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Abstract. We prove that the number of incidences between m points
and n bounded-degree curves with k degrees of freedom in R

d is I(P ,C) =
O

(
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j

+m+ n) , where the constant of proportionality depends on k, ε and d,
for any ε > 0, provided that no j-dimensional surface of degree cj(k, d, ε),
a constant parameter depending on k, d, j, and ε, contains more than qj
input curves, and that the qj ’s satisfy certain mild conditions.

This bound generalizes a recent result of Sharir and Solomon [20]
concerning point-line incidences in four dimensions (where d = 4 and
k = 2), and partly generalizes a recent result of Guth [8] (as well as
the earlier bound of Guth and Katz [10]) in three dimensions (Guth’s
three-dimensional bound has a better dependency on q). It also improves
a recent d-dimensional general incidence bound by Fox, Pach, Sheffer,
Suk, and Zahl [7], in the special case of incidences with algebraic curves.
Our results are also related to recent works by Dvir and Gopi [4] and
by Hablicsek and Scherr [11] concerning rich lines in high-dimensional
spaces.

1 Introduction

Let C be a set of curves in R
d. We say that C has k degrees of freedom with

multiplicity s if (i) for every k points in R
d there are at most s curves of C that

are incident to all k points, and (ii) every pair of curves of C intersect in at most
s points. The bounds that we derive depend more significantly on k than on
s—see below.
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In this paper we derive sharp upper bounds on the number of incidences
between a set P of m points and a set C of n bounded-degree algebraic curves
that have k degrees of freedom (with some multiplicity s). We denote the number
of these incidences by I(P , C).

Before stating our results, let us put them in context. The basic and most
studied case involves incidences between points and lines. In two dimensions,
writing L for the given set of n lines, the classical Szemerédi–Trotter theorem [27]
yields the worst-case tight bound

I(P , L) = O
(
m2/3n2/3 +m+ n

)
. (1)

In three dimensions, in the 2010 groundbreaking paper of Guth and Katz [10],
an improved bound has been derived for I(P , L), for a set P of m points and a
set L of n lines in R

3, provided that not too many lines of L lie in a common
plane. Specifically, they showed:

Theorem 1 (Guth and Katz [10]). Let P be a set of m distinct points and
L a set of n distinct lines in R

3, and let q2 ≤ n be a parameter, such that no
plane contains more than q2 lines of L. Then

I(P,L) = O
(
m1/2n3/4 +m2/3n1/3q

1/3
2 +m+ n

)
.

This bound was a major step in the derivation of the main result of [10], an
almost-linear lower bound on the number of distinct distances determined by any
set of n points in the plane, a classical problem posed by Erdős in 1946 [6]. Their
proof uses several nontrivial tools from algebraic and differential geometry, most
notably the Cayley–Salmon theorem on osculating lines to algebraic surfaces in
R

3, and additional properties of ruled surfaces. All this machinery comes on top
of the main innovation of Guth and Katz, the introduction of the polynomial
partitioning technique; see below.
In four dimensions, Sharir and Solomon [21] have obtained a still sharper bound:

Theorem 2 (Sharir and Solomon [21]). Let P be a set of m distinct points
and L a set of n distinct lines in R

4, and let q2, q3 ≤ n be parameters, such that
(i) each hyperplane or quadric contains at most q3 lines of L, and (ii) each 2-flat
contains at most q2 lines of L. Then

I(P , L) ≤ 2c
√
logm

(
m2/5n4/5 +m

)
+A

(
m1/2n1/2q

1/4
3 +m2/3n1/3q

1/3
2 + n

)
,

(2)
where A and c are suitable absolute constants. When m ≤ n6/7 or m ≥ n5/3, we
get the sharper bound

I(P , L) ≤ A
(
m2/5n4/5 +m+m1/2n1/2q

1/4
3 +m2/3n1/3q

1/3
2 + n

)
. (3)

In general, except for the factor 2c
√
logm, the bound is tight in the worst case,

for any values of m,n, with corresponding suitable ranges of q2 and q3.
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This improves, in several aspects, an earlier treatment of this problem in Sharir
and Solomon [20].

Another way to extend the Szemerédi–Trotter bound is for curves in the plane
with k degrees of freedom (for lines, k = 2). This has been done by Pach and
Sharir, who showed:1

Theorem 3 (Pach and Sharir [17]). Let P be a set of m points in R
2 and

let C be a set of bounded-degree algebraic curves in R
2 with k degrees of freedom

and with multiplicity s. Then

I(P , C) = O
(
m

k
2k−1n

2k−2
2k−1 +m+ n

)
,

where the constant of proportionality depends on k and s.

Several special cases of this result, such as the cases of unit circles and of arbitrary
circles, have been considered separately [3,25].

Here too one can consider the extension of these bounds to higher dimen-
sions. The literature here is rather scarce, and we only mention here the work
of Sharir, Sheffer and Zahl [19] on incidences between points and circles in three
dimensions; an earlier study of this problem by Aronov et al. [1] gives a different,
dimension-independent bound.

The bounds given above include a “leading term” that depends only on m and
n (like the term m1/2n3/4 in Theorem 1), and, except for the two-dimensional

case, a series of “lower-dimensional” terms (like the term m2/3n1/3q
1/3
2 in Theo-

rem 1 and the terms m1/2n1/2q
1/4
3 and m2/3n1/3q

1/3
2 in Theorem 2). The leading

terms, in the case of lines, become smaller as d increases. Informally, by placing
the lines in a higher-dimensional space, it should become harder to create many
incidences on them.

Nevertheless, this is true only if the setup is “truly d-dimensional”. This means
that not too many lines or curves can lie in a common lower-dimensional space.
The lower-dimensional terms handle incidences within such lower-dimensional
spaces. There is such a term for every dimension j = 2, . . . , d − 1, and the “j-
dimensional” term handles incidences within j-dimensional subspaces (which,
as the quadrics in the case of lines in four dimensions in Theorem 2, are not
necessarily linear and might be algebraic of low constant degree). Comparing the
bounds for lines in two, three, and four dimensions, we see that the j-dimensional
term in d dimensions, for j < d, is a sharper variant of the leading term in j
dimensions. More concretely, if that leading term is manb then its counterpart
in the d-dimensional bound is of the form mantqb−t

j , where qj is the maximum
number of lines that can lie in a common j-dimensional flat or low-degree variety,
and t depends on j and d.
Our Results. In this paper we consider a grand generalization of these results,
to the case where C is a family of bounded-degree algebraic curves with k degrees
of freedom (and some multiplicity s) in R

d. This is a very ambitious and difficult

1 Their result holds for more general families of curves, not necessarily algebraic, but,
since algebraicity will be needed in higher dimensions, we assume it also in the plane.
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project, and the challenges that it faces seem to be enormous. Here we make
the first, and fairly significant, step in this direction, and obtain the following
bounds. As the exponents in the bounds are rather cumbersome expressions in
d, k, and j, we first state the special case of d = 3 (and prove it separately), and
then give the general bound in d dimensions.

Theorem 4 (Curves in R
3). Let k ≥ 2 be an integer, and let ε > 0. Then

there exists a constant c(k, ε) that depends on k and ε, such that the following
holds. Let P be a set of m points and C a set of n irreducible algebraic curves of
constant degree with k degrees of freedom (and some multiplicity s) in R

3, such
that every algebraic surface of degree at most c(k, ε) contains at most q2 curves
of C, for some given q2 ≤ n. Then

I(P , C) = O

(
m

k
3k−2+εn

3k−3
3k−2 +m

k
2k−1+εn

3k−3
4k−2 q

k−1
4k−2

2 +m+ n

)
,

where the constant of proportionality depends on k, s, and ε (and on the degree
of the curves).

The corresponding result in d dimensions is as follows.

Theorem 5 (Curves in R
d). Let d ≥ 3 and k ≥ 2 be integers, and let ε > 0.

Then there exist constants cj(k, d, ε), for j = 2, . . . , d− 1, that depend on k, d,
j, and ε, such that the following holds. Let P be a set of m points and C a set of
n irreducible algebraic curves of constant degree with k degrees of freedom (and
some multiplicity s) in R

d. Moreover, assume that, for j = 2, . . . , d − 1, every
j-dimensional algebraic variety of degree at most cj(k, d, ε) contains at most qj
curves of C, for given parameters q2 ≤ . . . ≤ qd−1 ≤ n.

I(P ,C)=O

(
m

k
dk−d+1

+εn
dk−d

dk−d+1 +
d−1∑
j=2

m
k

jk−j+1
+εn

d(j−1)(k−1)
(d−1)(jk−j+1) q

(d−j)(k−1)
(d−1)(jk−j+1)

j +m+n

)
,

where the constant of proportionality depends on k, s, d, and ε (and on the
degree of the curves), and provided that, for any 2 ≤ j < l ≤ d, we have (with
the convention that qd = n)

qj ≥
(
ql−1

ql

)l(l−2)

ql−1. (4)

Discussion. The advantages of our results are obvious: They provide the first
nontrivial bounds for the general case of curves with any number of degrees of
freedom in any dimension (with the exception of one previous study of Fox et
al. [7], in which weaker bounds are obtained, for arbitrary varieties instead of
algebraic curves). Apart for the ε in the exponents, the leading term is “best
possible,” in the sense that (i) the polynomial partitioning technique [10] that
our analysis employs (and that has been used in essentially all recent works on
incidences in higher dimensions) yields a recurrence that solves to this bound,
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and, moreover, (ii) it is (nearly) worst-case tight for lines in two, three, and four
dimensions (as shown in the respective works cited above), and in fact is likely
to be tight for lines in higher dimensions too, using a suitable extension of a
construction, due to Elekes and used in [10,21].

Nevertheless, our bounds are not perfect, and tightening them further is a
major challenge for future research. Specifically:
(i) The bounds involve the factor mε. As the existing works indicate, getting
rid of this factor is no small feat. Although the factor does not show up in the
cases of lines in two and three dimensions, it already shows up (sort of) in four
dimensions (Theorem 2), as well as in the case of circles in three dimensions [19].
(A recent study of Guth [8] also pays this factor for the case of lines in three
dimensions, in order to simplify the analysis.) See the proofs and comments
below for further elaboration of this issue.
(ii) The condition that no surface of degree cj(k, d, ε) contains too many curves
of C, for j = 2, . . . , d− 1, is very restrictive, especially since the actual values of
these constants that arise in the proofs can be quite large. Again, earlier works
also “suffer” from this handicap, such as Guth’s work [8] mentioned above, as
well as an earlier version of Sharir and Solomon’s four-dimensional bound [20].
(iii) Finally, the lower-dimensional terms that we obtain are not best possible.
For example, the bound that we get in Theorem 4 for the case of lines in R

3

(k = 2) is O(m1/2+εn3/4 + m2/3+εn1/2q
1/6
2 + m + n). When q2 � n, the two-

dimensional term m2/3+εn1/2q
1/6
2 in that bound is worse than the corresponding

term m2/3n1/3q
1/3
2 in Theorem 1 (even when ignoring the factor mε).

Our results are also related to recent works by Dvir and Gopi [4] and by
Hablicsek and Scherr [11], that study rich lines in high dimensions. Specifically,
let P be a set of n points in R

d and let L be a set of r-rich lines (each line
of L contains at least r points of P). If |L| = Ω(n2/rd+1) then there exists a
hyperplane containing Ω(n/rd−1) points of P . Our bounds might be relevant for
extending this result to rich curves. Concretely, for a set P of n points in R

d and
a collection C of r-rich constant-degree algebraic curves, if |C| is too large then
the incidence bound becomes larger than our “leading term”, indicating that
some lower-dimensional surface must contain many curves of C, from which it
might be possible to also deduce that such a surface has to contain many points
of P . While such an extension is not straightforward, we believe that it is doable,
and plan to investigate it in our future work.

As in the classical work of Guth and Katz [10], and in the numerous follow-up
studies of related problems, here too we use the polynomial partitioning method,
as pioneered in [10]. The reason why our bounds suffer from the aforementioned
handicaps is that we use a partitioning polynomial of (large but) constant degree.
When using a polynomial of a larger, non-constant degree, we face the difficult
task of bounding incidences between points and curves that are fully contained in
the zero set of the polynomial, where the number of curves of this kind can be large,
because the polynomial partitioning technique has no control over this value. We
remark that for lines we have the classical Cayley–Salmon theorem (see, e.g., Guth
and Katz [10]), which essentially bounds the number of lines that can be fully
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contained in an algebraic surface of a given degree, unless the surface is ruled by
lines. However, such a property is not known formore general curves (see Nilov and
Skopenkov [16] for an interesting exception involving circles inR3). Handling these
incidences requires heavy-duty machinery from algebraic geometry, and leads to
profound new problems in that domain that need to be tackled.

In contrast, using a polynomial of constant degree makes this part of the anal-
ysis much simpler, as can be seen below, but then handling incidences within the
cells of the partition becomes non-trivial, and a naive approach yields a bound that
is too large. To handle this part, one uses induction within each cell of the parti-
tioning, and it is this induction process that is responsible for the weaker aspects
of the resulting bound. Nevertheless, with these “sacrifices” we are able to obtain
a “general purpose” bound that holds for a broad spectrum of instances. It is our
hope that this study will motivate further research on this problem that would
improve our results along the “handicaps” mentioned earlier. Recalling how in-
accessible were these kinds of problems prior to Guth and Katz’s breakthroughs
seven and five years ago, it is quite gratifying that so much new ground can be
gained in this area, including the progress made in this paper.

Background. Incidence problems have been a major topic in combinatorial and
computational geometry for the past thirty years, starting with the aforemen-
tioned Szemerédi-Trotter bound [27] back in 1983. Several techniques, interesting
in their own right, have been developed, or adapted, for the analysis of incidences,
including the crossing-lemma technique of Székely [26], and the use of cuttings as
a divide-and-conquer mechanism (e.g., see [3]). Connections with range searching
and related algorithmic problems in computational geometry have also been noted
and exploited, and studies of the Kakeya problem (see, e.g., [28]) indicate the con-
nection between this problem and incidence problems. See Pach and Sharir [18]
for a comprehensive (albeit a bit outdated) survey of the topic.

The landscape of incidence geometry has dramatically changed in the past
seven years, due to the infusion, in two groundbreaking papers by Guth and
Katz [9,10], of new tools and techniques drawn from algebraic geometry. Al-
though their two direct goals have been to obtain a tight upper bound on
the number of joints in a set of lines in three dimensions [9], and a near-
linear lower bound for the classical distinct distances problem of Erdős [10],
the new tools have quickly been recognized as useful for incidence bounds. See
[5,13,14,19,24,29,30] for a sample of recent works on incidence problems that use
the new algebraic machinery.

The present paper continues this line of research, and aims at extending the
collection of instances where nontrivial incidence bounds in higher dimensions
can be obtained.

2 The Three-Dimensional Case

Proof of Theorem 4. We prove by induction on m+ n that

I(P , C) ≤ α1

(
m

k
3k−2+εn

3k−3
3k−2 +m

k
2k−1+εn

3k−3
4k−2 q

k−1
4k−2

)
+ α2(m+ n), (5)
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where α1, α2 are sufficiently large constants, α1 depends on ε and k (and s), and
α2 depends on k (and s).

For the induction base, the case where m,n are sufficiently small can be
handled by choosing sufficiently large values of α1, α2.

Since the incidence graph, as a subgraph of P × C, does not contain Kk,s+1

as a subgraph, the Kővári-Sós-Turán theorem (e.g., see [15, Section 4.5]) implies
that I(P , C) = O(mn1−1/k + n), where the constant of proportionality depends
on k (and s). When m = O(n1/k), this implies the bound I(P , C) = O(n), which
is subsumed in (5) if we choose α2 sufficiently large. We may thus assume that
n ≤ cmk, for some absolute constant c.

Applying the Polynomial Partitioning Technique. We construct an r-
partitioning polynomial f for P , for a sufficiently large constant r. That is, as
established in Guth and Katz [10], f is of degree2 O(r1/3), and the complement
of its zero set Z(f) is partitioned into u = O(r) open connected cells, each
containing at most m/r points of P . We impose the asymptotic relations 21/ε �
r � α2 � α1 between the various constants. Denote the (open) cells of the
partition as τ1, . . . , τu. For each i = 1, . . . , u, let Ci denote the set of curves of C
that intersect τi and let Pi denote the set of points that are contained in τi. We
set mi = |Pi| and ni = |Ci|, for i = 1, . . . , u, and m′ =

∑
i mi, and notice that

mi ≤ m/r for each i (and m′ ≤ m). An obvious property (which is a consequence
of Bézout’s theorem, see, e.g., [24, Theorem A.2] or [14]) is that every curve of
C intersects O(r1/3) cells of R3 \Z(f). Therefore,

∑
i ni ≤ bnr1/3, for a suitable

absolute constant b > 1 (that depends on the degree of the curves in C). Using
Hölder’s inequality, we have

∑
i

n
3k−3
3k−2

i ≤
(∑

i

ni

) 3k−3
3k−2

(∑
i

1

) 1
3k−2

≤ b′
(
nr

1
3

) 3k−3
3k−2

r
1

3k−2 = b′n
3k−3
3k−2 r

k
3k−2 ,

∑
i

n
3k−3
4k−2

i ≤
(∑

i

ni

) 3k−3
4k−2

(∑
i

1

) k+1
4k−2

≤ b′
(
nr

1
3

) 3k−3
4k−2

r
k+1
4k−2 = b′n

3k−3
4k−2 r

k
2k−1 ,

for another absolute constant b′. Combining the above with the induction hy-
pothesis, applied within each cell of the partition, implies

∑
i

I(Pi, Ci) ≤
∑
i

(
α1

(
m

k
3k−2+ε

i n
3k−3
3k−2

i +m
k

2k−1+ε

i n
3k−3
4k−2

i q
k−1
4k−2

2

)
+ α2(mi+ni)

)

≤ α1

⎛
⎝m

k
3k−2+ε

r
k

3k−2+ε

∑
i

n
3k−3
3k−2

i +
m

k
2k−1+εq

k−1
4k−2

2

r
k

2k−1+ε

∑
i

n
3k−3
4k−2

i

⎞
⎠+

∑
i

α2(mi + ni)

2 The implied constants of proportionality in the O(·) notation are absolute constants.
In contrast, r is a constant that depends on ε and on the other problem parameters.
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≤ α1b
′

⎛
⎝m

k
3k−2+εn

3k−3
3k−2

rε
+

m
k

2k−1+εn
3k−3
4k−2 q

k−1
4k−2

2

rε

⎞
⎠+ α2

(
m′ + bnr1/3

)
.

Our assumption that n = O(mk) implies that n = O
(
m

k
3k−2n

3k−3
3k−2

)
(with an

absolute constant of proportionality). Thus, when α1 is sufficiently large with
respect to r, k, and α2, we have

∑
i

I(Pi, Ci) ≤ 2α1b
′

⎛
⎝m

k
3k−2+εn

3k−3
3k−2

rε
+

m
k

2k−1+εn
3k−3
4k−2 q

k−1
4k−2

2

rε

⎞
⎠+ α2m

′.

When r is sufficiently large, so that rε ≥ 6b′, we have

∑
i

I(Pi, Ci) ≤ α1

3

(
m

k
3k−2+εn

3k−3
3k−2 +m

k
2k−1+εn

3k−3
4k−2 q

k−1
4k−2

2

)
+ α2m

′. (6)

Incidences on the Zero Set Z(f). It remains to bound incidences with points
that lie on Z(f). Set P0 := P ∩Z(f) and m0 = |P0| = m−m′. Let C0 denote the
set of curves that are fully contained in Z(f), and set C′ := C \ C0, n0 := |C0|,
and n′ := |C′| = n−n0. Since every curve of C′ intersects Z(f) in O(r1/3) points,
we have, taking α1 to be sufficiently large, and arguing as above,

I(P0, C′) = O(nr1/3) ≤ α1

3
m

k
3k−2+εn

3k−3
3k−2 . (7)

Finally, we consider the number of incidences between points of P0 and curves
of C0. For this, we set c(k, ε) to be the degree of f , which is O(r1/3), and can
be taken to be O((6b′)1/ε). Then, by the assumption of the theorem, we have
|C0| ≤ q2. We consider a generic plane π ⊂ R

3 and project P0 and C0 onto two
respective sets P∗ and C∗ on π. Since π is chosen generically, we may assume
that no two points of P0 project to the same point in π, and that no pair of
distinct curves in C0 have overlapping projections in π. Moreover, the projected
curves still have k degrees of freedom, in the sense that, given any k points on
the projection γ∗ of a curve γ ∈ C0, there are at most s−1 other projected curves
that go through all these points. This is argued by lifting each point p back to
the point p̄ on γ in R

3, and by exploiting the facts that the original curves have
k degrees of freedom, and that, for a sufficiently generic projection, any curve
that does not pass through p̄ does not contain any point that projects to p. The
number of intersection points between a pair of projected curves may increase but
it must remain a constant since these are intersection points between constant-
degree algebraic curves with no common components. By applying Theorem 3,
we obtain

I(P0, C0) = I(P∗, C∗) = O(m
k

2k−1

0 q
2k−2
2k−1

2 +m0 + q2),

where the constant of proportionality depends on k (and s). Since q2 ≤ n and

m0 ≤ m, we have m
k

2k−1

0 q
2k−2
2k−1

2 ≤ m
k

2k−1n
3k−3
4k−2 q

k−1
4k−2

2 . We thus get that I(P0, C0)
is at most
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O

(
m

k
2k−1n

3k−3
4k−2 q

k−1
4k−2

2 + n+m0

)
≤ α1

3
m

k
2k−1n

3k−3
4k−2 q

k−1
4k−2

2 + b2n+ α2m0, (8)

for sufficiently large α1 and α2; the constant b2 comes from Theorem 3, and is
independent of ε and of the choices for α1, α2 made so far.

By combining (6), (7), and (8), including the case m = O(n1/k), and choosing
α2 sufficiently large, we obtain

I(P , C) ≤ α1

(
m

k
3k−2+εn

3k−3
3k−2 +m

k
2k−1+εn

3k−3
4k−2 q

k−1
4k−2

2

)
+ α2(m+ n).

This completes the induction step and thus the proof of the theorem. �

Example 1: The case of lines. Lines in R
3 have k = 2 degrees of freedom,

and we almost get the bound of Guth and Katz in Theorem 1. There are three
differences that make this derivation somewhat inferior to that in Guth and
Katz [10], as detailed in items (i)–(iii) in the discussion in the introduction. We
also recall the two follow-up studies of point-line incidences in R

3, of Guth [8]
and of Sharir and Solomon [22]. Guth’s bound suffers from weaknesses (i) and
(ii), but avoids (iii), using a fairly sophisticated inductive argument. Sharir and
Solomon’s bound avoids (i) and (iii), and almost avoids (ii), in a sense that we do
not make explicit here. In both cases, considerably more sophisticated machinery
is needed to achieve these improvements.
Example 2: The case of circles. Circles in R

3 have k = 3 degrees of freedom,
and we get the bound

I(P , C) = O
(
m3/7+εn6/7 +m3/5+εn3/5q

1/5
2 +m+ n

)
.

The leading term is the same as in Sharir et al. [19], but the second term is
weaker, because it relies on the general bound of Pach and Sharir (Theorem 3),
whereas the bound in [19] exploits an improved bound for point-circle incidences,
due to Aronov et al. [1], which holds in any dimension. If we plug that bound
into the above scheme, we obtain an exact reconstruction of the bound in [19].
In addition, considering the items (i)–(iii) discussed earlier, we note: (i) The
requirements in [19] about the maximum number of circles on a surface are
weaker, and are only for planes and spheres. (ii) The mε factors are present
in both bounds. (iii) Even after the improvement noted above, the bounds still
seem to be weak in terms of their dependence on q2, and improving this aspect,
both here and in [19], is a challenging open problem.

Theorem 4 can easily be restated as bounding the number of rich points.

Corollary 1. For each ε > 0 there exists a parameter c(k, ε) that depends on
k and ε, such that the following holds. Let C be a set of n irreducible algebraic
curves of constant degree and with k degrees of freedom (with some multiplicity
s) in R

3. Moreover, assume that every surface of degree at most c(k, ε) contains
at most q2 curves of C. Then, there exists some constant r0(k, ε) depending on
ε, k (and s), such that for any r ≥ r0(k, ε), the number of points that are incident
to at least r curves of C (so-called r-rich points), is
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O

(
n3/2+ε

r
3k−2
2k−2+ε

+
n3/2+εq

1/2+ε
2

r
2k−1
k−1 +ε

+
n

r

)
, where the constant of proportionality de-

pends on k, s and ε.

Proof. Denoting by mr the number of r-rich points, the corollary is obtained
by combining the upper bound in Theorem 4 with the lower bound rmr. �

3 Incidences in Higher Dimensions

Due to lack of space, we omit the proof of Theorem 5, which is provided in the
full version of the paper. It follows the proof of Theorem 4 rather closely, with
appropriate modifications, and exploits the special assumption (4) on the values
qj to carry out the induction process successfully.

As a consequence of Theorem 5, we have:

Example: Incidences between Points and Lines in R
4. In the earlier

version [20] of our study of point-line incidences in four dimensions, we have
obtained the following weaker version of Theorem 2.

Theorem 6. For each ε > 0, there exists an integer cε, so that the following
holds. Let P be a set of m distinct points and L a set of n distinct lines in R

4,
and let q, s ≤ n be parameters, such that (i) for any polynomial f ∈ R[x, y, z, w]
of degree ≤ cε, its zero set Z(f) does not contain more than q lines of L, and
(ii) no 2-plane contains more than s lines of L. Then,

I(P,L) ≤ Aε

(
m2/5+εn4/5 +m1/2+εn2/3q1/12 +m2/3+εn4/9s2/9

)
+A(m+ n),

where Aε depends on ε, and A is an absolute constant.

This result follows from our main Theorem 5, if we impose Equation (4) on
q2 = s, q3 = q, and n, which in this case is equivalent to s ≤ q ≤ n and
q9

n8 < s. This illustrates how the general theory developed in this paper extends
similar results obtained earlier for “isolated” instances. Nevertheless, as already
mentioned earlier, the bound for lines in R

4 has been improved in Theorem 2 of
[21], in its lower-dimensional terms.

Discussion. We first notice that similarly to the three-dimensional case, The-
orem 5 implies an upper bound on the number of k-rich points in d dimensions
(see Corollary 1 in three dimensions), and the proof thereof applies verbatim.

Second, we note that Theorems 4 and 5 have several weaknesses. The obvious
ones are the items (i)–(iii) discussed in the introduction. Another, less obvious
weakness, which has to do with the way in which the qj-dependent terms in the
bounds are derived. Specifically, these terms facilitate the induction step, when
the constraining parameter q is passed unchanged to the inductive subproblems.
Informally, since the overall number of lines in a subproblem goes down, one
would expect q to decrease too, but so far we do not have a clean mechanism
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for doing so. This weakness is manifested, e.g., in Corollary 1, where one would
like to replace the second term by one with a smaller exponent of n and a
larger one of q. Specifically, for lines in R

3, one would like to get a term close
to O(nq2/k

3). This would yield O(n3/2/k3) for the important special case q2 =
O(n1/2) considered in [10]; the present bound is weaker.

A final remark concerns the relationships between the qj , as set forth in Equa-
tion (4). These conditions are forced upon us by the induction process. As noted
above, for incidences between points and lines in R

4, the bound derived in our
main theorem 5 is (asymptotically) the same as that of the main result of Sharir
and Solomon in [20]. The difference is that there, no restrictions on the qj are
imposed. Their proof is facilitated by the so called “second partitioning poly-
nomial” (see [13,20]). Recently, Basu and Sombra [2] proved the existence of a
third partitioning polynomial (see [2, Theorem 3.1]), and conjectured the exis-
tence of a k-partitioning polynomial for general k > 3 (see [2, Conjecture 3.4]
for an exact formulation); for completeness we refer also to [7, Theorem 4.1],
where a weaker version of this conjecture is proved. Building upon the work of
Basu and Sombra [2], the proof of Sharir and Solomon [21] is likely to extend
and yield the same bound as in our main theorem 5, for the more general case
of incidences between points and bounded degree algebraic curves in dimensions
at most five, and, if [2, Conjecture 3.4] holds, in every dimension, without any
conditions on the qj .
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30. Zahl, J.: A Szemerédi-Trotter type theorem in R
4, arXiv:1203.4600


	Incidences with Curves in Rd
	1 Introduction

	2 The Three-Dimensional Case

	3 Incidences in Higher Dimensions





