
Exact Minkowski Sums of Polygons With Holes

Alon Baram1, Efi Fogel1, Dan Halperin1, Michael Hemmer2,
and Sebastian Morr2

1 School of Computer Science, Tel Aviv University, Israel
{alontbst,efifogel}@gmail.com, danha@post.tau.ac.il
2 Dept. of Computer Science, TU Braunschweig, Germany

mhsaar@gmail.com, sebastian@morr.cc

Abstract. We present an efficient algorithm that computes the Min-
kowski sum of two polygons, which may have holes. The new algorithm
is based on the convolution approach. Its efficiency stems in part from a
property for Minkowski sums of polygons with holes, which in fact holds
in any dimension: Given two polygons with holes, for each input polygon
we can fill up the holes that are relatively small compared to the other
polygon. Specifically, we can always fill up all the holes of at least one
polygon, transforming it into a simple polygon, and still obtain exactly
the same Minkowski sum. Obliterating holes in the input summands
speeds up the computation of Minkowski sums.

We introduce a robust implementation of the new algorithm, which
follows the Exact Geometric Computation paradigm and thus guaran-
tees exact results. We also present an empirical comparison of the perfor-
mance of Minkowski sum construction of various input examples, where
we show that the implementation of the new algorithm exhibits better
performance than several other implementations in many cases.

The software is available as part of the 2D Minkowski Sums pack-
age of Cgal (Computational Geometry Algorithms Library), starting
from Release 4.7. Additional information and supplementary material is
available at our project page http://acg.cs.tau.ac.il/projects/rc.

1 Introduction

Let P and Q be two point sets in R
d. The Minkowski sum of P and Q is defined

as P ⊕Q = {p+ q | p ∈ P, q ∈ Q}. In this paper we focus on the computation of
Minkowski sums of general polygons in the plane, that is, polygons that may have
holes. However, some of our results also apply to higher dimensions. Minkowski
sums are ubiquitous in many fields and applications including robot motion
planning [16], assembly planning [7], computer aided design [5], and collision
detection in general [19].
1 Work by E.F. and D.H. has been supported in part by the Israel Science Foundation

(grant no. 1102/11), by the German-Israeli Foundation (grant no. 1150-82.6/2011),
and by the Hermann Minkowski–Minerva Center for Geometry at Tel Aviv Univer-
sity.

2 Work by S.M. and M.H. has been supported by Google Summer of Code 2014.

c© Springer-Verlag Berlin Heidelberg 2015
N. Bansal and I. Finocchi (Eds.): ESA 2015, LNCS 9294, pp. 71–82, 2015.
DOI: 10.1007/978-3-662-48350-3_7

http://acg.cs.tau.ac.il/projects/rc

72 A. Baram et al.

[0]

[0]

[1]
[2] [2]

[2]

Fig. 1. The convolution of a convex polygon and a non-convex polygon; winding num-
bers are indicated in brackets; dotted edges are left out for the reduced convolution.

1.1 Terminology and Related Work

During the last four decades many algorithms to compute the Minkowski sum
of polygons or polyhedra were introduced. For exact two-dimensional solutions
see, e.g., [8]. For approximate solutions see, e.g., [13] and [15]. For exact and
approximate three-dimensional solutions see, e.g., [11], [17], [18], and [24].

Computing the Minkowski sum of two convex polygons P and Q is rather
easy. As P ⊕Q is a convex polygon bounded by copies of the edges of P and Q
ordered according to their slope, the Minkowski sum can be computed using an
operation similar to merging two sorted lists of numbers. If the polygons are not
convex, it is possible to use one of the two following general approaches:

Decomposition. Algorithms that follow the decomposition approach decompose
P and Q into two sets of convex sub-polygons. Then, they compute the pair-
wise sums using the simple procedure described above. Finally, they compute
the union of the pairwise sums. This approach was first proposed by Lozano-
Pérez [20]. The performance of this approach heavily depends on the method
that computes the convex decomposition of the input polygons. Flato et al. [1]
described an implementation of the first exact and robust version of the decom-
position approach, which handles degeneracies. They also tried different decom-
position methods, but none of them handles polygons with holes.

Ghosh [9] introduced slope diagrams—a data structure that was used later
on by some of us to construct Minkowski sums of bounded convex polyhedra
in 3D [6]. Hachenberger [11] constructed Minkowski sums of general polyhedra
in 3D. Both implementations are based on the Computational Geometry Algo-
rithms Library (Cgal) and follow the Exact Geometric Computation (EGC)
paradigm.

Convolution. Let VP = (p0, . . . , pm−1) and VQ = (q0, . . . , qn−1) denote the se-
quence of vertices in counter-clockwise order along the boundaries of the input
polygons P and Q, respectively. Assume that their boundaries wind in a coun-
terclockwise order around their interiors. The convolution of these two polygons,

Exact Minkowski Sums of Polygons With Holes 73

denoted P ∗Q, is a collection of line segments of the form3 [pi + qj , pi+1 + qj],
where the vector −−−−→pipi+1 lies counterclockwise in between −−−−→qj−1qj and −−−−→qjqj+1 and,
symmetrically, of segments of the form [pi+qj, pi+qj+1], where the vector −−−−→qjqj+1

lies counterclockwise in between −−−−→pi−1pi and −−−−→pipi+1.
According to the Convolution Theorem stated in 1983 by Guibas et al. [10],

the convolution P ∗Q of two polygons P and Q is a superset of the boundary of
the Minkowski sum P ⊕Q. The segments of the convolution form a number of
closed (possibly self-intersecting) polygonal curves called convolution cycles. The
set of points having a nonzero winding number with respect to the convolution
cycles comprise the Minkowski sum P ⊕Q.4 However, this theorem has not been
completely proven. Though, in the introduction of the thesis of Ramkumar [22],
there are some statements about the correctness of the Convolution Theorem.

Wein [25] implemented the standard convolution algorithms for simple poly-
gons. He computed the winding number for each face in the arrangement induced
by the convolution cycles and used it to determine whether the face is part of
the Minkowski sum or not; see Figure 1. Wein’s implementation is available in
Cgal [26], and as such, it follows the EGC paradigm.

Kaul et al. [14] observed that a segment [pi+ qj, pi+1 + qj] (resp. [pi+ qj , pi+
qj+1]) cannot possibly contribute to the boundary of the Minkowski sum if qj
(resp. pi) is a reflex vertex (see dotted edges in Figure 1). The remaining subset of
convolution segments, the reduced convolution, is still a superset of the Minkowski
sum boundary, but the idea of winding numbers can not be applied any longer
as there are no closed cycles anymore. Instead, Behar and Lien [2], first identify
faces in the arrangement of the reduced convolution that may represent holes
(based on proper orientation of all boundary edges of the face). Thereafter, they
check whether such a face is indeed a proper hole by selecting a point x inside the
face and performing a collision detection of P and x⊕−Q. Their implementation
exhibits faster running time than Wein’s implementation. However, although it
uses advanced multi-precision arithmetic, it does not handle some degenerate
cases. The method was also extended to three dimensions [18].

Milenkovic and Sacks [21] defined the Monotonic Convolution, which is an-
other superset of the Minkowski sum boundary. They show that this set defines
cycles and induces winding numbers, which are positive only in the interior of
the Minkowski sum.

1.2 Our Results

We present an efficient algorithm that computes the Minkowski sum of two
polygons, which may have holes. The new algorithm is a variant of the algorithm
proposed by Behar and Lien [2], which computes the reduced convolution set.
In our new algorithm, the initial set of filters proposed in [2] is enhanced by

3 Addition of vertex indices is carried out modulo m for P and modulo n for Q.
4 Informally, the winding number of a point p ∈ R

2 with respect to some planar curve
γ is an integer number counting how many times does γ wind in a counterclockwise
orientation around p.

74 A. Baram et al.

the removal of complete holes in the input. This enhancement reduces the size
of the reduced convolution set even further. The enhancement is backed up by
a theorem, the proof of which is also presented; see Section 2. Moreover, we
show that at least one of the input polygons can always be made simple (before
applying the convolution). These latter results are applicable to any dimension
and are independent of the used approach. In addition, roughly speaking, we
show that every boundary cycle of the Minkowski sum is induced by exactly one
boundary cycle of each summand; see Section 2. It implies that we can compute
the convolution of each pair of boundary cycles of the summands separately in
order to obtain the correct boundary cycles of the final Minkowski sum. This
result is also applicable to any dimension and it is independent of the used
approach.

We introduce an implementation of the new algorithm. We also introduce im-
plementations of two new convex decomposition methods that handle polygons
with holes as input—one is based on vertical decomposition and the other is
based on triangulation. These two methods can be directly applied to compute
the Minkowski sum of polygons with holes via decomposition. All our implemen-
tations are robust and handle degenerate cases.

We present an empirical comparison of all the implementations above and
existing implementations; see Section 4. We show that the implementation of
our new algorithm that computes the reduced convolution after filling up some
holes in the input exhibits better performance than all other implementations
in many cases.

2 Filtering Out Holes

The fundamental observation of the convolution theorem is that only points on
the boundary of P and Q can contribute to the boundary of P ⊕Q. Specifically,
the union of the segments in the convolution P ∗Q, as a point set, is a super-set
of the union of the segments of the boundary of P ⊕Q.

The idea behind the reduced convolution method is to filter out segments
of P ∗ Q that can not possibly contribute to the boundary of P ⊕ Q using a
local criterion; see Section 1.1. In this section we introduce a global criterion.
We show that if a hole in one polygon is relatively small compared to the other
polygon, the hole is irrelevant for the computation of P ⊕Q; see Figure 2 for an
illustration. Thus, we can ignore all segments in P ∗Q that are induced by the
hole when computing P ⊕ Q. It implies that the hole can be removed (that is,
filled up) before the main computation starts, regardless of the approach that
one uses to compute the Minkowski sum.

Definition 1. A hole H of polygon P leaves a trace in P ⊕Q, if there exists a
point r = p+ q ∈ ∂(P ⊕Q), such that p ∈ ∂H and q ∈ ∂Q. We say that r is a
trace of H. Conversely, we say that a hole H is irrelevant for the computation
of P ⊕Q if it does not leave a trace at all.

Exact Minkowski Sums of Polygons With Holes 75

P Q

γ

∂H ⊕ γ

H
P ⊕Q

Fig. 2. A small hole H is irrelevant for the computation of P ⊕ Q as adding ∂H and
γ ⊂ Q fills up any potential hole in P ⊕Q related to H

Lemma 1. If H leaves a trace in P ⊕Q at a point r, then r is on the boundary
of a hole H̃ in P ⊕Q.

Proof. Consider the point r = p + q, which is on the boundary of P ⊕Q, such
that p ∈ ∂H and q ∈ ∂Q. Since the polygons are closed, for every neighborhood
of r there exists a point r′ �∈ P⊕Q, see Figure 3. Consequently, its corresponding
point p′ = r′ − q, which is in the neighborhood of p must be in H . Thus, r′ must
be enclosed by ∂H ⊕ q, implying that r′ is inside a hole of P ⊕Q. ��

Q

p
q

r = p+ q P ⊕Q

P

r′
H

∂H ⊕ q

H̃

p′ r

r′

Fig. 3. Hole H leaves a trace in P ⊕Q at point r, which must be on the boundary of
some hole H̃ in P ⊕Q; see Lemma 1

Lemma 2. Let H̃ be a hole in P ⊕Q that contains a point r = p+q ∈ ∂H̃, such
that p ∈ ∂H and q ∈ ∂Q; that is, r is a trace of H. Then ∀z ∈ H̃ and ∀y ∈ Q,
it must hold that z ∈ H ⊕ y. In other words, H̃ ⊆ ⋂

∀y∈QH ⊕ y.

Proof. As in Lemma 1, there is a point r′ in the neighborhood of r, which is
enclosed by ∂H ⊕ q. Furthermore, there exists a continuous path from r′ ∈ H̃
to any z ∈ H̃ , which means that every z ∈ H̃ is also enclosed by ∂H ⊕ q, or in
other words: z ∈ H ⊕ q.

Now, assume for contradiction that there is a point y0 ∈ Q, for which z is
not in H ⊕ y0. Consider the continuous path γ that connects q and y0 within
Q. Observe that z ∈ H ⊕ q and z /∈ H ⊕ y0 are equivalent to z − q ∈ H and

76 A. Baram et al.

z− y0 /∈ H , respectively. This means that z− y0 is either in the unbounded face,
or in some other hole in P . Now observe that the path z ⊕ (−γ) connects z − q
and z − y0. Thus, since γ is continuous, there must be a point y′0 ∈ γ ⊂ Q, for
which z− y′0 ∈ P . Hence, z ∈ P ⊕ y′0, which implies z ∈ P ⊕Q—a contradiction.

��
Corollary 1. Let H̃ be a hole in P ⊕Q with r ∈ ∂H̃ being a trace of H. Then
∀s ∈ ∂H̃ it holds that s is a trace of H.

Proof. Consider an arbitrary point s ∈ ∂H̃ , and assume by contradiction that
s = x+ y, where y ∈ ∂Q and x ∈ ∂H ′ is on a boundary cycle of P different than
∂H . By Lemma 2, H̃ ⊆ ⋂

∀y∈QH ⊕ y, it also holds that s = x+ y, where x ∈ H ,
which implies that x is in two different holes—a contracdiction. ��
Theorem 1. Let H be a closed hole in polygon P . H is irrelevant for the com-
putation of P ⊕ Q iff there is a path contained in polygon Q that does not fit
under any translation in −H.

Proof. We first show that H is irrelevant for the computation of P ⊕Q if there
is a path γ ⊂ Q that does not fit under any translation in −H . Assume for
contradiction that H leaves a trace in P ⊕ Q; that is, there is an r = p + q ∈
∂(P ⊕ Q), such that p ∈ ∂H and q ∈ ∂Q. By Lemma 1, the point r is on the
boundary of a hole H̃ in P ⊕ Q. By Lemma 2, for any point x ∈ H̃ it must
hold that x ∈ H ⊕ y ∀y ∈ Q. Specifically, it must hold ∀y ∈ γ ⊂ Q. This is
equivalent to y ∈ (x⊕−H) for all y ∈ γ, stating that γ fits into −H under some
translation—a contradiction.

Conversely, if there is no path that does not fit into −H then all paths contained
in Q fit in −H . Thus, also Q itself fits in −H under some translation x with
x⊕Q ⊆ −H . In this case x+ q ∈ −H for all q ∈ Q, which is equivalent to −x ∈
H ⊕ q for all q ∈ Q. This implies that −x /∈ P ⊕Q, whereas −x ∈ (P ∪H)⊕Q,
that is, H is relevant for P ⊕Q. ��
Corollary 2. If the closed axis-aligned bounding box BQ of Q does not fit under
any translation in the open axis-aligned bounding box B̊H of a hole H in P , then
H does not have a trace in P ⊕Q.

Proof. W. l. o. g. assume that BQ does not fit into B̊H with respect to the x-
direction. Consider the two extreme points on ∂Q in that direction and connect
them by a closed path γ, which obviously does not fit into −H , as it does not
fit into B̊H . ��

Theorem 2. Let P and Q be two polygons with holes and let P ′ and Q′ be
their filtered versions, that is, with holes filled up according to Corollary 2 with
P ⊕Q = P ′ ⊕Q′. Then, at least P ′ or Q′ is a simple polygon.

Proof. Note that if BQ does not fit in the open axis-aligned bounding box B̊P of
P , it cannot fit in the bounding box of any hole in P , implying that all holes of P
can be ignored. Since for any two bounding boxes either BQ �⊂ B̊P or BP �⊂ B̊Q

holds, we need to consider the holes of at most one polygon. ��

Exact Minkowski Sums of Polygons With Holes 77

Consequently, we can remove all holes in one polygon whose bounding boxes
are, in x- or y-direction, smaller than, or as large as, the bounding box of the
other polygon, as an initial phase of all methods. With fewer holes, convex
decomposition results in fewer pieces. Moreover, when all holes of a polygon
become irrelevant, one can choose a decomposition method that handles only
simple polygons instead of a decomposition method that handles polygons with
holes, which is typically more costly. As for the convolution approach, the inter-
mediate arrangements become smaller, speeding up the computation.

3 Implementation

The software has been developed as part of the 2D Minkowski Sums package of
Cgal [26], and it uses other components of Cgal [23]. As such, it is written
in C++ and rigorously adheres to the generic-programming paradigm and the
EGC paradigm. In the following we provide some details about each one of the
new implementations.

3.1 Reduced Convolution

We compute the reduced convolution set of segments filtering out features that
cannot possibly contribute to the boundary of the Minkowski sum (see Sec-
tion 1.1) and in particular complete holes (see Section 2). Then, we construct
the arrangement induced by the reduced convolution set.5 Finally, we traverse
the arrangement and extract the boundary of the Minkowski sum. We apply
two different filters to identify valid holes in the Minkowski sum: (i) We ignore
any face in the arrangement the outer boundary of which forms a cycle that is
not properly oriented, as suggested in [2]. (ii) We ignore any face f , such that
(−P ⊕ x) and Q collide, where x ∈ f is a sampled point inside f , as suggested
in [14]. We use axis-aligned bounding box trees to expedite the collision tests.
After applying these two filters, only segments that constitute the Minkowski
sum boundary remain.

3.2 Decomposition

Vertical decomposition [12] (a.k.a. trapezoidal decomposition) and triangula-
tion [3] have been extensively used ever since they have been independently
introduced a long time ago. We provide a brief overview of these two structures
for completeness and explain how they are used in our implementations.

Vertical decomposition for a planar subdivisions is the partition of the (al-
ready subdivided) plane into a finite collection of pseudo trapezoids. Each pseudo
trapezoid is either a trapezoid that has vertical sides, or a triangle (which is a

5 Currently, we use a single arrangement and do not separate segments that originate
from different boundary cycles in the summands (exploiting Corollary 1). We plan
to apply this enhancement in the near future.

78 A. Baram et al.

(a) (b) (c)

Fig. 4. Convex decomposition. (a) A polygon with holes. (b) Vertical decomposition
of the polygon in (a). (c) Triangulation of the polygon in (a).

degenerate trapezoid). Given a polygon with holes, we obtain the decomposition
as follows: At every vertex of the polygon, we extend a ray upward if it does
not escape the polygon, until either another vertex or an edge is hit. Similarly,
we extend a ray downward; see Figure 4b. In our implementation we exploit the
vertical decomposition functionality provided by the Cgal package 2D Arrange-
ments [27].

A Delaunay triangulation for a set of points in a plane is the partition of
the plane into triangles, such that no point in the input is inside the circumcir-
cle of any triangle in the triangulation. A constrained Delaunay triangulation
is a generalization of the Delaunay triangulation that forces certain required
segments into the triangulation. Given a polygon with holes we obtain the con-
strained Delaunay triangulation confined to the given polygon and provide the
polygon edges as constraints; see Figure 4c. In our implementation, we use the
2D Triangulations [28] Cgal package.

4 Experiments

We have conducted our experiments on families of randomly generated simple
and general polygons from AGPLib [4]; these polygons are depicted in Figure 5a
and 5b, respectively. All experiments were run on an Intel Core i7-4770 CPU
clocked at 3.4 GHz with 16 GB of RAM, a high-class desktop CPU which would
be a good fit for CAD applications. For each instance size the diagrams in the
figures show an average over 30 runs on different input. Every run was allowed
20 minutes of CPU time and aborted when it did not finish within this limit.

First, we compared the running time of the implementations of all methods
for simple polygons available in Cgal (for details, see [8, Section 9.1.2]), the
new implementations, and Behar and Lien’s implementation; see Figure 7a. The
reduced convolution method consumed about ten times less time than the full
convolution method for large instances, whereas the decomposition methods were
the fastest for instances larger than 225 vertices.

Secondly, we compared the running time of the implementations of the three
new methods (i.e., the reduced convolution method (RC), the triangular based
decomposition method (TD), and the vertical decomposition based method (VD))

Exact Minkowski Sums of Polygons With Holes 79

(a) (b)

Fig. 5. Randomly generated polygons: (a) simple polygon with 200 vertices, and (b)
general with 200 vertices and 20 holes

and Behar and Lien’s implementation on instances of general polygons with n
vertices and n/10 holes; see Figure 7b. For each pair of polygons, one was scaled
down by a factor of 1000, to avoid the effect of the hole filter in this experiment.
For all executions, the reduced convolution method consumed significantly less
time than the two decomposition methods. Behar and Lien’s implementation
generally performs worse than our reduced convolution method.

In order to demonstrate the effect of the hole filter, we compared the running
time of the implementations above fed with a circle with 32 vertices of varying
size (see the horizontal axis in Figure 7c and 7d) and with randomly generated
polygons having 2000 vertices and 200 holes. Without the hole filter the run-
ning time of the reduced convolution method increases as the circle grows due
to an increase of the complexity of the intermediate arrangement. Behar and
Lien’s implementation exhibited constant running time, as it performs pairwise
intersection testing. When applying the hole filter to our methods, the reduced
convolution method consumed less time than all other methods. The two dia-
grams clearly show the impact of filtering holes.

(a) (b)

Fig. 6. Letters from the font Tangerine used for the real-world benchmark, displayed
with their offset versions. (a) Lowest-resolution “M” with 75 vertices (b) Highest-
resolution “A” with 8319 vertices.

80 A. Baram et al.

0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 50 100 200 400 800

RC
FC
OD
SD
HD
GD
BL

(a) MS of simple polygons;

 0.1

 1

 10

 100

 1000

 250 500 1000 2000

RC
TD
VD
BL

(b) MS of general polygons.

 0.01

 0.1

 1

 10

 100

 0.01 1 100 10000

RC
TD
VD
BL

(c) MS of general polygon (200 holes,
2000 vertices) and growing circle (x-
axis)—without hole filter

 0.01

 0.1

 1

 10

 100

 0.01 1 100 10000

RC
TD
VD
BL

(d) MS of general polygon (200 holes,
2000 vertices) and growing circle (x-
axis)—with hole filter

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 100 1000 10000

RC
FC
OD
SD
HD
BL

(e) MS of a fixed-size circle and an
“M” with varying vertex count (x-
axis).

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 100 1000 10000

RC
TD
VD
BL

(f) MS of a fixed-size circle and an
“A” with varying vertex count (x-
axis).

Fig. 7. Time consumption of Minkowski sum construction using various methods. The
y-axis indicates the time measured in seconds; the x-axis indicates the number of ver-
tices of each input polygon, unless otherwise stated. Legend: (RC) reduced convolution;
(FC) full convolution; (TD) constrained triangulation decomposition; (VD) vertical de-
composition; (SD) small-side angle-bisector decomposition; (OD) optimal convex de-
composition; (HD) Hertel-Mehlhorn decomposition; (GD) Greene decomposition; (BL)
Behar and Lien’s reduced convolution.

Exact Minkowski Sums of Polygons With Holes 81

Note that the polygons used for the benchmarks above do not represent a real-
world case. Instead, the complex shapes essentially constitute the worst-case, as
most segments intersections are inside the Minkowski sum anyway. For a more
realistic scenario, consider a text, which we would like to offset (for example,
for printing stickers). In Figure 7e, we show the running times of the methods
available for simple polygons when calculating the Minkowski sum of a glyph of
the letter “M” (Figure 6) with a varying amount of vertices and a circle with 128
vertices. In Figure 7f, we show the running times of the methods available for
general polygons when calculating the Minkowski sum of a glyph of the letter
“A” and the same circle. For both letters, our implementation of the reduced
convolution is faster than all other methods for large n.

5 Conclusion

All implementations introduced in this work are available as part of the 2D
Minkowski Sums package of Cgal, which now also supports polygons with holes.
The decomposition approaches that handle only simple polygons outperform the
new reduced convolution method (which, naturally handles also simple polygons)
for instances of random simple polygons with more than 150 vertices. However,
these rather chaotic polygons somewhat constitute the worst case scenario for
the reduced convolution method. In all other scenarios, the reduced convolution
method with hole filter outperforms all other methods by a factor of at least 5.
Consequently, starting with Cgal version 4.7, this is the new default method to
compute Minkowski sums for simple polygons as well as polygons with holes.

References

1. Agarwal, P.K., Flato, E., Halperin, D.: Polygon decomposition for efficient con-
struction of Minkowski sums. Comput. Geom. Theory Appl. 21, 39–61 (2002)

2. Behar, E., Lien, J.-M.: Fast and robust 2D Minkowski sum using reduced convo-
lution. In: Proc. IEEE Conf. on Intelligent Robots and Systems (2011)

3. Bern, M.: Triangulations and mesh generation. In: Goodman, J.E., O’Rourke, J.
(eds.) Handb. Disc. Comput. Geom., ch. 25, 2nd edn., pp. 529–582. Chapman &
Hall/CRC, Boca Raton (2004)

4. Couto, M.C., de Rezende, P.J., de Souza, C.C.: Instances for the Art Gallery Prob-
lem (2009), http://www.ic.unicamp.br/~cid/Problem-instances/Art-Gallery

5. Elber, G., Kim, M.-S.: Offsets, sweeps, and Minkowski sums. Comput. Aided De-
sign 31(3), 163 (1999)

6. Fogel, E., Halperin, D.: Exact and efficient construction of Minkowski sums of con-
vex polyhedra with applications. In: Proc. 8th Workshop Alg. Eng. Experiments,
pp. 3–15 (2006)

7. Fogel, E., Halperin, D.: Polyhedral assembly partitioning with infinite translations
or the importance of being exact. IEEE Trans. on Automation Sci. and Eng. 10,
227–241 (2013)

8. Fogel, E., Halperin, D., Wein, R.: Cgal Arrangements and Their Applications, A
Step by Step Guide. Springer, Heidelberg (2012)

http://www.ic.unicamp.br/~cid/Problem-instances/Art-Gallery

82 A. Baram et al.

9. Ghosh, P.K.: A unified computational framework for Minkowski operations. Com-
put. & Graphics 17(4), 357–378 (1993)

10. Guibas, L.J., Ramshaw, L., Stolfi, J.: A kinetic framework for computational geom-
etry. In: Proc. 24th Annu. IEEE Symp. Found. Comput. Sci., pp. 100–111 (1983)

11. Hachenberger, P.: Exact Minkowksi sums of polyhedra and exact and efficient
decomposition of polyhedra into convex pieces. Algorithmica 55(2), 329–345 (2009)

12. Halperin, D.: Arrangements. In: Goodman, J.E., O’Rourke, J. (eds.) Handb. Disc.
Comput. Geom., ch. 24, 2nd edn., pp. 529–562. Chapman & Hall/CRC, Boca Raton
(2004)

13. Hartquist, E.E., Menon, J., Suresh, K., Voelcker, H.B., Zagajac, J.: A comput-
ing strategy for applications involving offsets, sweeps, and Minkowski operations.
Comput. Aided Design 31, 175–183 (1999)

14. Kaul, A., O’Connor, M., Srinivasan, V.: Computing Minkowski sums of regular
polygons. In: Proc. 3rd Canadian Conf. on Comput. Geom., pp. 74–77 (1991)

15. Kavraki, L.E.: Computation of configuration-space obstacles using the fast fourier
transform. In: Proc. IEEE Int. Conf. on Robotics & Automation, pp. 255–261
(1993)

16. Latombe, J.-C.: Robot Motion Planning. Kluwer Academic Publishers, Norwell
(1991)

17. Li, W., McMains, S.: A GPU-based voxelization approach to 3D Minkowski sum
computation. In: Proc. 2010 ACM Symp. Solid Phys. Model., pp. 31–40. ACM
Press (2010)

18. Lien, J.-M.: A simple method for computing minkowski sum boundary in 3D using
collision detection. In: Chirikjian, G.S., Choset, H., Morales, M., Murphey, T. (eds.)
Algorithmic Foundation of Robotics VIII. STAR, vol. 57, pp. 401–415. Springer,
Heidelberg (2009)

19. Lin, M.C., Manocha, D.: Collision and proximity queries. In: Goodman, J.E.,
O’Rourke, J. (eds.) Handb. Disc. Comput. Geom., ch. 35, 2nd edn., pp. 787–807.
Chapman & Hall/CRC, Boca Raton (2004)

20. Lozano-Pérez, T.: Spatial planning: A configuration space approach. IEEE Trans.
on Comput. C-32, 108–120 (1983)

21. Milenkovic, V., Sacks, E.: A monotonic convolution for Minkowski sums. Int. J. of
Comput. Geom. Appl. 17(4), 383–396 (2007)

22. Ramkumar, G.: Tracings and Their Convolutions: Theory and Application. Phd
thesis, Stanford, California (1998)

23. The Cgal Project. Cgal User and Reference Manual. Cgal Editorial Board, 4.6 edn.
(2015), http://doc.cgal.org/latest/Manual/index.html

24. Varadhan, G., Manocha, D.: Accurate Minkowski sum approximation of polyhedral
models. Graphical Models 68(4), 343–355 (2006)

25. Wein, R.: Exact and efficient construction of planar Minkowski sums using the
convolution method. In: Proc. 14th Annu. Eur. Symp. Alg., pp. 829–840 (2006)

26. Wein, R.: 2D Minkowski sums. In: Cgal User and Ref-
erence Manual. Cgal Editorial Board, 4.6 edn. (2015).
http://doc.cgal.org/latest/Manual/packages.html#PkgMinkowskiSum2Summary.

27. Wein, R., Berberich, E., Fogel, E., Halperin, D., Hemmer, M.,
Salzman, O., Zukerman, B.: 2D arrangements. In Cgal User
and Reference Manual. Cgal Editorial Board, 4.6 edn. (2015).
http://doc.cgal.org/latest/Manual/packages.html#PkgArrangement2Summary.

28. Yvinec, M.: 2D triangulations. In: Cgal User and Ref-
erence Manual. Cgal Editorial Board, 4.6 edn. (2015).
http://doc.cgal.org/latest/Manual/packages.html#PkgTriangulation2Summary.

http://doc.cgal.org/latest/Manual/index.html
http://doc.cgal.org/latest/Manual/packages.html#PkgMinkowskiSum2Summary
http://doc.cgal.org/latest/Manual/packages.html#PkgArrangement2Summary
http://doc.cgal.org/latest/Manual/packages.html#PkgTriangulation2Summary

	Exact Minkowski Sums of Polygons With Holes
	1 Introduction
	1.1 Terminology and Related Work
	1.2 Our Results

	2 Filtering Out Holes
	3 Implementation
	3.1 Reduced Convolution
	3.2 Decomposition

	4 Experiments
	5 Conclusion

