
Chapter 4
Camera Calibration Implementation
Based on Zhang Zhengyou Plane Method

Pingping Lu, Qing Liu and Jianming Guo

Abstract Camera calibration is a crucial step in computer vision, the main
determinant of the visual measurement effect, laying the basis for three-dimensional
reconstruction. In order to know calibration’s precision exactly, pinhole model and
relations of the four coordinates are used, camera’s internal and external parameter
matrices can be solved by Zhang Zhengyou plane calibration method, camera’s
distortion coefficients are then easily solved, further considered radial distortion and
tangential distortion. The paper establishes a simple but clear error assessment
system to evaluate the accuracy of the results and compares them with MATLAB
toolbox. The experiment demonstrates that the method has high accuracy, estab-
lishing a foundation for seeking depth by binocular stereo vision.

Keywords Camera calibration ⋅ Zhang zhengyou calibration method ⋅ Image
distortion ⋅ MATLAB toolbox

4.1 Introduction

In computer vision research which is rapidly developing, we could extract geo-
metric information (such as the position, shape, location, etc.) of objects in 3D
space in accordance with images the camera captured, then reconstruct and perceive
objects according to this information [1]. A point on the surface of the
three-dimensional object can be mapped to the corresponding point on the image by
the geometric model (such as pinhole model) of the camera. The geometric
parameters are named camera parameters [2]. Usually under most conditions they
can be calculated by experiments, the process is camera calibration [3].

Those current camera calibration techniques can be roughly classified into two
categories: traditional calibration and self-calibration [4].
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Traditional calibration: based on camera imaging model (such as pinhole or
fish-eye model), under these conditions that the shape and size of the calibration
target is fixed and must have been known, through image processing and a series of
mathematical transformations (linear calculation and nonlinear optimization), to
calculate camera parameters [5]. Self-calibration: using the corresponding rela-
tionships between some specific quantities of the two images imaged before and
after the camera rotation or translation, to complete camera calibration. Because the
camera’s main point and effective focal length have inherent constraints on the basis
of certain camera imaging model, and these constraints usually have nothing to do
with the surrounding environment and the movement of the camera. Therefore,
self-calibration can take advantage of this [6].

Camera calibration has a long history, as early as 1986, R. Tsai [7] has created a
classical Tsai’s camera model, putting forward the two-step calibration strategy
which belongs to traditional calibration. This camera model can compensate camera
radial distortion. The two-step calibration strategy [8] establishes equations by
using RAC (radial alignment constraint), through direct linear operation and non-
linear optimization, to seek for the internal and external parameters. But this method
has complex calculation process and high equipment accuracy requirement so that
not fit with simple experimental conditions. Moreover, it is hard to detect feature
points and measure data [9].

Professor Zhang [10] improved the two-step calibration strategy and proposed
method based on planar template. At first, a set of images are obtained by observing
a planar template at a few (at least two) different orientation. Then, the procedure
consists of a closed-form solution, followed by a nonlinear refinement based on the
maximum likelihood criterion.

Compared the above-mentioned methods, we adopt the second. This paper is
organized as follows: Sect. 4.2 describes the basic principle of camera calibration.
Section 4.3 describes the calibration procedure. We make the planar template in
front of a camera rotate or translate two times or above; or camera rotate or translate
two times or above while planar template is fixed. Specific parameters of planar
template moving need not be known. Section 4.4 provides the experimental results.
Finally, Sect. 4.5 presents a brief summary.

4.2 The Basic Principle of Camera Calibration

4.2.1 Four Kinds of Coordinate Systems

There are many kinds of coordinate systems in computer vision. The following four
kinds of coordinate systems are often used while calibrating.

(1) image pixel coordinate system
As shown in Fig. 4.1, there is a two-dimensional orthogonal coordinate
system O0uv, whose origin O0 is on the top left corner of the digital
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image [2]. (u, v) is the coordinate of each pixel, indicating the v-th row
and the u-th column element in the array. O0uv is called image pixel
coordinate system [11].

(2) image physics coordinate system
As shown in Fig. 4.1, an orthogonal coordinate system O1xy is built on
the image plane, whose origin O1 is the main point of the image [1]. Its
x and y axes parallel to u and v axes respectively. Assumed the image
pixel coordinate of the origin O1 is (u0, v0), the distances between every
two pixel along x and y axes direction are dx and dy respectively (The
unit can assume to be mm), so the relation between image pixel coor-
dinate (u, v) and image physics coordinate (x, y) of any point in image is:

u=
x
dx

+ u0 v=
y
dy

+ v0 ð4:1Þ

We represent the relation with homogeneous coordinates and the matrix.
The expression is:

u
v
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(3) camera coordinate system
The geometric relationship about camera imaging is shown in Fig. 4.2.
The camera coordinate system OCXCYCZC has its origin OC at the center

Fig. 4.2 Camera coordinate system and world coordinate system

Fig. 4.1 Image pixel coordinate system and image physics coordinate system
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of projection, its ZC axis along the optical axis, and its XC and YC axes
parallel to the x and y axes of image physics coordinate system
respectively [5]. The distance from image plane to the core of camera
OCO1 is the camera’s focal length f [5].

(4) world coordinate system
Because the position of camera and target is not fixed in the space, we
can only describe their relative position through the establishment of
reference coordinate system. This is the world coordinate system
OWXWYWZW, as shown in Fig. 4.2 [2]. The relationship between the
camera coordinate and the world coordinate can be represented by a
rotation matrix R and a translation vector t [2]. Assumed that a specific
point P in 3D space, whose camera coordinate and world coordinate are
(XC, YC, ZC)

T, (XW, YW, ZW)
T, the relationship between them is:

XC

YC
ZC
1

2
664

3
775=

R t
0T 1

� � XW

YW
ZW
1

2
664

3
775=M2

XW

YW
ZW
1

2
664

3
775 ð4:3Þ

R is 3 × 3 unit orthogonal matrix and t is translation vector, 0 = (0, 0,
0)T, M2 is 4 × 4 matrix, standing for the relationship between the camera
coordinate and the world coordinate.

4.2.2 The Camera Model

4.2.2.1 The Linear Camera Model

A 3D point P projected to the corresponding point p on the image plane can be
expressed by pinhole model approximately. As shown in Fig. 4.2, an image point
p is intersection between image plane and the attachment of camera’s core OC and
P [2]. We call this model center projection or perspective projection [2]. According
to the principle of similar triangles, we get:

x=
fXC

ZC
y=

fYC
ZC

ð4:4Þ

The relationship between image physical coordinate and camera coordinate is:
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We put Eqs. 4.2 and 4.3 into Eq. 4.5, then get the relationship between world
coordinate and image pixel coordinate:

ZC
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Fx = f/dx, fy = f/dy are expressed as the effective focal length of the camera in the
x and y axes. M is 3 × 4 matrix, matrix M1 is only related to the camera’s internal
structure, which is called camera intrinsic parameters matrix defined by fx, fy, u0, v0.
While matrixM2 is only related to the camera’s external parameters, which is called
camera extrinsic parameters matrix.

4.2.2.2 The Non-Linear Camera Model

When the camera lens are wide-angle lens or the production of camera is not
standard, it occurs the distortion on the edge of image, what’s more, the more close
to the edge, the more serious distortion phenomenon. Therefore, if to use linear
model to calibrate camera, image point p will deviate from the original position and
produce very large error. So the non-linear camera model is used [2], as follows:

δx = k1xðx2 + y2Þ+ k2xðx2 + y2Þ2 + k3xðx2 + y2Þ3 + p2ð3x2 + y2Þ+2p1xy
δy = k1yðx2 + y2Þ+ k2yðx2 + y2Þ2 + k3yðx2 + y2Þ3 + p1ð3x2 + y2Þ+2p2xy

�
ð4:7Þ

where k1, k2 are radial distortion coefficients, p1, p2 are tangential distortion coef-
ficients, δx, δy are distortion errors along x and y axes.

4.3 Camera Calibration Method

4.3.1 Solving Internal and External Parameters

At first, to capture 3 or more images in the camera’s view. Planar template can be
translated or rotated at random, but the ZW of the world coordinate system of each
image is chosen to perpendicular to the plane, the first corner detected is perceived
as the world coordinate system’s origin, and ZW = 0 in the plane.
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Let’s denote the i-th column of the rotation matrix R by ri. So Eq. 4.5 can be
written as:

u
v
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5= sM1 r1 r2 r3 t½ �
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where s is an arbitrary scale factor. Let

H=
h11 h12 h13
h21 h22 h23
h31 h32 1

2
4

3
5 ð4:9Þ

h= h11 h12 h13 h21 h22 h23 h31 h32 1½ �T ð4:10Þ

Then obtain:

XW YW 1 0 0 0 − uXW − uYW − u
0 0 0 XW YW 1 − vXW − vYW − v

� �
h=0 ð4:11Þ

Each point can be shown above the two equations. One image has N points, and
2 × N equations can be obtained, written as Sh = 0. The solution of h is the
corresponding eigenvector to the minimum eigenvalue of the equation STS = 0 [2],
H can be solved after the vector h is normalized. Nonlinear least square method can
be used to solve maximum likelihood estimation of H, here is Levenberg-
Marquardt algorithm [12].

Each image has homography matrixH, written as column vectors,H = [h1 h2 h3],
where each h is 3 × 1 vector. H = [h1 h2 h3] = sM1[r1 r2 t] can be decomposed as:

hi = sM1ri or ri = λM − 1
1 hi ð4:12Þ

where λ = 1/s, i = 1, 2, 3.
Rotation matrix R is unit orthogonal matrix, so r1 and r2 are orthogonal. We

have two constraints:

hT1M
− T
1 M − 1

1 h2 = 0 ð4:13Þ

hT1M
− T
1 M − 1

1 h1 = hT2M
− T
1 M − 1

1 h2 ð4:14Þ

Let B=M − T
1 M − 1

1 , we can get:

B=M − T
1 M − 1
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In fact, there is general closed-form of matrix B:

B=

1
f 2x
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f 2x

0 1
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− v0
f 2y
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− v0
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f 2y
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2
6664

3
7775 ð4:16Þ

The two constraints have their general form hTi Bhj via matrix B. We could obtain
each element just making sure the six elements of B as matrix B is symmetric
matrix. The six elements are written as a column vector:

hTi Bhj = vTijb=

hi1hj1
hi1hj2 + hi2hj1

hi2hj2
hi3hj1 + hi1hj3
hi3hj2 + hi2hj3
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2
6666664
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3
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ð4:17Þ

The two constraints can be written as Eq. 4.18 via the definition of vij
T

vT12
ðv11 − v22ÞT

� �
b=0 ð4:18Þ

If we get K images at the same time, we can get Vb = 0 where V is a 2 K × 6
matrix.

If K ≥ 2, it has solution. At last, we compute the internal parameters.

fx =
ffiffiffiffiffiffiffiffiffiffiffi
λ B̸11

p
ð4:19Þ

fy =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λB11 ð̸B11B22 −B2

12Þ
q

ð4:20Þ

u0 = −B13f 2x λ̸ ð4:21Þ

v0 = ðB12B13 −B11B23Þ ð̸B11B22 −B2
12Þ ð4:22Þ

λ=B33 − B2
13 + v0ðB12B13 −B11B23Þ

� 	
B̸11 ð4:23Þ

Then we compute the external parameters by B:

r1 = λM − 1
1 h1 ð4:24Þ
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r2 = λM − 1
1 h2 ð4:25Þ

r3 = r1 × r2 ð4:26Þ

t= λM − 1
1 h3 ð4:27Þ

λ=1 ̸ M − 1
1 h1



 

 ð4:28Þ

But if let r1, r2, r3 combine into rotation matrix R, there may be a large error
because R is not a positive definite matrix in the actual process, that is to say
RTR = RRT = I is not founded.

To solve this problem, we can choose to use singular value decomposition
(SVD), to make R = UDVT is founded. U and V are orthogonal matrices, D is
diagonal matrix. Moreover, because r1, r2, r3 are orthogonal to each other, matrix
D must be identity matrix I so that R = UIVT. So we first solve singular value
decomposition of R, then D to be set as identity matrix, finally multiply U and V to
solve rotation matrix R′ which is matching the requirement.

4.3.2 Maximum Likelihood Estimation

We adopt Levenberg-Marquardt algorithm to optimize these parameters after they
are solved. Evaluation function is expressed as:

C= ∑
N

i=1
∑
K

j=1
mij −mðM1,Ri, ti,MijÞ



 

2 ð4:28Þ

where N is the total number of image, K is the total number of points in each image,
m is image pixel coordinate, M is world coordinate, m(M1, Ri, ti, Mij) is image pixel
coordinate computed by these known parameters

4.3.3 Solving Camera Distortion

We have not dealt with camera distortion so far. We use camera’s internal and
external parameters and all distortion coefficients set to zero as initial values to
compute them. Let (xp, yp) is the location of point, (xd, yd) is the distortion location
of point, so

xp
yp

� �
=

fxXW Z̸W + u0
fyYW Z̸W + v0

� �
ð4:29Þ

36 P. Lu et al.



Combine with Eq. 4.7, we get

xp
yp

� �
= ð1+ k1r2 + k2r4 + k3r6Þ xd

yd

� �
+ 2p1xdyd + p2ðr2 + 2x2dÞ

p1ðr2 + 2y2dÞ+2p2xdyd

� �
ð4:30Þ

where r2 = xd
2 + yd

2. We can get a large number of equations and solve them to
obtain distortion coefficients.

4.4 Analysis of Experimental Results

4.4.1 Error Assessment Method

Camera calibration results are difficult to evaluate whether accurate or not, there is
no objective criteria. We can use world coordinate (XW, YW, ZW) and the camera
parameter matrix of a 3D point P, to get the back-projection value ðu ̃, v ̃Þ after matrix
multiplication, then compare it with origin value (u, v) detected actually, get
average error Euv, standard deviation euv and maximum error e in the image pixel
coordinate system.

Euv =
∑
K

i=1
ð eui − uij j+ evi − vij jÞ

K
ð4:31Þ

euv =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
K

i=1
ð eui − uij j2 + evi − vij j2Þ

K

vuuut
ð4:32Þ

e=minð∑
K

i=1
eui − uij j, evi − vij jÞ ð4:33Þ

4.4.2 The Introduction of Experiment System

The calibration template is checkerboard with nine corners along length and six
corners along width. The size of each black square is 20 mm × 20 mm, there are 54
angular points, the first corner of each image will be origin of the world coordinate
system, and world coordinates of other corners will be computed.

Adopting microscopical industrial camera, whose resolution is 640 × 480 pixels,
and focal length is 12 mm, the physical size is 1/3″, the distance of every two pixel
is 3.2 μm. The flow chart of camera calibration algorithm is shown in Fig. 4.3.
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4.4.3 Analysis of Experimental Results

To complete calibration through 5, 10, 15 and 20 images respectively, using
Eqs. 4.31–4.33 to get average error, standard deviation and maximum error (See
Fig. 4.4).

With the number of calibration image increasing, the average error and standard
deviation gradually decrease and stabilize to a certain value. We should take 20–25
image at least. In order to make the errors seem more convenient, we describe them
as a scatter plot (See Fig. 4.4).

We choose an image to calculate the camera parameters. The rotation matrix and
translation vector of 13-rd image are:

R=

− 0.614031 0.789249 − 0.007166

0.766653 0.598560 0.232309

0.187639 0.137151 − 0.972615

2
64

3
75

t= − 99.62857 − 138.42137 1409.07778½ �

In order to verify the accuracy of the calibration results, we use MATLAB
toolbox to calibrate the 20 images (See Tables 4.1 and 4.2).

start

Initialise number of 
calibraton images

Initialise Number of 
corners in length and 

width per image

Read a calibration image and extract 
corners

All corners are extracted?

Extract and draw 
subpixel corners

Save world coordinates

All images are 
read?

Calibrate camera, save 
results, compute error

end
Y

N

N

Y

Fig. 4.3 The flow chart of camera calibration
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4.5 Conclusion

Experiments show that Zhang Zhengyou plane calibration method not only has low
requirement to the experimental equipment just with a camera and a calibration
template, but also has high precision, which is a transition method between the
traditional calibration and the self-calibration. In simple experimental conditions, we
can accurately obtain the camera parameters, and use the theory of binocular vision
to compute depth of field. At the same time, the software implementation compared
with MATLAB toolbox is simple, do not needs to extract angular point manually.

Fig. 4.4 The scatter plot of
back-projection error

Table 4.1 The error comparison of calibration precision

Images number Average error Standard deviation Maximum error

5 0.287452 0.2255661 2
10 0.237154 0.220006 2
15 0.2122855 0.200457 1
20 0.204852 0.194444 1

Table 4.2 The comparison
of calibration results

Parameters 20 images MATLAB toolbox

fx 1741.430026 1746.504035
fy 1743.25123 1748.425046
u0 340.4265682 347.7840171
v0 268.8052343 270.0848203
k1 −0.56386008 −0.59154964
k2 4.865922599 5.322022256
p1 0.001976323 0.001936653
p2 −0.011511625 −0.012229335
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