
Chapter 17
Anti-disturbance Control for T-S Fuzzy
Models Using Fuzzy Disturbance Modeling

Xiangxiang Fan, Zhongde Sun, Yang Yi and Tianping Zhang

Abstract In this paper, an anti-disturbance tracking control scheme is proposed for

T-S fuzzy models subject to parametric uncertainties and unknown disturbances.

Different with those previous results, exogenous disturbances are also described by

T-S disturbance models. Under this framework, a composite observer is constructed

to estimate the system state and the disturbances simultaneously. Meanwhile, by inte-

grating the PI-type control algorithm with the estimates of the state and the distur-

bance, a feedback control input is designed to ensure the system stability and the

convergence of the tracking error to zero as well as satisfactory disturbance estima-

tion and attenuation performance.

Keywords T-S fuzzy models ⋅ Anti-disturbance control ⋅ Tracking control ⋅
Disturbance observer ⋅ T-S disturbance modeling

17.1 Introduction

It is well known that disturbances exist in all practical processes [1–5]. In recent

years, disturbance observer based control (DOBC) strategies have been successfully

used in various systems, such as robot manipulators [6–8], high speed direct-drive

positioning tables [9], permanent magnet synchronous motors [10] and magnetic

hard drive servo systems [11] etc. However, the exogenous disturbances in most

DOBC results [12, 13] are supposed to be generated by linear exogenous system,

while there are always irregular and nonlinear disturbances in practical systems,

which will no longer be effective by using the present model-based disturbance

observer design methods.
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On the other hand, Takagi-Sugeno (T-S) fuzzy model becomes very popular since

it is a powerful tool for approximating a wide class of nonlinear systems, such as

descriptor systems [14], networked control systems [15, 17], stochastic systems [16]

and time-delay systems [15]. Furthermore, some typical control problems, includ-

ing dynamic tracking control [18], fault estimation and detection [19], sliding-mode

control [20] and filter design [21] have also been considered through T-S fuzzy mod-

eling.

This paper discusses the anti-disturbance tracking control for the T-S fuzzy mod-

els with parametric uncertainties and irregular disturbances. Following the T-S fuzzy

modeling for unknown irregular disturbances, the composite anti-disturbance con-

troller are designed by combining PI control structure and disturbance observer

design method. It is shown that the stability and the favorable tracking performance

of augmented systems can achieved by using convex optimization algorithm and

Lyapunov analysis method. Finally, simulation results in flight control system are

given to show the efficiency of the proposed approach.

17.2 Model Description with Fuzzy Disturbance Modeling

Considering the following T-S fuzzy model with parametric uncertainties and exoge-

nous disturbances

Plant Rule a: If 𝜗1 is Ma
1 , and ⋯ and 𝜗q is Ma

q , then

{ ẋ(t) = (A0a + 𝛥A0a)x(t) + (B0a + 𝛥B0a)[u(t) + d1(t)] + d2(t)
y(t) = C0ax(t)

(17.1)

where 𝜗 = [𝜗1,… , 𝜗q] and Ma
g(a = 1, 2,… , p) are the premise variables and the

fuzzy sets, respectively. p, q are the numbers of If-Then rules and premise variables,

respectively. x(t) ∈ Rn
, u(t) ∈ Rm

, d1(t) ∈ Rm
, d2(t) ∈ Rn

and y(t) ∈ Rp1 are the con-

trol input, modeled disturbance, unmodeled disturbance with bounded peaks and

the measurement output, respectively. A0a,B0a,C0a are the coefficient matrices with

appropriate dimensions. 𝛥A0a and 𝛥B0a represent parametric uncertainties.

The overall fuzzy model can be inferred as follows

⎧⎪⎪⎨⎪⎪⎩

ẋ(t) =
p∑

a=1
ha(𝜗)

{
(A0a + 𝛥A0a)x(t) + (B0a + 𝛥B0a)[u(t) + d1(t)]

}
+ d2(t)

y(t) =
p∑

a=1
ha(𝜗)C0ax(t)

(17.2)
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where 𝜎a(𝜗) =
∏q

g=1 M
a
g(𝜗g), ha(𝜗) = 𝜎a(𝜗)∕

∑p
a=1 𝜎a(𝜗), in which Ma

g(𝜗g) is the

grade of membership of 𝜗g in Ma
g and ha(𝜗) ≥ 0,

∑p
a=1 ha(𝜗) = 1.

Moreover, the nonlinear disturbances d1(t) can be generated by the following T-S

fuzzy model with r plant rules.

Plant Rule j: If 𝜃1 is Aj
1, and ⋯ and 𝜃n is Aj

n, then

{
ẇ(t) = Wjw(t)
d1(t) = Vjw(t)

(17.3)

whereWj andVj are known coefficient matrices. 𝜃i(i = 1,… , n) andAj
i(j = 1, 2,… , r)

are the premise variables and the fuzzy sets, respectively. r is the number of If-Then

rules, while n is the number of the premise variables.

By fuzzy blending, the overall fuzzy model can be defined as follows

⎧⎪⎪⎨⎪⎪⎩

ẇ(t) =
r∑

j=1
hj(𝜃)Wjw(t)

d1(t) =
r∑

j=1
hj(𝜃)Vjw(t)

(17.4)

where𝜔j(𝜃) =
∏n

i=1 A
j
i(𝜃i), hj(𝜃) = 𝜔j(𝜃)∕

∑r
j=1 𝜔j(𝜃), 𝜃 = [𝜃1,… , 𝜃n], j = 1,… , r is

the membership function of the system with respect to plant rule j, and hj(𝜃) =
𝜔j(𝜃)∕

∑r
j=1 𝜔j(𝜃).

The uncertainties in T-S fuzzy model (1) are assumed to be of the form

𝛥A0a = HF(t)E1a, 𝛥B0a = HF(t)E2a (17.5)

where H,E1a and E2a are constant matrices with corresponding dimensions. F(t)
is an unknown, real and possibly time-varying matrix with Lebesgue measurable

elements satisfying

FT (t)F(t) ≤ I,∀t. (17.6)

Lemma 1 Assume that X and Y are vectors or matrices with appropriate dimension.
The following inequality

XTY + YTX ≤ 𝛼XTX + 𝛼
−1YTY (17.7)

holds for any constant 𝛼 > 0.
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17.3 Design of DOB PI Composite Controller

In this section, we construct a composite full-state observer to estimate the state x(t)
and the disturbance d1(t) simultaneously.

Based on the above-mentioned T-S fuzzy model (2), we introduce a new state

variable

x̄(t) ∶=
[
xT (t),

∫

t

0
eT (𝜏)d𝜏

]T
(17.8)

where the tracking error e(t) is defined as e(t) = y(t) − yd, yd is the reference output.

Then the augmented system can be established as

̇̄x(t) =
p∑

a=1
ha(𝜗){Aax̄(t) + Ba[u(t) + d1(t)]} + Cyd + Jd2(t) (17.9)

where Aa =
[
A0a + HFE1a 0

C0a 0

]
,Ba =

[
B0a + HFE2a

0

]
,C =

[
0
−I

]
, J =

[
I
0

]
.

By combining the exogenous disturbance model (4) with T-S fuzzy model (2),

the augmented system can be further constructed by

⎧⎪⎪⎨⎪⎪⎩

ż(t) =
p∑

a=1

r∑
j=1

ha(𝜗)hj(𝜃){Ā0ajz(t) + B̄0au(t)} + J̄d2(t)

y(t) =
p∑

a=1
ha(𝜗)C̄0az(t)

(17.10)

where z(t) = [xT (t),wT (t)]T , Ā0aj =
[
A0a + HFE1a (B0a + HFE2a)Vj

0 Wj

]
, B̄0a =

[
B0a + HFE2a

0

]
,

C̄0a =
[
C0a 0

]
, J̄ =

[
I 0

]T
.

The composite observer for both x(t) and w(t) is designed as

⎧⎪⎪⎨⎪⎪⎩

̇̂z(t) =
p∑

a=1

r∑
j=1

ha(𝜗)hj(𝜃){Ā0ajẑ(t) + B̄0au + L(ŷ(t) − y(t))}

ŷ(t) =
p∑

a=1
ha(𝜗)C̄0aẑ(t)

(17.11)
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where ẑ(t) = [x̂T (t), ŵT (t)]T ,L = [LT1 ,L
T
2 ]

T
is the observer gain to be determined later.

Moreover, the full-state estimation error ẽ = z(t) − ẑ(t) can be expressed as

̇̃e(t) =
p∑

a=1

r∑
j=1

ha(𝜗)hj(𝜃)(Ā0aj + LC̄0a)ẽ(t) + J̄d2(t) (17.12)

The composite-observer-based (COB) PI-type controller with fuzzy rules is

refined as

u(t) = −d̂1(t) +
p∑

b=1
hb(𝜗)

(
KPbx̂ + KIb

∫

t

0
e(𝜏)d𝜏

)
,Kb =

[
KPb KIb

]
(17.13)

where d̂1(t) =
∑r

j=1 hj(𝜃)
[
0 Vj

]
ẑ(t).

Substituting (13) into (9) yields

̇̄x(t) =
p∑

a,b=1

r∑
j=1

ha(𝜗)hb(𝜗)hj(𝜃)
[
(Aa + BaKb)x̄(t) + Dabjẽ + Cyd + Jd2(t)

]
(17.14)

where Dabj = [−BaKPb,BaVj].
Combining the estimation error model (12) with the closed-loop model (14)

yields

[
̇̄x(t)
̇̃e(t)

]
=

p∑
a,b=1

r∑
j=1

ha(𝜗)hb(𝜗)hj(𝜃)
{[

Aa + BaKb Dabj
0 Ā0aj + LC̄0a

] [
x̄(t)
ẽ(t)

]

+
[
C
0

]
yd

}
(17.15)

17.4 Theorem Proof via Convex Optimization Algorithm

Theorem 1 For the augmented system (15) consisting of PI control input and the
disturbance observer, if there exist Q1 = P−1

1 > 0 and R1b satisfying

𝛩aa < 0, a = 1, 2… , p; 𝛩ab + 𝛩ba < 0, a < b, a, b = 1, 2… , p (17.16)

and P2 > 0 and R2 satisfying

p∑
a=1

r∑
j=1

𝛯aj < 0 (17.17)
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where

𝛩ab =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

sym(ÃaQ1 + B̃aR1b) C J G1H G2H Q1G1E1a RT
1bE

T
2a

CT −𝜇2
1I 0 0 0 0 0

JT 0 −𝜇2
3I 0 0 0 0

HTGT
1 0 0 −𝛼−1

1 I 0 0 0
HTGT

2 0 0 0 −𝛼−1
2 I 0 0

E1aGT
1Q1 0 0 0 0 −𝛼1I 0

E2aR1b 0 0 0 0 0 −𝛼2I

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(17.18)

𝛯aj =

⎡⎢⎢⎢⎢⎢⎢⎣

sym(P2Ã0aj + R2C̄0a) P2G3H G3ET
1a P2G4H GT

5V
T
j E

T
2a P2J̄

HTGT
3P2 −𝛽−11 I 0 0 0 0

E1aGT
3 0 −𝛽1I 0 0 0

HTGT
4P2 0 0 −𝛽−12 I 0 0

E2aG5 0 0 0 −𝛽2I 0
J̄TP2 0 0 0 0 −𝜇2

2I

⎤⎥⎥⎥⎥⎥⎥⎦

(17.19)

and 𝜇1 > 0, 𝜇2 > 0, 𝜇3 > 0, 𝛼1 > 0, 𝛼2 > 0, 𝛽1 > 0, 𝛽2 > 0 are known parameter.
Then the augmented system (15) under the composite controller (13) is stable and
the tracking error e(t) convergent to zero. The gains are given by Kb = R1bQ−1

1 and
L = P−1

2 R2.

Please noted that due to the limitation of the paper length, the corresponding proof

of Theorem 1 is omitted.

17.5 Simulation Example

Similarly with [22], the following T-S fuzzy models are introduced to describe the

simple airplane plant

A01 =
[
−0.833 1.000
−2.175 −1.392

]
,A02 =

[
−1.134 1.000
−4.341 −2.003

]
,A03 =

[
−1.644 1.000
−22.547 −3.607

]

B01 = [−0.1671,−10.9160]T ,B02 = [−0.2128,−19.8350]T ,B03 = [−0.2110,−32.
0813]T ,C01 = C02 = C03 = [1, 1], d2(t) = [0.1, 0.1]Tsin(0.1𝜋t),E21 = E22 = E23 =

[0.1, 0.1]T ,H =
[
1 0
0 1

]
,F =

[
sin(t)∕2 0

0 cos(t)∕2

]
,E11 = E12 = E13 =

[
0.2 0
0 0.2

]
.

The member functions are chosen as

Ma
1 = exp

(
−(y − sa)2

2𝜎2
1

)
∕

[
exp(

−(y + 1)2

2𝜎2
1

) + exp(
−(y − 1)2

2𝜎2
2

) + exp(
−y2

2𝜎2
3

)

]

where 𝜎1 = 𝜎2 = 𝜎3 = 0.8, s1 = −1, s2 = 1, s3 = 0.
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The nonlinear irregular exogenous disturbance is described by two T-S fuzzy

rules, and W1 =
[
−1 2
−5 0

]
,V1 =

[
0 4

]
,W2 =

[
0 −6
4 0

]
,V2 =

[
0 4

]
.

The member functions are chosen as

A1
1 =

exp(−(w1−1.2)2

2𝜎2
1

)

exp(−(w1−1.2)2

2𝜎2
1

) + exp(−(w1−1)2

2𝜎2
2

)
,A2

1 =
exp(−(w1−1)2

2𝜎2
2

)

exp(−(w1−1.2)2

2𝜎2
1

) + exp(−(w1−1)2

2𝜎2
2

)

where 𝜎
2
1 = 0.5, 𝜎2

2 = 1.

Supposed that the initial values in augmented system (10)–(11) are taken to be

x0 =
[
2 3

]T
, x̂0 =

[
−2 −2

]T
, w0 =

[
2 1

]T
, ŵ0 =

[
1 1

]T
.

The desired tracking objective is design as yd = 5. Figure 17.1 displays the response

of nonlinear disturbance and its observation value, which illustrates the tracking per-

formance of the disturbance observer is satisfactory. Figure 17.2 is the trajectory

of system output and the good performance dynamic tracking performance can be

embodied.

Fig. 17.1 Disturbance and

its estimation
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Fig. 17.2 The trajectory of

system output

0 5 10 15 20 25 30

−6

−4

−2

0

2

4

6

8

t/sec

yd

y(t)



168 X. Fan et al.

17.6 Conclusion

This paper studies the anti-disturbance tracking control framework for T-S fuzzy

models by using T-S disturbance modeling and disturbance observer design. The

DOB PI composite controller is designed based on T-S fuzzy models and T-S fuzzy

disturbance models simultaneously. As a result, a convex optimization approach is

adopted to ensure the augmented closed-loop systems stable and convergence of the

tracking error to zero.
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