each observation involves cycling over all exponentially
many possible state structures, hence it is very inefficient.

A decade later, Carrasco and Oncina [13, 14] described ALERGIA, a practi-
cal method for learning PDFA generating distributions on Σ�. We will describe a
slight variant of ALERGIA, which we name the Red-Blue algorithm, in Sect. 5.5.2.1.
ALERGIA has been highly influential in the grammatical inference community.
Some of the (many) works that build on the ideas of ALERGIA to learn PDFA are
[20, 31, 43]. All these algorithms are efficient in the sense that they work in time
polynomial in the size of the sample, although no bounds are given on the number of
samples required to reach convergence up to some ε. Apparently independently, [39]
proposes the Causal State Splitting Reconstruction algorithm (CSSR) for inferring
the structure of deterministic Hidden Markov Models. Although the underlying ideas
are similar, their work differs in that the input consists of a single biinfinite string,
not a sample of finite strings.

Still in the paradigm of identification in the limit, we mention the work by Denis
and Esposito [21] who learn Residual Automata, a class strictly more powerful than
PDFA but less than general PFA.

If we move to the PAC paradigm, the first result to mention on learning PFA is
that of Abe and Warmuth [1], who show that they are PAC learnable in polynomial
space. The method essentially iterates over all (exponentially many) state structures
with a hypothesized number of states n, fitting probabilities in each according to the
sample, and producing the one which assigns maximum likelihood to the sample. It
can be shown that, for a sample of size polynomial in n, |Σ |, 1/ε, and log(1/δ), this
hypothesis satisfies the PAC criterion of learning. The difficulty of learning PFA is
thus computation, not information.

The same paper [1] shows that it is NP-complete to PAC learn PFA when the
size of the alphabet Σ is unbounded, which in effect implies that all methods will
require time exponential in |Σ |. Kearns et al. [30] showed that the problem may be
hard even for 2-letter alphabets. They show that learning PDFA generalizes the noisy
parity learning problem, which has received a fair amount of attention and for which
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all algorithms known so far take exponential time. Furthermore, only a small set of
simple probabilities are required in the reduction (say, {i/8 | i = 0 . . . 8}). Terwijn
[41] showed that indeed the problems of learning HMM and acyclic PDFA are hard
under plausible cryptographic assumptions.

The previous results paint a rather discouraging panorama with respect to PAC
learning of PFA and even PDFA. But note that, critically, these negative results all
imply the hardness when the complexity of the target distribution (hence, the poly-
nomiality of the PAC model) is defined to be the number of states times the alphabet
size for the smallest machine generating it. A line of research starting in [36] aims
at giving positive results by using other measures of complexity, in particular taking
other parameters of the distribution that may not even be directly observable from
a generating machine. Alternatively, one can view this line of research as designing
sensible algorithms for learning PDFA/PFA, then analyzing their running time in
search of the relevant features of the target distribution, instead of deciding, a priori,
what the bounds on the running time should look like.

To be precise, Ron et al. [36] gave an algorithm for learning acyclic PDFA that
can be shown to PAC learn with respect to the KL-divergence in time and sample
size polynomial in the inverse of the distinguishability of the target machine, besides
the usual parameters.

Later, Clark and Thollard [16] extended the result to cyclic automata; they intro-
duce an additional dependence on the expected length of the strings in the distribution,
L . We will describe the Clark–Thollard algorithm in detail in Sect. 5.5.2.2, under the
name Safe-Candidate algorithm.

Extensions and variants of the Clark–Thollard algorithm include the following.
Palmer and Goldberg [35] show that the dependence on L can be removed if learning
only w.r.t. the L1 distance is required. In another direction, Guttman et al. [28] show
that PAC learning is still possible in terms of L2-distinguishability, which is more
restrictive that the L∞-distinguishability we use here. The variations presented in [15,
26], while retaining the PAC guarantees, aim at being more efficient in practice. In [5]
the algorithm is extended to machines whose transitions have random durations,
determined by associated probability distributions that must be learned too. In [7], the
algorithm is transported to the so-called data stream paradigm, where data (strings)
arrive in sequence and the algorithm is required to use sublinear memory and low
time per item.

In substantial breakthroughs, Mossel and Roch [33], Denis et al. [22], Hsu
et al. [29], and Bailly et al. [4] gave algorithms having formal proofs of PAC learning
the full class of PFA. The sample size and running times of the algorithms depend
polynomially in the inverse of some quantity of a spectral flavor associated to the
Hankel matrix of the target distribution. This is, for example, the determinant in [33]
and the inverse of its nth singular value in [29]. Denis et al. [22] do not explicitly state
a PAC learning result, but in our opinion they refrain from doing so only because they
lack a proper name for the feature of the distribution that determines their algorithms’
running times.
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5.4 The Hankel Matrix Approach

In this section we review the notion of the Hankel matrix and weighted automata,
which will be the main tools for describing generic methods for learning PDFA
and PFA.

The Hankel matrix [25] Hf of a function f : Σ� → R is a matrix representation
of f in R

Σ�×Σ�

defined as:

Hf [x, y] = f (xy),∀x, y ∈ Σ�.

Despite the fact that the Hankel matrix Hf is a very redundant representation—value
f (z) is represented |z| + 1 times—the computability of f by finite state machines
is determined by algebraic properties of Hf .

Assume function f is a language, i.e. f : Σ� → {0, 1}. For each x ∈ Σ we con-
sider the subset x−1 f = {y ∈ Σ�| f (xy) = 1}. The well-known Myhill–Nerode the-
orem claims that f is a regular language if and only if there are only a finite number
of different sets x−1 f when x varies on Σ�. The number of different sets x−1 f also
determines the minimum DFA size required for computing f . Thus, translating this
theorem in terms of the Hankel matrix, we have the following.

Theorem 5.1 Function f : Σ� → {0, 1} is regular if and only if the Hankel matrix
H f has a finite number n of different rows. Moreover, the minimum size of a DFA
computing f is n.

A similar characterization can be shown for functions on Σ�. Given a function
f : Σ� → R, an equivalence relation on Σ� can be defined as follows. Words x and
y are related—written x∼ f y—iff their corresponding rows in the Hankel matrix Hf

are the same up to an nonzero scalar factor, i.e. Hf [x, :] = cx,y H f [y, :] for some
scalar cx,y �= 0. Let Σ�/∼ f be the quotient set. When matrix Hf has an identically
zero row, this set has a class—the zero class—representing all zero rows. We propose
the following theorem that characterizes the computability of f by deterministic
weighted automata in terms of the cardinality of the quotient set.

Theorem 5.2 Let f : Σ� → R be any function. There is a DWA computing f if and
only if the cardinality of Σ�/∼ f is finite. Moreover, the minimum size of a DWA
computing f is the number n of nonzero classes in Σ�/∼ f .

Proof We shorten ∼ f to ∼ in this proof. We prove first the if part. Assume that words
x and y are ∼-related and let cx,y be a scalar such that Hf [x, :] = cx,y H f [y, :]. It is
easy to see that

1. the value of cx,y is uniquely determined except when x and y are in the zero class,
in which case we define cx,y as 0, and

2. for any strings x1, x2, x3, u, v, if x1u ∼ x2 and x2v ∼ x3, then x1uv ∼ x3 and
cx1uv,x3 = cx1u,x2cx2v,x3 .
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The last property uses the redundancy of the Hankel matrix, namely, for every z,

Hf [x1uv, z] = f (x1u · vz) = cx1u,x2 f (x2 · vz) = cx1u,x2 f (x2v · z)
= cx1u,x2cx2v,x3 f (x3 · z) = cx1u,x2cx2v,x3 Hf [x3, z]

from where, by definition of ∼, it is x1uv ∼ x3 with scalar cx1uv,x3 = cx1u,x2cx2v,x3 .
Let x1, . . . xn be representatives of the n nonzero classes of Σ�/∼. W.l.o.g. we

assumen ≥ 1— otherwise f is the null function—and x1 = λ. We define for eacha ∈
Σ the transition matrix Ta ∈ R

n×n as Ta[i, j] = cxi a,x j if xia∼x j and 0 otherwise.
It is immediate to see that every row of Ta has at most one nonzero value.

Let γi be the i-indicator vector, with γi [ j] = 1 if i = j and 0 otherwise. We show
by induction on |w| that for any word w we have

γ T
i Tw =

{
0 if xiw is in the zero class

cxiw,x j γ T
j for the j such that xiw ∼ x j otherwise.

The equality is obvious for |w| = 0, since Tw is the identity. Let w = au for some
alphabet symbol a. We consider two cases. In the first one we assume xia belongs
to a nonzero class represented by xk . Observe that by definition of Ta we have
γ T
i Ta = cxi a,xkγ

T
k . Assuming xku belongs to a nonzero class represented by x j , we

have
γ T
i Tau = γ T

i TaTu = cxi a,xkγ
T
k Tu = cxi a,xk cxku,x j γ T

j .

where the last equality follows from the induction hypothesis. By property (2) above,
xiau ∼ x j and cxi au,x j = cxi a,xk cxku,x j as required. If xku is in the zero class, by
transitivity xiau also belongs to the zero class. By the induction hypothesis

γ T
i Tau = γ T

i TaTu = cxi a,xkγ
T
k Tu = cxi a,xk 0 = 0

as required. This concludes the inductive claim in the first case. For the second one,
note that γ T

i Ta is the zero vector and the claim is obvious.
Consider the DWA T with matrices Ta defined above, initial vector α0 = γ1 and

αT∞ = ( f (x1), . . . , f (xn)). Then for any string w, if w ∼ xk ,

T (w) = αT
0 Tw α∞ = γ T

1 Tw α∞ = cλw,xk γ T
k α∞ = cw,xk f (xk),

and then we have

f (w) = Hf [w, λ] = cw,xk H f [xk, λ] = cw,xk f (x
k) = T (w).

We consider now the only-if part. Let 〈{Ta}a∈Σ, α0, α∞〉 be a DWA of size n
computing a function f . We say that a matrix is deterministic when all rows have
at most one nonzero value. We note that the product of deterministic matrices is
also deterministic. So, for any string x , matrix Tx is deterministic and αT

0 Tx must be
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either cxγ T
j for some nonzero scalar cx and integer j ∈ {1 . . . n} or the zero vector.

Let h be an integer function on Σ� such that h(x) = j when αT
0 Tx = cxγ T

j for some
nonzero scalar cx and h(x) = 0 when α0 Tx is the zero vector. Note that the cardinal-
ity of the range of h is at most n + 1. We show that if h(x) = h(y) then rows x and
y of the Hankel matrix Hf are the same up to a nonzero factor. The result is obvious
when h(x) = h(y) = 0. Assume h(x) = h(y) = j > 0. For any string z,

Hf [x, z] = αT
0 Tx Tz α∞ = cxγ

T
j Tzα∞ = (cx/cy)cyγ

T
j Tzα∞

= (cx/cy)α
T
0 Ty Tz α∞ = (cx/cy)Hf [y, z].

Thus, up to nonzero scalar factors, the Hankel matrix of f has at most n nonzero
rows. �

As an example, consider Σ = {a} and function f defined on Σ� having values
f (λ) = 0 and f (ak) = 1/2k when k ≥ 1. It is easy to check that, up to nonzero
scalar factors, the Hankel matrix Hf has only two different rows, (0, 1/2, 1/4, . . .)

and (1/2, 1/4, 1/8, . . .), corresponding, respectively, to words λ and a. Following the
proof of Theorem 5.2 the DWA defined by αT

0 = (1, 0), αT∞ = (0, 1/2) and matrix Ta
having rows (0, 1) and (0, 1/2) computes function f .

Finally, the full class of weighted automata can also be characterized by an alge-
braic parameter, in this case the number of linearly independent rows— i.e. the rank—
of the Hankel matrix. The characterization of weighted automata in terms of the rank
has been shown by several authors [11, 12, 25, 38]. We follow the exposition in [11].

Theorem 5.3 Let f : Σ� → R be a function with Hankel matrix H f . Function f
can be computed by a weighted automaton if and only if the rank n of H f is finite.
Moreover, the minimum size of a WA computing f is n.

Proof Only-if. Let 〈{Ta}a∈Σ, α0, α∞〉 be a weighted automaton of size n comput-
ing f . We define backward and forward matrices B ∈ R

∞×n and F ∈ R
n×∞ with

rows, respectively columns, indexed by words in Σ� as:

B[x, :] = αT
0 Tx ,

F[:, y] = Tyα∞.

From the fact that Hf [x, y] = α0TxTyα∞ = B[x, :]F[: y] we conclude that Hf =
BF and therefore rank(Hf ) ≤ rank(F) ≤ n.

For the if part let x1, . . . , xn be words in Σ� indexing n linearly independent
rows of Hf . W.l.o.g. we can assume x1 = λ, as otherwise f is the null function. We
consider the weighted automaton of size n defined by vectors αT

0 = (1, 0, . . . , 0),
αT∞ = ( f (x1), . . . , f (xn)) and transition matrices Ta ∈ R

n×n for a ∈ Σ with values
Ta[i, j] = aij satisfying:

Hf [xia, :] =
∑

j

aij H f [x j , :].
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These values exist because by hypothesis, Hf is a rank n matrix and strings x j for
j = 1, . . . , n are indexes of n linear independent rows.

We show that f (xi v) = γ T
i Tvα∞ for i = 1, . . . , n, where γi is the i-indicator vec-

tor. Once the proof is completed, the if part of the theorem follows from considering
the equality for i = 1. We induct on the length of v. When |v| = 0 the equality is
immediate. Assume v = au for some a ∈ Σ . We have:

f (xi v) = f (xiau) = Hf [xia, u] =
∑

j

aij H f [x j , u] =
∑

j

aij f (x
ju).

By induction hypothesis, f (x ju) = γ T
j Tuα∞. Thus,

f (xi v) =
∑

j

aij (γ
T
j Tuα∞) = (

∑

j

aijγ
T
j )Tuα∞ = (γ T

i Ta)Tuα∞ = γ T
i Tvα∞.

�

We remark that Theorems 5.2 and 5.3 work on any field, not just the real numbers.
We would like to see a derivation of Theorem 5.2 as a consequence of Theorem 5.3
plus the assumption of determinism, instead of having to reprove it from scratch.

5.5 Learning PDFA

5.5.1 An Oracle Algorithm for Learning DWA

In this section we present a high-level algorithm for learning Deterministic Weighted
Automaton assuming that we have oracle access to the function f : Σ� → R. This
model differs from the one considered so far for probabilistic automata in that we
receive the exact probabilities of strings instead of estimating them from a sample, and
that learning must be exact and not approximate. Furthermore, this model allows us to
discuss functions other than probability distributions, for which estimating function
values from samples does not even make sense, and even functions mapping strings
to finite fields. At the end of the subsection, we will discuss how to turn this high-level
algorithm into a sample-based one for the case of PFA, and give specific (and more
efficient) implementations in the following sections.

The high-level algorithm is given in Fig. 5.1. To clarify the implementation of
line 3, initially set X ′ = {λ} and repeatedly pick any z ∈ X − X ′ such that H [z, :]
differs from all H [x , :] with x ∈ X ′, while such a z exists, and add it to X ′. It is
clear that the final X ′ is as desired. It is also clear that, excluding the time required
to answer oracle queries, the algorithm runs polynomial time in |Σ | and the sum of
the lengths of strings in X and Y .
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1. Choose any two finite sets X ,Y ⊆ Σ with λ ∈ X ∩Y , in some way not specified
by the algorithm;

2. Build the submatrix H = Hf [X ∪XΣ ,Y ] of Hf by asking oracle queries on f ;
3. Find a minimal X ⊆ X such that λ ∈ X and for every z ∈ X , H[z, :] is a multiple

of H[x, :] for x ∈ X ;
4. Build a DWA from H, X , Y , X as follows. Say X = {x1 = λ ,x2, . . . ,xn}, then

αT
0 = (1,0, . . . ,0)

αT
∞ = ( f (x1), . . . , f (xn))

Ta[i, j] = v if H[xia, :] = vH[x j, :], and 0 otherwise;

Fig. 5.1 Learning DWA with an oracle

Following the proof of Theorem 5.2, it is now easy to prove that the algorithm is
correct if it is given “right” sets X and Y .

Theorem 5.4 If the cardinality of X ′ is at least the number of nonzero rows of H f

up to nonzero scalar factors, then the DWA generated by the algorithm computes f .

We do not discuss here the question of how to find suitable sets X , Y that provide a
large enough X ′ in the oracle model. We instead move to the problem of translating
this algorithm to the setting in which f is a probability distribution and all the
information about f is given by some sample S, a multiset of strings.

The obvious choice is to set X = prefixes(S), Y = suffixes(S), and then create
an approximation Ĥ of H by Ĥ [x, y] = empirical probability of xy in S. Note that
although X and Y are sets, the approximation Ĥ [x, y] is still computed taking into
account the possible repetitions of xy in the multiset S. Now, the question “is H [x , :]
a multiple of H [z, :]?” becomes a statistical question on Ĥ for a finite S. If the
answer is “no”, it will become clear as S grows in size, but if the answer is “yes”
no finite amount of information will prove it conclusively. Let the algorithm use a
statistical test that will return the right yes/no answer with probability tending to 1
as the sample size tends to infinity. (Different statistical tests have been used in the
literature for specific instantiations of this general algorithm.) For sufficiently large
samples, representatives of all equivalence classes of rows will appear in the sample
and furthermore the test will correctly answer all the finitely many row equivalences.
It is now easy to argue that the algorithm above endowed with such a statistical test
will identify the target probability distribution in the limit.

In the PAC paradigm, however, tests should be sufficiently reliable for samples of
polynomial size and be computationally efficient. Unfortunately, such tests may not
exist if the target machine complexity is defined as the number of states times the size
of the alphabet. This is precisely what the negative results in [1, 30, 41] formalize. It
may become possible if one restricts the class of target machines in some way, such
as requiring a minimum L∞-distinguishability among states; alternatively, letting the
inverse of the distinguishability be also a parameter of complexity. This will be the
case for, for example, the method by Clark and Thollard [16].
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Most methods for learning PDFA described in the literature conceptually rely on
the DWA construction described above, with a number of refinements towards prac-
ticality. For example, they tend to identify states not in one shot from the matrix H ,
but instead by iteratively splitting or merging simpler states. This has the advantage
that once several strings (rows) have been merged, their statistical evidence accu-
mulates, allowing for sounder decisions from then on. Additionally, they are able
to come up with a PDFA when it is guaranteed that the target is a PDFA—while
our construction here may return DWA which are not PDFA. Finally, they differ in
the precise statistical tests for state identification and in the smoothing policies to
account for unseen mass, both of which may make a large difference in practice.

5.5.2 State-Merging Learning Algorithms

State-merging algorithms form an important class of strategies of choice for the prob-
lem of inferring a regular language from samples. Basically, they try to discover the
target automaton graph by successively applying tests in order to discover new states
and merge them to previously existing ones according to some similarity criteria.

We show below two adaptations of the state-merging strategy to PDFA learn-
ing, the Red-Blue [14] and the Safe-Candidate [16] algorithms. Both infer gradually
elements of the target graph, i.e. states and transitions, and estimate their correspond-
ing probabilities. The Red-Blue algorithm starts by inferring a prefix tree acceptor
and then merges equivalent states. The Safe-Candidate algorithm alternates between
inferring and merging new elements. While the first one achieves learning in the
limit, the second one has PAC guarantees whenever a polynomial dependence on an
additional parameter— the target distinguishability— is accepted.

The usual description of these algorithms considers the learning from examples
paradigm. In contrast, following [6, 17], the exposition below assumes a query frame-
work: algorithms get information on the target by asking queries of possibly different
kinds instead of analyzing a sample. Proceeding in this way, many details concerning
probability approximation issues can be abstracted, and a more compact, clear and
elegant presentation can be provided.

The query model we use allows two type of queries, so-called respectively statis-
tical and L∞-queries that can be solved, with high probability, by drawing a sample
of the target distribution. Thus, learning algorithms in this query setting can be easily
moved to standard learning from examples.

Given a distribution D on Σ� a statistical query for D is a tuple (X, α) where X is
an efficiently decidable subset of Σ� and 0 < α < 1 is some tolerance parameter. The
querySQD

(X, α) returns an α-approximation p̂ of D(X) such that | p̂ − D(X)| < α.
Let X be a prefix-free subset of Σ�. Function DX (y) = D(Xy)

D(XΣ�)
defines a probabil-

ity distribution on Σ� that corresponds to the distribution over suffixes conditioned
on having a prefix in X . An L∞-query is a tuple (X,Y, α, β) where X and Y are
efficiently decidable, disjoint and prefix-free subsets of Σ�, and 0 < α, β < 1 are,
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respectively, the tolerance and threshold of the query. Query DIFFD
∞(X,Y, α, β) is

answered by the oracle according to the following rules:

1. If either D(XΣ�) < β or D(YΣ�) < β it answers ‘?’.
2. If both D(XΣ�) > 3β and D(YΣ�) > 3β, it answers with someα-approximation

μ̂ of L∞(DX , DY ).
3. Otherwise, the oracle may either answer ‘?’ or give an α-approximation of

L∞(DX , DY ).

Both query types can be easily simulated with high probability with a sample of
distribution D. The following result holds.

Proposition 5.1 For any probability distribution D, a statistical query SQD
(X, α)

can be simulated using O(α−2 log(1/δ)) examples from D. A DIFFD
∞(X,Y, α, β)

query can be solved using Õ(α−2β−2 log(1/δ)) examples. In both cases, the error
probability is less than δ.

5.5.2.1 The Red-Blue Algorithm

State merging algorithms were initially proposed for the regular language inference
problem. Gold [27] had shown that regular languages are identifiable in the limit
from positive and negative data, but consistency with the input sample was not
guaranteed when the sample does not contain some crucial information—the so-
called characteristic set. Oncina and García [34] proposed a state merging algorithm
for inferring regular languages that overcomes this drawback. The algorithm always
returns a DFA that is data consistent and, provided a complete presentation is given,
achieves identification in the limit.

Carrasco and Oncina in [14] adapted the DFA state merging learning algorithm to
the stochastic setting. The new algorithm, so-called ALERGIA, was shown to identify
in the limit any PDFA provided stochastic examples of the target are given. We present
here a version of ALERGIA in the query model we have just introduced that considers
statistical and L∞-queries. We rename this version the Red-Blue algorithm.

Given an integer m as input, Red-Blue starts by building a prefix tree acceptor
representing significant prefixes by calling the PTA function on parameters m and λ,
see Figs. 5.2 and 5.3. On these values, PTA returns a prefix tree DFA whose leaves
at level j correspond to prefixes of probability at least 2 j/m. Thus, the resulting
tree DFA has depth at most �logm�. In order to decide whether a prefix has enough
probability to be represented, PTA makes statistical queries.

Once the tree acceptor is built, Red-Blue colors the initial state as red and its direct
descendants as blue, leaving other states uncolored, and starts merging compatible
states. Two states are considered merge-compatible when a call to the DIFFD

∞ oracle
returns a numerical value not exceeding 1/m, meaning that there is not strong evidence
that they define different distributions. Specifically, we define for each state q a prefix
free subset H [q] consisting of words x such that τ(q0, x) = q and for any prefix y of
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input: integer m
output: PDFA H
algorithm Red-Blue

H ← PTA(m,λ )
Red ← {qλ };
Blue ← {τ(qλ ,σ),σ ∈ Σ}
Let α ← 1/m
while Blue = /0

pick some state b ∈ Blue
if there is r ∈ Red with DIFFD∞(H[r],H[b],α,α) ≤ α

H ← Merge(r,b,H)
else Red ← Red∪{b}
Blue ← Blue−{b}∪{τ(b,σ)|σ ∈ Σ and τ(b,σ) is uncolored}

for q ∈ H
γ(q,ξ ) ← SQD(H[q],α)/SQD(H[q]Σ ,α)
for σ ∈ Σ such that τ(q,σ) is defined

γ(q,σ) ← SQD(H[q]σΣ ,α)/SQD(H[q]Σ ,α)
return H

Fig. 5.2 Red-Blue algorithm

Fig. 5.3 PTA algorithm input: integer m and string w ∈ Σ
output: tree DFA H
algorithm PTA

Set a initial state qw of H
Let α ← 1/m
for each σ ∈ Σ

if SQD(wσΣ ,α) > 3α
Hσ ←PTA( m/2 ,wσ)
Set a new transition τ(qw,σ) = qwσ

return H

x it holds x = y or τ(q0, y) �= q. Asking the query DIFFD
∞(H [q1], H [q2], α, α) we

get information about how different the distributions defined by states q1 and q2 are.
The merging flow proceeds as follows. For an arbitrarily chosen blue state, either

there is a red state that is merge-compatible with it or no red state is. In the first
case, both states are merged and the result colored red. This may introduce nondeter-
ministic choices, which are eliminated by further merging in the merge procedure.
Note that every merge always involves a blue state. On the other hand, if there is no
merge-compatible red state for this blue state, it is promoted to red and new blue
states are generated from it. When the set of blue states is empty, Red-Blue stops
merging and a PDFA is returned by setting transition probabilities of H according
to prefix probability approximations obtained by issuing statistical queries.
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input: DFA H and states q and q of H
output: DFA
algorithm Merge

Replace each occurrence q in the description of H by q
while H contains a nondeterministic transition

Let p and p be target states of a nondeterministic choice
Merge(p, p ,H)

return H

Fig. 5.4 Merge function

Figures 5.2 and 5.4 show the Red-Blue and the merge algorithms. Let H be the
resulting automaton after some iterations of Red-Blue. Red states of H and transitions
between them represent the part of the graph we trust as correct, based on processed
information. An invariant of the algorithm is that non-red states are always roots of
trees in H and blue states are always direct successors of a red state.

Assuming unit time for oracle calls, the complexity of Red-Blue is O(m2). More-
over, if m is large enough that every state or transition of D has a counterpart in the
tree DFA returned by the PTA algorithm and such that 2/m is less than the distin-
guishability of the target machine, the algorithm on inputm learns a PDFA hypothesis
whose graph agrees with the target graph. As probability estimations of states and
transitions will improve as m is larger, we have the following.

Theorem 5.5 The Red-Blue algorithm learns every PDFA in the identification in
the limit paradigm.

This result appears (for the equivalent ALERGIA algorithm) in [13, 14]. But from
this point it is easy to argue that Red-Blue also learns in the PAC model if the
complexity of the target PDFA is taken to be the number of states times the alphabet
size times the inverse of the distinguishability.

5.5.2.2 The Safe-Candidate Algorithm

We describe a variant of the algorithm in [16], which was the first one to claim any
formal PAC guarantee. Our version fits the query framework in [6, 17], which makes
the exposition easier and simplifies correctness arguments.

The main differences of the presentation below with respect to the description
in [16] are two. First, as said, the algorithm gets information on the target distribu-
tion asking statistical and L∞-queries defined above instead of analyzing a sample.
Second, it guarantees a good L1 approximation, a weaker requirement than the good
relative entropy approximation guaranteed in [16]. The latter choice avoids some
rather subtle points in [16] by the fact that L1 is a true distance unlike KL.
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The Safe-Candidate algorithm works in two stages. In the first one, it builds
a transition graph that is isomorphic to the target subgraph formed by important
elements— these are states and transitions whose probability of being visited while
generating a random string is above a threshold defined by the input parameters.
The construction uses both statistical and L∞-queries. The second stage consists of
converting the learned graph into a PDFA by estimating the transition and stopping
probabilities corresponding to each state. This is similar to the estimation step in the
Red-Blue algorithm performed once the set of blue states is empty, see Fig. 5.2. In
this stage, only statistical queries are necessary.

Figure 5.5 shows the code for the graph construction stage. The algorithm keeps
two sets of nodes, the set of safe nodes and the set of candidates. Safe nodes and
transitions between them are known to be correct. Initially, there is only a safe
state qλ corresponding to the empty word and one candidate qσ

λ for each σ ∈ Σ .
Each candidate represents a still unknown transition in the graph H . In each iteration,
statistical queries are performed to choose the most informative candidate q and, after
that, L∞-queries are issued in order to decide if the candidate is either insignificant
at all, it is an already known safe node q ′ or it is a new safe one. In the latter case,
when a candidate is promoted to safe, new candidates are considered representing
undefined transitions leaving the new safe node. The algorithm finishes when there

input: n,μ ,Σ ,ε , oracles DIFFD
∞ and SQD

output: A graph H
algorithm Safe-Candidate
α ← μ/2; β ← ε/24n|Σ |
initialize the graph H with a safe qλ and candidates qσ

λ for σ ∈ Σ
while H has candidates

choose a candidate q maximizing SQD(H[q]Σ ,β )
foreach safe q

make a call to the oracle DIFFD∞(H[q],H[q ],α,β )
if the answer is ’?’

remove q from the candidate list
break

if the answer μ̂ < μ/2
merge q and q
remove q from the candidate list
break

if q is still a candidate
promote q to safe
add candidates qσ for each σ ∈ Σ

Fig. 5.5 Safe-Candidate graph construction
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are no candidates left. An inductive reasoning proves that the resulting graph is
isomorphic to the target subgraph containing significant states and transitions.

The following theorem summarizes the performance of Safe-Candidate.

Theorem 5.6 Let M denote an n-state PDFA computing a distribution D overΣ�, L
denote the expected length of D, and π be the smallest nonzero stopping probability
in M. Then the execution of Safe-Candidate on a sample from D satisfies:

1. It runs in time poly(n, |Σ |, log(1/π)).
2. It asks O(n2|Σ |2 log(n/π)) statistical querieswith tolerance Ω̃(ε3π2/n3|Σ |3L).
3. It asks O(n2|Σ |) L∞-query with tolerance Ω(μ) and threshold Ω(ε/n|Σ |).
4. It returns a PDFA H such that L1(D, H) ≤ ε.

A short and complete proof of this theorem is in [17]. A similar theorem without
any dependence on L and π is shown in [35] but the proof is more complex. The
proof in [16] that shows PAC learnability under the KL-divergence measure is much
longer.

5.6 Learning PFA

In this section we discuss algorithms having formal guarantees of learning the whole
class of PFA. Similarly to the PDFA case, we first give an algorithm that has access to
the target function as oracle, and can exactly learn the class of Weighted Automata
when the right set of prefixes and suffixes is provided. Then, we specialize the
algorithm to PFA and the case in which the input is a randomly drawn finite sample.
We discuss the solutions given by Denis et al. [22] on the one hand and, on the other,
by Mossel and Roch [33], Hsu et al. [29], and Bailly et al. [4]. The latter leads to the
spectral method, which we expose in more detail following mostly the presentation
in [9]. We finally mention a few of the most recent works extending the spectral
method in several directions.

5.6.1 An Oracle Algorithm for Learning WA

The algorithm in Fig. 5.6 encapsulates the main idea for learning general Weighted
Automata in the oracle model. It resembles the algorithm given by Beimel et al. [11]
that learned instead from Evaluation and Equivalence queries.

There are two nondeterministic steps in this algorithm: One is the choice of sets X
and Y ; like for PDFA, we do not discuss how to choose them in the oracle model.
The other one is the choice of a factoring QR of H ′, which represents the choice of
an arbitrary basis for the rows of the Hankel matrix. The construction of the WA in
the proof of Theorem 5.3 is the special case in which R = H ′ and Q is the identity,
but it is easy to see that the correctness of the special case implies the correctness of
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1. Choose any two finite sets X ,Y ⊆ Σ with λ ∈ X ∩Y , in some way not specified
by the algorithm;

2. Build the submatrix H = Hf [X ∪XΣ ,Y ] of Hf by asking oracle queries to f ;
3. Find two minimal subsets X ⊆ X , Y ⊆ Y such that λ ∈ X and H = H[X ,Y ]

has the same rank as H; note that |X | = |Y |, say n, and H has full rank;
4. Let Q,R ∈ R

n×n be any two matrices factoring H , i.e., H = QR;
5. For each symbol a, let Ha = Hf [X a,Y ] = Hf [X ,aY ];
6. Build a WA from Q, R, and {Ta}a as follows.

αT
0 = H [λ , :]R−1

α∞ = Q−1H [:,λ ]
Ta = Q−1HaR

−1

Fig. 5.6 Learning WA with an oracle

the general QR case. Indeed, the value of the automaton for any word w is

αT
0 Twα∞ = (H ′[λ, :]R−1)(Q−1H ′

w1
R−1)(Q−1H ′

w2
R−1) . . . (Q−1H ′

wm
R−1)Q−1H ′[:, λ]

= H ′[λ, :]H ′−1H ′
w1
H ′−1H ′

w2
. . . H ′

wm
H ′−1H ′[:, λ]

which is the value computed for R = H ′ and Q the identity matrix. The reason for
the more general presentation will be clear later. It is also clear that the algorithm
runs in time polynomial in Σ and the sums of lengths of strings in X ∪ Y . Following
the proof of Theorem 5.3 we have:

Theorem 5.7 Let f be computed by some WA. If the cardinality of X ′ is at least the
rank of H f then the WA built in this way computes f .

Proof The algorithm defines matrices Ta by H ′
a = TaH ′; they are uniquely defined

as H ′ has full rank. Furthermore, since the rank of H ′ is that of the whole Hankel
matrix H of f , these matrices must also satisfy Ha = TaH . Therefore, the automaton
constructed by the algorithm is exactly the one built in the proof of Theorem 5.3,
which by the theorem computes f . �

Consider now the adaptation of the algorithm to the case in which f is a probability
distribution and we are given a finite sample S. As in the PDFA case, we take
X = prefixes(S), Y = suffixes(S), and then create an approximation Ĥ of H by
Ĥ [x, y] = empirical probability of xy in S. We know that the unperturbed H has
rank at most n, the number of states of the smallest WA for f but, because rank is so
fragile under perturbations, Ĥ will probably have maximal rank, even if |S| is large.

The solution taken by [22] can be intuitively described as follows: Compute a
subset X ′ ⊆ X such that |X ′| = n and every row of Ĥ [X, :] is “close to” a lin-
ear combination of rows indexed by X ′. For sufficiently small choice of “close to”
(depending on the distribution), X ′ will be as in the algorithm above, and will lead
to a correct solution.
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The solution taken by, for example, [4, 29, 33], which leads to the spectral method,
is less combinatorial and more algebraic, less local and more global, and can be
phrased as follows: Let us instead find a matrix H ′ that (1) is easy to compute, (2)
has the same dimensions as H , but rank at most n, and (3) is “as close as possible”
to Ĥ under some metric, with this rank constraint. One particular way of computing
such H ′ (among, perhaps, other possibilities) is the spectral method described next.

5.6.2 The Spectral Method

An important tool for the spectral method is the Singular Value Decomposition
theorem; see, for example, [40].

Theorem 5.8 (SVD theorem) Let H ∈ R
p×q . There are matrices U ∈ R

p×p, D ∈
R

p×q and V ∈ R
q×q such that:

• H = UDV T

• U and V are orthonormal: UTU = I ∈ R
p×p and V T V = I ∈ R

q×q

• D is a diagonal matrix of non-negative real numbers.

The diagonal values of D, denotedσ1,σ2, …, are the singular valuesof H , and column
vectors of U are its left singular vectors. It follows that rank(A) = rank(D) is the
number of non-zero singular values. W.l.o.g. by rearranging rows and columns, the
diagonal values in D are nondecreasing, i.e. σ1 ≥ σ2 ≥ · · · . The SVD decomposition
can be computed in time O(pq2).

The Frobenius norm of a matrix H is

‖H‖F =
⎛

⎝
∑

i, j

H [i, j]2

⎞

⎠

1/2

.

As this norm is invariant by unitary products, the square of the Frobenius norm of H
is the sum of the squares of its singular values. It follows that from the singular value
decomposition H = UDV of H , we can compute a low rank approximation: Fix
n ≤ rank(H), and define H ′

n as

H ′
n =

⎛

⎜
⎜
⎜
⎜
⎝
u1 . . . un 0

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

σ1

. . .

σn

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

v1
...

vn

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The following is the crucial fact.
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Fact H ′
n has rank n and minimizes ‖H − G‖F among all rank-n matrices G.

Now we would like to use H ′
n to find a full rank submatrix H ′ of H , since H ′

n will
not in general have full rank and cannot be inverted. Alternatively, there is a notion
of pseudoinverse matrix that satisfies what we need for the algorithm, and is easily
computable from the SVD decomposition.

The Moore–Penrose pseudoinverse of A, denoted A+, admits many different def-
initions. The most algorithmic one is perhaps:

• If A ∈ R
p×q is a diagonal matrix, A+ ∈ R

q×p is formed by transposing A, and
taking the inverse of each non-zero element.

• In the general case, if A = UDV T then A+ = V D+UT .

Some of its many interesting properties are:

• In general, AA+ �= I and A+A �= I .
• But if A is invertible, A+ = A−1.
• If columns of A are independent, A+A = I ∈ R

q×q .
• If rows of A are independent, AA+ = I ∈ R

p×p.

With this artillery in place, the spectral method for learning probability distributions
generated by WA is described in Fig. 5.7. The following PAC result was shown in [29]
and reformulated in [9].

Theorem 5.9 [9, 29] Let S be a sample of a probability distribution D such that
HD has rank n. Let σn be the nth largest singular value of HD, and M the WA
produced by the algorithm in Fig.5.7 on input S. There is a polynomial p such that
if |S| ≥ p(n, |Σ |, 1/σn, 1/ε, log(1/δ)), with probability at least 1 − δ:

∑

|x |=t

|D(x) − M(x)| < ε.

1. get n and sample S;
2. X = preffixes(S); Y = suffixes(S);
3. define H[X ,Y ] ∈ R

p×q and set H[x,y] = empirical probability of xy;
4. define Ha[X ,Y ] ∈ R

p×q and set Ha[x,y] = empirical probability of xay;
5. Let QR be a rank-n factorization of H, that is:

• Q ∈ R
p×n and R ∈ R

n×q, both having rank n,
• H = QR,

for instance, take Q to be the first n left singular vectors of H;
6. output the WA M such that

αT
0 = H[λ , :]R+, α∞ = Q+H[:,λ ], Ta = Q+HaR

+

Fig. 5.7 Spectral learning of PFA
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Observe that σn �= 0 if and only if rank(HP) ≥ n, so 1/σn makes sense as a
complexity parameter. Observe also that the output of the algorithm is not nec-
essarily a PFA, even under the assumption that P is a probability distribution. It may
assign negative values to some strings, and not add up to exactly 1. However, by the
theorem, such oddities tend to disappear as the sample size grows. Converting a WA
known to compute (or approximate) a probability distribution to a PFA is, in general,
uncomputable. The problem is discussed in detail in [22]. Both [2, 33] give partial
solutions by considering somewhat restricted machine models.

5.6.3 Variations and Implementation of the Spectral Method

Several variations of the spectral method have been introduced in order to improve
its sample-efficiency or to extend it to wider settings. We point out below a couple
of recent proposals.

Let D be a distribution on Σ�. Derived from D, we define function Dp assigning
to each string x the probability of the set xΣ�, i.e. Dp(x) = ∑

y D(xy). Similarly, we
also consider function Ds that on input x evaluates to the expected number of times x
appears in a random string w. It turns out that if any of these three functions has WA,
then all three functions have WA. Moreover, WA descriptions can be obtained from
original WA parameters of one of them. The following lemma is shown in [17]:

Lemma 5.1 Let 〈{Tσ }σ∈Σ�, α0, α∞〉 be a WA and define S = ∑
σ Tσ , α̃0 =

αT
0 (I − S)−1 and α̃∞ = (I − S)−1α∞. Then the following are equivalent

1. 〈{Tσ }σ∈Σ�, α0, α∞〉 computes D.
2. 〈{Tσ }σ∈Σ�, α0, α̃∞〉 computes Dp.
3. 〈{Tσ }σ∈Σ�, α̃0, α̃∞〉 computes Ds .

Thus, besides using statistics of full strings in order to approximate the Hankel matrix
from a sample we can also try to use statistics from prefixes and substrings in order
to learn functions Dp and Ds . Experimentally, this yields more sample-efficient
algorithms.

The use of statistics on prefixes instead of full strings in the spectral method
was already proposed by Hsu et al. [29]. Later, Luque et al. [32] take advantage
of substring statistics when applying the spectral method to learn non-deterministic
split head-automata grammars, a hidden-state formalism for dependency parsing.

Recently, the spectral method in combination with matrix completion techniques
has been also applied to a more general learning setting [8]. Here, the learning
problem is to infer a weighted automaton from a sample of labeled examples but, in
contrast with the standard paradigm, the sample is provided according to an arbitrary
unknown distribution. Note that, for this type of learning problem, it is not guaranteed
that a full approximation of a convenient Hankel submatrix can be achieved. This is
because the input sample can lack information for many submatrix entries and now
it can not be assumed that the WA function value must be close to 0 there, as one can
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in the standard probability setting. In [8], matrix completion techniques are used to
fill the gaps in the Hankel submatrix and then the spectral method is used to infer
the target WA. They prove formal learning guarantees for some of the completion
techniques under mild conditions on the distribution.

5.7 Future Work

Let us mention a few open questions or future lines of research. Concerning the
spectral method, it is clearly in an early stage and further extensions and applications
will keep appearing. Making it generally practical and competitive is certainly of
interest. Most spectral methods produce weighted automata with negative transition
values when learning PFA; this may somewhat hinder their application in contexts
where interpretability of the learned model is important.

At a more theoretical level, we would like to find some geometric or algebraic
interpretation of PDFA distinguishability; this might explain its role in PDFA learning
as a particular case of the spectral values that come up in learning PFA.

As mentioned, it is known that PDFA cannot exactly compute all distributions
computed by PFA [22]. But, to our knowledge, it is not known whether PDFA can
reasonably approximate distributions computed by PFA, say with a number of states
polynomial in 1/ε for the desired approximation ε in the L1 distance (a rather direct
result for L∞ is given in [26], which extends to every L p for p > 1). If such approx-
imability is true, then it may be possible to transfer PAC learnability results for PDFA
to PFA with a polynomial overhead.

Acknowledgments This work is partially supported by MICINN projects TIN2011-27479-C04-
03 (BASMATI) and TIN-2007-66523 (FORMALISM), by SGR2009-1428 (LARCA). We thank
the chairs of ICGI 2012 for the invitation to present a preliminary version of this work as tutorial.
We particularly thank the reviewer of this version for thorough and useful work.

Appendix: The Baum–Welch Method

The Baum–Welch algorithm [10] is one of the most popular methods to infer a
hidden Markov model from observed data. Despite the fact that there are no bounds
on convergence time and that it may get trapped in local optima, it is intuitively
attractive since it has a clear focus—maximizing the observed data likelihood—and
performs a simple step-by-step hill climbing progress to this goal. However, we
think that as new techniques based on spectral methods progress and gain popularity,
Baum–Welch may lose its status as first option. Theoretically, spectral methods will
obtain global optima, come with performance guarantees in time and accuracy, and
tend to work faster at least on large samples.
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input: data observation x= x1 . . .xm and some initial HMM guess H = Ta}a∈Σ ,α0

output: updated H, locally maximizing sample likelihood
algorithm Baum-Welch
repeat

compute backward βt and forward φt probability vectors for t = 0 . . .m
compute a posteriori state visit and transition probabilities α0 and {Ta}a∈Σ
H Ta}a∈Σ ,α0

until stopping condition

Fig. 5.8 The Baum–Welch algorithm

The Baum–Welch algorithm starts by guessing some hidden Markov model; this
is frequently done using problem-specific heuristics. Provided with a sequence of
data observations x = x1 . . . xm , the algorithm continues by iterating a process where
parameters of the last built model H are updated according to a posteriori state and
transition probability values. Iteration finishes either when a parameter convergence
criterion is achieved or there is a loss of prediction accuracy. The learning algorithm
is shown in Fig. 5.8. Specifically, let H = 〈{Ta}a∈Σ, α0〉 the last hypothesis built.
Backward and forward probability vectors for t = 0 . . .m are, respectively:

βT
t = αT

0 Tx1 . . . Txt ,

φt = Txt+1 . . . Txm 1.

Component j of the backward vector βt is the probability of generating prefix x1 . . . xt
and being in state j just after emitting xt , i.e. βt [ j] = Pr[x1 . . . xt ∧ S(t) = j]. On
the other hand, component j of the forward vector φt is the probability of emitting
suffix xt+1 . . . xm from state j , φt [ j] = Pr[xt+1 . . . xm |S(t) = j]. Let S(t) denote the
state at time t and O(t) the observation at time (whose realization is thus xt ). Given
data x = x1 . . . xm , the a posteriori state visit probability of state j is:

α′
0[ j] = 1

m + 1

m∑

t=0

Pr[S(t) = j |x] = 1

m + 1

m∑

t=0

βt [ j]φt [ j]
βT
t φt

=
∑m

t=0 βt [ j]φt [ j]
(m + 1)(α0Tx1)

.

(5.1)

Similarly, the a posteriori probability of transition a from state i to j is:

T ′
a[i, j] =

∑
t |xt=a ξ

i, j
t

∑m
t=1 ξ

i, j
t

(5.2)

where

ξ
i, j
t = Pr[S(t − 1) = i ∧ S(t) = j ∧ O(t) = xt |x] = βt−1[i]Txt [i, j]φt [ j]

α0Tx1
.
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Thus, ξ
i, j
t denotes the probability that provided observed data x , state i is reached

just after processing length t − 1 prefix of x and xt moves from state i to state j .
The following theorem shows that the iterated updating procedure in the Baum–

Welch algorithm either increases the sample likelihood or, at local maxima, keeps it
unchanged. We follow the presentation in [47].

Theorem 5.10 [10, 47] Let x = x1 . . . xm be a sample and let H = 〈α0, {Ta}a∈Σ 〉
and H ′ = 〈α′

0, {T ′
a}a∈Σ 〉 be the hiddenMarkov models defined above. Then, H ′(x) ≥

H(x) with equality at local maxima.

Proof (sketch) Let s = s0 . . . sm be a sequence of states in machine H and con-
sider conditional distributions H(s|x) and H ′(s|x). Starting from the KL divergence
formula and expanding conditional probabilities, it is easy to derive the relations

0 ≤ KL(H(·|x), H ′(·|x))
=

∑

s

H(s|x) log
H(s|x)
H ′(s|x) = log

H ′(x)
H(x)

+
∑

s

H(x ∧ s)

H(x)
log

H(x ∧ s)

H ′(x ∧ s)
.

Defining function Q as

Q(x, H, H ′)=̇
∑

s

H(x ∧ s) log H ′(x ∧ s),

the last inequality can be rearranged to show that

Q(x, H, H ′) − Q(x, H, H)

H(x)
≤ log

H ′(x)
H(x)

.

Thus, H ′(x) > H(x) when Q(x, H, H ′) > Q(x, H, H). We obtain a hill climbing
procedure by finding H ′ maximizing the Q(x, H, ·) function. Using Lagrange’s
method to find critical points of Q subject to stochastic constraints (H ′ must define
a probability function) results in values for α′

0 and {T ′
a}a∈Σ defining H ′ as the ones

displayed in Eqs. (5.1) and (5.2). �
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Chapter 6
Distributional Learning of Context-Free
and Multiple Context-Free Grammars

Alexander Clark and Ryo Yoshinaka

Abstract This chapter reviews recent progress in distributional learning in
grammatical inference as applied to learning context-free and multiple context-free
grammars. We discuss the basic principles of distributional learning, and present two
classes of representations, primal and dual, where primal approaches use nontermi-
nals based on strings or sets of strings and dual approaches use nonterminals based on
contexts or sets of contexts. We then present learning algorithms based on these two
models using a variety of learning paradigms, and then discuss the natural extension
to mildly context-sensitive formalisms, using multiple context-free grammars as a
representative formalism.

6.1 Introduction

In this chapter we look at the problem of learning certain classes of phrase structure
grammars from information about the language, a classic problem in grammatical
inference. In particular we look at techniques using what is broadly called distribu-
tional learning, and which have been developed in recent years starting with Clark
and Eyraud [16]. The term distributional as we use it has nothing to do with prob-
ability distributions or statistical learning, but rather concerns the linguistic notion
of distribution: the set of contexts or environments in which strings or words can
appear.

This is indeed a classic problem: Gold [23] suggests the following question as
worthy of research:

However, it would be useful to determine if there are interesting subclasses of context-free
languages which can be identified in the limit by either of these approaches (i.e. by statistical
approaches like distributional analysis or by approaches sensitive to order).
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Distributional learning itself has a long history, which we review briefly in Sect. 6.2
to provide some intellectual context. In this chapter we present a tutorial overview of
modern approaches to distributional learning as applied to the inference of context-
free grammars (CFGs) and multiple context-free grammars (MCFGs), which we
take to be a representative mildly context-sensitive formalisms. We will focus on the
general properties of these algorithms, and the representational ideas and the types
of algorithms that exploit these representational assumptions. We will try to provide
a full bibliography representing at least the current resurgence of interest in distrib-
utional learning, and including the key earlier papers, together with pointers into the
rest of the literature. We are not trying to provide a complete survey of the inference
of CFGs and MCFGs; we restrict ourselves to algorithms that are computationally
efficient in some sense (and so exclude purely enumerative algorithms [53]), have
some theoretical guarantees (as opposed to heuristic algorithms [33, 38]), and take
as input only strings, or information about strings (as opposed to algorithms that take
trees or partially bracketed strings as input [46]). Within these parameters, the only
algorithms that we are aware of are distributional algorithms in the sense that we
define below.

6.2 Distributional Learning: A Historical Note

Distributional learning has a long history. Beyond the well-known work of the Amer-
ican structuralists, most famously Harris [24] and Wells [61], structuralist linguistics
had an autonomous history in Russia and Eastern Europe under the name of the
Kulagina school, which has its origins in a seminar in mathematical linguistics initi-
ated by Kolmogorov and which takes its name from Olga Kulagina’s seminal 1957
paper [36]. While in the US, structuralist linguistics largely died out after Chom-
skyan linguistics became the dominant research paradigm, it continued for quite
some time elsewhere. The most accessible introduction to this literature is either
Marcus’s book [41] or the two volume survey [57]. Important early papers are by
Sestier [50] and Kunze [37]. None of this work has any real learning results—it
merely uses distributional learning as an analytical tool. A lot of computational work
also uses distributional learning explicitly or implicitly [1, 5, 34, 58], but we do not
discuss this work here.

Distributional learning is also closely related to the context-free grammar for-
malism. The word ‘context’ after all appears in the term context-free and is also
a foundational concept in distributional learning—this is not a coincidence. The
context-free grammar formalism was originally devised to represent the outputs
from distributional learning procedures. Chomsky [7, p. 172, fn.15] says:

The concept of “phrase structure grammar” was explicitly designed to express the rich-
est system that could reasonably be expected to result from the application of Harris-type
procedures to a corpus.
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Over the years since then many different learning procedures for context-free gram-
mars have been devised based on the intuitions of distributional learning. Typically
these algorithms are based on the justification that two strings derived from the same
nonterminal will be distributionally similar; therefore one can try to reverse this
process by finding clusters of distributionally similar strings and creating a grammar
with nonterminals that generate these strings. The naive application of these heuristic
approaches has been known for a long time to suffer from some serious problems;
Chomsky was perhaps the first to articulate these problems explicitly in his doctoral
thesis [6], and indeed much of the technical work that we describe can be seen as an
attempt to either answer or avoid those problems, which at the time were taken to be
compelling arguments against the very possibility of distributional learning.

6.3 Languages and Grammars

We start by defining some standard notation. We assume that we have a finite non-
empty set called the alphabet which we denote by Σ . This set might consist of the
words in a language, or the set of phonemes, a set of letters, or even DNA bases
or amino acids, depending on the application. We write Σ∗ for the set of all finite
strings of elements of Σ . We write Σ+ for the nonempty strings. We write λ for
the empty string. A (formal) language is just a subset of Σ∗; if L is a language
then L ⊆ Σ∗. In this chapter we consider this very restricted notion of a language:
this might be for example the set of grammatical sentences in a language, or the set
of phonotactically well formed words in a language or something else. We abstract
away from the particular details and consider it just as a set of strings that is defined
in some way.

The languages we are interested in are typically infinite, or even if finite are very
large, so we need finite representations. In this chapter we look only at the class
of multiple context-free grammars (MCFGs). Context-free grammars (CFGs) are a
special case of MCFGs; we start by defining the standard class of CFGs, and in
Sect. 6.8 we define the larger class of MCFGs.

A CFG over an alphabet Σ is a tuple which consists of a nonempty finite set
of nonterminal symbols V , together with a set of productions of the form N → α

where N ∈ V and α ∈ (V ∪ Σ)∗. We also have a finite set of initial symbols I ⊆
V , which in the standard definition consists of just one symbol S. The extension
to multiple symbols does not change anything. We denote the standard derivation
relation by

∗⇒G , and define the set of strings derivable from a nonterminal N to be
L (G, N ) = {w ∈ Σ∗ | N ∗⇒G w }. The language defined by the grammar is defined
to be L (G) = ⋃

S∈I L (G, S).
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6.3.1 Learning Models

We are interested in learning: we therefore assume that there is some language that
we are trying to learn. We write L∗ for the target language: i.e. the language that we
are trying to learn. We consider a variety of learning models here, from ones where
the information sources available to the learner are very limited to ones where they
are quite rich; we always consider only information about the language (the set of
strings generated by the grammar), and none about the grammar itself. Additionally
we always require polynomial update time—the learner at each step can only use
a polynomial amount of computation. This is not enough on its own to be truly
restrictive; there is some technical detail which we omit here [44].

• The first model is the oldest: positive-only identification in the limit in the Gold
style [23]. The learner receives a sequence of examples drawn from L∗, and must
converge after a finite but unbounded time to an exactly correct hypothesis. Cru-
cially there are no constraints on the sequence of examples other than the trivial
ones that the examples are all in L∗ and that every element of L∗ must occur at least
once somewhere in the sequence. In this model we cannot learn any superfinite
classes of language; we obtain learnable classes by considering only languages
which satisfy some language-theoretic closure properties. This model therefore
places some significant restrictions on the classes of languages that can be learned.
We require the existence of a polynomially bounded characteristic set and poly-
nomial update time. There are some technical issues about the appropriate way
of defining this for CFGs, since we can have grammars that define languages that
have very long strings, and this needs to be taken into account when defining the
appropriate bound on the characteristic set.

• The second model we consider is that of positive data and membership queries
(mqs), the same as the previous model, but the learner can also ask mqs and find
out whether a particular string is in the target language. This is the easiest model:
the easiest model to learn under, but also the model that is easiest to understand and
easiest to prove results in, and accordingly we will focus on this model. However,
on its own it is not restrictive as it is possible to define vacuous enumerative
algorithms that nonetheless can learn using various computational tricks. We do
not use these tricks in the algorithms we present.

• Minimally adequate teacher (mat) model1 [2, 10, 54, 69]. Here the learner has
two sources of information: it can ask mqs and equivalence queries (eqs). Here
we allow extended eqs. The learner can construct any cfg and ask whether it
is correct or not. The teacher either says yes or provides a counterexample in
the symmetric difference of the hypothesis and the target. Note that this is not
computable for all cfgs. This is a restrictive learning model, in that it is known
that classes such as regular grammars and CFGs are not learnable in this model
[3], whereas deterministic regular grammars and congruential CFGs are, as we
shall see.

1See Learning Grammars and Automata with Queries, de la Higuera (Chap. 3).

http://dx.doi.org/10.1007/978-3-662-48395-4_3
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• Finally, there are results that use stochastic data—we assume the learner has access
to positive samples drawn independently and identically from a fixed distribution,
where the distribution is generated by a probabilistic version of the target grammar
[8, 40].

6.3.2 Contexts and Distributions

One of the most basic notions is that of a context which is just a pair of strings. In
the original papers this is written as an ordered pair (l, r) where l, r ∈ Σ∗. Here we
will use a slightly different notation l�r . This avoids confusion when we move to
MCFGs, and makes it clearer that it represents a sentence with a hole. We therefore
write the special empty context (λ, λ) as just �. In linguistics, a context is sometimes
called an environment.

We can combine a context and a string using the ‘wrap’ operation, for which we
use the symbol �. This combines a context with a string, by inserting the string
into the gap in the context: we define this therefore as (l�r) � u = lur . The empty
context thus does not change the string it is wrapped around: � � u = u.

We extend this to sets of strings and contexts in the natural way, so

C � S = {lur | l�r ∈ C, u ∈ S}.

If we fix a language L ⊆ Σ∗ then we can talk about the relation between contexts
and substrings given by l�r ∼L u iff lur ∈ L . If lur ∈ L then we say that u occurs
in the context l�r in the language L .

We now define the notion of the distribution of a string in the language. Note that
this has nothing to do with the notion of a probability distribution.

CL(u) = {l�r | lur ∈ L}

If we can successfully model this distribution then we will have learned the language
since � ∈ CL(u) iff u ∈ L . We also write this set CL(u) as u
 when L is understood.
Conversely for a context l�r we define (l�r)� to be {u | lur ∈ L}. Note that the
residual languages u−1L = {v | uv ∈ L} are in this notation (u�)
. We extend these
to sets of contexts: C� = {u | ∀l�r ∈ C, lur ∈ L}. Alternatively and perhaps more
intuitively:

C� = {u | C � u ⊆ L}.

Given a set of strings S we can also define

S
 = {l�r | (l�r) � S ⊆ L}.
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For a set of strings D we define

Sub(D) = {u ∈ Σ∗ | lur ∈ D for some l, r ∈ Σ∗ },

Con(D) = {l�r | lur ∈ D for some u ∈ Σ∗ }.

Distributional learning techniques are based on modeling the context-substring rela-
tion of a language. There are two technical details which we need to pay attention to:
one is the case of the empty string, which as always in CFGs needs to be dealt with
as a special case; the second is whether the CFG has more than two nonterminals on
the right hand side of a rule. While every CFG can be put into Chomsky normal form,
these learning algorithms depend on a correspondence between the nonterminals and
sets of strings in the grammar that may not be preserved under binarisation.

6.3.3 Observation Tables

A natural way of visualising the relation between strings and contexts is through
observation tables (OTs) [1, 2]. We show a simple example in Table 6.1. We assume
a finite set of substrings that we call K ; these form the rows of the table; we have
a finite set of contexts, F , that we use as rows. In the entry corresponding to the
row indexed by u and the column indexed by l�r we put a 1 if lur ∈ L∗ and a
0 if lur /∈ L∗. The table in the example contains a limited amount of information
about the language: the language includes λ, ab, aabb, but does not include the
strings a, b, aa, bb, aaa, aab, abb, bbb, aaab, abbb or aabbb. The table does not
contain any information about other strings, for example abab, which may or may
not be in L∗. Thus there are a number of different cfls that are compatible with
this information, from the finite language consisting just of those three examples,
λ, ab, aabb, that are certainly in the language, to the nonregular language {anbn |
n ≥ 0}.

These approaches can be seen to be closely related to the classical techniques for
regular inference which are based on modeling the relationship between prefixes and

Table 6.1 Example of an OT

� a� �b �bb

λ 1 0 0 0

a 0 0 1 0

b 0 1 0 0

aa 0 0 0 1

ab 1 0 0 0

aab 0 0 1 0
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suffixes. In that model (e.g. [2]), an OT has rows indexed by prefixes, and columns
indexed by suffixes, where a cell in the table has a 1 if and only if the concatenation
of the corresponding prefix and suffix is in the language.

6.4 Context-Free Algorithms

All of these algorithms correspond to making a representational decision about what
sets of strings the nonterminals should generate. We use the notation [[x]] for a
nonterminal corresponding to some object x , typically a string or context, or set of
strings or contexts. We need to decide what L (G, [[x]]) should be.

6.4.1 Primal-Dual Distinction

There is an important conceptual division that we want to discuss in general terms
now—which is the division between primal methods and dual methods. In distribu-
tional learning, we have contexts and substrings and the relation between them. We
have a choice—we can either take the substrings as being the primary objects and
consider the contexts as being features, or we can swap the role of the contexts and
substrings, and consider the contexts as being the primary objects and the substrings
as being features.

Primal algorithms thus define sets of strings using one of the following schemes,
where u is a single string and X is a set of strings:

[u] = {v | v
 = u
 }
u
� = {v | v
 ⊇ u
 }
X
� = {v | v
 ⊇ X
 }

Dual approaches on the other hand take a context (l�r) or a finite set of contexts C
and use the sets of strings defined as follows:

(l�r)� = {w | lwr ∈ L}
C� = {w | C � w ⊆ L}

In the case of left regular grammars, these two are essentially similar: we consider
only contexts of the form �u, and switching between primal and dual approaches is
just equivalent to reversing the strings of the language. There is therefore no theoret-
ically interesting difference between the primal and dual techniques. In the case of
CFGs and MCFGs the two approaches differ radically in the types of languages that
can be learned. One immediately obvious difference is that using a dual approach
one can always define the language itself, as a set of strings, using the single context
� since �� = L .
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6.5 Primal Algorithms

We now survey the major primal algorithms for CFG inference, not in chronological
order. We will start by considering the most basic and mathematically tractable model,
the congruential model. This model is also the closest to the models informally
described by the American structuralists. If we consider a clustering model based
on the distributions of strings, then the most fundamental model is one where the
clusters are sets of distributionally identical sets of strings.

6.5.1 Congruential Languages

The most basic result is the mat-learner result for what are called congruential
CFGs [10]. The class of languages that can be learned using this algorithm is the
class of congruential cfls. Congruential cfgs are such that for all nonterminals N if
u, v ∈ L (G, N ) then they are congruent in the sense thatCL(u) = CL(v), which we
will write u ≡L v. These are closely related to the non-terminally separated (nts)
languages [4, 49]. These form a proper subclass of cfls that nonetheless include all
regular languages.

We can construct a grammar directly from an OT: we will explain this case in
full detail, as this is the simplest model and the basic ideas are reused several times
later. Taking the example from Table 6.1, we construct the grammar on the lower
part of the same table using the following procedure. Recall that the rows in the table
are indexed by substrings of strings that are in the language: for each row in the
table, corresponding to a substring u, we create a new nonterminal [[u]]. We want
this nonterminal to generate the string u and all other strings that are congruent to
it. This gives us six nonterminals. First of all we note that the two strings λ and ab
occur in the empty context � and are therefore in the language: we accordingly pick
the two symbols, [[λ]] and [[ab]], as being the start symbols. We now add productions
of three types: lexical, branching, and chain (unary) productions. First of all if w is
of length 1 or 0, that is to say w = a for some letter a ∈ Σ or is equal to λ, we add
a rule of the form [[a]] → a or [[λ]] → λ. Note that in this rule [[a]] is a nonterminal
symbol, and a is a terminal symbol, which are different in a CFG. Next, for every
string w which is of length at least two, we add all possible branching rules of the
following form: We split w into two strings u, v each of length at least 1 that occur in
the table, such that w = uv, and add a production for each of these splits of the form
[[w]] → [[u]][[v]]. This is a binary production with two nonterminal symbols on the
right hand side of the rule. In the example, we have two strings of length 2, which
each have a unique split. We have one string of length 3, aab, which can be split in
two different ways. We therefore have two branching productions with the symbol
[[aab]] on the left hand side. In general, if we have a string of length n, where n > 1,
then we will have n − 1 corresponding branching productions.

These productions on their own are rather trivial—if the grammar consisted only
of these productions then a nonterminal [[u]] could generate only the string u and
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no other string. We also want each nonterminal to generate other strings that are
distributionally identical to u; accordingly we add nonbranching rules between two
nonterminals [[u]] and [[v]] whenever it appears that the substrings u and v are distri-
butionally identical. Of course it is impossible in general to tell from a finite amount
of information whether u ≡L v since this is an infinitary property—the distributions
CL(u) and CL(v) are often infinite sets, and thus we cannot expect to get an exact
answer in a finite amount of time. We can however get an approximate answer: we
can use the OT to get a finite approximation of the distribution of the two strings u, v.
For example, in Table 6.1, the two strings a and aab appear to be distributionally
identical, or at least in the table there is no evidence suggesting that they are not
identical, as the two rows that they label are identical. If we use F to refer to the
finite set of contexts that label the columns of the OT, then we are testing whether
CL(u) ∩ F = CL(v) ∩ F , rather than whether CL(u) = CL(v). We therefore add
productions of the form [[u]] → [[v]] whenever u and v have the same rows in the
table. Now the grammar is more interesting: the nonterminals like [[a]] generate an
infinite set of strings. The generated grammar is shown in Table 6.2.

The final grammar then has six nonterminals, two of which are initial, three
lexical rules, three branching rules and four unary rules. In this form it is hard to
see what is happening, and so it is convenient to convert it into a more readable
grammar by merging nonterminals that are linked via unary rules. This gives us a
grammar which has four nonterminals, one of which is initial. We can relabel the
nonterminals for legibility, with S being the nonterminal corresponding to the two
original nonterminals [[λ]] and [[ab]]; A being the nonterminal corresponding to the
nonterminals [[a]] and [[aab]]; B corresponding to [[b]]; and X corresponding to
[[aa]]. We then have the following grammar:

• Nonterminals are {S, A, B, X} with one start symbol S
• Lexical productions A → a, B → b, S → λ

• Branching productions S → AB, A → AS, A → XB, X → AA

Table 6.2 The generated grammar based on Table 6.1

N N ∈ I? Lexical rules Branching rules Chain rules

[[λ]] Y [[λ]] → λ [[λ]] → [[ab]]
[[a]] [[a]] → a [[a]] →

[[aab]]
[[b]] [[b]] → b

[[aa]] [[aa]] → [[a]][[a]]
[[ab]] Y [[ab]] → [[a]][[b]] [[ab]] → [[λ]]
[[aab]] [[aab]] → [[a]][[ab]],

[[aab]] → [[aa]][[b]]
[[aab]] →
[[a]]
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This grammar generates an infinite nonregular language which is {λ,

ab,
aabb,
aababb,
. . . }.
So given an OT, we can write down a set of nonterminals and productions; but

this leaves unanswered a very important question: how do we pick the rows and
columns of the OT? The construction procedure that we have just defined has two
interesting properties that make it possible to answer this question. These are called
the monotonicity properties.

First, if we increase the columns in the table, the language defined by the gram-
mar generated from the table will always be smaller than or equal to the grammar
generated from the original table. Table 6.3 shows a table with two more columns,
which we have filled in using mqs on some hypothetical language. Now the resulting
grammar, shown in Table 6.4, contains no unary rules, and each nonterminal only
generates the single string that it is labeled with. This grammar therefore defines a
small finite language which consists of just the two strings {λ, ab}; this is a proper
subset of the language defined by the original grammar. It is easy to see why this will
in general always be the case: if we add columns, the generated grammar will have
the same set of nonterminals, lexical and binary productions, but may have fewer
unary productions. Adding additional columns means that the approximate test for

Table 6.3 Example where we have added two more columns to Table 6.1

� a� �b �bb aa�bb �abb

λ 1 0 0 0 1 0

a 0 0 1 0 0 1

b 0 1 0 0 0 0

aa 0 0 0 1 0 0

ab 1 0 0 0 0 0

aab 0 0 1 0 0 0

aa�bb and �abb. As a result the generated grammar no longer contains any unary or chain rules
and just generates the finite language {λ, ab, aabb}
Table 6.4 The generated grammar no longer contains any unary or chain rules and just generates
the finite language {λ, ab, aabb}
N N ∈ I? Lexical rules Branching rules

[[λ]] Y [[λ]] → λ

[[a]] [[a]] → a

[[b]] [[b]] → b

[[aa]] [[aa]] → [[a]][[a]]
[[ab]] Y [[ab]] → [[a]][[b]]
[[aab]] [[aab]] → [[a]][[ab]],

[[aab]] → [[aa]][[b]]
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Table 6.5 Example where we have added one more row (bab) to Table 6.1

� a� �b �bb

λ 1 0 0 0

a 0 0 1 0

b 0 1 0 0

aa 0 0 0 1

ab 1 0 0 0

aab 0 0 1 0

bab 0 1 0 0

Table 6.6 The resulting grammar now has more nonterminals and productions than the original
and as a result generates a larger language

N N ∈ I? Lexical rules Branching rules Chain rules

[[λ]] Y [[λ]] → λ [[λ]] → [[ab]]
[[a]] [[a]] → a [[a]] →

[[aab]]
[[b]] [[b]] → b [[b]] →

[[bab]]
[[aa]] [[aa]] → [[a]][[a]]
[[ab]] Y [[ab]] → [[a]][[b]] [[ab]] → [[λ]]
[[aab]] [[aab]] → [[a]][[ab]],

[[aab]] → [[aa]][[b]]
[[aab]] →
[[a]]

[[bab]] [[bab]] → [[b]][[ab]] [[bab]] →
[[b]]

congruence becomes more accurate and stringent, and as a result some unary rules
will be removed. Thus the resulting grammar will in general generate a language
which is a subset of the original, though it may remain the same.

We have a complementary result when we add one or more additional rows to
Table 6.1. Table 6.5 gives a simple example: we add one more row, labeled with
the string bab. The resulting grammar shown in Table 6.6 is now larger: the set of
productions and nonterminals include the original productions and nonterminals and
as a result the language defined is going to be larger. The grammar after merging
nonterminals and relabeling is this:

• Nonterminals are {S, A, B, X} with one start symbol S
• Lexical productions A → a, B → b, S → λ

• Branching productions S → AB, A → AS, A → XB, X → AA, B → BS

This grammar generates a nonregular language that is larger and includes the string
abab.

The end result of these two monotonicity properties is that it is easy to construct
a learning algorithm. We maintain an OT; if the grammar generates too small a lan-
guage, then we can add some rows to reinforce the grammar, and if, on the other hand,
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the grammar overgenerates, then we can add columns in order to make the grammar
more accurate. There are a number of different ways of doing this: if we observe some
string w which is not generated by the current grammar, the most naive approach
is simply to add every element of Sub(w) as a row. This is guaranteed to make the
grammar generate w and simplifies the convergence analysis. In this learning model
we have an oracle that can be used to make mqs, and so we can fill in all of the spaces
in the OT easily. In other learning models, we need to use other approaches.

The fundamental representational assumption though is that nonterminals are
indexed by substrings u, and we want each nonterminal [[u]] to generate all strings
that are distributionally identical to u. That is to say we wantL (G, [[u]]) = [u]. This
assumption is what distinguishes these congruential approaches from others that we
examine later: this is the simplest primal approach.

The same representational assumption can be used to define an algorithm to learn
related classes of languages in a stochastic setting [8, 40, 51]. In these models, we
cannot ask queries but only have a randomly generated sequence of examples. In this
case we can have an OT that stores counts rather than just a 0/1 value. In each cell of
the table we store the number of times we have seen the string that corresponds to
that cell. Congruence then can be replaced by its stochastic variant. The classes of
languages that we can prove we can learn here are quite limited, and the assumptions
quite strong and unrealistic; nevertheless, this shows that stochastic variants of these
algorithms are possible.

6.5.2 Substitutable Languages

If we want to learn under the more stringent Gold paradigm, where we have neither
queries nor any constraints on how the positive samples are being selected, then we
need to use a slightly different algorithm that relies on a language-theoretic closure
property in order to guarantee convergence. We maintain the same representational
assumption as in the previous section—the nonterminals will generate congruence
classes.

Given two nonempty strings u and v, we say that u
.=L v if there is a context

l�r such that lur ∈ L and lvr ∈ L . A language L is substitutable if u
.=L v implies

u ≡L v. This is a very strong condition, analogous to reversibility in the inference of
regular languages [16]. Indeed substitutability implies reversibility; there are however
languages which are substitutable but not context-free (see for example the language
MIX which we define below). Languages that are substitutable include examples like
{ancbn | n > 0 } but are too strong to be of much practical interest: for example even
the language {anbn | n > 0 } is not substitutable. There are even finite languages that
are not substitutable: {a, aa} is a trivial example.

Clark and Eyraud [16] show that this class of languages can be learned from
positive data alone using a Gold model; the algorithm has polynomial update time,
and has a characteristic set with polynomial number of elements. When the algorithm
observes two substrings of the data that occur in a single context then it assumes that
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they are congruent; the restriction of the class substitutes for the lack of mqs. This has
been extended to k, l-substitutable cfgs [63], in a manner analogous to k-reversibility
in the inference of regular languages.

Interestingly the criteria of substitutability is quite natural and was already noted
in the early days of structuralist linguistics: Myhill in 1950 [42] gave an equivalent
definition and suggested calling languages that satisfy that definition ‘regular’!

6.5.3 Finite Kernel Property

In the case of congruential languages, we considered nonterminals that generate
congruence classes. L (G, [[u]]) = [u]L∗ = {v | CL(v) = CL(u) }. A slightly differ-
ent condition would be to consider the set: u
� = {v | CL(v) ⊇ CL(u) }. Now we
allow sets of strings that include strings whose distribution properly includes the
distribution of u. These strings will have an asymmetric substitution property: when-
ever we have a string like lur we can substitute any string v ∈ u
� to get a string lvr
but perhaps not in reverse. There are a number of cases where this could be useful;
in natural languages we often have that an ambiguous word has a wider distribution
than an unambiguous one. In this case we might want to have a nonterminal that
generates not just the unambiguous words but also words that can have other lexical
categories as well.

A further generalization of this is to consider the case where rather than consider-
ing the nonterminals to be generated by individual strings, we can consider them to
be generated by small finite sets of strings. Given a bound k, we can consider sets of
strings S such that |S| ≤ k, and consider nonterminals that are indexed by these sets.
In this case we want the nonterminal [[S]] to generate the set of strings that can occur
in all of the contexts that are shared by the elements of S. This allows us to have
nonterminals that correspond to clusters of strings that are distributionally similar
but not identical.

More formally we say a CFG has the k-Finite kernel property (k-fkp) if every
nonterminal N has a set of strings SN , |SN | ≤ k, such that L (G, N )
 = S


N . The
class of all CFGs with k-fkp can be learned using examples and mqs [67].

6.6 Dual Algorithms

In dual algorithms we swap the roles of the substrings and the contexts: we index
nonterminals by contexts or sets of contexts, and use substrings to eliminate the
incorrect rules. The representational assumption is then quite different. We take a
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context or more generally a finite set of contextsC , and consider the sets of strings that
can occur in all of the contexts:C�. We then define grammars where the nonterminals
correspond to these sets of strings.

6.6.1 Context Deterministic Grammars

The first dual learning result is by Shirakawa and Yokomori who, in an important early
paper [54], which in our opinion has not received enough attention, define the class
of c-deterministic grammars as those grammars G such that whenever S

∗⇒G lNr
it is the case that L (G, N ) = (l�r)�. They then provide a mat learning algorithm
for this class. There is a small error in this paper: the paper claims that the class
includes all regular languages, but the grammar construction is slightly too weak
for this. A minor modification—allowing rules of the form N → Pa and N → aP ,
where N , P are nonterminals and a ∈ Σ—is sufficient to correct this.

Having defined the nonterminals as corresponding to sets of strings that occur in
a given context l�r we then can use the strings to eliminate rules. Suppose we have
three nonterminals that correspond to the three contexts l1�r1, l2�r2, l3�r3; reusing
the earlier notation we can say the nonterminal symbols are [[l1�r1]], [[l2�r2]] and
[[l3�r3]]. We can consider the possible production [[l1�r1]] → [[l2�r2]][[l3�r3]]. If
this rule is correct, then the result of concatenating any string that can occur in l2�r2

with any string that can occur in l3�r3 will be a string that can occur in l1�r1, or,
using the notation we defined earlier, (l1�r1)

� ⊇ (l2�r2)
�(l3�r3)

�.
Crucially, if this is false, then we can observe some strings u, v that show that

it is false: if l2ur2 and l3vr3 are in L∗ but l1uvr1 is not, then we will know that
the production is incorrect in a certain sense. Thus, just as contexts were used to
eliminate undesirable unary chain rules in the congruential case earlier, strings are
used to eliminate undesirable binary rules in this c-deterministic case.

6.6.2 Finite Context Property

One can weaken this condition in two ways. One is by requiring only that there be
some context l�r such that L (G, N ) = (l�r)�; this is a weaker condition because
the c-deterministic condition requires this to be true forany context of the nonterminal
N . The second is that we allow more than one context. This leads us to the k-finite
context property (k-fcp) [39, 67].2 A cfg has the k-fcp if for every nonterminal
we can find a set of contexts C , where |C | ≤ k, such that L (G, N ) = C�. One
can also modify this to a slightly weaker form as in [67]. A closely related idea,
context-separability, is defined in [1]—this is equivalent to the 1-fcp.

2The original paper defining this [12] unfortunately contains some errors.
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6.7 Combined Primal-Dual Methods

The primal and dual techniques can be combined to produce an algorithm which can
learn classes where the nonterminals can be defined either primally or dually [68]; we
can use these techniques to combine for example the congruential learning result and
the c-deterministic learning result to get an algorithm which can mat-learn a larger
class. The class that is learnable using these combined methods will be strictly larger
than the union of the learnable classes with either primal or dual on its own, as it will
include languages where some of the nonterminals can only be defined primally and
some can only be defined dually. The classes learned are stratified by three natural
numbers: r , the maximum number of nonterminals used on the right hand side of a
production; p, the maximum number of strings used to define a nonterminal primally;
and q, the maximum number of contexts used to define a nonterminal dually. We
denote by G(p, q, r) the class of CFGs that satisfy these bounds. Yoshinaka [68]
shows that the class G(p, q, r) can be learned using positive data and mqs.

It is important to realise that there are cfls that cannot be generated by any
G(p, q, r) for any values of p, q, r . A simple example is the language {anbm | n �=
m }. This is clearly a cfl but cannot be represented by any grammar in this class. This
is because in order to represent this language we need nonterminals that will generate
sets of strings like { anbm | n > m } and {anbm | n < m }. Neither of these sets can be
defined by any finite number of strings or contexts. Thus this language, and others like
it, are not learnable using any of these distributional techniques. Figure 6.1 shows the
relationship of the various learnable classes to the classes of regular languages and
cfls. It is possible to get a more integrated view of the representational assumptions
of these algorithms by looking at the Syntactic Concept Lattice—the residuated
lattice consisting of all distributionally definable sets of strings [9, 14, 62].

6.8 Multiple Context-Free Grammars

CFGs are fairly expressive for describing natural languages, yet the literature has
found several natural language phenomena that cannot be described by CFGs. The
example which definitively established that CFGs were not weakly adequate was the
case of cross-serial dependencies in Swiss German [26, 52]. We present here the data
in a form very close to the original presentation. In the particular dialect of Swiss
German considered by Shieber, the data concerns a sequence of embedded clauses.

Let us abstract this a little bit and consider a formal language for this non-context-
free fragment of Swiss German. We consider that we have the following words or
word types: na, nd , which are respectively accusative and dative noun phrases, va, vd ,
which are verb phrases that require accusative and dative noun phrases respectively,
and finally c, which is a complementizer which appears at the beginning of the clause.
Thus the ‘language’ we are looking at consists of sequences like cnava and cndvd
and cnanandvavavd , but crucially does not contain examples where the sequence of
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CFG

p -q -PRIMAL-DUAL

p -FKP q-FCP

1-1-PRIMAL-DUAL

1-FKP 1- FCP

CONG-C-DET

CONG C- DET

REGULAR

SUBST

MAT-learnable

learnable with examples and MQs

GOLD-learnable

Fig. 6.1 Diagram showing the various classes of CFGs learnable using these techniques. All inclu-
sions are strict. cong is the class of congruential CFGs in Sect. 6.5.1, subst is the class of substi-
tutable CFGs in Sect. 6.5.2, and c-det is the class of context-deterministic grammars in Sect. 6.6.
The dual techniques are on the right and the primal techniques are on the left; substitutable languages
are both primal and dual

accusative/dative markings on the noun sequence is different from the sequence of
requirements on the verbs. So it does not contain cndva , because the verb requires an
accusative and it only has a dative. The sublanguage we are concerned with is the lan-
guage Lsg = {cnian j

dv
i
av

j
d | i, j ≥ 1 }. This language is defined through intersection

of the original language with a suitable regular language and a homomorphism rela-
beling the strings. Since CFGs are closed under these operations, and Lsg is clearly
not context-free, this establishes the non-context-freeness of the original language.

Joshi [27] proposed the notion of mildly context-sensitive (mcs) grammars to
pursue a better formalism to describe natural languages. They suggested that an mcs
family of languages should
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1. include cfls,
2. allow limited cross-serial dependencies,
3. have the constant-growth property,3

4. have polynomial-time parseability.

Here what “limited cross-serial dependencies” means is unclear, and various defin-
itions of mcs formalisms have been proposed. These different grammar definitions
have converged to three different language classes. The smallest class is the class
defined by Linear Indexed Grammars, Combinatory Categorial Grammars and Tree
Adjoining Grammars (tags) [59]. The largest class is defined by the formalism
we use here, Multiple Context-Free Grammars (MCFG) [48], which are essentially
equivalent to Linear Context-Free Rewriting Systems [60]; these are also equivalent4

to the more linguistically motivated Minimalist Grammars [56] which came out of
an attempt to formalise some ideas in contemporary syntactic theory. There is also
an intermediate class of well-nested MCFGs [30], non-duplicating Macro Gram-
mars [22] and Coupled CFGs [25], which form a proper subset of the class of all
MCFGs, and a proper superset of the class of tag-equivalent grammars, which are
equivalent to well-nested MCFGs of dimension 2.

MCFGs are a very natural generalisation of CFGs. While nonterminals of a CFG
generate strings, those in an MCFG generate tuples of strings; for example pairs of
strings. These strings in a tuple need not be adjacent in a complete sentence in the
language of the grammar. This allows MCFGs to generate languages which have
cross-serial dependencies.

We will start this section by defining the MCFG formalism which may be unfa-
miliar to the reader. We will then discuss the learnability of these, using distributional
methods. We structure this section somewhat differently from the CFG section; given
that the reader is now familiar with the primal/dual distinction, we will start with
the positive data-only learning model, and then move to the query-based learning
models.

6.8.1 Definition

An MCFG is a quadruple G = 〈Σ, V, R, I 〉 just like a CFG but each nonterminal
symbol N ∈ V is assigned a positive integer called the dimension, which we will
denote by dim(N ). By Vd we denote the subset of V whose elements have dimension
d. Every start symbol has dimension 1: I ⊆ V1. A nonterminal of dimension d
generates d-tuples of strings. We write production rules of an MCFG in Horn clause

3An infinite language L is said to have the constant-growth property if ∃k ∈ N.∀u ∈ L .∃v ∈ L . 0 <

|v| − |u| ≤ k.
4It is worth noting that MCFGs may be much larger than the smallest equivalent Minimalist Gram-
mar.
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notation,5 which consists of a single literal on the left and a possible empty sequence
of literals on the right, where a nonterminal of dimension d appears as a predicate
of d-ary. Terminal symbols can only appear on the left hand side of the rule. A rule
N → aPQ of a CFG, for example, is written in this notation as

N (axy) :− P(x), Q(y) ,

where x, y are variables and a a terminal symbol, or a constant. This rule is read
as follows: if P derives a string x and Q derives y, N derives axy. In an MCFG,
nonterminals may have dimension more than 1. For example, the rule

N (x1y1, ax2) :− P(x1, x2), Q(y1)

means that if P derives a pair (x1, x2) and Q derives y1, N derives the pair (x1y1, ax2),
where the dimensions of N , P and Q are 2, 2 and 1, respectively.

More formally, production rules have the following form in general:

N0(α1, . . . , αd0) :− N1(x1,1, . . . , x1,d1), . . . , Nk(xk,1, . . . , xk,dk )

where N0, N1, . . . , Nk ∈ V for some k ≥ 0, di = dim(Ni ) for each i ∈ {0, . . . , k};
variables x1,1, . . . , xk,dk are pairwise distinct; and each α1, . . . , αd0 are strings of
terminals and variables such that all and only variables x1,1, . . . , xk,dk occur just once
through α1, . . . , αd0 .6 If k = 0 then the right-hand side is empty, and the production
is of the form N0(v) :− where v ∈ (Σ∗)d0 . If xi, j always occurs left of xi, j+1 in
α1 . . . αm for 1 ≤ i ≤ k and 1 ≤ j < di , the rule is said to be non-permuting. An
example of a rule that is not non-permuting is

P(x1y2, x2y1) :− Q(x1, x2), R(y1, y2) ,

as y2 occurs left to y1 in P(x1y2, x2y1).

Example 6.1 We define an MCFG Gsg = 〈{c, na, nd , va, vd}, V1 ∪ V2, R, {S}〉
where V1 = {S} and V2 = {P, Q}. R consists of the rules

S(cx1y1x2y2) :− P(x1, x2), Q(y1, y2) ;
P(nax1, vax2) :− P(x1, x2) ;
Q(ndx1, vd x2) :− Q(x1, x2) ;

P(na, va) :− ;
Q(nd , vd) :− .

All of the above rules are non-permuting.

5The notation adopted in this chapter follows Smullyan’s elementary formal systems [55] rather
than [48].
6We only consider non-deleting productions in this chapter.
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The derivation process of an MCFG is formally defined with a substitution. A
substitution θ is a map from variables to strings, which is extended to the homomor-
phism θ̂ such that θ̂ (y) = θ(y) if y is in the domain of θ , and θ̂ (y) = y otherwise.
We identify θ̂ and θ if no confusion arises. A substitution θ is often denoted as a
suffix operator [x1 �→ θ(x1), . . . , xk �→ θ(xk)], or even as [θ(x1), . . . , θ(xk)] if the
domain of θ is understood and ordered as x1, . . . , xk .

We write �G N (v) if N (v) :− is a rule in R. If we have �G Ni (vi ) for all i =
1, . . . , k and R has a rule N0(α1, . . . , αd0) :− N1(x1), . . . , Nk(xk), then we deduce

�G N0(θ(α1), . . . , θ(αd0))

where θ(xi) = vi for all i = 1, . . . , k. We will abbreviate this substitution θ as
[v1, . . . , vk]. The language of N is defined by

L (G, N ) = {v ∈ (Σ∗)dim(N ) | �G N (v) } .

The language of G is L (G) = ⋃
S∈I L (G, S).

Recall Example 6.1. It is easy to see that we have

�Gsg P(na, va), �Gsg P(nana, vava), �Gsg P(nanana, vavava),

�Gsg Q(nd , vd), �Gsg Q(ndnd , vdvd),

and
�Gsg S(cnananandndvavavavdvd) ,

for example. Figure 6.2 describes this derivation process in a tree form, where boxes
emphasise the fact that the pair 〈nana, vava〉 generated by P appears as discontinuous
strings in the final product cnananandndvavavavdvd . It is easy to see that L (Gsg) =
Lsg = {cnian j

dv
i
av

j
d | i, j ≥ 1 }.

By MCFG(p, q) we denote the class of MCFGs such that

• every nonterminal has a dimension at most p,
• every rule has at most q occurrences of nonterminals on the right hand side.

Fig. 6.2 Derivation tree of
an MCFG

S(cna nana ndndva vava vdvd)

Q(ndnd ,vdvd)

Q(nd ,vd)

P(na nana ,va vava )

P( nana , vava )

P(na,va)
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Thus Gsg belongs to MCFG(2, 2). Then we define MCFL(p, q)= {L (G) | G∈
MCFG(p, q) }. We also write MCFG(p, ∗)=⋃

q∈N MCFG(p, q) and MCFL(p, ∗)=⋃
q∈N MCFL(p, q). The class of CFGs is identified with MCFG(1, ∗) and the CFGs

in Chomsky normal form are all in MCFG(1, 2). Hence MCFL(1, 2) = MCFL(1, q).
Seki et al. [48] and Rambow and Satta [45] have investigated the hierarchy of

mcfls.

Proposition 6.1 (Seki et al. [48], Rambow and Satta [45])For p ≥ 1,MCFL(p, ∗) �

MCFL(p + 1, ∗).
For p ≥ 2, q ≥ 1, MCFL(p, q) � MCFL(p, q + 1) except for MCFL(2, 2) =

MCFL(2, 3).
For p ≥ 1, q ≥ 3 and 1 ≤ k ≤ q − 2, MCFL(p, q) ⊆ MCFL((k + 1)p, q − k).

Hereafter we fix p and q to be small natural numbers. An important property of the
class MCFG(p, q) is the polynomial-time uniform parsability.

Theorem 6.1 (Seki et al. [48], Kaji et al. [29]) Let p and q be fixed. It is decidable in
O(‖G‖2|w|p(q+1)) time whether w ∈ L (G) for any MCFG G ∈ MCFG(p, q) and
w ∈ Σ∗.

It is known that every MCFG in MCFG(p, q) has an equivalent one in MCFG(p, q)

whose rules are all non-permuting [35], so we assume without loss of generality that
all MCFGs are non-permuting in this chapter.

6.8.2 Generalisation of Contexts and Substrings and
Observation Tables

Recall that classical algorithms for learning regular languages observe the relation
between two strings p and s as prefixes and suffixes, respectively. That is, we have an
OT whose rows are indexed by prefixes p and columns are by suffixes s and the entries
show whether the concatenations ps belong to the target language L∗. The choice
of those two types of objects corresponds to the fact that a nonterminal of a (right)
regular grammar generates suffixes of members of the language: S

∗⇒ pN
∗⇒ ps. In

the distributional learning of CFGs the two sorts of objects we choose are contexts
l�r and substrings v, which correspond to the fact that a nonterminal of a CFG
generates substrings: S

∗⇒ lNr
∗⇒ lvr . In accordance with the fact that an MCFG

generates discontinuous substrings, we now generalise the notion of a context to a
multi-context and a substring to a multi-word and define the corresponding wrap
operation in the natural way. We call a pair of strings 〈u, v〉 2-word. A 2-context
contains exactly two occurrences of the hole: thus a 2-context has the form l�m�r .
The wrapping operation is accordingly generalised as

l�m�r �2 〈u, v〉 = lumvr .
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Similarly we can have 3-contexts, 3-words, and so on, if we target MCFGs with
nonterminals of dimension 3 or more. We denote p-word and p-context by bold
letters u, v, . . . and sans-serif u,v, . . . , respectively, and the sets of p-words and
p-contexts by Sp and Cp, respectively. The wrapping operations �p for p-words
and p-contexts are also defined accordingly. For a string set D, we define

Subp(D) = {v ∈ Sp | u �p v ∈ D for some u ∈ Cp } ,

Conp(D) = {u ∈ Cp | u �p v ∈ D for some v ∈ Sp } .

Understanding the concerned language L , the polar maps 
 and � are also generalised
for S ⊆ Sp and C ⊆ Cp:

S
 = {u ∈ Cp | u �p S ⊆ L } ,

C� = {v ∈ Sp | C �p v ⊆ L } .

For two p-words u and v, we define

u ≡L v if and only if {u}
 = {v}
 .

Distributional learning algorithms for CFGs use an OT to observe which combination
of a context and a substring together forms a sentence in the concerned language.
Since an MCFG may have nonterminals of different dimensions, we now have an
OT for each dimension.7

Once we have obtained those generalisations, almost every technique in the dis-
tributional learning of CFGs can be translated for the learning of MCFGs straight-
forwardly as we will see in the following subsections.

6.8.3 Substitutability

The learnability result of substitutable CFGs presented in Sect. 6.5.2 can be trans-
lated to the MCFG learning [66]. For two 2-words 〈u1, u2〉, 〈v1, v2〉 ∈ S2, let us
write 〈u1, u2〉 .=L 〈v1, v2〉 if there is a 2-context l�m�r such that lu1mu2r ∈ L and
lv1mv2r ∈ L . We say that a language L is 2d-substitutable8 if 〈u1, u2〉 .=L 〈v1, v2〉
implies 〈u1, u2〉 ≡L 〈v1, v2〉.

7Technically speaking, the OT for the highest dimension subsumes the other ones for lower dimen-
sions, since m-contexts and m-words can be seen as special cases of n-contexts and n-words,
respectively, for m < n: e.g., l�r��2 〈u, λ〉 = l�r � u. However, there are cases where it is
more reasonable to exclude the empty string from consideration.
8 The original definition [66] has a slightly weaker form, where stringsm, u1, u2, v1, v2 are restricted
to be non-empty strings. ab∗cd∗e is 2d-substitutable according to the original definition, but it is
not the case in our simplified definition.
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The learning algorithm for pd-substitutable MCFGs in MCFG(p, q) is essentially
the same as the one for substitutable CFGs and it runs in polynomial time under the
assumption that p and q are known to the learner. We note that the degree of the
polynomial linearly depends on pq. The only difference is in the construction of
the learner’s conjecture grammar from a positive data set D. The nonterminal set is
V = ⋃

1≤i≤p Vi , where
Vi = {[[v]] | v ∈ Subi (D) }

is the set of nonterminals of dimension i . What we would like [[v]] to generate is
{u | u ≡L∗ v } where L∗ is the learning target. The initial symbols are

I = {[[v]] ∈ V1 | v ∈ D } .

MCFGs do not have a simple and well-established normal form like the Chomsky
normal form in CFGs. One may introduce a normal form for MCFG(p, q) but it
should involve many different types of rules differently from the case of CFGs,
where branching rules and lexical rules suffice. Instead we introduce rules of the
conjecture grammar in a general form. We have a decomposition rule of the form

[[v]](α) :− [[v1]](x1), . . . , [[vk]](xk)

if

• it is eligible for a rule of an MCFG in MCFG(p, q),
• α[v1, . . . , vk] = v.

Decomposition rules can be seen as a generalisation of branching and terminating
rules in distributional learning of CFGs. We also have chain rules between two
‘substitutable’ k-words:

[[v1]](x) :− [[v2]](x)

if there is u such that u �k v1,u �k v2 ∈ D.
For example, when p = q = 2, from D = {abcde, aabccdee}, we construct rules

[[aabccdee]](x1,1x2,1, x1,2x2,2) :− [[〈a, cde〉]](x1,1, x1,2), [[〈abc, e〉]](x2,1, x2,2) ;
[[〈aa, ccdee〉]](x1,1a, cx1,2e) :− [[〈a, cde〉]](x1,1, x1,2) ;

[[〈a, cde〉]](a, cde) :− ;
[[〈a, cde〉]](x1,1, x1,2) :− [[〈aa, ccdee〉]](x1,1, x1,2)

among others. The first three rules are decomposition rules, whereas the last
one is a chain rule, which is induced from the fact �b� �2 〈a, cde〉,�b� �2

〈aa, ccdee〉 ∈ D.
However, the property of pd-substitutability for p ≥ 2 is far too strong a require-

ment to be useful. The flexibility of the decomposition of a sentence into 2-contexts
and 2-words often makes many 2-words weakly substitutable, and thus the 2d-
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substitutability assumption causes too much generalisation. For example, some
singleton language, say {aaabaaa}, is not 2d-substitutable. We have a�a�a �2

〈aab, a〉 = a�a�a �2 〈a, baa〉 = aaabaaa, which means 〈aab, a〉 .={aaabaaa}
〈a, baa〉, but actually 〈aab, a〉 �≡{aaabaaa} 〈a, baa〉 since a�aa� �2 〈aab, a〉 =
aaabaaa and a�aa� �2 〈a, baa〉 = aaaabaa. This argument also implies that
{ anban | n ≥ 1 } which is still (1d-)substitutable, is not 2d-substitutable.

An interesting mcfl which is 2d-substitutable is MIX, the Bach language:

MIX = {w ∈ {a, b, c}∗ | |w|a = |w|b = |w|c },

where |w|a denotes the number of occurrences of a in w. Salvati [47] showed that
MIX is in MCFL(2, 2), while Kanazawa and Salvati [31] showed that it is not a
tree-adjoining language. It is easy to see that MIX is indeed 2d-substitutable, since
u .=MIX v iff u ≡MIX v iff |u|a − |u|b = |v|a − |v|b and |u|b − |u|c = |v|b − |v|c.
Joshi et al. [28] suggested that MIX should be excluded from a family of mcs lan-
guages for its complete free word order of letters cannot be considered as ‘limited’
cross-serial dependencies. Yet MIX seems to be quite a simple language from the
learnability point of view.

6.8.4 MAT Result

The other learning algorithms presented in Sects. 6.5 and 6.6 can also be translated in
the same way as in the case of substitutable languages and we obtain diverse classes
of learnable MCFGs. While the pd-substitutability with p ≥ 2 is stronger than the
original 1d-substitutability and accordingly the obtained learnable MCFGs are very
much restricted, the subclasses of MCFGs defined by those properties are indeed
larger than the corresponding classes of CFGs.

6.8.4.1 Congruential MCFGs

The mat learnability result of congruential CFGs presented in Sect. 6.5.1 can be
translated as follows [69]. We say that an MCFG G is congruential if for every non-
terminal N and any elements u, v ∈ L (G, N ), we have u ≡L (G) v. By definition,
every congruential CFG is a congruential MCFG.

The grammar Gsg of Example 6.1 is congruential. The languages of respective
nonterminals are

L (Gsg, S) = {cnian j
dv

i
av

j
d | i, j ≥ 1 } ,

L (Gsg, P) = {(nia, via) | i ≥ 1 } ,

L (Gsg, Q) = {(n j
d , v

j
d) | j ≥ 1 } ,
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and for all cnian
j
dv

i
av

j
d ∈ L (Gsg, S), (nia, v

i
a) ∈ L (Gsg, P) and (n j

d , v
j
d) ∈ L (Gsg, Q),

their context sets are

(cnian
j
dv

i
av

j
d)


 = {�} ,

(nia, v
i
a)


 = {c�n j
d�v j

d | j ≥ 1 } ,

(n j
d , v

j
d)


 = {cnia�via� | i ≥ 1 } .

The mat learner for congruential MCFGs constructs a grammar in a way similar to
the one for pd-substitutable MCFGs, except for the condition for chain rules. Now
we have membership oracle and all the entries of the OTs are fulfilled. Let Kd and
Fd be the finite sets of d-words and d-contexts, which label the rows and columns
of the OT for dimension d, respectively. The set of nonterminals of dimension d
is Vd = {[[v]] | v ∈ Kd }, where what we would like [[v]] to generate are again u
such that u ≡L∗ v. Decomposition rules are constructed in exactly the same manner
as before: we have [[v]](α) :− [[v1]](x1), . . . , [[vk]](xk) if it is eligible for a rule of
an MCFG in MCFG(p, q), and α[v1, . . . , vk] = v. The criterion for a chain rule is
different. For u, v ∈ Kd , we have the chain rule of the form [[u]](x) :− [[v]](x) if and
only if u
 ∩ Fd = v
 ∩ Fd .

We again have the monotonicity properties. If we increase the rows in the table,
no existing rules will be removed but new nonterminals and decomposition rules will
be added. On the other hand, if we increase the columns in the table, no new rules
will be added but possibly some chain rules will be removed.

For example, according to the OT in Table 6.7, we have a chain rule

[[〈nd , vd〉]](x1, x2) :− [[〈nand , vavd〉]](x1, x2)

Table 6.7 Examples of OTs for Lsg = {cnian j
dv

i
av

j
d | i, j ≥ 1 }

1d � c� c�vavd

λ 0 0 0

cnava 1 0 0

nava 0 1 0

nand 0 0 1

nana 0 0 0

2d cna�ndva�vd c�nand�vavd cna�nd�
〈na, va〉 1 1 0

〈nd , vd 〉 1 0 0

〈nand , vavd 〉 1 0 0

〈na, ndvavd 〉 0 0 0

〈na, vavavd 〉 0 0 1
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Table 6.8 Expansion of the OT for dimension 2 in Table 6.7

2d cna�ndva�vd c�nand�vavd cna�nd� cnand�vavd�
〈na, va〉 1 1 0 0

〈nd , vd 〉 1 0 0 1

〈nand , vavd 〉 1 0 0 0

〈na, ndvavd 〉 0 0 0 0

〈na, vavavd 〉 0 0 1 0

〈ndnd , vdvd 〉 1 0 0 1

since 〈nd , vd〉
 ∩ F2 = 〈nand , vavd〉
 ∩ F2 = {cna�ndva�vd}. If, however, cnand�vavd�
is added to F2, this chain rule should be discarded since cnand�vavd� �2 〈nd , vd〉 ∈
Lsg but cnand�vavd� �2 〈nand , vavd〉 /∈ Lsg.

On the other hand if we add 〈ndnd , vdvd〉 to K2, we obtain a new chain rule

[[〈nd , vd〉]](x1, x2) :− [[〈ndnd , vdvd〉]](x1, x2),

which will never been removed. See Table 6.8.

6.8.4.2 C-Deterministic MCFGs

One can easily define c-deterministic MCFGs as well according to the translation
framework discussed in Sect. 6.8.2, though no preceding work has done it explicitly.
A context of a nonterminal N of a CFG is defined through the top-down rewriting
derivation process: l�r is a context of N if S

∗⇒ lNr . In the case of an MCFG, we
say that u ∈ Cd is a context of a nonterminal N ∈ Vd if it is generated from an initial
symbol using a special rule N (�, . . . ,�

︸ ︷︷ ︸
d times

) :− just once [64]. We then say that an

MCFG G is c-deterministic if for every nonterminal N of G, every context u of N
characterises L (G, N ), i.e., {u}� = L (G, N ) (or weakly {u}� ≡L (G) L (G, N )).
By generalising Shirakawa and Yokomori’s algorithm for c-deterministic CFGs, one
can obtain an analogous mat algorithm for c-deterministic MCFGs in MCFG(p, q).
The grammar Gsg itself is not c-deterministic, but a slight modification satisfies the
definition:

S(cx1nand y1x2vavd y2) :− P(x1, x2), Q(y1, y2) ;
P(nax1, vax2) :− P(x1, x2) ;
Q(ndx1, vd x2) :− Q(x1, x2) ;

P(λ, λ) :− ;
Q(λ, λ) :− .
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6.8.5 Finite Kernel Property and Finite Context Property

Yoshinaka [65] has given the MCFG counterpart of the learning of CFGs with the 1-
fkp [17] and Clark and Yoshinaka’s [18] result has established the learning of MCFGs
with the k-fcp. The definitions of the fkp and fcp for MCFGs are now obvious. We
say that an MCFG G has the k-fkp if every nonterminal N of dimension d admits a
finite d-word set SN ⊆ Sd such that

• |SN | ≤ k,
• S


N = L (G, N )
.

We say that an MCFG G has the k-fcp if every nonterminal N of dimension d admits
a finite d-context set CN ⊆ Cd such that

• |CN | ≤ k,
• C�

N = L (G, N ).

Learners for MCFGs with the k-fkp in MCFG(p, q) and for those with the k-fcp are
designed in a way similar to the ones for CFGs with the k-fkp and with the k-fcp,
respectively, with the same straightforward translation technique presented in the
previous subsections.

One can combine those primal and dual approaches, of course.

6.9 Discussion

6.9.1 Distributional Learning Beyond MCFGs and CFGs

Distributional learning has been applied recently to learning problems beyond the
CFGs and MCFGs that we consider in this chapter; we briefly review some of these
approaches here.

We also have the extension to Parallel Multiple Context Free Grammars (pmcfgs)
[18, 19]; these grammars include a copying operation which allows them to represent
some phenomena like reduplication. Two other extensions using nonstandard for-
malisms have also been proposed, Distributional Lattice Grammars [11] and Binary
Feature Grammars [17]. These two formalisms use a limited form of conjunction;
it thus seems possible to combine these results with the pmcfg formalism to have a
formalism that includes copying and conjunction.

Synchronous CFGs that are used for modeling transduction can easily be modeled
by MCFGs, but if we assume the transduction is a function this can simplify the learn-
ing problem. There is an extension to learning string transductions along the lines
of the well-known ostia [43] algorithm using a very limited class of synchronous
CFGs called Inversion Transduction Grammars [13]; these learn from input/output
pairs.
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All of these approaches have considered string languages: the objects being mod-
eled are strings. These approaches have also been extended beyond string languages
to learning languages over other types of objects such as trees [32], and they also
have been applied to graphs with an intended application in computer vision [21],
and to sentence/meaning pairs using Abstract Categorial Grammars [70].

Finally, all of these learning algorithms use only a weak notion of convergence:
the learner must converge to a hypothesis that generates the right language considered
as a set of strings. A stronger notion of convergence requires that the hypothesis be
isomorphic to the target grammar: in other words, that the learner learn a grammar
that generates not just the right set of strings but the right set of structures. Such an
algorithm is presented in [15].

6.9.2 Conclusion

We have reviewed a wide spectrum of algorithms using distributional learning tech-
niques: it is clear that the methods we have studied here do not exhaust the range
of application of this approach. One important point is that from a learnability point
of view, CFGs are just a special case of MCFGs. While there is a significant differ-
ence between regular inference and CFG inference, there seem to be no theoretically
interesting differences between CFGs and MCFGs. Every learning result for CFGs
can be converted into a corresponding result for MCFGs.
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Chapter 7
Learning Tree Languages

Johanna Björklund and Henning Fernau

Abstract Tree languages have proved to be a versatile and rewarding extension of
the classical notion of string languages.Many nice applications have been established
over the years, in areas such asNatural Language Processing, InformationExtraction,
and Computational Biology. Although some properties of string languages transfer
easily to the tree case, in particular for regular languages, several computational
aspects turn out to be harder. It is therefore both of theoretical and of practical interest
to investigate how far and inwhat waysGrammatical Inference algorithms developed
for the string case are applicable to trees. This chapter surveys known results in this
direction. We begin by recalling the basics of tree language theory. Then, the most
popular learning scenarios and algorithms are presented. Several applications of
Grammatical Inference of tree languages are reviewed in some detail. We conclude
by suggesting a number of directions for future research.

7.1 Introduction

As elaborated in other chapters of this book, several learning models have been
developed in Grammatical Inference. These models describe how the learner can
behave to reach its ends, as well as the other circumstances of the learning process,
like the presence of a benevolent teacher or a hostile learning environment. Many
models have first been suggested and discussed in Learning Theory and have then
been adapted to Grammatical Inference.

There is another aspect of learning, namely that of the objects that are to be
learned and also the way these objects are represented. This aspect was termed the

J. Björklund (B)
Department of Computing Science, Universitet Umeå, 90750 Umeå, Sweden
e-mail: johanna@cs.umu.se

H. Fernau
FB IV—Abteilung Informatikwissenschaften, Universität Trier, 54286 Trier, Germany
e-mail: fernau@informatik.uni-trier.de

© Springer-Verlag Berlin Heidelberg 2016
J. Heinz and J.M. Sempere (eds.), Topics in Grammatical Inference,
DOI 10.1007/978-3-662-48395-4_7

173



174 J. Björklund and H. Fernau

object axis by Kasprzik [107]. Notice that this axis is mostly neglected in classical
Learning Theory, as objects like strings (also known as words in the context of
Formal LanguageTheory) or trees can be easily encoded as natural numbers (and vice
versa). Also grammars or automata can be viewed this way, but inherent structural
properties are easily lost in the abstraction. Conversely, the area of Grammatical
Inference has focused, at least in its very beginning, on learning devices designed
to accept or generate strings, like classical deterministic finite automata that every
student in Computer Science encounters in the first years of study. However, many
formal descriptions of sets of objects others than strings have been developed over
the last decades. For instance, the third volume of the famous Handbook of Formal
Languages [176] is dedicated to the topic “Beyond Words”. These objects can be
many different things, like trees, graphs, or arrays, to name a few. This richness of
object types is beyond the scope of this chapter.

Rather, we will revise known results of several of these settings in the specific
situation of learning tree languages. The focus is on ordered ranked finite trees,
but we discuss other models in passing, especially when they seem better suited
for modeling real-life situations. For instance, ordered unranked finite trees are a
convenient representation for XML documents.

We expect a readership coming from and having at least three different back-
grounds: Formal Language Theory, Grammatical Inference (primarily of string lan-
guages) and application areas (like XML processing). We therefore chose a narrative
style for presenting the main ideas, with many illustrative examples. This means that
a mathematically detailed exposition of the most advanced technical results cannot
be expected, but we try our best to point to the original sources.

Structure and Scope In Sect. 7.2,we provide the fundamentals on tree languages that
support the technical results in later sections. Section7.3 comprises the largest part of
the survey; it collects the mathematical results. This section is organized according
to different learning models, as typically different results show up for each of these
basic models. The following section, Sect. 7.4, surveys applications of learning tree
languages. It should be stressed that tree language learning is one of the areas of
Grammatical Inference where the (potential) applications were an obvious driving
force for theoretical developments. Section7.5 summarizes the previous sections,
outlines related research efforts, and gives an outlook on the future of the field.

Learning is a very rich area. In order to stay within a reasonable number of pages,
we have to narrow down the (possible) scope of this survey.We already stated that we
are going to restrict ourselves to the learning of trees. So,we do not consider inference
of graph languages, even though corresponding results for trees are often obtained
as special cases. Possibly more severely, we also restrict the learning models that
we discuss. For instance, training of probabilistic language models or unsupervised
learning such as clustering algorithms or Support VectorMachines is onlymentioned
by giving some references (but not explained in detail) in this chapter.

Moreover, we are going to concentrate on specific devices for describing tree lan-
guages. In this survey, we focus on automata that process their input trees bottom-up,
but the reverse direction is also possible. Nondeterministic top-down tree automata



7 Learning Tree Languages 175

characterize the regular (ordered, ranked) tree languages, whereas languages recog-
nisable by deterministic top-down tree automata form a proper subclass of the regular
tree languages. In the case of tree transducers, the top-down mode of operation is
more common. The inference of transducers poses a difficult challenge already in the
case of string languages, so there are relatively few papers on grammatical inference
that look at tree transducers. (In a different setting, this is done for quite some time
within so-called SMT systems; see Sect. 7.4.3.) At the same time, tree transducer
inference has many practical applications, mainly in the area of XML processing.
We will discuss some of these works in Sect. 7.4. Another topic not covered is sto-
chastic automata. Again, this is quite an important area from a practical perspective.
We will briefly sketch one bioinformatics application in Sect. 7.4.

Learning Models We refer here to the other chapters of this book, and also to the
textbook of de la Higuera [96] on the inference of string languages. We concen-
trate on learning from positive examples (text learning), on learning from positive
and negative examples (informant learning), and on active learning (also known as
learning with query models; see Chap.3, “Learning Grammars and Automata with
Queries”, C. de la Higuera).

7.2 Definitions for Tree Languages

There are quite a number of excellent books and surveys on tree languages. See for
instance [54, 87, 134], and also the chapter written by Gécseg and Steinby in the
Handbook of Formal Languages [177]. The technical details in these works differ,
so we give a brief theoretical overview in order to fix notions and notations. The
focus is on ordered ranked finite trees, but we explain in passing how the learnability
results may be transfered to the unranked case.

7.2.1 Trees

A ranked alphabet V is a finite set of symbols together with a finite rank relation
rV ⊂ V × N. Define Vn := {f ∈ V | (f , n) ∈ rV }. Since elements in Vn are often
considered as function symbols (representing functions of arity n), elements in V0

are also called constant symbols. As shown further below, ranked alphabets facilitate
a compact string representation of the tree. As usual, given some (alphabet) set A, A∗
refers to the set of strings with letters in A (or, more technically, to the free monoid
generated by A, with neutral element λ). In the context of trees, also the infinite
alphabet N of the natural numbers is important. Given some order < on the alphabet
A, this easily extends to a lexicographic ordering on A∗ that we also denote by <.

A tree domain is a finite subsetΔt of N
∗ such that (1) if x ∈ Δt and y is a prefix of

x, then y ∈ Δt ; (2) if y · i ∈ Δt , i ∈ N, then y · j ∈ Δt for 1 ≤ j ≤ i. A tree over V is a

http://dx.doi.org/10.1007/978-3-662-48395-4_3


176 J. Björklund and H. Fernau

mapping t : Δt → V , where the Δt is a tree domain and for every x ∈ Δt , t(x) ∈ Vn

if {i ∈ N | x · i ∈ Δt} = {1, . . . , n}. An element of Δt is also called a node of t, the
node λ is the root of t, and for every node x ∈ Δt , t(x) is the label of x. A tree is
finite if its domain is finite. Notice that the Hasse diagram of the order induced by
< on Δt coincides with the usual drawing of the corresponding tree; see Fig. 7.1.

A frontier node (or leaf ) in t is a node y ∈ Δt such there is no x ∈ Δt with y < x. If
y ∈ Δt is not a frontier node, it is an interior node. If y ∈ Δt is an interior node, then
every node y · i ∈ Δt for i ∈ N is called a child of y. The depth of a tree t is defined
as depth(t) = max{|x| | x ∈ Δt}, whereas the size of t is given by |Δt|. Letters will
be viewed as trees of size 0 and depth 1.

Let V t denote the set of all finite trees over V . By this definition, trees are rooted,
directed, acyclic graphs in which every node except the root has one predecessor and
the direct successors of any node are linearly ordered from left to right. Any subset
of V t is a tree language.

Interpreting V as a set of function symbols, V t can be identified with the well-
formed terms over V . This yields a compact string denotation of trees. Let us explain
these notions with a little example.

Example 7.1 Consider Fig. 7.1. Here, we have V = {a, b, c, 2}. The rank relation
is given by V0 = {b, c, 2}, V1 = {b}, V2 = {a}, and V3 = {a}. The tree on the left-
hand side of Fig. 7.1 complies with these arities, and its domain is depicted on the
right-hand side. Trees can be also interpreted as expressions of terms over some
given (universal) algebra, and vice versa [54, 98]. For instance, the tree in Fig. 7.1
corresponds to the expression a(a(b, a(b, c)), 2, a(2, b(2))). Hence, the labels of
interior nodes can be seen as operators, while the labels of leaves are the operands.
This also explains the special rôle of leaf labels, as further discussed below. For
convenience, we will sometimes use this term notation for trees.

a

a 2 a

b

b a 2 b

c 2

1 2 3

11 12 31 32

121 122 321

λ

Fig. 7.1 An example of a tree, with the node labeling scheme to the right
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7.2.2 Operations on Trees

We are going to define a catenation on trees, based on the notion of replacement. For
t ∈ V t and x ∈ Δt , the subtree of t at x, denoted by t/x, is defined by t/x(y) = t(x · y)
for any y ∈ Δt/x, where Δt/x := {y | x · y ∈ Δt}. ST(T) := {t/x | t ∈ T ∧ x ∈ Δt} is
the set of subtrees of trees from T ⊆ V t. The replacement of the subtree t/x with
s ∈ V t is defined as:

t(x ← s)(y) =
{
t(y), if y ∈ Δt \ ({x} · Δt/x),

s(z), if y = x · z ∧ z ∈ Δs.

Let S ⊆ V t. We denote by V (S) the set of trees

{f (t1, . . . , tn) | (f , n) ∈ V and ti ∈ S for every i ∈ {1, . . . , n}}.

Let $ be a new symbol, i.e., $ /∈ V , and let the arity of $ be 0. Let V t
$ denote the

set of all trees over V ∪ {$} which contain exactly one occurrence of label $. We
call these trees contexts. By definition, only frontier nodes can carry the label $. For
trees u ∈ V t

$ and s ∈ (V t ∪ V t
$ ), we define an operation # to replace the frontier

node labelled with $ of u by s according to u#s = u(x ← s), where x ∈ Δu with
u(x) = $. This is the catenation operation that we were going to define. Notice that
the classical catenation of strings (mostly denoted by ·) can be viewed as a special
case if one considers strings as trees where all interior nodes have only one child.

If U ⊆ V t
$ and T ⊆ (V t ∪ V t

$ ), then U#T := {u#t | u ∈ U ∧ t ∈ T}. Further-
more, for any t ∈ V t and any tree language T ⊆ V t, the quotient of T and t is
defined as:

UT (t) :=
{ {u ∈ V t

$ | u#t ∈ T}, if t ∈ V t \ V0,

{t}, if t ∈ V0.

An equivalence relation≡ on V t is subtree invariant if, for each t ∈ V t and each
x ∈ Δt , t1 ≡ t2 implies that t(x ← t1) ≡ t(x ← t2) for any trees t1, t2 ∈ V t.

7.2.3 Finite Tree Automata

The following definition of finite tree automata is made possible by the compact
functional representation of trees. Let V be a ranked alphabet andm be the maximum
arity of the symbols in V . A (finite bottom-up) tree automaton over V is a quadruple
A = (Q, V, δ,F) such that Q is a finite state alphabet (disjoint with V0), F ⊆ Q
is a set of final states, and δ = (δ0, . . . , δm) is an m + 1-tuple of state transition
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functions, where δk : Vk × Qk → 2Q for k ∈ {0, . . . ,m}. Now, a transition relation
(also denoted by δ) can be recursively defined on V t (for k ≥ 0) by letting

δ(f (t1, . . . , tk)) :=
⋃

qi∈δ(ti),i=1,...,k

δk(f , q1, . . . , qk).

A tree t ∈ V t is accepted by A if δ(t) ∩ F �= ∅. The tree language accepted by A is
denoted by T(A). A is total if each of the functions δk maps each possible argument
to a set of cardinality of at least 1. A is deterministic if each of the functions δk maps
each possible argument to a set of cardinality of at most 1. Similarly to deterministic
finite-state acceptors recognizing strings, deterministic tree automata can be viewed
as algorithms for labelling the nodes of a tree with states. Analogously to the string
case, it can be shown that nondeterministic and deterministic finite tree automata
accept the same class of tree languages, namely the regular tree languages, at the
expense of a possibly exponential state explosion.

Many properties known for regular string languages are easily transferred to the
tree domain. Most importantly, finite tree automata permit efficient membership and
emptiness tests.

Example 7.2 Let us have a look at a simple example of a deterministic tree automa-
ton. Let V consist of V0 = {0, 1} and V2 = {∨}. Let Q = {q0, q1} be the set of states
and F = {q1} be the set of final states. Let

δ0(x) = qx and δ2(∨, (qx, qy)) := qmax{x,y}

for x, y ∈ V0. This automaton accepts all Boolean terms (with∨ as the only operation)
of height 1 or more that evaluate to 1, that is, all terms that contain at least one leaf
with label 1. For instance, the term (tree) ∨(0,∨(1, 0)) is accepted, because

δ(∨(0,∨(1, 0))) = δ2(∨, δ(0), δ(∨(1, 0))) = δ2(∨, q0, δ2(∨, δ(1), δ(0)))

= δ2(∨, q0, δ2(∨, q1, q0)) = qmax{0,max{1,0}} = q1.

The notions of isomorphic automata and (state subset induced) subautomata can
be easily carried over from the well-known string case to the tree case. A state q
of a deterministic tree automaton A is useful if there exists a tree t and some node
x ∈ Δt such that δ(t/x) = q and δ(t) ∈ F. A state that is not useful is called useless.
A deterministic automaton containing only useful states is called stripped.

Remark 7.1 A couple of different definitions of tree automata can be found in the
literature. We tried to give one of the more usual ones. However, in the context of
learning, the one of Sakakibara [182] that considers elements of V0 as if they were
states is quite widespread.
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7.2.4 Weighted Tree Automata

Finite tree automata accept crisp languages: either a tree is admitted as a member, or
it is not. To allow for probabilities, and to model quantitative properties, it is useful
to consider weighted devices.

Weighted tree automata (WTA) are obtained from regular tree automata by assign-
ingweights, typically taken from some commutative semiringR, to all transitions and
final states [8, 22, 30, 121]. More precisely, a WTA A is a TA in which the transition
function has been replaced by a function δk : Vk × Qk × Q → R for k ∈ {0, . . . ,m},
and the final states by a function F : Q → R. The tree t = f [t1, . . . , tk] is mapped to
the state q with weight

Aq(t) =
∑

(q1,...,qk)∈Qk

δk(f , (q1, . . . , qk), q) · Aq1(t1) · . . . · Aqk (tk).

The weight assigned to t by A is then given by

A(t) =
∑

q∈Q
Aq(t) · F(q).

A WTA A is deterministic if, for every number k ∈ {0, . . . ,m}, symbol f ∈ Vk ,
and sequence of states (q1, . . . , qk) ∈ Qk , there is at most one q ∈ Q such that
δk(f , (q1, . . . , qk), q) is non-zero (a syntactic property). It is all-accepting if it assigns
a non-zero weight to every input tree (a semantic property). If A is deterministic, then
the additive operation is not needed, so it suffices to work with a monoid containing
a ‘zero’ (i.e., an absorbing element) and a single multiplicative operation.

Weighted tree automata generalize finite tree automata, since the latter are WTA
over the Boolean semiring: Any function δk : Vk × Qk → 2Q corresponds to a func-
tion δ′

k : Vk × Qk × Q → {0, 1} and vice versa. Having seen this, it should be clear
that δ(t) ∩ F �= ∅ iff A(t) = 1, where A is defined via δ′

k over the Boolean semiring.
More generally, we can associate to each WTA A a formal power series, namely∑
t∈V t A(t) t. For the Boolean semiring, there is again a natural correspondence

between these tree series and tree languages. Otherwise, weighted devices sometimes
behave differently from their unweighted counterparts. For example, the classes of
tree series computed by deterministic and nondeterministic WTA over the same
semiring R do not always coincide. An informative example is the height function,
which can be computed by a nondeterministic but not by a deterministic WTA over
the tropical semiring, where the ground set is N, the additive operation is max and
the multiplicative operation is +; see [30].



180 J. Björklund and H. Fernau

7.2.5 Constructions for Tree Automata

We need some special constructions of tree automata in our exposition:

Base tree automaton Firstly, we define the analogue of the well-known prefix-tree
acceptor in the string case: Let I+ be a finite tree language over V . The base
tree automaton (sometimes also called subtree automaton) for I+, denoted by
Bs(I+) = (Q, V, δ,F), is defined as follows: Q = ST(I+), F = I+,

δk(f , u1, . . . , uk) = f (u1, . . . , uk)

whenever u1, . . . , uk ∈ Q, k > 0, and δ0 maps any symbol a from V0 to the one-
node tree labeled a. Obviously, T(Bs(I+)) = I+.

Example 7.3 Consider the term (tree) ∨(0,∨(1, 0)) as in the previous example.
Possible subtrees are described by the following trees: ST(∨(0,∨(1, 0))) = {0, 1,
∨(1, 0),∨(0,∨(1, 0))}. BS({∨(0,∨(1, 0))}) has two states apart from 0 and 1: q0 =
∨(1, 0) and q1 = ∨(0,∨(1, 0)). The only non-trivial state transition is δ2(∨, 0, q0) =
q1.

Canonical tree automaton Secondly, we transfer the notion of canonical automa-
ton to the tree case: Let T be a regular tree language over V . The canoni-
cal tree automaton for T , denoted by C(T) = (Q, V, δ,F), is defined by: Q =
{UT (s) | s ∈ ST(T)}, F = {UT (t) | t ∈ T}, δk(f ,UT (s1), . . . ,UT (sk)) = UT

(f (s1, . . . , sk)) if f (s1, . . . , sk) is in ST(T). Observe that C(T) is a determinis-
tic stripped automaton which is formed completely analogously to the minimal
deterministic string automaton. As in the string case, to each regular tree lan-
guage, there is a canonical tree automaton accepting that language. Moreover,
the well-known characterization of Myhill-Nerode transfers to the tree case: A
tree language T is regular if and only if it is of finite index, i.e., T is the union
of equivalence classes of some subtree-invariant equivalence relation. This also
explains why C(T) is a finite-state automaton if T is regular.

Quotient automaton Finally, we define quotient automata. A partition of a set S
is a collection of pairwise disjoint nonempty subsets of S whose union is S. If π

is a partition of S, then, for any element s ∈ S, there is a unique element of π

containing s, which we denote by B(s, π) and call the block of π containing s.
A partition π is said to refine another partition π ′ iff every block of π ′ is a
union of blocks of π . If π is any partition of the state set Q of the automaton
A = (Q, V, δ,F), then the quotient automaton π−1A = (π−1Q, V, δ′, π−1F) is
given by π−1P = {B(q, π) | q ∈ P } (for P ⊆ Q) and, for B1, . . . ,Bk ∈ π−1Q,
f ∈ Vk , B ∈ δ′

k(f ,B1, . . . ,Bk) whenever there exist q ∈ B and qi ∈ Bi ∈ π−1Q
for 1 ≤ i ≤ k such that q ∈ δk(f , q1, . . . , qk).

An alternative (andmore illustrative) way to quotient automata is via the idea of state
merging: π−1A is obtained from A by merging all states in each block into one state.
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State merging can change the accepted language dramatically. Reconsider Exam-
ple 7.3. The base tree automaton A := BS({∨(0,∨(1, 0))}) only accepts a single
tree, that is, T(A)= {∨(0,∨(1, 0))}. Merging the two states q0 = ∨(1, 0) and q1 =
∨(0,∨(1, 0)) into a single one, call it q, we arrive at the state transitions δ2(∨, 1, 0) =
q and δ2(∨, 0, q)= q. Hence, we find that T := T({{q0, q1}}−1A) is infinite: T =
{∨(1, 0),∨(0,∨(1, 0)),∨(0,∨(0,∨(1, 0))),∨(0,∨(0,∨(0,∨(1, 0)))), . . . }. This
makes it clear that automata properties like determinism can be lost by the quotient
operation. However, state merging is the main idea behind many learning algorithms
that start out with a simple automata presentation of given data, mostly via the base
tree automaton.

In the case of unranked trees, the symbols that label tree nodes lose their arities. The
usual finite automaton model yielding a notion of regular unranked tree languages is
termed hedge automaton. Details can be found in [38, 134]. Regularity of unranked
tree languages can be characterized by ranked tree languages in (at least) two ways,
via currification and via a first-child-next-sibling encoding.

An obvious connection between string and tree languages is that strings can be
represented as trees. There are in fact several different ways of doing so. A convenient
representation for comparing and transferring results is to consider a string w =
a1 . . . an of length n over the alphabet Σ as a tree t on n nodes with domain Δt =
{1j | 0 ≤ j < n}, such that t(1j) = an−j for 0 ≤ j < n. The labels of t are taken from
a ranked version of Σ , in which every symbol has arity at most 1. Notice that w is,
in a sense, spelled out backwards by t, since string automata read input strings from
left to right, whereas tree automata (usually) read trees from the leaves to the root,
so that the root corresponds to the end of the string.

Much of the early interest in tree languages stemmed from the fact that the context-
free string languages are the yields of the regular tree languages [200]. In fact, for this
characterization, it is sufficient that all internal nodes are binary (recall the Chomsky
normal form for context-free languages) and hence the trees of interest look just the
same as those obtained by curryfying unranked trees.

The theory of tree languages is rich, even when restricted to the regular case:
Just as with regular string languages, regular tree languages can be characterized by
a particular type of logic, by regular expressions, by grammars, and by algebraic
properties. Again, details must be omitted for lack of space, and we refer instead
to the above-mentioned survey articles. There are also more specific surveys, e.g.,
[120]. The indicated connections to logic might be the most fruitful path, also for
learning such devices, although this has been barely explored so far. In this context,
it should be also mentioned that such kind of formalisms also exist for the case of
weighted (tree) automata; see [71, 72, 123].

Moreover, the regular tree languages are not only characterized by nondetermin-
istic bottom-up tree automata, as defined above, but also (via the well-known subset
construction) by deterministic bottom-up tree automata, as well as by nondeter-
ministic top-down tree automata (whose formal definition can be seen in [54], for
instance). This formalism is, however, different from the bottom-up variety insofar
as deterministic top-down tree automata are strictly weaker than nondeterministic
ones regarding their descriptive power.
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It is also worth mentioning that the class of regular tree languages is quite a
robust class regarding its closure properties. For instance, it is closed under Boolean
operations like union, under complementation, and under intersection. The men-
tioned expression characterization relies on the operations “tree substitution” and
“iteration,” whose formal definition can be found in [54].

There also exist notions of finite tree transducers, which are basically devices that
work on trees but not only accept or reject, but again produce another tree as an
output. These are particularly interesting in connection with the processing of XML
documents, although they have various other applications. But with this particular
application in mind, we defer further discussion to Sect. 7.4.1.

7.3 Mathematical Results

7.3.1 Gold-Style Learning

In his seminal paper [88], Gold considered the (passive) learning of a language by
a computer program that receives an infinite stream of information with which it
must converge to the learning target. Soon, it was recognized that it matters whether
the learner only receives positive examples (this scenario is also known as learning
from text) or both positive and negative examples (this scenario is called informant
learning and will be described more in detail in Sect. 7.3.1.1).

It was then discovered that no language class with infinite elasticity is learnable in
the limit from text [11]. The elasticity of a class C is the length of the longest chain
of inclusions L1 � L2 � L3 � · · · , where Li ∈ C for every i ∈ N. If the learner is
presented with a sequence of examples e1, e2, . . . with ei ∈ Li for every i ∈ N, then
it will never reach a point when it can say with certainty what the target language
is. There are however three different non-trivial classes of (string) languages that
can be learned from positive data only: pattern languages [10], reversible (regular)
languages [12] and languages akin to the k-gram approach known from practical
lexical analysis, leading to different notions of so-called testability; see [85]. All
three ideas have been transferred to the tree case, as we will show in the following.
Text learners formally follow the protocol that they receive an infinite stream of
positive data, but should stabilize towards one hypothesis after some finite number
of steps. Mostly, it is easier to present these learners as receiving a finite language
(of trees in our case) and then producing a hypothesis.

Moreover, it was well known that regular string languages can be learned from
informants. This has then been generalized to the tree case, as we will exhibit next.

7.3.1.1 Informant Learning of Regular Tree Languages

For the string case, several learning algorithms that infer finite automata have been
proposed, the most famous ones are those presented by Gold [89] and by García and
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Oncina, which has been generalized to trees shortly after its presentation for strings
[84]. We will try to convey the gist of the latter algorithm in the following.

Recall that a learning algorithm for informant learning receives an infinite input
of positive and negative examples. This means, more formally and assuming that
the target language is a tree language over the ranked alphabet V , that the learner
receives a sequence of correctly labeled examples (ti, li), i being a positive integer,
so that ti ∈ V t and li ∈ {+,−} for any i. The target language is T = {ti | li = +},
and V t equals T ∪ {ti | li = −}. At time step i, the learner receives (ti, li) from the
informant. As a reaction to this, the learner forms a hypothesis, which is, in our case, a
deterministic tree automaton Ai. To the sequence of hypothesis automata A1,A2, . . . ,
there corresponds a sequence of hypothesis languages T(A1),T(A2), . . . , and the
requirement of successful learning then means that, from a certain point of time j on,
Aj = Ak for all k ≥ j, and also T(Aj) = T .

Notice that up to time step i, the learner has seen the examples (t1, l1), …, (ti, li).
Although this is not required from the learning model, all practical algorithms also
satisfy that the hypothesis Ai formed in step i obeys {tj | 1 ≤ j ≤ i, lj = +} ⊆ T(Ai)

and T(Ai) ∩ {tj | 1 ≤ j ≤ i, lj = −} = ∅, a property called global-consistency [28],
although this is quite a restriction from the point of view of Learning Theory. There-
fore, the task of forming a hypothesis automaton can be also seen in the following
setting: To the hypothesizing algorithm, we input two disjoint sets of treesX+ andX−
over the alphabet V , and the algorithm outputs a hypothesis automaton A(X+,X−)

whose language T(A) satisfies X+ ⊆ T(A) and X− ∩ T(A) = ∅.
It should be observed that learnability as such is not a question, because regular

tree languages are recursive, so that general results from learning theory apply [88].
This general approach is of purely enumerative nature: Such an algorithm could sys-
tematically enumerate all deterministic finite tree automata and stick with the last
one enumerated as long as no inconsistencies with the datum (X+,X−) are discov-
ered. If an inconsistency is discovered, the algorithm moves to the next automaton
in the enumeration and tests it against the datum. But such an algorithm could take
arbitrarily long for its computations if we happen to encounter an enumeration of
the automata that is “bad” for the current datum, as it is not clear when a consistent
automaton will be enumerated. It is only clear that it will show up sooner or later.

There have been two main suggestions for overcoming this problem, one by Gold
[89] and one by García and his colleagues. We are going to describe the latter one,
also known as RPNI (regular positive and negative inference), but we also like to
mention that Gold’s approach shares data structures like observation tables with
the famous LSTAR algorithm explained below in the context of active learning in
Sect. 7.3.2.3. As worked out by Kasprzik [105, 107], RPNI can be also described
using observation tables, but this is a minor technical issue here.

The RPNI algorithm starts by building the base tree automaton for the posi-
tive samples X+. This gives the first potential hypothesis PH0. It then constructs
a sequence of potential hypotheses PHs, where PHs is obtained from PHs−1 by
merging states. Intuitively, state mergings are done as long as they do not introduce
inconsistencies with respect to the negative sample X−.
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The algorithm maintains two sets of states, usually called “red states” and “blue
states”. The red states represent states in the hypothesis automaton, and the blue
states represent transitions. After PH0 has been computed, one of the automaton’s
states is selected at random and placed in the red set, and the remainder is put in the
blue set. The algorithm repeatedly selects some blue state and tentatively merges it
with some red state. If the merger does not cause trees in X− to be accepted, then the
merger is confirmed and leads to the next potential hypothesis. If every merger of
the chosen blue state with a red state fails to respect X−, then the blue state becomes
a red state (this is usually called “promotion”), but the hypothesis automaton is not
changed. The algorithm terminates if all originally blue states have been checked in
the way described. In particular, if X− = ∅, then all states will eventually be merged
into a single accepting one. Clearly, the algorithm’s running time is bounded by a
polynomial in the size of X+ ∪ X−.

Example 7.4 Assume that we have the alphabet V = V0 ∪ V2 with V0 = {0, 1} and
V2 = {∨}, and let X+ = {∨(1, 0),∨(0,∨(1, 0))} and X− = {∨(0, 0)}. As BS(X+)

has no transition for the case that is interesting in the negative sample, its two
states can be merged to yield a hypothesis with the transition function δ2(∨, 0, p) =
δ2(∨, 1, 0) = p. This changes if we take X+ = {∨(1, 0),∨(0,∨(1, 0)),∨(1,
∨(0, 0))} instead (for instance, after seeing the next labeled example). The automaton
BS(X+) now has four states, p = ∨(1, 0), q = ∨(0, p), r = ∨(0, 0) and s = ∨(1, r).
RPNI will discover that p, q, s can be merged into one state z without violating
X−, but s will remain separate. This yields the hypothesis with a transition function
featuring δ2(∨, 1, 0) = δ2(∨, 0, z) = δ2(∨, 1, s) = z and δ2(∨, 0, 0) = s. Assuming
that these examples were drawn from the language from Example 7.2, we can see
that this hypothesized automaton is already “close” to the target automaton.

As mentioned in the introduction, we do not cover probabilistic or stochastic
extensions of tree languages, but only refer to some relevant papers [37, 183, 185].
Informant learning is in many ways similar to query learning [105, 107], a subject
which we return to in Sect. 7.3.2.

We now turn our attention to learning from positive examples only, and consider
a number of learning strategies and target language classes. Notice that this mode of
learning can be formalized analogously to informant learning. For practical purposes,
we present these learners as algorithms receiving a finite language (of trees in our
case) and in response outputting a hypothesis.

7.3.1.2 Text Learning of Tree Patterns

One way of explaining tree patterns is by generalizing the catenation operation #
towards a parallel operation. To this end, we extend the ranked alphabet V by an
alphabet X of variables (of rank 0), and assume a linear order < on X. A tree pattern
P is a tree over the ranked alphabet V ∪ X. To each tree pattern P, we associate with
the help of the operator oc the k-tuple oc(P) = (x1, . . . , xk) of variables in X that
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occur in P, such that: (a) Whenever there is a frontier node in P that carries the label
x ∈ X, then there is an index i, 1 ≤ i ≤ k, such that x = xi, and (b) x1 < x2 < · · · < xk
according to the linear order< on X. The language associated to P is the language of
trees that can be obtained from P, with oc(P) = (x1, . . . , xk), by choosing a k-tuple
of trees (t1, . . . , tk) where each ti ∈ V t, and consistently replacing each occurrence
of xi at some frontier node by the tree ti. A tree language (over V ) is a tree pattern
language if it is a language associated to some tree pattern P.

For instance, if V = {(a, 2), (a, 0)}, then all binary trees (with label a in each
node) comprise V t. The tree pattern language associated to the binary tree of depth
1, where both frontier nodes are labeled with variable x, however, does not consist
of all binary trees (with all nodes labeled a) of depth at least 1, but rather of trees
that can be obtained from two copies of some arbitrary binary tree, connected by a
new root node.

It is shown in [124] that the class of tree pattern languages has finite thickness.
Actually, this result is already contained in [171], and as a consequence, tree pattern
languages can be learned from text. Due to Wright [160, 214], this implies further
that also finite unions of tree pattern languages have finite elasticity and are text-
learnable. For more on this subject, see [19, 20].

More general ideas of tree pattern languages are explored in [153, 197, 199].
There, variables can also label inner nodes of the tree pattern, enablingmore complex
replacements. From the point of view of (string) pattern languages, this looks like
the right generalization to trees, but the replacements of variables must be carried
out with care, taking into account the arities of the symbols involved. Also, height
constraints have been investigated due to practical motivations in the context of
discovering common characteristics in semistructured documents [198]. Notice that
in the context of XML, a different notion of (tree) patterns was established; see [164].

We should alsomention here research on the learnability of unordered tree pattern
languages [192]. This is more like learning special types of graph languages, and
the research has been moved into that direction, mostly driven by Shoudai and his
co-authors; we only refer to [215, 217], but there are more papers in that research
area. There have also been investigations of a purely graph-theoretical nature, for
instance, the inference and recovery of edge-colored trees from sequences of edge
colors obtained from walking a tree [150].

From a theoretical point of view, it may be interesting to see how elementary
formal systems translate to the tree case, as they are believed to form a basis for
designing text-learnable language classes; see [16, 157].

7.3.1.3 Text Learning of Testable Tree Languages

For every natural number k, there are only finitely many k-testable languages, so the
text learnability of these language classes was easily established. Since then, many
variants have been investigated [85, 86, 178], some of them in the Ph.D. thesis of
Ruiz [167]. It is worth noticing that the yields of tree languages which are 2-testable
in the strict sense, are exactly the context free languages [175].
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The basic setting was generalized to tree languages by Knuutila and by García
in [83, 114, 115], but also variants were discussed, for example, in [139]. We should
also mention precursor papers like [81] that propose a method called k-followers
akin to the k-tail tree inference method of Brayer and Fu [31]. In this context, also
two papers of Levine deserve to be mentioned [129, 130]. Further results in this
direction are contained in [174]. These ideas were also generalized beyond trees, for
instance, see [141, 195].

Let us explain the idea in its simplest form. To this end, fix some natural num-
ber k ≥ 1. For trees t ∈ V t, define the tuple testk(t) = (rk−1(t), pk(t), �k−1(t)), the
components of which refer to the root region, the set of tree parts and the set
of leaf regions, respectively. Formally, rk(t) is the restriction of t to the domain
Δt ∩ {x ∈ N

∗ | |x| ≤ k}, while �k(t) is the set of subtrees of t whose domain is a
subset of {x ∈ N

∗ | |x| ≤ k}. Finally, pk(t) collects all trees rk(t′), where t′ ∈ ST(t)
and t′ has depth at least k − 1. Clearly, pk(t) = ∅ if the depth of t is smaller than
k − 1. The reader familiar with k-testable string languages will easily see the simi-
larities, as we are also extracting the information on the beginning, the middle parts
and the ends of the tree. A tree language T is k-testable in a strict sense if there exist
three finite sets of trees R,P,L such that t ∈ T if and only if rk−1(t) ∈ R, pk(t) ⊆ P
and �k−1(t) ⊆ L. The learning algorithm proposed in [83] (also see [140]) basically
deduces from a given positive sample the sets of root regions, the possible tree parts,
and the union of the sets of leaf regions that are encountered in the sample, and takes
this as a hypothesis (R,P,L). This hypothesis can be also interpreted as a deter-
ministic finite tree automaton A = (Q, V, δ,F) with Q = R ∪ L ∪ pk−1(P), F = R,
δ(t) = t for t ∈ L, and δn(σ, t1, . . . , tn) = rk−1(σ (t1, . . . , tn)) for σ(t1, . . . , tn) ∈ P.

7.3.1.4 Text Learning of Reversible Tree Languages

One of the first non-trivial examples of a subclass of the regular languages that
can be learned from text were the k-reversible languages [12]. Sakakibara [182]
continued this line of work by proving the text-learnability of zero-reversible tree
languages. More precisely, that context-free (string) languages are learnable from
positive structural information. The property of k-reversibility was later generalized
to functional distinguishability, first in the context of string languages [75] and then of
tree languages [76]. The concept of k-reversibility was also independently extended
towards trees in [140].

We only provide some further details for zero-reversible tree languages. Sakak-
ibara called a tree automaton A = (Q, V, δ,F) reset-free if there are no two distinct
states p, q with

δn(σ, q1, . . . , qi−1, p, qi+1, . . . , qn) = δn(σ, q1, . . . , qi−1, q, qi+1, . . . , qn).

A deterministic finite tree automaton is zero-reversible if it is reset-free and has at
most one final state.
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The learner begins by constructing the base tree automaton for the finite sample
language. This yields the hypothesis PH0. Inductively, at stage s, the learner begins
by determining whether PHs is zero-reversible. If it is not, then PHs has more than
one accepting state, is not deterministic, or is not reset-free. Each of these problems
can be resolved by merging states. Doing such a (forced) state merge results in
the automaton PHs+1 for the next stage. Upon termination, the learner outputs a
hypothesis that is zero-reversible. It can be shown that this algorithm is a valid text
learner for zero-reversible tree languages. Moreover, the hypothesis will always be a
canonical tree automaton. This is also the casewith k-reversible tree languages, while
the (more general) function-distinguishable tree languages require custom canonical
automata. Notice that the first step in Example 7.4 is the same as that of the learner
for zero-reversible tree languages.

The idea of using reversibility (or functional distinguishability) was also used for
defining text-learnable language classes from deterministic top-down tree automata,
although the results aremostly given in terms of special context-free string languages.
The most general published results in this direction are contained in [196], building
on ideas from [125, 146].

7.3.2 Active Learning

In active learning (query learning, optimal experimental learning), the learning algo-
rithm iteratively refines an hypothesis by querying an oracle for information (see
Chap.3, Learning Grammars and Automata with Queries, de la Higuera). Its suc-
cess in deducing the target language depends on the type of queries that the oracle
can answer. The complexity of inferring a class of languages is typically expressed
as a function of the size of the canonical representation for the target language, and
the number of different types of queries needed. A range of querying strategies have
been proposed, such as asking about the data points that at the moment seem hardest
to classify [132], or which have highest entropy [190]. Goldman and Kearns have
taken the opposite view and considered the complexity of teaching various classes
of languages [90].

7.3.2.1 Learning from Membership Queries

Anatural formof active learning is learning frommembership queries.Amembership
query consists in asking the oracle to label an unknown object in the learning domain
as inside or outside the target language. Under the additional assumption that at least
one positive example is available, Matsumoto and Shoudai give a polynomial-time
algorithm that infers treeswith height-bounded variables, that is, with a set of internal
variables {xi}i∈N such that xi can be substituted by any tree of height at most i [152].

Besombes and Marion [24] provide an inference algorithm for regular tree lan-
guages that learns from membership queries and representative samples. (Some

http://dx.doi.org/10.1007/978-3-662-48395-4_3
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corrections to this algorithm are given by Kasprzik [108].) A representative sam-
ple S for a language L is a finite subset of L such that each transition of the canonical
automaton AL for L is used to produce at least one tree in S. It is easy to see that
there is always a representative sample of size exponential in that of AL. Given such
a representative sample, the algorithm uses membership queries to derive AL in poly-
nomial time by following the general approach of the LSTAR algorithm by Angluin
(see Sect. 7.3.2.2).

The same learning model was adopted by Kasprzik for learning residual finite-
state tree automata (RFTA) [106, 108]. These devices are a generalisation of residual
finite-state automata [63], which in turn are a restricted form of NFA where each
state represents a residual language of the language recognized. The RFTA offer a
canonical and often compact form of representation for regular tree languages.

7.3.2.2 The Minimal Adequate Teacher Model MAT

Once it had been established that the regular languages (which have infinite elasticity)
cannot be learnt from text [88], a learning model was sought that was strong enough
to allow their inference, but sufficiently simple to have nice mathematical proper-
ties. This led to the minimal adequate teacher (MAT) model, an oracle capable of
answering membership queries as well as a second type of query called equivalence
query [13]. With an equivalence query, the learner asks the teacher to verify its cur-
rent hypothesis, and to provide a counterexample that disproves it, if the hypothesis
is indeed wrong. When equivalence queries are allowed, the learner cannot be fooled
by a malevolent teacher to stall at the same mistaken hypothesis for an unbounded
number of inference steps.

A survey of MAT learners for weighted and unweighted tree languages was com-
piled by Drewes [65]. According to this source, Sakakibara was the first to generalize
the LSTAR algorithm to trees [181]. He considered skeletal languages, that is, the
parse trees of context-free languages in which all internal nodes are unlabeled [131].
Drewes and Högberg considered regular tree languages in general [66], and proved
that it is possible to avoid useless states in the inference process [67]. By doing so,
the automaton A becomes a language-equivalent partial automaton with potentially
exponentially fewer states. Notice that while most MAT learning algorithms aim at
learning deterministic finite-state tree automata, there is also one that has residual
finite-state tree automata as its target structure, published by Kasprzik [108].

As for the weighted case, Denis and Habrard considered the problem of learning
a probability distribution P over a set of trees from an independent sample [62],
given that P can be computed by a weighted tree automaton (WTA) over a suit-
able semiring [82]. Drewes and Vogler gave a MAT learner for deterministic all-
accepting WTA [68], and Maletti one for deterministic WTA over commutative
semifields [147]. Under the stronger assumption that weights are taken from a field
(allowing both multiplicative and additive inverses), it is possible to learn also non-
deterministic WTA within the MAT model [95].
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In [69], key properties of observation tables are captured in an abstract data type
(ADT) for learning deterministic WTA. The authors show that the ADT can be
realized as an observation tree in the sense of Kearns and Vazirani [110], which may
reduce the algorithm’s complexity considerably.

Arimura et al. give an algorithm that learns the union of k tree pattern lan-
guages using O (k · n) equivalence queries and O (k2 · n · max({k, n})) membership
queries [17], where n is the size of the largest counterexample provided by teacher.
Amoth et al. show that unordered tree patterns are not learnable from equivalence
and subset queries. Since subset queries are strictly more powerful than membership
queries, this result also holds for the MAT model [9].

7.3.2.3 The LSTAR Algorithm for Regular Tree Languages

Let us look at a simple version of the LSTAR algorithm for regular tree languages.
To find the minimal deterministic automaton A for a target language L, the algorithm
maintains a set of trees S and a set of contexts C. Recall that a context is a tree in
which exactly one of the leaves has been replaced by a special symbol $, which could
be also interpreted as a variable. The algorithm will achieve its goal by collecting in
S representatives of the congruence classes of L (or equivalently, the states of A), and
the purpose of contexts is to provide evidence that the trees in S belong to different
classes.

As it runs, the algorithm builds up an observation table T . The rows of T are
indexed by trees in S ∪ V (S) and the columns by contexts in C. At position (s, c),
the algorithm writes a + if c#s ∈ L, and a—otherwise. This information can be
obtained by asking the teacher membership queries.

Let row(s) denote the row of s ∈ (S ∪ V (S)), represented as a string in {+,−}∗.
This representation supposes a certain ordering on C, say, to the order in which
elements are added to C by the algorithm. The table T is closed if for every s ∈
V (S), there is an s′ ∈ S such that row(s) = row(s′). If the table is not closed, then
it can be closed by adding s to S (and for technical reasons, all its subtrees). The
intuition here is that the tree f (s1, . . . , sk) ∈ V (S) encodes a transition from the states
row(s1), . . . , row(sk) on symbol f , and only if the table is closed does the target state
of this transition exist.

The table T is consistent if, for every s1, . . . , sk, s′1, . . . s′k ∈ S such that row(si) =
row(s′i), we have row(f (s1, . . . , sk)) = row(f (s′1, . . . , s′k)). If the table is not consis-
tent, then it can be made so by adding a new context to C, assembled from a c ∈ C,
the label f , and k − 1 of the trees s1, . . . , sk, s′1, . . . , s′k . This time, the intuition is
that when the trees f (s1, . . . , sk) and f (s′1, . . . , s′k) encode the same transition, then
the target state should be uniquely defined.

If a table is both closed and consistent, then it represents a unique deterministic
tree automaton with states {row(s) | s ∈ S}, transitions as given by V (S), and the set
of accepting states being all states from {+ · w | w ∈ {+,−}∗}, where we assume
that the first element from C is $.
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$

0 −
1 −

$
0 −
1 −

∨(0,1) +
∨(0,0) −
∨(1,0) +
∨(1,1) +

∨(0,∨(0,1)) +
∨(∨(0,1),0) +
∨(1,∨(0,1)) +
∨(∨(0,1),1) +

∨(∨(0,1),∨(0,1)) +

$ ∨($,0)
0
1 −

∨(0,1)

− −
+

+ +
∨(0,0)
∨(1,0)
∨(1,1)

∨(0,∨(0,1))
∨(∨(0,1),0)
∨(1,∨(0,1))
∨(∨(0,1),1)

∨(∨(0,1),∨(0,1))

− −
+ +
+ +
+ +
+ +
+ +
+ +
+ +

Fig. 7.2 Three observation tables for Example 7.5

The LSTAR algorithm thus proceeds as follows. It starts with sets S = ∅ and
C = {$} and expands them until T is closed and consistent. When this happens, it
synthesises an automaton AT from T and passes it through the teacher in the form
of an equivalence query. If AT accepts L, then the algorithm terminates and we
know that AT is the target automaton T . If it does not, then the teacher will return a
counterexample t in the symmetric difference of L(AT ) and L. The learner then adds
ST(T) to S and continues to expand S and C until it again has a closed and consistent
table, at which point a new equivalence query is posed, and so forth.

Example 7.5 As an illustration, we consider a run of the LSTAR algorithm on
the language of Boolean terms in Example 7.2. The algorithm starts with the sets
S = ∅ and C = {$}, and builds up the observation table shown leftmost in Fig. 7.2
through a series of membership queries. When we draw the tables, we separate
the rows corresponding to S and V (S) \ S by a horizontal line. Since the table
is both closed and consistent, the learner asks the teacher whether the automaton
({−}, {0, 1,∨},∅,∅) is what he or she had in mind. Since this is not the case,
the teacher returns a counter-example, say t = ∨(0, 1). After adding ST(t) to S,
the table now looks as shown in the middle of Fig. 7.2. Since row(0) = row(1)
but row(∨(0, 0)) �= row(∨(1, 0)) the table is not consistent, so the algorithm will
add ∨($, 0) to C. After further membership queries, the table looks as shown
rightmost in Fig. 7.2. Since T is again closed and consistent, the learner can
synthesize the automaton AT = ({−−,−+,++}, {0, 1,∨}, δ, {++}) with δ(0) =
δ(∨,−−,−−) = −−, δ(1) = −+, and δ(∨, x, y) = δ(∨, y, x) = ++ for all x ∈
{−+,++} and y ∈ {−−,−+,++}. Since L(AT ) = L, the teacher accepts the
hypothesis and the algorithm terminates.

7.3.2.4 Alternative Types of Active Learning

So far, we have discussed generalisations of active learning algorithms to the domain
of trees. There is also work in which the learning model itself has been adjusted, e.g.,
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by considering alternative types of queries. Becerra-Bonache et al. argue that when
the aim is to model human language acquisition, it is more plausible to consider what
they call correction queries than membership queries. In this type of active learning,
the learner makes a sequence of statements, and whenever it says something that is
ungrammatical, the learner responds with a structurally similar but grammatically
correct sentence [21]. A similar line is taken by Tirnăucă [202], who considers three
types of corrections based on prefixes, length bounds, and edit distances.

Correction learning has also been applied to tree languages by Tîrnaucă and
Tîrnaucă [201], using the following kind of feedback:Given a tree t, the oracle returns
the smallest context c (with respect to a certain order) such that c#t is contained in
the target language, or a special token if no such context exists. The authors show that
regular tree languages are learnable froma combination of correction and equivalence
queries, and that a subclass called injective languages can be inferred from correction
queries alone.

A common critique against the MAT model is that equivalence queries are too
difficult to answer in reality. This has led some researchers to replace the equiva-
lence queries with subset inclusion queries, which can often be decided by over-
approximating the current hypothesis with a simpler language. A good example is
the application of MAT learning to system verification tasks by Chen et al. [39].

Matsumoto et al. infer languages represented by finite unions of regular tree
patterns from membership queries and a restricted type of subset query to which the
teacher answers yes or no, but is not obliged to provide a counterexample [154].
Another reference for using queries in relation with tree patterns is [99], which is
motivated by complexity-theoretic problems concerning the consistency problem.

7.3.3 Error-Correcting Grammatical Inference (ECGI)

Coping with errors and noise within the learning process is important for many
applications. The classical approach of doing this in a mathematically sound way is
through Probably Approximately Correct (PAC) learning. However, the PAC model
has received moderate interest in the context of tree language learning, which is
why we only mention it in the Conclusions and Perpectives Section. Another way
of handling errors is that of error-correcting grammatical inference (ECGI). This
idea was introduced by Rulot [179, 180] for string languages and extended to tree
languages by López and his co-authors [136–138]. In short, ECGI provides a learning
model that is robust against certain errors. This technique has been applied for optical
character-recognition (OCR) tasks as described in [187]. For this type of application,
robustness is essential. Notice that the advantages of using syntactic features in OCR
tasks have been described before, and also using quite different formalisms [78, 142].
Applications have been also reported in the context of bioinformatics; see Sect. 7.4.2.
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7.4 Applications

Grammatical Inference has found many interesting applications. One of these is
within the more applied ramifications of pattern recognition, e.g., OCR, as men-
tioned in Sect. 7.3.3. The applicability of Grammatical Inference theory to Pattern
Recognition can also be seen from the fact that quite a number of Grammar Induc-
tion papers appear in the leading conferences and journals of the Pattern Recognition
community. In this section, however, we focus on three application areas that are typ-
ical for tree language inference, namely hypertext/XML processing, bioinformatics,
and computational linguistics. We should not forget to mention, however, that many
other types of applications have been reported in the literature. As an example, we
point to the visual language learner of Crimi et al. [61].

7.4.1 XML Learning

The Extensible Markup Language (XML) is a data format advocated by the World
Wide Web Consortium (W3C) for storing and exchanging information.1 Together
with HTML and XHTML, XML is an example of a Standard Generalized Markup
Language (SGML), a precursory ISO standard for sharing machine-readable doc-
uments in government, law, and industry. Theoretical properties of SGML have
been addressed by Wood [213], who suggested Extended Context-Free Grammars
(ECFGs) as a suitable model. In terms of descriptive power, ECFGs and CFGs are
equivalent, but the syntax of the former grammar type is more similar to that of
SGMLs and allows for convenient representation of number ranges.

Simply put, an XML document is made up of well-balanced opening and closing
tags, sometimes carrying attributes such as text strings, numerical values, and links
to external resources. Figure7.3 (left) shows an excerpt from a library database in
XML format. Due to the restricted nesting,XMLdocuments are typically represented
as unranked trees. See Fig. 7.3 (right) for an example. The wide use of XML has
therefore motivated a new line of research in tree automata theory that focuses on
devices such as hedge and tree-walking automata. Oftentimes, finite alphabets are
used as an abstraction of potentially infinite sets of document elements such as
attributes and text values. For a survey description on the relations between trees and
XML, we refer you to [163, 186].

7.4.1.1 Learning XML Schema

As its name suggests, the definition of XML can be extended by different schemas
to obtain special-purpose languages such as RSS, SOAP, and XHTML. The first

1http://www.w3.org/XML/.

http://www.w3.org/XML/
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Fig. 7.3 A library database in XML format (left), and a tree representation of same database (right)

schema language for XML was the Document Type Definition (DTD). Ignoring
attributes, DTDs can be seen as restricted context-free grammars and have been
studied byBerstel andBoasson under the nameXMLgrammars [23]. The application
of grammatical inference techniques for learning XML grammars was investigated
by Fernau [74]. The author showed that although the full class of XML languages
is not learnable in the limit from positive samples, the subclass of f -distinguishable
languages is Bex et al. later added the subclass of DTDs that can be described using
the class of single-occurrence regular expressions in which every element name
occurs at most once [25]. This study was further expanded in [80].

Chidlovskii proposed the use of regular tree automata to represent XML data,
because they aremore powerful thanDTDs and are closed under algebraic operations
such as union andnegation [44].Chidlovskii also didworkonXMLSchema inference
based on extended CFGs [45] and probabilistic CFGs [48].

Kosala et al. learn local unranked tree automata with k-contextual expressions
from positive samples of XML structured documents [116, 117].

A similaritymeasure forDTD-defined families ofXMLdocumentswas suggested
by Carrasco and Rico-Juan. They base their measure on a type of probabilistic tree
automaton and evaluate their method on XML document sets for different authors in
the Miquel de Cervantes Digital Library. According to [36], the results reflect genre
variations among the writers.

Amore recent alternative toDTD is theXMLSchemaDefinition (XSD) language.
Unlike DTD,XSD is a typed language, which allows the content model of an element
to depend on the context in which it is used [149]. To manage the added complexity,
Bex et al. divide XSD into an hierarchy of k-local XSDs, defined by the size of
the context that is considered. They then continue to describe and experimentally
evaluate a learning algorithm for single occurrence k-local XSDs [26].
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7.4.1.2 Wrapper Induction

A wrapper for an XML-based language is a procedure for extracting data from
documents written in the language [122]. There are numerous ways of formalising
the notion of a wrapper for a particular language. Chidlowskii viewed wrappers as
transducers from an input to an output structure and used transducer induction to
learn potentially ambiguous wrappers [46]. In a later work by the same author, target
document nodes are identified by the simple paths that reach them. In a simple path,
no node except the root may have more than one child. Experimental results suggest
that tree wrappers are more precise than string wrappers, which only regard the
surface form, but that tree wrappers require in return longer processing time [47].

Later, Carme, Lemay, Niehren, and Gilleron [34, 127] used node-selecting tree
transducers (NSTTs) to select target nodes from an XML document. Intuitively, an
NSTT is a regular tree automaton that annotates the nodes of each input tree with
Boolean values in an unambiguous way. The authors show how deterministic NSTTs
can be inferred in polynomial time from annotated examples using a variation on the
RPNI algorithm by Oncina and García [168], and that NSTTs capture the class of
selection queries expressible in monadic second-order logic on trees [33]. Learning
algorithms are also given for queries that select n-tuples of nodes [35]. This work
has been further extended to cope with different pruning strategies [33, 166].

Lemay et al. give a Myhill-Nerode theorem for deterministic top-down tree trans-
ductions, which they then use to learn deterministic top-down tree transducers from
characteristic samples. The work is motivated by automatic inference of XML–to–
XML translations. Equivalence classes are represented by pairs of labelled paths,
one in the input tree and one in the output tree, and canonical representations are
obtained by considering the earliest transducers, i.e., transducers in which the output
of symbols is pushed ‘upwards’ through the system of rewrite rules [128].

Another popular way of defining wrappers are through trees patterns. These are
structured patterns with variables that can be used to select nodes. Ordered tree
patterns with gaps are polynomial-time learnable in theMATmodel of Angluin [18].
The inference of a simpler type of tree pattern called term trees was considered by
Aikou et al. [6]. In [198], Suzuki et al. study methods for discovering maximally
frequent tree patterns in Web documents.

Kosala et al. who did work on XML Schema inference also apply their tech-
niques to wrapper induction and learn k-testable tree automaton from positive exam-
ples [118]. This idea was soon generalized in [173] towards (k, l)-contextual tree
languages. Without giving details of this language’s class(es) here, we only men-
tion that the corresponding string language class(es) were also introduced before for
reasons of automization of XML processing; see [3–5].

Wrappers can also be defined by query expressions in the XML Path Language
(XPath). Given an XPath expression p and a tree t, we denote by p(t) the set of
nodes in t that are selected by p. Carme et al. discuss how active learning could be
used to infer a target expression p from a MAT oracle [32]. In their interpretation
of the learning model, answering equivalence query for a hypotheses expression q
means verifying whether p(t) = q(t) for all trees t. If q and p are not equivalent,
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then the teacher returns all nodes in the symmetric difference of p(t) and q(t), i.e.,
the set of nodes of t that belong to exactly one of the two sets. The advantage of
this definition is that the question can be visualised for a human oracle by showing
a document in which some elements have been highlighted in a color corresponding
to q, and the human answers whether this is a fair representation of the document
elements that he or she had in mind. Carme et al. argue that it is harder to find a
natural visualisation of membership queries, and that it would for this reason be nice
if XPath could be learned from equivalence queries alone. However, using Angluin’s
idea of approximate fingerprints [15], they show that this is not possible.

7.4.2 Bioinformatics

An early application of learning algorithms in Computational Biology is the investi-
gation of genome sequences; see, for instance, [1, 156, 185]. Yokomori et al. [216]
propose locally testable string languages for identifying protein α-chains. A nice
and more recent overview has been written by Sakakibara [184] (see also Chap.8,
Learning the Language of Biological Sequences, Coste). For other aspects relevant
in the context of tree languages, we refer you to [42, 43].

Recall thatDNAandRNAstrands correspond to strings over a four-letter alphabet.
The gene finding problem consists in identifying coding or non-coding regions in
the genome. Finite-automata and related learning techniques have been applied to
the gene finding problem for about 20 years, mostly in the form of Hidden Markov
Models (HMMs); the actual identification problem is then solved by the well-known
Viterbi algorithm. Although they have their own notions and notations, it should be
clear that HMMs are in essence stochastic finite automata. For details, we refer you
to standard textbooks on bioinformatics, like [73].

The limitations of the HMM approach are described by Sakakibara et al. in [185].
The authors argue that viewing the DNA molecule as a one-dimensional object is an
over-simplification, since it folds in a two-dimensional or even a three-dimensional
fashion. As the interplay between parts of the molecule that seem far apart when
viewed in one dimension can be important for its biological effect, good syntactical
models that capture also the higher-dimension structure are sought. Interestingly,
among the first proposals for such a model was the use of probabilistic context-
free grammars (PCFG); see [185]. This idea was later refined by Sakakibara, using
stochastic finite top-down tree automata in [183]. However, trees were recognized as
an important modeling tool much earlier; see [126, 191, 212]. As the “parenthesis
structure” (in the PCFGmodel) obviously corresponds to the folding of themolecule,
this means that the structural information that is usually hidden in the form of a
string is made explicit, so that we can also (and immediately) make use of this by
employing trees. However, the internal node labels do not matter, so in the upcoming
discussion, we simply label all internal nodes by σ , and let this symbol have arity 2
or 3 as appropriate.

http://dx.doi.org/10.1007/978-3-662-48395-4_8
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Biologists have developed a classification scheme for folding patterns in the
secondary structure of RNA. The RNA molecules, when seen as one-dimensional
objects, are strings over the alphabet {A,U,G,C}, abbreviating the nucleobases
adenin, uracil, guanine, and cytosine. As explained by Sakakibara, these can be
readily described by certain patterns occurring in the corresponding (skeletal) tree.
In the following, X and Y are symbols from {A,U,G,C}. For instance, a node of the
form σ(σ, σ ) in the skeletal tree refers to a branching. A node of the form σ(X, σ,Y)

refers to base pairs, where the pairing reflects the secondary structure of themolecule.
Nodes like σ(X, σ ) and σ(σ,X) refer to unpaired bases, where the molecule looks
and behaves like a string. Pictorially, the tree can be viewed as scanning the folded
structure and showing links between different parts of the strand. This principle is
illustrated in Fig. 7.4 with an example from [183]. It refers to the term

σ(σ(C, σ (C, σ (G, σ (A, σ (A,G)),C),G),G), σ (?,U)).

The corresponding strand isCCGAAGCGGU.We observe linear substructures (with-
out base pairings in the secondary structure) like σ(A, σ (A,G)) and also base pairs
like σ(C, σ,G).

As with many models, there is a certain arbitrariness involved, for instance, the
choice of the root of the tree. This is also the case if one considers alternative models
like probabilistic context-free grammars.

The idea of using Grammatical Inference is to automatically find the secondary
structure of RNAmolecules. Due to possible errors in identifying the RNA, and also
due to the variations that are common in RNA molecules of the same species, varia-
tions that do not produce problems in the physical functioning of RNA molecules as
given by the secondary and tertiary structures, probabilistic and stochastic approaches
seem to be most promising. In the context of learning trees, this approach has been

σσ σσσσ

A A

G

G

CGGσ

U

CC

Fig. 7.4 An example of an RNA tree for the sequence CCGAAGCGGU; the straight lines show
the tree structure, while the dotted lines indicate links within the strand
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investigated by Sakakibara for automata working top-down. As we did not define
these formally, we refrain from giving details here. We only mention that learning
probabilistic finite automata can be considerably harder than learning deterministic
ones, as already shown by Abe and Warmuth for the string case [2].

It is also worth mentioning that learning algorithms for grammatical formalisms
that go beyond regular tree languages have been applied to RNA structure prediction.
This was motivated by the observation that certain patterns, most notably related to
so-called β-sheets, cannot be described by regular tree languages, not even by tree
languages whose yields characterize the tree-adjoining string languages. The (sto-
chastic) tree language learners are formally described in [1]. Here, tree-adjoining
languages are used to describe pseudoknot structures [151]. Similar connections
between generalizations of regular tree languages and non-context-free string lan-
guages have been described by Kasprzik [104, 107]. In the context of learning tree-
adjoining string language, we would also like to refer to [59] and our Sect. 7.4.3 on
computational linguistics.

As already indicated, the use of either tree automata or context-free string gram-
mars for modeling various aspects of RNA molecules is rather a matter of taste, so
readers interested in tree languages in the context of bioinformatics may also want to
study papers dealing with context-free grammar modeling. A number of empirical
studies have also been reported on; we refer here only to some of the papers of Unold
and his colleagues [207, 208]. It might be interesting to notice that in these papers
Grammatical Inference is seen as a method for classifying strings or trees, rather than
as language description learners as such. Themethod used by Unold et al. is based on
metaheuristics (genetic algorithms), and they employ it also in the context of natural
language processing [209]. In [185], Sakakibara et al. use expectation-maximisation
training of stochastic CFGs to separate between tRNA and non-tRNA.

There has also been research on bio-inspired computation. One of the sub-areas
in this discipline is membrane computing. In short, the objects dealt with in that
field are not languages of words, but rather multiset languages, in which the exact
order of the letters does not matter. Sempere and López generalized learners for trees
towards what they called tree multisets and applied this to learning within the area of
membrane computing [188, 189]. As bio-inspired computing is believed to provide
a model of future computers, this type of research has also potential applications for
those future devices.

7.4.3 Computational Linguistics

Grammatical inference in natural language processing (NLP) is of practical interest
because it offers tools formanaging the complexity of natural languages.Most efforts
in this direction address the inference of a language model from a corpus of sample
sentences, but differ in the choice of language model and in the type of annotations
available in the corpus: some consider only positive sample sentences, others both
positive and negative examples, sometimes together with structural information such
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as parse trees.Grammatical inference inNLPcan also be studied fromawish tomodel
the human language acquisition process. In this case, different types of active learning
seem more appropriate to describe how a human learner comes to possess a new
language. The algorithms’ performances are typically evaluated by simple inspection
of the languagemodels they output, through cross-validation, or by comparisonswith
target grammars.

One of the most studied language models in NLP are the context-free gram-
mars. Sakakibara introduced reversible context-free grammars, a normal form for
CFGs [182]. A context-free grammar is reversible if A → α and B → α imply that
A = B, and A → αBβ and A → αCβ imply that B = C. The class of reversible
CFGs has the attractive property that it is learnable in the limit from structural exam-
ples, unlabelled parse trees of strings in L(G). For NLP applications, the fact that
context-free languages can be characterized by categorical grammars is interest-
ing, as learning the corresponding structures (different from regular tree languages);
we mention [58, 60, 102, 103, 218] in this context, sometimes also surpassing the
power of context-free string languages. Also, other formalisms (weakly) equivalent
to context-free grammars have been investigated from the viewpoint of learnabil-
ity, for instance, split head-automata grammars, that again lead to different types of
derivation trees; see [145]. In each case, the task is to finally learn string languages
from unlabelled examples, the trees being rather a hidden underlying structure. More
on this topic can be found in Chap.6, Distributional Learning of Context-Free and
Multiple Context-Free Grammars by Clark and Yoshinaka.

Another way of formulating the learning task draws on the close relation between
context-free string languages and regular tree languages. An epsilon-free string lan-
guage L is context-free if and only if it is the yield of a regular tree language [200].
It therefore makes sense to learn the language of parse trees directly, restating the
problem of finding a CFG for a target language L as finding a regular tree grammar
or finite tree automaton that describes the parse trees of L. Then, the learner should
be provided with labeled examples, making the parse trees explicit. The most natural
theoretical model is then arguably learning from text. In [76], Fernau lifts his notion
of distinguishability for string languages to tree languages. This leads to a source
of identifiable subclasses of the regular tree languages which might be helpful for
finding the ones most appropriate for the application at hand. These connections
are also employed in so-called feature grammars, which extend PCFG by adding
features to nonterminals, whose processing can be easily interpreted as the work of
a tree automaton. Inferring such grammars has been discussed by Dreyer and Eis-
ner [70]. Another aspect where trees naturally creep in into the discussion of learning
PCFG is that of having some probability distributions on sets of trees, as suggested
by Corrazza and Satta [55, 56].

Probabilistic tree-substitution and tree-adjoining grammars are extensions of
PCFG in which nonterminals can be replaced by tree fragments [100, 101]. Advo-
cates for these types of formalisms argue that they strike a good balance between
expressive power and efficiency of parsing,which is still polynomial. However, learn-
ing tree-substitution grammars is a challenging task, partly because it is difficult to
obtain structurally annotated training data.

http://dx.doi.org/10.1007/978-3-662-48395-4_6
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In the case of unsupervised learning, where parse information is not required,
Nesson et al. induce probabilistic synchronous tree-insertion grammars for machine
translation from aligned multi-lingual corpora [162]. Cohn et al. consider a non-
parametric Bayesian model for supervised and unsupervised induction of tree-
substitution grammar and evaluate their algorithms experimentally by learning a
target language consisting of dependency parses [53]. Tree transducers also offer a
rich source of formalisms in this context [148] that have been also investigated from
the viewpoint of Grammatical Inference [40, 41]. A linguistically relevant type of
transducer is one translating trees into strings; see [94, 211] for one NLP-relevant
discussion of (statistical) learning in this setting. The overview article of Lopez on
Statistical Machine Translation [135] (SMT) is a recommendable source of informa-
tion for the topic; a bit older but more relevant to the topic of this chapter is the survey
of Knight and Graehl [113]. Other important papers include [133, 165, 172, 219].
This list is for sure not complete, but it should give a good starting point for finding
other papers from the NLP area that deal with learning of tree languages and tree
transducers, including the learning of string language concepts like tree-adjoining
grammars, or translations like string-to-tree or tree-to-string transductions. A short
but nice discussion of using tree versus string language learners for NLP purposes
can be found in [155]. Recently, also ideas from active learning found their way into
SMT systems; see [92]. Let us finally mention that another topic relevant for NLP,
more precisely for the assistance of corpus construction, is that of tree annotation;
see [170] for one approach on statistical learning in this context.

7.5 Conclusions and Perspectives

In this section,we present some directions of research that have yet to be fully covered
by the tree learning community.

7.5.1 PAC Learning

A learning model that has received much attention in the string case is probably
approximately correct (PAC) learning. The model was introduced by Valiant [210]
and formalized by Angluin [14]. In this setting, the learning algorithm repeatedly
draws a tree ti from a universe V t according to some probability distribution and pro-
duces an hypothesis Li. The learner is a PAC learner for the target class of languages
if the probability is at least 1 − δ that there is an index k such that for every j > k,
the probability that the tree tj is in the symmetric difference of the target language
L and Lj is at most ε. Here, ε is the accuracy of the learner, and δ its confidence.
For tree languages, the interest in PAC learning seems surprisingly low compared to
learning from, e.g., finite data or queries. Some reasons for this are given in [91].
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7.5.2 Support Vector Machines

SupportVectorMachines (SVM)have been a very successfulmethodology to classify
and hence also to learn many different objects. They have been applied to various
scenarios. Essentially, a method to compare two such objects is needed, implemented
in a so-called kernel. Here, we only want to mention the works of Moschitti (and
his colleagues); see [7, 49, 50, 158, 159] as starting points. This already shows
the breadth of the application areas, from computational linguistics to biomedical
applications, to mention two of them.

7.5.3 Unranked Trees

So far, we have only treated unranked trees in passing. However, many of the results
for the ranked case can be transferred through an appropriate encoding, e.g., first-
child-next-sibling (FCNS) or curryfication. For details, we refer you to [54]. The
idea is to produce a sample of ranked trees from a sample of unranked trees, then
to apply a learning algorithm for ranked trees, and finally to interpret the result by
reversing the encodings.Note that the results thus accomplished can be quite different
from those obtained by translating the learning algorithms themselves and computing
everything in the unranked domain. For instance, tree patterns make perfect sense
also in the unranked case, but with the standard construction, only replacements of
variables at the frontier nodes are possible. However, after, say, curryfication, we
might obtain a ranked tree pattern that encodes a way of replacing parts of a tree
that look quite different, possibly allowing for replacements “in the middle” of an
unranked tree. These effects deserve further study in the future, and we also refer to
studies like [9, 199].

7.5.4 Infinite Trees

We have not touched at all the learning of languages consisting of infinite trees. For
definitions, we refer you to [161]. To some extent, such languages of infinite trees
correspond toω-languages in the string case. Even for infinite strings, there are only a
few learning algorithms, andmost of themarebasedon inferring traditional languages
of finite strings that characterize certain ω-languages, mostly due to topological
properties [97]. A similar approach might be viable for infinite trees, as well.

7.5.5 Alternative Representations

While there are at least some suggestions that implement the idea of directly learning
regular expressions from positive data for string languages [77, 80, 112], we are not
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aware of a single paper that does this for tree languages. This is an interesting problem
in itself, as learning afinite automaton and then translating it into an equivalent regular
expression usually produces something that is neither intuitive nor readable. For the
sake of clarity and conciseness, it may therefore be better to develop direct learning
algorithms.

7.5.6 Learning Within or Beyond Regularity?

We have seen that many ideas from string language inference transfer easily to the
tree case, opening up new applications. Are further extensions possible? The right
notions of regularity seem to be important here. To see this, it would be also good idea
to look at this notion both from a more theoretical viewpoint and from the viewpoint
of potential applications; see [27, 93, 107] for both approaches. However, as argued
by Kasprzik [107], with the correct notion of regularity, most learning algorithms
sketched in this survey translate directly into other settings, for instance to multi-
dimensional trees. Another possible direction of extensions is given by the idea
of distributional learning, mainly developed by Clark and Yoshinaka (see Chap.6,
Distributional Learning of Context-Free and Multiple Context-Free Grammars); in
the context of learning non-regular tree languages (from positive data), we refer you
to [51, 52, 109].

A caveat should be formulated in this place, however. Although in principle many
important properties carry over from regular string languages to regular tree lan-
guages and beyond, as they are often relying on some sort of Myhill-Nerode theorem
that is true in various object settings, this does not mean that the resulting algorithms
are practical ones. The point is that several decidability questions and related tasks
can become significantly harder for trees as compared to strings. For instance, useless
states pose no problem for string processing finite automata, but they do so for trees;
see [67]. Also, there are certain intricacies that make a simple translation from the
string to the tree case sometimes an error-prone task, as certified by the learner for
representative samples and membership queries as discussed in [24, 108]. Hence, it
can become an important issue to choose the most appropriate formalism, balancing
its expressibility against its complexity. The discussions of Maletti [148] regarding
tree transducers can give some ideas thereof.

7.5.7 Shock Trees: A Potential Application

Apart from these applications that have been already used, we will now describe one
potential application that (as we think) might give some ideas on future research.

There is a growing body of literature on shock graphs (sometimes also called shape
graphs) and shock trees; see [64, 111, 143, 169, 193, 194, 203–205]. Moreover, the
shock tree graphs described in [169] are used as standard test examples to validate new

http://dx.doi.org/10.1007/978-3-662-48395-4_6
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algorithms as emerging in the area of (multisub)graph matching; see [119]. In short,
shock trees are a tree representation of two- or also three-dimensional shapes [57].

So far, learning algorithms for finding classes of shapes have been based on
statistical properties or the Minimum Description Length principle [206]. It would
be interesting to apply tree learning algorithms to this area ofPatternRecognition.The
idea would be to learn a specific grammar or automaton for each kind of picture. This
basic ideawas alreadydescribed in [144], there called “discovering shape categories”.
It would also be a nice testbed for applying syntactic methods to classification tasks,
given the fact that several established shape datasets exist.

7.5.8 Beyond Trees

We mentioned at the very beginning of this chapter that we are not going to speak
about the learning of structures beyond graphs. However, it should be finally men-
tioned that there are several ways to describe various structures with strings or with
trees. With respect to any such fixed representation, learners for strings or trees can
be also seen as learners for other structures. For instance, representations of graphs
and multigraphs by trees or strings are described in [29, 79].
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Chapter 8
Learning the Language of Biological
Sequences

François Coste

Abstract The application to biological sequences is an appealing challenge for
Grammatical Inference. While some first successes have already been recorded,
such as the inference of profile Hidden Markov Models or stochastic Context-Free
Grammars which are now part of the classical Bioinformatics toolbox, it is still a nice
and open source of problems or inspiration for our research, with the possibility to
apply our ideas to real fundamental applications. In this chapter, we survey biological
sequences’ main specificities and how they are handled in Pattern/Motif Discovery
in order to introduce the important concepts and techniques used and present the
latest successful approaches in that field by Grammatical Inference.

8.1 Linguistic Metaphor

New sequencing technologies are giving access to an ever increasing amount of
DNA, RNA or protein sequences for more and more species. One major challenge
in the post-genomic era is now to decipher this set of genetic sequences composing
what has been popularly named “the language of life” [1].

As witnessed by this expression, the linguistic metaphor has been used for
a long time in genetics. Indeed, the discovery of the double helix structure of
DNA in 1953 showed that the genetic information contained in this biologi-
cal macromolecule can be represented by two (long) complementary sequences
over a four-letter alphabet {A,C,G, T } symbolizing the nucleotides, the com-
plementary letters (called Watson–Crick base pairs) being A–T and C–G. This
genetic information is used to construct and operate a living organism by the
transcription when needed of pieces of DNA sequences, named genes, into RNA
single strand macromolecules which can also be represented by a sequence on
almost the same four-letter alphabet {A,C,G,U }, where T has been replaced
by its unmethylated form U . Sequences of RNAs coding for proteins are in turn
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translated into protein sequences of amino acid residues, over the 20 amino acid’s
alphabet {A,C, D, E, F,G, H, I, K , L , M, N , P, Q, R, S, T, V,W,Y }, that deter-
mine their three-dimensional conformations and functions in the cells (see for
instance [2] for a more detailed introduction to the production of RNAs and proteins
encoded in DNA). Sequences are thus at the core of storage of heredity information
and its expression into the functional units of the cells: the natural language metaphor
arises then quickly. This metaphor may be convenient for vulgarization but can also
be a source of inspiration for scientists trying to discover the functional units of the
genome and how this “text” is structured.

Applying computational linguistics tools to represent, understand and handle bio-
logical sequences is a natural continuation of the linguistic metaphor. Using formal
grammars, such as the ones introduced in 1957 by Noam Chomsky [3] to describe
natural languages and study syntax acquisition by children, has been advocated in
particular by Searls: his articles provide a good introduction to the different lev-
els of expressiveness required to model biological macromolecules by grammatical
formalisms [4–8]. Basically, copies and long-distance correlations are common in
genomic sequences, calling rapidly for context-sensitive grammars in Chomsky’s
hierarchy to model them, which makes parsing unworkable. As in linguistics, a solu-
tion to getting polynomial-time parsing and still representing many of the non-local
constraints from genomic sequences is to use mildly context-sensitive languages
[9]. Along this way, Searls introduced String Variable Grammars as an expressive
formalism for describing the language of DNA that has led to several generic prac-
tical parsers: the precursor Genlang [10] and its successors Stan [11], Patscan [12],
Patsearch [13] and Logol [14]. Many specialized parsers have also been devised, as
for instance RNAMotif [15], RNAbob [16], Hypasearch [17, 18], Palingol [19] and
Structator [20], tailored to handle efficiently RNA stem-loop secondary structures.

But one has still to design the grammar. In contrast with all the expertise avail-
able on natural languages, little is known about the syntax of DNA and the func-
tional/semantic role of its parts. For instance, how are the equivalents of “words”,
“sentences” and even “punctuation marks” defined? In some specific cases, expert
knowledge can be used to build a grammar, eventually by successive trial-and-error
refinements with respect to the sequences retrieved by the model. In the other cases,
expert knowledge is missing or is insufficient.

On the other hand, a huge number of genomic sequences are available, opening
the door to grammar inference from these sequences. In this chapter, we will present
advances made towards the big challenge of learning automatically the language
of genomic sequences. The first step we consider is to discover what the genomic
“words” are: this is mainly the domain of Motif Discovery, and related work is
presented in Sect. 8.2. The second step is then to learn the “syntax” governing the
admissible chaining of “words” in macromolecules: this is the classical goal of Gram-
matical Inference and we present the first successes obtained at the intersection of
this field and Bioinformatics in Sect. 8.3.
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8.2 Discovering and Modeling Biological Words

“Words” can be looked at different levels in DNA, requiring different levels of mod-
elization. We investigate in this section how this has been classically handled in
Bioinformatics from the simplest historical first steps, introducing and illustrating
some specificities of biological sequences, to the more elaborate techniques from
today’s state of the art.

8.2.1 Short DNA Words

Simple Words A classical example of an identified DNA substring is AAGCTT (on
the upper strand and its complement TTCGAA on the lower strand), that is specif-
ically recognized in H. influenzae bacteria by one of its enzymatic proteins named
HindIII that cleaves the double strand DNA of invading viruses at the sites where this
substring occurs, while the bacteria’s occurrence sites of the substring in its DNA are
protected from cleavage by a prior methylation. The HindIII protein is said to be a
restriction enzyme. More than 800 different restriction enzymes and more than 100
corresponding recognition sequences have been identified in bacterial species, with
important applications in genetic engineering. These recognition sequences show a
great variability among species, many of them being palindromic on complementary
strands (meaning the sequence reads the same backwards and forwards in comple-
mentary DNA strands, like in AAGCTT and TTCGAA), reflecting that both strands
of DNA have to be cut, often by a complex of two identical proteins operating on each
strand. The main characteristic of these substrings is their short length (about four
to eight base pairs), that makes them likely to appear frequently in any genome, pro-
viding them an efficient defense against unknown invading viruses. These sequences
are thus rather ubiquitous and do not support information by themselves (they are
only substrings recognized by the restriction enzymes), and it could be discussed
whether they are “words” in a linguistic sense.

ConservedWords Another example of a well-known short sequence is the Pribnow
box, early identified in the DNA of E. coli bacteria. It was discovered by Prib-
now [21] by looking at the DNA sequences around six, experimentally determined,
starting points of the transcription of genes into RNAs by a molecule named RNA-
polymerase. Would you find in these sequences, shown hereafter and aligned on the
known transcription start site formatted in bold, the protein binding site initiating the
transcription by the RNA-polymerase?
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By looking carefully at the sequences, one can find a conserved region (underlined
below), located about 10 positions before the transcription start site, that may have
been conserved despite mutations for its function through natural selection:

Consensus Sequences and Motifs Looking at the underlined alignment of this con-
served region, only two positions (the second and the sixth) are strictly conserved out
of seven and the farthest sequences share only three identical positions for four mis-
matches. But the consensus sequence TATAATG of the alignment, built by keeping
only the most abundant letter at each position, appears with no more than two mis-
matches, and one may consider it as an archetypal (eventually ancestral) sequence for
the region and the other sequences as its variants by meaningless mutations. Search-
ing for this consensus sequence TATAATG without mismatch, we would retrieve only
one of the six conserved sites and we would expect one match per 47 � 16,000 bp in
whole DNA. Allowing one mismatch, we would retrieve three of the six sites and we
would expect one match per 700 bp. Allowing two mismatches, we would retrieve
all the sites but we would expect one match per 70 bp, which is likely to be too much.

We can remark that the nucleotides A and G are evenly distributed at the fourth
underlined position and TATGATG would also have been a good candidate consensus
sequence. Actually, it would be more informative to know that the fourth position has
to be a purine (A or G bases) and, as done by Pribnow, we can use the consensus motif
TAT[AG]ATG (where brackets specify a set of alternative bases at the position) to
designate the sequences probably engaged by RNA polymerase. This motif retrieves
two sites for one expected match per 8,000 bp, and five sites if one error is allowed
for one expected match per 400 bp. If we assume that the base at the fifth position
is not important, we can also relax the consensus to TAT[AG]xTG where x is a
wildcard for any base. This consensus retrieves four of the sites with about one
match per 2,000 bp and all the sites if one error is allowed with a match per 100 bp.
And choosing the full consensus [GT]A[CT][AG][ACT]T[AG] would recognize all
the sites and would expect a match per 350 bp. As shown in this example, consensus
offers many ways to model a word and its possible variants in DNA, ranging from
consensus sequences allowing a limited number of errors to full consensus motifs,
with all the intermediate ambiguity/sensitivity trade-offs.

“De novo” discovery of such words can be done by enumerating them and return-
ing those over-represented in a collection of genome sequences, i.e. occurring more
frequently than expected by chance. This approach has been successful in Motif
Discovery, particularly for the discovery of short words and rather simple motifs
(to enable a practical enumeration, even if efficient datastructures can be used and
enumerating only the motifs that have sufficient support in the sequences can help);
see [22, 23] for details.
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Position Specific Matrices Yet, consensus sequences or motifs are not completely
satisfactory for representing and discovering biological words. Taking again the
example of the full consensus motif [TG]A[TC][GA][ACT]T[GA], do we really
want GACACTA to be recognized like TATAATG? Or if a more specific consensus,
such as the consensus sequence TATAATG, is chosen, allowing a limited number of
errors, how is it possible to express that some positions can mutate more easily than
others and that some base mutations occur more likely at some positions? Moreover,
while conserved on average, the binding sites involved in the initiation of transcription
occur rarely as exact matches of their specific consensus sequence. On average in
bacteria, only half of the positions in each site match with the consensus sequence.
A first explanation is that bindings have to be reversible. Different affinities with
binding proteins enable as also to tune at a fine level the concentration of the RNA
(and eventually protein) genes expressed in the cell, which would be interesting to
estimate from the motif.

Weighting the consensus motifs addresses these issues. This is usually done on
the basis of a summary of the sites by their base count at each position in a position-
specific count matrix (PSCM). For the Pribnow sites example, the PSCM for the
aligned conserved region would be:

1 2 3 4 5 6 7
A 0 6 0 3 4 0 1
C 0 0 1 0 1 0 0
G 1 0 0 3 0 0 5
T 5 0 5 0 1 6 0

If we denote by oi (a) the observed count of base a at position i of the sites,
estimation of probability of a at i in the site is given by:

p̂i (a) = oi (a)
∑

a′∈{A,C,G,T } oi (a′)
.

Under the strong assumption that the probability of a base at a position depends only
on the position, the probability of a sequence on a1a2 . . . ak given a position-specific
probability matrix (PSPM) P = [p1,p2 . . . ,pk] is Π k

i=1 pi (ai ). For instance, for the
example above, the probability of TATAATG would be 5

6 × 6
6 × 5

6 × 3
6 × 4

6 × 6
6 × 5

6 �
1.2×10−4 while for GACACTA it would only be 1

6 × 6
6 × 1

6 × 3
6 × 1

6 × 6
6 × 1

6 � 6.8×10−5.
By way of comparison, both sequences would have a probability of ( 1

4 )7 � 6.1×10−5

of being generated randomly by an equiprobable choice of the bases.
In the genome of S. cerevisiae which contains 64 % of A and T, the probability of

TATAATG and GACACTA would respectively be 2 × 10−4 and 6 × 10−6, making
the second word more exceptional and thus more interesting than the first word with
respect to this background model. When positions are assumed to be independent, the
odd-score of the probability of a sequence a1a2 . . . ak by [p1,p2 . . . ,pk] with respect
to its probability in a background model where each base a has a probability p(a)
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can directly be computed by Π k
i=1

pi (ai )
p(ai )

, and the comparison with respect to expected
background probability can directly be embedded in aPositionWeightMatrix (PWM)
[24], also called Position-Specific Weight Matrix (PSWM) or Position-Specific Scor-
ingMatrix (PSSM), in logarithm form to facilitate computation (sum instead of prod-
uct and better precision for rounded computation). In a PWM, the score of base a at
position i is usually defined by

si (a) = log2
pi (a)

p(a)

and the score of a sequence a1a2 . . . ak is given by

S(a1a2 . . . ak) =
k∑

i=1

si (ai ).

The PWM computed from the PSCM above, assuming that the bases are equiprob-
able in the background model (p(A) = p(C) = p(G) = p(T )), would be:

1 2 3 4 5 6 7
A −∞ 2 −∞ 1 1.42 −∞ −0.58
C −∞ −∞ −0.58 −∞ −0.58 −∞ −∞
G −0.58 −∞ −∞ 1 −∞ −∞ 1.74
T 1.74 −∞ 1.74 −∞ −0.58 2 −∞

Bases over-represented with respect to background probability have positive
scores, while under-represented bases have negative scores. Using a sliding win-
dow of width k, PWM can assign a score at each site of a genome reflecting its
likelihood of being part of the motifs. The highest score for a sequence with the
PWM above is 11.64, obtained for TATAATG, while the lowest score (except −∞)
is 2.68, obtained for GACACTA.

First Pseudocounts Let us remark that a mutation from A to G at the fifth position
of the best sequence TATAATG will directly result in −∞ score. Nucleotides that
occur rarely in the motif at a specific position may not be seen in a small sample
by chance but will force the probability of any sequence containing one of these
missing nucleotides to 0. Pseudocounts are thus usually added to compensate for
small samples counts. This can be done by adding systematically 1 to the observed
counts, and the estimate of probability of a at i will then be:

p̂i (a) = oi (a) + 1
∑

a′ (oi (a′) + 1)
.
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More elaborate pseudocounts can be used; for instance, in

p̂i (a) = oi (a) + A p(a)
∑

a′ (oi (a′) + A p(a′))

the pseudocount added is proportional to background probability p(a) and the weight
A given to the prior. Choosing A = 2 and keeping the equiprobability of the bases,
the PWM on the Pribnow example would be

1 2 3 4 5 6 7
A −2.00 1.70 −2.00 0.81 1.17 −2.00 −0.42
C −2.00 −2.00 −0.42 −2.00 −0.42 −2.00 −2.00
G −0.42 −2.00 −2.00 0.81 −2.00 −2.00 1.46
T 1.46 −2.00 1.46 −2.00 −0.42 1.70 −2.00

and we would have S(TATAATG) = 9.76, S(GACACTA) = 2.53 and
S(TATAGTG) = 6.59, the minimal score being −14. By adding pseudocounts, all
the sequences have a score strictly greater than −∞. One can still discriminate a set
of sequences by choosing a cut-off value, chosen as a compromise between desired
recall and precision, with the advantage over sequence consensus or motifs of being
better suited for the representation of similar sequences without a strict conservation
per position.

Measuring Conservation The conservation of a site can be evaluated according to a
measure named information content [25] that measures the information gain on the
site provided by the PSPM with respect to a uniform random choice of the bases.
The information content ICi at position i is given by the formula:

ICi = 2 +
∑

a

pi (a) log2 pi (a).

Assuming positional independence, information content of the complete site is sim-
ply the sum of the information contents:

IC =
k∑

i=1

ICi .

Information content is the basis of a convenient visualization of PSPM named
sequence logos [26] that displays simultaneously conservation of each position, and
their proportional base composition (see Fig. 8.1).

Information content can be generalized to account for the background model with
biased base probability distribution p:
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Fig. 8.1 Sequence logos for the Pribnow example (left without pseudocounts, right with pseudo-
counts). Height of stacks of symbols shows the information content of the position and the relative
heights of the bases indicates their probability at the position (logo generated with WebLogo 3.3
[27])

ICi ||p =
∑

a

pi (a) log2
pi (a)

p(a)

ICi ||p is known as the relative entropy (a.k.a. Kullback-Liebler divergence [28])
and measures how much the pi (x) diverge from the background distribution p at
the position. Let us note that when ∀a ∈ {A,C,G, T }, p(a) = 1

4 , the formula
can be rewritten into ICi . The generalized information content of the site is once
again the sum over the positions IC||p = ∑k

i=1 ICi ||p(i): it measures how much
the distribution defined by the PSPM contrasts with the distribution obtained by a
Bernoulli-like process.

Information content is thus related to how exceptionally conserved is the set of
underlying words with respect to such background models. It is thus a good objec-
tive function for PWM motif discovery programs that aim at identifying such sets of
words in a set of sequences (for instance, to find binding sites near the transcription
sites as in the Pribnow example). In its simplest setting, the problem can be stated as
looking for a word of length k per sequence such that the corresponding information
content, or a related score, is maximized. Many strategies for the exploration of the
search space have been proposed. This includes the greedy algorithm consensus [29–
31], expectation maximization algorithms like MEME [32] and several algorithms
based on a Gibbs sampling strategy: Gibbs [33–35], AlignACE [36], MotifSampler
[37] or BioProspector [38]. The scores used are information content (IC) (consen-
sus, MotifSampler), log-likelihood ratio (LLR) (MotifSampler, Gibbs), E-value of
the log-likelihood (MEME) or E-value of the IC (consensus).

Usage PWM/PSSM are widely used in popular databases such as TRANSFAC [39]
and JASPAR [40] to model binding sites, identified experimentally by techniques
such as SELEX or now ChIP-Seq, with the help of motif discovery programs to
refine the site localization, and are then available to scan new genomes for the pre-
diction of putative binding sites. There is still a large number of false positives,
and regulation in more complex organisms than bacteria is still incompletely under-
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stood. Whether those sites are actually bound by a protein and play a functional role in
transcription, and under what conditions, must still be determined experimentally by
traditional molecular techniques like promoter bashing, reporter gene assays, ChIP
experiments, etc.

8.2.2 Longer Words

Binding sites, involved in the regulation of the transcription of DNA genes into RNA
and the production of proteins, are examples of short words in DNA. Gene coding
for RNA or proteins, that are the functional products of DNA in the cell, can also
easily be considered as (longer) DNA words.

In the context of natural evolution, genes as well as other DNA sequences, are
subject to genomic mutations (substitutions, insertions, deletions or recombinations)
under natural selection pressure. Most of these mutations are lethal or harmful, but
about a third of them are either neutral or weakly beneficial. There is thus a sequence
conservation of the genes transmitted among the individuals or the species, but with
substitutions of bases and insertions or deletions of (eventually stretches of) bases.
Biologists use the term of “homologs” to designate sequences inherited in two species
by a common ancestor. Homology is the base of comparative genomics to annotate
the sequences that can be considered as variants of the same word. But homology
does not imply necessarily that function is preserved. The TIGRFAM protein data-
base introduced the term “equivalogs” to designate homologs that are conserved with
respect to function since their last common ancestor. This later concept matches more
closely the linguistic closely of a “word” (with literal or practical meaning) but is
more difficult to establish, especially in silico.

Similarity of Two Proteins Homology of two proteins can be estimated by aligning
their sequences so as to optimize the number of exact matches between aligned amino
acids and by reporting the percentage of identity between the two aligned sequences.
To better evaluate their functional kinship, it is better to take into account the different
physico-chemical properties of the amino acids (see Fig. 8.2). For instance, if the
electric charge of an amino acid is important for the function of the protein, the
function is more likely to be conserved by mutations preserving this charge. In some
other cases, the hydrophoby of the amino acid will be its important feature.

Substitution matrices such as Blosum62 [42] score the similarity of amino acids
according to their propensity to be exchanged with each other in blocks of conserved
regions (Table 8.1). Such matrices reflects the mean physico-chemical similarity
between amino acids under natural selection pressure, as well as some similarity
or redundancy of the genetic code.

Substitution matrices provide a way to score the similarity (instead of their per-
centage of identity) of two proteins by aligning their sequence of amino acids so as
to maximize the sum of the amino acid substitution scores. This can be computed in
quadratic time by a dynamic programming global alignment algorithm known as the
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Fig. 8.2 Venn diagram of amino acid properties (adapted from: [41])

Table 8.1 BLOSUM62 substitution matrix

Frequently observed substitutions receive positive scores and seldom observed substitutions are
given negative scores (log odds ratio)

Needleman–Wunsch algorithm [43], that copes also with insertions and deletions of
subsequences that are common in DNA sequences by the addition of affine penalty
scores for ‘gaps’.

Global alignment enables one to compare two protein sequences over their whole
length, but many proteins are composed of several domains that are stable units of
protein spatial structures able to fold autonomously. Domains may have existed, or
may still exist, as independent proteins: they constitute the protein building blocks
selected by evolution and recombined in different arrangements to create proteins
with different functions. Comparing proteins at this level requires local rather than
global alignments. The best local alignment of two sequences can be computed by
the Smith–Waterman algorithm [44], a variation of the global alignment dynamic
programming algorithm not penalizing gaps at both ends of the sequences. To search
an entire database for homologous (sub-)sequences of a given protein sequence in
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reasonable time, heuristic and approximate local alignment algorithms have been
developed, such as FASTA [45] or BLAST [46], one of the most widely used bioin-
formatics programs.

Modeling Conserved Protein Sequences When getting more than two related pro-
tein sequences, switching from pairwise sequence alignment to multiple sequence
alignment enables one to identify evolutionarily or structurally conserved regions and
key positions in all the sequences. Most formulations of multiple sequence alignment
lead to NP-complete problems; therefore, classical multiple sequence alignment pro-
grams rely on heuristics. Most of them perform global multiple sequence alignment
such as ClustalW [47], T-Coffee [48], Probcons [49], MUSCLE [50] or MAFFT
[51]. Local multiple sequence alignment can be found by the methods cited above
to build PWM, the set of conserved k-words being a specific case of local alignment
without gaps. In between global and local alignment, DIALIGN [52, 53] proposes
an original approach based on significant local pairwise alignment of segments that
enables it to identify a set of multiple sequence local alignments shared by all the
sequences without any gap penalty.

Profile HMM Modeling locally conserved regions identified by multiple sequence
alignment can be done once again with PWM. To handle larger regions with inser-
tions and deletions, PWMs have been generalized to so-called profile models by
the addition of insertion/deletion penalties at each position [55] and furthermore to
profile Hidden Markov Models (pHMM) by adding also probabilities for entering
into insertion, deletion or matching mode at next position given the current position
and mode [56, 57]. Namely, pHMMs are hidden Markov models with a predefined
specific k-position left-to-right architecture, with three (hidden) states per position
(see Fig. 8.3): a match state generating amino acids according to the conserved posi-
tion distribution (the equivalent of a PWM column), an insert state generating amino
acids with respect to their distribution in gaps (by default, their background proba-
bility) and a delete silent state enabling passing a match state without emitting any
amino acid.

Transitions are only allowed between states from one position to the next one and
are probabilized, enabling one to tune the likelihood of inserting or deleting amino
acids at each position and the likelihood of continuing insertions or deletions after
entering one of these modes, as seen in protein sequence families.

If the topology of a pHMM is set, its probabilistic parameters can be estimated
from available sequences of the family by a classical Expectation-Maximization
scheme such as the Baum–Welch algorithm [58]. Nevertheless, the classical work-
flow in Bioinformatics is rather to start from a multiple sequence alignment of the
sequences, assign for each column of the alignment involving enough sequences (say
more than half of the family) a match state (and its insertion and deletion companion
states) and convert observed counts of symbol emissions and state transitions into
probabilities from the alignment.
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Fig. 8.3 PWM, pHMM, Meta-MEME and Protomata types of architecture (inspired from [54])

Elaborate Pseudocounts Even if the topology of pHMM is simple, the number of free
parameters to estimate is still big compared to the number of sequences usually avail-
able. Much work has thus been done to avoid overspecialization and compensate for
the lack of data or its biases by the development of transition regularizers, sequence
weighting schemes and, especially, sophisticated pseudocount schemes based on the
usage and elaboration of a priori knowledge on amino acid substitutability. As a
matter of fact, the alphabet size of amino acids is greater than that of nucleotides,
and targeted characterizations with pHMMs tend to be longer than with PWMs:
pseudocounts are thus even more important here.

Classical pseudocounts presented above for nucleotides can be used, but tak-
ing into account the substitutability preferences of amino acids arising from their
shared physico-chemical properties leads to better performances. A first way is to
use available substitution matrices such as BLOSUM62: if we denote by m(a|b) the
probability of having a mutation to a from b, derived from the corresponding score
in the chosen substitution matrix (see [42]), an intuitive scheme introduced for PWM
with many variants [59] is to make each amino acid b contribute to pseudocounts of



8 Learning the Language of Biological Sequences 227

amino acid a in proportion to its abundance at the position and its probability m(a|b)
of mutating into a. If we denote by mi (a) = ∑

b
oi (b)∑
b′ oi (b′)m(a|b) the probability of

getting a by mutation of residues at position i , an estimate for the probability of a
in i can be:

p̂i (a) = oi (a) + Ami (a)
∑

a′ (oi (a′) + Ami (a′))
.

This pseudocount scheme has the advantage of interpolating between the score of
pairwise alignment, such as with BLAST, when a small number of sequences is avail-
able (consider for instance the case of only one sequence and A � 1) and the maxi-
mum likelihood approach when more sequences are available (when

∑
a oi (a) � A).

In practice, A has to be chosen to tune the importance of pseudocounts with respect
to observed counts, classical proposed policies being to choose min(20,

∑
a oi (a))

[60] or 5R [59] where R is the number of different amino acids observed in the
column, a simple measure of its diversity.

This pseudocount scheme performs well but does not take full advantage of the col-
umn composition knowledge. Instead of distributing pseudocounts from each amino
acid count independently, one may wish to distribute them according to the whole
column distribution. For instance, if the column is biased towards small hydropho-
bic amino acids, one would like to bias the pseudocounts towards this combination
of physico-chemical properties. To this end, [62] proposed using Dirichlet mixture
densities as a means of representing prior information about typical amino acid col-
umn distributions in multiple sequence alignments and derived the formulas to com-
pute the corresponding posterior distributions given observed counts in the Bayesian
framework.

Dirichlet mixtures can be thought of as mixtures of M pseudocount vectors
α1, . . . ,αM corresponding to M different typical distributions of amino acids hav-
ing each a prior probability of q j , 1 ≤ j ≤ M , where each Dirichlet density
αj = (α j (A), α j (C), . . . , α j (W )) contains the appropriate amino acid pseudocounts
(the equivalent of A p(a) or Ami (a) in the pseudocount formulas above) for the typ-
ical distribution j .

An example of a Dirichlet mixture from [61] is given in Table 8.2. This Dirichlet
mixture and more recent ones can be found on the site of the Bioinformatics and
Computational Biology group at UCSC at http://compbio.soe.ucsc.edu/dirichlets/.
These mixtures were estimated by maximum likelihood inference from the columns
of available large “gold standard” datasets of protein multiple alignments that are
assumed to be accurate and representative.

According to the authors, the mixture shown here was one of their first really
good Dirichlet mixtures. It is composed of nine components that favor each a dif-
ferent distribution of amino acids biased towards one or several physico-chemical
properties from Fig. 8.2: for instance, Dirichlet density α2 favors aromatic amino
acids (Y, F,W, H ) by assigning them higher pseudocounts (relatively to what would
be expected from their background frequency; see [61] for details) while α5 favors
aliphatic or large and non-polar amino acids. The last component is specific: it favors
columns with few different amino acids, with a preference for P,G,W or C , by

http://compbio.soe.ucsc.edu/dirichlets/
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Table 8.2 Parameters of Blocks9, a nine components Dirichlet mixture prior [61]

j 1 2 3 4 5 6 7 8 9

α j (A) 0.271 0.021 0.561 0.070 0.041 0.116 0.093 0.452 0.005

α j (C) 0.040 0.010 0.045 0.011 0.015 0.037 0.005 0.115 0.004

α j (D) 0.018 0.012 0.438 0.019 0.006 0.012 0.387 0.062 0.007

α j (E) 0.016 0.011 0.764 0.095 0.010 0.018 0.348 0.116 0.006

α j (F) 0.014 0.386 0.087 0.013 0.154 0.052 0.011 0.284 0.003

α j (G) 0.132 0.016 0.259 0.048 0.008 0.017 0.106 0.140 0.017

α j (H) 0.012 0.076 0.215 0.077 0.007 0.005 0.050 0.100 0.004

α j (I ) 0.023 0.035 0.146 0.033 0.300 0.797 0.015 0.550 0.002

α j (K ) 0.020 0.014 0.762 0.577 0.011 0.017 0.094 0.144 0.005

α j (L) 0.031 0.094 0.247 0.072 0.999 0.286 0.028 0.701 0.006

α j (M) 0.015 0.022 0.119 0.028 0.210 0.076 0.010 0.277 0.001

α j (N ) 0.048 0.029 0.442 0.080 0.006 0.015 0.188 0.119 0.004

α j (P) 0.054 0.013 0.175 0.038 0.013 0.015 0.050 0.097 0.009

α j (Q) 0.021 0.023 0.531 0.185 0.020 0.011 0.110 0.127 0.004

α j (R) 0.024 0.019 0.466 0.507 0.015 0.013 0.039 0.144 0.007

α j (S) 0.216 0.029 0.583 0.074 0.012 0.028 0.119 0.279 0.003

α j (T ) 0.147 0.018 0.446 0.072 0.036 0.088 0.066 0.358 0.004

α j (V ) 0.065 0.036 0.227 0.043 0.180 0.944 0.025 0.662 0.003

α j (W ) 0.004 0.072 0.030 0.011 0.013 0.004 0.003 0.062 0.003

α j (Y ) 0.010 0.420 0.121 0.029 0.026 0.017 0.019 0.199 0.003
∑

a α j (a) 1.181 1.356 6.664 2.081 2.081 2.568 1.766 4.988 0.100

q j 0.183 0.058 0.090 0.079 0.083 0.091 0.116 0.066 0.234

assigning tiny pseudocounts to all amino acids so that the observed count will dom-
inate. This component has the highest prior probability (q9 = 0.234) since many
positions in alignments exhibit a unique conserved amino acid, followed by the first
component (q1 = 0.183) that favors small neutral amino acids that appear to be often
mixed together in alignment columns, while the more specific density of the second
component has the lowest prior probability of the mixture (q2 = 0.058).

Basically, the Dirichlet density αj of a Dirichlet mixture component embeds a prior
in the form of a pseudocount that enables one to compute the posterior probability
p̂i (a|αj) of each amino acid a from observed counts at position i with respect to this
prior by:

p̂i (a|α j ) = oi (a) + α j (a)
∑

a′
(
oi (a′) + α j (a′)

) .

This formula can be extended to a mixture of M Dirichlet densitiesΘ = (α1, . . . ,αM,

q1, . . . , qM) by distributing these probabilities proportionally to the likelihood pi ( j)
of each component for the observed count distribution:
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p̂i (a|Θ) =
M∑

j=1

pi ( j)
oi (a) + α j (a)

∑
a′

(
oi (a′) + α j (a′)

) .

pi ( j) is named the posterior mixture coefficient of component j and can be estimated
by application of Bayes rule from the prior Dirichlet mixture coefficient q j and the
likelihood of the observed counts for component j determined by density αj:

p̂i ( j) = q j p(oi|αj)
∑M

j ′=1 q j ′ p(oi|αj′)

where p(oi|αj), the likelihood of the observed counts according to Dirichlet density
αj, is given by the complicated but simple to calculate formula

p(oi|αj) =
(∑

a oi (a)
)!

∏
a oi (a)! .

∏
a Γ (oi (a) + α j (a))

Γ (
∑

a oi (a) + α j (a))
.
Γ (

∑
a α j (a))

∏
a Γ (α j (a))

where Γ (x), the gamma function, is the standard continuous generalization of the
integer factorial function.

These formulas obtained by Bayesian inference provide a powerful pseudocount
scheme to estimate the distribution at a position from a small number of observa-
tion counts and priors on different typical column amino acid distributions. From
more than hundred sequences required to build a good characterization of a family
of homologous sequences, one comes down to fifty sequences, or even as few as ten
or twenty examples with the latest pseudocount schemes.

Usage Profile HMMs have thus become a method of choice for the classification
and the annotations of homologous protein sequences. Instead of using BLAST to
search in a database of annotated sequences for one homolog to the sequence to
annotate, the idea is to build first a pHMM for each family of homologous sequences
and then to predict to which family the sequence belongs by testing which pHMM
recognize it. This way, information from the whole family, rather than from only
one sequence, can be used for more sensitive annotation. The most popular pHMM
packages are HMMER (pronounced hammer) [54] and SAM [63]. The HMMER
package is used in particular in the PFAM [64, 65] and TIGRFAM [66] databases
gathering alignments and pHMM signatures for domains and proteins that are widely
used by biologists for the annotation of new sequenced genomes. The SAM package
is more directed towards the recognition of a remote homolog sharing a common
structural fold: it was applied to search for protein structure templates in several
structure prediction competitions CASP [67] and it is used by the SUPERFAMILY
[68] library of profile hidden Markov models that represent all proteins of known 3D
structure.

Thanks to the work done to require fewer and fewer examples by the incorpo-
ration of a priori knowledge on the similarity of homologous sequences, the recent
trend has been to build a pHMM starting from only one proteic sequence as initiated
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by PSI-BLAST with PWM [69] to provide a more sensitive alternative to BLAST.
Starting from a unique query sequence, the strategy is to bootstrap the search with
close homologs: a pHMM is built from the query sequence and then progressively
refined by searching and including iteratively the most significant sequence matches
in comprehensive sequence databases such as UniProt [70] or the non-redundant
(nr) database from NCBI [71]. The result of this procedure is a sensitive pHMM
and the retrieved homologous sequences to the query. This strategy was used by
SAM-T98 and its successor SAM-T2K for the CASP competitions [72–74]. pHMM
packages implementing this strategy with fast heuristic prefilters, such as in the new
HMMER3 [75], are now as fast as BLAST. The idea has been pushed one step further
by HHSearch [76] and its filtered speeded-up version HHBlits [77] that preprocess
the sequences from the databases to group them in sets of close homologs represented
by a pHMM and perform then iterative pHMM-pHMM alignments to obtain more
sensitive results for the search of remote homologs sharing the same structural fold,
helped by sequence context-specific pseudocounts.

ModelingConservedRNASequences Profile HMMs have been especially success-
ful for modeling protein homologs and they are also starting to be used for modeling
DNA homologs [78, 79]. However, they are not adapted so well for modeling RNA
not translated into proteins. These so-called non-coding RNA (ncRNA) molecules
play vital roles in many cellular processes. One of the best known examples of func-
tional ncRNA is the family of transfer RNAs (tRNA) that is central for the synthesis of
proteins. A tRNA molecule is shown in Fig. 8.4: one can see from this example that,
like proteins, RNAs are single-strand molecules that fold into a three-dimensional
structure (“tertiary structure”) that determines the function, and, as in DNA, the
complementarity between the bases (A–U and C–G) is a key determinant of RNA
structure that is typically composed of short helices packed together and is often
simply represented by the base pairing on the sequence (“secondary structure”).

The contiguous paired bases that form the helices, named stems, predominantly
occur in a nested fashion in the RNA sequences as complementary palindromic sub-
sequences. These kinds of long-distance correlations in the sequence that are crucial
for RNA structure are typically context-free and lie beyond the expressiveness of
pHMMs that are restricted to position-based characterizations.

RNA and Context-Free Grammars In Fig. 8.5, an example is given of how a context-
free Grammar can be designed in a straightforward way to capture the non crossing
base pairing. The idea is to have a pair matching rule Si → aSi+1b for each paired
base (a, b) and a base matching rule of the form Si → aSi+1 or Si → Si+1a
for each unpaired base a. By ordering this rule with respect to sequence order and
introducing a branching rule Bi → Si S j to chain successive nested structures, one
gets a grammar recognizing the RNA sequence with a derivation tree mirroring its
secondary structure.

The secondary structure is often more conserved than the sequence of non-coding
RNAs: mutations in one strand of a stem are often compensated for by a mutation
in the complementary strand. These compensatory mutations restore base pairing at
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Fig. 8.4 Tertiary (left) and secondary (right) structure of yeast tRNA-Phe

Grammar G= Σ = {A,C,G,U},N = {S1 . . .S17,B1,},S1,P , s.t. the production rules in P are:

S1 → AS2,

S2 → AB1,

B1 → S3S11,

S3 → S4U,

S4 → GS5C,

S5 → AS6U,

S6 → CS7G,

S7 → US8,

S8 → S9G,

S9 → US10,

S10 → C,

S11 → GS12C,

S12 → GS13C,

S13 → CS14,

S14 → GS15C,

S15 → S16A,

S16 → AS17,

S17 → C

Fig. 8.5 Example of context-free grammar and derivation tree mirroring the secondary structure
of an RNA sequence

a position and contribute to the conservation of the RNA secondary structure and
therefore its function. Let us remark here that single mutations can also occur on
non-paired bases without changing the secondary structures. The grammar above
can easily be generalized to cope with these kinds of mutations, preserving the
structure that the sequence can undergo. To do so, each pair matching rule can be
complemented to match the other complementary pairs of bases and each single base
matching rule can also be complemented to match the other bases.

For instance, in the example of Fig. 8.5, S4 → GS5C would be complemented to
get a rule S4 → aS5ã for each pair of bases (a, ã), where ã denotes the complemen-
tary base to a, and S1 → AS2 would be complemented to get a rule S1 → aS2 for
each base a; and so on for the other matching rules.
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Profile SCFG By doing so, the resulting grammar would model the secondary
structure and would lose the information of the initial RNA sequence even if this can
be important for homology search or functional characterization. A trade-off between
sequence and secondary structure conservation can be achieved by weighting differ-
ently each base or pair of bases matched by each rule according to its probability
of occurring at the position. At this point, the obtained grammar could be seen as a
stochastic context-free counterpart of the (regular) PWMs seen above, allowing us to
match a base a at one position i with weight wi,a as with a PWM by a base matching
rule Si → aSi+1/wi,a , but allowing us also to match paired bases (a, ã) at paired
positions (i, j) with a weight wi,(a,ã) by a pair matching rule Si → aSi+1ã/wi,(a,ã).
To obtain the context-free counterpart of pHMM, named profile stochastic context-
free grammars (pSCFG) [81] or covariance models (CM) [82], each matching rule
Si is completed with position-based deletion rules (of the form Si → Si+1/wdel

i ) and
insertion rules (of the form Ii → aIi/wins

i,a or Ii → Ii a/wins
i,a ). For positions matching

one base, this is done as for pHMM. For positions matching paired bases, deletion
and insertion rules are added in a similar way but taking care to enable insertion
or deletion on each side (left or right) of the nested sequence, which requires the
equivalent of six states instead of three by position.

As with pHMMs, pSCFG’s parameters can be trained by likelihood maximization
approaches from a set of aligned sequences, but this requires additionally an RNA
consensus (nested) secondary structure indicating the paired bases and the unpaired
bases to set up the topology. This secondary structure can be known for one of the
aligned sequences, be predicted by free energy minimization on a sequence or be the
inferred common secondary structure from a set of multiple, homologous sequences.
In Fig. 8.6, an example of three aligned RNA sequences with such a secondary struc-
ture is given with nested ‘>’ and ‘<’ indicating the paired positions, ‘x’ the unpaired
positions and ‘.’ the insertions with respect to the structure. From this information,
one can automatically only keep the matching positions sufficiently shared among
the sequence to get the paired (‘>’, ‘<’) and unpaired (‘x’) matching positions of
the pSCFG corresponding to the template secondary structure displayed on the left
of Fig. 8.6. Each matching position is systematically completed with its companion
insertion/deletion rules to get the complete pSCFG topology and parameters can

Fig. 8.6 Setting pSCFG’s topology from multiple sequence alignment annotated by a secondary
structure (example adapted from [80])
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then be trained to maximize the likelihood of the alignment, eventually completed
by pseudocounts.

UsageBy using a context-free representation, PCFGs and CM extend pHMMs nicely
to handle not only the base distribution at each position but also the pairs of base
distribution at each (nested) paired position, capturing this way an important struc-
tural feature of ncRNA sequences that make it suitable to retrieve successfully RNA
homologs. The Rfam database [83] that is an authoritative collection of non-coding
RNA families represents each family by a multiple sequence alignment, predicted
secondary structure and CM, and is powered by Infernal [84], the kinship software
package to HMMER dedicated to modeling RNA with CM.

To get finer results on the characterization of ncRNA, one would need to be able
to represent also cross-correlations such as pseudoknots (typical RNA structures
with two stems in which half of one stem is intercalated between the two halves of
another stem), which with all the computational hardness that they involve, is beyond
the generative power of context-free grammars. Even if some proposals have been
made to represent this kind of struture by grammatical models [85–88], learning
such models will be extremely difficult. Finding good representations with practical
computational time for learning that kind of correlation on genomic sequences is
still an open and challenging research area.

Towards Sentences So far, we have seen approaches modeling homologous proteins
or RNA genes in their maximal alignable length. To find more distant homologs or
to focus on functionally important parts of the sequences, other approaches prefer to
target the identification and the characterization of the most conserved parts shared
by a set of sequences.

For instance, Meta-MEME [89] is based on an iterative search by MEME of a set
of significant local alignments on a set of DNA or proteic sequences [32] that are
used to build a simplified profile HMM where all the delete states are removed and
only the insertion states between each block modeling a local alignment found are
kept (see Fig. 8.3).

Pratt [90] searches for even more strict conservation: instead of local alignments
on all the sequences, it searches by enumeration for interspaced strictly conserved
amino acid or nucleotide symbols occurring in a sufficiently large subset of the
sequences and then refines heuristically these patterns with new matching compo-
nents offering a choice between sets of symbols. The patterns potentially returned by
Pratt are composed of a suite of symbols or choice of symbols separated by wildcards
indicating an insertion of a stretch of symbols bounded by a minimal and a maximal
length. To remain feasible, the search has to be constrained by many user-defined
parameters limiting the size of the pattern and the number of insertions, the program
returning then the best patterns in this search space with respect to an information
base or a minimum description length score.

An example of a well-known pattern is the C2H2 signature of ‘zinc finger’ in
proteins: C-x(2,4)-C-x(3)-[LIVMFYWC]-x(8)-H-x(3,5)-H, read as a C followed by
two to four amino acids, then a C followed by three amino acids and then one of
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the amino acid chosen in [LIVMFYWC] followed by eight amino acids, an H, three
to five amino acids and finally an H. These patterns are among the most expressive
patterns used in Bioinformatics and can be seen as the deterministic counterpart of
the Meta-MEME models, with blocks arising from exact conservation rather than
from local similarity. They are known as Prosite’s patterns from the name of the
database [91] that popularized them as exact signatures of many domains, families
and functional sites on proteins. While the patterns in Prosite were initially mostly
built semi-automatically from multiple sequence alignments, Pratt is now the default
pattern discovery software proposed to users on Prosite’s website to find patterns
without the need for a sequence alignment.

These later methods enable one to discover shorter functional or structural con-
served units than genes or domains—the highly conserved blocks of Meta-MEME
in all sequences or the adjacent groups of conserved positions identified by Pratt
in a sequence subset—introducing each unit as a new potential genomic word or
the succession of these units as a more complex, interspaced in the sequence (but
eventually close in space), word.

8.3 Learning Syntax

So far, we have seen the state-of-the-art methods actually used in practice by biolo-
gists to discover and model (conserved) words in genomic sequences. The achieve-
ments in Bioinformatics for expressive characterizations are strongly linked with
multiple sequence alignments, resulting in position-specific signatures that repre-
sent a suite of independent, uncorrelated conserved positions (or pairs of positions
for RNA), eventually augmented with the ability to insert symbols between these
positions or to skip some of them. Learning is then based on (1) the choice by the
expert of the most adequate simple topology, (2) the identification and alignment of
the conserved positions among the sequences and, for stochastic models, (3) training
the parameters to maximize the likelihood of the sample with respect to priors.

In this section, we are interested in overtaking the position-specific characteriza-
tion of (conserved) words. In particular, we would like to learn models with depen-
dencies between the symbols of the sequences. In other words, this would allow us
to make progress towards the goal of learning not only the words but also the syn-
tax (the grammar) of genomic sequences. The difficulty is that, with dependencies
being unknown, one cannot then cannot anymore rely on predefined topologies such
as the pHMMs or pSCFGs: the structure of the grammar has to be learnt from the
sample, which constitutes a complete Grammatical Inference task and a challenging
application for that field.

Learning k-Testable LanguagesA first step towards learning grammars on genomic
sequences is the early work of Yokomori et al. [92, 93] on learning automata rep-
resenting locally k-testable languages applied to the identification of hemoglobin
α-chains. The class of locally k-testable languages, very similar to the class of
k-testable languages in the strict sense [94, 95], is linked to n-grams and, more
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Fig. 8.7 Dayhoff’s and
binary amino acid encodings
used in [92, 93, 96, 97]

Dayhoff’s coding

AminoAcids Properties Symbol

G, S, T, A, P
C Sulfurpoly merization a

Small b
D, E, N, Q Acid and amide c

R, H, K Basic d
L, V, M, I Hydrophobic e
Y, F, W Aromatic f

Binary coding

Amino Acids Hydrophoby index Symbol

A, C, F, G, I, L, M, N, S, T, V, W, Y High 0
D, E, H, K, P, Q, R Low 1

biologically, to (persistent) splicing systems. Languages of this class have the prop-
erty that it is sufficient to parse the substrings of length k to decide whether a sequence
is accepted or not; dependencies are therefore limited to the length k but cover all
the length of the sequences in contrast to motifs. Given k, learning such a language
can be done by a simple efficient algorithm building an automaton memorizing the
subwords of length k appearing in the positive sample and the corresponding one-
letter admissible transitions between them. This algorithm ensures identification in
the limit of k-testable languages when k is known. In practice, however, the value
of k is estimated by cross-validation and is usually small, the inference being then
less subject to over-specialization. To apply this simple inference algorithm to pro-
teins, Yokomori et al. reduce the 20 letter alphabet to a six letter alphabet, clustering
amino acids according to main substitutability classes following Dayhoff’s coding
method, or drastically to a binary alphabet according to hydropathy (see Fig. 8.7).
Recoding the sequences with these reduced alphabets help greatly the generalization
and enables us to bootstrap the inference by some biological knowledge on amino
acids similarities.

This first work is the root of recent studies applying similar approaches to learn
grammatical models for the prediction of coiled-coil proteins [96] and transmem-
brane regions in proteins [97], whose performances are close to those of dedicated
tools built with human expertise. In these works, the application scope of learning a
k-testable language is extended from a sequence classification to a sequence labeling
task through preliminary sequence recoding and automata to transducer post trans-
formation. Sequence recoding is done first by reducing the alphabet according to
Dayhoff’s code as in [92, 93] but the alphabet is hereafter augmented by combining
letters of the reduced alphabet with their label in the labeled sequences forming the
training sample for the task. For instance, using an example from [97], one protein
sequence of the training set,

M R V T A P R T L L L L L W G A V A L T E T W A G S H S M R,
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would be encoded first following Dayhoff’s coding into

e d e b b b d b e e e e e f b b e b e b c b f b b b d b e d

and, from its known transmembrane topology, this sequence could be labeled as
follows (see [97] for alternative labeling):

e d e b b b d b e e e e e f b b e b e b c b f b b b d b e d
O O O C M M M M M M D I I I I I I I I A M M M M M B O O O O

where M labels residues in transmembrane regions, I labels residues in the cell while
O labels residues out of the cell and A, B, C, D label the shift from outer/inner regions
to/from transmembrane regions. Then, in the augmented alphabet, composed of a
symbol xL for each letter x labeled by L, the sequence encoding the labeled example
would begin by the following symbols (separated by white spaces):

eO dO eO bC bM bM dM bM eM eM eD eI eI fI bI bI eI bI eI bA cM...

By encoding the sequences from the positive sample this way, one can learn a
k-testable language by a classical algorithm, such as k-TSSI, designed to learn k-
testable languages in the strict sense [94, 95], with the advantage that, as in the
morphic generator methodology [98], identical letters can be distinguished by their
label during the inference. By transforming each transition labeled by a symbol xL
from the learned automaton into a transition by letter x and output label L, one gets
back a labeling transducer that can then be weighted and used for the task, eventu-
ally with the help of error correcting parsing techniques to compensate for the lack
of data. These studies show that grammatical inference techniques can be applied
with encouraging results to genomic sequences, even with such a limited class of
languages when helped by pertinent pre- and post-processing techniques. We will
now focus on learning more expressive grammatical representations of languages,
and thus more complex dependencies, on these kinds of sequences.

Learning Automata At the first level of Chomsky’s hierarchy (regular languages),
we have investigated in our team the inference of full automata to model functional
or structural families of protein directly from their complete sequence. RPNI [99,
100], EDSM and Blue-Fringe [101] (see Chap. 4, On the Inference of Finite State
Automata from Positive and Negative Data, López and García) having been shown
to be successful in practice on artificial data, testing these methods on this task was
appealing. Our preliminary attempts showed also that these methods, even improved
by taking into account similarities of amino acids, were performing very badly on
leave-one-out experiments. Our analysis of these results yields that protein sequences
whose length is about 300 symbols on average on a 20-letter alphabet, and whose
functional parts are not necessarily at the beginning or the end of the sequences, are
not well suited for these algorithms relying mainly on common sequence heads and
tails for the inference. To avoid these pitfalls, we have proposed shifting from a deter-
ministic to non-deterministic automata and adapt consequently the idea of evidence
introduced by EDSM to merge common (similar) substrings rather than common
tails, obtaining a first successful application of the classical state merging grammati-
cal inference framework to learn automata on protein sequences: Protomata-Learner
[102–107].

http://dx.doi.org/10.1007/978-3-662-48395-4_4
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Fig. 8.8 Merging similar substrings

Shifting from a deterministic to a non-deterministic setting in the state merging
approach requires simply starting from the Minimal Canonical Automaton (MCA)
of the sample set (the non-deterministic automaton that is the union of the canonical
automata built on each sample) rather than the Prefix Tree Acceptor (PTA) and pro-
ceeding by merging some of its states (without merging for determinisation) [108] or,
inspired by EDSM, by merging successively the states on paths labeled by common
substrings.

Similar SubstringMerging ApproachTo deal with amino acid similarities, the heuris-
tic has been generalized to look at common similar substrings, on the basis of the
significantly similar pairs of substrings (named diagonals) precomputed by Dialign
to serve as multiple sequence alignment building blocks [53]. A Dialign’s diagonal
d is a pair of equal-length substrings (d1, d2), implicitly aligned from left-to-right
and whose similarity s(d) is computed by summing the substitution score (given
by a substitution matrix) of the aligned amino acids. Dialign computes also for each
diagonal the weight of its similarity w(d) as the negative logarithm of the similarity’s
p-value, namely of the probability of finding a diagonal of the same length with a
greater or equal similarity in random amino acid sequences. The weight measuring
how exceptional the similarity of the diagonal is relative to its length enables us to
compare diagonal of different lengths and to define similar diagonals: random diag-
onals ought to have a weight of 0; similar diagonals are thus those whose weight is
greater than 0, or greater than a positive weight threshold parameter t if one wants
more significant similarity before considering the substrings in the diagonal.

The task is then to distinguish the similar diagonals that are characteristic of
the family from those that are similar by chance or for another unrelated reason.
This is done in Protomata-Learner by a best-first greedy approach: at each iteration,
the best similar substrings are selected by one heuristic (maximizing their support
in the training set and also their similarity) and states aligned by these substrings
are merged (see Fig. 8.8), discarding from the future choices the remaining similar
substrings that are incompatible with the selected ones.

Incompatible daigonals are those with an overlap presenting conflicting align-
ments inside the diagonals and forcing us to choose at most one of them1 (see

1This corresponds to the preservation constraint from [104] forbidding us to merge together the
states resulting from merging a diagonal to prevent identified conserved words from being damaged.
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Fig. 8.9 Incompatible and compatible diagonals

Fig. 8.9 top). Another kind of incompatible diagonal can be introduced to help the
inference when it is assumed that the protein sequence family does not undergo shuf-
fling mutations (that are unlikely to occur without structure and function change): in
that case, the order of the similar substrings in the sequences is preserved and cross-
ing diagonals are incompatible (see Fig. 8.9 bottom). This greedy similar substring
merging algorithm halts when no more compatible similar substrings are available
for merging, relying so on incompatibilities and on the chosen threshold t to stop
the inference. No negative sample is required, the characterization being directed
towards maximizing the global unexpected similarity of substrings with respect to
random sequences and adopting in this way a Minimum Description Length perspec-
tive rather than the discriminative Occam’s razor inspiration of RPNI or EDSM.

A New Kind of Alignment The similar substring merging approach of Protomata-
Learner under such incompatibility constraints can be linked to the classical Bioin-
formatics field by considering the sets of similar substrings merged as a new kind
of multiple sequence alignment, named partial local multiple alignment (PLMA),
exhibiting conserved regions that can be local, involving only a contiguous subset
of the amino acids in the sequences as defined for classical local alignments, but
also partial, involving contiguous amino acids from only a subset of the sequences
instead of all the sequences. This later property enables us to represent unrelated
conserved regions among subsets of the sequences: instead of being limited to the
identification of conserved positions in all the sequences, one can identify alterna-
tive conserved words in some sequences, not necessarily aligned, and their chaining,
paving thus the way to modeling syntax in addition to conserved words. For the
inference of automata, the aligned substrings from conserved regions of the PLMA
are merged, weighting eventually amino acid transitions thanks to efficient PWM or
pHMM weighting schemes, and insertion states are added to link consecutive con-
servation regions (see Fig. 8.10), enabling learning topologies that can be seen as a
generalization of pHMM or Meta-MEME architectures overtaking these position-
specific characterizations by enabling us to model alternative paths (see Fig. 8.3).

Learning Context-Free Grammars Even if automata enable us to take a important
step toward more expressive models, they are limited to successive short-term depen-
dencies while it is well known that, from protein folding, residues that are far in the
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Fig. 8.10 Learning automata by partial local alignment from set of protein sequences

sequence may be close in space and interact together or are simply correlated. To
represent this kind of long-distance interaction, one needs to learn more expressive
grammatical representations.

From a General Template Grammar A first attempt towards this goal is the frame-
work introduced in [109] based on a genetic algorithm training the weights of a
complete stochastic context-free grammars in Chomsky’s normal form to maximize
the likelihood of the training sample. A complete grammar is such that the rule
A → BC exists for each non-terminal A, B,C : the number of rules grows thus
extremely fast with respect to the chosen number of non-terminals. The framework
aims at limiting the number of non-terminals by proposing biasing the topology of
the grammar towards nested dependencies and more drastically by an original way
of coping with the size of the amino acid alphabet and introducing knowledge on
their physico-chemical properties: all the amino acids are generated from only three
non-terminals, corresponding to three discretized levels (low, medium or high level)
of a chosen property of interest (for instance the van der Waals volume), the proba-
bility of generating the amino acid being fixed with respect to these levels (and thus
not subject to training). Then a grammar considers amino acids only with respect to
one property and if more than one property is of interest, one needs to train several
grammars and to combine parsing scores for membership predictions. Experiments
restricted to binding site regions of protein sequences and nine non-terminals show
a good recognition accuracy on this task and pertinent parse trees illustrating the
interest of this kind of context-free model.
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ByLocal SubstitutabilityWe have recently proposed a different approach [110] show-
ing the versatility and the efficiency of distributional learning of context-free lan-
guages (see Chap. 6, Distributional Learning of Context-Free and Multiple Context-
Free Grammars, Clark and Yoshinaka) by applying it to protein sequences. PLMAs
are used once again, but here as a pre-processing step to deal with amino acid simi-
larity: by using parameters that allows to identify all short highly conserved regions
under overlapping and crossing incompatibilities, the sequences are recoded accord-
ing to these conservation blocks and provided as input for the actual generalization
step performed by a grammatical inference algorithm. To be able to parse non-
encoded protein sequences, a post-processing of the inferred grammar is performed
to replace each terminal corresponding to a conserved region by a new non-terminal
generating amino acid from the region (by introducing a succession of new non-
terminals for each set of aligned amino acid from the region, in charge of generating
indifferently any amino acid from the set) and introduce new non-terminals in charge
of generating any amino acid for non-conserved regions. Used this way, PLMAs
detect and align similar amino acids but entails almost no generalization when no
grammatical inference algorithm is used, as testified by leave-one-out experiments.
More surprisingly, when we tried state-of-the-art grammatical inference algorithms
learning substitutable [111, 112] or k, l-substitutable [113] context-free languages,
based on a formalization of substitutability idea introduced in linguistics by Zellig
Harris in the 1950s [114], no additional generalization was performed.

Learning such languages is based on the identification of substrings appearing
in a common context, to generalize the language by allowing these substrings to be
substituted for each other (a contextual constraint for substitutability being added for
k, l-substitutable language): i.e. if xyz and xy′z are both in the training set, then any
occurrence of y (or a subset of them for k, l-substitutable language) can be substituted
by y′, and vice versa, in the language. The problem in the preliminary experiments
on protein sequences is that this criterion was never met in the training samples. As a
matter of fact, if the sequences are long, observing a double occurrence of the common
context (x, z) and a double occurrence of y, given that at least one of these substrings
has to be long, has low likelihood in practice. Moreover, these characterizations rely
on conserved heads and tails that, as already stated for the inference of automata, are
not necessarily informative and conserved in protein sequences.

In [110], we proposed thus a variant of the substitutability generalization crite-
rion that considers local rather than global context to define the substitutable sub-
strings: local substitutability criterion states that it is sufficient to have both xuyvz
and x ′uy′vz′ for a common local context (u, v) of sufficient length in the training set
to allow us to substitute any occurrence of y (or a subset of them for k, l-substitutable
languages) by y′. At the price of adding two additional parameters on the required left
and right lengths of the common local context enabling us to define substitutability
of the substrings (or only one parameter when right and left contexts are considered
symmetrically), one has been able to get a real and pertinent generalization. Thanks
to the development and the implementation of a faster algorithm for learning local
substitutable context-free grammars, named ReGLiS, combined with the encoded
pre- and post-processing scheme, these results have been confirmed on the complete

http://dx.doi.org/10.1007/978-3-662-48395-4_6
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set of protein families used for the testing in [109]: using the entire protein sequences
rather than only the short binding site substrings, our leave-one-out experiments show
a good recall and a perfect precision [115]. These preliminary results, obtained with-
out any weights on the rules, are really encouraging and should be easily improved.
They already show, with other works presented in this section, that the application of
grammatical inference can be successful for non-trivial syntactic characterizations
of protein families. More generally, learning syntax on genomic sequences is a very
nice open playground for grammatical inference, enabling us to apply ideas or tech-
niques from the field but being also a source of inspiration for novel practical and
theoretical challenging developments.

8.4 Conclusion

We have presented here the first successful steps towards learning the language
of biological sequences. So far, the state of the art is mainly at the word level:
the discovery of exceptional words, the alignment of conserved words and their
modeling by the parametrization of simple adequate topologies based on biological
priors. Some recent advances have also been made on learning non-trivial grammar
topologies for proteins but we are only at the beginning of this exciting challenge
addressed by Grammatical Inference.

To draw the lines of future research in that field, one can guess that the focus on
learning topologies with (long-distance) correlations will continue. In proteins and
RNA, it would allow us to capture correlations between positions that are far in the
sequences but close in the 3D space. In DNA, the problem seems more complicated
since the challenge is then to deal with palindromes and copies, requiring us to use
and learn more expressive grammars. For DNA, recent advances have thus rather
been on a simpler task: discovering the hierarchical structure of DNA as an instance
of the smallest grammar problem, along the lines initiated by Sequitur [116] and its
successors [117–123]. These studies have not been presented in this chapter since it is
still difficult to assert and compare their biological pertinence, but these approaches
based on repeats may help us to better understand what are the important words and
where are their occurrences in DNA and to decipher its word structure as a preliminary
step to learning grammars. Moreover, the repeats used in these approaches are not
that far from the variables used in the current state-of-the-art DNA parsers of the first
section. This is an interesting convergence when the goal is to design automatically,
or help the expert to design, the grammars for these parsers.

We have proposed in this chapter an overview from a Grammatical Inference
point of view of the achievements and open challenges in this research field as well
as some keys to enter it. To further investigate this area, we propose a short list of
additional reading recommendations.



242 F. Coste

Further Readings First, Wikipedia (http://www.wikipedia.org/) covers fairly well
the related concepts in biology or bioinformatics and these pages are usually well
written. Good entry points to Pattern Discovery are [22, 124] while [23] offers a
comprehensive algorithmic and theoretical treatment of the subject. For probabilistic
models on sequences, an excellent review with a grammatical inference point of view
is [125], while the reference books [126, 127] contain non-grammatical machine
learning techniques. Finally, on Grammatical Inference, the other chapters of this
book should be helpful, as well as the reference book [128].
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