
Trip-Based Public Transit Routing

Sascha Witt

Karlsruhe Institute of Technology (KIT)
Karlsruhe, Germany
sascha.witt@kit.edu

Abstract. We study the problem of computing all Pareto-optimal jour-
neys in a public transit network regarding the two criteria of arrival time
and number of transfers taken. We take a novel approach, focusing on
trips and transfers between them, allowing fine-grained modeling. Our
experiments on the metropolitan network of London show that the algo-
rithm computes full 24-hour profiles in 70ms after a preprocessing phase
of 30 s, allowing fast queries in dynamic scenarios.

1 Introduction

Recent years have seen great advances in route planning on continent-sized road
networks [2]. Unfortunately, adapting these algorithms to public transit net-
works is harder than expected [4]. On road networks, one is usually interested
in the shortest path between two points, according to some criterion. On public
transit networks, several variants of point-to-point queries exist. The simplest is
the earliest arrival query, which takes a departure time as an additional input
and returns a journey that arrives as early as possible. A natural extension is
the multi-criteria problem of minimizing both arrival time and the number of
transfers, resulting in a set of journeys. A profile query determines all optimal
journeys departing during a given period of time.

In the past, these problems have been solved by modeling the timetable in-
formation as a graph and running Dijkstra’s algorithm or variants thereof on
that graph. Traditional graph models include the time-expanded and the time-
dependent model [14]. More recently, algorithms such as RAPTOR [10] and
Connection Scan [11] have eschewed the use of graphs (and priority queues) in
favor of working directly on the timetable.

In this work, we present a new algorithm that uses trips (vehicles) and the
transfers between them as its fundamental building blocks. Unlike existing al-
gorithms, it does not assign labels to stops. Instead, trips are labeled with the
stops at which they are boarded. Then, a precomputed list of transfers to other
trips is scanned and newly reached trips are labeled. When a trip reaches the
destination, a journey is added to the result set. The algorithm terminates when
all optimal journeys have been found.

A motivating observation behind this is the fact that labeling stops with
arrival (or departure) times is not sufficient once minimum change times are
introduced. Some additional information is required to track which trips can

© Springer-Verlag Berlin Heidelberg 2015
N. Bansal and I. Finocchi (Eds.): ESA 2015, LNCS 9294, pp. 1025–1036, 2015.
DOI: 10.1007/978-3-662-48350-3_85



1026 S. Witt

be reached. For example, the realistic time-expanded model of Pyrga et al. [16]
introduces additional nodes to deal with minimum change times, while Connec-
tion Scan [11] uses additional labels for trips. In contrast, once we know pas-
sengers boarded a trip at a certain stop, their further options are fully defined:
Either they transfer to another trip using one of the precomputed transfers, or
their current trip reaches the destination, in which case we can look up the ar-
rival time in the timetable. In either case, there is no need to explicitly track
arrival times at intermediary stops.

The core of the algorithm is similar to a breadth-first search, where levels
correspond to the number of transfers taken so far. As a result, it is inherently
multi-criterial, similar to RAPTOR [10]. Although a graph-like structure is used,
there is no need for a priority queue. A preprocessing step is required to compute
transfers, but can be parallelized trivially and only takes a few minutes, even on
large networks (Section 4). By omitting unnecessary transfers, both space usage
and query times can be improved at the cost of increased preprocessing time.

Section 2 introduces necessary notations and definitions, before Section 3 de-
scribes the algorithm and its variants. Section 4 presents the experimental eval-
uation. Finally, Section 5 concludes the paper.

2 Preliminaries

2.1 Notation

We consider public transit networks defined by an aperiodic timetable, consisting
of a set of stops, a set of footpaths and a set of trips. A stop p represents a
physical location where passengers can enter or exit a vehicle, such as a train
station or a bus stop. Changing vehicles at a stop p may require a certain amount
of time Δτch(p) (for example, in order to change platforms).1 Footpaths allow
travelers to walk between two stops. We denote the time required to walk from
stop p1 to p2 by Δτfp(p1, p2) and define Δτfp(p, p) = Δτch(p) to simplify some
algorithms. A trip t corresponds to a vehicle traveling along a sequence of stops
p(t) =

〈
p0t , p

1
t , . . .

〉
. Note that stops may occur multiple times in a sequence. For

each stop pit, the timetable contains the arrival time τarr(t, i) and the departure
time τdep(t, i) of the trip at this stop. Additionally, we group trips with identical
stop sequences into lines2 such that all trips t and u that share a line can be
totally ordered by

t � u ⇐⇒ ∀i ∈ [0, |p(t)|) : τarr(t, i) ≤ τarr(u, i) (1)

and define

t ≺ u ⇐⇒ t � u ∧ ∃i ∈ [0, |p(t)|) : τarr(t, i) < τarr(u, i) . (2)
1 More fine-grained models, such as different change times for specific platforms, can

be used without affecting query times, since minimum change times are only relevant
during preprocessing (Section 3.1).

2 Line and route have both been previously used for this concept; we opted for line to
avoid confusion with routing and the usage of route in the context of road networks.



Trip-Based Public Transit Routing 1027

If two trips have the same stop sequence, but cannot be ordered (because one
overtakes the other), we assign them to different lines. We denote the line of a
trip t by Lt and define p(Lt) = p(t). We also define the set of lines at stop p as

L(p) =
{
(L, i)

∣∣ p = piL where L is a line and p(L) =
〈
p0L, p

1
L, . . .

〉}
. (3)

A trip segment pbt → pet represents a trip t traveling from stop pbt to stop pet . A
transfer between trips t and u (t �= u) is denoted by pet → pbu, where passengers
exit t at the eth stop and board u at the bth. For all transfers,

pet → pbu =⇒ τarr(t, e) +Δτfp
(
pet , p

b
u

) ≤ τdep(u, b) (4)

must hold. Finally, a journey is a sequence of alternating trip segments and
transfers, with optional footpaths at the beginning and end. Each leg of a journey
must begin at the stop where the previous one ended.

We consider two well-known problems. Since both of them are multi-criteria
problems, the results are Pareto sets representing non-dominated journeys. A
journey dominates another if it is no worse in any criterion; if they are equal
in every criterion, we break ties arbitrarily. Although multi-criteria Pareto op-
timization is NP-hard in general, it is efficiently tractable for natural criteria
in public transit networks [15]. In the earliest arrival problem, we are given a
source stop psrc, a target stop ptgt, and a departure time τ . The result is a Pareto
set of tuples (τjarr, n) of arrival time and number of transfers taken during non-
dominated journeys from psrc to ptgt that leave no earlier than τ . For the profile
problem, we are given source stop psrc, target stop ptgt, an earliest departure time
τedt, and a latest departure time τldt. Here, we are asked to compute a Pareto set
of tuples (τjdep, τjarr, n) representing non-dominated journeys between psrc and
ptgt with τedt ≤ τjdep ≤ τldt. Note that for Pareto-optimality, later departure
times are considered to be better than earlier ones.

2.2 Related Work

Some existing approaches solve these problems by modeling timetable informa-
tion as a graph, using either the time-expanded or the time-dependent model. In
the (simple) time-expanded model, a node is introduced for each event, such as
a train departing or arriving at a station. Edges are then added to connect nodes
on the same trip, as well as between nodes belonging to the same stop (corre-
sponding to a passenger waiting for the next train). To model minimum change
times, additional nodes and edges are required [16]. One advantage of this model
is that all edge weights are constant, which allows the use of speedup techniques
developed for road networks, such as contraction. Unfortunately, it turns out
that due to different network structures, these techniques do not perform as well
for public transit networks [4]. Also, time-expanded graphs are rather large.

The time-dependent approach produces much smaller graphs in comparison.
In the simple model, nodes correspond to stops. Edges no longer have con-
stant weight, but are instead associated with (piecewise linear) travel time func-
tions, which map departure times to travel times (or, equivalently, arrival times).



1028 S. Witt

The weight then depends on the time at which this function is evaluated. This
model can be extended to allow for minimum change times by adding a node for
each line at each stop [16]. Some speedup techniques have been applied success-
fully to time-dependent graphs, such as ALT [6] and Contraction [12], although
not for multi-criteria problems. For these, several extensions to Dijkstra’s al-
gorithm exist, among them the Multicriteria Label-Setting [13], the Multi-Label
Correcting [7], the Layered Dijkstra [5], and the Self-Pruning Connection Set-
ting [9] algorithms. However, as Dijkstra-variants, each of them has to perform
rather costly priority queue operations.

Other approaches do not use graphs at all. RAPTOR (Round-bAsed Public
Transit Optimized Router) [10] is a dynamic program. In each round, it com-
putes earliest arrival times for journeys with n transfers, where n is the current
round number. It does this by scanning along lines and, at each stop, checking
for the earliest trip of that line that can be reached. It outperforms Dijkstra-
based approaches in practice. The Connection Scan Algorithm [11] operates on
elementary connections (trip segments of length 1). It orders them by departure
time into a single array. During queries, this array is then scanned once, which
is very fast in practice due to the linear memory access pattern.

A number of speedup techniques have been developed for public transit rout-
ing. Transfer Patterns [1,3] is based on the observation that for many optimal
journeys, the sequence of stops where transfers occur is the same. By precom-
puting these transfer patterns, journeys can be computed very quickly at query
time. Public Transit Labeling [8] applies recent advances in hub labeling to public
transit networks, resulting in very fast query times. Another example is the Ac-
celerated Connection Scan Algorithm [17], which combines CSA with multilevel
overlay graphs to speed up queries on large networks. The algorithm presented
in this work, however, is a new base algorithm; development of further speedup
techniques is a subject for future research.

3 Algorithm

3.1 Preprocessing

We precompute transfers so they can be looked up quickly during queries. A
key observation is that the majority of possible transfers is not needed in order
to find Pareto-optimal journeys, and can be safely discarded. Preprocessing is
divided into several steps: Initial computation and reduction. Initial computation
of transfers is relatively straightforward. For each trip t and each stop pit of that
trip, we examine pit and all stops reachable via (direct) footpaths from pit. For
each of these stops q, we iterate over (L, j) ∈ L(q) and find the first trip u of line
L such that a valid transfer pit → pju satisfying (4) exists. Since, by definition,
trips do not overtake other trips of the same line, we can discard any transfers
to later trips of line L. Additionally, we do not add any transfers from the first
stop (i = 0) or to the last stop (j = |p(L)| − 1) of a trip. Furthermore, transfers
to trips of the same line are only kept if either u ≺ t or j < i; otherwise, it is
better to simply remain in the current trip.



Trip-Based Public Transit Routing 1029

After initial computation is complete, we perform a number of reduction steps,
where we discard transfers that are not necessary to find Pareto-optimal jour-
neys. First, we discard any transfers pit → pju where pj+1

u = pi−1
t (we call these

U-turn transfers) as long as

τarr(t, i− 1) +Δτch
(
pi−1
t

) ≤ τdep(u, j + 1) (5)

holds. In this case, we can already reach u from t at the previous stop, and
because

τarr(t, i− 1) ≤ τdep(t, i− 1) ≤ τarr(t, i)

≤ τdep(u, j) ≤ τarr(u, j + 1) ≤ τdep(u, j + 1) ,
(6)

all trips that can reach t at the previous stop can also reach u, and all trips
reachable from u are also reachable from t. Equation (5) may not hold if the
stops in question have different minimum change times.

Next, we further reduce the number of transfers by analyzing which transfers
lead to improved arrival times. We do this by moving backwards along a trip,
keeping track of where and when passengers in that trip can arrive, either by
simply exiting the trip or by transferring to another trip reachable from their
current position. Again, we iterate over all trips t. For each trip, we maintain
two mappings τA and τC from stops to arrival time and earliest change time,
respectively. Initially, they are set to ∞ for all stops. During execution of the
algorithm, they are updated to reflect when passengers arrive (τA) or can board
the next trip (τC) at each stop.3 We then iterate over stops pit of trip t in
decreasing index order, meaning we examine later stops first. At each stop, we
update the arrival time and change time for that stop if they are improved:

τA
(
pit
) ← min

(
τA

(
pit
)
, τarr(t, i)

)
and

τC
(
pit
) ← min

(
τC

(
pit
)
, τarr(t, i) +Δτch

(
pit
))

.

Similarly, we update τA and τC for all stops q reachable via footpaths from pit:

τA(q) ← min
(
τA(q), τarr(t, i) +Δτfp

(
pit, q

))
and

τC(q) ← min
(
τC(q), τarr(t, i) +Δτfp

(
pit, q

))
.

We then determine, for each transfer pit → pju from t at that stop, if u improves
arrival and/or change times for any stop. To do this, we iterate over all stops pku
of u with k > j and perform the same updates to τA and τC as we did above, this
time for pku and all stops reachable via footpaths from pku. If this results in any
improvements to either τA or τC, we keep the transfer, otherwise we discard it.
Discarded transfers are not required for Pareto-optimal journeys, since we have
shown that (a) taking later transfers (or simply remaining in the current trip)
leads to equal or better arrival times (τA), and (b) all trips reachable via that
transfer can also be reached via those later transfers (τC).

All these algorithms are trivially parallelized, since each trip is processed
independently. Also, there is no need to perform them as separate steps; they
3 If there are no minimum change times, then τA = τC and we only maintain τA.



1030 S. Witt

can easily be merged into one. We decided to keep them distinct to showcase the
separation of concerns. Furthermore, more complex reduction steps are possible,
where there are dependencies between trips. For example, to minimize the size of
the transfer set, one could compute full profiles between all stops (all-to-all), then
keep only those transfers required for optimal journeys. However, that would be
computationally expensive. In contrast, the comparatively simple computations
presented here can be performed within minutes, even for large networks, while
still resulting in a greatly reduced transfer set (see Section 4 for details).

Note that this explicit representation of transfers allows fine-grained control
over them. For instance, one can easily introduce transfers between specific trips
that would otherwise violate the minimum change time or footpath restrictions,
or remove transfers from certain trips. Transfer preferences are another example.
If two trips travel in parallel (for part of their stop sequence), there may be mul-
tiple possible transfers between them. The algorithm described above discards
all but the last of them; by modifying it, preference could be given to transfers
that are more accessible, for instance. Since this only has to be considered during
preprocessing, query times are unaffected.

3.2 Earliest Arrival Query

As a reminder, the input to an earliest arrival query consists of the source stop
psrc, the target stop ptgt, and the (earliest) departure time τ , and the objective is
to calculate a Pareto set of (τjarr, n) tuples representing Pareto-optimal journeys
arriving at time τjarr after n transfers. During the algorithm, we remember which
parts of each trip t have already been processed by maintaining the index R(t)
of the first reached stop, initialized to R(t) ← ∞ for all trips. We also use a
number of queues Qn of trip segments reached after n transfers and a set F of
tuples (L, i,Δτ). The latter indicates lines reaching the target stop ptgt, and is
computed by

F = {(L, i, 0) | (L, i) ∈ L(ptgt)}
∪ {(L, i,Δτfp(q, ptgt)) | (L, i) ∈ L(q) ∧ ∃ a footpath from q to ptgt}

We start by identifying the trips travelers can reach from psrc at time τ . For
this, we examine psrc and all stops reachable via footpaths from psrc. For each
of these stops q, we iterate over (L, i) ∈ L(q) and find the first trip t of line L
such that

τdep(t, i) ≥
{
τ if q = psrc,
τ +Δτfp(psrc, q) otherwise.

For each of those trips, if i < R(t), we add the trip segment pit → pR(t)
t to queue

Q0 and then update R(u) ← min(R(u), i) where t � u ∧ Lt = Lu, meaning
we update the first reached stop for t and all later trips of the same line. Due
to the way � is defined in (1), none of these later trips u can improve upon
t. By marking them as reached, we eliminate them from the search and avoid
redundant work.



Trip-Based Public Transit Routing 1031

After the initial trips have been found, we operate on the trip segments in
Q0, Q1, . . . until there are no more unprocessed elements. For each trip segment
pbt → pet ∈ Qn, we perform the following three steps. First, we check if this
trip reaches the target stop. For each (Lt, i,Δτ) ∈ F with i > b, we generate
a tuple (τarr(t, i) +Δτ, n) and add it to the result set, maintaining the Pareto
property. Second, we check if this trip should be pruned because it cannot lead
to a non-dominated journey. This is the case if we already found a journey with
τjarr < τarr(t, b+ 1). Third, if the trip is not pruned, we examine its transfers.
For each transfer pit → pju with b < i ≤ e, we check if j < R(u). If so, we add
pju → pR(u)

u to Qn+1 and update R(v) ← min(R(v), j) for all v with u � v∧Lu =
Lv. Otherwise, we already reached u or an earlier trip of the same line at j or
an earlier stop, and we skip the transfer.

The main loop is similar to a breadth-first search: First, all trips reachable
directly from the source stop are examined, then all trips reached after a transfer
from those, etc. Therefore, we find journeys with the least number of transfers
first. Any non-dominated journey discovered later cannot have a lower number of
transfers and must therefore arrive earlier. This property enables the pruning in
step two, which prevents us from having to examine all reachable trips regardless
of the target. However, it also means that the journey with the earliest arrival
time is the last one discovered, and all journeys with less transfers are found
beforehand. This is why we only consider the multi-criteria problem variants.

3.3 Profile Query

We perform profile queries by running the main loop of an earliest arrival query
for each distinct departure time in the given interval, preserving labels between
runs to avoid redundant work. Later journeys dominate earlier journeys, pro-
vided arrival time and number of transfers are equal or better, while earlier
journeys never dominate later ones. Therefore, we process later departures first.
However, in order to reuse labels across multiple runs, we need to keep multiple
labels for each trip, consisting of the index of the first reached stop and the
number of transfers required to reach it. Since the number of transfers is lim-
ited in practice, we use Rn(t) to denote the first stop reached on trip t after at
most n transfers and update Rn+1(t) (and following) whenever we update Rn(t).
To decide if a trip segment should be queued while processing Qn, we compare
against and update Rn+1(t). We also change the pruning step so we compare
against the minimum arrival time of journeys with no more than n+1 transfers.

To see why labels can be reused, consider two runs with departure times τ1 and
τ2, where τ1 < τ2, which both reach trip t at stop i after n transfers. Continuing
from this point, both will reach the destination at the same time and after the
same number of transfers. However, since τ1 < τ2, the journeys departing at τ2
dominate the journeys departing at τ1. Knowing this, we can avoid computing
them in the first place by computing τ2 first and keeping the labels.



1032 S. Witt

3.4 Implementation

We improve the performance of the algorithm by taking advantage of SIMD
(single instruction, multiple data) instructions, avoiding dynamic memory allo-
cations and increasing locality of reference (reducing cache misses). In our data
instances, all lines have less than 200 stops. Also, none of our tests found Pareto-
optimal journeys with 16 or more transfers. Thus, we set the maximum number
of transfers to 15. During profile queries, we can then update R0(t) to R15(t)
using a single 128-bit vector minimum operation.

To avoid memory allocations during query execution, we replace the n queues
with a single, preallocated array. To see why this is possible, note that the max-
imum number of trip segments queued is bounded by the number of elementary
connections. We use pointers to keep track of the current element, the end of the
queue, and the level boundaries (where the number of transfers n is increased).

We improve locality of reference by splitting the steps of the inner loop into
three separate loops. Thus, we iterate three times over each level, each time
updating the elements in the “queue”, before increasing n and moving on to
the next level. In the first iteration, we look up τarr(t, b+ 1) and store it next
to the trip segment into the queue. Additionally, we check F to see if the trip
reaches the destination, and update arrival times as necessary. In the second
iteration, we perform the pruning step by comparing the time stored in the
queue with the arrival time at the destination. If the element is not pruned, we
replace it with two indices into the array of transfers, indicating the transfers
corresponding to the trip segment. If the element is pruned, we set both indices
to 0, resulting in an empty interval. Finally, in the third iteration, we examine
this list of transfers and add new trip segments to the queue as necessary. Thus,
arrival times τarr(·, ·) are required only in the first loop, transfer indices only in
the second loop, and transfers and reached stops Rn(·) only in the final loop.
This leads to reduced cache pressure and therefore to less cache misses, which
in turn results in improved performance (see Section 4).

3.5 Journey Descriptions

So far, we only described how to compute arrival time and number of transfers
of journeys, which is enough for many applications. However, we can retrieve the
full sequence of trip segments as follows. Whenever a trip segment is queued, we
store with it a pointer to the currently processed trip segment. Since we replaced
the queue with a preallocated array, all entries are preserved until the end of the
query. Therefore, when we find a journey reaching the destination, we simply
follow this chain of pointers to reconstruct the sequence of trip segments. If
required, the appropriate transfers between the trips can be found by rescanning
the list of transfers.

4 Experiments

We ran experiments on a dual 8-core Intel Xeon E5-2650 v2 processor clocked
at 2.6 GHz, with 128 GB of DDR3-1600 RAM and 20 MB of L3 cache. Our code



Trip-Based Public Transit Routing 1033

Table 1. Instances used for experiments

20 764 249 724
129 263 2 389 253

4 991 130 46 116 453
45 624 100 470
2 161 232 644

121 339 213 1 826 424 894
19 502 791 186 296 771

115.5 1 140.9

Table 2. Preprocessing times for transfer computation and reduction

1 16 1 16

18 3 177 37
357 27 2 174 183

375 30 2 351 220

was compiled using g++ 4.9.2 with optimizations enabled. We used two test
instances, summarized in Table 1. The first, available at data.london.gov.uk,
covers Greater London and includes data for underground, bus, and Docklands
Light Railway services for one day. The second consists of data used by bahn.de
during winter 2011/2012, containing European long distance trains, German
local trains, and many buses over two days.

Table 1 also reports the number of transfers before and after reduction, as
well as the total space consumption (for the reduced transfers and all timetable
data). Reduction eliminates about 84% of transfers for London, and almost 90%
for Germany. The times required for preprocessing can be found in Table 2.

Running times reported for queries are averages over 10 000 queries with
source and target stops selected uniformly at random. For profile queries, the
departure time range is the first day covered by the timetable; for earliest arrival
queries, the departure time is selected uniformly at random from that range. We
do not compute full journey descriptions (Section 3.5).

We evaluated the optimizations described in Section 3.4, as well as the effect
of transfer reduction, on the London instance (Table 3). SIMD instructions are
only used in profile queries and enabling them has no effect on earliest arrival
queries. With all optimizations, running time for profile queries is improved by
a factor of 2. Transfer reduction improves running times by a factor of 3.

We compare our new algorithm to the state of the art in Table 4. We distin-
guish between algorithms which optimize arrival time only (◦) and those that
compute Pareto sets optimizing arrival time and number of transfers (•), and
between earliest arrival (◦) and profile (•) queries. We report the average number



1034 S. Witt

Table 3. Evaluation of optimizations in Section 3.4, using the London instance

1.7 145.9
1.7 113.2
1.2 70.0

3.5 226.0

4 6 8 10 12 14 16

10

100

2r

Fig. 1. Earliest arrival query times by geo-
rank on Germany

4 6 8 10 12 14 16

10

100

1 000

2r

Fig. 2. Profile query times by geo-rank on
Germany

of label comparisons per stop4, where available, and the average running time.
Direct comparison with the Accelerated Connection Scan Algorithm (ACSA) [17]
and Contraction Hierarchies (CH) [12] is difficult, since they do not support bicri-
teria queries.5 We have faster query times than CSA [11] and RAPTOR [10], at
the cost of a few minutes of preprocessing time. Transfer Patterns (TP) [1,3] and
Public Transit Labeling (PTL) [8] have faster query times (especially on larger
instances), however, their preprocessing times are several orders of magnitude
above ours.

To examine query times further, we ran 1 000 geo-rank queries [17]. A geo-rank
query picks a stop uniformly at random and orders all other stops by geographical
distance. Queries are run from the source stop to the 2r-th stop, where r is the
geo-rank. Results for the Germany instance are reported in Figure 1 (earliest
arrival queries) and Figure 2 (profile queries). Note the logarithmic scale on
both axes. Query times for the maximum geo-rank are about the same as the
average query time when selecting source and target uniformly at random, since
randomly selected stops are unlikely to be near each other. Local queries, which
4 Note that in our algorithm, labels are not associated with stops, but with trips

instead. For better comparison with previously published work, we divided the total
number of label comparisons by the number of stops.

5 ACSA uses transfers to break ties between journeys with equal arrival times.



Trip-Based Public Transit Routing 1035

Table 4. Comparison with the state of the art. Results taken from [2,3,8,17]. Bicrite-
ria algorithms computing a set of Pareto-optimal journeys regarding arrival time and
number of transfers are marked in column “tr.” (others only optimize arrival time).
Profile queries are marked in column “pr.”.

·103 ·106

20.8 5.0 < 0.1 23.3 1.2
4.6 4.8 3.1

20.8 5.1 0.03
20.8 5.1 10.9 5.4
20.8 4.9 26.6 1.8
30.5 1.7 < 0.1 0.3

249.7 46.1 < 0.1 41.4 40.8
248.4 13.9 0.3
252.4 46.2 298.6
252.4 46.2 8.7

20.8 5.0 < 0.1 1 061.7 70.0
4.6 4.8 3.1

20.8 5.1 1 634.0 922.0
20.8 4.9 3 824.9 466.0

249.7 46.1 < 0.1 228.0 301.7
248.4 13.9 5.0
252.4 46.2 171.0

are often more relevant in practice, are generally much faster (by an order of
magnitude), although there is a significant number of outliers, since physically
close locations do not necessarily have direct or fast connections.

5 Conclusion

We presented a novel algorithm for route planning in public transit networks.
By focusing on trips and transfers between them, we computed multi-criteria
profiles optimizing arrival time and number of transfers on a metropolitan net-
work in 70ms with a preprocessing time of just 30 s, occupying a Pareto-optimal
spot among current state of the art algorithms. The explicit representation of
transfers allows fine-grained modeling, while the short preprocessing time allows
the use in dynamic scenarios. In addition, localized changes (such as trip delays
or cancellations) do not necessitate a full rerun of the preprocessing phase. In-
stead, only a subset of the data needs to be updated. Development of suitable
algorithms is a subject of future studies. Future work also includes efficiently
extending the covered period of time by exploiting periodicity in timetables,
making the algorithm more scalable by using network decomposition, and ex-
tending it to support more generic criteria such as fare zones or walking distance.



1036 S. Witt

References

1. Bast, H., Carlsson, E., Eigenwillig, A., Geisberger, R., Harrelson, C., Raychev,
V., Viger, F.: Fast Routing in Very Large Public Transportation Networks Using
Transfer Patterns. In: de Berg, M., Meyer, U. (eds.) ESA 2010, Part I. LNCS,
vol. 6346, pp. 290–301. Springer, Heidelberg (2010)

2. Bast, H., Delling, D., Goldberg, A., Müller-Hannemann, M., Pajor, T., Sanders, P.,
Wagner, D., Werneck, R.F.: Route Planning in Transportation Networks. ArXiv
e-prints arXiv:1504.05140 [cs.DS] (Apr 2015)

3. Bast, H., Storandt, S.: Frequency-based Search for Public Transit. In: SIGSPA-
TIAL, pp. 13–22. ACM, New York (2014)

4. Berger, A., Delling, D., Gebhardt, A., Müller-Hannemann, M.: Accelerating Time-
Dependent Multi-Criteria Timetable Information is Harder Than Expected. In:
ATMOS 2009. OASIcs (2009)

5. Brodal, G.S., Jacob, R.: Time-dependent networks as models to achieve fast exact
time-table queries. Electronic Notes in Theor. Computer Science 92, 3–15 (2004)

6. Cionini, A., D’Angelo, G., D’Emidio, M., Frigioni, D., Giannakopoulou, K.,
Paraskevopoulos, A., Zaroliagis, C.: Engineering Graph-Based Models for Dynamic
Timetable Information Systems. In: ATMOS 2014. OASIcs (2014)

7. Dean, B.C.: Continuous-Time Dynamic Shortest Path Algorithms. Master’s thesis,
Massachusetts Institute of Technology (1999)

8. Delling, D., Dibbelt, J., Pajor, T., Werneck, R.F.: Public Transit Labeling. In:
Bampis, E. (ed.) SEA 2015. LNCS, vol. 9125, pp. 273–285. Springer, Heidelberg
(2015)

9. Delling, D., Katz, B., Pajor, T.: Parallel Computation of Best Connections in
Public Transportation Networks. JEA 17, 4.4:4.1–4.4:4.26 (2012)

10. Delling, D., Pajor, T., Werneck, R.F.: Round-Based Public Transit Routing. Trans-
portation Science, advance online publication (2012)

11. Dibbelt, J., Pajor, T., Strasser, B., Wagner, D.: Intriguingly Simple and Fast Tran-
sit Routing. In: Bonifaci, V., Demetrescu, C., Marchetti-Spaccamela, A. (eds.) SEA
2013. LNCS, vol. 7933, pp. 43–54. Springer, Heidelberg (2013)

12. Geisberger, R.: Contraction of Timetable Networks with Realistic Transfers. In:
Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp. 71–82. Springer, Heidelberg (2010)

13. Hansen, P.: Bicriterion Path Problems. In: Multiple Criteria Decision Making The-
ory and Application. LNEMS, vol. 177, pp. 109–127. Springer, Heidelberg (1980)

14. Müller-Hannemann, M., Schulz, F., Wagner, D., Zaroliagis, C.: Timetable Informa-
tion: Models and Algorithms. In: Geraets, F., Kroon, L.G., Schoebel, A., Wagner,
D., Zaroliagis, C.D. (eds.) Railway Optimization 2004. LNCS, vol. 4359, pp. 67–90.
Springer, Heidelberg (2007)

15. Müller-Hannemann, M., Weihe, K.: On the cardinality of the Pareto set in bicriteria
shortest path problems. Annals of Operations Research 147(1), 269–286 (2006)

16. Pyrga, E., Schulz, F., Wagner, D., Zaroliagis, C.: Efficient Models for Timetable
Information in Public Transportation Systems. JEA 12, 2.4:1–2.4:39 (2008)

17. Strasser, B., Wagner, D.: Connection Scan Accelerated. In: ALENEX 2014, pp.
125–137 (2014)


	Trip-Based Public Transit Routing
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Related Work

	3 Algorithm
	3.1 Preprocessing
	3.2 Earliest Arrival Query
	3.3 Profile Query
	3.4 Implementation
	3.5 Journey Descriptions

	4 Experiments
	5 Conclusion




